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1 Introduction 

1.1 Pancreatic cancer 

1.1.1 Epidemiology 

Pancreatic cancer, although in total numbers an infrequent tumor entity, repre-

sents the tumor disease with the worst prognosis of patient survival. In Germany, 

pancreatic cancer mainly occurs in the elderly population with a median age of 

diagnosis of 71 among men and 75 among women (1). In 2012, according to the 

German cancer statistic approx. 16700 newly diagnosed cases of pancreatic can-

cer were reported (1), making it the tenth most common tumor entity among men 

and the sixth most common among women in terms of incidence (Figure 1). Glob-

ally, incidence rates of pancreatic cancer are both higher among men and in de-

veloped countries (2). 

 

 

 

 

 

 
Figure 1 Most frequent tumor sites as a percentage of all new cases in Germany 2012 (not including non-
melanoma skin cancer). Taken and modified from the German cancer statistic 2011/2012 (1). 

 
Despite intensive research on more effective treatment modalities the therapy 

outcome of pancreatic cancer remains very poor. In Germany, 5 years after initial 

diagnosis only 7 % of the patients remain alive, representing the lowest rate of 

patient survival among all types of cancer. In total numbers, in 2012 approx. 

16100 deaths were caused by this fatal tumor disease accounting for 6.6 % and 

8.1 % of cancer-related death among men and women respectively (1). Thus, 

pancreatic cancer is the fourth leading cause of cancer-related mortality both in 

Germany (Figure 2) and the US (3). Globally seen it is estimated to be the sev-

enth leading cancer-related cause of death in both men and women (2). 

[%] [%] 
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Figure 2 Most frequent tumor sites when cancer was the cause of death in Germany 2012. Taken and 
modified from the German cancer statistic 2011/2012 (1). 

 
Generally speaking the term ‘pancreatic cancer’ refers to exocrine tumors of the 

pancreas, mainly represented by the pancreatic ductal adenocarcinoma (PDA).  

1.1.2 Therapeutic guidelines 

As in the treatment of other tumor entities, therapy of pancreatic cancer depends 

on the localization and dimension of the primary tumor (T) as well as on potential 

metastatic lesions in lymph nodes (N) or secondary organs (M), the so-called 

TNM stadium. The currently valid S3-guideline for the treatment of pancreatic 

ductal adenocarcinoma (4) has just been updated in 2013 to align clinical practice 

to recent findings (5). 

To date, surgical resection still represents the only potentially curative treatment 

method for pancreatic cancer. Thereby, it is broadly agreed that a resection mar-

gin within healthy tissue without any tumorous cells (R0 resection) is associated 

with a better treatment outcome and prognosis of the patients, compared to sur-

gery in which not all tumor tissue could be resected and the resection margin 

includes tumorous cells (R1 resection) (6). However, real survival benefit even 

after R0 resection was shown to be associated with a histopathologically meas-

ured distance of tumor cells from the resection margin greater than 1 mm (median 

survival ranging from 35 to 16 to 14 months after R0-wide, R0 or R1 resection, 

respectively) (7). Accordingly, surgical treatment is only indicated for patients with 

[%] [%] 
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a high chance for R0 resection and an acceptable risk profile of perioperative 

morbidity and mortality. Possibility of surgical removal is therefore decided on a 

case by case basis and depends on the respective tumor localization, distant 

metastases and the involvement of local vasculature (Figure 3) (8). In case of a 

non-metastatic but unresectable tumor, individually depending on the tumor lo-

calization and health status of the patient, a neoadjuvant (radio-)chemotherapy 

can be performed in the hope of reaching resectability and therefore a better 

prognosis. By all means surgery should be followed by an adjuvant chemother-

apy with 5-fluorouracil (5-FU) or gemcitabine in monotherapy for 6 months (4). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 Anatomy and surgical resectability of pancreatic cancer. Pancreatic cancers are categorized 
on a continuum from resectable to unresectable according to the involvement of adjacent structures 
and the presence of distant metastases. Taken from Ryan et al. (8). 

 
In case of unresectable or metastatic pancreatic cancer only palliative treatment 

modalities remain, aiming at improving the health-related quality of life as well as 

potentially prolonging the survival of the individual patient. Currently, for this indi-

cation different first-line chemotherapy protocols are available. Due to its favora-

ble toxicity profile and feasibility the preferred and today most commonly per-

formed chemotherapy is a monotherapeutic treatment with gemcitabine. How-

ever, clinical data have proven that under certain conditions combinations with 

other chemotherapeutic agents result in a superior treatment outcome and higher 

patient survival (Table 1) (9). Results of a phase III trial combining gemcitabine 
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with the epithelial growth factor receptor (EGFR) targeting tyrosine kinase inhibi-

tor erlotinib have demonstrated a significant increase of overall survival com-

pared to gemcitabine monotherapy (10). However, therapeutic benefit of this reg-

imen was linked to the appearance of a skin rash, a typical side-effect of anti-

EGFR treatment, within 8 weeks after initiation of treatment (Table 1). Another 

combination, the so-called FOLFIRINOX regimen (a combination of folinic acid 

(leucovorin), 5-FU, irinotecan and oxaliplatin) represents a highly tumoricidal but 

likewise (hemato-)toxic chemotherapy protocol for advanced pancreatic cancer. 

Therefore, although significantly prolonging overall survival compared to gem-

citabine monotherapy (11), it should only be applied in a subgroup of patients 

below the age of 75 with a good performance status.  

Besides these protocols and the dual chemotherapy nab-paclitaxel + gemcitabine, 

so far, no further combinations of chemotherapeutic agents or targeted therapies 

are approved or recommended as first-line treatment for advanced pancreatic 

cancer. In case of disease progression under first-line monotherapy with gem-

citabine, the combination 5-FU + oxaliplatin should be given as second-line treat-

ment. If the FOLFIRINOX regimen fails, a second-line monotherapy with gem-

citabine can be performed. 

 
 

Treatment regimen N Progression-free  
survival 

Overall  
survival 

1-year survival rate EBM grade 

Erlotinib + gemcitabine  
versus gemcitabine (10) 

569 3.75 versus 3.55 months 
(HR 0.77, p = 0.004) 

6.24 versus 5.91 months 
(HR 0.82, p = 0.038)* 

23 % versus 17 %  
(p= 0.023)* 

Ib 

FOLFIRINOX 
versus gemcitabine (11) 

342 6.4 versus 3.3 months 
(HR 0.47, p < 0.001) 

11.1 versus 6.8 months 
(HR 0.57, p < 0.001) 

48 % versus 21 %  
(p < 0.001) 

Ib 

Nab-paclitaxel + gemcitabine 
versus gemcitabine (12) 

861 5.5 versus 3.7 months 
(HR 0.69, p < 0.001) 

8.5 versus 6.7 months 
(HR 0.72, p < 0.001) 

35 % versus 22 % 
(p < 0.001) 

Ib 

 

* In the subgroup analysis of overall survival for patients with rash ≥ grade 2: Overall survival 10.5 months (HR 0.74, p = 0.037) and 1-
year overall survival 43 % (p < 0.001). EBM, evidence based medicine; HR, hazard ratio. Taken and modified from Seufferlein et al. (5). 

 

Recent data from a randomized multicenter phase III trial demonstrated the su-

perior response of patients with metastatic pancreatic cancer to the dual chemo-

therapy nab-paclitaxel + gemcitabine compared to gemcitabine monotherapy 

(12). Thereby, the outcome of the dual chemotherapy was not quite as beneficial 

as the combination of gemcitabine with erlotinib or after application of the FOLFI-

RINOX regimen, in which more potent increases of overall survival were seen in 

Table 1 Recent randomized and controlled trials on combination chemotherapy for advanced pancreatic 
cancer showing a survival advantage over gemcitabine monotherapy in the palliative setting.
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the individual patient subgroups compared to gemcitabine monotherapy (Table 

1). However, the rate of serious adverse effects in patients receiving the combi-

nation nab-paclitaxel + gemcitabine was comparable to gemcitabine monother-

apy, although reversible side effects like myelosuppression and peripheral neu-

ropathy occurred slightly more often in the combination group (12).  

These results led to clinical approval of Abraxane® (nab-paclitaxel) + gemcitabine 

by the US Food and Drug Administration (FDA) and European Medicines Agency 

(EMA) as first-line treatment protocol for metastatic pancreatic cancer in 2013 

(13). Since treatment outcome of this combination so far isn’t known to be linked 

to any patient or tumor characteristics, in this indication it might even replace 

gemcitabine monotherapy as standard of care first-line chemotherapy protocol. 

1.1.3 Rationale for the development of new treatment protocols 

Reasons for the poor outcome of pancreatic cancer mainly originate from its un-

favorable tumor biology (recently reviewed by Hidalgo (14)). Due to the central 

retroperitoneal localization of the pancreas, symptoms of the tumor disease are 

mostly unspecific and mimic diseases of other abdominal organs. In addition, they 

often manifest only in an advanced tumor stage. If not detected accidentally in 

the context of otherwise performed imaging of the abdomen, this often leads to a 

late diagnosis of the tumor disease when the primary tumor can no longer be 

surgically resected and/or has already spread to other parts of the body. Unfor-

tunately, pancreatic cancer spreads early to lymph nodes and secondary organs 

(mainly liver, lung and bone marrow), excluding surgical treatment modalities and 

leaving only options of palliative care. 

Although various palliative treatment protocols exist, their influence on the prog-

nosis of PDA in matters of long-term survival so far is strongly limited by its com-

plex and heterogeneous tumor microenvironment (Figure 4). PDA formation is 

characterized by a desmoplastic reaction in which pancreatic tissue is reor-

ganized to a dense and highly fibrotic stroma. This stromal reconstruction, asso-

ciated with an abnormal vasculature and the creation of an immunosuppressive 

microenvironment locally restraining antitumor immunity (14), seems to be in-

volved with enhanced tumor progression and early metastasis (15). Progression 
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of other tumor diseases in the majority of cases depends upon an extensive tumor 

vascularization, supplying tumor growth with therefore required nutrients. In case 

of PDA, tumor cell survival and growth are adapted to its specific hypovascular 

and hypoxic microenvironment, rendering it mostly insensitive to antiangiogenic 

agents (16). Taken together, both desmoplastic stroma and poor vascularization 

of PDA form a substantial barrier for the effective delivery of any systemically 

applied cytotoxic agent. 

 

 

 

 

 

 

 

 

 
Figure 4 Microenvironment of pancreatic 
adenocarcinoma. Taken and modified from 
Ryan et al. (8). 

 

PDA formation is known to be linked to a successive accumulation of gene mu-

tations in an early stage of tumor development (17). Similar to the adenoma-to-

carcinoma sequence in colon cancer, PDA typically derives from distinct precur-

sor lesions such as Pancreatic Intraepithelial Neoplasia (PANIN) (8). Recurring 

intrinsic genetic mutations within the premalignant lesion ultimately result in the 

formation of PDA. The rapid progression of PDA is thereby based on its highly 

instable genome, leading to a constant process of ever-evolving tumor cell sub-

populations not only in the primary but secondary tumor lesions as well. Key mu-

tations, originating from the primary tumor and present in every tumor cell inde-
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pendently of its respective localization, are paralleled by further genomic rear-

rangements creating a complex inter- and intratumoral genomic heterogeneity. 

De-novo-mutations in metastatic lesions not only render them genetically differ-

ent from the primary tumor but also adapt their cellular metabolism to the tissue-

specific microenvironment of the newly-affected organ. The individual tumor cell 

subpopulations thereby differ in their susceptibility to cytotoxic agents, leading to 

a natural selection of tumor cells with primary or secondary acquired resistance 

mechanisms in the course of antitumor treatment. Moreover, tumor cells with 

stem cell-like features for self-renewal and cell migration have been found to play 

an important role in tumor invasion and metastasis while exhibiting considerable 

primary resistance against standard chemotherapy protocols (18).  

It seems logical that any attempt of complete tumor eradication without relapse 

of the tumor disease has to address the specific but highly heterogeneous tumor 

biology of pancreatic cancer. Current regimens of cytotoxic treatment (mainly rep-

resented by single or combined chemotherapeutic agents) so far fail in this regard 

and are therefore unable to effectively stabilize the tumor disease. Considering 

the devastating prognosis and depressing survival of patients with pancreatic 

cancer, new treatment protocols incorporating novel agents with distinct modes 

of action are desperately needed. 

1.2 Oncolytic virotherapy 

1.2.1 Basic principles 

Oncolytic virotherapy represents one of the currently most promising novel treat-

ment regimens, utilizing wild-type or genetically modified viruses for targeted an-

titumor therapy (19). Oncolytic viruses (OVs), as stated in the so-called oncolytic 

virotherapy paradigm (20), specifically target and infect tumor cells followed by 

exploitation of the host cell metabolism for efficient viral replication (Figure 5) (21). 

This process ultimately leads to massive tumor cell lysis (so-called oncolysis) and 

the release of progeny virus particles able to infect yet uninfected neighboring or 

distant tumor cells. Subsequent oncolytic cycles promote cumulative tumor erad-

ication until no further tumor cells exist. Concomitantly the release of both viral 

as well as tumor antigens results in the induction of innate and adaptive immune 
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responses directed against the tumor cells even if they aren’t infected by the OV. 

For this reason oncolytic virotherapy is believed not only to result in a potent tu-

mor eradication in the short-term (within weeks or months) but also in the long-

term immunotherapeutic process of arousing antitumor immunity and creating a 

lasting antitumor memory (22). 

Figure 5 Oncolytic virotherapy - Mechanism of action. Taken and modified 
from Xu et al. (21). 

 
To assure the specific targeting of tumor cells has been (and still is) one of the 

field’s major challenges. Generally speaking tumor cells generate a local immu-

nosuppressive microenvironment to circumvent tumor-directed immune re-

sponses. One of such mechanisms is the downregulation of interferon-dependent 

pathways, normally inducing a response of the innate and adaptive immune sys-

tem. Since the interferon pathway also plays a key role in the defense of virus-

infected cells, in return, such conditions facilitate viral infection and render tumor 

cells a favorable host for the viral life cycle (23).  

Some naturally occurring viruses such as Reolysin® (Reovirus type 3 Dearing 

strain, ReoT3D) (recently reviewed by Clements et al. (24)) have an intrinsically 
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strong tropism for tumor cells. Others, such as adeno-, herpes-, measles- or vac-

cinia viruses have to be genetically modified to prevent infection and oncolysis of 

healthy tissues, the prerequisite for their safe clinical application with minimal tox-

icity. Basic strategies include the deletion of virus encoded virulence genes such 

as the E1B 55-kDa protein in the adenoviral mutants ONYX-015 (25) and H101 

(26), their translational development marking an important milestone in the more 

recent history of oncolytic virotherapy.  

In the course of adenoviral infection, the viral E1B protein prevents infected cells 

from undergoing apoptosis (a well-known mechanism of the antiviral host re-

sponse) by inhibition of p53-regulated genes normally activating pro-apoptotic 

signaling pathways. Since in many tumor cells p53 is mutated, leading to aberrant 

and dysfunctional apoptotic pathways, E1B-deleted adenoviral mutants unable to 

overcome such physiologic countermeasures are constricted to the tumor micro-

environment for their viral life cycle to take place. However, whether viral replica-

tion of ONYX-015 depends on the status of p53 exclusively remains controversial 

(27). Other strategies focus on the deletion of virus encoded enzymes such as 

herpes- or vaccinia virus encoded thymidine kinase needed to enlarge the intra-

cellular nucleotide pool for sufficient viral replication (28,29). Rapidly proliferating 

tumor cells, which also require an adequate environment for excessive DNA rep-

lication, possess their own enzymatic facilities (often overexpressed cellular hom-

ologues of the virus encoded proteins) to satisfy their need for genetic raw mate-

rial.  

Those mechanisms were among the first to be developed and are exemplary for 

the understanding of how viruses can be modified to achieve tumor selectivity. 

Over the years many more strategies have been developed such as inserting 

foreign gene expression cassettes in nonessential gene loci (30) or placing the 

expression of essential viral genes under the control of tumor-specific promoter 

regions (31). Often different strategies have been combined to generate an even 

more tumor/replication-restricted OV. Generally speaking such modified OVs are 

not intrinsically selective for tumor cells but their ability to efficiently replicate in 

healthy tissues has been severely restrained.  
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But while safety concerns regarding the replication restriction of OVs have to be 

addressed in the process of successfully bringing oncolytic virotherapy from the 

bench to the bedside, the manipulation of genes essential for the viral life cycle 

may have its downside. Since the genetic backbone of naturally occurring viruses 

is adjusted for efficient replication while simultaneously circumventing antiviral 

host responses, along with the engineering of the viral genome to accomplish 

optimal tumor selectivity comes the attenuation of viral replication not only in nor-

mal but in tumor cells as well. Thus, achieving optimal efficacy of a selected viral 

vector is a process of delicate balance between reaching adequate tumor selec-

tivity (dampening upcoming safety concerns) without attenuating viral replication 

as key element determining its oncolytic and immunotherapeutic potency (30). 

1.2.2 History and development – What has been learned? 

OVs have been part of clinical investigations for over a century now (32). Alt-

hough knowledge about virus biology was greatly limited in the beginnings of vi-

rotherapeutic research, early case reports of tumor shrinkage in the course of 

natural virus infections promoted further investigations. Over the years, this led 

to ever evolving insights not only in the proceeding of OVs but also in basic char-

acteristics of the human immune response and tumor biology itself. However, due 

to a lack of proper understanding and overambitious efforts disregarding vital 

safety concerns, at times this process was overshadowed by severe incidents, 

some of them flawing the faith in oncolytic virotherapy to this very day. Neverthe-

less, overwhelming progress has been made and groundbreaking achievements 

on genetic research in the 1990s have marked the beginning of a new era of 

virotherapeutic research, resulting for example in the construction of the very first 

recombinant OVs encoding marker and/or therapeutic transgenes. 

Case reports of tumor remission during naturally occurring virus infections (the 

first dating back to the 19th century) mostly included patients with hematological 

malignancies. One of the most recent (from 1971) refers to the complete tumor 

regression of an 8-year old boy with Burkitt’s lymphoma while showing clinical 

signs of a concomitant measles virus infection (33). In a follow-up examination 4 
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months after virus infection the boy remained tumor-free which exceeded previ-

ous reports of only short-lived tumor remissions (1-2 months). Ultimately, such 

reports led to the conclusion that some naturally occurring viruses possess intrin-

sic antitumor activity (especially in immunocompromised patients as is the case 

in patients suffering from hematological malignancies) and established the re-

search on oncolytic virotherapy. 

Though few clinical applications of naturally occurring viruses were already per-

formed in the beginnings of the 20th century, back then basic knowledge about 

virus and tumor biology was almost nonexistent and their setup was rather highly 

experimental than science-based. For first groundbreaking achievements, the 

field had to wait until the 1950s when ex vivo culturing of human cells and rodent 

cancer models had just been developed. The first proof of principle of oncolytic 

virotherapy as a novel treatment regimen was thereby contributed by Alice Moore 

in 1949 when she was able to demonstrate that treatment of mouse sarcoma 180 

with Russian Far East encephalitis virus led to complete tumor regression in 

some animals, if the viral agent had been given in sufficiently high enough doses 

(34,35).  

More than 20 years later Teruo Asada successfully used non-attenuated mumps 

virus to treat a variety of tumor entities (36). Of 90 terminal cancer patients 37 

were reported to respond drastically with complete or extensive tumor regression 

while observing only minimal toxicity. However, since established experimental 

models for high-dose virus production were still missing at that time, the used 

strains of mumps virus were obtained from several sources and unfortunately 

have been lost after the work was discontinued (20). 

In the 1970s and 1980s the field of virotherapeutic research became rather quiet 

until being reignited by the development of recombinant DNA techniques in the 

1990s, now enabling to address emerging safety concerns by focusing on the 

construction of attenuated and more tumor-selective OVs (32). The new technol-

ogy also allowed the development of standardized cell culture systems from 

which the newly-constructed OVs could be obtained in much higher doses than 

before. Since then, the safety of OVs in the human host has been successfully 
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ascertained by a multitude of clinical trials employing OVs for the treatment of 

almost every tumor entity (37).  

Among the first virus strains to be genetically ‘optimized’ were adeno- and her-

pesviruses, eventually culminating in the construction of ONYX-015 and its deri-

vative variant H101, both being E1B 55-kDa deleted adenoviruses (the im-

portance of the E1B protein during adenoviral infection has already been illus-

trated in section 1.2.1, p. 7). ONYX-015 soon reached phase III status but partly 

due to monetary reasons further clinical development of this agent was stopped 

in 2003. However, in 2005 the combination of H101 with the chemotherapeutic 

agents cisplatin and 5-fluorouracil (5-FU) received approval for the treatment of 

patients with head and neck cancer in the People’s Republic of China (38) after 

previous phase II/III trials (39,40) had demonstrated an enhanced tumor re-

sponse to the combination compared to standard chemotherapy with cisplatin 

and 5-FU alone. But as gratifying this development was for the field of oncolytic 

virotherapy, approval for this protocol in the western hemisphere still failed due 

to methodological flaws in collecting evidence for clinical benefit and enhanced 

overall survival (38).  

1.2.3 Current state of virotherapeutic research – Present challenges and 
strategies 

Over the last 30 years, due to enormous achievements in genetic recombination 

techniques the design of ever more refined OVs has been facilitated. Today, aim-

ing at maximizing their oncolytic and immunotherapeutic potential while generat-

ing tumor/replication-restricted OVs, viral genomes can be sequenced and ma-

nipulated more easily than ever before. Nonetheless, clinical trials applying OVs 

in monotherapy in the majority of cases only have been able to report single case 

success (41) and after the initial approval of H101 in combination with cisplatin 

and 5-FU in the People’s Republic of China for a long time no further virothera-

peutic has found its way into clinical routine. Only now, as the first of its kind the 

GM-CSF expressing HSV mutant talimogene laherparepvec (T-VEC, IMLYGICTM) 

(42), has been approved by the FDA and the EMA for the treatment of metastatic 

melanoma (43). It is now up to this particular agent to prove therapeutic benefit 

of oncolytic immunotherapy in clinical routine, to dampen still prevailing safety 
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concerns and to pave the way for further oncolytic agents. Much work has yet to 

be done to ultimately establish oncolytic virotherapy at the bedside and to accom-

plish the lofty goal of finding a virotherapeutic cure for the masses of different 

tumor entities. As in the development and subsequent (pre-)clinical testing phase 

of any therapeutic agent, many emerging challenges had to and yet have to be 

faced, an ongoing process not only consuming enormous resources but also re-

quiring a vast quantity of time. 

Being biologic agents with a complex mode of action, the efficacy of oncolytic 

viruses depends on a multitude of parameters (Figure 6). Key factors especially 

determining the success of oncolytic virotherapy are believed to be the successful 

virus delivery to the tumor and highly efficient inter- and intratumoral spread after 

primary infection. Both issues have been addressed by the development of many 

strategies circumventing restraining host factors such as initially unfavorable an-

tiviral innate and adaptive immune responses (the latter following vaccinations in 

the youth), virus sequestration in liver and spleen, neutralization by serum factors, 

deficient virus extravasation or a dense tumor stroma by arming OVs with cost-

imulatory molecules, shielding them by using virus-infected cell carriers or apply-

ing them in combination with other drugs, e.g. chemotherapeutic compounds or 

novel checkpoint inhibitors (20). Additionally, high-throughput screenings have 

been conducted, aiming at finding new therapeutic targets, circumvent host cell 

response mechanisms and in consequence further refine oncolytic viruses, 

boosting their oncolytic potency (44).  

Figure 6 Key factors affecting oncolytic virus therapeutic efficacy. Taken from Allan et 
al (44). 
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However, oncolysis-mediated tumor debulking has proven to be insufficient in 

creating a lasting tumor response and significant benefit for patient survival. Ac-

cordingly, in recent years the focus has been broadened to likewise promote the 

aspect of oncolytic immunotherapy effectively inducing tumor-directed innate and, 

more importantly, adaptive immune responses. Recent results from OPTiM, a 

phase III trial of T-VEC, have revealed the immunological properties of oncolytic 

virotherapy for the first time in a larger patient cohort (n=291) (45). The intrale-

sional application of T-VEC to patients with injectable advanced-stage melanoma 

(≥ stage IIIb) thereby resulted in durable responses (≥ 6 months) both in injected 

and uninjected lesions. Patients ‘only’ receiving subcutaneous GM-CSF served 

as comparison group in this trial.  

Since i) T-VEC expresses the immunostimulatory molecule GM-CSF, ii) mela-

noma is known to be highly susceptible to immunotherapy and iii) durable re-

sponses were seen in uninjected lesions as well, it is highly probable that the 

therapeutic success of T-VEC depends on the successful activation of antitumor 

immunity. Of especial interest are also the facts that response rates were greater 

in patients receiving T-VEC as first-line therapy and that differences in overall 

survival between both treatment groups were higher in patients with skin, subcu-

taneous, or nodal disease only than in patients with metastases in the lung or 

other visceral organs.  

Assured by these data, T-VEC has finally achieved FDA and EMA approval for 

the treatment of metastatic melanoma on October 27 and December 17, 2015, 

respectively (43). But although such results greatly encourage boosting the im-

munological properties of OVs to achieve a lasting immune-mediated tumor re-

sponse in the long-term, an initially strong antiviral host response might impede 

primary viral infection and replication, the key for (immuno-)therapeutic success. 

OVs are biological agents constantly changing their dose after primary infection. 

In the context of evaluating their safety as well as their infection and replication 

efficacy (especially under the influence of the host immune system) it has become 

instrumental to monitor viral spread after primary application by inserting different 
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reporter genes into their genetic backbone. Strategies thereby include virus en-

coded serum markers (46), the construction of light-emitting viruses (47,48) or 

radiologic strategies such as viral expression of the thyroidal sodium iodide sym-

porter (hNIS) enabling the tumor-specific uptake of radioisotopes (49). Such tu-

mor-imaging OVs represent both promising therapeutic agents which additionally 

can be used as a diagnostic tool not only in the beginnings after initiation of the 

virotherapeutic treatment but also in a more advanced state of cancer therapy. 

Therefore these OVs belong to a group of agents typically referred to as 

‘theranostics’ (50).  

Detecting virus particles after their systemic administration also seems to be cru-

cial in consideration of reaching sufficient doses for efficient delivery to their site 

of action. Recent results from a phase I trial intravenously infusing the vaccinia 

virus JX-594 (Pexa-Vec) demonstrated that, similar to other systemic agents, 

successful viral extravasation and migration to the tumor is a dose-dependent 

process (51). In tumor biopsies collected 8-10 days after virotherapeutic treat-

ment, intravenously infused JX-594 was only detectable when applied in doses 

of 109 infectious units or higher. This led to the conclusion that doses of system-

ically applied virotherapeutic agents have to exceed a ‘viremic threshold’ to suc-

cessfully reach the tumor site.  

