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1 Summary 
 

Plants have large families of plasma membrane localized receptors that can sense 

extracellular signals and initiate appropriate cytoplasmic responses. The csp22 peptide 

derived from bacterial cold shock protein (CSP) has been known as an immune elicitor 

for more than a decade, but the corresponding receptor has not been identified. 

Discovered more than a quarter-century ago as the first plant peptide hormone, 

systemin was shown to be critical for systemic wound response and anti-herbivore 

defense in tomato. The receptor for this peptide hormone also remains elusive, since 

the previously proposed receptor SR160 is a tomato homolog of the brassinosteroid 

receptor BRI1 and its role as systemin receptor could not be corroborated in later work. 

Our work started with the observation that the wild tomato Solanum pennellii, in 

contrast to the cultivated tomato Solanum lycopersicum, lacks responsiveness to 

csp22 and systemin, indicating natural variation in perception of both peptides. By 

making use of well-defined introgression lines of these two species, we mapped the 

genes responsible for csp22 and systemin sensing to a common genomic region on 

chromosome 3. This region contains around two dozen genes encoding potential cell 

surface receptors. Functional analysis of these individual receptor candidate genes 

expressed in leaves of young N. benthamiana plants revealed one leucine-rich repeat-

receptor kinase (LRR-RK) that strongly enhanced responsiveness to csp22, which we 

named cold shock protein receptor (CORE), and two other closely related LRR-RKs 

that conferred sensitivity to systemin, which we named systemin receptor 1 and 2 

(SYR1, SYR2). CORE and SYR1 showed high affinity and specificity for their 

respective ligands in receptor binding assays. They also proved functional when 

heterologously expressed in Arabidopsis cells. Furthermore, ectopic expression of 

CORE can confer Arabidopsis increased resistance to the bacterial pathogen 

Pseudomonas syringae pv. tomato DC3000. Presence of SYR1, while not decisive for 

local and systemic wound responses as previously reported, is important for defense 

against insect herbivory in tomato plants. 
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2 ZUSAMMENFASSUNG 
 

Pflanzen besitzen große Familien von membranständigen Rezeptoren, die 

extrazelluläre Signale erkennen und spezifische cytoplasmatische Zellantworten 

einleiten. Ein schon seit Jahrzehnten bekanntes Molekül, das eine Immunantwort in 

Pflanzen auslöst ist das bakterielle „cold-shock Protein“, bzw. dessen Peptidepitop 

csp22. Der zugehörige csp22-erkennende Rezeptor war bislang unbekannt. Das erste 

Peptidhormon „Systemin“ wurde bereits vor über 25 Jahren in Tomatenpflanzen 

entdeckt und ist an der systemischen Wundreaktion und bei der Verteidigung gegen 

Herbivoren beteiligt. Der zuerst identifizierte Systeminrezeptor SR160, ein 

Brassinosteroid Rezeptor Homolog (BRI1) der Tomatenpflanze, stellte sich jedoch als 

falsch heraus; es konnte nicht gezeigt werden, dass dieser Systemin spezifisch 

erkennt. 

Die hier beschriebene Arbeit startete mit der Beobachtung, dass Solanum pennellii, im 

Gegensatz zur kultivierten Tomate Solanum lycopersicum, nicht auf Behandlungen mit 

csp22 oder Systemin reagiert, was auf eine natürliche Variation deren Perzeption 

hinweist. Mit Hilfe eines genetischen Screens von definierten Introgressionslinien der 

beiden Tomatenspezies gelang es uns, einen Abschnitt auf Chromosom 3 der Tomate 

zu identifizieren, auf dem um die 20 mögliche Kandidatengene für Rezeptoren 

lokalisiert sind. Nach Klonierung und heterologer Expression dieser 

Rezeptorkandidatengene in jungen Blättern von Nicotiana benthamiana, wurden 

Blattproben mit den Peptiden behandelt und hinsichtlich der Produktion des 

Phytohormons Ethylen getestet. So konnten eine Leucin-reiche Rezeptorkinase (LRR-

RK) für csp22 („cold-shock protein receptor“, CORE), sowie zwei LRR-RKs als 

Rezeptoren für Systemin (Systeminrezeptor, SYR1 und SYR2) identifiziert werden. 

CORE und SYR1 sind beide hochaffine und spezifische Rezeptoren für ihre jeweiligen 

Peptidliganden csp22 bzw. Systemin. Beide Rezeptoren funktionieren auch in anderen 

pflanzlichen Systemen wie z.B. in der Modellpflanze Arabidopsis. CORE erhöht nach 

Expression in A. thaliana die Resistenz gegenüber dem bakteriellen Pathogen 

Pseudomonas syringae pv. tomato DC3000. Für SYR1 konnte eine Beteiligung an der 

Verteidigung gegen Herbivoren in Tomatenpflanzen bestätigt werden, während die 

Funktion von SYR1 an der lokalen und systemischen Wundantwort nicht 

ausschlaggebend ist. 
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3 Introduction 
3.1 General introduction 

As multicellular and sessile organisms, higher plants must respond to different internal 

and external signals to orchestrate growth, development and interaction with the ever-

changing environment. Some of these signals are sensed by histidine kinases1. Many 

other signals are sensed by plasma membrane-localized receptor kinases (RKs, also 

called receptor like kinases) 1,2. Higher plants have evolved large arrays of RKs to fulfil 

various cellular functions. For example, the dicot plants Arabidopsis and tomato both 

have at least 600 RKs3,4, while the monocot plant rice has over a thousand RKs5. All 

of these RKs comprise an extracellular domain, a single pass transmembrane domain 

and an intracellular kinase domain (Figure 3.1). A group of similar proteins, termed 

receptor like proteins (RLPs), are also involved in signal perception. Unlike RKs, RLPs 

lack the kinase domain (Figure 3.1)2. So far, relatively few of these cell surface 

receptors have been linked to specific biological functions, and an ever smaller number 

of them have been paired with their cognate ligands. 

Figure 3.1 Schematic 

model of signal 

perception by plant cell 

surface receptors. 

Extracellular domains 

determine the ligand 

binding specificity 

whereas kinase domain 

is important for 

triggering intracellular 

signal output.  
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3.2 Biological functions of cell surface receptors 

A number of RKs and RLPs play crucial roles in plant growth and development. 

Brassinosteroid insensitive 1 (BRI1), a leucine-rich-repeat receptor kinases (LRR-RK), 

perceives the phytohormone brassinolide (BL) and influences multiple developmental 

processes, such as cell elongation6-8. BL signaling involves two other LRR-RKs, 

Somatic Embryogenesis Receptor Kinase1 (SERK1) and BRI1-associated receptor 

kinase 1 (BAK1), two members of the SERK family, both of which act as co-receptors9-

13. Some  RKs and RLPs shape development through mediating plant peptide 

signaling14,15. The Phytosulfokine Receptor1/2 (PSKR1/2)16,17, Plant peptide 

containing Sulfated tYrosine 1 (PSY1) Receptor (PSY1R)18 and FERONIA19 are also 

involved in regulating cell expansion, in a way through peptide signal sensing. A group 

of proteins including CLAVATA1 (CLV1), CLAVATA2 (CLV2), CORYNE, Receptor-like 

Protein Kinase 2 (RPK2), Arabidopsis CRinkly 4 (ACR4), Barely Any Meristem 1-3 

(BAM1-3) and Root Meristem Growth Factor Receptor (RGFR) regulate meristem 

maintenance in shoots and roots by sensing the peptide CLAVATA3 (CLV3), other 

CLAVATA3/Embryo surrounding region-related (CLE) Like peptides or Root meristem 

Growth Factor(RGF) peptides20-28. In addition, root vascular development29,30, 

Casparian strip formation31,32, floral abscission33,34,  stomatal patterning35,36 and plant 

fertilization37-39 are also in part regulated by cell surface receptors. 

Cell surface receptors also involved in the recognition of microbes or other organisms. 

Many RKs and RLPs can perceive conserved microbe-associated molecule patterns 

(MAMPs, also called pathogen-associated molecular patterns, PAMPs), host-derived 

damage-associated molecular patterns (DAMPs) or molecular patterns derived from 

other invaders. Perception of such molecular patterns at the cell surfaces triggers so 

called pattern triggered immunity (PTI), and receptors involved in recognition of these 

patterns are collectively called pattern recognition receptors (PRRs).40. Despite 

differences in kinetics and amplitude, activated PRRs induce stereotypical responses 

that are shared among this type of receptors. The events associated with ligand 

dependent activation of PRRs include formation of receptor complexes, activation of 

mitogen-activated protein kinases (MAPKs), Ca2+ influx, alteration of other ion fluxes 

across the plasma membrane, burst of reactive oxygen species (ROS), biosynthesis 

of ethylene and expression of numerous defense related genes (Figure 3.2)40.  

Associated with these responses, activation of PRRs leads to reinforcement of barriers 
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against invaders through remodeling of the cytoskeletal41, callose deposition42, closure 

of stomata43 and closure of plasmodesmata44. Production of jasmonic acid, salicylic 

acid and phytoalexins is also induced to fend off further invasions45-47.  

Many plants have an array of PRRs to recognize different components of pathogenic 

microorganisms and trigger PTI. For example, the model plant Arabidopsis has 

evolved various PRRs to detect bacterial pathogens through recognition of flagellin48-

50, elongation factor Tu (EF-Tu)51,52, peptidoglycans (PGNs)53,54 and 

lipopolysaccharides (LPS)40,55. Some plants even produce multiple PRRs to sense the 

same protein via different epitopes, exemplified by the two tomato LRR-RKs flagellin 

sensing 2 (FLS2) and FLS3 which detect two distinct epitopes of bacterial flagellin56,57. 

 

Figure 3.2 Early immune responses upon pattern recognition. Plant PRRs can sense MAMPs, DAMPs 

and danger signals derived from non-microbial enemies and trigger immunity. Some of the immune 

responses appear fast after pattern recognition, varying from a few seconds to some hours.  

 

Recognition of N-acetyl-D-glucosamine (NAG) containing signals by Lysin-motif (LysM) 

containing receptors allows plants to detect fungal pathogens via chitin fragments, but 

this type of receptor is also used to establish connections with symbiotic microbes. In 

Lotus japonicus, NAG containing nodulation (Nod) factors are sensed by a receptor 
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complex containing the LysM-RKs Nodulation Factor Receptor 1/5 (NFR1/5)58-61.  In 

Medicago truncatula, this task is performed by the LysM-RK complex containing Nod 

Factor Perception (NFP) and LysM domain-containing receptor-like Kinase 3 

(LYK3)62,63. Additionally, NFR1/5 and NFP/LYK3 are also involved in sensing of 

mycorrhizal lipochito- oligosaccharides, which are important for plant-arbuscular 

mycorrhizal fungi interaction.  

3.3 Known ligand-cell surface receptor pairs 

The extracellular domains of cell surface receptors differ drastically in architecture and 

size. This domain is crucial for ligand binding and, consequently, for ligand specificity 

of the receptor. In complex with their respective ligands, these domains also determine 

the interaction with the corresponding co-receptors2, leading to different downstream 

signaling events and, finally, different physiological responses. Among all the cell 

surface receptors, LRR type of receptors form the biggest group and have been 

implicated with a wide range of functions.  

LRR-RKs/RLPs are well-known for recognizing proteinaceous ligands2, many of which 

are endogenous peptides that are synthesized and secreted by the plant cells. Based 

on structure, these peptides can be divided into two groups, posttranslationally 

modified small peptides and cysteine-rich peptides14.  

The binding specificity and affinity of posttranslationally modified small peptides are 

altered by tyrosine sulfation, proline hydroxylation and hydroxyproline 

arabinosylation14. CLV3, the ligand of the LRR-RK CLV1, is a hydroxyproline O-

arabinosylated 13-amino-acid (aa) glycopeptide64.  The Tracheary element 

Differentiation Inhibitory Factor (TDIF) peptide, the ligand for TDIF Receptor 

(TDR)/Phloem intercalated with XYlem (PXY), also has hydroxylated proline 

residues29,30. Inflorescence Deficient in Abscission (IDA), another peptide with 

hydroxylated proline, is recognized by two LRR-RKs HAESA and HAESA-Like 233,34. 

Arabidopsis root derived C-terminally Encoded Peptide 1 (CEP1), one more peptide 

with proline hydroxylation, is perceived by the shoot localized LRR-RKs CEPR1/2 to 

mediate nitrogen demand signaling65. Phytosulfokine (PSK), a 5-aa sulfated peptide, 

is recognized by two LRR-RKs PSKR1/216,17. PSY1, an 18-aa tyrosine-sulfated 

glycopeptide, is recognized by the LRR-RK PSY1R. Two other groups of  tyrosine-

sulfated glycopeptides, RGFs and  Casparian Strip Integrity Factors (CIFs) are 
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recognized by the LRR-RKs RGFRs66-69 and SCHENGEN3 (SGN3)/ 

GASSHO1/2(GSO1/2)31,32, respectively.  

Cysteine-rich peptides can be recognized by LRR-RKs as well as receptors with other 

ectodomains. The Epidermal Patterning Factor (EPF) peptides are recognized by two 

LRR-RKs ERECTA (ER) and ERECTA-Like 1 (ERL1) to determine stomatal 

patterning35,36. The LURE peptides70 are sensed by a receptor complex including 3 

LRR-RKs Male DIScoverer1 (MDIS1), MDIS1-Interacting receptor like Kinase1 

(MIK1) and MIK239. Whereas the Rapid ALkalinization Factors (RALFs) are ligands 

for receptors of the Catharanthus roseus RLK1-Like (CrRLK1L) family which have 

malectin containing ectodomains19,37,38,71. RALF1 and RALF23, are the ligands for 

FERONIA19,71. RALF4 and RALF19, are recognized by ANXUR1/2 (ANX1/2), paralogs 

of FERONIA37,38. Additionally, RALF4 and RALF19 can be sensed by two other 

CrRLK1Ls, Buddha’s Paper Seal 1 (BUPS1) and BUPS237. Intriguingly, the spatially 

differentially expressed BUPS1/2 and ANX1/2 bind RALF4/19 with similar affinity, 

demonstrating the complexity of peptide signaling in plant life, and in this case, plant 

fertilization37,38. 

