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Zusammenfassung 

Der mikrobielle Sekundärmetabolismus ist eine reichhaltige Quelle für Naturstoffe, von denen viele 

klinische beziehungsweise industrielle Anwendung gefunden haben. Die Gattung Amycolatopsis ist 

für die Synthese vieler Naturstoffe bekannt. Beispielsweise werden viele Glykopeptid-Antibiotika, wie 

das klinisch relevante Vancomycin oder das Balhimycin, von Stämmen dieser Gattung produziert. Im 

Gegensatz dazu wurde der Stamm Amycolatopsis japonicum nie als Produzent einer biologisch 

aktiven Substanz beschrieben. Dieser Stamm produziert jedoch unter Zinkmangelbedingungen das 

EDTA-Isomer Ethylendiamindisuccinat ([S,S]-EDDS). Diese zinkabhängige [S,S]-EDDS Produktion lässt 

darauf schließen, dass [S,S]-EDDS ein Zinkophor ist, das an der Zinkaufnahme beteiligt ist.  

[S,S]-EDDS weist Komplexbildungseigenschaften auf, die mit denen von EDTA vergleichbar sind. Im 

Gegensatz zu EDTA ist [S,S]-EDDS jedoch biologisch abbaubar. Die weitverbreitete industrielle 

Anwendung von EDTA in Kombination mit dessen Unzugänglichkeit für biologische Abbauprozesse 

führt zu einer umweltgefährdenden EDTA-Persistenz in aquatischen Lebensräumen. Der Naturstoff 

[S,S]-EDDS ist deshalb ein nachhaltiger EDTA Ersatz mit einem verbesserten ökologischen 

Fingerabdruck.  

In dieser Arbeit wurden zwei molekulargenetische Strategien entwickelt, um die Biosynthese des 

Glykopeptid-Antibiotikums Ristomycin A zu aktivieren und um die [S,S]-EDDS-Biosynthese-Gene in  

A. japonicum zu identifizieren.  

Untersuchungen des genetischen Potenzials der Gattung Amycolatopsis ließen vermuten, dass auch 

A. japonicum die Fähigkeit besitzt, ein Glykopeptid-Antibiotikum zu synthetisieren. Um dieses nicht 

exprimierte, sogenannte „stille Gencluster“ zu aktivieren, wurde ein molekulargenetischer Ansatz 

verwendet, bei dem der Biosynthese-spezifische Aktivator Bbr heterolog in A. japonicum exprimiert 

wurde. Bbr reguliert die Balhimycin-Biosynthese in Amycolatopsis balhimycina. In A. japonicum 

induzierte dessen Expression die Produktion von Ristomycin A, was durch HPLC-DAD, MS, MS/MS, 

HR-MS, und NMR-Analysen bestätigt werden konnte. Ristomycin A ist ein vielfach glykosyliertes 

Heptapeptid, das als Hauptwirkstoff in Diagnoseverfahren zur Bestimmung von angeborenen und 

weitverbreiteten Blutgerinnungsstörungen verwendet wird. Die Sequenzierung des A. japonicum 

Genoms und dessen computergestützte Auswertung führten zur Identifizierung des Biosynthese-

Genclusters, das für die Synthese von Ristomycin A verantwortlich ist.  

Solche computergestützten Genomanalysen mittels verschiedenster bioinformatischen Plattformen 

werden heutzutage standardmäßig zur Identifizierung von Sekundärmetabolit-Gencluster 

angewandt, die bekannten Synthesemechanismen zugeordnet werden können. Allerdings konnten 

die [S,S]-EDDS-Biosynthese-Gene mit diesen Tools nicht entdeckt werden, was auf einen bislang nicht 

bekannten Biosynthesemechanismus hindeutet. Um diesen zu identifizieren, wurde ein neuer Ansatz 

entwickelt, der auf der Annahme beruht, dass die Zink-reprimierte [S,S]-EDDS-Biosynthese durch 
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einen Zink-sensitiven Regulator gewährleistet wird. Die bakterielle Zink-Homöostase wird meistens 

durch den globalen Zink-spezifische Transkriptionsregulator Zur reguliert. Das Zur Protein von A. 

japonicum wurde identifiziert und detailliert charakterisiert. Es konnten gezeigt werden, dass ZurAj 

die Transkription des hoch affinen Zinkaufnahmesystems ZnuABCAj durch seine Zink-abhängige 

Bindung an spezifische DNA Bindesequenzen reguliert. Diese Zur-Bindesequenzen wurden 

verwendet, um das A. japonicum Genom nach weiteren, ZurAj regulierten, Genen zu durchsuchen. 

Dies führte zur Auffindung des aesA-D Operons. Umfangreiche Transkriptions-Untersuchungen 

ergaben, dass aesA-D Zink-abhängig von ZurAj reguliert wird. Die Beteiligung von aesA-D an der [S,S]-

EDDS konnte durch Inaktivierungsversuche nachgewiesen werden. Zusätzlich führte die Deletion des 

Zinkregulators ZurAj (A. japonicum Δzur) dazu, dass auch in Gegenwart von hohen Zink-

Konzentrationen [S,S]-EDDS in hohen Mengen produziert wird. 

A. japonicum Δzur ist eine erfolgversprechende Ausgangsbasis, um einen nachhaltigen und 

wirtschaftlich verwertbaren [S,S]-EDDS Produktionsprozess zu entwickeln, der keiner Limitierung 

durch negative Einflüsse von Zink unterliegt.  

Die Strategie, ein vorhergesagtes, stilles Gencluster durch die Expression eines spezifischen 

Regulators zu aktivieren, sowie auch die Strategie, neue Biosynthese-Gene durch die 

Charakterisierung eines globalen Regulators, der spezifische Umweltsignale wahrnimmt, zu 

identifizieren, ermöglichte die Charakterisierung neuer Naturstoffsynthesewege in A. japonicum. 

Beide Ansätze nutzen Erkenntnisse über regulatorische Mechanismen und besitzen das Potenzial 

zukünftig angewendet zu werden, um neue Naturstoffe und neue Synthesewege zu identifizieren. 
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Abstract 

The microbial secondary metabolism is a rich source for valuable products that have found their way 

into various clinical and industrial applications. A particularly productive bacterial genus for the 

discovery of natural products is Amycolatopsis. The most frequently reported type of secondary 

metabolites produced by this genus are glycopeptide antibiotics like balhimycin or the medically 

relevant vancomycin. In contrast to most other members of the Amycolatopsis genus, Amycolatopsis 

japonicum was never described to produce any product with antibacterial activity. This strain 

however is known to synthesize the chelating agent ethylenediamine-disuccinate ([S,S]-EDDS), a 

biodegradable EDTA isomer in response to zinc deficiency. This zinc responsive repression of [S,S]-

EDDS production indicates a possible contribution of [S,S]-EDDS to zinc uptake and that it might 

belong to the rarely described physiological group of zincophores. Combining excellent chelating 

properties with the accessibility to biodegradation, [S,S]-EDDS is considered as a sustainable 

chelating agent, possessing the potential to replace EDTA and other environmentally threatening 

chelating agents in various applications. 

In this study, two distinct molecular genetic strategies were developed and implemented to activate 

the biosynthesis of the glycopeptide antibiotic ristomycin A and to identify the [S,S]-EDDS 

biosynthetic genes in Amycolatopsis japonicum.  

Genetic evaluation of the Amycolatopsis antibiotic biosynthetic potential indicated that A. japonicum 

might has the capability to produce a glycopeptide antibiotic. Since the biosynthesis of the predicted 

glycopeptide was not detected by altering the culture conditions, a molecular genetic approach was 

employed to activate its production. Heterologous expression of the characterized pathway specific 

activator Bbr, naturally inducing the balhimycin biosynthesis in A. balhimycina, induced the synthesis 

of a bioactive substance in A. japonicum. The bioactivity could be assigned to the production of 

ristomycin A, a highly glycosylated peptide antibiotic which is used in diagnostic kits to detect 

widespread hereditary coagulation disorders. Full sequencing of the A. japonicum genome and its 

computational analysis led to the identification of the corresponding biosynthetic gene cluster which 

is directing the biosynthesis of ristomycin A.  

Such computational genome analyses by various bioinformatic tools are nowadays standardized 

applied strategies to identify secondary metabolite gene clusters. These approaches however failed 

to detect the [S,S]-EDDS biosynthetic genes. This required the development of a new approach which 

relies on the assumption that the zinc repressed biosynthesis of [S,S]-EDDS is regulated by a zinc 

responsive regulatory element. Therefore, the major zinc responsive transcriptional regulator of A. 

japonicum (Zur) was characterized in detail. Zur regulates the expression of the high affinity zinc 

uptake system ZnuABC by binding to a specific DNA binding sequence. The screening of the A. 

japonicum genome for further Zur regulated genes by using this deduced Zur binding sequence led to 
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the identification of the operon aesA-D. Extensive transcriptional analyses and band shift assays 

revealed that aesA-D is zinc responsively regulated by Zur and involved in [S,S]-EDDS biosynthesis, as 

shown by inactivation studies. The [S,S]-EDDS biosynthesis was uncoupled from zinc repression by 

deleting zur. This mutant sets the stage to establish a sustainable [S,S]-EDDS production process 

without limits formerly imposed by zinc repression. 

The strategy to awake predicted silent gene clusters by using a characterized regulator as well as the 

strategy to identify new biosynthetic genes by characterizing an environmental signal-sensing 

regulator enabled the isolation of novel biosynthetic pathways in A. japonicum. Both approaches 

follow the joint concept to exploit knowledge of regulatory pathways and have the prospect to be 

generally applicable in order to guide future detection of new natural products. 
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1.  Introduction 

1.1  The genus Amycolatopsis: a valuable source of secondary metabolites 

Secondary metabolites are natural products which are considered to be not essential for vegetative 

growth, development or reproduction of an organism but rather function in increasing the 

evolutionary fitness and survivability under certain specialized growth conditions. Many microbial 

secondary metabolites either function as growth inhibitors, having antibacterial, antifungal or 

antiviral activity or, as growth promoters by e.g. enhancing the uptake of scarce nutrient sources. 

Natural compounds have the potential to be developed into drug substances which can be used as 

antiinfective or anticancer therapeutic agents for clinical application or for agricultural use as 

fungicides, insecticides, herbicides or fertilizers.  

A known bacterial genus producing valuable compounds which already found medical application is 

the genus Amycolatopsis. The medically most relevant antibacterial agents are rifamycin, the lead 

drug of rifampicin, and vancomycin, a glycopeptide antibiotic. Members of this genus however are 

described to produce many further secondary metabolites of various structural classes, reflecting its 

particularly high potential as sources for valuable compounds.  

The polyketide rifamycin was first identified as a product of A. mediterranei in 1959 (Sensi et al., 

1959). Its derivatives are important antibiotics for the treatment of infectious disease caused by 

Mycobacterium tuberculosis. Other Amycolatopsis polyketide synthase (PKS) derived antibiotics are 

chelocardin, produced by A. sulphurea, a broad-spectrum tetracyclic antibiotic exhibiting potent 

bacteriolytic activity (Lukezic et al., 2013) and ECO-0501, a polyene which was identified in A. 

orientalis ATCC 43491 (Banskota et al., 2006). ECO-0501 possesses strong activity against gram-

positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-

resistant enterococci (VRE).  

The most frequently reported type of secondary metabolites produced by the genus Amycolatopsis, 

however, are glycopeptide antibiotics. In addition to the actually known glycopeptide producing 

Amycolatopsis species, PCR screening indicated the genetic potential of several further strains to also 

produce glycopeptides (Everest and Meyers, 2011). This biosynthetic potential however is not a 

common feature of the entire Amycolatopsis genus but rather of a certain phylogenetic clade.  

Vancomycin, which was isolated from A. orientalis (Brigham and Pittenger, 1956) finds clinical 

application as antibiotic to treat severe infections with enterococci and MRSA strains. Besides 

vancomycin, several other glycopeptides were identified as Amycolatopsis products. Balhimycin and 

chloroeremomycin, isolated from A. balhimycina (Nadkarni et al., 1994) and an A. orientalis strain 

(van Wageningen et al., 1998), respectively share an identical heptapeptide backbone with 

vancomycin and differ only in the glycosylation pattern. A. orientalis CPCC200066 produces 

norvancomycin, whose chemical structure is almost the same as that of vancomycin, except for an 

1vii
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absent methyl group at the N-terminus (Lei et al., 2015). Avoparcin is a product of A. coloradensis 

(Kunstmann et al., 1968) and has been used as growth-promoting feed additive in agricultural 

applications (Labeda, 1995). This glycopeptide slightly differs from the vancomycin-like gylcopeptides 

in the composition of the heptapeptide backbone. Ristomycin A (also called ristocetin A), which is 

produced by A. lurida (Grundy et al., 1956) causes thrombocytopenia and platelet agglutination and 

is therefore no longer used for the treatment of human staphylococcal infections. These 

therapeutically unfavorable functions however are nowadays exploited to detect widespread 

hereditary genetic disorders in coagulation such as the von Willebrand disease and the Bernard-

Soulier syndrome by utilizing ristomycin A as an in vitro diagnosis compound (Sarji et al., 1974).  

To compete with other soil-dwelling microorganisms, Amycolatopsis strains do not only produce 

compounds with antimicrobial activity but also chelating compounds (ionophores) to monopolize 

scarce metal ion resources. To solubilize and to facilitate the uptake of iron under iron deficient 

growth conditions microbes secrete siderophores. Siderophores are small molecular weight 

compounds which exhibit high iron chelating affinity. Such secreted chelating agents are described 

from Amycolatopsis sp. AA4 (amychelin) (Seyedsayamdost et al., 2011) and A. alba (albachelin) 

(Kodani et al., 2015). Both structurally related molecules are composed of six siderophore 

characteristic amino acids, while amychelin is additionally decorated with a hydroxybenzoyl group. 

Other iron chelating agents are the siderochelins produced by Amycolatopsis sp. LZ149 (Liu et al., 

1981). The siderochelins which show anti-mycobacterial activities were isolated by a bioassay-guided 

fractionation. This activities however are rather due to their ion chelating properties than due to a 

direct target interaction in means of classical antimicrobial chemotherapy (Liu et al., 1981; Lu et al., 

2015). A different kind of chelating agent is ethylenediamine-disuccinate (EDDS), which is 

synthesized by the strain Amycolatopsis japonicum MG417-CF17 in the [S,S]-configuration (Nishikiori 

et al., 1984). [S,S]-EDDS production does not occur in response to iron deficiency but in response to 

zinc deficiency (Cebulla, 1995; Zwicker et al., 1997). This indicates that the ionophore EDDS 

contributes to zinc uptake and that it belongs to the rarely described physiological group of the 

zincophores (Hantke, 2001a; Zhao et al., 2012).  

The broad variety of Amycolatopsis secondary metabolites with respect to physiological function as 

active defense or in competition for resources and with respect to biosynthesis and biochemistry 

described so far indicates the broad potential of this genus to synthesize valuable substances. 

 

1.2 Glycopeptide antibiotics 

The glycopeptide heptapeptide backbone is predominantly assembled by the nonproteinogenic 

aromatic amino acids 3,5-dihydroxyphenylglycine (Dpg), p-hydroxyphenylglycine (Hpg) and β-

hydroxytyrosine (β-Ht). These aromatic amino acid side chains are oxidatively cross-linked with each 
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other to form a rigid cup shaped structure (Bischoff et al., 2005) required for the interaction with 

their molecular target, the D-alanyl–D-alanine (D-Ala-D-Ala) terminus of bacterial cell wall precursors 

(Reynolds, 1989). This binding interferes with the bacterial cell wall biosynthesis and thus leads to 

cell death.  

 

1.2.1 Structural categorization of glycopeptides 

The structural diversity of glycopeptides arises from the variation of incorporated amino acids and 

from the variable decoration of the heptapeptide backbone by glycosylic moieties, methyl groups, 

chlorine atoms and fatty acid residues, respectively. Based on the incorporated amino acids, the level 

of side chain cross-linking and the decoration with a fatty acid residue, glycopeptides can be 

categorized into distinct classes. The type I glycopeptides are characterized by two aliphatic amino 

acids at position 1 and 3 of the heptapeptide backbone. This class comprises e.g. vancomycin, 

norvancomycin, balhimycin and chloroeremomycin. Avoparcin is exemplifying the type II 

glycopeptides with incorporated aromatic amino acids also at position 1 and 3. These amino acids 

however do not undergo an oxidative cross-linking in contrast to the type III glycopeptides, 

characterized by a fully cross-linked heptapeptide backbone. The model type III glycopeptide is the 

highly glycosylated ristomycin A.  

The glycopeptide biosynthesis pathway follows three distinct steps: the precursor supply by specific 

biosynthesis pathways, the assembly of this specific building blocks and the final modification of the 

heptapeptide backbone by various tailoring reactions (Stegmann et al., 2010). 

 

1.2.2  Glycopeptide antibiotics biosynthesis:  precursor supply 

The nonproteinogenic aromatic amino acids which are incorporated into glycopetides have to be 

specifically supplied. All genes required for the synthesis of Dpg, Hpg and β-Ht are located within the 

corresponding gene clusters (Donadio et al., 2005).  

For the synthesis of Hpg and Dpg seven genes are required in total. Hpg derives from 

hydroxyphenylpyruvate, the direct precursor of tyrosine. Hydroxyphenylpyruvate is converted into 

the Hpg precursor p-hydroxyphenylglyoxylate by the enzymatic activities of a p-hydroxymandelate 

synthase and a p-hydroxymandelate oxidase (Hubbard et al., 2000; Kastner et al., 2012). Dpg is not 

derived from a proteinogenic amino acid but from four malonyl-CoA subunits and synthesized by a 

polyketide synthase mechanism (Pfeifer et al., 2001). The concerted enzymatic catalysis of DpgA-D 

leads to the Dpg precursor 3,5-dihydroxyphenylglyoxylate. The transamination of both, p-

hydroxyphenylglyoxylate and 3,5-dihydroxyphenylglyoxylate to yield the end products Hpg and Dpg 

is catalyzed by the same tyrosine dependent aminotransferase (Pfeifer et al., 2001).  

32
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β-Ht is formed by the activity of three gene products, a nonribosomal peptide synthetase 

homologue, a P450 monooxygenase and a perhydrolase. The conversion of the precursor tyrosine to 

β-Ht is performed by loading tyrosine onto a peptide synthase module and its hydroxylation at the β-

position by a P450 monooxygenase (Puk et al., 2004). Finally, a perhydrolase catalyzes the release of 

β-Ht from the peptide synthase module by cleaving the thioester bond (Mulyani et al., 2010). In the 

biosynthesis of lipoglycopeptides like dalbavancin and teicoplanin however, hydroxylation of tyrosine 

is catalyzed by a β-hydroxylase after its activation by the NRPS (Stinchi et al., 2006). 

Tyrosine and its precursor 4-hydroxyphenylpyruvate are required for the biosynthesis of Dpg, Hpg 

and β-Ht, either as direct precursor or as amino donor. The supply of tyrosine is therefore a rate 

controlling factor in glycopeptide biosynthesis. In order to ensure adequate precursor supply for 

glycopeptide production the corresponding gene clusters encode a prephenate dehydrogenase (Pdh) 

as a common feature and in many cases also a 3-deoxy-D-arabino-heptulosonate-7-phosphate 

(DAHP) synthase (Donadio et al., 2005) as a specific metabolic adaptation to channel the metabolic 

flux in the direction of tyrosine. The DAHP synthase and the Pdh are key enzymes of the shikimate 

pathway, the metabolic pathway for the biosynthesis of aromatic compounds such as the amino 

acids phenylalanine, tyrosine, and tryptophan. The DAHP synthase is catalyzing the preliminary step 

of the shikimate pathway, the formation of DAHP by a condensation reaction of the pentose 

phosphate pathway intermediate D-erythrose 4-phosphate and the glycolytic pathway intermediate 

phosphoenolpyruvate. Further downstream in the shikimate pathway the Pdh directs the flux 

towards tyrosine at the branching point of tyrosine and phenylalanine by converting prephenate to 

4-hydroxyphenylpyruvate (Stegmann et al., 2010).  

 

1.2.3  Glycopeptide antibiotics biosynthesis:  assembly of the heptapeptide 

The predominant composition of the heptapeptide from nonproteinogenic amino acids necessitates 

its assembly by nonribosomal peptide synthetases (NRPSs). NRPSs are multimodular enzymes with 

each module responsible for the recognition, incorporation and optionally for the epimerization of 

one specific amino acid into the assembling oligopeptide (Marahiel, 1997). Therefore, each module is 

organized by an adenylation (A) domain, responsible for substrate recognition and activation, a 

thiolation (T) domain, covalently binding the cognate amino acid and the nascent peptide via a 

thioesther bond and the condensation (C) domain, for catalyzing peptide bond formation. The 

optionally occurring epimerization (E) domain is required in modules converting L-amino acids into 

their D-forms. Several of these multimodular NRPSs are interacting as multienzyme complexes to 

assemble the heptapeptide backbone of glycopeptides. The last module in the assembly line is 

terminated by a thioestherase (TE) domain. The TE domain is hydrolyzing the thioester bond which 

links the mature heptapeptide to the NRPS.  
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The released heptapeptide is an aglycon with already oxidatively cross-linked amino acid side chains 

due to the activity of P450 monooxygenases whose substrates are not free biosynthetic precursors 

but rather NRPS bound intermediates (Stegmann et al., 2010). Glycopeptide gene clusters encode 

three or four P450 monooxygenases in addition to the one required for β-Ht synthesis. Gene clusters 

containing only three oxy genes encode the synthesis of type I and type II glycopeptides which are 

characterized by two ether links (between amino acid 2-4 and 4-6) and one C-C link (between amino 

acid 5-7) (Stegmann et al., 2006). Glycopeptides of the type III and IV however have a fully cyclized 

heptapeptide backbone due to the activity of a fourth P450 monooxygenases catalyzing the 

formation of an additional ether link between amino acid 1 and 3 of the heptapeptide (Hadatsch et 

al., 2007).  

 

1.2.4  Glycopeptide antibiotics biosynthesis:  modification of the heptapeptide 

All described glycopetides besides ristomycin A exhibit at least one chlorination. These chlorine 

atoms are attached by cluster encoded FADH2-dependent halogenases (Puk et al., 2002). It is 

assumed that the chlorination time point is most likely during heptapeptide synthesis, occurring at 

NRPS bound intermediates (Puk et al., 2004). Further tailoring reactions occur at a late stage of 

glycopeptide biosynthesis at the free, already cross-linked and halogenated aglycon in the cytoplasm 

and comprise methylation and glycosylation. These reactions are catalyzed by a set of various 

methyl- and glycosyltransferases. 

 

1.2.5 Transcriptional regulation of glycopeptide biosynthesis 

Glycopeptide gene clusters contain enzymes required for the biosynthesis of the end product and its 

export, often genes conferring self-resistance to the producer strain and genes encoding regulatory 

functions. One mutual feature of all described glycopeptide gene cluster is the presence of a 

pathway-specific StrR-like transcriptional regulator (Donadio et al., 2005). StrR was initially described 

in Streptomyces griseus (Retzlaff and Distler, 1995) and Streptomyces glausescens (Beyer et al., 

1996). StrR is an essential transcriptional activator for the streptomycin biosynthesis, required to 

activate the expression of all streptomycin biosynthetic genes but not for the expression of the gene 

conferring self-resistance (Tomono et al., 2005). In the case of glycopeptide biosynthesis, it was 

shown that the StrR-like regulator Bbr of the balhimycin gene cluster is essential for glycopeptide 

production (Stegmann et al., 2010). Specific Bbr binding to promoter regions of several biosynthetic 

genes within the balhimycin gene cluster initiates their transcription (Shawky et al., 2007). 
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1.3 Ionophores: naturally occurring chelating agents  

Bioavailability of iron is very low due to its predominant occurrence as ferric ions in aerobic 

environments, which form insoluble complexes that cannot be assimilated by microorganisms 

(Challis, 2005). The biosynthesis and excretion of siderophores is a common strategy to address this 

problem. Siderophores scavenge and solubilize ferric ions in order to enhance specific iron uptake. 

