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CHAPTER 1

Preface

Although this may seem a paradox, all exact science is dom-
inated by the idea of approximation. When a man tells you
that he knows the exact truth about anything, you are safe in
infering that he is an inexact man. Every careful measurement
in science is always given with the probable error ... every
observer admits that he is likely wrong, and knows about how
much wrong he is likely to be.

Bertrand Russell, 1872 - 1970,
The Scientific Outlook, 1931.

In the beginning of the 20th century, the dependence of electrical resistance on
temperature became a very active field of research in physics. Measurements on the
resistance of many different metals at low temperatures, which were carried out by
experimental physicists, amongst them James Dewar and John Ambrose Fleming,
gave room for the idea that the resistance of metals could vanish completely at very
low temperatures. Lord Kelvin [63] in 1902 made the prediction that resistance
decreases with falling temperature up to a certain point. After this minimum is
reached, he expected the resistance to increase again as temperature decreases further.
This behavior turned out to be true for semiconductors. However, in the case of
superconductivity things are different. At a certain temperature, the so-called critical
temperature, resistance abruptly vanishes and stays zero at all temperatures below the
critical temperature. This phenomenon was discovered by Heike Kamerlingh Onnes
in 1911 and he was awarded the Nobel Prize for his discovery of superconducting
materials in 1913.

It took almost 46 years of intensive research until, in 1957, John Bardeen, Leon
Neil Cooper and John Robert Schrieffer published their famous paper with the title
“Theory of Superconductivity” [6]. Their theory of superconductivity, usually referred
to as BCS theory, is based on the idea of electron pairing driven by an effective
attraction mediated by phonons. This publication was a breakthrough, presenting the
first microscopic model for the remarkable effect of vanishing resistance and the three
authors were awarded the Nobel prize for their discovery in 1972. Before, Cooper [24]
had realized that a very tiny attractive interaction between particles in a Fermi gas
suffices to cause pairing between electrons. While this interaction is possible because
of interactions through the lattice in the case of metals, it is of local type in other
situations, as for example for superfluid cold gases. The arising electron pairs are
known as Cooper pairs. Approximately, Cooper pairs behave like Bosons and they
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form a condensed state which is not identical with a Bose-Einstein condensate, but
nonetheless similar. Amongst the famous and typical properties of superconductors
that can be explained with the appearance of this strongly correlated quantum state
are, for example, infinite conductivity, the Meissner effect, flux quantization and the
isotope effect, see the original work of Bardeen, Cooper and Schrieffer [6] and the
book of Fetter and Walecka [31].

The second model, which will play a role in this thesis, is a model in kinetic
theory and was introduced by Mark Kac in 1956 in his article “Foundations of kinetic
theory” [61]. The Kac model is a linear, microscopic model to describe a gas of
interacting particles in a probabilistic way. This model, and in particular the Kac
master equation, due to its simplicity, have a special place among the models describing
a large number of interacting particles. One goal, and the main motivation for Kac’s
work in [61], was to provide a satisfactory derivation of the spatially homogeneous
Boltzmann equation. Indeed, Kac in [61] was able to derive the spatially homogeneous,
non-linear Kac-Boltzmann equation. It was in this context that Kac introduced his
notion of propagation of chaos as well as his definition of chaotic sequences, what he
called ’sequences that have the Boltzmann property’. Both these concepts turned out
to be very useful tools in his derivation. So far, the - much more difficult - derivation
of the Boltzmann equation from the laws of classical mechanics has only been shown
for situations with very few collisions, see the work of O. Lanford [66, 67]. In addition,
Kac in [61] wished to lay a basis and give a mathematical setting for the study of
approach to equilibrium, which he did by presenting his approach to the problem
through master equations.

These two models, the BCS model and the Kac model, are the effective theories,
which will be studied in this thesis.
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CHAPTER 2

Summary

Von vielen Dingen spreche ich gar nicht, weil sie sich von selbst
verstehen. Kluge Leute erraten das meiste.

Lea Mendelssohn, 1777 - 1842.

2.1. German summary

In dieser Arbeit werden Aspekte der BCS-Theorie und des Kac-Modells diskutiert
und neue Ergebnisse zu diesen Forschungsgebieten vorgestellt. Im Rahmen der BCS-
Theorie untersuchen wir die Frage nach Brechung oder Erhaltung der Translations-
symmetrie. Ein weiteres Kapitel ist dem Zusammenhang von BCS-Theorie und dem
makroskopischen Ginzburg-Landau-Modell gewidmet. Im Kontext des Kac-Modells in
der kinetischen Theorie studieren wir die relative Entropie und stellen ein Ergebnis
zum exponentiellem Abfall von Lösungen der Kac-Master-Gleichung vor.

Die BCS-Theorie wurde von ihren Namensgebern Bardeen, Cooper und Schrief-
fer, mit dem Artikel ”Theory of Superconductivity” aus dem Jahre 1957 begründet.
Die Autoren veröffentlichten dort erstmals ihre Idee eines mikroskopischen Modells
der Supraleitung. Die Annahme von Translationssymmetrie stellt eine signifikante
Vereinfachung des BCS-Modells dar. Deshalb ist es interessant, Situationen zu charak-
terisieren in denen die Translationssymmetrie nicht gebrochen ist und die Annahme
der Translationssymmetrie damit gerechtfertigt ist. In Kapitel 5 betrachten wir diese
Fragestellung im Fall von radialer Wechselwirkung in zwei Dimensionen. Für Tempe-
raturen, die in einem bestimmten Intervall unterhalb der kritischen Temperatur liegen,
zeigen wir, dass die Minimierer des BCS-Funktionals translationsinvariant sind. Das
heißt, dass die Translationssymmetrie des Systems nicht gebrochen ist. Das Ergebnis
lässt sich auf den Fall von drei Dimensionen übertragen, falls die Cooperpaarwellen-
funktionen verschwindenden Drehimpuls haben. Des Weiteren lässt das Resultat den
Schluss zu, auf die Eindeutigkeit des Minimierers des BCS-Funktionals zu schließen,
bis auf komplexe Phasen der Cooperpaarwellenfunktion.

In einem weiteren Kapitel zur BCS-Theorie, Kapitel 6, geht es um die Verbindung
zur Ginzburg-Landau-Theorie, siehe [46]. Diese phänomenologische Theorie wurde
vor der bahnbrechenden Entdeckung des BCS-Trios herangezogen um einige Aspekte
der Supraleitung zu erklären. Schon kurz nach der Veröffentlichung der Ideen von
Bardeen, Cooper und Schrieffer, stellte Gorkov einen Zusammenhang zwischen den
beiden Modellen fest. Das erste rigorose Ergebnis zu dieser Fragestellung erschien 2012,
siehe [37]. An dieses wegweisende Resultat ist die Arbeit, die wir hier präsentieren
angelehnt. Statt das magnetische Feld als Parameter zu betrachten, fassen wir es
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hier jedoch als zusätzliche Variable auf. Dies erlaubt uns auch die zweite Ginzburg-
Landau-Gleichung aus der BCS-Theorie herzuleiten. Die technischen Schwierigkeiten,
die hierdurch entstehen gehen wir mit einer rigorosen Approximation der Phase an,
eine Methode, die erst in [34] vorgestellt wurde.

In Kapitel 7 stellen wir ein Ergebnis vor, bei dem es um die relative Entropie
im Kac-Modell geht. Im Kac-Modell werden die Teilchen nur durch ihre jeweilige
Geschwindigkeit beschrieben. Im thermischen Gleichgewichtszustand sind diese
Geschwindigkeiten normalverteilt. Wir betrachten ein endliches Reservoir von Teilchen,
das zu Beginn im Gleichgewichtszustand ist, und ein daran gekoppeltes System von
weniger Teilchen. An die Anfangsgeschwindigkeitsverteilung der Teilchen im System
machen wir nur sehr schwache Annahmen. So kann man das System auch als Störung
eines großen Reservoirs verstehen. Diese Anfangsbedingungen sind entscheidend für
unsere Betrachtung und das Ergebnis. Nach von Kac vorgegebenen Regeln werden nun
die Kollisionen der Teilchen beschrieben. Die Zeitevolution des Systems ist bestimmt
durch die Kac-Master-Gleichung. Wir zeigen, dass Lösungen der Kac-Master-Gleichung
in relativer Entropie zum thermischen Gleichgewichtszustand exponentiell abfallen.
Exponentiell meint hier, exponentiell in der Zeit. Die Rate wird explizit angegeben
und ist unabhängig von der Teilchenzahl. Dieses Resultat stellt somit einen Gegenpol
zu früheren Ergebnissen dar, die besagen, dass für beliebige Anfangsbedingung die
Entropieproduktion invers proportional zur Teilchenzahl ist. Der Beweis, den diese
Arbeit enthält, beruht auf einer Methoder der Abschätzung von Nelson, bekannt
als Nelson’s hypercontractive estimate, sowie einer geometrischen Form der Unglei-
chungen von Brascamp-Lieb, die auf Barthe zurückgeht. Das Resultat lässt sich in
einem Spezialfall auf ein System mit dreidimensionalen Boltzmann - Kac - Kollisionen
und Pseudo-Maxwellschen Molekülen übertragen.

2.2. List of publications

Included in this thesis are the following publications.

• Persistence of translational symmetry in the BCS model with radial pair
interaction,
A. Deuchert, A. Geisinger, C. Hainzl, M. Loss,
accepted for publication in Ann. Henri Poincaré, preprint: arXiv:1612.03303.
• Entropy decay for the Kac evolution,
F. Bonetto, A. Geisinger, M. Loss, T. Ried,
submitted to Comm. Math. Phys., preprint: arXiv:1707.09584.
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tributed mathematical ideas and was responsible for the proofs as well as for the
manuscript. These responsibilities were shared by Andreas Deuchert and the author
in equal parts.

The results of Chapter 6 were obtained under the supervision of Prof. Rupert
Frank and Prof. Christian Hainzl. The author contributed mathematical ideas and
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Bonetto and Prof. Michael Loss. The author contributed mathematical ideas and was
responsible for the proofs as well as for the manuscript. These responsibilities were
shared by Tobias Ried and the author in equal parts.
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CHAPTER 3

Mathematical aspects of the BCS model

Superconductivity is a peculiar phenomenon occurring in many
metallic materials. Metals in their normal state have a certain
electrical resistance, the magnitude of which varies with tem-
perature. When a metal is cooled its resistance is reduced. In
many metallic materials it happens that the electrical resistance
not only decreases but also suddenly disappears when a certain
critical temperature is passed which is a characteristic property
of the material.

Stig Lundqvist
Nobel Lectures Physics 1971-1980,

World Scientific Publishing Co., Singapore, 1992.

3.1. Introduction

3.1.1. Superconductivity and BCS Theory. In the first mathematical works
on BCS theory the authors considered the so-called BCS gap equation, a nonlinear
integral equation for the gap function ∆, as the starting point. In particular, at that
point, no benefit was derived from the fact that the BCS gap equation can be realized
as the Euler-Lagrange equation of a functional, the so-called BCS functional. The
connection between the BCS gap equation and the BCS functional was revealed by
Leggett [68]. In d dimensions, at temperature T ≥ 0 and with interaction potential V ,
the BCS gap equation reads,

∆(p) = −
∫
Rd
V (p, q)

tanh (E(q)/(2T ))

E(q)
∆(q) dq, (3.1)

where

E(q) =
((
q2 − µ

)2
+ |∆(q)|2

)1/2

and µ ∈ R is the chemical potential. The described system is said to be in a
superconducting state if the BCS gap equation allows for a non-trivial solution, that is
a solution ∆ 6= 0. In situations where the trivial solution is the only solution to (3.1),
the system is said to be in the normal state. Whether one finds oneself in the first or
in the latter case highly depends on the parameters V and T . Indeed, it turns out that
under rather general assumptions one can prove the existence of a critical temperature
Tc ≥ 0, which is characterized by the property that the BCS gap equation only has
a non-trivial solution at temperatures below Tc. Consequently, at temperatures at
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or above the critical temperature, i.e., for T ≥ Tc, the only solution of the BCS gap
equation is the trivial solution ∆ ≡ 0.

Among the most important of the first mathematical works on the BCS gap equation
one has to mention the work of Odeh [77], who presented the first existence theorem for
the BCS gap equation in the spherically symmetric case. Odeh considered the situation
of a non-local interaction kernel describing the typical phonon-mediated effective
interactions between electrons in metals and alloys. In the same setting, compactness
of the integral operator associated to the BCS gap equation and the question of
existence of solutions were studied by Billard and Fano and Vansevenant [10, 81].
Later, McLeod and Yang [65, 83] studied the existence of a critical temperature Tc
in the case of a negative interaction kernel V , that is, in a situation where the gap
function ∆ is no longer expected to be radial.

A heuristic derivation of the BCS functional from quantum mechanics can be found
in [50, 57]. Let us emphasize here, that the BCS model is a major simplification
of the full many-body problem. The whole system is described in quantities that
only depend on two variables, the reduced density matrix γ and the Cooper-pair
wave function α. Very briefly, the first step in the derivation of the BCS functional,
is to restrict the set of states to quasi-free states, so-called BCS states which have
the property of satisfying Wick’s rule, see [2]. Furthermore, one assumes translation
invariance and SU(2) rotation invariance. Situations in which the assumption of
translation invariance is legitimate have been identified in one of the papers in this
thesis [26], see Sections 3.2.1 and 5. The result is a functional, which is sometimes
called the Bogoliubov-Hartree-Fock functional. Finally, by simply ignoring two terms,
the so-called direct and the exchange term, one arrives at the BCS functional. Let us
mention here, that, as pointed out by Leggett [69], in the physically relevant parameter
regimes the two neglected terms are considered unimportant. Mathematical results
concerning the last step, that is going from the Bogoliubov-Hartree-Fock functional to
the BCS functional, in the derivation of the latter have been published by Bräunlich,
Hainzl and Seiringer, see [16]. The authors investigated the role of the direct and
exchange term, and showed that in the case of short-range interactions these terms
only lead to a renormalization of the chemical potential, while the usual properties of
the BCS functional are left unchanged. Hence, for the case of short-range interactions
considered here, this publication can be seen as a rigorous justification of the last step
of the BCS approximation. Let us emphasize here, that, in particular, [16] contains the
first proof of pairing in the Bogoliubov-Hartree-Fock model in the continuum. In [17]
the same authors considered the Bogoliubov-Hartree-Fock functional at temperature
equal to zero and in the presence of an external electric potential in the low-density
limit. By studying the ground state of this model, which consists of a Bose-Einstein
condensate of tightly bound fermion pairs, they establish a connection to the Gross-
Pitaevskii energy functional. In this context, let us also mention [56], where the
authors derived the Gross-Piteavskii functional from the BCS functional.

Let us now introduce the BCS functional, before we continue with a short review of
recent results in BCS theory. We consider a sample of a fermionic system in d, where
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d = 1, 2, 3, spatial dimensions. As before, µ ∈ R denotes the chemical potential and
T > 0 the temperature of the sample. Let V be a local two-body potential through
which the fermions interact. In BCS theory the state of the system can be conveniently
described by its generalized one-particle density matrix, that is, in terms of a 2× 2

operator valued matrix,

Γ =

(
γ α

α 1− γ

)
,

that satisfies 0 ≤ Γ ≤ 1 as an operator on L2(Rd)⊕ L2(Rd). The reduced one-particle
density matrix γ is a positive trace class operator on the one-particle space, while α
denotes the Cooper-pair wave function, that is, a two-particle wave function, which is
only non-zero at temperatures below the critical temperature. The bar simply means
complex conjugation. More precisely, α has the integral kernel α(x, y). Note that Γ

is hermitian and thus γ, the one-particle density matrix, is hermitian, meaning that
γ(x, y) = γ(y, x), as well. In addition, the Cooper-pair wave function α has to be
symmetric, which in terms of kernels means that α(x, y) = α(y, x). Let A denote a
magnetic vector potential, then the BCS functional for the free energy of the system
under consideration reads

F(Γ) = Tr
[(

(−i∇+ A(x))2 − µ
)
γ
]

+

∫
V (x− y) |α(x, y)|2 dxdy − TS (Γ) ,

where the entropy is given by

S (Γ) = −Tr [Γ log Γ]

and the trace here is over C2 and L2(Rd). In the situation where one considers the
BCS gap equation, the main question is, whether or not there is a non-trivial solution
to (3.1). The analogous question in terms of the BCS functional is, whether or not the
minimizer of this functional has a non-trivial Cooper-pair wave function, i.e. whether
it is the case that α 6= 0. The connection between ∆ and α will be explained later.

A fundamental work in the mathematical study of the BCS model by Hainzl,
Hamza, Seiringer and Solovej [50] was published in 2008. The authors consider
the translation invariant version of the BCS functional, that is, the BCS functional
restricted to translation invariant states, in three dimensions. The study the case
of general local pair interactions suitable for the description of interactions in cold
Fermi gases. It is shown that the translation invariant BCS functional is bounded
from below and attains its minimum [50, Proposition 2]. In the case of vanishing
interaction potential V ≡ 0, a straightforward calculations shows that the minimizer
is given by Γ0 having the entries

γ = γ0, with γ0(p) =
(

1 + e(p2−µ)/T
)−1

, and α = 0.

This state, which does not display superconductivity, is referred to as the normal state.
The crucial result in [50] is, however, the presentation of a linear characterization of
the critical temperature Tc. Recall that at temperatures below the critical temperature
the minimizer of the BCS functional has a non-vanishing Cooper-pair wave function,
and, equivalently, the BCS gap equation has a nontrivial solution, while at Tc or above
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this is not the case. In view of the highly nonlinear BCS functional and BCS gap
equation, this is a surprising result. To be more precise, the critical temperature Tc
can be defined as being the value of T at which a certain linear operator, which is
monotone increasing in T and which we will denote by KT + V , has zero as its lowest
eigenvalue. For a more detailed discussion and the explicit form of the operator KT +V

we refer the reader to 3.2.1. Indeed, the authors in [50] proved the following three
statements to be equivalent,

• In the minimizer of the BCS functional α 6= 0.
• The BCS gap equation has a non-trivial solution ∆ 6= 0.
• The operator KT + V has a negative eigenvalue.

It is worth mentioning that the operatorKT+V , the linear operator which characterizes
the critical temperature, appears naturally in this context as the second variation of
the BCS functional at the normal state Γ0. Finally, it was also shown in [50] that the
conditions that µ is positive and V (x) ≤ 0 for almost all x ∈ R3, but V not identically
zero, guarantee that Tc is positive. Shortly after, in [35], the linear characterization
of Tc was used to study the asymptotic behavior of the critical temperature at weak
coupling, that is as λ→ 0 for the local two-body interaction λV . In [54], the authors
derive upper and lower bounds on the critical temperature and the energy gap at zero
temperature for the BCS gap equation. Another work on the BCS critical temperature
is [53], where the authors consider the case of potentials with negative scattering
length and study Tc in the low density limit, that is as µ → 0. A summary of the
above mentioned result can be found in [55]. In [42], the authors investigate the BCS
gap equation for a situation with unequal population of spin-up and spin-down states.

It did not take long until the first works on the BCS functional with external fields
were published after the mathematical study of the translational BCS functional and
the critical temperature had gained momentum in 2008. The crucial paper in this
context is by Frank, Hainzl, Seiringer and Solovej [37] and appeared in 2012, where an
observation of Gorkov [47] was made rigorous. In 1959, only two years after Bardeen,
Cooper and Schrieffer had come up their microscopic theory of superconductivity,
Gorkov had presented a formal derivation of the Ginzburg-Landau equations from
the BCS model for temperatures close to the critical temperature, where it was
expected that the macroscopic Ginzburg-Landau theory is a good approximation to
the microscopic theory of BCS. Ginzburg and Landau introduced their theory in
1950, see [46]. The Ginzburg-Landau equations are used to describe vortex lattices in
superconductors in magnetic fields. In particular, these equations were one of the few
phenomenological theories which, already before the innovative work and the discovery
of the microscopic pairing mechanism of Bardeen, Cooper and Schrieffer, could describe
some aspects of superconductivity. The state of the system is represented by a complex
valued function of a single position variable which is called ψ, which is zero in the
normal state and non-zero in the superconducting state. Hence, the order parameter ψ
can be interpreted as a macroscopic wave function and its square |ψ(x)|2 is then
proportional to the density of superconducting particles. The work [37] is the basis
for one of the manuscripts presented in this thesis, see Section 6. Summaries, pointing
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out the crucial steps in the proof in [37] are given in [38, 39, 57]. For an introduction
to BCS theory and to Ginzburg-Landau theory, we refer to the book of Tinkham [79].
The techniques developed in [37] were applied afterwards to study several other related
aspects. As a first example let us mention a work of the same authors [40], where
the main focus is on the critical temperature in a situation with external electric and
magnetic fields. It is shown, that, to leading order, the critical temperature is given by
the critical temperature of the translation invariant BCS functional. However, it turns
out that the next-to-leading order of the critical temperature equation in the limit as
the ratio between microscopic and macroscopic scale tends to zero is determined by
the lowest eigenvalue of the linearization of the Ginzburg-Landau equations. Closely
related are the works of Hainzl and Seiringer [56] and Hainzl and Schlein [52]. While
in [37] the authors consider periodic external fields and accordingly use the notion of
free energy per unit volume, Deuchert in [25] made the first step following a different
approach, which is based on the assumption that the external fields are sufficiently
localized. In [41], Frank and Lemm presented an generalization of the derivation of
the Ginzburg-Landau theory from the BCS model in the translation-invariant case,
but allowing for multiple types of superconductivity, which leads them to the study of
multi-component Ginzburg-Landau theory.

Let us mention here another interesting result in the context of the connections
between the Ginzburg-Landau and the Bogoliubov-de Gennes equations, which de-
termine the dynamics in BCS theory. In contrast to the natural relation between
Ginzburg-Landau and BCS theory in the case of equilibrium states, the connection
between the two models in the case of dynamics is not as apparent. In [36], Frank,
Hainzl, Schlein and Seiringer pointed out that for initial states that are close to thermal
equilibrium states at temperatures near the critical temperature, the time-dependent
Ginzburg-Landau equation predicts a decay, while the Cooper-pair wave function does
not decay in time. This incompatibility of the time-dependent Bogoliubov-de Gennes
and the time-dependent Ginzburg-Landau equations was confirmed numerically in the
one dimensional case, see [58].

In [34], Frank, Hainzl and Langmann investigate the influence of a weak ho-
mogeneous magnetic field on the critical temperature. It is shown that, within a
linear approximation of BCS theory, the critical temperature is lowered by an explicit
constant times the field strength, up to higher order terms, in such a magnetic field.
For their proof, the authors developed a new method, a rigorous phase approximation,
to control the effects of the magnetic field. In the work presented in Section 6 of this
thesis, this method is a crucial ingredient.

3.2. Main results part I

3.2.1. Persistence of Symmetry in the BCS model. The goal in [26] was
to study under which circumstances the minimizer of the full periodic BCS functional
(without external fields) is in fact translation invariant. Knowing this, it would be
legitimate to work with the translation-invariant version of the BCS functional which
is much simpler than the full BCS model in these situations. Previous to the result we
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present here, persistence of translational symmetry was only known for the case V̂ ≤ 0

and not identically zero, see [57]. The main result of the paper applies for the BCS
functional in two dimension with radial pair interaction and says that the translational
symmetry indeed does persist, at least for temperatures in a certain interval below Tc.

Before we discuss this result further, let us first introduce the full BCS functional.
In order to avoid having to deal with boundary conditions we consider a periodic
situation and, for simplicity, choose the lattice Zd with the unit cell Ω = [0, 1]d,
where d = 2, 3 here. In this setting, we have to calculate all energies per unit
volume. Let us thus define the trace per unit volume TrΩ of a periodic operator A
by TrΩ [A] = Tr[χΩAχΩ], where χΩ is the characteristic function of Ω. Periodic BCS
states are most conveniently described by self-adjoint operators

Γ =

(
γ α

α 1− γ

)
,

on L2(Rd) ⊕ L2(Rd) with the property that 0 ≤ Γ ≤ 1. Here, γ and α are periodic
operators with period one and the bar denotes complex conjugation. A periodic BCS
state is called admissible if TrΩ (−∇2 + 1)γ < ∞ and in this case we write Γ ∈ D.
The full BCS functional at temperature T ≥ 0, with chemical potential µ, interaction
potential V ∈ L2(Rd) and entropy

S(Γ) = −1

2
TrΩ [Γ log Γ + (1− Γ) log(1− Γ)]

reads

Fper(Γ) = TrΩ

[(
−∇2 − µ

)
γ
]

+

∫
Ω×Rd

V (x− y) |α(x, y)|2 d(x, y)− TS(Γ).

We get the translation invariant version of the full BCS functional by restricting F
to translation invariant admissible states, that is to states Γ ∈ D which satisfy
additionally, that the kernels γ(x, y) and α(x, y) of γ and α, respectively, are functions
of x− y. The translation invariant BCS functional reads

F ti(Γ) =

∫
Rd

(p2 − µ)γ̂(p)dp+

∫
Rd
V (x) |α(x)|2 dx− TS(Γ).

To summarize and make the notions used more precise, let us note that we have a
functional invariant under spatial translations in the sense that such translations do
not change the energy of a state. However, this does not mean that minimizers of
the functional are necessarily translation invariant. If there is a minimizer, which
is not translation invariant, we say that the translational symmetry is broken. The
question whether translational symmetry in the BCS model persists or if the translation
symmetry is broken is important for various reasons. First let us mention that in
the derivation of the BCS model from quantum mechanics one assumes the states to
be translation invariant. Supposedly, this approximation is valid in the case of cold
fermionic gases with a rotationally invariant pair interaction - and this was the starting
point in the discussed project. Nevertheless, situations where the approximation is
not valid are known, see for example [2] for an example in solid state physics. Apart
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from that, F ti is much simpler than F and, for instance, is even suitable for numerical
computations.

Before we finally state the results obtained in this context, let us very briefly
discuss the definition of the critical temperature as presented in [50]. The critical
temperature Tc can be defined in terms of the operator KT + V , where KT denotes
the operator that acts by multiplication by

KT (p) =
p2 − µ

tanh((p2 − µ)/(2T ))

in Fourier space. The fact that KT is increasing in T allows us to define the critical
temperature as being the value of T such that the lowest eigenvalue of KT + V is
exactly zero. In other words,

Tc = inf {T |KT + V ≥ 0} .

The main results [26, Theorem 5.1 and Theorem 5.2] can be summarized as follows.

Theorem 3.1. Assume that V ∈ L2(R2), with V̂ ∈ Lr(R2), where r ∈ [1, 2), is
radial and such that Tc > 0. In the case that the lowest eigenvalue of KTc + V is at
most twice degenerate, there exists T̃ < Tc, such that at all temperatures T ∈ [T̃ , Tc)

the minimizers of the periodic BCS functional F are translation invariant.
The same holds true in the three dimensional case, if V ∈ L2(R3), with V̂ ∈ Lr(R3),

where r ∈ [1, 12/7), is radial and such that Tc > 0 and such that the lowest eigenvalue
of KTc + V is non-degenerate.

More precisely, the proof shows that the minimizers of F in the case specified in
the above theorem take the form (γ`0 , α`0) and (γ`0 , α−`0), where

α±(p) = e±i`0ϕσ`0(p),

and `0 ∈ 2N0, ϕ denotes the angle of p in polar coordinates and σ`0 , as well as γ`0
are radial functions. Note that `0 corresponds to the sector of angular momentum
of the ground state of KTc + V . This means that in the three dimensional situation
where we assume that the ground state of KTc + V has vanishing angular momentum,
we always have `0 = 0 and the minimizer of the periodic BCS functional is radial.
Furthermore, the proof tells us that the minimizers are unique, up to phases in front
of the Cooper-pair wave function α.

The paper is complemented by Proposition 5.3, where it is shown that the strategy
of the proof of Theorem 3.1, that is Theorems 5.1 and 5.2, cannot be used to prove a
more general result in three dimensions.

3.2.2. Bogoliubov-de Gennes and Ginzburg-Landau equations. The re-
sult presented in Section 6 is closely related to the groundbreaking work of Frank,
Hainzl, Seiringer and Solovej [37]. Already in 1959, Gorkov [47] had presented an idea,
how, close to the critical temperature, the phenomenological Ginzburg-Landau theory
arises from the microscopic BCS model. De Gennes presented a simpler version of
Gorkov’s argument in his textbook [45], see also the work of Eilenberger [28]. In [37],
see also [38, 39], the authors identified the parameter regime where Ginzburg-Landau
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theory is a valid approximation of the BCS model. Moreover, they presented the first
rigorous result to this question with quantitative error bounds. As in [37], we study
the connection between BCS Theory and the Ginzburg-Landau model. However, while
the authors in [37] treat the magnetic potential as a fixed parameter, we consider it as
an independent variable, which allows us to also derive the second Ginzburg-Landau
equation.

We consider a superconductor in a box Qh ⊂ R2 with side length h−1 and impose
periodic boundary conditions. In BCS theory, the state of the system is described by
the generalized one-particle density matrix Γ and the magnetic potential A. To be
more precise,

Γ =

(
γ α

α 1− γ

)
,

where, 0 ≤ Γ(1 − Γ) ≤ 1, and, as before, the bar denotes complex conjugation.
Furthermore, γ is a self-adjoint operator on L2(R2) and α is an operator on L2(R2)

satisfying α∗ = α. We assume that γ and α commute with translations of the lattice,
which, in terms of kernels, means that α(x+ h−1t, y + h−1t) = α(x, y) for all t ∈ Z2,
or more generally for any lattice. We assume that A : R2 → R2 is also periodic, i.e.,
A(x + h−1t) = A(x) for all t ∈ Z2. In the situation described here, it is natural to
consider energies per unit volume and the trace per unit volume is defined as in the
previous section.

Let us denote the magnetic Laplacian by −∆A = (−i∇+ A)2. We assume that Γ

and A minimize the BCS energy functional at temperature T ≥ 0,

FBCS
T (Γ, A) = TrQh ((−∆A − µ) γ)− T TrQh S(Γ)

−
∫
R2

dx

∫
Qh

dy V (x− y)|α(x, y)|2 +

∫
Qh

dx |curlA(x)|2 ,

where µ ∈ R is the chemical potential, S is the entropy function S(x) = −x log x, and
where −V : R2 → R is the interaction potential. We require V to satisfy the following
assumptions.

Assumption 1. We suppose that

• V is even and positive
• V is such that Tc > 0 and that α∗, the ground state of KTc − V , is non-
degenerate
• V ∈ L∞(R2) ∩ L1(R2) and |x|2V ∈ L∞(R2).

Minimizers (Γ, A) of the BCS functional are critical points and hence they must
be solutions of the corresponding Euler-Lagrange equations,

1

2
HA(−2V α) = TS ′(Γ), (3.2a)

curl∗ curlA+ Re (−i∇+ A) γ|y=x = 0, (3.2b)
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where curl∗ = (∂2,−∂1)T and HA(∆) is the matrix of operators

HA(∆) =

(
kA ∆

∆ −kA

)
,

where kA := −∆2
A−µ denotes the kinetic energy. Moreover, V α is the operator whose

kernel is V (x− y)α(x, y), i.e., we think of V as a two-body multiplication operator.
The notation |y=x denotes the diagonal of the operator.

We now turn to a very brief introduction to Ginzburg-Landau theory. The Ginzburg-
Landau model is much simpler than the BCS model. The system is described by a
function of only one variable. This function, which we will denote by ψ, only describes
macroscopic aspects of the system, while the BCS state Γ contains macroscopic and
microscopic information. We assume that the microscopic scale of the system is
of order h, where h � 1, relative to the macroscopic scale. The magnetic field a

appearing in the Ginzburg-Landau functional varies on the macroscopic scale, that
is on the scale of the box Q = Q1. Let us mention here that, on the other hand,
the potential V lives on the microscopic scale. The superconductor is described
by a complex valued order parameter ψ, that is a function ψ : R2 → C, and the
magnetic potential a : R2 → R2. These functions are again periodic, to be precise,
ψ(x+ t) = ψ(x) and a(x+ t) = a(x) for all t ∈ Z2. We assume that ψ and a minimize
the Ginzburg-Landau energy functional,

EGL(ψ, a) :=
1

2

∫
Q

(−i∇+ a)ψ · B(−i∇+ a)ψ − C1|ψ|2 +
1

2
C2|ψ|4 +

1

2
C3 |curl a|2 ,

where, B is a real symmetric 2× 2 matrix, and C1 , C2, and C3 are positive constants.
The Ginzburg-Landau functional has been the subject of intensive mathematical study,
see for instance [33, 78].

Critical points of EGL satisfy the Ginzburg-Landau equations,

(−i∇+ a) · B (−i∇+ a)ψ − C1ψ + C2 |ψ|2 ψ = 0

C3 curl∗ curl a+ ReψB (−i∇+ a)ψ = 0,

that is the corresponding Euler-Lagrange equations.
We now turn to the formulation of our main result. For a periodic operator α

on R2 we define the L2
h norm by

‖α‖2
L2
h

:= h2 TrQh (α∗α) .

In our main theorem we need to assume that

Assumption 2.

• Th = Tc(1−Dh2) for some constant D

• ‖αh‖L2
h
. h and ‖(∇x +∇y)αh‖L2

h
. h2

• Ah satisfies the gauge conditions divAh = 0 and
∫
Qh

dxAh(x) = 0,
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• Ah is smooth and such that ‖Ah‖L2(Qh) . h and∥∥ (curl∗ curl)k/2Ah
∥∥
L2(Qh)

. hk+1 for k = 1, 2, 3, 4.

The main result is the following.

Theorem 3.2. Let V be such that it satisfies Assumptions 1. Suppose that (Γh, Ah)

is a sequence of solutions of equations (3.2a) and (3.2b) at temperature Th so that the
Assumptions 2 are satisfied.

Then for sufficiently small h we have the decompositions

V αh(x, y) = hV (x− y)α∗(x− y)ψh (h(x+ y)/2) + σh(x, y),

Ah(x) = hah(hx)

where ‖ψh‖H1(Q) . 1, ‖σh‖L2
h

= O(h2h−17/48), and ‖ah‖H2(Q) . 1 as h→ 0.
Moreover, if (ψ∗, a∗) is a weak limit point of the sequence {(ψh, ah)} in H1(Q)×

~H1(Q), then (ψ∗, 2a∗) is a weak solution of the Ginzburg-Landau equations with
appropriately chosen coefficients. It also follows that if

lim sup
h→0

h−1 ‖αh‖L2
h
& 1,

then there exists a non-trivial solution of the Ginzburg-Landau equations, i.e., a
solution where ψ 6≡ 0.

For the explicit form of the Ginzburg-Landau coefficients B, C1, C2 and C3, we
refer to Theorem 6.1 in Section 6. Let us emphasize here that all that is needed to
compute the coefficients is the BCS data, i.e., V, µ, Tc and D.

Finally, note that by weak limit, we mean that (ψhn , ahn) ⇀ (ψ∗, a∗) for some
sequence hn → 0. We prove that weak limits (ψ∗, 2a∗) of {ψh, 2ah} are weak solutions
of the Ginzburg-Landau equation. By a standard bootstrap argument, one easily sees
that ψ∗ and a∗ are in H2. In fact, if V is regular enough, they are even smooth, and
are indeed strong solutions.
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CHAPTER 4

The Kac model and approach to equilibrium

The reader should be warned at the outset that more questions
will be raised than answered. However, we hope to provide sharp
formulations and thus perhaps pave the way toward further
work on this fascinating borderline between mathematics and
physics.

Mark Kac 1914 - 1984,
Foundations of Kinetic Theory, 1956.

4.1. Introduction

The Kac model and the Kac master equation. In his model which he
introduced in 1956 in his article “Foundations of Kinetic Theory”, Kac assumes a
spatially homogeneous system. Moreover, the system is such that the state of the
system is entirely specified by the velocities of the particles. Very briefly, in the
Kac model, after waiting for an exponentially distributed time interval, a pair of
particles is selected randomly and uniformly. One lets these two particles collide with
a scattering angle that is also randomly selected. The time evolution of this system
is now described by the so-called Kac master equation. The Kac master equation
is a linear master equation that determines the time evolution for the probability
distribution of finding the system in a given state, that is, of finding the particles in
the system with certain velocities.

In contrast to the very successful Boltzmann equation, the model Kac developed
is not based on mechanical principles, but it is based on clear and simple probabilistic
assumptions. That means in particular that Kac’s model has not been derived from first
principles and therefore cannot be considered fundamental. In fact, the justification
of the Kac model is a-posteriori, through a connection to the Boltzmann equation. It
was actually Kac’s main motivation in [61] to rigorously derive the non-linear spatially
homogeneous Boltzmann equation, see also [62].

The simplicity of the Kac model allows for the study of interesting issues that are
difficult to understand in more fundamental models like Newtonian mechanics, as for
example the question of approach to equilibrium for the case of large particle systems.
This will be explained and discussed in the next section. Here, in the first section of
the introduction, we introduce the Kac model itself and we present recent results that
connect to and build a context for [13].

We consider a system of N , where N ∈ N, indistinguishable particles in one
dimension. We assume that the state of the system is specified completely by the
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velocities of the particles. We denote the velocity of particle i, for 1 ≤ i ≤ N , by vi,
where vi ∈ R, and collect the velocities of all particles 1, ..., N in the system in the
velocity vector

v = (v1, v2, ..., vN) .

After a certain time, two randomly and uniformly selected particles collide with a
random scattering angle. That means the velocities of these two particles, that is their
pre-collisional velocities, are replaced by new, or post-collisional, velocities in such a
way that the total energy

E =
N∑
k=1

v2
i

is preserved. To be more precise, a collision of, say, particles i and j, where 1 ≤ i <

j ≤ N , is described as follows. We replace

v = (v1, ..., vi, ..., vj, ..., vN) by v∗ij(θ) =
(
v1, ..., v

∗
i (θ), ..., v

∗
j (θ), ..., vN

)
,

where θ ∈ [−π, π) is a randomly selected scattering angle,

v∗i (θ) = vi cos θ − vj sin θ and v∗j (θ) = vi sin θ + vj cos θ.

The collisions happen after exponentially distributed time intervals. The average time
between two successive collisions of a given particle is independent of the number
of particles. Let us note here that three or more particle collisions are not taken
into account in the Kac model. However, their effect on some properties of the time
evolution are probably significant in reality.

Having understood the collision process in our model, we now aim for the time
evolution of the system, that is the Kac master equation. Therefore, let us introduce
a few notions. The state of the system is given by the function f : RN → R+. To
be precise, f(v) is the probability density of finding the particles in the system with
velocities v. The result of a collision of particles i and j is described by the collision
operator Rij given by

Rij [f ] (v) =

∫ π

−π
ρ(θ) dθ f

(
v∗ij(θ)

)
,

where ρ is the probability density for the selection of the scattering angle θ in a
collision process and, in particular, we have∫ π

−π
ρ(θ) dθ = 1.

We denote by f(v, t) the probability density of the velocities of the particles in our
system at time t, for t ≥ 0. The time evolution is now given by the Kac master
equation

∂f

∂t
= Lf, f(v, 0) = f0(v), (4.1)
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where the infinitesimal generator L of this evolution is given by

L =
λ

N − 1

∑
1≤i<j≤N

(Rij − I) .

