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Abstracts

Zusammenfassung

Im Rahmen dieser Arbeit wurden numerische Berechnungen durchgeführt, die auf der
Diagonalisierung einer Matrix-Repräsentation des Stark-Hamilton-Operators auf ei-
ner Untermenge der Basis, gegeben durch den Null-Feld-Hamilton-Operator, beruhen.
Es wurden Dipol-Matrix-Elemente zwischen den beteiligten Zuständen berechnet, die
die Vorhersage der Übergangsstärken in Stark-verschobene Zustände ermöglichen.
Die Anwendbarkeit der numerischen Methoden wurde experimentell durch Präzisi-
onsspektroskopie in einer Rubidium-Dampfzelle mit Elektroden, unter Ausnutzung
von elektromagnetisch induzierter Transparenz (EIT), bestätigt.

Die numerischen Methoden wurden erweitert, um die Ionisationsraten von Rydberg-
Atomen im weit-Stark-verschobenen Regime, d. h. jenseits der klassischen Ionisati-
onskante, vorherzusagen. Zu diesem Zweck wurde ein “complex absorbing potenti-
al” (CAP) speziell an den Stark-Hamilton-Operator angepasst. In einem Experiment
wurden kalte Atome aus einer magneto-optischen Falle (engl. “magneto-optical trap”,
kurz MOT) in Stark-verschobene Rydberg-Zustände angeregt und die entstehenden
Ionen anschließend detektiert. Die erhaltenen Ionisationsspektren stimmen mit den
Ergebnissen der numerischen Berechnungen gut überein.

Daneben wurde eine Erweiterung der numerischen Methoden für gekreuzte elektri-
sche und magnetische Felder implementiert. Dies wurde zur näherungsweisen Berech-
nung des “motional Stark effect” (MSE) für Atome verwendet, die sich in statischen
Magnetfeldern bewegen und dadurch ein Lorentz-elektrisches Feld erfahren. In einer
Präzisionsspektroskopie, wiederum unter Verwendung von EIT in einer Dampfzelle,
wurde der MSE zum ersten Mal an Rubidium in niedrigen Magnetfeldern beobach-
tet. Die spektrale Verschiebung, die durch den MSE verursacht wird, stimmt mit der
Vorhersage aus den numerischen Berechnungen überein.

In einem letzten Experiment wurde der praktische Nutzen der Kenntnis einiger Ei-
genschaften von Stark-verschobenen Rydberg-Zuständen illustriert. Die numerischen
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Abstracts

Methoden inklusive des CAPs wurde verwendet, um Zustände speziell nach ihrer
optischen Adressierbarkeit, ihren permanenten elektrischen Dipolmomenten und ih-
ren Ionisationsraten auszuwählen. Im zugehörigen Experiment wurden Atome aus
einer MOT in diese Zustände angeregt, um die unterschiedlichen Charakteristika des
Dipol-Blockade-Effekts zu beobachten. Das Detektionsschema für dieses Experiment
wurde durch eine kontrollierte Ionisation mittels kleiner Änderungen des externen
elektrischen Feldes realisiert.
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Abstract
In this work, numerical calculations were implemented based on the diagonalisation
of a matrix representation of the Stark Hamiltonian on a subset of the basis given
by the zero-field Hamiltonian. Dipole matrix elements between the involved states
were calculated, which allow for the prediction of transition strengths to Stark shifted
Rydberg states. The applicability of the numerical methods were confirmed exper-
imentally by precision spectroscopy in a rubidium vapour cell with electrodes using
electromagnetically induced transparency (EIT).

The numerical methods were then extended to predict ionisation rates of Rydberg
states in the highly Stark shifted regime beyond the classical ionisation threshold.
For this purpose, a complex absorbing potential (CAP) was specifically adjusted to
the Stark Hamiltonian. An experiment was conducted, in which cold atoms from a
magneto-optical trap (MOT) were excited to Stark shifted Rydberg states and the
arising ions were detected. The obtained ionisation spectra agree well with the results
from the numerical calculations.

Another extension of the numerical methods was implemented for crossed electric
and magnetic fields. This was used for approximate calculations of the motional Stark
effect (MSE), which acts on atoms moving through static magnetic fields and thereby
experiencing a Lorentz electric field. In a precision spectroscopy, once more using
EIT in a vapour cell, the MSE was observed in low magnetic fields for the first time
in rubidium. The spectral shift, which is caused by the MSE, matches the prediction
from the numerical calculations.

In a final experiment, the practical use of the knowledge of several properties of
Stark shifted Rydberg states was illustrated. The numerical methods including the
CAP were used to specifically select states for their optical accessibility, permanent
electric dipole moments and ionisation rates. In the experiment, atoms from a MOT
were excited to these states to observe different characteristics of the dipole blockade
effect. The detection scheme for this experiment was realised by controlled ionisation
using only small changes in the external electric field.
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1 Introduction

The study of Rydberg atoms, i.e. atoms in highly excited states, over the last few
decades has been generally spurred by the interest in their exaggerated properties
and the exploitation of such properties [9]. These range from the long lifetimes of
the excited states over the large geometrical extent of their quantum mechanical
wavefunctions to high sensitivity to external electric and magnetic fields, which in
turn leads to additional effects, like high sensitivity to black body radiation (BBR)
and strong atomic interactions. The exploitation of these effects has spawned a variety
of applications, a couple of which shall be briefly reviewed in the next few paragraphs.

The conceptually most direct use of the high sensitivity of Rydberg states to envi-
ronmental factors is their utilisation for the detection and quantisation of said factors.
The sensing of DC electric fields, by various means and using different atomic species,
has been demonstrated in free space [10–12] as well as near surfaces [13–17] and a
range of different methods for the electrometry of AC fields from radio frequencies [18–
20] to the microwave regime [21–23] have been successfully employed. Furthermore,
a scheme for the real-time imaging of terahertz (THz) radiation via THz-to-optical
conversion from Rydberg states has been implemented, thereby achieving spatial res-
olution below the wavelength of the THz radiation and including calibration of the
THz field strength [24]. Moreover, Rydberg states of atoms and molecules can be
used to record the presence of very few of these particles within a background gas
with a sensitivity down to 100ppb by detecting the ions which arise from collisions
of the excited atoms or molecules with the background gas [25]. Recently, there has
also been a proposal for the non-destructive detection of polar molecules by using
resonant energy transfer, i.e. Förster resonances, between the molecules and Rydberg
atoms followed by state-selective detection of the Rydberg atoms [26].

The work presented in this thesis directly connects to many of these schemes. Our
measurements and numerical calculations of Stark spectra [1] are a useful reference for
electrometry of DC fields, especially near surfaces. Other schemes for the detection of
electromagnetic waves benefit from these results as well, as they can be used to find
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1 Introduction

and tune pairs of states with suitable transition frequencies ranging from the radio
frequency to the terahertz regime. Moreover, our obeservation of the motional Stark
effect (MSE) in low magnetic fields [7] opens up new perspectives for electrometry and
magnetometry in experiments using thermal gases or beams of atoms. The ionisation
spectra, which we have numerically calculated and experimentally observed [6], may
aid in detection schemes for atoms and molecules like the last two examples mentioned
above, as they offer more deterministic ways for ionisation of Rydberg states than
collisions with a background gas or field ionisation.

Another field, which has gained a lot of attention over the last few decades, is
quantum information processing and quantum simulation. The general concept that
spawned this field was brought forward by Richard Feynman in the early 1980s [27].
In contrast to classical computers which switch the state of bits between 0 and 1
using gate operations, quantum computation uses qubits which can be prepared in
superposition states c0 |0⟩+ c1 |1⟩ with |c0|2 + |c1|2 = 1 and can then be manipulated
by quantum gate operations that change the probability amplitudes c0 and c1 to find
the qubit in the state |0⟩ or |1⟩. The prospect of quantum computing is to find
solutions to problems which can not be solved in reasonable time using conventional
computers, e.g. the simulation of quantum mechanical many-particle systems or the
prime factorisation of large numbers. Ever since the first theoretical proposals for
quantum computing [27, 28], almost all fields of physics have started research to
investigate systems which could be suitable for this purpose, including nuclear spins
[29, 30], quantum dots [31, 32] and photons using linear optices [33]. Promising
advances have been made in systems of trapped ions [34, 35], nitrogen-vacancy (NV)
centres [36, 37], superconducting circuits [38–40] and neutral atoms, which can be
excited to Rydberg states to foster interactions [41–44].

However, all of the systems that have been investigated so far for their use in quan-
tum information processing suffer from certain drawbacks. For example, solid state
systems consisting of superconducting circuits offer scalability and fast quantum gate
operations, but only exhibit relatively short coherence times of the qubits on the or-
der of 200 µs [45–47]. On the other hand, atomic qubits have coherence times on the
order of seconds and optical transitions which offer the possibility to create optical
connections between several of these systems, but the implementation of fast opera-
tions on a large scale remains technically challenging [44, 45]. It has therefore been
proposed to create hybrid quantum systems consisting of neutral atoms in Rydberg
states which can be strongly coupled to microwave cavities, which in turn can be
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coupled to superconducting qubits, to overcome their individual shortcomings and
combine their best features [48–51]. In this kind of system, the quantum compu-
tations would be performed on the superconducting circuit while the atoms would
serve as a short-term memory of the qubit states. Unfortunately, there are still a
number of obstacles to overcome in order to experimentally implement such systems,
e.g. realising the coupling of Rydberg states to a stripline microwave resonator on
a superconducting chip and dealing with the disruptive influence of electric fields
caused by adsorbates at the surface of the chip [13–17].

Our work on Stark spectra of Rydberg atoms [1] was initiated with this last issue
of adsorbate fields in mind and one of its goals was to create a reference system
for electrometry near surfaces. The results from the numerical calculations in this
work can also be used to search for and finetune suitable transition frequencies in
the microwave regime between pairs of Stark shifted Rydberg states, which allows
us to partially compensate for the limited tunability of superconducting coplanar
microwave resonators [52]. Moreover, the control over the dipole blockade in the
presence of an electric field, which we have demonstrated in our work [6, 8], may also
be applied, for example to create a Rydberg superatom [53, 54], in the vicinity of the
surface of a superconducting chip and thereby aid in the implementation of this type
of hybrid quantum systems. Other experiments, which guide beams of atoms near
the surface of a chip and excite them to Rydberg states [17, 55], may benefit in a
similar way from our work on the motional Stark effect [7].

A further application of Rydberg atoms that has sprouted over the last decade is
their use in the development of sources of cold ions and electrons as well as determin-
istic single ion and electron sources [56]. These sources are of particular interest for
their use in ion and electron microscopy, where a low temperature source results in a
beam of high brightness and high coherence, and their use for nano-fabrication meth-
ods, where ion implantation and cutting techniques benefit from their controllability
[57]. Initially, this field started from a first proposal [58] and a first implementation
[59] of a system in which laser-cooled atoms were directly photoionised to create cold
ions and shape them into a nanoscale focused ion beam. It was then proposed that
such sources could be further developed into quasideterministic single ion source by
making use of the blockade effect in samples of Rydberg atoms [60]. Furthermore,
the excitation to Rydberg states followed by ionisation may offer an additional de-
gree of control over the ionisation process and therefore the properties of the resulting
electron and ion beams [61–65].
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1 Introduction

In the first work included in this thesis we have investigated the energy level struc-
ture of Stark shifted Rydberg states up to the region around the classical ionisation
threshold [1]. The results from this work have already been used in a collaborative
work on cold ion and electron sources based on Rydberg atoms as they have enabled
us to identify optically accessible states for this purpose [5]. Moreover, we have ex-
tended our numerical methods in order to predict the ionisation rates of states in this
regime [6], which allows for the identification of suitable states for this type of ap-
plications. Based on and extending this work, we have observed the dipole blockade
effect on various Rydberg states which were selected from the results of our numerical
calculations and we have applied a controlled ionisation scheme to these states [8].
This, in turn, can serve as an additional control parameter for the creation of single
ion sources from similar systems [60].

One of the key challenges for many of the aforementioned applications using Ryd-
berg atoms is that, besides the limited number of properties one would like to exploit,
there is still a countless number of other properties that make them undesirably sensi-
tive to environmental factors. However, several different approaches to overcome this
obstacle have already been implemented successfully. Probably the most obvious one
is to simply remove or at least limit the presence of these environmental factors, for
example by compensating external electric and magnetic fields via arrangements of
electrodes and coils [66, 67] or by working in a cryogenic environment to reduce BBR
[4, 68, 69]. Another approach is to dress Rydberg states using microwave fields so
that the dressed states become insensitive to external fields and interactions [70–72].

The work we present in this thesis opens up new ways to specifically select Rydberg
states which are insensitive to undesirable environmental factors and to simultane-
ously control their properties. The intricate spectra of highly Stark shifted Rydberg
states that we have investigated in our works [1, 6] allow for the identification of
states with decreased sensitivity to fluctuations or inhomogeneities of external elec-
tric fields, even beyond the regime of the classical ionisation threshold, as well as
states which are protected from coupling to other states by searching for small dipole
matrix elements between these states. Furthermore, our work regarding the MSE
[7] offers the perspective to provide similar concepts for Rydberg atoms moving in
magnetic fields as well as in crossed-fields configurations. Finally, the preparation
of Stark shifted Rydberg states with permanent electric dipole moments, undergoing
interatomic interactions followed by controlled ionisation, illustrates the practical use
of choosing suitable states for the experiment in our latest work [8].
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2 Stark shifted Rydberg states and
their dipole matrix elements

Rydberg atoms exhibit exaggerated properties as well as extreme sensitivity to inter-
actions with their environment due to the scaling laws of these atomic properties and
interactions with powers of the principal quantum number n [73]. One of these inter-
actions is the influence of static external electric fields on the atomic energy levels,
i.e. the DC Stark effect, which is often illustrated by the scaling of the polarisability
with n7. However, one should keep in mind that the polarisability only quantifies
the curvature of the parabola in the approximation of a quadratic Stark shift. This
scaling law is based on an estimate given by second order perturbation theory [9,
74], which only applies to some non-degenerate states in low fields. So, while the
scaling law of n7 may result in enormous estimates of the polarisabilities of some high
lying Rydberg states, the Stark effect can, in general, yield a wide range of different
shifts in sign and shape. It is this variety of peculiarities of the Stark effect that
require special attention in experimental situations, where inadvertent electric fields
may disturb the experiment, as well as situations, where the Stark effect is used to
intentionally tune atomic properties. The investigation of the DC Stark effect in a
controlled experimental environment and the prediction of Stark shifts via numerical
calculations were therefore the goal of the first work in this thesis [1].

For the theoretical treatment of the DC Stark effect on an atom in an external
homogeneous electric field FE we consider the Stark Hamiltonian

Ĥ = Ĥ0 + FEẑ, (2.1)

with Ĥ0 denoting the Hamiltonian of the atom in zero-field, which we will specify for
our calculations later in this chapter. We presume that the electric field is applied
along the z-axis. All equations that concern the theoretical treatment in this chapter
will be given in atomic units. From this simple way of writing down the Hamiltonian
Ĥ we can already see one of its key features. With Ĥ0 forming a potential well which
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2 Stark shifted Rydberg states and their dipole matrix elements

we may presume to be approximately coulombic for this purpose and the electric
field term diverging to −∞ in one direction, it becomes clear that the Hamiltonian Ĥ

formally has no bound states. Therefore, all states of this Hamiltonian couple to the
continuum to some extent and while this is mostly negligible for the considerations
in this chapter, we will revisit this topic later on (see Ch. 3).

It has already been shown in the 1970s that perturbation theory applied to this
Hamiltonian only results in an asymptotic series which does not converge. This means
that, for a given number of terms from the series and desired accuracy of the result,
one can find a maximum useful field strength, which decreases again for higher order
terms [75]. Therefore, the numerical method of representing the Hamiltonian Ĥ on
a subset of the basis given by Ĥ0 and calculating the Stark shifted eigenenergies of
this matrix representation is usually favoured over perturbation theory [76]. But even
though this numerical method has been in use since the 1970s, its applicability was
greatly extended in recent years with the development of more powerful computers
since the matrix representation of the Hamiltonian Ĥ requires a bigger basis for higher
principal quantum numbers and higher electric fields FE in order to obtain accurate
results.

For the representation of the Stark Hamiltonian Ĥ (see Eq. (2.1)) as a matrix we
use the energy levels relative to the ionisation energy, which are given by the Rydberg
formula

E(n, l, j) = − R87

(n− δ(n, l, j))2
, (2.2)

with the Rydberg constant R87 for 87Rb, for the entries of the diagonal zero-field
Hamiltonian Ĥ0 [9]. The quantum defects δ(n, l, j) are determined experimentally
[77–80]. We calculate the matrix representation of ẑ using

⟨
n, l, j,mj

⏐⏐ ẑ ⏐⏐n′, l′, j′,m′
j

⟩
=δmj ,m′

j
δl,l′±1 ⟨n, l, j | r |n′, l′, j′⟩

×
∑

ml=mj± 1
2

{⟨
l, s =

1

2
,ml,ms = mj −ml

⏐⏐⏐⏐ j,mj

⟩

×
⟨
l′, s =

1

2
,ml,ms = mj −ml

⏐⏐⏐⏐ j′,m′
j

⟩
× ⟨l,ml | cos θ | l′,ml⟩

}
(2.3)

from [76], where the result of the angular overlap integral in the fourth line can be
calculated analytically [81] and the second and third line are composed of Clebsch-
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Gordan coefficients. We employ the same energy levels as before (see Eq. (2.2)) to
numerically integrate the radial wavefunctions utilising a parametric model potential
[82] in order to determine the radial overlap integrals in the first line.

Following our use of this model potential in this work [1], our theory collaborator
Professor Schopohl has developed a modified effective single electron potential [2].
This development was spurred by the fact that recent variational calculations using
the aforementioned parametric model potential [83] and spectroscopic measurements
[77, 78] deviate significantly. The newly modified potential introduces a correction
to one of the parameters, which essentially governs the effective charge distribution
in the ionic core, as well as a spin-orbit term, which is cut off for the region inside
the ionic core. Thereby, this modified effective single electron potential correctly
describes the spectrum of Rydberg states on the fine-splitting scale.

For the calculation of the Stark spectra, we then diagonalise the complete ma-
trix representation of the Stark Hamiltonian numerically, not only calculating the
eigenvalues but also the eigenvectors β for all Stark shifted states. Thereby, we can
represent each Stark shifted state as a linear combination of eigenstates of the zero-
field Hamiltonian Ĥ0. We use this to calculate the dipole matrix elements between
the intermediate state 5P3/2 (see Fig. 2.1) and each Stark shifted Rydberg state ξ:

⟨
ξ
⏐⏐ r⃗ ⏐⏐ 5P3/2, F=3,mF

⟩
=

∑
n,l,j,mj

⟨ξ |n, l, j,mj⟩
⟨
n, l, j,mj

⏐⏐ r⃗ ⏐⏐ 5P3/2, F=3,mF

⟩
=

∑
n,l,j,mj

βn,l,j,|mj |
⟨
n, l, j,mj

⏐⏐ r⃗ ⏐⏐ 5P3/2, F=3,mF

⟩
. (2.4)

The x- and y-entries are calculated in a similar fashion as the z-entry (see Eq. (2.3))
using the numerically calculated radial overlap integrals and the analytical formulas
for the angular overlap integrals, which are replaced by the according terms for x and
y in spherical coordinates [81].

Using the same algorithms, we can then calculate dipole matrix elements between
the ground state 5S1/2 and the excited state 5P3/2. We combine them for all m′

F

substates of the ground state to calculate weighting factors

ηmF
=

∑
m′

F

⏐⏐ ⟨5P3/2, F=3,mF

⏐⏐ ε⃗pr⃗
⏐⏐ 5S1/2, F

′=2,m′
F

⟩ ⏐⏐2 (2.5)

for each mF substate of the excited state, taking into account the polarisation ε⃗p of
the probe laser. We then combine all of the above, also including the polarisation ε⃗c

7



2 Stark shifted Rydberg states and their dipole matrix elements

of the coupling laser, into a measure for the transition strength

D =
∑
mF

ηmF

⏐⏐ ⟨ξ ⏐⏐ ε⃗cr⃗
⏐⏐ 5P3/2, F=3,mF

⟩ ⏐⏐2. (2.6)

This quantity D can now be used to predict which Stark shifted states will be optically
accessible in the three-level ladder-scheme (see Fig. 2.1).

We compare the results from the numerical calculations to experimental data ob-
tained via an electromagnetically induced transparency (EIT) measurement in a va-
pour cell setup [12, 84–87]. The EIT measurement is performed in a three-level
ladder-configuration (see Fig. 2.1(a)) with the probe laser on resonance with the
transition between the ground and excited state at low Rabi frequency Ωp and the
coupling laser scanning across the transition between the excited state and Rydberg
states at high Rabi frequency Ωc. This results in increased transmission of the probe
laser when both lasers are on resonance, which is caused by Autler-Townes splitting
of the intermediate state |e⟩ and a Fano-like destructive interference of the excitation
paths |g⟩ → |e⟩ and |g⟩ → |e⟩ → |r⟩ → |e⟩ (see Fig. 2.1(a)) [84].

In the experiment, two frequency stabilised diode lasers counter-propagate through
a vapour cell which contains a plate capacitor (see Fig. 2.1(b)). A voltage is applied
to the plate capacitor to create an electric field FE that Stark shifts the Rydberg
states in the sample. The transmission of the probe laser through the rubidium
vapour is monitored using a photodiode and, in order to improve the signal-to-noise
ratio, a frequency-modulated lock-in technique is employed [1]. For this technique,
we modulate the intensity of the coupling beam using an acousto-optic modulator
(AOM) with a frequency, which is modulated as well. We demodulate on the carrier
frequency as well as two of the arising sidebands and average over these three signals.

The recorded EIT signal is then plotted in false colours against the coupling laser
detuning ∆c relative to the zero-field state and the electric field FE to create a Stark
map (see Fig. 2.2(a) and 2.3(a)). The results from the numerical calculations are plot-
ted for the same region and for |mj| = 1/2, 3/2 and 5/2 (see Fig. 2.2(b) and 2.3(b)),
because these are the only accessible states in the three-level ladder-scheme starting
from the 5S1/2 ground state due to dipole selection rules, i.e. ∆mj = 0,±1 for each
transition. The opacity of the lines is determined from the measure for the transition
strength D (see Eq. (2.6)). We find very good agreement of the energy levels from the
measured and numerically calculated results down to the experimental accuracy of
2MHz [1]. Furthermore, the intensity of the EIT signal from the experiment and the
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|g⟩ 5S1/2(F = 2)

|e⟩ 5P3/2(F = 3)

|r⟩ nS1/2, nD3/2, nD5/2
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Ωp, ωp, fp, λp≈780 nm

∆p
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Ωc, ωc, fc, λc≈480 nm

∆c

(b)

Dichroic
Mirror

Dichroic
Mirror

Photodiode

Plate
Capacitor

Cell

Figure 2.1: (a) Three-level ladder-scheme used for electromagnetically induced trans-
parency (EIT) and excitation to Rydberg states of 87Rb. Due to dipole
selection rules, only the depicted Rydberg states may be probed or excited
in this scheme. The left-hand sides of the energy levels are labelled with
the notation widely used in theory for the ground, excited and Rydberg
states and the right-hand sides are labelled with the matching states of
87Rb which are used in the experiments in the present work. The in-
dices p and c are used to label the according properties (decay rate Γ,
Rabi frequency Ω, transition angular frequency ω, transition frequency
f , detuning from the resonance ∆ and wavelength λ) of the probe and
coupling transitions, respectively. Please note that the detuning ∆ in this
thesis refers to a detuning in frequency and not angular frequency. It
may therefore differ by a factor of 2π from the detunings in some of the
included publications. The labels introduced in this figure will be used
throughout this thesis. (b) Schematic diagram of the central part of the
experimental setup for the measurement of Stark maps using EIT. The
lasers are overlapped to counter-propagate along the cell and through the
plate capacitor using the dichroic mirrors. The intensity and polarisation
of both laser beams can be adjusted independently. The volume of the
cell can be filled with rubidium vapour from a dispenser located to the
right of the part depicted here. For the measurement of the Stark spectra
(see Fig. 2.2 and 2.3) a voltage was applied to the plate capacitor and the
transmission of the probe beam through the cell was recorded using the
photodiode. Figure (b) taken from [1] and adapted for this thesis.

9



2 Stark shifted Rydberg states and their dipole matrix elements

predictions from the measure for the transition D show good qualitative agreement,
even in the ‘spaghetti region’ [88], where the spectrum exhibits an intricate tangle of
avoided crossings.

However, the agreement of the measure for the transition strength D with the
experimentally observed resonances deteriorates at higher electric fields (see Fig. 2.3),
especially near and beyond the classical ionisation threshold

Eion = −2
√

FE, (2.7)

which is determined from the position of the saddle point in the approximation of
the atomic potential by a Coulomb potential plus an external electric field

VC,E = −1

r
− FEz. (2.8)

In the original publication we have discussed that these discrepancies could be cor-
rected in the numerical calculations by using more accurate radial wavefunctions for
states with low angular momentum numbers l and by including a mechanism to sim-
ulate ionisation effects [1]. With the benefit of hindsight, we can now revisit this
topic and include the knowledge we have gained in our following work [6], where we
used the same method to calculate the radial wavefunctions but included ionisation
effects (see Ch. 3). It is therefore evident that ionisation effects constitute the main
contribution to this kind of deviations.

In a subtle way, this work [1] has close connections to our other works on the
all-optical detection of Rydberg state populations [3] and lifetimes [4]. Namely, our
numerical implementation of the theoretical model for the time evolution of Rydberg
state populations using a Lindblad master equation is built upon a shared code library
with our numerical calculations of Stark spectra. This code library includes functions
for zero-field energy levels, radial wavefunctions, radial and angular overlap integrals,
and Clebsch-Gordan coefficients. Thereby, each of our implementations that make
use of this code library has furthered its development with new functions and has led
to optimisations and refinements of the existing functions.

This work [1] presents a confirmation of the methods from [76] on a larger scale of
principle quantum numbers and electric field range as well as an extension by utilising
the dipole matrix elements to calculate the measure for the transition strength D.
With this, we have not only created a reference system for the measurement of elec-
tric fields in other experiments, but have also gained knowledge about the spaghetti
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Figure 2.2: (a) Experimental results of an EIT measurement for a Stark spectrum
near the unperturbed 35S1/2 state. The signal, which is plotted in gray
scale, is given by the transmission of the probe beam through the sample
in a lock-in measurement. Some lines appear dotted here because of the
experimental frequency resolution of 125MHz. The data shows the zero-
field resonance as a horizontal line since the plate capacitor does not cover
the full optical path of the lasers through the cell. (b) Numerically calcu-
lated energy levels for the same region of the spectrum. The calculation
was performed for |mj| = 1/2 (red), |mj| = 3/2 (green) and |mj| = 5/2
(blue). The opacity of the lines is determined from the calculated tran-
sition strength D (see Eq. (2.6)). The comparison between (a) and (b)
shows agreement of the energy levels down to the experimental frequency
resolution as well as the transition strengths. Figures (a) and (b) taken
from [1] and adapted for this thesis.
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2 Stark shifted Rydberg states and their dipole matrix elements

(a)

250 275 300 325 350 375 400 425 450
−20

−15

−10

−5

0

5

Electric Field FE [V/cm]

D
et

un
in

g
∆

c
[G

H
z]

(b)

250 275 300 325 350 375 400 425 450
−20

−15

−10

−5

0

5

Electric Field FE [V/cm]

D
et

un
in

g
∆

c
[G

H
z]

Figure 2.3: (a) and (b) are continuations of the respective subfigures of Fig. 2.2. The
orange line in (a) indicates the classical ionisation threshold according to
Eq. (2.7). In this high field region, the resonances in the experimental
data show significant broadening beyond the classical ionisation threshold
due to the ionisation rate. At the same time, we find that all resonances
we observe in the experimental data are also still present in the results
from the numerical calculations but not vice versa. The states we do
not observe experimentally are states with such high ionisation rates that
their signal disappears in the noise. Figures (a) and (b) taken from [1]
and adapted for this thesis.
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region of the Stark maps. The spaghetti region should therefore not be seen as an
uncontrollable tangle of states any more, but rather as an opportunity to pick and
tailor Stark shifted states to experimental needs. From the numerical calculations
we can choose states according to their energy levels and level splittings, as well as
the transition strengths to other states and their sensitivity to external electric fields
and their polarisability. We have applied our numerical methods in a collaborative
work with the group of Professor Scholten [5], where Stark shifted Rydberg states just
below the classical ionisation threshold have been studied for their use in sources for
high-brightness, highly monochromatic electron and ion beams. Furthermore, we can
control the aforementioned properties using the external electric field, for example
to efficiently excite to a Stark shifted state and then tune it to a state with only a
small dipole matrix element and therefore vanishing decay rate to the 5P3/2 state,
rendering it a state similar to a ‘dark state’.
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3 Ionisation spectra beyond the
classical ionisation threshold

In the previous chapter we have investigated the Stark effect on rubidium Rydberg
states from zero-field up to the region around the classical ionisation threshold [1].
We have seen that by calculating the dipole matrix elements between Stark shifted
Rydberg states and the intermediate state 5P3/2 we can compute a measure for the
transition strength D (see Eq. (2.6)) that allows us to predict, which states in the
Stark map will be optically accessible. However, the high field region of the spectrum
starting around the classical ionisation threshold (see Eq. (2.7)) is governed by the
coupling of states to the continuum, via tunnelling through the Coulomb barrier or
directly, where the barrier already opens. On the one hand, this means that the
linewidth of resonances in this region is dominated by the ionisation rate and that a
high ionisation rate may render resonances optically inaccessible. But on the other
hand, a precise knowledge of these spectra can be used to gain improved control over
the ionisation process, e.g. to trigger ionisation on purpose for detection schemes or
to stabilise atoms in excited states by keeping their ionisation rate low.

A well known method which can be used for the calculation of ionisation rates of
hydrogen and hydrogen-like atoms is the method of complex rotation (CR), which is
also referred to as the method of complex coordinates [88–90]. The basic idea of this
method is to ‘rotate’ the coordinates of the Hamiltonian into the complex plane by
substituting r̂ → r̂ · exp(iθ) and p̂ → p̂ · exp(−iθ), using the rotation angle θ [89].
The opposing signs in the exponents assure that the commutator relation remain
unchanged. The substitution makes the Hamiltonian non-Hermitian. Its eigenvalues
may therefore be complex and can be interpreted as the energy levels and coupling
rates to the continuum [89]. In order to find the correct value of θ in a numerical
calculation on a limited set of states, one can vary θ for each resonance and map
out ‘θ-trajectories’, which exhibit stationary points near resonances. The stationary
point marks the value that is then chosen for θ at this resonance. This variational
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3 Ionisation spectra beyond the classical ionisation threshold

process generally has to be performed separately for each resonance in the spectrum,
making this method computationally very expensive because of the large number of
resonances we usually observe in a Stark map (see Ch. 2).

Another method, which bears certain similarities to CR, but may be perceived as
more illustrative, is the utilisation of a complex absorbing potential (CAP) [91–94].
For this method, a term of the form −iηW (r⃗) is added to the original Hamiltonian,
which renders it non-Hermitian in a way similar to CR. The free parameter η is
generally varied for each resonance in a similar fashion as θ for CR to find stationary
points of the complex energy eigenvalues. This presents us with the same difficulty
as with CR, namely the high computational expense due to the large number of
resonances. However, in our publication [6] we have shown that we can choose a
CAP, which is adapted to the Stark Hamiltonian and which allows us to work with
one constant value of η for all resonances across the whole range of the external
electric field FE in an energy region, which spans principle quantum numbers of at
least ∆n = ±1 [6].

