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Abstract

In the last decade, the use of high-throughput methods has become increasingly
popular in various fields of life sciences. Today, a wide range of technologies exist that
allow gathering detailed quantitative insights into biological systems. With improved
instrumentation and technological advances, a massive growth in data volume from
these techniques has been observed. Bioinformatics copes with these heaps of data by
providing computational methods that process raw data to extract biological knowledge.
Computational mass spectrometry is a research field in bioinformatics that collects and
analyzes data from mass-spectrometric high-throughput experiments.

In this thesis, we present two new methods as well as a new data format for
computational mass spectrometry. The first method applies to a scientific problem
from the field of structural biology: to determine spatial interactions between protein
and nucleic acids. For this purpose, we develop experimental protocols, programs, and
analysis workflows that allow identifying UV-induced cross-links in (ribo-)nucleoprotein
complexes from mass spectrometry data. An outstanding feature of our method is the
ability to exactly localize amino acids and (ribo-)nucleotides in contact with each other.
Applied to data from yeast and human we identify new interaction partners with, to
date, unmatched resolution.

The second method applies to metaproteomic studies of complex communities of
microorganisms. In an unmanageable number, bacteria, simple fungi, or plants populate
the most varied habitats. They are found in a high number of symbiotic or parasitic
relationships which serve predominantly for the uptake of nutrients. Organisms differ
in their biochemical repertoire allowing them to decompose a wide range of substrates.
Remarkably, this enables functional groups of soil bacteria to even nourish themselves
from environmental toxins.

We present a method from the field of metaproteomics, which allows for identifica-
tion of organisms involved in substrate degradation as well as methods to group them
according to their function in the degradation process. To this end, we use substrates
labeled with stable isotopes, which are metabolized by the organisms. The isotope
abundance in proteins serves as an indicator for the conversion of the substrate. This
abundance is automatically determined by our novel computational method and as-
signed to the individual organisms. The automation of this process reduces the manual
work from several months to a few minutes and, thus, enables large study sizes.
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The third part of this work contributes to the better communication and processing of
results from metabolomics and proteomics studies. We present a tabular, standardized,
human-readable and machine-processable data format mzTab as a complement to
existing data formats. We provide software components that allow processing of the
format and demonstrate how the format can be integrated into complex proteomic
and metabolomic workflows. The recent acceptance of mzTab by the largest proteomic
data repositories represents a significant success. Also, we see an already widespread
adoption by academic software developers and the first support by a commercial
software vendor. Our novel format facilitates meta-analyses and makes research
results from the field of proteomics and metabolomics available to scientists from other
research areas.
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Kurzfassung

In den letzten Jahren ist der Einsatz von Hochdurchsatzmethoden in den verschiede-
nen Feldern der Lebenswissenschaften zunehmend populärer geworden. Heutzutage
existiert eine große Auswahl an Technologien die detaillierte quantitative Einblicke in
biologische Systeme erlauben. Einhergehend mit technischen Fortschritten und immer
besseren Instrumenten ist ein massiver Datenzuwachs durch diese Technologien zu
beobachten. Der Forschungsbereich Bioinformatik hilft bei der Bewältigung dieser
Datenmengen durch die Entwicklung computergestützter Methoden zur Prozessierung
der Rohdaten und der Extraktion biologischer Erkenntnisse. Die computergestütz-
te Massenspektrometrie ist ein bioinformatischer Forschungsbereich, der Daten aus
massenspektrometrischen Hochdursatzexperimenten sammelt und analysiert. Im Rah-
men dieser Arbeit stellen wir zwei neue Verfahren und ein neues Datenformat für die
computergestützte Massenspektrometrie vor.

Das erste Verfahren dient der Strukturbiologie und hat das Ziel räumliche Inter-
aktionen zwischen Protein und Nukleinsäuren zu bestimmen. Hierzu entwickeln wir
experimentelle Protokolle, Computerprogramme und Workflows zur Datenanalyse, die
es ermöglichen UV-induzierte Quervernetzungen in (Ribo-)nukleoproteinkomplexen
aus massenspektrometrischen Daten zu identifizieren. Herausragendes Merkmal ist
hierbei, dass unser Verfahren die exakte Lokalisation der sich in Kontakt befinden-
den Aminosäuren und Nukleotiden erlaubt. Wir zeigen, dass die Anwendung unseres
Verfahrens auf Daten von Hefe und Mensch neue Interaktionspartner in bisher nicht
erzielter Auflösung identifiziert.

Das zweite Verfahren findet Anwendung in metaproteomischen Studien komple-
xer Gemeinschaften von Mikroorganismen. In unüberschaubarer Anzahl besiedeln
Bakterien, einfache Pilze oder Pflanzen die verschiedensten Lebensräume. Dabei ste-
hen sie in einer Vielzahl von symbiotischen oder parasitären Verbindungen, die zum
überwiegenden Teil der Nahrungsaufnahme dienen. Die Organismen unterscheiden
sich teilweise erheblich in ihren biochemischen Fähigkeiten die es ihnen erlauben
verschiedenste Substrate umzusetzen. Bemerkenswert ist insbesondere die Fähigkeit
bestimmter Gruppen von Bodenbakterien mit Hilfe ihres biochemischen Repertoires
Umwelttoxine zu verstoffwechseln. Unser Verfahren ermöglicht die Identifikation der
beim Abbau beteiligter Organismen sowie deren Gruppierung bezüglich ihrer Funktion
im Abbauprozess. Hierfür verwenden wir mit stabilen Isotopen markierte Substrate,
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welche von den Organismen metabolisiert werden. Die relative Isotopenhäufigkeit in
Proteinen dient als Indikator für die Umsetzung des Substrats. Diese wird mit Hilfe
neuer computergestützter Methoden automatisch bestimmt und den einzelnen Orga-
nismen zugeordnet. Die Automatisierung dieses Prozesses reduziert die monatelange,
manuelle Arbeit auf wenige Minuten und ermöglicht dadurch die Durchführung von
Studien in bisher nicht erreichbarer Größe.

Der dritte Teil dieser Arbeit leistet einen Beitrag zur besseren Kommunikation und
Verarbeitung von Ergebnissen aus Metabolom und Proteomstudien. Wir entwickeln
hierzu ein tabellarisches, standardisiertes, menschenlesbares und maschinell prozes-
sierbares Datenformat namens mzTab als Ergänzung zu existierenden Datenformaten.
Zusätzlich stellen wir Softwarekomponenten zur Verfügung die es ermöglichen dieses
Format zu verarbeiten. Wir demonstrieren an Beispielen wie mzTab sich nahtlos in
komplexe Proteomik- und Metabolomikworkflows einbinden lässt. Ein großer Erfolg
ist die seit kurzem eingeführte Unterstützung von mzTab durch die größten Datenre-
positorien im Bereich der Proteomik. Erfreulicherweise beobachten wir bereits eine
breite Akzeptanz von mzTab bei Entwicklern im akademischen Bereich sowie eine erste
kommerzielle Verwendung. Unser neues Datenformat erleichtert Metaanalysen und
macht Forschungsresultate der Proteomik und Metabolomik für Wissenschaftler aus
anderen Forschungsbereichen zugänglich.
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Chapter 1

Introduction

1.1 Motivation

For more than two decades tremendous efforts have been made to determine the
DNA sequences of organisms. Methodological advances in sequencing technologies
shifted the laborious analysis from single nucleotides of single genes to high-throughput
analysis of large stretches of the genome. International research efforts within "The
Human Genome Project" led to the publication of a working draft1,2 in February 2001.
Followed by complete sequencing and assembling of the major part of the human
genome in April 20033.

In many areas of life sciences4, the unprecedented amount of genome data in-
duced a shift from hypothesis-driven to data-driven science. Using data exploration
to generate hypotheses has already resulted in answers to many unresolved scientific
questions in a less biased fashion5–7. Analyses of genetic variations within and among
populations have fundamentally expanded our understanding of gene functions. After
early successes of associating, for example, diseases to specific changes in the genome,
a certain disillusionment took place in the scientific community. More and more re-
searchers came to realize the limitations of genomic studies: while the genome lays
out the plan for development and functions of an organism, it is linear, static, and only
indirectly involved in cellular metabolism. In contrast, its main products, RNA, proteins,
and other regulatory elements act and interact in networks of astonishing complexity
making sequence-based predictions of their role very difficult. Many scientists, thus,
proclaimed the post-genomics era with the primary challenge of tackling the difficult
task of assigning protein functions8.

Protein functions are as diverse as protein structures and play crucial roles in all
organisms. Proteins provide structural elements, transport molecules, mediate signal
transduction, regulate cellular processes, and catalyze biochemical reactions9. Not
surprisingly, proteins are particularly interesting research targets in the life sciences.
The field of proteomics is the bioanalytical research branch aiming at analyzing all
proteins in an organism. Compared to the genome or transcriptome, the proteome is
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considered significantly closer to the phenotype of a disease or biological trait. It has
recently grown in importance nurtured by the availability of large protein sequence
databases derived from the genome projects and recent technological advancements10.
High-resolution tandem mass spectrometry combined with liquid chromatography
is the analytical method of choice for high-throughput protein identification and
quantification today. In May 2014, more than a decade after the human genome
project was completed, the first drafts of the human proteome had been published11,12

allowing unprecedented insight into quantitative protein dynamics on the level of cells,
tissues, and organs. As it turns out, this novel and detailed quantitative view is still
insufficient to answer many fundamental questions, and further information needs to
be integrated to achieve a comprehensive understanding of a biological system.

One important aspect typically missing in quantitative proteomics studies is the
detailed characterization of interactions between components of a biological system.
This set of all interactions between molecules in a biological system is often termed
interactome. Currently, the study of interactions in a single cell or organism is dom-
inated by the research on protein-protein interactions13–15. One important type of
interaction, so far not accessible by high-throughput methods, is occurring between
main classes of biomolecules: proteins that are in contact with RNA or DNA. More
than two thousand distinct proteinsi are expected to bind (ribo-)nucleotides16. It
is not surprising, considering the large number of nucleotide-binding proteins, that
several human diseases have been associated with RNA- and DNA-binding proteins17,18.
Characterizing the amino acids and nucleotides in contact is likely to yield novel in-
sights into observed phenotypes, structure, function, and dynamics of these complexes,
but suitable methods have been missing. In this thesis, we present a novel method
and computational tools that allow investigating interactions between RNA/DNA and
proteins.

Organisms exhibit a complex interplay with other organisms and their environment.
Studying an organism in isolation results in only a partial view that may not be
sufficient to answer a specific question. Similar to metagenomics, which expands
the study of genomes from a single organism to the study of multiple organisms in
parallel, the interplay of multiple organisms is investigated in the nascent fields of
metaproteomics and meta-metabolomics. The degradation of complex substrates and
symbiotic processes are subjects of several recent studies. These studies help us to
understand bioremediation processes or the role of the gut microbiome. In this thesis,
we present a novel method and computational tools to investigate substrate metabolism.

i2,234 as estimated in neXtProt, accessed 05.01.2015
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Structure of this Thesis

We demonstrate that it is possible to determine distinct functional groups of organisms
in complex microbial communities that differ in their ability to break down substrates.

Nowadays, many scientific questions cannot be answered using a single technol-
ogy. For complex diseases or phenotypes, data-driven hypothesis generation is often
hampered by incomplete data obtained from single high-throughput methods. Com-
bining a variety of quantitative information from different omics levels gives a more
detailed picture of the dynamics of a biological system and, ideally, lead to new causal
explanations. The integration of data sources from disciplines like genomics, mass
spectrometry-based metabolomics and proteomics, is currently an active research area.
Reporting and exchanging results from single or combined high-throughput experi-
ments over scientific fields requires data formats that allow for data integration and
reproducible science. In this thesis, we present a novel standardized data format for
reporting of mass spectrometry-based proteomic and metabolomic results.

1.2 Structure of this Thesis

Following the introduction, Chapter 2 covers the relevant technical and biological
background. In Chapter 3-5 of this thesis, we describe three contributions to the field
of computational mass spectrometry.

1. We develop a novel computational method, algorithms, and workflows to study
RNA- and DNA-protein interactions at the level of single amino acids. We apply
these methods to study whole-cell lysates of different organisms, including human
and yeast. In these studies, we identify and characterize novel RNA-binding
proteins. Compared to existing high-throughput methods for the analysis of
Ribonucleoproteins, our method is able to pinpoint protein-nucleotide interactions
with amino acid resolution and is applicable to single complexes as well as whole
cell lysates. Our method, therefore, is a significant contribution to the field
of protein-RNA/DNA interaction studies as well as to structural proteomics of
nucleotide-binding proteins.

2. We develop a novel computational method, algorithms, and workflows to investi-
gate the role of microorganisms that partake in substrate metabolism. Metage-
nomic approaches determine organisms present in complex microbial communi-
ties. In contrast, the presented computational metaproteomics approach allows
answering questions about the function and biochemical repertoire of these or-
ganisms. Compared to existing, single software, or script-based solutions our
approach allows analyzing high-throughput data from a variety of experimental
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1. Introduction

setups. We detect groups of organisms with similar biochemical activities and
reduce the time for manual analysis from months to few minutes. Our compu-
tational method is a significant contribution to the field of functional metapro-
teomics with possible application to the study of nutrient flow, bioremediation,
and biodegradation processes in microbiomes.

3. We develop a human-readable, computer-consumable data format for the report-
ing of proteomic and metabolomic results to a wider audience. We specify a
tabular file format, together with members of the Proteomic Standard Initiative
(PSI), and implement tools for reading and writing the file format in OpenMS.
This allows to report mass spectrometry-based proteomics and metabolomics
results in parallel.

This thesis finishes with a conclusion in Chapter 6.
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Chapter 2

Background

2.1 Proteomics and Metabolomics

Proteomics and metabolomics are interdisciplinary research fields that study struc-
ture, function, and interaction of proteins and metabolites. They employ large-scale
experimental techniques that allow acquiring data at the level of cellular systems to
whole organisms. The main analytical method to identify, characterize or quantify
proteins and metabolites is mass spectrometry (MS) combined with chromatographic
separation.

2.2 Mass Spectrometry-based Proteomics and Metabolomics

In mass spectrometry-based proteomics and metabolomics, biological samples are
extracted, prepared, and separated to reduce sample complexity. The separated analytes
are ionized and measured in the mass spectrometer. Mass and abundance of ions are
stored in mass spectra and used to identify and quantify the analytes in the sample
using computational methods. The quantity and identity of analytes can then be used,
for instance, in biomarker discovery, medical diagnostics, or basic research.

The following sections give a brief overview of the general experimental techniques
employed in the context of this thesis. Metabolomics plays only a secondary role. Thus,
no detailed introduction to this research field is given. Instead, the interested reader
may refer to Dettmer et al. 19 , Wang et al. 20 , Patti et al. 21 , or Kaddurah-Daouk et al. 22

for review articles. In the following sections, the term separation techniques exclusively
refers to analytical methods employed before mass spectrometric measurement. Mass
spectrometry itself is, of course, also a (mass) separation technique.

2.2.1 Sample Preparation

MS sample preparation processes biological samples to make them amenable to mass
spectrometry analysis. Proper sample preparation is, therefore, a prerequisite of any
mass spectrometry workflow. Not surprisingly, errors in sample preparation critically
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affect reproducibility, accuracy, and sensitivity of the whole experimental setup. Because
of the complexity of the proteome and the variety of different experimental setups, no
standard sample preparation procedure exists. Nevertheless, exemplary steps shared
by sample processing protocols may include:

• Cell lysis using reagents that break or dissolve intact cells into its components.

• Inhibition of active enzymes (e.g., endoproteases).

• Centrifugation and depletion of unwanted cell components or proteins.

• Cross-linking, the introduction of chemical bonds between molecules to fixate
them and study their interaction.

• Enrichment steps that increase the relative abundance of molecules of interest.
Usually by filtering of other molecules during lysate preparation.

• Desalting, the removal of ions that otherwise would interfere with mass spec-
trometry analysis.

The lysate can optionally be further processed in-gel or in-solution. One or two-
dimensional gel electrophoresis yields bands of proteins that can be cut out and
analyzed. Proteins in-gel or in-solution are typically reduced and alkylated to break
disulfide bonds between cysteines irreversibly. As a result, proteins permanently lose
their tertiary structure. The linearized proteins then expose enzyme cleavage sites and
can be easily digested in situ. Most commonly, the enzyme trypsin is used, which cuts
after the amino acids arginine and lysine. Because arginine and lysine have basic side
chains, they may contribute a proton charge to a peptide.

Many different techniques exist which label analytes either in vivo or in vitro.
Labeling reagents that introduce heavier isotopes in living organisms or cell cultures are
widely used. Here the organism or cell culture consumes and metabolizes the reagent
building novel proteins that incorporate the heavy isotopes. Chemical labeling is, in
contrast, applied in vitro during sample preparation but may also involve isotopically
labeled reagents.

2.2.2 Separation Techniques

Direct injection of samples into a mass spectrometer is usually not feasible for complex
samples. Separation techniques are applied to reduce sample complexity to the extent
necessary. In mass spectrometry-based experiments, one limiting factor is the number
of analytes that can be measured in parallel. Separation of analytes in time is, thus, the
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preferred mode of segregation. Most common techniques employed are fractionation
and Liquid Chromatography (LC), which both exploit differences in the physicochemical
properties of analytes.

Sample Fractionation

Fractionation techniques separate analytes into fractions of similar physicochemical
properties, for instance, the isoelectric point. Each fraction is then separately subjected
to further separation (e.g., LC) or analyzed directly.

Liquid Chromatography

Figure 2.1: HPLC. The sample material is injected. A High-pressure pump system pumps
sample analytes in a solvent (mobile phase) through a column with chromatographic
packing material (stationary phase). Eluting analytes can be ionized using electrospray
ionization and measured using mass spectrometry.

In mass spectrometry-based proteomics, (high-pressure) liquid chromatographic
separation techniques (HPLC) are the methods of choice to achieve a high degree of
separation (see Figure 2.1 for a schematic overview of an HPLC system). In HPLC,
peptides are separated on a column. Solved in a pressurized liquid (mobile phase)
they are pumped through a solid adsorbent material (stationary phase) packet into a
capillary column. Physicochemical properties of each peptide determine how strongly it
interacts with the stationary phase. The most commonly HPLC technique in proteomics
uses reversed-phase chromatography (RPC) columns. RPC employs a hydrophobic
stationary phase like octadecyl (C18), a nonpolar carbon chain bonded to a silica base,
and a polar mobile phase. Polar molecules interact weakly with the stationary phase
and elute earlier, while non-polar molecules are retained. Interaction can be further
modulated by changing the gradient of solvent concentration in the mobile phase
over time. Elution times in LC are inherently prone to variation, for example, due
to fluctuations in the flow rate of the mobile phase or change of column. Retention
time shifts between runs may be compensated using computational chromatographic
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retention time alignment methods. In the LC-MS setup, the column is directly coupled
to the ion source of the mass spectrometer.

2.2.3 Mass Spectrometry

MS is an analytical technique used to determine the mass of molecules. In order to
achieve highly accurate and sensitive mass measurements at the atomic scale, mass
spectrometers manipulate charged particles using magnetic and electrostatic fields.
The fact that charged particles are much easier to manipulate was recognized several
centuries ago and utilized by the early pioneers of mass spectrometry. Wilhelm Wien
(1864-1928) was the first who applied magnetic and electrostatic fields to separate
charged particles (1899). Sir Joseph J. Thomson (1856-1940) improved on these
initial designs. In the 1950s/1960s Hans Dehmelt and Wolfgang Paul developed the
ion trap, the component that balances magnetic and electrostatic forces in order to
hold ions temporarily and allow further manipulation. Nowadays, mass spectrometry
is used widely outside of basic research. For instance, airport security, drug control in
sport, quality control of waste water, and toxicity screening of food products are just a
few examples that show the wide range of practical applications.

In a typical mass spectrometer, three principal components can be identified (Fig-
ure 2.2):

• Ion Source: The component that produces ions from the analyte.

• Analyzer sorts and filters ions according to their mass and charge.

• Detector counts and records the ions.

Ion Source

A mass spectrometer only handles ions. Thus, charge needs first be transferred to
uncharged particles. The component responsible for the ionization is the ion source. Dif-
ferent types of ion sources and ionization techniques exist with electrospray ionization
being currently the most widely used ionization technique for mass spectrometry-based
proteomics. In 2002, the Nobel Prize in chemistry was rewarded to John Bennet Fenn
for its development. LC-separated peptides or small molecules elute from the column
to pass a metal needle that is held at a high electric potential compared to the entrance
of the mass spectrometer (Figure 2.3). The analytes in-solution form a cone shaped
drop (Taylor cone) at the tip of the needle. The Taylor cone transitions into a jet of
highly protonated droplets that get further dispersed into a fine aerosol. Droplets are
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Figure 2.2: Components of a mass spectrometer. Eluting analytes are ionized in the
ion source which makes them applicable to mass separation in the mass analyzer. Ion
detectors record ions and store them as peaks in mass spectra.

accelerated through a heated, depressurized region resulting in solvent evaporation.
With decreasing size of the droplets, the density of charged particles at the surface of
the droplets is further increased. If the radius gets smaller than the Rayleigh limit, the
electric repulsion between like charges is high enough to rapidly break the droplet into
even smaller fragments (Coulomb explosion). At this final phase of electrospray ioniza-
tion, an ion has lost all associated solvent molecules. The resulting ions potentially
carry multiple charges and enter the high vacuum parts of the mass spectrometer as a
continuous stream in the gas phase. Electrospray ionisation (ESI) is a so-called soft
ionization technique as it produces charged ions without analyte degradation.

Mass Analyzer

Today, the most commonly used mass analyzer in proteomics are time-of-flight (TOF)
mass analyzers, quadrupole mass filters, and orbitrap analyzers. In TOF mass analyzers,
the ions are accelerated in an electric field. The flight time of an ion allows calculating
the velocity which in turn is used to calculate the mass-to-charge ratio (m/z). Varying
the electric field allows filtering certain mass-to-charge ratios before they enter the
detector.

In quadrupole mass filters, ions pass through an oscillating electric field created by
four parallel rods. For a particular voltage, only ions in a certain mass-to-charge range
will reach the detector.

The orbitrap23 is an ion trap mass analyzer (and detector) that traps ions in orbital
motion between a barrel-like outer electrode and a spindle-like central electrode
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Figure 2.3: Electrospray ionization. A stream of charged droplets emerges from the cone
shaped drop (taylor cone) at the tip of the electrospray needle. Droplets get accelerated in
an electric field between the tip and the mass spectrometer. Droplets shrink due to solvent
evaporation in a heated and depressurized region. The resulting, nearly solvent free ions
enter the mass spectrometer.

allowing for prolonged mass measurement (Figure 2.4). As a result of the prolonged
mass measurements, a high mass resolution can be achieved. Upstream to the orbitrap,
a curved linear trap (C-trap) is used to decelerate and collect ions. A package of ions
with reduced kinetic energies is then channeled into the orbitrap analyzer. The axial
oscillation frequencies in the orbitrap are recorded via an image current. The Fourier
transform of this raw signal is used to calculate the mass-to-charge ratios of ions.

Detector

The last component of the mass spectrometer is the detector. It performs the actual
quantification of ions that passed through the mass analyzer. Ion intensities (a value
that relates to its abundance) and the mass-to-charge ratio are recorded in a mass
spectrum. The simplest type of detector is the Faraday cup. Upon collision of an
ion with the detector plate, electrons get removed, and the compensating current
is detected. More advanced detectors like the electron multiplier amplify the weak
current of the initial collision by several orders of magnitude. An avalanche-like
multiplication of emitted electrons between dynodes results in a higher current and,
therefore, higher sensitivity. In both detector types, the ion loses its charge upon
collision. These techniques are, thus, referred to as destructive detection techniques.
In contrast, the orbitrap analyzer performs non-destructive m/z detection. Here, the
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Figure 2.4: Orbitrap mass analyzer and detector. Ion packages from the C-trap are
streamed into the orbitrap. The oscillating ions are modulated using a voltage ramp,
and the resulting signal is read out using an amplifier circuit. Artwork by Thermo Fisher
Scientific, (CC-BY-SA 3.0).

principle of electrostatic induction caused by charged particles in close proximity is
used. Oscillation frequencies are then determined from this image current which in
turn allows determining the mass-to-charge ratios of the ions. Because ions do not
collide but oscillate in an ion trap, their mass-to-charge ratio can be measured over
an extended time scale. Taken together, a higher mass accuracy is achieved at the
cost of longer measurements time for each spectrum. In this thesis, we exclusively
used orbitrap mass analyzers to obtain high-resolution mass spectra. A mass spectrum
consists of a set of m/z, intensity pairs - so-called mass peaks (see Figure 2.5 for a
visualization of a mass spectrum). To reconstruct the actual mass (m) from the mass-
to-charge ratio (m/z), the charge number (z) must be determined. Usually, this is done
by computationally detecting isotopic peaks from different isotopic composition of the
molecule. m/z differences between isotopic peaks match the m/z introduced by the
additional neutron. These characteristic m/z differences, thus, allow deriving mass
and charge of an ion.

Complex samples typically give rise to several thousand spectra and are stored as
raw data files. Figure 2.6 visualizes such set of mass spectra as a two-dimensional
map of mass peaks. In computational mass spectrometry, the list of spectra is called
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Figure 2.5: Mass spectrum as recorded by a mass spectrometer. Peak intensities are
related to the ion abundances (e.g., the detected ion current).

a peak map. For a formal definition of basic terms relating to mass spectrometry see
Appendix B.

2.2.4 Tandem Mass Spectrometry

A tandem mass spectrometer is capable of performing multiple rounds of mass measure-
ments. In the first round, the mass spectrometer records a survey scan over the full m/z
range. A subset of precursor ions is automatically selected from the survey scan. For
each precursor, the instrument opens up a small m/z window, the so-called precursor
isolation window (Figure 2.7), to collect ions for fragmentation in a collision cell. After
fragmentation, fragment ions are measured in the second round of mass measurements.
The resulting spectrum is called a tandem mass spectrum (MS/MS) (Appendix Figure
B.1). Most widely used fragmentation techniques are collision-induced dissociation
(CID), higher-energy collision dissociation (HCD)24 as well as electron-transfer disso-
ciation (ETD)25. Each method comes with different fragmentation behavior and ion
types (see Appendix Figure B.2 for details).

The majority of fragmentations occur at the backbone of the peptide. Ionized
fragments, corresponding to prefixes or suffixes of the parent peptide differ in length
and form the sequence ions (also: mass ladders or ion series). In addition to the sequence
ions, double backbone cleavage can give rise to internal cleavage ions. If the internal
fragment contains only a single residue, it is called immonium ion and is referred to by
the single letter code of the amino acid. Ideally, the information stored in a tandem
spectrum allows identifying the peptide unambiguously26.
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Figure 2.6: Peak Map of a complex sample displaying several thousand mass spectra,
stacked in retention time. Several thousand peaks, corresponding to different analytes,
can be visually spotted. Darker shades indicate higher ion counts.

Figure 2.7: Precursor (*) and isolation window (shaded) selected for fragmentation
in the collision cell.
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2.3 Computational Mass Spectrometry

Computational mass spectrometry has grown to a large scientific field with a plethora
of methods and tools. In this section, only methods most relevant to the work described
in this thesis are introduced.

2.3.1 Peak Picking

Detectors in mass spectrometers record a continuous signal of mass-to-charge ratios, a
so-called profile spectrum. Because of the limited resolution, the recorded profile peak
is spread out in the m/z dimension and usually has a Gaussian shape. This profile peak
is converted to a single mass-to-charge ratio and abundance pair by integration of the
profile peak abundances. The computational methods used to convert spectra recorded
in profile mode to single m/z peaks are called peak picking (also peak centroiding)
algorithms. In the projects of this thesis, we regularly used the Open Mass Spectrometry
(OpenMS) peak-picking algorithms27.

2.3.2 Quantification

Mass spectrometry-based quantitative proteomics aims at quantifying the whole set
of proteins in a biological sample. Probing protein expression between experimental
conditions reveals many details on the function and dynamics of a biological system.
Protein quantification is a key task regularly performed to study a wide range of
scientific questions.