Here, I simply denotes the identity operator, whereas λ is the inverse of the average
time between two collisions that involve a certain particle. More precisely, the times
between collisions of a certain particle, say particle i for 1 ≤ i ≤ N , are exponentially
distributed with parameter λ. It is worth mentioning that the so-called mean free time
1/λ is the only parameter with physical significance in the model. This is because the
evolution given by (4.1) is completely independent of the density of the particles, that
is of the positions of the particles.

Approach to equilibrium. As was already mentioned above, one of the goals
of Kac’s original work [61] was to give a mathematical framework for the study of
approach to equilibrium. Kac pointed out that for the case where the particle number
N becomes large, one could show approach to equilibrium in a quantitative way by
proving that the gap of the generator is bounded below uniformly in N . The lower
uniform lower bound for the gap of the generator is known as Kac’s conjecture. Some
attempts to prove this conjecture were made in [27], where the authors show that the
gap for a system of N particles, ∆N , is bounded below by

∆N ≥
C

N2
.

Finally, in 2001 E. Janvresse in [60] proved Kac’s conjecture applying H.-T. Yau’s
martingale method [85, 86]. Shortly thereafter, E. Carlen, M. Carvalho and M. Loss
in [19, 20] computed the gap explicitly. For the case where the scattering angle θ is
chosen uniformly, meaning that ρ(θ) = (2π)−1, they proved that

∆N =
N + 2

2(N − 1)
.

Consequently, in the limit as N becomes large, ∆N → 1/2. The strategy making use
of the gap yields satisfactory results if applied once the system is already close to
equilibrium. However, it turns out that this strategy does not work equally well if the
system is far from equilibrium. To see why this is the case, let the function f , the
probability density of the velocities of the particles, be given by the product of the
N probability densities fi, for i = 1, ..., N , of all the particles in the system, that is
f =

∏N
i=1 fi. Of course, f is normalized. Approach to equilibrium means that

‖f(·, t)− 1‖L2(RN ) → 0.

However, it is reasonable to think that the functions fi are pairwise almost independent,
which implies

‖f‖L2(RN ) ≈
N∏
j=1

‖fj‖L2(R) = eC·N

for some positive constant C. Obviously, the same approximation is true for ‖ f − 1 ‖2.
Therefore, by only using the gap estimate, one cannot get a better result than that it
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takes a time of order N to relax to the equilibrium distribution, which is obviously
not what is expected from physics. Put differently, although measuring approach to
equilibrium in terms of an L2 distance as in the gap argument seems to be a natural
strategy for the problem, the obtained result is not satisfactory.

Another natural approach to measure approach to equilibrium is given by the
entropy. As we expect exponential decay of the entropy, what one would like to show
is that the entropy production, that is the negative time derivative of the entropy,
is proportional to the entropy itself. However, it turned out that this is not the
case. C. Villani chose this approach and proved in [82] that the entropy decays
exponentially. In the same work, he also showed that the exponential rate is bounded
below, but this bound is inversely proportional to the particle number N . In this
context, there is also a very interesting result by A. Einav. In [29], he studied an
initial state, where most of the energy is concentrated in very few particles and most
of the others particles have very little energy in contrast. The physical intuition that
most of the particles are almost in some kind of equilibrium and hence, such a state
still has low entropy production and at the same time is very improbable is made
rigorous in his work. Einav shows the considered state to have entropy production
essentially of order 1/N . Let us mention here that low entropy production does not
necessarily exclude exponential decay in entropy. This insight suggests, that one
reconsiders the problem but restricts the set of initial states, excluding, in particular,
highly improbable states like the one studied by Einav. The question raised here
is: how can one characterize the states for which the entropy converges to zero on a
reasonable time scale? S. Mischler and C. Mouhot followed that path and presented
a series of results in their general investigation of Kac’s program for gases of hard
spheres and true Maxwellian molecules in three dimensions in [73, 74]. For these
systems the authors could prove approach to equilibrium in relative entropy as well as
in Wasserstein distance. The rate of relaxation they obtain is uniform in the particle
number N , but polynomial in time. As mentioned above, this result does not hold
for any initial state. The authors consider a natural class of chaotic states, which
shifts the problem of finding the “right” initial conditions that allow for a proof of
exponential decay to the level of the non-linear Boltzmann equation.

Another idea for a reasonable initial state is to couple a small system of particles
out of equilibrium to a large system, that is a heat bath, in equilibrium. This path was
taken in [43] by Fröhlich and Gang, where approach to equilibrium was shown for the
spatially inhomogeneous Boltzmann equation coupled to a thermostat. In [11, 12] the
authors studied particles in an electric field interacting with external scatterers. In this
setting, the thermostat is given by a deterministic friction term, while stochasticity is
provided by the collisions with the obstacles.

Another result in this direction is by Bonetto, Loss, and Vaidyanathan [15], where
the authors prove in two ways that any initial distribution approaches the equilibrium
distribution exponentially. They compute the gap of the generator of the evolution,
but also prove exponential decay in relative entropy for a thermostated system. More
precisely, they consider a system of interacting particles coupled to a thermostat, that
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is coupled to an infinite gas at thermal equilibrium at some inverse temperature β.
The particles in the heat bath are at equilibrium, which means that their distribution
is given by a Gaussian at inverse temperature β. A crucial point in this work is that
the reservoir is not influenced by the interactions with the N particles in the system.
Particles that are in the heat bath, and hence in equilibrium, stay in equilibrium
forever. As also mentioned in [15], this infinite reservoir is not very realistic. It would
be interesting to study the setting where the reservoir still is very large compared to
the system, but finite. A first step in this direction was presented by the same authors
together with Tossounian in [14], where a small system of M , for M ∈ N particles
coupled to a large but finite reservoir initially in equilibrium at temperature β−1

of N �M particles is considered. It is shown that the evolution of the system coupled
to the finite reservoir can be approximated by the evolution of the thermostated
system, where the infinite heat bath coupled to the system is in equilibrium at the
same temperature β−1. In the mathematical model describing this situation, one must
have three rates at which the different kinds of collision occur. The rate λS belongs
to the exponentially distributed waiting times between collisions of particles in the
system, while λR is the rate at which particles in the reservoir will collide. The latter
needs only to be taken into account in the case of finite heat bath, of course. The third
kind of collision is an interaction between the system and the reservoir. The rate µ is
chosen in such a way that the average time between two successive interaction of a
specific system particle with the reservoir is independent of M , the number of particles
in the system, and, in the case of finite reservoir, independent of N , the number of
particles in the reservoir. A particle in the reservoir will scatter with a particle in the
system at rate µM/N . Thus, in the case where the reservoir is very large compared to
system, one can expect that the reservoir does not deviate from its initial equilibrium
state. This intuition is made rigorous in [14]. The presented result is uniform in
time and holds in L2 as well as for the Gabetta-Toscani-Wennberg distance. The L2

version of the result does not always give a satisfactory result, even when applied
to some very reasonable initial distributions. For example, if one assumes that the
system is initially also in equilibrium but at some different temperature β−1

S 6= β−1,
the presented result [14, Theorem 1] tells us that the number of particles in the
reservoir N has to be exponentially large in the number of system particles M . This is
one of the reasons why the authors considered the Gabetta-Toscani-Wennberg metric,
although it is technically much more complicated.

Let us summarize very shortly. From what is known and has been proved so far,
there is no mathematical argument that indicates that one can expect exponential
decay uniformly in N of the entropy in the Kac model. On the contrary, the work of
A. Einav [29] mentioned above shows that, at least for physically improbable states,
exponential decay with a rate independently of N cannot be true. With that said,
our result in [13], where we show exponential decay for the Kac evolution in entropy
relative to the thermal state can be seen as going in the exact opposite direction to
earlier results, as presented, for example, by C. Villani, [82], and A. Einav, [29]. We
will explain our result in the following chapter.
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4.2. Main results part II

4.2.1. Entropy decay for the Kac evolution. In [13], we consider the situa-
tion of a small system ofM particles coupled to a larger, but finite, reservoir of N ≥M

particles. The particles in the reservoir are at equilibrium at inverse temperature β.
We show that solutions to the Kac master equation have exponential decay in entropy
relative to the thermal state at temperature β. In particular, we get an explicit rate
that is almost independent of the particle number. In order to state our main result,
let us first explain the model in more detail.

As before, we denote by v the velocity vector of the system. The system containsM
particles, hence v ∈ RM . It is coupled to a reservoir of N ≥M particles. The velocities
of the particles in the reservoir are gathered in the vector (wM+1, ..., wM+N) = w,
w ∈ RN . Note that the indexing is continued, so that theM+1-th entry of the velocity
vector (v,w) of the whole setting, i.e. system and reservoir, is the first entry of the
vector w. So here, the probability distribution F of system and reservoir is a function
on RM+N . In order to define the collision operators Rij, where 1 ≤ i < j ≤M +N ,
elegantly in our setting, let us first introduce the notation rij(θ) for the rotation matrix
for a rotation with angle θ ∈ [−π, π) acting as

rij(θ)
−1(v,w) = (v1, ..., vi cos(θ)− vj sin(θ), ..., vi sin θ + vj cos θ, ..., vM ,w),

as long as 1 ≤ i < j ≤M . For 1 ≤ i ≤M , but M + 1 ≤ j ≤ N , that is particle j is
in the reservoir we have

rij(θ)
−1(v,w) = (v1, ..., vi cos(θ)− wj sin(θ), ..., wj−1, vi sin θ + wj cos θ, ..., wM+N),

respectively. The case where M ≤ i < j ≤ M + N , that means the collision
takes place in the reservoir, works analogously. This notation is very useful for the
definition of the collision operators, because it prevents further distinction of cases.
For 1 ≤ i < j ≤M +N the collision operator Rij is given by

(RijF ) (v,w) =

∫ π

−π
ρ(θ) dθ F

(
rij(θ)

−1(v,w)
)
.

We assume the probability measure ρ to be smooth. Furthermore, we require that∫ π

−π
ρ(θ) dθ sin θ cos θ = 0 . (4.2)

The infinitesimal generator

L =
λS

M − 1

∑
1≤i<j≤M

(Rij − I) +
λR

N − 1

∑
M<i<j≤M+N

(Rij − I)

+
µ

N

M∑
i=1

M+N∑
j=M+1

(Rij − I)

of the evolution consists of three parts in our setting. The first term describes the
interactions within the system, the second term describes the interactions within the
reservoir and the third term represents interactions between system and reservoir
particles. Here λS and λR are the parameters of the exponential distributions of
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the waiting times between collisions within the system or the reservoir, respectively.
Similarly, µ denotes the rate at which one certain particle in the system will scatter
with the reservoir, that is, with any particle in the reservoir. We consider the evolution
in L1(RM+N) with Lebesgue measure. The reservoir is at equilibrium at inverse
temperature β. Without loss of generality we assume β = 2π. Hence, we choose our
initial condition as

F0(v,w) = f0(v)e−π|w|
2

, (4.3)

where f0 is an arbitrary probability distribution on RM representing the initial velocity
distribution of the particles in the system. The Kac master equation of our system is
given by,

∂F

∂t
= LF , F (v,w, 0) = F0(v,w) = f0(v)e−π|w|

2

.

We introduce the following notation

f(v, t) =

∫
RN

[
eLtF0

]
(v,w) dw

in order to define the entropy of f relative to the thermal state e−π|w|2 as

S(f(·, t)) :=

∫
RM

f(v, t) log

(
f(v, t)

e−π|v|2

)
dv .

Our main result is the following.

Theorem 4.1. Let N ≥M and let ρ be a probability distribution with an absolutely
convergent Fourier series such that (4.2) holds. The entropy of f relative of to the
thermal state e−π|v|2 then satisfies

S(f(·, t)) ≤
[

M

N +M
+

N

N +M
e−tµρ(N+M)/N

]
S(f0) ,

where
µρ = µ

∫ π

−π
ρ(θ) dθ sin2(θ) ,

and f0 is as introduced in (4.3).

Let us first emphasize that in Theorem 4.1, we do not consider the entropy relative
to the equilibrium state, but the entropy relative to the thermal state. We do not a
see a way to adapt our arguments in the proof to the case of the entropy relative to
the equilibrium state. While the entropy relative to the equilibrium state does tend to
zero as t tends to infinity, we do not see any indication that it does tend to zero at an
exponential rate. The initial condition play a crucial role here and we suspect that if
exponential decay can be shown, the rate would depend on the initial condition. The
decay rate we get in Theorem 4.1 only depends on the parameters µ and the ρ. In
particular, the interactions rates for the system λS and for the reservoir λR do not
appear and hence the intensity of the collision processes within the system and the
reservoir have no influence here.

Next let us briefly comment on the assumptions on ρ. Theorem 4.1 does not
depend on the ergodicity of the evolution and, in particular, the result holds for the
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case were ρ is a delta measure with mass at the angles θ = ±π/2. Generally, the
theorem applies to the case where ρ is a finite sum of Dirac measures.

Let us close the presentation of this result with a remark concerning the optimality
of the derived rates and the connection to the work in [14]. As the number of
particles N tends to infinity, Theorem 4.1 corresponds to the situation studied in [14].
Indeed, our results yields the exact same decay rate in this case. As the decay rate for
the thermostat situation considered there is known to be optimal, as shown in the
work of Tossounian and Vaidyanathan [80], the decay rate given in Theorem 4.1 is
optimal as well.

The universality of the obtained decay rate, in the sense that, as explained above,
the decay rate does depend only on µ and ρ allows for an application of the result
to the standard Kac model. More precisely, in the language introduced above, we
consider a system of N +M particles evolving with the generator Lcl given by

Lcl =
2

N +M − 1

∑
1≤i<j≤N+M

(Rij − I) .

In order to apply our result we split the particles in two groups, one containing M
and one containing N particles. So, artificially, the generator Lcl now is of the wished
form, i.e.,

Lcl =
2

N +M − 1

∑
1≤i<j≤M

(Rij − I) +
2

N +M − 1

∑
M+1≤i<j≤N+M

(Rij − I)

+
2

N +M − 1

M∑
i=1

N+M∑
j=M+1

(Rij − I) ,

accordingly the collisions rate are now given by

λS =
2(M − 1)

N +M − 1
, λR =

2(N − 1)

N +M − 1
and µ =

2N

N +M − 1
.

As a direct translation of Theorem 4.1 we get the following Corollary.

Corollary 4.2. Let N ≥M and consider the time evolution defined by Lcl with
initial condition (4.3). Assume that the function f0 in the initial condition has finite
entropy. The entropy of the function

f(v, t) :=

∫
RN

[
eLcltF0

]
(v,w) dw

relative to the thermal state e−π|v|2, satisfies

S(f(·, t)) ≤
[

M

N +M
+

N

N +M
e−tµρ2(N+M)/(N+M−1)

]
S(f0) ,

where

µρ =

∫ π

−π
ρ(θ) dθ sin2(θ)

and ρ is a probability distribution such that (4.2) holds.
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In a particular case the above results can also be extended to three-dimensional
Boltzmann-Kac collisions.

From our viewpoint, the main achievement of [13] is the presentation of a simple
argument which allows one to show exponential relaxation towards equilibrium. In
our proof we combine, apart from some computations, an iterated version of Nelson’s
hypercontractive estimate, and a sharp version of the Brascamp-Lieb inequalities,
see [18] and also [70]. The standard way of proving relaxation towards equilibrium
through logarithmic Sobolev inequalities is not available in the present situation, since
the generator L of the time evolution is not given by a Dirichlet form.
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CHAPTER 5

Persistence of translational symmetry in the BCS model with
radial pair interaction

A. Deuchert, A.Geisinger, C. Hainzl, M. Loss

We consider the two-dimensional BCS functional with a radial
pair interaction. We show that the translational symmetry is
not broken in a certain temperature interval below the critical
temperature. In the case of vanishing angular momentum our
results carry over to the three-dimensional case.

5.1. Introduction

In 1957 Bardeen, Cooper, and Schrieffer published their famous paper with the
title "Theory of Superconductivity", which contained the first, generally accepted,
microscopic theory of superconductivity. In recognition of this work they were awarded
the Nobel prize in 1972. Originally introduced to describe the phase transition from
the normal to the superconducting state in metals and alloys, BCS theory can also be
applied to describe the phase transition to the superfluid state in cold fermionic gases.
In this situation, one has to replace the usual non-local phonon-induced interaction
in the gap equation by a local pair potential. Apart from being a paradigmatic
model in solid state physics and in the field of cold quantum gases, the BCS theory
of superconductivity, that is, the gap equation and the BCS functional show a rich
mathematical structure, which has been well recognized. See [77, 10, 81, 83, 65, 84]
for works on the gap equation with interaction kernels suitable to describe the physics
of conduction electrons in solids and [50, 35, 54, 55, 16, 42, 41] for works that
treat the translation-invariant BCS functional with a local pair interaction. The
gap equation and the BCS functional are related in the way that the former is the
Euler-Lagrange equation of the latter. One main question in the study of BCS theory
is whether the gap equation

∆(p) = − 1

(2π)d/2

∫
Rd
V̂ (p− q)tanh (E(q)/2T )

E(q)
∆(q) dq, (5.1)

with E(q) = ((q2 − µ)2 + |∆(q)|2)1/2 has a non-trivial solution, that is, one with
∆ 6= 0. If this is so, the system is said to be in a superconducting/superfluid
state. The function ∆ has the interpretation of a spectral gap of an effective mean-
field Hamiltonian that is present only in the superconducting/superfluid phase, see
the Appendix in [50] for further explanations. In [50] it has been demonstrated
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that, although the gap equation is highly non-linear, the question whether there
exists a non-trivial solution can be decided with the help of a linear criterion. To
be more precise, it was shown that the existence of a non-trivial solution of the
gap equation is equivalent to the fact that a certain linear operator has a negative
eigenvalue. Based on a characterization of the critical temperature in terms of this
linear operator, its behavior has been investigated in the limit of small couplings
and in the low-density limit, see [35, 55] and [53], respectively. Recently, there has
also been considerable interest in the BCS functional with external fields, and in
particular, in its connection to the Ginzburg-Landau theory of superconductivity,
see [56, 17, 52, 37, 40, 25, 36, 58].

The gap equation in the form stated in Eq. (5.1) and the related BCS functional
can be heuristically derived from Quantum Mechanics by a variational procedure under
several simplifying assumptions, see [50] and the discussion in Section 5.2 below. One
of these assumptions is that states used in this variational procedure are translation-
invariant which leads to a strong simplification of the model. While this approximation
is presumably valid in the case of cold fermionic gases with a rotationally-invariant pair
interaction and is of great importance when it comes to numerical computations, it is
in general hard to justify its validity. See [2] for examples in the context of solid state
physics where this approximation is not valid. From a mathematical point of view one
is faced with a functional that is invariant under translations in the sense that spatial
translations do not change the energy of a state. Due to the non-linear nature of the
functional, minimizers need not be translation-invariant, however. If they are not one
says that the translational symmetry of the system is broken. The aim of this work is
to prove the absence of translational symmetry breaking in two situations: We start
by considering the two-dimensional BCS functional with a radial pair interaction and
show that there exists a certain temperature interval below the critical temperature,
in which the translational symmetry of the system persists. Afterwards, we realize
that our analysis directly carries over to the three-dimensional case if the Cooper pairs
are in an s-wave state. Prior to this work, such a result was known only in the case of
V̂ ≤ 0 and not identically zero, see [57].

5.2. Main results

We consider a sample of fermionic atoms in a cold gas in d-dimensional space
(d = 2, 3) within the framework of BCS theory. It is convenient to think of the
sample as infinite and periodic, since this setting avoids having to deal with boundary
conditions at the boundary of the sample. To describe the periodicity we introduce
the lattice Zd with the unit cell [0, 1]d = Ω. The special form of the lattice does not
play any role for us and the proof carries over to an arbitrary Bravais lattice. To
not artificially complicate the presentation, we therefore opt for the simplest choice.
BCS states are most conveniently described by their generalized one-particle density
matrix, that is, by a self-adjoint operator Γ on L2(Rd)⊕ L2(Rd) of the form

Γ =

(
γ α

α 1− γ

)
, (5.2)
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with 0 ≤ Γ ≤ 1. Here γ and α denote the one-particle density matrix and the
Cooper-pair wave function of the state Γ, respectively. Both of them are represented
by periodic operators with period one. In terms of kernels, the latter means that
γ(x+ u, y+ u) = γ(x, y) and α(x+ u, y+ u) = α(x, y) for all u ∈ Zd and all x, y ∈ Rd.
In (5.2), α = CαC, where C denotes complex conjugation. Note that, in particular,
α(x, y) = α(y, x) for all x, y ∈ Rd, due to the self-adjointness of Γ. In this setting, it
is natural to consider energies per unit volume. Accordingly, we define for a periodic
operator A, the trace per unit volume TrΩ by TrΩ [A] = Tr[χΩAχΩ], where χΩ denotes
the characteristic function of Ω. We call Γ of the form (5.2) an admissible BCS state
if TrΩ (−∇2 + 1)γ <∞ and denote the set of admissible BCS states by D. We will,
by a slight abuse of notation, write (γ, α) ∈ D, meaning that the BCS state Γ given
by (5.2) is admissible.

The BCS functional at temperature T ≥ 0, with chemical potential µ ∈ R,
interaction potential V ∈ L2(Rd) and entropy

S(Γ) = −1

2
TrΩ [Γ log Γ + (1− Γ) log (1− Γ)],

is then given by

F(Γ) = TrΩ

[(
−∇2 − µ

)
γ
]

+

∫
Ω×Rd

V (x− y)|α(x, y)|2 d(x, y)− TS(Γ). (5.3)

Note that the same functional has been considered in [37], where the periodicity was
introduced for ease of comparison with the translation-invariant functional. As already
mentioned above, the BCS functional can be heuristically derived from Quantum
Mechanics by a variational procedure. To that end, one considers the full free energy
functional of the system and restricts attention to quasi-free states only. Due to the
Wick rule, the energy and the entropy can then be expressed solely in terms of the
generalized one-particle density matrix of the quasi-free state under consideration,
see [2]. If one assumes additionally SU(2)-invariance as well as the above periodicity
of the state and neglects the direct and the exchange term in the energy, one arrives
at Eq. (5.3). For more details see the Appendix of [50].

The translation-invariant BCS functional F ti is obtained from F by restricting
the set of admissible states to the translation-invariant ones. That is, the kernels
of γ and α take the form γ(x, y) = γ(x− y) and α(x, y) = α(x− y), respectively. We
describe translation-invariant BCS states via their momentum representations by 2× 2

matrices of the form

Γ̂(p) =

(
γ̂(p) α̂(p)

α̂(p) 1− γ̂(−p)

)
, (5.4)

for p ∈ Rd, where the bar denotes complex conjugation and the hats indicate that
those objects are Fourier transforms of integral kernels that depend only on x − y.
Obviously, Γ̂(p) satisfies 0 ≤ Γ̂(p) ≤ 1 for all p ∈ Rd. The latter translates to |α̂(p)|2 ≤
γ̂(p)(1− γ̂(p)) for p ∈ Rd in terms of γ̂ and α̂. Note that the fact that Γ is self-adjoint
implies that α̂ is an even function and that γ̂ is real-valued. A translation-invariant
BCS state Γ is admissible if and only if γ̂ ∈ L1(Rd, (1 + p2) dp) and α ∈ H1(Rd, dx).
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By Dti we denote the set of all admissible translation-invariant BCS states. For T ≥ 0

the translation-invariant BCS functional with chemical potential µ ∈ R, interaction
potential V ∈ L2(Rd) and entropy S, which we can now write as

S(Γ) = −1

2

∫
R2

TrC2

[
Γ̂(p) log Γ̂(p) +

(
1− Γ̂(p)

)
log
(

1− Γ̂(p)
)]

dp,

takes the form

F ti(Γ) =

∫
R2

(p2 − µ)γ̂(p) dp+

∫
R2

V (x)|α(x)|2 dx− TS(Γ). (5.5)

Given a state Γ, we define the gap function ∆ of that state as the Fourier transform
of 2V (x)α(x). One can then show that the gap function of any minimizing BCS
state satisfies Eq. (5.1), see [50]. We note that F ti was studied in [50] without the
constraint that α is reflection symmetric. The results there hold equally if one works
only in the subspace of reflection-symmetric functions in L2(Rd), however. In the case
of V = 0, the translation-invariant BCS functional F ti is minimized by the pair (γ0, 0)

where γ̂0(p) = (1 + eβ(p2−µ))−1. The same statement is true for the periodic BCS
functional F . The state (γ0, 0) is called the normal state and describes a situation
where superfluidity is absent.

It was shown in [50, Theorem 1] that there exists a critical temperature Tc ≥ 0

such for T < Tc, the minimizer of the translation-invariant BCS functional has a
non-vanishing Cooper-pair wave function. On the other hand, for T ≥ Tc, the normal
state is the unique minimizer. Additionally, there is a characterization of Tc in terms of
a linear operator. To make this statement more explicit, let us introduce the function
KT : Rd → R given by

KT (p) =
p2 − µ

tanh((p2 − µ)/(2T ))
.

Then, KT = KT (−i∇) defines an operator on L2(Rd) acting by multiplication
with KT (p) in Fourier space. The critical temperature of the translation-invariant
BCS functional is given by

Tc = inf{T ≥ 0 | KT + V ≥ 0}.

In other words, Tc is the value of T such that the operator KT + V has zero as
lowest eigenvalue. Observe that this definition makes sense because KT is monotone
increasing in T . The characterization of Tc in terms of a linear operator comes
about because a minimizer of the translation-invariant BCS functional F ti has a
non-vanishing Cooper-pair wave function if and only if the normal state is unstable
under pair formation. That is, if and only if the second variation of F ti at (γ0, 0) has
a negative eigenvalue. The operator KT + V is exactly the second variation of F ti at
the normal state in the direction of a perturbation with γ = 0 and α 6≡ 0.

In this paper, we treat the question whether there is translational symmetry
breaking in the BCS model with radial pair interaction V . More precisely, we study
the minimization problem

inf {F(Γ) |Γ ∈ D}
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and we are, in particular, concerned with the question whether the infimum of F
is attained by the minimizers of the translation-invariant BCS functional. If V̂ ≤ 0

with V̂ not identically zero this is already known to be the case, see [37, 57]. In order
to study this question, we consider the BCS functional F ti

` on the sector of translation-
invariant BCS states with Cooper-pair wave functions of angular momentum ` ∈ 2N0,
that we will define in the next paragraph. Our strategy consists of showing that there
exists `0 such that the minimizers of F ti

`0
and F coincide under certain assumptions.

Let us now introduce the functionals F ti
` in the case d = 2. They are obtained

from F ti by restricting the domain to Cooper-pair wave functions of the form

α̂`(p) = ei`ϕσ`(p), (5.6)

for some ` ∈ 2Z, where ϕ denotes the angle of p ∈ R2 in polar coordinates and σ` is a
radial function. Recall that α is an even function, which requires ` to be even. As
we will see, the Euler-Lagrange equation of F ti implies that if (γ, α`) is a minimizer
of F ti, then γ̂ has to be a radial function. Therefore, we define the BCS functional on
the sector of Cooper-pair wave functions of angular momentum ` as follows. We make
an angular decomposition for (p, q) 7→ V̂ (p− q), that is

V̂ (p− q) =
∑
`∈Z

V̂`(p, q)e
i`ϕ,

where ϕ denotes the angle between p and q. In other words, this means that

V̂`(p, q) =
1

2π

∫ 2π

0

e−i`ϕV̂ (p− q) dϕ. (5.7)

Since V̂ is a radial function, it only depends on the absolute value of its argument,
that is, on |p − q| =

√
p2 + q2 − 2|p||q| cos(ϕ) and we conclude that V̂` is radial in

both arguments. Furthermore, observe that V̂` = V̂−`.
Then, the BCS functional F ti

` on the sector of Cooper-pair wave functions of even
angular momentum ` ∈ 2N0 is given by

F ti
` (Γ`) =

∫
R2

(p2 − µ)γ`(p) dp+

∫
R2

∫
R2

σ`(p)σ`(q)V̂`(p, q) dpdq − TS(Γ`),

where V` is given in (5.7) and Γ` is determined by the pair (γ`, σ`) with radial
functions γ` and σ`. To be more precise, the domain of F ti

` is given by

D` :=
{

(γ`, σ`)| γ`, σ` radial and (γ`, α`) ∈ Dti, α̂`(p) = ei`ϕσ`(p) for p ∈ R2
}
.

Equivalently, F ti
` can be understood as the restriction of F ti to pairs (γ, α) ∈ Dti with

the property that γ is radial and that α is of the form given in (5.6). In Section 5.3
we will show that F ti

` has a minimizer.
Next, we characterize the critical temperature Tc(`) corresponding to the BCS

functionals F ti
` on the sector of Cooper-pair wave functions of angular momentum

` ∈ 2N0. For this purpose, let us introduce H = {f ∈ H1(R2, dp) | f radial }. Then
the critical temperature Tc(`) of F ti

` is given by

Tc(`) := inf
{
T ≥ 0

∣∣ (KT + V`)
∣∣
H ≥ 0

}
. (5.8)
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The definition of V` in Eq. (5.7) and the fact that KT + V commutes with rotations,
implies that

Tc = max
`∈2N0

Tc(`)

holds.
Let us now assume that Tc = Tc(`0) and that the lowest eigenvalue of KTc +V is at

most twice degenerate. In other words, we assume the lowest eigenvalue of KTc + V to
be exactly twice degenerate in the case `0 6= 0 and we assume it to be non-degenerate
in the case `0 = 0. An exemplary situation satisfying this assumption is illustrated in
Figure 1. The meaning of this schematic pictures is the following. Since Tc = Tc(`0),
the lowest eigenvalue of KT + V lies in the sector with angular momentum `0. If
we decrease the temperature this eigenvalue becomes negative and the second/third
eigenvalue (depending on the degeneracy) will approach zero at some temperature
T̃ < Tc(`0). For this eigenvalue, there are two possibilities: Either it also lies in the
sector of angular momentum `0, which means that T̃ ∈ (Tc(`1), Tc) and this is the
case illustrated in Figure 1, or the next eigenvalue lies in the next sector of angular
momentum, which means that T̃ = Tc(`1).

T
Tc(`0)Tc(`1) T̃

Figure 1. Schematic picture of the lowest eigenvalues of KT + V as a
function of the temperature T . The lowest two lines represent eigenvalues
in the sector of angular momentum `0. The third line corresponds to
the lowest eigenvalue in the angular momentum `1 sector. The red dots
highlight the temperatures at which one of the eigenvalues crosses the
T -axis.

The following theorem shows that the translational symmetry in the BCS model
persists if T ∈ (T̃ , Tc). In particular, if `0 = 0, the periodic (and the translation-
invariant) BCS functional has a, up to a phase, unique radial minimizer (γ0, α0) for
T ∈ (T̃ , Tc). If `0 6= 0, the periodic (and the translation-invariant) BCS functional has
two minimizers, namely (γ`0 , α`0) and (γ`0 , α−`0), with γ`0 radial and α±`0 of the form
α̂±`0(p) = e±i`0ϕσ`0(p).
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Theorem 5.1. Let V ∈ L2(R2) with V̂ ∈ Lr(R2), where r ∈ [1, 2), be radial and
such that Tc > 0. Suppose that Tc = Tc(`0) and that the lowest eigenvalue of KTc + V

is at most twice degenerate. If

(γ`0 , σ`0) ∈ D`0

minimizes F ti
`0
, then there exists T̃ < Tc such that

(γ`0 , α`0) and (γ`0 , α−`0) ∈ Dti,

where α̂±`0(p) = e±i`0ϕσ`0(p), minimize the BCS functional F for T ∈ [T̃ , Tc). For
T ∈ (T̃ , Tc) these are the only minimizers of F up to phases in front of α`0 and α−`0.

Remark. We want to emphasize that T̃ is determined by the lowest nonzero
eigenvalue of KTc +V . More precisely, T̃ is given as the value of T such that the second
eigenvalue (counted without multiplicities) of KT + V is zero, which is illustrated in
Figure 1. In particular, if in addition to the assumption above, the second eigenvalue of
KTc +V lies in the sector of angular momentum `1 6= `0, one can show that T̃ = Tc(`1).

Remark. The assumptions V ∈ L2(R2) and V̂ ∈ Lr(R2) with r ∈ [1, 2) in
Theorem 5.1 are of technical nature and we expect the Theorem to hold as long as
V ∈ L1+ε(R2) for ε > 0. Note that this is the Lp regularity for which V is relatively
form bounded with respect to the Laplacian in two space dimensions. The assumption
on the Fourier transform of V is only needed in the proof of Proposition 5.7. In [41,
Proposition 5.6] a similar result is proved in the case d = 3 under the assumption
V ∈ L3/2(R3) which guarantees form boundedness relative to the Laplacian in this
case. Although we expect the strategy of that proof to carry over to d = 2, our
argument is much simpler than the one given in this reference and so we prefer to
keep the additional assumption on V̂ .

Remark. The Fourier transform preserves angular momentum sectors, and hence
the inverse Fourier transforms of the minimizing Cooper-pair wave functions α̂±`0(p) =

e±i`0ϕpσ`0(p) are of the form e±i`0ϕxf`0(x) with f`0 radial. That is, the Cooper pairs
have definite angular momentum also in position space.

Remark. An important step in the proof of Theorem 5.1 is to compare the
minimizers of the BCS functional F ti

`0
on the sector of Cooper-pair wave functions with

angular momentum `0 with the minimizers of the periodic BCS functional F . The
crucial tool for this comparison will be the relative entropy inequality, [37, Lemma 5].

Remark. It is shown in [41], amongst other things, that for every ` ∈ 2N0 one can
find a radial potential such that the ground state of KTc +V has angular momentum `.
This in particular implies Tc = Tc(`) for such a potential. In the case of weak coupling,
that is for KT + λV , where λ ∈ R is small enough, the methods of [35, 55] can
be applied to determine the angular momentum `0 of the ground state of KTc + V .
An application of these methods reduces the problem of finding the eigenvalues of
KT + λV , for λ small enough, to finding the eigenvalues of a simple matrix, that only
depends on the behavior of V̂ on the Fermi sphere. This is easily solvable numerically.
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In particular, one sees, that the eigenvalues are in one-to-one correspondence to the
eigenvalues of the matrix (〈ψn, V̂ ψm〉)n,m≥0, where ψn(p) = einϕ. Moreover, if the
lowest eigenvalue of this matrix is at most twice degenerate one is in the situation
described in Remark 5.2, i.e. T̃ = Tc(`1).

Remark. In the non-interacting case, that is, for V = 0, the minimizer of the
BCS function F is given by the normal state

Γ̂0 =

(
γ̂0 0

0 1− γ̂0

)
,

where γ̂0 = (1 + exp((−∇2 − µ)/T ))−1. Let us assume that we are in the situation of
Remark 5.2. Having in mind that the linear operator KT + V , which characterizes Tc,
is related to the second variation of F at the normal state Γ0 in the direction of α by

d2

dt2
F(γ0, tα)

∣∣∣∣
t=0

= 2〈α, (KT + V )α〉,

one can understand Theorem 5.1 as follows. We find T < Tc such that KT + V has
exactly one negative eigenvalue λ0. Hence the second variation is smallest (and, in
particular, negative) if α is an element of the eigenspace of λ0 and one could therefore
hope to find a minimizer of F which lies approximately in this eigenspace. In fact,
Theorem 5.1 states that the minimizers of F for temperatures T in a certain interval
below Tc lie in exactly one specific sector of angular momentum ±`0. For T = Tc(`1)

the next eigenvalue λ1 and its eigenspace become important, since now also elements
of the eigenspace of λ1 are candidates to lower the energy.

In the special case `0 = 0, Theorem 5.1 also holds in three dimensions.

Theorem 5.2. Let V ∈ L2(R3) with V̂ ∈ Lr(R3) for some r ∈ [1, 12/7) be radial
and such that Tc > 0. Assume that zero is a non-degenerate eigenvalue of KTc + V ,
that is, the corresponding eigenfunction is radial. Then, there exists T̃ < Tc such that
the minimizer of the BCS functional F for T ∈ [T̃ , Tc) is given by a pair (γ0, α0),
where γ0 and α0 are radial functions. Moreover, (γ0, α0) is, up to phases, the only
minimizer of F for T ∈ (T̃ , Tc).

Remark. Note that V̂ ≤ 0 implies that the ground state of KTc + V is radial
in all dimensions. Hence, the assumption that KTc + V has a non-degenerate lowest
eigenvalue is always satisfied for interaction potentials V with this property.

Remark. As in the case of Theorem 5.1, we expect Theorem 5.2 to hold under
the only assumption that V is relatively form bounded with respect to the Laplacian,
that is, if V ∈ L3/2(R3).

We recall the gap function ∆(p) = 2(2π)−d/2V̂ ∗ α̂(p) with d = 2, 3. The Cooper-
pair wave function of any minimizer of the translation-invariant BCS functional F ti

satisfies the Euler-Lagrange equation(
K∆
T + V

)
α = 0. (5.9)
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Here K∆
T is the operator defined by multiplication in Fourier space with the function

K∆
T (p) =

E(p)

tanh (E(p)/(2T ))
, where E(p) =

√
(p2 − µ)2 + |∆(p)|2.

The key ingredient to the proof of Theorem 5.1 and Theorem 5.2 is that in both
situations K∆

T + V ≥ 0 holds. The following Proposition tells us that this already
implies that |α̂(p)| is a radial function. Hence, our strategy of proof can only work if
this is the case. In particular, it tells us that we cannot extend our results to situations
where the absolute value of the Fourier transform of the ground state of KTc + V is
not radial.

Proposition 5.3. Let V be a radial function with V ∈ L2(R2) if d = 2 and
V ∈ L3/2(R3) if d = 3. Assume that (γ, α) is a minimizer of the translation-invariant
BCS functional F ti such that |α̂(p)| is not a radial function. Then there exists a
rotation R ∈ SO(d) such that〈

U(R)α,
(
K∆
T + V

)
U(R)α

〉
< 0, (5.10)

where (U(R)f) (p) = f(R−1p).

5.3. Preparations

The proof of Theorem 5.2 works similarly to the proof of Theorem 5.1. In order to
prove Theorem 5.1 we will show that there exists `0 ∈ 2N0, such that the minimizers
of F ti

`0
also minimize F . The following lemma lays the basis for this approach.

In [50] it was shown that F ti is bounded from below and attains its infimum on Dti

in three dimensions. The same results hold in two dimensions by analogous arguments,
which provides a solution of the BCS gap equation in this case.

Lemma 5.4. The BCS functional F ti
` is bounded from below and attains its mini-

mum.

