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Introduction

This thesis contributes to the study of Mori dream spaces and their geometric
aspects. Mori dream spaces, introduced by Hu and Keel [40], are characterized via
their optimal behavior with respect to the minimal model program. Well-known
example classes include projective toric varieties, smooth Fano varieties [12], Calabi-
Yau varieties of dimension at most three having a polyhedral effective cone [52] and
spherical varieties [17]. In terms of Cox rings, Mori dream spaces are character-
ized as the irreducible normal projective varieties X such that the divisor class
group Cl(X) and the Cox ring

R(X) :=
⊕

[D]∈Cl(X)

Γ(X,OX(D))

are finitely generated. Similar to toric varieties, Mori dream spaces show close con-
nections to combinatorics. They are completely described by their Cox ring and
certain data from convex geometry, namely a collection of rational convex polyhe-
dral cones in the vector space associated with the divisor class group [11, 35, 3].
This approach makes Mori dream spaces particularly accessible in the case of small
Picard number and a Cox ring with simply structured defining relations. The latter
basically means to move a controlled step beyond toric geometry. Our main results
comprise classifications in the smooth case for Picard numbers up to three, includ-
ing in particular new lists of smooth Fano varieties. Moreover, we provide further
evidence on Mukai’s conjecture and Fujita’s base point free conjecture.

It is well-known that in the toric case, the only smooth projective varieties
of Picard number one are the projective spaces. In Picard number two, Klein-
schmidt [47] showed that all smooth complete toric varieties arise as projectivized
split vector bundles, and Batyrev [7] studied the case of Picard number three via
primitive collections. In Chapter two, which presents joint work with J. Hausen and
M. Nicolussi [28], we discuss irreducible smooth projective non-toric rational vari-
eties with a torus action of complexity one [39, 36, 3], i.e. the general torus orbit is
of dimension one less than the variety itself. In Picard number one, the classification
is due to a result of Liendo and Süß [49, Thm. 6.5]: there are up to isomorphism
only two varieties, namely the smooth projective quadrics in dimensions three and
four. In Picard number two, we obtain the following result, where we describe a
variety through its Cox ring and an ample class. Note that this data determines a
Mori dream space up to isomorphism; see Chapter one for details and background.
As in the whole thesis, by a variety we mean a variety over an algebraically closed
field K of characteristic zero.

Theorem 2.1.1. Every smooth rational irreducible projective non-toric variety of
Picard number two that admits a torus action of complexity one is isomorphic to
precisely one of the following varieties X, specified by their Cox ring R(X) and an
ample class u ∈ Cl(X), where we always have Cl(X) = Z2 and the grading is fixed
by the matrix [w1, . . . , wr] of generator degrees deg(Ti),deg(Sj) ∈ Cl(X).

1



2 INTRODUCTION

No. R(X) [w1, . . . , wr] u dim(X)

1 K[T1,...,T7]

〈T1T2T
2
3 +T4T5+T6T7〉

[
0 0 1 1 1 1 1
1 1 0 a 2− a b 2− b

]
1 ≤ a ≤ b

[
1

1 + b

]
4

2 K[T1,...,T7]
〈T1T2T3+T4T5+T6T7〉

[
0 0 1 1 0 1 0
1 1 0 1 1 1 1

] [
1
2

]
4

3 K[T1,...,T6]

〈T1T2T
2
3 +T4T5+T

2
6 〉

[
0 0 1 1 1 1
1 1 0 2− a a 1

]
a ≥ 1

[
1

1 + a

]
3

4
K[T1,...,T6,S1,...,Sm]

〈T1T
l2
2 +T3T

l4
4 +T5T

l6
6 〉

m≥0

[
0 1 a 1 b 1 c1 . . . cm
1 0 1 0 1 0 1 . . . 1

]
0 ≤ a ≤ b, c1 ≤ . . . ≤ cm,

l2 = a + l4 = b + l6

[
d + 1

1

]
d := max(b, cm)

m+ 3

5
K[T1,...,T6,S1,...,Sm]

〈T1T2+T
2
3 T4+T

2
5 T6〉

m≥0

[
0 2a + 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 0 . . . 0

]
a ≥ 0

[
2a + 2

1

]
m+ 3

6
K[T1,...,T6,S1,...,Sm]

〈T1T2+T3T4+T
2
5 T6〉

m≥1

[
0 2c + 1 a b c 1 1 . . . 1
1 1 1 1 1 0 0 . . . 0

]
a, b, c ≥ 0, a < b,
a + b = 2c + 1

[
2c + 2

1

]
m+ 3

7
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥1

[
0 0 0 0 −1 1 1 . . . 1
1 1 1 1 1 1 0 . . . 0

] [
1
2

]
m+ 3

8
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥2

[
0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 0 a2 . . . am

]
0 ≤ a2 ≤ . . . ≤ am, am > 0

[
1

am + 1

]
m+ 3

9
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥2

[
0 a2 . . . a6 1 . . . 1
1 1 . . . 1 0 . . . 0

]
0 ≤ a3 ≤ a5 ≤ a6 ≤ a4 ≤ a2,
a2 = a3 + a4 = a5 + a6

[
a2 + 1

1

]
m+ 3

10
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

m≥1

[
1 1 1 1 1 0 . . . 0
−1 1 0 0 0 1 . . . 1

] [
2
1

]
m+ 2

11
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

m≥2

[
1 1 1 1 1 0 a2 . . . am
0 0 0 0 0 1 1 . . . 1

]
0 ≤ a2 ≤ . . . ≤ am, am > 0

[
am + 1

1

]
m+ 2

12
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

m≥2

[
1 1 1 1 1 0 0 . . . 0
0 2c a b c 1 1 . . . 1

]
0 ≤ a ≤ c ≤ b, a + b = 2c

[
1

2c + 1

]
m+ 2

13

K[T1,...,T8]〈
T1T2+T3T4+T5T6,

λT3T4+T5T6+T7T8

〉
λ∈K∗\{1}

[
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

] [
1
1

]
4

Moreover, each of the listed data sets defines a smooth rational non-toric projective
variety of Picard number two coming with a torus action of complexity one.

Toric Fano varieties are a class of varieties thoroughly investigated since the
1970s: by now, there are classification results up to dimension nine [6, 8, 63, 48,
56, 57, 67] in terms of their combinatorial description via lattice polytopes. Note
that in case of varieties of complexity one, our Cox ring-based approach allows us
to compute the anticanonical divisor class via a formula [3, Prop. 3.3.3.2] using the
degrees of the generators and of the relations of R(X). In this way, we determine
in every dimension the finitely many non-toric smooth rational Fano varieties of
Picard number two admitting a torus action of complexity one; they are described
geometrically by means of elementary contractions in Section 2.3.

Theorem 2.1.2. Every smooth rational non-toric Fano variety of Picard num-
ber two that admits a torus action of complexity one is isomorphic to precisely
one of the following varieties X, specified by their Cox ring R(X), where the
grading by Cl(X) = Z2 is given by the matrix [w1, . . . , wr] of generator degrees
deg(Ti),deg(Sj) ∈ Cl(X) and we list the (ample) anticanonical class −KX .
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No. R(X) [w1, . . . , wr] −KX dim(X)

1 K[T1,...,T7]

〈T1T2T
2
3 +T4T5+T6T7〉

[
0 0 1 1 1 1 1
1 1 0 1 1 1 1

] [
3
4

]
4

2 K[T1,...,T7]
〈T1T2T3+T4T5+T6T7〉

[
0 0 1 1 0 1 0
1 1 0 1 1 1 1

] [
2
4

]
4

3 K[T1,...,T6]

〈T1T2T
2
3 +T4T5+T

2
6 〉

[
0 0 1 1 1 1
1 1 0 1 1 1

] [
2
3

]
3

4.A
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥0

[
0 1 0 1 0 1 c 0 . . . 0
1 0 1 0 1 0 1 1 . . . 1

]
c ∈ {−1, 0},

c := 0 if m = 0

[
2 + c
2 +m

]
m+ 3

4.B
K[T1,...,T6,S1,...,Sm]

〈T1T
2
2 +T3T4+T5T6〉

m≥0

[
0 1 1 1 1 1 1 . . . 1
1 0 1 0 1 0 1 . . . 1

] [
3 +m
2 +m

]
m+ 3

4.C
K[T1,...,T6,S1,...,Sm]

〈T1T
2
2 +T3T

2
4 +T5T

2
6 〉

m≥0

[
0 1 0 1 0 1 0 . . . 0
1 0 1 0 1 0 1 . . . 1

] [
1

2 +m

]
m+ 3

5
K[T1,...,T6,S1,...,Sm]

〈T1T2+T
2
3 T4+T

2
5 T6〉

m≥1

[
0 2a + 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 0 . . . 0

]
0 ≤ 2a < m

[
2a +m + 2

2

]
m+ 3

6
K[T1,...,T6,S1,...,Sm]

〈T1T2+T3T4+T
2
5 T6〉

m≥2

[
0 2c + 1 a b c 1 1 . . . 1
1 1 1 1 1 0 0 . . . 0

]
a, b, c ≥ 0, a < b,
a + b = 2c + 1,
m > 3c + 1

[
3c + 2 +m

3

]
m+ 3

7
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

1≤m≤3

[
0 0 0 0 −1 1 1 . . . 1
1 1 1 1 1 1 0 . . . 0

] [
m
4

]
m+ 3

8
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥2

[
0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 0 a2 . . . am

]
0 ≤ a2 ≤ . . . ≤ am,
am ∈ {1, 2, 3},

4 +
∑m
k=2 ak > mam

[
m

4 +
∑m
k=2 ak

]
m+ 3

9
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥2

[
0 a2 . . . a6 1 . . . 1
1 1 . . . 1 0 . . . 0

]
0 ≤ a3 ≤ a5 ≤ a6 ≤ a4 ≤ a2,
a2 = a3 + a4 = a5 + a6,

2a2 < m

[
2a2 +m

4

]
m+ 3

10
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

1≤m≤2

[
1 1 1 1 1 0 . . . 0
−1 1 0 0 0 1 . . . 1

] [
3
m

]
m+ 2

11
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

m≥2

[
1 1 1 1 1 0 a2 . . . am
0 0 0 0 0 1 1 . . . 1

]
0 ≤ a2 ≤ . . . ≤ am,

am ∈ {1, 2},
3 +

∑m
k=2 ak > mam

[
3 +

∑m
k=2 ak
m

]
m+ 2

12
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

m≥2

[
1 1 1 1 1 0 0 . . . 0
0 2c a b c 1 1 . . . 1

]
0 ≤ a ≤ c ≤ b, a + b = 2c,

3c < m

[
3

3c +m

]
m+ 2

13

K[T1,...,T8]〈
T1T2+T3T4+T5T6,

λT3T4+T5T6+T7T8

〉
λ∈K∗\{1}

[
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

] [
2
2

]
4

Moreover, each of the listed data sets defines a smooth rational non-toric Fano
variety of Picard number two coming with a torus action of complexity one.

It turns out that the varieties of Theorem 2.1.2 are obtained from varieties Y
with dimension at most seven via duplication of some of the free weights of Cox
rings R(Y ), i.e. given a variable that does not show up in the defining trinomials,
one adds a further free variable of the same degree. The geometric interpretation
of this procedure is the following: one takes a certain P1-bundle over the original
variety Y , applies a natural series of flips and then contracts a prime divisor, see
Section 2.2 for details.
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Corollary 2.1.3. Every smooth rational non-toric Fano variety with a torus action
of complexity one and Picard number two arises via iterated duplication of a free
weight from a smooth rational projective (not necessarily Fano) variety with a torus
action of complexity one, Picard number two and dimension at most seven.

Jahnke, Peternell and Radloff [42, 43] obtained a classification of smooth three-
folds of Picard number two that are almost Fano, i.e. whose anticanonical divisor
is big and nef. Note that in general, the problem of describing smooth almost Fano
varieties is widely open. In the setting of a torus action of complexity one, we
may – as in the Fano case – figure out the non-toric rational smooth almost Fano
varieties in arbitrary dimension. Together with Theorem 2.1.2, the following result
classifying truly almost Fano varieties, i.e. varieties that are almost Fano but not
Fano, settles the description.

Theorem 2.1.4. Every smooth rational non-toric truly almost Fano variety of
Picard number two that admits a torus action of complexity one is isomorphic to
precisely one of the following varieties X, specified by their Cox ring R(X) and an
ample class u ∈ Cl(X), where we always have Cl(X) = Z2 and the grading is fixed
by the matrix [w1, . . . , wr] of generator degrees deg(Ti),deg(Sj) ∈ Cl(X).

No. R(X) [w1, . . . , wr] u dim(X)

4.A
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥1

[
0 1 0 1 0 1 c1 . . . cm
1 0 1 0 1 0 1 . . . 1

]
c1 ≤ . . . ≤ cm
d := max(0, cm)

(2 +m)d = 2 + c1 + · · · + cm

[
1

1 + d

]
m+ 3

4.B
K[T1,...,T6,S1,...,Sm]

〈T1T
2
2 +T3T4+T5T6〉

m≥1

[
0 1 1 1 1 1 0 1 . . . 1
1 0 1 0 1 0 1 1 . . . 1

] [
1
2

]
m+ 3

4.C
K[T1,...,T6,S1,...,Sm]

〈T1T
2
2 +T3T

2
4 +T5T

2
6 〉

m≥1

[
0 1 0 1 0 1 −1 0 . . . 0
1 0 1 0 1 0 1 1 . . . 1

] [
1
1

]
m+ 3

4.D
K[T1,...,T6,S1,...,Sm]

〈T1T
2
2 +T3T

2
4 +T5T6〉

m≥0

[
0 1 0 1 1 1 1 . . . 1
1 0 1 0 1 0 1 . . . 1

] [
1
2

]
m+ 3

4.E
K[T1,...,T6,S1,...,Sm]

〈T1T
3
2 +T3T4+T5T6〉

m≥0

[
0 1 2 1 2 1 2 . . . 2
1 0 1 0 1 0 1 . . . 1

] [
1
3

]
m+ 3

4.F
K[T1,...,T6,S1,...,Sm]

〈T1T
3
2 +T3T

2
4 +T5T

2
6 〉

m≥0

[
0 1 1 1 1 1 1 . . . 1
1 0 1 0 1 0 1 . . . 1

] [
1
2

]
m+ 3

5
K[T1,...,T6,S1,...,Sm]

〈T1T2+T
2
3 T4+T

2
5 T6〉

m≥0

[
0 2a + 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 0 . . . 0

]
m = 2a

[
m + 2

1

]
m+ 3

6
K[T1,...,T6,S1,...,Sm]

〈T1T2+T3T4+T
2
5 T6〉

m≥1

[
0 2c + 1 a b c 1 1 . . . 1
1 1 1 1 1 0 0 . . . 0

]
a, b, c ≥ 0, a < b,
a + b = 2c + 1,
m = 3c + 1

[
2c + 2

1

]
m+ 3

7
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m=4

[
0 0 0 0 −1 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0

] [
1
2

]
7

8
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥2

[
0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 0 a2 . . . am

]
0 ≤ a2 ≤ . . . ≤ am, am > 0,
4 + a2 + . . . + am = mam

[
1

am + 1

]
m+ 3

9
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥2

[
0 a2 . . . a6 1 . . . 1
1 1 . . . 1 0 . . . 0

]
0 ≤ a3 ≤ a5 ≤ a6 ≤ a4 ≤ a2,
a2 = a3 + a4 = a5 + a6,

m = 2a2

[
a2 + 1

1

]
m+ 3
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10
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

m=3

[
1 1 1 1 1 0 0 0
−1 1 0 0 0 1 1 1

] [
2
1

]
5

11
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

m≥2

[
1 1 1 1 1 0 a2 . . . am
0 0 0 0 0 1 1 . . . 1

]
0 ≤ a2 ≤ . . . ≤ am, am > 0,
3 + a2 + . . . + am = mam

[
1

am + 1

]
m+ 2

12
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

m≥3

[
1 1 1 1 1 0 0 . . . 0
0 2c a b c 1 1 . . . 1

]
0 ≤ a ≤ c ≤ b, a + b = 2c,

m = 3c

[
1

2c + 1

]
m+ 2

Moreover, each of the listed data sets defines a smooth rational non-toric truly
almost Fano variety of Picard number two coming with a torus action of complex-
ity one.

In Chapter three we consider a possibility to move beyond toric geometry other
than the one chosen in Chapter two: We study intrinsic quadrics, i.e. irreducible
normal projective varieties X with finitely generated divisor class group and finitely
generated Cox ring R(X) admitting homogeneous generators such that R(X) is the
factor ring of a polynomial ring and an ideal generated by a single homogeneous
purely quadratic polynomial. For further research on intrinsic quadrics see [11]
and [14]. Similar to the toric case, in Picard number one, we show that there is
just one smooth projective intrinsic quadric per dimension.

Proposition 3.2.1. Let X be a smooth intrinsic quadric of Picard number one.
Then X is isomorphic to the variety defined by the Cox ring

K[T1, . . . , Tr]/〈T1T2 + T3T4 + . . .+ Ti−1Ti + h〉,

where i = r − 2, h = Tr−1Tr or i = r − 1, h = T 2
r holds, and where the grading is

given by deg(Tj) = 1 ∈ Z = Cl(X) for all 1 ≤ j ≤ r. In particular, X is Fano.

In Picard number two, Theorem 3.2.8 provides a classification of all smooth
projective intrinsic quadrics, thereby generalizing a result of [11] that described
the case of full intrinsic quadrics, i.e. the case of intrinsic quadrics whose Cox ring
admits no generators that do not show up in the defining quadratic polynomial.

Theorem 3.2.8. Every smooth intrinsic quadric of Picard number two is isomor-
phic to a variety X with Cox ring given by R(X) = K[T1, . . . , Tr, S1, . . . , St]/〈g〉,
where

g :=

{
T1T2 + . . .+ Tr−1Tr if r is even,
T1T2 + . . .+ Tr−2Tr−1 + T 2

r if r is odd,

holds for some integers r ∈ Z≥5 and t ∈ Z≥0. Furthermore, the Cl(X) = Z2-grading
of R(X) is obtained by choosing weights wi = deg(Ti) and uj = deg(Sj) according
to one of the following settings, where the semiample cone τX of X is as indicated
in the below figures.

Setting 1: Fix α ∈ Z≥0. The weights uj are taken from (a, 1), where 0 ≤ a ≤ α
holds and we have wi = (1, 0) for all 1 ≤ i ≤ r. Furthermore, we have t ≥ 2 and
the vectors (α, 1) and (0, 1) occur in the list u1, . . . , ut.

τX

wi

(0, 1) (α, 1)

If X arises from Setting 1, then X is smooth and admits an elementary contraction
of fiber type ϕ : X → VPr−1

(g) with fibers isomorphic to Pt−1.
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Setting 2: Fix α ∈ Z≥0. The weights wi are taken from (a, 1), where 0 ≤ a ≤ α
holds and we have uj = (1, 0) for all 1 ≤ j ≤ t. Furthermore, we have t ≥ 2 and
the weights satisfy

(i) w1 = (0, 1) and w2 = (α, 1),
(ii) wi + wi+1 = (α, 2) for all odd i < r and 2wr = (α, 2) if r is odd.

τX

uj

w1 = (0, 1) (α, 1) = w2

If X arises from Setting 2, then X is smooth and admits an elementary contraction
of fiber type ϕ : X → Pt−1 with fibers isomorphic to VPr−1

(g).

Setting 3: The weights wi and uj satisfy
(i) w1 = (0, 1) and w2 = (2, 1),
(ii) wi = (1, 1) for all 3 ≤ i ≤ r,
(iii) uj = (1, 0) for all 1 ≤ j ≤ t and we have t ≥ 1.

τX

uj

w2
w1

wi,
i≥3

If X arises from Setting 3, then X is smooth and admits an elementary birational
divisorial contraction ϕ : X → Pr+t−3 with center isomorphic to VPr−3

(g − T1T2).

Setting 4: Here, r ∈ Z≥6 is even. The weights uj are taken from (a, 1), where
0 ≤ a ≤ α holds with some α ∈ Z≥0. We have w1 = (1, 0) and w2 = (w1

2, 1) for
some 0 ≤ w1

2 ≤ α. Furthermore the weights satisfy
(i) wi = w1 for all odd 1 ≤ i ≤ r − 1 and wi = w2 for all even 2 ≤ i ≤ r,
(ii) the vectors (α, 1) and (0, 1) occur in the list w1, . . . , wr, u1, . . . , ut.

τX

wi,
i odd

wi,
i even

(0, 1) (α, 1)

If X arises from Setting 4, then X is smooth and admits an elementary contraction
of fiber type ϕ : X → Pr/2−1 with fibers isomorphic to Pr/2+t−2.

Note that the full smooth intrinsic quadrics of Picard number two described
in [11] are precisely the examples with α = m = 0 in Setting 4 of the above theorem.
Moreover, the cases n = 5 and n = 6 in Settings 1 to 4 of Theorem 3.2.8 are the
ones allowing a torus action of complexity one and thus are exactly the overlap with
the description presented in Chapter two. As in our classification of varieties with
a torus action of complexity one, we compute the anticanonical class and in this
way derive the Fano and the truly almost Fano varieties among all smooth intrinsic
quadrics of Picard number two, see Theorem 3.2.10 and Theorem 3.2.11. As an
application, we prove that smooth Fano intrinsic quadrics of Picard number two
fulfill Mukai’s conjecture, see Proposition 3.2.14.

Having studied intrinsic quadrics of Picard number two, we go one step further
and investigate smooth intrinsic quadrics of Picard number three. In Theorem 3.3.2,
we provide a complete description of the smooth projective full intrinsic quadrics
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of Picard number three in arbitrary dimension. It turns out that there are no Fano
varieties in this case. We obtain the following corollary:

Corollary 3.3.3. Let X be a smooth full intrinsic quadric. If X is Fano, then the
Picard number of X is at most two. In particular, X then is isomorphic to one of
the varieties of Proposition 3.2.1 or of Setting 4 in Theorem 3.2.10 with α = t = 0.

In general, it turns out that the case of Picard number three is considerably
larger than the case of Picard number two: Specializing to dimension at most three
we obtain in Theorem 3.3.5 five series of varieties, i.e. five collections of infinitely
many varieties whose Cox rings are defined by the same relation but integer param-
eters are allowed in the degrees of the generators, plus one sporadic variety, i.e. a
single variety fitting not into the other series. In dimension four, we obtain 31 series
plus six sporadic varieties, all of them listed in the table of the following theorem,
where the sporadic varieties are Nos. 5, 15 and 34–37.

Theorem 3.3.6. Every smooth intrinsic quadric of Picard number three and dimen-
sion four is isomorphic to one of the following varieties X, specified by their Cox
ring R(X) and their semiample cone SAmple(X), where we always have Cl(X) =
Z3 and the grading is fixed by the matrix Q = [w1, . . . , w8] of generator degrees
wi = deg(Ti) ∈ Cl(X). If not indicated otherwise, the letters a, b and c denote
arbitrary integers.

No. R(X) Q = [w1, . . . , w8]
SAmple(X) is the
the intersection

of the following cones

1 K[T1,...,T8]
〈T1T2+T3T4+T5T6+T7T8〉

1 a− 1 0 a 0 a 1 a− 1
0 1 1 0 0 1 0 1
0 1 0 1 1 0 0 1


a ≥ 0

cone(w1, w6, w4 + w6)

2 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 a 1
0 1 1 0 0 1 1 0
0 1 0 1 1 0 b c


b ≤ 0, c < 0

cone(w1, w3, w5), cone(w1, w5, w7),
cone(w2, w5, w8), cone(w4, w7, w8)

3 K[T1,...,T6,S1,S2]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 0 1
0 1 1 0 0 1 1 a
0 1 0 1 1 0 0 0

 cone(w1, w5, w7), cone(w2, w3, w8)

4 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 0 1
0 1 1 0 0 1 1 −1
0 1 0 1 1 0 a 0

 cone(w1, w3, w4), cone(w2, w7, w8)

5 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 0 1
0 1 1 0 0 1 1 −2
0 1 0 1 1 0 −1 1

 cone(w1, w5, w7), cone(w1, w6, w8)

6 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 1 1
0 1 1 0 0 1 0 0
0 1 0 1 1 0 a b


0 > a ≥ b

cone(w1, w3, w5), cone(w2, w5, w7)

7 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 1 1
0 1 1 0 0 1 0 −1
0 1 0 1 1 0 a 0


a < 0

cone(w1, w3, w5)

8 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 1 a
0 1 1 0 0 1 0 1
0 1 0 1 1 0 −1 1

 cone(w1, w3, w5), cone(w1, w7, w8)

9 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 a− 1 0 a 0 a b 1
0 1 1 0 0 1 1 0
0 1 0 1 1 0 0 0


a ≥ 0

cone(w1, w4, w6), cone(w2, w6, w8),
cone(w4, w7, w8)

10 K[T1,...,T6,S1,S2]
〈T1T2+T3T4+T5T6〉

1 a− 1 0 a 0 a 1 1
0 1 1 0 0 1 0 0
0 1 0 1 1 0 0 0


a > 0

cone(w1, w4, w6), cone(w2, w6, w7)
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11 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 a− 1 0 a 0 a 1 b
0 1 1 0 0 1 0 c
0 1 0 1 1 0 0 1


a ≥ 0

cone(w1, w6, w8), cone(w2, w6, w7),
cone(w4, w6, w7)

12 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 0 0 1 1 0 1 0
0 1 1 0 0 1 a 0
0 −1 0 −1 0 −1 1 1

 cone(w2, w3, w7), cone(w1, w3, w8)

13 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 0 0 1 1 0 a 0
0 1 1 0 0 1 b 0
0 0 0 0 0 0 1 1

 cone(w1, w3, w7), cone(w1, w3, w8)

14 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 0 0 1 1 0 0 0
0 1 1 0 0 1 0 0
0 a 0 a b a− b 1 1

 cone(w1, w6, w7), cone(w2, w4, w7)
cone(w2, w5, w7), cone(w3, w5, w7)
cone(w4, w6, w7), cone(w1, w3, w7)

15 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 1 0
0 2 1 1 1 1 −1 0
0 −2 0 −2 −1 −1 1 1

 cone(w1, w3, w7), cone(w1, w3, w8)

16 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 1 0 2 1 1 0 0
0 a 0 a b a− b 1 1
0 0 1 −1 0 0 −1 0

 cone(w1, w4, w8), cone(w1, w7, w8),
cone(w2, w4, w8), cone(w2, w7, w8),
cone(w5, w4, w8), cone(w5, w7, w8),
cone(w6, w4, w8), cone(w6, w7, w8)

17 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 1 0 2 1 1 0 a
0 0 0 0 0 0 1 1
0 0 1 −1 0 0 0 1

 cone(w1, w3, w7), cone(w1, w4, w8),
cone(w1, w7, w8)

18 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 1 0 2 1 1 0 −2
a 1 0 1 + a a + b 1− b 1 −a
0 0 1 −1 0 0 0 1

 cone(w1, w3, w7), cone(w1, w7, w8),
cone(w2, w3, w7), cone(w2, w7, w8),
cone(w5, w3, w7), cone(w5, w7, w8),
cone(w6, w3, w7), cone(w6, w7, w8)

19 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 a 1
0 2 1 1 1 0 b −1
0 0 0 0 0 1 1 0

 cone(w1, w3, w6), cone(w1, w3, w7)

20 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 0 1
0 2 1 1 1 0 a b
0 0 0 0 0 1 1 1

 cone(w1, w3, w6), cone(w1, w3, w7),
cone(w2, w3, w8), cone(w3, w7, w8)

21 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 1
0 2 1 1 1 0 a b
0 0 0 0 0 1 1 1


a ≥ b

cone(w1, w3, w6), cone(w2, w3, w7),
cone(w3, w6, w7)

22 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 1
0 2 1 1 1 0 a −1
0 0 0 0 0 1 1 0


a 6= −2

cone(w1, w3, w6), cone(w2, w3, w7)

23 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 a− 1
0 2 1 1 1 0 0 1
0 0 0 0 0 1 1 a

 cone(w1, w7, w8), cone(w2, w3, w7),
cone(w3, w6, w7), cone(w3, w7, w8)

24 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 −1
0 2 1 1 1 0 a 1
0 0 0 0 0 1 1 0

 cone(w1, w3, w6), cone(w2, w3, w7)

25 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 a
0 2 1 1 1 0 −1 1
0 0 0 0 0 1 0 1

 cone(w1, w3, w6), cone(w1, w7, w8)

26 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 0 1
0 2 1 1 1 0 0 −1
0 a 0 a a/2 1 1 b


a ∈ 2Z, a ≤ 0

cone(w1, w3, w7), cone(w2, w6, w8),
cone(w3, w6, w8)

27 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 0 1
0 2 1 1 1 0 0 −2
0 a 0 a a/2 1 1 1− a


a ∈ 2Z, a < 0

cone(w1, w3, w6), cone(w3, w6, w8)

28 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 −1 −1 0
0 2 1 1 1 0 0 0
0 a 0 a a/2 1 1 1


a ∈ 2Z, a < 0

cone(w2, w3, w8), cone(w3, w6, w8)

29 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 1
0 2 1 1 1 0 −2 −2
0 a 0 a a/2 1 1− a 1− a


a ∈ 2Z, a ≤ 0

cone(w1, w3, w6), cone(w3, w6, w7)

30 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 −1 0 0
0 2 1 1 1 0 0 0
0 a 0 a a/2 1 1 1


a ∈ 2Z, a ≤ 0

cone(w2, w3, w7), cone(w3, w6, w7)
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31 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 1
0 2 1 1 1 0 −2 −1
0 a 0 a a/2 1 1− a b


a ∈ 2Z, a ≤ 0

cone(w1, w3, w6), cone(w2, w6, w8),
cone(w3, w6, w7), cone(w3, w6, w8)

32 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 −1 0 −1
0 2 1 1 1 0 0 1
0 a 0 a a/2 1 1 b


a ∈ 2Z, a ≤ 0

cone(w1, w7, w8), cone(w2, w3, w7),
cone(w3, w6, w7), cone(w3, w7, w8)

33 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 −1
0 2 1 1 1 0 −1 1
0 a 0 a a/2 1 b 1− b


a ∈ 2Z, a ≤ 0

cone(w1, w3, w6), cone(w1, w6, w8),
cone(w2, w7, w8), cone(w3, w6, w7)

34 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 0 1
0 2 1 1 1 0 0 −1
0 −2 0 −2 −1 1 1 1

 cone(w1, w3, w6), cone(w1, w3, w8)

35 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 1
0 2 1 1 1 0 −1 −1
0 −2 0 −2 −1 1 1 1

 cone(w1, w3, w6), cone(w1, w3, w8)

36 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 1
0 2 1 1 1 0 −1 −1
0 −2 0 −2 −1 1 1 0

 cone(w1, w3, w6), cone(w1, w3, w7)

37 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 −1
0 2 1 1 1 0 −1 1
0 −2 0 −2 −1 1 1 0

 cone(w1, w3, w6), cone(w1, w3, w7)

Moreover, each of the listed data sets defines a smooth intrinsic quadric of Picard
number three and dimension four.

We also determine the smooth Fano and the smooth almost Fano intrinsic
quadrics of Picard number three and dimension at most four; see Theorem 3.3.5
for the three-dimensional case and the following theorems for the case of dimen-
sion four. It turns out that all smooth Fano intrinsic quadrics of dimension at most
four and Picard number three admit a torus action of complexity one and that there
is exactly one smooth almost Fano intrinsic quadric of dimension four and Picard
number three that is not a complexity one T -variety, see No. 1 in Theorem 3.3.10. In
order to provide a comprehensive description of our classification results for smooth
projective Fano intrinsic quadrics in Picard number three and dimension four, we
give in Section 3.4 a geometric interpretation in terms of elementary contractions.

Theorem 3.3.8. Every smooth Fano intrinsic quadric of Picard number three
and dimension four is isomorphic to one of the following varieties X, specified by
their Cox ring R(X) and their semiample cone SAmple(X), where we always have
Cl(X) = Z3 and the grading is fixed by the matrix Q = [w1, . . . , w8] of generator
degrees wi = deg(Ti) ∈ Cl(X).

No. R(X) Q = [w1, . . . , w8] −KX

2 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 0 1
0 1 1 0 0 1 1 0
0 1 0 1 1 0 0 −1

 13
1



3 K[T1,...,T6,S1,S2]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 0 1
0 1 1 0 0 1 1 a
0 1 0 1 1 0 0 0


−2 ≤ a ≤ 0

 1
3 + a

2



4 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 0 1
0 1 1 0 0 1 1 −1
0 1 0 1 1 0 a 0


−1 ≤ a ≤ 0

 1
2

2 + a



7 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 1 1
0 1 1 0 0 1 0 −1
0 1 0 1 1 0 −1 0

 21
1


9 K[T1,...,T8]

〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 0 1
0 1 1 0 0 1 1 0
0 1 0 1 1 0 0 0

 13
2
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13, 14 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 0 0 1 1 0 a 0
0 1 1 0 0 1 b 0
0 0 0 0 0 0 1 1


−1 ≤ a, b ≤ 1

2 + a
2 + b

2



16 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 1 0 2 1 1 0 0
0 0 0 0 0 0 1 1
0 0 1 −1 0 0 −1 0

  4
2
−1



17, 18 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 1 0 2 1 1 0 a
0 0 0 0 0 0 1 1
0 0 1 −1 0 0 0 1


−3 ≤ a ≤ 1

4 + a
2
1



19 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 0 1
0 2 1 1 1 0 a −1
0 0 0 0 0 1 1 0


−1 ≤ a ≤ 1

 1
2 + a

2



20, 21, 30 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 0 1
0 2 1 1 1 0 0 a
0 0 0 0 0 1 1 1


−2 ≤ a ≤ −1

 1
3 + a

3



26 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 0 1
0 2 1 1 1 0 0 −1
0 0 0 0 0 1 1 a


−1 ≤ a ≤ 0

 1
2

2 + a



Moreover, each of the listed data defines a smooth Fano intrinsic quadric of Picard
number three and dimension four.

Theorem 3.3.10. Every smooth truly almost Fano intrinsic quadric of Picard num-
ber three and dimension four is isomorphic to one of the following varieties X,
specified by their Cox ring R(X) and their semiample cone SAmple(X), where we
always have Cl(X) = Z3 and the grading is fixed by the matrix Q = [w1, . . . , w8] of
generator degrees wi = deg(Ti) ∈ Cl(X).

No. R(X) Q = [w1, . . . , w8]
SAmple(X) is the intersection

of the following cones

1 K[T1,...,T8]
〈T1T2+T3T4+T5T6+T7T8〉

1 −1 0 0 0 0 1 −1
0 1 1 0 0 1 0 1
0 1 0 1 1 0 0 1

 cone(w1, w6, w4 + w6)

2 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 a 1
0 1 1 0 0 1 1 0
0 1 0 1 1 0 b c


−1 ≤ a ≤ 0, b = −1, c = −1
or − 1 ≤ a ≤ 0, b = 0, c = −2
or − 1 ≤ a ≤ 0, b = 1, c = 0

or a = −1, b = 0, c = −1

cone(w1, w3, w5), cone(w1, w5, w7),
cone(w2, w5, w8), cone(w4, w7, w8)

3 K[T1,...,T6,S1,S2]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 0 1
0 1 1 0 0 1 1 −3
0 1 0 1 1 0 0 0

 cone(w1, w5, w7), cone(w2, w3, w8)

4 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 0 1
0 1 1 0 0 1 1 −1
0 1 0 1 1 0 a 0


a = 1 or a = −2

cone(w1, w3, w4), cone(w2, w7, w8)

6 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 1 1
0 1 1 0 0 1 0 0
0 1 0 1 1 0 −1 −1

 cone(w1, w3, w5), cone(w2, w5, w7)

7 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 1 1
0 1 1 0 0 1 0 −1
0 1 0 1 1 0 −2 0

 cone(w1, w3, w5)

8 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 1 a
0 1 1 0 0 1 0 1
0 1 0 1 1 0 −1 1


−1 ≤ a ≤ 0

cone(w1, w3, w5), cone(w1, w7, w8)

9 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 −1 1
0 1 1 0 0 1 1 0
0 1 0 1 1 0 0 0

 cone(w1, w4, w6), cone(w2, w6, w8),
cone(w4, w7, w8)

10 K[T1,...,T6,S1,S2]
〈T1T2+T3T4+T5T6〉

1 0 0 1 0 1 1 1
0 1 1 0 0 1 0 0
0 1 0 1 1 0 0 0

 cone(w1, w4, w6), cone(w2, w6, w7)
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11 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 1 b
0 1 1 0 0 1 0 1
0 1 0 1 1 0 0 1


−1 ≤ b ≤ 0

cone(w1, w6, w8), cone(w2, w6, w7),
cone(w4, w6, w7)

12 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 0 0 1 1 0 1 0
0 1 1 0 0 1 a 0
0 −1 0 −1 0 −1 1 1


−2 ≤ a ≤ −1

cone(w2, w3, w7), cone(w1, w3, w8)

13 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 0 0 1 1 0 a 0
0 1 1 0 0 1 b 0
0 0 0 0 0 0 1 1


a = ±2, −2 ≤ b ≤ 2

or b = ±2, −1 ≤ a ≤ 1

cone(w1, w3, w7), cone(w1, w3, w8)

14 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 0 0 1 1 0 0 0
0 1 1 0 0 1 0 0
0 −1 0 −1 b −1− b 1 1


a = 1, 0 ≤ b ≤ 1
or a = 0, b = ±1

or a = −1, −1 ≤ b ≤ 0

cone(w1, w6, w7), cone(w2, w4, w7)
cone(w2, w5, w7), cone(w3, w5, w7)
cone(w4, w6, w7), cone(w1, w3, w7)

17 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 1 0 2 1 1 0 a
0 0 0 0 0 0 1 1
0 0 1 −1 0 0 0 1


a = −4 or a = 2

cone(w1, w3, w7), cone(w1, w4, w8),
cone(w1, w7, w8)

19 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 a 1
0 2 1 1 1 0 b −1
0 0 0 0 0 1 1 0


a = ±1, −2 ≤ b ≤ 2

or a = 0, b = ±2

cone(w1, w3, w6), cone(w1, w3, w7)

20 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 0 1
0 2 1 1 1 0 a b
0 0 0 0 0 1 1 1


a = −1, −2 ≤ b ≤ −1

or (a, b) = (0,−3)
or a = 1, −1 ≤ b ≤ 0

cone(w1, w3, w6), cone(w1, w3, w7),
cone(w2, w3, w8), cone(w3, w7, w8)

21 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 1
0 2 1 1 1 0 a b
0 0 0 0 0 1 1 1


(a, b) = (−1,−2)
or (a, b) = (0,−1)
or (a, b) = (1, 1)

cone(w1, w3, w6), cone(w2, w3, w7),
cone(w3, w6, w7)

22 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 1
0 2 1 1 1 0 a −1
0 0 0 0 0 1 1 0


−1 ≤ a ≤ 2

cone(w1, w3, w6), cone(w2, w3, w7)

23 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 −1
0 2 1 1 1 0 0 1
0 0 0 0 0 1 1 0

 cone(w1, w7, w8), cone(w2, w3, w7),
cone(w3, w6, w7), cone(w3, w7, w8)

24 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 −1
0 2 1 1 1 0 a 1
0 0 0 0 0 1 1 0


−4 ≤ a ≤ 0

cone(w1, w3, w6), cone(w2, w3, w7)

26 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 0 1
0 2 1 1 1 0 0 −1
0 0 0 0 0 1 1 −2

 cone(w1, w3, w7), cone(w2, w6, w8),
cone(w3, w6, w8)

31 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 1
0 2 1 1 1 0 −2 −1
0 0 0 0 0 1 1 0

 cone(w1, w3, w6), cone(w2, w6, w8),
cone(w3, w6, w7), cone(w3, w6, w8)

32 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 −1 0 −1
0 2 1 1 1 0 0 1
0 0 0 0 0 1 1 0

 cone(w1, w7, w8), cone(w2, w3, w7),
cone(w3, w6, w7), cone(w3, w7, w8)

34 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 0 1
0 2 1 1 1 0 0 −1
0 −2 0 −2 −1 1 1 1

 cone(w1, w3, w6), cone(w1, w3, w8)

35 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 1
0 2 1 1 1 0 −1 −1
0 −2 0 −2 −1 1 1 1

 cone(w1, w3, w6), cone(w1, w3, w8)

Moreover, each of the listed data sets defines a smooth truly almost Fano intrinsic
quadric of Picard number three and dimension four.
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Chapter four, which was partly presented in [26], is devoted to the study of the
base point free monoid, i.e. the monoid of base point free divisor classes of a Mori
dream space X. The first section concerns embedded monoids, that means finitely
generated monoids in finitely generated abelian groups, and thereby generalizes
ideas of the theory on affine semigroups [18, Chapter 2] to monoids with non-trivial
torsion part. In the subsequent sections, we study the base point free monoid of a
Mori dream space X, i.e. the embedded monoid of base point free Cartier divisor
classes in the Picard group. For complete toric varieties, it is well-known that each
semiample Cartier divisor class is base point free, see, for instance, [21], i.e. the
base point free monoid is saturated. For Mori dream spaces this is in general not
true – not even if we restrict to smooth K∗-surfaces, see Example 4.8.4. As a first
criterion for the base point free monoid of a Mori dream space to be saturated we
show in Corollary 4.3.4 that this is the case if all maximal cones of the minimal toric
ambient variety are full-dimensional. For varieties with a torus action of complexity
one, we derive the following criterion:

Corollary 4.4.9. Let X be a rational non-toric projective Q-factorial variety with
a torus action of complexity one. If all maximal cones of the minimal toric ambient
variety of X are big cones, then the base point free monoid of X is saturated.

Furthermore, as a consequence of the classifications done in Chapters two and
three, we provide sample classes of varieties with saturated base point free monoid,
see Corollaries 4.3.6, 4.3.7 and 4.4.13.

Another base point free question was raised by Takao Fujita in the end of
the eighties: Fujita’s base point free conjecture [32] claims that if X is a smooth
projective variety with canonical class KX , then KX +mL is base point free for
all m ≥ dim(X) + 1 and for all ample Cartier divisor classes L. The study of this
conjecture has received much interest; it was proven for toric varieties by Fujino [30]
and in positive characteristic by Smith [64]. Moreover, there are results up to
dimension five: For curves, the conjecture is a consequence of Riemann-Roch; for
surfaces, it was proven by Reider [60]; Ein and Lazarsfeld [25] established the proof
for threefolds, Kawamata [46] proved the conjecture in dimension four and recently,
Ye and Zhu [68] presented a proof in dimension five. Despite this substantial
progress on Fujita’s base point free conjecture, it remains in general still widely
open. As a consequence of the classifications done in Chapters two and tree, we
obtain the following result:

Corollaries 4.3.9, 4.4.14. Fujita’s base point free conjecture is fulfilled if X belongs
to one of the following classes of varieties:

(i) irreducible smooth rational projective non-toric varieties of Picard number
at most two admitting a torus action of complexity one,

(ii) smooth intrinsic quadrics of Picard number at most two.

Moreover, if X is a Mori dream space whose minimal toric ambient variety has
only full-dimensional maximal cones, Fujita’s base point free conjecture is fulfilled if
in addition the anticanoncal class KX is semiample or if X has at most log terminal
singularities, see Corollary 4.3.8. In Picard number one we use Frobenius numbers
to prove the following generalized version for Gorenstein varieties.

Theorem 4.5.5. Let X be a rational non-toric projective variety with a torus action
of complexity one. If Cl(X) = Z holds and if X is Gorenstein, then X fulfills Fujita’s
base point free conjecture.

A further result for rational non-toric locally factorial varieties with a torus
action of complexity one and Picard number two is the following: Proposition 4.6.3
shows that Fujita’s base point free conjecture is for these varieties equivalent to the
same statement with “base point free” replaced by “semiample”. Hence in this case
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the conjecture is a question of convex geometry rather than of monoid membership.
We obtain the following:

Corollary 4.6.4. Let X be an irreducible normal rational non-toric projective lo-
cally factorial variety of Picard number two admitting a torus action of complexity
one. If KX is semiample or if X is log terminal, then X fulfills Fujita’s base point
free conjecture.

In the final part of Chapter four, we present algorithms for the base point
free monoid of Mori dream spaces using the combinatorial framework developed
in [3]. In Section 4.7 we develop algorithms for embedded monoids, among others
for computing generators of intersections of embedded monoids and for computing
an element of the conductor ideal; see Algorithms 4.7.1, 4.7.3, 4.7.5 and 4.7.7.
Applying these algorithms to Mori dream spaces, Section 4.8 provides algorithms
for testing whether a given Weil divisor class is base point free and for computing
generators of the base point free monoid.

These algorithms, together with the non-emptyness of the conductor ideal of
the base point free monoid of a Mori dream space, play an important role in our
main algorithm, Algorithm 4.9.4, testing Fujita’s base point free conjecture. Since
our algorithm makes use of the canonical class KX , it applies to Q-factorial Mori
dream spaces with known canonical class KX , i.e. for instance if X is spherical or
if its Cox ring is a complete intersection, see Remark 4.9.1 for details.

Algorithm 4.9.4. Input: A Q-factorial Mori dream space X and its canonical
class KX . Output: True if X fulfills Fujita’s base point free conjecture, false if not.

In [27], we provide an implementation of our algorithms building on the two
Maple-based software packages convex [29] and MDSpackage [38]. Using this imple-
mentation, we prove Fujita’s base point free conjecture for a six-dimensional Mori
dream space in Example 4.9.5, and in Example 4.9.6, we study a locally factorial
variety with a torus action of complexity one that does not fulfill Fujita’s base point
free conjecture. Note that this depicts an interesting difference to the toric case,
where Fujino’s proof [30] of Fujita’s base point free conjecture works also for vari-
eties with arbitrary singularities. A further difference between toric varieties and
varieties with a torus action of complexity is illustrated in Example 4.8.4: Here the
implementation was applied to construct a first example of a smooth K∗-surface
of Picard number twelve admitting a semiample Cartier divisor with base points,
thereby illustrating that “semiample” and “base point free” differ in the case of
varieties with a torus action of complexity one.



CHAPTER 1

Preliminaries

Throughout this thesis, K denotes an algebraically closed field of characteristic
zero. In Chapter one, we give a short summary of the concepts forming the basis
for the subsequent chapters. Note that Chapter one does not contain results of the
author of this thesis. Unless stated otherwise, our reference is the book on Cox
rings [3] written by I. Arzhantsev, U. Derenthal, J. Hausen and A. Laface.

In the first section, Section 1.1, we recall the basic concepts of divisors, Cox
rings and good quotients. In Section 1.2, we explain how to construct a variety
and in particular all Mori dream spaces starting with some combinatorial data, so
called bunched rings. In Section 1.3, we turn to the geometric aspects of Mori dream
spaces described in terms of their defining bunched ring. Finally, in Section 1.4,
we recall the combinatorial description of rational varieties with a torus action of
complexity one via a pair of matrices.

1.1. Divisors, Cox rings and good quotients

We first recall from [3] the concepts of divisors and Cox rings and then turn to
good quotients which allow us to interpret the Cox sheaf geometrically. Consider an
irreducible normal prevariety X over K. A prime divisor D on X is an irreducible
subvariety D ⊆ X of codimension one. The Weil divisor group WDiv(X) is the free
abelian group generated by all prime divisors on X. We call its elements, i.e. finite
sums

∑
aDD of prime divisors D with integer coefficients aD, the Weil divisors

on X. A Weil divisor D =
∑
aDD is called effective if aD ≥ 0 holds for all prime

divisors D; we denote this circumstance by D ≥ 0. A principal divisor is a Weil
divisor D admitting a function f ∈ K(X)∗ such that

div(f) =
∑

ordD(f)D

holds, where the sum runs over all prime divisors D ⊆ X and ordD(f) denotes
the vanishing order of f along D. For any open subset U ⊆ X, there is a group
homomorphism WDiv(X) → WDiv(U) defined by mapping a prime divisor D to
its restriction D|U , where we set D|U := 0 if D ∩ U is empty and D|U := D ∩ U
otherwise. A Weil divisor D ∈ WDiv(X) is called a Cartier divisor if it is locally
principal, i.e. if there is an open cover {Ui}i∈I such that each D|Ui is principal.
By PDiv(X) ⊆ CDiv(X) ⊆WDiv(X) we denote the subgroups of principal divisors
and Cartier divisors in the Weil divisor group. The divisor class group and the
Picard group are the factor groups

Cl(X) := WDiv(X)/PDiv(X) and Pic(X) := CDiv(X)/PDiv(X),

respectively. By [D] we denote the class of a Weil divisor D in Cl(X). Two Weil
divisors D,E ∈WDiv(X) are said to be linearly equivalent if [D] = [E] holds. The
Picard number %(X) of X is the rank of its Picard group.

Consider a Weil divisor D on an irreducible, normal prevariety X as well as a
non-zero section f ∈ Γ(X,OX(D)). We call the effective divisor

divD(f) := div(f) +D ∈ WDiv(X)

14



1.1. DIVISORS, COX RINGS AND GOOD QUOTIENTS 15

the D-divisor of f . To any Weil divisor D on X one associates its sheaf of OX-
modules OX(D) by setting

Γ(U,OX(D)) := {f ∈ K(X)∗; divD(f)|U ≥ 0} ∪ {0}

for each open subset U ⊆ X. Note that f1f2 ∈ Γ(U,OX(D1 + D2)) holds for all
fi ∈ Γ(U,OX(Di)), i = 1, 2. For a subgroup K ⊆WDiv(X) we define the sheaf of
divisorial algebras

S :=
⊕
D∈K

SD , SD := OX(D) ,

where the multiplication in S is defined by multiplying homogeneous sections in the
function field K(X).

The complete linear system |D| of a Weil divisor D ∈WDiv(X) is the set of all
effective Weil divisors being linearly equivalent to D, i.e. the set

|D| := {E ∈WDiv(X); E ≥ 0, E ∼ D} = {divD(f); f ∈ Γ(X,OX(D)) \ {0}}.

Note that we have a surjection P(Γ(X,OX(D))) → |D| that is a bijection if X is
projective. Furthermore, if D and E are linearly equivalent Weil divisors on X,
then the complete linear systems |D| and |E| coincide.
Construction 1.1.1. Consider an irreducible, normal prevariety X with finitely
generated divisor class group Cl(X) and only constant invertible global functions,
i.e. Γ(X,OX) = K∗ holds. We fix a subgroup K ⊆ WDiv(X) such that the
map π : K → Cl(X), D 7→ [D] is surjective. By K0 we denote the kernel of π.
We further choose a group homomorphism χ : K0 → K(X)∗ with div(χ(E)) = E
for all E ∈ K0. Let S be the sheaf of divisorial algebras associated with K and
denote by I the sheaf of ideals of S locally generated by the sections 1 − χ(E),
where E runs through all elements of K0. The Cox sheaf of X is the quotient sheaf
R := S/I together with the Cl(X)-grading

R =
⊕

[D]∈Cl(X)

RD, RD := p

 ⊕
D′∈π−1([D])

SD′

 ,

where p : S → R denotes the projection. The Cox ring of X is the ring of global
sections

R(X) := Γ(X,R) =
⊕

[D]∈Cl(X)

Γ(X,R[D]) .

Note that if Cl(X) is torsion-free, then the Cox sheaf can be defined in a simpler
way by setting R[D] := OX(D). One can show that the Cox ring of X, up to
isomorphism, does not depend on the choices made for K and χ.

Example 1.1.2. The Cox ring of the projective space Pn is R(Pn) = K[T0, . . . , Tn],
where the grading is given by deg(Ti) = 1 for all 0 ≤ i ≤ n.
Definition 1.1.3. Let X be an irreducible normal projective variety with finitely
generated divisor class group Cl(X). If the Cox ringR(X) ofX is finitely generated,
then we call X a Mori dream space, MDS for short.

Definition 1.1.4. Let K be an abelian group and consider a K-graded integral
K-algebra R =

⊕
w∈K K.

(i) A non-unit 0 6= f ∈ R is called K-prime if it is K-homogeneous and f |gh
with K-homogeneous elements g, h ∈ R implies f |g or f |h.

(ii) We say that R is K-factorial or factorially K-graded if every non-zero
K-homogeneous non-unit f ∈ R is a product of K-primes.

Theorem 1.1.5. Let X be an irreducible normal prevariety with only constant
invertible global functions and finitely generated divisor class group Cl(X). Then
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the Cox ring R(X) is integral, normal and Cl(X)-factorial. If Cl(X) is torsion-free,
then R(X) is a UFD.

The aim of the remaining part of this section is to present the geometric inter-
pretation of the Cox sheaf. To do so, we first recall some definitions on algebraic
varieties and quasitori. An (affine) algebraic group is an (affine) variety G over K
with a group structure such that

G×G→ G, (g1, g2) 7→ g1g2 and G→ G, g 7→ g−1

are morphisms of varieties. A morphism of algebraic groups G and G′ is a homor-
phism G → G′ of the underlying groups that is in addition a morphism of vari-
eties. We denote by K∗ the multiplicative group of K. A character of an algebraic
group G is a morphism of algebraic groups χ : G → K∗. Together with pointwise
multiplication, the characters of an algebraic group G form a group which we de-
note by X(G). A quasitorus is an affine algebraic group G whose algebra of regular
functions Γ(G,O) is generated as a K-vector space by the characters χ ∈ X(G). A
torus is a connected quasitorus. Note that each torus is isomorphic to some (K∗)n
and that each quasitorus is isomorphic to a direct sum of some finite abelian group
and a torus.

Proposition 1.1.6. There are contravariant functors being essentially inverse to
each other between the category of finitely generated abelian groups and the category
of quasitori; they are given by

K 7→ Spec(K[K]),

[ψ̄ : K → K ′] 7→ [Spec(K[ψ̄]) : Spec(K[K ′])→ Spec(K[K])],

X(G) ← [ G,

[ϕ̄∗ : X(G′)→ X(G), χ′ 7→ χ′ ◦ ϕ̄] ← [ [ϕ̄ : G→ G′].

We now recall the correspondence between affine K-algebras graded by a finitely
generated group and affine varieties with an action of a quasitorus. Let K be
a finitely generated group and let R be a K-graded affine K-algebra. Set X :=
Spec(R). Choosing K-homogeneous generators f1, . . . , fr of R with fi ∈ Rwi gives
a closed embeddingX → Kr, x 7→ (f1(x), . . . , fr(x)). Note thatX ⊆ Kr is invariant
under the diagonal action of the quasitorus G := Spec(K[K]) on Kr given by

g · x := (χw1(g)x1, . . . , χ
wr (g)xr).

Conversely, let G be a quasitorus acting on an affine variety X. We obtain a X(G)-
grading of Γ(X,O) by setting

Γ(X,O) =
⊕

χ∈X(G)

Γ(X,O)χ , Γ(X,O)χ := {f ∈ Γ(X,O); f(g · x) = χ(g)f(x)} .

Proposition 1.1.7. There are contravariant functors being essentially inverse to
each other between the category of affine algebras graded by finitely generated abelian
groups and the category of affine varieties with quasitorus action, given by

(R,K) 7→ (Spec(R),Spec(K[K])),(
ψ, ψ̄

)
7→

(
Spec(ψ),Spec(K[ψ̄])

)
,

(Γ(X,O),X(G)) ← [ (X,G),

(ϕ∗, ϕ̄∗) ← [ (ϕ, ϕ̄).

An (affine) G-variety is an (affine) variety X together with an action µ : G ×
X → X of an algebraic group G such that µ is a morphism. Recall that a rational
representation of an affine algebraic group G is a morphism G→ GL(V ) of algebraic
groups to the affine algebraic group GL(V ) of linear automorphisms of a finite
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dimensional K-vector space V . A reductive algebraic group is an affine algebraic
group G such that every rational representation of G splits into irreducible ones.
For instance, all finite groups, quasitori and the classical groups GL(n), SL(n), O(n)
and SO(n) are reductive.

Definition 1.1.8. Consider a reductive algebraic group G and a G-variety X. The
ring of invariants is

O(X)G := {f ∈ Γ(X,O); f(g · x) = f(x) for all x ∈ X, g ∈ G} .

A good quotient is a morphism π : X → Y of varieties such that the following
conditions hold:

(i) The morphism π is affine, i.e. the preimage π−1(V ) of any open affine
subset V ⊆ Y is an affine variety.

(ii) The morphism π is G-invariant, i.e. it is constant along orbits.
(iii) The homomorphism of sheaves π∗ : OY → (π∗OX)G is an isomorphism.

A morphism π : X → Y of varieties is called geometric if it is a good quotient and
if each of its fibers consists of one single G-orbit.

Since the quotient space Y of a good quotient π : X → Y is unique up to
isomorphism, we denote it by X//G. Note that good quotients for a given variety X
need not exist. In case X is an affine G-variety and G is an reductive algebraic
group G, Hilbert’s Finiteness Theorem ensures that the algebra O(X)G is finitely
generated. We then obtain a good quotient

X → X//G = Spec
(
O(X)G

)
.

Example 1.1.9. For any 0 ≤ i ≤ n we have an action of G := K∗ on X = Kn
via t · (x1, . . . , xn) := (x1, . . . , xi, txi+1, . . . , txn). Note that O(X)K

∗
= K[T1, . . . , Ti]

and X//G = Ki hold.

Now we are ready to present the geometric counterpart of the Cox sheaf R.
For this purpose, let X be an irreducible normal variety with only constant invert-
ible global functions and finitely generated divisor class group Cl(X). If the Cox
ring R(X) of X is finitely generated, then the Cox sheaf R is locally of finite type
allowing us to take the relative spectrum. In this way we obtain an irreducible
normal prevariety X̂ := SpecX(R). The Cl(X)-grading of the Cox sheaf R induces
an action of HX := Spec(K[Cl(X)]) on X̂. Note that the canonical morphism
pX : X̂ → X is a good quotient for this action and that we have an isomorphism of
sheaves R ∼= (pX)∗(OX). Furthermore, there is an open HX -invariant embedding
of X̂ into the affine HX -variety X := Spec(R(X)) fitting into the following diagram

SpecX(R) X̂
ι //

pX //HX

��

X Spec(R(X))

X .

We call X̂ → X the characteristic space, HX the characteristic quasitorus and X
the total coordinate space of X.

Example 1.1.10. For X = Pn, the total coordinate space is X = Kn+1 and the
characteristic space is given by

Kn+1 \ {0}
//K∗ // Pn, x 7→ [x] .
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1.2. Bunched rings and Mori dream spaces

Similarly to the description of a toric variety in terms of its lattice fan, it is
possible to encode Mori dream spaces up to isomorphism in combinatorial objects,
so called bunched rings [11, 35]. The objective of this section is to discuss how
to construct a Mori dream space starting from a bunched ring; before doing so, we
briefly recall the correspondence between toric varieties and lattice fans.

A toric variety is an irreducible normal T -variety X together with a base
point x0 ∈ X such that T is a torus and such that the orbit map T → X, t 7→ t·x0 is
an open embedding. By a lattice fan (N,Σ) we mean a pair consisting of a lattice N
and a finite collection Σ of pointed convex polyhedral cones σ ⊆ NQ := N ⊗Z Q
with the property that the faces of each σ ∈ Σ are contained in Σ and that the
intersection of two cones σ, σ′ ∈ Σ is a face of both σ and σ′. Let us recall the
following correspondence between toric varieties and lattice fans:

Proposition 1.2.1. There are covariant functors being essentially inverse to each
other between the category of lattice fans and the category of toric varieties.

We fix the setting for the rest of the section. Let K be a finitely generated
abelian group and R an integral factorially K-graded affine K-algebra. Consider
a system F = (f1, . . . , fr) of pairwise non-associated K-prime generators of R.
The degree map is the homomorphism of abelian groups Q : E → K defined by
mapping the canonical base vectors ei ∈ E := Zr to the degrees wi := deg(fi) ∈ K.
By γ := Qr≥0 we denote the positive orthant. For indices 1 ≤ `1 < . . . < `s ≤ r
we set

γ`1...`s := γ`1,...,`s := cone(e`1 , . . . , e`s),

where we use the notation in the middle in case further clarification is needed. For
finitely generated abelian groups B we denote by BQ the associated rational vector
space. We shortly write b for b⊗ 1 ∈ BQ and, similarly, we keep the symbols when
passing from homomorphisms of groups B → B′ to the linear maps BQ → B′Q. The
relative interior of a convex polyhedral cone σ ⊆ AQ is denoted by σ◦. Consider
the canonical base vectors e1, . . . , er ∈ Qr.

Definition 1.2.2. In the above situation, we define the following:

(i) An F-face is a face γ0 � γ such that there is some point x ∈ X for which
xi is non-zero if and only if ei ∈ γ0 holds. We call Q(γ0) a projected
F-face and denote by ΩF the set of all projected F-faces.

(ii) An F-bunch is an non-empty subset Φ ⊆ ΩF such that τ◦1 ∩ τ◦2 6= ∅ holds
for all τi ∈ Φ and such that all τ̃ ∈ ΩF with τ◦ ⊆ τ̃◦ for some τ ∈ Φ are
contained in Φ.

(iii) An F-bunch Φ is called true if Q(γ0) ∈ Φ holds for every facet γ0 � γ.
(iv) An F-bunch Φ is called projective if there is u ∈ K such that we have

Φ = Φ(u) := {τ ∈ ΩF; u ∈ τ◦} .

(v) An F-bunch is called maximal if it cannot be enlarged by adding further
projected F-faces.

(vi) The grading of R is called almost free if for every facet γ0 � γ the image
Q(γ0 ∩ E) generates the abelian group K.

Definition 1.2.3. A bunched ring is a triple (R,F,Φ), where R is an integral,
normal, almost freely factorially K-graded affine K-algebra such that K∗ is the
multiplicative group of homogeneous units of R, F is a system of pairwise non-
associated K-prime generators of R and Φ is a true F-bunch. We always presume
the notation F = (f1, . . . , fr).
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We now associate a bunched ring (R,F,Φ) with a variety X having R as its Cox
ring. Recall that a variety X is called an A2-variety if for each two points x, x′ ∈ X
there is an affine, open neighborhood U ⊆ X containing x and x′. We say that a
variety X is A2-maximal if it is an A2-variety and admits no big open embedding
X ( X ′ into an A2-variety X ′, where big means that X ′ \X is of codimension at
least two in X ′.

Construction 1.2.4. Let (R,F,K) be a bunched ring. An F-face γ0 � γ is called
a relevant face if Q(γ0) ∈ Φ holds. The collection of relevant faces and the covering
collection of Φ are given by

rlv(Φ) := {γ0 � γ; γ0 F-face with Q(γ0) ∈ Φ} ,

cov(Φ) := {γ0 ∈ rlv(Φ); γ0 minimal with respect to “⊆”} .
Consider the action of the quasitorus H := Spec(K[K]) on the affine variety X :=
X(R,F,Φ) := Spec(R). To an F-face γ0 � γ we associate the localization

Xγ0 := Xf
u1
1 ···f

ur
r

for some (u1, . . . , ur) ∈ γ◦0 .

Note that this does not depend on the choice of (u1, . . . , ur) ∈ γ◦0 . We further set

X̂ := X̂(R,F,Φ) :=
⋃

γ0∈rlv(Φ)

Xγ0 .

The subset X̂ ⊆ X admits a good quotient pX : X̂ → X := X(R,F,Φ) := X̂//H
and every fi defines a prime divisor Di

X := pX(VX̂(fi)) on X. We call X =
X(R,F,Φ) a variety arising from a bunched ring. To simplify the notation, we
write cov(u) and rlv(u) instead of cov(Φ(u)) and rlv(Φ(u)) in case of a projective
bunch Φ = Φ(u).

Example 1.2.5. The projectivized split vector bundle X = P(OP1
⊕ OP1

(a)),
where a ∈ Z≥0, arises from the following bunched ring (R,F,Φ): the ring R =
K[T1, T2, T3, T4] is generated by F = (T1, T2, T3, T4); the degrees of the Ti as well as
the bunch Φ consisting of the two cones Q2

≥0 and cone((1, 0), (a, 1)) are as follows:

(deg(T1), . . . ,deg(T4)) =

(
1 1 0 a
0 0 1 1

)
,

(0, 1) (a, 1)

(1, 0)

.

Note that X is a toric Hirzebruch surface showing up in the classification of smooth
complete toric varieties of Picard number two done by Kleinschmidt [47].

Theorem 1.2.6. Let X = X(R,F,Φ) arise from a bunched ring (R,F,Φ). Then X
is an irreducible normal A2-variety with only constant invertible global functions
such that dim(X) = dim(R)− dim(KQ) holds. Moreover, pX : X̂ → X is a charac-
teristic space and we have

Cl(X) ∼= K, R(X) ∼= R .

Theorem 1.2.7. Consider an irreducible normal A2-variety X with only constant
invertible global functions, finitely generated divisor class group K := Cl(X) and
finitely generated Cox ring R(X). Let F be any finite system of pairwise nonasso-
ciated K-prime generators for R. If X is A2-maximal, then X ∼= X(R,F,Φ) holds
with some maximal F-bunch Φ.

Later in this thesis, when classifying certain classes of Mori dream spaces, we
will relay on the following corollary: it tells us that a Mori dream space is fixed up
to isomorphism by its Cox ring and an ample class u ∈ Cl(X).

Corollary 1.2.8. Let X be a Mori dream space. Then X ∼= X(R,F,Φ(u)) holds
with some projective F-bunch Φ(u).
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In the rest of the section, we will construct the embedding of a varietyX(R,F,Φ)
into its so called minimal ambient toric variety.

Construction 1.2.9. Consider a bunched ring (R,F,Φ) with a system of gener-
ators F = (f1, . . . , fr) and set E := Zr. With the degree map Q : E → K and
with M := ker (Q), we obtain the following exact sequences of finitely generated
abelian groups

0 // L
Q∗ // F

P // N

0 Koo E
Qoo M

P∗oo 0 ,oo

where P ∗ is the dual map of P and where we set L := ker (P ). Set δ := γ∨ ⊆ FQ :=
F ⊗Z Q. For each γ0 � γ we denote by γ∗0 := γ⊥ ∩ δ the corresponding face of δ.
We define the envelope Env(Φ) and fans Σ̂ and Σ:

Env(Φ) := {γ0 � γ; γ1 � γ0 and Q(γ1)◦ ⊆ Q(γ0)◦ for some γ1 ∈ rlv(Φ)},

Σ̂ := {δ0 � δ; δ0 � γ∗0 for some γ0 ∈ Env(Φ)},

Σ := {P (γ∗0); γ0 ∈ Env(Φ)}.
Consider the action of H := Spec(K[K]) on X = X(R,F,Φ). By Z := Kr, Ẑ
and Z we denote the toric varieties associated with the cone δ, the fan Σ̂ and the
fan Σ, respectively. The system F of generators of R defines a closed embedding
ῑ : X → Z, z 7→ (f1(z), . . . , fr(z)). Note that Ẑ is an open subset of Z that is
invariant under the action of H. The toric morphism pZ : Ẑ → Z corresponding
to the map of fans Σ̂ → Σ arising from the map of lattices P : F → N is a good
quotient and fits into the following commutative diagram

X
ῑ // Z

X̂

⊆

ι̂ //

pX

��

Ẑ

⊆

pZ

��
X

ι // Z

where ι̂ is the restriction of ῑ and where we call the induced closed embedding ι
of the quotient spaces the canonical toric embedding associated with the bunched
ring (R,F,Φ). Furthermore, we call Z = ZΣ the minimal ambient toric variety
of X.

1.3. Geometry of Mori dream spaces

Consider a variety X arising from a bunched ring (R,F,Φ), for instance a Mori
dream space. As we will summarize in this section, many geometric properties
of X such as Q-factoriality and smoothness are encoded in the combinatorics of its
bunched ring (R,F,Φ); for further details see [3, 11, 35].

Construction 1.3.1. Consider a variety X arising from a bunched ring (R,F,Φ).
To any F-face γ0 � γ one associates the locally closed subset

X(γ0) := {z ∈ X; fi(z) 6= 0⇔ ei ∈ γ0 for all 1 ≤ i ≤ r} ⊆ X ,

which we call the pieces of X associated with γ0. Note that different F-faces yield
disjoint pieces and that X is covered by the pieces of all F-faces of (R,F,Φ). By
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restricting from F-faces to relevant faces and by applying the quotient map pX as
defined in Construction 1.2.9, one obtains a decomposition

X =
⋃

γ0∈rlv(Φ)

X(γ0)

into pairwise disjoint locally closed sets X(γ0) := pX(X(γ0)) called the pieces of X
associated with γ0.

Proposition 1.3.2. Consider a variety X = X(R,F,Φ) together with the de-
gree map Q : E → K and its minimal toric ambient variety Z. Inside the class
group Cl(X), the Picard group is given by

Pic(X) = Pic(Z) =
⋂

γ0∈cov(Φ)

Q(γ0 ∩ E) .

Let X be an irreducible normal variety. Recall that X is called locally factorial
if OX,x is an UFD for each x ∈ X, i.e. if and only if WDiv(X) = CDiv(X) holds.
Furthermore, we call X Q-factorial if for every Weil divisor some non-zero multiple
is Cartier. A variety arising from a bunched ring (R,F,Φ) is called quasismooth
if X̂ = X̂(R,F,Φ) is smooth.

Remark 1.3.3. LetX = X(R,F,Φ) be a variety arising from a bunched ring (R,F,Φ)
and consider the degree map Q : E → K. Then the following statements hold:

(i) The variety X is Q-factorial if and only if Q(γ0) is full-dimensional for
each γ0 ∈ rlv(Φ).

(ii) The variety X is locally factorial if and only if Q maps lin(γ0) ∩ E onto
Cl(X) for each γ0 ∈ rlv(Φ). This is exactly the case if its minimal toric
ambient variety Z is smooth.

(iii) The variety X is smooth if and only if it is locally factorial and quasi-
smooth.

Definition 1.3.4. Let X be an irreducible normal prevariety and D a Weil divisor
on X. The base locus and the stable base locus of the complete linear system |D|
or of the class w := [D] ∈ Cl(X) are defined as

Bs|D| := Bs(w) :=
⋂

f∈Γ(X,OX(D))

Supp(divD(f)) , B(w) :=
⋂

n∈Z≥0

Bs|nD| .

An element x ∈ Bs(w) is called a base point of w. We call D ∈ WDiv(X) or its
class w ∈ Cl(X) base point free if the base locus Bs(w) is empty and semiample if its
stable base locus is empty. The effective, the semiample and the ample cone are the
cones Eff(X) ⊆ Cl(X)Q, SAmple(X) ⊆ Cl(X)Q and Ample(X) ⊆ Cl(X)Q generated
by the effective, the semiample and the ample Weil divisor classes, respectively. The
moving cone Mov(R) ⊆ KQ of a K-graded affine K-algebra R is the intersection

Mov(R) :=

r⋂
i=1

cone(w1, . . . , wi−1, wi+1, . . . , wr) ,

where w1, . . . , wr denote the degrees of any system of pairwise non-associated homo-
geneous K-prime generators for R. If X = X(R,F,Φ) holds, then we call Mov(R)
also the moving cone of X and denote it by Mov(X).

Proposition 1.3.5. Consider a variety X arising from a bunched ring (R,F,Φ)
together with the degree map Q : E → K and its minimal toric ambient variety Z.
The effective and the moving cone as well as the cones of semiample and ample
divisor classes of X in KQ = Cl(X)Q are given by

Eff(X) = Q(γ) , Mov(X) =
⋂

γ0�γ facet

Q(γ0) ,
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SAmple(X) =
⋂

γ0∈cov(Φ)

Q(γ0) , Ample(X) =
⋂

γ0∈cov(Φ)

Q(γ0)◦ .

Consider a variety X arising from a bunched ring (R,F,Φ). We say that R is a
complete intersection if the kernel of the epimorphism K[T1, . . . , Tr]→ R, Ti 7→ fi
is generated byK-homogeneous polynomials g1, . . . , gd, where d = r−dim(R) holds.

Proposition 1.3.6. Let X be a variety arising from a bunched ring (R,F,Φ) that
is a complete intersection. In terms of F and of the K-homogeneous generators
g1, . . . , gd of the kernel of the epimorphism K[T1, . . . , Tr] → R, Ti 7→ fi, where
d = r − dim(R) holds, the anticanonical class of X is given by

−KX =

r∑
i=1

deg(fi)−
d∑
j=1

deg(gj) .

Recall that an irreducible normal projective variety is called Fano if its anti-
canonical class −KX is ample and almost Fano if −KX is semiample and big. A
truly almost Fano variety is a Fano variety being almost Fano but not Fano. If X
arises from a bunched ring, the above Propositions show that using the combinato-
rial data of (R,F,Φ) allows us to compute the semiample and the ample cone of X
as well as its anticanonical class −KX . In this way, we can figure out whether X
is (almost) Fano or not. In particular, the K-graded ring R is the Cox ring of a
Fano variety if and only if −KX belongs to the relative interior of Mov(R). Recall
that the Fano index q(X) of a smooth Fano variety X is the largest integer r such
that −KX = rw holds with some w ∈ Cl(X). The Hilbert series H(t) of X is

H(t) :=

∞∑
n=0

dim
(
R(X)−nKX

)
tn .

We now describe the possible choices of bunches Φi for Mori dream spaces
sharing the same Cox ring R, i.e. the variation of varieties Xi = X(R,F,Φi); it
turns out that there are only finitely many choices for Φi. By K we denote a
finitely generated abelian group and we consider an affine K-graded K-algebra

R =
⊕
w∈K

Rw .

Then the quasitorus H := Spec(K[K]) acts on the affine variety X := Spec(R). The
weight cone ωX of X is the cone generated by all w ∈ K with Rw 6= {0} and the
orbit cone of a point x ∈ X is the cone

ωx := cone(w ∈ K; f(x) 6= 0 for some f ∈ Rw) ⊆ KQ = K ⊗Z Q .

The set of semistable points associated with an element u ∈ KQ is the H-invariant
open subset

X
ss

(u) := {x ∈ X; f(x) 6= 0 for some f ∈ Rnu with n > 0} ⊆ X .

Note that X
ss

(u) is non-empty if and only if u ∈ ωX holds. Fix any system of
homogeneous generators F = (f1, . . . , fr) for R. Then the set of orbit cones equals
the set of projected F-faces Q(γ0). In particular, there are only finitely many orbit
cones. The GIT-cone λ(u) of an element u ∈ ωX is the intersection of all orbit
cones containing u:

λ(u) :=
⋂
x∈X,
u∈ωx

ωx ⊆ KQ .

Since there are only finitely many orbit cones, we conclude that there are only
finitely many GIT-cones. For every element u ∈ KQ, the set of semistable points is
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given in terms of orbit cones and GIT-cones as follows:

X
ss

(u) = {x ∈ X; u ∈ ωx} = {x ∈ X; λ(u) ⊆ ωx} .

This shows in particular, that there are only finitely many sets of semistable points.
The following theorem tells that the possible sets of semistable points are encoded
in a quasifan in KQ.

Theorem 1.3.7. Set X = Spec(R) and H := Spec(K[K]) as before. The collection
Λ(X,H) := {λ(u); u ∈ ωX} of all GIT-cones is a quasifan in KQ having the weight
cone ωX as its support. Moreover, for any two u1, u2 ∈ ωX , we have

λ(u1) ⊆ λ(u2) ⇐⇒ X
ss

(u1) ⊇ Xss
(u2) ,

λ(u1) = λ(u2) ⇐⇒ X
ss

(u1) = X
ss

(u2) .