LRR-RKs/RLPs are also well characterized for perceiving proteinaceous molecular 

patterns.  One model peptide ligand-receptor pair is the flg22 peptide (epitope of 

bacterial flagellin) and its corresponding receptor FLS272,73. Flg22 represents the most 

conserved N-terminal part of bacterial flagellin and acts as potent elicitor in vast range 

of seed plants, including Arabidopsis, tomato, tobacco and grapes48,74. Recognition of 

flg22 by FLS2 leads to rapid heterodimerization with BAK1, with flg22 acting as a 

molecular glue between the LRR ectodomains of FLS2 and BAK173,75. This flg22 

dependent complex formation is crucial for the immune signaling cascade75. Other 

peptide-PRR pairs include the elf18 peptide (epitope of bacterial EF-Tu) recognized by 

the LRR-RK EF-Tu Receptor (EFR)52, the flgII-28 peptide (2nd epitope of bacterial 

flagellin) recognized by receptor FLS357, the xup25 peptide recognized by the LRR-

RK XPS176, and the peptide nlp20 (epitope of the microbial Necrosis and ethylene-

inducing peptide 1-Like Proteins, NLPs) recognized by the LRR-RLP RLP2377. The 

small Plant elicitor peptides (Peps) and PAMP-Induced secreted Peptides (PIPs) are 

also recognized by receptors with LRR domains, namely Peps recognized by Pep 

Receptor 1/2 (PEPR1/2) 78-80 and PIP1/2 recognized by RLK781. A few small proteins 

have been reported to be ligands for LRR containing receptors. In tomato, the LRR-
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RLP Eix2 can bind the ethylene-inducing xylanase (EIX) from Trichoderma and 

transmit EIX triggered signaling82. In Arabidopsis, Responsiveness to Botrytis 

Polygalacturonases1 (RBPG1), a LRR-RLP, can recognize fungal 

endopolygalacturonases83. 

LysM-RKs/RLPs can recognize NAG containing symbiotic signals, as exemplified by 

the receptor-ligand pair NFR1/5-Nod Factor and ExoPolysaccharide Receptor 3 

(EPR3)- exopolysaccharide60,84. In addition, they can also sense NAG containing 

pathogenic signals, including chitin85-88 and PGN53,54. The first chitin receptor, named 

chitin-elicitor binding protein (CEBiP), was identified in rice. CEBiP is a LysM-RLP with 

high binding affinity to chitin oligosaccharides85. Later, the LysM-RK Chitin Elicitor 

Receptor Kinase 1 (CERK1), which has no chitin binding activity, was also shown 

indispensable for full chitin elicited signaling in rice86-88. In Arabidopsis, AtCERK1 was 

first proposed to be the only chitin receptor, and its homo-dimerization upon chitin 

binding was demonstrated to be crucial for chitin-induced immunity89,90. Later, AtLYK5, 

another LysM-RK, was found to be another chitin receptor with  higher chitin binding 

affinity91. Interestingly, AtLYK5 associates with AtCERK1 in presence of chitin91. PGN 

was recognized by two LYM1 and LYM3, two LysM-RLPs in Arabidopsis54 and 

OsLYP4 and OsLYP6, two LysM-RLPs in rice92.  

Receptors with other ectodomains have also been implicated in ligand perception. The 

L-lectin receptor kinase named Does not Respond to Nucleotides 1 (DORN1) can bind 

extracellular ATP (eATP) and mediate eATP-dependent response. The Wall-

Associated Kinase 1(WAK1) which has an Epidermal Growth Factor (EGF) 

ectodomain was shown to recognize oligogalacturonides93. 

3.4 Orphan ligands with unknown receptors 

Despite the exciting discovery of some new ligand-receptor pairs, many more 

receptors remain elusive regarding to their function and cognate ligands. On the other 

hand, an number of specific molecules have been identified that actively trigger 

physiological responses at very low concentrations40,94, indicating they act as ligands 

for yet-unknown receptors. 

Sytemin, an 18-aa peptide purified from tomato, was the first plant peptide reported 

with a signaling function95. Derived from the C-terminus of its precursor prosystemin96, 

systemin was shown to be important for systemic wound signaling and resistance 
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against insect herbivory95,97.  Similar to MAMP perception, perception of systemin at 

subnanomolar concentration induces rapid changes in ion fluxes across the plasma 

membrane and ethylene biosynthesis 98. The long search for its receptor culminated in 

the identification of Systemin Receptor 160 (SR160), which subsequently turned out 

to be a tomato ortholog of the BL receptor BRI199,100. The role of SR160 as systemin 

receptor was called into question because cu3, a tomato bri1/sr160 mutant,  can still 

respond to systemin in the same way as the wild type tomato101,102. Although the 

discovery of systemin has inspired the identification of many other plant peptide signals 

and their cognate receptors, systemin still remains an orphan ligand. 

In contrast to systemin, many other plant peptide signals identified later are secreted 

peptides. Hydroxyproline-rich systemins (HypSys), a glycopeptide discovered in 

tobacco, tomato and sweet potato plants, has also been implicated with an anti-

herbivore function103-105. Its receptor remains to be identified as well. Some members 

of the CLE family peptides have been shown to regulate different aspect of plant 

development14, yet identification of the corresponding receptors is missing, which is 

also the case for most members of the RALF family peptides106,107. A few more other 

cysteine-rich peptides including Plant DeFensins (PDFs) are reported to mediate 

immunity against microbes or development through yet-unknown receptors107. 

Furthermore, as more than a thousand signaling peptides are predicted to be encoded 

by Arabidopsis genome14, it is foreseeable that many more peptides will be found and 

their receptors will need to be identified to understand their function.  

In addition to plant peptides, many signals derived from microbes or other organisms 

also lack their corresponding plant receptors94. Among them, a few have even been 

identified for more than two decades. Gp8c, one of the most active glycopeptides 

derived from yeast invertase, can induce ethylene biosynthesis in tomato108. Pep-13, 

a 13-aa peptide identified from a fungal glycoprotein, can bind parsley plasma 

membrane with high affinity and trigger multiple responses109. Ergosterol, the main 

sterol of most higher fungi, can induce extracellular alkalinization of tomato cells with 

an EC50 of 10 pM110. Recently, some new molecules have been shown to have MAMP 

activity, like the Cellulose-Binding Elicitor Lectin (CBEL) from Oomycetes111, CD 2-1 

from bacterial flagellin112 and EFa50 from bacterial EF-Tu113. None of these have yet 

been matched with a receptor. Bacterial cold shock proteins (CSPs) are also capable 

of triggering physiological response in tomato114. Functioning as RNA chaperons and 

transcription anti-terminators, CSPs can make up more than 10% total protein in 
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bacteria115. Csp22/csp15, derived from the highly conserved nucleic acid binding motif 

RNP-1 at the N-terminal of CSPs, can induce immunity at subnanomolar 

concentrations114. Despite the fact that CSPs were identified as MAMPs more than a 

decade ago, the receptor remained elusive before the start of this work.  

Herbivore-associated molecular patterns (HAMPs), a term analogous to MAMP, has 

been adopted to describe herbivore-derived elicitors found in oral secretions, saliva 

and oviposition fluid116,117. HAMPs like inceptins, caeliferins and volictins can induce 

synthesis of stress hormones and emission of defense related volatiles118-120. Although 

there have been a few reports demonstrating the involvement of RKs in HAMP-

mediated immunity121,122, how HAMPs are sensed by plants remains poorly understood. 

3.5 Strategies to identify cell surface receptors 

Numerous efforts have been made to identify the cognate plant receptors for known 

ligands. Taking PRRs as examples, forward genetics and reverse genetics approaches 

have been used in most of the successful cases. Biochemical purification has also led 

to the successful discovery of a few receptors94. 

3.5.1 Forward Genetics 

A forward genetics approach involves the search of a mutant or variant that differs in 

the recognition of a given ligand. Usually, the non-responsiveness of a given mutant 

or variant is associated with the absence of the receptor, but not with components in 

the downstream signaling pathways, as controlled by presence of response triggered 

by other molecular patterns.  By analysis of the offspring (usually the F2 generation) 

from genetic crosses of responsive plants with non-responsive plants, a locus or loci 

responsible for pattern sensing can be determined either by map-based cloning or next 

generation sequencing.  

The Arabidopsis FLS2 was identified using an ethyl methanesulfonate (EMS)-

mutagenized population of the ecotype Landsberg erecta for seedlings that show no 

growth inhibition in the presence of flg2272. Screening mutagenized seedlings from the 

Arabidopsis Col-0 for non-responsiveness led to the identification of DORN1 as the 

receptor for eATP 123 and LORE as the LPS receptor124. 

Natural variants or populations generated via breeding programs are another important 

source for such screenings. Recently, Cuscuta Receptor 1 (CuRe1) has been identified 
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as the receptor for Cuscuta factor by making use of natural variation between S. 

pennellii and S. lycopersium and a collection of well-defined introgression lines 

between these two species125. Another tomato PRR FLS3 was discovered exploiting 

the natural variation of flagellin flgII-28 epitope sensing among tomato heirloom 

varieties57. The rice XA21 receptor was identified via map-based cloning126. In 

Arabidopsis, several LRR-RLPs, including RLP1, RLP30 and RLP42, were also found 

to be PRRs by ecotype screening with their respective ligands83,127,128 .  

3.5.2 Reverse genetics 

In Arabidopsis, several collections of RK or RLP T-DNA insertion lines have been 

generated, with the hope of deciphering the physiological function of these genes in 

immunity as well as other aspects of plant life. Screening a collection of flg22-induced 

LRR-RK mutant lines led to the identification of EFR52. Similarly, the PIPs receptor 

RLK7 was discovered by testing 6 XI LRR-RK mutant lines of PAMP- or infection-

upregulated genes81. XPS1 was identified from a screen of 187 LRR-RK mutant lines76, 

and the NLP receptor RLP23 was found by screening LRR-RLP T-DNA insertion 

lines77.   

LysM receptor mutants in Arabidopsis and rice have been evaluated for their roles in 

chitin and PGN sensing. This led to the findings that AtCERK1, AtLYK5 and AtLYM2 

are required for chitin perception44,89,91 and that AtLYM1 and AtLYM3 are PGN 

receptors in Arabidopsis54.  

Unlike the model plant Arabidopsis, many other plants have a rather limited mutant 

library. This severely hinders the identification of some family- or species-specific 

PRRs.  The clustered regularly interspaced short palindromic repeats 

(CRISPR)/CRISPR-associated9 (Cas9) mediated gene editing technology opens up 

new possibilities for plant genome engineering129.  Its applicability has been proved in 

several plants130-133. Recently, a collection of XII LRR-RK tomato mutants has been 

generated using the CRISPR/Cas9-mediated mutagenesis134, providing a new tool for 

uncovering PRRs in crops. 

3.5.3 Biochemical approach 

Biochemical purification has only been successful for identifying a few bona fide PRRs. 

Photoaffinity labeling of AtPep1 led to the purification of its binding protein PEPR1, and 

accompanying genetic evidence could verify PEPR1 as the AtPep1 receptor79. 
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Similarly, OsCEBiP was found as a chitin binding protein by affinity labeling135, and 

later proved to be important for chitin induced immune signaling in rice85.  

Recently, an interesting strategy has been proposed to use a co-receptor as molecular 

bait to fish out PRRs based on the ligand-dependent interaction of PRRs with the co-

receptor BAK1. As proof of concept, a N. benthamiana LRR-RLP CSPR, was identified 

as the receptor for csp22136. However, the role of NbCSPR in csp22 sensing could not 

be confirmed137. Thus the legitimacy of this approach still needs to be evaluated. 

3.6 Aim of the thesis 

In the past few years, significant progress has been made elucidating the identity of 

plant cell surface receptors and their cognate ligands. However, given the large 

number, redundancy, and functional complexity of these receptors, our knowledge 

remains very limited and more receptors are waiting to be matched with functions 

and/or ligands. 

In tomato, bacterial cold shock protein114, systemin95, fungal glycopeptide (gp8c)108, 

ergosterol110, flgII-28138 and the fungal preparation Pen139 can all induce immunity via 

yet unknown receptors. By making use of natural variations of ligand sensing among 

different tomato species, we aim to identify the receptors for some of these ligands 

listed above. In addition, we try to determine the binding affinity of putative receptors 

with their ligands, and make clear how perception of these ligands contribute to plant 

immunity.  
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4 Results and Discussion 
 

4.1 Natural variation of molecular pattern sensing in tomato 

In the cultivated tomato S. lycopersicum, immunity can be triggered by elicitors 

including csp22114, systemin95, fungal glycopeptide (gp8c)108, ergosterol110, flgII-28138 

and the fungal preparation Pen139. Before the start of this work, all of these had yet to 

be matched with corresponding receptors. In order to identify novel immune receptors, 

we tested whether there is natural variation of pattern sensing in a collection of wild 

tomato species, using ethylene biosynthesis as a convenient output. Indeed, we 

observed an interesting variation among these tomato species. All the species tested 

responded to flgII-28, whereas they were insensitive to one or a few other elicitors used 

in the assay (Table 4.1.1). This indicates the none-responsiveness is due to the lack 

of the corresponding receptors, and not due to a generally impaired immune signaling 

pathway. 

Among all the species tested, S.lycopersicum and S.pennellii were of particular interest. 