Proof. Boundedness from below of F ti
` follows from the fact that F ti is bounded

from below. As in the proof of [50, Lemma 1] we find a minimizing sequence (γ
(n)
` , σ

(n)
` )

in D` that converges strongly in Lp(R2)× L2(R2) to (γ, σ) for some p ∈ (1,∞), as n
tends to infinity. It is an easy consequence that (γ, σ) ∈ D`. �

The Euler-Lagrange equation of F ti
` takes the same form as the Euler-Lagrange

equation of F ti, which will play an important role in the proof. The derivation of the
Euler-Lagrange equation of F ti given in [57, Proposition 3.1] translates to the case
of F ti

` . Therefore, we will not rewrite the proof here, but only give the Euler-Lagrange
equation of F ti

` in its various forms.
Let us define the gap function ∆` related to the Cooper-pair wave function σ` by

∆`(p) =
1

π

∫
R2

V`(p, q)σ`(p)dq. (5.11)

Since V`(p, q) is radial in both arguments ∆`(p) is a radial function, too. Also define

H∆`
(p) =

(
k(p) ∆`(p)

∆`(p) −k(p)

)
(5.12)
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with k(p) = p2 − µ. For T > 0, the Euler-Lagrange equation of the functional F ti
` , is

given by

Γ`(p) =

(
γ`(p) σ`(p)

σ`(p) 1− γ`(p)

)
=

1

1 + eH∆`
(p)/T

. (5.13)

The right-hand side of Eq. (5.13) depends only on σ` through ∆` but not on γ`. That
is, γ` is determined by σ`.

Let us define E`(p) =
√

(p2 − µ)2 + |∆`(p)|2 and the function K∆`
T , which for

T > 0 is given by

K∆`
T (p) =

E`(p)

tanh (E`(p)/(2T ))
.

Then K∆`
T = K∆`

T (−i∇) defines an operator on L2(R2) acting by multiplication
with K∆`

T (p) in Fourier space. Calculations given explicitly in [57] show that (5.13) is
equivalent to

γ`(p) =
1

2
− p2 − µ

2K∆`
T (p)

, (5.14)

σ`(p) = − ∆`(p)

2K∆`
T (p)

. (5.15)

Using Eq. (5.11), we see that Eq. (5.15) can be written as(
K∆`
T + V`

)
σ` = 0. (5.16)

We will also make use of this equation in the form(
K∆`
T + V

)
α` = 0, (5.17)

where α` is of the form (5.6).

5.4. Proof of Theorem 5.1 and Theorem 5.2

We begin with the proof of Theorem 5.1. Let (γ`0 , σ`0) ∈ D`0 be a minimizer of F ti
`0

and assume Tc = Tc(`0). Let Γ`0 be the BCS state given by the pair (γ`0 , α`0) with
α̂`0(p) = ei`0ϕσ`0(p). Our aim is to show that the inequality F(Γ)−F(Γ`0) ≥ 0 holds
for all Γ ∈ D. We will use a generalization of the trace per unite volume, which for a
periodic operator A on L2(R2,C2) is defined by

Tr0 [A] = TrΩ [P0AP0 +Q0AQ0]

with

P0 =

(
1 0

0 0

)
and Q0 =

(
0 0

0 1

)
.

Note that if A is locally trace class, then Tr0 [A] = TrΩ [A].
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We begin by calculating the difference F(Γ)−F(Γ`), where Γ` corresponds to a
minimizer of F ti

` as described above. The state Γ is defined by the pair (γ, α). We find

F(Γ)−F(Γ`)

= TrΩ

[(
−∇2 − µ

)
(γ − γ`)

]
+

∫
Ω×R2

V (x− y)
(
|α(x, y)|2 − |α`(x, y)|2

)
d(x, y)− T (S(Γ)− S(Γ`)) . (5.18)

First, we complete the square in the difference of the interaction terms, which yields∫
Ω×R2

V (x− y)
(
|α(x, y)|2 − |α`(x, y)|2

)
d(x, y)

=

∫
Ω×R2

V (x− y)
(
|α(x, y)− α`(x, y)|2

)
d(x, y)

− 2

∫
Ω×R2

V (x− y)
(
|α`(x, y)|2 − Re

(
α(x, y)α`(x, y)

))
d(x, y).

Next, we combine the second term on the right hand side and the first term on the
right hand side of (5.18). Let ∆̃`(p) = ei`ϕ∆`(p) where ϕ denotes the angle of p ∈ R2

in polar coordinates and ∆` is given by Eq. (5.11). Inserting the equation α̂`(p) =

−∆̃`(p)/(2K
∆`
T (p)) which follows from Eq. (5.15), we see that

TrΩ

[(
−∇2 − µ

)
(γ − γ`)

]
+ 2 Re

∫
Ω×R2

V (x− y)
(
α`(x, y)α(x, y)− |α`(x, y)|2

)
d(x, y)

=
1

2
Tr0

[
H∆̃`

(Γ− Γ`)
]
.

Here H∆̃`
is given as in Eq. (5.12) with ∆` replaced by ∆̃`.

At this point, it turns out to be convenient to introduce the relative entropy H,
which for two BCS states Γ, Γ̃ ∈ D is given by

H(Γ, Γ̃) = Tr0

[
Γ
(

log Γ− log Γ̃
)

+ (1− Γ)
(

log (1− Γ)− log
(

1− Γ̃
))]

.

The fact that H∆̃`
/T = log(1− Γ`)− log Γ` yields the following statement.

Lemma 5.5. Let (γ`, σ`) ∈ D` be a minimizer of F ti
` and let Γ` be given by the pair

(γ`, α`) where α`(p) = ei`ϕσ`(p). Then

F(Γ)−F(Γ`) =
T

2
H (Γ,Γ`) +

∫
Ω×R2

V (x− y)|α(x, y)− α`(x, y)|2 d(x, y)

for all Γ ∈ D, where α = (Γ)12.

Based on this identity, we estimate F(Γ) − F(Γ`0) from below by applying the
relative entropy inequality [37, 51].
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Proposition 5.6. Let (γ`, σ`) ∈ D`, be a minimizer of F ti
` , let Γ` be as in

Lemma 5.5 and denote Vy(x) = V (x− y). Then, for all Γ ∈ D, with α = (Γ)12,

F(Γ)−F(Γ`) ≥
∫

Ω

〈
α,
(
K∆`
T + Vy(x)

)
x
α
〉
L2(R2,dx)

dy

+ TrΩK
∆`
T (Γ− Γ`)

2.

Here, we understand (K∆`
T + Vy(x))x as an operator acting on the x-coordinate of

α(x, y).

Proof. The claimed estimate is a consequence of an inequality for the relative
entropy that has been proven in [37, Lemma 5]. An application of this inequality
yields

F(Γ)−F(Γ`) ≥
1

2
TrΩ

(Γ− Γ`)
H∆̃`

tanh
(
H∆̃`

/(2T )
) (Γ− Γ`)


+

∫
Ω×R2

V (x− y)|α(x, y)− α`(x, y)|2 d(x, y).

The fact that x 7→ x(tanh(x/2))−1 is an even function and

H2
∆̃`

(p) = IC2E2
` (p)

is diagonal, implies the statement. �

Next, we show that the operator K∆`0
T + V is nonnegative for T ∈ [T̃ , Tc).

Proposition 5.7. Assume V ∈ L2(R2) and V̂ ∈ Lr(R2) for some r ∈ [1, 2). If
the lowest eigenvalue of KTc + V is at most twice degenerate then there exists T̃ < Tc
such that K∆`0

T + V is nonnegative as an operator on L2(R2) for all T ∈ [T̃ , Tc).

The proof of Proposition 5.7 is based on spectral perturbation theory and relies
on the fact that K∆`0

T + V → KTc + V , while ∆`0(T ) → 0, in norm resolvent sense
for T → Tc. We will derive this convergence from the following lemmas. In order to
simplify the notation we write a . b if there exists a constant c > 0 such that a ≤ cb.
Moreover, we denote by ‖ · ‖ the operator norm and by ‖ · ‖r the Lr(R2)-norm.

Lemma 5.8. Let T ∈ (0, Tc). The operators KTc−KT and K∆`0
T −KT are bounded.

More precisely, ‖KTc − KT‖ . (Tc − T ) and ‖K∆`0
T − KT‖ . ‖∆`0‖∞. Moreover,

KTc −KT ≥ 0 and K∆`0
T −KT ≥ 0.

Proof. In the proof we abbreviate AT := KTc−KT and BT := K
∆`0
T −KT . Notice

that

K
∆`0
T (p) =

√
k(p)2 + |∆`0(p)|2

tanh
(√

k(p)2 + |∆`0(p)|2/(2T )
)

is an increasing function in T for fixed ∆`0 and vice versa. Hence AT ≥ 0 and BT ≥ 0.
Both, AT and BT are pseudo-differential operators and by a slight abuse of notation we
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denote by AT (p) and BT (p) the symbols of AT and BT , respectively. In the following
we abbreviate Tc − T = δT and

IT =
1

T
− 1

Tc
.

A simple calculation yields

AT (p) =

∫ 1

0

ITk(p)2

2 sinh2 (k(p)/(2Tc) + tITk(p)/2)
dt.

Obviously, for large |p| the smooth function A : p 7→ A(p) and all its derivatives have
exponential decay. Moreover, |IT | . Tc− T implies ‖AT‖ . Tc− T . In order to derive
an analogous representation for BT (p) we define

f(x) :=
d

dx

x

tanh(x/(2T ))
=

T sinh(x/T )− x
2T sinh2(x/(2T ))

(5.19)

as well as

δE`0(p) =
√
k(p)2 + |∆`0(p)|2 − |k(p)|. (5.20)

A straightforward calculation shows that

BT (p) = δE`0(p)

∫ 1

0

f(|k(p)|+ tδE`0(p)) dt. (5.21)

Since the function f defined in (5.19) is bounded by 1, we find that |BT (p)| ≤ |δE`0(p)|
for all p ∈ R2. It can be seen directly from the definition of δE`0(p), see (5.20), that
|δE`0(p)| ≤ |∆`0(p)| for all p ∈ R2, which implies |BT (p)| ≤ |∆`0(p)| for all p ∈ R2. �

Lemma 5.9. Let T ∈ (0, Tc). If α`0 is a solution of the BCS gap equation in the
form of Eq. (5.17), then ‖(1 + p2)1/4α̂`0‖4

4 . 〈α`0 , (K
∆`0
T −KT )α`0〉.

Proof. We will make use of the following observation, which is implied by the
fact that the function |∆`0| 7→ |∆`0|/K

∆`0
T is strictly increasing. Eq. (5.11) implies

that

‖∆`0‖∞ ≤ ‖V ‖2 ‖α̂`0‖2 . (5.22)

We will abbreviate ‖V ‖2 ‖α̂`0‖2 by c(α`0) in the following. Thus, together with (5.15),
the just mentioned monotonicity of |∆`0 |/K

∆`0
T implies that

|α̂`0(p)| ≤ c(α`0)

2K
c(α`0 )

T (p)

for all p ∈ R2. By taking the square and integrating, we see that

1 ≤ ‖V ‖
2
2

4

∫
R2

(
K
c(α`0 )

T (p)
)−2

dp.

Next, we use that tanh(x) ≤ 1 for all x, which leads to

1 ≤ ‖V ‖
2
2

4

∫
R2

((
p2 − µ

)2
+ ‖V ‖2

2 ‖α̂`0‖
2
2

)−1

dp
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We may assume that ‖V ‖2
2‖α`0‖2

2 ≥ µ2 and conclude that

1 ≤ ‖V ‖
2
2

4

∫
R2

(
p4/2− µ2 + ‖V ‖2

2 ‖α̂`0‖
2
2

)−1
dp.

From this estimate one easily derives that

‖α̂`0‖
2
2 ≤
‖V ‖2

2 π
4

32
+

µ2

‖V ‖2
2

.

Making use of (5.22), we see that this directly implies that

‖∆`0‖
2
∞ ≤

‖V ‖4
2 π

4

32
+ µ2. (5.23)

In other words, there exists a constant m > 0 that only depends on V and µ, such
that |∆`0(p)| < m for all p ∈ R2. In particular, m does not depend on T .

We have to estimate K∆`0
T −KT from below. We recall that |∆`0| 7→ K

∆`0
T /|∆`0|2

is decreasing. Having in mind that K∆
T −KT behaves like |∆|2 for small |∆| we thus

estimate

K
∆`0
T −KT

|∆`0|2
|∆`0|2 &

(
Km
T −KT

m2

)
|∆`0|2.

Abbreviating yt =
√
k(p)2 + tm2/(2T ) we find that

K
∆`0
T (p)−KT (p) = 2T

∫ 1

0

d

dt

yt
tanh (yt)

dt

=
m2

4T

∫ 1

0

(
1

yt tanh(yt)
− 1

sinh2(yt)

)
dt. (5.24)

As one easily sees, the function

g(y) =
1

y

1

tanh(y)
− 1

sinh2(y)

is decreasing, which implies

K
∆`0
T (p)−KT (p) &

m2

4T

(
1

y1 tanh(y1)
− 1

sinh2(y1)

)
.

Moreover, g is bounded from below by g(y) ≥ 2/3 (1 + y)−1. Together with (5.24) this
shows that

K
∆`0
T (p)−KT (p) & |∆`0(p)|2 1

1 + p2
. (5.25)

Next, we make use of the Euler-Lagrange equation of F ti
`0
, that is the relation |∆`0(p)| =

2K
∆`0
T (p)|α̂`0(p)|. Inserting this identity in (5.25) we see that

K
∆`0
T (p)−KT (p) &

(
K

∆`0
T (p)

)2 |α̂`0(p)|2

1 + p2
&
(
1 + p2

)
|α̂`0(p)|2,

which implies the statement. �

Lemma 5.10. Let T ∈ (0, Tc). If α`0 is a solution of the BCS gap equation in the
form (5.17), then ‖α`0‖2 . (Tc − T )1/2. In particular, ‖∆`0‖∞ . (Tc − T )1/2.
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Proof. The gap equation, see (5.17), can be written as

〈α`0 , (KTc + V )α`0〉+ 〈α`0 , Bα`0〉 = 〈α`0 , Aα`0〉,

where we use the notation introduced in the proof of Lemma 5.8 but drop the subscript,
i.e. A = AT and B = BT for brevity. Lemma 5.8 and the definition of Tc imply that

〈α`0 , Bα`0〉 ≤ 〈α`0 , Aα`0〉 . (Tc − T ) ‖α`0‖
2
2 . (5.26)

From the combination of Lemma 5.9 and (5.26) we deduce that∥∥∥(1 + p2
)1/4

α̂`0

∥∥∥4

4
. (Tc − T ) ‖α`0‖

2
2 .

On the other hand, the Lr(R2)-norm of α̂ is bounded from above by

‖α̂`0‖r ≤
∥∥∥(1 + p2

)−1/4
∥∥∥
s

∥∥∥(1 + p2
)1/4

α̂`0

∥∥∥
4
,

where r > 2, due to the fact that we have to choose s > 4. Thus,

‖α̂`0‖
4
r . (Tc − T ) ‖α̂`0‖

2
2 . (5.27)

Furthermore, we conclude from the relation between ∆`0 and α`0 given by Eq. (5.11)
that

‖∆`0‖∞ .
∥∥∥V̂ ∥∥∥

t
‖α̂`0‖r , (5.28)

where we choose r > 2 and t ∈ [1, 2) appropriately. Note that the gap equation in
the form (5.15) implies that ‖α̂`0‖2 . ‖∆`0‖∞. Together with (5.27) and (5.28) this
finally shows that

‖α̂`0‖2 . (Tc − T )1/4 ‖α̂`0‖
1/2
2

and hence proves the first part of the claim. In order to get the estimate on ‖∆`0‖∞,
we go back to (5.27) and insert ‖α`0‖2 . (Tc − T )1/2. Together with (5.28) this yields
the statement. �

Let T ∈ (0, Tc) and z ∈ C \ R. Taken together, Lemma 5.8 and Lemma 5.10 show
that ∥∥∥∥(z − (KTc + V ))−1 −

(
z −

(
K

∆`0
T + V

))−1
∥∥∥∥

≤
∥∥(z − (KTc + V ))−1

∥∥∥∥∥K∆`0
T −KTc

∥∥∥∥∥∥∥(z − (K∆`0
T + V

))−1
∥∥∥∥

. | Im(z)|−2 (Tc − T )1/2 .

In other words, K∆`0
T + V → KTc + V for T → Tc in norm resolvent sense for an

arbitrary z ∈ C \ R and consequently for all z ∈ ρ(KTc + V ).
We are now prepared for the proof of Proposition 5.7.

Proof of Proposition 5.7. We consider the case `0 6= 0. The proof for the
case `0 = 0 is analogous. As illustrated in Figure 1, we have by assumption that
Tc = Tc(`0) and that the lowest eigenvalue of KTc + V is exactly twice degenerate.
Note that in the case that `0 = 0 the smallest eigenvalue is non-degenerate. From the
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convergence of K∆`0
T + V to KTc + V in norm resolvent sense one concludes that the

lowest eigenvalue of K∆`0
T + V is stable.

In particular, this tells us that there exists T̃ < Tc such that K∆`0
T + V with

T ∈ (T̃ , Tc] has exactly two eigenvalues λ1(T ), λ2(T ) ∈ {z ∈ C| |z| < r} for some
radius r > 0. Combining this with the fact that the Euler-Lagrange equation (5.17)
of F ti

`0
reads (

K
∆`0
T + V

)
α = 0, (5.29)

we conclude that λ1(T ) = λ2(T ) = 0. Having in mind that K∆`0
T is an increasing

function of T and of ∆`0 , what we have seen by this argument is that the effects of
these monotonicity properties exactly correspond. In other words, we have shown that
there exists T̃ < Tc such that K∆`0

T + V is nonnegative for all T ∈ [T̃ , Tc]. It is not
hard to see that T̃ can be chosen as pointed out in Remark 5.2. �

Proof of Theorem 5.1. We know from Lemma 5.4 that for `0 determined by
Tc(`0) = max`∈2N Tc(`) the functional F ti

`0
has a minimizer (γ`0 , σ`0). Proposition 5.6

and Proposition 5.7 show that for Γ`0 given by (γ`0 , α`0), with α`0 as in (5.6),

F(Γ)−F(Γ`0) ≥ 0,

holds for all Γ ∈ D. Moreover, if F(Γ) − F(Γ`0) = 0, then γ = γ`0 and α ∈
ker(K

∆`0
T +Vy) by Proposition 5.6. Consequently, α takes the form α = ψ1α`0 +ψ2α−`0 ,

where α±`0(p) = e±i`ϕσ`0(p) and ψ1 and ψ2 denote complex constants. It remains
to show that either ψ1 = 0 and |ψ2| = 1 or |ψ1| = 1 and ψ2 = 0. Observe that, in
particular, (γ`0 , α) ∈ Dti and as we know that F ti has a minimizer, we conclude that
(γ`0 , α) satisfies the Euler-Lagrange equation of F ti, that is

γ`0(p) =
1

2
− p2 − µ

2K∆
T (p)

,

where ∆ = π−1V̂ ∗ α̂. Hence |∆| is a radial function and consequently either ψ1 = 0

or ψ2 = 0. In other words, (γ`0 , σ`0) ∈ D`0 . Thus, in order to find minimizers of F , it
is sufficient to find the minimizers of F ti

`0
. As we know that F ti

`0
has minimizers, the

only thing left to show is that (γ`0 , σ`0) is, up to a phase, the only minimizer of F ti
`0
.

The fact that other possible minimizers (γ`0 , ψσ`0), for some ψ ∈ C, have to satisfy
the gap equation (5.16) of F ti

`0
reads(
K
ψ∆`0
T + V`0

)
(ψσ`0) = 0.

Together with the monotonicity of Kψ∆`0
T in ψ this implies that |ψ| = 1. �

The proof of Theorem 5.2 is analogous to the proof of Theorem 5.1 with one
exception.

Proof of Theorem 5.2. In case `0 = 0 all given arguments also apply in the
three-dimensional case. The only exception is Lemma 5.10, where we need to modify
the assumptions slightly. One easily sees that V̂ ∈ Lr(R3) with r ∈ [1, 12/7) is a
sufficient assumption in this case. �
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Proof of Proposition 5.3. We will carry out the proof for d = 3 and after-
wards comment on the case d = 2. The Cooper-pair wave function of any minimizer
of the translation-invariant BCS functional satisfies α̂(p) = −∆(p)/(2K∆

T (p)) which is
implied by the Euler-Lagrange equation of F , see [50] or compare with Section 5.3.
Hence, |α̂| is radial if and only if |∆| is radial. With Eq. (5.9) and the assumption
that V is a radial function, one checks that it is sufficient to show〈

U(R)α,K∆
T U(R)α

〉
<
〈
α,K∆

T α
〉
. (5.30)

Using the above relation between α̂ and ∆, we write〈
U(R)α,K∆

T U(R)α
〉

=
1

4

∫
R3

|∆(p)|2

K∆
T (p)2

K∆
T (Rp) dp

=
1

4

∫ ∞
0

∫
Ωr

|∆(p)|2

K∆
T (p)2

K∆
T (Rp) dω(p) r2dr,

where Ωr denotes the sphere with radius r and dω(p) denotes the uniform measure
on Ωr. On Ωr, that is for fixed radius r = |p|, we can understand |∆(p)|2/K∆

T (p)2

as a function f that depends only on |∆(p)|. There also exists a function g such
that K∆

T (Rp) = g(|∆(Rp)|) for all p ∈ Ωr. The functions f and g are both strictly
increasing.

Consider the expression

M(R) :=

∫
Ωr

[g(∆(Rp))− g(∆(p))] [f(∆(Rp))− f(∆(p))] dω(p)

The functions f and g depend only on the magnitude of ∆(Rp), respectively ∆(p).
Since f and g are strictly increasing we have that M(R) > 0 unless |∆(Rp)| = |∆(p)|
for a.e. p. To see this assume that |∆(Rp)| and |∆(p)| differ on a set of positive measure.
Now consider the set {p : |∆(Rp)| > |∆(p)|} and the set {p : |∆(Rp)| < |∆(p)|} At
least one of them must have positive measure. Hence on the union of these sets

[g(∆(Rp))− g(∆(p))] [f(∆(Rp))− f(∆(p))] > 0

since f and g are both strictly increasing. Using the rotation invariance of the
measure ω, we find

0 < M(R) = 2

∫
Ωr

g(∆(p))f(∆(p)) dω(p)−
∫

Ωr

g(∆(p))f(∆(Rp)) dω(p)

−
∫

Ωr

g(∆(Rp))f(∆(p))] dω(p)

and hence one of the integrals∫
Ωr

g(∆(p))f(∆(Rp)) dω(p)

or ∫
Ωr

g(∆(Rp))f(∆(p)) dω(p)

must be strictly below ∫
Ωr

g(∆(p))f(∆(p)) dω(p).
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Accordingly, there exists a R ∈ SO(3) such that∫
Ωr

|∆(p)|2

K∆
T (p)2

K∆
T (Rp) dω(p) <

∫
Ωr

|∆(p)|2

K∆
T (p)2

K∆
T (p) dω(p). (5.31)

To conclude that Eq. (5.30) holds, it suffices to note that ∆ is a continuous function,
see the first paragraph in the proof of [50, Proposition 3], which implies that both
sides of Eq. (5.31) are continuous functions of r. If d = 2 the proof goes through in
the same way with the only difference that the continuity of ∆ is concluded from
∆(p) = π−1V̂ ∗ α̂(p), the assumption that V ∈ L2(R2) and the Riemann-Lebesgue
Lemma. �
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CHAPTER 6

Derivation of the Ginzburg-Landau equations from the
Bogoliubov-de Gennes equations

We show that minimizers of the BCS functional are to leading
order given by approximate solutions of the Ginzburg-Landau
equations. In contrast to earlier works we treat the magnetic
field as an independent variable and also derive the second
Ginzburg-Landau equation. In the proof we use a rigorous
phase approximation which was recently introduced by Frank,
Hainzl and Langmann [34].

6.1. Introduction and main result

6.1.1. Introduction. In 1957 Bardeen, Cooper and Schrieffer [6] presented their
theory of superconductivity. This was the first microscopic explanation of supercon-
ductivity starting from a many-body Hamiltonian and a major breakthrough, for
which they were awarded the Nobel Prize in 1972. Bardeen, Cooper and Schrieffer
realized that the phenomenon of superconductivity can be described by a pairing
mechanism. More precisely, superconducting paired states form due to an instability
of the normal state in the presence of an attraction between the particles and only at
temperatures below a certain critical value.

A breakthrough in the mathematical study of the BSC model was obtained in 2008
in [50]. Amongst other results, the authors give a linear criterion that characterizes the
so-called critical temperature, which is the temperature below which the system is in
a superconducting state. At temperatures equal to or above this critical temperature
the system is in the normal state.

Earlier, in 1950 Ginzburg and Landau, see [46], had introduced a model of
superconductivity which they developed in a phenomenological way, describing the
macroscopic properties of a superconductor, without the need to understand the
microscopic mechanism. This model has been extremely successful and is widely used
in physics, and not only for the description of superconductivity. Due to its rich
mathematical structure the theory has inspired the development of many interesting
new concepts.

The justification of the macroscopic theory of Ginzburg and Landau (GL) in terms
of the microscopic model of Bardeen, Cooper and Schrieffer (BCS) was first treated in
the physics literature by Gorkov [47] in 1959 who realized, that close to the critical
temperature, the model of GL arises from the theory of BCS. In [45], de Gennes later
simplified Gorkov’s arguments.
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The first rigorous mathematical results appeared much later. In 2012 Frank, Hainzl,
Seiringer and Solovej [37] showed that the free energy of the superconductor in the
BCS model is given to leading order by the free energy as described by the GL model
in the appropriate limit. They also showed that for any near-minimizer of the BCS
free energy the corresponding Cooper-pair wave function is described on a macroscopic
scale (to leading order) by a near-minimizer of the GL free energy.

Our work here is closely related to [37] but with some differences, the most
important of which is that we treat the magnetic potential as an independent variable
and not as a fixed parameter. This allows us to also derive the second Ginzburg-
Landau equation. In order to do this, however, we work with the Euler-Lagrange
equations of the energy functional, and therefore assume the existence of minimizers
with appropriate scaling behaviour. The rigorous justification of these assumptions
will be treated in another paper.

6.1.2. BCS Theory. We consider a superconductor in a 2-dimensional box Qh ⊂
R2, with side length h−1 and impose periodic boundary conditions. In BCS theory,
the state of the superconductor is described by the generalized one-particle density
matrix Γ and the magnetic potential A.

More precisely, we have

Γ =

(
γ α

α 1− γ

)
,

where, α is to be understood as α = CαC, where C denotes complex conjugation.
Furthermore, γ is a self-adjoint operator on L2(R2) and α is an operator on L2(R2)

satisfying α∗ = α. On the level of kernels the latter translates to α(x, y) = α(y, x).
Furthermore, we have the requirement 0 ≤ Γ(1 − Γ) ≤ 1. We also assume that γ
and α are periodic operators in the sense that they commute with translations of the
lattice, which, in terms of kernels, means that α(x+ h−1t, y + h−1t) = α(x, y) for all
t ∈ Z2, or more generally for any lattice. We assume that A : R2 → R2 is also periodic,
i.e., A(x+ h−1t) = A(x) for all t ∈ Z2. In the situation described here, it is natural to
consider energies per unit volume. Accordingly, we define for a periodic operator A,
the trace per unit volume TrQh by TrQh [A] = Tr[χQhAχQh ], where χQh denotes the
characteristic function of the box Qh.

We assume that Γ and A minimize the BCS energy functional at temperature
T ≥ 0,

FBCS
T (Γ, A) = TrQh ((−∆A − µ+W ) γ)− T TrQh S(Γ)

−
∫
R2

dx

∫
Qh

dy V (x− y)|α(x, y)|2 +

∫
Qh

dx |curlA(x)−Hext|2 ,

where −∆A = (−i∇+ A)2 = ∆− 2iA · ∇ − i divA+ |A|2 is the magnetic Laplacian
and µ ∈ R is the chemical potential. The entropy function S in the functional is
given by S(x) = −x log x. In our notation, the interaction potential is −V and we
assume V : R2 → R to be positive, meaning that V ≥ 0. Furthermore we require V
to be even, that is V (−x) = V (x). Moreover, W is a periodic external potential and
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Hext : R2 → R2 denotes a periodic applied external magnetic field. From here on
we will set W = 0 and Hext = 0 for simplicity, since W and Hext have no significant
influence on our results.

Minimizers are in particular critical points and must therefore be solutions of
the corresponding Euler-Lagrange equations, the so-called Bogoliubov-de Gennes
equations, which can be written in the form

1

2
HA(−2V α) = TS ′(Γ), (6.1a)

curl∗ curlA+ Re (−i∇+ A) γ|y=x = 0, (6.1b)

where curl∗ = (∂2,−∂1)T and HA(∆) is the matrix of operators

HA(∆) =

(
kA ∆

∆ −kA

)
,

where kA := −∆2
A−µ denotes the kinetic energy. Moreover, V α is the operator whose

kernel is V (x− y)α(x, y), i.e., we think of V as a two-body multiplication operator.
The notation |y=x denotes the diagonal of the operator.

The translation invariant version of the BCS model is much simpler. In [50,
Theorem 1], the authors proved the existence of a critical temperature Tc ≥ 0 such
that for T < Tc, the minimizer of the translation-invariant BCS functional has a non-
vanishing Cooper-pair wave function α. On the other hand, for T ≥ Tc, the normal
state is the unique minimizer of the functional. Additionally, there is a linear operator
that characterizes Tc. More precisely, let us introduce the function KT : R2 → R given
by

KT (p) =
p2 − µ

tanh((p2 − µ)/(2T ))
.

Then, KT (−i∇) defines an operator on L2(R2) acting by multiplication with KT (p)

in Fourier space. The critical temperature of the translation-invariant BCS functional
is now given by

Tc = inf{T | KT − V ≥ 0}.

Put differently, Tc is the value of T such that the operator KT − V has zero as lowest
eigenvalue.

Now, our assumptions on the potential V are the following.

Assumption 3. We suppose that

• V is even and positive
• V is such that Tc > 0 and that α∗, the ground state of KTc − V , is non-
degenerate
• V ∈ L∞(R2) ∩ L1(R2) and |x|2V ∈ L∞(R2).

We note that we can choose α∗ to be even and real, which implies, in particular,
that the Fourier transform V̂ ∗ α̂∗ is also real.
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6.1.3. Ginzburg-Landau Theory. In Ginzburg-Landau theory the supercon-
ductor is described by a complex valued order parameter, that is a function ψ : R2 → C,
and the magnetic potential a : R2 → R2. These functions are again periodic, but here
ψ(x+ t) = ψ(x) and a(x+ t) = a(x) for all t ∈ Z2.

We require that ψ and a minimize the Ginzburg-Landau energy functional, which
reads

EGL(ψ, a) :=
1

2

∫
Q

(−i∇+ a)ψ · B(−i∇+ a)ψ + C1W |ψ|2 − C1|ψ|2

+
1

2
C2|ψ|4 +

1

2
C3 |curl a− 2Hext|2 ,

where Q = Q1 is the unit cube. Also, B is a real symmetric 2× 2 matrix, and C1 , C2,
and C3 are positive constants. Analogously to the BCS model, for our purpose, we set
W = 0 and Hext = 0 in the following.

Critical points of the functional EGL satisfy the Ginzburg-Landau equations, that
is,

(−i∇+ a) · B (−i∇+ a)ψ + C1Wψ − C1ψ + C2 |ψ|2 ψ = 0 (6.2a)

C3 curl∗ curl a+ ReψB (−i∇+ a)ψ = 0. (6.2b)

6.1.4. Main result. For a periodic operator α on R2 we define the L2
h norm by

‖α‖2
L2
h

:= h2 TrQh (α∗α) .

In our main theorem we need the assumptions

Assumption 4.
• Th = Tc(1−Dh2) for some constant D

• ‖αh‖L2
h
. h and ‖(∇x +∇y)αh‖L2

h
. h2

• Ah satisfies the gauge conditions divAh = 0 and
∫
Qh

dxAh(x) = 0,

• Ah is smooth and such that ‖Ah‖L2(Qh) . h and∥∥ (curl∗ curl)k/2Ah
∥∥
L2(Qh)

. hk+1

for k = 1, 2, 3, 4.

to be true for solutions (Γh, Ah) of the Euler-Lagrange equations (6.1a) and (6.1b)
at temperature T = Th, where h > 0. Here and in the following, we write a . b if
a = O(b) as h→ 0 (in other words, there exists a positive constant C > 0 such that
a ≤ Cb for all sufficiently small h).

Before we finally state the main theorem, let us introduce a notation. We define
η : R2 → R to be the function

η(p) =

∫
R2

dx e−ip·xV (x)α∗(x).

Our main result is the following. The precise definitions of the norms are given below.

58



Theorem 6.1. Let V be such that it satisfies Assumptions 3. Suppose that (Γh, Ah)

is a sequence of solutions of equations (6.1a) and (6.1b) at temperature Th so that the
Assumptions 4 are satisfied.

Then for sufficiently small h we have the decompositions

V αh(x, y) = hV (x− y)α∗(x− y)ψh (h(x+ y)/2) + σh(x, y),

Ah(x) = hah(hx)

where ‖ψh‖H1(Q) . 1, ‖σh‖L2
h

= O(h2h−17/48), and ‖ah‖H2(Q) . 1 as h→ 0.
Moreover, if (ψ∗, a∗) is a weak limit point of the sequence {(ψh, ah)} in H1(Q)×

~H1(Q), then (ψ∗, 2a∗) is a weak solution of the Ginzburg-Landau equations with the
coefficients

Bij =

∫
R2

dp
|η(p)|2

(2π)2

(
tanh(βc (|p|2 − µ) /2)

4 (|p|2 − µ)2 − βc/8

(|p|2 − µ) cosh2 (βc (|p|2 − µ) /2)

)
δij

+
β2
c

(2π)2

∫
R2

dp |η(p)|2 tanh(βc (|p|2 − µ) /2)

4 (|p|2 − µ) cosh2 (βc (|p|2 − µ) /2)
pipj,

C1 =
Dβc

2(2π)2

∫
R2

dp
|η(p)|2

cosh2(βc (|p|2 − µ) /2)

C2 =

∫
R2

dp
|η(p)|4

(2π)2

(
2 tanh(βc (|p|2 − µ) /2)

(|p|2 − µ)3 − βc

(|p|2 − µ)2 cosh2 (βc (|p|2 − µ) /2)

)
,

and
C3 =

1

2
− 1

24π (1 + e−βcµ)
.

It also follows that if
lim sup
h→0

h−1 ‖αh‖L2
h
& 1,

then there exists a non-trivial solution of the Ginzburg-Landau equations, i.e., a
solution where ψ 6≡ 0.

Remark. We prove that weak limits (ψ∗, 2a∗) of {ψh, 2ah}, where we by weak limit
mean that (ψhn , ahn) ⇀ (ψ∗, a∗) for some sequence hn → 0, are weak solutions of the
Ginzburg-Landau equation. However, a standard bootstrap argument shows that ψ∗
and a∗ are in H2, in fact, they are even smooth, and are indeed strong solutions.

Remark. The requirement that Ah be smooth can probably be replaced by
assuming that Ah is in H1 and using the equations to show, via a bootstrap argument,
that Ah is in fact in H4 with the correct scaling. We need control up to the H4 norm
of Ah in order to apply the phase approximation method.

6.2. Preliminaries and outline of proof

In this chapter, we will first introduce the norms used in the theorem and the
proof, section 6.2.1, and present some preliminaries for the proof, in particular a useful
reformulation of the problem, section 6.2.2. After that, we present three important
theorems, Theorem A, Theorem B and Theorem C, see sections 6.2.3, 6.2.4 and 6.2.5.
Finally, we show how these three theorems imply our main result.
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6.2.1. Norms. We first note that we will often work with the relative and center
of mass coordinates r = x − y and X = (x + y)/2. It is therefore convenient to
introduce the notation

ζrX = X +
r

2
. (6.3)

For example we can then work with α
(
ζrX , ζ

−r
X

)
instead of α(x, y).

We will use a number of norms for periodic operators on R2. Note that these
norms implicitly depend on the parameter h. First we have the Lph norms for α, which
are defined by

‖α‖Lph :=
(
h2 TrQh(α∗α)p/2

)1/p
.

We also define ‖·‖∞ to be the operator norm. We will often use the fact that these
norms satisfy Hölder’s inequality, i.e.,

‖αα̃‖Lrh ≤ ‖α‖Lph ‖α̃‖Lqh , (6.4)

whenever p−1 +q−1 = r−1. For the proof of this inequality and a summary of properties
of the trace per unit volume we refer the reader to [37]. We note that the L2

h-norm
can also be expressed as follows:

‖α‖2
L2
h

= h2

∫
R2

dx

∫
Qh

dy |α(x, y)|2 = h2

∫
R2

dr

∫
Qh

dX
∣∣α (ζrX , ζ−rX )∣∣2 ,

where the last equality uses the periodicity of α.
The following lemmas will be useful in the proof. For the proofs we refer the reader

to the Appendix. In the first lemma we present some estimates on V 1/2φ.

Lemma 6.2. Suppose that V ∈ L1(R2) ∩ L∞(R2). Then, we have∥∥V 1/2φ
∥∥
Lph
. ‖φ‖L2

h
+ h−1 ‖∇Xφ‖L2

h
,

for all even integers p ≥ 4. In the case that V ∈ L∞(R2) is compactly supported, we
have ∥∥V 1/2φ

∥∥
Lph
. h−(p−2)/p ‖φ‖L2

h
and

∥∥V 1/2φ
∥∥
∞ . h−1 ‖φ‖L2

h
,

again for all even integers p ≥ 4.
Furthermore, if φ(x, y) = ϕ(x− y)Ψ((x+ y)/2), then∥∥V 1/2φ

∥∥
∞ . ‖ϕ‖L2 ‖Ψ‖L∞ .

It will also be useful to know the following properties about kernels.

Lemma 6.3. Suppose that K : R2×R2 → C satisfies |K(X+r/2, X−r/2)| ≤ g(r),
where g ∈ L1(R2). Then K defines a bounded operator on L2(R2) satisfying ‖K‖∞ ≤
‖g‖L1. Similarly, if Kj : R2×R2 → C, j = 1, 2, satisfies |Kj(X+r/2, X−r/2)| ≤ gj(r),
where gj ∈ L1(R2). Then |(K1K2)(X + r/2, X − r/2)| ≤ (g1 ∗ g2)(r).

The estimate present in the next lemma will be of great use in the proof of our
main theorem.
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Lemma 6.4. Suppose that K : R2 × R2 → C defines a h−1Z2-periodic operator.
Then ∥∥∥K|x=y

∥∥∥
L2(Qh)

. ‖K (1−∆)‖L2
h
,

where |x=y indicates, that we consider the diagonal of the operator.

When doing estimates using the phase approximation method, it will be necessary
to have L∞ bounds on A and its derivatives. First we define the Fourier transform for
h−1Z2-periodic functions f to be the function f̂ on (2πZ)2 given by

f̂(m) = h2

∫
Qh

dx e−ihm·xf(x).

Note, that this means
f(x) =

∑
m∈(2πZ)2

eihm·xf̂(m).

Turning to A, we note that the gauge conditions on A ensure that Â(0) = 0 and that
curl2A = −∆A. This means

|A(x)| ≤
∑

m∈(2πZ)2

m6=0

∣∣∣Â(m)
∣∣∣ ≤ (∑

m6=0

|m|−4

)1/2(∑
m6=0

|m|4
∣∣∣Â(m)

∣∣∣2)1/2

. h−2
∥∥curl2A

∥∥
L2(Qh)

.

