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Zusammenfassung
Obwohl die Quantenchromodynamik durch eine einfache und elegante Lagrangedichte
beschrieben wird und auch experimentell sehr gut bestätigt ist, sind einige interessan-
te Fragen, im Energiebereich, der nicht-störungstheoretisch zugänglich ist, noch immer
unbeantwortet. Insbesondere die Frage nach dem Ursprung des Farbeinschlusses (Confi-
nement) beschäftigt die theoretische Teilchenphysik seit mehreren Jahrzehnten. Analyti-
sche Zugänge, basierend auf Dyson–Schwinger-Gleichungen oder dem Variationsprinzip,
sind wichtige Hilfsmittel, um die nicht-störungstheoretischen Eigenschaften von Feldtheo-
rien zu untersuchen. Aus der zweiten Kategorie bietet insbesondere der Hamiltonzugang
in Coulombeichung eine schlüssige physikalische Interpretation der Zweipunktfunktionen
der Theorie. Auch beflügelt durch die enorme Leistungssteigerung der Computer sowie
Fortschritte in numerischen Algorithmen hat sich die Gitterfeldtheorie zur bedeutendsten
Technik zur Erforschung des nicht-störungtheoretischen Sektors von Feldtheorien entwi-
ckelt. Eine Überprüfung der Resultate aus den verschiedenen Zugängen ist von großem
Interesse, um etwaige Beschränkungen der Methoden zu verstehen.
Im ersten Teil dieser Arbeit beschäftigen wir uns mit den Korrelationsfunktionen der

reinen SU(2) Yang–Mills-Theorie bei Nulltemperatur und bei endlichen Temperaturen.
Nach einer Einführung zur QCD und der Gitterfeldtheorie werden wir uns zuerst mit
dem Gribovproblem beschäftigen, sowie einem neuen Vorschlag dieses zu beheben. An-
schließend werden wir die Theorie bei endlicher Temperatur betrachten, um den Decon-
finementphasenübergang zu untersuchen. Basierend auf dem Bild der Zentrumsvortices,
einem Modell zur Beschreibung des Confinements, werden wir eine Erklärung finden wie-
so, der Phasenübergang in Korrelatoren in Coulombeichung auf dem Gitter nicht sichtbar
ist. Dann werden wir die reine Eichtheorie verlassen und die sogenannte Minimal Wal-
king Technicolor Theorie betrachten, die eine mögliche Erweiterung des Standardmodells
darstellt. Abschließen werden wir diese Arbeit mit einem Kapitel über die effiziente Im-
plementierung von Algorithmen der Gitterfeldtheorie auf Grafikkarten, welche heutzutage
als Rechenbeschleuniger im High Performance Computing zur Anwendung kommen.
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Abstract
Quantum chromodynamics, despite its simple and elegant formulation at the Lagrangian
level and numerous experimental verifications, still poses many interesting questions to
particle physicists in the region where perturbation theory breaks down. The origin of
confinement of quarks and gluons is one of these big puzzles. Analytic techniques, based
on Dyson–Schwinger equations or the variational approach have proven to be useful tools
to study the non-perturbative aspects of field theories. Of the latter, the Hamiltonian
approach in Coulomb gauge offers an appealing physical interpretation of two-point func-
tions of the theory. In recent years, as numerical algorithms improved and more and
more compute power became available to the physics community, lattice gauge theory, a
fully numerical approach, has become established as the main tool for studies in the non-
perturbative sector of field theories. A verification of these different approaches against
each other is of great interest to learn about their limitations.
In the first part of this work we will study the correlation functions of pure SU(2) Yang–

Mills theory at zero and finite temperature. After an introduction to QCD and lattice
gauge theory, we will discuss the Gribov problem and investigate a recent proposal to
resolve it. Then we will turn on temperature to study the deconfinement phase transition.
Based on the center vortex picture of confinement, we will propose an answer to the
question why the correlators from lattice gauge theory in Coulomb gauge fail to detect
the phase transition. Afterwards we will leave pure Yang–Mills theory and apply our
knowledge to the so-called Minimal Walking Technicolor theory, a possible extension to
the Standard Model. Finally we discuss how lattice gauge theory applications can be
implemented efficiently on graphics processing units used nowadays in high performance
computing.
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1. Introduction
One of the most interesting and challenging goals of modern physics is a comprehensive
understanding of the elementary particles of nature and their interactions. The ultimate
goal would be the unification of all known forces into a single theory of everything. The
known forces of nature are gravity, electromagnetism, the weak force and the strong force.
For three of them, the electromagnetic, the weak and the strong interactions, the accepted
theory is the Standard Model of particle physics. Only gravity does not yet fit in the
picture. The Standard Model is very successful in describing most of the experimental
observations and predicted successfully many experimental results, like the existence of the
top quark which was found in 1995 [1, 2]. In recent years, the most prominent prediction
was the existence of a Higgs boson, since it was the last undiscovered particle of the
Standard Model. Finally, it was discovered in 2012 [3, 4] and F. Englert and P. Higgs
were awarded with the physics Nobel Prize a year thereafter “for the theoretical discovery
of a mechanism that contributes to our understanding of the origin of mass of subatomic
particles [...]”. Despite its celebrated success, the Standard Model is not complete as it falls
short in explaining some observations. In 2015 the Physics Nobel Prize was awarded “for
the discovery of neutrino oscillations, which shows that neutrinos have mass” [5, 6]. In the
Standard Model, however, the neutrino is described as a massless particle. Secondly, the
Standard Model does not provide a particle that explains dark matter, a hypothetical form
of matter that is believed to amount for approximately 85% of the total matter content of
the universe [7]. Thus it is clear that theories beyond the Standard Model will be needed to
satisfy the theoretical desire for a unified theory and to describe the physical implications
dictated by experiments.
The mathematical framework of the Standard Model are gauge theories. The first such

theory was quantum electrodynamics (QED) which combined quantum mechanical prin-
ciples with special relativity to describe (electrically) charged particles: the interaction
of electrons mediated by photons. The building principle for such a gauge theory is to
promote a global symmetry on the Lagrangian level to a local symmetry. The symmetry
of the QED Lagrangian is described by the Abelian group U(1). The gauge theories of
the Standard Model built upon the framework developed for QED. The Standard Model
contains the Glashow–Salam–Weinberg theory, which unifies the description of electromag-
netism and the weak force into the electroweak interaction, and quantum chromodynamics
(QCD), the theory of strong interactions.
In this work we will be concerned with QCD and QCD-like gauge theories. QCD de-

scribes hadronic matter, like protons, neutrons and mesons, as composite particles made
of quarks. The force carriers, which mediate the strong interaction, are the gluons. Sim-
ilar to the electrical charge in QED, the fermionic particles carry a charge, the so-called
color charge, which occurs in three different types related to the symmetry group SU(3).
However, in contrast to QED, the gauge bosons itself carry charge which leads to inter-
esting new phenomena, since the gluons can interact with themselves. The mathematical
manifestation of this fact is that, while the QED gauge group U(1) is an Abelian group,
SU(3) is non-Abelian. Due to the self-interaction of gluons, a theory without fermionic
fields is still a non-trivial theory and already contains interesting phenomena of the full
theory with quarks. Because of the groundbreaking work of Yang and Mills to describe
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1. Introduction

these pure gauge theories [8], they are called Yang–Mills theories. As extensions for the
Standard Model many different kinds of theories are discussed in the literature. One of
these is the technicolor family, where another strong sector with techniquarks and tech-
nigluons is proposed at the TeV scale to replace the Higgs mechanism of the Standard
Model. Technicolor theories are SU(N) gauge theories coupling to fermions in different
representations of the gauge group. We will discuss the properties which qualify a gauge
theory as a technicolor theory in more detail later.
QCD, and already the pure SU(N) gauge theories, contains two important phenomena

which makes it substantially different to QED. At high energies or small distances the cou-
pling constant becomes small: the interaction between quarks and gluons becomes weak.
In 2004, this important feature was awarded the physics Nobel Prize “for the discovery
of asymptotic freedom in the theory of the strong interaction”. The importance of this
feature is that it enables perturbation theory to be applicable for high energy processes
and thus provides a systematic tool to compute cross sections of these processes. The
energy scale for processes that are relevant in every day life is well below the scale ΛQCD
where perturbation theory becomes applicable. In this low-energy regime, the important
phenomenon of the strong dynamics is the absence of free quarks and gluons. Quarks are
only observed in color-neutral bound states as hadrons, like the proton and the neutron.
This so-called color confinement is found to be realized in QCD, though an unambiguous
description of its underlying mechanism and a rigorous proof is still lacking. Since per-
turbation theory is not applicable to study confinement and other low energy phenomena,
so-called non-perturbative techniques are required.
One way to approach the non-perturbative regime is by solving the Dyson–Schwinger

equations of the theory. The Dyson–Schwinger equations are an infinite set of coupled
integral equations which can be regarded as the equations of motion for the Green func-
tions of the theory. Full knowledge of the infinitely many Green functions, which are the
correlation functions of the fields, would solve the theory in the whole perturbative and
non-perturbative regime. Of course, this approach requires a truncation of the infinite
tower of equations, though there is no systematic theory to estimate the errors which are
introduced by these approximations. The gauge symmetry induces unphysical degrees of
freedom. While physical observables are not affected by the gauge degrees of freedom, the
Green functions change under gauge transformations. Therefore, in the Dyson–Schwinger
approach one has to restrict the fields by imposing a gauge condition. Besides Coulomb
gauge [9–13] which will be the subject of this work, a popular choice is the covariant
Landau gauge [14–16].
Another appealing analytical approach for studying correlation functions in Coulomb

gauge is the Hamiltonian variational approach [17–23] . There, starting from a trial wave
functional for the ground state of the Yang–Mills Schrödinger equation, the best approxi-
mation within this parameterization is sought with the variational principle by minimizing
the energy density. Thus, in this approach, the quality of the solution depends on the
quality of the trial wave functional. As in the case of the Dyson–Schwinger approach,
after truncation, one finds a finite set of coupled integral equations. While the asymp-
totic behavior of these equations can be studied analytically, one has to rely on numerical
techniques to solve the equation on a computer in the whole momentum regime.
Lattice QCD, a numerical approach in which the continuous 3+1 dimensional space-time

is discretized on a hypercubic lattice, is the only ab initio approach to non-perturbative
QCD. The lattice approach is the subject of this work. Although gauge fixing is not neces-
sary in principle in lattice field theory, we will investigate gauge variant Green functions in
Coulomb gauge. The so-called continuum approaches and the lattice approach are mutu-
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ally stimulating each other. While on the lattice, as opposed to the continuum, the effects
which lead to a certain result cannot be disentangled easily, the continuum approach needs
the lattice input to introduce the physical scale and to justify the necessary approximation.
The errors which are introduced by the discrete lattice spacing and the finite volume can
be improved systematically by reducing the lattice spacing and increasing the lattice size.
However with increasing lattice size, the numerical work also increases with the number of
lattice points. After K. G. Wilson’s seminal paper in 1974 [24], the first numerical results
in pure Yang–Mills theory where presented in simulations of tiny lattices of size 44 [25]
which can be reproduced today in seconds on a desktop computer. However the state of
the art simulations on large lattices and with fermion masses close to their physical values
are still tasks for supercomputers, e.g. [26].
Starting around 2001, graphic processing units (GPUs) were more and more used out-

side their original field as general-purpose computing platforms (GPGPU). These energy-
efficient devices are nicely suited to accelerate highly parallel algorithms, like the ones
which appear in lattice field theory [27–29]. Most of the results of this work were pro-
duced with a CUDA C++ code executed on GPUs.
The outline of this work is as follows. Starting from the continuum theory we will intro-

duce the basic concepts of lattice QCD and discuss the relevant observables and Coulomb
gauge correlation functions in Chapter 2. It is a well-known fact that the Coulomb gauge
condition is not enough to select a unique gauge field on the gauge orbit, the set of fields
which are related by a gauge transformation. This gives rise to the so-called Gribov
problem and requires an additional condition on the gauge fields. In Chapter 3 we will
discuss the Gribov problem in detail and we will compare two attempts to resolve it.
With increasing temperature, QCD will undergo a phase transition from the confined to
the deconfined phase which is also found in lattice calculations. The deconfinement phase
transition, which was expected to be visible in the Coulomb gauge correlation functions,
will be investigated in Chapter 4. We will find that the lattice Coulomb gauge correlation
functions do not sense the deconfinement phase transition, in contrast to the continuum
approach. In Chapter 5 we will propose an explanation which is based on the center vor-
tex picture of confinement. In Chapter 6, we will study a strongly coupled theory, which
is significantly different to the QCD-like theories we discussed so far: we will analyze a
possible technicolor candidate, the minimal walking technicolor theory, an SU(2) gauge
theory coupled to two fermions in the adjoint representation. Finally, in Chapter 7, we
will show the steps to port a lattice application to GPUs at the example of the gauge
fixing code. We will discuss performance optimizations and compare the result to a CPU
application.
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2. From Continuum QCD to
Lattice Field Theory in Coulomb Gauge

In this chapter we will first give an introduction to quantum chromodynamics (QCD),
the theory that describes the strong interaction. Before we introduce lattice field theory
we will give an overview of the Hamiltonian variational approach in Section 2.3, a non-
perturbative (semi-) analytical approach in Coulomb gauge to which we will compare the
lattice results. In Section 2.4 we explain the lattice approach. Then we discuss how
confinement can be measured on the lattice and discuss different confinement mechanisms
in Section 2.5. In Section 2.6 we will finally introduce the Coulomb gauge propagators
which we will investigate in different setups in the following chapters. There we will also
summarize related work in Coulomb gauge and discuss some open issues between results
from the Hamiltonian approach and the lattice.

2.1. Quantum Chromodynamics
The fundamental equation of QCD, which describes the interaction of quarks and gluons,
is the Lagrangian density [30, 31]

L = −1
4F

a
µνF

a,µν +
∑
f

q̄f (iγµDµ −mf ) qf . (2.1)

The first term describes the gluons and, in contrast to an Abelian gauge theory, like QED,
their self-interaction. The difference shows up in the Yang–Mills field strength tensor

F aµν = ∂µA
a
ν − ∂νAaµ − gfabcAbµAcν , (2.2)

where a term quadratic in the gauge fields A appears which is not present in electrody-
namics. The quadratic contribution is the reason why gluons, unlike photons, interact
with each other. Therefore, the theory without fermionic fields, i.e. without quarks, is al-
ready nontrivial and contains many interesting features like confinement. The Lagrangian
contains N2

c − 1 real-valued fields Aaµ, the color components, which can be combined in
the gauge field

Aµ =
∑
a

AaµTa (2.3)

which is an element of the Lie algebra of the gauge group. Here Nc denotes the number
of colors, where Nc = 3 for QCD1. The constants Ta are Nc × Nc traceless Hermitian
matrices, the generators of the gauge group SU(Nc) which are related to each other by
the structure constants fabc [

T a, T b
]

=
∑
c

fabcT c, (2.4)

and normalized such that
trT aT b = 1

2δ
ab. (2.5)

1In practice it is often convenient to study the simpler theory with Nc = 2.
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2. From Continuum QCD to Lattice Field Theory in Coulomb Gauge

The second term in (2.1) describes the interaction of the quarks mediated by the gluons.
It is a sum of the interactions of the different quark flavors qf , which do not mix in the
strong dynamics. The only difference is their bare mass mf . Similar to QED the covariant
derivative

Dµ = ∂µ + igAµ (2.6)

is introduced which makes the Lagrangian invariant under the local gauge transformation
g(x) ∈ SU(N) [32, Chapter 15]

qf (x)→ g(x)qf (x), (2.7)

Aµ(x)→ g(x)
(
Aµ(x)− i

g
∂µ

)
g†(x). (2.8)

The gauge transformations g(x), as elements of the gauge group SU(N), can be parame-
terized as

g(x) = exp [iT aφa(x)] (2.9)

with the generators T a and real-valued functions φa(x).
In this work we will be interested in the lattice approach to gauge theories. The stan-

dard lattice approach is based on the path integral formulation, where we evaluate the
expectation value of a quantity O[q, q̄, Aµ] as

〈O〉 = 1
Z

∫
Dq̄DqDAµ O[q̄, q, A] ei

∫
d4x L[q̄,q,Aµ] (2.10)

Z =
∫
Dq̄DqDAµ ei

∫
d4x L[q̄,q,Aµ]. (2.11)

The partition function Z normalizes the expectation value such that 〈1〉 = 1. The expo-
nential factor weights the field contributions with the QCD action

SQCD =
∫

d4x L[q̄, q, Aµ] =
∫

d4x LYM[Aµ] +
∫

d4x Lf [q̄, q, Aµ], (2.12)

where we introduced the subscript YM for the Yang–Mills part of the Lagrangian and the
subscript f for the fermionic contribution. The functional integration measure

∫
Dq̄DqDAµ

cannot be used as it stands since it introduces double-counting of gauge-equivalent fields.
In the next chapter we will resolve this issue by gauge fixing via the Faddeev–Popov
technique.

2.2. Gauge Fixing
The QCD action as given in (2.12) is not yet complete. In the path integral formulation of
the expectation value (2.10) the integral

∫
DAµ is formally defined as an integration over

the group at each (continuous) space-time point. However, for each gauge field Aµ there
exist infinitely many gauge-equivalent fields. The set of these fields forms an equivalence
class, called the gauge orbit of Aµ

orb[Aµ] =
{
Agµ | Agµ = gAµg

† − i

g0
(∂µg) g†; g ∈ SU(N)

}
. (2.13)

Formally we can factorize a divergent integral over the group space in the partition function

Z =
∫
DAµ eiSYM[Aµ] =

∫
DgDĀµ eiSYM[Āµ] =

∫
DĀµ eiSYM[Āµ]

∫
Dg (2.14)
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where Āµ represents one selected gauge field of each gauge orbit. Since SYM[Aµ] is gauge
invariant, the divergent factor

∫
Dg can be separated and demonstrates the overcounting

of gauge-equivalent fields.
To resolve the double counting of gauge-equivalent fields, Faddeev and Popov [33] de-

veloped a technique to single-out one representative of each gauge orbit. We formulate
the gauge condition in the form

F [Aµ] != 0, (2.15)

where F is a functional of the gauge fields. In this work we will discuss Coulomb gauge,
i.e. F [Aµ] = ∂iAi, however the technique described here is valid for other gauge condi-
tions in the form (2.15). For the following we introduce the so-called Faddeev–Popov
determinant JF [Aµ] by the identity

1 = JF [Aµ]
∫
Dgδ[F [Agµ]], (2.16)

where δ[F [Agµ]] is a delta-functional which restricts the integration to gauge fields sat-
isfying (2.15). Thus, the Faddeev–Popov determinant JF [Aµ] depends only on a single
configuration from each gauge orbit. The measure in the integration (2.16) over the group
space SU(N) is the functional measure

Dg =
∏
x

dg(x) , (2.17)

a product of the Haar measure dg(x) at each continuous space-time point. The Haar
measure of a group G is invariant under left and right multiplication by a group element

dg = dgg′ = dg′g (2.18)

and normalized such that ∫
dg = 1. (2.19)

By inserting the identity (2.16) in the path integral (2.11) we get the gauge fixed partition
function

Zgf =
∫
DAµ JF [Aµ]

∫
Dgδ[F [Agµ]] eiSYM[Aµ] (2.20)

=
∫
Dg

∫
DAµ JF [Aµ]δ[F [Agµ]] eiSYM[Aµ], (2.21)

where in the second line we applied a gauge transformation Agµ → Aµ and used that
JF [Aµ] and SYM[Aµ] are gauge invariant. The integral over Aµ is now independent of
the integral over g and thus

∫
Dg contributes only as an irrelevant normalization with the

volume in group space, which cancels in expectation values.
The Faddeev–Popov determinant introduced in (2.16)

JF [Aµ] = detM = det
[
δF [Agµ]
δg

]
(2.22)

can be regarded as the Jacobian of a coordinate transformation from Cartesian coordinates
to curvilinear coordinates [34]. In Coulomb gauge the Faddeev–Popov operatorM is given
by

Mab[Agµ] = −∂iDab
i [Agµ], (2.23)
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2. From Continuum QCD to Lattice Field Theory in Coulomb Gauge

where Dab
i [Agµ] is the covariant derivative in the adjoint representation. It is convenient

to include the Faddeev–Popov determinant directly in the action by introducing anti-
commuting (Grassmann valued) fields, the so-called ghosts c, c̄

JF [Aµ] =
∫
Dc̄Dc e−i

∫
d4x c̄aMabcb . (2.24)

Although the ghost fields do not represent physical particles their structure gives insight
in physical phenomena, as for example in the Gribov–Zwanziger scenario of confinement,
Section 2.5.5.
Again, for convenience we can rewrite the δ-function in (2.16) by

δ[F [Agµ]] = e−
i

2αF [Agµ]2 (2.25)

which, for small α, is highly peaked at the gauge field which satisfies the gauge condition.
This allows to include the δ-function in the Lagrangian

L = LYM −
1

2αF [Agµ]2 − c̄aMabcb. (2.26)

With Eq. (2.26) we arrived at the gauge fixed Lagrangian for pure Yang–Mills theory.

2.2.1. Gribov Copies
The original idea of Faddeev and Popov is based on the assumption that a gauge condition
as in (2.15) is enough to single out one representative of each gauge orbit. However, in
non-Abelian gauge theories this is no longer true. Gribov [35] found that there exist con-
figurations which are non-equivalent but obey the gauge condition. These configurations
are the so-called gauge copies or Gribov copies.
To select only a single gauge copy from the gauge orbit, Gribov proposed to restrict the

path integral to the region where the Faddeev–Popov operator is strictly positive definite,
the so-called first Gribov region

Ω = {Aµ | ∂iAi = 0,M(Aµ) > 0} . (2.27)

For Coulomb gauge the restriction to the first Gribov region can be implemented by
minimizing the functional

FA[g] =
∫

d3x Agi (x)Agi (x). (2.28)

By expansion of the functional around small gauge transformation one finds that indeed
all local minima fulfill the Coulomb gauge condition ∂iAi(x) = 0.

However the restriction to the first Gribov region is still not enough to select only
gauge-inequivalent configurations, see e.g. Ref. [36]. A further restriction can be achieved
by choosing the absolute minimum of (2.28) which defines the fundamental modular re-
gion (FMR)

Λ = {Aµ | FA[1] < FA[g] ∀g ∈ SU(N)} (2.29)

which is by construction contained in the first Gribov region Ω.
For the first Gribov region and the fundamental modular region one can find several

properties of which we will summarize the most important ones for further discussion in
Chapter 3.
One can easily show that the vacuum configuration Ai = 0 is contained in Λ and in Ω.

For Ai = 0 the covariant derivative in (2.23) reduces to the partial derivative ∂i and thus
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the Faddeev–Popov operator is given by the (negative) Laplacian Mab = −δab∆. Since
the eigenvalues of the negative Laplacian are strictly positive, the configuration Ai = 0
satisfies all conditions of the Gribov region (2.27). Additionally, since the functional (2.28)
is positive and takes its smallest value FAi=0[1] = 0, the vacuum is also inside of the FMR.
A very important property is that both the Gribov region and the FMR are intersected

by every gauge orbit at least once [37]. Thus, with the restriction to the FMR (exactly)
one representative of each gauge orbit still enters the path integral.
The Gribov region is bound by the (first) Gribov Horizon ∂Ω where the lowest non-trivial

eigenvalue of the Faddeev–Popov operator is zero. It has common points with the border
of the FMR ∂Λ when the gauge fixing functional has degenerate absolute minima [38].

Whereas the identification of configurations in the FMR is highly non-trivial in the
lattice theory, see Chapter 3, Zwanziger showed that the Gribov copies inside the Gribov
region have no influence on expectation values calculated from Dyson–Schwinger equations
in the continuum theory [39].
In Section 2.5.5 we will discuss the importance of configurations close to the Gribov

horizon for the infrared physics and the confinement phenomenon.

2.3. The Hamiltonian Approach

In this section we will give a brief overview of the canonical quantization of Yang–Mills
theory in Coulomb gauge which is the basis for the Hamiltonian variational approach. For
a more detailed discussion see the recent review [34] and references therein.

2.3.1. Canonical Quantization of Yang–Mills Theory

In the following we will explain the approach for pure Yang-Mills theory, i.e. the theory
without dynamical quark fields. The action for pure Yang-Mills theory is given by (2.1)
as

SYM =
∫

d4x LYM(x) = −1
4

∫
d4x F aµν(x)F a,µν(x) (2.30)

with the non-Abelian field strength tensor (2.2). The canonical quantization builds upon
the classical Hamiltonian density H. To obtain the Hamiltonian from the Lagrangian
density we interpret the gauge fields Aµ(x) as coordinates. The conjugate momenta are
given by the derivatives of the Lagrangian L with respect to the time derivative of the
gauge field Ȧaµ(x) = ∂0A

a
µ(x)

Πa
µ(x) = ∂L(x)

∂Ȧaµ(x)
. (2.31)

In the canonical quantization the quantized theory is obtained by imposing equal-time
commutation relations [

Âaµ(x, t), Π̂b
ν(x′, t)

]
= −iδabgµνδ(x− x′) (2.32)[

Âaν(x, t), Âbν(x′, t)
]

= 0 (2.33)[
Π̂a
ν(x, t), Π̂b

ν(x′, t)
]

= 0 (2.34)

However, without further requirements one runs into a problem. Since the temporal
momentum operator vanishes

Πa
0(x) = 0, (2.35)
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2. From Continuum QCD to Lattice Field Theory in Coulomb Gauge

the corresponding equal time commutation relations cannot be satisfied. A way to avoid
this problem is to impose the Weyl gauge Aa0 = 0 before quantization. Then the canonical
momenta, associated with the remaining spatial fields Aai (x), are

Πa
i (x) = ∂0A

a
i = −Eai (x), (2.36)

where we introduced the color electric field Eai (x). The Hamiltonian is then found to be

H(x) = Πa
i (x)Ȧaµ(x)− LYM (x) (2.37)

= 1
2 (Eai (x)Eai (x) +Ba

i (x)Ba
i (x)) , (2.38)

with the color magnet field Ba
i (x) = 1

2εijkFjk which is defined in analogy to the Maxwell
theory. The non-vanishing commutation relations take the form2

[
Âai (x),−Êbj (x′)

]
= iδabδijδ(x− x′). (2.39)

In the coordinate (or field representation) of the functional Schrödinger picture [40] the
wave functionals are functions of the gauge field

Ψ[A] = 〈A|Ψ〉 , (2.40)

where the states |A〉 are the eigenvectors of the field operators Â with eigenvalue A,

Âai (x) |A〉 = Aai (x) |A〉 . (2.41)

The momentum operator (electric field operator) is the functional differential operator
with respect to the gauge fields Aai (x)

〈A| Π̂a
i (x) = −i δ

δAi(x) 〈A| . (2.42)

Thus, the functional Schrödinger equation takes the form

HΨ[A] =
∫

d3x H(x)Ψ[A] = EΨ[A] (2.43)∫
d3x

[1
2

δ

δAi(x)
δ

δAi(x) + 1
4F

a
ij(x)F aij(x)

]
= EΨ[A]. (2.44)

Due to the Weyl gauge, the equations of motion no longer contain Gauß’s law. Therefore,
the Schrödinger equation allows for a larger set of solutions which are not physical. The
states have to be restricted to the physical Hilbert space by enforcing Gauß’s law, as an
auxiliary condition, on the wave functionals Ψ[A]. In the presence of a an external color
charge density ρaext Gauß’s law reads

Dab
i (x)Πb

i(x)Ψ[A] = −gρaextΨ[A], (2.45)

with the covariant derivative in the adjoint representation of the gauge group

Dab
i (x) = δab∂i − gfabcAci (x). (2.46)

2We use the non-covariant notation in the following as Lorentz invariance is broken by the Hamiltonian
formulation.
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The expectation value of an operator, which is a functional of the gauge field and the
conjugate momentum in the canonical formalism, with respect to the state |Ψ〉 is given by

〈O[A,Π]〉Ψ = 〈Ψ|O[A,Π] |Ψ〉 (2.47)

with the scalar product defined as the path integral

〈φ| . . . |ψ〉 =
∫
DAφ∗[A] . . . ψ[A] (2.48)

In the variational approach it turns out that working with gauge invariant states is not
practical and therefore it is advantageous to fix the gauge completely. The choice of
Weyl gauge, which is necessary for the canonical quantization, does still allow for time-
independent gauge transformations g(x). To fix the residual gauge freedom it is convenient
to choose Coulomb gauge implemented by the Faddeev–Popov technique which was intro-
duced in Section 2.2.

2.3.2. The Coulomb Gauge Hamiltonian
In Coulomb gauge ∂iAi = 0, only the transverse field components

A⊥i (x) = tij(x)Aj(x) (2.49)

survive, with the transverse projector defined as

tij(x) = δij −
∂i∂j
∂2 . (2.50)

After Faddeev–Popov gauge fixing to Coulomb gauge, the scalar product (2.48) now con-
tains the Coulomb gauge Faddeev–Popov determinant, compare (2.23),

JF = det
(
−Dab

i [A⊥]∂i
)
, (2.51)

and the integration is over the transverse fields

〈φ| . . . |ψ〉 =
∫
DA⊥JF [A⊥]φ∗[A⊥] . . . ψ[A⊥]. (2.52)

While the longitudinal gauge field components A‖ were eliminated by the gauge condition,
the longitudinal conjugate momenta Π‖ are still present. However, from Gauß’s law (2.45)
one finds

Π‖,aΨ[A] = −∇ (−Di∂i)−1 ρaΨ[A] (2.53)

which can be used to eliminate Π‖, see e.g. Refs. [41, 42]. The non-Abelian color charge
density ρa contains the external charge from Gauß’s law ρaext and the dynamical charge
density from the gluon fields

ρa = ρaext − fabcAbΠ⊥,c. (2.54)

Finally one finds the Hamiltonian in Coulomb gauge, which was first derived in Ref. [43]

H = HYM +HC (2.55)

with
HYM = 1

2

∫
d3x

[
JF [A]−1Πa

i (x)JF [A]Πa
i (x) + 1

2F
a
ij(x)F aij(x)

]
(2.56)
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2. From Continuum QCD to Lattice Field Theory in Coulomb Gauge

and
HC = g2

2

∫
d3x

∫
d3y JF [A]−1ρa(x)JF [A]F abA (x,y)ρa(y). (2.57)

The second contribution HC is called the Coulomb term, where we introduced the non-
Abelian Coulomb kernel

F abA (x,y) =
∫

d3z GacA (x, z)(−∆z)GcbA (z,y) (2.58)

with the ghost operator, which is the inverse of the Faddeev–Popov operator

GbcA = (−Dab
i ∂i)−1δacδ(x− y). (2.59)

The vacuum expectation value of (2.58) defines the non-Abelian Coulomb potential

V (x− y) = g2 〈FA(x,y)〉 (2.60)

In the Abelian theory, where the Faddeev–Popov operator reduces to the (negative)
Laplacian, the Coulomb kernel is just the Green function of the Laplacian

F abA (x,y) = δab

4π|x− y| (2.61)

and thus the Coulomb term reduces to the potential energy of an electromagnetic field in
the presence of external charges

HC = g2

2

∫
d3x

∫
d3y

ρext(x)ρext(y)
4π|x− y| . (2.62)

The Coulomb gauge Hamiltonian (2.55) is substantially more complicated than the
Hamiltonian in Weyl gauge (2.37), however the solutions of the functional Schrödinger
equation with the Coulomb Hamiltonian have the advantage that they automatically fulfill
Gauß’s law.

2.3.3. The Variational Approach

Before we discuss the lattice approach in the next section, we will give a basic overview of
the variational approach to Coulomb gauge. In later chapters we will compare the lattice
solutions to continuum results of the Hamiltonian variational approach.
In the variational approach, which can also be used in ordinary quantum mechanics,

one seeks the best approximation of the ground state by minimizing the energy. For this
purpose one chooses an ansatz for the wave functional which contains free parameters. The
values at which energy is minimal describes the best approximation for the wave functional
within the space spanned by the trial wave functional. The energy to be minimized is the
expectation value of the Hamilton operator

E[Ψ] = 〈Ψ|H |Ψ〉 =
∫
DAJF [Aµ]Ψ∗[A]HΨ[A]. (2.63)

A first choice for the trial wave functional is the Gaussian ansatz of Ref. [17]

Ψ[A] = 1√
JF [Aµ]

exp
[
−1

2

∫
d3x

∫
d3y Aai (x)ω(x,y)Aai (y)

]
. (2.64)
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with the variational kernel ω(x,y). With this ansatz the gluon propagator D(p) is the
inverse of the variational kernel. From the so-called gap equation for ω one finds two
possible solutions [17, 18]. The one which leads to a linear rising Coulomb potential, is
described by the Gribov formula [35]

2D(p) = ω(p)−1 = 1√
p2 + M4

p2

. (2.65)

The propagator has the correct perturbative UV behavior and approaches zero in the
infrared which signals the confinement of gluons. The result is in very good agreement
with the lattice results of [44]. Further results which are relevant for this work will be
discussed in Section 2.6 where the lattice quantities are introduced.
Since this first result, the Hamiltonian variational approach was further refined by inves-

tigating ansätze beyond the pure Gaussian functional [19], by including quark interactions
[21–23] and by extension to finite temperatures [20].