For a GIT-cone λ ∈ Λ(X,H), we define the set of semistable points asX
ss

(λ) :=

X
ss

(u) for any u ∈ λ◦.
Construction 1.3.8. Consider a finitely generated abelian groupK and an integral
normal almost freely factorially K-graded affine K-algebra R with R∗ = K∗. Each
GIT-cone λ ∈ Λ(X,H) defines a variety X(λ) given as quotient space of the good
quotient

X
ss

(λ) −→ X(λ) := X
ss

(λ)//H = Proj

 ⊕
n∈Z≥0

Rnu

 ,

where u is any point in the relative interior of λ. If R0 = K holds, then X(λ) is
projective.

Remark 1.3.9. Consider a finitely generated abelian group K and an integral
normal almost freely factorially K-graded normal affine K-algebra R with R0 = K.
Let F = (f1, . . . , fr) be a system of pairwise non-associated K-prime generators
of R. Each GIT-cone λ ∈ Λ(X,H) with λ◦ ⊆ Mov(R)◦ defines a true projective F-
bunch Φ(λ) := Φ(u) for some u ∈ λ◦. We thus obtain a bunched ring (R,F,Φ(λ)).
In this case, we have X(λ) = X(R,F,Φ(λ)). In particular, all Mori dream spaces
with Cox ring R =

⊕
w∈K Rw are isomorphic to some X(λ) with λ ∈ Λ(X,H)

and λ◦ ⊆ Mov(R)◦.

A small quasimodification of X, SQM for short, is a rational map ϕ : X 99K X ′

defining an isomorphism between open subsets U ⊆ X and U ′ ⊆ X ′ with X \ U
and X ′ \ U ′ of codimension at least two in X and X ′, respectively. We say that
a Mori ream space X is combinatorially minimal if any birational map X 99K Y
which is defined in codimension two is a small quasimodification.

Remark 1.3.10. Let X be a variety arising from a bunched ring (R,F,Φ) and
consider a GIT-cone λ ∈ Λ(X,H). Then there is a rational map ϕ : X 99K X(λ).
Note that the following holds for ϕ:

(i) The map ϕ is birational if and only if λ◦ ⊆ Eff(X)◦ holds.
(ii) The map ϕ is a SQM if and only if λ◦ ⊆ Mov(R)◦ holds.
(iii) The map ϕ is a morphism if and only if λ ⊆ SAmple(X) holds.
(iv) The map ϕ is an isomorphism if and only if λ◦ ⊆ Ample(X) holds.

We now recall from [40, 19] some basic notation on contractions. Let X be
a Q-factorial Mori dream space. A contraction is a morphism with connected
fibers ϕ : X → Y onto a normal projective variety. Note that there is a bijection
between the contractions of X and the faces of SAmple(X) given by
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{contractions of X} ←→ {faces of SAmple(X)} ,
[ϕ : X → Y ] 7→ ϕ∗(SAmple(Y )) ,

[ϕ : X → X(λ)] ←[ λ .

We call a contraction ϕ : X → Y elementary if %(X)− %(Y ) = 1 holds, where %(X)
and %(Y ) denote the Picard numbers of X and Y , respectively. In terms of σ :=
ϕ∗(SAmple(Y )), there are three possibilities for elementary contractions ϕ : X → Y :

(i) ϕ is a contraction of fiber type, i.e. σ is contained in the boundary ∂Eff(X).
(ii) ϕ is a birational divisorial contraction, i.e. σ ⊆ ∂Mov(X)\∂Eff(X) holds.
(iii) ϕ is a birational small contraction, i.e. σ is contained in the relative inte-

rior of Mov(X).
As above, write X = Spec(R(X)) and HX = Spec(K[Cl(X)]). In case ϕ : X →
Y is birational small, the cone σ = ϕ∗(SAmple(Y )) is contained in the relative
interior of Mov(X) and it is furthermore a facet of the semiample cone of X. Thus,
there exists a unique %(X)-dimensional cone λ′ ∈ Λ(X,HX) with λ′ ⊆ Mov(X)◦

and σ = λ′ ∩ SAmple(X). The SQM ψ : X 99K X(λ′) is the flip of ϕ. By a rational
contraction of X, we mean a rational map ϕ : X 99K Y factoring as X 99K X ′ → Y ,
where X ′ → Y is a contraction and where X 99K X ′ is a SQM with a Q-factorial
variety X ′. Note that there is a bijection between the rational contractions of X
and the fanMX := {λ ∈ Λ(X,HX); λ ⊆ Mov(X)} given by

{rational contractions of X} ←→ MX ,

[ϕ : X 99K Y ] 7→ ϕ∗(SAmple(Y )) ,

[ϕ : X 99K X(λ)] ← [ λ .

1.4. T -varieties of complexity one

Here we recall from [39, 36, 3] the Cox ring based approach to irreducible
normal projective rational varieties with a torus action of complexity one. These
varieties, also called T -varieties of complexity one for short, are characterized as
varieties X admitting an effective action of a torus T of dimension dim(X)− 1. In
this section we fix the notation used for these varieties throughout the whole thesis.

Notation 1.4.1. Fix an integer r ∈ Z≥1, a sequence n0, . . . , nr ∈ Z≥1, set n :=
n0 + . . . + nr and fix integers m ∈ Z≥0 and 0 < s < n + m − r. A pair (A,P ) of
defining matrices consists of

• a matrix A := [a0, . . . , ar] with pairwise linearly independent column
vectors a0, . . . , ar ∈ K2,

• a (r+s)×(n+m)-matrix P whose columns are pairwise different primitive
vectors generating Qr+s as a cone and that is of the form

P =

[
L 0
d d′

]
,

where d is an (s×n)-matrix, d′ an (s×m)-matrix and L an (r×n)-matrix
built from tuples li := (li1, . . . , lini) ∈ Zni≥1 as follows

L =

 −l0 l1 . . . 0
...

...
. . .

...
−l0 0 . . . lr

 .
We denote by vij , where 0 ≤ i ≤ r and 1 ≤ j ≤ ni hold, the first n columns of P
and by vk, where 1 ≤ k ≤ m holds, the last m ones. Moreover, eij , ek ∈ Zn+m are
the canonical basis vectors indexed accordingly, i.e. P maps eij to vij and ek to vk.
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Construction 1.4.2. Fix a pair (A,P ) as in Notation 1.4.1. Consider the polyno-
mial ring K[Tij , Sk] in the variables Tij , 0 ≤ i ≤ r, 1 ≤ j ≤ ni, and Sk, 1 ≤ k ≤ m.
For every index 0 ≤ i ≤ r we define a monomial

T lii := T li1i1 · · ·T
lini
ini

∈ K[Tij , Sk].

Denote by I the set of all triples I = (i1, i2, i3) with 0 ≤ i1 < i2 < i3 ≤ r and define
for any I ∈ I a trinomial

gI := gi1,i2,i3 := det

[
T
li1
i1

T
li2
i2

T
li3
i3

ai1 ai2 ai3

]
.

By P ∗ we denote the transpose of P . Consider the factor group K := Zn+m/im(P ∗)
and the projection Q : E → K, where we set E := Zn+m. We define a K-grading
on K[Tij , Sk] by setting

deg(Tij) := wij := Q(eij), deg(Sk) := wk := Q(ek).

Then the trinomials gI areK-homogeneous and all of the same degree. In particular,
we obtain a K-graded quotient ring

R(A,P ) := K[Tij , Sk; 0 ≤ i ≤ r, 1 ≤ j ≤ ni, 1 ≤ k ≤ m] / 〈gI ; I ∈ I〉.

Note that the ring R(A,P ) is a complete intersection: with gi := gi,i+1,i+2, 0 ≤ i ≤
r − 2, we have

〈gI ; I ∈ I〉 = 〈g0, . . . , gr−2〉 and dim(R(A,P )) = n+m− (r − 1).

Remark 1.4.3. The following operations on the columns and rows of the defining
matrix P are called admissible operations and do not change the isomorphism type
of the graded ring R(A,P ):

(i) swap two columns inside a block vij1 , . . . , vijni ,
(ii) swap two whole column blocks vij1 , . . . , vijni and vi′j1 , . . . , vi′jn

i′
,

(iii) add integer multiples of the upper r rows to one of the last s rows,
(iv) any elementary row operation among the last s rows,
(v) swap two columns inside the d′ block.

The operations of type (iii) and type (iv) do not even change the ring R(A,P ),
whereas types (i), (ii) and (v) correspond to certain renumberings of the variables
of R(A,P ) keeping the graded isomorphism type. If we have ni = 1 and li1 = 1 in a
defining matrix P , then we may eliminate the variable Ti1 in R(A,P ) by modifying
P appropriately. This can be repeated until P is irredundant in the sense that
li1 + . . .+ lini ≥ 2 holds for all i = 0, . . . , r. Hence we can always assume that P is
irredundant.

We now construct all irreducible normal projective varieties sharing a given
ring R(A,P ) as their Cox ring.

Construction 1.4.4. Consider a K-graded ring R(A,P ) as in Construction 1.4.2.
Then F := {Tij , Sj} is a system of pairwise non-associated K-prime generators
for R(A,P ) and any true F-bunch yields a bunched ring (R(A,P ),F,Φ). With
Construction 1.2.4, we obtain an irreducible normal A2-variety X with

X = X(A,P,Φ) := X (R(A,P ),F,Φ) ,

dim(X) = s+ 1, Cl(X) ∼= K, and R(X) ∼= R(A,P ).

For an irredundant defining matrix P , the variety X = X(A,P,Φ) is non-toric if
and only if r ≥ 2 holds. If Φ = Φ(u) holds with some u ∈ Mov(R(A,P ))◦, we
obtain a projective variety X(A,P, u) := X(A,P,Φ(u)).

See [36, Theorem 1.5] for the proof that this construction yields indeed all
irreducible normal rational projective varieties with a torus action of complexity one.
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Construction 1.4.5. Consider a variety X = X(A,P,Φ) as in Construction 1.4.4
and its minimal ambient toric variety Z = ZΣ. Then, with λ := {0} ×Qs ⊆ Qr+s,
the canonical basis vectors e1, . . . , er ∈ Zr+s and e0 := −e1− . . .−er, the associated
tropical variety is

trop(X) = λ0 ∪ . . . ∪ λr ⊆ Qr+s, where λi := λ+ cone(ei) holds.

Note that for a cone σ ∈ Σ, there is a face γ0 ∈ rlv(Φ) with P (γ∗0) = σ if and only
if σ◦ ∩ trop(X) is non-empty.

Definition 1.4.6. Consider a variety X = X(A,P,Φ) as in Construction 1.4.4 and
its minimal ambient toric variety Z = ZΣ. A cone σ ∈ Σ is called

(i) a leaf cone if σ ⊆ λi holds for some 0 ≤ i ≤ r,
(ii) big if σ ∩ λ◦i 6= ∅ holds for each i = 0, . . . , r,
(iii) elementary big if it is big, has no rays inside λ and precisely one ray

inside λi for each i = 0, . . . , r.
We say that the variety X is weakly tropical if the fan Σ is supported on the tropical
variety trop(X), i.e. if Σ consists of leaf cones.



CHAPTER 2

Smooth T -varieties of complexity one with Picard
number two

A basic intention of chapter two is to contribute to the classification of smooth
(almost) Fano varieties with torus action. While smooth toric Fano varieties have
already been classified up to dimension nine [6, 8, 63, 48, 56, 57, 67] using
a description via polytopes, we go one step beyond the toric case and focus on
rational varieties with a torus action of complexity one. This means that the general
torus orbit is of dimension one less than the variety; see [65] for results on smooth
Fano threefolds with an action of a two-dimensional torus. The results of this
chapter have been published as joint work of the author of this thesis with J. Hausen
and M. Nicolussi in [28].

The chapter is organized as follows. In the first section, Section 2.1, we present
the classification results. In Section 2.2, we introduce and discuss duplication of
free weights and show how to obtain the Fano varieties of Theorem 2.1.2 via this
procedure from lower dimensional varieties. Section 2.3 is devoted to the description
of the Fano varieties of Theorem 2.1.2 in terms of elementary contractions. As a first
step towards the proof of the classification results, Section 2.4 derives constraints on
the defining data for smoothX of Picard number two. The final section, Section 2.5,
is devoted to proving the main results.

2.1. Classification results in Picard number two

In this section we give an overview on our classification results for smooth
rational projective varieties with a torus action of complexity one and Picard number
two; the proof is given in Section 2.5. In Theorems 2.1.2 and 2.1.4, we provide a
complete list of the smooth projective (almost) Fano varieties. Note that in the
setting of irreducible rational projective varieties with a torus action of complexity
one, the Cox ring and an ample class fix a variety up to isomorphism.

Theorem 2.1.1. Every smooth rational irreducible projective non-toric variety of
Picard number two that admits a torus action of complexity one is isomorphic to
precisely one of the following varieties X, specified by their Cox ring R(X) and an
ample class u ∈ Cl(X), where we always have Cl(X) = Z2 and the grading is fixed
by the matrix [w1, . . . , wr] of generator degrees deg(Ti),deg(Sj) ∈ Cl(X).

No. R(X) [w1, . . . , wr] u dim(X)

1 K[T1,...,T7]

〈T1T2T
2
3 +T4T5+T6T7〉

[
0 0 1 1 1 1 1
1 1 0 a 2− a b 2− b

]
1 ≤ a ≤ b

[
1

1 + b

]
4

2 K[T1,...,T7]
〈T1T2T3+T4T5+T6T7〉

[
0 0 1 1 0 1 0
1 1 0 1 1 1 1

] [
1
2

]
4

3 K[T1,...,T6]

〈T1T2T
2
3 +T4T5+T

2
6 〉

[
0 0 1 1 1 1
1 1 0 2− a a 1

]
a ≥ 1

[
1

1 + a

]
3

27
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4
K[T1,...,T6,S1,...,Sm]

〈T1T
l2
2 +T3T

l4
4 +T5T

l6
6 〉

m≥0

[
0 1 a 1 b 1 c1 . . . cm
1 0 1 0 1 0 1 . . . 1

]
0 ≤ a ≤ b, c1 ≤ . . . ≤ cm,

l2 = a + l4 = b + l6

[
d + 1

1

]
d := max(b, cm)

m+ 3

5
K[T1,...,T6,S1,...,Sm]

〈T1T2+T
2
3 T4+T

2
5 T6〉

m≥0

[
0 2a + 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 0 . . . 0

]
a ≥ 0

[
2a + 2

1

]
m+ 3

6
K[T1,...,T6,S1,...,Sm]

〈T1T2+T3T4+T
2
5 T6〉

m≥1

[
0 2c + 1 a b c 1 1 . . . 1
1 1 1 1 1 0 0 . . . 0

]
a, b, c ≥ 0, a < b,
a + b = 2c + 1

[
2c + 2

1

]
m+ 3

7
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥1

[
0 0 0 0 −1 1 1 . . . 1
1 1 1 1 1 1 0 . . . 0

] [
1
2

]
m+ 3

8
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥2

[
0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 0 a2 . . . am

]
0 ≤ a2 ≤ . . . ≤ am, am > 0

[
1

am + 1

]
m+ 3

9
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥2

[
0 a2 . . . a6 1 . . . 1
1 1 . . . 1 0 . . . 0

]
0 ≤ a3 ≤ a5 ≤ a6 ≤ a4 ≤ a2,
a2 = a3 + a4 = a5 + a6

[
a2 + 1

1

]
m+ 3

10
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

m≥1

[
1 1 1 1 1 0 . . . 0
−1 1 0 0 0 1 . . . 1

] [
2
1

]
m+ 2

11
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

m≥2

[
1 1 1 1 1 0 a2 . . . am
0 0 0 0 0 1 1 . . . 1

]
0 ≤ a2 ≤ . . . ≤ am, am > 0

[
am + 1

1

]
m+ 2

12
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

m≥2

[
1 1 1 1 1 0 0 . . . 0
0 2c a b c 1 1 . . . 1

]
0 ≤ a ≤ c ≤ b, a + b = 2c

[
1

2c + 1

]
m+ 2

13

K[T1,...,T8]〈
T1T2+T3T4+T5T6,

λT3T4+T5T6+T7T8

〉
λ∈K∗\{1}

[
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

] [
1
1

]
4

Moreover, each of the listed data sets defines a smooth rational non-toric projective
variety of Picard number two coming with a torus action of complexity one.

Note that by our approach we obtain the Cox ring of the respective varieties
for free which in turn allows an explicit treatment of geometric questions by means
of Cox ring based techniques. In particular, the canonical divisor of the varieties
listed in Theorem 2.1.1 admits a simple description in terms of the defining data.
This enables us to determine for every dimension the finitely many (families of)
non-toric smooth rational Fano varieties of Picard number two that admit a torus
action of complexity one; we refer to Section 2.3 for a geometric description of the
listed varieties.

Theorem 2.1.2. Every smooth rational non-toric Fano variety of Picard num-
ber two that admits a torus action of complexity one is isomorphic to precisely
one of the following varieties X, specified by their Cox ring R(X), where the
grading by Cl(X) = Z2 is given by the matrix [w1, . . . , wr] of generator degrees
deg(Ti),deg(Sj) ∈ Cl(X) and we list the (ample) anticanonical class −KX .

No. R(X) [w1, . . . , wr] −KX dim(X)

1 K[T1,...,T7]

〈T1T2T
2
3 +T4T5+T6T7〉

[
0 0 1 1 1 1 1
1 1 0 1 1 1 1

] [
3
4

]
4

2 K[T1,...,T7]
〈T1T2T3+T4T5+T6T7〉

[
0 0 1 1 0 1 0
1 1 0 1 1 1 1

] [
2
4

]
4

3 K[T1,...,T6]

〈T1T2T
2
3 +T4T5+T

2
6 〉

[
0 0 1 1 1 1
1 1 0 1 1 1

] [
2
3

]
3



2.1. CLASSIFICATION RESULTS IN PICARD NUMBER TWO 29

4.A
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥0

[
0 1 0 1 0 1 c 0 . . . 0
1 0 1 0 1 0 1 1 . . . 1

]
c ∈ {−1, 0},

c := 0 if m = 0

[
2 + c
2 +m

]
m+ 3

4.B
K[T1,...,T6,S1,...,Sm]

〈T1T
2
2 +T3T4+T5T6〉

m≥0

[
0 1 1 1 1 1 1 . . . 1
1 0 1 0 1 0 1 . . . 1

] [
3 +m
2 +m

]
m+ 3

4.C
K[T1,...,T6,S1,...,Sm]

〈T1T
2
2 +T3T

2
4 +T5T

2
6 〉

m≥0

[
0 1 0 1 0 1 0 . . . 0
1 0 1 0 1 0 1 . . . 1

] [
1

2 +m

]
m+ 3

5
K[T1,...,T6,S1,...,Sm]

〈T1T2+T
2
3 T4+T

2
5 T6〉

m≥1

[
0 2a + 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 0 . . . 0

]
0 ≤ 2a < m

[
2a +m + 2

2

]
m+ 3

6
K[T1,...,T6,S1,...,Sm]

〈T1T2+T3T4+T
2
5 T6〉

m≥2

[
0 2c + 1 a b c 1 1 . . . 1
1 1 1 1 1 0 0 . . . 0

]
a, b, c ≥ 0, a < b,
a + b = 2c + 1,
m > 3c + 1

[
3c + 2 +m

3

]
m+ 3

7
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

1≤m≤3

[
0 0 0 0 −1 1 1 . . . 1
1 1 1 1 1 1 0 . . . 0

] [
m
4

]
m+ 3

8
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥2

[
0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 0 a2 . . . am

]
0 ≤ a2 ≤ . . . ≤ am,
am ∈ {1, 2, 3},

4 +
∑m
k=2 ak > mam

[
m

4 +
∑m
k=2 ak

]
m+ 3

9
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥2

[
0 a2 . . . a6 1 . . . 1
1 1 . . . 1 0 . . . 0

]
0 ≤ a3 ≤ a5 ≤ a6 ≤ a4 ≤ a2,
a2 = a3 + a4 = a5 + a6,

2a2 < m

[
2a2 +m

4

]
m+ 3

10
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

1≤m≤2

[
1 1 1 1 1 0 . . . 0
−1 1 0 0 0 1 . . . 1

] [
3
m

]
m+ 2

11
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

m≥2

[
1 1 1 1 1 0 a2 . . . am
0 0 0 0 0 1 1 . . . 1

]
0 ≤ a2 ≤ . . . ≤ am,

am ∈ {1, 2},
3 +

∑m
k=2 ak > mam

[
3 +

∑m
k=2 ak
m

]
m+ 2

12
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

m≥2

[
1 1 1 1 1 0 0 . . . 0
0 2c a b c 1 1 . . . 1

]
0 ≤ a ≤ c ≤ b, a + b = 2c,

3c < m

[
3

3c +m

]
m+ 2

13

K[T1,...,T8]〈
T1T2+T3T4+T5T6,

λT3T4+T5T6+T7T8

〉
λ∈K∗\{1}

[
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

] [
2
2

]
4

Moreover, each of the listed data sets defines a smooth rational non-toric Fano
variety of Picard number two coming with a torus action of complexity one.

For K = C, the assumption of rationality can be omitted in Theorem 2.1.2 due
to [45, Sec. 2.1] and [3, Rem. 4.4.1.5]. A closer look to the varieties of Theorem 2.1.2
reveals that they all are obtained from a series of lower dimensional varieties via
iterating the following procedure: we take a certain P1-bundle over the given variety,
apply a natural series of flips and then contract a prime divisor. In terms of Cox
rings, this generalized cone construction simply means duplicating a free weight,
i.e. given a variable not showing up in the defining relations, one adds a further one
of the same degree, see Section 2.2. Proposition 2.2.4 and Theorem 2.2.5 then yield
the following.

Corollary 2.1.3. Every smooth rational non-toric Fano variety with a torus action
of complexity one and Picard number two arises via iterated duplication of a free
weight from a smooth rational projective (not necessarily Fano) variety with a torus
action of complexity one, Picard number two and dimension at most seven.
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Note that we cannot expect such a statement in general: Remark 2.2.7 shows
that the smooth toric Fano varieties of Picard number two do not allow a bound d
such that they all arise via iterated duplication of free weights from smooth varieties
of dimension at most d.

Similar to the Fano varieties, we can figure out the almost Fano varieties from
Theorem 2.1.1, i.e. those with a big and nef anticanonical divisor. In general,
i.e. without the assumption of a torus action, the classification of smooth almost
Fano varieties of Picard number two is widely open; for the threefold case, we refer
to the work of Jahnke, Peternell and Radloff [42, 43]. In the setting of a torus
action of complexity one, the following result together with Theorem 2.1.2 settles
the problem in any dimension; by a truly almost Fano variety we mean an almost
Fano variety which is not Fano.

Theorem 2.1.4. Every smooth rational non-toric truly almost Fano variety of
Picard number two that admits a torus action of complexity one is isomorphic to
precisely one of the following varieties X, specified by their Cox ring R(X) and an
ample class u ∈ Cl(X), where we always have Cl(X) = Z2 and the grading is fixed
by the matrix [w1, . . . , wr] of generator degrees deg(Ti),deg(Sj) ∈ Cl(X).

No. R(X) [w1, . . . , wr] u dim(X)

4.A
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥1

[
0 1 0 1 0 1 c1 . . . cm
1 0 1 0 1 0 1 . . . 1

]
c1 ≤ . . . ≤ cm
d := max(0, cm)

(2 +m)d = 2 + c1 + · · · + cm

[
1

1 + d

]
m+ 3

4.B
K[T1,...,T6,S1,...,Sm]

〈T1T
2
2 +T3T4+T5T6〉

m≥1

[
0 1 1 1 1 1 0 1 . . . 1
1 0 1 0 1 0 1 1 . . . 1

] [
1
2

]
m+ 3

4.C
K[T1,...,T6,S1,...,Sm]

〈T1T
2
2 +T3T

2
4 +T5T

2
6 〉

m≥1

[
0 1 0 1 0 1 −1 0 . . . 0
1 0 1 0 1 0 1 1 . . . 1

] [
1
1

]
m+ 3

4.D
K[T1,...,T6,S1,...,Sm]

〈T1T
2
2 +T3T

2
4 +T5T6〉

m≥0

[
0 1 0 1 1 1 1 . . . 1
1 0 1 0 1 0 1 . . . 1

] [
1
2

]
m+ 3

4.E
K[T1,...,T6,S1,...,Sm]

〈T1T
3
2 +T3T4+T5T6〉

m≥0

[
0 1 2 1 2 1 2 . . . 2
1 0 1 0 1 0 1 . . . 1

] [
1
3

]
m+ 3

4.F
K[T1,...,T6,S1,...,Sm]

〈T1T
3
2 +T3T

2
4 +T5T

2
6 〉

m≥0

[
0 1 1 1 1 1 1 . . . 1
1 0 1 0 1 0 1 . . . 1

] [
1
2

]
m+ 3

5
K[T1,...,T6,S1,...,Sm]

〈T1T2+T
2
3 T4+T

2
5 T6〉

m≥0

[
0 2a + 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 0 . . . 0

]
m = 2a

[
m + 2

1

]
m+ 3

6
K[T1,...,T6,S1,...,Sm]

〈T1T2+T3T4+T
2
5 T6〉

m≥1

[
0 2c + 1 a b c 1 1 . . . 1
1 1 1 1 1 0 0 . . . 0

]
a, b, c ≥ 0, a < b,
a + b = 2c + 1,
m = 3c + 1

[
2c + 2

1

]
m+ 3

7
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m=4

[
0 0 0 0 −1 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0

] [
1
2

]
7

8
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥2

[
0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 0 a2 . . . am

]
0 ≤ a2 ≤ . . . ≤ am, am > 0,
4 + a2 + . . . + am = mam

[
1

am + 1

]
m+ 3

9
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥2

[
0 a2 . . . a6 1 . . . 1
1 1 . . . 1 0 . . . 0

]
0 ≤ a3 ≤ a5 ≤ a6 ≤ a4 ≤ a2,
a2 = a3 + a4 = a5 + a6,

m = 2a2

[
a2 + 1

1

]
m+ 3

10
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

m=3

[
1 1 1 1 1 0 0 0
−1 1 0 0 0 1 1 1

] [
2
1

]
5
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11
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

m≥2

[
1 1 1 1 1 0 a2 . . . am
0 0 0 0 0 1 1 . . . 1

]
0 ≤ a2 ≤ . . . ≤ am, am > 0,
3 + a2 + . . . + am = mam

[
1

am + 1

]
m+ 2

12
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

m≥3

[
1 1 1 1 1 0 0 . . . 0
0 2c a b c 1 1 . . . 1

]
0 ≤ a ≤ c ≤ b, a + b = 2c,

m = 3c

[
1

2c + 1

]
m+ 2

Moreover, each of the listed data sets defines a smooth rational non-toric truly
almost Fano variety of Picard number two coming with a torus action of complexity
one.

2.2. Duplicating free weights

As mentioned in the introduction, there are by a result of Liendo and Süß [49,
Thm. 6.5] up to isomorphism just two smooth non-toric projective varieties with
a torus action of complexity one and Picard number one, namely the smooth pro-
jective quadrics in dimensions three and four. In Picard number two we obtained
examples in every dimension and this even holds when we restrict to the Fano case.
Nevertheless, also in Picard number two we observe a certain finiteness feature:
each Fano variety listed in Theorem 2.1.2 arises from a smooth, but not necessarily
Fano, variety of dimension at most seven via duplicating free weights.

For the precise treatment, the setting of bunched rings (R,F,Φ) is most appro-
priate. Recall from Section 1.2 that R is an integral normal almost freely factorially
K-graded K-algebra, F a system of pairwise non-associated K-prime generators
for R and Φ a certain collection of polyhedral cones in KQ defining an open set
X̂ ⊆ X = SpecR with a good quotient X(R,F,Φ) := X̂//H by the action of the
quasitorus H = SpecK[K] on X. Recall that X := X(R,F,Φ) is called a variety
arising from a bunched ring. Dimension, divisor class group and Cox ring of X are
given by

dim(X) = dim(R)− dim(KQ), Cl(X) = K, R(X) = R.

Construction 2.2.1. Let R = K[T1, . . . , Tr]/〈g1, . . . , gs〉 be a K-graded algebra
presented by K-homogeneous generators Ti and relations gj ∈ K[T1, . . . , Tr−1]. By
duplicating the free weight deg(Tr) we mean passing from R to the K-graded algebra

R′ := K[T1, . . . , Tr, Tr+1]/〈g1, . . . , gs〉, deg(Tr+1) := deg(Tr) ∈ K,

where gj ∈ K[T1, . . . , Tr−1] ⊆ K[T1, . . . , Tr, Tr+1]. If in this situation (R,F,Φ)
is a bunched ring with F = (T1, . . . , Tr), then (R′,F′,Φ) is a bunched ring with
F′ = (T1, . . . , Tr, Tr+1).

Proof. The K-algebra R′ is integral and normal and, by [9, Thm. 1.4], factorially
K-graded. Obviously, the K-grading is almost free in the sense of [3, Def. 3.2.1.1].
Moreover, (R,F) and (R′,F′) have the same sets of generator weights in the com-
mon grading group K and the collection of projected F′-faces equals the collection
of projected F-faces. We conclude that Φ is a true F′-bunch in the sense of [3,
Def. 3.2.1.1] and thus (R′,F′,Φ) is a bunched ring. �

The word “free” in Construction 2.2.1 indicates that the variable Tr does not
occur in the relations gj . Here are the basic features of the procedure.

Proposition 2.2.2. Let (R′,F′,Φ) arise from the bunched ring (R,F,Φ) via Con-
struction 2.2.1. Set X ′ := X(R′,F′,Φ) and X := X(R,F,Φ).

(i) We have dim(X ′) = dim(X) + 1.
(ii) The cones of semiample divisor classes satisfy SAmple(X ′) = SAmple(X).
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(iii) The variety X ′ is smooth if and only if X is smooth.
(iv) The ring R′ is a c.i. if and only if R is a c.i..
(v) If R is a c.i., deg(Tr) semiample and X Fano, then X ′ is Fano.

Proof. By construction, dim(R′) = dim(R) + 1 holds. Since R and R′ have the
same grading group K, we obtain (i). Moreover, R and R′ have the same defining
relations gj , hence we have (iv). According to [3, Prop. 3.3.2.9], the semiample cone
is the intersection of all elements of Φ and thus (ii) holds.

To obtain the third assertion, we show first that X̂ ′ is smooth if and only if X̂
is smooth. For every relevant F-face γ0 � Qr≥0 consider

γ′0 := γ0 + cone(er+1), γ′′0 := cone(ei; 1 ≤ i < r, ei ∈ γ0) + cone(er+1).

Then γ0, γ
′
0, γ
′′
0 � Qr+1

≥0 are relevant F′-faces and, in fact, all relevant F′-faces are of
this form. Since the variables Tr and Tr+1 do not appear in the relations gj , we see
that a piece X(γ0) is smooth if and only if the pieces X

′
(γ0), X

′
(γ′0) and X

′
(γ′′0 )

are smooth. Now [3, Cor. 3.3.1.11] gives (iii).
Finally, we show (v). As we have complete intersection Cox rings, [3, Prop. 3.3.3.2]

applies and we obtain

−KX′ =

r+1∑
i=1

deg(Ti)−
s∑
j=1

deg(gj) = −KX + deg(Tr+1).

Since X and X ′ share the same ample cone, we conclude that ampleness of −KX
implies ampleness of −KX′ . �

We interpret the duplication of free weights in terms of birational geometry: it
turns out to be a composition of a contraction of fiber type, a series of flips and a
divisorial contraction, where all contractions are elementary, i.e. of relative Picard
number one; see [19] for a detailed study of the latter type of maps in the context
of general smooth Fano 4-folds.

Proposition 2.2.3. Let (R′,F′,Φ) arise from the bunched ring (R,F,Φ) via Con-
struction 2.2.1. Set X ′ := X(R′,F′,Φ) and X := X(R,F,Φ). Assume that X is
Q-factorial. Then there is a sequence

X ←− X̃1 99K . . . 99K X̃t −→ X ′,

where X̃1 → X is a contraction of fiber type with fibers P1, every X̃i 99K X̃i+1 is a
flip and X̃t → X ′ is the contraction of a prime divisor. If deg(Tr) ∈ K is Cartier,
then X̃1 → X is the P1-bundle associated with the divisor on X corresponding to Tr.

Proof. In order to define X̃1, we consider the canonical toric embedding X ⊆ Z
in the sense of [3, Constr. 3.2.5.3]. Let Σ be the fan of Z and P = [v1, . . . , vr] be
the matrix having the primitive generators vi ∈ Zn of the rays of Σ as its columns.
Define a further matrix

P̃ :=

[
v1 . . . vr−1 vr 0 0
0 . . . 0 −1 1 −1

]
.

We denote the columns of P̃ by ṽ1, . . . , ṽr, ṽ+, ṽ− ∈ Zn+1, write %+, %− for the rays
through ṽ+, ṽ− and define a fan

Σ̃1 := {σ̃ + %+, σ̃ + %−, σ̃; σ ∈ Σ}, σ̃ := cone(ṽi; vi ∈ σ).

The projection Zn+1 → Zn is a map of fans Σ̃1 → Σ. The associated toric morphism
Z̃1 → Z has fibers P1. If the toric divisor Dr corresponding to the ray through vr
is Cartier, then Z̃1 → Z is the P1-bundle associated with Dr. We define X̃1 ⊆ Z̃1

to be the preimage of X ⊆ Z. Then X̃1 → X has fibers P1. If deg(Tr) is Cartier,
then so is Dr and hence X̃1 → X inherits the P1-bundle structure.
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Now we determine the Cox ring of the variety X̃1. For this, observe that the
projection Zr+2 → Zr defines a lift of Z̃1 → Z to the toric characteristic spaces and
thus leads to the commutative diagram

π̃](X̃1) ⊆

π̃
��

W̃1
//

π̃
��

W

π

��

π](X)⊇

π

��
X̃1 ⊆ Z̃1

// Z X⊇

where π̃](X̃1) and π](X) denote the proper transforms with respect to the down-
wards toric morphisms. Pulling back the defining equations of π](X) ⊆ W , we see
that π̃](X̃1) ⊆ W̃1 has coordinate algebra R̃ := R[S+, S−] graded by K̃ := K × Z
via

deg(Ti) := (wi, 0), w+ := deg(S+) := (wr, 1), w− := deg(S−) := (0, 1),

where wi := deg(Ti) ∈ K holds. The K-algebra R̃ is integral and normal and,
by [9, Thm. 1.4], factorially K̃-graded. Moreover the K̃-grading is almost free, as
the K-grading of R has this property and F̃ = (T1, . . . , Tr, S

+, S−) is a system of
pairwise non-associated K̃-prime generators. We conclude that R̃ is the Cox ring
of X̃1.

Next we look for the defining bunch of cones for X̃1. Observe that K sits
inside K̃ as K × {0}. With θ := SAmple(X) × {0} we obtain a GIT-cone θ1 :=

cone(θ, w+)∩cone(θ, w−) of the K̃-graded ring R̃. The associated bunch Φ̃1 consists
of all cones of the form

τ̃ + cone(w+), τ̃ + cone(w−), τ̃ + cone(w+, w−),

where τ̃ = τ × {0}, τ ∈ Φ. Since Φ is a true bunch, so is Φ̃1. Together we obtain
a bunched ring (R̃, F̃, Φ̃1). By construction, the fan corresponding to Φ̃1 via Gale
duality is Σ̃1. We conclude that X̃1 is the variety associated with (R̃, F̃ , Φ̃1) and
X̃1 ⊆ Z̃1 is the canonical toric embedding.

Observe that X̃1 → X corresponds to the passage from the GIT-cone θ1 to the
facet θ. In particular, we see that X̃1 → X is an elementary contraction of fiber
type. To obtain the flips and the final divisorial contraction, we consider the full
GIT-fan.

wr

w+

w−

θ

θ1

θt

θt+1

Important are the GIT-cones inside θ + cone(w−). There we have the facet θ and
the semiample cone θ1 of X̃1. Proceeding in the direction of w−, we come across
other full-dimensional GIT-cones, say θ2, . . . , θt+1. This gives a sequence of flips
X̃1 99K . . . 99K X̃t, where X̃i is the variety with semiample cone θi. Passing from θt
to θt+1 gives a morphism X̃t → X̃t+1 contracting the prime divisor corresponding
to the variable S− of the Cox ring R̃ of X̃t. Note that X̃t+1 is Q-factorial, as it is
the GIT-quotient associated with a full-dimensional chamber.
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We show X̃t+1
∼= X ′. Recall that X ′ arises from X by duplicating the weight

deg(Tr). We have Cl(X ′) = K and the Cox ring R′ = R[Tr+1] of X ′ is K-graded
via deg(Ti) = wi for i = 1, . . . , r and deg(Tr+1) = wr. In particular, the fan of the
canonical toric ambient variety of X ′ has as its primitive ray generators the columns
of the matrix

P ′ =

[
v1 . . . vr−1 vr 0
0 . . . 0 −1 1

]
.

On the other hand, the canonical toric ambient variety Z̃t+1 of X̃t+1 is obtained
from Z̃t by contracting the divisor corresponding to the ray %−. Hence P ′ is as well
the primitive generator matrix for the fan of Z̃t+1. We conclude

Cl(X̃t+1) = Zr+1/ im((P ′)∗) = Cl(X ′) = K.

Similarly, we compare the Cox rings of X̃t+1 and X ′. Let Z̃t denote the canonical
toric ambient variety of X̃t. Then the projection Zr+2 → Zr+1 defines a lift of
Z̃t → Z̃t+1 to the toric characteristic spaces and thus leads to the commutative
diagram

π̃](X̃t) ⊆

π̃
��

W̃t
//

π̃
��

W̃t+1

π

��

π](X̃t+1)⊇

π

��
X̃t ⊆ Z̃t // Z̃t+1 X̃t+1⊇

where the proper transforms π̃](X̃t) and π](X̃t+1) are the characteristic spaces of
X̃t and X̃t+1 respectively and the first is mapped onto the second one. We conclude
that the Cox ring of X̃t+1 is R[S+] graded by deg(Ti) = wi for i = 1, . . . , r and
deg(S+) = wr and thus is isomorphic to the Cox ring R′ of X ′.

The final step is to compare the defining bunches of cones Φ̃t+1 of X̃t+1 and Φ′

of X ′. For this, observe that the fan of the toric ambient variety Z̃t+1 contains the
cones σ̃ + %+, where σ ∈ Σ. Thus, every τ ∈ Φ′ belongs to Φ̃t+1. We conclude

SAmple(X̃t+1) ⊆ SAmple(X ′).

Since X̃t+1 is Q-factorial, its semiample cone is of full dimension. Both cones belong
to the GIT-fan, hence we see that the above inclusion is in fact an equality. Thus
Φ̃t+1 equals Φ′. �

We return to the Fano varieties of Theorem 2.1.2. We first list the (finitely
many) examples which do not allow duplication of a free weight and then present
the starting models for constructing the Fano varieties via duplication of weights.

Proposition 2.2.4. The varieties of Theorem 2.1.2 containing no divisors with
infinite general isotropy are precisely the following ones.

No. R(X) [w1, . . . , wr] −KX dim(X)

1 K[T1,...,T7]

〈T1T2T
2
3 +T4T5+T6T7〉

[
0 0 1 1 1 1 1
1 1 0 1 1 1 1

] [
3
4

]
4

2 K[T1,...,T7]
〈T1T2T3+T4T5+T6T7〉

[
0 0 1 1 0 1 0
1 1 0 1 1 1 1

] [
2
4

]
4

3 K[T1,...,T6]

〈T1T2T
2
3 +T4T5+T

2
6 〉

[
0 0 1 1 1 1
1 1 0 1 1 1

] [
2
3

]
3

4.A K[T1,...,T6]
〈T1T2+T3T4+T5T6〉

[
0 1 0 1 0 1
1 0 1 0 1 0

] [
2
2

]
3

4.B K[T1,...,T6]

〈T1T
2
2 +T3T4+T5T6〉

[
0 1 1 1 1 1
1 0 1 0 1 0

] [
3
2

]
3

4.C K[T1,...,T6]

〈T1T
2
2 +T3T

2
4 +T5T

2
6 〉

[
0 1 0 1 0 1
1 0 1 0 1 0

] [
1
2

]
3
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13

K[T1,...,T8]〈
T1T2+T3T4+T5T6,

λT3T4+T5T6+T7T8

〉
λ∈K∗\{1}

[
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

] [
2
2

]
4

Proof. For a T -variety X = X(A,P, u), the divisors having infinite general T -
isotropy are precisely the vanishing sets of the variable Sk. Thus we just have
to pick out the cases with m = 0 from Theorem 2.1.2. �

Theorem 2.2.5. Let X be a smooth rational Fano variety with a torus action of
complexity one and Picard number two. If there is a prime divisor with infinite
general isotropy on X, then X arises via iterated duplication of the free weight wr
from one of the following varieties Y .

No. R(Y ) [w1, . . . , wr] u dim(Y )

4.A K[T1,...,T6,S1]
〈T1T2+T3T4+T5T6〉

[
0 1 0 1 0 1 0
1 0 1 0 1 0 1

] [
1
1

]
4

4.A K[T1,...,T6,S1,S2]
〈T1T2+T3T4+T5T6〉

[
0 1 0 1 0 1 −1 0
1 0 1 0 1 0 1 1

] [
1
1

]
5

4.B K[T1,...,T6,S1]

〈T1T
2
2 +T3T4+T5T6〉

[
0 1 1 1 1 1 1
1 0 1 0 1 0 1

] [
2
1

]
4

4.C K[T1,...,T6,S1]

〈T1T
2
2 +T3T

2
4 +T5T

2
6 〉

[
0 1 0 1 0 1 0
1 0 1 0 1 0 1

] [
1
1

]
4

5 K[T1,...,T6,S1]

〈T1T2+T
2
3 T4+T

2
5 T6〉

[
0 2a + 1 a 1 a 1 1
1 1 1 0 1 0 0

]
a ≥ 0

[
2a + 2

1

]
4

6 K[T1,...,T6,S1]

〈T1T2+T3T4+T
2
5 T6〉

[
0 2c + 1 a b c 1 1
1 1 1 1 1 0 0

]
a, b, c ≥ 0, a < b,
a + b = 2c + 1

[
2c + 2

1

]
4

7 K[T1,...,T6,S1]
〈T1T2+T3T4+T5T6〉

[
0 0 0 0 −1 1 1
1 1 1 1 1 1 0

] [
1
2

]
4

8 K[T1,...,T6,S1,S2]
〈T1T2+T3T4+T5T6〉

[
0 0 0 0 0 0 1 1
1 1 1 1 1 1 0 a

]
a ∈ {1, 2, 3}

[
1

a + 1

]
5

8 K[T1,...,T6,S1,S2,S3]
〈T1T2+T3T4+T5T6〉

[
0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 a− 1 a

]
a ∈ {1, 2}

[
1

a + 1

]
6

8 K[T1,...,T6,S1,...,S4]
〈T1T2+T3T4+T5T6〉

[
0 0 0 0 0 0 1 1 1 1
1 1 1 1 1 1 0 0 0 1

] [
1
2

]
7

9 K[T1,...,T6,S1,S2]
〈T1T2+T3T4+T5T6〉

[
0 a2 . . . a6 1 1
1 1 . . . 1 0 0

]
0 ≤ a3 ≤ a5 ≤ a6 ≤ a4 ≤ a2,
a2 = a3 + a4 = a5 + a6

[
a2 + 1

1

]
5

10 K[T1,...,T5,S1]

〈T1T2+T3T4+T
2
5 〉

[
1 1 1 1 1 0
−1 1 0 0 0 1

] [
2
1

]
3

11 K[T1,...,T5,S1,S2]

〈T1T2+T3T4+T
2
5 〉

[
1 1 1 1 1 0 a
0 0 0 0 0 1 1

]
a ∈ {1, 2}

[
a + 1

1

]
4

11 K[T1,...,T5,S1,S2,S3]

〈T1T2+T3T4+T
2
5 〉

[
1 1 1 1 1 0 0 1
0 0 0 0 0 1 1 1

] [
2
1

]
5

12 K[T1,...,T5,S1,S2]

〈T1T2+T3T4+T
2
5 〉

[
1 1 1 1 1 0 0
0 2c a b c 1 1

]
0 ≤ a ≤ c ≤ b, a + b = 2c

[
1

2c + 1

]
4

For Nos. 4, 8 and 11, the variety Y is Fano and any iterated duplication of wr pro-
duces a Fano variety X. For the remaining cases, the following table tells which Y
are Fano and gives the characterizing condition when an iterated duplication of wr
produces a Fano variety X:
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No. 5 6 7 9 10 12
Y Fano a = 0 c = 0 X a2 = 0 X c = 0

X Fano m > 2a m > 3c+ 1 m ≤ 3 m > 2a2 m ≤ 2 m > 3c

Proof. A T -variety X = X(A,P, u) has a divisor with infinite general T -isotropy if
and only if m ≥ 1 holds. In the cases 4.A, 4.B, 4.C, 5, 6, 7, 9, 10 and 12 we directly
infer from Theorem 2.1.2 that the examples with higher m arise from those listed
in the table above via iterated duplication of wr.

We still have to consider Nos. 8 and 11. If X is a variety of type 8, then the
condition for X to be a Fano variety is

4 + a2 + . . . ,+am > mam,

where am = 1, 2, 3 and 0 ≤ a2 ≤ . . . ≤ am. This is satisfied if and only if one of the
following conditions holds:

(i) a2 = . . . = am ∈ {1, 2, 3}.
(ii) a2 + 1 = a3 . . . = am ∈ {1, 2}, with m ≥ 3.
(iii) a2 = a3 = 0 and a4 = . . . = am = 1, with m ≥ 4.

Similarly for No. 11 the Fano condition in the table of Theorem 2.1.2 is equivalent
to the fulfillment of one of the following:

(i) a2 = . . . = am ∈ {1, 2}.
(ii) a2 = 0 and a3 = . . . = am = 1, with m ≥ 3.

In both cases this explicit characterization makes clear that we are in the setting of
the duplication of a free weight. �

Remark 2.2.6. Consider iterated duplication of wr for a variety X = X(A,P, u) as
in Theorem 2.2.5. Recall that the effective cone of X is decomposed as τ+∪τX∪τ−,
where τX = Ample(X). Lemma 2.4.11 (i) says wr 6∈ τX and thus we have a unique
κ ∈ {τ+, τ−} with wr /∈ κ. Then the number of flips per duplication step equals

|{cone(wij), cone(wk); wij , wk ∈ κ}| − 1.

In particular, for Nos. 4.A, 4.B, 4.C, 8, 11, 9 with ai = 0, 12 with b = 0 the
duplication steps require no flips.

Remark 2.2.7. For toric Fano varieties, there is no statement like Corollary 2.1.3.
Recall from [10] that all smooth projective toric varieties Z with Cl(Z) = Z2 admit
a description via the following data:

• weights w1 := (1, 0) and wi := (bi, 1) with 0 = bn < bn−1 < . . . < b2,
• multiplicities µi := µ(wi) ≥ 1, where µ1 ≥ 2 and µ2 + . . .+ µn ≥ 2 hold.

(µ1)

(µ2)(µ3)(µ4)
(µn)

The variety Z arises from the bunched polynomial ring (R,F,Φ), where R equals
K[Sij ; 1 ≤ i ≤ n, 1 ≤ j ≤ µi] with the system of generators F = (S11, . . . , Snµn),
generator degrees deg(Sij) = wi and the bunch Φ = {cone(w1, wi); i = 2, . . . , n}.
In this setting Z is Fano if and only if

b2(µ2 + . . .+ µn) < µ1 + µ2b2 + . . .+ µn−1bn−1.

For any n ∈ Z≥4 and i = 2, . . . , n set µi := 1 and wi := (n − i, 1). Then, with
µ1 := 2 we obtain a smooth (non-Fano) toric variety Z ′n of Picard number two and
dimension n− 1. Moreover, for µ1 := 1 + (n− 2)(n− 1)/2 we obtain a smooth toric
Fano variety Zn of Picard number two that is Fano and is obtained from Z ′n via
iterated duplication of w1 but cannot be constructed from any lower dimensional
smooth variety this way.
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2.3. Geometry of the Fano varieties

We take a closer look at the Fano varieties listed in Theorem 2.1.2 and prove
that they fulfill Mukai’s conjecture, see Proposition 2.3.6. Moreover, we describe
explicitly their Mori fiber spaces and their divisorial contractions. The approach
uses suitable toric ambient varieties. The following Remark can be found, at least
partially, for example in [21, Section 7.3].

Remark 2.3.1. Let Z be a smooth projective toric variety of Picard number two,
given by weight vectors w1 := (1, 0) and wi := (bi, 1) with 0 = bn < bn−1 < . . . < b2,
and multiplicities µi := µ(wi) ≥ 1, where µ1 ≥ 2 and µ2 + . . . + µn ≥ 2 as in
Remark 2.2.7. Then the toric variety Z is a projectivized split vector bundle of
rank r over a projective space Ps, where s := µ1 − 1 and r := µ2 + . . . + µn − 1.
More precisely, we have

Z ∼= P

(
µn⊕
i=1

OPs ⊕
µn−1⊕
i=1

OPs(bn−1)⊕ . . .⊕
µ2⊕
i=1

OPs(b2)

)
.

The bundle projection Z → Ps is the elementary contraction associated to the
divisor class w1 ∈ Z2 = Cl(Z). If n = 2 holds, then we have Z ∼= Ps × Pr. If
n = 3 and µ3 = 1 hold, then the class w3 ∈ Z2 = Cl(Z) gives rise to a divisorial
contraction onto a weighted projective space:

Z → Z ′ := P(1, . . . , 1︸ ︷︷ ︸
µ1

, b2, . . . , b2︸ ︷︷ ︸
µ2

).

The exceptional divisor EZ ⊆ Z is isomorphic to Ps×Pµ2−1 and the center C(Z ′) ⊆
Z ′ of the contraction is isomorphic to Pµ2−1. In particular, for µ2 = 1, we have
EZ ∼= Ps and C(Z ′) is a point.

From the explicit description of the Cox ring of our Fano variety X, we obtain
via Construction 1.4.4 a closed embedding X → Z into a toric variety Z. As a
byproduct of our classification, it turns out that, whenever X admits a elementary
contraction, then X inherits all its elementary contractions from Z. Remark 2.3.1
together with the explicit equations for X in Z will then allow us to study the
situation in detail. We now present the results. The cases are numbered according
to the table of Theorem 2.1.2. Moreover, we denote by Q3 ⊆ P4 and Q4 ⊆ P5 the
three and four-dimensional smooth projective quadrics and we write P(aµ1

1 , . . . , aµrr )
for the weighted projective space, where the superscript µi indicates that the weight
ai occurs µi times.

No. 1 The variety X is of dimension four and admits two elementary contractions,
Q4 ← X → P1. The morphism X → Q4 is a divisorial contraction with exceptional
divisor isomorphic to P1×P1×P1 and center isomorphic to P1×P1. The morphism
X → P1 is a Mori fiber space with general fiber isomorphic to Q3 and singular fibers
over [0, 1] and [1, 0] each isomorphic to the singular quadric V (T2T3 + T4T5) ⊆ P4.

No. 2 The variety X is of dimension four and admits two elementary contractions,
Q4 ← X → P3. The morphism X → Q4 is a divisorial contraction with exceptional
divisor isomorphic to a hypersurface of bidegree (1, 1) in P1 × P3 and center iso-
morphic to P1. The morphism X → P3 is a Mori fiber space with fibers isomorphic
to P1.

No. 3 The variety X is of dimension three and occurs as No. 2.29 in the Mori-Mukai
classification [53]. Moreover, X admits two elementary contractions, Q3 ← X →
P1. The morphism X → Q3 is a divisorial contraction with exceptional divisor
isomorphic to P1 × P1 and center isomorphic to P1. The morphism X → P1 is a
Mori fiber space with general fiber isomorphic to P1 × P1 and singular fibers over
[0, 1] and [1, 0] each isomorphic to V (T1T2 + T 2

3 ) ⊆ P3.
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No. 4A Case 1: we have c = −1. Then X admits two elementary contractions
Y ← X → P2, where Y := V (T1T2 + T3T4 + T5T6) ⊆ Pm+4 is a terminal factorial
Fano variety which is smooth if and only if m = 1 holds. The morphism X → Y
is a divisorial contraction with exceptional divisor isomorphic to a hypersurface of
bidegree (1, 1) in P2×Pm+1 and center isomorphic to Pm+1. The morphism X → P2

is a Mori fiber space with fibers isomorphic to Pm+1.

Case 2: we have c = 0. Then X is a hypersurface of bidegree (1, 1) in P2 × Pm+2.
Moreover, X admits two Mori fiber spaces Pm+2 ← X → P2. The Mori fiber space
X → P2 has fibers isomorphic to Pm+1, whereas the Mori fiber space X → Pm+1

has general fiber isomorphic to P1 and special fibers over V (T1, T2, T3) ⊆ Pm+2

isomorphic to P2. For m = 0, we have dim(X) = 3 and X is the variety No. 2.32
in [53].

No. 4B The variety X admits two elementary contractions Y ← X → P2, where
Y := V (T 2

1 + T2T3 + T4T5) ⊆ Pm+4 is a terminal factorial Fano variety. The
variety Y is smooth if and only if m = 0 holds and in this case X occurs as No. 2.31
in [53]. The morphism X → Y is a divisorial contraction with exceptional divisor
isomorphic to a hypersurface of bidegree (1, 1) in P2 × Pm+1 and center isomorphic
to Pm+1. The morphism X → P2 is a Mori fiber space with fibers isomorphic
to Pm+1.

No. 4C The variety X is a hypersurface of bidegree (2, 1) in P2×Pm+2; for m = 0
we have dim(X) = 3 and X is No. 2.24 in [53]. Moreover, X admits two Mori fiber
spaces Pm+2 ← X → P2. The morphism X → P2 has fibers isomorphic to Pm+1.
To describe the fibers of ϕ : X → Pm+2, set Yi := VPm+2

(Ti), Yij := VPm+2
(Ti, Tj)

and Y123 := VPm+2
(T1, T2, T3). Then we have

ϕ−1(z) ∼=


P2 if z ∈ Y123,

P1 if z ∈ (Y12 ∪ Y13 ∪ Y23) \ Y123,

VP2
(T1T2) if z ∈ (Y1 ∪ Y2 ∪ Y3) \ (Y12 ∪ Y13 ∪ Y23),

P1 otherwise.

No. 5 The variety X admits a Mori fiber space ϕ : X → Pm+1, whose general fiber
is isomorphic to P1×P1. More precisely, with Y1 := VPm+1

(T1) and Y2 := VPm+1
(T2),

we have

ϕ−1(z) ∼=


VP3(T1T2) if z ∈ Y1 ∩ Y2,

VP3(T1T2 + T 2
3 ) if z ∈ Y1 \ Y2 or z ∈ Y2 \ Y1,

P1 × P1 otherwise.

No. 6 The variety X admits a Mori fiber space X → Pm, with general fiber isomor-
phic to Q3 and singular fibers over V (T1) ⊆ Pm each isomorphic to the hypersurface
V (T1T2 + T3T4) ⊆ P4.

No. 7 The variety X admits a divisorial contraction X → Pm+3 with exceptional
divisor isomorphic to the projectivized split bundle

P
( m⊕

i=1

OP1×P1
⊕OP1×P1

(1, 1)

)
and center isomorphic to P1 × P1. Moreover, if m = 1 holds, X admits a further
divisorial contraction X → Q4 with exceptional divisor isomorphic to P3 and center
a point.

No. 8 Here we have X = P(OQ4
⊕ OQ4

(a2) . . . ⊕ OQ4
(am)). Thus, there is a

Mori fiber space X → Q4 with fibers isomorphic to Pm−1. If a2 = . . . = am > 0
holds, then X admits in addition a divisorial contraction X → Y , where Y :=
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V (T1T2 + T3T4 + T5T6) ⊆ P(16, am−1
2 ). The exceptional divisor is isomorphic to

Q4 × Pm−2 and the center to Pm−2.

No. 9 The variety X is a bundle over Pm−1 with fibers isomorphic to Q4. In
particular, if ai = 0 holds for all 2 ≤ i ≤ 6, then X ∼= Q4 × Pm−1.

No. 10 The variety X admits a divisorial contraction X → Pm+2 with exceptional
divisor isomorphic to the projectivized split bundle

P
( m⊕

i=1

OP1
⊕OP1

(1)

)
and center isomorphic to P1. For m = 1, we have dim(X) = 3 and X is No. 2.30
from [53]; in this case it admits a further divisorial contraction X → Q3 with
exceptional divisor isomorphic to P2 and center a point.

No. 11 Here X = P(OQ3 ⊕ OQ3(a2) . . . ⊕ OQ3(am)) holds. Thus, there is a Mori
fiber space X → Q3 with fibers isomorphic to Pm−1. If a2 = . . . = am > 0
holds, then X admits a divisorial contraction X → Y , where the variety Y equals
V (T1T2 + T3T4 + T 2

5 ) ⊆ P(15, am−1
2 ). The exceptional divisor is isomorphic to

Q3 × Pm−2 and the center to Pm−2.

No. 12 The variety X is a bundle over Pm−1 with fibers isomorphic to Q3. In
particular, if a = b = c = 0 holds, then X ∼= Q3 × Pm−1.

No. 13 This case presents a one-parameter family of varieties Xλ, with parameter
λ ∈ K∗\{1}. They are generally non-isomorphic to each other, except for the pairs
Xλ
∼= Xλ−1 for all λ. The variety Xλ is the intersection of two hypersurfaces

D1 = V (T1S1 + T2S2 + T3S3), D2 = V (λT2S2 + T3S3 + T4S4),

both of bidegree (1,1) in P3 × P3, where the Ti are the coordinates of the first P3

and the Sj those of the second. Note that each Di has an isolated singularity, which
is not contained in the other hypersurface. Both D1, D2 are terminal and factorial.
Moreover, X admits two Mori fiber spaces P3 ← X → P3, both with typical fiber
P1 and having four special fibers, all isomorphic to P2 and lying over the points
[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] and [0, 0, 0, 1].

Remark 2.3.2. In contrast to the toric case, a smooth projective variety of Picard
number 2 with torus action of complexity one need not admit a non-trivial Mori
fiber space. For example, in Theorem 2.1.2, this happens in precisely two cases,
namely No. 7 and No. 10, both with m = 1.

Remark 2.3.3. In the list of Theorem 2.1.2 there are several examples, where the
effective cone coincides with the cone of movable divisor classes: No. 4A with c = 0,
No. 4C, No. 5 with a = 0, No. 6 with a = 0, No. 8 with a2 = 0, No. 9 with a3 = 0,
No. 11 with a2 = 0, No. 12 with a = 0 and No. 13. Thus, these varieties admit no
divisorial contraction.

Remark 2.3.4. In Theorem 2.1.1 it is possible that non-isomorphic varieties share
the same Cox ring and thus differ from each other by a small quasimodification,
i.e. only by the choice of the ample class. This happens exactly in the following cases:

(i) No. 4 with l2 = l4 = 2, l6 = 1, a = 0, b = 1, ci = 0 for all i = 1, . . . ,m
has the same Cox ring as No. 5 with a = 0. Note that for m = 0 both
varieties are truly almost Fano, whereas for m ≥ 1 No. 5 is Fano.

(ii) For m ≥ 1, No. 4 with l2 = 2, l4 = l6 = 1, a = b = 1, ci = 0 for all
i = 1, . . . ,m has the same Cox ring as No. 6 with a = c = 0 and b = 1.
Note that for m = 1 both varieties are truly almost Fano, whereas for
m ≥ 2 No. 6 is Fano.
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(iii) For m ≥ 2, No. 7 has the same Cox ring as No. 9 with a2 = 2 and
a3 = . . . = a6 = 1. Note that for m = 2, 3 No. 7 is Fano, for m = 4 both
varieties are truly almost Fano, whereas for m ≥ 5 No. 9 is Fano.

(iv) For m ≥ 2, No. 10 has the same Cox ring as No. 12 with a = b = c = 1.
Note that for m = 2 No. 10 is Fano, for m = 3 both varieties are truly
almost Fano, whereas for m ≥ 4 No. 12 is Fano.

Mukai’s conjecture was proven for Fano varieties of dimension at most five and
for toric Fano varieties of arbitrary dimension, see [13, 1, 20] for details. As an
application of our classification results, we prove Mukai’s conjecture for smooth
rational non-toric Fano complexity one varieties of Picard number at most two.

Conjecture 2.3.5. (Mukai’s Conjecture [54]) For a Fano variety X we have

ρ(X)(q(X)− 1) ≤ dim(X)

and equality holds if and only if X is isomorphic to the ρ(X)-th product of the
projective space Pq(X)−1.

Proposition 2.3.6. Let X be a smooth rational non-toric Fano variety with a torus
action of complexity one and Picard number at most two. Then X fulfills Mukai’s
conjecture, Conjecture 2.3.5.

Proof. In Picard number one, there are by a result of Liendo and Süß [49, Thm. 6.5]
up to isomorphism just two smooth rational non-toric Fano complexity one varieties,
namely the a three and a four dimensional intrinsic quadric. The case of smooth
intrinsic quadrics will be settled in Proposition 3.2.14 which we will prove in Chapter
three.

In Picard number two, all smooth rational non-toric Fano complexity one vari-
eties X are listed in the table of Theorem 2.1.2. Note that No. 4.A and Nos. 7–12
are smooth intrinsic quadrics, i.e. those varieties fulfill Mukai’s conjecture by Propo-
sition 3.2.14. It remains to settle the remaining numbers.

For Nos. 1, 2, 3, 4.B, 4.C and for No. 13 one can directly read off the Picard
index q(X) from the table in Theorem 2.1.2 and thereby check thatX fulfills Mukai’s
conjecture. For X arising from Nos. 5 and 6, we have q(X) ≤ 2 and q(X) ≤ 3 as
well as dim(X) ≥ 4 and dim(X) ≥ 5, respectively. We conclude that X fulfills
Mukai’s conjecture. �

2.4. First structural constraints

As a first step towards the proof of our classification results stated in Section 2.1,
we derive constraints on the defining matrices of smooth rational varieties with a
torus action of complexity one having Picard number two. We work in the notation
of Section 1.4. The aim is to show the following.

Proposition 2.4.1. Let X be a non-toric smooth rational projective variety with a
torus action of complexity one and Picard number ρ(X) = 2. Then X ∼= X(A,P, u),
where P is irredundant and fits into one of the following cases:

(I) We have r = 2 and one of the following constellations:
(a) m ≥ 0 and n = 4 + n0, where n0 ≥ 3, n1 = n2 = 2.
(b) m = 0 and n = 6, where n0 = 3, n1 = 2, n2 = 1.
(c) m = 0 and n = 5, where n0 = 3, n1 = 1, n2 = 1.
(d) m ≥ 0 and n = 6, where n0 = n1 = n2 = 2.
(e) m ≥ 0 and n = 5, where n0 = n1 = 2, n2 = 1.
(f) m ≥ 1 and n = 4, where n0 = 2, n1 = n2 = 1.

(II) We have r = 3 and one of the following constellations:
(a) m = 0 and n = 8, where n0 = n1 = n2 = n3 = 2.
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(b) m = 0 and n = 7, where n0 = n1 = n2 = 2, n3 = 1.
(c) m = 0 and n = 6, where n0 = n1 = 2, n2 = n3 = 1.

The statement is an immediate consequence of Propositions 2.4.12 and 2.4.13;
see end of this section. Throughout the whole section, the defining matrix P is
irredundant. In particular, X(A,P, u) is non-toric if and only if r ≥ 2 holds, i.e. we
have a relation in the Cox ring.

We first study the impact of X = X(A,P, u) being locally factorial on the
defining matrix P , where locally factorial means that the local rings of the points
x ∈ X are unique factorization domains.

Lemma 2.4.2. Let X = X(A,P, u) be non-toric and locally factorial. If X is
weakly tropical, then ni ≥ 2 holds for all i = 0, . . . , r.

Proof. Assume that ni = 1 holds for some i. Since X is weakly tropical, there exists
a cone σ ∈ ΣX of dimension s + 1 contained in the leaf λi. Because of ni = 1 we
have σ = %i1 +τ with a face τ � σ such that τ ⊆ λ. Now, σ = P (γ∗0) holds for some
γ0 ⊆ rlv(u). Since the points of X(γ0) are factorial, σ is a regular cone. Thus, also
τ ⊆ λ must be regular. This implies li1 = 1, contradicting irredundancy of P . �

Lemma 2.4.3. Let X = X(A,P, u) be non-toric and locally factorial. If X is
weakly tropical, then ρ(X) ≥ r + 3 holds.

Proof. Lemma 2.4.2 ensures ni ≥ 2 for all i = 1, . . . , r, hence n ≥ 2 · (r + 1). The
s-dimensional lineality space λ = {0} × Qs ⊆ trop(X) is a union of cones of ΣX .
Thus P must have at least s+ 1 columns vk which means m ≥ s+ 1. Together this
yields

ρ(X) = n+m− (r − 1)− (s+ 1) ≥ r + 3.

�

Lemma 2.4.4. Let X = X(A,P, u) be non-toric and not weakly tropical. If X is
Q-factorial, then there is an elementary big cone in ΣX .

Proof. Since X is not weakly tropical, there exists a big cone σ ∈ ΣX . We have
σ = P (γ∗0 ) with γ0 ∈ rlv(u). Since the points of X(γ0) are Q-factorial, the cone
σ is simplicial. For every i = 0 . . . , r choose a ray %i � σ with %i ∈ λi. Then
σ0 := %0 + . . .+ %r � σ is as wanted. �

Corollary 2.4.5. Let X = X(A,P, u) be non-toric and locally factorial. If ρ(X) ≤ 4
holds, then there exists an elementary big cone σ ∈ ΣX .

Next we investigate the effect of quasismoothness on the defining matrix P ,
where we call X = X(A,P, u) quasismooth if X̂ is smooth. Thus, quasismoothness
means that X has at most quotient singularities by quasitori. The smoothness of
X̂ will lead to conditions on P via the Jacobian of the defining relations of X.

Remark 2.4.6. Let (A,P ) be defining matrices. Then the Jacobian Jg of the
defining relations g0, . . . , gr−2 is of the shape Jg = (J, 0) with a zero block of size
(r − 1)×m corresponding to the variables S1, . . . , Sm and a block

J :=


δ10 δ11 δ12 0
0 δ21 δ22 δ23 0

...
δr−2,r−3 δr−2,r−2 δr−2,r−1 0

0 δr−1,r−2 δr−1,r−1 δr−1,r

 ,
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of size (r − 1) × n, where each vector δa,i is a nonzero multiple of the gradient of
the monomial T lii :

δa,i = αa,i

(
li1
T lii
Ti1

, . . . , lini
T lii
Tini

)
, αa,i ∈ K∗.

For given 1 ≤ a, b ≤ r − 1, 0 ≤ i ≤ r and z ∈ X, we have δa,i(z) = 0 if and only
if δb,i(z) = 0. Moreover, the Jacobian Jg(z) of a point z ∈ X is of full rank if and
only if δa,i(z) = 0 holds for at most two different i = 0, . . . , r.

Lemma 2.4.7. Assume that X = X(A,P, u) is non-toric and that there is an
elementary big cone σ = %0j0 + . . .+ %rjr ∈ ΣX . If X is quasismooth, then liji ≥ 2
holds for at most two i = 0, . . . , r.

Proof. We have σ = P (γ∗0 ) with a relevant face γ0 ∈ rlv(u). Since X is quasismooth,
any z ∈ X(γ0) is a smooth point ofX. Thus, Jg(z) is of full rank r−1. Consequently,
δa,i(z) = 0 holds for at most two different i. This means liji ≥ 2 for at most two
different i. �

Corollary 2.4.8. Let X = X(A,P, u) be non-toric and quasismooth. If there is an
elementary big cone in ΣX , then ni = 1 holds for at most two different i = 0, . . . , r.

Lemma 2.4.9. Let (A,P ) be defining matrices. Consider the rays γk := cone(ek)
and γij := cone(eij) of the orthant γ ⊆ Qr+s and the two-dimensional faces

γk1,k2 := γk1 + γk2 , γij,k := γij + γk, γi1j1,i2j2 := γi1j1 + γi2j2 .

(i) All γk, resp. γk1,k2 , are F-faces and each X(γk), resp. X(γk1,k2), consists
of singular points of X.

(ii) A given γij, resp. γij,k, is an F-face if and only if ni ≥ 2 holds. In that
case, X(γij), resp. X(γij,k), consists of smooth points of X if and only if
r = 2, ni = 2 and li,3−j = 1 hold.

(iii) A given γij1,ij2 with j1 6= j2 is an F-face if and only if ni ≥ 3 holds. In
that case, X(γij1,ij2) consists of smooth points of X if and only if r = 2,
ni = 3 and lij = 1 for the j 6= j1, j2 hold.

(iv) A given γi1j1,i2j2 with i1 6= i2 is an F-face if and only if we have ni1 , ni2 ≥
2 or ni1 = ni2 = 1 and r = 2. In the former case, X(γi1j1,i2j2) consists
of smooth points of X if and only if one of the following holds:
• r = 2, nit = 2 and lit,3−jt = 1 for a t ∈ {1, 2},
• r = 3, ni1 = ni2 = 2, li1,3−j1 = li2,3−j2 = 1.

Proof. The statements follow directly from the structure of the defining relations
g0, . . . , gr−2 of R(A,P ) and the shape of the Jacobian Jg. �

We now restrict to the case that the rational divisor class group Cl(X)Q = KQ
of X = X(A,P, u) is of dimension two. Set τX := Ample(X). Then the effective
cone Eff(X) is of dimension two and is uniquely decomposed into three convex sets

Eff(X) = τ+ ∪ τX ∪ τ−,

such that τ+, τ− do not intersect the ample cone τX and τ+ ∩ τ− consists of the
origin. Recall that u ∈ τX holds and that, due to τX ⊆ Mov(X), each of τ+ and τ−
contains at least two of the weights wij , wk.

τX

u

τ+

τ−
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Remark 2.4.10. Consider X = X(A,P, u) such that Cl(X)Q is of dimension two.
Then, for every F-face {0} 6= γ0 � γ precisely one of the following inclusions holds

Q(γ0) ⊆ τ+, τX ⊆ Q(γ0)◦, Q(γ0) ⊆ τ−.

The F-faces γ0 � γ satisfying the second inclusion are exactly those with γ0 ∈ rlv(u),
i.e. the relevant ones.

In the following, we will frequently work with the canonical base vectors eij , ek ∈
E and the faces

γi1j1,...iaja,k1,...,kb := cone(ei1j1 . . . eiaja , ek1 , . . . , ekb) � γ

of the orthant γ = Qn+m
≥0 .

Lemma 2.4.11. Let X = X(A,P, u) be non-toric with rk (Cl(X)) = 2.
(i) Suppose that X is Q-factorial. Then wk /∈ τX holds for all 1 ≤ k ≤ m

and for all 0 ≤ i ≤ r with ni ≥ 2 we have wij /∈ τX , where 1 ≤ j ≤ ni.
(ii) Suppose that X is quasismooth, m > 0 holds and there is 0 ≤ i1 ≤ r with

ni1 ≥ 3. Then the wij , wk with ni ≥ 3, j = 1, . . . , ni and k = 1, . . . ,m lie
either all in τ+ or all in τ−.

(iii) Suppose that X is quasismooth and there is 0 ≤ i1 ≤ r with ni1 ≥ 4.
Then the wij with ni ≥ 4 and j = 1, . . . , ni lie either all in τ+ or all in
τ−.

(iv) Suppose that X is quasismooth and there exist 0 ≤ i1 < i2 ≤ r with
ni1 , ni2 ≥ 3. Then the wij with ni ≥ 3, j = 1, . . . , ni lie either all in τ+

or all in τ−.
(v) Suppose that X is quasismooth. Then w1, . . . , wm lie either all in τ+ or

all in τ−.

Proof. We prove (i). By Lemma 2.4.9 (i) and (ii), the rays γk, γij � γ with ni ≥ 2
are F-faces. Since X is Q-factorial, the ample cone τX ⊆ KQ of X is of dimension
two and thus τX ⊆ Q(γij)

◦ or τX ⊆ Q(γk)◦ is not possible. Remark 2.4.10 yields
the assertion.

We turn to (ii). By Lemma 2.4.9 (i) and (ii), all γk, γij , γij,k � γ in question are
F-faces and the corresponding pieces in X consist of singular points. Because X is
quasismooth, none of these F-faces is relevant. Thus, Remark 2.4.10 gives wi11 ∈ τ+

or wi11 ∈ τ−; say we have wi11 ∈ τ+. Then, applying again Remark 2.4.10, we
obtain wk, wij ∈ τ+ for k = 1, . . . ,m, all i with ni ≥ 3 and j = 1, . . . , ni.

Assertion (iii) is proved analogously: treat first γi11,i12 with Lemma 2.4.9 (iii),
then γi11,ij with Lemma 2.4.9 (iii) and (iv). Similarly, we obtain (iv) by treating
first γi11,i21 and then all γi11,ij and γi21,ij with Lemma 2.4.9 (iii) and (iv). Finally,
we obtain (v) using Lemma 2.4.9 (i). �

Proposition 2.4.12. Let X = X(A,P, u) be non-toric, quasismooth and Q-factorial
with ρ(X) = 2. Assume that there is an elementary big cone in ΣX and that we
have n0 ≥ . . . ≥ nr. If m > 0 holds, then there is a γij,k ∈ rlv(u), we have r = 2
and the constellation of the ni is (n0, 2, 2), (2, 2, 1) or (2, 1, 1).

Proof. According to Lemma 2.4.11 (v), we may assume w1, . . . , wm ∈ τ+. We claim
that there is a wi1j1 ∈ τ− with ni1 ≥ 2. Otherwise, use Corollary 2.4.8 to see that
there exist wij with ni ≥ 2 and Lemma 2.4.11 (i) to see that they all lie in τ+. Since
all monomials T lii have the same degree in K, we obtain in addition wi1 ∈ τ+ for
all i with ni = 1. But then no weights wij , wk are left to lie in τ−, a contradiction.

Having verified the claim, we may take a wi1j1 ∈ τ− with ni1 ≥ 2. Then
γi1j1,1 ∈ rlv(u) is as desired. Moreover, Lemma 2.4.9 (ii) yields r = 2 and ni1 = 2.
If n0 ≥ 3 holds, then Lemma 2.4.11 (ii) gives wij ∈ τ+ for all i with ni ≥ 3.
Moreover, as all T lii share the same K-degree, we have wi1 ∈ τ+ for all i with
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ni = 1. By the same reason, one of the wi11, wi12 must lie in τ+. As τ− contains
at least two weights, there is a wi2j2 ∈ τ− with ni2 = 2 and i1 6= i2. Thus, the
constellation of n0 ≥ n1 ≥ n2 is as claimed. �

Proposition 2.4.13. Let X = X(A,P, u) be non-toric, quasismooth and Q-factorial
with ρ(X) = 2. Assume that there is an elementary big cone in ΣX and that we
have n0 ≥ . . . ≥ nr. If m = 0 holds, then there is a γi1j1,i2j2 ∈ rlv(u), we have
r ≤ 3 and the constellation of the ni is one of the following

r = 2: (n0, 2, 2), (3, 2, 1), (3, 1, 1), (2, 2, 2), (2, 2, 1),
r = 3: (2, 2, 2, 2), (2, 2, 2, 1), (2, 2, 1, 1).

