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Abbreviations

DGF . . . . . . . dyadic Green’s function

FDTD . . . . . . finite difference time domain

FEM . . . . . . . finite element method

FFT . . . . . . . . fast Fourier transform

g-factor . . . . . geometry factor

GPU . . . . . . . graphics processing unit

IEC . . . . . . . . International Electrotechnical Commission

MR. . . . . . . . . magnetic resonance

MRS . . . . . . . magnetic resonance spectroscopy

NMR . . . . . . . nuclear magnetic resonance

RF . . . . . . . . . radiofrequency

ROI . . . . . . . . region of interest

SAR . . . . . . . . specific absorption rate

SNR . . . . . . . . signal-to-noise ratio

UISNR . . . . . ultimate intrinsic signal-to-noise ratio
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Symbols

B0 . . . . . . . . . . static magnetic field

γ . . . . . . . . . . gyromagnetic ratio

ω0 . . . . . . . . . Larmor frequency

M0 . . . . . . . . . equilibrium magnetization

B+
1 . . . . . . . . . circularly polarized component of RF magnetic field, rotating with

nuclear precession

B−1 . . . . . . . . . circularly polarized component of RF magnetic field, rotating against

nuclear precession

ε . . . . . . . . . . . . electric permittivity

µ0 . . . . . . . . . . vacuum permeability

σ . . . . . . . . . . . electric conductivity

k . . . . . . . . . . . complex wave number

i . . . . . . . . . . . . imaginary unit

E . . . . . . . . . . . electric field vector

H . . . . . . . . . . magnetic field vector

r . . . . . . . . . . . position vector in 3D space

r′ . . . . . . . . . . . source vector in 3D space

Ḡ(r, r′) . . . . . dyadic Green’s function

Ī . . . . . . . . . . . unit dyad

Js . . . . . . . . . . equivalent electric surface current density

Ms . . . . . . . . . equivalent magnetic surface current density

δnn′ . . . . . . . . . Kronecker delta

δ(v − v′) . . . Dirac’s Delta distribution
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Symbols

αi . . . . . . . . . . expansion coefficient for basis set of equivalent surface currents

Kbc . . . . . . . . . birdcage surface current distribution

ϕ . . . . . . . . . . . azimuthal variable in cylindrical coordinate system

z . . . . . . . . . . . z variable in cylindrical coordinate system

H(z) . . . . . . . Heaviside step function

wM
bc . . . . . . . . . expansion coefficients for birdcage coil

J0 . . . . . . . . . . Bessel function of first kind and zeroth order

K . . . . . . . . . . equivalent surface current distribution

αM
l,m . . . . . . . . . expansion coefficient for div-free current

αE
l,m . . . . . . . . . expansion coefficient for curl-free current

Xl,m . . . . . . . . vector spherical harmonic

ϑ . . . . . . . . . . . elevation variable in spherical coordinates

ζ . . . . . . . . . . . total UISNR obtained from curl- and divergence-free current patterns

ζE . . . . . . . . . . best possible SNR achievable with curl-free current patterns only

ζM . . . . . . . . . . best possible SNR achievable with div-free current patterns only

ζΦ . . . . . . . . . . best possible SNR achievable with Φ-directed current patterns only

ζZ . . . . . . . . . . best possible SNR achievable with Z-directed current patterns only

ϑ0 . . . . . . . . . . spherical cap angle

Z12 . . . . . . . . . complex mutual impedance

ke . . . . . . . . . . electric coupling coefficient

km . . . . . . . . . . magnetic coupling coefficient

R12 . . . . . . . . . mutual resistance

L12 . . . . . . . . . mutual inductance

R . . . . . . . . . . . total loop resistance

L . . . . . . . . . . . loop inductance

Q . . . . . . . . . . . quality factor of a loop

S12 . . . . . . . . . transmission scattering parameter

αcm . . . . . . . . . critical overlap angle with km = 0

αce . . . . . . . . . critical overlap angle with ke = 0
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Abstract

Magnetic resonance spectroscopy (MRS) is a non-invasive and non-ionizing technique

to acquire localized spectra of metabolites in vivo. With increasing static magnetic field

strength B0, the spectral separation of the metabolites and the signal-to-noise ratio

(SNR) of the spectrum increase. Consequently, the number of detectable metabolites

and the spatial specificity are enhanced at ultra-high fields (B0 ≥7 T). At the same time,

the wavelength of the radiofrequency (RF) field is decreased. For proton spectroscopy

at ultra-high fields, the wavelength of the RF field in tissue is smaller than the typical

dimension of a human head. From the perspective of electromagnetic theory, this means

that a quasistatic approximation of Maxwell’s equations is not valid anymore and the

electromagnetic field must be calculated with the full system of coupled partial differ-

ential equations. Therefore, RF coil designs based on the quasistatic approximation,

such as the birdcage coil or loop-only receive arrays, have suboptimal performance at

ultra-high fields.

This PhD project explored the optimization of RF coils for ultra-high field MRS.

The optimization was based on an equivalent surface current distribution surrounding a

human head model. It could be shown, that the equivalent surface current distribution

can be separated into curl- and divergence-free components. The full-wave electromag-

netic field problem was solved by a newly developed dyadic Green’s functions approach.

As a first optimization goal, the SNR was maximized in a spherical- and later in a

realistic human head model. By optimizing the complete set of curl- and divergence-free

surface current components, an upper threshold for the achievable SNR of any receive

array could be calculated; this so-called ultimate intrinsic SNR (UISNR) was studied

at all practically relevant B0 field strengths regarding human head applications. The

UISNR increased superlinearly with B0 in central regions of the human brain. In a next

step, the SNR optimization was done separately for curl- and divergence-free current

components. This yielded a direct performance measure of how close loop-only and

dipole-only receive arrays were able to approach the UISNR in the human head. Based

upon this analysis, field strength specific design guidelines for RF receive arrays were
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Abstract

deduced. In conclusion, at ultra-high field strength a combination of loop and dipole

elements is necessary to achieve the best possible SNR at any position in the human

head.

As a second optimization goal, the coupling of multi-channel RF arrays was mini-

mized. For that, a fast analytical model describing the complex mutual coupling between

two surface loops was introduced. To understand and eliminate both electric and mag-

netic coupling between the loops, the influence of the loop geometry and loading by the

sample was systematically examined. For the first time, it was demonstrated that at

400 MHz it is possible to eliminate both, electric and magnetic coupling simultaneously

by proper adjustment of the loop width and overlap. A fully decoupled two channel

prototype array was constructed having superior transmit and receive performance over

a previously used gapped design.

6



Zusammenfassung

Die Magnetresonanz-Spektroskopie ist ein nichtinvasives und nichtionisierendes In-vivo-

Verfahren mit dem Stoffwechselvorgänge im menschlichen Körper ortsaufgelöst erfasst

werden können. Mit zunehmender statischer Feldstärke B0 vergrößert sich sowohl die re-

lative Frequenzverschiebung der Metaboliten zueinander, als auch das Signal-zu-Rausch-

verhältnis (SNR) des gesamten Spektrums. Infolgedessen können im Ultrahochfeld (B0 ≥
7 T) eine größere Anzahl an Metaboliten unterschieden werden. Ein weiterer Vorteil

der Ultrahochfeld-Spektroskopie besteht darin, dass sich die Metaboliten mit höherer

örtlicher Spezifität erfassen lassen. Gleichzeitig weist das von einer Hochfrequenzspule

angeregte elektromagnetische Wechselfeld eine kürzere Wellenlänge auf. In menschli-

chem Gewebe unterschreitet die Wellenlänge des Hochfrequenzfeldes bei Protonenan-

regung im Ultrahochfeld die typischen Abmessungen des menschlichen Kopfes. Vom

Standpunkt der elektromagnetischen Feldtheorie aus betrachtet bedeutet dies, dass ei-

ne quasistatische Näherung der Maxwell-Gleichungen nicht mehr anwendbar ist und

das vollständige, gekoppelte, partielle Differentialgleichungssystem gelöst werden muss.

Daher ist die Leistungsfähigkeit herkömmlicher Spulenkonzepte (z.B. Birdcage Spule

oder Schleifenarrays), die auf einer quasistatischen Näherung beruhen, im Ultrahochfeld

suboptimal.

Im Rahmen dieser Promotion wurde die Optimierung von Hochfrequenzspulen für

die Hochfeldmagnetresonanz-Spektroskopie erforscht. Als Optimierungsvariable wurde

eine äquivalente Oberflächenstromverteilung definiert, die den menschlichen Kopf um-

gab. Es wurde gezeigt, dass diese Oberflächenstromverteilung in divergenz- und rotati-

onsfreie Komponenten zerlegt werden kann. Das elektromagnetische Feldproblem wurde

mithilfe eines neuartigen Ansatzes, der auf dyadischen Green’schen Funktionen beruht,

gelöst.

Das erste Optimierungsziel bestand darin, das SNR in einem kugelförmigen, später

in einem realistischen Kopfmodell zu maximieren. Zunächst wurde die vollständige Ober-

flächenstromverteilung aus divergenz- und rotationsfreien Komponenten optimiert. Auf

diese Weise konnte das bestmöglich erzielbare SNR beliebiger Empfangsarrays ange-
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Zusammenfassung

geben werden. Dieses optimale intrinsische SNR (UISNR) wurde für sämtliche, prak-

tisch relevante Magnetfeldstärken im menschlichen Kopf untersucht. Dabei stieg das

UISNR in zentralen Hirnregionen überproportional mit der Magnetfeldstärke an. Als

nächstes wurde die Fragestellung eruiert, inwieweit sich der zuvor theoretisch ermit-

telte SNR-Grenzwert mit Schleifen- bzw. Dipolarrays erreichen lässt. Dazu wurde die

Optimierung jeweils mit divergenz- und rotationsfreien Oberflächenstromkomponenten

separat durchgeführt und entsprechende Kenngrößen für die Empfangseigenschaften von

Schleifen- und Dipolarrays abgeleitet. Aus diesen Ergebnissen wurden frequenzabhängige

Designrichtlinien für Hochfrequenz-Empfangsspulen formuliert. Es zeigte sich, dass eine

Kombination aus Schleifen- und Dipolelementen im Ultrahochfeld unerlässlich ist, um

das bestmögliche SNR im menschlichen Kopf zu erzielen.

Das zweite Optimierungsziel bestand darin, die Kopplung von Mehrkanal-Antennen-

arrays zu minimieren. Zunächst wurden der elektrische und magnetische Koppelfaktor

zweier benachbarter Leiterschleifen durch ein neu entwickeltes analytisches Modell be-

schrieben. Mithilfe des neu entwickelten Modells wurden anschließend die Schleifengeo-

metrie und der Abstand der Schleifen zu einem zylinderförmigen Kopfmodell systema-

tisch variiert. So konnte erstmals gezeigt werden, dass durch geschickte Überlappung

und eine optimierte Schleifenbreite bei 400 MHz die elektrische und die magnetische

Kopplung gleichzeitig ausgelöscht werden können. Als Machbarkeitsstudie wurde ein

vollständig entkoppeltes Zweikanalarray aufgebaut und mit einem früheren Design aus

nicht-überlappenden Schleifenelementen verglichen. Das neu entwickelte, überlappende

Arraydesign zeigte signifikant verbesserte Sende- und Empfangseigenschaften gegenüber

der früheren Version.
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1 Introduction

1.1 The Role of RF Coils in MR Spectroscopy

To start with, let a proton be exposed to a constant, homogeneous magnetic field B0 =

B0ez. Then, the expectation value of its magnetic moment is precessing around the

z-axis. The Larmor frequency of this precession is given by

ω0 = −γB0, [1.1]

where γ is the gyromagnetic ratio of the isotope (e.g. 1H = 42.576 MHz/T). For an

ensemble of spins, it can be shown, that in thermodynamic equilibrium, the net nuclear

magnetization vector M only has a longitudinal component (1): M = M0ez. Here, M0

is the equilibrium magnetization and is constant in time. However, the longitudinal net

nuclear magnetization is about four orders of magnitude lower than the diamagnetism

of the electrons and therefore hardly detectable (1). For this reason, in MRS the net

magnetization, which is perpendicular to the magnetic field B0, is measured. In order

to generate transverse magnetization, a transmit RF coil is used. Thereby, a modulated

RF pulse is played out at the carrier frequency ω0 and fed to the coil. The circularly

polarized component B+
1 = 0.5 (Bx + iBy) of the coil’s RF magnetic field rotates in the

same direction as nuclear precession (2, 3) and flips the net magnetization by the flip

angle α from the z-axis. The specific value of α depends on the parameters of the pulse

and the state of the spin system. Directly after the RF pulse, there is a transverse com-

ponent of the net magnetization vector, which is proportional to sin(α). This transverse

component oscillates with the Larmor frequency and induces an electromotive force in

a sensitive receive RF coil. The receive sensitivity of the RF coil is determined by the

circularly polarized component B−1 = 0.5 (Bx − iBy)
∗ rotating in opposite direction as

nuclear precession (2,3).

15



1 Introduction

1.2 A Basis Set for the Equivalent Surface Current

Distribution

For the optimization of RF coils, it is useful to optimize a current distribution with

respect to a given objective function. This current distribution can be spanned by

a basis set of equivalent surface current modes, which are able to excite all possible

solutions of Maxwell’s equations in the sample of interest (e.g. the human head). In

the following, a mathematical derivation of the basis set of equivalent surface currents

is provided.

A simple, two-region model for the scattering problem of an RF antenna irradiating

a dielectric sample is given in figure 1.1. The RF antenna is placed in free-space exterior

to the sample, which occupies a regular region D and is bounded by the closed surface S.

Let us assume linear, time-invariant, homogeneous and isotropic material properties with

permittivity ε and conductivity σ. Suppose, there are no free volume charges within the

dielectric sample and hence ∇E = 0. Then the homogeneous vector Helmholtz equation

for the electric field is given by:

∇×∇× E(r)− k2E(r) = 0 with r ∈ D. [1.2]

According to equation [8.1.27] in (4), the solution of the electromagnetic field in the

sample can be expressed as a surface integral :

E(r) =

∮
S

−iωµ0Ḡ(r, r′) ·n′×H(r′)+(∇′×Ḡ(r, r′)) ·n′×E(r′) dS ′ with r ∈ D. [1.3]

sample

D
ε, µ0, σ

k2 = ω2εµ0 + iωσµ0

S

↑ n

ε0, µ0

Figure 1.1: Simple mathematical model for the homogeneous Helmholtz equation in a
dielectric, lossy sample.
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1.2 A Basis Set for the Equivalent Surface Current Distribution

Here, Ḡ(r, r′) is the unbounded medium dyadic Green’s function:

Ḡ(r, r′) =

(
Ī +
∇∇
k2

)
eik|r−r′|

4π|r− r′| . [1.4]

The terms −n′ ×H(r′) and n′ × E(r′) in equation 1.3 specify the boundary conditions

on S and can be interpreted as equivalent electric and magnetic surface currents Js and

Ms. Theses currents are induced from the RF antenna in the exterior region and can

be obtained by solving a system of integral equations of the scattering problem. For

the ongoing discussion, not the whole scattering problem is regarded but the equivalent

surface currents are treated as direct sources exciting an electromagnetic field in the

sample. Under the assumption of a lossy sample (σ > 0), the uniqueness theorem states

(5), that the electromagnetic field in the sample is uniquely defined by either Js or Ms

or parts of both over the entire surface S. As a result, the electromagnetic field can be

expressed in terms of an equivalent electric surface current density Js:

E(r) =

∮
S

iωµ0Ḡ(r, r′) · Js(r
′) dS ′. [1.5]

In the next step, an eigenfunction expansion of Ḡ(r, r′) is required. According to equa-

tion 4.64 in (6), the unbounded dyadic Green’s function (DGF) may be represented by

a combination of discrete and improper continuous eigenfunctions:

Ḡ(r, r′) =
∞∑
n=1

xn(r)x∗n(r′)

λn − k2
+

∫
v

x(r,v)x∗(r′,v)

λ(v)− k2
dv. [1.6]

The discrete eigenfunctions are defined by the eigenvalue problem ∇ × ∇ × xn(r) =

λnxn(r) and form an orthonormal set with 〈xn(r),xn′(r)〉 = δnn′ . The improper eigen-

functions satisfy the equation ∇×∇×x(r,v) = λ(v)x(r,v) and obey the completeness

relation 〈x(r,v),x(r,v′)〉 = δ(v − v′). Further, let 〈xn(r),x(r,v)〉 = 0. Now, the elec-

tric surface current density Js can be defined. It is favorable to use a similar spectral

representation as for the DGF in equation 1.6:

Js =
∞∑
n=1

αnyn(r) +

∫
v

α(v)y(r,v) dv. [1.7]
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The eigenfunctions yn(r) and y(r,v) may fulfill the following conditions:∮
S

x∗n(r′) · yn′(r′) dS ′ = δn,n′ [1.8]∮
S

x∗(r′,v) · y(r′,v′) dS ′ = δ(v − v′) [1.9]∮
S

x∗n(r′) · y(r′,v) dS ′ = 0 [1.10]∮
S

x∗(r′,v) · yn′(r′) dS ′ = 0. [1.11]

Then, the basis set defined in equation 1.7 is able to excite all possible solutions of the

homogeneous Helmholtz equation in the sample domain D. To represent this basis set

on a computer with finite numerical precision, the continuous eigenvectors y(r,v) need

to be discretized:

Js(r) =
∞∑
n=1

αnyn(r) +
∞∑
v=1

αvyv(r) =
∞∑
i=1

αiyi(r). [1.12]

Additionally, the infinite sum needs to be truncated:

Js(r) =
N∑
i=1

αiyi(r). [1.13]

Equation 1.13 can be used as a basis set for the optimization process. If the surface S

is confined to a Cartesian, cylindrical or spherical coordinate system (which is the case

throughout this thesis), there are closed-form expressions of equation 1.6 and 1.7. More

details can be found in (7–9).

18



1.3 The Optimization Problem

1.3 The Optimization Problem

With the basis set of equivalent surface currents from equation 1.13 it is possible to for-

mulate an optimization problem. The optimization variables are the complex expansion

coefficients αi from the basis set of equivalent surface current modes. The most com-

mon optimization goals are summarized in table 1.1. The solution of the optimization

problem yields expansion coefficients αopt
i . The optimal surface current distribution is

given by:

Jopt
s (r) =

N∑
i=1

αopt
i yi(r). [1.14]

Transmit Mode

min
αi

std|B+
1 | Homogeneous B+

1 -component over a specified region of interest
(ROI): This criterion is important to ensure a homogeneous dis-
tribution of the flip angle over the ROI.

max
αi

|B+
1 |/
√
Pin High transmit efficiency: The input RF power to the RF coil Pin

is limited by the maximum power available from the RF amplifier
minus the losses on the transmission lines connecting the amplifier
with the coil.

max
αi

|B+
1 |/
√

SAR High safety excitation efficiency: The specific absorption rate (SAR)
describes the amount of dissipated power per tissue mass and gives
an estimate of tissue temperature rise during an MR scan. The
International Electrotechnical Commission (IEC) defines SAR limits
for safe human applications in IEC standard 60601-2-33.

min
αi

|Si,j| ∀i 6= j Low inter-element coupling in phased arrays: Minimize the off-
diagonal elements of the N-port scattering matrix S to simplify tun-
ing and matching of individual array elements.

Receive Mode

max
αi

SNR High signal-to-noise ratio (SNR): In NMR the SNR is defined by the
ratio of the signal- to the noise voltage SNR = Vs/Vn.

min
αi

g Low geometry-factor (g-factor): The g-factor describes the ability of
the array to separate aliased voxels when parallel imaging is applied.
It is defined as g = SNRfull/(

√
ρ SNRred), where ρ is the factor by

which k-space is undersampled.

Table 1.1: Optimization goals

19



1 Introduction

1.4 Electrodynamic Scaling of Human Brain MRS

Let us consider again the scattering problem of an RF antenna irradiating a homogeneous

dielectric sample with wave number k (s. figure 1.1). Let the entire sample be enclosed in

a sphere of radius R. Then the electrodynamic scaling of the model is determined by the

product k ·R. If k ·R� 1 the electromagnetic field problem is of ”low”-frequency type

and Maxwell’s equations can be simplified by neglecting the electric displacement term

∂/∂t εE (10). Under this quasistatic approximation, the magnetic and electric fields are

partially decoupled: The magnetic field excited by the RF coil is given by the Biot-

Savart law (ignoring field diffusion in the dielectric sample). After the calculation of the

magnetic field, the electric field can be obtained by applying Faraday’s induction law. In

the quasistatic regime, there is no detachment of electromagnetic waves from the RF coil.

However, if the quasistatic condition k·R� 1 is violated, the electromagnetic problem is

said to be of ”high”-frequency type and Maxwell’s displacement current density cannot

be neglected anymore. Now, the electric and magnetic field are coupled and there is

wave propagation from the RF coil to the sample. The electrodynamic scaling for human

brain MRS is illustrated in figure 1.2. Apparently, the quasistatic regime is valid for

frequencies up to 10 MHz. The scope of this work is the optimization of RF coils at

ultra-high field strength (B0 ≥ 7 T), which corresponds to Larmor frequencies above

300 MHz for proton MRS. Therefore, the quasistatic approximation is not applicable

and a full-wave solution to Maxwell’s equations is required.

Figure 1.2: Relative permittivity (left) and electric conductivity (middle) averaged over
gray and white matter in the human brain according to the Gabriel database
(11). Right: electrodynamic scaling in the human brain (R=9 cm) measured
as the product k ·R.
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1.5 The Birdcage as an Optimal Low-Frequency Coil

A divergence-free surface current density Kbc is running on a cylinder of length 2c with

sinusoidal ϕ-dependence. From (8), the surface current distribution is given by:

Kbc = ∇×Mbce
−iϕ (H(z + c)− H(z − c)) er. [1.15]

Here, Mbc is a magnetic dipole surface density, H(z) is the Heaviside step function and

er is the unit vector in radial direction referring to a cylindrical coordinate system. This

so-called birdcage current distribution is plotted in figure 1.3. It can be represented as

a Fourier integral and Fourier series:

Kbc =

∫ ∞
h=−∞

dh
∞∑

n=−∞

wM
bc(n, c, h)∇× einϕeihzer. [1.16]

The Fourier expansion coefficients wM
bc were already determined in (8):

wM
bc(n, c, h) =

Mbc

π

sin(hc)

h
δn+1. [1.17]

For an ideal birdcage resonator, the length 2c is much larger than the region of interest in

the sample. In the limiting case of an infinitely long birdcage coil, the Fourier expansion

coefficient wM
bc becomes:

lim
c→∞

wM
bc = Mbcδ(h)δn+1. [1.18]

When applying dyadic Green’s functions (7), it is possible to calculate the transmit cir-

cularly polarized component (B+
1 ) of an ideal birdcage coil inside a cylindrical phantom:

B+
1 (kr) ∝ J0(kr). [1.19]

Figure 1.3: Surface current distribution of a birdcage coil surrounding a cylindrical sam-
ple.
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Thereby, k2 = ω2εµ0+iωσµ0 is the wave number in the dielectric cylinder of permittivity

ε and electric conductivity σ. A time-harmonic behavior of e−iωt is assumed. The term

J0 refers to the Bessel function of first kind and zeroth order. Regarding the receive

case, an ideal birdcage current distribution rotating in the opposite direction than in

equation 1.15 (with eiϕ dependence), results in a receive sensitivity (B−1 )∗, that is also

proportional to J0(kr). A Taylor-series expansion of J0(kr) at kr = 0 yields 1−O(k2r2).

Therefore, if |kr| � 1, the Bessel function J0(kr) is approximately constant.

Practically speaking, an infinitely-long birdcage current distribution Kbc results in

a homogeneous magnitude of B+
1 and B−1 , if the wavelength in the sample is much larger

than the dimensions of the sample. To visualize the homogeneous operating regime of

an infinitely long birdcage resonator, in figure 1.4 the circularly polarized components of

the RF magnetic field in the sample are shown. For the simulation, average properties

of gray and white matter were chosen according to the Gabriel database (11). The

circularly polarized components of a birdcage resonator start to become inhomogeneous

at 64 MHz (B0=1.5 T for protons) for large head sizes. Clearly, at ultra-high field

strength (B0 ≥ 7 T, f ≥300 MHz for protons), the birdcage current patterns are not

able to excite homogeneous B+
1 and B−1 components. However, at low field strength the

birdcage current distribution is optimal with regard to flip angle and SNR homogeneity.
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Figure 1.4: The normalized B+
1 and B−1 component of an infinitely long birdcage res-

onator in a cylindrical phantom.
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1.6 Research Objectives

The goal of this thesis was to address some of the optimization problems (table 1.1)

raised in ”high”-frequency RF coil design for human brain MRS. The corresponding

optimization problem was solved with the help of equivalent surface currents. Based on

the simulation results, field strength specific design guidelines for RF coil design were

deduced. The following optimization problems were treated:

The first project (publication 1) focused on the optimization problem of maximiz-

ing the SNR in a spherical phantom of human head size. It was shown, that the basis set

of equivalent surface current patterns yielding the UISNR limit, can be separated into

curl- and divergence-free components. The purpose of this study was to systematically

investigate the different contributions of curl- and divergence-free current patterns to the

UISNR. The different contributions are of high practical relevance, because traditional

loop-only receivers are just able to capture the divergence-free SNR limit and miss the

contribution of curl-free current patterns.

The second project (publication 2) continued the work of the first project by doing

a systematic analysis of the best possible SNR of loop- and dipole-like current patterns

in relation to the ultimate SNR in a realistic human head model. The objective was to

find out, how close loop- and dipole-only receive arrays are able to approach the UISNR

threshold, or rather the SNR gain of combining both elements. Moreover, the study

examined the influence of the array holder geometry on the SNR efficiency of loop and

dipole elements.

The objective of the third project (publication 2, publication 3) was to quantify

the increase of the UISNR in the human head with field strength B0. For that, a power

series model was fitted to the UISNR results of a head-sized sphere and a realistic head

model. The spatial distribution of the exponent was plotted to identify regions in the

human head with super- and sublinear increase of the UISNR.

The fourth project (publication 4) dealt with the optimization problem of mini-

mizing inter-element coupling in phased arrays. The aim of the work was to understand

and eliminate the complex mutual coupling between rectangular surface loops surround-

ing a cylindrical head-sized sample. The hope was to fully compensate the complex mu-

tual impedance by overlapping the loop elements and optimizing their widths. Based

on a newly developed analytic model, the optimization problem could be solved and a

fully decoupled prototype array was constructed at 400 MHz. No additional decoupling

circuitry was needed.
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2 Thesis Composition

This PhD thesis is written as integrated accumulation of publications. In this chapter,

publication 1, publication 2, publication 3 and publication 4 are summarized.

The full articles are appended in chapter 4.

2.1 The Ultimate SNR of Curl- and Divergence-Free

Currents in a Spherical Head Model

This section summarizes publication 1.

Introduction

In NMR, the SNR serves as an important figure of merit to assess the receive perfor-

mance of an RF coil. It is defined as the ratio between the received signal voltage and

the accumulated noise voltage originating from sample and coil losses. Thereby the

achievable SNR of any real receive array is inherently limited by Maxwell’s equations.

This ultimate intrinsic SNR (UISNR) threshold neglects all coil losses and the only

source of noise is the RF power dissipated in the sample. It was first studied by Roemer

(12) and Wang (13), however, under the quasistatic assumption. Later, Ocali calculated

the UISNR in a cylindrical phantom with a full-wave ansatz (14). To find the UISNR,

this author formulated a constrained optimization problem: First, a basis set of electro-

magnetic fields solving the homogeneous Helmholtz equation in the sample is required.