Existing techniques can be loosely categorized in labeled and label-free approaches.
Label-free quantification is probably the most direct way of determining quantities of
analytes from several biological samples.28 Label-free quantification algorithms detect
and integrate chromatographic intensities of a peptide. Quantification across several MS
runs is obtained by determining and linking of corresponding peptide signals, so-called
features, between runs (Figure 2.8). While label-free quantification scales to a large
number of experiments, it heavily relies on correct linking of corresponding peptides.
Chromatographic retention time alignment algorithms compensate for differences
in chromatographic elution and reduce mislinked peptides across maps. Labeling
techniques circumvent, to some extent, the problem of linking corresponding peptides
as they allow measuring more than one experimental condition in a single MS run. They
introduce isotopic labels that can be differentiated by the mass spectrometer. The widely
used metabolic labeling technique stable isotope labeling by amino acids in cell culture
(SILAC)29 uses in vivo incorporation of 13C or 15N labeled amino acids. SILAC is most
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Figure 2.8: Label-free quantification. Isotopic intensities of single peptide species and
charge state (features) are detected. Chromatographic elution profiles are integrated
to yield a single feature intensity. Features A and B correspond to the same analyte.
The linking of features between runs (indicated by an arrow) allows comparing feature
intensities.

frequently used to measure peptides from two conditions - often referred to as the light
and heavy channel - in a single MS run. So-called dynamic metabolic labeling techniques,
like stable isotope probing of proteins (protein-SIP)30, quantify to what degree an
isotopic label has been incorporated. Isobaric tags for relative and absolute quantitation
(iTRAQ)31 and Tandem Mass Tag (TMT)32 are in vitro chemical labeling techniques that
attach isobaric tags to peptides from different samples. Fragment ions produced by a
reporter group allows to differentiate and relatively quantify several conditions per MS
run. These quantification techniques yield relative quantities for an analyte and can
be used to calculate fold changes between conditions. Absolute quantification values
(e.g., how many micromoles of a peptide is contained in a sample) are inherently more
complex to obtain. One reason is that different peptides have different physiochemical
properties and ionization efficiency. To obtain absolute quantities isotope-labeled
standards of known concentrations can be added during sample processing. The
relative quantity of a peptide can be matched to the calibration curve of its isotope-
labeled version and converted into an absolute quantity33,34.
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Isotope Patterns

An isotope pattern is defined as the set of peaks related to ions with the same chemical
formula but containing different isotopes35. In Chapter 4, the detection and analysis of
isotope patterns play a central role. Hence, a short introduction to theoretical isotope
patterns is given. Different isotopes of carbon, hydrogen, nitrogen, oxygen, and sulfur
occur in nature. Terrestrial isotope abundances (natural abundances) deviate only
slightly and can, for our applications, be treated as a constant. Appendix Table B.1 lists
mass and natural abundance of common isotopes. For the sake of clarity, we consider
only single charged ions and neglect any mass introduced by the charge. We also
consider only the two most abundant isotopes of an element. Consider a single carbon
atom: two major isotopes occur in nature (12C or the heavier 13C isotope). Because
the relative abundance for 12C is 98.93% and for 13C is 1.07% we expect it to be a
carbon atom with a mass of 12 u with a probability of 98.93% and a carbon atom
with a mass of 13.003355 u with a probability of 1.07%. The mass and probability
pair constitute a theoretical isotope peak, and the set of all theoretical isotope peaks
constitute a theoretical isotope pattern (Figure 2.9).

Figure 2.9: Theoretical isotope pattern of a single carbon atom. Peak intensities (prob-
abilities) correspond to the natural abundances.

The isotope pattern consists of two peaks corresponding to the two isotopic compo-
sitions 12C1 and 13C1. The mass difference between neighboring isotopic peaks in an
isotopic pattern is approximatelyi the neutron mass difference.

For a molecule consisting of N carbon atoms, the probabilities of the theoretical
isotope pattern can be calculated using the binomial distributionii. The probability of

isome relativistic mass defect occur due to a changed binding energy in the nucleus
iiFor elements with more than two isotopes (e.g., sulfur) the corresponding multinomial distribution needs to be

considered in Equations 2.1 - 2.2
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observing the molecule with n 13C and N − n 12C isotopes is:

Pp(n|N) =
�

N
n

�

pn(1− p)N−n, (2.1)

where p corresponds to the relative abundance of 13C. Note that the isotopic pattern
is composed of N + 1 peaks - one for each of the N + 1 isotopic compositions 12CN,
12CN−1

13C1, ...,13 CN. Molecules that only differ in the isotopic composition are called
isotopologues. The theoretical isotope pattern of a C50 molecule is shown in Figure 2.10.

Figure 2.10: Theoretical isotope pattern of a C50 molecule. Note that most of the 51
isotopic peaks have a low probability of occurrence.

Larger molecules, like peptides, are composed of atoms from multiple elements.
The peptide "TESTPEPTIDE" is an amino acids chain of length 11 and elemental
composition C50H79N11O24. The number of isotopic compositions and peaks in the
theoretical spectrum is thus (50+ 1) · (79+ 1) · (11+ 1) · (24+ 1) = 1,224,000. The
exact calculation is usually too computationally expensive for common applications
in computational mass spectrometry and, therefore, rarely done in practice. In fact,
most theoretical peaks have a very low probability of detecting even one ion in a mass
spectrometer. Also, most peaks are so close in mass to their neighboring peak, that even
high-resolution mass spectrometers are not able to resolve them into distinct peaks.
Instead of calculating all theoretical peaks, approximation algorithms are commonly
used to derive probabilities for nominal mass ranges. In this thesis, we exclusively used
an OpenMS implementation that employs a convolution-based method to calculate
probabilities for nominal masses.

In Chapter 4 we artificially increase the relative abundance of an isotope in peptides
using an isotopic labeling technique. It is, thus, relevant how deviation from the natural
abundance influences the shape of isotope patterns. The expected value of the binomial
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distribution from Equation 2.1 is

E[Pp(n|N)] = np.

Artificially increasing the relative abundance of heavier isotopes in a peptide, thus,
increases its average mass (Figure 4.2).

Figure 2.11: Theoretical isotope pattern calculated for a peptide with amino acid se-
quence TESTPEPTIDE and elemental composition C50H79N11O24 with varying RIAs.

In addition, the shape of the binomial distribution changes, as can be derived from
the variance of the distribution:

Var[Pp(n|N)] = np(1− p) (2.2)

If p is artificially increased, the distribution gets broader up to a maximum at
p = 0.5, after which it decreases again (see Equation B.1 for details).

Another quantity relevant in the context of isotopic labeling techniques is the
labeling ratio. It is defined as the proportion of labeled peptide (or protein) to total
peptide (or protein) abundance.
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Feature Detection

Isotopic peaks of an analyte coelute and form chromatographic mass traces. Feature
detection algorithms aim to detect mass traces of a peptide charge variant and assembles
them to a so-called feature. A feature typically stores a reduced set of data instead
of all peaks and mass traces. For example, the monoisotopic m/z, the retention time
of the chromatographic apex, an intensity value, the charge, and a quality score are
sufficient to perform a wide range of subsequent analyses. Different ways of calculating
a single intensity value from the mass trace intensities exist. Typically, the intensity
is calculated by integrating chromatographic peak areas. The quality of a feature
candidate is often assessed according to how well it resembles the isotope pattern of a
peptide. If the peptide corresponding to a feature candidate is known, the elemental
composition can be calculated from the peptide sequence. The theoretical isotopic
pattern derived from the elemental composition can then be compared to the observed
intensities. Depending on the feature detection approach, no sequence information
might be available at that point of analysis. In that case, the feature mass can be used
to calculate an approximate isotopic pattern using the averagine36 model. Fundamental
to this model is a hypothetical amino acid a of mass ma that has an average elemental
composition derived from large protein databases. A peptide of mass mp is then
expected to be composed of mp/ma average amino acids. The elemental composition
of the averagine peptide is then obtained by multiplying the elemental composition
of the average amino acid by its expected occurrence in the peptide: mp/ma. The
approximated elemental composition is used to calculate the theoretical isotope pattern.
Feature candidates that pass a quality threshold (e.g., a minimum correlation to the
theoretical isotope pattern) are accepted as real features. We call the set of all features
detected in a peak map a feature map.

Chromatographic Retention Time Alignment and Feature Linking

Variation in chromatographic retention times of analytes measured in different mass
spectrometry runs hamper comparability and reproducibility of scientific experiments
and clinical studies. Chromatographic retention time alignment algorithms typically
try to find a global transformation of retention times between runs, so that same ana-
lytes share similar retention times. OpenMS implements a pose-clustering approach37

that determines linear transformations between multiple runs (see Figure 2.12 for an
illustration). Application of the transformation yields an alignment that places corre-
sponding features in close spatial (retention time and m/z) proximity. Corresponding
features are determined in a feature linking step. Linked features (also called consensus
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Figure 2.12: Illustration of alignment and linking. Here, the first feature map acts as
a reference to which the other two maps are aligned. Transformations are calculated on
corresponding features used to globally transform the feature maps. After the alignment,
features are linked to form consensus features of a consensus map.

features) form a so-called consensus map (Figure 2.12). Consensus maps can be built
from hundreds of runs and allow quantifying peptides in large studies.

2.3.3 Identification

Identification of proteins is an essential task in mass spectrometry-based proteomics
and indispensable for interpretation of the associated quantitative values. In bottom-up
proteomics, proteins are digested into shorter peptides to reduce the sample complexity
and to simplify data processing. Computational methods identify these peptides and
allow inferring the presence of proteins. Several computational approaches to the
peptide identification problem exist.

De Novo Sequencing

De novo methods are database free approaches that directly determine the sequence
of peptides from tandem mass spectra. These methods rely on high-quality spectra.
In the presence of (nearly) complete mass ladders, consecutive amino acids can be
reconstructed from mass differences between fragment ions. In practice, incomplete
fragmentation of the parent peptide results in incomplete ion series, rendering de novo
sequencing more difficult or ambiguous. Detector noise, peaks from co-fragmented
peptides, peaks caused by neutral losses (e.g., water or ammonia loss), internal frag-
ments and mass peaks caused by higher isotopes populate the MS/MS spectrum further
impact the quality of de novo results.
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Database Search

Figure 2.13: Peptide database search (schematic overview). top: Experimental work-
flow: proteins are digested into peptides and measured using tandem mass spectrometry.
bottom: Peptide database search: in silico digestion of a protein sequence database gen-
erates a large set of peptide sequences. Only in silico peptides that match an observed
precursor mass are considered as potential candidates for a peptide spectrum match (PSM).
Theoretical fragment spectra of candidate peptides are calculated and compared to an
observed spectrum. For each sequence assignment, a PSM score is calculated. Typically,
only the top-scoring peptide (i.e., the peptide with best matching theoretical spectrum) is
reported.

Peptide database search is currently the most commonly applied technique. Search
engines (Figure 2.13) leverage information from genomic databases translated into pro-
tein sequences. The protein sequence database gets in silico digested using the specific
cutting rules of the enzyme used in the experiment. Depending on the experimental
setup, in silico peptides carrying post- or cotranslational modifications or modifications
introduced in the sample processing (e.g., oxidation as a result of the exposure to air
or carbamidomethylation from the cysteine blocking reagent) are created. Masses
of in silico peptides are compared with experimentally observed precursor masses.
The set of in silico peptides that match a precursor mass (within a specified precursor
mass tolerance) are candidates for a PSM. Candidate peptides are computationally
fragmented according to the mode of fragmentation (i.e., HCD, CID, or ETD). The
resulting theoretical spectra are compared to the observed spectrum, and a score is
assigned. Usually, only the top-scoring (e.g., best matching) PSM is reported.

Compared to de novo approaches, database search techniques are biased to detect
only known sequences. A restriction that is more and more relativized by increasingly
complete genome databases. Still, incompleteness poses a major issue for research
areas where only incomplete genome information (e.g., metaproteomic studies) are
available.
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Spectral Library Search

Spectral library search compares a database of previously recorded spectra (with
known amino acid sequence) to new spectra. Because this method further reduces the
search space to proteotypic peptides, it often outperforms standard database search
approaches. A major drawback of this method is that spectral libraries for special
research topics (e.g., metaproteomic spectral libraries or spectral libraries of RNA-
protein crosslinks) do not exist.

False Discovery Rate

One goal of many proteomics studies is to report a list of identified peptides. In an
ideal world, these lists would contain only correct (true positives) but no incorrect
sequence assignments (false positives). In practice, this situation is rarely the case,
and one inevitably has to compromise between the number of correct and incorrect
assignments that are reported. The false discovery rate (FDR) is a statistical concept
developed in the context of multiple hypothesis testing that allows evaluating and
assessing the trustworthiness of such a list. A brief introduction to the basic concept of
target-decoy based FDR estimation is given below. Formally, the FDR is defined as the
expected proportion of false positives (incorrect rejections of null hypotheses) among
all positives (rejected hypotheses):

FDR= E[F P/P], if P > 0, FDR= 0 otherwise

where F P is the number of false positives, and P the total number of positives. In
the context of peptide identification, the FDR is thus the expected ratio of incorrect
identifications in the reported list of identifications. As the ratio is, a priori, not known,
several methods have been developed to estimate it from the data. Today, the most
widely used method for FDR estimation in peptide database searches use a target-decoy
approach. The classical target-decoy approach augments the original protein database
such that for every peptide sequence (target) a decoy sequence is included. Each decoy
sequence needs to be constructed in a way that it is (1) not contained in the set of
target sequences and (2) competes with its target sequence for the identification of
a spectrum. Simple methods construct decoys by reversing or shuffling the protein
sequencesi. Thus, theoretical spectra of target and decoy peptides are scored in equal
amounts against an observed spectrum. The highest scoring peptide is then assigned to
a spectrum and all spectra identifications sorted by score. In the list of all identifications,

iReversing and shuffling are usually only performed between enzyme cutting sites. Otherwise, number, length,
or mass of decoy peptides might differ from their corresponding target peptide.
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each assignment of a decoy sequence can thus be spotted as a false positive. A simple
variant of the target-decoy approach assumes that the number of misassigned target
sequences matches the number of assigned decoy sequences. Hence, the total number
of false positives can be estimated as twice the number of reported decoys. Accordingly,
the ÔFDR is estimated as the ratio between twice the number of observed decoys and the
number of identifications. So far we only considered a list containing all identifications.
In practice, we often want to report a list of top scoring identifications that do not exceed
an expected FDR. Controlling the FDR by choosing a smaller threshold truncates the list
of reported identifications and decreases the expected ratio of incorrect identifications.
The FDR is defined on a set of identifications, while a statistically related quantity, the
q-value38, is defined for single identifications. The q-value of an identification is defined
as the minimal FDR threshold at which the identification is still reported.

Protein Inference

Protein inference is the task of inferring proteins from identified peptides. The central
idea of protein inference approaches is that identified peptides provide evidence for the
presence of proteins that contain the peptide’s sequence. In case a peptide sequence
maps to a single protein sequence, the assignment is unambiguous and provides strong
evidence for the presence of the protein. If multiple, unambiguous peptides, map to the
same protein, then the confidence in the protein identification is increased. If a single
peptide maps to multiple proteins, the assignment is ambiguous. Different approaches
exist that try to resolve ambiguities, but complete removal is usually not possible. On
approach is to report ambiguity groups that list the proteins that cannot be distinguished
based on the identified peptides. Several ways to define and report protein lists and
ambiguity groups have been proposed. For example, a simple maximum parsimony
approach determines the smallest set of proteins and groups sufficient to explain the
identified peptides.

2.3.4 The OpenMS Framework

OpenMS is an open-source framework for the analysis of mass spectrometry-based
proteomic and metabolomic data. It is divided into three conceptual layers ranging from
low-level programmatic access to full-featured analysis workflows (see Figure 2.14)

1. The OpenMS core library is a C++ library targeted to bioinformaticians and method
developers with sound programming skills. It offers the richest set of functionality
and is primarily intended for implementing and testing novel algorithms.
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2. The OpenMS pipeline (TOPP) tools are command line applications that each
perform a single, well-defined task. They are targeted to bioinformaticians
and method developers that want to apply well-established processing steps to
their data. For example, to implement novel variants of existing data processing
protocols. They constitute building blocks for larger and more complex processing
workflows.

3. The OpenMS workflows typically perform higher level analysis tasks like biomarker
discovery or label-free quantification. They are constructed and executed in
workflow systems (e.g., KNIME, Galaxy39 or the OpenMS Pipeline Assistant
(TOPPAS)), and allow for complex analysis tasks by chaining tools. Full-featured
workflow and data integration platforms like KNIME allow combining TOPP
tools with an extensive set of external tools for statistics, machine learning,
or cheminformatics. This approach enables highly flexible analysis tasks by
combining both computational data processing and downstream analysis in a
single workflow.

OpenMS provides computational mass spectrometry functionality at the level of
algorithms, tools, and workflows and can be used to quickly adapt to the ever-changing
challenges in computational mass spectrometry. Novel instruments are frequently
presented by manufacturers, and new experimental methods are published on a daily
basis. In some cases, these changes only require a subtle change at the level of an
existing workflow, like adding a novel signal processing step for spectra filtering. In
other cases, a novel tool providing a functionality not contained in other tools might be
needed. Conceptually different analysis approaches or experimental protocols might
even require developing novel algorithms. Each of these commonly occurring tasks
can be addressed with OpenMS at the appropriate level, while a maximum degree of
reusability of existing code, tools or workflows is retained. As a whole, OpenMS is
designed in a modular fashion to be highly flexible and customizable. This differentiates
OpenMS from other existing monolithic applications that are usually specialized on
one particular type of analysis.

The OpenMS Core Library

OpenMS started as pure open source C++ library for metabolomic and proteomic data
analyses. Since the beginning, its aim has been to provide efficient data structures
and algorithms for common data processing tasks. It builds on standardized and open
formats for reading and writing raw data from mass spectrometers and analysis results.
Computational biologists and bioinformaticians can build on a proven code base to
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Figure 2.14: OpenMS framework: The OpenMS core library builds on a set of external
libraries that provide database access, an abstraction layer for system specific functions
as well as algorithms and data structures from other domains (e.g., machine learning).
The OpenMS TOPP tools are small applications built using the OpenMS core library. TOPP
tools act as building blocks for arbitrary complex workflows executed in common workflow
systems like KNIME or Galaxy, as well as in the OpenMS pipeline assistant TOPPAS.
pyOpenMS provides access to OpenMS functionality using python bindings for prototyping
and scripting.

rapidly develop novel algorithms and tools. Development of the OpenMS library was
started in 2003 as an academic initiative led by Prof. Knut Reinert (FU Berlin) and
Prof. Oliver Kohlbacher (EKU Tübingen).

Core principles of the OpenMS library are:

• The open source model. The permissive license (3-clause BSD) allows to freely
use OpenMS in both academic as well as commercial contexts. Source code and
executables are available via the project homepage: http://www.openms.de.

• A broad platform support. OpenMS supports all major operating systems (Mi-
crosoft Windows, MacOS, and Linux-based systems).

• Extensive coverage of computational MS-related entities and tasks. OpenMS pro-
vides over 1,300 classes, including data structures for peaks, spectra, mass traces,
chromatograms and features and algorithms for signal processing, spectrum
generation, isotope pattern matching, and mass trace detection.

• Adhering to standards. OpenMS uses open data standards for reading and writing
mass spectrometric data as well as analysis results.

OpenMS itself builds on external open-source libraries that deliver proven and
well-tested functionality:
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• The Qt40 library acts as a platform abstraction layer providing coherent file system
and web access as well as visualization components.

• The Xerces41 library is used for parsing and writing the various XML-based
formats supported in OpenMS.

• The COIN-OR42 (Computational INfrastructure for Operations Research) library
provides linear and non-linear optimization.

• The libSVM43 machine learning library, which provides support vector machine
based classification and regression.

• The Eigen44 header-only library provides algorithms and data structures for fast
linear algebra calculations.

• The WildMagic45 libraryiii is used for spline interpolation and regression.

• The Boost46 libraries, a collection of peer-reviewed and portable C++ libraries,
is mainly used for regular expression matching.

The OpenMS library can be divided into a stable core part, consisting of basic data
structures representing simple entities like amino acid sequences, peaks, spectra, or
chromatograms. Building on these basic data structures, the core part also contains
more complex data structures for representing all spectra of an MS experiment and
its associated metadata. Higher-level functionality relies on these kernel classes and
provides read and write support for several standardized data formats. File handlers
allow reading the acquired spectra from files into the internal data structures. Opposed
to the stable core part, a large number of data processing, data reduction, and data
analysis algorithms exist that are regularly extended or adapted to novel methods and
instruments. The example below demonstrates how such a multi-threaded spectrum
processing algorithm is realized using the OpenMS library.
1 // C++ example (excerpt):

2 // Retain the 400 most intense peaks in a spectrum

3

4 // construct a spectrum filter

5 NLargest nlargest_filter = NLargest (400);

6

7 // parallelize loop for concurrent execution using OpenMP

8 #ifdef _OPENMP

9 #pragma omp parallel for

10 #endif

11 for (int i = 0; i < static_cast <int >( spectra.size()); ++i)

12 {

iiinow superseded by the geometric tools library
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13 // sort peaks by mass -to-charge position

14 spectra[i]. sortByPosition ();

15

16 // apply filter and keep only the 400 highest intensity peaks

17 nlargest_filter.filterPeakSpectrum(spectra[i]);

18 }

In addition, OpenMS provides Python bindings for most of its classes. The simple
example below shows how pyOpenMS can be used for spectrum processing:

1 # pyOpenMS example: centroid the first spectrum in an experiment

2 import pyopenms

3

4 mse = pyopenms.MSExperiment ()

5 fh = pyopenms.FileHandler ()

6

7 # load spectra from mzML file

8 fh.loadExperiment(filename , mse)

9

10 # select the first spectrum

11 spec = mse[0]

12

13 # centroid spectrum using the OpenMS peak picker algorithm

14 picker = pyopenms.PeakPickerHiRes ()

15 newspec_out = pyopenms.MSSpectrum ()

16 picker.pick(filtered_spec , newspec_out)

The OpenMS Tools

In proteomic and metabolomic research it became very early evident that data analysis
and data processing steps vary greatly between different experimental setups. New
experimental techniques, as well as constantly evolving instruments, require flexible
data processing and analysis workflows. Combining these into single software applica-
tion has only been possible for a subset of techniques and experimental setups. TOPP
tools are command line tools that provide a common interface for tool configuration
and use open data exchange formats for passing data between tools. Each of these
command-line applications acts as a building block of defined functionality. Nearly
arbitrary complex analysis workflows can be obtained by chaining these tools together
using scripts or as components in workflow systems. As of today, more than 158 TOPP
tools for mass spectrometry analysis have been developed using the OpenMS library47.
The functionality of TOPP tools ranges from file conversion and filtering, over MS data
processing and data reduction to identification and quantification of metabolites and
proteins. For several existing third-party applications, wrappers are provided in TOPP
(e.g., peptide identification with OMSSA48, X!Tandem49, Mascot50, MyriMatch51, or
protein inference with Fido52) that can be executed in combined workflows.
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Figure 2.15: TOPPView is the main application for visualization of raw spectra, iden-
tifications and quantified analytes in OpenMS. It features, amongst others, 2D and 3D
visualizations of peak maps using color-coded intensities, manual and automated annota-
tions of mass peaks. The capability to execute TOPP tools from within TOPPView allows
to quickly inspect results and optimize parameters.

In addition to command line tools, OpenMS provides the graphical application
TOPPView (Figure 2.15) to examine raw spectra, the effects of data processing steps
as well as results of identification and quantification tools. The TOPPView application
provides graphical dialogs to configure and run TOPP tools. Inspecting the result allows
optimizing tool configurations to find the best parameters for a particular type of data
or instrument.

Integration into Workflow Systems

Script-based data processing using TOPP tools is a powerful way to perform complete
data processing workflows. They can be run locally or on grid environments allowing
the analysis of large amounts of data. Workflow systems assist the user in building
complex processing pipelines by providing a graphical user interface and, hence, reduces
the need to write scripts. In addition to an increase in user-friendliness, the modern
workflow system KNIME acts as an integration platform for a large number of tools
from different sources. For instance, plugins can be installed that bundle tools from
cheminformatics, genomics, statistics, machine learning, or in the case of the OpenMS
plugin: tools for the analysis of proteomics and metabolomics data. To build a workflow,
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KNIME nodes are placed in the workflow editor, each node representing a processing
action, input or output data. Data flow between nodes is indicated by connections
between incoming and outgoing ports (Figure 2.16). Integration of TOPP tools in
KNIME is performed in an automated process that:

1. invokes each tool to generate a parameter description including a short documen-
tation stored in a common tool description file (CTD) file,

2. uses the Generic KNIME Nodes (GKN) framework to generate nodes from a CTD
file. Like other KNIME nodes generated using GKN, they allow to configure and
execute the underlying tool in KNIME,

3. bundles all KNIME nodes, TOPP executables and OpenMS library for integration
into the OpenMS KNIME community nodes.

Figure 2.16: KNIME Simple OpenMS workflow. yellow nodes: TOPP tools, orange/red
nodes: input and output files, turquoise nodes: loop logic for sequential processing of
file lists. Data flow between nodes is indicated by lines connecting incoming and outgoing
ports (gray squares). Traffic light symbol below nodes indicate the node’s status.

Downstream processing of identification and quantification results are conveniently
performed in KNIME. KNIME provides a rich set of nodes for statistical analysis and
visual data exploration. The final results obtained after workflow execution may
constitute potential biological relevant findings that can be published or give rise to
follow-up experiments.

Upon publication, both results and computational workflow - including the raw
mass spectrometry data - can be provided to other researchers to inspect and reproduce
findings. Using OpenMS in KNIME, therefore, allows achieving a level of computational
reproducibility rarely observed in practice. Unfortunately, custom scripts or obscure
intermediate steps are still regularly employed.
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Role of OpenMS in this Thesis

During the time of this Ph.D. thesis, the author has been an OpenMS core developer
and responsible for maintenance, coordination of development efforts as well as release
management. The MetaProSIP and RNPxl TOPP tools presented in this thesis, as well
as code to read and write mzTab files, have been developed by the author and were
integrated into OpenMS.
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Chapter 3

Single Amino Acid Assignment of Nucleotide-

binding Sites in RNA- and DNA-binding

Proteins

The content of this chapter is to a large extent part of the manuscript:

Photo-cross-linking and high-resolution mass spectrometry for assignment of
RNA-binding sites in RNA-binding proteins

Katharina Kramer+, Timo Sachsenberg+, Benedikt M. Beckmann, Saadia Qamar, Kum-Loong Boon, Matthias W.

Hentze, Oliver Kohlbacher, Henning Urlaub Nature Methods 11, 1064–1070 (2014)

+ These authors contributed equally

3.1 Introduction

Long chains of nucleic acids, RNA and DNA molecules, constitute main classes of
biomolecules found in all living organisms. They play pivotal roles in a variety of
cellular processes and are essential for survival and replication. Messenger RNA
(mRNA), the most well-studied class of RNA, gets transcribed from endogenous DNA
molecules, the primary carrier of the genetic information. Proteins are formed by
the translation of the genetic information stored in the mRNA molecule into amino
acid chains. Proteins carry out the main enzymatic activities and catalyze the rich
set of biochemical reactions in an organism. Some recent theories suggest53 that the
predominant role of proteins is probably a more recent development in the evolution
of self-replicating systems54. Instead, RNA-based enzymes, so-called ribozymes, have
been catalyzing specific actions similar to protein enzymes in ancient cells and might
have also had a role as a carrier of genetic information as DNA molecules55 today. While
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proteins, as well as DNA, have taken over many of their original tasks, many important
cellular processes still rely on temporary interaction or stable complexes of nucleic acid
chains with proteins. Ribonucleoproteins (RNPs) form functionally diverse complexes of
RNA and protein molecules56 and are often seen as evolutionary descendants of the old
RNA processing machinery. RNPs differ significantly in function, structure, and mode
of RNA-protein binding57. The most well-studied RNP, the ribosome58 (Figure 3.1), is
a key player in the aforementioned synthesis of proteins. Other well-known examples
are heterogeneous ribonucleoprotein particles (hnRNPs), small nuclear ribonucleic
proteins (snRNPs), telomerases, components of the editosom, or small RNA-associated
protein complexes (e.g., the RNA-induced silencing complex (RISC)). DNA-protein
complexes play an equally important role with functionally diverse classes, such as
histones, helicases, or transcription factors. It should be noted that RNA- or DNA-
binding protein complexes should no be considered distinct. Recently, more and more
cases of DNA- and RNA-binding proteins (DRBPs)59 have been discovered.

3.1.1 Motivation

Figure 3.1: A prokaryotic ribosome dur-
ing translation initiation (pdb:4v4j). Six
RNA chains (4702 nucleotides) are colored in
yellow, and 48 proteins chains (6163 amino
acids) in red.

RNPs are usually essential17 for the survival
of an organism. Often, small genetic alter-
ations in one of its components induce severe
effects on the organism scale18 and are associ-
ated with well-known diseases like amyotrophic
lateral sclerosis (ALS)60 or premature aging syn-
drome61.

Recently, the use of bacterial RNPs for
genome editing (e.g., CRISPR/Cas system62),
has gained popularity as a powerful tool. Not
surprisingly, there is an enormous interest in
RNPs for basic as well as clinical research.
Progress in these fields is currently hampered
by the lack of structural information on large
protein-RNA/DNA-complexes. Therefore, little
information is known about the particular details of protein-RNA/DNA interactions -
especially at the resolution of single amino acids and nucleic acids in contact.

