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Abstract 

Mathematical competences are important for mastering the problems that are encoun-

tered in a modern society that values knowledge. Such competences are relevant not only for 

mastering the mathematical problems encountered in school but also for managing everyday 

life. In practice, mathematical competences are required for finding solutions to society’s major 

problems (e.g., the prediction of global warming). Mathematical competences are thereby as-

sumed to be individual cognitive abilities and skills as well as the outcomes of learning pro-

cesses. An individual is ascribed with sophisticated mathematical competences if he or she is 

able to come up with new mathematical problems by applying previously existing mathemati-

cal competences meaningfully.  

Therewith, fostering mathematical competences is of major importance. Based on a cog-

nitive-socio-constructive understanding of learning in mathematics, students need learning 

possibilities that lock in their individual potential. Several mechanisms and factors have been 

shown to drive the acquisition of mathematical competences. To foster mathematical compe-

tences, challenging learning opportunities are necessary. Especially for students who are al-

ready able to solve curriculum-based tasks. One extracurricular enrichment approach that has 

been suggested to challenge students are (domain-specific, mathematical) academic competi-

tions. But, to ensure that these students will be able to master the challenging problems they 

will face in the competition, they must prepare appropriately to solve such problems. Therefore, 

and to protect them from negative experiences such as failure, corresponding training programs 

have been suggested and implemented in practice. Such training programs prepare students to 

participate in a specific academic competition.  

Paper 1 reviews the appropriateness of academic competitions by summarizing the roles 

ascribed to academic competitions with regard to the promotion of gifted students. Using the 

example of the Mathematical Olympiad for elementary school students, a training program that 

considers the strengths and weaknesses of mathematically gifted elementary school students is 

introduced. The training was aimed at enhancing the performance in the Mathematical Olym-

piad as well as (process-based) mathematical competences.  

The effectiveness of this particular training was examined in two empirical studies: In 

Paper 2, a quasi-experimental pre- and posttest design was used to investigate the effects of the 

training. Dependent variables were success in the Mathematical Olympiad, mathematical com-

petences, and the motivation to do mathematics (i.e., math self-concept and value beliefs for 

mathematics). A total of 201 third- and fourth-grade students participated in this study. Positive 



 

effects were found for third and fourth graders’ performance in the Mathematical Olympiad, 

their mathematical competences, and the task-specific interest in mathematics of fourth-grade 

students.  

In Paper 3, the effects of a training that was aimed at fostering process-based mathemat-

ical competences on cognitive factors were investigated in detail. Dependent variables were 

success in the Mathematical Olympiad, content- and process-based mathematical competences, 

as well as domain-general cognitive abilities. Results of a randomized controlled field trial with 

97 students indicated significant effects of the training on process-based competences but also 

transfer effects on domain-general abilities.  

In summary, this dissertation provides evidence for the positive influences of a training 

for an academic competition in mathematics on students’ performance in the competition and, 

additionally, their mathematical competences. Based on the results of the studies, questions for 

further educational research with regard to trainings and academic competitions can be de-

duced. The findings suggest that the effectiveness of separate core components should be in-

vestigated more detailed. Further, some implications for educational practice are summarized. 

 



 

Zusammenfassung 

Zur Lösung von Problemen in der modernen digitalen Wissensgesellschaft sind elabo-

rierte mathematische Kompetenzen erforderlich. Nicht nur für mathematische Probleme in der 

Schule oder zur Bewerkstelligung des Alltags sind mathematische Kompetenzen notwendig, 

sondern auch in ihrer praktischen Anwendung zur Lösung bedeutsamer gesellschaftlicher 

Probleme wie beispielsweise zur Vorhersage von Klimaveränderungen. Dabei stellen mathe-

matische Kompetenzen sowohl eine individuelle kognitive Fähigkeit als auch das Ergebnis von 

Lernprozessen dar. Einer Person werden dann elaborierte mathematische Kompetenzen zuge-

schrieben, wenn sie neue mathematische Probleme durch die sinnvolle Anwendung bereits 

existierender mathematischer Kompetenzen lösen kann. 

Damit kommt der Förderung mathematischer Kompetenzen eine Schlüsselrolle zu. Ba-

sierend auf einem kognitiv-sozio-konstruktiven Verständnis mathematischen Lernens benöti-

gen Schülerinnen und Schüler zur Entwicklung mathematischer Kompetenzen Lerngelegen-

heiten, die an ihr individuelles Potential anknüpfen. Dieses Potential setzt sich zusammen aus 

kognitiven und nichtkognitiven Faktoren, welche sich in verschiedenen Forschungstraditionen 

wie empirischer Bildungsforschung, numerischer Kognitionsforschung und pädagogischer 

Psychologie als einflussreich für den Erwerb mathematischer Kompetenzen gezeigt haben. Bei 

der Förderung mathematischer Kompetenzen ist es deshalb das Ziel, herausfordernde, dem Po-

tential der Schülerinnen und Schüler angemessene Lerngelegenheiten zu schaffen. Dies gilt 

beispielsweise auch und vor allem für Lernende, die curriculare Aufgaben bereits spielend lö-

sen können. Ein möglicher Ansatz zur Förderung mathematischer Kompetenzen dieser mathe-

matisch besonders begabten und hochbegabten Schülerinnen und Schüler stellt extracurricula-

res Enrichment dar. Eine Form des Enrichments bieten (domänen-spezifischen) Schülerwett-

bewerb. Um Schülerinnen und Schüler auf das Lösen der herausfordernden Aufgaben eines 

solchen Schülerwettbewerbs vorzubereiten und gleichzeitig ihre mathematischen Kompeten-

zen zu vertiefen, wird der begleitende Einsatz von Trainingsprogrammen für spezifische Wett-

bewerbe (z. B. akademische Olympiaden) vorgeschlagen. Gleichzeitig zielen diese Programme 

darauf, negative Erfahrungen wie Versagen abzupuffern. 

In Paper 1 wird die Angemessenheit von Schülerwettbewerben in der Begabtenförderung 

hinterfragt indem Rollen wie beispielsweise Differenzierung, die Schülerwettbewerben in der 

Begabtenförderung zugeschrieben werden, zusammengefasst werden. Anschließend wird am 

Beispiel der Mathematik-Olympiade für die Grundschule ein Trainingsangebot vorgestellt, das 

die Stärken und Schwächen mathematisch begabter Grundschulkinder berücksichtigt. Das 



 

Training zielte sowohl auf eine erfolgreiche Teilnahme an der Mathematik-Olympiade als auch 

auf die Förderung mathematischer (insbesondere prozessorientierter) Kompetenzen ab. 

Die Effektivität des Trainings wurde in zwei empirischen Studien untersucht: In Paper 2 

wurde ein quasi-experimentelles Prä-Posttest-Design genutzt, um die Effekte es Trainings zu 

untersuchen. Im Sinne einer ganzheitlichen Förderung mathematischer Kompetenzen wurden 

neben dem Erfolg in der Mathematik-Olympiade und den mathematischen Kompetenzen auch 

die motivationalen Variablen Selbstkonzept und Wertüberzeugungen für Mathematik als ab-

hängige Variablen erfasst. Insgesamt nahmen 201 Dritt- und Viertklässler an dieser Studie teil. 

Im Vergleich zu den Kindern der Kontrollgruppe zeigten sich für die Dritt- und Viertklässler 

die das Training besucht hatten, positive Effekte für die Leistung in der Mathematik-Olympi-

ade, ihren mathematischen Kompetenzen sowie positive Effekte für das aufgabenspezifische 

Interesse der Viertklässler.  

In Paper 3 wurden die Effekte des Trainings hinsichtlich kognitiver Faktoren im Detail 

untersucht. Abhängige Variablen waren der Erfolg in der Mathematik-Olympiade, inhalts- und 

prozessbezogene mathematische Kompetenzen sowie domänen-übergreifende kognitive Fä-

higkeiten. Die Ergebnisse einer randomisierten Warte-Kontrollgruppen-Studie mit 97 Schüle-

rinnen und Schüler deuten auf positive Effekte des Trainings hinsichtlich der prozessbezoge-

nen Kompetenzen aber auch auf Transfereffekte für domänen-übergreifende kognitive Fähig-

keiten hin.  

Zusammenfassend zeigen sich im Rahmen dieser Dissertation damit Hinweise dafür, 

dass Trainingsangebote die Leistung in einem Schülerwettbewerb verbessern und die Schüle-

rinnen und Schüler darüber hinaus ihr Lernpotential vergrößern können. Ausgehend von den 

Ergebnissen der Studien, werden Fragestellungen für weitere Forschung im Zusammenhang 

mit wettbewerbsbegleitenden Trainingangeboten abgeleitet. So sollte beispielsweise die Effek-

tivität einzelner Kernkomponente künftig genauer untersucht werden. Abschließend werden 

Implikationen für die Praxis zusammengefasst.  
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3 INTRODUCTION AND THEORETICAL FRAMEWORK 

1 Introduction and Theoretical Framework 

In modern western society, mathematical competences are seen as key competences that 

are relevant not only in school but also for vocational success and for managing everyday life 

(e.g., Bruder, Hefendehl-Hebeker, Schmidt-Thieme, & Weigand, 2015; Butterworth, Varma, 

& Laurillard, 2011; Grønmo, Lindquist, Arora, & Mullis, 2015; Murnane, Willett, & Levy, 

1995; National Council of Teachers of Mathematics, NCTM, 2000; Organisation for Economic 

Co-operation and Development, OECD, 2014; Ritchie & Bates, 2013; Schrader & Helmke, 

2008). For example, estimating the expected costs during one’s next shopping trip requires 

mathematical competences, and so does a rough guess about the amount of gas necessary to 

drive to grandmother’s house or the ability to detect logical errors in a partner’s explanation 

for being late (see e.g., Loos & Ziegler, 2015). The application of mathematical competences 

are even required for solving major social problems such as the prediction of global warming 

or the algorithms implemented in navigation devices as well.  

Thereby, mathematical competences involve more than the simple mastering of even 

complex calculations. In line with some authors who have suggested that mathematics is the 

science of patterns and structures (e.g., Devlin, 1996, 2003, 2004; Wittmann, 2005, July), math-

ematical situations include all situations involving abstract theoretical quantities and qualities 

as well as their relationships (e.g., Grebe, 2013). Thereby, mathematical competences are seen 

as the outcomes of learning processes in the field of mathematics that show up in the successful 

mastering of mathematical problems (e.g., Chomsky, 1968; Klieme, 2004; Leuders, 2011; Niss 

& Højgaard, 2011). 

In focusing on how the individual student learns mathematics (e.g., Beck, Guldimann, & 

Zutavern, 1991), an understanding of the cognitive mechanisms that enable the student to suc-

cessfully solve mathematical problems is crucial (e.g., Georges, Hoffmann, & Schiltz, 2017). 

Hence, mathematical competences are also needed to capture the characteristics of a multidi-

mensional construct that involves all of the individual requirements that are necessary to deal 

with mathematical problems (e.g., Leuders, 2014; Weinert, 2001a, 2001b, 2001c). Regarding 

these requirements, many domain-general and domain-specific cognitive (e.g., intelligence and 

prior mathematical competences) as well as noncognitive factors (e.g., social background and 

motivation) have been shown to be associated with mathematical competences (see e.g., Al-

cock et al., 2016; Cerda et al., 2015; Fleischer, Koeppen, Kenk, Klieme, & Leutner, 2013; 

Fuchs et al., 2010; Klieme, 2004, Klieme, Eichler et al., 2008; Köller, 2010; LeFevre, 2016; 

Passolunghi & Lanfranchi, 2012; Schenke, Rutherford, Lam, & Bailey, 2016; Schneider, 
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Küspert, & Krajewski, 2016; Schrader & Helmke, 2008; Sella, Sader, Lolliot, & Cohen Ka-

dosh, 2016; Sullivan, Frank, & Barner, 2016; Träff, 2013; Wang, Halberda, & Feigenson, 

2017).  

In particular, cognitive abilities that are correlated with, explain, or predict mathematical 

competences have frequently been examined. Thereby, domain-general cognitive abilities 

(e.g., intelligence or working memory) are assumed to also influence competences in domains 

other than mathematics (e.g., science, language). For instance, Neisser and colleagues (1996) 

reported a moderate correlation between intelligence and school grades.1 Further, Kriegbaum, 

Jansen, and Spinath (2015) conducted a study in which intelligence was found to explain vari-

ance in students’ competences but mostly in students’ mathematical competence (Kriegbaum 

et al., 2015). But, domain-specific abilities such as the ability to understand number magnitude 

or counting were found to be important too (Dehaene, 1992; Krajewski & Schneider, 2009a, 

2009b; Schneider et al., 2016; von Aster & Shalev, 2007; Winkelmann, Robitzsch, Stanat, & 

Köller, 2012). Especially the interplay of several domain-general and domain-specific cogni-

tive abilities has been suggested to influence the development of mathematical competences 

(Alcock et al., 2016; Fuchs et al., 2010; LeFevre, 2016; Sullivan et al., 2016; Träff, 2013). 

Hence, for instance, in a study by Kunter and Voss (2013) using COACTIV data, amongst 

other prior competences, cognitive ability and reading literacy predicted mathematical compe-

tences on an individual level 1 year later. 

Looking at the acquisition of mathematical competences, motivation for mathematics 

(i.e., a domain-specific noncognitive factor) must not be neglected (Cerda et al., 2015; Krieg-

baum et al., 2015; Kriegbaum & Spinath, 2016; Murayama, Pekrun, Lichtenfeld, & Vom Hofe, 

2013; Neisser et al., 1996). For instance, Kriegbaum and colleagues (2015) found that motiva-

tional constructs (i.e., math self-concept, self-efficacy, interest, and goal orientations) predicted 

mathematical competences 1 year later even when they controlled for pretest differences based 

on PISA-I-PLUS data (teenagers). In a longitudinal study, Murayama and colleagues (2013) 

reported that (intrinsic) motivation predicted growth in mathematical competences across a 

period of 5 years.  

Drawing a more holistic picture of mathematical competences, the interplay of cognitive 

and noncognitive factors has been found to influence mathematical competences as well. For 

                                                 
1 Within the framework of this dissertation, school grades were used as the in-school measure of com-

petences. However, it should be noted that grades are supposed to be influenced by teachers’ expectations or the 

achievement level of the respective grade. Therefore, they have weaknesses in terms of objectivity and reliabil-

ity. This limitation should be kept in mind by readers.  
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instance, Kriegbaum and Spinath (2016) reported results of a study in which the relation be-

tween parents’ SES and students’ mathematical competences was mediated by intelligence and 

motivation. Controlling for motivation, a study by Murayama and colleagues (2013) even re-

ported that intelligence did not predict growth in mathematical competences. Going further, 

domain-general abilities tend to be a necessary but not sufficient factor for influencing mathe-

matical competences (Neisser et al., 1996, for a deeper discussion regarding intelligence, see 

e.g., Arvey et al., 1994). 

Based on a cognitive-socio-constructive understanding of learning (e.g., Beck et al., 

1991; Kunter & Trautwein, 2013), providing learning opportunities that lock in individual re-

quirements and center on students’ needs (e.g., Oelkers & Reusser, 2008) is an inherent part of 

fostering mathematical competences in many educational systems around the world (see e.g., 

Bruder et al., 2015; Edwards, Nichols, & Sharpe, 1972; Kilpatrick, Swafford, & Findell, 2001; 

Kultusministerkonferenz, KMK, 2004a, 2004b; NCTM, 2000; Niss & Højgaard, 2011). But, 

as indicated by many large-scale assessments and frequently reported by teachers, there are 

individual differences in the requirements (i.e., the learning potential based on domain-general 

and domain-specific cognitive and noncognitive factors) and the manifestation of mathematical 

competences (e.g., Bos, Wendt, Köller, & Selter, 2012; OECD, 2004, 2007, 2016; Stanat, Pant, 

Böhme, & Richter, 2012; Wendt, Bos et al., 2016). Indeed, results from the PISA and TIMS 

studies have indicated that fewer students belong to the group of top performers. In TIMSS 

2007, 2011, and 2015, there were between 5% and 6% of German students who reached the 

competency level that is supposed to reflect very sophisticated curricularly demanded mathe-

matical competences (Wendt, Bos et al., 2016, results of other large-scale studies in which 

German students participated indicated comparable results, see Bos et al., 2012; OECD, 2004, 

2007, 2016; Stanat et al., 2012). Thus, it is not surprising that there are elementary school 

students who are already able to solve curriculum-based mathematical problems and tasks (e.g., 

Koshy, Ernest, & Casey, 2009).  

To give the top-performing students the opportunity to deploy their mathematical poten-

tial and to increase their mathematical competences, these students also need appropriate learn-

ing environments that challenge them (e.g., Diezmann & Watters, 2001; Koshy et al., 2009; 

Subotnik, Olszewski-Kubilius, & Worrell, 2011). Especially for the students with really high 

potential (i.e., gifted and talented students), several in- and out-of-school approaches that are 

aimed at accelerating or enriching their learning environments have been shown to markedly 

enhance their potential (Kulik & Kulik, 1987; Lubinski & Benbow, 2006; Steenbergen-Hu & 

Moon, 2010). 
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One opportunity that offers complex situations for applying and acquiring mathematical 

competences outside of school curricula is domain-specific academic competitions (Abernathy 

& Vineyard, 2001; Bicknell, 2008; Callahan, Hunsaker, Adams, Moore, & Bland, 1995; 

Fauser, Messner, Beutel, & Tetzlaff, 2007; Oswald, Hanisch, & Hager, 2005; Riley & Karnes, 

1998). However, this special kind of enrichment program comes with a competitive environ-

ment (Bicknell, 2008; Wirt, 2011) that is supposed to negatively affect students’ motivation 

(e.g., decreasing self-concept; Marsh, & Parker, 1984) or trigger stress or self-doubt (Clinken-

beard, 1989). Therefore, and to prepare students to be able to master the demands of the chal-

lenging tasks that are presented in such competitions, some authors have suggested that aca-

demic competitions be combined with trainings to prepare students to participate in such com-

petitions (Cropper, 1998; Fauser et al., 2007; Kießwetter, 2013; Oswald et al., 2005; Ozturk & 

Debelak, 2008a, 2008b).  

But, are academic competitions even an appropriate tool for fostering mathematical com-

petences? Can trainings capture the gist of the matter? Are they successful in boosting positive 

expectations and counterbalancing the negative influences of academic competitions? The pre-

sent dissertation is aimed at answering these questions by first reviewing the role of academic 

competitions in fostering gifted elementary school students by using the example of the Math-

ematical Olympiad. Second, a mathematical training that was developed under the assumption 

that it prepares students for the requirements of the Mathematical Olympiad is introduced and 

evaluated in two empirical studies. Thereby, three research questions are addressed. First, the 

appropriateness of academic competitions in fostering mathematical competences is examined, 

and the necessity of pedagogical accomplishment is explained. Second, effects of the training 

on achievement and motivational aspects are examined by taking a close look at social com-

parison processes. Third, the effects on cognitive factors caused by a training that was aimed 

at fostering process-based mathematical competences are explored in detail. 

The present dissertation has the following structure: In the introduction chapter, the three 

research questions are embedded in a broader framework. Before proceeding, some vocabulary 

words are clarified by characterizing the concept of mathematical competences from an edu-

cational and social science perspective (1.1). In Chapter 1.2, considerations regarding the ac-

quisition of mathematical competences (i.e., learning mathematics) are summarized. Subse-

quently, to explain cognitive mechanisms, domain-general and domain-specific cognitive fac-

tors that are supposed to enable the acquisition of mathematical and especial numerical com-

petences are delineated (1.3). In Chapter 1.4, the noncognitive factors that are supposed to 

influence mathematical competences are also summarized. In Chapter 1.5, the characteristics 
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and needs of mathematically gifted students are derived. In a last step, the three research ques-

tions are described (1.6).  

Subsequently, Papers 1 to 3 are enclosed. Chapter 2 (Paper 1) summarizes expectations 

of academic competitions and the framework of a training that was designed to prepare students 

to be able to meet the requirements of the Mathematical Olympiad. Afterwards, effects of the 

training on the development of achievement and motivational variables are examined, and the 

results of a quasi-experimental empirical study are presented (Chapter 3, Paper 2). Chapter 4 

(Paper 3) presents the results of a randomized controlled field trial exploring differential effects 

of the training on cognitive factors. Chapter 5 of the present dissertation contains an overall 

discussion of the three papers, considerations regarding the effects of the training, and impli-

cations for practice and further research. 

Overall, the contents of the present dissertation are from different research fields. Re-

search in social and educational science, mathematics education, and educational psychology 

is considered in addition to developmental psychology and motivational research. Thus, the 

present dissertation claims to offer an interdisciplinary approach to the holistic fostering of 

mathematical competences. Nevertheless, the dissertation focuses on the students’ perspective. 

In particular, the combination of cognitive and motivational aspects means that mathematical 

competences can be understood as a learning potential on the individual level. Thereby, the 

aspect of teachers as the ones who mainly influence students’ learning environments is more 

or less ignored. As the training was part of a German enrichment program—namely, the Hector 

Children’s Academy Program (for more information, see Rothenbusch, Zettler, Voss, Lösch, 

& Trautwein, 2016)—the literature in both German and English needed to be considered be-

cause the participants of the training were part of the German education system, and there is a 

huge community of German Fachdidaktik whose literature is mainly published in German.  
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1.1 The Concept of Mathematical Competences  

In this chapter, some vocabulary with regard to the concept of competences and espe-

cially the operationalization of mathematical competences is clarified. Therefore, considera-

tions and suggestions from social and educational science as well as empirical studies are con-

sidered.  

1.1.1 The concept of competences  

In social and education science, the concept of competences is used to describe a multi-

dimensional construct that considers cognitive but also motivational, social, emotional, or vo-

litional abilities that enable the reasonable use of solutions in different domain-specific situa-

tions in a functional, methodological, and activity-orientated way (Chomsky, 1968; Klieme, 

2004; Klieme & Hartig, 2008; Klieme, Hartig et al., 2008, 2008; Leuders, 2014; Simonton, 

2003; Weinert, 1999, 2001a, 2001c; Winkelmann et al., 2012). Competences are classified as 

outcomes that enable a person to reasonably handle the increasing complexity of a modern 

society that values knowledge (Chomsky, 1968; Klieme, 2004; Klieme, Hartig et al., 2008; 

KMK, 2004a, 2004b; NCTM, 2000; Niss & Højgaard, 2011; OECD, 1999, 2004, 2014). 

Thereby, competences are classified as domain-specific dispositions of available or learnable 

skills and abilities that render a person able to solve problems in certain and perhaps complex 

situations (Klieme, 2004; Klieme & Hartig, 2008; Weinert, 1999, 2001a, 2001c). In addition, 

competences are used to describe learning outcomes in terms of a person’s success in facing 

tasks, problems, and situations by using abilities and knowledge in realistic contexts (Bruder 

et al., 2015; Chomsky, 1968; Kilpatrick et al., 2001; Klieme, 2004; Klieme & Hartig, 2008; 

Köller & Parchmann, 2012; NCTM, 2000; Niss & Højgaard, 2011; Weinert, 1999, 2001a, 

2001b). Thus, the concept of competences is a homonym: On the one hand, it describes an 

individual’s learning potential in terms of skills and abilities. On the other hand, it specifies the 

outcomes of learning processes.  

With the competence approach, the former content-driven curricula were changed to out-

comes that can be described concretely in terms of what students should learn and what teachers 

should teach (Bernholt, Neumann, & Nentwig, 2012; Köller & Parchmann, 2012). In the Ger-

man educational system, for instance, these outcomes are described in terms of content and 

performance standards, informed by the literature (Köller & Parchmann, 2012). Nevertheless, 

competences are still an ambiguous construct (for a critical review, see e.g., Schecker, 2012) 

that combines aspects of learning, achievement, and performance in a respective domain. 

Within the scope of this dissertation, the term competences is used to describe all forms of 
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academic achievement or performance that identify both an individual disposition and a learn-

ing outcome. In line with Klieme and Hartig (2008), interindividual differences in academic 

performance are perceived as an actual conversion of people’s competences (Klieme, Hartig et 

al., 2008). 

1.1.2 The operationalization of competences 

In psychological research traditions, the concept of competences comes primarily from a 

pragmatic-functional perspective that concentrates on the cognitive aspect (Klieme & Hartig, 

2008). Given the assumption that cognitive abilities contribute to outcomes, the concept of 

competences is part of the characteristic of a psychological construct that could be operation-

alized and therewith assessed by considering tasks that reflect the requirements of real life (see 

e.g., Klieme & Hartig, 2008; Köller, 2010; Leuders, 2014; Weinert, 2001a, 2001c). Therefore, 

there is a need for (a) the development or formulation of a theoretical model that is based on 

the characterization of contents and structures of respective competences informed by the lit-

erature, (b) a psychometric model, (c) a statistical model that describes the mathematical rela-

tions between latent variables, and (d) diagnostic assessment and an empirical examination 

(Hartig, 2008; Klieme & Leutner, 2006; Köller & Parchmann, 2012; Leuders, 2014; Niss 

& Højgaard, 2011). Thus, sufficiently formulated theoretical models—based in general on ped-

agogical and didactical considerations—enable the empirical measurement of inter- and in-

trapersonal differences in competences via a look at people’s performance in certain contexts 

(Klieme & Hartig, 2008). Such theoretical models of domain-specific competences are seen 

from either the perspective of a structure of cognitive processes for acquiring competences—

resulting in competence structure models—or from the perspective of concentrating on the 

complexity of tasks, resulting in competence level models (Fleischer et al., 2013; Leuders, 

2014; Webb, Day, & Romberg, 1988; Wilson, 1992). Based on the different ideas for formu-

lating theoretical models of competences, the psychometric models also vary from uni- to mul-

tidimensional continuous or categorical variables (Leuders, 2014).  

On the one hand, competence level models are based on a priori disjoint categorical levels 

of competence and enable differentiated information about individual differences for each cat-

egory. Such competence level models offer the opportunity to qualitatively describe criteria 

detailing the requirements that an individual is able to manage according to his or her develop-

ment in the respective category (see Fleischer et al., 2013). For example, Bayrhuber, Leuders, 

Bruder, and Wirtz (2010) developed and empirically evaluated a four-dimensional competence 

model that described the competence of problem solving with functions. In this cross-sectional 
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study of N = 872 seventh- and eighth-grade students, typical competence profiles of eighth 

graders were established on the basis of the four-dimensional model of this competence by 

computing latent class analyses2 (Bayrhuber et al., 2010).  

On the other hand, competence structure models focus on the cognitive processes neces-

sary to cope with the requirements in a certain part of a domain (see Fleischer et al., 2013; 

Hartig & Klieme, 2006). Thereby, the reference point for defining subdimensions ranges across 

cognitive processes (see e.g., Hartig & Jude, 2008), variable types of tasks and problems (see 

e.g., Leutner, Fleischer, Wirth, Greiff, & Funke, 2012), psychological constructs (e.g., the un-

derstanding of science for assessing science competences, see Schiefer, 2017), different cur-

ricular contents (see, e.g., Winkelmann et al., 2012; Winkelmann & Robitzsch, 2009), and dif-

ferent formats of representation and problems (see e.g., Bayrhuber et al., 2010). Nevertheless, 

there are approaches—for example, in PISA, TIMSS, or the German National Assessment 

Studies conducted by the IQB—that can be applied to create clusters of such continuous vari-

ables and to define competence proficiency levels depending on people’s general mathematical 

competences (see, e.g., Bos, 2008; IQB, 2008; Köller & Parchmann, 2012; OECD, 2016; Reiss, 

Roppelt, Haag, Pant, & Köller, 2012; Reiss & Winkelmann, 2009; Wendt, Bos et al., 2016). 

Combining the categorical aspect of competence level models and the considerations that need 

to be made about cognitive processes in order to understand the structure of competences, for 

example, Kunina-Habenicht, Rupp, and Wilhelm (2009) examined a multidimensional compe-

tence model to assess individual profiles of arithmetic competence. In this cross-sectional study 

of N = 464 elementary school students, seven latent classes were examined to describe students’ 

arithmetic competence, separating the four basic arithmetic skills and a modeling skill that was 

embedded in the basic arithmetic skills (Kunina-Habenicht et al., 2009).  

  

                                                 
2 For the seventh graders, no competence profiles indicating strengths or weaknesses on the different 

competences were identified (Bayrhuber et al., 2010).  
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1.1.3 Operationalization of mathematical competences 

One of the most prominent approaches that has been used to operationalize people’s per-

formance in mathematics is the concept of mathematical literacy, which is assessed in the 

OECD’s Programme for International Student Assessment (PISA):  

Mathematical literacy is an individual’s capacity to identify and 

understand the role that mathematics plays in the world, to make 

well-founded mathematical judgements and to engage in mathe-

matics, in ways that meet the needs of that individual’s current 

and future life as a constructive, concerned and reflective citizen 

(OECD, 1999, p. 41). 

According to the OECD (1999), mathematical literacy is influenced by different aspects 

such as mathematical competences that describe (a) general concepts for working mathemati-

cally (e.g., problem solving) as well as (b) mathematical contents (e.g., mathematical big 

ideas). According to considerations about the concept of competences (see 1.1.1), mathemati-

cal literacy can also be considered mathematical competences (for more information about the 

concept of mathematical literacy referring to the concept of competences, see, e.g., Weinert, 

1999, 2001a).  

To assess mathematical competences in IEA’s (International Association for the Evalu-

ation of Educational Achievement) Trends in International Mathematics and Science Studies 

(TIMSS), again, the contents and the cognitive dimensions were differentiated (see, e.g., 

Grønmo et al., 2015; Wendt, Bos et al., 2016). For example, for the fourth graders, number, 

geometric shapes/measures, and data display (i.e., contents) as well as knowing, applying, and 

reasoning (i.e., cognitive performance standards) were assessed for nine different types of tasks 

(see e.g., Bos, 2008; Grønmo et al., 2015; Selter, Walther, Wessel, & Wendt, 2016).  

Just as mathematical competences has been operationalized in large-scale assessments 

such as PISA or TIMSS, many education systems nowadays employ competence models that 

differentiate between more general and more content-specific competences (e.g., in Canada, 

Germany, the USA, or Denmark, see Klieme et al., 2003; NCTM, 2000; Niss & Højgaard, 



12 

2011). For example, the competence scheme implemented in the German educational stand-

ards3 for mathematics4 (KMK, 2004b) or the U.S. Principles and Standards for School Math-

ematics (NCTM, 2000) differentiate between content- and process-based competences (see, 

e.g., Bloom, 1976; Blum, 2012; Köller, 2010; KMK, 2004b, NCTM, 2000). Thereby, process-

based competences involve broader, cognitive operations in terms of the more general aspects 

of mathematics including strategies and methods (Köller, 2010; KMK, 2004b; NCTM, 2000; 

Winkelmann et al., 2012). Content-based competences embrace specific mathematical contents 

that are oriented toward a mathematical view of everyday life and embrace arithmetic, geom-

etry, algebra, and stochastics (see Blum, 2012; Freudenthal, 1986; Köller, 2010).  

The idea of separating mathematical competences into content- and process-based com-

petences was examined in a few empirical studies. For example, Klieme, Neubrand, and Lüdtke 

(2001), Blum and colleagues (2004), and Brunner, Krauss, and Martignon (2011) reported very 

high correlations for both the different content-based competences and the different process-

based competences based on analyses from PISA 2000 and 2003. Also, Klieme, Artelt and 

colleagues (2010) reported very high correlations between content- and process-based compe-

tences. Already based on data from TIMSS in the 1990s, Köller (1998) conducted a factor 

analysis that revealed six content-based competences (at this particular point in time called 

dimensions) but also indicated one common factor. Nevertheless, there is still no consensus 

about the subcompetences of content- and process-based competences. For example, in the 

German educational standards for elementary school students, five process- and five content-

based competences have been suggested (KMK; 2004b). Köller (2010) identified five content-

based but six process-based competences, and the educational standards of the German state of 

Baden-Württemberg supposed four content-based but five process-based competences (Minis-

terium für Kultus, Jugend und Sport Baden-Württemberg, 2016).  

For elementary school students, studies by Winkelmann and Robitzsch (2009) as well as 

Winkelmann and colleagues (2012) tested for an analytical differentiation of the five content-

based and six process-based competences supposed by the German National Assessment con-

ducted by the IQB. Based on an overall N = 16,000 third- and fourth-grade students and items 

that were attributed a priori to two content-based and three process-based competences, results 

                                                 
3 Nowadays, many education systems are based on educational standards (see, Bernholt et al., 2012).  
4 According to Köller (2010), this competence scheme is based on (a) Bloom (1976), who developed a 

taxonomy to describe cognitively oriented educational objectives, (b) considerations of the OECD’s operational-

ization of mathematical literacy, (c) NCTM’s (2000) Principles and Standards for School Mathematics, and (d) 

Freudenthal (1986) and Winter (1995). 
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indicated a five-factor model for the content-based competences. Besides didactical consider-

ations, these competences could be separated but thus showed high correlations and a large 

proportion of shared variance. The process-based competences were not separable (Winkel-

mann et al., 2012). Therewith, it is not surprising that in German National Assessments, math-

ematical competences have been assessed by items that refer only to the content-based compe-

tences (see e.g., Richter et al., 2012).  

Results of large-scale studies in education have consistently focused on public interest, 

as competences that were used a outcomes of learning processes in one educational system are 

used to measure the quality of learning opportunities and the success of the respective educa-

tional system (see e.g., Haag & Roppelt, 2012; Klieme, Hartig et al., 2008). In Germany, na-

tional (e.g., German National Assessment in 2011) and international large-scale studies (e.g., 

IGLU-E 2001 and 2006, TIMSS 2007, 2011, and 2015) have been conducted to assess the 

mathematical competences of elementary school students. Across all such studies, the mathe-

matical competences of German elementary school students have been located in the middle 

of the spectrum and have been found to be more or less stable (Bos, 2008; Selter et al., 2016, 

2012). In addition, German elementary school students appear to be quite homogenous as 

nearly 90% of the students have shown moderate mathematical competences (competence lev-

els II, III, and IV, see Bos, 2008; Selter et al., 2012, 2016; Stanat et al., 2012).  