Firstly, S. lycopersicum was sensitive to csp22, systemin and glycopeptide, while S. 

pennellii responded to none of them. Secondly and more importantly, a collection of 

well-defined introgression lines (ILs) between these two species was available140,141. 

The primary collection of these introgression lines covers ~98% of S. pennellii genome,  

missing only a part of chromosome 6 which has a lethal effect140,141. These lines, which 

were instrumental for discovering the tomato CuRe1 as a receptor detecting the 

parasitic plant Cuscuta125, offered a ready-to-use tool for mapping the locus or loci of 

potential receptors for csp22, systemin and gp8c. 

We continued to screen this primary collection of ILs for induction of ethylene 

biosynthesis in response to csp22, systemin and gp8c. Individual ILs showed notable 

difference in ethylene induction. However, a few lines were completely insensitive to 

elicitor treatment, showing ethylene levels similar to the water treated controls. (Figure 

4.1.1). By chance, the none-responsiveness to all three elicitors was found in the same 

ILs, IL3-2 and IL3-3 (Figure 4.1.1).  
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Tomato Species 

Ethylene Biosynthesis 

csp22 systemin gp8c ergosterol flgII-28 Pen 

Solanum 

lycopersicum 
++ ++ ++ ++ ++ ++ 

Solanum sitiens ++ ++ - + + ++ 

Solanum 

peruvianum 
+ - ++ + ++ ++ 

Solanum 

cheesmaniae 
+ ++ - + ++ ++ 

Solanum 

habrochaites f. 

glabratum 

+ + - - ++ ++ 

Solanum 

lycopersicum 

var. cerasiforme 

+ ++ ++ - ++ ++ 

Solanum 

habrochaites 
+ + ++ + ++ ++ 

Solanum 

ochranthum 
- 

+ - - ++ + 

Solanum 

corneliomuelleri 
- ++ + - n.d. - 

Solanum 

pennellii 
- - - + ++ ++ 

 

Table 4.1.1 Induction of ethylene biosynthesis in response to 6 elicitors in 10 tomato species. Ethylene 

biosynthesis is shown as fold induction over water control, with “++” meaning ≥ 3 folds, “+” meaning < 3 

fold and ≥ 1.5 fold and “-” meaning no induction. n.d., not determined. Ethylene biosynthesis in leaf 

pieces were measured 3h after treatment with with 100 nM csp22, 100 nM systemin, 10 µl/ml gp8c 

preparation, 10 µM ergosterol, 1µM flgII-28 or 90 µg/ml Pen. Crude screening was done once with 2 

technical replicates. Data shown for S. lycopersicum and S.pennellii was representative of at least three 

independent experiments. 
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Figure 4.1.1 Induction of ethylene biosynthesis triggered by csp22, systemin or gp8c in introgression 

lines derived from a cross between cultivated (S. lycopersicum) and wild tomato (S. pennellii)140,141. 

Ethylene biosynthesis (fold-induction over H2O controls) in leaf pieces was measured 3 h after treatment 

with 100 nM csp22, 100 nM systemin or 10 µl/ml gp8c preparation. Bars and error bars show fold-

induction as mean ± S.D. of n = 3 replicates. 

 

Both of these ILs are non-contiguous ILs, and each carries 2 individual introgression 

bins. The overlapping introgression bin of these two ILs is ~39 Mbp, containing ~1200 

annotated genes (Figure 4.1.2), around 2 dozen of which encode putative receptors 
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(Table 4.1.2). Based on the knowledge that most of the identified PRRs with 

proteinaceous ligands contain a large extracellular LRR domain, we focused on those 

with more than 10 LRRs as our primary receptor candidates.  

 

 

Figure 4.1.2 Map of S.pennellii introgression line chromosome 3. This figure is modified from 

Supplementary Figure 4 of Chitwood et.al., 2013141. 

 

In chapter 4.2, we describe in detail the identification of the tomato protein CORE as 

receptor for csp22 and its role in immunity against bacterial pathogens. In chapter 4.3, 

we describe in detail the identification of SYR1 as receptor for systemin and its role in 

wound signaling and resistance against insect herbivory in tomato plants. All of the 

receptor candidates mentioned in chapter 4.2 and 4.3 were also tested for response 

to gp8c, and none of them was shown to be responsible for gp8c sensing. Other 

candidates need to be cloned and analyzed to further identify the receptor for fungal 

glycopeptide (gp8c).  
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Gene Protein type Polypeptide length Notes 

Solyc03g059020 LRR-RK 711  

Solyc03g059490 LRR-RK 1125 Tested 

Solyc03g062660 LRR-RK 873 Tested 

Solyc03g063650 Lectin-RK 759  

Solyc03g064010 LRR-RK 628  

Solyc03g078360 Lectin-RK 792  

Solyc03g078370 Lectin-RK 789  

Solyc03g078520 LRR-RK 607  

Solyc03g080060 Lectin-RK 641  

Solyc03g082450 

SYR2 
LRR-RK 1115 Tested 

Solyc03g082470 

SYR1 
LRR-RK 1115 Tested 

Solyc03g082780 LRR-RLP 781  

Solyc03g083510 LRR-RLP 386  

Solyc03g093330 LRR-RK 982 Tested 

Solyc03g093380 LRR-RK 865 Tested 

Solyc03g095490 LRR-RK 635  

Solyc03g096190 

CORE 
LRR-RK 1042 Tested 

Solyc03g098150 
RK with unknown 

ectodomain 
1165  

Solyc03g098400 LRR-RK 1032  

 

Table 4.1.2 List of receptor candidates from the overlapping region of IL3-2 and IL3-3.  
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4.2.1 Abstract 

Plants and animals recognize microbial invaders by detecting microbe-associated 

molecular patterns (MAMPs) by cell surface receptors. Many plant species of the 

Solanaceae family detect the highly conserved nucleic acid binding motif RNP-1 of 

bacterial cold shock proteins, represented by the peptide csp22, as a MAMP. Here, we 

exploited the natural variation in csp22 perception observed between cultivated tomato 

(Solanum lycopersicum) and Solanum pennellii, to map and identify the Leucine-Rich 

Repeat (LRR) receptor kinase CORE of tomato as the specific, high-affinity receptor 

site for csp22. Corroborating its function as genuine receptor, heterologous expression 

of CORE in Arabidopsis thaliana conferred full sensitivity to csp22 and, importantly, it 

also rendered these plants more resistant to infection by the bacterial pathogen 

Pseudomonas syringae pv. tomato DC3000. Our study also confirms the 

biotechnological potential of enhancing plant immunity by interspecies transfer of 

highly effective pattern recognition receptors like CORE to different plant families. 

 

4.2.2 Introduction 

Active defense against microbial pathogens depends on the detection of the infectious 

agents. As part of their innate immune system, plants use membrane-bound pattern 

recognition receptors (PRRs) to detect a variety of microbe-associated molecular 

patterns (MAMPs)40. Most of the plant PRRs identified so far belong to the multi-

membered protein families of receptor-like proteins (RLPs) and receptor-like kinases 

(RLKs)3,142-144.  Although the number of RLKs and RLPs with functional attributions is 

steadily increasing145,  the vast majority of these putative receptors remain orphan with 

respect to their biological functions and ligands. In turn, there is an increasing number 

of specific molecules that trigger responses in plant cells at nanomolar concentrations, 

indicating that they might act as ligands for as yet unidentified surface receptors. 

Matching such signals with their respective receptor proteins as ligand-receptor pairs 

remains a major task for plant research.  

More than a decade ago we identified the highly conserved nucleic acid binding motif 

RNP-1 of bacterial cold shock proteins (CSPs) as a MAMP for the innate immune 

system of  tomato (S. lycopersicum), tobacco (N. tabacum), potato (S. tuberosum), but 

not for plant species outside the Solanales114 like A. thaliana or rice . CSPs were 
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named based on their characteristic hyper-accumulation in bacteria after rapid 

lowering of the incubation temperature by >10 °C (cold shock). However, proteins 

belonging to the CSP family are also constitutively expressed or are induced under 

stress other than cold shock115. Originally, it came as a surprise that plants have an 

immunodetection system directed against a protein which naturally resides in the 

cytoplasm of the bacteria. Nevertheless, the sensitivity and the specificity of the plant 

response to the membrane impermeable peptides csp15 and csp22, which represent 

the RNP-1 epitope with the MAMP activity, suggested that perception of this MAMP 

occurred via a specific PRR located at the surface of the plant cells.  

The current study started with the observation that the wild tomato Solanum pennellii, 

in contrast to the cultivated tomato Solanum lycopersicum, showed no response to 

csp22, indicating that S. pennellii lacks an essential component of the pattern 

recognition system. S. lycopersicum and S. pennellii are closely related and crosses 

between these species have been used to produce a collection of recombinant inbred 

lines that were very comprehensively characterized for their genomic and 

transcriptomic properties140,141,146. This collection, together with the genomic 

information now available for S. lycopersicum and S. pennellii 

(https://solgenomics.net/), provided an excellent tool for mapping responsiveness to 

csp22 and helped subsequent identification of the receptor kinase CORE as the PRR 

for csp22. CORE acts as a genuine receptor for csp22 since it binds csp22 with high 

affinity and specificity and is sufficient to confer responsiveness to the csp22 MAMP 

when heterologously expressed in A. thaliana.  

In the course of our studies we became aware of the work by Saur et al. who very 

recently published on the importance of the receptor-like protein NbCSPR from 

Nicotiana benthamiana for perception of the csp22 peptide136. Since NbCSPR is 

clearly distinct from the receptor kinase CORE described in our work we compared 

both types of receptors to evaluate their roles in csp22 perception.  
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4.2.3 Results 

The wild tomato S. pennellii lacks responsiveness to csp22 

Defense-related responses, including induction of ethylene biosynthesis and an 

oxidative burst, to treatment with the csp22 peptide or its shorter version csp15  have 

been reported for several solanaceous plants114. Here, we started out with the 

observation that leaf tissue of Solanum pennellii, in contrast to the closely related 

cultivated tomato S. lycopersicum, does not respond with production of ethylene when 

treated with csp22 (Fig. 4.2.1A). However, much like S. lycopersicum, S. pennellii 

responded to unrelated MAMPs like flg2248, flgII-28138 and the fungal preparation 

Pen1139, indicating that S. pennellii only lacks the pattern recognition system specific 

for csp22.  

In order to identify the gene(s) underlying the natural variation in csp22 perception we 

made use of a collection of well-defined recombinant inbred lines (ILs) from crosses 

between S. lycopersicum and S. pennellii140,141,146. We tested the 49 lines of the original 

Eshed-Zamir-collection, comprising introgressions covering ~98% of the S. pennellii 

genome, for responsiveness to csp22. The individual ILs exhibited considerable 

variation in fold-induction of ethylene biosynthesis but only the lines IL 3-2 and IL 3-3 

proved insensitive to csp22 and ethylene biosynthesis remained at the level of 

untreated controls (Fig. 4.2.1B). The overlapping introgressions in IL 3-2 and IL 3-3141 

(Fig. 4.2.1C) cover parts on chromosome 3 that encompass ~1200 predicted genes 

(https://solgenomics.net), including ~30 genes coding for receptor-like kinases or 

receptor-like proteins. We set out to test these candidates for their possible function as 

csp22 receptors by transient expression in leaves of N. benthamiana. We observed 

that leaves of young N. benthamiana plants, at the stage suitable for Agrobacterium-

mediated transient transformation147, either showed no or only a marginal response to 

csp22, while leaves from older plants responded to csp22 with a clear increase in the 

production of ethylene (Fig. 4.2.2A). Focusing on genes predicted to code for receptors 

with signal peptides for export and large apoplastic domains, such as receptors with 

LRR-domains comprising >10 LRRs, we tested a first subset of candidate receptors 

by transient expression in young N. benthamiana plants. Out of these five candidate 

genes only Solyc03g096190 led to significant responsiveness to csp22 when assayed 

for induction of ethylene biosynthesis or the stimulation of an oxidative burst (Fig. 

4.2.2B, C and D).  Leaves expressing this receptor-like kinase, tentatively termed  
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Figure 4.2.1. Csp22-dependent induction of ethylene biosynthesis in tomato (S. lycopersicum), S. 

pennellii and a collection of recombinant inbred lines. A) Ethylene biosynthesis in leaf slices of S. 

lycopersicum and S. pennellii treated for 3 h with H2O (control), 1 µM csp22, 1  µM flg22, 1  µM flgII-28 

or 90 µg/ml of the fungal preparation Pen1. B) Induction of ethylene biosynthesis (fold-induction over 

H2O controls) in leaf slices of recombinant inbred lines between S. lycopersicum and S. pennellii140 

treated for 3 h with 100 nM csp22. Bars and error bars show fold-induction as mean ± S.D. of n = 3 

replicates. Ethylene production in controls treated with H2O ranged from 0.11 to 0.58 nmol C2H4 per g 

of fresh weight. C) Genetic map of the recombinant inbred lines with introgressions of the genomic parts 

of S. pennellii in chromosome 3 of S. lycopersicum (adapted from the Suppl. Figure 4 of Chitwood et al., 

2013141).   



23 
 

 

 

Figure 4.2.2. Csp22-dependent induction of MAMP responses in non-transformed N. benthamiana and 

in N. benthamiana expressing receptor candidate genes from tomato (S. lycopersicum). A) Response 

to csp22 in N. benthamiana depends on the plant age. Effect of 1 µM csp22 on ethylene production in 

leaves of non-transformed N. benthamiana plants of different age. B) Ethylene response to csp22 in 4-

week old N. benthamiana plants after transient transformation with Agrobacteria carrying Ti plasmids 

with the P19 gene alone (control) or the P19 gene and a gene encoding a candidate receptor from 

tomato as indicated. Bars and error bars in A) and B) show fold-induction of ethylene as mean ± S.D. of 

n = 3 (triplicate control treatments and triplicate peptide treatments). Ethylene production in controls not 

treated with csp22 ranged from 0.12 to 0.28 nmol C2H4 per g of fresh weight. C) and D) Oxidative burst 

in 4-week old N. benthamiana leaves transformed with a plasmid coding for P19 (C) or a plasmid 

encoding P19 and Solyc03g096190 (CORE);  D) in response to flg22 (1 µM) or csp22 at the 

concentration indicated. Values and error bars show means + S.D. of n = 6 replicates. Results shown 

are representative for n ≥ 3 independent repetitions of the experiments. 