High-dose applications of many OVs are primarily limited by so far insufficient 

manufacturing procedures being unable to yield extra high viral titers in most of 

the currently used virotherapeutic systems. However, since the field is progress-

ing and more efficient fabrication processes are likely to be developed, reemerg-

ing safety issues have to be considered. Although the clinical tolerability of novel 

tumor/replication-restricted OVs has been ensured, extensively higher doses of 

a therapeutic agent are also supposed to result in a less favorable toxicity profile. 

Adverse effects typically seen shortly after virotherapeutic treatment are low-

grade flu-like symptoms (including fever, chills, myalgia and/or asthenia). In the 

process of administering OVs in higher doses and/or in combination with other 

drugs, safeguard strategies like potent antiviral drugs have to be available to in-

tercept excessive toxicity. 
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One of the biggest challenges of oncolytic virotherapy still remains the choice of 

the ‘right’ virus for distinct tumor indications. Although almost every OV can be 

genetically modified to replicate only in a certain tissue with maximal oncolytic 

efficacy, different virus families are defined by their distinct biological features. 

Based on basic parameters such as particle structure and life cycle, each OV is 

adapted intrinsically to a certain host range in which efficient infection, potent 

replication, strategies counteracting antiviral host responses, oncolysis and virus 

spread operate best. By ‘improving’ their genetic configuration each of these fac-

tors can be influenced, both positively and negatively, implying that for each tu-

mor entity it has to be elucidated which OV may cause the best tumor response.  

For that matter, current preclinical cell or animal models are still highly insufficient. 

Virus-induced immune responses can only be investigated in immunocompetent 

animals which render human tumor xenografts infeasible and therefore so far fail 

to simulate human conditions properly. In addition, some OVs (such as measles 

vaccine virus-based virotherapeutics) are constricted to the human host, making 

their preclinical evaluation only possible in cell culture or human xenografts in 

immunodeficient animals. Clinical trials, early phases I/II primarily designed to 

ensure the agent’s safety, are very time-consuming and costly. Furthermore, at 

the time at which a particular OV has finally reached phase III stadium (after sev-

eral years) often, due to ‘simple’ genetic recombination, another - more promising 

- OV is already on its way. 

Additionally, the importance of the route of administration of the respective viro-

therapeutics still remains obscure (52). Intratumoral injection of OVs probably 

reaches the highest oncolytic efficacy and typically is associated with lower rates 

of systemic toxicity. However, systemic application regimens are generally fa-

vored to also cover microscopic metastatic lesions now being accessible for di-

rect virus-induced destruction. Although intratumorally injected OVs to a lesser 

extent will also spread over the body and a tumor-directed immune response 

might also eradicate distant tumor lesions, the high-dose systemic application of 

OVs promises to be more effective. In addition, only a subset of tumor entities 

can be reached successfully by intralesional injection. However, the efficacy of 
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intravenous spread depends upon different factors and, due to their specific virus 

biology, not all virus families may equally be suited for systemic infusion (53). 

Other possible application routes include intraperitoneal/intrapleural administra-

tion in case of peritoneal/pleural tumor spread or intrathecal delivery to achieve 

higher treatment doses for tumors of the central nervous system. To profit from 

the benefits of different administration routes combinations thereof also might be 

justified.  

In conclusion, todays biggest challenges of oncolytic virotherapy indeed remain 

finding, constructing and further optimizing the ‘right’ viral agent for a distinct tu-

mor indication before applying it via the most effective route of administration. 

Vice versa, in view of personalized medicine and complex immunologic hetero-

geneity in the human population, it may be of even more importance to select the 

OV on the basis of human host factors such as the ‘right’ genetic tumor cell and 

immune cell setting or a sufficient and therefore promising initial tumor response. 

However, despite intensive research over the last decades, mostly only limited 

(mono-)virotherapeutic success has been achieved so far. Supported by recent 

trial data it has become evident that new protocols such as combining OVs with 

other treatment regimens have to be developed to overcome their to date only 

limited clinical efficacy, finally aiding oncolytic virotherapy to unfold its whole po-

tential of targeted antitumor therapy. 

1.2.4 Chemovirotherapy 

Usually the efficacy of monotherapeutic regimens is limited by an insufficient tu-

mor response and the induction of resistance mechanisms against the applied 

agent (as illustrated more detailed for the case of pancreatic cancer in section 

1.1.3, p. 5). Therefore, the combination of agents with distinct mechanisms of 

action promises to be highly effective not only in eradicating the initial tumor mass 

but also in preventing the induction of resistance mechanisms. Accordingly, the 

combination of OVs with chemotherapeutic agents (so-called chemovirotherapy) 

is of major interest. But before successfully applying theory into praxis, several 

parameters have to be considered in order to fully assess both possible benefits 

and threats of such a combined, i.e. chemovirotherapeutic, treatment. 
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Untargeted cytostatics, such as most of the currently clinically applied chemo-

therapeutic agents, affect every proliferating cell of the human body inde-

pendently of their malignant potential. Since this mode of action is rather unspe-

cific, the main barrier for their high-dose clinical application is their unfavorable 

toxicity profile. Based on the general idea that tumor cells naturally proliferate 

more strongly than their physiological counterparts, they are supposed to also be 

more affected by systemically applied chemotherapeutics. But while higher doses 

may result in a more profound response of the tumor cells, other fast proliferating 

cell populations such as mucous membranes and hematopoietic stem cells will 

be affected as well. Adverse effects such as anemia, leukopenia and mucositis 

are therefore typical consequences in the course of chemotherapeutic treatment 

regimens. Therefore, the important lesson was learned that individualized anti-

cancer treatment not only includes choosing the ‘right’ agents but also to carefully 

balance their risk-benefit profile towards a more effective antitumor response 

while preserving an acceptable health-related quality of life. 

Moreover, the cytotoxic effect of chemotherapy depends nearly entirely on oper-

ating cell death mechanisms such as apoptosis. By interfering with key functions 

of cellular metabolism, chemotherapeutics shift the delicate balance from anti- to 

pro-apoptotic signaling pathways ultimately leading to apoptotic cell death. But in 

the process of tumorigenesis, tumor cells, whose process of accumulating ge-

netic alterations naturally constitutes a potent pro-apoptotic stimulus, often cir-

cumvent physiologic signaling pathways by overexpressing anti- and downregu-

lating pro-apoptotic gene products. This severely impedes the success of chemo-

therapeutic treatment regimens and often makes is necessary to (i) apply high-

dose chemotherapy (also involving high toxicity), (ii) combine different chemo-

therapeutic agents (mostly with overlapping toxicity profiles) or (iii) apply them in 

combination with other antitumor agents with different sites of action. 

Replication-restricted OVs in contrast are engineered for their viral life cycle to 

take place in tumor cells only while impeding viral replication in healthy tissues. 

Shortly after viral infection, tumor cells are actively killed by oncolysis to release 

the progeny virus particles independently of physiologic cell death mechanisms. 
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In addition, the combination of immunogenic OVs and tumor antigen release is 

proposed to stimulate antitumor immunity. This kind of antitumor treatment there-

fore mostly faces immunologic resistance mechanisms such as interferon-medi-

ated host cell responses (23) or immune cell-based resistance mechanisms such 

as tumor-associated granulocytic myeloid-derived suppressor cells (G-MDSCs) 

which induce a immunosuppressive tumor cell phenotype thereby limiting the de-

sired immunotherapeutic effect (54). Tumor cells may also be intrinsically re-

sistant against virotherapeutic treatment if the OVs can’t properly infect and ex-

ploit their cellular metabolism for efficient replication. However, innate immune 

responses are supposed to be a more prominent primary resistance mechanism 

against oncolytic virotherapy which has to be overcome to reach sufficient virus 

doses at the tumor site. Adaptive immune responses on the other hand will be 

triggered in response to primary (and any subsequent) infection with the oncolytic 

agent. Though utilizing this response for arousing antitumor immunity is greatly 

desired, a too strong preliminary viral clearance may prevent tumor cell infection 

and viral spread and pose a highly potent acquired resistance mechanism, espe-

cially in the long-term of oncolytic virotherapy and particularly when the viral agent 

is applied at multiple times. 

The mechanisms of action and resistance profiles of these two approaches 

chemo- and virotherapy are therefore entirely different, in fact considerably more 

dissimilar than those of different chemotherapeutics (whereupon multimodal 

chemotherapy protocols are widely used in the clinic). Additionally, due to the 

virus-mediated induction of antiviral host responses such as apoptosis, infected 

tumor cells even with dysfunctional cell death pathways are likely to be more 

prone to chemotherapy-induced cell death.  

Virotherapy typically leads to flu-like symptoms (as illustrated previously in sec-

tion 1.2.3, p. 12) whereas chemotherapy typically results in anemia, leucopenia 

and mucositis (as illustrated above). The condition that the toxicity profiles of both 

approaches don’t overlap is therefore of utmost importance. This matter is further 
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affirmed by the fact that potential synergistic interactions between distinct thera-

peutic approaches not only would result in a more potent tumor response but also 

permit dose reductions of the applied agents to a less toxic degree. 

Moreover, although virus-mediated oncolysis can result in a significant tumor re-

duction, the main effect of oncolytic virotherapy is believed to be a tumor-directed 

response of the innate and more importantly the adaptive immune system. How-

ever, this process requires time that cancer patients, being mostly diagnosed in 

advanced stages of the tumor disease, usually don’t have. Harnessing the immu-

notherapeutic potential of oncolytic virotherapy therefore depends on an effective 

stabilization of the tumor disease in the first place. For most tumor entities chem-

otherapy represents the standard of care (both in the (neo-)adjuvant as well as in 

the palliative setting) and therefore provides the opportunity to gain the time re-

quired for slower, but long-lasting antitumor effects such as profound immune 

responses. Furthermore, curbing tumor cell growth in the short-term will likely be 

more successful when combining the cytotoxic effect of chemotherapeutics with 

the oncolytic effect of OVs. 

Preclinical evidence for potential clinical benefit of the chemovirotherapeutic ap-

proach is overwhelming (55). OVs have been combined with a multitude of differ-

ent chemotherapeutic agents and synergistic interactions with each of the mainly 

used virus families adenovirus (56), herpes simplex virus (57), reovirus (24) and 

vaccinia virus (58) (and other virus families as well) have been found. However, 

every genetic modification of a given oncolytic vector may profoundly influence 

its biology and for this reason also its interaction with chemotherapeutic agents. 

Therefore, every chemovirotherapeutic protocol, even if incorporating only a 

slightly dissimilar OV, has to be tested and its potential clinical benefit evaluated. 

Since with today’s facilities the engineering of a new viral vector is a rather easy 

procedure, this poses a Sisyphus work and (pre-)clinical testing of all potential 

combinations will not be possible. Further understanding of the complex interac-

tions between OVs and chemotherapeutic agents is therefore desperately 

needed. 
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The fact that chemotherapy represents the standard of care for many tumor enti-

ties also opens up new possibilities in the clinical setting. Given that replication-

restricted OVs primarily had to ease upcoming safety concerns, trials so far 

mostly included patients at their end-stage of the disease (after all other treatment 

modalities had failed to achieve the desired tumor response). Accordingly, it has 

to be assumed that this subset of patients exhibits rather unfavorable conditions 

for oncolytic virotherapy to unfold its whole potential. Tumor cells having survived 

treatment with a plurality of different anticancer agents, have to be regarded as 

highly resistant, capable of evading cell death via a multitude of different mecha-

nisms. Although OVs operate in a completely different manner than chemother-

apeutics, it seems unlikely that such highly aberrant cells will be killed before they 

become resistant anew, this time against the applied OV as well. More im-

portantly, the immune system of palliative cancer patients is likely to be enfeebled 

and might not have the ability to mount a strong immune response. Future clinical 

applications of OVs in combination with chemotherapeutic agents therefore pro-

vide the opportunity to address earlier tumor stages as well, i.e. in the setting of 

first-line chemovirotherapeutic regimens. 

Based on the promising preclinical data an array of clinical trials incorporating 

chemovirotherapeutic protocols has already been started (59). The few clinical 

data which so far have been published thereby identified no enhanced toxicity 

after chemovirotherapeutic treatment (even when the agents were given concom-

itantly) and therefore validated the safety of the combinatorial approach. The cur-

rently most advanced OV in monotherapy, the herpes virus-based T-VEC, has 

recently also been combined with the checkpoint inhibitor ipilimumab. Preliminary 

results from a phase Ib trial in patients with advanced melanoma thereby have 

demonstrated an even stronger response to the chemovirotherapeutic combina-

tion than to either agent alone (60) (results from the phase III trial in monotherapy 

have been illustrated in section 1.2.3, p.12). The phase II part of this trial is cur-

rently ongoing (NCT01740297) and its results are eagerly awaited.  
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The first chemovirotherapeutic protocols which lately have reached phase III test-

ing incorporated the naturally occurring reovirus Reolysin® and the GM-CSF ex-

pressing vaccinia virus JX-594. The combination of intravenously administered 

Reolysin® with carboplatin and paclitaxel in patients with head and neck cancer 

has recently been completed and was able to demonstrate a significant improve-

ment of overall survival by the chemovirotherapeutic combination compared to 

the dual chemotherapy alone (61). However, published data of this study (desig-

nated as REO 018) are still awaited. The phase II combination of JX-594 with the 

oral multiple kinase inhibitor sorafenib in treatment-refractory patients with hepa-

tocellular carcinoma (HCC) not only was found to be safe but also enhanced the 

therapeutic effect (62). These data led to the recent design of a phase III trial this 

time employing the chemovirotherapeutic combination as first-line treatment for 

patients with advanced HCC (NCT02562755) (63). 

Combining OVs with established chemotherapeutic agents, preferably in a first-

line chemovirotherapeutic treatment scenario, is therefore based on various good 

reasons. Not only has been proven that the two different approaches can interact 

synergistically in eradicating the tumor disease, but they might also provide 

enough time for a strong response of the adaptive immune system. Since chemo-

therapeutics already represent the standard of care in first- and second-line treat-

ment protocols, their combination with OVs might finally establish oncolytic viro-

therapy at the clinical bedside and improve current treatment outcomes. 

1.3 Virotherapy with the oncolytic vaccinia virus GLV-1h68 

1.3.1 Structure and life cycle of vaccinia viruses 

Vaccinia virus belongs to the family of poxviruses (Poxviridae). Due to its inter-

twined history with the smallpox causing variola virus during smallpox eradication, 

it is also its most extensively investigated representative (64). Accordingly, to-

day’s understandings about poxvirus biology are mainly based on the research 

on vaccinia virus. 

The viral particle (virion) of vaccinia virus consists of a linear double-stranded 

DNA molecule enveloped by different numbers of lipid bilayer membranes (Figure 

7). Its entire life cycle takes place in the host cell’s cytoplasm and thereby mostly 
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relies on its own encoded proteins. Along with many other mechanisms, the re-

sulting minimal interaction with proteins of the host cell enables vaccinia virus to 

infect a wide range of tissues while simultaneously avoiding antiviral host re-

sponses. Unlike variola virus, vaccinia virus is not restricted to the human host 

but can also infect some animals.  

Figure 7 Virion structure of vaccinia virus (a) schematic and (b) microscopic. Taken and modified 
from Harrison et al. (64) 

The exact process of how vaccinia virus enters the host cell still is not well under-

stood. For cell entry vaccinia virus thereby seems to exploit endocytotic mecha-

nisms of its target cells (65). However, in contrast to adenovirus or measles virus 

which, if not specifically engineered otherwise, utilize receptors such as CAR 

(coxsackie and adenovirus receptor) or CD46 for their cell entry, no such receptor 

has yet been found for vaccinia virus. Further understanding is additionally hin-

dered by the fact that vaccinia virus produces three forms of infectious particles: 

intracellular mature virus (IMV), cell-associated enveloped virus (CEV) and ex-

tracellular enveloped virus (EEV).  

Newly produced virions first form IMV particles (depicted in Figure 7a) which 

mainly remain in the host cell until lysis. However, a subset of IMVs dissociate 

from their host cell into the local vasculature now spreading as EEVs over the 

body. CEVs in contrast penetrate surrounding cells and enable direct cell-to-cell 

spread of vaccinia virus. In the process of exiting the host cell both CEVs and 

EEVs acquire an additional lipoprotein bilayer that surrounds the IMV particle. In 

a b 
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case of EEV this outer envelope is equipped with complement control proteins 

protecting the EEV from complement activation (66).  

Those three forms, IMV, CEV and EEV, not only are constructed differently but 

also fulfill different tasks in the strategy of vaccinia virus to reach maximal viral 

spread. IMVs represent by far the majority of formed virions but are only released 

in the final stage of virus infection when the host cell undergoes virus-induced 

lysis. CEVs and EEVs are released much earlier and are therefore essential for 

rapid short- and long-range virus spread. Although EEVs constitute only a minor 

fraction of formed virus particles (< 10 %), vaccinia mutants unable to produce 

them in sufficient numbers were shown to be significantly attenuated by inefficient 

virus dissemination (67).  

1.3.2 Discovery of vaccinia virus and its role during smallpox eradication 

Vaccinia virus also represents the virus with the longest history of clinical use in 

humans (68). In 1798, the English doctor Edward Jenner was able to show that 

people who had previously suffered from cowpox were resistant to the similar but 

significantly worse smallpox disease with a lethal outcome of up to 40 %. In his 

case study describing the first successful vaccination, Jenner gathered pus from 

a cowpox infected milkmaid and injected it into the arm of an 8-year old boy who 

subsequently developed light symptoms of the disease (69). After a second in-

jection 1.5 months later, this time with pus from a smallpox patient, the boy re-

mained healthy even when being rechallenged with smallpox several months 

later. With this experiment, Jenner unknowingly was able to show for the first time 

that infection with a similar but less virulent pathogen can immunize against the 

more virulent disease and create a lasting immunological memory. Appropriately 

the term ‘vaccination’ originates from ‘vacca’ the latin word for cow. Edward Jen-

ner and Louis Pasteur who later described the underlying mechanisms of this 

process are therefore often recognized as the ‘fathers of immunology’ (70). 

Word about vaccination spread fast in the Western hemisphere which led to its 

frequent use during the next century (68). However, in the beginnings of the 20th 

century when basic knowledge about virus biology just had started to emerge, it 
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was noticed that the virus strain used at that time differed from the original cow-

pox virus. Due to its favorably milder vaccination reaction this now called ‘vaccinia 

virus’ was further used for subsequent smallpox vaccination though its exact 

origin remains obscure. In the following years, owing to the global usage of vac-

cinia virus in smallpox vaccination and laboratory research, different new virus 

strains evolved ‘locally’ such as the Western Reserve, Wyeth, Copenhagen or 

Lister strains.  

Clinical use of vaccinia virus finally culminated in the global Smallpox Eradication 

Program (SEP) (71). Lasting from 1966 to 1980 the program addressed espe-

cially regions in Africa and Asia where smallpox was still endemic at that time. At 

its end in 1980 the World Health Organization (WHO) declared smallpox finally 

being eradicated globally. Today stocks of variola virus still remain in the US and 

Russia, though - unknowingly - further stocks might be stashed elsewhere (64). 

1.3.3 Rationale for using vaccinia virus in oncolytic virotherapy 

Primarily used as potent vaccine, in recent years the application range of vaccinia 

virus has broadened. Being extensively studied, vaccinia virus exhibits several 

unique features that make it a promising virotherapeutic agent (72).  

For starters vaccinia virus is known for its wide host range not only in humans but 

animals as well. Being able to infect almost every tissue allows for a wide-spread 

clinical use against many tumor entities and suggests efficacy across tumor cell 

subpopulations with distinct genetic configurations. It also facilitates indispensa-

ble preclinical testing since established animal models can be easily used without 

viral constraint to the human host. Moreover, compared to other OVs vaccinia 

virus infection has the advantage of being independent of the cellular expression 

of viral entry receptors.  

Secondly, replication and viral spread of vaccinia virus are performed both rapidly 

and highly efficiently. The entire viral life cycle, from the moment of infecting the 

host cell until its lysis, lasts only 24 hours und culminates in the release of a vast 

amount of infectious particles. Viral spread is maximized by the formation of 3 

different infectious particles that spread and enter host cells differently. CEV and 
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EEV, responsible for efficient short- and long-range spread, are released even 

earlier than IMV approximately 6 hours after infection and additionally accelerate 

virus dissemination (68). 

Another favorable property of vaccinia virus is its large genome of approx. 192 

kb that can additionally accommodate foreign DNA sequences of at least 25 kb 

(73). By comparison, other OVs such as oncolytic adenoviruses can accommo-

date considerably less foreign DNA. This renders vaccinia virus a suitable gene 

vector for the insertion of reporter genes, tumor-associated antigens, therapeutic 

transgenes or immunomodulatory molecules. As a result, many vaccinia-based 

gene vector systems encoding a multitude of transgenes have been developed 

(58).  

Since vaccinia virus encodes its own enzymatic facilities, no integration of the 

viral genome into the host cell’s genome takes place. Moreover, viral replication 

is localized in cytosolic ‘virus factories’ independent of the host cell’s nucleus (64). 

Vaccinia virus therefore not only represents a potent stand-alone virotherapeutic 

but also interacts minimally with the host cell genome, both being preferable pre-

requisites for its safe clinical application. 

Due to its successful use as vaccine against smallpox, vaccinia virus is also 

known to be highly immunogenic (74). It would be even more so if it did not en-

code several proteins to circumvent antiviral host responses (75,76). The deletion 

of virulence genes in the quest of engineering a tumor-selective vaccinia-based 

agent therefore might also augment its immunological potential. Since OVs are 

mainly believed to be immunotherapeutics in nature, using vaccinia virus for the 

treatment of cancer is of great interest (58). Thus, it is hardly surprising that the 

currently clinically most advanced vaccinia virus JX-594, a derivative of the Wy-

eth strain, encodes the proinflammatory cytokine GM-CSF (77). 

Only recently a phase II trial employing JX-594 to patients with advanced hepa-

tocellular carcinoma (HCC) was completed (results from another phase II trial of 

JX-594 in combination with sorafenib have been illustrated in section 1.2.4, p. 17). 

Intralesionally infused JX-594 thereby was shown to induce a polyclonal humoral 
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immune response leading to antibody-mediated complement-dependent cytotox-

icity (78). Moreover, tumor responses were seen both in injected and non-injected 

distant tumor lesions. Additionally, the baseline presence/absence of neutralizing 

antibodies against vaccinia virus (possibly impeding viral replication and spread) 

did not correlate with therapeutic efficacy. The most crucial parameter determin-

ing therapeutic benefit was rather the applied viral dose of JX-594, overall survival 

thereby ranging from 13.6 months (high-dose group) to 4.3 months (low-dose 

group). 

In terms of safety no other virus has been longer in clinical use or more exten-

sively been studied than vaccinia virus (68). Adverse effects following vaccination 

were typically mild and included local pain at the injection site as well as mild flu-

like symptoms such as headache, myalgia, chills, nausea and fatigue (79). Mod-

erate or severe complications were extremely rare (1-250 / million primary vac-

cinations) and included eczema vaccinatum, generalized or progressive vaccinia, 

myopericarditis or encephalitis. For this reason, application of vaccinia virus in 

humans so far has been remarkably safe. Furthermore, for the unlikely case of 

uncontrolled virus infection a number of different antiviral agents have already 

been developed (64). Currently the only approved agent is intravenous vaccinia 

immune globuline (VIGIV) (80) while the nucleotide analogue cidofovir (81) is re-

served for second-line anti-vaccinia therapy. Other agents such as the egress 

inhibitor tecovirimat (aka ST-246) (82) and certain tyrosine kinase inhibitors (83) 

are indeed rather experimental but have shown their efficacy against vaccinia 

virus. Of note, this includes the inhibitory effect of sorafenib on the replication of 

vaccinia viruses leading to the necessity for a sequential application of first soraf-

enib and then (after a 14 day pause) the onset of vaccinia virotherapy (84). 

In summary vaccinia virus is not only able to infect almost any cell type but also 

to transport and express large amounts of foreign genetic material while being 

independent of host cell nuclear transcription processes. Extensive clinical expe-

rience has certified its safe application and for the rare case of excessive toxicity 

potent antivirals are ready to hand. Future clinical applications of vaccinia virus 



Dissertation Eike Hendrik Binz Ch. 1 Introduction 

28 
 

should mainly focus on harnessing its oncolytic but even more its immunothera-

peutic potential to prove real benefit of this agent in anticancer therapy. 

1.3.4 Construction of GLV-1h68 

The oncolytic vaccinia virus GLV-1h68 (aka GL-ONC1) used as virotherapeutic 

agent in this thesis has previously been constructed by insertion of three expres-

sion cassettes in nonessential gene loci of the parental Lister strain vaccinia virus 

(Figure 8) (46): 

 

 

Figure 8 Genetic construct of GLV-1h68. Taken and modified from Zhang et al. (46). 

▪ F14.5L locus →  expression cassette encoding Renilla luciferase-Ae-

quorea green fluorescent protein fusion (GFP) [ruc-gfp] 

▪ J2R locus (encoding viral thymidine kinase) → expression cassette encod-

ing β-galactosidase (β-gal) [lacZ] 

▪ A56R locus (encoding viral hemagglutinin) → expression cassette encod-

ing β-glucuronidase (β-gluc) [gusA] 

Inactivation of the well-known genes for thymidine kinase (its importance during 

viral infection has already been illustrated in section 1.2.1, p. 7) and hemaggluti-

nin as well as the less studied F14.5L gene product led to considerable viral at-

tenuation in breast tumor-bearing nude mice whereas virus colonization was 

largely restricted to tumor tissues. In comparison to the parental Lister strain virus 

and single- or double-mutant derivatives, not only the level of attenuation in-

creased with each gene inactivation (30) but also its oncolytic potency (46). Ad-

ditionally, it was assumed that, due to a higher translational burden, the insertion 

of foreign gene expression cassettes into nonessential gene loci attenuated the 

OV even more than simply disrupting the corresponding virulence genes (85). 

Infection with GLV-1h68 in vivo also led to a latent upregulation of genes mostly 

matching functions of the innate immune response (46). It was therefore hypoth-
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esized that this GLV-1h68-mediated activation of the immune system is a re-

sponse to potent viral replication, steadily cumulating oncolysis and the concur-

rent release of proinflammatory molecules. 