1.1.4 Gender differences in mathematical competences  

In recent decades, girls have outperformed boys in academic competences. For example, 

in Germany, nearly 38% of all girls reached the highest educational achievements (Abitur) in 

contrast to approximately 30% of all boys (Stanat et al., 2012). Independent of domain (e.g., 

language, science, mathematics), girls showed better grades than boys (Voyer & Voyer, 2014). 

Nevertheless, in their meta-analysis, Voyer and Voyer (2014) found that the advantages that 

girls had in grades were smallest in mathematics compared with other domains. When stand-

ardized competence tests—for example, in large-scale studies such as PISA—have been used 

to look at gender differences in mathematics, in general, boys have been found to do better 

(e.g., Benbow, 1988; Brunner et al., 2011; Grebe, 2013; Leder & Forgasz, 2008; Liu & Wilson, 

2009; Liu, Wilson, & Paek, 2008; Voyer & Voyer, 2014).  

Nevertheless, studies that have examined gender differences in mathematical compe-

tences have revealed quite an inconsistent pattern (see e.g., Böhme & Roppelt, 2012; Hyde, 

2005). For elementary school students, Hyde, Fennema, and Lamon (1990) reported no gender 

differences in their meta-analysis but found a small gender gap beginning in the teenage years. 
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For young adolescents, gender differences in mathematical competences have consistently 

been reported (e.g., in PISA studies; for more details, see e.g., Winkelmann, van den Heuvel-

Panhuizen, & Robitzsch, 2008). However, German elementary schools students’ mathematical 

competences have been found to be significantly higher for boys than for girls in the TIMS 

studies (albeit just a bit; Böhme & Roppelt, 2012; Brehl, Wendt, & Bos, 2012; Wendt, Stein-

mayr, & Kasper, 2016) and the German National Assessment (Stanat et al., 2012). Also, Win-

kelmann and colleagues (2008) and Winkelmann and van den Heuvel-Panhuizen (2009) re-

ported better global and content-based competences for boys than for girls. In their studies, the 

authors analyzed data from the Evaluation of the Standards in Mathematics in Primary School 

(ESMaP)—a study conducted by the Institute for Educational Progress (IQB) at Humboldt 

University, Berlin, Germany in connection with the PIRLS 2006 study—and additionally re-

ported overall gender differences in favor of boys (Winkelmann et al., 2008; Winkelmann 

& Robitzsch, 2009).  

Even when differences in intelligence have been controlled for, the gap between boys’ 

and girls’ mathematical competences has increased (Brunner et al., 2011; Brunner, Krauss, & 

Kunter, 2008). In their studies using PISA 2000 data, in order to analyze gender differences, 

the authors used nested-factor models in which they assumed that intelligence and mathemati-

cal competences independently explained differences. They also used standard models with 

which they attempted to explain differences only with the measure of mathematical compe-

tences. Their results revealed small gender differences when the standard models were used 

and large gender differences when the nested-factor models were used (Brunner et al., 2008; 

Brunner et al., 2011).  

Looking at girls’ and boys’ distributions of high and low achievers in the TIMSS or the 

German National Assessment, girls were overrepresented at the lowest competence level, and 

more boys than girls belonged to the top performers at the highest competence level (e.g., Brehl 

et al., 2012, 2012; Schneider et al., 2016; Stanat et al., 2012; Wendt, Steinmayr et al., 2016). 

Overall, boys have tended to show greater variability in mathematical competences (ranging 

from the very lowest to the top levels) than girls (see e.g., Hyde, Lindberg, Linn, Ellis, & Wil-

liams, 2008).  

But, in line with the decreasing gender gap in mathematical competences (see (Brehl et 

al., 2012; Hanna, 2000; Wendt, Steinmayr et al., 2016), the results of TIMSS 2015 indicated 

no such difference for girls and boys in their competence level distributions for the first time 

in Germany (Wendt, Steinmayr et al., 2016). One might even speculate that the decreasing 

gender gap reported in recent decades is perhaps confounded by the claim made in mathematics 
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education that gender differences have now been balanced in mathematical competences (see, 

e.g., Brunner et al., 2011). Perhaps the gender differences in mathematical competences can be 

explained by differences in girls’ and boys’ choices of educational courses (see, e.g., Hyde et 

al., 2008; Hyde, 2016).  

In addition, the gender differences in mathematical competences vary across different 

mathematical competences (Liu et al., 2008; Liu & Wilson, 2009). For example, many studies 

have revealed that boys show better competences in problem solving and in the competences 

necessary to deal with geometrical tasks, whereas girls are better at arithmetic (e.g., Benbow, 

1988; Brehl et al., 2012; Geary, Saults, Liu, & Hoard, 2000; Hyde et al., 1990; Hyde, 2005; 

Köller & Klieme, 2000; Liu & Wilson, 2009; Schneider et al., 2016; Walther, Schwippert, 

Lankes, & Stubbe, 2008). For example, in data from the PIRLS/IGLU study, boys showed 

higher mathematical competences in solving new problems, but girls were better at applying 

routine strategies (Walther et al., 2008, the same pattern was observed by, e.g., Fennema, Car-

penter, Jacobs, Franke, & Levi, 1998). Even for high-achieving students, Kell, Lubinski, and 

Benbow (2013) reported differences in mathematical reasoning competences for boys and girls. 

It is interesting that these differences predicted educational (inorganic vs. organic disciplines) 

and occupational outcomes (career-focused vs. a more balanced life; see Kell et al., 2013).  

Overall, boys have tended to show slightly higher mathematical competences than girls 

(e.g., Hyde et al., 1990; Hyde, 2005; Hyde et al., 2008; Hyde, 2016), regardless of whether 

these were caused by differences in boys’ and girls’ cognitive abilities (e.g., in spatial cognition 

or intelligence; see Geary et al., 2000) or whether they were determined by culture (see e.g., 

Grebe, 2013).  
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1.2 Acquisition of Mathematical Competences 

Competences are skills that are supposed to develop over many years (Klieme, 2004; 

Klieme, Hartig et al., 2008). Education that is geared toward the acquisition of competences 

tends to focus on outcomes and to classify learning as an accumulating process that concen-

trates on the ability to cope with the requirements of different tasks and situations (see e.g., 

KMK, 2004a). Therewith, students can be said to have developed domain-specific compe-

tences if they can (a) apply their skills and choose appropriate solutions for dealing with spe-

cific situations, (b) access the necessary knowledge, (c) understand central relationships, and 

(d) access the skills, abilities, and previous experiences necessary for action (see KMK, 2004a). 

Congruent with the activity-oriented approach for measuring competences (see 1.1.1), their 

acquisition is also thought to be an active process, mediated through learning (Henningsen & 

Stein, 1997; Weinert, 2001a).  

1.2.1 Learning mathematics and acquiring mathematical competences 

Learning mathematics (i.e., building new mathematical competences) is supposed to be 

an active, self-regulated, constructive, hierarchical, and social process (see e.g., Bransford, 

Brown, & Cocking, 2000; Collins, Brown, & Newman, 1989; Franke, Kazemi, & Battey, 2007; 

Hasemann, Gasteiger, & Padberg, 2014; Robins & Mayer, 1993): In line with a cognitive socio-

constructivist understanding of learning, individual learning processes are centered to under-

stand the acquisition of mathematical competences (e.g., see e.g., Beck et al., 1991; Kunter 

& Trautwein, 2013). Thus, prior mathematical competences provide a meaningful framework 

for acquiring new mathematical competences while solving mathematical problems (see e.g., 

Hasemann et al., 2014; Robins & Mayer, 1993; Schneider et al., 2016). Seidel and Shavelson 

(2007) describe learning as 

… a set of constructive processes in which the individual student 

(alone or socially) builds, activates, elaborates, and organizes 

knowledge structures. From this conception of learning, it fol-

lows that teaching should maximize the opportunity for students 

to engage in activities that promote higher order learning. (Seidel 

& Shavelson, 2007, p. 459) 

Thus, learning mathematics and therewith acquiring mathematical competences is char-

acterized by understanding mathematical circumstances (Deal & Wismer, 2010). Understand-

ing mathematical circumstances is catalyzed by the ability to recognize and use patterns and 
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structures (Nolte, 2013b). Hence, according to several experts, mathematics has been charac-

terized as the science of patterns (Devlin, 1997; 2003; 2004; Wittmann, 2005). These patterns 

can be found everywhere in everyday life, whereby many situations can be classified as math-

ematical situations. Besides the obvious mathematical problems (e.g., basic arithmetic), this 

implies that mathematical problems do not necessarily have to deal with numbers (e.g., logical 

and geometric problems are also supposed to be mathematical). Understanding mathematical 

concepts—and, therewith, acquiring mathematical competences—requires abilities that are 

broader than being able to calculate (i.e., numerical competences) and that support, for in-

stance, the abilities to form abstract representations or to recognize patterns and structures (e.g., 

Nolte, 2013b; Primi, Ferrão, & Almeida, 2010). Already before entering school—before get-

ting in touch with prearranged formal learning—young children “explore patterns, shapes, and 

spatial relations; compare magnitudes; and count objects” (Clements & Sarama, 2007, p. 462), 

show interest, and show the potential to acquire and apply sophisticated basic mathematical 

competences. Learning mathematics and acquiring mathematical competences is therewith as-

sumed to be the outcome of applying mathematical competences in problems that require com-

plex cognitive processes such as reasoning (Diezmann & Watters, 2001; Franke et al., 2007; 

Kunter & Voss, 2011; McAllister & Plourde, 2008). 

1.2.2 The interplay of content- and process-based competences  

In line with the assumption that knowledge in mathematical concepts facilitates learning 

procedures and vice versa (e.g., Rittle-Johnson & Siegler; Schneider, Rittle-Johnson, & Star, 

2011), content- and process-based competences are supposed to be necessary for a person to 

be able to cope with specific mathematical situations (Bloom, 1976; Blum, 2012; Köller, 2010; 

Winkelmann & Robitzsch, 2009). In looking at mathematical problems, every mathematical 

problem, task, or situation is assumed to be characterized by three different aspects that fit into 

the following three-dimensional taxonomy (Blum, 2012; see Figure 1).  
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Figure 1. Schematic illustration of a mathematical competence scheme combining the approaches of the 

German educational standards, TIMSS, and German National Assessment Studies. Both content- and 

process-based competences and complexity are supposed to span a vector space (based on Bloom, 1976; 

Blum, 2012; Roppelt & Reiss, 2012, Köller, 2010; KMK; 2004b). 

For example, a simple word problem (“Kati (K) has seven drops, Jan (J) has three less. 

How many drops does Jan have?”) is supposed to require process- and content-based compe-

tences. In a first step, problem solving and modeling (i.e., process-based) competences are 

necessary to transfer the word problem into an appropriate calculation (“J = 7 – 3”). In a second 

step, arithmetical competences (i.e., subtraction) are essential to obtain a solution (J = 4), and 

again, process-based competences support the formulation of an answer (“Jan has four drops”). 

Thus, every mathematical problem is supposed to require several different content- and pro-

cess-based mathematical competences. Complexity is classified according to students’ age and 

the sophistication of the necessary mathematical competences. Considering the complexity, 

mathematical problems are systematically assigned to a combination of the three dimensions. 

Nevertheless, clearly classifying mathematical tasks to one or more content- or process-based 

competences is challenging. Thus, Niss and Højgaard (2011) even went so far as to assume 

that the different mathematical competences are so closely related that “they form a continuum 

of overlapping clusters” (p. 9). Nevertheless, different mathematical problems concentrate on 

different content- and process-based competences (for further information about the classifica-

tion of one mathematical problem to different content- and process-based competences, see 

e.g., Winkelmann et al., 2012; Winkelmann & Robitzsch, 2009). 

Based on the characteristic of competences as an outcome of learning and as acquired by 

learning, the assumption that later mathematical competences are based on prior mathematical 

competences seems obvious (e.g., Watts et al., 2015, see also Rittle-Johnson & Siegler; Schnei-

der et al., 2011). This assumption has been corroborated by several studies that have indicated 

a relation between students’ early and later mathematical competences (e.g., Bailey, Siegler, & 
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Geary, 2014; Cerda et al., 2015; Duncan et al., 2007; Watts et al., 2015). For example, in their 

longitudinal study, Duncan and colleagues (2007) predicted later mathematical competences 

while controlling for nearly 80 variables (e.g., general cognitive abilities, family background, 

or socio-emotional skills). Their results indicated, amongst others, that prior mathematical 

competences were the strongest predictor of later mathematical competences. Using PISA-I-

PLUS data (German sample of PISA 2003 assessed again in 2004), prior mathematical com-

petences explained the largest portion of later mathematical competence (Kriegbaum et al., 

2015). It is interesting that Bailey, Watts, Littlefield, and Geary (2014) reported that the pre-

dictive strength of prior mathematical competences on later mathematical competences is more 

or less independent of the time span between the assessments of prior and later mathematical 

competences. Further, in a study by Bailey and colleagues (2016), preexisting differences in 

mathematical competences even explained about 70% of the control group’s ability to catch up 

to the intervention group, which participated in a successful (and effective) intervention 

(fadeout effect). In their study, Bailey and colleagues (2016) examined whether the fadeout 

effect was caused by a lack of challenges in the learning of the participants in the intervention 

group with more sophisticated mathematical competences or whether preexisting differences 

could explain the fadeout. In their study, they matched the control and intervention group par-

ticipants after the intervention, which revealed differences on the pretest but also in the long 

run (Bailey et al., 2016). Also in a longitudinal study examining nearly 200 Finish elementary 

school students, Aunola, Leskinen, Lerkkanen, and Nurmi (2004) reported that early mathe-

matical competences before entering school predicted later mathematical competences in sec-

ond grade, indicated by a gap in Grade 2 between students with higher and lower early mathe-

matical competences.  

Prior mathematical competences as a domain-specific cognitive factor have been shown 

to predict later mathematical competences (cf. the Matthew effect; for an explanation regarding 

this effect, see, e.g., Ditton & Krüsken, 2009; Merton, 1968). This led the authors to consider 

whether the acquisition of mathematical competences is a hierarchical process of which arith-

metical competences form the basis (e.g., Schneider et al., 2016). Some studies have incorpo-

rated this consideration of a hierarchical process: For example, in a study by Georges and col-

leagues (2017), general mathematical competences were more strongly related to arithmetical 

competences in younger students than in adults. On the basis of these results, the authors con-

cluded that different strategies seem to be necessary to solve the same problems for different 

developmental steps of mathematical problems (Georges et al., 2017). Thus, some authors have 
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even assumed that the mathematical competences that are necessary for coping with less com-

plex problems might turn into an automatic process through which a person can develop more 

sophisticated mathematical competences (e.g., Grabner et al., 2007; Schneider et al., 2016). 

Therewith, in particular, the interplay between content- and process-based competences (i.e., 

the interplay between domain-specific knowledge and applications of appropriate strategies) is 

supposed to drive the acquisition of new and more sophisticated mathematical competences 

that enable a person to cope with more complex mathematical demands. 
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1.3 Cognitive Processes and Mechanisms 

Students’ outcomes are based on the understanding that learning mathematics is equal to 

the acquisition of competences, and learning is characterized as successfully meeting domain-

, situation-, and demand-specific requirements (KMK, 2004a). Within this focus on compe-

tences, an understanding of the cognitive mechanisms that enable people to successfully solve 

mathematical problems is crucial (e.g., Georges et al., 2017). As explained in Chapter 1.2, 

mathematical competences appear to depend on prior mathematical competences in a complex 

circular manner. Thus, it is necessary to ask which factors are associated with and influence 

them.  

1.3.1 The role of domain-general cognitive abilities  

Domain-general cognitive factors are assumed to influence educational success not only 

in one but also in several domains (Schneider et al., 2016). With regard to mathematical com-

petences, much research has been devoted to examining the influences of domain-general cog-

nitive abilities on mathematical competences (e.g., Clark, Pritchard, & Woodward, 2010; 

Welsh, Nix, Blair, Bierman, & Nelson, 2010). In some studies, the speed of information pro-

cessing (e.g., Fuchs et al., 2010; Passolunghi & Lanfranchi, 2012; Träff, 2013), executive func-

tions (e.g., Szűcs, Devine, Soltesz, Nobes, & Gabriel, 2014; Träff, 2013), early language com-

petences (i.e., phonological abilities, e.g., Bradley & Bryant, 1985; Passolunghi & Lanfranchi, 

2012; Szűcs et al., 2014), and spatial abilities (e.g., Szűcs et al., 2014; Wai, Lubinski, & Ben-

bow, 2009) have been revealed to predict competences in several domains such as language, 

science, and mathematics.  

However, the most frequently investigated domain-general cognitive abilities are intelli-

gence and working memory. For instance, in a study of Singaporean students by Lee, Ng, Ng, 

and Lim (2004), mathematical competences were positively correlated with working memory, 

intelligence, and reading competences. In particular, the extent to which working memory pre-

dicted mathematical competences (i.e., solving word problems) was mediated by reading com-

petences and intelligence (Lee et al., 2004). Intelligence as the ability to acquire and apply 

knowledge and skills, to learn effectively, to think logically and abstractly, and to solve (new) 

problems is one of the most frequently examined constructs for determining competences in 

school; it is believed to be a consequence of competencies as well (Arvey et al., 1994; Gott-

fredson & Deary, 2004; Hasselhorn & Gold, 2017; Neisser et al., 1996; Roberts & Lipnevich, 
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2012).5 For example, in a study by Deary, Strand, Smith, and Fernandes (2007), intelligence 

and end-of-school competences (i.e., performance on exams) showed moderate to large corre-

lations, but the highest correlation was identified between intelligence and mathematical com-

petence. Using German samples, for instance, in the Munich SCHOLASTIK study, intelligence 

and grades in mathematics revealed a moderate correlation too (Bullock & Ziegler, 1997). 

These findings were corroborated in a study by Spinath, Freudenthaler, and Neubauer (2010), 

who conducted a study that indicated that intelligence was the strongest predictor of compe-

tences in all domains but especially of mathematical competences. Further, intelligence, which 

was assessed at the age of 11, explained 59% of the variance in mathematical competences at 

the age of 16 (Spinath et al., 2010). These results were again corroborated by a recent study by 

Kriegbaum and Spinath (2016) who found stable high correlations for mathematical compe-

tences and intelligence at two time points (PISA-I-PLUS data). For the cross-sectional PISA 

2003 sample, Kriegbaum and colleagues (2015) reported that intelligence explained the largest 

proportion of mathematical competences. In particular, the knowledge-independent construct 

of fluid intelligence was found to be an important predictor of mathematical competences 

(Floyd, Evans, & McGrew, 2003; Geary & Moore, 2016; Moeller, Pixner, Zuber, Kaufmann, 

& Nuerk, 2011; Primi et al., 2010; Taub, Keith, Floyd, & McGrew, 2008). In a study by Primi 

and colleagues (2010), individuals with higher fluid intelligence revealed a faster increase in 

mathematical competences. The authors tried to explain their results through an influence of 

intelligence on reasoning abilities, an understanding of mathematical concepts, and problem 

solving (Primi et al., 2010).  

Like intelligence, the relevance of working memory6 for mathematical competences is 

quite noncontroversial and has also been examined in several studies (see e.g., Bull & Lee, 

2014; Friso-van den Bos, van der Ven, Kroesbergen, & van Luit, 2013; de Smedt et al., 2009; 

Navarro et al., 2011; Schneider et al., 2016; van der Ven, Klaiber, & van der Maas, 2016; van 

der Ven, van der Maas, Straatemeier, & Jansen, 2013). For instance, in a study by Navarro and 

colleagues (2011), the authors aimed to predict arithmetical competences with working 

memory, inhibitory processes, and phonological awareness. In particular, working memory 

was revealed to be an important predictor of students’ mathematical competences (Navarro et 

                                                 
5In general, there is a large debate on how to define, conceptualize, and measure intelligence and the 

influence of intelligence on people’s lives. For more information about the construct of intelligence and its influ-

ence on people’s lives, see, for example, Arvey et al. (1994); Baltes, Staudinger, and Lindenberger (1999), Ceci 

(1991); Neisser et al. (1996), Roberts and Lipnevich (2012). 
6 For more information about the cognitive system that is supposed to temporarily store information 

and keep it available for executive processes, see Baddeley (1986), Baddeley and Hitch (1974).  
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al., 2011). More specifically, several studies examined the correlation between mathematical 

competences and a visuospatial part of working memory. For example, van der Ven and col-

leagues (2016) examined whether early mathematical competences (i.e., the ability to transcode 

numbers, basic arithmetic skills) were predicted by working memory. In their cross-sectional 

studies with about 26,000 students from preschool to sixth grade, they found that working 

memory was correlated with early mathematical competences (i.e., transcoding numbers and 

adding; van der Ven et al., 2016).  

1.2.3 Domain-specific cognitive abilities - using the example of numerical cognition 

Assuming a hierarchical acquisition of mathematical competences, arithmetical compe-

tences are commonly classified as the most basic part of mathematical competences (e.g., 

Georges et al., 2017; Krajewski & Schneider, 2009a, 2009b; Schneider et al., 2016; Thompson, 

Nuerk, Moeller, & Kadosh, 2013). Consequently, much research has been devoted to examin-

ing the development of arithmetical competences and the factors that influence these compe-

tences (e.g., Dehaene, 1992, 2011; Jordan, Kaplan, Ramineni, & Locuniak, 2009; Krajewski 

& Schneider, 2009a, 2009b; LeFevre et al., 2010; LeFevre, 2016; Siegler & Lortie-Forgues, 

2014; von Aster & Shalev, 2007). In numerical cognition research in which the cognitive de-

velopment of numerical abilities has been examined, the assumption is that domain-general 

cognitive abilities (e.g., intelligence, working memory) as well as number-specific abilities 

(e.g., understanding number magnitude) influence mathematical competences (e.g., Alcock et 

al., 2016; Fuchs et al., 2010; Passolunghi & Lanfranchi, 2012; Sella et al., 2016; Sullivan et 

al., 2016; Thompson et al., 2013; Träff, 2013).  

One domain-specific ability that is supposed to influence early arithmetical competences 

(e.g., understanding the concept of magnitudes or numbers) is the ability to estimate numbers 

on a number line in space (number line estimation; e.g., Siegler & Opfer, 2003). Several studies 

have examined the relation between early arithmetical competences and this number represen-

tation (e.g., Georges et al., 2017; Link, Nuerk, & Moeller, 2014; Siegler & Opfer, 2003, for 

further studies, see also Booth & Siegler, 2006, 2008; Fischer, Moeller, Bientzle, Cress, & 

Nuerk, 2011; Laski & Siegler, 2007; Link, Moeller, Huber, Fischer, & Nuerk, 2013; Siegler & 

Booth, 2004). For example, in a study by Link and colleagues (2014), the accuracy (i.e., the 

percentage of absolute error) in estimating numbers on a bounded number line was correlated 

with adding and subtracting. Thus, the mental representation of numbers is assumed to be “the 

most basic level of numerical cognition upon which all other (more complex) numerical and 
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mathematical thinking builds” (Thompson et al., 2013, p. 325). This hierarchy was corrobo-

rated by a more recent study: Georges and colleagues (2017) examined the relation between 

the quality with which numbers were mapped in space (i.e., mental number line) and different 

facets of mathematical competences (i.e., arithmetic and visuo-spatial competences) of elemen-

tary school students in Luxembourg. The results indicated that, especially for young students, 

arithmetic competences were related to number-space mapping, whereas visuo-spatial compe-

tence—necessary to solve more complex mathematical problems that did not involve num-

bers—were not related to the quality with which numbers were mapped in space (Georges et 

al., 2017).  

At first glance, spatial abilities are obviously necessary for dealing with geometrical 

problems, but spatial abilities have also been suggested to influence students’ early arithmetical 

competence and especially numerical representation, which is in turn supposed to support nu-

merical abilities. For example, in a study by Thompson and colleagues (2013) on university 

students, mental rotation ability was significantly correlated with the accuracy of mapping 

numbers on the mental number line. The authors supposed that higher mental rotation led to 

more sophisticated number representation, the “mental organization and framework within 

which information about the cognitive concept of numbers is stored” (Thompson et al., 2013, 

p. 325). Especially for younger students, Gunderson, Ramirez, Beilock, and Levine (2012) re-

ported a study in which spatial skills even predicted elementary school children’s early arith-

metical competences.  

Several models have been developed to explain the development of early arithmetical 

competences (Cipolotti & Butterworth, 1995; Dehaene, 1992; Krajewski, 2008; Noel & Seron, 

1993; von Aster & Shalev, 2007). For instance, Krajewski (2008) suggested a model of num-

ber-magnitude understanding that was based on empirical studies and reflected results from 

large-scale studies. At the first level of the model, infants are able to distinguish quantities, 

know numbers, and repeat an exact numerical order. At the second level, three-year-old chil-

dren acquire competences in recognizing relations (many, some, little) and become aware of 

Arabic numbers. Later (Level 3,about preschool age) children link magnitudes and numbers to 

be able to do basic arithmetic (for further information, see Krajewski, 2008; Krajewski 

& Schneider, 2009a, 2009b; Schneider et al., 2016). Similar competences are considered in the 

model of mastering numbers by von Aster and Shalev (2007), who additionally considered 

brain locations and an increasing working memory capacity. Cerebral functions were consid-

ered in more detail in the Triple-Code-Model by Dehaene (1992). According to this model, 

three cardinal representations (visual Arabic number form, analog magnitude representation, 
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and auditory verbal word frame) are supposed to interact and drive early numerical compe-

tences. In addition, domain-general abilities (e.g., executive control and working memory) 

have been suggested to be especially involved when people need to solve more complex math-

ematical problems (for more information, see e.g., Dehaene, 1992; Dehaene & Cohen, 1995; 

Klein et al., 2016; Schneider et al., 2016).  

But it looks as though it is the interplay of domain-general and domain-specific cognitive 

abilities in particular that drives mathematical competences (see e.g., Navarro et al., 2011). For 

instance, Passolunghi and Lanfranchi (2012) found a positive effect of domain-general abilities 

(e.g., working memory and processing speed) on domain-specific numerical abilities (e.g., 

magnitude comparison, seriation, use of number words). But, they also found positive effects 

of both domain-general (i.e., working memory, processing speed) and domain-specific numer-

ical abilities (i.e., magnitude comparison, classification, general understanding of numbers) on 

later mathematical competences.  

1.2.4 The interplay of domain-general and domain-specific cognitive abilities 

Regarding the interplay of domain-general and domain-specific cognitive abilities, a 

complex interdependence has been observed. For instance, Sullivan and colleagues (2016) re-

ported a study in which domain-general factors (e.g., general fluid intelligence and working 

memory) were revealed to be even better at predicting differences in mathematical compe-

tences than domain-specific numerical factors were (i.e., Approximate Number System and dot 

estimation). In line with this finding, Träff (2013) and Fuchs and colleagues (2010) reported 

that domain-general cognitive abilities were especially good predictors of the mathematical 

competences that are necessary for more complex tasks (i.e., word problems). In a study by 

Bailey, Watts and colleagues (2014), individual differences in students’ later mathematical 

competences were more likely to depend on stable domain-general factors (e.g., domain-gen-

eral cognitive abilities, reading competences, or family background) rather than simply on prior 

mathematical competences. In their study, Bailey and colleagues (2014) examined whether 

time-varying state effects or stable trait effects explained individual differences in mathemati-

cal competences. Their results indicated that the trait effects mostly accounted for the longitu-

dinal stability of mathematical competences (Bailey, Watts et al., 2014). Considering domain-

general cognitive abilities to be (stable) trait effects and domain-general abilities to be (time-

varying) state effects, the results of Bailey and colleagues (2014) were corroborated by a recent 

study by Sullivan and colleagues (2016). In their longitudinal study, they observed that domain-

general cognitive abilities such as intelligence and working memory were better predictors of 
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differences in mathematical competences than domain-specific abilities were (Sullivan et al., 

2016). Also, in studies conducted by Brunner and colleagues (2008, 2011) in which gender 

differences in mathematical competences were examined, mathematical competences de-

pended on intelligence and specific math factors.  

In line with the model with the largest influence by Dehaene (1992), it is especially the 

mathematical competences that are necessary to solve more complex mathematical problems 

that most likely depend to a larger extent on domain-general than on domain-specific cognitive 

abilities (excluding prior mathematical competences). For example, in a longitudinal study, 

Fuchs and colleagues (2010) assessed whether domain-general cognitive abilities (e.g., non-

verbal problem solving, executive function, working memory) and domain-general abilities 

(i.e., performance on the Number Set Test; see Geary, Bailey, & Hoard, 2009) could be used 

to predict mathematical competences in calculations and the solving of mathematical word 

problems. Their results indicated that domain-specific factors were associated with both com-

petences in solving word problems and in calculations, whereas domain-general cognitive abil-

ities reliably predicted competences only in word problems (Fuchs et al., 2010). This depend-

ence of the necessary domain-specific and domain-general cognitive abilities on the complex-

ity of the mathematical problem was also corroborated by a recent study by Träff (2013). In 

his longitudinal study, Träff (2013) also observed that domain-specific factors (e.g., dot count-

ing) predicted the mathematical competences necessary to manage complex (i.e., word prob-

lems) and basic (i.e., arithmetic fact retrieval) mathematical problems. Further, he observed 

that domain-general cognitive abilities predicted the mathematical competences necessary to 

deal with problems that were more complex than arithmetic fact retrieval (Träff, 2013). Over-

all, both domain-general and domain-specific cognitive abilities were found to contribute to 

mathematical competences. 
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1.4 Noncognitive Factors Influencing Mathematical Competences  

Mathematical competences are important for coping with the requirements of Western 

societies. To understand how mathematical competences can be fostered, it is necessary to 

understand which further factors are correlated with, explain, or predict mathematical compe-

tences. Besides the cognitive factors that were summarized in Chapters 1.2 and 1.3, noncogni-

tive factors such as social background, emotions, and motivation have also been shown to be 

relevant with regard to the acquisition of mathematical competences (see e.g., Murayama et 

al., 2013; Pinxten, Marsh, Fraine, van den Noortgate, & van Damme, 2014; Schukajlow, 

Rakoczy, & Pekrun, 2017; Sirin, 2005). In the following, distal domain-general factors and 

rather domain-specific factors that have been shown to be predictive of later mathematical 

competences will be summarized.  

1.4.1 Distal Domain-General Factors  

To acquire mathematical competences, domain-general noncognitive factors are rele-

vant. For example, it is well-known from previous research that social background predicts 

mathematical competences (see e.g., Klibanoff, Levine, Huttenlocher, Vasilyeva, & Hedges, 

2006; OECD, 1999, 2004, 2007, 2016; Sirin, 2005). Even though social background was oper-

ationalized in different ways in these studies (e.g., socioeconomic status, SES) and either 

grades or standardized competence tests were used to assess domain-specific academic com-

petences, all studies revealed a positive association between parents’ social background and 

students’ competences, and this finding was independent of domain. For example, Sirin’s 

(2005) meta-analysis indicated a moderate relationship between academic competences and 

social background. Similarly, the international data from PISA 2003 as well as PISA 2006 

showed moderate correlations between mathematical competences and parents’ SES (OECD, 

2007). Considering only the German sample from the PISA 2003 data, Kriegbaum and Spinath 

(2016) reported a moderate correlation between parents’ SES and students’ mathematical com-

petences. However, based on PISA and TIMSS data and compared with other countries, the 

association between parents’ SES and competences in the German sample was above the inter-

national average (see e.g., Stubbe, Schwippert, & Wendt, 2016).  

In recent research, domain-general (noncognitive) aspects of personality were also ex-

amined to determine whether they influence and predict academic competences (e.g., Poropat, 

2009; Spinath et al., 2010). For instance, in his meta-analysis, Poropat (2009) reported signif-

icant correlations between conscientiousness, agreeableness, and openness with academic 

competences. His results even indicated that correlations between academic competences and 
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conscientiousness were independent from domain-general cognitive abilities (i.e., intelli-

gence). In looking at only mathematical competences, results from a study by Spinath and col-

leagues (2010) indicated, amongst others, that conscientiousness was significantly correlated 

with grades in mathematics.  

1.4.2 Motivation 

Motivation refers to a construct that considers all motives that lead to certain actions that 

facilitate some behaviors and prohibit others with the attempt to reach a future goal (Deci & 

Ryan, 1993; Kleinginna & Kleinginna, 1981). These reasons for behaving in a certain way in 

a specific situation are assumed to be a mental condition for the long-lasting development of 

competences (Klieme & Hartig, 2008; Middleton & Spanias, 1999). In contrast to social back-

ground or personality, which have been observed to be correlated with competences in general, 

motivation has to be classified as a domain-specific construct (e.g., Wigfield, 1997). Independ-

ent of causal mechanisms, (domain-specific) motivation is classified as a significant predictor 

of (domain-specific) academic competences (e.g., Kriegbaum et al., 2015; Marsh, Trautwein, 

Lüdtke, Köller, & Baumert, 2005; Möller, Pohlmann, Köller, & Marsh, 2009; Vecchione, Ales-

sandri, & Marsicano, 2014). Many studies have investigated the influence of different motiva-

tional factors on academic, and especially, on mathematical competences (see e.g., Cerda et 

al., 2015; Dörner & Güss, 2013; Kriegbaum et al., 2015; Lee et al., 2004; Marsh et al., 2005; 

Murayama et al., 2013; Musu-Gillette, Wigfield, Harring, & Eccles, 2015; Navarro et al., 2011; 

Navarro et al., 2012; Steinmayr, Wirthwein, & Schöne, 2014; Suárez-Álvarez, Fernández-

Alonso, & Muñiz, 2014).  

