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ABSTRACT (ENGLISH) 

Arithmetic learning improves mathematical competence, which is necessary for 

successful daily life. However, little is known about the neural underpinnings of arithmetic 

learning during childhood, the age when individuals learn most of the mathematical skills 

and the vast majority of our knowledge comes from adult studies.  

In this dissertation project, four studies were conducted to investigate the neural and 

behavioral correlates of arithmetic development and learning in children. In Study 1 

arithmetic development was evaluated longitudinally to see whether it is monotonous or 

there are intermediate phases in which certain domain-general processes become important 

but disappear later. In Study 2 arithmetic complexity was evaluated to see whether it relies 

on both magnitude and cognitive processes, such as in adults. In Study 3 it was asked 

whether the findings in adults are valid for children or are there intermediate stages. 

Furthermore, it was evaluated whether few training sessions are reflective of more long-

term learning processes. In Study 4 the brain activation changes during the course of 

learning were measured to see whether they reveal similar changes as in after arithmetic 

learning. 

The findings revealed that different domain-general cognitive processes are involved 

in different steps of arithmetic development and learning. Furthermore, arithmetic 

achievement occurs in two steps in children, first from slow effortful procedural processes 

to fast compacted procedural processes, and then to retrieval processes. These changes are 

distinguishable after one and several training sessions, and also during the course of 

learning. The findings are integrated in a theoretical model of arithmetic achievement in 

children, which contains two phases: (i) the efficiency increase (from slow effortful 

procedural processes to fast compacted procedural processes) and (ii) the strategy change 

(from fast compacted procedural processes to retrieval processes) phases. The model was 

developed based on two principles of brain function, optimum performance and energy 

consumption, and supported by several empirical studies. 

Taken together, this dissertation project provides a comprehensive framework for 

arithmetic development and learning in children. The findings might be helpful to develop 

educational and therapeutic interventions and also a new measure of intervention outcomes, 

particularly in individuals with mathematical learning disabilities. 
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ABSTRACT (GERMAN) 

Arithmetisches Lernen verbessert die mathematische Kompetenz, die für ein 

erfolgreiches Alltagsleben nötig ist. Allerdings weiß man noch wenig über die neuronale 

Basis von arithmetischem Lernen in der Kindheit, obwohl es das Alter ist, in dem 

Menschen die meisten ihrer mathematischen Fähigkeiten erwerben, und der überwiegende 

Großteil unseres Wissens stammt aus Studien mit Erwachsenen.  

In diesem Dissertationsprojekt wurden vier Studien durchgeführt, um die neuronalen 

und behavioralen Korrelate arithmetischer Entwicklung und arithmetischen Lernens bei 

Kindern zu untersuchen. In Studie 1 wurde die arithmetische Entwicklung longitudinal 

evaluiert, um herauszufinden, ob diese monoton ist oder ob es Zwischenphasen gibt, in 

denen bestimmte domänenübergreifende Prozesse wichtig werden, später aber wieder 

verschwinden. In Studie 2 wurde die arithmetische Komplexität evaluiert, um 

herauszufinden, ob diese wie bei Erwachsenen sowohl auf der Verarbeitung von Größe als 

auch auf kognitiven Prozessen beruht. In Studie 3 war die Frage, ob die Ergebnisse von 

Erwachsenen auch für Kinder gelten oder ob es Zwischenphasen gibt. Darüber hinaus 

wurde untersucht, ob wenige Trainingseinheiten langfristigere Lernprozesse widerspiegeln. 

In Studie 4 wurden Veränderungen in der Gehirnaktivität während des Lernvorgangs 

gemessen, um herauszufinden, ob sich ähnliche Veränderungen wie nach arithmetischem 

Lernen feststellen lassen.  

Den Ergebnissen zufolge sind unterschiedliche domänenübergreifende kognitive 

Prozesse an unterschiedlichen Schritten bei der arithmetischen Entwicklung und beim 

arithmetischen Lernen beteiligt. Außerdem erfolgt arithmetisches Lernen bei Kindern in 

zwei Schritten: zuerst von langsamen aufwändigen prozeduralen Prozessen zu schnellen 

komprimierten prozeduralen Prozessen und dann zu Abrufprozessen. Diese Veränderungen 

lassen sich nach einer und nach mehreren Trainingseinheiten sowie während des 

Lernvorgangs unterscheiden. Die Ergebnisse sind in ein theoretisches Modell zu 

arithmetischem Lernerfolg bei Kindern eingebunden, welches aus zwei Phasen besteht: (i) 

Phase der Effizienzsteigerung (von langsamen aufwändigen prozeduralen Prozessen zu 

schnellen komprimierten prozeduralen Prozessen) und (ii) Phase der Strategieänderung 

(von schnellen komprimierten prozeduralen Prozessen zu Abrufprozessen). Das Modell 
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wurde auf der Basis von zwei Prinzipien der Gehirnfunktion entwickelt – optimaler 

Leistung und Energieverbrauch – und wird von vielen empirischen Studien gestützt.  

Insgesamt liefert dieses Dissertationsprojekt eine Theorie für arithmetische 

Entwicklung und arithmetisches Lernen bei Kindern. Die Ergebnisse können dazu dienen, 

pädagogische und therapeutische Interventionen sowie ein neues Maß für 

Interventionserfolg insbesondere für Personen mit einer mathematischen Lernstörung zu 

entwickeln. 
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GENERAL INTRODUCTION 

Mathematical skills are a common demand of daily life in modern societies (Parsons 

& Bynner, 2005). Unlearned mathematical skills in childhood impact later academic and 

professional achievement (Duncan et al., 2007), socioeconomic well-being (Hanushek & 

Woessmann, 2010), and mental health outcomes (Parsons & Bynner, 2005), which lead to 

huge costs for societies, such as an annual cost of £2.4 billion in the UK (Gross, Hudson, & 

Price, 2009). Therefore, it seems very important for individuals to achieve these skills. 

However, investigating behavioral and neural correlates of arithmetic development and 

learning, and also the consequences of their dysfunction, has received considerably less 

funding and attention than other learning disabilities (Bishop, 2010). Moreover, 

mathematical disability has more consequences than other learning disabilities (Beddington 

et al., 2008; Parsons & Bynner, 2005). It has been shown that up to 20% of individuals 

suffer from mathematical disabilities (Menon, 2013; Williams, 2003), despite age-

appropriate schooling and the absence of other cognitive deficits (Butterworth, Varma, & 

Laurillard, 2011). It is, therefore, essential to understand the underlying processes of 

mathematical development in typically developing children before turning toward the study 

of mathematically disabled children. Furthermore, investigating arithmetic development 

and learning is an ideal field to uncover the acquisition of cognitive skills during 

development on a larger scale. This is because the current status, content, progress, and 

goals can be easily specified in this field (Delazer et al., 2003). Such studies also help to fill 

in the gaps between education and neuroscience, which results in both disciplines obtaining 

new perspectives from each other (Ansari & Coch, 2006). This bridging is necessary for 

developing educational and therapeutic interventions, and also for assessing the outcomes 

of interventions for both typically developing children and children with mathematical 

disabilities (see also Zamarian, Ischebeck, & Delazer, 2009). 

Mathematical knowledge contains different components (cf. Fig. 1), which need to be 

taken into account when mathematical achievement in children is investigated, as they are 

essential for an individual to become competent in mathematics (S. P. Miller & Hudson, 

2007). Previous studies have shown that declarative, procedural, and conceptual knowledge 

are needed in arithmetic learning (e.g., Delazer, 2003; S. P. Miller & Hudson, 2007). 

Declarative knowledge or memory, i.e., semantic long-term memory, is mostly involved in 
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storing and retrieving arithmetic facts, which is the fast way to find the solutions to very 

easy problems such as 4 × 1 (Ashcraft, 1992; see also Moeller, Klein, Fischer, Nuerk, & 

Willmes, 2011). Hence, in order to develop declarative knowledge, sufficient practice is 

needed to achieve mastery of specific problems. Procedural knowledge is the ability to 

solve math problems by following sequential steps (Goldman & Hasselbring, 1997). 

Therefore, procedural knowledge is required for more complex calculations, which require 

solving a problem step-by-step, according to the training methods that individuals have 

learned, for example to solve 13 × 82 (McCloskey, Caramazza, & Basili, 1985). 

Conceptual knowledge is the understanding of the principles and laws of mathematics, such 

as the idea that 4 × 17 is equal to 17 × 4 (Hittmair-Delazer, Semenza, & Denes, 1994), 

which provide the meaning of mathematics (S. P. Miller & Hudson, 2007). Therefore, 

conceptual knowledge is a network of information consisting of both discrete numerical 

facts and the relations between them (Goldman & Hasselbring, 1997). Understanding these 

relations is essential for generalizing and dealing with novel problems within new 

situations (Kameenui & Simmons, 1990). In sum, while learning some mathematical 

knowledge leads to mastery only in that particular skill or problem set, learning another 

type might generalize to new skills or sets. Moreover, the relations between the above-

mentioned types of knowledge, particularly procedural and conceptual, have been under 

great debate and discussion during the last decades (Hiebert, 2013). While some researchers 

distinguish them from each other, some others subsume them in the same category (for a 

detailed discussion see Hiebert, 2013). Furthermore, learning of different knowledge types, 

namely declarative and procedural, leads to different brain activation networks (Delazer et 

al., 2005). 

The application of these types of knowledge engages domain-specific and several 

domain-general cognitive processes (Delazer et al., 2003), which are necessary to consider 

when mathematical knowledge is investigated and taught. While domain-specific 

magnitude and quantity-based processes involve manipulating numbers, domain-general 

cognitive processes consist of working memory (WM), planning, and monitoring (Delazer 

et al., 2003). On the neural level, according to the triple-code model (Dehaene, Piazza, 

Pinel, & Cohen, 2003) three parietal circuits are involved in numerical and arithmetic 

processing. The core circuit, which is defined as the domain-specific area in number 

processing, is the horizontal part of the intraparietal sulcus (IPS), which reveals increased 
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activation during quantity processing. The other two areas, which are assumed to be 

engaged in numerical processing as domain-general areas, are the left angular gyrus (AG) 

and bilateral posterior superior parietal area. While the left AG supports processing the 

numbers in verbal form, the bilateral posterior superior parietal area supports attentional 

and spatial demands of number and arithmetic processes (Dehaene et al., 2003). 

Additionally, Dehaene, Molko, Cohen, and Wilson (2004) suggested that prefrontal 

activation, which is mostly related to executive functions and WM, supports mental 

calculation. Klein et al. (2016) recently suggested an update to the triple-code model by 

adding some other related brain regions. They suggested that three frontal regions, namely 

the triangular part of the inferior frontal gyrus (IFGtri), BA 47, and the supplementary 

motor area (SMA), are involved in domain-specific magnitude process. With respect to 

verbally mediated arithmetic facts, they suggested the involvement of additional regions, 

namely the retrosplenial cortex (RC), ventro-medial prefrontal cortex, and the hippocampus 

(Klein et al., 2016). According to Poldrack (2000), learning is a shift from general purpose 

processes to more task-specific processes. Therefore, a shift from frontal regions to parietal 

regions within the above-mentioned network is expected due to arithmetic development and 

learning. 

Given the significant impacts of mathematical skills in life, in the present dissertation 

project, the neural and behavioral correlates of arithmetic development and learning are 

investigated in typically developing children. Both arithmetic development and learning 

lead to improved performance. While development can be defined as a set of systematic 

changes over the life span, which are related to the maturation of the brain, learning is 

defined as the acquisition of new knowledge, which includes short-term changes after 

instruction that can occur either in the classroom or outside of school. As outlined above, 

this project can be considered the first step in a long trajectory to develop educational and 

therapeutic interventions for individuals suffering from poor mathematical competencies. 

Four studies were conducted in this project. In Study 1, arithmetic development was 

evaluated longitudinally to see whether it is monotonic, or there are intermediate phases in 

which certain domain-general processes become important but disappear later. In Study 2, 

arithmetic complexity was evaluated to see whether it relies on both magnitude and 

additional cognitive processes, such as in adults. In Study 3, it was asked whether the 

findings in adults are valid for children’s development, or if instead there are intermediate 
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stages. Furthermore, it was evaluated whether too few training sessions are reflective of 

more long-term learning processes. In Study 4, the brain activation changes during the 

course of learning were measured to see whether they reveal similar changes after 

arithmetic learning. In addition to behavioral correlates, it seems to be important to 

investigate the neural correlates of arithmetic development and learning, because it has 

been shown that while behavioral findings may fail to predict future arithmetic 

performance, the neural findings predict it well (e.g., Supekar et al., 2013). Also, neural 

findings can help to interpret the behavioral findings (Szűcs & Goswami, 2007), such as 

different behavioral finding between adults and children in magnitude processing, which 

comes from undeveloped cognitive control in children and not the inability to process 

quantities (Temple & Posner, 1998). Moreover, reaching a more thorough understanding of 

mechanisms underlying arithmetic development and learning might help to develop 

neurobiological markers to diagnose mathematical learning disabilities at early stages and 

also assess the response to arithmetic training and interventions. 

 

BEHAVIORAL CORRELATES OF ARITHMETIC DEVELOPMENT AND LEARNING 

ARITHMETIC DEVELOPMENT AND LEARNING IN CHILDREN 

Arithmetic development and learning lead to behavioral improvement in 

performance, which is measured by shorter response times (e.g., Ashcraft, 1982) or 

increased accuracy (J.-A. Jordan, Mulhern, & Wylie, 2009) in mental calculation. These 

behavioral achievements have been shown as an effect of both development and short-term 

learning in children. With respect to the developmental effect, a cross-sectional study of 

2nd and 3rd graders indicated higher scores for mathematical reasoning and numerical 

operations in older children (Meyer, Salimpoor, Wu, Geary, & Menon, 2010). In line with 

this finding, Huber, Fischer, Moeller, and Nuerk (2013) found that 6th graders 

outperformed 5th graders in solving multiplication and division problems with two levels 

of complexity. Another cross-sectional study in 4th through 7th grades reported that 

younger children solved simple division problems more slowly and less accurately than 

older children (Robinson et al., 2006). In agreement with developmental studies, learning 

studies reported similar behavioral improvements via different mathematical training 

methods such as one-to-one tutoring or computer technology (e.g., Fuchs et al., 2013; Li & 
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Ma, 2010). Rittle‐Johnson and Koedinger (2009) showed that iterative lessons facilitate 

mathematical learning in 6th graders. In line with these findings, neuropsychological 

studies of patients with severe impairments even in performing simple calculations have 

shown significant improvements with arithmetic training (Girelli, Delazer, Semenza, & 

Denes, 1996; Whetstone, 1998). Therefore, it seems that there is a general consensus in the 

literature regarding these behaviorally robust findings. 

These correlates of arithmetic development and learning have been behaviorally 

characterized as a shift from effortful procedural processes to more efficient and fast 

processes, such as an increased retrieval of information – in this case, the solutions of 

arithmetic problems – from semantic long-term memory (Siegler & Shrager, 1984; Siegler, 

1988). While younger children utilize various strategies such as finger counting, counting 

from the larger operand, repeated additions, etc. (Siegler, 1988; Fuson, 2012), older 

children show less variety in arithmetic problem-solving and report higher reliance on 

automaticity and retrieval strategies (Ashcraft, 1992). However, according to different 

proposed models, arithmetic development might not be simply a linear change from more 

difficult procedural strategies to easier retrieval strategies. For instance, the overlapping-

wave model (Siegler, 1996) suggests that while there is a constantly increasing use of 

retrieval strategies during development, several mixtures of different strategies might be 

used at different steps as well (see also Shrager & Siegler, 1998). In support of multi-stage 

arithmetic development and learning, Von Aster (2000) proposed a model of developmental 

dynamics of number processing and mental calculation. According to this model, three 

representational modules of the triple-code model (Dehaene et al., 2003), i.e., semantic, 

visual-Arabic, and verbal modules, are differentially important at different steps of 

development. Based on this model, these modules are semi-autonomous during 

development and depend on each other (for more details see Von Aster, 2000). Altogether, 

although behavioral studies of arithmetic development and learning converge to the same 

findings, different domain-general factors have been shown to influence arithmetic 

achievement in children. 
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DOMAIN-GENERAL COGNITIVE FACTORS INFLUENCE ARITHMETIC DEVELOPMENT AND 

LEARNING IN CHILDREN 

Studies in children have suggested two groups of factors influencing arithmetic 

development: domain-specific and domain-general factors. Domain-specific factors include 

the core magnitude processes of numerals such as the approximate number system (N. C. 

Jordan, Glutting, & Ramineni, 2010; for a review see Dietrich, Huber, & Nuerk, 2015), 

non-symbolic arithmetic abilities (Gilmore, McCarthy, & Spelke, 2010), and spatial-

numerical associations (Siegler & Opfer, 2003). Domain-general factors including 

cognitive (Bull, Espy, & Wiebe, 2008), educational, and social (Byrnes & Wasik, 2009) 

factors influence arithmetic development and learning in children (for a review see Cragg 

& Gilmore, 2014). With respect to domain-general cognitive factors, most of the studies in 

the field of experimental and developmental psychology have investigated different 

memory types and executive functions including WM, inhibition, and shifting (cf. Fig. 1) 

(Bull & Scerif, 2001; Bull & Lee, 2014; Clark, Pritchard, & Woodward, 2010; Fuhs, 

Hornburg, & McNeil, 2016; Verdine, Irwin, Golinkoff, & Hirsh-Pasek, 2014). 

 

 
Fig. 1. A theoretical model suggesting the relation between domain-general executive 

functions and different components of mathematical knowledge. Dashed lines indicate 

changeable relationships over the course of development [from Cragg and Gilmore (2014)]. 

 

Different memory components including WM and short-term memory (STM) have 

already been reported to be involved in different mathematical competencies during 

development (Meyer et al., 2010) and at different ages (Menon, 2016). According to the 

model suggested by Miyake and colleagues (Shah & Miyake, 1996; Miyake & Shah, 1999), 

WM capacity contains two separate pools of domain-specific resources for verbal and 
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visuospatial information, which keep and manipulate information independently (see also 

Friedman & Miyake, 2000; Jarvis & Gathercole, 2003; Miyake, Friedman, Rettinger, Shah, 

& Hegarty, 2001). Moreover, WM has been reported as a pure measure of a child's learning 

potential (Alloway & Alloway, 2010), which predicts a child's performance in 

mathematical learning (Alloway & Passolunghi, 2011). STM demonstrates temporal 

deterioration and capacity limits, whereas WM is a multi-component system that stores and 

manipulates information in STM, uses attention to manage STM, and applies STM to 

cognitive tasks (N. Cowan, 1988, 2008; Baddeley & Hitch, 1974; Baddeley, 1992). Recent 

studies have shown that the relative contributions of different memory components to 

general mathematic learning change during development. At first, preschool children rely 

more on visuospatial memory than verbal memory (McKenzie, Bull, & Gray, 2003), which 

makes it one of the best predictors of arithmetic performance one year later (Simmons, 

Singleton, & Horne, 2008). Later, starting from school age, learning is more dependent on a 

verbal rehearsal to preserve information in memory, thus recruiting more the phonological 

loop (Rasmussen & Bisanz, 2005; Hitch, Halliday, Schaafstal, & Schraagen, 1988). This 

has been explained by the use of verbally mediated strategies, in which children transform 

symbols and numbers into verbal code (Geary, Bow‐Thomas, Liu, & Siegler, 1996; Logie, 

Gilhooly, & Wynn, 1994). By the first grade, performance relies equivalently on nonverbal 

and verbal memory. Later, the visuospatial component again becomes the best predictor of 

mathematical knowledge. Meyer et al. (2010) showed that the verbal components of 

memory predict mathematical reasoning skill in 2nd grade, whereas the visuospatial 

component is the best predictor in 3rd grade. Therefore, different WM and STM 

components seem to be critical for mathematics learning in general (for a review see 

Menon, 2016). However, a recent study by Nemati et al. (2017) revealed that at least in 

adults, the role of WM may be overestimated, because other domain-general processes like 

planning or self-control overcome WM in complex calculation. 

While the majority of studies have investigated the influence of memory components, 

few studies have taken into account the possible relation of other executive functions, 

particularly inhibition and shifting, to mathematical knowledge in children. Inhibition is the 

ability to suppress or ignore distracting and irrelevant information (Bull & Scerif, 2001), a 

skill that has been reported to be related to mathematical competence in children (St Clair-

Thompson & Gathercole, 2006; K. Lee et al., 2012; Gilmore et al., 2013). Cragg and 
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Gilmore (2014) suggested that inhibition might be more important at younger ages in order 

to suppress less efficient strategies and to enable more efficient, faster strategies in mental 

calculation. It also may have a more important role in some operations like multiplication 

than in others like subtraction. For instance, to retrieve the solution of a problem from a 

multiplication table (e.g., 3 × 8 = 24), operand-related solutions (21 in this case, which is 

the correct solution of 3 × 7) need to be inhibited to avoid mistakes (for more see 

Butterworth, Marchesini, & Girelli, 2003). Furthermore, it is suggested that inhibition and 

shifting are necessary to acquire new mathematical concepts, to be able to suppress 

automatic procedural strategies, and to shift attention towards new rules (Cragg & Gilmore, 

2014). Shifting is the ability to switch attention between different tasks or different parts of 

a task (Cragg & Gilmore, 2014). A meta-analysis demonstrated that shifting ability predicts 

mathematical performance during development (Yeniad, Malda, Mesman, van IJzendoorn, 

& Pieper, 2013). Shifting is especially needed to switch between procedural strategies, as in 

complex arithmetic problem-solving (Cragg & Gilmore, 2014). All of the above-mentioned 

studies point to the fact that mental calculation not only involves domain-specific 

processes, i.e., manipulating numerals, but also several domain-general cognitive processes 

(Moeller, Klein, & Nuerk, 2013), which are not specialized to mathematics and are 

essential for almost every high-level cognitive process. However, the question remains 

whether different domain-general factors are differentially important at different ages. 

 

NEURAL CORRELATES OF ARITHMETIC PROCESSING 

ARITHMETIC COMPLEXITY IN ADULTS 

While behavioral studies have already defined arithmetic development as increasing 

speed and precision in solving problems and finding solutions, it is important to uncover 

the neurobiological markers underlying this development. This is because neural findings 

can be helpful in interpreting the behavioral findings and sometimes to avoid 

misinterpretations. For instance, Temple and Posner (1998) showed similar brain 

mechanisms in magnitude processing in 5-year-old children and adults, while behavioral 

findings revealed a huge difference between them. Based on this finding, the authors 

suggested undeveloped cognitive control, but the same type of magnitude representation in 

children as in adults. Therefore, it seems essential to study neural correlates of arithmetic 
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development alongside behavioral studies. Furthermore, not all individuals demonstrate the 

same means of improvement, and they recruit different strategies. Understanding the 

underlying neurobiological markers might help us to find that what makes arithmetic 

complex and go one step further to map dysfunctions in individuals having arithmetic 

difficulties, and develop more appropriate interventions.  

Neuroimaging studies in adults have investigated arithmetic complexity by using one-

digit and multi-digit arithmetic problems. They showed that one-digit multiplication 

involves a mostly left frontoparietal network (Gruber, Indefrey, Steinmetz, & Kleinschmidt, 

2001; Zago et al., 2001), whereas multi-digit multiplication additionally involves the IPS, 

inferior parietal lobule and inferior frontal gyrus (IFG) bilaterally (Zago et al., 2001; 

Delazer et al., 2003; Delazer et al., 2005; Grabner et al., 2007). Larger activation in parietal 

regions during complex multiplication was interpreted as a result of domain-specific 

magnitude and quantity-based processes (Delazer et al., 2003) and larger activation in 

frontal regions as the engagement of domain-general cognitive processes (Gruber et al., 

2001; Ischebeck et al., 2006).  

Although there is agreement that complex arithmetic calculations rely on additional 

magnitude and cognitive processes in adults (e.g., Klein et al., 2016), studies pointed to 

different brain areas. For instance, some studies reported only domain-general cognitive 

processes related to arithmetic complexity. Gruber et al. (2001) investigated the neural 

correlates of arithmetic complexity by means of functional magnetic resonance imaging 

(fMRI) in adults. The simple task consisted of one-digit multiplication and inverted 

division problems, and the complex task consisted of one-digit and two-digit multiplication 

and division problems. They found that an increased complexity in arithmetic leads to 

increased activation within the left IFG, which is known to be involved in WM, executive 

functions, and the encoding and rehearsal of information. Zago et al. (2001) investigated 

the neural correlates of simple and complex multiplication problems, which were assumed 

to be solved by fact retrieval and computational strategies, respectively. Simple calculation 

led to an activation of the left parieto-premotor network, which was interpreted as a 

developmental trace of the representation of finger counting. Complex calculation led to an 

activation of the left frontoparietal network, which was interpreted as reflecting cognitive 

demands on visuospatial WM, and bilateral activation of the inferior temporal gyri, which 

are involved in producing visual mental imagery of numerals. Zago et al. (2001) suggested 
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that arithmetic complexity relies on different engagements of visuospatial representations in 

the calculation. M. Rosenberg-Lee, M. Lovett, and J. Anderson (2009) revealed that 

arithmetic complexity relies on greater activity in a posterior superior parietal lobule, which 

is demanded by attentional aspects of arithmetic processing, and in the posterior parietal 

cortex, which is involved in the mental representation of numerals. However, they did not 

find any additional activation in horizontal IPS (but see Klein, Moeller, Glauche, Weiller, 

& Willmes, 2013), the core of numeral magnitude processes (Dehaene et al., 2003), or in 

the inferior prefrontal cortex, the area engaged in semantic retrieval processes. In another 

study, Delazer et al. (2003) observed bilateral activation of the frontoparietal network in 

both one-digit and two-digit multiplication, which was more extended and greater in two-

digit multiplication. Moreover, the activation in simple multiplication was extended to the 

left AG (Delazer et al., 2003). However, because of the fixed number of presented trials in 

a block design, they avoid direct comparison of simple and complex conditions. This might 

be a critical problem in neuroimaging studies because the complex calculation usually takes 

a longer time. Therefore, a part of the activation may be due to the task complexity and not 

specifically numerical processes. 

The left AG is one of the regions that has received contradictory interpretations in 

arithmetic processing. The left AG involvement, particularly in simple one-digit 

multiplication, is interpreted as a language-related process, in accordance with the evidence 

of rote retrieval from long-term semantic memory (Delazer et al., 2003; Grabner et al., 

2007; Zhou et al., 2007; see also Klein, Moeller, Glauche, et al., 2013). In contrast, Menon, 

Rivera, White, Glover, and Reiss (2000) found bilateral activation in the AG to be 

associated with arithmetic complexity in adults. Moreover, Grabner et al. (2007) revealed 

that activation of the AG depends on math competencies during solving both one-digit and 

two-digit multiplication problems. They observed stronger activation of the AG, the middle 

temporal gyrus (MTG), the supplementary motor area, and the medial superior frontal 

gyrus (SFG) in the left hemisphere for individuals with high compared to low math 

competence. They suggested enhanced automatic, language-related processes of the AG 

during mental calculation in mathematically competent individuals (Grabner et al., 2007). 

However, Klein, Moeller, and Willmes (2013) suggested that taking into account fiber 

pathways of the brain sheds light on this seemingly contradictory evidence. In addition to 

the comparison between one-digit and multi-digit calculation, increased complexity of 
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calculation within one-digit problems has been shown to increase engagement of the 

frontoparietal network in adults (Jost, Khader, Burke, Bien, & Rösler, 2009; Kiefer & 

Dehaene, 1997; Stanescu-Cosson et al., 2000). Klein, Moeller, Glauche, et al. (2013) 

suggested that increasing the complexity leads to a gradual shift from verbally mediated 

fact retrieval to magnitude related processing. In sum, the studies in adults conclude that 

increased complexity of arithmetic is associated with increased activation of frontal and 

parietal areas, showing the additional involvement of cognitive processes and greater 

engagement of domain-specific and visuospatial processes (see also Klein, Moeller, 

Glauche, et al., 2013). 

Arithmetic complexity has been also documented in a few studies by means of 

oscillatory electroencephalography (EEG) in adults. It has been shown that mental 

calculations mostly lead to oscillatory changes in theta and alpha frequency bands (for 

review see Antonenko, Paas, Grabner, & van Gog, 2010; Hinault & Lemaire, 2016). Theta 

oscillation originates from hippocampocortical loops (Klimesch, 1999), the bilateral medial 

prefrontal cortex (Ishii et al., 1999), and the hippocampo-prefrontal feedback loop 

(Klimesch, 1999). Hence, theta activity has been interpreted as a function of different 

cognitive processes in mental calculation, such as sustained attention (Ishihara & Yoshii, 

1972), executive functions, visual imagery of numerals (Mizuhara & Yamaguchi, 2007), 

and cognitive workload (Sammer et al., 2007). However, some studies have demonstrated 

an association between increased theta power and retrieval strategies during mental 

calculation in adults (Earle, Garcia-Dergay, Manniello, & Dowd, 1996; De Smedt, Grabner, 

& Studer, 2009; Grabner & De Smedt, 2011). Regarding the alpha frequency band, 

thalamocortical loops have been reported as the origin of oscillation, which is associated 

with search and retrieval in semantic long-term memory (Klimesch, 1999). Previous studies 

have reported an inverse correlation between alpha power and mental activity (Davidson, 

Jackson, & Larson, 2000), and between alpha power and procedural strategies in arithmetic 

processing (Micheloyannis, Sakkalis, Vourkas, Stam, & Simos, 2005; De Smedt et al., 

2009; for a review see Hinault & Lemaire, 2016). In one of the few studies of arithmetic 

complexity in adults, Micheloyannis et al. (2005) investigated neurophysiological changes 

during one-digit and two-digit multiplication solving. They found increased theta power 

and decreased upper alpha power as a result of increased complexity of calculation. To sum 

up, arithmetic complexity in adults relies on greater engagement of both domain-general 
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and domain-specific processes, which leads to greater activation in the frontoparietal 

network, increased theta power, and decreased alpha power. 

 

ARITHMETIC COMPLEXITY IN CHILDREN 

A further question is whether arithmetic complexity relies on both magnitude and 

additional cognitive processes in children, as it does in adults. Children rely on more 

diverse strategies for arithmetic problem solving compared to adults (Cooney, Swanson, & 

Ladd, 1988; Lemaire & Siegler, 1995; Sherin & Fuson, 2005; Siegler, 1988); therefore, 

arithmetic complexity might differ between these two groups. There is even a difference 

between younger and older children. According to the literature, identical problems are 

more complex for younger children than for older children. Therefore, the same arithmetic 

problems can be considered more complex for younger children than for older children. 

Understanding arithmetic complexity in children is important because children usually have 

problems with complex calculations rather than simple ones. It is also essential to 

investigate the neural correlates of this complexity, because it would be helpful for early 

diagnosis before schooling, and to distinguish the exact weakness of the frontoparietal 

network of arithmetic processing. This would be also beneficial for developing 

interventions based on findings in children rather planning based on the findings in adults. 

However, very little is known about the neurobiological correlates of arithmetic 

complexity, from directly comparing complex and simple calculations by the same group of 

children. Moreover, some neuroimaging studies of arithmetic development and learning 

indirectly give us some insight into the neural correlates of arithmetic complexity in 

children. 

Rosenberg-Lee, Barth, and Menon (2011) found that increased complexity in one-

digit addition is associated with both domain-general cognitive processes – increased 

activation within the right inferior frontal sulcus and anterior insula – and domain-specific 

magnitude processes – increased activation within the left IPS and superior parietal lobule 

(SPL) regions – in 2nd and 3rd graders, as in adults (see also Kawashima et al., 2004). 

However, a developmental frontoparietal shift has been shown in children, which makes it 

more difficult to draw conclusions about complexity-related brain activation in children 

than in adults. Rivera, Reiss, Eckert, and Menon (2005) demonstrated an activation increase 

in the left parietal cortex, supramarginal gyrus, adjoining anterior IPS, and lateral 
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occipitotemporal cortex, while finding decreased activation in the dorsolateral and 

ventrolateral prefrontal cortex during development. This finding was supported by a cross-

sectional study of children from 2nd to 7th grades, which reported an age-related decrease 

in activation within the IFG and age-related increase in the left MTG during one-digit 

simple multiplication (Prado, Mutreja, & Booth, 2014). A recent study in 9 to 12-year-old 

children revealed bilateral activation of the AG and the supramarginal gyri during one-digit 

subtraction relative to non-symbolic calculation (Peters, Polspoel, de Beeck, & De Smedt, 

2016). This difference was a result of greater retrieval strategy use in one-digit subtraction 

compared to non-symbolic processing, which was more complex and needed more 

magnitude-based procedural strategies (see also Polspoel, Peters, & De Smedt, 2016). 

These findings point to an increased functional specialization of the left posterior parietal 

cortex and decreased dependencies on domain-general processes in frontal regions (for a 

review see Menon, 2010). Moreover, they reveal that more reliance on the retrieval of 

information from long-term memory indicates a simpler calculation, whereas procedural 

algorithm-based strategies are mostly used in solving more complex problems. 

Additionally, some studies have suggested a transitional role of the hippocampus 

system and its connectivity to the prefrontal cortex in the strategy shift from complex to 

simple calculation (Cho et al., 2012). In a longitudinal study of 7- to 9-year-old children, 

Qin et al. (2014) showed the pivotal role of the hippocampal system in the transition from 

procedural to retrieval memory-based strategies (for training see Supekar et al., 2013). 

They reported that more complex calculations, which rely mostly on counting strategies in 

younger and less-trained children, engage a prefrontal-parietal network, whereas older and 

more mathematically trained children show increased hippocampo-neocortical functional 

connectivity, which is related to more retrieval strategies (Qin et al., 2014; Supekar et al., 

2013; but see Rivera et al., 2005). This finding is corroborated by the hypothetical model 

by Klein et al. (2016) suggesting that the hippocampal network is more used when more 

arithmetic facts are learned, and also that its connectivity to the AG strengthens during 

verbally mediated fact retrieval in problem solving (see also Klein, Moeller, Glauche, et al., 

2013). Altogether, studies in children suggest that more frontal engagement is associated 

with arithmetic complexity, which is altered by the improvement of arithmetic performance 

during development, meaning that problems become less complex for older children. 

However, it needs to be tested directly in children to see whether arithmetic complexity in 
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children relies on both domain-general and domain-specific regions, as in adults, or if it 

only relies on domain-general regions, as shown by cross-sectional and learning studies in 

children. 

 

NEURAL CORRELATES OF ARITHMETIC DEVELOPMENT AND LEARNING 

ARITHMETIC LEARNING IN ADULTS 

As outlined above, investigating the neural correlates of arithmetic calculation 

alongside the behavioral correlates of arithmetic learning might have several advantages. 

For instance, these could include better interpretation of behavioral findings, the 

development of new diagnostic and intervention techniques, preschool early screening for 

mathematical difficulties, and also planning the optimal learning methods for patients with 

different brain lesions. Therefore, it seems to be essential to uncover the neural correlates of 

arithmetic learning in healthy adults. 

The majority of our knowledge about the neural correlates of arithmetic learning in 

adults comes from multiplication studies. These findings might not necessarily apply to 

mathematic achievement in general; however, it is easy to indicate the strategy use in this 

operation. According to these studies, arithmetic learning is characterized by a strategy shift 

from more effortful and algorithm-based to more retrieval processes, which results in brain 

activation changes (for a review see Zamarian et al., 2009). On the cognitive level, 

arithmetic learning has been defined as a decreased engagement of verbal and visuospatial 

WM, attentional control, planning, self-monitoring, mathematical rules and algorithms in 

the calculation (Delazer et al., 2003). On the neural level, this learning has been frequently 

demonstrated to be accompanied by reduced frontoparietal network activation and 

increased activation of the left AG in adults (Delazer et al., 2003; Delazer et al., 2005; 

Ischebeck et al., 2006; Ischebeck, Zamarian, Schocke, & Delazer, 2009; Grabner, 

Ischebeck, et al., 2009; Pauli et al., 1994; see also Klein et al., 2016). The frontoparietal 

network consists of both domain-general and domain-specific processing areas engaged in 

mental calculation. Inferior, middle and superior frontal gyri are associated with additional 

cognitive processes such as WM and planning in mental calculation. The IPS, SPL, and 

inferior parietal lobule (IPL) are associated with magnitude processing of numerals (for a 

review see Arsalidou & Taylor, 2011). The left AG is involved with retrieving information 
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from long-term memory (Dehaene & Cohen, 1997; Dehaene et al., 2003). Klein et al. 

(2016) suggested the pivotal role of the hippocampal cortex and RC in arithmetic fact 

retrieval, in addition to the left AG (see also Bloechle et al., 2016). Altogether, following 

the definition of learning by Poldrack (2000), arithmetic learning in adults entails a shift 

from general purpose processes in frontal regions to more task-specific processes, in this 

case magnitude and number processes. 

The fronto-parietal shift during arithmetic learning has been shown several times. In 

the first neurophysiological training study by means of event-related potentials (ERP), 

Pauli et al. (1994) revealed diminished positivity in frontocentral sites and enhanced stable 

positivity in centroparietal sites due to simple multiplication training. They interpreted this 

shift as a result of the increase of automatized processes (Pauli et al., 1994). In line with 

this finding, Delazer et al. (2003) reported activation of the IPS, the IPL, and IFG in the 

contrast between untrained and trained problems, and less deactivation of the left AG in the 

inverse contrast (see also Delazer et al., 2005; Ischebeck et al., 2006). Delazer et al. (2003) 

suggested that this learning in adults is mostly supported by the left hemisphere. This 

frontoparietal shift was already reported after only eight repetitions of complex 

multiplication problems in adults (Ischebeck, Zamarian, Egger, Schocke, & Delazer, 2007). 

