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1. Summary 

1.1 Abstract 

Freezing phenomena including freezing of gait (FOG) highly disturb the quality of life in patients with 

Parkinson’s disease (PD). Conventional therapy, like L-DOPA and deep brain stimulation of the 

subthalamic nucleus (STN-DBS) cannot satisfactorily relieve these symptoms, although it ameliorates 

most motor symptoms like rigidity and bradykinesia. These motor symptoms are primarily caused by 

degeneration of dopaminergic cells in the substantia nigra, which induces pathologically increased 

inhibitory output from the basal ganglia. STN-DBS may reduce the excessive basal ganglia output, 

however the working mechanism of STN-DBS and the influence on the neuromuscular network 

effects need further elucidation. In this context, we found that STN-DBS could lower pathologically 

increased low-frequency intermuscular synchronization during continuous finger tapping. 

Furthermore, STN-DBS strengthened the corticospinal connection during continuous finger tapping, 

displayed by the increased corticomuscular coherence in the tapping frequency.  

With respect to freezing phenomena, it is necessary to further elucidate the pathophysiological 

mechanism. We therefore introduced a dual task to trigger upper limb freezing (ULF). Offline we 

defined criteria to detect freezing episodes from the biomechanical recording. We observed that 

during ULF cortical activity was increased in the alpha band compared to continuous finger tapping. 

During ULF, this increased alpha cortical activity started over the contralateral sensorimotor cortex 

and spread to the contralateral frontal cortex and the ipsilateral parietal cortex during the freezing 

episode. Furthermore, we observed that a higher number of ULF episodes was associated with an 

increased cortico-cortical beta synchronization. These findings ‒ increased alpha activity and 

increased beta synchronization ‒ could probably function as biomarker to predict freezing 

phenomena. This will enable us to decipher pathophysiological mechanisms of freezing phenomena 

further. Consequently, using this knowledge may improve therapy to meet the therapeutic need. 
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1.2 Zusammenfassung 

‘Freezing’-Phänomene einschließlich Gang ‘Freezing’ (FOG) stören die Lebensqualität erheblich bei 

Patienten mit der Parkinson-Krankheit (PD). Mit konventionellen Therapien wie L-DOPA und die Tiefe 

Hirnstimulation des Nucleus Subthalamicus (STN-DBS) sind ‘Freezing’-Phänomene nur eingeschränkt 

behandelbar, obwohl sie die meisten Motorsymptome wie Rigor und Bradykinesie zufriedenstellend 

verbessern. Diese motorischen Symptome werden vor allem durch Degeneration der dopaminergen 

Zellen in der Substantia nigra verursacht, die eine pathologisch erhöhte Hemmung der Basalganglien 

induziert. STN-DBS kann den exzessiven Basalganglienausstoß verringern, jedoch sind der genaue 

Wirkmechanismus von STN-DBS und der Einfluss auf die neuromuskulären Netzwerkeffekte 

unvollständig charakterisiert. In diesem Zusammenhang stellten wir fest, dass STN-DBS die 

pathologisch verstärkte niederfrequente intermuskuläre Synchronisation während kontinuierlichem 

Finger-Tapping verringert. Darüber hinaus konnte STN-DBS die kortikospinale Synchronisation 

während kontinuierlichem Finger-Tapping stärken. Dies war anhand einer erhöhten 

kortikomuskulären Kohärenz in der Tappingfrequenz ersichtlich.  

Hinsichtlich der ‘Freezing’-Phänomene ist es notwendig, den pathophysiologischen Mechanismus 

aufzuklären. Deswegen führten wir eine sogenannte Dual-Tasking-Aufgabe ein, um die Anzahl der 

‘Freezing’-Phänomene bei Bewegungen der obere Extremität (ULF) zu steigern. Offline haben wir 

Kriterien definiert, um die ULF aus der biomechanischen Aufzeichnung zu detektieren. Wir 

beobachteten, dass während der ULF die kortikale Aktivität im Alpha-Band gegenüber dem 

kontinuierlichen Finger-Tapping erhöht war. Diese erhöhte alpha-kortikale Aktivität nahm über dem 

kontralateralen sensomotorischen Kortex ihren Ausgang und breitete sich während der ULF zum 

kontralateralen frontalen Kortex und ipsilateralen parietalen Kortex aus. Außerdem beobachteten 

wir, dass eine höhere Anzahl von ULF-Episoden mit einer erhöhten kortiko-kortikalen Beta-

Synchronisation einherging. Diese spektralen Marker ‒ erhöhte Alpha-Aktivität und erhöhte kortiko-

kortikale Beta-Synchronisation ‒ könnten möglicherweise als Biomarker fungieren, um ULF 

vorherzusagen. Dies ermöglicht es uns, pathophysiologische Mechanismen der ‘Freezing’-
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Phänomene weiter zu entschlüsseln. Folglich können wir mit diesem Wissen die Therapie verbessern, 

um den therapeutischen Bedarf zu decken.   
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2. Synopsis 

2.1. Parkinson’s disease 

2.1.1 Overview 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s 

disease (de Lau and Breteler, 2006). It affects about 1% of the people above age 65 worldwide. In 

Europe, the approximate incidence rate is 5/100,000 per year (Von Campenhausen et al., 2005). 

However, PD becomes increasingly prevalent with age. In this respect, the prevalence rises from 

113/100,000 with age 50-59 years to 2953/100,000 with age 80+ years with a slightly higher 

prevalence of PD in men than in woman (Pringsheim et al., 2014; Taylor et al., 2007). Research to 

improve both the pathophysiological understanding of PD and therapy is important, because the 

aging world population increases the social and economic burden.  

The etiology of PD remains largely unknown, however the genetic background is partly established. 

Approximately 5-10 % of the cases can be explained by monogenic autosomal dominant or 

autosomal recessive inheritance (Kalinderi et al., 2016; Sharma et al., 2012; Schiesling et al., 2008). 

Monogenic disease is often characterized by an early onset (between 20 and 50 years) and a milder 

progression, especially in autosomal recessive inheritance. Nevertheless, the majority of the PD 

patients are sporadic, probably reflecting complex interaction of multiple genetic and environmental 

factors. These sporadic PD patients yield high clinical heterogeneity represented by the multiple 

genetic mutations discovered that may increase the susceptibility to PD (Schulte and Gasser, 2011). 

The most robust and consistently replicated associations have been found for α-synuclein, MAPT, 

LRRK2, and GBA (Kalinderi et al., 2016).  

PD is characterized by four cardinal motor symptoms: tremor at rest (frequency 4-6 Hz), rigidity, 

bradykinesia (or akinesia), and postural instability (Jankovic, 2008). Rest tremor typically disappears 

during movement or sleep. Rigidity is characterized as resistance and stiffness against movement of a 

joint. Bradykinesia is often the most prominent symptom and refers to slowness of movements. The 
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fourth cardinal symptom, postural instability, typically occurs in a later stage of the disease and 

causes impaired balance which may lead to falls. Other classic features of PD are a flexed posture and 

freezing of gait (FOG). Non-motor symptoms are more diverse among PD patients, although the most 

common are autonomic dysfunction, neuropsychiatric disorders, and sensory and sleep 

abnormalities (Chaudhuri and Schapira, 2009). 