Due to the expression of serum and tissue markers (β-gluc, β-gal) as well as its 

capability of luminescent and fluorescent light emission (GFP), GLV-1h68 unifies 

both therapeutic and diagnostic properties enabling real-time monitoring of its 

therapeutic efficacy (86) (more detailed information about ‘theranostics’ are spec-

ified in section 1.2.3, p. 12). Initial treatment with GLV-1h68 was highly efficient 

and led to complete tumor elimination in over 95 % of breast tumor-bearing nude 

mice which was linked to 100 % survival at the end of the study (130 days post 

infection) (46). In addition, tumor regression was paralleled by gradual extinction 

of GFP fluorescence and decreasing β-galactosidase activity, as shown by im-

munohistochemical staining of tumor sections. 56 days after virus injection, along 

with complete tumor remission in most of the mice, neither GFP expression nor 

β-galactosidase could be detected. 

1.3.5 Virotherapeutic research with GLV-1h68 

Based on these promising initial results a multitude of further investigations on 

GLV-1h68 and its potential role in future virotherapeutic application regimens has 

been conducted. Screening the NCI-60 cancer cell lines for their susceptibility to 

GLV-1h68 infection has shown that GLV-1h68 is able to efficiently infect and rep-

licate within a wide range of tumor tissues (87). Generally, viral infection seemed 

to be favored by overexpression of cellular components involved in cell move-

ment and adhesion as well as the tumor cell-mediated suppression of the innate 

immune response. GFP expression of GLV-1h68 correlated positively with viral 

replication and was not tumor- but rather cell line-dependent. Furthermore, GLV-

1h68 application has been confirmed to be safe and highly effective in different 

animal models of human cancer (46,85,88-105). 

Continuing research on GLV-1h68 also gave further insights into the mechanisms 

determining therapeutic success of this particular agent. Although GLV-1h68 ex-

hibits anti-vascular (89) and proinflammatory properties (90-92,106), a strong vi-

ral replication of GLV-1h68 seems to be the most crucial predictive marker for 
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potent antitumor efficacy (46,85,89,90,92-94,107). However, the degree to which 

the different interactions contribute to the oncolytic potency of GLV-1h68 was 

demonstrated to depend on the particular tumor microenvironment (89).  

Strong viral replication of GLV-1h68 was also shown to be essential for the acti-

vation of the innate immune system. In nude mice GLV-1h68 shifted the chronic 

inflammation process of rejecting the human xenograft to an acute and destruc-

tive one (92). In another immunocompromised model tumor remission after intra-

venous injection of the viral agent was accompanied by high numbers of macro-

phages and NK cells at the tumor site (90). GLV-1h68 induced intratumoral infil-

tration of myeloid cells could also be detected by 19F-magnetic resonance imag-

ing (MRI) (108).  

However, responses of the innate immune system are mostly unspecific and, in 

one case, were shown to be directed against GLV-1h68 and not against the tumor 

tissue (93). Since the adaptive immune system also possesses antiviral proper-

ties and modulates the activity of innate immune responses, it is likely to affect 

replication and spread of GLV-1h68 as well. Nevertheless, proof for its beneficial 

or detrimental effect on the therapeutic efficacy of GLV-1h68 from human patients 

or immunocompetent animal models is still missing. 

Additionally, GLV-1h68 was shown to be able to eradicate tumor cells with stem-

cell like features (95) as well as preferentially colonizing lymph node metastases 

in a prostate cancer model in nude mice (96). The latter has been contributed to 

an increased vascular permeability and a higher number of immune cells in lymph 

node metastases in comparison to the primary tumor. Successful tracking of 

lymph node metastases by GLV-1h68 has also been shown in an immunocom-

petent animal model (97). In this regard, localized virus-mediated GFP expres-

sion not only is of essential prognostic relevance but also enables real-time de-

tection of affected lymph nodes during surgery. To enhance viral delivery, GLV-

1h68 has been shielded with silk-elastin-like protein polymers (SELPs) in a 

mouse model of incomplete tumor resection (98). Shielding of the viral particles 

resulted in an enhanced transgene expression and increased tumor shrinkage of 

the residual tumor cells. Therefore, the administration of GLV-1h68 to the 
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postsurgical resection bed was shown to be another potential use of this viral 

agent. 

In vitro, markers of early gene expression like β-gal, luciferase and GFP expres-

sion correlated well with the susceptibility of different tumor cell lines to GLV-1h68 

mediated oncolysis (99,106). This may be of significant prognostic value for pre-

dicting its therapeutic potency in vivo. But whether high susceptibility to GLV-

1h68 in vitro is associated with high oncolytic efficacy in animal models or human 

patients remains controversial. Ex vivo assays measuring early gene products of 

GLV-1h68 indeed have been proposed as being useful in predicting the thera-

peutic success in an animal model (100). Additionally, the comparison of GLV-

1h68 with some less-attenuated and therefore more strongly replicating deriva-

tives has demonstrated a clear correlation between enhanced viral replication in 

vitro and more rapid tumor shrinkage in vivo (85). However, although the less-

attenuated derivatives caused an increased tumor response, in some of the 

cases this came at the price of higher toxicity and lesser survival of the mice. In 

another study two pancreatic cell lines differing in their susceptibility to GLV-1h68 

mediated oncolysis in vitro were found to respond similarly in vivo (101). On the 

contrary, some well responding cell lines in vitro demonstrated less therapeutic 

efficacy in vivo which was associated with lower viral titers (92). In summary, 

these data clearly suggest that in vivo additional factors beyond the baseline ge-

netic configuration of tumor cells influence viral replication and treatment out-

come.  

Human genes possibly predicting the effective viral replication of vaccinia-based 

agents in the human host have already been found (109). However, in view of 

future ‘personalized’ clinical applications of GLV-1h68 it would not only be essen-

tial to include tumor patients with the ‘right’ genetic setting but also to evaluate as 

early as possible whether the virotherapeutic treatment is beneficial and results 

in the desired tumor response. In this regard, the monitoring of viral replication 

and therapeutic efficacy by measuring viral expression of β-gal, β-gluc, lumines-

cence and fluorescence seems to be crucial to distinguish responders from non-

responders. 
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To refine its therapeutic and diagnostic properties GLV-1h68 has also served as 

parental virus for the development of new vaccinia virus constructs. Similarly to 

the previously constructed measles virus encoding the human sodium iodide 

symporter (MV-NIS) (49) the oncolytic vaccinia virus GLV-1h153 has been con-

structed by replacing the β-glucuronidase encoding gusA cassette of GLV-1h68 

with a hNIS gene cassette (110). Likewise, another derivative, GLV-1h99, was 

constructed by replacing the ruc-gfp gene cassette with a gene cassette contain-

ing the human norepinephrine transporter gene (hNET) (111). Due to the tumor-

specific uptake of different radiotracers, detectable by imaging modalities such 

as positron emission tomography, both GLV-1h99 and GLV-1h153 enable deep-

tissue-imaging of tumors while monitoring viral spread and therapeutic efficacy 

(112,113). Other constructs encoding the anti-VEGF single chain antibody 

GLAF-1 (114) or the essential cell cycle protein Cdc6 (115) have demonstrated 

the therapeutic benefit of inserting therapeutic transgenes. Moreover, the hyper-

IL-6 expressing GLV-1h90 was able to additionally reduce chemotherapy-in-

duced thrombocytopenia in nude mice while remaining as potent as its parental 

virus GLV-1h68 (116).  

GLV-1h68 has also been successfully combined with other treatment regimens. 

Radiation has been shown to sensitize tumor cells for subsequent GLV-1h68 

treatment in human melanoma and glioma xenografts in nude mice (94,102) as 

well as enhancing the levels of apoptotic cell death in sarcoma cell lines when 

given adjuvantly (117). Combination of GLV-1h68 with cyclophosphamide re-

sulted in an enhanced tumor growth inhibition compared to treatment with either 

agent alone (118). Utilizing GLV-1h68 mediated expression of β-galactosidase to 

convert a prodrug seco-analogue of the cytotoxic antibiotic duocarmycin SA to its 

toxic compound led to the induction of apoptosis and enhanced oncolysis (119). 

Moreover, GLV-1h68 has been combined successfully with chemotherapy ap-

plied via isolated limb perfusion, radiation and surgery in a orthotopic model of 

advanced extremity sarcoma (120). 
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Of particular importance for this thesis was the combination of GLV-1h68 with the 

chemotherapeutic agents cisplatin or gemcitabine in 2 different cell lines of hu-

man pancreatic adenocarcinoma in vitro and in vivo (101). Both combination pro-

tocols resulted in an acceleration of tumor shrinkage and increased therapeutic 

efficacy, though treatment with GLV-1h68 alone was able to cause the same tu-

mor response as the gemcitabine combination group when only given sufficient 

time.  

Based on these data, few clinical trials incorporating GLV-1h68 (referred to as 

GL-ONC1 when used in clinical trials) have been performed. In patients with per-

itoneal carcinomatosis intraperitoneal infusion of GLV-1h68 not only was shown 

to be safe and well tolerated but to result in a dramatic decline of tumor cells in 

the ascitic fluid (121). Another phase I trial investigating the combination of GLV-

1h68 with the platinum compound cisplatin and radiation in patients with locore-

gional advanced head and neck cancer has recently been completed. According 

to preliminary data the triple combination was found to be safe and a follow-up 

phase II trial is planned (122). Final data of this study are still pending. Currently, 

clinical trials employing GLV-1h68 in patients with ovarian cancer (NCT02759588) 

or malignant pleural effusion (NCT01766739) and its combination with the com-

plement inhibitor eculizumab (NCT02714374) are under way. 

In conclusion, GLV-1h68 application in humans or tumor-bearing animals so far 

has been safe and highly efficient while viral replication was constrained to tumor 

tissues. Therapeutic efficacy could be measured non-invasively and correlated 

well with the decrease of the inserted reporter genes. However, (pre-)clinical re-

sults from combination protocols with chemotherapy and/or radiation have al-

ready indicated the additional therapeutic value of combining GLV-1h68 with 

other treatment regimens. 

1.4 Objectives 

Due to its unfavorable tumor biology, pancreatic adenocarcinoma is one of the 

deadliest types of cancer. Unfortunately, pancreatic ductal adenocarcinoma 

(PDA) is mostly diagnosed in a locally advanced or metastatic stage when cura-

tive surgical treatment is no longer possible and current treatment regimens in 
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form of multimodal chemotherapy protocols can’t effectively stabilize the tumor 

disease. Key determinants that contribute to its considerable primary and sec-

ondary resistance against chemotherapeutic treatment are mostly its i) genetic 

instability (generating a manifold of genetically different tumor cell subpopula-

tions), ii) desmoplastic stroma (impeding any systemic treatment modalities) and 

iii) local immunosuppressive microenvironment. 

Oncolytic virotherapy on the other side is assumed to benefit from such conditions. 

Tumor cells with highly aberrant and dysfunctional cell-death pathways are suit-

able host cells for oncolytic viruses (OVs) that are engineered for being unable to 

overcome physiologic antiviral host responses. Furthermore, tumor-mediated im-

munosuppression not only favors initial viral infection and intratumoral spread but 

also represents a therapeutic target that might finally be overridden by the immu-

notherapeutic properties of oncolytic virotherapy.  

Accordingly, pancreatic cancer has been the focus of many (pre-)clinical investi-

gations, most thereof employing monovirotherapeutic regimens (21,123). Since 

recent data indicated therapeutic benefit of chemovirotherapy, oncolytic virother-

apy preferably being an add-on component to already established treatment mo-

dalities, pancreatic cancer has also been treated with different (mainly gemcita-

bine-based) combination protocols in the preclinical setting (101,124-137). How-

ever, current chemovirotherapeutic trials only incorporate adeno- or reovirus-

based regimens (59). 

Here, in this thesis, the oncolytic vaccinia virus GLV-1h68 was tested in combi-

nation with various chemotherapeutic compounds on 4 well-characterized cell 

lines of pancreatic adenocarcinoma. This in vitro investigation aimed at providing 

a first preclinical basis for future chemovirotherapeutic regimens putatively im-

proving the treatment outcome of PDA. 

Initially, it had to be evaluated whether the pancreatic cancer cell lines differ in 

their susceptibility to different chemotherapeutic agents (such as standard of care 

gemcitabine and others) or the virotherapeutic agent GLV-1h68 in monotherapy 

and to which degree resistance is already preexistent.  
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Based on these data distinct chemovirotherapeutic protocols had to be devised 

in which the different agents were administered in tumor cell line-adjusted sub-

therapeutic doses. Primary aim of these protocols was to overcome any therapy-

impeding resistance and achieve therapeutic benefit by inducing a more potent 

antitumor response. Of especial interest were so far uninvestigated chemoviro-

therapeutic combinations such as GLV-1h68 applied together with the recently 

approved dual chemotherapy nab-paclitaxel + gemcitabine.  

Since it was speculated that success of any combination therapy not only de-

pends on the applied agents but also their dose and administration sequence, 

the influence of these parameters on the particular chemovirotherapeutic proto-

cols and their therapeutic benefit had to be assessed as well. Thus, the combi-

nation partners had to be administered either concurrently or one of the agents 

had to be applied first while the other was delayed. In line with this consideration 

it was of interest whether a specific application setting could be identified which 

would lead to an enhanced cytotoxicity in all of the tested tumor cell lines. 

Additionally, it was assumed that a potent viral replication would constitute an 

important prerequisite for a strong immunotherapeutic effect. Since chemothera-

peutics are known to potentially influence the viral life cycle, potential chemother-

apy-mediated reductions of viral replication had to be investigated in any che-

movirotherapeutic protocol. Accordingly, the monitoring of viral titers and of viral 

gene expression under the influence of chemotherapy constituted another vital 

part of this investigation. 

In the end, these investigations aimed at developing novel highly potent GLV-

1h68-based chemovirotherapeutic protocols which then had to be tested in fur-

ther work in animal models as well as later on in clinical trials.  
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2 Material and Methods 

2.1 Material 

2.1.1 Consumables 

Cell scrapers Corning Inc. 
CELLSTAR® Conical-bottom tube 15 ml Greiner Bio One 
CELLSTAR® Conical-bottom tube 50 ml Greiner Bio One 
Combitips 2.5 ml, 12.5 ml Eppendorf 
Cryotubes 1ml Corning Inc. 
Pasteur pipettes, 230 mm long size WU Mainz 
Pipettes 5 ml, 10 ml, 25 ml, 50 ml Corning Inc. 
Pipette tips 10 µl, 100 µl, 200 µl, 1000 µl Biozym / Peqlab 
Reaction tubes 1.5 ml, 2.0 ml Eppendorf  
Reaction tubes 1.5 ml, 2.0 ml (amber) Eppendorf 
Tissue culture flask 75 cm2 Greiner Bio One 
Tissue culture plate 24 well TPP 
Tissue culture plate 96 well TPP / Corning Inc. 

2.1.2 Chemicals 

5-fluorouracil (stored light-protected) Pharmaceutical Department,  
 University Hospital Tübingen 
Acetic Acid Merck KGaA 
CellTiter-Blue® (CTB) Reagent Promega 
CMC Sigma-Aldrich 
Crystal violet Carl Roth 
Descosept Dr. Schuhmacher GmbH 
DMSO AppliChem 
Erlotinib ChemieTek 
Gemcitabine LC Laboratories 
Hydrochloric Acid Merck KGaA 
Hydrochloric Acid (fuming) Merck KGaA 
Irinotecan Sigma-Aldrich 
Isopropanol (70 %) SAV Liquid Production 
Nab-paclitaxel Pharmaceutical Department,  
 University Hospital Tübingen 
Oxaliplatin Sigma-Aldrich 
Sekusept® Extra N ECOLAB Healthcare 
Sulforhodamine B (SRB) Sigma-Aldrich 
Thyazolyl BlueTetrazolium Bromide Sigma-Aldrich 
(MTT) 
Trichloroacetic acid Carl Roth 
TRIS Carl Roth 
Trypan blue Sigma-Aldrich 
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2.1.3 Media, Sera and Buffer 

DMEM Biochrom 
DMEM (colorless) Biochrom 
Gibco® Antibiotic-Antimycotic Life Technologies 
(penicillin, streptomycin, amphotericin B) 
Gibco® Fetal Calf Serum Life Technologies 
PBS (cell culture use) PAA Laboratories 
RPMI 1640 (colorless) PAA Laboratories 
Trypsin/EDTA Lonza 

Self-prepared solutions: 

CMC solution DMEM 500 ml 
 FCS 25 ml 
 CMC 7.5 g 
 AB/AM 5 ml 

DMEM + 2 % FCS (infection medium) DMEM 500 ml 
 FCS 10 ml 

DMEM + 10 % FCS (growth medium) DMEM 500 ml 
 FCS 50 ml 

MTT dye (stored light-protected) MTT 2.5 mg/ml  
  (1.25 g) 
 RPMI (colorless) 500 ml 

MTT Solubilization/Stop Solution HCl (37 %) 10 ml 
 Isopropanol 90 ml 

PBS (non cell culture use) NaCl 137 mM (8 g) 
 KCl 2.7 mM (0.2 g) 
 Na2HPO4 10 mM (1.44 g) 
 KH2PO4 1.8 mM (0.24 g) 
 H2Odd  filled up to 1 l 

SRB dye (0.4 % in 1 % acetic acid) SRB 4 g 
 Acetic acid 10 ml 
 H2Odd  filled up to 1 l 

TCA solution (10 %) TCA 100 g 
 H2Odd  filled up to 1 l 

Tris base TRIS  10 mM (1.21 g) 
 H2Odd  filled up to 1 l 
 pH 10.5 
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2.1.4 Cell lines 

AsPc-1 Human pancreatic adenocarcinoma cells. 
 Taken from the ascites of a 62-year-old woman with 
metastatic adenocarcinoma in the head of the pan-
creas. Producing both abundant mucin and carcino-
embryonic antigen (CEA). 
 Purchased from Sigma-Aldrich. 

BxPc-3 Human pancreatic adenocarcinoma cells. 
 Taken directly from the primary tumor of a 61-year-old 
woman with adenocarcinoma in the body of the pan-
creas. Producing CEA, human pancreas cancer-asso-
ciated antigen (PCAA), human pancreas-specific an-
tigen and traces of mucin. 
Purchased from ATCC. 

MIA PaCa-2 Human pancreatic adenocarcinoma cells. 
 Taken directly from the primary tumor of a 65-year-old 
man with adenocarcinoma in the body and tail of the 
pancreas infiltrating the periaortic area. 
Purchased from ATCC. 

Panc-1 Human pancreatic adenocarcinoma cells. 
 Taken directly from the primary tumor of a 56-year-old 
man with a metastatic adenocarcinoma in the head of 
the pancreas invading the duodenal wall. 
Purchased from Sigma-Aldrich. 

CV-1 African green monkey kidney cells. 
 CV-1 cells were provided by the Genelux Corp.  

2.1.5 Oncolytic virus 

GLV-1h68 (aka GL-ONC1) Genelux Corp. 

2.1.6 Laboratory Equipment 

Assistent® Hemocytometer Glaswarenfabrik Karl Hecht 
Autoclave 3850 EL Systec 
Branson Sonifier S-450A analog ultrasonic  Emerson Electric Company 
cell disruptor 
Centrifuge Eppendorf / Heraeus 
CK40 phase contrast inverted microscope Olympus 
F-View II FireWire fluorescence camera Soft Imaging System 
Fluorescence microscope IX50 Olympus 
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Freezer (-20 °C, -80 °C, -145 °C) Liebherr 
GENios Plus Multifunction Fluorescence Tecan 
Microplate Reader 
HandyStep® S Brand 
Incubator Heraeus / INTEGRA / Memmert 
HERAsafe® Laminar Flow Workbench Thermo Electron Corp. 
Multichannel pipette Eppendorf 
Multitemp II Thermostatic Circulator 2219 LKB Bromma 
Pipette Boy INTEGRA 
Pipettes BIOHIT HealthCare / Eppendorf 
Rotational Vacuum Concentrator Christ  
Synergy HT Multi-Mode Microplate Reader BioTek 
Vortexer IKA® Werke 
Water bath 3042 (37 °C) Köttermann 

2.2 Methods 

2.2.1 Safety 

The laboratory, in which this research took place, is certified as Biosafety Level 

2 according to the Directive 2000/54/EC – biological agents at work released by 

the European Parliament in 2000 (138). Therefore, all experiments imbedding 

(potentially or actually) infectious or hazardous substances were performed un-

der a laminar flow workbench. Additionally, if any experiments were performed 

on substances containing highly infectious poxvirus, protective glasses were 

worn. Afterwards, all materials were disinfected accurately, irradiated with UV-

light for at least 15 minutes and ultimately autoclaved. 

2.2.2 Microscopy 

To guarantee sterile and proper conditions as well as to assess the performance 

of cell culture or after treatment, the cells were continuously examined under the 

CK40 phase contrast inverted microscope from Olympus. If any fluorescence had 

to be detected or visualized, the fluorescence microscope IX50 from Olympus 

was used. 

2.2.3 Cell culture 

2.2.3.1 General cell culture 

All 4 pancreatic adenocarcinoma cell lines, both immortalized and adherent, were 

cultivated in growth medium (DMEM + 10 % FCS) in tissue culture flasks with 

filter screw caps. The flasks and tissue culture plates, in which the tumor cells 
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were seeded for treatment, were incubated at 37 °C in a humid atmosphere con-

taining 5 % CO2. All treatment steps were performed under sterile conditions in a 

laminar flow workbench. Media and PBS were prewarmed to 37 °C before use. 

2.2.3.2 Passaging cells 

In order to split or harvest the tumor cells, they were washed first with warm PBS 

and then detached by adding trypsin/EDTA. BxPc-3 cells were treated twice with 

trypsin, due to their high level of adherence to the flask’s surface. Detached tumor 

cells were diluted in fresh growth medium, inactivating trypsin by its supplemen-

tation with FCS, while single cell suspensions were generated by gently resus-

pending the tumor cell suspension a few times with a pipette. Afterwards, the 

suspension was split and spread in new culture flasks or stored temporarily in 15 

or 50 ml tubes to be counted and later seeded in tissue culture plates for further 

treatment (see section 2.2.3.3, p. 40). 

2.2.3.3 Cell counting and seeding 

Before the tumor cells could be seeded in tissue culture plates, their number per 

ml tumor cell suspension had to be determined using an improved Neubauer he-

mocytometer.  

To distinguish between viable and dead cells, cells were stained with trypan blue 

before counting. Viable cells don’t absorb trypan blue whereas it can pass the 

cell membrane of dead cells, staining the cellular proteins. Unstained viable cells, 

appearing brighter than their surroundings, now could be counted using a micro-

scope with a 10x objective. 

The counting chamber of the improved Neubauer hemocytometer is defined by 

the actual hemocytometer, a thick glass microscope slide with rectangular inden-

tations parceled out by squares of different size (Figure 9a), and its cover glass. 

For counting, the 4 outer squares, each subdivided into 16 lesser squares, were 

used. The dimensions of the outer squares are 1 x 1 mm, while the distance 

between the microscope slide and the properly fixed cover glass is 0.1 mm. This 

results in a total capacity of 100 nl per outer square.  
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First, the counting chamber was prepared by rubbing the cover glass carefully 

along two elevated glass edges on the microscope slide, until so-called Newton 

rings appeared, indicating the proper fixation. Subsequently, stained tumor cell 

suspension was administered to the margin of the cover glass, utilizing the capil-

lary force to soak it into the counting chamber. Viable cells in all 4 outer squares 

were counted and their mean value was multiplied with 104 to calculate the num-

ber of cells per ml stained solution. Considering the thinning caused by staining 

with trypan blue the actual number of cells per ml cell suspension was calculated 

accurately (Figure 9b).  

For treatment, tumor cells were seeded in 24-well plates at a density of 4 x 104 

(BxPc-3, MIA PaCa-2, Panc-1) or 5 x 104 (AsPc-1) cells per well. The chosen 

densities resulted from the prior observation of approx. 90 - 100 % confluence 

after 24 hours incubation, at which time the tumor cells should be treated. 

2.2.3.4 Cryopreservation and thawing 

To stock the tumor cells for a longer time period, they were cryopreserved in a 

freezing cabinet at -145 °C. Tumor cells were first harvested (see section 2.2.3.2, 

p. 40) and transferred into 15 ml tubes. The cell suspension then was centrifuged 

for 3 minutes at 1200 rpm (rounds per minute) and room temperature. After re-

moving the supernatant, the remaining tumor cell pellet was gently resuspended 

in cryo medium (90 % (DMEM + 20 % FCS), 10 % DMSO). One ml aliquots were 

transferred into cryotubes, which were packed in an isopropanol bath to be cooled 

Figure 9 Functionality of an improved Neubauer hemocytometer. (a) Schematics of the counting 
grid. (b) Calculation of cell concentration. 

௡௨௠௕௘௥ ௢௙ ௖௘௟௟௦௠௟   
=  ௖௢௨௡௧௘ௗ ௖௘௟௟௦ 𝑥 ଵ଴4ସ  x ݀𝑖𝑙ݐݑ𝑖݊݋ ݂𝑎ܿ݋ݐ𝑟  

 

a 

b 

outer square 



Dissertation Eike Hendrik Binz Ch. 2 Material and Methods 

42 
 

down slowly to -80 °C overnight. The next day, the frozen cryotubes were relo-

cated to a freezing cabinet with -145 °C. 

To recultivate the stocked tumor cells, the cryotubes were thawed in a water bath 

at 37 °C. In order to prevent DMSO from killing the tumor cells, the solution was 

diluted immediately in 5 ml growth medium and transferred into a 15 ml tube to 

be centrifuged as described above. The supernatant was removed and the cell 

pellet was gently resuspended in growth medium. The generated single cell sus-

pension ultimately was cultivated in a new tissue culture flask. On the following 

day, the medium was replaced with new growth medium to finally remove any 

remnants of DMSO. 

2.2.4 Virotherapeutic treatment 

2.2.4.1 (Mono-)virotherapy 

On the day of infection, previous to the actual virotherapeutic treatment, the GLV-

1h68 solution was prepared. Frozen virus solution was thawed carefully and soni-

cated for 30 s at 4°C. Depending on the needed virus dose (MOI, multiplicity of 

infection), the dispersed viral particles then were diluted in DMEM supplemented 

with 2 % FCS (infection medium).  

Figure 10 Setting (mono-)virotherapy. hpi, hours post infection. 
Schematics for 72 h incubation after infection published in (139).  

Approx. 24 hours after seeding, tumor cells were washed with warm PBS and 

250 µl infection medium, containing different MOIs of infectious GLV-1h68, were 

administered into each well (Figure 10). During the following hour, plates were 

swayed every 15 – 20 minutes to ensure that all tumor cells were exposed to the 

infectious viral particles and therefore had a chance of being infected successfully. 