Then, expansion coefficients that minimize the noise voltage under the constraint of a

constant signal voltage need to be found. Ohliger (15) and Wiesinger (16) extended

the UISNR theory to parallel imaging. Based on the weak SENSE reconstruction (17),

these authors constrained the net receive sensitivity. All of the previously mentioned

studies result in an optimal electromagnetic field distribution in the sample. This is

very interesting from a theoretical viewpoint, but for the practical design of RF coils it

is more favorable to optimize a current distribution. In section 1.2 it was shown, that it
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is possible to define a basis set of equivalent surface currents that are able to excite all

possible electromagnetic fields within the sample. Schnell (8) and Lattanzi (9) used such

a surface current basis set to find the ideal current distribution yielding the UISNR.

In this study, the human head was approximated by a simple dielectric sphere. For

a spherical sample, the basis set of equivalent surface currents is given by (9):

K =
∞∑
l=1

l∑
m=−l

αM
l,mXl,m(ϑ, ϕ) + αE

l,m(r̂×Xl,m(ϑ, ϕ)). [2.1]

The term Xl,m is the vector spherical harmonic defined in equation [9.119] in (10) and

r̂ is the unit vector in radial direction. Equation 2.1 is composed of a divergence-free

component, Xl,m, and a curl-free component, r̂×Xl,m. The divergence-free component of

the current (magnetic-type) has expansion coefficients αM
l,m and the curl-free component

(electric-type) has expansion coefficients αE
l,m. In order to calculate the UISNR ζ, both

curl- and divergence-free current patterns must be used. When allowing only divergence-

free current patterns in the optimization process, the achievable UISNR is denoted as

ζM. This value corresponds to the best possible SNR when receiving with loop-only

elements, as a uniform current in a loop is divergence-free. The definition of ζE having

only curl-free current patterns follows accordingly. The contribution of divergence-free

current patterns to the UISNR is defined as the ratio ζM/ζ, and the contribution of

curl-free current patterns to the UISNR as the ratio ζE/ζ.

Study Design

The aim of this study was to systematically investigate the contribution of curl- and

divergence-free current patterns to the UISNR in a spherical model the size of the human

head (9.2 cm radius). This quantitative analysis was done for magnetic fields B0 of 1.5

T, 3 T, 7 T, 9.4 T and 11.7 T. The corresponding Larmor frequencies for protons (1H

was implicitly assumed as the NMR visible isotope throughout this study) fell in the

frequency range between 64 MHz and 498 MHz. The frequency dependent permittivity

and electric conductivity of the dielectric sphere were chosen to match average tissue

properties of gray and white matter according to the Gabriel model (11). The influence

of parallel imaging on the ratios ζM/ζ and ζE/ζ was studied at 9.4 T.
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Results

First, it was demonstrated that ideal current patterns yielding the UISNR depend on

voxel position and acceleration factor (figure 8 of publication 1). It has to be empha-

sized that only a snapshot is shown, and that the current patterns evolve in time with a

e−iωt dependence. All these facts make it very challenging to practically implement ideal

current patterns. However, it was possible to deduce some very fundamental informa-

tion from the ideal current patterns, such as the contribution of curl- and divergence-free

current components to the UISNR. Those contributions are illustrated in figure 2.1. At

1.5 T and 3 T, divergence-free current patterns are sufficient to achieve more than 96%

of the UISNR in all parts of the sphere. Moreover, regarding the peripheral and central

regions, divergence-free components saturate the UISNR in the whole frequency range.

When increasing the main magnetic field B0, there is an intermediate region between

the center and the periphery, where the divergence-free UISNR is substantially lower

than the total UISNR. The minimum ζM/ζ is about 59% at 11.7 T. On the other hand,

with increasing B0, the curl-free contribution reaches its maximum in this intermediate

region. As a consequence, the combination of curl- and divergence-free current patterns

boosts the SNR in the intermediate region by 36% (7 T), 57% (9.4 T) and 68% (11.7

T) compared to the SNR of divergence-free current patterns only. In the next step, the

influence of parallel imaging was examined. Figure 2 of publication 1 visualizes the

contributions for different acceleration factors at 9.4 T. Up to an acceleration of 3x3, the

1.5 B  [T] 0 3 

0 10.50.25 0.75

7 9.4 11.7 

Mdiv-free z /z

Ecurl-free�z /z

z

x

Figure 2.1: The contribution of curl- and divergence-free current patterns to the UISNR
in a sphere of human head size. The static magnetic field B0 is pointing in
z-direction. The contributions are rotationally symmetric about the z-axis.
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contributions of ζM/ζ and ζE/ζ are almost independent of the acceleration factor. For

higher acceleration, the contribution of curl-free current patterns decreases. The spatial

distribution of ζM/ζ becomes more homogeneous if ρ >5x5. Figure 5 of publication

1 shows the dependence of the contributions with regard to the size of the sphere. Fo-

cusing on the central voxel, it is interesting that for B0 ≥ 3 T and acceleration factors

≥ 4x4, the UISNR is not fully recovered by divergence-free current patterns. For the

intermediate voxel position, the following trend was observed: The larger the sphere,

the more SNR is lost when using only divergence-free components. This is true, if the

radius is smaller than approximately 9 cm.

Discussion

According to the results of the last paragraph, practical recommendations for RF coil

design for head applications were made. For B0 ≤ 3 T, it is sufficient to use loop-only

receive arrays, which have a direct correspondence to divergence-free current patterns.

However, at ultra-high field strength (B0 ≥ 7 T), a combination of curl- and divergence-

free current patterns is suggested. Only the combination of these complementary current

patterns results in the maximal SNR over the whole sphere. In practice, a combination

of curl- and divergence-free current patterns can be realized by using loop and dipole

elements together in the array. Regarding body applications, there was an interesting

publication investigating the receive performance of finite element loop and dipole arrays

in a cylindrical phantom of human body size (18). Due to the fact, that straight, z-

directed dipoles consist of both curl- and divergence-free current components (19), an

array of 16 dipoles recovered almost 80% of the UISNR in central and intermediate

body regions at 7 T and 9.4 T (18). Nevertheless, electric-dipoles alone do not create

a complete basis set of equivalent surface currents, as for example peripheral UISNR

can only be saturated by loop elements. In a very systematic study (20), the authors

elaborated on the SNR performance of finite element loop arrays in a spherical phantom

of human head size. In contrast to a cylindrical head model, in the spherical head model

central SNR is fully reached by loop elements even at 9.4 T.

In general, it has to be stated that at the time of this thesis, the research with

regard to the practical implementation of dipole-only (21–25) or loop-dipole (26–28)

head arrays at ultra-high field strength was still at its beginning. The most challenging

parts were the shortening of λ/2 dipoles (29–33) and the decoupling between dipole

elements (34). Instead of using dipoles, there are other possibilities in order to realize

curl-free current patterns. One option would be to use vertical loop elements (35–
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37), which are positioned perpendicular to conventional surface loops. A simultaneous

excitation of curl- and divergence-free current patterns can also be realized, by unequally

distributing capacitors on loop elements (38).

Conclusion

In this work, for the first time the contribution of curl- and divergence-free current pat-

terns to the UISNR was systematically investigated for different field strengths. Based

on these findings, practical guidelines for RF coil design in human head applications

were formulated. Moreover, field strength specific recommendations regarding the com-

bination of loop and dipole elements were suggested.
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2.2 The Ultimate SNR of Loop- and Dipole-Like

Currents in a Realistic Head Model

This section summarizes publication 2.

Introduction

At the time of this thesis, there was great interest in using electric dipoles to enhance

the SNR of traditional loop-only arrays for human head applications at 7 T and above.

Initial studies were done with dipole-only arrays (22–25) or with a combination of loop

and dipole elements (26–28). As an alternative to the electric dipole, vertical loop

elements were combined with surface loops (39). From a theoretical viewpoint, loop-

only receive arrays can be represented by a divergence-free surface current distribution.

In order to form a complete electromagnetic basis set, divergence-free current patterns

need to be accompanied by curl-free current patterns (40). Furthermore, straight dipoles

mounted on a cylindrical holder are represented by Z-directed current patterns. To

form a complete basis set, the Z-directed current patterns must be complemented by

Φ-directed current patterns. Evaluating the best possible SNR of divergence-free (loop-

like) or Z-directed (dipole-like) current patterns relative to the ultimate SNR yields a

direct performance measure of how close general loop-only or dipole-only receive arrays

are able to achieve the ultimate threshold.

In section 2.1, the best possible SNR of curl- and divergence-free current patterns

relative to the UISNR in a spherical phantom of human head size was systematically

analyzed. The generic surface current patterns covered the complete spherical surface

around the sample. This simple model was useful to understand the basic SNR lim-

itations of loop-only arrays as well as how to overcome them by combining loop and

dipole elements in the array. Of course, the human head is not a uniform sphere, and

in practice the surface current distribution cannot be entirely closed due to the human

neck. For this reason, the aim of the second publication was to perform more realistic

simulations: First, the Huygens’ surface of equivalent surface currents had an opening

for the neck. Following two typical practical designs, a spherical cap (helmet-like struc-

ture) and a cylindrical surface were chosen. Second, the spherical model was replaced

by a realistic human head model (”Duke”) from the virtual family (41).

When this thesis was written, there were very few studies about the UISNR in

realistic human body models. The first one was done by Felder, who used a plane wave
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expansion to study the UISNR in a human head model at 9.4 T (42). By randomly

exciting a large number of elementary electric and magnetic dipoles on a head conformal

surface, Guérin, was able to evaluate the UISNR in a head model (43). However, neither

of the two mentioned methods is able to separate curl- and divergence-free current

patterns, which is essential for estimating the performance of loop and dipole elements.

Therefore, in this work a new method was developed to access the best possible SNR of

curl- and divergence-free current patterns.

The workflow for calculating the UISNR ζ and the best possible SNR of curl- and

divergence-free current patterns (ζE, ζM), as well as the best possible SNR of Z- and Φ-

directed current patterns (ζZ, ζΦ), is outlined in figure 2.2. The curl- and divergence-free

surface current modes KE and KM excite eigenfunctions of the Helmholtz equation in

spherical or cylindrical coordinate systems. Regarding the cylindrical Huygens’ surface,

there is a linear transform to obtain Φ- and Z-directed current patterns from KM and

KE (19). Using DGF (7), it is possible to calculate the free-space fields Einc and Binc

from the current modes. As a response to the incident fields, polarization currents

are excited in the dielectric head. These polarization currents radiate and result in a

scattered field (44). The polarization currents and the resulting total fields in the head

model were calculated with a fast volume integral equation solver. This Matlab-based

DGF

i = i+1

E ,Binc inc

M EK , K

fM E Z
z,�z ,�z ,�z ,�z

E ,B1 1

E ,B2 2

E ,BN N

..
.

E ,Bhead head

surface
 current mode i

free-space 
fields

basis set
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total fields
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Figure 2.2: Workflow for calculating the UISNR and the best possible SNR of curl- and
divergence-free and Z- and Φ- directed current patterns.
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solver called ”MARIE” is open-source and was developed by a group at Massachusetts

Institute of Technology (45–47). In a last step the total fields were stored in a database

and the next basis vector was calculated. When the basis set had a sufficiently large

number of basis vectors, the UISNR could be reconstructed.

Study Design

The UISNR was calculated at all practically relevant field strengths for human appli-

cations between 1.5 T and 11.7 T. The corresponding Larmor frequencies for protons

(1H was implicitly assumed as the NMR visible isotope throughout this study) were in

between 64 MHz and 498 MHz. The voxel-based model ”Duke” consisted of 77 different

tissue types and had an isotropic resolution of 2 mm. The frequency dependent elec-

tromagnetic properties of each tissue were modeled according to the Gabriel database

(11). The spherical cap had a radius of 13 cm and a cap angle of 120◦. The cylindrical

surface had a radius of 13 cm and a length of 30 cm. All simulations were done on

a dedicated high-computing server equipped with two Nvidia P100 GPUs to massively

accelerate the FFT-based integral equation solver. The basis set for the spherical cap

Huygens’ surface consisted of 2550 basis vectors and the cylindrical surface had 3038

basis vectors.

Results

In figure 2.3, the required simulation times to calculate the basis set for the spherical

cap Huygens’ surface are visualized. Parallel programming and GPU based computing
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Figure 2.3: Simulation time for calculating the basis set (2550 basis vectors) for the
spherical cap Huygens’ surface.
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was essential to decrease the simulation times to such reasonable values. Figure 6 of

publication 2 illustrates the best possible SNR of curl- and divergence-free current

patterns relative to the UISNR with respect to the spherical cap basis set. At 1.5 T and

3 T, divergence-free current patterns achieve more than 90% of the UISNR in the whole

human head. Moreover, divergence-free current patterns saturate the UISNR in the

peripheral and central head regions for all field strengths. However, at ultra-high fields

(B0 ≥7 T), there are regions in the human head, where loop-like current patterns are not

able to reach the UISNR threshold. In those regions, adding curl-free current patterns

to the divergence-free basis set substantially improves the SNR by 24% (7 T), 45% (9.4

T) and 49% (11.7 T). Moving on to the cylindrical basis set, figure 7 in publication

2 visualizes the best possible SNR of curl- and divergence-free current patterns relative

to the UISNR. Similar to the spherical cap basis set, when increasing B0, the minimum

of ζM/ζ decreases, but the maximum of ζE/ζ increases. In central head regions, the

combination of curl- and divergence-free current patterns boosts the SNR by 21% (7 T),

33% (9.4 T) and 39% (11.7 T) in comparison to divergence-free patterns only. Next,

we studied the best possible SNR of Φ- and Z-directed current patterns relative to the

UISNR (figure 8 of publication 2). Z-directed currents have high SNR in central head

regions, but are not very efficient in the periphery. With increasing field strength, their

SNR efficiency increases. At 7 T and above, dipole-like current patterns result in 93%

of the ultimate SNR in the brain center. Finally, we compared the SNR performance of

divergence-free with Z-directed current patterns in figure 9 of publication 2. At 1.5

T and 3 T, loop-like currents achieve higher SNR than dipole-like currents in the whole

brain. At 7 T, loop-like currents still outperform dipole-like currents in most regions of

the human head (except for a small region close to sphenoidal sinus). However, at 9.4

T and above, dipole-like current patterns have superior SNR performance over loop-like

currents in central head regions: There, the SNR of Z-directed currents is 24% (9.4 T)

and 26% (10.5 T, 11.7 T) higher compared to divergence-free currents.

Discussion

The results presented in the previous paragraph motivate the following design recom-

mendations for RF receive arrays in human head applications: On 1.5T and 3T plat-

forms, loop-only arrays cover more than 90% of the UISNR in the whole human head

(both helmet-like and cylindrical surface). In contrast to this, at 7 T and above, there

are regions in the human head, where the SNR of loop-only receivers can be substantially

increased by adding complementary current patterns.
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With regard to the cylindrical coil holder, loop elements can be accompanied by

electric dipoles pointing in z-direction. Previously, there have been a few attempts to

combine loops and dipoles at ultra-high field strength (26–28). Moreover, the SNR

of loop-only arrays can be enhanced by adding vertical loop elements (35–37). As an

example, by adding eight vertical loops to an existing eight channel surface loop array

(400 MHz), Avdievich measured an SNR increase of almost 30% in the brain center (39).

This SNR boost cannot only be attributed to the increased number of receivers, because

16 loop elements result in an SNR increase of about 4% in the center of a head-sized

sphere (20). Based on figure 9 of publication 2, the usage of dipole-only arrays is not

recommended for human head applications lower than 9.4 T. For B0 ≥ 9.4 T, dipole-

only arrays can achieve higher SNR than loop-only arrays in central head regions. To

complement loop elements on a helmet-like design, Θ-directed dipole elements or vertical

loop elements could be potential candidates.

As already stated in section 1.2, the equivalent surface current distribution needs

to span a closed surface around the sample to form a complete basis set. However, such

a closed current distribution is unrealistic for human head applications, because there

is no opening for the neck. For this reason, a spherical cap surface current distribution

was introduced in this study. Although this basis set is not complete, in figure 4 of

publication 2 it is shown that for a spherical setup (ϑ0 = 120◦), the UISNR is only

underestimated close to the southern pole. Equivalently, for the realistic head model, one

can hypothesize that the UISNR could be underestimated in the brainstem and spinal

cord. Despite the incompleteness of the spherical cap basis set, the presented UISNR

results are optimal with regard to any helmet-like array design. Also, a closed surface can

be realized by an infinitely long cylindrical surface current distribution. However, such

a current distribution is unrealistic and numerically unstable. The numerical instability

arises from the strong correlation of electromagnetic fields of higher order basis vectors.

Therefore, a cylinder of finite length having approximately the same coverage in z-

direction as the human head voxel model was used for this study.

Comparison of the UISNR results between the spherical model (figure 2.1) and the

realistic head model (figure 6 in publication 2) reveals that the performance of loop-

only arrays is higher in the realistic head model than in the spherical model. One reason

for this observation could be the fact that a spherical cap Huygens’ surface was used for

Duke, whereas a closed spherical surface was used for the spherical model. Formally, this

corresponds to a cap angle of ϑ0 = 180◦. In figure 5 of publication 2 it is shown that

with decreasing cap angle, the minima of ζM/ζ increase. Despite the different geometry
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and inhomogeneity of the ”Duke” model, the results obtained from the simple spherical

setup qualitatively match the results from a realistic body model.

Conclusion

For the first time, the best possible SNR of loop- and dipole-like current patterns relative

to the UISNR was studied in a realistic human head model. This was possible because

of a fast and efficient volume integral equation solver running on a dedicated high-

computing GPU-based server. The SNR performance of loop and dipole elements for

head applications was predicted to guide future RF coil designs at ultra-high frequency.
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2.3 The Increase of the Ultimate SNR in the Human

Head with B0

This section summarizes publication 2 and publication 3.

Introduction

The motivation to build new MR platforms operating at higher static magnetic field

strengths B0 is the increase of the SNR. It is well known, that in the quasistatic regime,

the SNR increases linearly with B0 (48,49). However, with increasing field strength, the

Larmor frequency increases as well and the quasistatic condition is violated. For human

head applications, a full-wave solution to Maxwell’s equations is required if the Larmor

frequency is larger than approximately 10 MHz (s. figure 1.2). Therefore, this study

was designed to investigate the increase of the UISNR with regard to B0 considering

the full-wave electromagnetic problem. There were already several publications about

the increase of the UISNR at the time of this thesis: the UISNR increase in simple

cylindrical or spherical models was investigated in (8, 9, 14, 16); additionally, Guérin

published UISNR results in a realistic human head model (43); Pohmann and colleagues

measured the SNR increase from 3 T to 7 T and from 7 T to 9.4 T with state-of-the-

art receive-only arrays (50). None of the previously mentioned studies did quantitative

fitting of the full spatial UISNR to a power series model. The goal of this study was

to deduce quantitative maps showing the regions in the human brain where the UISNR

increases superlinearly with B0.

Study Design

The increase of the UISNR was investigated with two different models. First, the UISNR

was evaluated in a sphere of human head size. The simulation setup and sample proper-

ties were the same as in section 2.1. Moreover, the UISNR was computed in a realistic

human head model using a spherical cap basis set (same setup as in section 2.2). Both,

for the sphere and the realistic voxel model, the UISNR was simulated at several field

strengths B0 (1.5 T, 3 T, 7 T, 9.4 T, 10.5 T, 11.7 T). Assuming 1H as the NMR visible

isotope, the Larmor frequencies were between 64 MHz and 498 MHz. After finishing

these simulations, the UISNR at each voxel position r was fitted to a power series model

of the form:

ζ(B0, r) = c(r)B
n(r)
0 . [2.2]
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Results

In figure 2.4, the fitted exponent n is plotted for the spherical head model and the

realistic voxel model ”Duke”. Both models show a sublinear increase of the UISNR in

0.5 1 2.3

Fitted exponent n

x

z

x

y

Figure 2.4: The increase of the UISNR as a function ζ = cBn
0 . The fitted exponent n is

shown. The black contour lines indicate the linear threshold.

the periphery. In the realistic body model, the linear threshold (black contour line) is

about 16 to 20 mm away from the skin. The UISNR grows superlinearly in the central

regions of the models. In the inner brain, the UISNR grows with an approximate

exponent of n ≈ 1.5. When increasing B0 from 3 T to 7 T, the relative UISNR gain

in central head regions is about a factor of four (s. figure 2.5). From 7 T to 9.4 T,

1

4 2

1

z(7 T)
z(3 T)

z(9.4 T)
�z(7 T)

Relative UISNR increase

Figure 2.5: The relative gain in UISNR when increasing B0 from 3 T to 7 T (left)
and from 7 T to 9.4 T (right). The black contour lines indicate the linear
threshold.

there is gain of almost two in this region. Figure 2.6 compares the experimentally

measured SNR increase from 3 T to 7 T and from 7 T to 9.4 T with the corresponding

increase of the UISNR. In general, the measured SNR increase seems higher than what

is predicted from UISNR simulations. For example, the measured SNR boost from 3

T to 7 T in the cerebellum and in parts of the frontal lobe is larger than a factor of

four, whereas the simulations only predict a factor of about three (cerebellum) and

two (frontal lobe). Another difference between simulation and experiments is that the
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UISNR grows monotonically with B0, whereas the measurements reveal regions in the

very periphery of the brain where the SNR even decreases.

Discussion

The first (full-wave) study about the increase of the UISNR with regard to B0 was done

by Ocali (14). He reported a superlinear increase of the UISNR in the center of a human

torso model. Later, Schnell confirmed this result in a cylindrical body model (8). In

(16), Wiesinger used a multipole expansion in a spherical model (15 cm radius) and

published an exponent of 1.92, 2.05 and 0.9 at a central, intermediate and peripheral

voxel position, respectively. Also Lattanzi showed a superlinear increase of the UISNR

in the center of a head-sized sphere and a sublinear increase in the periphery (9). In a

recent publication (43), Guérin studied inter alia the increase of the UISNR in a realistic

human head model. His results are in accordance to this study; he found a sublinear

7 T
3 T

9.4 T
  7 T

Figure 6 from Pohmann et al, MRM 75: 801-809, 2016. © Wiley.

Simulated increase of the UISNR in Duke

a)

b)

Figure 2.6: a) Experimentally measured increase of the SNR. This figure is copied from
reference (50) with the permission of John Wiley & Sons, Inc. b) Simulated
increase of the UISNR in voxel model Duke. The color scale is the same as
in subfigure a).
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increase for a voxel close to the head’s surface and a superlinear increase in central brain

regions.

The discrepancy between the predicted increase of the UISNR from this study and

the measured increase of the SNR by Pohmann et al. can be attributed to different

receive sensitivity profiles of the arrays. As the influence of the receive sensitivity was

not calibrated out, the measured SNR values depend on the particular coil design.

By contrast, the UISNR is a coil independent performance measure. It needs to be

conceded, however, that especially at ultra-high field it is very difficult to map the

receive sensitivity due to the lack of a homogeneous transmit field. Both, experimental

and simulated results reveal, that the SNR increases superlinearly in the cerebrum.

Conclusion

For the first time, the UISNR in a realistic human head model was fitted to a power series

model with full spatial coverage. It was shown, that the UISNR increases superlinearly

for central head regions within the range 1.5 T ≤ B0 ≤ 11.7 T. This work confirmed

previous theoretical and experimental studies about a superlinear increase of the SNR.
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2.4 Understanding and Eliminating Complex Mutual

Coupling of Surface Loops

This section summarizes publication 4.

Introduction

On ultra-high field MR systems (B0 ≥7 T), the wavelength of the RF magnetic field

in the human brain is smaller than the head size (s. figure 1.2). As a result, single-

channel quadrature volume coils, which are based on the idea of birdcage-like current

patterns, suffer from flip angle inhomogeneity (51,52). Transceiver (52–56) and transmit

(57) phased arrays provide more degrees of freedom to mitigate the B+
1 -inhomogeneity

by means of RF shimming (58–61) or parallel transmission (62–64). Thereby, the per-

formance of these techniques is enhanced when the number of transmit channels is

increased (60, 65). However, this comes at the cost of higher cross-talk between the

array elements. In principle, the cross-talk of any N-port network can be eliminated by

using a decoupling network of 2N ports having 4N2 circuit elements (66). In practice,

decoupling is most of the time limited to adjacent array elements as the complexity

grows quadratically.

The coupling between two loop elements can be described by a complex mutual

impedance Z12 = R12 + iωL12. The electric ke and magnetic km coupling coefficients are

defined as

ke =
R12

R
[2.3]

km =
L12

L
, [2.4]

where R is the total loop resistance, L the loop inductance, R12 the mutual resistance

and L12 the mutual inductance. The quality factor of the loops is given by Q = ωL/R.

Then, the scattering parameter S12 can be evaluated as

S12 =
1

2
(ke + ikmQ) (|Z12| � R) . [2.5]

Instead of using an additional decoupling network, the distance between the centers of

the loops can be optimized to eliminate either ke or km (67–69). However, without further

optimization there remains a residual S12, due to the presence of the non-suppressed
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coupling mechanism. Typically, the two loops are overlapped until km becomes zero. At

1.5 T for example, the remaining value of ke is about 0.55 (s. figure 3 in publication

4) resulting in a residual S12 of -11.2 dB.

This study was motivated by the question, if it was possible to simultaneously

compensate ke and km by varying the loop separation and the loop width. Therefore, the

complex mutual impedance of two rectangular window loops surrounding a cylindrical

phantom (s. figure 2.7) was systematically investigated. Moreover, the dependence of

Z12 on loop width, loop separation, resonance frequency and sample size was intensively

studied. As numerical full-wave electromagnetic methods (e.g. FDTD, FEM) were very

time-consuming to explore with all of these aspects, a fast full-wave analytic model

based on dyadic Green’s functions was developed. When publication 4 was written,

there were analytic models regarding the SNR calculation of surface loops loaded by

a cylinder (18, 70, 71). However, none of these publications described the impedance

matrix Z12. Wright described an analytic model to evaluate the Z-matrix in a different

setup of two planar surface coils above an infinite half-plane (68).

Study Design

As a first step, the analytic model had to be validated by numerical FEM simulations

(CST Microwave Studio) and bench measurements using a network analyzer. Therefore,

two rectangular window loops (100x80 mm2) were mounted on a cylindrical FR4 holder

(diameter of 215 mm). The angular separation α between the centers of the loops was

varied in the range 0◦ ≤ α ≤ 180◦. The array was loaded by a cylindrical phantom

(diameter of 170 mm) having tissue equivalent electromagnetic properties at 400 MHz.

The complex impedance Z12 was simulated and measured at 64 MHz, 124 MHz, 300

MHz and 400 MHz. After validation of the analytic model, it could be demonstrated

Figure 2.7: Setup to study the mutual impedance between two rectangular window loops.
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that by overlapping the loops and optimizing their widths, at 400 MHz both the mutual

inductance and the mutual resistance can be eliminated simultaneously. A two-channel

prototype transceiver array was built and the SNR and transmit efficiency of the op-

timized overlapped array was compared to a two-channel gapped array used in other

designs (52,72).

Results

Using the commercial FEM solver of CST, the calculation of the impedance matrix

for 16 different angular separations at 400 MHz required about 24 h on a dedicated

workstation. In contrast to that, evaluating the analytic model on a standard desktop

computer with a much higher angular resolution (100 samples) took only 3 min.