They observed gradually decreasing activation of the frontoparietal areas, and at the same 

time, increasing activation of tempo-parietal regions including the left AG. Moreover, this 

increase in activation of the left AG has been also shown in untrained but related problems 

in other basic operations. A successful transfer is important for efficient arithmetic 

performance because it enables people to solve new problems. Ischebeck et al. (2009) 

observed stronger activation of the AG in the contrast between related and unrelated 

division problems, after multiplication training. Therefore, it seems that this shift from 

frontal to parietal cortex, and then to the left AG, due to arithmetic learning is a robust 

finding in adults. 

Several studies have suggested that the above-mentioned shift depends on several 

factors. Delazer et al. (2005) showed that while two different learning methods led to a shift 

from slow procedural strategies to fast automated procedures and retrieval strategies, they 

were associated to different brain regions. One arithmetic learning method was a “drilling” 

approach, which emphasizes the rote memorization of calculation procedures (R. Cowan, 

2003). In this method, an understanding of the whole procedure is not necessary, and the 
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learning is based on the association between the operands and solution (Baroody, 2003), as 

in memorizing a multiplication table. The other method enforces an understanding of the 

procedural strategies based on the mathematical principles and the relation between the 

operational steps. This method focuses on the application of sequential algorithms until the 

individuals gradually build up a set of memorized facts (Zamarian et al., 2009). Delazer et 

al. (2005) demonstrated that training by way of procedural strategies leads to the activation 

of the precuneus, whereas training by rote leads to the activation of the medial parietal 

areas extending to the left AG. The authors interpreted successful retrieval strategies, as the 

dominant process after training, might be associated with different brain regions and not 

necessarily the left AG (see also Bloechle et al., 2016; Klein et al., 2016). In line with these 

findings, Grabner, Ischebeck, et al. (2009) examined the specificity of the AG activation for 

arithmetic fact retrieval. Surprisingly, similar brain activation changes, i.e., decreased 

activation of the frontoparietal network and less deactivation in bilateral AG, were 

observed in both arithmetic and figural-spatial problems (Grabner, Ischebeck, et al., 2009). 

The authors concluded that the AG is not specific to arithmetic learning.  

Furthermore, the activation of the left AG depends on mathematical competence 

(Grabner et al., 2007) and the experimental design (Bloechle et al., 2016). Contradictory to 

most of the neurocognitive studies on arithmetic training, which have looked only at the 

contrast of trained and untrained sets in the post-training measurements, Bloechle et al. 

(2016) conducted both pre- and post-training fMRI measurement. They found that the 

contrast of trained versus untrained complex multiplication problems in the post-training 

fMRI illustrated higher activation in the AG, while surprisingly, the contrast of trained 

problems in a post-training session versus pre-training displayed no significant change in 

the AG. Ischebeck et al. (2006) suggested that learning-related brain changes depend also 

on the arithmetic operation. They observed higher activation of the left AG for 

multiplication, but not for subtraction training. Ischebeck et al. (2006) suggested that while 

training leads to faster and more efficient strategies in trained subtraction, it leads to a shift 

from magnitude processes to retrieval strategies only in trained multiplication. Altogether, 

these studies point to the fact that arithmetic learning in adults might not be a simple shift 

from frontal areas to parietal areas, and then within parietal areas from more superior 

regions to the inferior regions, particularly the left AG. 
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In addition to the fMRI studies, a few oscillatory EEG studies have provided 

information about neural circuits of arithmetic learning in adults. Grabner and De Smedt 

(2012) observed an increased power in theta and lower alpha frequency bands over parietal 

and occipitoparietal sites in trained sets versus untrained matched sets, which was more 

dominant in a figural-spatial task relative to the arithmetic task. They interpreted these 

training-related power changes as a result of increased retrieval of the solutions from long-

term memory. Similar oscillatory changes were observed in adults who demonstrated a 

significant training effect in division problem-solving after 10 minutes, in the range of 

theta, alpha, and beta frequency bands (Skrandies & Klein, 2015). In sum, it seems that 

arithmetic learning in adults can be defined as a strategy shift. Although several studies 

have shown the non-specificity of some regions, particularly regarding the involvement of 

the AG, there is a general agreement about a shift from frontal to parietal areas in 

arithmetic learning in adults (Zamarian et al., 2009). 

 

ARITHMETIC DEVELOPMENT AND LEARNING IN CHILDREN 

The findings in adults are not easily transferable to children (Kaufmann, Wood, 

Rubinsten, & Henik, 2011). However, neuroimaging studies of arithmetic learning are 

scarce in children, and most of our knowledge is drawn from studies in adults. The next 

question to consider is whether the procedural to retrieval shift found in adults is valid for 

children’s development, or are there intermediate stages? Below we discuss why the story 

of this shift may not capture the learning in children. Moreover, the cross-sectional, 

longitudinal, and math tutoring studies will be discussed because they can provide useful 

information about the neural correlates of arithmetic development and learning in children.  

Arithmetic development has been defined as a shift from more domain-general 

processes to more domain-specific processes, and is indicated by a reduced activation of 

frontal regions and an increased activation of parietal regions. In a cross-sectional study of 

8 to 19 years old, Rivera et al. (2005) found that older participants rely more on left parietal 

areas, supramarginal gyrus, adjoining anterior IPS and the left lateral occipitotemporal 

cortex during one-digit calculation. In the absence of any alteration in gray matter density, 

Rivera et al. (2005) interpreted this finding as evidence of enhanced functional maturation. 

On the other hand, younger participants relied more on bilateral MFG and SFG, and the left 

IFG, supplementary motor area and anterior cingulate, suggesting more demands on WM 
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and executive function to achieve the same results as older participants. Furthermore, 

stronger activation of the left hippocampus and bilateral dorsal basal ganglia was observed 

in younger children, which was interpreted as showing higher demands on both declarative 

and procedural memory systems (Rivera et al., 2005). The authors concluded that a 

developmental shift occurs from frontal areas to the left IPL in mental calculation. Kucian, 

von Aster, Loenneker, Dietrich, and Martin (2008) reported greater activation in the left 

IPS in adults (age of 22-32 years) compared to 3rd graders and 6th graders, but weaker 

activation in the anterior cingulate gyrus, which is assumed to be related to attentional and 

WM load of calculation. Kucian et al. (2008) proposed an increase of automated processes 

in arithmetic problem-solving with age, which is reflected by the enhanced activation of 

domain-specific areas and decreased activation of the supporting domain-general areas. 

These findings were replicated with various symbolic and non-symbolic magnitude 

comparison tasks comparing the brain activation patterns between children and adults (e.g., 

Ansari, Garcia, Lucas, Hamon, & Dhital, 2005; Ansari & Dhital, 2006; Cantlon et al., 

2009). The findings were accompanied by a strategy shift from procedural strategies to 

retrieval, which is a faster and more efficient way of calculation. 

In contrast to the above findings, Rosenberg-Lee et al. (2011) reported increased 

activation of the frontoparietal network after one year of schooling. They found greater 

activity in dorsal stream parietal areas, including right SPL, IPS, and AG, as well as ventral 

visual stream areas, including bilateral lingual gyrus, right lateral occipital cortex, and right 

parahippocampal gyrus in 3rd graders as opposed to 2nd graders (Rosenberg-Lee et al., 

2011). Furthermore, 3rd graders demonstrated stronger activation of the left dorsolateral 

prefrontal cortex, and greater deactivation of the ventral medial prefrontal cortex, along 

with greater functional connectivity between the left dorsolateral prefrontal cortex and 

parietal regions. Increased activation of the IPS was interpreted as reflecting an amodal, 

language-independent semantic representation of numerical quantity during arithmetic 

development and learning (see also Ansari, 2008). Regarding the IPS as the core of 

numerical processing, it has been suggested that the right IPS has a stable role in numerical 

processing, whereas the functions of the left IPS change during development (Emerson & 

Cantlon, 2015). However, Kawashima et al. (2004) showed that an activation change 

occurs in the right IPS as well. They observed greater activation of the right IPS during 

one-digit calculation in adults (ages 40-49 years) compared to children (ages 9-14 years).  
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More recent studies have suggested that additional brain regions, particularly the 

hippocampal system, are involved in arithmetic development and learning. In a one-to-one 

math tutoring study, 3rd graders revealed a similar strategy shift from procedural to 

retrieval after eight weeks of training (Supekar et al., 2013). Interestingly, Supekar et al. 

(2013) found the pre-training hippocampal volume, the functional connectivity of the 

hippocampus with dorsolateral and ventrolateral prefrontal cortices, and the basal ganglia to 

predict arithmetic improvement. They suggested that the neural networks underlying 

arithmetic learning are not necessarily the typical regions such as IPS and the AG involved 

in arithmetic processing in adults, but are associated with changes in the morphometry of 

the hippocampus and its connectivity with frontal regions (Supekar et al., 2013). 

Surprisingly no behavioral measures, consisting of IQ, WM, and general math abilities, 

predicted arithmetic achievement. Based on these findings, one might conclude that neural 

measures are helpful for an early preschool diagnosis of future math difficulties, while 

behavioral measures might fail. A longitudinal study in children aged from 7 to 9 years 

supported the role of the hippocampus in math learning in children (Qin et al., 2014). The 

authors suggested a critical transient role of the medial temporal lobe, including the 

hippocampus, in arithmetic learning in children. Moreover, they showed that the 

hippocampal system is pivotal in the strategy shift from procedural to retrieval, which was 

shown by the increased involvement of the hippocampus and decreased involvement of the 

frontoparietal network during mental calculation (Qin et al., 2014). Note that a new 

hypothetical model by Klein et al. (2016) suggests hippocampal engagement during 

arithmetic development and learning in adults as well, which has been supported by 

training studies in adults (e.g., Bloechle et al., 2016). 

It has been also suggested that neural correlates of different operations are not 

necessarily identical during development. In a cross-sectional study from 2nd through 7th 

grades, Prado et al. (2014) found similar behavioral correlates in both one-digit subtraction 

and multiplication problems, but dissociated neural correlates. A grade-related activation 

increase of the left temporal areas, which are involved in language processes, was observed 

in multiplication but not in subtraction. With respect to subtraction, a grade-related increase 

of the right parietal cortex, which is involved in quantity and magnitude processing, was 

observed. Furthermore, an age-related decrease in activation within the IFG was observed, 

which shows a developmental frontoparietal shift in arithmetic problem-solving (Prado et 
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al., 2014). The authors concluded that fluency in arithmetic problem-solving is achieved by 

both increased retrieval and increased use of efficient procedural strategies, depending on 

the arithmetic operation.  

Altogether, a remaining question is whether arithmetic development and learning in 

children is a simple shift from domain-general processes to more task-related domain-

specific processes, as arithmetic learning studies demonstrate in adults, or if there is any 

shift within domain-general factors. As discussed above, different domain-general factors 

might influence arithmetic performance during development. Moreover, because of the lack 

of knowledge about neural correlates of arithmetic learning in children, it is unclear 

whether these shifts are monotonic or if there are intermediate phases in which certain 

domain-general processes become important but disappear again in adulthood. 

Furthermore, it might be interesting to see whether the training studies with children are 

reliable if there are minimal training sessions, and whether this learning reflects more long-

term learning processes. 

 

NEUROIMAGING TOOLS IN CHILDREN 

Several different neuroimaging tools have already been used to measure brain 

activation changes during different cognitive and motoric tasks in children. Each tool has 

some benefits, but also some limitations that make it less applicable in special populations 

such as children. For instance, fMRI has a high spatial resolution and records both cortical 

and subcortical activations, but it is very expensive, highly sensitive to motion artifacts, 

inappropriate for motoric responses, low in temporal resolution, and requires an artificial 

body position, which costs extra time and effort in testing children.  

 

FUNCTIONAL NEAR-INFRARED SPECTROSCOPY (FNIRS) 

fNIRS has been developing since the 1990s, and has already been used in about 1000 

studies (cf. Fig. 2) to investigate brain activation in healthy and disordered individuals 

(Ehlis, Schneider, Dresler, & Fallgatter, 2014). 
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Fig. 2. Graphical time course of published original research articles on fNIRS used to 

investigate human cortical functions in general (dark gray line) and in psychiatric research 

in particular (light gray line). Annual publications are depicted [from Ehlis et al. (2014)]. 

 

According to fNIRS, neural activation results in increased cerebral blood flow due to 

neurovascular coupling and increased oxygen consumption (Scholkmann et al., 2014), 

which lead to changes in oxyhemoglobin (O2Hb) and deoxyhemoglobin (HHb) (Wolf et al., 

2002). Non-invasively, fNIRS records these changes as an indirect measure of brain 

activation. Usually, two wavelengths are used in continuous wave fNIRS, which is the most 

common fNIRS tool in neuroscience. The near-infrared spectral range is about 650-950 nm, 

the range of light that can propagate into biological tissue, and these wavelengths are only 

weakly absorbed by water, hemoglobin, collagen, and proteins (Scholkmann et al., 2014). 

Below 650 nm, light is highly absorbed by hemoglobin, and above 950 nm it is highly 

absorbed by water (cf. Fig. 3). The two optimal wavelengths are 692 and 830 nm, which 

provide the highest signal-to-noise ratio (Sato, Kiguchi, Kawaguchi, & Maki, 2004). In this 

range, O2Hb and HHb have higher absorption compared to the other substances, because of 

their low concentrations (for a discussion see review by Scholkmann et al., 2014). 

Increased O2Hb or decreased HHb represent brain activation in fNIRS measurement. 
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Fig. 3. Natural logarithmic absorption spectra (nM) for different chromophores in human 

tissue. Shown are the spectra for O2Hb, HHb, proteins, water, collagen, fat, and cytochrome 

oxidase (CtOx) in the region from 100 nm to 10,000 nm [from Scholkmann et al. (2014)]. 

 

The utilization of fNIRS has several advantages, including the possibility of 

combining fNIRS with other brain imaging methods such as fMRI (Heinzel et al., 2013), 

EEG (Schneider et al., 2014), Positron Emission Tomography (Rostrup, Law, Pott, Ide, & 

Knudsen, 2002), and Single-Photon Emission Computed Tomography (Schytz et al., 2009). 

Moreover, it is possible to measure brain activation during ecologically valid situations as 

in school settings (Baker, Martin, Aghababyan, Armaghanyan, & Gillam, 2015; Dresler et 

al., 2009; Obersteiner et al., 2010) or during whole-body movement (Piper et al., 2014; see 

also Bahnmueller, Dresler, Ehlis, Cress, & Nuerk, 2014), and there is a relatively low 

propensity for retaining movement artefacts. Therefore, it is suitable for measuring brain 

activation in children in upright body postures, like sitting behind a desk and in front of a 

computer. The other important advantage of fNIRS is in measuring children, patients 

confined to bed, patients with psychiatric disorders, and those with syndromes involving 

motor restlessness such as attention deficit/hyperactivity disorder, all of which are 

situations where many brain imaging methods may fail (Ehlis et al., 2014). fNIRS is also a 

rather cheap method compared to methods such as fMRI; it is easily applicable, and highly 

versatile, which altogether allows for frequent measurement repetitions. These advantages 
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made it suitable not only for diagnosis but also recently for use as a treatment method such 

as fNIRS-neurofeedback (e.g., Marx et al., 2014). 

However, fNIRS has also some limitations including restricted depth and lateral 

spatial resolution (Wabnitz et al., 2010), the confounding influence of extracranial signals 

(Haeussinger et al., 2014), and variation in anatomical parameters such as scalp-to-cortex 

distance (Haeussinger et al., 2011) as well as in peripheral hemodynamic parameters such 

as skin perfusion (Takahashi et al., 2011). Therefore, by means of fNIRS only cortical 

activation can be detected, and not activation of deep brain structures. Further, fNIRS has 

been shown to be a reliable tool for the investigation of groups of subjects, although it is 

not sufficiently reliable for the single-subject measure (for a review see Scholkmann et al., 

2014).  

While fNIRS seems to be a promising tool in cognitive neuroscience, few studies 

have already applied fNIRS in the field of numerical cognition (e.g., Dresler et al., 2009; 

Verner, Herrmann, Troche, Roebers, & Rammsayer, 2013). Altogether, fNIRS seems to be 

a very suitable tool to measure brain activation in children in an ecologically valid setting, 

similar to the school setting (Obersteiner et al., 2010). Moreover, children are allowed to 

move a little – they are not so restricted as with fMRI – and fNIRS easily allows for 

combined measurement with other tools such as EEG, while requiring fewer noise 

corrections than other common brain imaging tools like fMRI. 

 

ELECTROENCEPHALOGRAPHY (EEG) 

The EEG is a non-invasive measure of the electrical activity of neurons, showing 

brain activation. Different types of analyses can be done on the EEG signal, which provide 

different kinds of information. For instance, ERP provides a measure of the brain’s electric 

potentials in response to an external stimulus, which are therefore phase- and time-locked 

to the stimulus. It offers very high temporal resolution in comparison to other techniques 

(Luck, 2014). On the other hand, frequency analysis of the EEG signal provides 

information about brain activity related to functional neural networks (Hinault & Lemaire, 

2016). In this method, brain waves are divided into different frequency bands such as delta, 

theta, alpha, beta, and gamma, and the power changes within each frequency band can 

reveal different brain functions. 
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Similar to the other tools, EEG has also advantages and disadvantages. It has a very 

high temporal, but low spatial resolution, and is relatively sensitive to motion. Moreover, it 

is much cheaper than many brain imaging tools, and because it is small and portable, it is 

easily applicable in very different situations such as in schools. However, in order to reduce 

environmental noise, the best place to record is in an electrically shielded room. The other 

big advantage of EEG is that brain waves can be recorded and analyzed in different ways. 

For instance, cognitive and motor processes lead to an event-related potential (ERP) and 

also to a change in continuous EEG in form of event-related synchronization and 

desynchronization (ERS/ERD) (Pfurtscheller, 2001). While ERS is a power increase due to 

the synchronized oscillation of EEG signals, ERD is a short-lasting localized decrease in 

power (cf. Fig. 4). The percentage values of ERS/ERD are calculated by this expression: 

ERS/ERD% = (PSD of activation duration – PSD of rest duration) / PSD of rest duration × 

100 (Pfurtscheller & Da Silva, 1999). Compared to ERP, which is the summation of post-

synaptic potentials and is both time- and phase-locked to the event, ERS/ERD is time-

locked but non-phase locked to the event, is highly frequency-band specific (Pfurtscheller, 

2001; Pfurtscheller & Da Silva, 1999), and reflects quantificational measures of brain 

dynamics (Pfurtscheller & Aranibar, 1977). 

 

Fig. 4. Increased ERS (red) is identical to increased power density, while increased ERD 

(blue) means reduced power density. The baseline is defined as the time of no specific 

process in the brain, such as experimental rest time. 

  

The EEG signal is a combination of different brain waves (cf. Fig. 5). Previous 

studies indicate that theta and alpha frequency bands are sensitive to cognitive tasks such as 

arithmetic processing and behave in opposite ways (e.g., Dolce & Waldeier, 1974). For 

instance, task complexity, attentional and cognitive demands, and memory load lead to 

theta ERS (increase in theta power) but cause alpha ERD (decrease in alpha power) 

(Antonenko et al., 2010; Gevins, Smith, McEvoy, & Yu, 1997; Klimesch, 1999; 

Pfurtscheller, Stancak, & Neuper, 1996; Pfurtscheller & Da Silva, 1999). Furthermore, 
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some cognitive functions are more closely related to one of these frequency bands. In 

particular, it has been reported that theta band oscillations reflect the encoding of new 

information, whereas alpha band oscillations reflect searching for and retrieving 

information from long-term semantic memory storage (Antonenko et al., 2010; O. Jensen & 

Tesche, 2002; Klimesch, 1999; Sammer et al., 2007; Sauseng & Klimesch, 2008).  

 

Fig. 5. An EEG frequency band spectrum (black line). The band powers are displayed by 

the areas of the gray bars, which are analyzed in ERS/ERD method [from Van Albada and 

Robinson (2013)]. 

 

In numerical cognition, there is ambiguity regarding the function of different EEG 

frequency bands in arithmetic processing. On the one hand, some studies interpret the theta 

frequency band as being associated with cognitive demands of arithmetic processing such 

as sustained attention and WM, and the alpha frequency band as an indicator of fact 

retrieval processes from long-term memory in different arithmetic tasks (Harmony et al., 

1999; Klados et al., 2013; Micheloyannis et al., 2005; Mizuhara & Yamaguchi, 2007; 

Moeller, Wood, Doppelmayr, & Nuerk, 2010). However, other studies interpret the theta 

band as a function of arithmetic fact retrieval processes and the alpha band as a function of 

procedural processes (De Smedt et al., 2009; Grabner & De Smedt, 2011, 2012). Therefore, 

it seems to be essential to conduct studies in this field by means of oscillatory EEG, 

particularly in children, to shed light on these contradictory interpretations in the field of 

numerical cognition. Furthermore, these findings would be of interest not only to 

researchers, but also clinicians, for instance to develop new therapies using EEG 

neurofeedback.  
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AIM OF THE STUDIES 

The aim of the dissertation project is to uncover the behavioral and neural correlates 

of arithmetic development and learning in children. This includes monitoring arithmetic 

achievement during development, both longitudinally and by direct learning. Moreover, 

this project investigates the relation between domain-general and domain-specific 

processes, which are essential in the development and learning of arithmetic in children. As 

outlined previously, this dissertation project contains four studies. In these studies, 

multiplication performance, as one of the most investigated arithmetic operations in adults 

(Zamarian et al., 2009), is explored on the behavioral and neural levels in typically 

developing children. In Study 1 the behavioral correlates of arithmetic learning, along with 

domain-general cognitive factors influencing this achievement, were investigated 

longitudinally. The question was whether domain-general factors are differentially 

important at different ages. In Study 2 the behavioral and neural correlates of arithmetic 

complexity were investigated. Few neuroimaging studies have investigated this issue in 

children, so that most of our knowledge comes from adults, yet children rely on more 

varied strategies for arithmetic problem solving compared to adults. This means that 

problems defined as complex for children might not be the same for adults. Therefore, the 

question was whether arithmetic complexity relies on both magnitude and additional 

cognitive processes in children, as in adults. Study 3 was conducted in typically developing 

children in order to find the behavioral and neural correlates of short-term arithmetic 

learning in children. The question was whether the procedural to retrieval shift found in 

adults is valid for children’s development, or if there are intermediate stages. In Study 4 the 

behavioral and neural changes during arithmetic learning in typically developing children 

were investigated in order to monitor the brain activation changes gradually. While 

Ischebeck et al. (2007) observed a frontoparietal shift during arithmetic learning in adults, 

the question was whether similar changes can be observed in children during learning. This 

dissertation project can be considered the first step on a long path to develop educational 

and therapeutic interventions for children with mathematical difficulties. 
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STUDY 1 

Children usually improve in arithmetic problem-solving with age and experience. For 

instance, strategies used in processing multiplication change from procedure- and strategy-

based calculation to retrieval during children’s development (Cooney et al., 1988; Lemaire 

& Siegler, 1995). It has been reported that there is a transition to the retrieval strategy for 

solving single-digit multiplication problems in 4th grade (Cooney et al., 1988). However, 

this retrieval process is not constant during the following years of development (Campbell 

& Graham, 1985). Longitudinal development of the automatic associations within the fact 

retrieval network has not been sufficiently understood. It is important to investigate the 

development of multiplication ability from 3rd to 4th grades, because at this stage, basic 

arithmetic skills begin to improve indirectly, outside of direct training, and are mostly 

applied in higher-level mathematics at school. Therefore, in Study 1, the behavioral 

correlates of multiplication development were longitudinally monitored from 3rd to 4th 

grade. 

Furthermore, in Study 1, the contributions of different memory components including 

verbal and visuospatial short-term memory (STM) and WM were longitudinally 

investigated in the multiplication performance of 3rd and 4th graders. A meta-analysis of 

WM and mathematics demonstrated that among several domain-general cognitive factors, 

WM has a pivotal role in many aspects of development and learning in mathematics (Peng, 

Namkung, Barnes, & Sun, 2015), which changes dynamically over development (for a 

review see Menon, 2016). For instance, Meyer et al. (2010) reported that mathematical 

reasoning was predicted by the phonological component in 2nd graders, while it was 

predicted by the visuospatial component in 3rd graders. Therefore, the question addressed 

by this study was whether the shift from the verbal to the visuospatial component of WM is 

evident in multiplication problem-solving between 3rd and 4th grades. We hypothesized 

that because children in grade 4 are not receiving direct multiplication training, but rather 

indirectly apply it, they might not necessarily show improvement in one-digit 

multiplication. Also that because of this indirect non-verbal training, verbal memories do 

not make up the essence of this learning anymore. 
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STUDY 2 

Following Study 1, the behavioral and neural correlates of arithmetic complexity 

were investigated. It has been reported that even older children in 5th and 6th grades make 

mistakes in arithmetic problem-solving, especially in complex problems (e.g., Huber et al., 

2013). However, the origin of arithmetic complexity is not clear in children, because all 

studies in children have investigated only either simple or complex arithmetic calculation. 

A few studies in adults have revealed the activation of bilateral brain regions, especially left 

frontal cortex and IPS, during complex as opposed to simple multiplication problems. In 

Study 2, multiplication complexity was simultaneously investigated by means of fNIRS 

and EEG with 5th graders. Simultaneous fNIRS-EEG is helpful to measure, directly and 

indirectly, neural activity underlying complexity processing in multiplication and to 

examine cross-measurement validity. There are very few studies in children, and most of 

our knowledge about arithmetic complexity comes from adults, whereas children rely on 

more diverse strategies for arithmetic problem-solving than adults. The question here was 

whether the findings in adults generalize to neurocognitive processing in children. 

Following the literature showing neurocognitive differences between adults and children, 

and considering the developmental frontoparietal shift in brain activation underlying 

arithmetic learning, we hypothesized that greater frontal activation related to complexity 

would be engaged in domain-general cognitive processes. Moreover, while most of the 

studies in this field have used a fixed-paced paradigm, in Studies 2 and 3 a self-paced 

paradigm was used. Whereas the former might lead to a confound between more complex 

problems and longer activation time, the latter does not. Therefore, another question in 

these studies was whether the findings of previous studies are replicated by means of a self-

paced paradigm (for more details see Shallice, 2003). 

 

STUDY 3 

Several fMRI studies of complex multiplication learning in adults have suggested 

decreasing brain activation in the frontoparietal network along with increasing activation of 

specific cortical and subcortical areas, especially the left AG. This activation shift has been 

assumed to be associated with a shift from procedural to retrieval processes in 

multiplication problem-solving (for a review see Zamarian et al., 2009). On the other hand, 
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longitudinal and training studies of other arithmetic operations in children have revealed a 

decreased involvement of the frontoparietal network and increased involvement of the 

hippocampus (Qin et al., 2014; Supekar et al., 2013), but not the AG. Therefore, the 

question in this study was whether the procedural to retrieval shift found in adults is valid 

in children’s development, or whether there are additional intermediate stages. In Study 3, 

neural correlates of simple and complex multiplication learning were measured 

simultaneously by fNIRS-EEG in typically developing children. This was the first 

systematic brain imaging study of multiplication learning in children using a pre- and post-

measurement design. Based on studies in adults, we hypothesized activation reduction in 

frontal areas related to domain-general processes and an activation increase in a parietal 

area related to domain-specific processes. Because of the lack of knowledge about neural 

correlates of arithmetic learning in children, it is unclear whether these shifts are monotonic 

or if there are intermediate phases in which certain domain-general processes become 

important but disappear again in adulthood. Furthermore, it might be interesting to see 

whether the training studies with children are reliable if there are very few training 

sessions, and whether this learning is reflective of more long-term learning processes. 

 

STUDY 4 

Neurophysiological studies in adults revealed oscillatory EEG changes after short-

term arithmetic learning, which were indicated by power increases in theta and lower alpha 

bands (Skrandies & Klein, 2015). Early brain activation changes have been also reported 

after eight repetitions of complex multiplication problems in adults (Ischebeck et al., 2007). 

However, early neurophysiological changes during arithmetic learning are still unclear in 

children. In Study 4, brain oscillatory changes were monitored during six repetitions of 

multiplication problems by means of ongoing EEG in typically developing children in 5th 

grade. The question was whether the same oscillatory changes are observable in children 

during learning. Similar to studies in adults, we hypothesized a power increase in both theta 

and lower alpha bands in children. Another question was whether the brain activation 

changes after arithmetic learning are the same as the changes during the course of learning. 

Post-training changes might be what persists after memory consolidation. Therefore, these 

two kinds of findings might essentially differ.  
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ABSTRACT 

Number facts are commonly assumed to be verbally stored in an associative 

multiplication fact retrieval network. Prominent evidence for this assumption comes from 

so-called operand-related errors (e.g., 4 × 6 = 28). However, little is known about the 

development of this network in children and its relation to verbal and non-verbal memories. 

In a longitudinal design, we explored elementary school children from grades 3 and 4 in a 

multiplication verification task with the operand-related and -unrelated distractors. We 

examined the contribution of multiplicative fact retrieval by verbal and visuospatial short-

term and working memory (WM).  

Children in grade 4 showed smaller response times in all conditions. However, there 

was no significant difference in errors between grades. The contribution of verbal and 

visuospatial WM also changed with the grade. Multiplication correlated with verbal WM 

and performance in grade 3 but with visuospatial WM and performance in grade 4.  

We suggest that the relation to verbal WM in grade 3 indicates primary linguistic 

learning of and access to multiplication in grade 3 which is probably based on verbal 

repetition of the multiplication table heavily practiced in grades 2 and 3. However, the 

relation to visuospatial semantic WM in grade 4 suggests that there is a shift from verbal to 

visual and semantic learning in grade 4. This shifting may be induced because later in 

elementary school, multiplication problems are rather carried out via more written, i.e., 

visual tasks, which also involve executive functions. More generally, the current data 

indicates that mathematical development is not generally characterized by a steady progress 

in performance; rather verbal and non-verbal memory contributions of performance shift 

over time, probably due to different learning contents. 

 

 

Keywords: multiplication, arithmetic, fact retrieval, operand errors, verbal working 

memory, visuospatial working memory 
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INTRODUCTION 

Children usually get better in arithmetic problem-solving with age and experience. 

For instance, the processing strategy of multiplication in children changes from the 

procedure- and strategy-based calculation to retrieval during developmental ages (Cooney 

et al., 1988; Lemaire & Siegler, 1995). It has been reported that there is a transition to 

retrieval process for solving single-digit multiplication problems in grade 4 (Cooney et al., 

1988). However, this retrieval process is not constant during the following years of 

development (Campbell & Graham, 1985). Nonetheless, longitudinal studies for 

verification of this claim are scarce. In particular, the development of the automatic 

associations within the fact retrieval network has not been sufficiently understood.  

Of major importance in multiplication verification performance is operand-

relatedness. Operand-relatedness is whether the presented or responded answer belongs to 

the table of one of the operands or not. For instance, in a production task, an operand-

related error is when a participant responds with 24 when presented with the problem 7 × 4 

because 24 is part of the same multiplication table of one of the operands (here the 4). An 

operand-unrelated error would be the solution 30 because this number belongs neither to 

the multiplication table of 4 nor of 7. In a verification task for the problem 4 × 6 = 24, an 

operand-related verification distractor would be 4 × 6 = 28 and the operand-unrelated 

distractor would be 4 × 6 = 29.  

It has been reported that the operand-related distractor errors make up about 87.5% of 

all errors in adults (Domahs, Delazer, & Nuerk, 2006; Campbell, 1997) and about 75.7% of 

all errors in children (Butterworth et al., 2003). The large frequency of operand-related 

errors has been explained in terms of a developing memory representation in an interrelated 

network of facts (Ashcraft, 1987). This representation means that during retrieval of a 

multiplication answer from an interconnected multiplication network, the operand-related 

distractors will activate the retrieval processing more than the operand-unrelated distractors 

and lead to a slower response with more errors. These assumptions have been implemented 

in the network interference model which explains that arithmetic facts are stored as nodes 

in an associative network in long-term memory and are retrieved via a spreading activation 

(Campbell, 1995). The presented multiplication generates activation in the corresponding 

nodes and this activation spreads along the connecting pathways to associated nodes. For 

example, the presentation of 7 × 3 activates node 7 along with its related nodes (14, 21, 28, 
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etc.) and node 3 with its related nodes (6, 9, 12, etc.). In other terms, the activation of 

associates which are the operand-related distractors (e.g., 28 instead of 21 in the example 

above), increases the accessibility of these associates. Consequently, it is more plausible to 

verify it erroneously as a correct answer. However, in the operand-unrelated distractors 

(e.g., 25 instead of 21 in the example above), there is minimum activation of the associates, 

hereby decreasing the accessibility of them as a correct answer. Hence, activation of 

multiple associates interferes with the solutions because it renders these associates more 

accessible. 

To our knowledge, there are very few longitudinal studies in regard to multiplication 

development in children considering operand-relatedness. For instance, in a study by 

Lemaire and Siegler (1995) it was shown that in three sessions of multiplication production 

assessment in grade 2, the proportion of both operand-related and -unrelated errors 

increased. The other study which used multiplication verification in children did not report 

error analyses because it was stable at about 6% in grades 3 and 4 (De Brauwer & Fias, 

2009). Therefore, it is still unclear if error patterns and their relation to operand-relatedness 

change longitudinally in children and consequently what can be inferred with regard to the 

longitudinal change in the multiplication fact retrieval network. 

From the structure of the network interference model, two hypotheses could be 

brought forward for our longitudinal developmental study on multiplication facts. (i) 

Because the strength of the association network could increase with age and experience, the 

operand-relatedness error effect should be larger in older children. (ii) The alternative 

hypothesis would be that the network becomes more refined in reciprocal inhibition so that 

the single entries can be better separated with age and experience. Then, the operand-

relatedness error effect should be smaller in older children. In our opinion, both views are 

possible. The current study set out to discern these two hypotheses. 

Another main issue of this study is that to our knowledge the possible varying 

influence of other cognitive processes on the multiplication performance has not been 

studied longitudinally in children. One natural candidate for such a cognitive process is a 

memory, containing working memory (WM) and short-term memory (STM). One account 

of WM capacity is defined by Miyake and colleagues (Shah & Miyake, 1996; Miyake & 

Shah, 1999). In this model, WM capacity contains two separate pools of domain-specific 

resources for verbal and visuospatial information. Each domain keeps and manipulates 
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information independently from the other. This distinction between verbal and visuospatial 

domains has been supported by the previous findings (e.g., Friedman & Miyake, 2000; 

Jarvis & Gathercole, 2003; Miyake et al., 2001). WM has been reported as a pure measure 

of a child's learning potential (Alloway & Alloway, 2010). Thus, it has been assumed to 

predict a child's performance in mathematic learning based on the WM skills (Alloway & 

Passolunghi, 2011). While WM is defined as an ability of storage and manipulation of 

information, STM is considered as only storage of information for a temporary period of 

time (for more see Alloway, Gathercole, & Pickering, 2006). In other words, WM is a 

memory system containing separable interacting components, while STM is almost a single 

store (Alloway et al., 2006). In sum, STM demonstrates temporal deterioration and capacity 

limits, whereas WM is a multi-component system that stores and manipulates information 

in STM and uses attention to managing STM and applies STM to cognitive tasks (N. 

Cowan, 1988, 2008; Baddeley & Hitch, 1974; Baddeley, 1992). Therefore, STM involves a 

minimal load of processing, while WM contains an additional process for manipulation of 

information that leads to higher loading of the process. Different components of STM and 

WM have already been reported to be involved in different mathematical tests during 

developing stages (see also Meyer et al., 2010) but the possibility of their different role in 

development of multiplication has not been longitudinally considered – therefore, the 

differential roles of STM and WM will also be considered in the current study. 

Recent studies have shown that the relative contributions of memory components to 

general mathematic learning changes during development ages. At first, preschool children 

rely more on visuospatial memory than verbal memory for learning and remembering 

arithmetic; therefore, the best predictor of the arithmetic performance at this age is 

visuospatial sketchpad capacity (McKenzie et al., 2003; Simmons et al., 2008). Later, 

starting from school age, learning is more dependent on a verbal rehearsal to preserve 

information in memory, thus recruiting more the phonological loop (Rasmussen & Bisanz, 

2005; Hitch et al., 1988). This has been explained by verbally mediated strategies, in which 

children transform symbols and numbers into verbal code (Geary et al., 1996; Logie et al., 

1994). By the first grade, performance relies equivalently on nonverbal and verbal memory. 

Meyer et al. (2010) showed that the verbal components of memory predict mathematical 

reasoning skill in grade 2, whereas the visuospatial component is the predictor in grade 3. 

Therefore, different WM and STM components seem to be critical for mathematics 
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learning in general. However, currently, we have only little data on how the different verbal 

and visuospatial components of WM and STM contribute to multiplication performance in 

different ages in elementary school and how the importance of such components changes 

over time. For our study, we hypothesized a shift between memory components, from 

verbal to visuospatial, in children during development in multiplication similarly to those 

reported by Meyer et al. (2010) for mathematical reasoning. In the current study as we 

collected longitudinal data, the first aim was to evaluate in which way children process 

multiplication in grade 3 and 4. According to the previous findings, we expected children in 

grade 4 to be faster and possibly less error-prone than in grade 3. The second aim was to 

investigate whether their memory processing is differentially influenced by operand-

relatedness with age and experience, especially with regard to the error data. Finally, the 

third and main aim of this study was to investigate the contributions of verbal-linguistic and 

visuospatial non-verbal representations on arithmetic skill, namely the influence of verbal 

and visuospatial STM and WM on multiplication skill. 

 

MATERIALS AND METHODS 

The current study was part of a large longitudinal project evaluating numerical 

development from grade 1 to grade 4. In this study, we focused on the development of 

multiplication performance which was measured only from grade 3 to grade 4. 