At 1 hour post infection (hpi), the infection medium was replaced with 500 µl 

growth medium. Tumor cells were further incubated at 37 °C. At 72 and 96 hpi, 

Time after treatment (hours) 
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the remaining tumor cell mass after virotherapy was measured by SRB assay 

(see section 2.2.7.1, p. 48). 

2.2.4.2 Virus growth curves 

To assess the influence of the chemotherapeutics nab-paclitaxel and/or gemcita-

bine on the viral replication of GLV-1h68, virus growth curves were generated, 

comparing the viral replication of GLV-1h68 in cells that were treated with one, 

both or without the combination partners.  

Tumor cells were seeded in 24-well plates and, on the following day, infected with 

GLV-1h68 according to the normal virotherapy scheme (as described above in 

section 2.2.4.1, p. 42). The following treatment steps belong to the chemoviro-

therapeutic triple-therapy and are described more detailed in section 2.2.6.4. At 

1 hpi, the infection medium of the tumor cells which were treated with the combi-

nation therapy was replaced with nab-paclitaxel-containing growth medium. Half 

an hour later (1.5 hpi), gemcitabine-containing growth medium was added. If only 

nab-paclitaxel or gemcitabine was given, instead of the other agent normal 

growth medium was added. Tumor cells which were treated solely with GLV-1h68 

received MOCK treatment by replacing the infection medium with normal growth 

medium and later adding more growth medium. Tumor cells were further incu-

bated at 37 °C. 

Samples of 4 wells per treatment group were taken at different time points after 

the primary infection (1.5 hpi, 24 hpi, 48 hpi, 72 hpi, 96 hpi). First, the tumor cells 

were scraped from the bottom into the medium, after which the suspension was 

resuspended thoroughly. Then, the cell suspensions of each 4 wells were pooled 

in test tubes and frozen at -80 °C without adding anti-freezing agent. Thus, the 

tumor cells burst, releasing the intracellular GLV-1h68 particles. 

For the following virus titration a virus plaque assay was performed. CV-1 cells 

were seeded in 24-well plates and, by reaching 100 % confluence, infected with 

the collected virus samples. Therefore, the test tubes were thawed in a water 

bath at 37 °C and sonicated as described above (see section 2.2.4.1, p. 42). 

Thereafter, a 1:10 serial dilution of the virus samples (10-1 to 10-6) was generated 



Dissertation Eike Hendrik Binz Ch. 2 Material and Methods 

44 
 

by adding 100 µl virus sample to 900 µl infection medium, subsequently transfer-

ring 100 µl of the resulting dilution to another 900 µl infection medium and repeat-

ing this transfer 4 more times. Each generated solution was vortexed thoroughly 

before the next degree of dilution was produced. Two wells of the seeded CV-1 

cells then were infected with 250 µl of the respective dilutions and incubated at 

37 °C. After swaying the plates every 20 minutes, at 1 hpi, each well was overlaid 

with 1 ml CMC solution. Finally, the plates were incubated for 2 days at 37 °C. 

To visualize the virus plaques, cells were stained by adding 250 µl crystal violet 

to each well. Subsequently, the plates were incubated for 4 hours at room tem-

perature, after which the supernatants were removed. Tumor cells were washed 

2 times with tap water and the plates were irradiated with UV-light for at least 15 

minutes. Stained virus plaques of each well were counted after which the corre-

sponding virus titers [PFU/ml, plaque forming units per ml] of each treatment 

group were calculated accurately in consideration of the particular dilution factors 

and the amount of infection medium administered in the plaque assay (Figure 11). 

2.2.5 Chemotherapeutic treatment 

2.2.5.1 Monochemotherapy 

Approx. 24 hours after tumor cell seeding, medium was removed and 500 µl 

growth medium containing different concentrations of the respective chemother-

apeutic agent were administered (Figure 12). Treatment with the light sensitive 

agent 5-FU was performed under dimmed light. Tumor cells were further incu-

bated at 37 °C. At 48 and 72 hours post treatment (hpt), the remaining tumor cell 

mass was measured by SRB assay (see section 2.2.7.1, p. 48). 

𝑟݁ݐ𝑖ݐ 𝑖𝑟𝑎𝑙ݒ = ௠௘௔௡ ௩௔௟௨௘ ௢௙ ௧ℎ௘ ௗ௨௣௟𝑖௖௔௧௘௦଴.ଶହ ௠௟ ሺ𝑖௡௙௘௖௧𝑖௢௡ ௩௢௟௨௠௘ሻ  𝑥 ݀𝑖𝑙ݐݑ𝑖݊݋ ݂𝑎ܿ݋ݐ𝑟  

Figure 11 Virus plaque assay - Calculation of the virus titer. 

 

Time after treatment (hours) 

Figure 12 Setting chemotherapy. hpt, hours post treatment. 
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2.2.5.2 Dual chemotherapy 

Approx. 24 hours after tumor cell seeding, medium was removed and 500 µl 

growth medium containing different concentrations of combined nab-paclitaxel 

and gemcitabine were administered. The concentrations of both chemotherapeu-

tic agents were based on the respective treatment doses for combinatorial treat-

ment, resulting alone in a remaining tumor cell mass of ≈ 75 % at 72 hours post 

treatment (designated as a so-called 25 % lethal dose, ‘LD25 dose’). After 72 

hours of dual chemotherapy the remaining tumor cell mass was measured by 

SRB assay (see section 2.2.7.1, p. 48). 3 treatment groups with distinct dose 

variations were differentiated: 

1. Ratio of combined nab-paclitaxel and gemcitabine remained constant but two-

fold dilutions were generated (Table 2).  

2. Treatment doses of nab-paclitaxel remained constant at 50 % of the LD25 dose 

while the doses of gemcitabine were varied (Table 3).  

3. Treatment doses of gemcitabine remained constant at 50 % of the LD25 dose 

while the doses of nab-paclitaxel were varied (Table 4).  

Agents Doses 

nab-PTX LD25 
0.5 x 

LD25 

0.25 x 

LD25 

0.125 x 

LD25 

0.0625 x 

LD25 

0.03125 x 

LD 25 

0.015625 x 

LD25 

Gem LD25 
0.5 x 

LD25 

0.25 x 

LD25 

0.125 x 

LD25 

0.0625 x 

LD25 

0.03125 x 

LD 25 

0.015625 x 

LD25 

 

  

        

        

Table 2 Dual chemotherapy - Constant ratio of combined nab-paclitaxel + gemcitabine 

Abbreviations: Gem, gemcitabine; LD25, 25 % lethal dose; nab-PTX, nab-paclitaxel. 

 

Agents Doses 

nab-PTX 
0.5 x 

LD25 

0.5 x 

LD25 

0.5 x 

LD25 

0.5 x 

LD25 

0.5 x 

LD25 

0.5 x 

LD25 

0.5 x  

LD25 

Gem LD25 
0.75 x 

LD25 

0.5 x 

LD25 

0.25 x 

LD25 

0.1 x 

LD25 

0.075 x  

LD 25 

0.05 x 

LD25 

 

  

        

        

Table 3 Dual chemotherapy - Variation of the gemcitabine doses 

Abbreviations: Gem, gemcitabine; LD25, 25 % lethal dose; nab-PTX, nab-paclitaxel. 
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2.2.6 Chemovirotherapeutic treatment 

2.2.6.1 Chemotherapy 1 hour post infection 

Approx. 24 hours after seeding, tumor cells were infected with GLV-1h68 accord-

ing to the normal virotherapy scheme (specified in section 2.2.4.1, p. 42). At 1 hpi, 

the infection medium was replaced with 500 µl growth medium containing the 

LD25 dose of the respective chemotherapeutic agent given in combination (Fig-

ure 13). Tumor cells were further incubated at 37 °C. At 72 hpi, the remaining 

tumor cell mass after combinatorial treatment was measured by SRB assay (see 

section 2.2.7.1, p. 48).  

Figure 13 Setting chemovirotherapy 1 hpi (hour(s) post infection). 
Figure published in (139). 

 

2.2.6.2 Chemotherapy 24 hours post infection 

Approx. 24 hours after seeding, tumor cells were infected with GLV-1h68 accord-

ing to the normal virotherapy scheme (see section 2.2.4.1, p. 42). At 24 hpi, the 

normal growth medium was replaced with 500 µl growth medium which contained 

the LD25 dose of the respective chemotherapeutic agent given in combination 

(Figure 14). Tumor cells were further incubated at 37 °C. At 72 hpi, the remaining 

tumor cell mass after combinatorial treatment was measured by SRB assay (see 

section 2.2.7.1, p. 48). 

Time after treatment (hours) 

Agents Doses 

nab-PTX LD25 
0.75 x 

LD25 

0.5 x 

LD25 

0.25 x 

LD25 

0.1 x 

LD25 

0.075 x  

LD 25 

0.05 x 

LD25 

Gem 
0.5 x 

LD25 

0.5 x 

LD25 

0.5 x 

LD25 

0.5 x 

LD25 

0.5 x 

LD25 

0.5 x 

LD25 

0.5 x 

LD25 

 
Abbreviations: Gem, gemcitabine; LD25, 25 % lethal dose; nab-PTX, nab-paclitaxel. 

Table 4 Dual chemotherapy - Variation of the nab-paclitaxel doses 
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Figure 14 Setting chemovirotherapy 24 hpi (hour(s) post infection). 
Figure published in (139). 

 

2.2.6.3 Chemotherapy 24 / 48 hours prior to infection 

Approx. 24 hours after tumor cell seeding, medium was replaced with 500 µl 

growth medium containing the LD25 dose of the respective chemotherapeutic 

agent given in combination (Figure 15). 24 or 48 hours later, the tumor cells were 

infected with GLV-1h68 according to the normal virotherapy scheme (see section 

2.2.4.1, p. 42) and further incubated at 37 °C. Because the tumor cells were 

seeded more than 24 hours prior to the virotherapeutic treatment, samples of 

each treatment group were counted before virotherapy in order to calculate the 

proper MOI. At 72 hpi, the remaining tumor cell mass after combinatorial treat-

ment was measured by SRB assay (see section 2.2.7.1, p. 48).  

2.2.6.4 Chemovirotherapeutic triple-therapy 

Approx. 24 hours after seeding, tumor cells were infected with GLV-1h68 accord-

ing to the normal virotherapy scheme (see section 2.2.4.1, p. 42). At 1 hpi, the 

infection medium was replaced with 490 µl nab-paclitaxel-containing growth me-

dium (Figure 16). Half an hour later (1.5 hpi), 10 µl gemcitabine-containing growth 

medium were added. The concentrations of nab-paclitaxel (in 490 µl growth me-

dium) and gemcitabine (in 10 µl growth medium) were calculated to result in the 

proper (for triple-therapy adjusted) LD25 doses of both agents in 500 µl growth 

medium. Tumor cells were further incubated at 37 °C. At 72 hpi, both remaining  

Time after treatment (hours) 

Figure 15 Settings chemovirotherapy -24 / -48 hpi (hour(s) post infection). (a) Setting chemovirotherapy -24 
hpi. (b) Setting chemovirotherapy -48 hpi. 

Time after treatment (hours) 

b 

Time after treatment (hours) 

a 
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Figure 16 Setting chemovirotherapeutic triple-therapy. 
hpi, hour(s) post infection. Figure published in (139). 

 
cell mass and cell viability after combinatorial treatment were measured by SRB, 

CellTiter-Blue® and MTT assays (see sections 2.2.7.1 - 2.2.7.3, p. 48 - 50), re-

spectively. 

2.2.7 Cell viability assays 

2.2.7.1 Sulforhodamine B Assay 

The sulforhodamine B (SRB) assay was the primary assay performed to quantify 

the remaining tumor cell mass after treatment in relation to the untreated control 

(MOCK). Basic principle of this colorimetric assay is the unspecific conjugation of 

SRB dye to protein components of cells, directly proportional to the cell mass 

(140). By solubilizing the protein-bound dye the resulting absorbance can be 

measured with a photospectrometer. 

First, tumor cells were seeded in 24-well plates. 24 hours later the respective 

chemo- and/or virotherapeutic treatment was performed. After a defined incuba-

tion time, depending on the respective treatment setting, tumor cells were washed 

with cold PBS and fixated by administrating 250 µl of cold 10 % TCA solution to 

each well. After 30 minutes incubation at + 4 °C, TCA was removed and cells 

were washed 3 times with tap water. In case of being treated with GLV-1h68, 

cells were additionally irradiated with UV-light for at least 15 minutes to ensure 

all infectious viral particles being inactivated. Finally, the plates were dried in a 

drying chamber at 40 °C.  

Cell protein staining was performed by adding SRB dye for 10 minutes. Excess 

dye then was washed out with 1 % acetic acid several times until all unbound dye 

was removed. Afterwards, the plates were dried another time.  

Time after treatment (hours) 
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To quantify the protein-bound dye per well, it was solubilized in 10 mM Tris base. 

Depending on the staining intensity 1-2 ml Tris base were administered. 160 µl 

solution of each well then were spread equally in 2 wells of a 96-well plate (pipet 

control, 2 x 80 µl). Thereafter, the optical density (OD) of the solutions was meas-

ured at a wave length of 550 nm using the GENios Plus Multifunction Fluores-

cence Microplate Reader (Tecan). If the OD values of the pipet control differed 

more than 0.1, the respective samples had to be transferred and analyzed again.  

Individual OD values of each treatment group were correlated with the mean 

value of the untreated control (MOCK), which was set at 100 % of remaining 

tumor cell mass.  

2.2.7.2 CellTiter-Blue® Assay 

The CellTiter-Blue® (CTB) assay, measuring the metabolic capacity of cells as 

indicator for cell viability, was performed to confirm the data obtained with the 

SRB assay, thereby validating the effectivity of antitumor treatment with the triple-

therapy. It is based on the potency of viable cells to reduce the dark-blue dye 

resazurin (7-Hydroxy-3H-phenoxazin-3-one 10-oxide), which possesses only lit-

tle intrinsic fluorescent activity, to the pink and highly fluorescent compound 

resorufin (7-Hydroxy-3H-phenoxazin-3-one). The resulting change of fluores-

cence and absorbance, directly proportional to the number of viable cells, can be 

measured with a fluorometer or photospectrometer respectively.  

Since seeding and treatment conditions of the tumor cells remained the same as 

for the SRB assay (specified in section 2.2.7.1, p. 48), the manufacturer’s protocol 

(141) had to be slightly adapted to 24-well plates. At 72 hpi, 100 µl medium of 

each well were replaced with the same amount of CTB Reagent. Tumor cells 

were further incubated at 37 °C for 1 up to 4 hours, the particular time period was 

empirically determined depending on the individual metabolic rate of each cell 

line. End-point fluorescence was quantified at an excitation wavelength of 550 

nm by measuring the resulting emission at 595 nm with the GENios Plus Multi-

function Fluorescence Microplate Reader (Tecan). 
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Individual fluorescence values of each treatment group were correlated with the 

mean value of the untreated control (MOCK), which was set at 100 % of cell 

viability.  

2.2.7.3 MTT Assay 

To verify the collected data of treating pancreatic adenocarcinoma cells with the 

triple-therapy, the MTT assay, another colorimetric assay measuring the meta-

bolic capacity of cells, was performed (142). Viable cells retain their potency to 

reduce the light sensitive tetrazolium dye MTT to the insoluble agent formazan, 

which accumulates as a precipitate inside the cells. By solubilizing the intracellu-

lar formazan the resulting absorbance, directly proportional to the number of via-

ble cells, can be measured with a photospectrometer.  

Seeding and treatment conditions of the tumor cells remained the same as for 

the SRB assay (specified in section 2.2.7.1, p. 48). At 72 hpi, the tumor cells were 

washed with 500 µl warm PBS, after which 250 µl MTT dye were added to each 

well under dimmed light. In succession, the plates were incubated for 2 hours at 

37 °C.  

To quantify the metabolized MTT, the excess dye then was replaced with 1 ml 

solubilization/stop solution (10 % HCl in isopropanol). The plates were swayed 

another 10 minutes, resulting in a yellow dilution of solubilized formazan. 200 µl 

of each well were transferred to a 96-well plate and their OD values were meas-

ured at the wave length of 570 nm using the Synergy HT Multi-Mode Microplate 

Reader (BioTek). 

Individual OD values of each treatment group were correlated with the mean 

value of the untreated control (MOCK), which was set at 100 % of cell viability.  

2.2.8 Software 

The GENios Plus Multifunction Fluorescence Microplate Reader (Tecan) and the 

Synergy HT Multi-Mode Microplate Reader (BioTek) were run with the XFluor4 

and Gen5 software, respectively. Microscopic images were taken with analySIS 
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V3.2 (Soft Imaging System). Basic calculations were executed with Microsoft Ex-

cel 2013. Visualization and further statistical evaluation of the data were per-

formed with GraphPad Prism V6 (GraphPad Software). 
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3 Results 

In order to establish a novel chemovirotherapeutic combination therapy poten-

tially improving the treatment outcome of pancreatic adenocarcinoma, a combi-

natorial treatment of 4 established and well-characterized pancreatic adenocar-

cinoma cells lines with the genetically modified vaccinia virus GLV-1h68 and var-

ious chemotherapeutic agents was investigated in vitro.  

Preliminary to the actual chemovirotherapy, the treatment doses of the individual 

chemo- and virotherapeutic agents had to be determined under monotherapeutic 

conditions in a case-by-case approach. For this purpose, pancreatic adenocarci-

noma cells were treated first with ascending concentrations of each agent in mon-

otherapy (shown in section 3.1). After analyzing the cytotoxic effect of the individ-

ual mono(viro-/chemo-)therapies, ‘adjusted’ doses of each and every single 

agent were determined for subsequent combination therapy approaches. Here, 

the proper concentration of each combination partner when used alone (i.e., un-

der monotherapeutic conditions) should result in a remaining tumor cell mass of 

≈ 75 % after 72 hours of treatment (designated as a so-called 25 % lethal dose, 

‘LD25 dose’). Higher cytotoxicity might disguise any additional effect otherwise 

seen after combinatorial treatment when cytotoxicities would sum up too close to 

100 % of tumor cell destruction thereby hindering any read-out of putative com-

binatorial effects. 

Secondly, the actual chemovirotherapy, combining the vaccinia virus GLV-1h68 

with each of the chosen chemotherapeutic agents separately, was performed and 

its cytotoxicity analyzed (shown in section 3.2). Since in combination therapy all 

combination partners interact with each other, the concentrations of the single 

agents are not the only important factor determining the best possible treatment 

outcome. Hence, the influence of different application sequences (i.e., the order 

of which compound was given first, followed by a defined schedule of the other 

combinatorial partners) was the main focus of these experiments. 

Thirdly, based on the already collected data, pancreatic adenocarcinoma cells 

were treated with the chemovirotherapeutic triple-therapy, a combination of the 
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vaccinia virus GLV-1h68 with the approved dual chemotherapy nab-paclitaxel + 

gemcitabine (shown in section 3.3). After analyzing its cytotoxic effect, the influ-

ence of the dual chemotherapy and the respective chemotherapeutic agents on 

viral gene expression and replication of GLV-1h68 was investigated with the vis-

ualization of viral GFP expression and generation of virus growth curves, respec-

tively. 

3.1 Mono(viro-/chemo-)therapy – Dose-finding for combination therapy 

3.1.1 Virotherapy with the oncolytic vaccinia virus GLV-1h68 

To determine proper doses of GLV-1h68 for chemovirotherapy, as well as to an-

alyze their susceptibility to viral infection and oncolysis, each of the 4 pancreatic 

adenocarcinoma cell lines was infected with individually ascending virus concen-

trations. The MOI (multiplicity of infection) thereby represents the ratio of infec-

tious virus particles per tumor cell (a MOI of 0.1 accordingly describes a propor 

Figure 17 Virotherapy with ascending doses of GLV-1h68 in four different human pancreatic tumor cell 
lines for 72 h (depicted in black bars) or 96 h (depicted in orange bars) in vitro. Tumor cells were first 
infected with the oncolytic vaccinia virus GLV-1h68. One hour post infection (hpi) the inoculum was re-
moved and normal growth medium was added. Remaining tumor cell mass was analyzed by sulforho-
damine B (SRB) assay (n ≥ 3, mean and standard deviation are shown). MOCK, untreated control. MOI, 
multiplicity of infection. Figure of 72 hpi values published in (139). 

 

MOI 

BxPc-3 

MOI 

MIA PaCa-2 

MOI 

AsPc-1 Panc-1 

MOI 
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tion of 1 infectious virus particle per 10 tumor cells). Tumor cells were further 

incubated for 72 or 96 hours, after which the remaining cell masses were ana-

lyzed by SRB assay (Figure 17). Additionally, dose-dependent GFP expression 

was visualized in Panc-1 cells (Figure 18). 

It could be shown that the 4 tumor cell lines varied considerably in their response 

to the virotherapeutic treatment with the oncolytic vaccinia virus GLV-1h68. 

Though GLV-1h68 demonstrated a dose-dependent oncolytic effect in all 4 tumor 

cell lines, proving the feasibility of virotherapy in general, the viral doses of GLV-

1h68 needed for potent tumor cell killing differed greatly. Compared to the un-

treated control (MOCK), especially the tumor cell line BxPc-3 showed an en-

hanced response to lower concentrations of GLV-1h68. Moreover, comparing the 

remaining cell masses at 72 and 96 hours post infection (hpi), a longer incubation 

time with GLV-1h68 after primary infection also resulted in an enhanced tumor 

cell killing. In conclusion, the therapeutic response to virotherapeutic treatment 

with GLV-1h68 not only depended on the administered virus dose, but also on 

the treated tumor cell line and the duration of virotherapy.  

Based on the remaining cell masses at 72 hpi, the following MOIs of GLV-1h68 

were selected for chemovirotherapeutic treatment in the particular tumor cell lines 

(Table 5). 

The dose-dependent character of viral infection was similarly illustrated by visu-

alization of viral GFP expression in Panc-1 cells (Figure 18). At the lowest MOI 

of 0.01 only single cell clusters showed signs of viral infection. With ascending 

Tumor cell lines Partial doses 

AsPc-1 MOI 0.1 

BxPc-3 MOI 0.01 

MIA PaCa-2 MOI 0.5 

Panc-1 MOI 0.1 

 

  

  

  

  

  

Table 5 Partial (‘adjusted’) doses of GLV-
1h68 chosen for chemovirotherapy 

Abbreviations: MOI, multiplicity of infection. 



Ch. 3 Results Dissertation Eike Hendrik Binz 

55 
 

phase contrast 
 phase contrast GFP 

 GFP 

overlay 
 overlay MOCK 

 

MOCK MOI 0.01 
 

MOI 0.01 MOI 0.05 
 

MOI 0.05 MOI 0.1 
 

MOI 0.1 MOI 0.5 
 

MOI 0.5 MOI 1 

Figure 18 Visualization of GLV-1h68 infection in Panc-1 cells at 72 hpi. Tumor cells were infected with 
ascending doses (MOIs) of GLV-1h68. At 1 hpi, the medium was changed. Expression of green fluores-
cent protein (GFP) indicating viral infection (central panels), corresponding phase contrast pictures (left 
panels) and the respective overlay images (right panels) are shown (scale 1:200). hpi, hour(s) post infec-
tion. MOCK, untreated control. MOI, multiplicity of infection. 
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MOIs, i.e. rising ratios of infectious virus particles per tumor cell, also fluores-

cence levels increased until at the highest MOI of 1 nearly all tumor cells were 

stained by viral GFP expression. These findings were paralleled by a visible de-

crease of the number of tumor cells being remnant at 72 hpi in the phase contrast 

images which additionally demonstrated the character of virus-mediated oncoly-

sis. Viral infection spreading from the primary infection site to neighboring tumor 

cells was followed by likewise outwards spreading oncolysis, leaving tumor-free 

gaps in the cell layer. Accordingly, the seemingly low GFP signal at the MOI of 

0.1 originated from the initial oncolytic effect of GLV-1h68. 

3.1.2 Chemotherapy with the nucleoside analogue 5-fluorouracil (5-FU) 

In order to find a suitable combination partner for GLV-1h68 and to determine its 

proper concentration for chemovirotherapy, pancreatic adenocarcinoma cell lines 

were treated with different chemotherapeutic agents.  

The first agent applied in (mono-)chemotherapy was the nucleoside analogue 5-

fluorouracil (5-FU). In doing so, all 4 pancreatic adenocarcinoma cell lines were 

BxPc-3 

mM 5-FU 

MIA PaCa-2 

mM 5-FU 

mM 5-FU 

AsPc-1 Panc-1 

mM 5-FU 

Figure 19 Chemotherapy with ascending concentrations of the nucleoside analogue 5-fluorouracil (5-
FU) in four different human pancreatic tumor cell lines for 48 h (depicted as black line) or 72 h (depicted 
as blue line) in vitro. Remaining tumor cell mass was analyzed by sulforhodamine B (SRB) assay (n=2, 
mean and standard deviation are shown). hpt, hour(s) post treatment. 



Ch. 3 Results Dissertation Eike Hendrik Binz 

57 
 

treated with ascending concentrations of 5-FU (0.001, 0.01, 0.1, 1 and 10 mM). 

Tumor cells were further incubated for 48 or 72 hours, after which the remaining 

cell masses were analyzed by SRB assay (Figure 19). 

All 4 tumor cell lines responded to the chemotherapy with 5-FU in a dose-de-

pendent fashion while, likewise, indications for different levels of resistance to the 

cytotoxic agent could be observed. At 48 hpt, BxPc-3 and MIA PaCa-2 cells were 

the first showing any considerable response to 5-FU at concentrations of 0.01 

mM and higher. The tumor cell killing seen in the other 2 cell lines (AsPc-1 and 

Panc-1) remained poor even when higher doses of 5-FU were administered. 

When treated for 72 hours 3 of the 4 tumor cell lines (AsPc-1, BxPc-3 and Panc-1) 

demonstrated a considerably enhanced tumor cell killing at the whole range of 

concentrations. MIA PaCA-2 cells, however, didn’t seem to benefit greatly from a 

longer incubation time with 5-FU, being indicated by the lesser gain of cytotoxicity 

at 72 hpt versus 48 hpt. 

Based on the remaining cell masses at 72 hpt, these findings resulted in the se-

lection of the following concentrations of 5-FU for chemovirotherapeutic treatment 

in the particular tumor cell lines (Table 6).  

 

3.1.3 Chemotherapy with the nucleoside analogue gemcitabine 

The second chemotherapeutic agent applied in (mono-)chemotherapy was gem-

citabine, another nucleoside analogue. Thereby, all 4 pancreatic adenocarci-

noma cell lines were treated with ascending concentrations of gemcitabine (0.01, 

0.1, 1, 10 and 100 µM). Tumor cells were further incubated for 48 or 72 hours, 

after which the remaining cell masses were analyzed by SRB assay (Figure 20). 