 

2.1.2 Pathophysiology and therapy 

PD relates to degeneration of dopamine neurons in the substantia nigra. The substantia nigra is part 

of the basal ganglia, a diverse set of nuclei that amongst others regulate upper motor neuron circuits 

to initiate or suppress movements. Within the basal ganglia, a dopaminergic nigrostriatal pathway 

projects from the substantia nigra pars compacta to the striatum (consisting of the caudate nucleus 

and putamen), that controls a motor loop of neurons feeding forward to the motor cortex (Fitzgerald 

et al., 2007a). The basal ganglia initiate movements and suppress unwanted movements via the 

direct and indirect pathway within the basal ganglia, which are in net effect excitatory (bearing 

dopamine-1 receptors) or inhibitory (bearing dopamine-2 receptors), respectively. In PD, the loss of 

dopamine may lead to an imbalance of the direct and indirect pathway interplay, with a 

preponderance of indirect pathway activation (Obeso et al., 2008).  The tonically active substantia 

nigra pars compacta loses activity and this attenuates the tonic facilitation of the D1 receptors and 

reduces the tonic inhibition of the D2 receptors. Thereby, the direct pathway is disengaged, the 

indirect pathway is activated by default (Figure 1). This automatic engagement of the indirect 

pathway disinhibits neurons of the subthalamic nucleus (STN) which increases the inhibition from the 

globus pallidus interna to the thalamocortical pathway, decreasing the thalamocortical motor 

output. 
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Figure 1 Model of the basal ganglia motor network in healthy subjects (A) and in PD (B) by degeneration of the 

dopamine neurons in the SNc. 

Abbreviations: GPe = Globus pallidus, external segment; STN = Subthalamic nucleus; GPi = Globus pallidus, 

internal segment; SNr = Substantia nigra pars reticulata; SNc = Substantia nigra pars compacta; PPN = 

pedunculopontine nucleus (Krack et al., 2010; Purves et al., 2008). 

 

It is thought that PD originates from a progressive failure of dopaminergic transmission. It is 

estimated that already 60% percent of the neurons in the substantia nigra pars compacta are lost 

when the first motor symptoms appear (Dauer and Przedborski, 2003). Although the motor 

symptoms of PD suggest a sole brain disease, there is evidence that pathological changes start in the 

olfactory bulb and enteric nerve plexus and then transfers via the dorsal motor nucleus of the vagus 

nerve to the lower brain stem and finally the midbrain (Hawkes et al., 2007). This process has been 

divided in six stages and the starting olfactory or enteric origin would elucidate the pre-symptomatic 

non-motor symptoms, such as olfactory dysfunction and gastro-intestinal disorders (Braak et al., 

2003; Rey et al., 2016). Moreover, emerging evidence point to additional neurodegeneration of 

various non-dopaminergic neurotransmitter systems (Stayte and Vissel, 2014).  
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Hitherto, the therapy of PD consists of symptomatic treatment strategies and modification of the 

disease course remains unachieved. Although progress has been made in symptomatic treatment, L-

DOPA still controls the symptoms most effectively (Jankovic and Aguilar, 2008). L-DOPA is a precursor 

of dopamine and can pass the blood-brain barrier, unlike dopamine itself. In addition, dopamine 

agonist, catechol-o-methyl-transferase inhibitors and non-dopaminergic agents can relieve the 

symptoms. At young age, dopamine agonists are often preferred, because a long-term use of L-DOPA 

tends to increase the incidence of motor fluctuations including dyskinesia (Jankovic and Stacy, 2007; 

Marsden, 1994). L-DOPA particularly treats bradykinesia. In the more advanced disease stages, the 

therapeutic window becomes smaller, as is apparent by motor fluctuations including dyskinesia 

(Jankovic, 2005).  

Therefore, in intermediate disease stages dominated by motor fluctuations, high frequency 

stimulation of the STN can stabilize motor symptom control and quality of life (Deuschl et al., 2006; 

Schuepbach et al., 2013). Deep brain stimulation (DBS) of the STN ameliorates bradykinesia, tremor, 

and rigidity as well as motor fluctuations (Kleiner-Fisman et al., 2006) and, thus, enormously 

improves the quality of life (Deuschl et al., 2006). 

 

2.1.3 Mechanisms of subthalamic deep brain stimulation 

DBS was first introduced in 1987 by implanting an electrode in the thalamic nucleus ventralis 

intermedius to suppress tremor (Benabid et al., 1987). In 1993, a PD patient was implanted in the 

STN for the first time (Pollak et al., 1993). There is an ongoing debate on the presumably multifold 

working mechanisms of DBS. The former invasive effective treatment therapy for PD was functional 

ablation. Since DBS mimics the effects of functional ablation, the hypothesis put forward that DBS 

inhibits the local neurons around the active contact(s) of the electrode (Agnesi et al., 2013). 

However, some neurons show higher firing rates in direct surrounding of the electrode and the 

output of the stimulated nucleus is not decreased (Okun, 2012). Indeed, high frequency stimulation 
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of the STN activates the axonal output of the nucleus, such that the globus pallidus externus and 

internus exhibit increased firing rates time-locked to the stimulation pulse train (Johnson et al., 

2008). Furthermore, DBS has not only a local effect, but it affects the whole basal ganglia-thalamo-

cortical network. The inhibition of the STN overactivity may strengthen the cortical control and 

thereby improve motor function (Kühn et al., 2008; Salenius et al., 2002; Weiss et al., 2012). 

Overactivity of the STN involves motor impairment caused by inhibited motor cortical activation 

(Devos et al., 2004). The local field potential of the STN exhibit pathophysiological increased beta 

activity during overactivity, which can be reduced by movement, L-DOPA, or STN-DBS (Brown et al., 

2001; Giannicola et al., 2010; Kuhn et al., 2004). Furthermore, this reduction is associated with 

clinical improvement (Kühn et al., 2008). 

Also, in the cortex we observed a decreased beta cortico-cortical synchronization with therapy and 

this was associated with motor improvement (Findings can be found in chapter 5.2: Weiss et al., 

2015: Subthalamic stimulation modulates cortical motor network activity and synchronization in 

Parkinson's disease). Cortico-cortical synchronization can be computed from a non-invasive 

multichannel electroencephalography (EEG). EEG is characterized by its sinusoidal waveforms, which 

can be divided in different frequency bands. These oscillations are measured in microvolt and is the 

additive effect of interactive cortical pyramidal neurons arranged in neighboring cortical cell 

columns. These interactions cause current flowing and EEG measures the current of the extracellular 

space (Fitzgerald et al., 2007b).  

Cortico-cortical synchronization is a measure of neuronal synchronization and is caused by 

communication of different brain areas. These local neuron ensembles integrate complex 

information that proved useful for neuronal processing and integration.  

Using EEG and electromyographic recordings we observed pathophysiological neuromuscular 

correlates modulated by STN-DBS in PD patients. Therefore, we measured PD patients with the STN-

DBS turned ‘On’ and ‘Off’, as well as age- and gender matched healthy controls during the 
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performance of finger tapping of the right index finger (Findings can be found in chapter 5.3: 

Scholten et al., 2016: Neuromuscular correlates of subthalamic stimulation and upper limb freezing 

in Parkinson’s disease). We observed pathologically increased low frequency intermuscular 

synchronization between the agonist and antagonist muscle in PD patients ‘Off’ stimulation and this 

was lowered by STN-DBS. A high intermuscular synchronization might reflect common supraspinal 

input to the muscles. However, corticomuscular coherence was absent in this low frequency range 

excluding the cortex as direct possible supraspinal generator. Alternatively, spinal motor neurons 

might receive subcortical inputs conveying pyramidal motor output, e.g. through the nigro-reticulo-

spinal pathway. This nigro-reticulo-spinal pathway can be influenced by dopaminergic medication 

(Delwaide et al., 1993) and STN-DBS (Pötter-Nerger et al., 2008), which may explain the decrease of 

intermuscular coherence when the STN-DBS was turned on.  