From this it follows that we have the bounds∥∥curlk A
∥∥
L∞
. h−2

∥∥curlk+2A
∥∥
L2(Qh)

. hk+1,

for solutions Ah.

6.2.2. Reformulation. It will be convenient to reformulate the problem in terms
of φ = V 1/2α. This stems from applying the Birman-Schwinger principle. We begin
by noting that one can invert (6.1a) and write

Γ =
1

1 + eβHA(−2V α)
,

but as the right-hand side is a function of α and A alone, we see that γ can be seen
as a function of these two variables, i.e.,

γ = γA (−2V α) =

(
1

1 + eβHA(−2V α)

)
11

,

where the index ij denotes the ij-entry of the matrix. This means that it suffices to
consider the equation

α =

(
1

1 + eβHA(−2V α)

)
12

. (6.5)

Now using the facts that
1

1 + ex
+

1

1 + e−x
= 1 and

1

1 + ex
− 1

1 + e−x
= − tanh

(x
2

)
,
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we see that(
1

1 + eβHA(−2V α)

)
12

=
1

2

(
1

1 + eβHA(−2V α)
− 1

1 + e−βHA(−2V α)
+ 1

)
12

= −1

2

(
tanh

β

2
HA(−2V α)

)
12

.

We now rewrite the Bogoliubov-de Gennes equations as equations for φ = V 1/2α.
If α is a solution of (6.5), then φ solves the equation

φ+
1

2
V 1/2

(
tanh

β

2
HA

(
−2V 1/2φ

))
12

= 0, (6.6)

Conversely, if φ solves (6.6) and we define

α = −1

2

(
tanh

β

2
HA

(
−2V 1/2φ

))
12

,

then
−2V α = 2V 1/2V 1/2 1

2

(
tanh

β

2
HA

(
−2V 1/2φ

))
12

= −2V 1/2φ,

which means α solves (6.5).
This allows us to write the equations we are treating in the following form.

FBCS
T (φ,A) := φ+

1

2
V 1/2

(
tanh

β

2
HA

(
−2V 1/2φ

))
12

= 0,

GBCS
T (φ,A) := curl∗ curlA+ JT,A

(
−2V 1/2φ

)
= 0,

where JT,A(φ) = ReπAγA(φ)|y=x and πA = (−i∇+ A).

6.2.3. Decomposition of φ and Theorem A. We now introduce a decompo-
sition of φ in terms of a projection on L2

h. For convenience we define ϕ∗ = V 1/2α∗ and
normalize α∗ so that ∫

R2

dr |ϕ∗(r)|2 =

∫
R2

dr V (r) |α∗(r)|2 = 1.

Recall the notation introduced in (6.3). We now define a projection P : L2
h → L2

h by

Pφ
(
ζrX , ζ

−r
X

)
= ϕ∗(r)

∫
R2

ds ϕ∗(s)φ
(
ζsX , ζ

−s
X

)
. (6.8)

Note that P simply projects onto ϕ∗ in the r = x− y direction. We let P⊥ = 1− P ,
and we use this notation for all projections.

Besides this projection, we will also need a momentum cut-off in the center-of-mass
coordinate. The abbreviation ε = h17/48 turns out to be convenient here. Furthermore,
we define the projection χε on L2

h by

χεφ
(
ζrX , ζ

−r
X

)
= h−2

∑
m∈(2πZ)2

eim·hXχ (h|m| ≤ ε)

∫
Qh

dY e−im·hY φ
(
ζrY , ζ

−r
Y

)
,

where, as one would expect, χ(h|m| ≤ ε) = 1 if h|m| ≤ ε and 0 otherwise. We now
define Pε : L2

h → L2
h to be the projection

Pε = χεP. (6.9)
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Note that we have

P⊥ε = 1− χεP = P⊥ + P − χεP = P⊥ + χ⊥ε P,

i.e., P⊥ε is the sum of a projection onto the subspace orthogonal to ϕ∗ in the relative
coordinate and a projection onto the high center-of-mass momenta in the direction
of ϕ∗

Our first main goal will be the proof of the following theorem, which shows that
the solution φh is given to leading order by Pεφh.

Theorem A. Suppose that φh, Ah, Th satisfy Assumption 4 with αh replaced by
φh and that FBCS

Th
(φh, Ah) = 0 and GBCS

Th
(φh, Ah) = 0. Then

‖φh − Pεφh‖L2
h
. h3ε−2.

Moreover, ∥∥PεFBCS
Th

(Pεφh, Ah)
∥∥
L2
h

. h3ε3h−1,

and ∥∥GBCS
Th

(Pεφh, Ah)
∥∥
L2(Qh)

. h3ε−1h1/2

(
−h
ε

log
h

ε

)1/2

,

where ε = h17/48.

6.2.4. Ginzburg-Landau equations and Theorem B. The Ginzburg-Landau
equations are defined for ψ : R2 → C and a : R2 → R2 that are Z2-periodic, i.e., ψ
and a are in particular not h−1Z2-periodic like φ. We therefore introduce the following
rescaled projections. First we have Qh : rangeP → L2(Q) defined by the condition

Pφ(x, y) = hϕ∗(x− y) (QhPφ) (h(x+ y)/2) ,

which means

(QhPφ) (X) = h−1

∫
R2

ds ϕ∗(s)φ
(
ζsX/h, ζ

−s
X/h

)
.

We note that

‖Qh‖L2
h→L2(Q) = h−1.

We also define ~Qh : L2(Qh)→ L2(Q) by(
~QhA

)
(X) = h−1A (X/h) .

We again have ∥∥∥ ~Qh∥∥∥
L2(Qh)→L2(Q)

= h−1.

For convenience, we introduce the following notation for (6.2a) and (6.2b).

FGL(ψ, a) = (−i∇+ a) · B (−i∇+ a)ψ + C1Wψ − C1ψ + C2 |ψ|2 ψ,

GGL(ψ, a) = C3 curl∗ curl a+ ReψB (−i∇+ a)ψ
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Theorem B. Suppose that φh, Ah, Th satisfy Assumption 4 with αh replaced by
φh. Let ψh = QhPεφh and ah = ~QhAh. Then∥∥h−2QhPεFBCS

Th
(Pεφh, Ah)− FGL (ψh, 2ah)

∥∥
L2(Q)

. ε3h−1,

and ∥∥∥h−2 ~QhGBCS
Th

(Pεφh, Ah)−GGL (ψh, 2ah)
∥∥∥
L2(Q)

. ε1/2h1/2,

where ε = h17/48.

6.2.5. Exact solutions of the Ginzburg-Landau equation, Theorem C.
We have the following theorem.

Theorem C. Suppose that ψn ⇀ ψ∗ in H1(Q) and that an ⇀ a∗ in H1(Q). If it
is also true that∥∥FGL (ψn, 2an)

∥∥
L2(Q)

→ 0 and
∥∥GGL (ψn, 2an)

∥∥
L2(Q)

→ 0,

then FGL(ψ∗, 2a∗) = 0 and GGL(ψ∗, 2a∗) = 0 in the weak sense.

6.2.6. Proof of Theorem 6.1. Note that the first part of Theorem 6.1, that is
the decomposition

V αh(x, y) = hV (x− y)α∗(x− y)ψh (h(x+ y)/2) + σh(x, y),

while Ah(x) = hah(hx) and the estimates ‖ψh‖H1(Q) . 1, ‖σh‖L2
h

= O(h2h−17/48) as
h → 0, and ‖ah‖H2(Q) . 1, stated in Theorem 6.1 follow directly from Theorem A.
Let us mention here, that σh = V 1/2P⊥ε φh. From Theorem B follow the explicit forms
of the coefficients. Finally, Theorem C implies that (ψ∗, 2a∗) is a weak solution of the
Ginzburg-Landau equations. �

6.3. Phase approximation

One of the main technical tools we will use is the phase approximation method
for the resolvent of kA, recall that kA = −∆2

A − µ, and in this section we develop this
method for smooth magnetic potentials A : R2 → R2 that are h−1Z2-periodic and
divergence-free. We also assume that z ∈ C is always such that Im z 6= 0.

6.3.1. Basic definitions. We first define Gz
A : R2 × R2 → C to be such that

Gz
A(x, y) is the kernel of (z − kA)−1. Since(

z + kA
)−1

= −(−z − k−A)−1,

it follows that −G−z−A(x, y) is the kernel of
(
z + kA

)−1. We also define Gz : R2 → C
is such that Gz(x − y) is the kernel of (z − k0)

−1. We want to mention here that
(z − k0)−1 commutes with translations and therefore its kernel is a function of x− y.
As before, it then follows that −G−z(x− y) is the kernel of (z + k0)−1. We note that
Gz is a radial function and has the following decay property, see [1],

‖|x|sGz‖L1(R2) ≤ Cs |Im z|−1 (6.11)

for all s ∈ N0, where Cs is an explicit constant depending on s.
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We now define the phase ΦA : R2 × R2 → R to be the line integral

ΦA(x, y) = −
∫ x

y

A(u) · du := −
∫ 1

0

dt A(y + t(x− y)) · (x− y). (6.12)

We can now define the kernel Kz
A : R2 × R2 → C to be

Kz
A(x, y) = eiΦA(x,y)Gz(x− y). (6.13)

The obvious bound |Kz
A

(
ζrX , ζ

−r
X

)
| ≤ |Gz(r)| implies that KA

z defines a bounded
operator on L2(R2) and, moreover, (6.11) together with Young’s inequality shows that

‖Kz
A‖∞ . |Im z|−1 .

We now define Ã : R2 × R2 → R2 to be

Ã(x, y) =

∫ 1

0

dt t curlA (y + t (x− y)) (x− y)⊥. (6.14)

Moreover, we introduce the kernel T zA : R2 × R2 → C to be

T zA(x, y) = eiΦA(x,y)Gz(x− y)

(
i divx Ã(x, y)−

∣∣∣Ã(x, y)
∣∣∣2) .

and define hzA : R2 → R by

hz(r) =
(
|r|+ |r|2

)
|Gz(r)| .

One can then show that |T zA
(
ζrX , ζ

−r
X

)
| .MAh

z(r), and this leads to the bound

‖T zA‖∞ .MA |Im z|−1 ,

where

MA := max
{∥∥curl2A

∥∥
L∞(R2)

, ‖curlA‖2
L∞(R2)

}
. (6.15)

The main lemma for the approximation of Gz
A is based on the work of G. Nenciu,

see [76].

Lemma 6.5. We have that

(z − kA)Kz
A = 1 + T zA.

Therefore,

(z − kA)−1 = Kz
A (1 + T zA)−1 =

∞∑
k=0

(−1)kKz
A (T zA)k ,

if ‖T zA‖ < 1.

Proof. This lemma will follow from a number of calculations. Note that, for
ease of notation, we think of all our two-dimensional vectors as three-dimensional by
adding a zero-entry as third component. We first use the fact that

∇(X · Y ) = (X · ∇)Y + (Y · ∇)X +X ∧ curlY + Y ∧ curlX.
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With X =
∫ 1

0
dt A(y + t(x− y)) and Y = x− y, we have that ∇Y = 0 and see that

∇x

∫ x

y

A(u) · du =

∫ 1

0

dt A (y + t(x− y)) + ((x− y) · ∇)

∫ 1

0

dt A(y + t(x− y))

+ (x− y) ∧
∫ 1

0

dt t curlA(y + t(x− y)).

Now for the second term we simply use integration by parts to see that

((x− y) · ∇)

∫ 1

0

dt A(y + t(x− y)) =

∫ 1

0

dt t
d

dt
A(y + t(x− y))

= A(x)−
∫ 1

0

dt A(y + t(x− y)).

Recalling the notations introduced in (6.12) and (6.14), we find that

∇xΦA(x, y) = −A(x) + Ã(x, y).

It now follows that for u : R2 → C, we have

(−i∇+ A)2 eiΦA(x,y)u(x) = (−i∇+ A) · eiΦA(x,y)
(
−i∇u(x) + Ã(x, y)u(x)

)
= eiΦA(x,y)

((
−i∇x + Ã(x, y)

)
·
(
−i∇u(x) + Ã(x, y)u(x)

))
,

and by expanding, we get that

(−i∇+ A)2 eiΦA(x,y)u(x)

= eiΦA(x,y)

(
−∆u(x)− 2iÃ(x, y) · ∇u(x)− i divx Ã(x, y)u(x) +

∣∣∣Ã(x, y)
∣∣∣2 u(x)

)
.

Note that Ã(x, y) is orthogonal to x− y, and therefore Ã(x, y) · ∇Gz(x− y) = 0, since
Gz is a radial function. By definition

(z − kA)Kz
Au(x) = (z − (−i∇+ A)2 + µ)

∫
R2

dy eiΦA(x,y)Gz(x− y)u(y)

and hence

(z − kA)Kz
Au(x)

=

∫
R2

dy eiΦA(x,y)

(
z + ∆Gz(x− y) + i divx Ã(x, y)Gz(x− y)

−
∣∣∣Ã(x, y)

∣∣∣2Gz(x− y) + µGz(x− y)

)
u(y)

=

∫
R2

dy eiΦA(x,y)δ(x− y)u(y)

+

∫
R2

dy eiΦA(x,y)
(
i divx Ã(x, y)− |Ã(x, y)|2

)
Gz(x− y)u(y)

= u(x) +

∫
R2

dy T zA(x, y)u(y).

This proves the first part of the lemma, and the remaining claim is clear. �
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Corollary 6.6. If MA is sufficiently small, then the function

Hz
A(r) :=

∞∑
k=1

(−1)kMk
A (Gz ∗ hz ∗ · · · ∗ hz) (r)

is well defined and satisfies

‖Hz
A‖L1(R2) ≤

∞∑
k=1

Mk
A ‖Gz‖L1(R2) ‖h

z‖kL1(R2) =
‖Gz‖L1(R2)

1−MA ‖hz‖L1(R2)

MA ‖hz‖L1(R2) .

Furthermore, we have the estimate∣∣Gz
A

(
ζrX , ζ

−r
X

)
−Kz

A

(
ζrX , ζ

−r
X

)∣∣ ≤ Hz
A(r)

for all X and r.

Proof. We begin by writing

Gz
A(x, y)−Kz

A(x, y) =

(
Kz
A

∞∑
k=1

(−1)k(T zA)k

)
(x, y).

First, note that |(T zA)k
(
ζrX , ζ

−r
X

)
| ≤ Mk

A(hz ∗ · · · ∗ hz)(r). Furthermore, since hz is a
bounded function, we have by Young’s inequality that

(hz ∗ · · · ∗ hz) (r) ≤ ‖hz‖k−1
L1 ‖hz‖L∞ .

This means that if MA is sufficiently small, the function

r 7→
∞∑
k=1

(−1)kMk
A(hz ∗ · · · ∗ hz)(r)

is well defined, and the same holds for Hz
A. The estimate for the L1-norm of Hz

A also
follows from Young’s inequality. Altogether, we then have∣∣Gz

A

(
ζrX , ζ

−r
X

)
−Kz

A

(
ζrX , ζ

−r
X

)∣∣ ≤ Hz
A(r).

This proves the corollary. �

We will also make use of the following result concerning ΦA.

Lemma 6.7. We have∣∣∣∣ΦA

(
ζrX , ζ

s
X+Y

)
− ΦA

(
ζ−sX+Y , ζ

−r
X

)
− Φ2A (ζX , ζX+Y ) +

1

4
(r − s) ·DA(X)(r + s)

∣∣∣∣
.
∥∥D2A

∥∥
L∞

(
|s|2 + |r|2

)
,

where DA denote the Jacobian matrix of A, i.e., (DA)jk = ∂jAk.

Proof. We first see that

ΦA

(
ζrX , ζ

s
X+Y

)
− ΦA

(
ζ−sX+Y , ζ

−r
X

)
= ΦA

(
ζrX , ζ

s
X+Y

)
+ ΦA

(
ζ−rX , ζ−sX+Y

)
= −

∫ 1

0

dt A
(
ζsX+Y + tζr−s−Y

)
· ζr−s−Y −

∫ 1

0

dt A
(
ζ−sX+Y + tζ

−(r−s)
−Y

)
· ζ−(r−s)
−Y .
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Sorting these terms for Y and (r − s)/2, we get two terms, namely

−
∫ 1

0

dt
[
A
(
ζsX+Y + tζr−s−Y

)
+ A

(
ζ−sX+Y − tζ

r−s
Y

)]
· (−Y ) (6.16)

and

−
∫ 1

0

dt
[
A
(
ζsX+Y + tζr−s−Y

)
− A

(
ζ−sX+Y − tζ

r−s
Y

)]
· r − s

2
. (6.17)

We can simplify these terms by noting that

A (X + hY ± hs/2 + th (−Y ± (r − s)/2))

= A (X + hY − thY ± hs/2± th(r − s)/2)

and therefore, by a Taylor expansion, the last expression equals

A (X + Y − tY ) ± 1

2
DA (X + Y − tY ) (s+ t(r − s)) + O(‖D2A‖L∞(|r|2 + |s|2)).

Therefore, going back to (6.16) and considering the difference, we see that the term
with the gradient cancels out and we get that

−
∫ 1

0

dt
[
A(ζsX+Y + tζr−s−Y ) + A

(
ζ−sX+Y − tζ

r−s
Y

)]
· (−Y )

= −
∫ 1

0

dt 2A(X + Y − tY ) · (−Y ) +O(‖D2A‖L∞(|r|2 + |s|2))

= Φ2A (X,X + Y ) +O(‖D2A‖L∞(|r|2 + |s|2)).

In the case of (6.17), we have that

−
∫ 1

0

dt
[
A(ζsX+Y − tζr−s−Y )− A

(
ζ−sX+Y − tζ

r−s
Y

)]
· 1

2
(r − s)

=
1

2

∫ 1

0

dtDA (X + Y − tY ) (s+ t (r − s)) · (r − s) +O(‖D2A‖L∞(|r|2 + |s|2))

=
1

2

∫ 1

0

dtDA (X) (s+ t (r − s)) · (r − s) +O(‖D2A‖L∞(|r|2 + |s|2)),

where in the last step we expanded DA around the point X. Integration now yields
that (6.17) equals

1

4
(r − s) ·DA(X)(r + s) +O(‖D2A‖L∞(|r|2 + |s|2)).

The lemma now follows. �

6.3.2. An operator equality. We will often make use of the operator equality

eiΦA(x,x+Y )eiY ·(−i∇) = eiY ·(−i∇+A), (6.18)

which follows as a special case by a theorem of Feynman [32]. Here the operators
act on L2(R2

x), Y ∈ R2, and A : R2 → R2 is a smooth magnetic potential. In order
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to derive this equation, we require the fact that for two operators P and Q, one can
show that

exp

(∫ 1

0

dt etPQe−tP
)
eP = eP+Q

if [etPQe−tP , esPQe−sP ] = 0 for all s and t. If we now take P = iY · (−i∇) and
Q = iY · A and a function u ∈ L2(R2), we find that

(etPQe−tPu)(x) =
(
Qe−tPu

)
(x+ tY ) = iY · A (x+ tY )

(
e−tPu

)
(x+ tY )

= iY · A (x+ tY )u(x).

Consequently,∫ 1

0

dt etPQe−tPu(x) =

∫ 1

0

dt iY · A (x+ tY )u(x)

= −i
∫ 1

0

dt A (x+ Y − tY ) · (−Y )u(x) = iΦA (x, x+ Y )u(x),

which establishes (6.18).

6.4. Linearization

In this section we will study the linear operator that arises from the linearization
of FBCS

T about φ = 0. We denote this operator by LT,A. It is explicitly given by

LT,Aα =

∫
C

dz

2πi
ρ(βz) (z − kA)−1 α

(
z + kA

)−1
=

2

β

∑
n odd

(zn − kA)−1 α
(
zn + kA

)−1
,

where ρ(z) = tanh(z/2) and C is {r ± iπ/(2βc) | r ∈ R} , and zn = (πin)/β are the
poles of tanh(βz/2). Note that, for h small enough the contour does not enclose any
poles. Let us also introduce the non-linear map NT,A, defined by

NT,A(α) =

∫
C

dz

2πi
ρ(βz) (z − kA)−1 α

(
z + kA

)−1
α (z − kA)−1 α (z −HA(α))−1

22

=
2

β

∑
n odd

(zn − kA)−1 α
(
zn + kA

)−1
α (zn − kA)−1 α (zn −HA(α))−1

22 .

We can then write

1

2
V 1/2

(
tanh β

2
HA

(
−2V 1/2φ

))
12

= −V 1/2LT,AV
1/2φ+

1

2
V 1/2NT,A

(
−2V 1/2φ

)
,

which means

FBCS
T (φ,A) =

(
1− V 1/2LT,AV

1/2
)
φ+

1

2
V 1/2NT,A

(
−2V 1/2φ

)
.
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6.4.1. Approximating operators. In this section we present a convenient rep-
resentation of the operator LT,A, which will also allows us to define a series of operators
that approximate LT,A. We begin by noting that

LT,Aα
(
ζrX , ζ

−r
X

)
=

2

β

∑
n odd

(
(zn − kA)−1 α

(
zn + kA

)−1
) (
ζrX , ζ

−r
X

)
= − 2

β

∑
n odd

∫
R4

dudv Gzn
A (ζrX , u)G−zn−A

(
v, ζ−rX

)
α(u, v).

By a change of variables, or to be more precise, setting u = Y + s/2, v = Y − s/2, we
further see that

LT,Aα
(
ζrX , ζ

−r
X

)
= − 2

β

∑
n odd

∫
R4

dsdY Gzn
A (ζrX , ζ

s
Y )G−zn−A

(
ζ−sY , ζ−rX

)
α
(
ζsY , ζ

−s
Y

)
= − 2

β

∑
n odd

∫
R4

dsdY Gzn
A

(
ζrX , ζ

s
X+Y

)
G−zn−A

(
ζ−sX+Y , ζ

−r
X

)
eiY ·(−i∇X)α

(
ζsX , ζ

−s
X

)
.

Therefore, let us define

FT,A(X, Y, r, s) := − 2

β

∑
n odd

Gzn
A

(
ζrX , ζ

s
X+Y

)
G−zn−A

(
ζ−sX+Y , ζ

−r
X

)
,

which allows us to write

LT,Aα
(
ζrX , ζ

−r
X

)
=

∫
R4

dsdY FT,A (X, Y, r, s) eiY ·(−i∇X)α
(
ζsX , ζ

−s
X

)
.

In view of the phase approximation method, it will be useful to also introduce the
operator L̃T,A, where we replace Gz

A by Kz
A in LT,A. For the definition of Kzn

A we refer
to (6.13). To be precise, we define

F̃T,A(X, Y, r, s) := − 2

β

∑
n odd

Kzn
A

(
ζrX , ζ

s
X+Y

)
K−zn−A

(
ζ−sX+Y , ζ

−r
X

)
= − 2

β

∑
n odd

Gzn
(
ζ−r+sY

)
G−zn

(
ζr−sY

)
eiΦA(ζrX ,ζsX+Y )−iΦA(ζ−sX+Y ,ζ

−r
X ),

and let the operator L̃T,A be defined by

L̃T,Aα
(
ζrX , ζ

−r
X

)
=

∫
R4

dsdY F̃T,A (X, Y, r, s) eiY ·(−i∇X)α
(
ζsX , ζ

−s
X

)
. (6.19)

For the case A = 0, we drop the index A and write LT for LT,0. It turns out that
FT,0 only depends on Y and r − s, so we write FT,0(X, Y, r, s) = FT (Y, r − s). Indeed
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we see that

FT,0(X, Y, r, s)

= − 2

β

∑
n odd

Gzn
(
ζ−r+sY

)
G−zn

(
ζr−sY

)
=

1

(2π)4

∫
R4

dpdq

∫
C

dz

2πi
ρ(βz)

e−i(p−q)·(r−s)/2ei(p+q)·Y

(z − (|p|2 − µ)) (z + (|q|2 − µ))

=
1

(2π)4

∫
R4

dpdq

∫
C

dz

2πi
ρ(βz)

e−ip·(r−s)eiq·Y

(z − (|p+ q/2|2 − µ)) (z + (|p− q/2|2 − µ))
.

Now integrating over z, we have

FT,0(X, Y, r, s)

=
1

(2π)4

∫
R4

dpdq
ρ (β(|p+ q/2|2 − µ)) + ρ (β(|p− q/2|2 − µ))

(|p+ q/2|2 − µ) + (|p− q/2|2 − µ)
e−ip·(r−s)eiq·Y

=
1

(2π)4

∫
R4

dpdq fT (p+ q/2, p− q/2) eip·(r−s)eiq·Y

=: FT (Y, r − s),

where the function fT : R2 × R2 → R is given by

fT (p, q) =
tanh (β (|p|2 − µ) /2) + tanh (β (|q|2 − µ) /2)

(|p|2 − µ) + (|q|2 − µ)
.

One can easily verify that FT (−Y, r) = FT (Y, r), from which it follows that we can
also write

LTα
(
ζrX , ζ

−r
X

)
=

∫
R4

dsdY FT (Y, r − s) cos (Y · π0)α
(
ζsX , ζ

−s
X

)
.

We will see below that LT is not in all cases a sufficiently good approximation of
LT,A. Therefore, on the basis of Lemma 6.7, we introduce the intermediate approxi-
mations

M̃T,Aα
(
ζrX , ζ

−r
X

)
=

∫
R4

dsdY FT (Y, r − s) ei(r−s)/4·DA(X)(r+s)eiY ·π2Aα
(
ζsX , ζ

−s
X

)
=

∫
R4

dsdY FT (Y, r − s) ei(r−s)/4·DA(X)(r+s) cos (Y · π2A)α
(
ζsX , ζ

−s
X

)
, (6.20)

and

MT,Aα
(
ζrX , ζ

−r
X

)
=

∫
R4

dsdY FT (Y, r − s) eiY ·π2Aα
(
ζsX , ζ

−s
X

)
=

∫
R4

dsdY FT (Y, r − s) cos (Y · π2A)α
(
ζsX , ζ

−s
X

)
. (6.21)

Here, and below, π2A is always to be understood as π2A = (−i∇X + 2A(X)).
Concerning the function fT , we mention here the fact that fT (p, p) = 1/KT (p).

We also have the following important inequality.
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Lemma 6.8. For all p, q ∈ R2,

fT (p, q) ≤ 1

2
(fT (p, p) + fT (q, q)) ,

for T > 0.

Proof. We want to show that

tanh a+ tanh b

a+ b
≤ 1

2

(
tanh a

a
+

tanh b

b

)
.

We assume a ≥ |b| without loss of generality. Consequently, tanh(b)/b ≥ tanh(a)/a.
The claimed inequality then follows easily by rearrangement,

1

2

(
a tanh(a)/a+ b tanh(b)/b

a+ b
+

tanh(a) + tanh(b)

a+ b

)
≤ 1

2

(
b tanh(a)/a+ a tanh(b)/b

a+ b
+

tanh(a) + tanh(b)

a+ b

)
=

1

2

(
tanh(a)

a
+

tanh(b)

b

)
.

This completes the proof. �

6.4.2. Basic estimates. We now prove some basic estimates concerning the
above linear operators. We recall that we have Th = Tc(1−Dh2) and Tc > 0, which
implies Th . 1.

Lemma 6.9. Suppose that A ∈ Ẇ 1,∞(R2) ∩ Ẇ 2,∞(R2). We then have∥∥V 1/2 (LT,A −MT,A)V 1/2α
∥∥
L2
h

.
(
‖D2A‖L∞ + ‖DA‖2

L∞

)
‖α‖L2

h

and ∥∥V 1/2 (LT,A − LT )V 1/2α
∥∥
L2
h

.
(
‖DA‖L∞ + ‖D2A‖L∞ + ‖DA‖2

L∞

)
‖α‖L2

h
,

for all α ∈ L2
h,sym.

Proof. Our first goal is to estimate LT,A − L̃T,A, where the latter operator is
defined above by (6.19). To do this it is useful to first estimate∫

R2

dY ess sup
X∈Qh

∣∣∣FT,A(X, Y, r, s)− F̃T,A(X, Y, r, s)
∣∣∣ .
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We begin by observing that

β

2

∣∣∣FT,A(X, Y, r, s)− F̃T,A(X, Y, r, s)
∣∣∣

=

∣∣∣∣∣∑
n odd

Gzn
A

(
ζrX , ζ

s
X+Y

)
G−zn−A

(
ζ−sX+Y , ζ

−r
X

)
−
∑
n odd

Kzn
A

(
ζrX , ζ

s
X+Y

)
K−zn−A

(
ζ−sX+Y , ζ

−r
X

)∣∣∣∣∣
≤
∑
n odd

∣∣Gzn
A

(
ζrX , ζ

s
X+Y

)
−Kzn

A

(
ζrX , ζ

s
X+Y

)∣∣ ∣∣K−zn−A (ζ−sX+Y , ζ
−r
X

)∣∣
+
∑
n odd

∣∣Kzn
A

(
ζrX , ζ

s
X+Y

)∣∣ ∣∣G−zn−A (ζ−sX+Y , ζ
−r
X

)
−K−zn−A

(
ζ−sX+Y , ζ

−r
X

)∣∣
+
∑
n odd

∣∣Gzn
A

(
ζrX , ζ

s
X+Y

)
−Kzn

A

(
ζrX , ζ

s
X+Y

)∣∣ ∣∣G−zn−A (ζ−sX+Y , ζ
−r
X

)
−K−zn−A

(
ζ−sX+Y , ζ

−r
X

)∣∣
Applying Corollary 6.6, we finally get the estimate

∣∣∣FT,A(X, Y, r, s)− F̃T,A(X, Y, r, s)
∣∣∣

≤ 2

β

∑
n odd

[
Hzn
A

(
ζr−s−Y

) ∣∣G−zn (ζr−sY

)∣∣+
∣∣Gzn

(
ζr−s−Y

)∣∣H−zn−A (ζr−sY

)
+ Hzn

A

(
ζr−s−Y

)
H−zn−A

(
ζr−sY

)]
.

Therefore,

∫
R2

dY ess sup
X∈Qh

∣∣∣FT,A(X, Y, r, s)− F̃T,A(X, Y, r, s)
∣∣∣

≤ 2

β

∑
n odd

∫
R2

dY
[
Hzn
A (r − s− Y )

∣∣G−zn(Y )
∣∣+ |Gzn(r − s− Y )|H−zn−A (Y )

+Hzn
A (r − s− Y )H−zn−A (Y )

]
.

We set

q
(1)
T,A(r) :=

2

β

∑
n odd

((
Hzn
A ∗

∣∣G−zn∣∣) (r) +
(
|Gzn| ∗H−zn−A

)
(r) +

(
Hzn
A ∗H

−zn
−A
)

(r)
)

and conclude that

∫
R2

dY ess sup
X∈Qh

∣∣∣FT,A(X, Y, r, s)− F̃T,A(X, Y, r, s)
∣∣∣ ≤ q

(1)
T,A(r − s). (6.22)
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With Corollary 6.6, it is straightforward to verify that ‖q(1)
T,A‖L1 . ‖D2A‖L∞+‖DA‖2

L∞ .
We now see that for ξ, φ ∈ L2

h, we have∣∣∣〈ξ ∣∣∣(LT,A − L̃T,A) φ〉∣∣∣
= h2

∣∣∣∣∫
R2

dr

∫
Qh

dX ξ
(
ζrX , ζ

−r
X

) ∫
R2

dsdY
(
FT,A(X, Y, r, s)− F̃T,A(X, Y, r, s)

)
× eiY ·(−i∇X)φ

(
ζsX , ζ

−s
X

)∣∣∣∣
.
∫
R2

drdsdY ess sup
X∈Qh

∣∣∣FT,A(X, Y, r, s)− F̃T,A(X, Y, r, s)
∣∣∣

×
∣∣∣〈ξ (·+ r/2, · − r/2)

∣∣eiY ·π2Aφ (·+ s/2, · − s/2)
〉
L2(Qh)

∣∣∣ .
Finally, by (6.22) we find that∣∣∣〈ξ ∣∣∣(LT,A − L̃T,A) φ〉∣∣∣

.
∫
R4

drds q
(1)
T,A(r − s) ‖ξ (·+ r/2, · − r/2)‖L2(Qh) ‖φ (·+ s/2, · − s/2)‖L2(Qh)

.
∥∥∥q(1)

T,A

∥∥∥
L1
‖ξ‖L2

h
‖φ‖L2

h
,

where the last inequality follows from Young’s inequality for convolutions. Thus we
have shown that∥∥∥V 1/2

(
LT,A − L̃T,A

)
V 1/2φ

∥∥∥
L2
h

.
(
‖D2A‖L∞ + ‖DA‖2

L∞

)
‖φ‖L2

h
.

We now wish to estimate V 1/2(L̃T,A − M̃T,A)V 1/2. Using (6.18), we rewrite

L̃T,Aα
(
ζrX , ζ

−r
X

)
=

∫
R4

dsdY F̃T,A (X, Y, r, s) e−iΦ2A(X,X+Y )e−i(r−s)/4·DA(X)(r+s)

× ei(r−s)/4·DA(X)(r+s)eiY ·π2Aα
(
ζsX , ζ

−s
X

)
.

We now estimate∫
R2

dY ess sup
X∈Qh

∣∣∣F̃T,A(X, Y, r, s)e−iΦ2A(X,X+Y )e−i(r−s)/4·DA(X)(r+s) − FT (Y, r − s)
∣∣∣

.
∑
n odd

∫
R2

dY
∣∣∣Gzn

(
ζ
−(r−s)
Y

)
G−zn

(
ζr−sY

)∣∣∣
× ess sup

X∈Qh

∣∣∣(eiΦA(ζrX ,ζsX+Y )−iΦA(ζ−sX+Y ,ζ
−r
X )−iΦ2A(X,X+Y )−i(r−s)/4·DA(X)(r+s) − 1

)∣∣∣
.
∑
n odd

∫
R2

dY
∣∣∣Gzn

(
ζ
−(r−s)
Y

)
G−zn

(
ζr−sY

)∣∣∣ ‖D2A‖L∞(|r|2 + |s|2),

where in the last step we applied Lemma 6.7. As before we then obtain〈
ξ
∣∣∣V 1/2(L̃T,A − M̃T,A)V 1/2φ

〉
. ‖D2A‖L∞ ‖ξ‖L2

h
‖φ‖L2

h
.
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We now need to estimate V 1/2(M̃T,A −MT,A)V 1/2, and here we will need to use
the fact that α is assumed to be symmetric. Indeed, if α and ξ are symmetric, then
one can show that in fact〈

ξ
∣∣∣V 1/2M̃T,AV

1/2α
〉

= h2

∫
Qh

dX

∫
R6

drdsdY FT (Y, r − s) cos

(
1

4
(r − s) ·DA(X)(r + s)

)
× ξ

(
ζrX , ζ

−r
X

)
eiY ·π2Aα

(
ζsX , ζ

−s
X

)
.

If we now expand

cos

(
1

4
(r − s) ·DA(X)(r + s)

)
= 1 +O(‖DA‖2

L∞(|r|4 + |s|4)),

we see that the first term gives simply MT,A, and the error can be controlled as above
to show that 〈

ξ
∣∣∣V 1/2(M̃T,A −MT,A)V 1/2φ

〉
. ‖DA‖2

L∞ ‖ξ‖L2
h
‖φ‖L2

h
.

This completes the proof of the first estimate.
For the second estimate, we only have to estimate the difference MT,A − LT . To

do this we first write

(MT,A − LT )φ
(
ζrX , ζ

−r
X

)
=

∫
R4

dsdY FT (Y, r − s)
(
eiY ·Π2A − eiY ·Π0

)
φ
(
ζsX , ζ

−s
X

)
=

∫
R4

dsdY FT (Y, r − s)
(
eiΦ2A(X,X+Y ) − 1

)
eiY ·Π0φ

(
ζsX , ζ

−s
X

)
.

Note that we have the simple estimate∣∣eiΦ2A(X,X+Y ) − 1
∣∣ ≤ |Φ2A(X,X + Y )| . ‖A‖L∞ |Y |.

This means, as above, that

|〈ξ |(MT,A − LT )φ〉|

=

∣∣∣∣∫
R2

dr

∫
Qh

dX ξ
(
ζrX , ζ

−r
X

) ∫
R4

dsdY FT (Y, r − s)

×
(
eiΦ2A(X,X+Y ) − 1

)
eiY ·Π0φ

(
ζsX , ζ

−s
X

)∣∣∣∣
. h

∫
R6

drdsdY

∫
Qh

dX |Y FT (Y, r − s)|
∣∣ξ (ζrX , ζ−rX )∣∣ ∣∣eiY ·Π0φ

(
ζsX , ζ

−s
X

)∣∣
. h ‖ξ‖L2

h
‖φ‖L2

h
.

That completes the proof of the lemma. �

Lemma 6.10. Suppose that A ∈ W 1,∞(R2). Then for all Ψ ∈ L2(Qh) we have

‖(MT,A − LT )ϕ∗Ψ‖L2
h
.
(
‖DA‖L∞ + ‖A‖2

L∞

)
‖Ψ‖L2(Qh) .
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Proof. We first write

(MT,A − LT )φ
(
ζrX , ζ

−r
X

)
=

∫
R4

dsdY FT (Y, r − s) (cos (Y · π2A)− cos (Y · π0))φ
(
ζsX , ζ

−s
X

)
.

We now claim that for Ψ ∈ L2(Qh), we have

‖(cos (Y · π2A)− cos (Y · π0)) Ψ‖L2(Qh)

=
1

2

∥∥(eiY ·π2A + e−iY ·π2A − eiY ·π0 − e−iY ·π0
)

Ψ
∥∥
L2(Qh)

=
1

2

∥∥(eiY ·π0
(
e−iY ·π0eiY ·π2A − 1

)
+ e−iY ·π0

(
eiY ·π0e−iY ·π2A − 1

))
Ψ
∥∥
L2(Qh)

. |Y |2
(
‖DA‖L∞ + ‖A‖2

L∞

)
‖Ψ‖L2(Qh) .

To see this we define

Ψt =
(
eiY ·π0

(
e−itY ·π0eitY ·π2A − 1

)
+ e−iY ·π0

(
eitY ·π0e−itY ·π2A − 1

))
Ψ

and calculate that

∂tΨt =
(
eiY ·π0e−itY ·π0(2iY · A)eitY ·π2A + e−iY ·π0eitY ·π0(−2iY · A)e−itY ·π2A

)
Ψ.

Note that the derivative vanishes at t = 0. We also calculate

∂2
t Ψt =

(
eiY ·π0e−itY ·π0 ((−iY · π0)(2iY · A) + (2iY · A)(iY · π2A)) eitY ·π2A

+e−iY ·π0eitY ·π0 ((iY · π0)(−2iY · A) + (−2iY · A)(−iY · π2A)) e−itY ·π2A
)

Ψ.

Now using the fact that [Y · π0, Y · A] = Y · (DA)Y and therefore

(−iY · π0)(2iY · A) + (2iY · A)(Y · π2A) = 2[Y · π0, Y · A]− 4(Y · A)2

= 2Y · (DA)Y − 4(Y · A)2,

we see that

‖∂2
t Ψt‖L2(Qh) . |Y |2

(
‖DA‖L∞ + ‖A‖2

L∞

)
‖Ψ‖L2(Qh) .