Tumor cell lines Partial doses 

AsPc-1 1 x 10-2 mM 

BxPc-3 1 x 10-3 mM 

MIA PaCa-2 1 x 10-2 mM 

Panc-1 5 x 10-3 mM 

  

  

  

  

  

Table 6 Partial (‘adjusted’) doses of 5-fluoro-
uracil chosen for chemovirotherapy 
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Figure 20 Chemotherapy with ascending concentrations of the nucleoside analogue gemcitabine in four 
different human pancreatic tumor cell lines for 48 h (depicted as black line) or 72 h (depicted as blue line) 
in vitro. Remaining tumor cell mass was analyzed by sulforhodamine B (SRB) assay (n=3, mean and 
standard deviation are shown). hpt, hour(s) post treatment. Figure of 72 hpt values published in (139). 

 
As a result, all 4 tumor cell lines responded poorly to the chemotherapy with gem-

citabine, indicating resistance to this cytotoxic agent. While in comparison with 

the other 2 tumor cell lines BxPc-3 and MIA PaCa-2 cells already responded to 

lower doses of gemcitabine, the observed tumor cell killing in these cell lines 

seemed to persist when higher doses were administered, a dose increase of 

gemcitabine resulting in no or only a moderate increase of cytotoxicity. However, 

when comparing the remaining cell masses at 48 and 72 hpt an enhanced tumor 

Table 7 Partial (‘adjusted’) doses of gemcita-
bine chosen for chemovirotherapy 

Tumor cell lines Partial doses 

AsPc-1 1 x 10-1 µM 

BxPc-3 2 x 10-2 µM 

MIA PaCa-2 3 x 10-2 µM 

Panc-1 7.5 x 10-2 µM 

 

µM gemcitabine 

BxPc-3 

µM gemcitabine 

MIA PaCa-2 

AsPc-1 

µM gemcitabine µM gemcitabine 

Panc-1 
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cell killing after prolongation of the chemotherapy could be seen in all 4 tumor cell 

lines. 

Based on the remaining cell masses at 72 hpt, these findings resulted in the se-

lection of the following concentrations of gemcitabine for chemovirotherapeutic 

treatment in the particular tumor cell lines (Table 7). 

3.1.4 Chemotherapy with the mitotic inhibitor nab-paclitaxel 

The next chemotherapeutic agent applied in (mono-)chemotherapy was the mi-

totic inhibitor nab-paclitaxel, clinically approved for the treatment of advanced 

pancreatic adenocarcinoma only in combination with gemcitabine. Following the 

scheme of the previously performed experiments, all 4 pancreatic adenocarci-

noma cell lines were treated with ascending concentrations of nab-paclitaxel. Due 

to the lesser experience with this relatively new agent a greater range of concen-

trations (0.0001, 0.001, 0.01, 0.1, 1, 10 and 100 µM) was surveyed. Tumor cells 

were further incubated for 48 or 72 hours, after which the remaining tumor cell 

masses were analyzed by SRB assay (Figure 21). 

Figure 21 Chemotherapy with ascending concentrations of the mitotic inhibitor nab-paclitaxel in four 
different human pancreatic tumor cell lines for 48 h (depicted as black line) or 72 h (depicted as blue line) 
in vitro. Remaining tumor cell mass was analyzed by sulforhodamine B (SRB) assay (n ≥ 3, mean and 
standard deviation are shown). hpt, hour(s) post treatment. Figure of 72 hpt values published in (139). 

µM nab-paclitaxel 

BxPc-3 

µM nab-paclitaxel 

MIA PaCa-2 

µM nab-paclitaxel 

AsPc-1 

µM nab-paclitaxel 

Panc-1 
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All 4 tumor cell lines responded similarly to the chemotherapy with nab-paclitaxel. 

0.01 µM nab-paclitaxel thereby seemed to be a critical concentration at which all 

4 tumor cell lines first showed a considerable response to the chemotherapeutic 

agent. Yet, when higher doses than 0.1 µM nab-paclitaxel were applied, most 

notably in AsPc-1 and Panc-1 cells, no further reduction of tumor cell mass was 

seen, an effect only overcome after administration of 100 µM nab-paclitaxel, the 

highest concentration administered in this setting. This condition was apparent 

independently of the duration of treatment, although in all 4 tumor cell lines a 

longer treatment with nab-paclitaxel also resulted in a slightly enhanced tumor 

cell killing. 

Based on the remaining cell masses at 72 hpt, these findings resulted in the se-

lection of the following concentrations of nab-paclitaxel for chemovirotherapeutic 

treatment in the particular tumor cell lines (Table 8). 

 

3.1.5 Chemotherapy with the platinum compound oxaliplatin 

Other chemotherapeutic agents, usually not part of monochemotherapeutic first-

line protocols in the treatment of advanced pancreatic adenocarcinoma, were 

surveyed in the preliminary testing phase as well. After nab-paclitaxel the second 

of this group of chemotherapeutic agents was the platinum compound oxaliplatin, 

clinically used only as part of the FOLFIRINOX regimen (folinic acid (leucovorin) 

+ 5-fluorouracil + irinotecan + oxaliplatin) (first-line) or in combination with gem-

citabine (second-line). Pursuing the schematics of the already performed 

(mono-)chemotherapies all 4 pancreatic adenocarcinoma cell lines were treated 

with ascending concentrations of oxaliplatin (0.01, 0.1, 1, 10 and 100 µM). Tumor 

Tumor cell lines Partial doses 

AsPc-1 1 x 10-2 µM 

BxPc-3 1 x 10-2 µM 

MIA PaCa-2 5 x 10-3 µM 

Panc-1 5 x 10-3 µM 

  

  

  

  

  

Table 8 Partial (‘adjusted’) doses of nab-pacli-
taxel chosen for chemovirotherapy 
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cells were further incubated for 48 or 72 hours, after which the remaining cell 

masses were analyzed by SRB assay (Figure 22).  

As can be seen, all 4 tumor cell lines showed only poor response rates to the 

chemotherapy with oxaliplatin at the applied range of concentrations. 

MIA PaCa-2 cells, in comparison with the other 3 tumor cell lines, indeed re-

sponded best, but considerable tumor cell killing was seen only at concentrations 

of 10 µM oxaliplatin and higher. However, in none of the 4 tumor cell lines a sub-

stantial difference between the treatment outcomes after 48 or 72 hours chemo-

therapy could be seen. These findings clearly indicate resistance to oxaliplatin, 

all 4 tumor cell lines responding only after high concentrations of the chemother-

apeutic agent were administered, finally overcoming cellular resistance mecha-

nisms. 

Based on the remaining cell masses at 72 hpt, these findings resulted in the se-

lection of the following concentrations of oxaliplatin for chemovirotherapeutic 

treatment in the particular tumor cell lines (Table 9): 

BxPc-3 

µM oxaliplatin 

MIA PaCa-2 

µM oxaliplatin 

AsPc-1 Panc-1 

µM oxaliplatin µM oxaliplatin 

Figure 22 Chemotherapy with ascending concentrations of the platinum compound oxaliplatin in four 
different human pancreatic tumor cell lines for 48 h (depicted as black line) or 72 h (depicted as blue 
line) in vitro. Remaining tumor cell mass was analyzed by sulforhodamine B (SRB) assay (n ≥ 1, mean 
and standard deviation are shown). hpt, hour(s) post treatment. 
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3.1.6 Chemotherapy with the topoisomerase I inhibitor irinotecan 

Another chemotherapeutic agent usually not applied in monochemotherapy for 

the treatment of advanced pancreatic adenocarcinoma is the topoisomerase I 

inhibitor irinotecan, representing another component of the FOLFIRINOX regi-

men (folinic acid (leucovorin) + 5-fluorouracil + irinotecan + oxaliplatin). Thereby, 

all 4 pancreatic adenocarcinoma cell lines were treated with ascending concen-

trations of irinotecan (0.01, 0.1, 1, 10 and 100 µM). Tumor cells were further in-

cubated for 48 or 72 hours, after which the remaining cell masses were analyzed 

by SRB assay (Figure 23). 

At the applied range of concentrations, all 4 tumor cell lines demonstrated an 

overall poor response to chemotherapy with irinotecan. Mirroring the results seen 

after chemotherapy with oxaliplatin, in comparison with the other 3 tumor cell lines, 

MIA PaCa-2 cells responded best, but only when concentrations of 10 µM iri-

notecan and higher were administered. Furthermore, comparing the remaining 

cell masses at 48 and 72 hpt, a prolongation of treatment for 24 hours also led to 

a slightly enhanced tumor cell killing, but only at higher concentrations trespass-

ing a critical concentration at which an initial response was seen already after 48 

hours of treatment. 

Based on the fact that irinotecan in the clinic is usually applied only in combination 

with several other chemotherapeutic agents, chemovirotherapeutic protocols in-

corporating irinotecan were not further developed during this investigation. The 

obtained results, however, can be seen as a basis for possible combination reg-

imens in the future. 

Table 9 Partial (‘adjusted’) doses of oxali-
platin chosen for chemovirotherapy 

Tumor cell lines Partial doses 

AsPc-1 1 x 10-2 µM 

BxPc-3 1 x 10-2 µM 

MIA PaCa-2 5 x 10-3 µM 

Panc-1 1 x 10-3 µM 
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3.1.7 Tyrosine kinase inhibitor therapy with EGFR targeting erlotinib 

The last agent surveyed in (mono-)chemotherapy as possible combination part-

ner for GLV-1h168 was the tyrosine kinase inhibitor erlotinib, clinically approved 

for the treatment of advanced pancreatic adenocarcinoma only in combination 

with gemcitabine. As performed in the previous experiments, all 4 pancreatic ad-

enocarcinoma cell lines were treated with ascending concentrations of erlotinib 

(0.01, 0.1, 1, 10 and 100 µM). Tumor cells were further incubated for 48 or 72 

hours, after which the remaining tumor cell masses were analyzed by SRB assay 

(Figure 24).  

As could be shown, all 4 tumor cell lines responded poorly to the tyrosine kinase 

inhibitor therapy with erlotinib, though to a varying extent. While AsPc-1 and 

BxPc-3 cells responded to dose increases of erlotinib with an enhanced tumor 

cell killing at the whole range of concentrations, Panc-1 cells showed only a very 

µM irinotecan µM irinotecan 

µM irinotecan µM irinotecan 

BxPc-3 MIA PaCa-2 

Panc-1 AsPc-1 

Figure 23 Chemotherapy with ascending concentrations of the topoisomerase I inhibitor irinotecan in 
four different human pancreatic tumor cell lines for 48 h (depicted as black line) or 72 h (depicted as 
blue line) in vitro. Remaining tumor cell mass was analyzed by sulforhodamine B (SRB) assay (n ≥ 1, 
mean and standard deviation are shown). hpt, hour(s) post treatment. 
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moderate response even at the highest concentrations administered in this set-

ting. MIA PaCa-2 cells only responded to concentrations of 10 µM erlotinib and 

higher. Comparing the remaining cell masses after 48 and 72 hours of tyrosine 

kinase inhibitor therapy, the better responding cell lines AsPc-1 and BxPc-2 

showed at least a moderately increased tumor cell killing, whereas MIA PaCa-2 

and Panc-1 cells didn’t seem to respond better after a prolongation of treatment 

for 24 hours at all. 

Due to the fact that erlotinib is only approved in combination with gemcitabine for 

the treatment of advanced pancreatic adenocarcinoma and only in case the pa-

tients show an initial dermatologic response to the combination therapy, no che-

movirotherapeutic protocol imbedding erlotinib was developed during this inves-

tigation. Similar to the results obtained after chemotherapy with irinotecan, these 

data can be seen as a basis for possible combination regimens in the future. 

  

BxPc-3 

µM erlotinib 

AsPc-1 

µM erlotinib 

MIA PaCa-2 

µM erlotinib 

µM erlotinib 

Panc-1 

Figure 24 Therapy with ascending concentrations of the tyrosine kinase inhibitor erlotinib in four differ-
ent human pancreatic tumor cell lines for 48 h (depicted as black line) or 72 h (depicted as blue line) in 
vitro. Remaining tumor cell mass was analyzed by sulforhodamine B (SRB) assay (n ≥ 1, mean and 
standard deviation are shown). hpt, hour(s) post treatment 
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3.2 Chemovirotherapy – Finding the right combinatorial sequence  

3.2.1 Combination of GLV-1h68 with 5-fluorouracil (5-FU) 

After performing the initial monotherapies and selecting suitable partial ‘adjusted’ 

doses of each agent, the first devised chemovirotherapeutic protocol was the 

combination of GLV-1h68 with the nucleoside analogue 5-FU. 

Not knowing in which way the two agents would interact and in consideration that 

the most feasible administration sequence would be a concomitant application of 

both agents, 5-FU was administered directly after primary infection with GLV-

1h68 at 1 hpi. Both agents were thereby applied in their particular LD25 doses 

(see above). Tumor cells were further incubated until, at 72 hpi, the cytotoxicity 

of the chemovirotherapy was analyzed by SRB assay (Figure 25). 

Figure 25 Chemovirotherapy with GLV-1h68 and 5-fluorouracil (5-FU) in four different human pancre-
atic tumor cell lines in vitro. 5-FU was added after infection with GLV-1h68 at 1 hpi. Remaining tumor 
cell mass was analyzed at 72 hpi by sulforhodamine B (SRB) assay (n=1, mean and standard devia-
tion are shown). hpi, hour(s) post infection. MOCK, untreated control. MOI, multiplicity of infection. 

MIA PaCa-2 

AsPc-1 Panc-1 

BxPc-3 
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To assess the results in the correct manner, by looking at the remaining cell 

masses of both monotherapies it has to be reviewed first if suitable partial doses 

of each agent were chosen. Secondly, to determine if and to which extent an 

enhanced or reduced cytotoxic effect of the chemovirotherapeutic protocol can 

be seen, the remaining cell mass after chemovirotherapeutic treatment has to be 

compared to both of the respective monotherapies separately.  

In doing so, all 4 tumor cell lines responded to both monotherapeutic treatments 

within the acceptable limits of variation from the target value of 75 % remaining 

cell mass after 72 hours of treatment (Figure 25), confirming the previously col-

lected data. However, no substantial difference of cytotoxicity between the che-

movirotherapeutic combination protocol and the respective monotherapies could 

be seen in neither of the 4 tumor cell lines. Tumor cell loss after combination 

therapy within a tumor cell line corresponded at least with the outcome seen after 

single viro- or chemotherapy, initially excluding any potential antagonistic effects. 

3.2.2 Combination of GLV-1h68 with gemcitabine 

To analyze whether the missing additional effect of the previously investigated 

chemovirotherapeutic protocol with 5-FU was linked to its properties as nucleo-

side analogue, GLV-1h68 was combined next with gemcitabine, a different nu-

cleoside analogue of the here screened array of chemotherapeutic agents.  

Going beyond the previous administration setting, additionally, the chronological 

order of the single agents was varied. Gemcitabine not only was administered 

concomitantly (1 hpi), but also 24 hours after (24 hpi) or even 48 hours prior (-48 

hpi) to virotherapeutic treatment with GLV-1h68. Independently of the particular 

administration sequence and the resulting differences in the duration of treatment 

the remaining cell masses were analyzed at 72 hpi by SRB assay (Figure 26).  

When evaluating the results of tumor cell loss with regard to the three different 

administration sequences, additionally to the prior mentioned criteria other varia-

bles have to be considered as well. Although the duration of virotherapy within 

each setting always was the same (72 h), the duration of chemotherapy (CTX)   

varied from 48 (CTX 24 and -48 hpi) to 71 hours (CTX 1 hpi). Moreover, when  
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Figure 26 Chemovirotherapy with GLV-1h68 and gemcitabine (Gem) in four different human pancreatic 
tumor cell lines in vitro. Gem was added either after infection with GLV-1h68 at 1 hpi (depicted in black 
bars) and 24 hpi (depicted in orange bars) or prior to infection at -48 hpi (depicted in green bars). Re-
maining tumor cell mass was analyzed at 72 hpi by sulforhodamine B (SRB) assay (n=1, mean and 
standard deviation are shown). hpi, hour(s) post infection. MOCK, untreated control. MOI, multiplicity of 
infection. Figure of Gem (1 hpi) and Gem (-48 hpi) values published in (139). 

 
the chemotherapeutic agent was administered prior to the virotherapeutic treat-

ment (CTX -48 hpi), after viral infection the tumor cells were incubated for another 

72 hours without addition of any chemotherapeutic agent. Thus, with reference 

to the different durations of treatment, the remaining cell masses after chemo-

therapy within a single tumor cell line have to be correlated with each other. More-

over, and more importantly, when considering the effectivity of chemovirothera-

peutic treatment, not only within a single tumor cell line but also in comparison 

with the others, it has to be checked whether a pattern can be identified in which 

a particular application setting results in an enhanced cytotoxic effect in all or at 

least the majority of treated tumor cell lines.  

Looking at the loss of the tumor cell mass after 71 hours of chemotherapy with 

gemcitabine (Gem 1 hpi) suitable concentrations of gemcitabine were chosen 

BxPc-3 MIA PaCa-2 

AsPc-1 Panc-1 
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(Figure 26). As expected, when compared with the remaining cell masses after 

only 48 hours incubation with gemcitabine (Gem 24 hpi) all 4 tumor cell lines 

responded more strongly to the longer lasting chemotherapy. Interestingly, when 

treated first with gemcitabine (Gem -48 hpi), the initial response of AsPc-1 and 

Panc-1 cells to the monochemotherapy seemed to outweigh the longer incuba-

tion time without gemcitabine. Whether gemcitabine additionally might have in-

duced a persisting growth inhibition couldn’t be determined on the basis of these 

data. In the end, no antagonistic effects of the combination could be seen in nei-

ther of the 4 tumor cell lines but when compared to both respective monothera-

pies no combination protocol led to a considerably enhanced cytotoxic effect nei-

ther. 

3.2.3 Combination of GLV-1h68 with oxaliplatin 

Since chemovirotherapy with nucleoside analogues didn’t result in any notewor-

thy increase of cytotoxicity in the 4 pancreatic adenocarcinoma cell lines, the next 

investigated chemovirotherapeutic protocol should incorporate a chemothera-

peutic agent with a different mode of action. Accordingly, GLV-1h68 was com-

bined with the platinum compound oxaliplatin. Thereby, the administration se-

quence of both agents remained the same. Oxaliplatin was administered either 

concomitantly (1 hpi), 24 hours after (24 hpi) or 48 hours prior (-48 hpi) to primary 

infection with GLV-1h68. At 72 hpi, the remaining cell masses were analyzed by 

SRB assay (Figure 27). 

While in AsPc-1 cells the chemovirotherapeutic treatment with GLV-1h68 and ox-

aliplatin led to a clear increase of cytotoxicity independently of the chronological 

order of the agents, in the other 3 tumor cell lines (BxPc-3, MIA PaCa-2 and 

Panc-1) this effect could only be seen in a few settings and then only to a lesser 

extent. In BxPc-3 cells the response after chemovirotherapy invariably was the 

same as after monochemotherapy with oxaliplatin alone, whereas MIA PaCa-2 

and Panc-1 cells somewhat responded better to the combination when oxaliplatin 

was given 24 hours after infection with GLV-1h68 (Ox 24 hpi). Looking at the 

remaining cell masses of the 71-hour monochemotherapy with oxaliplatin (Ox 1 

hpi) in all 4 tumor cell lines proper concentrations of the chemotherapeutic agent 
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were chosen. Furthermore, when oxaliplatin was applied prior to the virothera-

peutic treatment (Ox -48 hpi) all 4 tumor cell lines, but especially BxPc-3 and 

Panc-1 cells, demonstrated signs of a notable initial tumor cell killing in the mono-

chemotherapeutic treatment arm.  

3.2.4 Combination of GLV-1h68 with nab-paclitaxel 

Encouraged by the results seen after chemovirotherapy with oxaliplatin, another 

chemotherapeutic protocol imbedding the mitotic inhibitor nab-paclitaxel was de-

signed. Moreover, based on published data from Huang et al. (143), in which a 

derivative of the Western Reserve strain of vaccinia virus was combined success-

fully with paclitaxel in vitro, the parameters of the administration sequence were 

altered slightly. Nab-paclitaxel was added either concomitantly (1 hpi), 24 hours 

Figure 27 Chemovirotherapy with GLV-1h68 and oxaliplatin (Ox) in four different human pancreatic tumor 
cell lines in vitro. Ox was added either after infection with GLV-1h68 at 1 hpi (depicted in black bars) and 
24 hpi (depicted in orange bars) or prior to infection at -48 hpi (depicted in green bars). Remaining tumor 
cell mass was analyzed at 72 hpi by sulforhodamine B (SRB) assay (n=3, mean and standard deviation 
are shown). hpi, hour(s) post infection. MOCK, untreated control. MOI, multiplicity of infection. 

 

BxPc-3 MIA PaCa-2 

AsPc-1 Panc-1 
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after (24 hpi) or prior (-24 hpi) to the virotherapeutic treatment. As before, inde-

pendently of the individual duration of treatment, the remaining cell masses were 

analyzed at 72 hpi by SRB assay (Figure 28). 

Figure 28 Chemovirotherapy with GLV-1h68 and nab-paclitaxel (nab-PTX) in four different human pan-
creatic tumor cell lines in vitro. Nab-PTX was added either after infection with GLV-1h68 at 1 hpi (depicted 
in black bars) and 24 hpi (depicted in orange bars) or prior to infection at -24 hpi (depicted in green bars). 
Remaining tumor cell mass was analyzed at 72 hpi by sulforhodamine B (SRB) assay (n=3, mean and 
standard deviation are shown). hpi, hour(s) post infection. MOCK, untreated control. MOI, multiplicity of 
infection. Figure of nab-PTX (1 hpi) and nab-PTX (24 hpi) values published in (139). 

 
In contrast to the previously obtained results, the chemovirotherapeutic combina-

tion of GLV-1h68 with nab-paclitaxel led to a slightly increased tumor cell loss in 

the majority of different combination protocols. However, in MIA PaCa-2 cells an 

antagonistic effect of the combination therapy could be seen when nab-paclitaxel 

was administered 24 hours prior to the virotherapeutic treatment (nab-PTX -24 

hpi). In 3 out of 4 tumor cell lines (AsPc-1, MIA PaCa-2 and Panc-1) proper con-

centrations of nab-paclitaxel were chosen, whereas in BxPc-3 cells the mono-

chemotherapy alone lead to a remaining tumor cell mass below 50%. As seen 

BxPc-3 MIA-PaCa-2 

AsPc-1 Panc-1 
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before, all 4 tumor cell lines responded better to the 24-hour-longer chemother-

apy with nab-paclitaxel while in the monochemotherapeutic pretreatment arm 

(nab-PTX -24 hpi) the observed reductions of tumor cell masses were the result 

of the initial chemotherapy.  

Nonetheless, the increase of therapeutic efficacy seen in AsPc-1 cells was inde-

pendent of the chronological order of the agents. In the other 3 tumor cell lines 

(BxPc-3, MIA PaCa-2 and Panc1) this response was inconsistent across the dif-

ferent settings of administration and then could be seen only to a lesser extent. 

Therefore, no pattern evolved in which a single chemovirotherapeutic protocol 

led to a superior tumor cell loss in all 4 tumor cell lines when compared with the 

respective monotherapies. 

3.3 Chemovirotherapeutic triple-therapy 

Although the most promising results were seen in the chemovirotherapeutic com-

bination of GLV-1h68 with nab-paclitaxel, for the treatment of pancreatic adeno-

carcinoma this chemotherapeutic agent isn’t approved in monotherapy. Ideally, if 

inhibitory effects of GLV-1h68 on its combination partner could be excluded, GLV-

1h68 should be given as add-on to established treatment protocols which already 

have proven their therapeutic value in clinical studies by improving the therapeu-

tic outcome and prolonging patient survival. This consideration resulted in the 

final design of a chemovirotherapeutic protocol incorporating the vaccinia virus 

GLV-1h68 in combination with the approved dual chemotherapy nab-paclitaxel + 

gemcitabine. 

3.3.1 Dual chemotherapy with nab-paclitaxel and gemcitabine 

Given that the former LD25 doses of the chemotherapeutic agents were deter-

mined by their tumor cell killing after monotherapy, previously to the actual triple-

therapy the partial doses of nab-paclitaxel and gemcitabine had to be adjusted to 

prevent the dual chemotherapy alone from resulting in a deceptive high cytotoxi-

city. Accordingly, the dual chemotherapy was conducted by varying the concen-

trations of both agents based on the respective LD25 doses in each tumor cell 
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line. Thereby, 3 different treatment groups with distinct dose variations were dif-

ferentiated (specified in detail in section 2.2.5.2, p. 45). 72 hpt, the remaining cell 

masses were analyzed by SRB assay (Figure 29 and Figure 30). 

When increasing the concentrations of both agents to the same degree, all 4 tu-

mor cells responded dose-dependently to the dual chemotherapy. Thereby, a 

definite concentration threshold had to be trespassed before any cytotoxic effect 

could be seen. This condition was mainly apparent in MIA PaCa-2 cells, in which 

concentrations almost reaching the respective LD25 doses had to administered, 

while AsPc-1, BxPc-3 and Panc-1 cells already responded to lower doses of the 

MIA PaCa-2 BxPc-3 

AsPc-1 Panc-1 

Figure 29 Dual chemotherapy with nab-paclitaxel and gemcitabine in four different human pancreatic 
tumor cell lines in vitro. Starting from their previously determined LD25 doses a constant ratio of the 
cytotoxic agents was maintained by generating twofold dilutions (specified in detail in Table 2, p. 45). 
Remaining tumor cell mass was analyzed at 72 hours post treatment by sulforhodamine B (SRB) 
assay (n=1, mean and standard deviation are shown). Gem, gemcitabine. nab-PTX, nab-paclitaxel. 
MOCK, untreated control. 
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dual chemotherapy, although the initial response was poor. Interestingly, in AsPc-

1 and Panc-1 cells the application of both agents in the full LD25 doses merely 

led to a tumor cell killing comparable to the results seen after monotherapy alone, 

whereas BxPc-3 and MIA PaCa-2 cells responded more strongly when both 

agents were combined in their respective LD25 doses. Yet, as concluded before, 

in BxPc-3 cells the LD25 dose of nab-paclitaxel may have been too high, there-

fore potentially mistaking the apparently strong response as additional effect of 

the dual chemotherapy. Eventually, in reference to the results after monotherapy, 

1 out of 4 tumor cell lines demonstrated a definitely enhanced cytotoxic effect of 

the dual chemotherapy with nab-paclitaxel and gemcitabine. 