 

PARTICIPANTS 

In total, 77 native German-speaking Austrian children (39 girls and 38 boys) were 

assessed in multiplication both at the end of grade 3 and grade 4. The children were 

between 8 years 6 months and 10 years 5 months (M = 9 years 4 months, SD = 7 months) 

in grade 3 and one year older in grade 4. All children had a normal or corrected-to-normal 

vision and IQ scores in the normal range. No child received special education services or 

had documented brain injury or behavioral problems. This study was carried out in 

accordance with the recommendations of the Landesschulrat, the regional school 

administration, which was responsible for approval of school-related studies in Austria at 

that time. Parents of all subjects gave written informed consent in accordance with the 

Declaration of Helsinki. 
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MULTIPLICATION STIMULI 

Children were tested on a computerized multiplication verification task. The 

experiment started with 8 practice trials. Multiplication problems (range of operands: 3–8; 

problem size: 13–54) along with the answer probe were presented at the same time on the 

screen in white against a black background (font: Arial; size: 48-point). Problems were 

presented in the form x × x = xx at the x/y coordinates (512/300) on a screen with the 

resolution set to 1024 x 768. In total there were 80 multiplication trials. Half of the trials 

were true (i.e., the solutions were displayed) and half of them were false (i.e., distractors 

which had to be rejected were displayed). The distractors consisted of operand-related and 

operand-unrelated trials. In the operand-related trials the operand split was ± 1 from the 

solutions on the multiplication table (e.g., 6 × 3 = 21). In the operand-unrelated trials, the 

displayed answers were not from the multiplication table. In the operand-unrelated trials the 

displayed answer differed from the solution by ± 2 to ± 9, with the average split matched at 

0.4 (e.g., 6 × 3 = 13). The task was a verification paradigm where the displayed answer 

needed to be verified as correct or incorrect. Problem size was held approximately constant 

between item categories. Problems and answer probes were presented until a response was 

given or the response time of 15000 ms finished. The response was made by pressing the 

‘‘Alt’’ or ‘‘Alt Gr’’ button of a QWERTZ keyboard to verify whether the displayed answer 

was the solution or distractor, respectively. It is essential to note that the solutions and 

distractors refer to the stimuli presented in the verification task, not the children’s 

responses. The children’s responses were correct or incorrect. The fixation cross was 

presented at the beginning of each trial for 500 ms. The inter-stimulus interval was set to 

1500 ms. No feedback was given. 

 

MEMORY TASKS 

Four memory components including verbal and visuospatial STM and verbal and 

visuospatial WM (Alloway et al., 2006; Alloway & Passolunghi, 2011) were assessed in 

the present study. For verbal STM, children were asked to immediately recall spoken 

sequences of letters (presentation rate: one letter per second). Starting with two-item 

sequences, sequence length was increased by one letter when at least two of three given 
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sequences were recalled correctly; otherwise, testing was stopped. The verbal STM score 

was the maximum sequence length at which at least two sequences were repeated correctly. 

For visuospatial STM, in a block tapping task (Corsi, 1973), children needed to repeat 

pointing to cubes in the same order as the experimenter. Again, children started with two-

item sequences. The procedure and scoring were identical to those in letter repetition. In 

general, forward span tests were defined as STM and backward span tests were defined as 

WM (N. Cowan, 1988; see also N. Cowan, 2008). 

For verbal and visuospatial WM, children were asked to recall sequences of letters 

and blocks in reverse order. The procedure and scoring were identical to those in the STM 

tasks. It is noteworthy that the current study included forward recall as a measure of verbal 

and visuospatial STM and backward recall as a measure of verbal and visuospatial WM. In 

forwarding recall tasks, the processing load is minimal as children immediately recall the 

sequences (Alloway et al., 2006). In contrast, in the backward recall tasks, there is an 

additional requirement to recall the reverse sequence that imposes a substantial processing 

load on the child. This higher processing load has been illustrated by the finding that 

forward spans scores are higher than backward spans (Isaacs & Vargha‐Khadem, 1989; 

Vandierendonck, Kemps, Fastame, & Szmalec, 2004). 

 

PROCEDURE 

All children were assessed individually in one-on-one sessions in a separate room. In 

both grades, multiplication performance and WM and STM were assessed. 

 

ANALYSIS 

Response times (RTs) were measured by key-press. Only RTs for correct responses 

were entered into the analyses. Furthermore, response latencies shorter than 200 ms or 

longer than 15000 ms were not considered; however, there was no response out of this 

range. In a second step, responses outside the interval of ± 3 SD around the individual mean 

were excluded. Thus, about 3% of the responses in grade 3 and about 4.5% of the responses 

in grade 4 were not considered for further analyses. First, we ran two repeated-measures 

analyses of variance (ANOVAs), first for the solution and distractor (operand-related and -

unrelated together) trials for both grades and second for the operand-related and operand-
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unrelated distractors for both grades. Second, the correlation of the WM components was 

analyzed using stepwise multiple linear regression analysis on mean RTs and error rates. 

For the error analysis, an arcsine square-root transformation was applied to approximate 

normal distribution (e.g., Winer, Brown, & Michels, 1971). 

Because of controversies regarding confirmation of null hypothesis using traditional 

statistical inference, the Bayesian method was used in the current study. The method 

described in detail by Masson (2011) enables calculating graded evidence for null 

hypothesis (i.e., no difference between groups) and the alternative hypothesis (i.e., the 

difference between groups). In the analysis, the sum of squares and number of observations 

from an ordinal analysis of variance (ANOVA) were used to calculate Bayesian factors 

which then can be used to calculate posterior probabilities (see also Raftery, 1995). In fact, 

we employed the Bayesian method in order to estimate the likelihood of correctness of the 

null and alternative hypotheses. 

 

RESULTS 

Trials with RTs 3 standard deviations above or below a child’s average RT were 

excluded. Children with a trial exclusion or an error rate of more than 33% were not 

considered (6 children [mean age = 9 years 4 months, 2 girls and 4 boys]). Thus, the data of 

71 children was considered in the analyses. Children had on average significantly higher 

WM scores in grade 4 than in grade 3 (see Table 1). A previous study suggested that the 

window between 2nd and 3rd grades is too short a time frame for major changes in WM 

capacity (Meyer et al., 2010) but interestingly we found that this difference is statistically 

significant between grade 3 and 4.  

 

Table 1. Means and standard deviations of memory components. 

  Grade 3  Grade 4   

Variable M SD M SD  ta   pb 

Verbal STM 4.55 0.73 4.92 0.73 -4.68 <.001 

Verbal WM 2.89 0.60 3.30 0.55 -4.72 <.001 

Visuo-spatial STM 5.06 0.70 5.56 0.67 -4.88 <.001 

Visuo-spatial WM 4.18 1.10 4.69 0.86 -3.82 <.001 
   a Paired sample t-test 

  b Two-tailed significance level of .01 

 

SOLUTION VS DISTRACTOR 
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First, we investigated the effect of grade on the solution and distractor (both operand-

related and -unrelated together) trials for RTs and accuracy. 

 

RESPONSE TIMES 

Raw RT of correct responses was analyzed by repeated-measures ANOVA with 

grade (3 or 4) and condition (solution or distractor) as within-participant factors. Children 

took on average 3118 ms (SD = 1243 ms) to choose the correct answer in grade 3 and 2320 

ms (SD = 916 ms) in grade 4. Children in grade 4 were on average 798 ms faster than in 

grade 3, F(1,70) = 58.46, p < .001, ƞ𝑝
2= 0.46. RTs for the solution condition was 531 ms 

faster than for the distractor condition which indicated a significant difference between the 

two conditions, F(1,70) = 162.07, p < .001, ƞ𝑝
2  = 0.70. Interaction of grade × condition 

showed that the effect of grade is greater for the distractor than for the solution, F(1,70) = 

9.14, p = .003, ƞ𝑝
2  = 0.12 (Fig. 1a and Table 2). Bayesian analysis revealed that the 

posterior probability of null hypothesis for grade and condition was about zero (the same 

probability of alternative hypothesis was complementary, i.e., about 1). The posterior 

probability of null hypothesis for interaction was .10 (the same probability of alternative 

hypothesis was .90). 

 

Table 2. Mean (M) and standard deviation (SD) of the RTs and error rates for 

multiplication trials. 

    Grade 3   Grade 4 

  M SD M SD 

RT (ms) Solution 2799 1091 2108 847 

 Operand-related distractor 3468 1466 2523 948 

 Operand-unrelated distractor 

 

3406 1371 2544 1045 

Errors (%) Solution 6.30 6.24 5.77 6.04 

 Operand-related distractor 7.68 9.41 8.94 10.52 

 Operand-unrelated distractor 4.15 7.37 5.56 8.17 

 

ERROR RATES 

Error rates were analyzed by repeated-measures ANOVAs with grade (3 or 4) and 

condition (solution or distractor) as within-participant factors. Overall, children responded 

incorrectly to 6.11% of all trials in grade 3 and on 6.51% in grade 4. Error rates did not 
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differ significantly neither between the grades, F(1,70) = 0.11, p = .74, ƞ𝑝
2  = 0.002, between 

the conditions, F(1,70) = 0.095, p = .76, ƞ𝑝
2  = 0.001, nor in their interaction, F(1,70) = 3.04, 

p = .09, ƞ𝑝
2  = 0.042. Thus, the RT differences could not be explained by speed-accuracy 

trade-offs. Bayesian analysis revealed that the posterior probability of null hypothesis for 

grade and condition was .89 (the same probability of alternative hypothesis was .11). The 

posterior probability of null hypothesis for interaction was .65 (the same probability of 

alternative hypothesis was .35). This is rated as positive evidence for the null hypothesis 

applying the criteria suggested by Masson (2011). 

 

OPERAND-RELATED VS OPERAND-UNRELATED 

Second, we investigated the effect of grade on the operand-related and operand-

unrelated distractor trials for RTs and accuracy. Note that this analysis was done for the 

distractors only. 

 

RESPONSE TIMES 

Raw RT of correct responses was analyzed by repeated-measures ANOVA with 

grade (3 or 4) and condition (operand-related or operand-unrelated) as within-participant 

factors. Children in grade 4 were on average 903 ms faster than in grade 3, F(1,70) = 53.74, 

p < .001, ƞ𝑝
2  = 0.43. Raw RT neither differed significantly between conditions, F(1,70) = 

0.28, p = .60, ƞ𝑝
2  = 0.004, nor did interaction between conditions and grade, F(1,70) = 1.57, 

p = .22, ƞ𝑝
2  = 0.022, (Table 2 and Fig. 1b). Bayesian analysis revealed that the posterior 

probability of null hypothesis for grade was about zero (the same probability of alternative 

hypothesis was about 1). However, the posterior probability of null hypothesis for 

condition was .88 (the same probability of alternative hypothesis was .12); and for 

interaction .79 (the same probability of alternative hypothesis was .21). 
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Figure 1. A) Mean RTs (in ms) for the solution and distractor. B) Mean RTs (in ms) for the 

operand-related and -unrelated distractors. Error bars reflect standard errors. 

 

ERROR RATES 

Error rates were analyzed by repeated-measures ANOVAs with grade (3 or 4) and 

condition (operand-related or operand-unrelated) as within-participant factors. The 

operand-related distractor trials were significantly more error-prone than the operand-

unrelated distractor, F(1,70) = 22.82, p < .001, ƞ𝑝
2  = 0.25. Error rates neither differed 

significantly between the grades, F(1,70) = 1.43, p = .24, ƞ𝑝
2  = 0.02, nor did interaction 

between conditions and grade, F(1,70) = 0.06, p = .81, ƞ𝑝
2  = 0.001. Bayesian analysis 

revealed that the posterior probability of null hypothesis for grade was .80 (the same 

probability of alternative hypothesis was .20). However, the posterior probability of null 

hypothesis for condition was about zero (the same probability of alternative hypothesis was 

about 1); and for interaction .89 (the same probability of alternative hypothesis was .11). 

 

RELATION BETWEEN MULTIPLICATION PERFORMANCE AND MEMORY COMPONENTS 

REGRESSION ANALYSIS
1 

                                                           

1 We know from many previous numerical and arithmetic experiments that RT data in children are very noisy. Hence, employing z-

transformed RT to reduce inter-individual differences in intra-individual variance (cf. Nuerk, Kaufmann, Zoppoth, & Willmes, 2004, and 
many following papers since), we reanalyzed linear regressions. In general, none of the memory components predicted z-transformed 

RTs in grade 3. In grade 4 the verbal WM component predicted solution z-transformed RT, distractor z-transformed RT, and operand-

related distractor z-transformed RT. However, this suggests that intra-individual noise in the RT data may at least partially account for 
the null effects observed in RTs. 
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In order to investigate which memory component predicted multiplication 

performance in grade 3 and 4, a series of stepwise regression analyses were conducted. For 

each grade, one regression predicted each of the 10 verification dependent variables (total 

RT, solution RT, distractor RT, operand-related distractor RT, operand-unrelated distractor 

RT, total error, solution error, distractor error, operand-related distractor error, and 

operand-unrelated distractor error) from the four memory components measured 

concurrently. All four memory scores were entered simultaneously with a stepwise 

function. This approach allowed us to identify the best predictors for different dependent 

variables in both grades. The model of total errors in grade 3 comprised only the predictor 

verbal WM, R2 = .057, adjusted R2 = .044, F(1, 69) = 4.193, p = .044, while the other 

memory components failed to explain significant amounts of additional variance. 

Inspection of the individual beta weights indicated a significant influence of verbal WM 

(Table 3). The model of the operand-unrelated distractor errors in grade 3 comprised only 

the predictors verbal WM and verbal STM, R2 = .178, adjusted R2 = .153, F(2, 68) = 7.340, 

p = .001, while the other memory components failed to explain significant amounts of 

additional variance. Inspection of the individual beta weights indicated a significant 

influence of verbal WM and verbal STM (Table 3). The model of total errors in grade 4 

comprised only the predictor visuospatial WM, R2 = .072, adjusted R2 = .058, F(1, 69) = 

5.325, p = .024, while the other memory components failed to explain significant amounts 

of additional variance. Inspection of the individual beta weights indicated a significant 

influence of visuospatial WM (Table 3). All other predictors and criterion variables were 

not significant in regression analyses. Bayesian analysis revealed that the posterior 

probability of null hypothesis for total error in grade 3 was .51 (the same probability of 

alternative hypothesis was .49). However, the posterior probability of null hypothesis for 

the operand-related distractor error was about zero (the same probability of alternative 

hypothesis was about 1); and for total error in grade 4 was .38 (the same probability of 

alternative hypothesis was .62). 
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Table 3. Results for significant predictors entered in the stepwise multiple regression 

analysis. 

Grade Variable Predictor B Standardized 

beta 

t pa 

3 Total error Verbal WM -0.049 -0.239 -2.048 .044 

 Operand-unrelated 

distractor error 

Verbal STM 

Verbal WM 

0.095 

-0.069 

0.408 

-0.242 

3.603 

-2.132 

.001 

.037 

 

4 

 

Total error 

 

Visuo-

spatial WM 

 

-0.041 

 

-0.268 

 

-2.308 

 

.024 

   

DISCUSSION 

In the current study, we collected longitudinal data from children in grade 3 and 4. 

The first aim of the study was to evaluate how children process multiplication in different 

grades. The second aim was to investigate the development of the multiplication fact 

retrieval network, i.e., whether their memory of multiplication facts is influenced by 

operand-relatedness. Furthermore, the third and main aim of this study was to investigate 

the contributions of verbal and visuospatial STM and WM to multiplication skill. 

 

MULTIPLICATION FACT FLUENCY INCREASES LONGITUDINALLY WITH AGE AND 

EXPERIENCE 

As we expected, children in grade 4 were faster than in grade 3 which is in line with 

previous findings that children become faster during development (Koshmider & Ashcraft, 

1991; De Brauwer & Fias, 2009; Butterworth et al., 2003; Lemaire, Abdi, & Fayol, 1996). 

Although children in both grades depended heavily on memory retrieval to solve the simple 

one-digit problems, this retrieval processing was more dominant in grade 4 (Verguts & 

Fias, 2005). Thus, because of the faster processing, verification of the solution and rejection 

of the distractor was faster.  

As regards RTs, children in both grades verified the solutions faster than the 

distractors (Koshmider & Ashcraft, 1991; De Brauwer & Fias, 2009). Koshmider and 

Ashcraft (1991) explained this result by saying that the solutions facilitate verification of 

the correct answer in children when the solutions are used as a prime, probably because the 

solutions make the strongest activation in the related nodes which in turn accelerates 

memory retrieval process.  
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As regards errors, the difference of error rate between the solutions and distractors 

was not statistically significant in the current study: The error rates remained stable, about 

6% of grade 3 and 4. Again, this non-significant change in error rates is in line with 

previous results (Koshmider & Ashcraft, 1991; De Brauwer & Fias, 2009). 

In brief, children in grade 4 were faster in both conditions than in grade 3 but their 

performance in regard to error did not differ significantly. This can be explained by more 

efficient and faster solving strategies with age which are, however, not yet more accurate 

than the slower strategies of younger children. 

 

NO CHANGES IN THE OPERAND-RELATEDNESS EFFECT WITH AGE AND EXPERIENCE 

In line with our main hypothesis, the operand-related distractors were erroneously 

responded to significantly more frequently than the operand-unrelated distractors. The 

finding is in line with the previous studies in children (Butterworth et al., 2003; Koshmider 

& Ashcraft, 1991; Lemaire & Siegler, 1995) which reported operand-related errors as the 

most frequent errors. It implies that multiplication facts are stored in the associative 

network already one year after the first multiplication facts are learned. The suggestion of 

the interacting neighbors model even holds for those young children in grades 3 and 4. The 

model assumes that the operand-related distractors lead to stronger confounding with the 

solutions than the operand-unrelated distractors. 

However, as regards the operand-relatedness effect, we found no difference between 

grades 3 and 4. In fact, there was an operand-relatedness effect in both grades but it was 

neither stronger nor weaker than in the other grade. This result was again in line with the 

only longitudinal study of multiplication in a verification paradigm in children (De Brauwer 

& Fias, 2009). The finding of the present study is consistent with the idea that multiple 

changes may occur in the associative network. First, the strength of the association network 

increases with age and experience (which leads to faster retrieval in older children). 

Second, the network may become more refined in reciprocal inhibition. More association 

strength with age would lead to a higher operand relatedness effect because related entries 

are activated more. However, better reciprocal inhibition would lead to the better 

differentiation between entries and therefore to a lower operand relatedness effect because 

related entries could be more easily inhibited. If both processes increase similarly with age 



56 
 

and experience, the operand-relatedness effect may stay unchanged. This is what we found 

in the present study. 

 

AN AGE-RELATED SHIFT FROM VERBAL TO VISUOSPATIAL WORKING MEMORY 

PREDICTING MULTIPLICATION PERFORMANCE 

Interestingly, we found that verbal WM predicts multiplication problem-solving in 

grade 3, while in grade 4 visuospatial WM is the predictor. This finding for multiplication 

performance extends and refines current accounts of the role of different WM components 

during different developing stages. A developmental change of the influence of verbal and 

visuospatial components was reported several years ago for more general math capabilities: 

It was shown that there is a strong link between verbal and mathematical skills when young 

children are learning new information which becomes weaker with older children as the 

result of practice (A. R. Jensen, 1980). In accordance with this finding, several studies have 

shown the weak conjunction between the phonological loop and mathematical performance 

in adults (Heathcote, 1994; Logie & Baddeley, 1987; Logie et al., 1994). The present study 

did not find any significant correlation between verbal WM and multiplication performance 

in grade 4 which can be related to a gradual shift from strongly verbal representations of 

multiplication to the build-up of a more abstract semantic retrieval of mathematical facts 

from long-term memory which is visually based, at least when the stimuli are presented 

visually as in our study.  

One possible suggestion is that one may expect to see more predictability of verbal 

WM in grade 4. However, this was not the case. Three reasons may explain this finding. 

First, learning and task context of multiplication problems encountered in (Austrian) 

schools may contribute to their explanation. While in the initial learning phase in grades 2 

and 3, multiplication problems may be more auditorily and verbally trained, they may be 

more often encountered visually as part of more complex arithmetic problems in grade 4. 

Second, the shift towards more visuospatial processing is consistent with previous studies 

on arithmetic development showing that in children, arithmetic tasks require superior 

demand of visuospatial processing during the development (Alloway & Passolunghi, 2011). 

In fact in adults, Fürst and Hitch (2000) showed that the phonological loop is not crucially 

caught up in retrieving factual mathematical knowledge which is also consistent with our 

data that verbal WM plays a lesser role in older children. Finally, the same verbal to 
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visuospatial WM shift has been observed in other arithmetic domains. Meyer et al. (2010) 

found such a shift from grade 2 to grade 3 in some basic arithmetic and mathematical 

reasoning. For these reasons, we believe that our finding of a developmental shift from 

verbal to visuospatial WM with age and experience does not come as a surprise but is 

actually consistent with the literature in other fields of arithmetic development. In sum, the 

data shows an important developmental shift from verbal to visuospatial WM in the 

prediction of simple multiplication problem performance (as indexed by overall errors) 

from grade 3 to grade 4.  

Furthermore, neuroimaging studies revealed a neural dissociation of verbal and 

visuospatial WM (Smith, Jonides, & Koeppe, 1996; Thürling et al., 2012), which were 

modified differently due to arithmetic training. The brain activation pattern of development 

and training of calculation shows a shift of activation from the frontal to the parietal regions 

(for a review see Zamarian et al., 2009). This modification shows a shift from the verbally 

representation of the calculation to more visually representation. While the frontal area is 

involved in verbal WM, the parietal area is mostly involved in visuospatial WM 

(Dumontheil & Klingberg, 2012; for a review see Cabeza & Nyberg, 2000). 

Interestingly, for the operand-unrelated distractor errors in grade 3, verbal STM 

reached significance as the only STM predictor in our whole study. However, this makes 

sense because during the second and third years of elementary school children are 

commonly highly trained with the direct verbal learning of multiplication facts. Therefore, 

verbal STM is still significant for multiplication in grade 3. In the fourth grade, however, 

children have to use the learned skills, such as multiplication, indirectly in more advanced 

mathematic problems such as mathematical text questions which do not involve any aspect 

of STM massively in this grade. Verbal STM may only affect the operand-unrelated 

distractor errors because the operand-relatedness may lead to interference specifically in the 

STM where no information is manipulated. Vice versa, the solutions share at least one 

element with possible operand-related distractors. It seems plausible that in such clear cases 

which require no manipulation and selection of information, verbal STM processing is most 

predictive. Again, our finding that verbal STM influences multiplication performance in 

earlier grades is consistent with previous findings from other more general arithmetic 

measures. For instance, Alloway and Passolunghi (2011) showed that verbal and 

visuospatial STM were involved in the arithmetic performance at age 7 but only 
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visuospatial STM was involved at age 8. Although the prediction of operand-unrelated 

distractor error by verbal STM in grade 3 was reasonable, the positive correlation between 

verbal STM and operand-unrelated distractor error was unexpected. One possible 

explanation would the interference of other simultaneous processes, which occupy STM. 

We know that the results of simple multiplication problems are retrieved from long-term 

memory (for a review of neuroimaging studies see Zamarian et al., 2009). Indeed, the 

results of the one-digit time one-digit multiplication problems, which belong to the 

multiplication table are stored in long-term memory and retrieved via WM. Therefore, it 

may conclude that to answer these problems, we do not rely so much on STM (Butterworth, 

Cipolotti, & Warrington, 1996). Hence, any involvement of STM in other simultaneous 

processes can interfere with this fact retrieval procedure. But this is not the case of WM. 

We know that WM is involved in almost every cognitive process. Since WM has a crucial 

role in the retrieving of multiplication result, higher WM capacity can lead to a better 

manipulation on different processing including multiplication performance. Butterworth et 

al. (1996) showed that in a patient with impaired STM, the mental calculations such as one-

digit multiplication are intact. However, we believe that this is only a possible 

interpretation, which needs to be tested directly. 

None of the memory components were able to predict RTs in both grades. We believe 

that this is due to high (inter-individual and intra-individual) variability in the RT measures 

for the children, which may be overcome in comparisons of means but may be critical for 

inter-individual comparisons and correlations. Variability in RTs can be explained by 

several sources. First, children use different strategies for multiplication problem-solving 

(Cooney et al., 1988; Sherin & Fuson, 2005) which mostly lead to equal (correct) responses 

but to different RTs. Second, individual differences in mathematical competence modulate 

RTs during mental arithmetic. For instance, Grabner et al. (2007) suggested that the 

recruitment of retrieval strategies during arithmetic problem-solving may be caused by 

individual differences in mathematical ability. Therefore, different children rely on 

different memory processes. This may lead to highly variable RTs, not only intra-

individually but also inter-individually, even though both ways may lead to the solution of 

the multiplication problem. For these reasons, RT may be more sensitive to intra- and inter-

individual variability than errors. Future studies should probably combine investigations of 
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the strategy used and different WM components to examine if specific WM components are 

associated with specific solving strategies. 

 

CONCLUSIONS AND PERSPECTIVES 

In line with the previous findings (Meyer et al., 2010; Swanson, 2006), the current 

study suggests that although verbal WM may facilitate early stages of arithmetic learning 

and performance, visuospatial WM may support later arithmetic performance during the 

development – at least during elementary school. We would like to mention that while we 

found this shift in the prediction of multiplication problem-solving from grade 3 to 4, the 

others found it in different ages, however albeit for different mathematical contents. For 

instance, Meyer et al. (2010) found the shift in mathematical reasoning from grade 2 to 3. 

Meyer et al. (2010) were concerned with mathematical reasoning. Their mathematical 

reasoning subtest of the WIAT-II “is a verbal problem-solving test that measures the ability 

to count, identify geometric shapes and solve single- and multi-step word problems.” In 

contrast, we were concerned with multiplication. Multiplication – as said above – is 

introduced in grade 2, verbally trained in grade 3 and then integrated into visual tasks in 

grade 4 – therefore the shift from verbal to visual makes sense for multiplication at exactly 

that age. Because the mathematical reasoning subtest of the WIAT-II is an aggregate score 

of many different tasks, it is hard to tell, why the shift was caused in Meyer et al. (2010) 

from grade 2 to 3. However, because the subtests contained some very basic tasks like 

counting or identifying geometric shapes, which are introduced earlier than multiplication, 

it is possible that the shift from verbal to visuospatial WM is also earlier in their study. In 

sum, it seems that this shift may be found in different developing ages for differing 

mathematical skills. This shift may serve as an essential step in mathematical development, 

however, its relation to age may vary according to mathematical content – in our view, this 

deserves further more detailed investigation in the future.  

This changing role of verbal and visuospatial WM components for predicting 

arithmetic performance could be useful for diagnosis and intervention in children with 

mathematical learning difficulties. However, we recommend that future studies should also 

assess children’s strategy use. By examining strategy-use together with the contribution of 

different memory components, researchers might be able to uncover cognitive demands of 

multiplication learning in developmental ages. 
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As regards the fact retrieval network itself, the current data suggest that retrieval is 

faster and more efficient from grade 3 to grade 4; however, the lack of change in the 

operand-relatedness effect with age may suggest that in children’s fact retrieval network 

both the automatic association and reciprocal inhibition of concurrent responses may 

increase. More associations and at the same time better inhibition might lead to an 

unaltered operand-relatedness effect in this longitudinal study. This is only a speculative 

interpretation which needs to be examined in future studies with considering an inhibitory 

control, attentional processing, and self-regulation as well. 

 

ACKNOWLEDGEMENT  

We would like to thank all participating children and their parents as well as the 

involved school teachers and principals. This research was funded by a grant from the 

AKTION Österreich- Tschechien (45p13) to Silvia Pixner und Hans-Christoph Nuerk, as 

well as by a grant from the ScienceCampus Tübingen, project 8.4 to Hans-Christoph Nuerk 

supporting Mojtaba Soltanlou. Hans-Christoph Nuerk’s research is further supported by the 

LEAD Graduate School [GSC1028], funded by the Excellence Initiative of the German 

federal and state governments. Finally, we thank Amanda Lillywhite and Jennifer Proehl 

for the proofreading of the manuscript. 

 

  



61 
 

STUDY 2: INCREASED ARITHMETIC COMPLEXITY IS ASSOCIATED 

WITH DOMAIN-GENERAL BUT NOT DOMAIN-SPECIFIC MAGNITUDE 

PROCESSING IN CHILDREN: A SIMULTANEOUS FNIRS-EEG STUDY 

 

 
Mojtaba Soltanloua,b,c,*, Christina Artemenkod, Thomas Dreslerd,e, Florian B. Haeussingere, 

Andreas J. Fallgatterd,e,f, Ann-Christine Ehlisd,e,¥, Hans-Christoph Nuerkb,c,d,¥ 

 

 

a Graduate Training Centre of Neuroscience/ IMPRS for Cognitive and Systems Neuroscience, Tuebingen, 

Germany 
b Department of Psychology, University of Tuebingen, Tuebingen, Germany 
c Leibniz-Institut für Wissensmedien, Tuebingen, Germany 
d LEAD Graduate School, University of Tuebingen, Tuebingen, Germany 
e Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen, Germany  
f Center of Integrative Neuroscience, Excellence Cluster, University of Tuebingen, Tuebingen, Germany 

*Correspondence author 

¥: these authors equally contributed to this study and should be regarded as the joint senior author. 

 

 

Soltanlou, M., Artemenko, C., Dresler, T., Haeussinger, F. B., Fallgatter, A. J., Ehlis, A.-

C., & Nuerk, H.-C. (in press). Increased arithmetic complexity is associated with domain-

general but not domain-specific magnitude processing in children: A simultaneous fNIRS-

EEG study. Cognitive, Affective, & Behavioral Neuroscience. 

 

 

  



62 
 

ABSTRACT 

The investigation of the neural underpinnings of increased arithmetic complexity in 

children is essential for developing educational and therapeutic approaches, and might 

provide novel measures to assess the effects of interventions. Although a few studies in 

adults and children have revealed the activation of bilateral brain regions during more 

complex calculations, little is known about children. 

We investigated 24 children undergoing one-digit and two-digit multiplication tasks 

while simultaneously recording functional near-infrared spectroscopy (fNIRS) and 

electroencephalography (EEG) data. 

fNIRS data indicated that one-digit multiplication was associated with brain activity 

in the left superior parietal lobule (SPL) and intraparietal sulcus (IPS) extending to the left 

motor area, and two-digit multiplication was associated with activity in bilateral SPL, IPS, 

middle frontal gyrus (MFG), left inferior parietal lobule (IPL) and motor areas. Oscillatory 

EEG data indicated theta increase and alpha decrease in parieto-occipital sites for both one-

digit and two-digit multiplication. The contrast of two-digit versus one-digit multiplication 

yielded greater activity in right MFG, and greater theta increase in fronto-central sites. 

Activation in frontal areas and theta band data jointly indicate additional domain-

general cognitive control and working memory demands for heightened arithmetic 

complexity in children. The similarity in parietal activation between conditions suggests 

that, children rely on domain-specific magnitude processing not only for two-digit, but – in 

contrast to adults – also for one-digit multiplication problem solving. We conclude that in 

children, increased arithmetic complexity tested in an ecologically valid setting is 

associated with domain-general processes, but not with alteration of domain-specific 

magnitude processing. 

 

Keywords: arithmetic; multiplication; complexity; fNIRS; oscillatory EEG 
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INTRODUCTION 

The investigation of the neural underpinnings of increased arithmetic complexity in 

children is essential for uncovering potential biomarkers to identify children at risk of 

mathematical learning disabilities, and to develop educational and therapeutic approaches. 

Neuroimaging studies have shown that brain activation patterns might provide new 

measures to assess the effects of interventions, because successful training leads to brain 

activation changes rather than only to behaviorally compensatory strategies (Iuculano et al., 

2015). For instance, both magnitude training (Hyde, Khanum, & Spelke, 2014) and 

cognitive training (e.g., Witt, 2011) have been shown to improve proficiency in complex 

arithmetic in children. Therefore, it has been shown that neural findings are helpful for a 

better understanding of behavioral results (Szűcs & Goswami, 2007). However, neural 

correlates of problem-solving at different levels of arithmetic complexity have not yet been 

identified in children. 

Arithmetic complexity is commonly studied by investigating the contrast between 

multi-digit and one-digit calculations. Neuroimaging studies in adults demonstrated that 

one-digit multiplication involves a mostly left fronto-parietal network (Gruber et al., 2001; 

Zago et al., 2001), whereas two-digit complex multiplication involves the intraparietal 

sulcus (IPS), inferior parietal lobule (IPL), angular gyrus (AG) and inferior frontal gyrus 

(IFG) bilaterally (Delazer et al., 2003; Delazer et al., 2005; Grabner et al., 2007; Zago et al., 

2001; Menon et al., 2000). Greater activation in parietal regions was interpreted as 

demonstrating domain-specific magnitude and quantity-based processes, i.e., manipulating 

the numerals (e.g., Delazer et al., 2003), whereas activation in frontal regions was 

interpreted as signifying domain-general cognitive control and working memory processes 

in more complex calculations (Gruber et al., 2001; Ischebeck et al., 2006). Although there 

is general agreement about neural correlates of arithmetic complexity in adults, not all 

studies report the same findings. For instance, M. Rosenberg-Lee, M. C. Lovett, and J. R. 

Anderson (2009) suggested that arithmetic complexity, i.e., more complex strategy use in 

this case, relies on the posterior superior parietal lobule, required for attentional demands, 

and on the posterior parietal cortex, for mental representation of numerals, but not on the 

IPS and the inferior prefrontal cortex. The findings of these adult studies, however, are not 

easily transferable to children, due to shifts in activation from frontal to parietal areas 



64 
 

during numerical processing tasks with increasing age and experience levels (Kaufmann et 

al., 2011; Prado et al., 2014; Menon, 2010). 

A few studies have investigated arithmetic complexity in children. In 2nd and 3rd 

graders, increased complexity of addition was associated with both domain-general 

cognitive processes – increased activation within the right inferior frontal sulcus and 

anterior insula – and domain-specific magnitude processes – increased activation within the 

left IPS and superior parietal lobule (SPL) regions (Rosenberg-Lee et al., 2011). According 

to the developmental fronto-parietal shift, activation of the IFG, dorsolateral and 

ventrolateral prefrontal cortex decrease and activation of the left parietal cortex, 

supramarginal gyrus, adjoining anterior IPS, and lateral occipito-temporal cortex increase 

with age (e.g., Prado et al., 2014; Rivera et al., 2005). Therefore, arithmetic complexity 

engages more frontal regions for younger children, who rely mostly on counting strategies 

than for older children who are more mathematically trained (see also Peters et al., 2016; 

Polspoel et al., 2016). This shows a decrease of dependency on domain-general cognitive 

processes with age (for a review see Menon, 2010). Moreover, some studies have suggested 

a fundamental role for the hippocampal system and its connectivity to the prefrontal cortex 

in strategy shifts between complex and simple calculations (e.g., Cho et al., 2012), showing 

the pivotal role of the hippocampal system in the transition from procedural to retrieval 

memory-based strategies (Qin et al., 2014; Supekar et al., 2013). Altogether, studies in 

children suggest that more frontal engagement is associated with arithmetic complexity. 

Reaching a more thorough understanding of mechanisms underlying increasing 

arithmetic complexity might help to develop neurobiological markers to assess responses to 

arithmetic trainings and interventions. For instance, Supekar et al. (2013) found that 

hippocampal volume and its intrinsic functional connectivity with dorsolateral and 

ventrolateral prefrontal cortices predicted arithmetic achievement in children, but 

surprisingly no behavioral measures were able to (for longitudinal finding see Evans et al., 

2015). To date, studies in children have usually investigated either one-digit or two-digit 

multiplication calculation. Further, comparisons across studies are not unequivocal, because 

of differences in paradigms, procedures, analysis methods, languages, and so on 

(Kaufmann et al., 2011; Prado et al., 2014). Therefore, we used a within-participant design 

in the present study to investigate the neural correlates of one-digit and two-digit 
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multiplication problem solving in children, allowing for a direct examination of brain 

activity associated with increased complexity in arithmetic problem-solving.  

In order to address this issue in an ecologically valid setting (e.g., Obersteiner et al., 

2010), a natural written production task was utilized in a self-paced paradigm. Two 

imaging techniques, functional near-infrared spectroscopy (fNIRS) and 

electroencephalography (EEG), were simultaneously applied in order to directly and 

indirectly measure neural activity underlying the processing of increased complexity in 

multiplication. Because of several characteristics of fNIRS, such as a reduced sensitivity to 

movement artifacts, which makes it particularly suitable for children and patients, this 

technique has been increasingly used in functional neuroimaging studies focusing on the 

cerebral cortex (for a review see Ehlis et al., 2014). For EEG, the continuous data signal 

can be analyzed using different methods such as event-related synchronization (ERS) and 

desynchronization (ERD), i.e., quantificational measures of brain dynamics (Pfurtscheller 

& Aranibar, 1977). Studies indicate that theta and alpha frequency bands behave in 

opposite ways in response to cognitive tasks such as arithmetic processing (e.g., Dolce & 

Waldeier, 1974). For instance, task complexity, attentional and cognitive demands, and 

memory load lead to theta ERS (increase in theta power) but also cause alpha ERD 

(decrease in alpha power) (Antonenko et al., 2010; Gevins et al., 1997; Klimesch, 1999; 

Pfurtscheller et al., 1996; Pfurtscheller & Da Silva, 1999). Furthermore, some cognitive 

functions are more closely linked to one of these frequency bands. In particular, it has been 

reported that the theta band reflects the encoding of new information, whereas the alpha 

band reflects searching for and retrieving information from long-term semantic memory 

storage (Antonenko et al., 2010; O. Jensen & Tesche, 2002; Klimesch, 1999; Sammer et al., 

2007; Sauseng & Klimesch, 2008). In numerical cognition, some studies interpreted the 

theta frequency band as a sign of domain-general cognitive demands of arithmetic 

processing such as sustained attention and working memory, and the alpha frequency band 

as an indicator of fact retrieval from long-term memory in different arithmetic tasks 

(Harmony et al., 1999; Klados et al., 2013; Micheloyannis et al., 2005; Mizuhara & 

Yamaguchi, 2007; Moeller et al., 2010). However, other studies interpreted the theta band 

as a function of arithmetic fact retrieval processes and the alpha band as a function of 

procedural processes (De Smedt et al., 2009; Grabner & De Smedt, 2011, 2012). Therefore, 

using fNIRS simultaneously with EEG may help to more consistently interpret the findings 
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of brain dynamic changes recorded by oscillatory EEG signals in arithmetic processing (see 

also Sammer et al., 2007). 

