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Zusammenfassung

Es gibt einen steigenden Trend hin zu kundenindividueller Massenproduktion (mass cus-
tomization), insbesondere im Bereich der Automobilkonfiguration. Kundenindividuelle
Massenproduktion führt zu einem enormen Anstieg der Komplexität. Es gibt Hunderte
von Ausstattungsoptionen aus denen ein Kunde wählen kann um sich sein persönliches
Auto zusammenzustellen. Die Anzahl der unterschiedlichen konfigurierbaren Autos eines
deutschen Premium-Herstellers liegt für ein Fahrzeugmodell bei bis zu 1080.

SAT-basierte Methoden haben sich zur Verifikation der Stückliste (bill of materials)
von Automobilkonfigurationen etabliert. Carsten Sinz hat Mitte der 90er im Bereich
der SAT-basierten Verifikationsmethoden für die Daimler AG Pionierarbeit geleistet.
Darauf aufbauend wurde nach 2005 ein produktives Software System bei der Daimler
AG installiert. Später folgten weitere deutsche Automobilhersteller und installierten
ebenfalls SAT-basierte Systeme zur Verifikation ihrer Stücklisten.

Die vorliegende Arbeit besteht aus zwei Hauptteilen. Der erste Teil beschäftigt sich mit
der Entwicklung weiterer SAT-basierter Methoden für Automobilkonfigurationen. Wir
zeigen, dass sich SAT-basierte Methoden für interaktive Automobilkonfiguration eignen.
Wir behandeln unterschiedliche Aspekte der interaktiven Konfiguration. Darunter Kon-
sistenzprüfung, Generierung von Beispielen, Erklärungen und die Vermeidung von Fehl-
konfigurationen. Außerdem entwickeln wir SAT-basierte Methoden zur Verifikation von
dynamischen Zusammenbauten. Ein dynamischer Zusammenbau repräsentiert die chro-
nologische Zusammenbau-Reihenfolge komplexer Teile.

Der zweite Teil beschäftigt sich mit der Optimierung von Automobilkonfigurationen.
Wir erläutern und vergleichen unterschiedliche Optimierungsprobleme der Aussagenlogik
sowie deren algorithmische Lösungsansätze. Wir beschreiben Anwendungsfälle aus der
Automobilkonfiguration und zeigen wie diese als aussagenlogisches Optimierungsprob-
lem formalisiert werden können. Beispielsweise möchte man zu einer Menge an Ausstat-
tungswünschen ein Test-Fahrzeug mit minimaler Ergänzung weiterer Ausstattungen
berechnen um Kosten zu sparen. Des Weiteren beschäftigen wir uns mit der Problemstel-
lung eine kleinste Menge an Fahrzeugen zu berechnen um eine Testmenge abzudecken.

Im Rahmen dieser Arbeit haben wir einen Prototypen eines (Re-)Konfigurators, genannt
AutoConfig, entwickelt. Unser (Re-)Konfigurator verwendet im Kern SAT-basierte
Methoden und besitzt eine grafische Benutzeroberfläche, welche interaktive Konfigura-
tion erlaubt. AutoConfig kann mit Instanzen von drei großen deutschen Automobil-
herstellern umgehen, aber ist nicht alleine darauf beschränkt. Mit Hilfe dieses Prototyps
wollen wir die Anwendbarkeit unserer Methoden demonstrieren.
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Abstract

There is an increasing trend of mass customization, especially within the context of
automotive configuration. Mass customization leads to a rapid growth of complexity.
There are hundreds of equipment options a customer can choose from in order to compose
an individual car. The number of different configurable cars of a premium German car
manufacturer can grow up to 1080 for a model type. The technical documentation of
such complex products requires software aided help to avoid and detect errors.

SAT-based methods have been established in automotive configuration to verify that
the bill of materials (BOM) is free from errors. Those SAT-based verification methods
were pioneered by Carsten Sinz in the mid 1990s for German car manufacturer Daimler
AG and was installed as productive software system after the year 2005. Later on, other
German premium car manufacturers have also established similar SAT-based methods
for verifying the BOM.

This work consists of two major parts. The first part continues developing SAT-based
methods for automotive configuration in several ways. We show the applicability of SAT-
based methods for interactive automotive configuration. We cover different aspects of
interactive configuration, e.g., consistency checks, example generation, explanation and
user guidance to avoid dead-ends. Furthermore, we develop SAT-based methods for the
verification of dynamic assembly structures. A dynamic assembly structure represents
the chronological build order of complex parts.

The second part investigates optimization in automotive configuration. Firstly, various
kinds of optimization problems of Propositional Logic and their algorithmic approaches
are presented and compared. We describe several optimization use cases of automotive
configuration and show how they can be formalized as optimization problems of Propo-
sitional Logic. For example, for a set of equipment requirements, one wants to find a
completely configured test vehicle with a minimal number of additional options in order
to save costs. Furthermore, we address the problem of finding the smallest number of
vehicles to cover a set of tests, i.e., solving a test coverage problem.

Within the scope of this work we developed a (re-)configurator framework prototype,
called AutoConfig. Our (re-)configurator consists of a SAT-based background engine
and a graphical user interface, which allows interactive configuration. AutoConfig
can handle instances from three major German car manufacturer, but is not restricted
to those. With this prototype we demonstrate the applicability of our methods.
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1 Introduction

1.1 Motivation

Product manufacturer want to produce custom specific products to fit the customer
specific requirements, resulting in a competitive advantage for the manufacturer. At
the same time, mass production is demanded in order to keep the costs low. Both to-
gether result in the increasing trend of mass customization, defined as “producing goods
and services to meet individual customer’s needs with near mass production efficiency”
by [Tseng and Jiao, 1996]. Mass customization increasingly gains importance especially
within the context of premium car manufacturing. Nowadays, there are hundreds of
equipment options a customer can choose from in order to composite an individual car.
The number of different configurable cars of a premium German car manufacturer can
grow up to 1080 [Kübler et al., 2010] for a model type.

Mass customization leads to a rapid growth of complexity. All equipment options are
dependent to each other, explicitly or implicitly. The dependencies are described within
the technical product documentation. The technical documentation of complex products
such as cars requires software aided help to avoid and detect errors. For example, to
determine if customer requirements lead to a constructible car software systems are
needed due to thousands of technical constraints that have to be taken into account.

Typically, the technical product documentation for premium car manufacturing is done
by a two-level documentation. Figure 1.1 from [Stäblein, 2008] illustrates this princi-
ple. The first level describes the available features (German: Merkmal) of a car, e.g.,
trailer hitch, navigation system, airbag type, parking assistance. The product descrip-
tion (German: Produktübersicht) describes the dependency between those features by
constraints. For example, a parking assistance requires parking sensors. The second
level consists of the bill of materials (German: Stückliste) which describes the actual
physical parts needed for the features. The bill of materials is structured by grouping
similar parts together, e.g., a group of steering wheels. One steering wheel is a vari-
ant (German: Variante) of the available steering wheels. The selection of the parts is
controlled by selection constraints which depend on features.

SAT-based methods find many practical applications [Marques-Silva, 2008], e.g., model
checking, planning and hardware verification. The usage of SAT-based methods for
modeling and verifying automotive configuration was pioneered by Carsten Sinz in his
diploma thesis [Sinz, 1997] for verifying cars at the German premium car manufacturer
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1 Introduction

Figure 1.1: Two-level product documentation (figure from [Stäblein, 2008], p. 62)

Daimler AG and later refined [Küchlin and Sinz, 2000, Sinz, 2003, Sinz et al., 2003]. A
manufacturer independent approach to the formulation of automotive configuration and
verification was recently presented in [Zengler, 2014]. Additionally, a case study of the
German premium car manufacturer BMW AG was presented in the same publication.

A standard problem to be solved is the following: Given a set of equipment options
{o1, . . . , ok}, is it possible to configure a car that includes the required equipment op-
tions while satisfying all constraints of the product description? The concept is always
the same: The product description is encoded into a Boolean formula whose solutions
represent all constructible cars. This formula is called product description formula (or
product overview formula), denoted by ϕPD. With the help of a so called SAT solver
we can ask queries to the product description formula. We test whether the formula
ϕPD ∧

∧k
i=1 oi, the conjunction of ϕPD and the required equipment options, is satisfiable

by the SAT solver. If the answer is true, then there exists at least one car that includes
the required equipment options. Such an example car can be obtained from the SAT
solver. If the answer is false, then the product description forbids a car that includes
this combination of equipment options. To give another example from the verification
of the bill of materials: One verification test consists of testing whether there exists
a constructible car (according to the product description) that selects more than one
variant of a group from the BOM where exactly one variant hast to be selected, e.g.,
a car that selects more than one steering wheel when evaluating the group of steering
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wheels. If such a vehicle exists, then the selection constraints overlap and have to be
corrected.

For comparison reasons only, another important task for automotive configuration is the
forecast of material demands [Stäblein, 2008] in order to gain an advantage in planning
and production. For solving this task, SAT-based methods were successfully applied to
help solving such tasks [Kappler, 2010, Kübart, 2016].

1.2 Contribution and Related Work

The contribution of this work consists of different aspects: Interactive automotive con-
figuration with the help of SAT-based methods, development of SAT-based verification
algorithms for dynamic assembly structures and the usage of SAT-based optimization
methods to compute optimal cars and determine optimal re-configuration solutions.

1.2.1 Interactive Automotive Configuration

We investigate whether and how SAT-based techniques can be used as background en-
gine for an interactive product configurator in the context of automotive configuration.
An interactive configurator can be very helpful in many situations. For example, a cus-
tomer who wants to configure a car and try out available options. With the help of
a configurator the customer may already configure the (nearly) final car she wants to
buy. Other examples can be found during the development process of a new product se-
ries, e.g., an engineer has to configure a test car consistent with the product description
which is under development. Configuring and testing whether a selection of options is
consistent with the product description by hand is tedious and error-prone. An inter-
active configurator can help to test selections for consistency quickly. In addition, it is
preferable to identify dead-ends (conflicts) as soon as they occur. The user should be
guided such that the resulting selection is always consistent with the product description.
For example, after the selection of an engine and a gearbox for a test car, the engineer
should be informed about the remaining available dashboards and the dashboards which
became unavailable. Furthermore, in the context of automotive configuration we want
to configure on both levels, product description and the bill of materials. For example,
an engineer who requires certain parts to be included for prototyping reasons wants to
configure parts rather than equipment options.

We implement and evaluate the performance of our methods with real instances from
German premium car manufacturers.

Our contribution is partially based on the author’s publication [Walter and Küchlin,
2014].
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1 Introduction

1.2.2 Analysis of Dynamic Assembly Structures

Figure 1.2: Example of a dynamic assembly structure

Cars are built up from parts, but many times individual (atomic) parts are assembled
into more complex assemblies such as gearboxes. A static assembly structure is a tree
structure describing the chronological build order of complex parts. Leaf nodes of the
tree structure are considered as atomic, e.g., a control unit from a supplier or some
bolts. Inner nodes are (sub-)assemblies which are built up by assembling the parts of
the children. The root node represents the whole assembly, e.g., the gearbox. There exist
different static assembly structures for alternative variants, e.g., each gearbox variant is
represented by the root node of a separate static assembly structure.

However, documenting every static assembly structure for every available assembly sep-
arately, results in an impractical number of static assembly structures. To overcome
these redundancies static assembly structures are merged into one dynamic assembly
structure. Figure 1.2 illustrates a dynamic assembly structure where shared parts have
the same color. The actual static assembly structure can be extracted by evaluating
the selection constraints of the nodes. Thus, the individual static assembly structures
are controlled by the selection constraints. The selection constraints are documented by
hand which can be very error-prone.

The parent-child relations of the structure nodes of a dynamic assembly structure have
to follow certain criteria to avoid ambiguous and incomplete assemblies. For example,
every car which selects material node 301 on level 0 has to select the very same material
node on level 1 in order to ensure uniqueness. We formalize those criteria and develop
novel SAT-based methods to test dynamic assembly structures for consistency.

Another interesting question concerning dynamic assembly structures arises when parts
are changing. For example, if a part of a leaf node is no longer available due to delivery
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difficulties, we want to know which (sub-)assembly variants are affected. In other words,
we want to know all valid paths starting from an assembly variant on level 0 and ending
at the part in question. We call such paths part number sequences. We develop a
SAT-based method to compute all part number sequences for a given part.

We implement and evaluate the performance of our methods with real instances from a
German premium car manufacturer.

1.2.3 Optimization in the Context of Automotive Configuration

SAT-based methods are used to answer decision problems, e.g., is a Japanese car with
parking assistance constructible or exists a car violating the consistency property for a
dynamic assembly structure. If the outcome of such a question is positive, a SAT solver
can deliver an example car. However, such an example car is arbitrary in the sense
that no preferences are considered. The solver just returns the first found car satisfying
the requirements. There are many applications where we want to find an optimal car.
For example, in order to compute the carbon dioxide emissions we want know lightest
or heaviest constructible Japanese car with parking assistance. Or, we want to find a
minimal equipped example car for the violation of a consistency property which can be
more helpful to understand the error within the documentation.

Another topic concerning optimization is re-configuration [Manhart, 2005]. Previously,
we started from a consistent set of pre-selections and asked for an optimal car satisfying
our requirements. Now, we already have a car (or a set of requirements) which is
inconsistent in conjunction with the product description. We want to know a diagnosis
(also called repair suggestion) in order to restore consistency. That is a minimal subset
of the requirements which have to be excluded or changed. The following example
illustrates the importance of finding a diagnosis. There may be hundreds of already
built up cars for the Romanian market. But due to unexpected law changes concerning
the emission output the cars are not allowed to be sold in Romania anymore. We want to
re-configure the cars in order to be able to sell the cars again. We want to know what are
the minimal changes we have to make to be able to sell the car in Romania. Or, what are
the minimal changes we have to make to sell the car in another neighboring nation, like
Bulgaria. We want to know the minimal changes in different aspects of preferences, e.g.,
the minimal number of changes to equipment options, the minimal number of changes
to parts, the minimal costs for modifications, etc. Another issue in the context of re-
configuration is the re-configuration of product description constraints. For example, an
engineer is given the task to adjust the constraints of the product description such that
the options are constructible for the next product cycle. In order to assist the engineer
we can compute a preferred minimal diagnosis which tries to keep the most important
constraints and consists of a minimal set of less important constraints that have to be
removed or adjusted.

5



1 Introduction

So far, we discussed the optimization and re-configuration of a single car. However,
there are applications which ask for an optimal set of cars. For example, the number of
prototype cars to test a new product series should be as small as possible in order to
save costs. When a new product series is tested, there is a set of equipment options or
combinations of them which has to be tested. The task is to build a set of test vehicles
that covers all test requirements such that the number of test vehicles is minimal.

The product description can be encoded into a Boolean formula for multiple German
premium car manufacturer as described earlier in this section. A natural question aris-
ing is: Are SAT-based optimization methods applicable for the optimization tasks in the
context automotive configuration? In this work we investigate whether SAT-based op-
timization methods are applicable for optimization and re-configuration tasks in the
context of automotive configuration. We describe and compare various optimization
problems of Propositional Logic, e.g., maximum satisfiability [Li and Manyà, 2009, Mor-
gado et al., 2013] and preferred minimal diagnoses [Reiter, 1987, Junker, 2004, Liffiton
and Sakallah, 2008, Felfernig et al., 2012, Marques-Silva and Previti, 2014]. We explain
their algorithmic approaches and compare their complexity in terms of the number of
calls to an NP-oracle. We show that both, the maximum satisfiability problem and the
preferred minimal diagnosis problem, are FPNP-complete, i.e., both problems can be
solved within an polynomial number of NP-oracle calls but cannot be solved with only
a logarithmic number of NP-oracle calls unless P = NP [Krentel, 1988]. We identify and
describe various use cases of optimization and re-configuration in the context of automo-
tive configuration in detail. We show how those use cases can be formalized as SAT-based
optimization problems. We evaluate different SAT-based optimization approaches with
benchmarks based on real instances from German premium car manufacturers.

Our contribution is based on the author’s publications [Walter et al., 2013, Walter and
Küchlin, 2014, Walter et al., 2015a, Felfernig et al., 2015b, Walter et al., 2015b, Walter
et al., 2017].

1.2.4 Prototype Implementation of a SAT-based Re-Configurator

Within the scope of this work we developed a (re-)configurator framework prototype,
called AutoConfig. Our configurator consists of a SAT-based background engine and
a graphical user interface. AutoConfig supports interactive configuration of a car,
i.e., the user gets an immediate response after each selection by providing the following
information: Whether the selections are consistent in conjunction with the product de-
scription, providing a generated example for the consistent case (resp. an explanation for
the inconsistent case), information about the selected parts (BOM resolution), showing
forced equipment options and showing forced parts. Furthermore, AutoConfig sup-
ports re-configuration, e.g., if the users’ selections are inconsistent in conjunction with
the product description, an optimal diagnosis is provided in order to restore consistency.
AutoConfig can handle instances from three major German car manufacturer, but is
not restricted to those.
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Figure 1.3: Screenshot of AutoConfig with re-configuration

Figure 1.3 shows a screenshot of AutoConfig with re-configuration applied. The red
colored options in text box “User Selections” are a minimal subset that have to be
removed in order to restore consistency. The screenshot is just a short illustration, the
details of AutoConfig are described in this work.

Our contribution is partially based on the author’s publication [Walter and Küchlin,
2014].

1.3 Structure of this Dissertation

In Chapter 2 we present necessary definitions and methods required for this thesis.
In Section 2.1 we introduce the syntax, semantics and normal forms of Propositional
Logic. In Section 2.2 we present the famous NP-complete satisfiability problem (SAT),
asking whether a Boolean formula is satisfiable, and explain how state-of-the-art conflict
driven clause learning (CDCL) solvers work. Section 2.1 and Section 2.2 build the
foundation of all algorithmic approaches in this work. In Section 2.3 we present different
constraint types beyond Proposition Logic often occurring in applications. In Section 2.4
we introduce in the topic of unsatisfiable subsets. An unsatisfiable subset can serve
as explanation for inconsistency but find applications within optimization algorithms,
too. In Section 2.5 we briefly introduce in finding a prime implicant from a satisfying
variable assignment. Among others prime implicants find applications in optimization

7



1 Introduction

algorithms. In Section 2.6 we present algorithms to identify literals which are consistent
in all models of a formula, called backbone literals. Backbone literals find applications
in optimization algorithms as well as in interactive configuration.

In Chapter 3 we develop a configuration framework, based on SAT-solving, which allows
interactive configuration of cars from various German car manufacturer. Furthermore,
we develop novel SAT-based methods to verify assembly structures of a German premium
car manufacturer. In Section 3.1 we introduce in automotive configuration, consisting
of high level configuration (HLC) and low level configuration (LLC). In Section 3.2 we
briefly recap existing verification methods for automotive configuration, regarding HLC
and LLC. In Section 3.3 we show how SAT-based methods can be used for interac-
tive automotive configuration. We formalize and explain how SAT-based methods can
help to construct a valid car within an interactive scenario step by step such that a
user would not getting stuck in a dead-end. The section is concluded by experimental
evaluations based on real automotive configuration data. In Section 3.4 we introduce
into dynamic assembly structures. We give a formal description and introduce consis-
tency criterion. Afterwards we develop novel SAT-based approaches to detect errors
within dynamic assembly structures. Moreover, we present a SAT-based approach to
identify valid paths within dynamic assembly structures. The section is concluded by
an experimental evaluation based on real automotive configuration data.

In Chapter 4 we presents various optimization problems of Propositional Logic. We
present different algorithmic solving approaches and compare their computational com-
plexity. We also take a look at pseudo-Boolean optimization (PBO) which is based on a
more general logic than Propositional Logic. Moreover, we briefly introduce into integer
linear programming (ILP) for comparison reasons. In Section 4.1 we begin with the
introduction of a minimal correction subset. We explain the important dual hitting set
property which shows a strong connection between the set of minimal correction subsets
and minimal unsatisfiable subsets. We present different algorithmic approaches for the
computation of a minimal correction subset. In Section 4.2 we introduce the maximum
satisfiability problem (MaxSAT), which can be interpreted as finding an optimal mini-
mal correction subset in terms of weights, and present existing algorithmic approaches.
In Section 4.3 we introduce the problem of preferred minimal diagnoses, which tries to
find an optimal minimal correction subset in terms of a strict order of the underlying
constraints, and present existing algorithmic approaches. In Section 4.4 we compare the
previously presented optimization problems and point out similarities. In Section 4.5 we
investigate the computation complexity of the previously presented optimization prob-
lems in terms of the number of NP-oracle calls. In Section 4.6 we introduce the problem
of pseudo-Boolean optimization which allows more general constraints than pure Propo-
sitional Logic. In the last section of this chapter, Section 4.7, we take a short look at
integer linear programming for comparison reasons.

In Chapter 5 we identify and describe several use cases of SAT-based optimization prob-
lems in automotive configuration. We develop encodings and present experimental eval-
uations of those problems based on real automotive configuration data. In Section 5.1
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we examine the question of completing a partial configuration in an optimal way. We
motivate this question by uses cases from automotive configuration and describe problem
variants regarding equipment options of the HLC and parts of LLC. We give formal-
ized encodings as optimization problems and evaluate different optimization approaches
based on real automotive configuration data. In Section 5.2 we examine the question of
finding an optimal configuration regarding weights, either for given numeric priorities
or for a given order on the constraints. We motivate this question by use cases from
automotive configuration and describe problem variants regarding equipment options of
the HLC and parts of LLC. We give formalized encodings as optimization problems and
evaluate different optimization approaches based on real automotive configuration data.
In Section 5.3 we describe the task of re-configuration for equipment options, constraints
of the HLC and parts. We show encodings and conclude this section with experimental
evaluations. In Section 5.4 we describe the task of finding a set of cars to cover a set
of equipment options that have to be tested, i.e., we describe the problem of finding an
optimal test coverage. We present greedy and exact approaches to tackle this problem.
We conclude this section with experimental evaluations of our approaches.

Within the scope of this work we developed a (re-)configurator framework prototype,
called AutoConfig. Our (re-)configurator consists of a SAT-based background engine
and a graphical user interface, which allows interactive configuration. AutoConfig
can handle instances from three major German car manufacturer, but is not restricted
to those. We introduce the basic concepts and show the user interface of AutoConfig
in Subsection 3.3.4. The re-configuration abilities of AutoConfig are presented in
Subsection 5.3.3, within the context of optimization applications in automotive config-
uration.

This thesis is concluded and summarized in Chapter 6.
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2 Fundamentals of SAT-based
Methods

In this chapter we introduce the concepts of Propositional Logic. We give an overview of
the SAT problem, its complexity and how modern solving techniques work. Further, we
introduce different constraint types, minimal unsatisfiable cores, prime implicants and
backbones.

The term if and only if is abbreviated by iff throughout this thesis. Knowledge about
basic set theory is assumed. The cardinality of a finite set M is denoted by |M |.

2.1 Propositional Logic

George Boole introduced Boolean algebra in his essay “The Mathematical Analysis of
Logic: Being an Essay Towards a Calculus of Deductive Reasoning” [Boole, 1847] and
refined his ideas in his book “An Investigation of the Laws of Thought: On which are
founded the Mathematical Theories of Logic and Probabilities” [Boole, 1854]. With
his work Boole established the basis of Propositional Logic (also known as Proposi-
tional Calculus) as it is known today. Propositional Logic is two-valued, i.e., atomic
propositions can either be true or false and do not possess an internal structure. By
inductive definition one can build more complex formulas based on simple propositions
using logical operators (also called Boolean operators) like ¬ (negation), ∧ (and), ∨ (or),
→ (implication) and ↔ (biimplication).

The introduction into Propositional Logic in this section is loosely based on the second
chapter of “Mathematical Logic for Computer Science” [Ben-Ari, 2012] and the second
chapter of the “Handbook of Practical Logic and Automated Reasoning” [Harrison,
2009].

2.1.1 Syntax and Semantics

The syntax (language) of Propositional Logic is inductively defined as follows.

Definition 1. (Syntax) Let V = {xi | i ∈ N} be the infinite set of Boolean variables.
The set F of Boolean formulas is inductively defined (in infix notation) as the smallest
set X such that:
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a) (Constant Propositions) Verum > ∈ X and Falsum ⊥ ∈ X.

b) (Atomic Propositions) For each variable xi ∈ V we have xi ∈ X.

c) (Negated Propositions) If ϕ ∈ X, then (¬ϕ) ∈ X.

d) (Composed Propositions) If ϕ1, ϕ2 ∈ X, then (ϕ1Bϕ2) ∈ X for B ∈ {∧,∨,→,↔}.

The language of Propositional Logic can also be described in terms of a context-free
grammar.

Some remarks about notation conventions in this thesis:

• We denote Boolean formulas by Greek letters, e.g., ϕ or ψ.

• We allow arbitrary variable names with lower letters and indices or exponents for
the Boolean variables V , which allows us to describe encodings and algorithms in
a more readable way. For example, x, y, z, si, a5.

• A literal consists of a variable x ∈ V or its negation ¬x. The variable of a literal l
is denoted by var(l). The negation ¬l of a literal l = ¬x means x itself. If a literal
consists of a negative variable, we say the literal has a negative phase (or negative
polarity), otherwise the literal has a positive phase (or positive polarity).

• The standard equality symbol = used with Boolean formulas means syntactical
equality (ignoring parentheses). For example, (x∧y) = (x∧y), but (x∧y) 6= (y∧x).

Next we introduce several useful syntactical functions on Boolean formulas.

Definition 2. (Variable Set/Literal Set) Let ϕ ∈ F be a Boolean formula.

a) The set of Boolean variables vars(ϕ) of ϕ is recursively defined as follows:

vars(ϕ) =


∅ if ϕ = ⊥ or ϕ = >
{x} if ϕ = x ∈ V
vars(ψ) if ϕ = ¬ψ
vars(ψ1) ∪ vars(ψ2) if ϕ = ψ1 B ψ2 with B ∈ {∧,∨,→,↔}

b) The set of literals lits(ϕ) of ϕ is recursively defined as follows:

lits(ϕ) =


∅ if ϕ = ⊥ or ϕ = >
{l} if ϕ = l for a literal l
lits(ψ) if ϕ = ¬ψ and ψ 6∈ V
lits(ψ1) ∪ lits(ψ2) if ϕ = ψ1 B ψ2 with B ∈ {∧,∨,→,↔}

The number of variables | vars(ϕ)| and the number of literals | lits(ϕ)| of any Boolean
formula ϕ is finite. Example 1 shows a variable set and a literal set.
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2 Fundamentals of SAT-based Methods

Example 1. (Variable Set and Literal Set) Consider ϕ = (x ∧ (y → z)) ∨ ¬y. Then
vars(ϕ) = {x, y, z} and lits(ϕ) = {x, y,¬y, z}.

For some applications it is useful to consider a duplicate of a formula, i.e., a syntactical
equivalent formula but all variables are renamed. For example, to create a duplicate of
a formula within a consistency check, see Section 3.4.
Definition 3. (Duplicate) Let ϕ ∈ F be a Boolean formula and i ∈ N≥1. By ϕ(i) we
denote a duplicate of ϕ where each variable x is replaced by the variable xi:

ϕ(i) =



⊥ if ϕ = ⊥
> if ϕ = >
xi if ϕ = x ∈ V
¬(ψ(i)) if ϕ = ¬ψ
ψ

(i)
1 B ψ

(i)
2 if ϕ = ψ1 B ψ2 with B ∈ {∧,∨,→,↔}

Example 2 shows an example for duplicating a formula.
Example 2. (Duplicates of a Boolean Formula) Two duplicates of the Boolean formula
ϕ = (x∧(z∨w))→ u are: ϕ(1) = (x1∧(z1∨w1))→ u1) and ϕ(2) = (x2∧(z2∨w2))→ u2).

Next we introduce the semantics of Propositional Logic. A variable of a Boolean formula
represents an atomic proposition which can either be true or false. Each variable can
be assigned to a truth value. The truth value of a Boolean formula is then the result of
evaluating all variables and their logical operators.
Definition 4. (Semantics) Let ϕ ∈ F be a Boolean formula.

a) (Truth Values) Let B = {true, false} be the set of the two truth values.

b) (Variable Assignment) A (variable) assignment is a function β : D → B assigning
a truth value to every Boolean variable of D ⊆ V . The set D is called the domain
of β and denoted by dom(β) = D. An assignment is complete for a Boolean
formula ϕ iff β is defined for all vars(ϕ), i.e., vars(ϕ) ⊆ dom(β). Otherwise if
vars(ϕ) ( dom(β), then β is a partial assignment for ϕ.

c) (Evaluation) The evaluation of ϕ under a complete assignment β is:

eval(ϕ, β) =



false if ϕ = ⊥
true if ϕ = >
β(x) if ϕ = x ∈ V
if β(ψ) then false else true if ϕ = ¬ψ
if eval(ψ1, β) then eval(ψ2, β) else false if ϕ = ψ1 ∧ ψ2

if eval(ψ1, β) then true else eval(ψ2, β) if ϕ = ψ1 ∨ ψ2

if eval(ψ1, β) then eval(ψ2, β) else true if ϕ = ψ1 → ψ2

eval((ψ1 → ψ2) ∧ (ψ2 → ψ1), β) if ϕ = ψ1 ↔ ψ2
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Some remarks about semantics:

• The concept of Propositional Logic relies on a two-valued semantic. The concrete
symbols for the truth values, however, are not relevant. Set B does not necessarily
consist of true and false. Any two distinct symbols are sufficient, e.g., {1, 0} or
{T,F}. In this thesis we use the values true and false to simplify reading.

• Our definition of the evaluation function eval uses short evaluations for ∧ (resp.
∨) to speed up the performance: false (resp. true) is returned as soon as any
operand evaluates to false (resp. true). Moreover, the performance could be
improved even more from short evaluations by extending the evaluation function
for n-ary operators ∧ and ∨.

• A variable assignment β can equivalently be described as a set of boolean literals
{x | x ∈ dom(β)∧β(x) = true}∪{¬x | x ∈ dom(β)∧β(x) = false}. Depending on
the context we interchangeably use the notation of β as function and literal set to
simplify reading. For example, assignment β with β(x) = true and β(y) = false
is described as β = {x,¬y}.

• By β|E , for a set of variables E ⊆ V , we denote the restriction of the definition set
D of assignment β : D → B to variables occurring in E such that:

β|E = β : D ∩ E → B

For example, assignment β = {x,¬y} restricted to E = {y} yields β|E = {¬y}.

• The evaluation of a Boolean formula under a given partial assignment cannot
always be determined. For example, the evaluation of the Boolean formula x ∧ y
cannot be determined for the partial assignment β = {x} since the result depends
on the assignment of y.

Definition 5. (Restriction) Let ϕ ∈ F be a Boolean formula. The restriction of ϕ under
an (partial) assignment β is:

restrict(ϕ, β) =



⊥ if ϕ = ⊥
> if ϕ = >
x if ϕ = x ∈ V and x 6∈ dom(β)
if β(x) then > else ⊥ if ϕ = x ∈ V and x ∈ dom(β)
¬ restrict(ψ, β) if ϕ = ¬ψ
restrict(ψ1, β)B restrict(ψ2, β) if ϕ = ψ1 B ψ2

with B ∈ {∧,∨,→,↔}

Example 3 shows an example of a formula restriction.

Example 3. (Restriction) Let ϕ = (x ∧ (y → z)) ∨ ¬y. The restriction of ϕ by the
partial assignment β = {y,¬z} yields restrict(ϕ, β) = (x ∧ (> → ⊥)) ∨ ¬>.
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2 Fundamentals of SAT-based Methods

Boolean formulas can be classified depending on whether it is possible to find a variable
assignment for which the formula evaluates to true.

Definition 6. (Satisfiable Classification) A Boolean formula ϕ is called. . .

a) satisfiable if an assignment β : vars(ϕ) → B exists with eval(ϕ, β) = true.
Then β is called satisfying assignment or model of ϕ, denoted by β |= ϕ.

b) falsifiable if an assignment β : vars(ϕ)→ B exists with eval(ϕ, β) = false.

c) contingent if ϕ is satisfiable and falsifiable.

d) a tautology if every assignment β : vars(ϕ)→ B is a model of ϕ, denoted by |= ϕ.

e) a contradiction if there exists no model of ϕ.

tautological contingent

satisfiable falsifiable

contradictory

Figure 2.1: Satisfiable classification of Boolean formulas

It can be easily verified that for every Boolean formula ϕ the following holds: (i) for-
mula ϕ is either a tautology, a contradiction or a contingency; (ii) if ϕ is satisfiable,
then ϕ is either a tautology or a contingency; (iii) if ϕ is falsifiable, then ϕ is either a
contradiction or a contingency. Figure 2.1 shows a Venn diagram [Venn, 1880a, Venn,
1880b] illustrating the different satisfiable classification sets for Boolean formulas and
their respective relations.

It is obvious to see that the evaluation of ϕ under an assignment only depends on
the variables vars(ϕ), the variables actually occurring in ϕ. Thus, when considering
assignments it is sufficient to restrict the function domain to vars(ϕ) of the formula ϕ.
This observation is expressed in the Coincidence Lemma.

Lemma 1. (Coincidence Lemma) Let ϕ ∈ F be a Boolean formula. Let β and β′

be complete variable assignments of ϕ with β(x) = β′(x) for all x ∈ vars(ϕ), then
eval(ϕ, β) = eval(ϕ, β′).

Proof. The lemma can be shown via structural induction on the Boolean formula ϕ
(cf. Satz 3.1 in [Rautenberg, 2008] and Lemma 4.6 in [Ebbinghaus et al., 1994]).
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Because of the Coincidence Lemma we can focus on the variables occurring in a Boolean
formula when searching for a satisfying assignment.

Next we introduce semantical relations between Boolean formulas.

Definition 7. (Semantical Relations) Let ϕ1, ϕ2 ∈ F be Boolean formulas.

a) (Entailment) We say ϕ1 (semantically) entails ϕ2, denoted by ϕ1 |= ϕ2, iff for
every assignment β : vars(ϕ1) ∪ vars(ϕ2)→ B holds, if β |= ϕ1, then β |= ϕ2.

b) (Equivalence) We say ϕ1 and ϕ2 are (semantically) equivalent, denoted by ϕ1 ≡
ϕ2, iff for every assignment β : vars(ϕ1) ∪ vars(ϕ2) → B holds eval(ϕ1, β) =
eval(ϕ2, β).

c) (Equisatisfiability) We say ϕ1 and ϕ2 are equisatisfiable, denoted by ϕ1≡S ϕ2, iff
(ϕ1 is satisfiable iff ϕ2 is satisfiable).

It can be easily shown that the following properties hold:

• The entailment relation |= is reflexive, antisymmetric w.r.t. ≡ (but not w.r.t. =)
and transitive. Entailment is not total, e.g., neither x |= y nor y |= x holds. Thus,
the entailment relation is a partial order.

• The equivalence relation is an equivalence relation with infinitely many equivalence
classes [ϕ] = {ψ ∈ F | ϕ ≡ ψ}.

• The equisatisfiability relation is an equivalence relation with two equivalence classes
[⊥] = {ϕ ∈ F | ϕ is unsatisfiable} and [>] = {ϕ ∈ F | ϕ is satisfiable}.

LetM = {β | β : V → B} be the set of all assignments and let M(ϕ) = {β | β |= ϕ}
the set of all models of the Boolean formula ϕ. Figure 2.2 shows Venn diagrams of a
couple of interesting cases for two equisatisfiable Boolean formulas. The most unexpected
situation is b), where both formulas are satisfiable but no models are shared.

Figure 2.2: Equisatisfiable situations:
a) ϕ and ψ are contradictory but equisatisfiable,
b) ϕ and ψ are satisfiable and equisatisfiable without any common model,
c) ϕ and ψ are satisfiable and equisatisfiable with some common models,
d) ϕ and ψ are equisatisfiable and ψ |= ϕ,
e) ϕ and ψ are equisatisfiable and ψ ≡ ψ
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2 Fundamentals of SAT-based Methods

Definition 8. (General Conjunction and Disjunction) Let I ( N be a finite index set
and ϕi ∈ F a Boolean formula for all i ∈ I. The general conjunction and disjunction
are recursively defined as follows:

a) (General Conjunction)
n∧
i∈I
ϕi =

> I = ∅
ϕj ∧

∧
i∈I\{j} ϕi I 6= ∅

b) (General Disjunction)
n∨
i∈I
ϕi =

⊥ I = ∅
ϕj ∨

∨
i∈I\{j} ϕi I 6= ∅

There are several common semantical equivalences of Boolean formulas. Some of the
most important ones are:

Proposition 1. (Common Equivalences) Let ϕ1, ϕ2, ϕ3 ∈ F be Boolean formulas.

a) (Commutative Property) ϕ1 ∧ ϕ2 ≡ ϕ2 ∧ ϕ1 and ϕ1 ∨ ϕ2 ≡ ϕ2 ∨ ϕ1.

b) (Associative Property) (ϕ1 ∧ ϕ2) ∧ ϕ3 ≡ ϕ1 ∧ (ϕ2 ∧ ϕ3) and (ϕ1 ∨ ϕ2) ∨ ϕ3 ≡
ϕ1 ∨ (ϕ2 ∨ ϕ3).

c) (Distributive Property) (ϕ1∧ϕ2)∨ϕ3 ≡ (ϕ1∨ϕ3)∧ (ϕ2∨ϕ3) and (ϕ1∨ϕ2)∧ϕ3 ≡
(ϕ1 ∧ ϕ3) ∨ (ϕ2 ∧ ϕ3).

d) (De Morgan’s Laws) ¬(ϕ1 ∧ ϕ2) ≡ ¬ϕ1 ∨ ¬ϕ2 and ¬(ϕ1 ∨ ϕ2) ≡ ¬ϕ1 ∧ ¬ϕ2.

e) (Representing Implication) ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2.

f) (Representing Biimplication) ϕ1 ↔ ϕ2 ≡ (¬ϕ1 ∨ ϕ2) ∧ (¬ϕ2 ∨ ϕ1).

Proof. The equivalences can be shown by applying the definitions of the logical operators
(cf. [Ben-Ari, 2012, van Dalen, 2013]).

See Subsection 2.3.3 in [Ben-Ari, 2012] for an extended listing of equivalences. The com-
mon equivalences a)–d) of Proposition 1 can be generalized for the general conjunction
and disjunction.

Due to the commutative and the associative property, we can allow n-ary operators ∧
and ∨ to simplify reading. Moreover, we can save further parentheses by respecting the
following descending operator order: ¬, ∧, ∨,→,↔. For example, x∧y∧z → u instead
(x ∧ (y ∧ z))→ u.

The number of models of a Boolean formula ϕ, restricted to the variables vars(ϕ),
ranges from 0 (contradiction) to 2| vars(ϕ)| (tautology) and plays an important role for
many practical applications [Gomes et al., 2009], e.g., in automotive configuration the
number of models represents the number of constructible vehicles [Kübler et al., 2010].
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Definition 9. (Model Count) The model count #(ϕ) of a Boolean formula ϕ is the
number of satisfying assignments restricted to vars(ϕ), which is defined as:

#(ϕ) = | {β : vars(ϕ)→ B | β |= ϕ} |

2.1.2 Normal Forms

Since the logical operators→ and↔ can be represented by the operators ¬, ∧ and ∨ (see
Proposition 1), it is no restriction to consider formulas consisting only of the operators ¬,
∧ and ∨. Moreover, we assume that Boolean formulas do not contain constants symbols
unless they consist only of a constant.

Definition 10. (Simple Formulas) A Boolean formula ϕ ∈ F is simple iff ϕ only uses
the logical operators ¬, ∧, ∨ and ϕ contains no constants unless ϕ consists only of a
constant.

Every Boolean formula can be transformed into an equivalent simple form by applying
Algorithm 2.1. The algorithm transforms the formula in an equivalent formula which
uses basic operators only, see Algorithm 2.2. Afterwards, all constants are removed by
Algorithm 2.3.

Algorithm 2.1: Simple form: simpleForm(ϕ)
Input: Boolean formula ϕ
Output: Equivalent formula in simple form

1 return removeConst(basicOps(ϕ))

Algorithm 2.2: Basic operators: basicOps(ϕ)
Input: Boolean formula ϕ
Output: Equivalent formula using only operators from {¬,∧,∨}

1 if ϕ = > or ϕ = ⊥ or ϕ = x ∈ V then return ϕ
2 else if ϕ = ¬ψ then return ¬ basicOps(ψ)
3 else if ϕ = ψ1 B ψ2 with B ∈ {∧,∨} then return basicOps(ψ1) B basicOps(ψ2)
4 else if ϕ = ψ1 → ψ2 then return ¬ basicOps(ψ1) ∨ basicOps(ψ2)
5 else if ϕ = ψ1 ↔ ψ2 then return basicOps(ψ1 → ψ2) ∧ basicOps(ψ2 → ψ2)
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Algorithm 2.3: Removing constants: removeConst(ϕ)
Input: Boolean formula ϕ consisting only of operators {¬,∧,∨}
Output: Equivalent formula without constants unless ϕ ∈ {>,⊥}

1 if ϕ = > or ϕ = ⊥ or ϕ = x ∈ V then return ϕ
2 else if ϕ = ¬ψ then
3 ψ′ ← removeConst(ψ)
4 if ψ′ = > then return ⊥
5 else if ψ′ = ⊥ then return >
6 else return ¬ψ′

7 else if ϕ = ψ1 ∧ ψ2 then
8 ψ′1 ← removeConst(ψ1), ψ′2 ← removeConst(ψ2)
9 if ψ′1 = ⊥ or ψ′2 = ⊥ then return ⊥

10 else if ψ′1 = > then return ψ′2
11 else if ψ′2 = > then return ψ′1
12 else return ψ′1 ∧ ψ′2
13 else if ϕ = ψ1 ∨ ψ2 then
14 ψ′1 ← removeConst(ψ1), ψ′2 ← removeConst(ψ2)
15 if ψ′1 = > or ψ′2 = > then return >
16 else if ψ′1 = ⊥ then return ψ′2
17 else if ψ′2 = ⊥ then return ψ′1
18 else return ψ′1 ∨ ψ′2

Definition 11. (Negation Normal Form) A Boolean formula ϕ ∈ F is in negation
normal form (NNF) iff ϕ is simple and negations only occur directly before variables.

Every Boolean formula can be transformed into an equivalent NNF by applying Algo-
rithm 2.4. Example 4 shows an example for the transformation into NNF.

Algorithm 2.4: Negation normal norm: nnf(ϕ)
Input: Boolean formula ϕ
Output: Equivalent formula in NNF

1 ϕ← simpleForm(ϕ)
2 if ϕ = > or ϕ = ⊥ or ϕ = x ∈ V then return ϕ
3 else if ϕ = ψ1 B ψ2 with B ∈ {∧,∨} then return nnf(ψ1) B nnf(ψ2)
4 else if ϕ = ¬¬ψ then return nnf(ψ)
5 else if ϕ = ¬(ψ1 ∧ ψ2) then return nnf(¬ψ1) ∨ nnf(¬ψ2)
6 else if ϕ = ¬(ψ1 ∨ ψ2) then return nnf(¬ψ1) ∧ nnf(¬ψ2)

Example 4. (Negation Normal Form) Consider the Boolean formula ϕ = ¬(¬(x →
¬y)∨z∨⊥). Then basicOps(ϕ) = ¬(¬(¬x∨¬y)∨z∨⊥). After removing the constants
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we have simpleForm(ϕ) = ¬(¬(¬x ∨ ¬y) ∨ z). Finally, after applying the negation
normal form transformation we have nnf(ϕ) = (¬x ∨ ¬y) ∧ ¬z.

Definition 12. (CNF and DNF) A Boolean formula ϕ ∈ F is . . .

a) in conjunctive normal form (CNF) iff:

ϕ =
m∧
i=1

ni∨
j=1

li,j

where li,j are literals and m,ni ∈ N.

b) in disjunctive normal form (DNF) iff:

ϕ =
m∨
i=1

ni∧
j=1

li,j

where li,j are literals and m,ni ∈ N.

A disjunction of literals is called clause or maxterm. A conjunction of literals is called
minterm. A Boolean formula in CNF consists of a conjunction of clauses. The CNF and
DNF of a formula is not unique. In constrast, a canonical CNF (resp. DNF), where each
clause consists of all variables of vars(ϕ) (either positive or negative), is unique. Every
Boolean formula can be transformed into an equivalent CNF and DNF by iteratively
applying the Distributive Law (see Theorem 4.3 in [Ben-Ari, 2012]) or with help of a
Truth Table (see Subsection 2.2.2 in [Ben-Ari, 2012]).

A formula in CNF is often represented by a set of clauses {c1, . . . , cm} and further,
a clause is often represented as a set of literals {l1, . . . , lk}. We use both notations
interchangeably to simplify reading. Further, we denote the empty clause {} by ∅.
Example 5 shows an example of a CNF and DNF of a Boolean formula.

Example 5. (CNF and DNF) Consider the Boolean formula ϕ = x∨ (¬y ∧ (z ∨ u)). A
CNF of ϕ is {{x,¬y}, {x, z, u}} (also denoted by {x ∨ ¬y, x ∨ z ∨ u}). A DNF of ϕ is
{{x}, {¬y, z}, {¬y, u}} (also denoted by {x,¬y ∧ z,¬y ∧ u}).

However, the transformation of a Boolean formula to CNF or DNF requires an expo-
nential number of steps in the worst case (see Example 6).

Example 6. Consider the ϕ = ∨s
i=1(l2i−1 ∧ l2i) for literals lj (cf. [Blair et al., 1986]). A

clause of the corresponding CNF has the form le(1) ∨ . . . ∨ le(s) with e(j) ∈ {2j − 1, 2j}.
Thus, the number of clauses is 2s. The computation of this CNF by repeated applications
of the Distributive Law takes an exponential number of steps and the resulting formula
requires exponential space.

Remark 1. (Selector & Blocking Variables) In many applications of algorithms it is
useful to activate or block a clause. By adding fresh auxiliary variables to each clause of
a clause set ϕ we can implement a control mechanism in two different ways:
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a) (Selector Variables) We add the negation of a fresh (selector) variable si to each
clause ci ∈ ϕ resulting in ¬si ∨ ci. By assigning si to true we activate clause ci.
Then at least one literal in ci must evaluate to true in order to satisfy ¬si ∨ ci.

b) (Blocking Variables) We add a fresh (blocking) variable bi to each clause ci ∈ ϕ
resulting in bi ∨ ci. By assigning bi to true we block clause ci. Then clause bi ∨ ci
evaluates to true for any assignment of the literals of ci.

Both concepts are equivalent powerful. Depending on the application and context we
use the more appropriate one to simplify reading.

DIMACS Format

The Center for Discrete Mathematics and Theoretical Computer Science (DIMACS) of
Rutgers University in New Jersey proposed a format for SAT instances in CNF and for
arbitrary Boolean formulas in their article “Satisfiability Suggested Format” [DIMACS,
1993]. This format for SAT instances in CNF is often called DIMACS format and has
been established for exchanging benchmark sets for experimental evaluations, such as
the SAT competition1.

Definition 13. (DIMACS Format) A Boolean formula in CNF is represented by a text
file with ASCII encoding and the extension .cnf. The preamble of the file includes the
following lines:

• comment line: c <text>

• problem line: p cnf <number variables> <number clauses>

Afterwards a list of clauses is followed with each clause represented by a separate line.
A literal li is represented by i if the literal is positive and -i if the literal is negative.
The end of a clause line is indicated by 0.

• clause line: <literal 1> ... <literal n> 0

The indices of the variables ranging from 1 to n without a gap. Digit 0 is not used for a
variable index since it represents the end of a clause line. Arbitrary whitespace between
lines and between literals within a clause line is allowed.

Example 7 shows an example of a CNF represented as DIMACS format.

Example 7. (DIMACS Format) The set of clauses {{x1,¬x2}, {¬x4,¬x1, x2,¬x3},
{¬x3, x2, x4}, {x2, x1, x3}} is represented in DIMACS format as follows:

1SAT competitions: http://www.satcompetition.org
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c
c A simple CNF formula in DIMACS format
c
p cnf 4 4
1 -2 0
-4 -1 2 -3 0
-3 2 4 0
2 1 3 0

2.1.3 Definitional CNF

Any Boolean formula can be transformed into a semantically equivalent CNF (see The-
orem 4.3 in [Ben-Ari, 2012]). However, the computation of an equivalent CNF takes
an exponential number of steps compared to the input length in the worst case (see
Example 6). For application purposes it is often sufficient to have an equisatisfiable
formula, i.e., a formula which is satisfiable iff the original formula is satisfiable. Any
Boolean formula can be transformed to an equisatisfiable CNF within polynomial time
and space by the Tseitin transformation [Tseitin, 1970]. The resulting CNF is only a
few times as large as the input formula. The idea behind the Tseitin transformation
is to replace each subformula ψ (except for literals) of the input formula ϕ by a newly
introduced variable t and connect both such that they are defined as equivalent: t↔ ψ.
Variable t represents subformula ψ. By applying this step recursively to all subformulas
of ϕ and adding the equivalences as conjuncts, the resulting formula is in CNF. Since
subformulas are defined by the new introduced variables the transformation is also called
definitional CNF (cf. Subsection 2.8 in [Harrison, 2009]).

Algorithm 2.5 illustrates the algorithm tseitin(ϕ) which produces an equisatisfiable
CNF of formula ϕ. First the algorithm transforms the input formula into negation
normal form (Line 1), then it handles the cases for tautology and contradiction (Lines 2–
3). Afterwards it calls a subroutine tseitin-rec to handle the non-trivial cases (Line 4)
and returns the result clause set (Line 5). Subroutine tseitin-rec returns a tuple
(t, {c1, . . . , cm}) consisting of a variable t representing the input formula ψ and a clause
set {c1, . . . , cm} which is equisatisfiable to the input formula ψ. The subroutine handles
the trivial case of a literal first (Lines 7–8). If the input formula is a conjunction,
the conjunction is represented by a new variable (Line 10) and both operands of the
conjunction are transformed by recursively (Lines 11–12). The case of a disjunction is
treated analogously (Lines 14–18).

Note that a formula ϕ and its equisatisfiable transformed formula tseitin(ϕ) are not
semantically equal if at least one new variable was introduced: The newly introduced
variables can be freely set for ϕ but not for tseitin(ϕ). Example 8 shows an example
of a Tseitin transformation.
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Algorithm 2.5: Tseitin transformation: tseitin(ϕ)
Input: Boolean formula ϕ
Output: Equisatisfiable formula in CNF

1 ϕ← nnf(ϕ)
2 if ϕ = > then return ∅
3 if ϕ = ⊥ then return {∅}
4 (t, {c1, . . . , cm})← tseitin-rec(ϕ)
5 return {{t}, c1, . . . , cm}
6 func tseitin-rec(ψ) : (t, {c1, . . . , cm})
7 if ϕ = l for a literal l then
8 return (l, ∅)
9 else if ϕ = ψ1 ∧ ψ2 then

10 t← newVar()
11 (t1,Γ1)← tseitin-rec(ψ1)
12 (t2,Γ2)← tseitin-rec(ψ2)
13 return (t,Γ1 ∪ Γ2 ∪ {{¬t, t1}, {¬t, t2}, {¬t1,¬t2, t}})
14 else if ϕ = ψ1 ∨ ψ2 then
15 t← newVar()
16 (t1,Γ1)← tseitin-rec(ψ1)
17 (t2,Γ2)← tseitin-rec(ψ2)
18 return (t,Γ1 ∪ Γ2 ∪ {{¬t, t1, t2}, {¬t1, t}, {¬t2, t}})

Example 8. (Tseitin Transformation) Consider the Boolean formula ϕ = x∨ (¬y∧ (z∨
u)). The Tseitin transformed formula is:

tseitin(ϕ) = {{t1}, {¬t1, x, t2}, {¬x, t1}, {¬t2, t1}}
∪ {{¬t2,¬y}, {¬t2, t3}, {y,¬t3, t2}}
∪ {{¬t3, z, u}, {¬z, t3}, {¬u, t3}}

A model of ϕ is β = {x,¬y,¬z,¬u}. This model can be extended to a model for
tseitin(ϕ), e.g., by adding the literals {t1,¬t2,¬t3}. Variable t1 has to be assigned to
true, otherwise tseitin(ϕ) is not satisfied.

By avoiding unnecessary newly introduced variables we can reduce the search space of
the resulting formula when determining satisfiability. The Tseitin transformation can
be improved in several ways. Some improvements are as follows:

a) We can extend Algorithm 2.5 to handle n-ary versions of the binary ∧ and ∨
operators. Thus only one new variable is introduced for a n-ary operator.

b) Plaisted-Greenbaum [Plaisted and Greenbaum, 1986] and Wilson [Wilson, 1990]
describe a more compact version to reduce the number of clauses and the number
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of newly introduced variables. The idea is to introduce an implication t→ ψ (resp.
ψ → t) instead of an equivalence t↔ ψ according to the polarity of subformula ψ.
The polarity indicates whether the number of negations before ψ is odd or even.
If the input formula is already in NNF we can replace each subformula ψ by
an implication t → ψ. Further, we can avoid introducing a new variable for
disjunctions and for the top level operator.

c) We can avoid unnecessary newly introduced variables by replacing syntactically
equivalent subformulas by the same new variable, e.g., by using a hashtable.

d) Some subformulas may be converted to a semantically equivalent CNF within a
few steps only. For a predefined threshold for the number of intermediate clauses
we can apply the Distributive Law until an equivalent CNF is reached or the
threshold is exceeded. For the latter case, we can apply the Tseitin transformation
afterwards.

Example 9 shows how the Boolean formula of the previous Example 6 can be transformed
by Tseitin’s method and the more refined method of Plaisted-Greenbaum [Plaisted and
Greenbaum, 1986, Wilson, 1990] to an equisatisfiable CNF.

Example 9. (Tseitin Transformation) Reconsider the ϕ = ∨s
i=1(l2i−1 ∧ l2i) for literals lj

from Example 6. After applying the Tseitin transformation we have the equisatisfiable
clause set:

{{t}, {¬t, t1, . . . , ts}} ∪
s⋃
i=1
{{¬ti, t}} ∪

s⋃
i=1
{{¬ti, l2i−1}, {¬ti, l2i}, {¬l2i−1,¬l2i, ti}}

The number of clauses is 2 + 4s.

In comparison, applying the more refined transformation of Plaisted-Greenbaum [Plaisted
and Greenbaum, 1986, Wilson, 1990] we have less clauses:

{{t1, . . . , ts}} ∪
s⋃
i=1
{{¬ti, l2i−1}, {¬ti, l2i}}

The number of clauses is 1 + 2s.

For the Tseitin transformation holds the important property that the original formula ϕ
and the transformed equisatisfiable formula tseitin(ϕ) have the very same models when
restricted to the original variable set vars(ϕ).

Proposition 2. (Tseitin Model Property) Let ϕ be a Boolean formula. Then:

{β|vars(ϕ) | β |= ϕ} = {β|vars(ϕ) | β |= tseitin(ϕ)}

Proof. The Proposition can be shown via structural induction on the Boolean formula.
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The model property also holds for the less restrictive transformation of Plaisted-Green-
baum and Wilson with the refinements described above.

In this work, we refer to defCNF(ϕ) as any equisatisfiable transformation for which the
model property of Proposition 2 holds and, to simplify reading, we call defCNF Tseitin
transformation even though a less restrictive transformation may be used.
Remark 2. (Definitional CNF and Model Counting) The Tseitin transformation
tseitin(ϕ) preserves model counting, i.e., #(tseitin(ϕ)) = #(ϕ). This is due to
the fact that a newly introduced variable t is set equivalent t ↔ ψ to their respective
subformula ψ, such that the assignment of the newly introduced variables is determined
by the original variables of ϕ and cannot be freely set. Thus, the Tseitin transformed
formula can be used without restriction for model counting. In contrast, the improved
versions of Tseitin’s transformation, like Plaisted-Greenbaum, have a different model
count in general. The less restrictive implication t→ ψ for a newly introduced variable
t and a subformula ψ allows a variation of t when ψ evaluates to true but t is not forced
to evaluate to true. Therefore, in general we have #(defCNF(ϕ)) ≥ #(ϕ).

2.2 The Satisfiability Problem

The well-known Boolean satisfiability problem (SAT problem) of Propositional Logic is
stated as follows.

Definition 14. (SAT Problem) Given a Boolean formula ϕ, the question is, whether ϕ
is satisfiable.

A very basic brute force method for determining the satisfiability of a Boolean formula
ϕ is to iteratively check each assignment β over the variables var(ϕ) by computing
eval(ϕ, β). This method corresponds to building a truth table [Post, 1921, Wittgenstein,
1922] where each row represents a variable assignment. However, the number of rows is
2n for the input length n = | vars(ϕ)|. Thus, solving the SAT problem by a truth table
requires an exponential number of steps in the worst case, that is O(2n).

In fact, the SAT problem was one of the first problems shown to be NP-complete, which
means that the SAT problem can be solved by a non-deterministic Turing machine
in polynomial time (NP-membership) and that every problem in NP can be reduced
in polynomial time to the SAT problem (NP-hardness). This result is known as the
Cook-Levin-Theorem [Cook, 1971, Levin, 1973], named after Stephen Cook and Leonid
Levin.

Richard Karp showed in his work “Reducibility Among Combinatorial Problems” [Karp,
1972] the NP-completeness of many computational problems by reducing the SAT prob-
lem to these in polynomial time (known as polynomial time many-one reduction), which
are nowadays known as “Karp’s 21 NP-complete problems”.
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In contrast, the complexity class P consists of decision problems solvable by a determin-
istic Turing machine in polynomial time. The question whether the SAT problem can be
solved in polynomial time, that is whether SAT ∈ P, remains open until today. If yes,
then P = NP would follow immediately since the SAT problem is NP-hard. Due to the
fact that no polynomial time algorithm for solving SAT has been found until today, it
is widely believed that the P versus NP problem2 has a negative answer. See [Fortnow,
2009] for a recent overview of the status of the P versus NP problem.

The following satisfiability related problems from Propositional Logic can be reduced
to the SAT problem and vice versa. Thus, all of these problems are NP-complete. In
practice we exploit these reductions, i.e., a SAT solving algorithm is sufficient to solve
all of these problems.

Proposition 3. (SAT Problem Reducibility) Let ϕ, ψ ∈ F be Boolean formulas. The
following problems can be reduced to the SAT problem as follows:

a) |= ϕ (Tautology Problem) iff ¬ϕ is not satisfiable.

b) ϕ |= ψ (Entailment Problem) iff ¬(ϕ→ ψ) is not satisfiable.

c) ϕ ≡ ψ (Equivalence Problem) iff ¬(ϕ↔ ψ) is not satisfiable.

d) ϕ is a contradiction (Contradiction Problem) iff ϕ is not satisfiable.

e) ϕ is falsifiable (Falsifiability Problem) iff ¬ϕ is satisfiable.

Proof. The reductions can be shown by applying the definitions of the logical operators
(cf. Theorem 2.39 in [Ben-Ari, 2012]).

Despite the fact that no polynomial time algorithm has been found for solving the
SAT problem until today, the SAT problem finds many practical applications [Marques-
Silva, 2008] and therefore, a solution algorithm for the SAT problem is highly desirable.
Implementations of algorithms solving the SAT problem are called SAT solvers. We
denote a SAT solver instance by solver and a call to the solver for a Boolean formula ϕ
by solver. sat(ϕ). The outcome is either true (satisfiable) or false (unsatisfiable). In
this work, we focus on complete solvers, i.e., solvers that always terminate and deliver the
correct result. In contrast, incomplete algorithms [Kautz et al., 2009] are not guaranteed
to terminate for the unsatisfiable case.