The expectancy-value theory (EVT) of achievement-related choices offers a broad model 

that describes the influence of motivation on competences. Thereby, different central constructs 

of motivation (i.e., expectancy and value beliefs) are considered to predict competences (Eccles 

et al., 1983): A person’s (subjective) expectations of performance (“Can I do this?”) and his/her 

personal value attributed to the specific tasks (“Why do I want to do this?”) are directly related 

to academic competences (Atkinson, 1957; Eccles et al., 1983; Wigfield & Eccles, 1992; Wig-

field & Eccles, 2000; Wigfield, Tonks, & Klauda, 2009). In several empirical studies, expec-

tancy (i.e., competence beliefs) and value beliefs (i.e., interest, cost, as well as attainment and 

utility value) have been found to predict competences (see e.g., Eccles & Wigfield, 1995; 

Marsh & Martin, 2011; Trautwein et al., 2012; Trautwein, Lüdtke, Marsh, Köller, & Baumert, 

2006). Whereas empirical studies have indicated the importance of both factors, in the follow-
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ing, only findings regarding competence beliefs are summarized. But the associations and pro-

cesses that have been documented between students’ value beliefs and competences are similar 

to those found between students’ self-concept and competences (Marsh et al., 2008; Trautwein 

et al., 2006).  

The importance of competence beliefs using the example of self-concept 

Competence beliefs have been deemed the most prominent motivational factor for pre-

dicting and explaining performance-related behavior (Arens, Yeung, Craven, & Hasselhorn, 

2011; Lüdtke, Köller, Artelt, Stanat, & Baumert, 2002; Marsh & Yeung, 1997; Praetorius, Kas-

tens, Hartig, & Lipowsky, 2016). Thereby, competence beliefs have been conceptualized in 

different ways in various motivational theories. For example, self-concept or self-efficacy 

which differ in their reference point (task or domain) or their time orientation (future or previ-

ous, see e.g., Bong & Skaalvik, 2003). But, independent from their operationalization, compe-

tence beliefs are supposed to have positive influences on effort and persistence and should 

therewith result in higher competences (see Wigfield et al., 2015, see also Abramson, Selig-

man, & Teasdale, 1978; Bandura & Jourden, 1991; Marsh et al., 2005).  

With regard to mathematical competences, domain-specific self-concept has been re-

ported to show important associations with mathematical competences (e.g., Marsh, 2014). 

Thereby, self-concept is a construct that refers to “…a person's perception of himself. These 

perceptions are formed through his experience with his environment,[…] described as: orga-

nized, multifaceted, hierarchical, stable, developmental, evaluative, differentiable” (Shavelson, 

Hubner, & Stanton, 1976, p. 411). Therewith, Shavelson and colleagues (1976) described self-

concept as a multidimensional construct for which nonacademic and academic facets differen-

tiate even further between domain-specific subfacets. Regarding the importance of self-concept 

for academic competences, Hansford and Hattie (1982) had already reported a meta-analysis 

of 128 studies that examined the relationship between various self-measures (e.g., self, self-

concept, self-esteem) and measures of performance/achievement. On average, math self-con-

cept showed—like the self in general—small to moderate positive correlations with mathemat-

ical competences (Hansford & Hattie, 1982).  

The interdependence of self-concept and competences  

When questioning the causal ordering between self-concept and competences, the answer 

is quite similar to the circular interdependence of cognitive abilities being both a determinant 

and a consequence of competences (e.g., Trautwein & Möller, 2016) because academic self-
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concept and academic competences “are mutually reinforcing, each leading to gains in the 

other” (Marsh & Martin, 2011, p. 73, see also Marsh & Craven, 2006). On the one hand, it 

seems plausible that high competences in one domain positively influence domain-specific 

self-concept (skill-development model). On the other hand, it also seems plausible that high 

domain-specific self-concept could enhance domain-specific competences (self-enhancement 

model), perhaps catalyzed by a more elaborated learning effort caused by higher motivation 

(e.g., Guay, Marsh, & Boivin, 2003). However, “prior self-concept affects subsequent achieve-

ment and prior achievement affects subsequent self-concept” (Guay et al., 2003, p. 124). Thus, 

as reported, for example, by Marsh, Byrne, and Yeung (1999), a reciprocal effect model that 

combines skill-development with the self-enhancement model seems quite plausible and has 

been corroborated by many studies.  

Associations between self-concept and competences have been investigated in different 

developmental ages. As early as elementary school, a reciprocal interrelation has been reported 

for students. For instance, in a multicohort longitudinal study (three cohorts each assessed at 

three measurement points) by Guay and colleagues (2003), developmental trends between (do-

main-specific) academic competences and corresponding domain-specific self-concept were 

examined in elementary school. Their results indicated that the association between self-con-

cept and a person’s competences increased with age, and the model with the best fit for ex-

plaining the causal ordering was the reciprocal effects model (Guay et al., 2003). Overall, Guay 

and colleagues’ (2003) study revealed that the association of competences and self-concept is 

relevant even for elementary school students.  

But, which processes influence the development of self-concept? Research has revealed 

that the low correlations between self-concept and external indicators of people’s competence 

such as cognitive abilities in very young children (Marsh, 1989, 1990) increase with age, and 

self-evaluations become more differentiated (Guay et al., 2003; Wigfield & Karpathian, 1991, 

1991). For instance, in the study by Guay and colleagues (2003), the reliability of elementary 

school students’ self-concept increased with age (second to sixth grade). Thus, to an increasing 

degree in school, feedback is supposed to influence the development of domain-specific self-

concept through social and dimensional comparison processes (e.g., Ehm, 2014; Lüdtke et al., 

2002). Dimensional comparison processes in which students compare their competences across 

different domains/subjects are summarized in the concept of the Internal/External frame of 

reference model (I/E model; see e.g., Ehm, Nagler, Lindberg, & Hasselhorn, 2014; Marsh, 

1986). Social comparison processes in which students compare their competences with peers 

lead to the big-fish-little-pond effect (BFLPE; see e.g., Marsh, 1987; Marsh & Parker, 1984). 
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Both processes are summarized in the following.  

In the I/E model, both external (interindividual, e.g., classmates) and internal (intraindi-

vidual, e.g., based on prior feedback, feedback in different domains) comparison processes are 

assumed to influence people’s domain-specific self-concept (Ehm, 2014; Ehm et al., 2014). 

Whereas domain-specific competences (e.g., language and mathematics) and corresponding 

self-concept in language and mathematics have shown positive correlations, competences and 

contrasting (for mathematical competences, language self-concept, and vice versa) self-con-

cepts have revealed negative associations, although the self-concepts in the contrasting do-

mains tend to be rather uncorrelated (Marsh, 1986). Such patterns of results have been observed 

in several empirical studies (e.g., Ehm, 2014; Ehm et al., 2014; Marsh, 1986; Möller et al., 

2009; Möller & Köller, 2001; Möller, Streblow, Pohlmann, & Köller, 2006) and have also 

indicated the multidimensionality of self-concept (for more information about the construct, 

see e.g., Bong & Skaalvik, 2003; Marsh, 2014; Shavelson et al., 1976).  

However, not only do students compare their competences across domains, but they also 

compare their competences with the competences of other students. Of two students showing 

the same individual competences, the one in the higher achieving environment will be likely to 

report a lower self-concept than the one in the lower achieving environment (for more infor-

mation, see e.g., Marsh, 1987; Marsh et al., 2008; Marsh & Hau, 2003; Marsh & Parker, 1984; 

for a rather critical review, see Dai & Rinn, 2008). For instance, Marsh, Chessor, Craven, and 

Roche (1995) reported two studies in which students who were grouped in a higher achieving 

environment (i.e., gifted and talented classes) showed lower academic self-concept than stu-

dents who experienced a lower achieving reference group (i.e., regular classes). Even for ele-

mentary school students, the average ability level of classmates showed significant influences 

on students’ academic self-concept, and such upward comparison processes were observed 

(e.g., Kastens, Gabriel, & Lipowsky, 2013; Lüdtke et al., 2002).  

Centering on the individual processes that influence the development of self-concept 

must not be viewed in isolation in models such as the EVT, the I/E model, or the BFLPE. More 

likely, a combination of all processes (social, dimensional, temporal comparisons) may explain 

people’s self-concepts. In predicting course choice, for instance, Nagy and colleagues (2007, 

2008) combined the EVT and the I/E model. Their results indicated that prior achievement 

predicted self-concept, which again predicted course choice mediated by interest (for each, 

positively in the same domain, negatively in the opposite domain; for more information, see 

Nagy et al., 2008; Nagy, Trautwein, Baumert, Köller, & Garrett, 2007).  
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Finally, what about gender differences in math self-concept? Especially for German ele-

mentary school students, there were gender differences in mathematical competences (see 

1.1.3). For instance, in the TIMS studies, German elementary school boys showed higher math-

ematical competences than girls. In the same sample, both genders showed quite high mathe-

matical self-concepts, but boys’ math self-concept was higher with a medium effect size (d2015 

= .36, d2011 = .40; see Brehl et al., 2012; Wendt, Steinmayr et al., 2016). Equivalent findings in 

which boys showed higher math self-concept than girls were reported in several empirical stud-

ies conducted in countries other than Germany (see e.g., Eccles, Wigfield, Harold, & Blumen-

feld, 1993; Nagy et al., 2010; Sax, Kanny, Riggers-Piehl, Whang, & Paulson, 2015; Steinmayr 

et al., 2014; Steinmayr & Spinath, 2008; Wigfield et al., 1997; Wigfield & Eccles, 1994). Using 

the EVT to explain gender differences in mathematical competences and choices related to 

mathematics (and the related STEM subjects) for values in mathematics, an inconsistent pattern 

was revealed: Some studies also indicated that boys’ values were higher than girls’ (e.g., Marsh 

et al., 2005), whereas some indicated no differences (e.g., Wigfield et al., 1997, for an over-

view, see e.g., Gaspard, 2015).  
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1.5 Mathematically Gifted Students – Characteristics and Needs 

The previous chapter summarized the concept of mathematical competences and factors 

that are assumed to influence the acquisition of mathematical competences. This current chap-

ter now takes a close look at students who have much more sophisticated mathematical com-

petences than their same-aged peers. First, their common characteristics are summarized, and 

second, an idea about how to foster mathematical competences of such students is introduced.  

1.5.1 The concept of mathematical giftedness 

Although all students are supposed to and can acquire mathematical competences (e.g., 

Lee & Ginsburg, 2009), there are interindividual differences in mathematical competences (see 

e.g., Bos et al., 2003; Bos et al., 2012; OECD, 2004, 2006, 2016; Stanat et al., 2012; Wendt, 

Bos et al., 2016). Some students show extraordinary, above-average strengths in mathematical 

competences and are, for example, already able to solve curriculum-based tasks (Koshy et al., 

2009; Ziegler, 2008). In general, students who are expected to have the potential to show ex-

traordinary competences are classified as gifted7 (Subotnik et al., 2011; Ziegler, 2008). 

According to modern models that are used to explain giftedness, giftedness is—like com-

petences—described as a multidimensional development process that is necessarily based on 

extraordinary domain-general cognitive abilities (Arvey et al., 1994; Heller, 1993; Heller, 

Mönks, Subotnik, & Sternberg, 2000; Neisser et al., 1996; Sternberg, 2011; Subotnik et al., 

2011). Considering only domain-general cognitive ability would be too one-sided, as domain-

general cognitive abilities are also assumed to be (a) a potential and (b) influenced by environ-

ment (e.g., social background, stimuli). Moreover, Arvey and colleagues (1994) described the 

observation that, with regard to educational success, other factors besides intelligence had an 

influence (see also Ziegler, 2008). Giftedness is assumed to result from the complex interplay 

between intelligence and, for instance, motivation, creativity, spatial ability, family back-

ground, social or practical skills, or personality (Heller, 1993; Heller et al., 2000; Kell et al., 

2013; Mönks & Mason, 2000; Subotnik et al., 2011; Wai et al., 2009; Ziegler, 2008). According 

to Sternberg and Zhang (1995), gifted students are supposed to fulfill five criteria (i.e., excel-

lence, rarity, demonstrability, productivity, and a value criterion) in at least one domain (Stern-

berg, 2011; Ziegler, 2008).  

Students who show potential in terms of mathematics are classified as mathematically 

gifted (e.g., Bicknell, 2008). This domain-specific giftedness is also supposed to necessarily 

                                                 
7 In general, the terms gifted, highly gifted, and talented are used interchangeably (Ziegler (2008). 
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depend on high domain-general cognitive abilities that are supplemented by cognitive and non-

cognitive sophisticated domain-specific factors (cf. Landerl, Bevan, & Butterworth, 2004; 

Stern, 1998, 2017). For example, Diezmann and Watters (2016) reported the observation that 

these students show an outstanding motivation for mathematics. 

To do justice to these students, much research has been devoted to examining the char-

acteristics that distinguish mathematically gifted students from their same-aged peers who do 

not exhibit these strengths. For example, Koshy and colleagues (2009, p. 215) described math-

ematical giftedness as “…the quality of being able to do mathematics, that is, being able to 

perform mathematical tasks and to utilize mathematical knowledge effectively...” (p. 215). 

Mathematically gifted students are supposed to demonstrate mathematical thinking that is qual-

itatively different from the thinking of their peers, for example, by showing quite early intense 

mathematical curiosity and demonstrating an understanding of all things related to quantity 

(Deal & Wismer, 2010, 55ff; Koshy et al., 2009). In mathematical learning processes, mathe-

matically gifted students are further assumed to follow complex lines of thoughts (i.e., reason-

ing), to detect mathematical patterns and structures, and to demonstrate a higher level of logical 

thinking about spatial, numerical, or symbolical relationships (Deal, & Wismer, 2010; Koshy, 

Ernest, & Casey, 2009; Leikin, 2010; Diezmann, & Watters, 2002). All these strengths in math-

ematical competences are supposed to support the acquisition of mathematical competences 

(Deal, & Wismer, 2010; McAllister, & Plourde, 2008).  

1.5.2 Promoting mathematically gifted students   

Although mathematically gifted students are ascribed as having the potential to contrib-

ute meaningful solutions to the problems of modern society (Diezmann & Watters, 2001; Ko-

shy et al., 2009), there are also some challenges when working with such students. Indeed, 

mathematically gifted students show more sophisticated mathematical competences than their 

same-aged peers and, in particular, strengths in solving new mathematical problems. Never-

theless, Bezold (2012) noted some weaknesses in such students’ abilities to build and justify 

hypotheses. Similar observations were reported by Bardy and Hrzán (2010), who further re-

ported mathematically gifted students’ weaknesses in justifying solutions and writing them 

down. Also, although these students were able to recognize and sometimes use mathematical 

patterns and structures, verbalizing these findings was observed to be problematic (Käpnick, 

1998). Assuming the differentiation of mathematical competences in process- and content-

based mathematical competences, mathematically gifted students’ unbalanced development of 

these two facets were obviously able to account for process-based competences (e.g., problem 
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solving and arguing; see Deal & Wismer, 2010; McAllister & Plourde, 2008). To ensure that 

mathematically gifted students do not lose their enthusiasm for mathematics (e.g., McAllister 

& Plourde, 2008), these students need appropriate learning opportunities that will lock in their 

potential (cf. Beck et al., 1991; Kunter & Trautwein, 2013).  

To do justice to the complex needs of mathematically gifted students, several measures 

were recommended (see Ziegler, 2008): (a) acceleration, (b) enrichment, (c) pull-out programs, 

and (d) ability grouping (e.g., special classes or schools; Stumpf, 2011). Several studies have 

examined the effectiveness of these measures. For instance, acceleration—moving more 

quickly through the curriculum (Ziegler, 2008)—was revealed to have positive effects on stu-

dents’ development in several studies (e.g., Kulik & Kulik, 1987; Steenbergen-Hu & Moon, 

2010). Further, enrichment programs—more specific and more detailed learning opportunities 

(Stumpf, 2011; Ziegler, 2008)—indicated positive effects in enhancing students’ competences 

(e.g., Aljughaiman & Ayoub, 2012 Kulik & Kulik, 1987; Reis & Renzulli, 2010; Vaughn, 

Feldhusen, & Asher, 1991) but also seemed promising for increasing students’ interest and 

motivation in a particular domain (Petersen & Wulff, 2017; Stake & Mares, 2001).  

Beneficial learning environments for mathematically gifted students  

To tap their individual potential, students need appropriate learning environments. For 

preschool students, for example, Niklas and Schneider (2012) reported that home numeracy 

environments in early childhood are needed to influence the later development of mathematical 

competence. In a study by Blums, Belsky, Grimm, and Chen (2016), the results of structural 

equation models indicated that students’ early environment was indeed predicted by mother’s 

education, but amongst others, mathematical competences were mediated by executive func-

tions and language. Thus, stimuli and input from a mathematically enriching environment pre-

dict mathematical competences (e.g., Clements & Sarama, 2011; Schneider et al., 2016). 

Thereby, education is understood as a learning environment that facilitates intelligent and 

meaningful learning opportunities (Kunter & Voss, 2011, 2013).  

Education is expected to provide opportunities to convey the “necessary knowledge, 

skills, abilities, and what else it needs to solve particular problems or answer particular ques-

tions” (Neumann, Bernholt, & Nentwig, 2012, p. 507; Kunter & Voss, 2011). Therewith, learn-

ing mathematics is not supposed to correspond with the acquisition of an overarching 

knowledge base but is supposed to be an application of what has been learned (Neumann et al., 

2012). But, what should education look like if it is to be able to increase individuals’ likelihood 

of applying their learning? Intuitively, one might think about methods and organizational or 
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social forms of education. Therefore, much research has been devoted to developing several 

combinations of teaching methods and organizational and social forms of education (for further 

information, see e.g., Meyer, 2014, 2016). But, empirical research has shown that learning 

success is explained to a greater extent by the cognitive teaching-learning processes that depend 

on teaching quality (see e.g., Kunter & Trautwein, 2013; Seidel & Shavelson, 2007; Veenman, 

Kenter, & Post, 2010). Three dimensions of teaching quality have been shown to be important 

for supporting students’ learning: (a) classroom management, (b) cognitive activation, and (c) 

individual learning support (see e.g., Baumert et al., 2013; Klieme, 2006; Kunter & Trautwein, 

2013; Kunter & Voss, 2011). Classroom management embraces all actions and strategies that 

support a trouble-free education and maximizes study time (i.e., time on task; see Seidel 

& Shavelson, 2007). Individual learning support describes all forms of teacher-student inter-

actions that support students’ understanding, and cognitive activation refers to the intellectual 

demands necessary to actively perform learning processes (see e.g., Kunter & Voss, 2011). 

Focusing on the individual and following up on the cognitive-constructivist understanding of 

learning, the latter two provide opportunities to tie in with prior competences for acquiring new 

competences (e.g., Köller & Parchmann, 2012).  

From a students’ perspective, the most common idea for cognitively activating students 

is the idea of giving them the opportunity to solve challenging tasks (Diezmann & Watters, 

2001; Henningsen & Stein, 1997; Kunter & Trautwein, 2013; Kunter & Voss, 2011). In math-

ematics, such challenging problems should provide opportunities to explore and give students 

the possibility to “… explain, clarify and revise their mathematical ideas and problem con-

structions” (Deal & Wismer, 2010; Diezmann & Watters, 2001, p. 7; McAllister & Plourde, 

2008). Therewith, challenging tasks are supposed to trigger students to actively deal with math-

ematical themes and provide them with opportunities to search for mathematical patterns and 

structures (Henningsen & Stein, 1997; Wittmann, 2005, July). Thus, challenging tasks are sup-

posed to support students’ acquisition of competences by allowing deeper processing (Klieme 

& Rakoczy, 2008). In particular, word problems that (a) are meaningful and relevant to the 

students, (b) allow for individual definitions of (sub-)questions, and (c) focus on reasoning and 

communication are supposed to trigger solution processes that transcend looking for keywords 

or bringing together all of the relevant and irrelevant numbers presented in the problem (Brans-

ford et al., 2012). Concentrating on process-based mathematical competences rather than on 

content-based mathematical competences, these criteria are supposed to be implemented in 

open tasks that enable students to apply different approaches to solve the problem (Bardy 

& Hrzán, 2010).  
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Competitions as special challenges for mathematically gifted students 

As mathematically gifted students usually easily solve curriculum-based tasks, there is 

the risk that these fast-paced learners will not be given enough cognitively activating and chal-

lenging tasks to reach their mathematical potential (e.g., Rotigel & Fello, 2004; Rotigel & 

Fello, 2016). Hence, to exploit their potential, gifted students in general need challenging en-

vironments that enable qualitatively high learning experiences (Diezmann & Watters, 2001; 

McAllister & Plourde, 2008; Reis & Renzulli, 2010; Subotnik et al., 2011; Ziegler, 2008). 

However, schools—and therefore teachers—have a limited amount of time to devote to each 

individual (Diezmann & Watters, 2000; Petersen & Wulff, 2017). Thus, (mathematically) 

gifted students often get a raw deal (Reis & Renzulli, 2010) in formal education in relation to 

their potential. Thus, specific measures are necessary to foster the competences of these stu-

dents (Sternberg, 2011) and give them the opportunity to live up to their potential (Stumpf, 

2011). In terms of enrichment measures, for example, in-school approaches such as extra les-

sons or workshops as well as out-of-school approaches such as summer schools or academic 

competitions have been suggested (Bicknell, 2008; Höffler, Bonin, & Parchmann, 2017; Pe-

tersen & Wulff, 2017).  

Academic competitions—for more information about the characteristics of (good) aca-

demic competitions, see Forrester (2010) as well as Petersen and Wulff (2017, p. 3)—are as-

sumed to be a good way to challenge and foster students’ competences (Ozturk & Debelak, 

2008a, 2008b; Petersen & Wulff, 2017) and therewith to nurture their potential (Pyrt, 2000). 

Furthermore, academic competitions are supposed to balance cognitive and noncognitive (e.g., 

motivational) enhancement (Petersen & Wulff, 2017). Hence, academic competitions can pro-

vide a platform from which to evaluate one’s own performance and compare it with others 

(Goldstein & Wagner, 1993) in terms of mastering challenging tasks (Höffler et al., 2017; 

Ozturk & Debelak, 2008a, 2008b). Therewith, academic competitions are even supposed to 

enhance students’ competence in terms of a holistic understanding of competences including 

noncognitive and cognitive factors (e.g., motivation and the cognitive aspect of competences) 

by aiming to develop students’ competences. Such competitions are assumed to motivate stu-

dents to be engaged in the competition’s domain even beyond participation (Höffler et al., 

2017).  

One of the most prominent academic competitions around the world is the academic 

Olympiad whose tasks are classified as challenging (Campbell, Wagner, & Walberg, 2000; 

Campbell & Walberg, 2010; Olson, 2005; Petersen & Wulff, 2017). This special form of aca-

demic competition is provided in many countries and is characterized by an international level 
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in which the top performers of the participating countries compete (for an overview of the 

procedure of the Olympiads in Biology, Chemistry, Mathematics, Physics, and Junior Science, 

see Petersen & Wulff, 2017, p. 5). But, for students who step up to this plate, they should be 

ready to master the challenges of the competition (cf. Pajares & Schunk, 2002). Otherwise, 

they will not only miss the chance to enhance their mathematical competences by applying 

prior mathematical competences, but also, their beliefs about their own competences are vul-

nerable (Höffler et al., 2017). Based on such considerations and a demand for continuous and 

systematic enrichment programs (deliberate practice; see e.g., Subotnik et al., 2011; Ziegler, 

2008), the preparation to solve challenging tasks has to be part of an enrichment program, too 

(Bicknell, 2008). Some authors (e.g., Cropper, 1998; Ozturk & Debelak, 2008a) have sug-

gested that participation in an academic (mathematical) competition should be combined with 

a corresponding pedagogical training.  
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1.6 Research Questions of the Present Dissertation 

On the basis of the need for sophisticated mathematical competences to deal with the 

requirements and to be able to solve the problems of a modern western knowledge society, the 

present dissertation examined how mathematical competences can be fostered. Thereby, stu-

dents who tend to belong to the group of high-achieving students in mathematics were in the 

focus. Furthermore, as early fostering of mathematical competences can increase the likelihood 

of achieving expertise and not losing enthusiasm for mathematics (e.g., Johnson, 1983; John-

son, 1990; McAllister & Plourde, 2008), the present dissertation focused on elementary school 

students.  

In a first step, domain-specific and domain-general factors who are supposed and exam-

ined to influence the development of mathematical competences were delineated. Thereby, one 

way to enrich the learning environments of students who are already able to solve curriculum-

based tasks are academic competitions (see Chapter 1.5.2). Every year, parents and teachers 

encourage such students to participate in a domain-specific competition (e.g., Fauser et al., 

2007), and an increase has been observed in the number of students interested in participating 

in academic competitions (Petersen & Wulff, 2017). But, do academic competitions affect stu-

dents’ development? In Paper 1 (Förderung mathematischer Fähigkeiten in der Grundschule 

- Die Rolle von Schülerwettbewerben am Beispiel der Mathematik-Olympiade), the appropri-

ateness of learning environments provided by academic competitions as a way to enrich gifted 

students was examined in detail. In particular, the roles of academic competitions in fostering 

gifted students were explored on the basis of the literature. Also, the need for training measures 

(i.e., training courses) that are aimed at preparing students to participate in an academic com-

petition was delineated. Using the example of the Mathematical Olympiad for elementary 

school students, the requirements and challenges of this particular competition were presented. 

As there is the danger that the challenges provided by academic competitions are not common 

for the mathematically gifted students who are used to being successful in mastering mathe-

matical problems (Kießwetter, 2013; Nolte, 2013b), the core components of the training “Get-

ting fit for the Mathematical Olympiad” which consider strengths and weaknesses of mathe-

matically gifted students were introduced. 

Providing more challenging tasks, the training is supposed to trigger a more intense way 

to deal with mathematical problems and, therewith, allows a deeper application of mathemati-

cal competences. Thus, positive effects on performance in the academic competition (i.e., the 

Mathematical Olympiad) and on the mathematical competences of the students who attended 



40 

the training were expected in comparison with the students who did not attend it. However, 

although such a training is also assumed to reflect the competitive aspect of the competition 

(e.g., Cropper, 1998), offering a training for a mathematical competition poses a new problem: 

The average level of ability should be higher than what the participant is used to encountering 

in class (Bicknell, 2008; Ozturk & Debelak, 2008b; Riley & Karnes, 1998). On the one hand, 

being part of the selected high-achieving group may result in positive feelings such as pride 

(i.e., an assimilation effect or Basking-in-reflected-glory-effect, e.g., Marsh, Kong, & Hau, 

2000). In turn, one would expect positive effects on participants’ motivation (e.g., Rinn, 2007). 

On the other hand, however, the BFLPE (see Chapter 1.3.2) suggests the opposite (for a study 

reporting negative effects on self-concept for students in a gifted program in Israel, see Zeidner 

& Schleyer, 1999). Motivation might even decrease when students compare their own perfor-

mance with the performances of other high-achieving students (e.g., Dai & Rinn, 2008; Marsh 

et al., 2000; Marsh et al., 2008; Marsh & Parker, 1984). In sum, as for merely participating in 

an academic competition, participating in a training could lead to increases (for the successful 

students) or decreases (for the unsuccessful ones) in (domain-specific) motivation (Höffler et 

al., 2017). 

Paper 2 (Getting Fit for the Mathematical Olympiad: Positive Effects on Achievement 

and Motivation?) investigated the effectiveness of the training “Getting fit for the Mathemati-

cal Olympiad” with respect to mathematical competences in general and motivational factors 

using a quasi-experimental pre- and posttest design in a natural setting (Shadish, Cook, & 

Campbell, 2002). Both students who attended the training “Getting fit for the Mathematical 

Olympiad” and a control group participated in the study. Based on the deeper engagement in 

solving challenging mathematical problems and tasks, positive effects on performance in the 

Mathematical Olympiad and on mathematical competences for students who attended the train-

ing in comparison with students who did not were expected. On the other hand, the training 

was offered to third- and fourth-grade students together, which may have led to different social 

comparison processes for each age group. Thus, different effects on motivational factors (i.e., 

math self-concept and value beliefs) were expected for the two age groups.  

Based on the finding that solving more complex mathematical problems requires process- 

rather than content-based mathematical competences (Fuchs et al., 2010; Sullivan et al., 2016; 

Träff, 2013), Chapter 1.2), Paper 3 (Training Process-Based Mathematical Competences – Ex-

ploring Effects on Domain-Specific Factors and Domain-General Cognitive Abilities) exam-

ined the cognitive aspects of “Getting fit for the Mathematical Olympiad” in detail. A random-

ized waitlist control group design (Friedman, Furberg, & DeMets, 2010) was used to examine 
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whether the training that specifically focused on process-based competences had differential 

effects on domain-specific factors (i.e., domain-specific content-based mathematical compe-

tences) and domain-general cognitive abilities besides effects on process-based competences. 

The process-based training was expected to have only a small effect on tasks that require only 

basic arithmetical competences (e.g., adding). Tasks requiring more process-based compe-

tences (e.g., supplementary tasks) were expected to be influenced to a greater extent. As do-

main-general cognitive abilities are supposed to have more influence on more complex prob-

lems (Fuchs et al., 2010; Krajewski & Schneider, 2009a, 2009b; Sullivan et al., 2016; Träff, 

2013; von Aster & Shalev, 2007), the study explored whether enhancing process-based com-

petences would have an influence on domain-general cognitive abilities.  

The two empirical studies included in the present dissertation were conducted in two 

different school years (i.e., 2014/2015 and 2015/2016). The framework was delivered by the 

Hector Children’s Academy Program (HCAP), an extracurricular enrichment measure for ele-

mentary school students in the German state of Baden-Württemberg (for more information, see 

Rothenbusch et al., 2016). In this program, “Getting fit for the Mathematical Olympiad” was 

developed and evaluated. After pilot-testing in 2013/2014, the training was offered by different 

course instructors who were given information about the core components of the training, 

scripted manuals, and master copies of all materials to be able to teach the training (for more 

information about the procedure, see Herbein, 2016).  
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Zusammenfassung 

National und international gibt es eine Vielzahl akademischer Schülerwettbewerbe. 

Diese können verschiedene Funktionen haben: Enrichment und Differenzierung, Zusammen-

arbeit mit Peers fördern, kompetitive Umwelt herstellen, Motivatoren bzw. Anreize setzen, 

Identifikation und Diagnose. Im folgenden Kapitel werden diese Funktionen im Hinblick auf 

die Begabtenförderung beschrieben. Dabei werden sowohl die Erwartungen seitens der Auto-

ren an Wettbewerbe als auch empirische Ergebnisse berücksichtigt. Die häufig sehr komplexen 

Aufgaben von Schülerwettbewerben stellen eine ideale intellektuelle Herausforderung für Be-

gabte dar. Damit bieten Wettbewerbe eine Lernumwelt, in der auch Begabte ihre Fähigkeiten 

vertiefen und weiterentwickeln können. Ein Bespiel für intellektuell anspruchsvolle Wettbe-

werbe sind die Schüler-Olympiaden (Mathematik, Chemie, Physik und Biologie). Am Beispiel 

der Mathematik-Olympiade für die Grundschule wird ein Wettbewerb konkret vorgestellt. Um 

den Teilnehmerinnen und Teilnehmern der Mathematik-Olympiade eine Wettbewerbsteil-

nahme in begleitetem Rahmen zu ermöglichen, wurde ein Vorbereitungskurs, zugeschnitten 

auf die Stärken und Bedürfnisse mathematisch Begabter, entwickelt. Dieser Kurs, der offene 

Aufgaben und kooperatives Arbeiten als Ausgleich zum kompetitiven Setting von Wettbewer-

ben fokussiert, wird in diesem Beitrag in Kombination mit ersten empirischen Ergebnissen zur 

Wirksamkeit des Kursangebots vorgestellt. Ausgehend von diesem Beispiel werden die Rolle 

von Schülerwettbewerben im Ganztagsangebot andiskutiert und Ideen zur flächendeckenderen 

Implementierung von Wettbewerben vorgestellt.   
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Förderung mathematischer Fähigkeiten in der Grundschule - Die Rolle von Schüler-

wettbewerben am Beispiel der Mathematik-Olympiade 

Schülerwettbewerbe in der Begabtenförderung 

Wettbewerbe haben in Schulen und in der Öffentlichkeit einen hohen Stellenwert 

(Oswald et al., 2005). Es gibt eine Fülle mehr oder weniger bekannter nationaler und interna-

tionaler akademischer Wettbewerbe, wie z.B. Schüler experimentieren und Jugend forscht oder 

die Olympiaden (Mathematik, Physik, Biologie, Chemie). Dabei unterscheiden sich die Wett-

bewerbsformate erheblich und reichen von Individual- über Gruppen- zu Klassenwettbewerben 

mit Klausuren, Projekten und Diskussionen. Auch in den Aufgabenausrichtungen unterschei-

den sich die Wettbewerbe von Ausführen und Darbieten (z.B. Jugend musiziert) über Entde-

cken und Herausfordern (z.B. Mathematik-Olympiade) bis hin zu Erfinden und Konstruieren 

(z.B. Schüler experimentieren/Jugend forscht). Unabhängig von der Aufgabenausrichtung und 

dem Wettbewerbsformat sollen Wettbewerbe möglichst viele Schülerinnen und Schüler (SuS) 

mithilfe von herausfordernden Aufgaben für einen bestimmten Inhaltsbereich begeistern und 

motivieren (Fauser et al., 2007; Oswald et al., 2005). 