Several techniques have been developed in the past and are currently used to
investigate structure and interaction of protein-RNA/DNA complexes.
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3.1.2 Structure Elucidation

In general, the largest amount of structural information is obtained by techniques
that allow reconstructing the spatial locations of nucleotide and protein atoms directly.
Classical techniques (often applied in combination) are X-ray crystallography (XRC)63,
nuclear magnetic resonance spectroscopy (NMR spectroscopy)64, and cryo-electron
microscopy (cryo-EM)65. In XRC, a three-dimensional image of electron densities can
be calculated from diffraction patterns obtained by X-ray irradiation of crystallized
molecules. Densities, in turn, allow reconstructing the atomic positions of the molecule.
In NMR spectroscopy, nuclei absorb electromagnetic radiation at a specific resonance
frequency that depends on the magnetic field and isotope. Atomic positions can be
reconstructed from pairwise distance or angular constraints obtained by observing
interactions between atoms in close proximity. Single-particle analysis using cryo-EM
has shown some recent progress and allows to investigate complexes with limited con-
formational heterogeneity66. In a variant of cryo-EM, a large number of 2D projection
images are generated from a frozen layer containing many copies of the protein complex
of interest. Projections from different orientations are combined and allow to increase
resolution as well as to generate a 3D reconstruction of the structure. While XRC, NMR,
and cryo-EM have been successfully used to resolve 3D structures of protein-protein
complexes, they have some restrictions when applied to RNA/DNA-protein complexes.
Often these complexes do not crystallize, have too low yields, or are not applicable
to in vivo studies. They are low-throughput methods by design and are not suitable
for screening novel interactions between a large number of different molecules as
obtained from complex samples. Also, they typically require highly purified complexes
exhibiting a large degree of conformational homogeneity.

Recently, complementary techniques have been introduced that combine cross-
linking with enrichment of the cross-linked heteroconjugates. Cross-linking immuno-
precipitation (CLIP), coupled with high-throughput sequencing (HITS-CLIP or CLIP-seq)
is a transcriptome-wide cross-linking method that combines UV cross-linking and im-
munoprecipitation67. Photoactivatable-Ribonucleoside-Enhanced CLIP (PAR-CLIP)68

extends HITS-CLIP in that it introduces nucleoside analogs with increased photoreac-
tivity to increase the yield of the cross-linking reaction. The purified and cross-linked
complexes obtained by HITS- or PAR-CLIP are investigated with deep sequencing to
determine the cross-linked nucleotides. Unfortunately, only partial information on the
interaction is obtained, since the amino acids in contact remain concealed by these
methods.
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We propose a novel experimental and computational method and workflow for the
identification of nucleotide-binding sites in nucleotide-binding proteins. It differs from
existing approaches as it combines UV-induced cross-linking, enrichment and novel
methods for computational mass spectrometry to pinpoint the cross-linking site in an
automated fashion. To this end, we solve two intermediate objectives by providing
computational methods for:

1. The automated identification of the cross-linked peptide-RNA/DNA pair.

2. The automated localization of the cross-linking site on the peptide.

Figure 3.2 illustrates the conceptual difference between identification and localization.
Automated identification (see Section 3.2), as described in our publication69, deter-
mines the cross-linked/oligonucleotide pairs. At that point, no automated localization
of the cross-link on the peptide chain was performed. Instead, extensive manual frag-
ment annotation of identified heteroconjugates was used to manually pinpoint the
exact cross-linked amino acid in peptides. With an increased understanding of the frag-
mentation chemistry of cross-links, we were later able to automatize the localization
of cross-links (see Section 3.3).

Figure 3.2: Cross-link identification and localization. Identification of peptide (red)
and nucleotide (yellow) heteroconjugates provide information on the cross-linked regions
in a protein complex. Localization of the cross-linked nucleotide on the peptide allows to
accurately pinpoint the cross-linked amino acids.
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3.2 Automated Cross-Link Identification

In order to identify cross-linked heteroconjugates, several challenges need to be ad-
dressed. First and foremost, an experimental method needs to be established that
allows to induce and measure cross-links using mass spectrometry with high sensitivity.
This involves experimental enrichment and sample processing steps to increase the, in
general, low expected yields of cross-links. As no computational tools and algorithms
for spectra processing and identification of cross-links exist, these need to be developed.

3.2.1 Methods

Similar to the PAR-CLIP and HITS-CLIP methods, we use photo-induced cross-linking
to form stable protein-RNA complexes, followed by enrichment of cross-links. Instead
of deep sequencing, we measure cross-links by high-resolution mass spectrometry
(Figure 3.3). The resulting spectra are analyzed using an automated computational
workflow that supports joint analysis of the UV-irradiated sample along with a non-
irradiated control. Joint analysis of irradiated sample and control sample allows us to
computationally reduce the number of false-positive detections using custom-developed
tools and workflows. Additionally, we developed the tool RNPxl that identifies cross-
linked peptide-oligonucleotide moieties. To ease manual validation and localization of
the cross-link, the OpenMS application TOPPView has been extended to visualize the
identified spectra along with the identification results. The validated spectra are then
compared to existing knowledge (e.g., known protein structure, annotated domains)
and interpreted in its biological context.

Figure 3.3: Overview of the RNPxl experimental workflow UV-irradiated protein-RNA
complexes and non-irradiated control are jointly prepared for LC-ESI-MS/MS on a Thermo
Fisher Orbitrap mass spectrometer. Both mass spectrometry runs form the input into the
automated data-processing pipeline. Potential cross-links are determined and manually
validated. If available, interpretation of identified cross-links is performed based on
structural, functional information or annotated domains. Adapted from Kramer et al. 69 .
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Cross-Linking and Enrichment

The majority of proteins in a cell lysate do not interact with RNA molecules. Those
that do interact form either stable or transient complexes16. When exposed to UV light,
covalent bonds between atoms of partner molecules in close proximity are formed in the
complex (Figure 3.4). The chemistry of cross-link formation is not yet fully understood.
According to Meisenheimer and Koch 70 , Williams and Konigsberg 71 cross-links might
be a formed by a free radical mechanism. Upon UV absorption, the excited base
abstracts a hydrogen atom from the adjacent amino acid residue to form a pyrimidinyl
radical. A zero-length cross-link is then formed by radical combination (see Appendix
Figure C.1).

As the newly formed RNA-protein heteroconjugates are few (1% or lower72) when
compared to the number of noncross-linked proteins and RNA molecules in the sample,
additional enrichment steps need to be performed.

Figure 3.4: Cross-linking of amino acids and nucleotides is induced by irradiation with
ultraviolet light at a wavelength of approx. 254 nm. Asterisks illustrate newly formed
covalent bonds between proteins (red) and RNA (yellow).

Sample processing starts with the digestion of denatured proteins and RNA into
manageable sizes. Proteins are first denaturated in urea buffer and digested into
peptides using the endopeptidase trypsin. The single-stranded and denatured RNA
is hydrolyzed by ribonucleases. As a result, noncross-linked RNA oligonucleotides
are removed and short (one to four nucleotides), cross-linked RNA remains bound to
peptides. If protein complexes bound to large RNAs (e.g., spliceosome or ribosome) are
studied in vitro, an intermediate step of size exclusion chromatography (SEC) can be
performed between proteolytic and nucleolytic digestion. Peptides bound to the large
RNA are retained by SEC, while the smaller, noncross-linked peptides are removed.
Further enrichment can be obtained by chromatographic separation (Figure 3.5).

Filtering of noncross-linked RNA is performed using reversed-phase chromatog-
raphy. Small RNA oligonucleotides do not bind to the C18 material while peptides or
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Figure 3.5: Enrichment of protein-RNA heteroconjugates. After hydrolysis, reverse phase
C18 chromatography removes oligonucleotides. Titanium dioxide (TiO2) solid phase
extraction removes noncross-linked peptides.

cross-linked peptides are retained by the column. The remaining mixture of peptides
with and without bound oligonucleotides can be further separated.

Filtering of noncross-linked peptides can be performed by TiO2 chromatography.
TiO2 chromatography is a widely used technique for the separation of organic phos-
phates73. In proteomics, TiO2 solid phase extraction is the preferred method to enrich
phosphopeptides selectively74. Because nucleotides carry phosphate groups, we use a
similar protocol to separate cross-linked peptides from noncross-linked ones.

For a detailed, protocol style description of the sample processing, the reader may
consult Qamar et al. 75 or Sharma et al. 76 .

Mass Spectrometry Analysis

The purified peptide-RNA cross-links are subjected to nano-liquid chromatography,
electrospray ionization, and tandem mass spectrometry analysis using high-resolution
instruments. We exclusively used Orbitrap instruments manufactured by Thermo Fisher
Scientific. These instruments allow recording high-resolution tandem mass spectra
using HCD fragmentation in data-dependent acquisition (DDA) mode. MS raw files
obtained from the instrument software were subjected to the RNPxl workflow.

Computational Workflow

The computational workflow of RNPxl can be divided into three main steps: data prepa-
ration, data reduction, and cross-link identification with the RNPxl tool (Figure 3.6).

Data Preparation

MS raw data was converted from Thermo Fisher’s raw file format into the mzML
format using msconvert of the ProteoWizard software package77. MzML files were then
processed by TOPP tools (see Appendix 3.6 for a detailed visualization of the RNPxl
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Figure 3.6: Overview of the RNPxl computational workflow.

workflow topology). Mass spectra acquired in profile mode were centroided by the
OpenMS tool PeakPickerHiRes. Both non-irradiated control and UV-irradiated MS
runs were aligned to compensate for chromatographic retention time shifts. Alignment
was performed using the MapAlignerPoseClustering tool.

Data Reduction

Several data reduction steps were applied to remove tandem spectra likely correspond-
ing to noncross-linked peptides, RNA-derived fragments, or contaminants from the
analysis.

Identification-based Filtering of Spectra Matching Peptides and Contaminants:
In order to remove spectra corresponding to noncross-linked peptides as well as known
contaminants, we constructed a pipeline that filters tandem spectra corresponding to
confidently identified peptides and contaminants. First, a standard database search is
performed using OMSSA. We use a target-decoy database created from translated gene
sequences provided by UniProt78. In addition to the proteins of the particular organism,
we add common contaminant sequences as distributed with the MaxQuant software
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package79. We considered several common modifications of peptides induced or
enriched by the sample preparation procedure in the search. In addition to oxidation of
methionine, carbamylation of lysine and N-termini, we also considered phosphorylation
of tyrosine, serine, and threonine as variable modifications because phosphopeptides
might also be enriched by the use of TiO2. The TOPP tool FalseDiscoveryRate
was used to estimate q-values of tandem spectra. Spectra were then filtered using the
OpenMS tool IDFilter. The list of peptides obtained from the UV-irradiated dataset
was thresholded at an FDR of 1%. The remaining spectra were subjected to further
analysis.

Extracted Ion Chromatogram based Filtering: Pure RNA moieties and unidenti-
fied peptides (or contaminants) may occur in both UV-irradiated sample and control.
Precursors that coelute in UV-irradiated and control sample are most likely not derived
from cross-links (see Figure 3.7). Their tandem spectra can be excluded from further
analysis. For each precursor peak annotation in the UV-irradiated sample, we extract
an extracted ion chromatogram (XIC) (extraction interval: ± 10 s in retention time
and ± 10 ppm m/z around precursor peak) from both UV-irradiated and control. For
both XICs, we calculate a single intensity value as the sum of individual peak inten-
sities and compare them. If the intensity in the control is at least half the intensity
in UV-irradiated, we exclude the tandem spectrum from further analyses. XIC-based
filtering of spectra was implemented in our novel TOPP tool RNPxlXICFilter.

Figure 3.7: XIC Filter extracts XICs at precursor peak positions (blue circle). Signals
present in both UV and control correspond to noncross-linked species and the corresponding
tandem spectra are removed from the UV sample.
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RNPxl Tool

During cross-link formation, the oligonucleotide gets covalently bound to the peptide.
After digestion with RNases, oligonucleotides of a length between one and four remain
bound to the peptide. Before fragmentation, the mass of a cross-link mcross−l ink is simply
the sum of peptide mass mpeptide and oligonucleotide mass mRNA minus some potential
neutral losses mloss that may occur on the oligonucleotide:

mcross−l ink = mpeptide +mRNA−mloss

Figure 3.8: Cross-link masses are, compared to the mass of the noncross-linked peptide,
shifted by the oligonucleotide mass. Fragment spectra remain virtually unchanged.

It has been previously observed that the peptide-RNA cross-link is relatively unstable.
During fragmentation, the oligonucleotide easily breaks apart from the peptide. As a
consequence, sequence ions in tandem spectra with oligonucleotides bound to them are
less often observed. Fragmentation pattern of a cross-linked peptide therefore closely
resembles the pattern of the noncross-linked peptide (see Figure 3.8 and Appendix
Figure C.2). Based on these observations, cross-linkings can be modeled as a modified
peptide with neutral loss of the modification upon fragmentation. The RNPxl tool
generates the peptide modifications that arise in the cross-linking reaction between
peptides and short RNA oligonucleotides. Because the potentially thousands of different
modifications surpass the number of search modifications supported by current standard
database search engines we applied a simple technique we refer to as precursor variant
generation, to make the cross-linking datasets searchable.

Precursor Variant Generation relies on the observation that tandem mass spectra
of the unmodified peptide, as well as cross-links to varying oligonucleotides, share the
same (unshifted) sequence ions. While in contrast, the precursor masses differ by the
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modification delta mass
∆mRNA,loss = mRNA−mloss,

introduced by the oligonucleotide and associated losses. Given an unidentified precur-
sor with mass mp, precursor mass variants can be created that transform the precursor
mass annotation of cross-links to the mass of the noncross-linked peptide.

Figure 3.9: Precursor variants are generated by subtracting all oligonucleotide masses
from the precursor mass. The tandem spectra recorded from the precursors are not
changed. Losses are not explicitly considered in this illustration.

According to the previous equation, this transformation is simply achieved by
subtracting the delta mass from the precursor mass mp,unmodi f ied = mp −∆mRNA,loss.
We generate all precursor mass variants of a tandem spectrum (Figure 3.9). The
synthesized spectra can be queried against the unmodified peptides using a standard
peptide database search. The top scoring precursor variant, corresponding to a distinct
RNA + loss (or lack thereof), is retained, annotated and reported for manual inspection.

In order to generate all possible peptide modification masses for precursor variant
generation, RNPxl in silico synthesizes all nucleotide compositions for oligonucleotides
up to a specified length and applies the potential losses. Additionally, the feasibility
of formed modifications and precursor variants are checked using user provided con-
straints and filtering by plausibility (i.e., if a chemically valid biomolecule is formed).

In vivo, RNA chains are predominantly formed by RNA polymerases. These enzymes
catalyze the formation of phosphodiester bonds between the 3’ carbon of one nucleotide
and the 5’ carbon of the other nucleotide. In the chain extension reaction, a nucleotide
triphosphate is linked to a chain of nucleotide monophosphates under release of
pyrophosphate. In silico calculation of the nucleotide chain and empirical formula
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can be simplified to consider only the net change in elemental composition during the
extension reaction, which corresponds to a simple condensation reaction that involves
adding nucleotide monophosphates without explicitly modeling the full reaction. A
further simplification arises from the fact that only all nucleotide compositions need to
be considered. This implies that the order of nucleotides in the chain can be ignored.

To adapt RNPxl to a variety of experimental setups, we provide several parame-
ters that allow modifying the generation of nucleotide chains. Among others, these
parameters allow employing nucleotide analogs and isotopically labeled nucleotides.

Nucleotides (or nucleotide variants) used by RNPxl can be freely specified using a
single letter code and associated chemical formula of the nucleotide monophosphate. In
the default setup, the standard ribonucleotides are preconfigured. Nucleotide analogs
have been shown to increase reactivity and yield larger amounts of cross-links compared
to the standard nucleotides. In some of our experiments, we used 4-thiouridine (4SU)
(C9H13N2O8PS) as uridine analog (see Appendix Figure C.3a and C.3b for chemical
structures). Changing the default configuration from uridine monophosphate to 4SU
(changing "U=C9H13N2O9P" to "U=C9H13N2O8PS") enables support for the 4SU
analog in RNPxl.

Heavy-isotope labeled nucleotide variants show similar reactivity as the unla-
beled nucleotide. They are primarily used to quantitatively compare labeled and
unlabeled cross-links analogous to a SILAC analysis. RNPxl supports isotopically la-
beled nucleotide variants by specifying isotopes in the chemical formula of a nucle-
oside monophosphate (e.g., guanine with one heavy carbon atom is specified as:
"G=(13)C1(12)C9H14N5O7P").

Specification of a sequence constrains the generation of oligonucleotides on sub-
strings of the provided sequence. In the context of studying single protein complexes,
the nucleotide sequence is often known from complementary methods like PAR-CLIP. A
significant reduction of oligonucleotide candidates can be achieved if this information
is provided. If no sequence is specified, all possible oligonucleotide sequences are
considered.

The maximum oligonucleotide length restricts the oligonucleotide chain to a
maximum of typically, one to four nucleotide oligos. We choose a maximum of four
nucleotides as default for the expected oligonucleotide length after the digestion with
RNases.

Mapping rules provide an easy way to specify potential locations of special nu-
cleotides (e.g., nucleotide analogs or isotopically labeled nucleotides) in sequences.
The default mapping rule is the identity which maps each letter in the sequence to
its corresponding nucleotide. If, for instance, a nucleotide analog may be present at
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the position of the letter ’X’ in "AUGCCXAA" (e.g., corresponding to unlabeled ’U’ and
alternatively labeled uridine ’Y’), ’X’ is mapped to ’U’ and ’Y’. As a consequence, two
peptides: "AUGCCUAA" and "AUGCCYAA" are generated which in turn are then used
as template sequence to produce all oligonucleotide variants (Appendix Table C.3 and
Table C.4).

The minimum count of a nucleotide limits the set of oligonucleotides to those
that contain a minimum number of the specified nucleotide. This feature of RNPxl

is particularly useful if one wants to enforce that a known cross-linked nucleotide is
always part of generated sequences.

Neutral losses of small neutral molecules occur during cross-link formation. De-
pending on the type of nucleotide involved, different neutral losses have so far been
observed. For standard nucleotides, we predominantly observe loss of water and phos-
phoric acid from the precursor. These losses are reflected in the default configuration of
RNPxl. For nucleotide analogs, like 4SU, loss of −H2S must be considered. RNPxl allows
specifying all neutral loss variants that should be generated for each oligonucleotide.

Dithiothreitol (DTT), as discovered in our studies, acts as highly specific, non-zero
length protein-RNA cross-linker80 that gives rises to a precursor adduct (C4H8S2O2,
152 Dalton) on cysteine. We added an option to include this newly characterized
precursor adduct to RNPxl.

Filtering by Fractional Mass. Peptides and oligonucleotides (as well as hetero-
conjugates) differ in their molecular composition. Particularly, in the relative amount
of phosphorus. This difference in molecular composition leads to different fractional
mass (= decimal fraction following the monoisotopic nominal mass) distributions char-
acteristic for different classes of molecules. Because phosphorus exhibits a large mass
defecti, it is - in certain mass ranges and under some oligonucleotide length constraints
- possible to classify molecules solely based on the accurate monoisotopic (= nominal
+ fractional) mass (see Pourshahian et al.81 for details). In RNPxl, we implemented
fractional mass filtering of precursors that cannot correspond to a cross-link.

Automated Database Searches. All generated precursor variants passing the
previous filter criteria are subjected to database search using OMSSA. To keep file sizes
within reasonable bounds, the RNPxl tool generates one batch of precursor variant
spectra for each tandem mass spectrum.

Reporting and Annotation. Search results are read back from OMSSA by the RNPxl

tool. The best scoring PSM is retained and annotated with the respective cross-link
(or unmodified) peptide. Additionally, mass peaks matching to known RNA marker
ions are annotated and stored as metadata. Export of the final identification results

ifractional mass difference of approx. −0.0262385 to the atoms nominal mass
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is performed as tabular separated as well as idXMLii file for further processing and
visualization in TOPPView.

Visualization

To manually validate cross-links a component for visualization of peptide identification
results was developed and integrated into TOPPView (Figure 3.10).

Figure 3.10: TOPPView top: annotated spectrum, bottom: table of identified sequences
and associated metadata (e.g., charge, RNA sequence, marker ion intensities,...)

Manual Validation

Manual validation of cross-link candidates requires some experience in interpreting
mass spectra but typically involve the following steps:

1. Candidates are sorted by search engine score and evaluated by manual inspection
in TOPPView.

2. Similar to manual validation of PSMs, low-quality spectra, precursor m/z misas-
signments or co-fragmentation are easily spotted, and spectra can be discarded.
Optionally XICs from UV-irradiated and control sample can also be compared to
assess the performance of the XIC filtering step.

iian OpenMS file format used to store identification results
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3. Automated a-, b- and y-ion fragment annotations in TOPPView allow to quickly
determine amino acids with adducts (e.g., U−H3PO4, U−H2O or −H2S). In
addition, high-intensity RNA marker, originating from oligonucleotides can be
compared to the RNA sequence.

4. If fragment spectra are dominated by low-intensity signals and incomplete mass
ladders, shifted internal and immonium ions can be used to augment the infor-
mation needed to obtain complete ion-ladders, which in turn allows pinpointing
the cross-linked amino acid.

Prominent but unassigned mass differences of identified cross-links have been
recorded as potential novel RNA adduct.

3.2.2 Results

We subjected samples from three cross-linking experiments to our analysis workflow:

1. human RNPs

2. yeast RNPs isolated with TAP purification of Cbp20

3. yeast RNPs labeled with the 4SU nucleotide analog and isolation with oligo d(T)

The data has been described in detail in our original publication.

Effect of Filtering Strategy

Figure 3.11: Data reduction in a yeast run. 97% of all spectra are discarded because
they did not pass the XIC, ID or fractional mass filter, did not match to cross-linked
heteroconjugates (no XL ID, no ID), or achieved only a low identification score (XL ID
E-value ≥ 0.01). Adapted from Kramer et al. 69 .
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Our filtering strategy was employed on all datasets and in all cases greatly reduced
the number of candidate spectra (Figure 3.11). In a representative yeast run, two-
thirds of initial 9,728 candidate spectra were removed by the ID (29%), XIC (34%) and
fractional mass (3%) filters. After cross-link search, an additional 10% of spectra did
not yield any identification, 6% corresponded to low-scoring peptide identifications.
Of the remaining 17% potential cross-link spectra, 14% were assigned PSMs with a
low score (E-value ≥ 0.01) and removed. The remaining 3% yielded the final list of
cross-link candidates for manual validation. In summary, the total number of 9,728
spectra was reduced to 317 spectra.

We carefully optimized parameters of our filtering approach to remove only tandem
spectra of noncross-linked analytes. Spectra excluded by the filters were routinely
subjected to cross-link search and manual inspection. Except for rare cases, cross-links
found by the RNPxl tool were false positives and often associated with low-quality
spectra. We are therefore confident that our filtering strategy is conservative and
accidental removal of cross-links is expected to happen rarely.

Identified Cross-Linking Sites

Figure 3.12: Cross-linking sites and annotated domains in human proteins (ribosomal
subunits excluded). Adapted from Kramer et al. 69 .
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We identified a total of 189 cross-links on 60 tryptic peptides of 35 different proteins
(Figure 3.12 and Appendix Table C.5) in human (HeLa) samples. In 79% of all cross-
links, the cross-linked nucleotide and in 50% the cross-linked amino acid could be
identified. Most peptides (54) lay in known RNA-binding motifs like RNA-recognition
motifs (RRMs) and K Homology (KH) domain. Of the 20 annotated heterogeneous
nuclear RNP proteins in the human database, our method was able to identify 13
(more than 60%) to be cross-linked. 25 distinct peptides or amino acids covered more
than 55% of the 44 annotated canonical RNA-binding motifs (RRM and KH motif) in
these proteins. In addition to the canonical binding motifs, we also found cross-links
in the less frequently described AAA, the RanBP-type zinc finger, PUA, and coiled-coil
domains.

Figure 3.13: Cross-linking sites and annotated domains in yeast proteins (ribosomal
subunits excluded) (a) yeast proteins isolated with TAP-tagged Cbp20 (b) yeast proteins
isolated with oligo-d(T) (4SU). Adapted from Kramer et al. 69 .

In the first yeast data set, (UV-irradiated yeast RNPs isolated by affinity purification of
Cbp20), we identified 184 peptide-RNA cross-links. Cross-links on 64 tryptic peptides
of 49 different proteins (Figure 3.13 and Appendix Table C.6) were identified in
total. In 89% of all cross-links, the cross-linked nucleotide and in 61% the cross-
linked amino acid could be identified. Most cross-links (137) mapped to ribosomal
proteins (34). Other, nonribosomal proteins were well-known RBPs. Of the annotated
RBPs we identified cross-links for nucleolar proteins 3 and 13 (Npl3 and Nop13),
the polyadenylate-binding protein Pab1, and the single-stranded nucleic acid–binding
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protein Sbp1 with cross-links located in the RRM. Interestingly, we also found cross-
links in enzymes that were not annotated as RBPs: adenosylhomocysteinase Sah1,
alcohol dehydrogenase Adh1, and glyceraldehyde-3-phosphate dehydrogenase Tdh2)
containing a Rossmann fold82, as well as enolase Eno1, inorganic pyrophosphatase
Ipp1, peroxiredoxin Tsa1, phosphoglycerate kinase Pgk1, and pyruvate kinase Cdc19.

In the second yeast data set, (UV-irradiated yeast cells, isolation of polyadenylated
mRNA) we used the 4SU nucleoside analog. Attributed to its higher reactivity, we
obtained a greater number of cross-links (376) as well as a higher coverage of proteins.
161 cross-links were mapped to ribosomal and 215 to nonribosomal proteins (see
Appendix Table C.7). Amongst the class of metabolic enzymes, we found peptidyl-prolyl
cis-trans isomerase Cpr1 and phosphoglycerate kinase Pgk1. Endonuclease PI-SceI
Vma1, the multiprotein bridging factor 1 Mbf1, and elongation factor 1 alpha Tef1.
Interestingly, we also identified DNA-binding proteins such as nonhistone chromosomal
protein NHP6A and NHP6B. Amongst the remaining RBPs, we identified putative
ATP-dependent RNA helicases of the DEAD-box protein family Dbp1 and Sub2, with
the latter being a homolog of the human splicing factor hUAP56. Proteins with RRMs
included the Poly (A)+ RNA-binding protein Pub1. Proteins with KH (initially identified
in the human hnRNP K) were the RBPs Hek2 and ligand activated Scp160. Proteins
with motifs of the Pumilio-homology domain family were Puf3 (Appendix Figure C.5.e-
f), a known mitochondrial surface protein that binds and promotes degradation of
mRNAs encoding mitochondrial proteins. Nucleotide-binding motifs less commonly
associated with RNA binding were found in the cytoplasmic RNA-binding protein Sro9
(HTA-La-type RNA-binding domain), and the polyribosomes associated RNA-binding
protein Bfr1 (coiled-coil domain). Interestingly, we also identified the Transposon
Ty1-LR4 Gag polyprotein Gag-p49, a retrotransposon-derived capsid protein that forms
the structural component of a virus-like particle that encapsulates the retrotransposons
dimeric RNA.

Precursor adducts

Figure 3.14 summarizes the identified and manually validated precursor adducts for
uridine- and 4SU-containing RNA as observed in our yeast experiments. For a detailed
list of precursor adducts observed from human samples, see Kramer et al. 69 , Supple-
mentary Figure 9. More than 90% of all unique cross-linking sites or regions were
assigned from peptide-RNA heteroconjugates with at most two nucleotides. The prefer-
ence for short oligonucleotides is a direct consequence of using endonucleases to digest
RNA during sample preparation. In our experience, generation of tetranucleotides is
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Figure 3.14: Precursor RNA adducts of yeast observed for (top:) RNPs isolated with
TAP purification of Cbp20 (uridine) (bottom:) RNPs isolated with oligo d(T) (4SU).
Cumulative numbers of observed precursor adducts are plotted by occurrence and ordered
by number of nucleotides. Adapted from Kramer et al. 69 .

sufficient for most types of analyses. Nevertheless, it should be noted that the local-
ization of cross-linking sites on the RNA might be ambiguous for short, and therefore,
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more likely non-unique oligonucleotide sequences. The alternative, increasing the
length of oligonucleotides by omitting the digestion step with endonucleases during
sample processing, has detrimental effects on the identification of cross-links. One
reason is that the signal of a cross-linked peptide is distributed to an increased number
of oligonucleotide variants that differ in length, composition, and losses. Another
reason is that tandem spectra of longer cross-links with longer oligonucleotides are
dominated by nucleotide derived fragment ions83. These additional ions interfere with
the identification.