There are special cases of Boolean formulas for which the satisfiability problem is solvable
in polynomial time. For example, a formula in DNF is satisfiable if there is at least one
minterm without complementary literals. Other examples are 2-CNF and Horn formulas,
see [Schöning and Torán, 2013, Chapter 3]. In this thesis we consider arbitrary Boolean
formulas, since in automotive configuration all kinds of Boolean formulas are allowed.

2Millennium Prize Problems: http://www.claymath.org/millennium-problems
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The established input format for today’s SAT solvers is a CNF. As described in Sub-
section 2.1.2, any Boolean formula ϕ can be transformed into a semantically equiva-
lent CNF. To avoid the exponential growth (see Example 6) usually an equisatisfiable
CNF defCNF(ϕ) is used which can be computed in polynomial time by a Tseitin trans-
formation (see Subsection 2.1.3). Because of the equisatisfiability, either both formulas
are satisfiable or both formulas are not satisfiable. The result of the SAT solver is the
same as for the equisatisfiable CNF: solver. sat(ϕ) = solver. sat(defCNF(ϕ)).

The model property, Proposition 2, of a Tseitin transformation is a key property for
applications. We can retrieve a model of the original input formula ϕ by simply dis-
carding all auxiliary variables of a model of defCNF(ϕ) which were introduced during
the Tseitin transformation. Therefore, a Tseitin transformation defCNF(ϕ) of ϕ does not
only preserve the satisfiability but also the variable assignments of models.

For example, in software verification it is desirable to know an assignment for the input
variables of a program causing faulty behavior [Clarke et al., 2004] instead of only
knowing that such an input exists.

Modern SAT Solvers

Today’s best performing SAT solvers are DPLL-based algorithms. The DPLL algorithm
was invented by Davis, Logemann and Loveland in 1962 [Davis et al., 1962] and refined
the previously developed DP algorithm from 1960 [Davis and Putnam, 1960]. The input
Boolean formula is given in CNF as a set of clauses. Algorithm 2.6 shows the DPLL
algorithm. The DPLL algorithm is a depth-first search approach for the binary tree
of variable assignments. Each node of the tree corresponds to a variable v ∈ vars(ϕ).
Each child node is the assignment false resp. true. As soon as a clause becomes
empty by the current (possibly partial) assignment a one-step backtrack is performed in
order to continue the search in another subtree. The algorithm proceeds until all clauses
are satisfied by the current (partial) variable assignment (satisfiable case) or no more
backtrack step can be performed (unsatisfiable case).

There are two key techniques, called unit propagation and pure literal assignment, which
prune the search tree to speed up the search.

a) (Unit Propagation) A clause c = {l} consisting of only one literal is called unit
clause. The unit propagation (Lines 1–2) looks for clauses consisting of one literal
only. In order to satisfy a unit clause, the literal l has to be assigned according
to its phase, i.e., β(var(l)) = true if l = var(l), otherwise β(var(l)) = false.
By doing so, a whole subtree is pruned from the search tree. Unit propagation is
not required for the algorithm’s correctness but is a key technique to speed up the
performance.

b) (Pure Literal Assignment) A literal l is called pure if l occurs only with one phase
within the clause set ϕ: Either positive or negative. Literal l can be assigned
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Algorithm 2.6: DPLL algorithm: dpll(ϕ)
Input: Clause set ϕ = {c1, . . . , cm}
Output: true if ϕ is satisfiable, otherwise false

1 foreach unit clause u = {l} ∈ ϕ do
2 ϕ← unitPropagation(ϕ, l)
3 foreach pure literal l in ϕ do
4 ϕ← pureLiteralAssign(ϕ, l)
5 if ϕ = ∅ then
6 return true

7 else if ∅ ∈ ϕ then
8 return false

9 l← pickLiteral(ϕ)
10 return dpll(ϕ ∪ {{l}}) or dpll(ϕ ∪ {{¬l}})

according to its phase to evaluate to true, i.e., β(var(l)) = true if l = var(l),
otherwise β(var(l)) = false. Such an assignment is sound, because it may help
to satisfy clauses but it does not make any satisfiable clause unsatisfiable. With
the pure literal assignment we also prune a whole subtree from the search tree.

The DPLL algorithm has a runtime complexity of O(2n) with n = vars(ϕ). In practice,
however, the runtime is often better due to unit propagation and pure literal assign-
ment.

A conflict (empty clause) can appear in several different subtrees. A major drawback
of the DPLL algorithm is that a repeating conflict is not skipped but identified in each
occurring subtree over and over again. In the mid 90s a huge performance boost for
SAT solving was developed by introducing Conflict-Driven Clause Learning (CDCL)
SAT solvers [Marques-Silva and Sakallah, 1996, Bayardo and Schrag, 1997]. The idea
is that the solver learns from a conflict to avoid its repeated identification. Whenever
a conflict is identified (empty clause), the conflict is analyzed in order to deduce a new
clause by resolution (resolution was described in its general form for First-Order logic
in [Robinson, 1965]). This clause is learned by adding the clause to the input clause set.
The learned clause prevents that the same conflict appears again. Additionally, non-
chronological backtracking is performed. The soundness and completeness of different
versions of the CDCL approach have been shown [Marques-Silva, 1995, Marques-Silva,
1999, Zhang and Malik, 2003]. A detailed description of CDCL SAT solvers can be
found in [Marques-Silva et al., 2009] or more recently in [Zengler, 2014]. Therefore, we
only give a brief overview of the main techniques of a CDCL solver.

Algorithm 2.7 shows the iterative version of a CDCL SAT solver (cf. [Marques-Silva et al.,
2009]). The variable assignment is initialized with the empty set (Line 1) and the decision
level is initialized with 0. The algorithm repeatedly performs unit propagation (Line 4)
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and decisions over variables (Line 12) until the current (partial) assignment becomes a
model for ϕ (Lines 10–11) or no more backtracking is possible (Lines 6–7). Whenever
unit propagation leads to a conflict, the subroutine unitPropagation returns false and
the conflict identified is analyzed by the subroutine analyzeConflict. When a conflict
(empty clause) is analyzed resolution is used in order to deduce a new learned clause
from the reasons of the conflict. Typically, the first unique implication point (1-UIP) is
used as criterion for a new learned clause [Zhang et al., 2001, Dershowitz et al., 2007]. As
soon as only one variable of the deduced clause is at the highest decision level the 1-UIP
is found. The backtrack level, on which the computation proceeds, is then the second
highest level of the new learned clause which makes the new learned clause immediately
unit after backtracking. The non-chronological backtracking is performed in Line 8. In
contrast, for the case that unit propagation does not lead to a conflict, the solver returns
true if there is no more variable to branch on (Lines 10–11) or picks the next variable
to branch (Lines 12–14). Example 10 shows an example execution of Algorithm 2.7.

Algorithm 2.7: CDCL algorithm: cdcl(ϕ)
Input: Clause set ϕ = {c1, . . . , cm}
Output: true if ϕ is satisfiable, otherwise false

1 β ← ∅
2 lvl← 0
3 while true do
4 if unitPropagation(ϕ, β) then
5 lvl← analyzeConflict(ϕ)
6 if lvl = −1 then
7 return false

8 backtrack(lvl) // Non-chronological backtracking

9 else
10 if vars(ϕ) \ dom(β) = ∅ then
11 return true

12 x← pickVariable(vars(ϕ) \ dom(β))
13 β ← β ∪ {¬x}
14 lvl← lvl + 1

Example 10. (CDCL Example) Consider the clause set:

A : {w, x}, B : {w,¬x, y}, C : {u,¬w, y}, D : {u, z}, E : {¬x,¬y,¬z}, F : {u,¬w, x,¬y}

We assume the following selection order for the variables: u,w, x, y, z.

Table 2.1 shows the variable stack progress with the decision level, the variable, the
current variable value and the reason for the value. No unit propagation is possible on
decision level 0. The CDCL solver decides over variable u and sets its value to false.
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Table 2.1: CDCL progress after one decision
Level Variable Value Reason
1 u false decision

z true D : {u, z}
2 w false decision

x true A : {w, x}
y true B : {w,¬x, y}
y false E : {¬x,¬y,¬z}

Then unit propagation is executed. Variable z is assigned to true because of clause
D : {u, z}. No further unit propagation is possible. The solver decides over the next
variable, here w, and proceeds with unit propagation. This time the unit propagation
yields in a conflict. Variable y must be assigned to true due to clause B : {w,¬x, y}
and simultaneously must be assigned to false due to clause E : {¬x,¬y,¬z}.

Figure 2.3: Implication Graph showing the first conflict

Figure 2.3 illustrates the implication graph of the assigned variables and their implica-
tions due to unit propagation. Each cut through the edges of the implication graph
between the decision variables and the conflicting literals y and ¬y yields to an assign-
ment of variables which we have to avoid in order to satisfy the instance. For example,
the assignment right after the decision variables is ¬u∧¬w ≡ u∨w. The clause {u,w}
is called decision clause. In contrast, the rightmost cut leads to the conflict clause
{w,¬x,¬z}. Typically, a clause between these two cuts is learned, the 1-UIP clause.
We can learn a clause by adding it to the SAT solver in order to avoid this assignment
to ever to happen again.

The conflict is analyzed by method analyzeConflict. Internally, this methods executes
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G : {w,¬z}

A : {w, x}{w,¬x, z}

E : {¬x,¬y,¬z}B : {w,¬x, y}

Figure 2.4: Resolution tree to find 1-UIP after first conflict

resolution steps to compute the 1-UIP clause beginning with the two reason clauses
B : {w,¬x, y} and E : {¬x,¬y,¬z}. Figure 2.4 shows the resolution tree until the
1-UIP clause G : {w,¬z} is found.

Additionally, the method analyzeConflict computes the backtrack level, i.e., the sec-
ond highest level for which exactly one literal of the learned clause is undefined. In this
case, the backtrack level is 1.

Table 2.2: CDCL progress after one decision
Level Variable Value Reason
1 u false decision

z true D : {u, z}
w true G : {w,¬z}
y true C : {u,¬w, y}
x false E : {¬x,¬y,¬z}
x true F : {u,¬w, x,¬y}

Table 2.2 shows the variable stack progress after learning the 1-UIP clause G : {w,¬z}
and backtracking to level 1. Another conflict occurs for the variable z due to reason
clauses B : {w,¬x,¬y, z} and E : {¬x,¬y,¬z}. Figure 2.5 shows the corresponding
implication to the second conflict. Figure 2.6 shows the resolution tree until the 1-UIP
clause H : {u} is found. The backtrack level is 0.

Table 2.3 shows the variable stack progress after learning the 1-UIP clause H : {u} and
backtracking to level 0. Now unit propagation already takes place on level 0 because
the learned clause consists of a single literal only. Afterwards unit propagation assigns
all remaining variables without yielding a conflict. Thus, the clause set is satisfiable.
Additionally, the variable stack provides an example for a satisfying assignment.

Among others, modern CDCL SAT solvers make use of the following techniques:

a) (Efficient Unit Propagation) Unit Propagation is a key technique to speed up
the DPLL algorithm. It was observed that in most cases more than 90% of a
solvers’ runtime is spent in unit propagation [Moskewicz et al., 2001]. In order
to efficiently identify unit clauses a lazy data structure representation for clauses
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Figure 2.5: Implication Graph showing the second conflict

H : {u}

D : {u, z}{u,¬z}

G : {w,¬z}{u,¬w,¬z}

C : {u,¬w, y}{u,¬w,¬y,¬z}

F : {u,¬w, x,¬y}E : {¬x,¬y,¬z}

Figure 2.6: Resolution tree to find 1-UIP after second conflict

has been established. The two-watched literal technique [Moskewicz et al., 2001]
keeps pointers of two literals of each clause (instead of all) in order to identify a
unit or an empty clause. The pointers are only moved as soon as a literal becomes
unsatisfied by the current (partial) assignment. Then, a new literal (undefined or
satisfied) has to be found. If there is no remaining literal the clause became a unit
clause. If both literals became empty and no satisfied or undefined literal could
be found, then the clause is empty (conflict).

b) (Restart Strategies) Restarts are used to overcome local dead ends during the
search. Learned clauses are kept to ensure termination of the algorithm. Different
restart strategies have been investigated [Huang, 2007] and Luby’s strategy [Luby
et al., 1993] has been shown to perform very well.

c) (Selection Heuristics) Selection heuristics can be useful to pick a variable which
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Table 2.3: CDCL progress after one decision
Level Variable Value Reason
0 u true H : {u}
1 w false decision

x true A : {x,w}
y true B : {w,¬x, y}
z false E : {¬x,¬y,¬z}

seems to influence the formula more than other variables. One established selec-
tion heuristic is based on tracking the activity of variables, namely Variable State
Independent Decaying Sum (VSIDS) [Moskewicz et al., 2001]. Each variable has an
assigned activity level which is initialized by the number of its occurrences within
ϕ. For each learned clause containing the variable, the activity grows. Periodically,
the activity of each variable is reduced by a factor. Whenever a decision has to be
made, the variable with the highest activity is picked.

d) (Clause Deletion) Learned clauses consume memory and can become useless or
impractical. The number of learned clauses depends on the number of conflicts
which can be exponential compared to the number of variables. In analogy to
variables, activities for clauses have been introduced in order to identify and delete
low rated clauses.

Prominent CDCL SAT solvers are GRASP3 [Marques-Silva and Sakallah, 1996] (C++),
Chaff and its improved version zChaff4 [Moskewicz et al., 2001] (C++), the portfolio
solver SATzilla5 [Xu et al., 2008], Picosat6 [Biere, 2008] (C) and MiniSAT7 [Eén
and Sörensson, 2004] (C++). There exist plenty of MiniSAT derivatives, e.g., Glu-
cose8 [Audemard et al., 2013] (C++) or the Java derivate SAT4J9 [Le Berre and Parrain,
2010].

Since 2002 the SAT competition10 is a yearly event trying to find the fastest SAT solvers
for different sets of benchmarks (random, crafted, industrial). The source code of all
participated solvers is published online. To give an example, the source code of the
solving class of MiniSAT 2.2.0 only consists about 1,000 lines of code (not counting
classes for help methods and data structures).

3GRASP homepage: http://vlsicad.eecs.umich.edu/BK/Slots/cache/sat.inesc.pt/~jpms/
grasp/

4zChaff homepage: https://www.princeton.edu/~chaff/zchaff.html
5SATzilla homepage: http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
6PicoSAT homepage: http://fmv.jku.at/picosat/
7MiniSAT homepage: http://minisat.se
8Glucose homepage: http://www.labri.fr/perso/lsimon/glucose/
9SAT4J homepage: http://www.sat4j.org/

10SAT Competition: http://www.satcompetition.org/
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For the purpose of solving instances from the automotive industry the commercial
logic library AutoLib has been developed by Christoph Zengler [Zengler, 2014] at
the Steinbeis-Transferzentrum für Objekt- und Internettechnologien (STZ OIT). The
library is in use for production as well as for prototype systems for several German
automotive manufacturers. AutoLib includes an own CDCL SAT solver, called Auto-
Prove, which is optimized for solving automotive configuration instances (see Chapter 6
“Experimental Evaluations” in [Zengler, 2014]). In addition to a SAT solver AutoLib
offers a wealth of data structures and methods to work with formulas, e.g., data structure
for formulas and clause sets, methods for transformations and evaluation, an efficient
version of the Tseitin transformation, and more. In this thesis, we use AutoLib for our
experimental evaluations most of the time.

Incremental and Decremental SAT Solvers

Classical SAT applications use SAT solvers to solve one large Boolean formula which
may take hours. In other applications, however, it is useful to add or withdraw clauses
after the SAT solver solved the initially given formula. For example, in automotive
configuration we have one large formula, the product description formula ϕPD (see Sec-
tion 3.1), which is initially added to the SAT solver. Then different verification properties
ψ1, . . . , ψk are sequentially tested: ϕPD ∧ψ1, . . . , ϕPD ∧ψk. For this use case it is helpful
to add the product description formula only once (call solver. add(ϕPD)), then mark
the state of the solver (call solver. mark()) and add the next verification property ψi
(call solver. add(ψi)). After testing the verification property ψi (call solver .sat())
we withdraw all changes since the last marked state (call solver. undo()) and proceed
with the next verification property. There are further use cases where an incremental
and decremental interface is preferable. For example, in optimization computations a
SAT solver is iteratively called on the same input formula with additional restrictions
in each iteration (see Chapter 4). For such applications an incremental and decremental
interface is a key technique to improve the solving performance. To simplify reading we
abbreviate the incremental and decremental interface by inc/dec.

The implementation of the solver. mark() and solver. undo() calls can be realized in
two different ways:

a) (Restoring Solver State) Whenever solver. mark() is called the current SAT solver
state is stored on a stack of solver states. By calling solver. undo() the last stored
solver state is restored. The storage of the solver state can be efficiently realized
by storing the array sizes of the internal solver arrays for variables, clauses, learned
clauses, etc. See [Zengler, 2014, Subsection 2.2.4] for more details.

b) (Usage of Selector Variables (cf. [Eén and Sörensson, 2003])) For each call of
solver. mark() introduce a new selector variable s. Whenever a clause {l1, . . . , lk}
is added by solver. add() the last introduced selector variable s is added to the
clause: {l1, . . . , lk, s}. And for every satisfiability check solver. sat() the selector
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variable s is set to false by an additional set of assumption literals. This way,
the clause is treated as a normal clause during the satisfiability search. After the
mark is undone by solver. undo() the selector variable s is set to true by adding
the unit clause {s} to the internal clause set. Thus, the clause {l1, . . . , lk, s} is
effectively deleted. Eventually by deletion techniques the clause {l1, . . . , lk, s} will
be actually deleted from the clause set.

The usage of selector variables for the implementation of the inc/dec interface is easy
to implement and can be done for every SAT solver supporting assumption literals by
wrapping its original methods under a new interface. Disadvantages are a potential cause
of conflict whenever the selector variable names are not carefully chosen and overlap with
variable names of the original clauses. Also, if clauses are not deleted after an undo call,
the clause state gets crowded with useless clauses.

SAT Solver Interface

Let ϕ, ψ ∈ F be Boolean formulas. Table 2.4 shows the summarized interface of a
modern SAT solver. We use these methods throughout this thesis in our algorithms. A
new SAT solver object solver is initialized by the command:
solver← new inc/dec CDCL SAT solver.

Table 2.4: Modern SAT solver interface
Method Description
solver. mark() Marks the current solver state.
solver. undo() Restored the solver state of the last marked state.
solver. add(ϕ) Adds the Boolean formula ϕ to the solver.
solver. sat([ϕ]) Tests whether ϕ is satisfiable.
solver. unsat([ϕ]) Tests whether ϕ is unsatisfiable (contradiction).
solver. entails(ϕ, ψ) Tests whether ϕ entails ψ.
solver. tautology(ϕ) Tests whether ϕ is a tautology.
solver. equivalent(ϕ, ψ) Tests whether ϕ and ψ are equivalent.
solver. falsifiable(ϕ) Tests whether ϕ is falsifiable.
solver. model() Returns a model β for the satisfiable case.
solver. core() Returns an unsatisfiable core for the unsatisfiable case.

The methods solver. mark() and solver. undo() work as described in the previous sub-
section. The method solver. add(ϕ) converts the Boolean formula by Tseitin transfor-
mation to an equisatisfiable CNF defCNF(ϕ) and adds the clauses to the solver’s stack
of clauses. In order to avoid conflicts of auxiliary variables the internal Tseitin transfor-
mation implementation has to use fresh variables each time the method is called.

The overloaded method solver. sat([ϕ]) starts the solving process and returns true
resp. false. If no argument is given, the already added formulas are tested. If a Boolean
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formula is given, the solver checks whether the conjunction of the added formulas and
the argument ϕ is satisfiable. The optional argument is just syntactic sugar in order
to avoid manual calls of solver. mark() and solver. undo(). Algorithm 2.8 shows the
pseudocode for the case of a Boolean formula.

Algorithm 2.8: SAT call of an inc/dec SAT solver: solver. sat(ϕ)
Input: SAT solver and Boolean formula ϕ
Output: true if ϕ is unsatisfiable w.r.t. solver state, false otherwise

1 solver. mark()
2 solver. add(ϕ)
3 st← solver. sat()
4 solver. undo()
5 return st

The overloaded method solver. unsat([ϕ]) works analogously to solver. sat([ϕ]) but it
tests for unsatisfiability according to the reductions described in Proposition 3. Further,
the methods solver. entails(ϕ, ψ), solver. tautology(ϕ), solver. equivalent(ϕ, ψ)
and solver. falsifiable(ϕ) work by the same scheme according to the reductions de-
scribed in Proposition 3. Note that every call for unsatisfiability, entailment, tautology,
equivalence or refutability requires exactly one call of solver. sat().

The result of a SAT solver call is either true or false. In both cases, the solver can
provide additional information. For the satisfiable case, the solver can provide a model.
Whereas for the unsatisfiable case, the solver can provide an unsatisfiable core (see
Section 2.4).

The original SAT problem only asks whether a Boolean formula is satisfiable, i.e., it
is a decision problem with only two possible outcomes (true or false). However, in
practical applications it is essential to retrieve a satisfying assignment if one exists. For
example, for a set of selected equipment options it is not sufficient to know that there
exists a vehicle configuration including these options, one wants to a complete variable
assignment representing the vehicle configuration. In fact, one wants to solve the search
problem of Propositional Logic. Therefore, SAT solvers track the assignment of variables
during the solving process and provide an interface to access it if one exists.

The method solver. model() delivers a model after solver. sat([ϕ]) has been called
with result true. During the solving process of a CDCL SAT solver the current vari-
able assignment is tracked by variable β (see Algorithm 2.7). Variable assignment β is
updated within the unit propagation, the backtracking process and after a decision is
made.

The method solver. core() delivers an unsatisfiable core. An unsatisfiable core is a
subset of the input clauses which is already unsatisfiable by itself. An unsatisfiable core
can only be delivered for the unsatisfiable case. An unsatisfiable core can serve as an
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explanation for unsatisfiability. We describe the extraction of an unsatisfiable core in
more detail in Section 2.4.

Modern SAT solvers provide the interface listed in Table 2.4 or most of it. Solver
AutoProve of the logic library AutoLib fully supports this interface.

2.3 Constraint Types

In this section we consider different types of constraints from simple clause constraints
to Pseudo-Boolean constraints. The constraint types occur in different normal forms
and applications.

Clauses

One of the most simple constraint types is a clause, which is a disjunction l1 ∨ . . . ∨
ln of literals l1, . . . , ln. Clauses play a key role for the conjunctive normal form (see
Subsection 2.1.2) and in the encoding of many applications.

Cardinality Constraints

For a set of literals, cardinality constraints restrict the number of simultaneously satisfied
literals. Such a restriction can be very useful in many applications, such as restricting
the set of engine variables assigned to true to exactly one. Another application is the
usage of cardinality constraints within SAT-based optimization like MaxSAT in order
to narrow the search space, see Chapter 4.

Definition 15. (Cardinality Constraint) A cardinality constraint is a restricted sum of
literals by a non-integer k ∈ N0 of the form:

n∑
i=1

li B k, for B ∈ {<,≤, >,≥,=}

We say a cardinality constraint ∑n
i=1 li B k is satisfied under an assignment β if the

resulting integer of the sum ∑n
i=1 li satisfies the relation B with the right hand side k.

In this context, the evaluation of a literal li under β is considered as integer 0 (false)
or 1 (true) to allow algebraic operations, i.e., the addition of the truth values.

Proposition 4. (Cardinality Constraint Normalization) Any arbitrary cardinality con-
straint ∑n

i=1 li B k can be normalized to a semantically equivalent conjunction of cardi-
nality constraints, each of the form

n∑
i=1

l′i ≥ k′
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with k′ ∈ N0 and l′i ∈ {li,¬li} for all i ∈ {1, . . . , n} by iteratively applying the following
steps:

a) (Relation Normalization) If the relation B is not ≤ distinguish the following cases:

a) (<) Transform: ∑n
i=1 li < k ≡ ∑n

i=1 li ≤ k − 1.

b) (=) Transform: ∑n
i=1 li = k ≡ ∑n

i=1 li ≤ k ∧∑n
i=1 li ≥ k.

Repeat the normalization process for the constraint ∑n
i=1 li ≤ k.

c) (>) Transform: ∑n
i=1 li > k ≡ ∑n

i=1 li ≥ k + 1.

d) (≤) Transform: ∑n
i=1 li ≤ k ≡ ∑n

i=1 ¬li ≥ n− k.

b) (Trivial Cases)

a) If k ≤ 0, return >.

b) If n < k, return ⊥.

Proof. The equivalences can be shown by applying arithmetic equivalence transforma-
tions (cf. [Barth, 1995]).

To encode a cardinality constraint ∑n
i=1 li ≤ k as a CNF in Propositional Logic we can

exclude all combinations of k+ 1 simultaneously true assigned literals of {l1, . . . , ln}:∧
M⊆{1,...,n}
|M |=k+1

∨
i∈M
¬li

This encoding requires no additional auxiliary variables, but requires
(

n
k+1

)
clauses. For

the worst case of k = dn/2e − 1 the number of clauses is O(2n/
√
n/2) [Sinz, 2005].

In contrast to the direct approach described above, more compact encodings for car-
dinality constraints in CNF have been developed by making use of auxiliary variables.
Table 2.5, taken from [Sinz, 2005], gives a brief overview of some encodings and their
respective sizes in terms of the number of clauses and auxiliary variables. Additionally,
encodings can be distinguished by the time needed to decide about the encoding (column
“decided”).

Table 2.5: Comparison of cardinality constraints encodings
Encoding #clauses #aux. vars decided
Naïve

(
n

k+1
)

0 immediately
Sequential unary counter (LTn,k

SEQ) [Sinz, 2005] O(n · k) O(n · k) by unit prop.
Parallel binary counter (LTn,k

PAR) [Sinz, 2005] 7n− 3 blog nc − 6 2n− 2 by search
Bailleux & Boufkhad [Bailleux and Boufkhad, 2003] O(n2) O(n · log n) by unit prop.
Warners [Warners, 1998] 8n 2n by search
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The special case ∑n
i=1 li ≤ 1, meaning that at most one literal is allowed to evaluate to

true, plays an important role for many applications. For example, a radio of a vehicle is
optional but there must not be more than one radio. The naïve encoding, not using any
auxiliary variables, for this constraint results in O(n2) clauses: ∧i=1

∧n
j=i (¬li ∨ ¬lj).

A clause l1 ∨ . . . ∨ ln is a special case of the at least one cardinality constraint:

l1 ∨ . . . ∨ ln ≡
n∑
i=1

li ≥ 1

Combining the at least one and the at most one constraints, we ensure that exactly one
literal is satisfied. For example, every car has exactly one engine.

In this work, we denote the usage of cardinality constraints within Propositional Logic
by cnf(∑n

i=1 li B k) and mean that the restricted sum is encoded in CNF by any of the
encoding methods mentioned above.

Pseudo-Boolean Constraints

A more expressive type of constraints than cardinality constraints are pseudo-Boolean
constraints [Roussel and Manquinho, 2009] which allow integer weights for the literals,
i.e., the weighted sum of literals is restricted to an integer. Pseudo-Boolean constraints
find many applications, e.g., to narrow the search space within weighted MaxSAT, see
Chapter 4.

Definition 16. (Pseudo-Boolean Constraint) A (linear) pseudo-Boolean constraint
(PBC) is a restricted sum of weighted literals of the form:

n∑
i=1

wi · li B k

With wi ∈ Z and literal li for all i = {1, . . . , n}, k ∈ Z and B ∈ {<,≤, >,≥,=}.

We say a pseudo-Boolean constraint ∑n
i=1wi · liB k is satisfied under an assignment β if

the resulting integer of the sum ∑n
i=1wi · li satisfies the relation B with the right hand

side k. In this context, the evaluation of a literal li under β is considered as integer 0
(false) or 1 (true) to allow algebraic operations.

Proposition 5. (Pseudo-Boolean Constraint Normalization) Any pseudo-Boolean con-
straint ∑n

i=1wi · li B k can be normalized to a semantically equivalent conjunction of
pseudo-Boolean constraints, each of the form

n′∑
i=1

w′i · l′i ≥ k′

with w′i ∈ N0 for all i ∈ {1, . . . , n}, k′ ∈ N0, l′i are literals for all i ∈ {1, . . . , n} by
iteratively applying the following steps:
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a) (Eliminating Redundant Terms) Remove each term wi · li where wi = 0.

b) (Relation Normalization) If the relation B is not ≤ distinguish the following cases:

a) (<) Transform: ∑n
i=1wi · li < k ≡ ∑n

i=1wi · li ≤ k − 1.

b) (=) Transform: ∑n
i=1wi · li = k ≡ ∑n

i=1wi · li ≤ k ∧∑n
i=1wi · li ≥ k.

Repeat relation normalization process for the first PBC.

c) (>) Transform: ∑n
i=1wi · li > k ≡ ∑n

i=1wi · li ≥ k + 1.

d) (≤) Transform: ∑n
i=1wi · li ≤ k ≡ ∑n

i=1−wi · li ≥ −k.

c) (Eliminating Negative Weights) For each term wili with wi < 0 replace the term wili
by −wi¬li and add the term −wi to k.

d) (Trivial Cases)

a) If k ≤ 0, return >.

b) If ∑n
i=1wi < k, return ⊥.

Proof. The equivalences can be shown by applying arithmetic equivalence transforma-
tions (cf. [Barth, 1995]).

To simplify reading, the negation of a variable x within a pseudo-Boolean constraint is
often expressed by an overline x instead of ¬x. Example 11 shows a pseudo-Boolean
constraint and its normal form.
Example 11. The following pseudo-Boolean constraint

3x1 − 5x2 − 10x3 ≥ 2

is satisfiable, e.g., a satisfying example is β = {¬x1, x2,¬x3}. We transform this PBC
to its normal form as follows:

3x1 − 5x2 − 10x3 ≥ 2 ≡ −3x1 + 5x2 + 10x3 ≤ −2
≡ 3x1 + 5x2 + 10x3 ≤ 1

There have been several approaches developed on how pseudo-Boolean constraints can
be encoded as Boolean formula [Bailleux et al., 2006, Bailleux et al., 2009, Warners,
1998, Aavani et al., 2013]. The authors of [Eén and Sörensson, 2006] give a good overview
of different encodings which rely on BDDs, networks of adders or networks of sorters.

A cardinality constraint ∑n
i=1 li B k, B ∈ {<,≤, >,≥,=} is a special case of a pseudo-

Boolean constraint with wi = 1 for all i ∈ {1, . . . , n}.

In this work, we denote the usage of pseudo-Boolean constraints within Propositional
Logic by cnf(∑n

i=1wi · li B k) and mean that the restricted weighted sum is encoded in
CNF by any of the encoding methods mentioned above.
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Remark 3. (Pseudo-Boolean Solving) The satisfiability problem of pseudo-Boolean con-
straints (and cardinality constraints) can be solved either by (i) translating pseudo-
Boolean constraints into Propositional Logic and solving a Boolean formula (as described
in Section 2.2), or (ii) directly by a pseudo-Boolean solver (PBS) which works on the
more expressive logic of pseudo-Boolean constraints. Modern pseudo-Boolean solvers
use adapted techniques from CDCL SAT solvers such as unit propagation, watched
literals, conflict analyses with constraint learning and non-chronological backtracking.
See [Chai and Kuehlmann, 2003, Chai and Kuehlmann, 2005, Sheini and Sakallah, 2005]
or [Roussel and Manquinho, 2009] for a good overview article. There exist different
learning schemes for pseudo-Boolean solving [Santos and Manquinho, 2008, Roussel and
Manquinho, 2009]: clause learning, cardinality constraint learning and pseudo-Boolean
constraints learning. The satisfiability problem of pseudo-Boolean constraints is NP-
complete, even for a set of two normalized pseudo-Boolean constraints only [Roussel
and Manquinho, 2009].

2.4 Unsatisfiable Cores and MUSes

If a Boolean formula is unsatisfiable, a (minimal) unsatisfiable core can help to un-
derstand or explain the conflicts. An unsatisfiable core (or unsatisfiable subset) is a
subset of the input clauses which is unsatisfiable. Preferably, a minimal unsatisfiable
core is desired, such that removing any clause from the unsatisfiable core results in sat-
isfiability. Thus, every clause is involved in causing the unsatisfiability. Besides using
unsatisfiable cores as explanations they also find applications within MaxSAT solving
(see Chapter 4).

Definition 17. (Unsatisfiable Core and MUS) Let ϕ be a Boolean formula in CNF.

a) (Unsatisfiable Core) A subset Λ ⊆ ϕ is an unsatisfiable core iff Λ is unsatisfiable.

b) (MUS) An unsatisfiable core Λ ⊆ ϕ is a minimal unsatisfiable subset (MUS) of ϕ
iff ∀c ∈ Λ : Λ \ {c} is satisfiable.

Of course, for each unsatisfiable clause set the whole clause set itself is an unsatisfiable
core. In general, there may exist several unsatisfiable cores and MUSes. Example 12
shows a CNF with multiple unsatisfiable cores and multiple MUSes. In [Liffiton and
Sakallah, 2005] the authors show that Boolean formulas from Daimler vehicles can con-
tain more than 100, 000 MUSes.

Example 12. Consider the clause set ϕ = {{¬x}, {x}, {¬x, y}, {¬x,¬y}}.

Clause set ϕ contains 5 unsatisfiable cores:

ϕ

{{¬x}, {x}}
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{{¬x}, {x}, {¬x, y}}
{{¬x}, {x}, {¬x,¬y}}
{{x}, {¬x, y}, {¬x,¬y}}

Clause set ϕ contains 2 MUSes:

{{¬x}, {x}}
{{x}, {¬x, y}, {¬x,¬y}}

A transition clause is a clause which cannot be removed from an unsatisfiable clause
set without restoring consistency. In other words, a transition clause is required for
producing the unsatisfiability.

Definition 18. (Transition Clause) Let ϕ be an unsatisfiable Boolean formula in CNF.
A clause c ∈ ϕ is a transition clause of ϕ iff ϕ \ {c} is satisfiable.

Proposition 6. (Transition Clause Property) Let ϕ be an unsatisfiable Boolean formula
in CNF. If c ∈ ϕ is a transition clause, then clause c is a member of any MUS of ϕ.

Proof. Since ϕ \ {c} is satisfiable, any unsatisfiable core of ϕ has to contain
clause c [Marques-Silva and Lynce, 2011, Lemma 1].

For the computation of an MUS most practical algorithms iteratively search for tran-
sition clauses. Algorithms for the computation of an MUS can be organized in three
categories: (i) constructive (or insertion-based), (ii) destructive (or removal-based or
deletion-based), and (iii) dichotomic. Good overviews about MUS extraction approaches
can be found in [Desrosiers et al., 2009, Grégoire et al., 2008, Marques-Silva, 2010].

In this work, we do not discuss the different MUS approaches in detail but only present
one basic approach to give the reader an idea how an MUS algorithm looks like. Algo-
rithm 2.9 shows the basic destructive approach for the computation of an MUS [Chinneck
and Dravnieks, 1991, Bakker et al., 1993]. The initial set Λ is an over-approximated MUS
by assigning the whole input clause set to Λ (Line 1). Iteratively each clause c ∈ Λ is
checked whether it can be excluded from Λ (non transition clause) such that the re-
maining set Λ \ {c} is still unsatisfiable (Lines 3–4). Otherwise, the clause is required
(transition clause) and cannot be excluded. The remaining clauses in Λ form the MUS
and they are returned (Line 5). The resulting MUS depends on the order in which the
clauses are iterated. The number of SAT calls is the number of clauses m.

The implementation of Algorithm 2.9 can be improved by the usage of an inc/dec SAT
solver as shown in Algorithm 2.4 in [Zengler, 2014].
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Algorithm 2.9: Basic destructive MUS algorithm: basicMUS(ϕ)
Input: Unsatisfiable CNF {c1, . . . , cm}
Output: MUS Λ

1 Λ← {c1, . . . , cm}
2 solver← new inc/dec CDCL SAT solver
3 foreach c ∈ Λ do
4 if solver. unsat(Λ \ {c}) then Λ← Λ \ {c}
5 return Λ

In practice it is often sufficient to find an unsatisfiable core which is not guaranteed to
be minimal but is almost minimal. Such an almost minimal unsatisfiable core can be
generated by a CDCL SAT solver with little additional effort. Firstly, we need the ability
to define assumption literals. The CDCL SAT solver MiniSAT [Eén and Sörensson,
2004]11 allows SAT solving under an additional input set A = {l1, . . . , lk} of literals
which represent custom assumptions. Together with the input clause set ϕ the solver
returns true if ϕ∧∧ki=1 li is satisfiable. Otherwise, the solver returns false and returns
an additional subset A′ ⊆ A of assumption literals which cause a conflict, i.e., ϕ∧∧li∈A′ li
is unsatisfiable. Internally, the assumption literals are picked as decision literals to be
assigned to true before any other literal is picked. As soon as one of the assumption
literals is forced to be assigned to false by unit propagation an irresolvable conflict
is detected and the solving process terminates. Before the result false is returned an
additional method analyzeFinal is called which resolves all literals and their respective
reasons beginning from the assumption literal forced p to be assigned to false. During
this process every assumption literal which was assigned by decision to true contributed
to the conflict and is collected. The collected literals together with literal p form the
subset A′. We can utilize the principle of assumption literals in combination with selector
variables to infer an unsatisfiable subset ϕ′ ⊆ ϕ for the unsatisfiable case as follows. For
each clause ci ∈ ϕ we create a fresh selector variable si and add ¬si to clause ci (see
Remark 1). At the start of the solving process we define the assumption literals to consist
of the newly introduced selector variables si, meaning that every selector variable has
to be assigned to true and forcing the corresponding clauses to be activated. From the
set A′ of assumption literals involved in the conflict we extract the unsatisfiable subset
ϕ′ ⊆ ϕ as follows:

ϕ′ = {ci | si ∈ A′}

Besides the computation of an unsatisfiable core there exist algorithms for the compu-
tation of a whole resolution proof which can serve as an explanation for the unsatisfia-
bility. Such a resolution proof can also be generated from a CDCL SAT solver as shown
in [Zhang and Malik, 2003]. The challenge for the construction of a resolution proof is
to keep track of the resolution proofs of the learned clauses, too.
11MiniSAT homepage: minisat.se
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The unsatisfiable core (or resolution proof) generated by a CDCL SAT solver as described
above is not minimal in general as Example 13 shows. In such a case, the CDCL
algorithm uses a redundant clause to derive a conflict, i.e., a clause which is implied by
other clauses of the input set. To simplify reading we left the selector variables out of
the example, but the principle remains the same.

Example 13. (Unsatisfiable core generation by SAT solver) Consider the clause set
ϕ = {A,B,C,D,E, F} with

A : {¬y, z}, B : {x, z}, C : {¬x, y}, D : {¬x,¬y}, E : {x,¬y}, F : {y,¬z}

Let ϕ be the input for a CDCL SAT solver. No unit propagation is possible on decision
level 0. We assume that the CDCL solver’s heuristics selects variable z and tries false
first. Table 2.6 shows the progress of the CDCL solver after the first decision resulting
in a conflict for variable x.

Table 2.6: CDCL progress after one decision
Level Variable Value Reason
1 z false decision

y false A : {¬y, z}
x false C : {¬x, y}
x true B : {x, z}

By using resolution on the conflict clause and going backwards we get the 1-UIP clause
G : {z} and the backtrack level 0. Table 2.7 shows the progress after backtracking and
using the learned clause.

Table 2.7: CDCL progress after one decision
Level Variable Value Reason
0 z true G : {z}

y true F : {y,¬z}
x false D : {¬x,¬y}
x true E : {x,¬y}

Since there is a conflict on decision level 0 the clause set is not satisfiable. The unsatis-
fiable core extracted by the CDCL solver consists of all original clauses involved in the
conflict by recursively gathering all reason clauses. If a reason clause is learned, then we
gather all clauses which were involved in the resolution tree for computing the learned
clause. Figure 2.7 shows the whole reconstructed resolution tree of the conflict where
all learned clauses are resolved.

For our example we get the whole original clause set as extracted unsatisfiable core but
this is not an MUS. By removing the first clause A from the clause set, we get an MUS:

B : {x, z}, C : {¬x, y}, D : {¬x,¬y}, E : {x,¬y}, F : {y,¬z}
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∅

{¬z}

F : {y,¬z}{¬y}

E : {x,¬y}D : {¬x,¬y}

G : {z}

A : {¬y, z}{y, z}

C : {¬x, y}B : {x, z}

Figure 2.7: Reconstructed resolution tree of the conflict

The reason why a redundant clause is contained in the extracted unsatisfiable core is
that the CDCL progress used clause A : {¬y, z} for the first unit propagation instead
deriving this information by the other clauses. Clause A : {¬y, z} is implied by the
clauses B, C, D and E. This can be shown, for example, by deriving clause A from
these clauses by resolution. Figure 2.8 shows the resolution tree for deriving clause
A : {¬y, z}.

A : {¬y, z}

E : {x,¬y}{¬x, z}

D : {¬x,¬y}{y, z}

C : {¬x, y}B : {x, z}

Figure 2.8: Resolution tree for clause {¬y, z}

2.5 Prime Implicants

The two-watched literal scheme of CDCL SAT solvers is designed to identify empty
and unit clauses as soon as they occur but not to identify satisfied clauses immediately
(see Section 2.2). Thus, CDCL SAT solvers assign all variables to a truth value before
terminating and return a complete variable assignment for the satisfiable case. For
example, for formula (¬x ∨ ¬y) a CDCL SAT decides on x such that β = {¬x}. Then
the formula is already satisfied, but the algorithm does not stop and decides over y, too.
The result assignment is β = {¬x,¬y}. However, the last assignment was redundant
since the partial assignment {¬x} satisfies the formula for any assigned value of y.
Such literals are called don’t care literals. The removal of don’t care literals yields to
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prime implicants. For many applications such compact satisfying assignments are useful.
For example, an error detected by bounded model checking corresponds to a satisfying
assignment [Ravi and Somenzi, 2004]. A compact satisfying assignment representing
a faulty input is more precise and easier to understand. Prime implicants can also
help to speed up the performance during optimization. A satisfying assignment of an
intermediate result narrows the optimum better if some of the variables can be freely
assigned (see Chapter 4). In this section we give a brief introduction in the computation
of a prime implicant from a given satisfying assignment.

An implicant is a partial variable assignment such that any assignment of the remaining
variables yields to a satisfying variable assignment. Moreover, a prime implicant is a
minimal implicant.

Definition 19. (Prime Implicant) Let ϕ ∈ F be a Boolean formula. Let α be a (partial)
variable assignment over the variables vars(ϕ).

a) (Implicant) The variable assignment α is an implicant of ϕ iff α |= ϕ.

b) (Prime Implicant) An implicant α of ϕ is called prime implicant iff every subset
α′ ( α is not an implicant of ϕ, i.e., α′ 6|= ϕ.

The variables of ϕ not included in a prime implicant of ϕ can be assigned to an arbitrary
value such that the result is always a satisfying assignment. Those undefined variables
are called don’t care variables. Obviously, every model of a Boolean formula ϕ is an
implicant and every implicant contains at least one prime implicant.

Algorithm 2.10 shows a basic algorithm to reduce a given satisfying assignment β of
a Boolean formula ϕ until it becomes a prime implicant. The algorithm was sketched
in [Palopoli et al., 1999] and recently refined in [Déharbe et al., 2013]. Literal set α
is initialized with β (Line 1). For each literal l of β we check if α \ {l} |= ϕ holds by
calling subroutine implies (Line 3). If α \ {l} |= ϕ holds, then literal l can be assigned
in both ways, otherwise l cannot be removed. The reduced set α, the prime implicant,
is returned (Line 5).

Algorithm 2.10: Basic computation of a prime implicant: primeImplicantBasic
Input: Satisfiable Boolean formula ϕ and a satisfying assignment β of ϕ
Output: Prime implicant α

1 α← β
2 foreach literal l ∈ β do
3 if implies(α \ {l}, ϕ) then
4 α← α \ {l}

5 return α

The call of the subroutine implies(α \ {l}, ϕ) can be performed efficiently if ϕ is a
clause set {c1, . . . , cm}. Then testing whether α \ {l} |= ϕ holds reduces to testing if
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for all clauses ci ∈ ϕ holds α \ {l} |= ci. Further, the entailment α \ {l} |= ci holds iff
α\{l}∩ci 6= ∅. Hence, the computation of a prime implicant from a satisfying assignment
for a formula ϕ in CNF can be done without any further call of a SAT solver.

The basic algorithm described above can be improved by a rather simple observation (see
Lemma 1 in [Déharbe et al., 2013]): For a satisfying assignment β from a CDCL SAT
solver only the literals made by a decision have to be tested for removal, i.e., all literals
of β originated from unit propagations are included in every prime implicant included
in β. Moreover, in [Déharbe et al., 2013] the authors propose an adapted two-watched
literals scheme, similar to CDCL solvers, to efficiently identify literals which cannot be
removed during the reduction process.

Example 14. (Prime Implicant Computation) Reconsider the clause set of Example 10:

A : {w, x}, B : {w,¬x, y}, C : {u,¬w, y}, D : {u, z}, E : {¬x,¬y,¬z}, F : {u,¬w, x,¬y}

Example 10 showed the computation of a satisfying assignment β by using the CDCL
algorithm resulting in β = {u,¬w, x, y,¬z}. The only literal in β originated from a
decision is ¬w, so we only have to test whether β \ {¬w} is an implicant. Since the
intersection of every clause and β \ {¬w} yields in a non-empty set, the literal ¬w can
be removed. Thus, {u, x, y,¬z} is a prime implicant of the clause set.

2.6 Backbones

The backbone of a satisfiable Boolean formula is the set of literals which remains constant
for all models of the formula. A backbone literal occurs in all models of the formula.
The computation of backbones finds many applications, e.g., backbones can be used
for post-silicon fault localization, where the backbone provides additional information
about the current state bits and thus narrows the search space of faulty gates [Zhu et al.,
2011b, Zhu et al., 2011a]. For automotive configuration, backbones reflect equipment
options which either have to be positive (selected) or negative (deselected) in all vehicle
configurations [Kaiser and Küchlin, 2001].

Definition 20. (Backbone Literal) Let ϕ ∈ F be a satisfiable Boolean formula. A
literal l ∈ lits(ϕ) is a backbone literal of ϕ iff ϕ |= l.

Definition 21. (Backbone) The backbone of a satisfiable Boolean formula ϕ is the set
of all backbone literals of ϕ, denoted by backbone(ϕ).

The set backbone(ϕ) of a Boolean formula ϕ is unique. There are definitions of backbone
for an unsatisfiable formula ϕ [Monasson et al., 1999], but we focus on satisfiable formulas
only when talking about backbone literals. Without loss of generality we can assume
that the Boolean formula is in CNF:
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Proposition 7. Let ϕ be a Boolean formula. Then:

backbone(ϕ) = {l ∈ backbone(defCNF(ϕ)) | var(l) ∈ vars(ϕ)}

Proof. Follows from the model property of Tseitin transformations (see Proposition 2).

Example 15 shows the backbone of a Boolean formula in CNF.

Example 15. For the Boolean formula ϕ = {{x}, {¬y, z}, {¬y,¬z}} the backbone is
backbone(ϕ) = {x,¬y}.

There is an important relationship between the backbone of a formula ϕ and the set of
all prime implicants of ϕ. The backbone of a formula represents the part of literals which
is consistent throughout every model. Since prime implicants represent sets of models,
the backbone literals have to appear in every prime implicant as well. On the other
hand, the intersection of all prime implicants represents literals which are consistent
throughout all models and thus, these literals are backbone literals.

Proposition 8. (Backbone/Prime Implicants Relationship) Let ϕ be a Boolean formula.
Let A = {α | α is a prime implicant of ϕ} be the set of all prime implicants of ϕ. Then:

backbone(ϕ) =
⋂
α∈A

α

Proof. See Proposition 2 in [Janota et al., 2015].

Proposition 8 can be stated more general: The set of backbones backbone(ϕ) equals the
intersection of any set of implicants of ϕ which covers ϕ [Janota et al., 2015].

A very basic algorithm for the computation of backbone(ϕ) is to iteratively check for
each variable x ∈ vars(ϕ) whether the conjunction of ϕ and x (resp. ¬x) is satisfi-
able [Kaiser and Küchlin, 2001, Janota, 2008]. Algorithm 2.11 shows the pseudocode.
If both satisfiability checks are positive, then neither x nor ¬x is a backbone literal. If
ϕ ∧ x (resp. ϕ ∧ ¬x) is unsatisfiable, then ¬x (resp. x) is a backbone literal. Since we
assume ϕ to be satisfiable, the case st1 = st2 = false cannot occur. Otherwise ϕ would
have been unsatisfiable. The number of SAT calls is 2 · | vars(ϕ)|, i.e., two SAT calls
are made for each variable of ϕ.

The implementation of Algorithm 2.11 can be improved. Any backbone literal l of the
Boolean formula ϕ is contained in every model of ϕ. Thus, we can add a backbone
literal l to ϕ as soon as we identify l as backbone literal in order to simplify further SAT
calls (Line 7 and 10).

In practice SAT solvers return a model when the input formula was satisfiable. We can
exploit this behavior [Kaiser and Küchlin, 2001, Janota, 2008, Marques-Silva et al., 2010]

47



2 Fundamentals of SAT-based Methods

Algorithm 2.11: Basic iterative backbone algorithm (two SAT tests per variable):
basicIterativeBackbone(ϕ)
Input: Satisfiable Boolean formula ϕ
Output: Backbone of ϕ

1 B ← ∅
2 solver← new inc/dec CDCL SAT solver
3 foreach x ∈ vars(ϕ) do
4 st1 ← solver. sat(ϕ ∧ x)
5 st2 ← solver. sat(ϕ ∧ ¬x)
6 if st1 = false then
7 B ← B ∪ {¬x} // Backbone identified
8 ϕ← ϕ ∧ ¬x // Speed-Up: Simplify further SAT calls

9 else if st2 = false then
10 B ← B ∪ {x} // Backbone identified
11 ϕ← ϕ ∧ x // Speed-Up: Simplify further SAT calls

12 return B

and reduce the number of 2 · | vars(ϕ)| SAT calls of Algorithm 2.12 to only | vars(ϕ)|+1
SAT calls in the worst case. Algorithm 2.12 shows the pseudocode. First, a SAT call
is made on the input formula ϕ to retrieve an initial model β (Line 3) which forms
the set of literals β to be tested for being a backbone literal (Line 4). A literal l ∈ β
is a backbone literal iff the negation of l is unsatisfiable with ϕ, otherwise literal l
appears in different phases for two models of ϕ. A literal is picked from β and ϕ∧¬l is
checked for satisfiability (Line 6–7). For the unsatisfiable case, the literal l is added to
the set of backbone literal (Line 9) and removed from the set of candidates (Line 11).
For the satisfiable case, the set of literals β is filtered by the last found model, i.e.,
all literals appearing in a different phase are removed (Line 13). When a backbone
literal is identified we can simplify further SAT calls by adding the backbone literal
to ϕ (Line 10).

Algorithm 2.12 can be further improved by exploiting the inc/dec interface of the SAT
solver. The formula ϕ is added just once and is never removed. Identified backbone
literals are added to the solver and are never removed.

Algorithm 2.11 and Algorithm 2.12 under-estimate the set backbone(ϕ) of backbone
literals by starting with an empty set of backbone literals. In contrast, there is also
an iterative approach which starts with an over-estimation of the set of backbone [Zhu
et al., 2011b] literals by regarding the set of literals of an initial model β: backbone(ϕ) ⊆
β. The idea is to iteratively check if the disjunction of the negated backbone literal
candidates is satisfiable with ϕ. If yes, then there is at least one non backbone literal
which can be removed, otherwise all candidates are already backbone literals. This
approach takes | vars(ϕ)| + 1 SAT calls in the worst case, too. However, it has been
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Algorithm 2.12: Iterative backbone algorithm (one SAT tests per variable):
iterativeBackbone(ϕ)
Input: Satisfiable Boolean formula ϕ
Output: Backbone of ϕ

1 B ← ∅
2 solver← new inc/dec CDCL SAT solver
3 solver. sat(ϕ)
4 β = solver. model()
5 while β 6= ∅ do
6 l← selectLiteral(β)
7 st← solver. sat(ϕ ∧ ¬l)
8 if st = false then
9 B ← B ∪ {l} // Backbone identified

10 ϕ← ϕ ∧ l // Speed-Up: Simplify further SAT calls
11 β ← β \ {l}
12 else
13 β ← β ∩ solver. model()

14 return B

shown that this is less efficient in practice [Janota et al., 2015].

Furthermore, there exists a chunking approach which can be interpreted as a generaliza-
tion of both, Algorithm 2.12 and the over-estimating approach [Janota et al., 2015]
described before. In addition, an unsatisfiable core based algorithm has been pro-
posed [Janota et al., 2015] which is, combined with the chunks approach, among the
best performing approaches. A good overview of current state of the art backbone
algorithms can be found in [Janota et al., 2015].

Algorithms for the computation of the backbone of ϕ can be improved by identifying
lower and upper bounds after an initial SAT solver call on ϕ as follows.

a) (Lower Bound) The unit propagated literals on decision level 0, denoted by UP0,
of the SAT solver call are all backbone literals: All unit propagated literals on
decision level 0 are included in every model ϕ. By Proposition 8, these literals
are backbone literals of ϕ, too. Thus, the set UP0 is a lower bound of the set of
backbone literals of ϕ. Observe that we can collect the unit propagated literals on
decision level 0 of the very last run of the SAT solver, i.e., after all conflicts have
been resolved and additional clauses may have been learned. This may include
propagated literals which were not propagated on decision level 0 in the first run
(before any conflict was resolved). Because for every learned clause c holds ϕ |= c,
propagated literals triggered by learned clauses are backbone literals, too.

b) (Upper Bound) The returned model β of ϕ is an upper bound of the set of backbone
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literals. Moreover, a prime implicant α, extracted from β, is potentially a more
restrictive upper bound of the set of backbone literals. A prime implicant can be
extract from β without any further SAT call (see Section 2.5). Furthermore, an
even more restrictive upper bound can be generated by testing each literal of the
resulting model β whether it is rotatable [Janota et al., 2015]. A literal of a given
implicant is called rotatable iff replacing the literal by its negation yields another
implicant. Every literal that is rotatable is not part of the backbone [Janota et al.,
2015, Prop. 10]. By removing rotatable literals, the resulting set of literals equal
or smaller than any prime implicant computed from β.

In summary, the set backbone(ϕ) can be approximated by the following lower and upper
bounds after one SAT solver call:

∅ ⊆ UP0 ⊆ backbone(ϕ) ⊆ {l ∈ β | l is not rotatable} ⊆ α ⊆
⋃

x∈vars(ϕ)
{x,¬x}

Example 16 shows lower and upper bounds for a clause set.

Example 16. (Backbone Lower/Upper Bound) Reconsider the clause set of Example 10:

A : {w, x}, B : {w,¬x, y}, C : {u,¬w, y}, D : {u, z}, E : {¬x,¬y,¬z}, F : {u,¬w, x,¬y}

In the first run of the CDCL algorithm, no unit propagation is performed on decision
level 0 (see Table 2.1), because no unit clause exists. In the last run (see Table 2.3), after
learning clauses G : {w,¬z} and H : {u}, literal u is propagated on decision level 0.
Thus, {u} is a lower bound of backbone(ϕ).

In Example 14 we have shown that {u, x, y,¬z} is a prime implicant generated from a
model. Thus, {u, x, y,¬z} is an upper bound of backbone(ϕ).

Given these bounds and following Algorithm 2.12 we only have to check literals x, y,¬z
for backbone literals.
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In this chapter we develop a configuration framework, based on SAT-solving, which
allows interactive configuration of vehicles from various German premium car manufac-
turer. Furthermore, we develop novel SAT-based methods to verify assembly structures
of a German car manufacturer.

In Section 3.1 we give a brief introduction in automotive configuration, consisting of
a high level configuration and a low level configuration, and recap the creation of the
product description formula. The product description formula is a Boolean formula
whose models represent all valid vehicles. The product description formula is the basis
for all further analyses. In Section 3.2 we recap various SAT-based verification tests
which have been developed for both, the high level configuration and the low level
configuration.

Figure 3.1: Screenshot of AutoConfig

In Section 3.3 we show how SAT-based techniques can be used as background engine
for an interactive product configurator in the context of automotive configuration. An
interactive configurator can be very helpful in many situations, e.g., an engineer who
wants to configure a test vehicle including with certain requirements. Besides consistency
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checks, our configurator enables us to configure a vehicle without manual backtracking.
We evaluate the performance of our methods with real instances from German premium
car manufacturers. Moreover, we implement a prototype, called AutoConfig, on top
of our background engine to provide a graphical user interface. Figure 3.1 shows a
preview screenshot.

Figure 3.2: Example of a dynamic assembly structure

In Section 3.4 we introduce dynamic assembly structures which represent the chronolog-
ical build order of complex parts. Figure 3.2 shows an example preview of a dynamic
assembly structure. Level 0 represents the level of the final assembly, e.g., the final
gearbox. Parts on level 1 are required to build up the assemblies of level 0. Again,
parts on level 2 are required to build up the assemblies of level 1. The parts on level
2 are already built-up assemblies or atomic parts, e.g., a control unit from a supplier
or some bolts. Each inner node is an assembly of its child nodes. The selection of the
correct parts for each assembly variant is controlled by selection formulas. Those for-
mulas are typically documented by hand which can be very error-prone. We introduce
consistency properties to validate that every assembly variant selects exactly one child
part of each child node (uniqueness) and that every part is used in at least one assem-
bly variant (completeness). We develop SAT-based methods to verify these properties.
Moreover, we develop a SAT-based method to compute part number sequences, which
represent valid paths within dynamic assembly structures. We evaluate our methods on
real instances from a German premium car manufacturer.

3.1 Automotive Configuration

The usage of Propositional Logic for modeling and verifying automotive configuration
was pioneered by Carsten Sinz in his diploma thesis [Sinz, 1997] for verifying vehicles at
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the German premium car manufacturer Daimler AG and later refined [Küchlin and Sinz,
2000, Sinz, 2003, Sinz et al., 2003]. A manufacturer independent approach to the formu-
lation of automotive configuration and verification was recently presented in [Zengler,
2014]. Additionally, a case study of the German premium car manufacturer BMW AG
was presented in the same publication. In our brief introduction of automotive config-
uration we basically follow the descriptions of [Zengler, 2014]. Modeling and verifying
automotive configuration data can also be done with more expressive logic. For example,
it was recently shown in [Gençay et al., 2017] how to translate and verify automotive
configuration data with Answer Set Programming [Brewka et al., 2011].
Remark 4. (Knowledge Compilation) There exist so called knowledge compilation for-
mats which take a Boolean formula and compile it into a specific format such that a
satisfiability test can be done in linear or polynomial time. The creation of the for-
mat, however, can take exponential running time in the worst case. Two prominent
examples for knowledge compilation formats are (Reduced Ordered) Binary Decision
Diagrams (BDD) [Bryant, 1986] and (Deterministic) Decomposable Negation Normal
Form (DNNF) [Darwiche, 2001]. Darwiche and Marquis give a good overview of exist-
ing knowledge compilation formats and their relations in [Darwiche and Marquis, 2002].

The applicability and performance of knowledge compilation for automotive configura-
tion has been investigated with BDDs for Daimler and BMW [Narodytska and Walsh,
2007, Matthes et al., 2012] and with DNNFs for BMW [Hildebrandt, 2012, Hildebrandt,
2015]. There are always product description formulas which could not be compiled in
one of the formats due to time or space overruns. The conclusion of these investigations
was that the compilation process is not yet stable and robust enough to guarantee time
limits.