Another interesting finding was the depressed corticomuscular coherence around the individual 

tapping frequency in PD patients as compared to healthy controls. Here, STN-DBS could enhance the 

corticomuscular coherence towards the level observed in healthy controls. Increased 

corticomuscular coherence indicates increased corticospinal contribution to spinal motor output, i.e. 

STN-DBS strengthened motor integration upon the corticospinal pathway. This is plausible, because 

STN-DBS inhibits the overactivity of the STN, thereby enhancing the activity in the STN-thalamo-

cortical pathway (Limousin et al., 1997). 

  



13 
 

2.2. Freezing phenomena 

Festination of gait, often a precursor of FOG, was described for the first time by James Parkinson in 

1817 in his work ‘shaking palsy’: ‘…a propensity to bend the trunk forwards, and to pass from a 

walking to a running pace…’ (Parkinson, 2002). In 1877, Charcot is the first to describe festination at 

gait initiation, although the description is very terse: ‘…this irresistible tendency to adopt a running 

pace depend exclusively on the centre of gravity being displayed forward by the inclination of the 

head and body. These are not constant and necessary phenomena; they are even frequently enough 

absent…’ (Charcot, 1877). Already in 1954, it was recognized that freezing phenomena are not 

restricted to gait: Schwab described the occurrence of what he termed ‘motor blocks’ in the upper 

limb, especially when accompanied by a dual task (Schwab et al., 1954). In 1973, the freezing 

phenomenon itself was described by Andrews, associating it with a form of dystonia including co-

contraction of the agonist and antagonist (Andrews, 1973). 

Since then not many reports referred to freezing. Only in the last 15 years a growing interest in 

freezing phenomena and its underlying pathophysiology emerged. Freezing phenomena are 

characterized by an episodic inability to produce effective movement during the initiation or 

repetition of a movement. In FOG, patients report about their feet like glued on the ground, making 

it impossible to move forward effectively. Such episodes are characterized by a combination of 

frequency increment and amplitude decrease during a repetitive movement, such as walking in the 

so-called ‘trembling-in-place-like freezing’. They are not restricted to idiopathic PD, but can also be 

recognized in atypical Parkinsonism like progressive supranuclear palsy and multisystem atrophy, or 

in focal lesions of specific brain structures such as brainstem, basal ganglia, or the frontal lobe (Nutt 

et al., 2011). 

FOG is typically more preponderant during restriction of space, such as in turning or in approaching 

an object or a narrow doorway. In addition, FOG can be triggered by increased cognitive load like 

dual tasking. It can often be prevented by sensory triggers, such as white stripes on the floor or an 

acoustic signal. In general, divided attention triggers FOG and focused attention on gait can alleviate 
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FOG (Bloem et al., 2004; Rubinstein et al., 2002). Due to its emergence in many common daily life 

activities, FOG interferes massively with the patients’ mobility and therefore deteriorates the 

patient’s quality of life (Moore et al., 2007).  

Many PD patients experience freezing and about 38% suffer regularly from FOG (Perez-Lloret et al., 

2014). As PD progresses, FOG is experienced more often. This aligns to decreased quality of life in 

patients suffering from FOG (Perez-Lloret et al., 2014). FOG is one of the main reasons for falls, and 

can be explained by the fact that the feet stuck while the center of gravity proceeds forwards at the 

same time. In addition, most of the patients suffering from FOG have concomitant balance problems 

as further mechanism behind falls (Bloem et al., 2004).  

In the literature, a clinical working definition was proposed to capture FOG: it refers to ‘an episodic 

inability to generate effective stepping in the absence of any known cause other than Parkinsonism 

or higher-level gait disorders. It is most commonly experienced during turning and step initiation, but 

also when faced with spatial constraint, stress and distraction. Focused attention and external stimuli 

(cues) can overcome the episode’ (Giladi and Nieuwboer, 2008; Nutt et al., 2011). Freezing 

phenomena typically last for several seconds but rarely last longer than thirty seconds. Freezing is 

generally categorized into at least three common phenomenologies: i) complete motor block also 

called ‘akinesia’, ii) trembling movement of the leg on the place, and iii) trembling in place with 

minimal forward progression (Schaafsma et al., 2003).  

 

2.2.1 Physiology of gait 

Most of the knowledge about the hierarchical networks involved in the physiological control of gait 

was obtained from animal studies, mainly in the cat. Gait is initiated by either volitional processing in 

the cerebral cortex or emotional stimuli in the limbic system. After initiation, automatic processes in 

the cerebellum, basal ganglia, and brainstem accompany the initiated locomotion by projecting via 

descending pathways to the spinal cord in order to control posture appropriately (Takakusaki et al., 
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2008). Animal studies showed that neural networks in the spinal cord can generate rhythmic limb 

movements when externally stimulated (Mori, 1987). These central pattern generators consist of 

organized groups of interneurons (Hagglund et al., 2010). Human beings exhibit also central pattern 

generators, as shown by complete paraplegic patients. They demonstrate a patterned, locomotor-

like activity when stimulating the lumbosacral spinal cord (Dimitrijevic et al., 1998). The 

mesencephalic locomotor region (MLR) located in the midbrain of the brainstem projects via the 

medial reticular formation to the spinal locomotor system (Shumway-Cook and Woollacott, 2007) 

and is considered as the main locomotor center. It receives excitatory input from the cerebral cortex 

(mainly supplemental motor area and premotor cortex), limbic system, and cerebellum, as well as 

inhibitory input from the basal ganglia (Takakusaki, 2013). Predictive modulation of the step cycle is 

controlled by the cerebellum, which receives proprioceptive information via the spinocerebellar tract 

from peripheral nerves, muscles, joints, and skin.  

 

2.2.2 Gait in Parkinson’s disease 

In contrast to other cardinal symptoms of PD, gait problems and postural instability respond poorly 

to dopaminergic medication, particularly in advanced disease stages. In the early disease stage 

dopaminergic medication can improve gait by increasing the stride length and stride velocity (Blin et 

al., 1991). However, as disease progresses, dopaminergic medication often fails to improve gait 

(Grabli et al., 2012) and this strengthens the view that the pathophysiology of PD also involves non-

dopaminergic networks. Candidates are the cholinergic and glutamatergic networks within the MLR, 

which are located in the brainstem. The increased output from the main basal ganglia output centers 

in PD suppresses the activity in the MLR and pedunculopontine nucleus (PPN) within the brainstem. 

This suppresses locomotion and increases the postural muscle tone (Takakusaki et al., 2003, 2011). 

Furthermore, a cholinergic lesion in the PPN of healthy monkeys caused a reduction of the step 

length and step velocity during locomotion. In PD, PPN cholinergic neurons degenerate over time 

(Hirsch et al., 1987; Zweig et al., 1989). This emphasizes that PPN cholinergic depletion could 
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associate to pathological locomotor integration in PD. The PPN is influenced by the basal ganglia, 

however a direct glutamatergic pathway from the STN to the PPN was not found in humans (Pahapill 

and Lozano, 2000). The effect of STN-DBS on gait is controversial. Overall, it may have a positive 

effect on gait speed (Roper et al., 2016). Nevertheless, FOG lacks therapeutic benefit from STN-DBS 

in a substantial proportion of patients (Collomb-Clerc and Welter, 2015; Vercruysse et al., 2014).  