The vast majority of all heteroconjugates contained, at least, one uridine (>98%)
or 4SU (100%). Comparison of the two cross-links obtained from both methods reveal
a certain degree of complementarity: for several proteins (e.g., Npl3, Pgk1, Tef1 as
well as ribosomal proteins) both methods identify different regions of the protein as
cross-linked to RNA while for others (Pab1, Sbp1, and other ribosomal proteins), the
same amino acids and peptides haven been identified. These findings are in accordance
with previous observations84.

Observed losses on the precursor highly depend on the cross-linked nucleotide or
nucleotide analog. For uridine-containing cross-links, a wide range of losses in the
precursor mass is observed. For 4SU, only loss of H2S was observed in all cases.

Given that mainly short oligonucleotides have been found to be cross-linked, we
calculated what fraction of cross-links could be possibly identified using a classic PTM
search and a single nucleotide (and loss variants) as a modification. Only 14%-33% of
the cross-links and 33%-82% of the cross-linking sites/regions could be identified in
the three experiments.

With the exception of aspartic acid (D), asparagine (N), glutamic acid (E) and
glutamine (Q) we observed every amino acid cross-linked to nucleotides (see Kramer
et al.69, Supplementary Table 1-3).

Performance

The processing time of the complete RNPxl workflow typically ranges from hours to
days. For a representative data set and default settings, we recorded a processing time
of ≈ 83 h (single core, Intel Xeon CPU E5-2620). The vast majority of processing time,
in this case, more than 99%, is spent in the OMSSA database searches invoked by the
RNPxl tool. Apart from compute power, disk I/O, and the number of tandem spectra,
processing time mainly depends on the number of precursor variants and variable
modifications considered.
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3.2.3 Discussion

We presented a novel joint experimental and computational method to identify RNA-
protein contact sites at the amino acid, as well as the nucleotide level. We successfully
applied and validated our method on complex samples and were able to obtain addi-
tional or more detailed information on the protein-RNA interaction when compared
with existing methods.

Earlier studies combined UV cross-linking and mass spectrometry to investigate
moderately complex protein-RNA complexes. However, in more complex samples,
especially whole-cell extracts, they only identified the entire protein but not the cross-
linking site. RNA-sequencing based methods like PAR-CLIP identify cross-linked RNA
and nucleotides but do not identify the cross-linked amino acid. Our method can
complement these approaches by leveraging sequence information (see: sequence
restriction, Section 3.2.1) obtained from these methods to more efficiently identify
the cross-linked amino acid. In contrast to mutation studies, our approach is not
biased towards known nucleotide-binding domains or sequence motifs. It allows
discovering novel binding regions that can be interesting targets for follow-up studies -
including loss-of-function mutational studies. The annotation of metabolic enzymes
and transcription factors, as well as of proteins that contain multiple interaction sites,
represent highly interesting research topics that merit further investigations. Recently,
computational predictions of RNA-protein interactions have considerably improved. A
currently open question is how strongly predictive methods are biased to known RNA-
binding domains or binding motifs. In contrast, our method is, in this regards, unbiased
and provides direct evidence that can potentially be used to improve predictors.

Manual validation with available 3D structures and known cross-linking sites demon-
strate the specificity of the cross-linking reaction (see Appendix Figure C.5.a-f). For
instance, in the 80S yeast ribosome85, cross-linking sites were found in close proximity
to the 18S or 28S rRNA. Comparison with existing annotations and 3D structures
also gave rise to potential biological relevant observations. Our approach detected
cross-links at Arg40 and Tyr328 of NHP6A and domain I of the homing endonuclease
PI-Scel. When overlaid with the annotation and 3D structures of NHP6A in complex
with dsDNA86 or domain I of the homing endonuclease PI-Scel87 these are located in
the DNA-binding domain of these proteins with amino acids and nucleotides being in
close spatial proximity. This suggests a DNA and RNA binding capability and potential
role as DRBPs for these proteins that warrant further research. In the case of the
receptor for activated C kinase 1 (RACK1), and in the ribosome-associated proteins
Stm185 and Zuo188, we identified cross-linking sites without spatial proximity of amino
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acids and nucleotides in published structures. Potential explanations are alternative
conformations or involvement in mRNA binding.

The number of identified cross-links and the ability to identify so far unidentified
cross-linked amino acids is a direct result of recent advancements in MS instrumentation
and our RNPxl workflow. Most oligonucleotide adducts and losses have not been
described prior to the discovery with RNPxl. Using conventional peptide database
search modifications with a subset of these adducts would have identified only a
fraction of cross-links. Because only a small percentage (typically about 3%) of spectra
are derived from cross-links, filtering of noncross-linked spectra reduces the amount of
false-positive matches which in turn improves the overall identification performance
(see Kramer et. al69, Supplementary Table 4).

Assuming a continuing improvement of mass spectrometers and sample preparation
protocols we expect even more comprehensive identification of cross-linking sites in
the future.
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3.3 Automated Cross-Link Localization

The precursor variant approach allowed us to automatized the identification of cross-
linked heteroconjugates. To further automatize the localization of the oligonucleotide
on the peptide, to speed up the data processing, and to create an integrated solution
independent of existing peptide search engines, we decided to develop a specialized
cross-link search engine.

3.3.1 Methods

Figure 3.15: Overview: Main steps in peptide and cross-link identification and localiza-
tion in RNPxlSearch.

Conceptually, our cross-link identification engine is an extended peptide identification
engine. Many of the main processing steps in the novel engine have, thus, parallels
in the majority of standard database searches. In addition to identifying noncross-
linked peptides, the novel search engine provides functionality for identification and
localization of cross-links. Figure 3.15 gives an overview of the main steps performed.

Step 1: Spectra Preprocessing

Comparison of theoretical and observed spectra and assignment of a match score is
a central processing step in database search engines. Obtaining a PSM score that
properly reflects the similarity between theoretical and observed spectrum is critical
if false matches should be avoided. In practice, low-intensity detector noise, isotopic
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peaks, neutral losses, and mixtures of differently charged fragments populate a tandem
spectrum. Similar to existing peptide search engines89, RNPxlSearch applies a spectra
preprocessing step that filters tandem spectra. Ideally, only the expected fragment
ion peaks (e.g., a-, b-, and y-ions for HCD-type fragmentation) are retained after the
processing.

1. Deisotoping: The deisotoping filter developed for RNPxlSearch retains the mono-
isotopic peak, annotates the fragment ion charge, and removes higher-isotopic
peaks from the MS/MS. To this end, m/z differences between peaks are compared
whether they match the expected distance between isotopic peaks of charge
three to one. If three consecutive peaks matched the expected distance within
a mass tolerance window of 10 ppm, an isotope pattern is found. Because
deisotoping is done in the first spectra processing step, low-intensity noise peaks
are expected to be present. To reduce the impact of random matches to noise
peaks, we additionally require that isotopic intensities resemble the theoretical
isotope pattern of a peptide or heteroconjugate. We use an approximation of the
averagine model that disallows isotopic intensities to increase after the second
isotope. If an isotope pattern passed the test, fragments from higher-isotopes are
removed, and the charge is annotated to the monoisotopic fragment. Fragments
not part of any isotopic pattern are annotated with zero to indicate an unknown
charge.

2. Conversion to single charge: Multiple charged fragments are converted to single
charge. To this end, the mass-to-charge ratio of the single charged fragment is
obtained from the multiple charged one by multiplication by the charge number
z, followed by a subtraction of (z − 1) proton masses.

3. Noise Filter: The 20 highest-intensity peaks within a sliding window of m/z 100.0
are retained. This filtering step is intended to remove low-intensity signals and
clusters of noise peaks. We used the SpectraFilterWindowMower algorithm
implemented in OpenMS.

4. Top-400 filter: Filtering for the 400 highest-intensity peaks is merely intended to
limit the maximum number of fragment peaks in pathological cases. We applied
the NLargest algorithm implemented in OpenMS.
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Step 2: Identification

In the main processing loop (Figure 3.16), the protein database (in FASTA format)
is digested in silico using user-configurable enzyme settings (see Appendix C.9 for
the list of supported enzymes). The set of unique peptides is processed in parallel
using OpenMP90 as parallelization backend. For each peptide, all fixed and variable
modifications are applied. In addition, and in contrast to standard database search
engines, all RNA/DNA variants are created using the parameters applied in the original
RNPxl tool. The resulting set of masses calculated from all isoforms of a peptide
(including all modifications and (oligo)nucleotide variants) is then queried against the
experimental precursor masses. The precursor mass tolerance used in the matching can
be configured by the user. If the mass of a peptide isoform matches an experimental
precursor mass (within the specified mass tolerance window), it is a candidate peptide.
In the following, we will use the term fragment adducts for nucleotides (with potential
losses) bound to peptide fragments after fragmentation in the collision chamber.

Spectrum Generation

We generate theoretical fragment spectra of each candidate peptide using the Theo-
reticalSpectrumGenerator in OpenMS. To make the theoretical spectra compat-
ible with the scoring function, we configured it to generate full b- and y-ion ladders
but excluded unfragmented precursor ions in the MS/MS. Because a noncross-linked
peptide and all of its cross-linked variants share the same fragment ions, we need to
generate the shared theoretical spectrum only once. Caching and reusing it for all
oligonucleotide variants effectively reduces the time spent on generating theoretical
spectra.

Spectrum Comparison and Scoring

The theoretical spectrum of a candidate peptide is aligned to the measured tandem
mass spectrum to determining which ions are present. For each theoretical fragment,
we try to match an experimental fragment within the specified fragment mass tolerance.
RNPxlSearch calculates the X!Tandem HyperScore to quantify the similarity between
theoretical and experimental spectrum:

HyperScore=
n
∑

i=1

�

Ii · Pi

�

· Nb! · Ny!,

56



Automated Cross-Link Localization

with Ii being the measured fragment intensities and Pi is one for matched peaks (zero
otherwise). Nb! and Ny ! are factorials of the number of matched b- and y-ions and n the
number of peaks in the measured spectrum. We chose the HyperScore in RNPxlSearch,
because it is well established, easy to implement, and has been repeatably proven
to perform well on a large range of experimental setups. Analogous to X!Tandem,
log-transformed HyperScores are annotated (along with sequence and modification) to
the matching spectrum.

Step 3: Localization

After identification, a post-scoring step is performed that aims at localizing the cross-
linking site on cross-linked peptides. This step shares many similarities to modification
site localization algorithms employed in standard peptide search engines. Cross-link
localization relies, like post-translational modifications (PTM) localization, on the
presence and absence of shifted fragment ions in the MS/MS. For example, ions of
the total loss spectrum, where fragment ions never carry any fragment adduct, do
not contain any information at which position the oligonucleotide was bound before
fragmentation. The reason is that prefix and suffix ions corresponding to positions
without nucleotides have the same mass as those that completely lost the nucleotides
upon fragmentation. In the case no or partial losses occurred, some fragment ions still
carry fragment adducts and a distinction is possible. Prefix and suffix ions that include
the cross-linked amino acid carry an additional fragment adduct mass, while those
without adduct are not shifted. In other words: while the shift in precursor mass defines
which nucleotides were bound to a peptide, only the presence and absence of shifted
fragment ions allow drawing conclusions on the position of the cross-link. Ideally,
full mass ladders and all characteristic mass shifts can be annotated. The position
of the cross-link is determined by the first shifted prefix (or suffix) ion following its
unshifted version. Conceptually, PTM localization is very similar as it also leverages the
information contained in the unshifted and shifted ions of mass ladders, but it differs
in the following respects:

1. Typically, PTM localization does not consider mixtures of a total loss spectrum and
potentially multiple partial loss spectra from different types of fragment adducts.

2. It only considers a subset of all residues (e.g., only serine, threonine and tyrosine
in phosphoproteomics).
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Loss-Spectra Generation

Using the RNPxl tool and extensive manual annotation, we were able to gain detailed
information on the fragmentation behavior of peptide-RNA heteroconjugates. A large
number of additionally identified and validated spectra from follow-up experiments
confirmed that fragmentation patterns of heteroconjugates are much more diverse
than those of classical PTMs like phosphorylation or acetylation. Similar to other
chained modifications (e.g., glycosylation) different types of fragmentation can occur.
As stated before, high-intensity peaks are usually derived from fragments without
nucleotide moieties. In addition, several usually lower-intensity peaks can be observed
that are derived from fragments that did not completely lose the nucleotide moieties.
Figure 3.17) summarizes all fragment adducts we observed for uridine-containing
RNA. Fragmentation of a cross-link, thus, produces complex mixture spectra. In these
mixture spectra, fragment adducts may be observed from all major fragment ion types
of HCD fragmentation (a-, b-, y- and immonium ions).

Figure 3.17: Fragment adducts observed if one uridine (with potential losses) is bound
to the precursor (precursor adduct). U’ refers to the uracil base (C4H4N2O2). (*) H3PO4
may refer to either loss of phosphoric acid or loss of metaphosphoric acid (HPO3) and
water (H2O) as these adducts cannot be distinguished by their elemental composition and
mass.

In metabolite identification, compositional fragmentation trees are used to model
fragments arising from compounds upon fragmentation91. The molecular formulas of
fragments/compounds correspond to nodes in a directed acyclic graph. Labeled edges
connect a parent molecule to its product. Edge labels are annotated with the losses that
transform the parent’s molecular formula into its product(s) formula by subtraction
of the loss formula. Compositional fragmentation trees, thus, allow modeling which
fragment ions (e.g., by specifying their composition and mass) are produced from a
parent ion. We borrow from this concept to model the relation between precursor
adducts and fragment adducts.

We define an oligonucleotide adduct fragmentation tree as a rooted tree. The root
vertex is labeled with the precursor adduct and connected to fragment adducts by
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directed edges. In contrast to classical fragmentation trees, oligonucleotide adduct
fragmentation trees do not model the resulting fragment ions. Instead, each tree models
which fragment adducts may arise from a particular precursor adduct (see Figure 3.18).
The oligonucleotide adduct fragmentation tree, can, thus, be used to determines which
fragment adducts (and, thus, which mass shifts) may be observed for sequence or
immonium ions.

U

U U-H2O U-HPO3 U-H3PO4 U’ U’-H2O C3O

U-H2O

U-H2O U-H3PO4 U’ U’-H2O C3O

U-H3PO4

U-H3PO4 U’ U’-H2O C3O

U-HPO3

U-HPO3 U-H3PO4 U’ U’-H2O C3O

Figure 3.18: Oligonucleotide adduct fragmentation trees for uridine (with potential
losses). The root of a tree (circle) is labeled with a precursor adduct and connected by
edges to its fragment adducts.

So far, we mainly observed which fragment adducts are generated from precursor
adducts. This partial knowledge is reflected in the topology of the tree. Our tree has
no internal nodes with intermediate fragmentation products.
By encoding the oligonucleotide fragment adduct tree and using it as input for our
newly developed peptide identification engine, RNPxlSearch, we computationally an-
notate fragments ions from a wide range of different precursor adducts. Based on
these annotations, fragment ions without fragment adducts can be distinguished from
fragment ions carrying one. The information from (potentially) multiple different
fragment adducts observed or missing on sequence ions and immonium ions is then
collected. This information is then used for automated localization of the cross-linked
amino acid.

Localization Scoring

In UV-induced nucleotide-protein cross-linking cross-links may be formed at every
amino acid. Upon fragmentation, a mixture of different fragment adducts is recorded
in the tandem mass spectrum. Classical PTM localization algorithms (e.g., AScore92)
assume that PTMs are restricted to few amino acids. In addition, classical PTM local-
ization algorithms do not consider multiple losses and are, thus, not easily applicable
to cross-link localization.
RNPxlSearch uses the fragmentation rules described by the empirically determined
fragment adduct trees to derive feasible fragment adducts from given precursor adducts.

59



3. Single Amino Acid Assignment of Nucleotide-binding Sites in RNA-/DNA-binding Proteins

All fragment ions for a given precursor adduct are generated in a single theoretical
spectrum and matched to the experimental spectrum. Due to the lack of a large enough
training set, RNPxlSearch employs a simple additive scoring scheme to determine a
likely localization site. Conceptually, our additive scoring scheme rewards (or punishes)
localization hypotheses based on the presence or absence of supporting or contradicting
evidence. It makes use of information from sequence and immonium ions that carry
fragment adducts.
Consider a cross-link with peptide sequence s = (s1, s2, .., sn), precursor adduct a and
k fragment adducts f a = f1, ..., fk. For the n possible cross-linking sites, we calculate
n localization scores λ = (λ1, ...,λn). We set λi, the score for a specific site i, to the
sum of four position-specific score components: an immonium ion score ιi and three
sequence ion scores αi + βi +ψi for a-, b- and y-ions, respectively:

λi = αi + βi +ψi + ιi.

Immonium ions are internal fragments with a single side chain. Observation of an
immonium ion with fragment adduct, thus, provides strong evidence for a cross-link
at a specific amino acid. If an immonium ion is observed for a residue at position i,
we increase the immonium score ιi by the intensity of the immonium ion peak. If the
peptide sequence contains multiple instances of the corresponding residue we cannot
differentiate between them. In this case, we add the intensity to the immonium scores
of the respective sites in question.
For sequence ion scores αi +βi +ψi the calculation differs. Consider a cross-link at the
m-th amino acid. Ideally, we would observe only unshifted prefix ions up to position
m−1 and shifted as well as unshifted (total loss) prefix ions for position m and higher.iii

We now match the set of shifted prefix ions generated for a cross-link at position m and
fragment adducts f a to all observed fragment ions. Every fragment ion that matches
to a shifted prefix ion is checked if they contradict the ideal fragmentation rule (e.g., if
a shifted prefix ion was annotated before the anticipated cross-link site m). If it is in
conflict with the rule, it is considered contradicting evidence for site m. If it adheres the
rule, it is considered supporting evidence for site m. In practice, we cannot expect to
observe all shifted ions with all possible fragment adduct shifts. We, therefore, devised
ion scores for every position that consider both supporting and contradicting evidence
from all fragment adducts f a.

iiiFor suffix ions (y), the reasoning is analogous except the different indexing (first suffix ion corresponds to the
position of the last amino acid in the peptide sequence) needs to be considered.
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αi =
∑

f ∈ f a

n
∑

j=1

d(i, j)αi, j, f .

and αi, j, f = w · I the observed fragment ion intensity I .
We set:

w=

(

+1 , if they support the localization of the cross-link at position i

−2 , otherwise.

βi +ψi are calculated analogously.
As simple heuristic, we penalized contradicting evidence twice as much as we reward
supporting evidence. The different weights are currently empirically determined and
worked well on our data. In the future, we plan to perform automatic parameter
selection given a larger dataset. Most information about the cross-link position is
obtained from fragment ions that correspond to the cross-linking site and their direct
neighbors. Fragment ions that correspond to more distant positions may still provide
supporting or contradicting evidence. In the presence of noise, these peaks might
interfere with the scoring. We, thus, give a linearly decreasing weight to distant
evidence:

d( j, i) = 1−
‖( j − i)‖

n− 1
: peptide− length−weighted distance.

The highest-scoring localization site i∗ is reported:

i∗ = ar gmax i(λi).

Step 4: Reporting

In the final step, identification and localization results are aggregated, and two result
files similar to the output of the RNPxl tool are generated. The idXML file allows for
manual validation in TOPPView while the tabular file (Table 3.1) is easily opened
in spreadsheet applications. In addition to the tabular output produced by RNPxl,
RNPxlSearch reports localization scores for each amino acid position in the peptide.
Detailed ion annotations for the tandem mass spectrum are provided for visualization
purposes (Figure 3.20):
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Table 3.1: Sample output of RNPxlSearch (some entries shortened or omitted). Best
localization is marked with lower case letter k.

RT original m/z proteins RNA peptide charge score best localization(s) ...
17.788 712.7828 Cas7 U-H2O1 AEADNLDDKK 2 2.3 AEADNLDDkK ...

3.3.2 Implementation

We implemented our novel cross-link search engine as OpenMS TOPP tool
(RNPxlSearch). Functionality common to both RNPxl and RNPxlSearch tools were
factored out from the RNPxl implementation. In particular, the generation of oligonu-
cleotides with losses and optional sequence constraints was moved into the RNPxlMod-
ificationsGenerator class. Both (RNPxl) and (RNPxlSearch), thus, share a common
code base and interface for the creation of precursor variants and precursor adducts.

Tool Parameter

Appendix Table C.8 lists the RNPxlSearch tool parameters. Differences in tool pa-
rameters between RNPxl and RNPxlSearch are mainly related to database search
options and localization functionality. Because RNPxlSearch is a full featured peptide
identification engine, it gained additional parameters to configure the identification
process (see Precursor, Fragments, Modifications and Peptide Options in Appendix
Table C.8). Options for the creation of precursor adducts were kept mostly identical to
the RNPxl tool parameters for precursor variant generation. In addition RNPxlSearch

gained a parameter (fragment_adducts) to specify fragmentation rules. Localization
scoring is enabled via the parameter localization.
Encoding of fragment adducts in RNPxlSearch. RNPxlSearch offers two notations
to encode feasible fragment adducts. The first notation is used to encode fragment
adducts that may originate from every oligonucleotide adduct bound to a peptide. We
only pose the restriction that fragment adducts need to part of a precursor adduct. To
ensure this, the molecular formulas of fragment adducts have to be subformulas of the
precursor adduct formula.
For instance, the precursor adduct U−HPO3 (C9H12N2O6), may not give rise to the
fragment adducts U (C9H13N2O9P) or U−H2O (C9H11N2O8P) because they would need
to gain HPO3 and O2P1 during fragmentation.
We encode these type of fragment adducts as a pair of molecular formula and an
annotation name used in spectra visualization:

formula annotation

string encoding: C4H4N2O2 , U’
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The second notation is used to encode fragment adducts that may only arise from
specific precursors adducts. They allow to directly model edges between precursor
and fragment adducts in complex fragmentation graphsiv. These fragment adducts are
encoded in RNPxlSearch as a triplet of precursor adduct, fragment adduct molecular
formula, and annotation (see Appendix Example C for an advanced use case).

precursor adduct formula annotation

string encoding: U -> C9H13N2O9P1 , U,
U -> C9H11N2O8P1 , U-H2O,

...

Workflow for Cross-Link Localization

RNPxlSearch can, like the original RNPxl, tool be flexibly combined with other OpenMS
tools to build powerful analysis workflows. Figure 3.19 shows and updated version of
the original RNPxl workflow (see Appendix Figure C.4) with the RNPxl replaced by the
novel RNPxlSearch tool. No changes to the workflow were necessary apart from the
single tool replacement and a reconfiguration of parameters.

Integration into Proteome Discoverer

Thermo Proteome Discoverer (PD) is a user-friendly and widely used commercial
software for proteomics data analyses. It supports different peptide identifications
engines and covers popular quantification techniques. It offers powerful visualization
capabilities and a graphical GUI for workflow construction. PD is written in the C#

programming language and can be extended with custom workflow nodes via a plugin
mechanism. Plugins are written using PD public application programming interface
(API) allowing the proteomics community to integrate own algorithms and software
into PD. Today, several PD community nodes are available free of charge (e.g., the
peptide identification engine MS Amanda93 or the modification site localization tool
phosphoRS94).
To make our method more accessible to a wider audience, we created the RNPxl

plugin95. Because PD workflows are always split into the computational expensive
data-processing (processing step) and downstream result analysis (consensus step) a
processing and a consensus node are provided.

ivComplex fragmentation graphs may, for example, arise if a mixture of standard nucleotides and nucleotide
analogs (uridine (CAS 58-96-8) and 4SU (CAS 13957-31-8)) are employed that exhibit different fragmentation
behavior.
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Figure 3.19: OpenMS workflow for cross-Link identification and localization using
the RNPxlSearch engine in KNIME. The workflow consists of target-decoy database
creation, peak centroiding and chromatographic alignment, ID/XIC filter, and cross-link
identification. Orange nodes indicate input files(s), yellow nodes TOPP tools, red nodes
output files(s). Nodes are connected by edges that indicate the flow of data. Between
corresponding ZipLoopStart/ZipLoopEnd nodes, a list of files is sequentially processed.

The processing node encapsulates the complete OpenMS RNPxl workflow. It converts
the input spectra received via the PD API into the OpenMS compatible mzML format. In
addition, it is responsible for registering the workflow parameters in PD. Once registered,
users can freely configure them via the graphical user interface. On workflow execution,
the plugin invokes the individual OpenMS tools in their respective order, passes the
corresponding workflow parameters, and handles the data flow. Once final results are
written as column separated file, the RNPxl node reads them back into PD internal data
structures. These data structures get persisted to a SQLite-based file format via the
PD internal object-relational data mapper. These results are then available for further
processing in the consensus step. In the consensus step, the results are processed for
visualization.
Tabular search results are displayed in the RNPxl tab. Clicking on the "Show Spec-
trum" button opens a spectrum view with peak annotations for manual validation
(Figure 3.20). The integration in PD allows executing the RNPxl workflow as well
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as inspecting its results in a single application. Furthermore, wrapping the complete
RNPxl workflow into single meta nodes hides complexity from the user.

Figure 3.20: Proteome Discoverer main window showing the results and peak annota-
tions as obtained from the RNPxlSearch search engine. Image courtesy of Johannes Veit
who performed the integration of the RNPxl workflow into PD.

3.3.3 Results

Speed Improvements

In the original RNPxl tool, several hundred precursor variants that differ only in m/z
annotation had to be generated for each spectrum in order to batch submit them to
the OMSSA peptide database search. RNPxlSearch, in contrast, generates the total loss
spectrum for a peptide and all of its oligonucleotide variants at most once: only if at
least one mass variant matches the precursor mass of an experimental MS/MS. This
leads to a drastic reduction in the number of synthesized spectra used in the initial
scoring. It is, therefore, expected that RNPxlSearch exhibits a speedup roughly in the
magnitude of precursor adducts if it is assumed that other parts of the implementation
show comparable performance. We performed a search on a large orbitrap XL dataset
containing approx. 30,000 spectra. RNPxlSearch took 0.92 h while RNPxl and OMSSA
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took 83.33 h resulting in a speedup factor of approx. 91. Although this is a significant
speedup, it is slightly lower than expected and most likely attributed to the way OMSSA
handles protein sequence databases. OMSSA performs highly optimized sequence
lookups but requires additional sequence indices to be provided. These index files need
to be precalculated by the NCBI makeblastdb tool96.

Identification of Peptides

A correct implementation of all major steps in database search is crucial for a good

Figure 3.21: Identification performance of RNPxlSearch and X!Tandem on 5000 HCD
spectra of a noncross-linked benchmark dataset (FDR threshold 1%). Most spectra are
identified by both search engines. The same peptides were annotated by both engines in
98.4% of all PSMs (1881 of 1911).

identification performance which in turn is needed for reliable assignment of cross-
linked peptides. We compared RNPxlSearch to X!Tandem with respect to the number
of assigned PSMs (q-value < 0.01) in a human benchmark dataset97 (5,000 HCD
spectra extracted) of noncross-linked peptides. Search settings were chosen similarly
for X!Tandem and RNPxlSearch: precursor mass tolerance set at 10 ppm, fragment
mass tolerance set at 20 ppm, carbamidomethylation on cysteine (fixed modification),
oxidation of methionine (variable modification), and one missed enzymatic cleavage.
Both searches were performed using the same human target-decoy database containing
86,725 target proteins and their reversed version. X!Tandem (version Sledgehammer
2013.09.01.1) identified 46.94% (2347) while RNPxlSearch identified 47.00% (2,350)
of all PSMs at an FDR of 1% (see Figure 3.21 for a graphical representation). Most
spectra were identified by both RNPxlSearch and X!Tandem (1911). Among the spectra

66



Automated Cross-Link Localization

identified by X!Tandem and RNPxlSearch, the same peptide was assigned in 98.4%
of all cases. Bases on the substantial accordance in assigned peptides, we conclude
that our implementation of the X!Tandem algorithm is likely without major flaws.
Differences in the set of identified spectra are most likely attributed to a different
peptide generation algorithm in X!Tandem. X!Tandem employs additional cutting
rules (e.g., N-terminal methionine cleavage) and terminal modifications that lead to a
different set of candidate peptides.

Identification of Cross-Links

The RNPxl tool identifies cross-links by submitting batches of precursor mass variant
to an OMSSA database search. Because the OMSSA scoring function differs from the
X!Tandem scoring function used in RNPxlSearch differences in identification results
are expected. Our main concern was, that the choice of the X!Tandem scoring function
might negatively impact cross-link identification performance. In the first experiment,
we compare how well RNPxlSearch is able to reproduce cross-link identifications
determined by RNPxl. In total, high-quality spectra from 61 cross-link identifications
were extracted from Kramer et al. 69 , Sharma et al. 76 or provided by Zaman et al.,
unpublished. Each cross-link identification was manually validated by comparing
experimental and theoretical spectra in TOPPView. RNPxlSearch identified all 61
cross-links in the high-quality spectra. In the second experiment, we compared the
identification performance of RNPxlSearch and RNPxl on a curated dataset of 176
mixed-quality spectra (provided by A. Chernev, unpublished). In 75.6 % of all spectra,
RNPxlSearch and RNPxl identified the same cross-link. 9.1% were only identified by
RNPxlSearch and 15.3% only by RNPxl.