The scope of this work does not cover knowledge compilation formats but focuses on
SAT-based approaches.

The large variety of different car models often follows a hierarchical scheme which groups
similar car models together. We distinguish three levels of the product hierarchy of car
models. The top level is the product line, e.g., Mercedes-Benz has an own product line
for compact cars and mid-size cars. The second level is the product series, e.g., BMW
has a product series F30 of the current 3 Series cars. The third level is called product
type and defines characteristics of a vehicle like steering (left-hand or right-hand), engine
type, engine displacement, transmission type (manual or automatic). Depending on the
car manufacturer, the product type determines more or less properties.

The product hierarchy of car models differs in the number of levels and group character-
istics among the car manufacturers but basically they share the same common scheme.
In this thesis we focus on the last level, the product type. This is the level where most
often verification takes place.

Definition 22. (Product type) A product type t contains vehicles at the last level of
the product hierarchy with already defined options of basic characteristics, e.g., steering,
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engine type, cubic capacity and transmission type. The set of all product types is denoted
by T .

Example 17. (Product Type) The current Mercedes-Benz C-Class station wagon (S205)
with left-hand steering is an example for a product type (third level of the product
hierarchy).

3.1.1 High & Low Level Configuration

Automotive configuration (and product configuration in general) can be divided into high
level configuration (HLC) and low level configuration (LLC). The HLC mainly describes
the equipment options of a vehicle visible to a customer, e.g., whether the vehicle has
a navigation system. In contrast, the LLC describes the actual physical parts used to
build the vehicle, i.e., the display, control unit, cables and software parameters actually
used for a navigation system.

High Level Configuration

The HLC mainly consists of equipment options, groups of options with certain restric-
tions and rules describing dependencies between options. We consider the HLC on the
product type level (third level of the product hierarchy).

Definition 23. (Equipment Option) The set O(t) consists of all (equipment) options
for a product type t ∈ T . An option represents a vehicle property. A selected option
means that the property is active, otherwise the property is disabled.

Any vehicle must contain at least one engine (hybrid electric vehicles contain more than
one). The engine options are grouped with an at least one numerical restriction. For
non-hybrid vehicles we may restrict the group of engine options with exactly one.

Definition 24. (Groups) Let t ∈ T be a product type. A group is a set of options
G ⊆ O(t) with a numerical restriction k ∈ N, with k ≤ |G|, such that either (i) at least
(or exactly) k options of G must be selected, (ii) at most (or exactly) k options of G
must be selected, or, (iii) exactly k options of G must be selected. The set of all groups
of a product type t is denoted by G(t). We denote a group of G(t) by a triple (G,B, k)
with B ∈ {<,≤, >,≥,=}. A valid vehicle has to satisfy all group restrictions.

Dependencies between options are described by (arbitrary) Boolean formulas which are
summarized in the set of rules. For example, the rule (xa ∧ xb) → (xc ∨ xd) means “If
options a and b are selected, then option c or d (or both) has to be selected”.

Definition 25. (Rule) The set R(t) consists of all rules for a product type t ∈ T . A rule
is a Boolean formula. The setR(t) describes the dependencies between the options O(t).
A valid vehicle has to satisfy all rules.
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For a product type t ∈ T a (valid) vehicle is a subset of options S ⊆ O(t) such that
all group restrictions and all rules are satisfied when S is interpreted as enabled options
and O(t) \ S is interpreted as disabled options.

Remark 5. Some car manufacturers allow arbitrary Boolean formulas for the set of
rules R(t). Some car manufacturers, however, use a more structured formula language,
e.g., only allowing clauses as rules. In this thesis we allow arbitrary Boolean formulas.

Example 18 shows a simplified example of a HLC with option groups and rules for
automotive configuration (cf. [Walter et al., 2013]).

Example 18. (Simple HLC Example) Table 3.1 shows a simplified list of groups with
their members and restrictions.

Table 3.1: Option groups with restrictions
Group Members Restriction
engine e1, e2 = 1
gearbox g1, g2 = 1
control unit c1, c2, c3 = 1
dashboard d1, d2, d3, d4 = 1
navigation system n1, n2, n3 ≤ 1
air conditioner ac1, ac2 ≤ 1
alarm system as1, as2 ≤ 1
radio r1, r2, r3 ≤ 1

Table 3.2 shows the dependencies between options by rules given as implications. For
example, the implication g1 → e1 ∨ e2 means “If gearbox g1 is selected, then engine e1
or e2 has to be selected”.

Table 3.2: Rules: Dependencies between options
Premise Conclusion
g1 e1 ∨ e2
n1 ∨ n2 d1
n3 d2 ∨ d3
ac1 ∨ ac2 d1 ∨ d2
as1 d2 ∨ d3
r1 ∨ r2 ∨ r3 d1 ∨ d4

The assignment β = {e1, g1, c1, d3, as1} represents a vehicle configuration since all rules
are satisfied.

55



3 SAT-based Analysis & Configuration

Low Level Configuration

The LLC describes the physical parts which are actually used to build a vehicle. In the
context of automotive configuration the LLC for parts is called bill of materials (BOM).
The BOM is a list of structure nodes, where each structure node consists of alternative
material nodes (representing physical parts). Each structure node represents a compo-
nent of a vehicle, e.g., there is a structure node for the steering wheel, the radio, the
input parameters of the electronic control unit, etc. The material nodes in turn rep-
resents the existing alternative parts, e.g., different steering wheels. The selection of
the material nodes is controlled by selection constraints (Boolean formulas). A vehicle
configuration has to select exactly one material node of each structure node. The BOM
is sometimes called 150% BOM since it stores the parts of a product type (or product
series) and not only the parts of a single vehicle.

Definition 26. (Bill of Materials) The components of a bill of materials are defined as
follows:

a) (Material Node) A material node represents a physical part. A material node m
has an an unique identifier ident(m) ∈ N and a selection constraint con(m). The
selection constraint is a Boolean formula and evaluates to true iff the material
node is selected.

b) (Structure Node) A structure node represents a component of a vehicle. A struc-
ture node N consists of a unique identifier ident(N) ∈ N and a list of alternative
material nodes matNodes(N) = (m1, . . . ,mk).

c) (Bill of Materials) A bill of materials (BOM) B consists of a list of structure nodes
strNodes(B) = (N1, . . . , Nl). The set of covered product types by B is denoted
by types(B) ⊆ T .

A material node from a bill of materials has actually more properties, e.g., a part number,
a creation date, a development status, a (human readable) description. We left these
properties out because for the purpose of verification they are not (directly) relevant.
The reason why a bill of materials B covers many product types, denoted by the set
types(B) ⊆ T of all product types covered by B, is that a bill of materials is typically
not documented for one product type only, but for a product series or product line.
Since product types of the same product series share many commonalities it is less
documentation work to have a single bill of materials than having a bill of material for
each product type.

In order to determine the selected parts for a vehicle, the selection constraint of every
material node of the BOM has to be evaluated with respect to the selected options.
If the selection constraint evaluates to true the corresponding part is selected for the
vehicle, otherwise not. The process of determining the selected parts is called BOM
resolution.
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Example 19. (BOM) Based on the simplified HLC of Example 18 Table 3.3 shows a
simplified example of a BOM. For example, the material nodes of structure node 10 are
matNodes(10) = (101, 102, 103).

Table 3.3: Simple BOM
Structure Node ID Material Node ID Constraint

10 101 e1 ∧ g1
10 102 e1 ∧ ¬g1
10 103 ¬e1 ∧ ¬g1
20 201 g1 ∨ e2
20 202 e1 ∧ g1 ∧ d2
30 301 g1 ∨ d2
30 302 e1 ∧ g1 ∧ d2
30 303 e1 ∧ g1 ∧ ¬d2

The resolution of this BOM for vehicle β = {e1, g1, c1, d3, as1} of Example 18 yields to
the selection of material nodes 101, 201, 301 and 303. The example configuration selects
two material nodes from structure node 30 which is an overlap error. In Section 3.2 we
show how a BOM can be tested for overlap errors and for other misbehavior.

Remark 6. (LLC for Software Configuration) The term “low level configuration” is not
restricted to the BOM. For example, low level configuration is also used for software
configuration for control units within a vehicle. Similar to the BOM there exist variant
tables containing structure nodes. Each structure node represents a certain part of
the input parameter string. A structure node contains alternative parameter nodes.
Exactly one parameter node must be selected for each vehicle, i.e., exactly one parameter
node constraint must evaluate to true for a vehicle configuration. For more detailed
information about the software configuration at the German car manufacturer BMW AG
of control units see for example Section 3.3.2 in [Zengler, 2014]. In this thesis, we focus
on BOM analyses only.

3.1.2 The Product Description Formula

A product series (or a product type) of a car can be represented as a constraint satisfac-
tion problem (CSP) (cf. [Astesana et al., 2010]) or as a formula in Propositional Logic.
Each satisfying assignment of the formula is a valid vehicle. The latter approach was
pioneered for the German car manufacturer Daimler AG by Carsten Sinz in his diploma
thesis [Sinz, 1997] and further developed in [Sinz, 2003, Küchlin and Sinz, 2000, Sinz
et al., 2003]. The usage of Propositional Logic can be adapted for other car manufacturer
as well. Recently, Zengler [Zengler, 2014] refined and extended SAT-based automotive
verification for the German car manufacturer BMW AG.
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3 SAT-based Analysis & Configuration

In this section we give a simplified introduction about the translation of automotive
configuration into Propositional Logic resulting in a single Boolean formula representing
all valid vehicles. This formula is called product description formula. The product
description formula is the key representation for all further SAT-based analyses and
verifications.

We define the product description formula on the product type level, i.e., each product
type is represented by its own product description formula.

Definition 27. (Product Description Formula) Let t ∈ T be a product type. The
product description formula (PDF) of t is a Boolean formula which describes all valid
vehicles and is denoted by ϕPD(t). That is, each satisfying assignment of ϕPD(t) is a
valid vehicle.

The product type level is a pragmatic level for building the product description formula
between the two extremes: Building a single formula representing all valid vehicles of the
whole car manufacturer or representing each single valid vehicle by a separate variable
assignment. The product type level has been established in practice, since product data
management is often already separated on this level.

The three main components of automotive configuration, namely, equipment options,
groups and rules can be modeled as Boolean formulas as follows:

a) Equipment Options. For each option o a variable xo ∈ V is introduced which
represents the option. Option o is selected for a vehicle configuration β iff β(xo) =
true. In the remainder of this work, we often treat the option o as the correspond-
ing variable xo to simplify reading, i.e., we write o instead of xo.

b) Groups. A group of options (e.g., there exist different steering wheels but exactly
one must be selected) is restricted by cardinality constraints to ensure the numer-
ical restriction of selections of the group. The encoding of the group restrictions
G(t) is summarized by the Boolean formula ϕcc as follows:

ϕcc =
∧

(G,B,k)∈G(t)
cnf

(∑
o∈G

oB k

)

See Section 2.3 for various encoding approaches for cardinality constraints.

c) Rules. The rules R(t) describe the dependencies between options. The rules are
directly encoded in Boolean formulas. The encoding of the rules R(t) is summa-
rized by the Boolean formula ϕdep as follows:

ϕdep =
∧

ϕ∈R(t)
ϕ

58



Assembling all components of a product type t ∈ T together yields to the product
description formula ϕPD(t):

ϕPD(t) = ϕcc ∧ ϕdep

Every model of ϕPD(t) describes a valid (or constructible) vehicle. Thus, when we speak
of a vehicle we refer to the corresponding model of ϕPD(t).
Remark 7. (Lifting and Restricting the PDF) If needed the product description formula
ϕPD(t) for a product type t ∈ T can be lifted to a higher level of the product hierarchy
by introducing additional variables for the different product types, product series and
product lines.

On the other hand, the product description formula can be restricted for a given set of
literals {l1, . . . , lk}. For example, to extract the product description formula relevant for
all vehicle configurations on the Italian market. Restriction can be done by the restrict
function (see Definition 5): restrict(ϕPD(t), {l1, . . . , lk}).

3.2 Analyzing Automotive Configuration

We give a short overview of existing analyses and verifications for both, the HLC and
the LLC [Küchlin and Sinz, 2000, Sinz, 2003, Zengler, 2014]. The following analyses are
based on the product description formula, which describes all valid vehicles.
Remark 8. (Test Based Verification vs Formal Methods) In order to verify the consistency
of a knowledge base, like the product description formula, one can generate a test set of
thousands of valid vehicles and verify that the knowledge base behaves like expected for
this set. Since the number of valid vehicles can grow up to approximately 1080 [Kübler
et al., 2010] a test based verification only covers a very small portion of the whole
configuration space. In contrast, formal methods explore the whole search space, e.g., a
SAT solver searches for any vehicle violating a verification property.

3.2.1 Analyzing the High Level Configuration

With the help of the product description formula ϕPD as representation of all valid
vehicle configurations we are able verify the following scenarios by using a SAT solver:

(H1) Validation of Restrictions. A restriction for a product type t ∈ T is valid iff
there exists at least one valid vehicle which satisfies the restriction. For example,
a customer selecting options wants and excluding options she does not want. A
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restriction l1, . . . , lk, for literals li with var(li) ∈ O(t), can be verified by testing
the following formula for satisfiability:

ϕPD(t) ∧
k∧
i=1

li

If the formula is satisfiable, then there exists at least one vehicle matching the
restriction. This test requires one call to a SAT solver.

(H2) Computation of Forced Options. An option o ∈ O(t) for a product type t ∈ T
is forced (or necessary) if o has to be selected for every valid vehicle. The set of all
forced options can be computed for each product type t ∈ T by testing ϕPD(t)∧ o
for satisfiability. If ϕPD(t)∧ o is unsatisfiable, option o has to be selected for every
valid vehicle and thus, is forced. The computation of all forced options requires
|O(t)| calls to a SAT solver.

(H3) Computation of Redundant Options. An option o ∈ O(t) for a product type
t ∈ T is redundant (or inadmissible) if o cannot be selected for any valid vehicle.
The set of all redundant options can be computed for each product type t ∈ T by
testing ϕPD(t)∧ o for satisfiability. If ϕPD(t)∧ o is satisfiable, there is at least one
valid vehicle with o selected, otherwise o is not selectable and thus, is redundant.
The computation of all redundant options requires |O(t)| calls to a SAT solver.

(H4) Searching for Redundant Rules. Redundancy within the set of rules can occur
due to many documentation experts working on the same database of rules. There
are different cases of redundancy. A rule r ∈ R(t) for a product type t is redundant
iff (i) the product description formula without r implies r, or (ii), if another rule
r′ ∈ R(t) implies r. Compare to [Zengler, 2014].

Case (i) can be verified by testing ϕPD(t)′ → r for tautology for a product descrip-
tion formula ϕ(t)′ built without rule r. If ϕPD(t)′ → r is a tautology, then r is
redundant. This test requires |R(t)| calls to a SAT solver.

Case (ii) can be verified by testing r′ → r for tautology for all r′ ∈ R(t) \ {r}. If
there exists another rule r′ ∈ R(t) \ {r} such that r′ → r is a tautology, then r is
redundant. This test requires |R(t)|2 − |R(t)| calls to a SAT solver.

For analyses with a positive SAT result (satisfiable) we can use the model produced
by the SAT as example vehicle. For example, if the validation of a restriction (see
Analysis H1) is successful, we can show the model as additional information. In contrast,
for analyses with a negative SAT result (unsatisfiable) we can use the unsatisfiable core
or proof trace produced by the SAT solver (see Section 2.4) as an explanation. For
example, if the validation of a restriction (see Analysis H1) is unsuccessful, we can
deliver an unsatisfiable core as explanation why there is no such vehicle.
Remark 9. (Modeling Linux Kernel Configuration) For comparison reasons only, a sim-
ilar approach, using a product description formula in Propositional Logic for modeling
product configuration, has been described in [Zengler and Küchlin, 2010] for the Linux
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Kernel Configuration. This approach was later refined, implemented and evaluated for
the Linux kernel 4.0 in [Walch et al., 2015] for verifying forced and redundant options.

3.2.2 Analyzing the Low Level Configuration

With the help of the product description formula ϕPD as representation of all valid
vehicles we are able to verify different aspects of the low level configuration. By using a
SAT solver we can analyze and verify the following scenarios for a BOM:

(L1) Verifying Structure Node Uniqueness. A structure node N of a BOM is
unique for a product type t ∈ T iff for every valid vehicle every pair of different
material nodes mi,mj ∈ matNodes(N) with i 6= j cannot be selected simulta-
neously. The uniqueness of N can be verified by testing con(mi) ∧ con(mj) for
satisfiability for all pairs mi,mj ∈ matNodes(N) with i 6= j. If none of these
pairs is satisfiable, then the structure node N is unique. This verification requires(
k
2

)
= 1

2(k2 − k), with matNodes(N) = k, calls to a SAT solver for each structure
node of the BOM.

(L2) Verifying Structure Node Completeness. A structure node N of a BOM is
complete for a product type t ∈ T iff for every vehicle of the HLC at least one
material nodem ∈ matNodes(N) is selected. The completeness ofN can be verified
by testing ϕPD(t)→ ∨

m∈matNodes(N) con(m) for tautology. If tautology holds, then
structure node N is complete, otherwise a material node is missing or the selection
rules of the existing material nodes are too restrictive. This verification requires
| matNodes(N)| calls to a SAT solver for each structure node of the BOM.

(L3) Computation of Redundant Parts. A physical part represented by material
node m of a BOM is redundant for a product type t ∈ T iff the constraint con(m)
evaluates to false for every vehicle of the HLC and thus, the part is never used in
any vehicle. The set of all redundant parts of a structure node N can be computed
by testing the formula ϕPD(t) ∧ con(m) for satisfiability for each material node
m ∈ matNodes(N). If ϕPD(t) ∧ con(m) is unsatisfiable, the material node m is
redundant. This verification requires | matNodes(N)| calls to a SAT solver for each
structure node of the BOM.

(L4) Computation of Necessary Parts. A physical part represented by material
node m of a BOM is necessary for a product type t ∈ T iff the constraint con(m)
evaluates to true for every vehicle of the HLC and thus, the part is used in every
vehicle. The set of all necessary parts for a structure node N can be computed
by testing the formula ϕPD(t) ∧ ¬ con(m) for satisfiability for each material node
m ∈ matNodes(N). If ϕPD(t) ∧ ¬ con(m) is unsatisfiable, then material node m is
necessary. This verification requires | matNodes(N)| calls to a SAT solver for each
structure node of the BOM.
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3 SAT-based Analysis & Configuration

Analogously to the analyses of the HLC we can deliver a model or an unsatisfiable core
as additional information of the BOM verifications.

Algorithm 3.1: Verify the uniqueness of a structure node: verifyUniqueness(N)
Input: Structure node N of a BOM B with matNodes(N) = (m1, . . . ,mk)
Output: true if N is unique for all covered product types, false otherwise

1 foreach product type t ∈ types(B) do
2 solver← new inc/dec CDCL SAT solver
3 solver. add(ϕPD(t))
4 for i = 1 to k − 1 do
5 solver. mark()
6 solver. add(con(mi))
7 for j = i+ 1 to k do
8 if solver. sat(con(mj)) then
9 return false

10 solver. undo()

11 return true

Algorithm 13 shows the pseudocode for verifying the uniqueness of a structure node of
a BOM. This algorithm gives a good impression how a typical SAT-based verification
algorithm looks like. The algorithm iterates over each product type t ∈ types(B) the
BOM covers (Line 1), creates a new solver object (Line 2) and adds the product type
specific product description formula to the solver (Line 3). Every pair of material nodes
mi and mj, with i 6= j, is tested for satisfiability (Line 8). If they can be simultaneously
satisfied, then an overlapping error has been identified and false is returned (Line 9).
Otherwise, the next pair is tested. The algorithm benefits intensely from the inc/dec
interface of the SAT solver. The product type specific product description formula is
only added once (Line 3). Further, the selection constraint of material node mi is only
added once (Line 6) and is removed when all pairs that include mi have been tested.

Example 20. (BOM Uniqueness Example) The uniqueness analysis for the BOM of
Example 19 yields: Structure node 1 is unique (even without considering the HLC),
structure node 2 is unique (the HLC excludes the simultaneously selection of e1 and e2),
and structure node 3 is ambiguous for material nodes 301 and 302 (e.g., for configuration
{e1, g1, d2}).

A detailed description of the analyses described above can be found in [Küchlin and
Sinz, 2000, Zengler, 2014].
Remark 10. Further analyses of the HLC and LLC exists. For example, counting the
number of valid vehicles for a product type t ∈ T by solving the model counting problem
#(ϕPD(t)) [Kübler et al., 2010]. Another example is the computation of option influence
and connectedness. See [Zengler, 2014] for details.
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3.3 SAT-based Interactive Automotive Configuration

Interactive 
Product 

Configurator
User

Load Product Model

Product Model
with User SelectionsSave

Changes Selections

Gives Feedback

Figure 3.3: Configuration Process Sketch

In this section we want to investigate whether and how SAT-based techniques can be used
as background engine for an interactive product configurator in the context of automotive
configuration. An interactive configurator can be very helpful in many situations. For
example, a customer may want to configure a vehicle and try out available options. With
the help of a configurator the customer may already configure the (nearly) final vehicle
she wants to buy. Other examples can be found during the development process of a new
product series, e.g., an engineer has to configure a test vehicle consistent with the product
description which is under development. Configuring and testing whether a selection of
options is consistent with the product description is tedious and error-prone done by
hand. An interactive configurator can help to test selections for consistency quickly. In
addition, it is preferable to identify dead-ends (conflicts) as soon as they occur. The user
should be guided such that the resulting selection is always consistent with the product
description. For example, after the selection of an engine and a gearbox for a test
vehicle, the engineer should be informed about the remaining available dashboards and
the dashboards which became unavailable. Furthermore, in the context of automotive
configuration we want to configure on both levels, the HLC and LLC. For example,
an engineer who requires certain parts to be included for prototyping reasons wants to
configure parts rather than options.

An interactive configurator iteratively solves configuration tasks that consist of a product
model and user requirements. In the context of automotive configuration the product
model is the product description formula and the user requirements are (de-)selected op-
tions and parts. Figure 3.3 sketches a typical interactive configuration process (cf. [Tor-
ben Hansen and Loos, 2003]). The configuration starts by loading a configuration model
with no selections. In each iteration of the loop, the user adjusts her selections by adding,
changing or removing options or parts. After a change was made a new configuration
task is created which is tested by the configurator engine for consistency. The user is
informed about the result. Whenever the user is satisfied with the current selections,
the result is saved.
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3 SAT-based Analysis & Configuration

To address the demands of automotive configuration as described in the previous exam-
ples and more, the SAT-based configurator engine for an interactive configurator should
meet the following features:

(F1) (Consistency Check) At each step, during the configuration process, the configu-
rator should be able to test the current selections of the user (options and parts)
for consistency.

(F2) (Example Configuration) Unless the user selections are consistent, the configurator
should be able to generate an example configuration that includes the selections
of the user.

(F3) (Alternative Configuration Examples) The configurator should be able to provide
alternative example configurations by request of the user.

(F4) (Arbitrary Selection Order) The user should be able to select options and parts in
any arbitrary order to enable fast and productive creations of configurations and
avoid tedious and unnecessary interactions.

(F5) (Explanation of Conflicts) At each step the configurator should be able to explain a
forbidden option, i.e., a conflict. A user probably wants to know why her preferred
combination of options and parts causes a conflict.

(F6) (Backtrack-Freeness & Completeness) At each step, the configurator should in-
form the user about forced, available and forbidden options and parts. Forced
options/parts have to be selected, i.e., they are included in every solution. For-
bidden options/parts result in a conflict when selected. Available options/parts
can be selected, but are not required to be selected. By doing so the configurator
ensures that, at each step, the user can only make decisions that lead to a valid
vehicle (no backtracking is necessary). On the other hand, the user is able, at each
step, to reach any valid vehicle (completeness), i.e., any valid vehicle is reachable
for any sequence of user selections.

(F7) (Re-Configuration) The configurator should be able to provide repair suggestions
for an inconsistent set of selected options/parts, i.e., re-configuration of the selec-
tion. Automated re-configuration avoids backtracking of selected options/parts by
hand. Ideally, the repair suggestion should be redundant-free, i.e., only contain
necessary changes.

(F8) (Alternative Re-Configuration Solutions) The configurator should be able to pro-
vide alternative repair suggestions by request of the user.

(F9) (BOM Resolution) At each step the BOM should be resolved by the current ex-
ample configuration, i.e., the user can see the selected parts of the BOM under the
current example configuration.
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(F10) (Fast Response Time) Each highly frequented computation should be in a reason-
able response time, e.g., each selection step should preferably not requiring more
than a second or two. For lower frequent computations such as re-configuration
the user may accept longer computation times.

Observe that the point of view between automotive verification, as described in the
previous section, and interactive configuration is quite different. Automotive verification
focuses on searching for errors, i.e., asking if there is any vehicle triggering the error.
In contrast, a user of an interactive configurator has a certain kind of vehicle in mind
(or a specific set of requirements) and wants to complete the configuration such that his
requirements are satisfied. The focus lies on this vehicle.

Except for the topic of re-configuration, Features F7 and F8, we show how SAT-based
configuration can meet the required features listed above in this section. Re-configuration
requires optimization methods and is treated separately in Section 5.3. This section is
structured as follows. In Subsection 3.3.1 we present how SAT-based methods can be
used for interactive configuration of options regarding Features F1 to F6. In Subsec-
tion 3.3.2 we extend configuration of options by configuration of parts of the BOM and
show how to address SAT-based configuration for parts to meet Features F1 to F6. In
Subsection 3.3.3 we present experimental evaluations to show that fast response times
(see Feature F10) can be provided. In Subsection 3.3.4 we present our prototype im-
plementation of a configurator framework using SAT-based methods. We describe the
concepts and the user interface of our configurator. In Subsection 3.3.5 we conclude this
section. The author’s publication [Walter and Küchlin, 2014] includes a rudimentary
description of this section.

Related Work

Many configurators use knowledge compilation techniques (also called pre-compilation)
in order to guarantee fast response times [Amilhastre et al., 2002, Hadzic et al., 2004].
However, knowledge compilation scales poorly and is not robust enough. Especially in
the context of automotive configuration, due to the complexity of vehicles there are
always some instances that cannot be pre-compiled (see Remark 4).

Instead of using knowledge compilation techniques, the usage of a SAT solver as back-
ground engine for a configurator has been proposed and studied in [Janota, 2008, Janota,
2010]. One advantage is that a SAT solver does not require pre-compilation, except that
the formula has to be transformed in CNF which can be done efficiently by Tseitin
transformation (see Section 2.1.3). Janota shows that a SAT solver scales uniformly
on benchmarks consisting of feature models translated to Propositional Logic [Batory,
2005, Benavides et al., 2010]. In contrast to knowledge compilation formats, the SAT
solver is only used when required (lazy computation approach), i.e., when the user
changed decisions. On the basis of [Janota, 2010] we investigate the SAT-based approach
for applicability in the context of automotive configuration. Moreover, we want to use
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the SAT-based approach not only for high level configuration but for low level configura-
tion, too. Furthermore, we investigate the use of SAT-based optimization techniques to
for re-configuration tasks within an interactive configuration process (see Section 5.3).

Configurators using a lazy computation approach have been proposed before, e.g. [Freuder
et al., 2003] for CSP [Rossi et al., 2006] or [Batory, 2005] for feature models using a
Propositional Logic translation. However, Janota [Janota, 2010] shows that these ap-
proaches are either not backtrack-free or incomplete.

3.3.1 Interactive High Level Configuration

Firstly, we focus on interactive configuration of the options of a product description.
We adapt the necessary terms and notations of knowledge-based product configura-
tion [Felfernig et al., 2014] for the context of automotive configuration (see Section 3.1).
A configuration model for a product specifies the set of possible configurations or so-
lutions. In the context of automotive configuration, the product description formula
ϕPD(t), for a product type t ∈ T , represents our configuration model. The product
description formula ϕPD(t) describes the space of all possible configurations implicitly
by a Boolean formula such that each model of ϕPD(t) is a solution.

A configuration task asks for a configuration model and user requirements whether a
configuration (solution) of the configuration model exists which satisfies the user re-
quirements. Then the user requirements are consistent with the product model.

Definition 28. (Configuration Task) Let t ∈ T be a product type. A configuration task
consists of a tuple (ϕPD(t), UO) such that:

a) Configuration model ϕPD(t), describing all valid vehicles.

b) Set UO, consisting of tuples (o, p) with o being an option of product type t, o ∈
O(t), and p being a phase, p ∈ {true, false}, indicating whether o is selected.

The set UO consists of all user required options. An option o can be selected (the option
has to be included in the vehicle) or deselected (the option has to be excluded from the
vehicle) by setting the phase of o to true or false, respectively. If an option does not
occur within UO, then no statement is made about the requirement of this option.

Note that a configuration task is in general not restricted to be on the product type level
as presented in Definition 28. One can lift or restrict the product description formula as
described in Remark 7 and proceed on the preferred abstraction level.

Definition 29. (Configuration Task Solution) A configuration (or solution) for a con-
figuration task (ϕPD(t), UO) is a variable assignment β such that ϕPD(t) is satisfied and
for all user selections (o, p) ∈ UO holds β(o) = p.
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For a configuration task (ϕPD(t), UO) the Features F1 (Consistency Check) and F2 (Ex-
ample Configuration) can be realized with a SAT solver by testing the formula

ϕPD(t) ∧
∧

(o,p)∈UO

o↔ p

for satisfiability and extracting the model if one exists. If the user selection UO are
inconsistent with the product model, we can extract an unsatisfiable core or an MUS (see
Section 2.4), containing only relevant clauses, to provide the user with an explanation
of the conflict (see Feature F5). Since there could be multiple, possibly disjoint, MUSes,
we could compute a preferred MUS based on the importance of the clauses [Junker,
2004]. Another approach is the computation of a proof in order to show how the clauses
involved in a conflict are interacted (see Example 13).

An alternative example configuration, Feature F3, can be generated by blocking all
previously found solutions. For each previously found solution β, we add a blocking
clause ∨l∈β ¬l to the solver object before we make another SAT call. Note, we have to
keep track of all previous solutions to exclude them if the user requests another example
configuration. Thus, we have to test formula

ϕPD(t) ∧
 ∧

(o,p)∈UO

o↔ p

 ∧
∧
β∈S

∨
l∈β
¬l


for satisfiability where S is the set of all previously found solutions. As soon as the user
changes the user requirements UO all previous solutions are discarded.

Since SAT solving requires no specific order of the formulas, clauses or variables, the
order of the user requirements can be arbitrary (see Feature F4). Thus, the user can
select options in any order.

Algorithm 3.2: Computation of forced, available and forbidden options:
computeOptionStatus(ϕPD(t), UO)
Input: Configuration task (ϕPD(t), UO)
Output: Triple (P,A,N) such that set P consists of positively forced options, set

A consists of available options and set N consists of negatively forced
options

1 B ← computeBackbone
(
ϕPD(t) ∧ ∧(o,p)∈UO o↔ p

)
2 P ← O(t) ∩B // Extract positive forced options
3 N ← {var(l) | l ∈ B \ P} // Extract negative forced options
4 A← O(t) \ (P ∪N) // Extract available options
5 return (P,A,N)

Feature F6 (Backtrack-Freeness & Completeness) asks for the forced, available and
forbidden options at each step during the configuration process. Forced and forbid-
den options are directly related to the backbone of the product model in conjunction
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with the user requirements (see Section 2.6). Forced options correspond to the posi-
tive literals of the backbone, forbidden options correspond to the negative literals of
the backbone and available options are non-backbone literals. Algorithm 3.2 shows the
pseudocode to extract the forced options for a configuration task. After the backbone of
ϕPD(t)∧∧(o,p)∈UO o↔ p is computed by a backbone solver computeBackbone (Line 1), the
positive backbone, negative backbone and non-backbone options are extracted (Lines 2–
4). Observe that the computation of the backbone may require vars(ϕPD(t)) + 1 calls
to the SAT solver (see Section 2.6), whereas testing for a selection for consistency as
described in the previously requires only one SAT call.

So far we already have a powerful configurator engine. We are able to give the user
feedback about the current configuration state: Whether the user requirements are con-
sistent or not. We are able to provide the user with information about the currently
forced, available and forbidden options such that the user does not end within a conflict.
Thus, the user is able to assemble a vehicle configuration in arbitrary selection order
without making manual backtracking or trial & error approaches. At each step, the user
is also provided with an example configuration. This can be very useful if a user only
selects a few preferred options without being concerned about the remaining options. By
providing an example configuration, the user is preserved of making tedious decisions.
For the inconsistent case, we are able to provide the user with an explanation of the
conflict.

3.3.2 Interactive Low Level Configuration

In the previous subsection we focused on the configuration of equipment options without
concern about the actual used parts to build the vehicle. Next we extend our definitions
of configuration task to additionally deal with the bill of materials in order to be able
to configure parts, too. Configuration of parts can be very useful. For example, a test
vehicle is required to have certain parts which needed to be tested. For this task, the
user wants to select the necessary parts and gets an example configuration including
these parts.

In order to deal with parts we extend the definition of a configuration task (see Defini-
tion 28) by another set UM consisting of material nodes the user selected.

Definition 30. (Extended Configuration Task) Let t ∈ T be a product type. A config-
uration task consists of a quadruple (ϕPD(t), B, UO, UM):

a) A configuration model ϕPD(t), describing all valid vehicles.

b) A bill of materials B, with t ∈ types(B), which consists of a list of structure nodes
and material nodes (see Definition 26).

c) A set UO, consisting of tuples (o, p) with o being an option of product type t,
o ∈ O(t), and p being a phase, p ∈ {true, false}, indicating whether o is selected.
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d) A set UM , consisting of tuples (m, p) with m being a material node of BOM B and
p being a phase, p ∈ {true, false}, indicating whether m is selected.

The set UM consists of all required parts. A part m can be selected (the part has to be
included in the vehicle) or deselected (the part has to be excluded from the vehicle) by
setting the phase of m to true or false, respectively. If a material node does not occur
within UM , then no statement is made about the requirement of this material node.

We extend the definition of a configuration task solution (see Definition 29).

Definition 31. (Extended Configuration Task Solution) A configuration (or solution)
for a configuration task (ϕPD(t), B, UO, UM) is a variable assignment β such that ϕPD(t)
is satisfied, β(o) = p holds for all user selections (o, p) ∈ UO and eval(con(m), β) = true
holds for all user selections (m, p) ∈ UO.

In order to check consistency (see Feature F1), we now have to test formula

ϕPD(t) ∧
 ∧

(o,p)∈UO

o↔ p

 ∧
 ∧

(m,p)∈UM

con(m)↔ p


for satisfiability. For the satisfiable case, we can return a model which is an example
configuration (see Feature F2), whereas for the unsatisfiable case we can compute an
unsatisfiable core which is an explanation for the conflict (see Feature F5). Similar
to high level configuration described before, we exclude previously found solutions to
support alternative solution enumeration (see Feature F3). As before, the order of the
selected options and parts is not relevant for the SAT solver (see Feature F4).

To help the user avoid dead-ends when selecting parts (see Feature F6) we want to
compute forced, available and forbidden parts. However, the identification of forced,
available and forbidden parts cannot be computed with standard backbone computation
algorithms since selection constraints of parts are not variables of the formula. We have
to test for each selection constraint con(m) of each material node m of each structure
node of the BOM whether it is positively or negatively entailed:

a) (Forced Part) A part m is forced iff

ϕPD(t) ∧
 ∧

(o,p)∈UO

o↔ p

 ∧
 ∧

(m,p)∈UM

con(m)↔ p

 |= con(m)

b) (Forbidden Part) A part m is forbidden iff

ϕPD(t) ∧
 ∧

(o,p)∈UO

o↔ p

 ∧
 ∧

(m,p)∈UM

con(m)↔ p

 |= ¬ con(m)

c) (Available Part) A part m is available iff m is neither forced nor forbidden.
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In order to compute forced parts we adjust the two backbone algorithms presented in
Section 2.6. Algorithm 3.3 shows the backbone Algorithm 2.11 adapted to compute
forced parts for a consistent configuration tasks. After the constraints are added to the
SAT solver (Line 3) every material node of the BOM is tested separately. One SAT call
tests the selection constraint con(m) for satisfiability and another SAT call tests the
negated selection constraint ¬ con(m) for satisfiability. If the first tests is unsuccessful
then the part m is negatively forced. If the second test is unsuccessful then the part m
is positively forced. If both tests are successful then part m is available.

Algorithm 3.3: Computation of forced, available and forbidden parts (two SAT
tests per part): computePartStatusTwoTests(ϕPD(t), B, UO, UM)
Input: Consistent Configuration task (ϕPD(t), B, UO, UM)
Output: Triple (P,A,N) such that set P consists of positively forced parts, set A

consists of available parts and set N consists of negatively forced parts
1 P ← ∅, A← ∅, N ← ∅
2 solver← new inc/dec CDCL SAT solver
3 solver. add

(
ϕPD(t) ∧

(∧
(o,p)∈UO o↔ p

)
∧
(∧

(m,p)∈UM con(m)↔ p
))

4 foreach N ∈ strNodes(B) do
5 foreach m ∈ matNodes(N) do
6 st1 ← solver. sat(con(m))
7 st2 ← solver. sat(¬ con(m))
8 if st1 = false then N ← N ∪ {m} // Negatively forced part
9 else if st2 = false then P ← P ∪ {m} // Positively forced part

10 else A← A ∪ {m} // Available part

11 return (P,A,N)

Algorithm 3.4 shows the backbone Algorithm 2.12, which performs one SAT call for
each variable, adapted to compute forced parts for a consistent configuration task
(ϕPD(t), B, UO, UM). This approach performs one SAT calls for each part. After the
constraints are added to the SAT solver (Line 3) an initial SAT call is made to retrieve
a model β (Lines 4–5). The initial model is used to build a set Π of candidates to test.
Each part m is added as candidate with respect to its evaluation result eval(con(m), β)
considering the initial model β (Lines 6–12). Each candidate in Π is tested for satisfia-
bility regarding its phase p (Lines 13–14). If the SAT result is negative, then the part
is positively or negatively forced: If the phase p is positive, then it is positively forced
(Line 15), otherwise it is negatively forced (Line 16). If the SAT result is positive, then
the part is available (Line 17). This algorithm performs one SAT call for every part of
the BOM plus one SAT call for the initial model β.

With the help of forced, available and forbidden parts a user knows, which parts have
to be included in every vehicle configuration under the user’s selections. For example,
after selecting the option for country Italy, all resulting forced parts have to be included
in every vehicle for country Italy.
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Algorithm 3.4: Computation of forced, available and forbidden parts (one SAT test
per part): computePartStatusOneTest(ϕPD(t), B, UO, UM)
Input: Consistent Configuration task (ϕPD(t), B, UO, UM)
Output: Triple (P,A,N) such that set P consists of positively forced formulas, set

A consists of available formulas and set N consists of negatively forced
formulas

1 P ← ∅, A← ∅, N ← ∅
2 solver← new inc/dec CDCL SAT solver
3 solver. add

(
ϕPD(t) ∧

(∧
(o,p)∈UO o↔ p

)
∧
(∧

(m,p)∈UM con(m)↔ p
))

4 solver. sat()
5 β = solver. model()
6 Π = ∅ // Set of forced parts candidates
7 foreach N ∈ strNodes(B) do
8 foreach m ∈ matNodes(N) do
9 if eval(con(m), β) then Π← Π ∪ {(m, true)}

10 else Π← Π ∪ {(m, false)}

11 while Π 6= ∅ do
12 (m, p)← SelectCandidate(Π)
13 if p then st← solver. sat(¬ con(m))
14 else st← solver. sat(con(m))
15 if st = false and p = true then P ← P ∪ {m} // Pos. forced part
16 else if st = false and p = false then N ← N ∪ {m} // Neg. forced

part
17 else A← A ∪ {m} // Available part

18 return (P,A,N)

We are able to provide the user with additional information about the selected parts
of the BOM during the configuration process (see Feature F9). At each consistent step
we can resolve the BOM by the configuration example β, i.e., we evaluate the selection
constraint con(m) of every material nodem by computing eval(con(m), β). A positively
evaluated selection constraint means that the part, represented by the material node,
is used for the vehicle. Otherwise, for a negative evaluation of the selection constraint,
the part is not used. Such an evaluation is cheap in terms of running time compared
to SAT-based computations, since it can be done within polynomial time. By resolving
the BOM at each configuration step we provide the user, in addition to the complete
example configuration, with information about the actually used parts.
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3.3.3 Experimental Evaluation

In this subsection we present experimental evaluations of SAT-based methods for in-
teractive high level and low level configuration. We want to investigate whether the
response times (see Feature F10) are fast enough to apply SAT-based methods as con-
figuration engine within interactive scenarios. For our experimental evaluations we used
real benchmark data from two German car manufacturers.

All experiments in this subsection were run on the following settings: Intel(R) Core(TM)
i7-5600 CPU with 2.6GHz and 12 GB main memory running Microsoft Windows 7
Professional 64 Bit with SP1. As inc/dec CDCL SAT solver we used AutoProve (C]

version) included within the logic library AutoLib [Zengler, 2014] (see Section 2.2 for
a more detailed description).

Experimental Evaluation of Interactive High Level Configuration

We evaluate the response time (see Feature F10) of SAT-based methods for interactive
high level configuration, i.e., the response time of consistency checks (see Feature F1),
example configuration (see Feature F2), explanation of conflicts (see Feature F5) and
user guidance (see Feature F6). For our evaluation we considered 7 product types from
two different German car manufacturers. Table 3.4 shows complexity statistics for each
product type. The columns list the 7 product types Mx.y with x as manufacturer iden-
tifier and y as product type identifier. Row “Options” shows the number of equipment
options. We excluded invalid options, i.e., options which are intentionally assigned to
false by a unit clause. Row “Tseitin Variables” shows the number of introduced aux-
iliary variables after the product description formula was Tseitin transformed. Row
“Constraints” shows the number of constraints (the number of operands of the top level
And-operator). Row “Clauses (Tseitin transformed)” shows the number of clauses after
the product description formula was Tseitin transformed. The product types M1.1 and
M1.2 were already in CNF. Thus, no Tseitin transformation was applied. Row “Struc-
ture Nodes” shows the number of structure nodes and row “Material Nodes” shows the
number of material nodes of the bill of materials. These 7 product types are among the
most complex instances available to us. We picked such complex instances to evaluate
the limits of our methods in the context of automotive configuration.

For each product type t ∈ {M1.1,M1.2,M2.1,M2.2,M2.3,M2.4,M2.5}, we created 10
consistent configuration tasks which differ in the user requirements UO. Furthermore,
for each product type we created 10 inconsistent configuration tasks which differ in the
user requirements UO. Resulting in 140 configuration tasks in total. See Table 3.5 for an
overview. The user requirements UO consist of options selected at random. The number
of selected options ranges from 0 to 135, increasing the number of selected options by 15
options each time. Those 10 configuration tasks simulate different levels of configuration
progress. For example, the instance with 0 selections, the first instance, represents the
case that no requirements were given, i.e., a user is about to begin to configure a vehicle.
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Table 3.4: Complexity statistics of product types (HLC and LLC) from two German
premium car manufacturer

M1.1 M1.2 M2.1 M2.2 M2.3 M2.4 M2.5
Options 943 675 771 579 682 921 1,491
Tseitin Variables 0 0 3,205 495 967 2,263 3,942
Constraints 23,819 6,328 2,082 1,751 1,849 2,224 2,497
Clauses (Tseitin transformed) 23,819 6,328 72,513 48,104 55,100 64,298 83,991
Structure Nodes 6,459 6,306 10,833 5,808 7,900 11,602 15,066
Material Nodes 15,525 17,582 22,000 8,245 12,727 22,222 25,136

For the inconsistent configuration tasks we have to begin with 1 selection, otherwise the
configuration task would be consistent.

Table 3.5: Randomly created configuration tasks with selected options
Type User Requirements UO |UO| # Instances
Consistent (o, true) with o ∈ O(t) 0, 15, . . . , 120, 135 10
Inconsistent (o, true) with o ∈ O(t) 1, 15, . . . , 120, 135 10

Table 3.6 shows the resulting average response times for the different kinds of queries
with selected options as described. Column “Problem” shows the evaluated query type.
Column “Inc/Dec” shows whether the inc/dec interface of the SAT solver was used.
Section “Average Time(ms)” shows the average running time in milliseconds for each
product type. The last column “Average” shows the average running time in millisec-
onds for the problem over all product types. Rows with problem type “SAT Check” show
the average running time of testing the consistent configuration tasks for consistency (see
Feature F1). Rows with problem type “UNSAT Check” show the average running time
of testing the inconsistent configuration tasks for consistency (see Feature F1). Rows
with problem type “Model Generation” show the average running time of testing the
consistent configuration tasks for consistency and extracting a model (see Feature F2).
Rows with problem type “Proof Generation” show the average running time of testing
the inconsistent configuration tasks for consistency and extracting a proof, i.e., an un-
satisfiable core (see Feature F4). The best running time is highlighted in boldface for
each problem type.

Table 3.6 shows all running times for all kinds of queries are suitable for interactive
configuration, i.e., the running times are within a few milliseconds only up to at most
a quarter of a second. The results clearly show that using the inc/dec interface speeds
up the running times and should always be used. The inc/dec interface decreased the
running times by a factor of 7. We observe that the creation of a model requires only
little more running time than a positive consistency check. In contrast, the creation of
a proof requires about 2.5 times longer than a negative consistency check. The creation
of a proof is the most expensive query among those four query types.

For the evaluation of Feature F6 (Backtrack-Freeness & Completeness) we measured

73



3 SAT-based Analysis & Configuration

Table 3.6: Evaluation results of consistency check, model generation and proof genera-
tion with randomly selected options

Average Time (ms)
Problem Inc/Dec M1.1 M1.2 M2.1 M2.2 M2.3 M2.4 M2.5 Average

SAT Check No 17.78 5.09 117.29 45.69 67.02 101.78 122.24 68.13
SAT Check Yes 2.19 0.77 12.59 4.90 5.86 13.41 17.83 8.22
Model Generation No 21.18 7.01 124.77 49.97 58.85 86.85 119.29 66.85
Model Generation Yes 4.37 2.74 17.11 8.15 9.55 16.51 16.78 10.74
UNSAT Check No 17.28 4.62 104.75 42.71 52.65 74.92 118.55 59.35
UNSAT Check Yes 1.72 0.55 9.74 4.18 5.17 7.59 8.53 5.35
Proof Generation No 57.44 12.05 202.37 128.48 164.86 203.90 205.04 139.16
Proof Generation Yes 5.91 1.29 20.68 17.14 15.04 18.75 22.21 14.43

the running time of the backbone computation of the 10 consistent configuration tasks
with selected options for each of the 7 product types (see Table 3.5). We evaluated the
following three backbone algorithms, which we have implemented on top of our logic
library AutoLib [Zengler, 2014] (see Section 2.2 for a more detailed description):

a) (IT) Iterative with two tests per variable (see Algorithm 2.11). We improved the
implementation to avoid a second SAT call for a variable if the first SAT call
already reveals that the variable is a positive backbone literal.

b) (IC) Iterative with one test per variable (see Algorithm 2.12).

c) (IO) Iterative with one test per variable by testing the complement of the current
over-estimated backbone literals (see explanation in Section 2.6 or Algorithm 4
in [Janota et al., 2015]).

All of our implementations of backbone solvers are improved as follows: All imple-
mentations exploit the inc/dec interface of the AutoLib SAT solver. Otherwise, the
performance would be significantly slower as already observed for a single SAT call (see
Table 3.6). Moreover, all implementations make use of the unit propagated literals of
the 0th decision level. These literals are a subset of the resulting backbone and do not
need to be tested any further (see Section 2.6).

Table 3.7 shows the results for computing the forced options. Column “Product Type”
lists the 7 product types. Section “Backbone” shows two columns: Column “|BB|” shows
the average size of the backbone and column “|UP0|” shows the average number of unit
propagated literals on the 0th decision level of the SAT solver (see Section 2.6). Section
“Avg. Time(s)” shows the average running times of the three backbone algorithms in
seconds. Section “SAT Calls” shows the average number of positive and negative calls
to the SAT solver for each algorithm. The best result is highlighted in boldface for each
section.

The evaluations show that algorithm IO dominates the other algorithms for every prod-
uct type. The average running time of IO is only about 70% of the running time of IT
and only about 30% of the running time of IC. With an average running time of only
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0.69 seconds for algorithm IO the response time is suitable for interactive scenarios. In
terms of the number of positive and negative SAT calls, algorithm IC requires the least
number of calls in both categories. Especially the number of negative SAT calls for IC is
only 1 (last iteration of the loop) or 0 if none of the backbone candidates is a backbone
literal in fact. However, the SAT calls are more complex since a disjunction of literals is
tested instead a single literal. Algorithm IO requires about half of the positive SAT calls
compared to IT, but more than IC. Algorithms IT and IO require the same number of
negative SAT calls. This is no coincidence, since both algorithms perform negative SAT
calls only when identifying a backbone literal.

Table 3.7: Evaluation results of forced options computation
Backbone Avg. Time (s) SAT Calls

Positive Negative
Product Type |BB| |UP0| IT IO IC IT IO IC IT IO IC

M1.1 725.1 712.7 0.32 0.24 0.67 438.10 218.90 149.70 12.40 12.40 1.00
M1.2 481.0 472.1 0.11 0.08 0.38 390.90 195.00 130.30 8.90 8.90 0.90
M2.1 571.1 522.2 1.22 0.93 1.77 406.00 200.90 176.20 48.90 48.90 1.00
M2.2 412.5 384.9 0.56 0.47 1.05 337.30 167.50 152.00 27.60 27.60 0.80
M2.3 504.0 491.8 0.67 0.56 1.21 358.60 179.00 160.10 12.20 12.20 1.00
M2.4 577.6 521.0 1.25 0.90 2.55 697.30 344.40 314.60 56.60 56.60 1.00
M2.5 928.6 867.1 2.40 1.64 5.45 1130.50 563.40 526.20 61.50 61.50 1.00

Average 600.0 567.4 0.93 0.69 1.87 536.96 267.01 229.87 32.59 32.59 0.96

Experimental Evaluation of Interactive Low Level Configuration

Next, we evaluate the response time (see Feature F10) of SAT-based methods for interac-
tive low level configuration, i.e., the response time of consistency checks (see Feature F1),
example configuration (see Feature F2), explanation of conflicts (see Feature F5) and
user guidance (see Feature F6). For our evaluation we considered 7 product types from
two different German car manufacturers with theirs corresponding bills of materials (see
previously described Table 3.4). For each product type we created 10 consistent config-
uration tasks which differ in the user requirements UM . Furthermore, for each product
type we created 10 inconsistent configuration tasks which differ in in the user require-
ments UM . Resulting in 140 configuration tasks in total. See Table 3.8 for an overview.
The user requirements UM consist of parts selected at random of the corresponding
BOM B. The number of selected parts ranges from 0 to 135, increasing the number of
selected parts by 15 each time. Those 10 configuration tasks simulate different levels of
configuration progress. For example, the instances with 0 selections, the first instance,
represents the case that no requirements were given, i.e., a user is about to begin to
configure a vehicle. For the inconsistent configuration tasks we have to begin with 1
selection, otherwise the configuration task would be consistent.

Table 3.9 shows the resulting average response times for the different kinds of queries
with selected parts as described. Column “Problem” shows the evaluated query type.
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Table 3.8: Randomly created configuration tasks with selected parts
Type User Requirements UM |UM | # Instances
Consistent (m, true) with m ∈ matNodes(N), N ∈ strNodes(B) 0, 15, . . . , 120, 135 10
Inconsistent (m, true) with m ∈ matNodes(N), N ∈ strNodes(B) 1, 15, . . . , 120, 135 10

Column “Inc/Dec” shows whether the inc/dec interface of the SAT solver was used.
Section “Average Time(ms)” shows the average running time in milliseconds for each
product type. The last column “Average” shows the average running time in millisec-
onds for the problem over all product types. Rows with problem type “SAT Check” show
the average running time of testing the consistent configuration tasks for consistency (see
Feature F1). Rows with problem type “UNSAT Check” show the average running time
of testing the inconsistent configuration tasks for consistency (see Feature F1). Rows
with problem type “Model Generation” show the average running time of testing the
consistent configuration tasks for consistency and extracting a model (see Feature F2).
Rows with problem type “Proof Generation” show the average running time of testing
the inconsistent configuration tasks for consistency and extracting a proof, i.e., an un-
satisfiable core (see Feature F4). The best running time is highlighted in boldface for
each problem type.

Table 3.9 shows all running times for all kinds of queries are suitable for interactive
configuration, i.e., the running times are within a few milliseconds only up to at most a
quarter of a second. The results are quite similar to the previous evaluation of selected
options (see Table 3.6). The results clearly show that using the inc/dec interface speeds
up the running times and should always be used. The inc/dec interface decreased the
running times by a factor of 6. We observe that the creation of a model requires only a
bit more running time than a positive consistency check. In contrast, the creation of a
proof requires about 2 times longer than a negative consistency check. The creation of
a proof is the most expensive query among those four query types.

Table 3.9: Evaluation results of consistency check, model generation and proof genera-
tion with randomly selected parts

Average Time (ms)
Problem Inc/Dec M1.1 M1.2 M2.1 M2.2 M2.3 M2.4 M2.5 Average

SAT Check No 18.39 5.84 114.53 49.94 55.87 85.65 114.41 63.52
SAT Check Yes 2.90 1.33 15.79 5.68 8.34 14.47 20.42 9.85
Model Generation No 22.23 7.67 114.13 48.05 60.72 89.19 148.56 70.08
Model Generation Yes 4.82 3.26 20.58 9.35 11.86 18.94 25.76 13.51
UNSAT Check No 17.33 5.74 91.57 48.21 70.35 82.36 150.35 66.56
UNSAT Check Yes 2.41 1.31 13.58 7.09 7.36 13.51 30.76 10.86
Proof Generation No 60.10 12.60 240.29 132.69 163.43 213.13 279.11 157.34
Proof Generation Yes 10.84 2.35 25.77 16.65 18.96 24.18 50.39 21.31

For the evaluation of Feature F6 (Backtrack-Freeness & Completeness) we measured the
running time of the forced parts computation of the 10 consistent configuration tasks
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with selected options for each of the 7 product types (see Table 3.8). We evaluated the
following two forced parts algorithms, which we have implemented on top of our logic
library AutoLib [Zengler, 2014] (see Section 2.2 for a more detailed description):

a) (IT) Iterative with two tests per part (see Algorithm 3.3). We improved the
implementation to avoid a second SAT call for a part if the first SAT call already
reveals that the part is positively forced.

b) (IO) Iterative with one test per part (see Algorithm 3.4).

Our implementations of forced parts algorithms are improved as follows: All imple-
mentations exploit the inc/dec interface of the AutoLib SAT solver. Otherwise, the
performance would be significantly slower as already observed for a single SAT call (see
Tables 3.6 and 3.9). Furthermore, since the BOM contains several duplicate selection
constraints we only have to test one of these selection constraints. Therefore, we imple-
mented both algorithms based on a dictionary to keep track of already tested parts. If
a part has a selection constraint which was already tested in a previous iteration then
the part is not tested and the previous result is adopted. By adopting already identified
results we can save one SAT call each time a duplicate occurs.

Table 3.10 shows the results for computing the forced parts. Column “Product Type”
lists the 7 product types. Column “|BB|” shows the average size of the backbone. Section
“Avg. Time(s)” shows the average running times of the three backbone algorithms in
seconds. Section “SAT Calls” shows the average number of positive and negative calls
to the SAT solver for each algorithm. The best result is highlighted in boldface for each
section.

The evaluations show that algorithm IO dominates for every product type. The average
running time of IO is only about 65% of the running time of IT. With an average running
time of 4.31 seconds for algorithm IO the response time may a bit too long than expected
in an interactive scenario but still fast enough to perform this computation after each
step. For application purposes one can consider this computation to be performed only
after an explicit user request. Then the user would not have to wait a few seconds
after each change, but only when the user is interested in the forced parts. Also, the
user may not be interested in all forced parts at once after each step. The BOM of
some product types have up to 25,000 parts. A user may only be interested in a few
structure nodes at once. The computation of forced parts of a few structure nodes
is done in less than a second. In terms of the number of positive and negative SAT
calls, algorithm IO requires less positive SAT calls than algorithm IT. Algorithms IT
and IO require the same number of negative SAT calls. This is no coincidence, since
both algorithms perform negative SAT calls only when identifying a backbone literal.
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Table 3.10: Evaluation results of forced parts computation
Avg. Time (s) SAT Calls

Positive Negative
Product Type |BB| IT IO IT IO IT IO

M1.1 13,780.4 1.06 0.72 1,645.60 672.30 3,510.70 3,510.70
M1.2 14,815.0 0.88 0.57 2,517.70 1,069.40 4,282.60 4,282.60
M2.1 18,882.9 11.36 7.71 3,711.10 1,542.70 7,754.30 7,754.30
M2.2 7,292.7 1.32 0.96 1,027.40 375.80 1,602.20 1,602.20
M2.3 11,060.4 2.91 2.09 2,011.30 801.00 3,422.00 3,422.00
M2.4 18,498.9 8.99 6.03 3,909.90 1,660.30 7,226.70 7,226.70
M2.5 19,613.1 18.66 12.06 6,137.80 2,701.90 8,707.10 8,707.10

Average 14,849.1 6.45 4.31 2,994.40 1,260.49 5,215.09 5,215.09

3.3.4 AutoConfig — A Re-Configurator Framework in C]

Within the scope of this work we developed a configurator framework prototype called
AutoConfig. Our configurator consists of a SAT-based background engine and a
graphical user interface, which allows interactive configuration as sketched in Figure 3.3
at the beginning of this section. AutoConfig can handle instances from three major
German car manufacturer but is not restricted to those. We introduce the basic concepts
and show the user interface of AutoConfig in this subsection.

Our configurator supports all desired Features F1 to F10. Thus, with the help of Au-
toConfig one can configure a vehicle without getting stuck in a dead end. At each
configuration step, the user gets feedback whether her selections are consistent. For the
consistent case, a complete example configuration is shown. Moreover, the user is pro-
vided with information about the available, unavailable and forced options and parts.
For the inconsistent case, an unsatisfiable core is shown to explain the conflict. The order
of selection is free to the user, i.e., one can start with the desired options first. Fea-
tures F7 and F8, concerning re-configuration for the inconsistent case, are described in
Subsection 5.3.3 since re-configuration requires optimization methods beyond pure SAT
solving. We describe various optimization methods in an own chapter, Chapter 4, and
applications of optimization in the context of automotive configuration in Chapter 5.

The author’s publication [Walter and Küchlin, 2014] is partially based on this subsec-
tion.

Framework Description

AutoConfig is implemented in C] within the .NET framework1 version 4.0. The
graphical user interface (GUI) is implemented on Windows Presentation Foundation2

1.NET homepage: https://www.microsoft.com/net
2Windows Presentation Foundation homepage: https://msdn.microsoft.com/en-us/library/

ms754130(v=vs.110).aspx
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Figure 3.4: AutoConfig Architecture

to provide a typical Windows-based application look and feel. The concepts of Auto-
Config, as described in this section, however, are not dependent on the programming
language or GUI framework. For example, a Java based version for a client–server
architecture is also imaginable.