This functionally class of iron acquiring chelating compounds is widely described and a common 

feature of many microorganisms. However, chelating agents, which function in acquisition of 

transition metals other than iron, have been disregarded for long time. Examples described so far are 

e.g. the zincophore coelibactin from the actinomycete Streptomyces coelicolor (Kallifidas et al., 2010) 

whose NRPS gene cluster is zinc responsively transcribed and chalkophores from methane oxidizing 

bacteria (Kim et al., 2004) termed methanobactins which are uptaken as copper-loaded complex. 

 

1.3.1 Siderophore biosynthesis 

Most of the described ionophores can be classified into catecholates, hydroxamates or carboxylates 

according to the functional groups coordinating the binding of the metal ion. Catecholate ionophores 

contain a hydroxylated aryl moiety deriving from the 2,3-dihydroxybenzoic acid. Many ionophores 

are polypeptides that are synthesized by NRPS systems (Crosa and Walsh, 2002). Also most aryl 

group containing ionophores are NRPS assembled. An exemplary NRPS derived siderophore is the 

enterobactin (also called enterochelin) of various enterobacteriaceae like Escherichia coli (O'Brien 

and Gibson, 1970; Gehring et al., 1998) or Salmonella typhimurium (Pollack and Neilands, 1970). 

Several other bacterial ionophores however are no polypeptides, but instead assembled by 

alternating dicarboxylic acid and diamine or amino alcohol building blocks which nevertheless derive 

from amino acids (Challis, 2005). These kind of ionophores are usually synthesized by the second 

main pathways for siderophore biosynthesis, the NRPS-independent siderophore (NIS) pathway. This 

pathway depends on an adenylating enzyme family of synthetases (NIS synthetases) that 

characteristically mediate the formation of amide or ester bonds between a substrate amine and a 

carboxylic acid substrate (Oves-Costales et al., 2009). Aerobactin is an example of a siderophore 

produced by the NRPS independent pathway (de Lorenzo and Neilands, 1986). 

 

1.3.2 Metal responsive regulation of ionophore biosynthesis 

An efficient uptake of iron and other metal ions is essential for all living cells. However, highly 

concentrated metal ions are toxic to cells by e.g. creating reactive oxygen species or inhibiting 

physiological functions of proteins by blocking important thiols or by competing with other metal 

ions for binding sites. Hence, all cells have to adjust to this bivalent nature of metal ions and maintain 

metal homeostasis optimal for cell survival. In prokaryotes this precise balance is mainly maintained 
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by using metal-responsive transcriptional factors, which sense metal deficiency and metal excess, 

respectively and regulate genes encoding e.g. metal uptake or metal export, storage and 

detoxification functions. Genes encoding metal uptake functions are usually controlled by repressor 

proteins which are active in their metal bound form when the cytoplasmatic metal concentration 

increases above the homeostasis level.  

 

  1.3.2.1 The ferric uptake regulator (Fur) 

The major iron dependent regulator in gram-negative and low-GC gram-positive bacteria is the ferric 

uptake regulator (Fur) (Hantke, 1981; Bagg and Neilands, 1987). Besides the iron sensing Fur there is 

a huge diversity in metal selectivity and biological function within the Fur protein family of 

transcriptional regulators, including sensors of zinc (Zur) (Patzer and Hantke, 1998), manganese 

(Mur) (Diaz-Mireles et al., 2004) and nickel (Nur) (Ahn et al., 2006). Other family members use metal 

catalyzed oxidation reactions to sense peroxide-stress (PerR) (Bsat et al., 1998) or the availability of 

heme (Irr) (Qi et al., 1999). 

Fur proteins are typically transcriptional repressors. In their cognate metal ion bound form (holoFur 

protein) they specifically bind to corresponding palindromic A/T-rich sequences found in the 

promoters of their DNA targets (Fillat, 2014). Thereby they prevent the access of the RNA 

polymerase to the promoter region resulting in the repression of downstream genes. The metal free 

proteins (apoFur protein) possess low or negligible affinity for the operator sequence leading to a 

derepression of the target genes.  

This Fur mediated iron dependent transcriptional regulation is also utilized to restrict the 

biosynthesis of siderophores to iron depleted conditions. Already one of the very first studies on the 

genetic background of iron regulation in S. typhimurium described the iron dependent biosynthesis 

of the NRPS derived enterobactin by an at that time not yet identified factor which was already 

termed fur (iron uptake regulation) (Ernst et al., 1978). Later on it was shown that also the NIS 

directed biosynthesis of the E. coli aerobactin is tightly repressed by Fur and its ferrous ion 

corepressor (Bagg and Neilands, 1987). 

 

1.3.2.2 The iron dependent DtxR protein family 

The DtxR family of metalloregulatory proteins includes two major subfamilies, the iron sensing and 

the manganese sensing ones. The members of the iron sensing subfamily have been either termed 

DtxR (diphtheria toxin repressor) or IdeR (iron dependent regulator) and are described to fulfill their 

iron regulatory function in high-GC gram-positive bacteria like e.g. in Corynebacterium spp. (Pohl et 

al., 1999a), Mycobacterium spp. (Pohl et al., 1999b) and Streptomyces spp. (Günter-Seeboth and 

Schupp, 1995). Due to their overlapping regulon, the iron sensing DtxR subfamily is considered to be 
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the functional orthologue of Fur in most high-GC gram-positive bacteria (Hantke, 2001b). Although 

there is no sequence similarity between the two major iron sensing transcriptional repressors Fur 

and DtxR, they do share some similar structural features. 

The iron dependent transcriptional regulation of siderophore biosynthesis by IdeR was shown e.g. in 

Mycobacterium smegmatis for the extracellular siderophore exochelin and the cell-wall-associated 

siderophore mycobatin (Dussurget et al., 1998; Dussurget et al., 1999). Also the synthesis of the NIS 

derived hydroxamate siderophores of the desferrioxamine group, which are secreted by many 

Streptomyces species, is iron dependently regulated by a DtxR family protein (Tunca et al., 2007). 

 

1.3.2.3 The zinc uptake regulator (Zur) 

The major prokaryotic factor regulating the expression of genes encoding zinc uptake and 

mobilization functions is Zur (zinc uptake regulator) initially described in Bacillus subtilis and E. coli 

(Gaballa and Helmann, 1998; Patzer and Hantke, 1998). Zur proteins are present in a diversity of 

bacterial clades and have been functionally characterized in gram-negative bacteria as well as in low 

and high-GC gram-positive bacteria (Fillat, 2014). 

Regulons under the control of Zur proteins include genes encoding e.g. high affinity zinc uptake 

systems (znuABC), putative zincophors and zinc free paralogues of ribosomal proteins. These genes 

are repressed by binding of the zinc bound holoZur proteins under zinc-replete conditions and 

derepressed by dissociation of the zinc free apoZur protein from the DNA.  

The zinc responsive Zur of the actinomycete S. coelicolor controls the expression of a ZnuABC uptake 

system, of an alternative zinc free set of ribosomal proteins and also of an NRPS gene cluster 

(Kallifidas et al., 2010). Though no product was yet assigned to this cluster it was predicted to direct 

the synthesis of a compound (termed coelibactin) with siderophore-characteristic structural features. 

Due to the zinc dependent transcription of the corresponding genes coelibactin is predicted to serves 

as zincophore which is synthesized in order to satisfy the zinc demand of S. coelicolor (Zhao et al., 

2012). 

 

1.4  Ethylenediamine-disuccinate (EDDS) 

The aminopolycarboxylic acid EDDS contains a central diaminoethane moiety. EDDS is a structural 

isomer of the synthetic compound ethylenediamine-tetra-acetate (EDTA). Both chelating agents form 

typical sixfold coordinated complexes with transient metal ions (Chen et al., 2010). In contrast to 

EDTA, EDDS exhibits two asymmetric C-atoms allowing the formation of four optical stereoisomers, 

[S,S]-, [R,R]- and the meso-isomers [R,S]- and [S,R]-EDDS. Exclusively the S,S-configuration is readily 

biodegradable until complete mineralization (Schowanek et al., 1997; Takahashi et al., 1997). On a 

commercial scale, [S,S]-EDDS is chemically produced by Innospec Inc. UK and commercialized under 
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the trade name EnviomentTM as an alternative to its widespread industrially applied isomer EDTA, 

which strongly resists biodegradation. Combining excellent chelating properties with the accessibility 

to biodegradation, [S,S]-EDDS is considered as a sustainable chelating agent with a favorable 

environmental profile, possessing the potential to replace EDTA and other environmentally 

threatening chelating agents in various applications. Chelating agents are used in industrial processes 

to remove perturbing metal ions or to keep the metal concentration constant. They are widely 

implemented as antioxidants in paper, textile and laundry industry but also as cosmetic, food and 

medical additives. In consumer applications, chelating agents are used to sequester trace elements 

to prevent catalytic reactions leading to rancidity, loss of flavor and discoloration. Chelating agents 

further found application as crop fertilizers and to remediate contaminated soils.  

EDDS was chemically synthesized (Kezerian and Ramsey, 1964; Neal and Rose, 1968) prior to its 

identification as a natural product of the bacterial strain A. japonicum during a screening for 

phospholipase C inhibitors (Nishikiori et al., 1984). [S,S]-EDDS exerts its inhibitory effect by 

complexing zinc ions, which are essential cofactors of this zinc-metalloenzyme (Hough et al., 1989). 

A. japonicum sets the stage to establish a fermentative [S,S]-EDDS production process as alternative 

to today’s chemical production. A sustainable biotechnological [S,S]-EDDS production would even 

further improve the environmental finger print of this chelating agent by using renewable educts 

instead of fossil ones. The fermentation process was already optimized by growing A. japonicum in 

defined minimal medium characterized by very low zinc concentration. Under this conditions a final 

yield of up to 20 g L-1 [S,S]-EDDS was obtained using a long term fed batch cultivation strategy 

(Zwicker et al., 1997). However, the biosynthesis of [S,S]-EDDS under zinc deficiency prevents the 

scale up of the fermentative production due to the ubiquitous presence of zinc in large industrial 

metal fermenters. To circumvent this problem and to achieve an economically efficient 

biotechnological process, a zinc deregulated high performance production strain is required. 

 

1.5 Genome mining: an empirical strategy to discover new natural products 

During the golden era of natural product screening the process of compound discovery almost 

exclusively relied on the detection of bioactivity in extracts from large quantities of natural sources 

and the activity guided isolation of the corresponding substances. This massive screening effort 

provided the vast majority of secondary metabolites know today. Due to frequent reisolation of 

already known natural compounds concerns emerged regarding the limits of natural product 

discovery. However, one major progress in the scientific field of natural product discovery was the 

observation that one microorganism has the potential to produce a variety of different compounds 

when grown under variable culture conditions and the henceforth established one strain/many 

compounds (OSMAC) paradigm (Bode et al., 2002).  
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Genome sequencing projects finally revealed the genetic basis for this observation. Secondary 

metabolite producing bacteria like e.g. members of the order actinomycetales show a genetic 

potential to manufacture small molecules that exceeds their observed chemistry by far. These 

observations highlighted that a large proportion of structurally novel natural products remained to 

be isolated and it was assumed that there are compounds which have escaped detection during 

massive screening programs.  

These not detected compounds can be categorized into two distinct groups: In principle detectable 

molecules which are produced by the microorganisms and escaped the classical screening 

approaches due to e.g. limits in analytics or proper evaluation of the data and into the group of 

natural products which are not produced under classical applied cultivation conditions and which are 

thus analytically neither detectable. The corresponding gene clusters of the produced but not 

detected metabolites are referred to as cryptic or orphan gene clusters, while the gene clusters 

which are very poorly expressed or not expressed at all are referred to as silent gene clusters. 

These fundamental findings led to the development of alternative methods to discovery natural 

compounds. The new methodology relies on the evaluation of the genetic information as the base 

for rational hunting for new metabolites (Monciardini et al., 2014). A strategy to get access to this 

enormous genetic potential by exploiting these cryptic or silent gene clusters is the Genome Mining 

approach. The crucial points of Genome Mining are the confidential evaluation of the genetic 

information, the subsequent activation and final exploitation of these cryptic gene clusters. However, 

due to the biochemical heterogeneity of structures, the presence of unknown enzymes and the 

dispersed nature of the secondary metabolite gene clusters and end products, the identification, 

categorization and interpretation of the enormous information has been extremely challenging. To 

get an idea of the synthetic potential of a certain strain, a rapidly and reliably working bioinformatical 

tool (antiSMASH) has been developed (Weber et al., 2015). antiSMASH is the first comprehensive 

pipeline capable of identifying and categorizing biosynthetic loci covering the whole range of 

described secondary metabolite compound classes.  

To eventually use these available genetic informations to get access to putative valuable compounds 

several distinct genome mining techniques were developed and successfully implemented. In certain 

cases the bioinformatical analyses can lead to a confidential prediction of characteristic structural 

features of the product and thus to a prediction of the physicochemical properties (Zerikly and 

Challis, 2009). These predicted properties can then in turn be targeted by adapted analytical 

methods, facilitating the identification of the corresponding metabolic product. The identification of 

salinilactam A is exemplifying this strategy (Udwary et al., 2007). Analysis of a polyketide gene cluster 

in the marine actinomycete Salinispora tropica suggested that it codes for a novel lysine-primed 

polyene macrolactam polyketide. The rational evaluation of a fermentative broth for compounds 
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with characteristic UV chromophores associated with polyene units, successfully led to the isolation 

of salinilactam A (Udwary et al., 2007). An advantage of this approach is that genetic manipulation of 

the producing bacteria is not needed. However, for cases that prediction of physicochemical 

properties deduced from the genetic cluster information cannot be done with sufficient accuracy and 

confidence more generic approaches have to be applied. One strategy relies on the inactivation of 

essential biosynthetic genes and the subsequent comparative analysis of the wild type and the 

mutant metabolomes in order to identify a compound whose synthesis is directed by the inactivated 

cluster. This strategy however requires an established genetic manipulation system of the producing 

strain, which can be a limiting factor. One of the first examples in which this strategy was successfully 

applied was the identification of the S. coelicolor siderophore coelichelin (Lautru et al., 2005). 

Coelichelin was identified after the inactivation of the NRPS encoding gene cchH and the 

subsequently performed comparative metabolic profiling.  

These approaches however have one common limitation; they are not suitable to yield new 

compounds of not expressed, silent gene clusters. Thus, empirical approaches that exploit knowledge 

in the field of transcriptional gene regulation were developed to awake these silent secondary 

metabolite gene clusters in order to make their corresponding product accessible for detection and 

isolation. In the hierarchically arranged regulatory cascades of secondary metabolite biosynthesis 

regulation, the gene cluster associated regulatory genes do form the lowest level (Fedorenko et al., 

2015). Targeted strategies directly attack these low level pathway specific regulators and rely on 

their uncoupling from their natural regulatory system and therefore generating a synthetic 

regulatory state. Overexpression of positive pathway specific regulators mainly enhances or even 

induces the transcription of structural genes and thus is a commonly used strategy for either 

improving production yield or for awakening silent gene clusters (Fedorenko et al., 2015).  

Such a pathway specific activator targeting approach was applied in Streptomyces ambofaciens to 

induce the expression of a silent PKS gene cluster (Laureti et al., 2011). The constitutive expression of 

a cluster associated positive regulator gene triggered the expression of the corresponding 

biosynthetic genes and led to the identification of the stambomycins, glycosylated macrolides with 

promising antitumor activity. 

However, regulation of a gene cluster by a transcriptional repressor does necessitate its deletion 

instead of its overexpression to induce cluster expression. This strategy was followed to regulatory 

uncouple the jadomycin B PKS gene cluster of Streptomyces venezuelae (Yang et al., 1995). 

Inactivation of a cluster adjacent repressive gene led to constitutive production of jadomycin B, 

without the requirement of a stress treatment procedure, essential prior to production in the wild 

type strain. This is one of the first successfully applied approaches of deleting a repressive regulatory 
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gene within a cryptic gene cluster to enhance the production of related secondary metabolites and 

thus make them detectable. 

The empirical approach to manipulate regulatory genes enables the access to a further and deeper 

level of secondary metabolite discovery. Rational exploitation of knowledge in regulation of 

secondary metabolite biosynthesis however can not only help to assign a molecule to a known gene 

cluster but also in turn to assign unknown genes to the biosynthesis of a known molecule. 

Moreover, the evaluation and the consideration of mechanisms of biosynthetic cluster regulation, 

including superior triggers and regulatory cascades can further contribute to the fundamental 

understanding of the physiological functions of natural products and also to address the question 

what fore do certain microorganisms possess such a well-equipped tool box of natural products.  

 

1.6 Aim of the work  

Aim of this study was to develop and to implement empirical regulatory approaches to specifically 

investigate selected aspects of A. japonicum secondary metabolism.  

 

Therefore the following questions had to be answered: 

 Does A. japonicum possess the genetic potential to produce a glycopeptide, which can be 

specifically activated? 

 Can we gain knowledge in the field of zinc regulation and exploit it to identify the [S,S]-

EDDS biosynthetic genes? 
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2. Results 

2.1  Activation of a silent glycopeptide gene cluster in A. japonicum 

Strains of the genus Amycolatopsis are known glycopeptide antibiotic producers. Although A. 

japonicum has been intensively studied for many years, no product with antibacterial activity could 

be identified so far. However, in previous works, it was shown that A. japonicum produces 

glycopeptide resistant cell wall precursors (Schäberle et al., 2011) and that the genome contains an 

oxyB gene, encoding a P450 monooxygenase, which is essential for the production of glycopeptides 

(Everest and Meyers, 2011). From these results it was assumed that A. japonicum has the potential 

to produce a glycopeptide. To test whether A. japonicum genome contains such a silent glycopeptide 

gene cluster the knowledge of its transcriptional regulation was exploited.  

 

2.1.1 A. japonicum encodes a silent glycopeptide gene cluster  

All known glycopeptide clusters are transcriptionally controlled by a pathway-specific StrR-like 

regulator (Donadio et al., 2005). Hence, we applied a cluster activation strategy, by overexpressing 

the gene encoding the characterized pathway-specific transcriptional regulator of the balhimycin 

gene cluster, bbrAba (Shawky et al., 2007), in A. japonicum with the aim to awake the suggested silent 

glycopeptide gene cluster. The recombinant strain overexpressing bbrAba and the A. japonicum wild 

type strain were grown in a medium suitable for glycopeptide production and the supernatants were 

screened for production of an antibiotically active product by a growth inhibition assay combined 

with comparative metabolic profiling. Whereas the supernatant from A. japonicum wild type did not 

contain any biological active compound, the culture supernatant from the recombinant strain 

strongly inhibited growth of an indicator strain (Fig. 1, publication 1). The comparative metabolic 

profiling approach using HPLC-DAD revealed a peak in the supernatant of the recombinant A. 

japonicum strain overexpressing bbrAba which was absent in the chromatogram of the A. japonicum 

wild type supernatant (Fig. 2, publication 1). The detected peak revealed specific DAD spectra with 

high similarity to spectra of other described glycopeptides. 

 

2.1.2 Genome sequencing and Genome mining revealed a glycopeptide gene cluster 

In order to identify the gene cluster for the biosynthesis of the glycopeptide the genome of A. 

japonicum was sequenced. The genome consists of two replicons: the chromosome (8,961,318 bp) 

and the plasmid pAmyja1 (92,539 bp), encoding a total of 8422 protein coding genes (Table 1, 

Publication 2). Genome analysis revealed the presence of a type III PKS/NRPS hybrid gene cluster 

which showed high similarity to already described glycopeptide gene clusters. This cluster consists of 

39 distinct open reading frames (Fig. 3, publication 1) with a total size of almost 69 kb. It is predicted 

1312

ResultsIntroduction



                                                                                                                                                                          Results 
 

14 
 

to encode enzymes responsible for assembly and export of the glycopeptide, self-resistance and 

gene regulation. In the last two decades considerable progress has been made in understanding the 

genetics and biochemistry of glycopeptide biosynthesis. Therefore, the putative functions of all 39 

gene products could be deduced by comparative amino acid sequence analysis with homologues 

from known glycopeptide clusters (Table 1, publication 1). The profound knowledge of the individual 

enzymes participating in glycopeptide biosynthesis makes it possible to almost completely predict 

the structure of the final product. The in silico data strongly suggested that the final product of the 

identified gene cluster is a six-fold glycosylated, twice methylated, non-halogenated and fully cross-

linked glycopeptide. The genetic organization and domain composition of the NRPS specifies a 

heptapeptide with the amino acid sequence L-Hpg1-D-β-Ht2-L-Dpg3-D-Hpg4-D-Hpg5-L-β-Ht6-L-Dpg7 

(Dpg = 3,5-dihydroxyphenylglycine, Hpg = p-hydroxyphenylglycine, β-Ht = β-hydroxytyrosine). The 

incorporation of aromatic amino acids at position 1 and 3 together with the predicted complete 

cyclized heptapeptide implies that this gene cluster directs the synthesis of a type III glycopeptide 

(Fig. 4, publication 1). 

 

2.1.3 The cluster encoded transcriptional activator AjrR is functional 

The newly identified gene cluster harbours a gene whose deduced product (AjrR) exhibits high 

similarity to the StrR-like transcriptional activator of the balhimycin gene cluster (BbrAba). However, 

BbrAba initiates the transcription of the glycopeptide gene cluster in A. balhimycina while the A. 

japonicum gene cluster is of silent nature under identical growth conditions. To evaluate its in vivo 

functionality, AjrR was expressed under the control of a constitutive promoter in A. japonicum. The 

supernatant of the recombinant A. japonicum strain, constitutively expressing ajrR, inhibited growth 

of an indicator strain as shown for the heterologous expression of bbrAba (Fig. 1, publication 1). HPLC-

DAD analyses confirmed the biosynthesis of the glycopeptide. To investigate the influence of the 

StrR-like transcriptional activators on gene expression of the identified glycopeptide gene cluster the 

transcriptional pattern of representative cluster genes were determined in the A. japonicum wild 

type and in the two recombinant strains expressing bbrAba and ajrR, respectively. No transcript of ajrR 

and neither of any other analyzed structural gene was detected in A. japonicum wild type (Fig. 5, 

publication 1). However, overexpression of both bbrAba and ajrR induced the transcription of all 

investigated structural genes. In contrast, transcription of the vanHAX-like glycopeptide resistance 

cassette was detected in A. japonicum wild type without the requirement of a specific transcriptional 

initiation by ajrR.  
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2.1.4 Structure elucidation revealed ristomycin A as product of A. japonicum 

In order to determine the chemical structure of the glycopeptide, A. japonicum overexpressing the 

pathway specific regulator BbrAba was grown in a 20 L fermenter prior to purification procedure. 