 

CORE for Cold shock protein Receptor, showed a significant response to csp22 down 

to concentrations of 0.3 nM csp22 (Fig. 4.2.2D), thus matching the sensitivity of csp22 

perception in N. tabacum and tomato described before114. In complementation assays 
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with the CORE gene stably introduced into the non-responsive lines IL 3-2 and IL 3-3 

we observed clear response to the csp22 peptide (Suppl. Fig. 4.2.1), indicating that 

loss-of-function in IL 3-2 and IL 3-3 is only due to lack of functional CORE.  

CORE is a LRR-receptor kinase with structural resemblance to EFR and Xa21 

CORE encodes a leucine-rich repeat receptor-like kinase with 22 LRRs, interrupted at 

LRR11 with a short island domain of 6 amino acids (Suppl. Fig. 4.2.2). With this 

architecture it strongly resembles EFR, the receptor for bacterial EF-Tu found in 

Brassicaceae like A. thaliana52, and XA21, the receptor for the bacterial peptide 

RaxX21-sY from rice126,148, respectively. As exemplified for the comparison of CORE 

with EFR (Suppl. Fig. 4.2.2), the sequence identity between these receptors is high 

only for the cytoplasmic kinase domain (≥50 %) and the amino acids at positions 

forming the solenoid CORE of the LRR stacks (≥60 %) but low for the amino acids 

predicted to form the surface of the apoplastic LRR domains (≤22 %). This observation 

predicts distinct surfaces of the LRR domains that might explain specificity of EFR for 

elf18, Xa21 for RaxX21-sY and CORE for csp22, respectively.   

S. pennellii, although consistently lacking responsiveness to csp22, encodes a close 

homolog of CORE (97 % overall aa identity) on chromosome 3 as well 

(https://solgenomics.net). In comparison to S. lycopersicum, however, the promoter 

region of CORE in S. pennellii has a 23 bp deletion and a 3.2 kb insertion (Suppl. Fig. 

4.2.3A) that might be responsible for the lack of CORE expression (Suppl. Fig. 4.2.3B). 

Indeed, when expressed in N. benthamiana leaves under the control of the 35S 

promoter SpCORE conferred responsiveness to csp22 in a manner similar to CORE 

from tomato (Suppl. Fig. 4.2.4A), suggesting that the lack of responsiveness in S. 

pennellii arises from a malfunction of the promoter.  

Close homologs of CORE, with high conservation also at positions forming the surface 

of the LRR domain, can be found in several Solanaceous plants, including S. 

pimpinellifolium, potato (S. tuberosum), eggplant (S. melongena) and N. tabacum but 

not in the genomic sequences available from plants outside of this family.  

Notably, the genome of N. benthamiana149 also harbors a gene coding for a CORE 

homolog (79 % aa identity). When ectopically expressed under the control of the 35S 

promoter in leaves of young N. benthamiana plants this NbCORE also conferred 

sensitivity to csp22 with significant induction of ROS to ≥1 nM csp22 (Suppl. Fig. 

4.2.4B).    

https://solgenomics.net/
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This result is of particular interest with respect to the NbCSPR protein that was very 

recently reported as an essential component of csp22 perception in N. benthamiana136. 

This protein, dubbed NbCSPR for RECEPTOR-LIKE PROTEIN REQUIRED FOR 

CSP22 RESPONSIVENESS, is a receptor like protein that shares no obvious 

sequence relationship with CORE. However, in our hands, NbCSPR cloned under the 

35S promoter and ectopically expressed in leaves of young N. benthamiana plants did 

not confer responsiveness to csp22, at least not in a manner comparable to that found 

after expression of the CORE genes from tomato or N. benthamiana (Suppl. Fig. 4.2.4). 

In correlation with responsiveness to csp22 in young and older N. benthamiana plants, 

NbCSPR has been reported to show an age-dependent expression pattern with low 

expression in young and higher expression in older N. benthamiana plants, 

respectively150. We corroborated this pattern of expression for NbCSPR but we found 

clearly higher expression also for NbCORE in 6 weeks old plants compared to 4 weeks 

old plants (Suppl. Fig. 4.2.4E). Since ectopic expression of NbCORE but not NbCSPR 

conferred responsiveness to csp22, we conclude that expression of NbCORE is the 

limiting factor in these young N. benthamiana plants.  

CORE interacts with BAK1 in a ligand-dependent manner  

As part of a common molecular activation mechanism, ligand binding of LRR receptor 

kinases like BRI1, FLS2 and EFR triggers rapid complex formation with a second type 

of LRR receptor kinase such as BAK1/SERK3 or another member of the SERK 

family151. We tested whether CORE undergoes a similar complex formation by co-

expressing CORE with a myc-tagged form of tomato SERK3a152 in N. benthamiana 

leaves. SERK3a was only found to co-precipitate with CORE-GFP after treatment with 

csp22 or csp15 but not after treatment with the structurally unrelated peptide elf18 or 

the inactive peptide analog csp15-Ala10 (Fig. 4.2.3). Thus, CORE interacts with the 

co-receptor SERK3a in a ligand-dependent manner, providing further evidence for this 

protein to act as a genuine receptor of bacterial cold shock protein. 

CORE binds csp22 with high affinity and specificity 

CORE-GFP protein immunoadsorbed to anti-GFP beads was used in direct binding 

assays with labeled csp22. As a ligand label, we used a chemiluminescent acridinium 

ester that allows detection down to the femtomole or even attomole range of label153. 

Coupling of the acridinium ester to the N-terminus of csp22 did not affect the MAMP 

activity and acri-csp22 showed the same specific activity as csp22 when assayed for  
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Figure 4.2.3. CORE forms a complex with SERK3 in response to treatment with csp22 or csp15. A) CSP 

and EF-Tu derived peptides used in the experiments. Csp22 and csp15 act as strong agonists, csp15-

A10 as a weak antagonist in the csp-response of tomato and tobacco 114. Elf18 is a potent agonist for 

EFR 51.  B) Leaves of N. benthamiana plants, transiently transformed with p35S-SERK3a-myc (SERK3a 

from tomato) and p35S-CORE-GFP (as indicated), were treated for 2 min by pressure infiltration of H2O 

or solutions with 1 µM of the peptide indicated. Elf18 and csp15-A10 served as negative controls for 

perception by CORE.  Detergent solubilized extracts, either before (input) or after immunoadsorption to 

anti-GFP beads (IP anti-GFP), were assayed on Western blots for presence of CORE-GFP and 

SERK3a-myc with the respective antibodies.  

 

induction of an oxidative burst in tomato leaves (Suppl. Fig. 4.2.5A and 4.2.5B, 

respectively). For standard binding assays immunoprecipitates were incubated with 10 

nM acri-csp22 to determine total binding or with 10 nM acri-csp22 and a 1000-fold 

excess of unlabeled csp22 to assay for non-specific binding, respectively (Suppl. Fig. 

4.2.5C and D). Specific binding (total binding minus non-specific binding) for acri-csp22 

was reproducibly detected with immunoprecipitates from plants expressing CORE 

homologs from tomato and N. benthamiana (NbCORE)  but not from plants expressing 

EFR or no GFP-tagged receptor construct (control), respectively (Fig. 4.2.4A). Similarly, 

no specific binding could be found with immunoprecipitates of NbCSPR that contained 



27 
 

amounts of GFP-tagged protein similar to the ones in the immunoprecipitates with 

CORE (Fig. 4.2.4A and B).  

Figure 4.2.4. CORE binds csp22 and 

csp15 with high affinity and high 

specificity. A) Binding of acri-csp22 (1 

nM) in the absence (total binding) or 

presence of 10 µM unlabeled csp22 

(nonspecific binding) to 

immunoprecipitates from N. 

benthamiana leaves expressing P19 

(control) alone or in combination with 

GFP-tagged versions of CORE (tomato), 

EFR, NbCSPR or NbCORE as indicated. 

Specific binding can be calculated by 

subtracting the nonspecific binding from 

the total binding. Bars and error bars 

show means ± S.D. of n = 3 replicates. 

B) Presence of CORE, NbCSPR, EFR 

and NbCORE in immunoprecipitates 

after detection on Western blots with 

anti-GFP antibodies. C) Specificity of 

binding to CORE from tomato in 

competition experiments with 0.3 nM of 

acri-csp22 and different amounts of the 

unlabeled peptides as indicated. D) 

Saturation of specific binding with 

increasing amounts of acri-csp22. 

Experiments in A) to D) are 

representative for n≥2 independent 

repetitions of the experiments. 

 

 

 

 

 

 

 

 

 

In correlation with their activity as inducers of immune responses114, csp22 and csp15 

effectively competed with acri-csp22 for binding to CORE, with half maximal 
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competition reached at concentrations of ~50 nM for both peptides (Fig. 4.2.4C). In 

contrast, only a weak competition was observed with the inactive csp15-A10 analog 

and no competition was found with the peptide elf18 even at micromolar concentrations 

(Fig. 4.2.4C), demonstrating specificity of the receptor binding site. Saturation 

experiments with increasing concentrations of acri-csp22 showed simple saturation 

kinetics resulting in a dissociation constant, Kd of ~60 nM (Fig. 4.2.4D).  

The receptor CORE is sufficient to confer csp22 perception to cells of A. thaliana  

As a first assay to test whether CORE functions also in cells of non-solanaceous plants 

we used mesophyll protoplasts from A. thaliana leaves with a luciferase reporter under 

the control of the MAMP-responsive promoter of ´flg22-induced receptor-like kinase1´ 

(pFRK1) as a well-established and sensitive monitoring system154,155. Protoplasts from 

leaves of the double mutant efr fls2 were transformed with CORE or EFR as a positive 

control (Fig. 4.2.5A and B). Protoplasts transformed with EFR gained responsiveness 

to the elf18 peptide but remained insensitive to csp22 (Fig. 4.2.5A). In turn, protoplasts 

expressing CORE showed clearly induced luciferase activity in response to csp22 or 

csp15 but not to treatment with the inactive peptide csp15-A10 or the structurally 

unrelated peptide elf18 (Fig. 4.2.5B). Similarly, the NbCORE homolog was functional 

as csp22 receptor in Arabidopsis protoplasts as well (Suppl. Fig. 4.2.6). In contrast, we 

could not detect any responsiveness to csp22 in protoplasts transformed with NbCSPR 

(Fig. 4.2.5C). Protoplasts with CORE responded to concentrations of csp22 as low as 

1 nM but not to micromolar concentrations of the inactive analog csp15-A10 (Fig. 

4.2.5D). These results demonstrate that the CORE protein alone is sufficient to confer 

a specific and highly sensitive perception system for csp22 to A. thaliana cells. 

Arabidopsis plants expressing CORE show enhanced resistance to P. syringae 

pv. tomato DC3000 

Similar to the protoplasts, A. thaliana plants stably transformed with CORE showed 

high sensitivity for the csp22 peptide, illustrated by the induction of a clear oxidative 

burst to treatments with ≥1 nM of csp22 (Fig. 4.2.6A). We used these transgenic plants 

to test whether CORE as an additional PRR would affect resistance against plant 

pathogenic bacteria. First, we spray-inoculated plants with Pseudomonas syringae pv. 

tomato DC 3000 and we consistently observed weaker symptom development in plants 

expressing CORE in comparison to non-transformed wildtype plants (Fig. 4.2.6B). In 

further experiments with pressure-infiltration of the bacteria we reproducibly observed 

significantly lower titers of bacteria in leaves of plants transformed with CORE than in 
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wildtype plants (Fig. 4.2.6C). Our results show that CORE from tomato can be easily 

transferred to a heterologous plant where this additional PRR contributes to resistance 

against bacterial pathogens. 

 

 

 

 

 

 

 

 

 

Figure 4.2.5. The receptor kinase CORE is sufficient to confer responsiveness to csp22 when expressed 

in cells of A. thaliana. Protoplasts from leaves of Arabidopsis plants lacking EFR were transformed with 

pFRK1-Luc in combination with either p35S-EFR-GFP (A), p35S-CORE-GFP (B) or p35S-NbCSPR-

GFP (C), respectively. Results show luciferin-dependent light emission in response to treatment with 

H2O (control) or 1 µM of the peptides indicated. D) Dose dependence of the pRK1-Luc induction in 

protoplasts expressing CORE. Values and error bars show means ± S.D. of n = 3 replicates. Results 

are representative for n≥3 independent repetitions of the experiments.  
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Figure 4.2.6. The receptor kinase CORE expressed in A. thaliana is fully functional and contributes to 

resistance against the bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000 (Pst 

DC3000). A) Oxidative burst in 2 independent lines of Arabidopsis Col-0 plants stably transformed with 

p35S-CORE-GFP (homozygous T2 generation). Leaf pieces were treated with different concentrations 

of csp22 and oxidative burst was measured as luminol-dependent light emission integrated over 15 min. 