Given previous findings, we hypothesize greater domain-specific magnitude 

processes for two-digit than one-digit multiplication, which should lead to extensive 

activation in parietal regions in fNIRS data, potentially more left-lateralized (Chochon, 

Cohen, Van De Moortele, & Dehaene, 1999; Kazui, Kitagaki, & Mori, 2000; Rickard et al., 

2000). Moreover, additional domain-general cognitive demands for two-digit compared to 

one-digit multiplication are expected, which should result in activation in frontal regions in 

fNIRS data and greater theta ERS in EEG data (see also Micheloyannis et al., 2005). Note 

that in order to measure arithmetic complexity in an ecologically valid situation, the written 

production paradigm was used in the present study, which might lead to greater motor 

responses and irrelevant brain activation changes in the motoric areas compared to more 

common paradigms such as verification. Additionally, because of considerable inter-

individual differences in children (Siegler, 1988; De Smedt, 2015), and the contribution of 

domain-general cognitive factors to these differences (Vanbinst, Ghesquiere, & De Smedt, 

2014; Nemati et al., 2017), the role of memory components (for a review see Menon, 2016) 

and strategy use (e.g., Grabner & De Smedt, 2011) in multiplication performance was 

assessed (for a review see Vanbinst & De Smedt, 2016). 

 

MATERIAL AND METHODS 

 PARTICIPANTS 

26 typically developing 5th grade children participated in the study. No child had a 

history of neurological or mental disorders. Due to technical problems during EEG 

recording, two children were excluded: for one child, the connection failed between the 

recorder and computer presenting the task, and in the other child, no trigger was recorded 

by the EEG recorder. The remaining 24 children (9 girls; age 11.1 ± 0.5 years old) were 

right-handed with normal or corrected-to-normal vision. Informed consent was obtained 

from all children and parents included in the study. They received expense allowance for 

participation. The study was approved by the Ethics Commission of the University Hospital 

of Tuebingen. 

 



67 
 

MATERIAL 

16 one-digit and 16 two-digit multiplication problems were used. The one-digit 

problems (e.g., 3 × 9) included two one-digit operands (range 2–9) with two-digit solutions 

(range 12–40). The two-digit problems (e.g., 18 × 4) included two-digit (range 12–19) 

times one-digit operands (range 3–8) with two-digit solutions (range 52–98). The order of 

small and large operands was counterbalanced in both conditions. Problems with ones (e.g., 

8 × 1), commutative pairs (e.g., 18 × 4 and 4 × 18) or ties (4 × 4) were not used. The 

experiment was run using Presentation® software (version 16.3, Neurobehavioral Systems 

Inc., www.neurobs.com). Multiplication problems were presented on the screen in white 

font against a black background (see Fig 1a). Responses were recorded via written 

production, which children typically use to perform arithmetic tasks in school. 

 

FNIRS 

fNIRS data were collected with the ETG 4000 Optical Topography System (Hitachi 

Medical Co., Tokyo, Japan), which uses two wavelengths (695 and 830 nm) to calculate the 

absorption changes in oxygenated (O2Hb) and deoxygenated hemoglobin (HHb) 

concentration using a modified Beer-Lambert law. The sampling rate was 10 Hz and the 

inter-optode distance was 30 mm. 15 optodes (8 emitters, 7 detectors) in a 3 × 5 

arrangement were attached to an elastic combined fNIRS-EEG cap (Brain Products GmbH., 

Herrsching, Germany) over both hemispheres resulting in 22 measurement channels per 

hemisphere (cf. Fig 1b). Channel 14 (left hemisphere) was placed over the P3 electrode 

site, and channel 18 (right hemisphere) was placed over P4 in accordance with the 

international 10/20 system (Jasper, 1958). The localization of the corresponding cortical 

areas (Tsuzuki et al., 2007; Singh, Okamoto, Dan, Jurcak, & Dan, 2005) is based on the 

AAL (automatic anatomical labeling) atlas (Tzourio-Mazoyer et al., 2002) in SPM software 

(http://www.fil.ion.ucl.ac.uk/spm). 

 

EEG 

EEG was recorded from 21 scalp electrodes also embedded into the combined fNIRS-

EEG cap (cf. Fig 1b). Given the fixed optode distances, EEG electrodes were placed 

according to the extended international 10/20 system (Jasper, 1958; Oostenveld & 
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Praamstra, 2001). To identify eye movement artifacts in the EEG signal, 

electrooculography (EOG) was recorded from an additional electrode below the right eye. 

The ground electrode was placed on AFz and the online reference electrode on FCz. 

Electrode impedance was kept below 20 kΩ. EEG data were recorded using a 32-channel 

DC-amplifier and the Brain Vision Recorder software (Brain Products GmbH., Herrsching, 

Germany). Data were digitized at a rate of 1000 Hz with an online band-pass filter of 0.1-

100 Hz. 

 

 

Fig1 a) Multiplication problems: in a production paradigm, the problems were presented on the left side of the 

screen until the participant pressed the gray box or the maximal response time was reached. b) Schematic 

positions of fNIRS optodes and EEG electrodes: the red circles indicate emitters and blue ones indicate 

detectors in the two arrays of 3 × 5. Small white shapes indicate positions of the EEG electrodes. Red dotted 

shapes indicate the original position of some EEG electrodes according to the international 10/20 system. c) 

Experimental setting: children wrote their responses on the touch screen. 

 

NEUROPSYCHOLOGICAL TESTS 

Intelligence was measured using the similarities and matrix reasoning subtests of the 

German Wechsler intelligence quotient (IQ) test (Hamburg-Wechsler-Intelligenztest für 

Kinder-IV: HAWIK-IV; Petermann, Petermann, & Wechsler, 2007). Due to time 

constraints, we only used these two subtests to control for general verbal and performance 

intelligence of the participants. Four memory components were assessed (Alloway et al., 

2006). The letter span test was used to measure verbal short-term memory, and the block 

tapping task (Corsi, 1973) was used to assess visuospatial short-term memory. For these 



69 
 

verbal and visuospatial working memory tasks, children were required to recall sequences 

of letters or cubes inversely. In general, forward span tests were defined as short-term 

memory and backward span tests were defined as working memory (N. Cowan, 2008; for 

more see Mojtaba Soltanlou, Pixner, & Nuerk, 2015). To assess strategies used in solving 

one-digit and two-digit problems, we designed a strategy questionnaire, which was 

completed by children before the experiment. The questionnaire contained four one-digit 

and four two-digit experimental problems, resulting in four matched versions with different 

problems each. After responding to each problem, children reported how they solved it. The 

reported strategies were categorized as retrieval, procedural, and other for the analysis (see 

also Grabner & De Smedt, 2011). The inter-rater reliability, which was calculated by 

Cohen’s kappa, was .80. 

 

PROCEDURE 

All children were tested individually while seated comfortably in front of the touch 

screen in a light-attenuated room. During the 45-minute preparation of the combined 

fNIRS-EEG cap (cf. Fig 1c) by two experimenters, children watched a cartoon. Before the 

actual experiment, the children completed four practice trials. Children were tested on a 

computerized written production paradigm in which problems were presented without 

response options and children had to produce the solution as quickly and accurately as 

possible. They were instructed to read the problems silently and calculate mentally. As 

soon as they found the solution, they wrote it down on the touch screen with the help of a 

touch pen and then clicked on a gray box to continue (see Fig 1a). Note that the written 

response was not visible on the screen, to avoid any further correction. The task was self-

paced with a limited response interval of 10 s for one-digit problems and 30 s for two-digit 

problems, respectively. Therefore, due to inter-individual differences, the number of solved 

problems differed between children. The inter-trial interval was set to 0.5 s. The experiment 

was a block design, and the multiplication problems of each condition were presented in 16 

blocks (8 for one-digit and 8 for two-digit multiplication) of 45 s followed by 20 s of rest, 

resulting in a total experiment duration of approximately 18 minutes. The sequence of the 

blocks and of the problems was randomized. Whenever the total number of trials within a 

condition was reached, the same problems were presented again after randomization. No 

feedback was given. 
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Because this study was part of a larger training project that required two visits to the 

laboratory, the strategy questionnaire was completed during the first visit and the IQ and 

memory tests were conducted during the second visit. 

 

ANALYSIS 

BEHAVIORAL DATA 

Response times (RTs) were defined as the time from stimulus onset to pressing the 

gray box after a written response. Only RTs for correct responses were entered into the 

analyses. Error rate was defined as proportion of incorrect and missed trials to total number 

of presented trials. Written responses by participants were read with the help of RON 

(ReadOutNumbers program; Ploner, 2014) to calculate error rates. Mean RTs and arcsine-

square-root-transformed error rate, applied to approximate normal distribution (Winer et 

al., 1971), between two conditions were compared using paired t-tests. Relation of 

behavioral data with neuropsychological data was analyzed using bivariate correlation. The 

analysis was completed using SPSS version 23.0 (IBM SPSS Statistics for Windows). 

 

FNIRS 

The continuous concentration changes of O2Hb and HHb were recorded for 22 

channels per hemisphere. Hemoglobin quantity was scaled in mM*mm, which is based on 

the idea that concentration changes depend on the path length of NIR light through the 

brain. Data were analyzed using a commercial software package, MATLAB (The 

MathWorks Inc., Natick, Massachusetts, United States). Signals were band-pass filtered 

with 0.008-0.25 Hz and large motion artifacts and non-evoked systemic influences such as 

heart rate and very low frequency oscillations were reduced using the correlation-based 

signal improvement (CBSI) method (Cui, Bray, & Reiss, 2010). Afterwards, this CBSI time 

course, which is based on an expected negative correlation of concentration changes of 

O2Hb and HHb, was used to indicate cortical activation. For every participant, remaining 

noisy channels were interpolated using the mean of the surrounding channels. The 

amplitude of each 45 s block was baseline-corrected using the 2 s before the respective 

block and averaged for each condition and participant. To investigate the brain activation in 

each condition, t-tests against zero were calculated, and a paired t-test was applied to assess 
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the contrast of two-digit versus one-digit multiplication. The significance level was .05 and 

corrected using the Dubey/Armitage-Parmar (D/AP) method for multiple comparisons 

(Sankoh, Huque, & Dubey, 1997). D/AP is among the stepwise modified Bonferroni 

procedures which consist of readjusting the level of significance for the individual test, 

while taking into account auto-correlations in the data. This procedure is well suited to the 

analysis of fNIRS data, due to the usually strong correlations between neighboring fNIRS 

channels. Furthermore, to look at the lateralization of activation, the average amplitudes of 

the left and right hemispheres were compared for each condition using paired t-tests. 

 

EEG 

EEG data were analyzed using the Brainstorm toolbox (Tadel, Baillet, Mosher, 

Pantazis, & Leahy, 2011), a documented and freely available software 

(http://neuroimage.usc.edu/brainstorm). Data were offline-filtered using a band-pass of 0.1-

40 Hz. Then, eye movement artifacts were detected based on the EOG signal with the peak 

beyond 2 standard deviations of the mean, and were removed using Signal Space 

Projections (SSP) from the continuous signal of EEG electrodes. Epochs of 45 s 

experimental and 20 s rest intervals were used for analysis. For frequency analysis, the 

power spectral density (PSD) for theta (4.1-7 Hz) and alpha (7.1-13 Hz), two frequently 

investigated frequency bands in cognitive tasks (Antonenko et al., 2010), was calculated. 

The PSDs of every epoch were calculated separately and averaged for each condition and 

participant, resulting in three PSDs per participant (for one-digit multiplication, two-digit 

multiplication, and rest). In the next step, ERS/ERD were calculated, which are related to 

cortical activation and functional changes of brain activity (Neuper & Klimesch, 2006; 

Pfurtscheller & Da Silva, 1999). Because of several factors that influence EEG variation, 

such as individual differences, age (Klimesch, 1999) and differences in brain volume 

(Nunez & Cutillo, 1995), it is  recommended that investigators analyze changes in the EEG, 

rather than analyzing the absolute power of each frequency band, in order to increase the 

reliability of findings (Pfurtscheller & Da Silva, 1999). According to the expression 

ERS/ERD% = (PSD of activation – PSD of rest) / PSD of rest × 100 (Pfurtscheller & Da 

Silva, 1999), the percentage value for ERS/ERD for each of the multiplication conditions 

was calculated for every participant. If the PSD of a condition is larger than rest, the result 

will be positive, indicating ERS, while negative differences indicate ERD. For each 
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condition, statistical analyses consisted of t-tests against zero for ERS/ERD% for each 

electrode and each frequency band. To investigate the contrast of conditions, paired t-tests 

were applied with a significance level of .001 and corrected for multiple comparisons using 

the Bonferroni method. Note that EEG electrodes record the average oscillations of the 

whole brain – including almost all cortical and subcortical structures – at each recording 

site, whereas fNIRS records the average reflected light from a maximum of approximately 

3 cm surrounding cortical and subcortical structures. Therefore, to control the type I error, 

we used a more conservative correction method (i.e., Bonferroni) on EEG data than on 

fNIRS data. 

 

RESULTS 

BEHAVIORAL DATA 

Children were faster in solving one-digit (4.77 s, SD = 0.89 s) than two-digit 

multiplication problems (10.73 s, SD = 2.61 s), t(23) = 13.79, p < .001. They also made 

fewer errors in one-digit (15.34%, SD = 7.06%) than in two-digit problems (29.08%, SD = 

11.37%), t(23) = 8.09, p < .001. 

 

FNIRS 

In one-digit multiplication, left SPL, IPS and postcentral gyrus displayed significant 

activation, t(23) > 3.09, corrected p < .05, which extended to the precentral motor cortex. 

Moreover, significant deactivation was observed in left superior temporal gyrus, right 

superior and middle temporal gyri, precentral gyrus and IFG, t(23) < -2.64, corrected p < 

.05 (cf. Fig 2). In two-digit multiplication, bilateral SPL, IPS, and MFG, along with left 

IPL, postcentral and precentral gyri displayed significant activation, t(23) > 2.84, corrected 

p < .05. Moreover, significant deactivation was observed in the right superior and middle 

temporal gyri, and precentral gyrus, t(23) < -3.22, corrected p < .05 (see Fig 2). 

The contrast between two-digit and one-digit multiplication revealed significantly 

stronger activation for the right MFG, t(23) > 3.02, corrected p < .05, extending into the 

IFG (cf. Fig 2). Additionally, a significantly greater activation was found in the left 
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compared to the right hemisphere in both one-digit, t(23) = 3.19, p < .01, and two-digit 

multiplication, t(23) = 3.79, p < .01. 

 

 

Fig2 fNIRS results for one-digit and two-digit multiplication, along with the contrast of two-digit versus one-

digit (t-maps; red means activation and blue means deactivation). Significant activation increase was found in 

the right MFG for two-digit vs. one-digit multiplication. 

 

EEG 

In both one-digit and two-digit multiplication, theta ERS and alpha ERD were 

observed during the experiment. Theta band activity was found to be significantly above 

zero in middle and right occipito-parietal sites (Oz and O2 electrodes) in one-digit 

multiplication, t(23) > 6.41, corrected p < .001. The same significant activity was observed 



74 
 

in bilateral occipito-parietal sites extending to the right temporal site (O1, O2, and TPP8h 

electrodes) in two-digit multiplication, t(23) > 5.55, corrected p < .001. These results 

suggest stronger theta power in these sites during the experiment than in rest intervals. 

Regarding alpha ERD, a significant difference from zero in the alpha band was found in 

bilateral occipito-parietal sites (O1 and O2 electrodes) for both conditions, t(23) < -6.32, 

corrected p < .001. These results suggest lower alpha power in these sites during the 

experiment than in rest intervals (see Fig 3a).  

Based on prior studies (e.g., Ishii et al., 2014) that have found frontal midline theta 

increase during focused attention on mental calculation, we examined whether there would 

be a significant difference in theta ERS between two-digit and one-digit multiplication. We 

observed greater theta ERS in fronto-central sites (Fz and Cz electrodes) during two-digit 

than in one-digit multiplication, t(23) > 2.12, p < .05, but it did not survive correction for 

multiple comparisons. No significant difference was found between the two conditions in 

the alpha band. Furthermore, in the contrast of two-digit versus one-digit multiplication 

over all electrodes, a significant difference was observed in theta ERS, t(23) = 1.98, p = 

.03, but not in alpha ERD (see Fig 3b). 

 

 

Fig3 (a) Theta ERS and alpha ERD in one-digit and two-digit multiplication problems (red means ERS and 

blue means ERD). (b) The difference of theta ERS and alpha ERD over all electrodes in one-digit and two-

digit multiplication. A significant increase in theta ERS was found for two-digit vs. one-digit multiplication 

(marked by *). 
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REANALYSIS OF FNIRS AND EEG DATA BY ADDING RTS AND ERROR RATES AS 

COVARIATES 

As regards both fNIRS, ANCOVA analysis showed no significant activation or 

deactivation in the one-digit or two-digit condition after correction for multiple 

comparisons. The contrast of two conditions was not significant.  

With respect to EEG, ANCOVA analysis displayed no significant difference in alpha 

and theta bands in the one-digit or two-digit condition. The contrast of two conditions was 

not significant. 

 

NEUROPSYCHOLOGICAL TESTS 

The performance of children in the similarities and matrix reasoning subtests of the 

IQ test was within a normal range (cf. Table 1). Additional information regarding memory 

tests and strategy use are displayed in Table 1. Children reported significantly more 

retrieval strategy use, t(23) = 4.66, p < .001, and less procedural strategy use, t(23) = -3.99, 

p < .001, to solve one-digit versus two-digit multiplication. 

 

Table1 Neuropsychological data. M ± SD are given for verbal (similarities) and non-verbal IQ (matrix 

reasoning), verbal and visouspatial short-term memory (STM) and working memory (WM) spans, and 

percentage of retrieval and procedural strategy use in one-digit (1) and two-digit (2) multiplication. 
Similarities Matrix 

reasoning 
Verbal 
STM 

Verbal 
WM 

Visuospatial 
STM 

Visuospatial 
WM 

Retrieval Procedural Other 

1 2 1 2 1 2 

107.7 ± 11.5 107.7 ± 10.4 5.0 ± 0.9 4.0 ± 0.9 5.3 ± 0.8 5.3 ± 1.0 41 4 55 90 4 6 

 

Because of inter-individual differences among children, correlation analyses between 

behavioral and neuropsychological data were conducted to investigate whether these 

neuropsychological factors influenced multiplication performance. We found that children 

with better visuospatial short-term and working memory were faster and made fewer errors 

in one-digit multiplication (see Table 2). Furthermore, children who reported higher 

reliance on a retrieval strategy in one-digit multiplication were faster in solving these 

problems, and children who reported higher reliance on procedural strategies were slower 

in responding to one-digit multiplication problems (cf. Table 2). 
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Table2 Correlation between one-digit multiplication performance and neuropsychological findings (one-

tailed significance level of .05; significant correlations marked with *). No significant correlation was found 

in two-digit multiplication. 

 
Visuospatial 

STM 
Visuospatial 

WM 
Retrieval 

strategy use 
Procedural 

strategy use 

Error rate -0.35* -0.51* 0.07 -0.09 

Response time -0.29 -0.35* -0.34* 0.37* 

 

DISCUSSION 

In the present study, the neural underpinnings of increased multiplication complexity 

were investigated with simultaneous fNIRS-EEG in children in a within-participant design. 

Behavioral findings revealed faster and more accurate responses in solving one-digit than in 

solving two-digit multiplication problems, which is congruent with the greater use of 

retrieval and fast compact procedural strategies for these problems (Lemaire & Siegler, 

1995). Following previous findings showing that children use various strategies for solving 

one-digit multiplication (Cooney et al., 1988; Lemaire & Siegler, 1995), children used both 

retrieval and procedural strategies. Further, domain-general capabilities, i.e., visuospatial 

short-term and working memory, contribute to one-digit multiplication performance (see 

also Ashkenazi, Rosenberg-Lee, Metcalfe, Swigart, & Menon, 2013; Mojtaba Soltanlou et 

al., 2015).  

During one-digit multiplication, activation was observed in the left SPL and IPS, 

while theta ERS and alpha ERD were observed over occipito-parietal regions. These 

activation patterns have already been reported in multiplication problem solving in adults 

(Dehaene et al., 1996; Chochon et al., 1999; Rickard et al., 2000; Kazui et al., 2000; Zago 

et al., 2001; Delazer et al., 2003; Kawashima et al., 2004; Zhou et al., 2007; Micheloyannis 

et al., 2005). Both theta ERS and alpha ERD in solving one-digit multiplication are also in 

line with neurophysiological changes in multiplication problem solving in adults 

(Micheloyannis et al., 2005). The findings suggest that children in this developing age still 

rely on quantity-based knowledge, aside from arithmetic fact retrieval, to solve one-digit 

multiplication problems (but see Kawashima et al., 2004), a conclusion that is additionally 

supported by the reported strategy use (see also Lemaire & Siegler, 1995). It has been 

shown that even adults do not always retrieve solutions, but rather use several back-up 

strategies, e.g., for large one-digit multiplication problems (LeFevre et al., 1996; Zhou et 

al., 2007).  
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Contrary to studies in adults (e.g., Delazer et al., 2003; Grabner et al., 2007) and a 

few studies in children (Cho et al., 2012; Peters et al., 2016), the activation of the left AG, 

which has been associated with retrieval strategies, was not observed in the present study. 

Delazer et al. (2005) found that depending on the strategy use, retrieval processes were 

associated with bilateral occipito-parietal areas including the precuneus (see also Andres, 

Pelgrims, Michaux, Olivier, & Pesenti, 2011; Prado et al., 2013) and not necessarily with 

the left AG. Note that previous studies in children found AG activation in small one-digit 

addition and subtraction problems (Cho et al., 2012; Peters et al., 2016), whereas in the 

present study the whole range of one-digit multiplication was utilized, which probably led 

to an overall increase in procedural processes in the one-digit condition (for more 

discussion about the AG see Grabner, Ansari, Koschutnig, Reishofer, & Ebner, 2013). 

In two-digit multiplication, bilateral activation of the SPL, IPS, MFG, and left IPL 

were observed, as well as posterior theta ERS extending to right temporal sites, and alpha 

ERD over occipito-parietal sites (see also Grabner & De Smedt, 2011, 2012). Complex 

multiplication problems are usually solved via procedural step-by-step calculations (for a 

review see Zamarian et al., 2009), which recruit the bilateral fronto-parietal network 

(Gruber et al., 2001; Delazer et al., 2003; Delazer et al., 2005; Ischebeck et al., 2006). 

These procedural processes might be related to the observed theta ERS, which was stronger 

during two-digit than in one-digit multiplication problem solving. This was in line with the 

findings by Micheloyannis et al. (2005) that reported stronger theta ERS during complex 

multiplication problem solving in adults. 

In regard to increased multiplication complexity, the children showed larger 

activation of right MFG and IFG (see also Fehr, Code, & Herrmann, 2007). This might be 

interpreted as reflecting the additional involvement of domain-general cognitive demands, 

such as working memory, sustained attention, and planning, in two-digit as opposed to one-

digit calculation (Fehr et al., 2007; Gruber et al., 2001; Zago et al., 2001), since activation 

of the frontal cortex has been shown to be related to cognitive control and working memory 

(Cabeza & Nyberg, 2000; Ranganath, Johnson, & D’Esposito, 2003; Sylvester et al., 2003). 

Rivera et al. (2005) showed that older children, who solve arithmetic problems faster and 

more accurately than younger children, rely less on frontal regions (see also Prado et al., 

2014). This finding is partially in line with the study by Rosenberg-Lee et al. (2011), which 

found frontal activation to be related to greater cognitive load in more complex 
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calculations. However, in contrast to their findings, no significant activation of parietal 

cortex was observed related to the increased complexity. In the present study, the most 

commonly reported procedural strategy used in two-digit multiplication was separately 

multiplying the unit and decade digits of the two-digit operand with the one-digit operand 

(relying on retrieval strategies) and adding the results together (see also Tschentscher & 

Hauk, 2014). In this procedure, each step needs to be kept in working memory, and 

different cognitive control elements are involved, such as inhibiting operand-related 

mistakes, and performing self-monitoring and error detection during each step of 

calculation. Note that although some studies in children suggest a transitional role of the 

hippocampus in arithmetic development (e.g., Cho et al., 2012; Supekar et al., 2013; Qin et 

al., 2014), fNIRS is not capable of recording activation within subcortical and other non-

surface structures. 

Greater theta ERS with increased multiplication complexity is in line with a similar 

study in adults (Micheloyannis et al., 2005). Theta oscillations among frontal areas have 

been reported to originate from a cortico-hippocampal network and the medial prefrontal 

area (Klimesch, 1999; Mizuhara & Yamaguchi, 2007; Klimesch, 1996; Sauseng & 

Klimesch, 2008). Furthermore, simultaneous fMRI-EEG studies of subtraction (Mizuhara 

& Yamaguchi, 2007) and addition (Sammer et al., 2007) reported theta ERS over frontal 

areas as a function of cognitive control, working memory, encoding and self-monitoring. 

Nonetheless, increased multiplication complexity did not lead to a difference in alpha ERD 

as reported for adults (Micheloyannis et al., 2005). Alpha ERD has been suggested to be 

related to several cognitive functions including retrieving information from long-term 

memory (Harmony et al., 1999; Klimesch, 1999; Moeller et al., 2010; Antonenko et al., 

2010). Therefore, we conclude that this similar pattern of alpha ERD is related to retrieval 

strategy use not only in one-digit multiplication, but also as part of an algorithm procedure 

in two-digit multiplication. By replicating the findings of Micheloyannis et al. (2005) and 

extending them to children, we conclude that theta ERS is more related to procedural 

strategies and additional cognitive processes, and alpha ERD is mostly related to retrieval 

processes in mental calculation (see also Harmony et al., 1999; Klimesch, 1999; O. Jensen 

& Tesche, 2002; Kahana, Seelig, & Madsen, 2001; Mizuhara & Yamaguchi, 2007; but see 

De Smedt et al., 2009; Grabner & De Smedt, 2011, 2012). Note that because the difference 

between one-digit and two-digit calculations is not very large, the contrast of two 
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conditions does not survive correction for multiple comparisons and must be interpreted 

cautiously. However, this contrast interestingly corroborates previous ERD/ERS studies of 

arithmetic processing. 

The activation of the left motor cortex may be explained by the type of response 

production, because all children responded with their right hand. Furthermore, it should be 

noted that although children were asked to calculate silently, it is possible that they were 

doing (additional) step-by-step calculation via inner speech, which may lead to the same 

results as subvocalization of the answers in silent verbal production tasks (e.g., Dehaene et 

al., 1996), and a trace of finger counting could have been present during mental calculation 

(Delazer et al., 2003; Zago et al., 2001). In regard to the lateralization of brain activation, in 

line with previous studies of multiplication in adults (Chochon et al., 1999; Dehaene et al., 

1996; Rickard et al., 2000; Kazui et al., 2000; Zago et al., 2001), we found stronger 

activation in the left hemisphere for both one-digit and two-digit multiplication, which is 

assumed to reflect language-related processes in solving multiplication (Dehaene et al., 

2004). However, it should be mentioned that direct comparisons of fNIRS data stemming 

from different brain hemispheres is difficult due to the different path lengths the light 

travels depending on anatomical characteristics of the underlying brain areas (see Zhao et 

al., 2002; Katagiri et al., 2010), which might explain a part of this difference.  

We conducted additional ANCOVA by adding response times and error rates to the 

model. In the present block-designed study with a self-paced written production paradigm, 

the covariates, particularly response times, seemed to subserve the cognitive processes 

underlying the performance. Therefore, using response times as a covariate may not 

methodologically represent the best approach (G. A. Miller & Chapman, 2001). As 

conditions and response times are highly correlated, this may be a major problem for 

ANCOVA application. One often untested prerequisite of ANCOVAs is that the 

independent variable (i.e., condition) and covariate (i.e., response times) do not share a 

common variance. If they do, then it should be ensured that dependence arises just by 

chance, e.g., due to randomization processes. If dependence results not from chance, but 

from an inherent dependence of the two variables, then an ANCOVA may conceal effects 

that are actually there, or may even introduce non-existing effects (for a more thorough 

discussion see G. A. Miller & Chapman, 2001). As complexity influences both activation 

and response time, partialling out either dependent variable may result in biased effects. In 
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sum, because the response time prolongation and the activation are subserved by the same 

neurocognitive processes, a closer look at significant regions in a t-test that are non-

significant in an ANCOVA might be instructive.  

 

CONCLUSIONS 

Both activation patterns in frontal cortex and theta band data indicate that in children, 

increased multiplication complexity requires domain-general processing, or additional 

demands on cognitive control and working memory, consistent with the literature.  

However, contrary to previous results in and conclusions reached from adults, the 

lack of a difference in activation patterns in SPL and IPS suggests that children in this 

developing age still rely on magnitude processing for both one-digit and two-digit 

multiplication problem solving. This finding is new since increased multiplication 

complexity in children tested in an ecologically valid setting is associated with additional 

cognitive load, but not with additional magnitude processing, as in previous adult studies. 

Interventions based on adult neuroimaging results may therefore be suboptimal. We suggest 

that to improve interventional and educational approaches for arithmetic complexity during 

development, neurocognitive studies with children are needed, ideally with simultaneous 

recording with fNIRS and EEG to reach integrated conclusions for development and 

intervention. 
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ABSTRACT 

Neurocognitive learning studies of arithmetic in adults have revealed decreasing brain 

activation in the fronto-parietal network along with increasing activation of specific cortical 

and subcortical areas, both associated with a shift from procedural to retrieval processes. 

The critical research question is whether these neurocognitive changes in the learning 

process are also evident in children. 

To address this question, 20 typically developing children were trained in simple and 

complex multiplication. The immediate and two-week training effects were monitored 

using simultaneous functional near-infrared spectroscopy and electroencephalography. 

Two-week training improved performance and led to a decreased activation at the 

junction of left angular gyrus (AG) and middle temporal gyrus, and right middle frontal 

gyrus in complex multiplication. In both trained simple and complex problems, increased 

alpha power was observed compared to untrained control problems. Measurement 

immediately after training revealed decreased activation at the junction of left inferior 

parietal lobule and AG, and right superior parietal lobule and intraparietal sulcus for 

complex multiplication.  

 Contradictory to the previous multiplication training studies in adults, no change in 

activation of the left AG was observed. We conclude that shifts from procedural to retrieval 

strategies via arithmetic learning receive no support of AG engagement in children. 

 

 

Keywords: children; arithmetic; learning; angular gyrus; fNIRS; oscillatory EEG 

 



84 
 

INTRODUCTION 

ARITHMETIC LEARNING IN ADULTS 

Arithmetic learning improves mathematical competence, which is necessary for 

successful daily life, job opportunities, etc. (Butterworth et al., 2011). However, little is 

known about the neural underpinnings of arithmetic learning during childhood because the 

vast majority of our knowledge about arithmetic learning comes from adult studies. 

Generally speaking, learning is characterized by a strategy shift from more effortful and 

algorithm-based to more retrieval- and memory-based processes (Zamarian et al., 2009). 

Multiplication training studies in adults illustrated that this strategy shift is accompanied by 

reduced fronto-parietal network activation and increased left angular gyrus (AG) activation 

(Pauli et al., 1994; Grabner & De Smedt, 2012; Grabner, Ansari, et al., 2009; Ischebeck et 

al., 2006; Ischebeck et al., 2007; Ischebeck et al., 2009; but see Bloechle et al., 2016; 

Delazer et al., 2005; Delazer et al., 2003). This strategy shift was also reported in an 

electroencephalography (EEG) study of complex multiplication training in adults (Grabner 

& De Smedt, 2012), which revealed an increased power in theta and alpha frequency bands 

over occipito-parietal measurement sites. 

The fronto-parietal network underlying arithmetic processing includes inferior, 

middle and superior frontal gyri, which are associated with additional cognitive processes 

such as working memory and planning in mental calculation, and intraparietal sulcus (IPS), 

superior parietal lobule (SPL), and inferior parietal lobule (IPL), which are associated with 

magnitude processing of numerals (for review see Arsalidou & Taylor, 2011; Zamarian et 

al., 2009). According to the triple-code model, the left AG is involved with retrieving 

information from long-term memory (Dehaene & Cohen, 1997; Dehaene et al., 2003), even 

after only few repetitions of complex multiplication in adults (Ischebeck et al., 2007). 

However, it has been shown that in adults, AG activation depends on the learning method. 

(Delazer et al., 2005) indicated that drill learning of complex multiplication (directly 

finding the relation between operands and solutions) resulted in stronger left AG activation, 

while strategy learning (finding the result based on sequential algorithms) did not. 

Furthermore, a recently published study found no activation of the left AG in high-level 

mathematicians, but rather an extensive network of prefrontal, parietal, and inferior 

temporal regions (Amalric & Dehaene, 2016). 
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ACTIVATION SHIFTS IN CHILDREN 

The critical question is whether the neural activation changes consistently observed in 

arithmetic learning experiments in adults can be generalized to children, i.e., to a period of 

our lives when virtually all of us learn arithmetic facts. Neurocognitive learning studies in 

children are scarce, but some information can be drawn from math tutoring, cross-sectional 

and longitudinal age-related changes. 

A one-on-one math tutoring study in third-grade children demonstrated a similar 

strategy shift in arithmetic problem solving as in adults, and this shift was associated with 

changes in the morphometry of the hippocampus and its connectivity with frontal regions 

(Supekar et al., 2013), but not with changes in the typical regions such as IPS and AG 

involved in arithmetic processing in adults. A cross-sectional study of simple multiplication 

performance in children from grades 2 to 7 showed age-related decreases in inferior frontal 

gyrus (IFG) activation and increases in left middle temporal gyrus activation (MTG), 

accompanied by increased dependency on retrieval strategies as a function of age (Prado et 

al., 2014; for addition and subtraction see Rivera et al., 2005). In a longitudinal functional 

magnetic resonance imaging (fMRI) study of simple addition in 7 to 9 year-old children, 

Qin et al. (2014) reported a decreased involvement of a fronto-parietal network and 

increased involvement of the hippocampus over the course of one year of school education 

(see also Cho et al., 2012). They suggested that the medial temporal lobe, including the 

hippocampus, plays a critical transient role in arithmetic learning in children, but not in 

adults (Qin et al., 2014). Furthermore, several behavioral studies in children revealed this 

strategy shift as an indication of arithmetic development (e.g., Geary, 1994; Siegler, 1996). 

In sum, the aforementioned studies suggest that a similar strategy shift from procedural to 

retrieval strategies occurs in children’s and adults’ learning. However, although systematic 

standardized training studies have not yet been carried out, the available tutoring, 

longitudinal and cross-sectional data suggest that learning-related changes in activation in 

children may be different than in adults. In particular, these data do not show increased (or 

less deactivated) AG activation, which is the trademark of retrieval learning in adults. 

However, there are some limitations regarding the transfer of these findings to 

children’s arithmetic learning in general. In the tutoring study, children received training in 

several different mathematic domains and problem-solving strategies, and were tested on 
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one-digit addition problems (for more details see SI in Supekar et al., 2013). However, 

although children received a planned training, they underwent a tutorial training based on 

their weaknesses. Therefore, there was a difference between the training – several different 

arithmetic skills – and experimental tasks. The other possible limitation in this study is that 

specific (numerical training) factors and unspecific factors (e.g., increased motivation) due 

to the one-on-one setting cannot be distinguished. With longitudinal (and even more so 

with cross-sectional) studies on arithmetic learning, there is another problem. Arithmetic 

learning throughout childhood is strongly associated with brain maturation. Therefore, it is 

difficult to determine whether activation changes are truly associated with the arithmetic 

learning process in school, or rather are a byproduct of maturation of the whole brain. 

Neurocognitive learning studies, which are conducted in a similar way as in adults, are 

useful because brain maturation should play a smaller role in brain activation changes over 

a very short period of time (immediate learning and maximally 2 weeks in our study) than 

in longitudinal studies with observation periods of one or more years. 

 

THE PRESENT STUDY AND ITS OBJECTIVES 

To examine learning processes in children, we used multiplication, the operation 

most frequently investigated in adults. To the best of our knowledge, brain activation 

changes after multiplication training in children have not been investigated so far. The 

present study aimed to explore the brain activation changes related to simple and complex 

multiplication learning in typically developing children. In order to evaluate the training-

induced changes, we used simultaneous functional near-infrared spectroscopy (fNIRS) and 

EEG as pre- and post-training measurements in an ecologically valid setting that is 

comparable to school and normal learning situations (the sitting position; see also Dresler et 

al., 2009; Obersteiner et al., 2010), where the child can perform small movements and 

provide answers manually. The combination of these two neuroimaging methods increases 

the construct validity of the findings and allows for a multi-level assessment of underlying 

neurobiological processes including both an assessment of the involved areas and neural 

network dynamics. Although subcortical regions cannot be measured with fNIRS, recent 

studies in adults reveal considerable cross-task validity between fNIRS and fMRI signals 

for cortical regions (e.g., Haeussinger et al., 2014). Whereas fNIRS provides information 

about the localization of cortical activation, simultaneous EEG measures provide 
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complementary information about subcortical activation. Further, combining fNIRS and 

EEG produces both direct and indirect measures of brain activation changes during 

arithmetic learning in children. Moreover, in addition to behavioral findings, EEG might be 

helpful to indicate strategies in use (for a review see Hinault & Lemaire, 2016). 