Glycopeptide production was detected after 24 h of growth and reached a maximum amount up to 

200 mg L−1 (Fig. 7, publication 1). Activity guided isolation was performed via an adsorbent resin and 

subsequent reversed phase preparative HPLC. The purified compound was analyzed by various 

analytical methods (HPLC-ESI-MS, ESI-MS/MS, HR-MS, 1H and 13C NMR, CD-spectroscopy) to 

determine its chemical structure. The structure elucidation revealed that the identified gene cluster 

is directing the production of ristomycin A. Ristomycin A is a type III glycopeptide with a four time 

oxidatively cross-linked amino acid backbone consisting of Hpg-β-Ht-Dpg-Hpg-Hpg-β-Ht-Dpg which is 

decorated by six glycosidic residues and two methylations (Fig. 4, publication 1).  

 

2.1.5 A. japonicum ristomycin A induces in vitro platelet aggregation 

Ristomycin A causes thrombocytopenia and platelet agglutination. Thus it is applied to assay those 

therapeutically unfavorable functions in vitro as a diagnostic compound to detect widespread 

hereditary genetic disorders such as von Willebrand disease and Bernard-Soulier syndrome (Sarji et 

al., 1974). Activity of the von Willebrand factor is measurable by the ristomycin-platelet-induced 

agglutination method. In a platelet aggregation assay it was demonstrated that ristomycin A isolated 

from A. japonicum has the same in vitro function as the commercial reference ristomycin A (Fig. 8, 

publication 1).  
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2.2  Identification of the [S,S]-EDDS biosynthetic genes by exploiting knowledge of zinc 

dependent transcriptional regulation 

A. japonicum was described as the producer of [S,S]-EDDS in 1984 (Nishikiori et al., 1984). However, 

the enzymes required for EDDS biosynthesis have not been identified during the pregenomic era. 

Different classical approaches such as heterologous expression of an A. japonicum cosmid library in a 

non-producer strain, comparative proteomics of cells growing in the presence and in the absence of 

zinc or screening for predicted biosynthetic enzymes or regulatory elements with degenerative 

primers have been applied unsuccessfully in order to identify the [S,S]-EDDS biosynthetic genes 

(Stegmann, 1999; Moll, 2006; Frasch, 2008). The access to the A. japonicum genome sequence 

allowed the in silico data analysis to evaluate the biosynthetic potential of A. japonicum. This in silico 

analysis revealed the presence of various putative gene clusters encoding the synthesis of natural 

products in A. japonicum (Table S1, publication 1).  

However, the characteristic structural features of [S,S]-EDDS could not be assigned to any of the 

predicted assembly mechanisms encoded by the identified clusters. Therefore, the development of 

an alternative strategy for the identification of the [S,S]-EDDS biosynthetic genes was required.  

The key assumption of the established approach is that the zinc repressed biosynthesis of [S,S]-EDDS 

is mediated by a zinc responsive regulatory element. The molecular genetic analysis of the zinc 

regulation and the subsequent computational screening for zinc repressed genes were conducted to 

investigate [S,S]-EDDS biosynthesis. 

 

2.2.1 The zinc responsive zinc uptake regulator Zur controls the [S,S]-EDDS biosynthesis  

The major zinc responsive transcriptional regulator which is regulating the expression of genes 

encoding zinc uptake and zinc mobilization functions in prokaryotes is the zinc uptake regulator Zur 

(Fillat, 2014). Blast analysis of the A. japonicum genome using the S. coelicolor Zur protein (Owen et 

al., 2007) as query revealed a gene whose proposed gene product exhibits high similarity. In support 

of its potential role as major zinc regulator, computational amino acid sequence analyses showed 

that the amino acids described to be involved in zinc binding are highly conserved (Fig. S1, 

publication 3). The coding region of A. japonicum zur was deleted (A. japonicum Δzur) to investigate 

its role as regulator of the [S,S]-EDDS biosynthesis. In order to study the effect of the deletion, the 

mutant strain and the A. japonicum wild type strain were grown in synthetic medium in presence of 

increasing zinc concentrations. At zinc concentrations ≥ 2 µM [S,S]-EDDS production was inhibited in 

the A. japonicum wild type (Fig. 2, publication 3). In contrast, zinc independent and constant [S,S]-

EDDS biosynthesis was observed in A. japonicum Δzur over the total range of the applied zinc 

gradient (Fig. 2, publication 3). The production of [S,S]-EDDS in this mutant in presence of zinc 

suggested that the deleted gene encodes the zinc sensing regulator Zur indeed and that the [S,S]-
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EDDS biosynthetic genes are under its zinc responsive control. In addition to the zinc independent 

[S,S]-EDDS production, the deletion of zur led to a significantly increased total [S,S]-EDDS yield 

compared to the wild type strain.  

 

2.2.2 Zur controls the high affinity zinc uptake system ZnuABC 

Zur regulons characterized so far usually comprise 10-30 genes with different functions often related 

to zinc homeostasis. In particular the high affinity zinc uptake system ZnuABC has been identified as 

Zur regulated in many bacteria and is widely distributed throughout the bacterial kingdom (Patzer 

and Hantke, 1998; Campoy et al., 2002; Lucarelli et al., 2007; Shin et al., 2007; Pawlik et al., 2012). 

Blast analyses using the previously described ZnuABC system of S. coelicolor (Shin et al., 2007) 

revealed the presence of two putative ABC transporters, whose deduced protein sequences show 

high levels of similarity to ZnuABC of S. coelicolor (Fig. 3B, publication 3). To elucidate which ABC 

transporter system is physiologically connected to zinc uptake in A. japonicum, their transcriptional 

patterns were investigated with respect to the presence of various divalent metal ions. The 

transcription of one ABC uptake system was specifically repressed by manganese while the second 

one was specifically repressed by zinc (Fig. 3C, publication 3). Therefore the physiological functions of 

high affinity zinc and manganese uptake were assigned to the corresponding ABC uptake systems. 

To evaluate the zinc regulatory function of Zur for znuABC transcription, znuB transcription was 

analyzed in A. japonicum Δzur. In contrast to the wild type, where znuB transcription is absolutely 

repressed by zinc concentrations ≥ 2.0 µM, its transcription occurred zinc independently in A. 

japonicum Δzur, with detectable expression even at highly elevated zinc concentrations (Fig. 4, 

publication 3). To analyze whether Zur binds to the znu promoter region in a zinc dependent manner, 

electrophoretic mobility shift assays (EMSA) were performed. This revealed a zinc dependent and 

specific binding of purified Zur protein to the znu promoter region (Fig. 5, publication 3).  

 

2.2.3 The rational screening of the A. japonicum Zur regulon revealed putative [S,S]-EDDS 

biosynthetic genes 

The zinc dependent binding of Zur to the znu promoter region suggested the presence of a specific 

Zur binding sequence. To identify this motif a computational alignment of the znu promoter region to 

previously described Zur binding sequences of other, high-GC gram-positive bacteria was performed. 

This alignment revealed an A/T-rich palindromic sequence within the znu promoter region, exhibiting 

high similarity to the previously described motifs. The newly identified sequence was used to deduce 

a more specific A. japonicum Zur binding sequence (Fig. 6, publication 3). 

This motif was then used to screen the A. japonicum genome to identify further Zur regulated genes, 

in particular the [S,S]-EDDS biosynthetic genes for molecular biological evaluation. This screening 
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revealed a putative binding motif between two genes transcribed in diverse directions (aesE and 

aesA) (Fig. 6C and 7A, publication 3). aesE encodes a protein belonging to the amidase signature 

family, while aesA is the first gene of an operon (aesA-D). The proposed gene products of aesA, aesB 

and aesC share significant similarity to enzymes involved in the synthesis of staphyloferrin B (SB) (Fig. 

6B, publication 3), a NIS derived siderophore of S. aureus (Cheung et al., 2009). The concerted 

enzymatic activities of the three AesA-C homologous of S. aureus lead to the generation of a central 

1,2-diaminoethane (Dae) moiety present in SB (Fig. 7C, publication 3). Also the [S,S]-EDDS structure is 

characterized by such a central Dae moiety. Accordingly, the generation of the central Dae moiety in 

[S,S]-EDDS biosynthesis is suggested to occur in a similar way as in SB biosynthesis. However, a NIS 

dependent stepwise assembly of the single building blocks has to be excluded for [S,S]-EDDS 

biosynthesis since no NIS synthetase is encoded in the A. japonicum genome at all.  

 

2.2.4 The transcription of the aesA-D operon is zinc responsively regulated by Zur 

Since [S,S]-EDDS is only produced under zinc limiting conditions, the transcription of the identified 

candidate genes aesA-D was analysed to possibly detect any collinearity between zinc inhibitory 

effects on [S,S]-EDDS productivity and gene transcription. The transcription pattern of aesA was 

determined after growth of A. japonicum in presence of various zinc concentrations. An inverse 

correlated transcription level of aesA to increased zinc concentration was observed whereby no 

transcript was detected for zinc concentrations above 2 µM (Fig. 4, publication 3). The zinc inhibitory 

effect was also seen for the genes aesB-D (Fig. S4, publication 3). In A. japonicum ∆zur however, 

aesA-D expression was zinc independent (Fig. S4, publication 3). aesA, which was used as probe 

representing the entire operon, exhibited a constitutive transcription over the whole range of 

applied zinc gradient in the ∆zur background (Fig. 4, publication 3). 

To further verify the Zur mediated zinc dependent repression of aesA-D, gel shift assays using 

purified Zur and the 5’ upstream region of aesA were performed. Purified Zur bound specifically to 

the DNA probe in presence of zinc, while no binding occurred in the absence of zinc (Fig. 5, 

publication 3). 

To quantitatively determine the transcriptional level of aesA-D in a zinc dependent manner, a 

transcriptional fusion of the aesA promoter region with the reporter gene gusA, encoding a β-

glucuronidase (GUS), was constructed. The reporter constructs were integrated into A. japonicum 

wild type and A. japonicum ∆zur genomes. The recombinant strains were grown in presence of 

various zinc concentrations before the analyses of GUS activities. Initially, GUS activities were 

assayed in cell based chromogenic assays. A. japonicum wild type containing the reporter construct 

solely exhibited GUS activity when grown at low zinc concentrations. In contrast, GUS activity was 

also visible in A. japonicum ∆zur at elevated zinc concentrations (Fig. 8B, publication 3). Quantitative 
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data were generated in spectrophotometric assays, subsequently. Under subinhibitory zinc 

concentrations, the strain representing A. japonicum wild type revealed GUS activity levels 

significantly above those of the negative controls (Fig. 8A, publication 3). Linear decreasing GUS 

activity was measured in the range of partially inhibitory zinc concentrations. No GUS activity was 

detectable in this strain when grown at zinc concentrations higher than 2 µM. In contrast, GUS 

activities in A. japonicum ∆zur carrying the reporter construct were measurable in presence of 

elevated zinc concentrations at the same level as in absence of zinc. This GUS activity was increased 

4.4 fold compared to the activity in A. japonicum wild type carrying the reporter construct after 

growth in absence of zinc.  

 

2.2.5 The aes genes are essential for [S,S]-EDDS production 

To prove whether the zinc regulated aesA-D operon is involved in [S,S]-EDDS biosynthesis, the entire 

genomic region containing aesA-C was deleted. The mutant strain A. japonicum ∆aesA-C was not able 

to produce [S,S]-EDDS (Fig. 9, publication 3). To verify that the loss of [S,S]-EDDS production in A. 

japonicum ∆aesA-C is only due to the aesABC deletion, a genetic complementation was performed by 

integrating a plasmid into the A. japonicum ∆aesA-C genome which harbours the complete aesA-D 

operon downstream of its native, zinc repressed promoter. This genetically complement mutant 

showed restored [S,S]-EDDS production (Fig. 9, publication 3). Due to the transcriptional control of 

the integrated aesA-D operon by the native promoter, production of [S,S]-EDDS occurred solely in 

zinc depleted medium. The amount of [S,S]-EDDS produced by this recombinant strain was increased 

two to three times compared to A. japonicum wild type. 

The genes aesF, aesG and aesH are located adjacent to aesE (Fig. 7, publication 3) and are predicted 

to encode a LysR family transcriptional regulator, a cysteine dioxygenase and an acetyltransferase, 

respectively. To further narrow down the [S,S]-EDDS biosynthetic gene cluster and to investigate the 

involvement of these genes in the biosynthesis of [S,S]-EDDS the genomic region harboring aesE-H 

was deleted. This mutant was not able to produce [S,S]-EDDS (Fig. S5, publication 3). However, the 

aesA-D operon was still zinc dependently transcribed in this mutant, confirming that the promoter 

region of aesA was not affected by this mutation. These results demonstrated that at least one of the 

aesE-H genes is required for the production of [S,S]-EDDS in addition to aesA-C. 

 

2.2.6  The [S,S]-EDDS biosynthesis as response to zinc deficiency is phylogenetically 

clustered 

The general microbial potential to produce [S,S]-EDDS was assessed by evaluating the phylogenetic 

abundance of the aes genes by computational analyses. This revealed that the occurrence of the 

aesA-H genes is restricted to certain strains of the genus Amycolatopsis. Of all analyzed genomes 
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solely these of Amycolatopsis sp. MJM2582, Amycolatopsis orientalis HCCB10007 and Amycolatopsis 

lurida DSM 43134 harbor the eight clustered genes aesA-H entirely with identical gene arrangement 

and with high sequence similarity compared to A. japonicum (Table S3, publication 3). Amycolatopsis 

decaplanina DSM 44594 and Amycolatopsis alba DSM 44262 genomes miss the terminal aesH 

homolog. Interestingly, the Zur-box is highly conserved in all discovered aesA 5’ upstream regions 

(Table S4, publication 3) evidencing the common Zur mediated and zinc dependent transcriptional 

repression. These identified strains are all closely related to A. japonicum and are classified into the 

Amycolatopsis phylogentic clade A. An exception within this phylogentic clade A however is 

Amycolatopsis azurea DSM 43854, which does not show a conserved [S,S]-EDDS cluster. In contrast 

to the total aes gene cluster, homologs of the aesA-D subcluster are quite abundant in various 

genera of actinobacteria and proteobacteria.  

To eventually correlate this genetic information to the actual capacity to produce [S,S]-EDDS, the 

phylogenetic clade A strains A. lurida, A. decaplaina, A. alba and A. azurea but also Amycolatopsis 

balhimycina DSM 5908, Amycolatopsis nigrescens DSM 44992 and Amycolatopsis nigrescens DSM 

44992 as representatives of other phylogenetic clades were grown under [S,S]-EDDS production 

conditions. A. lurida, A. decaplaina and A. alba grown without the supplementation of zinc produced 

[S,S]-EDDS, while no production was observable after growth of these strains in presence of zinc (Fig. 

S7, publication 3). No [S,S]-EDDS production could be detected after cultivation of A. azurea, A. 

balhimycina DSM 5908, A. mediterranei DSM 43304 nor A. nigrescens DSM 44992. 

These results show that [S,S]-EDDS production as an evolutionary response to zinc deficiency is likely 

a unique feature of the Amycolatopsis phylogenetic clade A. 
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3. Discussion  

3.1 A. japonicum genome contains a silent gene cluster directing the biosynthesis of 

ristomycin A 

Glycopeptides are a major type of secondary metabolites produced by the genus Amycolatopsis. 

Strains possessing the ability to produce glycopeptides tend to cluster together phylogenetically, 

with most, but not all, of the described producers belonging to the Amycolatopsis phylogenetic clade 

A (Everest and Meyers, 2011). Also the strain A. japonicum, which was known to be the producer of 

the chelating agent [S,S]-EDDS, does belong to this clade.  

All previously described glycopeptide producing Amycolatopsis strains have been identified as 

producers by activity guided screening approaches. These strains do express the corresponding 

antibiotic gene cluster under certain culture conditions. In contrast, A. japonicum does not produce 

any bioactive compound under culture conditions usually suitable for glycopeptide production.  

However, the application of a molecular genetic approach enabled the activation of glycopeptide 

production in the predicted producer strain A. japonicum. This was achieved by heterologous 

expression of the characterized pathway specific activator Bbr (Shawky et al., 2007) of the balhimycin 

gene cluster of A. balhimycina. Bbr induced the transcription of the structural genes required for 

glycopeptide biosynthesis in A. japonicum.  

The activation of a rationally predicted secondary metabolite gene cluster by overexpression of an 

empirical chosen transcriptional activator is a promising strategy which could be generally applied to 

purposefully activate various kinds of secondary metabolite classes in bacteria. The high throughput 

application of this strategy by activating certain secondary metabolite clusters in e.g. bacterial strain 

collections however may be limited by the requirement of bacterial accessibility to genetic 

manipulations.  

In contrast to usual genome mining approaches which use the accessible genetic information as base 

prior to activate silent gene clusters, this approach does not necessitate availability of genetic 

information and its evaluation. However, the basic strategy to overexpress a transcriptional activator 

in order to activate a silent gene clusters is shared with various successfully conducted, classical 

genome mining approaches. The analysis of the S. ambofaciens genome for its biosynthetic potential 

e.g. revealed the presence of a silent PKS gene cluster and the therein encoded pathway specific 

activator of the LuxR protein family prior to specific cluster activation by its homologous 

overexpression (Laureti et al., 2011).  

The detailed understanding of glycopeptide biosynthesis makes it possible to reliably deduce the 

structure of the final product from the genetic information to a certain degree. The in silico analysis 

of the identified gene cluster in A. japonicum suggested the biosynthesis of a sixfold glycosylated and 

twice methylated heptapeptide backbone consisting of seven aromatic amino acids whose side 
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chains are fully cross-linked. These informations correlate to the chemical structure of the type III 

glycopeptide ristomycin A. Previously only the structure of ristomycin A (Fehlner et al., 1972; 

Williams et al., 1979), but not the corresponding biosynthetic gene cluster has been reported. Since 

there is neither any other type III glycopeptide gene cluster described, the identified A. japonicum 

gene cluster is the first reported gene cluster exemplifying this type. Isolation of the glycopeptide 

and subsequent structure elucidation finally revealed that the A. japonicum type III glycopeptide 

gene cluster is indeed directing the synthesis of ristomycin A. The quite reliable in silico prediction of 

the chemical structure from the genetic information encoded by the gene cluster by considering the 

profound knowledge of glycopetide biosynthesis shows the power of nowadays available 

bioinformatics tools. 

The capability to produce ristomycin A however is not a unique feature of A. japonicum since this 

highly glycosylated glycopeptide was initially identified as a product of A. lurida (Grundy et al., 1956) 

and recently also as a product of Amycolatopsis sp. MJM2582 (Truman et al., 2014), two strains 

which are closely related to A. japonicum. The two strains A. lurida and Amycolatopsis sp. MJM2582 

as ristomycin A producer were identified by a classical activity guided screening of culture 

supernatant fractions. In case of Amycolatopsis sp. MJM2582 a targeted two-step bioassay system 

specified to detect the presence of glycopeptide antibiotics was applied. This screening approach 

relies on the reporter strain S. coelicolor ∆femX whose genetic background necessitates the presence 

of a glycopeptide for viability (Truman et al., 2014). This illustrates how different ways can lead to the 

same final goal. In contrast to the work and resource consuming activity guided screening 

procedures, the successfully applied molecular genetic activation of ristomycin A production in A. 

japonicum strongly facilitated the workflow leading to the isolation of the bioactive compound. 

As expected, computational analysis of the recently published genome sequences of A. lurida (Kwun 

and Hong, 2014) and Amycolatopsis sp. MJM2582 revealed the presence of gene clusters that exhibit 

identical genetic organization and high similarity on nucleotide level to each other (Truman et al., 

2014) and also to the cluster of A. japonicum. 

All of these gene clusters contain highly similar StrR-like transcriptional activators. However, in 

contrast to the A. japonicum gene cluster which is silent under laboratory conditions, the production 

of ristomycin A occurs without specific activation in A. lurida and Amycolatopsis sp. MJM2582. The 

silent state of the A. japonicum ristomycin A cluster is not due to the ajrR coding region itself since its 

in vivo functionality could be shown but rather due to the fact that ajrR is not transcribed under 

standardized cultivation conditions in A. japonicum. Therefore, we assume that there is a still 

unknown superior trigger required for ajrR activation which is either totally missing in A. japonicum 

or more probable absent under the investigated culture conditions.  
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The cluster border of all three described ristomycin A gene cluster are delimited by the vanHAX 

resistance cassette. The vanHAX resistance cassette is not an obligatory feature of glycopetide gene 

clusters. vanHAX genes are e.g. present in the gene clusters directing the biosynthesis of A47934 and 

teicoplanin while not in the balhimycin and chloroeremomycin gene clusters (Donadio et al., 2005). 

The transcription of this resistant cassette is usually regulated by the two component system VanRS 

sensing the presence of glycopeptides. In A. balhimycina however the vanHAX regulation is 

independent from the vanRS-like two component system which is found adjacent to the balhimycin 

gene cluster (Schäberle et al., 2011). Unlike that, no genes encoding the VanRS were identified 

anywhere in the Amycolatopsis sp. MJM2582 and A. lurida genomes (Truman et al., 2014) nor in the 

A. japonicum genome. This implies that vanHAX expression is VanRS independent also in these 

strains. Transcriptional analysis of vanH in A. japonicum wild type revealed indeed its constitutive 

expression independent of ristomycin A production and coincident to the observations that the A. 

japonicum wild type strain is producing a glycopeptide resistant cell wall whereas no glycopeptide 

production could be detected (Schäberle et al., 2011).  

A paradigm of antibiotic resistance is that resistant determinants are expressed in colinearity to 

antibiotic production to adapt the producing strain to the presence of the own compound. Therefore 

vanH expression and synthesis of resistant cell walls in the wild type A. japonicum may reflect that 

the cluster is rather very poorly expressed than absolutely silent, meaning that there is a basal 

ristomycin A production which is analytically not detectable but nevertheless leading to the 

requirement of resistance. In this case the overexpression of the pathway specific StrR-like regulators 

would rather be a yield optimization approach than a genome mining approach leading to activation 

of a silent gene cluster. 

The StrR-like independent vanH transcription stands in contrast to the essentiality of StrR-like protein 

for the expression of the structural ristomycin A genes. This is in agreement with the observation 

that expression of all streptomycin biosynthetic genes is StrR-dependent besides the expression of 

the resistant gene (Tomono et al., 2005). StrR-like independent gene expression of the resistance 

cassette in A. japonicum may reflect an evolutionary adaption of the strain to the presence of other 

competing soil-dwelling bacteria with the potential to produce glycopeptides rather than an 

unidimensional protection mechanism correlating to the production of the own glycopeptide 

antibiotic. 

Currently A. lurida is utilized for commercial production of ristomycin A which is needed for its 

application as diagnostic compound. Till date there are no described transformation protocols 

available to genetically manipulate A. lurida and Amycolatopsis sp. MJM2582. This seems to limit the 

yield optimization of ristomycin A production in these strains to classical strain development by 

directed evolution and to classical fermentative optimization. In contrast, several different 
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procedures to genetically manipulate A. japonicum are established (Stegmann et al., 2001). These 

procedures are however at least not applicable for A. lurida. The activation of ristomycin A 

production in the genetically easily accessible strain A. japonicum now offers the possibility to 

optimize the production in a rational manner by metabolic engineering approaches and to increase 

the currently obtained ristomycin A yield of 200 mg L-1 significantly. Functionality of such approaches 

could be shown in the case of balhimycin production where productivity of A. balhimycina was 

increasable by directing metabolic fluxes to increase the availability of specific precursors (Thykaer et 

al., 2010). The transfer of this knowledge to A. japonicum might lead to an optimized production 

strain with increased ristomycin A yield to outcompete the nowadays industrially utilized A. lurida. 
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3.2 The [S,S]-EDDS biosynthetic genes were identified by a novel approach exploiting 

knowledge in the field of zinc responsive gene regulation 

3.2.1 [S,S]-EDDS exemplifies the rare functionally class of zinc responsive ionophores  

A. japonicum produces the chelating agent [S,S]-EDDS as response to zinc deficiency. In contrast to 

zinc, other metal ions do not show any repressive effect on [S,S]-EDDS biosynthesis. Therefore it is 

considered that [S,S]-EDDS is an evolutionary adaptation to zinc deficiency which contributes to zinc 

uptake. In analogy to siderophores-mediated iron acquisition, the term zincophore was introduced 

for [S,S]-EDDS (Cebulla, 1995; Hantke, 2001a). 