2.4. Introduction to Lattice Field Theory
In lattice gauge theory the continuous space-time is discretized on a hyper-cubic lattice.
After discretization, the space-time integrals of the continuum theory are finite sums
and can be calculated on a computer. Additionally the finite lattice spacing serves as a
ultraviolet regulator for the theory. Since there is a close connection between an Euclidean
field theory and statistical mechanics one can apply many well-known techniques to lattice
field theory which were originally developed in the context of statistical mechanics.
In the following we will summarize the most important basics of the lattice approach. For

a detailed introduction many textbooks are available, see e.g. [31, 45–47]. We will introduce
the lattice framework along the lines of [31]. In (2.10) we introduced the Minkowskian
path integral formulation where the partition function (2.11) reads for the pure Yang–Mills
part

Z =
∫
DAµ eiS[A] (2.66)

which has a similar structure as the partition function of a statistical system

Z =
∑
s

e−βH[s] (2.67)

where the summation is over all possible realizations of the system and β = 1
kBT

is the
inverse temperature. A simple example for the classical Hamiltonian H[s] would be the
Ising model which describes a system of spins with nearest neighbor couplings. The
connection of (2.66) to the statistical system becomes even more obvious after a Wick
rotation to imaginary time x0 → −ix0. After Wick rotation we obtain the Euclidean
partition function

Z =
∫
DAµ e−SE [A], SE = 1

4

∫
d4x F aµν(x)F aµν(x). (2.68)

In partition function of the Euclidean field theory, the factor e−SE [A] plays the role of the
Boltzmann weight e−βH[s] of statistical mechanics and the sum over all possible states is
replaced by an integral over infinitely many continuous field configurations. This connec-
tion allows us to solve expectation values of the form (2.10) by means of Monte Carlo
integration, Section 2.4.1. However, for this approach we need to restrict the continuous
fields to discrete ones.
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2. From Continuum QCD to Lattice Field Theory in Coulomb Gauge

From the Euclidean formulation of (2.10) we proceed to the discrete lattice version
by restricting the space-time points to xµ = aµnµ, where aµ is the lattice spacing in µ
direction and nµ is a four dimensional vector of integers. Each component is restricted
to a finite number nµ = 0, . . . , Nµ − 1, where we usually use the same lattice structure
in all spatial directions, i.e. we define the spatial lattice extent Ns ≡ N1 = N2 = N3 and
the spatial lattice spacing as accordingly. The temporal lattice dimension will be defined
by Nt ≡ N0 and the lattice spacing in time direction at.3 We will use periodic boundary
conditions for the lattice such that the lattice sites nµ and nµ +Nµ are identified. While
the fermionic fields are defined on the lattice sites

q(n), q̄(n) (2.69)

the lattice version of the gauge fields live on the connection between neighboring lattice
sites along coordinate axes, the so-called links.
The link variables are introduced for the same reason as in the continuum theory, where

the gauge fields enter the covariant derivative to formulate gauge invariant derivative
terms in the Lagrangian. A straightforward translation of the continuum derivative, using
a symmetric discretization, yields

∂µq(x) = q(n+ µ̂)− q(n− µ̂)
2a , (2.70)

where µ̂ is the (lattice) unit vector in µ direction. A gauge transformation of the form

q(n)→ q′(n) = g(n)q(n), q̄(n)→ q̄′(n) = q̄(n)g†(n), (2.71)

with g(n) ∈ SU(N), violates gauge invariance in products of quark fields q̄(n), q(n+ µ̂) at
different lattice points. Connecting these terms by a link variable Uµ(n) ∈ SU(N) from n
to n+ µ̂ which transforms like

Uµ(n)→ U ′µ(n) = g(n)Uµ(n)g†(n+ µ̂) (2.72)

yields a gauge invariant object

q̄(n)Uµ(n)q(n+ µ̂)→ q̄′(n)U ′µ(n)q′(n+ µ̂) (2.73)
= q(n)g†(n)g(n)Uµ(n)g†(n+ µ̂)g(n+ µ̂)q(n+ µ̂), (2.74)

The expressions gg† at the same lattice point cancel as they are unitary matrices. The
link Uµ(n) is directed from site n to n + µ̂. The link of opposite direction U−µ(n + µ) is
the inverse U †(n), as illustrated in Fig. 2.1.

Uµ(n)

n n+ µ̂

U †µ(n) = U−µ(n+ µ̂)

n n+ µ̂

Figure 2.1.: A link Uµ(n) connecting the lattice points n and n + µ̂ and the link in the
opposite direction U †(n).

3Although we are working in the Euclidean formulation, we will use the index 0 for the time direction.
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A first naive fermion gauge action would then be

Slat
f = a4 ∑

n∈Λ

3∑
µ=0

1
2a
[
q̄(n)γµUµ(n)q(n+ µ̂)− q̄(n)γµU †µ(n− µ̂)q(n− µ̂)

]
+mq̄(n)q(n)

(2.75)
= a4 ∑

n,m∈Λ
q̄(n)D(n,m)q(m), (2.76)

where we introduced the lattice Dirac operator which is given by

D(n,m) =
3∑

µ=0

1
2aγµ

[
δm,n+µ̂Uµ(n)− δm,n−µ̂U †µ(n− µ̂)

]
+mδn,m. (2.77)

However, this action suffers from the so-called fermion doubling problem: After Fourier
transformation and inversion of the naive lattice Dirac operator we obtain the quark
propagator4

〈q̄(x)q(y)〉 = lim
a→0

∫ π/a

−π/a

d4p

(2π)4
− i
a

∑3
µ=0 γµ sin(apµ) +m

1
a2
∑3
µ=0 sin2(apµ) +m2 (2.78)

which is of the same form as the continuum propagator after identification of the lattice
momentum

p̃µ = 1
a

sin(apµ). (2.79)

Equation (2.78), indeed, has the correct pole at p = (0, 0, 0, 0) in the continuum limit (for
massless fermions). However, there appear additional poles at the edges of the Brillouin
zone, i.e. whenever the components of p are either 0 or π/a. Thus, in d = 4 dimensions
15 unwanted poles are introduced which are pure lattice artifacts. Wilson proposed to
decouple the doublers from the theory by giving them an extra mass proportional to 1/a
which makes the doublers infinitely heavy in the continuum limit. The Dirac operator in
momentum space then reads

D(p) = m+ i
a

3∑
µ=0

γµ sin(apµ) + 1
a

3∑
µ=0

(1− cos(apµ)). (2.80)

Though Wilson’s fermion action solves the doubling problem, it explicitly breaks chiral
symmetry. Actually, a theorem by Nielsen and Ninomiya [48–50] gives strong bounds on
constructing actions which overcome the doubling problem and preserve chiral symmetry.
In Appendix D.1, where we use the Wilson Dirac operator, we will discuss more problems
which arise due to the Wilson term.
The continuum analog of a link variable is the parallel transporter (along a lattice axis)

Uµ(n) = U(x, x+ aµ̂) = P exp
{

i
∫ x+aµ̂

x
Aµ(y)dy

}
, (2.81)

where P denotes path-ordering. This relation allows to interpret the link variables Uµ(n)
as the lattice version of the gauge fields

Uµ(n) = exp
{

iaAµ
(
n+ 1

2 µ̂
)}

, (2.82)

4See for example Ref. [46, Chapter 4] and Ref. [31, Chapter 5.2].
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where the lattice gauge fields are usually defined at the mid-point between lattice sites.
To describe the gauge dynamics we need a lattice gauge action for link variables which
is gauge invariant and reproduces the correct continuum action in the limit a → 0. The
simplest form is the plaquette action of Wilson [24]. To obtain a gauge invariant object
of link variables we can take the trace of a closed loop of links. The smallest loop, the
so-called plaquette

Uµν(n) = Uµ(n)Uν(n+ µ̂)U †µ(x+ ν̂)U †ν (n) (2.83)

is illustrated in Fig. 2.2. Summing over all plaquettes and taking the trace thereof consti-

Uµ(n)

n n+ µ̂

n+ µ̂+ ν̂n+ ν̂

U
ν
(n

+
µ̂
)

U †
µ(n + ν̂)

U
† ν
(n

)

ν

µ

Figure 2.2.: Illustration of a plaquette, the smallest loop on the lattice.

tutes Wilson’s gauge action

Slat
g = β

N

∑
n∈Λ

3∑
µ=0

3∑
ν=µ+1

Re tr [1− Uµν(n)] , (2.84)

where the free parameter
β = 2N

g2 (2.85)

is the usual (inverse) coupling parameter for lattice simulations and g is the (continuum)
coupling constant from (2.2). The sum over µ and ν is taken such that each plaquette is
counted only once. The normalization is chosen such that it corresponds to the continuum
action (2.68) in the limit a → 0. Thus, the lattice analog of the continuum expectation
value (2.10) for the pure Yang–Mills action is given by

〈O〉 = 1
Z

∫
D[U ]O[U ] e−Slatg [U ] (2.86)

where the functional measure is given by the product Haar measure at each discrete space-
time point

D[U ] =
∏
n∈Λ

∏
µ

dUµ(n) . (2.87)

In this work we will sometimes use a modification of (2.84), the anisotropic Wilson gauge
action [51], with different coupling constants for the temporal βt and spatial directions βs.
A convenient choice is a parameterization by β = 2N

g2 as in the isotropic case and the bare
anisotropy ξ0 such that

βs = β

ξ0
, βt = βξ0. (2.88)
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Then the anisotropic Wilson gauge action takes the form [52]

Sani
g = β

N

∑
n∈Λ

3∑
j=i+1

{ 3∑
i=1

1
ξ0

Re tr [1− Uij(n)] + ξ0 Re tr [1− U0i(n)]
}
. (2.89)

This choice allows to have different lattice spacings at and as which is necessary to approach
the Hamiltonian limit at → 0, see the discussion in Section 2.6, and is a convenient choice
in the finite temperature setup of Chapter 4. For a fixed inverse coupling β, the parameter
ξ0 has to be adjusted such that the renormalized anisotropy

ξ = as
at

(2.90)

takes the desired value.

2.4.1. The Monte Carlo Technique
The lattice expectation value (2.86) contains an integration in group space at each lattice
point which makes the path integral impossible to solve analytically. A viable technique to
solve the path integral is a so-called Monte Carlo simulation. In a Monte Carlo simulation
the integration is approximated by choosing a finite number N of statistically independent
field configurations U (n) which are chosen randomly in the integration region, the set of
all possible configurations {U}. The expectation value is then approximated by

〈O〉 ≈ 1
N

1
Z

N∑
n

O[U (n)] e−S[U(n)]. (2.91)

However, in such a naive Monte Carlo approach one will include many field configurations
which give only a negligible contribution if the action has a sharp peak which is to be
expected for large lattices [47]. A solution to that problem is importance sampling. Instead
of choosing the configurations uniformly we would like to generate the configurations
directly with the probability density

p[U ] = e−S[U ]

Z
. (2.92)

Then the number of configurations to properly sample the integration region can be chosen
much smaller and the expectation value is given by

〈O〉 ≈ 1
N

N∑
n

O[Ũ (n)], (2.93)

with the important difference to (2.91) that the configurations Ũ have to be chosen with the
weight (2.92). Unfortunately there is no algorithm which directly produces configurations
with the measure (2.92) but one can produce configurations in a so-called Markov chain
which has the desired probability distribution p[U ] in its equilibrium. The Markov chain
is defined by a transition probability P which describes how a configuration U (n+1) is
obtained from a configuration U (n). A transition probability P which is irreducible

P [U ← U ′] > 0 ∀U,U ′ ∈ {U}, (2.94)

i.e. every state (configuration) can be reached, and fulfills detailed balance

P [U ← U ′]p[U ′] = P [U ′ ← U ]p[U ] ∀U,U ′ ∈ {U} (2.95)
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2. From Continuum QCD to Lattice Field Theory in Coulomb Gauge

is guaranteed to converge to the equilibrium distribution

lim
n→∞

Pnp0[U ] = p[U ], (2.96)

where p0[U ] is an arbitrary initial distribution, e.g. p0[U ] = δ(U − U0) with an arbitrary
configuration U0. Then, by the strong law of large numbers the average of the quantity O
in (2.93) (the sample average) will converge with probability one to the desired ensemble
average. The central limit theorem states that the error on the sample average will falloff
like 1/

√
N [53]. The detailed balance condition (2.95) is actually more strict than neces-

sary, however, this condition is already fulfilled for many relevant algorithms like the ones
in lattice gauge theory, see [47, 53] for details.
According to (2.96) we can start from any configuration and will get configurations

which are distributed by p[U ] after some equilibrating steps. A practical choice for the ini-
tial configuration is either a cold lattice where all links are set to the identity or a hot lattice
where all links are chosen randomly. The configurations in the equilibration phase are dis-
carded from the Monte Carlo sample. When the equilibrium is reached the configurations
in the Markov chain are still correlated as they are produced by a deterministic algorithm.
This so-called autocorrelation has to be included in the calculation of the variance of the
observable. One finds that a Markov chain Monte Carlo run of N steps is equivalent to
a Monte Carlo measurement with N/(2τint) independent configurations, where τint is the
integrated autocorrelation time [53]. Thus, to get an expectation value which is free of the
autocorrelation effect one should discard Ndisc & τint configurations in the Markov chain.
Note that the autocorrelation time may be different between lattice observables and there-
fore Ndisc should be defined from the one with the largest autocorrelation time. For error
estimates in this work we use the Wolff routine [54] which incorporates the integrated
autocorrelation time in the error estimates.
A crucial point for the performance of the Monte Carlo method is to choose an algorithm

where the autocorrelation time is small. The most famous and very general algorithm is
the Metropolis algorithm [55] which relies only on the detailed balance condition. For the
Wilson gauge action in SU(2) the more efficient heat bath algorithm exists [25]. Especially
the combination of heat bath steps with overrelaxation steps [56, 57] provides a very
efficient algorithm for the SU(2) gauge theory. A generalization to SU(N) is possible by
means of the Cabibbo–Marinari technique where the SU(2) algorithms are employed in
the N2 − 1 SU(2) subgroups of the SU(N) links [58].
With these algorithms for the pure gauge Wilson action one can produce a reasonable

Monte Carlo ensemble for large lattices on single node computers or small clusters. The
simulation of the action including the fermionic part is substantially more difficult from
the technical as well as from the computational aspect. While the comparably cheap
pure gauge configurations in this work are produced by us, the configurations including
dynamical fermions in Chapter 6 were provided by the authors of Refs. [59–62]. In the
expectation value of a quantity O[U, q̄, q] including the fermionic contribution

〈O〉 = 1
Z

∫
D[U ] e−Slatg [U ] 1

Zf [U ]

∫
D[q̄]D[q] e−S

lat
f [U,q̄,q]O[U, q̄, q], (2.97)

the functional measure D[q] is a product of Grassmann integrals which accounts for the
antisymmetric nature of fermions. For a quantity which depends only on the gauge field
O[U ], but with the fermionic interactions still turned on, the Grassmann integration can
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be carried out explicitly and yields, see e.g. Ref. [47],

〈O〉 = 1
Z

∫
D[U ] e−Slatg [U ] det(D[U ])O[U ] (2.98)

Z =
∫
D[U ] e−Slatg [U ] detD[U ], (2.99)

where detD[U ] is the determinant of the Dirac operator, e.g. the Wilson Dirac opera-
tor (2.80). The fermion determinant can then be absorbed in an effective action

Z =
∫
D[U ] e−Seff[U ], (2.100)

Seff[U ] = Slat
g [U ]− tr logD[U ]. (2.101)

Since the full fermion action of (2.1) is a sum over the individual quark flavors we get
a fermion determinant for each of these. If we want to include the fermion determinant
in the probability density, it has to be a real and positive quantity. The Wilson Dirac
operator and many other discretizations of the Dirac operator obey γ5-Hermiticity

γ5Dγ5 = D†. (2.102)

For these operators one can show that the determinant is indeed real [31]. A problem
arises in calculations at finite temperature and density because γ5-Hermiticity is lost when
a chemical potential is introduced. This complication is known as the sign problem and
is a subject of active research, see e.g. Ref. [63] for a recent review. To guarantee the
positivity of the fermion determinant one can use two mass-degenerate quark flavors, e.g.
a simulation with up and down quarks with mu = md, then

detDu detDd = (detD)2 ≥ 0. (2.103)

is positive [31].
Besides these technical obstacles also the computational work for generating these con-

figurations with dynamical fermions is high because basically the fermion determinant has
to be calculated (at least approximately) in each Monte Carlo step. For more details we
refer to Ref. [31].

2.4.2. Renormalization and Continuum Limit

In quantum field theories one often finds integrals which are divergent. To get finite values
for these quantities one needs to regularize the integrals. One possible regularization is
via a momentum cutoff Λ. However, the result will now depend on the cutoff. Therefore,
to obtain a physical value one has to get rid of the cutoff-dependence. This is done by
imposing renormalization conditions between the bare quantities and the physical (renor-
malized) quantities.
In the lattice formulation a cutoff is already introduced by the finite lattice spacing a.

The Fourier transformation of a one dimensional function [46]

f(x) =
∫ ∞
−∞

dp
2π f̃(p) e−ipx (2.104)

restricted on a discrete but infinite lattice with lattice points xn = an, n ∈ N is limited to
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momenta in the Brillouin zone5 p ∈ [−π
a ,

π
a ]

f(na) =
∫ π

a

−π
a

dp
2π f̃(p) e−ipan. (2.106)

Thus, the integral gets a momentum cutoff of the order of the inverse lattice spacing Λ ∼ 1
a .

Now, we need to remove the lattice cutoff a → 0 to obtain continuum physics. The
bare parameters of the theory, the bare coupling g and the bare masses mf which appear
in the action, will change with the cutoff. Therefore these parameters are called running
coupling g(a) and running masses mf (a). Again we will for simplicity discuss only the
pure gauge part where the only bare parameter in the action is the coupling g(a). By
construction of the lattice formalism, all lattice observables are dimensionless and we have
to introduce a scale to relate them to their physical values.6
As an example we will discuss the string tension σ which describes how the potential

of a static quark-antiquark pair increases with distance V (r) = σr. A non-zero value
value for the string tension implies confinement, as will be explained in Section 2.5.1. Its
experimental value is σphys = (440 MeV)2. We will denote the dimensionless string tension
in lattice units as σ̂ and the string tension in physical units, but for a finite lattice spacing,
with σ. Since σ has mass dimension 2, the relation between them is

σ(g(a), a) = 1
a2 σ̂(g). (2.107)

This relation shows that σ̂ is divergent in the limit a→ 0 at a fixed value of the coupling
constant. To obtain the continuum value the running of the coupling g(a) has to be such
that

lim
a→0

σ(g(a), a) = σphys. (2.108)

From this equation one can find the functional form of g(a) which should be independent of
the choice of observable for small enough lattice spacing. Then, g(a) will compensate the
divergent part of any observable O when performing the continuum limit. The relations
(2.107) and (2.108) are covered in form of a differential equation by the renormalization
group equation [46, Chapter 9][

a
∂

∂a
− β(g) ∂

∂g

]
O(g(a), a) = 0. (2.109)

where we introduced the β-function

β(g) = −a∂g
∂a
. (2.110)

If the β-function is known we can calculate, by integrating (2.109), how the observable O
changes with g. If one expands the β-function in powers of g around g = 0 and applies
perturbation theory to determine the coefficients one finds [31, Chapter 3]

β(g) = −β0g
3 +O(g5) (2.111)

5On a finite lattice with periodic boundary conditions xn = an, n ∈ [0, N − 1], f(xn + aN) = f(xn), the
momentum variable is further restricted to the Matsubara frequencies [31, Appendix A] pn = 2π

aN
kn,

kn ∈ [−N/2 + 1, . . . , N/2] and the Fourier integral becomes a finite sum

f(na) = 1
N

∑
pn

f̃(pn) exp(ipnna). (2.105)

6The following description is along the lines of Ref. [46].
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with

β0 = 1
16π2

(11
3 Nc −

2
3nf

)
(2.112)

for nf massless fermions. For nf < 11
2 Nc the β-function is negative in the vicinity of g = 0

and therefore the coupling will decrease when a decreases. Thus the zero of the β-function
at g = 0 is attractive, i.e. the coupling has a fixed point at small length scales. This
ultraviolet fixed point describes asymptotic freedom.

From the leading order expansion of the β-function (2.111) and the differential equation
(2.110) we can compute the lattice spacing as a function of the coupling

a(g) = 1
Λ e−

1
2β0g2 . (2.113)

The integration constant Λ can be determined by identifying a lattice observable at fixed
g̃ with its physical value, as for example the string tension

a2(g̃) = σ̂(g̃)
σphys

. (2.114)

Note that in practice one usually does not rely on such a simple relation to determine the
lattice spacing. Instead one determines the string tension (or other observables) at many
values of the coupling and interpolates between them.
To sum up, the continuum limit of lattice QCD a→ 0 is approached by decreasing the

coupling constant, i.e. increasing the inverse coupling β. However in any practical simula-
tion the number of lattice points is limited by the computational resources: increasing the
number of lattice points roughly means increasing the computational work. If we decrease
the lattice spacing a at a fixed number of lattice points the physical lattice volume will
shrink. Then at a certain point the volume will be so small that the correlation length
of an observable does not fit on the lattice anymore. On the other hand, the coupling
constant has to be much smaller than the characteristic scale of the quantity to be able
to resolve the fluctuations of the observable. These limits define a small range of feasible
values for the coupling constant, the so-called scaling window. A possible way to analyze
the scaling window is by comparing the lattice results at different coupling constants to
the scaling according to the perturbative result (2.113)7.

2.5. Lattice Observables and Confinement
In this section we will describe two (lattice) observables which are important for confine-
ment: the Wilson loop and the correlation of Polyakov loops can be used to describe the
potential between a (static) quark-antiquark pair. In the second part we will discuss mech-
anisms which try to explain the origin of the confining force in QCD. The first two scenarios
attribute confinement to the formation of topological defects in the field configurations:
magnetic monopoles and center vortices. A different approach is the Gribov–Zwanziger
scenario of confinement. There, confinement emerges by a restriction of configurations to
the fundamental modular region which imply conditions on the IR properties of the gluon
and the ghost propagator in Coulomb and Landau gauge.
The static quark potential provides a very intuitive picture for confinement. If the

potential energy between a quark and an antiquark rises linearly with distance, more
7Usually one uses the two loop result for a scaling analysis, see e.g. Ref. [46, Chapter 9].
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and more energy is needed to separate the particles. Thus it is impossible to completely
separate the quark from the antiquark: they are bound in a meson. The emergence of the
linear rising term in a non-Abelian theory is attributed to the formation of a string-like
flux tube, in contrast to the Abelian theory where the field lines spread out. However,
in the interacting theory this picture is too simple. There a quark-antiquark pair can
be generated from the vacuum. Thus at a certain distance the creation of such a pair is
energetically favorable and the confining string breaks. In the following we will discuss only
the case where no quark-antiquark creation or annihilation is allowed and the potential
will be linear rising for large separations. This is the limit of infinitely heavy quarks
which in lattice formulation can be implemented by neglecting the fermion determinant,
the so-called quenched approximation. In the region of asymptotic freedom, i.e. at small
distances, one expects a Coulomb-like potential as in QED. For the quenched theory we
therefore describe the static quark potential by

V (R) = α(R)
R

+ σR+ c, (2.115)

where α(R) is the running coupling in the perturbative regime and a universal constant,
the so-called Lüscher-term [64], in the strong-coupling regime, σ is the string tension, and
c is an irrelevant normalization which can be used to define the zero point energy.

2.5.1. The Wilson Loop

A possible way to measure the static quark potential is via Wilson loops. On the lattice,
a Wilson loop is the trace of a product of links along a closed contour. We already
encountered the smallest Wilson loop, the plaquette (2.83), when we introduced the lattice
gauge action and found that it is gauge invariant. We will denote a space-time Wilson
loop along a rectangular contour C = R× T by

W (R, T ) = tr
∏

(n,µ)∈C
Uµ(n), (2.116)

where R is the extension in space and T the extension in time. One finds the relation

〈W (R, T )〉 T→∞= c e−V (R)T (2.117)

where V (R) is the static quark potential8 and thus

V (R) = − lim
T→∞

1
T

log 〈W (R, T )〉 . (2.118)

In the strong coupling expansion one can show [47, Chapter 3.5] that the leading contri-
bution to the expectation value of Wilson loops are of the form

〈W (R, T )〉 = c e−σRT+µ(R+T )+.... (2.119)

Therefore one expects that the Wilson loop falls-off with an area law in a confining theory,
while the fall-off is described by a perimeter law if the linear rising term is not present. This
categorization by the Wilson loop fall-off is known as the Wilson criterion for confinement.
For a measurement of the string tension on a finite lattice one has to consider a large

loop in the temporal direction and perform a fit in the large R region where the area law
8For a derivation see e.g. Ref. [65] or textbooks e.g. Ref. [47, Chapter 3.5].
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dominates. Creutz ratios [66] are a convenient way to directly access the string tension
already from smaller Wilson loops. With the ratio

χ(R+ 0.5, T + 0.5) = − log 〈W (T + 1, R+ 1)〉 〈W (R, T )〉
〈W (R+ 1, T )〉 〈W (R, T + 1)〉 (2.120)

the perimeter law and a constant is already canceled and yields the string tension (in
lattice units)9. In Chapter 5 we will use Creutz ratios to determine if confinement is
present in our theory.

2.5.2. The Polyakov Loop
The Polyakov loop is a special kind of Wilson loop which winds once around the periodic
lattice in time direction

P (x) = tr
Nt−1∏
t=0

Ut(t,x). (2.121)

The correlation of two oppositely-oriented Polyakov loops at spatial distance R = |x− y|
gives another definition for the static quark potential. The relation to the former defini-
tion can be obtained by using a Wilson loop of temporal extend T = Nt. With gauge
transformations it is possible to set all links in spatial direction to the identity and one
ends up with just the two Polyakov loops of opposite orientation. Since the Polyakov loop
is gauge invariant the interpretation in this special gauge is valid independent of the choice
of gauge. Therefore, 〈

P (x)P †(y)
〉

= c e−aNtV (R). (2.122)

With both definitions (2.117) and (2.122) we can measure the string tension and there-
fore conclude if we are in the confined or in the deconfined phase. However the expectation
value of a Polyakov loop alone is already an order parameter for confinement. In the pure
gauge theory the deconfinement phase transition is related to center symmetry. The pure
gauge action is invariant under a center transformation

Ut(t̃,x)→ zUt(t̃,x), ∀x (2.123)

where all temporal links of a time slice t̃ are multiplied with the same element z from the
center of the gauge group. The center of a group is the set of all elements which commute
with every other element of the group. For SU(N) the center is given by the cyclic group

ZN = {exp (2πin/N)1 | n ∈ [0, . . . , N − 1]} ∈ SU(N). (2.124)

One can easily verify that for any (trivially) closed loop the center phase just drops out
and therefore the gauge action which is built from such loops is invariant under a center
transformation. However, the Polyakov loop winds around the lattice and is not invariant
under z

P (x)→ zP (x). (2.125)

Thus, the Polyakov loop is an order parameter for the center symmetry. In the center
symmetric phase the expectation value of a Polyakov loop vanishes, if center symmetry
is broken the expectation value will acquire a finite value. The expectation value of a
Polyakov loop can also be interpreted as a free energy of a color charge Fq, see Ref. [31,
Chapter 12],

|〈P 〉| = c e−aNtFq . (2.126)
9We use the notation of Ref. [67].
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In the center-symmetric phase the free energy diverges Fq →∞, thus the quark is confined
whereas in the broken phase the free energy is finite. In Chapter 4 we will see that the
finite temporal extent aNt plays the role of the inverse temperature of the system.

2.5.3. The Dual Superconductor and Abelian Monopoles

The dual superconductor picture of confinement is based on an analogy to ordinary super-
conductors in electrodynamics. These superconductors are classified into two categories by
the Ginzburg–Landau parameter κ = λ

ξ , where λ is the penetration depth of the magnetic
field and ξ the correlation length of Cooper pairs. Type I superconductors are charac-
terized by κ < 1.10 The phenomenological observation is the Meißner–Ochsenfeld effect:
the magnetic field is expelled from the interior of the medium to a layer of thickness ∼ λ
around the surface. For a magnetic field above some critical value superconductivity will
break down. On the other hand in type II superconductors (κ > 1), superconductivity does
not break down immediately, but it is energetically favorable to form quantized magnetic
flux lines in the interior of the material, the so-called Abrikosov vortices. Thus, type II
superconductors exhibit three different phases characterized by the critical fields Bc1 and
Bc2 : the normal phase (B > Bc2), the so-called Shubnikov phase (Bc1 < B < Bc2) where
vortices penetrate the material and the superconducting phase (B < Bc1).
Though no magnetic monopoles are observed in nature, it is instructive, for the discus-

sion of the dual superconductor picture, to consider a hypothetical magnetic monopole.
If one places such a magnetic monopole and an anti-monopole in a non-superconducting
material, the magnet field will spread out in the same way as the electric field for electric
charges, with a potential V (r) which falls-off like 1/r. However in a superconducting mate-
rial, the magnetic flux cannot spread out, due to the Meißner–Ochsenfeld effect. Since the
magnetic charges are placed in the superconductor, the magnetic field cannot be expelled
completely due to the (magnetic) Gauß’s law11. It is squeezed in a flux tube which joins
the monopole and the anti-monopole. Since the energy density along the flux tube is con-
stant, the energy will rise linearly with the distance of the monopole and anti-monopole. If
the monopole and the anti-monopole existed, they would be confined by this mechanism.
In the dual superconductor, the roles of the electric and the magnetic field is exchanged:

in QCD the confinement of a color-electric quark-antiquark pair can be explained by the
formation of electric flux tubes [69, 70]. The mechanism builds upon an Abelian U(1)
theory. Thus, in the context of non-Abelian SU(N) gauge theories one needs to choose
an Abelian subgroup [71]. Such a subgroup can be generated from the Cartan subalgebra
and is given by the group U(1)N−1. The most prominent choice to single out an Abelian
subgroup of SU(N) is the maximally Abelian gauge where one tries to make the gauge
field as diagonal as possible. Then, the Abelian part of the gauge field is obtained by
eliminating the components along the non-diagonal generators from the gauge field.
The authors of Ref. [72] conjectured that if the Abelian monopoles are relevant for

confinement, then the Abelian part alone will dominate the long-range physics. In fact,
many results from lattice gauge theory [73–80] and continuum calculations [81–86] support
the Abelian dominance hypothesis, see also Appendix F.

10In the notation of Ref. [68, Chapter 21.6].
11Gauß law for the magnetic field ∇B = m is obtained after symmetrization of the Maxwell equations,

where m is the magnetic charge
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2.5.4. The Center Vortex Picture
In this section we give a very brief overview of the center vortex picture. A more detailed
introduction is postponed to Chapter 5 were we use the center vortex picture as a tool to
eliminate the confining properties from lattice configurations.
The center vortex model was first proposed by ’t Hooft [87] and Mack and Petkova [88].

The idea is that sufficiently random vortices produce an area law for the Wilson loop. A
center vortex in 3 dimensions is a closed loop in the dual lattice, carrying quantized flux
of a non-trivial center element of the gauge group. A Wilson loop will detect a center
vortex if they are non-trivially linked, i.e. if the area of the Wilson loop is pierced by the
vortex. Then, the Wilson loop measures the flux associated with the non-trivial center
element. However, center vortices, as they appear in SU(N) gauge theories, are objects
of a finite width (thick vortices) and cannot be detected directly. To detect the center
vortices on the lattice, the thick vortices are squeezed by a center gauge to the SU(N)
element which is closest to a center element. To extract so-called thin vortices of the
width of one lattice spacing, the links, after center gauge fixing, are then projected to
its closest center element. In the literature, these projected vortices are often called P-
vortices. Many lattice results confirm that center vortices are the relevant physical objects
for confinement, see Chapter 5.
The center vortex picture originates from the lattice approach and is formulated in terms

of the group valued link variables. Still a continuum analog of center gauge fixing and
center projection could be derived [89] which allows the interpretation of a center vortex
as the half of a Dirac string [90].

2.5.5. Confinement in Coulomb Gauge
Gribov and Zwanziger developed an explanation of confinement based on an entropic
argument [35, 91, 92]. The argument is that, as the volume of a high-dimensional sphere

dVN = rN−1dr dΩ , (2.127)

is located in a small region around around the surface of the sphere, the relevant con-
figurations in the high-dimensional path integral will be concentrated around the Gribov
horizon.
Since close to the Gribov horizon the Faddeev–Popov operator develops a small eigen-

value, the momentum space ghost propagator will diverge very fast in the IR, which is
seen from the spectral decomposition in momentum space

G(p) =
∑
n

φn(p)φn(−p)
λn

, (2.128)

where λn are the eigenvalues and φn the eigenfunctions of the Faddeev–Popov operator.
Since the ghost propagator enters the Coulomb operator twice

VC ∼M−1(−∇)M−1 (2.129)

it is argued that the reason for a long-range Coulomb potential is due to the diverging
ghost propagator. Additionally, the restriction to the FMR implies a vanishing gluon
propagator [91]. Finally, it was shown that the Coulomb potential is an upper bound for
the physical potential from Wilson loops at large distances [93]

VW (r) ≤ VC(r), r →∞. (2.130)

Thus a confining Coulomb potential is a necessary condition for confinement.
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2.6. The Coulomb Gauge Propagators
In the following we will introduce the lattice Coulomb gauge correlation functions which
are relevant for this work. We will also summarize related work in Coulomb gauge and
discuss discrepancies between lattice and continuum results. The discussion of related
work at finite temperature is postponed to Chapter 4.

2.6.1. Gauge Fixing on the Lattice
In Section 2.2 we have seen that gauge fixing is necessary in continuum calculations. In
the lattice theory gauge fixing is not per se necessary as long as one is only interested in
gauge invariant observables. Since the integration is only over a finite number of variables
with the compact Haar measure the lattice path integral is well-defined. However, gauge
fixing is of course necessary if one is interested in gauge variant quantities in a particular
gauge. Though the gauge variant quantities do not have a direct physical meaning one can
still draw physical conclusions from them. One example is the Gribov–Zwanziger scenario
where one derives the (gauge independent) observation of confinement from gauge-variant
correlation functions.
We have already seen how we can implement gauge fixing in the continuum path integral

with the Faddeev–Popov technique in Section 2.2. In the lattice approach it is (numeri-
cally) inconvenient to incorporate the gauge condition in the path integral directly (2.86)
by generating the Monte Carlo ensemble with the action

S = SYM + SGF + SFP. (2.131)

This approach would involve the calculation of the Faddeev–Popov determinant in each
Monte Carlo step. The standard technique is to produce the gauge configuration with the
Yang–Mills action alone and then transform these configurations to a particular gauge [94].
To implement Coulomb gauge the task is to find the minimum of the lattice version

of (2.28) for a given Monte Carlo configuration U which reads

FU [g] = 1
3NcN

3
s

∑
x,i

Re tr [1− Ugi (x)] (2.132)

In later chapters we will usually drop the “1−” term and talk about maximizing the
functional, see (7.2). From (2.132) it is apparent that lattice Coulomb gauge is the gauge
which brings the spatial links as close as possible to unity.
More details on lattice gauge fixing, including the numerical algorithms and an efficient

implementation for GPUs, will be discussed in Chapter 7.