Based on these results the following concentrations of nab-paclitaxel and gem-

citabine were chosen for the chemovirotherapeutic triple-therapy (Table 10). 

In the other 2 treatment groups, in which the concentrations of one chemothera-

peutic agent were varied while the other was administered constantly at 50% of 

its LD25 dose, differences in the influence of nab-paclitaxel and gemcitabine on 

the tumor cell lines could be seen (Figure 30). Panc-1 cells indeed responded 

dose-dependently to gemcitabine but already in 50% of the LD25 dose gemcita-

bine led to a considerable tumor cell killing virtually independent of any further 

dose increases of nab-paclitaxel. In MIA PaCa-2 cells constant doses of nab-

paclitaxel and gemcitabine both were sufficient to induce a primary response to 

the dual chemotherapy which could be further enhanced by increasing the dose 

of the combination partner. Thereby, dose increases of nab-paclitaxel resulted in 

an enhanced tumor cell killing at the whole range of concentrations, while the 

Tumor cell lines    Partial doses 

AsPc-1   nab-PTX: 10 nM     Gem:  100 nM 

BxPc-3   nab-PTX:  2.5 nM   Gem:  5 nM 

MIA PaCa-2   nab-PTX: 2.5 nM   Gem:  15 nM 

Panc-1   nab-PTX: 2.5 nM   Gem:  37.5 nM 

 

  

   

   

   

   

Table 10 Partial (‘adjusted’) doses of nab-paclitaxel and gemcitabine 
for the triple-therapy 

Abbreviations: Gem, gemcitabine; nab-PTX, nab-paclitaxel. 
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BxPc-3 

MIA PaCa-2 

AsPc-1 

Panc-1 

Dose variation of 

nab-paclitaxel gemcitabine 

Figure 30 Dose variations of the dual chemotherapy in four different human pancreatic tumor cell lines in 
vitro. Treatment doses of gemcitabine (left panel) or nab-paclitaxel (right panel) were varied while the com-
bination partner was constantly applied in 50 % of its previously determined LD25 dose (specified in detail 
in Table 3, p. 45 and Table 4, p. 46 respectively). Remaining tumor cell mass was analyzed at 72 hours 
post treatment by sulforhodamine B (SRB) assay (n=1, mean and standard deviation are shown). Gem, 
gemcitabine. nab-PTX, nab-paclitaxel. MOCK, untreated control. 
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dose of gemcitabine had to trespass a certain concentration threshold. A similar 

primary response also was seen in BxPc-3 cells but only when the gemcitabine 

concentration remained constant. In the other treatment group, the application of 

constant doses of nab-paclitaxel resulted in a considerable tumor cell loss inde-

pendently of the concentration of gemcitabine. However, as concluded before, 

the chosen LD25 doses of nab-paclitaxel might have been too high and therefore 

might have disguised an additional effect of gemcitabine. AsPc-1 cells responded 

similarly to both variation settings, demonstrating a primary response which could 

be slightly enhanced by dose increases of the combination partner.  

Although in these experiments, by varying the concentration of the combined 

agents and analyzing their effect on different tumor cell lines, only two parameters 

of combination therapy were investigated, it has to be reasoned clearly that even 

in case of only two agents being combined rather complex interactions can be 

observed. 

3.3.2 Combination of GLV-1h68 with the dual chemotherapy 

After reviewing and considering the results of the previously performed combina-

tion therapies, a final chemovirotherapeutic protocol imbedding GLV-1h68 in 

combination with nab-paclitaxel + gemcitabine was devised.  

Since in the previous settings no application sequence was found to result in a 

superior or inferior cytotoxicity, the dual chemotherapy was administered con-

comitantly to the virotherapeutic treatment. Thereby, adapting the approved and 

actually performed clinical protocol of the dual chemotherapy, nab-paclitaxel was 

applied first (1 hpi) while gemcitabine was added half an hour later (1.5 hpi). 

Moreover, after reviewing the obtained results after monovirotherapy, GLV-1h68 

was administered in three different virus doses (MOIs), one being the previously 

determined LD25 dose whereas the other two resembled similar virus doses. At 

72 hpi, the remaining cell masses and cell viabilities were analyzed by SRB, CTB 

and MTT assay respectively (Figure 31). 

Additionally to the previously applied evaluation criteria, it now had to be verified 

whether the results of the 3 different assays were consistent or whether various  
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Figure 31 Triple-therapy with GLV-1h68 and the dual chemotherapy nab-PTX (added at 1 hpi) + Gem 
(added at 1.5 hpi) in four different pancreatic tumor cell lines. Remaining cell mass and cell viability after 
72 h treatment at increasing doses of GLV-1h68 were analyzed by the sulforhodamine (SRB) assay 
(depicted in red bars), the CellTiter-Blue® (CTB) assay (depicted in blue bars) and the MTT assay (de-
picted in yellow bars), respectively (n ≥ 3, mean and standard deviation are shown). nab-PTX, nab-
paclitaxel. Gem, gemcitabine. hpi, hour(s) post infection. MOCK, untreated control. MOI, multiplicity of 
infection. VV, vaccinia virus GLV-1h68. Figure of SRB and CTB values published in (139). 
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conclusions could be drawn from the individual testing method. In doing so, all 3 

assays agreed that in BxPc-3 and MIA PaCa-2 cells the response after chemovi-

rotherapy was clearly enhanced compared to the respective monotherapies. In 

the same 2 tumor cell lines, an increase of the virus dose also led to an increase 

of tumor cell killing, not only in the monotherapeutic but in the chemovirothera-

peutic treatment arm as well. On the contrary this condition was barely apparent 

in AsPc-1 and Panc-1 cells. Considering the remaining cell masses of the partic-

ular ‘monotherapies’ in all 4 tumor cell lines suitable concentrations of the chemo- 

and virotherapeutic agents were chosen.  

Compared to the untreated control (MOCK), in AsPc-1 cells the CTB assay even 

demonstrated an increased cell viability after monovirotherapeutic treatment, 

which could be strongly reduced in combination with the dual chemotherapy. 

These data disagree with the otherwise measured cell viability in the MTT assay 

which demonstrated that virotherapy with GLV-1h68 didn’t increase the cell me-

tabolism of AsPc-1 cells. Whether this condition in AsPc-1 cells was restricted to 

the metabolism of resazurin to resorufin only (similar metabolic pathways might 

be involved as well), or whether cell metabolism was enhanced in general while 

the metabolism of MTT to formazan remained unaffected by virotherapeutic treat-

ment with GLV-1h68, can’t be determined on the basis of the current data. 

On the contrary, although the MTT assay validated the results in the better re-

sponding BxPc-3 and MIA-Paca-2 cells, in Panc-1 cells an antagonistic response 

of the triple-therapy was seen. With the exception of one setting (GLV-1h68 + 

nab-PTX -24 hpi), all of the previous results had indicated that the outcome after 

combination therapy at least resembled the better outcome seen after single viro- 

or chemotherapy. Now, Panc-1 cells indeed responded dose-dependently to the 

monovirotherapeutic treatment with GLV-1h68 but in combination with the dual 

chemotherapy cell viability rose again to the inferior outcome seen after dual 

chemotherapy alone. Considering the results obtained with the SRB assay, in 

which the dual chemotherapy alone as well as in combination with GLV-1h68 led 

to a substantial decrease of tumor cell mass, these data suggest an enhanced 
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cell metabolism of the remaining tumor cells, at least with regard to the metabo-

lism of MTT to formazan.  

Along with the previously illustrated response of AsPc-1 cells to virotherapeutic 

treatment, these data clearly disagree with the values of cell viability measured 

in the CTB assay. In these 2 tumor cell lines this fact therefore indicates a diver-

sified influence of viro- and/or chemotherapeutic treatment on varying domains 

of cellular activity and not on cell metabolism in general.  

Regardless of these differences, compared to the outcome after chemo- or viro-

therapy alone, all 3 assays agree on the central finding that in BxPc-3 and MIA 

PaCa-2 cells the triple-therapy was beneficial whereas in the other 2 cell lines it 

was not. Moreover, the combination of GLV-1h68 with nab-paclitaxel and gem-

citabine caused the greatest increase of therapeutic efficacy seen during this in-

vestigation. 

3.3.3 Influence of the dual chemotherapy on the replication of GLV-1h68 

With regard to parameters potentially constraining the outcome of chemovirother-

apy it has to be considered that any chemotherapeutic agent might interfere with 

the replication of the viral agent given in combination. Independently of long-term 

consequences this initially would lead to a considerable repression of virus-me-

diated oncolysis. Signs of detrimental interactions between the agents were 

thereby first seen in a cell line-dependent reduction of viral GFP expression after 

adding the dual chemotherapy (Figure 32). Interestingly, this was only the case 

in AsPc-1 and Panc-1 cells in which the triple-therapy had caused no further cy-

totoxicity compared to the respective monotherapies. In the superior responding 

BxPc-3 and MIA PaCa-2 cells viral GFP expression remained strong.   

To fully assess the influence of the dual chemotherapy nab-paclitaxel + gemcita-

bine on viral replication of GLV-1h68, virus growth curves were generated. Given 

that an actual beneficial response after treatment with the triple-therapy was seen 

only in 2 of the 4 tumor cell lines it was of especial interest whether this condition 

was linked to an altered viral replication of GLV-1h68. Therefore, according to the 

schedule of the triple-therapy, GLV-1h68 was administered with or without the 
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dual chemotherapy. At certain time points post infection (1.5 hpi, 24 hpi, 48 hpi, 

72 hpi and 96 hpi) the corresponding virus titer was quantified by virus titration 

(Figure 33). Tumor cells thereby were infected with the highest virus doses ad-

ministered previously. 

As a matter of fact, among the 4 tumor cell lines notable differences regarding 

the viral replication were seen. Considering the substantial increase of virus titer 

over time in the monovirotherapeutic treatment arm, potent viral replication was 

seen in all 4 tumor cell lines, proving that each tumor cell line could be success-

fully infected with GLV-1h68. Yet, in AsPc-1 and Panc-1 cells the addition of nab- 
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Figure 32 Viral GFP expression after the triple-therapy at 72 hpi in BxPc-3 and AsPc-1 cells infected 
with the medium viral dose previously administered in the triple-therapy setting (Figure 31). Expression 
of green fluorescent protein (GFP) indicating viral infection (central panels), corresponding phase con-
trast pictures (left panels) and the respective overlay images (right panels) are shown (scale 1:190). 
hpi, hour(s) post infection. MOI, multiplicity of infection. VV, vaccinia virus GLV-1h68. 
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Figure 33 Effect of the dual chemotherapy nab-paclitaxel + gemcitabine on the viral replication of GLV-
1h68 in four different pancreatic tumor cell lines. Tumor cells were treated according to the previously 
described combination setting with the highest used MOI in either cell line (Figure 31). At five given time 
points (1.5, 24, 48, 72, 96 hpi) tumor cells were harvested, followed by virus titer determination [PFU - 
plaque forming units] (n=3, mean and standard deviation are shown). nab-PTX, nab-paclitaxel. Gem, 
gemcitabine. hpi, hour(s) post infection. MOI, multiplicity of infection. Figure modified from this version 
published in (139). 

 
paclitaxel + gemcitabine led to a considerable reduction of viral replication paral-

leling the previously observed decrease of viral GFP expression. On the contrary, 

in BxPc-3 and MIA PaCa-2 cells, viral replication of GLV-1h68 remained potent 

and resembled the virus titers after monovirotherapy. Therefore, the negative in-

fluence of the dual chemotherapy on viral replication of GLV-1h68 was found to 

be directly linked to a loss of therapeutic benefit otherwise seen after the triple-

therapy. 

In conclusion, although no definite statement can be made without further 

knowledge of other parameters potentially determining success or failure of the 

triple-therapy, these data suggest that an unhindered virus replication represents 

a mandatory requirement for a possible success of this chemovirotherapeutic 

protocol. 
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3.3.4 Influence of nab-paclitaxel on viral replication of GLV-1h68 

It was assumed that the observed reduction of viral titers in AsPc-1 and Panc-1 

cells was the result of overdosing one or even both chemotherapeutic agents. To 

assess the influence of each of the chemotherapeutic agents on viral replication 

of GLV-1h68 separately, first, virus growth curves in combination with nab-

paclitaxel were generated. For this investigation, the responsive cell line BxPc-3 

was selected to evaluate whether the unfavorable environment for viral replica-

tion in AsPc-1 and Panc-1 cells could be emulated by administering higher doses 

of the chemotherapeutic agent.  

According to the schedule of the triple-therapy BxPc-3 cells were treated first with 

GLV-1h68 and at 1 hpi with ascending doses of nab-paclitaxel while viral titers 

were determined as previously (Figure 34). Additionally, viral GFP expression in 

the corresponding tumor cells was visualized at 72 hpi (Figure 35). 

Compared to the viral titer seen after GLV-1h68 treatment alone, nab-paclitaxel 

was found not to influence viral replication in BxPc-3 cells, even in the highest 

administered concentration of 25 nM (Figure 34). Since an unchanged viral rep-

lication had previously been found to determine the therapeutic benefit of the tri-

ple-therapy it was hypothesized that nab-paclitaxel didn’t negatively influence the 

outcome in AsPc-1 and Panc-1 cells.  

Figure 34 Viral titers of GLV-1h68 under the influence of nab-paclitaxel (nab-PTX) in the pancre-
atic tumor cell line BxPc-3. Tumor cells were infected with GLV-1h68 (MOI 0.05). At 1 hpi, the 
inoculum was removed and medium containing nab-PTX was added. At five given time points (1.5, 
24, 48, 72, 96 hpi) tumor cells were harvested, followed by virus titer determinations [PFU, plaque 
forming units] (n=3, mean and standard deviation are shown). hpi, hour(s) post infection. 
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On the contrary in the associated microscopic images it seemed that the levels 

of GFP expression decline when nab-paclitaxel was administered in a concentra-

tion of 25 nM (Figure 35). Moreover, the remaining tumor cell mass in the corre-

sponding phase contrast images appears to increase with ascending doses of 

nab-paclitaxel. However, as visualized previously (Figure 18) virus-mediated on-

colysis kills cells differently than chemotherapeutic agents. OVs spread outwards 

phase contrast GFP 

nab-PTX 0 nM 

nab-PTX 2.5 nM 

nab-PTX 5 nM 

nab-PTX 10 nM 

nab-PTX 25 nM 

Figure 35 Effect of nab-paclitaxel on viral infection in BxPc-3 cells analog to the previously 
measured viral titers at 72 hpi (Figure 34). Expression of green fluorescent protein (GFP) 
indicating viral infection (right panels) and corresponding phase contrast pictures (left pan-
els) are shown (scale 1:190). hpi, hour(s) post infection. nab-PTX, nab-paclitaxel. 
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from the primary infection site leaving only strongly GFP expressing tumor cell 

clusters at the margin whereas chemotherapy kills all tumor cells homogenously. 

The latter results in a thin cell layer of evenly spread tumor cells which only sug-

gests a weak GFP expression. Since viral infection could clearly be detected at 

all administered doses of nab-paclitaxel this clarified a strong viral replication of 

GLV-1h68 in BxPc-3 cells additionally undergoing chemotherapy with nab-

paclitaxel. 

3.3.5 Influence of gemcitabine on viral replication of GLV-1h68 

In a next step, the effect of gemcitabine on viral titers of GLV-1h68 was deter-

mined. Similarly to the previous setting, viral growth curves were generated by 

treating BxPc-3 cells first with GLV-1h68 and at 1.5 hpi with ascending doses of 

gemcitabine (Figure 36). As before, GFP expression of GLV-1h68 was visualized 

in the corresponding tumor cells at 72 hpi (Figure 37).  

This time, higher doses of the chemotherapeutic agent, i.e. gemcitabine concen-

trations ≥ 25 nM, positively correlated with a significant decline of viral titers (Fig-

ure 36). Accordingly, viral replication in BxPc-3 cells could be suppressed to a 

similar level as seen before in AsPc-1 and Panc-1 cells after adding the dual 

chemotherapy. Gemcitabine concentrations of 100 nM even were able to reduce 

hpi 

Figure 36 Viral titers of GLV-1h68 under the influence of gemcitabine (Gem) in the pancreatic 
tumor cell line BxPc-3. Tumor cells were infected with GLV-1h68 (MOI 0.05). At 1 hpi, the inoculum 
was removed and normal growth medium was added. Half an hour later (1.5 hpi), gemcitabine 
was added. At five given time points (1.5, 24, 48, 72, 96 hpi) tumor cells were harvested, followed 
by virus titer determinations [PFU, plaque forming units] (n=3, mean and standard deviation are 
shown). hpi, hour(s) post infection. 
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viral titers below their baseline level at 1.5 hpi. Such high-dose administration of 

gemcitabine therefore nearly completely shut down viral replication.  

These findings were also reflected in a dose-dependent cut-off of viral GFP ex-

pression visualized at 72 hpi (Figure 37). While low doses of gemcitabine (< 25 

nM) neither influenced viral titers nor viral GFP expression, concentrations of 25 

nM and higher significantly decreased viral titers and completely prevented viral 

Gem 0 nM 

Gem 5 nM 

Gem 25 nM 

Gem 50 nM 

Gem 100 nM 

phase contrast GFP 

Figure 37 Effect of gemcitabine on viral infection in BxPc-3 cells analog to the previously 
measured viral titers at 72 hpi (Figure 36). Expression of green fluorescent protein (GFP) 
indicating viral infection (right panels) and corresponding phase contrast pictures (left 
panels) are shown (scale 1:190). hpi, hour(s) post infection. Gem, gemcitabine. 
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GFP expression. The phase contrast images thereby confirm the abrupt loss of 

oncolytic efficacy. Only at higher gemcitabine concentrations the cytotoxic effect 

of the chemotherapy was able to catch up with the oncolytic effect of GLV-1h68.  

In a final step, it was assessed whether a delayed administration of gemcitabine 

would give GLV-1h68 enough time to reach sufficient viral titers able to outweigh 

the poor performance of viral replication. Accordingly, the timing of gemcitabine 

administration was varied (1.5 h or 24 hpi) and its influence on GFP expression 

visualized at 72 hpi (Figure 38). 

Figure 38 Time-dependent effect of gemcitabine on viral infection in BxPc-3 cells at 72 hpi. Tumor cells 
were infected with GLV-1h68. At 1 hpi, the medium was changed while Gem was added either at 1 or 24 
hpi. Expression of green fluorescent protein (GFP) indicating viral infections (right panels) and correspond-
ing phase contrast pictures (left panels) are shown (scale 1:140). Gem, gemcitabine. hpi, hour(s) post in-
fection. 
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As a result, viral GFP expression was similarly influenced independently of the 

point in time when gemcitabine was administered (1 hpi or 24 hpi). Although the 

cut-off of fluorescence at concentrations of 25 nM wasn’t as evident as before, a 

severe decrease of GFP expression could be seen at this dose in both settings. 

However, when gemcitabine was administered at 24 hpi, fluorescence could be 

visually detected even in high-dose (> 25 nM) regimens. These findings indicate 

that a delayed administration of gemcitabine provides time for viral replication to 

somewhat compensate chemotherapy-related detrimental decreases of the viral 

titer. 

In conclusion, gemcitabine was demonstrated to severely restrain viral replication 

and gene expression of GLV-1h68 in the pancreatic tumor cell line BxPc-3. This 

was not only a dose-dependent effect but was also influenced by the point in time 

when gemcitabine was added. Since concurrent nab-paclitaxel administration 

was demonstrated to leave viral titers unchanged it has to be assumed that in the 

cell lines AsPc-1 and Panc-1 too high doses of gemcitabine were the reason for 

the negative influence on viral replication thereby impeding therapeutic benefit of 

the triple-therapy. 
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4 Discussion 

To date, despite intensive research over the past decades, so far only one single 

virotherapeutic protocol has received approval for oncologic treatment in the 

western hemisphere. As the first of its kind the GM-CSF expressing oncolytic 

herpes virus talimogene laherparepvec (T-VEC, IMLYGICTM) only recently 

achieved FDA and EMA approval for the monotherapeutic treatment of metastatic 

melanoma in 2015 (43). However, both preclinical and clinical data of the last 

decade indicate that only in combination with already approved treatment modal-

ities such as chemotherapy, the true therapeutic potential of oncolytic virotherapy 

may be unlocked. Basic considerations for a possible success of this chemoviro-

therapeutic approach include a more potent initial response of tumor cells to a 

combination therapy, leading to a stabilization or even regression of the tumor 

disease, combined with a virus-mediated induction of a strong antitumor immune 

response in the long-term. 

Prerequisites for a successful combination therapy involve basic parameters 

such as concentrations and the administration sequence of the single agents. 

Possible dose-dependent interactions between the combination partners might 

affect the treatment outcome and therefore the success of combinatorial treat-

ment. In case of chemovirotherapy, while the initial cytotoxic effect of the combi-

nation can be measured and quantified by means of approved testing methods 

both in vitro and in vivo, it is still difficult and nearly impracticable to prove possible 

immune-mediated long-term consequences. This would require not only exten-

sive and time-consuming experiments in immunocompetent animals or human 

patients, but also the design of reliable but so far unfortunately only unstandard-

ized testing methods. In contrast, approaches measuring the viral replication as 

surrogate parameter for potent initial and long-term efficacy of virotherapy have 

been developed and are aiming at giving evidence in this complex matter. 

In this thesis, the chemovirotherapeutic combination of oncolytic vaccinia virus 

GLV-1h68 with various chemotherapeutic agents as a novel treatment option for 

advanced pancreatic adenocarcinoma was investigated in vitro. Based on prom-

ising intermediate results and in accordance with currently valid guidelines for the 
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treatment of locally advanced / metastatic pancreatic cancer, a triple-therapy pro-

tocol incorporating GLV-1h68 and the clinically approved dual chemotherapy 

nab-paclitaxel + gemcitabine was devised. Finally, the influence of the dual chem-

otherapy on viral replication of GLV-1h68 was analyzed. 

4.1 Resistance of pancreatic cancer to chemo- and virotherapy in vitro 

Main issue in developing more effective treatment modalities for pancreatic ductal 

adenocarcinoma (PDA) is the overcoming of primary and (therapy-induced) sec-

ondary resistance mechanisms. In the clinical context, the resistance of PDA to 

chemotherapy is mediated by multiple factors: i) the intrinsic chemoresistance of 

tumor (stem) cells, ii) its hypoxic and highly immunosuppressive desmoplastic 

microenvironment, iii) drug-inhibiting matrix components and iv) a high interstitial 

pressure (144). Unfortunately, in vitro such conditions can’t be reproduced ade-

quately. Analyzing the cytotoxic effect of different agents on long-term cultivated 

cell lines of pancreatic adenocarcinoma therefore mainly focuses on evaluating 

their individual sensitivity/resistance to chemo- and/or virotherapy. 

To clearly differentiate between sensitive and resistant tumor cell lines, it has to 

be elucidated first at which point a tumor cell line has to be regarded as resistant. 

Clinically, treating a cancer patient with a cytotoxic agent the tumor is resistant 

against would result in the same survival outcome as ‘doing nothing specific’ (i.e., 

best supportive care) and unnecessarily expose the patient to drug-induced tox-

icity. However, in vitro even resistant tumor cells will be killed if only the concen-

trations reach levels sufficient enough to outweigh the diverse resistance mech-

anisms. Since high-dose application in the clinic is undeniably paralleled by an 

increase of toxicity, a tumor cell line in vitro could therefore be considered re-

sistant if it doesn’t respond to concentrations that are achievable in vivo (145). 

The fact that even in vitro highly-complex bioinformatic analyses are necessary 

to identify tumor-specific gene profiles and protein signatures that correlate with 

resistance to anticancer agents underlines the difficulty of this matter (146). 

In more complex biologic systems, i.e. in animals or humans, therapeutic agents 

are subject to diverse degradation processes. Accordingly, the effective dose 

which mediates the tumor response at the tumor site will be much lower than the 
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originally applied dose and dose-dependent effects may differ from the in vitro 

results. The assignment of concentrations determined in vitro to the in vivo setting 

and vice versa is therefore a rather imprecise matter. Based on these considera-

tions the monotherapeutic treatment of 4 established and well-characterized cell 

lines of PDA with different cytotoxic/oncolytic agents not only was a means of 

finding suitable doses for chemovirotherapy but also an evaluation of cell line- 

dependent levels of sensitivity/resistance to the respective single agents in vitro.  

In line with previous reports (133), low sensitivity to standard of care gemcitabine 

has been found in Panc-1 cells when compared to the better responding BxPc-3 

and MIA PaCa-2 cells (Figure 20). However, in the latter the increase of gemcita-

bine concentrations to levels higher than 0.1 µM barely enhanced the therapeutic 

effect. In these particular tumor cell lines, high-dose chemotherapy therefore may 

have been unable to further enhance the levels of cell death already induced by 

lower doses of gemcitabine. Prolongation of the chemotherapy on the other hand, 

may have provided the necessary time for more tumor cells to undergo chemo-

therapy-induced cell death independently of the applied concentration of the cy-

totoxic agent. 

Panc-1 cells (and to a lesser extent AsPc-1 cells) were also shown to be among 

the least sensitive cell lines for 5-FU treatment correlating with the expression of 

a drug efflux transporter (147). Here, AsPc-1 cells outmatched the capability of 

Panc-1 cells to withstand high 5-FU concentrations (Figure 19). In this context it 

is of especial interest that AsPc-1 cells originate from a patient who underwent 

5-FU-based chemotherapy previous to the process of tumor material sampling 

and establishment of this tumor cell line (148). Reason for the observed survival 

advantage might therefore be a secondary acquired resistance to 5-FU. 

The collected data also indicate resistance of all 4 tumor cell lines both to the 

platinum compound oxaliplatin and the topoisomerase I inhibitor irinotecan. Initial 

signs of cytotoxicity were seen only at concentrations of 1 µM oxaliplatin whereas 

even higher concentrations of this cytotoxic agent had to be administered to 

achieve considerable therapeutic efficacy (Figure 22). Clinically, although not di-

rectly compared to each other, with an overall survival of 3.4 months the outcome 
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after monotherapy with oxaliplatin (investigated in a rather small number of pa-

tients, n=17) (149) was even worse than after standard of care gemcitabine treat-

ment (ranging from 5.91 to 6.8 months in recent trials) (Table 1). Previous reports 

also confirmed the low sensitivity to irinotecan in vitro, AsPc-1 and Panc-1 cells 

thereby being the least sensitive tumor cell lines (Figure 23) (128). These data 

are further confirmed by the fact that for the first-line treatment of advanced PDA 

both oxaliplatin and irinotecan are only used as part of the multidrug FOLFIRI-

NOX regimen (4).  