Biomechanical measures can improve the methodology of a study by providing objective and 

sensitive measures to observe gait improvement. They show us that STN-DBS can substantially 

improve the spatial parameters, such as stride length and stride velocity, but often not the temporal 

parameters, such as stride time (Faist, 2001; Ferrarin et al., 2005). Furthermore, STN-DBS decreases 

the gait variability and gait asymmetry (Johnsen et al., 2009), which have been associated with the 

occurrence of FOG (Fasano et al., 2011; Plotnik et al., 2008; Plotnik and Hausdorff, 2008). On the 

other hand, STN-DBS surgery may worsen the dynamic postural control (St George et al., 2014), 

which is an important function in order to keep balance during perturbed standing.  

In our experiment, we compared gait between stimulation turned on and off in PD patients. 

Therefore, we used three small wearable inertial sensors attached to the ankles and the lumbar 

region. These sensors comprise a three axial accelerometer, gyroscope, and magnetometer, which 

enabled us to compute accurately different gait parameters as stride length, stride time, and stride 

velocity. We found that STN stimulation significantly improve the stride length and the variability of 

the stride length, as well as gait asymmetry (Findings can be found in chapter 5.5: Scholten et al., in 

prep: Effects of subthalamic and nigral stimulation on gait in Parkinson’s disease).  

Enlarging the understanding of the pathophysiological working mechanisms of locomotion is 

unfortunately growing slowly, also due to the ambulatory character of gait, which impedes imaging 

of the brain. Therefore, previous imaging studies used virtual reality paradigms in the functional 

magnetic resonance imaging (fMRI) scanner to disentangle the locomotor network in PD patients. It 

is well known that the execution and imagery of a task show substantially overlapping neuronal 
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networks (Stinear et al., 2006). These fMRI studies revealed that besides decreased perfusion of the 

MLR, gait disturbances in PD are associated with decreased posterior parietal perfusion (Karachi et 

al., 2012; Snijders et al., 2011). The posterior parietal cortex enables motor adaptation by modifying 

the walking pattern based on the visual input (Crémers et al., 2012; Drew et al., 2008). However, 

more work is needed to disentangle the pathophysiological mechanisms of gait in PD in order to 

optimize current therapies. 

2.2.3 Detecting freezing of upper limb 

We defined criteria to detect freezing of upper limb in a tapping task. Therefore, we instructed the 

subjects to tap continuously as quickly as possible with the right index finger. The exerted pressure of 

tapping was recorded by a force transducer. We defined biomechanical constraints to detect freezing 

phenomena. Similar to FOG, freezing phenomena are labeled as an episodic, unpredictable, and 

variable presentation. The gold standard to detect FOG is clinical observation of video recordings by 

an experienced neurologist. A frequently occurring subtype of FOG, trembling in place, can be 

identified by an increase in frequency of the horizontal acceleration measured on the legs. Normal 

gait is characterized by a main frequency between 0-3 Hz. In FOG episodes, the frequency spectrum 

increases to 3-8 Hz. Although it is unclear whether FOG and upper limb freezing (ULF) share the same 

neuropathological correlates (Barbe et al., 2014; Nieuwboer et al., 2009), ULF and FOG share the 

same clinical characteristics, i.e. an increased frequency and decreased amplitude. Therefore, we 

defined in our work criteria to detect ULF based on these characteristics: i) the amplitude deflection 

of the finger tap decreased over 50%, ii) the frequency of motor output increased above 3 Hz, and iii) 

the duration exceeded one second (Figure 1 in chapter 5.3: Scholten et al., 2016: Neuromuscular 

correlates of subthalamic stimulation and upper limb freezing in Parkinson’s disease).  

2.2.4 Understanding freezing of upper limb 

We detected episodes of ULF and regular tapping in the biomechanical signal and used them to 

observe the cortical signature from the EEG, which was synchronized to the biomechanical signal. 

During ULF, alpha activity (7-11 Hz) increased over the contralateral frontal, motor and parietal 
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cortex. Time-frequency analyses indicated that during ULF alpha activity increase started in the left 

motor cortex (contralateral to hand movement) and spread to left frontal and right parietal areas. 

Cortical alpha activity may reflect inhibition of unwanted movement, appearing mainly over the 

bilateral sensorimotor cortices during suppression of a self-paced finger movement (Sauseng et al., 

2013). Moreover, increased alpha activity over the sensorimotor cortex was associated with reduced 

corticospinal excitability, as was suggested from TMS studies (Sauseng et al., 2009). In addition, alpha 

activity indicates increased focused attention on motor related processes (Cooper et al., 2003; 

Klimesch et al., 2007). This may be accomplished by active inhibition of cortical regions irrelevant for 

the execution of the task (Jensen and Mazaheri, 2010). This may explain why we observed an 

increased alpha activity during ULF as compared to regular tapping.  

On the other hand, distraction as is present in dual tasking, triggers the occurrence of ULF episodes. 

We observed the cortical signatures during a dual task as compared to finger tapping only (single 

task) (Findings can be found in chapter 5.4: Scholten et al., 2016: Cortical correlates of susceptibility 

to upper limb freezing in Parkinson’s disease). We focused on cortical activity and long-range cortico-

cortical synchronization. We found a significant increase of beta range cortico-cortical 

synchronization over the left prefrontal cortex during dual tasking compared to single tasking. 

Furthermore, this increase was significantly correlated with the number of ULF episodes observed. 

This means that patients with a higher cortico-cortical synchronization in the beta band express a 

higher susceptibility for ULF episodes. Cortical beta synchronization may indicate an inhibition of the 

motor output, which can be caused by turning off the STN-DBS (Weiss et al., 2015). In addition, 

increased beta synchronization was observed at the level of the STN and cortex and could be 

associated with impaired motor symptoms (Kühn et al., 2008). The beta synchronization could be 

decreased with L-DOPA or STN-DBS. We observed the increased beta synchronization over the left 

prefrontal cortex and this may suggest a link to executive dysfunction, expressed by impaired 

movement automaticity (Taylor et al., 1986). Furthermore, atrophy of the prefrontal cortex was 

linked to FOG (Kostic et al., 2012). 
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2.2.5 Treating FOG  

Although many studies were performed in relation to FOG, the treatment remains challenging. 

Medical treatment and DBS are not always effective, especially in the advanced disease stage and 

present an unmet therapeutic need.  

However, different stimulation configuration options to improve axial disability and FOG have been 

reported. An elementary configuration is the ‘better side reduction’, which intends to decrease the 

amplitude voltage of the non-disease dominant side. As motor symptoms of PD are generally 

presented asymmetric, optimization of movement symmetry may improve gait. Therefore, it is 

favored to increase stimulation amplitude for the more severely affected leg and reduce the 

stimulation amplitude for the less severely affected leg (Fasano et al., 2011). This strengthens the 

hypothesis that FOG is related with gait asymmetry, as higher gait asymmetry was found in PD 

patients with FOG compared to PD patients without FOG (Plotnik et al., 2005). 

Besides changing the voltage, other studies emphasized the effect of ‘low frequency’ 60 Hz 

stimulation. Although short-term effects are promising on FOG, the segmental symptoms worsened 

and thus will not be applicable for long term stimulation in a relevant proportion of patients (Moreau 

et al., 2008). Moreover, tolerance of the effect on FOG was observed around six weeks from 

reprogramming (Ricchi et al., 2012). 

Further, the PPN within the dorsolateral mesencephalic tegmentum has been proposed as a 

relatively new target to treat gait disturbances including FOG (Breit et al., 2006; Rauch et al., 2010). 