Figure 3.4 shows the architecture of AutoConfig. The architecture consists of three
layers:

a) Core Layer. The core layer is the foundation of AutoConfig and consists
of the library AutoLib and external optimizer libraries. Module AutoLib in-
cludes three main components. Module AutoLogic consists of data structures for
Boolean formulas, data structures for clause sets, methods for transformations (like
Tseitin transformation), encodings for cardinality constraints and further helpful
basic methods. AutoProve consists of a CDCL SAT solver plus an extended
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version for proof tracing, see Chapter 6 in [Zengler, 2014] for details. Module Au-
toOptimization consists of our implementations of MaxSAT solvers, including
an implementation of the WPM1 solver (see Section 4.2). External optimizers
consist of the ILP solver Gurobi (see Section 4.7). In principle any external opti-
mizer may plugged in. Module AutoOptimization and external optimizers are
required for re-configuration, described in Section 5.3.

b) Business Layer. The business layer consists of modules required to represent the
configuration model and to perform analyses on it. Module IO consists of import
and export methods to load and save a configuration session. Moreover, car manu-
facturer specific parsers are included to read data from different car manufacturers.
Module Model consists of data structures to represent the HLC, the bill of ma-
terials, the user selections of options/parts, and it tracks all blocked solutions so
far. The blocked solutions are the solutions the user skipped by requesting alter-
native solutions. Module Analysis consists of the various SAT-based analyses that
can be performed during configuration described in this section. This includes a
test for consistency, an example generation for the consistent case, an explanation
generation for inconsistent case, the computation of forced options and parts and
re-configuration (see Section 5.3).

c) Presentation Layer. The presentation layer consists of components of the user
interface to represent the loaded configuration model and to give the user feedback
about analysis results. The main window consists of tabs to display the HLC rules,
the HLC groups and the bill of materials. Further, controls for the modification
of the HLC and the bill of materials exist such that the user can simulate changes
of the HLC or the bill of materials. The main window also includes controls for
the user to modify selections of options and parts. The result of each analysis is
presented in an own tab. Furthermore, the presentation layer includes a component
Settings which can be used to set the desired formula notation, the SAT solver to
use and the optimizer to use.

Figure 3.5 summarizes the process of interactive configuration with AutoConfig. An
iteration begins with the user selecting required options and parts. The user require-
ments together with the product configuration model and the bill of materials form
the configuration tasks given to the configurator engine. Firstly, the configurator en-
gine checks for consistency. For the consistent case, the configurator engine generates
an example configuration, computes the forced options, computes the forced parts and
resolves the BOM under the example configuration. These information are returned
to the user as feedback. For the inconsistent case, a proof is generated. Moreover,
re-configuration is applied to resolve the conflict. However, re-configuration requires
optimization methods and is treated separately in Section 5.3.
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Figure 3.5: AutoConfig Configuration Process

User Interface

Next we describe the user interface of AutoConfig. Figure 3.6 shows a screenshot of
AutoConfig. The user interface of AutoConfig consists of two areas: The upper
half of the main window shows an input text box for user selected options and an output
text box for the current solution. The lower half of the main window consists of tabs.
There are three main tabs: Tab “Rules” shows the rules of the HLC, tab “Groups” shows
the groups of the HLC and tab “BOM” shows the bill of materials. The screenshot shows
the HLC of Example 18. The rules are displayed in a uniform formula notation (symbol
∼ for negation, symbol | for disjunction and symbol & for conjunction). The green
background of label “Solution” indicates that the HLC in conjunction with current user
selections is consistent. Since no user selections are made yet, the solution shown is
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Figure 3.6: Screenshot of AutoConfig with open “Rules” tab

the first valid vehicle the SAT solver found (here we have {c3, d4, e2, g2}). Options not
shown in the solution text box are assumed to be assigned to false. One could display
negative assigned options explicitly but this is typically not done in practice to improve
readability. The “Next” button on the right, next to the solution text box, can be used
to block the current solution and let the configurator compute an alternative solution.

Figure 3.7 shows a screenshot of AutoConfig with tab “Groups” opened. On this
screenshot the groups of the HLC are listed in the “Groups” tab on the left side. On the
right side of the opened tab the group members of the currently selected group “Dash-
board” are listed. In contrast to the previous screenshot the user has made selections.
The user selections text box is filled with {e2, Ac1}. The configurator found a solution
for the user selection (green background on label “Solution”). The solution displayed
is {e1, Ac1, c3, d2, g2} which includes the user selections. Options of the solution with a
blue background are positively forced. Since options e2 and Ac1 are user selections they
are positively forced, too. We observe that some group members of “Dashboard” have a
green background while others have a red background. A green background indicates the
option is still available for selection but is not required to be selected. A red background
indicates that the option is negatively forced and thus, not available for selection. For
Example, the selection of option d1 leads to a valid vehicle, while the selection of option
d3 makes the user selections inconsistent.

Figure 3.8 shows a screenshot with the “BOM” tab opened. The BOM tab lists all
structure nodes (left hand side) and the material nodes of the currently selected structure
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Figure 3.7: Screenshot of AutoConfig with open “Groups” tab

node (right hand side). The BOM on the screenshot shows the BOM of Example 19.
Material nodes with a purple background are selected by the current solution, i.e., the
result of the BOM resolution is indicated by purple highlighting.

Figure 3.9 shows another screenshot with the “BOM” tab opened. This time, we in-
structed the configurator to show us the forced material nodes under the current user
selection. The color scheme is the same as for options. Blue highlighted material nodes
are positively forced, red highlighted material nodes are negatively forced and green
highlighted material nodes are available. We see that material node 201 of structure
node 20 positively forced, i.e., any valid extension of the user selections {e2, ac1} selects
the material node 201 (not only the current displayed solution). In contrast, material
node 202 of the same structure node is forbidden.

There are further tabs for detailed analysis results which are not shown here due to
space limitations.
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Figure 3.8: Screenshot of AutoConfig with open “BOM” tab

Figure 3.9: Screenshot of AutoConfig showing forced material nodes
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3.3.5 Conclusion

In this section we described how SAT-based methods can be used for interactive configu-
ration in the context of automotive configuration, including high level and low level con-
figuration. We described desired features for a configurator engine and showed how they
can be achieved using SAT-based methods. Among others, these features include a con-
sistency check, producing example configurations and computing of forced/available/forbidden
options and parts. We evaluated the performance of the SAT-based methods using our
logic library AutoLib [Zengler, 2014] on real benchmarks from two German car man-
ufacturers. Our experimental evaluations showed that the average running time of all
kinds of queries for configuration tasks is suitable for interactive scenarios. The running
times of consistency checks, model generation and proof generation, for selected options
and parts, are within milliseconds and at most a quarter of a second. The computation
of forced options can be done in 0.69 seconds on average. The computation of forced
parts can be done in 4.31 seconds on average, but one product type required up to
about 12 seconds. However, in an interactive scenario the whole set of forced parts (up
to 25,000 parts) may not be required at once and only a portion is sufficient for the
user. For example, the user may be only interested to know the forced parts for a few
structure nodes with a total of up to 500 parts. Then the computation of forced parts
requires only up to a quarter of a second, too.

Re-configuration issues, Features F7 and F8, were not covered by this subsection since
they require optimization methods beyond pure SAT solving. We describe various SAT-
based optimization methods in Chapter 4 and applications of optimization in the context
of automotive configuration in Chapter 5. Among others we present SAT-based re-
configuration applications in Section 5.3.

3.4 Analyzing Dynamic Assembly Structures

In this section we introduce dynamic assembly structures which represent the chrono-
logical build order of complex parts.

Vehicles are built up from parts, but many times individual (atomic) parts are assembled
into more complex assemblies such as gearboxes. A static assembly structure is a tree
structure describing the chronological build order of complex parts. Leaf nodes of the
tree structure are considered as atomic. Inner nodes are (sub-)assemblies which are built
up by assembling the parts of the children. The root node represents the whole assembly,
e.g., the gearbox. There exist different static assembly structures for alternative variants,
e.g., each gearbox variant is represented by the root node of a separate static assembly
structure. Figure 3.10 shows three simple static assembly structures. Level 0 represents
the level of the final assembly, e.g., the final gearbox. Parts on level 1 are required
to build up the assemblies of level 0. Again, parts on level 2 are required to build
up the assemblies of level 1. The parts on level 2 are already built-up assemblies or
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atomic parts, e.g., a control unit from a supplier or some bolts. Each inner node is an
assembly of its child nodes. For example, part 401 of static assembly structure a) is
an assembly consisting of parts 501 and 601. Part 301 in turn is an assembly of the
parts 401 and 701.

Figure 3.10: Example static assembly structures

Documenting every static assembly structure for every available assembly separately,
as done in Figure 3.10, results in an impractical number of static assembly structures.
Typically, assembly variants use commons parts or sub-assemblies. In Figure 3.10 same
parts have the same color. For example, static assembly structures a) and c) share the
same sub-assembly starting at part 401. Static assembly structures b) and c) share the
same part 702 on level 1.

To overcome these redundancies, static assembly structures are merged into one dynamic
assembly structure. That is a tree data structure consisting of structure nodes of the
BOM. A structure node consists of a set of material nodes. Figure 3.11 shows the
dynamic assembly structure consisting of the three static assembly structures a), b) and
c) of Figure 3.10. Level 0 shows a single node consisting of three material nodes, each
representing one of the three assemblies. In order to identify the required parts for an
assembly the selection constraint of the material node is used (cf. Subsection 3.1.1). The
actual static assembly structure can be extracted by evaluating the selection constraints
of the material nodes for a given vehicle. Thus, the individual static assembly structures
are controlled by the selection constraints. These selection constraints are documented
by hand which can be very error-prone.

The parent-child relations of the structure nodes of a dynamic assembly structure have to
follow certain criteria to avoid ambiguous and incomplete assemblies. The selection of the
material nodes for a vehicle is determined by the evaluation of the selection constraints.
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Figure 3.11: Static assembly structures merged into one dynamic assembly structure

A material node is selected if the corresponding selection constraint evaluates to true
under the variable assignment of the vehicle. For example, every vehicle which selects
material node 301 on level 0 has to select the very same material node for each structure
node on level 1 in order to ensure uniqueness. We formally introduce those criteria
in this section and develop SAT-based methods to test dynamic assembly structures
for consistency. Similar to BOM verifications (see Section 3.2) we use SAT solving for
the verification of dynamic assembly structures in order to ensure to that the whole
configuration space is tested (cf. Remark 8).

Another interesting question concerning dynamic assembly structures arises when parts
are changing. For example, if a part of a leaf node is no longer available due to delivery
difficulties, we want to know which (sub-)assembly variants are affected. In other words,
we want to know all valid paths starting from an assembly variant on level 0 and ending
at the part in question. We call such paths part number sequences. We develop a
SAT-based method to compute all part number sequences for a given part.

This section is structured as follows. In Subsection 3.4.1 we present a formal description
of dynamic assembly structures. Afterwards, we introduce consistency criteria to ensure
that dynamic assembly structures are consistent. In Subsection 3.4.2 we introduce an
uniqueness property and develop SAT-based methods for its verification. In Subsec-
tion 3.4.3 we introduce a completeness property and develop SAT-based methods for its
verification. Furthermore, we describe a SAT-based algorithm to compute all part num-
ber sequences for a given part in Subsection 3.4.4. In Subsection 3.4.5 we outline some
practical obstacles we had to overcome. We evaluate the performance of all our devel-
oped analysis methods in Subsection 3.4.6 with real dynamic assembly structures from
a German premium car manufacturer. In Subsection 3.4.7 we conclude this section.
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3.4.1 Dynamic Assembly Structures

A static assembly structure is a tree data structure describing the build order of complex
parts. A dynamic assembly structure avoids the impractical documentation growth of
individual static assembly structure for every assembly by merging similar assembly
structures together. Dynamic assembly structures are documented within the bill of
materials as follows.

Definition 32. (Dynamic Assembly Structure) A dynamic assembly structure (DAS) D
is a tree data structure based on the structure nodes strNodes(B) of a BOMB as follows:

a) There is exactly one structure node N ∈ strNodes(B) representing the root node,
denoted by root(D) = N .

b) Every structure node N ∈ strNodes(B) has a list of structure nodes as children,
denoted by children(N). If children(N) = ∅, then N is a leaf structure node,
otherwise N is an inner structure node.

We call an inner structure node assembly node since an inner node consists of material
nodes which represent (sub-)assemblies of physical parts. The set of all assembly nodes
of DAS D is assemblyNodes(D) = {N ∈ strNodes(D) | children(N) 6= ∅}.

By parent(N) we denote the parent structure node of N . The root node has no parent
structure node and we set parent(root(D)) = null by definition.

Every structure node N ∈ strNodes(B) is assigned to a level level(N) ∈ N. The level
level(N) represents the hierarchical assembly order, beginning with level 0 for the root
structure node (the final assembly level). The level of a structure node N is recursively
defined:

level(N) =

0 root(D) = N

1 + level(parent(N)) root(D) 6= N

The maximal level maxLevel(D) of DAS D is defined by the highest level of the structure
nodes, i.e., maxLevel(D) = max{level(N) | N ∈ strNodes(D)}.

The set of all structure nodes of a DASD is denoted by strNodes(D) with strNodes(B) =
strNodes(D). The set of product types covered by D is denoted by types(D) with
types(B) = types(D).

In practice, the tree data structure of a dynamic assembly structure is already be em-
bedded within a BOM in a depth-first manner. We can extract the dynamic assembly
structure by two properties: (i) The level level(N) of each structure node is given, and
(ii), the order of the structure nodes within the BOM determines the child relationships,
i.e., the child structure nodes of structure node N with level i all occur after N until
there is another structure node with a level equal or higher than level(N).
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Example 21 shows an example DAS embedded within a BOM and its tree data structure
representation.

Table 3.11: Example DAS
Level Structure Node ID Material Node ID Constraint
0 30 301 a ∧ b
0 30 302 a ∧ ¬b
0 30 303 ¬a ∧ ¬b
1 40 401 a
1 40 402 ¬a ∧ ¬b
2 50 501 a ∨ b
2 50 502 ¬a
2 50 503 ¬a ∧ b ∧ c
2 60 601 a ∨ ¬b
2 60 602 ¬a ∧ b
1 70 701 a ∧ b ∧ c
1 70 702 a ∧ b ∧ ¬c

Example 21. (Dynamic Assembly Structure) Table 3.11 shows an example DAS D
embedded within a BOM. Figure 3.12 shows the DAS after its tree data structure has
been extracted. The root node is structure node 30 at level 0, i.e., root(D) = 30. The
children of the root structure nodes are children(30) = (40, 70). The structure nodes
50, 60 and 70 are leaf nodes. The structure nodes 30 and 40 are assembly nodes.

Figure 3.12: Graph visualization of a dynamic assembly structure

For a consistent dynamic assembly structure the parent-child relationships between the
structure nodes have to meet two criteria: Uniqueness and Completeness. Both criteria
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and algorithms for verification are described in the next sections. Further we describe
an algorithm to compute part number sequences which allows to find all paths including
a certain material node.

Before any verification is executed on a dynamic assembly structure the underlying
BOM structure should be free from errors according to the classical BOM analyses
(see Analyses L1, L2 and L3). A product documentation employee should execute
the BOM analyses first and remove the errors before executing any further verification
for the dynamic assembly structure. This is because (interleaving) BOM errors easily
lead to inconsistencies for the dynamic assembly structure. Further, the detection and
explanation of inconsistencies for the dynamic assembly structure may be complicated.
In practice, however, the underlying BOM structure is most often not free from any
BOM errors (see Subsection 3.4.6). Either BOM verifications are not executed first or
the detected BOM errors are only partially corrected. Thus, we do not assume that the
underlying BOM is free of errors.

3.4.2 Verifying Uniqueness

A dynamic assembly structure is unique if an assembly variant consists of the very same
parts for every vehicle selecting the assembly variant. Whenever a vehicle, represented
by a variable assignment, selects an assembly the very same assembly variants and parts
of the child nodes have to be selected.

Definition 33. (Uniqueness of a DAS) Let D be a dynamic assembly structure.

a) (Uniqueness of a Material Node) Consider a pair (N,Nc) of an assembly node
N ∈ strNodes(D) and a child structure node Nc ∈ children(N).

A material node m ∈ matNodes(N) is unique w.r.t. Nc iff for all product types
t ∈ types(D) holds: m is selectable (con(m) is satisfiable in conjunction with
ϕPD(t)) and there is a material node mc ∈ matNodes(Nc) such that whenever m
is selected for a valid vehicle of ϕPD(t), the material node mc is selected and no
other material node of matNodes(Nc) \ {mc} is selected.

We call material node m unique iff material node m is unique w.r.t. every child
structure node Nc ∈ children(N).

b) (Uniqueness of an Assembly Node) An assembly node N ∈ strNodes(D) is unique
iff every material node m ∈ matNodes(N) is unique.

c) (Uniqueness of a DAS) A dynamic assembly structure D is unique iff every assem-
bly node N ∈ assemblyNodes(D) is unique.

If more than one material node of a child structure node is selected, then more than one
part is selected for the assembly. In such a situation the composition of the assembly is
ambiguous since there is more than one possibility to build up the assembly. Thus, at

90



most one material node is allowed to be selected. On the other hand, there must be at
least one selected material node for each child structure node, otherwise the assembly
is missing a part. To simplify reading we call non-unique material and assembly nodes
ambiguous, meaning that the composition of the assembly is ambiguous.

Leaf structure nodes have no child structure nodes by definition. Every material node
of a leaf structure node represents an atomic physical part and therefore is already
unique.

Figure 3.13: Illustration of several (non-)uniqueness cases

Figure 3.13 illustrates different cases of uniqueness and non-uniqueness of a DAS. The
set of models of the material nodes is represented by Venn diagrams. Case a) shows the
correct behavior, i.e., the set of models of parent material node m is a subset of the set
of models of a child material node mc. That means, the selection constraint of m implies
the selection constraint of mc. Cases b) – g) show an ambiguous behavior in various
versions. Cases b) – d) show ambiguous cases where the set of models of the parent
material node m shares none or some models with the set of a child material node mc

but also has some other models. Case e) – g) show ambiguous cases where the set of
models of the parent material node m shares models with two different child material
nodes mc1 and mc2 . Case g) is ambiguous with an overlapping error among two child
material nodes involved.

There are many more ambiguous constellations imaginable, e.g., with more than two
child material nodes or with multiple overlapping errors among child material nodes.
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Verifying uniqueness of a structure node of a DAS is more complex than verifying unique-
ness for a structure node of a BOM (see Analysis L1): In order to identify an ambiguous
structure node of a BOM we are in search of a single vehicle only. The variable assign-
ment, representing the vehicle, has to simultaneously select two different constraints of
material nodes. In contrast, in order to identify an ambiguous structure node of a DAS
we are in search of two different vehicles. Both variable assignments of the two vehicles
have to select the constraint of the parent material node. One vehicle has to select a
child material node and the other vehicle must not select the same child material node
(either selecting another child material node or none child material node).

Example 22 points out unique and ambiguous structure nodes of the dynamic assembly
structure of Example 21.

Example 22. (Uniqueness Example) We reconsider the dynamic assembly structure of
Example 21. To simplify the example we do not take the product description formula
into account. All structure nodes of the DAS are unique except for structure node 30.

Material node 301 with constraint a ∧ b is ambiguous: For variable assignment {a, b, c}
the child material node 701 with constraint a ∧ b ∧ c is selected, whereas for variable
assignment {a, b,¬c} the child material node 702 with constraint a ∧ b ∧ ¬c is selected.
This corresponds to Situation e) in Figure 3.13.

The material nodes 302 and 303 are ambiguous, too. For any variable assignment of
these material nodes, no child material node of structure node 70 is ever selected. This
is a violation of the uniqueness property that states there exists exactly one child ma-
terial node which is selected for all satisfying variable assignments. This corresponds to
Situation b) in Figure 3.13.

Algorithm 3.5 shows the basic algorithm for verifying the uniqueness of an assembly
node N of a DAS D. The algorithm iterates over the covered product types types(D)
(Line 1) and checks for each product type t ∈ types(D) the uniqueness separately. After
a new solver object is created (Line 2) the product description formula ϕPD(t) is added to
the solver (Line 3). The algorithm iterates over every material node m ∈ matNodes(N)
of the considered assembly node N (Line 4). Then a pre-check takes place to verify that
the material nodem is satisfiable (Line 5), otherwise false is returned (Line 6). Further,
every child structure nodeNc ∈ children(N) of assembly nodeN is iterated and checked
separately (Line 8). Lines 9–15 describe the uniqueness verification of material node m
and a child structure node Nc: For every child material node mc ∈ matNodes(Nc) the
algorithm checks if con(m) entails con(mc) and if no other child material node from
matNodes(Nc) \ (mc) can be selected by m (Line 11). If such a child material node mc is
found, the material node m is unique w.r.t. the considered child structure node Nc. For
this case the loop stops (Line 13). Otherwise, if none such child material node exists,
the material node m is ambiguous and false is returned (Line 15). If none ambiguous
material node could be found at all, then true is returned (Line 16).
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Algorithm 3.5: Uniqueness of an assembly node: verifyUniqueness(N)
Input: Assembly node N ∈ assemblyNodes(D) of a DAS D
Output: true if uniqueness holds for all covered product types, otherwise false

1 foreach product type t ∈ types(D) do
2 solver← new inc/dec CDCL SAT solver
3 solver. add(ϕPD(t))
4 foreach material node m ∈ matNodes(N) do
5 if solver. unsat(m) then
6 return false

7 else
8 foreach Nc ∈ children(N) do
9 isAmbiguous← true

10 foreach mc ∈ matNodes(Nc) do
11 if solver. entails(con(m), con(mc)) and

solver. unsat
(
con(m) ∧ ∨m′c∈matNodes(Nc)\{mc} con(m′c)

)
then

12 isAmbiguous← false
13 break

14 if isAmbiguous then
15 return false

16 return true

Theorem 1. (Correctness of verifyUniqueness) For an assembly node
N ∈ assemblyNodes(D) of a dynamic assembly structure D the Algorithm 3.5 returns
true iff the assembly node N is unique according to Definition 33.

Proof. The algorithm returns false in two situations: In Line 6 and in Line 15. In
Line 6 false is returned if a material nodem ∈ matNodes(N) is unsatisfiable. In Line 15
false is returned if the variable isAmbiguous is set to true, which means that for a
material node m ∈ matNodes(N) and a child structure node Nc holds that there is no
child material node mc ∈ matNodes(Nc) such that the entailment (ϕPD(t) ∧ con(m))→
con(mc) and the unsatisfiability of ϕPD(t)∧con(m)∧∨m′c∈matNodes(Nc)\{mc} con(m′c) holds.

In contrast, if true is returned (Line 16), then all material nodes m ∈ matNodes(N)
are satisfiable and there is at least one child material node mc ∈ matNodes(Nc) for each
child structure node Nc ∈ children(N) such that the conditions are satisfied. That is,
there exists a material node mc ∈ matNodes(Nc) such that con(m) entails con(mc) and
no other material node of matNodes(Nc) \ {mc} can be selected.

Theorem 2. (Complexity of verifyUniqueness) For an assembly node
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N ∈ assemblyNodes(D) of a dynamic assembly structure D the Algorithm 3.5 takes

2 · | types(D)| · | matNodes(N)| ·
∑

Nc∈children(N)
|matNodes(Nc)|

+ | types(D)| · | matNodes(N)|

calls to the SAT solver in the worst case. In the best case it takes only one call to the
SAT solver.

Proof. In the best case the first tested product type t ∈ types(D) and the first tested
material node m ∈ matNodes(N) fails the pre-check of satisfiability (Line 5). In the
worst case the assembly node N is unique and the uniqueness is identified for the last
material node mc ∈ matNodes(Nc) for each child structure node Nc. In this case for each
product type t ∈ types(D) the three inner loops iterate over all possible combinations
of material nodes resp. child structure nodes. For each combination two SAT calls are
performed, resulting in 2 · | matNodes(N)| ·∑Nc∈children(N) | matNodes(Nc)| SAT calls for
each product type t ∈ types(D). Each material node m ∈ matNodes(N)| is tested for
satisfiability for each product type, resulting in additional | types(D)| · | matNodes(N)|
calls to the SAT solver.

Algorithm 3.5 returns false as soon as any ambiguous behavior is detected, otherwise
it returns true. In practice, however, it is useful to actually know where ambiguous
situations occur for the false case. Algorithm 3.6 shows a slightly altered algorithm
which does the very same verification but gathers all ambiguous situations in a set.
The set consists of a mapping from the product type to a set of pairs (m,Nc) for a
material node m ∈ matNodes(N) of the input assembly node N and a child structure
node Nc ∈ children(N).

Algorithm 3.6 first initializes the result set E with an initial empty mapping (Line 1).
For each found ambiguous behavior, the result set E is updated (Line 7 and 16). After
each combination is checked, the result set E is returned (Line 17). The worst case com-
plexity in terms of the number of SAT calls is the same as for the previously considered
Algorithm 3.5.

Algorithm 3.6 can be further improved as shown in Algorithm 3.7. In the improved ver-
sion the inc/dec interface of the SAT solver is exploited by adding the formula con(m)
just once for each material node m ∈ matNodes(N) (Line 7). To test for entailment
con(m) → con(mc) we test the negation of con(mc) for unsatisfiability (cf. Proposi-
tion 3) in Line 14. The worst case complexity in terms of the number of SAT calls is
the same as for the previously considered Algorithm 3.5.

Another approach to address the problem of finding all ambiguous situations shows
Algorithm 3.8. Instead of checking whether the entailment con(m) → con(mc) holds
we count the number child material nodes which are constructible with material node
m (Lines 13–16). This is done by adding con(m) once (Line 5) and the iteratively
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Algorithm 3.6: Computation of all material nodes violating the uniqueness property
of an assembly node: computeUniquenessViolations1(N)
Input: Assembly node N ∈ assemblyNodes(D) of a DAS D
Output: A mapping E from product type to sets of pairs of material nodes

m ∈ matNodes(N) and child structure nodes Nc ∈ children(N) which
are ambiguous

1 E ← {(t, ∅) | t ∈ types(D)}
2 foreach product type t ∈ types(D) do
3 solver← new inc/dec CDCL SAT solver
4 solver. add(ϕPD(t))
5 foreach material node m ∈ matNodes(N) do
6 if solver. unsat(con(m)) then
7 E ← (E \ {(t,X)}) ∪ {(t,X ∪ {(m,Nc) | Nc ∈ children(N)})}
8 else
9 foreach Nc ∈ children(N) do

10 isAmbiguous← true
11 foreach mc ∈ matNodes(Nc) do
12 if solver. entails(con(m), con(mc)) and

solver. unsat
(
con(m) ∧ ∨m′c∈matNodes(Nc)\{mc} con(m′c)

)
then

13 isAmbiguous← false
14 break

15 if isAmbiguous then
16 E ← (E \ {(t,X)}) ∪ {(t,X ∪ {(m,Nc)})}

17 return E

testing for each mc ∈ matNodes(Nc) if con(mc) in conjunction is satisfiable (Line 15).
As soon as two constructible child material nodes are found we can break the loop
(Line 16) since we found an ambiguous behavior. Afterwards we update the result set E
if necessary (Lines 17–18). The counting version simplifies the SAT calls by only testing
for satisfiability of a conjunction of con(m) and con(mc) instead of testing whether
con(m) → con(mc) is a tautology. However, by not checking entailment we have to
perform an additional check to ensure that con(m) is not satisfiable when none of the
child material nodes matNodes(Nc) is selected (Line 10). The worst case complexity in
terms of the number of SAT calls is better as for the previously described approached:

| types(D)| · | matNodes(N)| ·
∑

Nc∈children(N)

+ | types(D)| · | matNodes(N)| · | children(N)|
+ | types(D)| · | matNodes(N)|
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Algorithm 3.7: Computation of all material nodes violating the uniqueness property
of an assembly node (improved): computeUniquenessViolations2(N)
Input: Assembly node N ∈ assemblyNodes(D) of a DAS D
Output: A mapping E from product type to sets of pairs of material nodes

m ∈ matNodes(N) and child structure nodes Nc ∈ children(N) which
are ambiguous

1 E ← {(t, ∅) | t ∈ types(D)}
2 foreach product type t ∈ types(D) do
3 solver← new inc/dec CDCL SAT solver
4 solver. add(ϕPD(t))
5 foreach material node m ∈ matNodes(N) do
6 solver. mark()
7 solver. add(con(m))
8 if solver. unsat() then
9 E ← (E \ {(t,X)}) ∪ {(t,X ∪ {(m,Nc) | Nc ∈ children(N)})}

10 else
11 foreach Nc ∈ children(N) do
12 isAmbiguous← true
13 foreach mc ∈ matNodes(Nc) do
14 if solver. unsat(¬ con(mc)) and

solver. unsat
(∨

m′c∈matNodes(Nc)\{mc} con(m′c)
)
then

15 isAmbiguous← false
16 break

17 if isAmbiguous then
18 E ← (E \ {(t,X)}) ∪ {(t,X ∪ {(m,Nc)})}

19 solver. undo()

20 return E

A common disadvantage of the previously presented approaches is that the identification
of an ambiguous behavior of material node m and a child structure node Nc requires
multiple SAT calls. In order to overcome this issue we developed another approach which
reduces the number of required SAT calls to identify ambiguous behavior for a material
node m and a child structure node Nc. Algorithm 3.9 shows the pseudocode. The idea is
to simultaneously search for two different models of con(m) (representing two different
vehicle configurations) such that one model selected a material node m′ ∈ matNodes(Nc)
and the other model selected another material node m′′ ∈ matNodes(Nc). If such two
models can be found, we identified ambiguous behavior, otherwise uniqueness holds.

Algorithm 3.9 has basically the same structure as the previously described algorithms
but the new approach keeps two solver objects solver and dSolver (Lines 3–4). Solver
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Algorithm 3.8: Computation of all material nodes violating the uniqueness property
of an assembly node (counting version): computeUniquenessViolations3(N)
Input: Assembly node N ∈ assemblyNodes(D) of a DAS D
Output: A mapping E from product type to sets of pairs of material nodes

m ∈ matNodes(N) and child structure nodes Nc ∈ children(N) which
are ambiguous

1 E ← {(t, ∅) | t ∈ types(D)}
2 foreach product type t ∈ types(D) do
3 solver← new inc/dec CDCL SAT solver, solver. add(ϕPD(t))
4 foreach material node m ∈ matNodes(N) do
5 solver. mark(), solver. add(con(m))
6 if solver. unsat() then
7 E ← (E \ {(t,X)}) ∪ {(t,X ∪ {(m,Nc) | Nc ∈ children(N)})}
8 else
9 foreach Nc ∈ children(N) do

10 if solver. sat
(
¬∨mc∈matNodes(Nc) con(mc)

)
then

11 E ← (E \ {(t,X)}) ∪ {(t,X ∪ {(m,Nc)})}
12 else
13 satCtr ← 0
14 foreach mc ∈ matNodes(Nc) do
15 if solver. sat(con(mc)) then satCtr ← satCtr + 1
16 if satCtr ≥ 2 then break

17 if satCtr 6= 1 then
18 E ← (E \ {(t,X)}) ∪ {(t,X ∪ {(m,Nc)})}

19 solver. undo()

20 return E

object solver is used to pre-check each material node m ∈ matNodes(N) for satisfi-
ability (Line 7) and to test if material node m can be selected without selecting any
child material node matNodes(Nc) for a child structure node Nc (Line 13). Whereas
solver object dSolver is used to identify if two child material nodes can be selected for
two different models. In order to search for such two different models we duplicate all
constraints. We distinguish between the two duplicates by replacing the variable names
by variable names with exponent 1 resp. exponent 2. This replacement is done by the
duplicate function ϕPD(t)(1) resp. ϕPD(t)(2) (see Definition 3). The product description
formula duplicates ϕPD(t)(1) and ϕPD(t)(2) are added to dSolver (Lines 5). For the con-
straint con(m) of material node m two duplicates are also added to dSolver (Line 11).
In Line 15 we add the encoding to check for duplicates to solver dSolver by calling
buildDupEncoding(Nc). Algorithm 3.10 shows the encoding. For each child material
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Algorithm 3.9: Computation of all material nodes violating the uniqueness property
of an assembly node (duplicate version): computeUniquenessViolations4(N)
Input: Assembly node N ∈ assemblyNodes(D) of a DAS D
Output: A mapping E from product type to sets of pairs of material nodes

m ∈ matNodes(N) and child structure nodes Nc ∈ children(N) which
are ambiguous

1 E ← {(t, ∅) | t ∈ types(D)}
2 foreach product type t ∈ types(D) do
3 solver← new inc/dec CDCL SAT solver
4 dSolver← new inc/dec CDCL SAT solver
5 solver. add(ϕPD(t)), dSolver(ϕPD(t)(1)), dSolver(ϕPD(t)(2))
6 foreach material node m ∈ matNodes(N) do
7 if solver. unsat(con(m)) then
8 E ← (E \ {(t,X)}) ∪ {(t,X ∪ {(m,Nc) | Nc ∈ children(N)})}
9 else

10 solver. mark(), dSolver. mark()
11 solver. add(con(m)), dSolver. add(con(m)(1)),

dSolver. add(con(m)(2))
12 foreach Nc ∈ children(N) do
13 if solver. sat

(
¬∨mc∈matNodes(Nc) con(mc)

)
then

14 E ← (E \ {(t,X)}) ∪ {(t,X ∪ {(m,Nc)})}
15 else if dSolver. sat(buildDupEncoding(Nc) then
16 E ← (E \ {(t,X)}) ∪ {(t,X ∪ {(m,Nc)})}

17 solver. undo(), dSolver. undo()

18 return E

node mi ∈ matNodes(Nc) two selector variables s1,i and s2,i are introduced such that
whenever the selector variable s1,i (resp. s2,i) is true then con(mi)(1) (resp. con(mi)(2))
has to be true, too (Line 1). In order two find two different models we ensure that
whenever a selector variable s1,i is assigned to true, at least one of the selector variables
s2,1, . . . , s2,i−1, s2,i+1, . . . , s2,k (without s2,i) is assigned to true (Lines 2–3). At last we
have to ensure that at least one of the selector variables s1,1, . . . , s1,k is assigned to true
(Line 4). The encoding requires 2k auxiliary variables.

The worst case complexity in terms of the number of SAT calls for Algorithm 3.9 is
2 · | types(D)| · | matNodes(N)| · | children(N)| + | types(D)| · | matNodes(N)|. Even
though the worst case complexity of the number of SAT calls for this algorithm version
is better than for the approaches described before, the SAT calls themselves are more
complex.

There are various possible reasons why an assembly node can become ambiguous. Among
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Algorithm 3.10: Build duplicate encoding to verify uniqueness:
buildDupEncoding(Nc)
Input: Structure node Nc with matNodes(Nc) = {m1, . . . ,mk} of a DAS D
Output: Boolean formula encoding for verifying uniqueness

1 ψ ←
(∧

i∈{1,...,k} s1,i → con(mi)(1)
)
∧
(∧

i∈{1,...,k} s2,i → con(mi)(2)
)

2 foreach i = 1 to i = k do
3 ψ ← ψ ∧

(
s1,i →

∨
j∈{1,...,k}\{i} s2,j

)
4 ψ ← ψ ∧ ∨i∈{1,...,k} s1,i

5 return ψ

others the following mistakes in the product documentation can cause an ambiguous
assembly node:

a) The selection constraint of the parent material node is not restrictive enough and
thus, it is possible that an additional child material node besides the intended one
can be selected, or an additional vehicle configuration selecting none child material
node exists.

b) The selection constraints of two or more child material nodes are overlapping.

c) The selection constraint of the parent material node is a contradiction and thus,
is not satisfiable in conjunction with any selection constraint of a child material
node.

Considering reason c), there are numerous possible error sources why a selection con-
straint is a contradiction. The most simple one is that it is a contradiction itself without
considering a product type. In contrast, when considering a product type one has to
explain the unsatisfiability within the context of the product description structure. For
example, there may be a too restrictive rule implication. Additionally, the reasons listed
above may interleave and thus, it is hard to tell which reason is responsible for the
ambiguous assembly node. A final answer about the correct reason(s) can only be made
by a documentation expert of the specific division.

We performed experimental evaluations for all presented algorithms for the verification
of uniqueness. See Subsection 3.4.6 for the results.

3.4.3 Verifying Completeness

An assembly node N of a dynamic assembly structure is complete if for every child part
there is at least one assembly variant of N that uses the child part. However, sometimes
there are parts in child nodes which are not constructible for any assembly variant
of N . These parts are never included in any assembly variant of level 0 of the dynamic
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structure. Definition 34 introduces a formal definition for a complete assembly node.
Afterwards we present SAT-based algorithms to identify incomplete assembly nodes.

Definition 34. (Completeness of a DAS) Let D be a dynamic assembly structure.

a) (Completeness of a Material Node) Consider a pair (N,Nc) for an assembly node
N ∈ assemblyNodes(D) and a child structure node Nc ∈ children(N).

Assembly node N is complete w.r.t. to material node mc ∈ matNodes(Nc) iff
for all product types t ∈ types(D) holds: there exists a material node m ∈
matNodes(N) such that m and mc can be selected simultaneously for at least one
valid vehicle of product type t, i.e., the constraints con(m) and con(mc) can be
satisfied simultaneously in conjunction with ϕPD(t). Otherwise, material node mc

is called an orphan.

We call assembly node N complete w.r.t. child structure node Nc iff assembly node
N is complete for every material node mc ∈ matNodes(Nc).

b) (Completeness of an Assembly Node) An assembly node
N ∈ assemblyNodes(D) is complete iff N is complete for each child structure node
Nc ∈ children(N).

c) (Completeness of a DAS) A dynamic assembly structure D is complete iff every
assembly node N ∈ assemblyNodes(D) is complete.

Figure 3.14: Illustration of several (non-)completeness cases

Figure 3.14 illustrates different cases of completeness and incompleteness of a DAS. The
set of models of the material nodes is represented by Venn diagrams. Case a) shows
the correct behavior, i.e., the set of models of every child material node (mc1 ,mc2 ,mc3)
shares models with at least one parent material node (m1,m2,m3,m4). Case b) shows
incorrect behavior, i.e., the set of models of the child material nodes mc1 and mc3 share
none models with any of the parent material nodes.

Example 23 shows an example of the completeness of a DAS.
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Example 23. (Completeness Example) We reconsider the example dynamic assembly
structure from Example 21. To simplify the example we do not take the product de-
scription formula into account. All structure nodes of the DAS are complete except for
structure node 40.

Material node 503 with constraint ¬a ∧ b ∧ c is an orphan: None of the constraints A
(material node 401) or ¬a ∧ ¬b (material node 402) is satisfiable in conjunction with
¬a ∧ b ∧ c.

Material node 602 with constraint ¬a∧b is an orphan: None of the constraints a (material
node 401) or ¬a ∧ ¬b (material node 402) is satisfiable in conjunction with ¬a ∧ b.

Algorithm 3.11: Completeness of an assembly node: verifyCompleteness(N)
Input: Assembly node N ∈ assemblyNodes(D) of a DAS D
Output: true if completeness holds for all covered product types, otherwise false

1 foreach product type t ∈ types(D) do
2 solver← new inc/dec CDCL SAT solver
3 solver. add(ϕPD(t))
4 foreach structure node Nc ∈ children(N) do
5 foreach mc ∈ matNodes(Nc) do
6 isOrphan← true
7 foreach material node m ∈ matNodes(N) do
8 if solver. sat(con(m) ∧ con(mc)) then
9 isOrphan← false

10 break

11 if isOrphan then
12 return false

13 return true

Algorithm 3.11 shows the basic algorithm for verifying the completeness of an assembly
node N of a DAS D. The algorithm iterates over the covered product types types(D)
(Line 1) and checks for each product type t ∈ types(D) the completeness separately.
After a new solver object is created (Line 2) the product description formula ϕPD(t) is
added to the solver (Line 3). The algorithm iterates over every child structure node
Nc ∈ children(N) (Line 4) and every child material node mc ∈ matNodes(Nc) (Line 5).
Lines 6–12 describe the completeness verification of structure node N and a child struc-
ture node Nc: For every material nodem ∈ matNodes(N) the algorithm checks if con(m)
and con(mc) are satisfiable in conjunction (Line 8). For the satisfiable case the child
material nodemc is no orphan since a constructible parent material node has been found.
The loop is stopped (Line 10). For the unsatisfiable case the child material node mc

is still considered as orphan. If no constructible pair could be found, then false is
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returned (Line 12). If every combination could be verified the algorithm returns true
(Line 13).

Theorem 3. (Correctness of verifyCompleteness) For an assembly node
N ∈ assemblyNodes(D) of a dynamic assembly structure D the Algorithm 3.11 re-
turns true iff the assembly node N is complete according to Definition 34.

Proof. The algorithm returns false only in Line 12. In this case the variable isOrphan
is set to true, which means that none of the conjunctions ϕPD(t) ∧ con(m) ∧ con(mc)
are satisfiable for a material node m ∈ matNodes(N).

In contrast, if true is returned (Line 13), there is at least one satisfiable conjunction
found for the material nodes m and mc for each material node mc ∈ matNodes(Nc), each
child structure node children(N) and each product type t ∈ types(D).

Theorem 4. (Complexity of verifyCompleteness) For an assembly node
N ∈ assemblyNodes(D) of a dynamic assembly structure D the Algorithm 3.11 takes

| types(D)| · | matNodes(N)| ·
∑

Nc∈children(N)
|matNodes(Nc)|

calls to the SAT solver in the worst case. In the best case it takes | matNodes(N)| calls
to the SAT solver.

Proof. In the best case the first tested product type t ∈ types(D) and the first tested
material node mc ∈ matNodes(Nc) of the first child structure node Nc ∈ children(N)
violates the completeness property of assembly node N . In this case, the most inner loop
iterates over all material nodes m ∈ matNodes(N) with one SAT check in each iteration.
Afterwards false is returned. In the worst case the assembly nodeN is complete. In this
case for each product type t ∈ types(D) the three inner loops iterate over all possible
combinations of material nodes resp. child structure nodes resulting in | matNodes(N)| ·∑
Nc∈children(N) | matNodes(Nc)| calls for each product type t ∈ types(D).

Algorithm 3.11 returns false as soon as any incompleteness is found, otherwise it returns
true. In practice, however, it is useful to actually know where incomplete situations
occur for the false case. Algorithm 3.12 shows an altered algorithm which does the
very same verification but gathers all incomplete situations in a set. The set consists of
a mapping from the product type to a set of material nodes which are all orphans.

Algorithm 3.12 first initializes the result set E with an initial mapping (Line 1). For each
found incomplete behavior, the result set E is updated (Line 13). If every combination
is checked, the result set E is returned (Line 14). The worst case complexity in terms of
the number of SAT calls is the same as for the previously considered Algorithm 3.11.

Algorithm 3.12 can be further improved as shown in Algorithm 3.13. In the improved
version, the inc/dec interface of the SAT solver is exploited by adding the formula
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Algorithm 3.12: Computation of all material nodes violating the completeness
property of an assembly node: computeCompletenessViolations1(N)
Input: Assembly node N ∈ assemblyNodes(D) of a DAS D
Output: A mapping E from product types to sets of material nodes which are

orphans
1 E ← {(t, ∅) | t ∈ types(D)}
2 foreach product type t ∈ types(D) do
3 solver← new inc/dec CDCL SAT solver
4 solver. add(ϕPD(t))
5 foreach structure node Nc ∈ children(N) do
6 foreach mc ∈ matNodes(Nc) do
7 isOrphan← true
8 foreach material node m ∈ matNodes(N) do
9 if solver. sat(con(m) ∧ con(mc)) then

10 isOrphan← false
11 break

12 if isOrphan then
13 E ← (E \ {(t,X)}) ∪ {(t,X ∪ {mc})}

14 return E

∨
m∈matNodes(N) con(m) once for each product type (Line 5). Adding this constraint en-

sures that at least one material node of matNodes(N) is selected. This constraint re-
mains constant independently of the considered child structure node Nc. Then we can
check whether a child material node mc ∈ matNodes(Nc) is consistent to this restric-
tion. If testing con(mc) results in unsatisfiability, the child material node is an or-
phan. The worst case complexity in terms of the number of SAT calls is | types(D)| ·∑
Nc∈children(N) |matNodes(Nc)|. Therefore, Algorithm 3.13 has a better worst time com-

plexity than the previous described approach.

There are various possible reasons why an assembly node can become incomplete. Among
others the following mistakes in the product documentation can cause an incomplete as-
sembly node:

a) A missing material node in assembly node.

b) The selection constraint of a material node is too restrictive.

c) The orphan material node of the child structure node is mistakenly added and
should be removed.

d) The selection constraint of the orphan material node is too restrictive.
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Algorithm 3.13: Computation of all material nodes violating the completeness
property of an assembly node (improved): computeCompletenessViolations2(N)
Input: Assembly node N ∈ assemblyNodes(D) of a DAS D
Output: A mapping E from product types to sets of material nodes which are

orphans
1 E ← {(t, ∅) | t ∈ types(D)}
2 foreach product type t ∈ types(D) do
3 solver← new inc/dec CDCL SAT solver
4 solver. add(ϕPD(t))
5 solver. add

(∨
m∈matNodes(N) con(m)

)
6 foreach structure node Nc ∈ children(N) do
7 foreach mc ∈ matNodes(Nc) do
8 if solver. unsat(con(mc)) then
9 E ← (E \ {(t,X)}) ∪ {(t,X ∪ {mc})}

10 return E

The reasons listed above may interleave and thus, it is hard to tell which reason is
responsible for the incomplete assembly node. A final answer about the correct reason(s)
can only be made by a documentation expert of the specific division.

We performed experimental evaluations for all presented algorithms for the verification
of completeness. See Subsection 3.4.6 for the results.

3.4.4 Computation of Part Number Sequences

Dynamic assembly structures can be considered from two different perspectives. An
assembly developer has the top-to-bottom perspective. First the different assembly
variants of the root structure nodes are developed. Later, in the lower levels, the con-
crete parts of which the variants consist are developed. In contrast, the bottom-to-top
perspective is important for the production logistics, e.g., in how many variants occurs
a certain part, or, if a part cannot be delivered any more, which (sub-)assembly variants
are affected?

The following use case may occur in practice: A physical part, represented by a material
node of a leaf node, is no longer available because the responsible component supplier
has difficulties in production. The important question arising is, which (sub-)assemblies
are affected? Which material nodes of the root assembly node are using this part? To
step through all levels by hand or testing some example configurations is tedious and
error-prone.
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We call the list of all affected material nodes part number sequence and give a formal
definition in Definition 35. Afterwards we present a SAT-based algorithm to compute
all part number sequences automatically.

Definition 35. (Part Number Sequence) Let D be a dynamic assembly structure em-
bedded in BOM B. Let t ∈ types(D) be a product type. A part number sequence is a se-
quence of material nodes identifiers (ident(m1), . . . , ident(mk)) for material nodesm1 ∈
matNodes(N1), . . . ,mk ∈ matNodes(Nk) and structure nodes N1, . . . , Nk ∈ strNodes(B)
such that the following conditions hold:

a) (Parent-Child-Relationship) For each i ∈ {2, . . . , k} holds: mi is a material node
of a parent structure node of material node mi−1, i.e., Ni−1 ∈ children(Ni).

b) (Uniqueness of Parent) For each i ∈ {2, . . . , k} holds that (parent) material node
mi is unique w.r.t. (child) material node mi−1 (see Definition 33).

Figure 3.15: Illustration of several (in-)correct cases of part number sequences

Figure 3.15 illustrates different cases of part number sequences of a DAS. The set of
models of the material nodes is represented by Venn diagrams. Case a) shows the correct
behavior, i.e., the set of models of the respective child material node contains the set of
models of a parent material node. Thus, the part number sequence does not stop. Case
b) and c) show incorrect behavior, i.e., the set of models of the child material node mc

(resp. m′c) does not contain the set of models of the parent material node m (resp. mc).
Therefore, the part number sequence stops intermediately.

Example 24 shows a simplified example of part number sequences of a DAS.

Example 24. (Part Number Sequences) We reconsider the example dynamic assem-
bly structure from Example 21. To simplify the example we do not take the product
description formula into account.

Table 3.12 shows the part number sequences for all leaf material nodes. Material node
501 results in two part number sequences and both part number sequences are reaching
level 0 without stoppage. The same behavior can be considered for material node 601.
Material node 502 yields in one part number sequence and is reaching level 0, too.
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In contrast, the part number sequences of material nodes 503, 602, 701 and 702 are
all stopped at the beginning for various reasons. For example, material node 503 is
not constructible with any material node of structure node 40 and thus, is an orphan
(cf. Example 23). Since material node 602 is also an orphan, the part number sequence
is stopped, too. The stoppage for material node 701 and 702 is different. Here, both
material nodes are constructible and entailed by material node 301, but parent material
node 301 is ambiguous (cf. Example 22).

Table 3.12: Part number sequences for leaf material nodes
Level Mat. Node ID Level Mat. Node ID Level Mat. Node ID
2 501 1 401 0 301
2 501 1 401 0 302
2 502 1 402 0 303
2 503 – – – –
2 601 1 401 0 301
2 601 1 401 0 302
2 602 – – – –
1 701 – – – –
1 702 – – – –

When we assume the ideal case that a dynamic assembly structure is both unique and
complete, then we can find part number sequences for each material node on any level
which end in the root node.

Proposition 9. Let D be an unique and complete dynamic assembly structure. Let
m ∈ matNodes(N) be a material node of a structure node N ∈ strNodes(D). Then
there is at least one part number sequence which starts by m and ends with a material
node of the root node of D.

Proof. Proof by induction over the level of material node m.

Induction Basis: We assume level(m) = 0. Since D is unique the structure node N
contains only satisfiable material nodes. Therefore, there is a part number sequence
(m).

Induction Step: We assume the statement holds for material nodes of level n. We
assume level(m) = n+ 1. Since material node parent(N) is complete, there is at least
one material node mp ∈ parent(N) such that con(m) ∧ con(mp) is satisfiable. Since
parent(N) is unique, the material node mp has to be unique w.r.t. material node n.
Then there exists a part number sequence starting by m with and a transition to mp:
(m,mp, . . .). By the induction assumption there is at least one part number sequence
for mp with level(mp) = n starting with mp and resulting in a material node of the
root node of D. Thus, we found at least one part number sequence beginning with m
and resulting in a material node of the root node of D.
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In practice however, we cannot assume a dynamic assembly structure to be unique and
complete for any assembly node. Therefore, some part number sequences may stop as
seen in Example 24.

Algorithm 3.14: Computation of all part number sequences of a material node:
computePartNumberSequences(m)
Input: Material node m ∈ matNodes(N) of a structure node N ∈ strNodes(D) of

a DAS D
Output: A mapping I from the product type to a set of part number sequences

beginning with material node m
1 I ← ∅
2 foreach product type t ∈ types(D) do
3 I ← I ∪ {(t, computePartNumberSequences-rec(t,m,N))}
4 return I

5 func computePartNumberSequences-rec(t,m,N) : C
6 C ← ∅
7 U ← computeUniqueParentMaterialNodes(t, m, N)
8 foreach material node mp ∈ U do
9 parentSequences← computePartNumberSequences-rec(t,mp, parent(N))

10 C ← C ∪ ({m} × parentSequences)
11 return C

Algorithm 3.14 shows the algorithm for computing all part number sequences for a given
material node (not necessarily from a leaf structure node). First, the result set I is initial-
ized (Line 1). The algorithm iterates over the covered product types types(D) (Line 2)
and proceeds with the computation for each product type t ∈ types(D) separately. The
subroutine computePartNumberSequences-rec is called and the result is added to the
final result set I (Line 3). The subroutine computes the set of part number sequences
for product type t and a material node m from structure node N . First, the subroutine
initializes set C (Line 6), then all parent material nodes which are unique with respect to
m are extracted by the help algorithm computeUniqueParentMaterialNodes (Line 7).
Afterwards the subroutine iterates over all unique parent material nodes mp ∈ U to
build part number sequences starting with m and continuing with mp. The subroutine
recursively calls itself (Line 9) to compute all part number sequences beginning with mp

and appends them.

Algorithm 3.15 shows the help algorithm to compute the set of parent material nodes
which are unique w.r.t. a given material node m. First the set U is initialized (Line 1).
Then a new solver object is created (Line 2) and ϕPD(t) is added (Line 3). Every parent
material node mp ∈ matNodes(parent(N)) is tested for satisfiability, tested entailment
con(mp) → con(m) and tested for unsatisfiability with any other node (Line 5). If all
three tests hold the parent material node mp is added the result set (Line 6). The result
set U is returned afterwards (Line 7).
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Algorithm 3.15: Computation of all unique parent material nodes for a material
node: computeUniqueParentMaterialNodes(t,m,N)
Input: A product type t ∈ types(D), a material node m ∈ matNodes(N) and a

structure node N ∈ strNodes(D) of a DAS D
Output: A set U of parent material nodes which are unique and select m

1 U ← ∅
2 solver← new inc/dec CDCL SAT solver
3 solver. add(ϕPD(t))
4 foreach material node mp ∈ matNodes(parent(N)) do
5 if solver. sat(con(mp)) and solver. entails(con(mp), con(m)) and

solver. unsat
(
con(mp) ∧

∨
m′∈matNodes(N)\{m} con(m′)

)
then

6 U ← U ∪ {mp}

7 return U

There are various possible reasons why a part number sequence may stop. Among
others the following mistakes in the product documentation can cause a stoppage of a
part number sequence:

a) The parent material node is ambiguous.

b) The child material node is incomplete.

For the various possible reasons for an ambiguous resp. incomplete assembly node, see
the two subsections before. A final answer about the correct reason(s) can only be made
by a documentation expert of the specific division.

We performed experimental evaluations for all presented algorithms for the computation
of part number sequences. See Subsection 3.4.6 for the results.

3.4.5 Practical Obstacles

To simplify reading and to focus on main principles and ideas behind the analyses of
dynamic assembly structures, we abstracted from many practical details and obstacles.
Among others, the following list gives an overview of practical obstacles we faced:

(O1) (Product Type Relevant Material Nodes) In general, not all material nodes m ∈
matNodes(N) for a structure node N of a DAS D are relevant for every product
type b ∈ types(D).

For the uniqueness analysis, the completeness analysis and the part number se-
quences computation we have to extract the relevant subset of material nodes of a
structure node first when considering a specific product type. The analysis is then
executed on the relevant subset of material nodes only.
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(O2) (Placeholder) Some car manufacturers allow placeholder material nodes which rep-
resent no physical component. A placeholder is used in order to make a structure
node complete according to (L2). Further, multiple placeholders may be used
within a single structure node due to technical database limitations.

For the uniqueness and the completeness analyses for a dynamic assembly struc-
ture, a placeholder has to be treated in a special way. For the uniqueness analysis a
material node of an assembly node is not considered ambiguous if it is constructible
with different place holder material nodes of the same child structure node.

For the completeness analysis a material node is not considered to be an orphan
if it is a place holder material node. A placeholder may not have a constructible
material node from the parent structure node. Such a situation is not considered
as inconsistent.

(O3) (Identical Part Numbers) There exist material nodes of the same structure nodes
with an identical part number. Due to technical database limitations it is not
possible to merge these material nodes and they have been intentionally split into
two or more material nodes.

For the uniqueness analysis for a dynamic assembly structure split material nodes
have to be treated in a special way. For the uniqueness analysis a material node of
an assembly node is not considered ambiguous if it is constructible with different
material nodes with the same part number of the same child structure node.

For the completeness analysis it is imaginable, that a material node is not consid-
ered as orphan if there is at least one of the split material nodes with the same
part number is constructible with any parent material node.

Analogously to the uniqueness analysis, during the computation of part number
sequences, the sequence should not stop if a material node is constructible with
two or more child material nodes which have the same part number.

(O4) (Immature Product Description State) Since analyses of a dynamic assembly struc-
ture are made during the development process of a new vehicle the state of the
product description is mostly immature. Thus, the usage of the whole product
description formula ϕPD(t) for a product type t ∈ types(D) may be too restric-
tive. A practical approach is to use basic constraints only, e.g., at least one, at
most one or exactly one. By taking basic constraints into account we ensure trivial
errors, e.g., permitting a vehicle with two engines. Additionally, we can take model
type references [Sinz, 1997, Section 2.2.1] into account which build the basic set of
possible vehicle variations for a product type.

(O5) (Interleaving Errors) One major problem in practice are interleaving errors. When-
ever two or more errors interleave unexpected results can occur. For an documen-
tation employee it is challenging to identify an error when multiple errors for the
same material node or structure node appear. For example, a child structure node
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with overlapping errors (see Analysis L1) may cause an ambiguous parent material
node. At first glance the fault of the error seems to be the parent material node.

3.4.6 Experimental Evaluation

In this subsection we present experimental evaluations of all of our analysis methods for
dynamic assembly structures. For our experimental evaluations we used real benchmark
data from a German premium car manufacturer.

All experiments in this subsection were run on the following settings: Intel(R) Core(TM)
i3-2100 CPU with 3.1GHz and 8 GB main memory running Microsoft Windows 7 Pro-
fessional 64 Bit with SP1. As inc/dec CDCL SAT solver we used AutoProve (C]

version) included within the logic library AutoLib [Zengler, 2014] (see Section 2.2 for
a more detailed description).

Table 3.13: Complexity statistics of dynamic assembly structures from a German car
manufacturer

Averages per DAS
Type Series DAS Prod. Types Str. Nodes Mat. Nodes Avg. Depth
TS01 27 10.00 63.07 237.41 4.00
TS02 16 4.00 186.94 451.13 5.31
TS03 38 5.74 111.87 470.92 3.97
TS04 2 6.00 81.00 221.50 5.00
TS05 1 4.00 68.00 123.00 5.00
TS06 1 4.00 581.00 739.00 11.00
TS07 19 5.89 78.63 190.00 5.05
TS08 1 2.00 46.00 72.00 5.00
TS09 3 4.00 48.00 113.00 5.00
TS10 5 6.00 66.60 200.00 4.20
Average 13.30 6.44 104.19 334.95 4.49

Our benchmark data consists of 113 dynamic assembly structures of 10 different type
series. Table 3.13 shows statistics about the complexity of the dynamic assembly struc-
tures. Column “Type Series” lists the type series. Column “DAS” shows the number of
dynamic assembly structures of a type series. Note that this number does not represent
the total number of all dynamic assembly structures for the type series but it is the
number of dynamic assembly structure that were available to us. Column “Averages per
DAS” shows average statistics per DAS for each type series. Column “Prod. Types”
shows the average of product types covered by a dynamic assembly structure, i.e., the
average size of | types(D)| for a dynamic assembly structures D. Column “Str. Nodes”
shows the average number of structure nodes (inner nodes and leaf nodes) of a dynamic
assembly structure. Column “Mat. Nodes” shows the average number of material nodes
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of a dynamic assembly structure. Column “Avg. Depth” shows the average depth of a
dynamic assembly structure. For example, there are 27 dynamic assembly structure of
type series TS01 which cover 10 different product types on average. On average one of
these 27 dynamic assembly structures contains 63.07 structure nodes and 237.41 mate-
rial nodes. The average depth is 4.00. Row “Average” shows the average statistics for
all 113 dynamic assembly structures.

Table 3.14: BOM error statistics of the dynamic assembly structures
Averages per DAS

Type Series Duplicate Incomplete Redundant
TS01 5.41 10.00 34.22
TS02 0.00 8.00 3.50
TS03 6.68 188.95 96.89
TS04 0.50 6.00 33.00
TS05 0.00 4.00 1.00
TS06 4.00 2,109.00 0.00
TS07 0.00 5.68 7.26
TS08 0.00 2.00 10.00
TS09 0.00 4.00 64.00
TS10 0.00 30.80 20.20
Average 3.58 88.31 45.75

As mentioned before in this section, the underlying BOM structures are usually not free
from BOM errors (see Analyses L1, L2 and L3). Table 3.14 shows statistics about the
number of BOM errors that the underlying BOMs contain. Each row shows the average
number of BOM errors per DAS for each type series. Column “Duplicate” shows the
average number of duplicate errors (see Analysis L1). Column “Incomplete” shows the
number of duplicate errors (see Analysis L2). Column “Redundant” shows the number
of duplicate errors (see Analysis L3). For example, the 27 dynamic assembly structures
of type series TS01 contain on average: 5.41 duplicate errors, 10.00 incomplete errors
and 34.22 redundant errors. Row “Average” shows the average number of BOM errors
for all 113 dynamic assembly structures.