We start from the same Stark Hamiltonian Ĥ as before (see Eq. (2.1)) and add the
CAP to it

ĤCAP = Ĥ − iηW (r̂, FE) (3.1)

with the free scaling parameter η ∈ R+. In general, the CAP can be chosen freely
within certain limits [92]. However, here we chose the shape of the CAP as

W (r̂, FE) = Θ(r̂ − rc(FE)) · (r̂ − rc(FE))
6. (3.2)

This potential resembles an r6 shape that is radially shifted by rc using the Heaviside
function Θ [92, 93, 95]. We adapt the radius for the shift

rc(FE) =
1√
FE

(3.3)

with the external electric field FE to represent the radius of the saddle point of the
potential VC,E (see Eq. (2.8)). Thereby, the r6 scaling of the potential radially starts
at the saddle point for each value of the external electric field FE (see Fig. 3.1). The
general idea of a CAP is that it froms absorbing boundaries, meaning that it absorbs
the wavefunction in an ‘outside’ region of the original Hamiltonian (see Eq. (2.1) and
(3.1)) without introducing reflections [91, 92]. Our choice for the CAP is adjusted
to the external electric field FE via the radial shift rc(FE) (see Eq. (3.3)), because
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we can graphically interpret this radius as the limit between the ‘inside’ and the
‘outside’ region of the atom (see Fig. 3.1). In effect, this means that we absorb the
wavefunction only in this ‘outside’ region for each value of the external electric field
FE.

For the numerical calculation, we represent the CAP Hamiltonian HCAP, including
W , as a matrix using similar methods as for the regular Stark Hamiltonian (see
Ch. 2). We calculate its entries using the same radial wavefunctions as for the matrix
representation of the ẑ-operator (see Eq. (2.3)). We vary the free parameter η for
exemplary values of the electric field FE and then fix it to one value, which is used
for all resonances calculated on the previously chosen subset of the basis given by Ĥ0.
It is convenient to choose the first exemplary value of the electric field FE near the
classical ionisation threshold (see Eq. (2.7)) to determine a rough order of magnitude
for η. Further exemplary values can then be picked at higher values of the electric field
to determine η more precisely. Since the CAP Hamiltonian ĤCAP is non-Hermitian,
diagonalisation may yield complex eigenvalues of the form

Ec = Er − i
Γion

2
. (3.4)

We interpret the real part of these complex numbers as the Stark shifted energy
levels Er and the imaginary part as the ionisation rate Γion [94]. We also calculate
the eigenvectors and use them to obtain the measure for the transition strength D as
described in Ch. 2. Combining all of this, we can then compute a Lorentzian curve

I(E) =
D

π
· Γion

Γ2
ion + (E − Er)2

(3.5)

against the energy E for each resonance, which are all summed up to create a diagram
that resembles the ionisation spectrum (see Figs. 3.2(b), 3.3(b) and 3.4(b)).

In order to verify the results from these numerical calculations we have conducted
an experiment in which we excite rubidium atoms to Rydberg states in the presence
of an electric field and count the arising ions. In the experiment, we continuously
load a magneto-optical trap (MOT) from a dispenser and shine in a coupling beam,
which is focussed to a light sheet (see Fig. 3.1). Together, the MOT beams and the
coupling beam implement the three-level ladder-scheme for the excitation to Rydberg
states (see Fig. 2.1(a)). The plane of the light sheet is chosen to be perpendicular to
the direction of the electric field, which is created by the extractor electrodes. The
electric field serves two purposes here: on the one hand it imposes the Stark effect onto

17



3 Ionisation spectra beyond the classical ionisation threshold

(a)

VC,E

W

rc

Eion

z

V (z)

(b)
MOT
Beams

Coupling
Beam

Extractor
Electrodes

Ion
Optics

Figure 3.1: (a) Illustration of our choice of the complex absorbing potential (CAP).
The red curve represents a Coulomb potential with an external electric
field (see Eq. (2.8)). From this potential VC,E we can easily determine the
radial position rc (black dashed line) of the saddle point, which appears
as a local maximum along the z-axis here. The energy of the saddle point
marks the classical ionisation threshold Eion (green dashed line). The po-
tential W that we have chosen for the CAP in this work (see Eq. (3.2))
is depicted in blue. The shape of W follows an r6 potential which starts
at the radial position of rc. Graphically speaking, we thereby create a
CAP which is zero ‘inside’ the atomic potential and radially diverges on
the ‘outside’. (b) Schematic diagram of the central part of the experimen-
tal setup. In the centre of a vacuum chamber, we load rubidium atoms
into a magneto-optical trap (MOT). We apply a voltage to the extractor
electrodes to create an approximately homogeneous electric field at the
position of the atoms. The three-level ladder-scheme for the excitation to
Rydberg states (see Fig. 2.1) is realised by the MOT beams (red) for the
probe transition and the coupling beam (blue), which is focused to form
a light sheet, for the coupling transition. The electric field serves to Stark
shift the excited Rydberg atoms as well as to guide the emerging ions to
the ion optics. Figures (a) and (b) taken from [6] and adapted for this
thesis.
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Figure 3.2: Measured and numerically calculated ionisation spectrum near 70S1/2. In
this energy region, the classical ionisation threshold (see Eq. (2.7)) is at
Fion ≈ 16.1V/cm. (a) The diagram shows the ion count rate from the ex-
periment in false colours. The experimental data has been scaled linearly
to match the electric field axis to the numerically calculated results. (b)
The plot shows the matching results from the numerical calculations. The
false colours are determined by summing up the Lorentzian curves accord-
ing to Eq. (3.5). For the numerical calculations, we have used a basis size
of ≈10 000 and have carried out a variation of the free parameter η for
exemplary values of the electric field and thereby ended up with a value
of η = 2× 105, which was fixed for all results shown in Figs. 3.2, 3.3 and
3.4. We find good agreement between the experimental and theoretical
results in this region. In particular, the broadening of the resonances as
we cross the classical ionisation threshold as well as the appearance and
disappearance of resonances along the electric field are well reproduced
by our numerical model. Figures (a) and (b) taken from [6] and adapted
for this thesis.
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3 Ionisation spectra beyond the classical ionisation threshold
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Figure 3.3: (a) and (b) are continuations of the respective subfigures of Fig. 3.2. In
this region we find that the resonances get generally even broader due to
the increased ionisation rates. The good general agreement we found for
the data in Fig. 3.2 still holds in this region. Figures (a) and (b) taken
from [6] and adapted for this thesis.
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Figure 3.4: (a) and (b) are continuations of the respective subfigures of Fig. 3.3. It
is remarkable that, even in this high field region, we can still identify
and predict narrow resonances like the one at FE ≈ 29.3V/cm and ∆c ≈
0.3GHz. However, the general agreement slightly deteriorates in this
region. One likely cause for these discrepancies is that the Lorentzian
curves we use to create the false colour plot of the numerically calculated
data do not approximate the actual lineshapes well enough. We observe
‘anti-resonances’ in (a) where our numerically calculated spectrum in (b)
shows narrow resonances, like the group of three that cross from −1GHz
to 2GHz in the electric field range from 27.5V/cm to 28.5V/cm. This
kind of feature could indicate Fano resonances. Figures (a) and (b) taken
from [6] and adapted for this thesis.
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3 Ionisation spectra beyond the classical ionisation threshold

the atoms and on the other it extracts the ions, which emerge due to autoionisation
as well as direct photoionisation, from the MOT region and guides them to the ion
optics. In general, this ion microscope offers spatially resolved detection [96], but
here we only use it to count the ions which arrive at the detector for a given detuning
of the coupling laser ∆c relative to the zero-field state and electric field FE.

From the comparison of the experimental data to the numerically calculated results
we find good general agreement across the whole range depicted in Figs. 3.2 to 3.4,
and beyond [6]. As the electric field crosses the classical ionisation threshold at
Fion ≈ 16.1V/cm for 70S1/2 (see Eq. (2.7) and Fig. 3.2) there is a general broadening
of states due to increased ionisation rates. The broadening of states continues, as one
would expect due to the opening of the Coulomb barrier, as the electric field increases
in Figs. 3.3 and 3.4. However, there are still remarkably narrow resonances, down
to and below the experimental frequency steps of 25MHz, in the high field range
of Fig. 3.4. This means that, even in this regime, we can identify states which are
optically accessible with lifetimes up to the order of microseconds.

In the high field region we find an interesting set of deviations between our ex-
perimental results and the calculated spectra of Fig. 3.4. Namely, some resonances
from the numerical calculations appear to be present in the measured data but with
a negative sign, i.e. like a suppression of ionisation within the background of ions
from photoionisation (see for example the three resonances in the field range from
27.5V/cm to 28.5V/cm crossing the whole spectrum in Fig. 3.4). Some of these reso-
nances also exhibit an asymmetric lineshape, for example the lowest one in frequency
of the aforementioned set of three. These different kinds of lineshapes indicate that
what we are observing could be Fano resonances. Indeed, our system closely resem-
bles the original description of Fano [97] and other groups have already reported on
Fano resonances in similar systems [98–100]. We start from a low lying state that is
coupled to a narrow state, i.e. a Stark shifted Rydberg state in our case, via the laser
light and this excited state can couple to a continuum. At the same time, there is a
direct coupling from the lower state to the same continuum. In our system, we can
interpret this as interference between two ionisation paths, which are excitation to
the Stark shifted Rydberg state followed by autoionisation on the one hand and di-
rect photoionisation from the low lying state on the other. However, a full theoretical
Fano-treatment of the present system would require taking into account the overlap
of all broad and narrow states in the high field region, since the ionisation paths
through all overlapping states could, in principle, interfere, and such an extension of
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our numerical methods is therefore beyond the scope of this work.

Altogether, the ionisation spectra which we have calculated using the CAP and
observed experimentally mark an important step on the way to complete control over
the autoionisation process of highly Stark shifted Rydberg states. We can now use
the calculated spectra, which naturally span a larger energy range than shown here
for the comparison to the experimental data, in order to look for states that exhibit
desirable properties for further experiments. For example, we can choose a narrow
resonance with small sensitivity to the electric field FE, which can therefore be easily
addressed optically. After we excite to this state, we can then increase the ionisation
rate in a controlled way by switching the electric field FE by a properly chosen small
value (see Ch. 5). The calculated ionisation spectra can also be used for the selection
of slowly ionising states for experiments near a superconducting chip surface, where
electric fields are always present due to adsorbates [13–16], as well as to create sources
of cold electrons and ions for microscopy purposes [61, 62, 64, 65]. Especially in the
latter example, the existing schemes for controlled ionisation may benefit greatly from
the ionisation spectra we can now calculate using the CAP method presented in this
publication [6].

Furthermore, the possible Fano resonances we have found in the experimentally ob-
served spectra could present even more advanced possibilities for the aforementioned
applications, as a specifically chosen Fano resonance could enable switching between
constructive and destructive interference between the two paths of direct photoioni-
sation and excitation followed by autoionisation. Therefore, this could be seen as an
‘on/off’-switch for ionisation in contrast to the changes in the ionisation rate we have
shown (see also Ch. 5). Also, to the best of our knowledge, our method of adjusting
the CAP to the external electric field is the first instance of a CAP that is adapted to
the physical situation well enough to enable the calculation of numerous resonances
using only one fixed value of the free parameter η. In comparison to the conventional
application of a CAP, this means that our field-adjusted CAP does not require a
variation of η for every resonance and therefore saves a lot of computational power.
Therefore, our method enables the study of spectra on the scale we have shown here
for the first time.

As a step of taking the results from our calculations to the next level, one could use
the energy levels and ionisation rates to calculate the time evolution of the population
of Rydberg states in the presence of an electric field ramp, i.e. simulate selective field
ionisation (SFI). Other groups have already performed similar calculations [101, 102]
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3 Ionisation spectra beyond the classical ionisation threshold

using a semiempirical formula for the ionisation rates [103]. A major drawback of
this method is that the calculation of each timestep requires transformations of the
Stark shifted states between the fine-structure basis and the parabolic basis, i.e.
the basis in which the wavefunction is represented in parabolic coordinates [101]. In
contrast, our numerical method using the field-adjusted CAP directly yields ionisation
rates for each Stark shifted state and could therefore be used to greatly reduce the
computational expense of simulations of SFI. However, as the CAP method works
with a non-Hermitian Hamiltonian, its application to time evolution calculations is
still challenging and may require a more fundamental theoretical treatment.
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4 Motional Stark effect of Rydberg
states in small magnetic fields

A particle moving at a velocity v⃗ in a magnetic field B⃗ is subject to a Lorentz electric
field

F⃗L = v⃗ × B⃗ (4.1)

in its frame of reference (see Fig. 4.1). For a negatively charged electron and a
positively charged ionic core forming an atom, this results in forces of opposing signs
and therefore has an impact on the atomic spectrum. It is evident that, even though
the Lorentz electric field may be small, we can use the high sensitivity of Rydberg
states to observe its effect on the atomic energy levels, i.e. the motional Stark effect
(MSE). As the Lorentz electric field is still accompanied by the magnetic field in the
reference frame of the moving atom, we can expect to see spectra with similarity to
crossed electric and magnetic fields at zero velocity.

A thorough theoretical explication of the system has been given by our theory
collaborator Professor Schopohl in our joint publication [7]. It is based on a two-
particle Hamiltonian for the ionic core and the electron. One of the predictions
which arise from this theory is, that the atom velocity v⃗A is not only given by the
center-of-mass momentum P⃗ but also includes a correction term:

v⃗A =
1

M

(
P⃗ +

e

2
B⃗ × r⃗

)
=

P⃗

M
+ v⃗corr. (4.2)

Consequently, this means that the collective motion of the atom is coupled to its
internal degrees of freedom. This correction to the velocity was too small to play
a role in the region of study in our publication [7], but we have given an estimate
that it should become crucial for the same magnetic field at higher principle quantum
numbers n. We are now convinced that this is not the case and that the correction
to the atomic velocity may be much more difficult to observe in rubidium after all.
By rewriting the correction term v⃗corr we can give an estimate for the separation that
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4 Motional Stark effect of Rydberg states in small magnetic fields

B⃗

v⃗A

B⃗F⃗L

Figure 4.1: Illustration of a Lorentz electric field F⃗L. We consider an atom, which
is moving with a velocity v⃗A in a magnetic field B⃗ in the laboratory
frame (left hand side). In the frame of reference of the moving atom
(right hand side), the Lorentz transformation results in an electric field
F⃗L perpendicular to the direction of both, the velocity v⃗A and the magnetic
induction field B⃗. Figure taken from [7] and adapted for this thesis.

would be required between the ionic core and the electron

|r⃗| = 2M

e|B⃗|
|v⃗corr| ≈ 1.8 cm, (4.3)

using the atomic mass of 87Rb, i.e. M = 87 u, the elementary charge e, the magnetic
field |B⃗| = 100G, and a desired correction to the velocity of |v⃗corr| = 100m/s. This
means that the electron would have to be separated from the ionic core by ≈1.8 cm

on average, which is unrealistic to achieve, even for very high lying and strongly
Stark shifted Rydberg states of rubidium. However, for lighter elements like lithium
with M = 7u the detection of the correction may come into reach on the order of
|v⃗corr| = 10m/s at high magnetic fields |B⃗| = 1T as we find |r⃗| ≈ 1.5 µm, which may
be achievable.

Since the correction term |v⃗corr| is well below 10mm/s for Rydberg states of 87Rb

with principal quantum number n = 100 in magnetic fields of |B⃗| = 100G, we can
neglect it in the following numerical calculations. We use the same routines as before
(see Ch. 2), but for the crossed-fields Hamiltonian [9]

ĤMSE = Ĥ0 + |e|ˆ⃗r · F⃗E +
µB

~

(
gL

ˆ⃗
L+ gS

ˆ⃗
S + gI

ˆ⃗
I
)
· B⃗ +

|e2|
8m

(
B⃗ × ˆ⃗r

)2

(4.4)

with the Bohr magneton µB, the operators for angular momentum ˆ⃗
L, spin ˆ⃗

S and
nuclear spin ˆ⃗

I, and the respective g-factors gL, gS and gI . We choose the magnetic
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field in z-direction and the electric field along the x-axis, i.e. the electric field F⃗E

is given by the Lorentz electric field F⃗L = |v⃗A||B⃗|êz with the atomic velocity v⃗A in
y-direction. The numerical calculation then works similar to the one we used for the
Stark effect (see Ch. 2) with some additional terms containing the x̂ and ŷ operators
[81]. However, due to these differences as compared to the Stark effect, the matrix
representations cannot be separated for different values of |mj| any more (see Ch. 2)
but only for the parity ±1 of the states with respect to the x-y-plane [104, 105].
Therefore, the matrix representation of the Hamiltonian can only be separated into
two sub-matrices for the parity, which include states with all values of mj. Because
of this, the computational effort for the calculation of the MSE is considerably higher
than for the Stark effect.

For the experiment, we have used a similar setup as in Ch. 2, but with an oven
enclosing the cell, which allows us to heat the cell to T ≈ 50 ◦C to increase the den-
sity of the atoms and to broaden the Maxwell-Boltzman distribution of the atom
velocities. We also use a pair of coils in Helmholtz configuration to create a ho-
mogeneous magnetic field. The probe and coupling beam are counter-propagating
through the cell and the transmission of the probe beam is detected on a photodiode
using a frequency-modulated lock-in technique like in the previous experiment (see
Fig. 2.1(b)). We deliberately make use of the Doppler shift in this experiment by
detuning both lasers according to the condition

∆p +∆c = vA

(
fp − fc

c

)
. (4.5)

This combined detuning of both lasers relative to a given resonance of the zero-velocity
class effectively allows us to select from a wide range of velocities up to vA ≈ 600m/s.

In a first experiment, we have recorded EIT spectra near the state 100D5/2 in the
presence of a magnetic field of B = 98G, which was calibrated using a Hall probe,
for the velocity classes vA = 0m/s and vA = 390m/s (see Fig. 4.2(a)). From the
relative shift of the spectra for these two velocity classes we can evaluate a motional
Stark shift of 10MHz, corresponding to a Lorentz electric field FL ≈ 0.038V/cm. A
comparison of this measured shift as well as the absolute positions of the resonances
on a detailed part of the spectra to the results from our numerical calculations show
very good agreement within the experimental frequency accuracy of ≈2MHz (see
Fig. 4.2(b)). As a reversal test to show that the shifts we are observing really are
caused by the MSE, we have conducted the same experiment as before but with the
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4 Motional Stark effect of Rydberg states in small magnetic fields

magnetic field in parallel to the selected velocity, i.e. in parallel to the optical axis.
Since this situation always results in a Lorentz electric field of FL = 0V/cm (see
Eq. (4.1)), we expect to see no motional Stark shift. And, indeed, this is what we
observe in the experiment (see Fig. 4.2(c)). However, we do find an asymmetry of the
resonances in this case, which could be caused by velocity components perpendicular
to the selected velocity component, i.e. perpendicular to the optical axis, or by an
inhomogeneity of the magnetic field in this measurement.

We have then investigated the dependence of the motional Stark shift on the ve-
locity vA by evaluating the positions of two resonances for a set of different velocity
classes (see Fig. 4.3(a)). For this, it is important to bear in mind that, due to the
MSE, not only a shift of the energy levels but also a change of the dipole matrix
elements between the intermediate state 5P3/2 and the Rydberg states occurs, just
like for the conventional Stark effect (see Ch. 2). As this causes the intensity of one
of the two resonances to diminish and the intensity of the other to increase for higher
velocities vA, we can only evaluate one of the two for each velocity class. Given
this slight limitation, the evaluated positions of the resonances still agree very well
with the motional Stark shifted resonances we obtain from our numerical calcula-
tions. Furthermore, we have conducted another experiment using the velocity classes
vA = 0m/s and vA = 390m/s to observe the magnetic field dependence of the mo-
tional Stark effect (see Fig. 4.3(b)). Again, we find that the energy levels of the
resonances that we have been able to evaluate from the experimental data agree very
well with the results from the numerical calculations.

Altogether, the excellent agreement between the measured spectra and the numer-
ically calculated energy levels across all of these measurements shows the practical
use of our numerical approach using the crossed-fields Hamiltonian in the regime of
this work [7]. To the best of our knowledge, it also marks the first observation of
the MSE in low magnetic fields using Rydberg states. Future work may extend these
studies to systems of Rydberg atoms moving in crossed electric and magnetic fields,
for example to compensate the Lorentz electric field by an additional external electric
field or vice versa. Furthermore, the present work implies even greater effects, includ-
ing the correction term for the atom velocities (see Eq. (4.2)) and thereby coupling
of the atomic motion to the internal degrees of freedom, for Rydberg states of light
atoms like helium [55] or positronium [106].
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Figure 4.2: (a) Experimental results of EIT spectra near the unperturbed 100D5/2

state for different velocity classes. Both spectra have been recorded for
a magnetic field of B = 98G. The black dots correspond to atoms at
rest, i.e. vA = 0m/s, and the red triangles to atoms at vA = 390m/s. By
comparing the two spectra, we find a motional Stark shift of ≈10MHz,
which is caused by a Lorentz electric field of FL ≈ 0.038V/cm. (b)
Detailed part of the spectra from (a). The arrows mark the resonances we
obtain from our numerical calculations, which agree with the experimental
results to within the frequency accuracy of ≈2MHz. (c) EIT spectra for
atoms moving in parallel to the magnetic field for the same velocity classes
as in (a). We observes no significant motional Stark shift, only a slight
asymmetry to the left hand side of the peaks, which is probably caused
by velocity components perpendicular to the optical axis. Figures (a), (b)
and (c) taken from [7] and adapted for this thesis.
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4 Motional Stark effect of Rydberg states in small magnetic fields
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Figure 4.3: (a) Velocity dependence of the motional Stark shift for two resonances
near the unperturbed 100D5/2 state. The purple and blue dashed lines
depict the results from our numerical calculations and the purple square
and blue diamond marks show the experimentally observed shift. We
evaluate two neighbouring resonances here, because as the motional Stark
shift increases a change in the dipole matrix elements also changes the
intensity of the EIT signals. (b) Magnetic field dependence of the motional
Stark shift for resonances near the unperturbed 100D5/2 state. The colours
black and red correspond to the velocity classes vA = 0m/s and vA =
390m/s, respectively. The solid and dashed lines show the results from our
numerical calculations. The marks with error bars depict the resonances
that we were able to evaluate from the experimental spectra. Figures (a)
and (b) taken from [7] and adapted for this thesis.
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5 Dipole blockade of highly Stark
shifted Rydberg states

Probably the most striking effect that is caused by electrostatic interactions between
Rydberg states is the Rydberg blockade [41]. This effect arises when the atomic
interactions between a first Rydberg atom and a Rydberg state of a neighbouring atom
become strong enough to shift the Rydberg state of the second atom out of resonance
with the excitation laser. In simple terms, the presence of a first excited atom in a
sample prohibits the excitation of other atoms in its vicinity. In general, the Rydberg
blockade can be induced by van der Waals as well as dipole-dipole interactions [107–
110]. In this work, we have focussed on the latter type of interactions and have
investigated how we can control them by an external electric field in highly Stark
shifted Rydberg states [8].

Here we use the results from our previously developed numerical methods (see
Ch. 3) to choose suitable states for our experiments. These states should have low
ionisation rates, i.e. lifetimes on the order of at least microseconds, various permanent
electric dipole moments, in order to exhibit dipole-dipole interactions of different
strengths, and it should be possible to ionise them in a controlled way. Our choices of
such states in the spectral region near the unperturbed 43S1/2 state are illustrated in
Fig. 5.1. These states have in common that we can transfer them to states with high
ionisation rates on the order of Γion ≥ 10MHz by ramping up the external electric
field FE by just ≈1V/cm within ≈1µs.

For the following experiments we have used the same setup as in Ch. 3. In a
first experiment, we have verified the calculated ionisation rates of one of the chosen
states experimentally (see state number 1 in Fig. 5.1). We excite the atoms to the
Stark shifted Rydberg states by using the MOT lasers for the lower transition and
pulsing the coupling laser, which is again focussed to a light sheet, for the upper
transition in the three-level ladder-scheme (see Fig. 2.1(a)). For each excitation pulse
we record the time evolution of the ion signal and can thereby obtain the ionisation
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5 Dipole blockade of highly Stark shifted Rydberg states
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Figure 5.1: Numerically calculated ionisation spectrum near 43S1/2. The false colours
are determined using our CAP method (see Ch. 3) and the colour of the
solid lines show the ionisation rates of the underlying states from low
(white) to high (red). The numbers 1, 2 and 3 indicate the states that we
later excite the atoms to in the experiment (see Fig. 5.3). We can then,
by changing the external electric field FE, transfer the atoms to ionising
states which are marked by the arrows with delimiters. Figure taken from
[8] and adapted for this thesis.
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rate from its decay. A comparison of the results from this measurement to our
numerically calculated ionisation rates (see Ch. 3) shows good general agreement
(see Fig. 5.2(a)). However, we find that the highest ionisation rates we measure in
this region are slightly higher than the predictions from our numerical calculations.
One reason for this deviation could be that our model does not take into account
any other environmental factors that can alter the ionisation rates like black body
radiation. Another possible reason is, that the shape of our CAP and the value we
have determined for η are not fully optimised for this particular resonance.

In the main part of the experiment, we now made use of the spatial resolution of
our ion microscope [96] in order to characterise the Rydberg blockade of the excited
states. For this we excite atoms from the MOT by pulsing the coupling laser, which
is tuned together with the electric field FE to one of the three numbered states from
Fig. 5.1. The electric field is then switched to the matching values indicated by the
arrows with delimiters within ≈1 µs to rapidly increase the ionisation rate. The ions
are then spatially detected by the ion microscope with a magnification of 1129. The
acquired image from each pulse is then evaluated using the spatial correlation function

g(2)(u, v) =
⟨⟨f(x+ u, y + v)f(x, y)⟩⟩x,y

⟨⟨f(x+ u, y + v)⟩⟩x,y⟨⟨f(x, y)⟩⟩x,y
, (5.1)

with the detector function f(u, v) and the displacement coordinates u and v. We can
write the detector function as

f(x, y) =
N∑
i=1

δ(x− xi)δ(y − yi), (5.2)

with the coordinates xi and yi of each of the N ions that are detected after one pulse of
the coupling laser. The resulting spatial correlation function g(2)(u, v) for resonance 1
from Fig. 5.1 is shown in Fig. 5.2. From this evaluation we can already observe the
blockade effect as a circular region around g(2)(0, 0) with g(2)(u, v) < 1. In theory,
the spatial correlation function should go down to zero for a fully blockaded sample,
but due to the finite beam waist of the light sheet (≈9µm) the excitation region is
not perfectly two dimensional.

We now calculate the radial mean of the spatial correlation function g(2)(u, v) for a
quantitative analysis of the blockade radii. The result of this is depicted in Fig. 5.3(a)
for resonance 1 from Fig. 5.1 and in Fig. 5.3(b) for resonances 2 and 3. In all three
cases, we observe the blockade effect in the radial average. From this experimental
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Figure 5.2: (a) Comparison of measured (black dots) and numerically calculated (red
line) ionisation rates following the resonance from number 1 to the arrow
with delimiter in Fig. 5.1. While we find good general agreement at
lower ionisation rates, our theory seems to slightly underestimate the
higher ionisation rates. (b) Spatial correlation function g(2)(u, v) of the
detected ions in false colours (see Eq. (5.1)). For this measurement, the
atoms were excited to the state marked by the number 1 in Fig. 5.1 and
then transferred to the strongly ionising state marked by the arrow with
delimiter by switching the electric field FE. In the centre we observe a
drop of the spatial correlation function to values below 1, which indicates
the Rydberg blockade. Figures (a) and (b) taken from [8] and adapted
for this thesis.
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data we estimate blockade radii of 9µm for resonance 1, 12µm for resonance 2 and
2 µm for resonance 3. The strong change of the blockade radius between resonance 2
and 3 illustrates how we can control the blockade effect and therefore dipole-dipole
interactions between these highly Stark shifted Rydberg states simply by means of a
small change of the external electric field FE.

We can compare the blockade radii, which we have estimated from the experimental
data, to calculated values from a simple theoretical estimate. We consider the block-
ade radius rb as the radius, where the energy shift ∆W caused by the dipole-dipole
interaction exceeds the linewidth δνL, resulting in the condition

~2πδνL = ∆W (rb). (5.3)

Here, the linewidth δνL can be either the laser linewidth or the linewidth of the
resonance, whichever is broader. The dipole-dipole interactions cause an energy shift
given by [107]

∆W =
1

4πϵ0

p2z
R3

(1− 3 cos2Θ) (5.4)

with the interatomic distance R, the polar angle Θ and the permanent electric dipole
moment pz, which we can obtain from our numerical calculations from the derivative
of the Stark shifted energy levels as a function of the electric field FE. Using an
estimated linewidth of δνL = 5MHz for the MOT transition, we obtain theoretical
blockade radii of 4.5µm for resonance 1, 12.5µm for resonance 2 and 2.6 µm for
resonance 3, which are marked as dashed vertical lines in Figs. 5.3(a) and (b). While
these values agree well with the measured blockade radii for resonances 2 and 3, we
observe a deviation for the blockade radius of resonance 1. This deviation could
be caused by effects besides dipole-dipole interaction, which we have not taken into
account here, for example second-order van der Waals interaction or an enhancement
of the interaction by resonant energy transfer [107].

In summary, the novelty of this work [8] is twofold. Firstly, we have demonstrated
a controlled ionisation scheme, which was enabled by our numerical method using a
CAP (see Ch. 3). We have shown here that this scheme offers timed control over the
ionisation rate via the external electric field FE. It may therefore complement the
method of selective field ionisation (SFI), which is usually implemented for Rydberg
states starting from zero-field or the low field region by rapidly ramping up the elec-
tric field to values well beyond the classical ionisation threshold with simultaneous
time-resolved ion detection. In contrast to SFI, our present method can be applied
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Figure 5.3: (a) Radial average of the spatial correlation function g(2)(u, v) from
Fig. 5.2(b), i.e. for resonance 1 in Fig. 5.1. The dashed vertical line
marks the blockade radius that was calculated using Eq. (5.3). (b) The
red and blue solid lines show the radial average of the spatial correla-
tion function g(2)(u, v) for resonances 2 and 3 from Fig. 5.1, respectively.
The dashed vertical lines in matching colours again mark the calculated
blockade radii. Figures (a) and (b) taken from [8] and adapted for this
thesis.
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in experiments using Rydberg states near or beyond the classical ionisation threshold
and allows for a similar degree of state selectivity while at the same time allowing to
go back and forth adiabatically between different ionisation rates. Secondly, by eval-
uating the spatial correlation function g(2)(u, v), we have shown that we have control
over the permanent electric dipole moments and therefore dipole-dipole interactions
of these highly Stark shifted Rydberg states. This effectively gives us control over
the Rydberg blockade radius by the external electric field FE.
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6 Conclusion and Outlook

In the first part of this thesis we have used a vapour cell setup with a plate capac-
itor to perform precision spectroscopy of Stark shifted rubidium Rydberg states up
to the classical ionisation threshold by means of EIT [1]. At the same time we have
numerically calculated the energy levels of these states and have extended these calcu-
lations to obtain the dipole matrix elements of the states involved in the measurement
scheme. The results we have thereby obtained provide a reference system for Stark
shifted Rydberg states ranging from the low-field region, that is usually found near a
surface due to adsorbates [15], all the way up to and beyond the classical ionisation
threshold, where these states are of interest e.g. for the creation of sources of cold
electrons and ions [5]. We can even extend the measurement of adsorbate fields to
not only detect the absolute value of the electric field, but also its orientation, by
exploiting the polarisation dependence of the measure for the transition strength.

Furthermore, our calculations of the dipole matrix elements between Stark shifted
Rydberg states and other states allow for the calculation of decay rates, which may
in principle include all other states in the Rydberg cascade from the highest excited
state down to the ground state. Our numerical model could therefore be used to
search for Stark shifted states with decreased decay rates, possibly to the extreme of
states similar to a ‘dark state’. Applying this idea to Stark shifted circular Rydberg
states could hypothetically prolong their lifetimes indefinitely, if the dipole matrix
element between a circular state and its neighbouring circular state could be tuned to
zero. Lastly, our numerical calculations can be used to search for transitions between
Rydberg states, which can be tuned using the external electric field, for example in
the microwave regime to couple these states to a superconducting stripline cavity to
create a hybrid quantum system [48, 52] or in the terahertz regime for imaging and
detection of this kind of radiation [24].