But this means that∥∥(eiY ·π2A + e−iY ·π2A − eiY ·π0 − e−iY ·π0
)

Ψ
∥∥
L2(Qh)

= ‖Ψ1 −Ψ0‖L2(Qh)

≤
∫ 1

0

dt (1− t)
∥∥∂2

t Ψt

∥∥
L2(Qh)

. |Y |2
(
‖DA‖L∞ + ‖A‖2

L∞

)
‖Ψ‖L2(Qh) ,

which establishes the claim.
Now, since

∫
R2 dY |Y |2FT (Y, r − s) is an integrable function of r − s, we can show,

as in the previous lemma, that for any ξ ∈ L2
h, we have

|〈ξ |(MT,A − LT )χεφ〉| . ‖ξ‖L2
h

(
‖DA‖L∞ + ‖A‖2

L∞

)
‖Ψ‖L2(Qh) ,

and the lemma now follows. �
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Lemma 6.11. If Tc > 0, then we have

‖LT − LTc‖L2
h
. |Tc − T | and ‖MT,A −MTc,A‖L2

h
. |Tc − T | ,

for all T sufficiently close to Tc.

Proof. The strategy is the same as in the previous lemma. We write the proof
only for the first estimate, that is, for the difference of the LT , as the second case
involving MT,A is the same. We first note that

FT (Y, r − s)− FTc(Y, r − s)

= (2π)−4

∫
R4

dpdq (fT (p+ q/2, p− q/2)− fTc(p+ q/2, p− q/2)) eip·(r−s)eiq·Y .

Now, since β = 1/T , we have β = βc + βc(Tc − T ) and therefore ρ(βz) = ρ(βcz) +

O(|Tc − T |), where the remainder decays exponentially for z ∈ C. This means that
the difference fT (p + q/2, p − q/2) − fTc(p + q/2, p − q/2) is also O(|Tc − T |) with
exponential decay in p and q. It follows that∫

R2

dY ess sup
X∈Qh

|FT (Y, r − s)− FTc(Y, r − s)| ≤ h2q(r − s),

where q ∈ L1(R2) and ‖q‖L1 . 1. We then have that for any ξ ∈ L2
h that

|〈ξ |(LT − LTc)φ〉| . |Tc − T | ‖q‖L1 ‖ξ‖L2
h
‖φ‖L2

h
,

and the lemma now follows. �

Lemma 6.12. We have∥∥(1− V 1/2LTcV
1/2
)
ϕ∗Ψ

∥∥
L2
h

. ‖∆Ψ‖L2(Qh)

for all Ψ ∈ H2(Qh).

Proof. We first calculate that

V 1/2LTcV
1/2Pφ

(
ζrX , ζ

−r
X

)
= V 1/2(r)

∫
R4

dsdY (V α∗) (s)FTc(Y, r − s)eiY ·(−i∇X)Ψ(X)

=
1

(2π)4

∫
R8

dsdY dpdq V 1/2(r) (V α∗) (s)fTc (p+ q/2, p− q/2) eip·(r−s)eiq·Y

×
∑

m∈(2πZ)2

eihm·Xeihm·Y Ψ̂(m)

=
1

(2π)2

∑
m∈(2πZ)2

eihm·X
∫
R4

dsdp eip·(r−s)V 1/2(r) (V α∗) (s)

× fTc (p+ hm/2, p− hm/2) Ψ̂(m).
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On the other hand, recalling that (1 − V 1/2K−1
Tc V

1/2)ϕ∗ = 0, or, in other words,
ϕ∗ = V 1/2K−1

Tc V
1/2ϕ∗, we see that we can write

Pφ
(
ζrX , ζ

−r
X

)
= ϕ∗(r)Ψ(X)

=
(
V 1/2K−1

Tc V
1/2ϕ∗

)
(r)Ψ(X)

=
1

(2π)2

∑
m∈(2πZ)2

eihm·X
∫
R4

dpds eip·(r−s)V 1/2(r) (V α∗) (s)fTc(p, p)Ψ(X).

Using the inequality |fTc(p, p)− fTc (p+ hm/2, p− hm/2)| . min {1, h2|m|2}, where
the right-hand side decays exponentially in p, we see that∥∥(1− V 1/2LTcV

1/2
)
ϕ∗Ψ

∥∥2

L2
h

.
∑

m∈(2πZ)2

h4|m|4|Ψ̂(m)|2 = ‖∆Ψ‖2
L2(Qh) ,

and that proves the lemma. �

6.4.3. Coercivity estimates. In this section we state and prove two important
estimates, that are presented in the following lemma.

Lemma 6.13. If h is sufficiently small, then we have

ε2
∥∥P⊥ε ξ∥∥L2

h

.
∥∥P⊥ε (1− V 1/2LTh,AhV

1/2
)
P⊥ε ξ

∥∥
L2
h

and ∥∥P⊥ξ∥∥L2
h

.
∥∥P⊥ (1− V 1/2LTh,AhV

1/2
)
P⊥ξ

∥∥
L2
h

for any ξ ∈ L2
h.

Proof. The above lemmas show, in effect, that∥∥(1− V 1/2LT,AhV
1/2
)
−
(
1− V 1/2LTcV

1/2
)∥∥
L2
h

. h.

This means that the lemma will be proven once we have shown that

P⊥
(
1− V 1/2LTcV

1/2
)
P⊥ ≥ CP⊥, (6.23)

and
P⊥ε
(
1− V 1/2LTcV

1/2
)
P⊥ε ≥ Cε2P⊥ε , (6.24)

where C > 0 is some positive constant independent of h. We follow here the argument
given in [37]. To do this, let U be the unitary map on L2

h given by U = e−ir/2·(−i∇X).
We will first show that

V 1/2LTcV
1/2 ≤ 1

2
U∗V 1/2K−1

Tc V
1/2U +

1

2
UV 1/2K−1

Tc V
1/2U∗, (6.25)

where we view KTc as an operator acting only on the x− y coordinate. To do this, we
recall the notation φ̂m for the Fourier transform in the center-of-mass coordinate, as
well as the relation

φ
(
ζrX , ζ

−r
X

)
=

∑
m∈(2πZ)2

eihm·X φ̂m(r),
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which implies

〈φ|η〉 =
∑

m∈(2πZ)2

∫
R2

dr φ̂m(r) η̂m(r).

We begin by writing

〈φ |LTcφ〉 =

∫
R2

dr

∫
Qh

dX φ
(
ζrX , ζ

−r
X

) ∫
R4

dsdY FTc(r − s, Y )eiY ·(−i∇X)φ
(
ζsX , ζ

−s
X

)
=

∑
m∈(2πZ)2

∫
R6

drdsdY FTc(r − s, Y )eihm·Y φ̂m(r)φ̂m(s),

which is easily seen to be equal to

1

(2π)4

∑
m∈(2πZ)2

∫
R10

drdsdY dpdq fTc (p+ q/2, p− q/2) eip·(r−s)e−iq·Y eihm·Y φ̂m(r)φ̂m(s)

=
1

(2π)2

∑
m∈(2πZ)2

∫
R2

dp fTc (p+ hm/2, p− hm/2)

∣∣∣∣∫
R2

dr eip·rφ̂m(r)

∣∣∣∣2 .
We now use Lemma 6.8 to see that

〈φ|LTcφ〉

≤ 1

2(2π)2

∑
m∈(2πZ)2

∫
R2

dp

× (fTc (p+ hm/2, p+ hm/2) + fTc (p− hm/2, p− hm/2))

∣∣∣∣∫
R2

dr eip·rφ̂m(r)

∣∣∣∣2
=

1

2(2π)2

∑
m∈(2πZ)2

∫
R6

drdsdp fTc(p, p)e
ip·(r−s)eir/2·hmφ̂m(r)eis/2·hmφ̂m(s)

+
1

2(2π)2

∑
m∈(2πZ)2

∫
R6

drdsdp fTc(p, p)e
ip·(r−s)e−ir/2·hmφ̂m(r)e−is/2·hmφ̂m(s).

As a consequence,

〈φ |LTcφ〉 ≤
1

2

〈
φ
∣∣(UK−1

Tc U
∗ + U∗K−1

Tc U
)
φ
〉
.

The bound (6.25) now follows, since V 1/2 is a multiplication operator in the relative
coordinate and therefore commutes with U .

Since α∗ is a non-degenerate ground state of KTc − V , it follows that there exists
some κ > 0 such that 1− V 1/2K−1

Tc V
1/2 ≥ κP⊥. We can now see that

1− V 1/2LTcV
1/2 ≥ 1

2
U
(
1− V 1/2K−1

Tc V
1/2
)
U∗ +

1

2
U∗
(
1− V 1/2K−1

Tc V
1/2
)
U

≥ κ

2

(
UP⊥U∗ + U∗P⊥U

)
= κ

(
1− 1

2
UPU∗ − 1

2
U∗PU

)
.
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We now wish to derive a lower bound for the operator 1− (UPU∗ − U∗PU)/2. We
begin by calculating that

〈φ |(UPU∗ + U∗PU)φ〉

=
∑

m∈(2πZ)2

∫
R2

dr φ̂m(r)

(
e−ihr/2·mϕ∗(r)

∫
R2

ds ϕ∗(s)e
ihs/2·mφ̂m(s)

+eihr/2·mϕ∗(r)

∫
R2

ds ϕ∗(s)e
−ihs/2·mφ̂m(s)

)
=

∑
m∈(2πZ)2

[〈
φ̂m
∣∣e−ihm/2·rϕ∗〉〈e−ihm/2·rϕ∗∣∣ φ̂m〉

+
〈
φ̂m
∣∣eihm/2·rϕ∗〉 〈eihm/2·rϕ∗∣∣ φ̂m〉]

= 2 |〈ϕ∗ |ϕ∗ 〉|2 +
∑

m∈(2πZ)2

m 6=0

〈
φ̂m |Qm| φ̂m

〉
,

where Qm denotes the rank 2 operator∣∣eihm/2·rϕ∗〉 〈eihm/2·rϕ∗∣∣+
∣∣e−ihm/2·rϕ∗〉 〈e−ihm/2·rϕ∗∣∣ .

In order to study the quadratic form associated to Qm we distinguish two cases. In the
first case we assume that φ̂m is orthogonal to ϕ∗. We can thus consider the operator

(1− |ϕ∗〉 〈ϕ∗|)Qm (1− |ϕ∗〉 〈ϕ∗|) .

In the basis {
(1− |ϕ∗〉 〈ϕ∗|) eihm/2·rϕ∗, (1− |ϕ∗〉 〈ϕ∗|) e−ihm/2·rϕ∗

}
this operator is represented by the matrix(

1− λ2
m λ2m − λ2

m

λ2m − λ2
m 1− λ2

m

)
,

where

λm =

∫
R2

dr eihm/2·r |ϕ∗(r)|2 =

∫
R2

dr cos (hm/2 · r) |ϕ∗(r)|2 .

The eigenvalues of this matrix are

1− λ2
m ±

∣∣λ2m − λ2
m

∣∣ ,
and we conclude that if φ̂m ⊥ ϕ∗, as assumed, then〈

φ̂m|Qm|φ̂m
〉
≤
(
1− λ2

m +
∣∣λ2m − λ2

m

∣∣) ∥∥∥φ̂m∥∥∥2

L2(R2)
.

For the general case, where φ̂m is not necessarily orthogonal to ϕ∗, we must consider Qm

directly. In the basis {
eihm/2·rϕ∗, e

−ihm/2·rϕ∗
}
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this operator is represented by the matrix(
1 λ2m

λ2m 1

)
.

The eigenvalues of this matrix are 1± |λ2m|, and thus〈
φ̂m|Qm|φ̂m

〉
≤ (1 + |λ2m|)

∥∥∥φ̂m∥∥∥2

L2(R2)
.

First, suppose that φ = P⊥φ. Then φ̂m ⊥ ϕ∗ for all m. We then have〈
φ
∣∣(1− V 1/2LTcV

1/2
)
φ
〉

≥ κ
(
‖φ‖2

L2
h
− |〈ϕ∗|φ0〉|2

)
− κ

2

∑
m∈(2πZ)2

m6=0

〈
φ̂m |Qm| φ̂m

〉

≥ κ ‖φ0‖2
L2(R2) +

κ

2

∑
m∈(2πZ)2

m 6=0

(
1 + λ2

m −
∣∣λ2m − λ2

m

∣∣) ∥∥∥φ̂m∥∥∥2

L2(R2)
.

It is easy to check that

min
m∈(2πZ)2

m6=0

(
1 + λ2

m −
∣∣λ2m − λ2

m

∣∣) ≥ c,

where c is a positive constant. Consequently,〈
φ
∣∣P⊥ (1− V 1/2LTcV

1/2
)
P⊥φ

〉
≥ κ

2
‖φ‖2

L2
h
,

which proves (6.23).
In our second case, we suppose that φ = P⊥ε φ. In this case we have φ̂m ⊥ ϕ∗ if

h|m| ≤ ε, but this may not hold if h|m| > ε. This means〈
φ
∣∣(1− V 1/2LTcV

1/2
)
φ
〉

≥ κ
(
‖φ‖2

L2
h
− |〈ϕ∗|φ0〉|2

)
− κ

2

∑
m∈(2πZ)2

m6=0,h|m|≤ε

(
1− λ2

m +
∣∣λ2m − λ2

m

∣∣) ∥∥∥φ̂m∥∥∥2

L2(R2)

− κ

2

∑
m∈(2πZ)2

m6=0,h|m|>ε

(1 + |λ2m|)
∥∥∥φ̂m∥∥∥2

L2(R2)

= κ ‖φ0‖2
L2(R2) +

κ

2

∑
m∈(2πZ)2

m 6=0,h|m|≤ε

(
1 + λ2

m −
∣∣λ2m − λ2

m

∣∣) ∥∥∥φ̂m∥∥∥2

L2(R2)

+
κ

2

∑
m∈(2πZ)2

m6=0,h|m|>ε

(1− |λ2m|)
∥∥∥φ̂m∥∥∥2

L2(R2)
.

The last step is to understand the last term in the above estimate, that is the behavior
of maxh|m|>ε |λ2m| with respect to h. Since |λ2m| attains its maximum at m = 0, we
see that if h is small enough, then it suffices to consider the case m of the form µek,
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where the ek are the standard basis of R2 and ε < hµ < 2ε. If h is small enough, we
then have that λ2m > 0 and also

1− λ2m ≥
1

2

∫
|r|≤1/2

dr (hm · r)2 |ϕ∗(r)|2 ≥
ε2

2
min
k=1,2

∫
|r|≤1/2

dr r2
k |ϕ∗(r)|

2 ,

where rk denotes the k-th component of the vector r. We have thus shown that〈
φ
∣∣P⊥ε (1− V 1/2LTcV

1/2
)
P⊥ε φ

〉
≥ κ

2
Cε2 ‖φ‖2

L2
h
,

for a positive constant C which proves (6.24). �

6.5. Proof of Theorem A

The first step in proving Theorem A is to prove estimates on P⊥ε φh. For convenience
we introduce Ψh ∈ L2(Qh) to be such that ϕ∗Ψh = Pεφh. Note that due to the cut-off,
Ψh is in fact smooth, and we also have the bound

‖∆Ψh‖2
L2(Qh) =

∑
m∈(2πZ)2

h|m|≤ε

h4|m|4
∣∣∣Ψ̂(m)

∣∣∣2 ≤ ε
∑

m∈(2πZ)2

h|m|≤ε

h2|m|2
∣∣∣Ψ̂(m)

∣∣∣2
= ε ‖∇Ψh‖L2(Qh) . εh2.

The cut-off also leads to a bound on ‖Ψh‖L∞ as follows. Write Ψh = Ψ̃h + Ψ̂h(0). Note
that this means

ˆ̃
Ψh(0) = 0.

We also note that |Ψ̂h(0)| ≤ ‖Ψh‖L2(Qh) . h. Now, for any X ∈ R2,

|Ψ̃h(X)| ≤
∑

m∈(2πZ)2

0<h|m|≤ε

|Ψ̂(m)| ≤

 ∑
m∈(2πZ)2

0<h|m|≤ε

h−2|m|−2


1/2 ∑

m∈(2πZ)2

0<h|m|≤ε

h2|m|2|Ψ̂(m)|2


1/2

. h−1
(

log
ε

h

)1/2

‖∇Ψh‖L2(Qh) . h
(

log
ε

h

)1/2

.

We therefore see that

‖Ψh‖L∞ . h
(

log
ε

h

)1/2

.

We begin with the following lemma, which directly implies the first claim in
Theorem A.

Lemma 6.14. Suppose that φh, Ah, Th are as in Theorem A. Then∥∥P⊥ε φh∥∥L2
h

. ε−2h3, (6.26)∥∥χεP⊥φh∥∥L2
h

. εh2, (6.27)

where, as before, ε = h17/48.
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Proof. For convenience let LT,A := 1 − V 1/2LT,AV
1/2. By Lemma 6.13, the

operator P⊥ε LTh,AhP⊥ε is invertible on P⊥ε L2
h,sym for sufficiently small h, and we have

that
‖
(
P⊥ε LTh,AhP⊥ε

)−1 ‖L2
h
. ε−2.

Now, since (φh, Ah) is a solution of the BdG equations, we have that

P⊥ε φh = −
(
P⊥ε LTh,AhP⊥ε

)−1
P⊥ε

(
LTh,AhPεφh +

1

2
V 1/2NTh,Ah

(
−2V 1/2φh

))
. (6.28)

We first estimate the term LTh,AhPεφh. In order to do this, we write

LTh,Ah = (1− V 1/2LTcV
1/2)− V 1/2(LTh,Ah − LTc)V 1/2.

By Lemma 6.12, we have∥∥(1− V 1/2LTcV
1/2
)
Pεφh

∥∥
L2
h

. ‖∆Ψh‖L2(Qh) . εh2,

and by Lemmas 6.9, 6.10 and 6.11, we see that∥∥V 1/2 (LTh,Ah − LTc)V 1/2Pεφh
∥∥
L2
h

≤
∥∥V 1/2 (LTh,Ah −MTh,Ah)V 1/2Pεφh

∥∥
L2
h

+
∥∥V 1/2 (MTh,Ah − LTh)V 1/2Pεφh

∥∥
L2
h

+
∥∥V 1/2 (LTh − LTc)V 1/2Pεφh

∥∥
L2
h

.
(
‖D2Ah‖L∞ + ‖DAh‖2

L∞ + ‖DAh‖L∞ + ‖Ah‖2
L∞ + |Th − Tc|

)
‖Pεφh‖L2

h

. (h3 + h4 + h2)h

. h3.

For the non-linear term, that is, the term involving NTh,Ah , we simply calculate that∥∥V 1/2NTh,Ah

(
−2V 1/2φh

)∥∥
L2
h

.
∑
n odd

∥∥∥(zn − kA)−1 V 1/2φh
(
zn + kA

)−1
V 1/2φh (zn − kA)−1 V 1/2φh

×
(
zn −HA

(
−2V 1/2φh

))−1

22

∥∥∥
L2
h

.
∑
n odd

∥∥(zn − kA)−1
∥∥2

∞

∥∥∥(zn + kA
)−1
∥∥∥
∞

∥∥(zn −HA(∆))−1
22

∥∥
∞

∥∥V 1/2φh
∥∥3

L6 .

From every factor containing zn we get an |n|−1 and the first part of Lemma 6.2
implies∥∥V 1/2NTh,Ah

(
−2V 1/2φh

)∥∥
L2
h

.
∑
n odd

|n|−4
(
‖φh‖L2

h
+ h−1 ‖∇Xφh‖L2

h

)3

. h3.

We now write(
P⊥ε LTh,AhP⊥ε

)−1

=
(
P⊥ε
(
1− V 1/2LTcV

1/2
)
P⊥ε
)−1

+
(
P⊥ε LTh,AhP⊥ε

)−1
P⊥ε V

1/2 (LTh,Ah − LTc)V 1/2P⊥ε

×
(
P⊥ε
(
1− V 1/2LTcV

1/2
)
P⊥ε
)−1

.
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For the second term we simply have∥∥∥(P⊥ε LTh,AhP⊥ε )−1
P⊥ε V

1/2 (LTh,Ah − LTc)V 1/2P⊥ε
(
P⊥ε
(
1− V 1/2LTcV

1/2
)
P⊥ε
)−1
∥∥∥
L2
h

. ε−2 · h2 · ε−2 . ε−4h2,

and therefore∥∥∥(P⊥ε LTh,AhP⊥ε )−1
P⊥ε V

1/2 (LTh,Ah − LTc)V 1/2P⊥ε
(
P⊥ε
(
1− V 1/2LTcV

1/2
)
P⊥ε
)−1

×P⊥ε
(
LTh,AhPεφh +

1

2
V 1/2NTh,Ah

(
−2V 1/2φh

))∥∥∥∥
L2
h

. ε−4h2 · εh2 . ε−3h4.

We now turn to the first, that is, to
(
P⊥ε
(
1− V 1/2LTcV

1/2
)
P⊥ε
)−1. To begin with, we

see that∥∥∥(P⊥ε (1− V 1/2LTcV
1/2
)
P⊥ε
)−1

×P⊥ε
(
V 1/2 (LTh,Ah − LTc)V 1/2Pεφh +

1

2
V 1/2NTh,Ah

(
−2V 1/2φh

))∥∥∥∥
L2
h

. ε−2 · h3.

It remains to estimate the term involving (1− V 1/2LTcV
1/2) and here we will us the

fact that this operator commutes with the cut-off χε. Indeed, we have that

P⊥ε
(
P⊥ε
(
1− V 1/2LTcV

1/2
)
P⊥ε
)−1

P⊥ε
(
1− V 1/2LTcV

1/2
)
Pεφh

= χεP
⊥ (P⊥ε (1− V 1/2LTcV

1/2
)
P⊥ε
)−1

χεP
⊥ (1− V 1/2LTcV

1/2
)
Pεφh

= χεP
⊥ (P⊥ (1− V 1/2LTcV

1/2
)
P⊥
)−1

χεP
⊥ (1− V 1/2LTcV

1/2
)
Pεφh,

and therefore∥∥∥P⊥ε (P⊥ε (1− V 1/2LTcV
1/2
)
P⊥ε
)−1

P⊥ε
(
1− V 1/2LTcV

1/2
)
Pεφh

∥∥∥
L2(Qh)

.
∥∥(1− V 1/2LTcV

1/2
)
Pεφh

∥∥
L2(Qh)

. εh2.

Since ε−3h4 . ε−2h3, and εh2 . ε−2h3, we see that we have established (6.26).
We now turn to the proof of (6.27). Note that χεP⊥ = χεP

⊥
ε , and therefore it is

clear that we only need to show that∥∥∥χεP⊥ (P⊥ε (1− V 1/2LTcV
1/2
)
P⊥ε
)−1

×P⊥ε
(
LTh,AhPεφh +

1

2
V 1/2NTh,Ah

(
−2V 1/2φh

))∥∥∥∥
L2
h

. εh2.
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But since χε commutes with V 1/2LTcV
1/2, we have

χεP
⊥ (P⊥ε (1− V 1/2LTcV

1/2
)
P⊥ε
)−1

P⊥ε

= χεP
⊥ (P⊥ε (1− V 1/2LTcV

1/2
)
P⊥ε
)−1

χεP
⊥

= χεP
⊥ (P⊥ (1− V 1/2LTcV

1/2
)
P⊥
)−1

χεP
⊥,

which means∥∥∥χεP⊥ (P⊥ε (1− V 1/2LTcV
1/2
)
P⊥ε
)−1

×P⊥ε
(
LTh,AhPεφh +

1

2
V 1/2NTh,Ah

(
−2V 1/2φh

))∥∥∥∥
L2
h

.
∥∥∥(P⊥ (1− V 1/2LTcV

1/2
)
P⊥
)−1
∥∥∥
L2
h

∥∥∥∥LTh,AhPεφh +
1

2
V 1/2NTh,Ah

(
−2V 1/2φh

)∥∥∥∥
L2
h

. εh2 + h3 . h3.

That completes the proof of the lemma. �

We now wish to prove an estimate on the terms in the Bogoliubov-de Gennes
equations which involve P⊥ε φ. We have the following lemma.

Lemma 6.15. For all T sufficiently close to Tc, we have the estimates∥∥PεFBCS
T (φ,A)− PεFBCS

T (Pεφ,A)
∥∥
L2
h

. ε2
∥∥χεP⊥φ∥∥L2

h

+
(∥∥D2A

∥∥
L∞

+ ‖DA‖2
L∞+ ‖DA‖L∞+ ‖A‖2

L∞+ |T − Tc|
) ∥∥P⊥ε φ∥∥L2

h

+ h−1
(
‖φ‖L2

h
+ h−1 ‖∇Xφ‖L2

h

)3 ∥∥P⊥ε φ∥∥L2
h

+ h−2/3
(
‖φ‖L2

h
+ h−1 ‖∇Xφ‖L2

h

)2 ∥∥P⊥ε φ∥∥L2
h

+ h−4/3
(
‖φ‖L2

h
+ h−1 ‖∇Xφ‖L2

h

)∥∥P⊥ε φ∥∥2

L2
h

+ h−2
∥∥P⊥ε φ∥∥3

L2
h

, (6.29)

and∥∥GBCS
T (φ,A)−GBCS

T (Pεφ,A)
∥∥
L2(Qh)

. (1 + ‖A‖L∞)
∥∥P⊥ε φ∥∥L2

h

×
(
h−2/3

(
‖φ‖L2

h
+ h−1 ‖∇Xφ‖L2

h

)2

+ ‖Ψ‖L∞ + h−1
∥∥P⊥ε φ∥∥L2

h

)
, (6.30)

where Ψ is such that ϕ∗Ψ = Pεφ.

Proof. We begin with the proof of (6.29). We note that

PεF
BCS
T (φ,A)− PεFBCS

T (Pεφ,A) = Pε
(
1− V 1/2LT,AV

1/2
)
P⊥ε φ

+ PεV
1/2NT,A

(
−2V 1/2φ

)
− PεV 1/2NT,A

(
−2V 1/2Pεφ

)
.

We will first estimate the linear term, and we again write

1− V 1/2LT,AV
1/2 = 1− V 1/2LTcV

1/2 − V 1/2(LT,A − LTc)V 1/2.
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For the second term we have the simple estimate∥∥V 1/2 (LT,A − LTc)V 1/2P⊥ε φ
∥∥
L2
h

.
(
‖D2A‖L∞ + ‖DA‖2

L∞ + ‖DA‖L∞ + ‖A‖2
L∞ + |T − Tc|

) ∥∥P⊥ε φ∥∥L2
h

.

For the first term, we start by noting that

Pε
(
1− V 1/2LTcV

1/2
)
P⊥ε φ = Pε

(
1− V 1/2LTcV

1/2
)
χεP

⊥φ.

We now let ξ := χεP
⊥φ and define ξ̂m : R2 → C by the Fourier series

ξ(ζrX , ζ
−r
X ) =

∑
m∈(2πZ)2

eihm·X ξ̂m(r),

where we note that ξ̂m = 0 if h|m| > ε. We then see that

PV 1/2LTcV
1/2ξ(ζrX , ζ

−r
X )

= ϕ∗(r)

∫
R6

dsdtdY (V α∗) (s)V 1/2(t)FTc(Y, s− t)eiY ·(−i∇X)ξ(ζtX , ζ
−t
X )

=
1

(2π)4

∫
R10

dsdtdY dpdq ϕ∗(r) (V α∗) (s)V 1/2(t)fTc (p+ q/2, p− q/2) eip·(s−t)eiq·Y

×
∑

m∈(2πZ)2

eihm·Xeihm·Y ξ̂m(r)

=
1

(2π)2

∑
m∈(2πZ)2

∫
R6

dsdtdp eip·(s−t)ϕ∗(r) (V α∗) (s)V 1/2(t)

× fTc (p+ hm/2, p− hm/2) ξ̂m(r).

On the other hand, since ϕ∗ = V 1/2K−1
Tc V

1/2ϕ∗, we see that

Pξ
(
ζrX , ζ

−r
X

)
= ϕ∗(r)

∫
R2

dt ϕ∗(t)ξ(ζ
t
X , ζ

−t
X )

=
1

(2π)2

∑
m∈(2πZ)2

eihm·X
∫
R6

dpdsdt eip·(t−s)ϕ∗(r)V
1/2(r) (V α∗) (s)fTc(p, p)ξ(ζ

t
X , ζ

−t
X )

=
1

(2π)2

∑
m∈(2πZ)2

eihm·X
∫
R6

dpdsdt eip·(s−t)ϕ∗(r)V
1/2(r) (V α∗) (s)fTc(p, p)ξ(ζ

t
X , ζ

−t
X ).

Using the inequality |fTc(p, p)− fTc (p+ hm/2, p− hm/2)| . min {1, h2|m|2}, where
the right-hand side decays exponentially in p, we then see that∥∥Pε (1− V 1/2LTcV

1/2
)
P⊥ε φ

∥∥2

L2
h

.
∫
R2

dr
∑

m∈(2πZ)2

h4|m|4|ξ̂m(r)|2 ≤ ε4
∥∥χεP⊥φ∥∥2

L2
h

,

and that completes the estimate for the linear term.
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We now estimate the difference of the non-linear terms. For convenience we define
ξ = P⊥ε φ. We start by writing

NT,A

(
−2V 1/2φ

)
= −16

β

∑
n odd

(zn − kA)−1 V 1/2φ
(
zn + kA

)−1
V 1/2φ (zn − kA)−1 V 1/2φ

×
(
zn −HA

(
−2V 1/2Pεφ

))−1

22
(6.31)

− 16

β

∑
n odd

(zn − kA)−1 V 1/2φ
(
zn + kA

)−1
V 1/2φ (zn − kA)−1 V 1/2φ

×
((
zn −HA

(
−2V 1/2φ

))−1

22
−
(
zn −HA

(
−2V 1/2Pεφ

))−1

22

)
. (6.32)

For the last factor of the second series, we note that

∥∥∥(z −HA

(
−2V 1/2φ

))−1

22
−
(
z −HA

(
−2V 1/2Pεφ

))−1

22

∥∥∥
∞

= 2
∥∥∥(z −HA

(
−2V 1/2φ

))−1

21
V 1/2ξ

(
z −HA

(
−2V 1/2Pεφ

))−1

22

+
(
z −HA

(
−2V 1/2φ

))−1

22
V 1/2ξ

(
z −HA

(
−2V 1/2Pεφ

))−1

12

∥∥∥
∞

.
∥∥V 1/2ξ

∥∥
∞ ,

which means we can estimate the second part of NT,A as follows.

‖ (6.32) ‖L2
h
.
∑
n odd

|n|−3
∥∥V 1/2φ

∥∥3

L6

∥∥V 1/2ξ
∥∥
∞

. h−1
(
‖φ‖L2

h
+ h−1 ‖∇Xφ‖L2

h

)3

‖ξ‖L2
h
.

We note that we have here used the fact that if T is sufficiently close to Tc, then
1/β = T . 1. We can therefore turn to the first term, that is, to (6.31), which we
write in the form

− 16

β

∑
n odd

(zn − kA)−1 V 1/2 (Pεφ+ ξ)
(
zn + kA

)−1
V 1/2

(
Pεφ+ ξ

)
× (zn − kA)−1 V 1/2 (Pεφ+ ξ)

(
zn −HA

(
−2V 1/2Pεφ

))−1

22
.
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The difference between this term and NT,Ah(−2V 1/2Pεφ) then consists of seven terms.
There are three terms containing a single ξ and these can be estimated as follows,∥∥∥∥∥∑

n odd

(zn − kA)−1 V 1/2Pεφ
(
zn + kA

)−1
V 1/2Pεφ (zn − kA)−1 V 1/2ξ

×
(
zn −HA

(
−2V 1/2Pεφ

))−1

22

∥∥∥∥∥
L2
h

.
∑
n odd

∥∥(zn − kA)−1
∥∥2

∞

∥∥∥(zn + kA
)−1
∥∥∥
∞

∥∥∥(zn −HA

(
−2V 1/2Pεφ

))−1

22

∥∥∥
∞

×
∥∥V 1/2Pεφ

∥∥2

L6
h

∥∥V 1/2ξ
∥∥
L6
h

. h−2/3
(
‖φ‖L2

h
+ h−1 ‖∇Xφ‖L2

h

)2

‖ξ‖L2
h
.

There are also three terms containing two ξ and we estimate these terms as follows,∥∥∥∥∥∑
n odd

(zn − kA)−1 V 1/2Pεφ
(
zn + kA

)−1
V 1/2ξ (zn − kA)−1 V 1/2ξ

×
(
zn −HA

(
−2V 1/2Pεφ

))−1

22

∥∥∥∥∥
L2
h

.
∑
n odd

∥∥(zn − kA)−1
∥∥2

∞

∥∥∥(zn + kA
)−1
∥∥∥
∞

∥∥∥(zn −HA

(
−2V 1/2Pεφ

))−1

22

∥∥∥
∞

×
∥∥V 1/2Pεφ

∥∥
L6
h

∥∥V 1/2ξ
∥∥2

L6
h

. h−4/3
(
‖φ‖L2

h
+ h−1 ‖∇Xφ‖L2

h

)
‖ξ‖2

L2
h
.

Finally there is the term with three ξ. For this term we have∥∥∥∥∥∑
n odd

(zn − kA)−1 V 1/2ξ
(
zn + kA

)−1
V 1/2ξ (zn − kA)−1 V 1/2ξ

×
(
zn −HA

(
−2V 1/2Pεφ

))−1

22

∥∥∥∥∥
L2
h

.
∑
n odd

∥∥(zn − kA)−1
∥∥2

∞

∥∥∥(zn + kA
)−1
∥∥∥
∞

∥∥∥(zn −HA

(
−2V 1/2Pεφ

))−1

22

∥∥∥
∞

∥∥V 1/2ξ
∥∥3

L6
h

. h−6/3 ‖ξ‖3
L2
h
.

That establishes (6.29).
We now turn to the proof of (6.30). Recall that JT,A(φ) = Re πAγA(φ)|y=x. By

expanding (z −HA (φ))−1
11 , we see that

JT,A (φ) = JT,A +
1

β

∑
n odd

Re πA (zn − kA)−1 φ
(
zn + kA

)−1
φ(zn −HA (φ))−1

11

∣∣∣∣∣
y=x

,
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where

JT,Ah = ReπA
(
1 + eβkA

)−1
∣∣∣
y=x

.

This means that

GBCS
T (φ,A)−GBCS

T (Pεφ,A) =
4

β

∑
n odd

Re(−i∇+ A)(
(zn − kA)−1 V 1/2φ

(
zn + kA

)−1
V 1/2φ(zn −HA

(
−2V 1/2φ

)
)−1
11

− (zn − kA)−1 V 1/2Pεφ
(
zn + kA

)−1
V 1/2Pεφ(zn −HA

(
−2V 1/2Pεφ

)
)−1
11

)∣∣∣
y=x

.

We begin by estimating the terms involving A and we will study the terms with
(−i∇) afterwards. We again define ξ = P⊥ε φ. We now estimate the error in replacing
(zn −HA

(
−2V 1/2φ

)
)−1
11 by (zn −HA(−2V 1/2Pεφ))−1

11 . To do this, we first note that∥∥∥(z −HA

(
−2V 1/2φ

))−1

11
−
(
z −HA

(
−2V 1/2Pεφ

))−1

11

∥∥∥
L6
h

= 2
∥∥∥(z −HA

(
−2V 1/2φh

))−1

11
V 1/2ξh

(
z −HA

(
−2V 1/2Pεφh

))−1

21

+
(
z −HA

(
−2V 1/2φ

))−1

12
V 1/2ξ

(
z −HA

(
−2V 1/2Pεφ

))−1

11

∥∥∥
L6
h

.
∥∥V 1/2ξ

∥∥
L6
h

. h−2/3 ‖ξ‖L2
h
.

Applying Lemma 6.4, we see that we can estimate∥∥∥∥∥∑
n odd

ReA (zn − kA)−1 V 1/2φ
(
zn + kA

)−1
V 1/2φ

×
((
zn −HA

(
−2V 1/2φ

))−1

11
−
(
zn −HA

(
−2V 1/2Pεφ

))−1

11

)∣∣∣
y=x

∥∥∥∥
L2(Qh)

.
∑
n odd

∥∥K(1)
n (1−∆)

∥∥
L2
h

,

where K(1)
n denotes the n-th summand in the series giving the operator in question.

We proceed by making use of Hölder’s inequality (6.4) and see that

∑
n odd

∥∥K(1)
n (1−∆)

∥∥
L2
h

. ‖A‖L∞ · ‖V 1/2φ‖L6
h
· h−2/3 ‖ξ‖L2

. h−2/3‖A‖L∞
(
‖φ‖L2

h
+ h−1 ‖∇Xφ‖L2

h

)2

‖ξ‖L2 .
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We now write φ = Pεφ+ ξ and expand. This gives us three terms to estimate. There
are two terms containing a single ξ and these can be estimated as follows. We have∥∥∥∥∥∑

n odd

A (zn − kA)−1 V 1/2Pεφ
(
zn + kA

)−1
V 1/2ξ

×
(
zn −HA

(
−2V 1/2Pεφ

))−1

11

∣∣∣
y=x

∥∥∥∥
L2(Qh)

.
∑
n odd

∥∥K(2)
n (1−∆)

∥∥
L2
h

,

where we again applied Lemma 6.4 and where K(2)
n denotes the n-th summand in the

series giving the operator in question, analogously to the notation used in the previous
calculations. As before we apply Hölder’s inequality (6.4) and conclude that∑

n odd

∥∥K(2)
n (1−∆)

∥∥
L2
h

.
∑
n odd

|n|−3 ‖A‖L∞
∥∥V 1/2Pεφ

∥∥
∞

∥∥V 1/2ξ
∥∥
L2
h

. ‖A‖L∞‖Ψ‖L∞ ‖ξ‖L2
h
.

For the term containing two ξ, we proceed similarly and get∥∥∥∥∥∑
n odd

A (zn − kA)−1 V 1/2ξ
(
zn + kA

)−1
V 1/2ξ

×
(
zn −HA

(
−2V 1/2Pεφ

))−1

11

∣∣∣
y=x

∥∥∥∥
L2(Qh)

.
∑
n odd

∥∥K(3)
n (1−∆)

∥∥
L2
h

.
∑
n odd

|n|−3 ‖A‖L∞
∥∥V 1/2ξ

∥∥2

L4
h

. h−1‖A‖L∞ ‖ξ‖2
L2
h
.

This finishes the estimates for the terms involving A. For the terms involving −i∇,
we can in fact use the same estimates, but, of course, without the ‖A‖L∞ factor. That
completes the proof of the lemma. �

We can now prove the second part of Theorem A. Using Lemma 6.14 and that
fact that φh and Ah are solutions, we see that∥∥PεFBCS

Th
(Pεφh, Ah)

∥∥
L2
h

=
∥∥PεFBCS

Th
(φh, Ah)− PεFBCS

Th
(Pεφh, Ah)

∥∥
L2
h

. ε2 · εh2 + h2 · ε−2h3 + h−1 · h3 · ε−2h3 + h−2/3 · h2 · ε−2h3 + h−4/3 · h · ε−4h6

+ h−6/3 · ε−6h9

. h3ε3h−1.
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And also∥∥GBCS
Th

(Pεφh, Ah)
∥∥
L2(Qh)

=
∥∥GBCS

Th
(φh, Ah)−GBCS

Th
(Pεφh, Ah)

∥∥
L2(Qh)

. ε−2h3

(
h−2/3 · h2 + h

(
log

ε

h

)1/2

+ h−1 · ε−2h3

)
. h3ε−2h

(
log

ε

h

)1/2

,

which finishes the proof of Theorem A.