Values and error bars show means and ± S.D. of n = 6 replicates. B) Presence of CORE reduces 

development of disease symptoms after spray inoculation with Pst DC3000. Pictures show 

representative plants 4 days after inoculation. C) Presence of CORE restricts growth of Pst DC3000 

after pressure infiltration. Bacteria were quantified in extracts of leaves by serial dilutions at day 0 and 

4 after inoculation (dpi). Values are shown for n = 12 samples from 6 plants. Means are indicated by 

bars and standard variations by shaded areas, respectively. Pairwise comparison of the values at 4 dpi 

show significance levels of p = <1% for both transgenic lines according to Student´s T test. The 

experiments shown are representative for 3 independent repetitions.  
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4.2.4 Discussion 

The novel receptor kinase CORE exhibits the features expected for a genuine receptor 

of the MAMP csp22, including high-affinity and specificity for the csp22 ligand and the 

capacity to confer responsiveness to csp22 to A. thaliana plants that have no 

endogenous perception system for this MAMP. Thus, csp22 and CORE add to the still 

rather small list of MAMP/PRR pairs for which interaction between ligand and receptor 

has been demonstrated. 

CORE is but the second PRR for which a role in csp22 perception has been postulated. 

In a very recent publication the receptor-like protein NbCSPR has been reported to 

have an essential function for perception of the csp22 peptide in N. benthamiana136. 

NbCSPR homologs occur exclusively in some species of the Solanaceae family136 but 

seem absent from S. lycopersicum where the most closely related proteins with ~51% 

amino acid identity (http://solgenomics.net/) are the RLPs EIX1 and EIX2 that function 

as receptors for fungal xylanase82. In turn, currently available genomic information 

predicts homologs for CORE for various Solanaceae, including species that belong to 

the genera of Solanum and Nicotiana. The CORE homolog of N. benthamiana encodes 

a functional receptor (Suppl. Fig. 4.2.4A) with affinity for the csp22 ligand (Fig. 4.2.4A). 

Like NbCSPR136, the NbCORE gene showed age-dependent expression that could 

explain age-dependence of the csp22 responses in N. benthamiana (Suppl. Fig. 

4.2.4E).  

Presence of NbCSPR and NbCORE in N. benthamiana suggested that this species 

might have two PRRs for CSP. Evolution of two perception systems for MAMPs 

residing on a common bacterial protein has a precedence with tomato being able to 

recognize bacterial flagellin via the distinct peptide epitopes flg22 and flgII-28 by FLS2 

and FLS3, respectively56,57. However, the recognition of an identical MAMP like csp22 

by two distinct PRRs, NbCSPR and NbCORE in N. benthamiana, would be novel. In 

our attempts to directly compare the functions of CORE and NbCSPR we were not 

able to corroborate the relevance of NbCSPR for csp22 perception. Rather, in our 

hands, ectopic or heterologous expression of NbCSPR did neither lead to 

responsiveness to csp22 in leaves of young N. benthamiana plants (Suppl. Fig. 4.2.4C) 

nor in cells of A. thaliana (Fig. 4.2.5C). Additionally, NbCSPR exhibited no measurable 

affinity for the csp22 ligand (Fig. 4.2.4A). At present, we cannot explain our failure to 

reproduce the results reported in Saur et al.136 but we would rather conclude that 

http://solgenomics.net/
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NbCSPR is neither sufficient nor necessary for csp22 perception. Our results do not 

explain other possible functions the NbCSPR protein might have. They also do not 

explain the reduced csp22 response observed in plants silenced for NbCSPR136, but 

silencing of this gene or an off-target might interfere with the csp22 perception in very 

indirect ways. Perception via the receptor kinase CORE instead of the RLP NbCSPR, 

however, might explain why silencing of SOBIR1, a protein kinase that interacts with 

NbCSPR136 and is thought to be essential for the functioning of RLPs but not RLKs156, 

had no apparent effect on the response136.  

The pattern recognition system of plants is redundant, with multiple PRRs contributing 

to the detection of a given type of pathogen. For example, the well-studied model host 

A. thaliana can detect the bacterial pathogen Pst DC3000 via PRRs with specificities 

for flagellin, EF-Tu, LPS and peptidoglycan48,51,124,157. This redundancy of perception 

systems may render the loss of a single PRR less critical and allow for the considerable 

natural variation observed between closely related species, accessions or even strains 

of plants with respect to the presence of individual PRRs. Such variations have been 

instrumental for the identification of most of the PRRs identified so far, including Xa21 

from rice126, EIX1/2, CuRe1 and FLS3 from tomato57,82,125 and FLS2, RLP30 and 

ReMAX from Arabidopsis49,128,158. Non-functionality of CORE in S. pennellii is due to 

lack of expression caused by changes in its promoter region (Suppl. Fig. 4.2.3). 

Similarly, responsiveness of young N. benthamiana plants appears to be limited by low 

expression of NbCORE at this developmental stage (Suppl. Fig. 4.2.4E). Whether this 

age-dependent expression pattern reflects an adaptive function for the immune system 

of N. benthamiana or rather partial loss of this PRR will be an interesting area for further 

studies.  

Apart from loss of function, natural variation also implies the more intriguing process 

leading to the evolution of novel recognition specificities. Indeed, an ongoing 

evolutionary arms race between pathogens and plant hosts appears to drive rapid 

diversification of patterns exposed by the pathogens and pattern recognition systems 

by the hosts5,40,143. Interestingly, whereas some PRRs, such as FLS2 detecting 

bacterial flagellin via flg22, occur in many species of angiosperms and even 

gymnosperms159, most of the PRRs seem to be restricted to a rather limited range of 

species within individual plant families or genera.   
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Here, the appearance of CORE in species of the family of Solanaceae might serve as 

an interesting model case. The CORE protein shows striking structural resemblance 

to EFR from Arabidopsis and XA21 from rice, respectively. Apart from the kinase 

domain, this resemblance covers features of the apoplastic LRR domain with the same 

number of 22 LRRs and a 6 aa insert at the same position in LRR 11 (Suppl. Fig. 4.2.2). 

While clearly related at positions forming the interior of the solenoid of stacked LRRs, 

amino acids at the solvent-exposed surface of the LRR domain exhibit only very 

modest conservation. Overall, this suggests that these receptors have a common 

internal structure but a highly divergent surface in their LRR domains. This might 

explain the different ligand specificities of the receptors with Xa21 detecting RaxX21-

sY148, EFR detecting elf1852 and CORE detecting csp15/csp22, respectively. Thereby, 

at least as far as tested for elf18 and csp22 in this report, these receptors are highly 

selective, showing binding and receptor activation only with their genuine ligand 

peptides (Figs. 4.2.3, 4.2.4 and 4.2.5). This opens interesting new questions as to how 

the LRR domains of such PRRs can evolve resulting in strong variation in half of the 

positions that form the surface while keeping the other half forming the structural 

scaffold essentially unchanged.  

The perception of cytoplasmic bacterial proteins like CSP and EF-Tu by specific cell 

surface receptors of plants seems to defy common sense. However, EF-Tu and CSPs 

are highly abundant proteins and small amounts of them are found in secretomes of 

bacteria160. Whether this is due to a small fraction of dead and lysed bacteria or to a 

controlled release process, such as general permeability changes occurring as part of 

osmotic adaptation in bacteria161, is currently unknown. Importantly though, the 

amounts of such MAMPs that get exposed to the highly sensitive PRRs appear to be 

sufficient for activation of plant immunity. Experimentally, the best evidence for this is 

the significant reduction of bacterial colonization, which depended on the presence of 

either EFR52 or CORE (Fig. 4.2.6), respectively. These results also show that transfer 

of a highly effective PRR like CORE can enlarge and enhance the repertoire of 

immunodetectors and contribute to increased plant resistance in a recipient plant like 

A. thaliana. This provides further evidence that transfer of PRRs can function even 

between species from different taxonomic families and strengthens the option of 

biotechnological approaches to use the divergent repertoires of PRRs in different 

plants to enhance pathogen recognition and disease control in crop species beyond 

the boundaries of classic breeding. 
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4.2.5 Material and Methods 

Plant Material 

Arabidopsis thaliana plants were grown in phytochambers (8-h photoperiod, 22 °C, and 

40%-65% relative humidity). Tomato plants and Nicotiana benthamiana plants were 

cultivated in the greenhouse with a 14-h photoperiod, day temperature of 25 °C, night 

temperature of 19 °C. Recombinant inbred lines between S. lycopersicum and S. 

pennellii162 were obtained from the Tomato Genetics Resource Center (UC Davis; 

http://tgrc.ucdavis.edu/). 

Materials 

Peptides were synthesized by GenScript and the derivatization of csp22 with the 

acridinium ester was performed as described153. 

Bioassays with plant tissue or Arabidopsis protoplasts  

Ethylene measurement and oxidative burst were performed as described155. For 

oxidative burst, leaf pieces were floated in 96-well plates (1 piece/well) containing 100 

µl substrate solution with 20 µM L-012 (Waco) and 2 µg/ml horseradish peroxidase 

(Applichem) and light emission after treatment with control or peptide solutions was 

measured with a luminometer (Mithras LB 940, Berthold) in 1 min intervals.  

Transient expression in leaf mesophyll protoplasts of efr fls2 Arabidopsis mutant plants 

were performed as described154,155. Aliquots of 300'000 protoplasts were co-

transformed with 30 μg DNA plasmid pFRK1-luciferase as a MAMP-inducible 

reporter154 and 30 μg plasmid DNA encoding CORE, NbCSPR or EFR. Protoplasts 

were re-suspended in W5-solution with 200 μM luciferin (D-Luciferin, firefly, PJK) and 

distributed in a 96-well-plate (100 μl aliquots; 20'000 protoplasts per well). After ~14 h 

of incubation in the dark, the cells were treated with the peptides to be tested and 

luciferase activity was quantified in vivo as light emitted by the protoplasts (RLU; light 

units measured by a luminometer Mithras LB 940). 

Receptor Cloning 

Receptor candidates were amplified from tomato (M82) genomic DNA using Phusion 

Hot Start II DNA polymerase (Thermo Fisher Scientific) and the primers indicated in 

Suppl. Table 4.2.1. PCR products were cloned into the pK7FWG2.0 expression vector 

(https://gateway.psb.ugent.be) between a CaMV35S promoter and a C-terminal GFP 

tag. All constructs were verified by sequencing.  

https://gateway.psb.ugent.be/
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Transient Expression in N. benthamiana  

A. tumefaciens (strain GV3101) harboring the desired receptor constructs were grown 

in LB medium, collected by centrifugation, and resuspended in infiltration solution (10 

mM MgCl2, 150 µM acetosyringone) to an OD600 of 1.0. After further incubation at 

room temperature for 1 to 2 h, bacteria with receptor constructs were mixed 1 : 1 with 

bacteria carrying the silencing inhibitor P19147, diluted 2 times with infiltration solution 

and pressure infiltrated into leaves of 4-week old N. benthamiana plants. Leaves were 

cut into pieces 24 h after infiltration, floated overnight on H2O and used for ethylene-

induction assays and oxidative burst measurements. For preparing 

immunoprecipitates leaves were harvested ~40-48 h after infiltration. 

Immunoprecipitation 

Membrane proteins of N. benthamiana leaves expressing the receptor constructs of 

interest were solubilized as described73 and immuno-adsorbed via their GFP-tags on 

magnetic agarose GFP-Trap® beads (ChromoTek, IZB Martinsried, Germany). 

Western blots were developed with anti-GFP antibodies (Torrey Pines Biolabs) or anti-

myc antibodies (Sigma-Aldrich), followed by staining with secondary antibodies 

coupled to alkaline phosphatase and CDP-Star (Roche) as substrate. 

Binding assays 

GFP-Trap beads with immunoadsorbed receptors were washed twice with 

solubilization buffer (25 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.5 % deoxycholic acid 

and 1% Nonidet P‑40), twice with 25 mM Tris-HCl, pH 8.0, 150 mM NaCl and twice 

with binding buffer (25 mM MES, pH 6.0, 10 mM NaCl, and 3 mM MgCl2). Beads were 

re-suspended in binding buffer (10 µl beads per 100 µl of total volume) and supplied 

with acri-csp22 either alone or with different concentrations of unlabeled peptides as 

competitors. After 20 min incubation on ice, unbound ligands were removed by two 

rounds of rapid washing with 1 ml binding buffer. Beads were re-suspended in 10 µl 

citric acid (5 mM) and transferred to measuring tubes containing 90 µl citric acid, and 

acridinium ester was measured by integrating light emission of the sample for 10 s in 

a single tube luminometer (FB12; Berthold) after adding 150 µl reacting solution with 

100 mM NaOH and 20 mM H2O2. 

Bacterial Growth Assay 

Pseudomonas syringae pv. tomato DC3000 was grown for ~16 h in LB medium at 

28°C, and resuspended in 10 mM MgCl2 at a concentration of 104 colony-forming units 
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(cfu) ml−1 for pressure infiltration assays or at 5*108 cfu ml−1 for spray inoculation 

assays, respectively. 

 

 

 

4.2.6 Supplementary Data  

 

 

 

Supplementary Figure 4.2.1. The introgression lines IL3-2 and IL3-3 gain responsiveness to csp22 when 

complemented with CORE. Oxidative burst in response to treatment with 100 nM csp22 is shown for 

the untransformed lines IL3-2 and IL3-3, and for the introgression lines stably transformed with p35S-

CORE-GFP. Two lines (T2 generation), representing independent transformation events, were tested. 