We have extended our numerical model further by incorporating a field-adjusted
CAP in the Stark Hamiltonian in order to determine the autoionisation rates of
states near and above the classical ionisation threshold [6]. For the confirmation of
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6 Conclusion and Outlook

this model we have also conducted an experiment in which we have excited atoms
from a MOT to Rydberg states in this regime with detection of the arising ions. Our
novel approach of adjusting the CAP to the external electric field in the numerical
calculations has proven to be particularly useful, as it effectively reduces the num-
ber of free parameters in this kind of calculation from ‘one per resonance’ to ‘one
per spectral region’, making the calculation of ionisation spectra composed of hun-
dreds of resonances feasible. In turn, the extent of these spectra enables the search
for states with suitable ionisation rates and other properties matching experimental
requirements [8].

A new approach to extend these numerical calculations to even more atomic prop-
erties and effects could be to combine them with our time evolution calculations for
Rydberg state populations using a Lindblad master equation [3, 4]. This would allow
for a prediction of the competition between decay through the cascade of Rydberg
states back to the ground state and autoionisation affecting the lifetimes [4], possibly
in the presence of BBR and taking into account effects like superradiance. A the-
oretical model like this could also be used to determine if a coherent superposition
between the ground state and a given Stark shifted Rydberg state could be achieved
[3] and if highly Stark shifted states could also be used in quantum computing pro-
tocols [41–44, 49]. At the same time, a combination of our experimental methods
of all-optical detection [3, 4] and controlled ionisation for detection [6, 8] could be
implemented to put such a theoretical model to the test. Furthermore, the possible
Fano-resonances we have observed in the experimental ion spectra [6] point to an-
other promising extension of our numerical methods. An implementation of the Fano
model [97] for highly Stark shifted Rydberg states can be expected to yield an even
broader range of ionisation effects stemming from the constructive and destructive
interference of excitation and ionisation paths [98–100]. This type of resonances could
therefore cover a range from fully suppressed ionisation to enhanced ionisation rates,
allowing for even greater control in ion detection schemes.

We have investigated systems of moving atoms in external magnetic fields [7], which
experience a Lorentz electric field in their frame of reference, i.e. become subject to
the MSE. For this purpose, we have conducted an experiment using EIT spectroscopy
in a vapour cell with selection of different velocity classes via the Doppler effect. In
this experiment, we have observed the MSE for Rydberg atoms of rubidium in low
magnetic fields for the first time. Simultaneously, we have expanded our numerical
calculations to incorporate a Hamiltonian with crossed electric and magnetic fields to
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obtain approximate spectra for atoms under the effect of the Lorentz electric field and
the magnetic field in their frame of reference. While this approach is sufficient for the
observed spectra, an in-depth theoretical treatment using a two-particle Hamiltonian
for the ionic core and the electron is needed for similar work on lighter atoms and
in higher magnetic fields. A detailed description of this treatment has been given by
our theory collaborator Professor Schopohl in our joint publication [7].

The numerical calculations we have performed as part of this work [7] can be
directly applied to systems of moving atoms in crossed electric and magnetic fields
in the laboratory frame. This type of configuration can also be found in experiments
in which beams of Rydberg atoms are guided along a chip surface, for example to
implement a strong coupling between the Rydberg atoms and a superconducting chip
[17] or to realise Rydberg atom interferometry [55]. For these types of experiments,
a combination of crossed external fields and the MSE with suitable adjustments of
both fields and the atomic velocity, may allow for compensation of either detrimental
electromagnetic fields or of the MSE, or for the determination of an optimal working
point in the presence of crossed fields. Furthermore, an extension of this type of
application to even lighter systems like positronium [106] is expected to also reveal
the coupling of internal degrees of freedom to the center-of-mass motion of the system,
which is also predicted by the theoretical treatment using a two-particle Hamiltonian
[7]. Lastly, a combination of the crossed-fields single-particle Hamiltonian from our
numerical calculations with a CAP, similar to the one we have used in our other work
[6], could reveal interesting regimes of ionisation, as a magnetic field can stabilise
the state of an electron while an electric field opens the potential to the continuum.
Therefore, the ionisation rate of such a system should strongly depend on the angle
between the electric and magnetic field with vanishing ionisation rates for perfectly
perpendicular fields, as preliminary calculations by our theory collaborator Professor
Schopohl show.

In the last part of this thesis we have employed the results that we had obtained
using the field-adjusted CAP method to specifically select states with suitable per-
manent electric dipole moments and ionisation rates [8]. In this experiment we have
excited atoms from a MOT to these selected states and have observed the dipole
blockade effect resulting from various permanent electric dipole moments. Here we
have made use of our knowledge of the ionisation rates and have implemented a
controlled ionisation scheme as part of the experimental cycle. This scheme can be
extended to even more elaborate ionisation schemes, for example by adiabatically go-
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6 Conclusion and Outlook

ing back and forth between high and low ionisation rates to achieve controlled partial
ionisation of a cloud of atoms. Ultimately, the control over the dipole blockade could
be applied to create Rydberg superatoms [53, 54] with tunable permanent electric
dipole moments and adjustable ionisation rates in the highly Stark shifted regime.
This could offer unprecedented control for suggested applications of Rydberg super-
atoms, e.g. for high-fidelity single photon absorbers [111], for deterministic single ion
sources [60] or for quantum information processing and quantum networks [53, 54].

Over the course of the works included in this thesis we have investigated properties
of Rydberg atoms in external electric fields experimentally and by means of numerical
calculations. The experimental results we have obtained and the numerical methods
we have developed in these works give promising prospects for the search for suitable
Rydberg states and the control over their properties via external electric fields. These
properties include their electric dipole moments, energy level differences between pairs
of states, dipole matrix elements between Stark shifted states, sensitivity to external
electric and magnetic fields, and ionisation rates. Thereby, these results offer a rich
toolbox for experiments in many subfields of Rydberg physics, including metrology
and detection schemes, quantum information processing and the development of new
types of ion and electron sources.
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Abstract
We report on themeasurement of Stark shifted energy levels of 87RbRydberg atoms in static electric
fields bymeans of electromagnetically induced transparency (EIT). Electricfield strengths of up to
500 V cm−1, ranging beyond the classical ionization threshold, were applied using electrodes inside a
glass cell with rubidium vapour. Starkmaps for principal quantumnumbers n=35 and n=70 have
been obtainedwith high signal-to-noise ratio for comparisonwith results from ab initio calculations
following themethod described in (Zimmerman et al 1979Phys. Rev.A 20 2251), whichwas originally
only verified for states around n = 15.We also calculate the dipolematrix elements between low-lying
states and Stark shifted Rydberg states to give a theoretical estimate of the relative strength of the EIT
signal. The present work significantly extends the experimental verification of this numericalmethod
in the range of both high principal quantumnumbers and high electricfields with an accuracy of up
to 2MHz.

1. Introduction

The response of atoms to static electric fields (dc Stark effect) results in line shifts, statemixing and, for
sufficiently largefields, ionization. The line shifts are conventionally summarized in Starkmaps, displaying the
energy levels as a function of the appliedfield. Starkmaps of alkali atoms are routinely calculated by
diagonalising the perturbedHamiltonian [1], taking into account quantumdefects and corresponding
electronicwavefunctions [2]. A precise knowledge and control of Stark shifted Rydberg states is required for the
application of Rydberg atoms as quantumprobes [3], for controlling the interactions betweenRydberg atoms
[4], the production of circular Rydberg atoms [5], the structure and dynamics of Rydberg gases [6, 7], and
possible applications in quantum information processing [8]. In the context of hybrid quantum systems based
on atoms and solid state quantum circuits [9, 10], Stark shifts of Rydberg states [11–13] and their control [14]
are of particular interest.

Starkmaps of Rydberg excited alkali atomswere studied in the 1970s using pulsed laser excitations and
subsequent pulsed-field ionization [1, 15]. For low-lying Rydberg states of sodium, lithium and caesiumwith
principal quantumnumbers <n 20, Starkmaps have been recorded up to and beyond the classical ionization
limit [1, 15]. Starkmaps of 85Rb for n up to 55were studied in the 1980s for low electric fields using two-photon
laser excitation and detecting ionization from thermal collisions [16]. In this regime of low electric fields the
Starkmaps do not show level crossings but quadratic dependence on the appliedfieldwith slight deviation from
this for highly excited states (n=55).

Many recent experiments on Stark shifts use electromagnetically induced transparency (EIT) [17–19]. This
spectroscopicmethod provides a high resolution of the energy levels [18] and is suitable for the detection of
states of high principal quantumnumbers.However, themeasurements so far only covered the range of low
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electric fields, inwhich just thefirst avoided crossings appear. Similarly, the detection of ions bymicro-channel
plates [20] and the technique ofmeasuring the ionization currents fromStark-shifted Rydberg states [21] have
only been used at low electric fields.

In this article, we report on the optical spectroscopy of Stark shifted Rydberg states with principal quantum
numbers of n=35 and n=70 for electrostatic fields between 0 and 500 V cm−1, ranging beyond the classical
ionization limit. Ourmeasurements go to higher principal quantumnumbers and cover a three to four times
larger range of electric fields relative to the classical ionization threshold than any of the aforementionedworks
using EIT. The observed Starkmaps are comparedwith results fromnumerical calculations following the lines
of the numericalmethod by [1], including the recently improved accuracy of the quantumdefects [22]. In the
original work thismethodwas optimized for Rydberg states around n=15 due to computational limitations as
well as the accessible experimental data. The high accuracy of thismethod at low electric fields is always given by
the accuracy of the unperturbed energy levels, which are used in the calculation.However, for strong electric
fields and high principal quantumnumbers, where a high accuracy of the calculated energy levels is desirable,
thismethod becomesmore susceptible to numerical errors [1]. In this article we showby direct comparison, that
it is still applicable even in these regions of study. Furthermore, we calculate dipolematrix elements between
5P3 2 and the observed Stark shifted states, which are then used to give an estimate for the relative strength of the
measured signals.

2.Measurement of Starkmaps

For themeasurement of Stark shifts of 87RbRydberg atomswe use a vapour cell with a pair of plate electrodes for
applying homogeneous electricfields. The electrodes are inside the cell (figure 1), trying to avoid the effect
observed in previous workswhere static electricfields applied to a vapour cell with outside electrodes are
compensated by ionized rubidium and electrons [23]. The rubidium vapour in the cell is at room temperature
with an estimated pressure of ≈ −1 · 10 7 mbar. The electrodes in the center of the glass cell (figure 1) are formed
by two square glass plates coatedwith 5 nmof nickel. This gives the plates ≈60% transparency, which allows for
optical access on the axis perpendicular to them.However, this optical access was not used in the experiments
presented in this work. The plates aremountedwith 5 mmseparation on insulating ceramics (Macor) and
connected to a voltage source throughmetallic wires. Laser beams for the optical spectroscopy are introduced
through view ports and pass through the cell between the plates.

Wemeasure the transition frequency from the rubidium ground state to Rydberg states by EIT. The EIT
three level ladder scheme [23] consists of the ground state =F5S ( 2)1 2 , the intermediate state =F5P ( 3)3 2 and
aRydberg state nS or nD (figure 2).However, it is important to keep inmind that l is not a good quantum
number anymore in the presence of an external electric field and that the Stark shifted states can be considered
as amix of all possible unperturbed l states. For the spectroscopywe use a probe laser that is locked to the

= → =F F5S ( 2) 5P ( 3)1 2 3 2 transition (780 nm) and a coupling laser with a variable frequency close to the

Figure 1.Vapour cell with electrodes. The capacitor plates are formed by two glass plateswith 5 nmof nickel facing each other at a
separation of 5 mm.Twowires are glued to each capacitor plate to contact them. For themeasurements the laser beams
counterpropagate through the view ports indicated in the image.
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transition between =F5P ( 3)3 2 and aRydberg state (480 nm).When the coupling laser is resonant with this
transitionwe detect amaximum in the transmission of the probe laser through the vapour.

We use a grating-stabilized diode laser (Toptica, DL pro) of≈100 kHz linewidth as the probe laser and a
frequency-doubled, grating-stabilized diode laser of≈200 kHz linewidth (Toptica, TA-SHGpro) as the
coupling laser. Both lasers are phase-locked to a frequency comb (Menlo Systems, FC 1500). For conveniently
selecting the rightmodes of the frequency comb for both lasers we use a calibratedwavelengthmeter
(HighFinesse,WSUltimate 2) [22]. The power of the probe laser is 1 μWand the power of the coupling laser is
25 mWwith e1 2 diameters of 450 and 150 μm in the cell, respectively. The small diameter of the coupling beam
results in a high intensity and therefore high Rabi frequency on the corresponding transitionwhile the bigger
diameter of the probe beam is chosen in order to ensuremaximal overlap of the two beamswithin the cell. The
laser powers and polarizations were adjusted tomaximize the EIT signal in zerofield (figure 3). Ameasurement
of the polarizations after this adjustment revealed that this resulted in circular polarizations for both lasers. The
frequency of the probe laser is kept on resonancewith the = → =F F5S ( 2) 5P ( 3)1 2 3 2 transition (figure 2) and
its transmission through the cell ismeasured using an avalanche photodiode.

In order to reach a high signal-to-noise ratio in the spectroscopy, we use the following lock-inmeasurement
technique.Wemodulate the power of the coupling laser using an acousto-opticmodulator and demodulate the
signal from the photodiode on the carrier frequency. In additionwemodulate the frequency of the intensity
modulation and demodulate the photodiode signal on two of the sidebands that arise from this.We then average
the demodulated signal from the carrier and both sidebands. The additional frequencymodulation decreases the
signal strength on the carrier frequency and creates an even lower signal strength on the sidebands, but averaging

Figure 2. Ladder scheme for electromagnetically induced transparency (EIT). For ourmeasurements the probe laser is held on
resonance with the = → =F F5S ( 2) 5P ( 3)1 2 3 2 transition of 87Rb and the coupling laser is scanned around the upper transition.
Dipole selection rules only allow for themeasurement of nS and nD states in this scheme.

Figure 3.Optical setup (schematic) for themeasurement of Starkmaps using EIT. Both lasers are guided to the experiment through
optical fibers and overlappedwithin the volume of the plate capacitor using two dichroicmirrors. Intensity and polarization of both
lasers are adjusted independently. The transmission of the probe beam through the vapour cell ismeasuredwith a photodiode.
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the signal from three frequencies lowers the noise level at the same time. In total, the resulting signal-to-noise
ratio is improved by a factor of≈2 as compared to a simple lock-inmeasurementwithout frequency
modulation. For every set frequency of the coupling laserwe rampup the voltage on the plate capacitor using an
auxiliary output of the lock-in amplifier (Zurich Instruments, HF2LI). This is sufficient for electric fields up to
≈20 V cm−1. For even higherfields up to≈500 V cm−1 we use an additional voltage amplifier.

Measured data near the unperturbed 35S1 2 state is shown infigures 4 and 5. Near the unperturbed 70S1 2

state we conducted a preliminarymeasurement, which is not shown in this work, and then selected a smaller
region for amore detailedmeasurement in order to test the frequency precision of the numerical calculations
(figure 6). Each pixel in the gray scale images represents an average of the demodulated signal over 200 ms.
Between every two pixels we add awaiting time of 50 ms to allow for the low-pass filter of the lock-in amplifier to
settle. The gray scale was adjustedwith a cutoff for better visibility of weaker signals. Our data shows states
ranging up to and even beyond the classical ionization threshold that have not beenmeasured bymeans of EIT
before. The classical ionization threshold Eion, i.e. the saddle point which is formed by aCoulomb potential with
an external electric field F, is given by

= −E F2 (1)ion

in atomic units ([2]). This results in an electric field strength for the ionization threshold of≈312 V cm−1 for
35S1 2 and≈16 V cm−1 for 70S1 2. For a quantitative analysis we give a brief review of the numerical calculation
of Starkmaps in section 3.

We observe two background effects (figures 4 and 6)which are caused by the region of the cell that is not
covered by the plate capacitor (figure 1). Thefirst is the line of the unperturbed state, which remains visible for
all applied voltages becausewe probe those outer regions of the cell as well. The second is a smearing of the lines
to the right at lowfields as visible infigure 4 at the avoided crossings up to≈50 V cm−1 and infigure 6. For a
certain electric field strength inside the plate capacitor one alwaysfinds lower electric field strengths in the
inhomogeneous outside region, causing the asymmetry of the smearing to the right.

Inside the capacitor undesirable electric fields could also arise from the dipole which is formed between
adsorbed rubidium and the nickel surface of the capacitor plates. In previous experiments the repeated
deposition of cold atom clouds of rubidiumonto a copper surface led to electricfields close to the surfacewhich
saturated as the number of deposited clouds increased [11]. Since thework functions of nickel and copper are

Figure 4. (a) Starkmap for 35S1 2 for an electric field range of 0–235 V cm−1. The gray scale is determined from themeasured EIT
signal, which represents the demodulated transmission signal from the photodiode. Due to the frequency resolution of 125 MHz
some of the lines with a small slope appear dotted here. (b) The red, green and blue lines show the numerically calculated Starkmap
for ∣ ∣ =m 1 2j , ∣ ∣ =m 3 2j and ∣ ∣ =m 5 2j , respectively. The opacity gradients indicate the calculated transition strengthD to the
corresponding Stark shifted Rydberg states. In this regionwefind a very good agreement between experimental and numerically
calculated results in the Stark shifts as well as the transition strengths.
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similar and the cell isfilledwith rubidium vapour at all timeswemay find a similar effect for the capacitor plates.
This effectmay play a role for Rydberg states higher than n=70 at low electric fields, but is negligible for the
measured data presented in this article, where the distance between the laser beams and the capacitor plates is
≈2 mm.Other stray fields could originate fromoutside of the cell, but should be compensated by electrons and
ionized rubidium [23].

3. Calculation of Starkmaps and dipolematrix elements

TheHamiltonian for the valence electron in an alkali atomwith an external electric field in z-direction can be
written as

= +H H Ezˆ ˆ ˆ (2)0

in atomic units with Ĥ0 theHamiltonian for the valence electron in absence of any perturbation, E the electric
field strength and ẑ the position operator in z-direction. For the following calculations we include the fine
structure splitting in Ĥ0 and neglect the hyperfine structure splitting as it is smaller than our frequency

Figure 5. (a) Starkmap for 35S1 2 for an electric field range of 235–470 V cm−1. The gray scale represents themeasured EIT signal.
Due to the frequency resolution of 125 MHz some of the lineswith a small slope appear dotted here. The blue solid line indicates the
classical ionization limit. Beyond this limit fewer states are present in themeasurement. The states also appear broader andweaker as
the external electric field lowers and extends the opening of the potential barrier it formswith the atomic potential. (b) Results from
our numerical calculations for the same region. The red lines represent ∣ ∣ =m 1 2j , the green lines ∣ ∣ =m 3 2j and the blue lines
∣ ∣ =m 5 2j with the opacity gradients indicating the calculated transition strengthsD to each state. (c) and (d) showdetails of the
measurement with the numerically calculated Starkmap on top. The opacity of the colors has been increasedwith a linear scaling in
comparison to (b) for better visibility of the calculated lines on top of the experimental data. The agreement in the energy levels
remains even beyond the classical ionization threshold, but wefind some discrepancies in the transition strengths as the electric field
strength increases.
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resolution in the experiment [1]. The Stark shifts of the =F5S ( 2)1 2 and =F5P ( 3)3 2 states from the EIT
scheme are negligible as well, as they amount to less than 100 kHz for the region of the field strength up to
500 V cm−1.We then create amatrix representation of Ĥ in a subset of the basis given by Ĥ0. This way Ĥ0 is
represented by a diagonalmatrix with the energy levels from [22] on its diagonal.

Thematrix representation of ẑ is symmetric with only off-diagonal entries and in spherical coordinates we
obtain from [1]

∑

〈

δ δ

θ

′ ′ ′ ′ = ′ ′ ′ −

× ′ − ∣ ′ 〉 ′

′ ′±
= ±

}
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⎧⎨⎩

with the radial overlap integral 〈 ∣ ∣ ′ ′ ′〉n l j r n l j, , , , in the first line of the right hand side. From theKronecker
delta δ ′m m,j j

we can see that thematrix representations ofH for different values ofmj can be calculated separately.

It is also evident that the Stark shifts for ±∣ ∣m j are always equal. Therefore we only calculatematrix
representations for positive values ofmj in this step. This reduces the computing time for diagonalizing the
matrices, butwe need to consider states with both signs for the calculation of transition strengths later on again.

For the calculation of the overlap integrals we tried two differentmethods to calculate the radial
wavefunctions for all states in the chosen subset of the basis and also for =F5S ( 2)1 2 and =F5P ( 3)3 2 , which
will be used later on in the calculation of themeasure for the transition strengths. Onemethodwas to further
follow [1] using their atomic potential for 87Rb andNumerov’smethod to solve the radial Schrödinger equation.
We also tried using the parametricmodel potential from [24]with another solving algorithm3, which allowed us
to obtain parts of thewavefunctions that are located further inside the ionic core.While the twomethods lead to
slightly different amplitudes of thewavefunctions due to normalization, the differences in the Stark shifts and
transition strengths calculated from the twomethods for the observed states lie belowour experimental
accuracy. All calculations presented in this work utilized the lattermethod.

We can then calculate thematrix representations of the perturbedHamiltoniansH using equation (3) and
diagonalize them efficiently in parallel for different values of the electric field strength to obtain the energy
eigenvalues. In this stepwe also calculate the eigenvector β corresponding to every eigenvalue.With this we can
further follow themethod from [1] to represent every Stark shifted Rydberg state ξ as a linear combination of
unperturbed states, given by the eigenvectors, and calculate the dipolematrix elements

∑ξ β⃗ = = ⃗ =∣ ∣r F m n l j m r F m5P , 3, , , , 5P , 3, (4)F

n l j m
n l j m j F3 2

, , ,
, , , 3 2

j

j

with β ∣ ∣n l j m, , , j
the entry of β that corresponds to the states ∣ ±∣ ∣〉n l j m, , , j . Herewe sumover all states in the

selected subset of the basis given by the unperturbed states and both signs for each value ofmj. For the calculation
of the dipolematrix elements between the unperturbedRydberg states and ∣ = 〉F m5P , 3, F3 2 we separate the
radial and the angular parts of thewavefunctions.We use the radial overlap integrals from equation (3) and
calculate the three components of the angular overlap integrals following [25].

Figure 6.Detailed part of a Starkmap for 70S1 2 for an electricfield range of 6.23–6.70 V cm−1. The gray scale represents themeasured
EIT signal. The red, green and blue lines plotted on top of themeasured signal show the numerically calculated Starkmap for
∣ ∣ =m 1 2j , ∣ ∣ =m 3 2j and ∣ ∣ =m 5 2j , respectively, with the opacity gradient scaled to the calculated transition strengthD. The
frequency resolution of thismeasurement is 2 MHz and, again, wefind a very good agreement between the experimental and
numerically calculated results.

3
MATLAB2014a; Solver function: ode45.
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We take into account the effect of the probe laser, which couples the differentmF substates of ∣ = 〉F5S , 21 2

and ∣ = 〉F5P , 33 2 by calculating theweighting factors

∑η ε= = ⃗ ⃗ ′ = ′
′

F m r F m5P , 3, 5S , 2, (5)m
m

F F3 2 p 1 2

2

F

F

with εp⃗ the polarization of the probe laser. In this stepwe assume that allmF substates of ∣ = 〉F5S , 21 2 are evenly
occupied. Theweighting factors are then used to calculate themeasure for the transition strength

∑η ξ ε= ⃗ ⃗ =D r F m5P , 3, (6)
m

m Fc 3 2
2

F

F

with εc⃗ the polarization of the coupling laser. In the experiment the two lasers are counterpropagating and
perpendicular to the external electric fieldwith circular polarizations. Thereforewe use ε ε⃗ = ⃗ = i(0, , 1)p c here.
Themeasure for the transition strengthD is used to determine the opacity gradients for the lines infigures 4–6.

The Starkmap for 35S1 2, which is shown infigures 4 and 5,was calculated froma subset of thebasis of
approximately 1600 states and for 2000 values of the electricfield strength usingMATLAB. For 70S1 2, shown in
figure 6, the calculations run similarlywith 4000 states and 500 values of the electricfield strength. Thenumber of
states thatwas used for these calculationswas adjusted so that a further increase only yields changeswhich lie below
the accuracy of the experimental data. Calculated Starkmaps for ∣ ∣ =m 1 2j , ∣ ∣ =m 3 2j and ∣ ∣ =m 5 2j are
included in thefigures. Themeasurementswere performed in frequency regions around S states, but since l is not a
goodquantumnumber anymore in the presence of an electricfield [1], wefind that other stateswith ∣ ∣ =m 3 2j

and ∣ ∣ =m 5 2j are shifted far enoughby the Stark effect to appearwithin themeasured frequency range.

4. Comparison ofmeasurements and calculations

Figures 4 and 5 show comparisons of themeasured and numerically calculated Starkmaps for 35S1 2. The
frequency axis shows the detuning of the coupling laser relative to the absolute value of the transition frequency
from [22]. A linear scaling with an offset has been applied to the electricfield axis of themeasured data. Using
only this scalingwe achieve amatch between calculated andmeasured energy levels for Stark states in thewhole
range of ourmeasurement.

The lines in the calculated Starkmaps are drawnwith an opacity gradient, resulting in a color range between
white and the respective color associatedwith the different values for ∣ ∣m j . The opacity gradient is scaled toD
from equation (6)with an upper cutoff at 70%of itsmaximum for better visibility.Wefind a good agreement
between this calculatedmeasure for the transition strength and the experimental data in the range of electric
fields shown infigure 4. The quality of the agreement deteriorates slightly approaching the classical ionization
threshold, but there is still good agreement beyond this point, as can be seen in figure 5. The veryweak signals we
stillfind in the experimental data at electric fields around 400 V cm−1 all correspond to calculated states with a
strong calculated transition strength. Considering this, we think that themethod described here can be applied
for these high electric field strengths, where only few states are still visible in the experimental data, as away to
select potentially interesting areas before ameasurement.

One important cause for discrepancies between the experimental and numerically calculated datawe present
here is that no ionization effects were taken into account for the calculations. However, it is interesting to note
that even though the calculatedmeasure for the transition strength shows some differences at high electric fields,
we stillfind a remarkable agreement of calculated andmeasured energy levels in this region of study. These
differences could be related to the calculation of the radial wavefunctions.We calculate the radial wavefunctions
for ∣ 〉5S1 2 and ∣ 〉5P3 2 using the samemethod as for Rydberg states. Evidently this works quite well here, but
more accurate radial wavefunctions, especially for ∣ 〉5P3 2 but also for Rydberg states with low l, could further
improve the quality of the calculated transition strengths. This is further emphasized as the biggest discrepancies
of the transition strengths at high electric fields can be found for states ∣ ∣ =m 1 2j while states with ∣ ∣ =m 5 2j

showhardly any discrepancies on thewhole range of electric fields. On the other hand, these discrepancies could
also be explained by a stronger coupling of Rydberg states with low l to the continuum. Some disagreements on
thewhole range of ourmeasurements can also be caused by the scaling of the EIT signal with the dipolematrix
elements, which is only approximated by the squared scaling inD. Furthermore, lines with small slopes and
especially local extremamay appear over-pronounced in the experimental data. Since these parts of the lines are
broad in the electric field domain and the inhomogeneous electric field outside of the plate capacitor still lies
within the volume of the cell, this results in an effective contribution ofmore atoms to the signal.

Wefind amatch similar to the one presented for 35S1 2 in the energy levels and transition strengths for
70S1 2, which is shown in detail infigure 6.Discrepancies lie within the frequency resolution of 2 MHz for
figure 6, which is the highest accuracy we present here. The opacity gradients were assigned the sameway as for
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35S1 2. The calculated transition strengthsmatch the experimental data equally well as for 35S1 2. The
experimental data presented infigures 4–6 is provided as supplementary data to this article4. All results
presented in this workweremeasured and calculated in the energy range near nS states. However, they
intrinsically include contributions from all possible l states due to themixing of states caused by the external
electric field.

For a possible extension of ourmeasurements to awider range of principal quantumnumbers n than the
region between n=35 and n=70, themost important limiting factor is that the coupling of Rydberg states to the
intermediate =F5P ( 3)3 2 growsweaker as n increases, which leads to a lower signal-to-noise ratio. Another
factor influencing the signal-to-noise ratio is the density of the vapour, which on the other hand gives rise to
collective effects which in turn cause undesired changes of the EIT signal [26].

5. Conclusion

In summary, we have demonstrated agreement betweenmeasured and calculated Starkmaps of 87Rb up to an
accuracy of 2 MHz. This agreement holds for the range from zero field to beyond the classical ionization
threshold and for principal quantumnumbers n=35 and n=70. Such data and calculationsmay aid the
accuratemapping of electric fields at surfaces [11]. Furthermore, we presented numerical calculations to
estimate the transition strength from low-lying states to Stark shifted Rydberg states. The results from these
calculations show a very good agreementwith our experimental data on a high range of electric fields and even
beyond the classical ionization threshold.

Altogether, themethods presented in this paper can be used tofind experimentally accessible Stark shifted
Rydberg states with an appropriate sensitivity to external electricfields for awide range of applications. For
example, the dependence of the transition strength to different Stark shifted Rydberg levels could be used to
determine not only the strength of an external electric field in an experimental systembut also the electric
field axis.
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We report on a significant discrepancy between recently published, highly accurate variational calculations and
precise measurements of the spectrum of Rydberg states in 87Rb on the energy scale of fine splitting. Introducing
a modified effective single-electron potential, we determine the spectrum of the outermost bound electron from
a standard WKB approach. Overall very good agreement with precise spectroscopic data is obtained.
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I. INTRODUCTION

The spectrum of the outermost bound electron of an alkali
atom such as 87Rb is hydrogenlike but lacks the n2 degeneracy
of the eigenstates labeled by the principal quantum number n

of the pure Coulomb potential [1,2]:

En,l = − 1

(n − δl)2
. (1)

This effect is the well-known quantum defect δl , resulting
from the interaction of the outermost electron with the ionic
core of the atom and the nucleus. In a refined version of
the statistical Thomas-Fermi theory [3], an effective potential
determining the interaction between the outermost electron
and the nucleus can be modeled accurately by a spherically
symmetric potential Veff(r; l) depending on the distance r from
the center and depending on the orbital angular momentum
l ∈ {0,1,2, . . . ,n − 1} [2,4,5]:

Veff(r; l) = −2

[
Zeff(r; l)

r
+ Vpol(r; l)

]
. (2)

Here the function Zeff(r; l) represents a position-dependent
weight function that interpolates the value of the charge
between unity for large r and charge number Z near to the
nucleus for r → 0, and Vpol(r; l) represents a short-range
interaction taking into account the static electric polarizability
of the ionic core [1,6].

Overall good agreement with spectroscopic data of alkali
atoms (but discarding the fine splitting) has been reported in
[5], choosing

Zeff(r; l) = 1 + (Z − 1)e−ra1(l) − re−ra2(l) [a3(l) + ra4(l)]

(3)

and

Vpol(r; l) = αc

2

1 − exp
[ − (

r
rc(l)

)6]
r4

. (4)

*nils.schopohl@uni-tuebingen.de
†fortagh@uni-tuebingen.de

A table of the parameters a1(l), a2(l), a3(l), a4(l), αc, and rc(l)
can be found in [5].