Nach Fauser und Kollegen (2007) sowie Ozturk und Debelak (2008a) sollen Wettbe-

werbe via verschiedener Funktionen unterschiedliche Einflüsse auf die akademische und per-

sönliche Entwicklung von Teilnehmerinnen und Teilnehmern von Schülerwettbewerben ha-

ben. Vor allem bei langfristig angelegten Wettbewerben erwarten die Autoren als Resultate der 

Teilnahme unter anderem ein vertieftes Aufgabenverständnis oder das Lernen von Selbstdis-

ziplin und das Erkennen des Zusammenhangs zwischen Arbeit und Erfolg (Fauser et al., 2007; 

Ozturk & Debelak, 2008a). Die Anzahl empirischer Studien zur Überprüfung kurz- sowie lang-

fristiger Effekte von Wettbewerben ist allerdings relativ niedrig; hauptsächlich retrospektive 

Befragungen ehemals erfolgreicher Teilnehmerinnen und Teilnehmer akademischer Olympia-

den wurden durchgeführt (Campbell & Verna, 2010; Campbell & Walberg, 2010; Lengfelder 

& Heller, 2002; Oswald et al., 2005). Lediglich am Leibniz-Institut für die Pädagogik der Na-

turwissenschaften und Mathematik (IPN) in Kiel gibt es derzeit Projekte in Forschungslinie 4 

„Wissenschaftskommunikation und extracurriculare Förderung“, die die Datenlage substantiell 

zu verbessern versprechen (http://www.ipn.uni-kiel.de/de/forschung/forschungslinien /for-

schungslinie-4). Im Folgenden werden die von Bicknell (2008), Fauser und Kollegen (2007), 

Ozturk und Debelak (2008a, 2008b) sowie Peters and Sieve (2013) erwarteten und in den Be-

fragungen ermittelten Funktionen von Schülerwettbewerben insbesondere in der Begabtenför-

derung zusammengefasst.  
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Enrichment und Differenzierung. Die Aufgaben von akademischen Schülerwettbewer-

ben sind meist so gestellt, dass sie curricular Bekanntes neu verknüpfen und akzentuieren, die 

Aufgaben aber mit den Kompetenzen der SuS lösbar sind (Fauser et al., 2007). Durch diese 

herausfordernden Aufgaben können Wettbewerbe nach Ozturk and Debelak (2008b) im Un-

terricht daher als Mittel zur Differenzierung gesehen werden. So bieten Wettbewerbe haupt-

sächlich eine Anreicherung der Lernumgebung (Enrichment) für SuS, die curriculare Aufgaben 

schnell und sicher lösen (Bicknell, 2008; Ozturk & Debelak, 2008b; Peters & Sieve, 2013). 

Die Aufgaben von Wettbewerben sind in der Regel wenig vorstrukturiert und bieten damit 

insbesondere Raum für kreative Lösungen (Fauser et al., 2007). Dennoch müssen nach Ozturk 

und Debelak (2008a) in vielen Wettbewerben eigene Gedanken und Ideen (schriftlich) unter 

Berücksichtigung der Konventionen des betreffenden (Fach)Bereichs ausgedrückt werden. 

Dadurch lernen Teilnehmerinnen und Teilnehmer die Konventionen eines (Fach-)Bereichs 

kennen (Peters & Sieve, 2013). Häufig werden Wettbewerbe durch Experten als Mentoren oder 

Juroren begleitet, was den Teilnehmerinnen und Teilnehmern zum einen reale Einblicke in die 

Domäne ermöglicht und zum anderen Feedbackmöglichkeiten eröffnet (vgl. Ozturk & De-

belak, 2008b; Peters & Sieve, 2013). Nach Fauser und Kollegen (2007) sowie Oswald und 

Kollegen (2005) sind Wettbewerbe damit ein wichtiger Baustein einer breitaufgestellten För-

derung von SuS mit hohem Potential (Begabtenförderung). 

Motivatoren. Selbstverständlich können Preise, Anerkennung oder Prestige Anreize für 

die Teilnahme an einem Wettbewerb darstellen. Nach Oswald und Kollegen (2005) geben die 

Teilnehmerinnen und Teilnehmer aber an, dass diese extrinsischen Motivatoren nicht aus-

schlaggebend für die Teilnahme an Wettbewerben seien. Viel mehr scheinen Interesse am Fach 

bzw. der Domäne oder das Ausloten der eigenen Begabungen bis hin zu Erfahrungen eigener 

Kompetenz und Eigenverantwortung ausschlaggebender für eine Wettbewerbsteilnahme zu 

sein (Oswald et al., 2005). So werden die Aufgaben nach Oswald und Kollegen (2005) in der 

Regel von erfolgreichen SuS im Wettbewerb, aber auch von (Fach-)Lehrern als Herausforde-

rung für die Teilnehmerinnen und Teilnehmer wahrgenommen, die im normalen Schulalltag 

vermisst wurde.  

Zusammenarbeit mit Peers. Viele Wettbewerbe (oder deren Vorbereitungskurse) bieten 

außerdem den Vorteil, dass Peers mit vergleichbaren Interessen und Leistungsstärken getroffen 

oder kennen gelernt werden können (vgl. Fauser et al., 2007; Oswald et al., 2005). Herausfor-

dernde Lernsituationen, gepaart mit dem Zusammenarbeiten mit Gleichgesinnten, werden von 

ehemals erfolgreichen Teilnehmerinnen und Teilnehmern der Olympiaden positiv bewertet. 
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Vor allem hinsichtlich der Entwicklung des Selbstwertgefühls sowie Fähigkeiten zur Teamar-

beit und zur Projektarbeit werden mit steigendem zeitlichen Abstand zum Wettbewerb als zu-

nehmend gewinnbringend beurteilt (Oswald et al., 2005). Bicknell (2008), Fauser und Kolle-

gen (2007) sowie Ozturk und Debelak (2008b) erwarten positive Einflüsse auf die persönliche 

Entwicklung Begabter durch eine Wettbewerbsteilnahme. Beispielsweise nehmen sie an, dass 

die Zusammenarbeit in homogenen Gruppen Ausdauer und Beharrlichkeit bei der Aufgaben-

bearbeitung fördern kann (Fauser et al., 2007). So soll die Teilnahme nicht nur für Sieger von 

Wettbewerben, sondern für alle Teilnehmerinnen und Teilnehmer gewinnbringend sein (Fauser 

et al., 2007). 

Kompetitive Umwelt. Begabte Teilnehmerinnen und Teilnehmer von Wettbewerben stre-

ben zwar nach persönlicher Leistung und der Demonstration der eigenen Fähigkeiten, zusätz-

lich bewegen sie sich im Wettbewerbssetting aber in einer kompetitiven Umwelt (Bicknell, 

2008). Nach Ozturk und Debelak (2008b) ist das Lernen des Umgangs mit Sieg und Niederlage 

besonders für Begabte ein wichtiger Faktor im Hinblick auf das spätere Leben in einer Gesell-

schaft, in der insbesondere (hohe) Leistungen anerkannt werden. Trotzdem bieten Wettbe-

werbe den Teilnehmerinnen und Teilnehmern eine geschützte Zone für das Bearbeiten heraus-

fordernder Aufgaben, da Misserfolg oder schlechte Leistungen keine negativen Konsequenzen 

haben (Fauser et al., 2007; Ozturk & Debelak, 2008b). So kann die Enttäuschung über schlech-

tes Abschneiden beispielweise auch Ansporn für kommende Herausforderungen (z.B. erneute 

Wettbewerbsteilnahme) sein oder dazu führen, dass SuS die eigenen Fähigkeiten realistischer 

einschätzen (vgl. Fauser et al., 2007; Ozturk & Debelak, 2008a). Dennoch stehen Wettbewerbe 

immer wieder in der Kritik, SuS unter Druck zu setzen und bloße Leistungsvergleiche anzu-

stellen. Laut Fauser und Kollegen (2007) kann diese Kritik entkräftet werden, wenn ein Wett-

bewerb hohen pädagogischen Ansprüchen genügt, wie beispielsweise (i) einem offenen, kos-

tenlosen sowie freiwilligen Zugang, (ii) der Anerkennung guter Leistungen oder (iii) einer (pä-

dagogischen) Begleitung der Wettbewerbsteilnahme. Außerdem sollten gute Wettbewerbe auf 

die Förderung intrinsischer Motivation (wie z.B. Spaß beim Lösen der Aufgaben) ausgerichtet 

sein (Ozturk & Debelak, 2008b). 

Identifikation und Diagnose. Nach Callahan, Husaker, Adams, Moor, und Bland (1995) 

sowie Fauser und Kollegen (2007) können Wettbewerbe ein Hilfsmittel zur Identifikation Be-

gabter auf Grundlage gezeigter Leistungen in Wettbewerben sein. Sowohl in den USA als auch 

in Deutschland zeigten Befragungen ehemaliger erfolgreicher Teilnehmerinnen und Teilneh-

mer an den akademischen Olympiaden sehr gute Schulnoten und (gemessen an der Anzahl 

wissenschaftlicher Publikationen und abgeschlossener Promotionen) überdurchschnittliche 
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wissenschaftliche Leistungen (Campbell & Verna 2010; Campbell & Walberg, 2010; Lengfel-

der & Heller, 2002). Damit scheint eine erfolgreiche Wettbewerbsteilnahme mit späteren Spit-

zenleistungen in Studium und Beruf zusammenzuhängen (vgl. Fauser et al., 2007; Oswald et 

al., 2005).  

Das Beispiel Mathematik-Olympiade8 

Nach Olson (2005) gehören die akademischen Olympiaden zu den schwierigsten Schü-

lerwettbewerben. Diese Wettbewerbe werden in den Bereichen Biologie, Chemie, Physik und 

Mathematik auf nationaler und internationaler Ebene angeboten. Die Mathematik-Olympiade 

ist ein bundesweiter Wettbewerb, der für Schülerinnen und Schüler (SuS) der Klassen 3 bis 12 

mit unterschiedlichen alters- und entwicklungsgerechten Schwierigkeitsgraden angeboten 

wird. SuS mit Spitzenleistungen im Bundesvergleich qualifizieren sich für eine Auswahlrunde 

zur Internationalen Mathematik-Olympiade und bekommen die Chance, sich auch im interna-

tionalen Vergleich zu messen. Der Wettbewerb steht unter der Schirmherrschaft des Bundes-

präsidenten und wird jährlich im Herbst/Winter (September bis Februar) durch den Verein Ma-

thematik-Olympiaden e.V. veranstaltet. 

Für Grundschülerinnen und Grundschüler wird der Wettbewerb in Deutschland seit 2005 

als nationaler Wettbewerb auf Landesebene angeboten. Im Grundformat besteht der Wettbe-

werb aus drei Runden: einer ersten breit angelegten Hausaufgabenrunde, gefolgt von zwei 

Klausurrunden mit regionaler und landesweiter Ausrichtung. Der Schwierigkeitsgrad der Auf-

gaben steigt dabei von Runde zu Runde an, thematische Ähnlichkeiten sind häufig vorhanden 

(Mathematikolympiaden e.V., 2013). Die Wettbewerbsaufgaben stellen dabei insbesondere für 

Begabte eine Herausforderung dar, denn sie sind komplex konstruiert und Begründungen für 

notierte Lösungen werden eingefordert. Die Aufgaben erfordern nur wenige über das Curricu-

lum hinausgehende Kompetenzen, sie verknüpfen bekannte Sachverhalte neu und bieten somit 

auch im Rahmen des Wettbewerbs Möglichkeiten neuer mathematischer Entdeckungen. 

Analysiert man die Aufgaben der Mathematik-Olympiade in der Grundschule von 2005 

bis 2013, lassen sich acht Aufgabentypen identifizieren. Diese unterscheiden sich in den zur 

Bearbeitung benötigten, mathematischen Fertigkeiten, Kompetenzen und Strategien. Zum er-

folgreichen Bearbeiten aller Aufgabentypen wird ein hohes Maß an mathematischer Sensibili-

tät und Kreativität benötigt. In Tabelle 5.1 sind die Aufgabentypen der Mathematik-Olympiade 

                                                 
8 Eine weiterführende fachunabhängige Übersicht über empfehlenswerte qualitativ hochwertige Schülerwettbe-

werbe wurde durch die Kultusministerkonferenz (2009) herausgegeben. Das BMBF fördert deutschlandweit derzeit über 20 

Wettbewerbe (vgl. Bundesministerium für Bildung und Forschung, 2015). 
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in der Grundschule mit kurzer Charakterisierung dargestellt. Alle Aufgaben zwischen 2005 

und 2013 können folgendem Schema zugeordnet werden (modifiziert nach Rebholz, 2013). 

 

Tabelle 1.  

Aufgabentypen der Mathematik-Olympiade in der Grundschule 

Aufgabentyp Charakterisierung 

Logische Schlüsse ziehen - Komplexe Informationen auf Textbasis ver-

arbeiten 

- Aufgaben sind durch Strukturieren und Organi-

sieren der Informationsfülle lösbar 

Gleichungsbasierte Auf-

gaben 

- Aufgaben basieren mathematisch auf einfachen 

Gleichungen 

- Herausforderung: Konzept von Gleichungen in 

Grundschule noch unbekannt 

Platzhalter - Lösen und Entwerfen von Kryptogrammen 

- Symbole repräsentieren Zahlen 

Würfel und Würfelnetze - Würfel als dreidimensionales Objekt 

- Baustein für größerer Objekte  

- Zusammenhang zwei- und dreidimensionaler 

Objekte  

Geometrie in der Ebene - Geometrische Objekte zerlegen 

- Kleinere Objekte in größeren Objekten finden  

Muster und Strukturen  

geometrisch 

- Geometrische Muster und Strukturen fortsetzen  

- Wechsel der Repräsentation zwischen Objekt 

und Zahl 

Geschicktes Rechnen - Strukturen von Rechnungen erkennen und an-

wenden 

- Eigenschaften natürlicher Zahlen 

Kombinatorik - Kombinationsmöglichkeiten finden und konkre-

tisieren 
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Kursprogramm „Fit für die Mathematik-Olympiade“ 

Im Folgenden wird ein begleitendes pädagogisches Angebot für mathematisch besonders 

begabte und hochbegabte Grundschulkinder vorgestellt. Das Angebot bietet sowohl die Gele-

genheit zur Vorbereitung auf die Mathematik-Olympiade, als auch die Möglichkeit zum Ma-

thematiktreiben mit Peers sowie die Förderung der Mathematikkompetenz. 

Zielgruppe: Mathematisch begabte Grundschulkinder 

Mathematisch begabte Grundschülerinnen und Grundschüler sind fasziniert von Mathe-

matik, haben ein besonderes Gefühl für Zahlen und deren Zuordnungen, zeigen eine Begeiste-

rung für geometrische Muster und Zahlenrätsel, sie „tun“ gerne Mathematik (vgl. Heinrich, 

2010; Käpnick, 1998, 2013; Kießwetter, 2013). Mathematisch begabte Kinder haben im ma-

thematischen Bereich einen Entwicklungsvorsprung gegenüber Gleichaltrigen und können in 

der Regel curriculare Mathematik-Aufgaben spielend lösen. Nach Käpnick (1998) und Kieß-

wetter (2013) kann dieser Vorsprung in der Fähigkeit mathematische Probleme zu lösen unter 

anderem auf eine hohe mathematische Sensibilität und Kreativität – die sich in selbstständigem 

Erkennen mathematischer Probleme ausdrückt – zurückgeführt werden. Mathematisch Be-

gabte können aber auch auf höherem Niveau mathematisch arbeiten als Gleichaltrige. Dieser 

Erfolg beim Lösen anspruchsvoller mathematischer Probleme kann bei mathematisch begabten 

Grundschulkindern auf eine überdurchschnittlich ausgeprägte Fähigkeit im Erkennen und Nut-

zen von mathematischen Mustern und Strukturen zurückgeführt werden. Denn die Fähigkeit 

zum Erkennen und Nutzen mathematischer Muster und Strukturen wird für den Löseprozess 

von Mathematikaufgaben als grundlegend gesehen (Aßmus, 2010; Bardy, 2013; Devlin, 2002; 

Kießwetter, 2013; Nolte, 2013b). Das Erkennen von Gesetzmäßigkeiten (Muster) und deren 

Zusammenhänge (Strukturen) in mathematischen Problemen erweist sich während des Lösens 

mathematischer Probleme als großer Vorteil. So kann das Erkennen mathematischer Muster 

und Strukturen beispielsweise für das Zusammenfassen von Einzel- zu Sammelinformationen 

genutzt werden. Dieses (i) Bilden von Superzeichen auf Grundlage erkannter mathematischer 

Muster und Strukturen (Kießwetter, 2013), kann nach Nolte (2013b) zu einer Komplexitätsre-

duktion eines mathematischen Problems führen. Dadurch wird die Verlinkung verschiedener 

Sachverhalte erleichtert und die mathematisch Begabten können die Struktur eines mathema-

tischen Problems auf noch höherem Niveau erfassen und tiefer in das Problemfeld einer Auf-

gabe eindringen (vgl. Fritzlar, 2010; Kießwetter, 2013). Des Weiteren wird das Erkennen ma-

thematischer Muster und Strukturen in einer (ii) Flexibilität und Reversibilität von Gedanken-
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gängen (vgl. Aßmus, 2010, 2013; Fritzlar, 2010; Kießwetter, 2013), einem (iii) bereichsspezi-

fischen, abstrakten, strukturierten und logischen Denken (vgl. Bardy, 2013; Devlin, 2002; 

Wittmann, 2005, July) und dem (unbewussten) (iv) Wechsel von Repräsentationsebenen und –

formen (vg) angewandt. Erkannte mathematische Muster und Strukturen können außerdem im 

(v) räumlichen Vorstellungsvermögen genutzt werden (vgl. Bardy, 2013; Käpnick, 1998) und 

nach Nolte (2013a) außerdem zur Änderung der Betrachtungsweisen eines mathematischen 

Problems beitragen. Häufig sind Grundschülerinnen und Grundschülern mathematische Sach-

verhalte oder Strategien zum Lösen ähnlicher Probleme bereits bekannt. Durch die erkannten 

Muster und Strukturen können (vi) Analogien gebildet und ein Transfer ermöglicht werden 

(vgl. Aßmus, 2013, Bardy, 2013; Käpnick, 1998; Selter, 2011). 

Fundamental, um mathematische Muster und Strukturen zu erkennen, ist zum einen die 

Fähigkeit, Informationen zu strukturieren zum anderen die Fähigkeit, gegebene Materialien zu 

organisieren (vgl. Aßmus, 2013; Bardy, 2013; Fritzlar, 2013; Käpnick, 1998; Kießwetter, 

2013; Selter, 2011). Neben den bereits beschriebenen Fähigkeiten zeigen mathematisch Be-

gabte nach Käpnick (1998) noch (vii) unterstützende Persönlichkeitseigenschaften wie bei-

spielsweise Anstrengungsbereitschaft, Leistungsmotivation, Freude am Problemlösen oder Be-

harrlichkeit für das Lösen mathematischer Probleme. 

Nach qualitativen Beobachtungen von Deal und Wismer (2010) sowie McAllister und 

Plourde (2008) können sich mathematische Fähigkeiten asynchron entwickeln. Die überdurch-

schnittliche Entwicklung einer oder mehrerer der zuvor beschriebenen mathematischen Fähig-

keiten kann mit einer (unter-)durchschnittlichen Entwicklung anderer Aspekte mathematischer 

Fähigkeiten verbunden sein. So zeigen mathematisch Begabte zwar vielfältige Stärken beim 

Lösen mathematischer Probleme, es können in Bezug auf erfolgreiches Mathematiktreiben und 

Problemlösen aber auch Schwächen beobachtet werden (Bardy & Hrzán, 2010; Bauersfeld, 

2013; Bezold, 2012; Käpnick, 1998; Rotigel & Fello, 2004). Beispielsweise scheinen mathe-

matisch Begabte häufig unscharf im Bilden und Begründen von Hypothesen (Bezold, 2012) 

oder im vollständigen oder strukturierten Notieren eines Lösungswegs zu sein (Bardy & Hrzán, 

2010; Rotigel & Fello, 2004). Sie zeigen Schwierigkeiten bei der Versprachlichung erkannter 

mathematischer Muster und Strukturen (Käpnick, 1998) oder Fehler beim Übertragen von Lö-

sungsstrategien auf Aufgaben mit veränderten Akzentuierungen der mathematischen Muster 

und Strukturen (Aßmus, 2010; 2013). Diese Schwächen können in der Arbeit mit mathematisch 

Begabten eine große Herausforderung darstellen. Vor allem, da die auf den ersten Blick homo-

gene Gruppe in der Entwicklung der verschiedenen mathematischen Fähigkeiten sehr hetero-

gen sein kann.  
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Kurskonzept 

Das Kurskonzept zu „Fit für die Mathematik-Olympiade“ fokussiert die Stärken und 

Schwächen mathematisch begabter Grundschulkinder. So werden die zuvor beschriebenen 

überdurchschnittlichen Fähigkeiten als Potenzial genutzt; einerseits um Schwierigkeiten und 

Schwächen auszubalancieren, andererseits um die Wahrscheinlichkeit für das Ausschöpfen 

und Weiterentwickeln des Potenzials zu erhöhen. Der Kurs umfasst zehn Doppelstunden, wo-

von in acht Einheiten jeweils ein Modul bearbeitet wird und zwei Doppelstunden zur Teil-

nahme an der Mathematik-Olympiade eingeplant sind. Um den Teilnehmerinnen und Teilneh-

mern erfolgreiches Abschneiden bei der Mathematik-Olympiade zu ermöglichen, basieren die 

im Kurs bearbeiteten Probleme auf den Ansprüchen der Aufgaben früherer Mathematik-Olym-

piaden. Die Aufgaben basieren auf den bereits genannten Typen (Tabelle 5.1) und fordern für 

die erfolgreiche Bearbeitung ein breites Repertoire mathematischer Fähigkeiten. Da sich die 

Gewichtung der zum Lösen benötigten mathematischen Fähigkeiten (siehe 5.3.1) von Aufgabe 

zu Aufgabe unterscheiden, wird neben einer Vorbereitung auf die Mathematik-Olympiade eine 

ganzheitliche Förderung der Mathematikkompetenzen erreicht. 

Durch den Einsatz prozessorientierter offener Aufgaben wird das Entdecken von mathe-

matischen Mustern und Strukturen auf verschiedenen (Repräsentations-)Ebenen (z.B. figural 

oder arithmetisch) ermöglicht. Durch den Aufbau der einzelnen Kursstunden sowie durch die 

Arbeit in Kleingruppen müssen Lösungsideen und Hypothesen in Worte gefasst werden. Das 

Notieren gefundener Lösungen als fester Bestandteil einer jeden Kurssitzung soll die Teilneh-

merinnen und Teilnehmer optimal auf die Wettbewerbsteilnahme vorbereiten.  

Offene Aufgaben. Um den Prozesscharakter der Mathematik zu betonen, sind alle Kurs-

einheiten charakterisiert durch das Bearbeiten von möglichst offenen Problemstellungen. Diese 

erlauben durch die offenen Fragestellungen Lösungsansätze und –möglichkeiten auf verschie-

denen mathematischen Niveaus und ermöglichen dadurch automatisch eine Differenzierung. 

Dies bedeutet, dass die Aufgaben je nach Entwicklung der mathematischen Fähigkeiten auf 

unterschiedlichen Ebenen gelöst werden können, zum Beispiel Lösen durch Abzählen oder 

durch Verwendung erster algebraischer Kenntnisse. Damit wird die Heterogenität der Teilneh-

merinnen und Teilnehmer als Chance genutzt. Nach Nolte (2013b) zeigen mathematisch Be-

gabte eine Vorliebe für reizvolle Probleme. Sie sollten daher an Aufgaben arbeiten, die inhalt-

lich bekannten (curricularen) (Schul-)Stoff neu verknüpfen, bereichern und vertiefen (Förster 

& Grohmann, 2013; Käpnick, 2010; Nolte, 2013a). Dadurch soll eine herausfordernde aber 

nicht überfordernde Situation für die Kinder geschaffen werden (Bardy & Hrzán, 2010). Die 

Problemlöseaufgaben bieten – wie Bardy und Hrzán (2010) sowie Fritzlar (2013) empfehlen – 
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Gelegenheiten zu produktiver Eigentätigkeit, eigenen kreativen und phantasievolle Entdeckun-

gen und zur Erweiterung der eigenen heuristischen Problemlösestrategien. Damit knüpfen die 

Problemlöseaufgaben an die verschiedenen Facetten des Nutzens mathematischer Muster und 

Strukturen wie beispielsweise der Analogiebildung und den Transfer oder den Wechsel von 

Repräsentationsebenen an.  

Die Aufgaben für den Kurs „Fit für die Mathematik-Olympiade“ wurden alle eigens für 

den Kurs entwickelt und auf Basis zahlreicher Kursdurchführungen optimiert. Sie bieten den 

mathematisch Begabten die Möglichkeit, Fragestellungen mit variabler Tiefe der mathemati-

schen Muster und Strukturen zu bearbeiten. Somit lassen die Aufgaben Raum für individuelle 

Lösungswege und verschiedene Lösungsansätze. Den Teilnehmerinnen und Teilnehmern wird 

dadurch eine aktiv-forschende eigenproduktive Tätigkeit ermöglicht (Förster & Grohmann, 

2013; Nolte, 2013b), in deren Verlauf mathematische Muster, Strukturen und regelhafte Zu-

sammenhänge von bekannten schulischen Inhalten erkannt und übertragen, Vermutungen ent-

wickelt und mit eigenen Lösungsstrategien verknüpft werden können (Förster & Grohmann, 

2013; Käpnick, 2010; Nolte, 2013b; Rosebrock, 2013; Walther, 2011).  

Methodisch-didaktische Umsetzung. Methodisch orientiert sich der Aufbau der einzel-

nen Kurseinheiten am 3-Phasen-Unterrichtsmodell nach Bezold (2012), das sich in eine Ich-, 

eine Du- und eine Wir-Phase gliedert und angelehnt ist an Gallin and Ruf (1995; 1999). Durch 

dieses Unterrichtsmodell werden die prozessbezogenen Tätigkeiten des Mathematiktreibens 

wie Problemlösen, Kommunizieren, Argumentieren, Modellieren und Darstellen gefördert 

(Walther, 2011). Jede inhaltliche Doppelstunde folgt dabei schematisch dem gleichen Ablauf 

(vgl. Abb. 2.1): 

Abbildung 1: Schematischer Aufbau einer Kurssitzung (nicht maßstabsgetreu) 

Um eine vertrauensvolle Atmosphäre bei gemeinsamen Interessen der Teilnehmerinnen 

und Teilnehmer zu schaffen, wird der Einstieg und auch der Abschluss jeder Kurseinheit dazu 

genutzt, die lose Gruppe bekannt zu machen und mit kleinen mathematischen Spielen eine ver-

trauensvolle Atmosphäre zu schaffen (Nolte & Pamperien, 2013). Eine Theorieeinheit wird 

dazu genutzt, Vorkenntnisse der Teilnehmer durch das Wiederholen spezieller Inhalte auf ei-

nen vergleichbaren Stand zu bringen und verschiedene Lösungsstrategien kennen zu lernen. 

Der Hauptteil eines jeden Moduls ist aufgebaut nach dem Phasenmodell (vgl. Abb. 2.2), das 

die Teilnehmer u.a. zur Kommunikation über Mathematik und zum Nutzen mathematischer 
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Begründungen für gefundene Lösungen anregen soll. 

 

Abbildung 2: Das Phasenmodell der Hauptphase jedes Moduls  

In der Ich-Phase (links visualisiert) erhalten zwei bis maximal drei Teilnehmerinnen und 

Teilnehmer des Kurses das gleiche Arbeitsblatt mit dem gleichen mathematischen Problem. 

Um selbstständiges Arbeiten und die Entwicklung eigener Lösungsideen auch im Hinblick auf 

die Teilnahme an einem Individualwettbewerb zu fördern, bearbeiten die Teilnehmerinnen und 

Teilnehmern das Problem einige Zeit alleine. Hier können die eigenen Fähigkeiten im Erken-

nen und Nutzen mathematischer Muster und Strukturen, eine neue Selbstständigkeit sowie in-

dividuelle Stärken entdeckt und genutzt werden (vgl. Bezold, 2012; Walther, 2011). 

Die Ich-Phase geht fließend in die Du-Phase (mittig in Abb. 2) über. Die Lösung des 

Problems wird nun in der Kleingruppe gesucht. Einerseits müssen damit die eigenen Lösungs-

ansätze aus der Ich-Phase begründet und nachvollziehbar dargestellt sowie die eigenen Gedan-

ken versprachlicht werden. Auf der anderen Seite müssen sich die Kinder in die Gedanken 

eines Partners hinein denken, um diese zu verstehen, was häufig zu einem kritischen Hinter-

fragen der eigenen Ideen führt. Dadurch müssen die Teilnehmerinnen und Teilnehmern gebil-

dete Hypothesen sowie generierte Lösungsansätze und –ideen aus der Ich-Phase verständlich 

verbalisieren. Die Du-Phase bietet den Vorteil, dass die prozessbezogenen Tätigkeiten – haupt-

sächlich das Bilden und Suchen von Hypothesen und Begründungen – mit Gleichaltringen ge-
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meinsam durch Einbringen individueller Stärken und Schwächen im kooperativen Setting ge-

übt werden können. Außerdem können beim kooperativen Arbeiten das bewegliche Denken 

und die Ideenfülle eines jeden Individuums zur Geltung kommen und auch zurückhaltende 

Teilnehmerinnen und Teilnehmern werden zum Verbalisieren erkannter mathematischer Mus-

ter und Strukturen animiert. Die Kleingruppenarbeit bietet den Vorteil, dass eigene Ideen in 

geschützter Atmosphäre im Kreise Gleichgesinnter eingebracht werden können. So kann das 

Gefühl der sozialen Eingebundenheit erlebt werden. In Summe trägt das Arbeiten in der Klein-

gruppe neben einer Entwicklung der allgemeinen mathematischen Kompetenzen (insbesondere 

das Problemlösen bei Notwendigkeit des Kommunizierens und Argumentierens) auch zur Ver-

balisierung der eigenen Gedanken und zur Stärkung der Sozialkompetenz bei (Bardy & Hrzán, 

2010; Bezold, 2012; Walther, 2011). 

Nach erfolgreichem Bearbeiten der Problemaufgabe schließt sich an die Du-Phase eine 

Vorbereitungsphase auf die Wir-Phase an. Die Teilnehmerinnen und Teilnehmern werden in 

dieser Du/Wir-Phase (siehe Pfeil in Abb. 2) angeleitet, ihre Lösung für den Austausch mit an-

deren Kursteilnehmerinnen und -teilnehmern zu verschriftlichen. Dies stellt im Hinblick auf 

die Mathematik-Olympiade einen wichtigen Baustein dar, denn eine genaue, sorgfältige, 

exakte und begründete Notation wird damit geübt. 

Während die vorangegangenen Phasen fließend ineinander übergehen und dem individu-

ellen Bearbeitungstempo der Kleingruppen angepasst sind, nimmt die Wir-Phase die letzten 

15-20 Minuten, vor einem spielerischen Abschluss, ein. Die Kleingruppen präsentieren sich in 

dieser Phase gegenseitig ihre Aufgaben und Lösungen. Dabei müssen bei der Präsentation der 

eigenen Ergebnisse die individuellen Gedanken nochmals begründet und die Lösungsschritte 

verständlich dargestellt werden. Dies soll erneut die Kommunikations- und Argumentations-

kompetenz stärken. Bei den Präsentationen anderer Gruppen müssen die Gedanken, Hypothe-

sen, Lösungswege und -schritte anderer verstanden werden. Dabei können verschiedene Denk-

weisen und Problemlösestrategien sowie Hilfsmittel zur Bearbeitung von mathematischen 

Problemen kennengelernt werden. 

Ist eine Kleingruppe sehr schnell in der Bearbeitung ihres Problems, so sind weitere ma-

thematische Probleme verfügbar, die die Kinder in diesem Fall bearbeiten können. Die Erwei-

terungsaufgaben sind orientiert an den mathematischen Inhalten der Module. Sie können ent-

weder ergänzend oder wiederholend eingesetzt werden. 
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Überprüfung der Effektivität des beschriebenen Programms 

Der Kurs „Fit für die Mathematik-Olympiade“ wurde im Rahmen des Projekts Formative 

Evaluation der Hector-Kinderakademien (Golle, Herbein, Hasselhorn, & Trautwein, 2017) ent-

wickelt und in einer ersten empirischen Studie (Schuljahr 2014/15) an sechs Hector-Kinderak-

ademien durchgeführt. Um die Effektivität des Trainings zu überprüfen, wurde ein Kontroll-

gruppendesign mit Messwiederholung gewählt. Insgesamt nahmen 201 Kinder an der Unter-

suchung teil, 50 Kinder in der Trainingsgruppe und 151 Kinder in der Kontrollgruppe. Die 

Kontrollgruppe bestand aus SuS, die nicht für die Hector-Kinderakademien nominiert wurden. 

Die beiden Gruppen setzten sich zu vergleichbaren Teilen aus Dritt- und Viertklässlern zusam-

men. Die Erhebung der Daten erfolgte zu Beginn und zum Ende eines Schulhalbjahres, dies 

entsprach auch dem Beginn und dem Ende des Trainings. 

Zu beiden Messzeitpunkten wurden die Mathematik-Kompetenz (DEMAT 2+, 

Krajewski, Liehm, & Schneider, 2004; DEMAT 3+, Roick, Gölitz, & Hasselhorn, 2004; DE-

MAT 4, Gölitz, Roick, & Hasselhorn, 2006), das mathematische Interesse, das Selbstkonzept 

in Mathematik sowie die figuralen sowie kristallinen kognitiven Fähigkeiten via BEFKI-short 

(Schroeders, Schipolowski, Zettler, Golle, & Wilhelm, 2016) erfasst. Zusätzlich wurden die 

Leistungsdaten während der Mathematik-Olympiade erhoben. Die Daten wurden mit Hilfe 

multipler linearer Regressionen ausgewertet. Um die Kurseffekte für mögliche Eingangsunter-

schiede zwischen den beiden Gruppen kontrollieren zu können, wurden die zum ersten Mess-

zeitpunkt erhobenen Variablen in allen Analysemodellen berücksichtigt (Alter, Geschlecht, 

Mathematik-Kompetenz, kognitive Fähigkeiten, mathematisches Interesse und Selbstkonzept). 

Sowohl für die Dritt- als auch für die Viertklässler zeigte sich unter Kontrolle der Eingangsun-

terschiede ein signifikanter Interventionseffekt auf die Mathematik-Kompetenz und die Leis-

tung in der Mathematik-Olympiade (Näheres siehe Kapitel 3). 