6.6. Proof of Theorem B

In order to proof Theorem B it turns out to be convenient to introduce the following
notation for the non-linear maps. We will write NT,A = ÑT,A +N ′T,A, where

ÑT,A(α) =
2

β

∑
n odd

(zn − kA)−1 α
(
zn + kA

)−1
α (zn − kA)−1 α

(
zn + kA

)−1
,

and

N ′T,A(α) =
2

β

∑
n odd

(zn − kA)−1 α
(
zn + kA

)−1
α (zn − kA)−1 α

×
(
zn + kA

)−1
α (z −HA(α))−1

12 .

Similarly we will write JT,A = JT,A + J̃T,A + J ′T,A, where as in the proof of (6.30),

JT,A = πA

(
1

1 + eβkA

)∣∣∣∣
y=x

,

J̃T,A(α) = Re πA

∫
C

dz

2πi
σ(βz) (z − kA)−1 α

(
z + kA

)−1
α (z − kA)−1

∣∣∣∣
y=x

,

J ′T,A(α) = Re πA

∫
C

dz

2πi
σ(βz) (z − kA)−1 α

(
z + kA

)−1
α

× (z − kA)−1 α (z −HA(α))−1
21

∣∣∣∣
y=x

,

In this section we show that the leading order of the Bogoliubov-de Gennes
equations is indeed given by the Ginzburg-Landau equations when the coefficients are
correctly defined. We first define

ψh = QhPεφh, ah = ~Qh. (6.33)

Note that

‖ψh‖L2(Q) . 1, ‖ψh‖H1(Q) . 1, and ‖ψh‖H2(Q) . εh−1.

We have the following lemma.
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Lemma 6.16. We have the estimates

∥∥h−2QhPε
(
1− V 1/2LTh,AhV

1/2
)
Pεφh

− ((−i∇+ 2ah) · B (−i∇+ 2ah)ψh − C1ψh)‖L2(Q) . ε3h−1, (6.34)∥∥∥∥h−2QhPε
1

2
V 1/2NTh,Ah

(
−2V 1/2Pεφh

)
− C2 |ψh|2 ψh

∥∥∥∥
L2(Q)

. ε, (6.35)∥∥∥∥h−2 ~Qh curl2Ah −
1

2
curl2 2ah

∥∥∥∥
L1(Q)

= 0, (6.36)∥∥∥∥h−2 ~QhJT,Ah
(
−2V 1/2Pεφh

)
−
(
− 1

24π (1 + e−βcµ)
curl2ah(x) + Reψh(x)2B (−i∇+ 2ah(x))ψh(x)

)∥∥∥∥
L1(Q)

. ε1/2h1/2,

(6.37)

where ψh and ah given as in (6.33).

Proof of (6.34). Since Pεφh(x, y) = hϕ∗(x− y)ψh(h(x+ y)/2), we see that

V 1/2LT,AV
1/2Pεφ

(
ζrX , ζ

−r
X

)
= −h

∫
C

dz

2πi
ρ(βz)

∫
dw12 V

1/2(r)Gz
A (ζrX , w1) (V α∗) (w1 − w2)

× ψh (h(w1 + w2)/2)G−z−A
(
w2, ζ

−r
X

)
= −h

∫
C

dz

2πi
ρ(βz)

∫
R4

dY ds V 1/2(r) (V α∗) (s)Gz
A (ζrX , ζ

s
Y )G−z−A

(
ζ−sY , ζ−rX

)
ψh(hY ).

This means

h−2QhPV 1/2LT,AV
1/2Pεφ(X)

= −h−2

∫
C

dz

2πi
ρ(βz)

∫
R6

dY drds (V α∗) (r) (V α∗) (s)Gz
A

(
ζrX/h, ζ

s
Y

)
×G−z−A

(
ζ−sY , ζ−rX/h

)
ψh(hY )

= −h−2

∫
C

dz

2πi
ρ(βz)

∫
R6

dY drds (V α∗) (r) (V α∗) (s)Gz
A

(
ζrX/h, ζ

s
X/h+Y

)
×G−z−A

(
ζ−sX/h+Y , ζ

−r
X/h

)
ψh (X + hY ) .

(6.38)
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We now wish to replace Gz
A with Kz

A and G−z−A with K−z−A. This gives two terms to
estimate. We bound the first term as follows,∫

Q

dX

∣∣∣∣h−2

∫
C

dz

2πi
ρ(βz)

∫
R6

dY drds (V α∗) (r) (V α∗) (s)K−z−A

(
ζ−sX/h+Y , ζ

−r
X/h

)
×
(
Gz
A

(
ζrX/h, ζ

s
X/h+Y

)
−Kz

A

(
ζrX/h, ζ

s
X/h+Y

))
ψh (X + hY )

∣∣∣∣2
. h−2

∫
Q

dX

(∫
R6

dY drds |(V α∗) (r) (V α∗) (s)|

×
∫
C

dz

2πi
ρ(βz)

∣∣G−z (ζr−sY

)∣∣Hz
A

(
ζs−rY

)
|ψh(X + hY )|

)2

. h−2

∫
R6

dY drds |(V α∗) (r) (V α∗) (s)|

×
∫
C

dz

2πi
ρ(βz)

∣∣G−z (ζr−sY

)∣∣Hz
A

(
ζs−rY

)
‖ψh‖L2(Q)

. h,

where we estimated the integral in the second-to-last line by MA. The other term can
be estimated similarly and we omit these technical details here. This allows us now to
go back and consider (6.38) with Gz

A replaced by Kz
A. We get

− h−2

∫
C

dz

2πi
ρ(βz)

∫
R6

dY drds (V α∗) (r) (V α∗) (s)Kz
A

(
ζrX/h, ζ

s
X/h+Y

)
×K−z−A

(
ζ−sX/h+Y , ζ

−r
X/h

)
ψh (X + hY )

= −h−2

∫
C

dz

2πi
ρ(βz)

∫
R6

dY drds (V α∗) (r) (V α∗) (s)Gz
(
ζs−rY

)
G−z

(
ζr−sY

)
× eiΦA(ζrX/h,ζsX/h+Y )e

−iΦA
(
ζ−s
X/h+Y

,ζ−r
X/h

)
eihY ·(−i∇X)ψh(X)

= −h−2

∫
C

dz

2πi
ρ(βz)

∫
R6

dY drds (V α∗) (r) (V α∗) (s)Gz
(
ζs−rY

)
G−z

(
ζr−sY

)
× eiΦa(ζhrX ,ζhsX+hY )e−iΦa(ζ

−hs
X+hY ,ζ

−hr
X )e−iΦ2a(X,X+hY )eihY ·(−i∇X+2a(X))ψh(X),

(6.39)

where in the last step we made use of the operator identity (6.18). Next, we apply
Lemma 6.7, which implies

exp
(
iΦa

(
ζhrX , ζ

hs
X+hY

))
exp

(
−iΦa

(
ζ−hsX+hY , ζ

hr
X

))
exp (−iΦ2a (X,X + hY ))

= eih
2(r−s)/4·JA(X)(r+s) +O(h2MA)(|s|2 + |r|2).

The error we get by going from (6.39) to

− h−2

∫
C

dz

2πi
ρ(βz)

∫
R6

dY drds (V α∗) (r) (V α∗) (s)Gz
(
ζs−rY

)
G−z

(
ζr−sY

)
× eih2(r−s)/4·JA(X)(r+s)eihY ·(−i∇X+2a(X))ψh(X)
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can be estimated to be . h−2h2MA ‖ψh‖L2(Q) . h3 by making use of Lemma 6.7. A
symmetry argument shows that we are now dealing with

− h−2

∫
C

dz

2πi
ρ(βz)

∫
R6

dY drds (V α∗) (r) (V α∗) (s)Gz
(
ζs−rY

)
G−z

(
ζr−sY

)
× eih2(r−s)/4·JA(X)(r+s) cos(hY · (−i∇X + 2a(X)))ψh(X). (6.40)

Now, we write

ρ(βz) = ρ (βcz) + 2h2βcDzρ
′ (βcz) +O(h4),

where the error term decays exponentially in z. Moreover, note that

eih
2(r−s)/4·JA(X)(r+s) = 1 + ih2(r − s)/4 · JA(X)(r + s) +O

(
h4
∥∥D2A

∥∥
L∞

) (
|s|2 + |r|2

)
as well as

cos (hY · (−i∇X + 2a(X)))

= 1− 1

2
(hY · (−i∇X + 2a(X)))2 + g (hY · (−i∇X + 2a(X))) ,

where g(x) = cosx − (1 − x2/2). These facts will allow us to simplify the second
line in (6.40) to ψh(X). It is straightforward to estimate the errors, except for
the one involving g. The fact that g(x) . x4 allows us to show the error to be
. h−2h4 ‖∆2ψh‖L2(Q) . h2ε3h−3 ‖∇ψh‖L2(Q) . ε3h−1, where we use the momentum
cut-off to control ∆2ψh.

We now go back to (6.40), that is the leading term, and thus consider

− h−2

∫
C

dz

2πi
ρ (βcz)

∫
R6

dY drds (V α∗) (r) (V α∗) (s)Gz
(
ζs−rY

)
G−z

(
ζr−sY

)
ψh(X)

=
h−2

(2π)4

∫
C

dz

2πi
ρ (βcz)

∫
R10

dY drdsdpdq (V α∗) (r) (V α∗) (s)

× eip·(ζ
s−r
Y )eiq·(ζ

r−s
Y )ψh(X)

(z − (|p|2 − µ))(z + (|q|2 − µ))
. (6.41)

We integrate over Y and then over q, to see that (6.41) equals

h−2

(2π)2

∫
R6

drdsdp (V α∗) (r) (V α∗) (s)eip·(s−r)K−1
Tc (p)ψh(X)

= h−2

∫
R2

ds (V α∗) (s)α∗(s)ψh(X) = h−2QhPεφh(X),

and this cancels out the first term of the estimate in (6.34).
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There are three next-to-leading terms. We start with

−
∫
C

dz

2πi
2βcDzρ

′ (βcz)

∫
R6

dY drds (V α∗) (r) (V α∗) (s)Gz
(
ζs−rY

)
G−z

(
ζr−sY

)
ψh(X)

=
2βcD

(2π)4

∫
C

dz

2πi
zρ′ (βcz)

∫
R10

dY drdsdpdq (V α∗) (r) (V α∗) (s)

× eip·(ζ
s−r
Y )eiq·(ζ

r−s
Y )

(z − (|p|2 − µ)) (z + (|q|2 − µ))
ψh(X).

(6.42)

We now integrate all variable except for p and get (6.43) is equal to
2Dβc

(2π)2

∫
R2

dp |η(p)|2

×
(

(|p|2 − µ) ρ′ (βc (|p|2 − µ))

2 (|p|2 − µ)
+
− (|p|2 − µ) ρ′ (−βc (|p|2 − µ))

−2 (|p|2 − µ)

)
ψh(X)

=
2Dβc

(2π)2

∫
R2

dp |η(p)|2 ρ′
(
βc
(
|p|2 − µ

))
ψh(X)

=
2Dβc

(2π)2

∫
R2

dp |η(p)|2
(

cosh2

(
βc

2

(
|p|2 − µ

)))−1

ψh(X),

which is one of the Ginzburg-Landau terms, precisely it is C1, see Theorem 6.1. Next,
we consider the second of the three next-to-leading-order terms. By exchanging s and
r and replacing Y with −Y , we see that

−
∫
C

dz

2πi
ρ (βcz)

∫
R6

dY drds (V α∗) (r) (V α∗) (s)Gz
(
ζs−rY

)
G−z

(
ζr−sY

)
× i

4
(r − s) · JA(X)(r + s)ψh(X) = 0.

Finally, for the third and last of the next-to-leading-order terms, we have

−
∫
C

dz

2πi
ρ (βcz)

∫
R6

dY drds (V α∗) (r) (V α∗) (s)Gz
(
ζs−rY

)
G−z

(
ζr−sY

)
× 1

2
(Y · (−i∇X + 2a(X)))2 ψh(X) (6.43)

and we want to show that this equals
2∑

j,k=1

(
−iδXj + 2aj(X)

)
Bjk (−iδXk + 2ak(X))ψh(X).

In order to see this, note that (6.43) equals

1

(2π)4

2∑
j,k=1

∫
C

dz

2πi
ρ (βcz)

∫
R10

dY dsdudpdq (V α∗) (s) (V α∗) (u)

× eip·(ζ
u−s
Y )eiq·(ζ

s−u
Y )YjYk

(z − (|p|2 − µ)) (z + (|q|2 − µ))

(
−iδXj + 2aj(X)

)
(−iδXk + 2ak(X))ψh(X).
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We now integrate over u and s to see that

1

(2π)4

∫
C

dz

2πi
ρ (βcz)

∫
R10

dY dsdudpdq (V α∗) (s) (V α∗) (u)

× eip·(ζ
u−s
Y )eiq·(ζ

s−u
Y )YjYk

(z − (|p|2 − µ)) (z + (|q|2 − µ))
ψh(X)

=
1

2(2π)4

∫
C

dz

2πi
ρ (βcz)

∫
R6

dY dpdq

∣∣∣∣(V̂ ∗ α̂∗)(p− q2

)∣∣∣∣2
× ei(p+q)·Y YjYk

(z − (|p|2 − µ)) (z + (|q|2 − µ))
ψh(X),

which is equal to

1

2(2π)4

∫
C

dz

2πi
ρ (βcz)

∫
R6

dY dpdq
∣∣∣(V̂ ∗ α̂∗) (q)

∣∣∣2
×

(−i)2∂2
pjpk

eip·Y(
z −

(
|q + p/2|2 − µ

)) (
z +

(
|q − p/2|2 − µ

)) ψh(X)

We calculate the derivatives for pj and pk, integrate over Y and p and finally see
that (6.43) equals

− 1

2(2π)2

∫
C

dz

2πi
ρ (βcz)

∫
R2

dq
∣∣∣(V̂ ∗ α̂∗) (q)

∣∣∣2 ψh(X)

×
(

δjk/2

(z − (|q|2 − µ))2 (z + (|q|2 − µ))
− δjk/2

(z − (|q|2 − µ)) (z + (|q|2 − µ))2

+
2qkqj

(z − (|q|2 − µ))3 (z + (|q|2 − µ))
+

2qkqj

(z − (|q|2 − µ))2 (z + (|q|2 − µ))2

+
2qkqj

(z − (|q|2 − µ)) (z + (|q|2 − µ))3

)
.

Next we integrate over z. The calculations for the complex integrals are presented in
the appendix and show that (6.43) is equal to

− 1

2(2π)2

2∑
j,k=1

∫
R2

dq
∣∣∣(V̂ ∗ α̂∗) (q)

∣∣∣2 (−iδXj + 2aj(X)
)

(−iδXk + 2ak(X))ψh(X)

×
(
δjk
2

(
2βcρ

′ (βc (|q|2 − µ))

2 (|q|2 − µ)
− 2ρ (βc (|q|2 − µ))

2 (|q|2 − µ)2

)
+ 2qkqj

2β2
cρ
′′ (βc (|q|2 − µ))

4 (|q|2 − µ)

)
= (−i∇+ 2a) · B(−i∇+ 2a)ψh(X),

which is again a Ginzburg-Landau term as stated in Theorem 6.1. That proves the
estimate. �

Proof of (6.35). Recall the decomposition of NT,A into N ′T,A and ÑT,A at the
beginning of Section 6.6. We first want to show that N ′Th,Ah

(
−2V 1/2ϕ∗Ψh

)
is small.
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To do this we simply calculate that∥∥N ′Th,Ah (−2V 1/2ϕ∗Ψh

)∥∥
L2
h

.
∑
n odd

∥∥(zn − kAh)−1
∥∥2

∞

∥∥∥(zn + kAh
)−1
∥∥∥2

∞

∥∥∥(zn −HAh

(
−2V 1/2ϕ∗Ψh

))−1

12

∥∥∥
∞

×
∥∥V 1/2ϕ∗Ψh

∥∥
∞

∥∥V 1/2ϕ∗Ψh

∥∥3

L6

.
∑
n odd

|n|−5 · ‖Ψh‖L∞
(
‖Ψh‖L2(Qh) + h−1‖∇Ψh‖L2(Qh)

)3

. h4‖ψ‖L∞
(
‖ψ‖L2(Q) + ‖∇ψ‖L2(Q)

)3
.

This means
1

2

∥∥h−2QhPV 1/2N ′Th,Ah
(
−2V 1/2ϕ∗Ψh

)∥∥
L2
h

. h‖ψ‖L∞
(
‖ψ‖L2(Q) + ‖∇ψ‖L2(Q)

)3
.

We now turn to the estimate for ÑT,A. We first calculate that

1

2
V 1/2ÑTh,Ah

(
−2V 1/2ϕ∗Ψh

) (
ζrX , ζ

−r
X

)
= −4h3

∫
C

dz

2πi
ρ(βhz)

∫
dw123456 V

1/2(r)Gz
A (ζrX , w1) (V α∗) (w1 − w2)

× ψh (h(w1 + w2)/2)G−z−A(w2, w3) (V α∗) (w3 − w4)ψh (h(w3 + w4)/2)Gz
A(w4, w5)

× (V α∗) (w5 − w6)ψh (h(w5 + w6)/2)G−z−A
(
w6, ζ

−r
X

)
,

which by substitution can be seen to be exactly

− 4h3

∫
C

dz

2πi
ρ(βhz)

∫
dY123 ds123 V

1/2(r) (V α∗) (s1) (V α∗) (s2) (V α∗) (s3)

×Gz
A

(
ζrX , ζ

s1
Y1

)
G−z−A

(
ζ−s1Y1

, ζs2Y2

)
Gz
A

(
ζ−s2Y2

, ζs3Y3

)
G−z−A

(
ζ−s3Y3

, ζ−rX
)

× ψh(hY1)ψh(hY2)ψh(hY3).

This means that
h−2

2
QhPV 1/2ÑTh,Ah

(
−2V 1/2Pεφh

)
(X)

= −4

∫
C

dz

2πi
ρ(βhz)

∫
dY123 ds0123 (V α∗) (s0) (V α∗) (s1) (V α∗) (s2) (V α∗) (s3)

×Gz
A

(
ζs0X/h, ζ

s1
Y1

)
G−z−A

(
ζ−s1Y1

, ζs2Y2

)
Gz
A

(
ζ−s2Y2

, ζs3Y3

)
G−z−A

(
ζ−s3Y3

, ζ−s0X/h

)
× ψh(hY1)ψh(hY2)ψh(hY3),

which is equal to

− 4

∫
C

dz

2πi
ρ(βhz)

∫
dY123 ds0123 (V α∗) (s0) (V α∗) (s1) (V α∗) (s2) (V α∗) (s3)

×Gz
A

(
ζs0X/h, ζ

s1
X/h+Y1

)
G−z−A

(
ζ−s1X/h+Y1

, ζs2X/h+Y2

)
Gz
A

(
ζ−s2X/h+Y2

, ζs3X/h+Y3

)
×G−z−A(

(
ζ−s3X/h+Y3

, ζ−s0X/h

)
ψh(X + hY1)ψh(X + hY2)ψh(X + hY3). (6.44)
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The first step is to show that we can replace Gz
A with Kz

A and the error is small. To
do this we define

R (X, Y1, Y2, Y3, s0, s1, s2, s3)

:=
2

βh

∑
n odd

[
Gzn
A

(
ζs0X/h, ζ

s1
X/h+Y1

)
G−zn−A

(
ζ−s1X/h+Y1

, ζs2X/h+Y2

)
×Gzn

A

(
ζ−s2X/h+Y2

, ζs3X/h+Y3

)
G−zn−A

(
ζ−s3X/h+Y3

, ζ−s0X/h

)
−Kzn

A

(
ζs0X/h, ζ

s1
X/h+Y1

)
K−zn−A

(
ζ−s1X/h+Y1

, ζs2X/h+Y2

)
× Kzn

A

(
ζ−s2X/h+Y2

, ζs3X/h+Y3

)
K−zn−A (

(
ζ−s3X/h+Y3

, ζ−s0X/h

)]
.

We want to estimate∫
dY123 ess sup

X/h∈Qh
|R (X, Y1, Y2, Y3, s0, s1, s2, s3)| .

This involves estimating terms like∣∣∣(Gzn
A

(
ζs0X/h, ζ

s1
X/h+Y1

)
−Kzn

A

(
ζs0X/h, ζ

s1
X/h+Y1

))
× K−zn−A

(
ζ−s1X/h+Y1

, ζs2X/h+Y2

)
Kzn
A

(
ζ−s2X/h+Y2

, ζs3X/h+Y3

)
K−zn−A

(
ζ−s3X/h+Y3

, ζ−s0X/h

)∣∣∣
≤ Hzn

A

(
ζs1−s0Y1

) ∣∣∣G−zn (ζ−(s1+s2)
Y1−Y2

)
Gzn

(
ζ
−(s2+s3)
Y2−Y3

)
G−zn

(
ζs0−s3Y3

)∣∣∣ .
Since all the terms are very similar to estimate, we restrict the presentation here to
the example given above. Altogether, one can show that∫

dY123 ess sup
X/h∈Qh

|R (X, Y1, Y2, Y3, s0, s1, s2, s3)| .MA.

This then allows us to show that the error is(∫
Q

dX |(6.44)|2
)1/2

.MA

(∫
Q

dX |ψh(X)|6
)3/6

.MA ‖ψh‖H1(Q) . h3.

We now go back to (6.44) with Gz
A replaced by Kz

A. That means we are now dealing
with

− 4

∫
C

dz

2πi
ρ(βhz)

∫
dY123 ds0123 (V α∗) (s0) (V α∗) (s1) (V α∗) (s2) (V α∗) (s3)

×Gz
(
ζs1−s0Y1

)
G−z

(
ζ
−(s1+s2)
Y1−Y2

)
Gz
(
ζ
−(s2+s3)
Y2−Y3

)
G−z

(
ζs0−s3Y3

)
× eiΦA

(
ζ
s0
X/h

,ζ
s0
X/h+Y1

)
e
−iΦA

(
ζ
−s0
X/h+Y1

,ζ
s2
X/h+Y2

)
e
iΦA

(
ζ
−s2
X/h+Y2

,ζ
s3
X/h+Y3

)
e
−iΦA

(
ζ
−s3
X/h+Y3

,ζ
−s0
X/h

)
× ψh(X + hY1)ψh (X + hY2)ψh (X + hY3) , (6.45)

where we already inserted the definition of KA
z given in (6.13). Now, let us state the

fact that, for example,∣∣∣exp
(
iΦA

(
ζs0X/h, ζ

s0
X/h+Y1

))
− 1
∣∣∣ ≤ ‖DA‖L∞ ∣∣ζs1−s0Y1

∣∣
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and ‖DA‖L∞ . h2. Thus, we see that we obtain an error of order h2 if we replace all
the exponential factors in (6.45) by 1 and only consider

− 4

∫
C

dz

2πi
ρ(βhz)

∫
dY123 ds0123 (V α∗) (s0) (V α∗) (s1) (V α∗) (s2) (V α∗) (s3)

×Gz
(
ζs1−s0Y1

)
G−z

(
ζ
−(s1+s2)
Y1−Y2

)
Gz
(
ζ
−(s2+s3)
Y2−Y3

)
G−z

(
ζs0−s3Y3

)
× eihY1·(−i∇X)ψh(X)eihY2·(−i∇X)ψh(X)eihY3·(−i∇X)ψh(X).

Next, let us mention that one can show that∥∥(1− eihY1·(−i∇X)
)
ψh(X)

∥∥
H1(Q)

. h |Y1| ‖ψh‖H2(Q) . ε |Y1| .

This means we obtain an error of ε if we consider only

− 4

∫
C

dz

2πi
ρ(βhz)

∫
dY123 ds0123 (V α∗) (s0) (V α∗) (s1) (V α∗) (s2) (V α∗) (s3)

×Gz
(
ζs1−s0Y1

)
G−z

(
ζ
−(s1+s2)
Y1−Y2

)
Gz
(
ζ
−(s2+s3)
Y2−Y3

)
G−z

(
ζs0−s3Y3

)
|ψh(X)|2 ψh(X)

=
−4

(2π)8

∫
C

dz

2πi
ρ(βhz)

∫
dp1234 dY123 ds0123 (V α∗) (s0) (V α∗) (s1) (V α∗) (s2)

× (V α∗) (s3)
eip1·(ζs1−s0Y1

)

z −
(
|p1|2 − µ

) eip2·(ζ−s1−s2Y1−Y2
)

z +
(
|p2|2 − µ

) eip3·(ζ−s2−s3Y2−Y3
)

z −
(
|p3|2 − µ

) eip4·(ζs0−s3Y3
)

z +
(
|p4|2 − µ

)
× |ψh(X)|2 ψh(X). (6.46)

Now we integrate over p2, p3 and then p4 and get that

4

(2π)2

∫
C

dz

2πi
ρ(βhz)

∫
R2

dp1ds0123 (V α∗) (s0) (V α∗) (s1) (V α∗) (s2) (V α∗) (s3)

× eip1·(−(s0−s1)/2)

z −
(
|p1|2 − µ

) e−ip1·(−(s1+s2)/2)

z +
(
|p1|2 − µ

) e−ip1·(−(s2+s3)/2)

z −
(
|p1|2 − µ

) e−ip1·(−(s3−s0)/2)

z +
(
|p1|2 − µ

) |ψh(X)|2 ψh(X)

= − 4

(2π)2

∫
R2

dp |η(p)|4
(
βhρ

′ (βh (|p|2 − µ))

2 (|p|2 − µ)2 − ρ (βh (|p|2 − µ))

2 (|p|2 − µ)3

)
|ψh(X)|2 ψh(X)

is an equivalent expression for (6.46). Since βh = βc +O(h2), it is straightforward to
verify that we obtain an error of h2 if we replace βh with βc. Hence, we are left with

− 4(2π)−2

∫
R2

dp |η(p)|4

×
(

βc

4 (|p|2 − µ)2 cosh2 (βc (|p|2 − µ) /2)
− tanh (βc (|p|2 − µ) /2)

2 (|p|2 − µ)3

)
|ψh(X)|2 ψh(X)

= C2 |ψh(X)|2 ψh(X).

That proves the estimate. �

Proof of (6.36). By the definition of ah, we have Ah(x) = hah(hx), which
implies curl2Ah(x) = h3 curl2 ah(hx), and therefore ~Qh curl2Ah(x) = h2 curl2 ah(x).
The estimate now follows trivially. �
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Proof of (6.37). We will first show that∥∥∥h−2 ~QhJ ′T,Ah
(
−2V 1/2Pεφ

)∥∥∥
L2(Q)

. ε1/2h1/2

and therefore is negligiable. To do this we simply apply Lemma 6.4 and calculate that∥∥∥h−2 ~QhJ ′T,Ah
(
−2V 1/2Pεφ

)∥∥∥
L2(Q)

. h−3
∑
n odd

∥∥K(5)
n (1−∆)

∥∥
L2
h

,

where

K(5)
n = (zn −HA

(
−2V 1/2Pεφ

)∗
)−1
11 V

1/2Pεφ
(
zn + kA

)−1
V 1/2Pεφ(zn − kA)−1

× V 1/2Pεφ
(
zn + kA

)−1
V 1/2Pεφ(zn − kA)−1πA.

Thus, we get the following estimate∥∥∥h−2 ~QhJ ′T,Ah
(
−2V 1/2Pεφ

)∥∥∥
L2(Q)

. h−3

(∑
n odd

|n|−10
∥∥V 1/2Pεφ

∥∥2

∞

∥∥V 1/2Pεφ
∥∥6

L6
h

)1/2

. ε1/2h1/2.

We now turn to the actual derivation of the coefficients that appear in the Ginzburg-
Landau equation. Our first goal is to show that∥∥∥∥h−2 ~QhJT,Ah +

1

24π (1 + e−βcµ)
curl2a(x)

∥∥∥∥
L2(Q)

. h2. (6.47)

We begin by writing

JT,Ah = ReπA

(
1

1 + eβkA

)∣∣∣∣
y=x

= Re (−i∇+ A)

∫
C̃

dz

2πi
σ(βz) (z − kA)−1

∣∣∣∣
y=x

,

where C̃ is {r ± iπ/(2βc) | r ∈ [−1,∞)} ∪ {−1 + is | s ∈ [−iπ//(2βc), iπ/(2βc)]}.
We now wish to replace (z − kA)−1 with Kz

A−Kz
AT

z
A. We recall that (z − kA)−1 =

Kz
A(1 + T zA)−1 and therefore we let

Rz
A = (−i∇+ A)

(
(z − kA)−1 −Kz

A +Kz
AT

z
A

)
= SzAR̃

A
z ,

where

SzA(x, y) = (−i∇+ A)Kz
A(x, y) = eiΦA(x,y)

(
−i∇Gz(x, y) + Ã(x, y)Gz(x, y)

)
satisfies |(1−∆)SzA‖L2

h
. 1, and

∥∥∥R̃z
A

∥∥∥
∞
. ‖T zA‖

2
∞ . M2

A. By applying Lemma 6.4,
we then get the estimate∥∥∥∥∥Re

∫
C̃

dz

2πi
σ(βz)Rz

A

∣∣∣∣
x=y

∥∥∥∥∥
L2(Qh)

≤
∫
C̃
|dz| |σ(βz)|

∥∥∥Rz
A|x=y

∥∥∥
L2(Qh)

. ‖(1−∆)Rz
A‖L2

h
≤ ‖(1−∆)SzA‖L2

h
‖T zA‖

2
∞ .M2

A . h6.

We proceed term by term. For the first term, notice that∫
C̃

dz

2πi
σ(βz)Kz

A(x, y) =

∫
C̃

dz

2πi
σ(βz)eiΦA(x,y)Gz(x, y).
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It is easy to see that ∫
C̃

dz

2πi
σ(βz)∇Gz(0) = 0

using Fourier transform. Therefore,

Re (−i∇+ A)

∫
C̃

dz

2πi
σ(βz)Kz

A(x, y)

∣∣∣∣
y=x

= Re

∫
C̃

dz

2πi
σ(βz)eiΦA(x,y)

(
−i∇Gz (x− y) + Ã(x, y)Gz (x− y)

)∣∣∣∣
y=x

= 0

and the first term does not contribute. For the second term we start by noting that∫
C̃

dz

2πi
σ(βz)(Kz

AT
z
A)(x, y)

=

∫
R2

dw

∫
C̃

dz

2πi
σ(βz)Gz(x− w)Gz(w − y)eiΦA(x,w)eiΦA(w,y)

×
(
idivÃ(w, y)− |Ã(w, y)|2

)
.

This means that we have to consider two terms, namely,

Re (−i∇+ A)

∫
C̃

dz

2πi
σ(βz)Kz

A(x, y)T zA(x, y)

∣∣∣∣
y=x

=

∫
R2

dw

∫
C̃

dz

2πi
σ(βz)(−i)∇Gz(x− w)Gz(w − x)

(
idivÃ(w, x)− |Ã(w, x)|2

)
+

∫
R2

dw

∫
C̃

dz

2πi
σ(βz)Gz(x− w)Gz(w − x)Ã(x,w)

(
idivÃ(w, x)− |Ã(w, x)|2

)
.

Remember, that we want to estimate the L2-norm. We start with the second term.
Taking into account ~Qh we see that we need to estimate

h−3

(∫
Q

dx

∣∣∣∣∣
∫
R2

dw

∫
C̃

dz

2πi
σ(βz)Gz (x/h− w)Gz (w − x/h) Ã (x/h, w)

×
(
idivÃ (w, x/h)−

∣∣∣Ã (w, x/h)
∣∣∣2)∣∣∣∣2

)1/2

. h−3 ‖curlA‖L∞(R2)

(∥∥curl2A
∥∥
L∞(R2)

+ ‖curlA‖2
L∞(R2)

)
. h2.

In order to estimate the first term, we split it into two parts. So, we first look at∫
Q

dx

∣∣∣∣Re

∫
R2

dw

∫
C̃

dz

2πi
σ(βz)(−i)∇Gz (x/h− w)Gz (w − x/h)

∣∣∣Ã (w, x/h)
∣∣∣2∣∣∣∣

=

∫
Q

dx

∣∣∣∣Re

∫
R2

dw

∫
C̃

dz

2πi
σ(βz)(−i)∇Gz(w)Gz(w)|Ã (w + x/h, x/h) |2

∣∣∣∣
. ‖curlA‖2

L∞(R2) .
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There is now one term left to consider and that is

Re

∫
R2

dw

∫
C̃

dz

2πi
σ(βz)(−i)∇Gz (x/h− w)Gz (w − x/h) idivÃ (w, x/h)

=
1

2
Re

∫
R2

dw

∫
C̃

dz

2πi
σ(βz)∇w (Gz(w))2 divÃ (w + x/h, x/h)

=
1

2
Re

∫
R2

dw

∫
C̃

dz

2πi
σ(βz) (Gz(w))2∇wdivÃ (w + x/h, x/h) .

Let us first calculate

∇wdivÃ (w + x/h, x/h)

=

(∫ 1

0

dt t2curl2A (x/h+ tw) · ∇w

)
w + (w · ∇w)

∫ 1

0

dt t2curl2A (x/h+ tw)

+ w ∧
∫ 1

0

dt t3curl3A (x/h+ tw)

=

∫ 1

0

dt t2curl2A (x/h+ tw) + w · ∇w

∫ 1

0

dt t2curl2A (x/h+ tw)

+ w ∧
∫ 1

0

dt t3curl3A (x/h+ tw)

= h3

∫ 1

0

dt t2curl2a (x+ thw) + h3w · ∇w

∫ 1

0

dt t2curl2a (x+ thw)

+ w ∧
∫ 1

0

dt t3curl3A (x/h+ tw)

The latter two terms can be estimated as before, whereas for the first we first write

∫ 1

0

dt t2curl2a (x+ thw)

=

∫ 1

0

dt t2curl2a(x) +

∫ 1

0

dt t2
∫ 1

0

ds thw · ∇curl2a (x+ sthw) ,

but the second term can also be estimated as before. We are now left with the
contributing term and we have all together, after writing σ(βz) = σ(βcz) + O(h2),
where the remainder decays exponentially in z,

Re
1

2

∫
R2

dw

∫
C̃

dz

2πi
σ(βcz)(Gz(w))2

∫ 1

0

dt t2curl2a(x)

=
1

6
Re

∫
R2

dw

∫
C̃

dz

2πi
σ(βcz)(Gz(w))2curl2a(x)

=
βc

6(2π)2

∫
R2

dp σ′(βc(|p|2 − µ))curl2a(x),
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where we used the Fourier transform to calculate that∫
R2

dw

∫
C̃

dz

2πi
σ(βcz)(Gz(w))2

=
1

(2π)4

∫
R6

dpdqdw

∫
C̃

dz

2πi
σ(βcz)

ei(p+q)·w

(z − (|p|2 − µ)) (z − (|q|2 − µ))

=
1

(2π)2

∫
R2

dp

∫
C̃

dz

2πi
σ(βcz)

1

(z − (|p|2 − µ))2

=
1

(2π)2

∫
R2

dpβcσ
′ (βc (|p|2 − µ)) .

We can, however, explicitly calculate that∫
R2

dp σ′
(
βc
(
|p|2 − µ

))
= −

∫
R2

dp
eβc(|p|

2−µ)

(1 + eβc(|p|2−µ))
2

= −2π

∫ ∞
0

dr
reβc(r

2−µ)

(1 + eβc(r2−µ))
2 =

2π

2βc

1

1 + eβc(r2−µ)

∣∣∣∣∞
r=0

= − 2π

2βc

1

1 + e−βcµ
.

That completes the proof of (6.47).
We now consider J̃Th,Ah(−2V 1/2Pεφh). Let us recall that Pεφh(x, y) = hϕ∗(x −

y)ψh(h(x+ y)/2). This means

(z − kA)−1 (−2V 1/2Pεφh)
(
z + kA

)−1
(−2V 1/2Pεφh) (z − kA)−1 (x, y)

= −4h2

∫
dw1234G

z
A (x,w1) (V α∗) (w1 − w2)ψh (h(w1 + w2)/2)G−z−A (w2, w3)

× (V α∗) (w3 − w4)ψh (h(w3 + w4)/2)Gz
A (w4, y)

= −4h2

∫
ds12 dY12 G

z
A

(
x, ζs1Y1

)
(V α∗) (s1)ψh(hY1)G−z−A

(
ζ−s1Y1

, ζs2Y2

)
× (V α∗) (s2)ψh(hY2)Gz

A

(
ζ−s2Y2

, y
)
.

As before, we can show that the error arising from replacing Gz
A with Kz

A is negligiable.
Therefore we consider the term

− 4h2

∫
ds12 dY12 (V α∗) (s1) (V α∗) (s2)Gz

(
x− ζ−s1Y1

)
G−z

(
ζ−s1−s2Y1−Y2

)
Gz
(
ζ−s2Y2
− y
)

× eiΦA(x,ζs1Y1
)e−iΦA(ζ−s1Y1

,ζ
s2
Y2

)eiΦA(ζ−s2Y2
,y)ψh(hY1)ψh(hY2).

Applying (−i∇+ A) and taking the diagonal, we have

− 4h2 Re

∫
ds12 dY12 (V α∗) (s1) (V α∗) (s2)

×
(
−i∇Gz

(
x− ζ−s1Y1

)
+ Ã

(
x, ζs1Y1

)
Gz
(
x− ζ−s1Y1

))
G−z

(
ζ−s1−s2Y1−Y2

)
Gz
(
ζ−s2Y2
− x
)

× eiΦA(x,ζs1Y1
)e−iΦA(ζ−s1Y1

,ζ
s2
Y2

)eiΦA(ζ
−s2
Y2

,x)ψh(hY1)ψh(hY2)
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And finally, applying h−2 ~Qh we obtain

− 4

h
Re

∫
ds12 dY12 (V α∗) (s1) (V α∗) (s2)

×
(
−i∇Gz

(
−ζ−s1Y1

)
+ Ã

(
x/h, x/h+ ζs1Y1

)
Gz
(
−ζ−s1Y1

))
G−z

(
ζ−s1−s2Y1−Y2

)
Gz
(
ζ−s2Y2

)
× eiΦA(x/h,x/h+ζ

s1
Y1

)e−iΦA(x/h+ζ
−s1
Y1

,x/h+ζ
s2
Y2

)eiΦA(x/h+ζ
−s2
Y2

,x/h)

× ψh (x+ hY1)ψh (x+ hY2).