2.6.2. The Gluon Propagator
The gluon propagator is the two-point function of the gauge fields

Dab
ij (x− y) =

〈
Aai (x)Abj(y)

〉
. (2.133)

For the gauge fields on the lattice we use the linear mid-point definition in terms of the
link variables

Aµ(x+ µ̂/2) = 1
2iag

[
Uµ(x)− U †µ(x)

]
traceless

. (2.134)

The momentum space gluon propagator

Dab
ij (k) =

〈
Aai (k)Abj(−k)

〉
, (2.135)
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with Aaµ(k) =
∑
xAµ eik·(x+µ̂/2) obtained by Fourier transformation, is transverse and

diagonal in color-space

Dab
ij (p) = δab

(
δij −

pipj

|p|2

)
D(p). (2.136)

Equation (2.136) defines the scalar propagator D(p), where pµ(kµ) = 2
a sin(akµ/2) and

kµ = 2π
aLµ

nµ are the discrete lattice momenta in the first Brillouin zone, see Appendix A.
The transversality is a consequence of the Coulomb gauge condition in momentum space

p ·A(p) = 0. (2.137)

Related Work

The Coulomb gauge gluon propagator was first studied in [95, 96] on various lattice sizes
but only at a fixed coupling β = 2.2 for the gauge group SU(2). The authors found that the
propagator fits well to Gribov’s formula (2.65). The static propagator can be interpreted
as the (inverse) energy dispersion relation for the gluons ω−1(p) = 2D(p). If we compare
the Gribov form to the dispersion relation of a massive particle ω2 = p2 + m2, we see
that the term m2(p) = M4/p2 in Gribov’s formula can be interpreted as a momentum
dependent mass which diverges in the IR limit. This describes infinitely heavy gluons at
small momenta which cannot propagate and thus signals confinement.12
While in a first study at different couplings [98] the propagator shows proper multiplica-

tive renormalization, scaling violations were observed in later studies both for the gauge
groups SU(2) [99] and SU(3) [100, 101]. In these works, a conclusive statement about the
IR behavior was not possible.
Since these violations were observed, several solutions were proposed. In Ref. [102]

the scaling violations were resolved by introducing a momentum cut in addition to the
established cone and cylinder cut (Appendix A.2.2). The authors see a tendency for an
infrared finite gluon propagator which would be in contrast to continuum calculations, see
Section 2.6.6.
A different solution was proposed by authors of our group [44]. They found that when

calculating the static propagator from the full propagator with the lattice cutoff π/at

D(p) =
∫ π

at

− π
at

dp0
2π D(p0,p), (2.138)

the propagator gets a spurious extra momentum dependence. This can be seen already for
the free propagator [97]. We will will briefly sketch this simpler calculation from Ref. [97]
here. The free propagator is given by D0(p0,p) = 1

p2
0+p2 . Integrating the propagator on

the finite lattice interval yields

D0(p) =
∫ π

at

− π
at

dp0
2π

1
p2

0 + p2 = 1
2 |p|

2
π

arctan
(

π

at |p|

)
. (2.139)

Thus on the finite lattice there will always be an extra factor

arctan
(

π

at |p|

)
= arctan

(
πξ

as |p|

)
. (2.140)

12A more rigorous interpretation would be that such a momentum space propagator corresponds to a
propagator which violates reflection positivity and thus cannot describe a physical particle. In Ref. [97]
the gluon propagator was calculated in position space.
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2. From Continuum QCD to Lattice Field Theory in Coulomb Gauge

compared to the continuum result

D0(p) = 1
2p . (2.141)

This factor will only vanish in the Hamiltonian limit at → 0 which can be approached
by lattices with high anisotropy ξ → ∞. Such a spurious p dependence, which was also
found for the interacting lattice propagator in Ref. [44], prevents the static propagator
from being multiplicatively renormalizable. Additionally, earlier studies did not take into
account that the static propagator might be influenced by fixing the residual gauge of the
links in time direction, see Appendix B. For the full bare propagator after residual gauge
fixing with the integrated Polyakov gauge they found a factorization in a function of |p|
and a function of z = p0

|p|
Dβ(p0, |p|) = fβ(p)gβ(z), (2.142)

where we use the subscript β to indicate that the functions depend on the coupling.
Since gβ(z) depends on the coupling they conclude that the full propagator cannot be
multiplicatively renormalizable and therefore the same holds for the static propagator.
However they find that the propagator at fixed energy shows proper scaling and can be
used as the static propagator D(p) = D(p0 = 0,p). To improve the statistics they propose
to divide out the z dependency and then take the p0 average. In this work we will use this
latter approach which is explained in more detail in the next section. With this technique
they find again the Gribov formula from the first studies at fixed β. This is not surprising
since at the stronger coupling (in the low β region of the scaling window) of the first study,
the correction in [44] is small.
From the calculation (2.140) for the free propagator and especially from the general

calculation in Ref. [44] it is apparent that the spurious p dependence can be corrected
for by using anisotropic lattices with a smaller lattice spacing in the time direction. This
approach was followed in Refs. [97, 103]. Indeed the authors find that with increasing
anisotropy the scaling violations are clearly reduced and the gluon propagator is again
found to vanish in the IR. Additionally, the power law in the UV approaches the pertur-
bative 1

|p| of the Hamiltonian approach.

Calculating the Propagator

To resolve the scaling violations on an isotropic lattice the authors of Ref. [44] proposed
to use the functional form of gβ(z) to match the propagator at different energies p0. Their
strategy, which we will adopt in this work also for anisotropic lattices, is as follows. We
obtain the functional form of gβ(z) by calculating the ratios (2.142) between p0 and a
fixed p̃0 which we chose to be p̃0 = 0. With the choice p̃0 = 0 the resulting data points
are closest to a single curve. If we set gβ(0) = 1 (other choices would only change the
normalization) we get

gβ(z) = Dβ(p0, |p|)
Dβ(0, |p|) . (2.143)

To the lattice data gβ(z) we fit a function of the form

ĝβ(z) = (1 + z2)α
pmax∑
p=0

cpz
p (2.144)

where pmax ≤ 4 in the polynomial factor. Then we remove the z-dependence from the
bare propagator by dividing with ĝβ(z) and thus get a energy-independent quantity which
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we average over p0 to reduce the statistical fluctuations

fβ(|p|) = 1
Nt

∑
p0

Dβ(p0, |p|)
ĝβ(z) . (2.145)

From (2.145) we define the bare static propagator

Dβ(|p|) = fβ(|p|)
|p|

. (2.146)

As already noted the propagator is then found to be multiplicatively renormalizable

Dµ(|p|) = Z(β, µ)Dβ(|p|). (2.147)

Since with the Gribov formula we have a functional form for all momenta which matches
the propagator well, we will use a fit to Gribov’s formula to define the renormalization
constant Z. This procedure from Ref. [44] corresponds to the renormalization condition

Dµ(|p|)|µ→∞ = 1
2µ, (2.148)

i.e. we renormalize that propagator such that it takes its tree-level value for some (large)
fixed value of p.

2.6.3. The Ghost Propagator
From (2.24) we can read off that the ghost propagator, i.e. the two-point function of the
ghost fields. It is given by the inverse Faddeev–Popov matrix M

Gab(x− y) = 〈c̄(x)c(y)〉 =
〈

(M−1)abxy
〉
. (2.149)

Since the propagator is diagonal in color space

Gab(p) = δabG(p) (2.150)

we can define the scalar propagator (in momentum space) as

G(p) = d(p)
p2 = 1

N2
c − 1

1
N3
s

〈∑
a

∑
x,y

eik(x−y)(M−1)aaxy

〉
, (2.151)

where d(p) is the ghost form factor which describes the deviation from the Abelian case.
In the Abelian theory the Faddeev–Popov operator is the inverse Laplacian and therefore
the ghost propagator is G(p) = 1/p2. The Coulomb gauge Faddeev–Popov matrix on the
lattice for the linear definition of the gauge field (2.134) is given by

Mab
xy =

∑
i

{
δ(x− y) Re tr

{
T a, T b

}
(Ui(x) + Ui(x− ı̂)) (2.152)

−2δ(x+ ı̂− y) Re trT bT aUi(x) (2.153)

−2δ(x− ı̂− y) Re trT aT bUi(x− ı̂)
}
, (2.154)

where we used the notation of Ref. [104]. For a derivation we refer to [36]. The Faddeev–
Popov operator has N2

c − 1 zero modes which belong to the constant eigenfunctions
Ψa(x) = 1/

√
N3
s δ

ab. In the vector space orthogonal to these trivial zero modes the
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2. From Continuum QCD to Lattice Field Theory in Coulomb Gauge

Faddeev–Popov operator is positive-definite and the conjugate gradient algorithm can be
used to invert the operator

Mab
xyφ

b(y) = Ψa(x). (2.155)

We use momentum space sources [105]

Ψa
(c,k)(x) = δac e−ikx (2.156)

with fixed c and k which has the advantage that for k 6= 0 the r.h.s. of (2.155) as well as
the conjugate gradient iterates are orthogonal to the eigenspace of the zero modes. The
ghost propagator in momentum space is then given by G(p) =

〈
Ψ(c,k)

∣∣∣φ(c,k)
〉
.

In the Gribov–Zwanziger confinement scenario, Section 2.5.5, one expects a divergent
ghost form factor in the IR limit, the so-called horizon condition,

lim
|p|→0

d−1(|p|) = 0. (2.157)

Such a ghost form factor allows another intuitive physical interpretation. The ghost form
factor in Coulomb gauge can be interpreted as the dielectric function of the QCD vac-
uum [106]

ε(p) = d−1(p). (2.158)

This implies that the QCD vacuum is a perfect dielectric medium since ε(0) = 0 and thus
implies dual superconductivity.

Related Work

As already discussed for the gluon propagator, taking the lattice Hamiltonian limit is
non-trivial and induces scaling violations. Such scaling violations were also found for the
ghost propagator on isotropic lattices for SU(2) [107] and SU(3) [102]. Since the ghost
propagator is by definition equal-time and only involves links in spatial direction it is
independent of the residual gauge freedom and one cannot expect a prescription to resolve
the scaling violations as in the case of the gluon propagator. However, the analysis of
anisotropic lattices [108] revealed that the scaling violations are resolved by increasing the
anisotropy. While all studies agree on a infrared divergent form factor, the precise value for
the infrared exponent is open for debate since the ghost propagator is rather sensitive on
the prescription of how the Gribov ambiguity is resolved. This will be discussed in detail
in Chapter 3. With the standard prescription, where one tries to find the global minimum
of (2.132), the best estimate is d(|p|) ∼ 1/ |p|0.55 for |p| → 0 [108]. In Section 2.6.6 we
will discuss this result in more detail in relation to findings in continuum calculations.
Related to the ghost propagator is the eigenvalue spectrum of the Faddeev–Popov op-

erator which was investigated in Refs. [109, 110]. They find that the eigenvalues on large
lattices accumulate near zero which is the Gribov–Zwanziger entropy argument that leads
to a divergent ghost form factor.

2.6.4. The Coulomb Potential
An important quantity to study confinement in Coulomb gauge is the Coulomb poten-
tial (2.60). As the Coulomb potential provides an upper bound for the physical quark-
antiquark potential at large distances, one expects that it is also linear rising VC(R) = σCR
for R→∞. Then one is interested in verifying the relation

σ ≤ σC (2.159)
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where σ is the physical string tension and σC the string tension of the Coulomb po-
tential. A linear rising potential for large R in position space corresponds to a poten-
tial V (p) = (8πσ)/p4 for small momenta |p| → 0 in momentum space. Thus to verify
Zwanziger’s inequality (2.159) we will study the ratio (p4VC(|p|))/(8πσ) which yields σC/σ
for |p| → 0.
In the literature several ways were proposed on how to define the continuum Coulomb

potential from lattice quantities. Of course all definitions should agree in the continuum
limit, however on a finite lattice they might differ.

The Coulomb Kernel: A straightforward one is to use directly the Coulomb kernel
(2.58). Then the Coulomb potential (in momentum space) is obtained from the Monte
Carlo expectation value

VC(p) = 1
N2
c − 1

1
N3
s

〈∑
a

∑
x,y

eik(x−y)
(
M−1(−∆)M−1

)aa
xy

〉
. (2.160)

With this definition we can use the same technique as for the ghost propagator (2.155) by
just replacing M →M(−∆)−1M .

The Temporal Gluon Propagator: In Ref. [111] the authors derived the relation

D00(x− y) = VC(x− y)δ(x0 − y0) + P (x− y), (2.161)

where D00 is the time-time component of the gluon propagator and P (x − y) is a non-
instantaneous vacuum polarization term. They suggest [95] to calculate the Coulomb
potential from the temporal equal-time propagator

VC(x) = lim
ε→0

∫ ε

−ε
dx0 D00(x0,x) (2.162)

= D00(x). (2.163)

The U0U
†
0 -Correlator: A third definition originates from Ref. [112] and was put for-

ward by Greensite and Olejník [113]. We will shortly summarize their reasoning following
Ref. [114]. Consider the vacuum state Ψ0 of the theory in Coulomb gauge (2.55) and
denote the operator which creates a quark-antiquark pair at distance R with q̄(0)q(R).
Then,

|Ψqq̄〉 = q̄(0)q(R) |Ψ0〉 (2.164)

is the state of a quark-antiquark pair in Coulomb gauge. The Coulomb energy can then
be defined as

EC(R) = 〈Ψqq̄|H|Ψqq̄〉 − 〈Ψ0|H|Ψ0〉 (2.165)
= VC(R) + const., (2.166)

which defines the Coulomb potential up to an R-independent constant. With E0 =
〈Ψ0|H|Ψ0〉 we can introduce

G(R, T ) =
〈

Ψqq̄

∣∣∣e−(H−E0)T
∣∣∣Ψqq̄

〉
(2.167)

=
∑
n

|〈Ψn|Ψqq̄〉|2 e−(En−E0)T , (2.168)
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where Ψn are the normalized energy eigenstates

H |Ψn〉 = En |Ψn〉 , 〈Ψn|Ψm〉 = δnm. (2.169)

By taking the time derivative and the limit T → 0 of (2.168) and by using (2.169) we
obtain the Coulomb potential

lim
T→0

[
− d

dT logG(R, T )
]

= VC(R) + const. (2.170)

On the lattice, the operator G(R, T ) can be built from Polyakov line correlators

G(R, T ) =
〈

trP †t (x)Pt(y)
〉
, (2.171)

where in contrast to (2.121) the product of links in time-direction is of finite length T < Nt

PT (x) = U0(0,x)U0(t̂,x)U0(2t̂,x) . . . U0((T − 1)t̂,x). (2.172)

Thus, we find the third definition [113, 115]

VC(R) = − 1
at

log
〈

trU †0(x)U0(y)
〉
, (2.173)

where the time derivative was replaced by the discrete lattice derivative df
dT = f(t+at)−f(t)

at
.

Related Work

The Coulomb potential from the Coulomb kernel (2.160) was numerically investigated in
Ref. [98, 108, 116]. In Ref. [116] their best estimate for the Coulomb string tension is
σC = 1.6σ (SU(3)) and σC = 2.2σ (SU(2)) in Ref. [108]. However the authors give reasons
why the results has to be taken with care. First of all there is a strong Gribov copy
effect whose origin is found in Chapter 3 to be related to the low lying eigenvalues of the
Faddeev–Popov operator. Secondly, the numerical data for p4VC(|p|) shows a peak around
0.5GeV . 1GeV which is not expected from theoretical considerations. This introduces
an ambiguity in defining a fit function and in defining an appropriate IR range for the fit.
Additionally, the fits are based on only a few data points in the IR.

The 〈A0A0〉 propagator (2.162) was studied in [95, 97, 102]. As for the transverse
(spatial) gluon propagator the temporal propagator shows scaling violations which can be
improved by going to anisotropic lattices [97]. Only there, and only in position space, an
estimate for the Coulomb string tension could be obtained with σC ≈ (1.4 . . . 1.6)σ. The
authors attribute this rather small value, compared estimates from the other definitions,
to the presence of the polarization term in Eq. (2.161).
Finally the U0U

†
0 -correlator (2.173) was used in various studies with different focus. The

technique was first used in Refs. [113, 115] for SU(2) where the Coulomb string tension
was found to be significantly larger than the physical string tension σC & 3σ. There
the authors also studied the relation between Coulomb confinement and the center vortex
picture. They find that the Coulomb string tension vanishes if center vortices are removed,
see also Chapter 5. The first study of SU(3) was done in Ref. [117] and again a confining
Coulomb potential is found, though they do not compare the Coulomb string tension to
the physical string tension. They also did not compare their finite temperature results to
T = 0. In the range T = 1.5 . . . 5Tc they find that the string tension rises linearly with
temperature. In Ref. [118] the authors use an interpolation gauge between Landau and
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Coulomb gauge, where in the Coulomb gauge limit they obtain a string tension σC ' 2.6σ.
The same authors also show [119] that the confining nature of the potential is due to the
low momentum components of the link variable. In Ref. [120] a value of σC & 4σ was
reported for SU(3). In the appendix of Ref. [121] the author argues that 〈A0A0〉 should
not be used to define the Coulomb potential, since it is not clear which branch of the
logarithm should be used when A0 is defined from the relation U0 = exp(iA0).

2.6.5. The Quark Propagator

The quark propagator will be discussed only briefly in Appendix D in the context of a
technicolor model. For QCD the Coulomb gauge quark propagator was studied in Ref. [122]
and in the quenched approximation for an improved discretization of the Dirac operator
in Ref. [123].

2.6.6. Discussion of Continuum and Lattice Results

In Section 2.3 we already mentioned that within the Hamiltonian approach one finds dif-
ferent solutions for the gap equation which lead to a different behavior of the propagators.
These solutions are classified in two categories: the critical solutions [17, 18] are classified
by a infrared divergent ghost form factor and the subcritical solutions [124] by a ghost
form factor which is infrared finite. From our discussion of confinement in Coulomb gauge
it is obvious that the critical solutions are expected to be the physical solutions. The
critical solutions can be classified by their asymptotic behavior. We will use the notation
of [108] to describe the asymptotic of the gluon propagator and the ghost form factor. In
the IR the propagator can be described by a power law

D(|p|) = 1
|p|κgl

, d(|p|) = 1
|p|κgh

, |p| → 0. (2.174)

In the UV we assume that the propagators are described by their tree-level value with
possibly logarithmic corrections

D(|p|) = 1
|p| logγgl

(
|p|
m

) , d(|p|) = 1
logγgh

(
|p|
m

) |p| → ∞. (2.175)

The anomalous dimensions are found to be γgl = 0 and γgh = 1
2 . One finds two critical

solutions which differ by their IR exponents

κgl = −1, κgh = 1, (2.176)
κgl ≈ −0.6, κgh ≈ 0.8. (2.177)

The first solution (2.176) is also called confining solution since it leads to a linear rising
Coulomb potential [18]. Both solutions are found by an analytical IR analysis and by
numerically solving the integral equations. From the IR analysis [125] one finds that the
critical solutions have to obey the sum rule

κgl + 2κgh = 1. (2.178)

The sum rule was derived under the assumptions that the ghost-gluon vertex does not
need renormalization. In Landau gauge the validity of this assumption was verified on
the lattice for SU(2) [126] and SU(3) [127]. In Coulomb gauge it was found that a finite
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dressing of the vertex does not influence the numerical solutions [125]. Therefore one
usually assumes that the sum rule is valid in Coulomb gauge.
In an approach derived from functional renormalization group equations, the sum rule

is also found but with different values for the IR exponents [128]

κgl ≈ −0.28, κgh ≈ 0.64. (2.179)

In comparison to lattice results a big discrepancy shows up. While the gluon IR ex-
ponent of the solution (2.176) from the Hamiltonian approach perfectly fits to the lattice
results [44], the exponent of the ghost form factor of all lattice studies is found to be
around or below κgh . 0.5 [101, 102, 108]. These results clearly violate the sum rule
(2.178). In Ref. [108] the authors report that from time to time configurations which are
very close to the Gribov horizon, indicated by a close to zero eigenvalue of the Faddeev–
Popov operator, enter the Monte Carlo ensemble. They argue that these configurations,
which contribute significantly to the IR enhancement, maybe underrepresented in the en-
semble. In Chapter 3 we will investigate this question in detail. One might also question
if the assumption that lead to the sum rule, i.e. a bare ghost-gluon vertex, is fulfilled in
Coulomb gauge, though this question is not addressed in this work.
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In this chapter we will discuss the effect of Gribov copies on the Coulomb gauge prop-
agators. As opposed to earlier approaches to resolve the Gribov ambiguity we choose a
different strategy which was recently proposed by the authors of Ref. [129]: we select a
configuration by the value of the smallest non-trivial Faddeev–Popov eigenvalue. After an
introduction on the lattice Gribov problem and its common solutions, Section 3.1, we will
first compare gauge fixing to the best-functional value to the new approach in Section 3.3.
Then we discuss its implications on the Coulomb gauge propagators in Section 3.4. The
results of this chapter were published in Ref. [130].

3.1. Introduction

The Gribov problem, see Section 2.2.1, arises because Coulomb gauge, ∂iAi = 0, is not
sufficient to select a single configuration from the gauge orbit. On the lattice, as will be
discussed in detail in Chapter 7, Coulomb gauge fixing is achieved by maximization of the
functional

FUt [g] = 1
NcNdV

∑
x,i

Re tr [Ugi (t,x)] (3.1)

for each time slice t. Yet, a local maximum of (3.1) locates only a, more or less random,
configuration in the first Gribov region, which is known to contain many more Gribov
copies all satisfying the same gauge condition. Only the global maximum of (3.1), i.e. a
configuration in the FMR, resolves the Gribov problem completely. Finding the global
maximum of such a functional, however, is analogous to finding the ground state of an
SU(N) spin glass [131], a problem which is known to be NP-hard even for the simpler Z2
theory [132].
There are two widely used approaches to the problem of Gribov copies in lattice gauge

theory. The first one is to plainly neglect the problem which can be seen as taking the
average over all Gribov copies (in a large ensemble). Essentially, the argument is that
the Gribov copy effect should be negligible in (gauge invariant) physical observables, even
if they are calculated from combinations of gauge variant correlation functions which are
affected by the Gribov problem. This approach, in which one takes the first local maximum
found by the algorithm, is called the “minimal gauge” in the literature [133].
The second approach is to locate the global maximum as well as possible, in the hope

that the biggest local maximum one can find is a good approximation of the true global
maximum. In order to clarify this statement, let {UFMR} be the ensemble of gauge con-
figurations which are in the FMR, i.e. F [UFMR] = max., and let {Ubc} be the ensemble
with gauge configurations such that they are close to the maximum

F [UFMR] & F [Ubc], (3.2)

i.e. the set of configurations which correspond to the best maximum one could find nu-
merically. One assumes then that the configuration {Ubc} is in some sense close to the one
in the FMR {UFMR} and that this carries over to the expectation values of gauge variant
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quantities O
〈O(Ubc)〉 ≈ 〈O(UFMR)〉 ≡ 〈O〉phys , (3.3)

i.e. that the expectation value calculated from {Ubc} is a good approximation for the phys-
ical relevant one which is in the FMR. For historical reasons, we will call the ensemble
{Ubc} the best copy (bc) ensemble. Unfortunately, it is not possible to verify this assump-
tion numerically on large lattices, since that would imply to solve the global maximization
problem. Additionally, there is no mathematical proof that the assumption holds. In a
simple toy model, a U(1) lattice theory on a 2-dimensional sphere [134], there is actually
numerical evidence against this hypothesis.
Recently a third approach for resolving the Gribov problem has been discussed in Lan-

dau gauge [135, 136]: instead of choosing the copy with the best functional-value one
chooses the copy for which the first non-trivial eigenvalue of the Faddeev–Popov operator
is smallest, the lowest copy (lc). We will borrow this notation from the aforementioned
papers. The idea behind the lowest copy approach is that this should locate configurations
which are close to the Gribov horizon. These are, according to Gribov and Zwanziger’s
entropic reasoning, the relevant configurations in the thermodynamic limit. The authors
of Ref. [135, 136] found that both the ghost dressing function and the gluon propagator
are enhanced in the IR for the lowest copy when compared to the best-copy approach,
while they become flatter for the Gribov copy with a large smallest eigenvalue. While
this effect is significant for the ghost dressing function, the effect on the gluon propagator
is mild. Similar attempts to improve Landau gauge fixing to explain the IR properties
of the decoupling solutions continuum calculation from Dyson–Schwinger and Functional
Renormalization Group equations were put forward in [137, 138] with mixed results.
In Coulomb gauge a discrepancy exists between the IR exponent of the ghost dressing

function in the Hamiltonian variational approach and lattice results [108, 139, 140]. On
the other hand the behavior of the gluon propagator agrees very well [44], see Section 2.6.6.
The IR exponents of the ghost form factor and gluon propagator are related by a sum rule,
which is a direct consequence of a bare ghost-gluon vertex. The assumption that the ghost-
gluon vertex is finite was verified for Landau gauge on the lattice and is usually assumed to
be valid for Coulomb gauge as well. A possible explanation for the disagreement between
continuum and lattice results might be that the lattice data is biased by artifacts related
to the Gribov problem. In a recent paper [129], the authors propose that indeed the gauge
copy with the smallest first non-trivial eigenvalue should provide better agreement with
the continuum calculations, since it is the copy which is closest to the Gribov horizon. To
test this conjecture we will apply this approach in the following. We will find, that it is
numerically much easier to find a high value of the functional, i.e. a best copy, compared
to a configuration with a very small eigenvalue of the Faddeev–Popov operator. Therefore
we need to compute many gauge copies in order to find the Gribov copies with small
eigenvalues. As a by-product we get the best-functional copy with a high number of trials
which allows us to review the best copy strategy as well.

3.2. Lattice setup

For this study we used isotropic lattices of three different sizes and discretizations. Since
the ghost propagator is known to suffer from strong scaling violations on isotropic lattices
we include an anisotropic lattice. Our setup is summarized in Table 3.1. To fix the lattice
spacing, we used an interpolation formula based on data of Ref. [108] and references
therein. We use

√
σ = 0.44GeV as the physical value for the string tension.
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3.3. Gauge fixing and Gribov copies

Label Size ξ β as [GeV−1] L [fm]
A1 164 1 2.2 1.07 3.4
A2 164 1 2.3 0.84 2.6
A3 164 1 2.4 0.61 1.9
B1 244 1 2.2 1.07 5.0
B2 244 1 2.3 0.84 4.0
B3 244 1 2.4 0.61 2.9
C1 324 1 2.2 1.07 6.7
C2 324 1 2.3 0.84 5.3
C3 324 1 2.4 0.61 3.8
D1 128× 323 4 2.25 1.11 7.0

Table 3.1.: Lattice setup.

3.3. Gauge fixing and Gribov copies

Both for the lowest copy and the best copy strategy, we us the over-relaxation technique as
will be discussed in Chapter 7. There, we also explain simulated annealing as a technique
to increase the probability to find the absolute maximum of the gauge fixing functional,
i.e. to find a better best-functional copy. Usually a combination of repeated gauge fixing
and a preconditioning with simulated annealing is used to find the (best approximation of
the) global maximum. Repeated gauge fixing means to start gauge fixing multiple times
from a random gauge transformation (gauge copies) and select the one which best satisfies
the best-functional (or lowest-eigenvalue) condition. In Fig. 3.1 we show an illustrative
plot of the evolution of the gauge fixing precision θmax (7.7) over the number of gauge
fixing steps. In the figure on the left hand side four runs with over-relaxation parameter
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Figure 3.1.: Gauge precision θ over the number of over-relaxation steps. L.h.s.: 5 gauge
copies of the same configuration, the light blue line is with simple relax-
ation, the other lines with ω = 1.7, the pink line corresponds to a signifi-
cantly smaller value of the first non-trivial eigenvalue of the Faddeev–Popov
operator λ1 compared to the other copies; r.h.s.: the green (ω = 1.7) and
blue line (ω = 1.0) are preconditioned with simulated annealing which re-
duces/removes the first phase where the algorithm tries to locate a maxi-
mum, the slope of the second phase does not change (compare the red and
green lines with ω = 1.7); all three lines correspond to the same Gribov
copy, identified by the functional value and the first non-trivial eigenvalue.
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3. The problem of Gribov copies

ω = 1.7 and one run with ω = 1 (pure relaxation) are shown. The gauge fixing has two
characteristic stages. In the first stage the precision is fluctuating strongly at a rather high
value until a maximum is located with a precision of about 10−4. Then, in the second
stage, the precision monotonically approaches zero. As shown on the right hand side,
if simulated annealing preconditioning is used, the first stage is already overcome in the
simulated annealing phase (which is not shown in the plot).
As we focus in this study on the lowest-copy gauge fixing, we don’t want to precondition

our algorithm to find an absolute maximum and therefore we cannot use simulated anneal-
ing. Since the best copy results are mostly a byproduct of the search for the lowest copy,
they are also not preconditioned with simulated annealing, if not explicitly stated other-
wise. Unfortunately, no algorithm is known that would precondition the gauge fixing to a
low eigenvalue of the Faddeev–Popov operator and we have to rely on pure over-relaxation
with a high number of gauge copies Nr.

In a first run we calculated the lowest eigenvalue λ1 on Nr = O(103) copies of the small
lattices. In Ref. [109] it was already noticed that the size of the smallest eigenvalue is cor-
related with the number of gauge fixing iterations Nit that are necessary to achieve a given
accuracy θmax, as indicated in Fig. 3.1. The reason for this behavior is that a low eigen-
value means an almost flat direction in the gauge fixing functional and an ill-conditioned
Faddeev–Popov operator, which leads to a slow convergence in the iteration process. In
Fig. 3.2 we investigate this behavior in more detail. We find a perfect correlation of λ1
and Nit which is independent of the coupling β. Additionally, the slope does only depend
very weakly on the over-relaxation parameter ω. We find the data described perfectly by
a simple power law

λ1 (Nit) = c

Nγ
it
. (3.4)

with an exponent of γ ≈ 1.1. The proportionality factor c depends strongly on ω. To rule
out that the over-relaxation parameter ω conditions the algorithm to find a gauge copy
with a certain value of λ1, we verified that in average ω has no influence on how often a
configuration with small eigenvalue is found. This is also indicated in Fig. 3.2, though in
the plot it is obfuscated by the bulk around the minimal number of iterations.
The correlation of the number of iterations and the smallness of the Faddeev–Popov

eigenvalue allows us to tweak our algorithm: since the calculation of eigenvalues is com-
putationally the most demanding part in our gauge fixing program, we implemented a
(self-adjusting) threshold. We calculate the eigenvalues only for “promising” gauge copies,
where the number of iterations exceeds a certain threshold Nmin. Since the smallest eigen-
value (which we are able to find) differs from configuration to configuration, we usually
start with a small threshold, e.g.Nmin = 0. When a smaller eigenvalue is found, the thresh-
old is increased to a multiple α < 1 of the number of iterations Nit that where needed to
find this eigenvalue (or left unchanged if αNit is smaller than the current threshold). We
find that α = 0.8 provides a suitable update strategy. In a typical run with this setting,
eigenvalues are calculated for all gauge copies up to a point where a small eigenvalue is
found and the threshold is substantially increased. Since usually the Gribov copy with the
so-far smallest eigenvalue is well separated from the one with the next-to-smallest eigen-
value in terms of Nit, this procedure eventually constrains the program to only evaluate
the eigenvalues for configurations with this smallest λ1.

Since the first Gribov region and the FMR have a common boundary, one may wonder
if the best-copy approach, which can be seen as an approximation of the configuration in
the FMR and the lowest-copy approach, as an approximation for the configuration closest
to the Gribov horizon, eventually converge to the same configuration. However, from the
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Figure 3.2.: Smallest eigenvalue λ1 as a function of the number of gauge-fixing iterations.
From each set A1, A2 and A3, we used 10 configurations and calculated 1,000
gauge-copies. The data points which correspond to fewer iterations (left)
are from runs with ω = 1.9, for the points with more iterations (right) we
used ω = 1.
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Figure 3.3.: Smallest eigenvalue vs. functional value for 1,000 copies from 4 arbitrary
configurations of the 164 lattices A1, A2, A3 (from top to bottom). The
number of distinct Gribov copies decreases with finer lattices.
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3. The problem of Gribov copies

Landau gauge data of Ref. [135] there is no such indication. Also for our Coulomb gauge
data there is no evidence that they may coincide. In Fig. 3.3 we show scatter plots for
four arbitrarily selected configurations of each of the 164 lattices (A1, A2, A3 from top to
bottom). The data points are from 1,000 different gauge copies. Often, however, the same
Gribov copy is found multiple times. The number of unique Gribov copies (we could find)
varies strongly between configurations, as can be seen in the third and fourth configuration
of the A1 lattice (top right). As expected the number of Gribov copies decreases with finer
lattice spacing.
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Figure 3.4.: Best approximation of the FMR, i.e. the best copy, and the Gribov horizon,
i.e. the lowest copy for the B1 (left) and B3 (right) lattices. Full light-colored
symbols denote 1,000 trials; the empty, dark-colored symbols denote 10,000
gauge copies. There is no configuration where the best-copy and the lowest-
copy configuration are same.

Another indication is the result of Fig. 3.4. There we compare the best approximation
of the FMR and the Gribov horizon for all 100 configurations of the 244 sets B1 and B3
after 1,000 and 10,000 gauge copies. Neither on the coarse lattice (B1) nor on the fine
lattice (B3) a configuration is found where the best copy and the lowest copy coincide.
For the coarse lattice, after 10,000 copies, the smallest eigenvalues are well separated by
one order of magnitude in a first region with the best copies and a second region with
the lowest copies. While only very few (B1) or no configurations (B3) see improvement in
the best copy from 1,000 to 10,000 copies, the lowest copy is still significantly improved.
In Ref. [138] a similar comparison was done for Landau gauge. There, the authors used
the smallest non-zero value of the ghost propagator as an estimate of the smallness of the
lowest eigenvalue. While they used a much larger ensemble of O(103), they used much
less gauge fixing repetitions Nr ≈ O(10). With their setup they found configurations that
are both closest to the FMR and the Gribov horizon. However, it is clear that their setup
(many configurations, small Nr) is biased towards finding such configurations while our
setup is biased in the opposite direction (fewer configurations, large Nr). For a detailed
study of this effect, which is not our focus, we would have to significantly increase statistics.
Finally, we try to estimate the number of Gribov copies by counting how many distinct

Gribov copies we are able to find for a given number of trials, illustrated in Fig. 3.5. For
this study, we use only the functional value to discriminate the Gribov copy, since we do
not have the smallest eigenvalue available for all copies due to the threshold strategy. Note
that for an unambiguous definition of a Gribov copy we would of have to ensure that all
gauge dependent quantities are preserved. The identification of the Gribov copy by only a
single parameter thus introduces a bias towards finding too few Gribov copies, as distinct
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Figure 3.5.: Number of distinct Gribov copies vs. the number of gauge copies for the 164

(left) and the 244 (right) lattices. Only for the finest 164 lattice a saturation
is observed. The Gribov copy is identified only by the value of the gauge
fixing functional.

copies might erroneously be identified as being the same1. An unambiguous estimate
would further require that each Gribov copy is found with equal probability, however very
likely there are local maxima which are easier to locate by the algorithm than others. This
effect will lead to an underestimation of the number of Gribov copies. Thus our estimate
has to be treated very carefully. More comprehensive studies of the number of Gribov
copies in lattice gauge theory can be found for example in Refs. [141, 142].
Since the number of Gribov copies varies a lot between different configurations, the

error bars are rather larger. Only on the smallest and finest lattice a saturation of the
number of Gribov copies is observed within 10,000 trials. The main conclusion we can
draw from Fig. 3.5 is that we are far from having investigated the whole Gribov region,
which would be essential if the (absolute) lowest-eigenvalue copy still differs substantially
from the lowest-eigenvalue copy in our limited search space.