As regards EEG, Pfurtscheller (2001) has suggested that cognitive processes lead to 

both event-related potentials (ERP) and event-related synchronization 

(ERS)/desynchronization (ERD). While ERP is phase-locked to the event, ERS/ERD is 

frequency-band specific and non-phase locked to the event (Pfurtscheller, 2001), providing 

quantified measures of brain dynamics (Pfurtscheller & Aranibar, 1977). In the present 

study, because we were interested in learning-related brain activation changes in a natural 

setting, a self-paced paradigm in a block-design experiment was utilized. Therefore, 

ongoing EEG was recorded during blocks of mental calculation and further analyzed by the 

ERS/ERD method. Note that ERS represents increased power, while ERD represents 

decreased power during mental processing as compared to rest (without particular cognitive 

processing). Furthermore, previous studies have mostly found that cognitive processes 

result in brain oscillation changes in theta and alpha bands (for a review see Antonenko et 

al., 2010). Therefore, similar to most of the previous studies in the field of numerical and 

arithmetic processing (e.g., De Smedt et al., 2009; Grabner & De Smedt, 2012, 2011; 

Harmony et al., 1999; Micheloyannis et al., 2005; Moeller et al., 2010), these two 

frequency bands were investigated in the present study.  

In accordance with the findings of the training studies in children and adults, we 

hypothesized a shift from procedural to retrieval strategies after the training, which should 

lead to more efficient responses, i.e., faster responses and fewer errors (e.g., Fendrich, 

Healy, & Bourne Jr, 2014). This strategy shift is reflected in brain activation changes in the 

above-described fronto-parietal network and AG. Based on the literature, we expected 

reduced activation within the frontal gyri, IPS, SPL and IPL, but regarding activation of the 

left AG, two hypotheses can be formulated. If the multiplication training studies in adults 

(Zamarian et al., 2009) can be generalized to children, increased AG activation after 

training can be expected. If longitudinal and math tutoring studies in children (Supekar et 

al., 2013; Qin et al., 2014) can be generalized to systematic computerized multiplication 

training, then activation in AG may decrease. In accordance with studies in adults (Grabner 

& De Smedt, 2012), EEG oscillations are expected to increase in theta and alpha power 
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after training, reflecting reduced cognitive demands of multiplication problem solving after 

the training (Antonenko et al., 2010). 

Additionally, because studies in adults revealed a similar shift in brain activation 

patterns during training (Ischebeck et al., 2007) and after several sessions of training (e.g., 

Delazer et al., 2003), we aimed to measure both immediate (one session) and two-week 

(seven sessions) multiplication training effects in children. In accordance with the 

aforementioned studies, similar brain activation changes are expected after both periods. It 

is important to note that these hypotheses were derived from complex multiplication 

training studies in adults. However, since children in this developing age (grade 5) are 

already advanced in simple table multiplication problem solving, these training sessions 

may not be sufficient to elicit improvement in simple multiplication problems, but only for 

complex multiplication problems that are not learned via the multiplication table. 

Therefore, we used both simple and complex multiplication items in all pre- and post-

training sessions.  

We also investigated transfer effects of multiplication training (see Ischebeck et al., 

2009) and changes in strategy use through training. In order to examine transfer effects of 

multiplication training to basic arithmetic operations, i.e., addition, subtraction, 

multiplication, and division, a modified math ability test designed by Huber et al. (2013) 

was used. In addition, because studies define arithmetic learning as a strategy shift (De 

Smedt et al., 2009; Grabner & De Smedt, 2011, 2012), we measured strategy changes by 

directly asking children before and after the training sessions about how they solved the 

problems. 

 

MATERIALS AND METHODS 

PARTICIPANTS 

26 typically developing children from grade 5 participated in the study. After 

excluding participants due to technical reasons, noisy data, and one who quitted training, a 

total of 20 children (8 girls; 11.1 ± 0.5 years old) were included in the analyses (see SI). All 

children were right-handed and had normal or corrected-to-normal vision with no history of 

neurological or mental disorders. Children and their parents gave written informed consent 

and received expense allowance for their participation. All procedures of the study were in 
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line with the latest revision of the Declaration of Helsinki and were approved by the ethics 

committee of the University Hospital of Tuebingen.  

 

MATERIAL 

16 simple and 16 complex multiplication problems were used in the present study 

(see Appendices, Table A1). Half of each set was used as trained problems and the other 

closely matched half was used as untrained problems, resulting in four conditions: trained 

simple, untrained simple, trained complex, and untrained complex. 16 simple problems 

(e.g. 4 × 6) included two one-digit operands (range 2–9) with two-digit solutions (range 

12–40). 16 complex problems (e.g. 7 × 13) included two-digit (range 12–19) times one-

digit operands (range 3–8) with two-digit solutions (range 52–98). The sequence of small 

and large operands within the problems was counterbalanced. Problems with ones (e.g. 9 × 

1), commutative pairs (e.g. 3 × 4 and 4 × 3) or ties (6 × 6) were not used. 

 

FNIRS 

FNIRS data were collected with the ETG 4000 Optical Topography System (Hitachi 

Medical Co., Tokyo, Japan) using two wavelengths of 695 and 830 nm to measure the 

absorption changes of oxygenated (O2Hb) and deoxygenated hemoglobin (HHb) according 

to the modified Beer-Lambert law. The data were recorded with 10 Hz sampling rate, and 

the fixed inter-optode distance was 30 mm. Using a 3×5 arrangement of the optodes (8 

emitters, 7 detectors) in an elastic combined fNIRS-EEG cap (Brain Products GmbH., 

Herrsching, Germany), 22 measurement channels were shaped over each hemisphere. The 

AAL (automatic anatomical labeling) atlas (Tzourio-Mazoyer et al., 2002) in SPM software 

(http://www.fil.ion.ucl.ac.uk/spm) was used to calculate the location of the corresponding 

cortical areas (Tsuzuki et al., 2007; Singh et al., 2005). 

 

EEG 

EEG data were recorded with a 32-channel DC-amplifier and the software Vision 

Recorder (Brain Products GmbH., Herrsching, Germany). 21 scalp EEG electrodes, 

attached to the combined fNIRS-EEG cap, were used for EEG data collection. Given the 

fixed optode distances, EEG electrodes were placed according to the extended international 
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10-20 system (Jasper, 1958; Oostenveld & Praamstra, 2001). In addition, eye movements 

were recorded using electrooculography (EOG) in one electrode placed below the right eye. 

The ground electrode was placed frontally on AFz, and the online reference electrode 

fronto-centrally on FCz. Electrode impedance was kept below 20 kΩ. Data were digitalized 

at a rate of 1000 Hz with an online bandpass filter of 0.1-100 Hz.  

 

NEUROPSYCHOLOGICAL TESTS 

In order to assess the homogeneity of the sample, Intelligence Quotient (IQ) and 

memory abilities were measured (see SI, Table S2). Two subtests (similarities and matrix 

reasoning) of the German Wechsler IQ test (Petermann et al., 2007) were utilized to assess 

intelligence. Furthermore, four memory components including verbal short-term and 

working memory, visuospatial short-term and working memory were assessed (Alloway et 

al., 2006). The letter span test was used to measure verbal memory capacity and the block 

tapping test (Corsi, 1973) was used to assess visuospatial memory capacity (for more 

details see Mojtaba Soltanlou et al., 2015). In verbal short-term memory, the child had to 

recall spoken sequences of letter (one letter per second). The test was started with 

sequences of two letters and increased by one letter if the child recalled correctly at least 

two out of three sequences. In short-term visuo-spatial memory, the child was asked to 

point to the cubes in the same order as the experimenter. The procedure was the same as in 

the letter span test. These forward spans were considered to represent short-term memory, 

while backward spans were considered to show working memory. Moreover, a modified 

math ability test (Huber et al., 2013) was used before and after training to assess the 

transfer effects of multiplication training to other basic arithmetic operations. 

Furthermore, a brief self-developed strategy questionnaire was used before and after 

training. Because of time limitations, we could not ask children after each item, but 

children were briefly asked before and after the training to get at least some information 

about possible strategy shifts. The questionnaire contained eight multiplication problems, 

two from each set, resulting in four different matched lists. There was no time limit for 

responding to the problems. After responding to each trial, children reported how they 

arrived at the solution. According to the children’s report, recorded strategies were 

categorized as retrieval, procedural, and other by the experimenters (Grabner & De Smedt, 

2011). The inter-rater reliability as indicated by Cohen’s kappa was .80. 
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MEASUREMENT PROCEDURE 

In a within-subject experiment, performance and brain activation of children were 

measured during multiplication problem solving at three time points (cf. Fig. 1a): before 

training, immediately after one session of training (immediate effect), and after seven 

sessions of training (two-week effect). First, children performed the general math ability 

test and strategy questionnaire. The experiment was conducted after four practice trials in a 

light-attenuated room. Problems were presented on a touch screen and children had to write 

their answers as quickly and accurately as possible and then click on a gray box, presented 

on the right side of screen, to continue (see Fig. 1b). The written response was not visible to 

avoid any further correction and encourage children to calculate mentally. The problems of 

each condition were presented in four blocks of 45 s, each followed by 20 s of rest. The 

sequence of the blocks and of the problems within the blocks was pseudo-randomized. 

Whenever the total number of trials within a condition was reached, the same problems 

were presented again after randomization. No feedback was given during the experiment. 

The design was self-paced with a limited response interval of 10 s for simple and 30 s for 

complex problems. Therefore, due to inter-individual differences the number of solved 

problems varied between children. The inter-trial interval was set to 0.5 s. After the pre-

training session, children performed one session of approximately 25-minute interactive 

training (see below). In order to investigate immediate training effects, the first post-

training measurement was performed directly afterwards. The whole procedure lasted 

approximately 2.5 hours. After seven similar interactive seven training sessions performed 

at home over the course of two weeks, children were measured again in order to evaluate 

two-week training effects (cf. Fig. 1a). In this second post-training session, the general 

math ability test and strategy questionnaire were administered again, along with the other 

neuropsychological tests. The problems, but not the sequence of the blocks or problems, 

were identical for each condition in pre-training and post-training sessions. The experiment 

was run using Presentation® software version 16.3 (version 16.3, Neurobehavioral Systems 

Inc., www.neurobs.com). 
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Fig. 1: a) The Experiment: in the first day after pre-training measurement, one session of 

training using an online learning platform was done and immediately afterward, a post-

training measurement was conducted. A second post-training measurement was conducted 

after two weeks of training. b) After responding, pressing the gray box presented the next 

problem. c) Online learning platform: in a competition with a computer, children had to 

select the correct answer out of 12 possible choices. 

 

INTERACTIVE TRAINING PROCEDURE 

Training was done using an online learning platform (designed by ScienceCampus 

Tuebingen, Tuebingen, Germany, see Jung et al., 2015; Jung et al., 2016; Roesch et al., in 

press), which allow for at-home training. One training session (trained simple and trained 

complex conditions) was performed in the lab and six at-home sessions were performed by 

children during a two-week interval. The problems of each condition were randomly 

repeated six times in each training session. Each problem was individually presented along 

with 12 different choices including the correct solution (see Fig. 1c). Response intervals of 

simple problems ranged randomly between 4 and 10 s, jittered by 0.6 s, and of complex 

problems between 10 and 30 s, jittered by 2 s. Whenever the child did not respond within 

the response interval, the computer screen displayed the correct solution. Training was 

interactive in the sense that children had to compete with the computer. To provide 

feedback about the performance and to increase motivation, the scores of the child and 

computer were shown on the right side of screen. Both child and computer received one 

c) 

a) 

b) 
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point for each correct answer and one point was deducted for each incorrect answer. The 

problem was presented until the child or computer responded correctly. In order to create a 

more realistic competition, the computer responded incorrectly in 30% of the problems. 

Children were instructed to solve the problems as quickly and accurately as possible. 

 

ANALYSIS 

BEHAVIORAL 

Written responses by children were read out with the help of RON (ReadOutNumbers 

program; Ploner, 2014). Response times (RTs) were defined as time from problem 

presentation to pressing the gray box. Only median RTs for correct responses (78.7 % of 

problems across all measurement times) were included in the analyses. Error rate was 

defined as proportion of incorrect or missing responses to total number of presented trials. 

Furthermore, inverse efficiency scores, which represent quotients of median RTs divided 

by the percentage of correctly solved problems (Butterworth, 2003), were calculated. 

Smaller inverse efficiency scores indicate more efficient performance. Separated repeated 

measures analyses of variance (rmANOVAs) were conducted to investigate immediate and 

two-week training effects on median RTs, arcsine-square-root-transformed error rates 

(Winer et al., 1971), and inverse efficiency scores. The 2×2×2 rmANOVA comprised 

within-factors of measurement time (pre- versus post-training), training (trained versus 

untrained), and complexity (simple versus complex). Further rmANOVAs and paired t-tests 

were conducted separately for simple and complex multiplication. Note that because 

inverse efficiency is a combination of both RT and accuracy of responses, and also due to 

space limitations, only inverse efficiency is explained in the following. Separate results for 

RTs and errors on the training effect are reported in SI. 

In order to uncover transfer effects of multiplication training to other arithmetic 

operations, a 2×4 rmANOVA consisting of measurement time (pre- versus post-training) 

and operation (addition, subtraction, multiplication, and division) as within-factors was 

conducted. In addition, paired t-tests were conducted separately on each operation. 

Additionally, to determine the effect of multiplication training on strategy use, paired t-tests 

were conducted on retrieval and procedural strategies separately. The analysis was 

completed using SPSS version 23.0 (IBM SPSS Statistics for Windows). 
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FNIRS 

Continuous changes of O2Hb and HHb concentration were recorded for all channels 

during the measurements. O2Hb and HHb concentration changes depend on the path length 

of NIR light through the brain, i.e., the scaling is mM*mm. Data were analyzed with 

customized MATLAB routines (The MathWorks Inc., Natick, Massachusetts, United 

States). The continuous signals were bandpass-filtered with 0.008-0.09 Hz2 in order to 

remove long-term drift of baseline and high-frequency cardiac and respiratory activities 

(Haeussinger et al., 2014; Sasai, Homae, Watanabe, & Taga, 2011; Tong, 2010). It has been 

shown that the fNIRS signals, the same as other blood-related brain measures, are low-

frequency oscillations, which are mostly detectable between 0.01 and 0.1 Hz (Tong, 2010; 

Zuo et al., 2010). Further, to deal with possible motion artifacts, particularly in children, we 

used the correlation-based signal improvement (CBSI) method (Cui et al., 2010). In 

addition to reduction of motion artifacts, especially head movements in children (Brigadoi 

et al., 2014), the CBSI method reduces non-evoked systemic influences such as heart rate, 

Mayer waves or very low-frequency oscillations (Haeussinger et al., 2014; Scholkmann et 

al., 2014). Note that among different motion correction methods, we applied the CBSI 

method; however, because the optimal correction method is data-dependent, the CBSI 

method might not be the optimal motion correction method for every design (for a detailed 

discusison see Brigadoi et al., 2014). This CBSI time course, which is calculated based on 

the negative correlation of O2Hb and HHb concentrations, was used for further analysis3. 

Remaining noisy channels were interpolated using the average of surrounding channels for 

                                                           
2 Applying more liberal low-pass filters of 0.2 Hz, which is one of the commonly used band-pass filter in 

fNIRS data analyses, and 0.7 Hz led to almost the same result. We believe that our findings are reliable since 

they were not dependent on the particular filtering methods. Furthermore, in order to remove some 

confounding signals such as Mayer waves, cardiac and respiratory activities, and also calculations of 

frequency of neuronal signals in our experiment, and in line with several previous studies, we decided to 

apply this band-pass filter in our data. 

3 Additionally, similar analyses were conducted on oxy-hemoglobin without applying any motion correction. 

Interestingly, analysis of both CBSI-Hb and oxy-hemoglobin lead to almost the same brain activation pattern, 

showing the suitability of the of CBSI-Hb analysis in our data. Moreover, particularly in the current study 

with children many movement artifacts can be expected, which are specifically targeted by the CBSI 

correction method. 
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each participant. The general linear model (GLM) analyses were performed for each 

participant and condition. The model-based signal, which was a convolved boxcar 

regressor, indicating the beginning and 404 s of each block, with the hemodynamic 

response function (HRF), was used for further analysis (Haeussinger et al., 2014). 

Thereafter, means of least-square linear regression were applied to calculate the beta-values 

of each channel.  

Three steps of analysis have been conducted on fNIRS data: rmANOVA on regions 

of interests (ROIs), rmANOVA on parietal channels, and paired t-tests on the whole brain. 

Similar to our behavioral data analysis, a 2×2×2 rmANOVA comprising the within-factors 

of measurement time (pre- versus post-training), training (trained versus untrained), and 

complexity (simple versus complex) was conducted to find the immediate and two-week 

training effects separately on each ROI. To this end, four ROIs within the fronto-parietal 

network, including four channels for each, were defined: left and right frontal, and left and 

right parietal regions (see Appendices, Fig. A1 and A2). The frontal network comprised 

middle frontal gyrus (MFG) and IFG, and the parietal network comprised SPL, IPS, IPL, 

and AG (cf. Appendices, Table A2 and A3). A rmANOVA was conducted for each ROI 

separately. Furthermore, in the case of a significant three-way interaction, additional 

rmANOVAs and paired t-tests were conducted separately for simple and complex 

multiplication. The significance level was .05 uncorrected. 

In the next step, since there are distinct networks within the parietal network 

(Dehaene et al., 2003), similar 2×2×2 rmANOVAs were conducted over the channels 

within each parietal ROI. Furthermore, in the case of a significant three-way interaction, 

additional rmANOVAs and paired t-tests were conducted separately for simple and 

complex multiplication. The significance level was .05 uncorrected. Results for the channel 

analysis are reported in SI. 

Furthermore, in order to examine the training effects on the whole brain, multiple 

paired t-tests between trained versus untrained conditions were calculated for each channel. 

To this end, the contrasts in immediate post-training measurement (trained versus 

untrained) were compared with the contrasts in the pre-training measurement (trained 

                                                           
4 Although the duration of blocks were 45 s, however, because of some noises appearing on BOLD signal 

about the end of blocks, the last 5 s of the blocks were excluded from analysis. 
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versus untrained) separately for simple and complex conditions. The same contrasts were 

applied between pre-training and second post-training measurements to evaluate the two-

week training effect (for instance in complex multiplication: [trained complex in post-

training - untrained complex in post-training] – [trained complex in pre-training - untrained 

complex in pre-training]). The significance level was .05, and correction for multiple 

comparisons was performed using the Dubey/Armitage-Parmar (D/AP) method (Sankoh et 

al., 1997).  

 

EEG 

EEG data were analyzed using the Brainstorm toolbox (Tadel et al., 2011), a 

documented and freely available software package (http://neuroimage.usc.edu/brainstorm). 

EEG signals of 21 electrodes were offline-filtered using a bandpass of 0.1-40 Hz. Based on 

the EOG signal, eye movement artifacts were detected and removed from the EEG signals 

using Signal Space Projections (SSP). In the next step, block duration of 45 s and rest 

duration of 20 s were epoched. The power spectral density (PSD) in the theta (4-7 Hz) and 

alpha band (8-12 Hz) was calculated and individually averaged for each condition and 

measurement time. To measure the cortical activation and functional changes of brain 

activity (Neuper & Klimesch, 2006; Pfurtscheller & Da Silva, 1999), ERS/ERD was 

calculated. The percentage values of ERS/ERD were calculated by this expression: 

ERS/ERD% = (PSD of activation – PSD of rest) / PSD of rest × 100 (Pfurtscheller & Da 

Silva, 1999) (for more information, see SI).  

Six regions of interests (ROIs) within the fronto-parietal network were defined: left, 

right, and middle fronto-central, left, right, and middle occipito-parietal regions (see 

Appendices, Fig. A1 and Table A2). Within theta and alpha frequency bands, a 2×2×2 

rmANOVA was conducted for each ROI separately. Furthermore, in each step in the case 

of significant interaction, additional rmANOVAs and paired t-tests were conducted 

separately for simple and complex multiplication. Additionally, similar to the fNIRS data, 

paired t-tests between pre- and post-training sessions were calculated in order to examine 

the training effects on the whole brain. The significance level was .05 uncorrected. 
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RESULTS 

BEHAVIORAL 

The immediate training effect on inverse efficiency scores indicated a significant main effect 

of complexity, F(1,19) = 55.17, p < .001, η2 = 0.74, showing a better performance in simple than in 

complex multiplication (see Fig. 2a). The other main effects and interactions did not reach statistical 

significance after just one session, Fs(1,19) < 2.2, ps > .15, η2 < 0.11. 

The two-week training effect on inverse efficiency scores revealed significant main effects of 

measurement time, training, and complexity, Fs(1,19) > 7.4, ps < .013, η2 > 0.27. A significant 

interaction of measurement time × training showed that training led to a performance improvement 

in trained compared to untrained conditions, F(1,19) = 6.45, p = .02, η2 = 0.25. A marginally 

significant interaction of measurement time × complexity, F(1,19) = 4.02, p = .059, η2 = 0.18, and a 

significant interaction of training × complexity, F(1,19) = 6.64, p = .018, η2 = 0.26, were also 

observed. 

Moreover, a marginally significant interaction of measurement time × training × complexity 

revealed that after training, children improved mostly in solving the trained complex problems, 

F(1,19) = 3.14, p = .093, η2 = 0.14 (cf. Fig. 2b). In order to explore training effects for simple and 

complex problems separately, two rmANOVAs were conducted. In the simple condition, a 

significant main effect of measurement time was observed, F(1,19) = 18.16, p < .001, η2 = 0.49. A 

significant interaction of measurement time × training demonstrated that after training, children 

improved in trained compared to untrained simple problems, F(1,19) = 13.79, p = .001, η2 = 0.42 

(cf. Fig. 2a). The main effect of training was not significant in simple conditions. With respect to 

complex multiplication, significant main effects of measurement time and training were observed, 

Fs(1,19) > 5.7, ps < .027, η2 > 0.22. The interaction of measurement time × training showed a 

significant training effect in trained complex multiplication compared to untrained complex 

problems, F(1,19) = 4.75, p = .042, η2 = 0.20 (cf. Fig. 2a). 
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Fig. 2: Inverse efficiency score changes as a) immediate training effect, and b) two-week training 

effect. Smaller inverse efficiency scores indicate more efficient performance. Error bars reflect SEs. 

 

FNIRS 

ROI RESULTS 

In the absence of immediate behavioral improvement, the rmANOVA on the ROIs revealed a 

significant immediate training effect in the left parietal region. We observed a significant interaction 

of measurement time × training, F(1,19) = 6.33, p = .021, η2 = 0.25, and also a marginally 

significant interaction of measurement time × training × complexity in the left parietal region, 

F(1,19) = 3.74, p = .068, η2 = 0.16. To delineate this trilateral interaction, two separate 2×2 

rmANOVA for simple and complex conditions were conducted. In simple conditions, a significant 

main effect of measurement time demonstrated a decreased activation of the left parietal region 

after the training, F(1,19) = 5.97, p = .024, η2 = 0.24 (see Fig. 3a). No other significant effect was 

found in simple conditions. In complex conditions, a significant interaction of measurement time × 

training showed a decreased activation in trained complex multiplication, while an increased 

activation in untrained complex multiplication was observed in the left parietal region, F(1,19) = 

8.25, p = .01, η2 = 0.30 (see Fig. 3a). The main effects of measurement time and training were not 

significant. No significant immediate training effect was observed in other ROIs. 

 

 

Fig. 3: Brain activation changes in the left parietal region as a) immediate training effect, and b) 

two-week training effect (the lines representing trained simple and trained complex are almost over 

each other). Error bars reflect SEs. 

 

Similar to the immediate training effect, the rmANOVA on ROIs in the two-week training 

revealed significant effects of two-week training only in the left parietal region. A significant 

interaction of measurement time × training × complexity was observed, F(1,19) = 8.40, p < .01, η2 

= 0.31. Further rmANOVA analyses, conducted separately for simple and complex conditions, 
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revealed no significant training effect in simple conditions. In complex conditions, a significant 

interaction of measurement time × training showed a decreased activation in the trained condition, 

while an increased activation in the untrained condition was observed in the left parietal region, 

F(1,19) = 5.53, p = .03, η2 = 0.23 (see Fig. 3b). The main effects of measurement time and training 

were not significant. No significant two-week training effect was observed in other ROIs. 

 

WHOLE-BRAIN RESULTS 

In order to assess the immediate training effect at the whole-brain level, all channels were 

taken into account. In the complex condition, multiplication training led to a significantly decreased 

activation at the junction of the left AG and IPL (channel 10), and in the right SPL and IPS (channel 

44), ts(19) < -2.75, ps < .05 (cf. Fig. 4). This decrease showed less bilateral parietal engagement in 

trained than untrained complex multiplication after one session of training. No significant brain 

activation change for simple multiplication problems was found. Results of contrasts of trained 

versus untrained conditions within each measurement time are reported in SI (cf. SI, Fig. S4). 

 

Fig. 4: The upper panel shows the immediate training effect and the lower panel shows the two-

week training effect of complex multiplication on brain activation in fNIRS. No significant 

difference was observed for simple multiplication. Blue represents reduced activation, and green 

represents non-significant reduction of activation. L: left; R: right. 
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Two-week training effects at the whole-brain level were assessed by taking all channels into 

account. In the complex condition, multiplication training led to a significantly decreased activation 

at the junction of the left AG and MTG (channel 5) (cf. Fig. 5), and in the right MFG (channel 36), 

ts(19) < -2.93, ps < .05 (see Fig. 4). This decrease showed less engagement of left parietal and right 

frontal cortex in trained than untrained complex multiplication after two weeks of training. No 

significant brain activation change was observed in training of simple multiplication problems. The 

full results of contrasts of trained versus untrained conditions for the second post-training 

measurements are reported in SI (cf. SI, Fig. S4). 

 

 

Fig. 5: Exemplary time course of the fNIRS signal. The block average B-values of oxy-hemoglobin 

(red), deoxy-hemoglobin (blue) and CBSI-corrected signal (pink) are given for the two-week 

contrast of contrast at the junction of the left AG and MTG (channel 5), which revealed a significant 

decrease of activation. The results of all three signals (oxy-hemoglobin, deoxy-hemoglobin, and 

CBSI-Hb) show reduced activation in this area in trained complex problems as compared to 

untrained complex problems after two-week training. 

 

EEG 

ROI RESULTS 

The rmANOVA on ROIs showed no significant immediate training effect neither in the theta 

nor the alpha band. With respect to two-week training, the rmANOVA on ROIs revealed a 

significant main effect of complexity in the left occipito-parietal and in middle fronto-central 

regions in theta band, Fs(1,19) > 4.7, ps < .042, η2 > 0.19, showing greater theta ERS in complex 

than simple conditions. No other significant effect was observed in the theta frequency band.  

In the alpha band, two-week training led to a significant main effect of measurement time in 

occipito-parietal regions bilaterally, Fs(1,19) > 4.7, ps < .042, η2 > 0.19, which demonstrated 

increased alpha ERD after the training. No other significant effect was observed in the alpha 

frequency band. 

 

WHOLE-BRAIN RESULTS 
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However, to see plausible immediate training effects at the whole-brain level, the contrasts 

were additionally calculated for each electrode, similarly as for the fNIRS data. No significant 

training change was found for simple multiplication problems. In complex multiplication training, 

significantly greater alpha ERD over parietal areas (Pz) was observed in the contrast of trained 

versus untrained problems, t(19) = -2.36, p < .05 (see Fig. 6), which stems mostly from the post-

training comparison (see SI, Fig. S5). Therefore, children’s behavioral performance in these two 

conditions was directly compared in post-training measurement. They showed significantly better 

performance in trained complex than in untrained multiplication, t(19) = 3.37, p = .003. No 

significant difference was observed in the theta frequency band in any of contrasts. Results of 

contrasts of trained versus untrained conditions within each measurement time are reported as SI 

(cf. SI, Fig. S5). 

In order to identify activation changes at the whole-brain level due to two-week training, 

similar contrasts as for the fNIRS data were calculated. For training of simple multiplication 

problems, significantly decreased alpha ERD at the central site (Cz) in post-training compared to 

pre-training was found, t(19) = 3.11, p < .05. For complex multiplication, significantly decreased 

alpha ERD was observed at the left occipital site (O1), t(19) = 2.44, p < .05 (cf. Fig. 6). No 

significant difference was observed in the theta frequency band in any of the contrasts. Results from 

contrasts of trained versus untrained conditions within each measurement time are reported as SI 

(cf. SI, Fig. S5). 

 

Fig. 6: The upper panel shows the immediate training effect and the lower panel shows the two-

week training effect of simple and complex multiplication on the alpha ERD in children. No 
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significant difference was observed in theta ERS. The red represents reduced alpha ERD and blue 

represents increased alpha ERD. 

 

OTHER NEUROPSYCHOLOGICAL AND ARITHMETIC TESTS 

Regarding the transfer of multiplication learning to other arithmetic operations, a significant 

main effect of measurement time showed that children responded correctly to more problems after 

the training, F(1,19) = 6.12, p = .02, η2 = 0.24. A significant main effect of operation revealed that 

children have different competence in responding to different basic arithmetic operations, F(1,19) = 

30.89, p < .001, η2 = 0.62. Additional analysis revealed that children had better performance in the 

order of: addition > subtraction > multiplication and division, ts(19) > 3.03, ps < .007. However, the 

interaction of measurement time × operation was not significant. 

The result of strategy use revealed that after training, children use significantly more retrieval 

strategies, t(19) = 3.87, p = .001, and fewer procedural strategies, t(19) = -2.70, p = .014, compared 

to pre-training. 

 

DISCUSSION 

In the current study, a group of typically developing children received training on 

simple and complex multiplication, which led to improved performance after two-week 

training but not immediate training (one session). Nevertheless, even after immediate 

training, brain activation changes were observed in parietal regions. After the two-week 

training, the behavioral improvement, which was associated with a strategy shift from 

procedural to retrieval strategies, was accompanied by reduced activation of the fronto-

parietal network and alpha ERD. 

 

IMMEDIATE TRAINING EFFECT 

In the absence of any significant behavioral improvement, fNIRS findings showed reduced 

activation at the junction of the left AG and IPL, and also the right SPL and IPS after one training 

session in the trained complex condition. This finding is in line with the longitudinal (non-learning) 

study by Qin et al. (2014), who found that one year of academic education led to reduced activation 

of bilateral parietal regions in addition problem solving in children. Decreased parietal activation, 

which is related to quantity-based processing, indicated that after the training, children needed less 

“manipulation” of the numeral magnitudes. This finding was in line with a study by Ischebeck et al. 

(2007) that reported similar brain activation changes in adults after eight repetitions of complex 
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multiplication problems. Moreover, in the present study, a production paradigm was used. 

Therefore, the problems require an exact calculation, so other plausible strategies such as 

approximation cannot be used (for a discussion see Delazer et al., 2003). Decreased activation of 

parietal regions, which are needed for exact calculation (e.g., Dehaene et al., 2004), is a reasonable 

explanation. However, an increased alpha ERD as a result of immediate training of complex 

multiplication was unexpected. One possible explanation is that alpha ERD is also sensitive to 

visual attentional processes (Klimesch, Sauseng, & Hanslmayr, 2007). Better performance in 

trained complex conditions, i.e., faster responses and fewer errors, led to more problems being 

presented and therefore, more visual processing in trained complex condition was needed that 

induced alpha ERD.  

In simple multiplication, no significant difference was observed, which might be due to 

insufficient training, because children in this developing age are advanced in solving simple 

multiplication problems, and more repetitions than just a single session are needed to improve their 

performance. 

 

BRAIN ACTIVATION CHANGES IN CHILDREN 

The two-week training data illustrate that children became more efficient in the trained 

compared to untrained multiplication problems, which means faster responses with fewer errors. 

With respect to the trained simple condition, no significant change was observed in the fNIRS data. 

However, decreased alpha ERD (i.e., increased alpha power) was found in EEG data for both 

trained simple and complex multiplication (see also Grabner & De Smedt, 2012). This decrease 

suggests more retrieval processing in both trained conditions through training. This finding is in line 

with previous studies in which working memory training led to decreased alpha ERD, representing 

less cortical activation (Gevins et al., 1997). According to Pfurtscheller (2001), ERD represents a 

reduction of localized amplitudes, which is associated with an increased excitability of cortical 

regions. This cortical excitability reflects increased information processing. Therefore, decreased 

alpha ERD in both trained conditions in the present study can be interpreted as a decreased cortical 

effort. However, regarding the EEG findings, it is important to note that results were reported at an 

uncorrected significance level (despite multiple statistical comparisons). Nevertheless, we believe 

that, in combination with the fNIRS data, the EEG data help to strengthen the validity of the 

findings.  

In the trained complex condition, the fNIRS findings showed a reduced activation at the 

junction of the left AG and MTG, along with the right MFG after training. It has been shown that 

learning changes general purpose/domain-general to more domain-specific processing, which is 

indicated by reduced activation in several brain regions (Poldrack, 2000). These findings were 
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partially in line with previous multiplication training studies in adults, which reported a decreased 

activation within the fronto-parietal network (Zamarian et al., 2009, for a review). In agreement 

with this finding, in the present study, the right MFG, which is involved in executive control and 

working memory, showed reduced activation after the training. This indicates faster calculation 

processes after complex multiplication training that do not depend as much on sequential cognitive 

processes compared to before training (see also Prado et al., 2014).  

It should be noted that there was an unexpected increase in activation of these areas in 

untrained complex multiplication in the post-training compared to the pre-training session. This 

increased activation may reflect improved performance (i.e., faster responses; see SI, Fig. S1) in 

untrained complex multiplication via training, which might be due to increased recruitment of these 

domain-general regions. This is different from trained complex multiplication, which showed less 

brain effort with improved performance via training, probably because effort-saving retrieval 

processes are recruited here. In sum, this shows that better performance might be subserved by 

different neurocognitive mechanisms: (i) efficient recruitment of specific areas associated with 

strategy change (e.g., procedural to retrieval processes) when the particular items have been trained 

or (ii) recruitment of more brain areas associated with domain-general processes within the same 

(procedural) strategy when the particular items have not been trained, but the outcome of the 

procedural strategy itself is improved. 

In the present study, decreased activation at the junction of the left AG and MTG was 

detected, while no brain activation change was observed in the left AG. This finding is in agreement 

with longitudinal and training studies in children (Qin et al., 2014; Supekar et al., 2013), but is 

contradictory to multiplication training studies in adults, which reported increased activation of the 

left AG after training (for a review Zamarian et al., 2009; but see Bloechle et al., 2016). It seems 

that although a shift from procedural effortful to retrieval memory-based strategies is represented as 

a shift from fronto-parietal network to left AG engagement in adults, the same is not necessarily 

true for children (see also Supekar et al., 2013). This difference might be due to more stable neural 

substrates of arithmetic processes in adults compared to children (Qin et al., 2014). Furthermore, 

this strategy shift is not represented by similar brain activation changes from childhood into 

adulthood (Qin et al., 2014; Kawashima et al., 2004). The reduced activation around the left AG is 

in line with the study by Menon et al. (2000), which reported a decreased AG activation with an 

increase of expertise (see also Amalric & Dehaene, 2016). It should be noted that even for adults, 

different brain areas, and not only the left AG, lead to retrieval processes after multiplication 

training (Bloechle et al., 2016; Delazer et al., 2005). Furthermore, several studies showed an 

unspecific role of AG activation in arithmetic learning (Ischebeck et al., 2006; Grabner, Ischebeck, 

et al., 2009; Simon, Mangin, Cohen, Le Bihan, & Dehaene, 2002). To sum up, we conclude that the 
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AG might have an intermediate role during development, with a nonlinear relation (over age and 

development) between AG activation increase/decrease and arithmetic learning. However, this 

assumption needs to be tested in larger future studies that use the same learning paradigm over a 

wide range of age groups. 

Further, it seems that short-term arithmetic training leads to a restricted generalization to the 

other problems of the same operation. This restricted generalization means training leads to an 

improvement in both trained and untrained problem solving, but this improvement is much stronger 

in the case of trained problems. In the current study this restricted generalization has been detected 

in the response time after two-week training (cf. SI). Children responded faster to not only both 

trained sets, but also to both untrained sets. However, this improvement was much stronger in 

trained sets as compared to untrained sets. This restricted generalization has been already shown in 

adults (Ischebeck et al., 2009), and also depends on the training method (Delazer et al., 2005). 

 

TRANSFER EFFECTS 

With respect to transfer effects, a generally improved performance in all basic arithmetic 

operations was found after multiplication training in children, which was not specific to any one 

operation (but see Ischebeck et al., 2009). However, even though the time interval between pre- and 

post-training measurement was short (two weeks) and children in grade 5 do not receive direct 

training of basic arithmetic, the absence of a control group makes it difficult to interpret this 

improvement as the result of multiplication training. 