Values and error bars show means ± S.D. of n = 4 replicates. 
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Supplementary Figure 4.2.2. Comparison of the primary structures of the LRR receptor kinases encoded 

by CORE (Solyc03g096190) from tomato and EFR (At5g20480) from Arabidopsis.  Single letters 

indicate positions with identical amino acids (aa, green underlay) while two letters separated by “/” 

indicate divergent aa residues, respectively. Positions with deletions or insertions of single aa in the 

repeats are highlighted in yellow.  Amino acids in the LRR domain predicted to form the CORE of the 

solenoid structure according to the 24 aa plant LRR consensus xLxxLxLxxNxLS/TGxIPxxLGxLx (with 

other non-hydrophobic aa occasionally substituting for L) are indicated with white letters on black 

underlay.  Remarkably, the positions predicted to form the surface of the LRR domain (x in the 

consensus) show particularly low conservation (22 %), with several of the conserved sites belonging to 

potential N-glycosylation sites NxS/T.  LRR-Nt and LRR-Ct, domains with conserved Cys-Cys bridges 

that form N- and C-terminal ends of the LRR domain; oJM, outer juxtamembrane domain; TM, 

transmembrane domain; iJM, inner juxtamembrane domain. Not shown are the N-terminal sequences 

with the signal peptides for export via ER and the unrelated C-terminal sequences of 9aa in CORE and 

30 aa in EFR, respectively.  
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Supplementary Figure 4.2.3. A) Schematic representation of the CORE genes in the S. lycopersicum 

and S. pennellii genomes.  In comparison to S. lycopersicum, the upstream promoter region in S. 

pennellii has a 23 bp deletion and a 3.2 kb insert of sequences of Solanum-specific elements related 

to >PRSiTERT00100080 and Copia-like retrotransposons TLC1.1 (Ty1). B) RT-PCR of CORE and EF1α 

(control) with mRNA from S. lycopersicum and S. pennellii. 
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Supplementary Figure 4.2.4. S. pennellii 

and N. benthamiana encode functional 

CORE homologs. Leaves of young N. 

benthamiana plants were transiently 

transformed with SpCORE (A), NbCORE 

(B) or NbCSPR (C) under the control of the 

35S promoter and assayed for induction of 

an oxidative burst in response to different 

doses of csp22. Values and error bars 

show means + S.D. of n = 6 replicates.  D) 

Western blot of crude leaf extracts with 

antibodies against the GFP-tags present on 

all three constructs. E) Results of 

quantitative real-time PCR assays for 

NbCORE and NbCSPR with cDNA from 

leaves of 4 and 6 week old N. benthamiana 

plants, respectively. Values (fold-increase) 

are normalized on the respective levels in 

4-week plants and represent mean and 

standard deviations of n = 3 biological 

replicates. With respect to the expression 

level of NbEF1α used as an internal 

standard the expression of NbCSPR was 

four times higher than that of NbCORE in 4-

week old plants.  
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Supplementary Figure 4.2.5. Acri-csp22 is a fully active MAMP and a suitable ligand in binding assays. 

A) and B) Acri-csp22 is as active as csp22 when tested in different concentrations for the induction of 

ROS production in tomato leaf pieces. Results are shown as means ± S.D. of n = 6 replicates. C) and 

D) Principles of measuring specific binding with acri-csp22.  Immunoprecipitates of CORE on 

immunobeads were incubated with low concentrations of acri-csp22 (0.3 to 10 nM) alone (“total binding”) 

or in presence of a high molar excess of unlabeled csp22 (1 to 10 µM)(“nonspecific binding”). Beads 

were washed to remove unbound ligand and chemiluminescence of the acridinium esters remaining on 

the beads was measured by the addition of reaction solution containing 100 mM NaOH and 20 mM 

H2O2. C) Tracings show examples for the flash-type of chemiluminescence (as relative light units (RLU) 

in the luminometer). The Integrals of these flashes over the first 10 s were used for quantification. D)  

The amounts (fmol) of acri-csp22 were derived by comparison with a standard curve obtained with 

different doses of acri-csp22.  
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Supplementary Figure 4.2.6. NbCORE, the CORE homolog of N. benthamiana, is functional as csp22 

receptor in A. thaliana cells. Protoplasts from leaves of Arabidopsis plants were transformed with 

pFRK1-Luc in combination with p35S-NbCORE-GFP. Results show luciferin-dependent light emission 

in response to treatment with H2O (control) or 1 µM of csp22. Values and error bars show means ± S.D. 

of n = 3 replicates.  
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Gene name Usage Primer name Primer sequence (5’ – 3’) 

Solyc03g062660 cloning 
660Fw CACCATGACAGTACAGTGTATTG 

660R AGAATGAGTATGGGTGGAAG 

Solyc03g082450 cloning 
450Fw CACCATGTTCTTGTTTATGGTAA 

450R CATCTGATTTAACTCGACAAG 

Solyc03g082470 cloning 
470Fw CACCATGTTCTTGTTTGATGTTG 

470R TAACTCGACAAGAGACCTTAC 

Solyc03g093330 cloning 
330Fw CACCATGAAACACTTCTCTCCATTC 

330R ACACTCCACATTAGCTTTTTGAG 

Solyc03g096190 
(CORE) 

cloning 
190Fw CACCATGATTCTCCCAAAGAATTCTC 

190R TAACTTTTTCTTCCGGTATGCTTG 

SpCORE cloning 
SpCORE Fw CACCATGATTCTCCCAAAGAATTCTC 

SpCORE R ATGCAGGTTGAAGCTTATAACTTTTTC 

NbCORE cloning 
NbCORE Fw CACCATGATTTTTCCAAGTCATAC 

NbCORE R CACCTGTTCTTTCCAGTATGC 

NbCSPR cloning 
NbCSPR Fw CACCATGAAAAGTGAGAGATTTTTAT 

NbCSPR R ACTCCAGAGCACCTTCAATC 

CORE RT-PCR 
CORE q Fw GCGATCTGAAGCCAAGCAAT 

CORE q R CCCATACCTAATTCTGGAGGTGT 

SlEF1α RT-PCR 
SlEF1α q Fw CTCCGTCTTCCACTTCAGG 

SlEF1α q R TCAGTTGTCAAACCAGTAGGG 

NbCORE 
Real Time 

PCR 

NbCORE q 
Fw 

TGGCATTCGACAGTTTGGTG 

NbCORE q 
R 

CAGACCCAAAACCACCCATG 

NbCSPR 
Real Time 

PCR 

NbCSPR q 
Fw 

CAAGTTCAGGAGGGGATGGT 

NbCSPR q R GCTACACTGCACACCTTTCC 

NbEF1α 
Real Time 

PCR 

NbEF1α q 
Fw 

TGTGGAAGTTTGAGACCACCC 

NbEF1α q R GCAAGCAATGCGTGCTCAC 

 

Supplementary Table 4.2.1. Primers used in cloning, RT-PCR and Real-Time PCR.  
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4.3.1 Abstract 

The discovery in tomato of systemin, the first plant peptide hormone95,163, was a 

fundamental change for the concept of plant hormones. While before this report 

peptide hormones were assumed to be absent in plants, numerous other peptides 

have since been shown to play regulatory roles in many aspects of the plant life, 

including growth, development, fertilization and interactions with symbiotic 

organisms14,15,107,164. The "role model" peptide hormone systemin, an 18-amino acid 

peptide derived from a larger precursor protein165, was proposed to act as the 

spreading signal that triggers systemic defense responses observed in plants after 

wounding or attack by herbivores95,96,166. An initial attempt to identify the systemin 

receptor culminated in the isolation of the leucine-rich repeat (LRR) receptor kinase 

SR160100,167 which turned out to be a tomato homolog of Brassinosteroid Insensitive 1 

(BRI1). BRI1 is one of the best studied plant receptors, and it mediates the regulation 

of growth and development in response to the steroid hormone brassinolide (BL)7,8,168. 

However, whereas the role of SR160/BRI1 as BL receptor was not disputed, its role as 

systemin receptor could not be corroborated by others101,102,169. Here, we demonstrate 

that perception of systemin depends on the two closely related LRR-receptor kinases 

SYR1 and SYR2 and not on SR160/BRI1. SYR1 acts as a genuine systemin receptor 

that binds systemin with high affinity and specificity. Further, we show that presence 

of SYR1, while not decisive for local and systemic wound responses, is important for 

defense against insect herbivory.   
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4.3.2 Results and discussion 

Treatment of tomato (Solanum lycopersicum) and other Solanum species with 

systemin induces an array of defense-related responses including the accumulation of 

proteinase inhibitors (PINs), increase of ethylene biosynthesis and induction of an 

oxidative burst95,98,170. Using ethylene biosynthesis as a convenient output we 

observed that, in contrast to S. lycopersicum, the wild tomato species S. pennellii 

lacked responsiveness to systemin (Fig. 4.3.1a). Progeny from crosses between these 

closely related species have been used to establish collections of tomato introgression 

lines (ILs) with specific parts of their genome replaced by homologous parts of the S. 

pennellii genome140,141. We tested a collection of 49 precisely defined ILs141 for 

response to systemin and found that lines IL3-2 and IL3-3, with replacements of 

overlapping regions in chromosome 3, lacked responsiveness to systemin 

(Supplementary Fig.4.3.1). By chance, the non-responsiveness to systemin was 

associated with the same two ILs that in previous work helped to map and identify the 

pattern recognition receptor CORE which specifically detects the csp22 peptide from 

bacterial cold shock protein137. We therefore tested the collection of candidate receptor 

genes established in this previous study for their potential role in systemin sensing 

when expressed in Nicotiana benthamiana, a species that has no endogenous 

perception system for systemin167.  

Two of these genes, Solyc03g082450 and Solyc03g082470, conferred clear induction 

of ethylene biosynthesis and production of reactive oxygen species (ROS) in response 

to treatment with systemin (Fig. 4.3.1b and c). These genes encode two closely related 

LRR-RLKs (89% identity, Supplementary Fig. 4.3.2) that we tentatively named 

systemin receptor 1 and 2 (SYR1 and SYR2), respectively. For comparison, we also 

expressed SR160/BRI1 that has previously been postulated as the systemin receptor 

in tomato100,167. However, while accumulating to similar levels as SYR2 and SYR1 

(Supplementary Fig.4.3.3a), SR160/BRI1 in leaves of N. benthamiana did not confer 

responsiveness to micromolar concentrations of systemin (Fig. 4.3.1b-d). In contrast, 

leaves expressing SYR1 responded to subnanomolar concentrations of systemin, 

resulting in half-maximal stimulation (EC50) at ~0.03 nM systemin (Fig. 4.3.1d). Leaf 

pieces with SYR2 were less sensitive and responded with an EC50 of >30 nM systemin 

(Fig. 4.3.1d). A similar pattern of responsiveness to systemin was observed after 

heterologous expression of these receptors in Arabidopsis thaliana protoplasts (Fig. 
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4.3.1e). While no induction occurred in cells with SR160/BRI1, systemin-dependent 

induction of the reporter gene construct pFRK1::Luciferase154 occurred with an EC50 

of 0.1 nM with SYR1, and ~3 µM with SYR2, respectively.  

 

Figure 4.3.1. The tomato genes SYR1/Solyc03g082470 and SYR2/Solyc03g082450 provide 
responsiveness to systemin when heterologously expressed in N. benthamiana or A. thaliana. a) S. 
lycopersicum but not its wild relative S. pennellii responds with increased ethylene biosynthesis to 
treatment with 100 nM systemin. b) and c) Systemin-dependent induction of ethylene biosynthesis and 
reactive oxygen species (ROS) in N. benthamiana leaves transiently transformed with different receptor 
candidates. d) Production of ROS (integral over 30 min) for leaf pieces treated with different 
concentrations of systemin. e) Activity of the luciferase reporter in transformed A. thaliana protoplasts 
treated with different concentrations of systemin for 3 h. a) to e) values and bars indicate mean ± SD of 
n=3 replicates for of ethylene, n=6 for ROS, and n=3 for luciferase, respectively. Controls for expression 
of the transgenes are shown in Supplementary Fig.4.3.3. Data are representative for at least three 
independent experiments.  
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Leaves of S. pennellii and the tomato ILs IL3-2 and IL3-3 showed no responses to 

systemin, indicating lack of functional SYR1 and SYR2 in these plants (Fig. 4.3.1a, 

Supplementary Fig.4.3.1). Comparison of the corresponding genomic regions in S. 

lycopersicum and S. pennellii146,171 shows a 56 base pair (bp) deletion leading to a 

premature translational stop in the S. pennellii SYR1 homolog (Supplementary Fig. 

4.3.4a). The adjacent S. pennellii SYR2 gene contains rearrangements in the region 

immediately 5´ of the coding region, explaining the absence of this transcript in IL3-2 

and IL3-3 as observed in RNAseq data141, and in cDNA prepared from S. pennellii 

leaves (Supplementary Fig. 4.3.4b). 

A BLAST search for SYR-type genes in current databases shows that tomato, potato, 

eggplant and pepper all have homologs of both, SYR1 and SYR2 (Supplementary 

Fig.4.3.5).  Similar to the occurrence of prosystemin genes encoding the systemin 

signal  described earlier172,  the occurrence of SYR1 and SYR2 receptors seem to be 

restricted to the Solanoideae subfamily. In contrast, only single SYR-like genes seem 

present in representative species of the sister subfamily Nicotianoideae and in other 

higher plants. Although forming distinct groups, the SYR and SYR-like genes are close 

relatives of the PEPRs, receptor kinases which also recognize endogenous peptides 

as danger signal173,174.  

Leaves of potato and pepper respond to systemin much like tomato leaves 

(Supplementary Fig.4.3.6a). We cloned the SYR1 and SYR2 homologs of potato and 

pepper for expression and functional assessment in leaves of N. benthamiana. As 

observed for SYR1 from tomato, the SYR1 homologs of potato and pepper conferred 

high sensitivity to systemin with a ROS response triggered with an EC50 of ~30 pM 

(Supplementary Fig. 4.3.6b and c). Similarly, the SYR2 homologs of potato and pepper 

resembled SYR2 from tomato and significant ROS induction was only observed with 

concentrations of >10 nM systemin. Conservation of SYR1 and SYR2 pairs in these 

plants might hint at a role of SYR2 as low-affinity receptor for fine-tuning of systemin 

responses or, alternatively, at a role in the perception of a different, perhaps systemin-

related, ligand. Similarly, one might hypothesize that the SYR-like receptors occurring 

in many plants species might serve as receptors for endogenous signal peptides. 