Da die Ergebnisse darauf hinweisen, dass die entwickelte Intervention wirksam ist, 

wurde der Kurs in einer zweiten Studie (Schuljahr 2015/16) mit mehreren Kursleitern an zehn 

Hector-Kinderakademien erneut evaluiert. Im Vergleich zur ersten Studie sollte die Effektivität 

des Kurses auch bei einer größeren Anzahl von Kursleitern und mathematisch begabten und 

interessierten Kindern untersucht werden. In dieser Studie verwendeten wir daher ein so ge-

nanntes Warte-Kontrollgruppen-Design mit randomisierter Gruppenzuweisung. Sowohl in ei-

ner Prä- als auch in einer Posttestung wurden auch in dieser Studie kognitive Fähigkeiten, Ma-

thematik-Kompetenz sowie mathematisches Selbstkonzept und Interesse in Mathematik er-

fasst. Ergänzend wurden die Leistungsdaten der Mathematik-Olympiade und die Fähigkeit 

zum Erkennen von Mustern und Strukturen mittels Matrizentests erhoben. Erste Ergebnisse 
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dieser Untersuchung deuten auf positive Effekte des Kurses auf das Erkennen von Mustern und 

Strukturen sowie die Leistung in der Mathematik-Olympiade hin. Auf rein arithmetische Fä-

higkeiten scheint der Kurs keinen Einfluss zu haben. Damit deuten die Ergebnisse darauf hin, 

dass der Kurs weniger die inhaltsbezogenen mathematischen Kompetenzen, wie beispielsweise 

Rechnen, sondern eher die prozessbezogenen Kompetenzen, wie beispielsweise mathemati-

sches Argumentieren, zu fördert (Näheres siehe Kapitel 4). 

Ausblick: Schülerwettbewerbe in sich ändernden Schulumwelten 

Basierend auf Aufgaben, die in der Regel von erfahrenen Experten eines Fach(bereich)s 

erarbeitet wurden, können SuS im Rahmen von Wettbewerben Einblicke in Themengebiete 

bekommen, die im normalen Curriculum fehlen oder nur kurz thematisiert werden. SuS können 

durch intensive Auseinandersetzung mit bestimmten Themen/-gebieten zu kleinen Experten 

für einen freiwillig gewählten (Fach-)bereich werden. Unter anderem berichten Oswald and 

colleagues (2005) von ehemaligen Wettbewerbsteilnehmerinnen und -teilnehmern, die sich mit 

steigendem Abstand zum Wettbewerb merklich für den Fachbereich des Wettbewerbs interes-

sierten und einen Beeinflussung der Berufswahl durch den Wettbewerb angeben. Genau diese 

Rolle einer Wettbewerbsteilnahme erhoffen sich auch viele Lehrer/innen für ihre SuS und so 

sind häufig (Fach-)Lehrer/innen die Initiatoren, Motivatoren und Begleiter eines Wettbewerbs 

(vgl. Oswald et. al, 2005). Lehrkräfte bevorzugen dabei nach Bicknell (2008) und Oswald and 

colleagues (2005) Team-Wettbewerbe, da das Arbeiten im Team in vielen Disziplinen alltäg-

lich ist und im Wettbewerb erlernt werden kann. Vor allem durch das gemeinsame Arbeiten an 

einer Herausforderung können alle Teilnehmerinnen und Teilnehmer in ihrer persönlichen Ent-

wicklung und ihrem Verständnis für forschendes Lernen profitieren (Bicknell, 2008; Oswald 

et al., 2005). 

Häufig werden Wettbewerbe vor allem in der Begabtenförderung – wie in Abschnitt 5.1 

beschrieben – als Enrichment eingesetzt (Bicknell, 2008; Holling et al., 2009; Oswald et al., 

2005). Basierend auf Aufgaben, die seitens der Wettbewerbsorganisatoren auf Grundlage jah-

relanger Expertise erarbeitet wurden, bieten Schülerwettbewerbe Möglichkeiten, Begabten 

heraufordernde Aufgaben zukommen zu lassen. Ozturk und Debelak (2008a, 2008b) schlagen 

aber außerdem vor, Schülerwettbewerbe als Mittel zur Differenzierung auch im normalen Un-

terricht einzusetzen. So könnten Wettbewerbe einen Beitrag zu einer begabungsfreundlichen, 

differenzierenden Lernkultur innerhalb eines Schulbetriebs leisten.  

Dies würde die Möglichkeit eröffnen, vielen SuS Einblicke in Curriculum-ergänzenden 
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Themenbereiche zu geben (vgl. Peters & Sieve, 2013). Für eine breite Partizipation an Schü-

lerwettbewerben als außer und innerunterrichtliche Angebote bräuchte es allerding eine breite 

Anerkennung von akademischen Schülerwettbewerben in Schulen. In diesem Zusammenhang 

legt die Schulpolitik zwar indirekt die Grundlage für die Implementierung eines Wettbewerbs 

(Oswald et al., 2005). Ein konkreter Wettbewerb muss aber hauptsächlich aber auch von (Fach-

)Lehrerinnen akzeptiert werden (Bicknell, 2008). 

Eine besondere Rolle könnte hier die Ganztagsschule spielen. Denn vor allem im Wandel 

zur Ganztagsschule könnten Schülerwettbewerbe als leistungsdifferenziertes Angebot noch 

systematischer etabliert werden. Eine Einbettung eines Schülerwettbewerbs in den Ganztags-

betrieb – idealerweise in Kombination mit einem begleitenden pädagogischen Angebot – er-

möglicht vielen SuS die Teilnahme an Wettbewerben. Zusätzlich können Vorbereitungskurse 

– wie das vorgestellte Programm „Fit für die Mathematik-Olympiade“ – Bestandteil des Ganz-

tagsangebots werden und so die fördernde Wirkung von Wettbewerben noch verstärken (Fau-

ser et al., 2007; Oswald et al., 2005; Ozturk, & Debelak, 2008a). So können sich die verschie-

denen Funktionen von Schülerwettbewerben – Enrichment und Differenzierung, Zusammen-

arbeit mit Peers, kompetitive Umwelt, Motivatoren, Identifikation und Diagnose – ergänzen 

und zu einer individuellen Förderung von SuS beitragen.  
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Abstract 

There are numerous academic competitions (e.g., “Academic Olympiads”) and corre-

sponding trainings around the world that are believed to foster students’ domain-specific 

achievement and motivation. Although academic competitions are ideal settings in which to 

study learning processes and outcomes, more empirical studies on the effectiveness of aca-

demic competitions and their trainings are needed to determine whether the trainings work and 

for whom they work. Therefore, we developed and evaluated a math training for preparing 

third- and fourth-grade students for the German Mathematical Olympiad. In ten 90-min ses-

sions, the training was aimed at fostering process-based mathematical competences (e.g., prob-

lem solving). Its effectiveness was evaluated in a quasi-experimental pre- and posttest design 

(N = 201 students). Results indicated positive training effects on mathematical achievement, 

positive effects on fourth graders’ task-specific interest in mathematics, and differential effects 

for math self-concept. Thus, the role of social comparison processes in such trainings for ele-

mentary school students is discussed.  

 

Keywords: mathematics competition, enrichment, elementary school children, math 

training, challenging tasks, domain-specific self-concept 
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Getting Fit for the Mathematical Olympiad: Positive Effects on Achievement and  

Motivation? 

Every year an increasing number of students around the world participate in regional, 

national, and international academic competitions in different domains such as mathematics, 

sciences, history, or languages (Campbell et al., 2000; Forrester, 2010). The underlying as-

sumption behind such academic competitions is that they foster students’ competence and mo-

tivation (Campbell & Walberg, 2010; Lengfelder & Heller, 2002; Riley & Karnes, 1998). 

However, the competitive environments of academic competitions (Bicknell, 2008; Wirt, 

2011) can also have negative effects on student motivation (e.g., decreasing self-concept; 

Marsh & Parker, 1984) and can trigger stress or self-doubt (Clinkenbeard, 1989). To prevent 

negative and to emphasize positive effects of academic competitions, some authors have sug-

gested that trainings can prepare students for such academic competitions (e.g., Cropper, 1998; 

Ozturk & Debelak, 2008a). Although, from a theoretical point of view, positive influences of 

such trainings on students’ competence and motivation seem plausible, there have been—to 

the best of our knowledge—no empirical studies that have systematically investigated this as-

sumption.  

Therefore, we developed a training to prepare elementary school students for the German 

Mathematical Olympiad, a national math competition. We evaluated the effects of the training 

on a sample of third- and fourth-grade students. Before describing the details of the training, 

we will briefly review the literature on influences of academic competitions and trainings on 

students’ competence and motivation.  

Influences of Academic Competitions on Students’ Competence and Motivation 

Academic competitions provide learning opportunities that are neglected in regular cur-

ricula. Therefore, academic competitions offer challenging tasks for targeting students who 

belong to the group of high achievers who are already able to successfully solve curriculum-

based tasks (Bicknell, 2008; Ozturk & Debelak, 2008a, 2008b; Riley & Karnes, 1998). As 

such, the increase in learning opportunities is supposed to positively influence students’ com-

petence in the same domain (cf. Diezmann & Watters, 2001). In fact, there is some—albeit 

rather fragmentary—empirical support for this assumption. For instance, using retrospective 

interviews of successful participants of academic competitions, Campbell and Walberg (2010) 

reported that a very high percentage (52%) of such successful participants of academic Olym-

piads in the US achieved a PhD degree later in their academic career. In addition, in a German 
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sample, Lengfelder and Heller (2002) reported that over 70% of successful participants of ac-

ademic competitions were in the top 10 of students in their last year of the German Gymnasium 

(highest academic track in Germany). 

When it comes to the effects of participating in academic competitions on motivation, 

theoretical predictions are somewhat more complex, and there is a clear need for more studies. 

Commonly, academic competitions are seen as an opportunity for students—especially high-

achieving students—to demonstrate their skills and to experience challenges beyond the re-

quirements of the standard curriculum (Ozturk & Debelak, 2008a, 2008b; Wirt, 2011). Such 

competitions and being chosen by teachers or parents to participate in such an academic com-

petition might reinforce or further increase students’ competence beliefs (see Dai & Rinn, 

2008). Hence, it is commonly assumed that motivation for the respective subject domain should 

increase after a student participates in a competition (cf. Forrester, 2010; Wirt, 2011). However, 

from a theoretical point of view, academic competitions may also have negative effects. First, 

students may experience failure when confronted with a challenging task, and failure is known 

to affect academic self-concept (e.g., Trautwein & Möller, 2016). Second, academic competi-

tions make participants compete with other high-achieving students, a situation they may never 

have encountered in their regular classes (Ozturk & Debelak, 2008b). More specifically, par-

ticipation in a competition may change the “frame of reference” for students’ self-evaluation 

(i.e., self-concept; see Shavelson et al., 1976). This has the potential to positively affect stu-

dents’ self-concept (see Dai & Rinn, 2008) when students are aware of the fact that it was their 

high achievement that allowed them to become a member of the selected group (also see Tra-

utwein, Köller, Lüdtke, & Baumert, 2005). However, frame-of-reference effects might also 

negatively impact student motivation. In the literature, this effect is known as the Big-Fish-

Little-Pond effect (BFLPE; Marsh, 1987; Marsh & Parker, 1984): Of two students with the 

same individual ability, academic self-concept will likely be higher in the student who is placed 

in a low-achieving class compared with the student who is placed in a high-achieving class. In 

other words, high-achieving classmates lead to negative social comparison processes that are 

typically stronger than potentially positive effects of being part of a selected group of students 

(see Marsh et al., 2008). In fact, negative frame-of-reference effects have been documented for 

academic self-concept but also for student interest, joy, and attainment (e.g., Marsh et al., 2008; 

Trautwein et al., 2006). Looking at expectancy-value theory of achievement motivation (e.g., 

Eccles, 1983), the latter factors are summarized into value beliefs; besides competence beliefs 

(i.e., self-concept), value beliefs (i.e., interest, attainment value, utility value and cost) comprise 

the second factor that drives academic motivation according to this theory. However, although 
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there is a broad literature on the BFLPE and its impact on self-concept and value beliefs, we 

do not know of any study that has explored the BFLPE in the context of academic competitions. 

The Role of Pedagogical Trainings in Fostering Competence and Motivation 

To bolster the assumed positive effects of academic competitions on achievement and to 

prevent potentially negative effects of failure/unfavorable social comparison processes in aca-

demic competitions on students’ motivation, careful preparation and an introduction to an ac-

ademic competition may be useful (Cropper, 1998; Ozturk & Debelak, 2008a). In fact, offering 

a training for a specific academic competition as part of an enrichment program is common 

practice (for the Academic Olympiads, see e.g., Urhahne, Ho, Parchmann, & Nick, 2012). As-

suming that such trainings increase the number of learning opportunities in the respective do-

main even more than mere participation in an academic competition, any positive effects of 

academic competitions on domain-specific competences can be expected to be intensified.  

Usually, students are selected to participate in such a training on the basis of teacher 

nominations or by successfully passing previous selection rounds (see the qualification process 

for the International Olympiads; for an overview, see e.g., http://olympiads.win.tue.nl/). Thus, 

comparable to academic competitions, the average ability level of students in such trainings is 

usually higher than the class average as well (cf. Bicknell, 2008; Ozturk & Debelak, 2008b; 

Riley & Karnes, 1998). Therefore, considering the BFLPE described above, the question that 

arises is how participating in a training for an academic competition influences students’ mo-

tivation: Is there a risk that student motivation will decrease when they experience a learning 

environment characterized by higher academic achievement? As such, one of the explicit aims 

of any such training should be to prevent negative effects by stabilizing students’ motivation 

(i.e., self-concept and value beliefs), for example, by implementing an individualized teacher 

frame of reference instead of highlighting social comparisons (see Lüdtke, Köller, Marsh, & 

Trautwein, 2005). 

The Present Study  

For a number of reasons, trainings for academic competitions are an ideal setting in which 

to study learning processes and outcomes. For instance, there is typically a clearly defined 

achievement outcome (usually performance in the respective competition). Given an appropri-

ate design, this allows researchers to study the effects of various predictor variables on this 

specific outcome. A similarly interesting question is the evidence (or lack thereof) of partici-

pation in academic competition trainings on broader achievement outcomes. More precisely, 

http://olympiads.win.tue.nl/
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does participating in a training for the Mathematical Olympiad show transfer effects to class-

room-based assessments of (mathematical) competence? In addition, training for an academic 

competition comes with a change in learning environment (e.g., group membership). This 

means that potential effects of variations in the learning setting on various processes and out-

comes can be investigated. Hence, academic competitions with corresponding trainings pro-

vide the perfect opportunity for studying effects of specific learning environments (e.g., a spe-

cific competition or training). Thus, this provides the opportunity to contribute to the literature 

more generally by testing theoretical predictions about specific characteristics of the learning 

environment.  

All the more surprising is the lack of studies that have employed the academic competi-

tion setting. Whereas some studies have examined expectations, experiences, or educational 

pathways of successful participants of an academic competition (e.g., Campbell & Walberg, 

2010; Lengfelder & Heller, 2002; Wirt, 2011), effects of academic competitions on students’ 

domain-specific competence and motivation have largely been neglected so far. Moreover, to 

the best of our knowledge, no studies have analyzed the theoretically plausible effects of aca-

demic competitions in combination with a corresponding pedagogical training.  

Hence, the present study is the first study we know of to systematically examine the 

effects of a training for a mathematics competition on (a) performance in the competition, (b) 

mathematical competences in general, and (c) students’ motivation (i.e., self-concept and value 

beliefs).  

The pedagogical training  

We developed and evaluated a coherent mathematical training specifically targeting the 

abilities and challenges of high-achieving elementary school children who were participating 

in the Mathematical Olympiad. Content and didactical approaches of the training were based 

on theory as well as empirical findings in mathematically gifted education because high-

achieving students should find it easy to solve curricular-based tasks (for more information, 

see e.g., Diezmann & Watters, 2001; Koshy et al., 2009; Leikin, 2010; McAllister & Plourde, 

2008; Rotigel & Fello, 2004). Based on this literature, the focus of the training was on solving 

challenging mathematical problems. The implemented problems were not challenging because 

the contents were difficult (e.g., calculations did not involve numbers greater than 100). The 

problems were challenging because they were comprised of open problems that allowed dif-

ferent solution strategies and required problem solving, modeling, and reasoning. More specif-
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ically, the contents of the training were oriented toward the previous requirements of the (Ger-

man) Mathematical Olympiad for elementary school students and involved, for example, logic 

problems, cryptograms, cubes, combinatorics, equation-based tasks, sequences (implemented 

in terms of towers), or riddles. All tasks included in the training were custom made and allowed 

for several possible solutions (an example task used in the training is shown in Figure 1). Thus, 

original tasks from previous Mathematical Olympiads were not implemented in the training. 

 

Figure 1. Typical task from the corresponding training program (translated version). 

In contrast to the typically competitive setting of academic competitions, the training was 

based on cooperative learning to enhance motivation for mathematics and to antagonize the 

competitive setting (e.g., Johnson, 1990; Johnson & Johnson, 1994). Following a specific di-

dactic-methodological model (illustrated in Figure 2, based on Bezold, 2012), students had to 

(a) attempt an individual solution, (b) discuss and explain these individual solutions in teams 

(ideally dyads), and (c) justify and discuss their solutions to a challenging mathematical prob-

lem. Toward the end of each session, they also had to (d) present the mathematical problem 

and the solutions produced thus far to other students who were not members of their team.  

The aims of components (a) to (d) were to get students accustomed to solving challenging tasks 

and to foster students’ process-based mathematical competences (i.e., [mathematical] problem 

solving, modelling, and communicating about mathematics/arguing). Overall, the core of the 

training was comprised of the dyadic problem solving of challenging tasks that considered the 

requirements of the Mathematical Olympiad. Across the whole training, teachers created an 
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atmosphere in which mistakes were treated as opportunities for learning and for providing in-

dividual feedback (using an individualized frame of reference).  

Figure 2. Schematic illustration of the didactic-methodological model used in the training (translated version from 

Rebholz & Golle, 2017, see Chapter 2).  

Design and hypotheses 

To evaluate the effectiveness of the training that was designed to prepare students for the 

Mathematical Olympiad, we used a quasi-experimental pre- and posttest design in a natural 

setting (Shadish et al., 2002). In addition to a group of children who attended the training, we 

implemented a control group consisting of students who did not attend the training but partic-

ipated in the Mathematical Olympiad as well. We posed the following three hypotheses: First, 

we expected that children participating in the training would perform better in the respective 

academic competition (Mathematical Olympiad) as they were trained to solve challenging 

problems that contain contents typically used in the Mathematical Olympiad. Second, we hy-

pothesized that children participating in the training would also improve mathematical compe-

tences that are not directly linked to the Mathematical Olympiad more strongly than the chil-

dren in the control group, which would be indicative of transfer effects. Third, given that the 

training was offered to third and fourth graders who were taught together in one training group, 

we expected different effects of the training on motivational constructs (i.e., math self-concept 

and value beliefs) for the two age groups. On the one hand, students were nominated for the 

training. Thus, positive influences on motivational constructs could be expected. But, on the 

other hand, based on findings on reference group effects as described in the BFLPE literature 

(e.g., Marsh, 1987), different social comparison processes might be plausible for the two age 
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groups. Whereas third graders would be placed in a learning environment with many possibil-

ities for upward comparisons (i.e., with competent fourth graders), fourth graders would be 

more likely to have opportunities to make downward comparisons (i.e., with third graders) in 

the training—but perhaps also upward comparisons (i.e., with high-achieving fourth graders). 

Thus, we expected differential effects on students’ self-concept depending on their grade level. 

Similar effects were expected for students’ math value beliefs (Trautwein et al., 2006).  

Method 

The Training 

The training was part of an enrichment program in the German state of Baden-Württem-

berg (Hector Children’s Academy Program; HCAP) that is tailored to the 10% most gifted, 

talented, interested, and motivated elementary school children (for more information about the 

HCAP, see Rothenbusch et al., 2016).  

The training included 10 modules, each taught in a 90-min session. The training was 

designed for small groups of six to 10 third and fourth graders. Six local sites of the HCAP 

participated in this study. The training was taught by different persons (mostly mathematics 

teachers) at each of these sites. To ensure treatment fidelity, instructors attended a 2-hr quali-

fication session taught by the developer of the training and were given a scripted manual and 

master copies of all teaching materials (an example task used in the training is presented in 

Figure 1). 

Sample 

Data were collected from 201 elementary school children (58% male, age: M = 9.01, SD 

=.43) in Grade 3 (N = 110, 63 male) or Grade 4 (N = 91, 54 male). The training group comprised 

50 children in Grades 3 and 4 [Grade 3: N = 26 (15 male); Grade 4: N = 24 (18 male)] who 

attended “Getting fit for the Mathematical Olympiad.” Children in the training group were from 

different classes and schools and had been nominated for the extracurricular enrichment pro-

gram by their teachers. They voluntarily participated in the training. Children in the control 

group were from 14 classes from six different elementary schools (six fourth-grade classes and 

eight third-grade classes) from schools that hosted a Hector Children’s Academy. Children in 

the control group attended only standard curricular mathematics classes and did not participate 

in the training. 
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Design and Procedure 

The training was offered at six local sites of the HCAP. The six courses were attended 

by five to 11 children and took place over a 5-month period (14 sessions from November 2014 

to March 2015). The pre- and posttesting of the training group was integrated into the first two 

and the last two training sessions separately for each local site. Data were collected from the 

children in the control group during regular classes at comparable time points (see Figure 3).  

Figure 3. Quasi-experimental pre- and posttest design of the study and the implemented measures. 

Trained research assistants and scientists administered the questionnaires and tests. The 

study was approved by the local ethics committee and local school authorities. Furthermore, 

parents provided written informed consent for their children’s participation prior to the study. 

All participants took part in the 54th Mathematical Olympiad—the training group as part of 

the training and the control group during regular math classes.  

Measures  

Domain-specific achievement outcomes 

All scales and corresponding descriptive statistics (including reliabilities) are displayed 

in Tables 1 and 2. An overview of the measures that were used is provided in Figure 4. We 

assessed Performance in the Academic Competition using the third (most difficult) level of the 

German Mathematical Olympiad for elementary school students (for more information about 

the competition, see Campbell & Walberg, 2010; Olson, 2005; www.imo-official.org, 

www.moems.org). The tasks in this academic competition were grade-level-specific and in-

cluded (complex) word problems (an example task is shown in Figure 4).  

http://www.imo-official.org/
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Figure 4. Translated version of a typical task from the Mathematical Olympiad (task no. 550331, 54th Mathemat-

ical Olympiad 2015/16, third grade). 

Tasks and scoring guidelines were provided by the German Mathematical Olympiad As-

sociation. Newly developed tasks were used for the Mathematical Olympiad every year, and 

these tasks were released by the Mathematical Olympiad Society after the competition. Hence, 

the tasks were not known to us when we developed the training. Tasks were scored according 

to the provided scoring guidelines. The dependent variables were z-standardized sum scores 

for each grade level.  

We assessed mathematical competence at pre- and posttest9 with the German Mathemat-

ics Tests for Second, Third, and Fourth Grades (i.e., pretest: DEMAT 2+, Krajewski et al., 

2004, αT1 = .92; DEMAT 3+, Roick et al., 2004, αT1 = .91; posttest: DEMAT 3+, Roick et al., 

2004, αT2 = .82; DEMAT 4, Gölitz et al., 2006, αT2= .89). These instruments closely reflect the 

(German) core standards for the respective grade levels. Hence, different versions of the tests 

were necessary for the different grades at pre- and posttest. For all measures of mathematical 

competence, the dependent variable was the obtained sum score, z-standardized by grade level. 

Motivational constructs 

Competence beliefs were measured with a math self-concept scale (six items, e.g., “I’m 

good at everything that has to do with mathematics,” αT1 = .87, αT2 = .92). Personal value 

beliefs were assessed with an intrinsic interest in mathematics scale (six items, e.g., “I enjoy 

everything that has to do with math,” αT1 = .81, αT2 = .95) and an attainment value scale (three 

items, e.g., “Everything that has to do with math is important to me,” αT1 = .70, αT2 = .69). In 

addition, a more activity-oriented form of interest was measured with a scale that asked for 

task-specific interest (three items, e.g., “I like to solve riddles and puzzles in computing mag-

azines and booklets,” αT1 = .77, αT2 = .88). All scales were based on previous instruments 

(Arens, Trautwein, & Hasselhorn, 2011; Bos, Buddeberg, & Lankes, 2005; Gaspard et al., 

                                                 
9 The pretest is abbreviated as T1 and the posttest as T2 in the following.  
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2015; Ramm, Adamsen, & Neubrand, 2006; Snow, 2011), and the respective items had to be 

answered on a 4-point scale (ranging from 1 = not true to 4 = exactly, visually represented with 

increasing symbol size of stars). Mean values for math self-concept and intrinsic and task-

specific interest in mathematics as well as attainment value in mathematics were z-standardized 

at grade level and used as dependent variables (for more details, see Tables 1 and 2). 

Covariates  

General cognitive abilities were assessed with the short version of Berlin Test of Fluid 

and Crystallized Intelligence (BEFKI; Schroeders et al., 2016). This test included two sub-

scales: figural (Versions A and B) and crystallized cognitive skills. The figural subscale consisted 

of 16 figural items in which sequences had to be continued twice (αT1, A = .65, αT1, B = .71 / αT2, A = 

.68, αT2, B = .78). The crystallized subscale required students to indicate the correct answer (out of 

four alternatives) to 16 questions about general knowledge, for example, “What’s Google?” (αT1 = 

.73, αT2 = .73). Again, dependent variables for figural and crystallized cognitive skills were z-stand-

ardized sum scores by grade level. 

Statistical Analyses  

All analyses were run separately by grade level. Group differences at pretest were ana-

lyzed by computing t tests for independent samples in R (R Core Team, 2015). The effective-

ness of the training was evaluated with multiple linear regression analyses separated by grade 

level using the R package lavaan (R Core Team, 2015; Rosseel, 2012). All analyses used the 

robust maximum likelihood estimator that corrects standard errors for the non-normality of the 

variables (Rosseel, 2012). Predictors in our regression models were participation in the training 

or the control group (0 = control, 1 = training). The dependent variables consisted of perfor-

mance in the Mathematical Olympiad (third level), mathematical competence, math self-con-

cept, and value beliefs in mathematics. According to the standardization of the dependent var-

iables, the multiple regression coefficient of the group variable indicated the standardized dif-

ference between the training and control groups at posttest while pretest performance in math-

ematical competence, (fluid and crystallized) intelligence, math self-concept, value beliefs in 

mathematics, and age were controlled for. We controlled for pretest performance on these var-

iables to account for initial differences between the training and control groups. Differential 

effects between third and fourth graders for each dependent variable were analyzed by testing 

the estimated differences between the training effects of the two grades against zero.  
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Missing Data  

In our study, the percentage of missing values amounted to 5% at pretest (30% of the 

missing data occurred in the training group and 70% in the control group) and 12% at posttest 

(52% of the missing data occurred in the training group and 48% in the control group). There 

were several reasons for missing data: 10% of the students in the training group left the training 

because (a) the 14-week program was too long or (b) student-teacher interactions were prob-

lematic. One student did not attend the pre- or posttest session but attended all other sessions 

and participated in the Mathematical Olympiad. In the control group, some children (a) moved 

away (n = 2), (b) changed schools or classes (n = 5), or (c) did not want to participate in the 

Mathematical Olympiad (n = 10). The other missing values occurred due to illness. For the 

implemented measures, the missing values reached a maximum of 18.0% in the training group, 

and ranged from 1.9% to 22.5% in the control group. When analyzing the treatment effects, we 

used the full information maximum likelihood approach implemented in R to deal with missing 

values (Enders, 2010; Graham, 2009; R Core Team, 2015; Rosseel, 2012).  

Results 

Descriptive Statistics  

In a first step, we evaluated differences between the training and control groups at pretest 

separately for third and fourth graders (see Tables 1 and 2). As to be expected by the way the 

groups were chosen—the training participants were specifically nominated for the training be-

cause of their performance—there were significant differences between the two groups indi-

cated by a 95% CI of Hedges’ g that did not include zero. On average, children in the training 

group showed higher mathematical competence, higher levels of math self-concept, and higher 

levels of value beliefs in math (for Hedges’ g, see Table 3); they were also younger than the 

children in the control group (see Table 1)10. However, inspection of the distribution of scores 

indicated a considerable overlap between the groups (see Figures 5 and 6).  

 

                                                 
10Due to these differences, we computed additional analyses for which we excluded all control group 

participants who performed worse than the participants in the training in pretest (N = 95). Also, we excluded all 

training group participants who were missing at pretest (N = 9). For this smaller sample (N = 97), we observed 

the same pattern of results (see the Appendix). Thus, we conducted the analyses with the whole sample. 



 

Table 1 

Descriptive Statistics for Age, Mathematical Competence, and Cognitive Skills: Means, Standard Deviations, and Internal Consistencies  

Construct 
  Pretest  Posttest 

  N M SD α  N M SD α 

Age 

Grade 3 
TG 24 8.66 0.52 

t(95) = 2.59, p = .011 
CG 73 8.40 0.38 

Grade 4 
TG 23 9.46 0.35 

t(78) = 7.92, p = .059 
CG 57 9.66 0.43 

Mathematical competence 

 DEMAT 

2+ Grade 3 
TG 26 30.36 7.36 

.92 
     

CG 78 22.43 7.90      

3+ 

Grade 3 
TG      17 19.59 4.17 

.82 
CG      80 14.66 5.18 

Grade 4 
TG 24 20.08 10.17 

.91 
     

CG 63 25.35 6.00      

4 Grade 4 
TG    

 
 17 24.47 6.19 

.89 
CG     61 15.46 7.25 

Cognitive skills 

BEFKI-short 

Figural 

(A / B)  

Grade 3 
TG 24 7.17 2.62 

.65   

/ .71 

 19 8.84 2.27 

.68  

/ .78 

CG 77 6.99 2.58  79 7.27 2.83 

Grade 4 
TG 23 9.52 4.01  17 10.71 3.69 

CG 62 7.71 3.00  59 8.31 3.24 

Crystallized 

Grade 3 
TG 25 10.08 3.33 

.73 

 19 11.89 2.56 

.73 
CG 79 9.39 3.09  80 10.35 3.33 

Grade 4 
TG 23 12.18 1.99  17 13.18 2.27 

CG 64 9.83 3.61  59 10.66 2.93 
Note. N = Number of valid answers given by participating children, M = mean, SD = standard deviation, α = Cronbach’s alpha. 

Measurement points: Pretest = November 2014, Posttest = March 2015. TG = Training group, CG = control group. t tests for inde-

pendent samples were computed to test for significant differences between the TG and the CG at pretest. Two-tailed significance 

levels are reported.  
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Table 2  

Descriptive Statistics for Motivational Factors: Means, Standard Deviations, and Internal Consistencies  

Construct 
  Pretest   Posttest 

 N M SD α   N M SD α 

Math self-concept 

Grade 3 
TG 24 3.74 0.35 

.87 

 18 3.67 0.73 

.92 
CG 67 3.26 0.71  60 3.41 0.72 

Grade 4 
TG 23 3.69 0.43  17 3.83 0.32 

CG 63 3.25 0.73  59 3.18 0.79 

Value beliefs  

in mathematics 

Task-specific 

interest 

Grade 3 
TG 24 3.58 0.56 

.77 

  18 3.48 0.92 

.88 
CG 61 3.18 0.79   50 3.21 0.81 

Grade 4 
TG 23 3.61 0.51   17 3.69 0.46 

CG 58 3.00 0.83   59 2.92 0.94 

Intrinsic  

interest 

Grade 3 
TG 24 3.77 0.56 

.81 

  18 3.66 0.77 

.95 
CG 66 3.25 0.77   58 3.20 0.90 

Grade 4 
TG 23 3.70 0.39   17 3.70 0.72 

CG 63 2.98 0.90   59 2.88 1.00 

Attainment  

value 

Grade 3 
TG 24 3.81 0.54 

.70 

  18 3.72 0.73 

.69 
CG 64 3.44 0.73   55 3.42 0.70 

Grade 4 
TG 23 3.80 0.40   17 3.82 0.41 

CG 63 3.31 0.75   59 3.41 0.70 
Note. N = Number of valid answers given by participating children, M = mean, SD = standard deviation, 

α = Cronbach’s alpha. Measurement points: Pretest = November 2014, Posttest = March 2015. TG = 

Training group, CG = control group. t tests for independent samples were computed to test for significant 

differences between the TG and the CG at pretest. Two-tailed significance levels are reported.  
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Table 3 

Baseline Equivalence between the Training and Control Groups at Pretest 

 3rd grade students  4th grade students 

 g 95% CI  g 95% CI 

Mathematical competence -1.09 [-1.57, -0.60]  -1.02 [-1.57, -0.48] 

Math self-concept -0.75 [-1.24, -0.26]  -0.65 [-1.15, -0.15] 

Intrinsic interest in math -0.72 [-1.21, -0.23]  -0.89 [-1.40, -0.38] 

Task-specific interest in math -0.54 [-1.23, -0.05]  -0.80 [-1.31, -0.29] 

Attainment value in math -0.54 [-1.03, -0.06]  -0.72 [-1.22, -0.22] 

Figural cognitive abilities -0.07 [-0.54, 0.40]  -0.54 [-1.04, -0.05] 

Crystallized cogitive abilities -0.23 [-0.70, 0.24]  -0.71 [-1.21, -0.21] 
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Figure 5. Histograms for pretest values for the third-grade students. The distribution for the training group is 

colored dark grey, and the control group is light grey. 
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Figure 6. Histograms for pretest values for the fourth-grade students. The distribution for the training group is 

colored dark grey, and the control group is light grey. 

Effects on Domain-Specific Achievement Outcomes 

Overall, controlling for pretest values on mathematical competence, fluid and crystal-

lized intelligence, math self-concept, value beliefs in mathematics, and age, the training group 

showed significantly higher Performance in the Mathematical Olympiad (B3rd grade = 0.72, p = 

.034; B4th grade = 0.58, p = .018) than children who did not attend the training (statistical details 

are presented in Table 4). Thus, students participating in the training performed between a half 

and three quarters of standard deviation better in the Mathematical Olympiad than students 

who did not attend the training when the pretest values were controlled for. There were no 

differential effects for third vs. fourth graders as indicated by the nonsignificant difference 
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between the grade-specific treatment effects (Δ = 0.14, p = .748).   

Regarding the transfer effects on Mathematical Competence, the results indicated that 

overall, the children showed significantly higher mathematical competence after completing 

the training (B3rd grade = 0.71, p = .008; B4th grade = 0.55, p = .001) compared with the children in 

the control group. Thus, students attending the training scored higher on competence than stu-

dents who did not attend the training after pretest values were controlled for (see Table 4). 