 

POSSIBLE METHODOLOGICAL AND ANALYSIS DIFFERENCES 

While the different findings of arithmetic training between adults and children can be 

explained by above neurocognitive accounts focusing on different brain-behavior relations between 

children and adults, there are some alternative methodological explanations (e.g., Shallice, 2003) 

that should be mentioned and possibly be tested in future studies. First, while most of the training 

studies used verification paradigms to reduce movement artifacts in the MRI scanner, the present 

study applied a written production paradigm. This means that children calculated almost every 

single trial without using any shortcut strategies, which in other studies might lead to more retrieval 

strategies because of the priming role of the presented solutions. Secondly, previous studies usually 

employed a fixed number of trials, while in the present study a self-paced design was utilized, 

leading to different numbers of answered trials across individuals. With a self-paced design, more 

calculation time is usually spent on more complex trials. Therefore activation differences might be 

partially due to the actual time needed for calculation, and not only to different strategy use. 
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Furthermore, because calculation times differ quite strongly across individuals and problems, the 

BOLD fitting might differ for fast (trained) and long (untrained) items, making at least event-related 

designs susceptible to misfits of the BOLD function in one or the other condition. In our design, we 

used blocked conditions and self-paced design (as in most cognitive and educational settings). The 

self-paced design ensures that the child is continuously performing the task without larger resting 

times between items for the faster condition. This is achieved by a higher number of trials in the 

easier (faster) condition, because children move to the next item as soon as they respond. This may 

partially explain the lack of activation change in the left AG in the present study. Moreover, a 

recent study by Bloechle et al. (2016) revealed increased activation of AG in the comparison of 

trained versus untrained in post-training measurement in adults, but not in the comparison of trained 

condition in post-training versus pre-training. However, in our study, increased activation of AG 

was not observed in any of these comparisons. Because of the convergence with other longitudinal 

studies in children, it seems unlikely that the differences to adult studies are only due to 

methodological differences, but in our view, the issue of the duration of activation and the 

goodness-of-fit of the BOLD function deserves more attention in future training studies. Despite 

these limitations, there is a clear take-home-message from this study: The results of experimental 

neurocognitive studies in adults do not generalize to children’s neurocognitive activation in an 

ecologically valid setting that resembles how they solve tasks at school. 

 

CONCLUSION 

The present study showed that performance improvement via arithmetic learning in children 

is accompanied by brain activation changes, as measured by simultaneous fNIRS-EEG 

measurements. However, these changes clearly differed from those induced by arithmetic training 

in adults. While studies in adults reported a shift from procedural to retrieval strategies as indexed 

by a decreased activation of fronto-parietal network structures and an increased activation of the left 

AG, the present training study in children revealed generally decreased brain activation in a fronto-

parietal network. We interpret these differences in brain activation changes as an effect of age, 

suggesting that the strategy shift in children has a different neural pattern than in adults, although 

some alternative methodological accounts should be addressed in future studies. Independent of the 

explanations for our results, one take-home message is quite clear: previous findings from 

experimental neurocognitive studies in adults cannot be simply generalized to children’s learning of 

arithmetic in an ecological setting that closely resembles arithmetic performance in schools. 

Therefore, in a more general conclusion, we argue that this study is an example of the Educational 

Neuroscience Approach, studying educational contents and settings with neuroscientific methods, is 
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needed to understand (neurocognitive) development and learning in children – experimental 

neurocognitive studies in adults alone will not be sufficient. 
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SUPPLEMENTARY MATERIALS 

MATERIAL AND METHODS 

TRAINING PROCEDURE 

It should be noted that because of online training at home, it was not possible to fully 

control it. Due to technical and personal reasons, a few children quit some training sessions 

early and completed them again, which led to a different number of presented trained 

simple and complex problems across participants (Table S1). Seven children completed 6 

and one child completed 5 training sessions out of 7. 

 

Table S1: Mean (and SD) of a number of presented trained simple and complex problems 

per training session. 

Session 1 2 3 4 5 6 7 
Simple 49.8 (3.1) 52.3 (8.6) 50.1 (11.2) 52.9 (13.1) 51.6 (9.5) 51.2 (8.7) 50.5 (12.3) 

Complex 49.9 (3.4) 52.8 (10.1) 50.8 (11.9) 53.4 (14.1) 51.2 (9.1) 51.2 (10.1) 52.0 (12.8) 
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For each problem, one correct solution and 11 distractors were presented. Each 

distractor was made based on one of the following rules: adding 1 to or subtracting 1 from 

the first or second operand, adding or subtracting 1, 2, 10 from the correct solution, or 

inversing the unit and decade of the correct solution.  

 

NEUROPSYCHOLOGICAL TESTS 

Children’s performance in IQ subtests of similarity and matrix reasoning, along with 

memory components (verbal STM, verbal WM, visuospatial STM, visuospatial WM), are 

presented in Table S2. To investigate the transfer effect of multiplication training to other 

operations (addition, subtraction, multiplication, division), we used two closely matched 

sets of all four basic arithmetic before and after the training. The test was a modified 

version of an arithmetic test designed by Huber et al. (2013) with two levels of complexity 

resulting in eight lists of problems. Children had 45 s for each simple list and 60 s for each 

complex list, and they were required to answer as many problems as possible while 

avoiding errors. 

 

Table S2: Mean and SDs of IQ subtests and memory components. STM: short-term 

memory; WM: working memory. 

Similarities Matrix 

reasoning 

Verbal 

STM 

Verbal 

WM 

Visuo-

spatial STM 

Visuo-

spatial WM 

108.5 ± 11.71 108.0 ± 10.44 4.95 ± 0.76 3.95 ± 0.89 5.35 ± 0.81 5.30 ± 1.13 

 

ANALYSIS 

FNIRS 

In order to investigate the difference of trained and untrained conditions within each 

measurement time (pre-training, first post-training, and second post-training), multiple 

paired t-tests were applied: trained simple vs untrained simple; trained complex vs 

untrained complex. The significance level was .05 and corrected using the 

Dubey/Armitage-Parmar (D/AP) method for multiple comparisons (Sankoh et al., 1997). 

 

EEG 
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Theta and alpha frequency bands are frequently investigated in cognitive tasks 

(Antonenko et al., 2010). The ERS/ERD are quantificational measures of brain dynamics 

(Pfurtscheller & Aranibar, 1977). Because of the sensitivity of the EEG signal to several 

factors such as individual differences, age (Klimesch, 1999), and brain volume (Nunez & 

Cutillo, 1995), analysis of changes in the EEG signal is more reliable than the absolute 

power of the frequency band (Pfurtscheller & Da Silva, 1999). ERS is indicated as larger 

power spectral density (PSD) of a condition than at rest, which leads to a positive value, 

while ERD is indicated as a negative value because the PSD of a condition is smaller than 

at rest. For each condition, statistical analyses comprised t-tests against zero for 

ERS/ERD% of each electrode and each frequency band. Within each measurement time, 

the contrast of trained versus untrained conditions was calculated with paired t-tests. The 

significant level was .05 uncorrected. 

 

RESULTS 

BEHAVIORAL 

RT 

The analysis of median RT after immediate training revealed a significant main effect of 

complexity showing that children responded faster to simple compared to complex problems, 

F(1,19) = 188.82, p < .001, η2 = 0.91. No other significant main effect or interaction was found in 

analysis of median RTs with respect to immediate training (cf. Fig. S1a).  

 

 

  

Fig. S1: a) Immediate training effect and b) Two-week training effect on median RT. Error bars 

reflect SEs. 

 

In regard to the median RT after two-week training, significant main effects of measurement 

time, training, and complexity were observed, Fs(1,19) > 19.3, ps < .001, η2 > 0.49. A significant 
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main effect of measurement time indicated that children became faster after training in 

multiplication problem solving. A significant interaction of measurement time × training showed 

that training led to improved performance in trained compared to untrained conditions in terms of 

response time, F(1,19) = 16.14, p < .001, η2 = 0.46. Additional analysis revealed significantly faster 

responses in trained conditions than untrained conditions after training, t(19) = 7.37, p < .001. 

Moreover, a significant interaction of measurement time × complexity, F(1,19) = 16.44, p < .001, η2 

= 0.46, and a significant interaction of training × complexity, F(1,19) = 15.68, p < .001, η2 = 0.45, 

were observed (see Fig. S1b).  

Furthermore, a marginally significant interaction of measurement time × training × 

complexity was observed, F(1,19) = 3.67, p = .07, η2 = 0.16. In order to explore training effects for 

simple and complex problems, two separate rmANOVAs were conducted for simple and complex 

multiplication. With respect to simple multiplication, a significant main effect of measurement time 

showed that children provided faster responses after training, F(1,19) = 27.66, p < .001, η2 = 0.59. 

Moreover, the significant interaction effect of measurement time × training revealed a two-week 

training effect in trained simple compared to untrained simple multiplication, F(1,19) = 26.18, p < 

.001, η2 = 0.58. Further analysis showed that children responded faster to trained simple than 

untrained simple problems in post-training measurement, t(19) = 4.68, p < .001. The main effect of 

training did not reach significance in simple conditions. Regarding complex multiplication, a 

significant main effect of measurement time, demonstrating faster responses after training, F(1,19) 

= 24.28, p < .001, η2 = 0.56, and a significant main effect of training, F(1,19) = 20.70, p < .001, η2 = 

0.52, were observed. A significant interaction effect of measurement time × training revealed that 

after training, children provided faster responses to trained complex compared to untrained complex 

problems, F(1,19) = 9.32, p = .007, η2 = 0.33. Additional analysis showed children responded faster 

to trained complex than untrained complex problems in post-training measurement, t(19) = 7.29, p 

< .001 (cf. Fig. S1b). 

 

Error rate 

Regarding the error rate after immediate training, a significant main effect of complexity 

demonstrated that children responded more accurately to simple compared to complex problems, 

F(1,19) = 105.23, p < .001, η2 = 0.85. Moreover, a significant interaction of training × complexity 

was observed, F(1,19) = 7.89, p = .011, η2 = 0.29. Further analysis revealed significantly fewer 

errors in trained complex compared to untrained complex multiplication, t(19) = 2.18, p = .042, but 

no significant difference was observed in simple conditions. No other significant effect was found 

in analysis of error rate after immediate training (see Fig. S2a). 
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Fig. S2: a) Immediate training effect and b) Two-week training effect on arcsine error rate. Error 

bars reflect SEs. 

 

With respect to two-week training, similar rmANOVA over the arcsine-root-square error rate 

displayed a significant main effect of training, F(1,19) = 9.83, p = .005, η2 = 0.34, and a significant 

main effect of complexity, showing that children responded more accurately to simple compared to 

complex problems, F(1,19) = 91.13, p < .001, η2 = 0.83. A significant interaction of measurement 

time × training revealed fewer errors in trained than untrained conditions after training, F(1,19) = 

6.19, p = .022, η2 = 0.25. Further analysis showed children made fewer errors in responding to 

trained conditions than untrained conditions in post-training measurement, t(19) = 4.16, p < .001 

(see Fig. S2b). Furthermore, a significant interaction of training × complexity was observed, 

F(1,19) = 12.74, p = .002, η2 = 0.40. 

 

FNIRS 

Channel results 

The rmANOVAs on parietal channels were conducted separately. With respect to immediate 

training, at the junction of the left AG and MTG (channel 5), a significant interaction of 

measurement time × training was observed, F(1,19) = 4.61, p = .045, η2 = 0.20, although further 

analysis did not reach significance in any comparison, ts(19) < 1.9, ps > .08. There were no other 

significant effects in this region. 

At the junction of the left AG and IPL (channel 10), a significant interaction of measurement 

time × training was observed, F(1,19) = 5.74, p = .027, η2 = 0.23. Additional analysis revealed 

significantly reduced activation of trained conditions compared to untrained conditions, t(19) = 

2.33, p = .03. In addition, a significant interaction of measurement time × training × complexity in 

this region was observed, F(1,19) = 4.96, p = .038, η2 = 0.21. In order to explore training effects for 

simple and complex problems separately, 2×2 rmANOVAs were conducted in simple and complex 

conditions separately. No significant training effect in simple conditions was found. In complex 

conditions, a significant interaction of measurement time × training showed a decreased activation 

in trained conditions and  an increased activation in untrained conditions, F(1,19) = 8.61, p = .009, 
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η2 = 0.31. Further analysis revealed significantly increased activation in the untrained complex 

condition after training, t(19) = 2.12, p = .047. The main effects of measurement time and training 

were not significant in complex conditions (cf. Fig. S3a). 

In the left SPL and IPS (channel 19), a significant main effect of measurement time showed a 

decreased activation after training, F(1,19) = 5.79, p = .026, η2 = 0.23. There was no other 

significant effect in this region. In addition, no significant training effect was observed in the left 

AG (channel 14).  

In right SPL and IPS (channel 44), a significant interaction of measurement time × training 

was observed, F(1,19) = 4.82, p = .041, η2 = 0.20. Additional analysis illustrated significantly 

decreased activation in trained conditions after training, t(19) = 2.43, p = .025. Moreover, a 

significant interaction of measurement time × training × complexity was observed, F(1,19) = 6.04, 

p = .024, η2 = 0.24. In order to explore training effects for simple and complex problems separately, 

2×2 rmANOVAs were conducted in simple and complex conditions separately. No significant 

training effect was observed in simple conditions. In complex conditions, a significant interaction of 

measurement time × training was found, F(1,19) = 10.50, p = .004, η2 = 0.36. Further analysis 

illustrated significantly decreased activation in trained complex compared to untrained complex 

multiplication in the first post-training measurement, t(19) = 2.52, p = .021. The main effects of 

measurement time and training were not significant (see Fig. S3b). No significant training effect 

was observed at the junction of right AG and MTG (channel 31), at the junction of the right AG and 

IPL (channel 35), or in the right AG (channel 40). 

 

  

 

Fig. S3: Immediate training effect on brain activation changes: a) at the junction of the left AG and 

IPL (channel 10), and b) in right SPL and IPS (channel 44). c) Two-week training effect on brain 
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activation changes at the junction of the left AG and MTG (channel 5). Error bars reflect SEs. Ch.: 

channel. 

 

In order to indicate two-week training effect on channels level, rmANOVAs were conducted 

separately on parietal channels. At the junction of the left AG and MTG (channel 5), a main effect 

of measurement time surprisingly demonstrated an increased activation after training, F(1,19) = 

4.41, p = .049, η2 = 0.19. Furthermore, a significant interaction of measurement time × training × 

complexity was observed, F(1,19) = 7.02, p = .016, η2 = 0.27. In order to explore two-week training 

effect for simple and complex problems, two separate rmANOVAs were conducted for simple and 

complex multiplication. No significant training effect was found in simple conditions. In complex 

conditions, a significant interaction of measurement time × training showed a decreased activation 

at the junction of the left AG and MTG in trained complex multiplication and an increased 

activation in untrained complex multiplication, F(1,19) = 8.23, p = .01, η2 = 0.30 (cf. Fig. S3c). 

Further analysis illustrated significantly increased activation in untrained complex multiplication, 

t(19) = 3.74, p = .001. The main effects of measurement time and training were not significant in 

complex conditions. 

 At the junction of the left AG and IPL (channel 10), a significant interaction of measurement 

time × training × complexity was observed, F(1,19) = 10.33, p = .005, η2 = 0.35. However, 2×2 

rmANOVA analysis, conducted separately for simple and complex conditions, illustrated no 

significant training effect in either simple or in complex conditions.  

In the right hemisphere, the only significant finding was interaction of measurement time × 

complexity at the junction of the right AG and MTG (channel 31), F(1,19) = 6.86, p = .017, η2 = 

0.27. No significant training effect was observed in bilateral SPL, IPS (channels 19, and 44), 

bilateral AG (channels 14, and 40), or in the right junction of AG and IPL (channel 35). 

 

Whole-brain results of each measurement time 

Furthermore, differences between trained and untrained conditions within each measurement 

time were investigated for fNIRS data. In the pre-training measurement, there was no significant 

difference in the contrast of trained simple versus untrained simple multiplication, or in the contrast 

of trained complex versus untrained complex (cf. Fig. S4a).  

In the immediate post-training measurement, in the contrast of trained complex versus 

untrained complex multiplication, right SPL and IPS (channel 44) displayed significantly decreased 

activation, t(19) = -2.52, D/AP corrected p < .05 (see Fig. S4b). Although reduced activation of the 

left AG (channel 14) and surrounding areas was observed, it did not survive correction for multiple 
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statistical comparisons. No significant difference was found in the contrast of trained simple versus 

untrained simple multiplication. 
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Fig. S4: a) FNIRS data showed no difference between trained and untrained conditions before the 

training. b) Although no immediate effect of training was observed in simple conditions, decreased 

activation of right SPL and IPS was found in trained complex compared to untrained complex 

multiplication. In the contrast of complex conditions, the huge deactivated area in the left parietal 

region did not survive correction for multiple comparisons. c) FNIRS data showed no two-week 

training effect in simple condition. The lower panel shows reduced activation of the left MFG for 

trained complex condition in the two-week post-training session. In the contrast of complex 

conditions, the deactivated area in the left parietal region did not survive correction for multiple 

comparisons. The blue represents reduced activation, and the green represents non-significantly 

reduced activation. 

 

In the two-week post-training measurement, in the contrast of trained complex versus 

untrained complex multiplication, left MFG (channel 18) showed significantly decreased activation, 

t(19) = -2.94, D/AP corrected p < .05 (cf. Fig. S4c). Although reduced activation of the left AG and 

STG (channel 5) was observed, this effect did not survive correction for multiple statistical 

comparisons. In the two-week post-training measurement, no significant difference between trained 

simple and untrained simple conditions was observed. 

 

EEG 

Regarding EEG, differences between trained and untrained conditions within each 

measurement time were investigated. In the contrast of trained simple versus untrained simple 

multiplication in pre-training, greater theta ERS in the left temporal site (T7), t(19) = 2.29, p < .05, 
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and lower theta ERS on the right frontal site (AFF4), t(19) = -2.30, p < .05 , was observed (cf. Fig. 

S5a). No difference in alpha band in this contrast was demonstrated. In the contrast of trained 

complex versus untrained complex multiplication, no significant difference was found in the theta 

or alpha band (see Fig. S5a).  

In the immediate post-training measurement, in the contrast of trained complex versus 

untrained complex multiplication, no significant difference was observed in the theta band, while in 

alpha band, greater alpha ERD on the occipito-parietal site (Pz, O2) was observed, ts(19) < -2.10, ps 

< .05 (cf. Fig. S5b). No significant difference was found in the contrast of trained simple versus 

untrained simple multiplication in the theta or alpha band (cf. Fig. S5b). 

Regarding EEG, differences between trained and untrained conditions within each 

measurement time were investigated, the same as for fNIRS data. In the contrast of trained complex 

versus untrained complex multiplication, significantly decreased alpha ERD at the left occipital site 

(O1) was found, t(19) = 2.85, p < .05. In the contrast of trained simple versus untrained simple 

multiplication, an increased alpha ERD on the right temporal site (T8), t(19) = -2.17, p < .05, and a 

decreased alpha ERD on the right occipital site was observed (O2), t(19) = 2.20, p < .05. No 

significant difference was found in the theta band in any of the contrasts (cf. Fig. S5c). 
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Fig. S5: a) Pre-training measurement showed no difference between trained and untrained 

conditions, except on theta band in the simple multiplication contrast. b) Immediate post-training 

measurement shows no training effects in simple condition, but increased alpha ERD in the trained 

complex compared to untrained complex multiplication. c) Alpha ERD changes were observed in 

both trained simple and complex conditions in the two-week post-training session. While no 

training change was observed in theta ERS, training led to changes in alpha ERD in both simple and 

complex multiplication. Red represents increased theta ERS/decreased alpha ERD, and blue 

represents decreased theta ERS/increased alpha ERD. 
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CORRELATION BETWEEN BEHAVIORAL PERFORMANCE AND NEUROPSYCHOLOGICAL TESTS 

In each measurement time, there were some significant correlations between performance 

factors including error rates, RTs, and inverse efficiency score with neuropsychological tests, 

especially verbal working memory in two-week measurement time (cf. Table S3). 

 

Table S3: The correlation between error rates, RTs, and inverse efficiency scores in each 

measurement time with neuropsychological tests. The other performance measures were 

not correlated with any of neuropsychological tests. TS: trained simple; TC: trained 

complex; US: untrained simple; UC: untrained complex; STM: short-term memory; WM: 

working memory (two-tailed correlation; the significant correlation with p-values of < .05 

are marked with *). 
Measurement 

time 

Performance Verbal 

IQ 

Visuo-spatial 

IQ 

Verbal 

STM 

Verbal 

WM 

Visuo-spatial 

STM 

Visuo-spatial 

WM 

Pre-training 
US error rate -0.30 -0.01 -0.09 -0.36 -0.53* -0.64* 

US efficiency -0.28 -0.07 0.01 -0.48* -0.36 -0.44 

Immediate 

post-training 

US error rate -0.34 -0.21 -0.21 -0.45* -0.34 -0.64* 

       

Two-week 

post-training 

TS RT -0.41 -0.33 0.19 -0.53* -0.24 -0.40 

TS efficiency -0.34 -0.20 0.15 -0.47* -0.29 -0.40 

TC RT -0.27 -0.10 0.13 -0.51* -0.05 -0.37 

TC efficiency -0.14 0.01 0.05 -0.46* 0.02 -0.31 

US error rate -0.17 -0.15 0.17 -0.54* -0.21 -0.44 

US efficiency -0.17 -0.08 0.34 -0.48* -0.26 -0.40 

UC error rate -0.25 -0.15 -0.03 -0.45* -0.01 -0.30 

UC RT -0.48* -0.41 0.20 -0.34 -0.36 -0.65* 

UC efficiency -0.28 -0.19 0.16 -0.49* 0.03 -0.25 
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APPENDICES 

  

Fig. A1: Schematic positions of fNIRS optodes and EEG electrodes. Small red circles indicate 

emitters and blue ones indicate detectors in the two arrays of 3 × 5. Small white shapes indicate 

positions of the EEG electrodes. Red dotted shapes indicate the original position of some EEG 

electrodes according to the international 10-20 system. FNIRS ROIs are shown on the left side with 

brown circles, and EEG ROIs are shown on the middle and right side with green circles. The other 

side was identical to displayed ROIs in both fNIRS and EEG.  
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   Left Side View    Right Side View 

 
Fig. A2: FNIRS channels layout and numbers. Blue circles indicate areas of channels projected on 

the brain surface. Red circles indicate P3, P4, F3 and F4 points projected on the brain surface. 

 

 

Table A3: List of problems in four conditions. 

Trained 

simple 

Trained 

complex 

Untrained 

simple 

Untrained 

complex 

3 × 4 13 × 4 6 × 2 18 × 3 

5 × 3 3 × 19 7 × 2 6 × 12 

2 × 8 5 × 13 3 × 7 4 × 19 

6 × 3 18 × 4 4 × 6 7 × 12 

3 × 9 6 × 13 8 × 3 14 × 6 

7 × 4 15 × 6 7 × 5 17 × 5 

5 × 6 12 × 8 4 × 9 5 × 18 

8 × 4 7 × 14 5 × 8 13 × 7 

 

 

 

Table A2: FNIRS and EEG ROIs. 

 ROIs Channels/Electrodes 

fNIRS L frontal 9, 13, 18, 22 

 L parietal 5, 10, 14, 19 

 R frontal 27, 32, 36, 41 

 R parietal 31, 35, 40, 44 

   

EEG L frontal AFF3, AFF7h, FCC3 

 L parietal CPP3, TPP7h, O1 

 R frontal AFF4, AFF8h, FCC4 

 R parietal CPP4, TPP8h, O2 

 M frontal Fz, Cz 

 M parietal Pz, Oz 
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Table A3: The coordinates of fNIRS channels. 

Channel Corresponding areas Channel Corresponding areas Channel Corresponding areas 

1 Temporal_Mid_L 14 Angular_L 29 SupraMarginal_R 

      

2 Temporal_Mid_L 15 Parietal_Inf_L 30 SupraMarginal_R 

 Temporal_Sup_L    Angular_R 

  16 Parietal_Inf_L  Temporal_Sup_R 

3 Temporal_Sup_L  Postcentral_L   

 Postcentral_L  SupraMarginal_L 31 Occipital_Mid_R 

 Rolandic_Oper_L    Temporal_Mid_R 

 Heschl_L 17 Precentral_L  Angular_R 

 Temporal_Mid_L  Frontal_Mid_L   

    32 Frontal_Inf_Tri_R 

4 Frontal_Inf_Tri_L 18 Frontal_Mid_L  Frontal_Inf_Oper_R 

 Frontal_Inf_Oper_L     

 Temporal_Pole_Sup_L 19 Parietal_Inf_L 33 Postcentral_R 

 Rolandic_Oper_L  Parietal_Sup_L   

 Frontal_Inf_Orb_L  Angular_L 34 SupraMarginal_R 

      

5 Angular_L 20 Postcentral_L 35 Parietal_Inf_R 

 Occipital_Mid_L  Parietal_Inf_L  Angular_R 

 Temporal_Mid_L     

  21 Precentral_L 36 Frontal_Mid_R 

6 SupraMarginal_L  Postcentral_L   

 Temporal_Sup_L   37 Precentral_R 

  22 Frontal_Mid_L  Frontal_Mid_R 

7 SupraMarginal_L     

 Postcentral_L 23 Frontal_Inf_Oper_R 38 Postcentral_R 

   Frontal_Inf_Tri_R  SupraMarginal_R 

8 Postcentral_L  Rolandic_Oper_R   

 Frontal_Inf_Oper_L  Temporal_Pole_Sup_R 39 Parietal_Inf_R 

 Precentral_L  Frontal_Inf_Orb_R   

    40 Angular_R 

9 Frontal_Inf_Tri_L 24 Temporal_Sup_R   

    41 Frontal_Mid_R 

10 Angular_L 25 Temporal_Sup_R   

 Parietal_Inf_L  Temporal_Mid_R 42 Frontal_Mid_R 

     Precentral_R 

11 SupraMarginal_L 26 Temporal_Mid_R   

 Parietal_Inf_L   43 Postcentral_R 

  27 Frontal_Inf_Tri_R  Parietal_Sup_R 

12 Postcentral_L    Parietal_Inf_R 

  28 Precentral_R   

13 Frontal_Inf_Tri_L  Postcentral_R 44 Parietal_Sup_R 

 Frontal_Inf_Oper_L    Parietal_Inf_R 

     Angular_R 

 

  



122 
 

STUDY 4: EARLY OSCILLATORY EEG CHANGES UNDERLYING 

INTERACTIVE ARITHMETIC LEARNING IN CHILDREN 
 

Mojtaba Soltanloua,b,c,*, Christina Artemenkod, Thomas Dreslerd,e, Andreas J. Fallgatterd,e,f, 

Hans-Christoph Nuerkb,c,d,¥, Ann-Christine Ehlisd,e,¥ 

 

 

a Graduate Training Centre of Neuroscience/ IMPRS for Cognitive and Systems Neuroscience, 72074 

Tuebingen, Germany 
b Department of Psychology, University of Tuebingen, 72076 Tuebingen, Germany 
c Leibniz-Institut für Wissensmedien, 72076 Tuebingen, Germany 
d LEAD Graduate School and Research Network, University of Tuebingen, 72074 Tuebingen, Germany 
e Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, 72076 Tuebingen, 

Germany 
f Center of Integrative Neuroscience, Excellence Cluster, University of Tuebingen, 72076 Tuebingen, 

Germany 

*Correspondence author 

¥: these authors equally contributed to this study and should be regarded as the joint senior author. 

 

 

Soltanlou, M., Artemenko, C., Dresler, T., Fallgatter, A. J., Nuerk, H.-C. & Ehlis, A.-C. 

(under review). Early oscillatory EEG changes underlying interactive arithmetic learning in 

children. BMC Neuroscience. 

 

  



123 
 

ABSTRACT 

The majority of our knowledge about neurophysiological changes of arithmetic 

learning comes from adult studies. However, it is still unclear whether these findings can be 

generalized to children, who are closer to the age when we learn most of our mathematical 

knowledge. Moreover, studies mostly investigate brain activation changes after the course 

of arithmetic learning, and the question is whether these changes are detectable during the 

course of learning as well.  

To address these questions, 24 typically developing children solved multiplication 

problems while ongoing electroencephalography (EEG) was recorded from the whole 

brain. The arithmetic training was embedded within a computer game environment. The 

arithmetic training induced power increase of theta (4–7 Hz) and lower alpha (8–10 Hz) 

bands, which were more dominant in posterior sites. No significant effect was observed in 

the upper alpha band (10–13 Hz). Moreover, behavioral data revealed improved 

performance over the course of training. 

The observed neurophysiological changes during arithmetic learning in children were 

similar to results from previous post-training measures in adults. The increased power of 

theta and lower alpha subserve a shift from slow, procedural strategies to fast, compact 

procedural strategies and retrieval, which lead to more efficient performance over the 

course of arithmetic learning in children. We suggest that increased theta power is 

associated with the domain-general cognitive demands of procedural and retrieval strategies 

used in arithmetic problem solving and increased lower alpha power is associated with 

increased automaticity. 

 

 

Keywords: children, arithmetic, multiplication, learning, oscillatory EEG 
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INTRODUCTION 

Arithmetic skills are mostly learned in childhood and are applied in everyday life. 

Because of lack of systematic neuroimaging study of arithmetic learning in children, the 

majority of our knowledge about brain activation changes due to acquiring these skills 

comes from adult studies. However, it has been repeatedly argued that these findings from 

mature brains are not easily applicable to the developing brain (e.g., Ansari et al., 2005; 

Kaufmann & Nuerk, 2005; Kaufmann et al., 2011). Indeed, previous behavioral and event-

related potentials (ERP) studies comparing children and adults have suggested that they 

differ in selecting and executing strategies in arithmetic problem solving (Lemaire, 2016; 

Zhou et al., 2011; Prieto-Corona et al., 2010). Therefore, it seems to be essential to 

investigate neurophysiological changes via arithmetic learning in children. 

In adults, arithmetic learning seems to be basically a shift in problem-solving from 

more procedural, algorithm-based strategies to more retrieval, memory-based strategies 

(Zamarian et al., 2009). Electroencephalography (EEG) studies of arithmetic processing in 

adults demonstrated that these arithmetic strategies are mostly related to theta and alpha 

frequency bands (Antonenko et al., 2010; Hinault & Lemaire, 2016). For instance, training 

in complex multiplication elicited increased power in theta and in lower alpha bands in 

adults (Grabner & De Smedt, 2012). These training-related power changes were found in 

parietal and parieto-occipital sites, which have been interpreted as contributing to enhanced 

retrieval of information, namely the solutions to complex multiplication problems from 

long-term memory (Grabner & De Smedt, 2012). Moreover, a recent oscillatory EEG study 

found a significant training effect in theta, alpha and beta bands, for adults whose division 

performance improved after 10 minutes of training (Skrandies & Klein, 2015). It might 

conclude that neurophysiological changes in post-training measurement and also during the 

course of training leads to increase power in theta and alpha bands in adults, which 

represent a shift from procedural to retrieval processes. 

However, hypothetical models of arithmetic learning in children have suggested 

different steps during development. For instance, the overlapping-wave model (Siegler, 

1996) suggests that while there is a constantly greater use of retrieval strategies during 

development, several mixtures of procedural strategies might be used at different steps as 

well (see also Shrager & Siegler, 1998). In an agreement with Siegler’s model, Von Aster 

(2000) proposed a model of multi-stage developmental dynamics of number processing and 
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mental calculation. According to this model, three representational modules of the triple-

code model (Dehaene et al., 2003), i.e., semantic, visual-Arabic, and verbal modules, are 

differentially important at different steps of development. Based on this model, these 

modules are semi-autonomous during development and depend on each other (for more 

details see Von Aster, 2000). In line with these models, neuroimaging studies have shown a 

developmental fronto-parietal shift in arithmetic processing (e.g., Rivera et al., 2005). For 

instance, a cross-sectional neuroimaging study in children suggested that development of 

arithmetic is not only achieved by a strategy shift from procedural to retrieval-based 

strategies, but also from less to more efficient procedural strategies (Prado et al., 2014). 

Rosenberg-Lee et al. (2011) observed increased activation in both frontal and parietal 

regions due to one-year schooling in children. Therefore, it seems that arithmetic 

achievement is associated with both domain-general cognitive processes, e.g., working 

memory and executive functions, and domain-specific magnitude processes, i.e., 

manipulating the numerals. Astonishingly, however, despite school age being the crucial 

time of learning basic arithmetic, the underlying neurophysiological changes of arithmetic 

learning have not been systematically studied in children (see also Hinault & Lemaire, 

2016). Therefore, the remaining question is whether the neurophysiological findings of 

mature brains in adult studies can be generalized to children. 

Additionally, most of the studies investigated arithmetic achievement in a post-

training measurement, which took place after some sessions of daily training (Zamarian et 

al., 2009). However, few is known about neurophysiological changes during the course of 

learning. One of the few fMRI studies, which investigated this issue, revealed similar 

changes gradually during complex arithmetic learning in adults (Ischebeck et al., 2007). 

Moreover, Skrandies and Klein (2015) observed these changes after less than 10 minutes of 

training. With respect to children, no study has indicated brain activation changes during 

the course of arithmetic learning. Hence, it is not clear whether post-training 

neurophysiological changes are similar to the changes during the course of learning. Again 

this might differ in children from adults. For instance, Fischer, Wilhelm, and Born (2007) 

found different the off-line memory consolidation between children and adults: while adults 

gained from the off-line sleep-related consolidation, children revealed a memory 

deterioration. Moreover, daytime retention period led to the deterioration of memory in 

adults, but not in children (Fischer et al., 2007). Therefore, it is important to investigate 
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these changes during arithmetic learning in children. The findings might help to improve 

the relation between the education and neuroscience: monitoring online neurophysiological 

changes during arithmetic learning for particular interventions such as brain stimulation, 

particularly in individuals with math disabilities. 

The aim of the present study was to uncover early neurophysiological changes during 

arithmetic learning by means of oscillatory EEG in a group of typically developing 

children. To this end, ongoing EEG was recorded, to measure the state of functional neural 

networks during task performance (e.g., da Silva, 1991). It has been shown that even in the 

absence of behavioral changes, and without directly gauging strategy use, for instance 

through verbal reports, EEG is a fruitful measure to assess changes in arithmetic processing 

and strategy use (for a review see Hinault & Lemaire, 2016). Based on the literature, we 

hypothesized increased power in theta and lower alpha bands, especially in posterior sites, 

and no considerable changes in the upper alpha band (see also Grabner & De Smedt, 2012). 

We suggest that these power changes are due to increased retrieval and fast procedural 

strategies, and reduced slow procedural strategies in the course of arithmetic learning in 

children. Overall, positive correlations are expected between arithmetic performance and 

EEG frequency power.  

As regards theta activity, it has been interpreted as a function of different cognitive 

processes in previous studies of mental calculation. Various studies have reported 

associations between an increase in theta power, mostly in frontal areas, and sustained 

attention (Ishihara & Yoshii, 1972; Harmony et al., 1999), workload (Skrandies & Klein, 

2015; Sammer et al., 2007), executive functions and numerical visual imagery (Mizuhara & 

Yamaguchi, 2007). A recent study in children by M. Soltanlou et al. (in press) revealed 

greater theta in the more complex calculation, which was interpreted as additional demands 

of working memory and executive function. These functions have been described as 

domain-general cognitive demands required for arithmetic problem-solving. On the other 

hand, Grabner and De Smedt (2011) demonstrated an association between increased theta 

power, mostly in bilateral parieto-occipital areas, and retrieval strategies during addition 

and subtraction problem-solving in adults (see also Earle et al., 1996; De Smedt et al., 

2009).  

As regards the alpha frequency band, inverse correlations have been reported between 

alpha power and mental activity (Davidson et al., 2000), as well as between alpha power 
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and procedural strategies in arithmetic processing (Hinault & Lemaire, 2016; De Smedt et 

al., 2009; Micheloyannis et al., 2005). The alpha band is split into lower and upper 

frequencies, which show a dissociation in cognitive tasks (Fink, Grabner, Neuper, & 

Neubauer, 2005). Fink et al. (2005) showed that with increased task demands, the 

correlation between lower and upper alpha declines. While lower alpha is more related to 

the general cognitive demands of a task such as paying attention, upper alpha is associated 

with more specific demands of the task such as semantic memory processing (Klimesch, 

1999; Klimesch, Vogt, & Doppelmayr, 1999). 

All in all, this study tries to uncover whether the neurophysiological changes of 

arithmetic learning in adults can be generalize to children, which is usually the most critical 

time of knowledge acquisition during the life. Moreover, while few studies in adults 

investigated brain activation changes during the course of learning (e.g., Ischebeck et al., 

2007), this online monitoring of the changes in the brain has not yet been done in children. 

To our best of knowledge, the present study is the first study concerning this issue in 

children. In line with educational neuroscience approach, this study combines educational 

interventions with neurophysiological measures, which enable us to uncover brain function 

during knowledge acquisition in children (Ansari & Lyons, 2016). Furthermore, this 

approach is helpful for a better interpretation of behavioral findings (Szűcs & Goswami, 

2007), and for developing educational and therapeutic interventions and assessing the 

outcomes of interventions. 

 

MATERIAL AND METHODS 

PARTICIPANTS 

26 typically developing children from grade 5 participated in the study. Two children 

were excluded because of technical problems in the online learning platform and in EEG 

recording. Therefore, the data of 24 children (9 girls, 11.09 ± 0.46 years old, range = 

10.40–12.20 years) were analyzed. All children were right-handed and had a normal or 

corrected-to-normal vision with no history of neurological or mental disorders. The verbal 

and non-verbal IQ scores, measured by similarities and matrix reasoning subtests of the 

German Wechsler IQ test (Hamburg-Wechsler-Intelligenztest für Kinder-IV: HAWIK-IV; 

Petermann et al., 2007), were 107.92 ± 11.97 and 108.13 ± 10.51 respectively. Children and 
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their parents gave informed written consent and received an expense allowance for their 

participation. All procedures of the study were in line with the latest revision of the 

Declaration of Helsinki and were approved by the local ethics committee of the University 

Hospital of Tuebingen.  