Importantly, however, SYR1 has an unequivocal function as systemin receptor and 

SYR1 is sufficient to confer high sensitivity to systemin to cells of N. benthamiana and 

A. thaliana that contain no SYR1 or SYR2.  
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In order to test for direct interaction of systemin with the receptor candidates, systemin 

derivatives were labeled with an acridinium ester for sensitive detection via 

chemiluminescence153 or with biotin for detection via streptavidin, respectively. While 

previous work showed that modification of the N-terminus leads to strong reduction of 

biological activity, modification at the C-terminal end had less severe effects175,176. 

Compared to systemin, the two C-terminally modified peptides systemin-acri and 

systemin-biotin both showed somewhat reduced biological activity on SYR1 and SYR2 

(Supplementary Fig.4.3.7 and Table 4.3.1) but their specific binding to SYR1 could be 

readily detected (Fig. 4.3.2a). Systemin-acri shows binding to immunoprecipitates of 

SYR1 but not to immunoprecipitates of SYR2 or SR160/BRI1, respectively. The 

binding of the labeled systemin to SYR1 was competed in a concentration-dependent 

manner, reaching 50% inhibition (IC50) at ~6 nM with systemin (Fig. 4.3.2b, 

Supplementary Table 4.3.1). No competition of binding was observed with the 

structurally unrelated peptide AtPep1. In good agreement with their respective 

biological activity as weaker agonists or competitive antagonists of the systemin 

response175,176, the systemin derivatives systemin-Ala17, systemin-Ala13 and 

systemin1-14 competitively inhibited binding of systemin-acri (Fig. 4.3.2b, 

Supplementary Table 4.3.1). 

To examine the interaction of the receptor proteins with the ligand, the systemin-biotin 

derivative was used in affinity-crosslinking experiments in planta. N. benthamiana 

leaves expressing the GFP-tagged receptors were first incubated with the systemin-

biotin derivative, either alone or together with an excess of non-modified systemin, and, 

subsequently, with a chemical crosslinker. When analyzed for the presence of biotin, 

immunoprecipitates of SYR1 showed clear labeling which was absent in samples 

treated with an excess of non-modified systemin (Fig. 4.3.2c), indicating direct and 

specific interaction of systemin with SYR1. In contrast, specific crosslinking of 

systemin-biotin was not detectable under these conditions with either SYR2 or 

SR160/BRI1, respectively.  

Overall, affinity of SYR2 appeared to be too low for detection in binding assays with 

the compromised C-terminally modified systemin as a ligand. On the contrary, binding 

with SYR1 clearly demonstrates that this protein acts as a specific, high-affinity 

receptor for systemin.  
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Figure 4.3.2. SYR1 binds systemin with high affinity and specificity. a) Competitive binding assays with 

receptor proteins adsorbed to immunobeads via their GFP-tags. Specific binding is the difference 

between binding of 1 nM systemin-acri in the absence (total binding) and presence of 10 µM non-

modified systemin (nonspecific binding). Bars and error bars show mean ± SD of n = 3 replicates. b) 

Competitive binding assays with SYR1 on immunobeads and various concentrations of different 

peptides in duplicates as indicated. c) Affinity-crosslinking of systemin-biotin with receptor proteins in 

planta. Solubilized proteins were immunoprecipitated and analyzed for GFP-tagged (lower panel) and 

biotinylated proteins (upper panel). Data are representative for at least three independent experiments.  
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In order to study whether the high-affinity receptor SYR1 alone can restore systemin 

perception in tomato plants we produced lines of IL3-3 stably transformed with SYR1. Two 

such transgenic lines were tested and both responded to systemin like tomato wildtype plants, 

as exemplified by the induction of ethylene (Fig. 4.3.3a) and the induction of the proteinase 

inhibitor gene PIN1 (Fig. 4.3.3b). Thus, IL3-3 and these transgenic lines, differing only in the 

transgene SYR1, provide a suitable experimental model to study and revisit the physiological 

function of systemin perception. Systemin and its perception in tomato plants was originally 

implicated in local and systemic wound responses. However, we observed that mechanical 

wounding caused local and systemic induction of the PIN1 gene irrespective of the presence 

or absence of SYR1 (and SYR2) in the tomato and IL3-3 plants (Fig. 4.3.3c). These results 

are in line with reports which favor other long distance signals for systemic wound responses 

such as jasmonic acid, H2O2, hydraulic-changes or electric-waves177-182.  

Contribution to resistance against chewing insect larvae in tomato was another 

important function associated with the expression of the prosystemin gene in 

tomato183. We performed feeding assays, using larvae of the generalist herbivore 

Spodoptera littoralis. Larvae on IL3-3 plants gained significantly more mass compared 

with the ones that fed on tomato wildtype or IL3-3 plants complemented with SYR1 

(Fig. 4.3.3d), demonstrating that systemin perception contributes to resistance of 

tomato plants against insect herbivory. 

In conclusion, systemin perception in species of the Solanoideae subfamily depends 

on the presence of the SYR1/SYR2 pair of receptors. Whether SYR2 is a low affinity 

receptor or has a paralogous function as receptor for a different ligand remains to be 

studied. SYR1, however, acts as a high-affinity, bona fide systemin receptor. Our 

results further show that presence of a functional SYR1, while not the decisive factor 

for the wound response, plays an important role in resistance to herbivorous insects 

such as the generalist S. littoralis. The systemin receptor at hand will now allow for 

approaches to elucidate the physiological roles, the evolutionary origin and the 

adaptive value of this highly sensitive and specific receptor-ligand pair. 

 
 



51 
 

 
Figure 4.3.3. Systemin perception is not essential for wound responses but contributes significantly to 
resistance against herbivory by insect larvae of S. littoralis. a) and b) Expression of SYR1 in IL3-3 
restores induction of ethylene and expression of PIN1 to systemin. Expression levels are relative to the 
level of EF1α. Bars and error bars represent mean ±S.D. of n = 4 biological replicates. c) Local and 
systemic induction of PIN1 mRNA after wounding also occurs in the absence of SYR1. Leaves from 
control plants (c) and leaves from treated plants, separated into wounded leaves (w) and systemic 
leaves (s), respectively, were assayed for expression of PIN1 mRNA as in b). d) Weight of S. littoralis 
larvae after feeding for 7 days. Shaded boxes with horizontal lines indicate quartiles and medians, 
different letters statistical significance at the p < 0.01 level (T-test). Data from one representative 
experiment is shown; however, significant difference between IL3-3 and the lines with functional 
systemin perception was observed in 4 independent experiments with 10 plants per genotype and 3 
caterpillars per plant. n* indicates the number of larvae recovered and weighed at 7 d.  Data are 
representative for at least three independent experiments. 



52 
 

4.3.3 Methods  

Plant material and growth conditions 

Tomato (M82), potato (Solanum tuberosum L. cv. Désirée), hot pepper (Capsicum 

annuum cv CM334), and Nicotiana benthamiana plants were maintained in 

greenhouse with a 14-h photoperiod and a 25°C /19°C day/night program. 

Introgression lines obtained from crosses between Solanum lycopersicum cv M82 and 

Solanum pennellii140,141 were provided by the Tomato Genetics Resource Center (UC 

Davis; http://tgrc.ucdavis.edu/). Arabidopsis thaliana ecotype Columbia (Col-0) plants 

were grown at 22°C with an 8-hour photoperiod in growth chambers. 

Peptides 

Peptides were synthesized by standard FMOC technology or ordered from GenScript. 

Derivatization with acridinium ester or biotin was performed according to the method 

described before153. 

Bioassays with plant tissue or Arabidopsis protoplasts  

Ethylene and ROS measurements were conducted as described155, except for the 

substrate solution in the ROS burst assay, which contained 20 µM L-012 (Wako) and 

2 µg/ml horseradish peroxidase (Applichem). Transformation of Arabidopsis mesophyll 

protoplast and monitoring of the pFRK1::Luciferase reporter154 were done as 

described137. 

Treatment of tomato seedlings with peptides 

Tomato seedlings (~18 days after sowing (DAS)) were cut at their base and fed with 

100 nM systemin (or water as a control) via the transpiration stream for one hour. 

Plantlets were then transferred to water and leaves of 3 plants per replicate sample 

were analyzed after further incubation for 8 hours. 

Wounding assays 

Plantlets with two fully expanded leaves were used for experiments (~18 DAS). The 

three leaflets of one leaf were pinched with a hemostat twice across the midrib (time 

zero). Three hours later, the same leaflets were wounded once more. Wounded and 

systemic leaves (second leaf on the same seedling) and leaves from non-treated 

seedlings were analyzed for PIN1 mRNA 12 hours after the first wounding.  

http://tgrc.ucdavis.edu/
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Cloning of receptor candidates 

Receptor candidates were amplified from genomic DNA isolated from tomato (M82), 

pepper (CM334), or potato (Désirée), respectively, using Phusion Hot Start II DNA 

polymerase (Thermo Fisher Scientific) and gene specific primers indicated in 

Supplementary Table2. PCR products were first cloned into pENTR/D-TOPO 

(Invitrogen) and then integrated between the Cauliflower Mosaic Virus (CaMV) 35S 

promoter and a C-terminal GFP tag into pK7FWG2.0 (transient expression) or 

pB7FWG2.0 expression vectors (https://gateway.psb.ugent.be). All constructs were 

verified by Sanger sequencing. 

Plant Transformation 

Agrobacteria-mediated transient expression of receptor candidates in N. benthamiana 

was performed as described 155. Leaf pieces for ethylene and ROS assays were cut 1 

day after agro-infiltration, floated on water and used the following day. Plant material 

for binding assays was harvested 2 days after agro-infiltration. Stable transformation 

of the introgression line IL3-3 was conducted according to184. In brief, cotyledon 

segments of 10-day-old seedlings were co-cultivated for 2 days with A.tumefaciens 

strain GV3101 containing p35S::SYR1:GFP in pB7FWG2.0 with BASTA resistance. R 

Resistant plants were regenerated from calli and tested for segregation of resistance 

and systemin response. Homozygous progeny (T2) of lines 1 and 2, representing two 

independent transformation events, were selected for further experiments.  

Binding assays 

Binding with the acridinium-labeled peptide ligand and receptor proteins 

immunoadsorbed to anti-GFP beads was done as previously described137. For affinity-

crosslinking, N. benthamiana transiently expressing SYR1-GFP, SYR2-GFP or 

SR160-GFP under the 35S promoter were infiltrated with 10 nM systemin-biotin alone 

or 10 nM systemin-biotin together with 10 µM systemin for 2 min, followed by infiltration 

with 2 mM crosslinker EGS (ethylene glycol bis(succinimidyl succinate)) in 50 mM 

HEPES (pH 7.5). Leaf samples were harvested 30 min later and ground into fine power 

in liquid nitrogen. Solubilized proteins from 300 mg leaf material were 

immunoprecipitated using GFP-trap (Chromo Tek, IZB Martinsried, Germany) as 

described137. Protein blots were developed either with anti-GFP antibodies (Torrey 

Pines Biolabs) or a Streptavidin-alkaline phosphatase conjugate (Roche) for biotin 

detection. 

https://gateway.psb.ugent.be/
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RNA extraction, RT-PCR and qRT-PCR 

Total RNA extraction from tomato leaves was done with the RNeasy Plant mini Kit 

(Qiagen). After DNA digestion (DNase I, Thermo Fisher Scientific), total RNA was used 

as template to generate cDNA (First Strand cDNA Synthesis Kit, Thermo Fisher 

Scientific). Semi-quantitative reverse transcription (RT) PCR and real time qRT-PCR 

were performed with the primers listed in SupplementaryTable2 and levels of 

expression were expressed relative to EF1α used as an internal standard. 