Figure 3 in publication 4 visualizes the coupling curves obtained from the analytic

model, the FEM simulations and bench measurements. At 64 MHz, the developed model

is in very good agreement with the measured and simulated resistive coupling constant

ke. This is also the case for km, if α ≥ 40◦. The more the loops overlap, the more the

predicted km value of model deviates from the experiment and FEM simulation. This

phenomenon is also apparent at higher frequencies. At 300 MHz and 400 MHz, there

is a large discrepancy between the modeled ke curve and the numerical simulations and

measurements, if |km| ≥ 0.02. However, for the important practical case of canceled

mutual inductance (transformer decoupling), the analytic ke curve follows the CST

simulations and measured data very well in the range 35◦ ≤ α ≤ 180◦ (s. figure 4a in

publication 4 ).

After validation, the analytic model was used to investigate the dependence of ke

and km on frequency, sample size, loop- width and separation. The results are shown

in figure 5 of publication 4. The magnetic coupling constant km experiences a zero-

crossing at the critical overlap angle α = αcm. This angle becomes smaller when the loop

width decreases. The km curve is almost frequency and load independent, as changing

the radius of the sample practically does not affect the curve. The electric coupling

coefficient ke has at least one zero crossing, where the crossing with the lowest angle is

denoted α = αce. In general ke depends strongly on frequency and loading: The higher

the frequency and the larger the sample, the closer the critical angle αce approaches αcm.

These circumstances motivated a systematic analysis at 400 MHz, where the loop

width was gradually increased from 8 to 12 cm (s. figure 2.8). The white and red lines

indicate the contours, where ke = 0 and km = 0. The intersection of the two curves is at

an angle α = αce = αcm of about 50◦ for a loop width of approximately 10.5 cm. Using
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this optimized geometry, the two loop array is fully decoupled for a sample radius of

8.5 cm. To check the robustness of the geometric decoupling method on load variation,

figure 2.9 shows the S12 value as a function of the sample radius: If the radius varies

less than ± 24 %, decoupling is always better than -14 dB.

Based on these optimization results, an overlapped (loop dimensions 100 x 105

mm2, α = 46◦) two-channel transceiver array was built and evaluated against a gapped,

transformer decoupled (loop dimensions 100 x 80 mm2, α = 49◦) array. Loaded with the

cylindrical phantom of 8.5 cm radius, the measured S12 were -26 dB and -42 dB for the

gapped and overlapped array, respectively. Photographs and performance results of the

constructed arrays are presented in figure 8 of publication 4. The overlapped array

had improved transmit and receive performance compared to the gapped version: The

penetration depth was increased and the signal voids were eliminated (s. white arrows).

Discussion

The large discrepancy between the analytic ke curve and numerical and experimental

evaluation for strongly coupled loops (|km| ≥ 0.02) at ultra-high frequency is due to the

model assumption that the currents in each loop are independent of each other. However,

in the presence of strong mutual inductive coupling, the two current distributions become

correlated. As a result, there is a correlation between the electrical fields excited by both

loops in the sample. According to Faraday’s induction law, this correlation is frequency

dependent. For lower frequencies (e.g. 64 MHz), the correlation is low and the model

predicts the ke curve very well. To predict the ke curve at ultra-high frequency, the
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Figure 2.8: Analytic results for ke and km with different loop widths at 400 MHz (85
mm phantom radius).
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correlated current distribution on each loop needs to be calculated. A suitable technique

for this would be the method of moments for example (73). Nevertheless, the simpler

and faster analytic model is sufficient for many practical cases, because most transmit

arrays have the mutual inductance compensated by either transformer decoupling or

geometrical overlap.

The degree of achievable decoupling for the overlapped array depends on the vari-

ation of the head size. It needs to be emphasized that the change in S12 for different

sample sizes is mainly caused by the variation of the loop’s Q-factor and ke value. In

contrast, km remains almost unchanged when varying the sample radius (s. figure 5 in

publication 4). This is an important aspect, because in practice, km can be compen-

sated independently of the head size.

Conclusion

An analytic model was developed to quickly evaluate the complex mutual impedance

between two rectangular surface loops surrounding a cylindrical sample. Based on the

model, the geometry of a two-loop array was optimized so that by overlapping the loops,

both ke and km were simultaneously compensated. A prototype array was constructed,

which was coupled less than -40 dB without using any additional decoupling circuits.

This work proved very helpful to decouple an eight channel, tight fit transceiver phased

array at 400 MHz (56).
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Figure 2.9: Robustness of geometrical decoupling with regard to load variation. The
two-channel array is optimized to eliminate both ke and km for a sample
radius of 8.5 cm.
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43. Guérin B, Villena JF, Polimeridis AG, Adalsteinsson E, Daniel L, White JK, Wald

LL. The Ultimate Signal-to-Noise Ratio in Realistic Body Models. Magn Reson Med.

2017;78:1969-1980.

44. Davidson DB. Computational electromagnetics for RF and microwave engineering.

Cambridge: Cambridge university press; 2011.

45. Polimeridis AG, Villena JF, Daniel L, White JK. Stable FFT-JVIE solvers for fast

analysis of highly inhomogeneous dielectric objects. J Comput Phys. 2014;269:280-

296.

46. Villena JF, Polimeridis AG, Wald LL, Adalsteinsson E, White JK, Daniel L.

MARIE – a MATLAB-based open source software for the fast electromagnetic anal-

ysis of MRI systems. Proceedings of the 23rd Annual Meeting of ISMRM, Toronto,

Canada; 2015. p 709.

47. Villena JF, Polimeridis AG, Eryaman Y, Adalsteinsson E, Wald LL, White JK,

Daniel L. Fast electromagnetic analysis of MRI transmit RF coils based on acceler-

ated integral equation methods. IEEE Trans Biomed Eng. 2016;63:2250-2261.

48. Hoult DI, Lauterbur PC. The sensitivity of the zeugmatographic experiment involv-

ing human samples. J Magn Reson. 1979;34:425-433.

49. Redpath TW. Signal-to-noise ratio in MRI. Br J Radiol. 1998;71:704-707.

50. Pohmann R, Speck O, Scheffler K. Signal-to-noise ratio and MR tissue parameters

in human brain imaging at 3, 7, and 9.4 Tesla using current receive coil arrays. Magn

Reson Med. 2016;75:801-809.

51. Vaughan JT, Garwood M, Collins CM, Liu W, DelaBarre L, Adriany G, Andersen

P, Merkle H, Goebel R, Smith MB, Ugurbil K. 7T vs. 4T: RF power, homogeneity,

and signal-to-noise comparison in head images. Magn Reson Med. 2001;46:24-30.

52. Avdievich NI. Transceiver-phased arrays for human brain studies at 7 T. Appl Magn

Reson. 2011;41:483-506.

49



3 Bibliography

53. Adriany G, Van de Moortele PF, Ritter J, Moeller S, Auerbach EJ, Akgün C, Snyder
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The ultimate intrinsic signal-to-noise ratio (SNR) is a coil independent performance measure to

compare different receive coil designs. To evaluate this benchmark in a sample, a complete elec-

tromagnetic basis set is required. The basis set can be obtained by curl-free and divergence-free

surface current distributions, which excite linearly independent solutions to Maxwell’s equations.

In this work, we quantitatively investigate the contribution of curl-free current patterns to the

ultimate intrinsic SNR in a spherical head-sized model at 9.4 T. Therefore, we compare the ulti-

mate intrinsic SNR obtained with having only curl-free or divergence-free current patterns, with

the ultimate intrinsic SNR obtained from a combination of curl-free and divergence-free current

patterns. The influence of parallel imaging is studied for various acceleration factors. Moreover

results for different field strengths (1.5 T up to 11.7 T) are presented at specific voxel positions and

acceleration factors. The full-wave electromagnetic problem is analytically solved using dyadic

Green’s functions. We show, that at ultra-high field strength (B0⩾7T) a combination of curl-free

and divergence-free current patterns is required to achieve the best possible SNR at any position

in a spherical head-sized model. On 1.5- and 3T platforms, divergence-free current patterns are

sufficient to cover more than 90% of the ultimate intrinsic SNR.

KEYWORDS

dipole antenna, dyadic Green’s functions, electrodynamics, RF coils, ultimate intrinsic SNR

1 INTRODUCTION

When moving towards ultra-high field magnetic resonance imaging

(MRI) the wavelength of the radio frequency (RF) magnetic field is

smaller than the human body dimensions and the free-space wave-

length cannot be assumed to be much larger than the conductor

dimensions of the RF coils. This presents a huge engineering challenge

regarding the design of RF coils at ultra-high frequencies and has

resulted in a variety of new coil designs.1–8

To compare different coil designs, it is essential to have a benchmark.

In the receive case, one possible benchmark is the signal-to-noise

ratio (SNR) which is the ratio of the received signal voltage divided

by the accumulated noise voltage from the sample and coil. However,

the received signal voltage depends also on the imaging technique

and imaging parameter being applied and the received noise voltage

depends on the electronic noise in the receiver chain of the MR scanner.

Abbreviations: RF, radiofrequency; SENSE, sensitivity encoding; SNR, signal-to-noise ratio;

Edelstein et al.9,10 suggested a procedure to measure an intrinsic

SNR that is independent of any imaging technique/parameter and the

receiving electronics of the MRI system. Nonetheless, this reference

value still depends on the coil geometry. In a fundamental paper,11

Ocali investigated the so called ultimate intrinsic SNR, which is instead

an ultimate benchmark, because the intrinsic SNR is only limited by

Maxwell’s equations themselves and is not based on a specific coil

geometry. In contrast to earlier works,12,13 these authors solved

Maxwell’s equations without a quasistatic assumption. Their under-

lying model assumes, that the only source of noise is the RF power

dissipated in the human body. All other noise sources such as conduc-

tor losses, radiation losses, lumped element losses or noisy receive

electronics are excluded. As a consequence, the ultimate intrinsic

SNR is an upper bound for the measured intrinsic SNR of any real coil

configuration. Mathematically speaking, finding the ultimate intrinsic

SNR is a cooptimization problem where the optimization variables

NMR in Biomedicine. 2017;30:e3691. wileyonlinelibrary.com/journal/nbm Copyright © 2017 John Wiley & Sons, Ltd. 1 of 16
https://doi.org/10.1002/nbm.3691
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are expansion coefficients of a basis set of electromagnetic solutions

to Maxwell’s equations in a given sample. The goal is to minimize the

noise voltage, under the constraint that the value of the differential

signal voltage is constant.11 With the invention of parallel imaging

methods14–16 the concept of ultimate intrinsic SNR was extended by

Ohliger17 and Wiesinger.18 Both used the weak SENSE approach15

as a constraint in the optimization procedure. Schnell et al.,19

derived the ultimate intrinsic SNR for surface and body coils with a

dyadic Green’s function approach. The author was able to show, that

curl-free current patterns do not contribute to the ultimate intrinsic

SNR along the z-axis of a cylinder for frequencies below 100 MHz.

Recently Lattanzi et al. presented ideal current patterns that indicate

how an optimal receive array must be designed to reach the ultimate

intrinsic SNR in a cylinder and a sphere.20 These authors found out, that

curl-free current patterns can significantly contribute to SNR at higher

field strengths and specific voxel positions. However, Lattanzi et al. did

not quantify this contribution and only considered a few voxel posi-

tions. By visually inspecting ideal current patterns, their analysis was

meant to be only qualitatively. The influence of parallel imaging was not

investigated either. So far, all mentioned literature is limited to simple

geometrical models as (elliptical) cylinders,11,17,19,20 spheres18,20 and

half-spaces.19 To our knowledge, the first preliminary results dealing

with the ultimate intrinsic SNR in a realistic body model were published

by Felder.21 The author used plane waves impinging on a human head

model to create the basis set. In his model, there are no current pat-

terns exciting the plane waves. Therefore it is not possible to separate

the contribution of curl-free and divergence-free current patterns.

Recently Guerin et al. presented a different method.22 Thereby the

electromagnetic basis set was numerically created by randomly excit-

ing many dipole elements on a body conformed surface. However, with

TABLE 1 Symbols used in this work

A22
M,N

boundary coefficients for Ḡ22
e

𝛼M
l,m

, 𝛼E
l,m

expansion coefficient for magnetic-/electric-type current expansion

𝛼̃M
l,m

, 𝛼̃E
l,m

expansion coefficient for magnetic-/electric-type multipole expansion

B magnetic field vector

Bi basis set of magnetic fields inside head region

B22
M,N

boundary coefficients for Ḡ22
e

C22
M,N

, C32
M,N

boundary coefficients for Ḡ22
e and Ḡ32

e

D22
M,N

, D32
M,N

boundary coefficients for Ḡ22
e and Ḡ32

e

𝛿(r) Dirac-Delta distribution

𝛿ll′ Kronecker-Delta

𝜀0, 𝜇0 vacuum permittivity, permeability

E electric field vector

Ei basis set of electric fields inside head region

𝜁 ultimate intrinsic SNR

𝜗 polar angle in spherical coordinate system

Ḡjk
e electric dyadic Green’s function with field in layer j and source in layer k

h(1)
l

spherical Hankel function of first kind

i imaginary unit:
√
−1

I, J amplitude of volume current density, volume current density

jl spherical Bessel function

k0, k propagation constant in vacuum/head layer

L, M, N Stratton’s fundamental solutions to homogeneous Helmholtz equation

Pm
l

associated Legendre function of degree l and order m

𝜌 acceleration factor in parallel imaging

r, r
′

field point in 3D space, source point in 3D space

r radial variable in spherical coordinate system

Rc, Rh, Rs radius of surface current distribution, head and shield

S receive sensitivity matrix

𝜎 electric conductivity in head layer

𝜑 azimuth angle in spherical coordinate system

𝚿 noise covariance matrix

𝜔 angular Lamor frequency

Ω solid angle of a sphere with dΩ = sin 𝜗d𝜗d𝜑

VM
l,m

, VE
l,m

extended boundary coefficients

Xl,m Jackson’s vector spherical harmonic of degree l and order m

Yl,m scalar spherical harmonic of degree l and order m
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this approach, the surface current patterns are a random combination

of curl-free and divergence-free current patterns and the contribution

of each component to the ultimate intrinsic SNR cannot be evaluated.

In this work, we quantitatively investigate the contribution of

curl-free current patterns to the ultimate intrinsic signal-to-noise ratio

in a spherical model approximating the human head. We quantitatively

compare the ultimate intrinsic SNR obtained with divergence-free

only or curl-free only current patterns with the ultimate intrinsic SNR

obtained from a combination of curl-free and divergence-free current

patterns. This analysis is done for all voxel positions in the spherical

model at 9.4 T field strength. The influence of parallel imaging is studied

for various acceleration factors. Moreover, we present results for spe-

cific voxel positions at 1.5 T, 3 T, 7 T and 11.7 T. Based on our analysis,

we finally deduce practical guidelines for RF coil design regarding head

applications at different field strengths. This includes fields strength

specific recommendations of combining dipole and loop elements.

2 THEORY

2.1 The Ultimate Intrinsic SNR

We are interested in the ultimate intrinsic SNR in the human head,

which we approximate by a uniform sphere. Wiesinger obtained an

expression for the ultimate intrinsic SNR 𝜁 in the case of Cartesian

parallel imaging18:

𝜁 (r0) ∝
1√[(

SHΨ−1S
)−1

]
0,0

(1)

In this formula (see Table 1 and appendix for mathematical notation)

we obtain the ultimate intrinsic SNR at voxel position r0 by taking the

first diagonal entry of the matrix expression (SH𝚿− 1S)− 1. We ignore all

proportionality constants because we are only interested in SNR ratios,

such as SNRdiv-free/SNRdiv-free + curl-free. The receive sensitivity matrix S

consists of the sensitivities of all basis vectors at the original voxel posi-

tion r0 and all aliased positions.23 The receive sensitivity of an RF coil

at position r0 can be calculated by the principle of reciprocity from the

complex left-handed component of the circularly polarized RF mag-

netic field20,24:

S(r0) =
Bx(r0) − iBy(r0)

2
. (2)

Note that the induced signal voltage in the receiver coil is propor-

tional to the complex conjugate of the transverse RF field component

which rotates in the opposite direction as nuclear precession.24

The system’s noise covariance matrix𝚿describes the noise received

by each basis vector and the correlated noise between different basis

vectors.23 The element Ψj,k refers to basis vector number j and k and is

related to the overlap integral of the electric fields of the corresponding

basis vectors 25,26:

Ψj,k = ∫sample
𝜎(r)Ej · E∗

k dV. (3)

2.2 Electromagnetic Fields in a Spherically

Multilayered Model

In Figure 1 we show a proposed simplified three-layered spherical

model mimicking the electromagnetic field problem of an electric

current distribution J surrounding the human head in the presence of

an electric shield. For the rest of the paper, we assume that a perfect

conducting metallic shield is placed at a distance of R1 = Rs and com-

pletely fills layer one. No electromagnetic fields can penetrate into the

first layer and we have |k1| = ∞. Furthermore, let the second layer of

our model be a vacuum with propagation constant k2 = k0. The elec-

tric current distribution J may flow entirely on a spherical surface at a

distance Rs⩾Rc⩾Rh, where R2 = Rh is the radius of the “head” and the

interface between layers two and three. The electromagnetic proper-

ties in the “head layer” are specified by the conductivity 𝜎 and relative

permittivity 𝜀r. Both are frequency dependent as documented in the

table in Figure 1. With a time harmonic dependence of exp( − i𝜔t)

the complex propagation constant in layer three becomes k3 = k =
𝜔
√
𝜇0𝜀0𝜀r(1 + i𝜎∕(𝜔𝜀0𝜀r)). In order to calculate the ultimate intrinsic

SNR in the “head region” (layer 3), the knowledge of a complete basis

set of all possible solutions to Maxwell’s equations within this region is

essential. If such a basis set is known, all electric and magnetic fields can

be calculated as a linear combination of this basis set18:

Ehead =
∑

i

𝛼̃iEi (4)

Bhead =
∑

i

𝛼̃iBi (5)

Having an infinite dimensional vector space, the basis set needs to be

truncated in numerical simulations. There exists an analytic basis set for

spherical setups. This will be derived in the following. To start with, the

homogeneous free-space Helmholtz equation for any vector quantity

A is given by:

∇∇ · A − ∇ × ∇ × A + k2
0A = 0. (6)

In a spherical coordinate system Stratton observed that there are three

linearly independent solutions to the above Helmholtz equation27:

Ll,m(k0r, 𝜗, 𝜑) = ∇jl(kor)Yl,m(𝜗, 𝜑) (7)

Ml,m(k0r, 𝜗, 𝜑) = jl(k0r)Xl,m(𝜗, 𝜑) (8)

Nl,m(k0r, 𝜗, 𝜑) = 1
k0

∇ × Ml,m (9)

Here, we slightly adapted the definition of the L, M and N solution

by using Jackson’s scalar spherical harmonic Y and vector spherical

harmonic X (see Equations (A1)–(A3) in the appendix). The reason for

this change is to make M and N orthonormal over the unit sphere

(Equations (A9)–(A15) in the appendix). It can be shown that these

three linearly independent solutions create a complete basis set.28

For our purpose, these solutions will be linked to the electric E- and

magnetic B-fields. While the B-field is always a purely solenoidal field

(∇·B = 0), for the E-field this is only true in source-free matter, i.e.

matter with no free-volume charges. As this is the case for most dielec-

tric materials and good conductors (e.g. gold, silver, copper), we will

assume that the electric field is also purely solenoidal. This is in accor-

dance with the models used in the cited literature, including the work

of Wiesinger18 and Lattanzi.20 As a consequence, the solution space is

only spanned by the M- and N-solutions. At this point, the field expan-

sion in the “head”-layer (s. Equations (4), (5)) can be specified by the

fundamental solutions given in Equations (8) and (9). Since the wave
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FIGURE 1 We model the electromagnetic field problem of an electric current distribution surrounding the human head in the presence of an
electric shield. For this, we used a simplified three-layered spherical setup. The outermost layer (number one) starts at a radius of Rs and extends to
infinity. It represents the RF shield and is completely filled with perfect conducting material. The second layer is filled with vacuum and extends
between Rs and Rh. In this layer a surface current distribution of divergence-free and curl-free current patterns is flowing on a sphere at a radius of
Rc. The innermost layer (number three) models the human head and the radius of the sphere is Rh. The electromagnetic properties of the “head”
region are summarized in the table to the right for different field strengths. The values for the permittivity and conductivity are averaged for gray
and white matter according to Gabriel et al.32

propagation is no longer in free-space, the vacuum propagation con-

stant k0 should be replaced by the complex propagation constant k in

the “head” layer:

Ehead ∝
∑
l,m

𝛼̃M
l,mMl,m(kr, 𝜗, 𝜑) + 𝛼̃E

l,mNl,m(kr, 𝜗, 𝜑) (10)

Bhead ∝
∑
l,m

𝛼̃M
l,mNl,m(kr, 𝜗, 𝜑) + 𝛼̃E

l,mMl,m(kr, 𝜗, 𝜑) (11)

Such an expansion is called a multipole expansion of an electromag-

netic field.29 In general, every electromagnetic field within the sphere

is a combination of two types of fields: a magnetic multipole field with

coefficients 𝛼̃M
l,m

and an electric multipole field with coefficients 𝛼̃E
l,m

.

Wiesinger et al.,18 calculated the ultimate intrinsic SNR by optimizing

the expansion coefficients of such a multipole expansion. In practice,

the RF engineer can optimize the electromagnetic field only indirectly

by using dedicated conductor geometries. We therefore follow Lat-

tanzi’s approach20 to optimize a current distribution and afterwards

calculate the excited electromagnetic field inside the “head”. Any cur-

rent source J, positioned in layer 2 and flowing on a spherical surface

of radius Rc, excites an electric field in the “head” layer Ehead that can be

obtained by dyadic Green’s functions30,31:

Ehead(r) = i𝜔𝜇0 ∫ ∫ ∫V2

Ḡ(32)
e (r, r′) · J(r′) dV′. (12)

The dyadic Green’s function Ḡ(32)
e is given in the appendix

(Equation (A4)). By comparing Equation (10) with Equation (12) the

expansion of the current distribution J must be chosen in such a way,

that both solutions M and N are excited. Lattanzi et al. suggested the

following expansion20:

J = I
Rc

𝛿(r − Rc)
L∑

l=1

l∑
m=−l

𝛼M
l,mXl,m(𝜗, 𝜑) + 𝛼E

l,m(r̂ × Xl,m(𝜗, 𝜑)). (13)

With the given orthogonality relations in the appendix (Equations

(A9)–(A15)), the reader can convince himself that indeed both solutions

are excited. It can be shown on a spherical surface with constant radius:

∇·Xl,m = 0 and ∇ × r̂ × Xl,m = 0 . Therefore, the terms 𝛼M
l,m

and 𝛼E
l,m

are the expansion coefficients for the divergence-free component of

the current (also denoted magnetic-type) and the curl-free component

(electric-type). All divergence-free current patterns, however, are only

able to excite electric fields as a linear superposition of the fundamental

M-solution and therefore might miss important contributions from the

other independent solution. Therefore, a complete current expansion

has to excite both solutions. Consequently, additional curl-free current

paths are needed. When combining Equations (12) and (13) and tak-

ing advantage of the orthogonality relations, the electromagnetic fields

inside layer 3 can be evaluated:

Ehead(r) = −IRck0𝜔𝜇0

L∑
l=1

l∑
m=−l

𝛼M
l,mVM

l,mMl,m + 𝛼E
l,mVE

l,mNl,m (14)

Bhead(r) = iIRck0k𝜇0

L∑
l=1

l∑
m=−l

𝛼M
l,mVM

l,mNl,m + 𝛼E
l,mVE

l,mMl,m (15)

The extended boundary coefficients VM
l,m

and VE
l,m

originate from the

integration of the dot product between the primed vector functions

M′
l,m

or N′
l,m

and the source distribution J over the second layer of our

model:

VM
l,m = C32

M jl (k0Rc) + D32
M h(1)

l (k0Rc) (16)

VE
l,m =

C32
N

k0Rc

𝜕

𝜕r
(rjl (k0r))

||||r=Rc

+
D32

N

k0Rc

𝜕

𝜕r

(
rh(1)

l (k0r)
)||||r=Rc

(17)

The boundary coefficients C32
M

, C32
N

, D32
M

and D32
N

are listed in the

appendix in Equations (A27)–(A30). Finally, the receive sensitivity

matrix S in Equation (1) can be calculated as in20:

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

SM
1,−1

(r0) · · · SM
1,−1

(r𝜌−1)
⋮ ⋱ ⋮

SM
L,L
(r0) · · · SM

L,L
(r𝜌−1)

SE
1,−1

(r0) · · · SE
1,−1

(r𝜌−1)
⋮ ⋱ ⋮

SE
L,L
(r0) · · · SE

L,L
(r𝜌−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=
(

SM

SE

)
(18)

The subscripts indicate the degree l and order m of the spher-

ical harmonic. Here, the electric- and magnetic-type currents
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(superscripts E and M) are treated individually as they can be seen as

separate coil elements. The matrix has a total size of 2· ((L + 1)2 − 1) × 𝜌

entries. L is the maximum expansion degree in Equation (13) to reach

convergence of the ultimate intrinsic SNR. 𝜌 is the reduction factor

associated with parallel imaging.15 For two dimensional k-space under-

sampling, we simply use a superindex for the aliased voxel positions

and let 𝜌= 𝜌x𝜌y be the product of skipped phase encoding steps in both

directions. The receive sensitivities SM
l,m
(r)and SE

l,m
(r) can be calculated

by inserting Equation (15) into Equation (2):

SM
l,m(r) =

1
2

iIRck0k𝜇0VM
l,m

(
Nl,m(r)||x − i Nl,m(r)||y

)
(19)

SE
l,m(r) =

1
2

iIRck0k𝜇0VE
l,m

(
Ml,m(r)||x − i Ml,m(r)||y

)
(20)

The noise covariance matrix element Ψ(l,m)(l′ ,m′ ) between basis vector of

degree l and order m and basis vector of degree l′ and order m′ can be

calculated according to Equations (3) and (14):

Ψ(l,m),(l′ ,m′ ) = 𝜎|IRck0𝜔𝜇0|2∫V3

[(
VM

l,mMl,m + VE
l,mNl,m

)
·(

VM
l′ ,m′ Ml′ ,m′ + VE

l′ ,m′ Nl′ ,m′

)∗]
dV (21)

= 𝜎|IRck0𝜔𝜇0|2∫V3

VM
l,mMl,m ·

(
VM

l′ ,m′ Ml′ ,m′

)∗
dV+

𝜎|IRck0𝜔𝜇0|2∫V3

VE
l,mNl,m ·

(
VE

l′ ,m′ Nl′ ,m′

)∗
dV (22)

= ΨM
(l,m)(l′ ,m′ ) + ΨE

(l,m)(l′ ,m′ ). (23)

Note that there is no coupling between magnetic- and electric-type cur-

rents because the vector wave functions Ml,m and Nl′ ,m′ are orthogonal

to each other for every l, l′,m and m′ . Therefore, it is possible to split the

noise covariance matrix 𝚿 into a magnetic noise covariance matrix 𝚿M

and an electric 𝚿E:

𝚿 =
(

𝚿M 0
0 𝚿E

)
(24)

The individual elements for 𝚿M and 𝚿E are given to:

ΨM
(l,m),(l′ ,m′ ) = 𝜎|IRck0𝜔𝜇0|2VM

l,m

(
VM

l′ ,m′

)∗

∫
Rh

r=0
|jl(kr)|2r2 dr 𝛿ll′𝛿mm′ (25)

ΨE
(l,m),(l′ ,m′ ) = 𝜎|IRck0𝜔𝜇0|2

VE
l,m

(
VE

l′ ,m′

)∗

|k|2 ∫
Rh

r=0

(
l(l + 1)|jl(kr)|2+

|||| 𝜕𝜕r
rjl(kr)

||||2)
dr 𝛿ll′𝛿mm′

(26)

Both the magnetic- and electric-type currents are perfectly decoupled

resulting in purely diagonal matrices:

𝚿M =
⎛⎜⎜⎜⎝
ΨM

(1,−1)(1,−1) · · · 0

⋮ ⋱ ⋮
0 · · · ΨM

(L,L)(L,L)

⎞⎟⎟⎟⎠ (27)

𝚿E =
⎛⎜⎜⎜⎝
ΨE

(1,−1)(1,−1) · · · 0

⋮ ⋱ ⋮
0 · · · ΨE

(L,L)(L,L)

⎞⎟⎟⎟⎠ . (28)

2.3 Contribution of the Curl-Free Current Pattern

to the Ultimate Intrinsic SNR

In the last paragraph it was shown, that there is no correlation between

the electric- and magnetic noise covariance matrix in our spherical

model. Therefore it is possible to rewrite Equation (1):

𝜁 (r0) =
1√[((

SM
)H(𝚿M

)−1
SM +

(
SE
)H(𝚿E

)−1
SE
)−1

]
0,0

. (29)

Now we are able to define the achievable ultimate intrinsic SNR with

having only divergence-free current patterns as

𝜁M(r0) =
1√[((

SM
)H(𝚿M

)−1
SM

)−1
]

0,0

. (30)

Accordingly, we define 𝜁E as the achievable ultimate intrinsic SNR with

having only curl-free current patterns:

𝜁E(r0) =
1√[((

SE
)H(𝚿E

)−1
SE
)−1

]
0,0

. (31)

From Equations (29)–(31) it immediately follows that 𝜁 (r0) ≠ 𝜁M(r0) +
𝜁E(r0) or in words: The ultimate intrinsic SNR obtained from both

divergence-free and curl-free current patterns is not the sum of the

ultimate intrinsic SNR of only divergence-free and curl-free current

patterns. For the ongoing discussion we use two figure of merits: First

we define the contribution of curl-free current patterns to the ultimate

intrinsic SNR as the ratio 𝜁E/𝜁 . Accordingly, we define the contribution

of divergence-free current patterns to the ultimate intrinsic SNR as the

ratio 𝜁M/𝜁 . Second, we quantify the enhancement in SNR obtained by

a combination of curl-free and divergence-free current patterns over

divergence-free current patterns only as the term 𝜁/𝜁M.