In general, microbial chelating agents or ionophores are classifiable into functionally classes 

according to their responsive metal ion, with respect to their transcriptional regulation and to 

specific reassociation of the metal ion ionophore complex to the cell.  

To date, iron acquiring siderophores are the main group of described chelating compounds produced 

by microbes. The evolutionary success of siderophores suggested that microorganisms also employ 

analogous systems to sequester poorly accessible ions other than iron in order to enhance their 

assimilation. Examples describing such chelating agents however have not been given much coverage 

in literature though.  

Considering the essentiality of iron to living cells and the predominant occurrence of iron as highly 

stable and insoluble ferric oxide hydrate complexes in aerobic environments, which cannot be 

assimilated by microorganisms (Challis, 2005), makes it very likely that the vast majority of microbial 

ionophores are indeed iron acquiring siderophores. On the other hand, this suggests that production 

of ionophores in response to metal ions other than iron may be a proportionally rare adaptive 

mechanism of certain specialized microbes that either have to challenge severe deficiency of certain 

ions in their natural environment or require a comparatively high amount of certain ions due to their 

metabolism. Nevertheless, many ionophores which are thought to be siderophores, have never been 

experimentally verified to fulfil the criteria to be classified as such. antiSMASH e.g. annotates 

detected NIS gene clusters automatically as siderophore gene clusters without considering 

predictable informations of iron responsive transcriptional regulation. Additional computational 

screening for known metal regulator binding sites within the corresponding gene clusters predicted 

to direct the synthesis of ionophores could give further insight into their physiological function and 

could contribute to guide isolation of more ionophores of rare or even new classes. Directed 

bioinformatic analyses of huge nucleotide sequence data sets by combining the understanding of 

ionophore biosynthesis and metal ion responsive gene regulation may lead to identification of 

further ionophores which function in assimilation of certain metal ions other than iron and broaden 

the understanding of bacterial survival strategies.  
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The few known examples of non-iron-ionophore systems are either zinc or copper responsive. A 

known zinc acquisition system, consisting of a secreted factor (Pra1) which specifically reassociates 

with the cell surface by a coexpressed transporter protein (Zrt1), is utilized by the major human 

fungal pathogen Candida albicans to assimilate the essential nutrient zinc from its host (Citiulo et al., 

2012). Another class of ionophores are the methanobactins produced by certain methanotrophic 

bacteria (Kim et al., 2004). The methanobactins are secreted to acquire copper from the 

environment which is essential for these bacteria to serve as enzyme cofactor for the metabolic 

pathway of methane oxidation. According to the greek word for copper (chalkós) and in analogy to 

siderophores the methanobactins are referred to as chalkophores (Kenney and Rosenzweig, 2014).  

In contrast to siderophores whose biosynthesis is mainly directed by NRPS or NIS pathways, the C. 

albicans Pra1 and the methanobactins are ribosomally synthesized peptides. Whereas Pra1 is 

secreted as an unaltered peptide, methanobactins derive from a prepeptide (Semrau et al., 2013) 

which is extensively post-translationally modified (Kenney and Rosenzweig, 2014). These ribosomally 

synthesized chelating proteins however are no classical low molecular weight secondary metabolites 

but rather analogous to bacterial hemophores (Cescau et al., 2007), secreted proteins capturing free 

heme or extract heme from hemoglobin. 

A zinc responsive NRPS system which is predicted to direct the synthesis of a compound with 

structural features characteristic for chelating agents is described for S. coelicolor (Bentley et al., 

2002). The gene expression of this NRPS gene cluster is zinc responsively controlled by Zur (Kallifidas 

et al., 2010). Though no product was assigned to this gene cluster yet, bioinformatical evaluation of 

the genetic information suggested the biosynthesis of a salicylate containing compound termed 

coelibactin (Bentley et al., 2002). Due to the zinc responsive repression of the cluster genes it is 

suggested that coelibactin serves as zincophore for S. coelicolor (Zhao et al., 2012). 

The low molecular weight [S,S]-EDDS gives the most coherent picture as an example for an ionophore 

being produced in response to metal ions other than iron. However, though the strict zinc repressed 

production suggests a function of [S,S]-EDDS in specific zinc uptake, experimental proof for this 

hypothesis is still lacking. Till date, neither reassociation of zinc-[S,S]-EDDS complex with the A. 

japonicum cell surface, nor actual [S,S]-EDDS mediated zinc uptake into the cytoplasm was shown. 

Normally, a once by the corresponding ionophore mobilized and captured metal ion gets accessible 

for specific cellular uptake to eventually merge into the cellular metal ion pool. Therefore, the 

mobilized metal has to be released from its ionophore ligand and transferred into the cytoplasm. The 

molecular mechanisms of this uptake have been extensively investigated for siderophore mediated 

iron uptake. A variety of mechanisms which are often coupled with high-affinity uptake have evolved 

to facilitate the removal of iron from their siderophore ligands. The iron release can either occur at 

the cellular surface in association with free iron uptake, or after cellular uptake of the ferric 
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siderophore complex (Miethke, 2013). In bacteria, the main route for siderophore-mediated iron 

uptake is represented by the import of ferric siderophore complexes into the cytoplasm. The entry of 

the ferric siderophore complexes by passive diffusion is however prevented by the cytoplasmic 

membrane (Beasley and Heinrichs, 2010). Thus uptake occurs by binding of the complex to a 

membrane associated binding protein prior to its active transport across the cytoplasmic membrane 

by an ABC (ATP-binding cassette) transporter system (Stintzi et al., 2000; Braun, 2001; Braun and 

Hantke, 2011). Though, such uptake systems are usually coexpressed with the corresponding 

siderophore biosynthetic genes (Barona-Gomez et al., 2006) no ABC-transport system is found 

adjacent to the [S,S]-EDDS biosynthetic genes. 

The eventual removing of the iron from its chelator follows the same basic schemes at the cellular 

surface or in the cytoplasm. The iron release is either facilitated by the competition of iron 

coordination with ligand protonation (pH-dependent release), the hydrolysis of the siderophore 

backbone (hydrolytic release), or the reduction of the ferric ion center (reductive release) (Miethke, 

2013). The majority of iron removal processes are non-destructive assimilatory reduction processes 

of ferric iron complexes. The key assumption of this process is that siderophores have high affinity 

for the ferric cation and much lower affinity for the ferrous cation. Ferric ion reduction is 

subsequently followed by the spontaneous release or competitive sequestration of the reduced 

species (Miethke and Marahiel, 2007). 

The reduction of ferric to ferrous iron is mainly enzymatically catalyzed by oxidoreductases, like the 

vibriobactin utilization protein ViuB of Vibrio cholerae (Butterton and Calderwood, 1994). In the 

extracellular environment this reductive removal is often directly coupled with high-affinity uptake of 

the released ferrous iron species. Most likely, such a reductive release has to be excluded for the 

[S,S]-EDDS facilitated zinc uptake since the chemistry of zinc is dominated by its +2 oxidation state 

which is redox-inert in biologic systems (Krezel et al., 2007).  

The destructive hydrolytic release is only feasible for a minority of siderophores due to structural 

requirements such as the introduction of rather unstable ester bonds into the siderophore scaffold 

(Miethke, 2013). Such ferric siderophore hydrolyzing enzymes generally belong to the α/β-hydrolases 

superfamily exhibiting esterase activity. E. coli utilizes a set of three siderophore esterases consisting 

of the cytosolic IroD and Fes and the periplasmatic IroE to hydrolyze ferric enterobactin and its 

glycosylated derivatives (Lin et al., 2005; Zhu et al., 2005). Since [S,S]-EDDS does not harbor any ester 

bond such a α/β-hydrolases superfamily protein catalyzed degradation of the zinc loaded complex 

has to be ruled out.  

In aqueous solution the formation of iron siderophore complexes is affected by the pH. The free 

protons and the iron compete for the free siderophore ligands. This coordination chemistry is 

exploited by the iron removal process by Saccharomyces cerevisiae which couples an enzymatic ferric 
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ion reduction with an extracellular acidification (Lesuisse et al., 1995). The lowered pH leads to a 

partial destabilization of the ferric siderophore complex due to an increased ligand protonation 

(Cohen and Raymond, 2000). [S,S]-EDDS can complex a range of metal ions over a broad pH range 

with maximal chelation events occurring approximately at neutral or slightly alkaline pH (Kołodyńska, 

2011). The approximate pH range which is suitable for chelation of divalent zinc ions by [S,S]-EDDS is 

between pH 5 and 12. At pH lower than 3, [S,S]-EDDS is present as free, not zinc bound apo form 

(Orama et al., 2002). 

The consideration of known siderophore mediated iron uptake mechanisms, of physicochemical zinc 

properties as inert ion and of A. japonicum genetics can guide further investigations on putative [S,S]-

EDDS mediated zinc uptake. The absence of an ABC uptake system in the [S,S]-EDDS cluster may 

indicate a zinc release rather at the cellular surface in association with specific zinc uptake. A 

candidate uptake system linking zinc mobilization by [S,S]-EDDS and zinc transfer into the cytoplasm 

might be ZnuABC. The function of a cognate, membrane associated binding protein, recruiting the 

zinc [S,S]-EDDS complex might be performed by the predicted lipoprotein extending the ZnuABC 

system of A. japonicum which exhibits an N-terminal signal peptide with conserved lipobox (L-A-A-C). 

Interestingly, also the ZnuABC systems of other Amycolatopsis species which were shown to produce 

[S,S]-EDDS are extended by this lipoprotein while it is not found in non-producing Amycolatopsis 

species. The eventual zinc release does probably not occur by lowering the complex stability by 

reduction of zinc and neither by hydrolyzing [S,S]-EDDS by esterases. However, [S,S]-EDDS 

degradative enzymes cleaving the C-N-bond between one succinyl residue and the central Dae were 

already isolated (Witschel and Egli, 1998; Cokesa et al., 2004). These carbon nitrogen lyases are 

similar to the argininosuccinate lyase ArgH (Hani and Chan, 1994), an enzyme catalyzing the last step 

of arginine biosynthesis. The A. japonicum genome encodes just one similar protein whose genetic 

location highly suggests its function in arginine biosynthesis rather than in [S,S]-EDDS hydrolysis. 

 

3.2.2 Elucidation of the Zur mediated zinc regulation enabled the identification of the [S,S]-

EDDS biosynthetic genes  

The evaluation of the general A. japonicum biosynthetic potential by bioinformatic tools like 

antiSMASH, offering a comprehensive pipeline capable of identifying biosynthetic loci covering the 

whole range of known secondary metabolite compound classes (Blin et al., 2013; Weber et al., 2015), 

guided the identification of the antimicrobial compounds ristomycin A and ECO-0501 and of an iron 

responsive synthesized, NRPS derived siderophore.  

However, a key limitation of these predictive tools is the exclusive identification of biosynthetic gene 

clusters of already known types. To overcome this limitation the most recent version of antiSMASH 

(Weber et al., 2015) includes the ClusterFinder algorithm (Cimermancic et al., 2014). The key 
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assumption of ClusterFinder is that even unknown biosynthetic pathway classes are very different 

from known ones, they utilize the same broad enzyme families for the catalysis of key reactions. 

Therefore ClusterFinder predicts putative clusters by detecting certain PFAM domains which are 

located outside of a comprehensive set of known biosynthetic gene cluster types (Weber et al., 

2015). These biosynthetic gene cluster-like regions are suggested to putatively direct the synthesis of 

a secondary metabolite by a new pathway class. However, also considering this advanced detection 

algorithms, none of the detected orphan biosynthetic gene clusters in A. japonicum could be 

bioinformatically assigned to the characteristic structural features of [S,S]-EDDS. The eventually 

identified [S,S]-EDDS biosynthetic genes escape indeed detection by these approaches. This suggests 

a novel and unique [S,S]-EDDS assembly mechanism that is different from the typical NRPS or NIS 

pathways known for ionophore synthesis and also deviates significantly from all other previously 

described secondary metabolite pathways. 

The failure in identifying the [S,S]-EDDS biosynthetic genes by using normally applied biochemical 

and bioinformatical strategies for the isolation of secondary metabolite gene clusters necessitated 

the development of a new approach which relies on the exploitation of knowledge in the field of 

transcriptional regulation. For the identification of the [S,S]-EDDS biosynthetic genes this approach 

relied on the characterization of the Zur mediated transcriptional zinc regulation in A. japonicum and 

the subsequent computational screening of the genome sequence for zinc repressed genes, using the 

deduced Zur binding site as query.  

The A. japonicum Zur binding site was deduced by investigating the Zur mediated regulation of 

ZnuABC in detail. The A. japonicum genome contains two ABC uptake systems which exhibit high 

similarity to the known ZnuABC system of S. coelicolor. However, in contrast to S. coelicolor, neither 

of them is localized adjacent to the zur coding region (Shin et al., 2007). In addition to the zinc 

responsive ZnuABC, A. japonicum possesses also a manganese responsive ABC transporter. This 

system is predicted to have manganese uptake function, similar to the MntABCD system of B. subtilis 

(Que and Helmann, 2000). Regulation of this system is probably mediated by a manganese 

responsive DtxR-family protein like MntR of B. subtilis (Glasfeld et al., 2003) and TroR of Treponema 

pallidum (Posey et al., 1999). A. japonicum possess two DtxR-family proteins, an iron responsive one, 

regulating e.g. siderophore synthesis and a second one exhibiting higher amino acid sequence 

similarity to MntR of B. subtilis than to corynebacterial iron responsive DtxR proteins.  

Specific binding of Zur to the znuABC and the aesA promoter region of A. japonicum was shown by 

EMSAs. Though Zur was added with increasing concentrations, only a single Zur shift was observed. 

In contrast, S. coelicolor Zur forms multiple complexes with its target DNAs in dependence on 

increased Zur concentration (Shin et al., 2007; Kallifidas et al., 2010). It is thought that these multiple 

shifts represent independent binding events of several Zur dimers to the DNA. However, for E. coli 
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Zur no such intermediate species of protein-DNA bindings were observed. There, two Zur dimers 

bind to the DNA in a highly cooperative way, revealing single shifts in EMSA experiments (Gilston et 

al., 2014), comparable to the observed single Zur shift for A. japonicum.  

Interestingly, the predicted Zur binding site within the aesA promoter region is located further 

upstream of the aesA ATG start codon compared to S. coelicolor Zur binding sites and the predicted 

Zur binding site within the A. japonicum znu promoter, which in contrast overlap the predicted -10 

and -35 promoter elements (Shin et al., 2007). However, zinc dependent binding of A. japonicum Zur 

to the aesA promoter region does nevertheless inhibit transcriptional expression of aesA. 

 

3.2.3 The biogenesis of [S,S]-EDDS 

The proposed gene products of aesA, aesB and aesC share significant similarity to SbnB, SbnH and 

SbnA, respectively, enzymes involved in the synthesis of the NIS derived siderophore SB of S. aureus 

(Cheung et al., 2009). The characteristic structural feature of SB and [S,S]-EDDS is a central Dae 

moiety. This moiety is rare in natural compounds and it was long considered that it is restricted to 

synthetic compounds exclusively (Bucheli-Witschel and Egli, 2001).  

In S. aureus, SB biosynthesis starts with the formation of 2,3-diaminopropionic acid (Dap), the 

product of the amidation of O-phospho-serine with the aminodonor glutamic acid (Kobylarz et al., 

2014). This reaction is coordinately catalyzed by SbnA and SbnB. The further assembly of the single 

SB building blocks (2x Dap, citric acid and α-ketoglutaric acid) occurs via three distinct NIS 

synthetases (SbnE, SbnF and SbnC). Additionally, SbnH is required to catalyze the decarboxylation of 

a Dap-intermediate which leads to the Dae moiety (Cheung et al., 2009) (Fig. 7, publication 3).  

Paradoxically to the requirement of the TCA cycle intermediates citric acid and α-ketoglutaric acid as 

precursors of the siderophore SB, S. aureus employs an iron-sparing response in absence of iron 

which leads to repression of the TCA cycle and to a global metabolic reorganization, that favours 

energy production by the glycolysis. The enzymatic activity of SbnA and SbnB however free SB 

biosynthesis from this metabolic limitations imposed by the iron-sparing response. This reaction 

delivers both α-ketoglutaric acid and Dap from glycolysis-derived metabolites (Kobylarz et al., 2014; 

Sheldon et al., 2014).  

In contrast to low iron stress, zinc starvation is not supposed to induce TCA cycle repression and is 

thus neither leading to limitation of TCA cycle intermediates. Though, supply of the building block 

Dap for [S,S]-EDDS biosynthesis in A. japonicum is suggested to occur in a similar way as in S. aureus. 

Since feeding studies with 13C isotope labeled aspartic acid suggested its transamination to 

oxaloacetic acid prior to its incorporation into [S,S]-EDDS (Cebulla, 1995) it is likely to assume that 

AesA and AesC use aspartic acid as amino donor for the conversion of O-phospho-serine to Dap 

instead of glutamic acid. This predicted AesA and AesC catalyzed reaction would thus deliver the 
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aproteinogenic amino acid Dap and furthermore oxaloacetic acid which is also a predicted precursor 

of [S,S]-EDDS.  

In a deduced, putative [S,S]-EDDS biosynthesis pathway (Fig. 7, publication 3) the two precursors Dap 

and oxaloacetic acid are assembled by a yet unknown mechanism to form a imine intermediate. A 

subsequent decarboxylation of the Dap moiety, leading to the Dae moiety is suggested to be 

catalyzed by AesB, according to the SbnH reaction of SB biosynthesis (Cheung et al., 2009). A 

carbonyl reaction of the Dae-intermediate and a second oxaloacetic acid molecule coupled with a 

subsequent reduction of the two double bonds could lead to the functional [S,S]-EDDS.  

Two out of the three predicted [S,S]-EDDS building blocks are assumed to be supplied by the reaction 

of AesA and AesC. The supply of one molecule oxaloacetic acid by this reaction possibly relieves the 

TCA cycle. 

Though the TCA cycle is not supposed to be repressed by zinc deficiency, its maintenance and thus 

adequate energy supply by membrane-bound respiration seems to have special significance for [S,S]-

EDDS biosynthesis since its production occurs exclusively in exponential growth phase, 

simultaneously to biomass formation (Zwicker et al., 1997). Growth dependent production is also 

described for siderophores like the actinomycetes desferrioxamine E (Meiwes et al., 1990). This 

reflects that metal supply by ionophores is crucial for proliferating cells to maintain the enzymatic 

activity of various metalloenzymes which are required in a variety of primary metabolism pathways. 

This is in contrast to vast majority of secondary metabolites produced by actinomycetes whose 

synthesis is generally associated with low specific growth rates (Bibb, 2005; Sanchez et al., 2010).  

The connection of [S,S]-EDDS production to exponential growth phase seems not to rely on the 

transcriptional control of the aesA-D operon. aesA-D expression in zinc deficient conditions is also 

detectable in stationary growth phase opposed to [S,S]-EDDS production stop. Furthermore, though 

aesA-D transcription is constitutive in the Δzur background [S,S]-EDDS production is still coupled to 

cell proliferation in this deletion mutant. This might indicate, that zinc responsive [S,S]-EDDS 

production is guaranteed by Zur regulated precursor supply while growth dependent production is 

Zur independent by e.g. posttranscriptional mechanisms or by regulation of the yet unknown 

assembly machinery. Consequently, an adapted [S,S]-EDDS production to the associated physiological 

conditions necessitating its presence, namely zinc deficiency and anabolic pathways in cell 

metabolism, seems to be guaranteed by a multifactorial regulatory network.  

 

3.2.4 Biotechnological [S,S]-EDDS production 

These diverse parameters influencing the [S,S]-EDDS biosynthesis have to be considered for the 

conceptual design of a biotechnological [S,S]-EDDS production process. The growth dependent 

limitation in [S,S]-EDDS production was already assessed previously. The development of a controlled 
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fed batch fermentation process with prolonged exponential growth phase led to high product yield 

of up to 20 g L-1 [S,S]-EDDS (Zwicker et al., 1997). Due to the ubiquitous presence of zinc in metal 

fermenters, this fermentation had to be carried out in a synthetic media and in intensively treated 

fermenters to guarantee thorough removal of zinc ions. The zinc independent [S,S]-EDDS production 

in the genetic ∆zur background however solves this problem and enables the fermentative 

production of [S,S]-EDDS in untreated metal fermenters and in cheap complex media. 

An A. japonicum strain with increased [S,S]-EDDS productivity was generated by complementation of 

ΔaesA-C with the entire operon aesA-D, leading to a duplication of aesD. AesD is a protein with 

similarity to the multidrug and toxic compound extrusion (MATE) protein family. This family is 

exemplified by NorM of Vibrio parahaemolyticus which is a sodium-driven multidrug efflux pump for 

various compounds such as kanamycin, ciprofloxacin, ethidium etc. (Morita et al., 1998; Morita et al., 

2000). Accordingly, it is possible that aesD encodes [S,S]-EDDS export functions. Overexpression of 

exporter genes is a generally applied strategy in metabolic engineering approaches to increase 

production yields. For example, overexpression of the ABC transporter DrrABC in Streptomyces 

peucetius ATCC 27952 led to a 2.4-fold increased doxorubicin production (Malla et al., 2010), which is 

in a similar range as the observed increase in [S,S]-EDDS production due to aesD duplication. 

The recombinant A. japonicum strains characterized by zinc independent [S,S]-EDDS production with 

increased production yield now set the stage to further promote strain development for the 

establishment of a future fermentative production process in large-scale. As this project has a 

reasonable prospect of becoming commercially viable the intellectual property rights were protected 

by a patent application (Spohn et al., 2013).  
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Overproduction of Ristomycin A by Activation of a Silent Gene
Cluster in Amycolatopsis japonicum MG417-CF17
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The emergence of antibiotic-resistant pathogenic bacteria within the last decades is one reason for the urgent need for new anti-
bacterial agents. A strategy to discover new anti-infective compounds is the evaluation of the genetic capacity of secondary me-
tabolite producers and the activation of cryptic gene clusters (genome mining). One genus known for its potential to synthesize
medically important products is Amycolatopsis. However, Amycolatopsis japonicum does not produce an antibiotic under stan-
dard laboratory conditions. In contrast to most Amycolatopsis strains, A. japonicum is genetically tractable with different meth-
ods. In order to activate a possible silent glycopeptide cluster, we introduced a gene encoding the transcriptional activator of
balhimycin biosynthesis, the bbr gene from Amycolatopsis balhimycina (bbrAba), into A. japonicum. This resulted in the produc-
tion of an antibiotically active compound. Following whole-genome sequencing of A. japonicum, 29 cryptic gene clusters were
identified by genome mining. One of these gene clusters is a putative glycopeptide biosynthesis gene cluster. Using bioinformatic
tools, ristomycin (syn. ristocetin), a type III glycopeptide, which has antibacterial activity and which is used for the diagnosis of
von Willebrand disease and Bernard-Soulier syndrome, was deduced as a possible product of the gene cluster. Chemical analyses
by high-performance liquid chromatography and mass spectrometry (HPLC-MS), tandem mass spectrometry (MS/MS), and
nuclear magnetic resonance (NMR) spectroscopy confirmed the in silico prediction that the recombinant A. japonicum/pRM4-
bbrAba synthesizes ristomycin A.

