A Master Course on Network Softwarization:
Lectures and Practical Assignments

Frederik Hauser, Mark Schmidt, Michael Menth
Chair of Communication Networks, University of Tuebingen, Tuebingen, Germany
Email: {frederik.hauser,mark-thomas.schmidt,menth}@uni-tuebingen.de,

1. MOTIVATION

The bwNET100G+ research project focuses on innovating
campus and scientific wide area networks using software-
defined networking (SDN) and network function virtualization
(NFV), two concepts that are also referred to as network soft-
warization. In that context, Master students at the University
of Tuebingen have the opportunity to work on prototypical
implementations within thesis projects. Examples are [1]-[3].

As such projects are demanding, students need a solid
understanding of network softwarization and ideally have
some practical experience in that area. In the past, they were
instructed to read scientific papers from the ONF reading list
[4] and to program applications for SDN controllers using
tutorials such as [5] or [6]. However, this was rather inefficient
as the process was difficult for the students and still required
lots of individual supervision. Therefore, we established a
lecture course including practical assignments at Master level
as preparation for a thesis project on network softwarization.

The course prerequisites basic knowledge in communication
networks. It provides an overview of legacy communication
network management and introduces network softwarization
as novel and relevant development. It teaches both theoretical
fundamentals and implementation approaches, and discusses
new challenges in that field. Moreover, students get first
practical experiences with virtualized SDN using Mininet and
program SDN applications for the Ryu SDN controller. While
time-intense courses on network softwarization already exist
[7], [8] at other institutions, our new course is tailored to
a workload of only 3 ECTS including 90 hours of weekly
lectures over 10 weeks during the summer term plus work on
practical assignments and exam preparation.

II. CONCEPT

The concept of the course includes three parts: lectures,
programming assignments, and a final exam.

A. Lectures

The first part of the course focuses on theoretical education
in form of a lecture’s presentation that is based on slides. The
contents are split up in seven chapters as following.

1) Introduction to Network Softwarization: The first chap-
ter covers the transition from legacy to softwarized networks.
Legacy management concepts, e.g., SNMP and NETCONF,
more active network concepts, e.g., ForCES and 4D, and more
recent concepts, e.g., OpenFlow SDN and P4, are discussed.

2) OpenFlow: The second chapter focuses on covering
both, the architecture and protocol of OpenFlow. The lecture
introduces OpenFlow in version 1.0 and 1.5.1. and shows the
transition from the first to the latest feature set while describing
the respective novelties such as flow table pipelines or meters.

3) SDN Controller: The third chapter describes the SDN
application and control layer. It covers the architecture, design
principles, and control plane functions of SDN controllers and
their interfaces along concrete implementations, e.g., REST for
northbound interfaces. The chapter closes with an overview of
pupular SDN controllers, e.g., Ryu, OpenDaylight, and ONOS.

4) SDN Switches: The fourth chapter revises the hardware
architecture of legacy routers and switches in the beginning.
SDN software switches, Whitebox switches, OpenFlow-only
switches, and SDN hybrid switches and their respective de-
ployment scenarios are described in detail afterwards. The
chapter closes with an in-depth view on the status quo.

5) SDN Use Cases: The fifth chapter introduces datacenter,
enterprise, campus and wide area networks as predestined
environments for the application of network softwarization.
Especially benefits, but also limitation in comparison to legacy
technologies are discussed in detail. The chapter closes with
an in-depth description of particular concepts from our current
and past research activities.

6) Virtualization Techniques: The sixth chapter focuses
on the strongly related concept of computer virtualization.
Hypervisor-based and OS-level virtualization technologies
along with concrete implementations are presented. Concepts
for the orchestration of virtualized infrastructures and particu-
lar concepts from our current and past research form the end.

7) Network Function Virtualization: The seventh chapter
introduces the specifics of telecommunication provider net-
works as motivation for the emergence of NFV. The main
part of the lecture covers the ETSI NFV architecture with all
relevant details and discusses use cases. OPNFV is introduced
as exemplary implementation of a NFV environment.

B. Practical Assignments

The second part of the course focuses on practical experi-
ences. Students are required to meet a total score of 60% in
two assignments to get an admission for the final exam. Scores
above 60% are transformed into at most 10% bonus for the
final exam grading. Teamwork skills were encouraged while
the grading effort is limited by the requirement to work in
groups of two. Sessions for the practical assignments were part

of the weekly course schedule, i.e., two lecture slots within the
semester were reserved. We published one assignment sheet at
the beginning of the course, another in the middle that needs
to be finished within a time period of four weeks. It contains
two parts, a short group test and programming tasks.