Without parallel imaging and with the given diagonal noise covari-

ance matrix of our chosen model, rewriting Equation (29) results in a

more traceable expression:

𝜁 (r0) =
1√√√√(

L∑
l=1

l∑
m=−l

|||SM
l,m

(r0)
|||2

ΨM
l,m

+
|||SE

l,m
(r0)

|||2

ΨE
l,m

)−1

=

√√√√√ L∑
l=1

l∑
m=−l

|||SM
l,m
(r0)

|||2

ΨM
l,m

+
|||SE

l,m
(r0)

|||2

ΨE
l,m

.

(32)

The above equation illustrates the contribution of each basis vector to

the final SNR at voxel position r0. To assess the contribution of a basis

vector to the final SNR, its individual power loss (noise) and receive

sensitivity (signal) must be known.

3 METHODS

3.1 Study Design

If not otherwise stated, we studied the ultimate intrinsic SNR within a

sphere of radius 9.2 cm at a field strength of 9.4 T (400.2 MHz Lamor

frequency for protons) and different acceleration factors. The elec-

tromagnetic properties of the sphere are summarized in Figure 1 and

represent averaged values for gray and white matter.32 We placed a

conducting shield at a distance of 16.2 cm from the center and let a

surface current flow on a spherical surface of radius 12.2 cm. To calcu-

late the ultimate intrinsic SNR within this setup, we applied the dyadic

Green’s function approach,30 the same technique that was already

used by Lattanzi.20 Lattanzi worked with a two-layerd spherical setup
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(sample and coil layer). In this work, we added an additional layer

(sample, coil and shield layer) and investigated the separable con-

tributions of divergence-free and curl-free current patterns to the

ultimate SNR. In the appendix (Equations (A35)–(A42)), we prove

that for a spherical model the ultimate intrinsic SNR is not a function

of the extended boundary coefficients VM and VE. In Equation (1)

the extended boundary coefficients cancel out. By looking at

Equations (16), (17) and Equations (A27)–(A30) it turns out that the

ultimate intrinsic SNR neither depends on the radius of the shield

nor on the radius of the surface current distribution. Therefore, the

shied has no influence on the ultimate intrinsic SNR and our results

are identical with Lattanzi’s two-layered setup. This is confirmed in

Supporting Figure S1 (available online). Wiesinger et al.,18 used a mul-

tipole approach to calculate the ultimate SNR. This methods differs

from the dyadic Green’s function approach that instead of optimizing

current patterns the electromagnetic field is directly optimized.

We first analyzed the quantitative contribution of curl-free and

divergence-free current patterns to the ultimate intrinsic SNR at 9.4 T

field strength and different acceleration factors. Apart from calculat-

ing the spatial distribution of the ratios 𝜁E/𝜁 and 𝜁M/𝜁 , we compared

the results from a central and intermediate voxel position (about half of

the sphere’s radius above the center in the positive z-direction) with the

average ratios over all voxel positions. In a next step, we investigated the

SNR enhancement of a combination of curl-free and divergence-free

current patterns over divergence-free current patterns alone. We pro-

ceeded with investigation of the influence of the divergence-free cur-

rent type at different field strengths of 1.5 T, 3 T, 7 T, 9.4 T and

11.7 T and radii of the sphere ranging from 5 cm to 11 cm for the

aforementioned distinct voxel positions. The frequency dependence of

the conductivity and relative permittivity was adjusted according to

Figure 1. To get a better understanding of why divergence-free and

curl-free current patterns have a different contribution to the ultimate

intrinsic SNR, we analyzed the power losses, as the dissipated RF power

in the conducting sphere of both types individually. As SNR is the ratio

of received signal voltage to noise voltage, we additionally compared

the receive sensitivities (proportional to signal voltage24) obtained

from divergence-free and curl-free current patterns for all modes up to

the fourth degree on its own. We compared our results with previous

work done by Lattanzi et al.20 and plotted ideal current patterns. These

authors showed, that the ideal current patterns are different for each

voxel position but the impact of parallel imaging was not investigated.

Therefore in this work, we visualized ideal current patterns for differ-

ent voxel positions and acceleration factors. Finally, the SNR penalty of

parallel imaging was measured as the ultimate g-factor.

3.2 Algorithmic Implementation

To evaluate the analytic expressions presented in the theory section

we implemented a toolbox in MatLab (MathWorks, Natick, MA) on a

standard PC (six cores @ 2.3 GHz, 16 GB RAM). In the first step, the

receive sensitivity matrix S was evaluated according to Equation (18).

We used a Cartesian grid where the spatial resolution was a multiple of

2 · 𝜌 for the specific undersampling direction. This resulted in at most

𝜌− 1 voxels being aliased. If two-dimensional acceleration in the x- and

y-direction was investigated, there were maximally 𝜌= 𝜌x𝜌y − 1 aliased

voxels. For unaccelerated ultimate intrinsic SNR, we worked with 80

samples in each dimension, resulting in an isotropic resolution of 2.3

mm for a sphere of radius 92 mm. Regarding 2 × 2, 4 × 4, 5 × 5, 8 × 8

and 10 × 10 acceleration the number of samples was also set to 80.

For 3 × 3 fold acceleration, we used 78 samples and for 6 × 6 and

7 × 7, we used 84 samples. In the second step we obtained the noise

covariance matrix 𝚿. The integrals in Equations (25) and (26) were cal-

culated with trapezoidal numerical integration on a uniformly spaced

grid. Now having obtained the receive sensitivity- and noise covari-

ance matrices, implementation of Equation (1) is straight-forward. The

inversion of the matrix product SH𝚿− 1S only works well if the resulting

matrix is well-conditioned. This is the case if the basis functions pro-

vide enough spatial variety to separate the aliased voxels. The more

basis functions are used, the higher the spatial variety. Therefore, the

number of basis functions should be chosen much larger than the accel-

eration factor. On the other hand increasing the number of basis func-

tions increases the matrix size of S and 𝚿 and the computation time

and memory. Therefore, setting the maximum expansion degree L is a

trade-off between computational cost and convergence accuracy. We

truncated the series expansion at L = 60. To check whether this trunca-

tion order was high enough, we investigated the convergence behavior

of the ultimate intrinsic SNR for three exemplary voxel positions and all

relevant field strengths prior to further analysis. For all calculations, we

used floating point arithmetic with double precision.

4 RESULTS

In Supporting Figure S2 (available online) we demonstrate the con-

vergence of the ultimate intrinsic SNR as a function of the expansion

degree l and field strength B0 for three exemplary voxel positions. The

central and intermediate voxels converge very fast, whereas the periph-

eral voxel has much slower convergence. This is in accordance with

previous studies.17,18 Having ensured that our results converged suffi-

ciently, we illustrate the contribution of curl-free and divergence-free

current patterns to the ultimate intrinsic SNR at 9.4 T field strength

in Figure 2. Up to an acceleration of 5 × 5, the curl-free current has

substantial contribution to the ultimate intrinsic SNR in the intermedi-

ate region of the xz/yz- plane of the sphere. The asymmetry between

xy- and xz/yz- plane is due to the alignment of B0 in z-direction. For

the peripheral part of the sphere, only the divergence-free currents

contribute to the ultimate intrinsic SNR regardless of what accelera-

tion is applied. For low acceleration factors (𝜌 ⩽ 3x3), central SNR is

completely dominated by divergence-free current patterns.

The bar chart in Figure 3 shows the (normalized) achievable

ultimate intrinsic SNR obtained by divergence-free only (𝜁M/𝜁 ) or

curl-free only (𝜁E/𝜁 ) current patterns. Averaged over the entire sphere,

divergence-free currents achieve always more than 90% (Figure 3a)

of the ultimate intrinsic SNR. Curl-free current patterns achieve in

average around 30% of the ultimate intrinsic SNR, if the accelera-

tion is in a practically applicable regime. We also calculated the ratios

𝜁M/𝜁 and 𝜁E/𝜁 for two distinct voxel positions (indicated with “+” and

“o” in Figure 2). For the central voxel position, divergence-free cur-

rent patterns alone reach the ultimate value for low acceleration
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FIGURE 2 The contribution of the divergence-free current to the ultimate intrinsic SNR is plotted as the ratio 𝜁M/𝜁 for a range of acceleration
factors (left column). Accordingly, the contribution of the curl-free current to the ultimate intrinsic SNR is shown as the ratio 𝜁E/𝜁 (right column).
By 𝜁M, we mean the ultimate intrinsic SNR obtained when only divergence-free (magnetic-type) current patterns are used as a basis set.
Analogously by 𝜁E, we mean the ultimate intrinsic SNR obtained when only curl-free (electric-type) current patterns are used as a basis set.
The total ultimate intrinsic SNR 𝜁 is obtained from a complete basis set of divergence-free and curl-free current patterns. Phase encoding was
assumed to be in x- and y-direction. The cutting planes are close to the center. Due to the spherical geometry and chosen phase encoding
direction the distribution is rotationally symmetric about the z-axis

factors, whereas curl-free current patterns are hardly able to gain any

SNR (Figure 3b). Regarding the intermediate voxel position, Figure 3c

shows, that curl-free current patterns alone are more efficient than

divergence-free current patterns alone for low acceleration factors.

However, this is a very small region compared to the whole sphere.

In Figure 4 we demonstrate the enhancement in SNR obtained by a

combination of curl-free and divergence-free current patterns over

divergence-free current patterns alone as the term 𝜁/𝜁M. By consider-

ing all the voxels in the sphere, the average SNR gain is slightly more

than 10% for lower acceleration factors. We found that the maximum

achievable SNR gain is about 57% for 𝜌⩽ 4x4. Again, we calculated the

ratio 𝜁/𝜁M for the aforementioned two distinct voxel positions. In the

case of low acceleration (𝜌 ⩽ 2x2), adding curl-free current patterns

does not significantly increase SNR at a central voxel position. On the

other hand, the intermediate voxel position benefits from the additional

curl-free current patterns by an SNR increase of 57%.

In Figure 5, we show the contribution of the divergence-free cur-

rent at an intermediate and central voxel position for a sweep through

the parameter space B0 ∈ {1.5,3,7,9.4,11.7} T, Rh ∈ [5,11] cm

and 𝜌 ∈ {1 x 1,4 x 4,5 x 5,6 x 6,8 x 8}. For low field strengths

(B0 ⩽ 3T), divergence-free current patterns reach more than 90% of

the ultimate intrinsic SNR at both voxel positions and all acceleration

factors. For ultra-high field strength ⩾ 7 T such general statements no

longer hold true: Keeping 𝜌 ⩽ 4x4, the contribution of divergence-free

current patterns to the ultimate intrinsic SNR at the center is higher

than at the intermediate voxel position. As a consequence, adding

curl-free current patterns to the divergence-free current patterns

increases SNR substantially for all intermediate positions of the xz/yz-

plane between the very periphery and the center of the spherical

head model.

Figure 6 displays the power losses originating from divergence-free

and curl-free current patterns as the diagonal entries of the noise



8 of 16 PFROMMER AND HENNING

FIGURE 3 The bar charts show the (normalized) achievable ultimate
intrinsic SNR with having only divergence-free current patterns
(𝜁M/𝜁 ) or only curl-free current patterns (𝜁E/𝜁 ) as a basis set. The total
ultimate intrinsic SNR 𝜁 is obtained from a complete basis set of
divergence-free and curl-free current patterns. Subfigure A, shows
the average value of the ratios over the entire sphere. Moreover, we
investigated the ratios for two distinct voxel positions: B, at a central
voxel (s. “+” in Figure 2) and in C, at an intermediate voxel located
about 4.4 cm in z-direction above the central voxel (s. “o” in Figure 2)

covariance matrix from Equation (24). With the chosen material

and boundary parameters, the losses caused by the divergence-free

FIGURE 4 The bar chart shows the enhancement in SNR obtained by
a combination of curl-free and divergence-free current patterns over
divergence-free current patterns alone as the term 𝜁/𝜁M. By 𝜁M, we
mean the ultimate intrinsic SNR obtained when only divergence-free
(magnetic-type) current patterns are used as a basis set. The total
ultimate intrinsic SNR 𝜁 is obtained from a complete basis set of
divergence-free and curl-free current patterns. The black bars
illustrate the SNR enhancement averaged over all voxels within the
spherical volume (“head” region). The red bars summarize the maximal
SNR gain appearing in the sphere. Moreover, the ratio 𝜁/𝜁M is
investigated for two distinct voxel positions: The white bars
characterize the SNR enhancement at a central voxel (s. “+” in Figure 2)
whereas the yellow bars show the SNR gain at an intermediate voxel
located about 4.4 cm in z-direction above the central voxel
(s. "o” in Figure 2)

current are slightly higher for up to and including the fourth degree

terms but substantially lower for all other higher degree terms.

However, the ratio of the power losses caused by curl-free to

divergence-free current patterns increases more than quadratically

with the expansion order for l ≫ 4. The ultimate intrinsic SNR depends

on the receive sensitivities of the fundamental current modes of

divergence-free (magnetic-type) and curl-free (electric-type) vector

spherical harmonics (s. Equations (19) and (20)). We illustrate the spa-

tial behavior of the magnetic- and electric-receive sensitivities up to

the fourth degree in Figure 7. It is noticeable that the sensitivity with

the highest signal strength originates from a divergence-free current

distribution with l = m = 1. This is the only harmonic that has a nonzero

value at the center. On the z-axis, the only harmonics contributing to

receive sensitivity are the terms of order m = 1.

To validate our results with the literature and to investigate how

ideal current patterns depend on position and acceleration factor, we

plot ideal current patterns for maximal SNR at two exemplary voxel

positions and acceleration factors in Figure 8. All plots show the ideal

current patterns for the time instant zero and are only a snapshot of

the time harmonic current patterns. Animated current patterns, which

illustrate time-harmonic behavior, are available online in Supporting

Videos S1-S4. Comparison of our results for the central voxel with pre-

vious work done by Lattanzi20 shows good agreement. Moreover, for

the first time we provide ideal current patterns when parallel imaging
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FIGURE 5 The contribution of divergence-free current patterns to the ultimate intrinsic SNR is plotted as the ratio 𝜁M/𝜁 for two distinct voxel
positions: The first voxel is located in the center and the second one at an intermediate position (s. Figure 2). We varied the radius of the sphere
modeling the human head between 5 and 11 cm. We show the results for several magnetic field strengths B0 and acceleration factors 𝜌

is present using an acceleration factor of 4 × 4 in x- and y-direction. For

both target voxels, the ideal current patterns are concentrated on four

positions on the spherical surface. Finally, we plot ultimate g-factors for

9.4 T in Figure 9. The transition from acceleration factors between 4×4

and 5×5 marks the upper bound of the regime of practically applicable

parallel imaging.
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FIGURE 6 Power loss spectra originating from divergence-free
(magnetic-type) and curl-free (electric-type) current patterns as the
diagonal entries of the noise covariance matrix of Equation (24). All
values are normalized to the maximum loss Ψmax occurring for the
magnetic-type with l=1, m=0 and plotted in logarithmic scale as
10 log10(Ψl,m∕Ψmax)

5 DISCUSSION

To summarize our results, we found the following ultimate SNR trends:

• A complete basis set of surface current patterns, exciting all possi-

ble electromagnetic modes in a spherical sample, needs to have both,

curl-free and divergence-free patterns.

• At low field (B0⩽ 3 T), divergence-free patterns are the major con-

tributor to the ultimate intrinsic SNR.

• At ultra-high field (B0⩾ 7 T) and reasonable acceleration (𝜌⩽ 4 × 4) a

combination of divergence-free and curl-free patterns is required to

reach the ultimate intrinsic SNR in all regions of a spherical model.

5.1 Practical Guidelines for RF Coil Design

Based on our results, we deduce the following guidelines for RF

coil design regarding head applications. On 1.5T and 3T platforms

the use of traditional loop-only receive arrays, which correspond to

divergence-free current patterns, is sufficient to cover more than 90%

of the ultimate intrinsic SNR in a spherical sample of the size of the

human head. When approaching field strengths of 7 T and above, we

suggest a combination of divergence-free and curl-free current pat-

terns to reach the ultimate intrinsic SNR in all regions of the human

head. To realize a combination of divergence-free and curl-free current

patterns, loops and electric dipoles can be used together in a receive

array. At this point, it needs to be emphasized, that straight, z-directed

dipoles are a mixture of both divergence-free and curl-free current

patterns.33 Thus, for specific voxel positions (such as the central voxels

in a cylinder) electric dipoles might yield higher SNR than curl-free cur-

rent patterns alone,33,34 but in general, electric dipoles do not create a

complete basis set. Therefore a combination of loops and dipoles is nec-

essary to achieve the ultimate intrinsic SNR at any voxel position in the

human head at ultra-high field strength.

Experimental investigations of SNR enhancement by combining

loops and dipoles were done in human body applications. At 7 T,

Wiggins demonstrated a central SNR increase of 22% by a sixteen chan-

nel array as a combination of loops and dipoles compared to an eight

channel loop-only array35 for a cylindrical setup of human torso dimen-

sions. The author drew the conclusion that the SNR increase was not

due to a higher number of receive elements, as simulation results pro-

vided an SNR boost of only 1.2% when going from eight to sixteen loop

elements. Wiggins’ conclusion is supported by several works investigat-

ing the SNR in dependence of the number of loop elements.36–39 Ertürk

et al. showed that at 7 T a combination of loops and dipoles improved

SNR and transmit efficiency in the prostate compared to a microstrip

array and a fractionated dipole array.40 For specific voxel positions,

dipole-only arrays could be a good choice: Chen showed for example,

that an array of dense dipoles approaches the ultimate intrinsic SNR

at 7 T in the center of a cylinder of human head dimensions.34 However,

this does not mean, that dipoles perform generally superior than loop

coils at ultra-high field strength. Figure 2 demonstrates, that within

large areas of the spherical model, only divergence-free current pat-

terns perform much better than only curl-free current patterns. The

main limitation of using dipole elements in head imaging is their rather

impractical length. Various techniques were discussed to shorten the

length of 𝜆/2 dipoles, inter alia using dielectric substrates41,42 or reac-

tive elements.43–45 Besides using dipoles, there are other promising

ideas on how to practically implement structures exciting curl-free cur-

rent patterns, such as vertical coil elements46–48 or loops with nonuni-

form current distribution.49 If ideal current patterns are used as a

design guideline, one needs to be aware of their time-harmonic depen-

dence and it needs to be emphasized that they are only ideal for one

specific position and acceleration factor.

5.2 Influence of Boundary Conditions

The dyadic Green’s function formalism incorporates the boundary con-

ditions imposed by the RF shield and the transition from the dielec-

tric sample to vacuum. Thereby, the question arises, do we constrain

the solution space of the optimization problem by imposing boundary

conditions? Wiesinger has already pointed out that boundary condi-

tions (electromagnetic environment outside the sample) do not con-

strain the solution space inside the sample.18 He used arguments from

inverse source identification.50 In the appendix, we give an alterna-

tive proof based on the diagonal form of the noise covariance matrix

(Equations (A35)–(A42)). As a consequence the ultimate intrinsic SNR

in the herein presented spherical setup does not change in the presence

of any shield (no matter what conductivity it has). Moreover, calcu-

lating the ultimate intrinsic SNR in a spherical geometry by either a

multipole expansion or with the framework of dyadic Green’s functions,

yields (apart from a constant scaling factor) exactly the same results

(s. Equation (A42)). The main advantage of using a basis set of sur-

face current distributions is that we have access to ideal current pat-

terns and are able to separate divergence-free and curl-free current

patterns, which is the major subject of this work.

5.3 Mechanisms Behind the Contribution

of Curl-Free Current Patterns

Based on Equation (32), we can interpret the contribution of curl-free

current patterns to the ultimate intrinsic SNR without acceleration.
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FIGURE 7 Absolute value of the magnetic- and electric-type receive sensitivities associated for a divergence-free and curl-free surface current
distribution according to Equations (19) and (20). We normalized all values to the maximum absolute value occurring for the magnetic-type at l=1
and m=1 and plotted this ratio in logarithmic scale as 20 log10(S(r)∕Smax). The absolute value is rotationally symmetric about the z-axis

For the center, the ultimate intrinsic SNR is mainly dominated by

divergence-free currents, and additional curl-free current patterns

have very little effect on SNR. This is because the magnetic sensitivity

with the index l = m = 1 is the only harmonic that has nonvanish-

ing signal at the center (Figure 7). Regarding the intermediate region,

curl-free harmonics of lower degree have substantial signal strength

and additionally have up to l = 4 lower power losses compared to the

divergence-free harmonics. This results in a high signal-to-noise ratio of

curl-free current patterns at this position. The higher the degree of the

vector harmonics M and N, the more their maxima shift to the periphery
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FIGURE 8 Ideal current patterns yielding maximal SNR for a central and intermediate voxel position (4.4 cm in z-direction above the central voxel).
The position of the voxels is also indicated in Figure 2. The colormap shows the normalized (to maximum) magnitude of the surface current density|J| = (J2

𝜗
+ J2

𝜑)0.5. In the first row no parallel imaging was applied. The second row illustrates ideal current patterns when parallel imaging is present
with an acceleration factor of 4 × 4 in x- and y-direction. Due to very tiny arrows, we present a detail of the accelerated patterns in the third row.
All plots show the ideal current patterns for the time instant zero and are only a snapshot of the time variant current patterns. Animated current
patterns are available online in Supporting Videos S1–S4

of the sphere. Therefore, to calculate 𝜁 of a voxel close to the sphere’s

surface, higher degree spherical harmonics must be considered in the

summation. For higher degree terms, the curl-free currents’ losses are

higher than the divergence-free ones. Due to this and the substantial

receive sensitivity of higher degree curl-free and divergence-free cur-

rents at peripheral voxel positions, peripheral ultimate intrinsic SNR is

mostly dominated by the divergence-free currents.

The contribution of the curl-free current to the ultimate intrinsic

SNR depends on the acceleration factor. By increasing the accelera-

tion factor, the desired nulls of the net sensitivity at the aliased voxel

positions get closer to each other and to the target voxel. As a con-

sequence, the net sensitivity needs to provide high spatial variation.

High spatial variation of a net coil18 can be achieved by higher degree

vector spherical harmonics and, moreover, by complementary receive

sensitivity profiles (such as produced by curl-free and divergence-free

current patterns). The higher the acceleration factor, the more vector

spherical harmonics contribute to the overall power loss. This is a gen-

eral result independent of voxel position. The relative weighting of the

magnetic- and electric-type receive sensitivities required to fulfill the

weak SENSE constraint depends on the power loss associated with this
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FIGURE 9 For the default setup, the g-factor along the x-axis is plotted with different 2D acceleration factors at a field strength of 9.4 T. The right
and left figures have different scaling to depict the large dynamic range of the g-factor

weighting. The relative weighting that generates minimum power loss

will be the optimal solution.

5.4 Realistic Body Models

All our results are derived from a simple spherical model that is analyt-

ically manageable. This allows us to work with a basis set that is known

to be complete. As the human head is not a homogeneous dielectric

sphere our results do not yield the real ultimate intrinsic SNR in a quan-

titative way. Nevertheless, we believe that our model could be helpful

to qualitatively investigate general trends that may hold true in vivo.

In future work, the spherical model needs to be replaced by a realistic

human head model. Recently, we tried to overcome this limitation and

gave preliminary results regarding the contribution of divergence-free

current patterns in a realistic head model at 9.4 T.51 Unfortunately,

in this approach the surface current is running on a closed spherical

surface, which is an unrealistic situation, as in reality at least one open-

ing for the neck is needed. More research needs to be done to take

realistic current distributions under consideration. With the method

applied by Guerin et al,22,52 it is possible to study the impact of elec-

tric and magnetic dipole elements on the ultimate SNR in realistic body

models. Even though such an approach does not allow investigation

of curl-free and divergence-free current contributions to the ultimate

intrinsic SNR, it would still be interesting to study the impact of mag-

netic and electric dipoles on the ultimate SNR.
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APPENDIX

Mathematical Notation

Vectors and matrices are printed in bold and dyads are additionally indi-

cated with a bar. For the Hermitian transpose of a matrix A, we write AH.

Complex conjugation of a variable x is symbolized by x*.
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Vector spherical harmonics

The vector spherical harmonic Xl,m(𝜗,𝜑) of degree l and order m is

defined according to Equation (9.119) in Jackson29:

Xl,m(𝜗, 𝜑) =
−i√

l(l + 1)
r × ∇Yl,m(𝜗, 𝜑) (A1)

Yl,m(𝜗, 𝜑) =

√
(2l + 1)

4𝜋
(l − m)!
(l + m)!