Localization Performance

To assess how accurately the cross-link position in a peptide is determined, we used the
61 manually curated high-quality cross-links described above. Manually determined
localization sites were compared against those obtained from RNPxlSearch. 77%
(47) of all cross-links (Figure 3.22) were located on the same amino acid position as
determined by the expert. About 10% (6) were assigned to the neighboring amino acid.
The remaining 13% (8) assignments deviated in more than one amino acid position.
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Figure 3.22: Localization error measured as the absolute difference in amino acids
between automatic and manual determined cross-linking site.

3.3.4 Discussion

We presented RNPxlSearch, a novel tool for the automated identification and local-
ization of UV-induced protein-nucleotide cross-links. We developed RNPxlSearch as
a full-featured peptide identification engine. For identification of peptides, it uses a
practically proven scoring function (X!Tandem HyperScore). It supports all OpenMS
enzymes for in silico digestion and more than one thousand different modifications
via the UniMod database. Both enzymes and modification databases can easily be
extended by a user if required. We assessed the performance on a human benchmark
dataset and identified approximately the same number of peptides as X!Tandem at an
FDR of 1%. A different set of identified spectra between both search engines might
merit further investigation. The potential differences between both implementations,
though, did not result in notable differences in the number of identified spectra (2347 in
X!Tandem vs. 2350 for RNPxlSearch). Annotations of spectra identified by X!Tandem
and RNPxlSearch agreed in nearly all cases (98.4%).
In addition to standard database search functionality, RNPxlSearch includes algorithms
for the identification and localization of UV-induced protein-nucleotide cross-links. Most
code, originally developed for precursor generation in the RNPxl tool, was reused in

68



Automated Cross-Link Localization

RNPxlSearch to generate precursor adducts for cross-link identification. RNPxlSearch
employs the X!Tandem HyperScore for peptide identification. On a curated dataset
of high-quality spectra, RNPxlSearch identified all cross-links formerly identified by
RNPxl and manually validated by an expert. On a dataset of mixed-quality spectra
identification RNPxlSearch performed similarly to RNPxl. Regarding search speed,
RNPxlSearch is typically about two orders of magnitude (approx. 91 times) faster.
RNPxlSearch could also benefit from sequence indexing data structures if repeated
searches are performed with the same protein database. Recently published scoring
functions have been shown to perform superior to existing ones and allow deriving
error probabilities for PSMs98. RNPxlSearch would also benefit from incorporation
of alternative scoring functions. Novel PTM localization algorithms estimate a false-
localization rate (FLR) that quantifies the confidence in a site assignment. While the
most of the techniques are not easily transferable to cross-link localization, further
research might allow deriving such a confidence score for RNPxlSearch.
RNPxlSearch employs a simple additive scoring scheme for localization. It generates
extensive fragment annotation to score and validate the suggested cross-link position.
The scoring function is able to reward (or punish) localization hypotheses based on
the presence or absence of supporting or contradicting evidence. This allows making
direct use of information from multiple fragment adducts. In contrast, classical PTM
localization algorithms typically only account for a single loss significantly limiting
their applicability to RNA/DNA cross-links. RNPxlSearch employs empirical weights to
score supporting and contradicting evidence. In the future, we plan to automatically
derive these weights from larger training datasets.
Currently, RNPxl is the reference method to identify heteroconjugates, but given the
various advantages of RNPxlSearch over our original approach, we expect a shift
to the newer, specialized identification engine. To ease the transition to the novel
RNPxlSearch tool we kept the tool interface similar to the current, state-of-the-
art, implementation in RNPxl. Conversion of the RNPxl workflow to use the novel
RNPxlSearch tool was achieved by a drop-in replacement of the original RNPxl tool.
Configuring and running workflows using generic workflow execution engine like KN-
IME may be considered a complex task by many lab scientists. We, thus, integrated the
full workflow, including the novel RNPxlSearch tool, into the widely used commercial
application PD. Recently, we applied RNPxl to the identification of protein-DNA cross-
links Flett et al. 99 . For cross-link identification, configuring the nucleotide generation
in RNPxl to consider deoxyribonucleoside monophosphates as building blocks was suffi-
cient. Automated localization of DNA-peptide cross-links is an active research topic as
the fragment adduct tree of DNA-peptide heteroconjugates is still to be experimentally
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determined. Once completed, it can be encoded and provided as input to RNPxlSearch.
Several approaches for quantitative analysis of cross-links are currently under investiga-
tion. Differential quantification of well-defined cross-links may employ light and heavy
version of the isotopically labeled nucleotide to perform relative quantification similar
to SILAC experiments. These types of experiments allow, for example, investigating
the protein’s affinity to different mRNAs with same nucleotide-binding motif. Taken
together, RNPxlSearch is the first automated tool that offers a complete solution to the
nucleotide cross-link identification and localization problem. We expect several new
insights in the field of fragmentation chemistry, computational cross-link identification,
structure biology of nucleotide-binding protein complexes, and discovery of novel
protein functions that are suggested or guided by results obtained by our method.
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Dynamic Stable Isotope Probing of

Metaproteomic Communities
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4.1 Introduction

Genomic and proteomic research have been greatly expanding our understanding of
the complex processes taking part in living organisms. The isolated study of a single
organism, in contrast to studying multiple organisms in parallel, is often preferred and a
more appropriate level of abstraction. It allows to reduce confounding factors, removes
complexity from experiments and simplifies data analysis. In reality, organisms are in
complex interaction with their environment. For instance, in host-pathogen interplay
during infection, symbiotic processes, and the intake and metabolization of substrates
in a complex microbial community. Two emerging research fields, metagenomics, and
metaproteomics extend beyond single organism to multiple organisms. The more
established field of metagenomics studies the genetic material of environmental or
microbiome samples which are composed of a community of organisms. Heavily
depending on the quality of the genetic material and existing sequence databases,
metagenomics aims at identifying these organisms at the species or strain level. If
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an insufficient amount of genetic information is present to unambiguously assign
the identity, phylogenetic information can be leveraged to determine the most likely
taxon (i.e., a higher taxonomic rank like order or family) of these organisms. To some
extent, sequence-based homology studies also allow speculating on the function and
biochemical repertoire of those organisms. One caveat of functional studies based
on sequence homology is the lack of direct experimental evidence. Metagenomics
is, therefore, best at identifying the organisms present in a biological sample, but
usually unable to provide detailed functional insights. The field of metaproteomics
is, at the time of this thesis, in its infancy. Its main research targets are proteomes of
environmental or microbiome samples. In mass spectrometry-based metaproteomics,
metagenomics-derived protein databases are typically used to identify proteins from
a community of organisms. In contrast to merely identifying the organisms present
in a sample, metaproteomics additionally aims at studying the interaction between
microorganisms and their environment. Besides host-pathogen interaction, central
topics are the degradation of substrates and nutrients - including uptake and digestion
of other organisms. Simply put, metaproteomics tries to understand which organisms
eat what and when.
Microorganisms vary greatly in their biochemical repertoire and pathways that allow
them to decompose and metabolize different substrate molecules. Some of those
most remarkable abilities include biodegradation of toxic compounds. For example,
Pseudomonas putida, the first patented organism100, is able to degrade organic sol-
vents like toluene - a chemical highly toxic to a broad range of organisms. Other
remarkable abilities can be found in the human microbiome. In the gut, microor-
ganisms enable us to process many carbohydrates for which humans cannot produce
the required enzymes.101 Identifying the microorganisms and characterizing their bio-
chemical repertoire is of great practical and commercial interest. Possible practical
applications include bioremediation and waste management. Apart from environmen-
tal biology, the characterization of organisms also helps to understand clinical relevant
processes in microbiomes and potentially associated diseases.
Usually, degradation of biological substrates down to simple organic compounds is a
multistep process which may involve different organisms. At the top of the process, a
group of organisms consumes and metabolizes an initial substrate. At some point, the
organisms may not be able to further process the substrate. They dispose of molecules,
which in turn may get consumed by other organisms. These organisms are able to
further process the secreted molecules because they perform a different set of bio-
chemical reactions. They form a so-called, different functional group. After potentially
multiple steps of consumption and secretion only simplest chemical molecules are
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present that are easily consumed by many organisms. At any point, an organism can
also be consumed by other organisms. Elemental flux analysis techniques, track amount
and flow of substrate-derived atoms between organisms and are well suited for the
investigation of complex degradation processes and cross-feeding.
Tracking substrate-derived atoms in real world samples is, in general, a challenging task
since a huge number of different substrate molecules are consumed by an enormous
amount and variety of organisms. Most commonly, labeling of substrates with stable
isotopes is employed. Because labeling with heavy isotopes changes the mass of
a biomolecule, the mass change can be used as a proxy to detect incorporation of
substrate-derived atoms into an organism. The methods that use this principle are called
stable isotope probing (SIP) techniques and have been used to investigate microbial
interaction102,103 for more than a decade. First, organism (or a whole community of
organisms) are fed with the heavy stable isotope-labeled substrates (typically 13C and
15N). After consumption and metabolization, biomolecules of these organisms become
also isotopically labeled. These biomolecules are then extracted and analyzed using
different techniques.
The different SIP techniques can be categorized by the class of biomolecule that is
analyzed. RNA- or DNA-SIP investigate labeled (ribo-)nucleic acids. Fatty acid-SIP
investigates labeling of phospholipid fatty acids. Nucleic acid and fatty acid-based
SIP have some drawbacks: they require a high degree of labeling104 or do not carry
information that allows identifying the organisms in question102. This renders the
application of these techniques to multiple unknown organisms difficult.
In recent years, protein-based SIP technologies have gained popularity. Central to
protein-SIP is the determination of two quantities:

• The relative isotope abundance (RIA) is used to quantify to what extent isotopes
from the labeled substrate were incorporated into newly synthesized proteins.

• The labeling ratio (LR) is used to characterize the speed of protein biosynthesis
(protein turnover). It is the ratio of synthesized protein (labeled) to total protein
abundance (labeled+unlabeled).

To accurately and sensitively determine the incorporation of stable isotopes into proteins
LC-MS/MS-based quantitative analysis of peptides can be used30,105. In addition,
identified peptide and protein sequences obtained in the analysis carry rich phylogenetic
information. This information can be used to determine taxa of analyzed organisms106.
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Related Work

Previous protein-SIP approaches achieved different levels of automation in the detection
and quantification of stable isotope labeled proteins. Laborious manual peak extraction
combined with Excel script-assisted validation of labeled peptides and isotope patterns
has been successfully applied in several studies. While this method has been shown to
detect labeled peptides with high specificity, the time needed for the manual analysis
(ranging up to several months) constituted the bottleneck of the metaproteomic protein-
SIP study.
Published computational approaches are:

• The SIPROS software Wang et al. 107 , which has been originally targeted for
the analysis of protein-SIP experiments employing 15N-labeled substrates. In
experiments prior to the development of our approach, we were not able to
detect significant numbers of 13C-labeled peptides in our dataset. In 15N-labeled
protein-SIP experiments, the smaller (compared to 13C-labeling) number of heavy
isotopes considered by the algorithm still required large amounts of computational
resources.

• As we later discovered Price et al. 108 independently proposed a similar decomposi-
tion algorithm for protein turnover analysis of mouse brain tissue. The calculations
are performed using Matlab scripts. As a turnover-centric tool applied to single
organisms, it falls short of features for metaproteomic studies.

• The SIPPER tool Slysz et al. 109 is a software for determination of RIA and labeling
ratio (LR). In addition, it provides a graphical user interface for data processing
and manual validation. It requires the external input of molecular formulas and
feature positions of 13C-labeled peptides. Labeling with other isotopes is not
supported. It was published during the development of our approach.

Because metaproteomic studies typically resolve labeling states in time series experi-
ments and with replicated measurements, a large number of MS runs (100+) need to
be processed. A computational protein-SIP approach applicable to such large studies
should process these runs in a fully automated fashion. Apart from detecting 15N- or
13C-labeled peptides our analyses require additional functionality in addition to calcu-
lation of RIAs and LRs. Organisms with different incorporation give direct evidence for
different functional groups. Automated clustering according to incorporation patterns
of a potentially large number of peptides suggest different functional groups and assist
in data interpretation. An automatically generated quality control report is required if a
large number of experiments should be manually validating. Identification of peptides
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and proteins from microbiome samples is challenging. Different peptide identification
engines have different strengths and weaknesses. It is, thus, beneficial to be able to
choose a combination that performs best on the data. To achieve a high degree of flexi-
bility, the tool should be compatible with all peptide identification engines supported
in OpenMS and is easily integrated into complex workflows.
None of the previously described approaches fully meet our requirement for flexible
and integrated metaproteomic analysis workflows. We, thus, developed a novel TOPP
tool (MetaProSIP) and analysis workflows to fill this gap.

4.2 Methods

The following subsection gives an overview of the general Meta-Proteomics using
Stable Isotope Probing (MetaProSIP) analysis workflow and the MetaProSIP tool.
Evaluation is done in three case studies which provide details on the individual sample
processing.

4.2.1 Experimental Setup

In our protein-based SIP experiments, labeled substrate is fed either in situ to organisms
or in vitro to enrichment cultures (Figure 4.1.a). We exclusively used substrates with
nitrogen or carbon atoms replaced by heavy isotopes (14N by 15N and 12C by 13C). Over
time, the heavy nitrogen (or carbon) isotopes get incorporated more and more into the
organisms biomolecules. As a result, the RIA increases beyond their natural isotope
abundance (RIA of 1.07% for 13C and 0.368% for 15N) in newly synthesized proteins.
These SIP-labeled proteins are heavier when compared to their unlabeled versions as
they contain a higher fraction of the labeling element’s heavy isotope. In the event of
a time course experiment, this fraction can, for instance, increase until every protein
is fully labeled. In this case, the organism only metabolizes a fully labeled substrate.
Alternatively, a steady state can be reached, that may indicate a co-consumption of
other, unlabeled substrates or is a direct result of only partially-labeled substrates. At
different time points, proteins are extracted, digested and subjected to LC-MS/MS mass
spectrometry to determine the labeling state. Optionally, a control experiment without
labeling can be set up that may later be used as a reference to improve identification
of labeled species. For a detailed, step-by-step protocol of the experimental procedure,
the reader may consult Jehmlich and von Bergen 111 .
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Figure 4.1: a Experimental setup: Stable isotope-labeled substrates are fed to microor-
ganisms which become labeled. Optionally an unlabeled control experiment can be set
up. b MetaProSIP pipeline: Following MS/MS data acquisition in the mass spectrometer
unlabeled peptides are identified. After data conversion from the vendor format con-
trol unlabeled and labeled samples may be aligned to reduce chromatographic shifts. c
MetaProSIP tool: Using retention time and mass-to-charge ratio of unlabeled peptides
the MetaProSIP tool analyzes isotope patterns to detect incorporation of heavy isotopes.
Using a decomposition algorithm, it calculates RIA and LR. Based on the number of com-
positions MetaProSIP can provide further information about the shape of the isotopologue
distribution. d Data integration: Peptides and proteins may be clustered based on their in-
corporation behavior. Results are reported. The phylogenetic data, functional information
and the calculated RIA and LR allow experts to unveil an elemental flux network. Adapted
from Sachsenberg et al. 110 .

4.2.2 MetaProSIP Pipeline

To make the acquired MS data compatible with our computational pipeline, all spectra
files were converted to the open data format mzML112 using the msconvert tool of
the ProteoWizard77 software package (version 3.0.4006). The mzML files formed the
input to different workflows that were created to process and analyze the data. For
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the original publication, TOPPAS113 was used as graphical workflow editor. Workflows
were later converted to KNIME to ease integration with downstream analysis tools.
In the first data processing step, MS data was subjected to signal processing to reduce
the data volume. Mass spectra acquired in profile mode were centroided using the TOPP
tool PeakPickerHiRes. When different runs (e.g., unlabeled and labeled samples)
were recorded and analyzed, chromatographic shifts in retention time were corrected
by aligning the experimental MS spectra using the MapAlignerPoseClustering37

TOPP tool.
In the second analysis step, eluting peptides with natural isotope abundance were
detected using the FeatureFinderCentroided tool. A database search using the
freely available search engine OMSSA48 (version 2.1.9) was used to identify peptides.
Precursor mass tolerances were set to 10 ppm and to 0.5 Da for fragment masses. In
the in silico digest of theoretical peptides used by the search engine, we allowed up
to two missed cleavages. Because of the reduction agents used in sample treatment,
we considered carbamidomethylation of cysteines as fixed modification. Oxidation
of methionines was added as variable modification. False-discovery rates of peptide-
spectrum matches were estimated using a standard target/decoy approach114 with
the database of target proteins concatenated to its sequence-reversed version (decoy
proteins). The list of peptide identifications was filtered according to a q-value threshold
(q < 0.02). Identified peptides were then mapped to features using the IDMapper

tool in OpenMS (20 ppm m/z tolerance, 30 s retention time tolerance). The identified
features formed the input to the MetaProSIP tool.

4.2.3 MetaProSIP Tool

The MetaProSIP tool calculates the relevant SIP features RIA, LR, and additional
shape properties of the isotope pattern (Figure 4.1.c). It clusters and groups peptides
according to similar incorporation behavior. Cluster provide evidence for distinct
functional groups among the identified organisms. In addition, MetaProSIP infers
proteins and produces a quality report for manual validation.

Protein-SIP Mass Spectrometry

RIA and LR are the two most important parameters of a SIP peptide in a protein-
SIP analysis. As discussed in the introduction, isotope patterns of peptides with
increased RIA differ significantly from unlabeled ones (Figure 4.2). The ratio of signal
intensities between a labeled peptide and the total peptide intensity (LR) includes
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relevant information on the protein turnover. Information on both are contained in
the peaks of mass spectra and need to be reconstructed from the peak intensities.

Figure 4.2: Theoretical isotope pattern calculated for a peptide (sequence TESTPEP-
TIDE) with varying RIAs of the heavy 13C isotope. Increasing the RIA induces a shift of
the isotope pattern, as well as a change in shape.

In metaproteomics, homologous peptides may be present in proteins of different
organisms. Dynamic labeling of these organisms leads to a situation very different
to single organism study: the same peptide may be recorded with varying degrees of
labeling and abundances. This problem of mixture spectra containing signals from
severally labeled species has to our knowledge not been addressed in any protein-SIP
study. The central computational problem in metaproteomic SIP can, therefore, be
defined as the algorithm that decomposes isotopic intensities recorded over several
spectra into RIAs and associated abundances.
Given the central relevance of the problem, a more formal presentation is chosen.

Isotope Pattern Extraction

For each identified feature, the MetaProSIP tool calculates elemental compositions
using the annotated peptide sequence. The number of atoms (n) of the labeling element
(l) defines the maximum number of heavy isotopes that can be artificially introduced
(i.e., yield a fully labeled peptide). Naturally occurring isotopes of other elements (e.g.,
heavy oxygen or sulfur) may also be incorporated in peptides. We, thus, expect that a
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Figure 4.3: Isotope pattern extraction calculates isotopic peak intensities with extracted
ion chromatograms. (*) indicates the monoisotopic peak of the unlabeled and identified
feature. XICs (gray) are extracted at isotopic peak positions calculated from the elemental
composition, mass, and charge of the unlabeled peptide.

small number (a) of (we consider up to five) additional isotopic peaks may be observed
from fully-labeled peptides. The monoisotopic m/z of the feature (m f ), its charge (z),
the maximum number of expected isotopic peaks (n+ a) and the distance between
isotopic peaks (Dl) is used to calculate the m/z positions (x j) of the isotopic peaks:

x j = m f + j ·
Dl

z
, j ∈ N0 ∧ 0≤ j ≤ n+ a,

where Dl corresponds to the mass difference between heavy and light isotope of the
labeling element l (see Appendix Table B.1 for reference).
Centered at each isotopic peak position x j MetaProSIP extracts an X IC j (gray par-
allelograms in Figure 4.3). Extraction intervals in retention time and mass-to-charge
dimension (Appendix Section B) were [t f −∆t, t f +∆t] and [x j −∆m, x j +∆m]
, where t f corresponds to the retention time of the feature. ∆t and ∆m are user
provided extraction parameters. Especially in complex samples, isotopic peak positions
may overlap with mass traces of coeluting peptides or contaminants. In order to
detect and remove these signals, we correlate XICs between (putative) isotopic and
monoisotopic mass traces. True isotopic mass traces exhibit near perfect coelution
with the monoisotopic trace resulting in Pearson correlation coefficients close to one.
Signals that originate from other analytes typically differ in elution profiles leading to
lower correlation coefficients. XICs with correlation above a user-specified threshold
are retained while others are removed. A threshold value of 0.8 did not result in
a visible loss of isotopic traces upon manual inspection and was chosen as default.
MetaProSIP calculates for every isotopic peak a single intensity using the extracted
ion chromatogram. For every X ICi, the isotope intensity yi is calculated as the sum of
X IC intensities. For each feature, the vector of all isotope intensities y= (y1, ..., yn+a)
is used as input for the decomposition algorithm described below.
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Decomposition Algorithm

Given a vector y of isotope intensities and a peptide sequence s. We want to approximate
y by a linear combination of a finite set of theoretical isotope patterns Φ(s) calculated
from the elemental composition of the peptide sequence s. The coefficients of this
linear combination are given by a vector β of non-negative weights:

y= Φ(s)β

or






y0
...

yn+a






=







Φ0,0(s) · · · Φ0,n(s)
...

. . .
...

Φn+a,0(s) · · · Φn+a,n(s)













β0
...
βn







with:
n: the total number of atoms of the labeling element (e.g., carbon or nitrogen)

contained in a peptide with sequence s.
a: additional isotopic traces that are collected (we chose a = 5).

We require the n+1 column vectors [Φ0(s) Φ1(s) · · · Φn(s)] holding the theoretical
isotope patterns to be normalized to unity (‖Φ0(s)‖= 1, · · · ,‖Φn(s)‖= 1).
As an exact solution does not usually exist because of technical variation and noise,
we determine β̂ to minimize the squared residual error subject to the constraint that
all weights are non-negative. This leads to a standard non-negative least square
formulation of our protein-SIP decomposition problem:

β̂ =argmin
β

‖y −Φ(s)β‖2

subject to: βi ≥ 0

To solve the optimization problem, we used a non-negative least square solver in
OpenMS which is based on the FORTRAN implementation by Lawson and Hanson 115 .
Figure 4.5 illustrates the decomposition of peak intensities (Figure 4.5.a,b) and the
reconstructed signal (Figure 4.5.c).

Filtering of Spurious Decomposition Coefficients

Filtering of XICs by chromatographic correlation to the monoisotopic mass trace re-
moves signals from coeluting peptides and contaminants if the elution profiles and
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retention times sufficiently differ. Particularly in complex samples, it is expected that
some signals from unrelated peptides, adducts, or contaminants may still be present
after the XIC filtering step. Since these intensities cause spurious (non-zero) decom-
position coefficients, we propose an additional filtering strategy that is based on the
correlation of isotope pattern shapes. To this end, decomposition coefficients are
discarded (set to zero) if less than half of the expected peaks are observed. This has
been found to efficiently remove decomposition coefficients caused by isolated noise
peaks. For every remaining, non-zero decomposition coefficient β̂r , we compare the
observed isotope intensities to the theoretical pattern. To this end, we calculate the
sample Pearson correlation coefficient cr(y ,Φr (s)) between observed isotope pattern
y and the theoretical isotope pattern Φr (s) according to:

cr(y ,Φr (s)) =

∑n+a
i=0 (yi − y)(Φi,r(s)−Φr(s))

q

∑n+a
i=0 (yi − y)2

q

∑n+a
i=0 (Φi,r(s)−Φr(s))2

,

where y and Φr(s) correspond to the mean of observed and theoretical isotope intensi-
ties, respectively.
Figure 4.4 shows a spectrum and the calculated decomposition and correlation coeffi-
cients.
RIAs without sufficient correlation are discarded:

β∗r =

(

β̂r , if cr(y ,Φr (s))> t.

0, otherwise.

Ideal isotope patterns have a cr of one. Unrelated peaks (e.g., Figure 4.4.B) yielded
consistently lower coefficients. We empirically determined a thresholding parameter
t. Based on manual inspection of quality control reports, t=0.7 retained results from
correct isotopic signals while it efficiently removed decomposition weights caused by
coeluting peptides in our data.

Calculation of Relative Isotope Abundances and Labeling Ratios

After filtering, the solution vector β̂∗ is expected to only contain the abundances of
isotopologues. The i-th component β̂∗i corresponds to a RIA of i

n · 100 %. The LR is
simply calculated as the ratio of labeled isotopologue abundances to the sum of all
abundances.
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Figure 4.4: Top: Spectrum of an unlabeled peptide (*), the labeled isotopologue with
RIA of approx. 20% (A), and noise peaks caused by a coeluting but otherwise unrelated
peptide (B). Bottom: Decomposition coefficients and correlation of theoretical pattern
with observed data. Noise peaks (B) have a smaller correlation compared to the labeled
and unlabeled peptides because of a significant deviation from the theoretical isotope
pattern. Adapted from Sachsenberg et al. 110 .
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Figure 4.5: a MS spectrum of an unlabeled peptide and its labeled isoform. (*) indicates
the monoisotopic peak. Isotopic peaks are highlighted in red. b Results of the decompo-
sition algorithm. Two low RIA decomposition weights correspond to abundances of the
unlabeled species. The peak at approx. 50% corresponds to the abundance of the labeled
species. c Theoretical spectrum reconstruction as a linear combination of theoretical
isotope patterns weighted by the decomposition coefficients. Adapted from Sachsenberg
et al. 110 .
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Functional Grouping

To estimate the number of functional groups involved in the degradation of a supplied
carbon or nitrogen source, MetaProSIP allows clustering peptides according to similar
incorporation patterns. We used a density-based clustering algorithm (DBSCAN116)
and a histogram similarity measure (FastEMD117) on the RIA profiles. Additionally,
correlation of measured and theoretical peak shapes can also be clustered using k-
medoids clustering (PAM118) and a Pearson similarity119 measure. The number of
clusters was automatically determined by the median of clusters proposed by three
internal cluster validation procedures (connectivity, silhouette width, and Dunn index)
as implemented in the clValid120 R package. Once the number of clusters is selected,
peptides are annotated with the cluster index for reporting.

Protein Inference

In metaproteomics, additional ambiguity in the inference of proteins by identified
peptides can arise as a peptide might not only be shared by proteins of the same
organism but also between organisms. We, therefore, performed a conservative protein
inference and only considered proteins to be present in the sample if at least one of its
unique peptides was identified. Proteins with shared peptides, for instance, peptide
sequences matched to multiple proteins in the metaproteomic database are reported in
a separate section in line with the shared peptide sequence.

Reporting and Quality Control

Workflow-based, high-throughput processing of mass spectrometry experiments re-
quires concise reporting and quality control to quickly assess the outcome of an exper-
iment. MetaProSIP generates an HTML-based report using R. Figure 4.6 shows the
quality plots and tables generated by MetaProSIP:

• An overview plot and a results table for the whole experiment.

• Detailed tables and plots show extracted isotope patterns and outcome of the
decomposition algorithm on the peptide and spectrum level.
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4.3 Results

The data has been described in detail in our original publication.

We designed three case studies aimed at evaluating MetaProSIP’s performance:

• Case Study 1: Evaluates MetaProSIPs ability to quantify LR and RIA. Here we
cultivated a single bacterial taxon with both natural and labeled substrates of
known isotopic composition mixed in predefined ratios. We then compare RIA
and LR, as determined by MetaProSIP, against ground truth values.

• Case Study 2: Feeding of organisms with a labeled substrate typically increases
the LR until a steady state is reached. This might result in a partial (RIA < 100%)
or full labeling (RIA = 100%) of the organisms. In this case study, we evaluate
MetaProSIPs ability to identify peptides in a time series with increasing RIA. We
demonstrate the role of unlabeled reference peptides in these type of studies.

• Case Study 3: Using a sample from a complex community of microorganisms, we
demonstrate how MetaProSIP can be used to perform functional grouping and
assist in reconstructing an elemental flux network.