3.4. Results
While there is no obvious reason why the lowest-copy approach should have a large effect
on the gluon propagator we expect a clear impact on the ghost propagator, given its
spectral representation

G(p) =
∑
n

φn(p)φn(−p)
λn

, (3.5)

where λn are the eigenvalues and φn(p) the momentum space eigenfunctions of the Faddeev–
Popov operator. For the Coulomb potential we expect a strong effect as well.

Gluon propagator

In Landau gauge [135] a small Gribov copy dependence was observed for the gluon propa-
gator on a large 544 lattice in the deep IR. With our lattice setup we are not able to reach
that far in the IR and do not see a significant effect on the gluon propagator in Fig. 3.6.
The static gluon propagator is calculated with the technique discussed in Section 2.6.2
and therefore the gauge has to be fixed for all time slices. The ghost propagator and the
1Actually, the authors of Ref. [138] found that there are gauge copies with same functional value but
different value for the ghost propagator at smallest non-zero momentum.
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Figure 3.6.: The gluon propagator for the B1 lattice with the best and the lowest copy
from 1,000 trials. The solid line is a fit to the Gribov formula [35]. No signal
of the Gribov copy effect is visible.

Coulomb potential are calculated only on a single time slice, which allows us to put more
computer time in a high number of repetitions. Much larger lattices would be needed to
clarify the details of the gluon propagator in IR which is not subject of this study.

Ghost propagator
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Figure 3.7.: The ghost form factor after gauge fixing to the lowest copy with increasing
number of trials from 10 to 10,000 on 244 lattices at β = 2.2 (B1, l.h.s.) and
β = 2.4 (B3, r.h.s.).

As expected from (3.5) the Gribov copy effect has a huge impact on the ghost propagator.
In Fig. 3.7 we see that for the 244 lattice, the ghost form factor is drastically enhanced in
the IR with the number of lowest-copy gauge fixing repetitions. For both lattice spacings,
the coarse and the fine lattice, the effect becomes visible only for more than 100 repetitions.
However, even for 10,000 iterations a saturation is not yet observed. While the IR exponent
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of the form factor is clearly increased from 100 to 1,000 copies, the effect is much less
pronounced between 1,000 and 10,000 copies. The huge difference in the IR is mainly
due to a sharper bending in the region between 1 and 3 GeV. The data for different β
was presented in separate plots on purpose: the ghost form factor is known to suffer from
scaling violations on isotropic lattices [108], so that the data points for different coupling
do not fall on top of each other over the whole momentum range (after multiplicative
renormalization). Moreover, since the lowest copy curves have not yet converged it is not
possible to match data points at different β, because the quality of how well the absolute
lowest-eigenvalue copy is found for given Nr most likely depends on β.
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Figure 3.8.: The ghost form factor after gauge fixing to the best copy with increasing
number of trials from 10 to 1,000 on 244 lattices at β = 2.2 (B1, l.h.s.) and
β = 2.4 (B3, r.h.s.). The data points for 10,000 copies are omitted since no
better copy is found, compare Fig. 3.4.

In Fig. 3.8 we compare the ghost form factor with best-functional gauge fixing for the
same lattices. First of all, the effect is much less pronounced compared to the lowest copy
results of Fig. 3.7. Secondly, the effect goes in the opposite direction. While for lowest
copy the IR was enhanced, with more best-copy trials the IR is slightly suppressed. The
effect on the IR behavior is small between 10 and 100 repetitions, but becomes significant
between 100 and 1,000 trials.
In Fig. 3.9 we compare the results for lowest and best copy gauge fixing at 10,000 copies,

our best values at this lattice size. We renormalized the form factor to

d(p = 3GeV) = 1. (3.6)

The best-copy data at different β fit quite well to each other, especially when considering
the scaling violations. Compared to the lowest-copy data the error bars for the best-copy
approach are much smaller.
Finally, we employ the anisotropic D1 lattice in Fig. 3.10 to estimate the infrared expo-

nent of the form factor. We use a power-law p−κ corrected by the ratio of two polynomials
as a fit function [108]. For the best-copy strategy we find κ ' 0.5 in agreement with
Refs. [108, 139, 140]. For the lowest-copy configurations we find κ ' 0.9 already for
Nr = 50 and the exponent keeps growing up to κ ' 1.6 for Nr = 5000. The quality of
the fit χ2/d.o.f. was in the range between 0.9 and 1.4. Again, a saturation with respect
to Nr could not be observed and the IR exponent of the Hamiltonian approach is clearly
overshot.
If we focus on the last data points in the infrared we might conclude that the fitting func-

tion does not account for these and therefore overestimates the IR exponent κ. Although
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these data points are affected by finite volume effects one might argue that a better fitting
function could produce the value κ ' 1 expected in the Hamiltonian approach. We did not
include such fits for two reasons. First, there is no theoretical motivation for a different
functional form than a power-law. Second, the result for the Coulomb potential, which
will be presented in the next section, rises doubt that the lowest-eigenvalue procedure, as
implemented here, is promising at all.

Coulomb potential

The most important quantity for Coulomb gauge confinement is the Coulomb potential
since it provides direct access to the Coulomb string tension. However, the estimation
of the string tensions from the momentum space Coulomb kernel (2.160) is affected by
large uncertainties, as was discussed in Section 2.6.4. A linear rising potential for large
distances corresponds to a momentum space potential which diverges like 1/p4 in the IR.
Thus, it is convenient to plot the potential such that the intersection with the vertical axis
yields the Coulomb string tension in units of the physical string tension

p4VC(p)
8πσ

p→0−−−→ σC
σ
, (3.7)

where σ is the physical string tension as calculated from Wilson loops, Section 2.5.1.
In Fig. 3.11 we show the Coulomb potential calculated from the Coulomb kernel (2.160)

for the same configurations as were used in Fig. 3.8 for the ghost propagator. On the left
hand side of the plot, the data for Nr = 10 is omitted since it contained a configuration
with a small eigenvalue leading to very big error bars. We will discuss the issue when we
come to the lowest copy results.
In earlier studies of the Coulomb potential a bump in p4VC(p) was observed at around

0.5 to 1 GeV, affecting extrapolations to the intersection with the vertical axis, see the
discussion in Section 2.6.4. As Fig. 3.11 shows, this bump vanishes when the number of
gauge copies is increased and at the same time the Monte Carlo errors decrease. This
might indicate that the fluctuations between individual configurations are suppressed and
a region free of Gribov copies has been reached. We already found such a behavior in
Ref. [143] in a slightly different context. If we are indeed close to the FMR with the best-
copy approach, we would expect that the Coulomb potential in the lowest-copy approach
is not substantially different, since according to Gribov–Zwanziger we would expect that
the path integral would be dominated by the configurations at the common boundary of
the FMR and the first Gribov region (in the thermodynamic limit).
Unfortunately, the lowest copy gauge fixing does not provide such a result. In Fig. 3.12

the data for the best-copy and the lowest-copy approach are compared for the B1 and B3
lattices. While for the ghost propagator the different gauge fixing strategies provided a
nice overlap in the UV regime, compare Fig. 3.9, the Coulomb potential, over the whole
momentum range, is increased by several orders of magnitude. The same behavior is
observed on all lattices that we investigated.
Since this result is quite surprising, we repeated the calculation with a different solver.

Usually, we use a conjugate gradient algorithm with Laplace preconditioning. To ensure
the validity of our solver we compared the results of our conjugate gradient to a publicly
available C++ implementation [144] of the MINRES algorithm [145]. Both algorithms
yield the same solution up to numerical precision.
Although the Coulomb potential from the kernel (2.160) does not provide physically

meaningful results in the lowest-copy approach, the alternative definition (2.173) works
well, as shown in Fig. 3.13, with a modest Gribov copy effect. To extract the Coulomb
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Figure 3.11.: The Coulomb potential according to (2.160) for the lattices B1 (l.h.s.) and
B3 (r.h.s.). The Nr = 10′000 data shows no difference, compare Fig. 3.4.
For the B1 lattice we omitted the Nr = 10 data which contained a small
Faddeev–Popov eigenvalue, see the discussion in the text.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0  1  2  3  4  5  6

p4 V
C

(p
)/

(8
π

σ W
)

|p| [GeV]

lc, β = 2.2

lc, β = 2.4

bc, β = 2.2

bc, β = 2.4

Figure 3.12.: The Coulomb potential calculated from the Coulomb kernel (2.160) after
10’000 copies for the lattices B1 and B3.

46



3.5. Summary

-2

 0

 2

 4

 6

 8

 10

 12

 14

 0  2  4  6  8  10  12  14  16

V
C

(r
) 

[G
eV

]

r [1/GeV]

lc, Nr = 50, σ = 0.70 GeV2

lc, Nr = 500, σ = 0.77 GeV2

bc, Nr = 5, σ = 0.66 GeV2

Figure 3.13.: Coulomb potential in position space from the
〈
U0U

†
0

〉
correlator (2.173)

(D1 lattice). The bc configurations where gauge fixed with simulated an-
nealing preconditioning.

string tension we fitted the potential to

V (r) = α

r
+ σr + const., (3.8)

where we kept the Lüscher-coefficient α = − π
12 fixed. In the fit range [6/a, 14/a] we find

a Coulomb string tension between σ = 0.66GeV2 (bc, Nr = 5) and σ = 0.77GeV2 (lc,
Nr = 500) with χ2/d.o.f. between 0.58 (lc, Nr = 500) and 0.95 (bc, Nr = 5).

3.5. Summary

In this chapter we investigated the Gribov copy effect on the Coulomb gauge propagators.
We focused on the novel idea to choose the gauge copy with the smallest eigenvalue of
the Faddeev–Popov operator which was put forward in Ref. [129]. Our main result is
that the size of the smallest eigenvalue saturates only very slowly to a smallest one when
increasing the number of gauge fixing repetitions, if it converges at all. A lower-bound
for the smallest eigenvalue, however, would be expected from an effective IR-cutoff on a
finite lattice, especially in the context of the entropic argument of the Gribov–Zwanziger
scenario. From our study we cannot claim that such a lower bound exists, though it must
be noted that we are far from having investigated the whole Gribov region, as Fig. 3.5
indicates.
The small eigenvalues have a drastic effect on the IR behavior of the propagators: the

ghost propagator is enhanced compared to the best-copy approach and comes closer to the
result of the Hamiltonian approach. However it actually overshoots the expected value of
κ = 1 for the IR exponent of the form factor from continuum calculations and convergence
of the exponent is not observed within the data accessible in this work. While the results
for the ghost propagator are therefore to some extent positive, the Coulomb potential
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3. The problem of Gribov copies

calculated from (2.160) is at odds with all expectations and does not allow a physical
meaningful interpretation, as an estimate for the Coulomb string tension would be orders
of magnitude too large. This effect is expected to become even worse if we would better
explore the Gribov region by increasing Nr.

These results allow different interpretations and demand further research for clarifica-
tion.
First, it might be that the constraint on the lowest eigenvalue is not enough to find the

physical relevant configurations which are expected to be on the common boundary of the
first Gribov region and the FMR. There, the absolute maxima of (3.1) become degenerate
and the eigenvalue density is expected to be shifted towards zero. A straightforward
extension of our study would be to choose the gauge copy where the two (or more) lowest
eigenvalues are small and (nearly) degenerate.
A second possible explanation for our result could be that the Faddeev–Popov operator,

and therefore especially the Coulomb potential from (2.160), suffers from a yet unknown
discretization effect. It might be that such an artifact becomes apparent only when the
operator is very ill-conditioned, as is the case in the lowest-copy approach. This would
make definitions based on the inversion of the Faddeev–Popov operator impractical on
the lattice. This hypothesis is supported by the fact that the definition of the Coulomb
potential from time-like links (2.173), where no inversion of the operator is needed, provides
reasonable results. Additionally, the lack of saturation in the smallest eigenvalues might
indicate spurious artifacts in the spectrum of the lattice Faddeev–Popov operator. If one
could overcome such an issue and eventually a saturation could be observed, one could still
expect to find meaningful results for the Coulomb potential (2.160) and the continuum
predictions for the ghost propagator.
Finally, such a lattice artifact could well be related to artifacts which are known to exist

in fundamental discretizations of the gauge action and affect gauge-invariant topological
observables [146–149]. It might be that these also influence the gauge-variant Coulomb
gauge propagators. The discretization might introduce spurious quasi-zero modes of the
Faddeev–Popov operator. If such an effect is at work it would require a study of the
Coulomb gauge quantities with alternative, numerically more demanding, discretizations
of the gauge action [147, 148, 150, 151].
As a by-product in the search for the lowest eigenvalue we generated configurations in

the best-functional approach with a high number of gauge copies. For the gluon and ghost
propagator we found results in line with previous results, compare Section 2.6, while
for the Coulomb potential we observed that the “bump” in the low momentum region
vanishes when increasing the number of gauge copies. This result might help to improve
the estimates for the Coulomb string tension if one wants to ignore possible lattice artifacts
as discussed previously. However for a precision measurement of σC much larger lattices
and a systematical finite-size analysis would be needed which was not the focus of this
chapter.
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4. Finite Temperature

So far we solely discussed QCD and Yang–Mills theory at low temperatures were quarks
and gluons are confined. The low temperature limit describes the hadronic world where
we are living in. However, shortly after the big bang, before the formation of hadrons,
the universe was in very hot, dense state, the quark gluon plasma. Today neutron stars
are the only natural sources which are expected to have a high enough temperature and
density that matter is in the state of a quark gluon plasma. The only way to study quarks
and gluons under such extreme conditions experimentally is in heavy ion collisions at
the high energy particle colliders: at the RHIC (relativistic heavy ion collider), which was
specifically built to study the quark gluon plasma, and the LHC, where some measurement
time is devoted to heavy ion collisions [152]. For a better understanding of these processes
in colliders and in the early universe it is therefore important to understand QCD at high
temperatures around and above the deconfinement phase transition, the point at which
the hadronic matter dissolves into the quark gluon plasma.
In this chapter we will extend the zero temperature studies of lattice Yang–Mills theory

in Coulomb gauge to finite temperature. In Section 4.1 we will see how finite tempera-
ture is introduced by using the relation between an Euclidean field theory and statistical
mechanics. Then we will shortly summarize related work in continuum Coulomb gauge in
Section 4.2. Finally, we will discuss the results of our simulations at finite temperature in
Section 4.3. The results were already published in Ref. [143].

4.1. Finite Temperature on the Lattice
In Section 2.4 we already discussed the close relationship of Euclidean field theory and
statistical mechanics. This analogy allows a straightforward implementation of finite tem-
perature in lattice field theory.
For simplicity we will limit the discussion to a scalar field theory. The central object for

a statistical ensemble is its partition function Z from which the thermodynamical variables
can be derived. It is given by the trace of the density matrix D , which for a canonical
ensemble is a function of the inverse temperature βT = 1

kBT
1 and the Hamiltonian of the

system

Z = trD = tr
[
e−βTH

]
=
∑
a

∫
dφa

〈
φa
∣∣∣e−βTH ∣∣∣φa〉 , (4.1)

where the trace goes over a complete set of (infinitely many) states, as indicated in the
second line. For the right hand side of (4.1) we will now find the path integral represen-
tation. There the transition from a state φ1 at t = 0 to a state φ2 at t = T is given by,
see e.g. [32, 153], 〈

φ1
∣∣∣e−iHT

∣∣∣φ2
〉

=
∫
Dφ eiS , (4.2)

1In the literature, the inverse temperature is usually denoted as just β. Here we will use βT for the inverse
temperature to avoid confusion with the inverse coupling. In the following we will set kB = 1.
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4. Finite Temperature

with the action
S =

∫ T

0
dt
∫

d3x L (4.3)

and L being the Lagrangian density2. The path integral in (4.2) has to be taken such that
the states at t = 0 and t = T are held fixed to their values φ1 and φ2 respectively. After
a Wick rotation to imaginary time t→ −iτ and by introducing T = −iβT we get〈

φ1
∣∣∣e−βTH ∣∣∣φ2

〉
=
∫
Dφ e−SE =

∫
Dφ e−

∫ βT
0

∫
d3x LE , (4.4)

where we introduced the Euclidean action SE and the Euclidean Lagrangian density LE .
If we compare we (4.1) and (4.4) we see that we can express the partition function by the
path integral

Z = tr
[
e−βTH

]
=
∫
Dφ e−SE , (4.5)

where the path integration is now over all states with the periodic boundary conditions3

φ(βT ,x) = φ(0,x). (4.6)

Thus we can describe a quantum field theory at finite temperature by compactifying the
temporal direction in the Euclidean theory.
In the lattice setup we already encountered a similar situation. There the lattice is finite

in all directions and the fields are introduced with periodic boundary conditions. In that
sense any lattice calculation is by construction always a simulation at finite temperature.
When we where interested in zero temperature we extracted continuum physics by taking
the limit of an infinite space-time, i.e. by increasing the physical volume until the quantities
of interest are no longer sensitive to the finite extent of the lattice in space and time. Now,
for the calculations at non-zero temperature we want to keep the time extent atNt finite
to identify its inverse with temperature

T = 1
βT

= 1
atNt

. (4.7)

Thus, for the continuum limit we have to take at, as → 0 with the spatial volume ap-
proaching infinity asNs →∞ but with a fixed physical extent in time atNt = const.

Summing up, for finite-temperature studies on the lattice we can use exactly the same
setup as in the zero temperature case. The only difference is that we have to adjust the
lattice spacing at and the size of the lattice Nt in time direction to the temperature of
interest. While we can adjust the temperature via Nt only in discrete steps, with the help
of the anisotropic action (2.89) we can adjust the temperature continuously while still
keeping the physical spatial volume fixed.

4.2. Finite Temperature in Coulomb Gauge
In the continuum, finite-temperature Yang–Mills theory in Coulomb gauge was studied
with two complementary methods within the framework of the Hamiltonian approach.
In the first method the grand canonical ensemble was investigated [20]. However, the
full Hamiltonian density matrix of the grand canonical ensemble cannot be handled an-
alytically and is therefore approximated by a single-particle operator [155]. In Ref. [20]
2By taking the limit T → ∞ one would obtain the vacuum amplitude, i.e. the analogous expression
to (2.11).

3For fermionic fields one needs to impose antiperiodic boundary conditions, see e.g.[154, Chapter 2.5].
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the finite temperature equations are solved numerically with the same techniques which
were developed for zero temperature, see the references in Section 2.3 and Section 2.6.6.
As opposed to Ref. [155] where the finite-temperature propagators were studied for the
subcritical solution, the authors of Ref. [20] implement the horizon condition (2.157) for
all temperatures. There, the solutions κgh ≈ 0.8 and κgh = 1 merge to a single solution
κgh = 0.5 above the deconfinement temperature TC . At the same time the gluon propa-
gator becomes finite, κgl = 0. Thus, the sum rule (2.178) is fulfilled at any temperature.
The transition temperature is found to be close to the one obtained in lattice calculations.
In the second approach finite temperature is introduced by compactifying a spatial

dimension instead of the temporal one. This reinterpretation of a spatial direction as
the time direction is justified because of the Euclidean invariance of the action. In the
Hamiltonian approach where Weyl gauge A0 = 0 is implied on the gauge field, this change
is necessary if one wants to study for example the Polyakov loop as the order parameter
of confinement. With Weyl gauge applied to the compactified direction, the temperature
information would be lost as the Polyakov loop4

P = 1
Nc

trP e−
∫ βT

0 dt A0(t,x) A0=0= 1, (4.8)

becomes trivial, independent of temperature. The advantage of this approach compared
to the previous one is that one does not need an approximation of the density matrix. In
Ref. [156] the effective potential of the Polyakov loop is derived. There the authors find
the critical temperature of the deconfinement phase transition to be in good agreement
with the grand canonical ensemble calculations [155]. In Ref. [157] the finite-temperature
propagators are calculated, though a direct comparison with lattice results is not straight-
forward.
On the lattice, so far, only a few studies of Coulomb gauge propagators are available.

In Ref. [115] the SU(2) Coulomb potential was found to be linearly rising even above TC ,
though it was only calculated at a fixed temperature. The Coulomb string tension was
also calculated for SU(3) in the temperature range T = 1.5Tc . . . 5.0Tc [117]. In this range
the Coulomb string tension increases linearly with temperature. A direct comparison
of the zero temperature with the finite temperature value was not provided, though by
comparing their numbers we find that between T = 0 and T = 1.5Tc the string tension
does not change a lot.
In Ref. [109] these findings are interpreted in the following way. In the Gribov–Zwanziger

confinement scenario the near-horizon configurations lead to a diverging ghost propagator
and a linear rising Coulomb potential. In Landau and Coulomb gauge we find these near
horizon configurations by gauge fixing to the fundamental modular region. Since Coulomb
gauge on the lattice is implemented in each timeslice separately the gauge condition locates
the three dimensional gauge fields which lie close to the Gribov horizon of a three dimen-
sional theory. The authors of Ref. [109] conclude that this statement is not influenced by
introducing temperature via compactification of the time dimension, i.e. the dimension
which is not included in the gauge fixing prescription. Therefore the Gribov–Zwanziger
confinement scenario might fail to give an explanation for the deconfined phase.

4.3. Results
In the following we present our results for the lattice Coulomb gauge propagators at finite
temperature for pure Yang–Mills theory to fill the gap in the literature. We use the SU(2)
4P denotes path-ordering.
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anisotropic Wilson gauge action (2.89) with a renormalized anisotropy ξ = as/at = 4. This
setup allows us to reach higher temperatures (up to 6Tc) while still having a reasonable
number of lattice points in time direction. In addition, as discussed in Section 2.6, a higher
anisotropy reduces the scaling violations which were observed on isotropic lattices.
We found in Chapter 3 that Gribov copies are problematic, especially for the ghost

propagator and the Coulomb potential, and discussed two ways to solve it. In this chapter
we will use the standard way to resolve the ambiguity: we will try to locate the FMR
by searching the global maximum of the gauge fixing functional with the help of the
simulated annealing algorithm (7.2.2) and five restarts of the gauge fixing procedure. For
the calculation of the gluon propagator we will fix the residual gauge freedom with the
integrated Polyakov gauge, see Appendix B.1. The ghost propagator and the Coulomb
potential are not influenced by residual gauge fixing.

T/Tc Size ξ0 β as [GeV−1] Ls [fm]
0 128× 323 3.20 2.25 1.11 7.0

3.33 2.40 0.74 4.7
3.40 2.49 0.56 3.5
3.46 2.59 0.37 2.3
3.49 2.64 0.28 1.8

1.5 8× 323 3.20 2.25 * *
12× 323 3.33 2.40 * *
16× 323 3.40 2.49 * *
24× 323 3.46 2.59 * *
32× 323 3.49 2.64 * *

3.0 4× 323 3.20 2.25 * *
6× 323 3.33 2.40 * *
8× 323 3.40 2.49 * *
16× 323 3.49 2.64 * *

4.0 6× 323 3.40 2.49 * *
9× 323 3.46 2.59 * *
12× 323 3.49 2.64 * *

6.0 4× 323 3.40 2.49 * *
6× 323 3.46 2.59 * *
8× 323 3.49 2.64 * *

Table 4.1.: Lattice setup with anisotropy ξ = 4 and spatial volume 323. The lattice
spacing marked by “*” for the finite temperature setup is equal to the zero
temperature lattice spacing at the corresponding coupling (ξ0, β).

The phase transition temperature for pure SU(2) Yang–Mills theory was found in
Ref. [158] to be Tc/

√
σ = 0.69. For the physical value of the string tension we use√

σ = 440 MeV. With these values we set the phase transition temperature Tc = 300 MeV.
With an interpolation formula from the data of Ref. [108] we determine the lattice spacing
at coupling (ξ0, β) as given in Table 4.1. We verified that the definition for the critical
temperature is consistent with our lattice setup from the expectation value of Polyakov
loops. As an example we show the Polyakov loop expectation value over temperature in
Fig. 4.1 for a fixed coupling ξ0 = 3.40, β = 2.49 by varying the lattice extent in time di-
rection Nt = 4 . . . 128. For small temperatures the expectation value is zero, then starting
to rise at Tc which corresponds to Nt ≈ 24. For high temperatures the Polyakov loop will
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Figure 4.1.: Expectation value of the Polyakov loop
〈
P
〉
and susceptibility

〈
P 2〉− 〈P 〉2

for fixed ξ0 = 3.40, β = 2.49 and varying Nt = 4 . . . 128.

approach unity. We also plotted the quantity
〈
P 2〉−〈P 〉2 (in arbitrary units) which peaks

at the phase transition, see [31, Chapter 12]. Another indication of the phase transition
is that the integrated autocorrelation time diverges as expected for an order parameter.
This effect is reflected in larger errors around the transition.

4.3.1. The Gluon Propagator

To calculate the static gluon propagator we will use the technique described in Sec-
tion 2.6.2. This technique was developed for an isotropic lattice setup in [44]. A factor-
ization of the propagator in an energy-independent part and a function of the ratio |p| /p0
was used to eliminate the energy dependence of the full propagator. For our anisotropic
setup we find that the factorization is still valid, though small deviations become apparent
in the fit of g(|p| /p0). Nevertheless, we think the technique can be justified. At any rate,
as we will see, the choice of technique does not spoil the conclusion of this chapter.

In the following, we plot the propagator divided by the momentum to highlight on
the infrared properties of the propagator: a finite value at |p| → 0 indicates a vanishing
propagator. In Ref. [44] a very good agreement of their results with Gribov’s formula

D(|p|)
|p|

= 1√
|p|4 +M4

(4.9)

was found. In that case the p = 0 value will yield the (squared inverse) Gribov mass
lim|p|→0D(|p|)/ |p| = 1/M2.
For the gluon propagator calculated on the anisotropic lattice we find that the simple

form (4.9) does not provide a reasonable fit. We get a good fit for the zero temperature
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propagator by modifying Gribov’s formula with two additional parameters α, γ

D(|p|)
|p|

= Z√
|p|4 + γM2/ |p|2 + αM3 |p|+M4

. (4.10)

The parameter Z is the renormalization constant. We renormalize the bare propagator by
a fit to (4.10) and choose Z = 1 for the renormalized propagator. This choice corresponds
to a renormalization point in the far ultraviolet regime

Dµ(|p|)|µ→∞ = 1
µ
. (4.11)

In order to reduce spurious effects of the fitting procedure, i.e. different renormalization
parameters for the same coupling at different temperatures, we apply a combined fit of
the bare data of all lattices. For each temperature we have the three parameters αT , γT
and MT . Additionally, we have the renormalization parameters Z(β,γ0) which we chose to
be independent of the temperature.
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Figure 4.2.: The gluon propagator at zero and finite temperature up to 6Tc.

In Fig. 4.2 we show our result. On the l.h.s. the propagator is shown in the deep infrared
for temperatures up to 3Tc. At higher temperatures we are restricted to lattices with a
smaller physical volume which limits the available momentum range in the IR. Therefore,
on the r.h.s. of Fig. 4.2, we decided to show only data where the momentum range is
available for all temperatures up to 6Tc. In both plots we find that the propagator does
not change clearly when increasing the temperature from zero to 1.5Tc. Only around the
peak we see a small increase from zero to 1.5Tc, though the data is a bit noisy in that
region. Additionally the data points are from the lattice at the strongest coupling where
discretization effects might set in. Therefore we expect that this difference will vanish
at weaker coupling and/or with higher statistics. More computer time for larger lattices
and a larger Monte Carlo ensemble would be needed for a precise measurement. Another
indication that the increase from zero to 1.5Tc is not a physical effect is that the propagator
at higher temperatures tends in the opposite direction. With increasing temperature the
gluon propagator is further suppressed in the IR. This result is surprising as it would
indicate that gluons might be even more confined at higher temperatures.

4.3.2. The Ghost Propagator
For the ghost propagator we need the anisotropic setup to soften the scaling violations.
Since for ξ = 4 the scaling violations are not completely resolved we show the ghost
dressing function only at a fixed coupling (β, ξ0). We chose the lattices at the largest

54



4.3. Results

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7

d
(|p
|)

|p| [GeV]

192× 483, T = 0
128× 323, T = 0

16× 323, T = 1.5Tc
8× 323, T = 3.0Tc
6× 323, T = 4.0Tc
4× 323, T = 6.0Tc

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2 4 6 8 10 12 14

d
(|p
|)

|p| [GeV]

T = 1.5TC
T = 3.0TC

Figure 4.3.: The ghost form factor at fixed coupling ξ0 = 3.40, β = 2.49. On the r.h.s. a
IR and UV fit is shown with the asymptotic behavior of (2.174) and (2.175).

physical volume which is available at all temperatures. Similar to the gluon propagator,
the ghost dressing function does not show a signal of deconfinement close to the transition
temperature in Fig. 4.3. We verified that we obtain an IR exponent (2.174) of κgh ≈ 0.5 as
in [108] by a fit to the low momentum regime. Again deviations from the zero temperature
propagator are only observed at temperatures above 1.5Tc. The deviations affect mostly
the slope in the mid-momentum range which is indicated by a fit to the IR in the r.h.s. of
Fig. 4.3. We find κgh = 0.47 at 1.5Tc and still κgh = 0.46 at 3Tc. Only at 6Tc the IR slope
tends to a smaller IR exponent, though we cannot rule out that this is a lattice artifact
of the small number of lattice points in the compactified dimension.
For the anomalous dimension in the UV (2.175) we find γ = 0.63 with m = 0.22 GeV at

1.5Tc. We also tried the constraint fit with the anomalous dimension of the Hamiltonian
approach γ = 0.5 [17] and found the same quality of the fit with m = 0.44 GeV. At 3Tc we
find γ = 0.42 with m = 0.83 GeV. The constrained fit did not work well at 3Tc, indicated
by a doubling in χ2/d.o.f.

4.3.3. The Coulomb Potential

In Fig. 4.4 we show the Coulomb potential (2.160) at three temperatures for two physical
volumes. With the results of the gluon and ghost propagator in mind the outcome is not
surprising: the potential at zero temperature and 1.5Tc is indistinguishable. However sev-
eral effects, which we will discuss in the following, inhibit to give more precise statements.

In Chapter 3 we saw that the Coulomb potential from the Coulomb kernel is strongly
affected by which Gribov copy is chosen. Especially configurations with a very small
eigenvalue, i.e. close to the Gribov horizon, give a large contribution in the Monte Carlo
average. Such Gribov copies can appear in the best copy gauge fixing scheme and are
indicated by a slow convergence in the inversion of the operator. This effect is seen in the
data at 3Tc, where the Monte Carlo errors are much larger for one data set. On the l.h.s. of
Fig. 4.5 we show the raw data for the problematic ensemble at 3Tc. A single configuration,
plotted in red, is significantly enhanced over the (green) bulk of the other configurations.
The average from Fig. 4.4 is shown in blue. On the r.h.s. we show the same data as in
Fig. 4.4 but the singular configuration is removed from the Monte Carlo ensemble.
Secondly, the potential, even at ξ = 4, shows still severe scaling problems. The Coulomb

potential is a renormalization group invariant and therefore should not depend on the
coupling constant. In the IR the data matches quite well (at the same temperature),
however towards larger |p| the data for different couplings drift apart. This indicates that
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Figure 4.4.: The Coulomb potential up to 3Tc.

we are outside of the scaling window for the Coulomb potential.
Finally, fitting a string tension from the limited data points in the IR, in the presence

of the scaling and Gribov problem, seems unsatisfactory, though these problems are also
present in earlier studies [108, 116]. With an optimistic estimate we may conclude that
the Coulomb potential in Fig. 4.4 indicates an increase in the Coulomb string tension.
In Fig. 4.6 we show the Coulomb potential obtained from the definition (2.173) at

fixed coupling in position space. The lines show a nice linear behavior at large distances.
As before the difference between T = 0 and 1.5Tc is merely visible. When we further
increase the temperature the large distance slope, i.e. the Coulomb string tension, increases
as already found in Ref. [117]. We fitted the data again with (3.8) in the range r =
4 . . . 7.5 GeV−1 with α = −π/12. The string tension is given in Table 4.2. A linear
behavior of the Coulomb string tension σC(T ) with temperature, above 1.5Tc, as reported
in Ref. [117] is possible, though we would need a better sampling to give a quantitative
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Figure 4.5.: Raw data for the Coulomb potential (l.h.s.): the singular configuration
shown in red, the other configurations in green, the Monte Carlo average
of Fig. 4.4 in blue. On the r.h.s. the singular configuration is removed com-
pared to Fig. 4.4.
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T/Tc 0 1.5 3.0 4.0 6.0
σC [GeV2] 0.81(1) 0.80(1) 1.36(2) 2.11(2) 2.97(1)

Table 4.2.: Coulomb string tension σC obtained from a fit to the data shown in Fig. 4.6.
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statement.

4.4. Summary
In this chapter we investigated the effect of finite temperature on the gluon and ghost
propagator as well as the Coulomb potential. Whereas in continuum studies a clear signal
of deconfinement shows up, the lattice results do not show such a signal. We compared the
zero temperature results with the propagators at finite temperature up to 6TC . Between
T = 0 and 1.5TC we found no significant change in the propagators. Only at higher
temperatures the propagators differ compared to zero temperature. A possible explanation
would be that the propagators under study, which are all based on links of only one
timeslice do not sense the finiteness of the temporal lattice dimension. As we will see in
Chapter 5, the Coulomb gauge propagators indeed do not couple to the physical string
tension which triggers the deconfinement phase transition, but are related to the spatial
string tension σs which is known to persist and even rise above TC [159, 160]. For future
studies it would be interesting to adopt the idea of a compactified spatial dimension to
lattice field theory, which was developed for the Hamiltonian approach as mentioned in
Section 4.2. The idea is to incorporate the compactification in a spatial direction which
enters the gauge fixing procedure and the definition of the propagators. Even though
the technical implementation of this approach is straightforward, a reliable study would
require a comprehensive investigation of discretization effects which are introduced by
such an asymmetric lattice.
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5. Center Vortices and the Coulomb String
Tension

In Chapter 2.6 we discussed that the calculation of static Coulomb gauge propagators
is not straight forward due to the problem of how to reach the Hamiltonian limit on a
finite space-time lattice. Highly anisotropic lattices are needed at zero temperature. Due
to the limited temporal extend of the finite temperature lattice this problem becomes
even more pronounced. At finite temperature we found, in Chapter 4, that none of the
investigated Coulomb gauge quantities are sensitive to the deconfinement phase transition.
In Section 5.2, we will argue that this is a result of the Coulomb gauge propagators coupling
to the spatial string tension and not to the physical temporal string tension which triggers
deconfinement. For our reasoning we make use of the center vortex picture of confinement
which was already mentioned in Section 2.5.4 and will be summarized in Section 5.1. The
results of this chapter are published in Ref. [140].