Pm
l (cos 𝜗)eim𝜑 (A2)

Pm
l (x) =

(−1)m

2l l!
(

1 − x2
)m∕2 dl+m

dxl+m

(
x2 − 1

)l
x ∈ R; |x| ⩽ 1 (A3)

Dyadic Green’s functions

The electric-type dyadic Green’s functions Ḡ22
e (field in layer 2, source

in layer 2) and Ḡ32
e (field in layer 3, source in layer 2) for a three-layered

setup at field point r and with the source located at r
′

is given in

Li et al.31 To account for boundary conditions when the propagation

constant changes between layer three and two, the boundary coeffi-

cients C32
M,N

, D32
M,N

, A22
M,N

, B22
M,N

, C22
M,N

and D22
M,N

were added:

Ḡ32
e (r, r′) = ik0

∞∑
l=1

l∑
m=−l

Ml,m(k, r)
[

C32
M M′

l,m(k0, r′) + D32
M M′(1)

l,m
(k0, r′)

]
+ Nl,m(k, r)

[
C32

N N′
l,m(k0, r′) + D32

N N′(1)
l,m

(k0, r′)
]

(A4)

Ḡ22
e (r, r′) = Ḡe0(r, r′)

+ ik0

∞∑
l=1

l∑
m=−l

M(1)
l,m
(k0, r)

[
A22

M M′
l,m(k0, r′) + B22

M M′(1)
l,m

(k0, r′)
]

+ N(1)
l,m
(k0, r)

[
A22

N N′
l,m(k0, r′) + B22

N N′(1)
l,m

(k0, r′)
]

+ Ml,m(k0, r)
[

C22
M M′

l,m(k0, r′) + D22
M M′(1)

l,m
(k0, r′)

]
+ Nl,m(k0, r)

[
C22

N N′
l,m(k0, r′) + D22

N N′(1)
l,m

(k0, r′)
]

(A5)

Ḡe0(r, r′) = ik0

∞∑
l=1

l∑
m=−l

Ml,m(k0, r)M′(1)
l,m

(k0, r′)

+ Nl,m(k0, r)N′(1)
l,m

(k0, r′) r < r′

(A6)

The term Ḡe0 is the free-space Green’s function (without the singular

term) and for the primed vector wave functions the following definition

holds:

M′
l,m = jl(kr)X∗

l,m (A7)

N′
l,m = 1

k
∇ × M′

l,m (A8)

If the vector wave functions M(1)
l,m

or N(1)
l,m

are used, the function jl(kr) has

to be replaced by h(1)
l
(kr).

Orthogonality relations

∫
Rc

r=0 ∫∫Ω
M′

l,m · Xl′ ,m′𝛿(r − Rc)r2 dΩdr = R2
c jl(kRc)𝛿ll′𝛿mm′ (A9)

∫
Rc

r=0 ∫∫Ω
N′

l,m·r̂×Xl′ ,m′𝛿(r−Rc)r2 dΩdr =
Rc

k
𝜕

𝜕r
(rjl(kr))

||||r=Rc

𝛿ll′𝛿mm′ (A10)

∫
Rc

r=0 ∫∫Ω
M′

l,m · r̂ × Xl′ ,m′𝛿(r − Rc)r2 dΩdr = 0 (A11)

∫
Rc

r=0 ∫∫Ω
N′

l,m · Xl′ ,m′𝛿(r − Rc)r2 dΩdr = 0 (A12)

∫
Rh

r=0 ∫∫Ω
Ml,m · N∗

l′ ,m′ r2 dΩdr = 0 (A13)

∫
Rh

r=0 ∫∫Ω
Ml,m · M∗

l′ ,m′ r2 dΩdr = ∫
Rh

r=0
|jl(kr)|2r2 dr 𝛿ll′𝛿mm′ (A14)

∫
Rh

r=0 ∫∫Ω
Nl,m · N∗

l′ ,m′ r2 dΩdr = 1||k2|| ∫
Rh

r=0
l(l + 1)|jl(kr)|2

+
|||| 𝜕𝜕r

(rjl(kr))
||||2

dr 𝛿ll′𝛿mm′

(A15)

Boundary Coefficients

For the electric-type of dyadic Green’s function, the following boundary

conditions at the spherical interfaces hold:

r̂ × Ḡ(22)
e

|||r=R1

= 0̄ (A16)

r̂ × Ḡ(22)
e

|||r=R2

= r̂ × Ḡ(32)
e

|||r=R2

(A17)

r̂ × ∇ × Ḡ(22)
e

|||r=R2

= r̂ × ∇ × Ḡ(32)
e

|||r=R2

(A18)

This system can be solved and we get the following results:

A22
M =

ℏ21 (𝜕j22j32 − 𝜕j32j22)
𝜕j32 (ℏ21j22 − ℏ22j21) + j32 (𝜕ℏ22j21 − 𝜕j22ℏ21)

(A19)

B22
M =

j21 (𝜕j32j22 − 𝜕j22j32)
𝜕j32 (ℏ21j22 − ℏ22j21) + j32 (𝜕ℏ22j21 − 𝜕j22ℏ21)

(A20)

A22
N =

𝜕ℏ21

(
𝜕j32j22k2

2
− 𝜕j22j32k2

3

)
𝜕j32k2

2
(𝜕j21ℏ22 − 𝜕ℏ21j22) + j32k2

3
(𝜕ℏ21𝜕j22 − 𝜕ℏ22𝜕j21)

(A21)

B22
N =

𝜕j21

(
𝜕j22j32k2

3
− 𝜕j32j22k2

2

)
𝜕j32k2

2
(𝜕j21ℏ22 − 𝜕ℏ21j22) + j32k2

3
(𝜕ℏ21𝜕j22 − 𝜕ℏ22𝜕j21)

(A22)

C22
M =

ℏ21 (𝜕j32ℏ22 − 𝜕ℏ22j32)
𝜕j32 (ℏ21j22 − ℏ22j21) + j32 (𝜕ℏ22j21 − 𝜕j22ℏ21)

(A23)

D22
M =

ℏ21 (𝜕j22j32 − 𝜕j32j22)
𝜕j32 (ℏ21j22 − ℏ22j21) + j32 (𝜕ℏ22j21 − 𝜕j22ℏ21)

(A24)

C22
N =

𝜕ℏ21

(
𝜕ℏ22j32k2

3
− 𝜕j32ℏ22k2

2

)
𝜕j32k2

2
(𝜕j21ℏ22 − 𝜕ℏ21j22) + j32k2

3
(𝜕ℏ21𝜕j22 − 𝜕ℏ22𝜕j21)

(A25)

D22
N =

𝜕ℏ21

(
𝜕j32j22k2

2
− 𝜕j22j32k2

3

)
𝜕j32k2

2
(𝜕j21ℏ22 − 𝜕ℏ21j22) + j32k2

3
(𝜕ℏ21𝜕j22 − 𝜕ℏ22𝜕j21)

(A26)

C32
M = ℏ21 (𝜕j22ℏ22 − 𝜕ℏ22j22)

𝜕j32 (ℏ21j22 − ℏ22j21) + j32 (𝜕ℏ22j21 − 𝜕j22ℏ21)
(A27)

D32
M = j21 (𝜕ℏ22j22 − 𝜕j22ℏ22)

𝜕j32 (ℏ21j22 − ℏ22j21) + j32 (𝜕ℏ22j21 − 𝜕j22ℏ21)
(A28)

C32
N = 𝜕ℏ21k2k3 (𝜕ℏ22j22 − 𝜕j22ℏ22)

𝜕j32k2
2
(𝜕j21ℏ22 − 𝜕ℏ21j22) + j32k2

3
(𝜕ℏ21𝜕j22 − 𝜕ℏ22𝜕j21)

(A29)

D32
N =

𝜕j21k2k3 (𝜕j22ℏ22 − 𝜕ℏ22j22)
𝜕j32k2

2
(𝜕j21ℏ22 − 𝜕ℏ21j22) + j32k2

3
(𝜕ℏ21𝜕j22 − 𝜕ℏ22𝜕j21)

(A30)

In the above equations, we used the following abbreviations (where

the first index refers to the propagation constant in layer u and the

second to the radius at boundary number v):

ℏuv = h(1)
l (kuRv) (A31)

juv = jl (kuRv) (A32)

𝜕juv = 𝜕(xjl(x))
𝜕x

||||x=ku Rv

(A33)

𝜕ℏuv =
𝜕(xh(1)

l
(x))

𝜕x

||||||x=ku Rv

(A34)
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Influence of boundary conditions on the ultimate intrinsic
SNR

First, we define the receive sensitivity and the noise covariance for

an electromagnetic field obtained with a multipole expansion as in

Equations (10), (11):

S̃M
l,m(r) ∝

(
Nl,m(r)||x − i Nl,m(r)||y

)
(A35)

S̃E
l,m(r) ∝

(
Ml,m(r)||x − i Ml,m(r)||y

)
(A36)

Ψ̃M
(l,m),(l′ ,m′ ) ∝ 𝜎 ∫

Rh

r=0
|jl(kr)|2r2 dr 𝛿ll′𝛿mm′ (A37)

Ψ̃E
(l,m),(l′ ,m′ ) ∝

𝜎|k|2 ∫
Rh

r=0

(
l(l + 1)|jl(kr)|2 +

|||| 𝜕𝜕r
rjl(kr)

||||2)
dr 𝛿ll′𝛿mm′

(A38)

In a next step, we introduce a diagonal boundary coefficient matrix V:

V =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

VM
1,−1

· · · 0 0 · · · 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 · · · VM

L,L
0 · · · 0

0 · · · 0 VE
1,−1

· · · 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 · · · 0 0 · · · VE

L,L

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(A39)

Now the receive sensitivity matrix and the noise covariance matrix,

which are obtained from the dyadic Green’s function approach of

Equations (18), (24), can be rewritten as:

S ∝ VS̃ (A40)

𝚿 ∝ VH𝚿̃V (A41)

To calculate the ultimate intrinsic SNR, we have to evaluate SH𝚿− 1S.

Using Equations (A40), (A41), we can write:

SH𝚿−1S ∝ (VS̃)H(VH𝚿̃V)−1(VS̃)

= S̃HVH(VH)−1𝚿̃−1V−1VS̃

= S̃H𝚿̃−1S̃

(A42)

Because of the diagonal form of the noise covariance matrix Ψ̃, we

could invert each matrix in the expression (VH𝚿̃V)−1 separately.
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Purpose: The ultimate intrinsic signal-to-noise ratio (UISNR) represents an upper
bound for the achievable SNR of any receive coil. To reach this threshold a complete
basis set of equivalent surface currents is required. This study systematically investi-
gated to what extent either loop- or dipole-like current patterns are able to reach the
UISNR threshold in a realistic human head model between 1.5 T and 11.7 T. Based
on this analysis, we derived guidelines for coil designers to choose the best array ele-
ment at a given field strength. Moreover, we present ideal current patterns yielding
the UISNR in a realistic body model.

Methods: We distributed generic current patterns on a cylindrical and helmet-shaped
surface around a realistic human head model. We excited electromagnetic fields in
the human head by using eigenfunctions of the spherical and cylindrical Helmholtz
operator. The electromagnetic field problem was solved by a fast volume integral
equation solver.

Results: At 7 T and above, adding curl-free current patterns to divergence-free cur-
rent patterns substantially increased the SNR in the human head (locally >20%). This
was true for the helmet-shaped and the cylindrical surface. On the cylindrical surface,
dipole-like current patterns had high SNR performance in central regions at ultra-high
field strength. The UISNR increased superlinearly with B0 in most parts of the cere-
brum but only sublinearly in the periphery of the human head.

Conclusion: The combination of loop and dipole elements could enhance the SNR
performance in the human head at ultra-high field strength.

KEYWORD S

dipole antenna, dyadic Green’s functions, electromagnetic simulation, realistic body model, RF coils, ulti-

mate intrinsic SNR

1 | INTRODUCTION

To maximize the signal-to-noise ratio (SNR) for human head
applications at 7 T and above, new receive array designs
were suggested. Recently, the electric dipole became the cen-
ter of interest to boost the SNR of traditional loop-only
arrays in certain applications at ultra-high fields. There were
first trials with dipole-only1–6 or combined loop-dipole7–10

arrays. Moreover, a combination of surface loops and vertical
loops was tested.11 From a theoretical viewpoint, the SNR of
any receive array is bounded by the ultimate intrinsic SNR
(UISNR).12–14 This value describes the fundamental electro-
dynamic limits of MR signal reception and can be used as an
absolute performance metric to select the best array configu-
ration. In electromagnetic theory, loop-only arrays can be
modeled by a divergence-free surface current distribution.
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Divergence-free current patterns must be complemented by
curl-free current patterns to form a complete electromagnetic
basis yielding the UISNR.15 Straight, Z-directed dipoles
positioned on a cylindrical former are characterized by a Z-
directed current distribution (Figure 1C). These Z-directed
current patterns need to be replenished with U-directed pat-
terns to complete the basis set. Knowing the maximum
achievable, theoretical SNR limit of divergence-free (loop-
like) or Z-directed (dipole-like) current patterns relative to
the UISNR is a direct performance measure, to what extent
general loop-only or dipole-only receive arrays are able to
reach the UISNR threshold.

Prior to UISNR calculation, a complete electromagnetic
basis set needs to be created. Several methods have been pro-
posed to calculate the UISNR:

1. Use a linear combination of plane waves impinging on
the sample and solve the scattering problem.14,16,17

2. Randomly excite a large number of elementary electric
and magnetic dipoles lying on a Huygen’s surface and
solve the Helmholtz equation.18–20

3. Use the analytically known eigenfunctions of the Helm-
holtz operator in spherical15,21,22 or cylindrical22,23 coor-
dinate systems. Equivalent surface current patterns,
which surround the sample, can be used to excite these
eigenfunctions.

The first method was initially used in Ref. 14 and so far is
implemented for UISNR calculations in (elliptical) cylin-
ders14,16 and realistic human body models.17 The algorithm
is relatively simple to program, but for typical spatial resolu-
tions and field strengths the basis set becomes impractically
large.21 A decomposition into curl- and divergence-free cur-
rent patterns is not possible as no equivalent surface current
patterns are used. The second approach is motivated by find-
ing a low-rank approximation of the basis set in body

models.19,24–26 The strength of the method is that the Huy-
gens’ surface can be arbitrarily shaped. The best possible
SNR of electric and magnetic dipoles relative to the UISNR
can be evaluated. However, the practically more relevant
SNR performance of curl- and divergence-free current pat-
terns cannot be directly accessed. The third method is
numerically very efficient and results in fast convergence,
because the eigenfunctions are orthogonal (for spherical and
cylindrical samples). Moreover, it is mathematically proven
that the basis set is complete.27 When combining the dyadic
Green’s function approach (DGF)28 with this method, it is
straightforward to separate the generic current patterns into
curl- and divergence-free modes. The best possible SNR of
curl- and divergence-free current patterns relative to the
UISNR was briefly studied for cylinders22,23 and spheres.22

A rigorous analysis for a spherical head model was done in
Ref. 15. The major drawback of the third method is that it
cannot be applied to arbitrary coordinate systems, that is, the
Huygens’ surface of the current patterns cannot be arbitrarily
shaped. Only coordinate systems which allow the separation
of the vector Helmholtz equation are supported.29

This work is the first study that systematically investi-
gates to what extent either loop- or dipole-like current pat-
terns are able to reach the UISNR threshold in a realistic
human head model. To evaluate the UISNR in a realistic
head model, we use a new approach: We distribute generic
surface current patterns on a cylindrical or helmet-shaped
surface around the head model. These currents excite eigen-
functions of the spherical or cylindrical Helmholtz operator
and a fast volume integral equation solver is used to solve
the electromagnetic scattering problem. Based on our analy-
sis we derive guidelines for coil designers to choose the best
array elements at a given field strength. For the first time, we
present ideal current patterns yielding the UISNR in realistic
body models. Additionally, we examine the increase of the
UISNR with regard to field strength B0.

FIGURE 1 Three different setups used to investigate the best possible SNR of loop- and dipole-like surface currents relative to the UISNR: (A) A
VSCH basis set is used, where curl- and divergence-free surface current patterns are running on a spherical cap with cap angle #0 and radiusRc. The
UISNR is evaluated in a spherical phantom of human head-size (radius Rs). (B) AVSCH basis set is used and the UISNR is evaluated in a realistic human
bodymodel. (C) A VCH basis set is used and the UISNR is evaluated in a realistic human bodymodel
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2 | THEORY

The following section describes the mathematical back-
ground for the newly developed approach to calculate the
UISNR in realistic body models. Special functions and math-
ematical expressions can be found in the supporting informa-
tion, as well as a list of abbreviations and symbols.

2.1 | The ultimate intrinsic SNR

In this manuscript, we follow eq. 6 in Ref. 30 to calculate the
UISNR:

fðr0Þ5 xM0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kBT SHW21S

� �21
h i

0;0

r : (1)

Here, M0 is the equilibrium magnetization and x the
angular Lamor frequency. During the whole study, we use
the gyromagnetic ratio of protons. Furthermore, kB is the
Boltzmann constant, T the absolute temperature of the sam-
ple, S the receive sensitivity matrix and W the noise covari-
ance matrix. According to the principle of reciprocity,31 the
receive sensitivity of basis vector l at position r0 can be cal-
culated by the complex left-handed component of the circu-
larly polarized RF magnetic field22:

Slðr0Þ5
Blðr0Þjx2iBlðr0Þjy

2
: (2)

The noise covariance matrix of the basis set describes the
noise power received by each basis vector and the correlated
noise between different basis vectors.30 The element Wk;l refers
to the noise covariance between basis vector number k and l
and is given by the following integral over the electric field32,33:

Wk;l5

ð
sample

rðrÞEk � E�
l dV : (3)

2.2 | Theoretical SNR limits of curl- or
divergence-free current patterns

A complete basis set of equivalent surface current patterns con-
sists of both curl-free (superscript E) and divergence-free (super-
script M) modes. We structure the S- andW-matrices as follows:

S5
SM

SE

 !
(4)

W5
WM WME

WME� �H
WE

 !
(5)

The submatrices SM and SE have size K3q, where K is
the number of vectors in the divergence-free or curl-free
basis set and q is the acceleration factor in parallel

imaging.34 In this study, we are only considering the unac-
celerated UISNR, i.e. q5 1. All submatrices of W are of size
K 3 K. The matrices WM and WE are the noise covariance
matrices of each divergence- and curl-free modes. In general,
these modes could be coupled, which is described by the off-
diagonal submatrix WME.

According to Equation 1, the UISNR f is obtained by
using the entire S and W matrix. Now, we define fE as the
best possible SNR achievable with curl-free current patterns.
Therefore, only the submatrices SE and WE are used when
evaluating Equation 1, that is,

fEðr0Þ5 xM0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kBT ðSEÞHðWEÞ21SE

� �21
� �

0;0

s : (6)

Analogously, we define the best possible SNR of
divergence-free current patterns by:

fMðr0Þ5 xM0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kBT ðSMÞHðWMÞ21SM

� �21
� �

0;0

s : (7)

The ratios fM=f and fE=f yield a direct performance
measure to what extent divergence-free or curl-free current
patterns are able to reach the UISNR threshold. It needs to
be emphasized that due to the nonlinear SNR formation
fM=f1fE=f 6¼ 1. In the special case of a diagonal noise
matrix W, the relation ðfM=fÞ21ðfE=fÞ251 holds true (c.f.
eq. 32 in Ref. 15).

2.3 | Theoretical SNR limits of U- or
Z-directed current patterns

For a surface current distribution defined on a cylinder,
instead of curl- and divergence-free current patterns, U- and
Z-directed current patterns can be used as a basis.35 Then,
the receive sensitivity and noise covariance matrices have the
following structure:

S5
SZ

SU

 !
(8)

W5
WZ WZU

WZU� �H
WU

 !
(9)

We define fU as the best possible SNR achievable with
U-directed current patterns, that is,

fUðr0Þ5 xM0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kBT ðSUÞHðWUÞ21SU

� �21
� �

0;0

s : (10)

Similarly, we define the best possible SNR of Z-directed
current patterns by:
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fZðr0Þ5 xM0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kBT ðSZÞHðWZÞ21SZ

� �21
� �

0;0

s : (11)

The ratios fU=f and fZ=f yield a direct performance mea-
sure to what extent U- or Z-directed current patterns are able
to reach the UISNR threshold. Again, due to the nonlinear
SNR formation fU=f1fZ=f 6¼ 1.

2.4 | The basis set

2.4.1 | Free-space fields of surface currents
on a spherical cap

In eq. 4 of Ref. 22, Lattanzi and Sodickson used a surface
current distribution of vector spherical harmonics (VSH) to
excite eigenfunctions of the spherical Helmholtz operator.
This surface current is running on a closed sphere around the
sample. However, RF coils for human head imaging need to
provide access for the human neck and cannot be entirely
closed. For this reason, we use a basis set of surface current
modes running on a spherical cap (i.e., a helmet-shaped coil
holder) at a distance of Rc from the center of the coordinate
system (Figure 1A,B). The current is constrained to run only
within the range of 0 � # � #0. Since only a portion of the
sphere is considered, ordinary VSH cannot be applied
directly. Instead, for the first time we use vector spherical
cap harmonics (definition see supporting information). Scalar
spherical cap harmonics have been introduced by Haines to
model the magnetic potential in geomagnetism.36

At the boundary (#5#0), we enforce the #-component of
the current to be zero and for #>#0 all current components
are zero. For the divergence-free current patterns of ampli-
tude I, we define vector spherical cap harmonics (VSCH)
Xlk ;m of non-integer degree lk and integer order m
(m 2 Z; jmj<lk; k 2 N1):

JMlk ;m5
I
Rc

dðr2RcÞXlk ;m: (12)

For the curl-free current patterns we use VSCH r̂3Xkk ;m

of non-integer degree kk and integer order m
(m 2 Z; jmj<kk; k 2 N1):

JEkk ;m5
I
Rc

dðr2RcÞr̂3Xkk ;m: (13)

A detailed definition of the fractional degree VSCH can
be found in the supporting information (Equations S1-S4). In
the special case of #0590� and #05180� the fractional num-
bers lk and kk become integers and standard spherical har-
monics are used. At this point, it is important to understand
that the basis set is spanned by curl- and divergence-free cur-
rent modes and that a particular mode is characterized by the
integers k and m. To calculate the radiated fields from a

spherical cap surface current distribution, it is useful to
express the VSCH as a series over VSH:

JMlk ;m5
I
Rc

dðr2RcÞ
X1
l5jmj

aM
l;mðlkÞXl;m1aE

l;mðlkÞr̂3Xl;m (14)

JEkk ;m5
I
Rc

dðr2RcÞ
X1
l5jmj

bM
l;mðkkÞXl;m1bE

l;mðkkÞr̂3Xl;m (15)

The expansion coefficients aM
l;m; a

E
l;m; b

M
l;m, and bE

l;m are
given in Equations S9-S12 in the supporting information.
Calculating the VSH transform, it turns out that the term
aE
l;mðlkÞ is always zero. The free-space fields of the above basis

set can be calculated with dyadic Green’s functions (DGF)28:

EM
lk ;m

ðrÞ52xl0IRck0
X1
l5jmj

aM
l;m

VM
l Mð1Þ

l;mðrÞ r>Rc

WM
l Ml;mðrÞ r<Rc

8<
: (16)

EE
kk ;mðrÞ52xl0IRck0

X1
l5jmj

bM
l;m

(
VM
l Mð1Þ

l;mðrÞ

WM
l Ml;mðrÞ

1bE
l;m

VE
l N

ð1Þ
l;mðrÞ r>Rc

WE
l Nl;mðrÞ r<Rc

8<
:

(17)

HM
lk ;m

ðrÞ5iIRck20
X1
l5jmj

aM
l;m

VM
l Nð1Þ

l;mðrÞ r>Rc

WM
l Nl;mðrÞ r<Rc

8<
: (18)

HE
kk ;mðrÞ5iIRck20

X1
l5jmj

bM
l;m

(
VM
l Nð1Þ

l;mðrÞ

WM
l Nl;mðrÞ

1bE
l;m

VE
l M

ð1Þ
l;mðrÞ r>Rc

WE
l Ml;mðrÞ r<Rc

8<
:

(19)

The vector functions Ml;m; M
ð1Þ
l;m; Nl;m, and Nð1Þ

l;m are fun-
damental solutions to the Helmholtz equation in spherical
coordinates and were already defined and discussed in eqs. 8
and 9 in Ref. 15. The boundary coefficients VM

l ; VE
l ; W

M
l ,

and WE
l are specified in the supporting information in Equa-

tions S17-S20.

2.4.2 | Free-space fields of a cylindrical
surface current distribution

Another possibility to provide space for the human neck is to
constrain the current to run on a cylindrical surface of radius
Rc. In Ref. 23, Schnell defined the following basis set of vec-
tor cylindrical harmonics (VCH):

JMn;h5Idðr2RcÞr3 einUeihzer
� �

(20)

JEn;h5Idðr2RcÞr einUeihz
� �

: (21)

Again, the basis set is spanned by curl- and divergence-
free modes and a particular mode is characterized by the
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eigenvalues n 2 Z and h 2 R. Applying the DGF formalism
to the basis set, this yields the free-space fields28:

EM
n;h5i

Ixl0p
2h2

0
VMM
n;h Mn;hðh0Þ1VMN

n;h Nn;hðh0Þ
� �

r<Rc

(22)

EE
n;h5i

Ixl0p
2h2

0
VEM
n;h Mn;hðh0Þ1VEN

n;hNn;hðh0Þ
� �

r<Rc (23)

HM
n;h5

Ik0p
2h2

0
VMM
n;h Nn;hðh0Þ1VMN

n;h Mn;hðh0Þ
� �

r<Rc (24)

HE
n;h5

Ik0p
2h2

0
VEM
n;h Nn;hðh0Þ1VEN

n;hMn;hðh0Þ
� �

r<Rc (25)

The vector functions Mn;h and Nn;h are fundamental solu-
tions to the Helmholtz equation in cylindrical coordinates
and were already defined and discussed in Ref. 37. The
boundary coefficients VMM

n;h ; VMN
n;h ; VEM

n;h , and VEN
n;h are speci-

fied in the supporting information in Equations S27-S30.
The term h2

05k202h2 is the propagation constant in radial
direction.

There is a linear transform from the curl- and divergence-
free basis to the U- and Z-directed basis,35 which can be
directly derived from Equations 20 and 21:

JZn;h

JUn;h

 !
5

2
in
Rc

ih

ih
in
Rc

0
BB@

1
CCA

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Tn;h

JMn;h

JEn;h

 !
(26)

With the transformation matrix Tn;h the receive sensitiv-
ity and noise covariance matrices can be transformed into:

SZn;hðr0Þ
SUn;hðr0Þ

 !
5Tn;h

SMn;hðr0Þ
SEn;hðr0Þ

 !
(27)

WZ
ðn;hÞ;ðn0;h0Þ WZU

ðn;hÞ;ðn0;h0Þ

WZU
ðn0;h0Þ;ðn;hÞ

� ��
WU

ðn;hÞ;ðn0;h0Þ

0
B@

1
CA

5Tn;h

WM
ðn;hÞ;ðn0;h0Þ WME

ðn;hÞ;ðn0;h0Þ

WME
ðn0;h0Þ;ðn;hÞ

� ��
WE

ðn;hÞ;ðn0;h0Þ

0
B@

1
CATH

n0;h0

(28)

2.5 | Analytical field calculation in a
dielectric sphere

For a closed surface current distribution, a comprehensive
study of the UISNR in a dielectric sphere was done in Ref.
15. This paragraph summarizes the theory to calculate the
UISNR of a surface current distribution defined on a spheri-
cal cap.