Again, there were no differential effects for the two grade levels (Δ = 0.16, p = .626).  

Effects on Motivational Outcomes 

We also analyzed the research questions concerning changes in math self-concept and 

value beliefs with multiple linear regression. Again, analyses for all dependent variables (i.e., 

math self-concept, intrinsic and special interest, attainment value) were controlled for the pre-

test values on mathematical competence, math self-concept, value beliefs in mathematics, fluid 

and crystallized general cognitive abilities, and age (see Tables 4 and 5).  

For both third and fourth graders, we observed no significant treatment effect (B3rd grade 

= -0.27, p = .181; B4th grade= 0.28, p = .086) for self-concept. However, reflecting the different 

signs for the treatment effects in the group of third and fourth graders, there was a significant 

difference between these effects (Δ = 0.55, p = .033). Thus, as expected, differential effect for 

the two grade levels was observed for math self-concept.  

We observed a positive effect on task-specific interest in mathematics only for the fourth 

graders (B3rd grade = 0.05, p = .840, B4th grade = 0.59, p = .012) for those children completing the 

training compared with the control group (for more details, see Table 5). Also, there were no 

significant treatment effects on value beliefs in mathematics and no differential effects (Δintrinsic 

interest = 0.15, p = .656; Δattainment value = 0.35, p = .295; Δtask-specific interest = 0.54, p = .104) for value 

beliefs in mathematics.



 

Table 4 

Effects of the Training Predicting Performance in the Mathematical Olympiad, Mathematical Competence, and Math Self-Concept 

  

Mathematical Olympiad 3rd level   Mathematical competence   Math self-concept 

3rd grade  4th grade  3rd grade  4th grade  3rd grade  4th grade 

B SE p  B SE p  B SE p  B SE p  B SE p  B SE p 

Intercept 1.13 2.29 .622  0.19 1.97 .922  -0.13 0.11 .246  -0.12 0.08 .133  0.08 0.09 .381  -0.03 0.08 .683 

Training 0.72 0.34 .034  0.58 0.25 .018  0.71 0.26 .008  0.55 0.16 .001  -0.27 0.20 .181  0.28 0.17 .086 

Mathematical  

competencea 
0.14 0.11 .184  0.26 0.09 .003  0.14 0.14 .307  0.60 0.08 < .001  0.29 0.14 .037  0.05 0.09 .579 

Figural cognitive  

skillsa 
0.23 0.11 .029  0.34 0.11 .001  0.09 0.10 .354  0.14 0.08 .078  -0.05 0.11 .627  0.06 0.07 .372 

Crystallized cogni-

tive skillsa 
0.21 0.09 .023  0.09 0.09 .363  0.05 0.12 .672  -0.11 0.09 .217  0.02 0.11 .828  -0.11 0.08 .188 

Math self-concepta 0.00 0.15 .938  0.03 0.08 .741  0.19 0.19 .298  0.09 0.08 .270  -0.17 0.19 .383  0.47 0.11 < .001 

Intrinsic interest in 

matha 
-0.17 0.15 .278  0.08 0.12 .502  0.07 0.21 .720  0.02 0.10 .872  0.59 0.24 .013  -0.08 0.15 .592 

Attainment value in 

matha 
0.09 0.14 .550  0.01 0.10 .985  -0.20 0.16 .208  0.01 0.08 .878  0.34 0.28 .215  0.12 0.12 .321 

Task-specific inter-

est in matha 
-0.03 0.13 .822  -0.06 0.07 .401  -0.03 0.13 .815  0.17 0.07 .011  -0.28 0.14 .053  0.35 0.10 .001 

Agea -0.15 0.27 .582  -0.04 0.20 .854  0.07 0.10 .483  0.18 0.07 .008  -.016 0.10 .101  -0.06 0.07 .432 

R² .334   .562   .283   .738   .489   .666 

Note. Dependent variables were standardized by grade level prior to analysis. aVariables were standardized by grade level prior to analysis. Training was dummy-coded 0 = 

control group, 1 = training group. Two-tailed significance levels are reported. 
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Table 5 

Effects of the Training Predicting Mathematical Value Beliefs: Intrinsic and Task-Specific Interest and Attainment Value 

  

Value beliefs in mathematics 

Intrinsic interest  Attainment value  Task-specific interest 

3rd grade  4th grade  3rd grade  4th grade 
 

3rd grade  4th grade 

B SE p  B SE p  B SE p  B SE p  B SE p  B SE p 

Intercept -0.02 0.11 .854  -0.06 0.11 .551  -0.03 0.11 .798  -0.09 0.11 .406  0.00 0.12 .999  -0.10 0.13 .462 

Training 0.28 0.22 .196  0.43 0.26 .092  0.12 0.23 .594  0.47 0.24 .053  0.05 0.24 .840  0.59 0.24 .012 

Mathematical 

competencea 
0.17 0.14 .226  -0.12 0.09 .174  0.17 0.17 .318  -0.27 0.10 .006  0.31 0.16 .045  -0.06 0.11 .560 

Figural cognitive 

skillsa 
0.11 0.15 .483  0.02 0.09 .792  -0.00 0.15 .997  0.06 0.11 .602  - 0.22 0.14 .109  0.05 0.11 .668 

Crystallized  

cognitive skillsa 
-0.09 0.12 .435  -0.17 0.08 .031  0.03 0.12 .787  -0.10 0.11 .388  - 0.15 0.12 .214  -0.22 0.09 .011 

Math self-con-

cepta 
-0.57 0.24 .017  0.15 0.14 .283  -0.46 0.22 .036  0.22 0.16 .184  - 0.33 0.23 .149  0.16 0.15 .271 

Intrinsic interest 

in matha 
0.61 0.22 .006  0.10 0.19 .612  0.54 0.23 .019  -0.16 0.20 .421  0.22 0.28 .425  -0.07 0.20 .730 

Attainment value 

in matha 
0.40 0.25 .112  0.13 0.12 .276  0.34 0.30 .257  0.48 0.13 < .001  0.29 0.31 .350  0.06 0.12 .602 

Specific interest 

in matha 
-0.12 0.17 .486  0.42 0.12 < .001  -0.08 0.14 .540  0.22 0.13 .102  0.25 0.19 .178  0.46 0.15 .002 

Agea 0.07 0.12 .583  -0.03 0.09 .729  -0.09 0.13 .462  0.08 0.07 .298  0.17 0.13 .164  -0.01 0.10 .907 

R² .413   .501   .330   .422   .358   .413 

Note. Dependent variables were standardized by grade level prior to analysis. aVariables were standardized by grade level prior to analysis. Participation in training was 

dummy-coded 0 = control group, 1 = training group. Two-tailed significance levels are reported. 
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Discussion 

In the present study, we investigated the effectiveness of a training that prepared third and 

fourth graders for the Mathematical Olympiad. In line with our expectations, our data indicated 

positive effects of the training on achievement outcomes (i.e., performance in the Mathematical 

Olympiad and in a test of mathematical competence) as well as differential effects on math self-

concept between the two grade levels. Further, for the fourth graders only, there was a positive 

effect on task-specific interest. Contrary to our expectations, there were no differences between 

third and fourth graders in effects on their value beliefs in mathematics. Of note, the training and 

control groups differed significantly on their pretest values, so we controlled for all pretest varia-

bles in all of our multiple linear regression models. 

The positive effects of the training on performance in the Mathematical Olympiad largely 

confirmed our expectations and previous considerations on the supporting effects of such trainings 

regarding performance in the respective competition (e.g., Ozturk & Debelak, 2008a, 2008b). At 

first glance, the significantly better performance in the Mathematical Olympiad observed for stu-

dents participating in the training is not surprising. However, it should be noted that the training 

was not based exactly on the requirements of the respective Mathematical Olympiad, but was ra-

ther based on information that was released after previous Mathematical Olympiads. Moreover, 

students did not solve the original tasks from these former Mathematical Olympiads in the training 

but were instructed more broadly with respect to mathematical problem solving and reasoning. 

This indicates that a general focus on reasoning and problem solving seems to be transferable to 

new contents.  

These transfer effects for solving new mathematical problems were observed even for gen-

eral mathematical competence, indicated by significant positive training effects on mathematical 

competence. Because we assessed mathematical competence by administering a standardized 

achievement test based on the German education standards for elementary school children, the 

contents of the test differed considerably from the training contents. This suggests that the ob-

served effects of the training on students’ mathematical competence were actually transfer effects 

from the training to elementary school students’ more general mathematical competence assessed 

by the standardized curriculum-based test. Thus, the more intense focus on challenging tasks in 

the training seems to positively affect students’ mathematical competence. This finding is in line 

with the idea that it is possible to positively influence students by challenging them if they are 
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already able to solve curriculum-based tasks (see e.g., Diezmann & Watters, 2001). In addition, 

the idea of challenging students with complex tasks in cooperative settings seems to be a good 

method for fostering students who already show high domain-specific competence.  

For motivational constructs (i.e., self-concept and value beliefs), as expected, we observed 

a differential effect for math self-concept for the third and fourth graders who participated in the 

training. More specifically, the statistically significant difference in the development was driven 

by a (descriptively) negative development of self-concept in third-grade students’ math self-con-

cept and an increase in self-concept for fourth graders. The findings supports the notion that social 

comparison processes are involved in the development of math self-concept in elementary school 

students. In the experimental groups, these social comparison processes are likely to be more fa-

vorable for fourth graders compared to third graders—downwards vs. upwards comparisons (see 

1.3.2)—which would explain the differential effect.  

We did not observe a parallel differential effect on value beliefs in mathematics. Although—

descriptively—the effects were stronger for the fourth graders for all three value constructs, the 

differences between third and fourth graders did not reach statistical significance. Furthermore, all 

six regression coefficients (testing the effects of the training on intrinsic interest, task-specific in-

terest and attainment value in the group of third and fourth graders) showed a positive sign. This 

might be indicative of training effects on value beliefs that are different from the processes that 

affect self-concept. For instance, the positive experiences of learning more about mathematics and 

of working in teams (even if the partner seemed more competent) might have stabilized students’ 

value beliefs. These considerations are supported by the positive effect on fourth graders’ interest 

in solving riddles or the like (i.e., task-specific interest). However, further research is required to 

answer this question.  

Taken together, the present study indicates that it is possible to improve mathematical 

achievement and to affect motivational factors by a training that is geared toward an academic 

competition. The results of our study corroborate the notion that academic competitions are a 

promising setting for studying learning processes. In particular, training students for an academic 

competition contributes to the development of their competence and motivation.  
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Appendix A 

A: Analyses for the adjusted sample  

We excluded all participants (N = 95) from the control group who had worse pretest values 

on mathematical competence, fluid and crystallized cognitive skills, math self-concept, and value 

beliefs in mathematics than the worst-performing participant in the training group. Also, we ex-

cluded all training group participants who were missing at pretest (N = 9). Tables A.1 and A.2 

present the descriptive statistics for this adjusted sample. Histograms reflecting the distribution of 

scores between the training and control groups are presented in Figures A.1 and A.2.  

Again, all analyses were run separately for each grade level. The effectiveness of the training 

was evaluated with multiple linear regression analyses separated by grade level using the R pack-

age lavaan (R Core Team, 2015; Rosseel, 2012). All analyses used the robust maximum likelihood 

estimator, which corrects standard errors for the non-normality of the variables (Rosseel, 2012). 

Predictors in our regression models were participation in the training or the control group (0 = 

control, 1 = training), pretest performance in mathematical competence, (fluid and crystallized) 

intelligence, math self-concept, value beliefs in mathematics, and age. According to the standard-

ization of the dependent variables, the multiple regression coefficient for the group variable indi-

cates the standardized difference between the training and control groups at posttest while pretest 

performance in mathematical competence, (fluid and crystallized) intelligence, math self-concept, 

value beliefs in mathematics, and age are controlled for. For each dependent variable, we analyzed 

differential effects between third and fourth graders by testing the estimated differences between 

the training effects of the two grades against zero. The results for the adjusted sample are presented 

in Tables A.3 and A.4. As in the analyses reported in the main text, there were significant effects 

on students’ performance in the Mathematical Olympiad and mathematical competence. Further-

more, there were no differential domain-specific achievement effects for third versus fourth grad-

ers as indicated by the nonsignificant difference between the grade-specific treatment effects 

(∆Mathematical Olympaid = 0.57, p = .322; ∆Mathematical Competence = -0.36, p = .349). However, the differen-

tial effects for third versus fourth graders on math self-concept remained stable (∆Math Self-Concept =-

0.68, p = .018), and there were no differential effects for value beliefs in mathematics (∆intrinsic 

interest = -0.51, p = .172; ∆attainment value = -0.55, p = .127; ∆task-specific interest =-0.61, p = .099). Again, 

for task-specific interest, there was a significant positive effect for the fourth graders.  



  

 

Table A.1 

Descriptive Statistics for Age, Mathematical Competence, and Cognitive Skills: Means and Standard Deviations  

Construct 
  Pretest  Posttest 

Grade level  N M SD  N M SD 

Age 

3rd 
TG 23 8.42 0.53 t(45) = 2.22,  

p = .032 CG 24 8.07 0.34 

4th 
TG 18 9.43 0.35 t(42) =1.48,  

p = .146 CG 26 9.63 0.49 

Mathematical  

competence 

 DEMAT 

2+ 3rd 
TG 23 30.57 3.86     

CG 27 27.20 2.75     

3+ 

3rd 
TG     16 19.50 4.29 

CG     20 15.92 4.57 

4th 
TG 18 25.61 3.57     

CG 29 23.24 3.77     

4 4th 
TG     11 25.50 7.13 

CG     22 19.36 6.22 

Cognitive skills 

BEFKI-short 

Figural 

(A / B)  

3rd 
TG 23 7.30 2.58  16 9.18 2.16 

CG 27 8.11 1.53  22 8.76 1.94 

4th 
TG 18 10.06 4.21  11 11.54 3.60 

CG 29 9.31 2.65  21 9.29 2.93 

Crystallized 

3rd 
TG 23 10.04 2.75  16 11.59 2.48 

CG 27 10.81 3.00  22 12.31 2.45 

4th 
TG 18 12.61 1.97  11 13.84 1.91 

CG 29 10.79 3.03  21 11.29 2.93 
Note. N = Number of valid answers from participating children, M = mean, SD = standard deviation,  

α = Cronbach’s alpha. Measurement time points: Pretest = November 2014, Posttest = March 2015. 

TG = Training group, CG = control group. t tests for independent samples were computed to test for 

significant differences between the TG and the CG at pretest. Two-tailed significance levels are re-

ported.  
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Table A.2 

Descriptive Statistics for the Motivational Factors: Means and Standard Deviations  

Construct Grade level 
 Pretest   Posttest 

 N M SD   N M SD 

Math self-concept 

3rd TG 23 3.75 0.35  16 3.69 0.75 

CG 27 3.65 0.41  17 3.85 0.28 

4th TG 18 3.81 0.30  13 3.95 0.18 

CG 29 3.71 0.37  28 3.60 0.47 

Value beliefs in 

mathematics 

Intrinsic  

interest 

3rd TG 23 3.76 0.57   16 3.68 0.80 

CG 27 3.60 0.45   17 3.56 0.75 

4th TG 18 3.75 0.41   13 3.78 0.79 

CG 29 3.78 0.64   28 3.30 0.82 

Attainment 

value 

3rd TG 23 3.80 0.55   16 3.75 0.76 

CG 27 3.83 0.27   17 3.65 054 

4th TG 18 3.83 0.35   13 3.90 0.37 

CG 29 3.68 0.55   28 3.61 0.54 

Specific  

interest 

3rd TG 23 3.56 0.57   16 3.56 0.84 

CG 27 3.47 0.52   17 3.57 0.54 

4th TG 18 3.70 0.47   13 3.82 0.26 

CG 29 3.38 0.62   28 3.31 0.89 
Note. N = Number of valid answers from participating children, M = mean, SD = standard deviation,  

α = Cronbach’s alpha. Measurement time points: Pretest = November 2014, Posttest = March 2015. 

TG = Training group, CG = control group. t tests for independent samples were computed to test 

for significant differences between the TG and the CG at pretest. Two-tailed significance levels are 

reported.  
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Table A.3  

Effects of the Training Predicting the Outcome for the Adjusted Sample 

  

Mathematical Olympiad 3rd level   Mathematical competence   Math self-concept 

3rd grade  4th grade  3rd grade  4th grade  3rd grade  4th grade 

B SE p  B SE p  B SE p  B SE p  B SE p  B SE p 

Intercept 1.57 3.18 .622  -1.58 2.38 .505  -0.18 0.17 .275  -0.22 0.17 .213  0.11 0.13 .367  0.14 0.14 .340 

Training 1.14 0.49 .021  0.56 0.30 .059  0.24 0.32 .455  0.59 0.22 .007  -0.26 0.17 .142  0.42 0.23 .065 

Mathematical 

competencea 
-0.29 0.48 .548  0.35 0.19 .057  0.92 0.30 .002  0.77 0.20 < .001  -0.16 0.21 .455  0.13 0.16 .410 

Figural cognitive 

skillsa 0.22 0.18 .224  0.53 0.17 .002  -0.05 0.11 .632  -0.02 0.12 .876  0.02 0.05 .664  0.01 0.10 .892 

Crystallized cog-

nitive skillsa 
0.32 0.13 .017  0.24 0.15 .119  0.07 0.10 .491  -0.09 0.14 .539  -0.02 0.04 .633  -0.03 0.08 .708 

Math  

self-concepta 0.07 0.29 .799  -0.24 0.32 .459  -0.08 0.25 .749  0.19 0.25 .465  0.29 0.15 .049  0.35 0.18 .052 

Intrinsic interest 

in matha 
-0.35 0.30 .238  -0.22 0.24 .364  0.03 0.30 .932  -0.11 0.24 .646  0.57 0.15 < .001  -0.34 0.23 .147 

Attainment value 

in matha 
-0.17 0.25 .497  -0.16 0.18 .368  -0.33 0.24 .163  0.19 0.18 .292  0.39 0.15 .010  0.12 0.14 .384 

Specific interest 

in matha 
0.11 0.27 .681  0.07 0.15 .664  0.26 0.19 .182  0.20 0.14 .140  -0.05 0.09 .618  0.21 0.13 .103 

Agea -0.19 0.37 .614  0.16 0.25 .511  0.13 0.09 .155  0.17 0.09 .057  -0.10 0.08 .169  0.02 0.07 .795 

R² .336  .588  .406  .646  .838  .320 

Note. Dependent variables were standardized for each grade level prior to analysis. Training was dummy-coded 0 = control group, 1 = training group. Two-tailed 

significance levels are reported. aVariables were standardized for each grade level prior to analysis. 
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Table A.4  

Effects of the Training Predicting the Outcome for the Adjusted Sample  

  

Value Beliefs in Mathematics 

Intrinsic Interest  Attainment Value  Specific Interest 

3rd grade  4th grade  3rd grade  4th grade 
 

3rd grade  4th grade 

B SE p  B SE p  B SE p  B SE p B SE p  B SE p 

Intercept -0.03 0.14 .836  0.23 0.17 .166  -0.18 0.13 .180  -0.07 0.21 .759  0.14 0.14 .318  0.13 0.20 .523 

Training 0.03 0.16 .830  0.54 0.34 .108  0.10 0.18 .574  0.65 0.31 .036  0.08 0.17 .650  0.68 0.32 .035 

Mathematical 

competencea 
0.05 0.23 .815  0.09 0.22 .660  -0.06 0.21 .784  0.11 0.21 .612  -0.09 0.21 .653  0.11 0.24 .648 

Figural  

cognitive skillsa 
-0.03 0.16 .848  -0.09 0.14 .500  -0.13 0.09 .134  -0.08 0.13 .573  -0.12 0.12 .283  -0.11 0.14 .415 

Crystallized 

cognitive  

skillsa 

-0.17 0.08 .041  -0.04 0.13 .747  -0.06 0.06 .342  -0.11 0.11 .311  -0.07 0.06 .202  -0.25 0.13 .061 

Math  

self-concepta 
-0.03 0.27 .920  -0.17 0.27 .544  -0.02 0.20 .930  0.26 0.29 .369  0.14 0.17 .394  0.20 0.34 .564 

Intrinsic interest 

in matha 
0.67 0.28 .019  -0.21 0.28 .575  0.85 0.25 .001  -0.68 0.35 .053  0.20 0.18 .246  -0.24 0.39 .530 

Attainment va-

lue in matha 
0.48 0.18 .007  0.33 0.31 .286  0.34 0.18 .062  0.62 0.24 .010  0.43 0.15 .005  0.09 0.17 .588 

Specific interest 

in matha 
-0.02 0.13 .874  0.09 0.22 .674  0.11 0.14 .408  0.16 0.17 .354  0.57 0.15 < .001  0.27 0.24 .259 

Agea 0.01 0.06 .867  -0.03 0.12 .816  0.06 0.05 .239  0.09 0.09 .298  0.08 0.05 .148  0.04 0.14 .777 

R² .694   .167   .804   .339   .748   .227 

Note. Dependent variables were standardized for each grade level prior to analysis. Participation in the training was dummy-coded 0 = control group, 1 = train-

ing group. Two-tailed significance levels are reported. aVariables were standardized for each grade level prior to analysis. 
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Figure A.1. Histograms for pretest values for the adjusted third-grade sample. The distribution for the training 

group is colored dark grey, and the control group is light grey. 
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Figure A.2. Histograms for pretest values for the adjusted fourth-grade sample. The distribution for the training 

group is colored dark grey, and the control group is light grey. 
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Abstract 

In both numerical cognition research and mathematics education, mathematical achieve-

ment is assumed to be driven by domain-specific (i.e., domain-specific numerical abilities and 

content-based competences) and domain-general factors (i.e., domain-general cognitive abili-

ties and process-based competences). We developed a training for elementary school children 

that focused on enhancing process-based competences and investigated its effects on domain-

specific and domain-general factors. Results of a randomized controlled field trial with 97 chil-

dren (Mage = 8.79 years, 68% male) indicated significant training effects on process-based com-

petences but also transfer effects on domain-general abilities. Furthermore, we observed dif-

ferential effects on domain-specific factors with girls benefitting more. On the basis of these 

results, we discuss relations between the different constructs considered in numerical cognition 

research and mathematics education.  

 

 

Keywords: domain-specific numerical abilities, domain-general cognitive abilities, nu-

merical cognition, mathematics education, process-based competences 
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Training Process-Based Mathematical Competences – Exploring Effects on Domain-

Specific Factors and Domain-General Cognitive Abilities 

Numerical and mathematical abilities are seen as key competences in digital knowledge 

societies. They are relevant not only in school but also for vocational success and for managing 

everyday life (e.g., Butterworth et al., 2011; NCTM, 2000; OECD, 2014). As reported by teach-

ers and documented by large-scale assessment studies such as PISA, individual differences in 

mathematical achievement are considerable (e.g., Klieme, Jude, Baumert, & Prenzel, 2010). 

Research in both numerical cognition and mathematics education has been conducted to ex-

plain these differences.  

Numerical cognition research focuses on the cognitive development of numerical abili-

ties. The assumption is that domain-general cognitive abilities (e.g., general cognitive ability) 

as well as number-specific abilities (e.g., understanding number magnitude) influence mathe-

matical achievement (e.g., Alcock et al., 2016; Fuchs et al., 2010; Passolunghi & Lanfranchi, 

2012; Sella et al., 2016; Sullivan et al., 2016; Thompson et al., 2013; Träff, 2013). In compar-

ison with numerical cognition research, mathematics education contrasts content-based math-

ematical competences (i.e., the actual contents taught in school such as numbers and opera-

tions) with broader and more general process-based competences (e.g., [mathematical] prob-

lem solving, reasoning, and modeling competences). These are assumed to be necessary to 

successfully solve mathematical problems (e.g., Principles and Standards for School Mathe-

matics in the USA, NCTM, NCTM, 2000; Education Standards in Mathematics in Germany, 

KMK, 2004; Klieme et al., 2003).  

Thus, in numerical cognition research as well as in mathematics education, a differenti-

ation is made between rather specific (i.e., content-based competences and domain-specific 

abilities) and more general factors (i.e., process-based competences and domain-general abili-

ties) that are relevant for dealing with mathematical problems. It seems that both disciplines 

assume that a common domain-specific basis (i.e., numerical abilities or content-specific com-

petences) underlies mathematical achievement. However, they differ in how they conceptualize 

more general skills. In numerical cognition research, domain-general skills involve very com-

plex, general cognitive processes that are relevant across several domains and subjects. By 

contrast, process-based competences in mathematics education refer more closely to the do-

main of mathematics.  

In this study, we aimed to build a bridge between the conceptualizations of numerical 

cognition and mathematics education research. Thus, we evaluated whether an intervention 
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specifically developed to increase process-based mathematical competences would have dif-

ferential effects on not only process-based competencies but also on domain-specific factors 

and more general cognitive skills. 

Domain-Specific and Domain-General Abilities in Numerical Cognition Research 

In numerical cognition research, numerical abilities are not viewed as a unitary construct 

but reflect a conglomerate of different domain-specific abilities (e.g., number magnitude, arith-

metic facts) and procedures (e.g., basic arithmetic operations; e.g., Dowker, 2005). The vast 

majority of models of children’s numerical development propose a more or less hierarchical 

development of basic numerical skills and suggest that later arithmetical abilities build on them 

(e.g., Krajewski & Schneider, 2009a, 2009b; Siegler & Booth, 2004; von Aster & Shalev, 

2007). It is important to mention that influences of domain-general cognitive abilities are com-

monly not considered or are underspecified in these models (e.g., the influence of working 

memory in the model by von Aster & Shalev, 2007). This is rather surprising given that the 

most influential model of adult numerical cognition suggested by Dehaene and colleagues (e.g., 

Dehaene & Cohen, 1995; Dehaene, Piazza, Pinel, & Cohen, 2003; see also Klein et al., 2016 

Klein et al., 2016) explicitly proposes the involvement of domain-general abilities such as ex-

ecutive control and working memory in particular when it comes to more complex mathemat-

ical problems. Consequently, in most studies in which children’s numerical development was 

evaluated, researchers have attempted to statistically control for the influences of domain-gen-

eral abilities (e.g., intelligence; e.g., Geary & Moore, 2016; Moeller et al., 2011) and did not 

further investigate their actual impact on numerical development.  

Only recently has more research been devoted to the influence of domain-general cogni-

tive abilities (e.g., general cognitive abilities, working memory, general processing speed) on 

numerical development in general and academic achievement in mathematics in particular (Al-

cock et al., 2016; Passolunghi & Lanfranchi, 2012; Thompson et al., 2013; Träff, 2013). For 

example, Fuchs and colleagues (2010) observed that performance in different topics of school 

mathematics was differentially predicted by domain-specific numerical factors link perfor-

mance on the Number Set Test (for more information about the test, see Geary et al., 2009) and 

domain-general cognitive abilities such as nonverbal problem solving. In this longitudinal 

study, the authors assessed domain-specific basic numerical and domain-general cognitive 

abilities to predict performance in curricular tasks (i.e., procedural calculations and mathemat-

ical word problems). Amongst other findings, results indicated that domain-general cognitive 

abilities—amongst others, visual-spatial working memory and executive function—reliably 
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predicted performance in solving mathematical word problems but not in basic arithmetic. By 

contrast, domain-specific numerical abilities (i.e., number sets, symbolic mental number line) 

were associated with performance in both tasks (Fuchs et al., 2010).  

In another study, Passolunghi and Lufranchi (2012) found a positive effect of domain-

general abilities such as working memory and processing speed on domain-specific numerical 

abilities assessed by an early numeracy test focusing on basic numerical tasks such as magni-

tude comparison, seriation, use of number words, and so forth (for more information about the 

test, see van de Rijt, van Luit, & Pennings, 2016). Furthermore, they also found positive effects 

of both domain-general (i.e., working memory, processing speed) and domain-specific numer-

ical abilities (i.e., magnitude comparison, classification, general understanding of numbers) on 

later mathematics achievement.  

In sum, this evidence suggests that numerical cognition is influenced by both domain-

general cognitive and domain-specific numerical abilities. It is interesting that this differentia-

tion made in numerical cognition research resembles the conceptualizations in mathematics 

education that underlie the development of mathematics curricula and education plans. 

Process- and Content-Based Competences in Mathematics Education  

The majority of current national curricula emphasize some kind of competence scheme 

(Klieme et al., 2003; Niss & Højgaard, 2011). In mathematics, for example, educational stand-

ards in the US, Germany, and Canada differentiate process-based from content-based compe-

tences. On one side, content-based competences embrace specific mathematical content such 

as numbers and operations, measurements, data analysis, or geometry. For every content-based 

competence, subtopics such as, for instance, basic arithmetic operations, are elaborated and 

listed, and achievement goals for different grade levels are formulated (KMK, 2004; NCTM, 

2000). On the other side, process-based competences involve a broader, more general part of 

mathematics including strategies and methods. Process-based competences are necessary for 

dealing with mathematical problems beyond their actual content. These competencies incorpo-

rate problem solving, mathematical reasoning and proofs, communicating mathematically, 

mathematical modeling, representing mathematics, and building connections between mathe-

matical topics and everyday life (NCTM, 2000; KMK, 2004). Whereas content-based compe-

tences are supposed to be learned rather explicitly, process-based competences are conveyed 

more implicitly through the acquisition and application of content-based mathematical 

knowledge (NCTM, 2000). 

It is important to mention that mathematics education suggests that both process- and 
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content-based competences are necessary for mathematical achievement (Winkelmann & Ro-

bitzsch, 2009). Thus, it may be plausible to assume that improvements in mathematical 

achievement come not only from training number-specific contents but might also depend on 

existing process-based competences. For instance, solving mathematical word problems 

strongly relies on both process-based and content-based abilities. For instance, Cummins, 

Kintsch, Reusser, and Weimer (1988) observed that an arithmetic problem was accurately 

solved by most first graders when it was presented in a numerical format (e.g., 3 + 5 = ?, 

reflecting a more content-based format). However, success rates decreased to less than one 

third of first graders when the very same problem was presented in word format (e.g., “Mary 

has 3 marbles. John has 5 marbles. How many marbles do they have altogether?” which reflects 

a more process-based format). This indicates that word problems seem to be much more diffi-

cult than problems presented in a numerical format. This seems obvious because, when solving 

word problems, children are not only required to understand the situation by creating a situa-

tional model (Stern, 1992), but they also need to transfer the situational model into a mathe-

matical model (i.e., an arithmetic task). Process-based competences such as mathematical prob-

lem solving and modeling are required to make this transition from a situational to a mathe-

matical model. Subsequently, content-based competences need to be applied to solve the de-

rived arithmetic problem. Thus, well-developed process-based competences facilitate the cre-

ation of situational mental models of the problem and the transferring of the word problem into 

an arithmetic problem. Content-based competences such as numbers and operations (i.e., basic 

arithmetic) are then necessary to actually solve the arithmetic problem. Therefore, more spe-

cific content-based and rather general process-based competences interact and facilitate math-

ematical achievement when they are combined (KMK, 2004; NCTM, 2000).  

However, tasks drawing primarily on content-based competences are usually rather basic 

and normally do not demand highly developed process-based competences. By contrast, more 

complex tasks usually demand process-based competences in addition to content-based com-

petences. Although there are empirical studies that have evaluated the differentiation between 

content- and process-based competences (Winkelmann & Robitzsch, 2009), there are—to the 

best of our knowledge—no studies that have investigated the interplay between content- and 

process-based competences. 

Relations between the Two Classifications  

Regardless of whether one’s point of view on mathematical achievement comes from 

numerical cognition research or mathematics education, mathematical achievement is thought 
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to be influenced by both domain-specific (i.e., domain-specific numerical abilities or content-

based competences) and more superordinate factors (i.e., domain-general abilities or process-

based competences).  

Fuchs and colleagues (2010) found that domain-general abilities influenced achievement 

only on complex mathematical problems (i.e., word problems). By contrast, domain-specific 

abilities were found to be associated with achievement on basic math problems (i.e., procedural 

calculation) but also to a lesser degree on complex mathematical problems. In line with these 

findings, Träff (2013) observed that domain-specific numerical abilities (e.g., subitizing and 

dot counting) predicted children’s performance both in arithmetic fact retrieval (i.e., content-

based competences) and in mathematical-word-problem solving (requiring more process-based 

competences). In addition, he also observed that domain-general cognitive abilities (e.g., gen-

eral fluid intelligence, working memory) predicted performance in word-problem solving 

(mostly process-based) as well as in calculations (mostly content-based but more complex than 

arithmetic fact retrieval). These findings were corroborated by a recent study by Sullivan and 

colleagues (2016), who observed that domain-general factors (e.g., general fluid intelligence 

and working memory) seemed to better predict differences in mathematical achievement than 

domain-specific numerical factors did (i.e., Approximate Number System and dot estimation).  

According to the literature, domain-specific numerical abilities predict performance in 

calculations as well as in mathematical word problems. However, as described above, to come 

up with a final solution for a mathematical word problem, content-based competences (i.e., 

calculations) need to be applied as well. Thus, to solve mathematical problems that are pre-

sented in a rather process-based format, abilities in basic arithmetic operations are also neces-

sary. Looking more closely at basic arithmetic operations, for example, it seems obvious that 

domain-specific abilities are part of content-based competences. Therefore, we view both do-

main-specific numerical abilities and content-based competences as domain-specific factors. 