In an attempt to also describe the fine splitting of the
excitation spectrum of the outermost electron of 87Rb, it has
been suggested [4] to superimpose a posteriori a spin-orbit
term

ṼSO(r; j,l) = VSO(r; j,l)

[1 − α2Veff(r; l)]2
(5)

on the potential Veff(r; l), which then influences the spectrum
En,j,l on the scale of fine splitting and the orbitals ψn,j,l(r)
accessible to the outermost electron. Here

VSO (r; j,l) = α2 1

r

∂Veff(r; l)

∂r
g (j,l) , (6)

and α = λC

aB
� 1

137.036 denotes the fine-structure constant, and

g (j,l) =
⎧⎨⎩

0 if l = 0,

j (j+1)−l(l+1)− 3
4

2 if l � 1,

(7)

where j ∈ {l − 1
2 ,l + 1

2 }. To determine those orbitals (with
principal quantum number n = nr + l + 1 and radial quantum
number nr ∈ N0), a normalizable solution to the Schrödinger
eigenvalue problem for the radial wave function Un,j,l(r) =
rRn,j,l (r) and associated eigenvalues En,j,l < 0 is required:[

− d2

dr2
+ l(l + 1)

r2
+ Ṽ (r; j,l) − En,j,l

]
Un,j,l(r) = 0, (8)

where

Ṽ (r; j,l) = Veff(r; l) + ṼSO (r; j,l) (9)

denotes the effective single-electron potential.
A highly accurate variational calculation of the excitation

spectrum of the outermost electron of 87Rb has been carried
out recently [7], in which the authors expand the radial wave
function of the Schrödinger eigenvalue problem (8) in a basis
spanned by 500 Slater-type orbitals (STOs). On the other
hand, modern high-precision spectroscopy of Rydberg levels
of 87Rb has been conducted recently. Millimeter-wave spec-
troscopy employing selective field ionization allows for precise
measurements of the energy differences between Rydberg

1050-2947/2015/91(3)/032509(5) 032509-1 ©2015 American Physical Society
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TABLE I. Fine splitting �En,l=1 for P states in megahertz.

State |n,l = 1〉 Expt. [11] Expt. [8] Theory [7] Theory (this work)

8P 565.1(4) × 103 NA 602.04 × 103 567.75 × 103

10P 219.1(4) × 103 NA 231.87 × 103 218.77 × 103

30P NA 4246.30(5) 4500.50 4246.46
35P NA 2566.41(32) 2717.41 2566.28
45P NA 1144.09(13) 1217.24 1143.95
55P NA 605.77(7) 644.81 605.68
60P NA 460.76(5) 480.32 460.68

levels [8]. An independent approach is to perform purely
optical measurements on absolute Rydberg level energies
by observing electromagnetically induced transparency (EIT)
[9,10]. However, there is a systematic discrepancy between
variational calculations and the spectroscopic measurements
of the fine splitting,

�En,l = En,l+ 1
2 ,l − En,l− 1

2 ,l , (10)

as shown in Tables I and II. Given the fact that the error bars
of the independent experiments [8,10] are below 1.1 MHz
down to 20 kHz, and on the other hand considering the
high accuracy of the numerical calculations presented in [7],
such a discrepancy between experiment and theory is indeed
significant.

So, what could be the reason for the reported discrepancies?
First, it should be pointed out that in the variational calculations
[7] a slightly different potential was used, that is,

V (r; j,l) = Veff(r; l) + VSO (r; j,l) . (11)

Certainly, within the first-order perturbation theory there exists
no noticeable discrepancy in the spectrum of the outermost
electron on the fine-splitting scale, when taking into account
the spin-orbit forces with VSO (r; j,l) instead of working with
ṼSO (r; j,l). This is due to the differences being negligible for
r > Zα2. However, since VSO (r; j,l) eventually dominates
even the contribution of the centrifugal barrier term l(l+1)

r2

within the tiny region 0 < r � α2Z, a subtle problem with a
non-normalizable radial wave function Un,j,l(r) emerges when
attempting to solve the Schrödinger eigenvalue problem for
any l > 0 with the potential VSO (r; j,l). Such a problem is
absent when one works with ṼSO (r; j,l) [4].

A variational calculation with the potential (11) employing
N = 500 normalizable STOs as basis functions thus engenders
a systematic (small) error of the matrix elements calculated in
[7] on the fine-splitting scale. When employing substantially
more STOs this error would certainly become larger. With N =

500 STOs the discrepancy of these theoretical results with the
high-precision spectroscopic data, as shown in Tables I and II,
is far too large to be corrected by simply replacing VSO (r; j,l)
with ṼSO (r; j,l). Hence another explanation is required.

II. QUASICLASSICAL APPROACH AND FINE SPLITTING
OF THE HIGHLY EXCITED 87Rb

In 1941 alkali atoms had already been studied in the context
of modern quantum mechanics in the seminal work by Mayer
[3], who emphasized the exceptional role of the l = 1 and
l = 2 orbitals. According to Mayer, the outermost electron of
an alkali atom is governed by an effective r-dependent charge
term

Zeff (r) = 1 + (Z − 1)F (r), (12)

where the function F (r) has been determined by employing
the semiclassical statistical Thomas-Fermi approach to the
many-electron-atom problem, posing the boundary conditions
as limr→0 F (r) = 1 and limr→∞ F (r) = 0. As discussed by
Schwinger [12], this approach ceases to be valid in the inner-
shell region Z−1 < r < Z− 1

3 of the atom. Therefore, taking
into account the fine splitting in the spectrum of the outermost
electron of alkali atoms a posteriori by simply adding the
phenomenological spin-orbit term (5) to (2), resulting in the
effective single-electron potential (9), seems to be questionable
on general grounds in that inner-shell region.

On a more fundamental level, the treatment of relativistic
effects in multi-electron-atom spectra requires an a priori
microscopic description based on the well-known Breit-Pauli
Hamiltonian [13,14]:

H = Hnr + Hrs + Hfs. (13)

Here Hnr is the ordinary nonrelativistic many-electron Hamil-
tonian, while the relativistic corrections are represented by the
perturbation operators Hrs and Hfs. The perturbation term Hrs

TABLE II. Fine splitting �En,l=2 for D states in megahertz.

State |n,l = 2〉 Expt. [11] Expt. [8] Expt. [10] Theory [7] Theory (this work)

8D 30.4(4) × 103 NA NA 113.17 × 103 36.42 × 103

10D 14.9(2) × 103 NA NA 52.05 × 103 16.56 × 103

30D NA 452.42(18) 452.5(11) 1447.53 456.13
35D NA 279.65(10) 280.4(11) 894.84 281.52
45D NA 128.33(4) 127.8(11) 407.64 128.98
55D NA 69.17(2) 69.4(11) 223.71 69.47
57D NA 61.98(2) 62.2(11) 197.39 62.24
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contains all the relativistic perturbations like mass correction,
one- and two-body Darwin terms, and further the spin-spin
contact and orbit-orbit terms, which all commute with the total
angular momentum L and total spin S, thus effectuating only
small shifts of the spectrum of the nonrelativistic Hamiltonian
Hnr. The perturbation operator Hfs, on the other hand, breaks
the rotational symmetry. It consists of the standard nuclear
spin-orbit, the spin-other-orbit, and the spin-spin dipole
interaction terms, which all commute with J = L + S, but not
with L or with S separately, thus inducing the fine splitting of
the nonrelativistic spectrum.

Although the proposed functional form of the potential (11)
is highly plausible on physical grounds outside the inner-core
region r > Z− 1

3 , prima facie it appears to be inconsistent to
lump the aforementioned relativistic many-body forces, spin-
other-orbit and spin-spin dipole interaction, into an effective
single-electron potential of the functional form (11), so that
it provides an accurate description also for small distances
Z−1 < r < Z− 1

3 .
In the absence of a better microscopic theory for an

effective single-electron potential Veff (r; j,l) describing the
fine splitting of the spectrum of the outermost electron in
the alkali atoms, we introduce a cutoff at a distance rso(l)
with Z−1 < rso(l) < Z− 1

3 so that the effective single-electron
potential is now described by the following modified potential:

Ṽmod (r; j,l) =
⎧⎨⎩Veff(r; l) if 0 � r � rso(l),

Veff(r; l) + VSO (r; j,l) if r > rso(l).

(14)

The choice [2]

rso (l = 1) = 0.029 483 × rc (l = 1) = 0.044 282 5,
(15)

rso (l = 2) = 0.051 262 × rc (l = 2) = 0.249 572 0,

gives a surprisingly accurate description of the fine splitting
in the spectroscopic data for all principal quantum numbers
n (see Fig. 1, Tables I and II). By choosing larger values for
rso(l) than stated in (15), the calculated fine splitting is too
small compared to experiment, and vice versa, by choosing
smaller values for rso(l) we find the calculated fine splitting is
too large compared to experiment.

The calculation of the spectrum of the outermost bound
electron is then reduced to solving the radial Schrödinger
equation (8) with the modified potential Ṽmod (r; j,l). The
resulting spectrum is actually hydrogenlike, that is,

En,j,l = − 1

(n − �j,l)2
, (16)

where �j,l denotes a quantum defect also comprising the
fine splitting. In actual fact the quantum defect describes a
reduction of the number of nodes nr of the radial wave function
for l = 0,1,2 as a result of the short-range interaction of the
outermost electron with the ionic core of the atom. Because
the higher the orbital angular momentum quantum number l,
the lower the probability of the electron being located near
to the center, it is clear that the quantum defect decreases
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FIG. 1. (Color online) Reduced fine splitting in THz (a) for P
states (cf. Table I) and (b) for D states (cf. Table II). The blue line
corresponds to the theory from this work [see Eq. (17)]. The blue
circles show the recent numerically calculated results from [7]. The
red symbols denote experimental data from Refs. [11] (squares), [8]
(crosses), and [10] (circles). The error bars for the experimental data
are given in Tables I and II.

rapidly with increasing orbital angular momentum l. Therefore
�j,l is only notably different from zero for l = 0,1,2.

Writing �j,l = δl + ηj,l with ηj,l � δl , the fine splitting to
leading order in α2 is

�En,l = 2
ηl− 1

2 ,l − ηl+ 1
2 ,l

(n − δl)3 . (17)

The quasiclassical momentum p ≡ √−Q of the bound
electron depending on energy E < 0 with orbital angular
momentum l > 0, total angular momentum j = l ± 1

2 , and
taking into account the Langer shift l(l + 1) → (l + 1

2 )2 in the
centrifugal barrier [15,16] is then given by

Q (r; j,l,E) =
(
l + 1

2

)2

r2
+ Ṽmod (r; j,l) − E. (18)

For l = 0 the centrifugal barrier term and the spin-orbit
potential are absent.

Considering high excitation energies E < 0 of the bound
outermost electron, i.e., a principal quantum number n 
 1,
the respective positions of the turning points r (±) are given

032509-3
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approximately by

r (−) =
(
l + 1

2

)2

1 +
√

1 + (
l + 1

2

)2
E

if l � 3,

(19)

r (+) � 1

−E

[
1 +

√
1 +

(
l + 1

2

)2

E

]
if l � 1,

where 0 < l � 1√−E
. Of course, for l = 0 only a single (large)

turning point r (+) = 2
−E

exists due to the absence of the
centrifugal barrier. However, the lower turning points r (−) are
strongly modified for l = 1,2 compared to the pure Coulomb
potential case, taking into account the core polarization.
For l = 1,2 the relation r (−)(l) � 0.02 × rc(l) holds; that is,
r (−) (l = 1) � 0.034 72 and r (−) (l = 2) � 0.128 27 [2]. While
the analytic formula for the lower turning points r (−)(l) in
(19), being valid for 3 � l � n, depends only weakly on
the principal quantum number n, we find from numerical
calculations with the potential (14) that this also applies
for l = 1,2 and n � 8. Since the cutoff rso(l) in (15) is
substantially above those values of the lower turning points
r (−)(l), a quasiclassical calculation of the fine-split spectrum
of the bound outermost electron is reliable.

For a chosen radial quantum number nr , the associated
eigenvalues E = En,j,l < 0 of the outermost electron moving
in the potential (14) now follow from the WKB patching
condition [17–19]:

ν (j,l,E)
!=

{
nr + 1 if l = 0,

nr + 1
2 if l > 0,

(20)

where ν (j,l,E) denotes the action integral

ν (j,l,E) = 1

π

∫ r (+)

r (−)
dr

√
−Q (r; j,l,E)

= 1

2π

∮
dr p (r; j,l,E) . (21)

Plotting the function ν (j,l,E) versus 1√−E
for l = 0,1,2

clearly reveals a linear dependence of the form ν (j,l,E) =
1√−E

+ c (j,l) (see Fig. 2).
According to [6], for A,B,C,D ∈ R, with A > 0, B > 0,

C > 0, and |D| � C, the following equality holds:

1

2π

∮
dr

√
−A + 2B

r
− C

r2
+ D

r3
= B√

A
−

√
C + BD

2C
√

C
.

(22)

For a pure Coulomb potential A ≡ −E, B ≡ 1, C ≡ (l + 1
2 )2,

and D ≡ α2g(j,l). The corresponding action integral then
reads

ν(C) (j,l,E) =
⎧⎨⎩

1√−E
if l = 0,

1√−E
− (

l + 1
2

) + α2g(j,l)

2(l+ 1
2 )3 if l > 0.

(23)

It is thus found from WKB theory that the quantum defect
associated with the single-electron potential Ṽmod(r; j,l) is

�j,l = lim
E→0−

[ν(j,l,E) − ν(C)(j,l,E)]. (24)
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FIG. 2. (Color online) The action integral ν (j,l,E) associated
with the effective single-electron potential Ṽmod (r; j,l) vs scaled
energy 1√−E

for l = 0 (blue line), l = 1 (red line), l = 2 (green line),

all for j = l + 1
2 . The curves for j = l − 1

2 differ only by a tiny shift
proportional to α2.

Ignoring spin-orbit coupling, i.e., for α = 0, one has �j,l ≡ δl ,
the standard quantum defect. For l = 0 the centrifugal barrier
and the spin-orbit coupling term (6) are zero, so �j,l →
� 1

2 ,0 ≡ δ0.
The dependence of the quasiclassical momentum√−Q (r; j,l,E) on the scaled distance r

rc(l) is shown for l =
0,1,2 in Fig. 3. Clearly, it is the inner-core region r (−)(l) < r <

rc(l) that provides the main contribution to the quantum defect
values. We find, for l = 0,2, that changing the fitting parameter
a3(l) in (3) from its tabulated value in [5] according to
the scaling prescription a3 (l = 0) → 0.814 × a3 (l = 0) and
a3 (l = 2) → 0.914 × a3 (l = 2) leads to a slight downward
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r/rc(l)

√ −
Q

FIG. 3. (Color online) The quasiclassical momentum√−Q (r; j,l,E) vs scaled distance r

rc (l) for l = 0 (dashed
black), l = 1 (green), and l = 2 (red) for E = En,j,l , corresponding
to principal quantum number n = 57 and j = l + 1

2 . The lower
turning points r (−)(l) for the case of a pure Coulomb potential, for
l > 0 all being greater than 0.6 × rc(l), are located well outside the
core region. The main contribution to the quantum defect values in
(24) thus originates from the inner-core region r < rc(l).
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TABLE III. The values of quantum defect �j,l associated with the Rydberg level n = 57 for l = 0,1,2.

Quantum defect �j,l Expt. [8] Expt. [10] Theory [7] Theory (this work)

� 1
2 ,0 3.1312419(10) 3.13125(2) 3.12791 3.13095

� 1
2 ,1 2.6549831(10) NA 2.65795 2.65197

� 3
2 ,1 2.6417735(10) NA 2.64399 2.63876

� 1
2 ,1 − � 3

2 ,1 0.0132096(14) NA 0.01396 0.01321
� 3

2 ,2 1.3478971(4) 1.34789(2) 1.35145 1.34851
� 5

2 ,2 1.3462733(3) 1.34626(2) 1.34628 1.34688

� 3
2 ,2 − � 5

2 ,2 0.0016238(5) 0.00163(3) 0.00517 0.00163

constant shift of the WKB-quantum defect. As a result of
this change, the calculated WKB-quantum defect �l± 1

2 ,l then
agrees well with the spectroscopic data (see Table III). Such a
change of a3(l) does not affect the fine-splitting values �En,l

though. We also find that the dependence of the fine splitting
�En,l on the principal quantum number n is well described by
(17) for all n � 8 (see Tables I and II).

In actual fact, for r (+) 
 r (−), which is a criterion that
is always met for high excitation energies

√−E � 0 of the
outermost electron, the uniform Langer-WKB wave function
U

(WKB)
n,j,l (r) [19,20], with r (+) considered as the only turning

point, describes the numerical solution Un,j,l (r) to the radial
differential equation (8) under the influence of the effective
modified single-electron potential (14) rather accurately [21].
Only very near to the second turning point r (−), at a distance
smaller than rso(l), does the Langer-WKB wave function
U

(WKB)
n,j,l (r) cease to be a good approximation to the numerical

solution Un,j,l (r) of the radial Schrödinger equation (8) [21].

III. CONCLUSIONS

In this work we reported a significant discrepancy between
experiment [8,10] and highly accurate variational calculations

[7] of the spectrum of Rydberg states of 87Rb on the energy
scale of the fine splitting. We discussed that the usual a
posteriori adding of the relativistic spin-orbit potential to
the effective single-electron potential governing the outermost
electron of alkali atoms is indeed inconsistent inside the inner
atomic core region. In the absence of a full microscopic
theory that lumps all many-body interactions together with
the relativistic corrections into an effective single-electron
potential in a consistent manner, we suggested a modified
effective single-electron potential, cf. (14), that enables a
correct description of the spectrum of Rydberg states on the
fine-splitting scale in terms of a simple WKB-action integral
for all principal quantum numbers n � 8. Modern precision
spectroscopy of highly excited Rydberg states thus enables the
probing of the multielectron correlation problem of the ionic
core of alkali atoms. This is certainly a fascinating perspective
for further experiments and theoretical studies.
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State-selective all-optical detection of Rydberg atoms
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We present an all-optical protocol for detecting population in a selected Rydberg state of alkali-metal atoms.
The detection scheme is based on the interaction of an ensemble of ultracold atoms with two laser pulses: one
weak probe pulse which is resonant with the transition between the ground state and the first excited state, and
a pulse with high intensity which couples the first excited state to the selected Rydberg state. We show that
by monitoring the absorption signal of the probe laser over time, one can deduce the initial population of the
Rydberg state. Furthermore, it is shown that—for suitable experimental conditions—the dynamical absorption
curve contains information on the initial coherence between the ground state and the selected Rydberg state. We
present the results of a proof-of-principle measurement performed on a cold gas of 87Rb atoms. The method is
expected to find application in quantum computing protocols based on Rydberg atoms.

DOI: 10.1103/PhysRevA.91.043422 PACS number(s): 32.80.Ee, 32.80.Qk, 32.80.Rm

I. INTRODUCTION

Rydberg atoms coupled to electromagnetic fields form a
promising system for the physical realization of quantum
information protocols [1] and quantum simulations [2]. In
these protocols qubits are realized by a set of atomic states,
which includes one or potentially more Rydberg levels. One
requirement of these schemes is the ability to measure the
Rydberg states’ population in order to read out the results of
the quantum operations. For accomplishing this task, most ex-
periments with ultracold Rydberg gases use methods including
field ionization and subsequent detection of electrons or ions
on multichannel plates or channeltrons [3]. These techniques
offer high sensitivity and —for carefully chosen experimental
conditions [4,5]—selectivity among the Rydberg levels [6–8].

Selective field ionization (SFI) techniques are based on
the fact that the ionization threshold is different for each
atomic state, increasing from higher to lower lying levels.
Hence, by slowly ramping up the electric field and monitoring
the electrons or ions over time it is possible to deduce the
initial populations in each level. However, the population
of a lower lying Rydberg level cannot be probed without
destroying the population of any higher lying Rydberg state.
Therefore this method is not applicable in protocols which
require independent probing of multiple Rydberg states [9].
Another inherent property of methods based on ionization
is that the detected atoms are removed from the system and
cannot be reused. Although this atomic loss is negligible in
most cases [3], it might be a serious limitation in experiments
working with only one or a few atoms [10].

One alternative to ionization detection methods is all-
optical probing based on electromagnetically induced trans-
parency (EIT) [11]. This approach has been successfully

*florian.karlewski@uni-tuebingen.de
†Present address: IPCMS (UMR 7504) and ISIS (UMR 7006),

Université de Strasbourg and CNRS, Strasbourg, France.
‡fortagh@uni-tuebingen.de

applied in order to nondestructively probe the Rydberg level
structure in noninteracting [12,13] and weakly interacting
[14] Rydberg gases, as well as in the presence of electric
fields [15–19]. These experiments, however, did not access
the population of the Rydberg state. On the other hand, an
EIT-based scheme for the optical detection of the Rydberg
population [20,21] has been proposed and demonstrated in
dense atomic clouds where the Rydberg blockade allows the
spatially resolved detection of Rydberg atoms.

Here we propose an all-optical scheme for detecting the
population in a selected Rydberg state in dilute gases. By using
a series of laser pulses in EIT configuration this technique also
allows for distinction between coherent superpositions and
statistical mixtures of the ground and Rydberg states of the
atoms. Since this scheme is based on time-resolved observation
of the optical response of individual atoms it may, in principle,
be used down to the single atom level. Our method is state
selective and applicable for testing the population not only in
the highest Rydberg level of interest (cf. SFI) but any lower
lying or intermediate Rydberg state.

We present our theoretical model along with numerical sim-
ulations and demonstrate the scheme in a proof-of-principle
experiment with a dilute gas of 87Rb atoms showing the
detection of the population in an initially prepared Rydberg
state. Our analysis includes characteristic effects of Rydberg
experiments such as blackbody-induced depopulation [22,23],
superradiance [24], and dipole-dipole interaction [25].

II. THEORETICAL MODEL

Let us consider a cold atomic gas interacting with two
laser pulses in an EIT-like configuration [11]. One of the
pulses, resonant with the atomic transition between the ground
state |1〉 and the first excited state |2〉, is a weak probe pulse
well below the saturation intensity, while the other one is a
relatively strong coupling pulse which is resonant with the
atomic transition between the first excited state |2〉 and a
selected (arbitrary) Rydberg nS1/2 state |3〉 (see Fig. 1). A

1050-2947/2015/91(4)/043422(7) 043422-1 ©2015 American Physical Society
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FIG. 1. (Color online) Illustration of the atom-laser interaction as
used for the model of time-resolved EIT. States |1〉, |2〉, and |3〉 denote
the ground state, the first excited state, and a Rydberg state of the
atom, respectively. In our experimental setup, these states correspond
to the 5S1/2(F = 2), 5P3/2(F = 3), and 35S1/2(F = 2) states of 87Rb.
The atomic transition |1〉 ↔ |2〉 is driven by a weak probe laser with
the Rabi frequency �p (red), while the transition |2〉 ↔ |3〉 is driven
by a stronger coupling laser with the Rabi frequency �c (blue). γp

and γc denote coherence decay terms. δp and δc are the detunings
of each laser to the corresponding atomic resonance. The radiative
decay from the selected Rydberg state |3〉 to the neighboring states
is accounted for by including a reservoir state |4〉. �ij denote the
respective incoherent decays, consisting of spontaneous emission as
well as transitions induced by blackbody radiation.

single “reservoir” state |4〉 is used to model the neighboring
Rydberg states [14].

We use a semiclassical approach for describing the dynam-
ics of the system and the laser pulses are taken into account
through their classical electric field. The atomic gas is modeled
by a motionless ensemble of atoms. The state of the atoms
is described by the density matrix ρ = ∑4

i,j=1 ρi,j |i〉 〈j |,
where the states |2〉 and |3〉 rotate with the atomic transition
frequencies ω21 and ω23, respectively.

The time evolution of ρ(t) is described by the master
equation

i�ρ̇ = [H,ρ] + U[ρ]. (1)

Here the Hamiltonian H accounts for the interactions between
the atoms and the laser pulses. The effects due to interatomic
interactions are considered through dynamic effective rates in
U[ρ] along with radiative losses occurring in the system. The
Hamiltonian H is written as

H = − �

2
(�p |2〉 〈1| + �c |3〉 〈2| + H.c.)

− �(δp |2〉 〈2| + δc |3〉 〈3|), (2)

where �p = (Epd12)/� and �c = (Ecd23)/� are the Rabi
frequencies of the probe and coupling lasers, with Ep and
Ec being the electric fields, and d12 and d23 the dipole matrix
elements of the corresponding transitions, whereas δp and δc

are the detunings of the probe and coupling laser from the
corresponding transitions, respectively (see Fig. 1). Although
we consider a situation where both the coupling and the probe
laser are resonant with the atomic transitions they drive (i.e.,

δp = δc = 0), by including these detunings one can account
for potentially uncompensated electric and/or magnetic fields
in a specific experimental realization. The operator U which
governs the non-Hamiltonian part of the dynamics reads as

U[ρ] = �32

2
(2σ13ρσ31 − σ33ρ − ρσ33)

+ �21

2
(2σ12ρσ21 − σ22ρ − ρσ22)

+ �34

2
(2σ43ρσ34 − σ33ρ − ρσ33)

+ �41

2
(2σ14ρσ41 − σ44ρ − ρσ44)

+ γp

2
(2σ11ρσ11 − ρ11σ − ρσ11)

+ γc

2
(2σ33ρσ33 − ρ33σ − ρσ33), (3)

where σkj = |k〉 〈j | are the atomic projection operators (k,j ∈
{1,2,3,4}).

There are multiple sources of nonunitary dynamics in the
system. One of them is the spontaneous emission from the
first excited state |2〉 and the Rydberg state |3〉 which we
take into account by introducing radiative decay rates �21

and �32. Another source, if present, is a depopulation of the
Rydberg state |3〉 towards the neighboring Rydberg states. The
depopulation may occur due to several phenomena depending
on the actual realization of the system, such as amplified
spontaneous emission and/or superradiance [24,26] as well
as induced emission and absorption due to the blackbody
radiation of the environment [22,23]. Following [26], we take
these effects into account by modifying the third term in Eq. (3)
to the dynamic effective decay rate

�̃34(t) = �34,sp[ρ44(t)psup + 1] + �34,bb, (4)

with psup a superradiance parameter, and �34,sp and �34,bb

the effective decay rates caused by spontaneous emission and
blackbody radiation, respectively. In our model we assume
that the entire population eventually ends up in the ground
state |1〉. This assumption is valid provided the ionization from
all involved states is negligible.

The above-mentioned phenomena cause population transfer
between the atomic states. In contrast, there is a group of
processes which do not result in a significant energy decay
in the system but leads to a relevant coherence loss. One
such process is the phase noise of the driving lasers, which is
included into the model through the coherence decay rates γp

and γc. Due to the redistribution of population from |3〉 to |4〉,
atoms in Rydberg nPj states are present in the cloud at various
distances. As observed by [25], the dipole-dipole interaction
with these nPj state atoms results in an inhomogeneous
broadening of the Rydberg nS1/2 state. We take this into
account by adding an effective dephasing term in Eq. (3) to γc,

γ̃c(t) = γc + γ3,ddρ44(t). (5)

The optical response of the cloud under the effect of the
two laser pulses is given by the macroscopic polarization �P =
N Tr[ρ �d] where �d = ∑

i �=j (dij |i〉 〈j | + H.c.) is the atomic
dipole operator. The absorption α of the probe laser is then
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given by the imaginary part of the electric susceptibility χ ,

α(t) = Im[χ (t)] = Nd2
12

ε0��p
Im[ρ21(t)], (6)

where N is the atom density of the cloud. Note that here
we make the approximation that the cloud is homogeneously
irradiated and the propagation effects of the laser pulses can be
neglected. The time-dependent absorption signal is thus given
by the master equation, which, using the operators given in
Eqs. (2) and (3), reads as

ρ̇11 = i

2
(�∗

pρ21 − �pρ12) + �21ρ22 + �41ρ44, (7a)

ρ̇22 = i

2
(�pρ12 − �∗

pρ21 − �cρ23 + �∗
cρ32)

−�21ρ22 + �32ρ33, (7b)

ρ̇33 = i

2
(�cρ23 − �∗

cρ32) − (�32 + �̃34)ρ33, (7c)

ρ̇21 = i

2
[�∗

cρ31 − �p (ρ22 − ρ11) + 2δpρ21]

− 1

2
(�21 + γp)ρ21, (7d)

ρ̇31 = i

2
[�cρ21 − �pρ32 + 2(δp + δc)ρ31]

− 1

2
(γp + γ̃c + �32 + �̃34)ρ31, (7e)

ρ̇32 = i

2
[−�∗

pρ31 − �c(ρ33 − ρ22) − 2δcρ32]

− 1

2
(γ̃c + �21 + �32)ρ32, (7f)

ρ̇44 = �̃34ρ33 − �41ρ44, (7g)

ρ̇41 = i

2
(−�pρ42 + 2δpρ41) − 1

2
(�41 + γp)ρ41, (7h)

ρ̇42 = − i

2
(�∗

pρ41 + �cρ43) − 1

2
(�21 + �41)ρ42, (7i)

ρ̇43 = i

2
(�∗

cρ42 + 2δcρ43)

− 1

2
(�32 + �̃34 + �41 + γ̃c). (7j)

When there is no coupling to the Rydberg state (�c = 0),
an analytical steady state solution for α can be obtained, which
will be used for normalization:

α0 =Nd2
12

ε0�
�21(γp + �21)

× [
γ 2

p �21 + 2γp
(
�2

p + �2
21

)
+ �21

(
4δ2

p + 2�2
p + �2

21

)]−1
. (8)

III. DETECTION OF THE RYDBERG POPULATION:
RESULTS OF THE NUMERICAL SIMULATION

We numerically solve the equation system (7) with the
pulse sequence of the lasers given by �p(t) and �c(t) (see
the sequence A, B, C in Fig. 2). The solution provides a
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FIG. 2. (Color online) Pulse sequence for the coupling (blue) and
probe (red) lasers. At t = 0 a fraction of the atomic population is
prepared in the Rydberg state. In the simulations this fraction is an
input value, while in the experiment it is determined by the length
of the excitation pulse (Exc.). Before this, an optical pumping pulse
(Pump) is used to pump the atoms to the correct polarization. The
time evolution of the optical density is monitored after the excitation
pulse with the probe laser (A, B, C). The coupling laser is added in
time interval B (EIT pulse). The Rabi frequencies are taken from the
experimental values in Sec. IV.

description of the population dynamics while the atom is being
probed by the weak laser on the |1〉 ↔ |2〉 transition along
with a time-dependent coupling between states |2〉 and |3〉.
Furthermore, through Eq. (6) it describes the absorption of the
probe laser, which we give relative to α0 [see Eq. (8)]:

αrel(t) = α(t)

α0
. (9)

In Fig. 3 we show results for the cases where the entire
population is initially (a) in the ground state [ρ0 ≡ ρ(t = 0) =
|1〉 〈1|] or (b) in the selected Rydberg state (ρ0 = |3〉 〈3|). In
(c) the population is split between the Rydberg state and the
reservoir state (ρ0 = 0.7 |3〉 〈3| + 0.3 |4〉 〈4|).

Following the pulse sequence, the time evolution of the
system can be separated into three major parts. When the atoms
are initially prepared in the ground state, only small changes
in the populations are visible [see Fig. 3(a)]. However, the
reasons for these changes are not the same in the different
parts of the time evolution. In part A, when the atoms are
only irradiated by the relatively weak probe laser (�p 
 �21),
a small fraction of the population is transferred to the first
excited state |2〉 by the absorbed light. In part B, the population
transfer to state |2〉 is prevented by the strong coupling laser
applied on the transition between states |2〉 and |3〉 and the
absorption is reduced, which is the well-known effect of EIT.
The time scale for the transparency to build up is defined by
the Rabi frequency �c of the coupling laser. If the requirement
�p 
 �c is not fulfilled, the transparency is only partial. In
this case, the two laser fields cause two-photon transitions to
state |3〉, and the absorption of the probe pulse is nonzero.
This absorption level (in the case of δp = δc = 0) depends on
�p/�c and the decoherences γp and γc. A consequence of
this effect is that different initial populations of Rydberg states
cause a different absorption level in the equilibrium of part B

043422-3



FLORIAN KARLEWSKI et al. PHYSICAL REVIEW A 91, 043422 (2015)

(a)

A B C

ρ11

ρ33
ρ44

0

0.5

1

(b)

ρ11
ρ33

ρ440

0.5

1

P
o
p
u
la

ti
o
n

ρ
k

k

(c)

ρ11

ρ33

ρ44

0 2 4 6 8 10 12

0

0.5

1

Time t [ s]

αrel

0

0.5

1

αrel

0

0.5

1

R
el

a
ti

v
e

A
b
so

rp
ti

o
n

α
re

l

αrel

0

0.5

1

FIG. 3. (Color online) Dynamics of the populations ρkk(t) of the
atomic states (dotted lines) and the relative absorption αrel(t) (solid
lines) of the probe laser induced by the pulse sequence A, B, C (see
Fig. 2) for atoms initially prepared in the ground state (a), the selected
Rydberg state (b), and the reservoir state (c). Since the population ρ22

is almost zero at all times, except for a transient population in the first
100 ns of B, it is not shown here.

due to the dependence of γc on ρ44. In part C, where the atom
cloud is again only irradiated by the weak probe laser, the
process is very similar to what happens in part A with the
exception that there is a small fraction of population in state
|3〉. Consequently, the absorption level of the probe laser is
smaller, because atoms are missing from the ground state.