4.3.1 Case Study 1: Performance of RIA and LR Detection

In order to reliably assess carbon and nitrogen sources as well as turnover rates,
RIA and LR must be accurately determined. In the first case study, we used the
MetaProSIP tool to automatically calculate RIA and LR in a 15N-labeling experiment
with Pseudomonas fluorescens. As the substrate, we used ammonium sulfate that either
had natural 15N content or 50% 15N content. Cultivation was performed similarly to
the protocol described in Taubert et al. 121 . Both cultures were mixed in a 3:1 and 1:3
ratio and measure in technical triplicates (in-solution digestion with trypsin, nUPLC-
coupled Thermo Fisher Orbitrap XL). We processed the data using the basic MetaProSIP
workflow (Appendix Figure D.1 and Table D.1).
Results are summarized in Figure 4.7. The detected RIAs showed a high degree of
stability between technical replicates (1-3) and both mix ratios (3:1 and 1:3, unla-
beled:labeled). The LR clearly reflect the two mix ratios but is slightly shifted to a
lower-than-expected LR. A possible explanation of this deviation is an imprecision in
the protein quantification using the Bradford reagent. For each mix ratio, we calculated
a mean coefficient of variation for RIA and LR if a peptide was seen in at least two
replicates. For the 3:1 mix we obtained 3.1% (RIA) and 7.6% (LR). In the 1:3 mix
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Figure 4.7: RIA and LR distributions from mixtures of 0% and 50% 15N labeled P. fluo-
rescens cultures. Mixing ratios were 3:1 and 1:3 unlabeled to labeled each measured in
three technical replicates. The dotted line indicates the expected values. Adapted from
Sachsenberg et al. 110 .

1.4% (RIA) and 3.5% (LR). These low values for the mean coefficient of variation
indicate a good repeatability between technical replicates. Variation of RIA and LR is
expected to be very low for peptides of the same protein. We tested this hypothesis
by calculation of median intra-protein standard deviations for the two mix ratios. In
summary, we observed very low values ranging between 0.07%-1.78% for RIA and
1.23%-3.27% for LR. In total, MetaProSIP detected the labeled counterpart for 85%
(3:1 mix) and 99% (1:3 mix) of all unlabeled features. While nearly all pairs of labeled
and unlabeled peptides were detected in the 1:3 mix, detection rates were lower when
labeled peptides were less abundant (3:1 mix).

4.3.2 Case Study 2: Identification of Labeled Peptides

In the course of a time series experiment that involves continuous feeding of organisms
by a labeled substrate, more and more peptides get isotopically labeled. While the
outcome of our performance study suggests that the increase of LR also positively
affects the detection rate of the labeled species from an unlabeled peptide this is of
course only true as long as the unlabeled peptides are abundant enough to be detected.
Figure 4.8 (diamonds) clearly demonstrated that increased labeling over the time of the
experiment might result in losing identifications of labeled peptides. With a decreasing
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number of unlabeled reference peptides, fewer isotope patterns of labeled peptides
can be extracted. We, therefore, propose an experimental setup that uses a separate
dataset of unlabeled peptides as a reference. In general, several possibilities exist to
generate such a dataset. The first time point of a time series, when peptides are not
yet labeled, or a sample from parallel cultivation using only unlabeled substrate is
generally easy to obtain.
We tested the reference dataset approach using data from an artificial mixed culture. A
heterotrophic bacteriumi (Acidiphilium cryptum) consumed 13C-labeled galactose. The
formed 13C-labeled CO2 was in turn fixed for biomass production by an autotrophic
bacteriumii (Acidithiobacillus ferrooxidans)122. Five points in time were chosen for
sample extraction during the cultivation process.
Figure 4.8 (circles) shows the result of the MetaProSIP workflow for time series analy-
sis (see workflow in Appendix Figure D.2 and Table D.2). Here, a reference sample
containing the unlabeled peptides has been measured. Instead of a decrease in la-
beled peptides over time (as in observed for the reference-less setup (diamonds)), a
clear increase in detections are observed for the experiment with unlabeled reference
samples.
Measuring reference sample and labeled sample in different MS runs imposes addi-
tional work and reagents. Therefore, it is worth discussing the advantages of this
approach, compared to measuring one run containing the mixed peptides of both
samples. Independent of measuring a single or separate MS runs, LR and RIA are
always calculated on the signals within the MS run. Mixing of the unlabeled peptides
with the labeled species prior to a single MS measurement increases the abundance of
unlabeled peptides, which effectively reduces the LR of labeled peptides. In contrast,
the use of reference peptide identifications from a separate sample does not alter the
abundance of unlabeled peptides, which implies that the LR is not distorted. Depending
on the scientific question (e.g., if only the RIA is of interest) mixing the samples might
still be an adequate experimental setup.

4.3.3 Case Study 3: Functional Grouping According to Incorporation Patterns

Grouping peptides and proteins according to a phylogeny is often not sufficient to assign
an ecological function to organisms. Especially, if the metagenome and annotations
for the particular organisms are incomplete, additional information on an organism’s

iA bacterium that cannot manufacture its own food from simple molecules and needs to consume organic
substances from an external source.

iiA bacterium that produces complex organic molecules required for survival from simple molecules. Often light
or inorganic reactions are used as energy source for the synthesis of these molecules.
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Figure 4.8: Time-course experiment with labeling substrate. If no unlabeled reference
sample (diamonds) is employed, the number of detected, labeled peptides decreases as
less unlabeled peptide features are detected and utilized as a reference. Adding unlabeled
reference samples (circles) compensate for this effect and increase the number of labeled
peptides detected by MetaProSIP. Adapted from Sachsenberg et al. 110 .

biochemical repertoire can be deduced from its (in-)capability to metabolize certain
substrates. Qualitatively grouping into active and inactive organisms (those that are
able/unable to metabolize a substrate) is performed based on the presence of labeled
peptides. Unlabeled peptides indicate an inactive organism. If the peptides are labeled
with high RIA, the organism is likely a primary metabolizer of the substrate. Low
RIA might correspond to organisms that metabolize additional substrates, including
organisms that metabolize excreted molecules or scavenger organisms, that consumed
biomass of labeled organisms.
Taubert et al. 123 investigated anaerobic benzene degradation using a time series with
13C-labeled CO2 and benzene substrates. Manual analysis of RIAs distinguished three
active but functionally different groups of microorganisms. Benzene is first anaerobi-
cally degraded by organisms of the Clostridium genus. Subsequently, Desulfobacteria
consume the formed metabolites for biomass production. The third group of organ-
isms was suspected to be not directly involved in substrate degradation but instead
are scavengers which feed on dead cell mass of other bacteria. We applied the basic
MetaProSIP workflow (Appendix Figure D.1 and Table D.1) to this previously manually
analyzed dataset. Figure 4.9.a is based on the automatically generated heatmap. The
clustering performed in MetaProSIP clearly reveals three groups of peptides with dis-
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tinct RIAs. Each of them corresponding to a different incorporation behavior. To verify
that these groups indeed reproduce the three reported groups from Taubert et al. 123 we
annotated the peptides using BlastP96 and assigned phylogenetic taxa using MEGAN124

(Figure 4.9.b). In concordance with the results from Taubert et al. 123 the high RIA
group was annotated to predominantly originate from Clostridiales. Deltaproteobacteria
were also identified for the medium RIA group. The low RIA group was, as expected and
previously reported, more heterogeneous since dead cell biomass can be metabolized
by a range of bacterial taxa.

Figure 4.9: a color-coded heatmap showing the three RIA groups as determined by
MetaProSIP. b Annotation of groups with phylogenetic information reveals a distinct
composition of microorganisms. Group I is clearly dominated by Clostridiales, group II
by Deltaproteobacteria while group III displays a more heterogeneous composition of
phylogenetic taxa. Adapted from Sachsenberg et al. 110 .
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Taubert et al. showed that protein-SIP allows tracing of elemental fluxes between two
time points.

Figure 4.10: a Three groups, (high, medium and low RIA) have been detected and analyzed
with MetaProSIP at two time points. Median RIA of group II differs significantly between
t1 and t2. b Phylogenetic annotation and biological interpretation allow reconstructing
the elemental flux. Adapted from Sachsenberg et al. 110 .

Figure 4.10.a displays the RIA distribution obtained for the three groups at two different
time points (t1 = 180 d, t2 = 300 d). While group I and III RIAs are relatively stable,
group II shows a significant increase in RIA (p < 0.65·10−9) and LR (p < 0.61·10−3, LR
not shown) confirmed by a two-tailed, heteroscedastic t-test. While an increase in LR
can be explained by protein turnover and growth, the increase in RIA can be explained
by the mode of substrate metabolism: An increase of RIA in group II indicates, that the
13C content of its substrate pool is increased over time. As the labeling of the externally
provided substrate is constant, the increase is likely a result of group II organisms
consuming metabolites from group I or III. Because group I has the highest level of
RIA and the phylogenetic annotation (Clostridiales-like) identifies them as organisms
able to break the benzene ring, these are likely at the top of the degradation hierarchy.
Based on their phylogenetic annotation, group III are mainly composed of scavenger
organisms that consume dead biomass of group I and II organisms. They are therefore
at the bottom of the degradation hierarchy with group II (Deltaproteobacteria-like)
taking an intermediate position. Combining this information with biological knowledge

91



4. Dynamic Stable Isotope Probing of Metaproteomic Communities

(e.g., group I and II are known to release and fixate CO2), parts of the elemental flux
network can be hypothesized (Figure 4.10.b). A working hypothesis could be that in
the elemental flux network, 13C-benzene is initially degraded by group I organisms.
Release and fixation of labeled CO2 between group I and group II yield an increase of
RIA in group II. In addition, metabolites from group I (e.g., acetate) with increasing
13C content, are also incorporated in organisms of group II. Group III mainly show
an increase in RIA because they are composed of scavengers that feed on dead (and
potentially labeled) organisms. In summary, we demonstrated that functional grouping
based on incorporation behavior is indeed feasible. The biological interpretation of used
substrate, LR and RIA shifts between organisms and time allows hypothesizing parts of
the elemental flux network which may be confirmed using additional experiments. In
our experiments, we only used two time points. More time points, different substrates
(e.g., labeled acetate or CO2) may be possible follow-up experiments to further resolve
the elemental flux.

4.3.4 False-Positive Rate Estimation of Labeled Peptides

Similar to false peptide identifications in a proteomic database search, incorrect as-
signments of isotope-labeled peptides may occur to some extent. A high abundance of
these incorrectly assigned peptides might lead to the wrong biological interpretation.
It is, therefore, important to estimate the expected number of wrong assignments.
The false positive rate (FPR) captures the specificity of the assignment in a statistical
quantity. It is defined as the ratio of false positives to all negatives (false positives and
true negatives):

F PR=
F P

F P + T N

For protein-SIP experiments, we propose a simple procedure to estimate the FPR of
labeled peptides. To clearly distinguish this quantity from commonly used terms of
peptide or protein level FDR we termed the FPR of labeled peptides incorporation
FPR (iFPR). Contaminant peptides like trypsin or keratins are regularly present and
identified in microbiological samples. These originate from external sources and are
not part of the labeled organisms. Unlabeled contaminant peptides have a natural
RIA. Their isotope patterns, thus, differ from labeled peptides with increased RIA and
can be differentiated. The iFPR can, thus, be estimated as the fraction of contaminant
peptides with (erroneously) detected stable isotope incorporation (F P) amongst all
detected contaminant peptides (F P + T N). We estimated the iFPR for time point
(t1 = 180 d). In total, 287 unique contaminant peptides were identified and analyzed
for incorporation analogously to the non-contaminant peptides. 266 of 287 peptides
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were assigned to features, and only four were detected as labeled (RIA above 1.3%
13C). This corresponds to a low iFPR of approximately 1.5%. Apart of common peptide
contaminants, externally added peptides can also be employed and might be necessary
if the number of contaminants is too low for confident iFPR estimation. It should be
noted that the accuracy of iFPR estimation depends on the chromatographic distribution
of contaminants and non-contaminant peptides. Only if these are roughly equal, the
iFPR determined on the contaminants is expected to match the iFPR of non-contaminant
peptides. In our experiment, chromatographic distribution of contaminants covered
most parts in elution time. Comparable to FDR calculations, the quantitativeness of
iFPR values should be taken with a grain of salt. Independent of this, it allows to easily
spot errors in the experimental setup or data quality and is to our knowledge the first
statistical measure to quantify the specificity of labeled peptide detection in protein-SIP
experiments.

4.4 Discussion

Protein-SIP experiments have been successfully applied in metaproteomic studies (see
von Bergen et al. 106 for a review). Being a rather novel method, it is not surprising
that suitable analysis tools for protein-SIP data have only recently been developed.
These novel bioinformatic tools make the data analysis part - usually the bottleneck
of protein-SIP experiments - more accessible. MetaProSIP fills the important gap of
providing a highly customized and automated computational pipeline for both 13C and
15N stable isotope labeling. We have shown that RIA can be reproducibly determined
by the MetaProSIP tool allowing to distinguish organisms with different carbon or
nitrogen sources. Additionally, the LR can be determined to measure the protein
turnover.
Because metaproteomic samples can significantly differ in complexity, we developed a
simple approach to estimate the false-positive rate in SIP labeling experiments. We
use the identification of common contaminants or spike-in peptides. As these peptides
have not been subjected to stable isotope labeling erroneously assigned incorporation
events are easily detected as false positives. The estimated false-positive rate of
labeled peptides assists in assessing the overall detecting problems in the experiment
or workflow parameters. A low iFPR reassured that MetaProSIP reliably distinguishes
labeled from unlabeled peptides.
Comparison of the automated data processing in MetaProSIP to a manual analysis
exposes quite plainly the methodological advancement that has been achieved. Simple
script-assisted, manual analysis of the data by Taubert et al. required several months.
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In contrast, MetaProSIP allows processing the data and determining LR and RIA in
minutes. This massive reduction in processing time shifts the overall effort required
for a protein-SIP study from data generation to the biological interpretation of data
analysis results. MetaProSIP, thus, enables high-throughput protein-SIP experiments in
metaproteomic disciplines like environmental biology or microbiome analysis.

4.4.1 Comparison to other SIP Techniques

Studying the interaction with non-protein-based SIP approaches has several disadvan-
tages when compared to our protein-based SIP approach. The extent of incorporation
can, in most cases, only be estimated to a limited degree or no information on the
biomass turnover is obtained. Protein-SIP, on the other hand, allows for accurate
determination of RIA and LR in time-resolved experiments. This information allows
tracing the elemental flux to a detail not obtained by other SIP approaches. Results
from MetaProSIP, enriched by phylogenetic information from the peptide and protein
identification, provide insights into the elemental flux and interaction within a commu-
nity. Ideally, this enables determining functional groups of organisms with a distinct
biochemical repertoire.

4.4.2 Comparison to other Computational Protein-SIP Methods

In this work, we presented a novel experimental and computational approach for
working with labeled and unlabeled samples in parallel. Besides the parallel analysis
of control and treated samples, there are many details to MetaProSIP that provide
significant added value. In contrast to Slysz et al. 109 or Wang et al. 107 we calculate
an optimal decomposition into RIA and LR (similar to Price et al. 108). Additionally,
we allow for detection of the full RIA distribution of a peptide. This feature is not
supported for the turnover-centric workflow by Price et al. 108 . In contrast to Price
et al. 108 , Slysz et al. 109 and Wang et al. 107 , we are also able to detect broad RIA
distributions as they may occur in yet poorly understood cross-feeding processes. On top
of that, we integrate clustering by incorporation behavior to detect functional groups,
a feature not integrated by the other contestants. MetaProSIP provides clustering of
incorporation data in order to classify peptide identifications according to the same
13C- or 15N-incorporation. Furthermore, we propose the - to our knowledge first -
approach for the estimation of false-positive rates in protein-SIP experiments. None
of the previously published tools offers the flexibility, the degree of automation, and
the methodical completeness of MetaProSIP. Its integration into user-customizable,
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graphical workflows sets it clearly apart from the three previous published, related
works by Wang et al. 107 , Price et al. 108 , Slysz et al. 109 .
Especially the possibility to integrate MetaProSIP into KNIME workflows opens the
way for constructing powerful downstream processing and statistical analysis pipelines
required in complex metaproteomic studies. Taken together, we are confident that
MetaProSIP offers a clear methodological advancement in the amount of flexibility
and supported features allow for much broader experimental setups then the typical
targeting of software or scripts to specific case studies. MetaProSIP offers, arguably,
the to date most complete computational solution for protein-SIP experiments.

4.5 Outlook

Currently, MetaProSIP is being extended to support additional labeling elements
(including 18O and 2D), which will allow to use additional substrates and investigate
different biochemical pathways. While MetaProSIP has been primarily developed
for metaproteomic studies, it might also be interesting, and of little effort, evaluating
how well it performs in complex protein turnover studies of a single organism. To
achieve the highest level of automation, additional tools for data pretreatment and
downstream analysis need to be incorporated into a single workflow. Our workflows
currently lack third-party tools for metagenome assembly and metaproteomic database
generation. In many cases, additional information needs to be integrated to obtain
conclusive biological interpretations of the data. Further automation of downstream
analysis tasks, for example, the phylogenetic assignment and functional annotation
(including mapping of proteins to known pathways) could be achieved by integrating
additional tools as third-party nodes in KNIME. Another avenue of research could be
opened by wrapping tools from other SIP approaches for combined SIP analyses.
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5.1 Introduction

Communication of experimental results is at the heart of every scientific discipline.
Particularly in the context of high-throughput experiments many challenges arise in
transforming the vast amount of raw data into concise and meaningful results (see
Figure 5.1 for a conceptual overview). Complex data processing steps typically reduce a
large amount of raw data down to simpler quantitative entities like expression values of
individual genes or proteins. These intermediate results are then used in a downstream
statistical analysis. Biological interpretation often complements the statistical analysis,
and the final study result (e.g., the set of proteins differing between healthy patients
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Figure 5.1: Standard scientific workflow Samples are acquired and measured using a
high-throughput technology. (Semi-) automated data processing produce intermediate
results which get downstream processed and statistical analyzed. Biological interpreta-
tion produces final results. During the publication process, data is deposited in public
repositories.

and those with a medical condition) are reported. Today, more and more scientific
journals enforce raw data deposition parallel to reporting proteomic and metabolomic
study results. Unfortunately, the complete computational data processing and statistical
analysis workflows are usually not reported in MS-based studies. Intermediate results,
prior to statistical analysis, are not available and, consequently, valuable information
for reanalysis or follow-up studies is lost.
In recent years, the Proteomics Standards Initiative (PSI) of the HUuman Proteome
Organisation (HUPO) set out to solve the data sharing and archiving issues by the
development of standardized formats in MS-based proteomics. Previous HUPO-PSI
formats use the extensible markup language (XML) to store raw MS data (mzML112),
identification (mzIdentML125) as well as quantification results (mzQuantML126), all
accompanied by extensive metadata.
These formats allow researchers to store their data in a vendor-independent format
and report their complete results in a unified, computer-readable way. From this
perspective, the PSI formats have been successful in addressing the data archiving
and data sharing requirements imposed by public funding agencies and enforced
by new journal guidelines. However, communication of the final identification and
quantification results in a human readable way is not easily possible using the existing
XML-based formats. Additionally, many software employed in downstream analysis like
R127, KNIME or Microsoft Excel ideally require data in a simple tabular format. While
in principle, data visualization and conversion tools can be built upon the XML data
formats, this additional step often poses a significant obstacle for researchers - especially
for those from other scientific fields. In other areas of research, a similar problem
has been successfully addressed by the development of tabular file formats parallel to
more complex, XML-based file formats (e.g., the tabular microarray file format MAGE-
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TAB128 and the XML file format MAGE-ML129 or MITAB130 and the XML-based format
PSI-Molecular Interactions (workgroup) (PSI-MI)131 for molecular interaction). We
developed mzTab as HUPO-PSI standard file format for reporting MS-based proteomics
and metabolomics results. Its primary aim is to ease communication of intermediate
and final results using a human readable, computer processable, tabular file format.
It is designed to complement the existing XML-based file formats by providing a
comprehensive summary of both identification and quantification results similar to a
result table one would expect in the supplementary material of a scientific publication.
The dedicated XML formats for quantification and identification data (mzQuantML and
mzIdentML) store the complete experimental evidence and information to trace all
processing steps. In contrast, the mzTab format is designed to allow reporting results
and data processing steps at different levels of detail but is not intended to provide the
full experimental evidence and all meta information of individual processing steps. Only
recently, MS-based multi-omics approaches combining metabolomic, and proteomic
analysis are emerging as important analytical tools. Joint analysis of these omics levels
offers a more comprehensive view of the biological system and has been shown to
extend our understanding of many molecular processes. To date, no standardized
way of reporting of both metabolomic and proteomic results in a single file exists,
and mzTab is intended to fill this gap. Along with the experimental metadata, basic
quantitative information of identified proteins, peptides, and small molecules from both
omics levels can be stored. In addition to the supplementary material type summary
of results, mzTab also supports a more detailed representation that includes, among
others, the experimental design. This more detailed flavor of mzTab has been intended
to allow for downstream processing in statistical applications.

5.2 Methods

In the following subsections, the design rationale, structure and a representative
selection of main concepts and elements of the mzTab format will be described. For an
exhaustive description, we refer to the standardization document (version 1.0)132. In
addition to detailed information on the file format, several examples covering common
use cases are provided.
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5.2.1 Design Rationales

Common use cases and practical considerations have mainly guided the design of
mzTab. MzTab is intended to:

1. be a simple text file that follows a tabular structure. That way, it can be opened
and inspected in spreadsheet software like Microsoft Excel or OpenOffice Calc.

2. support two level of details: summary results as expected in a supplementary ma-
terial of a publication and detailed intermediate results for downstream statistical
data analysis in, for example, KNIME, R, or SPSS.

3. capture identification and quantification results from MS-based proteomic and
metabolomic experiments.

4. define mandatory, optional and custom data entries. Making a defined set of
the provided data mandatory ensures that a minimum amount of information is
provided, optional data enriches the information and user-defined data allows to
extend and adapt the format to special needs and requirements.

5. capable of reporting results for a broad range of common experimental techniques.

6. allow encoding basic experimental design.

7. be easy to export from the XML-based file formats: mzIdentML and mzQuantML.

8. retain back references to the raw data, for example, for visualization purposes.

9. rely on controlled vocabulary terms from existing ontologies to provide semanti-
cally meaningful and well-defined meta information.

Data Semantics and Controlled Vocabularies

Defining the structure of a file format controls how data is organized and, to a large ex-
tent, the meaning of the stored data. In the tabular file format we envisioned for mzTab,
the structure is very simple and, thus, only allows to encode basic semantic information.
To gain most from the data without increasing the complexity of the file format, we de-
signed mzTab to employ controlled vocabularies (CVs). Controlled vocabularies provide
authorized terms and definitions that help to organize knowledge and attach semantics
to data. The CV terms used in PSI standard formats are manually curated and organized
in ontologies133. Querying CV terms against an ontology allow software validating the
semantics of the data stored in a file in an automated fashion. For example, consider
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a data value that is annotated as CV term spectrum probability score. In the
ontology, this term is a child of a spectrum score, and a parent-child relation is a
connects the two terms. This information allows tools that process spectrum scores
to determine that they can also process a spectrum probability score because
spectrum probability score is a spectrum score. This way, CV terms help
to make the data machine comprehensible and comparable by defining its semantics.
In practice, ontologies usually form a directed acyclic graphs with several types of
connections between terms and may be used to model complex relations. MzTab uses
the same ontologies used in the other PSI file formats allowing for centralized curation
of CV terms and easier conversion between XML formats and mzTab.
In mzTab, CV terms and associated values are reported using a simple format:

Format: [ontology , accession , name , value]

Example: [MS, MS:1001214 , Protein level global FDR , 0.01]

This structure is an mzTab CV parameter. Similarly, user parameters can be
defined in cases no CV term exists. These resemble the CV parameter as they should
also contain a descriptive name, but the ontology and accession are omitted.

Format: [, , name , value]

Example: [, , my user parameter , 24.1]

To ensure coherence of controlled vocabulary terms, name, label, and version of used
ontologies can be stored in mzTab. Providing an URL allows tools that consume mzTab
files to automatically download unknown ontologies or previous versions of an ontology
and perform a basic validation of the file. The recommended ontology for mzTab is
the PSI-Mass Spectrometry (PSI-MS) CV133, which is maintained by the PSI MS and
Proteomics Informatics working groups. Additional ontologies might be used, for
instance, to annotate samples or sample processing (i.e., the Human Disease Ontology
(DOID)134, the Brenda Tissue Ontology (BTO)135, Sample Processing and Separation
Techniques Ontology (SEP)136).
MTD sample_processing [1] [SEP , SEP :00210 , High Performance Liquid Chromatography , ]

MTD instrument [1]-name [MS, MS:1000448 , LTQ FT, ]

MTD instrument [1]- source [MS, MS:1000073 , Electrospray Ionization , ]

MTD instrument [1]- analyzer [1] [MS , MS:1000079 , FT_ICR , ]

MTD instrument [1]- detector [MS, MS:1000112 , Faraday Cup , ]

5.2.2 Structure

During the early stages of mzTab development, it became apparent that a single table
consisting of tab-delimited columns was insufficient to support the diverse set of
requirements listed in the previous subsection. Instead, mzTab is structured in five
sections:
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Figure 5.2: MzTab Structure Metadata section contains all metadata of reported results
including the experimental design. Protein, Peptide, and Small Molecule Section may
contain identification data and quantitative data. PSM contains spectrum identification
data only.

Sections containing identification and quantification data (protein, peptide, PSM, and
small molecule tables) are optional while the metadata section is mandatory. Each
section occurs at most once and in the order indicated in Figure 5.2.
To facilitate distinction of the five sections, the first column always contains a three-
letter code. This code indicates whether the line is a comment (COM), a metadata
entry (MTD), protein (PRT), peptide (PEP), peptide-spectrum matching (PSM) or small
molecules (SMS) row. Also , each data section must be preceded by a header line
(three letter code: PRH, PEH, PSH, SMH). The use of a three letter code allows easy
extraction of sections using command-line text processing tools, for instance, GNU
grep.

5.2.3 Reporting Experimental Metadata

The metadata section is intended to provide basic information on the study, indicates
which type of results are reported and which minimum level of detail is contained in the
mzTab file. Basic study information including a human readable title and description
can be provided. Information on the experimental design as well as employed software,
parameters, as well as contact information and publication references allow quickly
browsing relevant information that otherwise is (if at all present) buried in the method
section or supplementary material of a study. The majority of metadata fields are
optional but if filled, allow to annotate the complete metadata required by the Minimum
Information About a Proteomics Experiment (MIAPE)137 as well as the Core information
for metabolomics reporting (CIMR)138 guidelines.
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Specifying Type and Detail of Reported Results

In the metadata section, it is mandatory to specify the type of mzTab file - whether iden-
tification only or quantification results are reported. As quantification data may include
identification information on the quantified proteins, peptides or small molecules, a
Quantification file is a superset of an Identification file. Apart from some tech-
nical reasons, like easier conversion from mzIdentML or mzQuantML, the distinction
between two different mzTab types serves an additional purpose. It provides guidance
to data producers on what data needs to be exported and data consumers what data
can be expected in the file. We assembled tables that specify which information is
mandatory to report, optional, or should be omitted (see Table 2-6 in the specification
document132). In addition to these two types of mzTab reports, we introduced a similar
concept to distinguish summary reports (e.g., a human readable digest) from the
detailed report of intermediate results as generated by data converters or processing
pipelines. Analogously, the Complete report is a more comprehensive superset of
the Summary report. As a consequence more mandatory information and data (e.g.,
experimental design and quantitative values for individual replicates) must be provided
to enable statistical downstream processing.

Experimental Design

We found that explicitly modeling all possible experimental designs in mzTab was out
of the scope of the specification process. Instead, we use a simplified representation
that handles most of the standard use cases while still allowing automated processing.
In the case of more complex experimental designs, the researcher may need to consult
the methods section of the original publication to interpret the reported data.
The elements used to describe the experimental design in mzTab are:

• Sample: The biological material that has been analyzed. Biological samples can
originate from one or multiple species, cell, or tissue types or be associated with
diseases.

• MS run: A single run on a mass spectrometer identified by a file name and format.
Linking back to the original MS run is essential for tracing evidence and data
visualization (e.g., tandem MS spectra of identified peptides).

• Assay: A measurement of a sample which produced quantitative values about
peptides, proteins, or small molecules. In the case of label-free analyses, one
assay maps to one MS run. In multiplexed techniques, like SILAC or iTRAQ,
multiple assays are linked to a single MS run. Metadata associated with assays
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are, for example, the employed quantification reagent or the biological sample
that has been measured.

• Study variable: The study variables summarize the final quantification result,
with one study variable usually associated with one investigated condition (e.g.,
two study variables: cancer tissue and healthy tissue). In the case of replicated
measurements, the value of a study variable is usually averaged. If assays are
reported, study variables reference the assays. From a conceptual point of view,
a study variable may correspond to a level of an experimental factor (or, in
multi-factorial experiments to a set of factor levels).