A dielectric sphere with radius Rs, electric conductivity r
and relative permittivity er is surrounded by a spherical cap
surface current distribution of radius Rc and cap angle #0 (s.
Figure 1A). Assuming e2ixt time dependence throughout the
whole article, the complex propagation constant inside the
sphere becomes kin5x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0e0erð11ir=ðxe0erÞÞ

p
. For com-

pleteness, we also define the vacuum propagation constant
k05x

ffiffiffiffiffiffiffiffiffi
l0e0

p
. With the help of the DGF technique, the elec-

tromagnetic fields inside the sphere and excited by the basis set
of Equations 14 and 15 can be calculated. For brevity, we do not
give expressions for the electric and magnetic fields, but directly
present the relevant quantities for the UISNR calculations. The
noise covariance elements WM

ðlk ;mÞ;ðlk0 ;m0Þ; W
ME
ðlk ;mÞ;ðkk0 ;m0Þ, and

WE
ðkk ;mÞ;ðkk0 ;m0Þ are given by:

WM
ðlk ;mÞ;ðlk0 ;m0Þ5dmm0

X1
l5jmj

aM
l;mðlkÞ ~W

M
l aM

l;m0 ðlk0 Þ
� ��

(29)

WME
ðlk ;mÞ;ðkk0 ;m0Þ5dmm0

X1
l5jmj

aM
l;mðlkÞ ~W

M
l bM

l;m0 ðkk0 Þ
� ��

(30)

WE
ðkk ;mÞ;ðkk0 ;m0Þ5dmm0

X1
l5jmj

bM
l;mðkkÞ ~W

M
l bM

l;m0 ðkk0 Þ
� ��

1bE
l;mðkkÞ ~W

E
l bE

l;m0 ðkk0 Þ
� �� (31)

Here, ~W
M
l and ~W

E
l are the loss terms associated with the

fundamental surface current distributions Idðr2RcÞXl;m and
Idðr2RcÞr̂3Xl;m. Mathematical expressions can be found in
the supporting information in Equations S31 and S32. The
receive sensitivities SMlk ;mðr0Þ and SEkk ;mðr0Þ are given by:

SMlk ;mðr0Þ5
1
2
iIRck0kinl0

X1
l5jmj

aM
l;mðlkÞClWM

l Nl;mðr0Þjx2iNl;mðr0Þjy
� �

(32)

SEkk ;mðr0Þ5
1
2
iIRck0kinl0

X1
l5jmj

bM
l;mðkkÞ

ClWM
l Nl;mðr0Þjx2iNl;mðr0Þjy
� �

1 . . .

bE
l;mðkkÞDlWE

l Ml;mðr0Þjx2iMl;mðr0Þjy
� �

(33)

The boundary coefficients Cl and Dl are specified in the
supporting information in Equations S21 and S22.

2.6 | Numerical field computation in a
heterogeneous head model

A basis set of equivalent surface current patterns is exciting
electromagnetic fields in a heterogeneous head model. Due
to the linearity of the head model, the resulting field can be
decomposed into an incident and scattered field38:

E5Einc1Escat (34)
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H5Hinc1Hscat: (35)

The incident field is defined as the field excited by the
sources in free-space, that is, in absence of the head model.
The incident field excites polarization currents in the dielec-
tric head, that re-radiate and create the so called scattered
fields.38 With the help of polarization currents (J), Equation
34 can be reformulated as a volume integral equation (VIE),
abbreviated with JVIE. Recently, a fast FFT-based volume
integral equation method was published to efficiently solve
the JVIE-problem.39–41 The authors distribute their code
named “MARIE” under https://github.com/thanospol/
MARIE.

Now, evaluating the UISNR in a voxel model is straight-
forward: First, one of the before mentioned basis sets (either
VSCH or VCH) is chosen and the free-space field of each
mode is calculated. Afterwards, these incident fields are fed
into the JVIE solver “MARIE” to numerically solve the scat-
tering problem. With the resulting electric fields in the scat-
terer, the modes’ noise covariance matrix can be computed
(Equation 3) and with the resulting magnetic fields the
receive sensitivity matrix (Equation 2).

3 | METHODS

3.1 | Study design

The UISNR was evaluated in three different setups, which
are shown in Figure 1. For all three setups, we covered all
practically relevant field strengths for human application: 1.5
T (64 MHz), 3 T (128 MHz), 7 T (298 MHz), 9.4 T (400
MHz), 10.5 T (447 MHz), 11.7 T (498 MHz). First, we cal-
culated the UISNR f and the best possible SNR of curl- (fE)
and divergence-free (fM) modes in a dielectric spherical sam-
ple of human head size (Figure 1A). We used the analytic
VSCH-DGF framework outlined in the previous section. The
radius Rs was 9.2 cm and the electromagnetic properties of
the sphere were adjusted to average properties of gray and
white matter according to the Gabriel database.42 We used
the same values as listed in fig. 1 in Ref. 15. The radius of
the spherical cap was set to Rc 5 12.2 cm, which is the same
radius as in our previous work.15 To study the effect of the
cap angle #0 on the UISNR, we monotonously increased #0

in discrete steps from 91
�
; 120�; 160

�
to 180�. A spatial grid

with isotropic resolution of about 1.9 mm was used. For
cross-validation purposes, we ran an additional UISNR simu-
lation at 9.4 T and #0 5 120� with the numeric VSCH-JVIE
method using the same spherical model. The JVIE simula-
tions were done with varying spatial resolutions of 2.9 mm,
2.3 mm, and 1.9 mm isotropically to study the impact of
meshgrid resolution. Moreover, convergence of the VSCH-
DGF method was investigated at six different voxel
positions.

Next, we replaced the spherical sample by a realistic
human head model and evaluated fE and fM of a spherical
cap surface current distribution (Figure 1B). We chose voxel
model “Duke” from the virtual family43 having an isotropic
resolution of 2 mm. To save computational resources and
simulation time, we truncated the voxel model beyond the
neck. We applied a radius of the surface current distribution
of Rc 5 13 cm and a cap angle of #0 5 120�. The coordinate
center of the spherical cap was placed in the third ventricle.
This resulted in an average distance between the spherical
cap and the voxel model of about 3.1 cm. The UISNR was
numerically calculated by the VSCH-JVIE framework pre-
sented in the past section. For validation, we compared our
results with the UISNR from a randomized dipole excita-
tion.19 The random dipole excitation was done in the same
body model but with a mesh resolution of 3 mm isotropi-
cally. We did not run the dipole simulations but downloaded
the results from http://ptx.martinos.org/index.php/Main_
Page. As an additional validation step, we checked the con-
vergence of the UISNR at six different voxel positions. We
calculated ideal current patterns and their separation into
curl- and divergence-free modes for three exemplary voxel
positions at 1.5 T and 9.4 T field strength. Besides calculat-
ing fE and fM, we also used setup 1b to study the increase of
the UISNR f with regard to field strength B0. For every
voxel position, we fitted a power series model of the form
cBn

0 to the simulated UISNR data points. This was accom-
plished by MATLAB’s (MathWorks, Natick, MA) fit func-
tion routine with the model type “power1”. As a result, we
got a spatial distribution of the exponent n, visualizing sub-
and superlinear growth of the UISNR f. We repeated this
fitting for fE and fM.

Regarding the last setup (Figure 1C), we exchanged the
spherical by a cylindrical surface current distribution. Again,
the radius Rc was 13 cm. This time, the coordinate center
was shifted by 2.3 cm in caudal direction and was located
ventrally to the pons. The UISNR was numerically calculated
by the VCH-JVIE framework. Besides evaluating the best
possible SNR of curl- and divergence-free current modes, we
were also interested in the SNR performance of U- and Z-
directed current patterns. Therefore, we transformed the curl-
and divergence-free basis set into a U- and Z-directed basis
set by applying Equations 27 and 28. We illustrate ideal cur-
rent patterns and their separation into curl- and divergence-
free or Z- and U-directed modes for one exemplary voxel
position at 9.4 T field strength.

3.2 | Algorithmic implementation

We implemented VSCH-JVIE, VCH-JVIE, and VSCH-DGF
in double-precision arithmetic in an object-orientated toolbox
in MATLAB, where the JVIE functionality was provided by
the MARIE code. All JVIE-simulations were executed on a
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dedicated high performance server with 128 GB of RAM,
2 3 12 core CPU (Intel Xeon E5–2650 v4 @2.2 GHz) and
23 NVIDIA Tesla P100 GPU. Since we had two GPUs
available, both, VSCH-JVIE and VCH-JVIE were parallel-
ized in such a way, that the electromagnetic fields of two
basis vectors were calculated simultaneously. Simulation
times for the VSCH basis set are reported in the Supporting
Information Figure S1. The JVIE-system was solved with the
biconjugate gradients stabilized method,44 preimplemented
in MATLAB’s “bicgstab” solver. The tolerance of the solver
was set to 1e28.

In order to evaluate the UISNR, the infinite dimensional
vector spaces of VSCH (k 2 N1; m 2 Z) and VCH
(n 2 Z; h 2 R) needed to be truncated to finite dimensional-
ity. Regarding VSCH, k was running from k51; 2; . . . ;Nk

and m from m50;61;62; . . . ;6Nm. Moreover, the infinite
series expansion of Equations 14 and 15 needed to be trun-
cated. We stopped the summation after l5 80. This limit was
also enforced for the sums in Equations 16-19 and 29-33.
When applying VSCH to the spherical model (Figure 1A),
we used Nm5Nk520, resulting in totally 1640 basis vectors.
In the special case of #05180�, the integer degree index l
was within the range l51; 2; . . . ; 30 and the integer order
index m was between 2l � m � l. All together, the basis set
spanned 1920 vectors. For the VSCH-JVIE simulations in
Duke (Figure 1B), we increased the values of Nm and Nk to
25, corresponding to 2550 basis vectors. With respect to
VCH-JVIE (Figure 1C), the mode index n was running from
n50;61;62; . . . ;615 and h5kp=L, with k50;61;62; . . .
;624 and 2L being the spatial periodicity. We chose
L5 15 cm to have good longitudinal coverage of the head
model (c.f. Figure 1C). The VCH basis set comprised 3038
basis vectors.

In order to evaluate the UISNR, the inverse of the noise
covariance matrix needs to be calculated (cf. Equation 1).
Using the VSCH basis set, we used MATLAB’s “inv” func-
tion. For the VCH basis set, the condition number of the
noise covariance matrix was too high to give reasonable
results using “inv”. Therefore, we used the more robust
“pinv” method.

4 | RESULTS

4.1 | Validation

To check, whether the truncation order of the VSCH basis
set was chosen sufficiently high, we plot the convergence of
the UISNR for the sphere (Supporting Information Figure
S2) and the human voxel model (Figure 2). In the spherical
sample (Supporting Information Figure S2), the UISNR
obtained by the analytic VSCH-DGF basis set converged at
all six voxel positions and for all field strengths B0. The rela-
tive change of the UISNR was below 6.3e210 for all tested

voxel positions and all field strengths. Proceeding to Figure
2, the UISNR in Duke converged more slowly than in the
spherical model. The relative change of the UISNR was
below 6.2e28 for all tested voxel positions and all field
strengths.

Figure 3A compares the best possible SNR of
divergence-free current patterns fM in a dielectric sphere
evaluated by VSCH-JVIE with results from VSCH-DGF. To
test the impact of mesh resolution on the ratios fM=f and fE=
f we used a uniform Cartesian grid with 64, 80, and 96 sam-
ples in each spatial direction. This corresponds to an iso-
tropic resolution of approximately 2.92 mm, 2.33 mm, and
1.94 mm. Having a mesh resolution of about 1.94 mm, we
found a maximum deviation of 5% at 9.4 T. In Supporting
Information Figure S3, we plot the ratio fM=f for different
spatial resolutions of the VSCH-JVIE method. The finer the
mesh, the better the numerical JVIE results approach analytic
results. In Figure 3B, we show the relative UISNR gain in
Duke when increasing B0 from 7 T to 9.4 T. The results
were calculated with VSCH-JVIE and a randomized dipole
excitation. Both methods predict an UISNR increase by a
factor of two in central head regions. A more comprehensive
comparison between UISNR results obtained from VSCH-
JVIE and a randomized dipole excitation is presented in the
Supporting Information Figure S4. All validation steps
underline the validity of the VSCH-JVIE approach.

4.2 | Spherical cap surface current
distribution

Figure 4 illustrates the UISNR obtained by an open-pole sur-
face current distribution with cap angle #0 divided by the
UISNR of an entirely closed surface current distribution in a
dielectric sphere of human head size. This normalized figure
is almost frequency independent. For the case #05120�, the
ratio fð#05120�Þ=fð#05180�Þ has an average value of
almost 1 on the northern hemisphere, 0.77 on the southern
hemisphere and 0.9 over the entire sphere. The more the cap
angle approaches 180�, the closer these values become 1. To
fit the head model into the spherical cap an opening angle of
120� was chosen.

In Figure 5, the SNR performance of curl- and
divergence-free current patterns relative to the UISNR in the
sphere are shown. The total UISNR f is obtained from both
curl- and divergence-free current modes, whereas fM results
from divergence-free modes only and fE from curl-free
modes only. In general, the cap angle #0 influences f

M much
less than fE. This becomes clear when focusing on one field
strength B0: the spatial distribution of fM=f is similar for all
cap angles, whereas the spatial distribution of fE=f heavily
depends on #0. For example, divergence-free current patterns
always achieve 100% of the UISNR in the central region of
the sphere, independent of the cap angle. In contrast, curl-
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free modes have low SNR performance in the center for
#05180�, but with decreasing cap angle #0 their central
SNR fE increases. Moreover, divergence-free current pat-
terns saturate the UISNR in the periphery of the sphere (true
for all field strengths) and almost fully achieve the UISNR at
all positions at 1.5 T and 3 T. In the case of an open-pole
surface current distribution (#0<180�), the ratio fE=f reaches
its maximum on the southern hemisphere. The effect is espe-
cially pronounced at #05120� and #05160

�
.

Figure 6 illustrates the SNR performance of curl- and
divergence-free modes in voxel model Duke. Qualitatively,
the spatial distributions of fM=f or fE=f in Duke resemble
the spatial distributions in the spherical model (Figure 5).
The SNR fM of divergence-free modes saturates the UISNR
in the peripheral and central (midbrain, thalamus) head
regions for all field strengths. However, for 7 T and above,
there are parts in the human head where divergence-free cur-
rent patterns cannot reach the UISNR limit. The minimum

values are 81% (7 T), 69% (9.4 T), and 67% (11.7 T) (cf.
Figure 6). Consequently, using both curl- and divergence-
free current patterns rather than divergence-free currents
alone results in 24% (7 T), 45% (9.4 T), and 49% (11.7 T)
higher SNR at these positions. At lower field strength the
minima of the distribution fM=f are around 90%. Whereas
the SNR performance of divergence-free current patterns
decreases with higher B0-fields, curl-free currents behave the
opposite way. At low field, they are not efficient, but at
ultra-high field they have a maximum ratio fE=f of 86%
(11.7 T). The region of maximum fE falls into a region of
minimum fM. In Supporting Information Figure S5, we plot
ideal current patterns for voxel P4 (positioning of voxel see
Figure 2) at 9.4 T. By visual inspection, the components JM

and JE are truly divergence- and curl-free. We provide addi-
tional figures illustrating ideal current patterns on the spheri-
cal cap for different field strengths and voxel positions in
Supporting Information Figures S6-S11.

FIGURE 2 Convergence of the UISNR at six different locations and field strengths in voxel model Duke with the VSCH-JVIE basis set
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4.3 | Cylindrical surface current distribution

When a cylindrical surface current distribution is used, Fig-
ure 7 visualizes the SNR performance of curl- and
divergence-free current patterns in voxel model Duke. The
behavior of fM=f and fE=f with regard to field strength B0 is
similar to the spherical cap setup: When B0 increases, the
minimum of fM=f decreases, whereas the maximum of fE=f
grows. The minimum values for fM=f are 83% (7 T), 75%
(9.4 T), and 72% (11.7 T). The region of minimum fM is dif-
ferent than in the spherical cap configuration: At ultra-high
field, the UISNR threshold in central parts of the head cannot
be reached with divergence-free current patterns only. The
combination of curl- and divergence-free patterns results in
21% (7 T), 33% (9.4 T), and 39% (11.7 T) higher SNR in
deep brain regions in comparison to fM. Ideal current pat-
terns for the cylindrical surface are provided in Supporting
Information Figure S12. By visual inspection, the compo-
nents JM and JE are truly divergence- and curl-free.

We were also interested to what extent Z- and U-directed
current patterns are able to reach the UISNR limit. The
results are presented in Figure 8. This is of high practical
relevance, as the ratio fZ=f indicates how close arrays of Z-
directed dipoles approach the UISNR threshold. Z-directed
current patterns reach their maximal SNR performance in
central regions of the human head (Figure 8). In the periph-
eral parts of the head, they are not efficient. The higher the
magnetic field B0, the closer the maximum of fZ=f reaches
the UISNR limit. At 7 T and above, Z-directed current pat-
terns achieve 93% of the UISNR at central head positions.
U-directed current patterns are required to complete the basis
set, that is, the combination of Z- and U-directed current pat-
terns results in the UISNR. Ideal current patterns for the
cylindrical surface are provided in Supporting Information
Figure S13. By visual inspection, the components JZ and JU

are truly Z- and U-directed.
Finally, we were interested in comparing the SNR effi-

ciency of loop-only and dipole-only head arrays. Therefore,
in Figure 9 we plot the ratio fZ=fM. At 1.5 T and 3 T,
divergence-free current patterns result in higher SNR than Z-

FIGURE 3 Validation of the proposed VSCH-JVIEmethod: (A)
The best possible SNR of divergence-free current modes relative to the
UISNR is calculated for a spherical sample with a cap angle of #05120

�
.

The results obtained by the VSCH-JVIEmethod are compared to analytic
results. (B) The increase of the total UISNRwith field strength: the ratio
UISNR(B059.4 T)/UISNR(B057 T) in voxel model Duke is shown for
the VSCH-JVIE approach, used in this work and compared to a random-
ized dipole excitation used byGuerin et al.19

FIGURE 4 The UISNR in a dielectric sphere of human head size
obtained by a spherical cap surface current distribution with cap angle #0

divided by the UISNR of a completely surrounding surface current distri-
bution. The plots show slices in the plane y5 0
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directed current patterns in the whole head. At 7 T, there is a
small volume close to the sphenoidal sinus where Z-directed
currents result in higher SNR than divergence-free currents.
Otherwise, divergence-free currents have superior SNR per-
formance at 7 T. At 9.4 T and above, Z-directed current pat-
terns start to outperform divergence-free current patterns in
central parts of the head. There, the SNR gain over
divergence-free current patterns is 24% (9.4 T) and 26%
(10.5 T, 11.7 T).

4.4 | The increase of the UISNR with regard
to field strength

We demonstrate the increase of the UISNR with regard to B0

in Figure 10. The UISNR was evaluated with the VSCH
basis set. As an example, in subfigure A we plot the fitted
curves for three distinct voxel positions in Duke. At positions
P1, P3, and P4 (c.f. Figure 2), the fitted exponent n was
0.76, 1.70, and 2.13, respectively. Fitting the UISNR f to a
power series model f5cBn

0, subfigure B visualizes the spatial
distribution of the exponent n. For all voxel positions, the
coefficient of determination (R2) of the fit was larger than

0.98. In the left column, the behavior of the total UISNR is
shown: In the peripheral region of the head (skin, skull) the
UISNR increases sublinearly. The linear threshold (dashed
line) is about 16–20 mm away from the skin and follows the
skull bones. In the cerebrum, the UISNR increases superli-
nearly, with a more than quadratic increase in deep brain
regions.

It is interesting to investigate the SNR increase for
divergence-free and curl-free modes separately. The middle
column illustrates, that the SNR increase of divergence-free
modes is very similar to the complete basis set. In contrast,
the right column suggests, that the SNR obtained from curl-
free modes grows much faster than the SNR obtained from
divergence-free modes. In the entire cerebrum, the exponent
n was larger than 2 and had a value of about 2.8 deeply in
the brain.

5 | DISCUSSION

The aim of this work was to study the SNR performance of
loop- and dipole-like current patterns in a realistic human
head model. Therefore, we evaluated the best possible SNR

FIGURE 5 The best possible SNR of curl-and divergence-free cur-
rent patterns relative to the UISNR in a dielectric sphere of human head
size. The cap angle #0 of the spherical cap surface current distribution was
varied between 91

�
and 180

�
. The plots show slices in the plane y5 0

FIGURE 6 The best possible SNR of curl- and divergence free cur-
rent patterns relative to the UISNR in voxel model Duke for a spherical
cap surface current distribution.We used a cap angle of #05120

�
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achievable with either divergence-free or Z-directed current
patterns and compared these values to the UISNR. To sum-
marize our results, we would like to emphasize the following
points:

� By definition, the UISNR is independent from the choice
of receive array, and therefore from the geometry of the
surface where the current patterns are defined. However,
the relative SNR performance of curl- and divergence-free
and Z- and U-directed current patterns depends on the par-
ticular choice of the Huygens’ surface.

� Using a helmet-shaped coil holder, there is a maximal SNR
increase of 24% (7 T), 45% (9.4 T), and 49% (11.7 T) in
the human head when using a combination of curl- and
divergence-free current patterns over divergence-free cur-
rent patterns only. For the cylindrical surface the corre-
sponding SNR increase is 21% (7 T), 33% (9.4 T), and
39% (11.7 T).

� Using a cylindrical coil holder, at 9.4 T and above, Z-
directed current patterns outperform divergence-free current
patterns in central regions of the human head.

� Between 1.5 T and 11.7 T the UISNR increases superli-
nearly with B0 in most parts of the cerebrum.

5.1 | Practical guidelines for RF coil design

Regarding RF coil design for the human head, we conclude
the following guidelines from our simulation studies. Inde-
pendent of the array holder geometry, on 1.5T and 3T plat-
forms, we recommend using loop-only receive arrays, which
correspond to divergence-free current patterns. This covers
more than 90% of the UISNR at every voxel position in
the human head. At 7 T and above, the spatial distribution of
fM=f becomes more inhomogeneous and the minima of the
distribution become smaller. This is true for the helmet and the
cylindrical holder. As a result, the SNR performance of loop-
only receivers can be substantially increased in those regions
of low fM=f by adding complementary current patterns.

On a cylindrical coil holder, loop elements can be com-
plemented by Z-directed current patterns. The combination
of divergence-free and Z-directed currents provides a com-
plete basis set, as Z-directed currents are obtained by a linear
transform of curl- and divergence-free currents (see Equation
26). Therefore, divergence-free currents can be comple-
mented by Z-directed currents and the combination of the
two results in the UISNR (same value as if basis of diver-
gence- and curl-free currents were used). Comparing the
SNR performance of divergence-free current patterns (Figure

FIGURE 7 The best possible SNR of curl- and divergence-free cur-
rent patterns relative to the UISNR in voxel model Duke for a cylindrical
surface current distribution

FIGURE 8 The best possible SNR of Z- andU-directed current pat-
terns relative to the UISNR in voxel model Duke for a cylindrical surface
current distribution
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7) with the performance of Z-directed current patterns (Fig-
ure 8) reveals, that in those regions of low fM=f, the ratio fZ

=f is high. Hence, Z-directed dipoles are a good choice to
complement loop elements on a cylindrical former. There
were initial trials to complement loop elements with dipole
elements.7–10 Instead of dipoles, it is also possible to use ver-
tical loop elements.45–47 These elements have out-of plane
currents, which are linearly independent of surface currents
and hence add to the overall SNR. At 9.4 T, Avdievich was
able to show an SNR boost of approximately 30% in the
brain center when combining eight vertical loops with 8 sur-
face loops.11 This increase is much higher than what could
be expected when using 16 surface loops.48,49 Based on the
results of Figure 9, we do not recommend using dipole-only
arrays for human head applications below 9.4 T, because Z-
directed current patterns result in lower SNR than
divergence-free current patterns in most regions of the
human head. However, if B0 � 9.4 T, dipole-only arrays can
outperform loop-only arrays in deep brain regions.

On a helmet-shaped coil holder, loop elements can be
complemented by placing additional H-directed dipole ele-
ments on the spherical surface (Figure 1B).5 These
H-directed dipoles are a mixture of both, curl- and
divergence-free current patterns. The reason for this is that
both curl- and divergence-free VSH have a U-component

and hence a linear combination of the two is required to can-
cel the U-component. Another option would be to use verti-
cal loop elements.

5.2 | About the completeness of the VSCH
and VCH basis sets

According to the Huygens’ field equivalence principle,50,51 a
closed surface current distribution such as on a sphere (VSH)
or on an infinitely long cylinder (VCH) forms a complete
basis set to calculate the UISNR in the enclosing sample.
Unfortunately, a closed spherical surface current distribution
is unrealistic, because it does not have an opening for the
human neck. Strictly speaking, the spherical cap surface cur-
rent distribution (VSCH) does not fulfill the conditions of
the Huygens’ theorem, because it is a non-closed surface. As
a consequence, the VSCH basis set is not complete and there
are regions in the sample, where the UISNR is underesti-
mated (c.f. Figure 4). However, the figure also demonstrates
that an essential underestimation of the UISNR only occurs
close to the southern pole. This is due to the absence of
generic current patterns in this area. Translating the results of
Figure 4 into voxel model Duke, we hypothesize about an
underestimation of the UISNR in the brainstem and spinal
cord. Notwithstanding the incompleteness of the VSCH basis
set, the herein presented UISNR results are ultimate values
in terms of the best possible SNR achievable with an open-
pole surface current distribution. This ultimate benchmark is
directly comparable to the measured SNR of any helmet-
shaped receive array.

Also, to calculate the UISNR in the human head, an
infinitely long cylindrical surface current distribution is both
unrealistic and numerically unstable. The numerical instabil-
ity is caused by the strong correlation of the resulting electric
and magnetic field distributions of the basis vectors: If the
current distribution is extending from z521 to z 511,
the continuous eigenvalues h need to be discretized very
densely. However, the smaller the difference Dh between
two eigenvectors, the less variation in the electric and mag-
netic field distributions in a sample of finite length. For this
reason, we used a discretization of Dh � 21 1/m, correspond-
ing to a current distribution extending from z5215 cm to z
5115 cm with periodic repetition in z-direction. In this
way, the cylindrical surface current patterns were covering
the whole head model.

5.3 | Comparison with other studies

The superlinear increase of the (total) UISNR in a realistic
human head model was studied in Ref. 19 by a randomized
dipole excitation. The authors reported a sublinear increase
of the UISNR for voxels close to the head’s surface and a
superlinear increase in the center. The linear threshold was at

FIGURE 9 The best possible SNR of Z-directed current patterns
(fZ) divided by the best possible SNR of divergence-free current patterns
(fM) for a cylindrical surface current distribution. The black contour lines
indicate the threshold, where the ratio fZ=fM is larger than one
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about a distance of 1 cm from the skin. In this work, we
found the linear threshold in deeper locations about 16–
20 mm away from the skin. We believe, this is because the
spherical current distribution has a varying distance to the
head model (3.1 cm in average), whereas the dipole cloud
used in Ref. 19 is conformal to the head shape at a distance

of 3 cm. Pohmann reported a superlinear SNR increase with
field strength for the cerebrum.52 He experimentally meas-
ured the SNR at 3 T, 7 T, and 9.4 T with current receive coil
arrays and found that in the cerebrum SNR / B1:65

0 . From
our simulation studies, we deduce UISNR / B1:5

0 for the
average UISNR in the inner brain region. The comparison of

FIGURE 10 The increase of the UISNR in voxel model Duke as a function ofB0 field strength. The UISNRwas evaluated with the VSCH basis set.
Subfigure (A) shows the UISNR at voxel positions P1, P3, and P4 (s. Figure 2) simulated at 1.5 T, 3 T, 7 T, 9.4 T, 10.5 T, and 11.7 T field strength. An
exponential function of the form cBn

0 is fitted to the red datapoints (blue curve). Subfigure (B) visualizes the fitted exponent n regarding the UISNR
obtained from curl-and divergence-free current patterns (left column), only divergence-free (middle column) and only curl-free (right column)
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the UISNR increase of this study with the previously men-
tioned studies confirms the correctness of our model.