5.1. Introduction to the Center Vortex Picture of Confinement
To introduce the center vortex picture of confinement we will first consider a Z2 gauge
theory [161], i.e. a gauge theory where the links take only values Z(x) = ±1. The pla-
quettes Pµν(x) in (2.83) are just products of these ±1 links and thus Pµν(x) = 1 for an
even number of nontrivial (negative) links and Pµν(x) = −1 for an odd number. These
negative plaquettes form closed loops (in 3 dimensions) on the dual lattice, i.e. they pierce
the midpoint of the plaquette perpendicular to the plane of the plaquette. These loops
are called center vortices as they carry flux of a non-trivial center element. Analogous, in
4 dimensions the center vortices form closed surfaces.

Random Vortex Model In the following we will discuss the so-called random vortex
model (RVM), a simple model [162, 163] in which one can relate percolating Z2-vortices to
an area law of the Wilson loop and thus to confinement. We will follow the pedagogical
introduction of Ref. [164]. Consider a Wilson loop with contour C surrounding an area A.
The value of the Wilson loop is given by the product of links U(l) along C

W [C] =
∏

U(l)∈C
U(l). (5.1)

With the help of Stokes’ law we can divide the loop C in a product of smaller loops. If we
choose to divide our Wilson loop into a product of plaquettes, the smallest possible loops,
we find

W [C] =
∏

P (k)∈A
P (k) = (−1)n, (5.2)

where n is the number of vortices piercing the surface A of the loop for a particular Z2
lattice configuration. The expectation value of the Wilson loop (5.2) is calculated by

〈W [C]〉 =
∞∑
n=0

(−1)np(n), (5.3)
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given the probability p(n) that n vortices pierce the surface A. We will now calculate this
expectation value in the random vortex model where the percolation of vortices is modeled
by describing them as uncorrelated objects. For simplicity we will assume that the Wilson
loop C is embedded in a plane spanned by two axes of the lattice, which we choose to be
the x − y-plane with volume L2. If the location of a vortex piercing the x − y-plane is
completely random, then the probability that this vortex also pierces the surface of the
Wilson loop is given by p = A

L2 , i.e. by the fraction of the area of the Wilson loop over the
total area. The probability of finding n vortices in A if there are N vortices piercing the
x− y plane it then given by the binomial distribution

PRVM
N (n ≤ N) =

(
N

n

)
pn(1− p)N−n. (5.4)

Using this expression for the probability in the expectation value (5.3) yields

〈
WRVM

〉
=

N∑
n=0

(−1)nPRVM
N (n) = (1− 2p)N . (5.5)

Introducing the vortex density ρ = N
L2 in the x − y-plane, one takes the infinite volume

limit, L→∞, N →∞ with ρ = const. and finds
〈
WRVM

〉
= lim

N→∞

(
1− 2ρA

N

)N
= e−2ρA. (5.6)

Thus, in the random vortex model we find an area law fall-off of the Wilson loop with
the string tension σRVM = 2ρ. The value in this simple model somewhat overestimates
the measured value of σ ≈ 1.4ρ for the SU(2) theory which will be discussed in the next
paragraph [165]. This result might indicating that the center vortices in the SU(2) theory
are not completely random.
The important assumption in this model which led to the confining behavior was that

the vortices percolate over the whole lattice and therefore pierces the plane randomly. In
a similar model one can also understand the deconfined phase in the center vortex picture.
This model was developed in Ref. [163]. Instead of assuming vortices which percolate
over the lattice, the authors assume that the vortices are of finite length. Then, Wilson
loops which are large compared to the vortex size are pierced twice by the same vortex.
With the assumption that Wilson loops are always pierced twice in a given distance they
find that the Wilson loop develops a perimeter law which signals the deconfined phase.
Thus the deconfinement phase transition can be regarded as a transition from a phase
with percolating center vortices to a phase where they cease to percolate and become
short-range. For details we refer to Refs. [163, 164].

Center Vortices in SU(N) Gauge Theory In the Z2 theory, which we discussed so far,
the appearance of center vortices as clusters of “-1” plaquettes is straightforward. The
important question is how the center vortex picture can be found in the physical relevant
SU(N) theories. The basic assumption to extend the center vortex picture to SU(N)
theories is that any SU(N) configurations can be decomposed into center vortices and
a non-confining part. Then the randomly fluctuating center vortices will contribute to
an area law for the Wilson loop in the way described above, while the non-confining
background will only contribute to a perimeter law [114].
While the thickness of a center vortex in the discrete Z2 theory is only one lattice spacing

by definition, the vortices in the SU(N) theory, built from continuous links, can smear out
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over several lattice sites. Therefore the Z2 vortices are called thin vortices as opposed to
the thick vortices of the SU(N) gauge theory. How the thick vortices can be located and
separated from the background will be discussed in the next paragraph.

Direct Maximal Center Gauge The general idea to locate center vortices is to concen-
trate the smeared out thick vortices as much as possible. In this work we will use the direct
maximal center gauge for this purpose [166] in which the links are transformed as close as
possible to center elements. In SU(2) this is achieved by maximizing the functional

F [U ] =
∑
x,µ

[trUµ(x)]2 . (5.7)

Subsequently we extract thin center vortices by a center projection: we project the links
in the maximal center gauge to their closest center elements

Zµ(x) = sign tr [Uµ(x)]1. (5.8)

The projected center vortices are often called P-vortices in the literature. The assumption
in this approach is that P-vortices properly locate the actual thick center vortices of the
SU(2) theory, though there is no direct proof. In Section 5.1.1 we will summarize the main
findings that indicate that the assumption is valid.
The idea behind center projection is that a link can be decomposed in

Uµ(x) = Zµ(x)Vµ(x), (5.9)

where the Zµ(x) links carry the whole information about the center vortices and Vµ(x) is
the non-confining background. This decomposition describes how we can get a vortex-free
configuration by eliminating the center vortices as described in Ref. [167]

Vµ(x) = Zµ(x)Uµ(x). (5.10)

This procedure is called vortex removal.

5.1.1. Review of Results of the Center Vortex Picture
In the preceding section we gave a short summary of the center vortex picture for con-
finement and how center vortices can be found on the lattice by center gauge fixing and
center projection. The important assumption for the validity of the center vortex picture
is that the P-vortices locate the thick center vortices and carry all the information about
confinement. In the following we will summarize the main arguments that support this
conjecture. For a deeper overview we refer to Ref. [114, Chapter 6].

P-vortices reproduce the string tension, vortex-free configurations lose the area law
The most striking observation in favor of the center vortex picture is that the string tension
measured from Wilson loops on the projected configurations reproduce the full string
tension of the unprojected configuration in the SU(2) gauge theory. This was verified in
many studies, see e.g. Ref. [168] and Section 5.3. We explained that the string tension
is measured from large Wilson loops, Section 2.5.1. In center projected configurations
the asymptotic string tension is already reached for small loops [168]. The interpretation
is that in the full configurations one measures only parts of the thick vortex (for small
loops) whereas in the center projected configurations one measures always a complete thin
vortex [114].
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5. Center Vortices and the Coulomb String Tension

Unfortunately, the center vortex picture in the SU(3) theory is not that clear. The
string tension measured from center projected configurations is only about 60% of the
unprojected value [169], indicating the the procedure of center gauge fixing and center
projection fails to find all vortices.
Besides the direct measurement of the center projected string tension there are other

signals that confinement is due to center vortices: if only Wilson loops in the unprojected
configurations Uµ(x) are measured which are not pierced by P-vortices or pierced by an
even number of P-vortices, the string tension vanishes [166].

Additionally, if vortices are removed by (5.10) the string tension again vanishes both in
SU(2) [167] and SU(3) [169].

The density of vortices scales If center vortices are physical objects and the P-vortices
locate the center vortices, the P-vortex density should be a physical quantity, i.e. renor-
malization group invariant. That means that the vortex density in physical units, i.e. the
number of vortices Nv which pierce a plane L = a2N2,

ρ = Nv

a2N2 (5.11)

should be invariant under a change of the coupling. Indeed the vortex density scales
properly in SU(2) [166, 170] and SU(3) [169].

P-vortices locate thick center vortices In Ref. [166] the authors measured Wilson loops
in the unprojected configurations whose area is pierced by a fixed number of P-vortices.
They find that large Wilson loops obey

Wn/W0 = (−1)n, (5.12)

whereWn is the expectation value of Wilson loops which are pierced exactly n times. This
behavior is expected since each vortex will contribute with a factor of “-1” to the Wilson
loop and the (short range) non-confining background W0 will average out for large loops.
Again this was found also for SU(3) [169].
Since these studies imply that P-vortices locate the thick center vortices we will not

make this distinction any more and will just speak about center vortices in the following.

Problems and open questions While there are a lot of reasons to believe in the center
vortex picture as a description for confinement, we should also summarize the shortcom-
ings of center gauge fixing and center projection. We already mentioned that the string
tension is not fully reproduced after center projection in SU(3), which might be due to a
cancellation of the two types of vortices associated with the two non-trivial center elements.
Additionally, and this is not limited to SU(3), center gauge fixing has a Gribov prob-

lem: if the maximal center gauge fixing algorithm is improved to better locate the global
maximum of (5.7), the string tension of the center projected ensemble is lowered. This
was shown by using simulated annealing in addition to the usual overrelaxation technique1
[171]. Another point is that if one uses Landau gauge as a precondition before center gauge
fixing [172] one finds again a higher global maximum of the gauge fixing functional (5.7)
but the resulting string tension is compatible with zero. Of course, Landau gauge can be
seen as the opposite of maximal center gauge as it smears out the vortices as much as
possible, however it rises doubts on the procedure if maximal center gauge cannot locate
the vortices which are expected to be a gauge invariant feature. For further discussion see
also Ref. [173].
1See Section 7.2.2 for an introduction to simulated annealing in the context of Coulomb gauge fixing.
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Relation to the confinement scenario of Gribov and Zwanziger In Section 2.5 we
discussed different methods to describe the origin of the confining force. Of course an
interesting question is whether these mechanisms are related and are compatible with each
other. The relation between the center vortex picture and confinement in Coulomb gauge
was first studied in Ref. [113]. It was found that the Coulomb potential (2.173) becomes
flat at large distances when vortices are removed. This demonstrates that confinement in
the center vortex picture and the idea of Gribov and Zwanziger are indeed compatible.
Additionally, in Ref. [115] the authors showed that center projected configurations (5.8)
which are subsequently transformed to Coulomb gauge are not only close to the Gribov
horizon, which would be the statement of Gribov–Zwanziger confinement, but lie exactly
on the Gribov horizon. These configurations lie at points where the Gribov horizon touches
the boundary of the FMR. In Ref. [109] the same authors investigated the connection
between center vortices and the density of near-zero eigenvalues of the Faddeev–Popov
operator in more detail. They found that the enhancement of the eigenvalue density near
zero can be attributed to the presence of center vortices, since this enhancement is not
observed in the vortex-free configurations. In Ref. [174] the Landau gauge gluon and ghost
propagators in three space-time dimension were studied upon center vortex removal and
compared to Coulomb gauge in four dimensions. After center vortex removal the ghost
form factor becomes infrared finite signaling that confinement is lost.

5.2. Coulomb versus Physical String Tension

In Chapter 4 we found that finite-temperature propagators in Coulomb gauge are not
sensitive to deconfinement. These propagators are built of spatial links only and are
restricted to a fixed timeslice. We argue that because of this limitation the Coulomb
gauge propagators only sense space-space correlations and therefore they do not detect
the deconfinement phase transition. Because of the unbroken O(4) symmetry at zero
temperature the distinction of space-space and space-time correlations is irrelevant and
therefore lattice investigations of zero temperatures are fully valid. It is well-known that
the spatial string tension, i.e. the string tension calculated from spatial Wilson loops,
persists above Tc and even increases for higher temperatures as shown in the Creutz ratio
plots of Fig. 5.1. We will explain this figure in more detail in Section 5.3. A qualitatively
similar increase was also found for the Coulomb string tension in Chapter 4, see Fig. 4.6.
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Figure 5.1.: Creutz ratios of spatial Wilson loops (a) ξ = 4 anisotropic lattice at β =
2.49, data points for r > 7 are omitted due to a poor signal-to-noise ratio,
(b) isotropic lattice at β = 2.6.
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This observation leads us to the assumption that the Coulomb string tension σC is
strongly correlated with the spatial Wilson string. Therefore the relationship between the
Gribov-Zwanziger scenario and Wilson confinement is not realized on the lattice at finite
temperature.
Before we go into detail we will summarize the reasoning behind our idea for testing

this assumption. Since we want to study the effect of the spatial and temporal string
tension separately, we need a technique to change one without changing the other. For
this purpose, we use the technique of vortex removal. We will either remove all center
vortices, we call this procedure full vortex removal, or only vortices piercing space-space
Wilson loops, the spatial vortex removal, as will be explained in the next section.
By full vortex removal, we disable confinement as discussed in the previous section.

Thus Coulomb gauge observables are expected to show a non-confining behavior. This
was already found in the references mentioned in the preceding section. On the other
hand, by spatial vortex removal, the quark-antiquark potential should not be affected.
Especially, the Polyakov loop potential, which is built of time-like links U0(x) only, is
not changed by spatial vortex removal, since the time-like links are not touched at all.
Therefore the Wilson string tension calculated from Polyakov loops is unaffected by spatial
vortex removal and Wilson confinement is still realized. That means, if the Coulomb gauge
propagators lose their confining behavior it cannot be because of physical deconfinement,
but can be only due to their coupling to the spatial string tension.

5.2.1. Center Vortex Removal
In this work we identify thick center vortices in the Monte-Carlo ensemble by fixing the
configurations to the direct maximal center gauge, as already explained, by maximizing
the functional (5.7). The difference to earlier studies is that in addition to ordinary (full)
maximal center gauge where µ = 0, 1, 2, 3, we also do spatial center gauge fixing where
µ = 1, 2, 3 for locating vortices piercing space-like Wilson loops only.

The gauge fixing is done with an iterated overrelaxation algorithm as explained in more
detail in Appendix C. The gauge fixing iteration is stopped when the change in functional
(5.7) is less then a given precision ε within 100 steps. Center gauge fixing is performed in
double precision with ε = 10−12 for configurations on which we calculate Coulomb gauge
quantities. Computation of the spatial and temporal Wilson string tension via Creutz
ratios need a much bigger Monte-Carlo ensemble to guarantee an acceptable signal-to-
noise ratio. There, we use single precision configurations and stop center gauge fixing at
ε = 10−7.
Center projection is done either on all links or only on spatial links

Zs/fµ (x) = sign tr [Uµ(x)]1 ∈ {±1} . (5.13)

The indices f and s label the configurations after full (µ = 0, 1, 2, 3) or spatial (µ = 1, 2, 3)
center projection. Note that in the latter case, the temporal links U0(x) are not changed
and therefore remain elements of the SU(N) gauge group. After full center projection all
links are elements of the center, i.e. ±1 for SU(2).
Accordingly, full or spatial center vortex free configurations are obtained by the d’Elia-

Forcrand technique [167]

V s/f
µ (x) = Zs/fµ (x) · Uµ(x). (5.14)

Thus we obtain the five ensembles: the original (unprojected) SU(2) ensemble U , the
spatial (sCP) and full (CP) center projected ensembles Zs, Zf and the spatial (sVR) and
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full (VR) vortex free configurations V s, V f . In a subsequent step these ensembles are then
transformed to Coulomb gauge by the usual procedure, i.e. a combination of simulated
annealing and overrelaxation, see Chapter 3 and Chapter 7. Note that after Coulomb
gauge fixing the links Zs/fµ (x) are not anymore elements of the center.

5.3. Results
Our lattice setup for this chapter is summarized in Table 5.1. We chose a coarse and a fine
isotropic lattice at T = 0 and two lattices at non-zero temperature for the coarser setup.
Additionally we used three temperature values on anisotropic lattices from Chapter 4 to
calculate the spatial string tension in Fig. 5.1.

Size ξ β a−1
s [GeV] T/Tc

324 1 2.15 1.20 0
324 1 2.60 0.30 0

10× 323 1 2.60 0.30 1.1
6× 323 1 2.60 0.30 1.8

128× 323 4 2.49 0.56 0
16× 323 4 2.49 0.56 1.5
8× 323 4 2.49 0.56 3.0

Table 5.1.: Simulation parameters used in this chapter.

5.3.1. The String Tension
In a first step we will compare the spatial Wilson string tension to the finite temperature
behavior of Coulomb gauge propagators. We calculate the string tension from Creutz
ratios as defined in Section 2.5.1. For large loops the Creutz ratios will approach the
asymptotic string tension. The spatial string tension σs is calculated from pure spatial
Wilson loops, i.e. loops of type W (R1, R2) with R1, R2 along spatial dimensions. For the
temporal string tension the time direction is included W (R, T ). To improve on the signal-
to-noise ratio it is common to use smearing steps which soften short-range fluctuations.
We applied 5 steps of APE smearing [175]

Uµ(x)→ (1− α)Uµ(x) + α

6
∑
µ>ν

Cµν (5.15)

with

Cµν = Uν(x)Uµ(x+ ν̂)U †ν (x+ µ̂) + U †ν (x− ν̂)Uµ(x− ν̂)Uν(x− ν̂ + µ̂) (5.16)

on the links which are affected by vortex removal, i.e. on all links for full vortex removal
or on spatial links for the case of spatial vortex removal, respectively.2 In both cases we
used a smearing parameter α = 0.5. For center projection we did not use smearing which
would be contradictory to the idea of squeezing the vortices into thin objects. Actually,
full center projected configurations do not need a signal-to-noise improvement since they
are already very stable at short distances as explained before, see Ref. [168].
In the motivation of our procedure we already compared the qualitative behavior of the

spatial Wilson string tension to the Coulomb potential at finite temperature. In the plot on
2We used the notation of Ref. [31].
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the l.h.s. of Fig. 5.1 we used exactly the same simulation setup as in Fig. 4.6. We fixed the
inverse coupling β and the bare anisotropy ξ0 to values that correspond to a renormalized
anisotropy ξ = 4. Then, we varied the temporal lattice extent to simulate at three different
temperatures T = 0, 1.5Tc and 3Tc. As in Chapter 4 we give the temperature in units
of Tc, see Table 5.1. For the highest temperature, T = 3Tc, the signal-to-noise ratio for
this data set becomes very poor for large Wilson loops. Therefore, we do not show the
data points for Creutz ratios with r > 7. The change in the extrapolated string tension
is small when going from zero temperature to 1.5Tc. At 3Tc, for the values shown, the
spatial Creutz ratios are significantly higher.
On the r.h.s. of Fig. 5.1 we compare the temperature dependence of spatial Creutz ratios

on an isotropic lattice at β = 2.6. There, the signal-to-noise ratio is much better under
control, however the relatively small lattice spacing a = at = as limits our temperature
range to below 2Tc. The data at zero temperature and T = 1.1Tc are indistinguishable
within the error bars. At 1.8Tc the Creutz ratios saturate at a significantly higher value
for the string tension.
This effect qualitatively agrees with the results for the Coulomb gauge propagators at

finite temperature found in Section 4 and summarized in the beginning of this chapter. It
is exactly this observation that led us to the assumption that the Coulomb string tension
on the lattice originates from the spatial string tension. To check our assumption we will
investigate the effect on the Coulomb string tension when the degrees of freedom which
are related to confinement are removed from the lattice configuration, i.e. by removing the
center vortices.
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Figure 5.2.: Creutz ratios for the unmodified SU(2) configurations, full center vortex
projection (CP) and removal (VR) at β = 2.6. The reference value χ =
0.01915 was taken from [176].

In Fig. 5.2 we verify the well-established results that under center projection the Wilson
string tension is approximately preserved while after removing (full) center vortices the
string tension is zero, i.e. Wilson confinement is lost.
Our final goal is to remove confinement associated with the spatial Wilson string tension.
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Therefore, in a next step we repeat the procedure with spatial center projection and spatial
vortex removal as defined in Section 5.2.1. Due to the 4-dimensional Euclidean invariance
in the case of full vortex removal (at T = 0) it was not necessary to distinguish the
temporal and the spatial string tension. Our procedure breaks this invariance since spatial
and temporal links are now treated differently. Thus, the string tension from space-space
Creutz ratios χ(R1, R2) and space-time Creutz ratios χ(R, T ) are expected to be different.
On the l.h.s of Fig. 5.3 we show the result. As in the case of full vortex removal, the spatial
string tension drops to zero. However, it turned out that the temporal string tension σT
is impossible to measure directly via Creutz ratios. Space-time Wilson loops after vortex
removal suffer from a huge signal-to-noise problem. The source of this issue is explained
by the histogram on the r.h.s. of Fig. 5.3. The histogram shows the distribution of values
for the plaquettes (Wilson loops with size of one lattice spacing in both dimensions) in
the unmodified SU(2) case and for the space-space and space-time plaquettes after spatial
vortex removal. Apparently, the center projected link in the spatial directions introduce
(nearly) random flips in the space-time Wilson loops. Extracting a stable average with
reasonable errors is therefore impossible.
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Nevertheless, we can still compute the temporal string tension σt from Polyakov loops
as described in Section 2.5.2. Since Polyakov loops are built from temporal links Ut only,
Polyakov loops do not change in the vortex removal procedure, which acts only on spatial
links. Therefore, we conclude that the gauge configurations after spatial vortex removal
still contain (temporal) confinement since they possess exactly the same physical string
tension σt as the original SU(2) configurations.
Both, the temporal and spatial Creutz ratios, after spatial center projection, do not

reach a plateau in the accessible region r < 9 where the errors are under control. We are
lacking a conclusive explanation for why the convergence to the string tension, i.e. to a
plateau in the Creutz ratio, is much slower, compared to the case of full center projection.3

In the following, we will investigate the effect of spatial center projection on Coulomb
gauge propagators.

3Note that the Creutz ratios from space-time loops mixes center projected Z2 links (Us ≡ Zs) with the
unprojected temporal SU(2) links Ut.
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5.3.2. The Ghost Form Factor

The ghost form factor for the original SU(2) in Fig. 5.4 shows the well-known power law
in the infrared with an exponent of about 0.5. After removing full or spatial vortices we
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Figure 5.4.: The ghost form factor at β = 2.15 and β = 2.60, renormalized at a reference
scale µ = 3 GeV, before and after vortex removal.

cannot find a power law anymore. A similar results was also found for the Landau gauge
ghost form factor in Ref. [177]. For our investigation the crucial point is the second result:
in the gauge configurations where “spatial confinement” is removed, the Coulomb gauge
confinement behavior, a infrared divergent ghost form factor, is lost.
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Figure 5.5.: The ghost form factor after center projection (restricted to the subspace
orthogonal to the zero-modes) at β = 2.15.

After center projection the Faddeev–Popov operator acquires additional zero modes
from vortices sitting on the Gribov horizon [115]. With these zero modes a direct inversion
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of the Faddeev–Popov operator is impossible since these zero modes, unlike the N2
c − 1

constant zero modes with momentum p = 0, cannot be excluded without the loss of
information. However, we can still invert the Faddeev–Popov operator on a subspace
orthogonal to the additional zero modes. The thus obtained propagator, Fig. 5.5, is
enhanced for intermediate momenta compared to the original propagator. In the infrared
the ghost form factor is suppressed, a result that is also found if one removes contributions
from modes with small eigenvalues [178]. Thus, we conclude that this suppression is due
to the excluded zero modes.

5.3.3. The Coulomb Potential

We already discussed in Section 2.6.4 that the extrapolation of the Coulomb string tension
σC suffers from large uncertainties. As usual we plot the ratio p4VC(p)/(8πσW ), since the
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Figure 5.6.: The Coulomb potential in momentum space computed from (2.160). The
data is normalized such that the intercept at p→ 0 yields the ratio σC/σW .

infrared limit yields directly the Coulomb string tension σC in units of σW . In contrast
to the original SU(2) ensemble, the data for the configurations free of center vortices (full
and spatial) nicely extrapolate to a string tension of zero as shown in Fig. 5.6. As already
emphasized many times, the configurations after spatial center vortex removal still have
the unchanged temporal string tension σt from the original SU(2) configurations. This
result clearly demonstrates that the Coulomb string tension is directly related to the
spatial string tension and not to the temporal one.
We also show the result for the Coulomb potential from the alternative definition (2.173).

This definition has the advantage that a fit of a linear rising potential to extract the string
tension performs much better as we already saw in earlier chapters. In agreement with the
results of [113] we find a Coulomb string tension close to zero after full vortex removal,
illustrated on the l.h.s of Fig. 5.7. After center projection σC is slightly higher than in
the original SU(2) configurations. This agrees well with Fig. 5.2 where the Wilson string
tension is slightly larger for the same setup (β = 2.6 on a 324 isotropic lattice). On the r.h.s
of Fig. 5.7, again in qualitative agreement with the results for the Wilson string tension,
Fig. 5.3, we find for the spatial center projected U0U

†
0 -correlator a Coulomb string tension

that is much higher compared to the SU(2) result.
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For the U0U
†
0 -correlator from spatial vortex removed configurations we are faced with

the same problem as in the case of the temporal string tension. By fixing to Coulomb
gauge we introduce noise in the temporal links which makes a reliable measurement of the
potential impossible.

5.4. Summary
In this chapter we found a relationship between the spatial string tension and Coulomb
gauge propagators. We conclude that the lattice Coulomb gauge propagators which are
built only from spatial links on a fixed timeslice cannot be used to describe confinement
beyond T = 0. Since the Coulomb string tension is coupled to the spatial string tension
the Coulomb gauge propagators fail to resolve the phase transition. Even the U0U

†
0 -

correlator, which is a quantity built from temporal links, does not show a clear signal of
deconfinement as we saw in Chapter 4.3. We expect that only on longer Polyakov lines a
correlator would be able to sense the phase transition. However, the physical interpretation
of such a correlator is unclear.
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In this chapter we will discuss the SU(2) gauge theory coupled to two fermions in the
adjoint representation. This theory is expected to be quite different from the QCD-like
pure SU(2) gauge theory which was discussed in the preceding chapters: its features make
it a possible candidate for walking technicolor. Technicolor theories are a proposal to
explain the dynamical mass generation of the Standard Model without a Higgs field and
its accompanying fundamental scalar boson. In the first section we will motivate and
introduce the concept of technicolor and its constraints from electroweak measurements
which will lead to so-called walking technicolor theories. In Section 6.2 we will summarize
our setup of lattice configurations for this study and discuss some general problems. Finally
we will present and discuss our results for the gluonic observables in Section 6.3. A
conclusive result for the quark sector could not be obtained within this work because
of several technical problems with the Wilson quark propagator which are discussed in
Appendix D.

6.1. Introduction
In this introduction we will sketch only the common aspects of field theories which fall in
the class of technicolor. We will describe the reason why the original idea of technicolor
should be extended and we will finally arrive at the so-called walking technicolor theories
without going into too many details of the phenomenological constraints. The introduction
is oriented at Refs. [179–181]. The first one is a general text book introduction, where the
later two are recommended as a detailed introduction with several specific realizations of
(extended) technicolor theories and a discussion of phenomenological constraints.

6.1.1. Motivation
In the Standard Model the gauge bosons acquire their mass when the electroweak symme-
try is broken down to the low energy electromagnetic U(1) symmetry by the Higgs mech-
anism. The fermion masses are introduced by Yukawa couplings to the Higgs field. The
Higgs mechanism, or to be more general, a mechanism for electroweak symmetry breaking
(EWSB), is necessary since explicit mass terms on the Lagrangian level for gauge fields
are gauge-dependent and lead to non-renormalizable theories, see e.g. [179].
In the following, we will shortly summarize the Higgs mechanism at the simple example

of a complex scalar U(1) gauge theory, the Abelian Higgs model. The Lagrangian density
for this theory is given by

L = (Dµφ)†(Dµφ)− V (φ†φ)− 1
4FµνF

µν (6.1)

with the potential
V (φ†φ) = −µ2φ†φ+ λ(φ†φ)2 (6.2)

and the Abelian covariant derivative Dµ and the Abelian field strength tensor Fµν

Dµ = ∂µ − igAµ, Fµν = ∂µAν − ∂νAµ. (6.3)
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6. Minimal Walking Technicolor

The Lagrangian of (6.1) is invariant under local U(1) gauge transformations of the form

φ(x)→ φ′(x) = e−iα(x)φ(x) (6.4)

Aµ(x)→ A′µ(x) = Aµ(x)− 1
g
∂µα(x).

If µ2 > 0 the potential has the famous shape of a Mexican hat and develops a minimum
at a non-zero value of the scalar field

|φ| = v/
√

2, v =
√
µ2/λ. (6.5)

Thus, the vacuum expectation value of the field is given by1

〈φ〉 = v/
√

2. (6.6)

A convenient parameterization of the scalar field are (shifted) radial coordinates

φ(x) = 1√
2

[v + η(x)] eiξ(x)/v. (6.7)

which allow to get rid of one field component: with the gauge transformation α(x) = ξ(x)/v
the ξ field vanishes. With this choice the transformation (6.4) for the scalar and vector
field reads

φ′(x) = 1√
2

(v + η(x)) (6.8)

Bµ(x) = Aµ(x)− 1
gv
∂µξ(x) (6.9)

and one finds the Lagrangian density

L = 1
2∂µη∂

µη − µ2η2 − 1
4F

B
µνF

B,µν + 1
2(gv)2BµB

µ + LI , (6.10)

where the letter B in FBµν indicates the field strength tensor for the transformed field and
LI contains coupling terms between the scalar field and the gauge field. The first two
terms describe a massive (real) scalar field with mη =

√
2µ and the third and fourth term

describe a massive vector field with mass mB = gv. Instead of a complex scalar field φ
with two degrees of freedom, we now have a real scalar field η which is the Higgs boson
of this model. One says that the missing degree of freedom was “eaten” to become the
additional longitudinal degree of freedom for the now massive vector field. The parameter
µ2 triggers the symmetry breaking from the massless phase (µ2 ≤ 0) to the Higgs phase
(µ2 > 0). In the Standard Model the scalar field φ is replaced by a doublet of complex
fields, where three components give mass to the W± and Z bosons and the remaining
component is the massive Higgs boson, while the photon remains massless. The masses
for the Standard Model fermions can be introduced in a gauge-invariant way by Yukawa
couplings to the Higgs field. The coupling coefficients for the different fermions are free
parameters to be adjusted to the masses found in experiments.
1We follow the pedagogical introduction which is found in many textbooks, e.g. [179], though we want to
emphasize that this semi-classical formulation has a severe drawback: Elitzur’s theorem states that a
local gauge symmetry cannot be broken spontaneously and especially the vacuum expectation value of
any gauge variant quantity is zero, i.e. 〈φ〉 = 0. The unambiguous treatment was developed by t’Hooft
who showed the renormalizability of the theory with a Higgs fields [182, 183].

72



6.1. Introduction

While the Higgs mechanism offers a simple way to describe the dynamical mass genera-
tion of gauge bosons and fermions, there are still reasons why physicists are searching for
alternatives, even though the long missing Higgs boson was finally detected in 2012 [3, 4].
The existence of dark matter, the non-zero neutrino masses or the origin of the baryon
asymmetry are experimental facts that are not explained within the Standard Model.
Theories “Beyond the Standard Model” (BSM) are needed to describe these features of
nature. But even if we leave aside these experimental findings, the Standard Model with
the Higgs mechanism has severe theoretical shortcomings [184]: it does not offer a dy-
namical explanation for electroweak symmetry breaking; it is “unnatural” and therefore
requires fine-tuning; it suffers from the hierarchy problem.
The first point boils down to the problem that the mass parameter −µ2 is introduced

in (6.1) “by hand” and set to its specific value just to trigger electroweak symmetry
breaking. There is no explanation why the parameter is negative and why v = 246 GeV
in the Standard Model [184, 185].
A theory is said to be unnatural if it contains sensitive correlations between well sepa-

rated energy scales [186]. This happens for a theory with an elementary scalar particle,
like the Higgs boson: the Higgs boson mass gets additive radiative corrections which are
quadratic in the cut-off Λ. For the Higgs mass to be natural we would therefore expect it
to be of the order of the cut-off, e.g. the Planck scale Λ = MP ≈ 1018 GeV. Thus, in order
to obtain the small value of the Higgs mass mH ≈ 125 GeV the radiative corrections have
to be canceled by a delicate fine-tuning of the Standard Model parameters to a precision
of M2

P /m
2
H ∼ 1032 [184].

The tiny ratio of the weak scale to the Planck scale of MW /MP ≈ 10−16 to which the
Standard Model does not offer an explanation is also known as the gauge hierarchy problem.
In contrast, the smallness of the QCD scale relative to the Planck scale ΛQCD/MP ≈ 10−20

is well understood as a consequence of asymptotic freedom [180].
Various solutions to resolve these theoretical shortcomings are discussed among theorists

and are sought for in experiments, see e.g. Ref. [180, 187].
The most famous models are supersymmetric theories (SUSY) where the naturalness

problem is resolved by introducing a symmetry that protects that Higgs mass from radia-
tive corrections. Each Standard Model particle get a superpartner with the same quantum
numbers except spin: each fermion gets a bosonic partner and each boson gets a fermionic
partner. In the phase where SUSY is intact the mass of the scalar Higgs is equal to the
mass of its fermionic superpartner which in turn is protected by chiral symmetry [180].
Since these superpartners are not found with the same mass as the Standard Model par-
ticles, the SUSY symmetry itself must be broken below the electroweak scale.
Other solutions are theories with extra space-time dimensions, the so-called little Higgs

models, where a Higgs boson appears as a pseudo Nambu-Goldstone boson with a light
mass, or theories with a composite scalar operator, see e.g. Ref. [187] and references therein.
The chiral condensate of QCD is such an operator and is the basis of technicolor as will
be explained in the following.