Proof. We first show n1 ≤ 2. Otherwise, we had n1 ≥ 3. Then, according to
Lemma 2.4.11 (iv), we may assume that all the wij with ni ≥ 3 lie in τ+. In
particular, w11, lies in τ+. Because all monomials T lii have the same degree in K,
also wi1 ∈ τ+ holds for all i with ni = 1. At least two weights wi1j1 and wi2j2
must belong to τ−. For these, only ni1 = ni2 = 2 and i1 6= i2 is possible. Applying
Lemma 2.4.9 (iv) to γ11,i1j1 ∈ rlv(u) gives r = 2, contradicting n0 ≥ n1 ≥ 3 and
ni1 = ni2 = 2.

We treat the case n0 ≥ 4. By Lemma 2.4.11 (iii), we can assume w01, . . . , w0n0
∈

τ+. As before, we obtain wi1 ∈ τ+ for all i with ni = 1 and we find two weights
wi1j1 , wi2j2 ∈ τ− with ni1 = ni2 = 2 and i1 6= i2. Then γ01,i1j1 ∈ rlv(u) is as
wanted. Lemma 2.4.9 (iv) gives r = 2 and we end up with (n0, 2, 2).

Now consider the case n0 = 3. Lemma 2.4.11 (i) guarantees that no w0j lies in
τX . If weights w0j occur in both cones τ+ and τ−, say w01 ∈ τ+ and w02 ∈ τ−, then
γ01,02 is as wanted. Lemma 2.4.9 (iii) yields r = 2 and we obtain the constellations
(n0, 2, 2), (3, 2, 1) and (3, 1, 1). So, assume that all weights w0j lie in one of τ+ and
τ−, say in τ+. Then we proceed as in the case n0 ≥ 4 to obtain a γ01,i1j1 ∈ rlv(u)
and r = 2 with the constellation (3, 2, 2).

Finally, consider the case n0 ≤ 2. Corollary 2.4.8 yields n0 = 2. According to
Lemma 2.4.11 (i) no wij with ni = 2 lies in τX . So, we may assume w01 ∈ τ+.
Moreover, all wij with ni = 1 lie together in one τ+, τX or in τ−. Since each of
τ+ and τ− contains two weights, we obtain n1 = 2 and some γ0j1,1j2 is as wanted.
Lemma 2.4.9 (iv) shows r ≤ 3. �

We derive a special case of [23, Cor. 4.18].

Corollary 2.4.14. Let X = X(A,P, u) be smooth with ρ(X) = 2. Then the divisor
class group Cl(X) is torsion-free.

Proof. By Corollary 2.4.5, there is an elementary big cone in ΣX . Thus, Proposi-
tions 2.4.12 and 2.4.13 deliver a two-dimensional γ0 ∈ rlv(u). The corresponding
weights generate K as a group. This gives Cl(X) ∼= K ∼= Z2. �

Proof of Proposition 2.4.1. The variety X is isomorphic to some X(A,P, u), where
after suitable admissible operations we may assume n0 ≥ . . . ≥ nr. Thus, Proposi-
tions 2.4.12 and 2.4.13 apply. �

2.5. Proof of Theorems 2.1.1, 2.1.2 and 2.1.4

We prove Theorems 2.1.1, 2.1.2 and 2.1.4 by going through the cases established
in Proposition 2.4.1. The notation is the same as in Sections 1.4 and 2.4. We deal
with a smooth projective variety X = X(A,P, u) of Picard number ρ(X) = 2
coming with an effective torus action of complexity one.

From Corollary 2.4.14 we know that Cl(X) = K = Z2 holds. With wij = Q(eij)
and wk = Q(ek), the columns of the 2× (n+m) degree matrix Q will be written as

wij = (w1
ij , w

2
ij) ∈ Z2, wk = (w1

k, w
2
k) ∈ Z2.
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Recall that all relations g0, . . . , gr−2 of R(A,P ) have the same degree in K = Z2;
we set for short

µ = (µ1, µ2) := deg(g0) ∈ Z2.

We will frequently work with the faces of the orthant γ = Qn+m
≥0 introduced in

Lemma 2.4.9:

γij,k = cone(eij , ek) � γ, γi1j1,i2j2 = cone(ei1j1 , ei2j2) � γ.

Remark 2.5.1. Consider E Q−→ Z2 and a face γ0 � γ of type γij,k, γi1j1,i2j2
or γk1,k2 . Write e′, e′′ for the two generators of γ0 and w′ = Q(e′), w′′ = Q(e′′) for
the corresponding columns of the degree matrix Q such that (w′, w′′) is positively
oriented in Z2. Then Remark 1.3.3 tells us

γ0 ∈ rlv(u) ⇒ det(w′, w′′) = 1.

So, if γ0 ∈ rlv(u) holds, then we may multiply Q from the left with a unimodu-
lar (2× 2)-matrix transforming w′ and w′′ into (1, 0) and (0, 1). This change of
coordinates on Cl(X) does not affect the defining data (A,P ). If w′ = (1, 0) and
w′′ = (0, 1) hold and e ∈ γ is a canonical basis vector with corresponding column
w = Q(e), then we have

cone(e′, e) ∈ rlv(u) ⇒ w = (w1, 1),

cone(e′′, e) ∈ rlv(u) ⇒ w = (1, w2).

We are ready to go through the cases of Proposition 2.4.1; we keep the num-
bering introduced there.

Case (I) (a). We have r = 2, m ≥ 0 and the list of ni is (n0, 2, 2), where n0 ≥ 3.
This leads to No. 1 and No. 2 in Theorems 2.1.1 and 2.1.2.

Proof. In a first step we show that there occur weights w0j in each of τ+ and τ−.
Otherwise, we may assume that all w0j lie in τ+, see Lemma 2.4.11 (i). Then
Lemma 2.4.11 (ii) says that also all wk lie in τ+. Moreover, we have deg(T lii ) ∈
τ+ for i = 0, 1, 2. Thus, we may assume w11, w21 ∈ τ+ and obtain w12, w22 ∈
τ−, as there must be at least two weights in τ−. Finally, we may assume that
cone(w01, w12) contains w02, . . . , w0n0

and w22. Applying Remark 2.5.1 first to
γ01,12, then to all γ0j,12, γ12,k and γ01,22, γ12,21 yields

Q =

[
0 w1

02 . . . w1
0n0

w1
11 1 w1

21 1 w1
1 . . . w1

m

1 1 . . . 1 w2
11 0 1 w2

22 1 . . . 1

]
,

where w1
0j ≥ 0 and w2

22 ≥ 0. Since γ01,12, γ01,22 ∈ rlv(u) holds, Lemma 2.4.9 (iv)
implies l11 = l21 = 1. Applying P ·Qt = 0 to the first row of P and the second row
of Q gives

0 < 3 ≤ n0 ≤ l01 + . . .+ l0n0
= w2

11 = 1 + w2
22w

1
11,

where the last equality is due to γ11,22 ∈ rlv(u) and thus det(w22, w11) = 1. We
conclude w2

22 > 0 and w1
11 > 0. Because of γ0j,22 ∈ rlv(u), we obtain det(w22, w0j) =

1. This implies w1
0j = 0 for all j = 2, . . . , n0. Applying P ·Qt = 0 to the first row

of P and the first row of Q gives w1
11 + l12 = 0; a contradiction.

Knowing that each of τ+ and τ− contains weights w0j , we can assume w01, w02 ∈
τ+ and w03 ∈ τ−. Lemma 2.4.11 (ii) and (iii) show n0 = 3 and m = 0. There is
at least one other weight in τ−, say w11 ∈ τ−. Applying Lemma 2.4.9 (iii) to
γ0j,03 ∈ rlv(u) for j = 1, 2 and (iv) to suitable γ0j1,i2j2 ∈ rlv(u), we obtain

l01 = l02 = 1, l11 = l12 = 1, l21 = l22 = 1.
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Moreover, Remark 2.5.1 applied to γ01,03 as well as γ02,03 and γ01,11 brings the
matrix Q into the shape

Q =

[
0 w1

02 1 1 w1
12 w1

21 w1
22

1 1 0 w2
11 w2

12 w2
21 w2

22

]
.

Observe that the second component of the degree of the relation is µ2 = 2. The
possible positions of the weights w2j define three subcases:

τXw01

w02

τ+

w03 w11

w21 w22

τ−

(i)

τXw01 w02
w22

τ+

w03

w11 w21

τ−

(ii)

τX
w01 w02
w21 w22

τ+

w03
w11

τ−

(iii)

We will see that cases (i) and (ii) give No. 1 and No. 2 of Theorem 2.1.1 respectively
and case (iii) will not provide any smooth variety.

In (i) we assume w21, w22 ∈ τ−. Then γ01,21, γ01,22 ∈ rlv(u) holds and Re-
mark 2.5.1 shows w1

21 = w1
22 = 1. This implies µ1 = 2. Similarly, considering

γ02,21, γ02,22 ∈ rlv(u), we obtain w1
02 = 0 or w2

21 = w2
22 = 0. The latter contra-

dicts µ2 = 2 and thus w1
02 = 0 holds. We conclude l03 = µ1 = 2. Furthermore

w1
12 = µ1 − w1

11 = 1. Together, we have

g0 = T01T02T
2
03 + T11T12 + T21T22, Q =

[
0 0 1 1 1 1 1
1 1 0 a 2− a b 2− b

]
,

where a, b ∈ Z. Observe that w12 ∈ τ− must hold; otherwise, γ03,12 ∈ rlv(u)
and Remark 2.5.1 yields w2

12 = 1, contradicting w12 = (1, 1) = w11 ∈ τ−. The
semiample cone is SAmple(X) = cone((0, 1), (1, d)), where d = max(a, 2−a, b, 2−b).
The anticanonical class is −KX = (3, 4). Hence X is an almost Fano variety if and
only if d = 1, which is equivalent to a = b = 1. In this situation X is already a
Fano variety.

In (ii) we assume w21 ∈ τ− and w22 ∈ τ+. Remark 2.5.1, applied to γ01,21, γ03,22 ∈
rlv(u) shows w1

21 = w2
22 = 1. The latter implies w2

21 = µ2 − w2
22 = 1. We claim

w2
11 6= 0. Otherwise, we have w2

12 = µ2 = 2. This gives det(w03, w12) = 2. We
conclude γ03,12 6∈ rlv(u) and w12 ∈ τ−. Then γ01,12 ∈ rlv(u) implies w1

12 = 1. Thus,
w22 = (1, 1) and w12 = (1, 2) hold, contradicting w22 ∈ τ+ and w12 ∈ τ−. Now,
γ11,22 ∈ rlv(u) yields w2

11w
1
22 = 0 and thus w1

22 = 0. We obtain µ1 = 1 and, as
a consequence l03 = 1, w1

02 = 0 and w1
12 = 0. Therefore w12 ∈ τ+ holds. Now

γ03,12 ∈ rlv(u) implies w2
12 = 1 and w2

11 = µ2 − w2
12 = 1. We arrive at

g0 = T01T02T03 + T11T12 + T21T22, Q =

[
0 0 1 1 0 1 0
1 1 0 1 1 1 1

]
.

The anticanonical class is −KX = (2, 4) and the semiample cone is SAmple(X) =
cone((0, 1), (1, 1)). In particular X is Fano.

We turn to (iii), where both w21 and w22 lie in τ+. The homogeneity of g0 yields
w12 ∈ τ+. Thus, γ03,12, γ03,21, γ03,22 ∈ rlv(u) holds and Remark 2.5.1 implies w2

12 =
w2

21 = w2
22 = 1. We conclude w2

11 = µ2 − w2
12 = 1. Similarly, γ02,11, γ11,21, γ11,22 ∈

rlv(u) yields w1
02 = w1

21 = w1
22 = 0. This gives 0 6= l03 = µ1 = w1

21 + w1
22 = 0 which

is not possible. �

Case (I) (b). We have r = 2, m = 0, n = 6 and the list of ni is (3, 2, 1). This
leads to No. 3 in Theorems 2.1.1 and 2.1.2.

Proof. Since there are at least two weights in τ+ and another two in τ−, we can
assume w01, w02 ∈ τ+ and w03, w12 ∈ τ−. By Lemma 2.4.9 (iii) and (iv) we obtain



2.5. PROOF OF THEOREMS 2.1.1, 2.1.2 AND 2.1.4 47

l01 = l02 = l11 = l12 = 1. We may assume that cone(w01, w03) contains w02.
Applying Remark 2.5.1 firstly to γ01,03, then to γ02,03 and γ01,12, we obtain

Q =

[
0 w1

02 1 w1
11 1 w1

21

1 1 0 w2
11 w2

12 w2
21

]
,

where w1
02 ≥ 0. For the degree µ of g0, we have µ2 = 2. We conclude w2

11 = 2−w2
12

and l21w
2
21 = 2 which in turn implies l21 = 2 and w2

21 = 1. For γ02,12 ∈ rlv(u),
Remark 2.5.1 gives det(w12, w02) = 1 and thus w1

02 = 0 or w2
12 = 0 must hold.

We treat the case w1
02 = 0. Then µ = (l03, 2) holds. We conclude w1

11 = l03 − 1
and w1

21 = l03/2. With c := l03/2 ∈ Z≥1 and a := w2
12 ∈ Z, we obtain the degree

matrix

Q =

[
0 0 1 2c− 1 1 c
1 1 0 2− a a 1

]
.

We show w11 ∈ τ−. Otherwise, w11 ∈ τ+ holds, we have γ03,11 ∈ rlv(u) and
Remark 2.5.1 yields a = 1. But then w01 = (0, 1) ∈ τ+ and w11 = (2c− 1, 1) ∈ τ+

imply w12 = (1, 1) ∈ τ+; a contradiction. So we have w11 ∈ τ−. Then γ01,11 ∈
rlv(u) holds. Remark 2.5.1 gives det(w11, w01) = 1 which means c = 1 and, as a
consequence, l03 = 2. Together, we have

g0 = T01T02T
2
03 + T11T12 + T 2

21, Q =

[
0 0 1 1 1 1
1 1 0 2− a a 1

]
,

where we may assume a ≥ 2 − a that means a ∈ Z≥1. The semiample cone is
SAmple(X) = cone((0, 1), (1, a)), and the anticanonical class is −KX = (2, 3). In
particular, X is an almost Fano variety if and only a = 1 holds. In this situation X
is already a Fano variety.

We turn to the case w2
12 = 0. Here, w2

11 = µ2 = 2 leads to det(w03, w11) = 2 and
thus the F-face γ03,11 does not belong to rlv(u); see Remark 2.5.1. Hence w11 ∈ τ−
and thus γ01,11 ∈ rlv(u). This gives w1

11 = 1 and thus w11 = (1, 2). Because
of w02 = (w02, 1) ∈ τ+, we must have w1

02 = 0 and the previous consideration
applies. �

Case (I) (c). We have r = 2, m = 0, n = 5 and the list of ni is (3, 1, 1). This case
does not provide smooth varieties.

Proof. Each of τ+ and τ− contains at least two weights. We may assume w01, w02 ∈
τ+ and w03, w11, w21 ∈ τ−. Then γ01,03, γ02,03 ∈ rlv(u) holds and Lemma 2.4.9 (iii)
yields l01 = l02 = 1. By Remark 2.5.1 we can assume w03 = (1, 0) and w2

01 = w2
02 =

1. This implies µ2 = 2 and, as a consequence, l11 = l21 = 2. By [36, Thm. 1.1], we
have torsion in Cl(X); a contradiction to Corollary 2.4.14. �
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Case (I) (d). We have r = 2, m ≥ 0, n = 6 and the list of ni is (2, 2, 2). Suitable
admissible operations lead to one of the following configurations for the weights wij:

τXw01 w11
w21

τ+

w02

w12 w22

τ−

(i)

τX
w01 w02
w11 w21

τ+

w12
w22

τ−

(ii)

τX
w01 w02
w11 w12
w21

τ+

w22

τ−

(iii)

τX

w01 w02
w11 w12
w21 w22

τ+

τ−

(iv)

Configuration (i) amounts to No. 4 in Theorems 2.1.1, 2.1.2 and 2.1.4, configu-
ration (ii) to No. 5, configuration (iii) to Nos. 6 and 7, and configuration (iv) to
Nos. 8 and 9.

Proof for configuration (i). We have w01, w11, w21 ∈ τ+ and w02, w12, w22 ∈ τ−.
We may assume wk ∈ τ+ for all k = 1, . . . ,m. If m > 0, we have γi2,1 ∈ rlv(u) and
Lemma 2.4.9 (ii) gives li1 = 1 for i = 0, 1, 2. If m = 0, we use γi11,i22 ∈ rlv(u) and
Lemma 2.4.9 (iv) to obtain li12 = 1 or li21 = 1 for all i1 6= i2. Thus, for m = 0, we
may assume l01 = l11 = 1 and are left with l21 = 1 or l22 = 1.

We treat the case m ≥ 0 and l01 = l11 = l21 = 1. Here we may assume
w11, w21, w22 ∈ cone(w01, w12). Applying Remark 2.5.1 firstly to γ01,12 and then to
γ01,22, γ12,21 and all γ12,k gives

Q =

[
0 w1

02 w1
11 1 w1

21 1 w1
1 . . . w1

m

1 w2
02 w2

11 0 1 w2
22 1 . . . 1

]
.

Using w11, w21, w22 ∈ cone(w01, w12) and the fact that the determinants of (w02, w01),
(w12, w11) and (w22, w21) are positive, we obtain

w1
11, w

1
21, w

2
22 ≥ 0, w1

02, w
2
11 > 0, 1 > w2

22w
1
21.

The degree µ of the relation satisfies

0 < µ1 = l02w
1
02 = w1

11 + l12 = w1
21 + l22,

0 < µ2 = 1 + l02w
2
02 = w2

11 = 1 + l22w
2
22.

In particular, w2
02 ≥ 0 holds and thus all components of the wij are non-negative.

With γ02,11, γ02,21,∈ rlv(u) and Remark 2.5.1, we obtain

w1
02w

2
11 = 1 + w2

02w
1
11, w1

02 − 1 = w2
02w

1
21.

We show w2
22 = 0. Otherwise, because of 1 > w2

22w
1
21, we have w1

21 = 0. This
implies w1

02 = 1 and thus

w2
11 = 1 + w2

02w
1
11 = 1 + l02w

2
02.

This gives w2
02 = 0 or w1

11 = l02. The first is impossible because of l02w
2
02 = l22w

2
22

and the second because of l02 = l02w
1
02 = w1

11 + l12.
Knowing w2

22 = 0, we directly conclude w2
11 = 1 and w2

02 = 0 from µ2 = 1. This
gives w1

02 = 1. With a := w1
11 ∈ Z≥0, b := w1

21 ∈ Z≥0 and ck := w1
k ∈ Z we are in
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the situation

g0 = T01T
l02
02 +T11T

l12
12 +T21T

l22
22 , Q =

[
0 1 a 1 b 1 c1 . . . cm
1 0 1 0 1 0 1 . . . 1

]
,

where we may assume 0 ≤ a ≤ b and c1 ≤ . . . ≤ cm. Observe l02 = a+ l12 = b+ l22.
The anticanonical class and the semiample cone of X are given by

−KX = (3 + b+ c1 + . . .+ cm − l12, 2 +m),

SAmple(X) = cone((1, 0), (d, 1)),

where d := max(b, cm). Consequently, X is a Fano variety if and only if the following
inequality holds

3 + b+ c1 + . . .+ cm − l12 > (2 +m)d.

A necessary condition for this is 0 ≤ d ≤ 1 with l12 = 1 if d = 1 and l12 ≤ 2 if d = 0
The tuples (a, b, d, l02, l12, l22) fulfilling that condition are

(0, 0, 0, 2, 2, 2), (0, 0, 0, 1, 1, 1), (1, 1, 1, 2, 1, 1).

Each of these three tuples leads indeed to a Fano varietyX; the respectively possible
choices of the ck lead to Nos. 4.A, 4.B and 4.C of Theorem 2.1.2 and are as follows:

c1 = . . . = cm = 0, −1 ≤ c1 ≤ 0 = c2 = . . . = cm, c1 = . . . = cm = 1.

Moreover X is a truly almost Fano variety if and only if the following equality holds

3 + b+ c1 + . . .+ cm − l12 = (2 +m)d.

This implies 0 ≤ d ≤ 2 and the only possible parameters fulfilling that condition
are listed as Nos. 4.A to 4.F in the table of Theorem 2.1.4.

We turn to the case m = 0, l01 = l11 = 1 and l21 ≥ 2. Lemma 2.4.9 (iv)
applied to γ01,22, γ11,22 ∈ rlv(u) gives l02 = l12 = 1. If l22 = 1 holds, then suitable
admissible operations bring us to the previous case. Hence consider l22 ≥ 2. We
may assume w11 ∈ cone(w01, w12). We apply Remark 2.5.1 firstly to γ01,12, then to
γ01,22, γ12,21 and arrive at

g0 = T01T02 + T11T12 + T l2121 T
l22
22 , Q =

[
0 w1

02 w1
11 1 w1

21 1
1 w2

02 w2
11 0 1 w2

22

]
,

where w1
11 ≥ 0 and w2

11 = det(w12, w11) > 0. We have µ = w02 + w01 = w11 + w12

and thus w02 = w11 + w12 − w01. Because of γ02,11 ∈ rlv(u), we obtain

1 = det(w02, w11) = det(w12 − w01, w11) = w1
11 + w2

11.

We conclude w11 = (0, 1) and µ = (1, 1). Using µ = l21w21 + l22w22 and l21, l22 ≥ 2
we see w1

21, w
2
22 < 0. On the other hand, 0 < det(w22, w21) = 1 − w1

21w
2
22, a

contradiction. Thus l22 ≥ 2 does not occur. �

Proof for configuration (ii). We have w01, w02, w11, w21 ∈ τ+ and w12, w22 ∈ τ−.
We may assume that w02, w12 ∈ cone(w01, w22) holds. Applying Remark 2.5.1 first
to γ01,22 ∈ rlv(u) and then to γ01,12, γ02,22, γ11,22 ∈ rlv(u) we obtain

Q =

[
0 w1

02 w1
11 1 w1

21 1 w1
1 . . . w1

m

1 1 1 w2
12 w2

21 0 w2
1 . . . w2

m

]
,

where we have w1
02, w

2
12 ≥ 0 due to w02, w12 ∈ cone(w01, w22). Moreover, w2

21 > 0
holds, as we infer from the conditions

0 ≤ µ1 = l02w
1
02 = l11w

1
11 + l12 = l21w

1
21 + l22,

0 < µ2 = l01 + l02 = l11 + l12w
2
12 = l21w

2
21.

We show l11 ≥ 2. Otherwise, the above conditions give l12w
2
12 > 0 and thus

w2
12 > 0. For γ02,12 ∈ rlv(u), Remark 2.5.1 gives det(w12, w02) = 1 which means

w2
12w

1
02 = 0 and thus w1

02 = 0. This implies l21w
1
21 + l22 = 0 and thus w1

21 < 0;



50 2. SMOOTH T -VARIETIES OF COMPLEXITY ONE WITH PICARD NUMBER TWO

a contradiction to 1 = det(w12, w21) = w2
21 − w2

12w
1
21 which in turn holds due to

γ12,21 ∈ rlv(u) and Remark 2.5.1.
Lemma 2.4.9 (iv) applied to γ02,12, γ01,12, γ21,12 ∈ rlv(u) shows l01 = l02 = l22 =

1. Putting together µ2 = 2 = l11 + l12w
2
12 and l11 6= 1, we conclude l11 = 2 and

w2
12 = 0. With γ12,21 ∈ rlv(u) and Remark 2.5.1 we obtain w2

21 = 1 and hence
l21 = µ2 = 2. From

0 ≤ µ1 = w1
02 = 2w1

11 + 1 = 2w1
21 + 1

we conclude w1
11 = w1

21 ≥ 0 and thus w1
02 > 0. Lemma 2.4.9 (ii) implies that

possible weights of type wk lie in τ−. Thus Remark 2.5.1 and γ01,k imply w1
k = 1

for all k. Moreover, since γ02,k ∈ rlv(u), the latter implies w2
k = 0. All in all, we

arrive at

g0 = T01T02 + T 2
11T12 + T 2

21T22, Q =

[
0 2a+ 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 0 . . . 0

]
,

where a ∈ Z≥0. The anticanonical class is −KX = (2a+2+m, 2) and the semiample
cone is SAmple(X) = cone((1, 0), (2a+ 1, 1)). Hence X is an almost Fano variety if
and only if m ≥ 2a holds and X is a Fano variety if and only if m > 2a holds. �

Proof for configuration (iii). We have w01, w02, w11, w12, w21 ∈ τ+ and w22 ∈ τ−.
As there must be another weight in τ−, we obtain m > 0. Lemma 2.4.11 (v)
yields w1, . . . , wm ∈ τ−. We may assume w02, w11, w12, wk ∈ cone(w01, w1), where
k = 2, . . . ,m. Applying Remark 2.5.1 firstly to γ01,1 ∈ rlv(u) and then to the
remaining faces γ01,22, γ01,k, γij,1 from rlv(u) leads to the degree matrix

Q =

[
0 w1

02 w1
11 w1

12 w1
21 1 1 1 . . . 1

1 1 1 1 1 w2
22 0 w2

2 . . . w2
m

]
with at most w1

21, w
2
22 negative. We infer l01 = l02 = l11 = l12 = l22 = 1 from

Lemma 2.4.9 (ii). For γ02,22, γ11,22, γ12,22 ∈ rlv(u) Remark 2.5.1 tells us

w2
22 = 0 or w1

02 = w1
11 = w1

12 = 0.

We treat the case w2
22 = 0. Here l21 = µ2 = 2 holds. Thus µ1 = w1

02 = 2w1
21 + 1

holds. Because of w1
02 ≥ 0, we conclude w1

02 > 0 and w1
21 ≥ 0. Remark 2.5.1 applied

to γ02,k ∈ rlv(u) gives w2
k = 0 for all k = 2, . . . ,m. We arrive at

g0 = T01T02 + T11T12 + T 2
21T22, Q =

[
0 2c+ 1 a b c 1 1 . . . 1
1 1 1 1 1 0 0 . . . 0

]
,

where a, b, c ∈ Z≥0 and a + b = 2c + 1. Furthermore, the anticanonical class is
−KX = (3c + 2 + m, 3) and we have SAmple(X) = cone((1, 0), (2c + 1, 1)). In
particular, X is an almost Fano variety if and only if 3c+ 1 ≤ m holds and a Fano
variety if and only if the corresponding strict inequality holds.

Now we consider the case w1
02 = w1

11 = w1
12 = 0. We have µ1 = 0, which implies

l21 = 1, w1
21 = −1. Consequently, µ2 = 2 gives w2

22 = 1. Since γ21,k ∈ rlv(u) for
2 ≤ k ≤ m, we conclude w2

k = 0 for all k. Therefore we obtain

g0 = T01T02 + T11T12 + T21T22, Q =

[
0 0 0 0 −1 1 1 . . . 1
1 1 1 1 1 1 0 . . . 0

]
.

Finally, we have −KX = (m, 4) and SAmple(X) = cone((1, 1), (0, 1)). Thus, X is a
Fano variety if and only if m < 4 holds. Moreover, X is an almost Fano variety if
and only if m ≤ 4 holds. �

Proof for configuration (iv). All wij lie in τ+. Then we have m ≥ 2 and one and
hence all wk in lie in τ−, see Lemma 2.4.11 (v). Applying Lemma 2.4.9 (ii) to
γij,1 ∈ rlv(u), we conclude lij = 1 for all i, j. Thus we have the relation

g0 = T01T02 + T11T12 + T21T22.
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We may assume that cone(w01, w1) contains all wij , wk. Remark 2.5.1 applied to
γ01,1 ∈ rlv(u) leads to w1 = (1, 0) and w01 = (0, 1). All other weights lie in the
positive orthant. For γij,1, γ01,k ∈ rlv(u) Remark 2.5.1 shows w2

ij = w1
k = 1 for all

i, j, k. Consider the case that all w2
k vanish. Then the degree matrix is of the form

Q =

[
0 a2 a3 a4 a5 a6 1 . . . 1
1 1 1 1 1 1 0 . . . 0

]
,

where ai ∈ Z≥0 and a2 = a3 + a4 = a5 + a6. We have −KX = (2a2 + m, 4) and
SAmple(X) = cone((1, 0), (a2, 1)). Hence X is a Fano variety if and only if 2a2 < m
holds and an almost Fano variety if and only if 2a2 ≤ m holds.

Finally, let w2
k be strictly positive for some k. Note that we may assume 0 ≤

w2
2 ≤ . . . ≤ w2

m; in particular w2
m > 0. Since γij,m ∈ rlv(u) for all i, j, Remark 2.5.1

yields w1
ij = 0 for all i, j. Thus we obtain the degree matrix

Q =

[
0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 0 a2 . . . am

]
,

where 0 ≤ a2 ≤ . . . ≤ am and am > 0. The anticanonical class and the semiample
cone are given as

−KX = (m, 4 + a2 + . . .+ am), SAmple(X) = cone((0, 1), (1, am)).

In particular, X is a Fano variety if and only if 4 + a2 + . . . + am > mam holds.
Note that for the latter am ≤ 3 is necessary. Moreover, X is a truly almost Fano
variety if and only if the equality 4 + a2 + . . .+ am = mam holds. �

Case (I) (e). We have r = 2, m ≥ 0, n = 5 and the list of ni is (2, 2, 1). This
leads to Nos. 10, 11 and 12 in Theorems 2.1.1, 2.1.2 and 2.1.4.

Proof. We divide this case into the following three configurations, according to the
way some weights lie with respect to τX .

τXw02

w12

τ+

w01
w11

τ−

(i)

τXw02

w1

τ+

w01

w11 w12

τ−

(ii)

τXw1

w2

τ+

w01 w02

w11 w12

τ−

(iii)

We show that configuration (i) does not provide any smooth variety, (ii) delivers
No. 10 of Theorem 2.1.1 and (iii) delivers Nos. 11 and 12.

In configuration (i) we have w01, w11 ∈ τ− and w02, w12 ∈ τ+. We may assume
w11 ∈ cone(w01, w12). Remark 2.5.1 applied to γ01,12 ∈ rlv(u) leads to w01 = (1, 0)
and w12 = (0, 1). Observe w1

11, w
2
11 ≥ 0. Due to det(w11, w12) > 0, we even have

w1
11 > 0 and det(w01, w02) > 0 gives w2

02 > 0. Since T l00 and T l11 share the same
degree, we have

l01w01 + l02w02 = l11w11 + l12w12.

Lemma 2.4.9 (iv) says l02 = 1 or l11 = 1, which allows us to resolve for w02 or for
w11 in the above equation. Using γ02,11 ∈ rlv(u), we obtain

l02 = 1 =⇒ 1 = det(w11, w02) = det(w11, l12w12 − l01w01) = l12w
1
11 + l01w

2
11,

l11 = 1 =⇒ 1 = det(w11, w02) = det(l01w01 − l12w12, w02) = l01w
2
02 + l12w

1
02.

We show l02 > 1. Otherwise, l02 = 1 holds. The above consideration shows w2
11 = 0

and l12 = w1
11 = 1. Thus, l21w

2
21 = l12 = 1 holds and we obtain l21 = 1; a

contradiction to P being irredundant. Thus, l02 > 1 and l11 = 1 must hold.
Because of w2

02 > 0, we must have w1
02 ≤ 0. With

1 = det(w11, w02) = w1
11w

2
02 − w2

11w
1
02
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we see w2
11w

1
02 = 0 and w1

11 = w2
02 = 1. But then we arrive at 1 = l11w

1
11 = l21w

1
21.

Again this means l21 = 1; a contradiction to P being irredundant.
In configuration (ii) we have w01, w11, w12 ∈ τ− and w02, w1 ∈ τ+. In particular

m ≥ 1. Lemma 2.4.11 (v) yields w2, . . . , wm ∈ τ+. Applying Remark 2.5.1 first to
γ11,1 ∈ rlv(u) an then to γ01,1, γ12,1, γ02,11, γ11,k ∈ rlv(u) leads to

Q =

[
1 w1

02 1 1 w1
21 0 w1

2 . . . w1
m

w2
01 1 0 w2

12 w2
21 1 1 . . . 1

]
.

Applying Lemma 2.4.9 (ii) to γ01,1, γ12,1, γ11,1 ∈ rlv(u) we obtain l02 = l11 = l12 = 1.
For the degree µ of the relation g0 we note

µ1 = l01 + w1
02 = 2 = l21w

1
21, µ2 = l01w

2
01 + 1 = w2

12 = l21w
2
21.

From µ1 = 2 we infer l21 = 2 and w1
21 = 1. Consequently, µ2 is even and both

l01, w
2
01 are odd. Using again µ1 = 2 gives w1

02 6= 0. For γ02,12 ∈ rlv(u) Remark 2.5.1
yields det(w12, w02) = 1 which means w1

02w
2
12 = 0. We conclude w2

12 = 0 = µ2. This
implies w2

21 = 0, w2
01 = −1, l01 = 1 and w1

02 = 1. We obtain

g0 = T01T02 + T11T12 + T 2
21, Q =

[
1 1 1 1 1 0 . . . 0
−1 1 0 0 0 1 . . . 1

]
,

where w1
2 = . . . = w1

m = 0 follows from Remark 2.5.1 applied to γ01,k ∈ rlv(u). The
semiample cone is given as SAmple(X) = cone((1, 0), (1, 1)) and the anticanonical
class as −KX = (3,m). Therefore X is a Fano variety if and only if m < 3, i.e
m = 1, 2. Moreover, X is an almost Fano variety if and only if m ≤ 3.

In configuration (iii) we have w01, w02, w11, w12 ∈ τ− and w1, w2 ∈ τ+. In
particular m ≥ 2. Lemma 2.4.11 (v) ensures w3, . . . , wm ∈ τ+. We can assume that
all wij , wk lie in cone(w01, w1). Applying Remark 2.5.1, firstly to γ01,1 and then to
all relevant faces of the types γij,1 and γ01,k, we achieve

w01 = (1, 0), w1 = (0, 1), w1
02 = w1

11 = w1
12 = 1, w2

2 = . . . = w2
m = 1.

Lemma 2.4.9 (ii) applied to all γij,1 shows lij = 1 for all i, j. We conclude µ1 = 2
which in turn implies l21 = 2 and w1

21 = 1. In particular, we have the relation

g0 = T01T02 + T11T12 + T 2
21.

We treat the case that w1
1 = . . . = w1

m = 0 holds. All columns of the degree
matrix lie in cone(w01, w1) and thus Q is of the form

Q =

[
1 1 1 1 1 0 0 . . . 0
0 2c a b c 1 1 . . . 1

]
,

where a, b, c ∈ Z≥0 and a+ b = 2c. The anticanonical class is −K = (3,m+ 3c) and
we have SAmple(X) = cone((0, 1), (1, 2c)). Therefore X is a Fano variety if and
only if m > 3c. Moreover, X is an almost Fano variety if and only if m ≥ 3c.

We treat the case that w1
k > 0 holds for some k. Then we obtain w2

02 = 0 by
applying Remark 2.5.1 to γ02,k. This yields µ2 = 0 and thus w2

ij = 0 for all i, j.
Consequently, the degree matrix is given as

Q =

[
1 1 1 1 1 0 w1

2 . . . w1
m

0 0 0 0 0 1 1 . . . 1

]
,

where we can assume 0 ≤ w1
2 ≤ . . . ≤ w1

m. The semiample cone and the anticanon-
ical divisor are given as

SAmple(X) = cone((1, 0), (w1
m, 1)), −K = (3 + w1

2 + . . .+ w1
m,m).

We see that X is an almost Fano variety if and only if mw1
m ≤ 3+w1

2 + . . .+w1
m and

that X is a Fano variety if and only if the corresponding strict inequality holds. �

Case (I) (f). We have r = 2, m ≥ 1, n = 4 and the list of ni is (2, 1, 1). This case
does not provide any smooth variety.
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Proof. We can assume w01 ∈ τ− and w1 ∈ τ+. Lemma 2.4.11 (v) ensures w2, . . . , wm ∈
τ+. Applying Remark 2.5.1 first to γ01,1 ∈ rlv(u) and then to the remaining
γ01,k ∈ rlv(u), we achieve

Q =

[
1 w1

02 w1
11 w1

21 0 w1
2 . . . w1

m

0 w2
02 w2

11 w2
21 1 1 . . . 1

]
.

Moreover γ01,1 ∈ rlv(u) implies l02 = 1 by Lemma 2.4.9 (ii). Recall from Corol-
lary 2.4.14 that Cl(X) is torsion-free. Thus [36, Thm. 1.1] implies that l11 and l21

are coprime.
Consider the case w02 ∈ τ−. Then γ02,1 ∈ rlv(u) holds, Lemma 2.4.9 (ii) yields

l01 = 1 and Remark 2.5.1 shows w1
02 = 1. We conclude µ1 = 2 and thus obtain

l11 = l21 = 2; a contradiction.
Now consider w02 ∈ τ+, which implies γ01,02,11 ∈ rlv(u). Since X is locally

factorial, Remark 1.3.3 (ii) shows that w2
02 and w2

11 are coprime. Now we look at

µ2 = w2
02 = l11w

2
11 = l21w

2
21.

We infer that l21 divides w2
02 and w2

11. This contradicts coprimeness of w2
02 and w2

11,
because by irredundancy of P we have l21 ≥ 2. �

Case (II). We have r = 3, m = 0 and 2 = n0 = n1 ≥ n2 ≥ n3 ≥ 1. This leads to
No. 13 in Theorems 2.1.1 and 2.1.2.

Proof. We treat the constellations (a), (b) and (c) at once. First observe that for
every wi1j1 with ni1 = 2, there is at least one wi2j2 with ni2 = 2 and i1 6= i2 such
that τX ⊆ Q(γi1j1,i2j2)◦ and thus γi1j1,i2j2 ∈ rlv(u). Since r = 3, we conclude
lij = 1 for all i with ni = 2; see Lemma 2.4.9 (iv).

We can assume w01, w11 ∈ τ− and w02, w12 ∈ τ+ as well as w11 ∈ cone(w01, w12).
Applying Remark 2.5.1 to γ01,12,∈ rlv(u), we obtain w01 = (1, 0) and w12 = (0, 1).
Moreover w1

11, w
2
11 ≥ 0 holds and, because of w11 6∈ τ+, we even have w1

11 > 0. For
the degree µ of g0 and g1 we note

µ1 = w1
02 + 1 = w1

11, µ2 = w2
02 = w2

11 + 1.

Thus, we can express w02 in terms of w11. Remark 2.5.1 applied to γ02,11 ∈ rlv(u)
gives 1 = det(w11, w02) = w1

11 +w2
11. We conclude w11 = (1, 0) and w02 = (0, 1). In

particular, the degree of the relations g0 and g1 is µ = (1, 1).
In constellations (b) and (c), we have n3 = 1 and µ = (1, 1). This implies

l31 = 1, a contradiction to P being irredundant. Thus, constellations (b) and (c)
do not occur.

We are left with constellation (a), that means that we have n0 = . . . = n3 = 2.
As seen before, lij = 2 for all i, j. Thus, the relations are

g0 = T01T02 + T11T12 + T21T22, g1 = λT11T12 + T21T22 + T31T32,

where λ ∈ K∗ \ {1}. In this situation, we may assume w21, w31 ∈ τ−. Applying
Remark 2.5.1 to the relevant faces γ02,21, γ02,31, we conclude w1

21 = w1
31 = 1. Since

µ1 = 1 and lij = 1, we obtain w1
22 = w1

32 = 0. Thus, w22 and w32 lie in τ+. Again
Remark 2.5.1, this time applied to γ01,22, γ01,32 ∈ rlv(u), yields w2

22 = w2
32 = 1.

Since µ2 = 1 and lij = 1, we obtain w2
21 = w2

31 = 0. Hence we obtain the degree
matrix

Q =

[
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

]
.

The semiample cone is SAmple(X) = (Q≥0)2 and the anticanonical divisor is
−KX = (2, 2). In particular, X is a Fano variety. �

Proof of Theorems 2.1.1, 2.1.2 and 2.1.4. The preceding analysis of the cases of
Proposition 2.4.1 shows that every smooth rational non-toric projective variety of
Picard number two coming with a torus action of complexity one occurs in Theo-
rem 2.1.1 and, among these, the Fano ones in Theorem 2.1.2 and the truly almost
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Fano ones in Theorem 2.1.4. Comparing the defining data, one directly verifies that
any two different listed varieties are not isomorphic to each other. Finally, using
Remark 1.3.3 one explicitly checks that indeed all varieties listed in Theorem 2.1.1
are smooth. �



CHAPTER 3

Smooth intrinsic quadrics of small Picard number

In this chapter we continue to work on classifications of smooth Mori dream
spaces with small Picard number and investigate intrinsic quadrics, i.e. Mori dream
spaces whose Cox rings admit K-homogeneous generators such that the associated
ideal is generated by a single purely quadratic polynomial. In Picard number one,
the situation is similar to the toric case: there is up to isomorphism exactly one
smooth intrinsic quadric per dimension, see Proposition 3.2.1. In Picard number
two, Theorem 3.2.8 gives a description of all smooth intrinsic quadrics, thereby
generalizing a result of [11]. In Picard number three, we provide in Theorem 3.3.2
a description of all smooth full intrinsic quadrics, i.e. smooth intrinsic quadrics
whose Cox rings do not admit free variables. Specializing to small dimensions, we
present in Theorem 3.3.5 and Theorem 3.3.6 a complete list of all smooth intrinsic
quadrics of Picard number three and dimension at most four. In both cases, we
further describe the smooth (almost) Fano intrinsic quadrics.

While we present the main tools needed in our classifications for intrinsic
quadrics in Section 3.1, Sections 3.2 and 3.3 contain the classification results. In
Section 3.4, we take a closer look at the four-dimensional smooth Fano intrinsic
quadrics and describe explicitly their elementary birational divisorial contractions
and their elementary contractions of fiber type. The remaining part of Chapter three
is devoted to the proof of our classification results for smooth intrinsic quadrics of
Picard number three.

3.1. Basics on intrinsic quadrics

In the following we show that the defining quadratic polynomial of an intrinsic
quadric can be assumed to have an especially nice form.

Definition 3.1.1. Let X be an irreducible normal projective variety with finitely
generated divisor class group K := Cl(X) and finitely generated Cox ring R(X).
If R(X) admits K-homogeneous generators such that the associated ideal of rela-
tions is generated by a single purely quadratic polynomial, then we call X an intrin-
sic quadric. A standard intrinsic quadric is an intrinsic quadric X with Cox ring

R(X) = K[T1, . . . , Tr, S1, . . . , St]/〈g〉 ,

where g is a K-homogeneous polynomial of the form g = T1T2 + . . . + Tq−1Tq + h
with some 0 ≤ q ≤ r, r ≥ 3, and some polynomial h given by

h =

{
T 2
q+1 + . . .+ T 2

r if q < r ,

0 if q = r ,

where deg(Tq+k) 6= deg(Tq+l) holds for all 1 ≤ k < l ≤ r − q. If X is a standard
intrinsic quadric for which t = 0 holds, then we call X a full intrinsic quadric.

The following proposition shows that we can reduce the classification of intrinsic
quadrics to the classification of standard intrinsic quadrics.

55
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Proposition 3.1.2. Let K be a finitely generated abelian group, consider a K-
grading on the polynomial ring K[T1, . . . , Ts] such that the variables T1, . . . , Ts and
the following quadratic polynomial are K-homogeneous:

g =
∑

1≤i≤j≤s

aijTiTj ∈ K[T1, . . . , Ts] .

Then there is a linear automorphism ψ : lin(T1, . . . , Ts) → lin(T1, . . . , Ts) inducing
an automorphism of K-graded algebras Ψ: K[T1, . . . , Ts]→ K[T1, . . . , Ts] such that

Ψ(g) = T1T2 + . . .+ Tq−1Tq + h

holds for some 0 ≤ q ≤ r ≤ s and some polynomial h given by

h =

{
T 2
q+1 + . . .+ T 2

r if q < r ,

0 if q = r ,

where we have deg(Tq+k) 6= deg(Tq+l) for all 1 ≤ k < l ≤ r − q.
Proof. Suitably renumbering the variables, we may assume that T1, . . . , Tr are pre-
cisely the variables of g showing up in g. Denote by w1, . . . , wn ∈ K the degrees of
T1, . . . , Tr, where wk 6= wl holds for k 6= l. Moreover, set µ := deg(g) ∈ K. Suitable
renumbering of variables yields

w1 + w2 = . . . = wm + wm+1 = µ, 2wm+2 = . . . = 2wn = µ

with a unique odd number −1 ≤ m < n. Some of the variables T1, . . . , Ts may share
the same degree and we have

V := lin(T1, . . . , Ts) = V1 ⊕ . . .⊕ Vn ⊕ V0,

where Vk is the linear subspace generated by all Ti, 1 ≤ i ≤ r, of degree wk, and V0

is the linear subspace generated by the variables Tr+1, . . . , Ts. Suitably renumbering
the Ti again, we obtain

T1, . . . , Td1 ∈ V1, . . . , Tdn−1+1, . . . , Tdn ∈ Vn, Tdn+1, . . . , Ts ∈ V0.

The idea is to build up ψ stepwise from appropriate endomorphisms V → V .
First, consider variables Ti ∈ V1 and Tj ∈ V2 with αij 6= 0. Define a linear auto-
morphism

ψij : V → V, Tj 7→ a−1
ij Tj − a

−1
ij

∑
k 6=j

aikTk, Tl 7→ Tl for l 6= j.

Then ψij respects the direct sum decomposition of V and restricts to the identity on
all components different from V2. Moreover, ψij extends to an automorphism Ψij

of the K-graded algebra K[T1, . . . , Ts] and we have

Ψij(g) =

Ti + a−1
ij

∑
k 6=i

akjTk

Tj +
∑

k 6=i,l 6=j

ãklTkTl

with some ãkl ∈ K. Now define a linear automorphism

ψji : V → V, Ti 7→ Ti − a−1
ij

∑
k 6=i

akjTk, Tl 7→ Tl for l 6= i.

Similarly as before, ψji respects the direct sum decomposition of V and restricts
to the identity on all components different from V1. Again, ψji extends to an
automorphism Ψji of the K-graded algebra K[T1, . . . , Ts]. This time we have

Ψji(Ψij(g)) = TiTj +
∑

k 6=i, l 6=j

ãklTkTl .

Thus, a suitable composition of the automorphisms Ψji◦Ψij turns g into the desired
form with respect to the variables from V1 and V2. Proceeding similarly, we can
settle all other pairs Vl and Vl+1 for l = 3, 5, . . . ,m.
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On each subspace Vk for k > m + 1, the variables all have the same K-degree
and, if a variable of a given monomial of g belongs to Vk, then all variables of this
monomial belong to Vk. Thus, we may treat the part qk of q built from variables
of Vk separately. The usual diagonalization procedure for the Gram matrix of qk
leads to a presentation of qk as a sum of squares. If the number of these squares is
even, then we turn the whole qk into a sum of terms TiTj with i 6= j. Otherwise,
we turn qk into a sum of TiTj with i 6= j plus one single square. �

If X is an intrinsic quadric, then we can apply Proposition 3.1.2 to see that
there is an automorphism of K-graded algebras mapping R(X) to the Cox ring of a
standard intrinsic quadric. Thus the notion of standard intrinsic quadrics comprises
the case of a general intrinsic quadric and we obtain the following:

Corollary 3.1.3. Every intrinsic quadric is isomorphic to a standard intrinsic
quadric.

Remark 3.1.4. Assume that X is a standard intrinsic quadric. This means that
its Cox ring is given as R(X) = K[T1, . . . , Tr, S1, . . . , St]/〈g〉, where g = T1T2 +
. . .+ Tq−1Tq + h holds for some 0 ≤ q ≤ r and some polynomial h given by

h =

{
T 2
q+1 + . . .+ T 2

r if q < r ,

0 if q = r ,

where deg(Tq+k) 6= deg(Tq+l) holds for all 1 ≤ k < l ≤ r − q. According to [3,
Prop. 3.3.3.2], the anticanonical class of X is given by

−KX = (q/2− 1) deg(g) +

r∑
i=q+1

deg(Ti) +

t∑
j=1

deg(Sj) ∈ K.

Recall that we denote by Q : Zr+t → K = Cl(X) the map defined through
ei 7→ wi, er+j 7→ uj , where ei, er+j are the canonical base vectors of E = Zr+t
and where wi := deg(Ti) and uj := deg(Sj) denote the degrees of the generators
of R(X). Furthermore, we set γ := Qr+t≥0 .

Lemma 3.1.5. Assume that X is a standard intrinsic quadric with Cox ring given
as in Remark 3.1.4. Let γ0 � Qr+t≥0 be a face of the positive orthant. Then the
piece X(γ0) is singular if and only if ei /∈ γ0 holds for all i = 1, . . . , r.

Proof. Let z ∈ X(γ0). The claim follows since the gradient of g evaluated in z
vanishes if and only if ei /∈ γ0 holds for all i = 1, . . . , r. �

Lemma 3.1.6. Assume that X is a standard intrinsic quadric with Cox ring given
as in Remark 3.1.4. Then X is smooth if and only if all elements γ0 ∈ cov(u) fulfill
the following two conditions:

(i) There is 1 ≤ i ≤ r such that ei ∈ γ0 holds.
(ii) Q maps lin(γ0) ∩ E onto K.

Proof. According to Lemma 3.1.5, the first item is equivalent to X being quasi-
smooth. Thus, Remark 1.3.3 completes the proof. �

Proposition 3.1.7. Let X be a full intrinsic quadric. If X is Fano, then its Picard
number is bounded by ρ(X) ≤ 3. If ρ(X) = 3 holds and X is a full intrinsic Fano
quadric, then X is Q-factorial.

Proof. The Cox ring of a full intrinsic quadric X is given as K[T1, . . . , Tr]/〈g〉, where
g = T1T2+. . .+Tq−1Tq+h holds for some 0 ≤ q ≤ r and some polynomial h given by

h =

{
T 2
q+1 + . . .+ T 2

r if q < r ,

0 if q = r .
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We have F = (T1, . . . , Tr) and Φ consists of all projected F-faces Q(γ0), where
γ0 � Qr≥0 holds with

−KX ⊗ 1 = ((r/2− 1) deg(g))⊗ 1 ∈ Q(γ0)◦

and deg(g) denotes the degree of g. We first discuss the case h 6= 0. Here, we look
at γ0 := cone(e1, e2, er). This is an F-face and we have Q(γ0) ∈ Φ. Because of

Q(e1 + e2 − 2er) = deg(g)− deg(g) = 0,

the image Q(lin(γ0)) is of dimension at most two. According to Proposition 1.3.2,
the Picard group of X satisfies

Pic(X) ⊆ Q(lin(γ0) ∩ E),

i.e. the Picard number of X is at most two. Now, let h = 0, i.e. we have g =
T1T2 + . . . + Tr−1Tr. Consider the cones τij := cone(ei, ei+1, ej , ej+1), where i, j
are odd with 1 ≤ i < j ≤ r − 1. The τij are F-faces and Q(τij) is contained in Φ.
Because of

Q(ei + ei+1 − ej − ej+1) = deg(g)− deg(g) = 0,

the images Q(lin(τi)) are of dimension at most three. Again by Proposition 1.3.2,
we have

Pic(X) ⊆
⋂
i,j

Q(lin(τij) ∩ E),

i.e. the Picard number of X is at most three.
It remains to show that X is Q-factorial if %(X) = 3. In this case the above con-

siderations show that h equals zero. Moreover, since ρ(X) = 3 holds, Remark 1.3.3
shows that the dimension of Q(τij) is three for all odd i, j with 1 ≤ i < j ≤ r−1 and
we conclude that the cones Q(τij) generate all the same three-dimensional vector
subspace V ⊆ KQ. Thus dim(KQ) = 3 follows from

KQ = Q(Qr) = Q(linQ(τ13) + . . .+ linQ(τr−3,r−1)) = V.

�

3.2. Classification results in Picard number at most two

In this section we present our description of smooth intrinsic quadrics of Picard
number at most two, see Proposition 3.2.1 and Theorem 3.2.8. In Picard num-
ber one, we prove that there is only one smooth intrinsic quadric per dimension.
We further show that all these varieties are Fano, whereas our description in Pi-
card number two reveals smooth intrinsic quadrics being not Fano. We further
give descriptions of all smooth intrinsic (almost) Fano intrinsic quadrics in Picard
number two, see Theorems 3.2.10 and 3.2.11. As an application we prove in Propo-
sition 3.2.14 Mukai’s conjecture for the smooth Fano intrinsic quadric of Picard at
most two.

Proposition 3.2.1. Let X be a smooth intrinsic quadric of Picard number one.
Then X is isomorphic to the variety defined by the Cox ring

K[T1, . . . , Tr]/〈T1T2 + T3T4 + . . .+ Ti−1Ti + h〉,

where i = r − 2, h = Tr−1Tr or i = r − 1, h = T 2
r holds, and where the grading is

given by deg(Tj) = 1 ∈ Z = Cl(X) for all 1 ≤ j ≤ r. In particular, X is Fano.

Proof. Let X be a smooth intrinsic quadric of Picard number one. According to
Corollary 3.1.3, we may assume that X is a standard intrinsic quadric, i.e. its
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Cox ring is given as R(X) = K[T1, . . . , Tr, S1, . . . , St]/〈g〉, where g = T1T2 + . . . +
Tq−1Tq + h holds for some 0 ≤ q ≤ r, r ≥ 3, and some polynomial h given by

h =

{
T 2
q+1 + . . .+ T 2

r if q < r ,

0 if q = r ,

where deg(Tq+k) 6= deg(Tq+l) holds for all 1 ≤ k < l ≤ r − q.
In a first step, we show that Cl(X) = Z holds. If q > 0 holds, then γ1 is

a one-dimensional relevant face. Since X is locally factorial, Remark 1.3.3 shows
that we have Cl(X) = Q(lin(γ1) ∩ E). Thus, we obtain Cl(X) = Z. Now we
consider the case q = 0. Since g is homogeneous, we have w0

1 = w0
j for all

j = 1, . . . , r. Furthermore, the cone γij := cone(ei, ej) is a relevant face for
all 1 ≤ i < j ≤ r, where ei, ej ∈ Zr+t denote as usual the canonical base vectors.
This yields linZ(wi, wj) ≥ Z ⊕ Cl(X)tor by Remark 1.3.3. In particular, we have
linZ(w0

i ) = linZ(w0
i , w

0
j ) ≥ Z for all 1 ≤ i < j ≤ r. We conclude that w0

1 = 1 holds
for all i = 1, . . . , r. Multiplying (w1, . . . , wr) with an unimodular matrix from the
left, we arrive at

(w1, . . . , wr) =

(
1 1 . . . 1
p wtor

2 . . . wtor
r

)
,

where p = 0Cl(X)tor holds. Since linZ(w1, w2) = linZ(w1, wi) holds for all 2 ≤ i ≤ r,
we conclude wtor

2 = wtor
i for all 2 ≤ i ≤ r. This means that Remark 1.3.3 applied

to γ23 shows
linZ(w2) = linZ(w2, w3) ∼= Z⊕ Cl(X)tor

holds, which implies that Cl(X) is torsion-free.
Since Cl(X) is torsion-free, g contains either zero or exactly one square. Re-

mark 1.3.3 applied to γi, where Ti is not a square, shows that wi = 1 holds for
all i such that Ti is not a square. Homogeneity of g then yields wi = 1 for all
1 ≤ i ≤ r. Since X is smooth, Lemma 3.1.5 shows that t = 0 holds, i.e. there are
no free variables.

Note that the anticanonical class of X is given by −KX = r − 2. Since g has
at least three variables, r − 2 is contained in the relative interior of the semiample
cone SAmple(X) = Q≥0, which shows that X is Fano. �

From now on, this section treats the case of Picard number two. Thus, ClQ(X)
is of dimension two and the effective cone Eff(X) is uniquely decomposed into three
convex sets Eff(X) = τ+ ∪ τX ∪ τ− such that τ+ and τ− do not intersect the
ample cone τX := Ample(X) and τ+ ∩ τ− consists of the origin. The extremal
rays of Eff(X) as well as the bounding rays of τX are generated by some of the
weights wi, uj . Because of τX ⊆ Mov(X)◦, each of τ+ and τ− contains at least two
(not necessarily different) weights.

τXτ+

τ−

Notation 3.2.2. Assume that X is a standard intrinsic quadric with Cox ring given
as R(X) = K[T1, . . . , Tr, S1, . . . , St]/〈g〉, where g = T1T2 + . . .+ Tq−1Tq + h holds
for some 0 ≤ q ≤ r and some polynomial h given by

h =

{
T 2
q+1 + . . .+ T 2

r if q < r ,

0 if q = r ,

where we have deg(Tq+k) 6= deg(Tq+l) for all 1 ≤ k < l ≤ r − q. Consider the
canonical base vectors e1, . . . , er+t ∈ E = Zr+t and the positive orthant γ := Qr+t≥0 .
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For indices 1 ≤ `1 < `2 < . . . < `s ≤ r + t we set

γ`1`2...`s := γ`1,`2,...,`s := cone(e`1 , . . . , e`s) � γ ,
where we use the notation in the middle instead of the one on the left-hand side in
case further clarification is needed.

Remark 3.2.3. In the above notation, a face τ � γ is an F-face of X if and only
if one of the following criteria is fulfilled:

(i) There are odd indices 1 ≤ i < j ≤ q such that γi,i+1,j,j+1 � τ holds.
(ii) There is an odd index 1 ≤ i ≤ q and an index q + 1 ≤ j ≤ r such that

γi,i+1,j � τ holds.
(iii) There are indices q + 1 ≤ i < j ≤ r such that γij � τ holds.
(iv) For each odd 1 ≤ i ≤ q− 1 there is an index i ≤ ki ≤ i+ 1 such that τ is

a face of γk1,...,kq−1,r+1,...,r+t.

Remark 3.2.4. Assume that X is a standard intrinsic quadric and assume that X
is Q-factorial. If γ`1`2...`s is a relevant face, then Remark 1.3.3 implies that the
family (w`1 , . . . , w`s) generates a full-dimensional cone in Cl(X)Q. Thus F-faces
γ0 � γ for which Q(γ0) is not of the same dimension as Cl(X)Q are not a relevant
faces. In particular, if u is an ample Weil divisor class and if γ0 � γ is an F-face
such that u ∈ Q(γ0) holds and such that all faces of γ0 are also F-faces, then we
obtain u ∈ Q(γ0)◦.

Remark 3.2.5. Assume that X is a standard intrinsic quadric. If γ`1`2...`s is a
relevant face and if X is locally factorial, then Remark 1.3.3 implies that the family
(w`1 , . . . , w`s) generates K = Cl(X) as an abelian group. In particular, if s = ρ(X)
holds, then K is torsion-free and we have

±1 = det(w`1 , . . . , w`ρ(X)
) .

Since multiplying Q from the left with an unimodular matrix does not affect the
isomorphism type of the underlying Mori dream space, we may then assume that
w`1 , . . . , w`ρ(X)

are the canonical base vectors of K ∼= Zρ(X).

Proposition 3.2.6. Let X be an intrinsic quadric of Picard number two. If X is
locally factorial, then Pic(X) = Z2 holds.

Proof. Corollary 3.1.3 shows that we may assume that X is a standard intrinsic
quadric, i.e. its Cox ring is given as R(X) = K[T1, . . . , Tr, S1, . . . , St]/〈g〉, where
g = T1T2 + . . .+Tq−1Tq+h holds for some 0 ≤ q ≤ r, r ≥ 3, and some polynomial h
given by

h =

{
T 2
q+1 + . . .+ T 2

r if q < r ,

0 if q = r ,

where deg(Tq+k) 6= deg(Tq+l) holds for all 1 ≤ k < l ≤ r − q. According to
Remark 3.2.5 it is sufficient to show that there is a two-dimensional relevant face.
Let u ∈ Cl(X) be an ample Weil divisor class. We distinguish the two following
two cases:

(1) g consists of squares,
(2) after renumbering of variables we have g = T1T2 + . . ..

Case (1): According to Carathéodory’s theorem, there is an at most two-dimensional
face τ of the positive orthant Qr+t≥0 such that u ∈ Q(τ)◦ holds. If τ is an F-face,
then τ is a relevant face. Since X is Q-factorial, τ then is two-dimensional and thus
the proof is complete.

If τ is not an F-face, then, possibly after renumbering of variables, we have
τ = γ1 or τ = γ1,r+1, where u1 = Q(er+1) denotes the weight corresponding to the
free variable S1. We show that only the second choice for τ is possible: If we had u ∈
Q(γ1)◦, then γ12 would be a relevant face, contradicting Remark 3.2.4. Thus we are
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in situation two, i.e. τ = γ1,r+1 holds. Note that we haveQ(γi,j,r+1)◦ = Q(τ)◦ for all
1 ≤ i < j ≤ r, which shows that γi,j,r+1 is a relevant face for all 1 ≤ i < j ≤ r. This
yields linZ(wi, wj , u1) ≥ Z2 ⊕ Pic(X)tor by Remark 3.2.5. Since g is homogeneous,
we have w0

1 = w0
i for all i = 1, . . . , r. In particular, we obtain linZ(w0

i , u
0
1) ≥ Z2

for all 1 ≤ i < j ≤ r. Multiplying Q with an unimodular matrix from the left, we
arrive at

(w1, . . . , wr |u1) =

 0 0 . . . 0 1
1 1 . . . 1 0
p wtor

2 . . . wtor
r p

 ,

where p = 0Pic(X)tor holds. Since linZ(w1, w2, u1) = linZ(w1, wi, u1) holds for all
2 ≤ i ≤ r, we conclude wtor

2 = wtor
i for all 2 ≤ i ≤ r. This means that Remark 3.2.5

applied to γ2,3,r+1 yields

linZ(w2, u1) = linZ(w2, w3, u1) ∼= Z2 ⊕ Pic(X)tor ,

which implies that Pic(X) is torsion-free.
Case (2): Here we have

Eff(X) = Q(σ) with σ := cone
(
ei; T

2
i is not a square

)
.

Carathéodory’s theorem shows that there is an at most two-dimensional face τ of σ
such that u ∈ Q(τ)◦ holds. If τ is an F-face, then Remark 3.2.4 implies that τ is a
two-dimensional relevant face, which completes the proof in this situation. If τ is
not an F-face, then, possibly after renumbering of variables, we have τ = γ12, where
g = T1T2 + . . . holds. We may assume that w1 is contained in τ+ and w2 in τ−.
Since u ∈ Mov(X)◦ holds, there is a further weight w+ ∈ τ+. If T 2

+ is not a square
of g, then γ2,+ is a two-dimensional relevant face. If T 2

+ is a square of g, then we
consider a further weight w− ∈ τ−. Since deg(g) lies in τ+, w− does not belong to
a square. Thus, γ1,− is a two-dimensional relevant face. �

Construction 3.2.7. Fix two integers r ∈ Z≥5 and t ∈ Z≥0. Consider the K-
algebra R := K[T1, . . . , Tr, S1, . . . , St]/〈g〉, where

g :=

{
T1T2 + . . .+ Tr−1Tr if r is even,
T1T2 + . . .+ Tr−2Tr−1 + T 2

r if r is odd,

holds for some integers r ∈ Z≥5 and t ∈ Z≥0. Furthermore, a Z2-grading of R is
obtained by choosing weights wi = deg(Ti) and uj = deg(Sj) according to one of
the following settings.

Setting 1: Fix α ∈ Z≥0. The weights uj are taken from (a, 1), where 0 ≤ a ≤ α
holds and we have wi = (1, 0) for all 1 ≤ i ≤ r. Furthermore, we have t ≥ 2 and
the vectors (α, 1) and (0, 1) occur in the list u1, . . . , ut.

τX

wi

(0, 1) (α, 1)

Setting 2: Fix α ∈ Z≥0. The weights wi are taken from (a, 1), where 0 ≤ a ≤ α
holds and we have uj = (1, 0) for all 1 ≤ j ≤ t. Furthermore, we have t ≥ 2 and
the weights satisfy

(i) w1 = (0, 1) and w2 = (α, 1),
(ii) wi + wi+1 = (α, 2) for all odd i < r and 2wr = (α, 2) if r is odd.

τX

uj

w1 = (0, 1) (α, 1) = w2



62 3. SMOOTH INTRINSIC QUADRICS OF SMALL PICARD NUMBER

Setting 3: The weights wi and uj satisfy

(i) w1 = (0, 1) and w2 = (2, 1),
(ii) wi = (1, 1) for all 3 ≤ i ≤ r,
(iii) uj = (1, 0) for all 1 ≤ j ≤ t and we have t ≥ 1.

τX

uj

w2
w1

wi,
i≥3

Setting 4: Here, r ∈ Z≥6 is even. The weights uj are taken from (a, 1), where
0 ≤ a ≤ α holds with some α ∈ Z≥0. We have w1 = (1, 0) and w2 = (w1

2, 1) for
some 0 ≤ w1

2 ≤ α. Furthermore the weights satisfy

(i) wi = w1 for all odd 1 ≤ i ≤ r − 1 and wi = w2 for all even 2 ≤ i ≤ r,
(ii) the vectors (α, 1) and (0, 1) occur in the list w1, . . . , wr, u1, . . . , ut.

τX

wi,
i odd

wi,
i even

(0, 1) (α, 1)

In all settings, g is Z2-homogeneous and R is the Cox ring of a smooth intrinsic
quadric X with ample cone τX ⊆ Q2 as indicated in the above figures.

Theorem 3.2.8 provides a classification of all smooth intrinsic quadrics, thereby
generalizing a result of [11] that described the case of full intrinsic quadrics; i.e. pre-
cisely the examples with α = m = 0 of Setting 4 of the above construction. More-
over, the cases n = 5 and n = 6 in Settings 1 to 4 are the ones allowing a torus
action of complexity one and thus are exactly the overlap with the description pre-
sented in Chapter two: Setting 1 corresponds to Nos. 8 and 11, Setting 2 to Nos. 9
and 12, Setting 3 to Nos. 7 and 10 and Setting 4 to No. 4.

Theorem 3.2.8. Let X be a smooth intrinsic quadric of Picard number two.
Then X is isomorphic to an intrinsic quadric arising from Construction 3.2.7.

Before presenting a proof of the above theorem, we first discuss some applica-
tions including the description of the smooth Fano and smooth almost Fano intrinsic
quadrics of Picard number two.

Remark 3.2.9. All smooth intrinsic quadrics of Picard number two admit elemen-
tary contractions some of which we describe in this Remark.

Setting 1 There is a contraction of fiber type ϕ : X → VPr−1
(g) with

fibers isomorphic to Pt−1.

Setting 2
There is a contraction of fiber type ϕ : X → Pt−1 with fibers
isomorphic to VPr−1

(g).

Setting 3
There is a birational divisorial contraction ϕ : X → Pr+t−3

with center isomorphic to VPr−3
(g − T1T2).

Setting 4
There is a contraction of fiber type ϕ : X → Pr/2−1 with
fibers isomorphic to Pr/2+t−2.
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Theorem 3.2.10. Let X be a smooth intrinsic quadric of Picard number two. Then
X is Fano if and only if X is isomorphic to one of the following varieties arising
from Construction 3.2.7:

(i) X arises from Setting 1 and we have tα < r − 2 +
∑t
j=1 u

1
j .

(ii) X arises from Setting 2 and we have (r/2− 1)α < t.
(iii) X arises from Setting 3 and r − 2 > t holds.
(iv) X arises from Setting 4, αt < (r/2− 1) +

∑t
j=1 u

1
j and w2 = (α, 1) hold.

Theorem 3.2.11. Let X be a smooth intrinsic quadric of Picard number two. Then
X is truly almost Fano if and only if X isomorphic to one of the following varieties
arising from Construction 3.2.7:

(i) X arises from Setting 1 and we have tα = r − 2 +
∑t
j=1 u

1
j .

(ii) X arises from Setting 2 and we have (r/2− 1)α = t.
(iii) X arises from Setting 3 and r − 2 = t holds.
(iv) X arises from Setting 4, αt = (r/2− 1) +

∑t
j=1 u

1
j and w2 = (α, 1) hold.

(v) X arises from Setting 4, w2 = (0, 1) and uj = (1, 1) hold for all 1 ≤ j ≤ t.
Proof of Theorems 3.2.10 and 3.2.11. All smooth intrinsic quadrics of Picard num-
ber two as well as their semiample cones are listed in Construction 3.2.7. Further-
more, recall that the anticanonical class of X is given by

−KX = (r/2− 1) deg(g) +

t∑
j=1

deg(uj) .

In order to select the Fano and the truly almost Fano varieties among the varieties
in Construction 3.2.7, it is enough to compute the anticanonical class of X via
the above formula and to check in which cases KX ∈ SAmple(X)◦ and KX ∈
SAmple(X) \ SAmple(X)◦ holds.

In Setting 1, wi = (1, 0) holds for all 1 ≤ i ≤ r. We have −KX = (r/2 −
1)(2, 0) +

∑t
j=1(u1

j , 1) and SAmple(X) = cone((1, 0), (α, 1)). This shows that X is
Fano if and only if tα < r − 2 +

∑t
j=1 u

1
j holds and truly almost Fano if and only

if tα = r − 2 +
∑t
j=1 u

1
j holds.

In Setting 2, uj = (1, 0) holds for all 1 ≤ j ≤ t. We have −KX = (r/2 −
1)(α, 2) + t(1, 0) and SAmple(X) = cone((1, 0), (α, 1)). This shows that X is Fano
if and only if (r/2−1)α < t holds and truly almost Fano if and only if (r/2−1)α = t
holds.

In Setting 3, we have −KX = (r − 2 + t, r − 2) and the semiample cone of X
is given by SAmple(X) = cone((1, 1), (2, 1)). Note that −KX ∈ cone((1, 1), (1, 0))◦

holds. Thus, X is Fano if and only if r − 2 > t holds and truly almost Fano if and
only if r − 2 = t holds.

In Setting 4, we have −KX = (r/2−1) deg(g) +
∑t
j=1 uj , where the degree of g

is given by deg(g) = (w1
2 + 1, 1) and the semiample cone of X by SAmple(X) =

cone((1, 0), (α, 1)). Note that uj is not contained in the relative interior of the
semiample cone of X. Furthermore, deg(g) ∈ Ample(X) holds if and only if w1

2 = α
holds. Thus X is Fano if and only if w1

2 = α and

(r/2− 1)(α+ 1, 1) + (

t∑
j=1

u1
j , t) ∈ SAmple(X)◦

holds, where the latter is equivalent to αt < (r/2 − 1) +
∑t
j=1 u

1
j . There are two

possibilities for X being truly almost Fano in Setting 4: The first is that w1
2 = α

and αt = (r/2− 1) +
∑t
j=1 u

1
j hold and the second that w2 = (0, 1) as well as uj =

(1, 1) hold for all 1 ≤ j ≤ t. �
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Remark 3.2.12. Recall that according to Corollary 2.1.3, any smooth rational
non-toric Fano variety of Picard number two admitting a torus action of complexity
one arises via iterated duplication of a free weight from a smooth rational projective
(not necessarily Fano) variety with a torus action of complexity one, Picard number
two and dimension at most seven. In Remark 2.2.7 we showed that there is no
analogous statement for smooth toric Fano varieties of Picard number two. The
same holds for smooth Fano intrinsic quadrics of Picard number two: Setting 4 of
Construction 3.2.7 gives rise to the following series of smooth Fano intrinsic quadrics
that cannot be constructed via duplication of free weights. For any n ∈ Z≥3 we
obtain a full smooth intrinsic Fano quadric Xn of dimension 2n− 3 with Cox ring

R(Xn) = K[T1, . . . , T2n]/〈T1T2 + . . .+ T2n−1T2n〉 ,
semiample cone Q2

≥0 and generator degrees deg(Ti) = (1, 0) for odd i and deg(Ti) =

(0, 1) for even i. Note that the anticanonical class is given as KXn = (n− 1, n− 1)
which shows that Xn is Fano.

In the below corollary, the first few coefficients of the Hilbert series H(t) were
computed using the function GRgradedcompdim of MDSpackage [38].

Corollary 3.2.13. Every smooth Fano intrinsic quadric of Picard number two and
dimension at most four is isomorphic to one of the following varieties X, specified
by their Cox ring R(X) and their anticanonical class −KX , where the grading is
fixed by the matrix Q = [w1, . . . , ws], s = dim(X)+3, of generator degrees deg(Ti) =
wi ∈ Cl(X). As additional data, we list the Fano index q(X) and the first few terms
of the Hilbert series H(t).

Setting R(X) Q = [w1, . . . , ws] −KX q(X) H(t)

3 K[T1,...,T6]

〈T1T2+T3T4+T
2
5 〉

[
0 2 1 1 1 1
1 1 1 1 1 0

]
(4, 3) 1

1 + 26t + 120t2

+329t3 + 699t4 + . . .

4 K[T1,...,T6]
〈T1T2+T3T4+T5T6〉

[
1 0 1 0 1 0
0 1 0 1 0 1

]
(2, 2) 2

1 + 27t + 125t2

+343t3 + 729t4 + . . .

1 K[T1,...,T7]

〈T1T2+T3T4+T
2
5 〉

[
1 1 1 1 1 0 0
0 0 0 0 0 1 1

]
(3, 2) 1

1 + 90t + 700t2

+2695t3 + . . .

1 K[T1,...,T7]

〈T1T2+T3T4+T
2
5 〉

[
1 1 1 1 1 0 1
0 0 0 0 0 1 1

]
(4, 2) 2 1 + 99t + 775t2 + . . .

1 K[T1,...,T7]

〈T1T2+T3T4+T
2
5 〉

[
1 1 1 1 1 0 2
0 0 0 0 0 1 1

]
(5, 2) 1 1 + 126t + 1000t2 + . . .

2 K[T1,...,T7]

〈T1T2+T3T4+T
2
5 〉

[
0 0 0 0 0 1 1
1 1 1 1 1 0 0

]
(2, 3) 1 1 + 90t + 700t2 + . . .

3 K[T1,...,T7]

〈T1T2+T3T4+T
2
5 〉

[
0 2 1 1 1 1 1
1 1 1 1 1 0 0

]
(5, 3) 1 1 + 90t + 701t2 + . . .

3 K[T1,...,T7]
〈T1T2+T3T4+T5T6〉

[
0 2 1 1 1 1 1
1 1 1 1 1 1 0

]
(5, 4) 1 1 + 90t + 699t2 + . . .

4 K[T1,...,T7]
〈T1T2+T3T4+T5T6〉

[
1 0 1 0 1 0 0
0 1 0 1 0 1 1

]
(2, 3) 1

1 + 90t + 700t2

+2695t3 + . . .

4 K[T1,...,T7]
〈T1T2+T3T4+T5T6〉

[
1 1 1 1 1 1 0
0 1 0 1 0 1 1

]
(4, 3) 1 1 + 90t + 700t2 + . . .

In particular, we see that there are ten smooth Fano intrinsic quadrics of Picard
number two and dimension at most four and that all but two of them have Fano in-
dex 1.