Furthermore, the contribution of domain-general abilities increases as the complexity of math-

ematical problems increases, and this holds true for process-based competences as outlined 

above. Although process-based mathematical competences and domain-general abilities func-

tion at different levels (i.e., process-based competences come into play in domain-specific con-

texts, whereas domain-general abilities arise in several domains), it might be reasonable to 

propose that domain-specific factors and process-based competences as well as domain-spe-

cific factors and domain-general abilities interact in a similar manner.  
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Research Questions 

In this study, we aimed to experimentally examine the associations between domain-

specific factors, process-based competences, and domain-general cognitive abilities. In partic-

ular, we evaluated whether a training that specifically focused on process-based competences 

would lead to differential effects on the domain-specific factors and domain-general cognitive 

abilities that are necessary for successfully dealing with mathematical problems. On the basis 

of recent research (Bezold, 2012; Demuth, Walther, & Prenzel, 2011; Fuchs et al., 2010; Selter, 

2011), we expected that a training of process-based competences should primarily increase 

students’ performance in process-based competences. Furthermore, we argue that—given the 

above-described interdependency between process- and content-based competences—a pro-

cess-based training should also have an impact on domain-specific factors. According to the 

finding that solving complex mathematical problems is more strongly related to process-based 

than to content-based competences (Fuchs et al., 2010; Sullivan et al., 2016; Träff, 2013), we 

expected that performance in tasks that require only basic arithmetic operations—presented in 

a content-based format—would be less influenced by the training than performance in more 

complex tasks that also require some process-based competences. In a final step, we explored 

whether enhancing the process-based competences that drive performance in more complex 

tasks would also have an influence on domain-general cognitive abilities that are thought to 

have an increasing influence to more complex problems (see Fuchs et al., 2010; Krajewski 

& Schneider, 2009a, 2009b; Sullivan et al., 2016; Träff, 2013).  

Method 

This study was part of the Hector Children’s Academy Program (HCAP) in the German 

state of Baden-Württemberg. In this extracurricular enrichment program, 65 local sites offer 

enrichment courses for the upper 10% of the most talented, interested, and motivated elemen-

tary school children. These children are recruited from all elementary schools in the respective 

area and are nominated by their teachers (for more information, see Rothenbusch et al., 2016).  

The intervention 

The training “Getting Fit for the Mathematical Olympiad” was designed for small groups 

of six to 10 students and included eight modules, each planned for a 90-min session. The mod-

ules embraced different topics: (a) geometrics (i.e., cubes, tessellations), (b) algebra (i.e., equa-

tion-based tasks, cryptograms), (c) numbers and operations (i.e., magic triangles and squares), 

(d) and patterns and structures (i.e., combinatorics, logic puzzles). The training included rather 
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complex tasks for fostering process-based competences such as mathematical reasoning and 

problem solving, whereas the number-specific contents did not go beyond elementary school 

mathematics.  

The training framework was based on research on mathematics education for gifted stu-

dents and was designed to apply cooperative learning methods (for more information, see e.g., 

Deal & Wismer, 2010; Diezmann & Watters, 2001; Johnson, 1983; Johnson, 1990; Johnson, 

Johnson, & Stanne, 2000; McAllister & Plourde, 2008; Rotigel & Fello, 2004). We decided to 

choose high-achieving students as we supposed these children could easily solve curricular-

based tasks and would thus have well-developed basic content-based and process-based com-

petences (see e.g., Koshy et al., 2009; Rotigel & Fello, 2004). 

Each module presented the same six core components in the same order: (a) introduction, 

(b) theoretical input/exercise, (c) individual phase, (d) dyadic phase, (e) discussion phase, and 

(f) presentation. The beginning of each module consisted of a mathematical game as a playful 

introduction to increase students’ motivation. Afterwards, theoretical input and exercise(s) 

were presented to prepare students for the contents of the module and to indicate possible so-

lution strategies. The main part comprised an individual problem-solving phase in which stu-

dents worked on possible solution strategies by themselves, followed by a dyadic solving phase 

in which they worked with a randomly assigned partner. In the dyadic phase, students had to 

communicate their individual ideas about solving the problem and discuss different solution 

steps. The next component required the dyads to prepare a structured transcript to clearly ver-

balize the arguments behind their solution steps. The end of each module consisted of present-

ing the mathematical problem and its solution to the other students, followed by a final discus-

sion of the arguments. The aims of components (c) to (f) were to foster problem solving, to 

develop ideas to find justifications (e.g., exploring relationships, looking for patterns and struc-

tures), to communicate mathematical ideas, and to argue about mathematical content to con-

duct preliminary proofs (Bezold, 2012; Demuth et al., 2011). 

We next describe the flow of an exemplary module to illustrate the training approach. In 

the cryptogram module, the session began with the mathematical game Mental Arithmetic Wiz-

ard. To play this game, students sat in a circle and counted in turn. However, instead of saying 

numbers that contained a 3 or a multiple of 3, students had to clap their hands. In addition, 

students had to stomp the ground for every number that contains a 5 or was a multiple of 5. 

Thereby, children had to recognize patterns, for instance, the respective multiplication tables 

had to be remembered flexibly. Subsequently, a problem-oriented discussion in class about the 

definitions of figures and the differences between numbers was initiated to prepare students to 
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solve the cryptograms involving digits. Afterwards, some exercises to indicate possible appli-

cations were conducted, such as discussing how many digits one would have to write to note 

all numbers from 1 to 10.  

In the main part of this module, students worked on mathematical problems dealing with 

cryptograms (for an example, see Figure 1A). First, students tried to solve a cryptogram indi-

vidually. Each student had the opportunity to work on the problem, look for well-founded re-

lations, and evaluate individual solutions. Following the individual phase, students worked in 

dyads to solve and discuss the same cryptogram before they were asked to write down their 

common solution and corresponding justifications. Based on this, the cryptogram and its solu-

tions had to be presented to all fellow students. The training session ended with another math-

ematical game. In Find the Calculation, one student considered a multiplication problem, and 

the others had to guess what the problem was. Therefore, possible solutions and multiplicands 

had to be verbalized under the condition that the person considering the problem was allowed 

to answer with only “higher,” “lower,” “yes,” or “no.” Besides multiplication tables, this game 

allowed the children to discuss the associative law of multiplication in a playful way (for more 

about the training, see Rebholz & Golle, 2017, Chapter 2).  
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A 

 

B 

 

C 

      

 

Figure 1. (A) One task from the module cryptograms (as a typical task from the training program). (B) Experi-

mental design of the present study. (C) Translated version of a typical task from the Mathematical Olympiad 

(task no. 550331, 54th Mathematical Olympiad 2015/16, third grade). 
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Participants and Procedure 

Data were collected from 10 different voluntarily participating local sites of the HCAP. 

The training was conducted in small groups of five to 10 children. Ten volunteer instructors 

(50% male; age: M = 46.30, SD = 16.56) taught the training (for further characteristic of the 

instructors, see Table 1). Overall, 97 third- and fourth-grade elementary school children took 

part in the study (68% male; age: M = 8.79, SD = 0.69). We obtained written informed consent 

from parents and course instructors prior to the study.  

 

Table 1 

Characteristics of Instructors 

Characteristic N M SD Min Max 

Age [years] 10 46.70 15.56 26 67 

Experience with the HCAP [number of courses] 10 6.60 8.06 0 25 

Teaching experience [years]  10 19.00 17.21 1 40 

Experiences with mathematics [years] 10 24.67 20.62 4 55 

 

To evaluate the effectiveness of the training, we used a multisite randomized controlled 

repeated-measures field trial (Friedman et al., 2010). A total of 52 children (age M = 8.70, SD 

= 0.59; 62% male) were randomly assigned to the mathematics training and 45 children (age 

M = 8.91, SD = 0.78; 76% male) to the waitlist control group (for more details, see Figure 2). 

An independent person performed the randomization. To ensure treatment fidelity, the instruc-

tors took a half-day course taught by the developer of the intervention and were given a scripted 

manual and master copies of all teaching materials. Pretest and posttest measurements for both 

groups were embedded in the first and last course sessions, respectively, and took about 90 min 

each (including a 5-min break). All measures were tested via paper-pencil tests and adminis-

tered by trained research assistants who were blind to the group allocation of the participants. 

The control group had the opportunity to attend the training after the posttest (see Figure 1B) 

but attended only regular mathematics classes in school while the intervention group completed 

the training. The local ethics committee approved the study. 
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Measures  

Domain-specific factors  

All scales and their corresponding descriptive statistics as well as their pretest and post-

test correlations are displayed in Tables 2, 3, and 4. To assess skills in basic arithmetic opera-

tions, we used four subscales from a German standardized arithmetic test (HRT; Haffner, Baro, 

Parzer, & Resch, 2005: (a) addition (1- to 3-digit numbers; e.g., 1 + 6 or 26 + 13), (b) subtrac-

tion (1-to-3-digit numbers; e.g., 4 - 1 or 23 - 6), (c) multiplication (1- and 2-digit numbers; e.g., 

3 * 1 or 11 * 2), and (d) division (1- and 2-digit numbers; e.g., 6 ÷ 2 or 72 ÷ 8). Each subscale 

consisted of 40 items with increasing numerical values. Students were asked to solve as many 

items as possible within a time limit of 2 min on each scale.  

To assess complex content-based mathematical competences, we used another three sub-

scales from the HRT (Haffner et al., 2005): (a) magnitude comparison (children had to fill in 

the correct sign to describe the respective relation, <, >, or =; e.g., 11 _ 12, 99 _ 200 - 100), (b) 

problem completion (children had to fill in the missing number to correctly solve the problem; 

e.g., 6 + _ = 7, 13 – 12 = 9 -_), and (c) number sequences (children had to continue a given 

sequence, e.g., 5, 1, 6, 2, 7, 3, …). The first two subscales consisted of 40 items administered 

with a time limit of 2 min each scale. The last subscale consisted of 20 items with a time limit 

of 3 min for the whole scale. Students had to solve as many items as possible within the re-

spective time limit.  

Domain-specific factors were assessed at pretest and posttest using the HRT. We used 

sum scores of correctly solved items from the HRT subscales in the statistical analyses. 

Process-based mathematical competences 

To assess the process-based competences—mathematical problem solving and (mathe-

matical) reasoning—with regard to word problems, we used participants’ performance in a 

three-level mathematical competition for elementary school students (i.e., the 55th 

Mathematical Olympiad). The tasks in the Mathematical Olympiad are complex and require 

students to justify their solutions (for an example, see Figure 1C). Thus, although content-based 

competences are necessary to calculate the final solutions to the problems, process-based com-

petences are needed first to grasp and model the problems. The German Mathematical Olym-

piad Association constructed all of the items. Thus, the problems were not known to the devel-

opers of the training, the instructors and the students before the training began and thus were 

not used to develop the intervention. Moreover, the intervention did not exactly mirror the 
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requirements of the 55th Mathematical Olympiad from 2015; rather, the tasks in the intervention 

were based on tasks from previous Mathematical Olympiads from 2005 to 2013.  

Performance in the Mathematical Olympiad (reflected by sum scores) was assessed only 

on the posttest at the third, most difficult level. Due to the fact that no task was used at more 

than one level, it was not possible to implement a pre-posttest design to measure process-based 

competences in particular.  

Domain-general cognitive abilities  

We assessed domain-general cognitive abilities at both occasions with the fluid intelli-

gence subscale from a German intelligence test (BEFKI-short; Schroeders et al., 2016) consist-

ing of 16 items (time limit 15 min) with two-step figural seriations. Moreover, at posttest, we 

also administered two subscales (i.e., matrices; 15 items, time limit 3 min) and (one-step) figural 

seriation (15 items; time limit 4 min) from the Culture Fair Test 20-R (Weiß, Albinus, & Arzt, 

2006). Finally, crystallized intelligence was also assessed with the second part of BEFKI-short 

(Schroeders et al., 2016) on the pretest with 16 items (time limit 8 min). This test was used to 

control for potential baseline differences between the training and control groups. For these 

measures, sum scores of correctly solved items were used in further analyses (see Table 3 for 

examples). 

Additional psychological measures 

Motivational factors have been found to be related to mathematical competences in gen-

eral (e.g., Musu-Gillette et al., 2015; Wigfield & Eccles, 2000). However, all children who 

participated in the current study wanted to attend the math training. Thus, we did not expect 

systematic differences on motivational factors between the training and control groups. How-

ever, to be able to control for motivational factors, we assessed them at pretest and posttest. 

Using the scales developed by Gaspard and colleagues (2015), we assessed mathematics self-

concept (four items) and (intrinsic) interest in mathematics (six items) with measures that were 

adapted for this age group. Response scales ranged from 1 (not true) to 4 (exactly; e.g., “I’m 

good at everything that has to do with mathematics”). In addition, we assessed need for cogni-

tion (six items) with Baudson, Strobel, and Preckel’s (2012) instrument. The response scale 

ranged from 1 (not true) to 5 (exactly; e.g., “I like solving tricky tasks”). Mean scores were 

used in further analyses. 
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Statistical analyses 

We tested baseline differences for statistical significance to exclude systematic group 

differences before the training had begun (t tests and a chi-square test). There were no signifi-

cant group differences at pretest, neither for the distribution of gender (χ2 =1.58, df = 1, p = 

.210) nor for the cognitive or motivational variables (for more details, see Tables 2, 3 and 4). 

We evaluated the effectiveness of the training with multiple linear regression analyses using 

the R package lavaan (R Core Team, 2015; Rosseel, 2012). All variables were z-standardized 

prior to the analyses except for the categorical variables gender (0 = girls, 1 = boys) and group 

membership (0 = control, 1 = intervention).  

We computed two types of multiple linear regression models separately for each depend-

ent variable. In the first models, we evaluated overall differences between the training and 

control groups and controlled for gender and pretest performance. We included gender in this 

step because there were fewer girls than boys in our total sample. We included pretest perfor-

mance as a predictor to increase power and minimize standard errors. Because the dependent 

variables were z-standardized, the multiple regression coefficient of the group variable indi-

cated the standardized difference between the training and control groups at posttest while gen-

der and pretest performance were controlled for.  

As there is an ongoing debate on the role of gender differences in mathematics perfor-

mance (e.g., Hyde et al., 1990; Liu et al., 2008; Liu & Wilson, 2009), we also conducted an 

analysis with a second type of model in which we added the Group Membership x Gender 

interaction to the first models. In this second set of models, the multiple regression coefficient 

of the group variable indicated the standardized difference between the training and control 

group at posttest while pretest performance was controlled for girls only (as they had the 

dummy code of 0). Here, the coefficient for the interaction term represents the difference in the 

treatment effect for girls and boys, again while pretest performance was controlled for.  

In all analyses, we used the robust maximum likelihood estimator, which corrects the 

standard errors for the non-normality of the variables. Missing values occurred in both groups 

(for more details, see Figure 2 or Tables 2, 3 and 4). We used the full information maximum 

likelihood approach to deal with missing values (Enders, 2010; Graham, 2009; R Core Team, 

2015; Rosseel, 2012).  

 



 

 

Table 2 

Descriptive Statistics for the Mathematical Measures: Means, Standard Deviations, Internal Consistencies, Number of Items, and Examples 

Construct 
 Pretest  Posttest    

  N M SD p α  N M SD α p rpre-posttest Number of items and example 

Age IG 47 8.73 0.54 
.158 

 
 

49 9.09 0.57 
 

  
  

CG 40 8.86 0.84  
 

38 9.09 0.80 
 

  
  

Basic arithmetic  

operations 

IG 46 101.91 17.23 

.217 .85 

 47 106.39 16.43 

0.85 .722 
r(75) = .83, 

p < .001 

160 Addition, subtraction, 

multiplication, division 

CG 41 97.46 16.11  38 105.08 17.77 

Complex  

content-based  

competences 

IG 47 58.65 11.26 

.098 .56 

 49 62.71 10.93 

0.56 .413 
r(76) = .77, 

p < .001 

100 Magnitude comparison, 

problem completion, 

number sequences CG 41 54.66 11.07  38 60.72 11.72 

Performance in  

Mathematical 

Olympiad 

IG       46 12.47 7.12 

0.47 .003 

 

 See Figure 1C 

CG       38 8.40 5.46  

Note. N = Number of valid answers from participating children, M = mean, SD = standard deviation, α = Cronbach’s alpha (calculated with SPSS 22, IBM Corp. Released, 

2013). Measurement points: Pretest = November 2015, Posttest = March 2016. IG = Intervention group, CG = control group. t tests for independent samples (R Core Team, 

2015) were computed to test for significant differences between the IG and the CG. Chi-square test was calculated with R. Two-tailed significance levels are reported. 
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Table 3 

Descriptive Statistics for Cognitive Abilities: Means, Standard Deviations, Internal Consistencies, Number of Items, and Examples 

Construct 

 Pretest  Posttest    

  N M SD p α  N M SD α p rpre-posttest 
Number of items  

and example 

Figural cognitive skills               

 BEFKI-short  IG 47 9.23 2.42 

.915 .61 

 49 9.48 2.53 

0.56 .958 
r(75) = .39,     

p < .001 

16  

 

CG 40 8.83 3.08  38 9.39 2.44 

 Culture fair test 

20-R  

IG       48 22.10 2.73 

0.86 .027 

 30  

CG       38 20.66 3.27  

Crystallized  

intelligence 

 BEFKI-short  

IG 47 10.40 2.40 

.426 .54 

       16 What’s 

google? 

CG 
42 10.10 2.82        

Note. N = Number of valid answers from participating children, M = mean, SD = standard deviation, α = Cronbach’s alpha (calculated with SPSS 22; IBM Corp. Released, 

2013). Measurement points: Pretest = November 2015, Posttest = March 2016. IG = Intervention group, CG = control group. t tests for independent samples (R Core Team, 

2015) were computed to test for significant differences between the IG and the CG. Chi-square test was calculated with R. Two-tailed significance levels are reported. 
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Table 4 

Descriptive Statistics for the Motivational Covariates: Means, Standard Deviations, Internal Consistencies, Number of Items, and Examples 

Construct 
 Pretest  Posttest    

 N M SD p α  N M SD α rpre-posttest Number of items and example/subscales 

Interest in  

mathematics 

IG 47 4.52 0.54 .604 .85  45 4.24 0.69 .94 r(74) = .58, 

p < .001 

6 I like everything that has to do with 

mathematics. CG 41 4.45 0.75  38 4.37 0.78 

Need for  

cognition 

IG 47 3.17 0.57 .520 .84 
 

46 3.17 0.57 .85 r(75) = .53, 

p < .001 

6 I like solving tricky tasks. 

CG 42 3.08 0.75 
 

37 3.09 0.63 

Mathematics 

self-concept 

IG 47 4.47 0.61 .988 .90 
 

44 4.13 0.72 .91 r(73) = .35, 

p = .002 

4 I’m good at everything that has to do 

with math. CG 41 4.48 0.73  38 4.23 0.73 

Note. N = Number of valid answers from participating children, M = mean, SD = standard deviation, α = Cronbach’s alpha (calculated with SPSS 22; IBM Corp. Released, 

2013). Measurement points: Pretest = November 2015, Posttest = March 2016. IG = Intervention group, CG = control group. t tests for independent samples (R Core Team, 

2015) were computed to test for significant differences between the IG and the CG at pretest. Two-tailed significance levels are reported.  
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Figure 2. Flow chart of the study (based on the CONSORT Flow diagram, 2010). The missing values from dif-

ferent measurement occasions (pretest, Mathematical Olympiad, and posttest) cannot be ascribed to the same 

participants. 2Excluding participants who discontinued.  

  

Assessed (n=98) 

Excluded (n = 1), reason:  

 Refused consent (n = 1)  

Randomized (n= 97) 
(multisite, 10 clusters) 

Analyzed (n = 52) 

 Excluded from analyses (n = 0) 

Did not participate in the Mathematical Olym-
piad (n = 2)2, reasons: 

 Illness (n = 1) 

 Unavailable on the specific day (n = 1) 

Allocated to intervention (n = 52) 

 Received intervention (n = 52) 

Missing at pretest (n = 5), reasons:  

  Illness (n = 2) 

 Unavailable on the specific day (n = 3) 

Did not participate in the Mathematical Olym-
piad (n = 2)2, reasons: 

 Illness (n = 1) 

 Unavailable on the specific day (n = 1) 

Allocated to waitlist control (n = 45) 

 Received treatment as usual (n = 45) 

Missing at pretest (n = 3), reasons:  

  Illness (n = 2) 

 Unavailable on the specific day (n = 1) 
 

Analyzed (n = 45) 

 Excluded from analyses (n = 0) 

Allocation 

Analysis 

Lost to posttest (n = 0)2 Lost to posttest (n = 3)2, reasons: 

 Illness (n = 2) 

 Unavailable on the specific day (n = 1) 

Posttest 

Discontinued intervention (n = 3), reasons:  

 Scheduling conflict (n = 2) 

 No longer interested in domain (n = 1) 

Discontinued study (n = 5), reasons:  

 Scheduling conflict (n = 3) 

 No longer interested in domain (n = 2) 

Mathematical 
Olympiad 

Pretest 
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Results 

Domain-specific factors 

For basic arithmetic operations, there was no significant intervention effect (BIntervention 

= -0.01, p = .751, see Table 5). Nevertheless, the interaction between gender and group mem-

bership was significant (BIntervention×Gender = -0.45, p = .034, see Table 6), indicating that the 

intervention effect was more pronounced for girls than for boys, even though the actual simple 

effect of the training was not significant for girls or boys (BGirls = 0.26, p = .058, BBoys = -0.19, 

p = .252). Even though the children in the control and intervention groups did not differ signif-

icantly in their skills on basic arithmetic operations after the training, girls benefitted signifi-

cantly more from the training.  

Similarly, the analyses indicated no significant training effect for complex content-based 

competences (BIntervention = -0.11, p = .465). But again, this effect was qualified by gender as 

indicated by the significant interaction term (BIntervention×Gender = -0.78, p = .003). An inspection 

of the beta weight (see Table 6) revealed that the training effect was significantly more pro-

nounced for girls in comparison with boys, with a significant training effect for girls (BGirls
 = 

.52, p = .010, BBoys = -.26, p = .149). Therefore, comparable to the situation for basic arithmetic 

operations, girls seemed to specifically benefit from the intervention with regard to their com-

plex content-based competences (see Tables 5 and 6).  

Process-based mathematical competences 

The regression results revealed a significant training effect on performance in the Math-

ematical Olympiad, BIntervention = 0.63, p = .002. The nonsignificant interaction term (BInterven-

tion×Gender = -0.71, p = .074, Table 6) indicated that the effect was not further qualified by gender. 

This finding suggests that the process-based competences of the children who completed the 

intervention significantly improved in comparison with the children in the control group (see 

Table 5). 

Domain-general cognitive abilities 

Finally, the analyses indicated that the two groups differed significantly in their general 

cognitive abilities at the end of the training as assessed by the CFT 20-R, BIntervention = 0.49, p 

= .012. This effect was also not qualified by gender, BIntervention×Gender = -0.26, p = .541. How-

ever, this finding was not substantiated by the results for fluid general cognitive abilities as-

sessed by BEFKI-short (BIntervention = 0.08, p = .682; BIntervention×Gender = 0.34, p = .417). Thus, 
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for general cognitive abilities, we observed a positive trend, indicated by a significantly posi-

tive intervention effect for CFT 20-R scores (see Tables 5 and 6).  



 

 

Table 5 

Effects of the Intervention Predicting the Outcome (Average Causal Effects) 

  

  
Basic arithmetic  

operationsa 
 

Complex content-based 

competencesa 
 

Performance in  

Mathematical  

Olympiada,b 

 

Figural cognitive 

skills  

(BEFKI-short)a,c 

 
Figural cognitive skills 

(CFT 20R)a,c 

  B SE p  B SE p  B SE p  B SE p  B SE p 

Intercept 0.02 0.11 .851  -0.11 0.15 .465  -0.43 0.19 .024  -0.25 0.21 .239  -0.20 0.21 .343 

Intervention  -0.01 0.15 .751  -0.01 0.15 .975  0.63 0.20 .002  0.08 0.20 .682  0.49 0.20 .012 

Gender -0.07 0.12 .581  0.13 0.16 .402  0.12 0.221 .553  0.30 0.20 .142  -0.13 0.20 .524 

Pretesta 0.86 0.06 < .001  0.76 0.09 < .001  0.27 0.11 .013  0.38 0.12 .001  0.41 0.08 < .001 

R² .695  .575  .177  .168  .233 

Note. Dependent variables were standardized prior to the analyses. Intervention was dummy-coded 0 = control group, 1 = intervention. Gender was dummy-coded 0 = 

girls, 1 = boys. Two-tailed significance levels are reported. aVariables were standardized prior to the analyses. bThe pretest variable was the performance in Level 1 of the 

competition standardized prior to the analyses. cPretest variable was the cognitive figural skills (BEFKI-short) standardized prior to the analyses. 
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Table 6 

Differential Effects of the Intervention Predicting the Outcome (Effects Separated by Gender) 

  
Basic arithmetic  

operationsa 
 

Complex content- 

based competencesa 
 

Performance in 

Mathematical  

Olympiada,b 

 

Figural cognitive 

skills  

(BEFKI-short)a,c 

 
Figural cognitive skills 

(CFT 20R)a,c 

  
B SE p  B SE p  B SE p  B SE p  B SE p 

Intercept -0.17 0.10 .068  -0.45 0.14 .001  -0.76 0.18 < .001  -0.08 0.28 .771  -0.32 0.30 .281 

Intervention  0.26 0.14 .058  0.52 0.20 .010  1.12 0.29 < .001  -0.15 0.34 .647  0.67 0.35 .059 

Gender 0.20 0.16 .206  0.60 0.19 .002  0.57 0.24 .019  0.08 0.33 .802  0.03 0.35 .930 

Intervention 

x Gender 
-0.45 0.21 .034  -0.78 0.26 .003  -0.71 0.40 .074  0.34 0.41 .417  -0.26 0.42 .541 

Pretesta 0.88 0.06 < .001  0.78 0.08 < .001  0.30 0.11 .006  0.37 0.12 .002  0.41 0.08 < .001 

R² .705  .610  .195  .171  .233 

Note. Dependent variables were standardized prior to the analyses. Intervention was dummy-coded 0 = control group, 1 = intervention. Gender was 

dummy-coded 0 = girls, 1 = boys. Two-tailed significance levels are reported. aVariables were standardized prior to the analyses. bPretest variable was 

the performance in Level 1 of the competition standardized prior to the analyses. cPretest variable was the cognitive figural skills (BEFKI-short) stand-

ardized prior to the analyses. 
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Discussion 

In this study, we aimed to evaluate whether a training of process-based competences (i.e., 

problem solving, communicating, arguing) for elementary school children would differentially 

improve their process-based competences as well as their domain-specific factors (i.e., basic 

arithmetic operations and complex content-based competences) and domain-general cognitive 

abilities.  

Overall, the results indicated that the training was successful in fostering process-based 

competences—as reflected by participants’ performance in the Mathematical Olympiad—but 

also general cognitive abilities—reflected by their performance on the CFT 20-R. However, 

the latter finding was not substantiated by the results of the BEFKI-short and thus should be 

treated with some caution. As different mathematical tasks were used in the training and the 

Mathematical Olympiad, this indicates that the process-based mathematical competences ac-

quired by attending the training seemed to be transferable to new mathematical problems. Es-

pecially when conceiving of mathematics as the science of patterns (e.g., Devlin, 1996), it 

seems plausible that a training of process-based competences such as problem solving and the 

recognition of patterns should increase performance in solving new word problems as used in 

the Mathematical Olympiad.  

Furthermore, there were no significant training effects on domain-specific factors. These 

missing effects might have resulted from the sample recruited for the training. The training was 

developed for elementary school students who are very good at mathematics (average math 

grade: M = 1.35, SD = 0.48 on a scale ranging from 1 to 6 with 1 representing the best grade). 

However, solving the tasks in the training (which focused primarily on process-based mathe-

matical competences) required only very basic calculations (i.e., numerical content in numbers 

ranging from 1 to 10). This might not have been challenging for this group of children because 

more complex content (e.g., multiplication with results larger than 100) may be necessary to 

challenge such children (e.g., Käpnick, 2014).  

Considering the nonsignificant treatment effects on basic arithmetic but significant ef-

fects on domain-general abilities and process-based competences, the results are in line with 

previous findings in numerical cognition research. For instance, with respect to domain-general 

cognitive abilities (e.g., intelligence, working memory), Fuchs and colleagues (2010) and Träff 

(2013) found that the domain-general cognitive abilities predicted performance in rather com-

plex mathematical tasks (i.e., word problems) but not in basic tasks (e.g., subitizing, basic 

arithmetic).  
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Likewise, at least some domain-specific numerical abilities (e.g., understanding magni-

tudes or the place-value-system) may form the basis for developing content-based mathemati-

cal skills (e.g., algebraic skills or the ability to deal with measurements), which tend to be more 

complex and applied. These ideas regarding the interrelation between the two conceptualiza-

tions seem reasonable but need further research to substantiate them. Even though there is in-

creasing research interest in numerical cognition research on influences of domain-general cog-

nitive abilities on children’s numerical development, future research needs to investigate the 

interplay between domain-specific factors (i.e., domain-specific numerical abilities and con-

tent-based competences) and broader constructs (i.e., domain-general cognitive abilities and 

process-based mathematical competences) in more detail. These connections need to be spec-

ified in order to inform mathematical instruction. 

Regarding the similarity between the conceptualizations of numerical cognition research 

as well as mathematics education, we already pointed out that both differentiate between do-

main-specific factors (e.g., number magnitudes, arithmetical operations) and the skills that are 

additionally necessary to successfully deal with mathematical problems (e.g., problem solving 

or general cognitive ability). Actually, one might even go so far as to argue that process-based 

competences reflect an application of domain-general cognitive abilities (e.g., executive func-

tioning or working memory) in a mathematical context and on mathematical problems.  

As there is evidence for gender differences in mathematical achievement (e.g., Hyde et 

al., 1990; Liu et al., 2008; Liu & Wilson, 2009), we included gender and the interaction be-

tween gender and group membership as predictors in the regression models. It is interesting 

that the training effects on process-based competences and domain-general abilities did not 

differ between boys and girls. This suggests that transfer mechanisms catalyzing performance 

on these constructs may be comparable for girls and boys. However, effects on basic and espe-

cially complex domain-specific factors were more pronounced and even significant for girls 

only. However, it is important to note that there were significant gender differences in domain-

specific factors at pretest—basic arithmetic operations: t(85) = 2.47, p = .016; complex content-

based competences: t(86) = 2.37, p = .020—which might explain why girls benefitted more 

from the training. Because girls’ performance was poorer than boys’ performance on the pre-

test, this left more room for improvements for girls.  

The significant effect on girls’ complex content-based competences may suggest that the 

training had specific effects on more complex mathematical tasks that require superordinate 

skills. This idea is in line with our expectation that our training of process-based competences 

may be beneficial for factors that go beyond standard procedures in executing basic arithmetic 
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operations but require some more advanced process-based skills (e.g., to flexibly model arith-

metic problems as in the problem completion task or the recognition of patterns in the number 

sequences task). This provides a nice illustration that, as the complexity of mathematical prob-

lems increases, it might not be exclusively domain-specific mathematical factors that drive 

performance, but rather, process-based competences and domain-general cognitive abilities 

may come into play.  

Another explanation for the different results for boys and girls might be that girls bene-

fitted more from the core components of the intervention, in particular from communicating 

about mathematics with other children and the intensive transcription involved in justifying 

solutions (parts of cooperative learning; e.g., Johnson et al., 2000)—but specifically so for do-

main-specific factors. These transfer effects of our training might be due to the fact that girls 

tend to prefer cooperative learning methods more than boys (e.g., Johnson & Engelhard, 1992). 

As a consequence, they might have profited from the training on a broader scale than boys. It 

is interesting, however, that Lee (1995) found that girls’ and boys’ reports of their experiences 

in cooperative learning depended on group composition. It might thus be interesting to explore 

whether interactions between group members in cooperative learning situations depend on gen-

der. But, otherwise, the results for gender differences did not occur for the broader constructs 

of process-based and domain-general cognitive abilities.  

Last but not least, there are some points that should be noted when interpreting the results 

of this study. Unfortunately, for some outcome measures, the reliability coefficients that we 

found were not so good (e.g., complex content-based competences [HRT] or figural cognitive 

skills [BEFKI-short]; see Tables 2 and 3). However, considering that we reported retest relia-

bilities (see Tables 2 and 3) and that all measures were assessed in group settings, these relia-

bilities are acceptable. Furthermore, to assess students’ process-based competences, we used 

only tasks from the German Mathematical Olympiad for elementary school students. As this 

academic competition seems to be one of the most challenging ones (Olson, 2005; www.imo-

official.org), it might be fruitful to include a standardized measure of process-based compe-

tences (e.g., less complex word problems) at pretest and posttest. Moreover, as the data were 

collected only at the beginning and end of the intervention, no conclusions can be drawn about 

the effectiveness of single elements of the training. It might be desirable to include intermediate 

surveys in future research to identify effects of training components or components that work 

better than others in fostering students’ content-based or process-based competences.  

Taken together, our results indicate that a training that focused on enhancing process-

based competences had differential effects on process-based competences, domain-general 

http://www.imo-official.org/
http://www.imo-official.org/
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abilities, and domain-specific factors. In particular, our study revealed differential effects of 

the training of process-based mathematical competences on these competences but also on do-

main-general cognitive abilities. In addition, we observed beneficial effects on complex con-

tent-based competences for girls only, possibly indicating that girls profited more from the 

collaborative nature of the intervention. In sum, this study provided initial empirical support 

for conceptual similarities in numerical cognition as well as mathematics education research 

regarding factors that contribute to children’s numerical development (i.e., domain-specific 

numerical and domain-general cognitive abilities vs. content-based and process-based mathe-

matical competences, respectively). Even the results of our training study seem to corroborate 

the notion of a conceptual similarity between the contributions made to mathematical achieve-

ment by domain-specific numerical abilities and content-based competences as well as process-

based competences and domain-general cognitive abilities. The present study is thus a first step 

toward a closer integration of the literature on numerical cognition research and mathematics 

education. Despite all the benefits of interdisciplinary research for the two research communi-

ties, such research is especially beneficial for those who need to acquire mathematical skills: 

the children. 
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5 General Discussion 

Sophisticated mathematical competences are assumed to enable students to cope with 

educational and vocational requirements as well as the demands of everyday life (e.g., Grønmo 

et al., 2015; Murnane et al., 1995; NCTM, 2000; OECD, 2014). One way to challenge students 

who are already able to solve mathematical problems and tasks in elementary school is to en-

courage them to participate in academic competitions. Academic competitions are assumed to 

enhance students’ domain-specific competence and motivation by providing the opportunity to 

work on problems in a domain of interest (e.g., Forrester, 2010; Oswald et al., 2005).  