1) Group Test: The assignment sheets include a catalogue
of 15 to 20 questions that are either related to contents of
the lecture or to aspects of the assignment. Each student is
required to give answers to five questions of the catalogue a
week after the assignment sheet was handed out. The group
test verifies that both group members dealt with the related
theoretical questions prior to programming task work.

2) Programming Tasks: In contrast to other courses, we
limited the programming tasks on SDN application imple-
mentation for Ryu. Therefore, the students learn to implement
known networking concepts, e.g., L2 switching or IP routing,
using the capabilities of Ryu and OpenFlow-based SDN.

The first programming task focuses on familiarization with
Mininet and Ryu by extending a L2 switch sample appli-
cation to support port-based segmentation. The second pro-
gramming assignment extends the L2 switch implementation
with IPv4 routing. Four hosts residing in two different IP
subnets are attached to a SDN switch which routes packets
between the subnets. Figure 1 shows the topology for the
third programming task. Eight hosts are conntected to two
SDN switches that act as IPv4 edge routers. Two additional
SDN switches acting as core routers represent the Internet
between both networks. The edge and core routers are related
to two different SDN controllers. The fourth programming task
furthermore extends the routing functionality by introducing
longest prefix matching in a more complex routing scenario
and routing of IPv6 packets. In the last programming task,
students implement packet- and flow-based IP anycast.

B 10.0.1.1 10.0.1.2 10.0.1.3 10.0.14
]
S | Host 1 | | Host 2 | | Host 3 | | Host 4 |
17}
Controller 2 Controller 1
@ 10.0.1.254 @
Y Y
- OpenFlow Switch 1 _
o o
g 8
£ g
o I
o o
g g
[I
< £
2 3 3
o £ o
g
OpenFlow Switch 2
| 10.0.2.254
E I I
S | Host 5 | | Host 6 | | Host 7 | | Host 8 |
@

10.0.2.1 10.0.22 10.0.2.3 10.0.24

Fig. 1: Network topology for an IPv4 routing scenario with 8 hosts, 4
OpenFlow switches, and 2 SDN controllers.

To simplify the work on the programming assignments,
we provided the NetSoft-VM, a virtual machine image as
uniform programming and execution environment. We chose

VirtualBox as virtualization platform as it can be installed
on Windows, macOS, and Linux. The NetSoft-VM is based
on Ubuntu 17.04 with XFCE and contains Mininet, MiniEdit
as GUI for Mininet, Python 3, the Ryu SDN controller
framework, and the Atom editor. Figure 2 shows the NetSoft-
VM running in VirtualBox with MiniEdit as GUI for the
Mininet network simulator.

NetSoftVM [Running] - Oracle VM VirtualBox

¥ = wminiedit

MiniEdit
File Edit Run Help

/ggon-

Run H

stop |IE]

I
& & 0= & O @ [@ right ctrl

Fig. 2: Netsoft VM in VirtualBox with MiniEdit as GUI for the Mininet
network simulation environment.

Successfully passing the group test was set as requirement
for the grading of the programming tasks. The grading focused
on source code functionality and quality.

C. Final Exam

Due to a limited number of participating students, we
decided not to offer a written final exam. Instead, we chose
the format of an oral exam with 25 minutes per student.

REFERENCES

[1] M. Menth, M. Schmidt, D. Reutter, R. Finze, S. Neuner, and T. Kleefass,
“Resilient Integration of Distributed High-Performance Zones into the
BelWue Network Using OpenFlow,” IEEE Communications Magazine
(Commag), vol. 55, no. 4, Apr. 2017.

[2] F. Hauser, M. Schmidt, and M. Menth, “Establishing a Session Database
for SDN Using 802.1X and Multiple Authentication Resources,” in IEEE
International Conference on Communications (ICC), Paris, France, Jun.
2017.

[3] M. Schmidt, R. Finze, D. Reutter, and M. Menth, “Demo: Resilient

Integration of Distributed High-Performance Zones into the BelWue

Network Using OpenFlow,” in International Teletraffic Congress (ITC),

Wauerzburg, Germany, Sep. 2016.

“Open Networking Foundation: SDN Reading List,” https://www.

opennetworking.org/sdn-resources/sdn-reading-list, accessed: 2017-08-

06.

“Mininet Walkthrough,” http://mininet.org/walkthrough/, accessed: 2017-

08-06.

[6] “Ryu Documentation: Getting Started,” http://ryu.readthedocs.io/en/latest/
getting_started.html, accessed: 2017-08-06.

[4

—

[5

—_

[7] “Coursera: Software Defined Networking,” https://www.coursera.org/
learn/sdn, accessed: 2017-08-06.
[8] “Princeton University: COS-597E, Fall 2013: Software Defined Network-

ing,” http://www.cs.princeton.edu/courses/archive/fall13/cos597E/index.
html, accessed: 2017-08-06.