Proposition 3.2.14. Let X be a smooth Fano intrinsic quadric of Picard number
at most two. Then X fulfills Mukai’s conjecture, Conjecture 2.3.5, i.e. we have

ρ(X)(q(X)− 1) ≤ dim(X) .

Proof. In Proposition 3.2.1 we showed that in Picard number one, there is only
one smooth intrinsic quadric X per dimension with −KX = r − 2 = dim(X). We
obtain the Fano index q(X) = r − 2, i.e. X fulfills Mukai’s conjecture. Now let X
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be a smooth intrinsic quadric of Picard number two. By going through the settings
of Theorem 3.2.10, we show that X fulfills Mukai’s conjecture. Note that in all
settings, we have dim(X) = r + t− 3.

Assume that X arises from Setting 1. The Fano condition is tα < r − 2 +∑t
j=1 u

1
j . We distinguish the cases α = 0 and α > 0.

If α = 0 holds, then we have −KX = (r − 2, t) and q(X) = gcd(r − 2, t). Note
that this gives

2(q(X)− 1) ≤ 2 min(r − 2, t)− 2 ≤ (r − 2 + t)− 2 < dim(X) .

Now consider the case α > 0. Here we have −KX = (r−2+
∑t
j=1 u

1
j , t) and q(X) =

gcd(r − 2 +
∑t
j=1 u

1
j , t). If q(X) < t holds, then we obtain

2(q(X)− 1) ≤ 2(t/2− 1) = t− 2 .

Since r ≥ 5 holds, this yields t − 2 ≤ r + t − 7 < dim(X) , i.e. X fulfills Mukai’s
conjecture. If q(X) = t holds, then t divides r − 2 +

∑t
j=1 u

1
j . The Fano condition

shows that we have r − 2 +
∑t
j=1 u

1
j = βt for some β ∈ Z>α. In particular, we

have r − 2 +
∑t
j=1 u

1
j ≥ (α+ 1)t. Thus we obtain

2(q(X)− 1) = 2t− 2

= (α+ 1)t− (α+ 1− 2)t− 2

≤
(
r − 2 +

t∑
j=1

u1
j

)
− (α+ 1− 2)t− 2

< r − 2 + t− 2

= dim(X)− 1 ,

where the last inequality follows since α > 0 implies
∑t
j=1 u

1
j < αt. This completes

the proof in Setting 1.
Now consider X arising from Setting 2. The Fano condition is (r/2 − 1)α < t

and we have −KX = ((r/2−1)α+t, r−2). First we consider the case q(X) < r−2.
Here we have

2(q(X)− 1) ≤ 2((r − 2)/2− 1) = r − 4 ≤ r + t− 6 ,

where the last inequality follows since t ≥ 2 holds. It remains to consider the case
q(X) = r − 2. If α = 0 holds, then we obtain −KX = (t, r − 2) and thus r − 2 ≤ t.
We conclude

2(q(X)− 1) = 2((r − 2)− 1) = (r − 2) + (r − 4) ≤ t+ r − 4 < dim(X) .

Now let α = 1. Since q(X) is the greatest common divisor of the two coordinates
of −KX = ((r − 2)/2 + t, r − 2), we obtain

t =
2k + 1

2
(r − 2)

with some k ∈ Z. Because of α > 0, the Fano condition shows that t > (r − 2)/2
and thus k ≥ 1 holds. Hence we obtain

2(q(X)− 1) = 2(r − 2− 1)

< 3(r − 2)/2 + (r − 2)/2

≤ t+ r/2− 1 .

The last expression is strictly smaller than dim(X) since r > 4 and thus r/2− 1 <
r−3 holds. In Setting 2, it remains to consider the case α ≥ 2, q(X) = r−2. Here,
the Fano condition ensures r − 2 < 2t/α. Thus, we obtain

2(q(X)− 1) = (r − 2) + (r − 4) < 2t/α+ (r − 4) ≤ t+ r − 4 ,

where the last inequality is true because of α ≥ 2.
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In Setting 3, we have −KX = (r−2+t, r−2) and the Fano condition is r−2 > t.
Note that we have r−2 < r−2+t < 2(r−2), which gives q(X) = gcd(r−2+t, r−2) <
r − 2. We obtain

2(q(X)− 1) ≤ 2((r − 2)/2− 1) = r − 4 < dim(X) ,

where the last inequality follows since t is at least one.
In Setting 4, we have −KX = ((r/2 − 1)(w1

2 + 1) +
∑t
j=1 u

1
j , r/2 − 1 + t) and

the Fano condition is αt < (r/2 − 1) +
∑t
j=1 u

1
j , w2 = (α, 1). If α = 0 holds, then

we obtain q(X) ≤ r/2− 1 and hence

2(q(X)− 1) ≤ r − 4 ≤ r + t− 4 < dim(X) .

If α > 0 holds, then we distinguish the cases q(X) < r/2 − 1 + t and q(X) =
r/2 − 1 + t. In the first case, i.e. if q(X) is strictly smaller than r/2 − 1 + t, we
obtain q(X) ≤ 1/2(r/2− 1 + t) and thus

2(q(X)− 1) ≤ r/2− 1 + t− 2 < dim(X) ,

where the last inequality follows because of r > 0.
It remains to consider the case α > 0, q(X) = r/2 − 1 + t in Setting 4. Note

that q(X) divides (−KX)1, which means that we have β(r/2− 1 + t) = (−KX)1 for
some β ∈ Z. The Fano condition shows β ≥ α+ 1. We conclude

(α+ 1)q(X) ≤ β(r/2− 1 + t)

= (r/2− 1)(w1
2 + 1) +

t∑
j=1

u1
j

< (r/2− 1)(w1
2 + 1) + αt ,

where the last inequality follows because w2 = (α, 1) and α > 0 show that there is
some 1 ≤ j ≤ t with u1

j = 0. With this, we obtain

2(q(X)− 1) =
(
(α+ 1)− (α+ 1− 2)

)
q(X)− 2

<
(
(r/2− 1)(α+ 1) + αt

)
− (α− 1)q(X)− 2

= r + t− 4

< dim(X) ,

which completes the proof. �

Proof of Theorem 3.2.8. Let X be a smooth intrinsic quadric of Picard number
two. Proposition 3.2.6 guarantees that Cl(X) is torsion-free. Taking into account
Corollary 3.1.3, we thus may assume that the defining relation of the Cox ring
R := K[T1, . . . , Tr, S1, . . . , St]/〈g〉 is given by

g :=

{
T1T2 + . . .+ Tr−1Tr if r is even,
T1T2 + . . .+ Tr−2Tr−1 + T 2

r if r is odd.

Note that we have r ≥ 5, because Cl(X) is torsion-free and thus R(X) must be a
unique factorization domain. Since X is Q-factorial, the ample cone τX ⊆ ClQ(X)
is of dimension two. We work with the convex sets Eff(X) = τ+ ∪ τX ∪ τ− as
explained above. Lemma 3.1.5 shows that either all uj are contained in τ+ or all uj
are contained in τ−. After suitably renumbering the variables Ti and Sj , we are
left with the following cases.
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w1

τX
w2

τ+

τ−

(i)

w1

τX
w4

τ+

τ−

(ii)

u1

τX
w2

τ+

τ−

(iii)

We now go through the cases using Notation 3.2.2 for the relevant faces of X and
denote by µ = (µ1, µ2) := deg(g) the degree of g.

Case (i): We have τX = cone(w1, w2), w1 ∈ τ− and w2 ∈ τ+. Note that µ is
contained in τX . We may thus assume that w3 ∈ τ− and w4 ∈ τ+ hold. Applying
Remark 3.2.5 to γ14, we arrive at w1 = (1, 0) and w4 = (0, 1). Since g is homoge-
neous of degree µ, we obtain w2 = (µ1 − 1, µ2) and w3 = (µ1, µ2 − 1). Like w1, w4

also w3, w2 form a Z-basis for Cl(X), being positively oriented, because Eff(X) is
pointed and we have w2 ∈ τ+ and w3 ∈ τ−. This implies

1 = det(w3, w2) = µ1 + µ2 − 1 .

From µ ∈ τ◦X ⊆ cone(w1, w4)◦ we infer µ1, µ2 > 0 and thus conclude µ1 = µ2 = 1.
In particular, we have w2 = (0, 1), w3 = (1, 0) and τX = Q2

≥0. Moreover, µ = (1, 1)

implies that r is even. Suitably renumbering the Ti with i ≥ 5, we achieve wi ∈ τ−
and wi+1 ∈ τ+ for i = 5, 7, . . . , r − 1. Then, for every odd i, Remark 3.2.5 and
homogeneity of g provide us with the conditions

det(wi, w2) = 1 , wi + wi+1 = µ = (1, 1) , det(w1, wi+1) = 1 .

We conclude wi = (1, 0) and wi+1 = (0, 1) for all i = 5, 7, . . . , n − 1. The weights
uj = deg(Sj) are contained either all in τ− or all in τ+. We may assume that all
lie in τ+. Applying Remark 3.2.5 to γ1,r+j , where j = 1, . . . , t, yields uj = (aj , 1)
with some aj ∈ Z≤0. A suitable linear coordinate change in Z2 leads to Setting 4.

Case (ii): Here we have τX = cone(w1, w4), w1 ∈ τ− and w4 ∈ τ+. Applying
Remark 3.2.5 to γ1,4 yields w1 = (1, 0) and w4 = (0, 1). We distinguish the two
subcases w2 ∈ τ−, w3 ∈ τ− and w2 ∈ τ+, w3 ∈ τ−.

In the latter subcase, i.e. if w2 ∈ τ+ and w3 ∈ τ− hold, we proceed exactly as
in Case (i) and thus arrive in Setting 4.

If w2 ∈ τ− holds, we conclude that µ lies in τ−. Hence the same holds for
wr if r is odd. Let v+ be any weight in τ+. Applying Remark 3.2.5 to (w1, v+)
yields v2

+ = 1. The same remark applied to γ24 shows w1
2 = 1 and thus µ1 = 2.

The homogeneity of g yields w1
3 = 2. We now apply Remark 3.2.5 to (w2, v+) and

(w3, v+). Thus, we obtain

1 = 1− w2
2v

1
+ and 1 = 2− w2

2v
1
+ + v1

+ ,

where we used w3 = w1 + w2 − w4 for the last equality. We conclude w2
2 = 0,

v1
+ = −1 and w2

3 = −1, i.e. the situation is as follows:

τX

w1, w2

w4
v+

w3

If r is odd, then µ = (2, 0) shows that wr = (1, 0) holds. Now consider an odd
integer 5 ≤ i < r. Since µ ∈ τ− holds, we may assume that wi ∈ τ− holds.
Remark 3.2.5 first applied to γ4,i and then to (wi, v

+) shows that wi = (1, 0) holds.
The homogeneity of g yields wi+1 = (1, 0). Thus we conclude that w` = (1, 0)
holds for all 5 ≤ ` ≤ r. In particular, v+ is of type uj . This means that we may
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assume that u1 = v+ holds. Let 2 ≤ j ≤ t. Lemma 3.1.5 shows that uj ∈ τ+

holds. Remark 3.2.5 first applied to (w1, uj) and then to (w3, u1) yields uj = u1.
After renumbering the variables and multiplying the degree matrix Q with some
unimodular matrix from the left, we arrive in Setting 3.

Case (iii): Here we have τX = cone(u1, w2), u1 ∈ τ− and w2 ∈ τ+. Applying
Remark 3.2.5 to (u1, w2) yields u1 = (1, 0) and w2 = (0, 1). We distinguish two
subcases w1 ∈ τ+ and w1 ∈ τ−.

In the first case, we have w1 ∈ τ+ and thus µ ∈ τ+. Hence we may assume
that all wi, i odd, are contained in τ+. Remark 3.2.5 applied to (u1, wi), i odd,
i 6= r, shows that w2

i = 1 holds for all odd i 6= r. In particular, we have µ =
w1 +w2 = (w1

1, 2). Consider an odd index i 6= r. Homogeneity of g yields w2
i+1 = 1.

In particular, wi+1 is contained in τ+. Hence all weights of type wi are contained
in τ+ and thus we have t ≥ 2. Now consider a weight uj , 2 ≤ j ≤ t. Lemma 3.1.5
shows that uj is contained in τ−. Together with Remark 3.2.5 and (uj , w2), we
obtain u1

j = 1. Now the same remark applied to all pairs (wi, uj) shows that we
have wi = (0, 1) for all 1 ≤ i ≤ r or uj = (1, 0) for all 1 ≤ j ≤ t. Multiplying with
some invertible integer matrix, we arrive in Setting 1 or 2.

Now we treat the case w1 ∈ τ−. This means that we have µ ∈ τX ∪ τ−. Hence
we may assume that w3 ∈ τ− holds. Remark 3.2.5 applied to γ23 yields w1

3 = 1.
Note that the homogeneity of g yields

w1 = (µ1, µ2 − 1) and w4 = (µ1 − 1, µ2 − w2
3) .

We show that w4 ∈ τ+ holds. Indeed, assume that w4 lies in τ−. Then Remark 3.2.5
applied to γ24 shows that w1

4 = 1 holds. Thus we have µ1 = 2 and w1 = (2, µ2− 1).
Let w2 6= v+ be a weight in τ+. Since u1 ∈ τ− holds, Lemma 3.1.5 shows that
v+ is of type wi. Note that µ = w3 + w4 ∈ τ− holds and thus wr is contained
in τ− if r is odd. This means that we may assume that v+ = w5 and w6 ∈ τ−

hold. We apply Remark 3.2.5 firstly to (u1, w5) and then to (w1, w5) and arrive
at w2

5 = 1 and 1 = 2 − w2
1w

1
5. Since w1

5 ≤ 0 holds, we conclude w1
5 = w2

1 = −1.
Homogeneity of g yields w1

6 = µ1 − w1
5 = 3. But then Remark 3.2.5 applied to γ26

yields 1 = det(w6, w2) = 3, a contradiction.
Hence we have w4 ∈ τ+. Remark 3.2.5 applied to (u1, w4) yields w2

4 = 1. Thus,
the situation is as follows:

τX

u1

w2
w4

. . .

w3

... w1

Since w1 = (µ1, µ2 − 1) lies in τ−, we have µ1 ≥ 1. But w4 = (µ1 − 1, 1) ∈ τ+

yields µ1 − 1 ≤ 0. Together, we obtain µ1 = 1. In particular, µ is primitive and
thus r is even. Furthermore, we have w4 = w2 = (0, 1) and w1 = w3 = (1, µ2 − 1).
Note that Remark 3.2.5 applied to (w2, wi) yields w1

i = 1 for all wi ∈ τ−, 5 ≤ i ≤ r.
Moreover, we have w1

` ≤ 0 for all w` ∈ τ+. Because of 1 = µ1 = w1
i + w1

i+1 for
all odd 5 ≤ i ≤ r, renumbering of variables yields wi = (1, w2

i ) ∈ τ− and wi+1 =
(0, w2

i+1) ∈ τ+ for all odd 5 ≤ i ≤ r. Remark 3.2.5 applied to (u1, wi+1) yields
wi+1 = (0, 1) for all odd 5 ≤ i ≤ r. Lemma 3.1.5 shows that all further weights
of type uj lie in τ−. Applying Remark 3.2.5 to (uj , w2), and by multiplying with
some unimodular matrix from the left, we arrive in Setting 4. �
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3.3. Classification results in Picard number three

In this section we state our classification results for smooth intrinsic quadrics
of Picard number three. We first describe in Theorem 3.3.2 all full smooth intrinsic
quadrics of Picard number three and arbitrary dimension. We conclude in particular
that all full smooth Fano intrinsic quadrics have Picard number at most two, see
Corollary 3.3.3. We then consider smooth intrinsic quadrics of Picard number three
and dimension at most four, see Theorems 3.3.5 and 3.3.6. Moreover, we describe
the (almost) Fano varieties in this setting, see Theorems 3.3.5, 3.3.8 and 3.3.10.
The proofs are given in Sections 3.6 to 3.10.

Construction 3.3.1. Consider the K-algebra R = K[T1, . . . , Tr]/〈g〉, where g =
T1T2 + . . . + Tr−1Tr holds for some integer r ∈ Z≥8. Define a Z3-grading on R by
choosing weights wi = deg(Ti) according to the following setting. The polynomial g
is of degree (0, 1, 1) and the weights are as follows:

(i) At least two monomials TiTi+1 of g fulfill wi = (0, 1, 0), wi+1 = (0, 0, 1).
(ii) At least two monomials TiTi+1 of g fulfill wi = (1, ai, 0) and wi+1 =

(−1, 1− ai, 1) with some ai ∈ Z≥0, where (1, 0, 0) and (−1, 1, 1) show up
as degrees of variables.

Moreover, all monomials of g are as described in (i) or (ii). Set

τ := cone
(
(0, 1, 0), (0, 0, 1), (1,max(ai), 0))

)
∩ cone

(
(−1, 1, 1), (0, 1, 0), (1,max(ai), 0)

)
.

The polynomial g is Z3-homogeneous and R is the Cox ring of a full smooth intrinsic
quadric X with semiample cone τ ⊆ Q3.

Theorem 3.3.2. Let X be a full intrinsic quadric of Picard number three. If X
is smooth, then X is isomorphic to an intrinsic quadric arising from Construc-
tion 3.3.1.

Corollary 3.3.3. Let X be a smooth full intrinsic quadric. If X is Fano, then
the Picard number of X is at most two. In particular, X then is either isomorphic
to one of the varieties of Proposition 3.2.1 or to one of the intrinsic quadrics of
Setting 4 in Theorem 3.2.10 with α = t = 0.

Proof. In Proposition 3.2.1 we gave a description of the smooth Fano full intrinsic
quadrics of Picard number one. The smooth Fano full intrinsic quadrics of Picard
number two follow from the classification in [11]; they are also listed in Theo-
rem 3.2.10, Setting 4 with α = t = 0. In Proposition 3.1.7 we proved that ρ(X)
is at most three if X is a smooth Fano intrinsic quadric. Thus it remains to show
that there is no smooth Fano intrinsic quadric of Picard number three, i.e. that
none of the intrinsic quadrics arising from Construction 3.3.1 is Fano. This can be
seen as follows: Computing the anticanonical class KX shows that KX is a multiple
of deg(g). In the setting of Construction 3.3.1, deg(g) does not lie in the relative
interior of the cone τ , which completes the proof. �

Corollary 3.3.4. Let X be a smooth Fano full intrinsic quadric. Then X fulfills
Mukai’s conjecture.

Proof. This is an immediate consequence of Proposition 3.2.14 and Corollary 3.3.3.
�

Theorem 3.3.5. Every smooth intrinsic quadric of Picard number three and di-
mension at most three is isomorphic to one of the following varieties X, specified by
their Cox ring R(X) and their semiample cone SAmple(X), where we always have
Cl(X) = Z3 and the grading is fixed by the matrix Q = [w1, . . . , w7] of generator
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degrees wi = deg(Ti) ∈ Cl(X). If not indicated otherwise, the letter a denotes an
arbitrary integer.

No. R(X) Q = [w1, . . . , w7]
SAmple(X) is the intersection

of the following cones

1 K[T1,...,T7]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 1
0 1 1 0 0 1 0
0 1 0 1 1 0 a


a < 0

cone(w1, w3, w5), cone(w2, w5, w7)

2 K[T1,...,T7]
〈T1T2+T3T4+T5T6〉

1 a− 1 0 a 0 a 1
0 1 1 0 0 1 0
0 1 0 1 1 0 0


a > 0

cone(w1, w4, w6), cone(w2, w3, w7)

3 K[T1,...,T7]

〈T1T2+T3T4+T
2
5 〉

 1 1 2 0 1 0 0
0 0 −1 1 0 0 −1
0 a a 0 a/2 1 1


a ≥ 0

cone(w2, w3, w6), cone(w2, w6, w7)

4 K[T1,...,T7]

〈T1T2+T3T4+T
2
5 〉

1 1 2 0 1 a 0
0 0 −1 1 0 1 0
0 0 0 0 0 1 1

 cone(w1, w3, w6), cone(w1, w4, w7)

5 K[T1,...,T7]

〈T1T2+T3T4+T
2
5 〉

 1 1 2 0 1 −2 0
0 0 −1 1 0 1 0
0 a a 0 a/2 1− a 1


a > 0

cone(w2, w4, w7), cone(w2, w6, w7)

6 K[T1,...,T7]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1
0 2 1 1 1 0 −1
0 −2 0 −2 −1 1 1

 cone(w1, w3, w6), cone(w1, w3, w7)

Moreover, each of the listed data sets defines a smooth intrinsic quadric of Picard
number three and dimension three. The Fano varieties among the varieties listed in
the above table are exactly the following varieties:

No. 1 with a = −1, No. 3 with a = 0 and No. 4 with −2 ≤ a ≤ 0.
The truly almost Fano varieties among the varieties listed in the above table are
exactly the following varieties:

No. 1 with a ∈ {−2, 0} and No. 4 with a ∈ {−3, 1}.
Note that all smooth intrinsic quadrics of Picard number and dimension three

have Fano index one. We now turn to our classification results in dimension four.

Theorem 3.3.6. Every smooth intrinsic quadric of Picard number three and dimen-
sion four is isomorphic to one of the following varieties X, specified by their Cox
ring R(X) and their semiample cone SAmple(X), where we always have Cl(X) =
Z3 and the grading is fixed by the matrix Q = [w1, . . . , w8] of generator degrees
wi = deg(Ti) ∈ Cl(X). If not indicated otherwise, the letters a, b and c denote
arbitrary integers.

No. R(X) Q = [w1, . . . , w8]
SAmple(X) is the
the intersection

of the following cones

1 K[T1,...,T8]
〈T1T2+T3T4+T5T6+T7T8〉

1 a− 1 0 a 0 a 1 a− 1
0 1 1 0 0 1 0 1
0 1 0 1 1 0 0 1


a ≥ 0

cone(w1, w6, w4 + w6)

2 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 a 1
0 1 1 0 0 1 1 0
0 1 0 1 1 0 b c


b ≤ 0, c < 0

cone(w1, w3, w5), cone(w1, w5, w7),
cone(w2, w5, w8), cone(w4, w7, w8)

3 K[T1,...,T6,S1,S2]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 0 1
0 1 1 0 0 1 1 a
0 1 0 1 1 0 0 0

 cone(w1, w5, w7), cone(w2, w3, w8)

4 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 0 1
0 1 1 0 0 1 1 −1
0 1 0 1 1 0 a 0

 cone(w1, w3, w4), cone(w2, w7, w8)
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5 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 0 1
0 1 1 0 0 1 1 −2
0 1 0 1 1 0 −1 1

 cone(w1, w5, w7), cone(w1, w6, w8)

6 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 1 1
0 1 1 0 0 1 0 0
0 1 0 1 1 0 a b


0 > a ≥ b

cone(w1, w3, w5), cone(w2, w5, w7)

7 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 1 1
0 1 1 0 0 1 0 −1
0 1 0 1 1 0 a 0


a < 0

cone(w1, w3, w5)

8 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 1 a
0 1 1 0 0 1 0 1
0 1 0 1 1 0 −1 1

 cone(w1, w3, w5), cone(w1, w7, w8)

9 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 a− 1 0 a 0 a b 1
0 1 1 0 0 1 1 0
0 1 0 1 1 0 0 0


a ≥ 0

cone(w1, w4, w6), cone(w2, w6, w8),
cone(w4, w7, w8)

10 K[T1,...,T6,S1,S2]
〈T1T2+T3T4+T5T6〉

1 a− 1 0 a 0 a 1 1
0 1 1 0 0 1 0 0
0 1 0 1 1 0 0 0


a > 0

cone(w1, w4, w6), cone(w2, w6, w7)

11 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 a− 1 0 a 0 a 1 b
0 1 1 0 0 1 0 c
0 1 0 1 1 0 0 1


a ≥ 0

cone(w1, w6, w8), cone(w2, w6, w7),
cone(w4, w6, w7)

12 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 0 0 1 1 0 1 0
0 1 1 0 0 1 a 0
0 −1 0 −1 0 −1 1 1

 cone(w2, w3, w7), cone(w1, w3, w8)

13 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 0 0 1 1 0 a 0
0 1 1 0 0 1 b 0
0 0 0 0 0 0 1 1

 cone(w1, w3, w7), cone(w1, w3, w8)

14 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 0 0 1 1 0 0 0
0 1 1 0 0 1 0 0
0 a 0 a b a− b 1 1

 cone(w1, w6, w7), cone(w2, w4, w7)
cone(w2, w5, w7), cone(w3, w5, w7)
cone(w4, w6, w7), cone(w1, w3, w7)

15 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 1 0
0 2 1 1 1 1 −1 0
0 −2 0 −2 −1 −1 1 1

 cone(w1, w3, w7), cone(w1, w3, w8)

16 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 1 0 2 1 1 0 0
0 a 0 a b a− b 1 1
0 0 1 −1 0 0 −1 0

 cone(w1, w4, w8), cone(w1, w7, w8),
cone(w2, w4, w8), cone(w2, w7, w8),
cone(w5, w4, w8), cone(w5, w7, w8),
cone(w6, w4, w8), cone(w6, w7, w8)

17 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 1 0 2 1 1 0 a
0 0 0 0 0 0 1 1
0 0 1 −1 0 0 0 1

 cone(w1, w3, w7), cone(w1, w4, w8),
cone(w1, w7, w8)

18 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 1 0 2 1 1 0 −2
a 1 0 1 + a a + b 1− b 1 −a
0 0 1 −1 0 0 0 1

 cone(w1, w3, w7), cone(w1, w7, w8),
cone(w2, w3, w7), cone(w2, w7, w8),
cone(w5, w3, w7), cone(w5, w7, w8),
cone(w6, w3, w7), cone(w6, w7, w8)

19 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 a 1
0 2 1 1 1 0 b −1
0 0 0 0 0 1 1 0

 cone(w1, w3, w6), cone(w1, w3, w7)

20 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 0 1
0 2 1 1 1 0 a b
0 0 0 0 0 1 1 1

 cone(w1, w3, w6), cone(w1, w3, w7),
cone(w2, w3, w8), cone(w3, w7, w8)

21 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 1
0 2 1 1 1 0 a b
0 0 0 0 0 1 1 1


a ≥ b

cone(w1, w3, w6), cone(w2, w3, w7),
cone(w3, w6, w7)

22 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 1
0 2 1 1 1 0 a −1
0 0 0 0 0 1 1 0


a 6= −2

cone(w1, w3, w6), cone(w2, w3, w7)

23 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 a− 1
0 2 1 1 1 0 0 1
0 0 0 0 0 1 1 a

 cone(w1, w7, w8), cone(w2, w3, w7),
cone(w3, w6, w7), cone(w3, w7, w8)

24 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 −1
0 2 1 1 1 0 a 1
0 0 0 0 0 1 1 0

 cone(w1, w3, w6), cone(w2, w3, w7)
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25 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 a
0 2 1 1 1 0 −1 1
0 0 0 0 0 1 0 1

 cone(w1, w3, w6), cone(w1, w7, w8)

26 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 0 1
0 2 1 1 1 0 0 −1
0 a 0 a a/2 1 1 b


a ∈ 2Z, a ≤ 0

cone(w1, w3, w7), cone(w2, w6, w8),
cone(w3, w6, w8)

27 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 0 1
0 2 1 1 1 0 0 −2
0 a 0 a a/2 1 1 1− a


a ∈ 2Z, a < 0

cone(w1, w3, w6), cone(w3, w6, w8)

28 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 −1 −1 0
0 2 1 1 1 0 0 0
0 a 0 a a/2 1 1 1


a ∈ 2Z, a < 0

cone(w2, w3, w8), cone(w3, w6, w8)

29 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 1
0 2 1 1 1 0 −2 −2
0 a 0 a a/2 1 1− a 1− a


a ∈ 2Z, a ≤ 0

cone(w1, w3, w6), cone(w3, w6, w7)

30 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 −1 0 0
0 2 1 1 1 0 0 0
0 a 0 a a/2 1 1 1


a ∈ 2Z, a ≤ 0

cone(w2, w3, w7), cone(w3, w6, w7)

31 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 1
0 2 1 1 1 0 −2 −1
0 a 0 a a/2 1 1− a b


a ∈ 2Z, a ≤ 0

cone(w1, w3, w6), cone(w2, w6, w8),
cone(w3, w6, w7), cone(w3, w6, w8)

32 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 −1 0 −1
0 2 1 1 1 0 0 1
0 a 0 a a/2 1 1 b


a ∈ 2Z, a ≤ 0

cone(w1, w7, w8), cone(w2, w3, w7),
cone(w3, w6, w7), cone(w3, w7, w8)

33 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 −1
0 2 1 1 1 0 −1 1
0 a 0 a a/2 1 b 1− b


a ∈ 2Z, a ≤ 0

cone(w1, w3, w6), cone(w1, w6, w8),
cone(w2, w7, w8), cone(w3, w6, w7)

34 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 0 1
0 2 1 1 1 0 0 −1
0 −2 0 −2 −1 1 1 1

 cone(w1, w3, w6), cone(w1, w3, w8)

35 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 1
0 2 1 1 1 0 −1 −1
0 −2 0 −2 −1 1 1 1

 cone(w1, w3, w6), cone(w1, w3, w8)

36 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 1
0 2 1 1 1 0 −1 −1
0 −2 0 −2 −1 1 1 0

 cone(w1, w3, w6), cone(w1, w3, w7)

37 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 −1
0 2 1 1 1 0 −1 1
0 −2 0 −2 −1 1 1 0

 cone(w1, w3, w6), cone(w1, w3, w7)

Moreover, each of the listed data sets defines a smooth intrinsic quadric of Picard
number three and dimension four.

Remark 3.3.7. Note that some of the data sets listed in the table of Theorem 3.3.6
define isomorphic varieties; for instance No. 3 with a = −1 and No. 4 with a = 0,
No. 3 with a = 0 and No. 9 with a = b = 0, or No. 19 with a = 0, b := c ∈ Z and
No. 20 with b = −1, a := c. Moreover, there are non-isomorphic varieties sharing
the same Cox ring; for instance No. 19 with a = 1, b := c ∈ Z and No. 22 with
a := c or No. 19 with b = 1 and No. 25.

Theorem 3.3.8. Every smooth Fano intrinsic quadric of Picard number three
and dimension four is isomorphic to one of the following varieties X, specified by
their Cox ring R(X) and their semiample cone SAmple(X), where we always have
Cl(X) = Z3 and the grading is fixed by the matrix Q = [w1, . . . , w8] of generator
degrees wi = deg(Ti) ∈ Cl(X).

No. R(X) Q = [w1, . . . , w8] −KX
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2 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 0 1
0 1 1 0 0 1 1 0
0 1 0 1 1 0 0 −1

 13
1



3 K[T1,...,T6,S1,S2]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 0 1
0 1 1 0 0 1 1 a
0 1 0 1 1 0 0 0


−2 ≤ a ≤ 0

 1
3 + a

2



4 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 0 1
0 1 1 0 0 1 1 −1
0 1 0 1 1 0 a 0


−1 ≤ a ≤ 0

 1
2

2 + a



7 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 1 1
0 1 1 0 0 1 0 −1
0 1 0 1 1 0 −1 0

 21
1


9 K[T1,...,T8]

〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 0 1
0 1 1 0 0 1 1 0
0 1 0 1 1 0 0 0

 13
2



13, 14 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 0 0 1 1 0 a 0
0 1 1 0 0 1 b 0
0 0 0 0 0 0 1 1


−1 ≤ a, b ≤ 1

2 + a
2 + b

2



16 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 1 0 2 1 1 0 0
0 0 0 0 0 0 1 1
0 0 1 −1 0 0 −1 0

  4
2
−1



17, 18 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 1 0 2 1 1 0 a
0 0 0 0 0 0 1 1
0 0 1 −1 0 0 0 1


−3 ≤ a ≤ 1

4 + a
2
1



19 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 0 1
0 2 1 1 1 0 a −1
0 0 0 0 0 1 1 0


−1 ≤ a ≤ 1

 1
2 + a

2



20, 21, 30 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 0 1
0 2 1 1 1 0 0 a
0 0 0 0 0 1 1 1


−2 ≤ a ≤ −1

 1
3 + a

3



26 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 0 1
0 2 1 1 1 0 0 −1
0 0 0 0 0 1 1 a


−1 ≤ a ≤ 0

 1
2

2 + a



Moreover, each of the listed data sets defines a smooth Fano intrinsic quadric of
Picard number three and dimension four.

Remark 3.3.9. Note that the Fano intrinsic quadrics No. 3 with a = −1 and No. 4
with a = 0 coincide. The same holds for the Fano varieties No. 19 with a = 0 and
No. 26 with a = 0. Hence there are up to isomorphism altogether 28 smooth Fano
intrinsic quadrics of Picard number three and dimension four. Variety No. 13 with
a = b = 0 has Fano index two and all other varieties of Theorem 3.3.8 have Fano
index one.

Theorem 3.3.10. Every smooth truly almost Fano intrinsic quadric of Picard num-
ber three and dimension four is isomorphic to one of the following varieties X,
specified by their Cox ring R(X) and their semiample cone SAmple(X), where we
always have Cl(X) = Z3 and the grading is fixed by the matrix Q = [w1, . . . , w8] of
generator degrees wi = deg(Ti) ∈ Cl(X).

No. R(X) Q = [w1, . . . , w8]
SAmple(X) is the intersection

of the following cones

1 K[T1,...,T8]
〈T1T2+T3T4+T5T6+T7T8〉

1 −1 0 0 0 0 1 −1
0 1 1 0 0 1 0 1
0 1 0 1 1 0 0 1

 cone(w1, w6, w4 + w6)
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2 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 a 1
0 1 1 0 0 1 1 0
0 1 0 1 1 0 b c


−1 ≤ a ≤ 0, b = −1, c = −1
or − 1 ≤ a ≤ 0, b = 0, c = −2
or − 1 ≤ a ≤ 0, b = 1, c = 0

or a = −1, b = 0, c = −1

cone(w1, w3, w5), cone(w1, w5, w7),
cone(w2, w5, w8), cone(w4, w7, w8)

3 K[T1,...,T6,S1,S2]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 0 1
0 1 1 0 0 1 1 −3
0 1 0 1 1 0 0 0

 cone(w1, w5, w7), cone(w2, w3, w8)

4 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 0 1
0 1 1 0 0 1 1 −1
0 1 0 1 1 0 a 0


a = 1 or a = −2

cone(w1, w3, w4), cone(w2, w7, w8)

6 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 1 1
0 1 1 0 0 1 0 0
0 1 0 1 1 0 −1 −1

 cone(w1, w3, w5), cone(w2, w5, w7)

7 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 1 1
0 1 1 0 0 1 0 −1
0 1 0 1 1 0 −2 0

 cone(w1, w3, w5)

8 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 1 a
0 1 1 0 0 1 0 1
0 1 0 1 1 0 −1 1


−1 ≤ a ≤ 0

cone(w1, w3, w5), cone(w1, w7, w8)

9 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 −1 1
0 1 1 0 0 1 1 0
0 1 0 1 1 0 0 0

 cone(w1, w4, w6), cone(w2, w6, w8),
cone(w4, w7, w8)

10 K[T1,...,T6,S1,S2]
〈T1T2+T3T4+T5T6〉

1 0 0 1 0 1 1 1
0 1 1 0 0 1 0 0
0 1 0 1 1 0 0 0

 cone(w1, w4, w6), cone(w2, w6, w7)

11 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 −1 0 0 0 0 1 b
0 1 1 0 0 1 0 1
0 1 0 1 1 0 0 1


−1 ≤ b ≤ 0

cone(w1, w6, w8), cone(w2, w6, w7),
cone(w4, w6, w7)

12 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 0 0 1 1 0 1 0
0 1 1 0 0 1 a 0
0 −1 0 −1 0 −1 1 1


−2 ≤ a ≤ −1

cone(w2, w3, w7), cone(w1, w3, w8)

13 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 0 0 1 1 0 a 0
0 1 1 0 0 1 b 0
0 0 0 0 0 0 1 1


a = ±2, −2 ≤ b ≤ 2

or b = ±2, −1 ≤ a ≤ 1

cone(w1, w3, w7), cone(w1, w3, w8)

14 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 0 0 1 1 0 0 0
0 1 1 0 0 1 0 0
0 −1 0 −1 b −1− b 1 1


a = 1, 0 ≤ b ≤ 1
or a = 0, b = ±1

or a = −1, −1 ≤ b ≤ 0

cone(w1, w6, w7), cone(w2, w4, w7)
cone(w2, w5, w7), cone(w3, w5, w7)
cone(w4, w6, w7), cone(w1, w3, w7)

17 K[T1,...,T8]
〈T1T2+T3T4+T5T6〉

1 1 0 2 1 1 0 a
0 0 0 0 0 0 1 1
0 0 1 −1 0 0 0 1


a = −4 or a = 2

cone(w1, w3, w7), cone(w1, w4, w8),
cone(w1, w7, w8)

19 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 a 1
0 2 1 1 1 0 b −1
0 0 0 0 0 1 1 0


a = ±1, −2 ≤ b ≤ 2

or a = 0, b = ±2

cone(w1, w3, w6), cone(w1, w3, w7)

20 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 0 1
0 2 1 1 1 0 a b
0 0 0 0 0 1 1 1


a = −1, −2 ≤ b ≤ −1

or (a, b) = (0,−3)
or a = 1, −1 ≤ b ≤ 0

cone(w1, w3, w6), cone(w1, w3, w7),
cone(w2, w3, w8), cone(w3, w7, w8)

21 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 1
0 2 1 1 1 0 a b
0 0 0 0 0 1 1 1


(a, b) = (−1,−2)
or (a, b) = (0,−1)
or (a, b) = (1, 1)

cone(w1, w3, w6), cone(w2, w3, w7),
cone(w3, w6, w7)
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22 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 1
0 2 1 1 1 0 a −1
0 0 0 0 0 1 1 0


−1 ≤ a ≤ 2

cone(w1, w3, w6), cone(w2, w3, w7)

23 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 −1
0 2 1 1 1 0 0 1
0 0 0 0 0 1 1 0

 cone(w1, w7, w8), cone(w2, w3, w7),
cone(w3, w6, w7), cone(w3, w7, w8)

24 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 −1
0 2 1 1 1 0 a 1
0 0 0 0 0 1 1 0


−4 ≤ a ≤ 0

cone(w1, w3, w6), cone(w2, w3, w7)

26 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 0 1
0 2 1 1 1 0 0 −1
0 0 0 0 0 1 1 −2

 cone(w1, w3, w7), cone(w2, w6, w8),
cone(w3, w6, w8)

31 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 1
0 2 1 1 1 0 −2 −1
0 0 0 0 0 1 1 0

 cone(w1, w3, w6), cone(w2, w6, w8),
cone(w3, w6, w7), cone(w3, w6, w8)

32 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 −1 0 −1
0 2 1 1 1 0 0 1
0 0 0 0 0 1 1 0

 cone(w1, w7, w8), cone(w2, w3, w7),
cone(w3, w6, w7), cone(w3, w7, w8)

34 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 0 1
0 2 1 1 1 0 0 −1
0 −2 0 −2 −1 1 1 1

 cone(w1, w3, w6), cone(w1, w3, w8)

35 K[T1,...,T8]

〈T1T2+T3T4+T
2
5 〉

1 −1 0 0 0 0 1 1
0 2 1 1 1 0 −1 −1
0 −2 0 −2 −1 1 1 1

 cone(w1, w3, w6), cone(w1, w3, w8)

Moreover, each of the listed data sets defines a smooth truly almost Fano intrinsic
quadric of Picard number three and dimension four.

Remark 3.3.11. As a consequence of Theorem 3.3.8, every smooth Fano intrinsic
quadric of Picard number three and dimension four admits a torus action of com-
plexity one and there is exactly one smooth truly almost Fano intrinsic quadric of
Picard number three and dimension four, namely No. 1, that does not admit a torus
action of complexity one.

Remark 3.3.12. Note that duplication of a free weight as introduced in Con-
struction 2.2.1 yields many examples of higher dimensional intrinsic quadrics. In
particular, all varieties arising via duplicating a free weight from one of the three-
dimensional quadrics in the table of Theorem 3.3.5 turn up in the table of Theo-
rem 3.3.8.

3.4. Geometry of the Fano intrinsic quadrics of Picard number three

In this section we take a closer look at the Fano varieties listed in Theorem 3.3.8
and describe explicitly their elementary birational divisorial contractions and their
elementary contractions of fiber type.

Remark 3.4.1. We first give an overview which sort of elementary contraction is
admitted by which smooth Fano intrinsic quadric of Picard number three. Since
the Fano intrinsic quadrics No. 3 with a = −1 and No. 4 with a = 0 as well as the
Fano varieties No. 19 with a = 0 and No. 26 with a = 0 coincide, we do not discuss
the situations No. 4 with a = 0 and No. 26 with a = 0.

No. birational divisorial,
Y toric variety

birational divisorial,
Y intrinsic quadric fiber type birational small

2 1 1 1 0

3, −2 ≤ a ≤ −1 1 1 1 0

3, a = 0 1 0 2 0

4, a = −1 1 2 0 0

7 1 2 0 0

9 1 0 1 1

13, a = b = 0 0 0 3 0
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13, a = b = ±1 0 1 1 0

13, a + b = ±1 0 1 2 0

13, a + b = 0, a, b 6= 0 0 2 1 0

16 2 1 0 0

17, a = −1 2 2 0 0

17, a 6= −1 2 1 0 0

19, a = ±1 1 0 1 1

19, a = 0 1 1 1 0

20, a = −1 2 1 0 1

20, a = −2 2 1 0 0

26, a = −1 1 1 0 0

In the following, we describe explicitly the divisorial contractions and the con-
tractions of fiber type listed in the above table.

No. 2: The variety X admits two birational divisorial contractions P1×P3 ← X →
Y2, where Y2 is a smooth intrinsic quadric from Setting 4 in Construction 3.2.7 with
degree matrix and relation

Q =

(
1 0 1 0 1 0 0
0 1 0 1 0 1 1

)
, g = T1T2 + T3T4 + T5T6.

The center of the two divisorial contractions are isomorphic to the intersection of
a coordinate hypersurface with a divisor of bidegree (1, 1) and to P2, respectively.
Furthermore, X admits a contraction of fiber type X → P(OP1

⊕OP1
(1)).

No. 3, −2 ≤ a ≤ −1: The variety X admits two birational divisorial contractions
Y1 ← X → Y2 and a contraction of fiber type X → Y3, where Y3 is isomorphic
to the projectivized split vector bundle P(OP2 ⊕ OP2(−a)). If a = −2 holds, then
we have

Y1
∼= P

(
OP2
⊕

2⊕
i=1

OP2
(1)

)
and if a = −1 holds, then we have Y1

∼= P2×P2. In both cases, the center of X → Y1

is isomorphic to a divisor of bidegree (1,1) in P1 × P2. If a = −2 holds, then Y2 is
isomorphic to a singular intrinsic quadric with degree matrix, defining relation and
semiample cone given by

Q =

(
2 −1 1 0 0 1 1
0 1 0 1 1 0 0

)
, g = T1T2 + T3T4 + T5T6

and SAmple(X) = Q2
≥0. If a = −1 holds, then Y2 is isomorphic to a smooth intrinsic

quadric from Setting 4 in Construction 3.2.7 with degree matrix and relation

Q =

(
1 0 1 0 1 0 0
0 1 0 1 0 1 1

)
, g = T1T2 + T3T4 + T5T6.

In both cases, the center of X → Y2 is isomorphic to P1.

No. 3, a = 0: The variety X admits two contractions of fiber type Y1 ← X → Y2

and one birational divisorial contraction X → Y3, where Y3 is isomorphic to the
projectivized split vector bundle

P
(
OP2
⊕

2⊕
i=1

OP2
(1)

)
.

The center of this contraction is isomorphic to a divisor of bidegree (1,1) in the pro-
jectivized split vector bundle P(OP1

⊕
⊕2

i=1OP1
(1)). Furthermore, Y2 is isomorphic

to P1 × P1 and Y3 is isomorphic to P1 × P2.
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No. 4, a = −1: Here, the variety X admits three divisorial contractions X →
Yi, i = 1, 2, 3. The variety Y1 is isomorphic to the projectivized split vector bundle

P
(
OP2 ⊕

2⊕
i=1

OP2(1)

)
and the center of the contraction X → Y1 is isomorphic to a divisor of bidegree (1, 1)

in P(OP1
⊕
⊕2

i=1OP1
(1)). The varieties Y2 and Y3 are smooth intrinsic quadrics

from Construction 3.2.7. Y2 belongs to Setting 4 of Construction 3.2.7 and has
degree matrix and relation

Q =

(
1 1 1 1 1 1 0
0 1 0 1 0 1 1

)
, g = T1T2 + T3T4 + T5T6.

The variety Y3 belongs to Setting 3 of Construction 3.2.7 and has degree matrix
and relation

Q =

(
0 2 1 1 1 1 1
1 1 1 1 1 1 0

)
, g = T1T2 + T3T4 + T5T6.

The centers of the contractions X → Y2 and X → Y3 are given by P1 and the
intersection of the four prime divisors D1

Y3
, D4

Y3
, D5

Y3
and D7

Y3
, respectively.

No. 7: Here, the variety X admits three divisorial contractions ϕi : X → Yi, i =
1, 2, 3. The variety Y1 is isomorphic to P2 × P2 with center isomorphic to a divisor
of bidegree (1, 1) in P1×P1. The contractions ϕi, i = 2, 3, are contractions from X
to smooth intrinsic quadrics from Construction 3.2.7. Both Y2 and Y3 belong to
Setting 4 of Construction 3.2.7 and have degree matrix and relation

Q =

(
1 1 1 1 1 1 0
0 1 0 1 0 1 1

)
, g = T1T2 + T3T4 + T5T6.

The centers of the contractions X → Y2 and X → Y3 are both isomorphic to the
first Hirzebruch surface P(OP1 ⊕OP1(1)).

No. 9: Here, the variety X admits a divisorial contraction ϕ1 : X → Y1 and a
contraction of fiber type ϕ2 : X → P1 × P2. The variety Y1 is isomorphic to the
projectivized split vector bundle

P
( 2⊕
i=1

OP2 ⊕OP2(1)

)
and the center of ϕ1 is isomorphic to a divisor of bidegree (1, 1) in P1 × P2.

No. 13, a = b = 0: Here, the variety X is combinatorially minimal. It admits
three contractions of fiber type ϕi : X → Yi, i = 1, 2, 3. The variety Y1 is isomorphic
to a divisor of bidegree (1, 1) in P2 × P2 and we have Y2

∼= Y3
∼= P2 × P1.

No. 13, a = b = ±1: Here, the variety X admits a divisorial contraction ϕ1 : X →
Y1 and a contraction of fiber type ϕ2 : X → Y2, where the variety Y2 is isomorphic
to a divisor of bidegree (1, 1) in P2 × P2. The variety Y1 is isomorphic to a non-Q-
factorial intrinsic quadric with degree matrix, defining relation and semiample cone
given by

Q =

(
1 0 0 1 1 0 1
0 1 1 0 0 1 1

)
, g = T1T2 + T3T4 + T5T6

and SAmple(X) = cone((1, 1)). The center of ϕ1 is isomorphic to the intersection
of the prime divisors D1

Y1
, D4

Y1
and D5

Y1
.

No. 13, a + b = ±1: Here, the variety X admits a divisorial contraction ϕ1 : X →
Y1 and two contractions of fiber type ϕi : X → Yi, i = 2, 3, where Y2 is isomorphic
to a divisor of bidegree (1, 1) in P2 × P2 and Y3

∼= P1 × P2 holds. The variety Y1 is
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isomorphic to a smooth intrinsic quadric of Setting 4 from Construction 3.2.7 with
degree matrix and relation

Q =

(
1 0 1 0 1 0 0
0 1 0 1 0 1 1

)
, g = T1T2 + T3T4 + T5T6.

The center of the contraction X → Y1 is isomorphic to P2.

No. 13, a + b = 0, a,b, 6= 0: Here, the variety X admits two divisorial contrac-
tions ϕi : X → Yi, i = 1, 2 and a contraction of fiber type ϕ3 : X → Y3, where Y3

is isomorphic to a divisor of bidegree (1, 1) in P2 × P2. The varieties Y1 and Y2 are
isomorphic to a smooth intrinsic quadric of Setting 4 from Construction 3.2.7 with
degree matrix and relation

Q =

(
1 1 1 1 1 1 0
0 1 0 1 0 1 1

)
, g = T1T2 + T3T4 + T5T6.

The centers of the contractions ϕi, i = 1, 2 are isomorphic to P2.

No. 16: Here, the variety X admits three divisorial contractions ϕi : X → Yi, i =
1, 2, 3. The varieties Y1 and Y2 are both smooth toric varieties. To be precise, Y1 is
isomorphic to the projectivized split vector bundle

P
(
OP1
⊕

3⊕
i=1

OP1
(2)

)
and the center of ϕ1 is isomorphic to a divisor of bidegree (1, 1) in P(OP1 ⊕⊕2

i=1OP1
(2)). The variety Y2 is isomorphic to P1 × P3 and the center of ϕ2 is

isomorphic to P1 × P1. Furthermore, ϕ3 is a contraction from X to a singular
intrinsic quadric of Picard number two with degree matrix, defining relation and
semiample cone given by

Q =

(
1 1 0 2 1 1 0
0 0 1 −1 0 0 1

)
, g = T1T2 + T3T4 + T5T6

and SAmple(X) = Q2
≥0. The center of ϕ3 is isomorphic to a point.

No. 17: Here, the variety X admits - depending on the value of a - three or four
divisorial contractions ϕi : X → Yi, i = 1, 2, 3, 4. For any choice of a, there are
contractions ϕ1 and ϕ2 to smooth toric varieties. To be precise, Y1 and Y2 are
isomorphic to the projectivized split vector bundles

Y1
∼= P (OP3 ⊕OP3(| − a|)) and Y2

∼= P (OP3 ⊕OP3(|a+ 2|)) ,

where |x| denotes the absolute value of x. The centers of ϕ1 and ϕ2 are both
isomorphic to P1 × P1.

If a ≥ −1 holds, then there is a further divisorial contraction ϕ3 : X → Y3,
where Y3 is an intrinsic quadric with degree matrix, defining relation and semiample
cone given by

Q =

(
1 1 0 2 1 1 a
0 0 1 −1 0 0 1

)
, g = T1T2 + T3T4 + T5T6

and semiample cone SAmple(X) = Q2
≥0 if −1 ≤ a ≤ 0 holds, and SAmple(X) =

cone((1, 0), (0, 1)) in case a = 1 holds. This means that Y3 is smooth only if a = −1
holds. In this case, Y3 belongs to Setting 3 of Construction 3.2.7. The center
of ϕ3 is isomorphic to a point if a = 0 holds, to the intersection of the prime
divisors Di

Y3
, i = 1, 2, 3, 5, 6 in case a = −1 holds, and to the intersection of the

prime divisors Di
Y3
, i = 1, 2, 4, 5, 6 if a = 1 holds.
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If a ≤ −1 holds, then there is a further divisorial contraction ϕ4 : X → Y4,
where Y4 is an intrinsic quadric with degree matrix, defining relation and semiample
cone given by

Q =

(
1 1 0 2 1 1 −a
1 1 1 1 1 1 −a− 1

)
, g = T1T2 + T3T4 + T5T6

and SAmple(X) = cone((1, 1), (2, 1)) if a = −2,−1 holds, and SAmple(X) =
cone((1, 1), (3, 2)) in case a = −3 holds. This means that Y4 is smooth only if
a = −1 holds. In this case, Y4 belongs to Setting 3 of Construction 3.2.7. The
center of ϕ4 is isomorphic to a point if a = −2 holds, to the intersection of the
prime divisors Di

Y4
, i = 1, 2, 4, 5, 6 in case a = −1 holds, and to the intersection of

the prime divisors Di
Y4
, i = 1, 2, 3, 5, 6 in case a = −3 holds.

No. 19: Here, the variety X admits a divisorial contraction ϕ1 : X → Y1 and a
contraction of fiber type ϕ2 : X → Y2, where Y2 is isomorphic to a smooth intrinsic
quadric of Setting 3 from Construction 3.2.7 with degree matrix and relation

Q =

(
0 2 1 1 1 1
1 1 1 1 1 0

)
, g = T1T2 + T3T4 + T 2

5 .

The variety Y1 is isomorphic to the projectivized split vector bundle P(OP3
⊕OP3

(1))
if a = ±1 holds and isomorphic to P3 × P1 if a = 0 holds. The center of ϕ1 is
isomorphic to the first Hirzebruch surface P(OP1

⊕ OP1
(1)) if a = ±1 holds and

isomorphic to P1 × P1 if a = 0 holds.
If a equals zero, then we have a further divisorial contraction ϕ3 : X → Y3,

where Y3 is isomorphic to a smooth intrinsic quadric of Setting 1 from Construc-
tion 3.2.7 with degree matrix and relation

Q =

(
1 1 1 1 1 0 0
0 0 0 0 0 1 1

)
, g = T1T2 + T3T4 + T 2

5

and center isomorphic to P1.

No. 20: Here, the variety X admits three divisorial contractions ϕi : X → Yi, i =
1, 2, 3. The varieties Y1 and Y2 are toric varieties and Y3 is an intrinsic quadric. To
be precise, Y1 is isomorphic to the projectivized split vector bundle

P
( 2⊕
i=1

OP2
⊕OP2

(1)

)
if a = −1 holds and isomorphic to P2×P2 if a = −2 holds. In both cases, the center
of ϕ1 is isomorphic to P1 × P1. The variety Y2 is isomorphic to the projectivized
split vector bundle

P
(
OP2 ⊕

2⊕
i=1

OP2(−a)

)
and the center of ϕ2 is isomorphic to P1. If a = −1 holds, then Y3 is isomorphic to
a smooth intrinsic quadric of Setting 3 from Construction 3.2.7 with degree matrix
and relation

Q =

(
0 2 1 1 1 1 1
1 1 1 1 1 0 0

)
, g = T1T2 + T3T4 + T 2

5 .

If a = −2 holds, then Y3 is isomorphic to a singular intrinsic quadric with degree
matrix, relation and semiample cone given by

Q =

(
2 0 1 1 1 0 0
−1 1 0 0 0 1 1

)
, g = T1T2 + T3T4 + T 2

5

and SAmple = Q2
≥0. In both cases, the center of ϕ3 is isomorphic to P1.
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No. 26, a = −1: Here, the variety X admits two divisorial contractions ϕi : X →
Yi, i = 1, 2, where Y1 is toric and Y2 is an intrinsic quadric. To be precise, Y1 is
isomorphic to the projectivized split vector bundle

P
(
OP1 ⊕

3⊕
i=1

OP1(1)

)
and the center of ϕ1 is isomorphic to P1 × P1. The variety Y2 is isomorphic to the
smooth intrinsic quadric from Setting 3 of Construction 3.2.7 with degree matrix
and relation

Q =

(
0 2 1 1 1 1 1
1 1 1 1 1 0 0

)
, g = T1T2 + T3T4 + T 2

5 .

The center of ϕ2 is isomorphic to the intersection of the prime divisorsD2
Y2
,D3

Y2
,D4

Y2

and D5
Y2
.

3.5. First structural constraints for Picard number three

In this section we consider intrinsic quadrics of Picard number three. We pro-
vide Lemmata we will need in the proofs in Sections 3.6 – 3.10. In particular,
we show in Proposition 3.5.5, that the Picard group of a locally factorial intrinsic
quadric of Picard number three is torsion-free.

Remark 3.5.1. In order to illustrate the arrangement of weights in Cl(X)Q = Q3,
we often choose a hypersurface H intersecting the effective cone in its relative in-
terior and consider this two-dimensional picture. As a matter of convenience, we
abbreviate H ∩ cone(wi) as wi. What matters to us is which subsets of weights
generate three-dimensional cones intersecting other cones in their relative interior.
Thus for our purpose, the two-dimensional pictures only need to depict the position
of a weight with respect to the position of the other weights and they do not need
to be true to scale.

Setting 3.5.2. In the following, X is a standard intrinsic quadric of Picard number
three. Hence its Cox ring is given by R(X) = K[T1, . . . , Tr, S1, . . . , St]/〈g〉 with
g = T1T2 + . . . + Tq−1Tq + h for some 0 ≤ q ≤ r, r ≥ 3, and some polynomial h
given by

h =

{
T 2
q+1 + . . .+ T 2

r if q < r ,

0 if q = r ,

where we have deg(Tq+k) 6= deg(Tq+l) for all 1 ≤ k < l ≤ r − q. By wi := deg(Ti)
and by wr+j := deg(Sj), we denote the degrees of the variables Ti and Sj . By u we
denote an ample Weil divisor class u ∈ Cl(X).

Lemma 3.5.3. Let X be as in Setting 3.5.2 and assume that X is Q-factorial.
Assume that there is an index 5 ≤ ` ≤ r + t such that T` is not a square. If
u ∈ Q(γ12`)

◦ and g = T1T2 + T3T4 + . . . hold, then we have γij` ∈ rlv(u) for some
i ∈ {1, 2} and j ∈ {3, 4}.
Proof. We denote by l12 ∈ Hom(Cl(X),Q) a linear form with l12(w1) = 0 = l12(w2)
and l12(w`) ≥ 0. Since g is homogeneous and l12(deg(g)) = 0 holds, we may further
assume that l12(w3) ≤ 0 holds. The weights are arranged as follows, where w3 lies
somewhere on the opposite side of H12 := {x ∈ KQ; l12(x) = 0} as w`.
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w2

w1

w`

H12

This means that we have Q(γ12`) ⊆ Q(γ13`) ∪ Q(γ23`). Using Remark 3.2.4 and
the circumstance that all faces of γ13` and γ23` are F-faces, we conclude that u ∈
Q(γ13`)

◦ or u ∈ Q(γ23`)
◦ holds, i.e. γ13` or γ23` is a relevant face. �

Lemma 3.5.4. Let X be as in Setting 3.5.2 and assume that X is Q-factorial.
If u ∈ Q(γ12)◦ and q ≥ 6 hold, then we have γijk ∈ rlv(u) for some i ∈ {1, 2},
j ∈ {3, 4}, k ∈ {5, 6}.
Proof. We denote by l12 ∈ Hom(Cl(X),Q) a linear form with l12(w1) = 0 = l12(w2).
Since g is homogeneous and l12(deg(g)) = 0 holds, renumbering of variables yields
l12(w3) ≤ 0 and l12(w5) ≥ 0, i.e. w3 and w5 lie on opposite sides of the hypersurface
cut out by l12. Hence we have Q(γ12) ⊆ Q(γ135) ∪ Q(γ235). Using Remark 3.2.4
and the circumstance that all faces of γ135 and γ235 are F-faces, we conclude that
u ∈ Q(γ135)◦ or u ∈ Q(γ235)◦ holds and thus γ135 or γ235 is a relevant face. �

Proposition 3.5.5. Let X be as in Setting 3.5.2 and assume that X is locally
factorial. Then the Picard group of X is torsion-free.

Proof. According to Remark 3.2.5, it is sufficient to show that there is a three-
dimensional relevant face. We distinguish the following two cases:

(1) g consists of squares,
(2) after renumbering of variables, we have g = T1T2 + . . ..

Case (1): According to Carathéodory’s theorem, there is an at most three-
dimensional face τ of the positive orthant Qr+t≥0 such that u ∈ Q(τ)◦ holds. If τ
is an F-face, then τ is a relevant face. Remark 3.2.4 shows that τ then is three-
dimensional, which completes the proof in this situation. If τ is not an F-face, then,
possibly after renumbering of variables, we have τ = γ1, τ = γ1r+1 or τ = γ1,r+1,r+2,
where u1 = Q(er+1) and u2 = Q(er+2) denote the weights corresponding to the free
variables S1 and S2. We show that only the third choice for τ is possible: If we
had u ∈ Q(γ1)◦ or u ∈ Q(γ1r+1)◦, then γ12 ∈ rlv(u) or γ12r+1 ∈ rlv(u) held,
contradicting Remark 3.2.4. Thus we are in situation three, i.e. τ = γ1,r+1,r+2

holds. Since g is homogeneous, we have w0
1 = w0

i for all i = 1, . . . , r. Furthermore,
Q(γi,j,r+1,r+2)◦ = Q(τ)◦ holds for all 1 ≤ i < j ≤ r, which shows that γi,j,r+1,r+2 is
a relevant face for all 1 ≤ i < j ≤ r. This yields linZ(wi, wj , u1, u2) ≥ Z3⊕Pic(X)tor

by Remark 3.2.5. In particular, we have linZ(w0
i , u

0
1, u

0
2) ≥ Z3 for all 1 ≤ i < j ≤ r.

Multiplying Q with an unimodular matrix from the left, we arrive at

(w1, . . . , wr |u1, u2) =


0 0 . . . 0 1 0
0 0 . . . 0 0 1
1 1 . . . 1 0 0
p wtor

2 . . . wtor
r p p

 ,

where p = 0Pic(X)tor holds. Since linZ(w1, w2, u1, u2) = linZ(w1, wi, u1, u2) holds
for all 2 ≤ i ≤ r, we conclude wtor

2 = wtor
i for all 2 ≤ i ≤ r. Applying again

Remark 3.2.5, this time to γ2,3,r+1,r+2, yields

linZ(w2, u1, u2) = linZ(w2, w3, u1, u2) ≥ Z3 ⊕ Pic(X)tor,

which implies that Pic(X) is torsion-free.
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Case (2): Here we have Eff(X) = Q(σ), where

σ := cone
(
ei, er+j ; 1 ≤ i ≤ q, 1 ≤ j ≤ t

)
holds. According to Carathéodory’s theorem, there is an at most three-dimensional
face τ of σ such that u ∈ Q(τ)◦ holds. If τ is an F-face, then τ is a relevant face.
Remark 3.2.4 shows that τ then is three-dimensional, which completes the proof in
this situation. If τ is not an F-face, then, possibly after renumbering of variables,
we are in one of the following subcases:

(2)(i) We have g = T1T2 + T3T4 + . . . and τ = γ123.
(2)(ii) We have g = T1T2 + . . . and τ = γ12r+1.
(2)(iii) We have g = T1T2 + . . . and τ = γ12.

Subcase (2)(i): If q ≥ 6 holds, then Lemma 3.5.3 shows that there is a three-
dimensional relevant face. Hence we only need to consider the situation that besides
T1T2 and T3T4, the polynomial g consists of squares. But then u ∈ Mov(X)◦ implies
that t ≥ 1 holds, i.e. there is some free variable Tr+1. Since we have

Q(γ123) ⊆ Q(γ13r+1) ∪ Q(γ14r+1) ∪ Q(γ23r+1) ∪ Q(γ24r+1) ,

and since all faces of the cones γijr+1, i ∈ {1, 2}, j ∈ {3, 4} are F-faces, Remark 3.2.4
shows that one of these cones is a relevant face. This completes the proof in Sub-
case (2)(i).
Subcase (2)(ii): Here we have g = T1T2 + . . . and τ = γ12r+1, where u1 = Q(er+1)
is the degree of the free variable S1. If q ≥ 4 holds, then Lemma 3.5.3 yields a
three-dimensional relevant face. Hence we only need to consider the situation that
besides T1T2, g consists of squares. In this situation, γ123r+1 ∈ rlv(u) holds. Note
that we have 2w3 = deg(g) = w1 +w2. Thus, Remark 3.2.5 applied to γ123r+1 yields

linZ(w1, w3, u1) = linZ(w1, w2, w3, u1) ≥ Pic(X) ,

which shows that Pic(X) ∼= Z3 holds.
Subcase (2)(iii): Here we have g = T1T2 + . . . and τ = γ12. In case q ≥ 6 holds,
Lemma 3.5.4 completes the proof. Now we consider the case q ≤ 4. If q = 2
held, then T 2

3 would be a square of g and thus γ123 would be a relevant face.
Since Q(γ123) is at most two-dimensional, this contradicts Remark 3.2.4. Hence we
are in the case q = 4. Since Mov(X) is of full dimension, there is a free variable S1.
Note that we have

Q(γ12) ⊆ Q(γ13r+1) ∪ Q(γ14r+1) ∪ Q(γ23r+1) ∪ Q(γ24r+1) .

Since all faces of the cones γijr+1, i ∈ {1, 2}, j ∈ {3, 4} are F-faces, Remark 3.2.4
shows that one of these cones is a relevant face, i.e. Pic(X) ∼= Z3 holds. �

Problem 3.5.6. Generalize Proposition 3.5.5 to higher Picard numbers or give an
example of a locally factorial intrinsic quadric with torsion in Cl(X).

Lemma 3.5.7. Let X be as in Setting 3.5.2. If there are odd pairwise different
integers 1 ≤ a, b, c ≤ q − 1 such that τ0 := γabc and τ1 := γa+1,b+1,c+1 are relevant
faces, then X is not locally factorial.

Proof. Assume thatX is locally factorial. Since there is a three-dimensional relevant
face, Remark 1.3.3 implies that Pic(X) ∼= Z3 holds. Together with the homogeneity
of the quadric, Remark 3.2.5 applied to τ0 yields

(wa, wa+1, wb, wb+1, wc, wc+1) =

 1 d1 − 1 0 d1 0 d1

0 d2 1 d2 − 1 0 d2

0 d3 0 d3 1 d3 − 1

 ,

where we denote by d = (d1, d2, d3) the degree of g. Note that

Q(τ0)◦ ∩Q(τ1)◦ ⊆ Q(τi,j)
◦
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holds for all i, j ∈ {a, b, c}, i 6= j and τi,j := cone(ei, ei+1, ej , ej+1), i.e. all these
cones τi,j are relevant faces. Applying Remark 3.2.5, we obtain d = (1, 1, 1). This
yields det(wa+1, wb+1, wc+1) = 2, contradicting Remark 3.2.5 applied to τ1 ∈ rlv(u).

�

Lemma 3.5.8. Let X be as in Setting 3.5.2. If there are odd pairwise different
integers 1 ≤ a, b, c ≤ q− 1 such that τ0 := γabc and τ1 := γa,b,c+1 are relevant faces,
then X is not locally factorial.

Proof. Assume thatX is locally factorial. Since there is a three-dimensional relevant
face, Remark 1.3.3 implies that Pic(X) ∼= Z3 holds. Together with the homogeneity
of the quadric, Remark 3.2.5 applied to τ0 and to τ1 yields

(wa, wa+1, wb, wb+1, wc, wc+1) =

 1 d1 − 1 0 d1 0 d1

0 d2 1 d2 − 1 0 d2

0 d3 0 d3 1 ±1

 ,

where we denote by d = (d1, d2, d3) the degree of g. Note that the degree of the
monomial TcTc+1 shows d3 ∈ {0, 2} (∗). Let τ2 := γa,a+1,b,b+1. SinceQ(τ0)◦∩Q(τ1)◦

is three-dimensional and contained in Q(τ2), we conclude that the F-face τ2 is a
relevant face. Remark 3.2.5 applied to τ2 yields d3 = ±1, contradicting (∗). �

Lemma 3.5.9. Let X be as in Setting 3.5.2 and assume that q < r holds, that
is g contains a square. If there are odd integers 1 ≤ a < b ≤ q − 1 and an index
r + 1 ≤ c ≤ r + t such that τ0 := γabc and τ1 := γa+1,b+1,c are relevant faces, then
X is not locally factorial.

Proof. Assume thatX is locally factorial. Since there is a three-dimensional relevant
face, Remark 1.3.3 implies that Pic(X) ∼= Z3 holds. Possibly after renumbering of
variables, the weights are arranged as follows,

wa

wb

wa+1

wb+1
wc

u

where det(wa, wb, wc) > 0 holds. Together with the homogeneity of the quadric,
Remark 3.2.5 applied to the relevant faces τ0 and τ1 yields

(wa, wa+1|wb, wb+1|wr||wc) =

 1 d1 − 1 0 d1 d1/2 0
0 d2 1 d2 − 1 d2/2 0
0 d3 0 d3 d3/2 1


and 1 = det(wa+1, wc, wb+1) = d1 + d2 − 1 (∗), where we denote by d = (d1, d2, d3)
the degree of g. Note that Q(τ0)◦ ∩ Q(τ1)◦ is three-dimensional and contained in
Q(τi), i = a, b, where we set τi := γi,i+1,r,c. We conclude that τa and τb are relevant
faces. Together with Remark 3.2.5, this shows that d2 = ±2 and d1 = ±2 hold,
contradicting (∗). �

Lemma 3.5.10. Let X be as in Setting 3.5.2 and assume that X is Q-factorial and
that t = 0 holds, i.e. X is a full intrinsic quadric. Then we have q ≥ 6 and renum-
bering of variables yields γijk ∈ rlv(u) for some (i, j, k) ∈ {1, 2} × {3, 4} × {5, 6}.
Proof. Note that the moving cone ofR(X) is of full dimension. This means that q ≥
6 holds, i.e. the quadric g is of the form g = T1T2 +T3T4 +T5T6 + . . .. Note that the
effective cone ofX is given as Eff(X) = Q(σ), where we set σ := cone(ei; 1 ≤ i ≤ q).
According to Carathéodory’s theorem, there is an at most three-dimensional face τ
of σ such that u ∈ Q(τ)◦ holds. After renumbering of variables, we have τ � γ123

or τ � γ135. Remark 3.2.4 together with the circumstance that all faces of type



84 3. SMOOTH INTRINSIC QUADRICS OF SMALL PICARD NUMBER

γi, 1 ≤ i ≤ 6, are F-faces, shows that τ is at least two-dimensional. If dim(τ) = 2
holds, then Remark 3.2.4 implies that τ is not an F-face, i.e. τ = γ12 holds. In
this case, Lemma 3.5.4 completes the proof. If τ is three-dimensional, Lemma 3.5.3
completes the proof. �

Lemma 3.5.11. Let X be as in Setting 3.5.2 and assume that q ≥ 6 holds. If γ135

is a relevant face and if X is locally factorial, then after renumbering of variables,
deg(g) ∈ Q(γ135) and γ135 ∈ rlv(u) hold.

Proof. If deg(g) is contained in Q(γ135), there is nothing to show. Otherwise we
are – after suitable renumbering of variables – in one of the following cases:

w1

w3 w5

w6

w2

w4

deg(g)

(i)

w1

w3 w5

w6

w2

w4

deg(g)

(ii)

In Situation (i), Lemma 3.5.8 together with γ135 ∈ rlv(u) implies that γ136 and γ235

are not relevant. Note that we have

Q(γ135) ⊆ Q(γ136) ∪ Q(γ236) ∪ Q(γ235)

and that all faces of γ136, γ236 and γ235 are F-faces. Since X is Q-factorial, Re-
mark 3.2.4 shows that γ236 is a relevant face. By exchanging T1 and T2 as well
as T5 and T6, we arrive at deg(g) ∈ Q(γ135) and γ135 ∈ rlv(u). In Situation (ii),
exchanging T1 and T2 yields the desired result. �

Lemma 3.5.12. Let X be as in Setting 3.5.2 and let q ≥ 6. Assume that X is
locally factorial and that γ135 is a relevant face with deg(g) ∈ Q(γ135). Then g
contains no square.

Proof. With d = (d1, d2, d3) := deg(g), the situation is as follows:
w1

w3 w5

w6

w2

w4

d

Proposition 3.5.5 tells us that we have Cl(X) ∼= Z3. According to Remark 3.2.5, we
may assume that

(w1, . . . , w6) =

 1 d1 − 1 0 d1 0 d1

0 d2 1 d2 − 1 0 d2

0 d3 0 d3 1 d3 − 1


holds. Since γ135 is a relevant face, u is contained in one of the cones

cone(wi, wj , d) \ cone(wi, wj), i, j ∈ {1, 3, 5}, i 6= j,
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where Remark 3.2.4 shows that u is not contained in cone(wi, wj), i, j ∈ {1, 3, 5}.
After renumbering of variables, we have u ∈ τ := cone(w1, w3, d) \ cone(w1, w3)
and τ is three-dimensional. Since Q(γ1234)◦ contains τ◦, we conclude that γ1234 is
a relevant face. Remark 3.2.5 yields d3 = 1, i.e. there is no square in g. �

Proposition 3.5.13. A smooth full intrinsic quadric of Picard number three is
isomorphic to an intrinsic quadric X with Cox ring

R(X) = K[T1, . . . , Tr]/〈T1T2 + . . .+ Tr−1Tr〉
where r = dim(X) + 4 holds.

Proof. Let X be a smooth full intrinsic quadric of Picard number three. We may
assume that X is as in Setting 3.5.2. According to Lemma 3.5.10 and Lemma 3.5.11,
renumbering of variables yields R(X) = K[T1, . . . , Tr]/〈g〉 with g = T1T2 + T3T4 +
T5T6 + . . . as well as deg(g) ∈ Q(γ135), where γ135 is a relevant face. Lemma 3.5.12
shows that there is no square in g. This completes the proof. �

Problem 3.5.14. Generalize Proposition 3.5.13 to higher Picard numbers or give
an example of a smooth full intrinsic quadric with relation T1T2 + . . .+ T 2

r .

Corollary 3.5.15. Let X be a smooth full intrinsic quadric with %(X) = 3. Then
dim(X) ≥ 4 holds.

Proof. According to Proposition 3.5.13, we may assume that the Cox ring of X is
of the form

R(X) = K[T1, . . . , Tr]/〈g〉 with g = T1T2 + . . .+ Tr−1Tr

with r = dim(X) + 4. Since the moving cone of R(X) is full dimensional, r is
at least six. If r = 6 held, then Mov(X) would be contained in cone(w1, w3, w5) ∩
cone(w2, w4, w6), contradicting smoothness of X together with Lemma 3.5.7. Hence
we obtain r ≥ 8, i.e. dim(X) ≥ 4 holds. �

Lemma 3.5.16. Let X be as in Setting 3.5.2 and set r = 5, q = 4, t ≥ 1, i.e. we
have g = T1T2 + T3T4 + T 2

5 and there is at least one free variable S1. Consider an
ample Weil divisor class u ∈ Cl(X). If X is locally factorial, then u is not contained
in Q(γ1234).

Proof. Assume that u is contained in Q(γ1234). Remark 3.2.4 together with the
circumstance that all faces γij , i ∈ {1, 2}, j ∈ {3, 4} are F-faces, shows that u ∈
Q(γ1234)◦ holds. This means that we have γ1234 ∈ rlv(u). Moreover, note that

Q(γ1234)◦ ⊆ Q(γ136) ∪ Q(γ326) ∪ Q(γ246) ∪ Q(γ416)

holds, where u1 = Q(e6) denotes the degree of S1. Possibly after renumbering of
variables, we have u ∈ Q(γ136). Remark 3.2.4 shows that γ136 is a relevant face.
Since X is locally factorial, Remark 3.2.5 applied to γ136 yields

(w1, . . . , u1) =

 1 d1 − 1 0 d1 d1/2 0
0 d2 1 d2 d2/2 0
0 d3 0 d3 d3/2 1

 ,

where d = (d1, d2, d3) denotes the degree of g. Applying Remark 3.2.5 to γ1234

then shows that d3 = ±1 holds. But this contradicts d3/2 = w3
5 ∈ Z, i.e. u is not

contained in Q(γ1234). �

Lemma 3.5.17. Let X be as in Setting 3.5.2 and set q ≥ 6. Consider an ample
class u ∈ Cl(X). Assume that X is locally factorial and that u is contained in
Q(γ123456). Then suitable renumbering of variables yields

(w1, . . . , w6) =

 1 d1 − 1 0 d1 0 d1

0 1 1 0 0 1
0 1 0 1 1 0

 , d1 ∈ Z≥0
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as well as γ135, γ146, γ1234, γ1256 ∈ rlv(u) and u ∈ cone(w1, w3, d) ∩Q(γ146)◦, where
we denote by d = (d1, d2, d3) := deg(g) the degree of g.