The present dissertation explored such considerations by asking about the appropriate-

ness of academic competitions and corresponding trainings in enriching learning environments 

in mathematics. Therefore, in a first step, the concept of mathematical competences was re-

viewed, factors that were found to influence the acquisition of mathematical competences were 

summarized, and the characteristics and needs of mathematically gifted students were derived 

(Chapter 1). In a second step, the role of academic competitions in promoting gifted students 

was reviewed and—using the example of the Mathematical Olympiad for elementary school 

children—a corresponding training was delineated. Two effectiveness studies (cf. Herbein, 

2016) examined the effects of the training on the motivation to do mathematics (i.e., self-con-

cept and value beliefs), mathematical competences, and performance in the competition (see 

Chapters 3 and 4) by evaluating a mathematical training that was developed to prepare students 

for the requirements of a particular competition (i.e., Mathematical Olympiad). In the follow-

ing, these effects are discussed in general, and several limitations and strengths are pointed out. 

To conclude, implications for educational practice and further research are mentioned.  
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5.1 Discussion of General Findings  

To challenge students who are already able to solve curriculum-based tasks and prob-

lems, academic competitions are one possible approach for enriching learning environments 

(Bicknell, 2008; Cropper, 1998; Ozturk & Debelak, 2008b; Peters & Sieve, 2013). Around the 

world, there are numerous national and international academic competitions. Besides providing 

learning environments in which gifted students can develop their skills, academic competitions 

are supposed to fulfill several roles: (a) enrichment and differentiation, (b) fostering the ability 

to work in teams with peers, (c) motivating students to pursue the respective domain, (d) iden-

tifying the tough students, and (e) providing competitive environments (see Chapter 2). One of 

the most prominent and challenging types of academic competition are the academic Olympi-

ads (Olson, 2005). Using the example of the (German) Mathematical Olympiad for elementary 

school students, the requirements with regard to contents (i.e., different types of typical tasks) 

and in terms of successful participation (e.g., the necessity of solutions and justifications) of 

this particular competition are described in detail (see Chapter 2). Indeed, mathematical com-

petitions in general and the Mathematical Olympiad in particular provide challenging tasks. 

However, in line with a socio-cognitive-constructivist understanding of learning, if students 

are going to benefit from participating in the competition, they should be able to handle the 

requirements of the competition (e.g., Kießwetter, 2013). Otherwise, the intended positive ef-

fects may turn negative: Not only might students learn nothing, but their motivation to do 

mathematics in the future could disappear (see Chapter 1.5.2. and Chapter 2).  

To give students the opportunity to be prepared to participate in the Mathematical Olym-

piad, a training based on the strengths and weaknesses of mathematically gifted students was 

developed. In the training “Getting fit for the Mathematical Olympiad,” (a) cooperative learn-

ing11 was chosen to simulate the competitive setting of the academic competition and to en-

hance students’ motivation to do mathematics along with their mathematical competences (e.g., 

Johnson & Johnson, 1990, 1994). Further core components besides a specific cooperative 

method in which students first worked alone to solve a challenging mathematical problem, then 

talked about their approaches in cooperative teams that, again, presented their solution to the 

mathematical problem to other students who solved another problem were implemented. (b) 

Mathematical games were included at the beginning and end of each module to also enhance 

                                                 
11 Cooperative learning is characterized by students who work together in positive interdependence 

(each member is important) to achieve shared learning goals with individual accountability (all members make 

their own contributions to the group’s success according to their strengths). Thereby, students actively promote 

each other’s learning (see Johnson & Johnson, 1990).  
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motivation and to implement playful competitive situations with regard to the competition (see 

e.g., Randel, Morris, Wetzel, & Whitehill, 1992). The challenging mathematical problems were 

(c) open tasks that enabled students to apply several approaches and (d) a structured notation 

of approaches and solutions that were inherent parts of the training (cf. context-specific writing; 

Seo, 2015). The challenging open tasks implemented in the training were based on the require-

ments of former Mathematical Olympiads but were reformulated to become open tasks (see 

Chapter 2) and to match the pedagogical framework (i.e., four fictive kids [Peter, Nina, Marie, 

and Frederick] presenting or having to solve the mathematical problems, see Rebholz, 2013; 

cf. Demuth et al., 2011). Thereby, especially process-based mathematical competences (i.e., 

[mathematical] problem solving, communication, as well as arguing and justifications) were 

assumed to be triggered (see Chapters 2, 3, and 4) as there is a belief that students develop an 

understanding of mathematics when they actively “describe their strategies in detail” (Franke 

et al., 2007, p. 229).  

In the following, the findings of two empirical studies that evaluated the effectiveness of 

“Getting fit for the Mathematical Olympiad” are discussed with a focus on how the training 

influenced cognitive (e.g., competences) and noncognitive factors (e.g., math self-concept) as 

well as the gender differences indicated by the second Study (Chapter 4).  

5.1.1 Effects of the training on motivational factors 

In line with other studies that have examined motivational factors for elementary school 

students (e.g., Ehm, 2014; Selter et al., 2016), both participants who were nominated for the 

training (see Chapters 3 [Study 1] and 4 [Study 2]) and students who were not nominated for 

the training (see Chapter 3) reported relatively high motivation (i.e., a noncognitive factor) for 

mathematics as indicated by high mean values of math self-concept and value beliefs (i.e., 

intrinsic interest in Studies 1 and 2, and also attainment value and task-specific interest in Study 

1). As expected, students who participated in the mathematical training showed higher mathe-

matical competences than students who were not nominated to participate in the training (see 

the descriptive results of Study 1 in Chapter 3). In line with other enrichment measures (e.g., 

Zeidner & Schleyer, 1999), the ability level of the students in the training was actually higher 

than the participants had been accustomed to encountering in their regular classes. Against the 

background of how social comparison processes help form people’s domain-specific motiva-

tion (i.e., the big-fish-little-pond effect, BFLPE; e.g., Marsh, 1987; Marsh & Parker, 1984), it 

was comforting to find that no direct effects on students’ math self-concept, intrinsic interest, 

and attainment value were indicated by the results of Study 1 (see Chapter 3). Nevertheless, 
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differential effects on students’ math self-concept for third and fourth graders were identified. 

This hints at different social comparison processes for students in the different grade levels, 

such that third graders (who were in class with higher achieving fourth graders) tended to ex-

perience negative development in their math self-concept, opposite the experience of fourth-

grade students (who were in class with lower achieving third graders; i.e., who experienced 

positive development in their self-concept; see Chapter 3). Unfortunately, for practical rea-

sons—participants in the control group of the randomized controlled field trail in Study 2 did 

not have the opportunity to participate in the academic competition in a prepared manner until 

1 year later—mostly third graders participated in Study 2. Thus, social comparison processes 

between the two grade levels could not be examined. 

Third and fourth graders in the training not only worked together in cooperative teams to 

solve challenging tasks, but they also worked on the same tasks. Indeed, the contents of the 

tasks did not go further than the German educational standards for second graders, and the tasks 

were open so that several solution approaches could be applied (see Chapter 2). However, 

fourth graders experienced 1 more year of formal learning in mathematics in school and, thus, 

their mathematical competences were very likely to be more sophisticated in comparison with 

the third graders. Thus, fourth graders probably experienced the challenging tasks implemented 

in the training as less challenging than the third graders. Plus, being aware that the students 

participating in the training were considered the “clever kids” may have boosted fourth graders 

evaluations of their own competences (see Basking-in-reflected-glory-effect; e.g., Marsh et al., 

2000). This assumption was corroborated by the positive treatment effect on students’ task-

specific interest where significant positive effects were indicated by the results of the study 

only for the fourth graders. Overall, the missing treatment effects on value beliefs and math 

self-concept could actually be interpreted positively because this indicates that the core com-

ponents of the training were successful in arousing both the competitive environment of the 

academic competition and negative social comparison processes.  

5.1.2 Effects of the training on cognitive factors 

In both the quasi-experimental study (see Chapter 3) and the study based on a randomized 

controlled field trial (see Chapter 4), positive influences on performance in the Mathematical 

Olympiad were indicated for students who participated in the training. These students achieved 

higher scores in the tasks used in the competition in comparison with students who did not 

participate in the training, when differences on the pretest and gender were controlled for. More 

precisely, in Study 1 (see Chapter 3), third and fourth graders who participated in the training 
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scored nearly three fourths (third graders) respectively over half (fourth graders) a standard 

deviation higher than students who did not participate. As the tasks of the Mathematical Olym-

piad require process-based competences (i.e., problem solving and arguing), one could even go 

so far to interpret this positive effect on the competition’s tasks as an increase in students’ 

process-based competences. Even if the training and the control group showed no pretest dif-

ferences as in Study 2 (see Chapter 4), students who participated in the training scored nearly 

two thirds standard deviation higher in the last and most difficult level of the Mathematical 

Olympiad12 in comparison with the control group students. Therewith, it looks like the training 

preparation, which was based on the requirements of previous versions of the competition, 

increased the likelihood of successful participation. But, of course, these findings are not sur-

prising when considering that the core components of the training—especially getting used to 

solving challenging tasks and becoming more familiar with formulating hypotheses and solu-

tions—were implemented in the training to prepare students for the Mathematical Olympiad. 

Considering that the Mathematical Olympiad tasks that were used as outcome measures were 

not known before the training was developed and that the mathematical problems implemented 

in the training were reformulated, one could even speculate that the results represent some kind 

of transfer effect. Students were able to demonstrate the mathematical competences they ac-

quired while solving the tasks in the training when they encountered new mathematical prob-

lems. Nevertheless, the findings are in line with expectations (i.e., to become more successful 

participants) connected to the implementation of such trainings (see e.g., Ozturk & Debelak, 

2008a, 2008b; Petersen & Wulff, 2017).  

When looking at treatment effects with respect to the results of the studies related to 

mathematical competences, the findings were more ambiguous. In Study 1 (see Chapter 3), 

results indicated that the students who participated in the training showed higher general math-

ematical competences in comparison with the children who did not participate. Mathematical 

competences on the pretest and motivational factors (i.e., self-concept, value beliefs) were con-

trolled for as there were significant differences on the pretest for the variables that have been 

shown to influence later mathematical competences (see e.g., Bailey, Siegler et al., 2014; Dun-

can et al., 2007; Eccles et al., 1983; Marsh et al., 2005; Murayama et al., 2013; Watts et al., 

2015). More precisely, third and fourth grade students who participated in the training scored 

nearly three fourths of a standard deviation respectively more than half a standard deviation 

                                                 
12 Differences between the training and the control group in their performance in the Mathematical 

Olympiad were not observed when also considering the lowest level as an outcome measure (Level 1: t(62.91)= 

-0.62, p = .537). 
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better on a standardized test—which was oriented on the curriculum of the respective grade—

for assessing mathematical competence in comparison with students who did not participate in 

the training when prior mathematical competences and motivation to do mathematics before 

the training started were controlled for (see Chapter 3). Indeed the measure for assessing math-

ematical competences had quite a good reliability, but the extent to which the test was oriented 

on the curriculum of the respective grade was revealed to be problematic. For example, some 

contents (e.g., written division) were already taught in some classes but not in others (c.f. Gölitz 

et al., 2006; Krajewski et al., 2004; Roick et al., 2004). Thus, although all Study 2 participants 

(see Chapter 4) were nominated to participate in the training, another standardized test for as-

sessing mathematical competences was implemented in the second study.  

Against the expectations for transfer effects from the training on general mathematical 

competences raised by the first study, these results were not corroborated by the results of the 

second study in a one-to-one fashion: Neither basic arithmetic operations nor complex content-

based competences—therefore, the content-based competences that are closer to the process-

based competences than basic arithmetic operations—seemed to be influenced by the training. 

Nevertheless, the results indicated that students who participated in the training showed higher 

figural cognitive skills after the training when figural cognitive skills on the pretest were con-

trolled for (see Chapter 4). Considering that figural cognitive skills are a domain-general cog-

nitive ability, this could be interpreted as a hint that students who participated in the training 

may have profited from the training on a more general level than only by receiving an increase 

in their domain-specific abilities.  

Therewith, overall, the two studies indicated that the training “Getting fit for the Mathe-

matical Olympiad” was successful in promoting students’ process-based mathematical compe-

tences that are conveyed by their performance in the tasks of the Mathematical Olympiad. And 

further, transfer effects to general mathematical competences (Study 1) and domain-general 

cognitive abilities (Study 2) seem likely.  

Differential effects of the training on gender 

In line with studies reporting gender differences in the mathematical competences of girls 

and boys (e.g., Hyde et al., 1990; Hyde, 2016, see Chapter 1.1.3), descriptive results from Study 

2 indicated differences on the pretest between boys’ and girls’ mathematical competences in 

favor of boys (see Chapter 4). Looking for differential effects of the training for boys and girls, 

the results of Study 2 indicated that girls who participated in the training showed a greater 

increase in their content-based mathematical competences in comparison with boys, indicated 
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by the significant regression coefficient for the interaction term. Thus, although no overall 

treatment effect on content-based competences (i.e., basic arithmetic operations and complex 

content-based operations) was observed, girls who participated in the training even showed 

higher complex content-based competences in comparison with girls who did not participate. 

Regarding the effect on process-based mathematical competences (i.e., performance in the 

Mathematical Olympiad), no differential effect was observed as the regression coefficient for 

the interaction was not significant. Overall, these results may indicate that boys and girls had 

different experiences while they were in the cooperative learning situation (e.g., Johnson 

& Engelhard, 1992; Lee, 1995). Perhaps some characteristics that are usually attributed to girls 

(e.g., behaving in a more adaptive fashion and being more willing to persist in learning situa-

tions; Steinmayr & Spinath, 2008) increased the success with which cooperative learning was 

able to support the development of cognitive factors (i.e., content- and process-based compe-

tences). But, perhaps the preexisting differences in girls’ and boys’ mathematical competences 

can explain the differential effects (Wendt, Steinmayr et al., 2016). Going further, one might 

even speculate that the tasks implemented in the training were not challenging enough for the 

students who showed more sophisticated mathematical competences before the training started 

(i.e., boys).  
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5.2 Limitations and Strengths 

Several strengths but also limitations must be considered when interpreting the results of 

the studies and the present dissertation. In the following, first, the strengths of the present dis-

sertation are summarized. Second, the limitations, especially with regard to the interpretation 

of the treatment effects, are presented.  

5.2.1 Strengths and limitations of the effectiveness studies  

First, compared with other approaches that are used in education to foster students’ abil-

ities (e.g., mathematical competences), the assumed effectiveness of the training “Getting fit 

for the Mathematical Olympiad” was examined with empirical studies as part of this disserta-

tion. Even the training—which was developed on the basis of the literature—was evaluated 

and put into practice (see e.g., Herbein, 2016; Humphrey et al., 2016). A second strength of the 

present dissertation is its interdisciplinarily: Both for the development of the training and for 

the studies that were included, findings from different research traditions (education science, 

mathematical education, psychology) were combined, and different topics were considered 

(e.g., concept of competences, mathematical competences, numerical cognition, motivation re-

search, mathematical giftedness). For example, Study 1 examined not only the effectiveness of 

the training regarding success in the Mathematical Olympiad and on mathematical compe-

tences but also social comparison processes in the training (see Chapter 3). In Study 2, the 

cognitive processes were investigated in detail by looking at whether the training, which was 

targeted toward process-based mathematical competences, could influence content-based 

mathematical competences and domain-general cognitive abilities (see Chapter 4).  

Although one could argue that the quasi-experimental design of the first study (see Chap-

ter 3) was weak because the two groups (children in the training vs. in the control group) 

showed significant differences on the pretest. But, these differences were controlled for in the 

multiple regression analysis that was computed to analyze the data. And further, a second study 

with a stronger design was included in the present dissertation: To examine the effectiveness 

of the training in Study 2, a randomized controlled field trial (RCFT) was used. Such RCFTs 

are considered the “best approach for demonstrating the effectiveness of a novel educational 

intervention” (Torgerson & Torgerson, 2013, p. 2). Using an RCFT, “differences in outcomes 

can be attributed to the presence or absence of the intervention, rather than to some other factor” 

(Twone & Hilton, 2004, p. 3). Therewith, the effects of the training reported in Study 2 could 

be attributed to the training rather than to other factors that have been shown to influence the 

acquisition of mathematical competences (see Chapters 1.2, 1.3, and 1.4). 
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In both empirical studies, some students did not—for several reasons (see Chapters 3 and 

4)—participate in each testing occasion. But, in the multiple linear regression models—imple-

mented with the R package lavaan—the full information maximum likelihood approach was 

used to deal with these missing values (Enders, 2010; Graham, 2009; Rosseel, 2012). Further, 

all analyses were conducted with the robust maximum likelihood estimator, which corrects the 

standard errors for the non-normality of the variables.  

Besides these strengths, there were some limitations that have to be considered with re-

gard to studies: First, the training was conducted only within the framework of the Hector 

Children’s Academy Program (HCAP). Thus, the two effectiveness studies were based on quite 

a specific sample—students who were nominated by their former teacher to participate in the 

extracurricular enrichment program targeting the upper 10% of the most gifted, talented, inter-

ested, and creative students (see Herbein, 2016; Rothenbusch et al., 2016; Schiefer, 2017). As 

academic competitions are in general developed for students who are already able to solve 

curriculum-based tasks and need extracurricular challenges to nurture their potential, this sam-

ple was chosen for the present dissertation. Nevertheless, the specific sample limits the gener-

alizability of the findings. Hence, students participating the HCAP in general and the mathe-

matical training in particular cannot be classified as (mathematically) gifted (or talented) with 

regard to models defining (mathematical) giftedness (e.g., showing high domain-general cog-

nitive abilities such as intelligence, see Chapter 1.5). However, children participating in the 

HCAP, for example, tend to have families with a higher social background and show higher 

domain-general cognitive skills (e.g., intelligence) than the societal mean as well as higher 

competences (e.g., mathematical competences) than their classmates (see Rothenbusch et al., 

2016). Social background (e.g., Klibanoff et al., 2006; Sirin, 2005, see also Chapter 1.4), do-

main-general cognitive skills (e.g., Deary et al., 2007; Spinath et al., 2010, see also Chapter 

1.3.1), and prior competences (e.g., Georges et al., 2017; Schneider et al., 2016 see also Chapter 

1.2) have all been shown to influence the acquisition of mathematical competences in previous 

studies. Thus, it is not possible to directly transfer the results to another group of children, and 

the question of whether specifically the training “Getting fit for the Mathematical Olympiad” 

or more generally preparation for an academic competition would also be effective for students 

other than the students nominated for the Hector Children’s Academy Program remains unan-

swered.  

In the first study, six different course instructors taught the training; in the second study, 

there were 10 instructors. To ensure that the training was conducted as intended, these instruc-

tors participated in a half day seminar and were given a scripted manual that included master 
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copies of all materials but also schedules and background information (Rebholz, Golle, Os-

chatz, & Trautwein, 2017). In fact, both studies revealed the effectiveness of the training (see 

Chapters 2, 3, and 4). On the positive side, this in a sign of that the program is effective when 

put into practice, or in other words, when implementing the intervention under real-world con-

ditions (cf. Humphrey et al., 2016). On the negative side, it is impossible to know for certain 

whether the course instructors did what they were supposed to do. The studies that were con-

ducted revealed only that the training was effective on average for the seven (Study 1) or 10 

(Study 2) course instructors who participated. To ensure that the training was taught as in-

tended, some researchers have recommended that implementation fidelity (i.e., the degree to 

which the program or intervention was implemented as intended; see e.g., Carroll et al., 2007; 

Humphrey et al., 2016) should be assessed. For future studies that will examine the effective-

ness of educational interventions such as the training “Getting fit for the Mathematical Olym-

piad,” questionnaires or observations should be included to ensure that the program is taught 

as intended.  

5.2.2 Processes that may influence the effects of the training  

Many domain-general and domain-specific factors have been shown to influence the de-

velopment of mathematical competences (see e.g., Schneider et al., 2016). For example, several 

studies have indicated that students’ mathematical competences are strongly based on prior 

mathematical competences (e.g., Bailey, Siegler et al., 2014; Cerda et al., 2015; Duncan et al., 

2007; Watts et al., 2015). But mathematical competences are supposed to depend on a large 

number of various different complex subcompetences and processes and many subskills and 

subprocesses, such as logical inference, memorization of calculation procedures, and working 

memory (Thompson et al., 2013). Although previous mathematical competences were con-

trolled for when determining the effects of the training in both studies (see Chapters 2, 3, and 

4), it is still possible to argue that the mathematical competences of the students who showed 

higher mathematical competences before the training started (e.g., the training group in Study 

1) increased as a result of their higher mathematical potential and not as a consequence of the 

training. However, the results of Study 2 argue against this: First, Study 2 was conducted as a 

randomized controlled field trial as all participants in this sample were nominated for the pro-

gram by their former teacher, and so there were no mean differences on the pretest between the 

training and control groups (see Chapter 4). Indeed, effects of the training were not observed 

for students’ competences in basic arithmetic operations or for the complex content-based com-
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petences. But, effects of the training were observed for the girls who showed lower mathemat-

ical competences at the beginning of the training than the boys. This finding speaks in favor of 

processes that depend less on previous mathematical competences, especially because effects 

on broader process-based mathematical competences (assessed by performance in the Mathe-

matical Olympiad) were significant for both boys and girls (see Chapter 4).  

Also examining the effectiveness of a mathematical intervention, Watts and colleagues 

(2017) reported that the treatment had effects on state (time varying) factors but no effects on 

trait factors (characteristics that exceed a stable influence on students’ mathematical compe-

tences). Transferring their argumentation that trait mathematics rather is somewhat general to 

academic domains (Watts et al., 2017) into the classification of domain-specific and domain-

general factors, the positive effect on domain-general cognitive abilities (see Chapter 4) is all 

the more surprising. Considering that this effect is not an artefact, the training might serve to 

facilitate students’ further acquisition of mathematical competences as, for example, Watts and 

colleagues (2017) have argued that mathematical competences are influenced by rather stable 

(domain-general) characteristics more than time-varying (domain-specific) characteristics 

from the previous time point.  

One further limitation that can occur when interpreting treatment effects on mathematical 

competences are the differences in motivational factors of the participants of the training in 

comparison with the control group because, in Study 1, significant differences were reported 

between the training and control groups. In Study 2, differences in motivation (especially in-

terest) could be assumed only because the treatment group had the privilege of being able to 

attend the training before the control group. In general, differences in motivational factors have 

been shown to influence the acquisition of later mathematical competences (see e.g., Helmke, 

1998; Marsh & Craven, 2006). Some authors have attributed this to the ability to deal with 

more challenging mathematical contents by showing more engagement and persistence (see 

e.g., Hidi & Harackiewicz, 2000), which again can lead to more effective learning and solution 

strategies (see e.g., Kriegbaum et al., 2015; Middleton & Spanias, 1999). Transferring these 

considerations to the training, which was the basis of the present dissertation, one could argue 

that these mechanisms were not observed and were not even observable at pretest and that 

students in the training, because they were catalyzed by higher motivation, showed higher 

mathematical competences and therefore also better performance in the Mathematical Olym-

piad.  

Last but not least, when interpreting the effectiveness of the training, it is important to 
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consider that the learning environment provided in the training consisted of several core com-

ponents. All these core components—cooperative learning, mathematical games, challenging 

open tasks, and a structured notation of approaches and solutions—were aimed at fostering 

students’ mathematical competences and motivation for mathematics and counterbalancing so-

cial comparison processes and especially the competitive environment. For all core compo-

nents that were implemented, there are studies and considerations that corroborate these posi-

tive effects. For example, cooperative learning is deemed an effective teaching method for 

fostering students’ outcomes such as competences and motivation (see e.g., Johnson et al., 

2000; Slavin, 1983a). In their meta-analysis, Johnson and colleagues (2000) reported signifi-

cant positive effects of cooperative learning for students’ achievement in comparison with in-

dividualistic or competitive learning. A more precise study that examined the effects of a spe-

cial form of cooperative learning conducted with 12th graders in physics using a quasi-experi-

mental design indicated positive effects on students’ self-reported cognitive activation, intrin-

sic motivation, and interest in physics (Hänze & Berger, 2007). However, cooperative learning 

was not revealed to be effective per se (e.g., Slavin, 1983a, 1983b). For instance, in a study by 

Battistich, Solomin, and Delucchi (1993), the results indicated that the positive influence of 

cooperative learning on students’ competences and motivation depended on the quality of the 

interactions in the groups. In their study, the authors assessed students’ competences (i.e., 

achievement), motivation (e.g., intrinsic motivation), and the processes in small groups that 

were supposed to work cooperatively (Battistich et al., 1993). In connection to the training, it 

was not possible to ensure that all groups in the training solved their mathematical problems 

cooperatively. As working alone, working together, writing solutions down, presenting them 

to other students, as well as listening to the problems and solutions of other groups (i.e., the 

specific didactic-methodological model) were inherent parts of the schedule of each module, 

the likelihood that the procedure would be successful was quite high. Nevertheless, the quality 

of students’ interactions was not controlled for. Similar considerations are also necessary with 

respect to the other core components. Using the example of cooperative learning demonstrated 

that the mechanisms that are responsible for the positive effects of the training cannot be ex-

plained from within the framework of the present dissertation. 
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5.3 Implications for Educational Practice and Further Research 

The present dissertation was aimed at answering the question of whether, on the one 

hand, academic competitions are an appropriate approach for fostering gifted students by ar-

guing the merits of a training program that can be implemented to prepare students for a spe-

cific competition. On the other hand, the present dissertation contributed to the question of how 

mathematical competences and success in an academic math competition can be fostered. How-

ever, some questions remain open in the framework of the present dissertation. Thus, consid-

erations for further educational research are summarized in the following. Further, based on 

the results of the present dissertation, some implications for educational practice can be de-

rived.  

5.3.1 Future educational research  

As explained in Chapter 5.2.2, the question of which core component was the main cause 

of the effectiveness of the training remained unanswered in the present dissertation. Thus, for 

further research, first, a consideration of treatment fidelity might contribute to the understand-

ing of the effectiveness of the individual core component. Knowing which component had been 

implemented in which of the training groups might provide hints about the more and less ef-

fective core components. Further, differential effects of the training should be investigated in 

more detail: Who and what makes the training effective? Therefore, also domain-general and 

domain-specific cognitive abilities as well as the noncognitive factors should be assessed be-

fore and after the training. Thus, further studies that consider all such factors as well as treat-

ment fidelity are necessary for investigating the effectiveness of the training. Ideally, another 

randomized controlled field trial with a waitlist control group should be conducted with more 

than the 10 courses. Based on the findings of Bailey and colleagues (2016), whose study indi-

cated that fadeout after a successful intervention was caused by preexisting differences, on the 

one hand, studies should also investigate for whom “Getting fit for the Mathematical Olym-

piad” is (most) effective in terms of mathematical competences and success in the Mathemati-

cal Olympiad. But also, social comparison processes between students in the training should 

be investigated in this RCFT. On the other hand, long-term effects of the training sound like a 

fruitful question. Perhaps the effects of the extracurricular enrichment (i.e., Getting fit for the 

Mathematical Olympiad) disappear as students are no longer challenged enough (cf. Bailey et 

al., 2016).  

Thereby, gender differences should also be counted as the differential effects of “Getting 

fit for the Mathematical Olympiad” for boys and girls indicated by the results of the second 
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study provide room for more speculation about gender differences in mathematics. In a larger 

sample, it would be promising to look at whether boys and girls already show characteristic 

strengths (e.g., boys are better problem solvers than girls; cf. Brehl et al., 2012; Wendt, Stein-

mayr et al., 2016) even for the specific sample of students nominated for extracurricular en-

richment.  

Based on hints for effective core components from the study described above, the effec-

tiveness of single core components could be examined by manipulating only a single element 

at a time between groups. For example, the effects of the mathematical games—that are thought 

to be effective at enhancing students’ motivation and for preparing students for the competitive 

setting of the competition—can be investigated by having some groups playing the games as 

intended and others not.  

Academic competitions  

Regarding academic competitions, different views must be considered in further re-

search. First, the appropriateness of academic competitions for fostering domain-specific com-

petence and motivation should be investigated empirically. At the moment, the effectiveness 

of academic competitions has been explored only through retrospective studies that have sur-

veyed previously successful participants by looking at their vocational success and asking them 

what benefits they attribute to the academic competition (e.g., Campbell & Walberg, 2010; 

Fauser et al., 2007; Lengfelder & Heller, 2002; Oswald et al., 2005; Wirt, 2011). However, 

questioning only the successful participants offers a nonrepresentative and very selective sam-

ple. Thus, studies in which only the participation in an academic competition is manipulated 

would be necessary to substantiate the theoretically plausible positive influence of academic 

competitions. In the long run, it would also be fruitful to examine whether the assumed effects 

of an academic competition on competences and motivation again influence vocational suc-

cess. The first results regarding this question were reported by Forrester (2010) who conducted 

semistructured interviews and asked the participants of an academic competition in science 

about why they decided to participate. Amongst others, her results indicated that students at-

tributed their increased interest in science to the competition. She concluded that academic 

competitions have the potential to influence academic choices (i.e., choosing to be a science 

major) and can pique students’ interest in the domain of the competition (Forrester, 2010). 

Further, there is the question of which factors drive successful participation in an optional 

extracurricular enrichment program such as academic competitions: Are these factors compa-

rable to the factors that have been examined with respect to their influence on academic 
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achievement in general? In studies by Urhahne and colleagues (2012) as well as Stang, 

Urhahne, Nick, and Parchmann (2014), success in academic science competitions was mostly 

predicted by previous knowledge, motivational factors (i.e. competence and value beliefs), ex-

pected success, and relative costs. Both studies that were intended to predict successful perfor-

mance based on the expectancy-value-model (EVT; e.g., Eccels et al., 1983, 2010; Wigfield, 

1994; Wigfield & Eccels, 2000) of achievement motivation were based on adolescent samples. 

Therewith, the results of the studies by Urhahne and colleagues (2012) as well as Strang an 

colleagues (2014) are not perfectly in line with the EVT according to which only motivational 

factors (see Chapter 1.4.1) directly influence later achievement/performance/competences 

(Wigfield & Eccles, 2000). Further studies are necessary to determine whether factors that in-

fluence success in an academic competition differ from the factors that influence general aca-

demic achievement.  

In the area of sports, training for a competition is a common approach. To underpin 

the assumption that this approach can also be transferred to the field of education, the present 

dissertation indicated that preparation for an academic math competition could also be a use-

ful measure in terms of successful participation. Further, there were also hints that such a 

measure could be successful in fostering students’ domain-specific competence (i.e., mathe-

matical competences). But, to make a more general statement, further trainings for other math 

competitions or even competitions in other fields are necessary. However, this leads to the 

problem of whether, in this case, the trainings are actually comparable, for example, if they 

trigger different contents or use different methods.  

Mathematical competences  

In mathematics education, there is quite a broad consensus that mathematical compe-

tences can be differentiated into content-based and process-based parts (e.g., NCTM, 2000; 

Stanat et al., 2012; Winkelmann & Robitzsch, 2009). But, the results of the second study indi-

cated that the training that targeted process-based mathematical competences had more of an 

influence on domain-general cognitive abilities than on content-based competences (i.e., do-

main-specific factors). Thus, the interplay of domain-general and domain-specific cognitive 

abilities as well as process- and content-based mathematical competences should be investi-

gated on the basis of the models of numerical cognition described in Chapters 1.2.3 and 1.2.4 

(see also, e.g., Dehaene, 2011; Krajewski & Schneider, 2009a, 2009b; von Aster & Shalev, 

2007). In particular—as mathematical competences are a hierarchical construct in which later 
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mathematical competences are based on prior mathematical competences—questions regard-

ing the processes and mechanisms that enable elementary school students to acquire mathe-

matical competences remain open in this dissertation.  

5.3.2 Implications for educational practice 

First—as indicated by the positive effects of the training on students’ performance in the 

academic competition—preparing students for an academic competition has positive influ-

ences on students’ competences and success in the competition (see Chapters 2, 3, and 4). Even 

in such trainings, it does seem to be enough to provide challenging problems that are based on 

the requirements of the competition. It is not necessary to work with the original tasks to in-

crease the likelihood of successful participation. Going further, concentrating on process-based 

competences and the necessary solution strategies (e.g., a systematic approach, see e.g., De-

muth et al., 2011; Käpnick, 1998) allows for transfers to other new challenging problems as 

well. In detail, a combination of cooperative learning, mathematical games, challenging open 

tasks, and structured notation has revealed positive effects in enhancing students’ mathematical 

competences and their likelihood to successfully participate in the Mathematical Olympiad.  

Second, the effectiveness of the training that is aimed at fostering process-based compe-

tences and mathematical competences in general underpin the importance of such broader pro-

cess-based competences. Providing challenges to all students may contribute to enhancing the 

sophisticated mathematical competences of all students as suggested by Franke and colleagues 

(2007):  

Within the field of mathematics education, researchers seem to 

agree in principle that classrooms that support mathematical pro-

ficiency would be places where students are encouraged to be 

curious about mathematical ideas, where they can develop their 

mathematical intuition and analytic capabilities, where they can 

learn to talk about and with mathematical expertise. (Franke et 

al., 2007, p. 229) 

Therewith, third, indicted by the effects of the training “Getting fit for the Mathematical 

Olympiad,” continuous promotion in a weekly mathematical training can contribute to the pro-

motion of mathematical competences. The training incorporated in the present dissertation is 

one of (at the moment) five so-called Hector Core Courses, which all show positive effects on 

students’ development (see e.g., Herbein, 2016; Schiefer, 2017). Overall, this corroborates the 
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implementation of regular extracurricular enrichment measures as done in the Hector Chil-

dren’s Academy Program.  

Last but not least, whether mathematical competences are operationalized by differenti-

ating between content- and process-based mathematical competences or whether both domain-

specific and domain-general abilities are considered to drive mathematical competences, math-

ematical competences are supposed to be a complex multidimensional construct. However, a 

holistic approach to the concept of competences as assumed by social and educational science 

is not considered in the operationalization of competences when assessing students’ abilities. 

But, considering all factors that have been shown to influence or to be correlated with mathe-

matical competences (cf. Chapter 1), the results of this dissertation corroborate such a holistic 

approach. 
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