6.1.2. Technicolor and Extended Technicolor

The original idea of technicolor [188, 189] borrows the concept of chiral symmetry breaking
from QCD to explain the masses of the Standard Model gauge bosons.
For simplicity we will discuss QCD with only two quarks u, d following Ref. [179, Chap-

ter 13]. If we assume that these quarks are exactly massless, the Lagrangian possesses an
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SU(2)L × SU(2)R symmetry. It can be written as

L = q̄γµD
µq = q̄LγµD

µqL + q̄RγµD
µqR (6.11)

where the left- and right-handed components

qL = PLq = PL

(
u
d

)
, qR = PRq (6.12)

are obtained by the projectors PL = 1
2(1 − γ5) and PR = 1

2(1 + γ5). At the QCD scale
this symmetry is spontaneously broken by the chiral condensate

〈q̄LqR + q̄RqL〉 6= 0 (6.13)

which is only symmetric with respect to simultaneous transformations of left- and right-
handed fields, i.e. the symmetry is broken down to SU(2)L+R. According to Goldstone’s
theorem one obtains three massless Goldstone bosons, the pions π±, π0 of QCD.2
If we now include the electroweak interactions, the SU(2)L × U(1)Y will be broken by

the chiral condensate to U(1)em and the pions are eaten by W± and Z bosons, like in the
Higgs mechanism. However the contribution to their masses by this mechanism is orders
of magnitude too small compared to the experimental values. The contribution from chiral
symmetry breaking to the W boson mass is given by

MW = gfπ
2 ≈ 30 MeV, (6.14)

where fπ is the pion decay constant, while the experimental value is M exp
W = 80 GeV [179,

Chapter 13]. Otherwise, the relation between the W± and Z boson masses, with the
Weinberg angle θW , is obtained correctly

MW /MZ = cos θW . (6.15)

Thus, a mechanism for EWSB is already included in QCD and generates a dynamical
boson mass, only the mass scale is completely wrong.
A possible solution is to postulate a new strong interaction, technicolor, with new tech-

niquarks and technigluons which break the electroweak symmetry at the right scale. The
gauge group of the Standard Model GSM = SU(3)c × SU(2)L × U(1)Y would then be
extended by a yet undefined technicolor gauge group GTC

G = GSM ×GTC. (6.16)

From the W boson mass, the technicolor scale is estimated to be around ΛTC = 1 TeV
where the new particles should be observable. Since technicolor is an asymptotically
free theory, the hierarchy of scales would be naturally explained by the running of the
technicolor coupling. Thus technicolor could be able to produce the correct gauge boson
masses without the need for a fundamental scalar field. However technicolor, and the
Standard Model as well, does not explain the fermion masses. In the Standard Model
they are just introduced as free parameters. A complete, fundamental theory should not
only explain the gauge boson masses but also provide a mechanism for the fermion masses.
2Since up and down quarks have a small mass, chiral symmetry is not exact and the pions acquire their
(small) mass.
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So-called Extended Technicolor models (ETC) [190, 191] try to implement the fermion
masses. There one postulates additional gauge bosons at a scale ΛETC above the techni-
color scale which couple to technicolor and Standard Model fermions [187]. The masses
of the Standard Model fermions are then generated by effective Yukawa couplings origi-
nating from four-fermion operators. Again, as already technicolor, ETC is not a specific
theory, but a whole class of theories with the aforementioned property. A subclass of
ETC are the one family models [192] which additionally offer a dynamical explanation
for the different mass scales of the Standard Model generations: a ETC gauge group, e.g.
SU(NETC) = SU(NTC + 3), spontaneously breaks in three steps to SU(NTC), where at
each symmetry breaking scale Λg one generation of Standard Model fermions acquire their
masses3 [181]

mg ∼ 4πF
3
π

Λ2
g

, (6.17)

where Fπ is the technipion decay constant.
In Ref. [180] the most relevant low-energy (below the ETC scale) terms originating from

four-fermion operators for a generic ETC theory are described by4

αab
Q̄T aQq̄T bq

Λ2
ETC

+ βab
Q̄T aQQ̄T bQ

Λ2
ETC

+ γab
q̄T aqq̄T bq

Λ2
ETC

+ . . . , (6.18)

where the capital Q’s denote techniquarks and the lower case q’s denote ordinary Standard
Model fermions, the T a are the generators of the unspecified ETC gauge group and α, β, γ
are parameters depending on the specific ETC theory, too. The terms proportional to α
are the ones generating the Standard Model fermion masses

mq ∼
(
gETC
METC

)2 〈
Q̄Q

〉
ETC

, (6.19)

where gETC is the ETC coupling constant and 〈Q̄Q〉ETC the technicolor condensate, both
evaluated at the ETC scale;METC is the ETC gauge boson mass. The second contribution
in (6.18) is not relevant for this introduction. It will generate masses for pseudo Goldstone
bosons and techniaxions. A problematic aspect of ETC comes from the γ term: it will
induce flavor-changing neutral currents (FCNCs) between quarks and leptons which are
highly suppressed in the Standard Model. From the experimental constraints the authors
of Ref. [180] estimated that if the specific ETC theory is QCD-like, i.e. has a QCD-like
running coupling, the scale would have to be ΛETC & 103 TeV to suppress the FCNCs down
to experimental data. However, with such a high scale one could only explain Standard
Model quark masses of less than 100 MeV, the top quark mass mt ≈ 170 GeV [193] is far
above this limit.
The problem to explain the masses of the heavy quarks while at the same time sup-

pressing the FCNCs is addressed by the so-called Walking Technicolor theories. Since the
Standard Model quark masses (6.19) are proportional to the techniquark condensate at
the ETC scale it is instructive to investigate its renormalization effect when going from
the technicolor scale to the ETC scale [180]

〈
Q̄Q

〉
ETC

= exp
(∫ ΛETC

ΛTC
dlog(µ) γm(α(µ))

)〈
Q̄Q

〉
TC

, (6.20)

3The origin of the different masses within a generation is not explained.
4We use the convention of Ref. [181].
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with the anomalous dimension of the mass γm. If one assume a QCD-like running coupling
with a logarithmic fall-off above ΛTC

α(µ) ∝ 1
log(µ) (6.21)

and γm ∝ α(µ) one finds

〈
Q̄Q

〉
ETC

= log
(ΛETC

ΛTC

)γm 〈
Q̄Q

〉
TC

. (6.22)

Thus the renormalization effect is logarithmically small and therefore
〈
Q̄Q

〉
ETC
≈
〈
Q̄Q

〉
TC

which would yield with 〈Q̄Q〉TC ∼ Λ3
TC [181]

mq ≈
(
gETC
METC

)2
Λ3
TC. (6.23)

If we assume, instead of the QCD-like running, a theory where the running coupling
is approximately constant between the scales ΛTC and ΛETC, i.e. a theory with a nearly
conformal fixed point α(µ) ≈ α∗ one obtains a power law correction

〈
Q̄Q

〉
ETC

=
(ΛETC

ΛTC

)γm 〈
Q̄Q

〉
TC

. (6.24)

Thus the techniquark condensate at ΛETC is significantly enhanced if the mass anomalous
dimension is of order 1. This in turn implies that the quark mass (6.19) is enhanced. At
the same time, the FCNCs are not enhanced since the γ-term, from which they originate,
do not couple to the condensate. Such a mechanism with a “walking” (slowly running)
coupling might allow the heavy quark masses in the technicolor framework. For model
building it is therefore of prime interest to discriminate between conformal, near-conformal
(walking) or QCD-like theories. Additionally, a large mass anomalous dimension would be
necessary for a Walking Technicolor theory to be a viable candidate to replace the Higgs
sector of the Standard Model. Of course, a theory possessing these features has still to
pass the tests of the electroweak precision measurements, however this aspect will not be
the subject of our work. In recent years a lot of effort has been put into the analysis
of gauge theories with different gauge groups and fermions in different representations
to locate the conformal window, i.e. the region where the theory, for a given number of
colors and fermions, develops a non-trivial fixed point of the running coupling. Around
that point one is investigating if the theory is really conformal or only quasi-conformal
(walking).
For a first estimate, the two-loop beta function for SU(N)

β(g) = − β0
(4π)2 g

3 − β1
(4π)4 g

5 (6.25)

can be used to find bounds on the so-called conformal window introduced below [194].
The coefficients β0 and β1 are given by

β0 = 11
3 C2(G)− 4

3T (r)Nf (6.26)

β1 = 34
3 C

2
2 (G)− 20

3 C2(G)T (r)Nf − 4C2(r)T (r)Nf (6.27)
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for a representation r with the quadratic Casimir defined by C2(r)1 = T ar T
a
r and the

normalization of the generators tr[T ar T br ] = T (r)δab, adopting the notation of Ref. [194].
G denotes the adjoint representation with the coefficients T (G) = N , C2(g) = N and
dimension N2 − 1.5
As an upper bound for the number of fermions Nf for a given representation r one

obtains [194]

N I
f = 11

4
C2(G)
T (r) . (6.28)

At this point the first coefficient β0 becomes negative (then also β1 < 0) which implies that
asymptotic freedom is lost. For SU(3) and fermions in the fundamental representation the
upper bound is N fund

f ≤ 16. For any SU(N) theory with adjoint fermions the bound is
Nadj
f ≤ 2. A lower limit can be derived by the point where β1 becomes negative, while β0

is still positive [195]

N III
f = C2(G)

T (r)
17C2(G)

10C2(G) + 6C2(r) . (6.29)

There the running coupling of the theory develops a fixed point. At the fixed point the
theory is conformal. The region between the point were a fixed point appears and the point
were asymptotic freedom is lost defines the conformal window. For the bound of (6.29) one
finds for SU(3) N fund

f ≥ 8 and for any SU(N) Nadj
f ≥ 2. As these bounds are derived from

a perturbative expansion, they are only estimates and the true conformal window has to
be sought for by means of non-perturbative methods, e.g. Dyson–Schwinger calculations,
see the summary in Ref. [181] and references therein, or the lattice approach.
From (6.28) and (6.29) we conclude that the only fermion number for the adjoint rep-

resentation is Nf = 2. In the following we will investigate the Coulomb gauge correlators
of the theory with gauge group SU(2). The theory is called Minimal Walking Technicolor
(MWT) since it is the theory with minimal matter content and number of colors for which
a walking behavior is anticipated.6 This makes the theory a perfect candidate for first
lattice studies as with more fermion flavors and colors the numerical work would also
increase.

6.1.3. SU(2) with Two Adjoint Fermions

A first lattice investigation of the theory was done in Refs. [196, 197]. There also a sum-
mary of appealing phenomenological results for MWT is provided: it passes electroweak
precision tests, offers possible dark matter candidates and allows unification of the Stan-
dard Model couplings. Since these results were published before the Higgs boson was
found experimentally, a possible composite Higgs with a specific mass was not discussed.
In this first works the phase diagram of the theory is analyzed with respect to the bare
coupling and the fermion masses. By inspecting meson masses the authors find a behavior
which is consistent with a conformal theory or possibly a walking behavior when the bare
masses are tuned towards zero: the meson masses tend to zero as expected in a theory
with no intrinsic scale. However, the authors also note that finite volume effects might
not be fully understood.
5Note that the one-loop approximation in (2.111) is recovered with T = 1/2 for the fundamental repre-
sentation.

6Note that for SU(2) the two-index symmetric representation and the adjoint representation coincide.
Therefore the MWT theory can also be regarded as one representative of the theories with fermions
in the two-index symmetric representation which have less strict bounds on the conformal window for
SU(N) with N > 2.
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Later the MWT theory was studied independently by other groups [59–62] and [198–
200]. The former used the Wilson Dirac discretization in all their studies, while the latter
began using improved fermion actions for their studies. In their most recent analysis
they agree that the theory develops an IR fixed point, i.e. it describes a conformal (not
a walking) theory, and they estimate a mass anomalous dimension at the fixed point
between γ∗ ≈ 0.2 [199, 200] and γ∗ ≈ 0.37 [61]. These results would rule out that MWT
is a viable candidate for BSM physics in the context discussed above. However it might
still be interesting for other scenarios where an exact conformal theory is needed, as e.g.
in unparticle models [201, 202].
A viable candidate theory for BSM physics of course needs to explain the Higgs excita-

tion. A possible candidate for a Higgs-like particle, a so-called Higgs impostor, is the scalar
0++ glueball [203] which turned out to be the lightest excitation of the MWT theory.

6.2. Configurations
In this work we use configurations which were kindly provided by the authors of [59–62].
The configurations were created using the (isotropic) Wilson gauge action (2.84) and the
Wilson fermion action

Sf = a4∑
x,y

q̄(x)D(x, y)q(y) (6.30)

where the Wilson Dirac operator is given by

D(x, y) =
(
m+ 4

a

)
δxy (6.31)

− 1
2a

3∑
µ=0

{
(1− γµ)U rµ(x)δx+µ,y + (1 + γµ)U †rµ (x− µ̂)δx−µ,y

}
with the links U r in the representation r. In the adjoint representation the SU(2) links
are given by

UAab = 1
2 tr

[
taUtbU †

]
(6.32)

where ta are the generators of the fundamental representation of SU(2) and U are the
usual links in the fundamental representation, see Section 2.4.
For details of the implementation to generate the configurations we refer to the original

literature [204]. For convenience we use the same labels as in the original works as given
in Table 6.1. The parameters and masses are taken from the papers mentioned in the
table. The lattices Qx are quenched configurations generated by us. Compared to the
Yang–Mills studies of the earlier chapters the lattices sizes of the MWT configurations
are rather small with the exception of the F1 lattice. The authors of Ref. [62] found that
on larger lattice sizes the autocorrelation times increase dramatically and the computer
time has to be increased accordingly to achieve reliable studies. In Ref. [62] the authors
successfully softened the problem by implementing open boundary conditions instead of
the commonly used (anti-) periodic boundaries which allowed them to simulate on lattices
of sizes up to 80× 483. These lattices are not included in our study as it would involve an
extensive and careful examination of the corresponding Yang–Mills propagators to be able
to distinguish effects of the MWT theory from effects of the open boundary conditions.
On the lattice it is not possible to simulate exactly massless quarks. Therefore all

simulation have to be done with a finite quark mass. The massless limit is then approached
by decreasing the bare quark mass towards the critical point where the renormalized quark
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masses vanish. In principle every choice of bare mass corresponds to a different theory. If
we assume that the transition from the massive to the massless theory is smooth we can
extrapolate to the massless limit, see also the discussion in Ref. [205]. All configurations
in this study are for a fixed coupling β = 2.25, where the critical bare mass is found to be
around mc ≈ −1.20 [59].

V Nconf −am0 amPCAC aM0++ a−1 [GeV]
B0 24× 123 317 0.95 0.3931(38) 0.793(41)a 172
B1 24× 123 266 1.00 0.3368(40) 0.658(56)a 193
B2 24× 123 222 1.05 0.2765(40) 0.510(33)a 228
B3 24× 123 201 1.075 0.2410(38) 0.4901b 255
B4 24× 123 174 1.10 0.2025(40) 0.4260b 293
B5 24× 123 168 1.125 0.1604(34) 0.3527b 354
B6 24× 123 92 1.15 0.1198(52) 0.256(18)c 468
B10 24× 123 145 1.19 0.0302(16) 0.0794b 1573
C0 32× 163 140 1.15 0.1175(30) 0.256(18)c 468
C4 32× 163 95 1.19 0.0308(10) 0.0794b 1573
F1 64× 323 206 1.15 0.1175(30)d 0.256(18)c 468
Q0 24× 123 300 - - - -
Q1 32× 163 300 - - - -
Q2 64× 323 100 - - - -

Table 6.1.: Summary of configurations; PCAC masses are taken from Ref. [59]. The
lattice spacing is obtained from the interpolation of the 0++ glueball mass.

6.2.1. Setting the Scale

In Section 2.4.2 we discussed how to find the physical scale of the lattice theory for QCD:
a physical observable, like the string tension or a hadron mass, is measured in the lattice
setup and identified with its physical value. The SU(2) Yang–Mills theory in the absence
of quarks which was subject of the previous chapters is, of course, not realized in nature
and therefore the scale setting is rather arbitrary. However, the SU(2) theory resembles
full QCD in many aspects and therefore one may use an observable which can be measured
in full QCD to define the scale of the (unphysical) SU(2) Yang–Mills theory.
For the SU(2) theory with two adjoint fermions there is no (known) corresponding

realization in nature as long as the proposed technicolor candidate is not verified experi-
mentally. In the Landau gauge studies [205, 206] the authors proposed a way to set the
scale which we will adopt in our work. They chose the scalar 0++ glueball to set the
physical scale. The 0++ glueball has the same properties as the Standard Model Higgs
particle and is the lightest bound state in the theory under study. In the would-be tech-
nicolor theory the Higgs particle might be this glueball [203] or at least mix with this
state as was argued in Ref. [206]. Therefore they identify the mass of the 0++ glueball

aThe value is taken from Ref. [60].
bInterpolated and extrapolated (−am = 1.19) values were obtained from a four parameter fit to the
available masses of Refs. [60, 62].

cThe value is taken from Ref. [62]. We will use that value even the data has large systematic uncertainties
because of long autocorrelation times.

dWe use the value of the C0 lattice.
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with 125GeV, the physical mass of the Higgs boson7. For some of the configurations the
glueball masses were reported in Refs. [60, 62]. We used a four parameter fit to that data
to interpolate the masses for the other lattices and to extrapolate to −am0 = 1.19. In the
fit we excluded the set at −am0 = 0.9 as this is a distinct outlier. The lattice spacing as
reported in Table 6.1 is then obtained from the interpolation formula.
Not that this scale can only be meaningful if the theory is not conformal, but only

quasi-conformal. For this reason we will also show the results in lattice units.

6.3. Results

In the following we will discuss the Coulomb gauge correlation functions we already inves-
tigated for the pure SU(2) gauge theory in the preceding chapters: the gluon propagator
and the ghost propagator in momentum space and the Coulomb potential in position
space, from (2.173), and in momentum space, from (2.160). First we will have a look
at finite volume effects and discuss possible effects of the Gribov ambiguity. Then we
investigate how the quantities behave when the mass is changed towards the critical value
at fixed lattices size. We will find that the data points for different masses are quite well
described by a single curve when we use the physical scale given by the mass of the 0++

glueball. Therefore we will finally compare configurations at different mass and volume
and will again find a surprisingly good overlap.

6.3.1. Finite Volume Effect and Gribov Ambiguity

To study the finite volume effects we use the sets B6, C0 and F1 where configurations
are available with the same bare mass am0 = −1.15 of the adjoint quarks. The spatial
volume of these configurations is 123, 163 and 323 respectively. In the plots Fig. 6.1 we
present the results in lattice units. In addition to the data from the simulation with
adjoint quarks (l.h.s.) we show for comparison the data of the quenched configurations
(r.h.s.) at the same lattice sizes. These are provided to give an estimate of the size of the
finite volume effects in the pure gauge theory, however the comparison has to be taken
with care since we compare two very different theories. We find a very consistent behavior
from the plots of the different quantities on the lattices with adjoint fermions: the curves
from the two smaller lattices are identical within error bars while the largest lattice shows
a clear deviation in the infrared. A possible explanation could be that the difference in
size of the B6 and C0 lattice is too small to see significant effects, while the F1 lattice
is twice the size of the C0 lattice in each direction. For the quenched configurations the
finite volume effect is considerably smaller or even negligible in the case of the Coulomb
potential. When we compare the quenched to the unquenched correlation function we
find a very different form in the IR. However the form of the curves suggest that the
propagators from the adjoint theory might be closer to the quenched case at much weaker
coupling. This assumption is further backed up by the value of the gauge fixing functional
(3.1) which is higher for the configurations with adjoint quarks. Furthermore, the adjoint
configurations do not show a Gribov copy effect even on the largest lattice which points
to very smooth configurations as we have seen at higher values of β in Chapter 3.
In the plot of the gluon propagator (topmost plots of Fig. 6.1) we included two extra

curves to accommodate for a possible ambiguity in our two-step procedure to calculate
the static gluon propagator. The lighter red and green curves are calculated with the
7At the time of the earlier study [205] the Higgs boson was not yet detected, there the author arbitrarily
set the scalar glueball mass to 2TeV.
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standard procedure where we calculate the function g(p0/ |p|) in (2.143) and D(|p|) in
(2.146) from the same data set. The darker symbols denote the case where we used the
fit to g(p0/ |p|) from the largest lattice F1 to compute the propagator (2.146). We see
that in this second case the data points from all three lattices sizes fall on the same curve,
telling us that the finite volume effect is completely encoded in the function g(p0/ |p|),
i.e. in the energy-dependent part. It seems that the pure spatial part of the correlator is
less sensitive to a “contamination” from exited states which are always present on a finite
lattice. This effect is also seen in the Yang–Mills correlator.
For completeness we should mention that the authors of Ref. [60] found that for the

small lattice the spatial center phase is broken close to the critical mass. We cannot
completely exclude that this feature is the origin of the gap between the smaller lattices
and the big one, however from the results in the next section there is no hint that this
effect might be play a role for the Coulomb gauge quantities.

6.3.2. Mass Dependency
In Fig. 6.2 we show the correlation functions as they change with varying the bare mass.
The configurations are of the smallest lattice size in our set, where we have 8 different
masses available from −am0 = 0.95 to −am0 = 1.19. The results on the l.h.s. are in lattice
units while on the r.h.s. we used the scale as explained in Section 6.2.1.
We will first discuss the results in lattice units. The gluon propagator only shows a

small variation with different masses. It is very close to the tree-level propagator at all
masses as a fit to a pure power-law

D(|p|) = const.
|p|κ

(6.33)

shows. The exponent ranges between κ = 1.06(1) (largest mass) and κ = 0.98(2) (smallest
mass) with χ2/n.d.f. ≈ 5. We consider this a very good fit regarding the fact that we use a
simple power-law without logarithmic corrections and the potential finite volume artifacts.

The ghost form factor d(p) shows a clear separation of the lines for different masses. As
in the pure Yang–Mills case we find two different functional forms in the IR and the UV.
In the IR fit we included only the first four data points in a power-law fit. We find an
exponent smaller than 0.5 which is decreasing down to 0.33(2) at the smallest mass. In
the UV the data is well described by the logarithmic fall-off, as described in (2.175),

d(|p|) = 1
logγgh

(
|p|
m

) , (6.34)

however the data is not sensitive enough to the logarithm to fit γ and m precisely: in an
unconstrained fit the reduced χ2 is far below 1. If we constrain γ = 0.5 (as expected for the
UV sum-rule, see Ref. [108]) the fit improves with decreasing mass, from χ2/n.d.f. ≈ 15
on the B0 lattice to ≈ 0.4 on B10.

The Coulomb potential in momentum space from the Coulomb kernel (2.160) (third row
of Fig. 6.2) and in position space from the U0U

†
0 -correlator (fourth row) agree qualitatively

very well. The Coulomb string tension, which is found as the intersection with the vertical
axis in the momentum space plot and the slope at large distances in position space,
decreases when going to smaller bare masses. In both plots the factor between the string
tension at the largest and the smallest mass is approximately 0.5, when we use a linear
fit at large distances in the position space plot and compare the values at the smallest
momentum accessible in the IR in the momentum space plot.
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Figure 6.1.: The Coulomb gauge correlation functions in lattice units at −am0 = 1.15
(l.h.s.) and in the quenched approximation (r.h.s.). From top to bottom:
the gluon propagator, the ghost form factor and the Coulomb potential in
momentum and position space. The difference between the light and dark
colored points in the gluon propagator plots is explained in the text.
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Figure 6.2.: The Coulomb gauge correlation functions at fixed lattice size 24 × 123 for
various bare masses in lattice units (l.h.s.) and with the scale set (r.h.s.) as
explained in Section 6.2.1. From top to bottom: the gluon propagator, the
ghost form factor and the Coulomb potential in momentum and position
space.
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Next we will turn to the results in the r.h.s. of Fig. 6.2, where we set the scale assuming
the 0++ techniglueball is a Higgs impostor. In this plot we excluded the B10 lattice, i.e.
the lattice with the smallest bare mass. For this lattice the 0++ glueball mass was not
available and an extrapolation with our fit function failed: the data from this lattice, for
all quantities, was in disagreement with the other lattices.
After multiplicative renormalization the data points for the gluon propagator from all

masses fall perfectly on a single line over the whole momentum range. Note that applying
a renormalization in the plot with lattice units would not yield such a result. This effect
is truly an effect of the scale setting.
Although not as clearly, the ghost form factor shows the same nice agreement with a

single line. The deviations in the IR could be explained by finite volume effects as we
saw in the previous section. The plot in Fig. 6.1 suggests that for the B6 lattice at least
the two last data points should be excluded from the plot. The B6 lattice is the one with
the smallest lattice spacing and therefore is expected to show the strongest finite volume
effects. These outliers could be treated by a cone-cut [207]. Since we don’t have the
configurations for a more detailed finite volume study at the bare masses we decided to
keep all points in the IR.
Finally for the Coulomb potential we find again good agreement with a unique function

for all masses. In position space we normalized the data to overlap at large distances. This
shift is allowed since it just defines the zero-point energy. Since the Coulomb potential is a
renormalization group invariant no multiplicative renormalization is allowed in momentum
space. If we would shift the data points for the smallest masses B5 and B6 towards higher
momenta we would get an even better overlap. This would indicate that our scale setting
is not perfect, provided that the unique line is the physical result.
In Fig. 6.3 we compare the the largest bare mass on the smallest lattice with the smallest

mass available on the biggest lattice. The rationale for this choice is that the smallest
bare mass corresponds to the largest physical volume when we use the scale from the
0++ techniglueball mass. Thus finite volume effects should be minimal with this mass
compared to the other lattices of same size. The result is remarkable: all quantities show
very good agreement with a single line. Again the momentum space Coulomb potential
might suggest that the scale setting is not perfect. In position space we did a fit to the data
of the smaller lattice. As can be seen this fit agrees very well with the data up to very short
distances. Quantitatively the string tension from the Coulomb kernel plot (l.h.s.) and the
U0U

†
0 -correlator (r.h.s.) seem compatible. The fit in position space yields σC ≈ 0.013TeV2

while in momentum space anything in the range σC = 0.01 . . . 0.04TeV2 seems reasonable.
The large uncertainty stems from the discrepancy between the two lattices: on the larger
lattice the potential looks already constant below p = 0.2TeV, while on the smaller lattice
it is still decreasing in that range. Additionally, as mentioned before, they do not agree
perfectly which might be a problem in the scale setting.

6.4. Discussion and Summary

In the preceding section we presented our results in two different ways: first in lattice
units, then with the scale set by the mass of the 0++ techniglueball. A similar analysis was
performed in Ref. [205] for Landau gauge based on the same lattice configurations8. Our
results essentially show a similar behavior and therefore we will borrow the interpretation
from this study.

8The largest lattice was not available to this study.
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Figure 6.3.: The Coulomb gauge correlation functions from the smallest lattice at the
largest bare mass and the largest lattice in physical units. The data points
lie remarkably well on a single line. The line in the position space Coulomb
potential plot is a fit to the B0 data only.

The first case where we showed the results in lattice units is the physical correct one
if the influence of the bare mass on the scale is assumed to be small. This result is not
unreasonable since it is found for QCD, as was pointed out in Ref. [205]. We found that
the gluon propagator is well described by a single power-law over the whole momentum
range and is very close to its tree-level value (without an anomalous dimension). The ghost
form factor becomes flatter in the IR if the bare mass is tuned towards the massless limit,
i.e. approaches the tree-level behavior, although according to the current data most likely
with a non-zero anomalous dimension. Since also the bend softens, that separates the IR
and UV regions, the ghost form factor might eventually show a universal power-law in
the limit of zero techniquark mass. As the author of Ref. [205] argues this is expected for
a conformal theory. Additionally, the Coulomb string tension decreases towards smaller
masses and might even vanish in the chiral theory as would be expected for a conformal
theory, since a non-zero string tension would imply a scale in the theory.
The 0++ glueball has the same quantum numbers as the Standard Model Higgs boson.

Additionally in the MWT theory it is the lightest particle in the spectrum [59–62], in
contrast to QCD where the pseudoscalar (the pion) is the lightest excitation. This makes
the 0++ glueball a perfect candidate for non-elementary Higgs particle. Therefore we
investigated the behavior of the propagators if we introduce the scale by setting the 0++

mass to the value of the Higgs boson. With this scale, we found that the Coulomb
gauge quantities at different masses agree very well with a single line which supports
the hypothesis of the 0++ glueball as a Higgs impostor. If this scale is meaningful, the
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6. Minimal Walking Technicolor

behavior would be different to the QCD case, where the scale mainly depends on the
running coupling and not on the fermion masses. The Coulomb gauge propagators indicate
a confining in the massless limit at the fixed gauge coupling of this study.
As already pointed out, our results in Coulomb gauge are in line with the findings

in Landau gauge and we could not refine the conclusions of Ref. [205]. Essentially, the
data allows two different interpretations, one signaling a quasi-(conformal) theory, the
other describes the Higgs boson as a technicolor glueball. Only a refined analysis of finite
volume effects can clarify if the very good agreement of the data at different bare mass
and lattice size in the second interpretation is accidental or physical. A larger set of bare
masses at the largest lattice size would be needed. To clarify the relevance of the gauge
coupling on the scale we would also need configurations at different β.
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7. cuLGT: Lattice Gauge Fixing on GPUs

As mentioned before, several computational intensive tasks have to be performed in lattice
gauge theory. Fortunately, most of these algorithms are well-suited for highly parallel
architectures, like graphic processing units (GPUs). Using GPUs beyond its original
application for computer graphics (general-purpose computation on graphics processing
units, GPGPU), is a comparatively new field in high performance computing. Only very
few lattice QCD applications were using this new technique when cuLGT and its prior
versions were developed. Therefore, the main technical tasks for the results of this thesis
was the implementation and optimization of algorithms for the use on graphic processing
units. cuLGT is a library for lattice gauge theory written in C++ using NVIDIA’s CUDA
platform with a focus on flexible memory usage for the gauge fields. In this chapter, we will
discuss only the gauge fixing part of cuLGT, which is publicly available and in which most
optimization effort was put. This chapter is mainly based on the articles [29, 208–210]
and extended by unpublished material.

7.1. GPU Computing in Lattice Field Theory
Modern graphic processing units are optimized to calculate many pixels of an image (shad-
ing) in parallel. Already in 2001, a first attempt [211] was made to use these devices outside
of its original field. At that time, the authors concluded that their matrix multiplication
on a GPU using a 8-bit fixed-point format would not be competitive to a CPU program
when using 32-bit floating point operations1. According to Ref. [212], one of the first al-
gorithms that ran faster on a GPU was a LU factorization with partial pivoting compared
to well-established CPU libraries [213]. In lattice gauge theory, GPU programming was
first used for multiplication with Wilson and staggered Dirac operators [214].
The introduction of NVIDIA’s CUDA platform in 2007 significantly simplified GPGPU

programming led to an adoption by a larger community. Nowadays, GPGPU is well
established in high performance computing and co-processors solely for general purpose
computation but equipped with GPU-chips are produced by the market leaders NVIDIA
and AMD. Later, Intel joined the market with the Intel MIC2 architecture in the Xeon
Phi co-processors. In the Top 500 list of supercomputers [215], as of November 2015, 104
systems are equipped with coprocessors, 66 of them with NVIDIA GPUs and 27 with Intel
Xeon Phis. The second place is occupied by a system which uses NVIDIA Tesla K20x
GPUs.
An alternative to CUDA, which does not tie the user to NVIDIA GPUs, is the OpenCL

framework used in the lattice code [216]. Recently, the parallelization framework OpenACC
was introduced which simplifies parallelization by defining OpenMP-like pragmas, see
Ref. [217] for an application to lattice field theory.
The first CUDA application for lattice gauge theory is the QUDA library [27, 28] which

is still under active development. In Ref. [218] a first gauge fixing code for GPUs using the
overrelaxation algorithm was presented by one of the authors of cuLGT. Later the authors
1At the time, floating point operations were not supported by GPUs.
2Many Integrated Core Architecture
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7. cuLGT: Lattice Gauge Fixing on GPUs

who used CUDA for the first time to generate pure gauge configurations [219, 220], im-
plemented a gauge fixing for GPUs using a Fourier accelerated steepest descent algorithm
[221] and later implemented overrelaxation, adopting our 8-threads-per-site strategy, see
Section 7.4.2, in Ref. [222].
The first stable version of cuLGT was presented in Ref. [29] (cuLGT1) and in most

parts rewritten for Ref. [210] (cuLGT2). In Fig. 7.1, the optimizations by a factor of four
from the first (unpublished) attempt to the most recent version is summarized. With the
most recent version the implementation runs at 80% of the theoretical peak performance,
given by the memory throughput. The performance will be discussed in more detail in
Section 7.5.
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Figure 7.1.: Performance history of the cuLGT Landau gauge fixing code on a 324 lattice
with a GTX 580. Details are explained in Section 7.5.

7.2. Lattice Gauge Fixing as an Optimization Problem

Lattice Landau and Coulomb gauge is formulated as an optimization problem as a dis-
cretization of the continuum functional (2.28). Every minimum of (2.28) satisfies the local
gauge condition

∂µAµ(x) = 0, (7.1)

where µ = 0, 1, 2, 3 for Landau gauge and µ = 1, 2, 3 for Coulomb gauge.

7.2.1. Gauge functionals for Landau and Coulomb gauge

A possible choice for the lattice functional is given by

FU [g] = 1
NcNdV

∑
x,µ

Re tr
[
Ugµ(x)

]
(7.2)
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where Ug denotes the gauge transformed link variables

Ugµ(x) = g(x)Uµ(x)g†(x+ µ̂). (7.3)

Eq. (7.2) is a translation of the continuum functional (2.28) which corresponds to the
common linear definition of the gauge field

Alat
µ (x+ µ̂/2) = 1

2i
[
Uµ(x)− U †µ(x)

]
traceless

(7.4)

which is accurate up to O(a2). A measure for convergence of the algorithm is how well the
Landau/Coulomb gauge condition (7.1) is satisfied numerically. The lattice divergence is
given by the difference approximation

∆(x) = [∂µAµ(x)]lat =
∑
µ

[
Alat
µ (x)−Alat

µ (x− µ̂)
]
. (7.5)

We take either the lattice average of the L2-norm of ∆

θavg = 1
NcV

∑
x

tr
[
∆(x)∆†(x)

]
(7.6)

or, the more strict condition, the maximum thereof

θmax = 1
Nc

max
x

tr
[
∆(x)∆†(x)

]
(7.7)

as a criterion for terminating our algorithm.

7.2.2. The Algorithms

After having formulated lattice gauge fixing as an optimization problem we will explain the
algorithms which we use for solving the problem in the next sections. A detailed study of
various updating algorithms is presented in Ref. [223]. The algorithms are well-established
in the lattice community, only their optimization for GPUs is the novel contribution in
this chapter.
All algorithms are based on a localized version of the functional (7.2). We rewrite the

functional as a sum of local functions which depend only on the lattice site in the form

FU [g] = 1
2NcNdV

∑
x

fx[g] (7.8)

with
fx[g] = Re tr [g(x)K(x)] (7.9)

where we made the dependence on g(x) explicit. The function K(x) is given by

K(x) =
∑
µ

[
Uµ(x)g†(x+ µ̂) + U †µ(x− µ̂)g†(x− µ̂)

]
. (7.10)

Function (7.9) is then optimized locally, i.e. with respect to g(x) for all lattice points x,
one after the other. Updating all lattice points once is called a (gauge fixing) sweep. To
achieve global convergence of (7.2), many sweeps are necessary until a given precision ε is
reached, i.e. θ < ε in (7.6) or (7.7).
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Relaxation

For the gauge group SU(2) the local maximum of (7.9) is given by the gauge transformation

g(x) = K†(x)√
detK†(x)

(7.11)

which defines the relaxation algorithm. For gauge groups SU(Nc) with Nc > 2 the max-
imization is done iteratively for the N2

c − 1 SU(2) subgroups by the Cabibbo-Marinari
technique [58].