The partially high number of BOM errors is also due to the fact that some of the dynamic
assembly structures are in a very early state of development, e.g., the dynamic assembly
structures of type series TS03 or TS06.

Table 3.15 shows the results of our uniqueness analysis algorithms. The running times
as well as the number of solver calls show the average value per DAS. For example,
to verify a DAS for uniqueness the basic approach requires on average: 201.22 seconds,
3277.78 positive SAT calls and 4619.96 negative SAT calls. The basic approach requires
a reasonable time to verify a DAS but is the slowest approach compared to the others.
The improved version and the counting based approach have almost identical running
times. The duplicate version performs best and requires only about 60% of the running
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Table 3.15: Results of uniqueness verification of dynamic assembly structures
Averages per DAS

SAT Calls
Approach Time (s) Positive Negative
Basic, Algorithm 3.6 201.22 3,277.78 4,619.96
Improved, Algorithm 3.7 194.86 3,277.78 4,619.96
Counting, Algorithm 3.8 195.96 3,121.94 5,729.25
Duplicate, Algorithm 3.9 126.87 664.29 4,773.10

Table 3.16: Results of completeness verification of dynamic assembly structures
Averages per DAS

SAT Calls
Approach Time (s) Positive Negative
Basic, Algorithm 3.12 69.06 932.58 3,619.13
Improved, Algorithm 3.13 59.20 932.58 350.10

time the basic approach requires. Also, the duplicate approach requires the least number
of positive SAT calls (about 20% compared to the basic approach) and almost the least
number of negative SAT calls (about 103% compared to the least number).

Table 3.17: Results of part number sequences of dynamic assembly structures
Averages per Material Leaf Node

SAT Calls
Approach Time (s) Positive Negative
Algorithm 3.14 8.11 1.29 0.40

Table 3.16 shows the results of our completeness analysis algorithms. The running times
as well as the number of solver calls show the average value per DAS. For example, to
verify a DAS for completeness the basic approach requires on average: 69.06 seconds,
932.58 positive SAT calls and 3619.13 negative SAT calls. The improved approach
requires 10 seconds less than the basic approach (about 85% compared to the basic
approach). Both approaches require the very same number of positive SAT calls. The
improved approach requires only about 1% of negative SAT calls than the basic approach
requires.

The set of part number sequences for a material node can be started at any level of the
tree data structure of the DAS, i.e., any material node (either leaf node or inner node)
can serve as starting point. In our experimental evaluations we decided to compute all
part number sequences for all leaf material nodes to challenge our algorithms the most.
Table 3.17 shows the results. Our approach requires only 8.11 seconds on average to
compute all part number sequences for a leaf material node. The low number of positive
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and negative SAT calls suggest that most of the part number sequences stop early due to
errors within the dynamic assembly structure. Actually, the average size of part number
sequence in our experiments is only 2.50.

3.4.7 Conclusion

In this section we described dynamic assembly structures which represent the chrono-
logical build order of complex parts. We introduced a formal description of dynamic
assembly structures. A dynamic assembly structure is embedded within a BOM in a
depth-first manner. We introduced two criteria to ensure that a dynamic assembly struc-
ture is consistent. Firstly, we introduced uniqueness which states that every assembly
variant consists of the same sub-assemblies. Secondly, we introduced completeness which
states that every part and sub-assembly is used by at least one assembly variant on a
lower level. We developed SAT-based methods to test both properties. Furthermore, we
introduced part number sequences which represent valid paths within the tree structure
of a dynamic assembly structure. With the help of part number sequences we are able
to answer the question which assembly variants of the final level, level 0, make use of
a certain part, e.g., in which gear box variants a certain part is used. We developed a
SAT-based method to compute all part number sequences for a given part.

We evaluated the performance of all our developed analysis methods on real instances
from a German premium car manufacturer. The experimental evaluations conclude that
verifying uniqueness and completeness can be done in reasonable time. The best ap-
proach for verifying uniqueness is the duplicate approach (see Algorithm 3.9), which
requires 126.87 seconds on average per DAS. The best approach for verifying complete-
ness is the improved approach (see Algorithm 3.13), which requires 59.20 seconds on
average per DAS. Furthermore, the computation of a part number sequence for a given
material node can be done in only 8.11 seconds on average.

We conclude this section by illustrating a real dynamic assembly structure as tree. Fig-
ure 3.16 shows a graph visualization of the dynamic assembly structure from a German
premium car manufacturer. The tree consists of 900 structure nodes, 1,509 material
nodes and 11 levels. The material nodes are not shown in the graph, only the structure
nodes are shown. The visualization gives an idea of the complexity of dynamic assembly
structures and that maintaining such large structures requires automated verification
and analysis tools.
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Figure 3.16: Graph visualization of a dynamic assembly structure
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4 SAT-based Optimization

In this chapter we introduce the formal background of various optimization problems
of Propositional Logic. We focus on the the problem of a minimal correction subset
(MinCS), the problem of partial weighted maximum satisfiability (MaxSAT) and the
problem of the preferred minimal diagnosis (A-preferred MinCS). We present different
optimization algorithms to address these problems. We point out similarities and com-
pare their computational complexity. In addition to purely SAT-based optimization we
introduce the closely related problem of pseudo-Boolean optimization (PBO) and, for
comparison reasons, we take a brief look at integer linear programming (ILP).

We investigate the optimization problems in the following order. In Section 4.1 we intro-
duce the problem of finding a minimal correction subset. A minimal correction subset
represents a minimal set of clauses of an inconsistent clause set that have to be removed
in order to restore consistency. This problem serves as basis for the following two spe-
cializations. In Section 4.2 we introduce the problem of finding a satisfiable clause set
with the maximal sum of weights, called MaxSAT. In Section 4.3 we introduce the prob-
lem of finding the preferred minimal diagnosis, which takes a lexicographical ordering
of the clauses into account. Afterwards we investigate similarities of minimal correction
subsets, MaxSAT and the preferred minimal diagnosis in Section 4.4. Further, we inves-
tigate the computational complexity in Section 4.5 and prove that both, MaxSAT and
the preferred minimal diagnosis, are complete for the complexity class FPNP. The main
results of 4.5 were published in [Walter et al., 2015a, Walter et al., 2017]. In Section 4.6
we introduce the closely related problem of pseudo-Boolean optimization, which can
be interpreted as a generalization of MaxSAT by allowing more expressive constraints.
At last, we briefly introduce integer linear programming in Section 4.7 for comparison
reasons.

Optimization finds many applications in the context of automotive configuration. We
start this chapter by giving a brief motivation for the importance of optimization. De-
tailed applications of optimization in the context of automotive configuration are de-
scribed in Chapter 5.

Motivation from Automotive Configuration

An engineer is arranging equipment options for a test vehicle with the help of an interac-
tive configurator (cf. Section 3.3). During the configuration session, the engineer can be
given a complete example configuration at each step for her selections as long as they are
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consistent with the product description formula. However, at some point the engineer
may select a set of options such that the selected options violate some constraints of the
product description formula, i.e., there is a conflict. Depending on the conflict scenario
the engineer may ask the questions:

a) (Explanation) Why is there a conflict? Which constraints or selections are causing
the conflict? How does one (of possibly multiple) conflict look like?

b) (Diagnosis) Which selections have to be (minimally) omitted or changed in or-
der to restore consistency? Which constraints have to be (minimally) omitted or
changed in order to be consistent with the selections? How does a (optimal) repair
suggestion (of possibly multiple) look like?

Question a) can be answered by the computation of an (minimal) unsatisfiable subset (see
Section 2.4). One (minimal) unsatisfiable subset serves as an explanation for one conflict
of possibly several existing conflicts. For example, the explanation of a conflict may
help a user to understand why her selected options are in conflict with the configuration
model.

Question b) searches for a diagnosis (or re-configuration): a (minimal) set of constraints
or option selections, which have to be omitted or adjusted in order to restore consistency.
Such a diagnosis serves as a repair suggestion. There may exist different possible diag-
noses. A diagnosis may be optimized such that only a minimal number of options have
to be omitted. Other optimization targets are imaginable, e.g., a preferred diagnosis
consisting of less preferred options based on a lexicographical order of the options. In
this work we focus on answering question b), the search for an optimal diagnosis.

There are many more applications of optimization in the context of automotive config-
uration. For example, we want to find the cheapest (resp. most expensive) vehicle, the
lightest (resp. heaviest) vehicle, the vehicle with the least (resp. most) emissions, etc.
In Chapter 5 we describe and explain these use cases in detail.

Hard and Soft Constraints

Throughout this chapter we consider a set of hard clauses ϕh, clauses that have to be
satisfied, and a set of soft clauses ϕs, clauses which should be satisfied but are allowed
to be relaxed. We assume that ϕh is satisfiable, otherwise clauses from ϕh have to be
relaxed first. There are different kinds of optimization approaches for the case that not
all clauses in ϕs are satisfiable in conjunction with ϕh. We want to point out that in
the literature a minimal correction subset (resp. maximal satisfiable subset) is often
defined by a set of (soft) clauses only (without a set of hard clauses). Thus, every
clause can possibly be removed. In practical applications, however, it is often preferable
to declare certain clauses as indispensable. For example, there may be technical or
legal restrictions which have to be taken into account. Whereas soft constraints may
be relaxed, e.g., constraints created for marketing reasons by the sales division or user
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requirements. By taking a hard set of clauses ϕh into account we consider a more general
problem and can simply leave ϕh empty whenever we want to allow all clauses to be
soft.

The definition of an unsatisfiable core (see Definition 17) can be naturally extended for
clause sets ϕh and ϕs: A set Λ ⊆ ϕs is an unsatisfiable subset of (ϕh, ϕs) iff ϕh ∪ Λ is
unsatisfiable. The definition of an MUS can be extended analogously.
Remark 11. (Arbitrary Hard Constraints) In this chapter we assume that the set of
hard constraints ϕh consists of clauses. However, this restriction can be relaxed for
applications: Any set of Boolean formulas can be converted by a Tseitin transformation
to an equisatisfiable set of clauses. For optimization problems, as described in this
chapter, this is no issue, since the search space remains the same. Because of the model
property (see Proposition 2) both, the original set of Boolean formulas and the Tseitin
transformed set of clauses, share the same models regarding the original variables.

4.1 Minimal Correction Subset

In many practical applications we can identify a clause set ϕh, which contains clauses
that have to be satisfied, and a clause set ϕs, which contains clauses that should be
satisfied. We assume that ϕh is satisfiable, otherwise we have to remove clauses from
ϕh first. If ϕh ∪ ϕs is satisfiable, then all clauses of ϕs can be satisfied and we are fine.
However, if ϕh ∪ ϕs is unsatisfiable, we face an over-constrained system and we want to
remove or adjust clauses from ϕs. In this section we introduce the problem of finding a
minimal correction subset, also called minimal diagnosis. A minimal correction subset
is a subset of ϕs which, when removed from ϕs, restores consistency. Furthermore, we
present approaches and techniques to address the problem of finding a minimal correction
subset.

The seminal work of Reiter [Reiter, 1987] described a general theory for diagnoses. In
the context of Propositional Logic Reiter’s definition of a diagnosis corresponds to a
minimal correction subset. Many works based on minimal correction subsets have been
published improving algorithmic approaches and presenting new results [Birnbaum and
Lozinskii, 2003, Bailey and Stuckey, 2005, Liffiton and Sakallah, 2008, Marques-Silva
et al., 2013a, Bacchus et al., 2014].

4.1.1 Problem Description

A correction subset or diagnosis is a subset of ϕs which, when removed from ϕs, restores
consistency.
Definition 36. (Correction Subset/Diagnosis) Let ϕh and ϕs be sets of clauses. Let
clause set ϕh be satisfiable. A set ∆ ⊆ ϕs is a correction subset (or diagnosis) of (ϕh, ϕs)
iff ϕh ∪ (ϕs \∆) is satisfiable.
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The whole set ϕs is always a correction subset. The empty set ∅ is correction subset of
(ϕh, ϕs) iff the union ϕh ∪ ϕs is satisfiable. The complement of a correction subset is a
satisfiable subset or repair suggestion, i.e., the clauses which can be kept.

Definition 37. (Satisfiable Subset/Repair Suggestion) Let ϕh and ϕs be sets of clauses.
Let clause set ϕh be satisfiable. A set Γ ⊆ ϕs is a satisfiable subset (or repair suggestion)
of (ϕh, ϕs) iff ϕh ∪ Γ is satisfiable.

In general multiple correction subsets and satisfiable subsets exist, see Example 25.

Example 25. (Correction Subsets & Satisfiable Subsets) Consider clause sets ϕh =
{{x, y}, {y, z}, {w}} and ϕs = {c1 : ¬x, c2 : ¬y, c3 : ¬w ∨ ¬z}. The union ϕh ∪ ϕs is
inconsistent. Thus, at least one clause of ϕs has to be removed in order to restore con-
sistency. Table 4.1 shows a list of all correction subsets and the corresponding satisfiable
subsets of (ϕh, ϕs).

Table 4.1: Correction subsets and satisfiable subsets
Correction Subset ∆ Satisfiable Subset Γ
{c1 : ¬x, c2 : ¬y} {c3 : ¬w ∨ ¬z}
{c1 : ¬x, c3 : ¬w ∨ ¬z} {c2 : ¬y}
{c2 : ¬y} {c1 : ¬x, c3 : ¬w ∨ ¬z}
{c1 : ¬x, c2 : ¬y, c3 : ¬w ∨ ¬z} ∅

In applications we prefer to find correction subsets with few clauses, such that restoring
consistency requires little changes. For example, only a minimal subset of the inconsis-
tent customer selected options for a vehicle should be removed. The following definition
introduces a minimality property which ensures that a correction subset contains only
necessary clauses.

Definition 38. (Minimal Correction Subset/Maximal Satisfiable Subset) Let ϕh and ϕs
be sets of clauses. Let ϕh be satisfiable. We define:

a) (Minimal Correction Subset) A set ∆ ⊆ ϕs is a minimal correction subset (MinCS)
(or minimal diagnosis) of (ϕh, ϕs) iff ϕh ∪ (ϕs \∆) is satisfiable and for every set
∆′ ⊆ ϕs with ∆′ ( ∆ it holds ϕh ∪ (ϕs \∆′) is unsatisfiable.

b) (Maximal Satisfiable Subset) A set Γ ⊆ ϕs is a maximal satisfiable subset (MaxSS)
(or maximal repair suggestion) of (ϕh, ϕs) iff ϕh ∪ Γ is satisfiable and for every set
Γ′ ⊆ ϕs with Γ ( Γ′ it holds ϕh ∪ Γ′ is unsatisfiable.

If ϕh ∪ ϕs is satisfiable, then there is exactly one MinCS which is the empty set. In the
non-trivial case that ϕh∪ϕs is unsatisfiable, there exist multiple MinCSes in general. The
minimality (resp. maximality) property of Definition 38 is a local minimality in terms
of cardinality. There might exist another MinCS containing fewer clauses. Example 26
shows clause sets for which multiple MinCSes with different cardinalities exist.
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Example 26. (MinCS) Let ϕh = {{¬x,¬y}, {y,¬z}} and ϕs = {x, y, z}. The clause
set {y, z} is a minimal correction subset, i.e., neither {y} nor {z} is a correction subset.
However, in terms of the number of clauses there is another minimal correction subset,
that is {x}, with fewer clauses.

The complement set of a MinCS (resp. a MaxSS) of (ϕh, ϕs) is a MinCS (resp. a MaxSS)
of (ϕh, ϕs) [Liffiton and Sakallah, 2008]:

Proposition 10. (Complement Property MinCS/MaxSS) Let ϕh and ϕs be sets of
clauses. Let ϕh be satisfiable. Let ∆ ⊆ ϕs, then:

∆ is a MinCS iff ϕs \∆ is a MaxSS

Proof. ⇒: We assume ∆ is a MinCS, then ϕh ∪ (ϕs \∆) is satisfiable. Assuming that
ϕs \∆ is not a MaxSS, then there exists a set ψ ⊆ ϕs with ϕs \∆ ( ψ such that ϕh ∪ ψ
is satisfiable. For set ψ holds ϕs \ ψ ( ∆, because for all c ∈ ϕs \ ψ holds c ∈ ϕs and
c 6∈ ψ ⊃ (ϕs \∆). But this contradicts the minimality property of the assumption that
∆ is a MinCS.

⇐: Follows analogously.

With Proposition 10 each algorithm for the computation of a MaxSS can also be used
for the computation of a MinCS and vice versa.

Lower and upper bounds for the cardinality of any MinCS can be described dependent
on the MUSes contained in (ϕh, ϕs).

Proposition 11. (Lower & Upper Bound of MinCSes) Let ϕh and ϕs be sets of clauses.
Let ϕh be satisfiable. Then the following lower and upper bounds hold:

a) (Lower Bound) For any MinCS ∆ of (ϕh, ϕs) the cardinality of ∆ is underestimated
by the maximal number of disjoint MUSes of (ϕh, ϕs):

max{|D| | D is a set of disjoint MUSes of (ϕh, ϕs)} ≤ |∆|

b) (Upper Bound) For any MinCS ∆ of (ϕh, ϕs) the cardinality of ∆ is restricted by
the number of MUSes of (ϕh, ϕs):

|∆| ≤ |{Λ | Λ is an MUS of (ϕh, ϕs)}|

Proof. Let ∆ be a MinCS of (ϕh, ϕs).

a) If there is a set D of disjoint MUSes of (ϕh, ϕs) with |D| > |∆|, then ∆ violates the
correction subset property: In order to resolve all clauses of D, at least |D| clauses
have to be removed since the MUSes in D are disjoint. Thus, |D| ≤ |∆| holds for
any D of disjoint MUSes of (ϕh, ϕs), including the set with maximal cardinality.
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b) If there are fewer MUSes than |∆|, then ∆ is not minimal: We can construct a
proper subset of ∆ which is a correction subset by iterating through all MUSes
and selecting a clause of each MUS which is included in ∆. Since ∆ is a correction
subset, at least one clause of each MUS of (ϕh, ϕs) is included in ∆ (otherwise,
there is an unresolved conflict). By doing so, we only collect clauses included in ∆
and we resolve all conflicts. Thus, we found a correction subset which is a proper
subset of ∆.

The lower and upper bound can be equal; as an example, consider ϕh = ∅ and ϕs =
{{x}, {¬x}}. However, both bounds may be strict, meaning, that there are fewer disjoint
MUSes than the number of clauses in a MinCS and the number of different MUSes is
greater than the number of clauses in a MinCS. Example 27 shows such cases.

Example 27. (Lower & Upper Bound of MinCSes) Consider the set of hard clauses
ϕh = cnf(x+ y + z ≤ 1), representing the cardinality constraint at most one for the set
of variables {x, y, z} (cf. Section 2.3). Consider the soft clauses ϕs = {{x}, {y}, {z}}.
Then there exist 3 MUSes, see Table 4.2, which overlap pairwise with each other. Thus,
the largest set of disjoint MUS consists of one MUS only.

Table 4.2: All MUSes
Clause Λ1 Λ2 Λ3

{x} x x
{y} x x
{z} x x

Any MinCS of this example consists of exactly two clauses, because removing only one
clause does not cover all MUSes and removing all three clauses violates the minimal
property. The lower and upper bounds are as follows: 1 ≤ |∆| = 2 ≤ 3 for any MinCS
∆.

Minimal & Maximal Model

We want to point out that a special case of maximal satisfiable subsets is the problem of
finding a maximal model (resp. minimal model). A maximal model contains a maximal
number of true assigned variables for a given satisfiable formula. The set of true
assigned variables forms a local maximum.

Definition 39. (Minimal & Maximal Model) Let ϕ be a satisfiable Boolean formula.

a) (Minimal Model) A model β of ϕ is a minimal model iff for every variable assign-
ment α of ϕ with α ∩ vars(ϕ) ( β ∩ vars(ϕ) holds: α is not a model of ϕ.
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b) (Maximal Model) A model β of ϕ is a maximal model iff for every variable assign-
ment α of ϕ with β ∩ vars(ϕ) ( α ∩ vars(ϕ) holds: α is not a model of ϕ.

The problem of finding a maximal model for a given satisfiable Boolean formula ϕ can
be interpreted as a special case of finding a maximal satisfiable subset as follows:

a) We set ϕh = defCNF(ϕ), i.e., the hard clauses consist of the Tseitin transformed
formula ϕ.

b) We set ϕs = ⋃
x∈vars(ϕ){x}, i.e., every variable of ϕ is added as unit clause in order

to maximize the number of true assigned variables.

This translation can be interpreted as trying to assign all variables of ϕ to true and, if
this is not possible in order to satisfy ϕ, finding a maximal satisfiable subset of the true
assigned variables that can be kept. The remaining variables are assigned to false. The
set of false assigned variables is the corresponding minimal correction subset. Let Γ
be a resulting MaxSS and ∆ the corresponding MinCS, then a maximal model is:

β = Γ ∪ {¬x | x ∈ ∆}

Similarly we can encode the problem of finding a minimal model as maximal satisfiable
subset problem by defining ϕh = defCNF(ϕ) and ϕs = ⋃

x∈vars(ϕ){¬x}. Then, the re-
sulting MaxSS Γ is a set of negated unit clauses that is maximal. The variables in the
corresponding MinCS ∆ could not be assigned to false, they have to be assigned to
true. Thus, a minimal model is:

β = Γ ∪ {var(l) | l ∈ ∆}

Example 28. (Maximal Model) Let ϕ = {{¬x,¬y}, {¬y,¬z}} a Boolean formula. The
assignment {¬x,¬y,¬z} is a model but not maximal, e.g. variable x can be assigned
to true and the assignment is still a model. The models {x,¬y, z} and {¬x, y,¬z} are
maximal.

Translating the maximal model problem into a maximal satisfying subset problem results
in ϕh = {{¬x,¬y}, {¬y,¬z}} and ϕs = {x, y, z}. The sets {x, z} and {y} are maximal
satisfiable subsets, resulting in the previously mentioned maximal models.

Remark 12. (Prime Implicants and Minimal Models) Every minimal model (or maximal
model) of a formula ϕ is covered by at least one prime implicant (see Section 2.5) of ϕ
since any model is covered by at least one prime implicant. However, not every prime
implicant contains a minimal model (or maximal model) in general. A prime implicant
is free from don’t care literals but a minimal model represents a local minimum of true
assigned variables. For example, consider the formula ϕ = (w∧x∧¬y∧¬z)∨(¬w∧¬x∧
¬y∧¬z)∨ (w∧x∧y∧z). A prime implicant of ϕ is α = {w, x,¬y,¬z}. However, prime
implicant α does not contain any minimal or maximal model of ϕ. The only minimal
model of ϕ is {¬w,¬x,¬y,¬z} and the only maximal model of ϕ is {w, x, y, z}.
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4.1.2 Dual Hitting Set Property

In Proposition 11 we have seen that the cardinality of any MinCS can be under and over
estimated dependent on existing MUSes. Moreover, there exists a very close relationship
between the set of MinCSes and MUSes of clause sets ϕh and ϕs, known as dual hitting
set property: The set of MinCSes is exactly the set of all minimal hitting sets of the set
of MUSes and vice versa. This relationship has been independently identified by various
research groups [Birnbaum and Lozinskii, 2003, Bailey and Stuckey, 2005, Liffiton et al.,
2005].

In other words, in order to find a correction subset, we have to hit each existing MUS
by at least one clause. Otherwise, if any MUS is missing, there is still a conflict which
needs to be resolved. Additionally, in order to find a minimal correction subset, we have
to hit each existing MUS by at least one clause such that there is no redundant clause
usage, i.e., all used clauses are necessary to hit each MUS.

In contrast, in order to find an MUS, we have to hit each existing MinCS by at least
one clause such that there is no redundant clause usage. Otherwise, if any MinCS is
missing, then there exists a correction subset such that its removal restores consistency
without removing a clause from the current MUS.

Before we state the property formally, we introduce the minimization version of the
NP-complete hitting set problem [Karp, 1972]:

Definition 40. (Hitting Set) Let U = {e1, . . . , em} be a set of elements called the
universe. Let S = {E1, . . . , En} ⊆ P(U) be a set of subsets of the universe U . A hitting
set of S is a subset H ⊆ U such that ∀E ∈ S : Ei ∩H 6= ∅. A hitting set H is minimal
iff removing any element of H would violate the hitting set property, i.e., for each e ∈ H
we have that H \ {e} is not a hitting set.

The dual hitting set property is stated as follows:

Theorem 5. (Dual Hitting Set Property) Let ϕh and ϕs be sets of clauses. Let ϕh be
satisfiable. The following holds:

a) A subset ∆ ⊆ ϕs is a MinCS of (ϕh, ϕs) iff ∆ is a minimal hitting set for the set
of MUSes of (ϕh, ϕs).

b) A subset Λ ⊆ ϕs is an MUS of (ϕh, ϕs) iff Λ is a minimal hitting set for the set of
MinCSes of (ϕh, ϕs).

Proof. See proofs of Theorem 4.5 c) and d) in [Birnbaum and Lozinskii, 2003].

An immediate consequence of the dual hitting set property is that for any clause of any
MinCS there exists at least one MUS including the clause: Since the MinCS represents
a minimal hitting set of the set of MUSes, Statement a), the clause hits at least one
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MUS. Similarly, for any clause of any MUS there exists at least one MinCS including
the clause.

Example 29 illustrates the dual hitting set property.
Example 29. (Dual Hitting Set Property) Consider clause sets ϕh = {{x, y}, {y, z}, {w}}
and ϕs = {c1, c2, c3} with c1 = {¬x}, c2 = {¬y}, c3 = {¬w,¬z} and c4 = {¬z}. The
union ϕh ∪ ϕs is inconsistent.

Table 4.3: Overview of all MUSes
Clause Λ1 Λ2 Λ3

c1 : {¬x} x
c2 : {¬y} x x x
c3 : {¬w,¬z} x
c4 : {¬z} x

Table 4.3 shows all MUSes of (ϕh, ϕs). Each column shows an MUS with its contained
clauses marked by an “x”. By the dual hitting set property each minimal hitting set of
the MUSes is a MinCS. For example, {c2} and {c1, c3, c4} are minimal hitting sets and
therefore both represent a MinCS. In contrast, {c1, c2} is not a minimal hitting set since
c1 is redundant. Thus, {c1, c2} is a correction subset, but not a MinCS. Table 4.4 shows
all MinCSes. From this table we can see that every combination of clauses with clause
c2 forms a minimal hitting set of the MinCSes and thus, forms an MUS.

Table 4.4: Overview of all MinCSes
Clause ∆1 ∆2

c1 : {¬x} x
c2 : {¬y} x
c3 : {¬w,¬z} x
c4 : {¬z} x

The dual hitting set property can be exploited in both directions: for the computation
of a MinCS or the computation of an MUS. For example, in [Liffiton and Sakallah, 2008]
the authors show how to enumerate all MUSes from the set of all MinCSes. However,
the bottleneck is the pre-computation of the set of all MinCSes (resp. MUSes).

Example 30 shows a larger example of a MinCS and its corresponding maximal satisfiable
subset (MaxSS) and points out observations of the underlying MUSes.
Example 30. (MinCS and MaxSS relationship) We consider clause sets ϕh = ∅ and
ϕs = {c1, . . . , c10} with c1 = {¬x}, c2 = {x, z}, c3 = {¬z}, c4 = {x}, c5 = {¬x, y},
c6 = {¬y}, c7 = {x,¬y}, c8 = {¬x,¬y}, c9 = {x, y}, c10 = {z, u}. There are several
MUSes contained in (ϕh, ϕs). Figure 4.1 shows the MinCS {c1, c4, c7} and its counterpart
MaxSS {c2, c3, c5, c6, c8, c9, c10}. The figure shows all MUSes in black circles. We make
the following observations:
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a) a MinCS may contain a complete MUS. In our example, the MinCS contains the
MUS {c1, c4}. Obviously, a MaxSS never contains an MUS completely, otherwise
the MUS would be satisfiable.

b) Each clause of a MinCS is contained in at least one MUS, whereas there may be
clauses of a MaxSS not contained in any MUS.

c) A clause of a MinCS may resolve multiple MUSes. In our example, clauses c1 and
c4 resolve two MUSes each.

Figure 4.1: MinCS and MaxSS relationship with MUSes (black circles)

4.1.3 Algorithms

In this section we present SAT-based algorithmic approaches for the computation of a
MinCS for clause sets ϕh and ϕs. Due to the complement property, see Proposition 10, we
can immediately derive a MaxSS from the resulting MinCS. The first two algorithms we
describe rely on iterative calls to a SAT solver, i.e., they use a SAT solver as a black box.
We describe both algorithms using the inc/dec interface to avoid repeated additions of ϕh
and other intermediate clauses. Afterwards we describe additional general techniques
to improve the computation performance. In contrast to using a SAT solver as a black
box, the third algorithm we describe modifies a SAT solver.
Remark 13. (Usage of SAT Solvers as Black Box) Many optimization problems in the
context of Propositional Logic are approached by the same algorithmic strategy: It-
eratively calling a SAT solver during the computation and using the returned result,
satisfiable or unsatisfiable, to narrow the search space. By doing so, the optimization
problem is reduced to its decision version, e.g., reducing an optimization problem to a
linear search by making decisions for each element separately (cf. Algorithm 4.1). A
SAT solver is used as a black box by these approaches, i.e., the underlying SAT solver
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can be exchanged without affecting the approach. Moreover, information about a model
for the satisfiable case and an unsatisfiable core for the unsatisfiable case may be used
(cf. Table 2.4).

The usage of the inc/dec interface of a CDCL SAT solver is essential to speed up the
performance in practice, especially for applications with a huge set of hard clauses ϕh.
Then the same solver object can be used for each SAT call instead of creating a new
solver object each time. The set of hard clauses is added just once and by using the
methods solver. mark() and solver. undo() the (typically smaller) set of clauses to test
can be controlled.

In practice, the principle of iteratively calling a SAT solver has another advantage.
The optimization algorithm can benefit from advances of new SAT solving techniques
immediately, since the SAT solver can be replaced without changing the algorithm itself.

Algorithm 4.1: Linear search for computing a MinCS: mincsLS
Input: Clause sets ϕh and ϕs = {c1, . . . , cm}
Output: Tuple (st,∆) such that st = true if a solution exists and ∆ being the

resulting MinCS, otherwise st = false
1 solver← new inc/dec CDCL SAT solver
2 solver. add(ϕh)
3 if solver. unsat() then
4 return (false, ∅)
5 ∆← ∅
6 foreach ci ∈ ϕs do
7 solver. mark()
8 solver. add(ci)
9 if solver. unsat() then

10 solver. undo()
11 ∆← ∆ ∪ {ci}

12 return (true,∆)

A first approach for the computation of a MinCS is a linear search over ϕs [Bailey and
Stuckey, 2005]. The idea is to successively check each clause of ϕs for consistency in
conjunction with ϕh and the set of clauses already identified to be contained within the
MaxSS. If consistency holds, the clause is part of the resulting MaxSS, otherwise the
clause is part of the resulting MinCS. Algorithm 4.1 shows the pseudocode. For all
upcoming optimization algorithms, the first steps always follow the same scheme: After
the creation of a new SAT solver (Line 1), the hard clauses are added and never removed
(Line 2). Then, a consistency check is performed to test whether the set of hard clauses
is consistent (Line 3). If ϕh is unsatisfiable, then no solution exists and the algorithm
returns the tuple (false, ∅) (Line 4). The first parameter indicates that no solution
exists. For the satisfiable case, the algorithm continues to solve the optimization task.
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Clause set ∆ is initialized with the empty set (Line 5), and successively extended by
clauses that have to be removed, i.e., clauses of the resulting MinCS. Every clause ci of ϕs
is separately checked whether it is consistent with ϕh and the clauses added in previous
iterations (already identified to be included in the resulting MaxSS) (Line 9). For the
satisfiable case, clause ci is an element of the resulting MaxSS and remains added to the
SAT solver (no undo call is made). For the unsatisfiable case, clause ci is an element of
the resulting MinCS. Clause ci is removed from the SAT solver by performing an undo
call (Line 10) and added to ∆ (Line 11). After the inspection of all clauses of ϕs, the
final MinCS is returned within the tuple (true,∆). The first parameter indicates that
a solution exists and the second parameter is the resulting MinCS (Line 12). Algorithm
mincsLS performs m+ 1 calls to the SAT solver if m is the number of soft clauses.

Algorithm 4.1 exploits the inc/dec SAT interface. The set of hard clauses ϕh is only
added once (Line 2). Before a soft clause ci is added to the prover, a mark is set (Line 7).
If the outcome is satisfiable, the clause is kept on the solver, otherwise an undo call is
made to remove the clause (Line 11).

The linear search can be further improved. We can exploit the models returned by the
SAT solver from the intermediate satisfiability checks [Nöhrer et al., 2012, Marques-
Silva et al., 2013a]. First, we explain the general scheme. Observe that for any variable
assignment β we can partition the clauses of ϕs into the set of satisfied clauses ϕSs =
{ci ∈ ϕs | eval(ϕh ∧ ci, β) = true} and the set of unsatisfied clauses ϕUs = {ci ∈
ϕs | eval(ϕh ∧ ci, β) = false}. Then ϕSs is an under-estimation of a MaxSS of (ϕh, ϕs),
i.e., ϕSs can be extended to a MaxSS of (ϕh, ϕs). Whereas ϕUs is an over-estimation of a
MinCS of (ϕh, ϕs), i.e., ϕUs contains a MinCS of (ϕh, ϕs). See Proposition 2 in [Marques-
Silva et al., 2013a] for the case ϕh = ∅.

Proposition 12. (MinCS Over-Estimation) Let ϕh and ϕs be clause sets. Let ϕh be
satisfiable. Let β be a variable assignment with dom(β) = vars(ϕh ∪ϕs). There exists at
least one MaxSS Γ and at least one MinCS ∆ of (ϕh, ϕs) such that ϕSs ⊆ Γ and ∆ ⊆ ϕUs .

With Proposition 12 we improve the search for a MinCS right from the start. We perform
one SAT call on the clause set ϕh and use the model β of ϕh to obtain an over-estimation
ϕUs as starting clause set which we refine to a MinCS. All clauses ϕSs can be moved to
the corresponding MaxSS. The clauses of ϕSs do not need to be tested any further, only
the clauses of ϕUs require further testing.

We can exploit this idea for any satisfying assignment returned by the SAT solver during
the computation of a MinCS. By the intermediate obtained models we can identify
potentially multiple clauses that can be moved to the subset which under-estimates the
resulting MaxSS, i.e., these clauses are not contained in the resulting MinCS. Let ϕs be
split into two sets S and U such that S is an under-estimation of a MaxSS and U is an
over-estimation of a MinCS. Assume a SAT call is performed on ϕh∪S ∪C for a subset
C ⊆ U with a satisfiable result. Then all clauses of C can be moved to set S and all
clauses of U \C satisfied by the returned model can be moved to set S, too (cf. [Nöhrer
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et al., 2012, Marques-Silva et al., 2013a]). We can apply this scheme to linear search:
After the next soft clause was successfully tested for satisfiability, the delivered model
can be used to skip all clauses satisfied by the model. All satisfied clauses can be added
to the solver since they belong to the resulting MaxSS. The next soft clause to check is
the first clause not satisfied by the model.

Another technique to improve the computation of a MinCS is to simplify the SAT calls
by adding backbone literals to the solver. Observe that for any MinCS ∆ of (ϕh, ϕs) the
negated literals of any clause of ∆ are backbone literals of ϕh ∪ (ϕs \∆). Otherwise, we
could reduce ∆ by at least one more clause (cf. [Marques-Silva et al., 2013a]).

Proposition 13. (MinCS Backbone Literal Property) Let ϕh and ϕs be sets of clauses.
Let ϕh be satisfiable. Let ∆ be a MinCS of (ϕh, ϕs), then:⋃

c∈∆

⋃
l∈c
{¬l} ⊆ backbone(ϕh ∪ (ϕs \∆))

Proposition 13 can be used to simplify the SAT solver calls during the computation of a
MinCS as follows: Let c be a clause determined to be included into the resulting MinCS,
then the negated literals of c are backbone literals of ϕh ∪ (ϕs \∆) for every MinCS ∆
with c ∈ ∆. Thus, the negated literals of c can be added as unit clauses to the solver to
restrict the search space for any future SAT solver call.

Algorithm 4.2: Clause D approach for computing a MinCS: mincsCLD
Input: Clause sets ϕh and ϕs = {c1, . . . , cm}
Output: Tuple (st,∆) such that st = true if a solution exists and ∆ being the

resulting MinCS, otherwise st = false
1 solver← new inc/dec CDCL SAT solver
2 solver. add(ϕh)
3 if solver. unsat() then
4 return (false, ∅)
5 ∆← ϕs, st← true
6 while st = true and |∆| > 1 do
7 d← (∨c∈∆

∨
l∈c l)

8 st← solver. sat(d)
9 if st = true then

10 β ← solver. model()
11 foreach c ∈ ∆ do
12 if eval(c, β) = true then
13 solver. add(c)
14 ∆← ∆ \ {c}

15 return (true,∆)
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To overcome the separate checks of each clause in linear search another approach was
recently proposed in [Marques-Silva et al., 2013a], called Clause D algorithm. The
idea is to ask in each iteration if there is at least one clause that has to be added to
the MaxSS. If there is one, this clause is directly identified by the model returned from
the solver. If there is no more clause that can be added, the algorithm terminates.
Algorithm 4.2 shows the pseudocode. In Lines 1 to 4 the solver is initialized, the hard
clauses are added and checked for satisfiability. The resulting set ∆ is initialized by the
soft clauses and the status variable st is initialized by true (Line 5). The while loop
(Lines 6–14) is executed until the status of the last solver call was false or there is
no more soft clause left to test. Within each iteration we test if there is at least one
more clause in ∆ which can be satisfied, i.e., the clause is not part of the resulting
MinCS. There is at least one more satisfiable clause in ∆ iff there is at least one literal
of the any of the clauses in D which can be satisfied. This check is done by building the
disjunction (∨c∈∆

∨
l∈c l) and testing it for satisfiability (Lines 7–8). If the disjunction

is unsatisfiable, then the status variable st is set to false and the loop stops. Then
the current set ∆ is the resulting MinCS. If the disjunction is satisfiable, we remove all
clauses of ∆ which are satisfied by the found model and add them to the solver. These
clauses can be satisfied, i.e., they are part of the corresponding MaxSS. Observe that
at least one clause is removed from ∆ in this case (possibly more). In the worst case
algorithm mincsCLD performs m − p + 2 calls to the SAT solver if m is the number of
soft clauses and p is the size of the smallest MinCS [Marques-Silva et al., 2013a].

Recently, a quite simple approach was proposed in [Bacchus et al., 2014], called Relax-
ation Search. In contrast of using a SAT solver as a black box, this approach is based
on modifying a CDCL SAT solver. The formula to test for satisfiability consists of the
hard clauses ϕh and biimplications bi ↔ ¬ci for each soft clause ci ∈ ϕs and fresh vari-
ables bi (cf. Remark 1). This formula is tested by a CDCL SAT solver with a modified
variable selection heuristic. The heuristic of the solver branches on the variables bi first.
Moreover, when branching over variable bi the solver tests the assignment of false first
in order to try to satisfy the clause. If ϕh is satisfiable, then the solver finds a model.
a MinCS can be extracted from the resulting model by collecting all soft clauses ci for
which variable bi is set to true.

Further approaches to the computation of a MinCS exist [Marques-Silva et al., 2013b,
Grégoire et al., 2014, Mencía et al., 2015], which are left for the reader. In the following
two sections we describe two different principles of finding an optimized MinCS, namely
the MaxSAT problem and the problem of finding a preferred minimal diagnosis. All
algorithmic approaches for both of those problems can be used for the computation of
a MinCS as well since both problems are special cases of the MinCS problem.

4.1.4 Enumerating all Solutions

The above algorithms compute a single MinCS for clause sets ϕh and ϕs. Sometimes
it is useful to enumerate all or k many MinCSes. Algorithm 4.3 shows an algorithm to
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enumerate MinCSes by iteratively using any MinCS computation algorithm, denoted by
computeMinCS, as black box and by adding blocking constraints for the results found so
far. The input for the algorithm are clause sets ϕh and ϕs. Additionally, a limit k can
be set to limit the number of results. Value k = −1 means no limitation is set such that
the set of all results is computed. The result set D, containing all found MinCSes, is
initialized with the empty set (Line 1). The value (st,∆) is initialized with true and
the empty set (Line 2). The while loop continues as long as there was a last result and
the limit k is not set (k = −1) or not exceeded yet (|D| < k). In each iteration, a call
to the MinCS computation algorithm computeMinCS is performed (Line 4). If there is
a solution, then the resulting MinCS ∆ is added to the result set D (Line 6) and the
current result is blocked (Line 7). If there is no more result, the loop stops and the
result set D is returned (Line 8).

Algorithm 4.3: Enumeration of MinCSes: enumerateMinCSes
Input: Clause sets ϕh and ϕs = {c1, . . . , cm}, limit k ∈ N or k = −1
Output: A set of MinCSes

1 D ← ∅
2 (st,∆)← (true, ∅)
3 while st = true and (k = −1 or |D| < k) do
4 (st,∆)← computeMinCS(ϕh, ϕs)
5 if st = true then
6 D ← D ∪∆
7 ϕh ← ϕh ∪ buildBlockingConstraint(∆)

8 return D

The blocking constraint is built by the subroutine buildBlockingConstraint. Depend-
ing on the result of computeMinCS different levels of granularity are possible:

a) (Block Model) If the MinCS computation algorithm returns a model β representing
a MinCS result instead of a clause set ∆, then we can build a blocking constraint
by excluding the assignment β as a solution by adding the clause ∨l∈β ¬l to ϕh.
This clause ensures that at least one literal of β is flipped. Blocking the model
only blocks exactly one variable assignment combination, but another model rep-
resenting the same MinCS ∆ may exist.

b) (Block MinCS) If the MinCS computation algorithm returns a MinCS ∆, then we
can build a blocking constraint by excluding the ∆ as a solution by adding the
clause ∨c∈∆

∨
l∈c ¬l to ϕh. This clause ensures that at least one clause c ∈ ∆ is

satisfied.
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4.2 Maximum Satisfiability

In this section we introduce the maximum satisfiability problem [Li and Manyà, 2009]
which asks for a MaxSS of (ϕh, ϕs) such that the number of satisfied clauses is maximal,
i.e., we search for of the greatest MaxSS in terms of cardinality. In addition, the weighted
MaxSAT problem considers weights for each soft clause and asks for a MaxSS with a
maximum sum of weights.

The complementary problem asks for the minimal number of clauses that can be simul-
taneously falsified, called minimum falsifiability problem. Minimum falsifiability corre-
sponds to the search for the smallest MinCS in terms of cardinality.

4.2.1 Problem Description

The pure MaxSAT problem [Li and Manyà, 2009] asks for a satisfiable subset of an
unsatisfiable clause set with the maximum number of clauses. There exist two extensions,
the partial MaxSAT problem and the weighted MaxSAT problem. Partial MaxSAT
considers a set of hard clauses ϕh and a set of soft clauses ϕs. Only clauses in ϕs are
allowed to be removed. Weighted MaxSAT assigns weights to the clauses and asks for the
maximal satisfiable subset with the maximum sum of weights. Weights can be seen as
cost which should be kept as low as possible. In the context of automotive configuration,
we are interested in the combined problem, called partial weighted MaxSAT. In order
to simplify reading we use the term MaxSAT for the combined problem. The closely
related problem of finding a minimum number of clauses that can be simultaneously
falsified is called MinFALSE. Extended versions for partial and weighted are possible,
analogously to MaxSAT. In order to simplify reading we use the term MinFALSE for
the combined problem.

Definition 41. (MaxSAT/MinFALSE) Let ϕh and ϕs = {c1, . . . , cm} be sets of clauses
over the variables vars(ϕh∪ϕs) = {x1, . . . , xn}. Let ϕh be satisfiable. Let w1, . . . , wm ∈
N≥1 be weights corresponding to the clauses c1, . . . , cm. The partial weighted maximum
satisfiable problem, denoted by MaxSAT, is defined as the subset Γ ⊆ ϕs such that:

∑
ci∈Γ

wi = max
{

m∑
i=1

wi · β(ci)
∣∣∣∣∣ β |= ϕh

}

Analogously, the partial weighted minimum falsifiability problem, denoted by MinFALSE,
is defined as the subset ∆ ⊆ ϕs such that:

∑
ci∈∆

wi = min
{

m∑
i=1

wi · (1− β(ci))
∣∣∣∣∣ β |= ϕh

}

Note, that in the literature the MinFALSE problem is sometimes called MinUNSAT
(Minimum Unsatisfiability) problem. We decided to use the term MinFALSE because
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it describes more precisely that we are in search of a minimal clause set which can
be falsified, whereas MinUNSAT may be misinterpreted as the search of a clause set
which is unsatisfiable. However, the resulting clause set of MinFALSE is not necessarily
unsatisfiable, e.g., the result of MinFALSE for clause sets ϕh = ∅ and ϕs = {{x}, {¬x}}
is either {x} or {¬x} but both resulting clause sets are satisfiable.

In analogy to the complement property for a MinCS and a MaxSS (see Proposition 10),
the complement property also holds for the MinFALSE and MaxSAT problems:

Proposition 14. (Complement Property MaxSAT/MinFALSE) Let ϕh and
ϕs = {c1, . . . , cm} be clause sets. Let ϕh be satisfiable. Let w1, . . . , wm ∈ N≥1 be weights
corresponding to the clauses c1, . . . , cm. Let ∆ ⊆ ϕs, then:

∆ is a MinFALSE result iff ϕs \∆ is a MaxSAT result

Proof. For the complement ϕ \∆ the following equations hold:

m∑
i=1

wi −
∑
ci∈∆

wi

=
m∑
i=1

wi −min
{

m∑
i=1

wi · (1− β(ci))
∣∣∣∣∣ β |= ϕh

}

=
m∑
i=1

wi + max
{
−

m∑
i=1

wi · (1− β(ci))
∣∣∣∣∣ β |= ϕh

}

=
m∑
i=1

wi + max
{
−

m∑
i=1

wi +
m∑
i=1

wi · β(ci)
∣∣∣∣∣ β |= ϕh

}

= max
{

m∑
i=1

wi · β(ci)
∣∣∣∣∣ β |= ϕh

}

The last term is the property for the solution of MaxSAT.

With Proposition 14 a solution for one problem directly leads to a solution for the other
one and vice versa. Therefore, algorithms for solving the MinFALSE problem can also
be used for solving the MaxSAT problem.

The solution of MaxSAT corresponds to the largest MaxSS, whereas the solution of
MinFALSE corresponds to the smallest MinCS. Thus, MinFALSE can be interpreted as
the search for an optimized MinCS among all MinCSes. The lower and upper bounds of
Proposition 11 for MinCSes apply for MinFALSE, too. A MinFALSE solution narrows
the maximal number of disjoint MUSes but there may still be less. Example 27 for
MinCSes only contains MinCSes of size 2. Thus, the solution of MinFALSE has size 2.
But the clause set can only be partitioned such that there is one disjoint MUS.

Example 31 shows a MaxSAT example taking weights into account.
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Example 31. (MaxSAT) Consider clause the sets ϕh = {{x, y}, {y, z}, {w}} and ϕs =
{c1 : {¬x}, c2 : {¬y}, c3 : {¬w,¬z}} with weights w1 = 4, w2 = 10, w3 = 2. Table 4.5
shows a list of all possible correction subsets of (ϕh, ϕs) and the corresponding satisfi-
able subset. Column “Cost” shows the sum of weights of unsatisfied clauses. Column
“Benefit” shows the sum of weights of satisfied clauses. Correction subset {c1 : {¬x}, c3 :
{¬w,¬z}} has the lowest cost of 6 and is therefore the MinFALSE result. Observe that
correction subset {c2 : {¬y}} has a smaller cardinality than the MinFALSE result, but
the costs are higher.

Table 4.5: Correction subsets and satisfiable subsets
Correction Subset Satisfiable Subset Cost Benefit
{c1 : {¬x}, c2 : {¬y}} {c3 : {¬w,¬z}} 14 2
{c1 : {¬x}, c3 : {¬w,¬z}} {c2 : {¬y}} 6 10
{c2 : {¬y}} {c1 : {¬x}, c3 : {¬w,¬z}} 10 6
{c1 : {¬x}, c2 : {¬y}, c3 : {¬w,¬z}} ∅ 16 0

4.2.2 Algorithms

Many different algorithms for solving MaxSAT have been developed in the last decade,
see [Morgado et al., 2013] for a good overview. Some approaches rely on reducing
MaxSAT to another well-studied optimization problem, e.g., to pseudo-Boolean opti-
mization (see Section 4.6) or to integer linear programming (see Section 4.7). Also,
the well-known technique of branch & bound [Land and Doig, 1960, Dakin, 1965] was
adapted for solving MaxSAT, see for example [Borchers and Furman, 1998, Davies et al.,
2010, Heras et al., 2012, Kügel, 2012] and Section 19.3 of [Li and Manyà, 2009]. Branch &
bound based approaches have been observed to be quite effective on random and crafted
benchmarks within the MaxSAT evaluations1. Another important family of MaxSAT
solvers relies on iteratively calling a SAT solver as a black box. Those algorithms take
advantage of existing state-of-the-art SAT solvers by reducing the MaxSAT problem to
consecutive satisfiability problems [Fu and Malik, 2006, Ansótegui et al., 2009, Mor-
gado et al., 2013, Martins et al., 2014b]. To narrow the search space, cardinality and
pseudo-Boolean constraints are used (see Section 2.3). Moreover, there are so called
core-guided algorithms which, in addition, make usage of an unsatisfiable core returned
by the SAT solver for the unsatisfiable case. It has been observed that those approaches
are quite effective on industrial benchmarks within the MaxSAT evaluations [Argelich
et al., 2011].

We are interested in solving industrial instances, therefore we focus on (core-guided)
SAT-based approaches. We show a few existing algorithms for solving the partial
weighted MaxSAT problem by iterative SAT calls. All approaches for solving the partial

1MaxSAT evaluations: http://maxsat.ia.udl.cat

132

http://maxsat.ia.udl.cat


weighted version of MaxSAT can be used to solve the unweighted and/or non-partial
version of MaxSAT. Thus, we only focus on algorithms for partial weighted MaxSAT.

Algorithm 4.4: Linear search for computing MinFALSE: minFalseLS
Input: Clause sets ϕh, ϕs = {c1, . . . , cm} with weights w1, . . . , wm ∈ N≥1
Output: Tuple (st,∆) such that st = true if a solution exists and ∆ being the

MinFALSE result, otherwise st = false
1 solver← new inc/dec CDCL SAT solver
2 solver. add(ϕh)
3 if solver. unsat() then
4 return (false, ∅)
5 for 1 to m do
6 bi ← fresh blocking variable
7 solver. add(bi ∨ ci)
8 β ← solver. model()
9 cost← ∑

bi∈β wi, st← true
10 while st do
11 solver. add(cnf(∑m

i=1 bi · wi < cost))
12 st← solver. sat()
13 if st = true then
14 β ← solver. model()
15 cost← ∑

bi∈β wi

16 ∆← {ci | bi ∈ β}
17 return (true,∆)

We consider a MaxSAT instance (ϕh, ϕs) with ϕs = {c1, . . . , cm} and assigned weights
w1, . . . , wm ∈ N≥1. A very basic approach to solve MaxSAT is a linear search on the sum
of weights ∑m

i=1wi, see Algorithm 4.4. In Lines 1 to 4 the solver is initialized, the hard
clauses are added and checked for satisfiability. Afterwards, a new blocking variable is
added to each clause (Lines 5–7) (cf. Remark 1). The current model β is initialized
with the solver’s last found model, the costs are initialized with the costs of the last
found model and the status variable st is initialized with true (Lines 8–9). The main
loop continues until the status variable is false, i.e., until the restriction on blocking
variables is too restrictive (Lines 10–15). Within the main loop, the solver tests if a
model can be found which has less costs than the last found model. To enforce the next
model to have less costs, the pseudo-Boolean constraint ∑m

i=1 bi · wi < cost is added to
the solver (Line 11). If a better model can be found, the new model is stored and the
costs are updated (Lines 14–15). Otherwise, the status variable is set to false and
the loop stops. When the loop stops, the clause set ∆ with minimal costs is extracted
from the last found model and returned (Lines 16–17). Observe that during the main
loop the removal of the previously added pseudo-Boolean constraints from the solver is
not necessary. The next pseudo-Boolean constraint is always more restrictive than the
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previously added pseudo-Boolean constraints, i.e., the next pseudo-Boolean constraint
entails all previous ones.

The number of SAT calls in the worst case is ∑m
i=1wi, i.e., each iteration improves the

costs by only 1. Since the input length is the binary representation of the sum of weights
log2 (∑m

i=1wi), linear search requires an exponential number of SAT calls in the worst
case. In practice, iterations may be skipped by using the last found model to update
the costs as shown in the pseudocode, i.e., the new costs are calculated by the used
blocking variables and the corresponding weights. Moreover, the model can be reduced
to a prime implicant (see Section 2.5) such that the don’t care literals can be assigned
as needed to reach the optimum faster.

Observe that the SAT calls made by linear search as shown in Algorithm 4.4 are all suc-
cessful except for the last call. Linear search could be implemented the other way round,
too. By starting with costs of 0 and relaxing the costs by 1 in each iteration until the
solver finds a model leads to the optimum, too. However, the downside of this approach
is that all SAT calls are unsuccessful except the last one. For industrial applications
finding a model may be faster than proving that no model exists. Furthermore, we can-
not exploit intermediate models to identify clauses that belong to the MaxSAT result
(cf. Subsection 4.1.3), i.e., Proposition 12 does not hold for the MaxSAT problem.

Instead by a linear search the MaxSAT problem can be solved by a binary search as
well. Algorithm 4.5 shows this approach. The range of the binary search is from 0 to
the sum of weights ∑m

i=1wi. In Lines 1 to 4 the solver is initialized, the hard clauses
are added and checked for satisfiability. If satisfiable, fresh blocking variables are added
to each soft clause (Lines 5–7) (cf. Remark 1). Afterwards the assignment variable β is
initialized by the found model for the hard clauses, the lower bound is initialized by 0
and the upper bound is initialized by the sum of weights of used blocking variables from
the last assignment (Lines 8–9). The variable m, representing the middle of the lower
and upper bound, is initialized with bub−lb2 c. The main loop (Lines 11–21) continues
until the lower bound exceeds the upper bound. Within each iteration, the pseudo-
Boolean constraint ∑i=1 bi ·wi < m is tested for satisfiability by calling the SAT solver.
If satisfiable, the optimum is within the lower half of the current range, otherwise the
optimum is within the upper half. Thus, for the satisfiable case, the current model is
stored and the upper bound is updated to the sum of weights of used blocking variables
(Lines 16–17). Whereas for the unsatisfiable case, the lower bound is updated by m+ 1
(Line 19). When the main loop stops, the MinFALSE result ∆ is built from the clauses
which were blocked by the last found model and ∆ is returned (Lines 22–23).

The number of SAT calls in the worst case is the input length, which is the binary
representation of the sum of weights log2 (∑m

i=1wi). Thus, binary search performs a
linear number of SAT calls. Even though the complexity, in terms of the number of
SAT calls, is exponentially better compared to linear search, the practical disadvantage
of binary search lies in the SAT calls with an unsatisfiable result. Because industrial
instances from automotive configuration often contain a huge number of models, the
search for models is usually fast. In contrast, the verification of unsatisfiability takes
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Algorithm 4.5: Binary search for computing MinFALSE: minfalseBS
Input: Clause sets ϕh, ϕs = {c1, . . . , cm} with weights w1, . . . , wm ∈ N≥1
Output: Tuple (st,∆) such that st = true if a solution exists and ∆ being the

MinFALSE result, otherwise st = false
1 solver← new inc/dec CDCL SAT solver
2 solver. add(ϕh)
3 if solver. unsat() then
4 return (false, ∅)
5 for 1 to m do
6 bi ← fresh blocking variable
7 solver. add(bi ∨ ci)
8 β ← solver. model()
9 lb← 0, ub← ∑

bi∈β wi
10 m← bub−lb2 c
11 while lb < ub do
12 solver. mark()
13 solver. add(cnf(∑m

i=1 bi · wi < m))
14 st← solver. sat()
15 if st = true then
16 β ← solver. model()
17 ub← ∑

bi∈β wi

18 else
19 lb← m+ 1
20 m← bub−lb2 c
21 solver. undo()
22 ∆← {ci | bi ∈ β}
23 return (true,∆)

much longer. With binary search, about half the number of SAT calls result in an
unsatisfiable result, whereas all but the last SAT call find a model with linear search.
Another advantage of linear search is that the solver does not have to be re-initialized
nor any undo call is necessary. Since the added pseudo-Boolean constraint becomes
more restrictive in each iteration (the new constraint entails the previous constraints),
the previously added pseudo-Boolean constraints can be kept. Moreover, all learned
clauses in the previous runs of the solver can be kept for the next iteration.

Linear search and binary search rely on iteratively calling a SAT solver and solving a
sequence of SAT instances. The result of the SAT solver is used to guide the further
search. The model of an intermediate successful SAT call can be used to reduce the search
space and avoid iterations. In contrast, Fu & Malik [Fu and Malik, 2006] presented a so
called core-guided search for the unweighted partial MaxSAT problem. The idea is to
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Algorithm 4.6: WMSU1 for computing MinFALSE: minfalseWMSU1
Input: Clause sets ϕh, ϕs = {c1, . . . , cm} with weights w1, . . . , wm ∈ N≥1
Output: Tuple (st,∆) such that st = true if a solution exists and ∆ being the

MinFALSE result, otherwise st = false
1 solver← new inc/dec CDCL SAT solver
2 solver. add(ϕh)
3 if solver. unsat() then
4 return (false, ∅)
5 ϕpairs ← {(ci, wi) | i = {1, . . . ,m}}
6 while true do
7 solver. mark()
8 solver. add({c | (c, w) ∈ ϕpairs})
9 st← solver. sat()

10 if st = SAT then
11 β ← solver. model()
12 return (true, {ci | eval(ci, β) = false and ci ∈ ϕ})
13 ϕc ← solver. core()
14 solver. undo()
15 B← ∅
16 wmin ← min{w | c ∈ ϕc and (c, w) ∈ ϕpairs}
17 foreach c ∈ ϕc ∩ {c | (c, w) ∈ ϕpairs} do
18 b← fresh blocking variable
19 ϕpairs ← (ϕpairs \ {(c, w)}) ∪ {(c, w − wmin)} ∪ {(c ∨ b, wmin)}
20 B← B ∪ {b}
21 solver. add (cnf (∑b∈B b ≤ 1))

iteratively check whether the clause set is satisfiable. If it is satisfiable, we are finished.
If it is not satisfiable, we exploit the unsatisfiable core provided by the SAT solver (see
Section 2.4). There must be at least one soft clause within the unsatisfiable core that
has to be removed in order to make the instance satisfiable, but we do not know which
clause has to be removed in order to reach the optimum (a minimal number of removed
clauses such that the remaining clause set is consistent). Thus, we add new blocking
variables to all soft clauses of the unsatisfiable core (cf. Remark 1). The set of blocking
variables is then restricted to one by adding a cardinality constraint (see Section 2.3),
i.e., only one soft clause is allowed to be blocked. The costs are increased by one, since
we allow one soft clause to be blocked. The focus of the soft clauses which have to be
relaxed is thereby narrowed to speed up the search process of the SAT solver. This
approach was later extended to deal with weights in [Ansótegui et al., 2009, Manquinho
et al., 2009] and is known as the WMSU1 algorithm [Morgado et al., 2013]. To handle
weights, we have to split each soft clause ci with weight wi of the unsatisfiable subset into
two clauses: (i) a clause ci ∨ bi extended by fresh blocking variable bi with the minimal
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weight wmin of all weights of the soft clauses included in the unsatisfiable subset, and
(ii) a clause ci assigned to the weight wi − wmin.