In the case of initial population in the selected Rydberg state
|3〉, the dynamics of the system only differ in parts A and B,
provided B is long enough to reach steady state EIT. In part A,
the absorption of the probe laser is close to zero, and slowly
increases while a small fraction of the population decays from
the Rydberg state |3〉. Since the lifetime of the Rydberg states is
much longer than 10 μs, the amount of population transferred
by spontaneous decay is small although not negligible on
the microsecond time scale of the pulse sequence. At the
beginning of part B the population in the selected Rydberg
state is transferred to the ground state |1〉 through a resonant
transfer from state |3〉 to |2〉 induced by the coupling laser with
Rabi frequency �c and the consecutive spontaneous emission
from |2〉 to |1〉. For �c < �21, this process results in only a
small increase in ρ22, because a half Rabi cycle induced by �c

between states |2〉 and |3〉 would take longer than the lifetime of
state |2〉 [see Fig. 3(b)]. Hence, assuming the initial population
is either in the ground state |1〉 or the selected Rydberg state |3〉,
we can determine the fractions by monitoring the absorption
of the probe laser in part A of the time evolution. If there is a
way to ensure that all the population missing from the ground

state |1〉 is in the selected Rydberg state |3〉, then this is indeed
sufficient. However, if the probability that a fraction of the
population is in another state (for example, the interaction
scheme to be realized contains more than one Rydberg state),
the absorption level in part A of the time evolution is not
enough in itself to give information about the population of
the selected Rydberg state |3〉.

As illustrated in Figs. 3(b) and 3(c), the absorption of the
probe laser in part A is the same for different initial states of
the atoms as long as the population in the ground state is the
same. In contrast, the dynamics and the equilibrium become
significantly different in part B. Since only the population in
the selected Rydberg state is transferred back to the ground
state by the coupling field, the absorption level in part C also
changes with the initial population in |3〉.

Another result of the simulations is the possibility to obtain
information on the initial coherence of the system. The time
evolution of the relative absorption in the beginning of part
B for three different initial preparations of the atoms is
shown in Fig. 4. These initial preparations consist of the same
fraction of population in the ground state |1〉 and the selected
Rydberg state |3〉, but the coherence between these two states
is different. One of the initial preparations is the mixed state
ρm(t = 0) = 1

2 (|1〉 〈1| + |3〉 〈3|), while the other two prepa-
rations are ρ±(t = 0) = 1

4 (|1〉 ± |3〉)(〈1| ± 〈3|). Comparing
numerical calculations for these three cases, we find significant
changes in the beginning of part B, where the EIT did not yet
reach equilibrium. The absorption level during the rest of the
pulse sequence is not sensitive to the initial coherence. If the
Rabi frequency �c of the coupling laser is on the order of �23

or higher, oscillations of the absorption signal can be observed.
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FIG. 4. (Color online) Numerically calculated relative absorp-
tion αrel of the probe laser in the beginning of part B for atoms
prepared in states ρm(t = 0) = 1

2 (|1〉 〈1| + |3〉 〈3|) and ρ±(t = 0) =
1
4 (|1〉 ± |3〉)(〈1| ± 〈3|). The parameters used for the calculation are
the same as for Fig. 3 with �c < �21 in (a) and �c ≈ �21 in (b). This
distinct signature of coherent states is expected to be experimentally
observable and even more pronounced if �c is larger.
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IV. EXPERIMENTAL SETUP

For demonstrating the detection of Rydberg population with
time-resolved EIT, we have conducted an experiment on a
cloud of ≈2 × 107 87Rb atoms at a temperature of ≈150 μK.
In this experiment the atoms are trapped in a magneto-optical
trap, loaded to a magnetic quadrupole trap and then released.
The time-resolved measurements are started after 3 ms of time
of flight, in order to ensure that all magnetic fields have fully
decayed while the effects of atomic motion are still negligible.
The measurements are performed within 30 μs (excitation
pulse and probe sequence, cf. Fig. 2). The density and optical
density at the center of the cloud, measured by absorption
imaging, are 5 × 109 cm−3 and 1.7, respectively.

The transitions from the ground state |5S1/2,F = 2〉 to
the first excited state |5P3/2,F = 3〉 and from there to the
selected Rydberg state |35S1/2〉 are driven by two lasers
with wavelengths of ≈780 nm (red, probe) and ≈480 nm
(blue, coupling), respectively (see Fig. 1). Additionally, we
use a repumper to pump atoms from |5S1/2,F = 1〉 back to
|5S1/2,F = 2〉 via |5P3/2,F = 2〉 during the whole pulse se-
quence. The frequencies of both lasers used in the experiment
are referenced to a frequency comb and controlled with slow
servo loops (<100 Hz bandwidth). The linewidths of both
lasers are narrowed to less than 2π × 20 kHz with fast locks
(>1 MHz bandwidth) to scanning Fabry-Pérot interferometers.
As the Fabry-Pérot cavities are sensitive to acoustic noise,
the effective linewidth for the experiment can be larger. The
red and the blue lasers are aligned in a counterpropagating
configuration (see Fig. 5). We use an acousto-optic modulator
(AOM) in each beam to create the intensity envelopes of
the pulses. The switching time of the AOMs is 50 ns
(20%–80% light intensity). The time-dependent intensity of

FIG. 5. (Color online) Experimental setup for time-resolved EIT
measurements. The counterpropagating coupling (blue) and probe
(red) beams are superimposed on the atom cloud and separated with
dichroic mirrors. The transmission of the probe laser is detected
by an avalanche photo diode (APD). The intensities of the lasers
are controlled with acousto-optic modulators (AOM). Both laser
frequencies are stabilized using a frequency comb.

the red laser (probe signal) is measured with an avalanche
photodetector (Thorlabs APD120A/M) and recorded with
a digital oscilloscope. The time resolution of the setup is
20 ns.

As shown in Fig. 2, our measurement consists of three
main parts. First we put all the atomic population into the
Zeeman-sublevel of the ground state matching the polarization
of the red laser by optically pumping for 14.5 μs. This pulse is
also long enough that any transient effects due to the switching
of the AOM wear off before the next pulse. Next, we prepare
the initial state of the atomic cloud with an excitation pulse. We
always apply the red laser for 2 μs with a Rabi frequency of
2π × 3.3 MHz. If we want no population to be transferred to
the Rydberg state, the blue laser remains switched off and due
to the very short lifetime of the first excited state, practically
the entire population remains in the ground state. Applying the
blue laser with a Rabi frequency of 2π × 1.8 MHz for up to
2 μs causes a fraction of the population to be transferred to the
Rydberg state, with the most atoms being excited in the case
of the full 2 μs pulse. Due to the high Rabi frequency of the
red laser there is no coherent excitation of Rydberg atoms. In
the third part (probe sequence in Fig. 2), we use the red laser
at a low intensity as the probe laser during time intervals A, B,
and C together with the blue laser as the coupling laser during
time interval B (EIT pulse).

As a reference, we always add one experimental cycle
without atoms in order to measure the intensity Iref(t) of the
red laser with the photodetector and another one with atoms
but no excitation pulse and no coupling pulse to normalize
the data later on. The parameters are then varied from cycle
to cycle and the transmitted intensity IT(t) of the probe light
after passing through the cloud is measured. The experiment
is repeated several times for each set of parameters to reduce
photodiode noise. The optical density (OD) is calculated as
follows:

OD(t) = −ln

(
IT(t)

Iref(t)

)
. (10)

The resulting OD datasets are then normalized by dividing
them by the OD dataset that had no excitation pulse and no
EIT pulse [OD0(t)]:

ODrel(t) = OD(t)

OD0(t)
=̂ α(t)

α0
. (11)

This relative optical density ODrel is comparable to the
relative absorption α(t)/α0 that is calculated in the numerical
simulation. To reduce the effect of the acoustic noise on our
Fabry-Pérot cavities, we selected the 30 datasets where the
mean transparency in the EIT pulse between 7 and 9 μs was
maximal. We observe that in all measurements the relative
optical density eventually returns to the level before the
excitation pulse, ensuring that ionization effects are negligible.

In general this scheme is applicable in situations where
the optical density can be precisely measured. The resolution
is limited by technical noise from the photodiode and the
digital resolution of the subsequent data acquisition system.
For low optical densities it is necessary to detect not only
the absorption of the atoms, but to resolve the EIT signal
as well. At high optical densities the constant resolution
of the intensity measurement additionally leads to a lower
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resolution of the optical density due to the logarithmic scaling
in Eq. (10). For sufficient averaging, we estimate the presented
scheme to be applicable in the range of optical densities
between ≈0.1 and ≈4. In principal, the optical density can
be lowered by detuning the probe laser while maintaining
the two-photon resonance for the EIT condition, which on
the other hand decreases the contrast for the EIT signal
and therefore only allows for a limited extension of the
range.

V. DETECTION OF THE INITIAL POPULATION:
EXPERIMENTAL RESULTS

We demonstrate the optical detection of population for three
different initial Rydberg excitation pulses. The experimental
results for the optical density are shown in Fig. 6. In order
to compare these results to the model we calculate values for
the decay rates matching the chosen combination of states
in our experiment (see Fig. 1). We calculate the spontaneous
emission rates using the wave functions calculated in [19].
�32 is approximated by summing the spontaneous decay rates
from |35S1/2〉 to all nPj states, which results in

�32 =
∑
n>5

�sp,35S→nP = 2π × 3.9 kHz. (12)

The main contribution comes from |5P3/2〉 (�sp,35S→5P =
2π × 1.2 kHz) and other low-lying, fast-decaying states.
The spontaneous decay rate �34,sp is given by the rate
�sp,35S→34P = 2π × 16.8 Hz. Here we take only the strongest
superradiant transition into account. The transition rate �34,bb

is approximated by a sum over all transition rates induced by
blackbody radiation from |35S1/2〉 to all nPj states

�34,bb =
∑
n>5

�bb,35S→nP = 2π × 2.7 kHz, (13)

FIG. 6. (Color online) Measured optical density for the dynamics
during the probe sequence. The shaded areas are 95% confidence
intervals for the relative optical densities ODrel(t) obtained from the
measurements by applying Eqs. (10) and (11) for three durations
of the excitation pulse (0 μs for I, 0.5 μs for II, and 2 μs for III).
Solid lines represent fit results for the simulated relative absorption
α(t)/α0. The reversed order of the absorption signals in part B can be
explained by dipole-dipole interactions.

0 2 4 6 8 10 12

0

0.5

1 A B C

ρ11

ρ22

ρ33

ρ44

Time t [ s]

P
o
p
u
la

ti
o
n

FIG. 7. (Color online) Dynamics of the population of the four
states (ρ11 =̂ 5S1/2, ρ22 =̂ 5P3/2, ρ33 =̂ 35S1/2, ρ44 =̂ Reservoir) re-
trieved from the fit to the dataset with high excitation (see Fig. 6).
The colors match those of the states in Fig. 3. The population of the
Rydberg state (35S1/2) starts to decay immediately after excitation at
t = 0.

in which the rates �bb,35S→nP are calculated as in [22,23].
The main contribution to �34,bb comes from neighboring
Rydberg states. For the transitions induced by blackbody
radiation a temperature of 300 K is assumed. The preceding
approximations for the decay rates ensure that the total decay
out of the state |35S1/2〉 is modeled correctly. Similar to the
calculation of �32 we obtain

�41 =
∑
n>5

�sp,34P→nS = 2π × 0.8 kHz. (14)

The Rabi frequencies of the two lasers �p = 2π × 0.83 MHz
and �c = 2π × 2.10 MHz and the coherence decay γc =
2π × 112 kHz are fitted to the dataset without Rydberg
excitation (see curve “I” in Fig. 6). The Rabi frequencies are
consistent with estimates based on beam power and geometry.
The noise γc is mainly caused by the acoustic noise on the
Fabry-Pérot cavities. As the fit is only sensitive to γp + γc and
not to the single values, we choose γp = 2π × 20 kHz.

An analysis of the datasets with the same conditions, but
with Rydberg excitation, allows us to fit the fraction of atoms
excited to a Rydberg state [0.494(8) and 0.284(10)] within
interval A, where only the red laser is on. The superradiance
parameter psup = 7.9(8) × 103 is fitted to parts B and C and
the dipole-dipole interaction parameter γ3,dd is adjusted in
part B. The former scales with the absolute atom number,
while the latter scales with the atomic density. From the
model one can now derive the time-resolved populations of
the participating states as can be seen in Fig. 7. The accuracy
of these populations is within ±0.01 compared with values
calculated using a variation method.

VI. CONCLUSION

We have demonstrated the all-optical detection of Rydberg
population in a dilute gas, which is an alternative to the meth-
ods based on field ionization. Our results show that Rydberg
population fractions can be measured with an accuracy of
0.01. By comparing the dynamics of the measured optical
densities to our numerical simulations we have quantified the
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decoherence effects occurring in the system, namely, black-
body radiation induced transitions, superradiant decay, and
inhomogeneous broadening due to dipole-dipole interactions.

From our simulations we conclude that the detection
scheme can also be used to obtain information on the coherence
between the ground state and the Rydberg state. The numerical
results predict that future studies using a coherent excitation
method and experimental parameters similar to our experiment
will be able to detect the initial and time-dependent coherence.
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H. P. Büchler, and T. Pfau, An experimental and theoretical guide
to strongly interacting Rydberg gases, J. Phys. B 45, 113001
(2012).

[4] D. A. Tate, Comment on “measurement of the lifetimes of s and
d states below n = 31 using cold Rydberg gas”, Phys. Rev. A
75, 066502 (2007).

[5] L. L. Caliri and L. G. Marcassa, Reply to “comment on
‘measurement of the lifetimes of s and d states below n = 31
using cold Rydberg gas”’, Phys. Rev. A 75, 066503 (2007).

[6] A. L. de Oliveira, M. W. Mancini, V. S. Bagnato, and L. G.
Marcassa, Measurement of Rydberg-state lifetimes using cold
trapped atoms, Phys. Rev. A 65, 031401 (2002).

[7] V. A. Nascimento, L. L. Caliri, A. L. de Oliveira, V. S. Bagnato,
and L. G. Marcassa, Measurement of the lifetimes of s and d

states below n = 31 using cold Rydberg gas, Phys. Rev. A 74,
054501 (2006).

[8] D. B. Branden, T. Juhasz, T. Mahlokozera, C. Vesa, R. O.
Wilson, M. Zheng, A. Kortyna, and D. A. Tate, Radiative lifetime
measurements of rubidium Rydberg states, J. Phys. B 43, 015002
(2010).
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We have developed an all-optical method for measuring the lifetimes of nS and nD Rydberg states and
demonstrate its capabilities with measurements on a dilute cloud of ultracold 87Rb atoms in a cryogenic
environment. The method is based on the time-resolved observation of resonant light absorption by ground-state
atoms and selective transfer of Rydberg atoms into the ground state at varying delay times in order to reconstruct
Rydberg decay curves. Our measurements of the 87Rb 30S1/2 state indicate an increase of the lifetime at lowered
environment temperatures, as expected due to decreased blackbody radiation. For the 38D5/2 state with an
attractive dipole-dipole interaction, ionization and lifetime reduction due to collisional effects are observed.
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I. LIFETIMES OF RYDBERG ATOMS

Rydberg atoms are promising for quantum information
processing due to their strong and highly tunable interaction
properties [1]. High-fidelity quantum gates and coherent-
state transfer between Rydberg and long-living ground states
have been proposed [2,3]. The fidelity of these operations
is, however, fundamentally limited by the finite lifetime
of Rydberg states [1]. Besides the natural decay of the
Rydberg excitation, blackbody-radiation-induced transitions
[4,5], collisions [6], and superradiance [7] may also limit the
lifetime. The characterization of the Rydberg-state decay is
thus of significant interest.

For individual Rydberg atoms at an environment tem-
perature T = 0 the lifetime of an excited state is given
by the inverse sum over all spontaneous decay rates into
lower-lying states [8]. Due to the highest energy difference,
the lowest-lying states contribute most to the decay. This is
a limiting factor for calculations because the potentials for
low-lying states cannot be described as accurately as those
of higher states, which become more and more hydrogenlike
with increasing n and l quantum numbers. In a finite-
temperature environment, transitions induced by blackbody
radiation (BBR) occur. The strongest transitions are those to
nearby dipole-allowed Rydberg states both above and below
in energy. For a perfect Planck photon distribution and well-
known temperature the corresponding rates can be calculated
with high accuracy [4,5]. The experimental verification of
BBR-induced transition rates is possible not only through
Rydberg lifetime measurements [9] but also indirectly by, e.g.,
measurements of Stark maps [10], which depend on the same
dipole matrix elements. Any incoherent repopulation of the
originally excited Rydberg state by multiple BBR transitions
can be easily included in theoretical models but is usually
negligible in magnitude. Also, blackbody-induced ionization
by transitions to continuum states can be taken into account
[11].

Direct lifetime measurements at lowered environment tem-
peratures, as well as measurements of temperature-dependent

*markus.mack@uni-tuebingen.de
†fortagh@uni-tuebingen.de

BBR transfer rates, have been conducted for Na atoms [9,12].
The most accurate values for Rb Rydberg lifetimes to date
have been measured in a room-temperature environment,
relying on the knowledge of BBR transition rates in order
to extract zero-temperature natural lifetimes. Measurements
of nS and nD states in the range of n = 27 to 44 were
conducted by exciting Rydberg atoms from a cloud of ultracold
atoms prepared in a magneto-optical trap (MOT), waiting
some varying delay time, and then applying an electric-field
pulse while monitoring the time-dependent ionization signals
(selective field ionization, SFI) [13,14]. Due to the difficulty
of accurately distinguishing between close-lying Rydberg
states which are populated because of BBR (see discussion
in [15,16]), the technique was improved in [17]. By adding
a microwave transfer of the “target” Rydberg atoms to a
higher-lying state which can be accurately discriminated, this
potential source of systematic error was eliminated. The results
of [17] generally agree with previous work and cover Rb
nS, nP , and nD states in the range 28 � n � 45. To our
knowledge, neither lifetimes of Rb at lowered environment
temperatures nor any BBR transition rates have yet been
measured. Consequently, an experimental verification of the
BBR rate calculations [4] for Rb is still required.

In general, the lifetime of Rydberg atoms in ultracold gases
is altered by several effects. Any electric fields lead to state
mixing and ionization [8]. Collisions between atoms, as well
as dipole-dipole and higher-order interaction between Rydberg
atoms, which may also lead to collisions [18], cause changes
of the atomic states and ionization [6,19]. Furthermore,
depending on atomic density and cloud geometry, microwave
superradiance is likely to occur, which can be triggered by
blackbody radiation [7,20]. Due to such effects, the lifetimes
of Rydberg atoms can differ greatly from the undisturbed
values, as well as from one experiment to another. Therefore,
measuring Rydberg lifetimes under the given conditions is
necessary.

While the SFI methods mentioned above can be used
when an electron or ion detector is present, an increasing
number of recent cold-atom experiments have relied solely
on optical detection, mostly employing electromagnetically
induced transparency (EIT) instead [21–24]. In order to enable
the determination of Rydberg lifetimes in such systems, as
well as in cases where a reduced complexity of the setup
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FIG. 1. (Color online) Cloud of ultracold 87Rb atoms (center)
inside the radiation shield of a cryostat (hatched). The radiation shield
is cylindrical in shape with a 4.5-mm gap and 35-mm diameter. While
the cold surface is at Tcryo, the temperature of the radiation shield is
slightly higher. The outside temperature is assumed to be close to
300 K.

compared to that of the SFI approach with the additional
microwave is desired, we developed a similarly powerful,
all-optical method for measuring state-specific lifetimes. The
approach is technologically simplified as the same lasers that
are used for Rydberg excitation are employed for detection,
requiring only an additional photodiode for the measurement
of resonant absorption.

We describe the optical lifetime measurement of Rydberg
states in Sec. II and demonstrate its application in a setup
with cold 87Rb atoms (see Fig. 1) at cryogenic environmental
temperatures in Sec. III. Factors influencing the accuracy of
the method are discussed in Sec. IV.

II. OPTICAL LIFETIME MEASUREMENT METHOD

The optical measurements presented in this article rely on
time-resolved resonant absorption detection in an effective
three-level ladder-type system, as shown in the inset of Fig. 2,
similar to the scheme in [25]. The transmission of a probe
laser pulse resonant to a closed cycling transition between a
ground state |g〉 and a quickly decaying intermediate excited
state |e〉 is monitored with a photodiode. The duration of this
pulse should be several times the expected Rydberg lifetime.
The lifetime of |e〉 must be shorter than the expected time
resolution of the final Rydberg decay curves. For Rydberg
excitation a Rydberg laser resonant to the transition between
|e〉 and the target Rydberg state |r1〉 is used simultaneously
with the probe laser. In principle, this configuration allows
excitation by means of a stimulated Raman adiabatic passage
pulse [26]. The experimental sequence, aimed at measuring
changes in the optical density due to the laser pulses, consists
of several steps. In each step, a cloud of ultracold atoms is
prepared and released from the trap, and after a given time of
flight a series of laser pulses depending on the current step is
applied, as shown in Fig. 2.

As a baseline calibration, the probe laser-light-intensity
signals without any atoms [step I, signal I0(t)] and with
ground-state atoms [step II, Ig(t)] are recorded, giving the
time-dependent optical density (Lambert-Beer law):

Dopt
noexc.(t) = − ln[Ig(t)/I0(t)], (1)

In general, during the relevant time scales, the optical density
is proportional to the number of atoms in the volume of the
cloud “seen” by the probe laser beam.

In step III, the Rydberg excitation at t = 0 just before the
start of the probe pulse is added. Due to excited atoms that
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FIG. 2. (Color online) Illustration of the pulse sequence for steps
I to IV used for the optical lifetime measurement for the probe (dashed
red lines) and Rydberg (solid blue lines) lasers, resonant to the |g〉 ↔
|e〉 and |e〉 ↔ |r1〉 transitions. For the calibration (step I without
atoms and step II with atoms), only the probe laser is turned on after
t = 0 for a duration of several hundred microseconds (much greater
than the Rydberg lifetime; only the initial part is shown in the plot).
Starting at step III, at t = 0 atoms are excited to the Rydberg state
|r1〉 (Excitation). For step IV, which is repeated several times, the
long probe pulse is interrupted at time ts for a short duration, during
which an optical pumping pulse of the Rydberg laser is applied (Opt.
Pump.). ts is varied with each repetition of step IV.

are missing from the ground state, there will be increased
transmission compared to that in step II. Again, the optical
density of ground-state atoms D

opt
w/exc.(t) can be calculated as

in (1). In combination with the result from step II, an additional
quantity

p�=g(t) = 1 − D
opt
w/exc.(t)/D

opt
noexc.(t) (2)

can be determined, which gives the number of atoms not in
the ground state due to the excitation pulse, normalized to the
total number of atoms in the detection volume. The value of
p�=g in the beginning is the fraction of atoms that have been
excited to the Rydberg state, except for transitions to other
states that have already happened due to BBR and possible
superradiance, as was noted in [25]. The whole p �=g curve
represents an effective decay of all directly and indirectly
excited states, which is nearly, but generally not perfectly,
exponential in shape because of the differing lifetimes of the
constituent Rydberg states that become populated. Also, if
ionizing effects played a role, the curve will not return to
zero for long times but converge towards a finite value. The
resulting pion = p �=g(t → ∞) is a measure for the strength
of any ionizing effects if other mechanisms can be excluded
that specifically remove Rydberg atoms, but not ground-state
atoms, from the detection volume or, alternatively, transfer
them into other stable states outside the probe transition. In
general, the decay curve must consist of the (as yet unknown)
parts

p �=g(t) = pr1 (t) + pr�=1 (t) + pion(t), (3)
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i.e., the population of the originally excited Rydberg state,
other Rydberg states, and the number of ionized atoms.

In order to separate the decay of the originally excited
Rydberg state |r1〉 from others that become populated, a state
transfer similar to the microwave transfer in [17] is employed
in step IV. However, instead of the additional microwave, the
same Rydberg laser which was used for the excitation is used
for a short optical pumping pulse at various times ts during
the expected decay of |r1〉. This pumps a fraction of atoms
still in the |r1〉 state down to the intermediate |e〉 state. During
this pulse, the probe laser needs to be turned off to prevent
any reexcitation of the Rydberg state. Because the lifetime
of the intermediate state is short, the atoms pumped back in
this fashion will reappear as ground-state atoms as soon as the
probe laser is turned on again after the optical pumping pulse.
Following the same evaluation procedure as for step III, using
(1) and (2), decay curves p�=g,s(t) can be obtained. These must
consist of the same parts with equal values as (3), except for
a change in pr1 (t) at t � ts , which has been reduced by some
fraction α by the optical pumping pulse due to the Rydberg
population in |r1〉 at time t = ts , leaving

pr1,s(ts) = (1 − α)pr1 (ts). (4)

Thus, by subtracting the decay curves p �=g,s(t) from the curve
without optical pumping p �=g(t) of step III, information about
the original |r1〉 population at time t = ts can be obtained:

αpr1 (ts) = p �=g(ts) − p �=g,s(ts). (5)

As long as the optical density of the Rydberg atoms for the
Rydberg laser is small or the optical pumping is fast enough
to transfer all of the |r1〉 atoms (α = 1), α will be a constant
fraction for each ts . Repetition of step IV for different ts and
evaluation of αpr1 (ts) yields the decay of the population pr1 ,
giving the lifetime of the Rydberg state |r1〉. In the case only
spontaneous decay and BBR contribute to the lifetime, this will
be an exponential decay with a decay parameter τ independent
of α.

III. CONDUCTED MEASUREMENTS AND RESULTS

We employed the method in a series of experiments in
a setup where a cloud of 4 × 105 to 8 × 105 87Rb atoms
with a temperature of 1.5 μK is transferred into a gap of the
radiation shield of a tunable temperature cryostat by means
of optical tweezers (detailed in [27]). Details of the geometry
are shown in Fig. 1. For excitation and detection we used the
87Rb 5S1/2(F = 2) ↔ 5P3/2(F = 3) transition and a circular
polarization, which is commonly used for imaging purposes.
A repumping laser resonant to 5S1/2(F = 1) ↔ 5P3/2(F = 2),
which was needed for the MOT operation as well, was used
to effectively keep the F = 1 ground state unpopulated at
all times. The Rydberg excitation to |r1〉 is done by a pulse
of the probe laser, with a higher intensity (approximately five
times) than in actual probing, and, simultaneously, the Rydberg
laser pulse resonant to the 5P3/2(F = 3) ↔ 30S1/2 or 38D5/2

state. The probe and Rydberg lasers are frequency stabilized
to a frequency comb and arranged as described in [25]. The
Rydberg laser was focused down to a size of ≈100 μm with
a total power of ≈20 mW. The measurement sequence as
described in Sec. II was conducted at times of flight (TOFs)

FIG. 3. (Color online) (a) Time-dependent populations of states
not contributing to the probe transition, p�=g (step III) and p �=g,s(t)
(step IV with repetition number s and corresponding optical pumping
time ts), representing an intermediate result of the evaluation of the
measurement of the 30S1/2 state at Tcryo = 300 K and a TOF of
20.5 ms. Shaded areas show statistical errors of the signal at each
instant of time. Solid lines show exponential fits corresponding to each
measurement step. Markers show the values p�=g,s(ts) obtained from
the fit. (b) 38D5/2 state at Tcryo = 160 K, showing only a fraction of
atoms returning to the ground state depending on the optical pumping
time ts , converging towards values up to pion ≈ 0.3.

of 12.0 and 20.5 ms in order to reduce the atom density to
7(3) × 109/cm−3 and 1.5(5) × 109/cm−3, respectively. The
setup did not allow for controlled compensation of stray
electric fields (which have been investigated in detail elsewhere
[28]), leaving residual fields of 6.6 V cm−1 for the 30S

state measurements and, after optimizing the cloud position,
0.5V/cm for those in the 38D state. Due to limited Rydberg
laser power, pulse durations of 1μs were chosen for both
the excitation and optical pumping pulses. In order to reduce
the statistical errors, mainly a result of photodiode and other
technical noise, �30 shots per step were averaged. The time
resolution of the photodiode signal of each shot was digitally
reduced to 0.5μs by temporal averaging. Furthermore, because
of atom-number fluctuations, (1) and (2) were individually
calculated for each single-shot measurement and corrected for
atom-number drifts. In order to decrease statistical noise, the
results of shots belonging to the same step (and repetition
number s for step IV) were averaged.

Figure 3 shows exemplary results for the number of atoms
missing from the ground state, p�=g(t) and p �=g,s(t), where up
to six values of ts have been used at increasing intervals. For
both states, an approximation of the curves by exponential
functions, which were used for fitting in order to determine
the points p �=g,s(ts), was sufficient. While for 30S1/2 all atoms
eventually return to the ground state, for the 38D5/2 state this is
clearly not the case. This is most probably caused by ionizing
collisions due to the known attractive dipole-dipole interaction
for this state [29]. While more than half of the Rydberg atoms
are apparently already lost at t < 2μs, a small fraction was
prevented from being ionized by the optical pumping pulses.
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fits to the data, giving the decay parameters τ and their estimated
error based on the fit (add ±1.0μs systematic error common to all
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The final evaluation step yielding αpr1 (ts) is shown in Fig. 4
for the state |r1〉 = 30S1/2, measured at cryostat temperatures
in the range of 20 to 300 K, at a TOF of 20.5 ms, resulting
in values τ = 14.3(6)μs (Tcryo = 300 K) up to τ = 17.0(8)μs
(Tcryo = 20 K) with an additional common systematic error
of ±1.0μs. Compared with the established measured value
τ = 14.5(12)μs (30S1/2,T = 300 K, Fig. 2 in [14]), our result
is very compatible.

However, while in our measurements there is a clear
tendency for increased lifetimes at lowered temperatures, the
effect is not as pronounced as expected from the calculated
values from [4], giving τ = 26.6 μs at T = 0 K. In order
to check for any systematic dependencies on geometrical
effects arising due to the falling and expanding cloud, as well
as the presence of any density-dependent lifetime-reducing
effects, the measurements for 30S1/2 were repeated with a
time of flight of 12 ms. This resulted in an increase of the
atom density and the optical density by roughly a factor of
2. The resulting lifetimes for 30S1/2 were τ = 14.1(14)μs
(Tcryo = 300 K) up to τ = 16.0(7)μs (Tcryo = 20 K), i.e., no
discernible difference compared to the measurements with
TOF of 20.5 ms. Therefore, we suspect insufficient shielding
from outside thermal radiation in our setup as the main
cause for the discrepancy in comparison to theory at low
temperatures. The geometry as shown in Fig. 1 leads to a solid
angle of 4π × 0.87 covered by cold surfaces. Also, the lower
part of the radiation shield is not ideally thermally coupled to
the cryostat and is estimated to be at least 20 K warmer than
the upper surface at temperatures near Tcryo = 4.2 K, causing
the effective temperature relevant for BBR to be significantly
higher than the cryostat temperature.

The lifetime of the 38D5/2 state, with a TOF of 20.5 ms,
was measured to be 13(4) μs (Tcryo = 160 K) and 19(3) μs
(Tcryo = 20 K), much lower than the reference value of τ =
30(2)μs (T = 300 K; Fig. 2 in [14]). This lifetime reduction

comes as no surprise due to the interaction-induced ionizing
collisions already observed in Fig. 3.