Similarly poor results were obtained with the EGFR-targeting tyrosine kinase in-

hibitor erlotinib (Figure 24). Initially, it was unclear whether the observed meager 

therapeutic outcome was the result of a low or missing cellular EGFR expression. 

However, previous investigations had shown that in many tumor cell lines of pan-

creatic cancer the EGF receptor is highly conserved: In Panc-1 cells a mutated 

EGFR gene is expressed whereas AsPc-1 and MIA PaCa-2 cells express the 

receptor in its wildtype form (150,151). Clinically, though, levels of EGFR expres-

sion didn’t correlate with the survival benefit after combination therapy with gem-

citabine and erlotinib (10). Predictive marker for therapeutic benefit was rather 

the development of a skin rash shortly after initiation of treatment. Thus, given 

that more reliable predictive markers are still missing, this therapeutic regimen in 

the clinic so far is performed on a ‘trial and error’ basis and was not further pur-

sued during this investigation.  

Nab-paclitaxel has only recently been approved for the treatment of advanced 

pancreatic cancer in combination with gemcitabine, after a phase III trial was able 

to demonstrate increased survival after the dual chemotherapy compared to 

standard of care gemcitabine (12). Moreover, nab-paclitaxel was found to deplete 

the desmoplastic stroma partly contributing to the substantial chemoresistance of 

PDA as well as to increase intratumoral levels of gemcitabine by 2.8-fold in tumor-

bearing mice (152). The latter has been attributed to a nab-paclitaxel-mediated 

decrease of tumoral cytidine deaminase, mainly expressed in tumor epithelial 

cells and degrading gemcitabine into its therapeutically less active metabolites 
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(153). Here, however, such conditions can’t be reproduced adequately with the 

selected array of tumor cell lines in vitro.  

In this investigation, all 4 tumor cell lines responded similarly to a monotherapeu-

tic treatment with nab-paclitaxel with a therapeutic cut-off at concentrations of 

0.01 µM, showing a dramatic decline of remaining tumor cell masses (Figure 21). 

Moreover, in 1 out of 4 tumor cell lines (MIA PaCa-2), its combination with gem-

citabine definitely resulted in an enhanced therapeutic response, whereas in 

BxPc-3 cells this may have been the result of overdosing nab-paclitaxel (Figure 

29). Then again, the responses of the tumor cells to dose variations of one agent 

while administering its combination partner at 50 % of its respective LD25 dose 

were rather inconsistent (Figure 30). Dose increases of one cytotoxic agent either 

directly correlated with an additional reduction of tumor cell masses (MIA PaCa-

2 / Panc-1: Gem ↑; BxPc-3 / MIA PaCa-2: nab-PTX ↑) or caused almost no further 

enhancement of tumor cell killing (BxPc-3 / AsPc-1: Gem ↑; AsPc-1 / Panc-1: 

nab-PTX ↑). Unfortunately, general statements on the particular importance of 

either nab-paclitaxel or gemcitabine on therapeutic success of the dual chemo-

therapy can’t be made on the basis of these data.  

Choosing the vaccinia virus GLV-1h68 for treatment of pancreatic adenocarci-

noma was based on several good reasons. Even though in vitro conditions can’t 

properly address this issue, the importance of the special tumor microenviron-

ment of pancreatic cancer (specified more detailed in section 1.1.3, p. 5) is crucial 

in consideration for further research potential. In PDA, cancer-associated fibro-

blasts, playing an important role in mediating resistance to chemotherapeutic 

agents, are present in high numbers and have been shown to promote oncolytic 

virus infection (154). Speaking in favor of using a Lister strain derivative was the 

fact that, although the hypoxic conditions of PDA represent a considerable barrier 

for efficient virus infection and replication, neither virus protein expression nor 

viral titers of Lister strain derivatives of vaccinia virus were found to be reduced 

under such hypoxic conditions (155).  

Screening the NCI-60 cancer cell lines uncovered different cell line-dependent 

levels of permissivity to GLV-1h68 infection (87). Although the pancreatic cancer 



Dissertation Eike Hendrik Binz Ch. 4 Discussion 

92 
 

cell lines MIA PaCa-2 and Panc-1 were not among the most sensitive tumor cell 

lines for viral infection, therapeutic benefit after virotherapy with GLV-1h68 none-

theless has clearly been proven in such tumor-bearing mice (101). Coincidentally, 

in vitro, different levels of susceptibility to GLV1h68-mediated oncolysis were 

found. In accordance with these data, here, MIA PaCa-2 cells only responded to 

high viral doses while in BxPc-3 cells significantly lower viral doses were sufficient 

to achieve a potent oncolytic effect (AsPc-1 and Panc-1 cells ranging in between) 

(Figure 17). Moreover, since GLV-1h68 represents a biological agent which con-

stantly changes its dose as a result of continuous viral replication and subsequent 

oncolytic cycles, it was hardly surprising that prolongation of the virotherapy led 

to a dramatic decline of tumor cell numbers. GLV-1h68 had more time to amplify 

its viral dose, to lyse its host cells and to spread further to yet uninfected tumor 

cells thereby starting the oncolytic cycle anew. 

In conclusion, the collected evidence confirmed the generally low susceptibility of 

pancreatic cancer cells to cytotoxic agents in vitro. A poor therapeutic outcome 

was seen especially after chemotherapy with oxaliplatin, irinotecan or erlotinib 

which might be caused by an intrinsic resistance of pancreatic adenocarcinoma 

against these agents. Moreover, different tumor cell line dependent levels of sus-

ceptibility to the chemotherapeutic agents 5-FU, nab-paclitaxel and/or gemcita-

bine as well as to the virotherapeutic agent GLV-1h68 were found. Based on 

these data, different (‘dose adjusted’) chemovirotherapeutic protocols were de-

vised, focusing on increasing the so far poor therapeutic outcome while also an-

alyzing the interactions depending on the application sequence of chemo- and 

virotherapeutics. 

4.2 Response of pancreatic cancer to chemovirotherapy 

Initially, after combining GLV-1h68 with the nucleoside analogue 5-FU, oncolysis 

was not substantially changed in neither of the 4 tumor cell lines (Figure 25). 

Although antagonistic effects of this particular setting could therefore be excluded, 

the lack of therapeutic benefit stands in contrast to previous reports of success-

fully treating pancreatic adenocarcinoma with 5-FU and other viral constructs. In 

vitro, the combination of 5-FU with herpes virus-based agents potentiated the 
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antitumor response, which in one case was attributed to an enhanced viral repli-

cation (137), in another to an increase of apoptosis (135). The latter may be of 

especial interest since the deletion of an anti-apoptotic gene in the corresponding 

herpes virus L1BR1 may have partly contributed to the therapeutic effect. Admin-

istration of a parvovirus encoding a prodrug convertase (cytosine deaminase) in 

combination with its prodrug 5-FC two days after inoculation of AsPc-1 cells into 

the peritoneal cavity of nude mice completely prevented peritoneal dissemination 

(125). When administered two weeks after tumor inoculation the combination of 

virus and prodrug decreased CEA levels and significantly increased survival of 

tumor-bearing mice. In vitro, the conversion of 5-FC to its cytotoxic compound 5-

FU caused a strong bystander effect. Interestingly, in vivo the therapeutic benefit 

after combining a conditionally replicating adenovirus with either 5-FU or gem-

citabine wasn’t influenced by the administration sequence although sequence-

dependent synergism and antagonism had been seen in vitro before (131). 

Gemcitabine, another nucleoside analogue, represents the current standard of 

care for advanced pancreatic cancer and has been combined with many viral 

constructs. Its combination with the oncolytic herpes virus AV25CDC in vivo not 

only strongly reduced the tumor weight of subcutaneously established and ortho-

topic tumors in nude mice but also in an immunocompetent Syrian hamster model 

(124). In other immunocompetent models gemcitabine-based combination proto-

cols were shown to prolong tumor growth inhibition (126) and animal survival 

(133), while in the latter synergism of the parvovirus H-1PV and gemcitabine had 

previously been observed in BxPc-3, MIA PaCa-2 and Panc-1 cells in vitro. Clin-

ically, systemic gemcitabine infusion has been successfully combined with intra-

tumorally injected ONYX-15 in a phase I/II trial (156). However, although che-

movirotherapy was found to be well tolerated, the treated cohort of 18 patients 

was too small for the read-out of potentially meaningful therapeutic benefit. Un-

fortunately, since further research on ONYX-015 was stopped in 2003, these in-

vestigations led down a blind alley and no other chemovirotherapeutic protocol 

addressing pancreatic cancer has yet reached phase III. Currently, trials incorpo-

rating the hyaluronidase expressing adenoviral vector VCN-01 or the naturally 

occurring reovirus Reolysin® are under way (59). 
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Gemcitabine has also been previously combined with GLV-1h68 in vivo. Che-

movirotherapy accelerated tumor shrinkage and inhibited the growth of subcuta-

neous Panc-1 tumors in nude mice (101). However, unlike the combination of 

GLV-1h68 with cisplatin, after which complete remissions were seen in 7 of 8 

tumor-bearing mice, the gemcitabine combination protocol wasn’t able to com-

pletely eradicate the tumor disease. In addition, monotherapy with GLV-1h68 

alone was able to catch up with the therapeutic outcome when only given suffi-

cient time. In this study, chemovirotherapeutic treatment with GLV-1h68 and 

gemcitabine in vitro did not result in any considerable increase of cytotoxicity in 

neither of the administration settings (Figure 26), paralleling the previously ob-

tained results in combination with 5-FU. Reason for the lack of therapeutic benefit 

may be that both chemotherapeutic agents are nucleoside analogues. Given that 

the main mechanism of action of such agents is the interference with cellular DNA 

replication, unintentionally, the replication of the DNA virus GLV-1h168 may have 

been inhibited as well, thereby reducing its oncolytic potency. Factors possibly 

mediating the difference between the in vitro and in vivo results may have been 

the greater delay of chemotherapy in vivo (15 days after single virus injection) 

and its intraperitoneal administration possibly reducing the effective dose of gem-

citabine at the tumor site. 

Chemovirotherapeutic combinations incorporating oxaliplatin have not yet been 

part of (pre-)clinical investigations addressing pancreatic cancer. Nonetheless, 

therapeutic value might be assumed to originate from its capability to induce im-

munogenic cell death, dying tumor cells thereby additionally triggering a long-

term antitumor response (157). Given that such an immunotherapeutic effect is 

also believed to be the main property of OVs, incorporating agents such as oxal-

iplatin into chemovirotherapeutic protocols is of great interest. In vitro, treatment 

of colorectal cancer with a combination of oxaliplatin and Reolysin® has been 

reported to reduce the numbers of viable tumor cells to a greater degree than 

either of the two monotherapies (158). In the same tumor entity, cell line-depend-

ent levels of synergy between oxaliplatin and the Western Reserve strain vaccinia 

virus vvDD (‘double deleted’ virus: thymidine kinase and vaccinia growth factor) 

were found (159). Here, only 1 out of 4 tumor cell lines (AsPc-1) demonstrated a 
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clear increase of cytotoxicity after combination therapy with GLV-1h68 and oxal-

iplatin, compared to the respective monotherapies independently of the admin-

istration sequence (Figure 27). In the other 3 cell lines, therapeutic benefit was 

seen only inconsistently in specific settings. However, main challenge in proving 

benefit of such immunotherapeutic regimens still remains the establishment of 

suitable tumor models and in vitro approaches so far aren’t able to sufficiently 

address this issue. 

Given its only recent development and approval for i) metastatic breast cancer, 

ii) locally advanced or metastatic non-small-cell lung cancer and iii) metastatic 

pancreatic cancer (160), nab-paclitaxel has only once been combined with viral 

agents (161). Solvent-based paclitaxel (Taxol®) on the other hand has been part 

of many chemovirotherapeutic protocols. In vitro, the combination with an adeno-

viral vector was highly synergistic in treating non-small cell lung cancer cells (162) 

and even paclitaxel-resistant cell lines were more strongly killed by the combina-

tion of paclitaxel and Reolysin® (163). Furthermore, in vitro synergism in breast 

cancer cell lines could be translated to in vivo efficacy (164) and near to complete 

tumor eradication was seen in nude mice bearing xenografts of ovarian and pros-

tate cancer (165,166). In an immunocompetent model the combination of an on-

colytic adenovirus with paclitaxel restored its oncolytic potency to similar levels 

as previously seen in athymic mice, possibly due to the chemotherapy-mediated 

inhibition of initial viral clearance by the immune system (167). Combining 

paclitaxel with the ‘double deleted’ vaccinia virus vvDD potently curbed tumor 

growth in colorectal cancer-bearing nude mice and significantly increased animal 

survival (143). Similarly, tumor growth of MIA PaCa-2 xenografts was more 

strongly inhibited by the combination of paclitaxel with the oncolytic adenovirus 

Ad-Delo3-RGD (130). Clinically, only recently a phase II trial has found the com-

bination of paclitaxel, carboplatin and Reolysin® to be safe but failed to prove a 

beneficial effect on progression-free survival for patients with metastatic pancre-

atic adenocarcinoma (168).  
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Compared to the widely used solvent-based paclitaxel, nanoparticle albumin-

bound paclitaxel (Abraxane®) has demonstrated both pharmacokinetic and ther-

apeutic advantages (169). It primarily was designed to compensate for the unfa-

vorable toxicity profile of Cremophor EL, the solvent used to solubilize highly wa-

ter-insoluble paclitaxel. Accordingly, nab-paclitaxel can be administered in higher 

effective doses with less systemic toxicity. Even more, the albumin-bound agent 

was found to accumulate more potently in tumor tissues which was hypothesized 

to be the result of various mechanisms such as an enhanced endothelial 

transcytosis (170) and the prevalence of albumin-binding proteins at the tumor 

site (171). Clinical benefit of nab-paclitaxel was finally proven in a phase III trial 

addressing patients with metastatic breast cancer (172). Compared to solvent-

based paclitaxel, treatment with nab-paclitaxel demonstrated both a more favor-

able toxicity profile and a higher tumor response rate. However, such factors 

might be of more relevance in the in vivo setting and in vitro the outcome after 

nab-paclitaxel or solvent-based paclitaxel treatment may be similar.  

Here, chemovirotherapeutic treatment with GLV-1h68 and nab-paclitaxel led to a 

slightly increased treatment outcome in the majority of cell lines and settings 

tested (Figure 28). However, only in AsPc-1 cells a potent effect was seen (inde-

pendently of the administration order) and in MIA PaCa-2 cells for the first time 

during this investigation antagonism after chemovirotherapy was observed when 

the chemotherapeutic was administered first (nab-PTX -24 hpi). In addition, ther-

apeutic benefit couldn’t be pinned down to a specific administration setting. In 

consideration of the so far collected evidence this led to the conclusion that GLV-

1h68 can be combined with chemotherapeutic agents such as nab-paclitaxel, 

gemcitabine or oxaliplatin in a more flexible time pattern. Clinically, cancer ther-

apy usually depends upon both patient-related factors, such as health-related 

quality of life and morbidity, as well as work-related parameters such as aligning 

strict therapy protocols with unpredictable clinical routine. Being able to unravel 

a therapy protocol without the fear of greatly losing its therapeutic effect therefore 

makes it more feasible in the clinic. 



Ch. 4 Discussion Dissertation Eike Hendrik Binz 

97 
 

For the treatment of metastatic pancreatic cancer however nab-paclitaxel is only 

approved in combination with gemcitabine. Given that the majority of chemoviro-

therapeutic regimens aim at adding the oncolytic and potentially immunothera-

peutic properties of OVs to currently established treatment protocols, a triple-

therapy protocol incorporating GLV-1h68, nab-paclitaxel and gemcitabine was 

devised. The addition of the approved dual chemotherapy nab-paclitaxel + gem-

citabine to an oncolytic adenovirus has only recently been proven to be superior 

to chemotherapy or virotherapy alone in an in vivo model of pancreatic cancer 

(161). A similar protocol combining Reolysin® with carboplatin and paclitaxel, the 

dual chemotherapy being approved for the treatment of advanced head and neck 

cancer, has only recently been tested in the REO 018 phase III trial and was able 

to demonstrate therapeutic benefit by improving patient survival (61). 

“Here, in this work, as a matter of fact, in 2 cell lines of PDA (BxPc-3 and MIA 

PaCa-2) the triple-therapy resulted in a considerable increase of tumor cell killing, 

whereas in the other 2 cell lines (AsPc-1 and Panc-1) the response after triple-

therapy resembled the response after single viro- or dual chemotherapy alone” 

(139) (Figure 31). Importantly, these results were validated by 3 differently oper-

ating cell viability assays. Moreover, in the tumor cell lines which demonstrated 

no increase of cytotoxicity after the triple-therapy, viral titers were shown to be 

drastically reduced under the influence of the dual chemotherapy (Figure 33). 

Accordingly, it has to be assumed that a potent viral replication of GLV-1h68 is 

necessary for a therapeutic benefit of the triple-therapy in vitro.  

4.3 Viral replication is influenced by chemotherapeutic agents 

“Main focus of chemovirotherapeutic regimens lies in harnessing the oncolytic 

and, more importantly, immunotherapeutic potential of the applied viral agents. 

Since both parameters are presumed to depend on a strong viral replication, it 

has to be ascertained that the application of chemotherapeutic agents does not 

interfere with viral replication and spread of infectious progeny virus particles in 

a negative manner. Such interactions depend not only on the chosen agents but 
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also on their dosages and the order of administration of the respective com-

pounds, basic determinants that have to be considered for the design of any suc-

cessful combination therapy.” (139) 

“Thus far, therapeutic benefit after chemovirotherapy both in vitro and in vivo has 

been shown to be linked to an unchanged or even enhanced viral replication in 

most cases.” (139) The latter has mainly been described in adenoviruses or her-

pes viruses although the underlying mechanisms could not always be elucidated. 

“In some cases, chemotherapy-induced DNA damage resulted in a cellular over-

expression of GADD34 or ribonucleotide reductase (RR) which led to an in-

creased replication of herpes virus-based agents if homologous viral gene prod-

ucts had previously been deleted (137,173-175). Similarly, chemotherapy was 

shown to increase the levels of E1A, an early expressed adenoviral gene product 

that not only regulates a multitude of both cellular and viral genes to initiate the 

adenoviral replication cycle but is also known for its chemosensitizing effects 

(167,176). The mitotic inhibitor paclitaxel was found to increase adenoviral as-

sembly and subsequent release from the host cell while leaving DNA synthesis 

unaffected (162).” (139) As another example, increased titers of myxoma virus or 

the vaccinia virus vvDD were observed after combination with rapamycin, which 

correlated with therapeutic benefit both in vitro and in vivo (177,178). “Further-

more, it was shown that chemotherapy-induced senescence promoted replication 

of a measles vaccine virotherapeutic virus and led to increased tumor cell killing 

(179). However, in most cases it remains unclear whether an enhanced viral rep-

lication constitutes the main determinant for therapeutic efficacy.” (139) This 

would suggest that the respective chemo- and virotherapeutics operate inde-

pendently, at which the tumor cells are killed either by the cytotoxic effect of the 

chemotherapy or viral-mediated oncolysis. Consequently, if therapeutic benefit is 

mainly caused by a chemotherapy-induced augmentation of viral replication, in 

other chemovirotherapeutic protocols a similar condition could be recreated by 

administrating higher viral doses. 

“In contrast, it was previously shown that chemotherapeutics such as 5-FU or 

irinotecan induce an unfavorable environment for viral replication (180)” (139), 
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depending on the respective genetic setting of the oncolytic agent (134). “SN-38, 

an active metabolite of clinically used irinotecan, was found to inhibit replication 

of the HSV-1 vector G47Δ, which decreased the therapeutic benefit otherwise 

seen in combination with etoposide where viral replication was not influenced 

(181). Interestingly, therapeutic benefit could be observed despite reduced viral 

titers. Enhanced levels of apoptosis in response to chemovirotherapeutic treat-

ment were found to result in enhanced therapeutic efficacy and therefore out-

weighed detrimental decreases of the effective viral dose (159,182,183). Prodrug 

converting strategies led to a powerful bystander effect, although viral replication 

was inhibited by the converted cytotoxic compound 5-FU (184,185).” (139) How-

ever, the in vitro and in vivo results were not always conclusive. While gemcita-

bine was found to severely impede adenoviral replication in cells of pancreatic 

cancer in vitro, potent expression of early and late viral genes could be detected 

in vivo, leading to the assumption that the corresponding viral gene products were 

the mediator for the enhanced therapeutic effect (132).  

Other data have made aware the importance of monitoring viral replication for a 

sufficient time period. Although diverse chemotherapeutics were found to se-

verely decrease early replication of adenovirus, viral titers were found as high as 

after virotherapy alone when only given sufficient time (186,187). Moreover, dif-

ferent kinds of infectious particles may be affected differently by chemotherapeu-

tic agents. Vaccinia virus for instance forms 3 types of infectious particles which 

fulfill distinct tasks in its strategy to maximize viral spread. While numbers of in-

tracellular mature virus, representing the majority of formed particles that are only 

released during oncolysis, were found to be strongly reduced by the mitotic inhib-

itor paclitaxel, levels of extracellular enveloped virus, which is released early dur-

ing the viral life cycle and is therefore responsible for long-range viral spread, 

remained nearly unchanged (143). 

So far in most chemovirotherapeutic protocols an additive or synergistic cytotoxic 

effect was accompanied by an unaltered viral replication. Combined treatment 

with chemo- and virotherapeutics thereby often led to increases in the proportion 

of apoptotic tumor cells (31,188-191). Furthermore, such interactions were found 
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to depend on the influence of the viral agent on the cell cycle. Addition of the 

HSV-1 agent G47Δ increased the potency of paclitaxel to arrest cells in G2/M-

phase ultimately followed by apoptosis (164). Treatment of lung cancer cells with 

the adenovirus OBP-301 led to an accumulation in S-phase which potentiated 

gemcitabine-mediated cytotoxicity and enhanced therapeutic benefit (192). 

G2/M-phase arrest, which is typically induced by temozolomide treatment and 

renders cells more resistant to the chemotherapeutic agent, was overridden after 

addition of the adenovirus Δ-24-RGD (193).  

However, although complementing mechanisms of the applied chemo- and viro-

therapeutic agents, such as induction of cell death, are very likely, the possibility 

remains that both approaches act independently of each other which would sug-

gest ‘only’ additional cell killing. Nonetheless, such a chemovirotherapeutic pro-

tocol not only would improve initial tumor eradication and therefore more effec-

tively stabilize the tumor disease in the first place but also promote an immuno-

therapeutic effect in the long-term. 

“The here collected evidence demonstrates that the therapeutic benefit of triple-

therapy with GLV-1h68 + nab-paclitaxel and gemcitabine in treating different pan-

creatic cancer cell lines depends on an unaltered viral replication in vitro. These 

findings are of special interest, since, in view of future clinical applications, GLV-

1h68 provides the possibility to non-invasively monitor viral replication as a sur-

rogate marker for an (immuno)therapeutic effect in animal models or human pa-

tients.” (139) However, chemotherapeutics have been shown to affect various 

forms of vaccinia virus differently and the numbers of extracellular enveloped vi-

rus (EEV) might be unchanged under the influence of the dual chemotherapy 

which would ensure a sufficient long-range spread of GLV-1h68, most notably in 

the in vivo setting.  

4.4 Sequence-dependency of chemovirotherapy 

Interactions between the applied agents are likely to depend on their treatment 

order. “Generally, three distinct administration sequences can be differentiated, 

pretreatment with either i) the chemo- (C) or ii) the virotherapeutic (V) agent 
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(C→V / V→C) or iii) their concurrent administration (CV).” (139) In case of pro-

drug converting strategies the rationale for a pretreatment with the OV followed 

by the respective prodrug seems rather obvious. Nonetheless, the exact timing 

of prodrug administration has to be elucidated. In some cases, the greatest ther-

apeutic benefit was seen when the prodrug was administered early, i.e. 1 day 

after the last virotherapeutic treatment (194,195). On the other hand, 5-FU, which 

inhibits the replication of HSV, was found to cause the strongest bystander effect 

when its prodrug 5-FC was given at the peak viral titer 3 days after OV admin-

istration (184). Accordingly, although based on supposedly simple considerations, 

prodrug converting strategies illustrate the complex matter of combining chemo- 

and virotherapeutic agents. “Chemovirotherapeutic strategies are still experi-

mental, rather than based on a profound understanding of the underlying mech-

anisms, and sequence-dependent interactions are not easy to predict. Of special 

interest are synergistic interactions independently from the treatment order but 

mediated via different antitumoral mechanisms. Huang et al. (143) postulated that 

pretreatment with paclitaxel (C→V) induced a cell cycle arrest of colorectal can-

cer cells in the G2/M phase, which rendered them more susceptible to vaccinia 

virus infection. Pretreatment with the virotherapeutic (V→C), was shown to sen-

sitize for an adjacent chemotherapy by the release of cellular danger signals.” 

(139) Therefore, to more accurately predict possible interactions, many more pa-

rameters will have to be considered. 

For starters, “hypothetic considerations of one therapeutic approach sensitizing 

for the other hint at superior treatment outcomes after sequential administration 

of the agents (C→V / V→C) and to a lesser extent, in the concurrent setting (CV) 

as well. Any therapeutic effect based on an augmented viral replication would 

therefore suggest a benefit of administering chemotherapeutics first (174,196).” 

(139) Indeed, the highest titers of reovirus were reached when it was applied 

without further delay than 24 hours after paclitaxel administration (197). However, 

adjusting the timely pattern of a chemovirotherapeutic protocol to a small thera-

peutic window might be a central issue. Besides, “similar increases of adenoviral 

replication have been found to be independent of the treatment order (C→V/ 

V→C) (198).” (139)  
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“Then again, the requirement of a strong viral replication (or rather a high number 

of viral gene products) possibly sensitizing for adjacent chemotherapy suggests 

a therapeutic benefit if tumor cells are pretreated with the virotherapeutic agent 

(V→C) (199). Nevertheless, some of the synergistic interactions associated with 

a potent viral replication have been found to be sequence-independent (166,200). 