Algorithm 4.6 shows the WMSU1 algorithm adjusted to return a diagnosis and ex-
ploiting the inc/dec SAT interface. In Lines 1 to 4 the solver is initialized, the hard
clauses are added and checked for satisfiability. Afterwards the set ϕpairs is initialized
by the tuples (ci, wi) for each soft clause ci ∈ ϕ and its corresponding weight wi. The
main loop iteratively tests whether the current SAT instance is satisfiable and relaxes
the instance if not (Lines 6–21). First, all clauses of ϕpairs are added to the solver and
tested for satisfiability (Lines 7–9). If the instance is satisfiable, the algorithm termi-
nates and returns the set of soft clauses not satisfied by the found model (Lines 11–12).
The unsatisfied clauses are the relaxed clauses. If the instance is unsatisfiable, then the
unsatisfiable core of the solver is received (Line 13). The minimal weight wmin among all
weights of soft clauses included in the unsatisfiable core is determined (Line 16). Then,
for each soft clause c with its corresponding weight w included in the unsatisfiable core,
the clause is replaced by two new clauses: Clause c with weight w − wmin and clause
c ∨ b with weight wmin for a fresh blocking variable b (Lines 17–20). Afterwards, the
blocking variables that were created during the loop are restricted to allow at most one
to be satisfied (Line 21). The process continues until enough the soft clauses are relaxed
such that the instance becomes satisfiable.

Observe that the unsatisfiable core ϕc does not have to be an MUS. Thus, the worst case
complexity of WMSU1 in terms of the number of consistency checks is O(d), where d is
the minimal sum of weights of unsatisfied clauses, i.e., only costs of 1 are added in each
iteration resulting in an exponential number of SAT calls compared to the input length.
However, the exact relation between the number of iterations and the quality of the
provided unsatisfiable subset is an open issue [Heras et al., 2011]. In practice, however,
the provided unsatisfiable subset tends to be minimal or with only a few redundant
clauses. Another disadvantage of this approach is that if the same clause may occur
multiple times within the delivered unsatisfiable core, then multiple blocking variables
are added to the soft clauses.

Another approach, not based on calling an underlying SAT solver, was evaluated by
Ansótegui and Gabàs [Ansótegui and Gabàs, 2013] by translating a MaxSAT instance
into an ILP [Schrijver, 1998] instance. Ansótegui and Gabàs evaluated the commercial
Mixed Integer Programming (MIP) solver CPLEX [cpl, 2016] from IBM and showed
that the performance is competitive on crafted instances.

4.2.3 Enumerating all Solutions

The enumeration of all MaxSAT solutions can be done in analogy to the enumeration
of all MinCS solutions in Subsection 4.1.4. We just have to replace the optimization
algorithm computeMinCS by any MaxSAT optimization algorithm computeMaxSAT. The
subroutine buildBlockingConstraint can be used without modification.
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4.3 Preferred Minimal Diagnosis

In contrast to weighted clauses and a search for a MinCS with the lowest costs, as it
is done by MaxSAT, we may consider an ordering among the soft clauses. The most
important clause should be kept before any other. Thus we ask for the MinCS which is
lexicographically the most preferred one, called preferred minimal diagnosis.

4.3.1 Problem Description

In analogy to [Marques-Silva and Previti, 2014] we introduce the following definitions:

Definition 42. (L- and A-Preference) Let < be a strict total order over a set ϕ =
{c1, . . . , cm} of clauses with ci < ci+1 for 1 ≤ i < m, i.e., clause ci is preferred over clause
ci+1.

We define the lexicographical order <lex as follows: For two sets ψ1, ψ2 ⊆ ϕ set ψ1 is
lexicographically preferred over ψ2, denoted as ψ1 <lex ψ2, iff

∃1≤k≤m : ck ∈ ψ1 \ ψ2 and
ψ1 ∩ {c1, . . . , ck−1} = ψ2 ∩ {c1, . . . , ck−1}.

Furthermore, we define the anti-lexicographical order <antilex as follows: For two sets
ψ1, ψ2 ⊆ ϕ we say set ψ1 is anti-lexicographically preferred over ψ2, denoted as ψ1 <antilex
ψ2, iff

∃1≤k≤m : ck ∈ ψ2 \ ψ1 and
ψ1 ∩ {ck+1, . . . , cm} = ψ2 ∩ {ck+1, . . . , cm}.

For a strict total order c1 < . . . < cm we denote the inverse order cm < . . . < c1 by <−1.
In [Felfernig et al., 2015a] different possibilities are proposed to identify an ordering
among the soft clauses in practice.

When we want to relax an over-constrained system, we want to find a MaxSS which
is the lexicographically most preferred one or, the other way round, we want to find a
MinCS which is the anti-lexicographically most preferred one for the inverse order <−1.
The following definition captures this motivation:

Definition 43. (Preferred MinCS/MaxSS) Let ϕh and ϕs = {c1, . . . , cm} be sets of
clauses. Let ϕh be satisfiable. Let < be a strict total order over ϕs with ci < ci+1 for
1 ≤ i < m.

a) a MaxSS Γ of (ϕh, ϕs) is L-preferred (resp. A-preferred) if for all MaxSS Γ′ 6= Γ of
(ϕh, ϕs) holds Γ <lex Γ′ (resp. Γ <antilex Γ′).

b) a MinCS ∆ of (ϕh, ϕs) is L-preferred (resp. A-preferred) if for all MinCS ∆′ 6= ∆
of (ϕh, ϕs) holds ∆ <lex ∆′ (resp. ∆ <antilex ∆′).
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The lexicographical order appears to be the more intuitive one. Whereas an L-preferred
set tries to include the most preferred clauses, an A-preferred set tries to exclude the
most non-preferred clauses.

We focus on the computation of the L-preferred MaxSS w.r.t. < or, analogously, the
A-preferred MinCS w.r.t. <−1. To simplify reading we will speak of A-preferred MinCS
only, instead of A-preferred MinCS w.r.t. <−1. We are in search of the MinCS that
tries to avoid the most preferred clauses. The A-preferred MinCS is also called preferred
minimal diagnosis (PMD). The two terms, A-preferred MinCS and PMD, are used
synonymously in this work.

Example 32. (Preferred Minimal Diagnosis) Consider clause set
ϕh = {{x, y}, {y, z}, {w}} and ϕs = {c1 : {¬x}, c2 : {¬y}, c3 : {¬w,¬z}} with ordering
c2 < c1 < c3. Clause c2 is the most preferred clause. Table 4.6 shows a list of all MinCSes
of (ϕh, ϕs) and the corresponding MaxSSes. In addition, column “A-preferred?” shows
whether the MinCS is an A-preferred MinCS and column “L-preferred?” shows whether
the MaxSS is an L-preferred MaxSS. The MinCS {c1, c3} is the A-preferred MinCS, even
though it has more elements included than the MinCS {c2}. Due to the lexicographical
ordering it is more important to keep clause c2 than to remove all other soft clauses.

Table 4.6: Correction subsets and satisfiable subsets
MinCS A-preferred? MaxSSes L-preferred?
{c1 : {¬x}, c3 : {¬w,¬z}} yes {c2 : {¬y}} yes
{c2 : {¬y}} no {c1 : {¬x}, c3 : {¬w,¬z}} no

The complement property holds for preferred minimal diagnoses, too: If ψ is an L-
preferred (resp. A-preferred) MaxSS/MinCS of ϕs w.r.t. the order < , then ϕs \ ψ is
an A-preferred (resp. L-preferred) MaxSS/MinCS of ϕs w.r.t. the inverse order <−1

(see [Marques-Silva and Previti, 2014, Proposition 12]). Therefore, algorithms for the
computation of an L-preferred MaxSS/MinCS can also be used for the computation of
the corresponding A-preferred MinCS/MaxSS.

The lower and upper bounds of Proposition 11 for MinCSes apply for the A-preferred
MinCS, too.

For comparison, the definition of a preferred minimal diagnosis used in [Felfernig et al.,
2012] is in the context of a constraint satisfaction problem (CSP). The set CKB (resp.
CR) represents the constraints of the knowledge base (resp. the user requirements). In
the context of Propositional Logic the set CKB (resp. CR) is represented by ϕh (resp. ϕs).
Note that the strict total order in [Felfernig et al., 2012] is defined the other way round,
i.e., if ci < cj then constraint cj is preferred over ci. Our definition follows [Junker,
2004, Marques-Silva and Previti, 2014].
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4.3.2 Algorithms

A straight forward approach for the computation of the A-preferred MinCS is a linear
search (see the constructive definition for a preferred relaxation in [Junker, 2004]): We
iterate in descending order through all constraints and check whether they conflict with
the hard constraints and the previously added constraints. If there is a conflict, the
clause is part of the A-preferred MinCS. Otherwise, the clause is part of the L-preferred
MaxSS and is added. Algorithm 4.7 shows the approach. The complexity of linear search
in terms of the number of SAT calls is O(m), where m is the number of clauses in ϕs.

For comparison reasons, the linear search for the computation of any MinCS (see Algo-
rithm 4.1) can check the soft clauses in an arbitrary order.

Algorithm 4.7: Linear search for computing the A-preferred MinCS: apremincsLS
Input: Clause sets ϕh, ϕs = {c1, . . . , cm} with c1 < · · · < cm
Output: Tuple (st,∆) such that st = true if a solution exists and ∆ being the

A-preferred MinCS, otherwise st = false
1 solver← new inc/dec CDCL SAT solver
2 solver. add(ϕh)
3 if solver. unsat() then
4 return (false, ∅)
5 ∆← ∅
6 for i← 1 to m do
7 solver. mark()
8 solver. add(ci)
9 if solver. unsat() then

10 solver. undo()
11 ∆← ∆ ∪ {ci}

12 return (true,∆)

Besides the usage of the inc/dec interface, we can improve the linear search further by
exploiting backbone literals as done for the computation of any MinCS (see Proposi-
tion 13). Adding the negation of the literals of an identified A-preferred MinCS clause
simplifies the SAT calls.

However, exploiting intermediate models as done for the computation of any MinCS (see
Proposition 12) cannot be fully applied for the computation of an A-preferred MinCS.
For example, consider clauses c1 = {x}, c2 = {z}, c3 = {y}, c4 = {¬y} with the order
c1 < c2 < c3 < c4. The first SAT call tests c1 for satisfiability. We assume the model
{x,¬y, z} returned. When computing a MinCS we would include the satisfied clauses c1,
c2 and c4 in the resulting MaxSS. However, when computing an A-preferred MinCS we
may not add clause c4 to the L-preferred MaxSS since clause c3 is more preferred than c4.
First we have to test whether clause c3 can be included in L-preferred MaxSS. Clause c3
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is actually contained in the resulting L-preferred MaxSS, which consists of clauses c1, c2
and c3. We can exploit intermediate models in a restricted way: We can safely include
all satisfied clauses in the resulting L-preferred MaxSS respecting the clause order until
the first clause is unsatisfied. In our example, for the returned model {x,¬y, z} we can
include clauses c1 and c2 in the resulting L-preferred MaxSS.

Felfernig et al. [Felfernig and Schubert, 2010, Felfernig et al., 2012] developed an algo-
rithm, called FastDiag, for computing the preferred minimal diagnosis of Constraint
Satisfaction Problems (CSP). FastDiag is a divide-and-conquer approach quite similar
to QuickXplain [Junker, 2004] which is used for computing preferred explanations (a
preferred minimal unsatisfiable subset). FastDiag can be used for the computation
of the preferred minimal diagnosis in the context of Propositional Logic, too. The idea
behind FastDiag is to split the set of soft clauses ϕs = {c1, . . . , cm} into two equal sized
subsets ψ1 = {c1, . . . , cbm2 c} and ψ2 = {cbm2 c+1, . . . , cm}. Then we check whether ϕh ∪ ψ1
is consistent. If ϕh ∪ ψ1 is consistent, then no element of the more preferred clauses of
ψ1 belongs to the result (and does not have to be checked separately) and we know that
at least one element of ψ2 belongs to the result (one consistency check is omitted). If
ϕh∪ψ1 is not consistent, then we recursively proceed by splitting ψ1 into two equal sized
subsets.

Algorithm 4.8 shows the FastDiag algorithm adjusted to our notation. Lines 1–6 show
the main algorithm and Lines 7–19 show the subroutine FD. In Lines 1 to 4 the solver
is initialized, the hard clauses are added and checked for satisfiability. Afterwards, if
satisfiable, the subroutine FD is called on the set of soft clauses. The subroutine FD
adds the clauses of ψ = {c1, . . . , cq}, the clause set handed to the subroutine, to the
solver object. If the Boolean variable isRedundant is set to false, a satisfiability check
is performed to test if all clauses of ψ can be kept (Lines 10–11). For the unsatisfiable
case, at least one clause of ψ has to be removed, i.e., is included in the preferred minimal
diagnosis. For the trivial cases that ψ consists of only one clause, this clause is returned
as result (Lines 14–15). Otherwise the set ψ is split into two equal sized subsets ψ1 =
{c1, . . . , ck} and ψ2 = {ck+1, . . . , cq} for k =

⌊
q
2

⌊
. Both subsets are handled by recursive

calls to the subroutine FD (Lines 16–18). Calls to the SAT solver can be skipped if (i)
ψ2 is empty (then there must be a conflict in ψ1), or (ii) the result of subset ψ is empty
(then there must be a conflict in ψ2). After both subsets have been investigated, the
resulting preferred minimal diagnosis is returned (Line 19).

Before FastDiag [Felfernig et al., 2012], O’Callaghan et al. [O’Callaghan et al., 2005]
developed CorrectiveExp which is very similar to FastDiag but with a subtle dif-
ference: Basically, FastDiag first generates a preferred minimal diagnosis ∆1 for the
set of constraints ψ1 (Line 17). Next, a preferred minimal diagnosis ∆2 for the set ψ2 is
generated taking the constraints in ψ1\∆1 into account (Line 18). Eventually, both min-
imal diagnoses are combined to the final minimal diagnosis (Line 19). Broadly speaking
the algorithm CorrectiveExp [O’Callaghan et al., 2005] would search in the whole set
ψ \∆1 for generating a preferred minimal diagnosis ∆2, which leads to unnecessary con-
sistency checks. Note, the performance of the system depends critically on the number of
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Algorithm 4.8: FastDiag for computing the A-preferred MinCS: apremincsFS
Input: ϕh, ϕs = {c1, . . . , cm} with c1 < · · · < cm
Output: Tuple (st,∆) such that st = true if a solution exists and ∆ being the

A-preferred MinCS, otherwise st = false
1 solver← new inc/dec CDCL SAT solver
2 solver. add(ϕh)
3 if solver. unsat() then
4 return (false, ∅)
5 else
6 return (true,FD(false, ϕs))

7 func FD(isRedundant, ψ = {c1, . . . , cq}) : Preferred minimal diagnosis ∆
8 solver. mark()
9 solver. add(ψ)

10 if ¬isRedundant and solver. sat() then
11 return ∅
12 else
13 solver. undo()
14 if ψ = {ci} then
15 return ψ

16 k =
⌊
q
2

⌋
; ψ1 = {c1, . . . , ck}; ψ2 = {ck+1, . . . , cq}

17 ∆1 = FD(IsEmpty(ψ2), ψ1)
18 ∆2 = FD(IsEmpty(∆1), ψ2)
19 return ∆1 ∪∆2
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consistency checks which are calls to an NP-oracle (if arbitrary constraints are allowed).
To see the difference, a simple example can be generated by a set of soft constraints
where the only minimal conflict consists of the first two most preferred constraints.

The same speed-ups as seen for the linear search can be applied to FastDiag as well. We
can improve the FastDiag algorithm by adding all constraints ϕh first and performing
the SAT calls by using the inc/dec interface. Another improvement can be made for
the help subroutine FD: We add all clauses of the set ψ = {c1, . . . , cq}. If they are
consistent, we leave them in the solver. Therefore, once clauses are identified to be
in the L-preferred MaxSS they are retained for the rest of the algorithm execution.
Otherwise, we remove them (Line 14). Furthermore, we can simplify the SAT calls by
adding the negation of any identified A-preferred MinCS clause (Line 14). Intermediate
models can be exploited as previously described for linear search.

The worst case complexity of FastDiag in terms of the number of consistency checks
is O(2d · log2(m

d
) + 2d) [Felfernig and Schubert, 2010], where d is the minimal diagnosis

set size and m is the number of clauses in ϕs. For small sized diagnoses compared to the
number of overall soft clauses, the number of consistency checks is less than the number
of consistency checks of the linear search. In automotive configuration we typically face
a small number of diagnosis clauses.
Remark 14. (FlexDiag) In [Felfernig and Schubert, 2010, Felfernig et al., 2015b, Felfer-
nig et al., 2018] a modified version of FastDiag was proposed and evaluated, called
FlexDiag. In this approach the stop criterion of the subroutine FD is modified such
that the subroutine stops whenever the size of the subset ψ is at most m instead of stop-
ping when |ψ| = 1. As a consequence, the subroutine stops earlier and the performance
of the algorithms speeds up. On the other hand, the resulting diagnosis may contain
redundant clauses.

Another approach ot compute the preferred minimal diagnosis is an adapted version of
the CDCL-based approach for computing a MinCS described in Subsection 4.1.3. In
addition to branching over the blocking variables first, we modify the variable selection
heuristic to use the order of the clauses preferences. Thus, the blocking variable of the
most preferred clause is selected first for branching in order to try to satisfy the most
preferred clause. A drawback and a possible cause of inefficiency of this approach is the
predetermined variable order.

4.3.3 Enumerating all Solutions

The enumeration of all A-preferred MinCS solutions can be done analogously to the
enumeration of all MinCS solutions in Subsection 4.1.4. We just have to replace the op-
timization algorithm computeMinCS by any A-preferred MinCS optimization algorithm
computeAPreMinCS. The subroutine buildBlockingConstraint can be used without
modification.
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4.4 Comparison & Similarities

In this section we discuss similarities of the MinFALSE problem and the A-preferred
MinCS problem for clause sets ϕh and ϕs. The interesting part is the set ϕs with
assigned weights and the strict total order <, respectively. Both can be interpreted as a
special case of a MinCS problem, i.e., both ask for an optimized MinCS from the set of
all MinCSes of (ϕh, ϕs). The MinFALSE problem is a MinCS with the minimal sum of
weights:

min
≤∑

ci∈∆ wi

{
∆
∣∣∣∣∣ ∆ is a MinCS of (ϕh, ϕs)

}

The A-preferred MinCS problem can be interpreted as an optimal MinCS:

min
<−1

antilex

{∆ | ∆ is a MinCS of (ϕh, ϕs)}

The result of the MinFALSE problem is an optimal MinCS in terms of weights, whereas
the result of the A-preferred MinCS problem is an optimal MinCS in terms of preferences.
Therefore, any algorithm for the solution of the MinFALSE problem and any algorithm
for the solution of the A-preferred MinCS problem is a MinCS computation algorithm,
too. The same similarities hold for the corresponding complement problems MaxSAT
and L-preferred MaxSS.

Table 4.7: Complement comparison
Diagnosis ∆ Complement ϕs \∆

(Part.) MinCS (Part.) MaxSS
(Part.) A-preferred MinCS w.r.t. < (Part.) L-preferred MaxSS w.r.t. <−1

(Part.) (Weight.) MinFALSE (Part.) (Weight.) MaxSAT

For any given MinCS, the complement is a MaxSS [Liffiton and Sakallah, 2008]. This
complement property holds for the MinFALSE problem (see Proposition 14) and the
A-preferred MinCS problem [Marques-Silva and Previti, 2014, Prop. 12], too. Table 4.7
shows an overview. With “Part.” (resp. “Weight.”) in parantheses we indicate that the
complementary property also holds even if no set of hard clauses ϕh (resp. no weights)
is considered. For MinFALSE the complement property holds for all combinations, with
or without hard clauses and with or without weights.

Table 4.8 shows a comparison concerning the uniqueness of the result. All results of
Table 4.8 also hold for the corresponding dual problem, i.e., the computation of the
complement as seen in Table 4.7. We distinguish four categories: (i) Clause set: The
question is whether the clauses of the result are always the same; (ii) Cardinality of the
diagnosis ∆: The question is whether the number of clauses of the result is always the
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Table 4.8: Result uniqueness comparison

Diagnosis ∆ Result Uniqueness
Clause Set Card. |∆| Weights ∑ci∈∆ wi Model

(Part.) MinCS No No No No
(Part.) A-preferred MinCS Yes Yes Yes1 No
(Part.) (Weight.) MinFALSE No Yes/No2 Yes No

same; (iii) The sum of weights ∑ci∈∆ wi of the diagnosis ∆: The question is whether the
sum of weights of the result is always the same, and (iv) The model of the complement
ϕs \∆: The question is whether the model satisfying ϕh∪ (ϕs \∆) is unique. The clause
set is unique only for the (partial) A-preferred MinCS problem. The (partial) MinCS
problem is not unique in any of the four categories. The model is not not unique for any
of the problems. The (partial) A-preferred MinCS problem and the (partial) (weighted)
MinFALSE problem are unique for cardinality and weights in almost all cases, see the
following remarks.

For entry Yes1: If we encode the preferences of the A-preferred MinCS problem as
weights such that we have a correct reduction, then the sum of weights is unique.

For entry Yes/No2: The cardinality of the (partial) MinFALSE result ∆ is unique. The
cardinality of the (partial) weighted MinFALSE result ∆ is not unique in general.

4.5 Computational Complexity

An established measurement of the complexity of function problems, where the output
can be of an arbitrary structure and is not restricted to true and false, is the complexity
in terms of the number of calls to an NP-oracle [Gottlob and Fermüller, 1993, Krentel,
1988]. In this section, we study the lower and upper bounds in terms of the number of
calls to an NP-oracle for the computation of the minimal correction subset problem, the
MinFALSE problem and the A-preferred MinCS problem.

Note that unlike a modern SAT solver implementation, an NP-oracle is not able to
deliver a model for the satisfiable case nor is it able to deliver an unsatisfiable core for
the unsatisfiable case. The only result of an NP-oracle is true or false. Actually, the
required number of NP-oracle calls for the identification of a satisfying assignment of
a satisfiable Boolean formula requires more than a logarithmic number of calls to an
NP-oracle unless P = NP, see Theorem 5.4 in [Gottlob and Fermüller, 1993].

We use the standard notation for the complexity class FPNP (resp. FPNP[logn]), the
class of function problems solvable in deterministic polynomial time using a polynomial
(resp. logarithmic) number of calls to an NP-oracle [Papadimitriou, 1994]. Furthermore,
the complexity class FPNP

|| is the class of function problems solvable in deterministic
polynomial time using a polynomial number of non-adaptive queries to an NP-oracle
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(see [Selman, 1994] for a definition). The relation between these three complexity classes
is [Selman, 1994, Section 1.2]:

FPNP[logn] ⊆ FPNP
|| ⊆ FPNP

It is unknown whether FPNP[logn] = FPNP
|| or FPNP

|| = FPNP holds, but it is believed that
neither is the case [Selman, 1994, Section 1.2].

Table 4.9 shows the main result of this section, i.e., a comparison of the computational
complexity with the result that both problems, the computation of the partial weighted
MaxSAT problem and the A-preferred MinCS problem, are FPNP-complete and there-
fore equally hard to solve. For comparison only, many other well-known optimization
problems have been proved to be FPNP-complete, such as the Traveling Salesman Prob-
lem (see Theorem 17.5 in [Papadimitriou, 1994]), the Knapsack Problem [Krentel, 1988]
and 0-1 integer linear programming [Krentel, 1988].

We explain Table 4.9 in detail in the rest of this section, beginning with the computation
of a MinCS.

Since the complement of a MaxSS is a MinCS, it is sufficient to prove the complexity
for one of the two problems. The computation of a MinCS is in FPNP, since a MinCS
can be computed by a linear search (see Algorithm 4.1 or [Marques-Silva et al., 2013a,
Algorithm 1]). The computation of a MinCS is FPNP

|| -hard as shown in [Chen and Toda,
1995, Theorem 4.8(3)]. Since FPNP[logn] ⊆ FPNP

|| (see [Jenner and Torán, 1995, Theorem
2.2]), the computation of a MinCS is also FPNP[logn]-hard. However, we prove that a
logarithmic number of NP-oracle calls is not sufficient for the computation of a MaxSS
and therefore, the problem is no member of FPNP[logn] unless P = NP.

Since the computation of a satisfying assignment for a Boolean formula cannot be solved
by a logarithmic number of calls to an NP-oracle unless P = NP [Gottlob and Fermüller,
1993, Theorem 5.4.], the computation of a maximal model (see Definition 39) cannot be
solved by a logarithmic number of calls to an NP-oracle unless P = NP, either.

The problem of finding a maximal model for a Boolean formula can be polynomially
reduced to the problem of finding a MaxSS for clause sets ϕh and ϕs. Therefore, the
computation of a MaxSS cannot be solved by a logarithmic number of calls to an NP-
oracle unless P = NP. Thus, the problem is not in the class FPNP[logn] unless P = NP.
The following theorem captures this statement.

Theorem 6. Let ϕh and ϕs be clause sets. The computation of a MaxSS for (ϕh, ϕs)
cannot be solved with a logarithmic number of calls to an NP-oracle unless P = NP.

Proof. We reduce the problem of finding a maximal model of a Boolean formula ψ to
the problem of computing a MaxSS of (ϕh, ϕs). We define:

ϕh = defCNF(ψ)
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4 SAT-based Optimization

ϕs = {{xi} | xi ∈ vars(ψ)}

The resulting MaxSS induces a model by assigning all variables to true contained within
the MaxSS. All remaining variables are assigned to false. The resulting model is a
maximal model, otherwise the MaxSS properties are violated.

The partial weighted MinFALSE (resp. partial weighted MaxSAT) problem is FPNP-
complete [Papadimitriou, 1994, Theorem 17.4]. Partial weighted MinFALSE can be
solved, for example, by a binary search (cf. Algorithm 4.5) where the lower bound is 0
and the upper bound is the sum of all weights ∑m

i=1wi. Since the input length of the
problem is log2 (∑m

i=1wi), the number of calls to an NP-oracle is linear. Pseudo-Boolean
Constraints, encoded as Boolean formulas, can be used to narrow the search space [Li
and Manyà, 2009].

The computation of the A-preferred MinCS can be performed with a linear number of
calls to an NP-oracle, such as by linear search (cf. Algorithm 4.7 or [Marques-Silva et al.,
2013a, Algorithm 1]), and therefore the problem is an element of the class FPNP.

It was an open question stated in [Marques-Silva and Previti, 2014, Remark 1] whether
the computation of an A-preferred MinCS is FPNP-hard. We prove that the compu-
tation of an A-preferred MinCS is FPNP-hard by proving that the computation of the
complement set, the L-preferred MaxSS, is FPNP-hard.

Theorem 7. Let ϕh and ϕs be clause sets. The computation of the L-preferred MaxSS
of (ϕh, ϕs) is FPNP-hard.

Proof. We consider theMaximum Satisfying Assignment (MSA) problem: For a Boolean
formula ψ with variables vars(ψ) = {x1, . . . , xn} find a satisfying assignment with the
lexicographical maximum of the word x1 · · ·xn ∈ {0, 1}n or 0 if ψ is not satisfiable.
The MSA problem is FPNP-complete as proved in [Krentel, 1988]. We can polynomially
reduce the MSA problem to the L-preferred MaxSS problem. We define:

ϕh = defCNF(ψ)
ϕs = {{x1}, . . . , {xn}}

Further, we define the strict total order among the soft clauses as follows: x1 < · · · < xn.
Since the Tseitin transformation has the same models on the set of the original variables
{x1, . . . , xn} as formula ψ (see Proposition 2), our reduction is sound. The solution of
the L-preferred MaxSS problem induces a solution for the MSA problem.

Furthermore, we show that the computation of the L-preferred MaxSS of a set of hard
clauses ϕh and a set of soft clauses ϕs can be polynomially reduced to the computation
of the L-preferred MaxSS of set of soft clauses only. That means, the computation of
the L-preferred MaxSS of a set of soft clauses only is FPNP-hard, too.
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Proposition 15. Let ϕh and ϕs clause sets. The computation of the L-preferred MaxSS
of (ϕh, ϕs) is polynomially reducible to the computation of the L-preferred MaxSS of a
set of soft clauses only.

Proof. Let ϕh = {b1, . . . , bk} and ϕs = {c1, . . . , cm} be clause sets with the strict total
order c1 < · · · < cm. We include the clauses of ϕh by extending the strict total order:
b1 < · · · < bk < c1 < · · · < cm. With the extended strict total order we ensure that
the clauses of ϕh are the most preferred clauses and therefore have to be satisfied (if
satisfiable at all). If ϕh is not satisfiable, the original problem returns “no solution”
and the new problem returns the L-preferred MaxSS where at least one of the clauses
b1, . . . , bk is not satisfied. If ϕh is satisfiable, we can extract the result of for the original
problem by removing the clauses b1, . . . , bk from the calculated L-preferred MaxSS.

Note that Proposition 15 shows that an additional set of hard clauses does not affect
the complexity of the L-preferred MaxSS problem. We summarize our results about
the computation of the L-preferred MaxSS and the A-preferred MinCS in the following
corollary.
Corollary 1. Let ϕh and ϕs be clause sets.

a) The computation of the A-preferred MinCS (resp. L-preferred MaxSS) of a set of
hard clauses ϕh and a set of soft clauses ϕs is FPNP-complete.

b) The computation of the A-preferred MinCS (resp. L-preferred MaxSS) of a set of
soft clauses ϕs only (ϕh = ∅) is FPNP-complete.

Proof. a) FPNP-Hardness follows from Theorem 7. Since the complement of the L-
preferred MaxSS w.r.t. the order < is the A-preferred MinCS w.r.t. the inverse
order <−1 (see [Marques-Silva and Previti, 2014, Proposition 12]), the same com-
plexity holds. Membership in FPNP follows by linear search, see Algorithm 4.7.

b) FPNP-Hardness follows from Theorem 7, Proposition 15 and statement a) of this
corollary. Membership of FPNP follows by linear search, see Algorithm 4.7.

Corollary 1 negatively answers the open question, stated in [Marques-Silva and Previti,
2014, Remark 1], whether computing L-preferred MaxSSes and A-preferred MinCSes
could be in FPNP[logn].

Unless P = NP, problems which are FPNP-complete are strictly harder than problems
in FPNP[logn] [Krentel, 1988]. Intuitively, the computation of the A-preferred MinCS is
solved by checking each clause separately in the worst case. The computation of any
MinCS is expected to be an easier task, since no order has to be respected. But the
exact lower bound is unknown to the best of our knowledge.

In summary, the computation of the MinFALSE problem and the A-preferred MinCS
problem are both FPNP-complete and therefore equally hard to solve.
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4.6 Pseudo-Boolean Optimization

In this section we introduce the problem of pseudo-Boolean optimization [Roussel and
Manquinho, 2009], which uses the more expressive pseudo-Boolean constraints (see Sub-
section 2.3) and tries to find a model for the constraints while minimizing (resp. max-
imizing) a sum of weighted literals. Even though pseudo-Boolean optimization is not
purely SAT-based it can be interpreted as a natural extension to SAT-based optimiza-
tion. The performance of pseudo-Boolean optimizers benefits heavily from SAT-based
techniques as most techniques can be adapted in a more general form. For example,
unit propagation for clauses can be adapted to pseudo-Boolean constraints to identify a
forced assignment of a literal.

4.6.1 Problem Description

The problem of pseudo-Boolean optimization is to find a model for a set of pseudo-
Boolean constraints such that the sum of a target function is minimized (resp. max-
imized). We introduce pseudo-Boolean optimization for the case of linear constraints
only (see Subsection 2.3), since non-linear pseudo-Boolean constraints are not required
for the use cases discussed in this thesis.

Definition 44. (Pseudo-Boolean Optimization Problem) Let ∑j aijxjB bi be a pseudo-
Boolean constraint for each i ∈ I with B ∈ {<,≤, >,≥,=}. Let f(x1, . . . , xn) be a target
function mapping Boolean variables to a sum of weighted variables d1x1 + . . . + dnxn
for weights d1, . . . , dn ∈ Z. Then the pseudo-Boolean optimization (PBO) problem is to
find a model of the set of pseudo-Boolean constraints that minimizes (or maximizes) the
value of the target function:

min f(x1, . . . , xn) = d1x1 + . . .+ dnxn
s.t. ∧

i∈I

(∑
j aijxj B bi

)
, B ∈ {<,≤, >,≥,=}

Any PBO instance can be transformed into an equivalent PBO instance of the form:

min f(x1, . . . , xn) = d1x1 + . . .+ dnxn
s.t. ∧

i∈I

(∑
j aijxj ≥ bi

)
In Section 2.3 we showed how an arbitrary pseudo-Boolean constraint can be transformed
into an equivalent constraint of the form ∑

j aijxj ≥ bi with non-negative coefficients aij
and non-negative value bi. If the target function f(x1, . . . , xn) has to be maximized, then
this is equivalent to minimizing the target function−f(x1, . . . , xn) = −d1x1+. . .+−dnxn.
Any solution of both optimization problems has the same variable assignment. Moreover,
any term dixi of the target function with a negative coefficient di can be eliminated by
replacing the term with di − di¬xi. The resulting offset has to be added to the solution
value afterwards.
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Example 33 shows a PBO instance and its normalized form.

Example 33. (PBO) Consider the following PBO instance:

max 2x1 − 3x2 − 5¬x3
s.t. 1x1 + 4x2 − 4x3 ≤ 3

−3x1 + 2x2 − 3x4 ≥ 0

The normalized form looks as follows with an offset of −3−5 = −7 of the target function:

min 2x1 + 3¬x2 + 5x3
s.t. 1¬x1 + 4¬x2 + 4¬x3 ≥ 2

3¬x1 + 2 x2 + 3¬x4 ≥ 6

MaxSAT as Special Case of PBO

A MaxSAT instance (ϕh, ϕs) with ϕs = {c1, . . . , cm} and weights w1, . . . , wm can be
interpreted as a special case of PBO as follows:

max f(s1, . . . , sm) = w1s1 + . . .+ wmsm
s.t. ∧

ci∈ϕs

(
¬si +∑

l∈ci 1 · l ≥ 1
)

∧
c∈ϕh (∑l∈c 1 · l ≥ 1)

1. (Target function) We define f(s1, . . . , sm) = w1s1 + . . . + wmsm for fresh selector
variables s1, . . . , sm as target function which has to be maximized.

2. (Pseudo-Boolean Constraints) For each soft clause ci ∈ ϕs we add the hard clause
¬si∨ ci to the set of hard clauses. The selector variables ensure that whenever one
of them is assigned to true the corresponding clause ci is taken into account (see
Remark 1). Afterwards, each hard clause in ϕh is translated into a pseudo-Boolean
constraint (see Section 2.3).

4.6.2 Algorithms

The problem of pseudo-Boolean optimization has been the subject of research for many
years and various solving approaches have been developed [Roussel and Manquinho,
2009]. A common approach is to iteratively call a pseudo-Boolean solver (PBS). See
Remark 3 for a short description of pseudo-Boolean solvers. With the help of a pseudo-
Boolean solver a linear search or a binary search can be performed by restricting the
search space after a better solution was found. This approach is similar to using a SAT
solver as a black box for the MaxSAT optimization problem (cf. Algorithm 4.4 and
Algorithm 4.5). Also, a branch & bound approach [Land and Doig, 1960, Dakin, 1965]
can be used for solving PBO.
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Algorithm 4.9: Linear search for computing PBO: pboLS
Input: A set of pseudo-Boolean Constraints ϕ and a target function

f(x1, . . . , xn) = d1x1 + . . .+ dnxn to minimize
Output: Tuple (st, β) such that st = true if a solution exists and β being an

assignment with the optimal solution, otherwise st = false
1 solver← new inc/dec PBS solver
2 solver. add(ϕ)
3 if solver. unsat() then
4 return (false, ∅)
5 β ← solver. model()
6 cost← ∑m

i=1 di, st← true
7 while st do
8 solver. add(∑n

i=1 di · xi < cost)
9 st← solver. sat()

10 if st = true then
11 β ← solver. model()
12 cost← ∑m

xi∈β di

13 return (true, β)

Algorithm 4.9 shows the linear search for PBO. In Lines 1 to 4 the solver is initialized,
the constraints are added and checked for satisfiability. Afterwards, the solution found
is used as initial upper bound (Lines 5–6). The main loop continues as long as a better
solution can be found, which is tested by adding the pseudo-Boolean constraint ∑n

i=1 di ·
xi < cost to ensure that the next solution has less costs (Lines 8–9). Whenever a better
solution is found the current model and costs are updated (Lines 11–12). At last, if
no better solution can be found, the current solution is returned (Line 13). The same
advantages for linear search for PBO hold as described for linear search for solving
MaxSAT (cf. Algorithm 4.4). Linear search performs only successful calls to the solver
except for the last call. In our industrial applications finding a model is always faster
than proving unsatisfiability. Moreover, the new pseudo-Boolean constraint of each
iteration can be added without removing the old constraint, since the new constraint is
more restrictive. As a consequence, all learned constraints of previous solver runs can
be kept.

One prominent example of a PBO solver, based on linear search, is included within the
logic framework SAT4J2 [Le Berre and Parrain, 2010].

2SAT4J homepage: http://www.sat4j.org/

152

http://www.sat4j.org/


4.6.3 Enumerating all Solutions

The enumeration of all PBO solutions can be done analogously to the enumeration of all
MinCS solutions (see Subsection 4.1.4). We just have to replace the optimization algo-
rithm computeMinCS by any PBO optimization algorithm computePBO. The subroutine
buildBlockingConstraint has to be modified such that the current model is blocked
(see Subsection 4.1.4)

Instead of blocking models, we could also block the resulting value of the target function.
For example, the minimal value of the target function is 100. By blocking this value,
the next solution shows us the next best target function value. The next solution is at
least 101, but there could also be a huge gap. For example, the next solution could yield
in 150. Blocking the target function value can be done by adding the pseudo-Boolean
constraint ∑n

i=1 di · xi > v to the set of constraints. Value v is the target function value
of the previous solution.

4.7 Integer Linear Programming

In the last section of this chapter we briefly mention the well-known optimization prob-
lem of integer linear programming [Schrijver, 1998]. Integer linear programming is not
SAT-based but can be used to solve optimization problems from automotive configura-
tion, too. We want to compare performances between solvers of integer linear program-
ming with SAT based optimization algorithms (see Chapter 5).

Integer linear programming (ILP) is the problem of optimizing an objective function
over a set of linear equations and inequalities. In contrast to Linear Programming (LP),
where variables can have any real value, the variables of an ILP can only have integer
values. Moreover, the variant of 0-1 ILP deals with variable values over {0, 1} only.

Integer linear programming finds many applications in operations research. To name just
a few, production planning, budgeting problems, telecommunication networks, depot
location, scheduling. The decision version of the integer linear programming problem is
NP-complete (see Chapter 15 in [Papadimitriou and Steiglitz, 1982]).

Definition 45. (Integer Linear Program) Let ∑j aijxj B bi be an inequality or equation
for each i ∈ I with B ∈ {<,≤, >,≥,=}. Let f(x1, . . . , xn) be a target function mapping
integer variables to a sum of weighted variables: c1x1 + . . . + cnxn. An integer linear
program (ILP) is the optimization problem to find an assignment of the variables xi such
that the inequalities are satisfied and the target function is minimized (or maximized):

min c1x1 + . . .+ cnxn
s.t. ∧

i∈I

(∑
j aijxj B bi

)
, B ∈ {<,≤, >,≥,=}

xj ≥ 0
xj ∈ Z
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A 0-1 ILP is an ILP which requires the variables xi to be Boolean, i.e., xi ∈ {0, 1}.

Observe that a PBO problem instance (see Definition 44) can be immediately converted
to a 0-1 ILP instance by replacing each negated variable ¬x by (1 − x). Each term
aij(1− x) is then expanded to aij − aijx and the resulting sum of all aij values without
variable is afterwards shifted to the corresponding right-hand side bi. Moreover, since
MaxSAT can be interpreted as a special case of PBO (see Section 4.6), MaxSAT can
also be converted into a 0-1 ILP instance (cf. [Ansótegui and Gabàs, 2013]).

Exact solvers for the ILP problem are typically a mixture of a branch & bound [Land
and Doig, 1960, Dakin, 1965] method and cutting planes methods, called branch & cut
method. The idea of the two techniques is as follows:

a) (Branch & Bound) The enumeration tree of all possible variable values is (partially)
traversed. The computation of lower and upper bounds helps to prevent traversing
subtrees which cannot contain the optimal solution.

Solving the relaxed LP problem, allowing any real value instead of integers, is
easier compared to the ILP problem [Khachiyan, 1979], e.g., by the Simplex al-
gorithm [Dantzig, 1963, Dantzig and Thapa, 1997]. The result of the relaxed LP
problem serves as initial bound for the ILP problem, e.g., as lower bound for the
minimization version of the problem. At each node of the search tree, the relaxed
LP is solved to obtain a bound for the current subtree.

b) (Cutting Planes) Cutting planes are additional constraints, added to the problem
in order to gain better bounds when solving the relaxed ILP problem. During the
traversal of the enumeration tree, further cutting planes are determined and added
to restrict the search space and speed up the search for the optimal solution.

Exact state-of-the-art ILP solvers like IBM CPLEX [cpl, 2016] and Gurobi [Gurobi
Optimization, Inc., 2016] are based on a branch & cut algorithm.
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In this chapter we identify and describe several optimization related use cases in auto-
motive configuration. We show how they can be encoded in order to be solved by the
optimization methods described in Chapter 4. We evaluate these optimization methods
on real industrial benchmarks. The use cases we present are categorized as follows.

In Section 5.1 we consider various use cases of optimal configuration completions. For ex-
ample, a customer selects equipments options (requirements) of a vehicle. The customer
wants to know a minimal (complete) configuration which includes the requirements of
the customer but only adds equipment options when necessary. Otherwise the customer
is confronted with unwanted options.

In Section 5.2 we consider various uses cases related to optimal weighted configurations.
Weights can be assigned to options or parts. For example, we ask for the lightest (or
heaviest) vehicle in terms of weight (kilogram), i.e., we ask for a configuration with the
minimal (or maximal) sum of weights assigned to the parts. This section is based in
part on the author’s publications [Walter et al., 2013, Kübart et al., 2015, Walter et al.,
2017].

In Section 5.3 we consider uses cases for the re-configuration of vehicles. Re-configuration
of vehicles plays a major role in the automotive industry [Manhart, 2005]. For example,
there might be already built up vehicles for Romania which cannot be sold anymore in
Romania due to legal reasons. We want to re-configure the vehicles for another market,
e.g., for Russia. Which options have to be replaced? What is the minimal number of
necessary changes? Re-configuration is not restricted to the re-configuration of options,
but can be extended to constraints and parts. This section is based in part on the
author’s publications [Walter et al., 2013, Walter et al., 2015a, Walter et al., 2017].

In the last section, Section 5.4, we consider the problem of optimal test coverage, which
asks for a minimal set of vehicles to cover a set of options that have to be tested.
We present different greedy and exact solving approaches. We evaluate the different
approaches based on real benchmarks from automotive configuration. The content of
this section was published in [Walter et al., 2015b].

Table 5.1 summarizes the content of this chapter.
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Table 5.1: Chapter overview
Problem Description Section

Optimal Completion Minimal (resp. maximal) completion of op-
tions for a set of requirements

5.1

Optimal Weighted Config. Configuration with minimal (resp. maxi-
mal) sum of weights

5.2

Optimal Re-Configuration Optimal correction subset to restore consis-
tency for a set of inconsistent requirements

5.3

Optimal Test Coverage Minimal number of required configurations
to coverer a set of requirements

5.4

Minimizing Boolean formulas is not within the scope of this work. But we want to
mention that, in addition to the use cases described in this chapter, the minimization
of Boolean formulas finds important applications in automotive configuration, too. For
example, for various reasons it is preferable to minimize selection constraint con(m) of
a material node m of a bill of materials (cf. [Hami-Norabi and Blessing, 2005]). The
database schema of the bill of materials may restrict the number of bytes of the text
field, e.g., only 150 Bytes may be allowed. Also, a more compact formula is most
likely easier to read for document editors. Minimizing Boolean formulas by hand can
be tedious and error prone, e.g., the resulting formula may be not equivalent. There
exist numerous techniques to minimize Boolean formulas. One of them is the well-known
Quine-McCluskey algorithm [McCluskey, 1956]. For further reading we refer to [Coudert,
1994, Belov et al., 2014].

5.1 Optimal Configuration Completion

In this section we identify and describe several use cases from automotive configuration
where an optimal configuration completion is wanted. We show how optimal config-
uration completion problems can be encoded to be solved by SAT-based optimization
approaches described in Chapter 4. In Subsection 5.1.1 we describe use cases of optimal
configuration completions of equipment options. In Subsection 5.1.2 we evaluate differ-
ent optimization approaches based on real benchmarks from automotive configuration.
Subsection 5.1.3 concludes this section.

For a configuration task (see Definition 30) we can perform a SAT solver call in order
to test whether the configuration task is consistent, i.e., whether a solution for the user
requirements exist. For the consistent case, we can use the model, returned by the
SAT solver, to give a complete example configuration (cf. Section 3.3). However, the
model returned by the SAT solver seems somehow random as it follows no preferences.
The SAT solver stops as soon as all variables have been assigned without a conflict.
The first satisfying assignment is affected by the variable selection heuristic and the
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learned clauses during the search process (cf. Section 2.2). However, in practice the
first found satisfying assignment may not be appropriate for the application context.
For example, a customer would like to have a minimal configuration completion of her
selected engine and gearbox combination. Additional options should only be included if
necessary. Otherwise the customer is confronted with a vehicle that is overloaded with
unwanted features.

Finding an optimal configuration completion, either minimal or maximal, for a selection
of options by hand is tedious and error-prone. For example, if a customer tries to add
only a minimal number of options to her selections this either results in an inconsistent
configuration, which is hard to backtrack manually, or she finds a consistent configuration
but cannot verify that the configuration is indeed minimal.

5.1.1 Use Cases & Encodings

We identify and describe use cases in the context of automotive configuration which ask
for an optimal completion of a configuration (of options), either minimal or maximal.
For each use case we describe how the problem can be encoded as a partial unweighted
MaxSAT problem. As described in Section 4.6 and Section 4.7 any MaxSAT instance
can be interpreted as a PBO or an ILP instance. Thus, we can tackle the encoded
problem by different optimization approaches.

Optimal Configuration Completion during an Interactive Configuration Session

During an interactive configuration session of a vehicle (cf. Section 3.3), a customer
makes selections of equipment options, forming the user requirements. Customer se-
lections which are consistent with the product description have to be extended to a
complete configuration which is consistent. To provide the customer with a reasonable
example configuration it is preferred to avoid unnecessary options. Leaving out unnec-
essary options keeps the costs for the vehicle low and prevents the customer of unwanted
features the configuration constraints may permit to select. For example, it is possible to
select all user manuals in every language but a reasonable example configuration should
only include one. Additional features should only be added if required to satisfy the user
requirements, i.e., if a selected navigation system requires a certain dashboard, then the
option for the dashboard has to be included.

Let (ϕPD(t), B, UO, UM) be a consistent configuration task (see Definition 30), i.e., there
exists at least one configuration such that the user requirements UO and UM are satisfied
as well as ϕPD(t). At the beginning of a configuration session the sets UO and UM are
empty, then the minimal configuration of this product type is sought. The problem of
finding a minimal configuration completion of the yet unassigned options can be formu-
lated as a partial unweighted MaxSAT encoding as shown in Algorithm 5.1. The product
description formula ϕPD(t) and all user requirements are added as hard constraints. All
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Algorithm 5.1: Encoding of minimal configuration completion during an interactive
configuration session
Input: Consistent Configuration Task (ϕPD(t), B, UO, UM)
Output: MaxSAT instance (ϕh, ϕs)

1 ϕh ← defCNF(ϕPD(t)), ϕs ← ∅
2 foreach (o, p) ∈ UO do // Add selected options to ϕh
3 if p then ϕh ← ϕh ∪ {o}
4 else ϕh ← ϕh ∪ {¬o}
5 foreach (m, p) ∈ UM do // Add selected parts to ϕh
6 if p then ϕh ← ϕh ∪ defCNF(con(m))
7 else ϕh ← ϕh ∪ defCNF(¬ con(m))

// Add remaining options as negative unit clauses to ϕs
8 foreach o ∈ O(t) \ {o | (o, p) ∈ UO} do
9 ϕs ← ϕs ∪ {¬o}

10 return (ϕh, ϕs)

options o ∈ O(t), except the ones already included or excluded by the user, are added
as negative unit soft clauses.

By encoding the problem as a partial unweighted MaxSAT problem the configuration
with the smallest number of true assigned variables is sought. The same encoding can
be used to solve the less restrictive MaxSS problem, which searches for a local optimum
only.

Example 34. Reconsider the product description of Example 18. Table 3.1 shows all
available groups. Of each exactly one group (engine, gearbox, control unit, dashboard)
we have to include exactly one option. From the optional groups (navigation system,
air conditioner, alarm system, radio) we do not have to include any option. Indeed, no
rule forces us to include any option from an optional group (see Table 3.2). Thus, one
minimal configuration with UO = UM = ∅ is {e1, g1, c1, d1}.

The opposite situation may also occur: A customer wants to know a maximal example
configuration. The encoding for a maximal configuration completion differs only in the
soft clauses: All options o ∈ O(t) are added as positive unit soft clauses.

Optimal Configuration Completion for Test Vehicles

An engineer selects equipment options which have to be included in a test vehicle. In
order to keep costs low, an example configuration should consist of a minimal number
of additional options. Only required options should be added. A minimal configuration
in terms of the number of options may not be the cheapest, since concrete prices are not
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considered but it may give a good suggestion. Considering prices for each option gives
a more precise result but prices may not be known.

A minimal configuration completion of options can help to reduce costs for a test vehicle.
However, the question for the maximal configuration completion of options may also be
interesting for test vehicles. For example, the engineer wants to include a maximal
number of additional options to test the extreme case for a vehicle.

The encoding shown in the previous use case (see Algorithm 5.1) can be applied to this
use case, too.

Optimal Configuration Completion to Support Marketing and Production

Knowledge about the minimal and maximal configuration of equipment options for a
vehicle of a product type is also interesting for analysis purposes in the context of
marketing or the sales-division. For example, by selecting the nation option of Japan, the
minimal (maximal) configuration completion of options shows the minimal (maximal)
setup possible in terms of the number of options for the Japanese market. It may
turn out that a minimal configuration consists which is far larger than expected. Or, a
maximal configuration includes fewer options than planned during development. Such
extreme cases may help the production department for planning the manufacturing
process, too.

The encoding shown in the previous use case (see Algorithm 5.1) can be applied to this
use case, too. Set UO has to be adjusted to match the desired question, e.g., UO may
only contain the nation option of Japan.

Minimal Configuration Completion for Precise Examples of BOM Overlap Errors

After an overlap error has been identified within a structure node of a BOM (see Analy-
sis L1 in Subsection 3.2.2), we want to provide the engineer with an example configura-
tion that triggers the overlap error. A configuration with a minimal number of selected
options is preferable to provide a compact and precise example for the error.

Finding a minimal configuration of the product description which selects two parts, m1
and m2, of the same structure node can be formulated as a partial unweighted MaxSAT
encoding as shown in Algorithm 5.2. The product description formula ϕPD(t) and the
selection constraints of the two material nodes are added as hard constraints. All options
of the two selection constraints are added as negative unit soft clauses.

Observe that the set of soft clauses consists only of the variables of the selection con-
straints of m1 and m2. It is sufficient to minimize these variables because a documen-
tation expert only wants to see the assigned variables belonging to the structure node.
Such a partial variable assignment is easier to understand than a complete assignment.
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Algorithm 5.2: Encoding of minimal configuration completion for a BOM structure
node with overlap error
Input: ϕPD(t) and a structure node N with overlapping material nodes m1 and m2
Output: MaxSAT instance (ϕh, ϕs)

1 ϕh ← defCNF(ϕPD(t)), ϕs ← ∅
2 ϕh ← ϕh ∪ defCNF(con(m1))
3 ϕh ← ϕh ∪ defCNF(con(m2))

// Add variables of the material nodes as negative unit clauses to ϕs
4 foreach o ∈ vars(con(m1)) ∪ vars(con(m2)) do
5 ϕs ← ϕs ∪ {¬o}
6 return (ϕh, ϕs)

However, we could easily adjust the encoding to minimize over all variables in order to
give a complete minimal variable assignment.
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Minimal Configuration Completion for Precise Examples of Incomplete BOM
Structure Nodes

After an incomplete structure node of a BOM has been identified (see Analysis L2 in
Subsection 3.2.2), we want to provide the engineer with an example configuration of the
product description that selects no part of the structure node. A configuration with
a minimal number of selected options is preferable to provide a compact and precise
example that triggers the error.

Finding a minimal configuration of the product description which does not select any
part of an incomplete structure node can be formulated as a partial unweighted MaxSAT
encoding as shown in Algorithm 5.3. The product description formula ϕPD(t) is added
as hard constraint. The negation of each selection constraint of the structure node is
added as hard constraint. All options of the structure node are added as negative soft
unit clauses.

Algorithm 5.3: Encoding of minimal configuration completion for an incomplete
BOM structure node
Input: ϕPD(t) and an incomplete structure node N
Output: MaxSAT instance (ϕh, ϕs)

1 ϕh ← defCNF(ϕPD(t)), ϕs ← ∅
2 foreach m ∈ strNodes(N) do // Add negation of material nodes to ϕh
3 ϕh ← ϕh ∪ defCNF(¬ con(m))

// Add variables of the structure node as negative unit clauses to ϕs
4 foreach o ∈ ⋃m∈strNodes(N) vars(con(m)) do
5 ϕs ← ϕs ∪ {¬o}
6 return (ϕh, ϕs)

As mentioned in the previous use case, the soft clauses contain only variables of the
considered structure node N . Only these variables are relevant in practice for a docu-
mentation expert. But the set of soft clauses could be easily extended to minimize over
all variables of the product description.

Minimal Configuration Completion for Precise Examples of Ambiguous DAS
Assembly Nodes

After an assembly node of a dynamic assembly structure has been identified to be am-
biguous (see Subsection 3.4.2), we want to provide the engineer with two example con-
figurations of the product description that select the same material node of an assembly
node but different material nodes of a child node. A configuration with a minimal num-
ber of selected options is preferable to provide a compact and precise example for the
error.
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We consider a product description formula ϕPD(t) for a product type t ∈ T . Let N
be an ambiguous assembly node with a faulty material node m ∈ matNodes(N). Let
m1 ∈ matNodes(Nc) and m2 ∈ matNodes(Nc) be material nodes of a child node Nc of N
involved in the ambiguous behavior. Then there exists a model for ϕPD(t) ∧ con(m) ∧
con(m1) and ϕPD(t) ∧ con(m) ∧ con(m2), each. Finding a minimal configuration of the
product description that selects m and m1 (resp. m2) can be formulated as a partial
unweighted MaxSAT encoding as shown in Algorithm 5.4.

Algorithm 5.4: Encoding of minimal configuration completion for an ambiguous
DAS assembly node
Input: ϕPD(t) and material nodes m and m1
Output: MaxSAT instance (ϕh, ϕs)

1 ϕh ← defCNF(ϕPD(t)), ϕs ← ∅
2 ϕh ← ϕh ∪ defCNF(con(m))
3 ϕh ← ϕh ∪ defCNF(con(m1))
4 foreach o ∈ vars(con(m)) ∪ vars(con(m1)) do
5 ϕs ← ϕs ∪ {¬o}
6 return (ϕh, ϕs)

As mentioned in the previous use case, the soft clauses contain only variables of the
considered material nodes m and m1 (resp. m2). Only these variables of the complete
variable assignment are relevant in practice for a documentation expert. But set of soft
clauses could be easily extended to minimize all variables of the product description.

Enumeration of the Next k Optimal Configuration Completions

In order to provide alternative optimal configuration completions, as described in the
previous use cases, we can compute the next k optimal configurations in descending
order. The number k can be small compared to the number of all existing configurations,
e.g., we can compute the k = 10 best configurations during an interactive configuration
session for a customer to provide a set of alternative optimal configuration completions.

For example, a configuration tool could provide a next functionality to step through the
optimal example configurations. The encoding of blocking constraints can be defined on
different levels, e.g., blocking only the last found model or blocking the MaxSAT result.
See Subsection 4.2.3 for different types of blocking constraints.

5.1.2 Experimental Evaluation

In this subsection we evaluate different optimization approaches for the problem of
finding an optimal configuration completion, either minimal or maximal.
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For our evaluation we consider 7 different product types (M1.1, M1.2, M2.1, M2.2, M2.3,
M2.4, M2.5) from two German car manufacturers. These product types are the same
that we used in the experimental evaluations of interactive automotive configuration in
Section 3.3. Table 3.4 shows complexity statistics for each product type.

For each product type t, we randomly create a set of selected options S ⊆ O(t) such that
S is consistent with the product description formula ϕPD(t). We increase the cardinality
of S to simulate different levels of the configuration process. By 0 selected options
we consider the case that no requirements were given, e.g., a user is about to begin
to configure a vehicle. For our benchmark we randomly create a consistent set S and
increase the number of selected options each time by 10 additional options up to 100.
For every stage of selected options, we create 3 instances. Table 5.2 summarizes the
benchmark setup.

Table 5.2: Optimal configuration completion benchmark setup
Type Selection Cardinality

Consistent S ⊆ O(t) |S| = 10, 20, . . . , 100

The optimization task is to find a minimal (resp. maximal) completion of options for
set S, i.e., to find a satisfying assignment such that the number of the remaining options
to include is minimal (resp. maximal). Algorithm 5.1 shows the MaxSAT encoding to
compute the minimal completion. The maximal completion can be achieved by the same
encoding, but adding options as positive soft unit clauses instead of negative soft unit
clauses.

For the product types M1.1 and M1.2 (see Table 3.4) we had to encode the problem
slightly differently: For these product types every option belongs to a group from which
exactly one option has to be selected (cf. Definition 24). Therefore, each satisfying
assignment of a configuration task has always the same number of positively assigned
variables, i.e., the number of groups. There exist special options indicating the absence
of a feature, i.e., there is an option for a trailer hitch and another option indicating there
is no trailer hitch. In order to find a minimal (resp. maximal) configuration completion
we maximize (resp. minimize) the number of those special options, i.e., the soft clauses
consist of the negation of those special options. For product type M1.1 we identified 71
and for product type M1.2 we identified 65 of those special options.