As before we can show that the term involving Ã is of smaller order, and therefore we
consider

4

h
Re

∫
ds12 dY12 (V α∗) (s1) (V α∗) (s2) (i∇)Gz

(
−ζ−s1Y1

)
G−z

(
ζ−s1−s2Y1−Y2

)
Gz
(
ζ−s2Y2

)
× eiΦa

(
x,x+ζ

hs1
hY1

)
e
−iΦa

(
x+ζ

−hs1
hY1

,x+ζ
hs2
hY2

)
eiΦa(x+ζ

−hs2
hY2

,x)eihY1·(−i∇x)ψh(x)eihY2·(−i∇x)ψh(x)

=
4

h
Re

∫
ds12 dY12 (V α∗) (s1) (V α∗) (s2) (i∇)Gz

(
−ζ−s1Y1

)
G−z

(
ζ−s1−s2Y1−Y2

)
Gz
(
ζ−s2Y2

)
× eiΦa

(
x,x+ζ

hs1
hY1

)
e−iΦ2a(x,x+hY1)e

−iΦa
(
x+ζ

−hs1
hY1

,x+ζ
hs2
hY2

)

× eΦa(x+ζ
−hs2
hY2

,x)eiΦ2a(x,x+hY2)eihY1·(−i∇x+2a(x))ψh(x)eihY2·(−i∇x+2a(x))ψh(x)

The leading term in h can be shown to be

− 4 Re

∫
ds12 dY12 (V α∗) (s1) (V α∗) (s2) (∇Gz)

(
−ζ−s1Y1

)
G−z

(
ζ−s1−s2Y1−Y2

)
×Gz

(
ζ−s2Y2

) (
ψh(x)Y1 · (−i∇x + 2a(x))ψh(x)− ψh(x)Y2 · (−i∇x + 2a(x))ψh(x)

)
(6.48)

We now wish to calculate the Ginzburg-Landau coefficient. For the term involving Y1,
we see that∫

C̃

dz

2πi
σ(βz)

∫
ds12 dY12 (V α∗) (s1) (V α∗) (s2)

× ∂kGz(−ζ−s1Y1
)G−z

(
ζ−s1−s2Y1−Y2

)
Gz(ζ−s2Y2

)(Y1)j

= − 1

(2π)6

∫
C̃

dz

2πi
σ(βz)

∫
ds12 dY12 dp123 (V α∗) (s1) (V α∗) (s2)

× i(p1)ke
ip1·(−ζ

−s1
Y1

)

z −
(
|p1|2 − µ

) eip2·(ζ
−(s1+s2)
Y1−Y2

)

z +
(
|p2|2 − µ

) eip3·(ζ
−s2
Y2

)

z − (|p3|2 − µ)
(Y1)j,
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which is equal to

− 1

(2π)6

∫
C̃

dz

2πi
σ(βz)

∫
dY12 dp123 η(−(p1 + p2)/2)η(−(p2 + p3)/2)

× i(p1)k(Y2)je
i(−p1+p2)·Y1ei(−p2+p3)·Y2

(z − (|p1|2 − µ))(z + (|p2|2 − µ))(z − (|p3|2 − µ))
. (6.49)

Integrating over p3 and then p2 we get

− 1

(2π)4

∫
C̃

dz

2πi
σ(βz)

∫
R6

dY dpdq η(p)η(p− q/2)

×
i (pk + qk/2) i∂qje

−iq·Y

(z − (|p+ q/2|2 − µ))(z + (|p− q/2|2 − µ))(z − (|p− q/2|2 − µ))

= − 1

(2π)4

∫
C̃

dz

2πi
σ(βz)

∫
R2

dp

× ∂qj
(

η(p− q/2)η(p) (pk + qk/2)

(z − (|p+ q/2|2 − µ))(z + (|p− q/2|2 − µ))(z − (|p− q/2|2 − µ))

)∣∣∣∣
q=0

and finally see that (6.49) equals

1

(2π)2

∫
C̃

dz

2πi
σ(βz)

∫
R2

dp

(
pk∂j|η(p)|2

4 (z − (|p|2 − µ))2 (z + (|p|2 − µ))

− |η(p)|2δkj
2 (z − (|p|2 − µ))2 (z + (|p|2 − µ))

− pkpj|η(p)|2

(z − (|p|2 − µ))2 (z + (|p|2 − µ))2

)
=

1

(2π)2

∫
C̃

dz

2πi
σ(βz)

∫
R2

dp |η(p)|2
(
− 3δkj

4 (z − (|p|2 − µ))2 (z + (|p|2 − µ))

− pkpj

(z − (|p|2 − µ))3 (z + (|p|2 − µ))
− pkpj

2 (z − (|p|2 − µ))2 (z + (|p|2 − µ))2

)
.

The analogous calculation for the term involving Y2 shows that

−
∫
C̃

dz

2πi
σ(βz)

∫
ds12 dY12 (V α∗) (s1) (V α∗) (s2)

× ∂kGz(−ζ−s1Y1
)G−z

(
ζ−s1−s2Y1−Y2

)
Gz(ζ−s2Y2

)(Y2)j

=
1

(2π)2

∫
C̃

dz

2πi
σ(βz)

∫
R2

dp |η(p)|2
(

δkj

4 (z − (|p|2 − µ))2 (z + (|p|2 − µ))

− pkpj

(z − (|p|2 − µ))3 (z + (|p|2 − µ))
− pkpj

2 (z − (|p|2 − µ))2 (z + (|p|2 − µ))2

)
.
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This means that (6.48) is equal to

−4

(2π)2

2∑
k,j=1

∫
C̃

dz

2πi
σ(βz)

∫
R2

dp |η(p)|2
(
− δkj

2 (z − (|p|2 − µ))2 (z + (|p|2 − µ))

− 2pkpj

(z − (|p|2 − µ))3 (z + (|p|2 − µ))
− pkpj

(z − (|p|2 − µ))2 (z + (|p|2 − µ))2

)
× ψh(x) · (−i∇+ 2a(x))ψh(x)

=
4

(2π)2

2∑
k,j=1

∫
C̃

dz

2πi
σ(βz)

∫
R2

dp |η(p)|2
[

1

2

(
ρ(β(|p|2 − µ))

4(|p|2 − µ)2
− βρ′(β(|p|2 − µ))

4(|p|2 − µ)

)
δkj

−β
2ρ′′ (β (|p|2 − µ))

8 (|p|2 − µ)

]
ψh(x) · (−i∇+ 2a(x))ψh(x).

In order to determine the correct Ginzburg-Landau coefficient, we once again write
σ(βz) = σ(βcz) +O(h2), and see that we have

4

(2π)2

2∑
k,j=1

∫
C̃

dz

2πi
σ(βcz)

∫
R2

dp |η(p)|2
[

1

2

(
ρ (β (|p|2 − µ))

4 (|p|2 − µ)2 −
βρ′ (β (|p|2 − µ))

4 (|p|2 − µ)

)
δkj

−β
2ρ′′ (β (|p|2 − µ))

8 (|p|2 − µ)

]
ψh(x) · (−i∇+ 2a(x))ψh(x)

= Reψh(x)2B (−i∇+ 2ah(x))ψh(x).

That completes the proof. �

6.7. Proof of Theorem C

We finally show that weak limits of (ψh, ah) are solutions of the Ginzburg-Landau
equations.

Theorem 6.17. Suppose that (ψ∗, a∗) is a weak limit point of {(ψh, ah)} in H1(Q)×
H1(Q), i.e., suppose that (ψhn , ahn) ⇀ (ψ∗, a∗) for some sequence hn → 0. Then
(ψ∗, 2a∗) is a weak solution of the Ginzburg-Landau equations.

Proof. For the first Ginzburg-Landau equation, we want to show that for any
u ∈ H1(Q),

〈(−i∇+ 2a∗)u |B (−i∇+ 2a∗)ψ∗ 〉L2(Q) +
〈
u
∣∣−C1ψ∗ + C2|ψ∗|2ψ∗

〉
L2(Q)

= 0.

Now we know that for all h we have

0 =

〈
u

∣∣∣∣h−2QhPε
((

1− V 1/2LTh,AhV
1/2
)
φh +

1

2
V 1/2NTh,Ah

(
−2V 1/2φ

))〉
L2(Q)

=
〈
u
∣∣(−i∇+ 2ah) · B (−i∇+ 2ah)ψh − C1ψh + C2|ψh|2ψh

〉
L2(Q)

+ 〈u |Rh 〉L2(Q) ,

where ‖Rh‖L2(Q) → 0 as h→ 0. This means we need to show that

lim
n→∞

〈
u
∣∣(−i∇+ 2ah) · B (−i∇+ 2ah)ψh − C1ψh + C2|ψh|2ψh

〉
L2(Q)

= 〈(−i∇+ 2a∗)u |B (−i∇+ 2a∗)ψ∗ 〉L2(Q) +
〈
u
∣∣−C1ψ∗ + C2|ψ∗|2ψ∗

〉
L2(Q)

.
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We do this term by term. For the first term we have

〈u |(−i∇) · B (−i∇ψhn)〉L2(Q) = 〈(−i∇)u |B (−i∇ψhn)〉L2(Q)

→ 〈(−i∇)u |B (−i∇ψ∗)〉L2(Q) ,

since ψhn ⇀ ψ∗ in H1(Q). For the second term, we note that since Q is compact and
ahn → a∗ weakly in H1(Q), ahn → a∗ strongly in Lp(Q) for 1 ≤ p ≤ 6. This means

〈u |ahn · B (−i∇ψhn)〉L2(Q)

= 〈(ahn − a∗)u |B (−i∇ψhn)〉L2(Q) + 〈a∗u |B (−i∇ψhn)〉L2(Q)

→ 〈a∗u |B (−i∇ψ∗)〉L2(Q) ,

where we used that fact that ‖∇ψh‖L2(Q) . 1 to see that∣∣∣〈(ahn − a∗)u |B (−i∇ψhn)〉L2(Q)

∣∣∣ . ‖(ahn − a∗)u‖L2(Q) ‖∇ψhn‖L2(Q)

. ‖ahn − a∗‖L4(Q) ‖u‖L4(Q)

. ‖ahn − a∗‖L4(Q) ‖u‖H1(Q) → 0.

We similarly have

〈u |(−i∇) · Bahnψhn 〉L2(Q)

= 〈(−i∇)u |B (ahn − a∗)ψhn 〉L2(Q) + 〈(−i∇)u |Ba∗ψhn 〉L2(Q)

→ 〈(−i∇)u |Ba∗ψ∗ 〉L2(Q) ,

and

〈u |ahn · Bahnψhn 〉L2(Q)

= 〈(ahn − a∗)u |B (ahn − a∗)ψhn 〉L2(Q) + 〈a∗u |B (ahn − a∗)ψhn 〉L2(Q)

+ 〈(ahn − a∗)u |Ba∗ψhn 〉L2(Q) + 〈a∗u |Ba∗ψhn 〉L2(Q)

→ 〈a∗u |Ba∗ψ∗ 〉L2(Q) .

The term with 〈u|ψhn〉L2(Q) is trivial and for the term with 〈u||ψhn|2ψhn〉L2(Q) we
proceed similarly as above.

We now turn to the second Ginzburg-Landau equation, where we wish to show
that for any u ∈ H1(Q),

〈curlu |C3 curl a∗ 〉L2(Q) −
〈
u
∣∣Reψ∗B (−i∇+ 2a∗)ψ∗

〉
L2(Q)

= 0.

The strategy and the arguments are very similar to the case of the first Ginzburg-
Landau equation. Therefore, we omit the details here.

�

6.8. Appendix: Proof of the lemmas in Section 6.2.1

Proof of Lemma 6.2. The first estimate follows essentially from the Sobolev
inclusion H1(Qh) ⊆ Lp(Qh),

‖u‖Lp(Qh) . ‖u‖L2(Qh) + h−1 ‖∇u‖L2(Qh) .
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Let φ(k) denote φ when k is even and φ when k is odd. We now calculate that∥∥V 1/2φ
∥∥p
Lp

= TrχQh

((
V 1/2φ

)∗ (
V 1/2φ

))p/2
χQh

=

p∏
k=1

∫
R2

dxk χQh (x1)V 1/2 (xk − xk+1)φ(k) (xk, xk+1) ,

where xp+1 = x1. We now use the change of variables

X = x1, r1 = x1 − x2, r2 = x2 − x3, . . . , rp−1 = xp−1 − xp,

and we define rp := −r1 − · · · − rp−1 = xp − x1. We also define Si to be the linear
combination of ri satisfying the condition that (xi + xi+1)/2 = X − Si. We then have∥∥V 1/2φ

∥∥p
Lp

≤
p−1∏
m=1

∫
R2

drm

p∏
k=1

V 1/2(rk)

(∫
Qh

dX |φ(X − Sk + rk/2, X − Sk − rk/2)|p
)1/p

≤
p−1∏
m=1

∫
R2

drm

p∏
k=1

V 1/2(rk) ‖φ (·+ rk/2, · − rk/2)‖Lp(Qh)

=

∫
R2

dr1 t(r1)(t ∗ · · · ∗ t)(−r1),

where

t(r) = V 1/2(r)
(
‖φ (·+ r/2, · − r/2)‖L2(Qh) + h−1 ‖∇Xφ (·+ r/2, · − r/2)‖L2(Qh)

)
.

We therefore have that∥∥V 1/2φ
∥∥p
Lp
. ‖t‖1 ‖t ∗ · · · ∗ t‖∞ ≤ ‖t‖

p−2
1 ‖t ∗ t‖∞ ≤ ‖t‖

p−2
1 ‖t‖2

2 .

Now we calculate that

‖t‖1 .

(∫
R2

dr V (r)

)1/2

×
(∫

R2

dr ‖φ (·+ r/2, · − r/2)‖2
L2(Qh) + h−2 ‖∇Xφ (·+ r/2, · − r/2)‖2

L2(Qh)

)1/2

. ‖V ‖1

(
‖φ‖L2

h
+ h−1 ‖∇Xφ‖L2

h

)
,

and

‖t‖2
2 .

∫
R2

dr V (r)
(
‖φ (·+ r/2, · − r/2)‖2

L2(Qh) + h−2 ‖∇Xφ (·+ r/2, · − r/2)‖2
L2(Qh)

)
≤ ‖V ‖∞

(
‖φ‖L2

h
+ h−1 ‖∇Xφ‖L2

h

)2

.

This finishes the proof of the first estimate. The second and the third estimate are
easy to see and we do not carry out the proofs here.
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In order to prove the last estimate, we define Ψ ∈ L2(Qh) by the condition that
Pεφ(x, y) = ϕ∗(x − y)Ψ((x + y)/2). We now write Ψ = Ψ0 + Ψ1, where Ψ0 ∈ C is
given by

Ψ0 = h2

∫
Qh

dX Ψ(X).

One can easily check that |Ψ0| ≤ ‖Ψ‖L2(Qh) = ‖Pεφ‖L2
h
. Note that Ψ1 is then such

that its Fourier transform satisfies Ψ̂1(0) = 0. This allows us to estimate

|Ψ1(X)| ≤
∑

m∈(2πZ)2

0<h|m|≤ε

∣∣∣Ψ̂(m)
∣∣∣ ≤

 ∑
0<h|m|≤ε

|m|−2

1/2 ∑
0<h|m|≤ε

|m|2
∣∣∣Ψ̂(m)

∣∣∣
1/2

≤ h−1 ‖∇Ψ1‖L2(Qh)

(
log

ε

h

)1/2

.

We now turn to V 1/2Pεφ as an operator on L2(R2). Note that V 1/2ϕ∗Ψ0 is simply
a convolution operator and we have∥∥V 1/2ϕ∗Ψ0

∥∥
∞ = |Ψ0| ‖V α∗‖L1 . ‖Pεφ‖L2

h
.

For V 1/2ϕ∗Ψ1, we see that for any u, v ∈ L2(R2), we have∣∣〈u ∣∣V 1/2φv
〉∣∣ =

∣∣∣∣∫
R2

dxu(x)

∫
R2

dy V 1/2(x− y)ϕ∗(x− y)Ψ1((x+ y)/2)v(y)

∣∣∣∣
. ‖Ψ1‖L∞

∫
R2

drdY
∣∣∣(V α∗) (r)u (Y + r/2)v (Y − r/2)

∣∣∣
. ‖Ψ1‖L∞ ‖V α∗‖L1 ‖u‖L2 ‖v‖L2 ,

and that establishes the result.
�

Proof of Lemma 6.3. Assume u ∈ L2(R2) is smooth and compactly supported.
We start by calculating that∣∣∣∣∫

R2

dy K(x, y)u(y)

∣∣∣∣ ≤ ∫
R2

dy g(x− y) |u(y)|

≤
(∫

R2

dy g(x− y)

)1/2(∫
R2

dy g(x− y) |u(y)|2
)1/2

,

and this gives(∫
R2

dx

∣∣∣∣∫
R2

dy K(x, y)u(y)

∣∣∣∣2
)1/2

≤ ‖g‖1/2

L1

(∫
R2

dxdy g(x− y)|u(y)|2
)1/2

= ‖g‖1/2

L1

(∫
R2

dx g(x)

∫
R2

dy |u(y)|2
)1/2
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and the lemma now follows. For the second claim, we simply calculate that∣∣(K1K2)
(
ζrX , ζ

−r
X

)∣∣ ≤ ∫
R2

dw g1(ζrX − w)g2(w − ζrX) = (g1 ∗ g2)(r),

which proves the lemma. �

Proof of Lemma 6.4. Let u ∈ L2(Qh) be arbitrary. We let Mu denote the
multiplication operator on L2(R2) defined by multiplication by uχQh . We then have∣∣∣∣h2

∫
Qh

dxK(x, x)u(x)

∣∣∣∣
=
∣∣h2 TrQh KMu

∣∣
=
∣∣h2 TrχQhK (1−∆) (1−∆)−1MuχQh

∣∣
=
(
h2 TrχQhK (1−∆)2K∗χQh

)1/2 (
h2 TrχQhM

∗
u (1−∆)−2MuχQh

)1/2
.

Now the second square root is given by(
h2 TrχQhM

∗
u (1−∆)−2MuχQh

)1/2

=

(∫
R2

dp

(1 + |p|2)2

)1/2(
h2

∫
Qh

dx |u(x)|2
)1/2

. ‖u‖L2(Qh) .

The lemma now follows from the cyclicity of the trace per unit volume. �
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CHAPTER 7

Entropy decay for the Kac evolution

F. Bonetto, A. Geisinger, M. Loss, T. Ried

We consider solutions to the Kac master equation for initial
conditions where N particles are in a thermal equilibrium and
M ≤ N particles are out of equilibrium. We show that such
solutions have exponential decay in entropy relative to the
thermal state. More precisely, the decay is exponential in time
with an explicit rate that is essentially independent on the
particle number. This is in marked contrast to previous results
which show that the entropy production for arbitrary initial
conditions is inversely proportional to the particle number.
The proof relies on Nelson’s hypercontractive estimate and the
geometric form of the Brascamp-Lieb inequalities due to Franck
Barthe. Similar results hold for the Kac-Boltzmann equation
with uniform scattering cross sections.

7.1. Introduction

Among the models describing a gas of interacting particles, the Kac master
equation [61], due to its simplicity, occupies a special place. It is useful in illuminating
various issues in kinetic theory, e.g., providing a reasonably satisfactory derivation of
the spatially homogeneous Boltzmann equation and giving a mathematical framework
for investigating the approach to equilibrium. These issues were, in fact, the motivation
for Kac’s original work [61]. Although it does not have a foundation in Hamiltonian
mechanics, the Kac master equation is based on simple probabilistic principles and
yields a linear evolution equation for the velocity distribution forN particles undergoing
collisions. It is in this context that Kac invented the notion of propagation of chaos and
he used this notion to derive the spatially homogeneous, non-linear Kac-Boltzmann
equation. The approach through master equations led Kac to formulate the notion of
approach to equilibrium and suggested various avenues to investigate this problem as
the number of particles, N , becomes large. He emphasized that this could be done in
a quantitative way if one could show, e.g., that the gap of the generator is bounded
below uniformly in N . This, known as Kac’s conjecture [61], was proved by Élise
Janvresse in [60] and, as a further sign of the simplicity of the model, the gap was
computed explicitly in [19, 20], see also [72]. One of the problems in using the gap
is that the approach to equilibrium is measured in terms of an L2 distance. While
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this does seem to be a natural way to look at this problem, the size of the L2 norm of
approximately independent probability distributions increases exponentially with the
size of the system. Thus, the half life of the L2 norm is of order N .

A natural measure is, of course, given by the entropy, which is extensive, i.e,
proportional to N . There has not been much success in proving exponential decay of
the entropy with good rates. In [82] Cedric Villani showed that the entropy decays
exponentially, albeit with a rate that is bounded below by a quantity that is inversely
proportional to N . This estimate was complemented by Amit Einav [29], who gave
an example of a state that has entropy production essentially of order 1/N . His
example is the initial state in which most of the energy is concentrated in a few
particles while most of the others have very little energy. One might surmise, based
on physical intuition, that this state is physically very improbable and still has low
entropy production because most of the particles are in some sort of equilibrium. This
intuition can be made rigorous, see [29], although by a quite difficult computation.
One should add that low entropy production does not preclude exponential decay in
entropy, i.e., large entropy production for the initial state might not be necessary for
an exponential decay rate for the entropy.

A breakthrough was achieved by Mischler and Mouhot in [74, 73]. They under-
took a general investigation of the Kac program for gases of hard spheres and true
Maxwellian molecules in three dimensions. Among the results of Mischler and Mouhot
is a proof that these systems relax towards equilibrium in relative entropy as well as
in Wasserstein distance with a rate that is independent of the particle number. As
expected, they achieve this not for any initial condition, but rather for a natural class
of chaotic states. The rate of relaxation is, however, polynomial in time.

To summarize, there is so far no mathematical evidence that the entropy in the
Kac model in general decays exponentially with a rate that is independent of N and
physical intuition suggests that for highly “improbable” states, such as the one used
by Einav, this cannot be expected. One can restrict the class of initial conditions by
considering chaotic states as done by Mischler and Mouhot, which shifts the problem
of finding suitable initial conditions for proving exponential decay to the level of the
non-linear Boltzmann equation.

In this paper we take a different approach, one which is based on the idea of
coupling a system of particles to a reservoir. Recall from [15] the master equation
of M particles with velocities v = (v1, v2, . . . , vM) interacting with a thermostat at
temperature 1/β,

∂f

∂t
= LTf , f(v, 0) = f0(v) . (7.1)

The operator LT is given by

LTf = µ
M∑
j=1

(Bj − I)f ,
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where

Bj[f ](v) : =

∫
R

dw
1

2π

∫ π

−π
dθ

√
β

2π
e−βw

∗
j (θ)2/2f(vj(θ, w)) ,

vj(θ, w) = (v1, ..., vj cos (θ) + w sin (θ), ..., vM) and w∗j (θ) = −vj sin (θ) + w cos (θ) .

Thus, Bj[f ](v) describes the effect of a collision between particle j in the system and
a particle in the reservoir. After the collision, the particle from the thermostat is
discarded, which ensures that the thermostat stays in equilibrium. The interaction
times with the thermostat are given by a Poisson process whose intensity µ is chosen
so that the average time between two successive interactions of a given particle with
the thermostat is independent of the number of particles in the system. For the case
where ρ(θ) = (2π)−1, the entropy decays exponentially fast. In fact, abbreviating√
β/(2π)e−β/2v

2
= Γβ(v), we know from [15], that

S(f(·, t)) :=

∫
RM

f(v, t) log

(
f(v, t)

Γβ(v)

)
dv ≤ e−µt/2S(f0) .

Thus, one might guess that if a “small” system of M particles out of equilibrium
interacts with a reservoir, that is a large system of N ≥ M particles in thermal
equilibrium, then the entropy decays exponentially fast in time. This intuition is also
supported by the results in [14]. There it was shown that if the thermostat is replaced
by a large but finite reservoir initially in thermal equilibrium, this evolution is close
to the evolution given by the thermostat. This results holds in various norms and, in
particular, it is uniform in time. We would like to emphasize that the reservoir will
not stay in thermal equilibrium as time progresses, nevertheless it will not veer far
from it.

Since this is the model that we consider in this work, we will now describe
it in detail. We consider probability distributions F : RM+N → R+ and write
F (v,w) where v = (v1, . . . , vM) describes the particles in the small system, whereas
w = (wM+1, . . . , wN+M) describes the particles in the large system. The Kac master
equation is given by

∂F

∂t
= LF , F (v,w, 0) = F0(v,w) = f0(v)e−π|w|

2

, (7.2)

where

L =
λS

M − 1

∑
1≤i<j≤M

(Rij − I)+
λR

N − 1

∑
M<i<j≤N+M

(Rij − I)+
µ

N

M∑
i=1

M+N∑
j=M+1

(Rij − I) ,

(7.3)
and Rij is given as follows. For 1 ≤ i < j ≤M we have

(RijF )(v,w) =

∫ π

−π
ρ(θ) dθ F (rij(θ)

−1(v,w)) ,

where

rij(θ)
−1(v,w) = (v1, . . . , vi cos θ − vj sin θ, . . . , vi sin θ + vj cos θ, . . . , vM ,w) . (7.4)
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The other Rijs are defined analogously. We assume that the probability measure ρ is
smooth and satisfies ∫ π

−π
ρ(θ) dθ sin θ cos θ = 0 . (7.5)

In particular, we do not require L to be self-adjoint on L2(RN+M), a condition called
microscopic reversibility. The initial state of the reservoir is assumed to be a thermal
equilibrium state and we have chosen units in which the inverse temperature β = 2π.
Note that λS is the rate at which one particle from the system will scatter with any
other particle in the system and similarly for λR. Likewise, µ is the rate at which a
single particle of the system will scatter with any particle in the reservoir. The rate at
which a particular particle from the reservoir will scatter with a particle in the system
is given by µM/N . Hence, when N is large compared to M this process is suppressed
and one expects that the reservoir does not move far from its equilibrium. Indeed,
it is shown in [14] that the solution of the master equation (7.3) stays close to the
solution of a thermostated system in the Gabetta-Toscani-Wennberg metric,

dGTW (F,G) := sup
k 6=0

|F̂ (k)− Ĝ(k)|
|k|2

,

see [44]. Here, F̂ denotes the Fourier transform of F . More precisely, with the initial
conditions (7.1) and (7.2), it was shown that

dGTW (f(v, t)e−π|w|
2

, F (v,w, t)) ≤ C(f0)
M

N
,

where C(f0) is a constant that depends on the initial condition but is of order one. The
distance varies inversely as N , the size of the reservoir and, moreover, this estimate
holds uniformly in time. For a detailed description of the results we refer the reader
to [14]. From this result and the fact that the entropy of the system interacting with
a thermostat decays exponentially in time, one might surmise that the entropy of the
system interacting with a finite reservoir also decays exponentially fast in time. In fact
we shall show this to be true if we consider the entropy relative to the thermal state.

7.2. Results

For the solution of the master equation (7.2) we use use interchangeably the
notation

F (v,w, t) = (eLtF0)(v,w). (7.6)

The energy is preserved under this evolution and hence it suffices to consider it on
L1(SN+M(

√
N +M)) with the normalized surface measure. Likewise, it is easy to

see that the evolution is ergodic on SN+M(
√
N +M) in the sense that eLtF0 → 1 as

t→∞ and 1 is the only normalized equilibrium state.
For our purposes it is convenient to consider the evolution in L1(RM+N) with

Lebesgue measure. Then eLtF0 converges to the spherical average of F0 taken over
spheres in RM+N . In this space we choose the initial condition

F0(v,w) = f0(v)e−π|w|
2

. (7.7)
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Moreover, we introduce the function f ,

f(v, t) :=

∫
RN

[
eLtF0

]
(v,w) dw (7.8)

and we call

S(f(·, t)) :=

∫
RM

f(v, t) log

(
f(v, t)

e−π|v|2

)
dv ,

the entropy of f relative to the thermal state e−π|v|2 . Our main result is the following
theorem.

Theorem 7.1. Let N ≥M and let ρ be a probability distribution with an absolutely
convergent Fourier series such that (7.5) holds. The entropy of f relative of to the
thermal state e−π|v|2 then satisfies

S(f(·, t)) ≤
[

M

N +M
+

N

N +M
e−tµρ(N+M)/N

]
S(f0) ,

where

µρ = µ

∫ π

−π
ρ(θ) dθ sin2(θ) ,

and f0 is as introduced in (7.7).

Remark.
1. Note that the theorem deals with the entropy relative to the thermal state and not
with respect to the equilibrium state. The entropy relative to the equilibrium state
tends to zero as t→∞. We do not know how to adapt our proof to this situation nor
do we have any evidence that it does indeed tend to zero at an exponential rate. If
this were the case, the rate would most likely depend on the initial condition.
2. The decay rate is universal in the sense that it only depends on µ and the distribution
ρ. The intra-particle interactions in the system and in the reservoir do not seem to
matter.
3. The statement of the theorem becomes particularly simple as N → ∞. This
corresponds to the thermostat problem treated in [15] with the exact same decay rate.
It is known that for the thermostat the decay rate is optimal, see [80], and hence the
decay rate here is optimal as well.
4. Although we assume that ρ is smooth, our result also holds for the case where ρ is
a finite sum of Dirac measures. In particular Theorem 7.1 also holds if ρ is a delta
measure that has its mass at the angles θ = ±π/2, that is, our result does not depend
on ergodicity of the evolution.

As a consequence of Remark 7.2(2), one obtains a result for the standard Kac
model. Recall that the generator of the standard Kac model is given by

Lcl =
2

N +M − 1

∑
1≤i<j≤N+M

(Rij − I) .
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We may arbitrarily split the variables into two groups, that is (v1, . . . , vM) and
(wM+1, . . . , wM+N). Splitting the generator accordingly,

Lcl =
2

N +M − 1

∑
1≤i<j≤M

(Rij − I) +
2

N +M − 1

∑
M+1≤i<j≤N+M

(Rij − I)

+
2

N +M − 1

M∑
i=1

N+M∑
j=M+1

(Rij − I) ,

we see that the standard Kac model can be cast in the from (7.3) by setting

λS =
2(M − 1)

N +M − 1
, λR =

2(N − 1)

N +M − 1
and µ =

2N

N +M − 1
.

Hence, we obtain the following Corollary.

Corollary 7.2. Let N ≥M and consider the time evolution defined by Lcl with
initial condition (7.7). Assume that the function f0 in the initial condition has finite
entropy. The entropy of the function

f(v, t) :=

∫
RN

[
eLcltF0

]
(v,w) dw

relative to the thermal state e−π|v|2, satisfies

S(f(·, t)) ≤
[

M

N +M
+

N

N +M
e−tµρ2(N+M)/(N+M−1)

]
S(f0) ,

where
µρ =

∫ π

−π
ρ(θ) dθ sin2(θ)

and ρ is a probability distribution such that (7.5) holds.

On a mathematical level, an efficient way of proving approach to equilibrium is
through a logarithmic Sobolev inequality, which presupposes that the generator of
the time evolution is given by a Dirichlet form. This kind of structure is notably
absent in the Kac master equation. We shall see however, that the logarithmic Sobolev
inequality in the form of Nelson’s hypercontractive estimate is an important tool for
the proof of Theorem 7.1. We will use an iterated version of it, which expresses the
result in terms of marginals of the functions involved. This, coupled with an auxiliary
computation and a sharp version of the Brascamp-Lieb inequalities [18] (see also [70])
will lead to the result.

In our opinion, the main result of this paper is the description of a simple mechanism
for obtaining exponential relaxation towards equilibrium. One can extend the results
to three dimensional momentum preserving collisions, however, so far only for a
caricature of Maxwellian molecules. To carry this method over to the case of hard
spheres and for true Maxwellian molecules is an open problem.

The plan of the paper is as follows: In Section 7.3 we derive a representation formula
for the Kac evolution eLt which is reminiscent of the Ornstein-Uhlenbeck process.
This allows us to prove an entropy inequality based upon Nelson’s hypercontractive
estimate in Section 7.4. In Section 7.5 we show how the sharp version of the geometric
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Brascamp-Lieb inequality leads to a correlation inequality for the entropy involving
marginals, which in turn proves our main entropy inequality. The fact that our
Brascamp-Lieb datum is geometric relies on a sum rule which will be proved in
Section 7.6. A short proof of the geometric form of the Brascamp-Lieb inequalities is
deferred to Appendix 7.8.1, as well as some technical details to ensure its applicability
in Appendix 7.8.2. In Section 7.7 we show how our method can be applied to
three-dimensional Maxwellian collisions with a very simple angular dependence.
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7.3. The representation formula

The aim of this section is to rewrite (7.6), that is eLtF0, in a way which is
reminiscent of the Ornstein-Uhlenbeck process. This representation will naturally lead
to the next step in the proof of Theorem 7.1, namely the entropy inequality that will
be presented in Theorem 7.5.

It is convenient to write

L = Λ(Q− I) , where Λ = λS
M

2
+ λR

N

2
+ µM ,

and the operator Q is a convex combination of Rijs, given by

Q =
λS

Λ(M − 1)

∑
1≤i<j≤M

Rij +
λR

Λ(N − 1)

∑
M<i<j≤N+M

Rij +
µ

ΛN

M∑
i=1

M+N∑
j=M+1

Rij ,

i.e., Q is an average over rotation operators. The right hand side of (7.6) can be
written as

(eLtF0)(v,w) = e−Λt

∞∑
k=0

tkΛk

k!
QkF0(v,w) , (7.9)

where

QkF0(v,w)

=
∑

α1,...,αk

λα1 · · ·λαk
∫

[−π,π]k
ρ(θ1) dθ1 · · · ρ(θk)dθk F0

[ k∏
l=1

rαl(θl)

]−1

(v,w)

 .

(7.10)
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Here, α labels pairs of particles, that is, α = (i, j), 1 ≤ i < j ≤ M +N , rα(θ) is
defined in (7.4) and λα is given by the rotation corresponding to the index α, that is,

λ(i,j) =
λS

Λ(M − 1)
if 1 ≤ i < j ≤M ,

λ(i,j) =
λR

Λ(N − 1)
if M + 1 ≤ i < j ≤M +N ,

λ(i,j) =
µ

ΛN
if 1 ≤ i ≤M ,M + 1 ≤ j ≤M +N .

Note that the sum over all pairs
∑

α λα = 1.
For our purpose, it is convenient to write the function f0, introduced in (7.7), as

f0(v) = h0(v)e−π|v|
2 . Since the Gaussian function is invariant under rotations, (7.9)

takes the form

(eLtF0)(v,w) = e−π(|v|
2+|w|2)e−Λt

∞∑
k=0

tkΛk

k!
Qk (h0 ◦ P ) (v,w) .

We introduce the projection P : RN+M → RM by P (v,w) = v, as a reminder that
the semigroup eLt acts on functions that depend on v as well as w. If we write

f(v, t) = e−π|v|
2

h(v, t) ,

then (7.8) can be written as

h(v, t) = e−Λt

∞∑
k=0

tkΛk

k!
hk(v) ,

where the functions hk are given by

hk(v) :=

∫
RN
Qk (h0 ◦ P ) (v,w)e−π|w|

2

dw .

Likewise, the entropy of f is expressed as

S(f(·, t)) =

∫
RM

h(v, t) log h(v, t)e−π|v|
2

dv =: S(h(·, t)) .

Expanding the function Qk(h0 ◦ P )(v,w), we find that

hk(v) =
∑

α1,...,αk

λα1 · · ·λαk
∫

[−π,π]k
ρ(θ1) dθ1 · · · ρ(θk)dθk×

×
∫
RN

(h0 ◦ P )

[ k∏
l=1

rαl(θl)

]−1

(v,w)

 e−π|w|
2

dw , (7.11)

where, as before, see (7.10), rα(θ) rotates the plane given by the index pair α by an
angle θ while keeping the other directions fixed. Since P (v,w) = v, it is natural to
write [

k∏
j=1

rαj(θj)

]−1

=

(
Ak(α, θ) Bk(α, θ)

Ck(α, θ) Dk(α, θ)

)
,
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where Ak ∈ RM×M is an M ×M matrix, Bk ∈ RM×N , Ck ∈ RN×M and Dk ∈ RN×N .
Further, α = (α1, . . . , αk) and θ = (θ1, . . . , θk). This notation allows us to rewrite
(7.11) as

hk(v) =
∑

α1,...,αk

λα1 · · ·λαk
∫

[−π,π]k
ρ(θ1) dθ1 · · · ρ(θk) dθk×

×
∫
RN
h0 (Ak(α, θ)v +Bk(α, θ)w) e−π|w|

2

dw .

Note that, by the definition of rotations,

Ak(α, θ)A
T
k (α, θ) +Bk(α, θ)B

T
k (α, θ) = IM . (7.12)

Lemma 7.3. Let A ∈ RM×M and B ∈ RM×N be matrices that satisfy AAT +BBT =

IM . Then∫
RN
h(Av +Bw)e−π|w|

2

dw =

∫
RM

h
(
Av + (IM − AAT )1/2u

)
e−π|u|

2

du

for any integrable function h.

Proof. Denote the range of B by H ⊂ RM and its kernel by K ⊂ RN . We may
write ∫

RN
h(Av +Bw)e−π|w|

2

dw =

∫
K

∫
K⊥

h(Av +Bu)e−π|u|
2

e−π|u
′|2 dudu′

=

∫
K⊥

h(Av +Bu)e−π|u|
2

du .

The symmetric map BBT : RM → RM has H as its range and H⊥, that is the
orthogonal complement of H in RM , as its kernel. Indeed, suppose that there exists
x ∈ RM with BBTx = 0, then BTx = 0, i.e., x ∈ KerBT or x is perpendicular to H.
Hence, the map BBT : H → H is invertible. Define the linear map R : RN → H by

R =
(
BBT

)−1/2
B

and note that RRT = IH while RTR projects the space K⊥ orthogonally onto H.
Since K⊥ and H have the same dimension, it follows that RT restricted to H defines
an isometry between H and K⊥. Hence,∫

K⊥
h (Av +Bu) e−π|u|

2

du =

∫
K⊥

h
(
Av +

(
BBT

)1/2
Ru
)
e−π|u|

2

du

=

∫
H

h
(
Av +

(
BBT

)1/2
RRTu

)
e−π|R

Tu|2 du

=

∫
H

h
(
Av +

(
BBT

)1/2
u
)
e−π|u|

2

du .

The assumption AAT +BBT = IM , together with the fact that∫
H

h
(
Av +

(
BBT

)1/2
u
)
e−π|u|

2

du

=

∫
H⊥

∫
H

h
(
Av + (BBT )1/2u

)
e−π|u|

2

du e−π|u
′|2 du′
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now implies the lemma. �

The matrix Ak(α, θ) has an orthogonal singular value decomposition,

Ak(α, θ) = Uk(α, θ)Γk(α, θ)V
T
k (α, θ) , (7.13)

where Γk(α, θ) = diag[γk,1(α, θ), . . . , γk,M(α, θ)] is the diagonal matrix whose entries
γk,j(α, θ), j = 1, . . . ,M , are the singular values of Ak(α, θ), and Uk(α, θ) and Vk(α, θ)
are rotations in RM . Note that (7.12) implies γk,j(α, θ) ∈ [0, 1] for j = 1, . . . ,M . We
shall use the abbreviation

h0(Uk(α, θ)v) = h0,Uk(α,θ)(v) .

These considerations can be summarized by the representation formula presented in
the following theorem.