IV. ACCURACY CONSIDERATIONS

The time resolution of the method presented in Sec. II is
limited by the length and timing accuracy of the excitation
and optical pumping pulses, effectively adding uncertainty
to times t = 0 and ts . For our 1-μs pulses with a timing
accuracy of <10 ns, this results in a systematic uncertainty
of ±1.0μs common to all measurements taken under the
same excitation conditions, limiting their absolute, but not
differential, accuracy. Higher laser intensities, particularly of
the Rydberg laser, would allow for shorter pulses. When
choosing the sizes for both laser beams, geometry effects need
to be considered: If there is any significant atomic motion
due to time of flight or atomic temperature, the excitation
volume should be smaller than the detection volume in order
to avoid any Rydberg atoms leaving the detection volume
during the measurement time. However, the measured Rydberg
signal will be lower for increased detection volumes, affecting
the signal-to-noise ratio. Furthermore, prolonged acceleration
of the atoms due to radiation pressure will lead to Doppler
shifts which can lead to systematical errors, especially with
regard to the narrow Rydberg transitions. This is particularly
relevant for the probe laser, which must be well below the
saturation intensity of the probe transition (I0 � 0.2Isat in our
experiments).

If, like in our experiments, the pulses are created using an
acousto-optical modulator (AOM) in the laser-beam path, the
probe pulse will have a certain switching time of ≈100 ns and
will show intensity drifts resulting from polarization drifts
during some device-dependent warm-up time. As long as
the signal remains proportional to the light level seen by
the atoms and the pulse shapes are well reproducible, these
drifts cancel out when calculating the Dopt(t) terms. The
optical density itself will not be constant over the duration
of the laser pulse since the atomic cloud is expanding, as well
as being accelerated downwards by gravity; however, these
effects cancel out as well in p�=g(t).

The measured optical densities depend on the probe light
polarization and Zeeman substates of the atoms. For low Rabi
frequencies, optical pumping effects can become visible in
the dynamic parts of the measured signals, particularly when
turning the probe laser back on after the Rydberg laser pulses at
times ts , which in turn limits the accuracy of the determination
of pr1,s(ts). These effects become especially pronounced when
any stray magnetic fields split up the Zeeman sublevels, which
would need to be compensated well below the magnitude of the
earth’s magnetic field for high accuracy. Stray electric fields,
if sufficiently strong, would additionally lead to state mixing
affecting the underlying physical lifetime of the measured
state. According to our calculations (detailed in [10]), this
would become relevant on a 1% (probability) level at 30 V/cm
for the 30S1/2(|mj |=1/2) state and 2.2 V/cm for 38D5/2(|mj |=1/2),
i.e., not leading to significant state mixing in our setup.

Regarding the measurements taken at a lowered environ-
ment temperature, mainly two sources of systematic error
need to be taken into account: First, as mentioned before and
discussed in [8], the effective temperature as seen by the atoms
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will not be the temperature of the cryostat unless the full 4π

solid angle is covered. Second, the geometry of conducting
parts of the experimental setup, like the radiation shield of the
cryostat, can form an effective microwave resonator altering
the BBR spectrum. This becomes especially relevant if their
dimensions are close to the strongest transition wavelengths
(like the 30S ↔ 30P transition with a wavelength of 1.9 mm
or 30S ↔ 29P with a wavelength of 1.7 mm).

V. CONCLUSION AND OUTLOOK

We have presented an optical method for the measurement
of Rydberg atom lifetimes, providing information about how
they are influenced by effects like blackbody radiation and
interactions between Rydberg atoms. Because no detector
parts or high voltages are needed inside the vacuum chamber
of the experimental setup, this method might prove particularly
useful in otherwise complex systems, including atom-chip

setups such as the one used here [27], or millikelvin systems
[30], which might eventually lead to the realization of proposed
quantum gate schemes such as those in [31,32].

While the use of an additional microwave population
transfer such as the one in [17] is not necessary for state
selectivity, it might be employed to measure the populations
of neighboring Rydberg nP and nF states by generalizing the
scheme to measure signal differences due to the microwave
transfer. This way, both the populations of, e.g., a Rydberg
nS and close-lying nP states could be monitored. This would,
for example, allow for the distinction between superradiance,
which highly depends on the population of such strongly
coupled states, and other lifetime-reducing effects.
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N. Sándor, and J. Fortágh, New J. Phys. 17, 053005 (2015).

[11] I. I. Beterov, D. B. Tretyakov, I. I. Ryabtsev, V. M. Entin, A.
Ekers, and N. N. Bezuglov, New J. Phys. 11, 013052 (2009).

[12] W. P. Spencer, A. G. Vaidyanathan, D. Kleppner, and T. W.
Ducas, Phys. Rev. A 24, 2513 (1981).

[13] A. L. de Oliveira, M. W. Mancini, V. S. Bagnato, and L. G.
Marcassa, Phys. Rev. A 65, 031401 (2002).

[14] V. A. Nascimento, L. L. Caliri, A. L. de Oliveira, V. S. Bagnato,
and L. G. Marcassa, Phys. Rev. A 74, 054501 (2006).

[15] D. A. Tate, Phys. Rev. A 75, 066502 (2007).
[16] L. L. Caliri and L. G. Marcassa, Phys. Rev. A 75, 066503 (2007).
[17] D. B. Branden, T. Juhasz, T. Mahlokozera, C. Vesa, R. O. Wilson,

M. Zheng, A. Kortyna, and D. A. Tate, J. Phys. B 43, 015002
(2010).

[18] W. Li, P. J. Tanner, and T. F. Gallagher, Phys. Rev. Lett. 94,
173001 (2005).

[19] R. A. D. S. Zanon, K. M. F. Magalhães, A. L. de
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We present an ionization mechanism for use in a cold atom electron source with the goal of producing highly
monochromatic electron beams. We experimentally produce a map of the Stark states of 85Rb below the ionization
threshold and identify states that undergo selective field ionization. The properties of an electron beam produced
by field-assisted ionization of such states are quantified. A theoretical framework is established to predict the
improvement to beam quality when ionization is conducted above the ionization threshold, where ionization
conditions are typically more favorable than below the threshold. Calculations suggest that selective ionization of
Rydberg states may offer a pathway to the production of high-brightness, highly monochromatic ion and electron
beams.

DOI: 10.1103/PhysRevA.95.063845

I. INTRODUCTION

Monochromatic electron beams are critically important for
structuring and analysis of materials, from nanofabrication via
electron-beam milling to compositional and structural analysis
using electron energy loss spectroscopy (EELS). The advent
of aberration-corrected optical systems has reduced limitations
previously placed on electron-beam probe sizes by polychro-
matic beams at high energies (>100 keV), but at low energies,
chromatic aberration is usually the limiting parameter [1].
High-resolution electron energy loss spectroscopy (HREELS),
which combines EELS with highly monochromatic beams, can
produce elemental maps with atomic resolution and probe the
nature of atomic bonds in a variety of materials. The current
standard for a highly monochromatic beam is an energy spread
of less than 0.2 eV, which allows for observation of surface
plasmons of gold nanoparticles [2] and the spectroscopic
detection of single atoms [3]. More recently, monochromatic
electrons have allowed atomic resolution to be realized in
a transmission electron microscope operating with a beam
energy of 15 keV [4].

Electron energy resolution of less than 0.1 eV is required
to control and orient chemicals in the condensed phase
[5,6]. State-of-the-art cold field emitting sources produce
100 keV electrons with an energy spread �U = 0.3 eV [7]
and hence still require energy filtering. Monochromators are
well developed but nevertheless complicated and, critically,
rely upon removing a significant fraction of the electrons from
the beam, thus limiting the beam current.

Recently, a new source of electrons based on the ionization
of laser-cooled atoms has emerged. Careful ionization of
an atomic ensemble, either directly or via a field-assisted
process, produces inherently cold electron bunches, giving an
impressively small transverse energy spread [8,9]. Electron
beams with energies of U = 1–10 keV [10,11] have been
produced by ionizing atoms in a static electric field, with
the finite size of the ionization volume giving rise to a

*scholten@unimelb.edu.au

longitudinal energy spread on the order of 0.01% of the beam
energy (�U = 0.1–1 eV). One possible mechanism to achieve
reduced energy spread is field ionization of highly excited
Rydberg atoms [12]. Under certain conditions, Rydberg atoms
will ionize only at a specific value of the electric field. By
using high field gradients, the length scale over which a beam
of atoms will ionize can be very small, greatly reducing the
energy spread of the beam.

Here we investigate the suitability of field-assisted ioniza-
tion of rubidium Rydberg atoms for creating highly monochro-
matic electron and ion beams. We produce a high-resolution
map of the Stark states below the ionization threshold and
observe states which selectively ionize. For a particular
selectively ionizing state, we predict the expected reduction
in energy spread for an electron beam produced via selective
field ionization. Finally, we model the effects of selective-state
ionization for above-threshold Stark states, which are known
to have higher ionization rates, to investigate the possibilities
for further reducing the energy spread.

II. BACKGROUND

In HREELS, the energy resolution of the electron beam
is not only critical to determining the structure that can be
resolved, but also for improving the spatial resolution of
bright field images [13], which is often limited by chromatic
aberration. For a focused electron beam, the combination
of beam emittance and aberrations arising from the source
and the optical system determine the minimum achievable
spot size. The dominant aberrations in the context of focused
beams are spherical and chromatic. Spherical aberrations are
a consequence of the optical system used, whereas chromatic
aberrations and beam emittance are properties of the source. A
common measure for the minimum achievable spot size is the
beam diameter d50, which is the diameter within which 50% of
the beam current is encapsulated. With Gaussian distributions
of both the beam energy U and the convergence angle α,

d50 =
√(

d1.3
50,s + d1.3

50,ε

)2/1.3 + d2
50,c, (1)
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where d50,s, d50,ε , and d50,c are the beam diameters arising from
the spherical aberration, emittance, and chromatic aberration,
respectively [14]. Spherical aberration arises due to a differing
focal length as a function of position from the optic axis.
Emittance is a measure of the transverse phase-space volume
occupied by the beam, which characterizes both the lateral
size and angular divergence of the beam, and thus its
inherent focusability. Chromatic aberration is the variation in
focal length for particles of different energy. The chromatic
aberration spot size d50,c is proportional to the energy spread
of the beam �U and is given by [15]

d50,c = ζCc�α
�U

U0
, (2)

where ζ is a numerical constant for a given system [16], Cc

is the aberration coefficient of the lensing system, and U0

is the mean beam energy. It is clear that increasing the beam
energy will reduce d50,c but for many applications higher beam
energies are not desirable. Consequently, the only method to
minimize d50,c is to reduce �U .

The Cold Atom Electron Source (CAES) produces inher-
ently cold electron bunches. The transverse beam properties
have been investigated in detail, and the beam emittance mea-
sured to be a few nmrad for millimeter-sized beams [17,18],
orders of magnitude lower than other sources. Consequently,
the CAES will have a much smaller value of d50,ε and given
comparable values of d50,s and d50,c, the CAES promises values
of d50 below the current state-of-the art [19]. In contrast
to the transverse beam properties, the longitudinal beam
properties have hitherto remained largely unstudied, despite
the relative simplicity with which the CAES can produce
highly monochromatic electron beams.

In a CAES, ionization typically occurs in a region with
width �z determined by the spot size of the ionizing laser
beam and can be as small as 10 μm. Given an extraction field
of strength F which is created by electrodes separated by
distance d the energy spread can be expressed as

�U

U0
= �z

d
. (3)

Reduction of this value could in principle be achieved by
reducing the photoionization laser beam size through the
use of high-numerical-aperture optical systems, but these are
not always feasible and the ionization width �z will still be
constrained by the diffraction-limited spot size. Using Rydberg
atoms and the combination of a high-gradient electric field
with a rapidly ionizing state may allow ionization widths
of hundreds of nanometers or below, reducing the fractional
energy spread by one to two orders of magnitude. If achieved, a
system would effectively be “super-resolution,” with electron
emission spot sizes below the optical diffraction-limited spot
sizes of the photoexcitation lasers.

Use of Rydberg atoms for the creation of monochromatic
beams was first proposed in Ref. [20], but its application in the
context of CAESs was first proposed in Ref. [12]. The scheme
proposed there involves the creation of a beam of Rydberg
atoms that enters into a high-gradient electric field. The atoms
are ionized once the field value is large enough to permit
field-assisted ionization. In principle, the �z would then be
limited by the gradient of the electric field. In practice, the
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FIG. 1. A schematic of the experiment to produce Stark maps
of 85Rb. (a) A neutral beam of rubidium propagates along y, before
entering a region of electric field produced between plates separated
by 50 mm. Coupling to the Stark states is achieved with excitation and
Rydberg laser beams, which are directed perpendicular to the field
with polarizations parallel to the field. Ions are detected 680 mm
downstream. Inset shows a plot of the electron potential versus
position, showing the saddle-point energy Esp . (b) The energy-level
diagram for 85Rb.

evolution of Rydberg states through the electric field results
in state mixing, leading to a range of threshold electric-field
values and ionization rates. The degree to which Rydberg states
mix is highly variable. Selective field ionization occurs when
a state displays minimal mixing, and also rapidly ionizes near
a specific value of the electric field [21]. By addressing states
that undergo selective field ionization, it may be possible to
reduce �z well below optical diffraction-limited spot sizes.

A key parameter in the study of the ionization of Rydberg
atoms is the saddle-point energy Esp = −2

√
F (see Fig. 1),

below which an electron cannot classically escape the ionic
potential. Quantum mechanically, this corresponds to the
energy below which only tunneling ionization can occur.
Ionization occurs when the quasidiscrete hydrogenic basis
states (Stark states) couple to the continuum. This coupling
arises from the nonhydrogenic component of the Hamiltonian
which, in turn, gives rise to anticrossings in the Stark spectrum.
Near anticrossings, the behavior of state lifetimes can be
dramatically altered, especially in the case of interference
narrowing, where a stable state may have an avoided crossing
with an unstable state, resulting in a reduction in the ionization
rate of the unstable state by many orders of magnitude
[22–29]. Interference narrowing has previously been used
for selective field ionization of helium [20] and precision
mapping of electric fields [30]. By applying selective field-
ionization techniques to the CAES, it should be possible to
produce a highly monochromatic electron beam, provided
the appropriate state and selective ionization channel can be
found. Here we map the Stark states of rubidium in the region
around commonly used field strength values to identify states
that selectively ionize and investigate their suitability for the
production of highly monochromatic electron beams.

III. MAPPING STARK STATES

We performed a search for states which experience selective
field ionization in the region below the saddle-point energy
for F = 600 V/cm. A schematic of the experiment is shown
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FIG. 2. A map of the Stark states, presented as a waterfall
diagram, produced near the ionization threshold at F = 600 V/cm.
The grayscale image shows the logarithm (base 10) of the rate of
detected ionization events and the lines depict the calculated Stark
states for both mj = 1/2 [blue (dark gray)] and mj = 3/2 [yellow
(light gray)].

in Fig. 1. A neutral beam of rubidium effuses from an
oven before passing through an aperture of φ2 mm (where
φ denotes diameter) and subsequently a 70 mm differential
pumping tube of φ7.5 mm, and free-space propagates for
940 mm before entering the ionization region. An electric field
is produced between two electrodes separated by 50 mm with
φ20 mm holes to allow ion extraction. Excitation to Stark
states was performed by using a two-color process, with
a continuous-wave (CW) excitation laser beam resonantly
coupling the 5S1/2F = 3 and 5P3/2F = 4 states, and a CW
probe laser beam coupling the exited 5P state to a high-lying
Rydberg state. The laser beams are directed perpendicular to
the electric field, with the polarization parallel to the field. The
beams are focused as to intersect with the neutral atom beam
as shown in Fig. 1 with spot sizes for the excitation and probe
laser beams of 30 and 10 μm, respectively. Ions are accelerated
towards a charge amplifying detector located 680 mm from the
ionization region, where the current is amplified and filtered,
with the discrimination of single-ionization events.

To map Stark states, an adjustable potential difference
between the plates fixes the electric field, before the probe laser
wavelength was scanned and the number of ionization events
at a given wavelength recorded. The probe laser (linewidth
<500 kHz) was scanned at 5000 discrete frequencies over
40 GHz and the number of ionization events were recorded
for 750 ms at each point. For each change in the value of the
electric field, the laser wavelength was reset and allowed 10 ms
to respond and stabilize to avoid counting spurious ionization
events. Upon completion of the laser scan, the electric field
was adjusted and the wavelength scan repeated. Each scan
took approximately one hour to complete and an entire Stark
map took approximately one day to generate.

Figure 2 shows the map of Stark states for 85Rb, both
measured and calculated. The density plot displays the log
(base 10) of the detected rate of ionization events, which has
been normalized so the most rapidly ionizing state (measured
at a rate of 17 kHz) appears black, with white indicating that no
counts were detected. Background counts are expected from
photoionization of Rydberg states and blackbody ionization
while Penning ionization is not expected to contribute due to
the low density. The measured rates of ionization are overlaid
with the calculations of Stark states, with mj = 1/2 states
shown in blue (dark gray) and mj = 3/2 states in yellow
(light gray). Because the value of the electric field at the
position of the atoms is not known precisely, a single value
offset was applied to the measured field values to obtain
agreement between the data to the calculations. It should
be noted that the electric-field values used to produce the
density plot in Fig. 2 are the mean of the measured field values
recorded over the duration of each given scan. The variation
in the measured field values relative to the mean-field value
was approximately 0.1%. There is good agreement between
predictions and observations, with mismatch attributable to
field jitter, field inhomogeneity, and drift in the wavelength
calibration.

The theoretical locations of Stark states were computed
following the method detailed in Ref. [31]. The method nu-
merically calculates the energy eigenvalues for a Hamiltonian
of the form

Ĥ = Ĥ0 + F ẑ, (4)

where Ĥ0 is the Hamiltonian for the valence electron in the
presence of the ionic core and F ẑ is a perturbation due to the
electric field of strength F directed along z. For excitation from
the 5P3/2 states, we expect coupling to the nS1/2, nD3/2, and
nD5/2 states. With the probe laser polarization parallel to the
electric field, we expect minimal coupling to mj = 5/2 states,
which are not observed in Fig. 2. The states were computed for
400 field values between F = 550 V/cm and F = 650 V/cm
with 2000 states included in the calculation.

IV. SELECTIVE FIELD IONIZATION

Critical to the production of a monochromatic beam is
the identification of states that experience a rapid growth in
the ionization rate or, equivalently, a dramatic broadening
of the resonance peak. One such process that can result
in localized growth in the ionization rate is interference
narrowing, which occurs when two Stark states that are
coupled to the continuum with the same autoionization rates
experience an anticrossing [32]. The coupling to the continuum
for one of the eigenstates will vanish and the coupling for
the other eigenstate will be enhanced due to the interference
between the coupling amplitudes that govern their ionization.
Such observations have been made previously in sodium
[24,29], rubidium [33,34], and in cesium [35,36].

Another process that can result in localized growth in the
ionization rate is when a stable “blue” state (� ≈ 0) couples
to a degenerate “red” state(s) (� � 0) which is (are) unbound,
resulting in rapid ionization around the crossing [24]. An
example of this latter behavior can be seen in Fig. 3, which
shows a section of the Stark diagram in the region around
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FIG. 3. Experimental Stark map in the region of 585 V/cm. The
measured ion counts are shown in green (thick), and the calculated
Stark states for mj = 1/2 are shown in blue (dark gray) and for
mj = 3/2 are shown in yellow (light gray). State |ψi〉 undergoes
monotonic growth in the ionization rate with respect to the electric
field whereas, in contrast, state |ψii〉 experiences a dramatic growth
near a predicted anticrossing at F = 585 V/cm. The measured
ionization rates for |ψi〉 and |ψii〉 are shown in yellow (light gray)
with the blue line (dark gray, dashed) showing the interpolation of
the linewidth as a function of field strength. As no peak is present
near the anticrossing, the linewidth of |ψii〉 near F = 586 V/cm is
not well known; a value of η = 10 (see text) was used to estimate the
linewidth.

F = 585 V/cm. State |ψii〉 shows a stable state evolving into a
rapidly ionizing state near the crossing with a highly unstable
state, which returns to a relatively stable state over a small
change in field strength. This is in contrast to state |ψi〉, an
initially stable state which becomes unstable with increasing
field strength.

The state |ψii〉 in Fig. 3, and other states in Fig. 2, show
qualitatively the desired traits for producing a monochromatic
beam; namely, a stable state which transitions to rapidly
ionizing state over a small change in field. In the following
section we model the ionization probability given to predict
the effectiveness of selective field ionization for the mini-
mization of energy broadening and therefore determine how
monochromatic the electron beam can be.

V. BEAM MONOCHROMATICITY

To model the energy spread of the beam, the range of field
values over which the beam is ionized must be calculated.
We consider an apparatus optimized for field ionization by
using high-gradient fields, such as the apparatus outlined in
Ref. [12] or the apparatus currently under construction in
our research group. These systems are similar to Fig. 1, but
the electrode system is oriented along the same axis as the
neutral atom beam propagation direction. They are optimized
for the production of monochromatic electron beams with
electrodes that can create a very uniform electric field in one
region and high-gradient electric fields in adjacent regions,
required for precise excitation and ionization, respectively.

The combination of an optimized neutral atomic beam and
adjacent regions of highly uniform electric fields with regions
of high field gradient should allow creation of a high-quality
beam of Rydberg atoms that can be efficiently ionized with a
small ionization region (small �z).

We assume an atom within the atomic beam traveling at
speed v is excited to a Rydberg state |R〉 in a uniform field of
strength F0 and propagates through a region with a high field
gradient. Assuming the field is aligned along the z axis with a
gradient of ζ , the field is then given by F (z) = F0 + ζz. We
define the effective ionization width �eff ≡ 1/2(zσ+ − zσ−) as
the region over which 68.2% of the atoms are ionized:

�eff = 1
2 [(z|P(F ) = 0.841) − (z|P(F ) = 0.159)], (5)

allowing for direct comparison with �z, typically defined as
the standard deviation of the ionization laser spatial profile.
P(F ) denotes the cumulative probability that the atom will
be ionized at a field between F0 and F after having been
excited in a field of strength F0:

P(F ) = 1 − exp

[
1

ζ v̄z

∫ F

F0

�(F ′)dF ′
]
, (6)

where v̄z is the mean atomic velocity within the beam and �(F )
is the ionization rate of the Rydberg state |R〉. In expressing
the cumulative probability as a function of the field strength F ,
we assume the field is linear in z and also that t = (z − z0)/v̄z.
Provided the form of �(F ) is known, Eqs. (3) and (5) allow
the energy spread of the beam to be calculated. We insist that,
for an ionization scheme to be useful, that the cumulative
ionization probability be near unity after the anticrossing.
If this were not the case, any Rydberg atoms not ionized
would continue to propagate into a high-field region where
they would be ionized via an alternate mechanism, resulting in
a complicated longitudinal energy distribution and a reduction
in beam monochromaticity.

By using the above formulation, we can calculate �eff

for the state shown in Fig. 3, which shows the measured
ionization rate as a function of the electric-field strength that
was interpolated to produce an approximation of �(F ). The
ionization rate is determined by the width σ of the observed
ionization peaks. In our apparatus, the maximum field gradient
we can produce is on the order of ζ = 1 × 109 V/m2. This
value was calculated by using detailed modeling of the
electrode system in SIMION [37] and shows the length scale
over which the field has an appreciable gradient is 5 mm.
Given a neutral rubidium beam produced from an oven at
373 K and an excitation field of 580 V/cm, with excitation to
state |ψi〉 (Fig. 3), we calculate the ionization probability as
a function of F by using equation (6). A rapid growth in the
ionization probability occurs over approximately 250 nm and
as expected and continues to increase with increasing F . While
a localized growth in ionization probability is observed over
some hundreds of nanometers, the total number of ionization
events in this region is extremely small, owing to the small
ionization rates. Consequently, the majority of the ionization
takes places at higher values of the electric field and hence
results in a ionization over a range of positions (large �eff).

In contrast, the scale over which state |ψii〉 destabilizes
is much shorter due to the highly localized growth of the
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FIG. 4. Ionization properties of a selectively ionizing Rydberg
state in rubidium. (a) Predicted cumulative ionization probability of
|ψii〉 as a function of electric-field strength around F = 585 V/cm.
The blue shaded region from σ− = 15.9% to σ+ = 84.1% defines the
region over which the beam ionizes. The color scale indicates the
growth of ionization rate at the crossing, with η = 1 corresponding to
37 MHz. (b) Predicted ionization width as a function of the maximum
ionization rate of |ψii〉 at the crossing. The parameters for excitation
and ionization are given in the text.

ionization rate. The exact growth in the ionization rate cannot
be well predicted because no additional data were recorded
in the region around the destabilization. Because there is no
peak in the Stark map, we therefore include an enhancement
of the ionization rate by a factor of η at the anticrossing.
Previously, the ionization rate in the region of the crossing was
measured by Ref. [24] to increase under similar conditions by
two orders of magnitude relative to the stable state (η = 102),
with a greater growth predicted but not measured. Assuming
the value of � grows by a factor of η to a maximum rate �M

over the crossing, it is possible to calculate the expected value
of �eff given excitation to |ψii〉, with all other parameters the
same as were used to calculate the ionization width of |ψi〉.

Figure 4(a) shows the cumulative ionization probability
for a rubidium atom excited to |ψii〉 in the region around
F = 584 V/cm. The different curves display how the cu-
mulative ionization probability varies with the maximum
ionization rate of |ψii〉 at the anticrossing. It is clear that
the ionization probability experiences highly localized growth
and, as expected, with increased ionization rate the range
of field values over which the ionization occurs decreases.
In addition, a greater ionization rate also ensures near-unity
ionization probability. For values of �M > 2.5 × 109 Hz, we
calculate �eff to be on the order of 50 nm, far below the
tens of microns typically achieved by using photoionization
and in the super-resolution regime (�eff of order 100 nm).
Figure 4(b) shows the ionization width �eff as a function
of the maximum ionization rate �M . With greater values of
�M , the ionization width decreases, but it is clear that large
growth in the ionization rate, at least η > 30, is required
to produce super-resolution values of �eff. For values of
η < 30, values of �eff near or below the diffraction limit
are achievable; however, we are primarily interested in the
super-resolution regime. A growth factor of η = 30, which
corresponds to �M ≈ 1 × 109 Hz is not entirely unreasonable;
in other work, a growth value of η = 102 has been measured
[24], and separately a value of �M = 1 × 109 Hz has been

measured over a anticrossing [34]. A growth factor of
η = 30 would yield a �eff = 130 nm and a higher growth rate,
η > 70 (corresponding to �M > 2.5 × 109 Hz), is required to
achieve �eff < 50 nm. However, for growth rates less than
η ≈ 80, the cumulative ionization probability is below unity,
meaning that any atoms not ionized will undergo ionization
in the high-field region downstream, subsequently reducing
the monochromaticity and increasing �eff. This means that,
for a monochromatic beam, we require a growth rate of at
least η = 80, which would require an exceptional state with
an ionization rate greater than that previously observed in
Ref. [34]. Thus, in all likelihood, a sufficient value of �M

would not be reached to simultaneously ensure both efficient
ionization and a small ionization width.

Further measurements of �M are required to determine the
suitability of state |ψii〉 for monochromatic beam electron-
beam production. The above results demonstrate that selective
field ionization can result in ionization widths much smaller
than conventional photoionization sources, but may come at
the cost of ionization efficiency. One possible solution is to
work in the region above the ionization threshold, where the
transverse beam properties will be slightly degraded, but the
ionization rates are typically many orders of magnitude higher.
Provided an appropriate state with a localized growth in the
ionization rate is used, a small ionization width could be
combined with high-efficiency ionization. In the following
section, we seek to validate this idea theoretically.

VI. MODELING ABOVE-THRESHOLD IONIZATION

The purpose of this section is to theoretically model the
ionization rate for a state that experiences selective field
ionization above the ionization threshold. We then seek to
determine whether field ionization of Rydberg states is a viable
method for highly monochromatic electron-beam production.

Calculation of the ionization width �eff requires that one
have precise knowledge of �(F ), and accurate prediction of
the form of �(F ) is often difficult. In the case of hydrogen, the
value of �(F ) can be calculated in a relatively straightforward
manner [38], but for other atoms it is more complicated due
to the coupling of states at the core and the associated avoided
crossings of Stark states, though calculation of the lineshapes
is possible [39]. For high-lying Rydberg states in alkali metals,
the states of hydrogen provide a good approximation provided
the quantum defect is small [40]. Since we are interested in the
ionization rate of states near avoided crossings, we need only
model the two-state system, provided the states are isolated.

More explicitly, to ensure the states are isolated, we require
that the scale of the coupling between the states (Vc) is less
than the difference in energy to neighboring states. Given
the principal quantum number n, the separation of states to
first order can be approximated by (3/2)nF , within an n

manifold, before the first crossings with other n manifolds.
The first crossings occur at a field strength of 1/(3n5), hence
the minimum energy separation for different values of n will
vary as 1/(2n4). The core coupling Vc can be approximated by
using quantum-defect theory, where Vc ≈ δm/n4 [21,41,42].
This suggests that, provided the quantum defect is small (less
than 0.5), a two-level model should well approximate the
system. In the case of rubidium, the δ2 defect value for the
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FIG. 5. Cumulative ionization probability of the |17,0,13,3〉 state
for a rubidium beam (as detailed in Sec. V) as a function of
electric-field strength. The blue shaded region from σ− = 15.9% to
σ+ = 84.1% defines the region over which the beam ionizes. The inset
shows a close up of the transition region, with the green area marking
the range of the electric field over which the ionization occurs.

nS1/2 states is approximately 0.18 and the values for nP1/2,3/2

are approximately 0.29 [43], with the defect values for states
of higher l being significantly smaller. Consequently, we use
the two-level model to demonstrate the qualitative behavior,
but do not expect quantitative agreement unless states of large
l are considered.

Selective field-ionization processes above the ioniza-
tion threshold usually occur when a stable “blue” state
(� ≈ 0) couples to degenerate “red” state(s) (� � 0) which
are unbound, resulting in rapid ionization around the crossing;
the field at which this occurs defines Fχ . We use a two-level
model based on states of hydrogen A that allows for the
calculation of �(F ) around Fχ . A similar model has been
previously used to obtain excellent quantitative agreement
for the ionization rate of sodium near the anticrossing of the
|12,6,3,2〉 and |14,0,11,2〉 states [24] (labeled |n,n1,n2,m〉).
By choosing states with a large value of |m|, we can ensure a
small value of δ2 and hence expect our model to be valid. The
primary criterion for state selection is that a stable blue state
crosses an unstable red state, which for even moderate electric
fields is very common. We choose the states |17,0,13,3〉
and |14,10,0,3〉, but it should be emphasized that these are
not unique. There are a multitude of states that display
similar properties; we choose these simply because they are
experimentally compatible with our system. In reality, the
exact states to be used would, in great part, be determined
by the core coupling Vc between the two states. The value of
Vc is critical to determining the lineshape of state-selective
ionization and hence the ionization width �z but is not readily
tunable, meaning that the crossing to be used must be selected
for the appropriate value of Vc.

Using Eq. (6), it is again possible to calculate the cumulative
ionization probability for a Rydberg atom propagating into an
electric-field gradient as described above. We calculate the
probability of ionization as a function of the electric field
near the crossing of the |17,0,13,3〉 and |14,10,0,3〉 states
(Fig. 5), by using �̄−(F ) [Eq. (A2)] [42] and an excitation
field of 6 kV/cm, with the other parameters as in Sec. V. With
a coupling strength of Vc = �̄−(Fχ )/4 the rapid growth of the

ionization rate near F = Fχ results in the rapid increase of the
ionization probability, as was previously observed with below-
threshold states. Due to the greatly increased ionization rate,
on the order of 1010 Hz, a much higher ionization efficiency
is predicted. From these data, we extract the ionization width
of �eff = 0.26 μm with unity probability for ionization. The
value of �eff is consistent with a previous estimate of the
reduction of the ionization width via selective field ionization,
which showed an improvement of one to two orders of
magnitude compared with nonselective field ionization, with
�eff ≈ 1 μm [12].