In PD patients, a more severe loss of cholinergic neurons within the PPN have been be associated 

with gait disturbances and more frequent falling (Bohnen et al., 2013; Bohnen and Albin, 2011; 

Karachi et al., 2010). In animal models, electrical stimulation of the PPN induces a rhythmic stepping 

behavior (Karachi et al., 2010). Low frequency stimulation of the PPN is thought to increase the 

neuronal activity and has been tested in PD patients with gait disturbances. However, the results are 
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controversial and PPN stimulation not consistently improve parkinsonian symptoms (Ferraye et al., 

2010; Moro et al., 2010; Welter et al., 2015), although a subjective improvement on FOG have been 

reported (Ferraye et al., 2010; Thevathasan et al., 2011; Welter et al., 2015). Consequently, the 

patients eligible for this target as well as the clinical endpoints have to be refined.  

Another entry point to access the brainstem locomotor area is the substantia nigra pars reticulata 

(SNr). In PD, the overactivity of the SNr may decrease the neuronal activity of the PPN (Karachi et al., 

2010; Pahapill and Lozano, 2000). Consequently, this might impede the control of the locomotor 

pattern modulated by the PPN. However, the SNr not only projects to the locomotor region and 

spinal cord, but also has ascending projections within the thalamo-cortical network. In our recent 

study, we observed the effect of concomitant STN and SNr stimulation. With this combined 

stimulation we co-stimulate segregate functional motor loops (Findings can be found in chapter 5.1: 

Weiss et al., 2013: Nigral stimulation for resistant axial motor impairment in Parkinson’s disease? A 

randomized controlled trial). With a frequency of 130 Hz, the SNr will be inhibited, and this may 

result in disinhibition of the PPN. This concomitant stimulation of the two nuclei may be 

advantageous since the primarily effective STN stimulation can be held constant, which implies a 

constant control of segmental symptoms. We observed that concomitant nigral stimulation did not 

improve overall axial disability as primary endpoint. However, it might benefit resistant FOG (Weiss 

et al., 2013), as was suggested from the secondary endpoint analyses. A follow-up double-blind 

multi-center randomized controlled trial is under way to evaluate this preliminary finding 

(https://clinicaltrials.gov/show/NCT02588144, Combined Stimulation of STN and SNr for Resistant 

Freezing of Gait in Parkinson's Disease (STN+SNr)).  

From animal experiments among mouse and monkeys we obtained that SNr is integrated in different 

network loops (Kitano et al., 1998; Sherman et al., 2015). In human, the network connections of SNr 

are hardly studied. One recent work in PD patients describes the differential effects of STN and SNr 

stimulation, where SNr improved the axial symptoms (Chastan et al., 2009). Therefore, we aim to 

differentiate the effects of STN (stimulation of upper contact) respectively SNr stimulation 

https://clinicaltrials.gov/show/NCT02588144
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(stimulation of lower contact) on gait and the associated parameters. In this experiment, we used 

three small wearable inertial sensors attached to the ankles and the lumbar region. These sensors 

comprise a three axial accelerometer, gyroscope, and magnetometer, which enabled us to compute 

accurately different gait parameters as stride length, stride time, and stride velocity. Not only general 

spatio-temporal parameters can be determined, also gait asymmetry can be investigated. After 

analysis, we observed that STN stimulation significantly improved the stride length and the variability 

of the stride length (Findings can be found in chapter 5.5: Scholten et al., in prep: Effects of 

subthalamic and nigral stimulation on gait in Parkinson’s disease). Both STN and SNr stimulation 

improved gait asymmetry. Said so, SNr stimulation may yield synergistic effect on STN stimulation, 

however, this will not exclude additional modulation of nigro-pontine locomotor contributions. This 

is subject to ongoing follow-up studies.  
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2.3. Outlook 

We identified electrophysiological biomarkers of freezing phenomena on both muscular and cortical 

level. We found that ULF was accompanied by an increment in the alpha band on both the cortex and 

the antagonist muscle. On cortical level, this increase was observed over the contralateral 

sensorimotor, left frontal, and right parietal regions. This well-defined spatial increase of alpha 

activity could aid to detect freezing episodes during finger tapping and gait. However, increasing 

alpha activity is not specific to freezing phenomena, as it is also observed in event related 

desynchronization and synchronization processes as well as in attention-dependent cognitive 

processes. Directly before the occurrence of FOG an increase of theta activity (4-8 Hz) over the SMA 

region was observed (Shine et al., 2014). Another possible biomarker we observed is an increase in 

cortico-cortical synchronization in the beta band during finger tapping, since this was associated with 

increased freezing susceptibility. The episodic nature of freezing requires a clinical application that 

ideally takes effect just before the freezing episode, to prevent it from occurring. A combination of 

biomarkers on the individual level, could promote diagnostic accuracy and might aid to detect 

transition states, i.e. time window along ongoing time series that are predicting an upcoming freezing 

event, while still giving time to intervene therapeutically in order to ‘reset’ the accumulating network 

imbalance finally ending up in a freezing phenomenon. Currently, machine learning algorithms can 

already detect FOG with sensitivity and specificity of more than 95 % using biomechanical data 

(Mazilu et al., 2012). In order to develop an effective therapy, future work is required to investigate 

the mechanisms of the freezing pathophysiology.  

In the future, freezing detection may enable personalized patterns of DBS delivery, i.e. adaptive 

stimulation pulses might be delivered upon upcoming locomotor network imbalance and increased 

susceptibility for freezing behavior. Exemplarily, if a transition from regular walking to FOG is 

predicted from electrophysiological or biomechanical surrogates, stimulation pulses might ‘reset’ the 

locomotor network imbalance in an ideal scenario. To date, the optimal feedback signal for closed 

loop DBS is unclear. However, signatures may differ across distinct PD motor symptoms, and 
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integration of multimodal features may be necessary to account for specificity and signal-to-noise-

ratio issues on single trial detection. Exemplarily, beta oscillations on both the level of the STN and 

the cortex have been associated with worsening of rigidity. A recent study used the beta power of 

the local field potential to trigger STN stimulation. Stimulation was only administered when the beta 

power exceeded a certain threshold (Little et al., 2013). This adaptive stimulation was 30% more 

effective than conventional open loop stimulation. These results are promising that once the optimal 

feedback has be found, STN-DBS can be personalized to meet the therapeutic need.   
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Abstract 

Conventional subthalamic deep brain stimulation (STN-DBS) for Parkinson’s disease (PD) presumably 

modulates the spatial component of gait. However, temporal dysregulation of gait associates tightly 

with freezing of gait (FOG). Such temporal locomotor integration may be modulated differentially on 

distinct levels of the basal ganglia. Owing to its descending brainstem projections, stimulation of the 

substantia nigra pars reticulata (SNr) area might modulate spatial and temporal parameters of gait 

integration differentially from the standard subthalamic nucleus (STN) stimulation. In this work, we 

aimed to characterize the differential effect of STN or SNr stimulation on kinematic gait parameters 

as primary interest.  

Biomechanical parameters were analyzed during unconstrained over ground walking in thirteen PD 

patients with neurostimulation and FOG. Both tests were performed in three conditions: i) Off 

stimulation, ii) STN stimulation (alone), iii) SNr stimulation (alone). SNr stimulation was achieved by 

stimulating the most caudal contact of the electrode. Gait was recorded by three sensors attached 

on both left and right ankle and lumbar, containing a tri-axial accelerometer, gyroscope, and 

magnetometer.  