The nocardioform actinomycete Amycolatopsis japonicum MG417-
CF17 (DSM 44213) is known as the producer of the hexaden-

tate chelating agent (S,S)-ethylenediaminedisuccinic acid [(S,S)-
EDDS] (1), which is a biodegradable EDTA isomer (2) with
similar properties. Though members of the genus Amycolatopsis
are major producers of various antimicrobial compounds, such as
the medically relevant rifamycin and vancomycin, no bioactive
secondary metabolite has been isolated from A. japonicum so far.

Genome sequencing projects have revealed that the potential
of actinomycetes for the production of valuable secondary metab-
olites is much larger than previously expected. In certain cases,
more than 30 gene clusters encoding components of pathways for
secondary metabolite biosynthesis have been found per actinomy-
cete genome. For example, Streptomyces coelicolor, Streptomyces
avermitilis, Streptomyces griseus, and Saccharopolyspora erythraea
are each known to produce three to five secondary metabolites but
actually possess more than 20 gene clusters that are predicted to
encode components of biosynthetic pathways for secondary me-
tabolites (3, 4, 5, 6). This exemplifies that a large number of these
pathways are cryptic, meaning that they are expressed poorly or
not at all under standardized laboratory conditions. One strategy
to obtain access to this enormous genetic potential is the genome
mining approach. The crucial point of genome mining is in learn-
ing how to identify, subsequently activate, and finally exploit these
gene clusters, making their product accessible for evaluation as
drug leads and for other biotechnological applications. The avail-
ability of hundreds of actinomycete genome sequences and the
rapidly decreasing costs of genome sequencing have made ge-
nome mining the most promising tool to generate raw data for
drug discovery. However, due to the biochemical heterogeneity in

secondary metabolite biosynthesis and the high number of puta-
tive gene clusters, the identification, categorization, and interpre-
tation of the information encoded within the genomes required
automation. Bioinformatic tools such as antiSMASH 2.0 (7) offer
a comprehensive pipeline capable of discovering and characteriz-
ing biosynthetic loci covering the whole range of described sec-
ondary metabolite compound classes.

In order to use this information, various strategies to activate
cryptic secondary metabolite gene clusters have been applied. In
many cases, stress conditions or variations of culture conditions
led to the production of new metabolites. More-targeted ap-
proaches are the exchange of promoters or heterologous expres-
sion of all relevant genes in a suitable host (8, 9).

Previously we elucidated the biosynthesis of the glycopeptide
balhimycin in detail in Amycolatopsis balhimycina (10). The genus
Amycolatopsis is known to produce various glycopeptides that are
important clinical emergency antibiotics. New glycopeptides
might be key compounds to treat currently spreading glycopep-
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tide-resistant pathogens, like glycopeptide-intermediate Staphy-
lococcus aureus and vancomycin-resistant enterococci (VRE). A
particular function is described for the highly glycosylated glyco-
peptide ristomycin A (also called ristocetin A), previously identi-
fied in Amycolatopsis lurida (11). Since ristomycin A causes
thrombocytopenia and platelet agglutination, it is no longer used
for the treatment of human staphylococcal infections but solely
applied to assay those therapeutically unfavorable functions in
vitro as a diagnosis compound to detect widespread hereditary
genetic disorders such as von Willebrand disease and Bernard-
Soulier syndrome (12).

In this study, we were able to identify and activate a new type III
glycopeptide gene cluster in A. japonicum coding for ristomycin A
production. Although ristomycin A has been in use for many years,
no type III glycopeptide gene cluster has been published so far. Het-
erologous expression of the balhimycin pathway-specific regulator
gene bbrAba (bbr gene from A. balhimycina) (13) in A. japonicum
enabled us to activate the cryptic ristomycin gene cluster.

The activation of ristomycin A production in A. japonicum
now offers the possibility of optimizing production of ristomycin
A in a genetically accessible strain.

MATERIALS AND METHODS
Bacterial strains and plasmids. Escherichia coli XL1-Blue (14) was used
for cloning purposes, and the methylation-deficient strain E. coli ET12567
(15) was used to obtain unmethylated DNA for Amycolatopsis japonicum
transformations. A. japonicum MG417-CF17 (1) is the (S,S)-EDDS-pro-
ducing wild type and was used to generate bbrAba and ajrR overexpression
strains (this study). The overexpression plasmids pRM4-bbrAba and
pRM4-ajrR derive from pRM4 (16), a pSET152-derived nonreplicative,
�C31 integration vector with an integrated constitutive ermEp* pro-
moter, an artificial ribosomal binding site, and an apramycin resistance
cassette.

Media and culture conditions. E. coli strains were grown in Luria
broth medium (17) at 37°C and were supplemented with 100 �g ml�1

apramycin when necessary to maintain plasmids. Liquid cultures of A.
japonicum were cultivated in 100 ml of R5 medium (18) in an orbital
shaker (220 rpm) in 500-ml baffled Erlenmeyer flasks with steel springs at
27°C. Liquid/solid media were supplemented with 100 �g ml�1 apramy-
cin to select for strains carrying integrated antibiotic resistance genes. To
detect glycopeptide production, wild-type A. japonicum or A. japonicum
carrying the pRM4-bbrAba or pRM4-ajrR plasmid, respectively, were in-
cubated for 5 days in R5 medium without apramycin.

Construction of the integrative expression vector pRM4-bbrAba/
ajrR. For the overexpression of bbrAba and ajrR, the bbrAba and ajrR cod-
ing regions were amplified by using the primer pair bbrAba-FP (FP stands
for forward primer) and bbrAba-RP (RP stands for reverse primer) and
the primer pair ajrR-FP and ajrR-RP (see Table S1 in the supplemental
material), respectively. The 968-bp (bbrAba) and the 981-bp (ajrR) PCR
products were integrated into pRM4 via the primer-attached NdeI and
XbaI sites for bbrAba and NdeI and HindIII sites for ajrR, downstream of
the ermEp* promoter.

Direct transformation of A. japonicum. For transformation of A.
japonicum, the direct transformation method of Stegmann et al. (19) was
modified. Mycelia were grown in 100 ml of TSB-D (17 g Bacto tryptone, 3
g peptone 110, 5 g NaCl, 2.5 g K2HPO4, and 2.5 g glucose per liter Milli-
pore H2O) for 24 h in a 1-liter Erlenmeyer flask with 4 bottom baffles at
30°C and 220 rpm; 5-ml portions from these precultures were used to
inoculate 100 ml of TSB-D, which were incubated for 36 h under the same
conditions as the preculture.

Detection of ristomycin biosynthesis by HPLC-DAD. Glycopeptide
production was determined by bioassays with Bacillus subtilis ATCC 6633
as the test organism after growth in R5 medium or by high-performance

liquid chromatography (HPLC) coupled with a diode array detector
(DAD). Five microliters of each sample was analyzed by HPLC with gra-
dient elution. For gradient elution, solvent A was 0.1% phosphoric acid
and solvent B was acetonitrile, and the gradient elution was performed as
follows: t0 � 0% solvent B, t7 � 30% solvent B, t8 to t10 � 100% solvent B.
The flow rate was 0.85 ml min�1. Gradient elution was conducted using a
Nucleosil 100-C18 column (5 �m; 125 by 3 mm) (precolumn, 20 by 3
mm) (Dr. Maisch GmbH, Ammerbuch-Entringen, Germany). Detection
was carried out at 210, 230, 260, 280, 310, 360, 400, 435, and 500 nm (1260
Infinity diode array detector; Agilent Technologies, Waldbronn, Ger-
many).

Analytical instrumentation. Nuclear magnetic resonance (NMR)
spectra were recorded on a Bruker Avance III 500 HD spectrometer,
equipped with a BBFO cryo probe head. Spectra were referenced to resid-
ual protonated solvent signals with resonances at �H/C 2.50/39.5 (deuter-
ated dimethyl sulfoxide [d6-DMSO]). Circular dichroism (CD) spectra
were measured on a Jasco J-720 spectropolarimeter. High-resolution
(HR) electrospray ionization-time of flight mass spectrometry (ESI-TOF
MS) data were recorded using a Bruker Daltonic maXis 4G instrument.
Semipreparative HPLC was conducted using a Waters system consisting
of a 600 pump, a 996 photodiode array detector, a 7725i rheodyne injec-
tor, and a PerkinElmer vacuum degasser series 200. Ristomycin monosul-
fate A standard was purchased from Aldrich and used without further
purification for MS analyses. For NMR and CD analyses, the standard was
desalted.

HPLC–ESI-MS and HPLC-MS/MS. Culture broths were prepared by
centrifugation or filtration and partially purified via adsorption chroma-
tography with Amberlite XAD16 and subsequent ethyl acetate extraction.
Portions (2.5 �l) of the different fractions were analyzed by means of
HPLC–ESI-MS and HPLC-MS/MS using a Nucleosil 100-C18 column (3
�m, 100 by 2 mm) (precolumn, 10 by 2 mm) (Dr. Maisch GmbH, Am-
merbuch-Entringen, Germany) coupled to an ESI mass spectrometer.
LC-MS measurements were obtained from a LC/MSD Ultra Trap system
XCT 6330 (Agilent Technologies, Waldbronn, Germany). Detection of
m/z values was conducted with Agilent DataAnalysis for 6300 series Ion
Trap LC/MS 6.1 version 3.4 software (Bruker-Daltonik GmbH). Analysis
was carried out at a flow rate of 0.4 ml min�1 with gradient elution.
Solvent A was 0.1% formic acid in acetonitrile, and solvent B was 0.06%
formic acid in acetonitrile. Gradient elution was performed as follows:
t0 � 0% solvent B, t7 � 30% solvent B, t8 to t10 � 100% solvent B. The flow
rate was 0.4 ml min�1, and the temperature was 40°C. Electrospray ion-
ization (alternating positive and negative ionization) in Ultra Scan mode
with a capillary voltage of 3.5 kV and a drying gas temperature of 350°C
was used for LC-MS analysis. For tandem MS experiments, the analysis
was carried out either in negative mode with an Agilent LC/MSD Ultra
Trap system XCT 6330 or in positive ionization mode employing an AB
SCIEX QT3200 instrument.

Scaled-up cultivation, extraction, and purification of ristomycin A.
A. japonicum/pRM4-bbrAba was cultivated in a 20-liter fermentor (b20;
Giovanola). The fermentor was inoculated with 2% (vol) of shaking cul-
tures grown for 48 h in 500-ml Erlenmeyer flasks with one baffle and steel
spring in tryptic soy broth (TSB). The fermentation was carried out at
27°C with an agitation rate of 1,000 rpm and an aeration rate of 0.5 vol/
vol/min. After 50 h of fermentation, 1 liter of fermentation broth was
taken, and bacterial cells were removed by centrifugation. Diaion HP-20
adsorbent resin (50 g liter�1) was added to a portion of the supernatant
(900 ml), and the mixture was agitated in a 1.5-liter Erlenmeyer flask at
120 rpm for 2 h. The HP-20 resin was then passed through a fritted funnel
and washed with water, and the bound metabolites were eluted using a
stepwise gradient of isopropanol-H2O (acidified with 1% acetic acid
[HOAc]) to produce five fractions (A to E). Fractions B, C, and D, eluting
with 5, 10, and 15% isopropanol in acidified water, respectively, were
found to potently inhibit the growth of B. subtilis in an agar diffusion
assay. Each bioactive fraction was rechromatographed with reversed-
phase HPLC (RP-HPLC). For RP-HPLC separation, a Phenomenex Syn-
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ergi Hydro-RP 80A column (10 by 250 mm; 4 �m) in combination with a
Phenomenex SecurityGuard AQ C18 precolumn (10 by 10 mm) was used.
The flow rate was 2.0 ml min�1. UV monitoring at 210 and 254 nm was
performed. Elution was performed as follows: (i) isocratic elution at 20:80
acetonitrile (MeCN)-H2O (0.1% trifluoroacetic acid [TFA]) over a period
of 10 min, (ii), gradient elution from 20:80 to 40:60 MeCN-H2O (0.1%
TFA) over 10 min, (iii) gradient elution from 40:60 to 100:0 MeCN-H2O
(0.1% TFA) over 20 min, and (iv) isocratic elution at 100% MeCN for an
additional 10 min. This procedure yielded collectively 33 mg of ristomy-
cin A.

Platelet aggregation. For preparation of platelet-rich plasma (PRP),
citrate-anticoagulated human blood was centrifuged at 200 � g for 10
min. After centrifugation, the PRP was collected in a fresh tube, and the
remaining blood was centrifuged at 2,500 � g to obtain platelet-poor
plasma (PPP). Afterwards the platelet count in the PRP was estimated
with a KX21-N automatic hematology analyzer (Sysmex, Norderstedt,
Germany). After adjusting the PRP to a platelet concentration of 200 �
105 �l�1 with the obtained PPP, aggregation was estimated from light
transmission measurements determined with a luminoaggregometer
(model 700; Chrono-Log Corp., Havertown, PA, USA). Following cali-
bration, agonists were added at the indicated concentrations, and aggre-
gation was measured for 10 min with a stir speed of 1,000 rpm at 37°C. The
extent of aggregation was quantified as percentage of light transmission.
Data analysis was performed with the aggrolink8 software (Chrono-Log).
The adjusted PRP was either treated with agonists at the indicated con-
centrations or not treated with an agonist.

Gene expression analysis by RT-PCR. For reverse transcription-PCR
(RT-PCR) experiments, the wild-type A. japonicum and the bbrAba and
ajrR overexpression strains were grown in R5 medium. After 25 h, the cells
were harvested and disrupted using glass beads and a Precellys homoge-
nizer (Peqlab). RNA preparations were treated twice with DNase I (Fer-
mentas). To exclude DNA contamination, negative controls were carried
out by using total RNA as the template for a PCR using the primer pair
sigB-RT-FP and sigB-RT-RP (see Table S1 in the supplemental material).
cDNA from 3 mg RNA was generated with random hexameric primers,
reverse transcriptase, and cofactors (Fermentas). PCRs were performed
with the primers listed in Table S1. PCRs were carried out under the
following conditions: (i) an initial denaturation step (94°C for 2 min); (ii)
27 cycles of PCR, with 1 cycle consisting of denaturation (95°C for 30 s),
annealing (59°C for 30 s), and polymerization (72°C for 30 s); and (iii) an
additional polymerization step (72°C for 1 min). Each PCR mixture (25
�l) contained a 1-�l aliquot of RT reaction product. As a positive control,
cDNA was amplified from the major vegetative sigma factor (sigB) tran-
script, which is produced constitutively. The PCR products were analyzed
by agarose gel electrophoresis (2.0%).

Nucleotide sequence accession number. The GenBank accession
number of the genome sequence of A. japonicum is CP008953 (45).

RESULTS AND DISCUSSION
Activation of a cryptic glycopeptide gene cluster. Members of the
genus Amycolatopsis are known to possess a particularly high poten-

tial for the production of secondary metabolites. They are major pro-
ducers of various glycopeptides like balhimycin (A. balhimycina), the
medically relevant vancomycin (Amycolatopsis orientalis NRRL
2452), and rifamycin (Amycolatopsis mediterranei), which is one
component in the drug cocktail for the treatment of tuberculosis and
inactive meningitis. However, these species are difficult to manipu-
late genetically because of the lack of efficient transformation systems.
In contrast to these species, we were able to establish a DNA trans-
fer protocol for A. japonicum (19). Although we have been work-
ing with this species in our laboratory for many years, no antibi-
otically active product could be identified so far. In previous work,
it was shown that A. japonicum produces glycopeptide-resistant
cell wall precursors (20) and that the genome contains an oxyB
gene, which is involved in the production of glycopeptides (21).
From these results, we assumed that A. japonicum may have the
potential to produce a glycopeptide.

To test whether A. japonicum has this potential, we made use of
the observation that all known glycopeptide clusters are con-
trolled by a pathway-specific StrR-like regulator (22). Hence, we
applied a new cluster activation strategy, overexpressing the gene
encoding the characterized pathway-specific transcriptional reg-
ulator of the balhimycin gene cluster, bbrAba (13), in A. japonicum
aiming to awake the cryptic glycopeptide gene cluster. Therefore,
bbrAba was cloned into the integrative vector pRM4 under the
control of the constitutive promoter ermEp* and transferred into
A. japonicum by direct transformation. The recombinant species
A. japonicum carrying the pRM4-bbrAba plasmid was grown in R5
medium for 5 days, and the culture supernatant was analyzed in a
growth inhibition assay. Whereas the supernatant from wild-type
A. japonicum did not contain any biologically active compound,
the culture supernatant from the recombinant A. japonicum-
(pRM4-bbrAba) strongly inhibited growth of the indicator species,
B. subtilis (Fig. 1). The metabolic profiles of the supernatants were
determined by HPLC-DAD (Fig. 2). The chromatogram of the A.
japonicum/pRM4-bbrAba supernatant revealed two peaks with gly-
copeptide-specific DAD spectra. These peaks were absent in the
chromatogram of the wild-type A. japonicum supernatant (Fig. 2).
From these results, we concluded that A. japonicum does indeed
have the genetic potential to produce a glycopeptide antibiotic,
which is synthesized only after transcriptional activation.

Genome mining in A. japonicum. In order to identify the gene
cluster for biosynthesis of the new glycopeptide, its regulation,
and the self-resistance mechanism and to evaluate the potential to
synthesize additional secondary metabolites, the genome of A.
japonicum was sequenced. The genome sequence of A. japonicum
is approximately 8.96 Mb in size and contains 8,464 putative

FIG 1 Bioassay after cluster activation by expression of bbrAba and ajrR, respectively. Wild-type A. japonicum (1), A. japonicum/pRM4-bbrAba (2), and A.
japonicum/pRM4-ajrR (3) were grown for 5 days in R5 medium, and 20 �l of culture supernatant was assayed for bioactivity against B. subtilis.
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open reading frames (ORFs) (45). Extensive genome analysis us-
ing antiSMASH 2.0 (7) revealed the presence of 29 putative sec-
ondary metabolite gene clusters (see Table S2 in the supplemental
material). One of the gene clusters (cluster 4) encodes the synthe-
sis of the polyketide synthase (PKS) compound ECO-0501, which
was already identified in the vancomycin producer Amycolatopsis
orientalis ATCC 43491 by a genome-scanning technology (23).
ECO-0501 defines a new structural class of the polyketide antibi-
otic octanoic acid glucuronide and possesses activity against
Gram-positive bacteria, including methicillin-resistant Staphylo-
coccus aureus (MRSA) and vancomycin-resistant enterococci (VRE)
(24). However, since this cluster and the corresponding product were
already known, we focused our attention on the type III PKS/nonri-
bosomal peptide synthetase (NRPS) hybrid gene cluster (cluster 24)

(Table S2) which showed high similarity to described glycopeptide
gene clusters, such as the balhimycin (25), teicoplanin (26), and
A47934 (27) gene clusters. Cluster 24 consists of 39 distinct ORFs
(AJAP_31985 to AJAP_32175) (Fig. 3) with a total size of almost 69
kb. The putative functions of all 39 gene products were deduced by
comparative amino acid sequence analysis with homologues from
known glycopeptide clusters (Table 1). Cluster 24 is predicted to en-
code all the enzymes required for biosynthesis of a glycopeptide,
comprising enzymes responsible for assembly and export of the gly-
copeptide, self-resistance, and gene regulation. By considering these
deduced functions, the boundaries of the glycopeptide gene cluster 24
were predicted. The left border is probably delimited by orf1, a dahp
homologue, involved in tyrosine precursor supply for the synthesis of
the aproteinogenic amino acids (28), and the right border is most

FIG 2 HPLC chromatograms of wild-type A. japonicum and A. japonicum/pRM4-bbrAba after growth for 5 days in R5 medium and ristomycin standard. The
boxed regions show the corresponding DAD spectra. Rt, retention time; mAU, milliabsorbance units.
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likely delimited by orf39, a vanH homologue, involved in self-resis-
tance (20) (Table 1).

Proposed glycopeptide biosynthesis in A. japonicum. In the
last 2 decades, considerable progress has been made in under-
standing the genetics and biochemistry of glycopeptide biosynthe-
sis (10, 22, 29). The profound knowledge of the individual en-
zymes participating in glycopeptide biosynthesis makes it possible
to almost completely predict the structure of the final product.

(i) Synthesis of the nonproteinogenic amino acids. Glyco-
peptides consist of a heptapeptide backbone constituted mainly
by aprotenogenic aromatic amino acids such as 3,5-dihydroxy-
phenylglycine (Dpg), p-hydroxyphenylglycine (Hpg), and �-hy-
droxytyrosine (�-Ht). Since detailed information on their biosyn-
thesis is available (30, 31, 32, 33, 34), it is possible to conclude that
most likely, orf5 to orf2 and orf16 are responsible for the synthesis
of Dpg, orf11, orf12, and orf16 are responsible for Hpg synthesis,
and orf15 to orf13 are responsible for synthesis of �Ht (Fig. 3 and
Table 1).

(ii) Synthesis of the aglycon. (a) Synthesis of the linear back-
bone. The amino acids are assembled by nonribosomal peptide
synthetases to form a heptapeptide (35). The A. japonicum glyco-

peptide gene cluster contains four NRPS genes (orf33 to orf30) that
are predicted to encode the enzymes catalyzing the assembly of the
heptapeptide backbone. The genetic organization and domain
composition of these NRPS genes and the predicted specificity
of the A domains indicate that the ORF33 protein, including
module 1 and module 2, incorporates Hpg and �-Ht; ORF32,
including module 3, incorporates Dpg; ORF31, including
modules 4, 5, and 6, incorporates Hpg, Hpg, and �-Ht; and
ORF30, including module 7, incorporates Dpg. This amino
acid composition was confirmed by all three amino acid pre-
diction tools used by antiSMASH 2.0 (7, 36). Hence, the assem-
bled heptapeptide has the predicted amino acid sequence Hpg1–
�-Ht2–Dpg3–Hpg4–Hpg5-�-Ht6–Dpg7. The organization of the
epimerization domains within the modules predicts a stereochemis-
try of L-D-L-D-D-L-L, which is consistent with the stereochemistry of
teicoplanin (26), but inconsistent with L-D-D-D-D-L-D of A47934 (27)
and D-D-L-D-D-L-L of balhimycin (35), respectively. orf29, located
downstream of the NRPS genes encodes a 69-amino-acid small
MbtH-like polypeptide. MbtH-like peptides are common features
of NRPS biosynthesis gene clusters acting as facilitators of the
peptide-assembling machineries by stimulating adenylation reac-

FIG 3 Genetic organization of the ristomycin A (ris) cluster identified in A. japonicum. Predicted ORFs are represented by an arrow drawn to scale and are
numbered as in Table 1. Gene names are indicated underneath the corresponding ORFs. Predicted functions of genes are listed. TE, thioesterase.
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tions (37, 38, 39, 40). The predicted incorporation of aromatic
amino acids into the heptapeptide revealed that the A. japonicum
glycopeptide belongs to either the type II, type III, or type IV
glycopeptides but not to the type I (vancomycin type) glycopep-
tides characterized by aliphatic amino acids at positions 1 and 3
(Fig. 4).