Overrelaxation

The authors of [224] proposed to replace the optimal gauge transformation g(x) in (7.11)
by the transformation

g → gω (7.12)

with ω ∈ [1, 2]. This updating procedure defines the overrelaxation algorithm, which
reduces critical slowing down compared to the relaxation algorithm. The lower limit ω = 1
is, of course, the standard relaxation. The upper limit ω = 2 is a so-called microcanonical
update. It does not change the value of the functional but helps to speed up thermalization
in the simulated annealing algorithm (Section 7.2.2). The optimal value for ω is determined
experimentally and is found to be between ω = 1.7− 1.9 for SU(2) and slightly lower for
SU(3).

Stochastic Relaxation

Stochastic relaxation is another algorithm to reduce the critical slowing down. The re-
laxation update g(x) is replaced by a microcanonical gauge transformation with a given
probability p. Again the parameter p ∈ (0, 1) has to be tuned by benchmarking.

Simulated Annealing

In the past algorithms inspired by nature have been applied successfully to numerical
optimization problems: genetic algorithms [225], particle swarm optimization [226] and
many more. These algorithms are especially helpful for finding global extrema in a rough
optimization landscape. For lattice gauge fixing, simulated annealing [227, 228] has proven
to be a very useful tool. It was first adopted to gauge fixing in Ref. [229]. Simulated
annealing is inspired by the field of metallurgy: to get a solid with few defects in the
crystal structure, the material is heated up above the melting point and then slowly
cooled down to the ground state.
In our application the ground state corresponds to the global maximum of the gauge

fixing functional (7.2). In contrast to the other algorithms discussed so far, which increase
the local functional (7.9) in each (local) update step, the simulated annealing algorithm
allows for worsening of the functional with a probability given by a Boltzmannian weight.
The simulated annealing update can be described by a Metropolis step where random

gauge transformation is accepted according to the probability distribution

P [g(x)] =

 1 if fg(x) ≥ f(x)
exp

(
fg(x)−f(x)

T

)
else,

(7.13)
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That means the random update is always accepted if it increases the functional value and
accepted with the given Boltzmann distribution if it decreases the value. The parameter
T plays the role of the temperature of the system. In practice, the simple Metropolis
algorithm will be replaced by a heat bath step where the random gauge transformations
are already generated with the correct probability distribution. It has exactly the same
structure as the updates in the Monte-Carlo chain for generating the gauge configura-
tions, see Section 2.4.1. The heat bath update is favorable for performance because the
acceptance/rejection step is avoided.
A crucial factor for the success of the algorithm is how the annealing schedule is defined.

In order to surely converge to the global maximum the system has to be in equilibrium
at all times. That means the temperature should be decreased in infinitely small steps
to T = 0. In practice, of course, a trade-off between the time to spend in the algorithm
and the quality of the optimization has to be made. In our algorithm we use linear
temperature steps, which are described by three parameters: the starting Temperature
Tmax, the final temperature Tmin and the total number of simulated annealing sweeps
NSA. These parameters have to be determined experimentally, see Section 7.5.3.
As already mentioned, applying microcanonical updates between the simulated anneal-

ing heat bath sweeps helps to thermalize the system. Note that repeated heat bath steps
for a fixed temperature would as well thermalize the system but they are numerically
much more expensive compared to the microcanonical updates. Usually, we use 3 to 5
microcanonical steps per heat bath step.
The simulated annealing algorithm alone (with a finite number of temperature steps) will

not satisfy (7.6) with high precision. Therefore, after the gauge configuration is brought
close to a maximum by the simulated annealing algorithm, we perform (over-)relaxation
updates until the desired precision is reached. These final updates can be thought of as
simulated annealing in the limit of zero temperature.

7.2.3. Logarithmic Gauge Field Definition
An alternative to the linear O(a2) approximation of the gauge field (7.4), the so-called
logarithmic definition is used sometimes, see for example Refs. [77, 230, 231]. There the
lattice gauge-field is extracted from the logarithm of theN×N matrix U by diagonalization

Aµ(x+ µ̂/2) = 1
iagΩ†µ(x) logUdµ(x)Ωµ(x), (7.14)

with the diagonal matrix
Udµ = Ωµ(x)Uµ(x)Ω†µ(x) (7.15)

in the notation of Ref. [77]. For the logarithm definition the algorithms discussed here are
not suitable, since they are based on the linear approximation. A widely used algorithm
which is suitable for the linear and the logarithmic definition is Fourier accelerated steepest
decent, as for example in the CUDA implementation of Refs. [221, 222].

7.2.4. Parallelization
Due to the strict locality of the algorithms based on (7.10), a generalization to parallel
architectures is straightforward. For the computation of the gauge transformation g(x)
at site x, only the links Uµ(x) and Uµ(x − µ̂) contribute. Therefore, every second sites
are completely independent of each other. That allows to update the sites in parallel
in a 4-D checkerboard fashion as illustrated in Fig. 7.2. This will be the starting point
for the CUDA implementation. The Fourier accelerated steepest decent algorithm as
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mentioned in Section 7.2.3 does not allow for such a simple parallelization due to the
non-local nature of the Fourier transform. For pure MPI or pure CUDA codes an efficient
fast Fourier transform is available, while to our knowledge a heterogeneous MPI-CUDA
implementation is not available. Therefore, a multi-GPU implementation of the Fourier
accelerated steepest decent is still lacking.
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Figure 7.2.: Two-dimensional checkerboard layout for the parallel update of gauge trans-
formations. Red and black sites are independent of each other and allow an
update in parallel.

7.3. The CUDA Programming Model

In this section we will give a short introduction to GPU computing with CUDA. We focus
on the peculiarities that are needed to understand the design of our implementation. A
more detailed introduction can be found in the official CUDA programming guide [232]
and in various textbooks, e.g. Refs. [233, 234].

7.3.1. The Thread Hierarchy

The CUDA programming model provides two levels of parallelism: a fine-grained paral-
lelism were threads can communicate in a so-called block and a coarse-grained parallelism
of blocks within a grid. The grid structure provides scalability to devices with different
number of multiprocessors. For a problem with a fixed number of blocks, these blocks are
divided to the available number of multiprocessors. If more multiprocessors are available,
less blocks are scheduled to each multiprocessor. Since blocks cannot communicate with
each other, the problem has to be formulated such that individual blocks are completely
independent of each other and can run in any order. For communication within blocks a
shared memory and barrier synchronization is available.
The development of code with such a thread hierarchy is introduced in the C++ lan-

guage by the __global__ specifier to denote a special kind of function, the so-called kernel.
A kernel is invoked by specifying the grid size (the number of blocks) and the block size
(the number of threads per block). CUDA, with the background of 3D computer graphics,
offers a 3 dimensional grid and block structure, a 4 dimensional structure as needed for
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the 3+1 dimensional space-time of lattice QCD is not available. Therefore, we use the
linear, one dimensional structure and calculate 4 dimensional coordinates from the one
dimensional index if needed.
Of special importance is, that threads within a block are executed in groups, the so-

called warps. A warp consists of 32 threads on all present architectures. All threads of a
warp should execute the same instruction for highest efficiency. If branching occurs within
a warp, i.e. if the threads follow a different code path in an if- or switch-statement, the
execution is serialized for each of the branches (warp divergence).

7.3.2. Hardware and Memory Layout

The CUDA thread hierarchy of the preceding section is reflected in the hardware of the
GPUs. The CUDA cores are organized in so-called streaming multiprocessors (SM for
Fermi, SMX for Kepler). Each Fermi SM features 32 CUDA cores (units for arithmetic
operations), while the SMX of the Kepler generation features 192 cores. The number of
streaming multiprocessors differs between chips of the same architecture. All threads of
a thread block are assigned to one of the streaming multiprocessors. This allows on-chip
data exchange within blocks via shared memory, see below.
In the CUDA terminology the CPU is called host and the GPU is called device. Both

host and device have their separate physical memory, called host and device memory.
Memory transfers between host and device are limited by the bandwidth of the PCIe
bus. The bandwidth between host and device is considerably lower compared to on-device
memory transactions. However, for our single GPU implementation, we only need to
copy the data (the gauge field) once to the device and once back, after gauge fixing is
done. In this case host-device transactions are completely negligible. In the multi-GPU
implementation, Section 7.4.4, care has to be taken to hide the host-device transfer times
by computation.
On the device, several types of memory are available. Global memory is the part of

device memory that is accessible from the host and all device threads. For devices of the
Fermi architecture it is cached in L1 and L2 caches3. In the Kepler architecture a L1 cache
is available, however L1 caching is disabled by default and can be activated only for some
devices. The L1 cache is then solely reserved for caching local memory, see below. For
our application bandwidth to global memory is the limiting factor for performance and
needs special attention, see Section 7.4.1. Additionally to the bandwidth limitations, reads
from global memory have a very high latency of about 500 cycles. To hide the latency
it is desirable to have much more active threads than CUDA cores on a multiprocessor.
Shared memory is a fast on-chip memory which is accessible by all threads within a block
and resides in the same hardware as the L1 cache. Each thread can use its own private
memory, the so-called local memory. Local memory is automatically used for all variables
within a kernel that cannot be placed in registers. Variables are put in local memory, for
example, if more registers are needed than available or for arrays where the elements are
not addressable at compile time. Local memory uses the same hardware as global memory
and therefore suffers from the same bandwidth and latency limitations.
Detailed characteristics of the devices (latencies of the memory types/caches, caching

strategies, etc.) are usually not officially documented. However, there are several studies
which try to track down the characteristics by microbenchmarking. These benchmarks
3These caches are much smaller compared to CPU caches and additionally shared by more cores. There-
fore they should in general not be thought of caches to reuse data that was previously loaded, but more
to improve imperfect memory access patterns, see Section 7.4.1. Cache-blocking, which is a standard
optimization technique for CPUs, is therefore not applicable in GPU programming.

93



7. cuLGT: Lattice Gauge Fixing on GPUs

try to disentangle the different performance-relevant factors. For a recent review see [235]
and references therein.

7.4. Optimizations for GPUs

At the time of the development of the first version of cuLGT the most recent generation
of CUDA-capable GPUs was the so-called Fermi architecture. Therefore, the theoretical
considerations in this chapter are mainly based on the properties of Fermi GPUs as listed
in Table 7.1.

architecture Fermi Kepler
compute capability 2.0 3.0 3.5
cores / SM 32 per SM 192 per SMX
warp size 32
L1 cache / SM 16 KiB or 48 KiB
shared memory / SM 16 KiB or 48 KiB
32-bit registers / SM 32768 (32Ki) 65536 (64Ki)
max. registers / thread 63 255

Table 7.1.: Specifications of the Fermi and Kepler architectures.

7.4.1. Memory Transfer

Before we start with the optimization we will do a theoretical analysis of the gauge fixing
algorithm. For the sake of simplicity we will concentrate on the overrelaxation implemen-
tation for the gauge group SU(3) in single precision.

The arithmetic intensity or compute to global memory access (CGMA) ratio [234]

I = Nops
Tmem

(7.16)

of an algorithm is a measure of how many (floating-point) arithmetic operations Nops are
executed per memory transfer Tmem. It can be used as a measure of how well a certain
algorithm fits to the hardware. To fully utilize a device the arithmetic intensity should be
as close as possible to the FLOPS4 to bandwidth ratio Idev of the device. In the case of
I > Idev we say the algorithm is compute bound. That means the performance is limited by
the floating point operations per second. On the other hand, we say a program is memory
bandwidth bound if I < Idev, i.e. if the algorithm is limited by the memory bandwidth.
The ideal CGMA ratio is listed in Table 7.2 for several devices. For all devices the

GTX 580 GTX 680 GTX Titan Tesla K20
ISPdev[byte−1] 8.2 16.1 15.6 16.9
IDP
dev[byte−1] 1.0 0.7 5.2 5.6

Table 7.2.: Optimal CGMA ratio for single and double precision.

value is around 10 for single precision and significantly lower for double precision, due
4We use FLOPS (with capital “S”) for floating point operations per second and FLOPs (small “s”) for
the plural of floating point operation.
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to the reduced number of double precision units per streaming multiprocessor5. The
overrelaxation algorithm allows an easy calculation of the arithmetic intensity as it is fully
deterministic6.
Updating a single site with the overrelaxation algorithm costs 2274 FLOPs. See Ap-

pendix E for a detailed description about how we counted FLOPs. For the computation of
the new gauge transformation the 2Nd surrounding links have to be loaded from (global)
memory and stored after the update. For SU(3) we are dealing with 3× 3 complex matri-
ces, and thus with a size of 72 bytes in single precision or 144 bytes in double precision.
For Nd = 4 space-time dimensions, this amounts to 576 bytes or 1152 bytes for single and
double precision respectively for reading and the same amount for writing the updated
matrices back to memory, per lattice site. This result in an arithmetic intensity of

ISPover ≈ 2.0/byte, (7.17)
IDP
over ≈ 1.0/byte (7.18)

for the overrelaxation Landau gauge algorithm. From these theoretical considerations it
is clear that our algorithm is limited by memory bandwidth in single precision and also in
double precision for most of the devices.

Reduce Memory Transfer

To reduce the memory usage in the gauge fixing algorithms we can make use of the
symmetry of the SU(3) matrices. Instead of keeping the full 3 × 3 complex matrices (18
parameters) in memory we keep only the first two rows u and v (12 parameters) and
reconstruct the third row by the cross product of the complex conjugates of u and v when
needed:

U =

 u
v

u∗ × v∗

 . (7.19)

With this optimization we reduce the memory load for one site by a factor of 1/3 to 384
bytes (by the exchange for more arithmetic operations). The increase in floating point
operations is expected to be hidden since the kernel is memory bound as discussed in the
previous section. This technique was proposed long ago in [236] and first applied to GPU
computing in [214]. Note that a minimal 8 parameter representation U = uaT

a, with T a
the generators of SU(3), would be possible. However the reconstruction would drastically
increase the computation and numerical inaccuracies are expected to accumulate faster.
Compared to the application in Ref. [27] this effect is even more pronounced in our setup,
since we need to compress and reconstruct the matrices in every iteration, where they only
need to reconstruct. Therefore, we did not try this approach.

Optimize Memory Access: the Memory Patterns

The most important aspect for memory bound kernels is to read data efficiently. On GPUs
one has to deal with a special design of the memory controller. Memory transactions of
the same warp are coalesced into a single load/store operation if the data resides in the
5In the gaming GPU GTX 580 some of the double precision floating point units are disabled.
6The simulated annealing algorithm, which is based on a probabilistic evaluation with random numbers,
only allows to determine a lower bound with simple calculation. A precise calculation (based on
averaging multiple runs) would be a function of the gauge coupling, since the roughness of the gauge
field influences the behavior of the algorithm.
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same 128-byte aligned memory segment.
Simplified that means that neighboring threads should access neighboring memory location
in each load/store operation. In practice that means for our algorithm that instead of
using a natural memory layout where matrix elements of the same matrix are adjacent in
memory (array of structures) one has to reorder the gauge configuration in a structure of
array form as illustrated in Fig. 7.3, i.e. all the first entries of all matrices are adjacent in
memory.

Figure 7.3.: Illustration of the memory layout. In the standard layout (top) the matrices
are stored (in a row-major order) one after the other. In the GPU-optimized
patterns (bottom) the first elements are the first entries of all matrices, then
the second elements of all matrices and so on.

Parity ordering: As already explained, we use a checkerboard layout to do the parallel
updates. For coalesced memory transactions it is necessary to order the lattice sites by
parity

p = (t+ x+ y + z) mod 2 (7.20)

as illustrated in Fig. 7.4. All sites of the same parity are adjacent in memory.

Figure 7.4.: Starting from the checkerboard layout (l.h.s) the sites are rearranged ac-
cording to their parity (r.h.s).

Using CUDA vector datatypes: In the first version of cuLGT (cuLGT1) the individual
matrices where represented as scalar float or double variables. In an improved version
(cuLGT2) this restriction was relaxed, allowing to use the native CUDA vector datatypes
float4 and double2 to represent a matrix. A reason to prefer vector datatypes over the
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scalar datatypes is the following: For a given site x(a) 8 links are loaded from memory.
Four of these start from the site x(a), the links Uµ(x(a)). As described above, it is now
possible to reorder the lattice in a way that the next lattice site x(a+1) is adjacent to
x(a) in memory. However it is not possible to arrange the lattice in a way that at the
same time the four neighbors Uµ(x(a) − µ̂) fulfill the same condition, i.e. that elements of
Uµ(x(a+1) − µ̂) are adjacent to Uµ(x(a) − µ̂) for all µ. In this case coalesced loads are not
possible. For a representation with scalar datatypes that means that, in the worst case,
each thread in the warp needs a full 128-byte memory load for a single float (4 byte) or
double (8 byte) variable. For the vector datatypes (16 byte) the utilization of the memory
is improved by a factor of 4 (float) or 2 (double).

Summary of memory patterns: While a full 4 dimensional checkerboard layout is the
natural choice for Landau gauge, Coulomb gauge operates only on a 3 dimensional times-
lice. Therefore, we have an additional memory pattern where the timeslice index is running
slowest, i.e. a whole timeslice is a block in memory. This layout is also convenient for the
multi-GPU Landau gauge application, Chapter 7.4.4, where we distribute timeslices over
the nodes. Finally, for the CPU implementation, Section 7.5.2, we use a layout where ma-
trices are continuous in memory, but the lattices sites are ordered by parity. The memory
patterns for gauge configurations in cuLGT are

• StandardPattern (natural layout): t, x, y, z, µ,Mi

• StandardPatternParityPriority: p, [t, x, y, z]p, µ,Mi

• GPUPatternParityPriority: p, µ,Mi, [t, x, y, z]p

• GPUPatternTimesliceParityPriority: t, p, µ,Mi, [x, y, z]p.

The slowest running index is given first, space-time indices are denoted by t, x, y, z. Mi

denotes the index of the matrix elements. In the previous sections we discussed the 12
parameter representation of SU(3) matrices and the use of the CUDA vector types. In the
case of the 12 parameter representation we need three float4 or double4 variables, then
Mi would be 0 . . . 2. For a full matrix representation with floats or doubles we would
have Mi = 0 . . . 17.

Using the Texture Cache

In addition to the L1- and L2-caches, Section 7.3.2, the GPUs have a read-only texture-
cache. The texture cache is designed for reads with a 2D spatial locality [237]. The
requirement for coalescing are not as strict as for reads from global memory. Non-optimal
memory reads as mentioned in the previous section may benefit from the use of the texture
cache for link loading. Additionally, local memory is displaced from the L1-cache to
the slow device memory with a lower probability. In [27] texture loading was already
successfully applied to link loading. Also, in the context of gauge-fixing, this technique
proved very useful [221]. In cuLGT, using the texture cache is implemented as a template
switch in the GlobalLink class.

7.4.2. Multiple Threads per Lattice Site
The straight-forward parallelization is to update one site per thread. Such a strategy,
however, is not ideal. To update a single site we need to keep 8× 18 = 144 real variables
available (all 8 links are loaded and then all these links are updated with the gauge
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transformation). However, in the Fermi architecture only 63 32-bit registers are available
per thread7. Thus, a lot of variables are spilled to local memory increasing the pressure on
the memory bus, which is already the main limitation for the bandwidth-limited algorithm.
With this naive approach we do not use the two levels of parallelization (grids and

blocks) that are available in CUDA. To relax the register pressure we therefore use a
finer level of parallelization. In cuLGT1 we used 8 threads for a site update. Then, each
thread deals with only one of the eight links. In cuLGT2 we added the option to use
4 threads per site. Both strategies considerably improve performance compared to the
naive single thread per site technique. On most GPUs the 4-thread-per-site strategy is
the favored one. With this improved parallelization the number of registers per thread,
to store the links, is reduced to 18 (SP) or 36 (DP). In practice, of course, more registers
are needed for intermediate results in the computation (reconstruction, calculation of the
gauge transformation, application of the transformation).
For both strategies it is essential to invoke the kernel with a block size that is a multiple

of N times the warp size (32 threads) to prevent warp divergence, where N = 4 or 8 is
the number of threads per site. For the 8-threads-per-site strategy the order of threads to
avoid warp divergence is illustrated in Fig. 7.5. The first 32 threads in the block deal with
the time-links Ut(x) for 32 different sites x, the next 32 threads take care of the neighbors
in time Ut(x− t̂) and so on.

Figure 7.5.: Structure of a thread block for the 8-threads-per-site strategy.

In contrast to the naive parallelization, the multiple-threads-per-site strategies need to
communicate with each other. As already mentioned, for inter-thread communication
within a block we can use the fast on-chip shared memory to accumulate the sum of
links in (7.10). To avoid a race condition on the summation variables we use atomic
operations (atomic_add()) for single precision. For double precision, due to the lack of
a corresponding double precision atomic operation, we are forced to serialize the memory
access using barriers (__syncthreads())8. With the 8-threads-per-site strategy no register

7Note that on the Kepler (for compute capability > 3.0) and Maxwell architecture the register limitation
is relaxed to 255. Still, for double precision we would need 288 32-bit registers, exceeding again the
register limitation.

8Emulating double precision atomic adds with the atomicCAS (compare and swap) operation as proposed
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spilling occurs at all, if no further restrictions are manually applied to the kernel (see the
discussion of launch bounds in Section 7.4.3). On the other hand, the total number
of registers in a streaming multiprocessor is limited, too. As a result, the number of
simultaneous active sites in the multiprocessor is reduced because the total amount of
registers per site is increased. As it turned out, the multiple-threads-per-site strategy still
gives a huge performance improvement, see Fig. 7.6 for a comparison of the single thread
and the 8 threads code. However, the balance between relaxing register pressure (by more
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Figure 7.6.: Performance of 8 threads per site vs. 1 thread per site (cuLGT1) for various
lattice sizes in single and double precision.

threads per site) and increasing the number of simultaneous active threads (by less threads
per site) cannot easily be estimated and depends on the specific hardware.

7.4.3. Automatic Tuning for Optimal Performance

Another optimization one may consider is manually restricting the number of registers by
forcing launch bounds on the kernel. By specifying the maximum number of threads per
block and the minimum number of blocks per multiprocessor one can manually influence
the default heuristic of the compiler which tries to balance between register spilling and
instruction count [232]. The concept for optimization is the same as discussed in the
preceding section (less registers may increase performance by a higher occupancy) and for
the same reason a theoretical estimate for optimal settings is hardly feasible.
Therefore, in cuLGT2 we introduced a automatic tuning of the gauge fixing kernels,

which allows for a detection of the optimal setup for each individual hardware. Before the
actual gauge fixing we run a stage where the kernels are probed with all combinations of
different options. In cuLGT2 the options are:

• various launch bounds

• enable or disable link loading via the texture cache

in Ref. [232] turned out to be less performant than our approach.
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• use 4 or 8 threads per site.

These options are combined at compile-time via template meta-programming using boost’s
MPL [238]. The optimal setting is then selected in the first program launch at run-time
and saved for the next run.

7.4.4. Multi-GPU
The memory that is available on a GPU is limited and, in contrast to the CPU memory,
it is not extendable. At the time of writing, the devices with the largest memory are the
Tesla K40 and Tesla K80 with 12 GiB memory. This gives an upper limit of around 644

on the size of SU(3) lattices that can be kept on a GPU. Thus, for large lattice sizes it is
essential to split the computation among multiple GPUs. The common and most general
approach is to use a MPI-based parallelization for the communication between the hosts
of different GPUs. On a smaller scale it would be possible to use CUDA streams to run
kernels on multiple GPUs assembled in one host system. We will discuss the MPI-based
approach. The data presented in this section is based on the implementation of Ref. [29]
(cuLGT1).
In the following, we will assume that one MPI host process is associated with one GPU.

Thus, the number of processes Nprocs is equal to the number of GPUs. We use a domain
decomposition of the Nt ×N3

s lattice in only the time direction. Then, each GPU works
on a partition of Nt/Nprocs timeslices. In the following, we will skip the spatial argument
x for a lattice point x = (t,x), whenever only the timeslice index t is important. Since
the gauge update at a partition boundary involves the links Ut(x − t̂) ≡ Ut(t − 1) of the
partition to the left, we need to exchange these boundary layers between devices.

Data Exchange

We will label the first timeslice of device i with timin and the last timeslice with timax. Then,
only the gauge transformation at the first timeslice g(timin) depends on data of a different
node, since it involves the links Ut(timin−1) = Ut(ti−1

max). These links need to be exchanged.
Since we operate on the red and black sublattices separately, the calculation of the gauge
transformations g(timax) of the active parity are independent of the data exchange of the
passive links Ut(timax). Thus, all timeslices except the timin can be updated independently
(without data exchange), while for the update of timin we need to perform communication
steps. The setup is depicted schematically in Fig. 7.7. In the following listing we use CUDA
and MPI language to name the communication steps: cudaMemcpyXToX for communication
between host and device and MPI_Send/MPI_Recv for inter-node communication.

1. cudaMemcpyDeviceToHost of Ut(timax)

2. • MPI_Send of Ut(timax) to device i+ 1
• MPI_Recv of Ut(timin − 1) from device i− 1

3. cudaMemcpyHostToDevice of Ut(timin − 1)

4. update timeslice tmin (affects Ut(timin − 1))

5. cudaMemcpyDeviceToHost of Ut(timin − 1)

6. • MPI_Send of Ut(timin − 1) to device i− 1
• MPI_Recv of Ut(timax) from device i+ 1
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Figure 7.7.: Distribution of the timeslices in the multi-GPU setup. The doted arrows
denote links which need to be available on the device to the right as halo
links.

7. cudaMemcpyHostToDevice of Ut(timax)
Note that the we need extra memory for the links Ut(timin− 1) which belong to node i− 1
(the Ut(ti−1

max) links). This extra memory is called the halo region.
We use the memory pattern GPUPatternTimesliceParityPriority, introduced in Sec-

tion 7.4.1. There, the time index is running slowest and the 3-dimensional spatial lattice
(in each timeslice) is split into red and black parity. Within each parity the Lorentz index
µ is the slowest running index. Thus, the relevant parts for exchange (fixed parity and
µ = t) build a continuous block in memory. Therefore, only 1/8-th of the timeslice needs
to be exchanged.9

In order to hide the data transfer, we overlap the calculations of the inner timeslices
with the exchange of the halo region. The weak and strong scaling of our implementation
will be presented in Section 7.5.2.

7.5. Results
7.5.1. Numerical Accuracy
During the gauge fixing iterations a numerical round off error will accumulate. Especially
for single precision the numerical error needs to be controlled. In the following we investi-
gate the numerical accuracy by studying the violation of unitarity of the SU(3) matrices
as a function of the number of gauge fixing steps without reprojection10. In Fig. 7.8 we
show the average violation

1
4V

∑
x,µ

|1− det(Uµ(x))| (7.21)

91/2 for parity and 1/4 of one parity since we only need to exchange the time links µ = t.
10Usually, a projection of the links back to SU(3) is performed after some iterations to deal with the

round-off errors and the loss of unitarity.
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and the maximal violation
max |1− det(Uµ(x))| (7.22)

of unitarity. In addition to single precision (SP) and double precision (DP) we show the
accuracy of a mixed precision (MP). In the mixed precision algorithm we use single preci-
sion to store links in memory but calculate the gauge transformation in double precision.
Our intent with mixed precision is to have a fast algorithm with higher numerical accuracy
compared to single precision. After 12000 steps of the overrelaxation algorithm the error
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Figure 7.8.: Violation of unitarity as a function of the number of iterations.

in double precision is well below 10−12, whereas in single precision the maximal violation
is in the order of 10−2. Mixed precision is more stable by one order of magnitude. The
peaks are single outliers that appeared only on one of our devices and might be related to
a malfunction of that device.

As it turned out, in Fig. 7.9 the value of the gauge functional FU [g] (7.2) is very
sensitive to the precision. Especially, when no reprojection steps are included, the final
single precision value deviates substantially from double precision. Additionally, in single
precision it is essential to include reprojection steps since the value FU [g] even starts to
decrease for a large number of steps. On the other hand, the functional value in double
precision is monotonically rising even without reprojection11. Together with the stable
unitarity from Fig. 7.8 we conclude that double precision without reprojection is very
accurate. Thus, we use that curve to test the other algorithms in more detail in the inner
plot of Fig. 7.9. There, we show the relative deviation of the different algorithms from the
final value in double precision

δ(n) = F alg(n)− FDP(12000) (7.23)

over the number of gauge fixing steps n. After 12000 steps the single precision with
reprojection (after every 100 steps) and mixed precision without reprojection stay within a
deviation of 2×10−5, mixed precision with reprojection even within 5×10−6. Qualitatively,
11In production runs we apply reprojection in all setups, including double precision.
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Figure 7.9.: Functional value as a function of the number of iterations with and without
reprojection for single, mixed and double precision. Inner plot: deviation
from the final double precision value.

the mixed precision algorithms have the same behavior as double precision, they rise
monotonically and saturate at a constant value. On the contrary, single precision does not
saturate and shows, on the scale of the plot, a clear zigzag from the reprojection steps.
The choice of the algorithm clearly depends on the specific problem. If one wants to

select only a random gauge copy from the Gribov region and one does not depend on a
high accuracy in the gauge fixing, the single precision algorithm might be enough. If the
global maximum is sought, we recommend to use at least mixed precision. Mixed precision
is a interesting choice since it achieves nearly the same performance as single precision,
see Section 7.5.2.

7.5.2. Performance Results

In the following we will first discuss the performance of the overrelaxation algorithm on a
single GPU, then we will analyze the scaling of our multi-GPU implementation.
We use the number of floating point operations per second as a measure of performance.

It is based on the calculation as described in Appendix E, intended to serve as a measure to
compare the algorithms to other architectures. Note that the actual number of operations
that are performed on the device differs for several reasons. First, we did not include the
overhead for reconstruction of the third line, in the case of SU(3). Second, we did not
account for fused multiply-add operations.

Performance on Single GPUs

In Fig. 7.10 we compare the performance on GPUs from the Fermi and the Kepler gen-
eration. The GTX 580 (Fermi) and the GTX 680 (Kepler) are consumer GPUs. They
suffer from a limited double precision performance. The Tesla K20 (Kepler) is a general
purpose GPU, i.e. specially designed for high performance computing. The ratio of double
to single precision performance is 1:3. The high-end consumer card GTX Titan, equipped
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Figure 7.10.: Performance on different GPUs for a lattice of size 324.

with the same chip, has the full double precision power of the chip, but lacks features,
like ECC memory, compared to the Tesla model. Among these GPUs, the GTX Titan
performs best at around 670 GFLOPS and 250 GFLOPS in single and double precision
respectively. The main difference to the other GPUs is a significantly higher memory
bandwidth. Even though the Tesla K20 is equipped with the same chip, one SMX is
disabled (192 CUDA cores less) and, since the Tesla GPUs are designed for continuous
operation, the core clock is reduced compared to the GTX Titan. It is worth mentioning
the considerable difference in double precision performance. For example, the GTX 580
(a GPU with reduced double precision performance) clearly falls behind the Tesla K20
even though the memory bandwidth is nearly same for both devices. Additionally to the
increased compute power for double precision operations, the effect of the relaxed register
per thread limit might play a role.
An important result is that on all GPUs the mixed precision code runs nearly at the

same speed as the single precision program. This makes mixed precision an attractive
option when balancing between numerical accuracy and performance.
A more detailed look on the performance of our top performer, the GTX Titan, is given

in Fig. 7.11. We compare three different spatial volumes (Nt × 163, Nt × 243, Nt × 323)
as a function of the temporal lattice extent Nt. For each lattice size, the algorithm was
tuned, as described in Section 7.4.3. Then, we took the average of 100 individual runs
with 1000 overrelaxation steps. For the smallest lattices (up to 32× 163) the problem size
is not big enough to fully utilize the device and therefore the performance lags behind the
maximum. For the bigger lattices the performance is more or less stable. Only on the
80 × 243 lattice a surprising dent appears. However we did not try to identify the origin
of this behavior.
In Fig. 7.1 we already showed, that the GTX 580 operates at 80 % of the theoretical

bandwidth in single precision. For the GTX Titan, with the significantly higher memory
bandwidth, the throughput is slightly worse with 75 % of the theoretical peak.
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Figure 7.11.: Single GPU performance on a GTX Titan for lattices sizesNt×163, Nt×243

and Nt × 323 with Nt = 8, . . . , 128 in single, mixed and double precision.

Performance on Multi-GPUs

At the time of writing, our multi-GPU code is not yet ported to the improved cuLGT2
design. Therefore, the results in this section are still based on the cuLGT1 code. The
performance analysis was carried out on the “mephisto” cluster at the University of Graz.
Each node of the cluster is equipped with two Intel Xeon X5650 (“Westmere”) CPUs (6
cores) and 4 NVIDIA Tesla C2070. The nodes are connected via InfiniBand. For our
study we used up to 16 GPUs (4 nodes) of the cluster.
Fig. 7.12 demonstrates linear weak scaling of our implementation. We used two different

lattice sizes: 64×323 per GPU and 484 per GPU. In both cases we see perfect linear scaling.
The better performance of the lattice with the bigger spatial size (483) is reasonable. In
the multi-GPU implementation we update individual timeslices. The smaller (323) lattice
is not big enough to fully occupy the device. To improve performance of the smaller
lattices one could update several timeslices at one. However, with the multi-GPU code,
we focused on very large lattices and did not implement improvement for smaller spatial
volumes.
For a given lattice size, the performance, when increasing the number of GPUs, will

eventually drop because the computation in a node will not be able to hide data transfer
between the nodes. As depicted in Fig. 7.13, linear strong scaling is achieved on up to 16
nodes for a (total) lattice size of 256× 643. For a smaller lattice of size 128× 643 linearity
is only achieved up to 8 GPUs. Performance drops by 15 % (DP) to 30 % (SP) when all
16 GPUs are used. For the smallest set with time extent 96 the performance is decreased
further. At 12 GPUs the performance completely saturates.

Comparison to CPU Code

Finally we compare our GPU code to CPU implementations. In Ref. [29] we compared to
the publicly available overrelaxation algorithm of the FermiQCD library [239]. However,

105



7. cuLGT: Lattice Gauge Fixing on GPUs

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  4  8  12  16

S
us

ta
in

ed
 G

F
LO

P
S

Number of GPUs

SP
MP
DP

Figure 7.12.: Weak scaling on lattices of size 64 × 323 (open symbols) and 484 (filled
symbols) per device.
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Figure 7.13.: Strong scaling on lattices of total size 256 × 643, 128 × 643 and 96 × 643

(from highest to lowest performance).
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it turned out that the implementation is far from optimal, even in the single core setup.
Therefore, we present here a performance measurement based on our own code which is
faster by a factor of 5-10. We do not want to go in detail since the implementation does
not make use of any optimizations for the hardware. For an optimized version several
options would have to be considered, foremost, the link operations should explicitly make
use of SIMD instructions (SSE, AVX) which would also be an important first step for an
efficient implementation on Intel MIC hardware. For a recent approach on implementing
flexible SIMD vector types for QCD codes we refer to Ref. [240].
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Figure 7.14.: Comparison of different CPU nodes in single and double precision:
Setup 1: Intel Core i5-4460 @ 3.20GHz; Setup 2: 2 x Intel Xeon E5-
2609 v2 @ 2.50GHz; Setup 3: 2 x Intel Xeon E5530 @ 2.40GHz (8 physical
cores, 16 virtual cores with hyper-threading).