STN stimulation improved both spatial features (stride length, stride length variability), as well as 

temporal parameters in terms of swing time asymmetry. SNr stimulation improved the temporal 

features of gait in terms of swing time asymmetry. Correlation analysis suggested that more medial 

coordinates of the SNr contact associate with a stronger regularization of gait. These results suggest 

that SNr stimulation might complement the effect of standard subthalamic stimulation on temporal 

gait integration.  
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Introduction 

Standard deep brain stimulation of the subthalamic nucleus (STN-DBS) may improve gait in 

Parkinson’s disease (PD) to certain degree and with interindividual variability [1,2]. STN-DBS robustly 

improves the spatial parameters (e.g. step length), however, the temporal parameters (e.g. cadence), 

are generally less amenable to therapy [3–5]. This is critical as temporal regulation of the gait cycle is 

crucial to PD gait disturbance, in particular to freezing of gait (FOG) that associates closely to 

temporal abnormalities of locomotor integration [6]. In this sense, several temporal parameters of 

gait including temporal gait variability and asymmetry correlate with an increased occurrence of FOG 

[7,8].  

Neurophysiologically, rhythmic stepping behavior can be elicited by stimulation of the mesencephalic 

locomotor region (MLR), with higher stimulation intensities increasing the locomotion cadence in the 

cat [9,10]. The MLR gives rise to the reticulospinal tract and this tract appears to be involved in 

eliminating asymmetric gait by modulating the activity level of different groups of muscles during 

walking [11]. The MLR region appears to be involved in the temporal modulation of gait also in 

human. In healthy persons, the MLR region is active during mental imagery of gait [12]. Furthermore, 

an increased firing rate of neurons in the MLR region was observed with an increased cadence of 

stepping in PD patients [13]. The MLR receives GABA-ergic afferents from the substantia nigra pars 

reticulata (SNr), a basal ganglia output nucleus [14]. In PD, the output of the basal ganglia including 

SNr is increased [15] resulting in an over-inhibition of the MLR, and thus, was suspected to diminish 

the MLR locomotor output. 

This over-inhibition can be reduced by high frequency neurostimulation of the basal ganglia. 

Although several different STN-DBS configuration opportunities exist, FOG still remains an unmet 

therapeutic need [16,17]. We observed that combined STN+SNr stimulation may have promising 

effects on FOG reduction [18], the piloting findings from this study are currently under investigation 

of a multicenter randomized controlled trials (clinicaltrials.gov NCT02588144). However, what the 
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effect is of SNr stimulation alone on gait kinematics is unknown. From animal experiments, it seems 

that SNr could be involved in the temporal modulation of the gait cycle and since the temporal 

modulation in FOG is perturbed, deep brain stimulation of the SNr could reduce FOG in PD patients.  

Furthermore, on gait initiation SNr stimulation showed an effect on vertical braking [19].  

Here, we set out to study the effects of mono STN and mono SNr stimulation on gait kinematics. 

Please note, that this study was not designed nor powered to study the clinical efficacy of nigral 

stimulation on FOG (instead, this is subject to the above mentioned trial). In particular, we will 

contrast the effect of either STN or SNr stimulation (mono, not combined) on both spatial and 

temporal kinematic gait parameters of unconstrained gait. Furthermore, we aim to associate the 

anatomical location within the SNr with the gait parameters, since - from animal experiments - it was 

indicated that SNr sub territories may associate differentially to distinct locomotor integration 

modalities. In this sense, the medial part of the SNr was suggested to account for the modulation of 

the gait cycle time and the locomotor speed during locomotion, in contrast to the increase of axial 

and limbic muscle tone by stimulating the lateral part of the SNr [20–22]. We hypothesize that mono 

SNr stimulation can regularize the temporal modulation of gait compared to Off stimulation by 

decreasing the variability of the stride time and temporal gait asymmetry. Moreover, we hypothesize 

that mono STN stimulation will have stronger impact on the spatial parameters by increasing the 

stride length and reducing the stride length variability. Furthermore, we hypothesize that the 

improvement in temporal gait variability and asymmetry may associate with a more medial 

localization of the SNr contact.  
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Methods 

Subjects 

We included 21 patients with idiopathic PD into this study. PD patients were included if STN-DBS 

electrode contacts of the quadripolar electrode (Medtronic, Minneapolis, MN) reached both the STN 

and the caudal border zone of the STN and SNr (as determined from a MRI post-operatively by an 

experienced neurologist). Most caudal electrode contacts were within -5mm ≤ -10mm in the rostro-

caudal direction on both sides similar to standard described elsewhere (NCT02588144) [18]. To avoid 

influence of the stun effect, we included only patients at least three months from STN-DBS 

implantation. Exclusion criteria were Mini Mental Status < 22, Beck’s Depression Inventory > 13), and 

other neurological or neuromuscular disease except PD. The study was approved by the local Ethics 

committee of the University of Tuebingen and all subjects provided written consent to participate in 

the study.  

One patient was excluded because of technical problems with the recording hardware and one 

patient was unable to walk during the recording session. During the measurements, FOG was 

observed in 15 out of 19 PD patients, confirming these PD patients as ‘definitive freezers’ [23]. We 

assured that stimulation of the STN was effective with clinical improvement of at least 30% measured 

with the UPDRS III score. Thus, three out of 15 PD patients were excluded. These 12 PD freezers were 

considered for further analyses (PD1-PD12, 11 males, age: 63.7 ± 10.4 years (mean ± standard 

deviation)). The disease duration was 15.1 ± 3.2 years with implantation of the DBS 34.7 ± 29.0 

months ago. The score on the NFOG-Q was 9.4 ± 8.4 points. Electrode coordinates of the caudal 

contact relative to the mid-commissural point (MCP) were left SNr -10.2 ± 0.4, -3.7 ± 0.5, -6.5 ± 0.4; 

right SNr 10.4 ± 0.4, -4.0 ± 0.4, -6.3 ± 0.4 (x, y, z; x = medio-lateral, y = anterio-posterior, z = rostro-

caudal). 
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Experimental set up and paradigm 

Combined STN+SNr stimulation is under consideration to alleviate freezing of gait [18]. Whereas 

during clinical routine impulses of STN and SNr are delivered concomitantly, we aimed to gain 

differentiated pathophysiological insight of either STN or SNr stimulation on locomotor integration in 

this study. To this end, we contrasted the effects of either stimulation condition alone (i.e. SNr mono 

as compared to STN mono). We measured all patients in three conditions: STN, SNr, and Off 

stimulation after a previous overnight withdrawal of dopaminergic medication. The order of the 

conditions was randomly assigned and each stimulation condition was active at least 20 minutes 

before recording to limit potential carry-over effect of the previous stimulation condition [24]. 

STN stimulation represented stimulation of two most rostral contacts, while with SNr stimulation the 

two most caudal contacts were stimulated (Table 1). Pulse width and frequency of the SNr 

stimulation were similar to the individual STN stimulation. SNr amplitudes were not be held 

equivalent to STN amplitudes, since stimulation of nigral contacts generally has lower side effect 

thresholds and since lower SNr amplitudes were clinically effective in our previous work [18]. 

Therefore, the voltage was increased in small steps of 0.1 V until a clinical improvement of gait 

compared to Off stimulation was observed. If a side effect occurred, the highest amplitude possible 

without the emergence of side effects was chosen (Table 1). 

In each condition, subjects walked on a straight overground walkway of nine meters. Subjects were 

asked to walk forth and back for about three minutes in their self-selected, comfortable pace. In case 

the PD patients had difficulty walking three minutes, they were asked to walk as long as they could. 