Proof. According to Carathéodory’s theorem, there is an at most three-dimensional
face τ of cone(e1, . . . , e6) such that u ∈ Q(τ)◦ holds. After suitable renumbering
of variables, we have τ � γ135 or τ � γ123. Remark 3.2.4 yields the three cases
τ = γ12, τ = γ123 and τ = γ135. Lemma 3.5.3 and Lemma 3.5.4 show that suitable
renumbering of variables yields γ135 ∈ rlv(u). According to Lemma 3.5.11, we may
assume that deg(g) ∈ Q(γ135) holds.

w1

w3 w5

w6

w2

w4

d

Since γ135 is a relevant face, u is contained in one of the cones

cone(wi, wj , d) \ cone(wi, wj), i, j ∈ {1, 3, 5}, i 6= j,

where Remark 3.2.4 shows that u is not contained in cone(wi, wj), i, j ∈ {1, 3, 5}.
After renumbering of variables, we have u ∈ τ := cone(w1, w3, d) \ cone(w1, w3)
and τ is a three-dimensional cone. Since Q(γ1234)◦ contains τ◦, we conclude that
the cone γ1234 is a relevant face. Recall that Proposition 3.5.5 tells us that we have
Cl(X) ∼= Z3. Remark 3.2.5 applied to γ135 and γ1234 yields

(w1, . . . , w6) =

 1 d1 − 1 0 d1 0 d1

0 d2 1 d2 − 1 0 d2

0 1 0 1 1 0

 .

Furthermore we have d ∈ Q(γ135) = Q3
≥0, i.e. d1, d2 ≥ 0 holds. Note that we have

cone(w1, w3, d) ⊆ cone(w1, w5, w6) ∪ cone(w3, w5, w6) ∪ cone(w1, w3, w6).

Lemma 3.5.8 applied to γ135 implies that u is not contained in cone(w1, w3, w6)◦.
After renumbering of variables, we may assume that u is contained in the three-
dimensional cone generated by w1, w5 and w6. Remark 3.2.4 together with the
circumstance that γ15 and γ16 are F-faces, shows that u is not contained in Q(γ15)∪
Q(γ16). We obtain u ∈ Q(γ1256)◦, i.e. γ1256 is a relevant face. Thus, Remark 3.2.5
yields d2 = 1. Applying Lemma 3.5.7 to γ135 ∈ rlv(u), we obtain that γ246 is not
relevant. Remark 3.2.4 together with the circumstance that γ14, γ16 and γ46 are
F-faces, shows that u /∈ cone(wi, wj) holds for all i, j ∈ {1, 4, 6}. Hence we have
u ∈ Q(γ146)◦ ∩ cone(w1, w3, d). In particular, γ146 is a relevant face. �

3.6. Proof of Theorem 3.3.5

In this section we give a proof of Theorem 3.3.5, i.e. of the classification of
smooth intrinsic quadrics of Picard number three and dimension at most three.
Proof of Theorem 3.3.5. Let X be an at most three-dimensional smooth intrinsic
quadric. Corollary 3.1.3 shows that we may assume that the Cox ring of X is given
by R(X) = K[T1, . . . , Tr, S1, . . . , St]/〈g〉 with g = T1T2 + . . .+ Tq−1Tq + h for some
0 ≤ q ≤ r and some polynomial h given by

h =

{
T 2
q+1 + . . .+ T 2

r if q < r ,

0 if q = r ,
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where we have deg(Tq+k) 6= deg(Tq+l) for all 1 ≤ k < l ≤ r − q. According to
Proposition 3.5.5, the Picard group of X is isomorphic to Z3. This means that the
defining relation of R(X) contains at most one square. In a first step, we show
that X is of dimension three. We then prove that all three-dimensional intrinsic
quadrics that are smooth arise from the data sets in the table of Theorem 3.3.5.
Note that on the other hand, all data sets listed in this table define smooth varieties
by Lemma 3.1.6. In the very end of the proof, we prove the statement on (almost)
Fano varieties.

First assume that X is of dimension one. This means that the Cox ring of X is
given by R(X) = K[T1, . . . , T5]/〈T1T2 + T3T4 + T 2

5 〉. But this is not possible since
the moving cone of R(X) then is not full-dimensional.

Now we consider the case dim(X) = 2. If the Cox ring of X was given
by R(X) = K[T1, . . . , T6]/〈T1T2 + T3T4 + T5T6〉, then Lemma 3.5.7 would show
that X is not smooth. Hence we have R(X) = K[T1, . . . , T6]/〈T1T2 + T3T4 + T 2

5 〉.
Denote by u ∈ Cl(X) an ample Weil divisor class. Since u ∈ Mov(X)◦ holds, we
obtain u ∈ Q(γ1234), contradicting Lemma 3.5.16. Thus we showed that X is not
two-dimensional.

Hence X is three-dimensional and the Cox ring of X is given by R(X) =
K[T1, . . . , T7]〈g〉, where we have g = T1T2 + . . .+ T5T6 + T 2

7 , g = T1T2 + . . .+ T5T6

or g = T1T2 + T3T4 + T 2
5 . By u ∈ Cl(X) we denote an ample Weil divisor class. If

g = T1T2+. . .+T5T6+T 2
7 held, we would have u ∈ cone(w1, . . . , w6)◦. Lemma 3.5.17

would show that after suitable renumbering of variables γ135 ∈ rlv(u) and deg(g) ∈
Q(γ135) held. But then Lemma 3.5.12 would yield that g contains no squares,
a contradiction. Hence it remains to consider the two cases g = T1T2 + . . . +
T5T6 and g = T1T2 + T3T4 + T 2

5 . By w1, . . . , w7 we denote the degrees of the
variables T1, . . . , T7.

Case g = T1T2 + . . .+ T5T6: We show that this yields varieties Nos. 1 and 2 in
the table of Theorem 3.3.5.

Here u ∈ Mov(X)◦ yields u ∈ Q(γ123456). Thus, Lemma 3.5.17 shows that suit-
able renumbering of variables yields γ135, γ1234, γ1256, γ146 ∈ rlv(u) as well as u ∈
cone(w1, w3, d) ∩ cone(w1, w4, w6)◦ and

(w1, . . . , w6) =

 1 d1 − 1 0 d1 0 d1

0 1 1 0 0 1
0 1 0 1 1 0

 , d1 ≥ 0 .

We choose a hypersurface H intersecting the effective cone in its relative interior
and illustrate the arrangement of weights in this two-dimensional picture. Note
that we have d = w1 + w2 = w3 + w4 = w5 + w6. Moreover, if d1 = 0 holds, then
we have w3 = w6 and w4 = w5. If d1 ≥ 1 holds, then we have w4 ∈ cone(w1, w5),
w6 ∈ cone(w1, w3) and w2 ∈ cone(w1, w3, w5). Depending on d1, we give sketches
of the different situations.

w1

w3, w6
w2

w4, w5

u

d1 = 0

d

w1

w3

w5

w6
w2

w4

d
u

d1 > 0
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Let 0 6= liu ∈ Hom(K,Q), i = 1, . . . , 6, be linear forms such that

liu(wi) = 0 = liu(u), liu(w1) > 0, i = 3, . . . , 6, l2u(w4) > 0, l1u(w3) > 0,

holds. Note that the faces γi7 are F-faces for all i = 1, . . . , 6. Thus Remark 3.2.4
yields liu(w7) 6= 0 for all i = 1, . . . , 6. As visualized below, there remain six possible
places Ma, . . . ,Mf for w7, where we set H+

iu := {x ∈ KQ; liu(x) > 0}, H−iu := {x ∈
KQ; liu(x) < 0}, Hiu := {x ∈ KQ; liu(x) = 0} as well as

Ma := H+
1u ∩H

−
4u, Mb := H+

4u ∩H
−
5u, Mc := H+

5u ∩H
−
2u,

Md := H+
2u ∩H

+
3u, Me := H−3u ∩H

+
6u, Mf := H−6u ∩H

−
1u.

w1

w3, w6
w2

w4, w5

u

d1 = 0

d

H1u

H2u

H4u

H6u

Ma

Mc

Md

Mf

w1

w3

w5

w6
w2

w4

d
u

d1 > 0

H1u

H2u

H3u

H4u

H5u

H6u

Ma

Mb

Mc

Md

MeMf

We show that w7 is not contained in Mb ∪Me. If w7 was contained in Mb, then
γ175, γ475, γ247, γ647 would be relevant faces. Applying Remark 3.2.5 to γ175 and
to γ475 would yield w2

7 = 1 and d1 = 1. Thus, Remark 3.2.5 together with
γ247, γ647 ∈ rlv(u) would show that w1

7 − w3
7 = 0 and w1

7 − w3
7 = 2 hold, a con-

tradiction. Similarily, if w7 ∈ Me held, then γ137, γ637, γ627, γ647 would be relevant
faces. Applying Remark 3.2.5 to γ137 and to γ637 would show that w3

7 = 1 = d1

holds. Thus, Remark 3.2.5 together with γ627, γ647 ∈ rlv(u) would yield w1
7−w2

7 = 0
and w1

7 − w2
7 = 2, a contradiction. Hence w7 is contained in Ma ∪Mc ∪Md ∪Mf .

Note that we have

l6u(w1), l4u(w1) > 0, l6u(wi), l4u(wi) ≤ 0, i = 2, . . . , 6.

Since u lies in the relative interior of the moving cone of R(X), we obtain that
l6u(w7) > 0 and l4u(w7) > 0 hold. This means that w7 is contained in Mc ∪Md.
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We first consider the case w7 ∈Mc. Here the covering collection ofX is given by

cov(u) = {γ135, γ164, γ1234, γ1256, γ357, γ257, γ247, γ647} .

Remark 3.2.5 applied to γ357 yields w1
7 = 1. The same remark together with the

relevant faces γ257, γ247 and γ647 yields

0 = (d1 − 1)w2
7 , 0 = d1(w2

7 − w3
7) , 0 = d1(w2

7 + w3
7) .

If d1 6= 0 held, we would obtain w2
7 = w3

7 = 0. Recall that u is contained in
cone(w1, w3, d), which implies u2 ≥ u3. But u ∈ Q(γ257)◦ together with w7 =
(1, 0, 0) would yield u2 < u3, a contradiction. Hence we have d1 = 0 and the first
of the above equations shows w2

7 = 0. Because of u2 ≥ u3 and u ∈ Q(γ257)◦ we
further obtain w3

7 < 0. Thus, Q = (w1, . . . , w7) is as follows:

Q =

 1 −1 0 0 0 0 1
0 1 1 0 0 1 0
0 1 0 1 1 0 w3

7

 , w3
7 < 0 .

Since w2
7 = 0 holds, w7 lies on the hypersurface through w1 and w4. Because

of w1
7 > 0, the weights are arranged as follows, where w7 lies somewhere on the

dotted line:

w1

w3, w6w2

w4, w5

d

w7

Since cone(w1, w3, w5) ⊆ cone(w3, w5, w7) holds, the semiample cone is the intersec-
tion of cone(w1, w3, w5) and cone(w2, w5, w7), which means that X is of type No. 1.

We now consider the case w7 ∈Md. Here the covering collection ofX is given by

cov(u) = {γ135, γ164, γ1234, γ1256, γ357, γ273, γ627, γ647} .

Remark 3.2.5 applied to γ357 yields w1
7 = 1. The same remark together with γ273, γ627

and γ647 yields

0 = (d1 − 1)w3
7 , 0 = d1(w3

7 − w2
7) , 0 = d1(w2

7 + w3
7) .

Thus we need to distinguish the subcases d1 = 0 and d1 6= 0. In the first subcase
the above relations show that w3

7 = 0 holds. Exchanging the second and the third
row of Q and renumbering the variables via (3, 4)(5, 6) gives

Q =

 1 −1 0 0 0 0 1
0 1 1 0 0 1 0
0 1 0 1 1 0 w3

7

 ,

cov(u) = {γ135, γ164, γ1234, γ1256, γ467, γ274, γ527, γ537} .

We see that this coincides with the covering collection in the case w7 ∈ Mc, which
we treated above. In the second subcase the above relations show that w2

7 = w3
7 = 0

holds. Thus, Q = (w1, . . . , w7) and the arrangement of weights is as follows:

Q =

 1 d1 − 1 0 d1 0 d1 1
0 1 1 0 0 1 0
0 1 0 1 1 0 0

 , d1 > 0 .
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w1, w7

w3

w5

w6w2

w4

d

Note that we have SAmple(X) = cone(w1, w4, w6) ∩ cone(w2, w6, w7), which shows
that X is of type No. 2.

Case g = T1T2 + T3T4 + T2
5: We show that this yields varieties Nos. 3 – 6 in the

table of Theorem 3.3.5.

Lemma 3.5.16 shows that u /∈ τ := Q(γ1234) holds. Note that u ∈ Mov(X)◦ yields
u ∈ τ + cone(wi), i = 6, 7, i.e. we have w6, w7 /∈ τ . Moreover, we have

τ + cone(w6) ⊆ Q(γ136) ∪ Q(γ326) ∪ Q(γ246) ∪ Q(γ416) .

Remark 3.2.4 shows that u is contained in the relative interior of one of the cones
on the right-hand side. Thus, after renumbering of variables, γ136 is a relevant face.
We distinguish the subcases u ∈ Q(γ137) and u /∈ Q(γ137).

In the first subcase, Remark 3.2.4 shows that γ137 is a relevant face. Let 0 6=
liu ∈ Hom(K,Q), i = 1, 3, 6, 7, be linear forms such that

liu(wi) = 0 = liu(u) , liu(w3) < 0 , i = 6, 7 , liu(w6) < 0 , i = 1, 3 ,

holds. After suitable renumbering of variables, the hypersurfaces Hiu := {x ∈
KQ; liu(x) = 0} are arranged as in the following picture and det(w1, w3, w7) is
strictly positive:

w1

w3

w7

w6
u

H1u

H3u

H7u

H6u

Ma

Mb

Mc

In the figures, Ma, Mb and Mc indicate the following sets of points:

Ma = {x ∈ KQ; l1u(x) > 0, l7u(x) < 0} ,

Mb = {x ∈ KQ; l6u(x) < 0, l7u(x) > 0} ,

Mc = {x ∈ KQ; l3u(x) > 0, l6u(x) > 0} .
Note that the faces γi6, γi7 are F-faces for all i = 1, . . . , 4. Hence Remark 3.2.4
shows that l6u(wi) and l7u(wi), i = 2, 4, are non-zero. Together with u /∈ τ , this
implies that w2 and w4 are contained inMa∪Mb∪Mc. If l6u(w2) > 0 held, then the
homogeneity of g would yield l6u(w4) > 0. But then we would have l6u(wi) ≥ 0 for
all i 6= 3, contradicting u ∈ Mov(X)◦. Thus l6u(w2) ≤ 0 holds. Lemma 3.5.9 applied
to γ136 shows that this yields l6u(w4) ≤ 0. The same Lemma shows that l7u(w2)
and l7u(w4) are either strictly positive or strictly negative. But l7u(w4) is not
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negative, since then homogeneity of g would yield l7u(wi) ≤ 0 for all 2 ≤ i ≤ 7,
contradicting u ∈ Mov(X)◦. Thus we obtain w2, w4 ∈Mb. We conclude that

cov(u) = {γ136, γ137, γ1256, γ3457, γ146, γ237, γ267, γ467}

holds. Applying Remark 3.2.5 to γ136, to γ146 and to γ137 yields

Q =

 1 d1 − 1 0 d1 d1/2 0 w1
7

0 2 1 1 1 0 w2
7

0 d3 0 d3 d3/2 1 1

 .

Furthermore, we have

det(w2, w6, w7) = (w1
7 − d1w

2
7) + w1

7 + w2
7 = det(w4, w6, w7) + w1

7 + w2
7 .

Applying Remark 3.2.5 to γ267 and to γ467 shows that w1
7 = −w2

7 and 1 = w1
7(1+d1)

hold. We conclude that either d1 = 0, w1
7 = 1 or w1

7 = −1, d1 = −2 holds.
We show that the latter is not possible: Assume that w1

7 = −1, d1 = −2 holds.
Then Remark 3.2.5 applied to γ237 and to γ267 yields d3 = 4 and w2

7 = 1, which
shows that the matrix Q is as follows:

Q =

 1 −3 0 −2 −1 0 −1
0 2 1 1 1 0 1
0 4 0 4 2 1 1

 .

This shows that the intersection of the cones Q(γ136) and Q(γ137) is contained in
cone(w1, w2, w3). Thus we obtain the contradiction u ∈ τ .

Hence we have d1 = 0 and w1
7 = 1. Remark 3.2.5 applied to γ237 yields d3 = −2,

which shows that the matrix Q is as follows:

Q =

 1 −1 0 0 0 0 1
0 2 1 1 1 0 −1
0 −2 0 −2 −1 1 1

 .

Note that we have w5 + w6 = w3 as well as w5 + w7 = w1. Thus the arrangement
of weights is as follows:

w1

w3

w6

w5

w2

w4

w7

We conclude that SAmple(X) = Q(γ136) ∩Q(γ137) holds, i.e. X is of type No. 6.

In the second subcase, we have u /∈ Q(γ137). Let 0 6= liu ∈ Hom(K,Q), i =
1, 3, 6, 7, be linear forms such that

liu(wi) = 0 = liu(u) , liu(w3) < 0, i = 6, 7 , liu(w6) < 0, i = 1, 3 ,

holds and set Hiu := {x ∈ KQ; liu(x) = 0}. After suitable renumbering of vari-
ables, the weights w1, w3, w6 and w7 are arranged as in the following picture and
det(w1, w3, w6) is strictly negative:
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w1

w3

w6

w7

u

H1u

H3u

H6u

H7u

Ma

Mb

Mc

In the figures, Ma, Mb and Mc indicate the following sets of points:

Ma = {x ∈ KQ; l3u(x) > 0, l7u(x) > 0} ,

Mb = {x ∈ KQ; l6u(x) > 0, l7u(x) < 0} ,

Mc = {x ∈ KQ; l1u(x) > 0, l6u(x) < 0} .

Since u is contained in the relative interior of the moving cone of R(X), l7u(w2)
or l7u(w4) is strictly positive. In the first case, renumbering of variables via (12)
would yield u ∈ Q(γ136) ∩ Q(γ137). This is the subcase we treated above. Thus
we now look at l7u(w2) < 0 and w4 ∈ Ma. Lemma 3.5.9 applied to γ136 shows
that w2 /∈Mc holds, i.e. we have w2 ∈Mb. Thus

cov(u) = {γ316, γ326, γ147, γ247, γ3456, γ3457, γ267, γ167}

holds. Applying Remark 3.2.5 to γ147, to γ247 and to γ167 yields

Q =

 1 1 2 0 1 w1
6 0

0 d2 d2 − 1 1 d2/2 1 0
0 d3 d3 0 d3/2 w3

6 1

 .

The same remark together with γ267 shows that d2w
1
6 = 0 holds. We distinguish

the cases w1
6 = 0 and w1

6 6= 0, d2 = 0.
If w1

6 = 0 holds, then Remark 3.2.5 applied to γ3456 and to γ316 yields w3
6 = 1

and d2 = d3. Multiplying Q with an unimodular matrix from the left yields

Q =

 1 1 2 0 1 0 0
0 0 −1 1 0 0 −1
0 d2 d2 0 d2/2 1 1

 .

Note that w4 + w7 = w6 holds and that w1, w2, w5 and w3 lie on the same side
of the hypersurface H46 through w4 and w6. Moreover, w2 and w5 lie on the
hypersurface H16 through w1 and w6. If d2 ≥ 0 holds, then w6, w2, w5 and w3 lie
on the same side of the hypersurface H14 through w1 and w4. Thus, in case d2 ≥ 0
holds, the weights are arranged as follows, where w2 and w5 lie somewhere on the
dotted line and w3 somewhere in the gray-shaded area:
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w1

w4

w6

w7

H46 H14

Note that Q(γ267) ⊆ Q(γ247) holds, which shows that the semiample cone of X
is given by the intersection of Q(γ236) and Q(γ267). Thus, X is of type No. 3. If
d2 < 0 holds, we multiply Q with an unimodular matrix from the left and obtain 1 0 0

0 1 0
−d2 0 1

 · Q =

 1 1 2 0 1 0 0
0 0 −1 1 0 0 −1
−d2 0 −d2 0 −d2/2 1 1

 .

Renumbering the variables via (1, 2) then shows that X is of type No. 3.
If w1

6 6= 0, d2 = 0 holds, Remark 3.2.5 applied to γ316 and to γ326 yields
w3

6 = 1− d3 as well as 0 = d3(w1
6 + 2). We distinguish the cases d3 = 0 and d3 6= 0.

In case d3 = 0 holds, the degree matrix is given by

Q =

 1 1 2 0 1 w1
6 0

0 0 −1 1 0 1 0
0 0 0 0 0 1 1

 .

Note that w6 lies on the same side of the hypersurface H14 through w1 and w4 as w7

and on the same side of the hypersurface H17 through w1 and w7 as w4. Thus the
arrangement of weights is as follows, where w6 lies somewhere in the gray-shaded
area:

w1, w2, w5

w3

w4w7

H14H17

Note that Q(γ147)∩Q(γ136) is contained in Q(γ167), which shows that the semiample
cone of X is given by the intersection of Q(γ147) and Q(γ136). Thus, X is of
type No. 4.

In case d3 6= 0, w1
6 = −2 hold, the degree matrix is given by

Q =

 1 1 2 0 1 −2 0
0 0 −1 1 0 1 0
0 d3 d3 0 d3/2 1− d3 1

 .

If d3 > 0 holds, the arrangement of weights is as follows:
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w1w2

w3

w4

w7

w6

Note that the semiample cone ofX is given by the intersection ofQ(γ247) andQ(γ267).
Thus, X is of type No. 5. If d3 < 0 holds, we multiply Q with an unimodular matrix
from the left and obtain 1 0 0

0 1 0
−d3 0 1

 · Q =

 1 1 2 0 1 −2 0
0 0 −1 1 0 1 0
−d3 0 −d3 0 −d3/2 d3 + 1 1

 .

from the left. Renumbering the variables via (1, 2) then shows thatX is of type No. 5.

To complete the proof, it remains to show the statement on Fano and truly
almost Fano varieties. Recall that the anticanonical class of X is given by

−KX =

7∑
i=1

wi − deg(g) =

7∑
i=3

wi .

In order to select the Fano and the truly almost Fano varieties among the smooth
intrinsic quadrics of Picard number three and dimension three, it is enough to
compute the anticanonical class of X via the above formula and to check in which
cases KX ∈ SAmple(X)◦ and KX ∈ SAmple(X) \ SAmple(X)◦ holds. Recall that
the last column of the table of Theorem 3.3.5 contains three-dimensional cones of
the form cone(xi, xj , xk) whose intersection is the semiample cone of the respective
variety. We denote for all pairwise different i1, i2 ∈ {i, j, k} by ni1i2 ∈ Hom(K,Q) a
linear form satisfying ni1i2(xi1) = ni1i2(xi2) = 0 and ni1i2(x`) > 0 for ` ∈ {i, j, k} \
{i1, i2}. Note that a variety X of Theorem 3.3.5 is Fano if and only if ni1i2(KX) > 0
holds for all pairwise different i1, i2 ∈ {i, j, k} of all cones cone(xi, xj , xk) listed in
the last column of Theorem 3.3.5 in the respective row. Similarily, a variety X of
Theorem 3.3.5 is truly almost Fano if and only if ni1i2(KX) ≥ 0 holds for all pairwise
different i1, i2 ∈ {i, j, k} of all cones cone(xi, xj , xk) listed in the last column of
Theorem 3.3.5 in the respective row, with equality for at least one ni1i2 .

IfX is of type No. 1, then the anticanonical class is given by −KX = (1, 2, 2+a).
Here n13 and n27 show that X is Fano if a = −1 holds and that X is truly almost
Fano if and only if a = 0 or a = −2 hold.

If X is of type No. 2, then the anticanonical class is given by −KX = (2a +
1, 2, 2). Note that n46(−KX) ≥ 0 yields a ≤ 1/2, contradicting a > 0. Hence there
is no choice for a such that X is almost Fano.

If X is of type No. 3, then we have a ≥ 0 and the anticanonical class is given
by −KX = (3,−1, 3a/2 + 2). Here n27(−KX) ≥ 0 yields a ≤ 2/3. Thus X is never
truly almost Fano. Furthermore, X is Fano if and only if a = 0 holds.

IfX is of type No. 4, then the anticanonical class is given by −KX = (3+a, 1, 2).
Here n36 and n47 show that X is Fano if −2 ≤ a ≤ 0 holds and that X is truly
almost Fano if and only if a = −3 or a = 1 hold.

If X is of type No. 5, then we have a > 0 and the anticanonical class is given
by −KX = (1, 1, 2 + a/2). Note that n26(−KX) ≥ 0 yields a ≤ 2/3. Thus X is
never almost Fano.



3.7. PROOF OF THEOREMS 3.3.6, 3.3.8 AND 3.3.10 95

If X is of type No. 6, then the anticanonical class is given by −KX = (1, 2,−1).
Note that n13(−KX) is strictly negative, which shows that X is neither Fano nor
truly almost Fano. �

3.7. Proof of Theorems 3.3.6, 3.3.8 and 3.3.10

We now turn to the proof of our classification results for smooth intrinsic
quadrics of dimension four and Picard number three.
Proof of Theorem 3.3.6. Let X be a smooth intrinsic quadric of Picard number
three and dimension four. According to Proposition 3.5.5, the Picard group of X is
isomorphic to Z3. Corollary 3.1.3 shows that we may assume that X is a standard
intrinsic quadric. Thus there remain the following four possibilities for the relation g
of the Cox ring R(X) = K[T1, . . . , T8]/〈g〉:

T1T2 + T3T4 + T5T6 + T7T8, T1T2 + T3T4 + T5T6 + T 2
7 ,

T1T2 + T3T4 + T5T6, T1T2 + T3T4 + T 2
5 .

In the remaining part of the proof we go through these four cases and show that
we always end up with a variety listed in the table of Theorem 3.3.6. In order
to provide a structure that is easily traceable, we outsource these four cases to
Corollary 3.8.1 and to Propositions 3.7.1, 3.9.1 and 3.10.1. Moreover, note that
all data sets listed in the table of Theorem 3.3.6 define indeed a smooth intrinsic
quadric by Lemma 3.1.6. �

Proposition 3.7.1. Let X be a four-dimensional intrinsic quadric of Picard number
three with Cox ring R(X) = K[T1, . . . , T8]/〈g〉, g = T1T2+T3T4+T5T6+T 2

7 . Then X
is not smooth.

Proof. Assume that X is a smooth four-dimensional intrinsic quadric of Picard
number three with Cox ring as above and let u be an ample Weil divisor class.
Proposition 3.5.5 tells us that Cl(X) ∼= Z3 holds. Furthermore, the effective cone
of X is given by Eff(X) = cone(w1, . . . , w6, w8), where we denote by w1, . . . , w8

the degrees of the variables T1, . . . , T8. Since we have u ∈ Mov(X)◦, we obtain
u ∈ cone(w1, . . . , w6)◦. Lemma 3.5.17 shows in particular that we may assume
that γ135 ∈ rlv(u) and deg(g) ∈ Q(γ135) hold. But then Lemma 3.5.12 shows that g
contains no squares, a contradiction. �

Proof of Theorems 3.3.8 and 3.3.10. Note that all smooth intrinsic quadrics of
Picard number three and dimension four as well as their semiample cones are listed
in the table of Theorem 3.3.6. Furthermore, the anticanonical class of X is given by

−KX =

8∑
i=1

wi − deg(g) =

8∑
i=3

wi − deg(g) .

In order to select the Fano and the truly almost Fano varieties among the varieties
in the table of Theorem 3.3.6, it is enough to compute the anticanonical class
of X via the above formula and to check in which cases KX ∈ SAmple(X)◦ and
KX ∈ SAmple(X) \ SAmple(X)◦ holds. Recall that the last column of the table of
Theorem 3.3.6 contains three-dimensional cones of the form cone(xi, xj , xk) whose
intersection is the semiample cone of the respective variety. We denote for all
pairwise different i1, i2 ∈ {i, j, k} by ni1i2 ∈ Hom(K,Q) a linear form satisfying
ni1i2(xi1) = ni1i2(xi2) = 0 and ni1i2(x`) > 0 for ` ∈ {i, j, k} \ {i1, i2}. Note that a
variety X of Theorem 3.3.6 is Fano if and only if ni1i2(KX) > 0 holds for all pairwise
different i1, i2 ∈ {i, j, k} of all cones cone(xi, xj , xk) listed in the last column of
Theorem 3.3.6 in the respective row. Similarly, a variety X of Theorem 3.3.6 is
truly almost Fano if and only if ni1i2(KX) ≥ 0 holds for all pairwise different
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i1, i2 ∈ {i, j, k} of all cones cone(xi, xj , xk) listed in the last column of Theorem 3.3.6
in the respective row, with equality for at least one ni1i2 .

If X is of type No. 1, then we have −KX = (3a, 3, 3) = 3(w4 + w6)− 3aw1. In
case a is strictly positive, the anticanonical class is contained in cone(−w1, w4+w6)◦

and X is neither Fano nor truly almost Fano. If a = 0 holds, then −KX is contained
in cone(w4 + w6)◦, which shows that X is truly almost Fano.

If X is of type No. 2, then we have −KX = (a + 1, 3, 2 + b + c). Note that
n35(−KX) ≥ 0 and n57(−KX) ≥ 0 yield −1 ≤ a ≤ 1/2, i.e. X is Fano only
if a = 0 holds. Furthermore, n13(−KX), n17(−KX) ≥ 0 and n28(−KX) ≥ 0 imply
c ≥ −2 − b, c ≥ 2b − 2 and 0 ≤ −ac + b − 3c − 1. In the following picture, we
illustrate the feasible region in the two cases a = −1 and a = 0:

b

c

a = −1

b

c

a = 0

We conclude that X is Fano if and only if a = b = 0 and c = −1 hold. Furthermore,
X is truly almost Fano if and only if one of the following conditions is fulfilled:

−1 ≤ a ≤ 0, b = −1, c = −1 or −1 ≤ a ≤ 0, b = 0, c = −2
or −1 ≤ a ≤ 0, b = 1, c = 0 or a = −1, b = 0, c = −1.

IfX is of type No. 3, then we have −KX = (1, 3+a, 2). Note that n15(−KX) ≥ 0
and n28(−KX) ≥ 0 yield −3 ≤ a ≤ 1/2. We obtain that X is Fano if and only if
−2 ≤ a ≤ 0 holds and truly almost Fano if and only if a = −3 holds.

IfX is of type No. 4, then we have −KX = (1, 2, 2+a). Note that n13(−KX) ≥ 0
and n78(−KX) ≥ 0 yield 1 ≥ a ≥ −2. We conclude that X is Fano if and only if
−1 ≤ a ≤ 0 holds and truly almost Fano if and only if a ∈ {−2, 1} holds.

If X is of type No. 5, then we have −KX = (1, 1, 2). Thus, n68(−KX) < 0
holds, which shows that X is neither Fano nor truly almost Fano.

If X is of type No. 6, then we have −KX = (2, 2, 2 + a + b) and 0 > a ≥ b.
Note that n13(−KX) ≥ 0 and n27(−KX) ≥ 0 yield b ≥ −2 − a and b ≥ 3a. In the
following picture, we illustrate the feasible region:

a

b

This shows that there is no choice for a and b such that X is Fano and because
of a, b < 0, X is truly almost Fano if and only if a = b = −1 holds.

If X is of type No. 7, then we have −KX = (2, 1, a + 2) and a < 0. Note that
n13(−KX) ≥ 0 yields 0 ≤ 2 + a. We conclude that X is Fano if and only if a = −1
holds and truly almost Fano if and only if a = −2 holds.

IfX is of type No. 8, then we have −KX = (a+1, 3, 2). Note that n35(−KX) ≥ 0
and n78(−KX) ≥ 0 yield 0 ≤ 1 + a as well as 0 ≤ −2a. We conclude that there
is no choice for a such that X is Fano and X is truly almost Fano if and only
if −1 ≤ a ≤ 0 holds.

If X is of type No. 9, then we have a ≥ 0 and −KX = (2a + b + 1, 3, 2). Note
that n46(−KX) ≥ 0 and n47(−KX) ≥ 0 yield 0 ≤ −3a + b + 1 and b ≤ 1/2. We



3.7. PROOF OF THEOREMS 3.3.6, 3.3.8 AND 3.3.10 97

conclude that X is Fano if and only if a = 0 = b holds and truly almost Fano if and
only if a = 0, b = −1 holds.

If X is of type No. 10, then we have a > 0 and −KX = (2a+ 2, 2, 2). Note that
n27(−KX) equals zero, i.e. there are no Fano varieties in this case. Furthermore
n46(−KX) ≥ 0 yields 0 ≤ −2a + 2. Thus, X is truly almost Fano if and only
if a = 1 holds.

If X is of type No. 11, then we have a ≥ 0 and −KX = (2a+b+1, c+2, 3). Note
that n18(−KX), n27(−KX) ≥ 0 yields 0 ≤ −2c+ 2 and 0 ≤ c− 1, i.e. there are no
Fano varieties in this case and X is almost Fano only if c = 1 holds. Furthermore,
n68(−KX) ≥ 0 and n46(−KX) ≥ 0 give b ≤ a+ 1/2 and b ≥ 4a−1. In the following
picture, we illustrate the feasible region:

a

b

We conclude that X is truly almost Fano if and only if we have a = 0, −1 ≤ b ≤ 0
as well as c = 1.

If X is of type No. 12, then we have −KX = (3, a+2, 0). Note that n13(−KX) =
0 holds, i.e. there are no Fano varieties in this case. Furthermore, n18(−KX) ≥ 0
and n27(−KX) ≥ 0 show thatX is truly almost Fano if and only if a = −2 ≤ a ≤ −1
holds.

If X is of type No. 13, then we have −KX = (a + 2, b + 2, 2). Note that
n17(−KX) ≥ 0 and n18(−KX) ≥ 0 give −2 ≤ b ≤ 2. Similarily, n37(−KX) ≥ 0
and n38(−KX) ≥ 0 give −2 ≤ a ≤ 2. We conclude that X is Fano if and only
if −1 ≤ a, b ≤ 1 holds. Furthermore, X is truly almost Fano if and only if a =
±2,−2 ≤ b ≤ 2 or b = ±2,−1 ≤ a ≤ 1 holds.

If X is of type No. 14, then we have and −KX = (2, 2, 2a + 2). Note that
n24(−KX) ≥ 0 and n13(−KX) ≥ 0 give −1 ≤ a ≤ 1. Furthermore, looking at
n16(−KX), n25(−KX), n46(−KX) ≥ 0 and n35(−KX) ≥ 0 yields −1 ≤ b ≤ 1 as
well as b ≥ a−1 and b ≤ a+1. We conclude that X is Fano if and only if a = b = 0
holds, which is a subcase of No. 13. Furthermore, X is truly almost Fano if and
only if a = 1, 0 ≤ b ≤ 1, a = 0, b = ±1 or a = −1, −1 ≤ b ≤ 0 holds.

If X is of type No. 15, then we have and −KX = (1, 3,−2). Since n13(−KX) is
strictly negative, there are neither Fano nor truly almost Fano varieties in this case.

If X is of type No. 16, then we have −KX = (4, 2a + 2,−1). Note that
n17(−KX) ≥ 0 and n27(−KX) ≥ 0 yield 1/2 ≥ a ≥ −1/2. We conclude that
there is no choice for a for which X is almost Fano and that X is Fano if and only
if a = b = 0 holds.

If X is of type No. 17, then we have a ≤ b ≤ 0 and −KX = (4 + a, 2, 1). Note
that n37(−KX) ≥ 0 and n48(−KX) ≥ 0 yield a ≥ −4 and a ≤ 2. We conclude
that X is almost Fano if and only if a = −4 or a = 2 holds and that X is Fano if
and only if −3 ≤ a ≤ 1 holds.

If X is of type No. 18, then −KX = (2, a+3, 1) holds. Note that n18(−KX) ≥ 0
and n28(−KX) ≥ 0 yield a/2 ≤ 3/2. We conclude that there is no choice for a and b
for which X is almost Fano and that X is Fano only if a = 1 holds. Moreover,
n58(−KX) ≥ 0 and n68(−KX) ≥ 0 show that b = 0 holds if X is Fano. In this case
subtracting the first row of Q from the second shows that this variety is a subcase
of No. 17.

If X is of type No. 19, then we have a ≤ b ≤ 0 and −KX = (a + 1, b + 2, 2).
Note that n36(−KX) ≥ 0 and n16(−KX) ≥ 0 give a ≥ −1, b ≥ −2. Moreover,
n36(−KX) ≥ 0 and n16(−KX) ≥ 0 yield a ≤ 1, b ≤ 2. We conclude that X is
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Fano if and only if a = 0 and −1 ≤ b ≤ 1 hold and truly almost Fano if and only
if a = ±1, −2 ≤ b ≤ 2 or a = 0, b = ±2 hold.

If X is of type No. 20, then we have −KX = (1, 3 + a + b, 3). Note that
n16(−KX) ≥ 0, n17(−KX) ≥ 0 and n28(−KX) ≥ 0 yield b ≥ −3− a, b ≥ 2a− 3 and
b ≤ 1/2(a− 1). In the following picture, we illustrate the feasible region:

a

b

This shows that X is Fano if and only if a = 0, −2 ≤ b ≤ −1 holds and truly almost
Fano if and only if (a, b) ∈ {(±1,−1), (−1,−2), (0,−3), (1, 0)} holds.

If X is of type No. 21, then we have a ≥ b and −KX = (2, 3+a+b, 3). Note that
n16(−KX) ≥ 0 and n27(−KX) ≥ 0 yield b ≥ −3 − a, b ≥ 2a − 1. In the following
picture, we illustrate the feasible region:

a

b

We conclude that X is Fano if and only if a = b = 0 or a = b = −1 holds and truly
almost Fano if and only if (a, b) ∈ {(−1,−2), (0,−1), (1, 1)} holds. If X is Fano,
then we multiply Q with  −1 0 1

2 1 −a− 2
0 0 1


and renumber the variables via (12)(68). In this way, we see that the Fano varieties
of Nos. 20 and 21 coincide.

If X is of type No. 22, then we have −KX = (2, 2+a, 2) and a 6= −2. Note that
n37(−KX) = 0 holds, i.e.X is not Fano. Moreover, n16(−KX) ≥ 0 and n27(−KX) ≥
0 give −2 ≤ a ≤ 2. We conclude that X is almost Fano if and only if −1 ≤ a ≤ 2
holds.

If X is of type No. 23, then we have −KX = (a, 4, a+2). Note that n27(−KX) =
0 holds, i.e. X is not Fano. Moreover, n18(−KX) ≥ 0 and n36(−KX) ≥ 0 give
0 ≤ a ≤ 2/3, which yields a = 0. We conclude that X is almost Fano if and only
if a = 0 holds.

If X is of type No. 24, then we have −KX = (0, 4+a, 2). Note that n36(−KX) =
0 holds, i.e. X is not Fano. Moreover, n16(−KX) ≥ 0 and n27(−KX) ≥ 0 show
that X is almost Fano if and only −4 ≤ a ≤ 0 holds.

If X is of type No. 25, then we have −KX = (a+1, 3, 2). Note that n18(−KX) <
0 holds, i.e. X is not almost Fano.

If X is of type No. 26, then we have a ∈ 2Z≤0 and −KX = (1, 2, 3a/2 + 2 + b).
Note that n38(−KX) ≥ 0 yields a ≥ −4/3. We conclude a = 0. Hence n13(−KX) ≥
0 and n28(−KX) ≥ 0 give b ≥ −2, b ≤ 2/3. We conclude that X is Fano if and
only if a = 0 and −1 ≤ b ≤ 0 hold and truly almost Fano if and only if a = 0
and b = −2 hold.

If X is of type No. 27, then we have a ∈ 2Z<0 and −KX = (1, 1, a/2 + 3). Note
that n38(−KX) ≥ 0 yields a ≥ −4/3. We conclude that there is no choice for a such
that X is almost Fano.
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If X is of type Nos. 28 or 29, then we have −KX = (−2, 3, 3a/2+3) and −KX =
(2,−1, 3 − a/2), respectively. In the first case we have n28(−KX) < 0 and in the
latter n16(−KX) < 0, which shows that X is neither Fano nor truly almost Fano.

If X is of type No. 30, then we have a ∈ 2Z≤0 and −KX = (−1, 3, 3a/2 + 3).
Note that n36(−KX) ≥ 0 yields a ≥ −4/3. We conclude that X is Fano if and only
if a = 0 holds and that there is no choice for a such that X is truly almost Fano.
If X is Fano, we multiply Q with −1 0 0

2 1 0
0 0 1


and renumber the variables via (12)(68). In this way, we see that we are in the
subcase No. 20, a = −2.

If X is of type No. 31, then we have a ∈ 2Z≤0 and −KX = (2, 0, a/2 + b + 2).
Note that n16(−KX) = 0 holds, which shows that X is not Fano. Furthermore,
n37(−KX) ≥ 0 and n28(−KX) ≥ 0 give b ≥ −5a/2, b ≤ −a/2 + 2/3. Together,
this gives a ≥ −1/3. We conclude that X is truly almost Fano if and only if a = 0
and b = 0 hold.

If X is of type No. 32, then we have a ∈ 2Z≤0 and −KX = (−2, 4, 3a/2+ b+2).
Note that n27(−KX) = 0 holds, which shows that X is not Fano. Furthermore,
n18(−KX) ≥ 0 and n36(−KX) ≥ 0 give b ≤ a/2 + 2/3, b ≥ −3a/2. Together, this
gives a ≥ −1/3. We conclude that X is truly almost Fano if and only if a = 0
and b = 0 hold.

If X is of type No. 33, then we have a ∈ 2Z≤0 and −KX = (0, 3, 3a/2 + 2).
Note that n36(−KX) = 0 holds, which shows that X is not Fano. Furthermore,
n13(−KX) ≥ 0 yields a ≥ −4/3. We conclude that a necessary condition for X
being almost Fano is a = 0. Hence, n18(−KX) ≥ 0 and n27(−KX) ≥ 0 give
1/3 ≤ b ≤ 2/3. Thus there are no almost Fano varieties in this case.

If X is of type Nos. 34 or 35, then we have −KX = (1, 2, 0) and −KX = (2, 1, 0),
respectively. In both cases the anticanonical class is contained in cone(w1, w3) which
is a face of the semiample cone of X. Thus, X is truly almost Fano.

If X is of type Nos. 36 or 37, then we have −KX = (2, 1,−1) and −KX =
(0, 3,−1), respectively. In both cases n13(−KX) is strictly negative, which shows
that X is neither Fano nor truly almost Fano. �

3.8. Smooth full intrinsic quadrics of Picard number three

In this section we prove Theorem 3.3.2 which provides the description of all
smooth intrinsic quadrics of Picard number three that are full. Recall that full
means that the Cox ring of X contains no free variable.

Proof of Theorem 3.3.2. We show that a smooth full intrinsic quadric X of Picard
number three arises from Construction 3.3.1. According to Proposition 3.5.13, the
Cox ring of X is of the form

R(X) = K[T1, . . . , Tr]/〈T1T2 + . . .+ Tr−1Tr〉

and Corollary 3.5.15 yields r ≥ 8. Lemma 3.5.10 shows that we may assume
that γ135 ∈ rlv(u) holds. Let u ∈ Cl(X) be an ample Weil divisor class. The homo-
geneity of g implies that u is contained in the three-dimensional cone Q(γ123456).
Hence Remark 3.2.4 shows that u is contained in Q(γ123456)◦. Lemma 3.5.17 shows
that suitable renumbering of variables yields the relevant faces γ135, γ1234, γ1256, γ146
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as well as u ∈ cone(w1, w3, d) ∩ cone(w1, w4, w6)◦ and

(w1, . . . , w6) =

 1 d1 − 1 0 d1 0 d1

0 1 1 0 0 1
0 1 0 1 1 0

 , d1 ≥ 0 , (∗)

where d = (d1, 1, 1) denotes the degree of g. In order to illustrate the arrangement
of weights, we choose a hypersurface H intersecting the effective cone in its relative
interior and consider this two-dimensional picture. Note that we have d = w1+w2 =
w3 + w4 = w5 + w6. Moreover, if d1 = 0 holds, then we have w3 = w6 and
w4 = w5. If d1 ≥ 1 holds, then we have w4 ∈ cone(w1, w5), w6 ∈ cone(w1, w3) and
w2 ∈ cone(w1, w3, w5). Depending on d1, we give sketches of the different situations,
where in the picture on the right-hand side, w2 lies somewhere on the dotted line.

w1

w3, w6
w2

w4, w5

d1 = 0

d

w1

w3

w5

w6
w2

w4

d

d1 > 0

We now explain where further weights w` may lie. Let 0 6= liu ∈ Hom(K,Q), i =
1, . . . , 6, be linear forms such that

liu(wi) = 0 = liu(u) , liu(w1) > 0 , i = 3, . . . , 6 , l2u(w4) > 0 , l1u(w3) > 0 ,

hold. Note that the faces γi` are F-faces for all i = 1, . . . , 6, ` ≥ 7. Thus, Re-
mark 3.2.4 yields liu(w`) 6= 0 for all i = 1, . . . , 6, ` ≥ 7. As visualized be-
low, there remain six possible places Ma, . . . ,Mf for w`, ` ≥ 7, where for all
i = 1, . . . , 6 we set H+

iu := {x ∈ KQ; liu(x) > 0}, H−iu := {x ∈ KQ; liu(x) < 0},
Hiu := {x ∈ KQ; liu(x) = 0} and

Ma := H+
1u ∩H

−
4u, Mb := H+

4u ∩H
−
5u, Mc := H+

5u ∩H
−
2u,

Md := H+
2u ∩H

+
3u, Me := H−3u ∩H

+
6u, Mf := H−6u ∩H

−
1u.

w1

w3, w6
w2

w4, w5

u

d1 = 0

d

H1u

H2u

H4u

H6u

Ma

Mc

Md

Mf
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w1

w3

w5

w6
w2

w4

d u

d1 > 0

H1u

H2u

H3u

H4u

H5u

H6u

Ma

Mb

Mc

Md

MeMf

As in the proof of Theorem 3.3.5, we see that further weights wi, i ≥ 7, are not
contained in Mb ∪ Me. If wi, wi+1 ∈ Mf held for some odd i ≥ 7 we would
have γ13i, γ1,3,i+1 ∈ rlv(u), contradicting Lemma 3.5.8. Hence renumbering of
variables yields wi ∈Ma ∪Mc ∪Md for all odd 7 ≤ i ≤ r. Choose an odd index i ∈
{7, . . . , r}. Homogeneity of g shows that we are in one of the following cases

(i) wi ∈Ma, wi+1 ∈Md ∪Mf ,
(ii) wi ∈Mc, wi+1 ∈Mf ,
(iii) wi ∈Md.

For an overview, we provide the following table, where elements of the covering
collection are listed with respect to the different positions of wi and wi+1. As a
matter of convenience, we list the indices a, b, c of the faces γabc in an order such
that (wa, wb, wc) is positively orientated, i.e. det(wa, wb, wc) > 0 holds.

Case cov(u) \ {γ135, γ164, γ1234, γ1256}
(i) γ1i4, γ1,2,i,i+1

(ii) γi35, γ1,3,i+1, γi24

(iii) γi35, γi32, γ3,4,i,i+1, γi64

Case (i): wi ∈ Ma, wi+1 ∈ Md ∪Mf : Note that we will consider the case
of a weight w` ∈ Md, ` ≥ 7, in Case (iii). Thus we may assume wi+1 ∈ Mf .
In particular, we have γ1,6,i+1 ∈ rlv(u). Remark 3.2.5 together with the relevant
face γ1i4 yields w2

i = 1. Applying the same remark to γ1,2,i,i+1, we obtain w3
i = 0.

Thus, we have

(w1, w2|w3, w4|w5, w6|wi, wi+1) =

 1 d1 − 1 0 d1 0 d1 w1
i d1 − w1

i

0 1 1 0 0 1 1 0
0 1 0 1 1 0 0 1

 .

The weights are arranged as follows, where w2 lies somewhere on the dotted line
and wi somewhere on the zigzag line.
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w1

w3

w5

w6
w2

w4

d u

Note that SAmple(X) is contained in the intersection of the cones Q(γ164), Q(γ1i4)
and Q(γ1,6,i+1). We conclude that besides w1, . . . , w6, wi, wi+1, there need to be
further weights in order to ensure u ∈ Mov(X)◦.

Case (ii): wi ∈ Mc, wi+1 ∈ Mf : Remark 3.2.5 together with the relevant
faces γi35, γ1,3,i+1 and γi24 yields w1

i = 1, w3
i = 0 and w2

i = 0. But this shows
w1 = wi, i.e. we obtain wi /∈Mc, a contradiction.

Case (iii): wi ∈ Md: Remark 3.2.5 together with γi35 ∈ rlv(u) yields w1
i = 1.

Applying again Remark 3.2.5, this time to γi32 and to γ3,4,i,i+1, yields

0 = w3
i (1− d1) and 0 = d1w

3
i .

This shows that w3
i = 0 holds. Now Remark 3.2.5 applied to γi64 yields d1 = 0

or w2
i = 0.
Case (iii.1): In the first subcase, i.e. if d1 = 0 holds, we obtain the following

arrangement of weights, where wi lies somewhere on the dotted line:

(w1, w2|w3, w4|w5, w6|wi, wi+1) =

 1 −1 0 0 0 0 1 −1
0 1 1 0 0 1 w2

i 1− w2
i

0 1 0 1 1 0 0 1

 .

w1

w3, w6
w2

w4, w5

d

Lemma 3.5.7 and γi32 ∈ rlv(u) show that the F-face γi+1,4,1 is not a relevant face.
Note that we have SAmple(X) ⊆ σ := Q(γi35) ∩Q(γi32) ∩Q(γ135) and

σ ⊆ Q(γi+1,4,1) ∪ Q(γi+1,3,1) .

Remark 3.2.4 together with γi+1,4,1 /∈ rlv(u) yields γi+1,3,1 ∈ rlv(u). We conclude
that the semiample cone of X is contained in

Q(γ135) ∩ Q(γi35) ∩ Q(γi32) ∩ Q(γi+1,3,1) .

Case (iii.2): In the second subcase we have w2
i = 0. Here we obtain the

following:

(w1, w2|w3, w4|w5, w6|wi, wi+1) =

 1 d1 − 1 0 d1 0 d1 1 d1 − 1
0 1 1 0 0 1 0 1
0 1 0 1 1 0 0 1

 .

Note that we have w1 = wi, w2 = wi+1 and SAmple(X) is a subset of the intersec-
tion of cone(w1, w4, w6) and cone(w1, w2, w6).
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Now we discuss how the arrangement of the weights w1, . . . , w6 in (∗) can be
enlarged by adding further variables wi, wi+1. The above reasoning shows that all
smooth full intrinsic quadrics of Picard number three are obtained via combining (∗)
with further monomials TiTi+1, where the weights deg(Ti) = wi and deg(Ti+1) =
wi+1 are as in (i), (iii.1) or (iii.2). Thus to complete the proof, it remains to
combine (∗) with (i), (iii.1) and (iii.2) and to show that we arrive in the setting of
Construction 3.3.1.

Note that combining (iii.1) with (iii.2) is the subcase of combining twice (iii.1)
with d1 = 0 and w2

i = 0. Moreover, we showed that in order to guarantee u ∈
Mov(X)◦, (∗) together with one single monomial as in Case (i) is not possible alone.
Thus we need to consider the combination of (∗) with at least two monomials of
type (i), the combination of (∗) with monomials of type (iii.1), the combination
of (∗) with monomials of type (iii.1) and (i), the combination of (∗) with monomials
of type (iii.2), as well as the combination of (∗) with monomials of type (iii.2)
and (i).

(∗) and (i): For ` ≥ 6, we have w` = (x`, 1, 0) and w`+1 = (d1 − x`, 0, 1). As
argued above, there are at least two monomials of type (i). Assume that ` = 7 is
the index with x7 = max(x`) and ` = 9 the index with d1 − x9 = max(d1 − x`).
In order to ensure that u lies in the relative interior of the moving cone of X, we
must have x7 > d1 and d1 − x9 > d1, i.e. we have w7 ∈ cone(w1, w6) \ cone(w6)
and w10 ∈ cone(w1, w4)\cone(w4). In addition, u ∈ Mov(X)◦ shows u /∈ Q(γ1,7,10).
Note that γ1,4,7 and γ1,6,10 are relevant faces. Thus, u lies in the cone

τ := Q(γ1,4,7) ∩Q(γ1,6,10).

Because of τ ⊆ Q(γ1,7,10) ∩ Q(γ2,7,10), we conclude that γ2,7,10 is relevant. This
gives 1 = det(w2, w10, w7) = d1 − x9 + x7 + 1. The above reasoning shows that
d1 − x9 + x7 + 1 > 2d1 + 1 ≥ 1 holds, a contradiction.

(∗) and (iii.1): Assume that w7, w8 and w9, w10 are of type (iii.1). After
renumbering of variables, we have w2

7 ≥ w2
9 and

(w1, w2| . . . |w9, w10) =

 1 −1 0 0 0 0 1 −1 1 −1
0 1 1 0 0 1 w2

7 1− w2
7 w2

9 1− w2
9

0 1 0 1 1 0 0 1 0 1

 .

Note that the weights are arranged as follows, where w7 and w9 lie on the dotted line

w1

w3, w6w2

w4, w5

d

and where w7 lies between w3 and w9. The semiample cone of X is contained in

σ := Q(γ135) ∩ Q(γ735) ∩ Q(γ732) ∩ Q(γ1,3,10) .

Moreover, we have σ ⊆ Q(γ389) and thus γ389 is a relevant face. Lemma 3.5.7
shows that γ4,7,10 /∈ rlv(u) holds. Note that we have σ ⊆ Q(γ4,7,10) ∪ Q(γ3,7,10).
Remark 3.2.4 together with γ4,7,10 /∈ rlv(u) yields γ3,7,10 ∈ rlv(u). We obtain

SAmple(X) = σ ∩ Q(γ3,7,10) .

Multiplying with an unimodular matrix from the left we thus arrive in the setting
of Construction 3.3.1. We conclude that adding further monomials TiTi+1, i ≥ 11,
of type (iii.1) yields again a variety as in the setting of Construction 3.3.1.
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(∗), (iii.1) and (i): Assume that the weights w7, w8 are of type (iii.1) and
the weights w9, w10 are of type (i). We obtain

(w1, w2| . . . |w9, w10) =

 1 −1 0 0 0 0 1 −1 w1
9 −w1

9

0 1 1 0 0 1 w2
7 1− w2

7 1 0
0 1 0 1 1 0 0 1 0 1

 .

Note that (iii.1) and (i) yield SAmple(X) ⊆ σ, where σ is the intersection of Q(γ357)
and of Q(γ149) = Q(γ159). The weights are arranged as follows, where w7 and w9

lie on the dotted line:

w1

w3, w6w2

w4, w5

d

Since the semiample cone of X and thus σ is full-dimensional, we obtain w2
7 ≤ 0

or w1
9 ≤ 0. In the picture this means that w7 lies below the hypersurface through w1

and w4 or that w9 lies above the hypersurface through w2 and w3. Note that we
have σ ⊆ Q(γ579), which shows that γ579 is a relevant face. Thus, we may apply
Remark 3.2.5 and obtain 1 = det(w5, w7, w9) = 1 − w2

7w
1
9. This shows w2

7 = 0
or w1

9 = 0. If w2
7 = 0 holds, then we are in a subcase of the combination (iii.2)

and (i) with d1 = 0, which we will treat below. If w1
9 = 0 holds, then multiply-

ing with an unimodular matrix from the left shows that we are in the setting of
Construction 3.3.1.

(∗) and (iii.2): This is a subcase of the below discussed combination of (∗),
(iii.2) and (i).

(∗), (iii.2) and (i): Assume that w7, w8 are of type (iii.2) and w9, w10, w11, w12

are of type (i). This means that the weights (w1, w2| . . . |w11, w12) are given by 1 d1 − 1 0 d1 0 d1 1 d1 − 1 w1
9 d1 − w1

9 w1
11 d1 − w1

11

0 1 1 0 0 1 0 1 1 0 1 0
0 1 0 1 1 0 0 1 0 1 0 1

 .

The weights are arranged as follows, where w2 = w8 lies somewhere on the dotted
line and w9 and w11 lie somewhere on the zigzag-line.

w1, w7

w3

w5

w6w2, w8

w4

d u

Possibly after renumbering of variables we arrive at w1
9 ≥ w1

11. This means that w9

lies in the cone generated by w1 and w11. Note that the semiample cone of X is
contained in

σ := Q(γ146) ∩ Q(γ168) ∩ Q(γ149) ∩ Q(γ1,6,12) ∩ Q(γ1,8,9) .
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We show that γ1,9,12 is a relevant face. We have σ ⊆ Q(γ1,10,11) and thus γ1,10,11 ∈
rlv(u). Lemma 3.5.7 shows that γ2,9,12 /∈ rlv(u) holds. Moreover, we have σ ⊆
Q(γ1,9,12) ∪ Q(γ2,9,12). Remark 3.2.4 together with γ2,9,12 /∈ rlv(u) yields γ1,9,12 ∈
rlv(u). We conclude

SAmple(X) = σ ∩ Q(γ1,9,12) .

Multiplying with an unimodular matrix from the left we arrive in the setting of
Construction 3.3.1. We conclude that adding further monomials TiTi+1, i ≥ 11, of
type (iii.2) or type (i) yields again a variety as in Construction 3.3.1. �

Corollary 3.8.1. Let Y be a four-dimensional full intrinsic quadric of Picard num-
ber three. If Y is smooth, then Y is isomorphic to an intrinsic quadric X arising
from the following data: We have Cl(X) = Z3 and the Cox ring of X is given by
R(X) = K[T1, . . . , T8]/〈T1T2 + T3T4 + T5T6 + T7T8〉 with degree matrix

(w1, . . . , w8) =

 1 a− 1 0 a 0 a 1 a− 1
0 1 1 0 0 1 0 1
0 1 0 1 1 0 0 1

 , a ∈ Z≥0,

and semiample cone SAmple(X) = cone(w1, w4 + w6, w6).

Proof. The assertion follows immediately from the case r = 8 in Theorem 3.3.2:
The degree matrix is given by

Q =

 0 0 0 0 1 −1 1 −1
1 0 1 0 0 1 a 1− a
0 1 0 1 0 1 0 1


for some a ∈ Z≥0. Multiplying with the unimodular matrix 0 1 a− 1

1 0 1
0 0 1


from the left and suitably renumbering the variables yields the above form. �

3.9. Proof of Proposition 3.9.1

In this section we give a description of all smooth four-dimensional intrinsic
quadrics of Picard number three whose Cox ring contains two free variables.

Proposition 3.9.1. Let X be a four-dimensional intrinsic quadric of Picard number
three with Cox ring

R(X) = K[T1, . . . , T8]/〈g〉, g = T1T2 + T3T4 + T5T6.

If X is smooth, then we have Cl(X) = Z3 and X is isomorphic to one of the
varieties 2 – 18 in the table of Theorem 3.3.6.

Proof. By u we denote an ample Weil divisor class and by w1, . . . , w8 the degrees
of the variables T1, . . . , T8. With τ := cone(wi; i = 1, . . . , 6), we split the proof into
the two parts u ∈ τ◦ and u /∈ τ◦.

Part 1: First we consider the case u ∈ τ◦. Lemma 3.5.17 shows that suit-
able renumbering of variables yields γ135, γ1234, γ1256, γ146 ∈ rlv(u) as well as u ∈
cone(w1, w3, d) ∩ cone(w1, w4, w6)◦ and

(w1, . . . , w6) =

 1 d1 − 1 0 d1 0 d1

0 1 1 0 0 1
0 1 0 1 1 0

 , d1 ≥ 0 .

We choose a hypersurface H intersecting the effective cone in its relative interior
and illustrate the arrangement of weights in this two-dimensional picture. Note
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that we have d = w1 + w2 = w3 + w4 = w5 + w6. Moreover, if d1 = 0 holds, then
we have w3 = w6 and w4 = w5. If d1 ≥ 1 holds, then we have w4 ∈ cone(w1, w5),
w6 ∈ cone(w1, w3) and w2 ∈ cone(w1, w3, w5). Depending on d1, we give sketches
of the different situations.

w1

w3, w6
w2

w4, w5

u

d1 = 0

d

w1

w3

w5

w6
w2

w4

d u

d1 > 0

Let 0 6= liu ∈ Hom(K,Q), i = 1, . . . , 6, be linear forms such that

liu(wi) = 0 = liu(u) , liu(w1) > 0 , i = 3, . . . , 6 , l2u(w4) > 0 , l1u(w3) > 0 ,

holds. Note that the faces γi7, γi8 are F-faces for all i = 1, . . . , 6. Thus, Remark 3.2.4
yields liu(w7), liu(w8) 6= 0 for all i = 1, . . . , 6. As visualized below, there remain six
possible places Ma, . . . ,Mf for w7 and w8, where for all i = 1, . . . , 6 we set H+

iu :=
{x ∈ KQ; liu(x) > 0}, H−iu := {x ∈ KQ; liu(x) < 0}, Hiu := {x ∈ KQ; liu(x) = 0}
and

Ma := H+
1u ∩H

−
4u, Mb := H+

4u ∩H
−
5u, Mc := H+

5u ∩H
−
2u,

Md := H+
2u ∩H

+
3u, Me := H−3u ∩H

+
6u, Mf := H−6u ∩H

−
1u.

w1

w3, w6
w2

w4, w5

u

d1 = 0

d

H1u

H2u

H4u

H6u

Ma

Mc

Md

Mf
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w1

w3

w5

w6
w2

w4

d u

d1 > 0

H1u

H2u

H3u

H4u

H5u

H6u

Ma

Mb

Mc

Md

MeMf

As in the proof of Theorem 3.3.5, we see that w7 and w8 are not contained in
Mb ∪ Me. Hence w7 and w8 are contained in Ma ∪ Mc ∪ Md ∪ Mf . We now
consider the remaining possibilities for w7 and w8. For an overview, we provide the
following table, where elements of the covering collection are listed with respect to
the different positions of w7 and w8. As a matter of convenience, we list the indices
i, j, k of the faces γijk in an order such that (wi, wj , wk) is positively orientated,
i.e. det(wi, wj , wk) > 0 holds. We denote by l7u a linear form satisfying l7u(w7) =
l7u(u) = 0, l7u(w3) < 0. If w7 ∈ Ma holds, then l4u and u ∈ Mov(X)◦ show
that l4u(w8) > 0 holds. In particular, w8 is then contained in Mc ∪ Md ∪ Mf .
Furthermore, we have l7u(wi) < 0 for 2 ≤ i ≤ 6, which shows that l7u(w8) > 0
holds. In particular if w7 ∈ Ma and w8 ∈ Mf hold, then we have γ87i ∈ rlv(u) for
2 ≤ i ≤ 6. If w7 is contained in Mc ∪Md and w8 ∈ Mf holds, we distinguish the
cases l7u(w8) < 0 and l7u(w8) > 0. Possibly after renumbering w7 and w8, we are
left with the following cases:

w7 w8 cov(u) \ {γ135, γ164, γ1234, γ1256}
(a) (c) γ175, γ174, γ258, γ358, γ248, γ648, γ874, γ875

(a) (d) γ175, γ174, γ358, γ283, γ628, γ872, γ874, γ875, γ648

(a) (f) γ175, γ174, γ138, γ168, γ872, γ873, γ874, γ875, γ876

(c) (c) γ257, γ357, γ247, γ647, γ258, γ358, γ248, γ648

(c) (d) γ257, γ357, γ247, γ647, γ358, γ283, γ628, γ648, γ872

(c) (f) γ257, γ357, γ247, γ647, γ138, γ168; if l7u(w8) > 0: γ872, γ873, γ876

if l7u(w8) < 0: γ178, γ478, γ578

(d) (d) γ357, γ273, γ627, γ647, γ358, γ283, γ628, γ648

(d) (f) γ357, γ273, γ627, γ647, γ138, γ168; if l7u(w8) > 0: γ873, γ876

if l7u(w8) < 0: γ278, γ478, γ578

We now apply Remark 3.2.5 to these cases and show that we end up with one of
the varieties 2–11 in the table of Theorem 3.3.6. Note that Lemma 3.1.6 shows that
the resulting varieties are smooth.

Case w7 ∈Ma,w8 ∈Mc: We show that this leads to No. 2 in Theorem 3.3.6.
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Applying Remark 3.2.5 to γ175, γ358 and γ258 yields w2
7 = 1, w1

8 = 1 and 0 =
w2

8(d1 − 1). The latter implies w2
8 = 0 or d1 = 1.

In the first case, Q is as follows:

Q =

 1 d1 − 1 0 d1 0 d1 w1
7 1

0 1 1 0 0 1 1 0
0 1 0 1 1 0 w3

7 w3
8

 .

Remark 3.2.5 together with γ248 yields d1w
3
8 = 0, i.e. d1 = 0 or w3

8 = 0. Note
that u ∈ cone(w1, w3, d) yields u2 ≥ u3. Thus, u ∈ Q(γ258)◦ implies w3

8 < 0. We
conclude d1 = 0 and w3

8 < 0. Furthermore, u ∈ Q(γ157)◦ and u2 ≥ u3 show that
w3

7 ≤ 0 holds. Hence the degree matrix is of the form

Q =

 1 −1 0 0 0 0 w1
7 1

0 1 1 0 0 1 1 0
0 1 0 1 1 0 w3

7 w3
8

 , w3
7 ≤ 0, w3

8 < 0 .

Note that we have w1 ∈ cone(w5, w8). We denote by H34, H14 and H13 the hy-
persurfaces through w3, w4, through w1, w4 and through w1, w3, respectively. Since
w2

7 > 0 and w3
7 ≤ 0 holds, w7 lies on the same side of H14 as w3 and on the same

side of H13 as w8. We distinguish the situations w1
7 ≤ 0 and w1

7 > 0. In both
pictures, w7 lies somewhere in the gray-shaded region:

w8
w1

w3, w6w2

w4, w5

w1
7 ≤ 0

d

H13 H34

w8w1

w3, w6w2

w4, w5

w1
7 > 0

d

H13

H34

H14

Since w3 = w6, w4 = w5 and w1 ∈ cone(w5, w8) hold, the semiample cone equals

cone(w1, w3, w5) ∩ cone(w1, w7, w5) ∩ cone(w2, w5, w8) ∩ cone(w5, w7, w8) ,

i.e. X is of type No. 2.
Now we consider the case d1 = 1. Applying Remark 3.2.5 to γ248 and to γ648

yields w2
8 − w3

8 = 0 and w2
8 + w3

8 = 0. We conclude that w8 = (1, 0, 0) holds. Note
that u ∈ cone(w1, w3, d) implies u2 ≥ u3, contradicting u ∈ Q(γ248)◦.

Case w7 ∈Ma,w8 ∈Md: We show that this leads to Nos. 3, 4 and 9 in Theo-
rem 3.3.6.

Applying Remark 3.2.5 to γ175 and γ358 yields w2
7 = 1 = w1

8. Thus, Q = (w1, . . . , w8)
is as follows:

Q =

 1 d1 − 1 0 d1 0 d1 w1
7 1

0 1 1 0 0 1 1 w2
8

0 1 0 1 1 0 w3
7 w3

8

 , d1 ≥ 0 .

Remark 3.2.5 applied to γ283, γ628 and γ648 yields

0 = (d1 − 1)w3
8 , 0 = d1w

3
8 − (d1 − 1)w3

8 − d1w
2
8 , 0 = d1(w2

8 + w3
8) . (∗)

Inserting the first in the second and the second in the third equation yields 0 = d1w
2
8.

Together with the third equation, this gives the two cases w2
8 = w3

8 = 0 and d1 = 0.
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If w2
8 = w3

8 = 0 holds, Remark 3.2.5 applied to γ872 shows that w3
7 = 0 holds.

Thus the degree matrix is given as

Q =

 1 d1 − 1 0 d1 0 d1 w1
7 1

0 1 1 0 0 1 1 0
0 1 0 1 1 0 0 0

 , d1 ≥ 0 .

We denote by H14 and H13 the hypersurfaces through w1, w4 and through w1, w3,
respectively. Since w2

7 > 0 and w3
7 = 0 holds, w7 lies on H13 and on the same side of

H14 as w3. In the situations d1 = 0 and d1 ≥ 0, the weights are arranged as follows,
where w7 lies somewhere on the dotted line and in the picture on the right-hand
side, w2 lies somewhere on the zigzag line:

w1, w8

w3, w6w2

w4, w5

d1 = 0

d

H13

H14

w1, w8

w3

w5

w6
w2

w4

d

d1 > 0 H13

H14

Note that we have w1 = w8, w4 ∈ cone(w1, w5) and w6 ∈ cone(w1, w3). Further-
more, we have cone(w8, w7, w2) ⊆ cone(w8, w7, w4) ∩ cone(w6, w2, w8). Thus, the
semiample cone fulfills

SAmple(X) = cone(w1, w4, w6) ∩ cone(w8, w7, w4) ∩ cone(w6, w2, w8) ,

i.e. X is of type No. 9.
We treat the case d1 = 0. Here the first of the equations in (∗) shows that w3

8 = 0
holds. Thus, Remark 3.2.5 applied to γ872 and to γ875 yields 0 = −w3

7(w2
8+1)−w1

7w
2
8

and 0 = w1
7w

2
8. If w2

8 = 0 holds, then we are in a special case of the above treated
case w2

8 = w3
8 = 0. If w1

7 = 0 holds, then we have either w3
7 = 0 or w2

8 = −1. We
first treat the subcase w3

7 = 0. Here, the degree matrix is given by

Q =

 1 −1 0 0 0 0 0 1
0 1 1 0 0 1 1 w2

8

0 1 0 1 1 0 0 0

 .

We denote by H13 and H34 the hypersurfaces through w1, w3 and through w3, w4,
respectively. Since w1

8 > 0 and w3
8 = 0 hold, w8 lies on H13 and on the same side of

H34 as w1. Thus, the weights are arranged as follows, where w8 lies somewhere on
the dotted line:

w1

w3, w6, w7w2

w4, w5

d

H13 H34
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Because of w4 = w5, w3 = w6 = w7 and

cone(w1, w5, w7) ∩ cone(w2, w3, w8) ⊆ cone(w3, w5, w8) ,

the semiample cone fulfills SAmple(X) = cone(w1, w5, w7)∩cone(w2, w3, w8), i.e. X
is of type No. 3. We now treat the subcase w2

8 = −1. Here, the degree matrix is
given by

Q =

 1 −1 0 0 0 0 0 1
0 1 1 0 0 1 1 −1
0 1 0 1 1 0 w3

7 0

 .

Since we have w1 ∈ cone(w3, w8), w4 ∈ cone(w2, w8) and w3 ∈ cone(w4, w7), the
weights are arranged as follows, where w7 lies somewhere on the dotted line:

w1

w3, w6w2

w4, w5

w8

d

w7

The semiample cone is given as SAmple(X) = cone(w1, w3, w4) ∩ cone(w2, w7, w8),
i.e. X is of type No. 4.

Case w7 ∈Ma,w8 ∈Mf : We show that this leads to No. 5 in Theorem 3.3.6.

Applying Remark 3.2.5 to γ175 and to γ138 yields w2
7 = 1 = w3

8. Thus, the degree
matrix Q = (w1, . . . , w8) is as follows:

Q =

 1 d1 − 1 0 d1 0 d1 w1
7 w1

8

0 1 1 0 0 1 1 w2
8

0 1 0 1 1 0 w3
7 1

 .

Note that we have

det(w7, w6, w8) = det(w7, w3, w8) + d1(w3
7w

2
8 − 1) ,

i.e. Remark 3.2.5 shows 0 = d1(w3
7w

2
8 − 1) (∗). Furthermore we have

det(w7, w2, w8) = det(w7, w3, w8) + det(w7, w4, w8) + 1− w3
7w

2
8 ,

which together with Remark 3.2.5 shows that w3
7w

2
8 = 2 holds. Thus, (∗) implies

d1 = 0. Because of w7 ∈Ma, we have

0 < det(w1, w7, w2) = 1− w3
7 ,

i.e. w3
7 ≤ 0 holds. Thus we have either w3

7 = −1, w2
8 = −2 or w3

7 = −2, w2
8 = −1.

In the first subcase, Remark 3.2.5 applied to γ738 and γ758 yields w1
7 = 0 and

w1
8 = 1. Thus, the degree matrix is given as

Q =

 1 −1 0 0 0 0 0 1
0 1 1 0 0 1 1 −2
0 1 0 1 1 0 −1 1

 .

Note that we have w3 ∈ cone(w4, w7) and that cone(w1, w4)◦ ∩ cone(w3, w8)◦ is
non-empty. Hence the arrangement of weights is as follows:
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w1

w3, w6
w2

w4, w5

w8

w7

d

The semiample cone is SAmple(X) = cone(w1, w5, w7) ∩ cone(w1, w6, w8), i.e. X is
of type No. 5.

We treat the case w3
7 = −2, w2

8 = −1. Remark 3.2.5 applied to γ738 and γ758

yields w1
7 = 1 and w1

8 = 0. Thus, the degree matrix is given as

Q =

 1 −1 0 0 0 0 1 0
0 1 1 0 0 1 1 −1
0 1 0 1 1 0 −2 1

 .

Note that we have w4 ∈ cone(w3, w8), w1 ∈ cone(w5, w7, w8) and w3 ∈ cone(w2, w5, w7).
Thus the arrangement of weights is as follows:

w1

w3, w6
w2

w4, w5

w8

w7

d

The semiample cone is SAmple(X) = cone(w1, w5, w7) ∩ cone(w1, w6, w8), i.e. ex-
changing the second and the third row of Q and renumbering the variables via
(34)(56)(78) shows that X is of type No. 5.

Case w7 ∈Mc,w8 ∈Mc: We show that this leads to No. 6 in Theorem 3.3.6.

Applying Remark 3.2.5 to γ357 and to γ358 yields w1
7 = w1

8 = 1. Thus, Q is given by

Q =

 1 d1 − 1 0 d1 0 d1 1 1
0 1 1 0 0 1 w2

7 w2
8

0 1 0 1 1 0 w3
7 w3

8

 .

The same remark together with γ25i, γ24i, γ64i, i = 7, 8, yields

0 = (d1 − 1)w2
i , 0 = d1(w2

i − w3
i ) , 0 = d1(w2

i + w3
i ) , i = 7, 8 .