 

MATERIAL 

16 multiplication problems were used in the present study: eight problems included 

two one-digit operands (range 2–9) with two-digit solutions (range 12–40) and eight 

problems included two-digit (range 12–19) times one-digit operands (range 3–8) with two-

digit solutions (range 52–98). The order of small and large operands within the problems 

was counterbalanced. Problems with ones (e.g., 6 × 1), commutative pairs (e.g., 4 × 8 and 8 

× 4) or ties (9 × 9) were not used. In a multiple-choice paradigm, each problem was 

individually presented along with 12 different choices, including only one correct solution 

(see Figure 1). The choices were presented in random positions on the screen. Distractor 

choices were calculated based on the following rules: first operand ± 1, second operand ± 1, 

correct solution ± 1 or ± 2 or ± 10, and inversing the unit and decade of the correct solution.  

 

 

Figure 1: Screenshot of the multiplication training on the web-based online learning 

platform: in competition with a computer, children had to select the correct solution out of 

12 presented choices. 

 

MEASUREMENT PROCEDURE 
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In the present study, behavioral performance and neurophysiological changes were 

measured individually during multiplication problem-solving in children. The training was 

comprised of six repetitions of each problem, and was conducted by means of an online 

learning platform (designed by ScienceCampus Tuebingen, Tuebingen, Germany, see Jung 

et al., 2015; Jung et al., 2016; Roesch et al., in press). The design was self-paced with 

limited response intervals. Based on a response time (RT) distribution obtained in a 

behavioral multiplication study in a comparable age (Huber et al., 2013), we selected 

response intervals randomly  from the range between 4 and 10 s, jittered by 0.6 s, for one-

digit × one-digit problems, and from the range between 10 and 30 s, jittered by 2 s, for one-

digit × two-digit problems, such that the children were often, but not always winning 

against the computer. Training was interactive in the sense that children had to compete 

with a computer. The problems were presented until the child or computer responded 

correctly. The computer responded whenever the child did not produce an answer within 

the jittered response interval, and in order to make a more realistic competition, the 

computer responded incorrectly to 30% of the problems. To provide feedback about 

performance and to increase motivation, the scores of the child and computer were shown 

on the right side of the screen (see Figure 1). Both child and computer received one point 

for each correct answer, and one point was taken away for each incorrect answer. Children 

were instructed to solve the problems as quickly and accurately as possible by using a 

computer mouse to select the correct solution. The whole recording required one session of 

between 20 and 30 minutes, depending on children’s proficiency, without any break in 

between. 

 

EEG 

EEG data were recorded from 21 scalp EEG electrodes by means of a 32-channel 

DC-amplifier and the software Vision Recorder (Brain Products GmbH., Herrsching, 

Germany). This study was a part of a larger project using combined functional near-infrared 

spectroscopy and EEG. Therefore, EEG electrodes were placed (cf. Figure 3) according to 

the extended international 10-20 system (Jasper, 1958; Oostenveld & Praamstra, 2001) in a 

combined cap. In addition, eye movements were recorded via electrooculography (EOG) 

applying one electrode below the right eye. The ground electrode was placed on AFz and 
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the online reference electrode on FCz. Electrode impedance was kept below 20 kΩ. Data 

were digitalized at a rate of 1000 Hz with an online bandpass filter of 0.1–100 Hz.  

 

ANALYSIS 

BEHAVIORAL DATA 

RTs were defined as the duration from stimulus onset to button press. Median RTs 

for only correct responses (78.4 % of total problems) were taken into account after 

sequential trimming with ± 3SD beyond mean RT for each individual child (Nuerk, Weger, 

& Willmes, 2001). Percentage of error rate was defined as the proportion of incorrect or 

non-responded trials – the problems that the computer solved more quickly – to the total 

number of presented trials. Note that the problem was counted as correct only if the child’s 

first response to the problem was correct. Thus, trials where the child “lost” to the 

computer, either by giving a wrong response or by exceeding the response interval, were 

counted as errors.  

To examine the learning effect parametrically, the slopes (unstandardized 

coefficients) of the linear regression line were calculated (e.g., Cipora et al., 2015) across 

the six repetitions for each child. The learning slopes were separately calculated for median 

RT and error rate. A more negative slope corresponds to a stronger learning effect, showing 

the child got faster or made fewer error over the course of training. To examine whether 

there is a significant learning effect, the slopes were tested against zero with one-sample t-

tests. Since we had a direct prediction regarding arithmetic learning, one-tailed tests were 

conducted. The analysis was done with SPSS version 23.0 (IBM SPSS Statistics for 

Windows). 

 

EEG 

EEG data were analyzed using the Brainstorm toolbox (Tadel et al., 2011), a 

documented and freely available software (http://neuroimage.usc.edu/brainstorm). The 

EEG signals were offline-filtered using a bandpass of 1–40 Hz. Thereafter, based on the 

EOG signal and the topography, artifacts of eye blinks and eye movements were detected 

and removed from the EEG signals using Signal Space Projections (SSP). In the next step, 

bad segments were detected and excluded by visual inspections. Note that because of inter- 
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and intra-individual differences in the self-paced design, the duration of repetitions was not 

identical within or between participants. In order to measure the changes in brain waves, 

fast Fourier Transform (Welch, 1967) was used to estimate power density (μV2) in theta 

(4–7 Hz), lower alpha (8–10 Hz), and upper alpha (10–13 Hz) bands, which were 

calculated separately and individually averaged for each repetition. 

For statistical analysis, according to the topography of frequency oscillation in 

previous studies (e.g., Gevins et al., 1997; Grabner & De Smedt, 2012), regions of interest 

(ROIs) were defined as three anterior regions including left, right, and middle fronto-central 

sites, and three posterior regions including left, right, and middle occipito-parietal sites (cf. 

Figure 3). Similar to the behavioral data, the learning slopes (unstandardized coefficients) 

were calculated for each ROI and each frequency band separately. A more negative slope 

corresponds to a decreased power density, and a more positive slope corresponds to an 

increased power density over the course of learning. To examine whether there is a 

significant learning effect, the slopes were tested against zero with one-sample t-tests for 

each ROI and each frequency band in the same way as for the behavioral analyses. The 

significance level was .05 and corrected according to the false discovery rate (FDR) method 

for multiple comparisons (Benjamini & Hochberg, 1995). Since we had directed 

hypotheses (more pronounced theta and alpha power) regarding arithmetic learning, one-

tailed tests were conducted. Finally, the correlation between behavioral and brain-

physiological data was calculated as well. 

 

RESULTS 

BEHAVIORAL DATA 

In the analysis of median RT, negative slope showed that children tended to get faster 

during the course of learning; however, this improvement was not significant, t(23) = -0.78, 

p = .22 (cf. Figure 2). The analysis of the learning slopes for error rates revealed 

significantly improved performance over the six repetitions of multiplication problems, 

t(23) = -2.59, p = .02 (cf. Figure 2). 
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Figure 2: Children’s performance regarding median RT and error rate during six 

repetitions. Dashed lines show the learning slopes. Error bars depict SEs. 

 

EEG 

For the power density in theta band, the analysis of learning regression slopes 

revealed a significant increase in the middle and right fronto-central sites, and also in the 

left, middle and right parieto-occipital sites, t(23) > 1.86, FDR corrected p < .05 (cf. Figure 

3). 
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Figure 3: Unstandardized coefficients of learning slopes of EEG power density in theta, 

lower alpha, and upper alpha bands for each ROI. Positive values, which reflect positive 

learning slopes, display increased power density. Negative values, which reflect negative 

learning slopes, display decreased power density. Error bars depict SEs. Small white shapes 

indicate positions of the EEG electrodes. Red dotted shapes indicate the original position of 

some EEG electrodes according to the international 10-20 system. EEG ROIs are shown 

with black circles. **: p < .05 FDR corrected; *: p < .05 uncorrected [schematic brain 

coordinates from EASYCAP GmbH, Herrsching, Germany]. 
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For the power density in the lower alpha band, three posterior sites showed a 

significant increase, t(23) > 1.83, uncorrected p < .05, which did not survive FDR 

correction for multiple comparisons. No significant power changes were found in upper 

alpha frequency band, t(23) < 1.01, uncorrected p > .16 (see Figure 3). 

 

BRAIN-BEHAVIOR CORRELATION 

As outlined in the introduction, correlations of behavioral learning and EEG 

frequency power were to be expected based on the literature on adults. Our correlation 

analysis in children indeed revealed a significant negative correlation between median RTs 

and theta power density in the left fronto-central site, r(22) = -.37, p = .04, which shows 

that faster responses are associated with increased theta power. Significantly positive 

correlations between median RTs and upper alpha power density in the left parieto-occipital 

site, r(22) = .36, p = .04, and right parieto-occipital site, r(22) = .41, p = .02, revealed that 

faster responses are associated with decreased upper alpha power. No correlation was 

observed between error rates and EEG power density in any frequency band, r(22) < .20. 

Note that the correlation findings have not been corrected for multiple comparison testing 

and should, therefore, be considered exploratory and interpreted carefully. 

 

DISCUSSION 

In the present study, the neurophysiological changes during interactive arithmetic 

learning in children have been investigated. The findings show gradually increasing power 

in theta and lower alpha frequencies during six repetitions of multiplication problems. This 

theta increase is in line with previous arithmetic and cognitive training studies in adults. For 

instance, Klimesch et al. (1999) reported more theta power in individuals with high math 

skills, which corresponds to training in the present study, as opposed to individuals with 

low calculation skills. Moreover, with respect to the topography, theta increase was 

predominant in the posterior sites in the present study, which is also in line with previous 

multiplication learning data in adults (Grabner & De Smedt, 2012). We not only found 

theta increase in parietal sites like Grabner and De Smedt (2012) in adults but also in right 

and middle fronto-central sites (see also Skrandies & Klein, 2015). The reason for this 

finding might be the interaction of occipital and frontal cortices in working memory 
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function (H. Lee, Simpson, Logothetis, & Rainer, 2005), which may play a bigger role in 

children than in adults. H. Lee et al. (2005) suggest that theta oscillations are part of a 

recurrent interaction mechanism between occipital and frontal neurons, which underlies 

working memory (see also Stam, van Walsum, & Micheloyannis, 2002). 

In the present study, increased theta power during multiplication training in children 

might be due to increased engagement of both working memory and inhibition in retrieval 

strategies (see also Galfano et al., 2011). Theta activity has mostly been associated with 

acquiring new information (Klimesch, 1999), which usually needs additional attention and 

mental effort, rather than retrieving existing knowledge (e.g., Gevins et al., 1997; Ishihara 

& Yoshii, 1972; Mizuhara & Yamaguchi, 2007; Skrandies & Klein, 2015; Sammer et al., 

2007). Gevins et al. (1997) found a theta increase resulting from short-time working 

memory training in adults and attributed it to the extra effort required to focus attention on 

an extended amount of time (see also Harmony et al., 1999). Furthermore, it has been 

shown that executive functioning is involved even in arithmetic fact retrieval (Hinault & 

Lemaire, 2016; Bäuml, Pastötter, & Hanslmayr, 2010). For instance, Galfano et al. (2011) 

reported increased inhibition during arithmetic fact retrieval in one-digit multiplication 

problem-solving. Inhibition might also account for the findings of Grabner and De Smedt 

(2012). In this study, theta power increased after two days of complex multiplication 

training (30 repetitions of each problem) in adults, and this was interpreted as a result of 

increased retrieval strategy (Grabner & De Smedt, 2012). 

Because of the difficulty and few repetitions of multiplication problems, increased 

theta power may not be explained exclusively by a strategy shift from procedural processes 

to memory retrieval. Long-lasting response times support this assumption. However, note 

that these slow responses are partially because of the time children spend finding the 

correct solution, moving the mouse cursor and pressing the button for their answer choice. 

In our interpretation, we follow the model by Baroody (1983), i.e., that mathematical 

training entails a shift from slow procedural processes towards compacted procedural 

strategies and principled knowledge. As stated in this model, these compacted strategies 

and procedural knowledge are more automatic and lead to faster responses. Therefore, 

increased theta power seems to indicate more efficient performance, and does not 

necessarily imply that information is retrieved from long-term semantic memory. In line 

with this interpretation, a recent ERP study found that high-skilled participants showed a 
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larger late positive component compared to low-skilled participants (Núñez-Peña & Suárez-

Pellicioni, 2012). This larger late positive component, which is related to procedural 

processes, was interpreted to indicate more engagement of efficient strategies in high-

skilled participants (but see Pauli, Lutzenberger, Birbaumer, Rickard, & Bourne, 1996). 

Furthermore, Prado et al. (2014) showed that arithmetic achievement in children relies not 

only on arithmetic fact retrieval but also on efficient quantity-based strategies. In the 

present study, it seems that children practiced more procedural and algorithm-based 

strategies during six repetitions of the multiplication problems, which led to fewer errors. 

Furthermore, the relation between behavioral performance and power density in EEG 

frequency bands nicely corroborates the above interpretation: the trend of providing faster 

responses correlates with increased theta but decreased upper alpha power. According to 

our assumptions, the increased theta power is most probably related to fast efficient 

procedural strategies.  

Thus, we conclude that increased theta power is related to domain-general cognitive 

demands of retrieval strategies and also more efficient procedural strategies in our 

childhood sample. This explanation suggests that the interpretation of increased theta power 

in multiplication training in adults may not be readily generalized to children. In adults, we 

usually interpret the data as a shift from procedural to retrieval strategies. This 

interpretation does not fully capture the EEG data in children. Children not only shift to full 

retrieval mode; rather, during the course of short-term learning, they also seem to develop 

more efficient procedural and algorithmic strategies. That such shifts are not observed in 

adults is not necessarily surprising, since they have had years of multiplication experience 

and have probably already developed their most efficient procedural and algorithmic 

strategies (see also Menon, 2010).  

However, our data point to the idea that – in contrast to adults – procedural strategies 

still improve in children towards greater efficiency as a function of learning. This 

difference in strategy use and learning between adults and children is in line with the 

available literature. Lemaire (2010) showed that children differ from adults in arithmetic 

strategies, and use less efficient strategies compared to adults (see also Lemaire, 2016). In 

accordance with Siegler and Shrager (1984), this difference is a result of a less developed 

arithmetic facts network in children relative to adults. An ERP study of one-digit addition 

and multiplication by Zhou et al. (2011) supports this difference at the neurophysiological 
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level as well. They showed that seven-year-old children rely more on parietal quantitative 

processes, while adults rely more on frontal verbal strategies (see also Prieto-Corona et al., 

2010). In sum, the interpretation of increased theta power as an index of more efficient 

procedural strategies is in line with our knowledge about domain-general and domain-

specific processing in children, both behaviorally and neurophysiologically. 

In addition to theta band changes, a limited increase in power of the lower alpha in 

the posterior sites was observed in the present study over the course of training. This is in 

line with previous arithmetic and cognitive training studies in adults (Gevins et al., 1997; 

Grabner & De Smedt, 2012). Gevins et al. (1997) suggested that increased automaticity via 

training is associated with increased power in the lower alpha band. It has also been shown 

that decreased alpha power is related to increased cortical processing (Pfurtscheller, 2001), 

task difficulty (e.g., Gevins et al., 1997) and attentional demands of tasks (Ray & Cole, 

1985). Therefore, this increased power of lower alpha indicates that multiplication training 

elicits less excitation of cortical networks and reduced information processing 

(Pfurtscheller, 2001). Pfurtscheller et al. (1996) demonstrated that the magnitude of the 

decrease in the alpha band reflects the mass of neural networks engaged in the 

performance. Hence, if we assume that the human brain works according to principles of 

the economy (e.g., Attwell & Laughlin, 2001), it is logical that increased lower alpha power 

is used to save energy consumption since limited networks are involved (Pfurtscheller et 

al., 1996). It has been found that procedural strategies demand more cognitive processes 

compared to retrieval strategies in multiplication problem-solving in children (Koshmider 

& Ashcraft, 1991; Lemaire, Barrett, Fayol, & Abdi, 1994). Therefore, in agreement with 

Grabner and De Smedt (2012), we conclude that decreased alpha power is associated with 

more procedural strategies. We interpret increased power in lower alpha as representing 

more automatic, presumably retrieval-based strategies in arithmetic problem-solving.  

However, this increased alpha power was not so remarkable in the present study. 

Possible reasons are that children first shift to more efficient procedural strategies (see 

above) before they shift to retrieval strategies. We do not wish to preclude that children 

would also shift to retrieval strategies after (much) more than a short-term training of six 

repetitions. All we can say is that – in contrast to some adult samples (Ischebeck et al., 

2007; Skrandies & Klein, 2015) – the present group of children did not shift to retrieval 

strategies after those few training sessions. 
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With respect to the upper alpha band, as we expected and in line with the study of 

multiplication training in adults (Grabner & De Smedt, 2012), we did not find significant 

changes over the course of this short-term training in children. Although several studies 

reported the engagement of the upper alpha band in sensory and cognitive processes, it 

seems that this frequency band is not involved in short-term multiplication learning, or at 

least does not change due to short-term arithmetic training in children (see also Grabner & 

De Smedt, 2012). Here the data from adults and children do not differ. 

 

LIMITATIONS AND PERSPECTIVE 

In the present study, there were some limitations and methodological issues, which 

need to be taken into account for future studies. We used both one-digit times one-digit and 

one-digit times two-digit multiplication problems, which could be solved using different 

strategies. However, we were not able to separately them for the analysis. Therefore, it is 

suggested to use only one kind of problems, to refrain possible confounding effect. 

Additionally,  most of our knowledge about neural correlates of arithmetic learning comes 

from multiplication training studies, while previous studies have shown that the neural 

networks of different arithmetic operations might differ (e.g., Fehr et al., 2007). Therefore, 

it is essential to investigate training effects of other basic arithmetic operations as well in 

order to achieve a conclusive result. Moreover, it would be beneficial to have an adaptive 

computer game, in which the opponent’s performance is adjusted to the child’s 

performance so that the game becomes more challenging and also motivating for children. 

The findings of the current study are due to a very short-time training, which is not 

probably enough to observe a strategy shift to the most optimal strategy, namely fact 

retrieval from long-term semantic memory. Therefore, future studies with a longer training 

session and the probably fewer number of training problems would lead to this strategy 

shift, which might lead to a different oscillatory change. 

 

CONCLUSION 

While neurophysiological studies of arithmetic learning investigating brain activation 

changes after the course of learning (Zamarian et al., 2009), a few studies considered the 

brain activation changes during the course of learning, i.e., online monitoring of the 
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changes in the brain (e.g., Ischebeck et al., 2007). To our best of knowledge, the present 

study is the first study concerning this issue in children. Moreover, a few 

neurophysiological studies systematically explored neural correlates of arithmetic learning 

in children, which is usually the most critical time of knowledge acquisition during the life. 

The findings of the current study on neurophysiological changes during arithmetic learning 

extend the findings of adult studies to children. Multiplication training led to increased 

power of theta and lower alpha bands, but no change was observed in the upper alpha band. 

These neurophysiological changes seem to subserve a shift from slow to fast, compacted 

and more efficient procedural strategies, beyond possible shifts from procedural to retrieval 

strategies usually observed in adults. In line with the literature, the neurophysiological 

changes in multiplication training in children can be interpreted in terms of developing 

more efficient procedural strategies and increasing automaticity, and not necessarily as a 

shift to retrieval strategies as reported in adults. More generally, we conclude that 

neurophysiological changes induced by arithmetic learning in adults should not be easily 

generalized to children’s arithmetic learning (see also Kaufmann et al., 2011; Menon, 

2010). Furthermore, the majority of previous neurophysiological studies have considered 

arithmetic training effects transversally, usually after a course of training. The present study 

provides the first evidence of brain oscillation changes throughout the time of arithmetic 

training in children.  
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GENERAL DISCUSSION 

The aim of this dissertation project was to uncover the neural and behavioral 

correlates of arithmetic development and learning in children. Understanding these 

correlates, particularly underlying neurobiological markers (Supekar et al., 2013), might 

help us to diagnose math problems even before a child starts going to school, leading to 

early interventions and better therapeutic outcomes. Therefore, the findings of this project 

may help to indicate the neural dysfunctions in individuals with math learning problems 

and also to develop advanced therapeutic and interventional approaches. Multiplication 

achievement was investigated, as one of the arithmetic operations most frequently studied 

in adults (Zamarian et al., 2009). In Study 1, the transition from 3rd to 4th grade, which is a 

critical step in multiplication development, was studied. The remaining studies were 

conducted in 5th graders, at a time when children have learned all four basic arithmetic 

operations and are not immediately being taught these operations. Generally speaking, it is 

shown that arithmetic development and learning in children are not similar to learning in 

adults, which has been mostly reported as a shift from procedural to retrieval strategies. It 

seems that arithmetic achievement in children occurs in two steps, first from slow effortful 

procedural processes to fast compacted procedural processes, and in the next step to 

retrieval processes. Therefore, arithmetic development and learning in children do not 

necessarily imply reduced engagement of domain-general cognitive processes (see the 

theoretical model below). 

 

SUMMARY OF FINDINGS 

Study 1 showed that children in 4th grade provided faster responses to simple 

multiplication problems than children in 3rd grade. However, the accuracy of responses did 

not differ between grades. Interestingly, the results show that the contributions of verbal 

and visuospatial WM changed with the grade. The accuracy of responses was predicted by 

verbal WM in 3rd grade, while in 4th grade it was predicted by visuospatial WM. This 

finding indicates a primarily linguistic learning of and access to multiplication in 3rd grade, 

which is probably based on verbal repetition of the multiplication table, heavily practiced in 

2nd and 3rd grade. However, the relation to visuospatial semantic WM in 4th grade 

suggests a shift from verbal to visual and semantic learning in 4th grade. This shift may be 
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induced because later in elementary school, multiplication problems are more often carried 

out via written, i.e., visual tasks, which engage spatial processes. Interestingly, in Study 2, 

visuospatial WM predicted multiplication performance in 5th grade, which supports the 

findings of Study 1. It seems that mathematical development is not generally characterized 

by a steady progress in performance; rather the contributions of verbal and non-verbal 

memory to performance shift over time. 

In the next step, the behavioral and neural correlates of arithmetic complexity were 

investigated in 5th graders. The behavioral data showed quicker and more accurate 

responses in simple calculation compared to complex calculation. The fNIRS findings of 

Study 2 indicated that simple multiplication was associated with brain activity in the left 

superior parietal lobule (SPL) and IPS extending to the left motor area, but notably, not the 

AG, and complex multiplication was associated with activity in bilateral SPL, IPS, MFG, 

and the left motor area. The complexity of calculation was investigated by the contrast 

between complex and simple multiplication, which showed greater activity in the right 

MFG. Oscillatory EEG data indicated theta increase and an alpha decrease in 

parietooccipital sites for both simple and complex multiplication. The complexity of 

calculation was indicated by greater theta increase in frontocentral sites in complex 

multiplication relative to simple multiplication. Complementary activation in frontal areas 

and increased theta indicated additional cognitive control and working memory demands 

for arithmetic complexity in children. The lack of difference in parietal activation suggests 

that 5th graders rely on magnitude processing for both simple and complex calculations. It 

can be concluded that in children, arithmetic complexity is associated with domain-general 

cognitive processes and not with alteration of domain-specific magnitude process. 

In Study 3, the behavioral and neural correlates of arithmetic learning were tested in 

children. Measurement immediately after training revealed decreased activation at the 

junction of the left inferior parietal lobule and the left AG, and right superior parietal lobule 

and IPS for complex multiplication, without improved behavioral performance in trained 

problems. Two-week training improved behavioral performance and led to decreased 

activation at the junction of the left AG and MTG, and right MFG in complex 

multiplication. For both trained simple and complex problems, increased alpha power was 

observed compared to untrained control problems. These findings indicate decreased 

activation of a frontoparietal network associated with arithmetic learning in children. 
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Surprisingly, no change in activation of the left AG was observed. It is concluded that shifts 

from procedural to retrieval strategies via arithmetic learning receive no support from the 

engagement of the AG in children (see Bloechle et al., 2016 for the same findings in 

adults). 

In Study 4 the early behavioral and neurophysiological changes over the course of 

arithmetic learning were investigated. Behavioral data revealed that children’s performance 

improved after six repetitions. They made fewer errors, while their response time did not 

change. The oscillatory EEG indicated increased power in theta (4–7 Hz) and lower alpha 

(8–10 Hz) bands, which were more dominant in posterior sites. No significant effect was 

observed in the upper alpha band (10–13 Hz). The increased power of theta and lower alpha 

bands can be interpreted as subserving a shift from slow procedural strategies to fast 

compact procedural strategies, which led to more efficient performance after a short 

training in children. This interpretation is also supported by Study 2, which showed that 5th 

graders did not exclusively use retrieval and relied partially on procedural strategies even in 

simple multiplication problem-solving. It is suggested that increased theta power is 

associated with domain-general demands of procedural and retrieval strategies used in 

arithmetic problem-solving, and increased lower alpha power is associated with increased 

automaticity. 

 

THE FRONTOPARIETAL SHIFT SUBSERVES ARITHMETIC DEVELOPMENT AND 

LEARNING 

According to our findings in this dissertation project, the findings on arithmetic 

learning in adult studies are not easily transferable to children (for a meta-analysis see 

Kaufmann et al., 2011). While adults remain at a stable level of arithmetic proficiency and 

use math skills informally in daily life, children receive direct and indirect instruction in 

these skills while at school. Therefore, the differences in arithmetic learning between 

adulthood and childhood are probably due to the frontoparietal activation shift in numerical 

and arithmetic processing with age and experience (Menon, 2010). This shift, which has 

also been observed in arithmetic learning, consists of the reduced activation of frontal 

cortex and increased activation of the parietal cortex, and thereafter a shift within parietal 

cortex from SPL and IPS to the AG (Zamarian et al., 2009). Previous developmental 
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studies have shown this frontoparietal shift (e.g., Kawashima et al., 2004; Menon, 2010; 

Prado et al., 2014; Qin et al., 2014; Rivera et al., 2005). Rivera et al. (2005) showed that 

older children, who solve arithmetic problems faster and more accurately than younger 

children, rely less on frontal regions (see also Prado et al., 2014; Rosenberg-Lee et al., 

2011). Moreover, as our findings revealed, children rely on more diverse strategies for 

arithmetic problem solving compared to adults (Cooney et al., 1988; Lemaire & Siegler, 

1995; Sherin & Fuson, 2005; Siegler, 1988). Therefore, it is essential to investigate the 

neural and behavioral correlates of arithmetic development and learning directly in children 

(Kaufmann et al., 2011). 

The findings of our studies support this frontoparietal activation shift with some 

qualifications, which are explained in our proposed model (see below). Regarding the fact 

retrieval network itself, the findings suggest that retrieval is faster and more efficient in 4th 

grade than in 3rd; however, the lack of change in the operand-relatedness effect with age 

may suggest that in children’s fact retrieval network both the automatic association and 

reciprocal inhibition of concurrent responses may increase. Furthermore, the findings 

demonstrated an age-related shift from verbal to visuospatial WM in one-digit 

multiplication problem-solving from 3rd to 4th grade (Study 1). This finding is in line with 

a similar shift in domain-general factors influencing mathematical reasoning from 2nd to 

3rd grade (Meyer et al., 2010). It also supports a developmental change in the domain-

general cognitive demands of math, whereby the relationship between verbal and 

mathematical skills gradually attenuates with age (A. R. Jensen, 1980; Meyer et al., 2010; 

Swanson, 2006). Accordingly, there is a weak relationship between these two skills in 

adulthood (Heathcote, 1994; Logie et al., 1994; Logie & Baddeley, 1987), which might be 

because of the shift from a verbal representation of multiplication in young children to 

more abstract semantic retrieval in older children and adults (see also Fürst & Hitch, 2000). 

It seems that while verbal WM facilitates the early stages of arithmetic learning and 

performance, visuospatial WM supports later arithmetic performance during development. 

Note that the relation between these domain-general processes and different math skills 

might differ from age to age. For instance, Meyer et al. (2010) were concerned with 

mathematical reasoning and reported the same shift from verbal to visuospatial processes 

from 2nd to 3rd grade. During the elementary school multiplication is introduced in 2nd 

grade, verbally trained in 3rd grade, and then integrated into visual tasks in 4th grade; 
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therefore the shift from verbal to visual representation makes sense for multiplication at 

exactly that age. 

Interestingly, Study 2 revealed that in older children, in 5th grade, only visuospatial 

WM is correlated with arithmetic performance, and not verbal WM. Furthermore, 

neuroimaging studies have shown the engagement of frontal areas in verbal WM, and 

parietal areas in visuospatial WM (Cabeza & Nyberg, 2000; Dumontheil & Klingberg, 

2012). Therefore, the shift from verbal to visuospatial WM might be also interpreted in line 

with the frontoparietal shift of cortical activation during arithmetic development. In 

addition, behavioral correlates of arithmetic development, namely longitudinally increasing 

fluency with multiplication facts, were observed in Study 1. Children in 4th grade were 

faster in verifying one-digit multiplication problems, in the absence of any improvement 

regarding the accuracy of responses. The behavioral changes were found in our training 

studies (Study 3 and 4) as well. 5th graders demonstrated more efficient performance in 

trained compared to untrained multiplication problems, namely faster and more accurate 

responses. Therefore, the frontoparietal shift, which is accompanied by improved 

performance, involves a shift from domain-general areas to more domain-specific areas and 

also to other domain-general areas. 

The investigation of increased arithmetic complexity supported the frontoparietal 

shift during development (Study 2). Children showed parietal activation, namely in the left 

SPL and IPS, as well as theta ERS and alpha ERD over occipitoparietal regions in solving 

one-digit multiplication problems. This finding demonstrates that 5th graders rely on both 

domain-general and domain-specific processes to solve one-digit multiplication problems. 

In order to solve two-digit multiplication problems, they showed activation not only in 

bilateral SPL and IPS, and the left IPL, but also in bilateral frontal areas, particularly MFG, 

along with posterior theta ERS extending to right temporal sites, and alpha ERD over 

occipitoparietal sites. This finding shows that solving two-digit multiplication problems 

relies more heavily on both domain-general and domain-specific areas. The contrast of two-

digit versus one-digit calculation, showing increased multiplication complexity, revealed 

greater bilateral activation of MFG and IFG, which was accompanied by a greater increase 

of theta ERS in the frontocentral area. According to the frontoparietal shift, because 

children are more advanced in one-digit calculation, they do not need the additional support 

of frontal cognitive processes, while this is not the case for two-digit calculation. The 
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difference is interpreted as reflecting the involvement of additional domain-general 

cognitive demands such as working memory, sustained attention, and planning in two-digit 

compared to one-digit calculation, since activation of the prefrontal cortex has been shown 

to be related to cognitive control and working memory (Cabeza & Nyberg, 2000; 

Ranganath et al., 2003; Sylvester et al., 2003). Altogether, it was concluded that the 

frontoparietal shift had already occurred for one-digit calculation, but not for two-digit 

calculation at this developmental stage. One-digit calculation is more automatized 

compared to two-digit calculation at this age; therefore, it relies less on the domain-general 

cognitive processes of the frontal areas. This conclusion is also in line with previous 

findings that complex calculation is carried out through procedural step-by-step processes 

(Zamarian et al., 2009). With regards to oscillatory EEG, it has been shown that additional 

domain-general cognitive processes such as cognitive control, working memory, encoding, 

and self-monitoring are related to theta ERS, as shown in adult studies (e.g., Micheloyannis 

et al., 2005; Mizuhara & Yamaguchi, 2007; Sammer et al., 2007). This finding was also 

replicated in Study 3, showing greater theta ERS in the two-digit calculation as compared 

to the one-digit calculation. Therefore, theta ERS is interpreted as a result of domain-

general processes, which increase with complexity but decrease with development.  

Arithmetic training also supported the frontoparietal shift during development. One 

session of multiplication training (the immediate training effect in Study 3) led to decreased 

activation at the junction of the left AG and IPL, and in the right SPL and IPS, along with 

greater alpha ERD over parietal areas, in two-digit calculations. Note that it is not possible 

to measure deep brain structures such as the hippocampus by means of fNIRS. Therefore, 

there might be activation changes in this structure as well (e.g., Bloechle et al., 2016; Klein 

et al., 2016; Qin et al., 2014; Supekar et al., 2013) that were not detected because of 

limitations in our study. Seven sessions of multiplication training (the short-term training 

effect in Study 3) led to a decreased activation at the junction of the left AG and MTG and 

in the right MFG, along with decreased alpha ERD at the left occipital site, in two-digit 

calculations. In one-digit multiplication, only decreased alpha ERD at the central site was 

observed as a short-term training effect. With respect to the fNIRS findings, both 

immediate and short-term training showed reduced activation within the frontoparietal 

network. This finding shows that generally, after arithmetic training fewer brain areas are 

involved in processing, which means that brain activation becomes more specific and 
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efficient by excluding unnecessary circuits (Poldrack, 2000). However, with a closer look 

at the findings of these training courses, reduced frontal activation was found only after 

seven sessions of training and not after a single session. This difference, interestingly, 

points to the emergence of a frontoparietal shift after multiple training sessions. Therefore, 

it seems that development and arithmetic learning meet each other, and lead to similar brain 

activation changes. In agreement with arithmetic training studies in adults (Zamarian et al., 

2009), the right MFG, which is involved in executive control and working memory, 

showed reduced activation after training. This shift is also detected in the alpha frequency 

band after seven sessions of training, because it shows, indeed, attenuation of domain-

general cognitive processes and stronger domain-specific magnitude processes in 

arithmetic. It shows that over a course of arithmetic training, the brain works in a more 

specific way and relies less on additional areas that are not essential in processing numbers 

(see also Gevins et al., 1997). According to Pfurtscheller (2001), alpha ERD is associated 

with an increased excitability of cortical regions, which reflects increased information 

processing. In accordance with the frontoparietal shift, this oscillatory finding points 

towards reduced involvement of domain-general processes during mental calculation. 

The findings of Study 4 mainly point to the above-mentioned additional 

considerations of the frontoparietal shift, which are explained in more detail in the proposed 

model (see below). As a result of the short training of six repetitions of multiplication 

problems, increased theta power in in the middle and right frontocentral sites, and also in 

the left, middle and right parietooccipital sites, along with increased power of lower alpha 

in the posterior sites were observed in 5th graders. These findings suggest a more tuned and 

efficient performance within the same network, rather than any shift (see also Klimesch, 

1999). On the one hand, increased theta power demonstrates increased engagement of 

domain-general cognitive processes, while on the other hand, increased power in lower 

alpha shows increased automaticity, which means the same sequential procedures occur 

faster than before. It has been shown that the development of arithmetic in children is not 

necessarily a shift from procedural to retrieval processes, but rather a shift from slow 

procedural strategies to fast compact procedural strategies. For instance, Robinson et al. 

(2006) found that although children from 4th to 7th grades became faster and more accurate 

in solving simple division problems, they did not use retrieval strategies more frequently 

with increasing age. This is also in line with Prado et al. (2014), showing that one-digit 
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multiplication achievement relies on verbal retrieval, whereas one-digit subtraction 

achievement relies on the greater use of efficient procedural processes in children. 

Therefore, the early neurophysiological findings of our study were similar to the only 

oscillatory EEG study of arithmetic training in adults (Grabner & De Smedt, 2012). 

However, these findings were interpreted differently from results of a study in adults, 

because adults are more advanced than children in arithmetic problem-solving, and may not 

need the transitional step of efficient procedural strategies. Theta oscillation in our study 

was also found in right and middle frontocentral sites in addition to parietal sites. This 

might be because of the interaction of parietal and frontal cortices in working memory 

function (H. Lee et al., 2005), which may play a bigger role in children than in adults.  

According to the above-mentioned findings of our studies, our conclusions are that 

the improvement of math competence is not only represented as a shift from domain-

general processes to domain-specific processes, but furthermore as a shift within domain-

general processes, and involves a transitional increase of certain domain-general processes. 

Therefore, in order to extend the model of the frontoparietal shift during development, we 

suggest that two more points need to be taken into account: i) at some developmental and 

learning steps there is an increased engagement of both domain-general and domain-

specific processes, ii) at some steps the involved areas are not extended or diminished, but 

rather they work more efficiently. 

 

THE ROLE OF THE ANGULAR GYRUS IN ARITHMETIC DEVELOPMENT AND 

LEARNING IN CHILDREN 

According to the triple-code model of number processing (Dehaene & Cohen, 1995; 

Dehaene et al., 2003), the AG is an area related to general language-related domains. 

Therefore, it might be interpreted as only one of several additional domain-general areas 

involved in mental calculation. Its role has been shown mostly in adult studies (Zamarian et 

al., 2009), and only a few studies in children have reported it (e.g., Cho et al., 2012). Even 

in adults, published findings on the role of the left AG in arithmetic, particularly in 

multiplication, have been controversial (Grabner et al., 2013). Although some studies 

reported the involvement of the left AG in the rote retrieval of arithmetic solutions (e.g., 

Delazer et al., 2003; Grabner et al., 2007), others did not (e.g., Chochon et al., 1999; 
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Dehaene et al., 1996; Prado et al., 2011; Prado et al., 2013; Rickard et al., 2000). Moreover, 

Grabner, Ischebeck, et al. (2009) revealed task non-specific activation of the AG, which 

was engaged in both multiplication and figural-spatial learning in adults (see also Simon et 

al., 2002). Engagement of the AG depends on the learning method as well. Delazer et al. 

(2005) reported activation of the left AG in multiplication learning only by training with 

drills (i.e., the relation of operands and result), but not by application of a backup strategy 

(i.e., sequential calculation). Activation of the left AG also depends strongly on 

mathematical competence and individual differences (Grabner et al., 2007). All of the 

above-mentioned findings demonstrate a domain-general and non-specific role of the AG in 

arithmetic processing in adults. 