A MaxSAT problem, as stated above, can be interpreted as a PBO problem as well as
an ILP problem (cf. Section 4.6 and Section 4.7). Thus, we can evaluate our instances
on a full range of optimization solvers from different domains. Moreover, a MaxSAT
problem can be interpreted as a MinCS problem. The solution of a MinCS solver is a
local minimum compared to the result of a MaxSAT solver (cf. Section 4.4). We also
evaluate MinCS solvers and compare the quality of the result compared to the exact
result. The solvers we evaluate are the following:
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a) (MinCS) CDCL-based: Own implementation of the CDCL-based approach [Bac-
chus et al., 2014] (see Subsection 4.1.3) by using a modified AutoLib version
(see Section 2.2). Our pre-evaluations showed that this CDCL-based MinCS solver
is very fast on our instances and solves almost every instance within milliseconds.
Thus, we decided to evaluate only this MinCS solver.

b) (MaxSAT) OpenWBO: The open source framework OpenWBO of [Martins
et al., 2014b] includes a whole set of different MaxSAT solvers. As underlying SAT
solver different versions of MiniSAT solvers are available. We used the version
1.3.0 (January 2, 2015)1 and MiniSAT 2.2 [Eén and Sörensson, 2004] as underlying
SAT solver for a reasonable comparison. The framework is highly configurable. We
pre-selected four solvers which were the best in our pre-evaluations:

a) Default Configuration: The default configuration of the OpenWBO frame-
work uses the WMSU1 algorithm [Ansótegui et al., 2009, Manquinho et al.,
2009].

b) Linear Search – Satisfiable-Unsatisfiable: Linear search (cf. Algorithm 4.4)
with successful SAT calls except for the last one.

c) Linear Search – Unsatisfiable-Satisfiable: Linear search with unsuccessful
SAT calls except for the last one.

d) MSU3: MaxSAT solver MSU3 [Marques-Silva and Planes, 2007] is an im-
proved version of the original unsatisfiable core based Fu & Malik algo-
rithm [Fu and Malik, 2006]. MSU3 avoids the addition of multiple block-
ing variables to the same clauses by adding blocking variables only on de-
mand. Thus, the search space is reduced. Moreover, an initial lower bound
is retrieved by extracting an initial set of unsatisfiable cores first. The Open-
WBO implementation uses different encoding schemes for the cardinality con-
straints. We use the iterative encoding scheme [Martins et al., 2014a] which
augments the cardinality constraint encoding such that the encoding does not
have to be rebuilt in each iteration.

c) (MaxSAT) msuncore2: An unsatisfiable core-guided approach with iterative
SAT calls using a reduced number of blocking variables. The solver suite includes
different solver versions and is based on PicoSAT [Biere, 2008]. We evaluate
multiple releases: release 1.0 [Fu and Malik, 2006], release 1.1 [Marques-Silva and
Planes, 2007, Manquinho et al., 2009], release 1.2 [Marques-Silva and Manquinho,
2008, Manquinho et al., 2009], release 3.0 [Marques-Silva and Planes, 2007], re-
lease 4.0 [Marques-Silva and Planes, 2008] and binary search based versions [Heras
et al., 2011, Morgado et al., 2012].

1OpenWBO is available at: http://sat.inesc-id.pt/open-wbo
2msuncore is available at: http://logos.ucd.ie/web/doku.php?id=msuncore
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d) (MaxSAT) mscg3: Solver mscg [Morgado et al., 2014b] consists of several differ-
ent MaxSAT algorithms, different cardinality encodings and an interface to plug
in an external SAT solver like MiniSAT. Depending on the MaxSAT problem (un-
weighted or weighted; partial or non-partial) the solver picks one configuration
to solve the instance. The binaries of solver mscg are available in three versions:
mscg, mscg15a and mscg15b. Pre-evaluations have shown that version mscg15b
performs best on our instances. Thus, we focus on version mscg15b in the follow-
ing evaluation. Version mscg15b is based on the incremental version of the OLL
algorithm [Andres et al., 2012, Morgado et al., 2014a], uses the iterative version of
the totalizer encoding [Martins et al., 2014a] for cardinality constraints and uses
Glucose 3.04 as underlying SAT solver.

e) (MaxSAT) eva500a: Solver eva500a5 [Narodytska and Bacchus, 2014] is a
MaxSAT solver based on iteratively calling an underlying SAT solver and exploit-
ing the unsatisfiable core if the formula is unsatisfiable. But instead of restricting
the blocking variables as in the WPM1 algorithm [Ansótegui et al., 2009] a com-
pact version of MaxSAT resolution is used. This approach was the best overall
solver in the industrial category of the MaxSAT competition in 20146 and is based
on Glucose [Audemard et al., 2013], a variant of MiniSAT [Eén and Sörensson,
2004].

f) (PBO) SAT4J7: SAT4J is an open source pseudo-Boolean Optimizer Framework
in Java [Le Berre and Parrain, 2010]. We use the PBO solver of SAT4J which is
based on a linear search. SAT4J offers various decision engines to choose from,
differing in heuristics and allowed constraint types. Our pre-evaluations showed
that solver CompetPBCPMixedConstraintsLongMinObjective performed best on
our instance. Thus, for the evaluations of this work we use this solver and refer to
it as SAT4J.

g) (ILP) CPLEX: Commercial ILP solver, see Section 4.7. We use version 12.7.1

h) (ILP) Gurobi: Commercial ILP solver, see Section 4.7. We use version 7.0.2.

The solvers run either under Windows (CDCL-based, SAT4J, CPLEX, Gurobi) or
Linux (OpenWBO, msuncore, eva500a). All experiments in this subsection were run
on the following settings: Intel(R) Core(TM) i7-5600 CPU with 2.6GHz and 8 GB
main memory running Microsoft Windows 7 Professional 64 Bit with SP1 resp. Linux
Ubuntu 12.04.5 64 Bit. The timeout limit for each instance is 180 seconds (3 minutes).
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Figure 5.1: Running times for minimal completion of options

Minimal Configuration Completion of Options

Figure 5.1 shows the running times for computing the minimal completion dependent on
the number of selected options. The x-axis shows the cardinality of the set S of selected
options. For each cardinality of S the y-axis shows the average running time in seconds
of the three instances solved. For simplicity, the diagram shows only the best solvers.
Solvers not shown in the result plot exceed the timeout limit multiple times and/or have
much higher running times.

Our evaluations show that most solvers find a minimal completion of options within
a second. We observe that the instances without selected options, |S| = 0, require
significantly higher running times. These instances are expected to be more complex,
since no restrictions to the search space are made. For these instances, some solvers
require up to 3 seconds of running time on average. SAT4J requires up to 11.72 seconds
for these instances on average which is noticeably higher than the other solvers. The
most robust solvers, which do not exceed one second on average for all instances, are
the CDCL-based MinCS solver, OpenWBO, OpenWBO MSU3, msuncore 1.1, mscg15b,
eva500a. Solvers CDCL-based, Gurobi and OpenWBO LS-US are also quite robust, they

3mscg is available at: http://core.di.fc.ul.pt/wiki/doku.php?id=mscg
4Glucose homepage: http://www.labri.fr/perso/lsimon/glucose/
5eva500a is available at: http://www.maxsat.udl.cat/14/solvers/
6MaxSAT Competition 2014: http://www.maxsat.udl.cat/14/results/index.html
7SAT4J homepage: http://www.sat4j.org/
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require up to 3 seconds for the first instances on average and less than one second for
the remaining instances on average. Solvers SAT4J and msuncore 1.1 each exceeded the
timeout limit for one instance with |S| = 0.
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Figure 5.2: Cactus plot for minimal completion of options. Plot is zoomed into the
range [200, 217]

The cactus plot8 of Figure 5.2 shows the running times for computing the minimal
completion. The x-axis shows the number of instances, the y-axis shows the running
time in seconds. For simplicity, the diagram shows only the best 10 solvers.

The cactus plot shows that the CDCL-based MinCS solver, OpenWBO MSU3 and
mscg15b solve all instances in less than one second and show to be the most robust
solvers. Solver eva500a requires up to 1.5 seconds for two instances and less than one
second for the remaining instances. Solvers OpenWBO, OpenWBO LS-US, CPLEX and
Gurobi require a noticeably higher running time (up to 15.8 seconds) for one instance,
most of the remaining instances, however, can be solved within 1.5 seconds. SAT4J
requires quite high running times for about 10 instances. SAT4J requires 37,05 seconds
for the longest running instance.

Figure 5.3 shows a comparison of the result quality between the global optimum and
the local optimum. Solvers for MaxSAT, PBO and ILP compute the global optimum,
i.e., the number of added options is minimal in terms of cardinality. In contrast, MinCS

8For a cactus plot the instances are sorted by increasing running times for each solver which allows
two aspects to compare between the solvers: (i) number of solved instances and (ii) number of long
running instances.

167



5 SAT-based Optimization in Automotive Configuration

0 10 20 30 40 50 60 70 80 90 10020

30

40

50

# selected options

M
in
FA

LS
E CDCL-based

exact

Figure 5.3: Comparison between exact result and MinCS result for minimal completion
of options

solvers compute a local optimum, i.e., the number of added options is minimal in terms
of set inclusion. The x-axis shows the cardinality of the set S of selected options. For
each cardinality of S the y-axis shows the MinFALSE result.

The comparison shows that the MinFALSE results of the CDCL-based MinCS solver are
quite close to the exact results, i.e., less than two options distance on average, except for
instances with |S| = 0. Thus, the number of added options of the CDCL-based result
is close to the smallest number possible. The distance for instances with |S| = 0 is 7.86
on average.

Maximal Configuration Completion of Options

Figure 5.4 shows the running times for computing the maximal completion dependent
on the number of selected options. The x-axis shows the cardinality of the set S of
selected options. For each cardinality of S the y-axis shows the average running time in
seconds of the three instances solved. For simplicity, the diagram shows only the best
solvers. Solvers not shown in the result plot exceed the timeout limit multiple times
and/or have much higher running times.

Our evaluations show that most solvers find a maximal completion of options in less
than two seconds for all instances, except for instances with |S| = 0. These instances
were expected to be more complex, since no restrictions to the search space are made.
For these instances, solvers CDCL-based, mscg15b, CDCL-based and Gurobi are able
to solve them in less than 2.5 seconds on average. We observe that the CDCL-based
MinCS solver has the best running times, all instances are solved in less than 0.5 seconds
on average. On Instances with |S| = 0 solver OpenWBO has four timeouts and solver
OpenWBO LS-US has three timeouts.

The cactus plot of Figure 5.5 shows the running times for computing the maximal
completion. The x-axis shows the number of instances, the y-axis shows the running
time in seconds.

168



0 10 20 30 40 50 60 70 80 90 1000

1

2

3

4

5

6

7

8

# selected options

tim
e
(s
)

CDCL-based
OpenWBO
OpenWBO LS-SU
OpenWBO LS-US
mscg15b
eva500a
CPLEX
Gurobi

Figure 5.4: Running times for maximal completion of options

The cactus plot shows that the CDCL-based MinCS solver is the most robust one and
solves all instances within 0.5 seconds. Solvers mscg15b, CDCL-based and Gurobi show
similar behavior. These three solvers require up to 5 seconds for three instances, but
solve all other instances in less than 2 seconds. Solver eva500b has no timeouts but
requires up to 20.28 seconds for a few instances.

Figure 5.6 shows a comparison of the result quality between the global optimum and
the local optimum. Solvers for MaxSAT, PBO and ILP compute the global optimum,
i.e., the number of added options is minimal in terms of cardinality. In contrast, MinCS
solvers compute a local optimum, i.e., the number of added options is minimal in terms
of set inclusion. The x-axis shows the cardinality of the set S of selected options. For
each cardinality of S the y-axis shows the MinFALSE result.

The comparison shows that the MinFALSE results of the CDCL-based MinCS solver are
quite close to the exact results, i.e., less than five options distance on average, except for
instances with |S| = 0. Thus, the number of added options of the CDCL-based result is
close to the largest number possible. The distance for instances with |S| = 0 is 41.72 on
average. The quality for these instances is quite poor compared to the instances with
|S| ≥ 10.
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Figure 5.5: Cactus plot for maximal completion of options. Plot is zoomed into the
range [200, 217]
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Figure 5.6: Comparison between exact result and MinCS result for maximal completion
of options
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5.1.3 Conclusion

In this section we described use cases from automotive configuration concerning the
minimal and maximal completion of options for a given set of requirements. We described
how each use case can be encoded as a MaxSAT problem.

We evaluated the performance of various optimization solvers from different domains
(MinCS, MaxSAT, PBO, ILP) on benchmarks based on real instances from two German
premium car manufacturers. We evaluated both scenarios, the minimal and the maximal
completion of options for a given set of requirements.

Our evaluations show that the task of finding a minimal configuration completion is
quite easy for most of the solvers. No best solver can be identified for this category.
Solvers OpenWBO, OpenWBO MSU3, msuncore 1.1, eva500a, msch15b, eva500a require
less than a second on average. The cactus plot shows that solvers OpenWBO MSU3,
eva500a, CDCL-based, mscg15b are the most robust ones. These solvers solve every
instance in less than 1.5 seconds.The CDCL-based MinCS solver delivers results almost
as good as the exact results, except for instances without selected options.

Solving the task of finding a maximal configuration configuration completion is observed
to be a more difficult task. Solvers CDCL-based, mscg15b, CDCL-based and Gurobi find
a solution for each instance in less than 2.5 seconds on average. The cactus plot shows
that all these four solvers are quite robust by solving all instances within 2 seconds,
except for three instance for which they require up to 5 seconds. CDCL-based MinCS
solver does deliver results almost as good as the exact results, except for instances
without selected options.

5.2 Optimal Weighted Configuration

In this section we identify and describe several use cases from automotive configuration
where an optimal weighted configuration is required. Afterwards we show how optimal
weighted configuration problems can be encoded to be solved by optimization approaches
described in Chapter 3. In Subsection 5.2.1 we describe use cases of optimal weighted
configuration of options and parts. In Subsection 5.2.2 we evaluate different optimization
approaches based on real benchmarks from automotive configuration. Subsection 5.2.3
concludes this section.

For a consistent configuration task (see Definition 30) we want to find an optimal solution
which, in addition to the previous section, includes weights or preferences assigned to
the equipment options. For example, a customer selects a few consistent options and
would like to know a minimal weighted configuration in terms of prices, i.e., the cheapest
configuration that includes the user requirements. Another example is the computation
of the lightest or heaviest car. Each part has a weight and we want to know the vehicle
with the minimal and maximal sum of weights.
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5.2.1 Use Cases & Encodings

We identify and describe the following use cases in the context of automotive configu-
ration which ask for an optimal weighted configuration of options (resp. parts), either
minimal or maximal. For each use case we describe how the problem can be encoded
as a partial weighted MaxSAT problem or, if suitable, as preferred minimal diagnosis
problem. Any MaxSAT problem can be interpreted as a PBO problem as well as an ILP
problem (cf. Section 4.6 and Section 4.7).

Lightest and Heaviest Vehicle Configuration

To know the lightest and heaviest vehicle is important for several reasons. For example,
there are maximal permissible values for the carbon dioxide emissions. For each engine
and market, car manufacturers have to declare their maximal carbon dioxide emissions.
The weight of a vehicle is directly related to the carbon dioxide emissions. The heavier
a vehicle is the more the carbon dioxide emissions. One can measure the weight of each
vehicle when it is already built up, but often knowledge about the minimal and maximal
possible weight has to be known in pre-production state. Weights may be assigned
to options or parts. We describe how both variants can be formulated as a MaxSAT
problem.

First, we consider the case that weights are assigned to options, i.e., each option is asso-
ciated with a non-negative natural number. The problem of finding the lightest vehicle
can be formulated as a partial weighted MaxSAT encoding as shown in Algorithm 5.1.
In addition to Algorithm 5.1 we have to assign each option a weight. By encoding the
problem as a partial weighted MaxSAT problem the configuration with the minimal sum
of weights of true assigned variables is sought. In contrast, to compute the heaviest ve-
hicle, we have to flip the phase of the literals of the soft unit clauses. Then the maximal
sum of weights of true assigned variables is sought.

Next, we consider the case that weights are assigned to parts, i.e., each material node is
associated with a non-negative natural number. In contrast to weighted options, each
material node has a selection constraint, which is an arbitrary Boolean formula. Thus,
we cannot simply create a soft clause for it, but have to introduce additional selection
variables for each material node (see Remark 1). The selector variable is added as
unit soft clause associated with the weight of the material node.The selector variable is
assigned to true if and only if the material node constraint evaluates to true.

The problem of finding the lightest vehicle can be formulated as a partial weighted
MaxSAT encoding as shown in Algorithm 5.5. The product description formula ϕPD(t)
is added as hard constraint. Each selected option is added as hard constraint. Each
selected part is added as hard constraint. Each remaining part is encoded (cf. Remark 1)
and the negation of the selector variable is added as soft constraint.
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By encoding the problem as a partial weighted MaxSAT problem the configuration with
the minimal sum of weights of true assigned variables is sought. In contrast, to compute
the heaviest vehicle, we have to flip the phase of the literals of the soft unit clauses. Then
the maximal sum of weights of true assigned variables is sought.

Algorithm 5.5: Encoding of the lightest vehicle for weighted parts
Input: Consistent Configuration Task (ϕPD(t), B, UO, UM)
Output: MaxSAT instance (ϕh, ϕs)

1 ϕh ← defCNF(ϕPD(t)), ϕs ← ∅
2 foreach (o, p) ∈ UO do // Add selected options to ϕh
3 if p then ϕh ← ϕh ∪ {o}
4 else ϕh ← ϕh ∪ {¬o}
5 foreach (m, p) ∈ UM do // Add selected parts to ϕh
6 if p then ϕh ← ϕh ∪ defCNF(con(m))
7 else ϕh ← ϕh ∪ defCNF(¬ con(m))

// Build encoding for each part and add its selector variable to ϕs
8 foreach m ∈ matNodes(B) \ {m | (m, p) ∈ UM} do
9 s← fresh selector variable

10 ϕh ← ϕh ∪ defCNF(s↔ con(m))
11 ϕs ← ϕs ∪ {¬s}
12 return (ϕh, ϕs)

The algorithm can be further improved in two ways:

• There exist duplicate selection constraints for many material nodes. We can im-
prove the encoding by introducing only one selector variable for a set of material
nodes with the identical selection constraint. The weight associated with this se-
lector variable is the sum of weights of the material nodes. Thus, whenever the
selector variable is true, all corresponding parts are selected and the weight of all
these parts is taken into account.

• When we search for the lightest car it is only necessary to ensure that, whenever
variable s is assigned to false the corresponding constraint evaluates to false.
Thus, we can save clauses by replacing the biimplication s ↔ con(m) by the
implication ¬s → ¬ con(m). For the search of the heaviest car, the implication
s→ con(m) is sufficient.

Note that instead of kilogram weights we can use any other metric such as prices or
carbon dioxide emissions to compute the minimal or maximal configuration regarding
our assigned values. For example, by assigning prices to each part (Euro) we can compute
the cheapest and most expensive car configuration with an auto transmission for the
Italian market .
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Optimal Weighted Configuration for Test Vehicles

An engineer selects equipment options which have to be included in a test vehicle.
In order to keep costs low, an example configuration should consist of the cheapest
completion of additional options. By assigning a price to each option, we want to know
an example configuration such that the sum of prices of added options is minimal. Such
a minimal weighted configuration helps to reduce test vehicle costs. Alternatively, prices
can be assigned to parts. Then we search for the minimal sum of prices of parts.

Moreover, the computation of minimal or maximal weighted configurations can help
create test vehicles to test extreme cases. For example, testing the lightest or heaviest
vehicle for a given engine and gearbox combination.

The encoding described in Use Case Lightest and Heaviest Vehicle Configuration
can be applied to this use case, too.

Optimal Weighted Configuration to Support Marketing and Production

Knowledge about the minimal or maximal weighted configuration of a product type is
also interesting for analysis purposes in the context of marketing or the sales-division.
For example, by selecting the nation option of Japan and assigning prices to the options,
the minimal (maximal) weighted configuration of options represents the cheapest (most
expensive) vehicle possible for the Japanese market. Or, assigning weights (kg) to the
parts, the minimal (maximal) weighted configuration of parts represents the lightest
(heaviest) vehicle for the Japanese market. Such extreme cases may help the production
department for planning the manufacturing process, too.

The encoding described in Use Case Lightest and Heaviest Vehicle Configuration
can be applied to this use case, too.

Optimal Weighted Configuration During an Interactive Configuration Session

During an interactive configuration session of a vehicle (cf. Section 3.3), a customer
makes selections of equipment options, forming the user requirements. Customer se-
lections which are consistent with the product description have to be extended to a
complete configuration which is consistent.

As described in Subsection 5.1.1 a configuration with a minimal number of selected
options provides a compact and precise complete example configuration. An alternative
way of providing a valuable example configuration is to associate the variables of the
structure node with priorities in order to find an example which is of high priority. Or,
for example, associate the remaining options with weights in order to find the lightest
or heaviest vehicle if desired. Other kinds of weights are imaginable, like prices.
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The problem of finding an example configuration with the maximal priority can be
encoded in a similar way as shown in Algorithm 5.1. But instead of adding the options
as negative soft unit clauses, we add each option as a positive soft unit clause with its
associated priority.

Optimal Weighted Configuration for Precise Examples of BOM Overlap Errors

After an overlap error has been identified within a structure node of a BOM (see Anal-
ysis L1 in Subsection 3.2.2), we want to provide the engineer with an example configu-
ration that triggers the overlap error.

As described in Subsection 5.1.1 a configuration with a minimal number of selected
options provides a compact and precise example for the error. An alternative way of
providing a valuable example configuration is to associate the variables of the structure
node with priorities in order to find an example which is of high priority.

The problem of finding an example configuration with the maximal priority can be
encoded similar as shown in Algorithm 5.2. But instead of adding the options as negative
soft unit clauses, we add each option as positive soft unit clause with its associated
priority.

Optimal Weighted Configuration for Precise Examples of Incomplete BOM
Structure Nodes

After an incomplete structure node of a BOM has been identified (see Analysis L2 in
Subsection 3.2.2), we want to provide the engineer with an example configuration of the
product description that selects no part of the structure node.

As described in Subsection 5.1.1 a configuration with a minimal number of selected
options provides a compact and precise example that triggers the error. An alternative
way of providing a valuable example configuration is to associate the variables of the
structure node with priorities in order to find an example which is of high priority.

The problem of finding an example configuration with the maximal priority can be
encoded similar as shown in Algorithm 5.3. But instead of adding the options as negative
soft unit clauses, we add each option as positive soft unit clause with its associated
priority.
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Optimal Weighted Configuration for Precise Examples of Ambiguous DAS
Assembly Nodes

After an assembly node of a dynamic assembly structure has been identified to be am-
biguous (see Subsection 3.4.2), we want to provide the engineer with two example con-
figurations of the product description that select the same material node of an assembly
node but different material nodes of a child node.

As described in Subsection 5.1.1 a configuration with a minimal number of selected
options provides a compact and precise example that triggers the error. An alternative
way of providing a valuable example configuration is to associate the variables of the
structure node with priorities in order to find an example which is of high priority.

The problem of finding an example configuration with the maximal priority can be
encoded similar as shown in Algorithm 5.4. But instead of adding the options as negative
soft unit clauses, we add each option as positive soft unit clause with its associated
priority.

Cable Assemblies with Maximal Diameter

In the context of automotive wiring it is important to know the minimal and maximal
diameter that a wiring harness can have. Wiring occurs in different places, such as the
engine compartment, the roof or the doors. A wiring harness is divided into smaller
segments. It has to be ensured that enough space is reserved for each wiring harness
and each segment, otherwise problems during production may occur.

Each wire has a diameter given in millimeters and is documented within a module. A
module is documented as a material node within the bill of materials. Each module
is associated with the diameter of the wires it contains. The problem of finding the
maximal (resp. minimal) diameter for a segment can then be formulated as a MaxSAT
problem as shown in Algorithm 5.5 with the restriction that we optimize over the set of
module parts only.

Note that the MaxSAT solution is only an approximation since it searches for a vehicle
configuration with the maximum (resp. minimum) sum of diameters. However, the
real diameter of the found vehicle is not the sum of the diameters of the modules but
corresponds to solving the packing problem for circles with different radii in a circle.

For further reading, Constantin Bär investigated the problem of finding the maximal
wiring harness diameter for the Daimler AG [Bär, 2015]. Bär used MaxSAT as solving
technique.
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Enumeration of the Next k Optimal Weighted Configurations

In order to provide alternative optimal weighted configurations, as described in the previ-
ous use cases, we can compute the next k optimal weighted configurations in descending
order. The number k can be small compared to the number of all existing configurations,
e.g., we can compute the k = 10 best configurations during an interactive configuration
session for a customer to provide a set of alternative optimal weighted configurations.

For example, a configuration tool could provide a next functionality to step through the
optimal weighted configurations. The encoding of blocking constraints can be defined on
different levels, e.g., blocking only the last found model or blocking the MaxSAT result.
See Subsection 4.2.3 for different types of blocking constraints.

5.2.2 Experimental Evaluation

In this subsection we evaluate different optimization approaches for the problem of
optimal weighted configuration, either minimal or maximal.

Optimal Weighted Configuration of Options

For our evaluation we consider 7 different product types (M1.1, M1.2, M2.1, M2.2, M2.3,
M2.4, M2.5) from two German car manufacturers. These product types are the same
that we used in the experimental evaluations of interactive automotive configuration in
Section 3.3. Table 5.3 shows complexity statistics for each product type.

For each product type t, we randomly create a set of selected options S ⊆ O(t). More-
over, we randomly create weights for each option in S. The weights are within the range
of 1 and 1000. We increase the cardinality of S to increase the complexity of the config-
uration task. For our benchmark we increase the number of selected options each time
by 10 additional options up to |O(t)|. For every stage of selected options, we create 3
instances. Table 5.2 summarizes the benchmark setup.

Table 5.3: Optimal weighted configuration of options benchmark setup
Type Selection Weights Cardinality

Inconsistent S ⊆ O(t) 1, . . . , 1,000 |S| = 10, 20, . . . , |O(t)|

The optimization task is to find a minimal (resp. maximal) weighted configuration, i.e.,
find a satisfying assignment for ϕPD(t) that minimizes (resp. maximizes) the sum of
weights for S. The problem of finding the lightest vehicle can be formulated as a partial
weighted MaxSAT encoding as shown in Algorithm 5.1. In addition to Algorithm 5.1
we have to assign each option a weight. The maximal weighted configuration can be
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achieved by the same encoding, but adding options as positive soft unit clauses instead
of negative soft unit clauses.

A MaxSAT problem, as stated above, can be interpreted as a PBO problem as well as
an ILP problem (cf. Section 4.6 and Section 4.7). Thus, we can evaluate our instances
on a full range of optimization solvers from different domains.

The solvers we evaluate in this section are the same as previously described in Subsec-
tion 5.1.2. The operating system setup, including the timeout limit of 180 seconds (3
minutes), is also the same.
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Figure 5.7: Running times for minimal weighted configuration of options

Figure 5.7 shows the running times for computing the minimal weighted configuration
dependent on the number of selected options. The x-axis shows the cardinality of the
set S of selected options. For each cardinality of S the y-axis shows the average running
time in seconds of the three instances. For simplicity, the diagram shows only the best
solvers. Solvers not shown in the result plot exceed the timeout limit multiple times
and/or have much higher running times.

Our evaluations show that solver mscg15 is the best performing solver by solving all
instances in less than 0.5 seconds on average. Both ILP solvers, CPLEX and Gurobi,
have average running times within 2 seconds for selections up to |S| = 620 and running
times under 4.5 seconds for the remaining instances. Solver eva500a has average running
times within 2.2 seconds for selections up to |S| = 670. However for selections greater
than 670 the average running times of solver eva500a are increasing significantly to
nearly 12 seconds. PBO solver SAT4J has average running times within 2.1 seconds for
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selections up to |S| = 560. From then on the running times increase heavily. SAT4J
cannot solve instances for selections higher than |S| = 620 within the timeout limit.
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Figure 5.8: Cactus plot for minimal weighted configuration of options. Plot is zoomed
into the range [1792, 1812]

The cactus plot of Figure 5.8 shows the running times for computing the minimal
weighted configuration. The x-axis shows the number of instances, the y-axis shows
the running time in seconds.

From the cactus plot we observe that solvers mscg15b, CPLEX and Gurobi are robust,
they solve all instances within 10 seconds. Solver mscg15b even solves all instances within
0.39 seconds. Solver eva500b has 2 long running instances, all remaining instances are
solved within 2.42 seconds. SAT4J is not shown in the zoomed area of the cactus plot,
since SAT4J is only able to solve 1264 out of 1812 instances.

Figure 5.9 shows the running times for computing the maximal weighted configuration
dependent on the number of selected options. The x-axis shows the cardinality of the
set S of selected options. For each cardinality of S the y-axis shows the average running
time in seconds of the three instances. For simplicity, the diagram shows only the best
solvers. Solvers not shown in the result plot exceed the timeout limit multiple times
and/or have much higher running times.

Our evaluations show that solvers CPLEX and Gurobi are able to solve all instances.
Gurobi is able to solve all instances within 3.53 seconds on average. CPLEX performs
slightly worse for instances with |S| > 1000. Solver mscg15b is able to solve instances
up to |S| = 690. The running times of mscg15b are slightly better than the running
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Figure 5.9: Running times for maximal weighted configuration of options

times of CPLEX for instances with |S| ≤ 300. However, for instances with |S| > 300
the running times of mscg15b increase rapidly. Solver eva500a performs similarly well
as mscg15b for instances with |S| ≤ 100. For instances |S| > 100 the running times for
solver eva500a increase rapidly.

The cactus plot of Figure 5.10 shows the running times for computing the maximal
weighted configuration. The x-axis shows the number of instances, the y-axis shows the
running time in seconds.

The cactus plot shows that both ILP solvers, CPLEX and Gurobi, are similarly robust.
Both solvers have no timeouts and solve about 1,700 instances in under 6 seconds. The
remaining 112 instances are solved within 11 seconds. For readability reasons we left
solvers mscg15b and eva500a out of this figure. Solver mscg15b is able to solve 1,399
instances. Solver eva500a is able to solve 524 instances.
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Figure 5.10: Cactus plot for maximal weighted configuration of options. Plot is zoomed
into the range [1412, 1812]

Optimal Weighted Configuration of Parts

For our evaluation we consider 7 different product types (M1.1, M1.2, M2.1, M2.2, M2.3,
M2.4, M2.5) from two German car manufacturers. These product types are the same
that we used in the experimental evaluations of interactive automotive configuration in
Section 3.3. Table 5.3 shows complexity statistics for each product type.

For each product type t, we randomly create a set of material nodes S ⊆ matNodes(B)
of the bill of materials B. Moreover, we randomly create weights for each part in S. The
weights are within the range of 1 and 1000. We increase the cardinality of S to increase
the complexity of the configuration task. For our benchmark we increase the number of
selected parts each time by 100 additional parts up to |matnodes(B)|. For every stage
of selected parts, we create 3 instances. Table 5.4 summarizes the benchmark setup.

Table 5.4: Optimal weighted configuration of parts benchmark setup
Type Selection Weights Cardinality

Inconsistent S ⊆ matNodes(B) 1, . . . , 1,000 |S| = 100, 200, . . . , | matNodes(B)|

The optimization task is to find a minimal (resp. maximal) weighted configuration, i.e.,
find a satisfying assignment for ϕPD(t) that minimizes (resp. maximizes) the sum of
weights for S. Algorithm 5.5 shows the MaxSAT encoding to find the minimal weighted
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configuration. The maximal weighted configuration can be achieved by the same encod-
ing, but adding the selector variables as positive soft unit clauses instead of negative
soft unit clauses.

A MaxSAT problem, as stated above, can be interpreted as a PBO problem as well as
an ILP problem (cf. Section 4.6 and Section 4.7). Thus, we can evaluate our instances
on a full range of optimization solvers from different domains.

The solvers we evaluate in this section are the same as previously described in Subsec-
tion 5.1.2. The operating system setup, including the timeout limit of 180 seconds (3
minutes), is also the same as described previously.
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Figure 5.11: Running times for minimal weighted configuration of parts

Figure 5.11 shows the running times for computing the minimal weighted configuration
dependent on the number of selected options. The x-axis shows the cardinality of the
set S of selected options. For each cardinality of S the y-axis shows the average running
time in seconds of the three instances. For simplicity, the diagram shows only the best
solvers. Solvers not shown in the result plot exceed the timeout limit multiple times
and/or have much higher running times.

Our evaluations show that the four solvers CPLEX, Gurobi, mscg15b and eva500a are
the best performing ones for this benchmark. Gurobi is able to solve instances up to
|S| = 1, 900. Solvers CPLEX and eva500a are able to solve instances up to |S| = 1, 400
and mscg15b is able to solve instances up to |S| = 1, 300. The bills of materials that
were available to us contain up to 11,400 parts with different selection formula. All
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other evaluated solvers suffered several timeouts and could not compete with these four
solvers.
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Figure 5.12: Cactus plot for minimal weighted configuration of parts. Plot is zoomed
into the range [150, 1347]

The cactus plot of Figure 5.12 shows the running times for computing the minimal
weighted configuration. The x-axis shows the number of instances, the y-axis shows the
running time in seconds.

The cactus plot shows that the four solvers CPLEX, Gurobi, mscg15b and eva500a are
able to solve only a portion of the 1,347 instances within the timeout limit. Gurobi is
able to solve the most instances (417 instances). Solvers CPLEX and eva500a are able
to solve around 300 instances. Solver mscg15b is able to solve around 260 instances.

Figure 5.13 shows the running times for computing the maximal weighted configuration
dependent on the number of selected options. The x-axis shows the cardinality of the
set S of selected options. For each cardinality of S the y-axis shows the average running
time in seconds of the three instances. For simplicity, the diagram shows only the best
solvers. Solvers not shown in the result plot exceed the timeout limit multiple times
and/or have much higher running times.

Our evaluations show that the four solvers CPLEX, Gurobi, mscg15b and eva500a are
the best performing ones for this benchmark. CPLEX and Gurobi are able to solve
instances up to |S| = 500. Solver mscg15b is able to solve instances up to |S| = 400.
The bills of materials that were available to us contain up to 11,400 parts with different
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Figure 5.13: Running times for maximal weighted configuration of parts

selection formula. All other evaluated solvers suffered several timeouts and could not
compete with these four solvers.

The cactus plot of Figure 5.14 shows the running times for computing the maximal
weighted configuration. The x-axis shows the number of instances, the y-axis shows the
running time in seconds.

The cactus plot shows that the four solvers CPLEX, Gurobi and mscg15b are able to
solve only a portion of the 1,347 instances within the timeout limit. CPLEX and Gurobi
are able to solve the most instances (arond 120 instances). Solver mscg15b is able to
solve 60 instances.
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Figure 5.14: Cactus plot for maximal weighted configuration of parts.

5.2.3 Conclusion

In this section we described use cases from automotive configuration concerning the
computation of optimal weighted configurations. Weights can be assigned to the options
or the parts. We described how each use case can be encoded as a MaxSAT problem.

We evaluated the performance of various optimization solvers from different domains
(MaxSAT, PBO, ILP) on benchmarks based on real instances from two German premium
car manufacturers. We evaluated four different scenarios. First we assigned weights
to the options and searched for the minimal (resp. maximal) weighted configuration.
Afterwards we assigned weights to the parts of the bill of materials and searched for the
minimal (resp. maximal) weighted configuration.

Our experimental evaluations for the computation of minimal weighted configurations of
options showed that solver mscg15b performs best, solving each instance in less than 0.5
seconds on average. Solver eva500a has similar good running times for instances with up
to 450 selected options, but requires up to 12 seconds for instances with more selected
options. Both ILP solvers, CPLEX and Gurobi, have an average running time of less
than 2 seconds on average for instances with up to 650 selected options and running
times of less than 4.5 seconds on average for instances with more selected options.

In the case of computing the maximal weighted configuration of options, our evaluations
showed that both ILP solvers, CPLEX and Gurobi, can solve each instance. Gurobi
solves each instance within 3.53 seconds on average. CPLEX performs only slightly
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worse. Both solvers have some long running instances with running times up to 11
seconds. The best SAT-based solver in this benchmark was eva500a, which was able to
solve instances with up to 670 selected options within 2.2 seconds on average.

Our experimental evaluations for the computation of minimal weighted configurations
of parts showed that no solver was able to solve all instances. The number of selected
parts ranged from 100 up to 11,400. ILP solver Gurobi solved instances with selected
parts up to 1,900, followed up by solvers CPLEX and eva500a which were able to solve
instances with selected parts up to 1,400. Solver mscg15b was able to solve instance
with selected parts up to 1,300. All four solvers showed similar running time behavior.
Solver mscg15b has the best running times for instance with up to 800 selected parts,
whereas the running times of Gurobi increased more slowly. The cactus plot shows that
all those four solvers have many long running instances.

In the case of computing the maximal weighted configuration of parts, our evaluations
showed that no solver were able to solve all instances. Both ILP solvers, CPLEX and
Gurobi, were able to solve instance with up to 500 selected parts. Solver mscg15b solved
instances with up to 400 selected parts. All three solvers showed similar running times.
The cactus plot shows that all those four solvers have many long running instances.

In summary, we observed that computing the maximal weighted configuration is harder
than computing the minimal weighted configuration. The best solvers were CPLEX,
Gurobi, followed up by mscg15b and eva500a. The other evaluated solvers could not
compete with these four solvers. The ILP solvers are more robust in terms of run-
ning times and the number of solved instances. However, solvers mscg15b and eva500a
are often faster on instances with smaller selections. There is no overall best solver.
The SAT-based solvers may provide a good alternative to the established ILP solvers.
However, the SAT-based solvers lacks some robustness with instances that have many
selected user requirements.

The results arise the general question why the ILP solvers CPLEX and Gurobi are
often faster and more robust than the best MaxSAT solvers. There are several reasons
that may involved in answering this question. The underlying approach of modern ILP
solvers like CPLEX and Gurobi is a mixture of a branch & bound method and cutting
planes methods (see Section 4.7). This approach is the subject of research for over 50
years. In contrast, core-guided MaxSAT approaches exists for only about 10 years with
the seminal core-guided algorithm of [Fu and Malik, 2006]. MaxSAT solvers are still
experiencing a lot of improvement as witnessed by the yearly MaxSAT evaluations. In
addition, we picked the two best commercial ILP solvers which are continuously improved
by teams of experts. The solvers include sophisticated heuristics from years of experience
from commercial applications. There are also open source ILP solvers available which
typically perform worse. For example, in pre-evaluations we observed that the open
source LP solvers SCIP9 and COIN-OR10 have clearly slower running times.

9SCIP homepage: http://scip.zib.de
10COIN-OR homepage: https://www.coin-or.org
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5.3 Optimal Re-Configuration

In this section we identify and describe several use cases from automotive configuration
where an optimal (weighted) re-configuration is required. Afterwards we show how op-
timal (weighted) re-configuration problems can be encoded to be solved by optimization
approaches described in Chapter 4. In Subsection 5.3.1 we describe use cases of optimal
re-configuration of options, high level configuration constraints and parts. In Subsec-
tion 5.3.2 we evaluate different optimization approaches based on real benchmarks from
automotive configuration. Subsection 5.3.4 concludes this section.

In the previous two sections we asked for an optimal (weighted) configuration starting
from a consistent configuration task. However, there are several situations where we face
the opposite problem: We are given an inconsistent configuration task and want to find a
diagnosis (or repair suggestion) for the user requirements, i.e., we want to re-configure the
inconsistent user requirements. Re-Configuration is an important topic in the context of
automotive configuration [Manhart, 2005]. A diagnosis tells us which user requirements
can be kept and which can be removed (or changed) in order to restore consistency.
Moreover, we want to find an optimal diagnosis in the sense that only a minimal number
of changes has to be made. The diagnosis should be free from redundant constraints.
Even more, there are situations where we want to specify weights or preferences assigned
to the user requirements. The optimal diagnosis should take such priorities into account.
For example, for an existing vehicle, a customer wants to install an additional navigation
system which is incompatible with the already installed features. The user requirements
are inconsistent. The user wants to know a cheapest possible re-configuration of the
installed features in order to install the new navigation system. Therefore, the prices of
each installed feature have to be considered, too.

Trying to restore consistency by hand is tedious and error-prone. For example, during an
interactive configuration session a customer may face the problem that a desired option
is not selectable since the previous selections exclude the feature. Without support of an
automatic re-configuration service, the customer may end up withdrawing each previous
selection step by step until the desired option becomes selectable again. Even if the
customer finds a consistent configuration including the desired option, the configuration
is most likely not optimal and requires more changes than needed. The customer cannot
easily verify that the solution found is optimal.

5.3.1 Use Cases & Encodings

We identify and describe the use cases in the context of automotive configuration which
ask for an optimal re-configuration of options, HLC constraints or parts. For each use
case we describe how the problem can be encoded as a partial weighted MaxSAT problem
or, if suitable, as preferred minimal diagnosis problem. As described in Section 4.6 and
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Section 4.7 any MaxSAT instance can be interpreted as a PBO or an ILP instance.
Thus, we can tackle the encoded problem by different optimization approaches.

Optimal Re-Configuration during an Interactive Configuration Session

Algorithm 5.6: Encoding for optimal re-configuration of options during an interac-
tive configuration session
Input: Inconsistent Configuration Task (ϕPD(t), UO), indicator isHard
Output: MaxSAT instance (ϕh, ϕs)

1 ϕh ← defCNF(ϕPD(t)), ϕs ← ∅
// Add indispensable selected options to ϕh

2 foreach (o, p) ∈ UO and isHard(o) = true do
3 if p then ϕh ← ϕh ∪ {o}
4 else ϕh ← ϕh ∪ {¬o}

// Add dispensable selected options to ϕs
5 foreach (o, p) ∈ UO and isHard(o) = false do
6 if p then ϕs ← ϕs ∪ {o}
7 else ϕs ← ϕs ∪ {¬o}
8 return (ϕh, ϕs)

During an interactive configuration session (cf. Section 3.3), a customer makes a selection
of options (user requirements). At some point the customer may be confronted with the
situation where a desired option is not selectable anymore. The desired option conflicts
with the knowledge base and previously selected options. However, the desired option
may be essential for the customer and the customer is willing to remove or replace
previously selected options instead. Manually backtracking on the previously selected
options in order to find a consistent configuration that includes the desired option is very
tedious and error-prone. Instead, we can compute a repair suggestion automatically.
By optimal re-configuration we can provide the customer with a diagnosis, i.e., a set
of options that have to be removed or changed in order to select the desired option.
Such a diagnosis can be optimized in different ways. A diagnosis can correspond to a
minimal correction subset (see Section 4.1) such that no option can be removed from the
diagnosis without losing its correction subset property. A diagnosis can also correspond
to an unweighted MaxSAT solution (see Section 4.2), then the diagnosis is of minimal
cardinality. Moreover, if priorities are given, then a diagnosis can be optimized by using
weighted MaxSAT (see Section 4.2) to find a diagnosis with a minimal sum of priorities.
Low priority options are suggested to be removed more likely. An alternative approach
addressed by computing a preferred minimal diagnosis (see Section 4.3) by a given
ordering among the options. The result is a diagnosis consisting of the lexicographically
least important set of options.
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Let (ϕPD(t), UO) be a configuration task (see Definition 28) such that UO consists of
the customer’s selections of options. The configuration task represents the current con-
figuration state during the interactive configuration session. Furthermore, let isHard
be a function indicating whether an option is indispensable for the customer. Indis-
pensable options are not allowed to be removed. The problem of finding an optimal
re-configuration can be formulated as a partial unweighted MaxSAT encoding as shown
in Algorithm 5.6. The product description formula ϕPD(t) is added as hard constraint.
Each indispensable selected option is added as hard constraint and each dispensable
option is added as soft unit clause.

If we take the extended configuration (ϕPD(t), B, UO, UM) for the bill of materials B of
product type t, we can also re-configure over parts. Algorithm 5.7 shows the encoding.
The selection of parts is encoded the same way as we have described before in Algo-
rithm 5.5. The product description formula ϕPD(t) is added as hard constraint. Each
indispensable selected option is added as hard constraint and each dispensable option is
added as soft unit clause. The selection constraints of each indispensable selected part
is added as hard constraints. The selection constraints of each dispensable selected part
is encoded and the selector variable is added as unit soft clause.

Both encodings, Algorithm 5.6 and Algorithm 5.7 can be extended to a partial weighted
MaxSAT encoding by assigning each option, which is allowed to be relaxed, a weight. Al-
ternatively, the encoding can be extended for computing the preferred minimal diagnosis
by assigning an order among the options.
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Algorithm 5.7: Encoding for optimal re-configuration of options and parts during
an interactive configuration session
Input: Inconsistent Configuration Task (ϕPD(t), B, UO, UM), indicator isHard
Output: MaxSAT instance (ϕh, ϕs)

1 ϕh ← defCNF(ϕPD(t)), ϕs ← ∅
// Add indispensable selected options to ϕh

2 foreach (o, p) ∈ UO and isHard(o) = true do
3 if p then ϕh ← ϕh ∪ {o}
4 else ϕh ← ϕh ∪ {¬o}

// Add dispensable selected options to ϕs
5 foreach (o, p) ∈ UO and isHard(o) = false do
6 if p then ϕs ← ϕs ∪ {o}
7 else ϕs ← ϕs ∪ {¬o}

// Add indispensable selected parts to ϕh
8 foreach (m, p) ∈ UM and isHard(m) = true do
9 if p then ϕh ← ϕh ∪ defCNF(con(m))

10 else ϕh ← ϕh ∪ defCNF(¬ con(m))
// Add dispensable selected parts to ϕs

11 foreach (m, p) ∈ UM and isHard(m) = false do
12 s← fresh selector variable
13 ϕh ← ϕh ∪ defCNF(s↔ con(m))
14 if p then ϕs ← ϕs ∪ {s}
15 else ϕs ← ϕs ∪ {¬s}
16 return (ϕh, ϕs)

Optimal Re-Configuration for Sales Division

Re-configuration plays an important role for the sales division. For example, a customer
wants to buy a vehicle with requirements contradicting the high level configuration con-
straints. With the help of an optimal diagnosis, the sales division can make suggestions
to the customer in order to restore consistency but to maximize the number of require-
ments kept.

Another use case may occur due to changing market conditions. There may be hundreds
of already built up cars for the Romanian market. But for some reason the cars cannot
be sold in Romania anymore. We want to re-configure the cars in order to be able to
sell the cars again. We want to know what are the minimal changes we have to make
to be able to sell the car in Romania. Or, what are the minimal changes we have to
make to sell the car in another neighboring nation, like Bulgaria. We want to know the
minimal changes in different aspects of preferences, e.g., the minimal number of changes
to equipment options, the minimal number of changes to parts, the minimal costs for
modifications, etc.
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The encoding described in Use Case Optimal Re-Configuration during an Inter-
active Configuration Session can be applied to this use case, too.

Optimal Re-Configuration of a Digital Mock-Up

Car manufacturers use digital mock-ups (DMUs) during development for testing. A
DMU is a digitally built up model of vehicle. During development the constraints of
the high level configuration may change. An already used DMU may become invalid
according to the changed constraints. We want to know the minimal number of changes
to make for the DMU in order to restore the consistency.

The encoding described in Use Case Optimal Re-Configuration during an Inter-
active Configuration Session can be applied to this use case, too.

Optimal Re-Configuration for After-Sales Division

Customers may want to upgrade their already owned vehicles, e.g., they may want
an additional feature like a seat heating. Or, a customer wants to replace an existing
feature by a newer one such as replacing the old radio with a modern on-board computer.
The question arising is how to include the new feature with minimal changes to existing
components of the vehicle. Moreover, the customer wants the cheapest possible solution.
The same questions arise in the context of repairing components, i.e., when a component
needs to be replaced because of a malfunction.

Such a use case requires the computation of the optimal weighted re-configuration of
options or parts.

The encoding described in Use Case Optimal Re-Configuration during an Inter-
active Configuration Session can be applied to this use case, too.

Engineering Guidance for Non-Constructible Options and Parts

For a given set of options which are in conflict with the constraints of the high level
configuration, an engineer is given the task to adjust the constraints of the high level
configuration such that the options are constructible for the next product cycle. To
guide the engineer we can compute an optimal diagnosis which tries to keep the most
important constraints and shows a set of less important constraints that have to be
removed or adjusted.

A similar use case can be described with parts instead of options. For example, there is a
part which cannot be selected since its selection constraint is in conflict with the product
overview (cf. Analysis L3). An engineer identifies that the selection constraint of the
part is correct. Thus, some constraints of the high level configuration are too restrictive
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or faulty. We can compute an optimal diagnosis to give the engineer assistance in finding
the constraints to adjust.

The importance of the constraints can be of different kind. Some constraints cannot
be removed or adjusted, these constraints are not allowed to be relaxed. For example,
technical restrictions or law restrictions. High level configuration constraints that are
allowed to be relaxed can be prioritized by a numerical value or by an ordering among
the constraints.

Algorithm 5.8: Encoding for optimal re-configuration of constraints during an in-
teractive configuration session
Input: Inconsistent Configuration Task (ϕPD(t), B, UO, UM), indicator isHard
Output: MaxSAT instance (ϕh, ϕs)

1 ϕh ← ∅, ϕs ← ∅
2 foreach (o, p) ∈ UO do // Add selected options to ϕh
3 if p then ϕh ← ϕh ∪ {o}
4 else ϕh ← ϕh ∪ {¬o}
5 foreach (m, p) ∈ UM do // Add selected parts to ϕh
6 if p then ϕh ← ϕh ∪ defCNF(con(m))
7 else ϕh ← ϕh ∪ defCNF(¬ con(m))

// Add indispensable constraints to ϕh
8 foreach r ∈ ϕPD(t) and isHard(m) = true do
9 ϕh ← ϕh ∪ defCNF(r)

// Add dispensable constraints to ϕs
10 foreach r ∈ ϕPD(t) and isHard(m) = false do
11 s← fresh selector variable
12 ϕh ← ϕh ∪ defCNF(s↔ r)
13 ϕs ← ϕs ∪ {s}
14 return (ϕh, ϕs)

Let (ϕPD(t), B, UO, UM) be an extended configuration task (see Definition 30). Let set UO
and UM represent the engineer’s selections of options and parts which are indispensable.
The engineer’s selections are in conflict with ϕPD(t). Furthermore, let isHard be a
function indicating whether a constraint is indispensable, e.g., a constraint may be
indispensable due to technical or legal restrictions. The problem of finding an optimal
re-configuration can be formulated as a partial unweighted MaxSAT encoding as shown
in Algorithm 5.8. The product description formula ϕPD(t) is added as hard constraint.
Each selected option is added as hard constraint and the selection constraint of each
selected part is added as hard constraint. The indispensable constraints are added as
hard constraints. Each indispensable constraint is encoded and the selector variable is
added as unit soft clause.

The encoding can be extended to a partial weighted MaxSAT encoding by assigning a
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weight to each constraint of the high level configuration, which is allowed to be relaxed,
a weight. Alternatively, the encoding can be extended for computing the preferred
minimal diagnosis by assigning an order among the options.

Enumeration of the Best k Diagnoses

In order to provide alternative optimal diagnoses, as described in the previous use cases,
we can compute the next k optimal diagnoses in descending order. The number k can
be small compared to the number of all existing diagnoses, e.g., we can compute the
k = 10 best diagnoses during a configuration process for a customer to provide a set of
alternative optimal re-configuration solutions.

For example, a configuration tool could provide a next functionality to step through the
optimal re-configuration solutions. The encoding of blocking constraints can be defined
on different levels, e.g., blocking only the last found model or blocking the MaxSAT
result. See Subsection 4.2.3 for different types of blocking constraints.

5.3.2 Experimental Evaluation

In this subsection we evaluate different optimization approaches for the problem of
optimal re-configuration.

Optimal Re-Configuration of Options

In this subsection we evaluate different optimization approaches for the problem of
optimal re-configuration of options.

For our evaluation we consider 7 different product types (M1.1, M1.2, M2.1, M2.2, M2.3,
M2.4, M2.5) from two German car manufacturers. These product types are the same
that we used in the experimental evaluations of interactive automotive configuration in
Section 3.3. Table 5.3 shows complexity statistics for each product type.

For each product type t, we randomly create a set of selected options S ⊆ O(t) such
that S is inconsistent with the product description formula ϕPD(t). We increase the
cardinality of S to increase the complexity of the configuration task. For our benchmark
we increase the number of selected options each time by 10 additional options. For
every stage of selected options, we create 3 instances. We do not pick two or more
options which are mutually excluded due to group restrictions, i.e., we do not pick
multiple options from a group that is restricted by an at most one or an exactly one
constraint (see Definition 24). We assume that within the context of re-configuration
obvious exclusions have already been resolved, like a customer who wants to replace one
navigation system by a newer one.
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We distinguish three categories for the re-configuration of options: unweighted, weighted
and ordered. For the unweighted category, no weights are assigned to the options in S.
For the weighted category, we randomly create weights for each option in S. The weights
are within the range of 1 and 1000. For the ordered category, we randomly create an
ordering among the options in S. Table 5.5 summarizes the benchmark setup.

Table 5.5: Optimal re-configuration of options benchmark setup
Re-Configuration Type Selection Weights/Order Cardinality
(Unweighted) Options Inconsistent S ⊆ O(t) None |S| = 10, 20, . . .
Weighted Options Inconsistent S ⊆ O(t) 1, . . . , 1,000 |S| = 10, 20, . . .
Ordered Options Inconsistent S ⊆ O(t) Random Order |S| = 10, 20, . . .

The optimization task is to find an optimal re-configuration of the options in S. For the
unweighted category we search for a satisfying assignment for ϕPD(t) that minimizes the
number of removed options from S to restore consistency. For the weighted category
we search for a satisfying assignment for ϕPD(t) that minimizes the sum of weights of
the removed options from S to restore consistency. For the ordered category we search
for the preferred minimal diagnosis, i.e., finding a satisfying assignment for ϕPD(t) that
removes less important options from S to restore consistency. See Algorithm 5.6 for the
encoding.

For the unweighted and weighted category, the MaxSAT problem, as stated above, can be
interpreted as a PBO problem as well as an ILP problem (cf. Section 4.6 and Section 4.7).
Thus, we can evaluate our instances on a full range of optimization solvers from different
domains.

The MinCS, MaxSAT, PBO and ILP solvers we evaluate in this section are the same
as previously described in Subsection 5.1.2. The operating system setup, including the
timeout limit of 180 seconds (3 minutes), is also the same.

For the ordered category, the solvers we evaluate for computing the preferred minimal
diagnosis are the following:

a) (PMD) Linear Search: Own implementation of linear search (see Algorithm 4.7)
on top of MiniSAT 2.2 [Eén and Sörensson, 2004] as underlying SAT solver.
Our implementation is improved by exploiting the inc/dec interface of MiniSAT,
exploiting intermediate models (see Subsection 4.3.2) and using backbone literals
to simplify the SAT calls [Marques-Silva et al., 2013a].

b) (PMD) FastDiag: Own implementation of the FastDiag algorithm (see Algo-
rithm 4.8 or [Felfernig and Schubert, 2010]) on top of MiniSAT 2.2 as underlying
SAT solver. Our implementation is improved by exploiting the inc/dec interface of
MiniSAT, exploiting intermediate models (see Subsection 4.3.2) and using back-
bone literals to simplify the SAT calls [Marques-Silva et al., 2013a].
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c) (PMD) CDCL-based: Own implementation of the CDCL-based approach for
computing the preferred minimal diagnosis (see Subsection 4.3.2) by modifying the
MiniSAT 2.2 SAT solver.

We implemented all three solvers for computing the preferred minimal diagnosis on top
of MiniSAT 2.2 as underlying SAT solver for a reasonable comparison. The solvers
run under Linux Ubuntu 12.04.5 64 Bit. The hardware settings are as follows: Intel(R)
Core(TM) i7-5600 CPU with 2.6GHz and 8 GB main memory. The timeout limit for
each instance is 180 seconds (3 minutes).
Remark 15. The problem of computing the A-preferred MinCS can be reduced to a
MaxSAT problem (see Section 7.1 in [Walter et al., 2017]). The weight of a clause has
to be greater than the sum of weights of all less preferred clauses. Let c1, . . . , cm be
the soft clauses with the order c1 < . . . < cm. The weight wi of clause ci is assigned to
wi =

(∑m
j=i+1wj

)
+ 1 for each 1 ≤ i < m. The weight wm is assigned to 1. It can be

shown by induction that
(∑m

j=i+1wj
)

+ 1 = 2m−i. The most preferred clause has weight
2m−1. Data types int and long with a typically length not longer than 64 Bit get easily
exceeded because the representation of the weight of each additional clause requires one
more bit. Arbitrary-precision arithmetic is necessary to represent such large weights
but performs slower. The MaxSAT competition format11 permits a top weight lower
than 263. Therefore, we decided to not reduce instance for computing the A-preferred
MinCS to a MaxSAT problem and only evaluate the native solvers as listed above.
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Figure 5.15: Running times for optimal (unweighted) re-configuration of options
11http://www.maxsat.udl.cat/16/requirements.2
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Figure 5.15 shows the running times for computing the optimal (unweighted) re-configuration
dependent on the number of selected options. The x-axis shows the cardinality of the
set S of selected options. For each cardinality of S the y-axis shows the average running
time in seconds of the three instances. For simplicity, the diagram shows only the best
solvers. Solvers not shown in the result plot exceed the timeout limit multiple times
and/or have much higher running times.

Our evaluations show that many solvers are able to solve each instance within a few
seconds on average. The CDCL-based solver and mscg15b can solve all instances in
less than 0.5 seconds on average. Except for a few instances, solver OpenWBO MSU3
solves all instances in less than 0.5 seconds on average as well. For a couple of instances
OpenWBO MSU3 requires up to 2 seconds.
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Figure 5.16: Cactus plot for optimal (unweighted) re-configuration of options. Plot is
zoomed into the range [550, 669]

The cactus plot of Figure 5.16 shows the running times for computing the optimal
(unweighted) re-configuration. The x-axis shows the number of instances, the y-axis
shows the running time in seconds.

The cactus plot shows that the most robust solvers are the CDCL-based MinCS solver
and mscg15b. Both are able to solve all instances in less than 0.6 seconds. Solver
OpenWBO MSU3 is quite robust as well, but has some instances where it requires up
to 2.5 seconds and one long running instance (4.77 seconds). Solver eva500a solves all
instances within 5 seconds. Solver eva500a is very robust, there are no extraordinary
long running instances. The ILP solvers CPLEX and Gurobi are able to solve most
instances in less than 4 seconds. For about 100 instances they require more time, some
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instances require up to 10 seconds. Solver OpenWBO LS-SU can solve 640 instances in
less than 3 seconds, but requires much more time for the remaining 29 instances (up to
142.2 seconds).
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Figure 5.17: Comparison between exact result and MinCS result for optimal (un-
weighted) re-configuration of options

Figure 5.17 shows a comparison of the result quality between the global optimum and the
local optimum. Solvers for MaxSAT, PBO and ILP compute the global optimum, i.e.,
the number of removed options is minimal in terms of cardinality. In contrast, MinCS
solvers compute a local optimum, i.e., the number of removed options is minimal in
terms of set inclusion. The x-axis shows the cardinality of the set S of selected options.
For each cardinality of S the y-axis shows the MinFALSE result.

The comparison shows that the MinFALSE results of the CDCL-based MinCS solver
are quite close to the exact results for a selection cardinality |S| less than 150, i.e., less
than 10 options distance on average. For up to 390 selections the distance is less than
30 options on average. A greater number of selections may result in distances over 100
options.

Figure 5.18 shows the running times for computing the optimal weighted re-configuration
dependent on the number of selected options. The x-axis shows the cardinality of the
set S of selected options. For each cardinality of S the y-axis shows the average running
time in seconds of the three instances. For simplicity, the diagram shows only the best
solvers. Solvers not shown in the result plot exceed the timeout limit multiple times
and/or have much higher running times.

Our evaluations show that solver mscg15b performs best by solving every instance in less
than 1.2 seconds on average. ILP solvers CPLEX and Gurobi perform similarly, both
are able to solve almost every instance within 5.4 seconds on average. CPLEX performs
slightly worse and has some long running instances for |S| = 550. All other evaluated
solvers suffered several timeouts and could not compete with these three solvers.