Before the start of each nine meter walking trajectory, subjects stood still for a few seconds with the 

feet put together in front of the starting line. Walking was self-initiated by the subjects. Walking aid, 

such as a cane or walking frame was allowed when used in daily life. The walking aid was used by 

only two patients and consistently used in all therapeutic conditions to facilitate comparability. In 

each condition, the clinical motor state was assessed by the UPDRS section III. Clinical subscores 
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were composed: segmental (sum of items 20-26+31, only upper and lower limbs), gait & posture 

subscore (sum of items 27-30). 

Table 1  
Stimulation parameters 

Abbreviations: STN = subthalamic nucleus deep brain stimulation, SNr = substantia nigra deep brain stimulation 

Recordings 

During walking, participants wore small, lightweight body-fixed sensors attached to the left and right 

ankle (about 20 mm above the malleolus), and to the lower back with a belt (Opal, APDM, Portland, 

OR). Each sensor contained a tri-axial accelerometer, tri-axial gyroscope and a tri-axial 

 
STN SNr 

Voltage (V) 
(left/right) 

Frequency 
(Hz) 

Pulse Width 
(µs) 
(left/right) 

Voltage (V) 
(left/right) 

Frequency 
(Hz) 

Pulse Width 
(µs) 
(left/right) 

PD01 5.3/3.0 130 60/60 3.5/3.5 125 60/60 

PD02 2.8/3.5 130 60/60 2.5/1.9 130 60/60 

PD03 5.5/3.5 130 60/60 2.9/2.9 130 60/60 

PD04 4.0/4.5 130 60/60 2.7/2.7 130 60/60 

PD05 2.1/2.1 125 60/60 1.6/1.6 125 60/60 

PD06 3.2/2.0 130 60/60 2.2/2.2 130 60/60 

PD07 5.4/5.1 130 90/90 1.3/1.3 130 90/90 

PD08 4.9/3.5 130 90/60 2.5/2.5 130 90/60 

PD09 3.5/2.4 125 60/60 1.6/1.6 125 60/60 

PD10 1.8/1.7 125 90/90 1.0/1.0 130 90/90 

PD11 3.6/1.9 130 60/60 0.3/0.3 130 60/60 

PD12 3.8/2.4 125 60/60 0.8/0.8 125 60/60 
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magnetometer with X, Y, and Z axes pointing downward, to the right and forward respectively. Data 

was sampled at 128 Hz and transferred to Matlab for further offline analysis. In addition, we 

collected video-tapings fully synchronized to the body-worn sensors for clinical motor state 

classifications.  

Spatial and temporal gait parameters 

Gait events were determined using the acceleration in the anterior-posterior direction and the 

gyroscope in the medial-lateral direction expressing the angular velocity in the sagittal plane. Gait 

events were based on earlier work showing a good agreement between APDM sensors and the 

GAITRite system as gold standard [25,26]. Briefly, first we identified the midswing (MS) as peak value 

exceeding 50 deg/s in the sagittal plane of the gyroscope signal. If multiple peak values with a 

maximum distance of 750 ms were found, the highest peak was selected and the others were 

rejected. In the time-interval 750 ms before and after MS, we identified toe-off (TO) and heel-strike 

(HS). TO was identified as minimum anterior-posterior acceleration in the time interval before MS, 

and HS was identified in the time interval after MS as the minimum value of angular velocity in the 

sagittal plane before the maximum anterior-posterior acceleration. A stride was defined as the time 

span between two consecutive HS of the same leg. All gait cycles were checked for the order of 

occurrence. For the kth gait cycle of the left leg the gait events were correct when: 

HSL < TOR < MSR < HSR < TOL < MSL < HSL.  

We discarded gait cycles from further analyses in case of incorrect order of the gait events or if a gait 

event could not be detected. To exclude acceleration and deceleration during walking, the first and 

last two steps of each nine meter walkway were rejected. A minimal of 40 gait cycles (left and right 

together) remained for each participant in each condition for further analyses. 

Using these gait events, we computed temporal and spatial gait outcome measures for each 

condition. The temporal measures consisted of the mean of stride time (in seconds, time between 
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two consecutive heel strikes of the same leg) and the variability of the stride time. As spatial 

measures we computed the stride length (as percentage of the leg length (%ll)) and the variability of 

the stride length. As spatio-temporal measure the peak shank angular velocity (degree/seconds; 

sagittal maximum angular velocity during the swing phase) and the variability of the peak shank 

angular velocity were computed. The variability measures were calculated as the coefficient of 

variation (CV, 100%*standard deviation normalized by the mean). Since outcomes of the left and 

right legs were highly correlated in all conditions (0.601 < R < 1.00, all p < 0.05), we report these 

measures as mean of the left and right legs. As sub-analyses we report the measures of the leg more 

severely affected and less severely affected leg by Parkinson’s disease (referred to as disease 

‘dominant leg’ resp. ‘non-dominant leg’ in the following). As most objective marker the dominant leg 

was determined as the leg yielding lower peak angular velocity during the swing phase in the Off 

condition as compared to the other leg. 

Freezers have impaired bilateral coordination [27]. Therefore, we observe the swing time asymmetry 

(STA) of the swing time defined by [28]:  

𝑆𝑇𝐴 = |𝑙𝑛 (
𝑙

ℎ
)| 

Where l is the swing time of the leg with the shorter swing time y and h is the swing time of the leg 

with the greater swing time. Swing time asymmetry closer to zero represents a lower grade of 

asymmetry. 

Anatomical location of SNr contact 

We determined the electrode position with respect to mid-commissural point of the bilateral lower 

contacts using a pre-operative and post-operative MRI with Optivise software (Medtronic, 

Minneapolis, MN). We correlated the medio-lateral coordinate of the electrode (coordinate in x 

direction) with the spatial and temporal parameters of the dominant leg and swing time asymmetry. 
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Statistical analyses 

We report statistical descriptives as mean ± standard error, unless stated otherwise. We tested for 

normal distribution of the data using the Kolmogorov Smirnov test (p < 0.05). Based on this test, 

conditions were compared using a repeated measure ANOVA or Friedman test. In case of a 

significant ANOVA or Friedman test, post-hoc tests were performed comparing Off with STN and Off 

with SNr stimulation using a paired t-test or Wilcoxon test. All statistical analyses were performed 

with IBM SPSS statistics, version 22.0 (IBM Deutschland GmbH, Ehningen, Germany).  



103 
 

Results 

Clinical outcome 

Total UPDRSIII score significantly differed between conditions (χ2 = 22.167, p = 0.000, Friedman-Test). 

Both STN and SNr stimulation improved the total UPDRSIII score (STN - Off U = -3.059, p = 0.002; SNr 

- Off U = -2.671, p = 0.008, Wilcoxon Test, Figure 1). The segmental subscore (χ2 = 22.167, p = 0.000) 

and the gait & posture subscore (χ2 = 15.235, p = 0.000) were significantly changed by stimulation. 

Both STN and SNr stimulation improved the segmental (STN – Off U = -3.061, p = 0.002; SNr – Off U = 

-2.515, p = 0.012), and the gait & posture subscore (STN – Off U = -2.980, p = 0.003; SNr – Off U = -

2.280, p = 0.023) (Figure 1). 

 

Figure 1 Score of the total UPDRS III (left), segmental score (sum of items 20-26+31, only upper and lower limbs), and gait & 

posture subscore (sum of items 27-30) during STN, SNr, and Off stimulation. Significant differences (p < 0.05) are denoted 

by horizontal square brackets. Both STN and SNr stimulation could significantly improve the segmental and gait and 

posture. 