VII. CONCLUSION

Mapping of the Stark states below the ionization threshold
allowed for the observation of selective field-ionization states,
but insufficient resolution in the data around the localized
growth of the ionization rate limited our ability to determine
the states’ suitability for the creation of a monochromatic
electron beam. Further work is required to determine whether
localized growth of the ionization rate below the ionization
threshold is sufficient to allow for simultaneously efficient
and localized ionization. It is possible that the low-ionization
rates typical of states below the threshold will limit their
usefulness in creation of monochromatic electron beams.
Above the threshold, where ionization rates are much larger,
we predict values of �eff < 260 nm are readily achievable.
An ionization width on the order of hundreds of nanometers
represents an improvement by a factor of at least ten compared
with direct photoionization. Using high-numerical-aperture
in-vacuum lenses permits laser spot sizes of the order a
few microns, but getting below this limit represents a major
challenge. By using field-assisted ionization of Rydberg atoms,
any reduction in the ionization width linearly improves the
beam monochromaticity, commensurate with a reduction of
the value of d50. If such a super-resolution ionization scheme
were realized, it would result in an electron beam with a
relative energy spread better than 1 part in 105, removing
the need for a monochromator for many experiments. By
implementing a high-efficiency photoexcitation scheme, for
example, one similar to that already implemented in a cold
atom source [44], this would allow for the creation of a high-
current highly monochromatic electron beam. Additionally,
the application of the same system to focused ion-beam
science would be extremely powerful. For example, in a 30 kV
cold atom beam ion source operating in low-current mode
(0.1 pA), the expected value of d50 is 200 pm [19] when using
photoionization. This value could potentially be reduced to
d50 = 50 pm by using Rydberg ionization. Likewise, a field-
ionization source operating in high-current mode (1 nA) could
reach d50 = 4 nm, a factor ten below current state-of-the-art
liquid-metal ion sources.
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APPENDIX: MODELLING AVOIDED CROSSINGS

We seek to estimate the form of the ionization rate for a
given state as a function of the electric field. We consider the
two-state system of |φ1〉 and |φ2〉 with an energy separation
h̄δ = E1 − E2, which experiences an anticrossing at a field of
Fχ due to a coupling of strength Vc. Because we are interested
in states that display selective field-ionization behavior, we
consider the crossing of a stable blue state with an unstable
red state. The Hamiltonian is then given by

Ĥ =
(−δ/2 Vc

Vc δ/2 − i�/2

)
, (A1)

where � is the ionization rate of the dominant loss channel.
At the anticrossing, the eigenstates will have the form
|φ1 ± φ2〉 where |φ1〉 and |φ2〉 are the eigenstates away from
the crossing. The eigenvalues for the system can be extracted
from the matrix Ĥ , yielding the state energies δ̄± and ionization
rates �̄± for the upper and lower states of the mixed system:

�̄± = 1
4

( − � ± Im
{√

16V 2
c − (� + 2iδ)2

})
,

δ̄± = ± 1
4 Re

{√
16V 2

c − (� + 2iδ)2
}
. (A2)

The energy of the states E1 and E2 is calculated from the
hydrogen Stark system, which we take to the fourth-order
expansion [32]. The ionization rate � for the hydrogen Stark
system can then be expressed as [45]

� = 4R2n2+m+1

n3
1n2!(n2 + m)!

exp

{
− 2R

3
− n3

1F

4

[
34

(
n2

2 + n2m
) + 46n2 + 7m2 + 23m + 53

3

]}
, (A3)

where R = (−2E )3/2/F and n1, n2, and m are the usual
parabolic quantum numbers. By calculating E , one can
calculate a value of δ and, in conjunction with Eq. (A3), the
ionization rates of the mixed system �̄± can be calculated near
the anticrossing.

By using quantum-defect theory one can estimate the
expected core coupling [41] but, as a general trend, if the
coupling is too weak, no strong state mixing is observed
and narrowing either does not occur or only weakly occurs,
resulting in no growth in the ionization rate. For stronger
couplings, the effect begins to become delocalized and a
growth in the ionization rate is seen over a range of field values.
In the context of achieving highly localized ionization, the

latter is highly undesirable. The maximum coupling rate occurs
for any value of Vc > �/4, with the minimum ionization width
and the maximum ionization rate simultaneously occurring for
Vc = �/4. Physically, the actual value of coupling cannot be
tuned as a simple parameter, but rather will be determined by
the states in question. Some degree of tunability is present
by changing the value of n1 for the red state, moving to a
neighboring crossing. If no states with desirable properties
and appropriate coupling can be found, then the crossing
of a different blue state should be considered. In practice a
model, such as the one presented here, would be used to find
potentially appropriate states and then a high-resolution scan
performed experimentally to identify the optimum states.
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We report on the observation and numerical calculation of ionization spectra of highly Stark-shifted Rydberg
states of rubidium beyond the classical ionization threshold. In the numerical calculations, a complex absorbing
potential (CAP) allows us to predict the energy levels and ionization rates of Rydberg states in this regime.
Our approach of adjusting the CAP to the external electric field reduces the number of free parameters from
one per resonance to a single one. Furthermore, we have measured the ionization spectra of magneto-optically
trapped rubidium atoms which are excited to principal quantum numbers of 43 and 70 at various electric fields.
The emerging ions are detected using an ion optics. We find good agreement between the numerically and
experimentally obtained spectra.

DOI: 10.1103/PhysRevA.96.013427

I. INTRODUCTION

Stark spectra of alkali-metal Rydberg states above the
classical ionization threshold exhibit an intricate energy-level
structure with strongly varying ionization behavior, including
rapidly ionizing states as well as the extreme of narrow res-
onances where ionization is almost suppressed [1]. The latter
feature is clearly distinct from hydrogen, where the ionization
rate of a given state grows exponentially with the applied
external electric field [2]. The study of these ionization spectra
of nonhydrogenic atoms is therefore of particular interest
not only from a fundamental point of view, but also for the
prospect of improved control over the ionization process in
Rydberg gases.

The method of complex rotation (CR) is well known
for the theoretical treatment of ionization rates of highly
Stark-shifted states of hydrogen and alkali atoms [3–5]. It is
applied by substituting the location and momentum operators
in the Hamiltonian by the complex terms r̂ → r̂ · exp(iθ )
and p̂ → p̂ · exp(−iθ ), respectively, which results in a non-
Hermitian Hamiltonian. This leads to complex eigenvalues of
the Hamiltonian which can be used to obtain the energy levels
and linewidths, i.e., the ionization rates in the present case. As
an alternative to this method, a complex absorbing potential
(CAP) can be employed to create a non-Hermitian Hamiltonian
[6–9]. The CAP is added to the original Hamiltonian in
the form −iηW (�r). Both of these methods, CR and CAP,
work with free parameters θ and η, respectively, which are
determined for every single resonance of the system by a
variational method.

In a previous work [10] we have calculated Stark-shifted
energy levels including the corresponding dipole matrix
elements by diagonalization of a matrix representation of the
Hamiltonian [11]. While this methods yields very precise
results for spectra at electric fields below the classical
ionization threshold, the broadening of the states by ionization

*jens.grimmel@uni-tuebingen.de
†markus.stecker@uni-tuebingen.de
‡fortagh@uni-tuebingen.de

at higher fields can no longer be neglected. Hence, in this
work, we combine the matrix diagonalization method with
an adaptive CAP method by choosing a potential that is
adjusted to the external electric field. This removes the need to
determine the free parameter η for each resonance separately
and thereby greatly reduces the computational effort for the
numerical calculation. We calculate ionization spectra near
the unperturbed 43S1/2 and 70S1/2

87Rb Rydberg states for
electric fields far beyond the classical ionization threshold.
Furthermore, we present an experiment in which rubidium
atoms in a magneto-optical trap (MOT) are excited to Rydberg
states in the presence of an external electric field. When the
atoms ionize from these Stark-shifted Rydberg states, the ions
are guided to a detector by an ion-optical system [12]. We
have measured ionization spectra by ramping up the external
electric field and scanning the excitation laser frequency near
the aforementioned states.

The methods we present here can be used to search
for resonances from the ionization spectra, such as highly
Stark-shifted states which have a desirable ionization rate
or sensitivity to the external electric field across a certain
range. Furthermore, this opens up the possibility to tune
a coupling between ionizing and nonionizing states by the
external electric field. This way of tailoring the ionization
process is highly useful for the design of sources of cold ions
and electrons for microscopy purposes [13–16]. Moreover,
a precise knowledge of these ionization spectra opens new
perspectives for experiments incorporating Rydberg atoms
near surfaces, where static electric fields arise due to adsorbates
[17–20].

II. APPLICATION OF A COMPLEX
ABSORBING POTENTIAL

The Hamiltonian Ĥ for an atom in an external electric field
FE along the z axis is given by

Ĥ = Ĥ0 + FEẑ, (1)

where Ĥ0 denotes the unperturbed Hamiltonian, i.e., the
unperturbed atomic energy levels, which are calculated from
quantum defect theory [21–24]. Note that all formulas in this

2469-9926/2017/96(1)/013427(7) 013427-1 ©2017 American Physical Society
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section are given in atomic units. The Stark-shifted energy lev-
els corresponding to this Hamiltonian are routinely calculated
by choosing a subset of the basis given by Ĥ0, representing
Ĥ as a matrix in this basis and computing the eigenvalues
of this matrix [11]. For the high-field region considered in
this work, it is crucial to include all total angular momentum
quantum numbers j in the subset of the basis. However, as
we use a two-photon excitation scheme in the experiment,
we can limit our calculations to |mj | ∈ {1/2,3/2,5/2}. The
subset of the basis is then chosen symmetrically in energy
above and below the desired energy region. The convergence
of this method can be assured by increasing the subset of the
basis until changes of the resulting eigenvalues are well below
the experimental resolution. In our previous work, we have
extended the calculations of [11] and determined a measure
D for the transition strength in the three-level ladder scheme
by calculating the dipole matrix elements between the states
[10]. Here, we further extend these calculations by introducing
a complex absorbing potential (CAP) to the model, which
allows for an estimate of the ionization rates of Stark-shifted
states in the regime of high electric fields beyond the classical
ionization threshold.

The CAP is added to the Hamiltonian Ĥ , resulting in a new
non-Hermitian Hamiltonian,

ĤCAP = Ĥ − iηW (r̂ ,FE). (2)

In general, the free parameter η ∈ R+ should be adjusted for
each resonance that is studied at each value of the electric
field. However, in the approach we present in this work, we
also adjust the function W (r̂ ,FE) depending on the electric
field, which in effect allows us to choose the parameter η only
once for a whole region of the spectrum.

We have chosen a CAP combining r̂6 as in Ref. [8] with the
Heaviside function � as in Ref. [7], similar to the rectangular-
box CAP in Ref. [25]:

W (r̂ ,FE) = �[r̂ − rc(FE)][r̂ − rc(FE)]6. (3)

This results in a spherical potential scaling as r̂6, but radially
shifted to a radius rc. The matrix representation of this CAP
is calculated using the same radial wave functions as for the
ẑ operator, which are obtained by integrating a parametric
model potential [26]. It is worth noting that due to its spherical
symmetry, this choice for the CAP does not introduce any
coupling between different states and therefore results in
a purely diagonal matrix representation. Furthermore, the
Hamiltonian can still be treated separately for different values
of |mj | and the basis for the matrix representation is chosen as
in previous works by including enough states nearby in energy
for the results to converge [10,11].

The potential W (r̂ ,FE) is changed along with the external
electric field FE via the radius rc. To determine rc, we use a
Coulomb potential to approximate the atomic potential with
an external electric field,

VC,E = −1

r
− FEz. (4)

This potential is also used for the definition of the classical
ionization threshold, which is given by

Eion = −2
√

FE, (5)

VC,E

W

rc

Eion

z

V (z)

FIG. 1. Illustration of the complex absorbing potential (CAP).
The parameter rc is determined according to Eq. (6) which places it
at the radius of the saddle point of the potential VC,E [see Eq. (4)].
Note that in this 1D graph along the z axis, the saddle point appears
as a local maximum. This choice of rc creates a potential W that
resembles the shape of r6 but is spherically shifted by rc.

and marks the saddle point where the potential opens towards
the continuum. The location of the saddle point, which is a
local maximum along the z axis, is then given by

rc(FE) = 1√
FE

, (6)

and we use this radius to place the onset of r6 in the potential
W (r̂ ,FE), as illustrated in Fig. 1. Graphically speaking, this
allows us to distinguish between an inside and an outside
region of the atom and to ensure that the CAP only absorbs the
parts of the wave functions that protrude to the outside region.

The Hamiltonian ĤCAP may yield complex eigenvalues
which can be written as

Ec = Er − i
�

2
, (7)

where the real part determines the energy level Er of the
resonance and the imaginary part determines its ionization
rate �. In the calculations, the free parameter η from Eq. (2)
is varied for exemplary values of the electric field. The first
of these exemplary points is conveniently chosen near the
classical ionization threshold to determine a first estimate
for η because, assuming no other previous knowledge about
the spectrum, this region generally features a large number
of resonances with different ionization rates. Subsequently,
further points are chosen at higher electric fields to continue
the variation of η following the initial estimate. The parameter
η is then fixed to a value in the center of a region which
leaves the resulting eigenvalues Ec mostly unchanged. For all
spectra investigated here, this region spans multiple orders
of magnitude of η, which is a direct consequence of our
field-dependent choice for the CAP. It is also worth noting that
within this region, changes of η affect the broadest resonances,
i.e., broader than the frequency range in the experiment, more
than narrow resonances. Therefore, the resulting changes do
not visibly alter the spectrum.

In order to create a diagram of the spectrum from the
calculated eigenvalues in terms of intensity I with respect
to the transition energy E, we sum up Lorentzian peaks for
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Coupling
Beam

Extractor
Electrodes

Ion
Optics

MOT
Beams

FIG. 2. Schematic diagram of the experimental setup. Rubidium
atoms are trapped at the intersection of the MOT beams (red). Atoms
from the MOT are continuously excited to Rydberg states by the
coupling laser (blue) at various electric fields, which are applied via
the extractor electrodes. The field is also used to guide the ions (green)
to the ion optics.

each resonance at a given electric field,

I (E) = D

π

�

�2 + (E − Er )2
. (8)

For the resulting resonances which would have linewidths
smaller than 25 MHz, we set the linewidth to 25 MHz, which
is approximately the linewidth of resonances in the region that
is not dominated by ionization and also the resolution of our
experimental data. Please note that ionization is the only decay
channel that we consider in these calculations. All other decay
channels as well as redistribution by blackbody radiation are
negligible for strongly ionizing states.

III. EXPERIMENTAL SETUP

We excite Rydberg atoms in a cloud of 87Rb atoms
confined to a standard six-beam magneto-optical trap (MOT).
The cooling light is provided by a diode laser running
at ≈780 nm, which is frequency stabilized to the cooling
transition 5S1/2(F = 2) → 5P3/2(F = 3) with a red detuning
of 10 MHz. The MOT is positioned in between two electrodes
which are used both to generate the desired electric field at the
position of the MOT and to extract ions out of the MOT (see
Fig. 2). An ion optics consisting of a set of electrostatic lenses
guides the ions to a microchannel plate detector (MCP) where
they can be detected with single-particle sensitivity [12].

The excitation of rubidium atoms from the ground state
to a Rydberg level is done in a two-step process. The
lower transition 5S1/2 → 5P3/2 is driven by the MOT beams
themselves. The upper transition from the intermediate state
5P3/2 to a Rydberg level is done by a frequency-doubled,
grating stabilized diode laser (Toptica DL-SHG pro) with
a tuneable wavelength around 480 nm (hereafter referred to
as “coupling laser”). The frequency of the coupling laser
is stabilized by a HighFinesse WSU-30 Wavemeter. The
ionization rate of the excited Rydberg atoms is determined
by counting the emerging ions with the MCP detector.

In order to measure the ionization spectra of highly Stark-
shifted Rydberg states, we fix the coupling laser to a certain
frequency and ramp the voltage at the extractor electrodes to
probe the desired field region and simultaneously detect the

generated ions. This ramp is repeated for different coupling
laser frequencies. The MOT beams and the coupling beam
remain switched on during the whole measurement and the
MOT is continuously loaded from rubidium dispensers. With
this scheme, we were able to scan a large field region in a
reasonably small measurement time, while still getting a good
signal-to-noise ratio.

We measured Stark spectra near the unperturbed 43S1/2 and
70S1/2 state in a wide electric-field range, mostly around and
above the classical ionization limit. In these measurements,
we used voltage ramps with a ramping speed of 1 V/s and
25 MHz steps for the frequency of the coupling laser.

IV. MEASUREMENTS AND COMPARISON
TO CAP-THEORY RESULTS

We present experimental results in comparison to results
from our numerical calculations near the unperturbed state
43S1/2 in Fig. 3. The experimental resolution of the voltage was
100 mV, equivalent to 30.6 mV/cm, and the step size of the
electric field in the numerical calculations was 40 mV/cm. The
classical ionization threshold for this state is at ≈127 V/cm, so
it is located just within the lower limit of the electric-field range
of this figure. The variation of the free parameter η described in
Sec. II led to a value of η = 1×106 in the depicted region and
we used ≈4000 states for the matrix representation of ĤCAP.
The results from the experiment and numerical calculations are
in very good agreement. Both data sets clearly show a general
broadening of the lines with increasing electric field as one
would naively expect above the classical ionization threshold.
However, we also find some resonances which are still narrow
even at high electric fields as well as overlapping narrow and
broad resonances, for example at ≈143 V/cm in Figs. 3(a)
and 3(b).

The results near the unperturbed state 70S1/2 are depicted
in Figs. 4–7. The experimental results were recorded with a
resolution of 50 mV, equivalent to 15.4 mV/cm, and the nu-
merical calculation was performed using steps of 10 mV/cm.
The ionization threshold near this state is within the range
of Fig. 4 at ≈16.1 V/cm. In this region, the variation of the
free parameter η resulted in a value of η = 2×105 and the
matrix for ĤCAP is represented using ≈10 000 states. Again,
we find a general broadening of the resonances beyond the
classical ionization threshold. This broadening increases as
the electric field gets stronger, but even in the high-field range
of Fig. 6 we still find some narrow resonances with linewidths
on the order of magnitude of our experimental resolution
of 25 MHz.

In the highest-field range (see Figs. 6 and 7), the larger
ionization rates result in overlapping resonances with different
linewidths. In some parts of these spectra, the results from the
numerical calculations deviate from the experimental results
showing antiresonancelike features instead of resonances, e.g.,
in Fig. 7(a), where such a feature starts at 30.5 V/cm near
−1 GHz and crosses the whole frequency range of the recorded
spectrum up to 31 V/cm and 2 GHz. These parts of the spectra,
where we find deviations from Lorentzian line shapes, may be
interpreted as Fano resonances [27]. A Fano-type resonance
arises due to interference between different excitation paths
to an ionized continuum state. Such Fano resonances have
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FIG. 3. Ionization Stark spectrum near 43S1/2. (a) Detected ion signal from the experiment. (b) Results from the numerical calculations
for η = 1×106. The detuning is given relative to the unperturbed state. We have applied a linear scaling to match the electric field from the
experiment to the theoretical results. The classical ionization threshold is located at ≈127 V/cm.

been observed previously in similar systems [28–30]. In the
present case, besides the discrete Rydberg state that decays to a
continuum state by autoionization, there is also the possibility

of direct photoionization. Furthermore, several overlapping
Rydberg resonances with possibly different ionization rates
may lead to more complicated interference effects and thereby
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FIG. 4. Ionization Stark spectrum near 70S1/2. (a) Detected ion signal from the experiment. (b) Results from the numerical calculations
for η = 2×105. The detuning is given relative to the unperturbed state. We have applied a linear scaling to match the electric field from the
experiment to the theoretical results. The classical ionization threshold is located at ≈16.1 V/cm. The white dashed lines mark the cut that is
shown in more detail in Fig. 8(a).
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FIG. 5. Ionization Stark spectrum near 70S1/2. Continuation from Fig. 4. The white dashed lines mark the cut that is shown in more detail
in Fig. 8(b).

more convoluted spectral features. A complete study of
these possible Fano resonances may yield a more accurate
prediction of the spectrum, but is beyond the scope of this
work.

The numbers of states that were used for the matrix
representations of the Hamiltonians were determined in order
to calculate a dataset which is bigger than what is shown

in this work. We estimate that ≈3000 and ≈6000 states
should be enough to reproduce our results near 43S1/2 and
70S1/2, respectively. Therefore, all results from the numerical
calculations are well converged in the regions depicted in
Figs. 3–7. Some discrepancies between the results may arise
from slow drifts of the voltage source that was used in the
experiment. Since the measurement was performed for one
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FIG. 6. Ionization Stark spectrum near 70S1/2. Continuation from Fig. 5.
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FIG. 7. Ionization Stark spectrum near 70S1/2. Continuation from Fig. 6.

horizontal line in the data after the other, this results in
a horizontal mismatch of the experimental data of up to
±0.05 V/cm in comparison to the numerically calculated
results. Another minor source of deviations between the results
may arise since the detection efficiency in the experiment
changes as the extractor voltage is increased. Therefore,
the ion counts we obtain from the experiment do not scale
directly to the results for the intensity from the numerical
simulations on the whole range simultaneously. However,
this effect is small for the figures presented here since the
color maps have been rescaled for each electric-field range
separately.

For a more detailed analysis of the results from the
experiment and the numerical calculations, we present cuts
of the spectra at two different values of the electric field from
Figs. 4 and 5 in Fig. 8. The data shown in Fig. 8(a) corresponds
to an external electric field of 16.53 V/cm, i.e., just above the
classical ionization threshold. In this region, the peak positions

and widths of the experimentally detected and numerically
calculated ionization spectra agree within our experimental
frequency resolution of 25 MHz. For the higher electric field
of 24.10 V/cm shown in Fig. 8(b), we find that the shapes
of the two resonances with the highest intensities deviate
slightly, namely, by an asymmetry of the experimentally
obtained signals. We see these asymmetries as another possible
manifestation of Fano resonances in this system. Further
deviations in the region between 1.3 and 2 GHz can be mapped
to an electric-field region of ±0.05 V/cm and are caused by
drifts of the voltage source, as discussed before, in combination
with the high sensitivity of these particular resonances to the
external electric field (see Fig. 5).

V. CONCLUSION

In this work, we have implemented an extension of the
CAP method, in which we alter the shape of the complex
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FIG. 8. Ionization Stark spectra from the experiment (blue solid lines) and the numerical calculations (red dashed lines) near 70S1/2 at
(a) 16.53 V/cm (see Fig. 4) and (b) 24.10 V/cm (see Fig. 5). While we find agreement within our experimental resolution of 25 MHz in
(a), some small deviations can be seen in (b). The two highest peaks from the experimental data in (b) have a slightly asymmetric line shape,
which may indicate possible Fano resonances. Furthermore, we find discrepancies around 1.3–2 GHz, which we attribute to drifts of the voltage
source that was used in the experiment and the high sensitivity of these resonances to the electric field.
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absorbing potential according to the change of the external
electric field. Furthermore, we have presented experimental
results from a setup in which rubidium atoms are continuously
ionized through Rydberg states in the presence of an external
electric field. Our experimental data show the existence of
rich ionization spectra with sharp resonances even far beyond
the classical ionization threshold. The presented numerical
calculations are capable of predicting the measured spectra
of highly Stark-shifted Rydberg states, including the sharp
resonances. Thus it is suitable for improving control over the
excitation to such states and the subsequent ionization process.
An in-depth theoretical study of the possible Fano resonances

that we have observed in the experimental data may improve
this control even further.
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Observation of the motional Stark shift in low magnetic fields
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We report on the observation of the motional Stark effect of highly excited 87Rb Rydberg atoms moving in
the presence of a weak homogeneous magnetic field in a vapor cell. Employing electromagnetically induced
transparency for spectroscopy of an atomic vapor, we observe the velocity-, quantum state-, and magnetic-
field-dependent transition frequencies between the ground and Rydberg excited states. For atoms moving at
velocities around 400 m/s, the principal quantum number n = 100 of the valence electron, and a magnetic field
of B = 100 G, we measure a motional Stark shift of ∼10 MHz. Our experimental results are supported by
numerical calculations based on a diagonalization of the effective Hamiltonian governing the valence electron of
87Rb in the presence of crossed electric and magnetic fields.

DOI: 10.1103/PhysRevA.96.043401

The motional Stark effect (MSE) introduces a coupling
between the electronic structure of electronically bound
particles and their center-of-mass motion in an external field.
This correlation pointed out in the seminal work of Lamb [1]
plays an important role in fusion plasma diagnostics [2,3]
for measuring the magnetic fields, in astrophysics for the
evaluation of hydrogen spectra in the vicinity of neutron
stars [4,5], as well as in solids for the magneto-Stark effect
of excitons [6]. Although the atomic motion in magnetic fields
is always accompanied by the MSE [7–11] and the center-of-
mass motion of atoms becomes entangled with the internal
dynamics [12–14], the MSE has received little attention so
far. With advanced spectroscopic techniques [15,16] and the
quest for the development of quantum devices based on
hot atomic vapors [17–22], the MSE of atoms becomes a
measurable quantity and adds features of key importance:
atoms are no longer described by a single wave function but a
two-body core-electron wave function that is coupled through
a pseudomomentum. At the same time, atoms are highly
controllable quantum systems and enable the development of
general models and experimental test opportunities for the
coupled two-body problem of charged particles in external
fields with direct impact on research on plasmas, electron-hole
pairs [23,24], and particle-antiparticle symmetries [25].

In our paper we extend the investigation of the MSE to
low magnetic fields and quantify it on an element other than
hydrogen. For 87Rb Rydberg atoms we measured spectral
shifts up to 10 MHz with a spectroscopic resolution of 2 MHz
for the principal quantum number n = 100 and a field of
100 G, using the phenomenon of electromagnetically induced
transparency (EIT) on atoms in a thermal vapor cell. We
complement the experimental data with numerical calculations
of an atom in crossed magnetic and electric fields and thereby

*manuel.kaiser@student.uni-tuebingen.de
†nils.schopohl@uni-tuebingen.de
‡fortagh@uni-tuebingen.de

show that our theory based on an effective two-body system
describes the complex rubidium Rydberg atom well.

The elementary attributes of atoms that govern all inter-
action processes with the electromagnetic field are charge
and spin. Pieced together from orbital angular momentum and
spin, the magnetic moments of atoms interact with the field
of magnetic induction B and give rise to various splittings
and changes of the internal atomic energy structure. As a
consequence, the spectrum of atoms moving in the presence
of a B field may, besides the Doppler shift, be altered because
a charge moving at velocity v in the presence of a magnetic
induction field experiences in its (instantaneous) rest frame a
Lorentz electric field,

EL = v × B. (1)

This causes the positively charged nucleus and the electrons of
an atom to sense a Lorentz force acting in opposite directions,
when moving in a magnetic field (see Fig. 1). Consequently
excited atoms in motion will emit a spectrum featuring not
only the usual Doppler shift but also a Stark effect whose
magnitude is primarily dependent on the atom’s velocity and
flight direction.

In distinction from the hydrogen atom (and its isotopes) the
theoretical description of the electronic structure of heavier
atoms poses a formidable many-body problem that cannot be
solved exactly. Therefore, one has to rely on an approximate
description in terms of an effective hydrogenlike problem,
in which the bound-state spectrum of the excited valence
electron of an alkali-metal atom with mass M can be well
described by the spherically symmetric effective potential
Veff(r) of Marinescu et al. [26]. Here the variable r = |r(e) −
r(c)| denotes the distance between the valence electron at
position r(e) and a collective coordinate r(c) that determines
the position of the center of mass of the ionic core with charge
Z|e| − (Z − 1)|e| = |e| and mass m(c) = M − m(e).

We therefore propose to describe the spectrum of an
alkali-metal Rydberg atom moving in the presence of ex-
ternal electromagnetic fields with the effective two-body

2469-9926/2017/96(4)/043401(5) 043401-1 ©2017 American Physical Society
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FIG. 1. Atoms moving in the laboratory frame at velocity v(A) in
the presence of a magnetic induction field B are in their reference
frame subject to a Lorentz electric field [Eq. (1)].

Hamiltonian:

H (2) = [p(c) − |e|A(r(c))]2

2m(c)
+ [p(e) + |e|A(r(e))]2

2m(e)

+ Veff(|r(e) − r(c)|) + μB

h̄
gSS · B

+ |e|E · (r(e) − r(c)). (2)

Here E is a homogeneous static external electric field, and
B = rotA is a homogeneous external magnetic induction field,
in the symmetric gauge A(x) = 1

2 B × x. It is convenient to
rewrite H (2) in the center-of-mass frame with new variables,
R = m(e)r(e)+m(c)r(c)

M
and r = r(e) − r(c) with the conjugate mo-

menta P = p(c) + p(e) = h̄
i
∇R and p = m(c)

M
p(e) − m(e)

M
p(c) =

h̄
i
∇r . However, the associated Schrödinger eigenvalue problem

for this Hamiltonian is not separable, because for B �= 0 the
total momentum P is not conserved. Instead the Cartesian
components Pa of the pseudomomentum

P = p(c) + |e|A(r(c)) + p(e) − |e|A(r(e))

= P − |e|
2

B × r (3)

are conserved [27]:

[Pa,H
(2)] = 0, [Pa,Pa′ ] = 0. (4)

These commutator relations engender the existence of a
complete system of orthonormal two-body eigenfunctions
Ψk,ν(r(e),r(c)) ≡ Ψ̃k,ν(R,r) that are eigenfunctions of both
operators, Pa and H (2), simultaneously:

H (2)Ψ̃k,ν = Ek,νΨ̃k,ν ,

PaΨ̃k,ν = h̄kaΨ̃k,ν . (5)

Here ν is a multi-index labeling intrinsic quantum states of
the valence electron. It follows, assuming box normalization
with regard to the center-of-mass variable R, that the sought
eigenfunctions of H (2) and Pa are [23]

Ψ̃k,ν(R,r) = exp
[
i
(
k + |e|

2h̄
B × r

) · R
]

√
L3

ψk,ν(r), (6)

where ψk,ν(r) is an eigenfunction associated with a single-
particle Hamiltonian H

(1)
k depending parametrically on the

eigenvalue h̄k of the pseudomomentum P [12]:

H
(1)
k ψk,ν(r) = Ek,νψk,ν(r). (7)

We then find that Eq. (7) has, besides the terms dependent
on h̄k, the guise of the standard Hamiltonian of the valence
electron of an alkali-metal atom [28], including paramagnetic,
diamagnetic, and electric-field interactions:

H
(1)
k = h̄2k2

2M
+ p2

2μ
+ Veff(r) + μB

h̄
(gLL + gSS) · B

+ |e|
(

E + h̄k
M

× B
)

· r + |e|2
8μ

(B × r)2, (8)

with effective mass 1
μ

= 1
m(e) + 1

m(c) , g factor gL = 1 − m(e)

m(c) ,
and orbital angular momentum operator L = r × p. For the
atom velocity in the Heisenberg picture one obtains v(A) =
d
dt

R = 1
ih̄

[R,H (2)] = 1
M

(P + |e|
2 B × r). We can now eliminate

the center-of-mass momentum P instead of the pseudomomen-
tum P , see Eq. (3), and obtain

v(A) = 1

M
(P + |e|B × r). (9)

For strong magnetic fields the term |e|B × r can have a
high impact on the atomic motion [29]. However, in weak
magnetic fields such as considered here and at thermal atom
speeds v(A) the term can be neglected on the level of accuracy
of our measurements up to Rydberg levels n < 110. This
permits replacing v(A) ← h̄k

M
and interpreting the term h̄k

M
× B

in the effective single-particle Hamiltonian Eq. (8) as a Lorentz
electric field; see Eq. (1). For Rydberg levels as high as
n = 150 the correction to v(A) due to the dipole term in Eq. (9)
amounts to ∼100 m/s. The difference between v(A) and h̄k

M

may be seen better in other experiments, for example by
monitoring the dipole mode of an ultracold alkali-metal atom
cloud moving in a magnetic trap, by separating an atomic beam
in a Stern-Gerlach-like experiment by laser excitation and
thereby changing the internal energy structure or by measuring
the structure factors (quantum correlations) of a classical gas
during excitation to Rydberg states.