(b) Cross-linking of the aromatic amino acid residues. Dur-
ing peptide formation, the aromatic residues are connected due to
the activity of P450 monooxygenases (Oxy) to form a rigid cup-
shaped structure (41, 42) required for the interaction with their
molecular target, the D-alanyl–D-alanine (D-Ala–D-Ala) terminus
of bacterial cell wall precursors. The A. japonicum glycopeptide
gene cluster contains four oxy genes (orf28 to orf25), putatively
encoding P450 monooxygenases, as within the teicoplanin,
A47934, and dalbavancin gene clusters, all characterized by a fully
cyclized heptapeptide backbone (22). These cross-linked glyco-
peptides contain three ether bridges (between amino acids 1 and 3,
2 and 4, and 4 and 6) and one C-C link (between amino acids 5 and
7). On the basis of the model proposed for the balhimycin and
A47934 oxygenases (42, 43) and using amino acid sequence sim-
ilarity as a criterion, it is likely that OxyA is involved in the cross-
linking of the aromatic residues of amino acids 2 and 4, while
OxyB is involved in the cross-linking of amino acids 4 and 6 and
OxyC is involved in the cross-linking of amino acids 5 and 7. The
fourth encoded oxygenase (OxyE) catalyzes the type III and type
IV glycopeptide-specific cross-linking between Hpg at position 1
and Dpg at position 3 (43) (Fig. 4 and Table 1).

A backbone consisting of seven aromatic amino acids and a
predicted cyclization of all of these residues is a characteristic of
glycopeptide classes III and IV and excludes the classification to
type II where the residues of amino acids 1 and 3 are not linked
(Fig. 4).

(iii) Tailoring reactions by adding sugars and methyl groups.
Structural diversity within the glycopeptide family is generated by
different optionally and variably occurring glycosylation, methyl-
ation, acetylation, halogenation, and sulfation patterns. The A.
japonicum gene cluster contains six glycosyltransferase genes
(orf24 to orf22, orf20, orf6, and orf18) presumably responsible for
the decoration of the aglycon with sugar moieties. No other de-
scribed glycopeptide gene cluster contains such an extended
amount of glycosyltransferases. For example, the balhimycin gene
cluster encodes three glycosyltransferases (BgtfA, BgtfB, and
BgtfC), while the teicoplanin gene cluster encodes three glycosyl-
transferases (GtfA, GtfB, and one putative mannosyltransferase)
(Table 1). orf10 to orf7 encode peptides that exhibit high similarity
to the TDP-L-epivancosamine biosynthesis enzymes EvaA to
EvaD (Fig. 3 and Table 1) of chloroeremomycin biosynthesis (44),
suggesting that they are involved in the biosynthesis of an uncommon
amino-deoxy sugar, which finally decorates the A. japonicum glyco-
peptide. Besides the glycosyltransferases, two methyltransferase ho-
mologues are encoded within the A. japonicum gene cluster (orf17
and orf21), but the cluster does not encode further tailoring enzymes,
like sulfotransferases, halogenases, or acetyltransferases. The occur-
rence of an acetyltransferase is a specific feature of the lipoglycopep-
tide class (teicoplanin type or type IV glycopeptides). The absence of
an acetyltransferase gene within the identified gene cluster suggests
that the A. japonicum glycopeptide exemplifies a type III glycopeptide
(Fig. 4).

Resistance, export, regulation, and precursor supply. The
seven genes of the A. japonicum glycopeptide gene cluster, which33
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are not directly involved in the synthesis and tailoring of the gly-
copeptide, are located at the left (orf1) and right (orf34 to orf39)
borders (Fig. 3). orf39 to orf37 encode the VanHAX-like glycopep-
tide resistance cassette. However, neither a vanRS (encoding the
two-component system) nor a vanY (D,D-carboxypeptidase)
homologue are located within the A. japonicum glycopeptide gene
cluster. Previous cell wall precursor analyses (20) demonstrated
that A. japonicum synthesized a glycopeptide-resistant cell wall,
although no glycopeptide production could be observed, suggest-
ing constitutive expression of the resistance genes.

The orf34-encoded protein is likely to specify export functions,
since it is predicted to be an ABC-type transporter exhibiting high
similarity to the balhimycin exporter Tba (15) (Table 1).

The orf36 encodes a StrR-like transcriptional activator with
high similarity to the balhimycin pathway-specific transcriptional
activator BbrAba (13) (see below).

Two additional genes, presumably encoding a 3-deoxy-7-phos-
phoheptulonate synthase (DAHP synthase) homologue (orf1) and a
prephenate dehydrogenase homologue (orf35) are predicted to opti-

mize the precursor supply of the aromatic amino acids (28). While
prephenate dehydrogenase genes are encoded in all described clus-
ters, the DAHP synthase-encoding gene is lacking in some gene clus-
ters, like the teicoplanin and A47934 gene clusters (22).

Categorization of the A. japonicum glycopeptide by consid-
ering the genetic features. The in silico data strongly suggested
that the final product of the identified gene cluster is a 6-fold-
glycosylated, twice methylated, and fully cross-bridged glycopep-
tide. The genetic organization and domain composition of the
NRPS specifies an amino acid sequence L-Hpg1–D-�-Ht2–L-
Dpg3–D-Hpg4–D-Hpg5–L-�-Ht6–L-Dpg7. The incorporation of
aromatic amino acids at positions 1 and 3 together with the pre-
dicted complete cross-linked heptapeptide by the four oxygenases
and the absence of any acyltransferase or halogenase imply that
the A. japonicum gene cluster has the biosynthetic potential to
produce a type III glycopeptide (Fig. 4). Until now, only the struc-
ture of the type III glycopeptides, exemplified by ristomycin A
(produced by A. lurida) was known; no biosynthesis gene cluster
was known. Therefore, the A. japonicum gene cluster identified

FIG 4 Classification of the glycopeptides. (A) Type I glycopeptides exemplified by vancomycin. These glycopeptides contain aliphatic chains in amino acids 1
and 3. (B) Type II glycopeptides exemplified by actinoidin A. These glycopeptides contain aromatic aliphatic chains in amino acids 1 and 3. (C) Type III
glycopeptides exemplified by ristomycin A. These glycopeptides are like type II glycopeptides, and they contain an extra F-O-G ring system. Ring abbreviations:
A, Me-L-Dpg; B, D-Hpg; C, L-�-Ht; D, D-Hpg; E, D-�-Ht; F, Me-L-Dpg; G, L-Hpg. (D) Type IV glycopeptides exemplified by teicoplanin. These glycopeptides
are like type III glycopeptides plus they have aliphatic side chains on sugar.
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here is the first type III glycopeptide gene cluster described so far
(Fig. 3). The amino acid sequence and stereochemistry of the gly-
copeptide encoded by the A. japonicum gene cluster are consistent
with the sequence and stereochemistry of ristomycin A. Further-
more, the number and predicted function of the tailoring enzymes
(six glycosyltransferases and two methyltransferases) are in agree-
ment with the ristomycin A decorations (Fig. 4). Considering all
these congruences of the described ristomycin A structure and the
genetic content within the identified A. japonicum gene cluster, we
propose that this gene cluster encodes a glycopeptide which is
either ristomycin A itself or a highly similar derivative.

Expression of the A. japonicum StrR-like regulator AjrR. The
two closely related species A. japonicum and A. balhimycina each
harbor a glycopeptide gene cluster encoding the regulators AjrR
and BbrAba, respectively. These StrR-like regulators exhibit 84 and
91% amino acid identity and similarity, respectively. However,
BbrAba initiates the transcription of the glycopeptide gene cluster
in A. balhimycina, while the A. japonicum gene cluster is of cryptic
nature under the identical laboratory conditions.

One reason why the glycopeptide cluster in A. japonicum is not
expressed under standard conditions could be that the regulator
AjrR is not functional. To evaluate its functionality, we overex-
pressed ajrR under the control of the constitutive ermEp* in A.
japonicum. The supernatant of the recombinant A. japonicum/
pRM4-ajrR inhibited growth of B. subtilis, while the supernatant
of wild-type A. japonicum did not (Fig. 1). HPLC-DAD analyses
confirmed the biosynthesis of the glycopeptide (data not shown).
These results demonstrated the in vivo functionality of AjrR and

FIG 5 Transcriptional pattern of representative ristomycin biosynthesis
genes. The gene names are indicated to the right of the gel. Cultures were
grown in R5 medium for 25 h. sigB is the major sigma factor of A. japonicum
and was used as a housekeeping gene to normalize the RNA. WT, wild type.

FIG 6 HPLC–ESI-MS analysis (positive mode) of A. japonicum glycopeptide and ristomycin A. (Top) Ristomycin A standard (0.1 mg ml�1). (Bottom) A.
japonicum/pRM4-bbrAba glycopeptide. [M � 2H]2� was observed at m/z 1,034.8 and 1,034.9. The relative intensity is shown on the y axes.
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suggest that ajrR is not transcribed in the wild-type species. There-
fore, transcriptional analyses of ajrR and representative biosyn-
thetic genes (riaA, dpgA, bhp, oxyA, hmaS, and vanH) were
performed after growth of wild-type A. japonicum, A. japonicum/
pRM4-bbrAba and A. japonicum/pRM4-ajrR in production me-
dium R5 (Fig. 5). In wild-type A. japonicum, no ajrR transcription
was detected, and it is therefore not surprising that no other in-
vestigated biosynthetic gene was transcribed. However, in A. ja-
ponicum/pRM4-ajrR and A. japonicum/pRM4-bbrAba, transcrip-
tion of all the investigated genes could be observed. Coincident to
the observations of Schäberle et al. (20) that A. japonicum pro-
duces a glycopeptide-resistant cell wall, whereas no glycopeptide
production could be detected, we could observe transcription of
the vanH resistance gene in the wild type. It will be interesting to
ascertain why bbrAba is transcribed under standard conditions
whereas ajrR is not.

Isolation and spectroscopic characterization of the A. ja-
ponicum glycopeptide. In order to confirm the assumption de-

duced from the genome sequence, the chemical structure of the
glycopeptide was analyzed. Initial experiments with A. japonicum/
pRM4-bbrAba growing in shake flasks revealed a glycopeptide pro-
duction with quantities up to 50 mg liter�1. The crude extract was
fractionated and analyzed for the presence of the glycopeptide
(Fig. 2). A major compound with a quasimolecular ion [M �
2H]2� � m/z 1,034.8 (Fig. 6) and a minor compound with [M �
2H]2� � m/z 887.7 (data not shown) were detected. Since the
masses of the major and minor components were in agreement
with the masses of ristomycin A and B, the isolated glycopeptides
were compared with a commercially available ristomycin stan-
dard. HPLC-DAD and HPLC–ESI-MS analyses showed that both
the glycopeptides synthesized by A. japonicum/pRM4-bbrAba and
ristomycins A and B eluted at the same time, possessed the same
UV profile (Fig. 2), and showed in ESI-MS/MS analyses (positive
and negative mode) an identical fragmentation pattern (see Fig.
S1 to Fig. S3 in the supplemental material).

To corroborate the findings and to obtain additional informa-
tion on the nature of the sugar units, the major glycopeptide syn-
thesized by A. japonicum/pRM4-bbrAba was isolated in a pure form
and compared with a ristomycin A standard employing NMR,
CD, and high-resolution mass spectrometry. For this purpose, the
initial shake flask cultivation was scaled up to a 20-liter volume
using a Giovanola b20 fermentor. Glycopeptide production was
detected after 24 h and reached a maximum amount up to 200 mg
liter�1 after 50 h and stayed almost constant during 2 more days of
fermentation (Fig. 7). For the isolation of the glycopeptide, 1 liter
of fermentation broth was taken after 50 h of fermentation and
separated by centrifugation into supernatant and mycelium. Sub-
sequent workup of the extract led to the isolation of the major
glycopeptide in a highly pure form at a yield of 37 mg l�1. HR-MS
analysis confirmed that the isolated glycopeptide showed the
same exact mass as that of the ristomycin A standard and there-
fore possessed the same molecular formula of C95H110N8O44 (see
Fig. S4 and S5 in the supplemental material). 1H and the 13C NMR
spectra of the isolated glycopeptide and the ristomycin A standard
were absolutely superimposable, with the exception of additional
peaks in the commercially available ristomycin standard which
can be attributed to the presence of up to 10% ristomycin deriva-
tives in the sample (Fig. S6 to S14). Further analysis of the one-
dimensional (1D) and two-dimensional (2D) NMR data (Fig. S15

FIG 7 Batch fermentation of A. japonicum/pRM4-bbrAba in R5 medium. Bio-
mass (o), ristomycin A (�), and partial O2 pressure (pO2) (�) are depicted.
A. japonicum/pRM4-bbrAba reached its maximal biomass value after 44 h of
incubation, decreasing afterwards slowly during 2 days of further fermenta-
tion. Metabolizing of different sugars in R5 medium (sucrose [�-1,2-glyco-
sidic linked glucose and fructose] and glucose) is reflected by a diauxic shift
(between 24 and 44 h) during cultivation, apparent in growth retardation and
pO2.

FIG 8 Ristomycin-dependent platelet aggregation. (Left) Representative tracings of aggregometry after stimulation of human platelets with 2.5 mg ml�1

commercial (black line) or A. japonicum ristomycin A (light gray line) as well as 10 �M ADP (dark gray line) and water control. (Right) Results of aggregometry
after stimulation of human platelets with 2.5 mg ml�1 commercial or A. japonicum ristomycin A as well as 10 �M ADP. The values are arithmetic means plus
standard errors of the means (SEM) (error bars) for four experiments.
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to Fig. S20) allowed the complete assignment of all hydrogen and
carbon atoms (Table S3), which supported the hypothesis that the
isolated compound possessed the same planar structure and the
same relative configuration as that of ristomycin A. Since the CD
spectra of the isolated glycopeptide and a commercially available
ristomycin A standard were consistent (Fig. S21), it was deduced
that the isolated glycopeptide also possessed the same absolute
configuration as that of ristomycin A. From these data, we con-
cluded that the identified cryptic gene cluster is responsible for the
production of ristomycin A.

Ristomycin A-dependent platelet aggregation. Measuring
von Willebrand factor (vWF) activity is essential for the diagnosis
of von Willebrand disease (vWD). A common test method is the
ristomycin platelet-induced agglutination method, which allows
discrimination among specific subtypes of the vWD. In a platelet
aggregation assay, we could demonstrate that ristomycin A iso-
lated from A. japonicum has the same in vitro function as the
reference ristomycin (Fig. 8).
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a b s t r a c t

We report the complete genome sequence of Amycolatopsis japonica MG417-CF17T (=DSM 44213T)
which was identified as the producer of (S,S)-N,N�-ethylenediaminedisuccinic acid during a screening
for phospholipase C inhibitors. The genome of A. japonica MG417-CF17T consists of two replicons: the
chromosome (8,961,318 bp, 68.89% G + C content) and the plasmid pAmyja1 (92,539 bp, 68.23% G + C con-
tent), encoding a total of 8422 protein coding genes. Analysis of the sequence data revealed 30 clusters
encoding the biosynthesis of secondary metabolites.

© 2014 Elsevier B.V. All rights reserved.

Introduction

The bacterial order of the Actinomycetales contains a large num-
ber of genera that are capable of synthesizing a wide variety of
secondary metabolites (e.g., Jankowitsch et al., 2012; Myronovskyi
et al., 2013; Rückert et al., 2014; Schwientek et al., 2012). The
nocardioform actinomycete Amycolatopsis japonica MG417-CF17T

(=DSM 44213T) is the producer of [S,S]-ethylenediaminedisuccinic
acid (EDDS) which is a hexadentate chelating agent. [S,S]-EDDS is
an isomer of ethylenediaminetetraacetic acid (EDTA) with compa-
rable chelating properties. However, EDDS is in contrast to EDTA
biodegradable (Schowanek et al., 1997).

The strain A. japonica MG417-CF17T was discovered in a search
for specific inhibitors of phospholipases (Nishikiori et al., 1984).
Preliminary cultural and morphological studies indicated that the
organism belonged to the family Pseudonocardiaceae and it was
classified as Amycolatopsis orientalis. However, 16S rRNA anal-
yses performed by Goodfellow et al. (1997) and a number of

∗ Corresponding author. Tel.: +49 7071 2978840.
∗∗ Corresponding author. Tel.: +49 (0)521 106 12252.

E-mail addresses: Evi.Stegmann@Biotech.Uni-Tuebingen.DE (E. Stegmann),
Christian.Rueckert@CeBiTec.Uni-Bielefeld.DE (C. Rückert).

phenotypic properties resulted in the renaming of the strain in
“Amycolatopsis japonicum” sp. nov., corrected to A. japonica upon
validation (Anonymous, 1997). A. japonica is of great interest
because the strain is genetically accessible (Stegmann et al., 2001)
and has the potential to produce a wide spectrum of secondary
metabolites (Spohn et al., 2014).

To obtain the complete genome sequence, data from two
sequencing libraries were combined, a whole genome shotgun
library and a 8 k long paired end library. Both libraries were
sequenced on a 454 GS-FLX platform using the Titanium chem-
istry to avoid problems caused by the expected high G + C content
(Schwientek et al., 2011). In total, 732,707 reads (213,725,262
bases) were assembled in two scaffolds using Newbler v2.5.3, rep-
resenting the circular chromosome (51 unique contigs) and plasmid
pAmyja1 (1 contig). In total 62 contigs larger than 500 bp were
assembled, the average coverage of the assembled contigs was
23.6-fold. To obtain the complete sequence, gaps caused by repeats
were closed using CONSED (Gordon, 2003; Gordon et al., 1998). To
correct for homopolymer errors, additional data from an Illumina
GA IIx single read run of 150 bp were used, similar to the approach
for Streptomyces collinus (Rückert et al., 2013). A set of 2,786,834
reads was mapped on the sequence, allowing to identify and cor-
rect 31 indel errors. The polished sequences were annotated using
GenDB (Meyer et al., 2003), the results are listed in Table 1.

http://dx.doi.org/10.1016/j.jbiotec.2014.08.034
0168-1656/© 2014 Elsevier B.V. All rights reserved.
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Table 1
Genome features of A. japonica MG417-CF17T.

Features Chromosome Plasmid pAmyja1

Length (bp) 8,961,318 92,539
DNA-coding regions (bp) 8,156,541 80,232
G + C content (%) 68.89 68.23
CDS 8298 126
rRNA genes (operons) 12 (4) 0
tRNA genes 55 0

Using the software antiSMASH 2.0 (Blin et al., 2013), in total 30
gene clusters encoding the biosynthesis of secondary metabolites
were identified, a number roughly comparable to other Pseudono-
cardiaceae (Strobel et al., 2012). Among these clusters are one novel
glycopeptide gene cluster (Spohn et al., 2014) as well as several
clusters encoding the synthesis of polyketide, nonribosomal pep-
tide antibiotics, and lanthipeptides.

Nucleotide sequence accession numbers

The complete genome sequence has been deposited in
DDBJ/EMBL/GenBank under accession nos. CP008953 (chromo-
some) and CP008954 (pAmyja1).
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Elucidation of the zinc-dependent regulation in
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Summary

The actinomycete Amycolatopsis japonicum pro-
duces the complexing agent ethylenediamine-
disuccinate ([S,S]-EDDS), which is an isomer of
the widely industrially applied ethylenediamine-
tetraacetate (EDTA). In contrast to EDTA, [S,S]-EDDS
is readily biodegradable and is therefore an alterna-
tive with a favourable environmental profile.
Biotechnological production of [S,S]-EDDS, however,
is not currently possible because its biosynthesis is
inhibited by low-micromolar zinc concentrations.
Here we illustrate the development of a new strategy
for identifying a biosynthetic pathway that is based
on the elucidation of transcriptional regulation and
the screening for binding sites of the respective regu-
lator that controls the [S,S]-EDDS biosynthesis
genes. To achieve this, we identified the zinc uptake
regulator Zur in A. japonicum and showed that it
mediates the repression of the zinc uptake system
ZnuABCAj. The Zur-binding motif, recognized by the
zinc-bound Zur protein in the upstream region of
znuABCAj, was used to screen the genome, leading to
the identification of the aes genes. Transcriptional
analysis and shift assays reveal specific zinc-
responsive regulation of the aes genes by Zur, and
gene inactivation shows their involvement in [S,S]-
EDDS biosynthesis. Zur-mediated zinc repression of
the [S,S]-EDDS biosynthesis genes is abolished in a
Δzur mutant, which offers now the opportunity to
develop a biotechnological process.

Introduction

Ethylenediamine-disuccinate (EDDS) is an aminopoly-
carboxylic acid, which forms typical sixfold coordinated
complexes with transient metal ions (Chen et al., 2010).
EDDS exhibits two asymmetric C-atoms, allowing the for-
mation of four optical stereoisomers: [S,S]-, [R,R]-, the
meso-isomers [R,S]- and [S,R]-EDDS. The [S,S]-
configuration is the only stereoisomer readily biodegrad-
able to complete mineralization (Schowanek et al., 1997;
Takahashi et al., 1997).

The actinomycete strain Amycolatopsis japonicum
MG417-CF17 (formerly described as Amycolatopsis
orientalis; Goodfellow et al., 1997) produces [S,S]-EDDS
as a natural compound. [S,S]-EDDS was originally dis-
covered during a screening for phospholipase C inhibitors
(Nishikiori et al., 1984) and exerts its inhibitory effect by
complexing zinc ions, which are essential cofactors of this
zinc-metalloenzyme (Hough et al., 1989). [S,S]-EDDS is
an ethylenediamine-tetra acetate (EDTA) isomer (Fig. 1).
EDTA is used commercially in large quantities for many
applications, such as in cosmetic, food and medical prod-
ucts as well as in the textile and paper industries or in
laundry detergents. However, due to its low biodegrada-
bility, EDTA cannot be removed by conventional waste-
water treatments and remains at high concentrations in
aquatic environments, where it evokes constant environ-
mental threats by undesirably mobilizing metal ions.
Because [S,S]-EDDS exhibits similar chelating properties
as EDTA, it offers a biodegradable alternative that
is chemically produced from non-renewable fossil
resources.

To date, siderophores are the main group of described
chelating compounds produced by microbes. They are
produced under iron-deficient conditions to solubilize
and facilitate the uptake of iron. Also, strains of the
genus Amycolatopsis are known siderophore producers
(Meiwes et al., 1990; Seyedsayamdost et al., 2011).
Although there are secondary metabolites that complex
certain metal ions with high affinity, like the zinc-binding
zincophorin (Brooks et al., 1984) or the copper-binding
closthioamide (Kloss et al., 2013), they are neither syn-
thesized in response to deficiency of the corresponding
metal ion, nor reported to mediate its uptake.
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Chelating agents (ionophores), which are predicted to
function in the acquisition of transition metals other than
iron, however, have been disregarded for a long time. The
examples described include the zincophores, such as
pyridine-2,6-bis(thiocarboxylic acid) from Pseudomonas
putida (Leach et al., 2007) and coelibactin from
Streptomyces coelicolor (Kallifidas et al., 2010), and the
copperphore methanobactin from methane-oxidizing bac-
teria (Kim et al., 2004). Ionophores are either synthesized
by non-ribosomal peptide synthetases (NRPS) (e.g.
enterobactin; Pollack et al., 1970; Rusnak et al., 1991) or
by NRPS-independent siderophore (NIS) synthetases
(e.g. aerobactin; Gibson and Magrath, 1969; de Lorenzo
and Neilands, 1986). Because [S,S]-EDDS production is
tightly inhibited by traces of zinc, whereas iron had only a
minor effect even at elevated concentrations (Cebulla,
1995; Zwicker et al., 1997), it is considered that [S,S]-
EDDS is an evolutionary response to zinc deficiency,
serving as a zincophore to contribute to zinc uptake.