Spatial and temporal gait parameters 

STN stimulation influenced only the spatial parameters: we observed a stride length increment and 

stride length variability reduction compared to Off stimulation (Figure 2). SNr stimulation did not 

change the spatial parameters. Stride time and peak shank angular velocity as well as the variability 
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of the stride time and peak shank angular velocity were not influenced by both STN and SNr 

stimulation. As temporal parameters, swing time asymmetry was improved by both STN and SNr 

stimulation compared to Off stimulation (Figure 2). 

 

Figure 2 Boxplots representing median values, 25–75% range (box) and min–max range (bars) of spatial and temporal gait 

parameters. Differences were computed with the Wilcoxon signed rank test and are denoted by horizontal square brackets. 

Abbreviations: STN = subthalamic nucleus deep brain stimulation, SNr = substantia nigra deep brain stimulation, ll = leg 

length, CV = Coefficient of Variation. 
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As sub-analyses, we observed these parameters separately for the disease dominant and non-

dominant legs. After breaking down in dominant vs non-dominant side, STN stimulation improved 

the stride length and stride length variability compared to Off stimulation only for the dominant side 

(Table 2). SNr stimulation did not improve gait parameters of either the dominant or non-dominant 

legs. 

Table 2 
Dominant/non-dominant leg: Spatial and temporal gait parameters 

Gait parameter Grand average (mean ± sd) P-value P-value 

 STN SNr Off STN – Off SNr - Off 

 
D ND D ND D ND D ND D ND 

Mean 
 

 
Stride time (s) 1.2 ± 

.2 
1.2 ± 
.2 

1.2 ± 
.2 

1.2 ± 
.2 

1.2 ± 
.2 

1.2 ±.2 n.s. n.s. n.s. n.s. 

 
PAV (deg/s) 229.4 

± 80.7 
264.1± 
75.1 

207.5 
± 85.6 

241.8 
± 74.6 

195.6 
± 91.8 

237.2 
± 77.0 

n.s. n.s. n.s. n.s. 

 
Stride length 
(%ll) 

67.0 ± 
24.7 

74.9 ± 
20.9 

56.3 ± 
26.5 

66.2 ± 
25.9 

53.1 ± 
28.5 

63.4 ± 
27.8 

.01 n.s. .27 n.s. 

CV 
 

 
Stride time .05 

±.03 
.06 
±.03 

.08 ± 

.05 
.07 
±.05 

.08 
±.06 

.08 
±.04 

n.s. n.s. n.s. n.s. 

 
PAV .12 ± 

.08 
.09 ± 
.05 

.14 ± 

.09 
.14 ± 
.07 

.16 ± 

.10 
.12 ± 
.04 

n.s. .09 n.s. 0.94 

 
Stride length .14 

±.12 
.13 ± 
.08 

.19 ± 

.20 
.17 ± 
.13 

.22 ± 

.16 
.16 ± 
.12 

.01 n.s. .08 n.s. 

Abbreviations: PAV = peak shank angular velocity, sd = standard deviation, STN = subthalamic nucleus deep brain 
stimulation, SNr = substantia nigra deep brain stimulation, ll = leg length, D = dominant; ND = non-dominant, CV = 
Coefficient of Variation; P-values are computed with Friedman test and if significant, with Wilcoxon signed rank test. 
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Anatomical position of SNr contact 

We found a negative association between the alteration of peak angular velocity variability by SNr 

stimulation and the laterality of the electrodes caudal contact (r = -.594, p = 0.042, Figure 3). This 

indicates that more medial electrode positioning correlates with a more regular gait pattern induced 

by SNr stimulation. Electrode laterality was not correlated with other gait parameters of general 

mobility and gait variability, nor with swing time asymmetry or FOG occurrence. 

 

Figure 3 Medio-lateral location of electrode of the most caudal contact is associated with the improvement of peak angular 

velocity variability by SNr stimulation. Both electrode position and CV of PAV are obtained from the dominant side. A more 

medial electrode position is associated with more regular gait induced by SNr stimulation (r = -.0594; p = .042). 

Abbreviations: CV = coefficient of variation, PAV = peak shank angular velocity. 
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Discussion 

Here, we found that STN stimulation improved both spatial and temporal characteristics of gait with 

a stride length increment, reduction of the stride length variability, and increased swing time 

symmetry. Further, mono SNr stimulation improve the temporal characteristic of gait by increasing 

the swing time symmetry. In addition, we found that a more medial electrode positioning of the 

caudal contact was associated with an improvement of the gait patterns regularity induced by mono 

SNr stimulation.  

In line with our hypotheses, mono SNr stimulation can modulate the temporal characteristics of the 

gait cycle by reducing the swing time asymmetry. From animal experiments, we know that the MLR 

and the resulting reticulospinal tract is involved in gait and the temporal modulation of the gait 

pattern. One of the target areas of the SNr is the MLR, which is considered the main locomotor 

center with a GABA-ergic connection between the SNr and the pontomesencephalic tegmentum [22]. 

Our results point also in the direction of a connection between the SNr and the locomotion 

controlling MLR area. In this respect, we have further evidence that the MLR modulates the temporal 

pattern of gait. The PPN, as part of the MLR, can modify the cadence but not step length, as is 

showed with PPN stimulation in PD patients [29]. The consistence of our kinematic and its 

concordance to results from PPN stimulation may support the view, that pedunculopontine 

locomotor integration could be modulated both on the level of PPN [29–31] and SNr. Furthermore, in 

MRI it has been shown that increasing the gait speed during imaginary walking activates the MLR 

region [30]. Our results contribute to the hypothesis that mono SNr stimulation can aid to regulate 

the temporal part of the gait pattern.  

The temporal characteristics of gait closely associate with FOG and deficits in the temporal 

integration can promote FOG [7,8]. Therefore, the additive effect of SNr stimulation on the temporal 

integration of gait may prevent FOG in combined STN+SNr stimulation. In daily life, FOG is still an 

unmet therapeutic need. Different reprogramming strategies of STN-DBS for treating FOG have been 
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put forward including asymmetric stimulation or low-frequency pulses [16,17]. At least for low-

frequency STN-DBS, effects were transient [32] and sometimes at cost of segmental motor control 

(e.g. recurrence of tremor). The neurophysiological concept why combined STN+SNr stimulation may 

reduce FOG is unknown. Probably, STN and SNr stimulation have synergistic, yet complementary 

effects on gait. Possibly, SNr stimulation may provide an additional effect on the temporal 

integration of gait. 

Several limitations require careful interpretation of the findings. We analyzed gait during the mono 

STN and mono SNr stimulation separately, but we chose not during combined STN+SNr stimulation. 

Our approach comprised to observe the differential effects of mono STN and mono SNr stimulation 

on gait to provide pathophysiological insight into the distinct mechanisms of STN or SNr pathways 

towards kinematic features of locomotor integration. Moreover, we did not consider the combined 

STN+SNr stimulation as further experimental condition as the existing protocol was already lengthy 

and demanding for most patients. 

We conclude that both mono STN improved both the spatial and temporal gait parameters, whereas 

mono SNr stimulation modulated the temporal pattern of gait by improving the temporal gait 

asymmetry. A more medial position of the caudal contact of the electrode was associated with a 

more regular gait pattern induced by mono SNr stimulation. The findings here helped to decipher the 

enigmatic pathophysiological networks involved in gait and FOG in PD, but further studies are 

definitely warranted. 
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