Theorem 7.4 (Representation formula). The function hk can be written as

hk(v) =
∑

α1,...,αk

λα1 · · ·λαk
∫

[−π,π]k
ρ(θ1) dθ1 · · · ρ(θk) dθk×

×
∫
RM

h0,Uk(α,θ)

(
Γk(α, θ)V

T
k (α, θ)v +

(
IM − Γ2

k(α, θ)
)1/2

w
)
e−π|w|

2

dw , (7.14)

where h0,Uk(α,θ), Γk(α, θ) and Vk are as defined above.

7.4. The hypercontractive estimate

Starting from (7.14) and using convexity of the entropy and Jensen’s inequality
together with ∑

α1,...,αk

λα1 · · ·λαk
∫

[−π,π]k
ρ(θ1) dθ1 · · · ρ(θk) dθk = 1 ,

we get

S(hk) ≤
∑

α1,...,αk

λα1 · · ·λαk
∫

[−π,π]k
ρ(θ1) dθ1 · · · ρ(θk) dθk S(gk(·, α, θ)),

where we set

gk(v, α, θ) =

∫
RM

h0,Uk(α,θ)

(
γk(α, θ)v +

(
IM − γ2

k(α, θ)
)1/2

w
)
e−π|w|

2

dw , (7.15)

and we removed the rotation V T
k (α, θ) by a change of variables.

To explain the main observation in this section we look at (7.15) whenM = 1. Since
0 ≤ γk(α, θ) ≤ 1, we can write γk(α, θ) = e−t and we get gk(v, α, θ) = Nt(h0,Uk(α,θ))

where Nt is the Ornstein-Uhlenbeck semigroup, that is

Nth(x) =

∫
R
h
(
e−tx+

√
1− e−2ty

)
e−πy

2

dy .

Thus Theorem 7.4 renders the function hk as a convex combination of terms reminiscent
of the Ornstein-Uhlenbeck process, albeit in matrix form. We make use of this
observation to find a bound for S(gk(·, α, θ)). This bound together with a suitable
correlation inequality proved in the next section will lead to a bound for S(hk).
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In addition to the notation developed in the previous section, we need various
marginals of the function h0,Uk(α,θ). Quite generally, if h is a function of M variables
and σ ⊂ {1, . . . ,M}, we shall denote by hσ the marginals of h with respect to the
variables vj, j ∈ σ, for instance,

h{1,2}(v3, . . . , vM) =

∫
R2

h(v1, v2, v3, . . . , vM)e−π(v
2
1+v2

2) dv1dv2 .

It will be convenient to use the matrix Pσ : RM → R|σ| that projects RM orthogonally
onto R|σ| which we will identify with subspace of RM . To give an example, let
v = (v1, ..., vM). Then P{1,2}v = (v1, v2). The following theorem is the main result
of this section.

Theorem 7.5 (Partial entropy bound). Let h0 ∈ L1(RM , e−π|v|
2
dv) be nonnegative

and assume that S(h0) <∞. Then

S(gk(·, α, θ))

≤
∑

σ⊂{1,...,M}

∏
i∈σc

γ2
k,i

∏
j∈σ

(
1− γ2

k,j

) ∫
RM

h0(v) log hσ0,Uk(α,θ)

(
PσcUk(α, θ)

Tv
)
e−π|v|

2

dv ,

(7.16)

where σc is the complement of the set σ in {1, ...,M}.

A key role in the proof of Theorem 7.5 is played by Nelson’s hypercontractive
estimate.

Theorem 7.6 (Nelson’s hypercontractive estimate). The Ornstein-Uhlenbeck
semigroup,

Nth(x) =

∫
R
h
(
e−tx+

√
1− e−2ty

)
e−πy

2

dy ,

for t ≥ 0, is bounded from Lp(R, e−πx2
dx) to Lq(R, e−πx2

dx) if and only if

(p− 1) ≥ e−2t(q − 1) .

For such values of p and q,

‖Nth‖q ≤ ‖h‖p
with equality if and only if h is constant.

Proof. For a proof we refer the reader to [75]. For other proofs see [48, 49, 30,
23]. �

Nelson’s hypercontractive estimate, that is Theorem 7.6, implies the following
Corollary, which will be useful in the proof of Theorem 7.5.

Corollary 7.7 (Entropic version of Nelson’s hypercontractive estimate). Let
h : R→ R+ be a function in L1(R, e−πx2

dx) with finite entropy, i.e.,

S(h) =

∫
R
h(x) log h(x) e−πx

2

dx <∞ .
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Then

S(Nth) ≤ e−2tS(h) + (1− e−2t)‖h‖1 log ‖h‖1

for all t ≥ 0.

Proof. Let h ∈ Lp(R, e−πx2
dx), for p ≥ 1 small, be a nonnegative function. As

‖Nth‖1 = ‖h‖1, we can apply Nelson’s hypercontractive estimate, which implies that
for p, q that satisfy (p− 1) = e−2t(q − 1),

‖Nth‖q − ‖Nth‖1

q − 1
≤ ‖h‖p − ‖h‖1

q − 1
= e−2t‖h‖p − ‖h‖1

p− 1
.

Sending p→ 1 and hence q → 1, we get the claimed estimate for such functions h. If
h just has finite entropy one cuts off h at large values, uses the above estimate and
removes the cutoff using the monotone convergence theorem. �

We are now ready to prove Theorem 7.5.

Proof of Theorem 7.5. Remember that 0 ≤ γk,j(α, θ) ≤ 1 for j = 1, ...,M .
Thus, by inductively applying Corollary 7.7 to∫

RM
h0,Uk(α,θ)

(
γk,1v1 +

√
1− γ2

k,1 u1, . . . , γk,MvM +
√

1− γ2
k,M uM

)
× e−π

∑M
j=1 u

2
j du1 · · · duM ,

we obtain

S(gk(·, α, θ))

≤
∑

σ⊂{1,...,M}

∏
i∈σc

γ2
k,i

∏
j∈σ

(1− γ2
k,j)

∫
R|σc|

hσ0,Uk(α,θ)(u) log hσ0,Uk(α,θ)(u) e−π|u|
2

du .

Inserting the definition of the marginal hσ0,Uk(α,θ), we see that∫
R|σc|

hσ0,Uk(α,θ)(u) log hσ0,Uk(α,θ)(u) e−π|u|
2

du

=

∫
RM

hσ0,Uk(α,θ)(Pσcv) log hσ0,Uk(α,θ)(Pσcv) e−π|v|
2

dv

=

∫
RM

h0,Uk(α,θ)(v) log hσ0,Uk(α,θ)(Pσcv) e−π|v|
2

dv

=

∫
RM

h0(v) log hσ0,Uk(α,θ)(PσcUk(α, θ)
Tv) e−π|v|

2

dv,

which finishes the proof of Theorem 7.5. �
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7.5. The key entropy bound

Collecting the results of the previous sections we get the following bound

S(hk) ≤
∑

α1,...,αk

λα1 · · ·λαk
∫

[−π,π]k
ρ(θ1) dθ1 · · · ρ(θk) dθk

×
∑

σ⊂{1,...,M}

∏
i∈σc

γ2
k,i

∏
j∈σ

(
1− γ2

k,j

) ∫
RM

h0(v) log hσ0,Uk(α,θ)

(
PσcUk(α, θ)

Tv
)
e−π|v|

2

dv.

(7.17)

The right-hand side of (7.17) contains a large sum over the entropy of marginals of h0.
In order to bound such a sum in terms of the entropy of h0 one may try to apply some
version of the Loomis-Whitney inequality [71] or, more precisely, of an inequality by
Han [59]. This is essentially correct, but will require a substantial generalization of
this inequality. Let us first formulate the main theorem of this section.

Theorem 7.8 (Entropy bound). The estimate

S(hk) ≤

[
M

N +M
+

N

N +M

(
1− µρ

N +M

NΛ

)k]
S(h0) (7.18)

holds.

As mentioned before, to prove Theorem 7.8, we need a generalized version of
an inequality by Han. This generalization was proven by Carlen-Cordero-Erausquin
in [21]. It is based on the geometric Brascamp-Lieb inequality due to Ball [4], see
also [5], in the rank one case, and due to Barthe [7] in the general case.

Theorem 7.9 (Correlation inequality). For i = 1, . . . K, let Hi ⊂ RM be subspaces
of dimension di and Bi : RM → Hi be linear maps with the property that BiB

T
i = IHi,

the identity map on Hi. Assume further that there are non-negative constants ci, i =

1, . . . , K such that
K∑
i=1

ciB
T
i Bi = IM . (7.19)

Then, for nonnegative functions fi : Hi → R,∫
RM

K∏
i=1

f cii (Biv) e−π|v|
2

dv ≤
K∏
i=1

(∫
Hi

fi(u) e−π|u|
2

du

)ci
. (7.20)

Moreover,∫
RM

h(v) log h(v) e−π|v|
2

dv

≥
K∑
i=1

ci

[∫
RM

h(v) log fi(Biv) e−π|v|
2

dv − log

∫
Hi

fi(u) e−π|u|
2

du

]
, (7.21)

for any nonnegative function h ∈ L1(RM , e−π|v|
2
dv).
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Since Theorem 7.9 is very useful in a number of applications, and for the readers
convenience, we will give an elementary proof in Appendix 7.8.1.

Remark. By taking the trace in (7.19) one sees that

K∑
i=1

cidi = M .

We would like to apply (7.21) to the right hand side of (7.17). An immediate
problem is that (7.17) is in terms of integrals and not sums. While there are some
results available for continuous indices (see, e.g., [8]), they do not apply to our situation
and hence we will take a more direct approach and approximate the measure ρ(θ)dθ

by a discrete measure. It is important that the approximation also satisfies the
constraint (7.5). The following lemma establishes such an approximation. Its proof is
given in Appendix 7.8.2.

Lemma 7.10. Let ρ be a probability density on [−π, π] whose Fourier series con-
verges absolutely and assume that (7.5) is satisfied. There exists a sequence of discrete
probability measures νK, K = 1, 2, . . . , such that for every continuous function f on
[−π, π]

lim
K→∞

∫ π

−π
f(θ) νK(dθ) =

∫ π

−π
f(θ)ρ(θ) dθ .

Moreover, ∫ π

−π
cos θ sin θ νK(dθ) = 0 ,

for all K ∈ N. More precisely,

νK(dθ) =
2π

4K + 1

2K∑
`=−2K

ρK

(
2π`

4K + 1

)
δ

(
θ − 2π`

4K + 1

)
dθ ,

where

ρK(θ) =

∫ π

−π
ρ(θ − φ) pK(θ) dφ and pK(θ) :=

1

2K + 1

(
K∑

k=−K

eikθ

)2

.

At this point we can prepare the ground for the application of Theorem 7.9 to
inequality (7.17). We first replace ρ(θ)dθ in (7.17) with νK(dθ). Setting

ω`j = ρK(θj) , θ`j =
2π`j

4K + 1
, and θ = (θ`1 , . . . , θ`k) ,
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we obtain∑
α1,...,αk

λα1 · · ·λαk
∫

[−π,π]k
νK(dθ1) · · · νK(dθk)

∑
σ⊂{1,...,M}

∏
i∈σc

γk,i(α, θ)
2

×
∏
j∈σ

(
1− γk,j(α, θ)2

) ∫
RM

h0(v) log hσ0,Uk(α,θ)(PσcUk(α, θ)
Tv) e−π|v|

2

dv

=
∑

α1,...,αk

λα1 · · ·λαk
∑

−K≤`1,...,`k≤K

k∏
j=1

ω`j
∑

σ⊂{1,...,M}

∏
i∈σc

γk,i(α, θ)
2

×
∏
j∈σ

(
1− γk,j(α, θ)2

) ∫
RM

h0(v) log hσ0,Uk(α,θ)(PσcUk(α, θ)
Tv) e−π|v|

2

dv .

(7.22)

In order to apply Theorem 7.9 to (7.22) we have to replace the sum over the
index i with a sum over the indices α1, . . . , αk, `1, . . . `k and all subsets σ ⊂ {1, . . . ,M}.
Moreover, we substitute

the constants ci by
1

Ck,M
λα1 · · ·λαk

k∏
j=1

ω`j
∏
i∈σc

γk,i(α, θ)
2
∏
j∈σ

(1− γk,j(α, θ)2) ,

the functions fi(w) by hσ0,Uk(α,θ)(w) ,

the linear maps Bi by PσcUk(α, θ)
T ,

the functions fi(Biv) by hσ0,Uk(α,θ)(PσcUk(α, θ)
Tv) ,

and the subspaces Hi by R|σc| .

Note that, for any given index i the condition BiB
T
i = IHi corresponds to the fact

that PσcUk(α, θ)
TUk(α, θ)Pσc = Pσc which is the identity on R|σc|.

The next theorem establishes the sum rule (7.19) in our setting and hence ensures
the applicability of Theorem 7.9 to (7.22).

Theorem 7.11 (The sum rule). If ν(dθ) is a probability measure satisfying (7.5),
then∑
α1,...,αk

λα1 · · ·λαk
∫

[−π,π]k
ν(dθ1) · · · ν(dθk)×

×
∑

σ⊂{1,...,M}

∏
i∈σc

γk,i(α, θ)
2
∏
j∈σ

(
1− γk,j(α, θ)2

)
Uk(α, θ)P

T
σcPσcUk(α, θ)

T = Ck,MIM ,

(7.23)
where

Ck,M =

[
M

N +M
+

N

N +M

(
1− µν

N +M

NΛ

)k]
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with

µν = µ

∫
ν(dθ) sin2 θ .

The proof will be given in Section 7.6. We observe here that it follows from
Theorem 7.10 that µρ = limK→∞ µνK .

Proof of Theorem 7.8 . First we consider the case where ρ is repaced by νK
and use Theorem 7.9 together with Theorem 7.11 and the identification rules described
above. The entropy inequality (7.21) now says that∫

RM
h0(v) log h0(v)e−π|v|

2

dv

≥ 1

Ck,M

∑
α1,...,αk

λα1 · · ·λαk
∑

−K≤`1,...,`k≤K

k∏
j=1

ω`j
∑

σ⊂{1,...,M}

∏
i∈σc

γk,i(α, θ)
2

×
∏
j∈σ

(
1− γk,j(α, θ)2

) [∫
RM

h0(v) log hσ0,Uk(α,θ)(PσcUk(α, θ)
Tv) e−π|v|

2

dv

− log

∫
R|σc|

hσ0,Uk(α,θ)(u) e−π|u|
2

du

]
.

However, since h0 is normalized and Uk(α, θ) is orthogonal, we find that∫
R|σc|

hσ0,Uk(α,θ)(u) e−π|u|
2

d u =

∫
R|σc|

∫
R|σ|

h0,Uk(α,θ)(v, u) e−π|v|
2

dv e−π|u|
2

du

=

∫
RM

h0(Uk(α, θ)v) e−π|v|
2

dv

= 1 .

Thus we find that

∑
α1,...,αk

λα1 · · ·λαk
∑

−K≤`1,...,`k≤K

k∏
j=1

ω`j
∑

σ⊂{1,...,M}

∏
i∈σc

γk,i(α, θ)
2
∏
j∈σ

(
1− γk,j(α, θ)2

)
×
∫
RM

h0(v) log hσ0,Uk(α,θ)(PσcUk(α, θ)
Tv) e−π|v|

2

dv ≤ Ck,MS(h0) . (7.24)

As K →∞, the left-hand side of (7.24) converges to the right-hand side of (7.17). �

We now have all ingredients to give the proof of Theorem 7.1.

Proof of Theorem 7.1. Recall from Section 7.3, that

f(v, t) = e−π|v|
2

e−Λt

∞∑
k=0

tkΛk

k!
hk(v) ,

and that S(f(·, t)) = S(h(·, t)). Combining Theorem 7.5 and Theorem 7.8, we obtain

S(hk) ≤ Ck,MS(h0) ,
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and computing

e−Λt

∞∑
k=0

Λktk

k!
Ck,M

yields Theorem 7.1. �

7.6. The sum rule. Proof of Theorem 7.11

We have to compute the matrix

Z :=
∑

α1,...,αk

λα1 · · ·λαk
∫

[−π,π]k
ν(dθ1) · · · ν(dθk)×

×
∑

σ⊂{1,...,M}

∏
i∈σc

γk,i(α, θ)
2
∏
j∈σ

(
1− γk,j(α, θ)2

)
Uk(α, θ)P

T
σcPσcUk(α, θ)

T .

Obviously P T
σcPσc = Pσc and hence

Z =
∑

α1,...,αk

λα1 · · ·λαk
∫

[−π,π]k
ν(dθ1) · · · ν(dθk)×

× Uk(α, θ)

 ∑
σ⊂{1,...,M}

∏
i∈σc

γk,i(α, θ)
2
∏
j∈σ

(
1− γk,j(α, θ)2

)
Pσc

Uk(α, θ)T .
The sum on σ is easily evaluated and yields the matrix Γ2

k(α, θ). Hence, recalling
the orthogonal singular value decomposition (7.13) of Ak(α, θ), that is, Ak(α, θ) =

Uk(α, θ)Γk(α, θ)V
T
k (α, θ), we find that

Z =
∑

α1,...,αk

λα1 · · ·λαk
∫

[−π,π]k
ν(dθ1) · · · ν(dθk)Ak(α, θ)A

T
k (α, θ) . (7.25)

One can think about this expression in the following fashion. Recall that[
k∏
l=1

rαl(θl)

]−1

=

(
Ak(α, θ) Bk(α, θ)

Ck(α, θ) Dk(α, θ)

)
.

With this notation, the matrix Z equals the top left entry of the matrix

∑
α1,...,αk

λα1 · · ·λαk
∫

[−π,π]k
ν(dθ1) · · · ν(dθk)

[
k∏
l=1

rαl(θl)

]−1(
IM 0

0 0

)[ k∏
l=1

rαl(θl)

]
.

The computation hinges on a repeated application of the elementary identity∫ π

−π
ν(dθ)

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)(
m1 0

0 m2

)(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)
=

(
(1− ν̃)m1 + ν̃m2 0

0 (1− ν̃)m2 + ν̃m1

)
,
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where ν̃ =
∫
ν(dθ) sin2(θ). For this to be true we just need (7.5). We easily check that

for the rotations rα(θ)∑
α

λα

∫ π

−π
ν(dθ) rα(θ)−1

(
m1IM 0

0 m2IN

)
rα(θ)

=
1

Λ

(
MλS

2
+
NλR

2

)(
m1IM 0

0 m2IN

)
+

µ

ΛN

×
(
N(M − 1) +N((1− ν̃)m1 + ν̃m2)IM 0

0 (N − 1)M +M(ν̃m1 + (1− ν̃)m2)IN

)
=

(
m1IM 0

0 m2IN

)
+

µν
ΛN

(
N(m2 −m1)IM 0

0 M(m1 −m2)IN

)
. (7.26)

where µν = ν̃µ. Denote by L(ν1, ν2) the (N +M)× (N +M) matrix

L(m1,m2) =

(
m1IM 0

0 m2IN

)
,

and set

P = I2 −
µν

ΛN

(
N −N
−M M

)
.

Then (7.26) is recast as∑
α

λα

∫ π

−π
ν(dθ) rα(θ)−1L(m1,m2)rα(θ) = L(m′1,m

′
2) , (7.27)

where (
m′1
m′2

)
= P

(
m1

m2

)
.

By a repeated application of (7.27) we obtain

∑
α1,...,αk

λα1 · · ·λαk
∫

[−π,π]k
ν(dθ1) · · · ν(dθk)

[
k∏
j=1

rαj(θj)

]T
L(m)

[
k∏
j=1

rαj(θj)

]
= L(Pkm) .

Thus,

Z =

(
Pk
(

1

0

))
1

IM .

It is easy to see that P has eigenvalues `1 = 1 and `2 = 1− µν(M +N)/(ΛN) with
eigenvectors m1 = (1, 1) and m2 = (N,−M)T/(M +N). Consequently,(

1

0

)
=

M

N +M
m1 +m2 ,

which yields (
Pk
(

1

0

))
1

=
M

N +M
+

N

M +N

(
1− µν

M +N

ΛN

)k
,
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and hence completes the proof of Theorem 7.11. �

7.7. Boltzmann-Kac collisions

In this section we show that the above results can also be extended, at least in a
particular case, to three-dimensional Boltzmann-Kac collisions.

Again we consider a system of M particles coupled to a reservoir consisting of N
particles, but now with velocities v1, . . . , vM , w1, . . . , wN ∈ R3. The collisions between
a pair of particles have to conserve energy and momentum,

z2
i + z2

j = (z∗i )
2 + (z∗j )

2

zi + zj = z∗i + z∗j ,

where z can be either the velocity of a system particle v or of a reservoir particle w. A
convenient parametrization of the post-collisional velocities in terms of the velocities
before the collision is given by

z∗i (ω) = zi − ω · (zi − zj)ω
z∗j (ω) = zj + ω · (zi − zj)ω, where ω ∈ S2 .

This is the so-called ω-representation. This representation is particularly useful,
because the velocities are related to each other by a linear transformation, and the
strategy used to proof the results for the one-dimensional Kac system carries over
rather directly. The direction ω will be chosen according to the uniform probability
distribution on the unit sphere S2.

Introduce the operators

(Rijf)(z) =

∫
S2

f(rij(ω)−1z) dω ,

where dω denotes the uniform probability measure on the sphere and the matrices rij(ω)

are symmetric involutions acting as(
z∗i
z∗j

)
=

(
I − ωωT ωωT

ωωT I − ωωT
)(

zi
zj

)
on the velocities of the particles i and j, and as identities otherwise. They will replace
the one-dimensional Kac collision operators in (7.3) in the otherwise unchanged
generator of the time evolution. Notice that the matrices rij(ω) are orthogonal, so that
the expansion formula (7.10) still holds with the obvious changes in the dimension of
the single-particle spaces.

We prove an analog of Theorem 7.1 for the case of three-dimensional Boltzmann-
Kac collisions and pseudo-Maxwellian molecules.

Theorem 7.12. Let N ≥ M and F0(v,w) = f0(v) e−π|w|
2 for some probability

distribution f0 on R3M . Then the entropy of the marginal

f(v, t) :=

∫
R3N

(
eLtF0

)
(v,w) dw
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with respect to the thermal state e−π|v|
2 is bounded by

S(f(·, t)) ≤
[

N

N +M
+

N

N +M
e−

µ
3
N+M
N

t

]
S(f0) .

Remark. The result in three dimensions is very similar to the case of one-
dimensional Kac collisions, with the difference that the rate of exponential decay is
µ/3 instead of µρ. The factor 1/3 comes from the fact that

∫
S2 dω ωωT = I3/3. It

would be interesting to cover the true Maxwellian molecules interaction

(Rijf)(z) =

∫
S2

b

(
vi − vj
|vi − vj|

· ω
)
f(rij(ω)−1z) dω .

However, the dependence of the scattering rate b on the velocities doesn’t seem to be
treatable with the above methods.

The proof of Theorem 7.12 essentially deviates from the one-dimensional case in
only two places: the sum rule and the discrete approximation of the integrals. We
begin by proving an analogue of Theorem 7.11. Most of the steps for the computation
of the matrix Z in (7.25) are the same. What remains is to compute

Z :=
∑

α1,...,αk

λα1 · · ·λαk
∫
S2×···×S2

dω1 · · · dωk Ak(α, ω)Ak(α, ω)T ,

which is somewhat different for the case of Boltzmann-Kac collisions. Recall that
Ak(α, ω) is the upper left 3M × 3M block of [

∏k
j=1 rαj(ωj)]

−1, i.e.,

Ak(α, ω) = P3M [Πk
j=1rαj(ωj)]

−1P T
3M

with the projection P3M =
(
I3M 0

)
from R3M+3N → R3M . In particular, by linearity,

Z = P3M

 ∑
α1,...,αk

λα1 · · ·λαk
∫

(S2)k
dω

[
k∏
j=1

rαj(ωj)

]−1(
I3M 0

0 0

)[ k∏
j=1

rαj(ωj)

]P T
3M .

As in the proof of Theorem 7.11 we have

Lemma 7.13. Let α, β ≥ 0. Then∑
1≤i<j≤M+N

λij

∫
S2

dω rij(ω)−1

(
αI3M 0

0 βI3N

)
rij(ω) =

(
α′I3M 0

0 β′I3N

)
,

where α′, β′ are related to α, β by(
α′

β′

)
= P

(
α

β

)
, P = I2 −

µ

3Λ

(
1 −1

−M
N

M
N

)
.

Notice that the matrix P, which appears in Lemma 7.13, has eigenvalues 1 and
1 − µ/(3Λ) (1 +M/N) with corresponding eigenvectors

(
1 1

)T and
(
−N/M 1

)T .
Repeated application of Lemma 7.13 then implies, see also the argument in the
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one-dimensional case,

∑
α1,...,αk

λα1 · · ·λαk
∫

(S2)k
dω

[
k∏
j=1

rαj(ωj)

]−1(
αI3M 0

0 βI3N

)[ k∏
j=1

rαj(ωj)

]

=

(
α(k)I3M 0

0 β(k)I3N

)
,

where (
α(k)

β(k)

)
= Pk

(
α

β

)
.

Before we prove Lemma 7.13, let us make an easy observation.

Corollary 7.14. In the particular case α = 1, β = 0, we get

Z =

[
M

M +N
+

N

M +N

(
1− µ

3Λ

(
1 +

M

N

))k]
I3M .

Proof of Lemma 7.13. For 1 ≤ i < j ≤ M (respectively for M + 1 ≤ i < j ≤
M +N) the operators rij(ω) only act non-trivially in the first 3M (last 3N) variables.
Taking into account that rij(ω)−1 I rij(ω) = I, we obtain

λS
M − 1

∑
1≤i<j≤M

∫
S2

dω rij(ω)−1

(
αI3M 0

0 βI3N

)
rij(ω) =

MλS
2

(
αI3M 0

0 βI3N

)
,

and
λR

N − 1

∑
M+1≤i<j≤M+N

∫
S2

dω rij(ω)−1

(
αI3M 0

0 βI3N

)
rij(ω) =

NλR
2

(
αI3M 0

0 βI3N

)
.

It remains to look at the interaction terms i = 1, . . . ,M and j = M + 1, . . . ,M +N .
Notice that

rij(ω)−1

(
αI3M 0

0 βI3N

)
rij(ω)

=

(
αI3M 0

0 βI3N

)
+



0

(β − α)ωωT

0

0

0

0

(β − α)ωωT

0


,

where the non-zero entries in the second summand on the right-hand side correspond
to the ith, respectively jth, 3× 3 block on the diagonal. Since

∫
S2 dω ωωT = 1/3 I3, we

obtain

µ

N

M∑
i=1

M+N∑
j=M+1

∫
S2

dω rij(ω)−1

(
αI3M 0

0 βI3N

)
rij(ω)

= µM

(
αI3M 0

0 βI3N

)
+
µ

3
(α− β)

(
−I3M 0

0 M
N
I3N

)
.

131



Recall the definition of Λ = MλS/2 + NλR/2 + µM . Hence summation of all the
three contributions yields the statement of the Lemma. �

As in the one-dimensional case, in order to apply the geometric Brascamp-Lieb
inequality Theorem 7.9, we need to approximate the uniform probability measure dω

on the sphere by a suitable sequence of discrete measures as in the one-dimensional
case (see Lemma 7.10). Additionally, in each step of the discretization, the constraint∫
S2 dω ωωT = 1/3I, has to hold. This is important, because it guarantees that the
geometric Brascamp-Lieb condition, i.e., the sum rule (7.19), holds in each step.

In order to find such an approximation, we parametrize the sphere in the usual
way by spherical coordinates

ω = ω(θ, ϕ) =

sin θ cosϕ

sin θ sinϕ

cos θ


for θ ∈ [0, π] and ϕ ∈ [0, 2π]. For K,L ∈ N we introduce the measures

ΦK :=
π

K

2K−1∑
j=0

δ π
K
j on [0, 2π], and

ΘL :=
L∑
i=1

2

(1− u2
i )

3/2(P ′L(ui))2
δarccosui on [0, π],

where PL is the Legendre polynomial of order L on [−1, 1], and ui, i = 1, . . . , L, are
its zeros. Then, if f ∈ C[0, 2π] and g ∈ C[−1, 1],

∫ 2π

0

f(ϕ) Φk(dϕ) =
π

K

2K−1∑
j=0

f
( π
K
j
)
→
∫ 2π

0

f(ϕ) dϕ

as K →∞ as Riemann sum. Furthermore,

∫ π

0

g(cos θ) sin θΘL(dθ) =
L∑
i=1

2

(1− u2
i )(P

′
L(ui))2

g(ui)

→
∫ 1

−1

g(u) du =

∫ π

0

g(cos θ) sin θ dθ

as L → ∞ by Gauss-Legendre quadrature . The latter approximation is exact for
polynomials of order less or equal to 2L− 1. In particular, we have∫ π

0

cos2 θ sin θΘL(dθ) =

∫ π

0

cos2 θ sin θ dθ =
2

3
, and∫ π

0

sin3 θΘL(dθ) =

∫ π

0

sin3 θ dθ =
4

3
,
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for all L ≥ 2. It is easy to check that∫ 2π

0

sinϕ cosϕΦk(dϕ) = 0,∫ 2π

0

sinϕΦk(dϕ) =

∫ 2π

0

cosϕΦk(dϕ) = 0,∫ 2π

0

sin2 ϕΦk(dϕ) =

∫ 2π

0

cos2 ϕΦk(dϕ) = π,

for all K ≥ 2. Consequently,

1

4π

∫ 2π

0

ω(θ, ϕ)ω(θ, ϕ)T ΘL(dθ)Φk(dϕ)

=
1

2K

2K−1∑
j=0

L∑
i=0

ω (arccosui, πj/K)ω (arccosui, πj/K)T

(1− u2
i )(P

′
L(ui))2

=
1

3
I3

for all K,L ≥ 2. It follows that Z is not changed by replacing the uniform measure
on S2 by the above discrete approximation, in particular, Z is still proportional to the
identity matrix, which guarantees the applicability of the geometric Brascamp-Lieb
inequality.

This concludes the proof of Theorem 7.12. �

7.8. Appendix

7.8.1. The Geometric Brascamp-Lieb inequality and the entropy in-
equality. In this section we prove Theorem 7.9. We use the same strategy as in [22]
and [9] which consists of transporting the functions fi with the heat kernel in such a
way that the right-hand side of (7.20) remains fixed while the left-hand side of that
inequality increases. The results in [9] are quite general but for the special case in
which the sum rule (7.19) holds, the proof is quite simple and this is one of the reasons
why we include it here.

Proof of Theorem 7.9. The inequality (7.20) is equivalent to∫
RM

K∏
i=1

f cii (Biv) dv ≤
K∏
i=1

(∫
Hi

fi(u) du

)ci
. (7.28)

This follows from the identity
K∏
i=1

(
e−π|Biv|

2
)ci

= exp

(
−π

K∑
i=1

(v ciB
T
i Bi v)

)
= e−π|v|

2

.

We transport the functions fi by the heat flow, that is we define

fi(Biv, t) :=
1

(4πt)M/2

∫
RM

e−|v−w|
2/(4t)fi(Biw)dw . (7.29)

For the above definition to make sense, we have to show that the right-hand side
is a function of Biv alone. The condition BiB

T
i = IHi means that the matrix

Pi = BT
i Bi is an orthogonal projection onto a di dimensional subspace of RM . Moreover,
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BiPi = IHiBi = Bi. We rewrite the integral (7.29) by splitting it in an integral over
w′ ∈ RanPi and one over integration over w′′ ∈ RanP⊥i . Carrying out the integration
over w′′ we obtain

fi(Biv, t)

=
1

(4πt)M/2

∫
RanPi

∫
RanP⊥i

e−|(Piv−Piw
′)|2/(4t)e−|(P

⊥
i v−w′′)|2/(4t)fi(BiPiw) dw′dw′′

=
1

(4πt)di/2

∫
RanPi

e−|(Piv−Piw
′)|2/(4t)fi(BiPiw

′) dw′

=
1

(4πt)di/2

∫
RanPi

e−|(Biv−Biw
′)|2/(4t)fi(Biw

′) dw′

=
1

(4πt)di/2

∫
Hi

e−|(Biv−u)|2/(4t)fi(u) du .

where, in the last equality, we have used that Bi maps the range of Pi isometrically
onto Hi. This justifies (7.29). Moreover, the above computation also shows that∫

Hi

fi(u, t)du =

∫
Hi

fi(u)du

so that the right-hand side of the inequality (7.28) does not change under the heat
flow.

We now show that the left-hand side of (7.28) is an increasing function of t. It
is convenient to set φi(u, t) = log fi(u, t). Differentiating the function φi(Biv, t) with
respect to t yields

d

dt
φi(Biv, t) = ∆vφi(Biv, t) + |∇vφi(Biv, t)|2 .

Moreover,

d

dt

∫
RM

K∏
i=1

f cii (Biv, t) dv

=
K∑
m=1

cm

∫
RM

[∆vφm(Bmv, t) + |∇vφm(Bmv, t)|2]
K∏
i=1

f cii (Biv, t) dv .

Integrating by parts the term containing the Laplacian yields

d

dt

∫
RM

K∏
i=1

f cii (Biv, t) dv

=
K∑
m=1

cm

∫
RM
|∇vφm(Bmv, t)|2

K∏
i=1

f cii (Biv, t)dv

−
K∑

m,`=1

cmc`

∫
RM
∇vφm(Bmv, t) · ∇vφ`(B`v, t)

K∏
i=1

f cii (Biv, t)dv .

Finally, using that

∇vφm(Bmv, t) = BT
i (∇φm)(Bmv)
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we get

d

dt

∫
RM

K∏
i=1

f cii (Biv, t) dv

=
K∑
m=1

cm

∫
RM
|BT

m(∇φm)(Bmv, t)|2
K∏
i=1

f cii (Biv, t)dv

−
K∑

m,`=1

cmc`

∫
RM

BT
m(∇φm)(Bmv, t) ·BT

` (∇φ`)(B`v, t)
K∏
i=1

f cii (Biv, t)dv .

We claim that this expression is non-negative. The vectors ∇φm ∈ Hm are arbitrary
and hence the problem is reduced to proving that for any set of vectors Vm ∈ Hm,
m = 1, . . . , K, it holds

K∑
m=1

cm|BT
mVm|2 −

K∑
m,`=1

cmc`B
T
mVm ·BT

` V` ≥ 0 .

Recalling that BmB
T
m = IHm and setting Y =

∑
` c`B

T
` V` we conclude that it is enough

to show that

|Y |2 ≤
K∑
m=1

cm|Vm|2 .

This follows easily, since, by applying Schwarz’s inequality, we find that

|Y |2 =
K∑
`=1

c`Y ·BT
` V` =

K∑
`=1

c`B`Y · V` ≤

(
K∑
`=1

c`|B`Y |2
)1/2( K∑

`=1

c`|V`|2
)1/2

.

Combining this with (7.19), we learn that

|Y |2 ≤

(
Y ·

K∑
`=1

c`B
T
` B`Y

)1/2( K∑
`=1

c`|V`|2
)1/2

= |Y |

(
K∑
`=1

c`|V`|2
)1/2

.

Thus we have that, when applying (7.28) to the functions fi(u, t), the left hand side
is an increasing function of t while the right hand side does not depends on t. It
is thus enough to show that the inequality holds for large t. Using once more the
sum-rule (7.19), we see that

∫
RM

K∏
i=1

1

(4πt)cidi/2

[∫
Hi

e−|Biv−u|
2/(4t)fi(u) du

]ci
dv

=
1

(4π)M/2

∫
RM

K∏
i=1

[∫
Hi

e−|Biv−t
−1/2u|2/4fi(u) du

]ci
dv

t→∞−→ 1

(4π)M/2

∫
RM

e−|v|
2/4

K∏
i=1

[∫
Hi

fi(u) du

]ci
dv =

K∏
i=1

[∫
Hi

fi(u) du

]ci
,

which proves the first part of Theorem 7.9.
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To prove the entropy inequality (7.21) we follow [21]. Let h be a non-negative
function whose L1 norm is one and whose entropy is finite. An elementary computation
then shows that∫

RM
h(v) log h(v) e−π|v|

2

dv

= sup
Φ

{∫
RM

h(v)Φ(v) e−π|v|
2

dv − log

∫
RM

eΦ(v)e−π|v|
2

dv

}
.

Now, we set

Φ(v) =
K∑
i=1

ci log fi(Biv) .

This leads to the lower bound∫
RM

h(v) log h(v) e−π|v|
2

dv

≥
K∑
i=1

ci

∫
RM

h(v) log fi(Biv) e−π|v|
2

dv − log

∫
RM

K∏
i=1

fi(Biv)ci e−π|v|
2

dv

≥
K∑
i=1

ci

∫
RM

h(v) log fi(Biv) e−π|v|
2

dv − log

[
K∏
i=1

(∫
Hi

fi(u) e−π|u|
2

du

)ci]
,

where the second step is a consequence of the Brascamp-Lieb inequality (7.20). �

7.8.2. Proof of Lemma 7.10.

Proof. For K any positive integer we convolve ρ(θ) with the non-negative trigono-
metric polynomial

pK(θ) :=
1

2K + 1

(
K∑

k=−K

eikθ

)2

=
2K∑

m=−2K

(
1− |m|

2K + 1

)
eimθ ,

and obtain a probability density ρK(θ). The Fourier coefficients of ρK(θ) are given by

ρ̂K(m) = ρ̂(m)

(
1− |m|

2K + 1

)
for |m| ≤ 2K and are zero otherwise. In particular,

ρ̂K(2)− ρ̂K(−2) = 4i

∫ π

−π
ρK(θ) sin θ cos θ dθ = 0 .

With ρK we construct the measure

νK(dθ) =
2π

4K + 1

2K∑
`=−2K

ρK

(
2π`

4K + 1

)
δ

(
θ − 2π`

4K + 1

)
dθ .
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The measure νK is positive since ρK((2π`)/(4K + 1)) ≥ 0. Moreover, for all m ∈ Z
with |m| ≤ 2K the Fourier coefficients ν̂K(m) and ρ̂K(m) coincide. In particular, we
have ∫ π

−π
νK(dθ) sin θ cos θ = 0 .

To see this, we compute

ν̂K(m) =
1

2π

∫ π

−π
νK(θ)e−imθ dθ =

1

4K + 1

2K∑
`=−2K

ρK

(
2π`

4K + 1

)
e−2πim`/(4K+1)

for |m| ≤ 2K. Observe that

ρK

(
2π`

4K + 1

)
=

2K∑
k=−2K

ρ̂K(k)e2πik`/(4K+1) ,

and, as a consequence,

ν̂K(m) =
1

4K + 1

2K∑
`=−2K

2K∑
k=−2K

ρ̂K(k)e2πi`(k−m)/(4K+1) .

But
2K∑

`=−2K

e2πi`(k−m)/(4K+1) =

{
4K + 1 if k = m

0 if k 6= m,

and hence we conclude that
ν̂K(m) = ρ̂K(m) (7.30)

for |m| ≤ 2K. It is easy to see that for any continuous function f on [−π, π],

lim
K→∞

∫ π

−π
f(θ)νK(dθ) =

∫ π

−π
f(θ)ρ(θ) dθ .

This finishes the proof.
�
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