If d1 6= 0 held, we would obtain w2
i = w3

i = 0, i = 7, 8. Recall that u is contained
in cone(w1, w3, d), which implies u2 ≥ u3. But u ∈ Q(γ257)◦ together with w7 =
(1, 0, 0) would yield u2 < u3, a contradiction. Hence we have d1 = 0 and the first
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of the above equations shows w2
7 = w2

8 = 0. Because of u2 ≥ u3 and u ∈ Q(γ257)◦

we have w3
i < 0, i = 7, 8. Thus, Q = (w1, . . . , w8) is as follows:

Q =

 1 −1 0 0 0 0 1 1
0 1 1 0 0 1 0 0
0 1 0 1 1 0 w3

7 w3
8

 , w3
i < 0, i = 7, 8 .

Possibly after exchanging w7 and w8, we may assume that 0 > w3
7 ≥ w3

8 holds.
We denote by H14 and H34 the hypersurfaces through w1, w4 and through w3, w4,
respectively. Since w2

7 = w2
8 = 0 and w1

7, w
1
8 > 0 hold, w7 and w8 lie on H14 and on

the same side of H34 as w1. Thus, the weights are arranged as follows, where w7

and w8 lie somewhere on the dotted line:

w1

w3, w6w2

w4, w5

d

w7, w8

H34

Since 0 > w3
7 ≥ w3

8 and cone(w1, w3, w5)∩cone(w2, w5, w7) ⊆ cone(w3, w5, w7) hold,
the semiample cone ofX is the intersection of cone(w1, w3, w5) and cone(w2, w5, w7),
i.e. X is of type No. 6.

Case w7 ∈Mc,w8 ∈Md: We show that this leads to No. 7 in Theorem 3.3.6.

Applying Remark 3.2.5 to γ357 and to γ358 yields w1
7 = 1 = w1

8. Thus, Q is given by:

Q =

 1 d1 − 1 0 d1 0 d1 1 1
0 1 1 0 0 1 w2

7 w2
8

0 1 0 1 1 0 w3
7 w3

8

 .

The same remark together with γ257, γ247, γ647 yields

0 = (d1 − 1)w2
7 , 0 = d1(w2

7 − w3
7) , 0 = d1(w2

7 + w3
7) .

As in the previous case, we obtain d1 = 0, w2
7 = 0 and w3

7 < 0. Applying Re-
mark 3.2.5 to γ283 and γ872 yields w3

8 = 0 and 1+w2
8 = w3

7(−w2
8−1). We distinguish

the subcases w2
8 = −1 and w2

8 6= −1.
If w2

8 = −1 holds, then Q = (w1, . . . , w8) is as follows:

Q =

 1 −1 0 0 0 0 1 1
0 1 1 0 0 1 0 −1
0 1 0 1 1 0 w3

7 0

 , w3
7 < 0 .

Note that w7 lies on the hypersurface through w1 and w5. Furthermore, w7 lies
on the opposite side of the hypersurface H23 through w2 and w3 as w1. Since in
addition w1 ∈ cone(w3, w8) and w4 ∈ cone(w2, w8) hold, the weights are arranged
as follows, where w7 lies somewhere on the dotted line:

w1

w3, w6

w2

w4, w5

d w7

w8

H23
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Note that we have SAmple(X) = cone(w1, w3, w5) and thus X is of type No. 7.
If w2

8 6= −1 holds, then Q = (w1, . . . , w8) is as follows:

Q =

 1 −1 0 0 0 0 1 1
0 1 1 0 0 1 0 w2

8

0 1 0 1 1 0 −1 0

 .

If we swap the second and the third row of the degree matrix Q and renumber the
variables via (3, 4)(5, 6)(7, 8), then we can transform this subcase into the previous
subcase.

Case w7 ∈Mc,w8 ∈Mf : We show that this leads to No. 8 in Theorem 3.3.6.

Applying Remark 3.2.5 to γ357 and to γ138 yields w1
7 = 1 = w3

8. Thus, the degree
matrix Q = (w1, . . . , w8) is as follows:

Q =

 1 d1 − 1 0 d1 0 d1 1 w1
8

0 1 1 0 0 1 w2
7 w2

8

0 1 0 1 1 0 w3
7 1

 .

The same remark together with γ257, γ247, γ647 yields

0 = (d1 − 1)w2
7 , 0 = d1(w2

7 − w3
7) , 0 = d1(w2

7 + w3
7) .

As in the previous case we obtain d1 = 0, w2
7 = 0 and w3

7 < 0.
We first treat the case l7u(w8) > 0. Here we swap the second and the third row

of Q and renumber the variables via (3, 4)(5, 6)(7, 8). In this manner, we see that
covering collection in the case w7 ∈Mc, w8 ∈Mf , l7u(w8) > 0 coincides with cov(u)
in the case w7 ∈Ma, w8 ∈Md, which we treated above.

We now treat the case l7u(w8) < 0. Applying Remark 3.2.5 to the faces γ178

and γ478 yields
1 = −w3

7w
2
8 , 1 = w2

8 .

Hence, Q = (w1, . . . , w8) is as follows:

Q =

 1 −1 0 0 0 0 1 w1
8

0 1 1 0 0 1 0 1
0 1 0 1 1 0 −1 1

 .

Note that we have w1 ∈ cone(w5, w7) and w3 ∈ cone(w2, w7). Furthermore, w8 lies
on the hypersurfaceH12 through w1 and w2 and on the same side of the hypersurface
H15 through w1 and w5 as w2. Thus, the weights are arranged as follows:

w1

w3, w6

w2

w4, w5

d w7

w8

H15

Since cone(w1, w3, w5) ∩ cone(w1, w7, w8) is contained in cone(w1, w3, w8) we have
SAmple(X) = cone(w1, w3, w5) ∩ cone(w1, w7, w8). Thus, X is of type No. 8.

Case w7 ∈Md,w8 ∈Md: We show that this leads to No. 10 in Theorem 3.3.6.

Applying Remark 3.2.5 to γ35i, i = 7, 8, yields w1
7 = w1

8 = 1. Thus, Q = (w1, . . . , w8)
is as follows:

Q =

 1 d1 − 1 0 d1 0 d1 1 1
0 1 1 0 0 1 w2

7 w2
8

0 1 0 1 1 0 w3
7 w3

8

 .
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The same remark together with γ2i3, γ62i and γ64i yields

0 = (d1 − 1)w3
i , 0 = d1(w2

i − w3
i ) , 0 = d1(w2

i + w3
i ) ,

for i = 7, 8. We distinguish the subcases d1 = 0 and d1 6= 0.
In the first subcase, the above relations show that w3

7 = w3
8 = 0 holds. Possibly

after renumbering w7 and w8, we may assume that w2
7 ≥ w2

8 holds. Exchanging the
second and the third row of Q and renumbering the variables via (3, 4)(5, 6) gives

Q =

 1 −1 0 0 0 0 1 1
0 1 1 0 0 1 0 0
0 1 0 1 1 0 w3

7 w3
8

 , w3
7 ≥ w3

8 ,

cov(u) = {γ135, γ164, γ1234, γ1256, γ467, γ274, γ527, γ537, γ468, γ284, γ528, γ538} .
We see that this coincides with the covering collection in the case w7, w8 ∈ Mc

which we treated above.
If d1 6= 0 holds, the above relations show that w2

i = w3
i = 0, i = 7, 8, holds.

Hence, Q = (w1, . . . , w8) and the arrangement of weights is as follows:

Q =

 1 d1 − 1 0 d1 0 d1 1 1
0 1 1 0 0 1 0 0
0 1 0 1 1 0 0 0

 , d1 > 0 .

w1, w7, w8

w3

w5

w6w2

w4

d

Note that we have SAmple(X) = cone(w1, w4, w6) ∩ cone(w2, w6, w7), which shows
that X is of type No. 10.

Case w7 ∈Md,w8 ∈Mf , l7u(w8) > 0: We show that this leads to No. 11 in The-
orem 3.3.6.

Applying Remark 3.2.5 to the faces γ357 and γ138 yields w1
7 = w3

8 = 1. Thus, the
degree matrix Q = (w1, . . . , w8) is as follows:

Q =

 1 d1 − 1 0 d1 0 d1 1 w1
8

0 1 1 0 0 1 w2
7 w2

8

0 1 0 1 1 0 w3
7 1

 .

The same remark together with γ273, γ627 and γ647 yields

0 = (d1 − 1)w3
7 , 0 = d1(w2

7 − w3
7) , 0 = d1(w2

7 + w3
7) .

We distinguish the cases d1 = 0 and d1 6= 0.
In the first case, we have d1 = 0 and w3

7 = 0. Exchanging the second and the
third row of Q and renumbering the variables via (3, 4)(5, 6)(7, 8) gives

Q =

 1 −1 0 0 0 0 a 1
0 1 1 0 0 1 1 0
0 1 0 1 1 0 b c

 ,

cov(u) = {γ135, γ164, γ1234, γ1256, γ468, γ284, γ528, γ538, γ147, γ157, γ784, γ785} .
We see that this coincides with the covering collection in the case w7 ∈ (a), w8 ∈Mc,
which we treated above.
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If d1 6= 0 holds, the above relations show that w2
7 = w3

7 = 0 holds. Thus, Q and
the arrangement of weights is as follows:

Q =

 1 d1 − 1 0 d1 0 d1 1 w1
8

0 1 1 0 0 1 0 w2
8

0 1 0 1 1 0 0 1

 .

w1, w7

w3

w5

w6w2

w4

d

H13

Note that w8 lies on the same side of the hypersurface H13 through w1 and w3 as w2.
Since w6 ∈ cone(w1, w3), w4 ∈ cone(w1, w5) and w1 = w7 hold, the semiample cone
of X is

SAmple = cone(w7, w4, w6) ∩ cone(w6, w2, w7) ∩ cone(w1, w6, w8) ,

i.e. X is of type No. 11.

Case w7 ∈Md,w8 ∈Mf , l7u(w8) < 0: We show that there is no smooth variety
in this case.

As in the previous case applying Remark 3.2.5 to γ357, γ138, γ273, γ627 and γ647

yields w1
7 = w3

8 = 1 as well as

0 = (d1 − 1)w3
7 , 0 = d1(w2

7 − w3
7) , 0 = d1(w2

7 + w3
7) .

If w2
7 = w3

7 = 0 holds, the same remark together with γ785 and γ782 yields w2
8 = 1

and w2
8 = 2, a contradiction. Thus we have d1 = w3

7 = 0. Note that

det(w7, w8, w2) = det(w7, w8, w5)− w2
7 − 1

holds. Remark 3.2.5 applied to γ785 and γ782 shows that w2
7 = −1 holds. Thus,

Remark 3.2.5 applied to γ785 yields w2
8 = 1−w1

8 and Q = (w1, . . . , w8) is as follows:

Q =

 1 −1 0 0 0 0 1 w1
8

0 1 1 0 0 1 −1 1− w1
8

0 1 0 1 1 0 0 1

 .

We have w3 + w7 = w1 and w2 + w7 = w5. Furthermore, w8 lies on the same
side of the hypersurface H13 through w1 and w3 as w5 and on the same side of the
hypersurface H27 through w2 and w7 as w3. Hence the arrangement of weights is
as follows, where w8 lies somewhere in the gray shaded region:
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w1

w3, w6w2

w4, w5

w7

d

H27

H13

Recall that we have SAmple(X) ⊆ cone(w1, w3, w8) ∩ cone(w4, w7, w8). Since the
cone on the right-hand side equals cone(w8), this contradicts Q-factoriality of X.

Part 2: To complete the proof, it remains to consider the case u /∈ τ◦ with τ =
cone(w1, w2, w3, w4, w5, w6). We first show that u /∈ τ holds. Note that since X
is Q-factorial, Remark 3.2.4 shows that u /∈ cone(wi, wj), cone(wi) holds for all
1 ≤ i < j ≤ 6 such that Ti and Tj belong to different monomials of g. Thus
after renumbering of variables, u ∈ cone(w1, w2)◦ or u /∈ τ holds. We show that
u ∈ cone(w1, w2)◦ is not possible. Indeed, assume that u ∈ cone(w1, w2)◦ holds. In
this case Lemma 3.5.4 yields u ∈ Q(γ135)◦. Since X is Q-factorial, Q(γ135) is three-
dimensional. Thus we obtain u ∈ τ◦, a contradiction. We conclude that u is not
contained in τ . The definition of Mov(X) shows that Mov(X) ⊆ τ+cone(w7) holds.
In particular, τ is at least two-dimensional. Note furthermore that – possibly after
renumbering of variables – u ∈ Q(γ137) holds. Remark 3.2.4 yields u ∈ Q(γ137)◦.
We distinguish the two cases u ∈ Q(γ138) and u /∈ Q(γ138).

Case u /∈ Q(γ138): We show that this leads to Nos. 16, 17 and 18 in Theorem 3.3.6.

Let 0 6= liu ∈ Hom(K,Q), i = 1, 3, 7, 8, be linear forms such that

liu(wi) = 0 = liu(u) , liu(w3) < 0 , i = 7, 8 , liu(w7) < 0 , i = 1, 3 ,

holds. After suitable renumbering of variables, the hypersurfaces Hiu cut out by liu
are arranged as in the following picture and det(w1, w3, w7) is strictly negative:

w1

w3

w7

w8

u

H1u

H3u

H7u

H8u

Ma

Mb

Mc

In the figures, Ma, Mb and Mc indicate the following sets of points:

Ma = {x ∈ KQ; l3u(x) > 0, l8u(x) > 0} ,
Mb = {x ∈ KQ; l7u(x) > 0, l8u(x) < 0} ,
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Mc = {x ∈ KQ; l1u(x) > 0, l7u(x) < 0} .
Remark 3.2.4 shows that l`u(wi) is nonzero for ` = 7, 8, i = 2, 4, 5, 6. Together

with u /∈ τ this shows that w2, w4, w5 and w6 are contained in Ma ∪Mb ∪Mc. Note
that if wi ∈Ma holds for some i ∈ {2, 5, 6}, then renumbering the variables via (1i)
gives u ∈ Q(γ137)∩Q(γ138). Since we will treat this case below, we may assume that
w2, w5, w6 /∈ Ma holds. Hence we have l8u(wi) ≥ 0 for all i = 1, 2, 3, 5, 6, 8. Since
u ∈ Mov(X)◦ holds, we conclude that w4 is contained in Ma. Similarily, if wi ∈Mc

holds for some i ∈ {2, 5, 6}, then u /∈ τ gives u ∈ Q(γi47)∩Q(γi48), i.e. renumbering
the variables via (1i)(34) yields u ∈ Q(γ137)∩Q(γ138). Since we will treat this case
below, we may assume that w2, w5, w6 /∈ Mc holds. This gives w2, w5, w6 ∈ Mb.
Hence the covering collection is given by

cov(u) = {γi73, γi48, γi78; i = 1, 2, 5, 6} .

Applying Remark 3.2.5 to γ173, γ273, γ573 and to γ178 yields

Q =

 1 1 0 2 1 1 0 w1
8

0 d2 0 d2 w2
5 d2 − w2

5 1 w2
8

0 d3 1 d3 − 1 w3
5 d3 − w3

5 0 1

 .

The same remark together with the relevant faces γ278 and γ578 gives 1 = −d3w
1
8 +1

and 1 = −w3
5w

1
8 +1. We distinguish the two cases w1

8 = 0 and w1
8 6= 0, w3

5 = d3 = 0.
In the first subcase, Remark 3.2.5 applied to γ148 and to γ248 shows that

1 = −d3w
2
8 + d2 + w2

8 and 1 = d3w
2
8 − d2 + w2

8

holds. We conclude w2
8 = 1 and d2 = d3. Applying again Remark 3.2.5, this time

to γ548 yields w2
5 = w3

5. Multiplying Q with an unimodular matrix from the left
yields

Q =

 1 1 0 2 1 1 0 0
0 d2 0 d2 w2

5 d2 − w2
5 1 1

0 0 1 −1 0 0 −1 0

 .

Note that w3 + w7 = w8 holds and that w1, w2, w5 and w6 lie on the same side
of the hypersurface H38 through w3 and w8. Moreover, w2, w5 and w6 lie on the
hypersurface H18 through w1 and w8. Thus the weights are arranged as follows,
where w2, w5 and w6 lie somewhere on the dotted line and w4 somewhere in the
gray-shaded area:

w1

w3

w8

w7

H38

Since Q(γi78) ⊆ Q(γi37) holds for i = 1, 2, 5, 6, we conclude that the semiample
cone of X is the intersection of Q(γi78) and Q(γi48), i = 1, 2, 5, 6. Thus, X is of
type No. 16.

In the second subcase, we have w1
8 6= 0, w3

5 = d3 = 0. Remark 3.2.5 applied
to γ148, to γ248 and to γ548 shows that we have d2 = 1− w2

8 as well as

w2
8(w1

8 + 2)− w1
8 − 1 = 1 and w2

5(w1
8 + 2) = 0 .

If w1
8 6= −2 holds, then the above equations show that w2

8 = 1, w2
5 = 0 holds.

Thus, Q and the arrangement of weights is as follows, where w8 lies somewhere in
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the gray-shaded area and where we denote by H17 the hypersurface through w1 and
through w7:

Q =

 1 1 0 2 1 1 0 w1
8

0 0 0 0 0 0 1 1
0 0 1 −1 0 0 0 1



w1, w2, w5, w6

w3

w4

w7

H13

H17

We conclude that the semiample cone of X is the intersection of Q(γ178), Q(γ148)
and Q(γ137). Thus, X is of type No. 17.

If w1
8 = −2 holds, then multiplying Q with an unimodular matrix from the

left yields

Q =

 1 1 0 2 1 1 0 −2
w2

8 1 0 1 + w2
8 w2

5 + w2
8 1− w2

5 1 −w2
8

0 0 1 −1 0 0 0 1

 .

Note that w4 + w8 = w7 holds and that w1, w2, w5 and w6 lie on the same side
of the hypersurface H37 through w3 and w7. Moreover, w1, w5 and w6 lie on the
hypersurface H27 through w2 and w7. Thus the weights are arranged as follows,
where w2, w5 and w6 lie somewhere on the dotted line and w4 somewhere in the
gray-shaded area:

w2

w3

w7

H37

Since Q(γi78) ⊆ Q(γi48) holds for i = 1, 2, 5, 6, we conclude that the semiample
cone of X is the intersection of Q(γi37) and Q(γi78), i = 1, 2, 5, 6. Thus, X is of
type No. 18.

Case u ∈ Q(γ138): We show that this leads to Nos. 12 – 15 in Theorem 3.3.6.

Remark 3.2.4 shows that u ∈ Q(γ138)◦ holds. Let 0 6= liu ∈ Hom(K,Q), i =
1, 3, 7, 8, be linear forms such that

liu(wi) = 0 = liu(u) , liu(w3) < 0 , i = 7, 8 , liu(w7) < 0 , i = 1, 3 ,

holds. After suitable renumbering of variables, the weights w1, w3, w7 and w8 are
arranged as in the following picture and det(w1, w3, w7) is strictly positive:
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w3

w1

w8

w7 u

H3u

H1u

H7u

H8u
Ma

Mb

Mc

In the figures, Ma, Mb and Mc indicate the following sets of points:

Ma = {x ∈ KQ; l3u(x) > 0, l8u(x) > 0} ,
Mb = {x ∈ KQ; l7u(x) > 0, l8u(x) < 0} ,
Mc = {x ∈ KQ; l1u(x) > 0, l7u(x) < 0} .

Note that the faces γi` are F-faces for all i = 7, 8, ` = 2, 4, 5, 6. Thus Remark 3.2.4
together with u /∈ τ shows that w` is contained in Ma ∪Mb ∪Mc for ` = 2, 4, 5, 6.
After renumbering of weights, we may assume that w5 ∈ Ma or w5 ∈ Mb holds.
Note that u ∈ Mov(X)◦ shows that one of the weights wi, i ∈ {2, 4, 5, 6}, lies in Mb

or one weight lies inMa and a second one inMc. Furthermore, the homogeneity of g
restricts the possible arrangements of w2, w4, w5, w6 in Ma ∪Mb ∪Mc. For instance
if w2 ∈ Ma holds, then we obtain deg(g) ∈ Ma and thus w4, w5 ∈ Ma or w4, w6 ∈
Ma holds. After suitable renumbering of variables, the weights w2, w4, w5, w6 are
arranged as in the following table. To see this, note that the first part of the table
contains all constellations with w5 ∈Ma; in the second part it remains to consider
the constellations w5, w6 ∈ Mb. As a matter of convenience, we list the indices
i, j, k of the faces γijk in an order such that (wi, wj , wk) is positively orientated,
i.e. det(wi, wj , wk) > 0 holds.

case w2 w4 w5 w6 cov(u) \ {γ137, γ138} contains

(i) Ma Ma Ma Mb γ238, γ538, γ168, γ268, γ468

(ii) Ma Ma Ma Mc γ238, γ538, γ168, γ268, γ468

(iii) Mb Ma Ma Ma γ538, γ638, γ428, γ528, γ628

(iv) Mb Ma Ma Mb γ538, γ237, γ537, γ637, γ287, γ687, γ168, γ528, γ428, γ468

(v) Mb Ma Ma Mc γ538, γ237, γ537, γ168, γ428, γ267, γ468

(vi) Mb Mb Ma Mb γ148, γ168, γ528, γ538, γ548

(vii) Mb Mb Ma Mc γ148, γ168, γ528, γ538, γ548

(viii) Mc Ma Ma Ma γ538, γ638, γ428, γ528, γ628

(ix) Mc Ma Ma Mb γ537, γ637, γ427, γ527, γ627

(x) Mc Ma Ma Mc γ538, γ537, γ168, γ167, γ527, γ528, γ427, γ428, γ467, γ468

(xi) Mc Mb Ma Mb γ537, γ637, γ427, γ527, γ627

Mc Mb Ma Mc renumbering of variables via (13)(24)(56)(78) yields case (v)

Mc Mc Ma Mc renumbering of variables via (13)(56)(78) yields case (ii)

Mb Ma Mb Mb renumbering of variables via (13)(24)(78) yields case (xiv)

(xii) Mb Mb Mb Mb γ237, γ537, γ637, γ148, γ158, γ168, γ287, γ487, γ587, γ687

(xiii) Mc Ma Mb Mb γ158, γ168, γ428, γ458, γ468



120 3. SMOOTH INTRINSIC QUADRICS OF SMALL PICARD NUMBER

(xiv) Mc Mb Mb Mb γ537, γ637, γ427, γ527, γ627

To complete the proof, we apply Remark 3.2.4 and Remark 3.2.5 to these cases
and show that we end up with one of the varieties of type Nos. 12–15 in the table
of Theorem 3.3.6. Note that Lemma 3.1.6 shows that the resulting varieties are
smooth.

Cases (iii), (viii), (ix), (xi), (xiv): We show that there is no smooth variety in
these cases.

In all these cases, there is j ∈ {7, 8} such that γ13j , γ53j , γ63j , γ42j , γ52j and γ62j

are relevant faces. Remark 3.2.5 together with γ13j shows that we may assume
(w1, w3, wj) = (e1, e2, e3) with the canonical base vectors e1, e2, e3 of Q3. By liu ∈
Hom(K,Q), i = 1, 3, j, we denote linear forms with

liu(wi) = liu(u) = 0, i = 1, 3, j and l1u(wj), l3u(w1), lju(w3) > 0 .

The weights wi and linear forms liu, i = 1, 3, j are arranged as follows:

wj

w3 w1

l1u

lju

l3u

u

M13

M3jM1j

In the picture, M13,M3j ,M1j indicate the set of points between the respective
hyperplanes cut out by liu = 0, i = 1, 3, j. For instance, we have

M13 = {x ∈ KQ; l1u(x) > 0, l3u(x) < 0} .

Since u ∈ Q(γ53j)
◦ ∩Q(γ63j)

◦ holds, the weights w5 and w6 are contained in M3j .
This means that det(wi, w3, wj), i = 5, 6, is strictly positive. Thus Remark 3.2.5
yields w1

5 = 1 = w1
6 and we obtain

(w1, w2|w3, w4|w5, w6||wj) =

 1 1 0 2 1 1 0
0 d2 1 d2 w2

5 d2 − w2
5 0

0 d3 0 d3 − 1 w2
5 d3 − w3

5 1

 ,

where d = (2, d2, d3) denotes the degree of g. Since u ∈ Q(γ52j)
◦ holds, we

have lju(w2) > 0. Thus, det(w5, w2, wj) and det(w6, w2, wj) are strictly positive.
Hence Remark 3.2.5 applied to γ52j and to γ62j yields 1 = d2 − w2

5 and 1 = w2
5,

i.e. we obtain d2 = 2. Note that w5, w6 ∈ M3j shows that also d and hence w4

are contained in M3j . We conclude det(w4, w2, wj) > 0. Remark 3.2.5 yields
1 = det(w4, w2, wj) = 2, a contradiction. Hence there are no smooth varieties in
Cases (iii), (viii), (ix), (xi) and (xiv).

Case (xiii): We show that there is no smooth variety in this case.

We renumber the variables via (13)(24). Then γ138, γ358, γ368, γ248, γ258 and γ268 are
relevant faces. This shows that the proof in this case is analogous to the previous
proof of Cases (iii), (viii), (ix), (xi) and (xiv).
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For the remaining part of the proof, we apply Remark 3.2.5 to γ137 and to γ138

and obtain

Q =

 1 d1 − 1 0 d1 w1
5 d1 − w1

5 w1
7 0

0 d2 1 d2 − 1 w2
5 d2 − w2

5 w2
7 0

0 d3 0 d3 w3
5 d3 − w3

5 1 1

 ,

where d = (d1, d2, d3) denotes the degree of g.

Cases (i) and (ii): We show that there is no smooth variety in this case.

Remark 3.2.5 together with γ238, γ538 and γ268 yields d1 = 2, w1
5 = 1 and w2

5 = −1.
Thus, the same remark applied to γ168 and to γ468 shows that d2 + 1 = 1 = d2 + 3
holds, a contradiction. Hence there are no smooth varieties in these cases.

Case (iv): We show that this case leads to No. 12 in Theorem 3.3.6.

Remark 3.2.5 together with γ538, γ168 and γ428 yields w1
5 = 1, w2

5 = d2− 1 and d2 =
2−d1. Thus, the same remark applied to γ528 and γ468 shows that d1(d1− 3) = −2
as well as d1(d1− 1) = 0 hold. We obtain d1 = 1, d2 = 1 and w2

5 = 0. Remark 3.2.5
applied to γ687, γ237, γ637 and γ537 yields w1

7 = 1, d3 = −1 and w3
5 = 0. Thus, Q is

as follows:

Q =

 1 0 0 1 1 0 1 0
0 1 1 0 0 1 w2

7 0
0 −1 0 −1 0 −1 1 1

 ,

We have w6 + w8 = w3 and w4 + w8 = w1. Furthermore, w7 lies on the same
side of the hypersurface H13 through w1 and w3 as w8 and on the same side of the
hypersurface H38 through w3 and w8 as w1. Thus the arrangement of weights is as
follows, where w7 lies somewhere in the gray shaded region:

w1, w5

w2, w6

w3

w4w8

d

H38

H13

The covering collection of X consists of the cones listed in the above table. Since

cone(w1, w3, w8) ∩ cone(w2, w3, w7) ⊆ cone(w1, w3, w7)

holds, the semiample cone of X is the intersection of Q(γ138) and Q(γ237), i.e. X is
of type No. 12.

Case (v): We show that there is no smooth variety in this case.

Remark 3.2.5 together with γ538, γ168 and γ428 yields w1
5 = 1, w2

5 = d2 − 1 and
d2 = 2 − d1. Thus, the same remark applied to γ468 shows that d1(d1 − 1) = 0
holds. We distinguish the cases d1 = 0 and d1 = 1. If d1 = 0 holds, we obtain

Q =

 1 −1 0 0 1 −1 w1
7 0

0 2 1 1 1 1 w2
7 0

0 d3 0 d3 w3
5 d3 − w3

5 1 1

 .
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Remark 3.2.5 together with γ237 and γ537 shows that

d3w
1
7 = −2 and w3

5w
1
7 = 0

hold. This gives w3
5 = 0. Hence Remark 3.2.5 together with γ267 yields d3w

1
7 = 0, a

contradiction to the first one of the above relations. Now we treat the case d1 = 1.
Here, Q is given by

Q =

 1 0 0 1 1 0 w1
7 0

0 1 1 0 0 1 w2
7 0

0 d3 0 d3 w3
5 d3 − w3

5 1 1

 .

Remark 3.2.5 together with γ237 and γ537 shows that

d3w
1
7 = −1 and w3

5w
1
7 = 0

hold. This gives w3
5 = 0. Hence w2 = w6 holds. Thus Q(γ267) is a two-dimensional

cone, which contradicts Remark 3.2.4. Hence there are no smooth varieties in
this case.

Cases (vi) and (vii): We show that there are no smooth varieties in these cases.

Remark 3.2.5 together with γ148, γ538 and γ168 yields d2 = 2, w1
5 = 1 and w2

5 = 1.
Thus, the same remark applied to γ528 and to γ548 shows that 3−d1 = 1−d1 holds,
a contradiction. Hence there are no smooth varieties in these cases.

Case (x): We show that this case leads to Nos. 13 and 14 in Theorem 3.3.6.

Remark 3.2.5 together with γ538, γ168 and γ428 yields w1
5 = 1, w2

5 = d2 − 1, and
d2 = 2−d1. Thus, the same remark applied to γ528 and γ468 shows that d2

1−3d1+3 =
1 = d2

1 − d1 + 1 holds. We conclude d1 = 1 = d2 and w2
5 = 0, i.e. Q is given as

Q =

 1 0 0 1 1 0 w1
7 0

0 1 1 0 0 1 w2
7 0

0 d3 0 d3 w3
5 d3 − w3

5 1 1

 .

Remark 3.2.5 applied to γ537, to γ527, to γ167 and to γ427 yields

w3
5w

1
7 = 0 , w3

5w
2
7 = 0 , d3w

1
7 = 0 , d3w

2
7 = 0 .

We distinguish the cases d3 = w3
5 = 0 and w1

7 = w2
7 = 0. In the first case Q is as

follows:

Q =

 1 0 0 1 1 0 w1
7 0

0 1 1 0 0 1 w2
7 0

0 0 0 0 0 0 1 1

 .

We have w1 = w4 = w5 and w2 = w3 = w6. Furthermore, w7 lies on the same
side of the hypersurface H13 through w1 and w3 as w8. Thus, SAmple(X) =
Q(γ137) ∩Q(γ138) holds and X is of type No. 13.

In the second case, we have and w1
7 = w2

7 = 0. Hence Q is as follows:

Q =

 1 0 0 1 1 0 0 0
0 1 1 0 0 1 0 0
0 d3 0 d3 w3

5 d3 − w3
5 1 1

 .

Note that w4 and w5 lie on the hypersurface H17 through w1 and w7. Moreover, w2

and w6 lie on the hypersurface H37 through w3 and w7. Furthermore, the weights
w2, w3 and w6 are on the same side of H17. The same holds for H37 and the weights
w1, w4 and w5. This shows that the arrangement of weights is as follows, where w2

and w6 lie somewhere on the dotted line and w4 and w5 somewhere on the zigzag
line:
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w3 w1

w8, w7

We have SAmple(X) = Q(γ137) ∩Q(γ167) ∩Q(γ537) ∩Q(γ427) ∩Q(γ527) ∩Q(γ467),
which shows that X is of type No. 14.

Case (xii): We show that this case leads to No. 15 in Theorem 3.3.6.

Remark 3.2.5 together with γ148 and γ158 yields d2 = 2 and w2
5 = 1. Thus, Q

is given as

Q =

 1 d1 − 1 0 d1 w1
5 d1 − w1

5 w1
7 0

0 2 1 1 1 1 w2
7 0

0 d3 0 d3 w3
5 d3 − w3

5 1 1

 .

Since det(w2, w8, w7) = det(w4, w8, w7) +w1
7 +w2

7 holds, Remark 3.2.5 yields w1
7 =

−w2
7. Thus, Remark 3.2.5 applied again to γ287 shows that w2

7(−d1 − 1) = 1 holds.
This gives w2

7 = 1, d1 = −2 or w2
7 = −1, d1 = 0. In the first case, Remark 3.2.5

applied to γ687 and to γ587 yields 0 = w1
5 = −2, a contradiction. Thus, w2

7 =
−1, d1 = 0 holds. Remark 3.2.5 applied to γ237, γ587 and γ537 yields d3 = −2, w1

5 = 0
and w3

5 = −1. Hence Q is as follows:

Q =

 1 −1 0 0 0 0 1 0
0 2 1 1 1 1 −1 0
0 −2 0 −2 −1 −1 1 1

 .

Note that we have w5 + w8 = w3, w1 + w2 = 2w5 and w5 + w7 = w1. Thus the
arrangement of weights is as follows:

w1

w2

w3

w4

w8

w5, w6

w7

We have SAmple(X) = Q(γ137)∩Q(γ138), which shows that X is of type No. 15. �

3.10. Proof of Proposition 3.10.1

In this section we give a description of all smooth four-dimensional intrinsic
quadrics of Picard number three whose Cox ring contains three free variables.

Proposition 3.10.1. Let X be a four-dimensional intrinsic quadric of Picard num-
ber three with Cox ring

R(X) = K[T1, . . . , T8]/〈g〉, g = T1T2 + T3T4 + T 2
5 .

If X is smooth, then we have Cl(X) = Z3 and X is isomorphic to one of the
varieties 19 – 37 in the table of Theorem 3.3.6.

Proof. By w1, . . . , w8 we denote the degrees of the variables T1, . . . , T8 and by u
an ample Weil divisor class. Lemma 3.5.16 shows that u /∈ τ := Q(γ1234) holds.
Note that τ 63 u ∈ Mov(X)◦ shows that at least two of the weights w6, w7, w8 are
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not contained in τ . Possibly after renumbering of variables, we have w6, w7 /∈ τ .
The definition of Mov(X) implies that Mov(X) ⊆ τ + cone(w6, w7) holds. Consider
i1, . . . , isi ∈ {1, . . . , 4} such that

τ + cone(w6, w7) \ τ ⊆ cone(wi1 , wi2 , w6, w7) ∪ . . . ∪ cone(wis−1
, wis , w6, w7) (∗)

as well as cone(wij , wij+1
, w6, w7)∩τ = cone(wij , wij+1

) and lj(wij ) = lj(wij+1
) = 0,

lj(w`) ≤ 0, ` = 1, . . . , 5, holds for linear forms lj ∈ Hom(K,Q).

τ

wi1

wi2

wisi

w6

w7

l1

ls−1

If τ is three-dimensional, together with the homogeneity of g, this further shows
that for all 1 ≤ j ≤ si − 1, Tij and Tij+1 belong to different monomials of g. If
τ is two- or one-dimensional, we can choose the ij in a manner such that for all
1 ≤ j ≤ si − 1, Tij and Tij+1

belong to different monomials of g. Thus all faces
of γij ,ij+1,6,7, where j is odd, are F-faces.

For ` = 6, 7, 8 we set κ`j := γij ,ij+1,`. We now show that we may assume that
there is 1 ≤ j0 ≤ si−1 such that κ6j0 is a relevant face. If there is 1 ≤ j0 ≤ si−1 such
that u ∈ Q(κ6j0) or u ∈ Q(κ7j0) holds, then Remark 3.2.4 shows that κj06 or κ7j0

is a relevant face and thus suitable renumbering of variables yields u ∈ Q(κ6j0)◦. If
u /∈ Q(κ6j)∪Q(κ7j) holds for all 1 ≤ j ≤ si − 1, then τ 63 u ∈ Mov(X)◦ shows that
w8 /∈ τ and u ∈ Q(κ8j0) holds for some 1 ≤ j0 ≤ si − 1. Again Remark 3.2.4 yields
u ∈ Q(κ8j0)◦.

Suitable renumbering of variables yields j0 = 1, j0 + 1 = 3, γ136 ∈ rlv(u)
and there is a linear form l13 ∈ Hom(K,Q) with l13(w`) ≤ 0, ` = 1, . . . , 5, as
well as l13(w6), l13(w7) ≥ 0. Furthermore we may assume that det(w1, w3, w6) is
strictly positive. Remark 3.2.5 applied to γ136 yields 1 = det(w1, w3, w6). Let 0 6=
l6u ∈ Hom(K,Q) be a linear form such that l6u(w6) = 0 = l6u(u) and l6u(w1) > 0
holds. Lemma 3.5.9 shows that we may assume that l6u(w2) and l6u(w4) are strictly
negative. Thus, the weights are arranged as follows, where w2 and w4 lie somewhere
in the gray-shaded area:

w1

w3

w6

u

H13

H6u

Let 0 6= liu ∈ Hom(K,Q) be linear forms such that liu(wi) = 0 = liu(u) and
liu(w6) > 0 holds for i = 1, 2, 3, 4. If l4u(w3) > 0 holds, then homogeneity of g
yields l4u(w2) > 0 and if l4u(w3) ≤ 0 holds, homogeneity of g shows that l3u(w2) > 0
holds. Thus there remain the following four possibilities for l2u and l4u:
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w1

w3

w6 u

M16

M14

M23 M26
H13

H1u

H6u

H3u

H2u

H4u

w1

w3

w6 u

(I)

w1

w3

w6 u

M16

M14

M32

M36
H13

H1u

H6u

H3u

H2u

H4u w1

w3

w6 u

(II)

w1

w3

w6 u

M16

M13

M24

M26
H13

H1u

H6u

H3u

H4u

H2u

w1

w3

w6 u

(III)

w1

w3

w6 u

M16

M13

M42

M46
H13

H1u

H6u

H3u

H2u

H4u

w1

w3

w6 u

(IV)

In the pictures,Mij indicate the set of points between the respective hyperplanesHiu

and Hju cut out by liu = 0 and by lju = 0, i.e. we have

M16 = {x ∈ KQ; l1u(x) < 0, l6u(x) < 0},
M1a = {x ∈ KQ; l1u(x) > 0, lau(x) > 0}, a = 3, 4,
Ma6 = {x ∈ KQ; liu(x) < 0, l6u(x) > 0}, a = 2, 3, 4,
Mab = {x ∈ KQ; lau(x) > 0, lbu(x) < 0}, (a, b) ∈ {(2, 3), (2, 4)}.

Furthermore, Lemma 3.5.9 shows that w7 and w8 do not lie in the gray-shaded
areas. Remark 3.2.4 applied to the faces γab, a = 1, 2, 3, 4, 6, b = 7, 8, shows that
w7 and w8 lie in one of the above defined sets Mij . Note that u ∈ Mov(X)◦ implies
that we may assume l1u(w7) > 0. In particular, w7 /∈M16 holds.

After suitable renumbering of variables, the weights w7, w8 are arranged as in
the following table. To see this, note that picture (I) and (III) yield the same
covering collections, i.e. there is no need to distinguish these cases. Similarily,
picture (I) and (II) need to be distinguished only if w` ∈ M23 or w` ∈ M32 holds
for some 7 ≤ ` ≤ 8. Picture (III) and (IV) yield the same varieties if w7, w8 /∈
M24 and w7, w8 /∈ M42 holds. Furthermore, note that certain combinations are
not possible because of u ∈ Mov(X)◦; for instance w7, w8 ∈ M14 would lead to
u /∈ Mov(X)◦. Moreover, Lemma 3.1.5 implies that u /∈ Q(γ678)◦ holds. As a
matter of convenience, we list the indices i, j, k of the faces γijk in an order such
that (wi, wj , wk) is positively orientated, i.e. det(wi, wj , wk) is strictly positive.
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case picture w7 w8 cov(u) \ {γ136, γ146, γ1256}

(i) (I) M14 M23 γ368, γ468, γ283, γ284, γ1258, γ137, γ147, γ1257, γ378, γ478

(ii) (I) M14 M26 γ368, γ468, γ268, γ137, γ147, γ1257, γ378, γ478, γ278

(iii) (I) M23 M23 γ367, γ467, γ327, γ427, γ1257, γ368, γ468, γ328, γ428, γ1258

(iv) (I) M23 M26 γ367, γ467, γ327, γ427, γ1257, γ368, γ468, γ268, γ278

(v) (I) M23 M16 γ367, γ467, γ327, γ427, γ1257, γ187, γ387, γ487, γ186

(vi) (I) M26 M16 γ267, γ367, γ467, γ187, γ287, γ387, γ478, γ186

(vii) (II) M14 M32 γ238, γ3458, γ138, γ268, γ468, γ137, γ1257, γ147, γ278, γ478

(viii) (II) M32 M32 γ237, γ3457, γ137, γ267, γ467, γ238, γ3458, γ138, γ268, γ468

(ix) (II) M32 M36 γ237, γ3457, γ137, γ267, γ467, γ368, γ268, γ468, γ378

(x) (II) M32 M16 γ237, γ3457, γ137, γ267, γ467, γ186, γ187, γ287, γ487

(xi) (IV) M13 M42 γ148, γ248, γ3458, γ268, γ368, γ278, γ378, γ1257, γ137, γ147

(xii) (IV) M42 M42 γ147, γ247, γ3457, γ267, γ367, γ148, γ248, γ3458, γ268, γ368

(xiii) (IV) M42 M46 γ147, γ247, γ3457, γ267, γ367, γ478, γ268, γ368, γ468

(xiv) (IV) M42 M16 γ147, γ247, γ3457, γ267, γ367, γ186, γ187, γ287, γ387

To complete the proof, we apply Remark 3.2.5 to these cases and show that we end
up with one of the varieties varieties 19 – 37 in the table of Theorem 3.3.6. Note
that the resulting varieties are smooth by Lemma 3.1.6. Applying Remark 3.2.5
to γ136 and to γ146 yields

Q =

 1 d1 − 1 0 d1 d1/2 0 w1
7 w1

8

0 2 1 1 1 0 w2
7 w2

8

0 d3 0 d3 d3/2 1 w3
7 w3

8

 ,

where d = (d1, d2, d3) denotes the degree of g. Note that since l13(w2) ≤ 0 holds,
we have d3 ≤ 0.

Case (i): We show that this case leads to Nos. 20, 27 and 28 in Theorem 3.3.6.

Remark 3.2.5 applied to γ368 and γ137 yields w1
8 = 1 = w3

7. Thus the same remark
applied to γ147 shows that d3 = 0 or w2

7 = 0 holds. In the first subcase, Remark 3.2.5
together with γ1258 yields w3

8 = 1. Applying again Remark 3.2.5, this time to γ283

and to γ378, yields d1 = 0 = w1
7. Thus, Q is given as

Q =

 1 −1 0 0 0 0 0 1
0 2 1 1 1 0 w2

7 w2
8

0 0 0 0 0 1 1 1

 .

The weights are arranged as follows, where w7 lies somewhere on the dotted line
and w8 somewhere in the gray-shaded area:
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w1

w2

w3, w4, w5

w6

w7

H36

H13

We have Q(γ283) ∩Q(γ136) ⊆ Q(γ368), which shows that X is of type No. 20, since
the semiample cone of X is given by

SAmple(X) = Q(γ283) ∩ Q(γ137) ∩ Q(γ378) ∩ Q(γ136) .

Now we consider the subcase d3 6= 0, w2
7 = 0. Remark 3.2.5 together with γ468

shows that d1 = 0 or w2
8 = 0 holds. We first treat the possibility d3 6= 0, w2

7 = 0 =
d1. Remark 3.2.5 applied to γ283 and γ284 yields

w3
8 = 1− d3 and − d3w

2
8 − d3 + w3

8 = 1 .

Recall that we are in the case d3 6= 0. Thus, inserting the first in the second
equation gives w2

8 = −2. Now Remark 3.2.5 applied to γ378 and to γ478 shows that
−w1

7(d3 + 1) = 0 = w1
7(d3 − 1) holds. Hence we obtain w1

7 = 0 and Q is given as

Q =

 1 −1 0 0 0 0 0 1
0 2 1 1 1 0 0 −2
0 d3 0 d3 d3/2 1 1 1− d3

 , d3 < 0 .

Note that we have w3 ∈ cone(w4, w6), cone(w1, w2) ∩ cone(w3, w4) = cone(w5) as
well as w2 + w8 = w6. Thus, the weights are arranged as follows:

w1

w2

w3

w4

w5

w6, w7

w8

We conclude that X is of type No. 27, since the semiample cone of X is given by

SAmple(X) = Q(γ368) ∩ Q(γ136) .

Now we treat the possibility d3 6= 0, w2
7 = 0, d1 6= 0, w2

8 = 0. Remark 3.2.5
applied to γ1258, γ378 and γ283 yields w3

8 = 1, w1
7 = 0 and d1 = d3. Hence, multiply-

ing Q with an unimodular matrix from the left gives

Q =

 1 −1 0 0 0 −1 −1 0
0 2 1 1 1 0 0 0
0 d3 0 d3 d3/2 1 1 1

 , d3 < 0 .
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Note that we have w3 ∈ cone(w4, w8), cone(w1, w2) ∩ cone(w3, w4) = cone(w5) as
well as w1 + w6 = w8. Thus, the weights are arranged as follows:

w1

w2

w3

w4

w5

w8

w6, w7

Note that X is of type No. 28, since the semiample cone of X is given by

SAmple(X) = Q(γ368) ∩ Q(γ283) .

Case (ii): We show that this case leads to Nos. 19 and 26 in Theorem 3.3.6.

Remark 3.2.5 applied to γ368 and to γ137 yields w3
7 = 1 = w1

8. Applying again
Remark 3.2.5, this time to γ468 and to γ268, shows that w2

8 = −1 and d1 = 0 holds.
Thus the same remark applied to γ147, γ278, γ378 and to γ478 gives

d3w
2
7 = 0 , w2

7w
3
8 = 0 , w1

7w
3
8 = 0 , d3w

1
7 = 0 .

We obtain the following two cases: d3 = 0, w3
8 = 0 and w1

7 = w2
7 = 0.

In the first subcase, we have d3 = 0, w3
8 = 0. Hence the degree matrix Q is

given by

Q =

 1 −1 0 0 0 0 w1
7 1

0 2 1 1 1 0 w2
7 −1

0 0 0 0 0 1 1 0

 .

Note that we have w3 + w8 = w1 and that w7 lies on the same side of the hyper-
surface H13 through w1 and w3 as w6. Thus, the weights are arranged as follows:

w1

w3, w4, w5

w2

w8

w6

H13

Note that X is of type No. 19, since the semiample cone of X is the intersection
of Q(γ136) and Q(γ137).

In the second subcase, we have w1
7 = w2

7 = 0. Hence the degree matrix Q is
given by

Q =

 1 −1 0 0 0 0 0 1
0 2 1 1 1 0 0 −1
0 d3 0 d3 d3/2 1 1 w3

8

 .

Note that w8 lies on the same side of the hypersurface H36 through w3 and w6

as w1 and on the opposite side of the hypersurface H16 through w1 and w6 as w3.
Furthermore, since d3 ≤ 0 holds, we have w3 ∈ cone(w4, w6). Thus, the weights are
arranged as follows, where w8 lies somewhere in the gray-shaded area:
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w1

w3

w5

w4

w2

w6, w7

u
H16

H36

We conclude that X is of type No. 26, since the semiample cone of X is given by

SAmple(X) = Q(γ286) ∩ Q(γ137) ∩ Q(γ368) .

Case (iii): We show that this case leads to Nos. 21, 29 and 30 in Theorem 3.3.6.

Remark 3.2.5 applied to γ36i and to γ46i, i = 7, 8, yields w1
7 = w1

8 = 1 and d1w
2
7 =

0 = d1w
2
8. We first treat the subcase d1 = 0. Consider i ∈ {7, 8}. Remark 3.2.5

applied to γ32i and to γ42i yields

w3
i = 1− d3 and − d3w

2
i − d3 + w3

i = 1 .

Inserting the first into the second equation gives d3(−w2
i − 2) = 0. We conclude

that we have d3 = 0 or w2
7 = w2

8 = −2.
If d3 = 0 holds, Q is given by

Q =

 1 −1 0 0 0 0 1 1
0 2 1 1 1 0 w2

7 w2
8

0 0 0 0 0 1 1 1

 .

Note that w7 and w8 lie on the same side of the hypersurface H13 through w1

and w3 as w6 and on the same side of the hypersurface H36 through w3 and w6

as w1. Thus, the weights are arranged as follows, where w7 and w8 lie somewhere
in the gray-shaded area:

w1

w3, w4, w5

w2

w6

u

H13

H36

We may assume that w2
8 ≤ w2

7 holds, i.e. we have w7 ∈ cone(w3, w8). Thus, the
semiample cone of X is given by

SAmple(X) = Q(γ136) ∩ Q(γ327) ∩ Q(γ367) ,

i.e. X is of type No. 21.
If w2

7 = w2
8 = −2 holds, Q is given by

Q =

 1 −1 0 0 0 0 1 1
0 2 1 1 1 0 −2 −2
0 d3 0 d3 d3/2 1 1− d3 1− d3

 .

Note that we have w3 ∈ cone(w4, w6) as well as w2 + w7 = w6. Thus, the weights
are arranged as follows, where w7 = w8 lies somewhere on the dotted line:
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w1w2

w3

w5

w4

w6

w7, w8

The semiample cone of X is given by SAmple(X) = Q(γ136) ∩Q(γ367), i.e. X is of
type No. 29.

Now we treat the subcase d1 6= 0, w2
7 = w2

8 = 0. Remark 3.2.5 applied to γ125i

yields w3
i = 1, i = 7, 8. Again Remark 3.2.5, this time applied to γ327, yields

d1 = d3. Hence, multiplying Q with an unimodular matrix from the left gives

Q =

 1 −1 0 0 0 −1 0 0
0 2 1 1 1 0 0 0
0 d3 0 d3 d3/2 1 1 1

 .

Note that we have w3 ∈ cone(w4, w7) as well as w1 + w6 = w7. Thus the weights
are arranged as follows, where w6 lies somewhere on the dotted line:

w1

w3

w5

w4

w2

w7, w8w6

The semiample cone of X is given by SAmple(X) = Q(γ327) ∩Q(γ367), i.e. X is of
type No. 30.

Case (iv): We show that this case leads to Nos. 22 and 31 in Theorem 3.3.6.

Remark 3.2.5 applied to γ36i, i = 7, 8, yields w1
7 = w1

8 = 1. Applying the same
remark, this time to γ368 and to γ468, shows that w2

8 = −1 and d1 = 0 hold. Now
again Remark 3.2.5, this time together with γ327 and γ427, implies that w3

7 = 1−d3

as well as 0 = d3(w2
7 + 2) hold. We distinguish the subcases w2

7 = −2 and w2
7 6= −2.

In the first subcase, we have w2
7 = −2 and w3

7 = 1− d3. Hence, Q is given by

Q =

 1 −1 0 0 0 0 1 1
0 2 1 1 1 0 −2 −1
0 d3 0 d3 d3/2 1 1− d3 w3

8

 .

Note that we have w3 ∈ cone(w4, w6) as well as w2 + w7 = w6. Furthermore, w8

lies on the same side of the hypersurface H27 through w2 and w7 as w1 and on the
opposite side of the hypersurface H16 through w1 and w6 as w3. Thus the weights
are arranged as follows, where w8 lies somewhere in the gray-shaded area:
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w1

w3

w5

w4

w2

w6

w7

H13

H13

We conclude that X is of type No. 31, since the semiample cone of X is given by

SAmple(X) = Q(γ136) ∩ Q(γ367) ∩ Q(γ368) ∩ Q(γ268) .

In the second subcase, we have w2
7 6= −2 and thus d3 = 0 and w3

7 = 1 hold.
Remark 3.2.5 applied to γ278 yields w3

8 = 0. Hence, Q is given by

Q =

 1 −1 0 0 0 0 1 1
0 2 1 1 1 0 w2

7 −1
0 0 0 0 0 1 1 0

 , w2
7 6= −2 .

Note that we have w3 + w8 = w1. Furthermore, w7 lies on the same side of the
hypersurface H13 through w1 and w3 as w6 and on the same side of the hyper-
surface H36 through w3 and w6 as w1. Thus the weights are arranged as follows,
where w7 lies somewhere in the gray-shaded area:

w1

w3, w4, w5

w2

w8

w6

H13
H36

We conclude that X is of type No. 22, since the semiample cone of X is given by
the intersection of Q(γ136) and Q(γ327).

Case (v): We show that this case leads to Nos. 23, 24 and 32 in Theorem 3.3.6.

Remark 3.2.5 applied to γ367, to γ168 and to γ467 yields w1
7 = 1 = w2

8 as well
as d1w

2
7 = 0. We distinguish the subcases d1 6= 0 and d1 = 0. In the first subcase,

we have w2
7 = 0. Remark 3.2.5 together with γ187 shows that w3

7 = 1 holds. Thus
the same remark together with γ327 and γ387 yields d1 = d3 and w1

8 = w3
8 − 1.

Hence, multiplying Q with an unimodular matrix from the left gives

Q =

 1 −1 0 0 0 −1 0 −1
0 2 1 1 1 0 0 1
0 d3 0 d3 d3/2 1 1 w3

8

 .

Note that we have w3 ∈ cone(w4, w7) as well as w1 + w6 = w7. Furthermore, w8

lies on the same side of the hypersurface H17 through w1 and w7 as w3 and on the
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same side of the hypersurface H37 through w3 and w7 as w2. Thus the weights are
arranged as follows, where w8 lies somewhere in the gray-shaded area:

w1

w3

w5

w4

w2

w7w6
H17

H37

We conclude that X is of type No. 32, since the semiample cone of X is given by
the intersection of Q(γ237), Q(γ367), Q(γ378) and Q(γ178).

In the second subcase, we have d1 = 0 and Remark 3.2.5 together with γ327

and γ427 yields w3
7 = 1 − d3 as well as 0 = d3(w2

7 + 2). The same remark together
with γ387 and γ487 shows that 0 = d3(1 − w2

7w
1
8) holds. If d3 6= 0 held, then we

would have w2
7 = −2 and w2

7w
1
8 = 1, a contradiction. Thus, d3 = 0 and w3

7 = 1 hold.
Remark 3.2.5 applied to γ187 and to γ387 yields w2

7w
3
8 = 0 as well as w1

8 = w3
8 − 1.

Thus we have the following two possibilities for Q:
The first possibility is that w2

7 = 0 holds, i.e. Q is given by

Q =

 1 −1 0 0 0 0 1 w3
8 − 1

0 2 1 1 1 0 0 1
0 0 0 0 0 1 1 w3

8

 .

Note that we have w1 + w6 = w7. Furthermore, w8 lies on the same side of the
hypersurface H16 through w1 and w6 as w3 and on the same side of the hypersur-
face H37 through w3 and w7 as w2. Thus the weights are arranged as follows, where
w8 lies somewhere in the gray-shaded area:

w1

w3, w4, w5

w2

w6 w7
H16

H37

We conclude that X is of type No. 23, since the semiample cone of X is given by
the intersection of Q(γ237), Q(γ367), Q(γ378) and Q(γ178).

The second possibility is that w3
8 = 0 and w1

8 = −1 hold. Here, Q is given by

Q =

 1 −1 0 0 0 0 1 −1
0 2 1 1 1 0 w2

7 1
0 0 0 0 0 1 1 0

 .

Note that we have w3 + w8 = w2. Furthermore, w7 lies on the same side of the
hypersurface H13 through w1 and w3 as w6 and on the same side of the hypersurface
H36 through w3 and w6 as w1. Thus the weights are arranged as follows, where w7

lies somewhere in the gray-shaded area:
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w1

w3, w4, w5

w2

w8

w6

H13

H36

We conclude that X is of type No. 24, since the semiample cone of X is given by
the intersection of Q(γ237) and Q(γ136).

Case (vi): We show that this case leads to Nos. 25 and 33 in Theorem 3.3.6.

Remark 3.2.5 applied to γ367 and to γ168 yields w1
7 = 1 = w2

8. The same remark
together with γ267 and with γ467 shows that w2

7 = −1 and d1 = 0 hold. Again
Remark 3.2.5, this time applied to γ187 and to γ387, yields w3

8 = 1 − w3
7 as well

as 0 = w3
7(w1

8 + 1) (∗). Furthermore, we have

1 = det(w2, w8, w7) = 2 det(w3, w8, w7)− det(w1, w8, w7)− d3(w1
8 + 1) .

We conclude that d3(w1
8 + 1) = 0 holds. Together with (∗), we obtain the two

subcases d3 = 0 = w3
7 and w1

8 = −1.
In the first subcase, Q is given by

Q =

 1 −1 0 0 0 0 1 w1
8

0 2 1 1 1 0 −1 1
0 0 0 0 0 1 0 1

 .

Note that we have w3 + w7 = w1. Furthermore, w8 lies on the same side of the
hypersurface H13 through w1 and w3 as w6 and on the same side of the hyper-
surface H16 through w1 and w6 as w3. Thus the weights are arranged as follows,
where w8 lies somewhere in the gray-shaded area:

w1

w3, w4, w5

w2

w7

w6

H13

H16

We have Q(γ136) ∩Q(γ178) ⊆ Q(γ186), which shows that the semiample cone of X
is given by Q(γ136) ∩Q(γ178), i.e. X is of type No. 25.

In the second subcase, Q is given by

Q =

 1 −1 0 0 0 0 1 −1
0 2 1 1 1 0 −1 1
0 d3 0 d3 d3/2 1 w3

7 1− w3
7

 .

Note that we have w3 ∈ cone(w4, w6) as well as w7 + w8 = w6. Furthermore, w8

lies on the same side of the hypersurface H16 through w1 and w6 as w3 and on the
opposite side of the hypersurface H26 through w2 and w6 as w1. Thus the weights
are arranged as follows, where w8 lies somewhere in the gray-shaded area:
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w1

w3

w5

w4

w2

w6
H16

H26

Since we have Q(γ267) ⊆ Q(γ278) ∩ Q(γ136), we conclude that the semiample cone
of X is given by the intersection of Q(γ136), Q(γ367), Q(γ168) and Q(γ278). Hence, X
is of type No. 33.

Case (vii): We show that this case leads to No. 34 in Theorems 3.3.6.

Remark 3.2.5 applied to γ137 and to γ138 yields w3
7 = 1 = w3

8. The same remark
together with γ268 and γ468 yields w1

8 = −w2
8 as well as 1 = −w2

8(d1 + 1). Thus
we obtain d1 = 0, w2

8 = −1 or d1 = −2, w2
8 = 1. If d1 = −2, w2

8 = 1 held, then
Remark 3.2.5 applied to γ238 would yield d3 = 4, contradicting d3 ≤ 0. Hence we
obtain d1 = 0, w2

8 = −1. Remark 3.2.5 applied to γ238, γ147 and to γ478 yields d3 =
−2, w2

7 = 0 as well as w1
7 = 0. Hence, Q is given by

Q =

 1 −1 0 0 0 0 0 1
0 2 1 1 1 0 0 −1
0 −2 0 −2 −1 1 1 1

 .

Note that the weights are arranged as follows:

w1

w3

w5
w4

w2

w6, w7

w8

We conclude that X is of type No. 34, since the semiample cone of X is given by
the intersection of Q(γ136) and Q(γ138).

Case (viii): We show that this case leads to No. 35 in Theorem 3.3.6.

Applying Remark 3.2.5 to γ138, γ268, γ468 and to γ238 as in case (vii), we obtain d1 =
0 and w8 = (1,−1, 1). Analogously we conclude that w7 = (1,−1, 1) holds. Fur-
thermore, Remark 3.2.5 applied to γ238 yields d3 = −2. Hence, Q is given by

Q =

 1 −1 0 0 0 0 1 1
0 2 1 1 1 0 −1 −1
0 −2 0 −2 −1 1 1 1

 .

Note that the weights are arranged as follows:

w1

w3

w5
w4

w2

w6

w7, w8

We conclude that X is of type No. 35, since the semiample cone of X is given by
the intersection of Q(γ136) and Q(γ138).
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Case (ix): We show that this case leads to No. 36 in Theorem 3.3.6.

As in case (viii), we obtain w7 = (1,−1, 1) and d1 = 0. Applying Remark 3.2.5
to γ368, γ237, γ268 and to γ378 shows that w1

8 = 1, d3 = −2, w2
8 = −1 and w83 = 0

hold. Hence, Q is given by

Q =

 1 −1 0 0 0 0 1 1
0 2 1 1 1 0 −1 −1
0 −2 0 −2 −1 1 1 0

 .

Note that we have 2w6 + w4 = w3, w7 + w5 = w1, w8 + w6 = w7, w8 + w3 = w1 as
well as w2 + w8 = w4. Hence the weights are arranged as follows:

w1

w2

w3

w5

w4

w6

w7

w8

We conclude that X is of type No. 36, since the semiample cone of X is given by
the intersection of Q(γ136) and Q(γ137).

Case (x): We show that this case leads to No. 37 in Theorem 3.3.6.

As in case (viii), we obtain w7 = (1,−1, 1) and d1 = 0. Applying Remark 3.2.5
to γ186, γ187, γ237 and to γ487, shows that w2

8 = 1, w3
8 = 0, d3 = −2 and w1

8 = −1
hold. Hence, Q is given by

Q =

 1 −1 0 0 0 0 1 −1
0 2 1 1 1 0 −1 1
0 −2 0 −2 −1 1 1 0

 .

Note that we have 2w6 + w4 = w3, w7 + w5 = w1, w8 + w7 = w6, w8 + w1 = w3 as
well as w4 + w8 = w2. Hence the weights are arranged as follows:

w3

w4

w1

w5

w2

w7

w6

w8

We conclude that X is of type No. 37, since the semiample cone of X is given by
the intersection of Q(γ136) and Q(γ137).

Cases (xi)-(xiv): We show that there are no smooth varieties in these cases.

Note that in all these cases there is 7 ≤ ` ≤ 8 such that γ14`, γ24`, γ26` and γ36`

are relevant faces. Applying Remark 3.2.5 to γ36` and γ26` shows w2
` (1− d1) = −1

and w1
` = 1. We conclude that we have either w2

` = −1, d1 = 0 or w2
` = 1, d1 = 2.
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If w2
` = −1 and d1 = 0 held, Remark 3.2.5 together with γ24` and γ14` would

yield w3
` = −1 and d3 = 2, contradicting d3 ≤ 0. Thus we obtain w2

` = 1 and
d1 = 2. Now again Remark 3.2.5, applied this time to γ14` and to γ24`, yields
d3 = −4 and w3

` = −3. But since Q(γ136) ⊆ Q3
≥0 as well as w3

1 = 0 holds,
w3
` , w

3
4 = d3 < 0 contradict Q(γ136)◦ ∩ Q(γ14`)

◦ 6= ∅. Hence there are no smooth
varieties in these cases. �



CHAPTER 4

Base point free questions

This chapter investigates the base point free monoid, i.e. the monoid of base
point free Cartier divisor classes of a Mori dream space, and also concerns Fu-
jita’s base point free conjecture. Part of this chapter, namely Section 4.1 and
Sections 4.7 – 4.9, have been presented in [26].

Section 4.1 deals with embedded monoids, that means finitely generated monoids
in finitely generated abelian groups, and thereby generalizes ideas of the theory on
affine semigroups [18, Chapter 2] to monoids with non-trivial torsion part. In the
subsequent sections, to be precise in Sections 4.2 – 4.4, we investigate the base point
free monoid, first of a toric variety, then of a Mori dream space and finally of a variety
with a torus action of complexity one. It is well-known that for Cartier divisor
classes on complete toric varieties, semiampleness implies base point freeness, i.e. in
this case, the base point free monoid is saturated. For smooth rational projective
varieties with a torus action of complexity one and Picard number two, the same
statement follows from the classification done in Chapter two, but the assertion
is no longer true if we consider locally factorial varieties of Picard number two or
smooth varieties of arbitrary Picard number, see Example 4.5.1 and Example 4.8.4,
respectively. In this chapter, we give some criteria for the base point free monoid
to be saturated. As a further base point free question, we study Fujita’s base point
free conjecture. Recall that in the end of the eighties, Takao Fujita conjectured the
following:

Conjecture 4.0.1. (Fujita’s base point free conjecture [32]) Let X be a
smooth projective variety with canonical class KX . Then KX + mL is base point
free for all m ≥ dim(X) + 1 and for all ample Cartier divisor classes L.

We prove some sufficient criteria for a variety to fulfill Conjecture 4.0.1 in
Sections 4.2 – 4.4. As an application of the classifications done in Chapters two
and three, we furthermore provide sample classes of varieties fulfilling Fujita’s base
point free conjecture, see Corollaries 4.3.9 and 4.4.14.

Note that for varieties X = X(R,F,Φ) arising from a bunched ring, Con-
jecture 4.0.1 is a question of the study of monoids: It is sufficient to show that
KX + (dim(X) + 1)L is an element of the conductor ideal of the base point free
monoid for all ample Cartier divisor classes L. With this in mind, in Sections 4.5
and 4.6, we investigate Fujita’s base point free conjecture for singular rational va-
rieties with a torus action of complexity one and Picard number at most two using
Frobenius numbers and their generalization to higher dimensions.

In Sections 4.7 – 4.9 that form the final part of the chapter, we present and
prove algorithms concerning embedded monoids and base point free questions of
Mori dream spaces. Section 4.7 deals with algorithms for embedded monoids,
among others for computing generators of intersections of embedded monoids and
for computing an element of the conductor ideal; see Algorithms 4.7.1, 4.7.3, 4.7.5
and 4.7.7. In Section 4.8, we apply these algorithms to base point free questions
of Mori dream spaces. Section 4.9 contains our main algorithm, Algorithm 4.9.4,
which tests Fujita’s base point free conjecture for Q-factorial Mori dream spaces

137
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with known canonical class KX . The latter is quite often the case; for instance if X
is spherical or if its Cox ring is a complete intersection, see Remark 4.9.1 for details.

In [27], we provide an implementation of our algorithms building on the two
Maple-based software packages convex [29] and MDSpackage [38]. Using this imple-
mentation, we present a first example of a smooth K∗-surface having a semiample
Cartier divisor with base points, see Example 4.8.4, and we prove Fujita’s base point
free conjecture for a six-dimensional Mori dream space, see Example 4.9.5.

4.1. Embedded monoids

This section concerns numerical monoids and their generalizations to monoids
in higher dimensions having possibly non-trivial torsion part. We present asser-
tions such as Lemma 4.1.13 and Proposition 4.1.15 concerning the intersection of
monoids. We will need these statements later on when investigating the base point
free monoid of Mori dream spaces. Moreover, we provide lemmata concerning the
Frobenius number and the conductor ideal which will be crucial for the investigation
of Fujita’s base point free conjecture for varieties with a torus action of complexity
one and Picard number one and two, see Sections 4.5 and 4.6.

A monoid S ⊆ N is called a numerical monoid if linZ(S) = Z holds. Note that a
monoid S = linZ≥0

(w1, . . . , wr), wi ∈ Z≥1, is a numerical monoid if and only if the
integers w1, . . . , wr are coprime. For a numerical monoid S = linZ≥0

(w1, . . . , wr)
generated by wi ∈ Z≥1, the Frobenius number F(S) = F(w1, . . . , wr) is the least
integer x ∈ Z such that x+n ∈ S holds for all n ∈ Z≥1. In this case, x+ 1 is called
conductor of S. The Frobenius problem, i.e. the problem of finding the Frobenius
number, has attracted substantial attention, see, for instance, [5, 62]. For r = 2
one can use Sylvester’s formula to compute the Frobenius number.

Proposition 4.1.1. (Sylvester’s formula [66]) We have F(w1, w2) = w1w2 −
w1 − w2 for any two coprime integers w1, w2 ∈ Z≥0.

For r ≥ 3, it is in some sense not possible to determine the Frobenius number
via a formula. Indeed, Curtis [22] proved the following:

Proposition 4.1.2. [22] There is no finite set {f1, . . . , fn} of polynomials such that
for each choice of integers w1, w2, w3 ∈ Z≥1 whose greatest common divisor is one,
there is some 1 ≤ i ≤ n such that fi(w1, w2, w3) = F(w1, w2, w3) holds.

Nevertheless, there are many formulas for special cases of F(w1, . . . , wr) as well
as upper and lower bounds. For a comprehensive overview see [5]. Here we give
some formulas for computing the Frobenius number which we will need later on.

Lemma 4.1.3. [15] Let w1, . . . , wr ∈ Z≥1 be integers whose greatest common divisor
is one and set d := gcd(w1, . . . , wr−1). Then the following holds for the Frobenius
number of the numerical monoid S = linZ(w1, . . . , wr):

F(w1, . . . , wr) = dF
(w1

d
, . . . ,

wr−1

d
,wr

)
+ (d− 1)wr .

Lemma 4.1.4. Let l1, . . . , lr ∈ Z≥1 be integers whose greatest common divisor is
one and set w` := l1 · · · l`−1l`+1 · · · lr. Then the following holds for the Frobenius
number of the numerical monoid S = linZ(w1, . . . , wr):

F(w1, . . . , wr) = (r − 1)

r∏
i=1

li −
r∑
`=1

w` .

Proof. We proceed by induction on r. For r = 1, l1 = 1 = w1 holds. We thus
obtain F(w1) = −1, which coincides with the formula one the right-hand side. For
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r = 2, the above formula equals Sylvester’s formula. Now assume that the statement
is true for F(w1, . . . , wr−1). We obtain

F(w1, . . . , wr) = lr F

(
r−1∏
i=1
i6=1

li, . . . ,

r−1∏
i=1
i 6=r−1

li, wr

)
+ (lr − 1)wr

= lr

(
(r − 2)

r−1∏
i=1

li −
r−1∑
`=1

r−1∏
i=1
i 6=`

li

)
+ (lr − 1)wr

= (r − 1)

r∏
i=1

li −
r∑
`=1

w` ,

where the first equality holds according to Lemma 4.1.3 and in the second step we
may apply the induction hypothesis since wr is a multiple of l1 · · · l`−1l`+1 · · · lr−1.

�

In the following, we consider monoids in arbitrary finitely generated abelian
groups and generalize concepts presented in [18, Chapter 2] to this case. Let K be
a finitely generated abelian group. We denote by K = K0⊕Ktor the decomposition
of K into free and torsion part and we write KQ := K ⊗Z Q for the associated
rational vector space. Note that each w ∈ K = K0 ⊕Ktor can be represented as
w = (w0, wtor) with unique elements w0 ∈ K0 and wtor ∈ Ktor. Every w ∈ K
defines an element w ⊗ 1 ∈ KQ, which we denote as well by w for short. A cone
in a rational vector space always refers to a convex, polyhedral cone. The relative
interior of a cone τ ⊆ KQ is denoted by τ◦.

By an embedded monoid we mean a pair S ⊆ K, where S is a finitely generated
submonoid of K. For an embedded monoid S ⊆ K, we denote by

cone(S) := cone(w ⊗ 1; w ∈ S) ⊆ KQ

the (convex, polyhedral) cone generated by the elements of S. An embedded monoid
S ⊆ K is spanning if S generates K as a group, i.e. if linZ(S) = K holds. In par-
ticular, numerical monoids are spanning embedded monoids S ⊆ Z. The saturation
of an embedded monoid S ⊆ K is the embedded monoid

S̃ := {w ∈ K; nw ∈ S for some n ∈ Z≥1} ⊆ K .

An embedded monoid S ⊆ K is called saturated if S = S̃ holds. Note that the
saturation S̃ ⊆ K of S ⊆ K consists of all w ∈ K defining an element in cone(S) ⊆
KQ, i.e. we have the following:

Remark 4.1.5. Let S ⊆ K be an embedded monoid. The saturation of S is given as

S̃ = ι−1(cone(S)) = ι−1
0

(
cone

(
x0 ⊗ 1; x ∈ S

))
×Ktor,

where ι and ι0 are the maps K → K ⊗ Q and K0 → K0 ⊗ Q defined through
w 7→ w ⊗ 1.

Proof. Let C := cone
(
x0 ⊗ 1; x ∈ S

)
. We will show that S̃ = ι−1

0 (C)×Ktor holds.
For the first inclusion, let s = (s0, stor) ∈ S̃, i.e. s is an element of K and there is
an integer α ∈ Z≥1 s.t. αs ∈ S holds. This yields stor ∈ Ktor and αs0 ⊗ 1 ∈ C.
Since C is convex, we conclude that s0⊗ 1 is contained in C, i.e. we showed that s0

is contained in ι−1
0 (C). For the opposite inclusion let s = (s0, stor) ∈ ι−1

0 (C)×Ktor,
i.e. s0 =

∑r
i=1 αix

0
i holds with some αi ∈ Q≥0 and xi ∈ S. Since stor as well

as the xtor
i are elements of Ktor, there are m ∈ Z≥1 and ni ∈ Z≥1 such that

mstor = nix
tor
i = 0Ktor holds. Set n := lcm(m,n1, . . . , nr) and denote by d the
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common denominator of the αi. Then we have

dns = dn
(
(s0, 0Ktor) + (0K0 , stor)

)
= dn

(
r∑
i=1

αix
0
i , 0Ktor

)
+ dn

(
0K0 , stor

)
=

(
n

r∑
i=1

dαix
0
i ,

r∑
i=1

dαi(nx
tor
i )

)
+ d

(
n0K0 , nstor

)
= n

r∑
i=1

dαixi + 0K .

Note that the dαi are integers and that xi and 0K are elements of S. Hence the
last line and thus also dns is contained in S. This shows that s ∈ S̃ holds. �

Lemma 4.1.6. Let S ⊆ K be an embedded monoid. If S is generated by dim(S)
elements, then S ⊆ linZ(S) is a saturated embedded monoid.

Proof. Let w ∈ linZ(S) and n, r ∈ Z≥1 such that nw ∈ S and r = dim(S) hold.
Consider generators s1, . . . , sr ∈ S for S. Then there are ai ∈ Z and bi ∈ Z≥0 such
that w =

∑r
i=1 aisi and nw =

∑r
i=1 bisi holds. In particular, this gives

r∑
i=1

ais
0
i = w0 =

r∑
i=1

bi
n
s0
i .

Note that (s0
1, . . . , s

0
r) is a linearly independent family over Q since r = dim(S)

holds. Thus, we conclude that ai = bi/n holds for i = 1, . . . , r. In particular, the
integers ai are greater than or equal to zero, which means that w is contained in S.
Thus, S is saturated. �

Remark 4.1.7. Let F : K → K ′ be a homomorphism of finitely generated abelian
groups.

(i) If S ⊆ K is a spanning embedded monoid, then F (S) ⊆ F (K) is so.
(ii) If S′ ⊆ K ′ is a spanning embedded monoid, then F (S′)−1 ⊆ K is so.

Let S ⊆ K be an embedded monoid. A non-empty set M ⊆ K is called an
S-module if S + M ⊆ M holds. We call an S-module M an ideal if M ⊆ S holds
and finitely generated if there is a finite subset {m1, . . . ,m`} ⊆M with the property
that M = {s+m1, . . . , s+m`; s ∈ S} holds.
Lemma 4.1.8. Let S ⊆ K be an embedded monoid. Consider x1, . . . , xr ∈ S such
that {x1 ⊗ 1, . . . , xr ⊗ 1} is a set of generators for cone(S). Then the finite set

M := ι−1

({
r∑
i=1

αi(xi ⊗ 1); αi ∈ Q, 0 ≤ αi ≤ 1

})
,

where ι is the map ι : K → K ⊗ Q, w 7→ w ⊗ 1, generates S̃ as an S-module. In
particular, S̃ is a finitely generated S-module.