Insect feeding assay 

First instar larvae of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) were 

prepared as described185. Larvae were placed on 4 weeks old plants (3 larvae per plant, 

~3 mg fresh weight each) and individual plants were contained within polyethylene 

bags. Larval weight was determined 7 days later.  
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4.3.4 Supplementary Data    

Supplementary Figure 4.3.1. Systemin-dependent induction of ethylene biosynthesis in introgression 

lines derived from a cross of cultivated (S. lycopersicum) and wild tomato (S. pennellii)140,141. Left panel: 

Ethylene biosynthesis (fold-induction over H2O controls) in leaf slices treated for 3 h with 100 nM 

systemin. Bars and error bars show fold-induction as mean ± S.D. of n = 3 replicates. Ethylene 

production in controls treated with H2O ranged from 0.11 to 0.6 nmol C2H4 per g of fresh weight. Right 

panel: Schematic representation of the introgressions of the genomic parts of S. pennellii in 

chromosome 3 of S. lycopersicum as described in the DRYAD repository 

(http://dx.doi.org/10.5061/dryad.rm5v5). The introgressions common to IL3-2 and and IL3-3   (d-3D, red 

bar) comprise ~1200 annotated genes.  

http://dx.doi.org/10.5061/dryad.rm5v5
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Supplementary Figure 4.3.2. Comparison of the primary structures of the LRR receptor kinases encoded 

by Solyc03g082450 (SYR2) and Solyc03g082470 (SYR1). Amino acids in the LRR domain predicted to 

form the solenoid structure according to the 24 aa plant LRR consensus 

xLxxLxLxxNxLS/TGxIPxxLGxLx (with other non-hydrophobic aa occasionally substituting for L) are 

indicated with white letters on black underlay. Single letters (green underlay) indicate positions with 

identical amino acids, two letters separated by “/” indicate divergent aa residues, respectively. SP, signal 

peptide for export via ER; LRR-Nt and LRR-Ct, domains with predicted C-C disulfide bridges that form 

N- and C-terminal ends of the LRR domain; oJM, outer juxtamembrane domain; TM, transmembrane 

domain; iJM, inner juxtamembrane domain. 
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Supplementary Figure 4.3.3. Expression controls for receptor constructs expressed in N. benthamiana 

leaves (a and b), in A. thaliana protoplasts (c) or in stably transformed IL3-3 plants (d). Western blots 

were developed with antibodies against the GFP-tag present on the receptor constructs. Ponceau-S 

staining shows equal loading of proteins on blots with crude extracts (a, c and d).  
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Supplementary Figure 4.3.4. S. pennellii lacks responsiveness to systemin, indicating a lack of the SYR1 

and SYR2 receptors. a) Schematic representation of the region in chromosome 3 encoding SYR1 and 

SYR2 in S. lycopersicum and S. pennellii. In comparison to Solyc03g082470, the Sopen03g022190 

gene has a 56 bp deletion that leads to a frameshift and premature stop of the translation of SYR1. In 

comparison to Solyc03g082450, the coding region of Sopen03g022170 shows little alteration but its 

5´upstream promoter region exhibits major rearrangements. b) RT-PCR of SYR2 using a primer pair 

(indicated by half arrows) amplifying 144 bp of the cDNA spanning the small intron in the 3´region of 

SYR2 shows the presence of SYR2 mRNA in S. lycopersicum but not in S. pennellii. 
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Supplementary Figure 4.3.5. Phylogenetic tree (Cobalt) established with sequences most closely related 

to SYR1 in different plant species. Sequences were obtained by BLAST searches with SYR1 in public 

databases (PubMed/NCBI, Solgenomics). ** sequences that are annotated as PEPR or PEPR-like in 

the databases that are better grouped as SYR and SYR-likes. 
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Supplemental Figure 4.3.6. Systemin 

perception in potato and pepper by the 

SYR1 and SYR2 homologs of potato 

(S. tuberosum) and pepper (Capsicum 

annuum). a) Non-transformed leaves 

of potato and pepper respond with 

ROS production to treatment with 

(tomato-)systemin. b) and c) Dose-

dependent systemin-induced 

production of ROS as integral over 30 

min in N. benthamiana leaf pieces 

expressing StSYR1 or StSYR2 and 

CaSYR1 or CaSYR2, respectively. 

Values and bars indicate mean ± S.D. 

of n = 6 replicates. 
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Supplementary Figure 4.3.7. C-terminal modifications of systemin affect their efficiency to stimulate 

responses via SYR1 and SYR2. a) and b) ROS inducing activity of systemin analogs tested with N. 

benthamiana transiently expressing SYR1 or SYR2, respectively. Total ROS is shown as integral over 

30 min. Values and bars indicate mean ± S.D. of n = 6 replicates.  
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Supplementary Table 4.3.1. Sequence and specific activities of peptides used in this study. EC50 values 

indicate concentrations required for induction of half maximal ROS production in N. benthamiana leaves 

expressing either SYR1 or SYR2, respectively. IC50 values indicate the concentrations of peptide 

required to reduce binding of systemin-acri to SYR1 by 50% as deduced from binding competition 

experiments shown in Fig. 2B. 
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Supplementary Table 4.3.2. List of primers. 
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4.4 General discussion 

 

Making use of natural variation of molecular pattern sensing in tomato species and a 

collection of  tomato introgression lines, we identified two LRR-RKs as novel PRRs, 

namely CORE as the receptor for bacterial CSPs and SYR1 as the receptor for 

systemin. Extopic expression of CORE in plants insensitive to csp22 like 

N.benthamiana, Arabidopsis and the tomato IL3-2 and IL3-3 is sufficient to confer CSP 

sensitivity that matches the one observed in tomato (Fig. 4.2.2, Fig 4.2.5 and Supp. 

Fig.4.1.1). Similarly, expression of SYR1 alone is sufficient to confer systemin 

sensitivity to the insensitive N.benthamiana, Arabidopsis and the tomato IL3-3 (Fig. 

4.3.1 and Fig. 4.3.3). In addition, CORE and SYR1 could be demonstrated to bind their 

respective ligands with high specificity and affinity (Fig. 4.2.4 and Fig. 4.3.2), matching 

the sensitivity observed in tomato98,114. SYR2, a close homolog of SYR1, is also 

functional when expressed in insensitive plants, yet no obeservable sytemin binding 

activity can be detected. Thus, SYR2 is only taken as a putative systemin receptor. 

Interestingly, both CORE and SYR1 are the second receptors reported for their 

respective ligands. NbCSPR, a LRR-RLP shares no obvious similarity with CORE, was 

rescently reported to be required for CSP responsiveness in N. benthamiana and able 

to confer CSP responsiveness to Arabidopsis136. Similarly, SR160/SlBRI1, a receptor 

protein distinct from SYR1, was previously implicated to recognize systemin and 

mediate systemin triggered immunity100,167. However, in our hands, no binding activity 

of NbCSPR and SR160 with their respective ligands could be observed (Fig. 4.2.4 and 

Fig. 4.3.2). Futhermore, we found that NbCSPR is neither sufficient nor essential for 

csp22 mediated signaling (Fig. 4.2.5 and Supp. Fig. 4.2.4). We also found that SR160 

is not sufficient for systemin sensing (Fig. 4.3.1). Based on these observation, we 

would rather conclude that NbCSPR is not CSP receptor and SR160 is not systemin 

receptor.  

What defines a genuine receptor? By definition, a receptor is the site that specifically 

interacts and binds a signal and transduces this signal into a physiological response. 

However, in addition to receptors, co-receptors or other components involved in ligand 

processing can also associate with the ligands, as exemplified by TOO MANY 

MOUTHS, a co-receptor with binding affinity for the EPF peptide35. It is also possible 

that proteins associated with receptor complexes interact with a ligand indirectly. In 
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either case, binding affinity, specificity and the capability to transmit signals should be 

checked to determine the role of ligand binding proteins. EFR, one of the best studied 

receptor, may serve as a good example of genuine receptor. EFR binds its ligand elf18 

with high specificity and affinity, with a Kd of 0.8 nM52, matching the sensitivity 

obeserved in Arabidopsis plants51. Furthermore, heterologous expression of EFR 

alone in elf18 nonresponsive rice can confer full elf18 sensitivity186. Like EFR, CORE 

and SYR1 clearly fulfil these criteria and act as genuine receptors for their respective 

ligands. 

Sensing the same ligand via two different receptors has been reported beofore. In 

Arabidopsis, CERK1 and LYK5, two distinct LysM-RKs, have both been reported to 

bind chitin albeit with clearly different affinities89-91. AtCERK1 and AtLYK5 are both 

invloved in chitin induced immunity. Arabidopsis cerk1 mutant is completely insensitve 

to chitin89,91, while lyk5 mutant has a severly impaired chitin response91. Interestingly, 

LYK5 associates with CERK1 in a chitin-dependent manner91. It seems that chitin 

perception is regulated by a complex including CERK1 and LYK5. It is also possible 

that CSP perception is regulated by a receptor complex including CORE, BAK1(Figure 

4.2.3) and other components. However, NbCSPR is not likely one of them, since we 

did not find NbCSPR in a protein complex pulled down via NbCORE. The role of 

SR160/BRI1 as BL receptor has been well examined7,8,102,168. Although we conclude it 

is not the systemin receptor, we do not exclude its possible function in immunity. 

The observation that SYR2, a SYR1 homolog without clear systemin binding activity, 

can also confer systemin sensitivity (Fig 4.3.1 and Fig 4.3.2), again shows the 

complexity and  redundancy of signal sensing by cell surface receptors. Similar cases 

have been obeserved before. CLV2, a LRR-RLP with no obvious CLV3 binding 

activity187, can transmit CLV3 signal in parallell to CLV124. AtLYK4, in addition to 

AtCERK1, is invloved in chitin signaling, athough it does not bind chitin directly91. Some 

other receptors can function redundantly both in ligand binding and signal transduction, 

and they are very often close homologs. Both PEPR1 and PEPR2 can bind Pep1 and 

Pep2 to transmit signals79,80, although PEPR1 alone is responsible for sensing Pep3-

779. Other plant peptides including PSK15,16, CEPs65 and IDA33,34 are also perceived by 

mutiple receptors.  

Identification of novel PRRs like CORE further contributes to the source of new disease 

resistance traits for crop breeding. Several studies have demonstrated that interfamily 
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transfer of a PRR can confer responsiveness to an otherwise inactive MAMP/DAMP188. 

Heterologous expression of AtEFR leads to increased resistance to Ralstonia 

solanacearum and Xanthomonas perforans in tomato189, enhanced bacterial leaf blight 

and bacterial brown stripe resistance in rice and enhanced bacterial halo blight 

resistance in wheat186,190,191. In our hands, expression of tomato CORE can confer 

Arabidopsis increased resistance to Pseudomonas syringae pv. tomato DC 3000 (Fig. 

4.2.6), demonstrating its biotechnological potential in generating bacterial disease 

resistant crops. 

The identification of SYR1 answers the long-standing question of how systemin is 

perceived. With the bona fide receptor at hand, more research can now be conducted 

to explore the elements and physiological function of systemin perception. Many 

systemin triggered immune responses are same as those observed in PTI. Study of 

elements involved in systemin signaling pathways will also provide insights into 

understanding factors that determine the generality and specificity of plant innate 

immunity. Since the discovery of systemin, many more bioactive plant peptides have 

been characterized as signals, yet systemin still stays as an outlier, as it exists solely 

in the Solanoideae subfamily. Given the fact that many other bioactive peptides exist 

as multi-copy families, searching for systemin-like peptides and dissecting their 

mechanism of expression, processing, recognition and regulation will extend our 

knowledge about evolution of plant peptide signaling. 
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6 Abbreviations 
 

BAK1 Brassinosteroid insensitive 1-Associated receptor Kinase 1 

BAM Barely Any Meristem  

BL Brassinolide 

BRI1 Brassinosteroid Insensitive 1  

BUPS Buddha’s Paper Seal 

CBEL Cellulose-Binding Elicitor Lectin  

CEBiP Chitin-Elicitor Binding Protein  

CEP1 C-terminally Encoded Peptide 1  

CEPR C-terminally Encoded Peptide Receptor  

CERK1 Chitin Elicitor Receptor Kinase 1 

CIF Casparian strip Integrity Factors 

CLEL CLAVATA3/Embryo surrounding region-related (CLE)-Like 

CLV1 CLAVATA1 

CLV2 CLAVATA2 

CLV3 CLAVATA3  

CORE Cold shock protein Receptor 

CRISPR Clustered Regularly Interspaced Short Palindromic Repeats  

CSP Cold Shock Protein 

CSPR Receptor-like protein Required for CSP22 Responsiveness 

CuRe1 Cuscuta Receptor 1 

DAMP Damage-Associated Molecular Pattern  

DORN1 Does not Respond to Nucleotides 1  

eATP Extracellular ATP  

EFR EF-Tu Receptor 

EF-Tu ElongationFactor Thermo unstable 

EGF Epidermal Growth Factor 

EIX Ethylene-Inducing Xylanase  

eMax enigmatic MAMP of Xanthomonas 
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EMS Ethyl methanesulfonate 

EPF Epidermal Patterning Factor 

ER ERECTA 

ERL1 ERECTA-Like1 

FLS2 Flagellin Sensing 2 

FLS3 Flagellin-Sensing 3 

GLV GOLVEN 

GSO GASSHO 

HAE HAESA 

HAMP Herbivore-Associated Molecular Pattern 

HSL2 HAESA-LIKE2 

HypSys Hydroxyproline-rich Systemins  

IDA Infloresence Deficient in Abscission 

LPS Lipooligosaccharide 

LRR Leucine-Rich-Repeat 

LYK LysM domain–containing receptor-like Kinases 

LYM Lysin Motif domain protein 

LYP Lysin motif-containing Protein 

LysM Lysin-Motif 

MAMP Microbe-Associated Molecule Pattern  

MAPK Mitogen-Activated Protein Kinase 

MDIS 1 Male Discoverer1  

MIK MDIS1-Interacting Receptor Like Kinase 

NAG N-acetyl-D-glucosamine  

NFP Nod-factor Perception 

NFR Nod-factor Receptor  

NLP Necrosis and ethylene-inducing peptide 1-Like Protein 

Nod Nodulation 

OG Oligogalacturonide 

PAMP Pathogen-Associated Molecular Pattern 
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Pep Plant elicitor peptide  

PEPR Plant Elicitor PeptideReceptor 

PGN Peptidoglycan 

PIP PAMP-Induced secreted Peptide  

PRR Pattern Recognition Receptor 

PSK Phytosulfokine 

PSKR Phytosulfokine Receptor 

PSY1 Plant Peptide Containing Sulfated Tyrosine 1 

PSY1R Plant Peptide Containing Sulfated Tyrosine 1 Receptor 

PTI Pattern Triggered Immunity 

PXY Phloem intercalated with Xylem 

RALF Rapid Alkalinization Factor 

RBPG1 Responsiveness to Botrytis Polygalacturonases1  

ReMax Receptor of eMax 

RGF Root meristem Growth Factor 

RGFR Root meristem Growth Factor Receptor 

RK Receptor Kinase 

RLP Receptor Like Protein 

ROS Reactive Oxygen Species  

RPK2 Receptor-like Protein Kinase 2 

SERK Somatic Embryogenesis Receptor Kinase 

SGN3 SCHENGEN3 

SYR Systemin Receptor 

TDIF Tracheary element Differentiation Inhibitory Factor 

T-DNA  Transfer DNA 

TDR TDIF Receptor 

WAK Wall-Associated Kinase 

Xoo Xanthomonas oryzae pv. oryzae  

XPS1 Xanthine/uracil Permease Sensing 1 
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