As this work is the first study evaluating fM; fE; fZ, and
fU in a realistic human head model, we can only compare to
results from cylinders and spheres. Regarding the cylindrical
Huygens’ surface, there are studies for cylinders of human
body size: Schnell demonstrated23 that for a voxel lying on
the z-axis of an infinitely long cylinder of 20 cm radius and
electric properties of muscle tissue, the ratio fM=f is approxi-
mately 0.8 at 3 T. In Ref. 22, Lattanzi showed in a similar
setup, that central UISNR is dominated by the divergence-
free component at 0.2 T and by the curl-free component at 7
T. In Ref. 48, the same author demonstrated fM for various
field strengths and sizes of a dielectric cylinder. The results
obtained for the realistic head model, suggest a higher SNR
performance of divergence-free modes: At 3 T the
divergence-free SNR fM is 99% of the total UISNR in the
central brain and at 7 T still around 90%. The equivalent cyl-
inder radius circumscribing Duke’s head is between 9 and
10 cm and therefore much smaller than body-sized cylinder
in the previously mentioned studies. Loop-only arrays on a
cylindrical former have higher SNR performance in smaller
objects (such as the human head) than in larger samples
(such as the human torso).48 This fact is in line with our
findings.

Vaidya investigated the SNR performance of an open-
pole 32 channel loop array at 3 T49 on a spherical Huygens’
surface. In a spherical sample of 8.4 cm radius, the unaccel-
erated SNR performance in the center was not compromised
compared to the UISNR. We found the same result when
comparing the UISNR of a spherical cap with the UISNR of
a completely surrounding surface current distribution (Figure
4). However, the spherical cap design will have lower per-
formance than more encircling designs in the case of parallel
imaging. In Ref. 15, we investigated the ratios fM=f and fE=
f at 9.4 T in a spherical phantom of human head size. In
Duke, the local SNR performance of loop-only arrays is
higher than in the spherical model. The distribution of fM=f
in Duke is more homogeneous than in the spherical model
used in Ref. 15. One reason for this fact is that to calculate
the UISNR in Duke, we used an open-pole surface current
distribution, whereas a closed surface current distribution
was used in Ref. 15. However, when decreasing the cap
angle, the minima increase (Figure 5). Another reason
explaining this difference is that voxel model Duke is not a
homogeneous dielectric and has a different geometry than a
simple sphere.

5.4 | Model limitations

Comparing the convergence of the UISNR, in Duke (Figure
2) the UISNR converges more slowly than in the spherical
model (Supporting Information Figure S2). This is in

agreement with a previous study.19 The reason for this is,
that the voxel model is not symmetric and therefore more
basis vectors of the VSCH are required to ensure conver-
gence. We found that the relative change of the UISNR was
below 6.3e210 for all voxel positions and field strengths in
the sphere, whereas this value was 6.2e28 in Duke. These
numbers indicate that within the spherical model better con-
vergence could be achieved than in the head model.

All simulations were performed with one particular voxel
model (“Duke”). In order to get more general results, several
voxel models with different positions could be simulated.
Moreover, due to computational limitations, we truncated the
voxel model beyond the neck and did not include the should-
ers (which are known to influence the RF field of close-by
coil elements). This could influence the UISNR in the lower
brain regions, such as the cervical spine or the brain stem.

Using a cylindrical coil holder, there is some degree of
freedom, where to place the center of the coil with respect to
the human head. In this study, we positioned the coordinate
center of the cylinder ventrally to the pons (Figure 1C). With
this particular positioning, the center of our truncated voxel
model was approximately in the z5 0 plane of the coordinate
system. All results (Figures 7–9) refer to this position. In
Supporting Information Figure S14, we demonstrate that by
shifting the coordinate center in positive z-direction, the posi-
tion of maximal fZ=f also shifts in positive z-direction, at
least at 9.4 T. In general, the UISNR reconstruction for the
cylindrical Huygens’ surface was more ill-conditioned (i.e.,
higher condition number of the total noise covariance matrix
W) than for the spherical cap Huygens’ surface. The cylindri-
cal basis vectors of higher order create highly correlated elec-
tric fields within the body model. The reason for this is that a
cylindrical Huygen’s surface is not very “conformal” to the
human head anatomy especially as there is no curvature of
the surface toward the head. For this reason we used the
Moore-Penrose pseudoinverse in the UISNR reconstruction
for the cylindrical Huygens’ surface.

By definition the UISNR is only limited by body noise
Rbody. When constructing real array elements, coil noise Rcoil

is inevitable and degrades the SNR performance by a factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rbody=ðRbody1RcoilÞ

p
.
53 For example, with body noise being

five times higher than the coil noise, SNR is compromised
by less than 10%. By translating the SNR performance of
curl-and divergence-free current patterns to practical guide-
lines for RF coil design, we assume all array elements oper-
ating in the body noise dominated regime.
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FIGURE S1. Simulation time for the VSCH basis set
(2550 basis vectors).
FIGURE S2. Convergence of the UISNR at six different
locations and field strengths for a dielectric sphere of
human head size and the analytic VSCH-DGF basis set.
FIGURE S3. Validation of the proposed VSCH-JVIE
method: The best possible SNR of divergence-free current
modes relative to the UISNR is calculated for a spherical
sample with a cap angle of #05120�. The results obtained
by the VSCH-JVIE method are compared to analytic
results. The ratio fM=f is plotted along the dashed line in
figure 3 for different spatial resolutions of the VSCH-JVIE
method. The continuous black line is the analytic solution.
FIGURE S4. Comparison of the UISNR results obtained
from VSCH-JVIE and a randomized dipole excitation19: a)
The UISNR f as obtained by VSCH-JVIE approach and a
randomized dipole excitation for two exemplary field
strengths of B05 3 T and 9.4 T. b) The ratios of the
UISNR obtained by VSCH-JVIE divided by the UISNR of
the randomized dipole approach. c) The increase of the
UISNR with field strength in Duke with regard to an expo-
nential model of the form f5cBn

0 for the VSCH-JVIE and
the randomized dipole approach.
FIGURE S5. Ideal current patterns on the spherical cap
surface loaded by voxel model Duke for voxel P4 (s. fig-
ure 2 in the manuscript) at 9.4 T. The divergence-free (JM)
and curl-free (JE) patterns are plotted separately with a dif-
ferent scaling.
FIGURE S6. Ideal current patterns on the spherical cap
surface loaded by voxel model Duke for voxel P2 (s. fig-
ure 2 in the manuscript) at 1.5 T.
FIGURE S7. Ideal current patterns on the spherical cap
surface loaded by voxel model Duke for voxel P4 (s. fig-
ure 2 in the manuscript) at 1.5 T.
FIGURE S8. Ideal current patterns on the spherical cap
surface loaded by voxel model Duke for voxel P5 (s. fig-
ure 2 in the manuscript) at 1.5 T.
FIGURE S9. Ideal current patterns on the spherical cap
surface loaded by voxel model Duke for voxel P2 (s. fig-
ure 2 in the manuscript) at 9.4 T.
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FIGURE S10. Ideal current patterns on the spherical cap
surface loaded by voxel model Duke for voxel P4 (s. fig-
ure 2 in the manuscript) at 9.4 T.
FIGURE S11. Ideal current patterns on the spherical cap
surface loaded by voxel model Duke for voxel P5 (s. fig-
ure 2 in the manuscript) at 9.4 T.
FIGURE S12. Ideal current patterns on the cylindrical sur-
face loaded by voxel model Duke for voxel P4 (s. figure 2
in the manuscript) at 9.4 T. The divergence-free (JM) and
curl-free (JE) patterns are plotted separately with a different
scaling.
FIGURE S13. Ideal current patterns on the cylindrical sur-
face loaded by voxel model Duke for voxel P4 (s. figure 2
in the manuscript) at 9.4 T. The Z-directed (JZ) and
U-directed (JU) patterns are plotted separately with a dif-
ferent scaling.

FIGURE S14. Influence of the coordinate system on fM and
fZ. At position 2, the coordinate center is offset by 2.3 cm in
foot-head direction relative to position 1. Position 1 is the
same location, as described in the manuscript. a) The best
possible SNR of divergence-free and Z-directed currents rela-
tive to the UISNR for a field strength of 9.4 T. b) To demon-
strate differences between the two positions, we plotted the
ratios of the corresponding SNR maps in a).
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Abstract − In this study, the increase of the ultimate intrinsic 
signal-to-noise ratio (UISNR) with regard to main magnetic 
field strength B0 is investigated. A simplified spherical phantom 
of human head size is used. In the center of the sphere, the 
UISNR grows more than quadratically. Within the volume, in 
which the distance to the center is smaller than 85% of the 
sphere’s radius, the UISNR increases superlinearly. At the 
surface, the UISNR grows only sublinearly. The SNR of curl-
free current patterns grows more than cubically in the center, 
whereas the SNR of divergence-free current patterns increases 
quadratically. However, this does not imply, that curl-free 
modes result in higher SNR than divergence-free modes. 

1 INTRODUCTION 

Ultra-high field magnetic resonance imaging (MRI) 
is motivated by the increase of the signal-to-noise ratio 
(SNR) with static magnetic field strength B0. Under 
quasistatic conditions, i.e. the electromagnetic 
wavelength at the Lamor frequency in tissue is much 
larger than the dimension of the human body, SNR 
increases linearly with B0 [1,2]. However, with 
increasing B0, the wavelength in the human body gets 
smaller and the quasistatic assumption is no longer 
valid. Various studies reported a superlinear increase 
of SNR with field strength [3-6]. In [3], Wiesinger 
used a spherical model and published exponents 
describing the growth of the ultimate intrinsic SNR 
(UISNR) as a power of B0. His analysis was limited to 
three voxel positions (center, intermediate, and 
periphery) and he did not investigate the growth of 
curl- and divergence-free modes separately. Without 
explicitly giving exponents, the work of Lattanzi [4] 
includes a similar analysis than [3]. In [5], Pohmann 
experimentally measured the B0-dependent SNR 
increase in vivo with current receive coil technology. 
Recently, Guérin simulated the UISNR at different 
field strengths in a realistic human body model [6]. He 
fitted the UISNR at four different voxel positions and 
for gray- and white matter averages to a quadratic 
model. 

In this study, we systematically investigated the 
superlinear behavior of the UISNR in a simplified 
spherical model. We used a power series model for the 
fitting and evaluated the exponent with full spatial 
coverage over the entire sphere. Additionally, we 
studied the B0-dependent SNR increase for 
divergence-free and curl-free modes separately. 

 
 
 

2 METHODS 

To calculate the UISNR in the human head, we use 
a basis set of vector spherical harmonics (VSH) in a 
spherical phantom of human head size. The basis set 
consists of divergence-free (denoted with superscript 
M) and curl-free (denoted with superscript E) modes, 
which complement each other. In total we use N basis 
vectors with N being sufficiently large to ensure 
convergence.  The unaccelerated UISNR  at position 
r  can be evaluated according to the following equation 
[7]: 

 

. (1) 

 
The term kB is the Boltzmann constant, T is the 

absolute temperature of the sample, 0 the Lamor 
frequency and M0 the equilibrium magnetization. 
Both, 0 and M0 are proportional to B0 (we used the 
gyromagnetic ratio of 1H in this work). The receive 
sensitivity vector S has dimension of Nx1 and 
represents the complex left-handed component of the 
circularly polarized RF magnetic field. It consists of 
both, curl- and divergence-free sensitivities: 

 

. (2) 

  
The noise covariance matrix  has size NxN and has 

the following structure: 
 

. (3) 

 
Note, that the off-diagonal elements are zero. In a 

spherical sample, divergence-free and curl-free modes 
are decoupled. The SNR of divergence-free modes can 
be calculated by using only  and  in equation 
(1). Analogously, the SNR of curl-free modes is 
calculated by using only  and  in equation (1). 

2.1 UISNR in a Spherical Phantom 

First, we approximated the human head with a 
uniform dielectric sphere of radius 9.2 cm. Table 1 
lists the electromagnetic properties of the sphere, 
which were chosen as average values of gray and 
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white matter according to the Gabriel database [8]. 
The generic VSH surface current patterns were also 
running on a spherical surface at a distance of 12.2 cm 
from the coordinate center (s. Figure 1). An analytic 
expression for the receive sensitivity vector S is given 
in equations 18, 19 and 20 in [9] (set the coefficients 
VM and VE to one). Moreover the noise covariance 
matrix can be calculated with the help of equations 24, 
25 and 26 in [9] (set the coefficients VM and VE to one). 
To do the numeric evaluation of the analytic formulas, 
we used a spatial grid of 2 mm resolution and the 
maximum order of the VSH was set to 30. This 
resulted in N=1920 basis vectors. 

 

2.2 Fitting procedure 

We evaluated the unaccelerated UISNR at 1.5 T, 3 
T, 7 T, 9.4 T, 10.5 T and 11.7 T in all voxel positions 
within the sample. Afterwards, we fitted for every 
voxel position r the simulated UISNR data points to a 
power series model of the form  

 
. (4) 

 
We used MATLAB’s fit- function routine with the 

model type “power1”.  
 
 
 

 

3 RESULTS 

Figure 2 visualizes the UISNR in the spherical 
sample at different field strengths in the plane y=0. 
Due to the large dynamic range of the UISNR, the 
plots are in logarithmic scale. The first column is the 
UISNR of a complete basis set of curl- and 
divergence-free current patterns. By definition, this is 
the best SNR that is achievable in the spherical 
sample. The SNR generated with only divergence-free 
(second column) or curl-free (third column) current 
patterns is always lower. This is true for all field 
strengths.  

Obviously, the UISNR increases strictly 
monotonically with B0. Qualitatively, from figure 2 we 
see, that central UISNR grows faster with B0 than 
peripheral UISNR. Moreover, the right column in 
Figure 2 reveals that the SNR obtained with curl-free 
current patterns is much lower at 1.5 T and 3 T 
compared to divergence-free current patterns. The 
same is true for peripheral and central regions at ultra-
high field strength (7 T-11.7 T). In the intermediate 
region (between center and periphery in z-direction), 
the SNR of curl-free modes is about 90% (at 7 T) to 
135% (at 11.7 T) of the SNR of divergence-free 
modes. 

Figure 3 illustrates, that the growth of UISNR with 
B0 depends on the voxel position: When fitting the 
power series model from equation (4) to the simulated 
curves, the exponent n is 2.14, 2.01 and 0.88 at the 
center, half radius away from the center and in the 
periphery. 

Figure 4 shows the spatial distribution of the fitted 
exponent n of the power series model. For all voxel 
positions, the coefficient of determination (R2) of the 
fit was larger than 0.99. Figure 4a) shows the UISNR 
increase when a complete basis set is used. As a 
general result, we want to state, that the value of the 
exponent n depends on position.  In the peripheral 
region of the head-sized sphere, the UISNR increase 
was less than linear with field strength B0. The linear 
threshold was about 1.4 cm away from the sample 
surface. The SNR in all voxels lying innermost to the 
dashed line grows faster than linear with field strength. 
In the central region of the sphere, the UISNR increase 
is more than quadratic (nmax=2.21).  

It is interesting to investigate the SNR increase for 
divergence-free and curl-free modes separately. 
Figure 4b) demonstrates, that the increase in SNR with 
only divergence-free modes is very similar to the 
complete basis set. However, Figure 4c) reveals, that 
the SNR obtained from curl-free modes grows much 
faster than the previously discussed two cases. We 
found a more than quadratic increase at the periphery 
and more than cubic in the center.   

 
 
 

B0 [T] conductivity 
[S/m] 

relative 
permittivity 

1.5 0.40 82.7 
3 0.46 63.1 
7 0.55 52.0 
9.4 0.59 49.8 
10.5 0.61 49.1 
11.7 0.63 48.4 

 

Table 1: Electromagnetic properties of the 
spherical model. 

 

Figure 1: Simulation setup for dielectric sphere. 
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4 DISCUSSION 

We have shown that the increase of the UISNR with 
B0 depends on the voxel position. In a head-sized 
spherical phantom, voxels lying within 85% of the 
sphere’s radius, have a superlinear increase of the 
UISNR with field strength. Moreover, the SNR 
generated by curl-free current patterns only, grows 
much faster, than the SNR generated by divergence-
free current patterns only. Nevertheless, it is very 
important to emphasize, that this does not mean, that 
the SNR generated by curl-free modes is higher than 
the SNR of divergence-free modes. Figure 2 
demonstrates, that at low field strength (1.5 T and 3 T) 
and in the periphery and center at high field strength 
(B0  7 T), curl-free modes result in much lower SNR 
than divergence-free modes. Contrary, in the 
intermediate region at high field strength, curl-free 
modes achieve higher SNR than divergence-free 
modes.  

The results of this work are in accordance to other 
studies about the superlinear increase of the UISNR in 
spherical models: In [3], Wiesinger reported an 
exponent n of 1.92, 2.05 and 0.9 for a 30cm- diameter 
sphere in a central, intermediate and peripheral voxel 
position. Both, Lattanzi [4] and Guérin [6] 
demonstrated a superliner increase in the center of a 
head-sized sphere and sublinear increase in the 
periphery. 

Translating the results of the spherical model to the 
human head, we expect a superlinear increase of the 
UISNR in the cerebrum and a sublinear increase in the 
skull. Indeed, Pohmann experimentally demonstrated, 
that SNR grows with n=1.65 in the cerebrum [5]. This 
motivates the implementation of functional or 
spectroscopic NMR applications in the human brain at 
ultra-high field strength.  

In order to reach the theoretically predicted 
superlinear SNR increase with field strength, practical 
receive arrays need to be sample loss dominated. This 
is the most important design criterion, because the 
UISNR is only limited by sample losses. Additionally, 
to reach the UISNR at all voxel positions, a 
combination of curl- and divergence-free elements 
needs to be used [9]. In practice, this can be 
accomplished by adding dipole or vertical elements to 
the receive loops. 

 

 

Figure 2: The UISNR for protons (1H) in a 
homogeneous dielectric sphere of human head size 
and different field strengths of 1.5 T (64 MHz), 3 
T (128 MHz), 7 T (298 MHz), 9.4 T (400 MHz), 
10.5 T (447 MHz) and 11.7 T (498 MHz). The left 
column represents the UISNR of a complete basis 
set of curl- and div-free current patterns, the 
middle columns the UISNR of div-free and curl-
free modes and the right column the ratio of the 
UISNR of curl- and divergence-free modes.  
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Ultrahigh‐field (UHF) (≥7 T) transmit (Tx) human head surface loop phased arrays improve both

theTx efficiency (B1
+/√P) and homogeneity in comparison with single‐channel quadratureTx vol-

ume coils. For multi‐channel arrays, decoupling becomes one of the major problems during the

design process. Further insight into the coupling between array elements and its dependence

on various factors can facilitate array development. The evaluation of the entire impedance

matrix Z for an array loaded with a realistic voxel model or phantom is a time‐consuming proce-

dure when performed using electromagnetic (EM) solvers. This motivates the development of an

analytical model, which could provide a quick assessment of the Z‐matrix. In this work, an analyt-

ical model based on dyadic Green's functions was developed and validated using an EM solver

and bench measurements. The model evaluates the complex coupling, including both the electric

(mutual resistance) and magnetic (mutual inductance) coupling. Validation demonstrated that the

model does well to describe the coupling at lower fields (≤3 T). At UHFs, the model also performs

well for a practical case of low magnetic coupling. Based on the modeling, the geometry of a

400‐MHz, two‐loop transceiver array was optimized, such that, by simply overlapping the loops,

both the mutual inductance and the mutual resistance were compensated at the same time. As a

result, excellent decoupling (below −40 dB) was obtained without any additional decoupling

circuits. An overlapped array prototype was compared (signal‐to‐noise ratio, Tx efficiency) favor-

ably to a gapped array, a geometry which has been utilized previously in designs of UHF Tx arrays.

KEYWORDS

analytical model, array optimization, decoupling, impedance matrix, transceiver arrays, ultrahigh‐

field MRI

1 | INTRODUCTION

Ultrahigh‐field (UHF) (≥7 T) transmit (Tx)1,2 and transceiver1,3-6 human head radiofrequency (RF) surface loop phased arrays improve both the Tx

efficiency (B1
+/√P) and homogeneity in comparison with single‐channel quadrature Tx volume coils.4,7,8 Further enhancement in both Tx perfor-

mance (efficiency, parallel transmission) and receive (Rx) performance [signal‐to‐noise ratio (SNR), parallel imaging] can be achieved by increasing

the number of array elements. Tx arrays with an element count of up to 32 have been developed and evaluated for the imaging of human heads.1

For such densely populated arrays, decoupling (canceling the cross‐talk between the array elements) becomes one of the major problems because

of the necessity of using a very large number of adjustable decoupling circuits. For example, a 16‐element, two‐row (2 × 8) head transceiver array

may have up to 40 circuits connecting each pair of adjacent elements.4 When strong cross‐talk between non‐adjacent elements also necessitates

decoupling,9 an even larger number of decoupling circuits is required. The growing complexity of the array's decoupling network implies that new

methods of decoupling must be developed and existing methods must be improved. Further insight into the coupling between array elements and

its dependence on various factors, e.g. the array geometry, resonance frequency, sample positioning and properties, can facilitate such
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development. It is worth noting that not only the reactive coupling L12 (mutual inductance), but also the resistive coupling R12 (mutual resistance),

must be taken into account. For example, phased arrays with overlapped loops improve both the SNR and B1
+ distributions when compared

with gapped arrays by eliminating voids in the gap area and providing a larger penetration depth. However, overlapping is often associated with

a large intrinsic R12, e.g. up to ~0.5–0.6 at 3 T.10-12 This corresponds to a residual coupling of approximately −10 to −12 dB, which is generally

insufficient for the decoupling of multi‐row Tx arrays. Therefore, UHF head transceiver and Tx arrays are also commonly constructed using non‐

overlapping loops.2,4-6

The evaluation of the entire impedance matrix Z for an array loaded with a realistic voxel model or phantom is a very time‐consuming proce-

dure when performed using electromagnetic (EM) solvers (REMCOM, CST, etc.). This motivates the development of an analytical model which

could provide a quick assessment of the array Z‐matrix. Such a model would aid in finding a solution for a simplified array geometry and phantom,

which could then be refined for a realistic array design and a voxel model by using more accurate, albeit much slower, solvers. To evaluate EM fields

in a human head at frequencies above 30–40 MHz, full‐wave calculations (no quasi‐static approximation) must be used. In the past, several groups

have developed analytical models using dyadic Green's functions for the calculation of EM fields in lossy samples. Vesselle and Collin13,14

developed a theory to calculate the SNR of a surface loop loaded by an infinitely long cylinder, a geometry approximating a human head or body.

However, the authors did not investigate the coupling between a pair of loops. Using the same approach, Schnell et al.15 later dealt with the

ultimate intrinsic SNR in a homogeneous cylinder and described, inter alia, the noise correlation of a cylindrical surface current distribution.

Searching for ideal current patterns that yielded optimal SNR, Lattanzi and Sodickson16 described the expansion coefficients of a rectangular win-

dow coil using the same basis functions as in Schnell et al.15 Again, the authors did not evaluate the Z‐matrix. In Wright,11 the author also per-

formed a full‐wave analysis of two planar loops loaded by an infinite half‐plane of lossy dielectric material. Using the reaction theorem and the

framework of dyadic Green's functions in the spectral domain, the Z‐matrix was then calculated. However, the author only considered planar sur-

face loops and the analysis was limited to a frequency of 63 MHz.

In this work, we use dyadic Green's functions to calculate the impedance matrix and mutual coupling between two rectangular loops placed on

a cylindrical surface and loaded with a cylindrical phantom. In contrast with the work in Wright,11 where the impedance matrix of two planar loops,

loaded by an infinite half‐space, was calculated, we present for the first time, to the best of our knowledge, analytical modeling of the impedance

matrix of two loaded rectangular loops placed on a cylindrical surface and mimicking a geometry of loops in a head phased array. First, we validate

the analytical results using an EM solver and bench measurements. Then, using the analytical model, we examine the dependence of the coupling

between the two loops on the angle between them, the resonance frequency, the loop size and the distance to the sample. Finally, we demonstrate

that, by using our model, the geometry of a 9.4‐T (400‐MHz) two‐loop transceiver array can be optimized, such that, by simply overlapping the

loops, both the mutual inductance and the mutual resistance can be compensated at the same time. An optimized overlapped array prototype

was compared (SNR, Tx efficiency) with a gapped array, which has been utilized previously in designs of UHF Tx arrays.2,4-6

2 | METHODS

2.1 | Analytical model

We can describe the EM field problem of two rectangular surface loops irradiating an infinitely long cylindrical sample by a two‐layered analytical

model (Figure 1). All mathematical symbols used in this work are summarized in Supporting InformationTable S1. For the dielectric cylinder, we set

the permittivity εr, conductivity σ and radius a. The geometric parameters for the two equidimensional surface loops include their width,

determined by an angle 2ϕ0, their distance to the center axis b and their length 2d. The centers of the loops are separated by an angle α. We were

interested in the two‐port impedance matrix of this configuration. Using the reaction theorem,17 each element Zij of the two‐port impedance matrix

Z can be expressed as:

Zij ¼ −1
IiIj
∭
V
Ej· JidV V∈ coil i (1)

FIGURE 1 Two‐loop cylindrical setup for the analytical model
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where Ej is the electric field caused by a current density Jj flowing in loop j and Ji is the current density in loop i. It should be noted that, within this

model, the two current distributions Ji and Jj are treated as independent from each other. For simplicity, we assume a uniform current distribution

of magnitude Ii,j along the loop conductor and a time harmonic dependence e‐iωt. Any closed‐loop surface current distribution K flowing on a cyl-

inder of radius b can be expanded into an infinite series of vector cylindrical harmonics:

K ¼ I ∑
∞

n¼−∞
∫
∞

−∞
dh wM

n hð ÞCn hð Þ (2)

The vector cylindrical harmonic is defined as Cn(h) = ∇ × einφ eihz er. We use standard cylindrical coordinates with unit radial vector er, polar angle

φ ∈ (0, 2π) and z ∈ (−∞, +∞). The imaginary unit is denoted as i = √–1. The variable h is a spatial frequency and the integral expression in Equation 2 is

the Fourier transform of a rectangular window loop. The expansion coefficients for the given rectangular window loops with their center at an

angle α from the positive x axis can be calculated as:15,16

w
M1;2
n hð Þ ¼ sin hdð Þ

πh
·
sin nϕ0ð Þ

πn
e−inα1;2 (3)

In order to obtain the mutual impedance Z12 between the two loops, according to Equation 1, knowledge of the electric field E2, which is gen-

erated by the second loop in the outer vacuum layer, is needed. For a full‐wave solution of E2, the framework of dyadic Green's functions was

applied.18 After using the orthogonality relations for vector cylindrical harmonics, we obtain:

E2 rð Þ ¼ iI2
ωμ0π
2

∫
∞
−∞dh ∑

∞

n¼−∞

wM2
n hð Þ
η20

VM1M 1ð Þ η0; rð Þ þ VMM η0; rð Þ þ VN1N 1ð Þ η0; rð Þ þ VNN η0; rð Þ
� �

(4)

The functions M(1), M, N(1) and N are fundamental solutions to the homogeneous Helmholtz equation in cylindrical coordinates:

M η0; rð Þ ¼ ∇× Jn η0rð Þeinφeihzez
� �

M 1ð Þ η0; rð Þ ¼ ∇× H 1ð Þ
n η0rð Þeinφeihzez

� �
N η0; rð Þ ¼ 1

k0
∇×M η0; rð Þ

N 1ð Þ η0; rð Þ ¼ 1
k0
∇×M 1ð Þ η0; rð Þ

(5)

We use the Bessel function Jn and Hankel function of first kind Hn
(1). The complex wave number in the cylinder is k ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0ε0εr þ iσμ0=ω

p
and, in a vacuum, we obtain k0 ¼ ω

ffiffiffiffiffiffiffiffiffiffi
μ0ε0

p
. The propagation constant in the r direction is η20 ¼ k20−h

2 in a vacuum and η2 = k2 − h2 inside the

sample. The remaining expansion coefficients stem from the evaluation of the orthogonality relation at r = b and must be incorporated into

the solution of E2:

VM1 ¼ eAhb ∂
∂r
H 1ð Þ

n η0rð Þ
����
r¼b

þ eDnk0H 1ð Þ
n η0bð Þ

VM ¼ hb
∂

∂r
H 1ð Þ

n η0rð Þ
����
r¼b

VN1 ¼ eBhb ∂
∂r
H 1ð Þ

n η0rð Þ
����
r¼b

þ eCnk0H 1ð Þ
n η0bð Þ

VN ¼ nk0H
1ð Þ
n η0bð Þ

(6)

The coefficients eA; eB; eC and eD originate directly from the general boundary conditions of the underlying Green's functions at r = a. Therefore,

the following linear system of equations must be solved:
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Again, we make use of the orthogonality of the cylindrical harmonics and end up with:

Z12 ¼ 2ωμ0π
3∫

∞
−∞dh ∑

∞

n¼−∞

1

η20
wM1

−n −hð ÞwM2
n hð Þ VN1nk0H

1ð Þ
n η0bð Þ þ VNnk0Jn η0bð Þþ

�

…VM1hb
∂

∂r
H 1ð Þ

n η0rð Þ
����
r¼b

þ VMhb
∂

∂r
Jn η0rð Þ

����
r¼b

� (8)

The numerical evaluation of Equation 8 was performed in custom‐written MATLAB code. The infinite series over n was truncated at an adjust-

able order Nmax. The continuous integration variable h was discretized by h =Δh ·m ,m ∈Z, and the integral was replaced by a sum within the limits

[−Mmax,Mmax]. However, by discretizing the spectrum, the spatial current distribution becomes periodic. Therefore, the calculated impedance refers

to an array configuration, which is periodic in the z‐direction. The spatial periodicity L is thereby inversely proportional to the discretization

step Δh:L ¼ 2π
Δh. It is essential to keep L >>2d to make sure that the fields radiating from the periodic alias loops do not interact with the fields of

the fundamental loop. We chose a maximum order Nmax of 50 and, for the discretization of the spatial frequency variable h, we chose a step width

of Δh = 2 (unit is 1/m) and Mmax = 2000. This results in a spatial periodicity L of π m, which is much larger than the coil length 2d of 10 cm.