Proof. By Remark 4.1.5, S̃ is an S-module. In case of a torsion-free group K,
the statement on finite generation of S̃ as an S-module is Gordan’s Lemma [21,
Prop. 1.2.17]. The proof extends to the case of finitely generated abelian groups as
follows: Denote by ι0 the map K0 → K0 ⊗Q, w 7→ w ⊗ 1. Since the set

M0 := ι−1
0

({
r∑
i=1

αix
0
i ; αi ∈ Q, 0 ≤ αi ≤ 1

})
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is bounded and since Ktor is a finite group, M = M0 × Ktor is a finite set, say
M = {m1, . . . ,m`} with certain elements mi ∈ S̃. We claim that

S̃ =
⋃̀
i=1

(mi + S)

holds, i.e. that M generates the S-module S̃. With Remark 4.1.5, the inclusion “⊇”
is obvious. For the other inclusion, let y ∈ S̃. We have y = (y0, ytor), where y0 ∈
ι−1
0 (cone(x0 ⊗ 1; x ∈ S)) ∩ K0 and ytor ∈ Ktor hold. Pick αi ∈ Q≥0 such that
y0 =

∑r
i=1 αix

0
i holds. We obtain

y =
( r∑
i=1

αix
0
i , ytor

)
=

( r∑
i=1

bαicx0
i +

r∑
i=1

(αi − bαic)x0
i , ytor

)
=

r∑
i=1

bαicxi +
( r∑
i=1

(αi − bαic)x0
i , ytor −

r∑
i=1

bαicxtor
i

)
,

where y and the first summand in the bottommost line are contained in K. Thus
the same holds for the second summand in the bottommost line. Furthermore, we
have 0 ≤ (αi − bαic) ≤ 1, i.e. the second summand in the bottommost line is one
of the mi’s, say mi0 . Note that

∑r
i=1bαicxi is an element of S. Thus we showed

that y ∈ S +mi0 holds, which completes the proof. �

Definition 4.1.9. Let S ⊆ K be an embedded monoid. The conductor ideal of
S ⊆ K is the subset

c(S̃/S) := {x ∈ S; x+ S̃ ⊆ S} ⊆ S .

element of S

element of S̃ \ S

cone(S)

element of c(S̃/S)

Proposition 4.1.10. Let S ⊆ K be an embedded monoid. If S ⊆ K is spanning,
then the conductor ideal c(S̃/S) is non-empty, i.e. it is in particular an S-module.

Proof. By definition, S + c(S̃/S) ⊆ c(S̃/S) holds, i.e. we only have to show that
c(S̃/S) is non-empty. In case of a torsion-free group K, one can find a proof in [18,
Prop. 2.33]. For finitely generated abelian groups we may extend the proof as
follows: According to Lemma 4.1.8, we have S̃ = {m1 + s, . . . ,m` + s; s ∈ S} with
some finite subset {m1, . . . ,m`} ⊆ S̃. By assumption, the embedded monoid S ⊆ K
is spanning. This yields representations mi = xi − yi with xi, yi ∈ S. We claim
that z :=

∑`
i=1 yi is contained in the conductor ideal c(S̃/S). Indeed

z +mj =
∑

1≤i≤`
i 6=j

yi + xj ∈ S

holds for all 1 ≤ j ≤ `, i.e. we have z + S̃ ⊆ S. �
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Corollary 4.1.11. Let S ⊆ K be a spanning embedded monoid and letM be defined
as in Lemma 4.1.8. Then the following are equivalent for w ∈ K:

(i) The conductor ideal c(S̃/S) contains w.
(ii) For all m ∈M , w +m is contained in S.

Lemma 4.1.12. Let S ⊆ K be a spanning embedded monoid and consider an ideal
S0 ⊆ S. If S ⊆ K is spanning, then the same holds for S0 ⊆ K. In particular,
c(S̃/S) ⊆ K then is a spanning embedded monoid.

Proof. We show that linZ(S0) ⊇ K holds if S ⊆ K is spanning. Let x ∈ S0. Since S0

is an S-module, S = −x + x + S is contained in linZ(S0). In particular, we have
linZ(S0) ⊇ linZ(S) = K. The supplement is due to Proposition 4.1.10. �

Lemma 4.1.13. Let K be a finitely generated abelian group and consider two sub-
groups K1,K2 ⊆ K. Let Si ⊆ Ki be embedded monoids with saturations S̃i. Then
the following holds for the intersection S12 := S1 ∩ S2:

(i) The intersection S12 ⊆ K1 ∩K2 is an embedded monoid.
(ii) We have S̃12 = S̃1∩ S̃2, where S̃12 denotes the saturation of the embedded

monoid S12 ⊆ K1 ∩K2.
(iii) We have c(S̃1/S1) ∩ c(S̃2/S2) ⊆ c(S̃12/S12).

Proof. For (i), only the finite generation of S1 ∩ S2 needs some explanation, see for
instance [3, Prop. 1.1.2.2]. To prove the first inclusion of (ii), let x ∈ S̃12. This
means that we have x ∈ K1 ∩K2 and that there is n ∈ Z≥1 such that nx ∈ S1 ∩ S2

holds. Clearly, this shows x ∈ S̃1∩S̃2. To prove the second inclusion, let x ∈ S̃1∩S̃2.
Hence x ∈ K1 ∩K2 holds and there are n1, n2 ∈ Z≥1 such that nix ∈ Si, i = 1, 2

hold. This means that n1n2x is contained in S1 ∩S2, i.e. we have x ∈ S̃12. For (iii),
consider an element x ∈ c(S̃1/S1) ∩ c(S̃2/S2). This means that x is contained in
the intersection S12 and x + S̃i ⊆ Si holds. With (ii), we conclude that x + S̃12 is
contained in S12, i.e. the conductor ideal of S12 ⊆ linZ(S12) contains x. �

Example 4.1.14. Assertion (iii) of Lemma 4.1.13 is in general a proper inclusion:
Consider the embedded monoids S1 := 3Z≥0 ⊆ K1 := 3Z and S2 := linZ≥0

(6, 10) ⊆
K2 := 2Z. Then the situation is as follows,

0 5 10 15 20

S1 ⊆ 3Z

S2 ⊆ 2Z

S12 ⊆ 6Z

where the gray-shaded area indicates the conductor ideals of the monoids S1, S2

and S12, i.e. we have c(S̃1/S1) = 3Z≥0, c(S̃2/S2) = 16 + 2Z≥0 and c(S̃12/S12) =
6Z≥0. Note that the latter is a proper superset of

c(S̃1/S1) ∩ c(S̃2/S2) = 18 + 6Z≥0 .

Proposition 4.1.15. Let K1 and K2 be subgroups of a finitely generated abelian
group K and consider embedded monoids Si ⊆ Ki, i = 1, 2. If cone(S1)◦∩cone(S2)◦

is non-empty and Si ⊆ Ki is spanning for i = 1, 2, then S1 ∩ S2 ⊆ K1 ∩ K2 is a
spanning embedded monoid.

Proof. We denote by S12 the intersection of S1 and S2. Note that S12 ⊆ K1 ∩K2

is an embedded monoid by Lemma 4.1.13 (i). Clearly, the group generated by S12

is contained in K1 ∩ K2. It remains to show the opposite inclusion. We denote
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by ι1, ι2 and ι12 the maps defined by w 7→ w⊗ 1 fitting into the following diagram:

K1
ι1 // K1 ⊗Q ⊇ cone(S1)

K1 ∩K2
⊆

ι12 //
⊇

(K1 ∩K2)⊗Q

⊆
⊇

τ := cone(S1)◦ ∩ cone(S2)◦⊇

K2
ι2 // K2 ⊗Q ⊇ cone(S2) .

Because of τ 6= ∅, the rank of K1 ∩K2 and the dimension of τ coincide. Thus there
are elements

b1, . . . , br ∈ ι−1
12 (τ) ⊆ ι−1

1 (cone(S1)) ∩ ι−1
2 (cone(S2)) = S̃1 ∩ S̃2

generating K1 ∩K2 as a group. Furthermore τ 6= ∅ implies that there is an element
x ∈ K1 ∩ K2 such that x ⊗ 1 ∈ τ holds. Recall that Si ⊆ Ki are spanning
monoids and thus Proposition 4.1.10 shows that their conductor ideals are non-
empty. Since c(S̃i/Si) contains some shifted copy of S̃i, there are some mi ∈ Z≥1,
i = 1, 2, such that the integer multiple mix is contained in c(S̃i/Si), i = 1, 2. Hence
withm := m1m2, we havemx ∈ C := c(S̃1/S1)∩c(S̃2/S2). In particular, C contains
the set of generators {mx,mx+ b1, . . . ,mx+ br} for K1 ∩K2. It follows that

K1 ∩K2 = linZ(C) ⊆ linZ(c(S̃12/S12)) ⊆ linZ(S12)

holds, where the inclusion in the middle was shown in Lemma 4.1.13 (iii) and the
inclusion on the right-hand side follows since c(S̃12/S12) is non-empty by the same
Lemma and thus contains some shifted copy of S12. �

Example 4.1.16. Note that without the assumption cone(S1)◦ ∩ cone(S2)◦ 6= ∅,
Proposition 4.1.15 is in general not true: For the spanning embedded monoids
Z≥0, Z≤0 ⊆ Z the intersection Z≥0 ∩ Z≤0 = {0} ⊆ Z is not spanning.

Following ideas of Assi [4], we now construct an explicit point gS of the con-
ductor ideal of an embedded monoid S ⊆ K. Our setting is slightly more general
than Assi’s. We will make use of gS in our investigation of Fujita’s base point free
conjecture for varieties with a torus action of complexity one and Picard number
two in Section 4.6.

Setting 4.1.17. Consider vectors w1, . . . , wr ∈ Zr being linearly independent
over Q and let Zr 3 wr+1, . . . wr+t ∈ cone(w1, . . . , wr). For all 1 ≤ j ≤ t + 1,
we denote by Dj the greatest common divisor of the (r × r)-minors of the matrix
(w1, . . . , wr+j−1). Let S := linZ≥0

(w1, . . . , wr+t) and K := linZ(w1, . . . , wr+t).

Remark 4.1.18. In the setting of 4.1.17 the following holds:

(i) The quotient Dj
Dj+1

is an integer for all 1 ≤ j ≤ t.
(ii) Each element w ∈ K has a representation w =

∑r+t
i=1 λiwi with integers λi

s.t. 0 ≤ λr+j < Dj/Dj+1 holds for all j = 1, . . . t.

Proof. Assertion (i) follows directly from the definition of the Dj and Assertion (ii)
was proven in [61], Lemma 1.3. �

Lemma 4.1.19. (cf. [4], Thm. 1.1) In the setting of 4.1.17, we consider the
spanning embedded monoid S ⊆ K and denote by ι the map K → K⊗Q, w 7→ w⊗1.
If we set

gS :=

t∑
j=1

(
Dj

Dj+1
− 1

)
wr+j −

r∑
i=1

wi ∈ K ,

then gS + ι−1(cone(S)◦) is a subset of c(S̃/S).
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Proof. Let v ∈ gS + ι−1(cone(S)◦), i.e. we have v = gS + u with some u ∈
ι−1(cone(S)◦) and some v ∈ K. We need to show that v + ṽ is contained in S,
where ṽ denotes an arbitrary element of S̃. Since v + ṽ is an element of K, Re-
mark 4.1.18 (ii) yields a representation

v + ṽ =

r+t∑
i=1

λiwi (?)

with integers λi s.t. 0 ≤ λr+j <
Dj
Dj+1

holds for all j = 1, . . . t. Together with the
equality gS + u+ ṽ = v + ṽ, we obtain

t∑
j=1

(
Dj

Dj+1
− 1− λr+j

)
wr+j + u+ ṽ =

r∑
i=1

(λi + 1)wi.

Note that Dj/Dj+1 − 1− λr+j ≥ 0 holds and that ṽ, wr+1, . . . wr+t define elements
of cone(w1, . . . , wr) = cone(S). Since u defines an element of the relative interior
of cone(S), the same holds for the entire sum on the left-hand side. It follows that
λi + 1 > 0 holds for all 1 ≤ i ≤ r, which means that all coefficients λi in (?)
are greater than or equal to zero. This shows that v + ṽ is an element of the
monoid S. �

4.2. Base point free monoid of non-complete toric varieties

We study the monoid of base point free Cartier divisor classes of a toric variety.
In the subsequent sections, we will apply the results of this section to the toric
ambient variety ZΣ of a Mori dream space X. Since ZΣ is in general not complete,
we treat the case of non-complete toric varieties. Note that the corresponding
statements for complete toric varieties and varieties arising from bunched rings are
well-known; see, for instance, [21, 3, 11, 35].

Setting 4.2.1. Let N be a lattice and let v1, . . . , vr ∈ N be pairwise different primi-
tive vectors generating NQ as a vector space. Set F := Zr and denote by P : F → N
the linear map sending the i-th canonical basis vector fi ∈ F to vi ∈ N . Then we
have mutually dual exact sequences

0 // L // F
P // N,

0 oo K oo
Q

E oo
P∗

M oo 0 ,

where P ∗ is the dual map of P and Q : E → K := E/P ∗(M) denotes the projection.
We write δ ⊆ FQ and γ ⊆ EQ for the respective positive orthants. Then γ is the
dual cone of δ and we have the bijective face correspondence

faces(δ) → faces(γ), δ0 7→ δ∗0 := δ⊥0 ∩ γ.
Let Σ be a fan in N having as its one-dimensional cones the rays %i := cone(vi),
where i = 1, . . . , r. For every cone σ ∈ Σ, we denote by σ̂ � δ the unique face with
P (σ̂) = σ. The covering collection of Σ consists of faces of γ ∈ EQ and is given by

cov(Σ) := {σ̂∗ � γ; σ ∈ Σmax} .
Now we consider the toric variety Z = ZΣ associated with the fan Σ. Its acting
torus is TN := Spec(K[M ]). Denote by e1, . . . , er the canonical base vectors of E.
Recall that the divisor class group of Z is given as Cl(Z) = K, where the class
of the torus-invariant prime divisor Di := TN · z%i ⊆ Z corresponding to the ray
%i ∈ Σ is identified with wi := Q(ei) ∈ K.
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In the above situation, let m ∈M . Recall that the character χm : TN → K∗ as-
sociated withm defines a rational function in K(Z)∗. According to [21, Prop. 4.1.2],
the principal divisor div(χm) is given by

div(χm) =

r∑
i=1

〈m, vi〉Di .

Furthermore, according to [21, Thm. 4.2.8], a Weil divisor D =
∑
aiDi is Cartier if

and only if for all maximal cones σ ∈ Σ there is mσ ∈M such that 〈mσ, vi〉 = −ai
holds for all vi ∈ σ. In this case, we have D|Zσ = div(χ−mσ )|Zσ , where Zσ denotes
the affine toric variety associated with σ.

If X is a variety arising from a bunched ring (R,F,Φ) and if Σ is the fan of its
minimal toric ambient variety, then we have cov(Σ) = cov(Φ).

Lemma 4.2.2. In Setting 4.2.1, consider w ∈ K and σ̂∗ ∈ cov(Σ). By Zσ we denote
the affine toric variety associated with σ. Consider a Weil divisor D =

∑
aiDi such

that w = [D] holds. Then the following statements are equivalent:
(i) We have w ∈ Q(σ̂∗ ∩ E).
(ii) There is mσ ∈ M such that div(χ−mσ )|Zσ = D|Zσ and 〈mσ, vi〉 ≥ −ai

hold for all 1 ≤ i ≤ r.
Furthermore, if one of the statements is fulfilled, then Bs(w) ⊆

⋃
vi /∈σDi holds.

Proof. Statement (i) is equivalent to the existence of an element eσ ∈ σ̂∗ ∩ E such
that Q(eσ) = w holds. The exactness of the above mutually dual sequences yields
an element mσ ∈ M such that P ∗(mσ) = eσ − a holds for a = (a1, . . . , ar) ∈ E.
Note that

〈mσ, vi〉 = 〈P ∗(mσ), fi〉
= 〈eσ, fi〉 − 〈a, fi〉
= 〈eσ, fi〉 − ai

holds. This implies that statement (i) is equivalent to the existence of an ele-
ment mσ ∈ M such that 〈mσ, vi〉 ≥ −ai holds for all 1 ≤ i ≤ r, with equality in
case vi is a ray of σ. Since the latter means that div(χ−mσ )|Zσ equals D|Zσ , we
showed the equivalence of statements (i) and (ii). For the supplement note that χmσ
is a global section of the sheaf OZ(D) associated with the Weil divisor D, i.e. the
base locus Bs(w) is a subset of the support of the D-divisor

divD(χmσ ) =

r∑
i=1

(ai + 〈mσ, vi〉)Di.

Furthermore, since 〈mσ, vi〉 = −ai holds for all 1 ≤ i ≤ r with vi ∈ σ, we obtain
that Supp(divD(χmσ )) ⊆

⋃
vi /∈σDi holds. �

Lemma 4.2.3. In Setting 4.2.1, let w := [D] ∈ Cl(Z) be a Weil divisor class. Then
the base locus of w is given by

Bs(w) =
⋂
m∈M

divD(χm)≥0

Supp(divD(χm)).

Proof. Since χm ∈ Γ(Z,OZ(D)) holds for all m ∈ M with divD(χm) ≥ 0, inclu-
sion “⊆” is obvious. For the other inclusion, let z ∈ Z such that z ∈ Supp(divD(χm))
holds for all m ∈ M with divD(χm) ≥ 0. Consider the characteristic space
pZ : Ẑ → Z and ẑ ∈ p−1

Z (z) such thatHZ ·ẑ ⊆ Ẑ is closed. Then [3, Corollary 1.6.2.2]
shows that χm(ẑ) = 0 holds for all m ∈M with divD(χm) ≥ 0. Since Γ(X,OZ(D))
is spanned by the characters χm with divD(χm) ≥ 0, this means that f(z) = 0
holds for all f ∈ Γ(X,OZ(D)). We apply again [3, Corollary 1.6.2.2] to see that
this means z ∈ Supp(divD(f)) for all f ∈ Γ(Z,OZ(D)), i.e. z ∈ Bs(w) holds. �
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Definition 4.2.4. Let X be an irreducible normal prevariety. The embedded
monoid of base point free Cartier divisor classes in the Picard group is called base
point free monoid of X; we denote it by BPF(X) ⊆ Pic(X).

The following Proposition is well-known for varieties arising from a bunched
ring, see [11, 35, 3].

Proposition 4.2.5. In Setting 4.2.1, we have the following statements:
(i) The Picard group Pic(Z) is given as a subgroup of Cl(Z) by

Pic(Z) =
⋂

σ̂∗∈cov(Σ)

Q(lin(σ̂∗) ∩ E).

(ii) The base locus of a Weil divisor class w ∈ K is the following union of
toric orbits Z(σ) ⊆ Z, σ ∈ Σ:

Bs(w) =
⋃

w 6∈Q(σ̂∗∩E)

Z(σ).

(iii) The monoid BPF(Z) of base point free Cartier divisor classes of Z is
given by

BPF(Z) =
⋂

σ̂∗∈cov(Σ)

Q(σ̂∗ ∩ E).

Proof. We prove (i). For the proof of inclusion “⊆”, let w ∈ Pic(Z). This means
that w = [D] holds with a Cartier divisor D =

∑
aiDi, i.e. for all σ ∈ Σmax there

is an element mσ ∈ M such that div(χ−mσ )|Zσ = D|Zσ holds, where Zσ denotes
the affine toric variety associated with σ. The latter is equivalent to 〈mσ, vi〉 = −ai
for all vi ∈ σ. Let eσ := a − P ∗(−mσ), where we set a := (a1, . . . , ar). We show
that eσ ∈ lin(σ̂∗) ∩ E holds. Clearly, we have eσ ∈ E. Furthermore, note that

〈fi, eσ〉 = 〈fi, a〉 − 〈fi, P ∗(−mσ)〉
= ai − 〈P (fi),−mσ〉
= 0

holds for all 1 ≤ i ≤ r with vi ∈ σ, i.e. eσ is indeed an element of lin(σ̂∗) ∩ E. We
conclude that

w = Q(a) = Q(eσ + P ∗(−mσ)) = Q(eσ) + 0 ∈ Q(lin(σ̂∗) ∩ E)

holds for all σ ∈ Σmax, where we used Q(P ∗(mσ)) = 0. For the opposite inclusion
assume that w is contained in Q(lin(σ̂∗) ∩ E) for all maximal cones σ ∈ Σ. This
means that for all σ ∈ Σmax there is eσ ∈ lin(σ̂∗) ∩ E such that Q(eσ) = w holds.
We choose an element a ∈ E that is contained in the fiber Q−1(w). Then eσ − a is
an element of ker (Q) = im (P ∗), i.e. for all σ ∈ Σmax there exists mσ ∈M such that
P ∗(mσ) = eσ−a holds. For a maximal cone σ ∈ Σmax and the primitive generators
vi ∈ σ of its rays we have the following:

〈mσ, vi〉 = 〈P ∗(mσ), fi〉
= 〈eσ, fi〉 − 〈a, fi〉
= −ai.

Thus the mσ define local data for the Cartier divisor D =
∑
aiDi whose class is

given by w = [D], i.e. w ∈ Pic(Z) holds.
To prove assertion (ii), let D =

∑
aiDi be a Weil divisor with [D] = w. We

first prove the inclusion “⊆”. Let z ∈ Bs(w). There is exactly one cone σ ∈ Σ
with the property that z ∈ Z(σ) holds. We need to show that w is not contained
in Q(σ̂∗ ∩ E). If w was an element of Q(σ̂∗ ∩ E), then Lemma 4.2.2 would imply
that Bs(w) ⊆

⋃
vi /∈σDi holds. But since z is an element of the orbit Z(σ), z is

contained in Di if and only if vi ∈ σ holds. This contradicts z ∈ Bs(w) ⊆
⋃
vi /∈σDi.
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Thus we have w /∈ Q(σ̂∗ ∩ E). To prove the other inclusion, let σ ∈ Σ such that
w /∈ Q(σ̂∗ ∩ E) holds and consider an element z ∈ Z(σ). We assume that z is
not contained in Bs(w). Then there is a global section f ∈ Γ(Z,OZ(D)) such that
z /∈ Supp(divD(f)) holds. According to Lemma 4.2.3, we may assume that f = χm

holds with some m ∈M such that 〈vi,m〉 ≥ −ai holds for all 1 ≤ i ≤ r. Note that
we have

divD(χm) =

r∑
i=1

(ai + 〈m, vi〉)Di .

Since z ∈ Z(σ) is not contained in Supp(divD(χm)), we have 〈m, vi〉 = −ai for all
1 ≤ i ≤ r such that vi is contained in σ. This means that div(χ−mσ )|Zσ = D|Zσ
holds. Thus, Lemma 4.2.2 yields w ∈ Q(σ̂∗ ∩ E), contradicting the assumption.
Hence, z is contained in Bs(w). Assertion (iii) is an easy consequence of (ii). �

Proposition 4.2.6. In Setting 4.2.1, let σ ∈ Σ be a full-dimensional maximal cone.
Then the embedded monoid Q(σ̂∗ ∩E) ⊆ Q(lin(σ̂∗)∩E) is saturated. In particular,
if all maximal cones of Σ are of full dimension in NQ, then BPF(Z) ⊆ Pic(Z) is a
saturated embedded monoid.

Proof. Consider a maximal full-dimensional cone σ ∈ Σ. Then σ ⊆ NQ is gen-
erated by some of the vi’s. After suitable renumbering of variables we have σ =
cone(v1, . . . , vs) for some s ≤ r. The Gale dual cone Q(σ̂∗) is generated by the
complementary weights wj , that means by ws+1, . . . , wr. By assumption, v1, . . . , vs
generate NQ. According to [10, Lem. 8.1.(ii)], the family (ws+1, . . . , wr) thus is lin-
early independent in KQ. Hence we may use Lemma 4.1.6 to see that Q(σ̂∗ ∩E) ⊆
Q(lin(σ̂∗) ∩ E) is saturated. The supplement follows since the intersection of satu-
rated embedded monoids is again saturated, see Lemma 4.1.13 (ii). �

Remark 4.2.7. Fujita proved in [31, Thm. 1], that KX + mL is nef for all m ≥
dim(X) + 1 and for all L ∈ Ample(X) ∩ Pic(X) if X is an irreducible smooth
projective variety. A result of Maeda [51] shows the same for irreducible normal
log terminal projective varieties. In particular, irreducible normal log terminal
projective varieties whose base point free monoid is saturated fulfill Fujita’s base
point free conjecture.

We derive the following well-known [31, 58] result for complete toric varieties:

Corollary 4.2.8. If Z is a complete toric variety, then BPF(Z) ⊆ Pic(Z) is satu-
rated. In particular if X is log terminal and projective, then X fulfills Fujita’s base
point free conjecture (4.0.1).

4.3. Base point free monoid of Mori dream spaces

In Section 4.3 we study the base point free monoid BPF(X) of a variety X
arising from a bunched ring and show that BPF(X) coincides with the base point
free monoid of its minimal ambient toric variety ZΣ. This means in particular, that
the study of base point free questions for varieties X(R,F,Φ) can be reduced to the
study of base point free questions of non-complete toric varieties. We give criteria
for BPF(X) to be saturated and criteria for X fulfilling Fujita’s base point free
conjecture, see, for instance, Corollaries 4.3.5, 4.3.8 and 4.3.16. As an application,
we show in Corollaries 4.3.6, 4.3.7 and 4.3.9 that the intrinsic quadrics of the clas-
sification done in Chapter three have a saturated base point free monoid and fulfill
Fujita’s base point free conjecture.

Lemma 4.3.1. Consider a variety X = X(R,F,Φ) together with its minimal toric
ambient variety Z = ZΣ and pick a class w ∈ Pic(X) = Pic(Z). Then w ∈ Pic(X)
is base point free if and only if its corresponding class w ∈ Pic(Z) is base point free.
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In particular, this means that the base point free monoid of X coincides with that
of Z, i.e. we have

BPF(X) = BPF(Z) .

Proof. According to Proposition 4.2.5, the base locus BZ(w) ⊆ Z of w ∈ Pic(Z) is
the union of all toric orbits Z(σ) such that w 6∈ Q(σ̂∗∩E) and σ ∈ Σ hold. Similarly,
[3, Prop. 3.3.2.8] states that the base locus BX(w) ⊆ X of w ∈ Pic(X) is the union
of all pieces X(σ̂∗) such that w 6∈ Q(σ̂∗∩E) and σ̂∗ ∈ rlv(Φ) hold. We want to show
that BX(w) is non-empty if and only if BZ(w) is non-empty. Since each element
σ̂∗ ∈ rlv(Φ) corresponds to a cone σ ∈ Σ, BX(w) 6= ∅ implies BZ(w) 6= ∅. For
the opposite direction, assume that BZ(w) is non-empty. Since the base locus of
a Weil divisor is by definition a closed set, there is a cone σ ∈ Σmax such that
w 6∈ Q(σ̂∗ ∩ E) holds. But the cones τ ∈ Σmax are precisely those cones of Σ such
that τ̂∗ ∈ cov(Φ) holds, which shows that X(σ̂∗) is a subset of BX(w), i.e. BX(w)
is non-empty. In particular, we conclude that the base point free monoids of X and
of Z coincide. �

For projective varieties, any Cartier divisor is the difference of two very ample
divisors [23, 1.20]. Thus, the base point free monoid of projective varieties is a
spanning embedded monoid. By Proposition 4.1.10, this means in particular that
its conductor ideal is non-empty. For Mori dream spaces, we obtain the same result
in the following Corollary. Moreover, we give a description of BPF(X) in terms of
the covering collection and the degree map Q : E → Cl(X), ei 7→ deg(fi).

Corollary 4.3.2. The base point free monoid of X = X(R,F,Φ) is the embedded
monoid given by

BPF(X) =
⋂

γ0∈cov(Φ)

Q(γ0 ∩ E) ⊆ Pic(X) .

If X is projective, then the conductor ideal of BPF(X) ⊆ Pic(X) is non-empty.

Proof. The representation of BPF(X) as intersection of the monoids Q(γ0 ∩ E),
γ0 ∈ cov(Φ), is an immediate consequence of Proposition 4.2.5 and Lemma 4.3.1.
Note that if X is projective, then we have Φ = Φ(u) for some ample u ∈ Cl(X).
In particular, the cones Q(γ0)◦, γ0 ∈ cov(Φ), intersect non-trivially. Using Propo-
sition 4.1.15, we conclude that BPF(X) ⊆ Pic(X) is a spanning embedded monoid.
By Proposition 4.1.10, this means that its conductor ideal is non-empty. �

Example 4.3.3. Consider the surface X = X(R,F,Φ) associated with the bunched
ring given by R = C[T1, . . . , T4)/〈T 5

1 T2 +T 3
3 +T 2

4 〉 with degree matrix Q = [1, 1, 2, 3]
and bunch defined by any divisor class u ∈ Mov(X)◦. Denote by e1, . . . , e4 the
canonical base vectors of E := Z4. For indices 1 ≤ `1 < . . . < `s ≤ 4 we set as
before

γ`1...`s := cone(e`1 , . . . , e`s) .

With this, the covering collection of X is given by cov(Φ) = {γ1, γ2, γ34}. Thus,
the Picard group of X is Z and the base point free monoid of X is the monoid

BPF(X) = Q(γ1 ∩ E) ∩Q(γ2 ∩ E) ∩Q(γ34 ∩ E) = linZ≥0
(2, 3) .

BPF(X) ⊆ Z

Note that the monoids Q(γi ∩ E), i = 1, 2, correspond to full-dimensional cones in
the fan Σ of the minimal ambient toric variety of X and are saturated. Hence we
have BPF(X) = Q(γ34 ∩ E).

Corollary 4.3.4. Consider a variety X = X(R,F,Φ) together with its minimal
toric ambient variety Z = ZΣ. If all maximal cones of Σ are of full dimension
in NQ, then BPF(X) ⊆ Pic(X) is a saturated embedded monoid.
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Corollary 4.3.5. Consider a variety X = X(R,F,Φ) together with its minimal
toric ambient variety Z = ZΣ. If for all maximal cones of Σ that are not full-
dimensional, the monoid Q(σ̂∗∩E) ⊆ Q(lin(σ̂∗)∩E) is saturated, then the embedded
monoid BPF(X) ⊆ Pic(X) is saturated.

Corollary 4.3.6. Let X be a smooth intrinsic quadric of Picard number at most
two. Then BPF(X) ⊆ Cl(X) is saturated.

Proof. In Proposition 3.2.1 we showed that in Picard number one, there is only
one smooth intrinsic quadric X per dimension with generator degrees deg(Ti) =
1 ∈ Cl(X). In particular, BPF(X) ⊆ Cl(X) is saturated. Now let X be a smooth
intrinsic quadric of Picard number two. In Chapter three we showed that X arises
from Construction 3.2.7. By going through the settings of Construction 3.2.7, we
show that BPF(X) ⊆ Cl(X) is saturated. Denote by e1, . . . , er+t the canonical base
vectors of E := Zr+t. For indices 1 ≤ `1 < . . . < `s ≤ r + t we set as before

γ`1...`s := cone(e`1 , . . . , e`s) .

In caseX arises from Setting 1 or 2 in Construction 3.2.7, the covering collection
of X equals

{γij ; 1 ≤ i ≤ k, 1 ≤ j ≤ t} ,
where k = r − 1, r odd or k = r, r even hold. Note that all maximal cones of Σ
are of dimension r + t − 2 which equals dim(NQ), i.e. all maximal cones of Σ are
full-dimensional. Thus BPF(X) ⊆ Pic(X) is saturated by Corollary 4.3.4.

In case X arises from Setting 4 in Construction 3.2.7, the covering collection
of X equals

{γij ; 1 ≤ i ≤ r, 1 ≤ j ≤ t, i odd} ∪ {γij ; 1 ≤ i, j ≤ r, i odd, j even, i+ 1 6= j} .

Note that again all maximal cones of Σ are of dimension r+t−2 = dim(NQ), i.e. all
maximal cones of Σ are full-dimensional. Thus BPF(X) ⊆ Cl(X) is saturated by
Corollary 4.3.4.

In case X arises from Setting 3 in Construction 3.2.7, the covering collection
of X contains the faces

{γij ; i ∈ {1, 3, 4 . . . , k}, 1 ≤ j ≤ t} ∪ {γ2i; 3 ≤ i ≤ k} ,

where k = r− 1, r odd, or k = r, r even, hold. Note that these faces all correspond
to maximal cones of Σ that are full-dimensional. If r is even, the above list of cones
is exactly the covering collection of X. If r is odd, then the covering collection
of X contains in addition the cone γ12r, whose corresponding cone P (γ∗12r) is of
dimension r+t−3 = dim(X) which is strictly smaller than dim(Z) = dim(NQ). But
since Q(γ12r∩E) = linZ≥0

((0, 1), (2, 1), (1, 1)) holds, we conclude that Q(γ12r∩E) ⊆
linZ(Q(γ12r ∩ E)) is saturated. Corollary 4.3.5 shows that BPF(X) ⊆ Cl(X) is
saturated. �

Corollary 4.3.7. Let X be a smooth intrinsic quadric of Picard number three and
dimension at most four. Then BPF(X) ⊆ Cl(X) is saturated.

Proof. In Chapter three we showed that X is isomorphic to a variety arising from
the tables in Theorems 3.3.5 and 3.3.6. According to Corollary 4.3.5, we only need to
consider those members γ0 of the covering collections that are of dimension strictly
greater than ρ(X). By going through the cases we conclude that BPF(X) ⊆ Cl(X)
is saturated. �

Corollary 4.3.8. Consider a variety X = X(R,F,Φ) together with its minimal
toric ambient variety Z = ZΣ. If the embedded monoid BPF(X) ⊆ Pic(X) is
saturated, for instance if all maximal cones of Σ are of full dimension in NQ, and if
one of the following criteria holds, then X fulfills Fujita’s base point free conjecture,
Conjecture 4.0.1.
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(i) The variety X is projective and log terminal.
(ii) The divisor class KX is semiample.

Proof. Item (ii) is obvious and item (i) is a direct consequence of the result of
Maeda [51], cf. Remark 4.2.7. �

Corollary 4.3.9. If X is a smooth intrinsic quadric of Picard number at most two,
then X fulfills Fujita’s base point free conjecture, Conjecture 4.0.1, i.e. KX + mL
is base point free for all m ≥ dim(X) + 1 and for all ample Weil divisor classes L.

We now turn to the description of BPF(X) in terms of the toric completions of
the toric minimal ambient variety of X.

Lemma 4.3.10. Consider a complete lattice fan (Σ, N) with minimal ray gener-
ators v1, . . . , vr and with the Gale dual maps P : F → N and Q : E → K as in
Setting 4.2.1. For a cone τ ∈ Σ, we have

Q(τ̂∗ ∩ E) = linZ
(
wi; ei ∈ σ̂∗ for some σ ∈ star(τ) ∩ Σmax

)
.

Proof. Since Σ is a complete fan, the cone τ is the intersection of all cones σ ∈ Σmax

such that τ is a face of σ. This yields

τ̂ =
⋂

σ∈star(τ)∩Σmax

σ̂ .

Dualising implies that τ̂∗ is the sum of all σ̂∗ such that σ ∈ star(τ) ∩ Σmax holds.
Hence we observe that

Q(τ̂∗ ∩ E) = Q

(( ∑
σ∈star(τ)∩Σmax

σ̂∗
)
∩ E

)

= Q

(
linZ(ei; ei ∈ σ̂∗ for some σ ∈ star(τ) ∩ Σmax)

)
holds. The assertion then follows since Q is a homomorphism. �

For the remaining part of Section 4.3, we introduce the following notation:

Setting 4.3.11. LetX = X(R,F,Φ) be a projective Q-factorial variety arising from
a bunched ring (R,F,Φ). By S := BPF(X) we denote the base point free monoid
of X, by S̃ ⊆ Pic(X) its saturation and by HX = Spec(K[Cl(X)]) the quasitorus
associated with Cl(X). Let κ1, . . . , κt ∈ Λ(Z,HX) be the full-dimensional GIT-
cones with κi ⊆ SAmple(X). By Σi we denote the fan arising from κi and by Φi
the corresponding bunch. Note that each Σi contains the fan Σ of the minimal toric
ambient variety ZΣ of X as a subfan. This means that the toric varieties Zi arising
from the fans Σi are toric completions of ZΣ.

Lemma 4.3.12. In Setting 4.3.11, assume that there is 1 ≤ i ≤ t such that there is
a maximal regular cone σ ∈ Σi. Then the embedded monoid Q(σ̂∗∩E) ⊆ K = Cl(X)
is saturated and spanning.

Proof. As a full-dimensional regular cone of the complete fan Σi, the number of rays
of σ equals the dimension of NQ. By Gale duality, this means that σ̂∗ has ρ(X) rays,
i.e. Q(σ̂∗∩E) is generated by ρ(X)-many elements. Since κi is full-dimensional and
sind κ◦i ⊆ Q(σ̂∗)◦ holds, the dimension ofQ(σ̂∗∩E) equals ρ(X). Thus, Lemma 4.1.6
implies that the embedded monoid Q(σ̂∗∩E) ⊆ linZ(Q(σ̂∗∩E)) is saturated. Since
σ is regular, Remark 1.3.3 tells that Q(σ̂∗ ∩ E) generates K as an abelian group.
Hence we showed that Q(σ̂∗ ∩ E) ⊆ K is saturated and spanning. �

Lemma 4.3.13. In Setting 4.3.11 consider a cone τ ∈ Σmax. If there exists an
index 1 ≤ i ≤ t and a regular cone σ ∈ Σmax

i ∩ star(τ), then the embedded monoid
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Q(τ̂∗ ∩ E) ∩ (ι−1(κi) × Ktor) ⊆ K is saturated, where ι denotes the map K →
KQ, w 7→ w ⊗ 1.

Proof. Lemma 4.3.12 shows that Q(σ̂∗ ∩ E) ⊆ K is saturated. Together with
Lemma 4.1.13 (iii) we conclude that this also holds for Q(σ̂∗∩E)∩ (ι−1(κi)×Ktor).
By Lemma 4.3.10, the weights wi, ei ∈ σ̂∗, are among the generators of Q(τ̂∗ ∩E).
This shows that Q(τ̂∗ ∩ E) ∩ (ι−1(κi)×Ktor) is saturated. �

Corollary 4.3.14. In Setting 4.3.11 consider a cone τ ∈ Σmax. If for all 1 ≤ i ≤ t
there exists a regular cone σi ∈ Σmax

i ∩star(τ), then Q(τ̂∗∩E)∩ S̃ ⊆ K is saturated.

Proof. Lemma 4.3.13 shows that Q(τ̂∗ ∩E)∩ (ι−1(κi)×Ktor) ⊆ K is saturated for
all 1 ≤ i ≤ t. Since the saturation S̃ of BPF(X) is contained in the union of all
κi ×Ktor, 1 ≤ i ≤ t, this implies that Q(τ̂∗ ∩ E) ∩ S̃ ⊆ K is saturated. �

Definition 4.3.15. In Setting 4.3.11 we call X virtually singular if there exist
1 ≤ i ≤ t and σ ∈ Σmax such that all cones in Σmax

i ∩ star(σ) are singular.

Corollary 4.3.16. Let X be as in Setting 4.3.11. If X is not virtually singular,
then BPF(X) ⊆ K is saturated.

Proof. Since X is not virtually singular, for all 1 ≤ i ≤ t and for all τ ∈ Σmax there
is a regular cone σi,τ ∈ Σmax

i ∩ star(τ). Corollary 4.3.14 implies that all embedded
monoids Q(τ̂∗ ∩ E) ∩ S̃ are saturated in K. Thus Lemma 4.1.13 (ii) completes
the proof. �

Lemma 4.3.17. Let X be as in Setting 4.3.11. If there is a relevant face γ0 ∈ rlv(Φ)
such that Q(γ0 ∩ E) ⊆ K is not saturated and the cone Q(γ0) has at most ρ(X)
rays, then each toric completion Zi is singular.

Proof. Since X is Q-factorial, Q(γ0) is full-dimensional and has thus exactly ρ(X)
rays. For each ray %j of Q(γ0) we choose a canonical base vector e%j of E such
that e%j ∈ γ0 and Q(e%j ) ∈ %j hold. By γ1 we denote the cone generated by
all vectors e%j . Then γ1 is a ρ(X)-dimensional face of γ0 and Q(γ0) = Q(γ1)
holds. By assumption the embedded monoid Q(γ0 ∩ E) ⊆ K is not saturated
and thus the same holds for its submonoid Q(γ1 ∩ E) ⊆ K. Since Q(γ1 ∩ E) is
generated by dim(Q(γ1))-many elements, Lemma 4.1.6 implies that Q(γ1 ∩E) does
not generate K as an abelian group, i.e. the cone P (γ∗1 ) is not regular. Note that
SAmple(X) ⊆ Q(γ0) = Q(γ1) holds and each κi is contained in the semiample cone
of X. Thus, the cone γ1 is a relevant face for all toric completions of X arising from
κ1, . . . , κt, which proves the statement. �

Corollary 4.3.18. Let X be as in Setting 4.3.11. If there is 1 ≤ i ≤ t such that Zi
is regular, then all Q(γ0 ∩ E) such that γ0 ∈ rlv(Φ) holds and such that Q(γ0) has
at most ρ(X) rays, are saturated.

Corollary 4.3.19. Let X be as in Setting 4.3.11. If X is of Picard number at most
two and if there is 1 ≤ i ≤ t such that Zi is regular, then BPF(X) is saturated
in K.

4.4. Base point free monoid of T -varieties of complexity one

The objective of this section is to give some criteria for the base point free
monoid of varieties with a torus action of complexity one to be saturated, for in-
stance in terms of big and leaf cones, see Corollary 4.4.9. As an application, we
show that an irreducible smooth rational projective non-toric variety with a torus
action of complexity one and of Picard number at most two has a saturated base
point free monoid and in particular fulfills Fujita’s base point free conjecture, see
Corollary 4.4.13 and Corollary 4.4.14, respectively. In Corollary 4.4.8, we show that
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for Q-factorial projective varieties with a torus action of complexity one that are
not weakly tropical, the Picard group is torsion-free.

Lemma 4.4.1. Consider a variety X(A,P,Φ) with a torus action of complexity one
and consider γ0 ∈ rlv(Φ). Then the following holds for the number of generators
of Q(γ0 ∩ E) and the number of rays of P (γ∗0 ):

# gen. of Q(γ0 ∩ E) # rays of P (γ∗0 )

P (γ∗0) leaf cone, X Q-factorial ≥ ρ(X) + r − 1 ≤ dim(X)

P (γ∗0) ∈ Σmax leaf cone, X complete
and Q-factorial

= ρ(X) + r − 1 = dim(X)

P (γ∗0) big cone ≤ dim(X) + ρ(X)− 2 ≥ r + 1

P (γ∗0) elementary big cone = dim(X) + ρ(X)− 2 = r + 1

Proof. For a Q-factorial varietyX, all cones of the fan of the canonical toric ambient
variety are simplicial. This implies that the number of rays of a leaf cone P (γ∗0 )
is bounded from above by dim(X). Therefore the dimension of the corresponding
Gale dual F-face γ0 is bounded from below by n + m − dim(X) = r − 1 + ρ(X).
For complete X the tropical variety trop(X) is contained in the support of the
fan Σ of the minimal toric ambient variety of X. Since the leaves of trop(X) are
of the same dimension as X, we conclude that the leaf cones P (γ∗0) ∈ Σmax have
exactly dim(X)-many rays if X is complete. In particular, the corresponding Gale
dual F-faces γ0 ∈ cov(Φ) then have exactly n + m − dim(X) = ρ(X) + r − 1 rays.
Big cones P (γ∗0 ) have at least r + 1 rays, hence the number of rays of γ0 is at
most n + m − (r + 1) = dim(X) + ρ(X) − 2. In case of elementary big cones,
equality holds. �

Lemma 4.4.2. Consider a non-toric variety X = X(A,P, u). If there exists γ0 ∈
rlv(u) whose dimension is strictly greater than ρ(X), then there exists a proper face
γ1 ≺ γ0 such that u is contained in the relative interior of Q(γ1).

Proof. We set wij := Q(eij), wk := Q(ek) and

I := {ij, k; eij , ek ∈ γ0, wij , wk are contained in a ray of Q(γ0)}.

Now consider the cone σ := cone(wij , wk; ij, k ∈ I) ⊆ KQ. Since theK-grading of R
is pointed, Q(γ0) equals σ and hence u ∈ σ◦ holds. Thus Carathéodory’s Theorem
implies the existence of a subset B ⊆ I such that u is contained in the relative
interior of cone(wij , wk; ij, k,∈ B) and such that the family (wij , wk; ij, k ∈ B)
is linearly independent. The latter implies that γ1 := cone(eij , ek; ij, k ∈ B) is a
proper face of γ0. Hence γ1 is as wanted. �

Lemma 4.4.3. Let X = X(A,P, u) be a non-toric variety and consider γ0 ∈ cov(u).
If there exists a proper face γ1 ≺ γ0 such that u ∈ Q(γ1)◦ holds, then P (γ∗0) ∈ Σ is
a leaf cone.

Proof. Since γ0 is a minimal element of rlv(u), the face γ1 � γ is not a relevant
face. But Q(γ1) contains u in its relative interior, which means that γ1 � γ is not
an F-face. In particular, P (γ∗1 ) is not a big cone, i.e. P (γ∗1) ∩ relint(λi) = ∅ holds
for a leaf λi of the tropical variety of X. Hence P (γ∗0) � P (γ∗1 ) implies that P (γ∗0 )
is not a big cone, either. But all F-faces define either big or leaf cones, so P (γ∗0 ) is
a leaf cone. �

Corollary 4.4.4. Let X = X(A,P, u) be a non-toric variety and consider γ0 ∈
cov(u). If the dimension of γ0 is strictly greater than ρ(X), the corresponding Gale
dual cone P (γ∗0 ) is a leaf cone.

As a consequence of Corollary 4.4.4, we may enlarge the table from Lemma 4.4.1
in the case of Q-factorial varieties X(A,P, u):
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Corollary 4.4.5. Consider a non-toric Q-factorial variety X = X(A,P, u) and
let γ0 ∈ cov(u) such that P (γ∗0 ) is a big cone. Then the following holds:

(i) The dimension of γ0 is exactly ρ(X).
(ii) The dimension of P (γ∗0 ) is exactly dim(X) + r − 1.

In particular, P (γ∗0) is an elementary big cone if and only if X is a surface.

Proof. According to Corollary 4.4.4, the dimension of γ0 is less than or equal
to ρ(X). Note that Q-factoriality of X implies that Q(γ0) is of full dimension, hence
the dimension of γ0 is at least ρ(X). Together, this proves (i). Via Gale duality the
first assertion implies that the number of rays of P (γ∗0 ) is exactly dim(X) + r − 1.
Since X is Q-factorial, the cone P (γ∗0 ) is simplicial, which proves the second asser-
tion. The supplement follows since an elementary big cone has exactly r+1 rays. �

Corollary 4.4.6. Let X = X(A,P, u) be a non-toric Q-factorial variety. Then the
maximal big cones σ ∈ Σ are full-dimensional. In particular, each big cone in the
fan Σ of the minimal toric ambient variety of X is a face of a full-dimensional big
cone σ ∈ Σmax.

Proof. We showed in Corollary 4.4.5 that a maximal big cone is of dimension
dim(X) + r − 1 = r + s = dim(NQ), i.e. it is full-dimensional. Since each big
cone τ ∈ Σ is a face of a maximal big cone σ ∈ Σmax, the assertion follows. �

Corollary 4.4.7. Let X = X(A,P, u) be a non-toric Q-factorial variety and con-
sider γ0 ∈ cov(u). If Q(γ0∩E)∩Pic(X) is not saturated in Pic(X), the correspond-
ing Gale dual cone P (γ∗0) is a leaf cone.

Proof. Since X is Q-factorial, Corollary 4.4.6 shows that the maximal big cones of Σ
are full-dimensional. Hence Proposition 4.2.6 implies that for a big cone σ ∈ Σmax,
the embedded monoid Q(σ̂∗ ∩ E) ⊆ Q(lin(σ̂∗) ∩ E) is saturated. Thus the second
assertion of Lemma 4.1.13 shows that Q(σ̂∗ ∩ E) ∩ Pic(X) ⊆ Pic(X) is saturated.
Since the embedded monoid Q(γ0 ∩ E) ∩ Pic(X) is not saturated in Pic(X), we
conclude that P (γ∗0 ) is a leaf cone. �

Corollary 4.4.8. Let X = X(A,P, u) be a non-toric variety being not weakly
tropical. Then the following hold:

(i) If X is Q-factorial, the Picard group Pic(X) of X is torsion-free.
(ii) If X is locally factorial, the class group Cl(X) of X is torsion-free.

Proof. Since X is not weakly tropical, there exists a big cone τ in the fan Σ of
the minimal toric ambient variety Z of X. If X is Q-factorial, Corollary 4.4.6
shows that τ is contained in a full-dimensional big cone σ ∈ Σ. The existence of
a full-dimensional cone in the fan Σ implies that the Picard group of Z is torsion-
free. Since the Picard groups of X and Z coincide, this yields the first assertion.
To prove the second item, note that via Gale duality, σ corresponds to a relevant
face γ0 ∈ rlv(u) having dimension ρ(X). This means that the monoid Q(γ0 ∩E) ⊆
Cl(X) has ρ(X) generators. If X is locally factorial, then Q(γ0∩E) generates Cl(X)
as an abelian group, i.e. Cl(X) is generated by ρ(X)-many elements. We conclude
that Cl(X) is torsion-free. �

Corollary 4.4.9. Let X = X(A,P, u) be a non-toric Q-factorial variety and denote
by Σ the fan of the minimal toric ambient variety of X. If one of the following
equivalent conditions is fulfilled, then BPF(X) ⊆ Pic(X) is saturated:

(i) The set Σmax contains no leaf cones.
(ii) Each leaf cone τ ∈ Σ is a face of a big cone σ ∈ Σ.
(iii) The covering collection cov(u) consists of ρ(X)-dimensional cones.
(iv) Σmax consists of cones having dim(X) + r − 1 rays.
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Proof. The fact that BPF(X) ⊆ Pic(X) is saturated if condition (i) holds is an
immediate consequence of Corollary 4.4.7. The equivalence of (i) and (ii) is obvious.
Via Gale duality, the members of the covering collection correspond to the cones
of Σmax, which proves the equivalence of (iii) and (iv). The implication “(i)⇒(iv)”
was proven in Corollary 4.4.5, while the reverse was shown in Lemma 4.4.1. �

Corollary 4.4.10. Let X = X(A,P, u) be a non-toric Q-factorial variety and
denote by Σ the fan of the minimal toric ambient variety of X. If one of the
criteria of Corollary 4.4.9 together with one of the following criteria is fulfilled,
then X fulfills Fujita’s base point free conjecture, Conjecture 4.0.1.

(i) The variety X is projective and log terminal.
(ii) The canonical class KX is semiample.

Corollary 4.4.11. Let X = X(A,P, u) be a non-toric Q-factorial variety and
denote by Σ the fan of the minimal toric ambient variety. If for all 0 ≤ i ≤ r∑

0≤`≤r
` 6=i

n` ≥ ρ(X) + r

holds, then Σ contains no maximal leaf cone. In particular, BPF(X) ⊆ Pic(X) is
then saturated.

Proof. Assume that there was a leaf cone σ ∈ Σmax. Lemma 4.4.1 explains that
the face γ0 ∈ cov(u) with σ := P (γ∗0 ) has exactly ρ(X) + r − 1 rays. Note that σ
is contained in a leaf λi0 of trop(X). Hence cone(eij) � γ0 holds for all 0 ≤ i ≤ r,
i 6= i0, 1 ≤ j ≤ ni. This means that

n0 + . . .+ ni0−1 + ni0+1 + . . .+ nr ≤ ρ(X) + r − 1

holds, contradicting the formula in the Corollary. We conclude that Σ contains no
maximal leaf cone. Thus Corollary 4.4.9 completes the proof. �

Corollary 4.4.12. Let X = X(A,P, u) be a non-toric Q-factorial variety and
denote by Σ the fan of the minimal toric ambient variety. If at least ρ(X) + 1

monomials T lii of the relations g0, . . . , gr−2 contain strictly more than one variable,
then Σ contains no maximal leaf cone. In particular, BPF(X) ⊆ Pic(X) then is
saturated.

Proof. Choose an index 0 ≤ i ≤ r. By assumption, at least ρ(X) elements of
the set {n0, . . . , ni−1, ni+1, . . . , nr} are strictly greater than one. Furthermore, the
remaining r − ρ(X) elements are greater than or equal to one. Hence the sum on
the left-hand side of Corollary 4.4.11 is at least 2ρ(X) + (r − ρ(X)), which equals
ρ(X) + r. Thus Corollary 4.4.11 completes the proof. �

Corollary 4.4.13. If X is an irreducible smooth rational projective non-toric vari-
ety of Picard number at most two admitting a torus action of complexity one, then
the base point free monoid of X is saturated.

Proof. In Picard number one, by a result of Liendo and Süß [49], X is either a
three- or a four-dimensional full intrinsic quadric with generator degrees deg(Ti) =
1 ∈ Cl(X), i.e. the base point free monoid of X is saturated.

In Picard number two, all irreducible smooth rational projective non-toric va-
rieties are isomorphic to a variety listed in Theorem 2.1.1. Note that according to
Corollary 4.4.12, varieties Nos. 1, 2, 4, 5, 6, 7, 8, 9 and 13 have a saturated base
point free monoid. Corollary 4.4.7 shows that for Nos. 3, 10, 11 and 12 it is sufficient
to consider the leaf cones P (γ∗0 ), γ0 ∈ cov(u). For varieties Nos. 3, 11 and 12, there
are no leaf cones in Σmax. For variety No. 10, the only leaf cone in Σmax is P (γ∗125),
where we set as before

γ`1...`s := cone(e`1 , . . . , e`s)
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with the canonical base vectors ei ∈ E = Zn+m. Since Q(γ125 ∩ E) defines a
saturated monoid in the class group of variety No. 10, the base point free monoid
of this variety is saturated. �

Corollary 4.4.14. If X is an irreducible smooth rational projective non-toric va-
riety of Picard number at most two admitting a torus action of complexity one,
then X fulfills Fujita’s base point free conjecture, Conjecture 4.0.1.

4.5. Base point free questions for T -varieties of complexity one and
Picard number one

We investigate the base point free monoid and Fujita’s base point free con-
jecture, Conjecture 4.0.1, for irreducible rational non-toric T -varieties of complex-
ity one and Picard number one. If X is smooth, then by a result of Liendo and
Süß [49], X is either a three- or a four-dimensional full intrinsic quadric with gen-
erator degrees deg(Ti) = 1 ∈ Cl(X). Thus its base point free monoid is saturated
andX fulfills Fujita’s base point free conjecture, Conjecture 4.0.1. In this section, we
generalize this result to the singular case: In Theorem 4.5.5, we use Frobenius num-
bers to show that rational non-toric Gorenstein varieties X(A,P, u) with Cl(X) = Z
fulfill Fujita’s base point free conjecture.

Example 4.5.1. Here we give an example of a series of locally factorial non-toric
rational varieties X with a torus action of complexity one and non-saturated base
point free monoid BPF(X) ⊆ Pic(X) = Z. Let x1, x2 ∈ Z≥2 be coprime integers,
i.e. there exist integers a1, a2 ∈ Z with −1 = a1 ·x1 +a2 ·x2, and set y := x1 ·x2−1.
Consider the matrices

P =

 −y −1 x2 0
−y −1 0 x1

1 0 a1 a2

 , A =

[
1 0 −1
0 1 −1

]
,

the graded ring R := R(A,P ) and the surface X := X(A,P, u) defined by any
element u ∈ Mov(R)◦. The grading of R and the covering collection of X are
given by

Q =
[

1 1 x1 x2

]
and cov(u) = {γ34, γ1, γ2} ,

where we set as before γ`1...`s := cone(e`1 , . . . , e`s) for the canonical base vectors
ei ∈ Z4. The base point free monoid of X is the numerical monoid BPF(X) =
linZ≥0

(x1, x2) and we can use Sylvester’s formula, Proposition 4.1.1, to compute its
Frobenius number:

F(BPF(X)) = x1 · x2 − x1 − x2 .

In particular, for any arbitrary natural numberm ∈ Z≥0 there exists a C∗-surface X
whose global bound nX ∈ Z≥0 such that nw is base point free for all ample divisor
classes w ∈ Cl(X) and all n ≥ nX is bigger than m.

Remark 4.5.2. Let X be any irreducible normal quasi-projective variety. If X ful-
fills Fujita’s base point free conjecture, Conjecture 4.0.1, then X is Gorenstein. This
means that in Proposition 4.5.4 and Theorem 4.5.5, it is no additional restriction
to assume that X is Gorenstein.

Proof. Consider m ≥ dim(X) +1 and L ∈ Ample(X)∩Pic(X). If X fulfills Fujita’s
base point free conjecture, then KX + mL is base point free. In particular, we
obtain KX +mL = L′ for some L′ ∈ Pic(X). Thus, KX = L′ −mL is contained in
the Picard group of X. �

Remark 4.5.3. Let X be a variety arising from a bunched ring. Denote by
L1, . . . ,Ls the ample elements of a Hilbert basis of the monoid of semiample Cartier
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divisor classes. Note that as a consequence of Corollary 4.3.2, a sufficient crite-
rion for X fulfilling Fujita’s base point conjecture, Conjecture 4.0.1, is that KX +
(dim(X) + 1)Li is an element of the conductor ideal of the base point free monoid
BPF(X) ⊆ Pic(X) for all L1, . . . ,Ls.
Proposition 4.5.4. Consider a non-toric Gorenstein variety X = X(A,P, u).
If ρ(X) = 1 holds and there are at least two monomials T lii with ni ≥ 2, then
KX +mL is base point free for all ample Cartier divisor classes L and for all m ≥
dim(X) + 1, i.e. X fulfills Fujita’s base point free conjecture, Conjecture 4.0.1.

Proof. After suitable admissible operations, there is 1 ≤ x ≤ r, x ≥ 2, such that
n0, . . . , nx ≥ 2 and nx+1, . . . , nr = 1 hold. We may apply Corollary 4.4.12 to see
that the covering collection of X consists of big cones. To be precise, we have

cov(u) = {cone(eij), cone(ek) ; 0 ≤ i ≤ x, 1 ≤ j ≤ ni, 1 ≤ k ≤ m} .

This implies that the Picard group of X is given by

Pic(X) =
⋂

0≤i≤x
1≤j≤ni

linZ(wij) ∩
⋂

1≤k≤m

linZ(wk) .

Since the grading of R(A,P ) is pointed, we may assume that w0
ij , w

0
k ∈ Z>0 hold.

Note that linZ(wij), 0 ≤ i ≤ x, and linZ(wk), 1 ≤ k ≤ m, are free Z-modules of rank
one isomorphic to w0

ijZ and to w0
kZ, respectively. Since Z is a principal domain and

Pic(X) is a submodule of the finitely generated free module linZ(w01) of rank one, we
conclude that Pic(X) is a free Z-module. This means that Pic(X) = linZ(L) holds
with some L ∈ Pic(X), L0 ∈ Z>0. In order to show thatX fulfills Fujita’s base point
free conjecture, it is thus enough to show that P := KX+(dim(X)+1)L is contained
in the conductor ideal of the embedded monoid BPF(X) ⊆ Pic(X). Note that by
the above formula for Pic(X), w0

ij , 0 ≤ i ≤ x, and w0
k, 1 ≤ k ≤ m, divide L0 and

thus w0
ij , w

0
k ≤ L0 holds for 0 ≤ i ≤ x, 1 ≤ k ≤ m (?). Furthermore Corollary 4.4.9

shows that the embedded monoid BPF(X) ⊆ Pic(X) is saturated. In order to prove
that X fulfills Fujita’s base point free conjecture, it hence remains to show that P 0

is strictly greater than zero. Note that wi1 ≤ deg(g0)/2 holds for x + 1 ≤ i ≤ r
since X is non-toric. Furthermore we have KX = (r − 1) deg(g0)−

∑
wij −

∑
wk.

Together with dim(X) + 1 =
∑x
i=0 ni − x+m+ 1 and (?), we obtain

P 0 = (r − 1) deg(g0)0 −
∑

0≤i≤x
1≤j≤ni

w0
ij −

r∑
i=x+1

w0
j1 −

m∑
k=1

w0
k

+ (

x∑
i=0

ni − x+m+ 1)L0

≥ (
r

2
+
x

2
− 1) deg(g0)0 −

∑
0≤i≤x
1≤j≤ni

w0
ij + (

x∑
i=0

ni − x+ 1)L0 .

We distinguish the following two cases:

(i) There is an index 0 ≤ i ≤ x, 1 ≤ j ≤ n0, with w0
ij = L0.

(ii) We have w0
ij < L0 for all 0 ≤ i ≤ x, 1 ≤ j ≤ n0.
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In the first case, i.e. if there is an index 0 ≤ i ≤ x, 1 ≤ j ≤ n0, with w0
ij = L0, the

free part
∑ni
j=1 lijw

0
ij of deg(g0) is strictly greater than L0. We obtain

P 0 ≥ (
r

2
+
x

2
− 1)(L0 + 1) −

∑
0≤i≤x
1≤j≤ni

w0
ij + (

x∑
i=0

ni − x+ 1)L0

≥ (
r

2
+
x

2
− 1)(L0 + 1) + (−x+ 1)L0

= (
r

2
+
x

2
− 1− x+ 1)L0 + (

r

2
+
x

2
− 1)

> 0 ,

where the last inequality is true since r is strictly greater than x. Now we treat
the second case, i.e. we assume that w0

ij < L0 holds for all 0 ≤ i ≤ x, 1 ≤ j ≤
n0. According to (?) we obtain w0

ij ≤ L0/2 for all 0 ≤ i ≤ x. With this and
with n0, . . . , nx ≥ 2 we then obtain

P 0 ≥ (
r

2
+
x

2
− 1) deg(g0)0 + (n0 + . . .+ nx)

L0

2
+ (−x+ 1)L0

≥ 0 + (2(x+ 1))
L0

2
+ (−x+ 1)L0

= 2L0 .

Since L0 > 0 holds, this completes the proof. �

Theorem 4.5.5. Let X = X(A,P, u) be a non-toric variety. If Cl(X) = Z holds
and if X is Gorenstein, then KX + mL is base point free for all ample Cartier
divisor classes L and for all m ≥ dim(X) + 1, i.e. X fulfills Fujita’s base point free
conjecture, Conjecture 4.0.1.

Proof. After suitable admissible operations, we have n0, . . . , nx ≥ 2 as well as
nx+1, . . . , nr = 1 for some 0 ≤ x ≤ r. Note that since the grading of R(A,P )
is pointed, we may assume that wij , wk > 0 hold. Furthermore, since Cl(X) = Z
holds, [3, Theorem 4.2.3 (iv)] implies that the exponents li1, where x + 1 ≤ i ≤ r,
are pairwise coprime. Since all monomials T lii are Cl(X)-homogeneous of the same
degree, we conclude that

wl1 = α

r∏
i=x+1
i 6=l

li1

holds for all x + 1 ≤ l ≤ r with some α ∈ Z. In particular, the degree of the
relations gi is given as deg(g0) = α lx+1,1 · · · lr1. Let L be the Picard index of X,
i.e. we set L := [Cl(X) : Pic(X)]. In order to prove that X fulfills Fujita’s base point
free conjecture, it is sufficient to show that P := KX + (dim(X) + 1)L is contained
in the conductor ideal of BPF(X) ⊆ Pic(X). We will show that this is true in each
of the three cases x = −1, x = 0 and x ≥ 1.

If x = −1 holds, then we have n0 = . . . = nr = 1 and the covering collection
of X is given by

cov(u) = {cone(ek), τ` ; 1 ≤ k ≤ m, 0 ≤ ` ≤ r} ,
where τ` := cone(ei1; 0 ≤ i ≤ r, i 6= `) holds. This implies that the Picard index
of X is L = lcm(wk, α

∏r
i=0 li1; 1 ≤ k ≤ m) ∈ Z>0. Note that X is Q-factorial.

Thus Corollary 4.4.7 shows that the embedded monoids

Q(cone(ek) ∩ E) ∩ Pic(X) ⊆ Pic(X)

are saturated. In order to show that P is contained in the conductor ideal of the
embedded monoid BPF(X) ⊆ Pic(X), it is according to Lemma 4.1.13 (iii) sufficient
to show that P is contained in the conductor ideals of Q(τ` ∩E) ⊆ Q(lin(τ`)∩E),
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where 0 ≤ ` ≤ r holds. Note that the largest element of Q(lin(τ`) ∩ E) that is not
contained in the conductor ideal of Q(τ` ∩ E) is

c` := α l`1 F

(
r∏
i=0
i6=j,`

li1 ; 0 ≤ j ≤ r, j 6= `

)
.

We apply Lemma 4.1.4 to see that

c` = α l`1

(
(r − 1)

r∏
i=0
i 6=`

li1 −
r∑
i=0
i 6=`

r∏
j=0
j 6=`,i

lj1

)

= (r − 1) deg(g0) −
r∑
i=0
i 6=`

α

r∏
j=0
j 6=i

lj1

holds. Note that we have dim(X)+1 = m+2. Since wk divides L and thus wk ≤ L
holds, we obtain

P = (r − 1) deg(g0) −
r∑
i=0

α

r∏
j=0
j 6=i

lj1 −
m∑
k=1

wk + (m+ 2)L

≥ (r − 1) deg(g0) −
r∑
i=0

α

r∏
j=0
j 6=i

lj1 + 2L

= c` − α

r∏
j=0
j 6=`

lj1 + 2L .

Recall that X is non-toric and thus the exponents li1 are strictly greater than one.
Furthermore, we obtain

α

r∏
j=0
j 6=`

lj1 ≤
1

2
L ,

which proves P ≥ c` + 3/2L > c`. As argued above, this shows that P is contained
in the conductor ideal of BPF(X) ⊆ Pic(X) if x = −1 holds.

If x = 0 holds, then the covering collection of X is given by

cov(u) = {cone(e0j), cone(ek), cone(e11, . . . , er1) ; 1 ≤ k ≤ m, 1 ≤ j ≤ n0} .

In particular, w0j , 1 ≤ j ≤ n0, and wk, 1 ≤ k ≤ m, divide L. Note that we
have L = lcm(w0j , wk; 1 ≤ k ≤ m, 1 ≤ j ≤ n0) ∈ Z>0. Since X is Q-factorial,
Corollary 4.4.7 and Lemma 4.1.13 (iii) show that the embedded monoids

Q(cone(e0j) ∩ E) ∩ Pic(X), Q(cone(ek) ∩ E) ∩ Pic(X) ⊆ Pic(X)

are saturated. This means that in order to show that P is contained in the conductor
ideal of the embedded monoid BPF(X) ⊆ Pic(X), Lemma 4.1.13 (iii) shows that
is sufficient to prove that P is contained in the conductor ideal of the embedded
monoid

Q(cone(e11, . . . , er1) ∩ E) ⊆ Q(lin(cone(e11, . . . , er1)) ∩ E) .

The largest element of Q(lin(cone(e11, . . . , er1)) ∩ E) that is not contained in the
conductor ideal of this monoid is

c := α F

(
r∏
i=1
i 6=j

li1 ; 1 ≤ j ≤ r

)
= (r − 1) deg(g0) −

r∑
i=1

α

r∏
j=1
j 6=i

lj1 ,
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where the second equality holds according to Lemma 4.1.4. Note that we have
dim(X) + 1 = n0 +m+ 1. Since w0j and wk divide L and thus w0j , wk ≤ L holds,
we obtain the following:

P = (r − 1) deg(g0) −
r∑
j=1

w0j −
r∑
i=1

α

r∏
j=1
j 6=i

lj1 −
m∑
k=1

wk + (n0 +m+ 1)L

≥ (r − 1) deg(g0) −
r∑
i=1

α

r∏
j=1
j 6=i

lj1 + L

= c+ L .

Because of L > 0, the above computation shows that P > c holds. This proves that
P = KX + (dim(X) + 1)L is contained in the conductor ideal of BPF(X) ⊆ Pic(X)
if x = 0 holds.

Now we treat the final case x ≥ 1. Here we may apply Proposition 4.5.4 to see
that X fulfills Fujita’s base point free conjecture. �

Remark 4.5.6. The statement of Theorem 4.5.5 is not true for higher Picard
numbers, see, for instance, Example 4.9.6.

4.6. Base point free questions for T -varieties of complexity one and
Picard number two

We investigate the base point free monoid and Fujita’s base point free con-
jecture, Conjecture 4.0.1, for varieties with a torus action of complexity one and
Picard number two. Although there are in general semiample divisor classes that
are not base point free, Proposition 4.6.3 shows that a non-toric locally factorial
variety X = X(A,P, u) that is of Picard number two fulfills Fujita’s base point
free conjecture (4.0.1) if and only if the same statement holds with base point free
replaced by semiample, i.e. if KX + mL is semiample for all m ≥ dim(X) + 1 and
for all ample Weil divisor classes L. Hence in this case Fujita’s base point free
conjecture is a question of convex geometry rather than of monoid membership.

element of S := BPF(X)

element of S̃ \ S

cone(S)

element of c(S̃/S)

Example 4.6.1. Here we give an example of a locally factorial projective variety
whose base point free monoid BPF(X) is not saturated. Consider the matrices

P =

 −7 −2 3 0 0
−7 −2 0 10 1
−3 −1 1 1 0

 and A =

[
0 −1 1
1 −1 0

]
as well as the graded ring R := R(A,P ) and the variety X := X(A,P, u) defined
by the Weil divisor class (1, 2) ∈ Mov(R)◦. The grading of R and the covering
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collection of X are given by

Q =

[
1 −2 1 0 3
1 1 3 1 −1

]
and cov(u) = {γ123, γ345, γ25, γ14} .

This yields SAmple(X) = cone((1, 1), (0, 1)) and the base point free monoid is the
intersection of Q(γ123 ∩ E) and Q(γ345 ∩ E) illustrated in the above picture. Note
that X is locally factorial, i.e. Pic(X) = Cl(X) = Z2 holds. As the above figure
indicates, the embedded monoid BPF(X) ⊆ Pic(X) is not saturated; for instance
(0, 1) ∈ Cl(X) is semiample but not base point free. The region shaded in dark gray
indicates the conductor ideal of BPF(X) ⊆ Pic(X). According to Proposition 4.6.3,
the variety X fulfills Fujita’s base point free conjecture. This is indeed the case
since KX + (dim(X) + 1)(1, 2) = (0, 4) + 3 (1, 2) is contained in the conductor ideal
of the base point free monoid.

In the following we consider non-toric locally factorial varieties X = X(A,P, u)
of complexity one and of Picard number two. Recall that according to Remark 1.3.3,
local factoriality of X implies that for all relevant faces γ0 ∈ rlv(u), the embedded
monoid Q(γ0 ∩ E) ⊆ Cl(X) is spanning. Note that Lemma 2.4.3 implies that the
fan Σ contains a big cone. Hence Corollary 4.4.8 (ii) shows that Cl(X) is torsion-
free, i.e. Cl(X) = Z2 holds. We will frequently work with the canonical base vec-
tors eij , ek ∈ E = Zn+m and the faces

γi1j1,...,iaja,k1,...,kb := cone(ei1j1 , . . . , eiaja , ek1 , . . . , ekb) � γ

of the positive orthant γ = Qn+m
≥0 . With wij = Q(eij) and wk = Q(ek), the columns

of the 2× (n+m) degree matrix Q will be written as

wij = (w1
ij , w

2
ij) ∈ Z2 and wk = (w1

k, w
2
k) ∈ Z2.

Lemma 4.6.2. Let X = X(A,P, u) be a non-toric locally factorial variety of Picard
number two such that nx+1 = nx+2 = . . . = nr = 1 holds for some 0 ≤ x < r. Then
the following hold:

(i) There are α, β ∈ Z such that for all i = x+ 1, . . . , r, the li1 are pairwise
coprime and we have

w1
i1 = α

r∏
`=x+1
` 6=i

l`1 , w2
i1 = β

r∏
`=x+1
` 6=i

l`1 .

(ii) If cone(ex1, ex2, ei1; i = x+1, . . . , r) is a relevant face and nx = 2 as well
as wx1 = (1, 0) hold, then gcd(lx2, l`1) = 1 holds for all ` = x + 1, . . . , r
and we have

w2
x2 =

r∏
j=x+1

lj1 , lx2 = β .

(iii) If in (ii) additionally α = 0 holds, then we have w1
x2 = − lx1lx2 .

(iv) If in (iii) additionally x = 0 holds, then cone(e01, e02, e11, e21, . . . , er−1,1)
is not a relevant face.

Proof. Recall that all relations gi of R(A,P ) are homogeneous of the same degree
in Cl(X) = Z2. This means that lx+1,1wx+1,1 = . . . = lr1wr1 holds. Since the
class group of X is torsion-free, [36, Thm. 1.1] implies that the exponents li1,
x + 1 ≤ i ≤ r, are pairwise coprime. Together, this proves (i). For (ii), note that
the homogeneity of the relations gi yields

lx2w
2
x2 = β

r∏
`=x+1

l`1 . (?)
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Furthermore, the torsion-freeness of Cl(X) and Theorem 3.4.2.3 (iv) of [3] show
that l`1 and gcd(lx1, lx2) are coprime for all x+ 1 ≤ ` ≤ r. Thus, lx1 = −lx2w

1
x2 −

l`1w
1
r2 implies that lx2 and l`1 are coprime for all x+ 1 ≤ ` ≤ r. Together with (?)

we obtain

δ

r∏
`=x+1

l`1 = w2
x2 and δ lx2 = β

for some δ ∈ Z. Note that since τ := cone(ex1, ex2, ei1; i = x+ 1, . . . , r) is relevant,
local factoriality of X implies that Q(τ ∩E) ⊆ Z2 is a spanning embedded monoid
and thus

1 = gcd(w2
x2, β

r∏
`=x+1
` 6=i

l`1; ` = x+ 1, . . . , r)

holds. We conclude δ = 1, which completes the proof of (ii). Assertion (iii) is
an immediate consequence of the homogeneity of the relations gi. We turn to
statement (iv). Note that gcd(w2

01, w
2
02, w

2
`1; ` = 1, . . . , r − 1) = lr1 > 1 holds,

i.e. the embedded monoid Q(cone(e01, e02, e11, e21, . . . , er−1,1) ∩ E) ⊆ Cl(X) is not
spanning. Thus, local factoriality of X completes the proof. �

According to Remark 1.3.3, local factoriality of X = X(A,P, u) implies in
particular that the effective cone Eff(X) is of dimension two. Since X = X(A,P, u)
is projective, Eff(X) is decomposed into two convex sets

Eff(X) = τ+ ∪ τ−

such that τ+ ∩ τ− = cone(u) holds. Recall that due to dim(SAmple(X)) = 2 and
to u ∈ SAmple(X)◦, each of τ+ \ cone(u) and τ− \ cone(u) contains at least two of
the weights wij , wk.

u

τ+
τ−

Although the base point free monoid BPF(X) ⊆ Pic(X) of a locally factorial
variety X = X(A,P, u) of Picard number two is in general not saturated, we obtain
the following statement:

Proposition 4.6.3. Let X = X(A,P, u) be a non-toric locally factorial variety of
Picard number two. Then the following are equivalent:

(i) X fulfills Fujita’s base point free conjecture, Conjecture 4.0.1,
(ii) KX + mL is semiample for all m ≥ dim(X) + 1 and for all ample Weil

divisor classes L.
Proof. By definition, a base point free Weil divisor class is semiample, thus (i)
implies (ii). For the reverse direction consider m ∈ Z, m ≥ dim(X) + 1 and denote
by L an ample Weil divisor class. It is to show that KX + mL ∈ BPF(X) holds.
By Corollary 4.4.7, maximal big cones σ ∈ Σ yield saturated embedded monoids
Q(σ̂∗ ∩E)∩Pic(X). This means that those monoids contain KX +mL. It remains
to show that KX+mL is contained inQ(σ̂∗∩E) for all leaf cones σ ∈ Σmax. Consider
a leaf cone σ ∈ Σmax. Note that it is sufficient to prove that KX + (dim(X) + 1)L
is contained in the conductor ideal of the embedded monoid S := Q(σ̂∗ ∩ E) ⊆
Z2. Recall that Lemma 4.1.19 gives a formula for a point gS ∈ Cl(X) such that
(gS + cone(S)◦) ∩ Z2 ⊆ c(S̃/S) holds. Thus it is sufficient to show that

KX + (dim(X) + 1)L ∈ gS + cone(S)◦ (?)

holds. After suitable admissible operations we have σ ⊆ λ0 and n1 ≥ . . . ≥ nr. Let
ν0 := ]{e0j ; e0j ∈ σ̂∗} and ν∞ := ]{ek; ek ∈ σ̂∗} .
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Lemma 4.4.1 explains that the cone σ̂∗ has exactly ρ(X)+r−1 = r+1 rays. Hence
we obtain that ν0 + n1 + . . . + nr + ν∞ = r + 1 holds. This gives the following
three cases; we will show that (?) is fulfilled in each of them:

(I) We have ν0 = ν∞ = 0, n1 = 2 and n2 = . . . = nr = 1.
(II) We have ν0 = 1, ν∞ = 0 and n1 = . . . = nr = 1.
(III) We have ν0 = 0, ν∞ = 1 and n1 = . . . = nr = 1.