Even though the MSE is similar to the regular Stark
effect at first sight, there is an important difference, as a
B field cannot do work on a moving atom and therefore
cannot ionize it. Hence, using Eq. (1), we can still analyze
the MSE numerically on the basis of Eq. (8) as if it was a
system in crossed fields configuration. The position operator
r can be expressed in spherical coordinates where the angular
parts can be evaluated with matrix elements from [30]. For
the calculation of the radial wave functions we use the
parametric model potential Veff(r) from [26], adapted to
the experimental situation with the theory of [31]. We then
calculate the energy levels of the crossed fields system using
an energy matrix diagonalization similar to [32]. The energy
levels in zero field are calculated using quantum defects
from [33]. For each energy eigenvalue Ek,ν we represent the
corresponding eigenvector of H

(1)
k as a linear combination

of zero-field eigenstates, to calculate the dipole transition
strength taking into account the laser polarizations as in [34].
These eigenvectors for states in external fields are also used to
estimate the dipole moment dk,ν = −|e|〈�k,ν | r | �k,ν〉 from
Eq. (9), resulting in a calculated difference of velocity v(A)

and the pseudomomentum on the order of 0.1 m/s for the
conditions of our experiment.
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FIG. 2. (a) Energy-level diagram for EIT spectroscopy in ladder configuration. A strong-coupling beam at ∼480 nm induces a narrow
transparency window for a weak probe beam at ∼780 nm. (b) Detunings from the resonance frequencies can be compensated by Doppler
shifts of moving atoms. By detuning both lasers reversely only a selected velocity class contributes to the EIT signal. (c) Optical setup for
the EIT spectroscopy. The coupling laser is intensity modulated with an acousto-optic modulator (AOM) and focused inside a vapor cell. It is
overlapped in the cell with the counterpropagating probe laser, whose transmission is detected on a photodiode. The cell at ∼50 ◦C is placed
in between two magnetic coils in Helmholtz configuration.

On the experimental side, we analyze the motional Stark
shifts by using a two-photon spectroscopy method based on
EIT in a ladder scheme similar to [15]. A strong laser which
couples the intermediate state 5P3/2 and a Rydberg state leads
to a narrow transparency window for a laser probing the lower
5S1/2 → 5P3/2 transition, in case both lasers are in resonance
with an atomic transition [see Fig. 2(a)]. The difference in
frequency of the two transitions allows us to select a velocity
class v(A) by detuning the laser frequencies fp and fc according
to the Doppler shifted two-photon resonance condition

�p + �c = v(A)

(
fp − fc

c

)
, (10)

with the detunings �p and �c of the probe and coupling laser,
respectively, and the speed of light c [see Fig. 2(b)]. We can
select atoms at rest (100 m/s) from a vapor with Maxwell-
Boltzmann distributed atom velocities by fixing the probe laser
frequency to the atomic transition, i.e., �p = 0 MHz (�p =
fp

v(A)

c
≈ 128 MHz). If we scan the coupling laser over the

atomic resonance, the maximum transparency in zero field
then appears for a coupling laser detuning of �c = 0 MHz
(�c ≈ −209 MHz).

For our measurement we use a standard rubidium vapor cell
with a length of 75 mm at ∼50 ◦C enabling us to obtain spectra
from a large range of velocity classes up to ∼600 m/s. The cell
is placed in between a pair of coils in Helmholtz configuration
which provides fields up to 100 G [see Fig. 2(c)]. The magnetic
field is calibrated using a Hall sensor with an error smaller than
0.1 G leaving only a small offset magnetic field. Stray electric
fields are effectively canceled by charges inside the cell [15].

The linearly polarized coupling laser (TA-SHG pro, Top-
tica) at 480 nm with a power of ∼80 mW is focused inside
the cell (∼150 μm 1

e2 width). An also linearly polarized but
counterpropagating probe beam (DL pro, Toptica) at 780 nm
is overlapped with the coupling laser in the cell and is
detected with a photodiode (APD110A, Thorlabs). For a
better signal-to-noise ratio we use a lock-in amplifier (HF2LI,
Zurich Instruments) which modulates the intensity of the
coupling laser with an AOM and demodulates the probe laser
signal from the photodiode. Each of the lasers is locked to a

Fabry-Perot interferometer (FPI 100, Toptica). The FPI of the
probe laser is locked to a frequency comb (FC 1500, Menlo
Systems). The coupling laser FPI is controlled by a wavelength
meter (WS Ultimate 2, HighFinesse) which is calibrated to
the beat of the coupling laser frequency at 960 nm with the
frequency comb. Within the measurement times the frequency
accuracy of our laser system is better than 2 MHz.

We investigate the MSE by comparing the shifts at different
velocity classes in a magnetic field. The probe beam is always
on resonance with the corresponding Doppler shifted transition
frequency. The coupling laser is scanned and at each step
the photodiode signal is recorded for 10 s. The B field is
set to a fixed value for each cycle. We estimate the errors of
the peak-center frequencies by fitting Lorentzian peaks to the
obtained EIT spectrum, averaging over multiple measurement
cycles and adding the uncertainties of 2 MHz of the lasers.
The measured spectra are fitted to the numerical calculations
with a fixed offset magnetic field for all velocity classes as the
only free parameter.

The motional electric field for atoms moving with
∼390 m/s in a field of 98 G is ∼0.038 V/cm. This results in a
shift of ∼10 MHz for the measured spectrum of the 100D5/2

state [see Fig. 3(a)]. A single resonance is shown in detail [see
Fig. 3(b)] where the theory values (arrows) are calculated as
described before with a matrix dimension of 20 000, where a
variation in the dimension only accounts for a submegahertz
variation in frequency. Within the limits of our experimental
accuracy we find good agreement between the experiment and
the theory for an offset magnetic-field parameter smaller than
1 G. Moreover, they match well for measurements of other
states (not shown here), which entails the demonstration of the
strong dependence of the MSE on the quantum state.

Furthermore atoms resting and moving parallel to the B
field do not show a motional Stark shift [inset of Fig. 3(b)].
For this measurement we changed the direction of the magnetic
field and recorded EIT spectra of the 100D5/2 state in a field of
98 G. Due to geometrical restrictions a shorter cell was used for
this part of the experiment. Even though no shift is observed,
the transmission peak shows an asymmetry. Simulations of the
line shape of the EIT signal taking into account the MSE for

043401-3



MANUEL KAISER et al. PHYSICAL REVIEW A 96, 043401 (2017)

(a)

0 100 200 300 400

0

1

2

×10−3

(b)

Detuning [MHz]

E
IT

si
g
n
a
l
[a

rb
.

u
n
it

s]

(b)

220 230 240 250 260 270 280

0

2

4
×10−3

Detuning [MHz]

E
IT

si
g
n
a
l
[a

rb
.

u
n
it

s]

175 225

2

4

6
×10−5

FIG. 3. (a) The EIT signal for the 100D5/2 state is shown in
dependence on the coupling laser detuning �c relative to the selected
velocity class. The motional Stark shifts are on the order of 10 MHz in
a field of 98 G for atoms at rest (black dots) compared to atoms moving
at v(A) = 390 m/s (red triangles). (b) EIT signal in dependence of �c

for the 100D5/2 in detail for two velocity classes v(A) = 0 m/s (black
dots) and v(A) = 390 m/s (red triangles) with the corresponding
calculated resonances (arrows). The MSE vanishes for atoms moving
parallel to the B field (inset).

velocity components perpendicular to the optical axis indicated
a much smaller asymmetry. We attribute this discrepancy to
an additional inhomogeneity of the magnetic field.

Beyond the dependence on the quantum state and the
direction of B and v(A), the absolute value of the velocity
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FIG. 4. Velocity dependence of the MSE for the 100D5/2 state.
The squares and diamonds with error bars are the measured transmis-
sion peaks for coupling laser detunings �c representing the resonance
frequencies in a field of 98 G. The two dashed lines are calculated
energy levels. Mixing effects exchange oscillator strengths between
the states and the measured transmission peak can be assigned to
either of them.

50 60 70 80 90 100 110

0

50

100

Magnetic Field [G]

D
et

u
n
in

g
[M

H
z]

FIG. 5. The EIT resonances of the two velocity classes v(A) =
0 m/s (black lines) and v(A) = 390 m/s (dashed red lines) for the
100D5/2 state are shifted by the MSE dependent on the magnetic
field. The detunings �c relative to the selected velocity classes for
the maximal probe laser transmission (dots with error bars) match the
theory lines well. The oscillator strength for different states (red lines
in the lower part) are altered through the MSE and the evaluated peak
does not follow one theory line.

component perpendicular to the field plays an important role.
This velocity dependence of the shift is shown in Fig. 4. The
velocities correspond to probe laser detunings between 0 and
700 MHz. From our numerical calculation we can assign the
measured peak to two different substates whose intensities
are transferred from one state to another through the MSE at
around 250 m/s.

Furthermore the v(A) × B term relates the MSE to the
magnetic field which is shown in Fig. 5. For magnetic fields
lower than 50 G the shift is smaller than the uncertainties from
the laser system and therefore not shown here. For zero field the
energy levels of the states coincide. The lower resonance lines
indicate a transfer of oscillator strengths between different
states through the appearance of anticrossings of m states due
to the motional electric field.

In conclusion, our work expands the experimental investi-
gations of the MSE to low static magnetic fields. We observed
the motional Stark effect on 87Rb Rydberg atoms in a vapor
cell using EIT spectroscopy with an accuracy better than
2 MHz. At 100 G the shifts are on the order of 10 MHz
for the 100D5/2 state, which is in good agreement with the
results of our numerical calculation based on an energy matrix
diagonalization of the atom in crossed fields. We introduced a
two-body model system for alkali-metal Rydberg atoms along
with experimental data and conclude that it opens opportunities
in describing many-body systems. The theoretical description
of the MSE by a two-body Hamiltonian also confirms that the
influence of the coupling of internal dynamics to the collective
motion of the atom is small, but we estimate it to become
crucial for states of n � 150 for a magnetic field of 100 G.
Finally, calculations of atomic multielectron spectra in crossed
fields configurations can be tested experimentally using the
MSE as the condition E ⊥ B is exactly fulfilled with E = EL

which otherwise is hardly achievable in experiments with two
external fields.

This work was financially supported by Deutsche
Forschungsgemeinschaft through SPP 1929 (GiRyd).

043401-4



OBSERVATION OF THE MOTIONAL STARK SHIFT IN . . . PHYSICAL REVIEW A 96, 043401 (2017)

[1] W. E. Lamb, Phys. Rev. 85, 259 (1952).
[2] F. M. Levinton, R. J. Fonck, G. M. Gammel, R. Kaita, H. W.

Kugel, E. T. Powell, and D. W. Roberts, Phys. Rev. Lett. 63,
2060 (1989).

[3] F. Levinton, Rev. Sci. Instrum. 70, 810 (1999).
[4] G. G. Pavlov and P. Mészáros, Astrophys. J. 416, 752 (1993).
[5] K. Mori and C. J. Hailey, Astrophys. J. 564, 914 (2002).
[6] D. G. Thomas and J. J. Hopfield, Phys. Rev. 124, 657 (1961).
[7] M. Rosenbluth, T. A. Miller, D. M. Larsen, and B. Lax,

Phys. Rev. Lett. 39, 874 (1977).
[8] G. C. Neumann, B. R. Zegarski, T. A. Miller, M. Rosenbluh, R.

Panock, and B. Lax, Phys. Rev. A 18, 1464 (1978).
[9] H. Crosswhite, U. Fano, K. T. Lu, and A. R. P. Rau, Phys. Rev.

Lett. 42, 963 (1979).
[10] C. W. Clark, K. Lu, and A. F. Starace, Progress in Atomic

Spectroscopy Part C (Plenum, New York, 1984), pp. 247–320.
[11] R. J. Elliott, G. Droungas, and J. P. Connerade, J. Phys. B 28,

L537 (1995).
[12] J. Avron, I. Herbst, and B. Simon, Ann. Phys. 114, 431 (1978).
[13] H. Herold, H. Ruder, and G. Wunner, J. Phys. B. 14, 751 (1981).
[14] P. Schmelcher and L. S. Cederbaum, Atoms and Molecules in

Intense Fields (Springer, Berlin, Heidelberg, 1997), pp. 27–62.
[15] A. K. Mohapatra, T. R. Jackson, and C. S. Adams, Phys. Rev.

Lett. 98, 113003 (2007).
[16] O. Arnoult, F. Nez, L. Julien, and F. Biraben, Eur. Phys. J. D 60,

243 (2010).
[17] B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurášek, and E. S. Polzik,

Nature (London) 432, 482 (2004).
[18] J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I.

Lvovsky, Phys. Rev. Lett. 100, 093602 (2008).

[19] R. Löw and T. Pfau, Nat. Photon. 3, 197 (2009).
[20] Y.-W. Cho and Y.-H. Kim, Opt. Express 18, 25786

(2010).
[21] H. Kübler, J. Shaffer, T. Baluktsian, R. Löw, and T. Pfau,

Nat. Photon. 4, 112 (2010).
[22] Y. Fang, Z. Qin, H. Wang, L. Cao, J. Xin, J. Feng, W. Zhang,

and J. Jing, Sci. China: Phys., Mech. Astron. 58, 1 (2015).
[23] L. Gor’kov and I. Dzyaloshinskii, Sov. Phys. JETP 26, 449

(1968).
[24] M. Kurz, P. Grünwald, and S. Scheel, Phys. Rev. B 95, 245205

(2017).
[25] J. Alford and M. Strickland, Phys. Rev. D 88, 105017 (2013).
[26] M. Marinescu, H. R. Sadeghpour, and A. Dalgarno, Phys. Rev.

A 49, 982 (1994).
[27] B. R. Johnson, J. O. Hirschfelder, and K.-H. Yang, Rev. Mod.

Phys. 55, 109 (1983).
[28] T. F. Gallagher, Rydberg Atoms, 1st ed. (Cambridge University

Press, Cambridge, England, 1994).
[29] T. Pohl, H. R. Sadeghpour, and P. Schmelcher, Phys. Rep. 484,

181 (2009).
[30] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One and

Two Electron Atoms (Springer, Berlin, 1957).
[31] A. Sanayei, N. Schopohl, J. Grimmel, M. Mack, F. Karlewski,

and J. Fortágh, Phys. Rev. A 91, 032509 (2015).
[32] M. L. Zimmerman, M. G. Littman, M. M. Kash, and D.

Kleppner, Phys. Rev. A 20, 2251 (1979).
[33] M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D.

Cano, and J. Fortágh, Phys. Rev. A 83, 052515 (2011).
[34] J. Grimmel, M. Mack, F. Karlewski, F. Jessen, M. Reinschmidt,

N. Sándor, and J. Fortágh, New J. Phys. 17, 053005 (2015).

043401-5





Controlling the dipole blockade of highly Stark-shifted rubidium Rydberg states

Markus Stecker,1, ∗ Jens Grimmel,1 Raphael Nold,1 József Fortágh,1 and Andreas Günther1, †
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We report on the observation of excitation blockade for strongly Stark-shifted Rydberg states. We
make use of the fact that even for electric fields above the classical ionization limit, there are Rydberg
states with small ionization rates. We have developed a detection scheme for controlled ionization
and magnified imaging of those states with high spatial and temporal resolution by adiabatic transfer
to a state with a suitable ionization rate. We show that the strength of the blockade effect can be
altered by choosing states with varying electric dipole moment.

Rydberg systems exhibit strong correlations due to
the electrostatic interaction between the highly excited
atoms. This property makes them a promising candidate
for quantum information processing [1, 2]. The interac-
tion can be of van der Waals or dipole-dipole type [3] and
manifests itself in the so called Rydberg blockade, where,
in the presence of a first excitation, a second excitation
is suppressed. The efficiency of the blockade and with it
the fidelity of a blockade-based quantum gate depends on
the strength of the Rydberg-Rydberg interaction [4, 5].
Consequently, since the first measurement of the Rydberg
blockade [6, 7], efforts have been undergone to enhance
and tune the interaction for example by tuning a state
with a small electric field to a Förster resonance [8–10],
using a state with a near resonant dipole-dipole interac-
tion at zero field [11], the AC Stark shift [12], Rotary echo
[13] or a small DC electric field [14–16]. Coherent collec-
tive Rydberg excitation in the strong blockade regime
has been achieved [17] as well as blockade between two
individiual atoms [18, 19]. A two-qubit CNOT gate and
entanglement between pairs of atoms via the blockade in-
teraction has been demonstrated [20–22] and a quantum
Ising model out of single Rydberg atoms has been real-
ized [23]. Spatially resolved measurement of the Rydberg
blockade has been studied with separate excitation areas
[24, 25], quantum gas microscopes [26, 27], interaction
enhanced imaging [28, 29] and direct spatially resolved
imaging by field ionization [30–33].

In this work, we investigate Rydberg-Rydberg interac-
tions in an electric field region close to the classical ion-
ization limit, which is typically not considered adequate
for this kind of experiment. We identify states at high
electric fields with high transition dipole moments and
low ionization rates suitable for observing blockade ef-
fects in this regime. We show that we can tune the inter-
action strength by a small change in the external electric
field and observe Rydberg blockade of different effective-
ness. Furthermore, we implement a detection scheme in
which the excited Rydberg atoms are ionized by adia-
batic transfer to a state with a defined ionization rate.
Spatially resolved detection is achieved by imaging the
ions with a high resolution ion microscope for cold atoms

[34].

The energy landscape of highly Stark-shifted Rydberg
atoms exhibits an intricate form [35] and is governed by
strongly varying line broadening due to ionization. Nev-
ertheless, as predicted by numerical calculations [36], we
find states, which are mostly unaffected by ionization and
have a varying dipole-dipole interaction strength. In or-
der to choose a suitable state for spatially resolved detec-
tion of Rydberg atoms, we aim for states which undergo
a rapid change in their ionization rate, changing from
a few kilohertz to about 1 MHz within around 1 V/cm.
This way, we can transfer the excited state with a small
change of the electric field to an ionizing state with a de-
fined ionization rate. Conventionally, Rydberg atoms are
ionized by simply switching the electric field to a much
higher value. In contrast, our approach realizes a very
controlled way of ionization. We can choose a state with
an ionization rate that is on the one hand high enough
that the atoms do not move or decay significantly before
they get ionized, but on the other hand low enough that
saturation of the ion detector is avoided. Besides this
technical advantage, our ionization method also allows
for a reversal of this transfer, bringing the ionizing state
back to the original state. This is virtually impossible
when switching to a much higher field, because during
the time evolution through the Stark map, the state gets
redistributed over many Stark-shifted states [37].

Our experimental setup consists of a vacuum setup
with a standard magneto-optical trap (MOT) for 87Rb
with 107 atoms at a temperature of 150 µK. The spatially
resolved detection of ions out of the MOT is done with
an ion microscope composed of four consecutive electro-
static lenses and an MCP in conjunction with a delay line
detector for electronic readout of the individual ion posi-
tions and time stamps. The MOT is positioned between
two extractor electrodes which can be used to generate
the desired electric field at the position of the atoms. For
details about the experimental setup see [34]. Typically,
the magnification of the ion microscope is around 1000,
resulting in an imaging area of 40µm diameter. Rydberg
atoms are excited via a two-photon transition from the
5S1/2 state via the intermediate 5P3/2 state to a Rydberg
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FIG. 1. Numerically calculated Stark spectrum of 87Rb [36].
The detuning is given relative to the unperturbed 43S1/2 state
(classical ionization limit of 127.2 V/cm). The colorplot shows
transition strength and linewidth of the resonances. The solid
lines depict the ionization rates of the two states that were
used in the experiment from nonionizing (white) to strongly
ionizing (red). The arrowheads with delimiters mark the ion-
izing state that the Rydberg state is transferred to for detec-
tion.

0 200 400 600 800
0

5

10

15

20

25

Detuning [MHz]

Io
ni

za
ti

on
ra

te
[M

H
z]

FIG. 2. Measured (black dots) and calculated (solid red line)
ionization rates following the line containing resonance 1 (see
Fig. 1). Deviations between theory and experiment arise
from the fact that the free parameter of the CAP potential
was optimized for a broad spectral range and not for a single
resonance.
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FIG. 3. Histogram of ion arrival times for different final values
of the extractor voltage (bin size of 20 ns, sum over 500 ex-
citation pulses for each curve). The first two dashed vertical
lines depict the Rydberg excitation pulse (duration of 5µs),
the third line shows the start of the electric-field ramp (tran-
sition time ≈ 1 µs). With increasing voltage, the ionization
occurs earlier and faster.

state. The lower transition at ≈ 780 nm is provided by
the cooling lasers of the MOT. The beam for the upper
transition at ≈ 480 nm is directed perpendicular to the
optical axis of the ion imaging. The laser is frequency sta-
bilized by a HighFinesse Wavelength Meter WS-U2. The
blue beam going into the vacuum chamber is focused to
a light sheet with beam waists of 9µm and 80 µm, re-
spectively, in order to limit the excitation depth in the
direction of the ion-optical axis while still having high
light intensity in the imaging area.

In order to demonstrate the applicability of our exci-
tation and detection scheme, we first validate the pre-
dictions of our numerical calculation [36] experimentally.
The calculations make use of a complex absorbing po-
tential [38–40] to predict ionization spectra of highly
Stark-shifted Rydberg states. The results for a small
energy region corresponding to the unperturbed 43S1/2

state and an electric field of 126-129 V/cm can be seen
in Fig. 1 (the corresponding classical ionization limit
is 127.2 V/cm). We picked this region because there
are two resonance lines present that undergo a strong
change in ionization rate from non-ionizing to strongly
ionizing. To measure the ionization rates, we excite Ry-
dberg atoms at different points along the resonance line
with a blue laser pulse of 1 - 5 µs duration (depending on
the transition strength) and simultaneously detect the
arrival time of the ions reaching the detector. The lower
transition is provided by the MOT-lasers which are con-
tinuously on during the experiment. With one excitation
pulse typically yielding 1-30 ions depending on the tran-
sition strength of the resonance, the excitation pulse is
repeated several thousand times. A histogram of the ar-
rival times is derived and the ionization rate of the state
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FIG. 4. Spatial correlation function g(2)(u, v) when exciting
resonance 1 of Fig. 1. The Rydberg blockade effect mani-
fests itself by a decrease of g(2) to values smaller than 1 for
interatomic separations smaller than the blockade radius.

can be determined by the decay of the ion signal after
the end of the excitation pulse assuming other decay and
ionization channels to be negligible. Radiative decay to
lower states and redistribution to higher and lower states
by black body radiation can alter the ionization rate to
both higher and lower values. Since the lifetimes of Ry-
dberg atoms are in general tens of microseconds [41] and
the redistribution by black body radiation is in the kHz
regime [42], we do not expect a major influence of these
mechanisms on our measurements. However, it has to be
pointed out that in the strongly Stark-shifted regime, the
redistribution could differ from the zero-field case. Nev-
ertheless, the experimental data shows good agreement
with the results from the numerical calculation (see Fig.
2).

For the spatially resolved detection of Rydberg atoms
we now set electric field and laser frequency to a slowly
ionizing state and pulse the blue laser. After the excita-
tion, the voltage at the extractor electrodes is ramped up
by around 1 V/cm in order to transfer the Rydberg atoms
to an ionizing state. A high voltage switch is used to
change the electric field with a transition time of ≈ 1µs.
Time of flight and position of the ions hitting the detector
are recorded. The excitation-detection-cycle is repeated
up to several thousand times. Each pulse typically yields
2-8 ions. In Fig. 3, the effect of different end values for
the extractor voltages is shown (the transition times re-
main unchanged). The ionization takes place faster for
atoms transferred to a state with higher ionization rate.
Furthermore, the onset of ionization shifts to earlier val-
ues since the atoms start ionizing before the end value
is reached. We excite the three resonances depicted with
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FIG. 5. Radial average of g(2)(u, v) for excitation of reso-
nance 1. The dashed line depicts the blockade radius calcu-
lated following Eq. 3.
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FIG. 6. Radial average of g(2)(u, v) for excitation of reso-
nances 2 (red, large blockade radius) and 3 (blue, small block-
ade radius). The dashed lines depict the blockade radii cal-
culated following Eq. 3.

arrows and numbers in Fig. 1 and choose the end value of
the extractor voltage such that the Rydberg population
gets ionized within 1µs. For resonance 1, the excita-
tion is done at an electric field of 127.2 V/cm and a laser
detuning of 686 MHz (with respect to the unperturbed
43S state). For ionization, the field is then switched to
≈ 128 V/cm. For exciting resonance 2, the electric field
is set to 126.7 V/cm and the laser detuning to −614 MHz.
For resonance 3, the electric field is 127.1 V/cm and the
detuning −794 MHz. The ionization of these two states
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is done by switching the field to ≈ 128.3 V/cm. The
magnification of the ion-optical system was set to 1129.

For each pulse, the two-dimensional spatial second or-
der correlation function

g(2)(u, v) =
〈〈f(x+ u, y + v)f(x, y)〉〉x,y

〈〈f(x+ u, y + v)〉〉x,y〈〈f(x, y)〉〉x,y
, (1)

with the detector function f(x, y) and displacements u, v
is calculated. The detector function can be written as

f(x, y) =

N∑
i=1

δ(x− xi)δ(y − yi), (2)

with the coordinates xi, yi of the N incoming ions on
the detector after one excitation pulse. The correlation
results for the individual pulses are summed up. In or-
der to account for the spatially inhomogeneous excitation
efficiency (due to inhomogeneous laser power) and the in-
fluence of the finite detector size, the result is normalized
to the correlation function calculated from all events of
the different pulses at once. In the resulting signal (Figs.
4, 5 and 6), an excitation blockade manifests itself in a
decreased (< 1) correlation function in a certain region
around the origin. In order to characterize the blockade
by a blockade radius, the radial mean of g(2) is calcu-
lated by radial binning and averaging of the results from
g(2)(u, v).

For resonance 1, the blockade effect starts at an inter-
atomic distance of 9 µm, for resonance 2 at 12µm and
for resonance 3 at 2 µm. For r → 0, the value of g(2)

does not reach zero because our excitation area is not
perfectly two dimensional. The strong blockade effect of
resonances 1 and 2 show that even in this high electric-
field regime, which is normally governed by ionization,
we can observe Rydberg-Rydberg interaction. When we
compare the results for resonances 2 and 3 which are both
part of the same resonance line, we see that we can dras-
tically alter the interaction strength by a small change of
the electric field.

As a theoretical value for the blockade radius, we de-
fine the distance rb at which the energy shift ∆W due
to the interatomic interaction equals the excitation laser
linewidth δνL:

~2πδνL = ∆W (rb). (3)

We estimate δνL ≈ 5 MHz for our experiment. The en-
ergy shift due to dipole-dipole interactions is

∆W =
1

4πε0

p2z
R3

(
1− 3 cos2 Θ

)
, (4)

with the permanent electric dipole moment pz (electric
field in z-direction), the interatomic distance R and the
angle between R and z-axis Θ. The light sheet is ori-
ented perpendicular to the optical axis of the ion imaging
system and the electric field of the extractor electrodes

points along the optical axis, so we assume Θ = π/2. The
dipole moment pz of a Stark-shifted state in an electric
field F with energy E(F ) can be determined by evaluat-
ing the slope of the resonance line −dE(F )/dF .

We find rb = 4.5µm for resonance 1, 12.5 µm for reso-
nance 2 and 2.6 µm for resonance 3, as depicted in Figs.
5 and 6 via the dashed vertical lines. We see that the ra-
dial average of the g(2) correlation function of resonances
2 and 3 in Fig. 6 fit nicely to the calculated blockade
radii resulting from dipole-dipole interaction. The slope
at resonance 2 in the Stark map is big (see Fig. 1), the
resulting dipole moment is 1.90 · 10−26 Cm. This high
value leads to a strong dipole-dipole interaction result-
ing in a large blockade radius. In contrast to that, we
have a small slope at resonance 3 with a small dipole
moment of 1.76 · 10−27 Cm leading to a weak excitation
blockade. For resonance 1, the calculated blockade ra-
dius of 3.5 µm (pz = 4.19 · 10−27 Cm) does not match the
measured value. The decrease of the radial average of the
correlation function in Fig. 5 starts at ≈ 9 µm. Besides
the dipole-dipole interaction there is also a second-order
van der Waals interaction which could lead to the ob-
served blockade. Furthermore, the interaction could be
enhanced by resonant energy transfer [3].

In summary, we have shown that the Rydberg block-
ade can be observed at highly Stark-shifted states and is
tunable by small changes in the electric field. In many ex-
periments, residual electric fields are present, especially
when atoms are brought close (< 100 µm) to surfaces
where adsorbates play a crucial role [43–46]. These small
distances are often necessary, for example to reach the
strong coupling regime of atoms coupled to a coplanar
superconducting resonator [47, 48]. Conventionally, the
fields have to be compensated by a set of electrodes to
account for all directions which can be challenging and
cumbersome. Instead of trying to reach a zero field con-
dition, we have shown in our work that the complicated
“spaghetti region” of the Stark spectrum with its diver-
sity of states can be seen as an advantage instead of an
annoyance and represents the opportunity for tailoring
excitation, interaction and ionization of Rydberg states.
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∗ markus.stecker@uni-tuebingen.de
† a.guenther@uni-tuebingen.de

[1] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté,
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T. Macr̀ı, T. Lahaye, and A. Browaeys, Nature 534,
667 (2016).

[24] C. S. E. van Ditzhuijzen, A. F. Koenderink, J. V.
Hernández, F. Robicheaux, L. D. Noordam, and H. B.
van Linden van den Heuvell, Phys. Rev. Lett. 100,
243201 (2008).

[25] T. J. Carroll, K. Claringbould, A. Goodsell, M. J. Lim,
and M. W. Noel, Phys. Rev. Lett. 93, 153001 (2004).

[26] P. Schauß, M. Cheneau, M. Endres, T. Fukuhara, S. Hild,
A. Omran, T. Pohl, C. Gross, S. Kuhr, and I. Bloch,
Nature 491, 87 (2012).

[27] P. Schauss, J. Zeiher, T. Fukuhara, S. Hild, M. Cheneau,
T. Macri, T. Pohl, I. Bloch, and C. Gross, Science 347,
1455 (2015).

[28] G. Günter, M. Robert-de-Saint-Vincent, H. Schempp,
C. S. Hofmann, S. Whitlock, and M. Weidemüller, Phys.

Rev. Lett. 108, 013002 (2012).
[29] G. Gunter, H. Schempp, M. Robert-de Saint-Vincent,

V. Gavryusev, S. Helmrich, C. S. Hofmann, S. Whitlock,
and M. Weidemuller, Science 342, 954 (2013).

[30] A. Schwarzkopf, R. E. Sapiro, and G. Raithel, Phys.
Rev. Lett. 107, 103001 (2011).

[31] A. Schwarzkopf, D. A. Anderson, N. Thaicharoen, and
G. Raithel, Phys. Rev. A 88, 061406 (2013).

[32] N. Thaicharoen, A. Schwarzkopf, and G. Raithel, Phys.
Rev. A 92, 040701 (2015).

[33] D. P. Fahey, T. J. Carroll, and M. W. Noel, Phys. Rev.
A 91, 062702 (2015).

[34] M. Stecker, H. Schefzyk, J. Fortágh, and A. Günther,
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Rev. A 96, 013427 (2017).

[37] R. Feynman, J. Hollingsworth, M. Vennettilli, T. Budner,
R. Zmiewski, D. P. Fahey, T. J. Carroll, and M. W. Noel,
Phys. Rev. A 92, 043412 (2015).

[38] R. Kosloff and D. Kosloff, J. Comput. Phys. 63, 363
(1986).

[39] U. V. Riss and H. D. Meyer, J. Phys. B 26, 4503 (1993).
[40] S. Sahoo and Y. K. Ho, J. Phys. B 33, 2195 (2000).
[41] T. F. Gallagher, Rydberg atoms (Cambridge University

Press, 1994).
[42] I. I. Beterov, I. I. Ryabtsev, D. B. Tretyakov, and V. M.

Entin, Phys. Rev. A 79, 052504 (2009).
[43] J. M. McGuirk, D. M. Harber, J. M. Obrecht, and E. A.

Cornell, Phys. Rev. A 69, 062905 (2004).
[44] J. M. Obrecht, R. J. Wild, and E. A. Cornell, Phys. Rev.

A 75, 062903 (2007).
[45] A. Tauschinsky, R. M. T. Thijssen, S. Whitlock, H. B.

van Linden van den Heuvell, and R. J. C. Spreeuw, Phys.
Rev. A 81, 063411 (2010).

[46] H. Hattermann, M. Mack, F. Karlewski, F. Jessen,
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