2.2 | Experimental evaluation

To validate the modeling, we experimentally measured the two‐port S‐parameter matrix for the setup shown in Figure 1 at four frequencies, i.e. 64,

124, 300 and 400 MHz, using a network analyzer (E5071C, Agilent Technology, Santa Clara, CA, USA). The open‐port impedance matrices Z were

calculated from the S‐matrices.19 Then, the electric ke and magnetic km coupling coefficients were evaluated as ke = Real(Z12)/[√Real(Z11)Real(Z22)]

and km = Im(Z12)/(2πf√L1L2), where L1 and L2 are the loop inductances.

In the case of two coupled loops, where each loop is connected to a source through a matching network, an equivalent schematic can be sim-

plified as shown in Figure 2A. Under the condition of weak coupling (|Z12|<< R, where R is the total loop losses), S12 can be evaluated as:19

S12 ¼ 2RZ12

4R2−Z2
12

≈
Z12

2R
¼ iωL12 þ R12

2R
¼ iωkmLþ R12

2R
¼ 1

2
ikmQþ keð Þ (9)

where L is the inductance of each loop, km = L12/L, ke = R12/R and Q = ωL/R. It is worth noting that, in Equation 9, km is multiplied by Q and thus

generally has a much greater contribution than ke to S12.

The loops were constructed of 1.5‐mm copper wire and placed on a cylindrical FR4 plastic holder with an outer diameter of 215 mm (wall of

2.5 mm). Each loop measured 100 mm in length (along the holder's central axis) and 80 mm in width (42.5° coverage). To tune each loop to different

frequencies, a number of fixed capacitors (100B series, American Technical Ceramics, Huntington Station, NY, USA) and one variable capacitor

were uniformly distributed along the loop length. At 64 MHz, the loops contained two fixed capacitors of approximately 43 pF; at 124 MHz, four

capacitors each measured 22 or 24 pF; at 300 MHz, eight capacitors each measured 7.5 or 8.2 pF; and at 400 MHz, 10 capacitors each measured

5.6 or 6.2 pF. As an example, Figure 2B shows a schematic of the 400‐MHz loop. For S‐parameter measurements, each loop was interrupted at a

single place (near capacitor 1, Figure 2B), where a calibrated probe was connected. To avoid interaction of the tuned loop with the cable shield,

each probe had a cable trap.

For S‐matrix measurements, a cylindrical phantom with an inner diameter (ID) of 170 mm was placed symmetrically inside the holder. The

phantom was constructed to mimic tissue properties at 400 MHz.2,20 The relative permittivity εr and conductivity σ were measured using a
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dielectric assessment kit (SPEAG, Zurich, Switzerland). Table 1 shows εr and σ values at all four frequencies. We also utilized a smaller cylindrical

phantom (ID of 14 cm), which was constructed using the same solution.

To assess the mutual resistance in the absence of inductive coupling (magnetically decoupled loops), we decoupled the 400‐MHz loop pair

using the transformer decoupling (TD) method,2,4,21 as shown in Figure 2C. TheTD circuit was constructed using a 1‐mm enameled copper magnet

wire as described previously.4 Two capacitors of 8.2 pF were connected in series with both transformer windings (Figure 2C) to compensate for

their inductances. We then measured S‐matrices for four α values, i.e. 37°, 40°, 45° and 48°, close to the α angle corresponding to the largest

negative mutual inductance (α = 42.5°).

As the analytical modeling does not include the intrinsic coil losses, when evaluating R12 we also performed bench measurements of the intrin-

sic coil losses (unloaded surface loops). At all frequencies, except 64 MHz, the intrinsic coil losses measured below 10% of the sample losses and did

not contribute substantially to the R12 evaluation. At 64 MHz, coil losses measured approximately 40% of the sample losses and were taken into

account during the experimental evaluation of the R12 values.

For the evaluation of the Tx efficiency and SNR, a matching network was added to each loop as shown in Figure 2D. Two arrays with two

elements each were constructed and evaluated, i.e. an overlapped array (loops of 100 mm × 105 mm; α ≈ 46°), which was optimized based on

analytical modeling, and a gapped array (loops of 100 mm × 80 mm; 12‐mm gap; α ≈ 49°), which is similar in size to that previously used in UHF

head‐sized, tight‐fit, eight‐loop, single‐row (1 × 8) transceiver arrays.4,6 Both arrays were relatively similar in their total coverage, i.e. 92° and

99° for gapped and overlapped arrays, respectively. Although the gapped array was constructed of 1.5‐mm copper wire, the overlapped array

TABLE 1 Electromagnetic properties of the phantom

f (MHz) 64 124 300 400

εr 65.5 63.6 59.5 58.6

σ (S/m) 0.43 0.46 0.58 0.64

FIGURE 2 (A) equivalent schematic of the matched and coupled two‐loop setup. (B) schematic of a 400‐MHz loop used in bench measurements.
(C) schematic of a two‐loop setup with transformer decoupling (TD). (D) schematic of a single loop of the two‐loop array with the matching network
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contained a portion constructed of 5‐mm copper strips. To minimize radiation losses,7,22 these arrays were shielded with a cylindrical shield placed

at a distance of 40 mm from the loops. We chose this distance following previously reported data.4,6,7 The gapped array was decoupled using the

TD method. Both arrays were well decoupled when loaded, with S12 measuring −26 dB and −42 dB for the gapped and overlapped arrays, respec-

tively. During transmission, we used a two‐way splitter and a phase shift of 45° between the channels, which is close to the phase shift between

adjacent loops of a 1 × 8 cylindrical array driven in the circular polarized (CP) mode.4,6 Clearly at UHF, RF shimming is required to optimize B1
+

distribution, and 45° phase shift may not be an optimal solution. However, as the main purpose of the study was to demonstrate the benefits

of larger and overlapped loops, we did not perform any further optimization.

Data were acquired on a Siemens (Erlangen, Germany) Magnetom whole‐body, 9.4‐T, human MRI system. B1
+ maps were obtained using the

three‐dimensional actual flip angle imaging (AFI) sequence23 (field of view, 244 × 244 × 100 mm3; voxel size, 1.8 × 1.8 × 5 mm3; TR1/TR2 = 20/

100 ms; TE = 4 ms). Experimental SNR was evaluated using three‐dimensional gradient echo imaging (GRE) with a low flip angle (field of view,

244 × 244 × 100 mm3; voxel size, 1.8 × 1.8 × 5 mm3; flip angle, 6o; TR/TE = 8/2 ms) and the pseudo‐multiple replica approach.24 SNR maps were

reconstructed by the sum‐of‐squares (SoS) combination of the Rx channels.10 Final SNR maps were corrected for the flip angle variation using AFI

B1
+ maps obtained together with GRE.

2.3 | EM simulations

To cross‐validate the experimental measurements and analytical modeling, we simulated the same setup in CST microwave studio 2015 (Darm-

stadt, Germany). The simulated setup consisted of two wire loops and a dielectric phantom with the same sizes and parameters as used in the

experimental evaluation. To avoid short‐circuiting of the overlapped loops, we offset the center of the wire of one loop by 2 mm from the center

of the other in the radial direction. The only coil losses considered were ohmic losses in the loop conductors as a result of the finite conductivity of

annealed copper material. The setup was simulated with standard impedance boundary conditions to save memory. We used a frequency domain

solver in combination with a tetrahedral mesh and adaptive mesh refinement. The convergence threshold for the iterative mesh refinement was set

to ΔS = 1% (maximum relative change in the absolute value of the S‐parameter matrix between two consecutive iterations) and a minimum of three

iterations. We used a mesh size of approximately 260 000 tetrahedrons. On our computer (Intel Xeon CPU with four cores @ 2.4 GHz and 24 GB

RAM), with the previously described simulation parameters and multithreading acceleration, one simulation required between 45 and 90 min

depending on the frequency and solver iterations, for the adaptive meshing algorithm. The results of the three‐dimensional full‐wave EM simula-

tions were fed into a circuit co‐simulation environment (CST Design Studio) as an S‐parameter block. Both loops were tuned to the corresponding

Larmor frequency. Finally, the two‐port impedance matrix was extracted. The analytical model did not include the shield which was utilized in our

experimental measurements. Therefore, we evaluated the effect of the shield on km and ke at 400 MHz using EM simulations.

3 | RESULTS

3.1 | Validation of the analytical model

At first, we cross‐validated the analytical model against bench measurements and CST simulations at all four frequencies. Figure 3A–D shows four

km and ke dependences on α. Figure 3E, F demonstrates the magnified km and ke plots shown in Figure 3C, D, respectively.

There was a very large difference in the required simulation time between the commercial CST frequency domain solver and our analytical

solver. For example, at 400 MHz, the total time required for 16 data points by the EM solver (Figure 3B, ‘CST’ curve) was about 24 h on our ded-

icated CST workstation. In contrast, analytical simulations of 100 data points (Figure 3B, ‘model’ curve) were obtained in about 3 min on a standard

desktop computer.

All EM simulated and experimentally measured curves match each other well at all four frequencies. Analytical km dependences are also very

similar to the simulated and experimental ones with some differences at smaller angles (α < 40°), where the loops overlap. For example, the first

α‐axis zero‐crossing point, where the mutual inductance is fully compensated (L12 = 0) by geometrical overlap (αcm), occurs for all four frequencies

at αcm ≈ 35°–36° for simulated and experimental plots, whereas analytical modeling shows αcm ≈ 37°–38°, i.e. with a difference of approximately

5–6%. Analytical ke plots also match simulated and experimental data well at lower frequencies (64 and 124 MHz). At higher frequencies (300 and

400 MHz), a large difference is observed between the analytical ke curves and simulations and bench measurements, when a significant magnetic

coupling (|km| > 0.02) is present. The effect is more pronounced at 400 MHz (Figure 3D). Δke (the difference between ke obtained from simulations

or experiments and ke obtained from analytical modeling) has the same sign as the km value, i.e. for large negative km (α ~ 42.5°), we measured neg-

ative Δke, whereas, for large positive km (α < 35°), we observed positive Δke.

Hypothesizing that the effect of the ‘inductively induced mutual resistance’ is associated with the presence of the large mutual inductance, we

repeated EM simulations and bench measurements for a pair of magnetically decoupled (km = 0) loops. In both experiments and simulations, we

introduced TD circuits, as shown in Figure 2C. Figure 4 demonstrates the results of these simulations and measurements. As can be seen, all ke

plots (analytical, simulated and experimental) match each other well. Some differences are still observed for large loop overlaps (α < 30°), which,

however, are not commonly used in practice when designing loop arrays.
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FIGURE 4 (A) dependence of ke on the angle between the loop centers (α) with transformer decoupling (M = 0) using the analytical model,
electromagnetic (EM) simulations and bench measurements at 400 MHz. Results of the EM simulations are shown for both the shielded and
unshielded two‐loop setups. Analytical and experimental data were obtained without the shield. (B) comparison of EM‐simulated km and ke plots
calculated for the shielded and unshielded two‐loop setups at 400 MHz

FIGURE 3 Dependence of the magnetic (km) and electric (ke) coupling on the angle between the loop centers (α) obtained using the analytical
model, electromagnetic (EM) simulations (CST) and bench measurements at 64 MHz (A), 124 MHz (B), 300 MHz (C) and 400 MHz (D).
Magnified km and ke plots obtained at 300 MHz (E) and 400 MHz (F). The magnified plots shown in (E) and (F) correspond to the plots shown in (C)
and (D), respectively
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It is noteworthy that magnetic decoupling is a common feature of most previously described phased arrays, and thus we further evaluated

whether |km| < 0.02, when ke prediction based on the analytical model is accurate, is achieved under realistic conditions. Using Equation 9 and

the lower limit values for S12 and the loaded Q‐factor, we can estimate the maximal absolute km value for a pair of magnetically decoupled loop

elements of a phased array. For example, for S12 of −13 dB andQ of 30, we obtain, using Equation 9, km = 0.015, which matches the above criterion.

Both of these values (S12 = −13 dB and Q = 30) are very conservative. In practice, arrays need to be better decoupled (e.g. S12 ≤ −20 dB) and Q is

usually higher (especially for larger Tx‐only arrays), resulting in an even smaller km. Thus, for magnetically decoupled arrays, the analytical model

evaluates ke at higher frequencies reasonably well.

Figure 4 also includes the ke curve calculated by EM simulations for the shielded loops at 400 MHz. No significant difference was observed

between shielded and unshielded cases.

3.2 | Analysis and loop geometry optimization

After validation, we used the analytical model to evaluate km and ke dependences on various parameters, including the frequency, loop size and

phantom diameter. Figure 5 shows the results of the modeling. As a reference, Figure 5A summarizes the analytical data shown in Figure 3. Mag-

netic coupling demonstrates a well‐known angle dependence with the fully compensated mutual inductance (L12 = 0) at the critical overlap

(α = αcm ~ 37–38°) and the highest negative km at α = 42.5°, corresponding to the window opening of the rectangular loop.10-12 Interestingly, ke

also changes its sign and is fully compensated at a specific angle (α = αce), which has a strong frequency dependence. This cancellation effect

has been shown previously for the flat,11 spherical25 and cylindrical12 sample geometries at lower fields (≤3 T), and can be properly described only

by using a full‐wave solution. The quasi‐static approximation does not reveal such behavior.10 Both lower frequency ke plots are very similar with

some difference in the ke value at 180° separation, i.e. –0.3 at 64 MHz versus − 0.36 at 124 MHz. The ke value of −0.36 means that even 180°

separated loops can be decoupled no better than −15 dB. At both frequencies, αce is much larger than αcm and measures ~85° to 90°, which is

similar to previously reported values.12 It is also worth noting that, at α = αcm, ke measures ~0.5–0.6, which corresponds to the S12 limit of −10

to −12 dB. Such poor S12 values compromise both the decoupling and SNR for multi‐channel overlapped loop arrays at lower frequencies (64

and 124 MHz). At higher frequencies, the ke plot changes significantly and shows a substantially decreased αce value. This implies that ke, and thus

S12, also decrease for critically overlapped loops (α = αcm). At the larger phantom size, both crossing points come even closer to each other. As a

result, at 400 MHz, ke measures ~0.2 at the critical overlap, which corresponds to a reasonable S12 of −20 dB. Thus, at UHFs, overlapped arrays

can be constructed without compromising decoupling.

At 9.4 T (400 MHz), using the geometry of Figure 5A as a basis, we further optimized a two‐loop array by changing the loop's width. Figure 6

shows both km and ke plots with the width changing from 80 to 120 mm, and the other parameters kept the same as in Figure 5A. As can be seen,

FIGURE 5 Analytical km and ke plots calculated at four frequencies for various loop widths and phantom radii a, i.e. width = 80 mm, a = 85 mm (A),
width = 60 mm, a = 85 mm (B), width = 80 mm, a = 65 mm (C) and width = 60 mm, a = 65 mm (D). The loop length 2d measured 100 mm in all four
cases
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both km and ke curves cross the zero point at the same angle (α ≈ 50°) for loops with a width of 105 mm. Thus, both magnetic and electrical coupling

can be compensated at the same time simply by overlapping without using additional decoupling circuits.

In contrast with the magnetic coupling, electrical coupling strongly depends on loading. Therefore, to make sure that, on variation of loading,

the decoupling is not compromised, we also evaluated a change in the residual electrical coupling between a pair of magnetically decoupled (km = 0)

loops loaded with the smaller 14‐cm cylindrical phantom placed at various distances from the loops. For these measurements, we used the setup

shown in Figure 2C. Figure 7A demonstrates a dependence of the residual ke value on the distance. Figure 7B shows the achievable decoupling

(S12) for the same two loops when they were matched (Figure 2D). In every measurement, TD was slightly adjusted to obtain the lowest S12 value

to ensure that the magnetic coupling was completely cancelled. As can be seen from Figure 7, ke increases from −0.3 to ~0.2 with the distance to

the phantom changing from 10 to 60 mm, with the worst S12 of approximately −16.5 dB measured at a distance of 10 mm.

Finally, Figure 8 shows B1
+ and SNRmaps obtained using both two‐loop arrays, i.e. the optimized overlapped array (loops of 105 mm × 100mm)

and a gapped array (loops of 80 mm × 100 mm; gap of 12 mm), similar to that which has been used previously for head UHF transceiver arrays.4,6

For the overlapped array, S12 measured below −40 dB. For the gapped array, we measured S12 of −26 dB with the mutual inductance completely

cancelled. We can then estimate the residual electrical coupling, i.e. |ke| ~ 0.1, which agrees with the analytically evaluated value of −0.08 for

α = 49° (Figure 6).

4 | DISCUSSION

We have developed an analytical model to describe the Z‐matrix for two loaded rectangular wire loops placed on a cylindrical surface. The

model evaluates the coupling between the loops, including both the magnetic km and electrical ke components. Comparison of the analytical,

EM‐simulated and experimentally measured data shows that our model provides a good match with experimentally measured and simulated km

for all frequencies and practically applicable overlaps (α > 30°). As an example, Figure 3E, F shows magnified plots obtained at two higher fre-

quencies and α > 60°. All curves match each other very well, even for small km values (km ≤ 0.01). As evident from Equation 9, such accurate

evaluation of km is quite essential, especially for high QL values (low sample loading), e.g. larger Tx‐only arrays. Analytical ke plots match sim-

ulated and experimental data well at lower frequencies (64 and 124 MHz). At higher frequencies (300 and 400 MHz), analytical results also

match the simulations and experimental data for magnetically decoupled loops, i.e. when the magnetic coupling is sufficiently low (|km| < 0.02).

The mismatch in ke values between analytical modelling and numerical and experimental evaluation in the case of large mutual inductance, i.e.

the ‘inductively induced mutual resistance’, most probably occurs because of the assumption in the analytical model that currents in both loops are

independent of each other. In contrast, they influence each other by mutual inductive coupling. Obviously, such coupling would produce a

correlation of currents, and therefore a correlation of electrical fields generated by both loops. This also explains well the frequency dependence

of the effect seen in Figure 3. For our work, however, this effect is not critical as most practical Tx arrays have the mutual inductance compensated.

Nevertheless, as it may become important for some specific array designs, we plan to investigate this effect in the future.

After validation, the analytical model was utilized to investigate the dependence of the coupling on various parameters, including the loop size,

the angle between the loops, the distance to the sample (loading) and the resonance frequency. Figure 5 shows variations in these parameters. As

can be seen from the plots, km remains practically unchanged (below 10–15%) with the frequency and sample loading (phantom size). However,

FIGURE 6 Analytical km and ke plots calculated at 400 MHz for the loop width changing from 80 to 120 mm. The other parameters are the same as
in Figure 5A
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changing the loop size (whilst keeping the other parameters the same) influences km significantly more than ke. Alternatively, changing the distance

to the phantom by reducing its radius and frequency affect ke plots drastically. Thus, for a pair of loops, km and ke can be varied relatively indepen-

dently of each other, which helps to optimize the array geometry. As a result, the decrease in the distance to the phantom (loading) and the increase

in the loop's width at higher frequencies bring αce much closer to αcm, which allows for compensation of both electric and magnetic coupling simply

by overlapping without using any additional decoupling circuits.

The relative independence of the mutual inductance on loading is quite important and worthy of discussion. It is also worth noting that the

well‐known fact that S12 between elements of a phased array strongly depends on the loading is explained by changes in the Q‐factor rather than

in km (Equation 9). The independence of km on loading is important for practical reasons, as it implies that nearly optimal magnetic decoupling

between adjacent elements can be obtained at various loading conditions by using the same detuning circuit optimized for a phantom, which loads

the loops similarly to an average sized subject. On the contrary, the electrical coupling strongly depends on the distance to the phantom (loading)

and, furthermore, cannot be compensated using common decoupling techniques. Therefore, a knowledge of ke variation with changing distance to

the sample is very critical. For example, as can be seen in Figure 7, to keep S12 better than −20 dB (|ke| < 0.2), we have to keep said distance

between 20 and 60 mm, which well suits the purpose of constructing a human head phased array and covering practically the entire range of head

sizes and shapes. Complete cancelation of the electrical coupling is achieved at a distance of ~37 mm. It is noteworthy that ke changes its sign when

the phantom is moved away from the loops (Figure 7). This dependence of the mutual resistance on the distance to the sample can be qualitatively

explained in the following way. Resistive coupling is determined by the sample conductivity and the mutual orientation of the electrical fields

produced by the two loops. As described earlier by Hayes and Roemer,26 near the loops, mutual orientation of electrical fields, and hence noise

correlation, is negative, whereas, further away from the loops, it is positive. Moving the sample away from the loops changes the relative

contributions of the negative and positive correlation, thus affecting the total ke value.

Based on the above analysis, a two‐loop, 400‐MHz array was further optimized. We started with holder and loop sizes similar to those used in

previous eight‐channel (1 × 8) human head UHF transceiver arrays.4,6 As can be seen in Figure 5A, ke is ~0 at α ≈ 45°, which corresponds to

adjacent loops in the 1 × 8 array. Next, we needed to decrease the km value without substantially modifying ke. As km is affected more than ke

by changing the loop size, decoupling can be optimized simply by increasing the loop size, whilst keeping the distance to the phantom the same.

As can be seen in Figure 6, both km and ke plots cross the α‐axis at a slightly larger angle (αcm ≈ αce ≈ 50°) for loops with a width of 105 mm. Thus,

both the electrical and magnetic couplings between adjacent loops were perfectly compensated at the same time and a very good decoupling was

obtained simply by overlapping the loops.

FIGURE 7 ke (A) and S12 (B) dependences on the distance between the surface loops and the phantom obtained using the two‐loop gapped array
and the 14‐cm phantom
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Following this recipe, we constructed a two‐loop, overlapped, 400‐MHz array with decoupling between the loops below −40 dB. Finally, we

compared theTx and Rx performances with those of the gapped array, which was similar in size to previously described transceiver 9.4‐T arrays.6

As can be seen in Figure 8, the use of larger and overlapped loops allowed for improvement in both Tx performance and SNR, exhibited by the

elimination of voids between the loops and increased penetration depth. It is noteworthy that both the SNR and B1
+ maps are asymmetrical

and skewed in opposite directions. This is explained by the fact that, although Tx excitation is determined by B1
+ distribution, the reception is

defined by the B1
− profile.27 It has also been reported previously that this opposite skew is typical for B1

+ and B1
− distributions of a surface loop

at UHF.28 Combining together multiple loops circumscribing the entire head into an array (e.g. eight‐loop array) will circumvent this effect and

provide good coverage for both Tx and Rx profiles. Preliminary results reported for an eight‐loop, single‐row, overlapped, 9.4‐T human head

array confirm this fact.29 The above analysis demonstrates that overlapping can be a very useful decoupling technique for the construction

of single‐row (1 × 8) and double‐row (2 × 8), multi‐channel, tight‐fit, RF transceiver head arrays at UHFs.

5 | CONCLUSIONS

To provide insight into coupling between the elements of a phased array, we developed an analytical model describing the Z‐matrix for two loaded

rectangular wire loops placed on a cylindrical surface. The model evaluates the complex coupling between the loops, including both the electric

(mutual resistance) and magnetic (mutual inductance) components. Validation of the model using EM simulations and bench measurements

demonstrated that it describes well the coupling between the loops at lower fields (≤3 T), as well as at UHFs, for the case of low magnetic coupling

FIGURE 8 Photographs of the gapped (A) and overlapped (B) two‐loop, 9.4‐T (400‐MHz) arrays. B1
+ transversal maps obtained in the middle of the

loops using the gapped (C) and overlapped (D) two‐loop, 9.4‐T arrays. Signal‐to‐noise ratio (SNR) transversal maps obtained in the middle of the
loops using the gapped (E) and overlapped (F) two‐loop, 9.4‐T arrays. Voids of the radiofrequency (RF) field and SNR, corresponding to the gaps
between the loops, are marked by arrows in (C) and (E)
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(|km| ≤ 0.02). By providing a quick and reasonably accurate evaluation of the complex coupling between the elements of multi‐channel transceiver

arrays, the analytical model can significantly accelerate the array optimization process. Finally, by using our model, we optimized the geometry of a

9.4‐T, two‐loop transceiver array, such that, through a simple overlap of the loops, both the mutual inductance and mutual resistance were simul-

taneously compensated. As a result, nearly perfect decoupling (below −40 dB) were obtained without any additional decoupling circuits.
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