In contrast, although gemcitabine negatively influenced the viral life cycle of par-

vovirus H-1PV in the concurrent setting, it was found to prolong survival of tumor-

bearing rats when its administration took place much earlier (i.e., 2 weeks) (C→V) 

(133). Such combination protocols demonstrate the possibility to employ more 

flexible time patterns between chemo- and virotherapy in case of detrimental in-

teractions in the concurrent setting.” (139) 

Other sequence-dependent interactions such as exploiting cell death have been 

proposed as well. In the context of chemovirotherapy, apoptosis primarily repre-

sents the mode of action of chemotherapeutic agents which usually depend on 

the induction of physiologic cell death mechanisms. Viral infection on the other 

hand is a trigger for apoptosis as part of the antiviral host response, inde-

pendently of its actual oncolytic effect. Since in the process of tumorigenesis 

proapoptotic signaling pathways are typically downregulated (rendering chemo-

therapy less effective while facilitating viral infection), OVs (or rather their gene 

products) are believed to sensitize tumor cells for chemotherapy induced apop-

tosis. In line with this consideration, pretreatment with the OV (V→C) or concur-

rent treatment (CV) were shown to result in enhanced tumor cell killing owing 

to an increased induction of apoptosis (128,159,201). However, similarly in-

creased apoptosis was also found in paclitaxel-pretreated cells followed by treat-

ment with an oncolytic adenovirus (C→V) (202). Even more, chemotherapy-in-

duced apoptosis has been shown to facilitate initial viral penetration and promote 

viral spread (C→V) (203).  

The complexity of this matter is further pronounced by the fact that the admin-

istration sequence in some cases might be cell type-dependent. In the human 

PDA cell line Hs766T the combination of myxoma virus with gemcitabine in vitro 

was shown to be beneficial only when gemcitabine was applied first (C→V), 



Ch. 4 Discussion Dissertation Eike Hendrik Binz 

103 
 

whereas in murine Pan02 cells only pretreatment with the OV (V→C) achieved 

therapeutic benefit (204). Similar effects were seen in the immunocompetent 

Pan02 model in vivo, implying that current syngeneic immunocompetent models 

may not be sufficient to fully evaluate sequence dependent effects and translate 

this findings to human patients. 

Nonetheless, investigations identifying underlying mechanisms of sensitization to 

chemo- or virotherapy have to address sequence-dependent effects. “Unfortu-

nately, the experimental settings of investigations addressing sequence-depend-

ent effects are not always conclusive. In one case, both concurrent and delayed 

administration of cisplatin (CV / V→C) resulted in a similar therapeutic benefit; 

however, the increase of cisplatin-induced apoptosis was only investigated in the 

former and therefore might not contribute to the therapeutic success in the se-

quential administration setting (205). Similarly, although pretreatment with either 

agent (C→V / V→C) often results in superior treatment outcomes, the effect of 

the chemotherapeutic agents on viral replication is frequently measured only in 

the concurrent setting. Depending on the respective treatment order, chemother-

apeutics are known to also affect other parameters determining the cellular envi-

ronment for viral replication such as the induction of cell cycle arrest (186) or 

changes in gene expression (137,173-175). Therefore, although chemotherapeu-

tics may directly interfere with the viral life cycle (which is measured in the con-

current setting) it would be shortsighted to extrapolate such results for the se-

quential setting.” (139) 

Here, “the chronological order of the viro- and chemotherapeutic agents (GLV-

1h68 + nab-paclitaxel, gemcitabine” (139) or oxaliplatin) “did not influence the 

therapeutic effect in either of the four tumor cell lines. As a result, it was concluded 

that chemo- and virotherapy could be administered in a more flexible time pattern 

and a triple-therapy protocol was devised in which nab-paclitaxel and gemcita-

bine were added directly after the initial virus infection (at 1 + 1.5 hpi). Moreover, 

analyses of the antitumor effect as well as of the influence of the dual chemother-

apy on viral replication of GLV-1h68 were performed under similar conditions. 

Therapeutic success of the triple-therapy in the concurrent setting was therefore 
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clarified to depend on an effective chemotherapy in addition to an unchanged 

viral replication.” (139) 

4.5 Dose-dependent effects between chemo- and virotherapeutic agents 
determine the therapeutic outcome 

Therapeutic success of combination therapy may also be somewhat dose-de-

pendent, the positive/negative influence of one agent on the other thereby corre-

lating with the administered concentrations. Moreover, “possible synergistic inter-

actions may intensify therapeutic success and allow for dose reductions of the 

applied agents to a less toxic degree (164,206,207). High-dose combination ther-

apy was actually unable to further increase the levels of tumor cell death already 

being induced by low-dose chemovirotherapy (208,209). Furthermore, virus-me-

diated chemosensitization was shown to be powerful enough to render chemo-

therapy-resistant tumor cells sensitive for low-dose chemotherapy (210,211).” 

(139)  

“Since some chemotherapeutic agents are known to directly interfere with the 

viral life cycle, dose-dependent relations in this regard have been in the focus of 

diverse investigations. Although application of high-dose mitomycin C was found 

to severely reduce replication of an oncolytic herpes simplex virus, viral titers 

were found to be unchanged when administered in lower and thereby ‘beneficial’ 

doses (212). Furthermore, low-dose chemotherapy was found to increase viral 

titers to a greater extent than its high-dose application (174,198).” (139) There-

fore, the therapeutic window for optimal augmentation of viral replication which is 

already dependent on the application sequence narrows down even more.  

“The applied dose of an agent in combination therapy is usually determined by 

its cytotoxic effect in monotherapy. However, to demonstrate therapeutic benefit 

of the combination, suitable doses of single agents have to be chosen carefully. 

If doses are too high, single agents will be too ‘successful’ in killing tumor cells 

on their own and the readout of potential combinatorial therapeutic benefits could 

be threatened. Moreover, even if the chemotherapy does not directly interfere 

with the viral life cycle, high concentrations would be immediately cytotoxic and 

therefore prevent effective viral replication by killing tumor cells, which function 
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as hosts for replicating virotherapeutics (132).” (139) This was suspected to be 

the case in pancreatic cancer cell lines where different levels of sensitivity to 

gemcitabine were shown to predict the therapeutic outcome of the chemoviro-

therapeutic protocol (128). “Higher gemcitabine doses in gemcitabine-insensitive 

cell lines were assumed to cause a greater inhibition of viral replication and in 

accordance to also prevent therapeutic benefit.” (139) 

“In line with these considerations, here the chemovirotherapeutic protocols were 

devised by carefully adjusting concentrations of the respective compounds, en-

suring remaining tumor cell masses of ≈ 75 % after 72 hours of chemo- or viro-

therapeutic treatment in monotherapy (designated as a so-called LD25). By doing 

so, the primary aim was to prevent excessive tumor cell killing possibly disguising 

additional effects of the chemovirotherapeutic combination. Nonetheless, reduc-

tions in the viral titers in tumor cell lines that had been non-responsive to the triple 

chemovirotherapy still could be the result of overdosing chemotherapy. On closer 

inspection, AsPc-1 and Panc-1 tumor cells indeed received higher concentrations 

of nab-paclitaxel and/or gemcitabine than the triple-chemovirotherapy-respon-

sive tumor cell lines BxPc-3 and MIA PaCa-2. Therefore, chemotherapeutic 

doses still might have been adjusted in a too high range could potentially have 

negatively influenced viral replication as a result.” (139)  

Further investigations revealed that in BxPc-3 cells even high-dose administra-

tion of nab-paclitaxel didn’t negatively influence viral replication whereas higher 

gemcitabine concentrations actually reduced viral titers in a dose-dependent 

manner (Figure 34 and Figure 36). Moreover, viral GFP expression could be 

somewhat conserved if gemcitabine administration was delayed (Figure 38). 

Hence, 2 separate assumptions can be made on the basis of these data. Either 

would it be beneficial to reduce the concentration of the chemotherapeutic agent 

to a degree at which viral replication remains strong. However, whether less cy-

totoxic doses would likewise result in a beneficial treatment outcome as in the 

responding cell lines would have to be elucidated in vitro. Given the fact that the 

so far collected evidence indicates a rather additive character of the therapeutic 
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agents in independently killing the tumor cells, this conclusion seems rather du-

bious. In contrast, it appears to be more promising to unravel the schedule of the 

treatment protocol and apply GLV-1h68 and the dual chemotherapy separately 

in their effective doses. Thus, detrimental interactions of the therapeutic agents 

and chemotherapy-mediated decreases of the viral titer, especially in the initial 

oncolytic cycles, could be circumvented. Unraveling the therapy protocol would 

also beneficially lessen therapy-induced adverse effects and safeguard overlap-

ping toxicity which to date is frequently used in multimodal chemotherapy proto-

cols. 

In accordance with this consideration the combination of gemcitabine with 2-

weeks-delayed parvovirus H-1PV (C→V) was shown to prolong the survival of 

immunocompetent tumor-bearing rats, although in the concurrent setting the viral 

life cycle was negatively influenced (133). Of even more relevance was the suc-

cessful combination of GLV-1h68 with 15-days-delayed gemcitabine (V→C) 

which significantly improved the response of pancreatic cancer xenografts in 

nude mice (101).  

Of significance may also be the fact that a multitude of chemotherapeutics has 

been shown to exhibit immunotherapeutic properties on their own (213). Contrary 

to the wide-spread belief that chemotherapy in general acts rather immunosup-

pressive, in specific settings humoral and cellular antitumor immune responses 

can be beneficially influenced. This is of especial interest since the field of viro-

therapeutic research currently considers the combination of oncolytic viruses with 

checkpoint inhibitors to have the potential for groundbreaking immunotherapeutic 

success. The combinations of T-VEC with ipilimumab or pembrolizumab, both 

monoclonal antibodes targeting and blocking the immunosuppressive CTLA-4 or 

PD-1 receptor respectively, are currently under evaluation in a phase II and phase 

III trial (NCT01740297, NCT02263508) addressing melanoma patients and will 

be instrumental in assessing this hypothesis. Immunovirotherapeutic success 

with Western Reserve strain derivatives of vaccinia virus was seen in vivo after 

combining them with antibodies against CTLA-4 (214,215) or PD-1 (215,216) 
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which not only significantly decreased tumor burden and improved survival of tu-

mor bearing mice but in some cases also drastically delayed tumor growth after 

rechallenging the mice with the same tumor tissue, indicating the presence of a 

systemic anti-tumor immunity. 

Both chemotherapeutic agents of the here established novel triple-therapy, 

paclitaxel and gemcitabine, have been shown to exhibit immunotherapeutic prop-

erties on their own. Paclitaxel was shown to induce the maturation of dendritic 

cells and increase antigen presentation in vitro (217,218). Gemcitabine, while ex-

hibiting detrimental effects on humoral immune responses, was shown to leave 

antigen-specific cellular immunity unaffected (219). Since chemovirotherapy 

mainly focuses on harnessing the immunotherapeutic potential of an adaptive 

immune response while initially circumventing innate antiviral host responses, 

this condition could enhance both oncolytic and immunotherapeutic potential of 

such a combination. In patients with advanced pancreatic cancer, gemcitabine 

did not severely deplete immune cells (220). Decreases of T lymphocytes and 

NK cells were only transient and the numbers of dendritic and antigen-presenting 

cells were even increased (221).  

The combination of gemcitabine with an immune-activating anti-CD-40 antibody 

was synergistic in vivo and led to an infiltration of CD4+ and CD8+ positive T-

cells to the tumor tissue. Moreover, long-surviving mice resisted rechallenge with 

the same tumor (222). The combination of myxoma virus with gemcitabine in an 

intraperitoneal dissemination model of pancreatic resulted in 100 % long term 

survivors at the end of the study, but only in immunocompetent mice. In the im-

munodeficient model no such effects were seen (204). Gemcitabine was also 

shown to create favorable conditions for OV-induced antitumor immunity by over-

riding reovirus induced recruitment of immunosuppressive MDSCs and acceler-

ating tumor-specific T-cell responses (223). 

However, a recent phase III trial treating metastatic pancreatic cancer with a com-

bination of gemcitabine, capecitabine (prodrug of 5-FU), a telomerase peptide 

vaccine and the proinflammatory cytokine GM-CSF wasn’t able to prove thera-

peutic benefit of this chemoimmunotherapeutic regimen (224). Given that i) nab-
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paclitaxel probably has similar immunotherapeutic properties as solvent-based 

paclitaxel and ii) was shown to increase intratumoral gemcitabine levels whereas 

iii) the vaccinia virus GLV-1h68 has the immunotherapeutic potential of more 

strongly inducing a profound antitumor immune response, the triple-therapy pro-

tocol holds promise for further (pre-)clinical investigations. 

In conclusion, the triple-therapy combining the oncolytic vaccinia virus GLV-1h68 

with the clinically approved dual chemotherapy nab-paclitaxel + gemcitabine has 

demonstrated therapeutic benefit for treating pancreatic adenocarcinoma in vitro 

when viral replication, the key for a potent oncolytic and immunotherapeutic effect, 

wasn’t influenced.  

Based on these and previous findings, unraveling the treatment protocol by ad-

ministering the chemo- and virotherapeutic agents separately has been proposed 

to further augment therapeutic efficacy and circumvent potentially detrimental in-

teractions between the applied agents. “Any approach trying to prove therapeutic 

benefit of such a regimen besides investigating its cytotoxic effect would have to 

focus especially on viral replication and its consequences on antitumor immunity.” 

(139) “However, when employing human pancreatic ductal adenocarcinoma 

(hPDA) cell lines as investigated in this work (AsPc-1, BxPc-3, MIA-PaCa-2, 

Panc-1) such experiments only could be performed in xenograft animal models 

(e.g., in nude or SCID mice). Unfortunately, these immunodeficient mice are lack-

ing important features of the adaptive immunity. As an alternative, usage of hu-

manized mice with a partially or nearly fully reconstituted immune system could 

provide insights on (i) how this triple therapeutic regimen would affect anti-tumor 

immunity, (ii) how immune checkpoint inhibitors could be placed on top, and (iii) 

how means aiming at a depletion of the immunosuppressive phenotypes of hu-

man pancreatic cancer could be made successful; however, proper answers to 

these highly interesting questions only can be provided by future clinical trials. Of 

further interest are investigations on how the triple chemovirotherapy regime with 

GLV-1h68 plus nab-paclitaxel + gemcitabine would affect the dense stroma being 

associated with hPDA. Again, xenograft mouse models are not suitable for such 
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investigations due to the fact that hPDA cells cannot be mixed with human pan-

creatic stromal cells for a remodeling of the specific histological features of hPDA. 

As an alternative, organotypic culture models have emerged as tractable systems 

to recapitulate the complex three-dimensional organization of hPDA (225) and 

could be implemented for such analyses in the future. Such hPDA organoids also 

would be highly instrumental for further investigations on the mechanistic effects 

of the triple chemovirotherapy regime with GLV-1h68 plus nab-PTX + Gem.” (139) 

Full insight in this complex matter will only be provided by treating human patients 

in well documented clinical trials in the long-term. 
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Summary 

Oncolytic virotherapy utilizes naturally occurring or genetically modified viruses 

for targeted cancer treatment. Such oncolytic viruses (OVs) are designed to spe-

cifically infect and replicate in tumor cells ultimately leading to their lysis (so-called 

oncolysis). Additionally, the release of both tumor antigens and immunogenic vi-

ral particles is believed to strongly induce antitumor immunity. However, in line 

with the consideration that multimodal cancer therapy is likely to be more effective 

than monotherapeutic treatment protocols, chemovirotherapy focuses on adding 

the oncolytic and immunotherapeutic potential of OVs to already established 

chemotherapeutic treatment protocols. 

Especially for pancreatic ductal adenocarcinoma (PDA) chemotherapy still fails 

to considerably improve patient survival. Additionally to PDA’s substantial intrin-

sic resistance to chemotherapeutic agents the dense and highly immunosuppres-

sive tumor microenvironment impedes the efficacy of current chemotherapy pro-

tocols. Then again, such conditions have been shown to favor oncolytic virother-

apy. 

This thesis therefore focused on the design of a novel chemovirotherapeutic pro-

tocol to improve the currently poor treatment outcome of pancreatic cancer. For 

this purpose, 4 established and well-characterized tumor cell lines of pancreatic 

adenocarcinoma (AsPc-1, BxPc-3, MIA PaCa-2, Panc-1) were treated in vitro 

with the oncolytic vaccinia virus GLV-1h68 in combination with selected chemo-

therapeutic agents. Moreover, the influence of different administration sequences 

on the therapeutic outcome of chemovirotherapy was analyzed. Cytotoxicity after 

treatment was measured by sulforhodamine B (SRB) assay and confirmed by 

CellTiter Blue (CTB) and MTT assays, respectively. Due to its insertion of green 

fluorescent protein (GFP) GLV-1h68 additionally enabled the non-invasive visu-

alization of viral gene expression and replication. 

In a first step, for each agent doses having only subtherapeutic tumoricidal effects 

had to be determined. Accordingly, all 4 tumor cell lines were treated with as-
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cending doses of the respective chemo- or virotherapeutic agents in monother-

apy. As a result, drug- and dose-dependent antitumor responses were seen indi-

cating resistance against some cytotoxic agents.  

In a next step, the actual chemovirotherapy was performed. Combinations of 

GLV-1h68 with either 5-fluorouracil (5-FU), gemcitabine or oxaliplatin were found 

to result only in a moderate increase of cytotoxicity regardless of their administra-

tion sequence. Only the combination with the mitotic inhibitor nab-paclitaxel 

showed promising signs of potent tumor cell killing. However, given the fact that 

for metastatic pancreatic cancer nab-paclitaxel is only approved in combination 

with gemcitabine a triple-therapy protocol combining GLV-1h68 with the dual 

chemotherapy nab-paclitaxel + gemcitabine was devised. Interestingly, this triple-

therapy resulted in 2 out of 4 tumor cell lines (BxPc-3, MIA PaCa-2) in a strongly 

improved treatment outcome. Notably, in the other tumor cell lines in which no 

enhanced response was seen after the triple-therapy (AsPc-1, Panc-1) viral titers 

were found to be considerably reduced under the influence of the dual chemo-

therapy. Thus, therapeutic success of this therapeutic regimen was linked to an 

unaltered viral replication of GLV-1h68 and - vice versa - failure to a missing sup-

pression of fabricating the progeny GLV-1h68 particles. 

Further investigations indicated that the interference with viral replication specifi-

cally was the result of overdosing gemcitabine. When delaying gemcitabine ad-

ministration viral GFP expression could be somewhat conserved. Similarly, pre-

vious reports had demonstrated the benefit of unraveling a chemovirotherapeutic 

treatment protocol by administering the chemo- and virotherapeutic agents sep-

arately. Thus, the next step of promoting the combination of GLV-1h68 with nab-

paclitaxel and gemcitabine would be to investigate the influence of such 

measures on therapeutic success, at best in an immunocompetent animal model 

while non-invasively monitoring viral replication and therapeutic efficacy. 
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Zusammenfassung 

Onkolytische Virotherapie setzt natürlich vorkommende oder genetisch modifi-

zierte Viren zur spezifischen Krebstherapie ein. Solche onkolytischen Viren (OVs) 

wurden konstruiert, um spezifisch Tumorzellen zu infizieren, in deren Zellinnerem 

zu replizieren und sie letztlich zu lysieren (sogenannte Onkolyse). Zusätzlich ver-

spricht man sich von der gleichzeitigen Freisetzung von Tumorantigenen und im-

munogenen Viruspartikeln die Induktion einer starken tumorgerichteten Immun-

antwort. Der Fokus der Chemovirotherapie liegt – gemäß der Überlegung, dass 

eine multimodale Krebstherapie eine vermeintlich stärkere Wirkung besitzt als 

monotherapeutische Behandlungsschemata – folglich darauf, das onkolytische 

und immuntherapeutische Potential von OVs zu bereits etablierten Chemothera-

pie-Protokollen hinzuzufügen. 

Vor allem im Falle des Pankreaskarzinoms führen aktuelle Chemotherapie-Pro-

tokolle noch immer nicht zu einer wesentlichen Verbesserung des Patientenüber-

lebens. Die therapeutische Wirkung wird dabei nicht nur von einer erheblichen 

intrinsischen Resistenz gegenüber Chemotherapeutika behindert, sondern auch 

durch ein gegenüber zahllosen Krebstherapeutika undurchlässiges und in hohem 

Maße immunsupprimiertes Tumormilieu. Demgegenüber konnte jedoch gezeigt 

werden, dass ein eben solches Umfeld Virotherapie günstig beeinflusst. 

Ziel der hier vorgestellten Promotionsarbeit war daher die Entwicklung eines neu-

artigen Chemovirotherapie-Protokolls zur Verbesserung der Behandlung des 

Pankreaskarzinoms zunächst unter in vitro Bedingungen. In diesem Zuge wurden 

4 etablierte und gut charakterisierte Pankreasadenokarzinom-Zelllinien (AsPc-1, 

BxPc-3, MIA PaCa-2, Panc-1) mit dem Pockenimpfvirus GLV-1h68 und ausge-

wählten Chemotherapeutika behandelt. Zusätzlich wurde der Einfluss von ver-

schiedenen Applikationsschemata auf den Behandlungserfolg nach Chemoviro-

therapie untersucht. Das Therapieansprechen wurde dabei zunächst primär mit-

tels des Sulforhodamine B (SRB) Assays bestimmt und später zusätzlich mithilfe 

der Cell-TiterBlue (CTB) und MTT Assays validiert. GLV-1h68 bot zudem – auf-

grund seiner genetischen Ausstattung mit grün fluoreszierendem Protein (GFP) 
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– die Möglichkeit, die virale Genexpression und damit auch die Effizienz viraler 

Replikation nicht-invasiv zu überwachen.  

Zu Beginn der Arbeit mussten zunächst subtherapeutisch wirksame Dosen jedes 

einzelnen Therapeutikums bestimmt werden. Dafür wurden die 4 Tumorzelllinien 

mit aufsteigenden Konzentrationen des jeweiligen Chemo- oder Virotherapeuti-

kums behandelt. Ein sowohl von der Wahl des Therapeutikums als auch von des-

sen Konzentration abhängiges Therapieansprechen wies dabei auf bereits aus-

gansmäßig vorliegende bzw. erworbene Resistenzen gegenüber manchen Zy-

tostatika hin. 

Schließlich wurde die eigentliche Chemovirotherapie durchgeführt. Die Kombina-

tion aus GLV-1h68 mit 5-Fluorouracil (5-FU), Gemcitabine oder Oxaliplatin resul-

tierte dabei jedoch lediglich in einer geringfügigen Verbesserung des Behand-

lungserfolges, unabhängig von deren zeitlichen Abfolge. Einzig die Kombination 

mit dem Mitosehemmer nab-Paclitaxel versprach ein bedeutsam gesteigertes 

Therapieansprechen. Zur Behandlung des metastasierten Pankreaskarzinoms 

ist nab-Paclitaxel jedoch ausschließlich in Kombination mit Gemcitabine zugelas-

sen. Dies führte letztlich zum Entwurf eines vollkommen neuartigen Triple-The-

rapie Protokolls, in dessen Zuge GLV-1h68 mit der dualen Chemotherapie aus 

nab-Paclitaxel und Gemcitabine kombiniert wurde. Tatsächlich führte dieser An-

satz in 2 der 4 Tumorzelllinien (BxPc-3, MIA PaCa-2) zu einem erhöhten Thera-

pieansprechen. Gleichzeitig waren in den nicht in erhöhtem Maße ansprechen-

den Tumorzelllinien (AsPc-1, Panc-1) die viralen Titer unter Einfluss der dualen 

Chemotherapie deutlich verringert. Damit hing der Behandlungserfolg der Triple-

Therapie ganz offensichtlich direkt mit einer effizienten viralen Replikation zu-

sammen bzw. im Umkehrschluss mit einer fehlenden Hemmung der Bildung von 

viralen Nachkommen des Pockenimpfvirus GLV-1h68. 

Weitere Untersuchungen wiesen darauf hin, dass die Hemmung der viralen Rep-

likation die direkte Folge von diesbezüglich überdosiertem Gemcitabine war. Zu-

dem konnte die virale GFP Expression bei zeitlich verzögerter Gabe von Gemci-

tabine zu einem gewissen Grad erhalten werden. In ähnlicher Weise konnte be-

reits in vorausgegangenen Untersuchungen der Vorteil eines zeitlich “entzerrten” 
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Therapieschemas durch die separate Gabe von Chemo- und Virotherapeutika 

gezeigt werden.  

Basierend auf diesen Erkenntnissen besteht der nächste Schritt zur Weiterent-

wicklung der Kombination aus GLV-1h68 mit nab-Paclitaxel und Gemcitabine in 

einer systematischen Untersuchung der Auswirkung solcher Maßnahmen auf 

den Behandlungserfolg, bestenfalls in einem immunkompetenten Tiermodell un-

ter nicht-invasiver Überwachung der viralen Replikation und therapeutischen 

Wirksamkeit. 
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Index of abbreviations 

5-FU 5-fluorouracil 
AB/AM Antibiotic-Antimycotic 
aka also known as  
approx. approximately 
β-gal β-galactosidase 
β-gluc β-glucuronidase 
CAR coxsackie and adenovirus receptor 
CEA carcinoembryonic antigen 
CEV cell-associated enveloped virus 
CMC carboxymethylcellulose 
CTB CellTiter-Blue® 
CTX chemotherapy 
DMEM Dulbecco’s Modified Eagle Medium 
DMSO dimethyl sulfoxide 
EDTA ethylenediaminetetraacetic acid 
EEV extracellular enveloped virus 
EGFR epithelial growth factor receptor 
EMA European Medicines Agency 
FCS fetal calf serum 
FDA US Food and Drug Administration 
Gem gemcitabine 
GFP green fluorescent protein 
GM-CSF granulocyte macrophage colony-stimulating factor 
h hour(s) 
HCC hepatocellular carcinoma 
HCl hydrochloric acid 
hNET human norepinephrine transporter 
hNIS human sodium iodide symporter 
hPDA human pancreatic ductal adenocarcinoma 
hpi hour(s) post infection 
hpt hour(s) post treatment 
HSV herpes simplex virus 
i.e. id est – that is 
IMV intracellular mature virus 
kb kilobase 
LD25 25 % lethal dose 
MOCK untreated control 
MOI multiplicity of infection (ratio of virus particles per tumor cell) 
MRI magnetic resonance imaging 
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
nab-PTX nab-paclitaxel 
NCT National Clinical Trial number 
OV oncolytic virus 
Ox oxaliplatin 
rpm rounds per minute 
PANIN Pancreatic Intraepithelial Neoplasia 
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PBS phosphate buffered saline 
PCAA human pancreas cancer-associated antigen 
PDA pancreatic ductal adenocarcinoma 
PFU plaque forming unit 
SELP silk-elastin-like protein polymer 
SEP smallpox eradication program 
SRB sulforhodamine B 
TCA trichloroacetic acid 
TRIS tris(hydroxymethyl)aminomethane 
US United States of America 
UV ultraviolet 
VIGIV intravenous vaccinia immune globuline 
VV vaccinia virus 
WHO World Health Organization 
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