Zinc is an essential trace element for all living cells, and
it is estimated that 5–10% of all proteins contain zinc as a
cofactor (Andreini et al., 2006). Zinc in proteins either
participates directly in chemical catalysis or is important for
maintaining protein structure and stability. However, highly
concentrated zinc can inhibit physiological functions of
proteins by blocking important thiols and by competing with
other metal ions for binding sites (Kasahara and Anraku,
1974; Aagaard and Brzezinski, 2001). Hence, all cells have
to maintain zinc homeostasis optimal for cell survival. In
prokaryotes, this precise balance is predominantly main-
tained using zinc-responsive transcriptional factors, which
sense zinc deficiency and zinc excess (Choi and Bird,
2014). The major prokaryotic factor regulating the expres-

sion of genes encoding zinc uptake and zinc mobilization
functions is Zur (zinc uptake regulator), initially described in
Bacillus subtilis and Escherichia coli (Gaballa and
Helmann, 1998; Patzer and Hantke, 1998). Zur belongs to
the Fur (Ferric uptake regulator) protein family of transcrip-
tion regulators. Within the Fur family, there is a huge
diversity in metal selectivity and biological function, includ-
ing sensors of not only zinc, iron, manganese and nickel,
but also of oxidative or acid stress. Fur proteins are typi-
cally transcriptional repressors that bind specifically to
corresponding palindromic A/T-rich sequences found in
the promoters of their DNA targets when bound to their
cognate metal ion cofactors (Fillat, 2014). Under zinc-
deficient conditions, Zur is inactive and has negligible
affinity for the operator sequence. The inactive Zur binds
only one zinc ion per monomer within a structural zinc-
binding site (ZBS) to maintain its homodimeric state
(Lucarelli et al., 2007; Ma et al., 2011; Shin et al., 2011).
The increased concentration of free zinc ions leads to
further binding of zinc to additional regulatory ZBSs,
causing a conformational change, which gives rise to a fully
active form of the repressor. Zinc-bound Zur exhibits a high
affinity for its cognate DNA motifs upstream of their target
genes (Choi and Bird, 2014). One of the best-investigated
Zur regulators in actinomycetes, to date, is the Zur protein
of S. coelicolor. In S. coelicolor, the Zur regulon includes
znuABC, encoding an ATP-binding cassette (ABC) uptake
system (Shin et al., 2007), an NRPS gene cluster, pre-
dicted to direct synthesis of coelibactin (Kallifidas et al.,
2010), and a set of genes encoding alternative, zinc-free
ribosomal proteins (Owen et al., 2007).

Because the identification of the EDDS biosynthetic
genes was not possible using strategies normally applied
to the isolation of secondary metabolite gene clusters, we
developed a new approach to identify natural compound
biosynthesis pathways by exploiting knowledge in the
field of transcriptional regulation, which we termed
INBEKT. Using this approach, we could elucidate the
ZurAj-mediated zinc regulation in A. japonicum in detail.
The constructed A. japonicum ΔzurAj mutant showed
elevated EDDS production, even in the presence of high
zinc concentrations, revealing the EDDS biosynthesis
genes as a member of the ZurAj regulon. The subsequent
screening of the A. japonicum genome with the deduced
Zur box enabled the identification of EDDS biosynthesis
genes for the first time. Transcriptional analyses and gel
shift experiments confirmed that they are strictly zinc
repressed by ZurAj. The analysis of the phylogenetic abun-
dance of the identified EDDS biosynthesis genes, com-
bined with the evaluation of the capability of certain
Amycolatopsis strains to produce EDDS, provides insight
into its role as an evolutionary response to zinc deficiency
and contributes to the determination of the EDDS
biosynthesis gene cluster.

Fig. 1. Chemical structures of [S,S]-EDDS and EDTA.
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Results and discussion

The [S,S]-EDDS biosynthetic gene cluster cannot be
identified by classical methods and stays hidden to
genome-mining approaches

Amycolatopsis japonicum was described as the producer
of [S,S]-EDDS in 1984 (Nishikiori et al., 1984). However,
the enzymes required for [S,S]-EDDS biosynthesis have
not yet been identified. During the pre-genomic era, differ-
ent classical approaches, such as heterologous expres-
sion of an A. japonicum cosmid library in a non-producer
strain, or comparative proteomics of cells growing in the
presence or absence of zinc, have been applied unsuc-
cessfully. In addition, a reverse genetic approach with
degenerated primers did not result in the identification of
any genes in the A. japonicum genome encoding NIS
synthetases, commonly involved in ionophore
biosynthesis. Access to the A. japonicum genome
sequence (GenBank accession number CP008953)
(Stegmann et al., 2014) allowed data analysis using
bioinformatic tools such as antiSMASH 3.0 (Weber et al.,
2015) to evaluate the biosynthetic potential of
A. japonicum. antiSMASH 3.0 is a bioinformatic tool
capable of discovering and classifying biosynthetic loci
covering a wide range of known secondary metabolite
compound classes. This in silico analysis revealed the
presence of various putative gene clusters encoding the
synthesis of natural products in A. japonicum (Spohn et al.,
2014). Two of the identified gene clusters could be
assigned to their products: ECO-0501, a polyketide
synthase-derived polyene (Shen et al., 2012) and
ristomycin A (Spohn et al., 2014), a glycopeptide antibiotic.
However, none of the remaining clusters could be assigned
to the [S,S]-EDDS structure, indicating a novel and unique
biosynthesis mechanism different from the typical NRPS or
NIS pathways known for siderophore synthesis. Therefore,
the development of an alternative strategy for the identifi-
cation of the [S,S]-EDDS biosynthesis genes was required.

Zur controls the expression of the
[S,S]-EDDS biosynthesis

Because [S,S]-EDDS production is repressed when
A. japonicum is grown in zinc-containing medium (>2 μM
zinc), we assumed that a zinc-responsive regulator con-
trols the [S,S]-EDDS biosynthesis genes. BLAST analyses
of the A. japonicum genome using the protein sequence
of ZurSC, the zinc uptake regulator of S. coelicolor (Owen
et al., 2007), revealed the presence of AJAP_29045
(GenBank: AIG78644) with high similarity (67% amino
acid identity). All of the available Zur structures demon-
strate a common homodimeric quaternary structure with
each monomer consisting of an N-terminal DNA-binding
domain, a C-terminal dimerization domain and an inter-

domain hinge loop (Fillat, 2014). From the crystal struc-
tures of Zur from Mycobacterium tuberculosis (Lucarelli
et al., 2007) and S. coelicolor (Shin et al., 2011), three
ZBSs per monomer were determined. One ZBS is
required to ensure the dimeric structural integrity of the
proteins, whereas the other two ZBSs possess regulatory
roles to modulate Zur activity (D’Autreaux et al., 2007;
Shin et al., 2011). In S. coelicolor, it is suggested that the
two regulatory ZBSs serve as an on–off switch to activate
Zur and to mediate graded gene expression as a
response to altered zinc concentration (Shin et al., 2011).
In support of its potential role as a major zinc regulator,
PREDZINC 1.4 (Shu et al., 2008) analysis and
multisequence alignments revealed the presence of all
three putative ZBSs in the AJAP_29045 gene product
(Fig. S1), which is henceforth designated ZurAj.

To investigate the role of ZurAj as a regulator of the
[S,S]-EDDS biosynthesis in A. japonicum, the entire zurAj-
coding region was deleted in frame with a markerless
procedure (A. japonicum Δzur) (the deletion procedure is
illustrated in Fig. S2). For this purpose, the flanking regions
of zurAj were integrated into pGusA21 (Table S1, Fig. S2),
which contains the gusA reporter gene encoding a
β-glucuronidase (GUS). The gene inactivation plasmid
pGusA21Δzur (Table S1) was integrated into the
A. japonicum genome via a single crossover. This event
was selected by using the plasmid-encoded apramycin
resistance. The integration of the plasmid was verified by
polymerase chain reaction (PCR). To obtain a deletion
mutant, a second homologous recombination event was
provoked by stressing selected colonies using tempera-
ture shifts and protoplast formation as described previ-
ously (Puk et al., 2002). Protoplast regeneration was
carried out on agar plates containing the GUS substrate
5-bromo-4-chloro-3-indolyl-β-d-glucuronide (X-Gluc). The
loss of GUS activity (visible as white-coloured colonies)
indicated the excision of the plasmid. GUS-negative colo-
nies were selected, and the deletion of the zurAj gene was
confirmed by PCR.

To study the effect of the zurAj deletion on [S,S]-EDDS
production, A. japonicum Δzur and A. japonicum wild
type (WT) were grown in 12-well microtitre plates
containing 3 ml of synthetic medium (SM) per well
with various increasing zinc concentrations. [S,S]-EDDS
production was quantified by high performance liquid
chromatography-dioden array detector (HPLC-DAD)
analyses after growth for 72 h from three biological repli-
cates to determine the production yield in [S,S]-EDDS/
biomass (mg g−1). A. japonicum WT produced [S,S]-EDDS
only with zinc concentrations lower than 2 μM (Fig. 2). In
contrast, zinc independent and constant [S,S]-EDDS
biosynthesis was observed in A. japonicum Δzur over the
total range of the applied zinc gradient (Fig. 2), an effect
that was even seen at a zinc concentration of 5 mM.
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Additionally, the deletion of zurAj led to an increased total
[S,S]-EDDS yield (4 to 4.5-fold) compared with the WT
strain. To genetically complement A. japonicum Δzur, a
single-coding region of the entire zurAj gene was cloned
into the integrative vector pRM4 under the control of the
constitutive promoter ermEp* and transferred into
A. japonicum Δzur. Amycolatopsis japonicum Δzur:pRM4-
zur showed the same phenotype as the WT; it produced
[S,S]-EDDS exclusively in the absence of zinc (Fig. S3).
[S,S]-EDDS production in A. japonicum Δzur in the pres-
ence of zinc suggested that the ajap_29045-encoded
protein is the zinc-sensing regulator ZurAj and that the
[S,S]-EDDS biosynthesis genes are under its zinc-
responsive control.

The Zur regulon of A. japonicum contains the
high-affinity zinc uptake system znuABC

Zur regulons characterized thus far usually comprise
10–30 genes with different functions, often related to zinc
homeostasis. In particular, the high-affinity zinc uptake
system ZnuABC has been identified as Zur regulated in
many bacteria and is widely distributed throughout the
bacterial kingdom (Patzer and Hantke, 1998; Campoy
et al., 2002; Lucarelli et al., 2007; Shin et al., 2007; Pawlik
et al., 2012). We identified two loci in A. japonicum
whose deduced protein sequences show high levels of
similarity to the previously described ZnuABC system of
S. coelicolor (Shin et al., 2007) (Fig. 3B). However, in con-
trast to S. coelicolor, neither of them is localized closely to
zurAj. The two loci are encoded by ajap_18665-80 (locus 1)
and ajap_32775-85 (locus 2), and both encode a putative
ATPase, a putative membrane permease and a putative
metal-binding lipoprotein. Locus 2 exhibits an identical
gene arrangement to the znuABCSc genes in S. coelicolor,
whereas the gene arrangement of locus 1 deviates from

that of znuABCSc. Moreover, locus 1 is extended by a gene
(ajap_18675) that is predicted to encode a lipoprotein
containing an N-terminal signal peptide with a conserved
lipobox (L-A-A-C).

To elucidate which locus is connected to zinc uptake in
A. japonicum, we performed qualitative reverse transcrip-
tion PCR (RT-PCR). The transcriptional pattern of the two
znuABC homologues was investigated with respect to the
presence of zinc ions. Hence, cultures were grown in the
presence (25 μM) and in the absence of zinc, and RNA
was isolated after 10 h (early exponential phase) and 70 h
(stationary phase). The presence of ajap_32775 (locus 2)
and ajap_18670 (locus 1) transcripts were monitored with
specific primer pairs (Table S2). RT-PCR analysis showed
that locus 1 expression was repressed in the presence of
zinc, in contrast to locus 2 whose expression was zinc
independent (Fig. 3C). From these results we concluded
that locus 1 encodes an ABC uptake system sensitive for
zinc, and we designated it henceforth znuABCAj. To further
specify the function of locus 2, we analysed its transcrip-
tional pattern after growth in SM supplemented with
various metal ions (Fe2+, Ni2+, Co2+ and Mn2+). ajap_32775
expression was specifically repressed in the presence of
manganese (Fig. 3C). Therefore, locus 2 was considered
to encode an ABC transporter with a manganese uptake
function in A. japonicum, similar to the mntABCD system
of B. subtilis (Que and Helmann, 2000). The transcription
of znuB (ajap_18670) is not repressed by any ion other
than zinc, revealing the specific function of ZnuABC as a
zinc acquisition system.

To assess the physiological range in which the identi-
fied zinc uptake system is required to supply the cells with
zinc, A. japonicum WT and A. japonicum Δzur were grown
in microtitre plates in a zinc gradient. RNA isolation was
performed after 72 h of growth and used for RT-PCR
analyses. A znuBAj transcript was only detectable in WT
samples after growth with zinc concentration of ≤2.0 μM
(Fig. 4). This indicates the necessity of ZnuABCAj to
enhance zinc uptake in an environment characterized by
low zinc bioavailability (≤2.0 μM). In contrast, transcrip-
tional analysis of znuBAj in the A. japonicum Δzur mutant
occurred over the whole range of applied zinc concentra-
tions, with detectable expression even at the most
elevated zinc concentrations (100 μM) (Fig. 4).

Because znuCAj and znuBAj are transcribed in reverse
orientation we assumed the presence of a ZurAj box in this
intergenic region. To analyse whether ZurAj binds to this
region in a zinc-dependent manner, electrophoretic mobil-
ity shift assays (EMSAs) were performed. His-tagged
ZurAj was purified from E. coli BL21(DE3) pLys trans-
formed with pET-30-zur. Cy5-labelled DNA, covering the
region from −110 to +35 bp with respect to the znuBAj GTG
start codon (iznuCB), was used as a probe in the EMSA.
The binding reaction was carried out by incubating

Fig. 2. Zinc-dependent production of [S,S]-EDDS. Strains were
grown for 72 h in 12-well microtitre plates in synthetic medium (SM)
supplemented with different concentrations of ZnSO4. n = 3.

4 M. Spohn, W. Wohlleben and E. Stegmann

© 2015 Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology

1252 M. Spohn, W. Wohlleben and E. Stegmann

VC 2015 Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology, 18, 1249–1263

labelled DNA with purified ZurAj in binding buffer with or
without 25 μM ZnSO4. Binding of ZurAj occurred only in the
presence of zinc (Fig. 5). Although ZurAj was also added in
various higher concentrations, only a single ZurAj shift was
observed. In contrast, S. coelicolor Zur forms multiple
complexes with its target DNAs in dependence on

increased Zur concentration (Shin et al., 2007; Kallifidas
et al., 2010). It is thought that these multiple shifts repre-
sent independent binding events of several Zur dimers to
the DNA. However, in E. coli, no such intermediate
species of protein–DNA bindings were observed. There,
two Zur dimers bind to the DNA in a highly cooperative

Fig. 3. Gene organization and zinc-specific regulation of znuABC homologues loci in A. japonicum.
A. Comparison of the gene organization pattern of the znuABC locus in S. coelicolor with homologues in A. japonicum.
B. Homology analyses using BLAST: identity/similarity of locus 1 and 2 to ZnuABC proteins of S. coelicolor on amino acid level.
C. Trace metal-dependent transcriptional pattern of the putative high-affinity metal uptake systems of A. japonicum. Cultures were grown in
SM in the absence of any trace element (−) or supplemented with 25 μM Fe2+, Zn2+, Ni2+, Co2+ or Mn2+, and samples were taken after 10 h
(exponential growth phase) and 70 h (stationary growth phase) of incubation to isolate RNA. sigB was used as a housekeeping gene to
normalize the RNA. znuB (ajap_18670) and mntA (ajap_32775) were chosen as probes to represent the entire locus.

Fig. 4. Zinc-dependent gene transcription in
A. japonicum strains. Strains were grown for
72 h in 12-well microtitre plates in synthetic
medium (SM) supplemented with different
concentrations of ZnSO4 prior to RNA
isolation. sigB was used as a housekeeping
gene to normalize the RNA. znuB
(ajap_18670) and aesA (ajap_08425) were
amplified using specific primers (Table S2).
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way, revealing single shifts in EMSA experiments (Gilston
et al., 2014), comparable with the observed single ZurAj

shift. To identify a conserved ZurAj box we used MEME, a
tool for discovering motifs in a group of related DNA
(Bailey et al., 2009). The Zur consensus sequences of
M. tuberculosis (Maciag et al., 2007), Corynebacterium
glutamicum (Schröder et al., 2010) and S. coelicolor
(Owen et al., 2007) were aligned to the intergenic region
of znuCBAj to identify a conserved ZurAj box. The align-
ment revealed an A/T-rich palindromic sequence consist-
ing of a 7-1-7 arrangement in the intergenic region
between znuC and znuB (iznuCB), exhibiting high simi-
larity to previously described Zur boxes (Fig. 6A). Using
this newly identified motif, a specific A. japonicum ZurAj

box was deduced (Fig. 6B).

The ZurAj regulon of A. japonicum contains putative
[S,S]-EDDS biosynthetic genes

To identify further ZurAj-regulated genes, in particular the
[S,S]-EDDS biosynthesis genes, the deduced ZurAj box
was submitted to FIMO, a software tool for scanning DNA
sequences with motifs described as position-specific
scoring matrices (Bailey et al., 2009), to screen the
A. japonicum genome. This revealed a putative binding
motif with high similarity to known Zur boxes between
ajap_08420 (aesE) and ajap_08425 (aesA) (Fig. 6C), two
genes transcribed in opposite directions (Fig. 7A). aesE
encodes a protein belonging to the amidase signature

family. Enzymes of this family catalyse the hydrolysis of
amide bonds using a highly conserved Ser-Ser-Lys cata-
lytic triad, which is also present in the predicted amino
acid sequence of AesE (Ser106, Ser130 and Lys31).
ajap_08425 is the first gene of an operon consisting of
four overlapping genes (ajap_08425-40) (Fig. 7A). The
genes were designated aesA, aesB, aesC and aesD
respectively. The proposed gene products of aesA, aesB
and aesC share significant similarity to SbnB, SbnH and
SbnA, respectively, enzymes involved in the synthesis of
staphyloferrin B (SB) (Fig. 7B). SB is a NIS-derived
siderophore of Staphylococcus aureus (Cheung et al.,
2009) containing a central 1,2-diaminoethane (Dae)
moiety (Fig. 7C). Central Dae moieties are rare in natural
compounds, and it was long considered that this moiety

Fig. 5. Zinc-dependent binding of purified ZurAj to znuCB and aesA
promoter region. Purified ZurAj was incubated with Cy5-labelled
DNA fragment upstream of znuCB (iznuCB) or aesA (upaesA)
(4 nM) in the absence or in the presence of 25 μM ZnSO4

(indicated by – and + respectively). To confirm the specificity of the
binding complexes, either an excess amount of non-specific
competitors [NS; pRM4 (70 nM)] or of specific competitors [S;
unlabelled fragment upstream of znuCB DNA (1,1 μM) or aesA
(0.65 μM)] was added to the binding mixture.

Fig. 6. MEME-FIMO analysis to screen for Zur boxes in A. japonicum
genome.
A. MEME alignment of znuCB intergenic region and Zur consensus
sequences of M. tuberculosis (Mtb con), C. glutamicum (Cgl con)
and S. coelicolor (Sco con).
B. Deduced Zur box used for screening all 5′UTRs of the
A. japonicum genome by MEME-FIMO.
C. Genetic organization and Zur box locations in the znuCB and
aesA (ajap_08425) promoter regions. Nucleotides underlined
indicate the start codons. Putative Zur boxes are indicated by grey
highlighting.
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Fig. 7. Proposed [S,S]-EDDS biosynthesis.
A. Genetic organization of ajap_08400-55. The operon aesA-D (ajap_08425-40) downstream of the Zur-binding site (indicated by an orange
asterisk) is highlighted in blue and aesE-H in red. The black bar illustrates EMSA shift fragment upaesA (Fig. 5).
B. Homology analyses using BLAST: identity/similarity of AesA-D to staphyloferrin (SB) biosynthesis enzymes.
C. Comparative alignment of the SB biosynthesis pathway and predicted [S,S]-EDDS pathway. Dae moieties are highlighted in blue.
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is restricted to synthetic compounds exclusively
(Bucheli-Witschel and Egli, 2001). However, the [S,S]-
EDDS structure also harbours such a moiety. In
S. aureus, SB biosynthesis starts with the formation of
diaminopropionate (Dap), the product of the amidation of
O-phospho-L-serine with the amino donor L-glutamate
(Kobylarz et al., 2014). This reaction is coordinately cata-
lysed by SbnA and SbnB. The further assembly of the
single SB building blocks occurs via three distinct NIS
synthetases (SbnE, SbnF and SbnC). Additionally, SbnH
is required to catalyse the decarboxylation of a Dap inter-
mediate, which leads to the Dae moiety (Cheung et al.,
2009). A NIS-dependent, stepwise assembly can be
excluded for [S,S]-EDDS biosynthesis because no NIS
synthetase is encoded in the A. japonicum genome.
Therefore, an alternative pathway has to be postulated for
[S,S]-EDDS: we assumed that the first step, the supply of
the building block Dap, occurs in a similar way and is
catalysed by the SbnB and SbnA homologues AesA and
AesC. A stepwise assembly of Dap with dicarboxylic acids
(e.g. oxaloacetic acid) and the decarboxylation of the Dap
moiety (presumably catalysed by the SbnH homologue
AesB) should lead to the functional [S,S]-EDDS with its
characteristic central Dae moiety (Fig. 7C). [S,S]-EDDS
can then be transported over the cell membrane by AesD,
a protein similar to the multidrug and toxic compound
extrusion protein family (Morita et al., 1998; 2000). This
deduced [S,S]-EDDS pathway does not belong to any
previously described secondary metabolite pathway
class, giving an explanation as to why these genes could
not be identified using classical bioinformatics tools for
genome mining.

The transcription of the aesA-D operon is zinc regulated

Because [S,S]-EDDS is only produced under zinc-
limiting conditions, the transcriptional pattern of the iden-
tified candidate genes was determined by RT-PCR. The
transcription of aesA was analysed with respect to the
presence of various zinc concentrations. An inverse cor-
related transcription level of aesA to increased zinc con-
centration was observed, whereas no transcript was
detected for zinc concentrations above 2 μM (Fig. 4).
This result is in agreement with the observation that no
[S,S]-EDDS production was detectable in SM with zinc
concentration of ≥2 μM (Fig. 2). The zinc inhibitory effect
was also seen for the genes aesB-D (Fig. S4). The pres-
ence of other divalent metal ions (Fe2+, Ni2+, Co2+ and
Mn2+) did not affect transcription. In the A. japonicum
Δzur background, however, aesA-D expression was zinc
independent with constitutive transcription over the
whole range of the applied zinc gradient (Fig. 4). This
argues that ZurAj is likely the repressor that controls the
operon aesA-D.