Figure 5.3: Example: Visualization of the relation of study variable, MS run, sample, and
assay for a label-free experiment measuring two samples in triplicates.

MzTab represents the experimental design in Figure 5.3 as:

MTD study_variable [1]- description control

MTD study_variable [2]- description disease

MTD assay [1]- ms_run_ref ms_run [1]

MTD assay [2]- ms_run_ref ms_run [2]

MTD assay [3]- ms_run_ref ms_run [3]

MTD assay [4]- ms_run_ref ms_run [4]

MTD assay [5]- ms_run_ref ms_run [5]

MTD assay [6]- ms_run_ref ms_run [6]

MTD study_variable [1]- assay_refs assay[1],assay[2],assay [3]

MTD study_variable [2]- assay_refs assay[4],assay[5],assay [6]

MTD sample [1]- description healthy tissue

MTD sample [2]- description cancer tissue

MTD sample [1]- assay_refs assay[1],assay[2],assay [3]

MTD sample [2]- assay_refs assay[4],assay[5],assay [6]

In all cases, additional meta information related to the study can be provided (e.g.,
sample tissue and organisms).
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Identification Metadata

Augmenting the raw identification results with metadata greatly improves the inter-
pretability of reported results. MzTab includes metadata to specify the type of score
reported by search engines at the PSM, peptide, or protein level and for small molecules.
In proteomic studies, and in the context of creating summary reports, it is common
practice to filter identification lists at a predefined FDR to report only the most sig-
nificant ones. It is, hence, of great value to report the expected FDR if a reduced
list is reported. Sample processing (e.g., cysteine blocking which reduction agents or
enrichment procedure) often induces modifications of analyzed peptides and are re-
flected in the choice of fixed and variable search modifications. Additionally providing
information on the fragmentation method is sufficient for most downstream processing
use cases. Identification metadata is specified using CV parameters, and while most
are optional, we highly recommend providing them. For small molecules, metadata
on identification results are currently restricted to score, FDR, sample processing, and
fragmentation method but might be extended in future releases of mzTab.

Quantification Metadata

Many different types of quantification methods exist and modeling each and every single
one was out of the scope of the mzTab specification process. We decided to cover most
widely used methods, for instance, stable isotope labeling with SILAC, isobaric labeling
with iTRAQ/TMT, or label-free quantification. The quantification_method is
specified via a CV parameter. While we do not explicitly support spectrum count-,
MSe-, or, SWATH-based methods summary results can still be reported in mzTab. To
define which quantification reagents have been used in the individual channels of
multiplexed experiments (or the single channel of a label-free experiment) a meta
value quantification_reagent is provided for every mzTab assay :

Example iTRAQ -4plex:

MTD quantification_method [MS, MS:1001837 , iTRAQ quantitation analysis , ]

MTD assay [1]- quantification_reagent [PRIDE ,PRIDE :0000114 , iTRAQ reagent ,114]

MTD assay [2]- quantification_reagent [PRIDE ,PRIDE :0000115 , iTRAQ reagent ,115]

MTD assay [3]- quantification_reagent [PRIDE ,PRIDE :0000116 , iTRAQ reagent ,116]

MTD assay [4]- quantification_reagent [PRIDE ,PRIDE :0000117 , iTRAQ reagent ,117]

Example SILAC:

MTD quantification_method [MS, MS:1001835 , SILAC quantitation analysis , ]

MTD assay [1]- quantification_reagent [PRIDE , PRIDE :0000326 , SILAC light]

MTD assay [2]- quantification_reagent [PRIDE , PRIDE :0000325 , SILAC heavy]

Example label -free experiment:

MTD quantification_method [MS, MS:1001834 , LC-MS label -free quantitation analysis , ]

MTD assay [1]- quantification_reagent [MS , MS:1002038 , unlabeled sample ,]
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Additional metadata allows for the detailed specification of the unit of the reported
quantification value and the modification introduced by the labeling reagent.
Small molecule quantitation shares the same metadata as peptides and proteins. Com-
pared to ontologies in proteomics, ontologies in metabolomics currently lack behind in
the number of existing CV terms. In the future, we expect more metabolomic ontologies
to be defined.

Instrument and Software

Name, source, analyzer, and detector of one or multiple instruments are reported using
CV parameters. Reporting of processing software using CV parameter is mandatory for
Complete files and can be augmented by providing the software settings.

Contact and Publications

Several publications can be associated with a mzTab file and are preferably specified
using PubMed IDs and DOIs. The contact information of authors may include name,
affiliation, and email address.

Expressing Confidence and Reliability of Reported Results

In some cases, reliable statistical confidence measures are not easily calculated, and
manual validation of identification results are required. This problem is especially
prominent for metabolomic study results, which in most cases require expert inspection
and annotation. In mzTab, protein, peptide, PSM, and small molecule identifications
can be assigned a confidence score via the reliability column. While not strictly enforced,
the reliability of a proteomic identification or quantification result should be reported
as integers between one and three. These numbers correspond to a:

1 - poor reliability.

2 - medium reliability.

3 - high reliability.

In metabolomics, according to the current Metabolomics Standards Initiative (MSI)
agreement138,139, confidence values should be reported as an integer between one and
four. These values correspond to:

1 - (unknown compounds).

2 - putatively characterized compound class.
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3 - putatively annotated compounds.

4 - identified metabolite.

Possible applications of reliability values are "traffic light" type visualizations in graphical
user interfaces.

Data Integrity

MzTab provides metadata to store checksums and hash values. These can be used for
validation of referenced spectra files. In addition to these values, the hash function
(e.g., SHA-1, see example below) is provided using a CV parameter.

MTD ms_run [1]- hash_method [MS , MS:1000569 , SHA -1, ]

MTD ms_run [1]-hash ea32b3af2c7cat6e1ad3e85a0bd9b10d17087a4c

5.2.4 Reporting Peptide and Protein Identification Results

Most identification engines assign peptide sequences to experimental spectra. These
peptide-spectrum matches are stored in the PSM section. Based on the PSMs, protein
inference algorithms determine the set of identified proteins.

Peptide-Spectrum Matches

The PSM section stores detailed peptide-to-spectrum matching information. The amino
acid sequence, modifications, and calculated m/z (calc_mass_to_charge) are stored
for identified peptides. Precursor mass-to-charge ratio (exp_mass_to_charge),
charge, retention_time, and a reference to the spectrum and its MS run
(spectra_ref) retain spectrum specific properties.
PSH sequence ... modifications spectra_ref retention_time charge

,→ exp_mass_to_charge ...

PSM QTQTF ... ... null ms_run [1]: scan =1296 1336.62 3

,→ 600.6189 ...

Consensus identification approaches combine results from multiple search engines
to improve the identification of peptides. Post-processing software (e.g., tools to
calculate posterior error probabilities) generate derived scores from original search
engine scores. MzTab supports the simple use case of a single search engine score
as well as these advanced use case by allowing several score columns. Each column
then corresponds to a different score type. CV parameters in the metadata section
ensure that score types are properly defined. In addition to search engine scores,
information on sequence database and version can be included. In the case that the
peptide sequence can be unambiguously assigned to a single protein, the peptide is
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annotated as unique. The protein’s accession, the position in the protein (start,
end) as well as the preceding and following amino acid (pre, post) in the protein
are then annotated in the respective columns. In bottom-up proteomics, the more
complex case arises that an identified peptide sequence matches to multiple proteins.
The inference of the correct or most likely assignments is a non-trivial problem140.
MzIdentML125 features detailed protein inference information. In mzTab, we decided,
for the sake of reduced complexity, to only model basic protein inference information.
If the peptide is assigned to multiple proteins, the PSM row may be duplicated for each
matching protein accession. The peptide is marked as non-unique and position as well
as flanking amino acids in the respective protein are reported.
Co- or Posttranslational modifications, as well as modifications attributed to sample
treatment, are represented by a list of modification objects. Each modification object is
encoded as string of format:

{ p o s i t i o n }{ score (CV param.)}−{Mod. or Subst . ID }|{ neu t ra l l o s s (CV param . ) } .

The prefix of the string encodes the position in the peptide or protein, depending on
whether the modification is reported in the PSM/peptide or protein section. Advanced
use cases supported by mzTab include reporting of positional ambiguities with local-
ization scores. Here, individual scores like the probability of a phosphorylation site
assignment can be provided by a tool. Modification identifiers are either specified using
identifiers from widely used modification databases (Unimod or PSI-MOD) or in the
case of unknown modifications, by specification of a chemical formula or mass shift in
Hill notation141. Neutral losses can optionally be reported using a CV term associated
with a position and modification.

Reporting Protein Identification Results

Protein identifications are reported in the protein section. Columns for protein acces-
sion, description, species, GO terms, and protein database used in the identification
process are expected by the mzTab standard. Statistics on the experimental evidence
should be provided in columns that store the total number of PSMs and peptides that
map to a protein identification, the sequence coverage by identified peptides, as well
as the number of peptides that match only to the reported protein (i.e., provide strong
evidence for the presence of the protein). Similar to the PSM section, the tools that
created one or several scores are listed and scores from all MS runs are reported in line.
This way, proteins that have been identified in only one, several, or all MS runs can
be easily spotted. In addition, the best score obtained from searches in all MS runs is
reported. If more than one search engine score is reported several best-score-columns
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are reported (one for every individual score type). In bottom-up proteomics, so-called
shared peptides are regularly identified. These peptides map to multiple proteins. The
computational process of protein inference aims at determining the proteins in a sample
based on the identified peptides. Because ambiguity can usually not completely be
resolved in this process, protein groups are reported. How these groups are formed de-
pends highly on the inference algorithm. In mzTab, the column ambiguity_members

is used to list the members of a protein group. To report PSMs that map to multiple
accessions the same PSM row is copied and adapted to the protein accession of the
ambiguity group. That way, information on the position in proteins can be reported for
each hypothesis. The example below demonstrates how a group of three proteins is
reported. Here, the protein group has been identified by a single peptide that maps to
three proteins:

COM Pro te in group with three p r o t e i n s P1 , P2 , P3

PRH acces s ion ambiguity_members . . .

PRT P1 P2 , P2 . . .

. . .

COM PSM of pept ide DEPIANGER mapping to the pro te in group above .

PSH sequence PSM_ID acce s s ion unique . . . pre post s t a r t end

PSM DEPIANGER 2 P1 0 . . . N E 34 42

PSM DEPIANGER 2 P2 0 . . . K I 124 132

PSM DEPIANGER 2 P3 0 . . . M E 23 31

Reporting Small Molecule Identification Results

The mzIdentML format developed by the PSI covers the majority of identification results
from proteomics experiments. For MS-based metabolomics experiments, no widely
used and standardized data format is available to store identification or quantification
data. To fill this critical gap, mzTab offers the small molecule section that allows
reporting basic identification and quantification results.
Small molecules are primarily specified using a unique identifier from metabolite or
compound databases like the Human Metabolome DataBase (HMDB)142, PubChem143,
LipidMaps144, LipidHome145 or Chemical Entities of Biological Interest (ChEBI)146.
Similar to the proteomic sections, potential chemical modifications, and a human
readable description can be provided. In addition, a chemical formula in Hill notation141

can be provided. Simplified Molecular-Input Line-Entry System (SMILES) or IUPAC
International Chemical Identifier (InChI) keys provide structural information on the
small molecule. If SMILES are reported in their respective column, the molecule can
be easily visualized by other tools. Analogous to the MS information provided in
the PSM section, precursor mass-to-charge ratio (exp_mass_to_charge), charge,
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retention_time, and a reference to the spectrum and its MS run (spectra_ref)
are provided. Search engine and scores are recorded for every MS run. If spectral
libraries are used for identification, the fields taxonomy, species, database and
database_version should be filled.

SMH i d e n t i f i e r chemical_formula smi le s inch i_key d e s c r i p t i o n exp_mass_to_charge

SML CHEBI:17562 C9H13N3O5 Nc1ccn . . . UHDGC . . . Cy t id ine 244.0928

Reporting Quantification Results

Quantification techniques measure the abundance of an analyte on the level of assays
(e.g., corresponding to one channel of a multiplexed experiment or the single channel
in label-free experiments). Abundance values of several assays (e.g., replicates) are
summarized to form an abundance value of a study variable. The abundance value of
a study variable might correspond to the average abundance of a protein in a control
group or a disease state. Details on the calculation of the abundance value are currently
not part of the mzTab standard. In Summary files, abundance values for study variables
are sufficient. In Complete files, abundance values for every assay must be reported,
too. In both cases, standard deviation and standard error of study variable abundance
values should be reported. For every abundance value as well as standard deviation and
error, columns are appended to the identification information in the protein, peptide,
and small molecule section.

Reporting Feature Quantities

In some cases, reporting only protein abundances may not be detailed enough. MzTab
offers the possibility to report feature abundances in the peptide section. This section
has primarily been intended to aggregate quantitative information (e.g., linked features
after map alignment) on peptides and should not be used in files containing only
identification data. Quantitation columns in the peptide section are used the same way
as quantitation columns in the protein section. Particularly, features that have been
linked between several assays (e.g., MS runs in label-free experiments) are reported in
the same format as quantified proteins (using the peptide_abundance_assay[1-n]
and peptide_abundance_study_variable*[1-n] columns respectively).
Some differences to the protein section are:

• Ambiguity information is not explicitly provided for shared peptides. If protein
information is required, peptide rows may be duplicated for every protein they
map to.

• A column is contained to indicate if the peptide is unique.
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• Chromatographic retention time start, apex, and end of one master feature are
reported.

Extending MzTab with Custom Metadata and Columns

Metadata not covered by the mzTab specification can be included into a document using
a custom meta value. It expects a CV parameter, which, if the ontology and identifier
are kept empty, corresponds to a user parameter object. In many cases, it is desirable
to report tool- or analysis-specific information in additional columns. These custom
columns can be added to the protein, peptide, PSM, and small molecule section. Column
headers of custom columns must start with the prefix opt_. An additional context qual-
ifier allows to bind the column name to a specific assay, study variable or MS run (e.g.,
opt_assay[1], opt_study_variable[2], or opt_ms_run[3]). If the column
is not bound the qualifier global_ must be added (e.g., opt_global_mycolumn). If
CV terms are available that correctly describe the content of the column, it is recom-
mended to add the CV accession and parameter name:

Format : opt_ { contex t } _cv_ {CV acces s ion }_{ parameter name}
Example : opt_global_cv_MS :1002217 _decoy_pept ide

5.3 Results

The adoption of PSI file formats by data producers and data repositories has been, in
retrospect, a rather slow process. MzTab is still a rather new format but already shows
a considerably quicker adoption that we mainly attribute to the simpler structure and
availability of reference implementations and validators. It is hard to foresee to what
extent mzTab will be accepted in the proteomic and metabolomic community and how
data sharing and communication of results with mzTab will benefit research in other
fields. In the following, we will take a look at existing implementations and, in our
view, promising early adoptions.

5.3.1 Implementation in OpenMS

We implemented reading and writing of mzTab files, including functionality for basic
semantic validation, into the core OpenMS library. MzTab data is stored in instances of
the MzTab class and de-/serialized on disc via instances of the MzTabFile class. The novel
TOPP tool MzTabExporter builds on this core functionality and exports OpenMS XML-
based file formats to mzTab files. It currently supports all major OpenMS data formats
for peptide and protein identification (idXML, mzIdentML), peptide quantification
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(featureXML), and peptides quantified from linked features (consensusXML) to mzTab.
See Figure 5.4 for an example KNIME workflow that exports peptide identification and
reads them back into a KNIME table for further processing.

Figure 5.4: MzTab workflow using OpenMS in KNIME. Peptides are identified using
XTandemAdapter. Results in the OpenMS idXML format are exported to MzTab using the
MzTabExporter node. The MzTabReader node reads the mzTab file and converts the
data to a standard KNIME table. The table can be processed using standard KNIME nodes
(e.g., a simple Column Filter) and exported to different file formats (here a simple CSV
file via the CSV Writer node).

The TOPP AccurateMassSearch tool for small molecule identification has been
adapted to write mzTab files. It annotates all currently supported small molecule
columns including SMILES columns with information on the molecule structure.

5.3.2 Statistical Downstream Analysis

Recently, we demonstrated how mzTab could be used to build integrated processing and
statistical analysis workflows in KNIME. In a simple biomarker discovery workflow in
KNIME (Figure 5.5 and Appendix Figure E.1 for a simplified workflow), we showed that
mzTab captures the relevant information for downstream data analysis. Visualization
of molecular structures of differentially quantified small molecules was achieved by
interfacing with R and third-party KNIME extensions147.

5.3.3 Community Acceptance

Several tools and libraries have been developed by other members of the compu-
tational mass spectrometry community that support reading and writing of mzTab
files. The jmzTab148 Java API is the current reference implementation for reading,
writing, and validating mzTab files. The R Bioconductor package MSnbase149 has been
extended to support reading and writing of mzTab files (version 1.5.6). The PRIDE
PRoteomics IDEntifications database (PRIDE) submission tool PRIDE Converter 2150

converts identifications from multiple search engines to mzTab. At present, mzTab files
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Figure 5.5: Section of a small molecule quantification workflow in KNIME. After sig-
nal processing, the table of quantified small molecules is subjected to statistical downstream
analysis (green color). After log scaling and normalization, multiple t-tests including FDR
calculation are performed to detect differentially quantified small molecules. Visualizations
(blue color) are generated from the individual node outputs. Example plots on the left
have been generated from the small molecule data and annotations using KNIME nodes
for the visualization of boxplots and molecular structures.

can be provided by the user for conversion to the PRIDE XML submission format. That
way, quantitative information can be made easily available. Alternatively, quantitative
data can be provided via mzQuantML files which are converted to mzTab using the
mzQuantML Java library151. Other tools (e.g., Mascot50) use mzTab as an export
format for identification results. Results from other search engines (e.g., MSGFPlus152)
can be converted to mzTab using third-party tools. A more specialized tool, the Lipid-
DataAnalyzer153 processes lipidomics LC-MS data and is able to export quantitative
data using mzTab. PIA154, a toolbox for MS-based protein inference and identification
analysis also exports mzTab files.
MzTab was designed to ease data sharing and communication of MS-based proteomic
and metabolomics results with researchers from other fields. In this regard, we are
happy that it got adopted by the ProteomeXchange (PX) consortium155, which coor-
dinates the data submission to three major proteomics data repositories PRIDE156,
PeptideAtlas157, and the Mass spectrometry Interactive Virtual Environment (Mas-
sIVE)158. Currently, mzTab files for all complete MS/MS submissions to PX via PRIDE
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are automatically generated and made available to the public. In MassIVE, mzTab is
primarily used for internal storage of results. It is planned that mzTab files will also be
made available for download.

5.4 Discussion

We developed the mzTab file format for communication and statistical downstream
analysis of experimental results in proteomic and metabolomic studies. We chose a
simple structured tabular-separated format and CV terms from established ontologies
to provide metadata and semantics for the stored data. Two different types of mzTab
files, one for simple summary results and one for complete reports are specified, which
define a set of mandatory entries and information that needs to be present. In our
view, these design decisions allow mzTab to manage the balancing act of not being
overly generic with loose semantics and a less versatile format with tight semantics.
In contrast to existing XML-based formats developed by the HUPO Proteomics Standards
Initiative (PSI), mzTab was not intended for archiving. Therefore, it does not contain
the complete trace of evidence that leads to the analysis result. Instead, the focus lied
on a human- and computer-readable, tabular representation of data that can be easily
interpreted by humans and processed by statistical analysis or spreadsheet software.
We, thus, expect mzTab to be more accessible for researchers in and outside the
field of proteomics and metabolomics. Recently mzTab has been adapted by the
ProteomXchange consortium. We, therefore, already achieved a wide accessibility of
MS/MS-based proteomic study results submitted to ProteomeXchange via PRIDE.
Especially for MS-based metabolomics results there existed neither established tabular
separated nor XML-based data formats, yet. MzTab fills the important gap of providing
a reporting format and has already proven useful for lipidomics approaches (as imple-
mented in the LipidDataAnalyzer153). Until XML-based data formats like mzQuantML
catch up and support reporting and archiving of small molecule identification and
quantification data, mzTab might be used as a bridge format until the data archiving
issue is solved for those formats. MetaboLights159 the first general-purpose, open-access
curated repository for metabolomics studies is currently adapting mzTab.
In addition, mzTab is, to our knowledge, the first standard format for reporting pro-
teomic and metabolomic results from multi-omics MS-based analysis.
Another possible application of mzTab is in laboratory information management systems
(LIMSs). A wide range of heterogeneous data, for example, results from quality control
runs or analysis results of quantitative studies, can be supported by adding optional
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columns and meta information. That way, mzTab can be tailored to the requirements
of different research groups.
Historically, the first motivation for mzTab was to develop a format that can often
replace difficult representations of scientific results in the supplementary material of
publications. At the time of this thesis, results (e.g., tables) are, in many cases, still
provided as images or proprietary binary formats. Standardizing the supplementary
information provided to scientific journals by the adoption of mzTab would significantly
improve accessibility to the primary results. Such large an endeavor is highly depending
on the willingness of journals to adapt their reporting guidelines which in turn highly
depends on how well the format has been adopted by the proteomic and metabolomic
research community.

5.5 Outlook

The current mzTab specification provides three sections to report proteomic data on
the level of proteins, peptides, and PSMs. In contrast, reporting of metabolomic results
lacks granularity and only provides a single section to report quantified small molecules.
In this regard, the small molecule section currently resembles a final summary report
but lacks behind the detail of proteomic data provided in complete quantification files.
While it might be sufficient for reporting of general metabolomic results, a higher
detail of reporting could be obtained in one of the subsequent versions of the file
format. The observation that metabolomic structures in mzTab are not as expressive
as the proteomic counterpart and might be missing valuable information was also
fed by discussions in the Tübingen mzTab4Metabolomics workshop in 2014. During
the workshop discussions, experts from diverse metabolomic and proteomic fields
jointly formed the idea of adapting the reporting of metabolomic results in mzTab.
Extensions to the current format should attribute the heterogeneity of methods and
data in metabolomics. An initial draft revealed many structural similarities between
the proteomic section and proposed three sections with analogous roles:

proteomics metabolomics
section description section description

PRT proteins and protein groups SMS compounds
PEP peptide features SMF small molecule features
PSM peptide spectrum matches SSM small molecule spectrum matches

Table 5.1: Document structure according to an initial mzTab4Metabolomics draft.
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Further development of the extended mzTab version might be provided by members of
the Coordination Of Standards In Metabolomics (COSMOS)160 initiative. COSMOS
aims to improve the availability of exchange formats and terms needed to describe
metabolomics results and the associated metadata.
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Conclusion

In the past years, high-throughput methods have been developed to obtain organism-
scale quantitative views of the genome, transcriptome, proteome, and metabolome.
Each technique generates a vast amount of data that needs to be analyzed to obtain
biologically relevant information. If examined individually, a partial view of the abun-
dance of biomolecules in a system is obtained. Employing multiple techniques and
consolidating results offers a more comprehensive view and allows uncovering biolog-
ical mechanisms and causalities that otherwise remained hidden. While combining
multiple omics technologies yields more quantitative information than individual ones,
combining classical approaches often falls short in providing answers to fundamental
biological questions. One explanation is that focusing on abundances of biomolecules
provide limited information on the highly regulated and dynamic biological processes.
The detailed characterization of interactions between biomolecules provides an addi-
tional level of information on involved partners which in turn facilitates resolving their
function.
Proteins and RNA/DNA molecules constitute important classes of biomolecules which
are involved in essential cellular processes. At the time of this thesis, high-throughput
methods for the elucidation of protein-(ribo)nucleic acid interactions were missing
essential features. Our first, major contribution in this thesis, RNPxl, is a novel computa-
tional method and flexible workflows that allow performing comprehensive, organism-
wide studies of protein-RNA or protein-DNA interactions. We successfully applied
the method to whole cell lysates of different organisms and were able to pinpoint
cross-linking sites down to the resolution of single amino acids. We identified novel
RNA-binding proteins, including proteins without known nucleotide-binding domains.
Our method, thus, contributes to the emerging notion of a much broader prevalence
of protein-RNA interactions than previously anticipated. Recently, noncanonical RNA-
binding enzymes have become prominent research targets. Our method already pro-
vided supporting evidence on the associated proteins, the nucleotide motif, and the
location of nucleotide-binding sites (White et al. 161 , White and Garcin 162). The abil-
ity to localize cross-linked amino acids and nucleotides in contact opens the way
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for a better structural elucidation of protein-RNA/DNA complexes. Notable results
obtained with our method on structure, interaction, and homology in CRISPR-Cas
systems that employed RNPxl with complementary techniques are described by Sharma
et al. 76 , Staals et al. 163 , Gleditzsch et al. 164 , Shao et al. 165 . Increasing the number of
known protein-RNA/DNA binding sites will ease associating deleterious mutations with
disease phenotypes. In a similar line of research, targeted mutation of binding sites
can be used to study disruption of proper protein-RNA/DNA interactions. Ultimately,
we expect that only integrated approaches, combining data from different sources and
techniques, will uncover causal explanations for the complex biological phenomena
involving protein-RNA/DNA interactions. Based on our research results and recent
publications we are confident that localization of cross-links at the amino acid-level
has a significant advantage compared to existing approaches.
Over the last few years, the field of microbiome research has grown substantially. Today,
microbial ecology and the study of human microbiomes are attractive research areas
with important practical applications and clinical relevance. Using metaproteomics
approaches, the proteins of microbial communities can be investigated. Studying
multiple species measured in single biological samples pose significant challenges in
data analysis. Protein-SIP approaches allow analyzing substrate metabolism and ele-
mental flux in complex samples. Our second, major contribution MetaProSIP, enables
high-throughput analysis of microbial communities using protein-SIP. By developing a
novel computational method and automated workflows, we were able to reduce the
time-consuming manual analysis of protein-SIP experiments from several months to
minutes. We successfully identified and quantified peptides and proteins of species that
partake in degradation processes based on their ability to incorporate labeled substrate
molecules. Automated clustering and phylogenetic annotation allowed us to identify
and distinguish functional groups of organisms. Combining MetaProSIP with existing
tools in complex workflows, and the use of mixed or separate unlabeled reference
samples makes it the ideal tool for large (e.g., hundreds of runs) protein-SIP studies
and time series analysis. Several articles have recently been published that demonstrate
the broad applicability of MetaProSIP. Lünsmann et al. 166 studied toluene degradation
in a rhizospheric wetland model and identified key degraders and biochemical path-
ways. Starke et al. 167 applied MetaProSIP to study a soil metaproteome spanning two
kingdoms: fungi and bacteria. They showed that mainly bacteria were involved in
the assimilation of plant-derived nitrogen, whereas fungi dominated the degradation
of complex carbon compounds. Starke et al. 168 investigated the acetate utilization
network within a benzene-degrading and sulfate-reducing syntrophic consortium of
microorganisms. Using MetaProSIP on data from a pulsed 13C2-acetate protein-SIP
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experiment, they were able to gain detailed insight into the acetate utilization network
and identified Epsilonproteobacteria as dominant acetate utilizers. Future developments
of MetaProSIP include additional labeled substrate elements. Currently, we investigate
how deuterium or 18O-labeled water can be used as general activity marker in microbial
communities169. Metaproteomic studies mainly drove the development of MetaProSIP.
We currently evaluate how well MetaProSIP can be applied to single-species analysis.
Protein turnover and anabolic amino acid synthesis pathways are interesting research
targets MetaProSIP might find applications. Based on our research results and recent
publications we are confident that MetaProSIP offers a significant methodological
advancement and is widely applicable to metaproteomic studies.
The third contribution of this thesis mzTab is a data format that eases the communication
and automated processing of experimental results from proteomics and metabolomics
studies. MzTab was developed with members of the Proteomics Standard Initiative.
MzTab is a standardized, tabular file format that is both human-readable and computer-
consumable. In contrast to existing XML file formats, it enables convenient downstream
statistical analysis of proteomic and metabolomic results. We implemented tools for
reading and writing of mzTab files in OpenMS. Development of a KNIME community
node by other OpenMS developers significantly lowered the bar for non-experts as
it allows performing workflow-based data analytics on proteomic and metabolomic
results. MzTab provides a concise presentation of study results for easier communication
of results to a wider community. Several tools and libraries have been developed for
reading and writing mzTab by other members of the mass spectrometry community.
While most of these originate from academic research, commercial applications are
starting to support mzTab. MzTab got adopted by the ProteomeXchange consortium,
which coordinates the data submission to three major proteomics data repositories. In
two of the main proteomic data repositories, mzTab is used for storing proteomics and
metabolomics results. Thus, mzTab already plays a major role in carrying proteomic
results over to other areas of research. In the future, improved and more detailed
representation of metabolomics results will be a major format extension. We hope that
these format extensions ease further adoption of mzTab in the field of metabolomics.
Computational mass spectrometry-based proteomics is an ever-changing field with
broad applications. In this thesis, we demonstrated that joint development of bio-
chemical and computational methods complement each other. We expanded the
methodological repertoire in the fields of protein-DNA/RNA biology and microbial
metaproteomics. Designed with high-throughput analysis in mind, our methods allow
approaching biological questions in a data-driven way. Data from successful appli-
cations of our methods have resulted in novel biological insights, and have led to
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prospective follow-up studies. Additionally, we contributed to the development of a
data format for communication of proteomics and metabolomics research results. In
conclusion, we are certain that the results of our efforts contribute to the advancement
of computational mass spectrometry, and is applicable to various fields of life sciences.
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Appendix A: Permissions and Contributions

Single amino acid assignment of nucleotide-binding sites in RNA- and DNA-binding pro-

teins

Cross-link identification69: Permission to reuse of text, figures, and charts was granted
by the Nature Publishing Group for the article: "Photo-cross-linking and high-resolution
mass spectrometry for assignment of RNA-binding sites in RNA-binding proteins,
Kramer K, Sachsenberg T, Beckmann B, Qamar S, Boon K, Hentze M, Kohlbacher
O, Urlaub H. Nature Methods 11, 1064–1070 (2014). KK, BB, SQ, KB, MH, and HU
designed biochemical experiments. KB and KK designed and transformed the yeast
strain. KK and BB. carried out experiments for the yeast systems; KK analyzed the
resulting data. SQ performed experiments in the human system; KK and SQ analyzed
the resulting data. KK, TS, OK and HU designed data analysis strategy; TS developed
algorithms and implemented RNPxl tools. TS implemented TOPPView visualization.
KK and TS tested the data analysis and visualization tools. KK, TS, BB, MH, OK and HU
wrote the paper. KK, TS and SQ compiled the supplementary materials. TS deposited
data to the ProteomeXchange Consortium via the PRIDE partner repository with the
data set identifier PXD000513.
Cross-link localization (Application note on integration of RNPxlSearch into Proteome
Discoverer95): KK, UZ, SQ, KS, and AC designed, performed and validated experiments.
TS developed algorithms and implemented RNPxlSearch tools and workflows. AC and
TS and performed data analyses. JV integrated RNPxlSearch into Proteome Discoverer.
JV, TS, AC, FA, HU, and OK wrote the paper.