Case (I). The Gale dual of the leaf cone σ ∈ Σmax is given by σ̂∗ = γ11,12,21,...,r1.
The homogeneity of the relations gi yields wi1 ∈ cone(wr1) for all i = 2, . . . , r.
This shows in particular that cone(S) = cone(w11, w12) and thus SAmple(X)◦ ⊆
cone(w11, w12)◦ holds. Hence we may assume that w11 ∈ τ−, w12 ∈ τ+ and w21 ∈
τ+ hold. Furthermore, by multiplication with an unimodular (2× 2)-matrix from
the left, we arrive at w11 ∈ cone((1, 0)), w21 = d21(α, β), . . . , wr1 = dr1(α, β) with
some di1 ∈ Z≥1 and some integers 0 ≤ α < β. The situation is as follows:

τ+

τ−

u

w12

w11

w21

wr1

We show that n0 = 1 is not possible. Assume that n0 = 1 holds. This means that
there is d01 ∈ Z≥1 such that w01 = d01(α, β) holds. Note that local factoriality of X
and cone(e01, e11, e21, . . . , er1) ∈ rlv(u) imply that the minors of

[
w1

11 d01α d21α . . . dr1α

0 d01β d21β . . . dr1β

]

are coprime. This yields β = 1 = w1
11 and α = 0. Lemma 4.6.2 (iv) thus shows

that cone(e01, e11e12, e21, . . . , er−1,1) is not a relevant face, which is a contradic-
tion. Hence n0 ≥ 2 holds, and the homogeneity of the gi implies that there
is 0 ≤ j ≤ n0 such that w0j ∈ τ+ holds. After suitable admissible operations we
have w01, . . . , w0x ∈ τ+ and w0,x+1, . . . , w0r ∈ τ− for some 1 ≤ x ≤ n0. In partic-
ular, γ0j,11 ∈ rlv(u) holds for all 1 ≤ j ≤ x. Applying Remark 2.5.1 to γ0j,11, we
obtain w2

0j = 1 for all 1 ≤ j ≤ x and w1
11 = 1. Together with Lemma 4.6.2, we thus

obtain that l12 = β, gcd(l12, w
2
12) = 1 and

Q =


∗ · · · ∗ ∗ · · · ∗ 1 w1

12 α
r∏
`=2
` 6=2

l`1 · · · α
r∏
`=2
` 6=r

l`1 ∗ · · · ∗

1 · · · 1 ∗ · · · ∗ 0
r∏
`=2

l`1 l12

r∏
`=2
6̀=2

l`1 · · · l12

r∏
`=2
` 6=r

l`1 ∗ · · · ∗

 . (I.1)

We now compute gS explicitly. Since σ̂∗ = γ11,12,21,...,r1 holds, S is generated by
w11, w12, w21, . . . , wr1. Note that we have w21, . . . , wr1 ∈ cone(w11, w12). In the
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notation of Setting 4.1.17, we thus obtain

D1 = det(w11, w12) =

r∏
`=2

l`1 ,

D2 = gcd

(
D1, l12

r∏
`=2
` 6=2

l`1,

r∏
`=2
` 6=2

l`1(l12w
1
12 − α

r∏
`=2

l`1)

)

= gcd

(
D1, l12

r∏
`=2
` 6=2

l`1, (−l11)

r∏
`=2
` 6=2

l`1

)

= gcd(l21, l12, l11)

r∏
`=3

l`1 .

According to Lemma 4.6.2 (ii), the integers l12 and l21 are coprime. Hence we
conclude that D2 =

∏r
`=3 l`1 holds. Analogously, we obtain Di =

∏r
`=i+1 l`1 for

all 1 ≤ i ≤ r − 1 and Dr = 1. We thus arrive at

gS =

r∑
j=2

(
Dj−1

Dj
− 1

)
wj1 −

2∑
j=1

w1j

= (l21 − 1)w21 + . . . (lr1 − 1)wr1 − w11 − w12

= (r − 1) deg(g0)−
r∑
i=2

wi1 − w11 − w12 .

Recall that KX = (r − 1) deg(g0)−
∑
wij −

∑
wk holds. By subtracting gS in (?)

we see that in order to complete the proof in Case (I), it is sufficient to show that

PI(L) := −
n0∑
j=1

w0j −
m∑
k=1

wk + (dim(X) + 1)L ∈ cone(w11, w12)◦ (?I)

holds for all L ∈ Ample(X) ∩ Cl(X). We divide Case (I) in the following three
subcases:

(I)(a) We have w0j ∈ τ+ for all j = 1, . . . , n0.
(I)(b) We have n0 = 2, w01 ∈ τ+ and w02 ∈ τ−.
(I)(c) We have n0 ≥ 3, w01, . . . , w0x ∈ τ+ and w0,x+1, . . . , w0n0

∈ τ− for some
1 ≤ x < n0.

In (I)(a), we have w0j ∈ τ+ for all j = 1, . . . , n0. Since u ∈ Mov(R)◦ holds,
suitable renumbering of weights yields w1, . . . , wy ∈ τ+ and wy+1, . . . , wm ∈ τ− for
some 0 ≤ y ≤ m− 1, i.e. the situation is as follows:

τ+

τ−
u

w12

w11

w21

wr1

w0j. . .

wk, k ≤ y

wk, k > y

Consider an index y + 1 ≤ k ≤ m. Since γ12,k, γ0j,k ∈ rlv(u) holds, Remark 2.5.1
yields

1 = w1
k

r∏
`=2

l`1 − w2
kw

1
12 and 1 = w1

k − w2
kw

1
0j .
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The second equation shows in particular that w1
01 = . . . = w1

0n0
= (w1

k − 1)/w2
k or

w2
k = 0, w1

k = 1 holds for all k > y. Note that the latter is not possible since then
the first of the above equations would yield 1 =

∏r
`=2 l`1 which contradicts l`1 > 2,

` = 2, . . . , r. Thus, we have w1
01 = . . . = w1

0n0
= (w1

k−1)/w2
k for all k > y. Together

with the homogeneity of g0, this yields w0j ∈ cone(w21). Since we have w2
0j = 1

and 0 ≤ α < β, we obtain 0 = α = w1
0j . The homogeneity of the relation g0 yields

w12 = −l11/l12 and the above equations show that w1
k = 1 and

w2
k = δ :=

(1− w2
12) l12

l11

hold. In particular, we have w2
k < 0. Now consider 1 ≤ k ≤ y. Since γ11,k and γkm

are relevant faces, Remark 2.5.1 yields w2
k = 1 and 1 = 1− δw1

k, i.e. w
1
k = 0 holds.

We thus arrive at

Q =


0 · · · 0 1 − l11l12 0 · · · 0 0 · · · 0 1 · · · 1

1 · · · 1 0
r∏
`=2

l`1 l12

r∏
`=2
` 6=2

l`1 · · · l12

r∏
`=2
6̀=r

l`1 1 · · · 1 δ · · · δ

 .
Note that γ01,11 ∈ rlv(u) holds. We conclude that we have SAmple(X) = Q2

≥0.
In order to prove (?I), it is thus sufficient to show that PI((1, 1)) is contained in
cone(w11, w12)◦. Since δ is strictly negative and dim(X) + 1 = n0 + m + 1 holds,
we obtain

PI((1, 1)) = −
n0∑
j=1

w0j −
m∑
k=1

wk + (dim(X) + 1)(1, 1)

= n0

((
0
−1

)
+

(
1
1

))
+ (m− y)

((
−1
−δ

)
+

(
1
1

))
+ y

((
0
−1

)
+

(
1
1

))
+

(
1
1

)
∈ (Q2

≥0)◦ .

Note that (Q2
≥0)◦ ⊆ cone(w11, w12)◦ holds, i.e. the above computation completes

the proof in case (I)(a).
We turn to (I)(b). We have n0 = 2, w01 ∈ τ+ and w02 ∈ τ−. After suitable

renumbering of variables, there is 0 ≤ y ≤ m such that w1, . . . , wy ∈ τ+ and
wy+1, . . . , wm ∈ τ− hold. Applying Remark 2.5.1 to γ01,11 and to γ11,k, k ≤ y,
yields the following:

Q =


∗ ∗ 1 w1

12 α
r∏
`=2
` 6=2

l`1 · · · α
r∏
`=2
` 6=r

l`1 ∗ · · · ∗ ∗ · · · ∗

1 ∗ 0
r∏
`=2

l`1 l12

r∏
`=2
6̀=2

l`1 · · · l12

r∏
`=2
` 6=r

l`1 1 · · · 1 ∗ · · · ∗

 .

τ+

τ−
uw12

w11

w21

wr1

wk, k > y
w01,

wk, k ≤ y

w02
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Because of γ02,12 ∈ rlv(u), Remark 2.5.1 yields

1 = w1
02

r∏
`=2

l`1 − w2
02w

1
12 .

Since w1
02 is strictly positive, we obtain that w1

12 and w2
02 have the same algebraic

sign. Furthermore, the first summand of the right-hand side is strictly greater than
one. Thus, w1

12, w
2
02 6= 0 and

w2
02 =

w1
02

∏r
`=2 l`1 − 1

w1
12

hold. Note that dim(X) + 1 = m+ n0 + 1 and SAmple(X) ⊆ cone(w11, w12) hold,
i.e. in order to prove (?I) in Case (I)(b), it is enough to show that

−w01 + L, −w02 + L, −wk + L ∈ cone(w11, w12) (?Ib)

holds for all L = (L1,L2) ∈ Ample(X) ∩ Cl(X). We will show the claims of (?Ib)
in the two cases w1

12 < 0 and w1
12 > 0.

First assume that w1
12 < 0 holds. We consider −w̃ + L with w̃ = (w̃1, w̃2) ∈

{w01, wk; 1 ≤ k ≤ y}. Note that we have w̃2 = 1 and L2 > 0, i.e. −w̃2+L2 is greater
than or equal to zero. Furthermore, we have w̃1 < 0. Thus, L ∈ cone(w̃, w11)◦ ∩
cone(w02, w12)◦ shows that

−w̃ + L ∈ κ := cone(w11, w12)

holds, which proves (?Ib) for w̃. For −w02, the situation is as follows:

w12

w11

w02

−w02

We see that −w02 + L ∈ cone(−w02, w11)◦ holds. Thus we have

−w02 + L ∈ cone(−w02, w12)◦ ∪ cone(w11, w12) .

Remark 2.5.1 applied to γ02,12 shows that (−w02, w12) is a lattice basis for Z2.
If −w02 +L ∈ cone(−w02, w12)◦ held, there would be a, b ∈ Z>0 such that −w02 +L
equals a(−w02) + bw12. This would yield

L = (a− 1)(−w02) + bw12 ∈ cone(−w02, w12) ,

which contradicts the ampleness of L. Hence we conclude−w02+L ∈ cone(w11, w12).
Analogously, we see that −wk + L ∈ cone(w11, w12) holds for all y + 1 ≤ k ≤ m.

We now turn to the case w1
12 > 0. Since 0 ≤ α < l12, w2

01 = 1 and w21 ∈
cone(w01, w02)◦ hold, we obtain w1

01 ≤ 0. This shows that −w01 + L is contained
in cone(w11, w12). Remark 2.5.1 applied to γ02,12 shows that (w02, w12) is a lattice
basis for Z2. Since SAmple(X) ⊆ cone(w02, w12) holds, each ample class L has a
representation L = αw02+βw12 with integers α, β ∈ Z>0. This shows that −w02+L
is contained in cone(w02, w12). We showed above that w2

02 has the same algebraic
sign as w1

12, which implies in particular that −w02+L is contained in cone(w11, w12).
Consider an index 1 ≤ k ≤ y. Remark 2.5.1 applied to γ02,k yields 1 = w1

02 −
w2

02w
1
k (∗), i.e. w1

k ≥ 0 holds. Note that w2
12/w

1
12 > w2

21/w
1
21 > 1 holds. Since

(w02, w12) is a lattice basis for Z2, we conclude that w2
02/w

1
02 > 1 holds. Together

with (∗), this gives

w1
k <

w2
02

w1
02

w1
k = 1− 1

w1
02

< 1 .
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We conclude that w1
k = 0 holds. Since L2 is strictly positive, we obtain that −wk +

L = (L1,L2 − 1) is contained in cone(w11, w12). Now consider a weight wk ∈ τ−.
Remark 2.5.1 applied to γ12,k shows that w2

k > 0 holds and that (wk, w12) is a lattice
basis for Z2. Since SAmple(X) ⊆ cone(wk, w12) holds, each ample class L has a
representation L = αwk+βw12 with integers α, β ∈ Z>0. This shows that−wk+L is
contained in cone(wk, w12). Because of w2

k > 0, we obtain −wk+L ∈ cone(w11, w12).
As argued above, this completes the proof in Case (I)(b).

We turn to Case (I)(c) where n0 ≥ 3 holds. Moreover, for some 1 ≤ x < n0,
we have w01, . . . , w0x ∈ τ+ and w0,x+1, . . . , w0n0

∈ τ−. After suitable renumbering
of variables, there is 0 ≤ y ≤ m such that w1, . . . , wy ∈ τ+ and wy+1, . . . , wm ∈
τ− hold. Recall that the degree matrix is as in (I.1). Applying Remark 2.5.1 to
γ11,k, k ≤ y, yields w2

k = 1 for all 1 ≤ k ≤ y, i.e. the weights are arranged as follows:

τ+

τ−
uw12

w11

w21

wr1

w0j , j ≤ x
wk, k ≤ y

wk, k > y

w0j , j > x

Consider an index x+ 1 ≤ j ≤ n0. Since γ0j,12, γ01,0j ∈ rlv(u) holds, Remark 2.5.1
yields

1 = w1
0jw

2
12 − w2

0jw
1
12 (i) and 1 = w1

0j − w2
0jw

1
01 (ii) .

Note that w1
0jw

2
12 ≥ 2 holds. Thus, the first of the above equations shows in particu-

lar that w2
0j and w1

12 are non-zero and have the same algebraic sign. By inserting (i)
into (ii), we obtain 1−w2

12 = w2
0j(w

1
01w

2
12−w1

12). Note that since w2
12 =

∏r
`=2 l`1 ≥ 2

and thus 1− w2
12 < 0 holds, we have w1

01w
2
12 − w1

12 6= 0. We conclude that

δ2 := w2
0j =

1− w2
12

w1
01w

2
12 − w1

12

(II.1)

holds. Together with the second of the above equations, we arrive at

δ1 := w1
0j =

w1
01 − w1

12

w1
01w

2
12 − w1

12

. (II.2)

In particular, we have δ1 = w1
0j > 0 since w0j is contained in τ−. Analogously,

we apply Remark 2.5.1 to γ01,k, γ12,k ∈ rlv(u) for all y + 1 ≤ k ≤ m and obtain
wk = (δ1, δ2). Since γ0n0,0j ∈ rlv(u) and w2

0j = 1 hold for all 1 ≤ j ≤ x, the above
formulas for w1

0n0
and w2

0n0
show in particular that w01 = . . . = w0x holds. Now

consider an index 1 ≤ k ≤ y, i.e. wk ∈ τ+ holds. Since γ0n0,k ∈ rlv(u) holds, the
above formulas for w1

0n0
and w2

0n0
yield wk = w01. We arrive at

[wij ]i,j =


w1

01 · · · w1
01 δ1 · · · δ1 1 w1

12 α
r∏
`=2
` 6=2

l`1 . . . α
r∏
`=2
` 6=r

l`1

1 · · · 1 δ2 · · · δ2 0
∏r
j=2 lj1 l12

r∏
`=2
` 6=2

l`1 . . . l12

r∏
`=2
` 6=r

l`1

 ,

[wk]k =

[
w1

01 · · · w1
01 δ1 · · · δ1

1 · · · 1 δ2 · · · δ2

]
.

We now show that (?I) is fulfilled in Case (I)(c). Let L ∈ Z2 be an ample class.
Recall that in the beginning of Case (I) we obtained SAmple(X)◦ ⊆ cone(w11, w12)◦.
This proves L2 > 0 and L ∈ cone(w11, w12)◦. Since n1 + . . . + nr = r + 1 holds,
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we obtain dim(X) + 1 = n + m − r = n0 + m + 1. This means that in order to
prove (?I) in Case (I)(c), it is sufficient to show that −(w1

01, 1)+L and −(δ1, δ2)+L
are contained in cone(w11, w12). First consider (w1

01, 1) ∈ τ+. Since w2
01 = 1 and

w2
21 > w1

21 ≥ 0 hold, we obtain w1
01 ≤ 0. Together with L ∈ cone(w11, w12)◦, this

yields −(w1
01, 1) +L ∈ cone(w11, w12). Now we consider δ := (δ1, δ2) ∈ τ−. Here we

distinguish the subcases w1
12 < 0 and w1

12 > 0. If w1
12 < 0 holds, then because of

w1
0jw

2
12 ≥ 2, equation (i) shows that w2

0j = δ2 < 0 holds. Thus, the situation is as
follows:

w12

w11

δ

−δ

We see that −δ + L is contained in the relative interior of cone(−δ, w11). Thus,

−δ + L ∈ cone(−δ, w12)◦ ∪ cone(w11, w12)

holds. Note that Remark 2.5.1 applied to γ0n0,12 shows that (−δ, w12) is a lattice
basis for Z2. This means that if −δ + L ∈ cone(−δ, w12)◦ held, there would be
integers a, b ∈ Z>0 such that −δ + L = a(−δ) + bw12 holds. But this yields

L = (a− 1)(−δ) + bw12 ∈ cone(−δ, w12) ,

which contradicts the ampleness of L. Hence we conclude −δ+L ∈ cone(w11, w12).
Now we assume that w1

12 > 0 holds. Together with equation (II.1), w1
01 < 0,

w2
12 > 0 and 1 − w2

12 < 0, this yields δ2 > 0. Since γ0n0,12 ∈ rlv(u) holds, we
conclude that SAmple(X) ⊆ cone(w12, δ) holds. Thus, each ample class L has a
representation L = αw12 + βδ with integers α, β ∈ Z>0. This shows that −δ+L is
contained in cone(w12, δ). Because of δ2 > 0, this shows −δ + L ∈ cone(w11, w12).
As argued above, this completes the proof in Case (I)(c).

Case (II). We have ν0 = 1, ν∞ = 0 and n1 = . . . = nr = 1. Thus we
may assume that the Gale dual of the leaf cone σ ∈ Σmax is given by σ̂∗ =
γ01,11,21,...,r1. The homogeneity of the relations gi yields wi1 ∈ cone(wr1) for all
i = 1, . . . , r. Since X is Q-factorial, the cone Q(σ̂∗) is two-dimensional. We may
assume that w01 ∈ τ− and w11, . . . , wr1 ∈ τ+ hold. Together with the homogene-
ity of the gi, this shows in particular that n0 ≥ 2 and w0j ∈ τ+ holds for some
2 ≤ j ≤ n0. Thus after suitable admissible operations, w0,x+1, . . . , w0n0 ∈ τ+ and
w01, . . . , w0x ∈ τ− hold for some 1 ≤ x ≤ n0 − 1. Furthermore by multiplication
with an unimodular (2× 2)-matrix from the left, we arrive at w01 ∈ cone((1, 0))
and w11, . . . , wr1 ∈ cone((α, β)) for some integers α, β with 0 ≤ α < β. Note that
Lemma 4.6.2 (i) implies that

w1
i1 = α

r∏
`=1, 6̀=i

l`1 and w2
i1 = β

r∏
`=1, 6̀=i

l`1

hold for all 1 ≤ i ≤ r. According to Remark 1.3.3, local factoriality of X to-
gether with γ01,11,...,r1 ∈ rlv(u) yields β = 1 and w01 = (1, 0). In particular,
this implies α = 0. After suitable renumbering of variables, there is 0 ≤ y ≤ m
such that w1, . . . , wy ∈ τ− and wy+1, . . . , wm ∈ τ+ hold. Consider 2 ≤ j ≤ x
and 1 ≤ k ≤ y. According to Remark 1.3.3, local factoriality of X together with
γ0j,11,21,...,r1, γk,11,21,...,r1 ∈ rlv(u) shows that w1

0j = w1
k = 1 holds. The homogene-

ity of the relations gi together with deg(gi)
1 = 0 and w1

01 > 0 yields w1
0j < 0 for

some x+ 1 ≤ j ≤ n0; say w1
0n0

< 0. The situation is as follows:
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τ+

τ−

u

w01

w11

...
wr1

w0j , j≤x
wk, k≤y

w0j , j>x
wk, k>y

[wij ]ij =


1 1 · · · 1 w1

0x+1 · · · w1
0n0

0 · · · 0

0 w2
02 · · · w2

0x w2
0x+1 · · · w2

0n0

r∏
`=1
6̀=1

l`1 · · ·
r∏
`=1
` 6=r

l`1

 ,

[wk]k =

[
1 · · · 1 w1

y+1 · · · w1
m

w2
1 · · · w2

y w2
y+1 · · · w2

m

]
.

We now compute gS explicitly. Since σ̂∗ = γ01,11,21,...,r1 holds, S = Q(σ̂∗ ∩ E)
is generated by w01, w11, w21, . . . , wr1. In the notation of Setting 4.1.17, we thus
obtain

D1 =

r∏
`=2

l`1 and D2 = gcd

(
D1,

r∏
`=1
` 6=2

l`1, 0

)
=

r∏
`=3

l`1 .

Analogously, we obtain Di =
∏r
`=i+1 l`1 for all i = 1, . . . , r − 1 and Dr = 1. We

arrive at

gS =

r∑
j=2

(
Dj−1

Dj
− 1

)
wj1 − w01 − w11

= (l21 − 1)w21 + . . . (lr1 − 1)wr1 − w01 − w11

= (r − 1) deg(g0)−
r∑
i=1

wi1 − w01 .

Recall that KX = (r − 1) deg(g0) −
∑
wij −

∑
wk and Q(σ̂∗) = Q2

≥0 hold. By
subtracting gS in (?) we see that in order to complete the proof in Case (II), it is
sufficient to show that

PII(L) := −
n0∑
j=2

w0j −
m∑
k=1

wk + (dim(X) + 1)L ∈ Q2
>0 (?II)

holds for all L ∈ Ample(X) ∩ Cl(X). We first show that n0 ≥ 3 holds.
Indeed, assume that n0 = 2 holds. In this case, homogeneity of g0 yields

l01 + l02w
1
02 = 0 and l02w

2
02 =

r∏
`=1

l`1 .
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Since gcd(l01, l02) and l`1 are coprime for all ` = 1, . . . , r, we conclude that l02 = 1,
w2

02 = l11 · · · lr1 and w1
02 = −l01 hold. Thus the degree matrix Q is given by

Q =


1 −l01 0 · · · 0 1 · · · 1 ∗ · · · ∗

0
r∏
`=1

l`1
r∏
`=1
6̀=1

l`1 · · ·
r∏
`=1
` 6=r

l`1 ∗ · · · ∗ ∗ · · · ∗

 .
Note that Q(γ01,02,21,31,...,r1)◦ contains Q(σ̂∗)◦. Thus the cone γ01,02,21,31,...,r1 is a
relevant face. But the embedded monoid Q(γ01,02,21,31,...,r1) ⊆ Z2 is not spanning
because of l11 = gcd(w2

01, w
2
02, w

2
21, . . . , w

2
r1). This contradicts Remark 1.3.3 since X

is locally factorial. Thus n0 = 2 is not possible and n0 ≥ 3 holds.
Remark 2.5.1 applied to γ01,0j , j > x, and to γ01,k, k > y, implies w2

0j = w2
k = 1

for all j > x, k > y. Applying again Remark 2.5.1, this time to γ0j,0n0
, j ≤ x, and

to γ0n0,k, k ≤ y, yields 1 = 1 − w2
0jw

1
0n0

and 1 = 1 − w2
kw

1
0n0

, respectively. Since
w1

0n0
< 0 holds, this yields w2

0j = w2
k = 0 for all j ≤ x, k ≤ y. Thus, we obtain the

degree matrix

Q =


1 · · · 1 ∗ · · · ∗ 0 · · · 0 1 · · · 1 ∗ · · · ∗

0 · · · 0 1 · · · 1
r∏
`=1
6̀=1

l`1 · · ·
r∏
`=1
` 6=r

l`1 0 · · · 0 1 · · · 1

 .
Set µ := max(0, w1

0j , w
1
k; x + 1 ≤ j ≤ n0, y + 1 ≤ k ≤ m). Then SAmple(X) =

cone((1, 0), (µ, 1)) holds. We consider the ample class Lµ := (µ + 1, 1). Note that
in order to prove (?II), it is sufficient to show that PII(Lµ) is contained in Q2

>0.
Since n1 + . . .+ nr = r holds, we obtain dim(X) + 1 = n+m− r = n0 +m. Hence
it is sufficient to show that for all w ∈ {w0j , wk; 2 ≤ j ≤ n0, 1 ≤ k ≤ m}, the Weil
divisor class −w + Lµ is contained in Q2

≥0. First consider w0j , wk ∈ τ−. Recall
that this means that w0j = wk = (1, 0) holds. We obtain

−w0j + Lµ = −wk + Lµ = (µ, 1) ∈ Q2
≥0 .

Now let w0j , wk ∈ τ+. We showed above that w2
0j = w2

k = 1 holds and by definition
of µ, we have µ ≥ w2

0j , w
2
k. We conclude

−w0j + Lµ = (−w1
0j + µ+ 1, 0), −wk + Lµ = (−w1

k + µ+ 1, 0) ∈ Q2
≥0 .

As argued above, this completes the proof in Case (II).

Case (III). We have ν0 = 0, ν∞ = 1 and n1 = . . . = nr = 1. Thus we may as-
sume that the Gale dual of the leaf cone σ ∈ Σmax is given by σ̂∗ = γ11,21,...,r1,1. The
homogeneity of the relations gi yields wi1 ∈ cone(wr1) for all i = 1, . . . , r. Since X is
Q-factorial, the cone Q(σ̂∗) is two-dimensional. We may assume that w01 ∈ τ− and
w11, . . . , wr1 ∈ τ+ hold. Furthermore by multiplication with an unimodular (2× 2)-
matrix from the left, we arrive at w01 ∈ cone((1, 0)) and w11, . . . , wr1 ∈ cone((α, β))
for some integers 0 ≤ α < β. Note that Lemma 4.6.2 (i) implies that we have

w1
i1 = α

r∏
`=1, 6̀=i

l`1 and w2
i1 = β

r∏
`=1, 6̀=i

l`1, 1 ≤ i ≤ r .

According to Remark 1.3.3, local factoriality of X together with γ01,11,...,r1 ∈ rlv(u)
shows β = 1 and w1 = (1, 0). This implies in particular, that α = 0 holds. Since the
relations gi are homogeneous of degree l11w11, there is some w0j ∈ τ+, i.e. we may
assume that w01, . . . , w0x ∈ τ− and w0,x+1, . . . , w0n0 ∈ τ+ hold for some 0 ≤ x < n0.
After suitable renumbering of variables, there is 0 ≤ y ≤ m with w1, . . . , wy ∈ τ−
and wy+1, . . . , wm ∈ τ+. Note that since gcd(l0j ; 1 ≤ j ≤ n0) and l11 · · · lr1 =
deg(g) are coprime, we conclude that n0 ≥ 2 holds. For all x + 1 ≤ j ≤ n0

and y + 1 ≤ k ≤ m, Remark 2.5.1 applied to γ0j,1, γ1,k yields w2
0j = w2

k = 1. Since
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the cone SAmple(X) is contained in the relative interior of the moving cone of X,
we have x ≥ 1 or y ≥ 2. For all 1 ≤ j ≤ x, 1 ≤ k ≤ y, Remark 2.5.1 applied
to γ0j,11,...,r1, γ11,...,r1,k yields w1

0j = w1
k = 1. The degree matrix is as below and

the arrangement of weights is as follows:

τ+

τ−

u

w1

w11

...
wr1

w0j , j≤x
wk, k≤y

w0j , j>x
wk, k>y

Q =


1 · · · 1 ∗ · · · ∗ 0 · · · 0 1 1 · · · 1 ∗ · · · ∗

∗ · · · ∗ 1 · · · 1
r∏
`=1
` 6=1

l`1 · · ·
r∏
`=1
` 6=r

l`1 0 ∗ · · · ∗ 1 · · · 1

 .
Note that the grading of R(A,P ) is pointed. Thus we have

w2
0j , w

2
k ≥ 0 for all j ≤ x, k ≤ y or w1

0j , w
1
k ≥ 0 for all j > x, k > y .

We now compute gS explicitly. Since σ̂∗ = γ11,21,...,r1,1 holds, S = Q(σ̂∗ ∩ E) is
generated by w11, w21, . . . , wr1, w1. In the notation of Setting 4.1.17, we thus obtain

D1 =

r∏
`=2

l`1 and D2 = gcd

(
D1,

r∏
`=1
` 6=2

l`1, 0

)
=

r∏
`=3

l`1 .

Analogously, we obtain Di =
∏r
`=i+1 l`1 for all i = 1, . . . , r − 1 as well as Dr = 1.

We arrive at

gS =

r∑
j=2

(
Dj−1

Dj
− 1

)
wj1 − w11 − w1

= (l21 − 1)w21 + . . . (lr1 − 1)wr1 − w11 − w1

= (r − 1) deg(g0)−
r∑
i=1

wi1 − w1 .

Recall that KX = (r− 1) deg(g0)−
∑
wij −

∑
wk and Q(σ̂∗) = Q2

≥0 hold. Further-
more, we have dim(X) + 1 = n+m− r = n0 +m. By subtracting gS in (?) we see
that in order to complete the proof in Case (III), it is sufficient to show that

PIII(L) := −
n0∑
j=1

w0j −
m∑
k=2

wk + (n0 +m)L ∈ Q2
>0 (?III)

holds for all L ∈ Ample(X) ∩ Cl(X).
We show that n0 = 2 together with w01 ∈ τ− and w02 ∈ τ+ is not possible.

Assume that n0 = 2, w01 ∈ τ− and w02 ∈ τ+ holds. In this case, homogeneity of
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the relation g0 yields

l01 + l02w
1
02 = 0 and l01w

2
01 + l02 =

r∏
`=1

l`1 .

Since gcd(l01, l02) and l`1 are coprime for all 1 ≤ ` ≤ r, inserting the first into the sec-
ond equation shows that l02 = 1 and (1−w1

02w
2
01) = l11 · · · lr1 hold. Thus the minors

of the (2×r)-matrix (w01, w02, w21, w31, . . . , wr) are divided by l`1. Note that l`1 is
at least two, which implies that the embedded monoid Q(γ01,02,21,31,...,r1 ∩ E) ⊆ Z2

is not spanning. Since γ01,02,21,31,...,r1 is a relevant face, this contradicts local fac-
toriality of X.

Hence we have n0 ≥ 3 or n0 = 2, w01, w02 ∈ τ+. Remark 2.5.1 applied to the
cones of the form γ0j1,0j2 , γ0j,k and γk1,k2 that are relevant faces shows that we are
in one of the following situations:

(a) w2
0j = w2

k = 0 for all 1 ≤ j ≤ x, 1 ≤ k ≤ y,
(b) w1

0j = w1
k = 0 for all x+ 1 ≤ j ≤ n0, y + 1 ≤ k ≤ m.

Note that the semiample cone of X is given by SAmple(X) = cone((µa, 1), (1, µb)),
where we set

µa := max(w1
0j , w

1
k, 0; x+ 1 ≤ j ≤ n0, y + 1 ≤ k ≤ m) ,

µb := max(w2
0j , w

2
k, 0; 1 ≤ j ≤ x, 1 ≤ k ≤ y) .

In Case (III)(a), we consider the ample class La := (µa + 1, 1). Note that
in order to prove (?III) in Case (III)(a), it is sufficient to show that PIII(La) is
contained in Q2

>0. Hence it is sufficient to show that for all w ∈ {w0j , wk; 1 ≤
j ≤ n0, 2 ≤ k ≤ m}, the Weil divisor class −w + La is contained in Q2

≥0. First
consider w0j , wk ∈ τ−. Recall that this means that we have w0j = wk = (1, 0). We
obtain

−w0j + La = −wk + La = (µa, 1) ∈ Q2
≥0 .

Now let w0j , wk ∈ τ+. We showed above that w2
0j = w2

k = 1 holds and by definition
of µa, we have µa ≥ w2

0j , w
2
k. We conclude

−w0j + La = (−w1
0j + µa + 1, 0), −wk + La = (−w1

k + µa + 1, 0) ∈ Q2
≥0 .

The proof in Case (III)(b) is analogous to the proof in (III)(a). As argued above,
this completes the proof of Case (III) and also of the entire Proposition. �

Note that Proposition 4.6.3 provides an approach to the proof of Fujita’s base
point free conjecture for smooth projective irreducible rational varieties with a torus
action of complexity one and Picard number two alternative to the one used in
Corollary 4.4.14: Instead of using the classification presented in Chapter two, the
assertion follows using Proposition 4.6.3 and Remark 4.2.7.

Corollary 4.6.4. Let X = X(A,P, u) be a non-toric locally factorial projective
variety of Picard number two. If KX is semiample or if X is log terminal, then X
fulfills Fujita’s base point free conjecture, Conjecture 4.0.1, i.e. KX + mL is base
point free for all m ≥ dim(X) + 1 and for all ample Weil divisor classes L.

Problem 4.6.5. Generalize Proposition 4.6.3 to higher dimensions or find an ex-
ample of a locally factorial projective variety X(A,P, u) with Picard at least three
admitting an ample divisor class L and an integer m ≥ dim(X) + 1 such that
KX + (dim(X) + 1)L is semiample but not base point free.
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4.7. Algorithms for embedded monoids

In the following we describe some algorithms for monoids which, applied to
Mori dream spaces, can be used for computing generators of the base point free
monoid BPF(X), for testing whether a Weil divisor class is base point free and for
computing a point of the conductor ideal of BPF(X) ⊆ Pic(X). In [27], we provide
a maple-based implementation of these algorithms. Note that sections 4.7 – 4.9
have been presented in [26].

Algorithm 4.7.1. (inMonoid) Input: A finitely generated abelian group K ′,
generators s′1, . . . , s′t′ ∈ K ′ of an embedded monoid S′ := linZ≥0

(s′1, . . . , s
′
t′) ⊆ K ′

and an element w′ ∈ K ′.
Output: True if w′ is contained in S′. Otherwise, false is returned.

• By excluding the generators s′i that equal 0K , we achieve a representation
S′ := linZ≥0

(s′1, . . . , s
′
t) with a natural number t ∈ Z≤t′ and with non-zero

elements s′i.
• We compute a canonical representation of the embedded monoid S′ ⊆ K ′:

– Compute r, r̃ ∈ Z≥0 such that there is an isomorphism of groups
ϕ : K ′ → K := Zr ⊕

⊕r̃
k=1 Z/aiZ.

– Let S := linZ≥0
(s1, . . . , st) ⊆ K, where we set si := ϕ(s′i) ∈ K.

– Set w := ϕ(w′) ∈ K.
• LetQ : Zt → K denote the homomorphism mapping x = (x1, . . . , xt) ∈ Zt

to the integer combination
∑
xisi. Denote by Q0 the free part of Q,

i.e. with the projection π : K → K0 = K/Ktor, we have π ◦Q = Q0.
• Compute the polyhedron B := (Q0)−1(w0) ∩ Qt≥0.
• If B is not bounded, then

– for all 1 ≤ i ≤ t do
∗ if s0

i = 0K0 holds, then let C := {1 ≤ k ≤ r̃; sir+k 6= 0} and

B := B ∩ {x ∈ Qt; xi ≤
∏
k∈C

ak} .

• Compute the lattice points of the polytope B, i.e. compute B := B ∩ Zt.
• Return true if there is a point x ∈ B such that Q(x) = w holds. Other-

wise, return false.

Proof. We first show that in the end of the above algorithm, the polyhedron B is
a polytope. Note that si ∈ K is a tupel si = (si1, . . . , sir, sir+1, . . . , sir+r̃) with
integers sij ∈ Z, 1 ≤ j ≤ r, and elements sir+k ∈ Z/akZ, 1 ≤ k ≤ r̃. Via an
isomorphism of abelian groups K → K we may assume that cone(S) is contained
in Qr≥0, i.e. we have si1, . . . , sir ≥ 0 for all 1 ≤ i ≤ t. Consider the polyhedron

A := (Q0)−1(w0) ∩ Qt≥0 .

Note that A contains exactly those lattice points x = (x1, . . . , xt) ∈ Zt≥0 with the
property that

t∑
i=1

xi(si1, . . . , sir) =

t∑
i=1

xis
0
i = Q0(x) = w0 = (w1, . . . , wr)

holds. This means that the integer coefficient xi is smaller than bwjsij c for all 1 ≤
j ≤ r with sij 6= 0, where b·c denotes the floor function. In particular, we have

A ⊆
{
x ∈ Qt≥0; xi ≤ min

(
bwj
sij
c; 1 ≤ j ≤ r, sij 6= 0

)}
for all 1 ≤ i ≤ t such that s0

i 6= 0K0 holds, i.e. A is bounded with respect to these
coordinate directions i. For all other coordinate directions 1 ≤ i ≤ t of Zt, i.e. of
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those with s0
i = 0K0 , the above algorithm computes a bound bi, where

bi :=
∏
k∈C

ak ∈ Z , C := {1 ≤ k ≤ r̃; sir+k 6= 0Z/akZ} .

Note that C is non-empty since in the first step of the algorithm, we excluded the s′i
that are zero. We conclude that

B = A ∩ {x ∈ Qt; xi ≤ bi for all 1 ≤ i ≤ t with s0
i = 0K0}

is indeed a polytope and thus B = B ∩ Zt is a finite set.
We now explain why the above algorithm has the claimed output. We need to

show that w′ ∈ S′ holds if and only if the algorithm returns true. Clearly, w′ ∈ S′
holds if and only if w is contained in S. This in turn is the case if and only if
there is an element x ∈ A ∩ Zt≥0 such that Q(x) = w holds. If A is a polytope,
there is nothing to show. If A is unbounded we showed above that there is an
index 1 ≤ i ≤ t such that s0

i = 0K0 holds. It remains to show that the following
assertions are equivalent:

(i) There is an element x ∈ A ∩ Zt≥0 such that Q(x) = w holds.
(ii) There is an element y ∈ Bi := A ∩ {x ∈ Zt≥0; xi ≤ bi} with Q(y) = w.

Since Bi ⊆ A∩Zt≥0 holds, the direction “(ii)⇒(i)” is obvious. For the other direction,
recall that bi is the product of all ak, 1 ≤ k ≤ r̃, with sir+k 6= 0Z/akZ. Since s

0
i = 0K0

holds, we thus obtain αsi = α′si for all integers α, α′ with α ≡ α′(mod bi). This
means that it is sufficient to look at coefficient vectors x ∈ Zt≥0 with xi ≤ bi, i.e. (i)
implies (ii). As argued above, this completes the proof. �

Example 4.7.2. Consider the abelian group K := Z ⊗ Z/4Z, its elements s1 :=
(0, 2̄), s2 := (1, 1̄), s3 := (3, 2̄), w := (3, 1̄) and the monoid S := linZ≥0

(s1, s2, s3)
depicted in the picture below. Algorithm 4.7.1 applied to S and to w does the
following:

• The map Q is defined by Z3 → K, (x1, x2, x3) 7→ (x2 + 3x3, α), where
we set α := ((2x1 + x2 + 2x3) + 4Z) ∈ Z/4Z. Its free part Q0 is given
by Z3 → Z, (x1, x2, x3) 7→ x2 + 3x3.

• The polyhedron (Q0)−1(w0) is given by Q×{(3− 3β, β) ; β ∈ Q}. Thus
the algorithm starts with the polyhedron

B = Q≥0 × {(3− 3β, β) ; β ∈ Q, 0 ≤ β ≤ 1}.
• Since B is unbounded and s0

i is zero if and only i = 1 holds, the algorithm
then computes the polytope

B := B ∩ {x ∈ Qt; x1 ≤ 4}.
Now we have B = {(α, 3− 3β, β) ; α, β ∈ Q, 0 ≤ α ≤ 4, 0 ≤ β ≤ 1}.

• In a next step, the algorithm computes the lattice points B of B:
B = {(α, 3, 0), (α, 0, 1); α ∈ Z, 0 ≤ α ≤ 4}.

• Since Q((1, 3, 0)) = 1s1 +3s2 +0s3 = w holds, the algorithm returns true.

Z

Z/4Z
element of S

element of S̃ \ S

Algorithm 4.7.3. (generatorsIntMonoid) Input: Two subgroups K1, K2 of a
finitely generated abelian group K and generators si1, . . . , sini ∈ Ki of embedded
monoids Si := linZ≥0

(si1, . . . , sini) ⊆ Ki, i = 1, 2.
Output: A set of generators for the embedded monoid S1 ∩ S2 ⊆ K1 ∩K2.
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• Let ϕ := ϕ1 × ϕ2 : Zn1+n2 → K × K be the homomorphism of abelian
groups defined through ϕi : Zni → K, eij 7→ sij , where the eij denote
the canonical base vectors of Zni . Furthermore, define the projection
ψ : K × K → (K × K)/∆, where ∆ := {(k, k); k ∈ K} denotes the
diagonal.

• Compute the kernel of β := ψ ◦ ϕ.
• Consider the isomorphism of abelian groups ι : Zr → ker (β) and compute

generators g1, . . . , gt for Zr ∩ ι−1(Qn1+n2

≥0 ).
• Define the projection π : K ×K → K, (x, y) 7→ x on the first factor and

return the set {(π ◦ ϕ ◦ ι)(gj); j = 1, . . . , t}.
Proof. According to Gordan’s lemma [21, Prop. 1.2.17], there are generators g1, . . . gt
for the monoid Zr ∩ ι−1(Qn1+n2

≥0 ). Set M := ker (β) ∩ Zn1+n2

≥0 and consider the dia-
gram

Zr ∩ ι−1(Qn1+n2

≥0 ) //

⊆

M ⊆

⊆

Zn1+n2

≥0
//

⊆

S1 × S2

⊆

// (K ×K)/∆

=

Zr ι
∼=

// ker (β) ⊆ Zn1+n2
ϕ //

β

55
K ×K

ψ // (K ×K)/∆ .

With the projection π : K ×K → K, (x, y) 7→ x on the first factor, we obtain

(π ◦ ϕ ◦ ι)
(
Zr ∩ ι−1(Qn1+n2

≥0 )
)

= (π ◦ ϕ)(M) = S1 ∩ S2 ,

where the last equality is true since ϕ(M) = {(a, b) ∈ S1 × S2; a = b} holds. We
conclude that {(π ◦ ϕ ◦ ι)(gj); j = 1, . . . , t} is a set of generators for S1 ∩ S2. �

Example 4.7.4. Consider the abelian group K1 := K2 := K := Z as well as its
elements s11 := 2, s12 := 5, and s21 := 3. Algorithm 4.7.3 applied to the monoids
S1 := linZ≥0

(s11, s12) and S2 := linZ≥0(s21) depicted in the figure below proceeds
as follows:

• The map ϕ is given by Z3 → Z × Z, e11 7→ s11, e12 7→ s12, e21 7→ s21,
where 3 = 2+1 = n1 +n2 holds. To be precise, ϕ is defined by the matrix(

2 5 0
0 0 3

)
.

• The kernel of β is given by ker (β) = linZ
(
(1, 2, 4), (0, 3, 5)

) ∼= Z2.

• The isomorphism ι : Z2 → ker (β) is defined by mapping the first canonical
base vector of Z2 to (1, 2, 4) and the second one to (0, 3, 5).

• We have Q2 ∩ ι−1(Q3
≥0) = cone((3,−2), (0, 1)). According to Gordan’s

Lemma, computing the lattice points of the polytope

conv((0, 0), (3,−2), (0, 1), (3,−1))

gives the following generators for the monoid Z2 ∩ ι−1(Q3
≥0):

(0, 0), (0, 1), (1, 0), (2,−1), (3,−2), (3,−1) .

• Applying π◦ϕ◦ ι to those generators gives the generators 0, 15, 12, 9, 6, 21
for S1∩S2. Note that this list is not a Hilbert basis. To speed up the com-
putation process in [27], some reduction mechanisms were implemented.

Algorithm 4.7.5. (inCondIdeal) Input: A finitely generated abelian group K,
generators s1, . . . , st ∈ K of an embedded monoid S := linZ≥0

(s1, . . . , st) ⊆ K and
an element w ∈ K.
Output: True if w is contained in c(S̃/S). Otherwise, false is returned.
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0 5 10

S1 ⊆ Z

S2 ⊆ Z

S1 ∩ S2 ⊆ Z

element of the monoid

element of Z but not
element of the monoid

• Compute M as defined in Lemma 4.1.8.
• Use Algorithm 4.7.1 to test whether S contains w + M . Return true if

this is the case; otherwise return false.

Proof. Let w ∈ K and consider M as defined in Lemma 4.1.8. According to this
lemma,M generates S̃ as an S-module. This means that the conductor ideal c(S̃/S)
contains w if and only if w +M is contained in S. �

Z

Z/4Z
element of S

element of S̃ \ S
element of c(S̃/S)

Example 4.7.6. Consider the abelian group K := Z ⊗ Z/4Z as well as its ele-
ments s1 := (0, 2̄), s2 := (1, 1̄), s3 := (3, 2̄) and the monoid S := linZ≥0

(s1, s2, s3) as
in Example 4.7.2. The monoid and its conductor ideal are illustrated in the above
picture. We apply algorithm 4.7.5 to w := (3, 1̄) and test whether w is contained
in c(S̃/S).

• The maps Q and Q0 are as in Example 4.7.2.
• The algorithm computes M as defined in Lemma 4.1.8. We obtain

M = {(0, a), (1, a); a ∈ Z/4Z} ⊆ K .

• In the next step the algorithm uses Algorithm 4.7.1 to test whether S
contains w +M = {(3, a), (4, a); a ∈ Z/4Z}.

• Similarily as in Example 4.7.2, for x ∈ w+M with x0 = 3, Algorithm 4.7.1
computes B3 := {(α, 3, 0), (α, 0, 1); 0 ≤ α ≤ 4, α ∈ Z} and we obtain
B4 := {(α, 4, 0), (α, 1, 1); 0 ≤ α ≤ 4, α ∈ Z} for all x ∈ w + M with
x0 = 4. Since for all x ∈ w+M with x0 = i, i = 3, 4, there is some y ∈ Bi
with Q(yi) = xi, the algorithm returns true.

Algorithm 4.7.7. (pointCondIdeal) Input: A finitely generated abelian groupK,
an element w ∈ K and generators s1, . . . , st ∈ K of a spanning embedded monoid
S := linZ≥0

(s1, . . . , st) ⊆ K.
Output: A point of the conductor ideal c(S̃/S).

• Compute w ∈ K that defines a point in the relative interior of cone(S).
• Use Algorithm 4.7.5 to compute the smallest integer r ∈ Z≥1 such that
rw is contained in c(S̃/S). Return rw.

Proof. This Algorithm terminates since S ⊆ K is spanning. �

Example 4.7.8. Consider the abelian group K := Z ⊗ Z/4Z as well as its ele-
ments s1 := (0, 2̄), s2 := (1, 1̄), s3 := (3, 2̄) and the monoid S := linZ≥0

(s1, s2, s3)
as in Examples 4.7.2 and 4.7.6. We apply algorithm 4.7.7 to compute an element
of c(S̃/S).

• At first the algorithm computes the element (1, 0̄) ∈ K defining an ele-
ment in the relative interior of cone(S).
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• For j = 1, 2, Algorithm 4.7.5 returns that j (1, 0̄) is not contained in the
conductor ideal c(S̃/S).

• In the next step, Algorithm 4.7.5 shows that (3, 0̄) is an element of c(S̃/S).

Here comes an example computation.
Example 4.7.9. We consider the embedded monoid S ⊆ K := Z⊕Z/3Z generated
by [3, 0̄], [5, 0̄], [5, 1̄], [3, 2̄] ∈ K and perform some monoid membership and conduc-
tor ideal membership tests. Furthermore, we compute an element of the conductor
ideal of S ⊆ K.

> S := matrix([[3,5,5,3],[0,0,1,2]]);

S :=

[
3 5 5 3
0 0 1 2

]
> K := createAG(1,[3]);

K := AG(1, [3])

> inMonoid(S,[6,2],K); inMonoid(S,[7,0],K); inMonoid(S,[8,2],K);
true

false

true

> inCondIdeal(S,[6,2],K); inCondIdeal(S,[7,0],K); inCondIdeal(S,[8,2],K);
false

false

true

> pointCondIdeal(S,K);
[8, 0]

We now compute generators for the intersection of the monoids S1, S2 ⊆ K gener-
ated by [3, 0̄], [5, 0̄], [5, 1̄] ∈ K and [3, 0̄], [5, 0̄], [3, 2̄] ∈ K, respectively.

> generatorsIntMonoid(S,[{1,2,3},{1,2,4}],K);
[[3, 0], [5, 0], [11, 1], [13, 2], [15, 1], [15, 2]]

4.8. Algorithms for the base point free monoid of Mori dream spaces

Here we apply the algorithms of the previous section for computing generators
of the base point free monoid and for testing whether a Weil divisor class is base
point free or not. The implementation of the following algorithms builds on the
maple-based software package MDSpackage [38]. A Mori dream space X is entered
and stored in terms of an ample class u together with pairwise non-associated Cl(X)-
prime generators and the relations of Cox(X). As explained above, this data fixes
a Mori dream space up to isomorphism.

Algorithm 4.8.1. (generatorsBPF) Input: A Mori dream space X(R,F,Φ).
Output: A set of generators for the embedded monoid BPF(X) ⊆ Pic(X).

• Use MDSpackage to compute the covering collection of X.
• Use Algorithm 4.7.3 to compute generators of the intersection⋂

γ0∈cov(Φ)

Q(γ0 ∩ E) .

Algorithm 4.8.2. (isBasePointFree) Input: A Mori dream space X and a Weil
divisor class w ∈ Cl(X).
Output: True if w is base point free. Otherwise, false is returned.

• Use Algorithm 4.8.1 to compute generators of BPF(X) ⊆ Pic(X).
• Apply Algorithm 4.7.1 to w and BPF(X).

Algorithm 4.8.3. (BPFisSaturated) Input: A locally factorial Mori dream
space X.

• Use convex [29] to compute a Hilbert basis u1, . . . , ut of the semiample
cone SAmple(X) ⊆ Pic(X) = Cl(X).
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• Use Algorithm 4.8.2 to test whether u1, . . . , ut are base point free.

Using the implementation given in [27], we study the question of the existence
of semiample Cartier divisor classes that are not base point free. It is well-known
that for Cartier divisors on complete toric varieties, semiampleness implies base
point freeness, see for instance [21, Theorem 6.3.12.]. For smooth rational projec-
tive varieties with a torus action of complexity one and Picard number two, the
same statement follows immediately from the classification done in [28]. Note that
the discrepancy between semiampleness and base point freeness of divisors on va-
rieties with a torus action of complexity one is already fairly well understood in
the language of polyhedral divisors: A criterion for semiampleness is given in [59,
Theorem 3.27] and a criterion for base point freeness was proven in [41, Theorem
3.2].
Example 4.8.4. We give an example of a smooth Mori dream K∗-surface that
admits semiample Cartier divisor classes with base points.

> Q := matrix([[1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0],[0,1,-1,1,0,0,0,0,0,0,0,0,0,0,0],
[0,1,0,-1,1,0,0,0,0,0,0,0,0,0,0],[0,1,0,0,-1,1,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,
-1,1,1,0,0,0,0,0,0],[0,-1,0,0,0,1,0,-1,1,0,0,0,0,0,0],[0,0,0,1,0,0,1,0,1,1,0,0,
0,0,0],[0,1,0,0,0,0,0,0,1,0,1,0,0,0,0],[1,0,0,-1,0,0,1,0,0,0,0,1,0,0,0],[0,1,0,
0,0,0,0,1,0,0,0,0,1,0,0],[0,1,0,0,0,-1,0,0,0,0,0,0,0,1,0],[0,-1,0,0,0,1,0,0,0,0,
0,0,0,0,1]]);

Q :=



1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 −1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 −1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 −1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 1 0 0 0 0 0 0
0 −1 0 0 0 1 0 −1 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 1 0 0 0 0
1 0 0 −1 0 0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 1 0 0
0 1 0 0 0 −1 0 0 0 0 0 0 0 1 0
0 −1 0 0 0 1 0 0 0 0 0 0 0 0 1


> RL := [T[1]^5*T[2]*T[3]^4*T[4]^3*T[5]^2*T[6]+T[7]^2*T[8]*T[9]

+T[10]^3*T[11]*T[12]^2*T[13]];

RL :=
[
T

5
1 T2T

4
3 T

3
4 T

2
5 T6 + T

2
7 T8T9 + T

3
10T11T

2
12T13

]
> R := createGR(RL, vars(15), [Q]);

R := GR(15, 1, [12, []])

> X := createMDS(R,relint(MDSmov(R)));

X := MDS(15, 1, 2, [12, []])

> MDSissmooth(X);

true

> COV := MDScov(X);

COV := [{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, {2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},

{1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}, {1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},

{1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, {1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15},

{1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15}, {1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15},

{1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14, 15}, {1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15},

{1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15},

{1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15},

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14}]

> w := [-1,1,1,1,3,2,3,4,0,3,1,5];

w := [−1, 1, 1, 1, 3, 2, 3, 4, 0, 3, 1, 5]

> contains(MDSsample(X),w);

true

> isBasePointFree(X,w);

false

The computation shows that w = [−1, 1, 1, 1, 3, 2, 3, 4, 0, 3, 1, 5] is a semiample but
not base point free Cartier divisor class.
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For a geometric interpretation note that X is obtained by blowing up P1 × P1

ten times in the following way: One considers the K∗-action on P1 × P1 given by

t · ([y0, y1], [z0, z1]) := ([y0, y1], [z0, tz1]) .

The fixed points lie on the two curves C1 := P1×{[0, 1]} and C1 := P1×{[1, 0]}. In
order two obtain X, one blows up the three fixed points c11 := [[0, 1], [0, 1]] ∈ C1,
c12 := [[1, 0], [0, 1]] ∈ C1 and c21 := [[1,−1], [1, 0]] ∈ C2. The resulting hyperbolic
fixed points are again blown up: for c11, one repeats this procedure four times,
for c12, one repeats this procedure two times and for c21 just once. The resulting
variety then is isomorphic to X.

4.9. Fujita base point free test algorithm

In order to test whether a Q-factorial Mori dream space X with known canon-
ical class fulfills Fujita’s base point free conjecture, Conjecture 4.0.1, we need to
test whether KX + mL is an element of BPF(X) for all m ≥ dim(X) + 1 and for
all ample Cartier divisor classes L. Since we can only carry out finitely many tests,
we encounter two problems: firstly, we need to bound m and secondly, we need to
find a finite validation set of Cartier divisor classes L. In this section, we introduce
our solution to these problems and also present some examples of applying our test
algorithm.

Remark 4.9.1. Algorithm 4.9.4 applies to Mori dream spaces with known canon-
ical class. For instance, if Cox(X) is a complete intersection, there is a concrete
formula for the canonical class in terms of generators and relations of Cox(X) [3,
Prop. 3.3.3.2]. Note that all irreducible normal rational projective varieties with a
torus action of complexity one have a complete intersection Cox ring [37, Prop. 1.2].
Moreover, there are formulas for the canonical class of spherical varieties [16, 50].

Construction 4.9.2. Let K0 be a lattice. Consider an s-dimensional cone σ ⊆ K0
Q

with some facet F � σ. Let ϕ : K0 → Zn be an isomorphism of Z-modules such
that ϕ(σ) ⊆ cone(e1, . . . , es) and ϕ(F ) ⊆ cone(e1, . . . , es−1) holds, where e1, . . . , en
denote the canonical base vectors of the rational vector space Qn. For any k ∈ Z
we call τ := ϕ−1(τ̃) the k-th facet parallel of F , where we set

τ̃ :=
(
linQ(ϕ(F )) + kes

)
.

ϕ(F )
0

es−1

e1

τ̃

es

kes

Setting 4.9.3. Let X be a Q-factorial Gorenstein Mori dream space and consider
the base point free monoid S := BPF(X) ⊆ K := Pic(X). We denote by F1, . . . , Fr
the facets of σ := cone(w0 ⊗ 1; w ∈ S) ⊆ K0

Q. Consider an index 1 ≤ i ≤ r and
let m1, . . . ,mni ∈ S be those elements such that m0

j is minimal with the property
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that m0
j ⊗ 1 is contained in a ray of Fi. Consider the polytope

Gi := {
ni∑
j=1

aj (m0
j ⊗ 1); aj ∈ Q, 0 ≤ aj ≤ 1} ⊆ Fi

as indicated in the figure below and let ρ1, . . . ρti be the rays of σ that are not
contained in Fi. We denote by τki the k-th facet parallel of Fi. For each facet
parallel τki with k ∈ Z≥0, we denote by pkj ∈ KQ, 1 ≤ j ≤ ti, the point that is the
intersection of ρj and τki . With the canonical embedding ι0 : K0 → K0

Q, w 7→ w⊗1,
we define

P ki :=
(
conv(pk1 , . . . , p

k
ti) +Gi

)
∩ σ◦ ⊆ τki and

Gpki := ι−1
0

(
P ki
)
× Ktor ⊆ K

for all k ∈ Z≥0, where σ◦ denotes the relative interior of σ. Consider the canonical
class KX ∈ K of X. Since S ⊆ K is spanning, there is an element C ∈ c(S̃/S).
For 1 ≤ i ≤ r let αi be an integer such that (−K0

X + C0) ⊗ 1 ∈ ταii holds and set
ν := max(αi; 1 ≤ i ≤ r). Note that αi may be negative.

Fi

0

mni

m1

GiP ki

ρti

ρ2

ρ1

pkti

pk2

pk1

τki

The above mentioned problems, namely bounding m and finding a finite valida-
tion set of Cartier divisor classes, are tackled by computing a point of the conductor
ideal of BPF(X) and by only considering the Cartier divisor classes defining a point
in the polytopes P ki of the first few facet parallels τki , k ≥ 0, of each facet Fi � σ.
Algorithm 4.9.4. (fujitaBpf) Input: A Q-factorial Mori dream space X and its
canonical class KX .
Output: True if X fulfills Fujita’s base point free conjecture, i.e. if KX + mL is
base point free for all m ≥ dim(X) + 1 and all ample Cartier divisor classes L.
Otherwise, false is returned.

• If X is not Gorenstein return false.
• Use Algorithm 4.7.3 to compute generators of S := BPF(X).
• Use Algorithm 4.7.7 to compute a point C ∈ c(S̃/S).
• Compute the facets F1, . . . , Fr of cone(S) and α1, . . . , αr as well as ν as

defined in Setting 4.9.3.
• For each 1 ≤ i ≤ r do

– for each dim(X) + 1 ≤ m ≤ ν − 1 do
∗ for each 1 ≤ k ≤ bαi−1

m c, where b·c denotes the floor function,
use Algorithm 4.7.1 to test whether KX +mGpki ⊆ S holds.

• Return false if there is 1 ≤ i ≤ r, dim(X) + 1 ≤ m ≤ ν − 1, 1 ≤
k ≤ bαi−1

m c, and L ∈ Gpki such that KX + mL is not contained in S.
Otherwise, return true.
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Before presenting a proof of Algorithm 4.9.4, we first give two examples of
applying it to Mori dream spaces.

Example 4.9.5. Here we give an example of a six-dimensional smooth Mori dream
space that does fulfill Fujita’s base point free conjecture.

> Q := matrix([[1,1,2,0,1,1,1,-1,0,0],[0,0,-1,1,0,-1,-1,1,0,0],[0,36,36,0,18,49,49,
-48,1,1]]);

Q =

 1 1 2 0 1 1 1 −1 0 0
0 0 −1 1 0 −1 −1 1 0 0
0 36 36 0 18 49 49 −48 1 1


> RL := [T[1]*T[2]+T[3]*T[4]+T[5]^2];

RL :=
[
T1T2 + T3T4 + T

2
5

]
> R := createGR(RL,vars(10),[Q]);

R := GR(10, 1, [3, []])

> X := createMDS(R,[1,1,50]);
X := MDS(10, 1, 6, [3, []])

> MDSissmooth(X);
true

Since R = Cox(X) is a complete intersection, we may use the formula presented
in [3] to compute the canonical class of X: we obtain KX = [−4, 1,−106] ∈ Z3.

> fujitaBPF(X,[-4,1,-106]);
true

To obtain this result the algorithm performs the following steps:
• First Algorithm 4.7.3 is used to compute the three generators of [0, 0, 1], [0, 1, 0]

and [1, 0, 49] of BPF(X) ⊆ Z3.
• Then Algorithm 4.7.7 computes the point C := [0, 0, 0] ∈ c(S̃/S).
• The faces of cone(S) are given by F1 := cone([0, 1, 0], [1, 0, 49]), F2 :=

cone([0, 0, 1], [1, 0, 49]), F3 := cone([0, 1, 0], [0, 0, 1]). The algorithms then
computes α1, . . . , α3 such that −KX + C = [4,−1, 106] defines a point
in ταii . We obtain α1 = −90, α2 = −1 and α3 = 4 as well as ν = 4. Note
that α3 = 4 is just the first coordinate of −KX + C.

• Since dim(X) + 1 = 6 > 4 = ν − 1 holds, the algorithm returns true.
For a geometric description of X, note that X admits three elementary contractions
two of which are birational small. The other one is a birational divisorial contrac-
tion X → Y contracting the divisor corresponding to the variable T8 of Cox(X).
The variety Y is a smooth intrinsic quadric with generator degrees, relation and
semiample cone given by

Q =

[
60 0 48 12 30 1 1 1 1
1 1 1 1 1 0 0 0 0

]
, g = T1T2 + T3T4 + T 2

5

and SAmple(X) = cone((1, 0), (60, 1)). The center of ϕ is the intersection of Y
and the toric prime divisors corresponding to the variables T8, T9 ∈ Cox(Y ). Note
that Y allows a closed embedding into the projectivized split vector bundle

P
(
OP3
⊕OP3

(12)⊕OP3
(30)⊕OP3

(48)⊕OP3
(60)

)
.

Example 4.9.6. Here we give an example of a locally factorial variety with a torus
action of complexity one that does not fulfill Fujita’s base point free conjecture.
Note that this represents a difference to the toric case, where Fujino [30] presented
a proof of Fujita’s base point free conjecture for toric varieties with arbitrary sin-
gularities.

> Q := matrix([[0,0,1,0,0,1,1,0,1],[1,1,0,1,1,0,1,1,2]]);

Q =

[
0 0 1 0 0 1 1 0 1
1 1 0 1 1 0 1 1 2

]



4.9. FUJITA BASE POINT FREE TEST ALGORITHM 181

> RL := [T[1]*T[2]^7*T[3]^8 +T[4]*T[5]^7*T[6]^8+T[7]^8];

RL :=
[
T1T

7
2 T

8
3 + T4T

7
5 T

8
6 + T

8
7

]
> R := createGR(RL,vars(9),[Q]);

R := GR(9, 1, [2, []])

> X := createMDS(R,[1,3]);

X := MDS(9, 1, 6, [2, []])

> MDSisfact(X);

true

> MDSisquasismooth(X);

false

Since Cox(X) is a complete intersection, we may use the formula presented in [3]
to compute the canonical class of X: we obtain KX = [4, 0] ∈ Z2.

> fujitaBPF(X,[4,0]);

false

> isBasePointFree(X,[1,3]);

true

Note that Algorithm 4.9.4 returns false, i.e. X does not fulfill Fujita’s base point
free conjecture. To obtain this result the algorithm performs the following steps:

• First Algorithm 4.7.3 is used to compute the generators [0, 1] and [1, 2] of
BPF(X) ⊆ Z3.

• Then Algorithm 4.7.7 computes the point C := [0, 0] ∈ c(S̃/S).
• The faces of cone(S) are given by F1 := cone([1, 2]), F2 := cone([0, 1]).

The algorithms then computes α1, α2 such that −KX+C = [−4, 0] defines
a point in ταii . We obtain α1 = 8, α2 = −4 and ν = 8. Note that α2 = −4
is just the first coordinate of −KX + C.

• Then the algorithm performs the following steps:
– Since we have dim(X) + 1 = 7 ≤ m ≤ 7 = ν − 1, the algorithm only

needs to test the case m = 7.
∗ For i = 1 we have bα1−1

7 c = 1, i.e. only the case k = 1 needs
to be considered. The algorithm yields Gpki = {[1, 3]}.
∗ Now Algorithm 4.7.1 is used to test whether KX +mGpki ⊆ S

holds. We have KX + 7 [1, 3] = [11, 21] which is not contained
in cone(S). Thus Algorithm 4.7.1 returns false.

• Hence the algorithm fujitaBPF returns false.
Note that the KX + 7 [1, 3] = [11, 21] is not semiample and thus not nef. Maeda
proved in [51, Proposition 2.1] that KX + mL is nef for all m ≥ dim(X) + 1 and
for all L ∈ Ample(X)∩Pic(X) if X is an irreducible normal projective variety with
at most log terminal singularities. Nevertheless, this example does not contradict
the result of Maeda since X is not log terminal: To see this, one can look at the
affine variety Xγ14 . By [2], Xγ14 is log terminal only if the exponents of different
monomials are platonic triples. Since this is not the case, we conclude that X is
not log terminal.

Observe that the base point free monoid BPF(X) ⊆ Z2 is saturated and thus
the ample class [1, 3] is base point free. Although KX + 7 [1, 3] = [11, 21] is not base
point free on X, a result of [44] implies that KX + 7 [1, 3] = [11, 21] is very ample
and thus base point free on Xreg.

For a geometric description of X, note that X admits an elementary contrac-
tion ϕ : X → P4 of fiber type with fibers isomorphic to a hypersurface of degree
eight in P3. To be precise we have ϕ−1(a) ∼= VP3

(a1a
7
2T

8
0 + a3a

7
4T

8
1 + T 8

2 ) where
a = [a1, . . . , a5] ∈ P4 denotes a point of P4 in homogeneous coordinates and where
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T0, T1, T2, T3 denote the coordinates of Cox(P3). Moreover, X admits a closed em-
bedding X → Y into the projectivized split vector bundle

Y = P
(
OP4
⊕OP4

⊕OP4
(1)⊕OP4

(2)
)
.

We now turn to the proof of Algorithm 4.9.4.

Lemma 4.9.7. In the setting of 4.9.3, the following are equivalent:

(i) KX + mL ∈ S holds for all m ≥ dim(X) + 1 and for all ample Cartier
divisor classes L, i.e. X fulfills Fujita’s base point free conjecture.

(ii) KX + mL ∈ S holds for all ν − 1 ≥ m ≥ dim(X) + 1 and for all ample
Cartier divisor classes L.

Proof. Only implication “(ii)⇒(i)” needs to be proven. Consider m ≥ dim(X) + 1.
If m ≤ ν − 1 holds, then KX + mL ∈ S follows by (ii). Now assume that m ≥ ν
holds. Note that since L defines a point in the relative interior of σ for all 1 ≤ i ≤ r,
the multiple mL0 ⊗ 1 is contained in a facet parallel τβii with βi ≥ m ≥ ν. Thus
by definition of ν as maximum over all integers αi with (−K0

X +C0)⊗ 1 ∈ ταii , we
obtain

mL ⊗ 1 ∈ ((−KX + C)⊗ 1) + cone(S) .

Thus, KX +mL defines a point in (C ⊗ 1) + cone(S). Since C is an element of the
conductor ideal c(S̃/S) of S ⊆ K, we conclude KX +mL ∈ S. �

Lemma 4.9.8. In the setting of 4.9.3, the following are equivalent form ∈ {dim(X)+
1, . . . , ν − 1} :

(i) KX +mL ∈ S holds for all ample Cartier divisor classes L.
(ii) For all 1 ≤ i ≤ r and for all 1 ≤ k ≤ bαi−1

m c, where b·c denotes the floor
function, we have KX +mL ∈ S for all L ∈ ι−1

0 (τki ∩ σ◦)×Ktor.

Proof. Only implication “(ii)⇒(i)” needs to be proven. Consider an ample Cartier
divisor class L, i.e.

L ∈ ι−1
0 (σ◦)×Ktor

holds. Denote by β1, . . . , βr ∈ Z>0 positive integers such that L0 ⊗ 1 ∈ τβii holds.
If βi ≤ bαi−1

m c holds for some 1 ≤ i ≤ r, then KX + mL ∈ S follows by (ii). Now
assume that βi > bαi−1

m c holds for all 1 ≤ i ≤ r. We obtain mβi ≥ αi for all
1 ≤ i ≤ r. Recall that (−K0

X +C0)⊗1 ∈ ταii holds for all 1 ≤ i ≤ r. Thus mβi ≥ αi
for all 1 ≤ i ≤ r shows that

mL ⊗ 1 ∈ ((−KX + C)⊗ 1) + cone(S)

holds. Thus, KX +mL defines a point in (C ⊗ 1) + cone(S). Since C is an element
of the conductor ideal c(S̃/S) of S ⊆ K, we conclude KX +mL ∈ S. �

Lemma 4.9.9. In the setting of 4.9.3, consider indices 1 ≤ i ≤ r, 1 ≤ k ≤ bαi−1
m c

and an ample Cartier divisor class L ∈ ι−1
0 (τki ∩σ◦)×Ktor. Then there are y ∈ Gpki

and aj ∈ Z≥0 such that we have

L = y +

ni∑
j=1

ajmj .

Proof. Observe that σ ∩ τki = conv(pk1 , . . . , p
k
ti) + cone(Gi) holds. Hence there are

rational numbers aj , b` ∈ Q≥0,
∑ti
j=1 aj = 1, such that

L =

( ti∑
j=1

ajp
k
j +

ni∑
`=1

b`m
0
` , Ltor

)
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holds. We obtain L = y+
∑ni
`=1bb`cm` (4.9.9.1), where b·c denotes the floor function

and where y is given as

y :=
( ti∑
j=1

ajp
k
j , Ltor −

ni∑
`=1

b`m
tor
`

)
+

ni∑
`=1

(b` − bb`c)m` .

Note that y is an element of K since we have y = L −
∑ni
`=1bb`cm`, where L as

well as the m`, 1 ≤ ` ≤ ni, are elements of K. If y0 ⊗ 1 ∈ σ◦ holds, (4.9.9.1) is the
required representation of L. Now consider the case where y0 ⊗ 1 is not contained
in σ◦. This means that y0 ⊗ 1 ∈

(
conv(pk1 , . . . , p

k
ti) \ σ

◦) holds. Since L0 ⊗ 1 is
contained in σ◦, there is 1 ≤ ` ≤ ni with bb`c 6= 0. Without loss of generality
we assume that bb1c, . . . , bb`0c > 0 and bb`0+1c = . . . = bb`ni c = 0 hold for some
1 ≤ `0 ≤ ni. Then we have

L = y′ +

`0∑
j=1

(bbjc − 1) mj (4.9.9.2) , where y′ := y +

`0∑
j=1

mj

holds. In order to show that formula (4.9.9.2) is the required representation of L, it
remains to prove that y′ ∈ Gkpi holds. Note that y′ ∈ K holds since y is an element
of K. Moreover, since y0 ⊗ 1 ∈

(
conv(pk1 , . . . , p

k
ti) \ σ

◦) holds, y′ defines a point in
conv(pk1 , . . . , p

k
ti) + Gi. It remains to show that y′ defines a point in the relative

interior of σ. Recall that
∑`
j=1m

0
j ⊗ 1 is contained in the facet Fi. Furthermore,

since we are in the case y0 ⊗ 1 /∈ σ◦, the point y0 ⊗ 1 lies in a facet Fy of σ.
Since k ≥ 1 and y ∈ ι−1

0 (τki ) hold, we conclude that y0 ⊗ 1 is not contained in Fi,
i.e. there is no face κ � σ with y0 ⊗ 1 ∈ κ and

∑`
j=1m

0
j ⊗ 1 ∈ κ. Thus the sum

y0 +
∑`
j=1m

0
j defines a point in the relative interior of σ. As argued above, this

shows that y′ is an element of Gkpi , which completes the proof. �

Lemma 4.9.10. In the setting of 4.9.3, consider dim(X) + 1 ≤ m ≤ ν − 1,
1 ≤ i ≤ r and 1 ≤ k ≤ bαi−1

m c. Then the following are equivalent:
(i) KX +mL ∈ S holds for all L ∈ ι−1

0

(
τki ∩ σ◦

)
×Ktor.

(ii) KX +mL ∈ S holds for all L ∈ Gpki .

Proof. Since Gpki ⊆ ι
−1
0

(
τki ∩ σ◦

)
×Ktor holds, only implication “(ii)⇒(i)” needs to

be proven. Note that this is an immediate consequence of Lemma 4.9.9. �

Proof of Algorithm 4.9.4. We need to show that X fulfills Fujita’s base point free
conjecture if and only if the above algorithm returns true. This can be seen as
follows: if X is not Gorenstein, then KX + mL is not a Cartier divisor class; in
particular, it is not base point free. Now assume that X is Gorenstein. Since the
embedded monoid BPF(X) ⊆ Pic(X) is spanning, we can apply Algorithm 4.7.7 and
compute a point of its conductor ideal. Lemma 4.9.7 shows that we can bound m by
ν−1; Lemmata 4.9.8 and 4.9.10 prove that the sets Gpki , 1 ≤ i ≤ r, 1 ≤ k ≤ bαi−1

m c,
serve as validations sets of Cartier divisor classes. �
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