The cactus plot of Figure 5.19 shows the running times for computing the optimal
weighted re-configuration. The x-axis shows the number of instances, the y-axis shows
the running time in seconds.
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Figure 5.18: Running times for optimal weighted re-configuration of options

The cactus plot shows that solver mscg15b is very robust on this benchmark by solving
almost every instance in less than 2 seconds. Solvers CPLEX and Gurobi are very robust
as well, except for a couple of longer running instances.

Figure 5.20 shows the running times for computing the preferred minimal diagnosis
dependent on the number of selected options. The x-axis shows the cardinality of the
set S of selected options. For each cardinality of S the y-axis shows the average running
time in seconds of the three instances solved.

All solvers are able to solve the instances within 0.1 seconds on average. The CDCL-
based approach has the fastest running times of less than 0.02 seconds on average.

The cactus plot of Figure 5.21 shows the running times for computing the preferred
minimal diagnosis. The x-axis shows the number of instances, the y-axis shows the
running time in seconds.

The cactus plot shows that the linear search and the FastDiag algorithm require slightly
more time on a couple of instances. In contrast, the CDCL-based approach solves all
instances within 0.3 seconds. None of the solvers has extraordinary long running times
for some instances.
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Figure 5.19: Cactus plot for optimal weighted re-configuration of options. Plot is zoomed
into the range [500, 663]
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Figure 5.20: Running times for computing the preferred minimal diagnosis of options
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Figure 5.21: Cactus plot for computing the preferred minimal diagnosis of options. Plot
is zoomed into the range [580, 663]
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Optimal Re-Configuration of Constraints

In this subsection we evaluate different optimization approaches for the problem of
optimal re-configuration of constraints.

For our evaluation we consider 7 different product types (M1.1, M1.2, M2.1, M2.2, M2.3,
M2.4, M2.5) from two German car manufacturers. These product types are the same
that we used in the experimental evaluations of interactive automotive configuration in
Section 3.3. Table 5.3 shows complexity statistics for each product type.

For each product type t, we randomly create a set of selected options S ⊆ O(t) such
that S is inconsistent with the product description formula ϕPD(t). We increase the
cardinality of S to increase the complexity of the configuration task. For our benchmark
we increase the number of selected options each time by 10 additional options. For every
stage of selected options, we create 3 instances. As described before, for the experimental
evaluation of the re-configuration of options, we do not pick two or more options which
are mutually excluded due to group restrictions.

We distinguish three categories for the re-configuration of constraints: unweighted,
weighted and ordered. For the unweighted category, no weights are assigned to the
constraints in ϕPD(t). For the weighted category, we randomly create weights for each
constraint in ϕPD(t). The weights are within the range of 1 and 1000. For the ordered
category, we randomly create an ordering among the constraints in ϕPD(t). Table 5.6
summarizes the benchmark setup.

Table 5.6: Optimal re-configuration of constraints benchmark setup
Re-Configuration Type Selection Weights/Order Cardinality
(Unweighted) Constraints Inconsistent S ⊆ O(t) None |S| = 10, 20, . . . , |O(t)|
Weighted Constraints Inconsistent S ⊆ O(t) 1, . . . , 1,000 |S| = 10, 20, . . . , |O(t)|
Ordered Constraints Inconsistent S ⊆ O(t) Random Order |S| = 10, 20, . . . , |O(t)|

The optimization task is to find an optimal re-configuration of the constraints in ϕPD(t).
For the unweighted category we search for a satisfying assignment for S that minimizes
the number of removed constraints from ϕPD(t) to restore consistency. For the weighted
category we search for a satisfying assignment for S that minimizes the sum of weights of
the removed constraints from ϕPD(t) to restore consistency. For the ordered category we
search for the preferred minimal diagnosis, i.e., finding a satisfying assignment for S that
removes less important constraints from ϕPD(t) to restore consistency. See Algorithm 5.8
for the encoding.

For the unweighted and weighted category, the MaxSAT problem, as stated above, can be
interpreted as a PBO problem as well as an ILP problem (cf. Section 4.6 and Section 4.7).
Thus, we can evaluate our instances on a full range of optimization solvers from different
domains.
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The MinCS, MaxSAT, PBO, ILP and PMD solvers we evaluate in this section are the
same as previously described in Subsection Optimal Re-Configuration of Options.
The operating system setup, including the timeout limit of 180 seconds (3 minutes), is
also the same as described previously.
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Figure 5.22: Running times for optimal (unweighted) re-configuration of constraints

Figure 5.22 shows the running times for computing the optimal (unweighted) re-configuration
dependent on the number of selected options. The x-axis shows the cardinality of the
set S of selected options. For each cardinality of S the y-axis shows the average running
time in seconds of the three instances solved. For simplicity, the diagram shows only
the best solvers. Solvers not shown in the result plot exceed the timeout limit multiple
times and/or have much higher running times.

Our evaluations show that solver OpenWBO MSU3 performs best, every instance is
solved in less than 0.25 seconds, except for the case |S| = 310 where the running time
is 0.7 seconds on average. Solver OpenWBO MSU3 is followed up by solver mscg15b
and the CDCL-based MinCS solver. Both solve each instance in less than one second
on average. Solver OpenWBO, the default version, solves each instance in less than 1.7
seconds on average. The running times for OpenWBO increases with the cardinality of
selections |S|. Solver eva500a shows similar results as OpenWBO. In contrast to the
SAT-based solvers both ILP solvers, CPLEX and Gurobi, have higher running times
for |S| ≤ 50 (up to 2.2 seconds) and fast running times for |S| > 50. Gurobi performs
slightly better than CPLEX. In summary, many solvers work well on this benchmark,
the running times are within seconds.
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Figure 5.23: Cactus plot for optimal (unweighted) re-configuration of constraints. Plot
is zoomed into the range [640, 669]

The cactus plot of Figure 5.23 shows the running times for computing the optimal
(unweighted) re-configuration. The x-axis shows the number of instances, the y-axis
shows the running time in seconds.

The cactus plot shows that the CDCL-based MinCS solver is the most robust one and
solves all instances within 0.6 seconds. Solver OpenWBO MSU3 has faster running times
for most of the instances, but also has one long running instance. Solver mscg15b is also
quite robust by solving nearly all instances in less than 2 seconds. Solver eva500a,
CPLEX, Gurobi and OpenWBO behave similar on most of the instances. However,
eva500a suffers one timeout and OpenWBO suffers 4 timeouts. CPLEX and Gurobi
have no timeouts but a few long running instances.
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Figure 5.24: Comparison between exact result and MinCS result for optimal (un-
weighted) re-configuration of constraints
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Figure 5.24 shows a comparison of the result quality between the global optimum and
the local optimum. Solvers for MaxSAT, PBO and ILP compute the global optimum,
i.e., the number of removed constraints is minimal in terms of cardinality. In contrast,
MinCS solvers compute a local optimum, i.e., the number of removed constraints is
minimal in terms of set inclusion. The x-axis shows the cardinality of the set S of
selected options. For each cardinality of S the y-axis shows the MinFALSE result.

The comparison shows that the MinFALSE results of the CDCL-based MinCS solver are
quite close to the exact results for a selection cardinality |S| less than 100, i.e., less than
10 constraints distance on average. The distance for the remaining selections is mostly
less than 20 constraints. However, for a couple of instances the distance grows up to 50
constraints.
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Figure 5.25: Running times for optimal weighted re-configuration of constraints

Figure 5.25 shows the running times for computing the optimal weighted re-configuration
dependent on the number of selected options. The x-axis shows the cardinality of the
set S of selected options. For each cardinality of S the y-axis shows the average running
time in seconds of the three instances solved. For simplicity, the diagram shows only
the best solvers. Solvers not shown in the result plot exceed the timeout limit multiple
times and/or have much higher running times.

Our evaluations show that the solvers CPLEX, Gurobi and mscg15b perform very well
on all instances. They are able to solve each instance in less than 2 seconds on average.
Solvers Gurobi and mscg15b perform slightly better than CPLEX for instances with
|S| > 200. Solver eva500a is able to solve every instance in less than 14 seconds on
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average. All other evaluated solvers suffered several timeouts and could not compete
with these four solvers.
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Figure 5.26: Cactus plot for optimal weighted re-configuration of constraints. Plot is
zoomed into the range [600, 668]

The cactus plot of Figure 5.26 shows the running times for computing the optimal
weighted re-configuration. The x-axis shows the number of instances, the y-axis shows
the running time in seconds.

The cactus plot shows that all solvers CPLEX, Gurobi and mscg15 perform mostly
robust on this benchmark, i.e., there is hardly a long running instance for any of them.
CPLEX and Gurobi show almost identical plots. Solver mscg15b performs slightly worse
for about 30 instances. Solver eva500b solves 613 instances in less than 20 seconds and
has 55 instances where it requires about 32 seconds.

Figure 5.27 shows the running times for computing the preferred minimal diagnosis
dependent on the number of selected options. The x-axis shows the cardinality of the
set S of selected options. For each cardinality of S the y-axis shows the average running
time in seconds of the three instances solved.

All solvers are able to solve the instances within 0.1 seconds on average. The CDCL-
based approach has the fastest running times by solving the instances within 0.02 seconds
on average.

The cactus plot of Figure 5.28 shows the running times for computing the preferred
minimal diagnosis. The x-axis shows the number of instances, the y-axis shows the
running time in seconds.
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Figure 5.27: Running times for computing the preferred minimal diagnosis of constraints

The cactus plot shows that the linear search solves all instances within 0.44 seconds,
the FastDiag algorithm solves all instances within 0.23 seconds and the CDCL-based
approach solve all instances within 0.03 seconds. None of the solvers has extraordinary
long running times for some instances.
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Figure 5.28: Cactus plot for computing the preferred minimal diagnosis of constraints.
Plot is zoomed into the range [580, 668]

Optimal Re-Configuration of Parts

In this subsection we evaluate different optimization approaches for the problem of
optimal re-configuration of parts.

For our evaluation we consider 7 different product types (M1.1, M1.2, M2.1, M2.2, M2.3,
M2.4, M2.5) from two German car manufacturers. These product types are the same
that we used in the experimental evaluations of interactive automotive configuration in
Section 3.3. Table 5.3 shows complexity statistics for each product type.

For each product type t, we randomly create a set of selected parts S ⊆ matNodes(B)
for a bill of materials B such that S is inconsistent with the product description formula
ϕPD(t). We increase the cardinality of S to increase the complexity of the configuration
task. For our benchmark we increase the number of selected parts each time by 100
additional parts. For every stage of selected parts, we create 3 instances. Similar to the
experimental evaluation of the re-configuration of options we do not pick two or more
parts which are mutually excluded, i.e., parts from the same structure node.

We distinguish three categories for the re-configuration of parts: unweighted, weighted
and ordered. For the unweighted category, no weights are assigned to the parts in S.
For the weighted category, we randomly create weights for each part in S. The weights
are within the range of 1 and 1000. For the ordered category, we randomly create an
ordering among the parts in S. Table 5.7 summarizes the benchmark setup.

207



5 SAT-based Optimization in Automotive Configuration

Table 5.7: Optimal re-configuration of parts benchmark setup
Re-Config. Type Selection Weights/Order Cardinality
Unweighted Incons. S ⊆ matNodes(B) None |S| = 100, 200, . . . , | matNodes(B)|
Weighted Incons. S ⊆ matNodes(B) 1, . . . , 1000 |S| = 100, 200, . . . , | matNodes(B)|
Ordered Incons. S ⊆ matNodes(B) Random Order |S| = 100, 200, . . . , | matNodes(B)|

The optimization task is to find an optimal re-configuration of the parts in S. For the
unweighted category we search for a satisfying assignment for ϕPD(t) that minimizes
the number of removed parts from S to restore consistency. For the weighted category
we search for a satisfying assignment for ϕPD(t) that minimizes the sum of weights of
the removed parts from S to restore consistency. For the ordered category we search
for the preferred minimal diagnosis, i.e., finding a satisfying assignment for ϕPD(t) that
removes less important parts from S to restore consistency. See Algorithm 5.7 for the
encoding.

For the unweighted and weighted category, the MaxSAT problem, as stated above, can be
interpreted as a PBO problem as well as an ILP problem (cf. Section 4.6 and Section 4.7).
Thus, we can evaluate our instances on a full range of optimization solvers from different
domains.

The MinCS, MaxSAT, PBO, ILP and PMD solvers we evaluate in this section are the
same as previously described in Subsection Optimal Re-Configuration of Options.
The operating system setup, including the timeout limit of 180 seconds (3 minutes), is
also the same as described previously.

Figure 5.29 shows the running times for computing the optimal (unweighted) re-configuration
dependent on the number of selected options. The x-axis shows the cardinality of the
set S of selected options. For each cardinality of S the y-axis shows the average running
time in seconds of the three instances solved. For simplicity, the diagram shows only
the best solvers. Solvers not shown in the result plot exceed the timeout limit multiple
times and/or have much higher running times.

Our evaluations show that only a few solvers are able to solve these instances in reason-
able time. The CDCL-based MinCS solver performs best by solving all instances in less
than 2 seconds on average. However, the CDCL-based MinCS solver does not compute
the minimal diagnosis in terms of cardinality. The exact solvers CPLEX, Gurobi and
solver mscg15b were able to solve the instances in a reasonable time. However, these
three solvers suffer more than 10 timeouts at some point. The plot of these solvers ends
at this point. CPLEX and Gurobi are able to solve instances up to |S| = 1, 100 within
25 seconds on average. Solver mscg15b performs better by solving those instances within
17 seconds on average. Solver mscg15b is also able to solve instances up to selections of
|S| = 1700 before 10 timeouts are reached.

The cactus plot of Figure 5.30 shows the running times for computing the optimal
(unweighted) re-configuration. The x-axis shows the number of instances, the y-axis
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Figure 5.29: Running times for optimal (unweighted) re-configuration of parts

shows the running time in seconds.

The cactus plot shows that the CDCL-based MinCS solver has not a single long running
instance. ILP solvers CPLEX and Gurobi perform quite similarly, both are able to solve
around 200 instances. Solver mscg15b solves around 260 instances.

Figure 5.31 shows a comparison of the result quality between the global optimum and
the local optimum. Solvers for MaxSAT, PBO and ILP compute the global optimum,
i.e., the number of removed parts is minimal in terms of cardinality. In contrast, MinCS
solvers compute a local optimum, i.e., the number of removed parts is minimal in terms
of set inclusion. The x-axis shows the cardinality of the set S of selected parts. For each
cardinality of S the y-axis shows the MinFALSE result.

The comparison shows that the MinFALSE results of the CDCL-based MinCS solver
are quite close to the exact results. For |S| = 100 the distance is less than 5. The
distance grows by less than 5 for each additional 100 selections. For |S| = 1000 we have
a distance of 40.11 on average. However, the figure shows only a portion of the instances.
For instances with |S| > 1000 we do not have exact results available to compute the
comparison.

Figure 5.32 shows the running times for computing the optimal weighted re-configuration
dependent on the number of selected options. The x-axis shows the cardinality of the
set S of selected options. For each cardinality of S the y-axis shows the average running
time in seconds of the three instances solved. For simplicity, the diagram shows only
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Figure 5.30: Cactus plot for optimal (unweighted) re-configuration of parts. Plot is
zoomed into the range [100, 471]

the best solvers. Solvers not shown in the result plot exceed the timeout limit multiple
times and/or have much higher running times.

Our evaluations show that only a few solvers are able to solve these instances in rea-
sonable time. These solvers include the ILP solvers CPLEX and Gurobi as well as the
MaxSAT solver mscg15b. However, all these solvers suffer more than 10 timeouts at
some point. The plot of these solvers ends at this point. CPLEX and Gurobi are able
to solve instances up to |S| = 1, 100 within 27 seconds on average. Solver mscg15b is
able to solve instances up to |S| = 600 before suffering 10 timeouts. The running times
of the instances solved by mscg15b are within 23 seconds on average.
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Figure 5.31: Comparison between exact result and MinCS result for optimal (un-
weighted) re-configuration of parts
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Figure 5.32: Running times for optimal weighted re-configuration of parts

The cactus plot of Figure 5.33 shows the running times for computing the optimal
weighted re-configuration. The x-axis shows the number of instances, the y-axis shows
the running time in seconds.

The cactus plot shows that ILP solvers CPLEX and Gurobi perform quite similarly, both
are able to solve around 220 instances. Solver mscg15b solves around 120 instances.

Figure 5.34 shows the running times for computing the preferred minimal diagnosis
dependent on the number of selected options. The x-axis shows the cardinality of the
set S of selected options. For each cardinality of S the y-axis shows the average running
time in seconds of the three instances solved.

Our evaluations show that the linear search and the FastDiag algorithm have quite
similar running times, they solve all instances within 0.74 seconds on average. The
running times of both solvers grow with the number of the selected parts. In contrast,
the CDCL approach has faster running times up to 0.12 seconds on average.

All solvers are able to solve the instances within 0.1 seconds on average. The CDCL-
based approach has the fastest running times by solving the instances within 0.02 seconds
on average.

The cactus plot of Figure 5.35 shows the running times for computing the preferred
minimal diagnosis. The x-axis shows the number of instances, the y-axis shows the
running time in seconds.
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Figure 5.33: Cactus plot for optimal weighted re-configuration of parts.

The cactus plot shows that the linear search and the FastDiag algorithm solve every
instance within 1 second. The CDCL-based approach solves every instance in only 0.16
seconds at most.
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Figure 5.34: Running times for computing the preferred minimal diagnosis of parts
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Figure 5.35: Cactus plot for computing the preferred minimal diagnosis of parts. Plot is
zoomed into the range [200, 471]
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5.3.3 Extending AutoConfig for Re-Configuration

We extend our configuration framework AutoConfig (see Subsection 3.3.4) by optimal
re-configuration. As described in the architecture (see Figure 3.4) AutoConfig con-
tains a module for re-configuration which relies on MaxSAT solvers. Optionally, external
optimizers can be used.
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Figure 5.36: AutoConfig Reconfiguration Process

Figure 5.36 shows the re-configuration part of the configuration process of Figure 3.5.
An iteration begins with the user selecting required options and parts. The user re-
quirements together with the product configuration model and the bill of materials form
the configuration tasks given to the configurator engine. Firstly, the configurator engine
checks for consistency. For the consistent case see Figure 3.5. For the inconsistent case,
an optimal re-configuration is computed and returned to the user as feedback. Selections
which have to be removed according to the re-configuration solution are highlighted. The
re-configuration is a suggestion to restore consistency. Additional information is given
to the user: The BOM is resolved by the re-configuration solution. Moreover, an expla-
nation can be computed to show the user why the current selection is inconsistent.
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Figure 5.37: Screenshot of AutoConfig with re-configuration

We reconsider the HLC of Example 18. The selection {e2, ac1, d3, c2, r2} is forbidden.
The rules do not allow to select radio r2 together with dashboard d3 since r2 requires
dashboard d1 or d4. Figure 5.37 shows a screenshot of AutoConfig of this situa-
tion. After AutoConfig detected inconsistency (background of label “Solution” is
red), re-configuration takes place. AutoConfig highlights the selections that should
be removed by a red background. The re-configuration solution suggests to remove op-
tion d3 from the selection. Thus, by removing one option we can restore consistency.
The solution text box shows an example valid vehicle where red highlighted selections
are removed. The solution picks dashboard d1 instead of d3.

However, the user may decide to keep dashboard d3. Option d3 can be set as hard
constraint by adding an asterisk. Then option d3 is not considered to be removable
anymore. Figure 5.38 shows the situation after setting d3 as hard constraint. The
user selections are sill inconsistent. Thus, the background of label “Solution” is still
red. The re-configuration solution now suggests to remove options ac1 and r2. It turns
out, that removing option d3, as suggested prior, was the best solution in terms of the
numbers of options to remove. In order to keep option d3 we have to remove at least
two options. By the immediate feedback of the re-configuration result the user is able
to perform a step-by-step re-configuration. At every step the user can decide whether to
follow the re-configuration solution or to adjust the selections in order to receive another
re-configuration suggestion.
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Figure 5.38: Screenshot of AutoConfig with re-configuration

Computing Explanations for Diagnosis Elements

Whenever the user reaches an inconsistent state, our configurator re-configures the user
requirements as described. The user requirements included in the diagnosis are high-
lighted with a red background as seen in the previous screenshots. These requirements
have to be removed or changed.

In such an inconsistent situation we can additionally compute an explanation, an un-
satisfiable core or an MUS, why a conflict occurs as described in Section 3.3. If the user
is faced with multiple red highlighted user requirements she may want to see an expla-
nation for a specific requirement. For example, if the gearbox is within the diagnosis
result she may imagine that the engine and steering selection cannot be combined with
her gearbox selection. However, she may wonder why her selected steering wheel should
be changed and wants to know why.

We want to refine the computation of an explanation by a selective explanation compu-
tation. The user selects the a requirement from the diagnosis (one of the red highlighted
user requirements) that should be explained. Then, we want to find an explanation
that includes the selected user requirement. In Proposition 16 we prove an important
property of for any diagnosis element that helps us to compute an explanation including
the element.

Proposition 16. (MinCS Element Property) Let ϕh and ϕs be sets of clauses. Let ϕh
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be satisfiable. Let ∆ ⊆ ϕs be a MinCS of (ϕh, ϕs). For any clause c ∈ ∆ holds:

Clause c is included in any unsatisfiable core of ϕh ∪ (ϕs \∆) ∪ {c}

Proof. Firstly, we prove by contradiction that ϕh ∪ (ϕs \ ∆) ∪ {c} is unsatisfiable: We
assume that ϕh ∪ (ϕs \∆)∪ {c} is satisfiable. Then ∆ \ {c}, which is a proper subset of
∆ since c ∈ ∆, is a correction subset of (ϕh, ϕs). Since ∆ is a MinCS, this is a violation
of the minimal property of ∆.

Secondly, we prove that clause c is a transition clause (see Definition 18) of ϕh∪(ϕs\∆)∪
{c}: When removing c, the whole set ∆ is removed from ϕs which restores consistency
since ∆ is a MinCS. Therefore, clause c is a transition clause.

By Proposition 6 a transition clause is included in any MUS. Therefore, clause c is
included in any unsatisfiable core, too.

Let ∆ be the diagnosis the re-configuration engine provided to the user. Set ∆ may
contain options, constraints or parts that have to be changed or excluded. Let c ∈ ∆
be the selected element for which the user wants to see an explanation for. We can
exploit Proposition 16 for the computation of an explanation including c by computing
any unsatisfiable core (or MUS) of clause set ϕh ∪ (ϕs \∆) ∪ {c}. An unsatisfiable core
can be computed, for example, by one SAT call as described in Section 2.4.

Figure 5.39: Screenshot of AutoConfig with re-configuration
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Figure 5.39 shows an explanation for option ac1 which is suggested to be removed (cf.
Figure 5.38). AutoConfig computes one (of possibly multiple) conflicts for the selected
option as described before. The explanation consists of the two options ac1 and d3, the
constraint ac1 ∧ ac2 → (d1 ∨ d2) and the group restriction for the dashboards (exactly
one has to be selected). The selection of option ac1 forces dashboard d1 or d2, but at
the same time dashboard d3 has already been selected. Since exactly one dashboard has
to be selected, these four constraints form a conflict.

5.3.4 Conclusion

In this section we described use cases from automotive configuration concerning the
computation of optimal re-configurations. Re-configuration can be done for options,
constraints or parts. We described how each use case can be encoded as a MaxSAT
problem.

We evaluated the performance of various optimization solvers from different domains
(MinCS, MaxSAT, PBO, ILP and solvers for computing the preferred minimal diagno-
sis) on benchmarks based on real instances from two German premium car manufac-
turers. We evaluated four different scenarios. First we evaluated the re-configuration
of options (unweighted and weighted), then we evaluated the re-configuration of high
level configuration constraints (unweighted and weighted) and finally, we evaluated the
re-configuration of parts (unweighted and weighted).

Our experimental evaluations for the computation of the optimal re-configuration of
unweighted options showed that many solvers were able to solve all instances with an
average running time of a few seconds only. The best solvers are OpenWBO MSU3 and
mscg15b with less than a second for each instance on average. The computation of the
optimal re-configuration of weighted options showed that only solvers mscg15b, CPLEX
and Gurobi were able to solve all instances. Solver mscg15b is the fastest, every instance
could be solved in less than 1.2 seconds on average.

Our experimental evaluations for the computation of the optimal re-configuration of
unweighted constraints showed that many solvers were able to solve all instances with
an average running time of a few seconds only. The best solvers are OpenWBO MSU3
and mscg15b with less than a second for each instance on average. The computation of
the optimal re-configuration of weighted constraints showed that only solvers mscg15b,
eva500a, CPLEX and Gurobi were able to solve all instances. Solvers CPLEX and
mscg15b are the fastest, every instance could be solved in less than 2 seconds on aver-
age.

Our experimental evaluations for the computation of the optimal re-configuration of
unweighted parts showed that none were able to solve all instances. Solver mscg15b
solved instances with up to 1,700 selected parts. Solver CPLEX and Gurobi were able
to solve instances with up to 1,100 selected parts. Solver mscg15b has the better running
times and is able to solve instances with up to 1,000 selected parts in less than 10 seconds
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on average. The computation of the optimal re-configuration of weighted parts showed
similar results. Only solvers mscg15b, CPLEX and Gurobi were able to solve a significant
portion of the instances. However, solvers CPLEX and Gurobi performed better by
solving instances with up to 1,100 selected parts. Solver mscg15 solved instances with
up to 600 selected parts only.

The CDCL-based MinCS solver performs very well on every unweighted benchmark (re-
configuration of options, constraints and parts). Every instance can be solved in less
than 0.5 seconds on average. However, this approach does not compute the smallest
MinCS in terms of cardinality. The comparison between the MinFALSE result and the
CDCL-based results show that the difference is very small for instances with selection
up to 250. We observed that more selections leads to a greater distance.

Our evaluations regarding the computation of the preferred minimal diagnosis showed
that each of our three solvers (linear search, FastDiag, CDCL-based) solves each in-
stance for each use case (re-configuration of options, re-configuration of constraints and
re-configuration of parts) quite easily. No solver faced a timeout on any instance. With
running times around 0.2 seconds for an instance and, in the worst case, up to at most
one second for an instance, all three solvers are suitable for interactive scenarios. Linear
search and FastDiag have quite similar running times. In contrast, the CDCL-based
outperforms both. The highest measured running time for the CDCL-based approach
was only 0.2 seconds.

In summary, we observed that computing the optimal unweighted re-configuration of
options or constraints can be solved quickly by many solvers. In contrast, the re-
configuration of weighted options or weighted constraints can be solved quickly by a
few solvers only, these are mscg15b, CPLEX and Gurobi. We observe that the re-
configuration of (unweighted or weighted) parts is a harder task. Only solvers mscg15b,
CPLEX and Gurobi were able to solve a significant amount of our instances. A very
fast and robust alternative to computing the MinFALSE result is the computation of
a MinCS by the CDCL-based approach. Another very fast and robust alternative is
the computation of the preferred minimal diagnosis. If the smallest MinCS is not nec-
essarily required, those alternatives are well suitable. Another, alternative could be a
mixed solver: First, a MaxSAT solver is applied. If the solver is not able to solve the
instance within a fixed timeout limit the computation is interrupted and a MinCS solver
is applied. This way, we can deliver the smallest MinCS for easier instances but do face
long running computation times for more complex instances.

The results arise the general question why the ILP solvers CPLEX and Gurobi are
often faster and more robust than the best MaxSAT solvers. We discussed possible
reasons for this observation in the conclusion of optimal weighted configuration, see
Subsection 5.2.3.

Furthermore, we showed how a MinCS can serve as starting point to explain conflicts.
Any element of the MinCS can be picked to compute an unsatisfiable core (or an MUS)
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from. For example, a customer using an interactive configurator can pick an option of
the MinCS for which she wants to have an explanation for.

5.4 Optimal Test Coverage

In the previous sections, we considered optimization use cases that aim to find a sin-
gle optimal vehicle. Next, we want to find a minimum number of vehicles for given
requirements. In automotive configuration we face the minimum set cover problem in
several use cases. For example, it is necessary to determine the minimum number of
vehicles needed to cover all the equipment options of a set of tests in order to avoid the
unnecessary construction of (very expensive) test vehicles. Since the size of the set of
configurable vehicles can grow up to approximately 1080 for a model type [Kübler et al.,
2010], an enumeration of this set is not possible in practice. This problem can be solved
by an implicit representation of this set as a Boolean formula, where each satisfying
variable assignment represents a vehicle configuration [Küchlin and Sinz, 2000, Sinz,
2003]. Now we face the problem of how to perform optimization tasks for a minimum
set of vehicles using an implicit representation for the set of constructible vehicles.

In this section we illustrate different use cases of minimum set cover computations in
the context of automotive configuration. We give formal problem definitions and we
develop different approximate (greedy) and exact algorithms. Based on benchmarks of
a German premium car manufacturer we evaluate our different approaches to compare
their time and quality and to determine trade-offs.

This section is based on joint work with Thore Kübart [Walter et al., 2015b].

5.4.1 Use Cases

Two use cases from automotive configuration concerning the task to find a minimum set
of vehicles are the following:

a) Optimal Test Vehicle Coverage. When testing a new type series of vehicles,
the manufacturer builds test vehicles to validate the correct behavior of all compo-
nents. For cost effectiveness, test vehicles are packed with a maximum number of
equipment options. However, not all options are compatible with each other (e.g.,
different gear boxes). Therefore, the problem is to find the minimum number of
test vehicles which contain all given equipment options.

b) Optimal Verification Explanation. The structure nodes of a BOM can be
tested for overlap errors (see Analysis L1), i.e., no constructible vehicle selects two
alternative parts within a structure node. This is done by solving the formula
ϕPD(t) ∧ ϕi ∧ ϕj, for a product type t ∈ T , for all material node combinations i
and j with i 6= j. If the result is true, then there exists a constructible vehicle
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which selects two alternative parts at the same structure node. Furthermore, a
structure node may cause multiple overlap errors. In practice it is important to
give the user a comprehensive, but at the same time short, error description. One
solution is to compute a minimum number of vehicles covering all overlap errors.

5.4.2 Formal Problem Descriptions

We reduce the solution of our use cases to the solution of a minimization version of the
NP-complete Set Cover Problem [Karp, 1972], which is defined as follows:

Definition 46. (Minimum Set Cover Problem) Let U = {e1, . . . , em} be a set of elements
called the universe. Let S = {E1, . . . , En} ⊆ P(U) be a set of subsets of the universe
U whose union ⋃E∈S E = U is the universe. A cover is a subset C ⊆ S whose union⋃
E∈C E = U is the universe.

The problem of finding a cover of minimum cardinality is the minimum set cover problem
which can be defined as a 0-1 ILP (see Section 4.7):

min
∑
E∈S

xE

s.t.
∑

E∈S:e∈E
xE ≥ 1 ∀e ∈ U

xE ∈ {0, 1} ∀E ∈ S

Next, we formulate both use cases of Subsection 5.4.1 in terms of a 0-1 ILP.

Encoding of a Variable Target Set

For the first use case, Optimal Test Vehicle Coverage, we consider a target set
T = {o1, . . . , om} ⊆ O(t), for a product type t ∈ T , of configurable options, i.e.,
ϕPD(t)∧o is satisfiable for each o ∈ T . Otherwise, we have to remove the non-configurable
options from T first. Then we consider the universe U = T and the (practically huge)
set of all configurable vehicles S = {β | eval(ϕPD(t), β) = true} = {β1, . . . , βn}. We
define the matrix A(ϕPD(t), T ) as follows:

A (ϕPD(t), T ) =


β1(o1) . . . βn(o1)

... ...
β1(om) . . . βn(om)



Each column represents the projection of a model of ϕPD(t) (i.e., of a constructible
vehicle) onto the options in T . Each 0/1 entry indicates whether the model covers the
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target variable oi ∈ T . Then the problem of finding a minimum number of vehicles
covering T can be defined by a 0-1 ILP as follows:

min
n∑
i=1

xi

s.t. A (ϕPD, T ) ·


x1
...
xn

 ≥ 1,

xi ∈ {0, 1}, i = 1, . . . , n

(5.1)

In other words, we want to find a minimum number of constructible vehicles whose
included options (the true assigned variables) cover T . Variable vector

(
x1 . . . xn

)
describes which vehicles are chosen.

Encoding of a Boolean Formula Target Set

Target set T , as defined above, consists of variables but this is no restriction for the
general case if we want to cover a set of Boolean formulas {ψ1, . . . , ψm}: For each ψi
we introduce a new selector variable si (cf. Remark 1) and add the implication si → ψi
to the set of constraints. The resulting target is T = {s1, . . . , sm}, consisting only of
variables. If a selector variable si is covered by a model, then the model also satisfies
the corresponding formula ψi.

In the second use case Optimal Verification Explanation, we consider a BOM struc-
ture node with k variants resulting in a set of overlap errors OE ⊆ {{i, j} | i, j =
1, . . . , k and i 6= j}, i.e. formula ϕPD(t) ∧ ψi ∧ ψj is satisfiable for every {i, j} ∈ OE.
We can encode this use case by introducing a new selector variable si for every formula
ψi ∧ψj with {i, j} ∈ OE and following the steps described in the previous paragraph.

Implicit Vehicle Representation

In the context of automotive configuration we face the problem that enumerating all
variants is not possible in practice, since the number of models for a model type, implic-
itly described by ϕPD(t), can grow up to an order of 1080 [Kübler et al., 2010]. Thus, we
cannot explicitly construct matrix A (ϕPD(t), T ) and solve the corresponding 0-1 ILP.
Instead, we solve the problem by using the implicit representation ϕPD(t) of all vehi-
cle configurations. In the following sections we present greedy and exact algorithms to
address the problem of implicit representation.
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5.4.3 Greedy Algorithms

We present two greedy algorithms in this section. We assume that the target set T only
contains configurable variables w.r.t. the constraints in ϕ, i.e., ϕ∧ o is satisfiable for all
o ∈ T .

Algorithm 5.9: SAT-based greedy: minCoverSATGreedy
Input: Boolean formula ϕ, target T ⊆ vars(ϕ)
Output: Cover {β1, . . . , βl}

1 solver← new inc/dec CDCL SAT solver
2 solver. add(ϕ)
3 B ← ∅
4 while T 6= ∅ do
5 solver. sat (∨o∈T o)
6 β ← solver. model()
7 T ← T \ {o ∈ T | β(o) = 1}
8 B ← B ∪ {β}
9 return B

Algorithm 5.9 shows a simple greedy algorithm based on iterative SAT calls. In each
iteration we solve the formula ϕ with the additional condition that at least one target
variable has to be covered, forced by the constraint ∨o∈T o. Thus, the target set T is
completely covered in some iteration and the algorithm terminates. No optimization
computation at all is done, we only solve a decision problem in each iteration. To reduce
the number of iterations, we exploit the model by removing its, potentially multiple,
covered options from the target set. In the worst case, only one option is covered in each
iteration, yielding a total of |T | SAT calls.

Here we use the SAT solver as a black box, i.e., any SAT solver can be used. Since the
number of iterations depends on the model quality, we can modify the heuristics of the
SAT solver. E.g., when deciding over a variable, we may choose a variable o ∈ T and
branch on β(o) = 1 first (cf. [Bacchus et al., 2014]).

We can improve Algorithm 5.9 by optimizing over the target set, i.e., by maximizing the
target function ∑o∈T o. Optimization over a target function can be done by a MaxSAT,
a PBO or an ILP solver. We then cover the maximum number of target variables for
the next model. Furthermore, we can compute multiple models simultaneously by cre-
ating duplicates (see Definition 3). We consider k duplicates of ϕ at the same time:
ϕ(1), . . . , ϕ(k). In order to maximize over the target variables, we introduce fresh selector
variables so for each o ∈ T and add the constraints ∧o∈T (so → ∨k

i=1 o
(i)
)
. The new

target function is ∑o∈T so. If a variable so is assigned to 1, then at least one of the
variables o(1), . . . , o(k) is assigned to 1. Algorithm 5.10 shows this approach of simul-
taneously optimizing k duplicates of the input formula ϕ. In the set of models B we
gather all models by extracting from the current model β models with original variable

223



5 SAT-based Optimization in Automotive Configuration

Algorithm 5.10: PBO-based Greedy: minCoverPBOGreedy
Input: Boolean formula ϕ, target T ⊆ vars(ϕ), number of duplicates k ∈ N
Output: Cover {β1, . . . , βl}

1 solver← new PBO solver
2 B ← ∅
3 while T 6= ∅ do
4 CoverCondition← ∧k

i=1 ϕ
(i) ∧ ∧o∈T (so → ∨k

i=1 o
(i)
)

5 TargetFuction← max∑v∈T so
6 β ← solver.optimize (TargetFunction,CoverCondition)
7 T ← T \

{
o ∈ T | ∃i ∈ {1, . . . , k} : β

(
o(i)
)

= 1
}

8 B ← B ∪ extract(β)
9 return B

names. Since we only solve a local optimization problem this approach is not optimal
in general.

Using k duplicates, the number of variables is k · | vars(ϕ)|. Since all duplicates rep-
resent the same formula, except for the variable names, we add plenty of symmetry.
Symmetries slow down the search process because identified conflicts within a subset
of duplicates hold for all combinations of duplicates but have to be re-identified again.
Symmetry breaking techniques try to avoid this problem. For example, we could add a
lexicographical order of the variables by additional constraints [Crawford et al., 1996].
However, our experiments have shown that this technique does not improve the perfor-
mance on our instances from automotive configuration, and therefore we discarded this
technique for our experimental evaluations.

5.4.4 Exact Algorithms

Next we present exact algorithms. We start by adapting the idea of duplicates of the
input formula ϕ from greedy Algorithm 5.10. We have to choose the number of duplicates
k large enough to simultaneously cover all target options. To find the optimum number
for k, we start by k = 1 and increase k by 1 in each iteration until k is large enough.
In each iteration we want to ensure that all target variables are covered by at least
one duplicate. Thus, we add the cover condition ∧o∈T ∨ki=1 o

(i). Then we have to check
if all duplicate constraints plus the cover condition can be satisfied. If satisfiable, k
is large enough and we can extract the optimal cover from the delivered model β. If
unsatisfiable, we increase k by 1. Algorithm 5.11 shows this approach.

We can reduce iterations by estimating a good lower bound for k (subroutine estimateLB
in Algorithm 5.11). In automotive configuration there are structures which we can
exploit. There are regular and optional groups of variables which are constrained to
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Algorithm 5.11: SAT-based incremental linear search: minCoverSATLS
Input: Boolean formula ϕ, target T ⊆ vars(ϕ)
Output: Minimum cover {β1, . . . , βl}

1 solver← new inc/dec CDCL SAT solver
2 k ← estimateLB(ϕ, T )
3 while true do
4 CoverCondition← ∧

o∈T
∨k
i=1 o

(i)

5 (st, β)← solver. sat
(∧k

i=1 ϕ
(i) ∧ CoverCondition

)
6 if st then
7 return {β1, . . . , βl} = extract(β)
8 else
9 k ← k + 1

ensure that exactly one or at most one of a group of options is assigned to true (see
Definition 24). For example, a constructible vehicle has exactly one engine from the
regular group of engines. For optional groups like radio, navigation system or CD player,
at most one element can be selected. Let Gmax be the group of regular and optional
groups such that |Gmax ∩ T | ≥ |G∩ T | for all regular and optional groups G of ϕ. Then
|Gmax∩T | is a lower bound since the variables in Gmax∩T have to be covered by separate
models.

Algorithm 5.11 can also be used in a decremental mode. We start with k duplicates and
decrease the value of k by 1 in each iteration until the formula becomes unsatisfiable. A
decremental mode has the advantage that the SAT solver has to prove satisfiability in
each iteration (except for the last). This is typically faster than proving unsatisfiability.
Especially the instances in automotive configuration are not too restrictive, and a model
can often be found quickly. To make decremental linear search competitive we have to
estimate a good upper bound first. A trivial upper bound is |T |, but we can also use
any of the greedy algorithms presented in Section 5.4.3.

Furthermore, we can conduct binary search with a trivial range between 1 and |T |, or
with improved ranges between |Gmax ∩ T | and the result of a greedy algorithm as an
upper bound. Algorithm 5.12 illustrates this approach.

A substantial disadvantage of the formula Xk = ∧k
i=1 ϕ

(i) ∧ CoverCondition in the pre-
viously presented linear and binary search are the contained symmetries. For example,
if formula ϕ implies the constraint exact(1, {c1, . . . , ck+1}) (e.g., a group of engines),
then formula Xk contains the constraints of an unsatisfiable pigeon hole instance: It
is impossible to distribute the k + 1 options over the k models. Unsatisfiable pigeon
hole instances are known to be very difficult for a SAT solver. Thus, Algorithms 5.11
and 5.12 are only suited for instances with a small optimum.
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Algorithm 5.12: SAT-based binary search: minCoverSATBS
Input: Boolean formula ϕ, target T ⊆ vars(ϕ)
Output: Minimum cover {β1, . . . , βl}

1 solver← new inc/dec CDCL SAT solver
2 B ← ∅
3 lb← estimateLB(ϕ, T )
4 ub← estimateUB(ϕ, T )
5 mid← ub−lb

2 + lb
6 while lb ≤ ub do
7 CoverCondition← ∧

o∈T
∨mid
i=1 o

(i)

8 (st, β)← solver. sat
(∧mid

i=1 ϕ
(i) ∧ CoverCondition

)
9 if st then

10 B ← extract(β)
11 ub← mid− 1
12 else
13 lb← mid+ 1
14 mid← ub−lb

2 + lb

15 return B

Linear programming combined with branch & bound provides an approach for calculat-
ing the models of an optimal coverage by iterative rather than simultaneous computation.
Algorithm 5.13 illustrates the so called branch & price (B&P) approach [Barnhart et al.,
1996] which calculates a solution x for the relaxed version of the 0-1 ILP problem (see
Equation 5.1) (xi ≥ 0, xi ∈ R for all i = 1, . . . , n) by Column Generation [Desaulniers
et al., 2005], and which takes a non-integer xi of the solution to preferably branch with
xi = 1. Further details and an example execution of the algorithm are described in
Section 7 in [Walter et al., 2015b].

5.4.5 Experimental Evaluation

Our tests were run with the following setup: Intel(R) Core(TM) i7-5600U CPU with
2.60 GHz and 4 GB main memory running 64 Bit Windows 7 Professional.

We used six product description formulas from a German premium car manufacturer.
For each product type t, the product description formula ϕPD(t) represents the con-
structible vehicles on the product type level. Table 5.8 shows characteristics of the
product description formulas.
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Algorithm 5.13: Branch & Price: minCoverILPBP
Input: Boolean formula ϕ, target T ⊆ vars(ϕ)
Output: Minimum cover {β1, . . . , βl}

1 C ← initialCover(ϕ, T )
2 return Solve(ϕ, T, C)
3 func Solve(ϕ, T, C) : {β1, . . . , βl}
4 (x = (x1, . . . , xd), D)← columnGen(ϕ, T, C) // Real number solution x
5 if ∀i : xi ∈ {0, 1} then return {βi ∈ D | xi = 1}
6 lb← ∑

xi
7 B ← solveMinCover(D,T ) // Integer min. set cover with explicit

models
8 ub← |B|
9 if ub− lb < 1 then return B

10 else
11 β ← select(x,D) // Pick a model to branch
12 Tβ ← {o ∈ T | β(o) = 0}
13 B ← {β} ∪ Solve(ϕ, Tβ, D) // Including beta
14 ub = min(ub, |B|)
15 if ub− lb < 1 then return B
16 else
17 ϕ¬β ← ϕ ∧ ∨o∈Tβ o
18 D¬β ← {β ∈ D | β(ϕ¬β) = 1}
19 D¬β ← extendToCompleteCover(D¬β)
20 return Solve(ϕ¬β, T,D¬β) // Excluding beta and neighbours

Use Case 1: Optimal Test Vehicle Coverage

In order to choose a realistic target set, we set the country option to the market Germany,
which provides a huge variant space. Typically, we are not interested in finding an
optimal coverage for worldwide constructible vehicles but only for a specific market.
Further, we excluded regular groups (exactly one element has to be selected) that are
not relevant when testing vehicle features, i.e., air bag warning label, user manual,
paint, upholstery, etc. Thus, we have target sizes |T | of 488, 622, 618, 334, 496, and 340,
for instances 1, 2, 3, 4, 5, and 6, respectively.

In our evaluations, we used Java 1.8 with the two external solvers SAT4J [Le Berre and
Parrain, 2010] (with the default solver Glucose 2.1 [Glu, 2016, Audemard and Simon,
2012]) and CPLEX [cpl, 2016].

Table 5.9 shows the greedy solver configurations we used, where k in parentheses is the
number of duplicates used. The solver configuration PBO-based greedy algorithm using
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Table 5.8: Product description formula characteristics
ϕPD(t)

1 2 3 4 5 6
| vars(ϕPD(t))| 1,778 2,252 2,561 1,928 2,263 1,886
| vars(defCNF(ϕPD(t)))| 4,133 4,687 5,018 3,547 4,059 3,971
| defCNF(ϕPD(t))| 70,986 82,281 88,133 60,628 64,200 72,893

SAT4J-PBO uses the greedy variant of SAT4J-PBO, since exact PBO solving by SAT4J
proved to be too inefficient for our test instances.

Table 5.9: Greedy solver configurations
Abbreviation Algorithm Solver Decision Heuristic
ASAT1 SAT-based Greedy (Alg. 5.9) CPLEX default
ASAT2 SAT-based Greedy (Alg. 5.9) SAT4J default
ASAT3 SAT-based Greedy (Alg. 5.9) SAT4J positive first
APBO1(k) PBO-based Greedy (Alg. 5.10) CPLEX default
APBO2(k) PBO-based Greedy (Alg. 5.10) SAT4J-PBO default

Table 5.10 shows the evaluation results of greedy solver settings for Use Case 1. Entries
in boldface are the best ones among the greedy solvers. Column ‘Distance to Opt.’
shows the difference |Cover|− |Optimal cover|, i.e., the distance to the optimal cover. A
distance of 0 is optimal. The PBO-based greedy approach with configuration APBO2(k)
is one of the fastest but the distance to the optimum increases for k > 1. The PBO-based
greedy approach with configuration APBO1(k) is slower by more than a factor 10 but
delivers better upper bounds.

Table 5.10: Results of Use Case 1 with greedy algorithms
Time(s) Distance to Opt.

Solver 1 2 3 4 5 6 1 2 3 4 5 6
ASAT1 45.14 92.87 96.74 45.31 47.71 59.24 96 146 144 98 99 110
ASAT2 5.97 9.48 10.99 3.47 7.48 4.17 352 437 449 223 366 210
ASAT3 0.73 2.41 2.70 0.79 1.06 1.33 29 60 73 36 44 44
APBO1(1) 6.44 21.66 19.48 8.35 9.30 10.85 0 6 5 3 3 0
APBO1(2) 7.23 34.13 35.21 16.28 14.88 15.74 1 4 4 4 3 0
APBO1(4) 10.18 150.52 869.43 157.92 75.57 37.85 3 2 4 2 1 0
APBO2(1) 0.39 0.93 0.98 0.44 0.51 0.61 0 8 10 7 7 0
APBO2(2) 0.61 1.27 1.28 0.50 0.67 0.67 1 10 10 8 7 0
APBO2(4) 0.51 1.71 1.54 0.66 0.91 0.88 3 10 16 10 13 0
APBO2(10) 1.69 5.50 4.15 1.52 2.30 2.23 27 42 34 20 29 20

Table 5.11 shows the exact solver configurations we used for the evaluation. Columns
“LB” and “UB” show the method used to compute a lower bound and upper bound,
respectively. Number k in parentheses is the number of duplicates used by the greedy
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solver for the computation of an upper bound. Linear search with incremental mode
and binary search either exceeded the timeout limit, or an out-of-memory exception was
thrown on most of the instances. Therefore, we left these two solver settings completely
out of the evaluations. The reason behind this could be that these two solver settings
perform a great number of satisfiability checks where the result is false, which amounts
to exploring the whole search space with all of its symmetries to prove that there is no
solution.

Table 5.11: Exact solver configurations
Abbreviation Algorithm SAT Solver Mode LB UB
ELS1(k) Linear Search (Alg. 5.11) CPLEX decremental |Gmax ∩ T | APBO2(k)
EBP1(k) B&P (Alg. 5.13) – – – APBO1(k)
EBP2(k) B&P (Alg. 5.13) – – – APBO2(k)

Table 5.12 shows the results of Use Case 1 using exact algorithms. Entry “t/o” indicates
a timeout. For all branch & price settings we used a PBO-based greedy approach
since it delivers good upper bounds, respectively initial covers, within a reasonable
time. The best running times, except for one instance, are exhibited by the EBP2(1)
configuration.

Table 5.12: Results of Use Case 1 with exact algorithms
Time(s)

Solver 1 2 3 4 5 6
ELS1(1) 21.51 t/o t/o 748.08 717.99 63.43
ELS1(2) 32.80 t/o t/o 526.33 597.19 76.39
EBP1(1) 7.38 58.79 171.93 25.79 30.77 12.31
EBP1(2) 10.01 95.32 234.6 34.22 42.12 17.87
EBP1(4) 13.29 232.16 1,366.38 228.73 114.87 56.47
EBP2(1) 2.31 46.35 167.01 13.91 12.17 1.55
EBP2(2) 1.83 50.09 217.61 20.05 24.84 2.09
EBP2(4) 2.61 55.53 176.02 32.16 14.38 2.07
EBP2(10) 7.99 72.69 273.52 18.11 21.79 3.72

Use Case 2: Optimal Verification Explanation

For Use Case 2 we created satisfiable random pairs a ∧ b of options a, b ∈ O(t), for a
product type t, to simulate overlap errors. The target set consists of all created pairs.
To investigate the limits of the B&P algorithm we created different target set sizes.
Figure 5.40 shows the increasing running time. For instance 3, we could increase the
target size to 400. For all other instances we could increase the target size to 600. For
greater target set sizes the algorithm aborted with an out-of-memory exception.
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Figure 5.40: Use Case 2: Running times for exact solver EBP1(1)

Table 5.13 shows a comparison of the optimum results and the upper bounds computed
by APBO1(1) for Use Case 1 and Use Case 2. We created this table for the same target
size. Use Case 2 has a higher optimum in most cases and the upper bound is often
worse.

In summary, it became clear that covering the target set is more difficult for Use Case 2:
(i) The upper bounds are worse, (ii) the PBO instances are more complex in the pricing
step, and (iii) the improvement in the MP is less.

However, we observed that in both use cases the B&P approach solved the instances by
branching with xi = 1 and never had to revise this decision.

Table 5.13: Comparison of upper bounds of Use Case 1 and Use Case 2 for APBO(1)
Instances

1 2 3 4 5 6

Use Case 1
Optimum 13 18 16 10 11 20
Upper Bound 13 24 21 13 14 20
Distance 0 6 5 3 3 0

Use Case 2
Optimum 15 18 – 12 12 20
Upper Bound 18 25 – 15 17 23
Distance 3 7 – 3 5 3
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5.4.6 Conclusion

We presented greedy and exact approaches to the minimum set cover problem with an
implicit representation of the models. We evaluated our approaches on real data of a
German premium car manufacturer. The exact branch & price approach with an upper
bound computed by a PBO-based greedy approach was able to solve all instances of Use
Case 1, and it was able to solve 1 instance of Use Case 2 up to a target size of 400, and 5
instances up to a target size of 600.

Future work may consider the investigation of the following improvements: (i) Heuristics
for the choice of k for the greedy Algorithm 5.10 (ii) different computations of upper
bounds during branch & price, and (iii) a portfolio approach, where we analyze the
instance and the target set first and afterwards select an appropriate algorithm.

Even though our first attempts in using symmetry breaking techniques did not help
to improve the speed of linear search (cf. the description of Algorithm 5.11), a deeper
investigation is necessary. The duplication of the input formula introduces plenty of
symmetry and there may be a way to exploit these symmetries by further symmetry
breaking techniques [Sakallah, 2009] to reduce the search space. This may help to make
the linear and binary search algorithms competitive.
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6 Summary

This thesis presented analysis and optimization methods based on formal methods in
the context of automotive product documentation. The main contributions of this work
are as follows:

• Interactive Automotive Configuration. We described interactive high level
and low level configuration with SAT-based methods. We evaluated our methods
on real benchmarks, showing that they are suitable for interactive scenarios.

• Formal Methods for Dynamic Assembly Structures. We formally described
dynamic assembly structures. We developed verification and analysis algorithms.
We evaluated the performance of our methods on industrial benchmarks.

• Comparison of Diagnosis Methods. We described and compared different
diagnosis methods for inconsistencies, in practice and in theory.

• Proving the FPNP-Hardness of the A-preferred MinCS problem. We
proved the FPNP-Hardness of the A-preferred MinCS problem (resp. the L-preferred
MaxSS problem). Thus, we showed that the partial weighted MaxSAT problem
and the A-preferred MinCS are both FPNP-complete and therefore equally hard
to solve in terms of the number of NP-oracle calls.

• Identification of Optimization Use Cases in Automotive Configuration.
We identified and formalized several use cases of optimization problems in the
context of automotive configuration.

• (Re-)Configuration of Vehicles. We identified and formalized several use
cases of re-configuration problems in the context of automotive configuration. We
present different optimal approaches for addressing the re-configuration problems.

• Implementation of AutoConfig. We implemented an interactive product con-
figurator framework using SAT-based algorithms and providing a user interface to
(re-)configure and optimize a product. Our configurator works with all product
descriptions from several automotive manufacturers but can also be used for any
kind of product configuration for which the product description is compilable to
Boolean logic.

• Experimental Evaluation. We evaluated all of our presented algorithms on real
benchmarks from automotive configuration data from different German premium
car manufacturers.
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uration. We give formal problem definitions and we develop different approximate
(greedy) and exact algorithms. Based on benchmarks of a German premium car
manufacturer we evaluate our different approaches to compare their time and qual-
ity and to determine tradeoffs.

• Inverse QuickXplain vs. MaxSAT — A Comparison in Theory and
Practice together with Alexander Felfernig and Wolfgang Küchlin in Proceedings
of the 17th International Configuration Workshop, CEUR Workshop Proceedings,
Vol. 1453, 2015.

Abstract. We compare the concepts of the InvQX algorithm for computing a
Preferred Minimal Diagnosis vs. Partial Weighted MaxSAT in the context of
Propositional Logic. In order to restore consistency of a Constraint Satisfaction
Problem w.r.t. a strict total order of the user requirements, InvQX identifies a
diagnosis. Partial Weighted MaxSAT aims to find a set of satisfiable clauses with
the maximum total weight. It turns out that both concepts have similarities, i.e.,
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both deliver a correction set. We point out these theoretical commonalities and
prove the reducibility of both concepts to each other, i.e., both problems are FPNP-
complete, which was an open question. We evaluate the performance on problem
instances based on real configuration data of the automotive industry from three
different German car manufacturers and we compare the time and quality tradeoff.

• FlexDiag: AnyTime Diagnosis for Reconfiguration together with Alexander
Felfernig and Stefan Reiterer in Proceedings of the 17th International Configuration
Workshop, CEUR Workshop Proceedings, Vol. 1453, 2015.

Abstract. Anytime diagnosis is able to determine solutions within predefined
time limits. This is especially useful in realtime scenarios such as production
scheduling, robot control, and communication networks management where diag-
nosis and corresponding reconfiguration capabilities play a major role. Anytime
diagnosis in many cases comes along with a tradeoff between diagnosis quality
and the efficiency of diagnostic reasoning. In this paper we introduce and analyze
FlexDiag which is an anytime variant of existing direct diagnosis approaches.
We evaluate the algorithm with regard to performance and diagnosis quality using
a configuration benchmark.

• Different Solving Strategies on PBO Problems from Automotive Indus-
try together with Thore Kübart and Wolfgang Küchlin in Proceedings of the 17th

International Configuration Workshop, CEUR Workshop Proceedings, Vol. 1453,
2015.

Abstract. SAT solvers have proved to be very efficient in verifying the correctness
of automotive product documentations. However, in many applications a car con-
figuration has to be optimized with respect to a given objective function prioritizing
the selectable product components. Typical applications include the generation of
predictive configurations for production planning and the reconfiguration of non-
constructible customer orders. So far, the successful application of core guided
MaxSAT solvers and ILP-based solvers like CPLEX have been described in litera-
ture. In this paper, we consider the linear search performed by DPLL-based PBO
solvers as a third solution approach. The aim is to understand the capabilities
of each of the three approaches and to identify the most suitable approach for
different application cases. Therefore we investigate real-world benchmarks which
we derived from the product description of a major German premium car manu-
facturer. Results show that under certain circumstances DPLL-based PBO solvers
are clearly the better alternative to the two other approaches.

• Verifying the Linux Kernel Configuration with SAT Solving together with
Martin Walch and Wolfgang Küchlin in Proceedings of the 17th International Con-
figuration Workshop, CEUR Workshop Proceedings, Vol. 1453, 2015.

Abstract. The Linux kernel is a highly configurable software system. The aim
of this paper is to develop a formal method for the analysis of the configuration
space. We first develop a Linux product overview formula (L-POF), which is a
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Boolean formula representing the high-level configuration constraints of the kernel.
Using SAT solving on this L-POF, we can then answer many questions, such as
which options are possible, mandatory, or impossible for any of the processor
architectures for which the kernel may be configured. Other potential applications
include building a configurator or counting the number of kernel configurations.
Our approach is analogous to the methods we use for automobile configuration.
However, in the Linux case the configuration options (e.g. the individual device
drivers) are represented by symbols in Tristate Logic, a specialized three-valued
logic system with several different data types, and the configuration constraints
are encoded in a somewhat arcane language. We take great care to compile the
L-POF directly from the files that hold the configuration constraints in order to
achieve maximum flexibility and to be able to trace results directly back to the
source.

2014

• ReMax - A MaxSAT aided Product (Re-)Configurator together with Wolf-
gang Küchlin in Proceedings of the 16th International Configuration Workshop,
CEUR Workshop Proceedings, Vol. 1220, 2014.

Abstract. We introduce a product configurator with the ability of optimal re-
configuration built on MaxSAT as the background engine. A product configurator
supported by a SAT solver can provide an answer at any time about which compo-
nents are selectable and which are not. But if a user wants to select a component
which has already been disabled, a purely SAT based configurator does not sup-
port a guided re-configuration process. With MaxSAT we can compute the mini-
mal number of changes of component selections to enable the desired component
again. We implemented a product configurator — called ReMax — using state-of-
the-art MaxSAT algorithms. Besides the demonstration of handmade examples,
we also evaluate the performance of our configurator on problem instances based
on real configuration data of the automotive industry.

2013

• Applications of MaxSAT in Automotive Configuration together with Chri-
stoph Zengler and Wolfgang Küchlin in Proceedings of the 15th International Con-
figuration Workshop, CEUR Workshop Proceedings, Vol. 1128, 2013.

Abstract. We give an introduction to possible applications of MaxSAT solvers in
the area of automotive (re-)configuration. Where a SAT solver merely produces
the answer “unsatisfiable” when given an inconsistent set of constraints, a MaxSAT
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solver computes the maximum subset which can be satisfied. Hence, a MaxSAT
solver can compute repair suggestions, e.g. for non-constructible vehicle orders
or for inconsistent configuration constraints. We implemented different state-of-
the-art MaxSAT algorithms in a uniform setting within a logic framework. We
evaluate the different algorithms on (re-)configuration benchmarks generated from
problem instances of the automotive industry from our collaboration with German
car manufacturer BMW.
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