To quantitatively determine the transcriptional level of
aesA-D in a zinc-dependent manner, we constructed a
transcriptional fusion of the aesA promoter region (PaesA)
with the gusA gene as a reporter system using the vector
pGus (Myronovskyi et al., 2011). PaesA was amplified by
PCR and fused to gusA by the primer-attached restriction
sites, yielding pGusPaesA (Table S2). pGusPaesA was inte-
grated into A. japonicum WT and A. japonicum Δzur to
generate A. japonicum WT:pGusPaesA and A. japonicum
Δzur:pGusPaesA respectively. Exconjugants contain-
ing unaltered pGus (A. japonicum WT:pGusP and
A. japonicum Δzur:pGusP) served as negative controls. The
strains were grown for 72 h in microtitre plates containing SM
with differing zinc concentrations. Initially, GUS activities
were assayed in cell-based chromogenic assays (Fig. 8B).
No X-Gluc turnover was visible in the A. japonicum WT and
A. japonicum Δzur strains and their corresponding recombi-
nant strains carrying the unaltered pGus. Amycolatopsis
japonicum WT:pGusPaesA exhibited GUS activity (visible
as blue colour) solely when grown at low zinc concentrations,
whereas GUS activity was also visible in A. japonicum
Δzur at elevated zinc concentrations (Fig. 8B). Quantitative
data were generated using the soluble GUS substrate
p-nitrophenyl-β-D-glucoronide in spectrophotometric
assays (Fig. 8A). Under sub-inhibitory zinc concentrations
(0–0.5 μM), A. japonicum WT:pGusPaesA revealed GUS
activity levels [1.86-1.64 Miller units (MU)] significantly above
those of the negative controls (0.28–0.44 MU). Linear
decreasing Gus activity is seen in the range of partial inhibi-
tory zinc concentrations of 0.5 to 2 μM, correlating to [S,S]-
EDDS production in A. japonicum WT (Fig. 2). No GUS
activity was detectable in this strain when grown at zinc
concentrations higher than 2 μM. For A. japonicum
Δzur:pGusPaesA, GUS activities were determined after
growth without ZnSO4 and with ZnSO4 at concentrations of 2
and 100 μM. The GUS activities were measurable in the
presence of 2 μM (7.53 MU) and 100 μM (8.15 MU) zinc and
were comparable to the GUS activity in the absence of zinc
(8.24 MU) (Fig. 8). The GUS activity in A. japonicum
Δzur:pGusPaesA showed a 4.4 fold increase compared with
the activity in A. japonicum WT:pGusPaesA after growth in
the absence of zinc. This result reflects the significantly
higher expression level of the aesA-D operon in
A. japonicum Δzur, which leads to an increased [S,S]-EDDS
yield in this deletion mutant (Fig. 2).

To further verify the zinc-dependent repression of the
operon genes (aesA-D), we performed gel shift assays
using ZurAj and the Cy5-labelled region upstream of aesA
(upaesA) including −185 to +36 bp with respect to its ATG
start codon. Purified ZurAj bound specifically to the DNA
probe in the presence of zinc, whereas no binding occurred
in the absence of zinc (Fig. 5). This zinc-dependent binding
of ZurAj to the intergenic region of aesE-A leads to the
repression of aesA transcription (Fig. 4).
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The aes genes are essential for [S,S]-EDDS production

To prove whether the zinc-regulated aesA-D operon is
involved in [S,S]-EDDS biosynthesis, the in frame deletion
mutant ΔaesA-C was constructed using pGusA21ΔaesA-C
in analogy to the procedure described for zurAj deletion.
A. japonicum ΔaesA-C and A. japonicum WT were grown
in the absence of zinc and [S,S]-EDDS production was

analysed by HPLC-DAD over 5 days of growth. Although
the supernatant of A. japonicum WT contained [S,S]-
EDDS (Fig. 9), no [S,S]-EDDS was detected in the super-
natant of the deletion mutant, confirming the involvement
of at least one of the aesA-C genes in [S,S]-EDDS
biosynthesis. To verify that the loss of [S,S]-EDDS produc-
tion in A. japonicum ΔaesA-C is due to the aesABC dele-
tion and not due to any polar effects, we genetically

Fig. 8. Zinc-dependent GUS activity in A. japonicum WT and A. japonicum Δzur containing aesA promoter-gusA fusions after growth in SM
with various zinc concentrations.
A. Spectrophotometric assay using p-nitrophenyl-β-D-glucuronide as the substrate. Miller units are shown per milligram of cells.
B. Chromogenic assay in SM containing the substrate 5-bromo-4-chloro-3-indolyl-β-d-glucuronide (X-Gluc).

Fig. 9. Time-dependent [S,S]-EDDS
production by A. japonicum WT and
A. japonicum ΔaesA-C:pSET-aesA-D. The
strains were grown in deionized flasks in
zinc-deficient SM. Samples were taken
directly after inoculation of the main culture
(t = 0 h) and further time points of incubation
and quantified by HPLC-DAD. n = 3.
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complemented A. japonicum ΔaesA-C. Hence, we con-
structed the plasmid pSET152-aesA-D, which harbours
the complete aesA-D operon downstream of its native,
zinc-repressed promoter and applied it to complement the
mutant. Amycolatopsis japonicum ΔaesA-C:pSET-aesA-D
showed restored [S,S]-EDDS production (Fig. 9). Due to
the transcriptional control by the native promoter,
A. japonicum ΔaesA-C:pSET-aesA-D produces [S,S]-
EDDS solely in zinc-depleted medium. The amount of
[S,S]-EDDS produced by this recombinant strain was
increased two to three times compared with that by
A. japonicum WT, likely due to the presence of a second,
plasmid-encoded copy of the exporter gene aesD.
Overexpression of exporter genes is a generally applied
strategy in metabolic engineering approaches to increase
production yields. For example, overexpression of theABC
transporter DrrABC in Streptomyces peucetius ATCC
27952 led to a 2.4-fold increase of doxorubicin production
(Malla et al., 2010), which is in a similar range as the
observed increase in [S,S]-EDDS production due to aesD
overexpression. Putting these results together with the
proposed biosynthetic pathway, we conclude that
the whole aesA-D operon is involved in [S,S]-EDDS
biosynthesis/export.

The genes ajap_08415, ajap_08410 and ajap_08405
(aesF, aesG and aesH) are located downstream of aesE
and are predicted to encode a LysR family transcrip-
tional regulator, a cysteine dioxygenase and an
acetyltransferase respectively. To investigate the involve-
ment of these genes in the biosynthesis of [S,S]-EDDS,
we constructed the deletion mutant A. japonicum
ΔaesE-H. This mutant was not able to produce [S,S]-
EDDS (Fig. S5). However, the aesA-D operon was still
zinc dependently transcribed in this mutant, confirming
that the promoter region of aesA was not affected by
this mutation. These results demonstrate that at least
one of the aesE-H genes is required for the production
of [S,S]-EDDS in addition to aesA-D.

The [S,S]-EDDS biosynthesis as response to zinc
deficiency is phylogenetically clustered

The distribution of the genetic potential to produce [S,S]-
EDDS in bacteria was assessed by evaluating the
phylogenetic abundance of the aes genes by EDGAR,
a software framework for comparative analysis of
prokaryotic genomes (Blom et al., 2009) and a
combinatorial BLAST and MULTIGENEBLAST (Medema et al.,
2013) analysis. Computational analysis using aesA-H as a
query sequence for searching conserved homologues in a
GenBank database covering all entries revealed that the
occurrence of the aesA-H genes is restricted to certain
strains of the genus Amycolatopsis. Of all the analysed
genomes, solely those of Amycolatpsis sp. MJM2582,

Amycolatpsis orientalis HCCB10007 and Amycolatpsis
lurida DSM 43134 harbour the eight clustered genes
entirely with identical gene arrangement and with high-
sequence similarity compared with A. japonicum
(Table S3). The Amycolatpsis decaplanina DSM 44594
and Amycolatpsis alba DSM 44262 genomes exhibit a
deviation in that they are both missing the terminal aesH
homologue. Interestingly, the Zur box is highly conserved
in all discovered aesE-A intergenic regions (Table S4),
evidencing the common Zur-mediated and zinc-dependent
transcriptional repressions. According to Everest and
Meyers (2009), the members of the genus Amycolatopsis
can be classified into six phylogentic clades (A–F)
(Fig. S6). All strains encoding clustered aes genes are
members of the Amycolatopsis phylogentic clade A. An
exception, however, is Amycolatopsis azurea DSM 43854,
which also belongs to clade A but does not show a con-
served [S,S]-EDDS cluster. In this strain, no aesD
homologues could be identified and the clustered putative
aesA-C homologues show a significant drop in similarity
(Table S3). Moreover, in contrast to all other clade A
strains, no conserved Zur box is present upstream of the
aesA-like gene in A. azurea DSM 43854 (Table S4). Inter-
estingly, the aes genes could be identified exclusively in
Amycolatopsis strains belonging to clade A. In contrast to
the total aes gene cluster, homologues of the aesA-D
subcluster are quite abundant in various genera of
actinobacteria and proteobacteria. However, no aesA-D
homologues could be identified, for example, in firmicutes
or in any Amycolatopsis strain not belonging to clade A.
The abundance of the aesA-D subcluster, when related to
the biosynthesis of Dae moieties, might indicate the poten-
tial of certain strains to produce metabolites containing this
building block.

To correlate the genetic information regarding the abun-
dance of putative biosynthesis genes to the capability in
producing [S,S]-EDDS, we cultivated the strains A. lurida
(Lechevalier et al., 1986), A. decaplaina (Wink et al.,
2004), A. alba (Mertz and Yao, 1993) and A. azurea
(Henssen et al., 1987) belonging to the phylogenetic
clade A in SM in the absence and in the presence of zinc.
Culture filtrates of A. lurida, A. decaplaina and A. alba
grown without the supplementation of zinc showed a peak
whose retention time and UV-DAD spectrum corre-
sponded to the [S,S]-EDDS standard (Fig. S7). This peak
was not observable after growth of these strains in the
presence of zinc. As expected, no [S,S]-EDDS production
could be detected after cultivation of A. azurea. Further-
more, representatives of the phylogenetic clades C and D,
namely Amycolatopsis balhimycina DSM 5908 (Nadkarni
et al., 1994; Wink et al., 2003), Amycolatopsis
mediterranei DSM 43304 (Margalith and Beretta, 1960)
and Amycolatopsis nigrescens DSM 44992 (Groth et al.,
2007), do not produce [S,S]-EDDS (Fig. S7).
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Because A. decaplaina and A. alba also produce
[S,S]-EDDS but do not encode an AesH homologue, its
involvement in [S,S]-EDDS biosynthesis can be
excluded. We therefore consider the cluster border
downstream of the aesH coding region. The opposite
border of the [S,S]-EDDS cluster is most probably
defined by ajap_08445, putatively encoding a function in
sporulation, and the unit ajap_08450-55, encoding a
bifunctional catalase–peroxidase and its transcriptional
regulator, which are involved in oxidative stress
response. The phylogenetic analysis of the abundance
of aes genes, combined with the capability of certain
Amycolatopsis strains to produce [S,S]-EDDS confirmed
the [S,S]-EDDS biosynthesis via the coordinated action
of the enzymes encoded by the aes genes and contrib-
uted to assigning the cluster borders. Furthermore,
these results show that [S,S]-EDDS production, as an
evolutionary response to zinc deficiency, seems to be a
quite common feature of the Amycolatopsis phylogenetic
clade A.

Perspective

Bioinformatic tools, such as antiSMASH 3.0, are com-
monly used for the identification of gene clusters encod-
ing secondary metabolites. However, the identification of
clusters is limited to biosynthetic pathways of already
known mechanisms. In this study, we developed a new
strategy, which is INBEKT. We think that INBEKT is
generally applicable to search for genes encoding
zincophore, or more generally ionophore, biosynthesis
and potentially other pathways consisting of unusual
or novel biosynthetic steps. Our approach does not
require any information regarding the structure or the
biosynthesis mechanism of the compound of interest
and would therefore allow the identification of totally new
secondary metabolite pathways and classes. In addition,
we illustrate how knowledge-based approaches can be
used to increase productivity, either by deleting nega-
tively acting regulators, or by overexpressing specific
exporters. The ongoing work on the elucidation of the
[S,S]-EDDS biosynthetic pathway will provide deeper
insights into discrete biosynthetic steps and deliver addi-
tional possibilities for yield optimization. This will further
promote the establishment of a biotechnological [S,S]-
EDDS production process with a favourable environ-
mental profile.

Experimental procedures

Strains, plasmids and oligonucleotides

The strains and plasmids used in this study are listed in
Table S1. The oligonucleotides are listed in Table S2.

Media and culture conditions

E. coli and A. japonicum strains were cultured and manipu-
lated as described previously (Kieser et al., 2000; Stegmann
et al., 2001; Kołodyńska, 2011; Spohn et al., 2014).

Liquid cultures of A. japonicum strains in 100 ml volume
were grown to detect [S,S]-EDDS production according to
Zwicker and colleagues (1997). The optimized SM consisted
of glycerol (25 g l−1), MgSO4 × 7 H2O (1.2 g l−1), Ferric (III)
citrate (60 mg l−1), KH2PO4 (8 g l−1), Na2HPO4 × 2 H2O
(12 g l−1) and sodium glutamate monohydrate (11.3 g l−1),
which was used as the nitrogen source. To grow the strains in
a reduced 3 ml volume, 12-well microtitre plates were used.
The cultures were grown on a rotary shaker (120 r.p.m.) at
30°C. Precultures were grown in complex culture medium
(glycerol (20 g l−1); soybean meal (20 g l−1) at pH 7.5) for 48 h.
A total of 150 μl of this preculture was used to inoculate 3 ml
of SM supplemented with ZnSO4 to reach the final zinc con-
centrations of 0, 0.1, 0.25, 0.5, 1, 1.5, 2, 2.5, 5, 10, 25 and
100 μM. The cultures were grown for a further 72 h before
being analysed by means of [S,S]-EDDS production, RT-PCR
and GUS activity.

Construction of the inactivation plasmids pGusA21Δzur,
pGusA21ΔaesA-C and pGusA21ΔaesE-H

The upstream and downstream regions of zurAj, aesA-C and
aesE-H were amplified using the primers listed in Table S2.
The purified PCR products were introduced into pJet1.2 as an
intermediate vector and verified by sequencing. By using the
primer-attached restriction sites, the upstream and down-
stream fragments were consecutively cloned into the plasmid
pGusA21, resulting in the inactivation plasmids pGusA21Δzur,
pGusA21ΔaesA-C and pGusA21ΔaesE-H, used for transfor-
mation of A. japonicum WT.

Construction of the complementation plasmid pRM4-zur

For the complementation of A. japonicum Δzur, the entire
coding region of the zurAj gene was amplified using the primer
pair pzur-F and pzur-R. The 429 bp PCR product was inte-
grated into pRM4 (Menges et al., 2007) via the primer-
attached restriction sites downstream of the ermEp* promoter.

Construction of the complementation plasmid
pSET-aesA-D

The cosmid pTWPI1-edds includes a 31 kb insert represent-
ing 1 665 131–1 696 415 bp of the A. japonicum genome.
This genome fragment includes the entire coding regions
from ajap_08305 to ajap_08450 and partial sequences of
ajap_08300 and ajap_08455. A 6545 bp fragment from the
A. japonicum genome from 1 687 557–1 694 101 bp was
isolated from the cosmid using the restriction enzymes
EcoRI and BglII. This fragment contains the entire operon
aesA-D downstream of its native promoter beside partial
sequences of the genes encoded upstream (ajap_08420)
and downstream (ajap_08445). The purified 6545 bp was
cloned into pSET152 (Bierman et al., 1992) via EcoRI and
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BamHI restriction sites resulting in the recombinant pasmid
pSET-aesA-D.

RT-PCR analysis

RNA isolation and RT-PCR analyses were performed accord-
ing to Spohn and colleagues (2014) with the primer pairs
listed in Table S2.

Overexpression and purification of A. japonicum Zur in
E. coli

The coding region of the zurAj gene was amplified using the
primers HIS-pzur-F and HIS-pzur-R. The 441 bp PCR frag-
ment was cloned into pET30 Ek/LIC (Novagen) via its com-
plementary overhangs, according to manufacturer’s protocol.
Escherichia coli BL21(DE3) pLys was transformed with the
resulting plasmid pET-30-zur. The overexpression and puri-
fication of the His-tagged protein was performed as previ-
ously reported (Shin et al., 2007).

Gel mobility shift assays for DNA–Zur binding

DNA fragments containing the analysed intergenic regions
were amplified from A. japonicum genomic DNA using the
primers listed in Table S2. Fragment labelling was performed
as described by Tiffert and colleagues (2008). Approximately
4 nM of the Cy5-labelled DNA fragments and purified tagged
protein were incubated in reaction buffer [20 mM Tris-HCl
(pH = 7,8), 50 mM KCl, 1 mM DTT, 0.1 mg of bovine serum
albumin ml−1 and 5% glycerol] with or without 25 μM ZnSO4

for 20 min at 30°C. The binding mixture was subjected to
electrophoresis on a 2% TB (89 mM Trizma base, 89 mM
boric acid) agarose gel in TB buffer. DNA bands were visu-
alized by fluorescence imaging using a Typhoon (GE
Healthcare) fluorescence laser scanner.

Detection of [S,S]-EDDS biosynthesis using HPLC-DAD

For the detection of [S,S]-EDDS, the fermentation broth was
centrifuged, and 1 ml of supernatant was thoroughly mixed
with 20 μl of CuSO4 (100 mM) and once again centrifuged
before using the supernatant for HPLC analysis. [S,S]-EDDS
analyses were carried out on a HP1090M liquid chromato-
graph equipped with a thermostated autosampler, a diode-
array detector and an HP Kayak XM 600 ChemStation
(Agilent). A total of 10 μl of samples were injected onto a
Hypersil ODS column (125 × 4 mm, 3 μm) fitted with a guard
column (10 × 4 mm, 3 μm; Stagroma) and analysed by
isocratic elution with solvent A – acetonitrile (96:4, v/v) at a
flow rate of 1 ml min−1. Solvent A consisted of 20 mM
Sorensen’s phosphate buffer (pH 7.2) with 5 mM tetrabutyl-
ammoniumhydrogensulfate. UV detection was performed at
253 nm. For data analysis, Chemstation LC3D software Rev.
A.08.03 was used. Commercial [S,S]-EDDS in solution
(Sigma Aldrich) was precipitated to obtain crystalline powder
as previously described (Zwicker et al., 1997) and used as a
standard.

Construction of the gusA promoter probe
plasmid pGusPaesA

A 167 bp DNA fragment containing the complete intergenic
region from aesE (ajap_08420) to aesA (ajap_08425) was
PCR amplified using the primer pair PaesA-F and PaesA-R.
The PCR fragment was cloned into pJet1.2 and verified by
sequencing before integration into the corresponding sites of
the pGus vector via XbaI and SpeI to generate pGusPaesA.

Spectrophotometric and chromogenic assay of
GUS activity

For the quantification of expression levels, the spectro-
photometric method of Myronovskyi and colleagues (2011)
was modified. After cultivation for 72 h, cells were harvested
and washed twice with SM before the biomass was adjusted to
200 mg ml−1 with SM containing glycerol.A total of 800 μl of the
cell stock solutions were centrifuged and re-suspended in 1 ml
of lysis buffer and incubated for 30 min at 37°C. Cell debris
was removed by centrifugation and 100 μl of the cell lysate
was assayed. Optical density at 405 nm was measured in a
96-well plate on a Dynamic Microplate MicroTek DS
spectrophotometer (Bio-Tek Kontron instuments). Miller units
were calculated as 1000× (OD405 of sample-OD405 of
blank) / (time of reaction in minutes × volume of culture
assayed). For the chromogenic assay, 50 μl from
A. japonicum strain stock solutions (200 mg ml−1 in SM-
glycerol) were mixed with 150 μl of 1.5 mg ml−1 X-Gluc
(5-bromo-4-chloro-3-indolyl-β-d-glucuronide) and photo-
graphed after 24 h at 30°C.
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Additional Supporting Information may be found in the online
version of this article at the publisher’s web-site:

Fig. S1. (A) Zinc-binding site prediction by PREDZINC

version 1.4 (Shu et al., 2008) of ZurAj (GenBank: AIG78644).
Predicted zinc-binding residues are highlighted in red. Cys,
His, Asp and Glu are bolded. Residues are predicted as zinc
binding if the score is ≥0.450. (B) Structure-based multiple
sequence alignment of Zur from M. tuberculosis (Lucarelli
et al., 2007) and S. coelicolor (Shin et al., 2011) with its puta-
tive orthologue from A. japonicum. Sequences were aligned
by using CLUSTALW2. Zinc-binding sites: site 1 (structural),

site 2, site 3. Protein domains are indicated on the top.
Green bar indicates the N-terminal DNA-binding domain, red
bar indicates the amino acids involved in forming the inter-
domain hinge loop and the blue bar indicates the C-terminal
dimerization domain. Amino acid similarity is indicated at
the bottom [identical (*), highly similar (:) and similar (.)
respectively].
Fig. S2. The construction of the zur in frame deletion strain
A. japonicum Δzur using the plasmid pGusA21Δzur
(Table S1) via homologous recombination. First and second
homologous recombinations are exemplary illustrated as
succession of (first) downstream recombination and
(second) upstream recombination but could also occur in
opposite succession. aac(3)-IV, apramycin resistance gene;
gusA, β-glucuronidase (GUS) gene. Red: upstream flanking
region of zur amplified by using the primer pair pΔzur-US-F

and pΔzur-US-R (Table S2). Yellow: downstream flanking
region of zur amplified by using the primer pair pΔzur-DS-F
and pΔzur-DS-R (Table S2). Hatched red and yellow bars
illustrate the PCR-generated upstream and downstream
fragments, which were integrated into pGusA21.
pGusA21Δzur-zur is depicted in dashed lines to illustrate that
this plasmid is not replicating in A. japonicum. The proposed
gene products of ajap_2935 – 60 are a conserved putative-
secreted protein, a HTH-type transcriptional repressor, a Fur
family transcriptional regulator, a hypothetical protein, a
membrane permease and a second membrane permease
respectively. The deletions of aesA-C and aesH-E were per-
formed accordingly.
Fig. S3. HPLC analysis of the zinc-dependent [S,S]-EDDS
production. Strains were grown in deionized flasks in SM
either with or without supplementation of 6 μM ZnSO4.
Commercial [S,S]-EDDS from Sigma Aldrich was used as a
standard.
Fig. S4. Zinc-dependent transcriptional pattern of the puta-
tive [S,S]-EDDS biosynthesis genes aesA-D of A. japonicum.
Cultures were grown in SM in absence of any trace element
(−) or supplemented with (+) 6 μM Zn2+ respectively and
samples were taken after 25 h of incubation to isolate RNA.
sigB was used as housekeeping gene to normalize the RNA.
Left panel shows transcription pattern in WT background,
right panel in the Δzur background.
Fig. S5. HPLC chromatograms of culture supernatants of
A. japonicum strains grown in deionized flasks in SM in
absence of zinc. Commercial [S,S]-EDDS from Sigma Aldrich
was used as a standard.
Fig. S6. 16S rRNA gene phylogenetic tree for 16 members
of the genus Amycolatopsis chosen by criteria of available
genome sequence data. The tree was constructed using
neighbour joining with CLUSTALW and MEGA4 software. The
classification into the phylogenetic clades A–F occurred
accordingly to Everest and Meyers (2009). The percentage
bootstrap values of 1000 replications are shown at each node
(only values above 40% are shown). The scale bar indicates
1 nucleotide substitution per 100 nucleotides. Streptomyces
scabies was used as an out-group.
Fig. S7. HPLC chromatograms of culture supernatants of
several Amycolatopsis strains grown in deionized flasks in
SM either with or without supplementation of 25 μM ZnSO4.
Commercial [S,S]-EDDS from Sigma Aldrich was used as
standard.
Table S1. Bacterial strains and plasmids used in this study.
Table S2. Oligonucleotides used in this study.
Table S3. Manual BLAST analysis of AesA-H. Comparison of
A. japonicum AesA-H to homologues in other Amycolatopsis
species.
Table S4. Zur boxes 5′ upstream of aesA homologues.
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