A few studies in children (Cho et al., 2012; Peters et al., 2016) have reported AG 

activation during small one-digit addition and subtraction problem-solving. However, in 

line with many other studies in children (e.g., Supekar et al., 2013; Qin et al., 2014), AG 

activation was found neither in our one-digit multiplication task in Study 2 nor in one-digit 

or two-digit multiplication training in Study 3. In Study 2, the whole range of one-digit 

multiplication was utilized, which probably led to an increase in procedural processes in the 

one-digit condition as well, and therefore, no activation of the AG was observed. Moreover, 

since children rely on a variety of strategies to solve simple one-digit multiplication and are 

not as competent in this task as adults, a lack of activation in the left AG is possible. It 

seems that neural correlates of arithmetic development and learning in children differ from 

the findings of several fMRI studies of arithmetic learning in adults, which reported a shift 

from the frontoparietal network to the left AG due to training (for a review see Zamarian et 

al., 2009; but see Bloechle et al., 2016). The lack of AG engagement in arithmetic 

development (Qin et al., 2014) and learning (Supekar et al., 2013) has already been 

reported in children. Instead of the AG, these studies suggested a critical transient role of 

the hippocampal system in arithmetic learning in children, which does not apply in adults 

(Qin et al., 2014; but see Klein et al., 2016). This difference might be due to the stability of 

neural substrates of learned arithmetic processes in adults compared to children (Qin et al., 

2014). Furthermore, Qin et al. (2014) reported that a shift from procedural to retrieval 

strategies is not represented by similar brain activation changes from childhood into 

adulthood. Note that in Study 3 reduced activation around the left AG was observed. In 

contrast to the other studies, Menon et al. (2000) reported decreased AG activation with an 
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increase of expertise. In sum, it is concluded that the AG is an additional supporting region, 

which depending on age, learning method, individual competence, the arithmetic task, and 

even the experimental design, may or may not be involved in mental calculation. It is 

evident that the AG might have an intermediate role during development, with a nonlinear 

relation over age and development between the AG activation increase/decrease and 

arithmetic learning (see also Amalric & Dehaene, 2016; Bloechle et al., 2016; Klein, 

Moeller, Glauche, et al., 2013; Klein et al., 2016). Klein et al. (2016) suggested that the 

neural correlates of arithmetic fact retrieval need to be extended to the network of the AG, 

the RC, the hippocampus, and ventro-medial prefrontal cortex in adults. However, they 

claimed that this network might not be specific to numerical facts, and is activated in non-

numerical tasks that demand retrieval from long-term memory. Furthermore, they 

suggested that the AG, as a part of fact retrieval network, and the IPS, as a part of 

magnitude-related network, might be the regions of intersection between these two 

networks (for more details see Klein et al., 2016). However, the non-linearity function of 

the AG is explained further in our theoretical model below, which nevertheless still needs 

to be tested in larger studies that use the same learning paradigm over a wide range of age 

groups. 

 

METHODOLOGICAL DIFFERENCES BETWEEN NEUROIMAGING STUDIES 

It seems that the methodological differences between studies need to be taken into 

account, to partially explain the inconsistency of findings (Shallice, 2003). These 

differences include experimental paradigms, block or event-related designs, a fixed- or self-

paced number of trials, etc. For instance, in a verification paradigm, shortcut strategies can 

be used, which might lead to more retrieval strategies because of the priming role of the 

presented solutions, while in written production, e.g., in Studies 2 and 3, individuals need 

to calculate for every single trial. With a fixed-paced design, more calculation time is 

usually spent on more complex trials. Therefore, activation differences might be partially 

due to the actual time needed for calculation, and not only to different strategy use. On the 

other hand, a self-paced design leads to different numbers of answered trials across 

individuals, as in Studies 2 and 3, but it ensures that the child is continuously performing 

the task without larger resting times between items for the faster condition. Regarding the 

design, an event-related design is well suited to investigate calculation complexity because 



151 
 

calculation times differ quite strongly across conditions, and the fitting of the hemodynamic 

response function (HRF) might differ. In our view, the issue of the duration of activation 

and the goodness of fit of the HRF deserves more attention in future training studies. In 

addition, children’s neurocognitive activation needs to be evaluated in an ecologically valid 

setting, as in the present studies that resembles how they solve tasks at school. Note that the 

spatial resolution of fNIRS is approximately 3 cm, and therefore the anatomical 

coordination of fNIRS findings is not as precise as with other brain imaging devices. This 

might be a potential reason for different findings in our studies compared to previous fMRI 

studies in adults. Therefore, it is suggested that brain activation changes are investigated 

using both event-related and block designs, while taking into account the self-paced versus 

fixed-paced paradigm. Furthermore, it seems to be important to compare different response 

types, i.e., production, multiple-choice, and verification, because of their differences in 

chance level accuracy and shortcut strategies. It is worthwhile to do so, because for 

instance, some IPS activations thought to be related to numerical processing may be related 

to difficulty in decision making, etc. In the following, the theoretical model which has been 

developed based on our studies is first explained, and then the evidence that supports our 

model will be discussed. 

 

THEORETICAL MODEL OF ARITHMETIC DEVELOPMENT AND LEARNING IN 

CHILDREN 

The brain is expensive, in the sense of consuming a disproportionate amount of 

energy relative to the space it occupies in the body (Bullmore & Sporns, 2012; Shulman, 

Rothman, Behar, & Hyder, 2004). However, the energy available to the brain is extremely 

limited, so that less than 1% of neurons can be active simultaneously (Lennie, 2003). 

Therefore, one important principle of brain networks is to minimize energy costs, while 

concurrently processing information with high efficiency (Attwell & Laughlin, 2001; 

Bassett et al., 2009; Bullmore & Sporns, 2012; Laughlin & Sejnowski, 2003; Lennie, 2003; 

Shulman et al., 2004). The brain’s energy consumption increases with increased neural 

processes (Niven, Anderson, & Laughlin, 2007; Tomasi, Wang, & Volkow, 2013), but 

because of limited energy sources, the brain as a system is required to work with optimal 

proficiency (for more details see Friston, 2010). It has been also shown that the balance 
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between these two principles is corrupted in neuropsychiatric disorders and abnormal 

development (Bassett et al., 2009; for a review see Bullmore & Sporns, 2012). 

According to the above-mentioned principles, a theoretical model of neurocognitive 

and neurophysiological changes during arithmetic development and learning is proposed 

here. The optimal performance in mental calculation is to provide fast and precise 

responses, while the brain needs to minimize energy consumption by involving limited 

networks (Pfurtscheller et al., 1996). Based on these principles, we split arithmetic 

development into two developmental and learning phases: the efficiency increase and 

strategy change phases (cf. Fig. 6). For a good performance in the efficiency increase 

phase, more neural networks need to be involved, which leads to the engagement of several 

domain-general and domain-specific brain areas within the frontoparietal network, along 

with increased theta ERS (i.e., increased theta power) and increased alpha ERD (i.e., 

decreased alpha power). Gradually, because of limited energy sources, unnecessary 

domain-general networks are excluded from the process, which lets domain-specific 

networks access more energy sources and become more active. It seems that this gradual 

change occurs after reaching the optimal performance during development or over the 

course of math learning. This is the step in which the strategy change phase is started. In 

this phase fewer neural networks are involved, which leads to the engagement of very few 

domain-general areas and necessary domain-specific brain areas within the frontoparietal 

network, along with decreased theta ERS (i.e., decreased theta power) and decreased alpha 

ERD (i.e., increased alpha power). For instance, in the efficiency increase phase after a 

short course of multiplication training, the child is able to respond quickly and correctly to 

almost all problems, using considerable mental effort. By continuing the training, in the 

strategy change phase, the child keeps the same performance while spending less energy to 

solve the same problems. 

The efficiency increase phase consists of the first steps of learning each mathematical 

skill, while the strategy change phase occurs when the individual needs much less effort to 

overcome familiar math problems. Based on several factors such as different math skills, 

calculation complexity, school grades, age, expertise, training courses, etc. (cf. Fig. 6) the 

efficiency increase and strategy change phases differ between skills. For instance, children 

learn one-digit multiplication in 2nd grade, while they are more advanced in this skill years 

later, in 5th grade. Therefore, 2nd grade constitutes the efficiency increase phase of one-



153 
 

digit multiplication, and 5th grade serves as the strategy change phase. However, these 

phases differ for other math problems such as computing fractions. Because children learn 

this skill in 5th grade, the efficiency increase phase for fractions begins in 5th grade. 

Indeed, children are advanced in solving one-digit addition, while they are beginners in 

solving fractions in 5th grade. Therefore, they rely on only a few domain-specific regions to 

solve one-digit addition, while they recruit several additional domain-general regions to 

solve fraction problems during this grade. These phases are not only defined by different 

math skills, but also between different arithmetic operations, and also within each 

operation. For example, children first learn one-digit and then multi-digit calculations; 

therefore, they are in the efficiency increase phase for one-digit calculations but not multi-

digit calculations. In regards to age, younger children are in the efficiency increase phase 

more than older children, and generally, children are in the efficiency increase phase more 

than adults. Note that these phases are identified relatively, which means that arithmetic 

development is categorized in the comparison between two skills or two educational grades 

or two ages, etc. For instance, children are in the efficiency increase phase relative to 

adults, who are more advanced in mental calculation. Adults rely more on domain-specific 

areas to solve arithmetic problems, while children rely more on extended networks. This is 

the same for individuals with low math competence compared to individuals with high 

math competence. Individuals with low math competence need to recruit more additional 

domain-general regions to be able to solve arithmetic problems, while individuals with high 

math competence may be able to rely on domain-specific areas and have the same or even 

better performance. With respect to the training of a new math skill, individuals learn first 

how to solve the problem type, which most probably engages any necessary network at the 

beginning. After a long-lasting training, the brain gradually excludes less relevant areas to 

save energy while using more and more shortcut strategies. 
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Fig. 6. A theoretical model of arithmetic development and learning. The above-left panel 

depicts neurocognitive changes in the frontoparietal network, which can be detected by 

fNIRS, fMRI, etc. The above right panel shows neurophysiological changes during 

arithmetic development and learning, which can be detected by oscillatory EEG. The below 

panels demonstrate some examples of the efficiency increase and strategy change phases in 

the model. 

 

This model also explains the strategy use in mental calculation. According to the 

model by Baroody (1983), in the efficiency increase phase there is a gradual shift from 

slow procedural processes towards compacted procedural strategies and knowledge of 

principles. As stated in this model, these compacted strategies and procedural knowledge 

are more automatic and lead to faster responses. Therefore, at the peak of the curves, which 

represents the transition period from the efficiency increase to the strategy change phase, 

individuals are capable of using maximum domain-general processes in a very efficient 

way. This means that most probably individuals still rely on procedural strategies, but apply 

these strategies more automatically. Another important point is that activation levels in 

domain-general areas may not necessarily change in the same way. When one domain-

general area such as the prefrontal cortex shows an activation decrease – for instance in the 

strategy change phase – another area such as the AG might be still at its peak. This is what 

has been shown several times in complex multiplication learning in adults, although this is 

not necessarily the case for other basic operations (for a review see Zamarian et al., 2009). 
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Further, depending on the training method, the AG can have a transition role between two 

phases, at least in multiplication learning (for more see Delazer et al., 2005). The 

frontoparietal shift – reduced frontal activation and increased parietal activation – has 

mostly been interpreted as representing a shift from using more procedural to more retrieval 

strategies during mental calculation. This shift can be easily explained by the strategy 

change phase of the model, showing reduced engagement of domain-general areas and 

brain oscillations with increased engagement of domain-specific areas. However, based on 

our model, there is a kind of inconsistency within activation changes in domain-general and 

-specific areas in arithmetic learning studies in adults. Most of these studies (e.g., Delazer 

et al., 2003) found increased activation in the AG and reduced activation in the IPS in 

trained problems compared to untrained problems. According to the triple-code model 

(Dehaene et al., 2003) the AG, which is a language-related area, is considered to be a 

domain-general area while the IPS is considered a domain-specific area for mental 

calculation. Therefore, our model cannot fully explain these changes, because according to 

the model, increased activation of the AG can be explained as part of the transition from the 

efficiency increase to the strategy change phase, while reduced activation of the IPS is 

expected to occur within the strategy change phase. Further, studies of experts (e.g., 

Amalric & Dehaene, 2016) reported that although mathematicians do not rely on language-

related areas to solve different kinds of math tests, they recruit several brain areas, which 

are involved in both spatial and number processing. Therefore, while the reduced 

engagement of some domain-general areas is in line with our model, the increased 

engagement of some other regions is not easily interpreted by our model. Note that we did 

not aim to differentiate the development of different domain-general processes in our 

model, which might be interesting to add to the model after testing some more fundamental 

assumptions of the model in larger studies. For instance, it is still unclear how the domain-

general and domain-specific areas involved in mental calculation are interacting with each 

other (see also Klein et al., 2016). Furthermore, more training studies in healthy and 

disordered children and adults, and also studies in high and low performers are needed to 

improve the current theoretical model. 

Altogether, in the efficiency increase phase of arithmetic development and learning, 

the maximum accessible energy is consumed to reach the optimal performance, while in the 

strategy change phase, by maintaining the optimal performance – and even improving it – 
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the brain diminishes energy consumption while becoming more and more specialized. 

Below, the findings of our studies are explained along with some other studies supporting 

our proposed model. Although several brain imaging and neurophysiological studies 

support the proposed model, it still needs to be tested in larger future studies over a wide 

range of age groups. 

 

EXPERIMENTAL FINDINGS OF NEUROCOGNITIVE CHANGES SUPPORTING AND 

CHALLENGING THE MODEL  

The fNIRS findings of our studies in typically developing children support this 

model. In Study 2, children solved one-digit multiplication problems faster and more 

accurately than two-digit problems, which shows that they were more advanced in one-digit 

compared to two-digit problems. Therefore, according to the model, fewer activated areas 

in one-digit calculation – the strategy change phase – were expected, compared to two-digit 

calculation – the efficiency increase phase. The findings demonstrate less bilateral frontal 

activation in one-digit compared to two-digit calculation, which supports the model. In 

Study 3, children were trained in multiplication problem-solving for one and seven 

sessions, respectively. According to the model, reduced frontoparietal activation was 

expected after seven sessions of training – the strategy change phase – while increased 

frontoparietal activation was expected after one session of training – the efficiency increase 

phase. The findings show decreased frontoparietal activation after both seven sessions and 

one session of two-digit multiplication. While the results from seven sessions of training 

support the model, the finding from one session of training seems not to be in line with the 

expectation. In accordance with the model, brain activation changes in both the efficiency 

increase and strategy change phases lead to improved performance. Surprisingly, no 

improvement was observed in the behavioral data after one session of training, which 

means that to keep the same performance as in pre-training, the brain spent less energy by 

involving fewer networks (see also Poldrack, 2000). In other words, increased activation in 

the efficiency increase phase is expected if the performance improves, but otherwise, fewer 

brain networks are involved in achieving the same level of performance, and therefore, less 

energy is consumed. It is the same for the strategy change phase, in which faster calculation 

times were observed. It seems that in the absence of behavioral changes after one session of 

training, the human brain applies the second principle to save energy consumption. 
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However, this finding is not fully consistent with oscillatory EEG findings (see below). In 

this study, no significant activation change was observed in one-digit multiplication 

training in regard to fNIRS data. A more surprising finding was the increased parietal 

activation in the untrained two-digit calculations compared to the pre-training session. This 

increase can be interpreted based on our model. Although children were not trained for 

these problems, for two reasons their performance indicates they were within the efficiency 

increase phase. First, in the post-training session children were solving these problems for 

the second time, because they were already presented with similar problems in the pre-

training session. Second, following the transfer effect within one operation (Ischebeck et 

al., 2009), they have indirectly received a sort of training for untrained two-digit problems 

as well. Therefore, according to the model, because of a very short and also indirect 

training, increased activation within the frontoparietal network is expected. This is exactly 

our finding in the parietal area after seven sessions of training.  

In the following, some neurocognitive studies investigating age, school grade, 

expertise, strategy use, training, math complexity, and math disability are discussed in 

support of our model. In accordance with our model, domain-specific areas, namely 

horizontal IPS, showed first increased and then slightly decreased activation. Kawashima et 

al. (2004) reported bilaterally greater activation of IPS in adults compared to children, 

which fits to the efficiency increase phase of the model, because adults recruit domain-

specific areas in calculation more than children. This finding was also supported by Ansari 

et al. (2005), where the engagement of parietal areas in adults, and frontal areas in children 

is reported in a number comparison task. Moreover, Rosenberg-Lee et al. (2011) reported 

greater activation in dorsal stream parietal areas, including the right SPL, IPS, and the AG 

as well as ventral visual stream areas, bilateral lingual gyrus, right lateral occipital cortex, 

and right parahippocampal gyrus in 3rd grade children compared to children in 2nd grade. 

3rd graders showed also greater activation in the left dorsolateral prefrontal cortex, with 

reduced activation in the ventral medial prefrontal cortex. More interestingly, 3rd graders 

revealed greater functional connectivity between the left dorsolateral prefrontal cortex and 

dorsal stream parietal areas such as IPS and AG. These increases in domain-general and 

domain-specific areas in older children are in line with the efficiency increase phase of the 

model, because children at this age are not still advanced in complex addition. Therefore, 

they recruit more additional regions to be able to solve the problems more accurately than 



158 
 

2nd graders. Their performance corroborates this interpretation, because 3rd graders were 

more accurate than 2nd graders (Rosenberg-Lee et al., 2011). These findings are in line 

with the new study by Chang, Rosenberg-Lee, Metcalfe, Chen, and Menon (2015) reporting 

greater activation of IPS, ventral tempo-occipital, anterior temporal and dorsolateral 

prefrontal cortex in adults relative to children in solving both addition and subtraction 

problems.  

Several studies of multiplication training revealed reduced activation of the IPS in 

trained versus untrained problems in adults (Zamarian et al., 2009). Although adults are 

more advanced in solving (untrained) arithmetic problems compared to children, they are 

still in the efficiency increase phase relative to post-training (see above). Due to training, 

they mostly move further to the strategy change phase, showing a slight reduction of IPS 

activation along with reduced activation of domain-general cognitive areas (Delazer et al., 

2003; Delazer et al., 2005; Ischebeck et al., 2006; Ischebeck et al., 2007; Ischebeck et al., 

2009; Grabner, Ischebeck, et al., 2009). Because the horizontal IPS is a domain-specific 

region in arithmetic processing (Andres et al., 2011), reduced IPS activation might be 

interpreted as more efficient activation even within the specialized area. Furthermore, a 

recent study by Bloechle et al. (2016) suggested an increase in hippocampal, 

parahippocampal, and retrosplenial structures in multiplication training in adults (see also 

Klein et al., 2016). An increased activation of these domain-general areas fits to the 

efficiency increase phase of the model, which indicates an activation increase in this 

transitional domain-general area after training. Note that, while they observed reduced 

activation of the frontal domain-general regions, the hippocampus, as a transitional area 

involved in shifting strategies, demonstrated increased activation. Therefore, it might be 

possible to observe both an increase and decrease of activation in different domain-general 

regions, showing their importance at different steps of arithmetic development and 

learning. This interpretation is supported by the finding of Qin et al. (2014), showing that 

hippocampus activation decreases with age from childhood to adulthood (see also Supekar 

et al., 2013).  

Most of the multiplication training studies have shown an increased activation of the 

left AG in adults (Zamarian et al., 2009), which is interpreted as an increased engagement 

of the domain-general area near the end of the efficiency increase phase. Cho et al. (2012) 

reported that children (7-9 years old) with higher retrieval fluency and automaticity 



159 
 

revealed greater activation in the right hippocampus, parahippocampal gyrus, lingual gyrus, 

fusiform gyrus, left ventrolateral prefrontal cortex, bilateral dorsolateral prefrontal cortex, 

and posterior AG. This finding supports the efficiency increase phase of the model, 

suggesting that children with better performance recruit more domain-general areas. 

Further training leads to reduced activation in the strategy change phase of the model. 

Amalric and Dehaene (2016) found that professional mathematicians do not rely on the AG 

and other language-related areas in mental calculation. This interpretation is further 

supported by Bugden, Price, McLean, and Ansari (2012), showing that children with more 

mature response modulation of the IPS, a domain-specific area, demonstrate higher 

arithmetic competence. Moreover, M Rosenberg-Lee et al. (2009) showed that the 

strategies learned in school involve more domain-general areas including the posterior 

superior parietal lobule (attentional mechanisms) and posterior parietal cortex (mental 

representation), compared to expert strategies in multi-digit multiplication problem-solving. 

This finding verifies the attenuation of activation in domain-general areas during 

development, and demonstrates that individuals with higher math competence depend on 

less domain-general processes in the strategy change phase.  

Furthermore, according to the model, complex calculations are associated with the 

efficiency increase phase, while simple calculations are associated with the strategy change 

phase. This explanation is supported by the findings of cross-sectional studies. Rosenberg-

Lee et al. (2011) found that arithmetic complexity is related to increased activation of the 

right inferior frontal sulcus and anterior insula, both domain-general cognitive areas. These 

findings are in line with the study by Cho et al. (2012) demonstrating that additional 

domain-general and -specific regions, such as left IPS, supramarginal gyrus, bilateral 

dorsolateral prefrontal cortex, and SFG, are engaged in solving complex addition relative to 

simple addition in children. Our model is further supported by the findings of math learning 

disability studies. Berteletti, Prado, and Booth (2014) found that children (3rd to 7th 

graders) with a math learning disability are not able to utilize both domain-general regions 

(left IFG, MTG, and STG) and domain-specific regions (right SPL and IPS), unlike 

typically developing children, when calculating small and large one-digit multiplication 

problems. However, children with a math learning disability revealed activation of SPL and 

IPS during the small one-digit calculation. Based on the efficiency increase phase of the 

model, this finding shows that children with a math learning disability are more advanced 
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in solving small one-digit calculations than large one-digit calculations, which leads to 

better performance in small than in large problems. In another study, Iuculano et al. (2015) 

showed that before training, children with a math learning disability recruited several 

additional frontal and parietal areas to solve arithmetic problems relative to typically 

developing children. However, after eight weeks of one-to-one cognitive tutoring, no 

difference was observed between the two groups. This reduction of activated areas 

accompanied improved behavioral performance in children with a math learning disability 

(Iuculano et al., 2015; Kucian et al., 2011). According to the strategy change phase, while 

these children recruited fewer brain regions to solve the problems after training, their 

behavioral performance improved. 

 

EXPERIMENTAL FINDINGS OF THETA AND ALPHA OSCILLATORY CHANGES SUPPORTING 

THE MODEL 

The oscillatory EEG findings of our studies in typically developing children support 

the proposed model. In Study 2, children solved one-digit multiplication problems faster 

and more accurately than two-digit problems, which show they are more advanced in one-

digit than in two-digit problems. Therefore, according to the model, less theta ERS and 

alpha ERD in one-digit calculation – the strategy change phase – is expected in comparison 

to two-digit calculation – the efficiency increase phase. The findings demonstrate less theta 

ERS in frontocentral sites in one-digit than in two-digit calculation, which supports the 

model. However, in the alpha band, no difference was observed between one-digit and two-

digit problem-solving. In Study 3, children were trained in multiplication problem-solving 

for one and seven sessions. According to the model, reduced theta ERS and alpha ERD 

after seven sessions of training – the strategy change phase – are expected, while increased 

theta ERS and alpha ERD are expected after one session of training – the efficiency 

increase phase. The findings show increased alpha ERD after one session of two-digit 

multiplication, but reduced alpha ERD after seven sessions of two-digit multiplication 

training, which again corroborate the model. Interestingly, the findings hold for both one-

digit and two-digit multiplication problem solving, showing that even one-digit calculation, 

in which children are more advanced, can be even more improved, with fewer networks 

engaged after additional training sessions. Again it is important to mention that these 

phases are relative, meaning that while untrained one-digit calculation shows the strategy 
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change phase in comparison to the untrained two-digit calculation (Study 2), it shows the 

efficiency increase phase when compared to trained one-digit calculation (Study 3). In this 

study, no theta change was observed. In Study 4, children repeatedly solved a set of 

multiplication problems, six times. Because of the small number of repetitions, increased 

theta power (greater theta ERS) and decreased alpha power (greater alpha ERD) – the 

efficiency increase phase – were expected. The findings show increased theta power, along 

with (marginally) increased power of lower alpha. Increased power in the lower alpha band 

does not fit the predictions of the model. This might be explained by one of a few different 

reasons. One reason is that alpha oscillation allows for the desynchronized activity of 

“independent” areas. After training, these areas still work but are more synchronized with 

each other, which leads to increased alpha power. Another reason is that in Study 4, the 

alpha band was split into lower and upper alpha, because some studies assume different 

functions for different alpha bands (for more see Study 4). Moreover, the alpha increase did 

not survive corrections applied for multiple testing. Therefore, because of the power issue, 

it needs to be tested in the future with more repetitions or a larger sample size. In addition, 

our model generally refers to the alpha frequency band, which contains the whole range of 

8–13 Hz. However, because very few studies in the field of numerical cognition make use 

of oscillatory EEG, more studies on split alpha frequency bands are needed to develop the 

proposed model for lower and upper alpha bands. According to Klimesch (1999), lower 

alpha reflects the attentional demands of a task, and upper alpha reflects semantic memory 

performance and retrieval of semantic information, which are arithmetic facts in our case. 

Therefore, based on our model, power decrease and then increase in lower alpha in the 

efficiency increase and strategy change phases, respectively, can be expected. With respect 

to upper alpha, constant power in the efficiency increase phase and then a decrease in 

power in the strategy change phase can be expected. 

Previous oscillatory EEG studies support our theoretical model of neurophysiological 

changes of arithmetic development and learning. Regarding an age effect, Hinault, 

Lemaire, and Phillips (2016) showed reduced power of theta, lower and upper alpha in 

older adults (73-year-old) compared to young adults (22-year-old). As discussed 

previously, in our model theta power decreases with age and experience, but alpha power 

increases. Therefore, these findings are partially in line with the model. Note that older 

adults, surprisingly, had a better performance not only in the experimental task but also in 
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arithmetic fluency than younger adults. This behavioral finding may partially explain the 

unexpected alpha decrease in older adults, because they were engaging more cortical 

resources. However, because there is very limited knowledge about the neurophysiology of 

arithmetic processing in the elderly, it needs to be investigated in future studies.  

Zhuang et al. (1997) found that explicit learning of a motoric task, i.e., pressing a key 

with different fingers, leads to stronger mu ERD (decrease in mu power) over the 

contralateral site. When the participants learned the task and did the movement more 

automatically, mu ERD declined. This finding was interpreted as revealing increased 

activation of the primary sensorimotor regions while learning a new motoric task, while this 

activation decreases after the task is learned (Zhuang et al., 1997; see also Pfurtscheller & 

Da Silva, 1999). These findings fit very well with our model, with two phases of 

development. Note that mu activity is related to the motoric and motor imagery tasks and 

not arithmetic processing; however, this training study from another domain might affirm 

the proposed model in arithmetic achievement. In another study, Gevins et al. (1997) found 

increased theta and alpha power due to short-term working memory training in adults. They 

interpreted increased theta power as a result of applying more effort in focusing attention 

after an extended measurement time, and increased alpha power as a result of the 

engagement of fewer cortical resources after skill development (Gevins et al., 1997). 

Grabner and De Smedt (2012) found increased power in theta and lower alpha bands after 

two days of training in two-digit multiplication problems and figural-spatial problems in 

adults. According to our model, increased theta is considered to occur within the efficiency 

increase phase of learning. It is possible that during the short training sessions in both of the 

above studies, participants learned how to apply more efficient and automated strategies, 

which most probably caused functional and not anatomical changes. Therefore, the 

trainings led to an increase in theta power. This assumption is borne out by the increased 

alpha power in both studies, showing increased automaticity of the applied strategies and 

less involvement of cortical resources. It might be because the training was not sufficient to 

move participants to the strategy change phase. 

Klimesch (1999) reported more theta power in individuals with high calculation skills 

compared to individuals with low calculation skills (see also Núñez-Peña & Suárez-

Pellicioni, 2012). According to the efficiency increase phase of the model, individuals with 

higher performance were able to do more compacted and fast procedural strategies, which 
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led to increased theta power in this group, compared to individuals with lower performance. 

De Smedt et al. (2009) found greater theta power (increased theta ERS) and alpha power 

(decreased alpha ERD) in simple one-digit addition and subtraction problem-solving 

compared to larger problems (see also Grabner & De Smedt, 2011). These findings can be 

partially interpreted with our model. According to the model, a simple calculation is related 

to the strategy change phase, while the more complex calculation is related to the efficiency 

increase phase. Therefore, we would expect reduced theta power but increased alpha power 

in simple calculations. The inconsistent finding in the theta band can be attributed to the 

necessity of inhibition in retrieval strategies, which leads to an increase in theta power. 

Moreover, it has been shown that both adults and children solve very small problems by 

fast compacted procedural strategies (Barrouillet & Thevenot, 2013).  

With respect to complexity, Gevins et al. (1997) found increased theta power in a 

frontal midline site and decreased alpha power in a parieto-central site with increased 

memory load in WM task. They interpreted the theta power increase as a result of increased 

engagement of sustained attention, and decreased alpha power as the result of increased 

involvement of cortical resources (see also Harmony et al., 1999). These explanations are in 

line with the efficiency increase phase of our model, which is associated with increased 

complexity of the task. In sum, although several studies support our theoretical model, there 

is still a substantial lack of knowledge about neurocognitive and neurophysiological 

changes over the course of arithmetic development and learning, particularly in children. 

Therefore, future studies are needed to enable the further development of our model. 

 

FUTURE PERSPECTIVES 

In the following, some suggestions are presented for future studies, which are also 

necessary to evaluate the proposed model of arithmetic development and learning. 

Moreover, some basic and methodological studies need to be conducted, which might be 

very helpful for the design of future experiments and interpretation of the findings.  

1. It is concluded that brain activation networks underlying arithmetic processes 

differ between adults and children. However, this conclusion mostly comes from 

the findings of separate studies in adults and children, and from only a few studies 

which compared these groups directly (e.g., Kawashima et al., 2004), yet 
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sometimes showed controversial findings. Therefore, it is worthwhile to 

investigate these possible differences directly, which would help with future 

decisions such as how to develop interventions for children based on adults’ 

findings. On the other hand, in the case of negligible differences, conducting 

studies in adults is much easier and more efficient than in children. 

2. As mentioned previously, arithmetic development and learning has been defined 

as a strategy shift from effortful and slow procedural strategies to fast and 

compacted procedural strategies, and then to retrieval strategy. Item-based 

methods are the most common approach for investigating strategy use, in other 

words, obtaining verbal reports of the applied strategy after every single problem. 

However, verbal reports of strategy use have been criticized because they are such 

a limited way to investigate the real strategies (Kirk & Ashcraft, 2001; Russo, 

Johnson, & Stephens, 1989), and might not be more informative than EEG 

findings (Hinault & Lemaire, 2016). Therefore, it is suggested to study the 

strategy use during arithmetic processing by means of EEG, particularly in 

children, because it is so often that they really do not know how they solved the 

problems.  

3. Most of the arithmetic learning studies in adults (for a review see Zamarian et al., 

2009) and in children, including our studies, used multiplication problems. 

However, it has been shown that neural correlates of different arithmetic 

operations are not identical (e.g., Fehr et al., 2007). For instance, Prado et al. 

(2014) found that while a grade-related increase in multiplication proficiency 

leads to an activation increase in the left temporal cortex, subtraction proficiency 

leads to an activation increase in the right parietal cortex. Therefore, it is 

recommended for future studies to investigate other arithmetic operations as well. 

Moreover, it would be helpful to understand the adult-like brain activation 

patterns of different math skills, particularly arithmetic operations with different 

complexity levels. This information can be helpful for therapeutic planning, 

because then the therapist will be aware of the ideal time to plan each particular 

intervention. 

4. Different domain-general cognitive factors are needed during arithmetic problem 

solving (Cragg & Gilmore, 2014). While several studies have already shown the 
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importance of WM (Menon, 2016), a recent study by Nemati et al. (2017) 

suggested that some other cognitive processes, namely planning and self-control, 

might overcome WM in arithmetic performance. Therefore, it seems to be 

essential to investigate more domain-general cognitive factors rather than only 

WM in future studies. 

5. While most of the previous neuroimaging studies of arithmetic learning revealed 

an increased activation of the left AG in the post-training measure (Zamarian et 

al., 2009), a recent study by Bloechle et al. (2016) showed that the activation does 

not appear in a post- versus pre-training contrast. Furthermore, it has been shown 

that different paradigms might influence the strategy use and therefore, possibly 

the brain activation pattern (see also Hinault & Lemaire, 2016). For instance, 

behavioral studies (e.g., Campbell, 1987) showed different cognitive processes 

underlying production and verification paradigms. It seems that methodological 

differences might lead to different results, which can consequently bias any 

diagnostic and interventional decision based on neural findings in future. 

Therefore, it seems to be essential to take this issue into account, and consider it 

for any further comparison across studies. Moreover, to our best of knowledge, no 

neuroimaging study has investigated these differences in the field of numerical 

cognition. 
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A member of organization team of Workshop on Educational Neuroscience of Mathematics, 

University of Tuebingen, October 3-4, 2014, Tuebingen, Germany. 

A member of organization team of Workshop on Development of Numerical Processing and 

Language, University of Tuebingen, October 7-8, 2013, Tuebingen, Germany. 

TIMELY Workshop “Temporal Processing Within and Across Senses”, University of Tuebingen, 

October 4-5, 2012, Tuebingen, Germany. 

C++, Academic center of education, culture and research, November, 2011, Tehran, Iran. 

Quantitative EEG: measurements and analyses, Institute of Cognitive Science Study, July 12-14, 

2011, Tehran, Iran. 

Human EEG: measurements and analyses in cognitive tasks, 4th international conference of 

cognitive science, May 10-12, 2011, Tehran, Iran. 

FSL training workshop for fMRI data analysis, Research Centre for Science and Technology in 

Medicine, February 21-22, 2010, Tehran, Iran. 

MATLAB, Hubbell premise wiring, April, 2009, Tehran, Iran. 

Color vision, 3rd international conference of cognitive science, March 3-5, 2009, Tehran, Iran. 

Basic of structural and functional neuroimaging studies in cognitive science, 3rd international 

conference of cognitive science, March 3-5, 2009, Tehran, Iran. 

Head of organization team, 5th scholar congress of occupational therapy, May 25, 2004, Tehran, 

Iran. 

 

Teaching experience 

Summer term 2017 Language-related effects on number processing 

Summer term 2017 Neural and behavioural correlates of learning disorders 

Winter term 2017-18 Linguistic, cognitive, and affective determinants of number processing 

Winter term 2017-18 Neural and behavioural correlates of learning disorders 

 

Co-supervisor of student thesis 

Marie-Lene Schlenker  Uni. of Tuebingen, MSc in psychology, Apr-Sep 2017 

Lia Heubner   Uni. of Tuebingen, MSc in psychology, Apr-Sep 2017 

Hannah-Dorothea Loenneker Uni. of Tuebingen, BSc in psychology, Apr-Sep 2017 

Florine Winkler   Uni. of Tuebingen, BSc in cognitive science, Apr-Sep 2017 

Jaquline Jaus   Uni. of Tuebingen, BSc in psychology, Apr-Sep 2017 

Jennifer Them   Uni. of Tuebingen, BSc in cognitive science, Apr-Nov 2016 

Annalena Kukofka  Uni. of Tuebingen, BSc in psychology, Apr-Sep 2015 

Franziska Schumacher  Uni. of Tuebingen, BSc in psychology, Apr-Sep 2015 

Anne Kathrin Buesemeyer Uni. of Innsbruck, Internship in psychology, Jun-Sep 2015 

Andra Coldea   Uni. of Glasgow, Internship in psychology, Jun-Sep 2015 

Eva Herzog    Uni. of Tuebingen, MSc project in psychology, Oct 2014-Mar2015 
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Stefania Macchione  Uni. of Padua, MSc in clinical psychology, Apr-Sep 2014 

Franziska Hegger  Uni. of Tuebingen, BSc in psychology, Apr-Sep 2014 

Amanda Lillywhite  Uni. of Glasgow, Internship in psychology, Apr-Sep 2013 

 

Professional memberships 

2016-present Member of society of functional near-infrared spectroscopy (sfNIRS) 

2015-2016  Member of society for neuroscience (SfN) 

2006-2011  Member of Iran medical council 

2003-2011  Member of Iranian society for occupational therapy 

 

Computer and imaging skills 

Presentation software (Neurobehavioral system), Open Sesame, Psychopy, SPSS, R studio, JASP, 

jamovi, Brainstorm, EEGLab, Psytask, Online Survey, Microsoft office, MATLAB [Basic], SPM 

[Basic] 

fNIRS (functional Near-Infrared Spectroscopy), EEG (Electroencephalography), Physiological 

measures (Skin Conductance, heart rate) 

 

Career experiences 

2015-present Research assistant at Diagnostics and cognitive neuropsychology, University of 

Tuebingen, Tuebingen, Germany 

2013-15 Research assistant at Knowledge Media Research Center (KMRC), Tuebingen, 

Germany 

2012-13  Research assistant at Medical Psychology and Behavioural Neurobiology, 

University of Tuebingen, Tuebingen, Germany 

2011-12  Research assistant at Cognitive Neuroscience Lab, University of Tabriz, Tabriz, 

Iran 

2008-12  Supervisor of occupational therapy unit, Beautiful Mind Paediatric 

Rehabilitation Clinic, Tehran, Iran 

2007-08  Therapist, EEG neurofeedback unit, psychiatric clinic, Tehran, Iran 

2006-09 Supervisor of occupational therapy unit, Azadi Neuropsychiatry Hospital, Tehran, 

Iran 

 

Language skills 

Persian: Mother tongue 

English: Fluent 

German: Intermediate 

Turkish: Basic 

Arabic: Basic 
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