Dynamic Stable Isotope Probing of Metaproteomic Communities110

Permission to reuse of text, figures, and charts was granted by the American Chemical
Society. In compliance with the permission and copyright policy, we state that our
publication was: "Reprinted and adapted with permission from MetaProSIP: automated
inference of stable isotope incorporation rates in proteins for functional metaproteomics.
Sachsenberg T, Herbst, FA, Taubert M, Kermer R, Jehmlich N, von Bergen M, Seifert
J, Kohlbacher O. Journal of Proteome Research 14(2), 619–627 (2015). Copyright
2014 American Chemical Society." FH, MT, RK, NJ, MB and JS designed biochemical
experiments. FH performed and validated experiments. FH, MT, RK, NJ, MB, JS, TS, OK
designed data analysis strategy; TS formalized decomposition, developed algorithms,
and implemented the MetaProSIP tool and workflows. TS and FH performed data
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analyses. TS deposited data to the ProteomeXchange Consortium via the PRIDE partner
repository with the data set identifier PXD000382.

Standardized Reporting of Experimental Results in Proteomic and Metabolomic Stud-

ies170

Permission to reuse of text, figures, and charts was granted by the American Society for
Biochemistry and Molecular Biology. In compliance with the permission and copyright
policy, we state that: "This research was originally published in Mol Cell Proteomics.
Griss J, Jones AR, Sachsenberg T, Walzer M, Gatto L, Hartler J, Thallinger GG, Salek
RM, Steinbeck C, Neuhauser N, Cox J, Neumann S, Fan J, Reisinger F, Xu QW, Del
Toro N, Pérez-Riverol Y, Ghali F, Bandeira N, Xenarios I, Kohlbacher O, Vizcaíno JA,
Hermjakob H. The mzTab data exchange format: communicating mass-spectrometry-
based proteomics and metabolomics experimental results to a wider audience. Mol
Cell Proteomics. 2014; 13:2765-2775. © the American Society for Biochemistry and
Molecular Biology." AJ, OK, JAV, and HH designed research. JG, AJ, TS, MW, LG, JH,
GT, RMS, CS, NN, JC, SN, JF, FR, QX, Nd, YP, FG, NB, IX, and JAV performed research.
JG, JAV, and HH wrote the paper. TS has been actively involved in the standardization
process and creation of examples. TS implemented mzTab I/O file handler and data
structures in OpenMS. EK and TS adapted OpenMS tools (AccurateMassSearch &
SpectralLibrarySearch) to support writing of MzTab. JP, EP, and SA developed a
KNIME node (MzTabReader) for importing mzTab files into KNIME tables. Workflows
were developed and refined by several members of OpenMS.

SA: Stephan Aiche, NB: Nuno Bandeira, BB: Benedikt Beckmann, KB: Kum-Loong Boon, MB: Martin von Bergen, AC: Aleksandar

Chernev, JC: Jürgen Cox, JF:Jun Fan, LG: Laurent Gatto, FG :Fawaz Ghali, JG: Johannes Griss, JH: Jürgen Hartler, MH: Matthias

W Hentze, FA: Florian-Alexander Herbst, HH: Henning Hermjakob, NJ: Nico Jehmlich, AJ: Andrew Robert Jones, EK: Erhan Kenar,

RK: René Kermer, OK: Oliver Kohlbacher, KK: Katharina Kramer, NN: Nadin Neuhauser, SN: Steffen Neumann, YP: Yasset Pérez-

Riverol, JP: Julianus Pfeuffer, EP: Enes Poyraz, SQ: Saadia Qamar, FR: Florian Reisinger, TS: Timo Sachsenberg, RS: Reza Salek,

JS: Jana Seifert, KS: Kundan Sharma, CS: Christoph Steinbeck, MT: Martin Taubert, GT: Gerhard Thallinger, NT: Noemi del Toro,

HU: Henning Urlaub, JV: Johannes Veit, JAV: Juan Antonio Vizcaíno, MW: Mathias Walzer, IX: Ioannis Xenarios, QX: Qing-Wei

Xu, UZ: Uzma Zaman
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Appendix B: Background

Figure B.1: MS/MS spectrum. Fragmentation of ions in the precursor isolation window.
Fragment ions were recorded in the second round of mass measurement. The resulting
spectrum is called tandem spectrum.

Figure B.2: Fragment ion nomenclature. Fragmentation at different backbone positions
gives rise to different fragment ions171. CID spectra are dominated by b- and y-ions. HCD
mainly generates y-ions. b-ions occur to a lesser extent and may be further fragmented to
a-ions. ETD yields mainly c- and z-ions. Created by Huimin Zhong, (CC-BY-SA 4.0)
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Table B.1: Natural abundance of hydrogen, carbon, nitrogen, oxygen, and sulfur iso-
topes172. Isotopes marked with (*) indicate that it is not present in nature or no meaningful
abundance can be given.

Name Symbol
Mass of Atom

(u)
abundance

%
Hydrogen 1H 1.007825 99.9885
Deuterium 2H 2.014102 0.0115
Tritium 3H 3.016049 (*)
Carbon 12C 12.000000 98.93

13C 13.003355 1.07
14C 14.003242 (*)

Nitrogen 14N 14.003074 99.636
15N 15.000109 0.364

Oxygen 16O 15.994915 99.757
17O 16.999132 0.038
18O 17.999160 0.205

Sulfur 32S 31.972071 94.99
33S 32.971458 0.75
34S 33.967867 4.25
36S 35.967081 0.01

Notation and Definition of Mass Spectrometry Related Terms

In computational mass spectrometry, basic mass spectrometry terms are used in a slightly

different context and deviate from the official IUPAC definitions. For example, IUPAC defines a

mass spectrum as "a plot of relative abundances (...) as function of their m/z values." To ease

formal description of methods and algorithms, we use following definitions and mathematical

notations:

Mass Peak: A mass peak p is defined by a 3-tuple of retention time t, mass m and intensity i:

pk = (tk, mk, ik).

If the retention time of the mass peak can be deduced from the context, we might simply write:

pk = (mk, ik).

Mass Spectrum: A mass spectrum s is a set of mass peaks s = {pk} with same retention time.
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Peak Map: A peak map P is a set of mass spectra P = {s j}.

Extracted Ion Chromatogram: We define an extracted ion chromatogram X IC as the set of

peaks in P that fall in a retention time [ta, tb] and mass-to-charge interval [ma, mb] :

X IC = {pi ∈ P : t i ∈ [ta, tb]∧mi ∈ [ma, mb]}.

Variance of the Binomial Distribution

The variance of the binomial distribution is:

Var[Pp(n|N)] = np(1− p) = −np2 + np, (B.1)

a quadratic function of p (n ∈ N>0).

From basic analysis follows a maximum at: p = −n/(−2n) = 0.5.
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Appendix C: RNPxl

Figure C.1: Possible UV-induced cross-linking reaction between uridine and threonine.
Note that the exact mechanism of cross-link formation is not fully understood and might
differ. Image kindly provided by Kramer 173

Table C.1: Cross-links to mono- and dinucleotides.
In order generate mono- and dinucleotides, the oligo length is restricted to two. No
sequence is provided to limit oligonucleotide generation. To allow for all RNA combinations,
no restriction on the minimum number of oligonucleotide occurrence is set. No DTT
cysteine adduct is generated and no losses are specified in the modifications row. Adapted
from Kramer et al. 69 .

Parameter Value
length 2
sequence

target_nucleotides
A=C10H14N5O7P, C=C9H14N3O8P, G=C10H14N5O8P,
U=C9H13N2O9P

mapping A->A, C->C, G->G, U->U
restrictions A=0, C=0, G=0, U=0
modifications
CysteineAdduct false
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Figure C.2: Fragment spectrum of peptide (top) and cross-link (bottom) may be very
similar because of a predominant total loss of the RNA upon fragmentation. Image kindly
provided by K. Kramer.

(a) uridine (b) 4-thiouridine
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Figure C.4: OpenMS workflow for cross-Link identification using the RNPxl tool in
KNIME. Workflow consists of target-decoy database creation, peak centroiding, chromato-
graphic alignment, ID/XIC filter and cross-link identification. Orange nodes indicate input
files(s), yellow nodes TOPP tools, red nodes output files(s). Nodes are connected by edges
that indicate the flow of data. Between corresponding ZipLoopStart/ZipLoopEnd nodes, a
list of files is sequentially processed.
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Table C.2: Cross-links to a uracil-containing RNA sequence.
The maximum length of generated oligonucleotides is limited to three. The composition
of generated oligonucleotides is restricted by the provided sequence: only mono-, di- and
trinucleotides are generated that form a valid substring. All standard nucleotides are
defined via their sum formula and no further mapping is performed. Oligonucleotides
without loss, loss of water, metaphosphoric acid as well as loss of both metaphosphoric
acid and water are generated. “U=1” ensures that at least one uridine is present in the
RNA combinations. In addition, the presence of the DTT cysteine adducts is considered
for each RNA. Adapted from Kramer et al. 69 .

Parameter Value
length 3
sequence ACUGCAUGAG

target_nucleotides
A=C10H14N5O7P, C=C9H14N3O8P, G=C10H14N5O8P,
U=C9H13N2O9P

mapping A->A, C->C, G->G, U->U
restrictions A=0, C=0, G=0, U=1
modifications -H2O, , -H2O-HPO3, -HPO3
CysteineAdduct true

Table C.3: Cross-links with 4SU nucleotide analog substituted at a specific site.
4-thiouridine (defined as nucleotide "Y") is used to site-specifically label position 5 of
the nucleotide sequence. All trinucleotides containing at least one 4SU are generated.
Modifications are chosen according to the typical 4SU specific losses. Adapted from Kramer
et al. 69 .

Parameter Value
length 2
sequence ACUGYCAUGAG

target_nucleotides
A=C10H14N5O7P, C=C9H14N3O8P, G=C10H14N5O8P,
U=C9H13N2O9P, Y=C9H13N2O8PS

mapping A->A, C->C, G->G, U->U, Y->Y
restrictions A=0, C=0, G=0, U=0, Y=1
modifications -H2S, , -H2S-HPO3
CysteineAdduct false
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Table C.4: Cross-links with isotopically labeled adenosine.
Heavy adenosine (defined as nucleotide "Y") is used to site-specifically label position 5.
All trinucleotides are generated without further restrictions. Standard losses are assumed.
Adapted from Kramer et al. 69 .

Parameter Value
length 2
sequence ACUGYUCAUGAG

target_nucleotides
A=C10H14N5O7P, C=C9H14N3O8P, G=C10H14N5O8P,
U=C9H13N2O9P, Y=(13)C1(12)C9H14N5O7P

mapping A->A, C->C, G->G, U->U, Y->Y
restrictions A=0, C=0, G=0, U=0, Y=0
modifications -H2O, , -H2O-HPO3, -HPO3
CysteineAdduct false
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Table C.5: Cross-linked proteins in human. Adapted from Kramer et al. 69 .
type protein accession

RBPs ELAV-like protein 1 Q15717
Far upstream element-binding protein 2 Q92945
H/ACA ribonucleoprotein complex subunit 4 O60832
Heterogeneous nuclear ribonucleoprotein A/B Q99729
Heterogeneous nuclear ribonucleoprotein A1/A1-like 2 P09651/Q32P51
Heterogeneous nuclear ribonucleoproteins A2/B1 P22626
Heterogeneous nuclear ribonucleoproteins C1/C2 P07910
Heterogeneous nuclear ribonucleoprotein D0 Q14103
Heterogeneous nuclear ribonucleoprotein K P61978
Heterogeneous nuclear ribonucleoprotein L P14866
Heterogeneous nuclear ribonucleoprotein M P52272
Heterogeneous nuclear ribonucleoprotein Q O60506
Heterogeneous nuclear ribonucleoprotein R O43390
Heterogeneous nuclear ribonucleoprotein U Q00839
Nucleolin P19338
Nucleolysin TIAR Q01085
Poly(rC)-binding protein 1/2/3 Q15365/Q15366/P57721
Poly(U)-binding-splicing factor PUF60 Q9UHX1
Polypyrimidine tract-binding protein 1 P26599
Putative pre-mRNA-splicing factor
ATP-dependent RNA helicase DHX15

O43143

Putative RNA-binding protein 3 P98179
RNA-binding protein 39 Q14498
RNA-binding protein FUS P35637
Serine/arginine-rich splicing factor 1 Q07955
Serine/arginine-rich splicing factor 3 P84103
Serine/arginine-rich splicing factor 5 Q13243
Serine/arginine-rich splicing factor 6 Q13247
Serine/arginine-rich splicing factor 9 Q13242
Splicing factor U2AF 65 kDa subunit P26368
U1 small nuclear ribonucleoprotein 70 kDa P08621
Y-box-binding protein 1/2/3 P67809/Q9Y2T7/P16989

ribosomal subunits 40S ribosomal protein S2 P15880
60S ribosomal protein L5 P46777
60S ribosomal protein L6 Q02878
60S ribosomal protein L34 P49207
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Table C.6: Cross-linked proteins in yeast (standard uridine). Adapted from Kramer et al. 69 .
type protein accession
metabolic enzymes Adenosylhomocysteinase P39954

Alcohol dehydrogenase 1/3 P00330/P07246
Enolase 1/2 P00924/P00925
Glyceraldehyde-3-phosphate dehydrogenase 2/3 P00358/P00359
Inorganic pyrophosphatase P00817
Peroxiredoxin TSA1 P34760
Phosphoglycerate kinase P00560
Pyruvate kinase 1 P00549

DNA binding Cruciform DNA-recognizing protein 1 P38845
nucleotide binding Elongation factor 1-alpha P02994
RNA binding Nucleolar protein 3 Q01560

Nucleolar protein 13 P53883
Polyadenylate-binding protein P04147
Single-stranded nucleic-acid binding protein P10080

40S small ribosomal 40S ribosomal protein S1-A/-B P33442/P23248
subunit 40S ribosomal protein S3 P05750

40S ribosomal protein S5 P26783
40S ribosomal protein S11-A/-B P0CX47/P0CX48
40S ribosomal protein S14-A/-B P06367/P39516
40S ribosomal protein S16-A/-B P0CX51/P0CX52
40S ribosomal protein S17-A/-B P02407/P14127
40S ribosomal protein S24-A/-B P0CX31/P0CX32
40S ribosomal protein S29-A P41057
40S ribosomal protein S29-B P41058
Guanine nucleotide-binding protein subunit beta-like protein
(RACK1) P38011

60S large ribosomal 60S ribosomal protein L1-A/-B P0CX43/P0CX44
subunit 60S ribosomal protein L2-A /-B P0CX45/P0CX46

60S ribosomal protein L3 P14126
60S ribosomal protein L4-A P10664
60S ribosomal protein L4-B P49626
60S ribosomal protein L5 P26321
60S ribosomal protein L6-A Q02326
60S ribosomal protein L6-B P05739
60S ribosomal protein L8-A P17076
60S ribosomal protein L8-B P29453
60S ribosomal protein L16-A P26784
60S ribosomal protein L16-B P26785
60S ribosomal protein L18-A/-B P0CX49/P0CX50
60S ribosomal protein L23-A/-B P0CX41/P0CX42
60S ribosomal protein L26-B P53221
60S ribosomal protein L28 P02406
60S ribosomal protein L31-A/-B P0C2H8/P0C2H9
60S ribosomal protein L33-A/-B P05744/P41056
60S ribosomal protein L35-A/-B P0CX84/P0CX85
60S ribosomal protein L37-A P49166
60S ribosomal protein L37-B P51402
Ubiquitin-60S ribosomal protein L40 P0CH08/P0CH09
60S ribosomal protein L42-A/-B P0CX27/P0CX28

rRNA binding Ribosome biogenesis protein RLP7 P40693
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Table C.7: Cross-linked proteins in yeast (4-thiouridine). Adapted from Kramer et al. 69 .
type protein accession
metabolic enzymes Peptidyl-prolyl cis-trans isomerase P14832

Phosphoglycerate kinase P00560
translation regulator Cap-associated protein CAF20 P12962
DNA binding Endonuclease PI-Scel1 P17255

Multiprotein-bridging factor 1 O14467
Non-histone chromosomal protein 6A P11632
Non-histone chromosomal protein 6B P11633
RNA polymerase II degradation
factor 1 P35732

Suppressor protein STM1 P39015
Zuotin P32527

nucleotide binding Elongation factor 1-alpha P02994
RNA binding 5’-3’ exoribonuclease 1 P22147

ATP-dependent RNA helicase
DBP1/
ATP-dependent RNA helicase DED1

P24784/
P06634

ATP-dependent RNA helicase SUB2 Q07478
DNA topoisomerase 2-associated protein PAT1 P25644
Elongation factor 2 P32324
Eukaryotic translation initiation factor 4B P34167
Heterogeneous nuclear rnp K-like protein 2 P38199
mRNA-binding protein PUF3 Q07807
Negative growth regulatory protein NGR1 P32831
Nuclear and cytoplasmic
polyadenylated
RNA-binding protein PUB1

P32588

Nuclear polyadenylated RNA-binding protein 4 Q99383
Nuclear segregation protein BFR1 P38934
Nucleolar protein 3 Q01560
Polyadenylate-binding
protein,
cytoplasmic and nuclear

P04147

Protein SCP160 P06105
Protein SSD1 P24276
RNA annealing protein YRA1 Q12159
RNA-binding protein NAB6 Q03735
RNA-binding protein SRO9 P25567
Single-stranded nucleic acid-binding protein P10080
Transposon Ty1-LR4 Gag polyprotein2 P0C2I8

ribosomal subunits 40S ribosomal protein S0-A/-B P32905/P46654
40S ribosomal protein S2 P25443
40S ribosomal protein S3 P05750
40S ribosomal protein S4-A/-B P0CX35/P0CX36
40S ribosomal protein S5 P26783
40S ribosomal protein S7-A/-B P26786/P48164
40S ribosomal protein S8-A/-B P0CX39/P0CX40
40S ribosomal protein S14-A/-B P06367/P39516
40S ribosomal protein S15 Q01855
40S ribosomal protein S17-A/-B P02407/P14127
40S ribosomal protein S22-A/-B P0C0W1/Q3E7Y3
40S ribosomal protein S24-A/-B P0CX31/P0CX32
40S ribosomal protein S26-A/-B P39938/P39939
40S ribosomal protein S30-A/-B P0CX33/P0CX34
60S ribosomal protein L4-A P10664
60S ribosomal protein L4-B P49626
60S ribosomal protein L6-A Q02326
60S ribosomal protein L6-B P05739
60S ribosomal protein L8-A P17076
60S ribosomal protein L8-B P29453
60S ribosomal protein L14-A/-B P36105/P38754
60S ribosomal protein L24-A/-B P04449/P24000
60S ribosomal protein L26-A/-B P05743/P53221
60S ribosomal protein L27-A/-B P0C2H6/P0C2H7
60S ribosomal protein L33-A/-B P05744/P41056
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Figure C.5: Structural interpretation. MS/MS spectra with manual peak annotations:
RNA fragments (blue) and shifted peptide fragment ions (red) in (a,c and e) have been
used to validate cross-links. Cross-links are investigated in their structural context in (b,d
and f) with cross-linked amino acids highlighted in red and nucleotides in blue. a left:
Leu261 or Phe262 is cross-linked to U, right: Phe199 is cross-linked to UU. b Compared
to an existing structure of U2AF with a poly(U)-nucleotide174 , both Phe262 and Phe199
are found in close spatial proximity to uracil in the RRM1/2. c According to the MS/MS,
Trp117 in 40S ribosomal protein S1 is cross-linked to U-H2O. d In the 3D structure Trp117
is in close spatial proximity to U1799 of the 18S ribosomal RNA85. e The MS/MS identified
Tyr825 in mRNA-binding protein Puf3 as cross-linked amino acid. f In the structure of
Puf3 and a cocrystallized recognition sequence175, Tyr825 is placed between U3 and G4.
Adapted from Kramer et al. 69 . 155
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Table C.8: RNPxlSearch tool parameters.
Parameter Description

in Spectra (mzML)
database Protein sequence database (fasta)
out Output file (idXML)
Precursor (Parent Ion) Options:
mass_tolerance Precursor mass tolerance (+/- around precursor m/z)
mass_tolerance_unit Unit of precursor mass tolerance. (valid: ’ppm’, ’Da’)
min_charge Minimum precursor charge to be considered.
max_charge Maximum precursor charge to be considered.
Fragments (Product Ion) Options:
mass_tolerance Fragment mass tolerance (+/- around fragment m/z)
mass_tolerance_unit Unit of fragment m (valid: ’ppm’, ’Da’)
Modifications Options:
fixed Fixed modifications, e.g., ’Carbamidomethyl (C)’
variable Variable modifications, e.g., ’Oxidation (M)’
variable_max_per_peptide Maximum number of variable modifications per peptide
Peptide Options:
min_size Minimum size a peptide must after digestion.
missed_cleavages Number of missed cleavages.
enzyme The enzyme used for digestion.
Reporting Options:
top_hits Maximum number of hits per spectrum that are reported.
RNPxl Options:
length Oligonucleotide maximum length.
sequence Sequence to restrict the generation of oligonucleotides.
target_nucleotides Target nucleotides
mapping Mapping rules.
restrictions Restrictions.
fragment_adducts Fragmentation adducts.
modifications Format: empirical formula e.g -H2O, ..., H2O+PO3
CysteineAdduct Use this flag if the +152 adduct from DTT is expected.
filter_fractional_mass Filter non-crosslinks by fractional mass.
localization Perform cross-link localization.
carbon_labeled_fragments Generate fragment shifts assuming full labeling of carbon.
filter_small_peptide_mass Filter non-crosslinks.
marker_ions_tolerance Tolerance used to determine marker ions (Da).

156



RNPxl

Table C.9: Supported enzymes and cutting rules
Name (OpenMS) Cutting Rule (Regular Expression)

Trypsin (?<=[KR])(?!P)
Trypsin/P (?<=[KR])
Lys-C (?<=K)(?!P)
Lys-C/P (?<=K)
Formic_acid ((?<=D))|((?=D))
TrypChymo (?<=[KRFLWY])(?!P)
Chymotrypsin (?<=[FLWY])(?!P)
Asp-N (?=[BD])
PepsinA (?<=[FL])
2-iodobenzoate (?<=W)
Asp-N_ambic (?=[DE])
Arg-C (?<=R)(?!P)
glutamyl endopeptidase (?>=[DE])
proline endopeptidase (?>=[HKR]P)(?!P)
CNBr (?<=M)
V8-DE (?<=[BDEZ])(?!P)
V8-E (?<=[EZ])(?!P)
leukocyte elastase (?>=[AILV])(?!P)
unspecific cleavage (?<=[A-Z])
no cleavage ()
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Example: Explicitly specifying edges in the fragment adduct graph

Consider an experiment with uridine and the 4-thiouridine analog. Both give rise to different

fragmentation adducts. Therefore, no common fragmentation behavior can be defined and we

need to explicitly model the fragmentation adducts of uridine and 4-thiouridine.

Assume the character ’Y’ was used as a placeholder for the 4SU nucleotide analog. 4SU only

produces fragment with 4SU and loss of H2S:

precursor adduct formula annotation
string encoding: Y -> C9H11N2O8P , 4SU-H2S

Fragment adducts for U are analogously specified using the explicit notation:

precursor adduct formula annotation
string encoding: U -> C9H13N2O9P1 , U,

U -> C9H11N2O8P1 , U-H2O,
U -> C9H12N2O6 , U-HPO3,

...
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Table D.2: MetaProSIP OpenMS workflow configuration for a time series experiment
with pooled reference features. Parameters are compatible with a High-Resolution Orbitrap-
type mass spectrometer.

Parameter Value Description
OMSSAAdapter (Peptide identification engine)
precursor_mass_tolerance 10 precursor mass tolerance window for candidate peptides
precursor_error_units ppm use relative tolerances (parts per million)
fragment_mass_tolerance 0.5 fragment mass tolerance window for candidate peptides (Dalton)

fixed_modifications Carbamidomethyl (C)
expect carbamidomethylation of cysteines from
sample preparation

variable_modifications Oxidation (M) expect some methionine to be oxidized
IDFilter (Filtering to retain peptides at a given FDR)

score:pep 0.02
filter results at a q-value threshold of 0.01 to obtain
a FDR of 1%

FeatureFinderCentroided (Detection of eluting features)
mass_trace:mz_tolerance 0.004 expected mass trace fluctuations
IDMapper (Map identifications to detected features)

rt_tolerance 30
tolerance (in seconds) for the matching of peptide
identifications and features

mz_tolerance 20
m/z tolerance for the matching of peptide identifications
and features.

mz_measure ppm use relative tolerances (parts per million)
MapAlignerPoseClustering (Chromatographic alignment)
reference:index 1 select first file as reference in map alignment
MetaProSIP
labeling_element N or C element used to introduce heavy isotopes

mz_tolerance_ppm 10
relative m/z tolerance for isotopic trace
collection

rt_tolerance_s 30 tolerance (in seconds) for isotopic trace collection

correlation_threshold 0.7
minimum required pearson similarity
with theoretical isotope pattern

use_unassigned_ids false
whether precursor positions of unassigned peptides
should be included

use_averagine_ids false
whether averagine peptides should be included
for unidentified masses

cluster true cluster by incorporation patterns

xic_threshold -1
disable XIC filtering (no monoisotopic peak
are expected at later time points)
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Appendix E: MzTab

Figure E.1: MzTab workflow using OpenMS and R in KNIME. Identification of metabo-
lite features using the OpenMS Accurate mass search results are directly exported to an
mzTab file. An MzTabReader node reads the file and converts it to a standard KNIME
table. In this example workflow, the KNIME R snipped node is used to further process
the data. The final analysis results are written to a text file.
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Appendix F:

Curriculum Vitae

Education

08/2010 – present

PhD candidate Applied Bioinformatics (Prof. Oliver Kohlbacher), Center

for Bioinformatics, Eberhard Karls Universität Tübin-

gen, Germany

10/2007 – 09/2008

Diploma thesis Analysis of small RNA pathway mutants using whole

genome tiling arrays, supervised by Dr. Kay Nieselt (bioin-

formatics), Wilhelm-Schickard-Institute Eberhard Karls

Universität Tübingen, Germany and Prof. Dr. Detlef

Weigel (biology), Max Planck Institute for Developmental

Biology, Germany

10/2000 – 04/2010

Bioinformatic studies Eberhard Karls Universität Tübingen, Germany

Professional Work Experience

2006 – 2010

Software development

(self-employed)
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