In Fig. 7.14 we show the performance of our CPU code on three nodes equipped with
different CPUs. For the CPU implementation we used a variant of the StandardPattern
where the lattice sites are ordered by parity, but the matrices are continuous in memory.
Additionally, we did not use the 12 parameter representation of the SU(3) links, but used
the full 3× 3 complex matrix. We verified that, as expected, the computational overhead
of the reconstruction leads to a performance decrease on the CPU.

A significant difference between the GPU and CPU performance is the ratio of double
to single precision. While on the GPUs the best ratio is slightly worse than 1 : 2 for the
Tesla K20s, the double precision operates still at 60% of single precision in the worst case
on CPUs (Setup 1 with 4 cores).
Setup 3 are the nodes from the CPU cluster of our institute. The GPU cluster is

equipped with GTX Titan GPUs. Thus, when switching from a CPU node of the cluster
to one of the GPUs we gain a factor of nearly 40 in single precision and still more than
a factor of 15 in double precision. Although these numbers show the importance of the
GPU implementations for our group, they have to be treated with care for two reasons.
As we already stressed in the beginning, we put a lot of effort in the GPU optimizations,
while the CPU implementation is basically a straight forward implementation. Secondly,
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Figure 7.15.: Functional value and gauge precision as a function of the simulated an-
nealing temperature when cooling down from 10 to 10−4.

the GTX Titan GPUs, are at the point of writing, still state of the art, while the CPU
cluster is not equipped with the latest hardware. For a detailed comparison of CPU and
GPU implementations these issues need to be resolved. Of further interest would be to
compare the energy consumption (operational costs) which is usually in favor of GPUs
[241] and the acquisition costs.

7.5.3. Towards the Global Maximum
The simulated annealing algorithm, as already discussed, is used to improve the probability
to find the global maximum of the functional (7.2), i.e. to locate the Gribov copy in the
fundamental modular region. Defining an optimal annealing schedule is important: on
the one hand, the temperature steps have to be small enough to be close to equilibrium
but, on the other hand, the number of steps should be minimal in order not to waste
time in unnecessary iterations. In Fig. 7.15 we investigate the evolution of FU [g] and the
gauge precision θ with temperature for a hot12 gauge field of size 324. We decrease the
temperature linearly from 10 to 10−4. We find that for temperatures T > 4 it is not very
sensitive to the specific value. In this setup the starting temperature should be chosen
around T ∈ [2, 4]. The sensitive interval may, of course, depend on the size of the lattice
and the inverse gauge coupling β.
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Figure 7.16.: The relative deviation from the maximal gauge functional. From left to
right with 10000, 3000 and zero simulated annealing steps.

In Fig. 7.16 we demonstrate the success of the simulated annealing in finding the max-
imal value with higher probability. We take a 324 thermalized configuration at β = 5.7
12All links are chosen randomly in SU(3). This corresponds to an inverse coupling β → 0.
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and apply Nsasteps = 10000, 3000 and zero annealing steps prior to a final overrelaxation
gauge fixing. The simulated annealing temperature is now decreased from 4 down to 10−4.
Overrelaxation is stopped once the precision θ < 10−10 is reached. For each Nsasteps we
start gauge fixing from 100 random gauge copies, i.e. we first apply a random gauge
transformation at each lattice point. In the figure we show the relative deviation F grel from
the maximal value that is found in all copies

F grel = F gmax − F g

F gmax
. (7.24)

Firstly, the distribution clearly tends towards the highest value if the number of simulated
annealing steps is increased. Secondly, a high number of the costly simulated annealing
steps is essential to find the highest value. Note that this result is only a snapshot of
a single gauge configuration. Already for this test several hours were needed on two
Tesla C2070 GPUs. A more detailed test is beyond the scope of this work.

7.6. Summary
In this chapter we discussed the technical part of gauge fixing in lattice field theory. We
first stated the optimization problem and discussed several well-established algorithms
for solving it. Then we turned to parallelization of these algorithms. In the main part,
after a general introduction to GPU programming with CUDA, we discussed several per-
formance optimization for our GPU implementation, including an implementation for
multiple GPUs. Then, we provided a detailed performance analysis for single and double
precision algorithms and a version with mixed precision at the example of the overrelax-
ation code for Landau gauge. The mixed precision calculates the gauge transformation
in double precision while the links are stored in single precision leading to a performance
boost over double precision at a better numerical accuracy compared to single precision.
We achieved a performance of about 670 GFLOPS on a GTX Titan, the best-performing
GPU of our study. We also critically discussed the speedup of a factor of 15 (DP) or 40 (SP)
compared to a full node of the CPU cluster of our institute. Finally we showed how the
simulated annealing algorithm improves the probability of finding the global maximum of
the gauge functional.
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8. Conclusion and Outlook

For our study of strongly coupled gauge theories in Coulomb gauge we employed the
lattice approach, a numerical technique based on the discretization of space-time on a
hypercubic lattice. Apart from this numerical approach, Yang–Mills theory and QCD
in Coulomb gauge were also studied by means of analytic methods, e.g. the Hamiltonian
approach [17–23]. Both the lattice and the Hamiltonian approach find vacuum solutions of
the gluon and the ghost propagator in agreement with the confinement scenario developed
by Gribov and Zwanziger. While the solutions agree quantitatively very well for the
gluon propagator [44], the infrared exponents of the ghost form factor is off by a factor of
two [108]. This result is puzzling since the infrared exponents of the gluon propagator are
coupled by a sum rule which follows by the well-motivated assumption that the ghost-gluon
vertex is bare [125]. However the lattice results violate the sum rule.
A possible source for this disagreements could be the Gribov ambiguity: the choice of

gauge does not uniquely identify a single gauge field configuration and one has to further
restrict the path integral to resolve the over-counting of gauge equivalent fields. This can
be achieved by restricting the field configurations to the first Gribov horizon and even
further to the fundamental modular region. While for gauge-independent observables the
specific choice to resolve the Gribov problem is not important, gauge-dependent quantities
might well depend on the particular choice. In Chapter 3 we review the well-established
way, based on finding the global maximum of the gauge functional, the so-called best-
copy approach, and compare it to a novel idea put forward in [129] and already success-
fully applied in Landau gauge [135]. This new approach chooses the Gribov copy where
the smallest eigenvalue of the Faddeev–Popov operator is closest to zero, the so-called
lowest-copy approach1. The best-copy can be thought of the best approximation of the
fundamental modular region, while the lowest-copy is closest to the first Gribov horizon.
The new choice is motivated by the argument of the Gribov–Zwanziger scenario of con-
finement, which implies that in the continuum limit the relevant configurations are the
ones on the first Gribov horizon for entropic reasons. Within the limitations given by a
reasonable computer-time and the lack of an algorithm to drive the gauge fixing towards
a small eigenvalue, we could not find a lower bound for the smallest eigenvalue. If the
smallest eigenvalue should be unbounded it would be surprising since one would expect a
finite distance to the Gribov horizon on a finite lattice. On the ghost propagator which is
basically the inverse of the Faddeev–Popov operator and the Coulomb potential where the
operator enters twice, the smallness of the lowest eigenvalue has a significant effect. This
effect is to some extent positive for the ghost propagator since it brings the infrared expo-
nent close to the one found in continuum studies, however this value is actually overshot
and a saturation is not yet observed. Otherwise the Coulomb potential calculated from
the Coulomb kernel (2.160) does not allow a physical interpretation at all. Its value, over
the whole momentum range, is increased by orders of magnitude. A different definition
of the Coulomb potential, based on the correlation of temporal links, (2.173) does not see
this dramatic effect. In conclusion, the new gauge fixing scheme does not solve the tension

1We use the name “best-copy” because it is common in the literature, however we don’t want to imply
that the copy with the highest functional value is better than other choices.
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between the continuum and the lattice results. Further investigations in this direction
would have to focus on a refined gauge fixing scheme, e.g. by applying a condition on the
two smallest eigenvalues and the discretization effects related to a near-singular Faddeev–
Popov operator. Finally it would be interesting to explicitly calculate the ghost-gluon
vertex in Coulomb gauge on the lattice to settle discussions about the validity of the sum
rule.
In recent years continuum techniques were extended to study Coulomb gauge correlation

functions at finite temperature [20, 155–157], while lattice studies were not available in
great detail. In Chapter 4 we fill this gap in search for a manifestation of the deconfinement
phase transition in Coulomb gauge correlators. A rather interesting question was how the
infrared exponent of the ghost form factor would be above the critical temperature, since
the lattice result (in the best-copy approach) at T = 0 corresponds to the one found above
Tc in the continuum calculations [20]. The results of our lattice study allow a very short
summary: around the phase transition, at least up to T = 1.5Tc, the propagators do not
show any difference to zero temperature. Furthermore the Coulomb string tension, which
is an upper bound for the physical Wilson string tension, is further increased, while naively
one would expect this string tension to vanish in the deconfined phase as the Wilsonian
one does.
The physical string tension, which can be calculated from space-time Wilson loops on

the lattice, is an order parameter for the deconfinement phase transition. It is finite in the
confined phase and vanishes in the deconfined phase. Closely related is the spatial string
tension which measures the correlation of space-space Wilson loops. The spatial string
tension, in contrast to the physical string tension, does not vanish at Tc but is known to
rise with temperature. This led us to the question if the Coulomb string tension is tied to
the spatial string tension instead of the physical one. To explore this question we employed
the center vortex picture of confinement in Chapter 5. First we verified that the Gribov–
Zwanziger scenario in and the center vortex picture in Coulomb gauge are compatible with
each other. On center vortex removal the ghost form factor becomes flat in the infrared
and the Coulomb potential acquires a string tension compatible with zero. In a next step
we introduced a technique which we called spatial vortex removal. Instead of applying the
usual procedure of center gauge fixing, center projection and vortex removal to all four
space-time dimensions, we applied the procedure only to spatial links. By this procedure
the physical (temporal) Wilson string tension stays intact while the spatial string tension
drops to zero. On configuration prepared in this way the Coulomb gauge propagators
loose their confining signal as well, which confirms our assumption that the spatial string
tension is the relevant one for the Coulomb gauge correlation functions and explains why
they do not behave as expected in the deconfined phase.
After these studies, which were carried out for pure SU(2) Yang–Mills theory, we in-

cluded quarks in our calculations. We chose a theory, which might be a candidate for
Walking Technicolor, a possible extension of the Standard Model to improve on the theo-
retical puzzles associated with the Higgs mechanism. This study was based on numerically
expensive lattice configurations, generously provided by the authors of Refs. [59–62]. In
Chapter 6, we analyzed the gluonic Coulomb gauge quantities and discussed their lattice
artifacts. Within the limits given by the parameters of the available configurations (fixed
coupling, mainly small lattice volumes) we may conclude that the theory is conformal
or quasi-conformal, the latter would be the required property for a walking technicolor
theory. We also discussed the possibility of a glueball representing the Higgs boson of
the Standard Model. A much larger parameter set and larger lattices would be needed to
allow a stronger conclusion. Due to several technical problems related to the Wilson Dirac
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operator, which was used to generate these configurations, see Appendix D, a reliable
result for the quark propagator could not be achieved within this work. The analysis of
the quark propagator would be of great interest, since it would give access to the mass
anomalous dimension, which is an important input for phenomenology in walking techni-
color models. For further studies it would be interesting to analyze a larger parameter set
of this technicolor candidate. Especially the use of improved discretizations for the Dirac
operator will be beneficial.
To approach continuum physics from lattice simulations it is desirable to increase the

simulated volume and at the same time reduce the lattice spacing, both changes are
leading to an increasing number of lattice points and thus a more demanding numerical
work. In recent years GPUs have proven beneficial for many numerically expensive ap-
plications because of their high degree of parallelism, their high memory bandwidth and
their energy efficiency. In Chapter 7 we explain how lattice gauge fixing algorithms can
be implemented on GPUs with CUDA. We emphasize on the important points that have
to be taken care of when porting a CPU application to an efficient GPU application. Our
implementation achieves an efficiency of more than 80% of the theoretical peak bandwidth
ob a GeForce GTX 580. A single GTX Titan GPU beats a full node of our CPU cluster
by a factor of 15 in double precision and a factor of 40 in single precision2.

2This factors have to be taken with care, since we did not put as much effort in the CPU implementation
as we did for the GPU code.
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A. Units

A.1. Natural Units
In this work we used the natural units defined by

~ = c = kB = 1, (A.1)

where ~ is Plank’s constant divided by 2π, c is the velocity of light and kB Boltzmann’s
constant. In these units the following relation of quantities holds

[energy] = [temperature] = [momentum] = [length−1] = [time−1]. (A.2)

The unit of energy (and momentum) or the inverse lattice spacing is typically given in
MeV or 1/fm. From (A.1) and the physical values of ~ and c

~ ≈ 6.582× 10−16eVs (A.3)
c ≈ 2.998× 108m/s (A.4)

we find the relation
1

fm ≈ 197.327MeV (A.5)

between fm−1 and MeV.

A.2. Lattice Units
With nµ we denote the lattice indices with 0 < nµ < Lµ. The distance from the lattice
origin in physical units is defined as xµ = anµ, a is the lattice spacing in units of fm (or
1/GeV).
The discrete lattice momenta for periodic boundary conditions are given by

kµ = 2π
aLµ

nµ. (A.6)

For antiperiodic boundary conditions (in time direction) they are

k0 = 2π
aL0

(
n0 + 1

2

)
. (A.7)

A.2.1. Tree-level Momentum Corrections

For the gluon and ghost propagator as well as for the Coulomb potential we use the
“kinematic momenta”, see e.g. Ref. [207],

pµ = p(kµ) = 2
a

sin(akµ/2) = 2
a

sin
(
πnµ
Lµ

)
(A.8)
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For the Wilson Dirac quark propagator it is convenient to also introduce the momenta [242]

p̃µ = p̃(kµ) = 1
a

sin(akµ). (A.9)

k̂µ = akµ and p̂µ = apµ are dimensionless momenta.

A.2.2. Momentum Cuts
Rotational invariance of space-time is lost by introducing a hypercubic lattice. Therefore,
the propagators in momentum space suffer from such discretization effects in addition to
the effects of the finite volume. The authors of Ref. [207] proposed two restrictions on
the allowed lattice momenta in the context of the Landau gauge gluon propagator. Later,
these cuts were also applied to Coulomb gauge [44, 101, 122]. The first one is the so-called
cylinder cut. The allowed lattice momenta are restricted to a cylinder around the lattice
diagonal. Usually we use a cylinder with radius of one lattice spacing

k =

k ± 1
k ± 1
k ± 1

 . (A.10)

Additionally, to address finite volume effects, they proposed to restrict the momenta to a
cone around the diagonal. The cone cut removes the smallest off-diagonal momenta.
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B. Residual gauge fixing

The Coulomb gauge condition does not fix the gauge completely. We are still free to apply
space-independent gauge transformations g(t). A possible choice to fix this residual gauge
freedom in the continuum is∫

d3x ∂µAµ(t,x) = ∂0

∫
d3x A0(t,x) = 0. (B.1)

By integrating over the 3-dimensional space the gauge condition is space-independent.
The lattice analog of (B.1) is the so-called integrated Polyakov gauge [44]

u(t) = 1
N3
s

∑
x

U0(t,x)→ const. (B.2)

B.1. Integrated Polyakov gauge
To implement the integrated Polyakov gauge we need to find the gauge transformations
g(t) fulfilling the gauge condition (B.2). Since the sum over the SU(N) links is not itself
an SU(N) element, we project u(t) to its closest SU(N) element û(t) such that

Re tr
[
ûu−1

]
= max. with û ∈ SU(N). (B.3)

For SU(2) û(t) is easily found by normalization of u(t)

û(t) = u(t)√
detu(t)

, (B.4)

since the sum of SU(2) is proportional to an SU(2) element. For SU(3) we seek û(t) in
each SU(2) subgroup iteratively by the Cabibbo-Marinari technique [58]. Now, define the
Polyakov loop

P =
∏
t

û(t) (B.5)

of the integrated links u(t). By construction trP is gauge invariant for periodic boundary
conditions. If we choose the gauge transformation g(t) such that

g(t)û(t)g†(t+ 1) = P
1
Nt (B.6)

the gauge condition (B.2) is satisfied. P
1
Nt is the n-th matrix root of P which can be

calculated, e.g., by the Schur algorithm [243]. Without loss of generality, we choose
g(0) = 1. Then g(t) is found via the recursion

g†(t+ 1) = û†(t)g†(t). (B.7)
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C. Maximal Center Gauge in SU(2)

Direct maximal center gauge fixing is achieved by maximizing

FU [g] =
∑
x,µ

∣∣∣tr [Ugµ(x)
]∣∣∣2 (C.1)

The maximum of the functional corresponds to the ensemble where the links are closest to
center elements1. Following [166], we rewrite this expression as a sum of local functionals
at site x.

FU [g] =
∑
x

Fx[g(x)] (C.2)

with
Fx[g(x)] = 1

4
∑
µ

{∣∣∣tr[g(x)Uµ(x)
]∣∣∣2 +

∣∣∣tr[Uµ(x− µ̂)g†(x)
]∣∣∣2}. (C.3)

We then optimize (C.3) at each site. We parameterize the SU(2) gauge transformation by

g = g01 + igσ (C.4)

with the Pauli matrices σa. The optimization problem has to be solved with respect to
the 4 parameters ga with the constraint that g is unitary, i.e.

∑3
a=0 g

2
a = 1. Fx takes the

form
Fx(g) =

∑
a,b

gaMabgb, (C.5)

where M is a 4 × 4 matrices build from the 8 links Uµ(x) and Uµ(x − µ̂). The norm
constraint

∑
a g

2
a = 1 can be implemented by a Lagrange multiplier λ

F cx(g) = Fx + 1
2λ
[
1−

∑
a

g2
a

]
. (C.6)

This leads to the coupled system of equations

Mg = λg (C.7)
g · g = 1 (C.8)

The first line is an eigenvalue problem for the matrix M , the second line describes the
normalization of the eigenvectors. We solve the eigenvalue problem for the dominant
eigenvalue numerically with the power iteration method [244]. The (normalized) resulting
eigenvector (for the largest eigenvalue) yields the coefficients for the local optimization.
Convergence can be improved by the standard overrelaxation prescription as described for
Coulomb gauge fixing in Chapter 7.

1Taking the complex norm is only necessary for the SU(3) case. For SU(2) the trace of a group element
is already real-valued.
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D. Remarks on the Quark Sector of Minimal
Walking Technicolor in Coulomb gauge

Whereas the calculation of the Coulomb gauge propagators in the gluon sector of minimal
walking technicolor are straight forward with the techniques developed in earlier works
for pure Yang–Mills theory and QCD, the calculation of the quark propagator is more
challenging. Earlier studies of the quark propagator in both Landau, e.g. [242], and
Coulomb gauge [122, 123] usually used an improved quark action since the discretization
artifacts of the Wilson Dirac propagator are known to be large. Since our studies rely on
configurations provided by [59–62]which where produced using the Wilson Dirac operator
for the sea quarks, we will also use the same discretization for the valence quarks. The
Wilson Dirac operator has also the advantage that it is computationally less demanding
compared to other discretizations. In general using a different discretization would be an
option, however additional sources for systematic errors might be introduced by such an
approach.
During our investigation of the quark propagator we were faced with several numerical

problems. Each of them would require a proper systematic analysis on its own. Such a
study could not be completed in the available time for this work. Therefore we cannot
present any conclusive results here but will give a short overview of the challenges we were
faced with, in the hope that they might be useful to someone.
The lattice quark propagator in Coulomb gauge was first studied in [122]. We will sum-

marize their notation and the most important results of their study. The free continuum
Dirac operator in momentum space is given by

S(0)(p) =
[
i/p+ i/p0 +m

]−1
= − iγipi + iγ0p0 −m

p2 + p2
0 +m2 , (D.1)

where we split the p and p0 dependence. For the Euclidean covariant Landau gauge quark
propagator two dressing functions, usually denoted as A and B or Z and M [242], are
sufficient to parameterize the interacting propagator

S−1
Landau(p) = i/pA(p) +B(p) = 1

Z(p)
(
i/p +M(p)

)
. (D.2)

Since Coulomb gauge breaks Euclidean covariance, additional dressing functions might
be necessary to account for all combinations of γ matrices with the momenta pµ. There-
fore, the authors of Ref. [122] proposed the following parameterization for the interacting
Coulomb gauge propagator

S−1(p) = i/pAs(p0,p) + i/p0At(p0,p) + ipiγip0γ4Ad(p0,p) +B(p0,p). (D.3)

Although we do not expect that the mixed component will contribute, since all previ-
ous studies of the quark propagator in Coulomb gauge agree that the mixed component
Ad(p0,p) vanishes [122, 123], we will still incorporate the dressing function in our param-
eterization.
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In Ref. [122] it was shown that the dressing functions are energy-independent for the
Asqtad improved staggered fermions [245] and Kogut–Susskind fermions [246]. This ob-
servation allowed the authors to average the p0 dependency and introduce the energy-
independent static dressing functions As(p), At(p) and B(p). They introduce the static
quark propagator as

S−1(p) = i/paAs(p) +B(p). (D.4)

Additionally, the energy-independence allows for a simple parameterization of the renor-
malized propagator

Sζ = Zζ(p)
ia/p+ ia/p0α(p) +M(p) , (D.5)

where
Zζ(p) = 1

As(p) (D.6)

is the renormalization function,

M(p) = B(p)
As(p) (D.7)

the mass function and
α(p) = At(p)

As(p) (D.8)

a form factor for the energy. For the derivation of the functions we refer to the appendix of
the original work [122]. The mass function is expected to reach a finite value in the infrared
which would be the constituent quark mass. We will see later that these definitions cannot
be applied directly to Wilson quarks due to an additional lattice artifact, see Section D.1.
The parameterization (D.4) for the renormalized propagator allows a pleasing physical
interpretation proposed in [122].

D.1. The Wilson Dirac Operator
In Section 2.4 we already introduced the free Wilson Dirac operator in momentum space

D(p) = m+ i
a

3∑
µ=0

γµ sin(akµ) + 1
a

3∑
µ=0

(1− cos(akµ)), (D.9)

where ki = 2π
aLi

ni and k0 = 2π
aLi

(
n0 + 1

2

)
are the momenta in the first Brillouin zone.

Compared to a naive discretization of the operator (2.78), the extra term 1
a

∑3
µ=0(1 −

cos(apµ)) was necessary to solve the doubling problem.
With the following abbreviations for the momenta, see also Appendix A,

p̃µ = 1
a

sin(akµ) (D.10)

pµ = 2
a

sin(akµ/2), (D.11)

we can rewrite the free Wilson Dirac operator to take the well-known form of the continuum
propagator plus the additional Wilson term which vanishes in the limit a→ 0

D(p) = m+ i
a

3∑
µ=0

γµp̃µ + a

4

3∑
µ=0

p2
µ. (D.12)
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D.2. Artifacts due to the Wilson Term

D.2.1. Momentum Definition

For earlier Coulomb gauge studies of the quark propagator with staggered [122] and overlap
fermions [123] the kinematic lattice momentum was defined by identifying the term with
the Brillouin momenta kµ which is proportional to the γ structure with its continuum
counterpart as proposed in [247]. For this approach the inverse tree-level propagator is
written in the form

S(0)(k) = i
(∑

µ

Cµ(k)γµ

)
+B(k)1. (D.13)

With the free continuum Dirac operator (D.1) we can then identify the lattice momenta
to be

pµ(k) = Cµ(k). (D.14)

The coefficients Cµ(k) can be calculated either analytically or numerically by calculating
the quark propagator on a cold lattice, i.e. in the free case where the interactions are
turned of, Aµ = 0. The latter may serve as a numerical check of the implementation.

With the Wilson term, however, such a definition is no longer possible, since the mass
term, proportional to the identity, depends on the momentum kµ, too. The authors of the
Landau gauge study [206] did not comment on this issue. They just used the pµ definition
of (D.10) which would be appropriate for the gluon propagator.
Using the unimproved momentum p̃µ (D.11) would pose another problem. If p̃µ is used

over the whole Brillouin zone, the momentum would result in a unphysical non-monotonous
function, since the sine would be evaluated over a full period.
Here we propose an alternative technique for the momentum definition. The idea is to

find a spatial momentum which reproduces the correct lattice quark dispersion relation at
tree-level up to order k2

p(k)2 =
[
ω2
m(k)− ω2

m(0)
] [1

2
∂2ω2

m(k)
∂k2

∣∣∣∣∣
k=0

]−1

. (D.15)

The details of the derivation are summarized in the next section.

Derivation of the Improved Momentum Definition for the Wilson Quark Propagator

We will shortly repeat how the dispersion relation is obtained from the quark propagator
in the continuum. Then, we will apply the same technique to the lattice Wilson Dirac
quark propagator. The tree-level Euclidean (inverse) quark propagator in the continuum
is given by

S−1
0 (p) = i/p0 + i/p+m. (D.16)

Inverting (D.16) yields the tree-level quark propagator

S0(p) =
−i/p0 − i/p+m

p2
0 + p2 +m2 . (D.17)

We integrate the quark propagator in p0 to obtain the dispersion relation of a free quark∫ ∞
−∞

dp0
2π S0(p, p0) =

−i/p+m

2
√
p2 +m2 ≡

−i/p+m

2ωF
. (D.18)
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Following the remark in Eq. 13 of [122] we may get the dispersion directly by integrating
the square of the propagator. Multiplying the propagator (D.17) by

S†0 =
+i/p0 + i/p+m

p2
0 + p2 +m2 (D.19)

yields
|S0(p)|2 = S†0(p)S0(p) = 1

p2
0 + p2 +m2 (D.20)

using γ†µ = γµ for the Euclidean gamma matrices. After integration we get directly

ω−1
F =

∫ ∞
−∞

dp0
2π |S(p)|2 = (p2 +m2)−

1
2 . (D.21)

Our proposal is to apply this procedure to the Wilson Dirac operator to obtain a mo-
mentum p =

√
ω2
F (k)−m2 that yields exactly the tree-level dispersion relation. The

inverse Wilson Dirac quark propagator is given by

S−1
0 (k) = i

a

∑
µ

γµ sin(kµa) +m+ 1
a

∑
µ

(1− cos(kµa)) . (D.22)

In the following we will use a = 1. Along the lines of the continuum calculation we get

Slat
0 (k) =

−iγ0 sin(k0)− i
∑
i γi sin(ki) +m+

∑
µ(1− cos(kµ))

sin2(k0) +
∑
i sin2(ki) +

[
m+

∑
µ(1− cos(kµ))

]2 . (D.23)

Then, ∣∣∣Slat
0 (k)

∣∣∣2 = 1

sin2(k0) +
∑
i sin2(ki) +

[
m+

∑
µ(1− cos(kµ))

]2 . (D.24)

By replacing the integral in (D.21) by a sum over the discrete lattice momenta∫
dp0
2π →

1
2π

2π
Nt

∑
k0

(D.25)

we get
w−1
F (p2) = 1√

p2 +m2 ≡
2
Nt

∑
k0

∣∣∣Slat
0 (k)

∣∣∣2 . (D.26)

Thus, we find for the momentum

|p(k)| =
√√√√ 1(

2
Nt

∑
k0

∣∣Slat
0 (k)

∣∣2)2 −m2. (D.27)

Note, that the momentum definition is now a function of the mass. For m = 0, this
definition provides a useful momentum

|p|−1 = 2
Nt

∑
k0

∣∣∣Slat
0 (k)

∣∣∣2 (D.28)

= 2
Nt

Lt/2∑
n0=−Lt/2+1

1

sin2(k0) +
∑
i sin2(ki) +

[∑
µ(1− cos(kµ))

]2 . (D.29)
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However for m > 0 the formula (D.27) does not work as it stands. In the integrated
propagator the pole is shifted from m to 1

2m
2 + m, i.e. ωF (k = 0) = 1

2m
2 + m and

thus p(k = 0) 6= 0. Additionally, the slope of the momentum from (D.27) is incorrect
limk→0

dp
dk 6= 1 and thus does not provide the correct continuum limit.

We propose to fix the low momentum behavior by expanding ω2
m(k) around k = 0 up

to second order for diagonal momenta k = (k, k, k). Then the momentum can be defined
from the expansion with the correct limit for k → 0. The expansion is

ω2
m(k) =

Nt

2
1∑

k0
1

sin2(k0)+3 sin2(k)+
[
m+2 sin2

(
k0
2

)
+6 sin2( k2 )

]2


2

(D.30)

= ω2
m(0) + 1

2
∂2ω2

m(k)
∂k2

∣∣∣∣∣
k=0

k2 +O(k4). (D.31)

Then, we define

ω2
m(k)− ω2

m(0) =: 1
2
∂2ω2

m(k)
∂k2

∣∣∣∣∣
k=0

p(k)2. (D.32)

The coefficients are

ω2
m(0) =

 Nt

2
∑
k0

1
Sm(k0)

2

, (D.33)

∂2ω2
m(k)
∂k2

∣∣∣∣∣
k=0

=
N2
t

∑
k0

6+6
(
m+2 sin2

(
k0
2

))
S2
m(k0)

2
[∑

k0
1

Sm(k0)

]3 (D.34)

where we used the abbreviation

Sm(k0) = sin2(k0) +
[
m+ 2 sin2

(
k0
2

)]2
(D.35)

= m2 + 4(m+ 1) sin2
(
k0
2

)
. (D.36)

The momentum defined in this way is based on a derivation for diagonal momenta k =
(k, k, k). Since we always work with a cylinder cut on the momenta, see Section A.2.2, i.e.
with momenta close to or at the diagonal, the restriction to diagonal momenta does not
introduce a major problem.

D.2.2. Energy-dependency of the Mass Function and Renormalization
The leading lattice artifact for the dressing function B (in Coulomb and Landau gauge)
is the Wilson term. This can be read off from the tree-level Wilson Dirac operator in
momentum space (D.12). The authors of Ref. [206] proposed to correct the dressing
function by

B = Blat
B0
lat
, (D.37)

where Blat is the dressing function as obtained from the simulation and B0
lat is the tree-level

dressing function for the Wilson Dirac quark

B0
lat(k0,k) = m+ a

4

3∑
µ=0

p2
µ = m+ a

4 |p|
2 + a

4p
2
0. (D.38)
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Thus the corrected dressing function obeys B0(k0,k) = 1. Since A0
s(k0,k) = 0 by defini-

tion, the mass function at tree-level is normalized to unity, as well,

M0(k0,k) = B0(k0,k)
A0
s(k0,k) = 1. (D.39)

To restore the meaning of M we have to introduce an additional renormalization to the
B function which is not present in the continuum, such that

B(µ) = m. (D.40)

In Refs. [122, 123] the authors showed that the dressing function B(p0,p) for staggered
and overlap quarks is independent of the energy p0. With the Wilson term, however,
already at tree-level a dependency on the energy is introduced in (D.38). With the help
of (D.37) this effect can be canceled exactly only at tree-level. To cancel the energy
dependency exactly in the interacting case, the ratio between different energies k1

0, k2
0

Blat(k1
0,k)

Blat(k2
0,k)

(D.41)

would have to match exactly the ratios at tree-level. However, this is not the case, as
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Figure D.1.: Bare lattice dressing function in the interacting case Blat, at tree-level B0
lat

(l.h.s.) and after tree-level correction according to (D.37) (r.h.s).

can be seen on the l.h.s. of Fig. D.1. Therefore the corrected B dressing function still
has an artificial energy dependency, see r.h.s. of Fig. D.1. From the observation in the
earlier Coulomb gauge studies [122, 123], we assume that the energy dependency in the
interacting case is only an artifact of the Wilson term and thus this ambiguity has to be
resolved to define the static dressing function, e.g. by taking the k0 average

B(k) = 1
Nt

∑
k0

B(k0,k) (D.42)

or by selecting B at fixed k̃0

B(k) = B(k̃0,k) (D.43)

Without further theoretical input this choice is arbitrary and may introduce a large bias
in the study.
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D.2.3. Negative Bare Mass
As already noted we are interested in the theory of massless quarks. For the adjoint Wil-
son Dirac operator massless quarks at β = 2.25 are approached for a negative bare mass
−am0 ≈ 1.20. The negative bare mass further complicates matters: it is neither a mean-
ingful choice in the renormalization prescription (D.40) nor does it provide a reasonable
tree-level correction of the B function as was already pointed out in the Landau gauge
studies [206]. Additionally a negative mass does not work in our momentum definition,
Section D.2.1. The authors of Ref. [206] proposed to use the PCAC mass instead which
should be a good choice in the continuum limit but can still be the source of another
uncertainty.

D.3. Summary
The three main problems described in the previous section prevent an unambiguous calcu-
lation of the Quark propagator. For each of them we (or the authors of Ref. [206] for the
negative bare mass) proposed a possible solution, however each of these solution requires
an involved analysis of possible artifacts which was out of reach for this work. Note that
the problem with the momentum definition (where it was ignored) and the negative bare
mass was also present in the Landau gauge studies of Ref. [206]. The problem of how to
correct for the Wilson term in the dressing function for the mass, however, is a problem
genuine to Coulomb gauge further complicating the matter.
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E. Counting FLOPs
In this section we will explain how we calculated the number of floating point operations
(FLOPs) for the SU(3) overrelaxation algorithm for Landau gauge. The algorithm is
summarized in listing Alg. 1 as pseudocode. We will calculate the number of FLOPs per

Algorithm 1
while precision θ not reached do

for parity = red, black do
for all x of sublattice(parity) do

for all SU(2) subgroups do
local optimization: find g(x) ∈ SU(2) Step 1.
which is a function of Uµ(x), Uµ(x− µ̂)
for all µ do
apply g(x) to Uµ(x), Uµ(x− µ̂) Step 2.

end for
end for

end for
end for

end while

site, i.e. the operations within the sublattice loop. Only the calculation of the new gauge
transformation (Step 1 of Alg. 1) differs for the different algorithms. The update of the
links (Step 2) is same for all algorithms. The number of FLOPs for the update of a single
site is 2274. The detailed calculation is given in the next sections.

Step 1
The first step consists of the calculation of the matrix K(x) from (7.10). Since we do
not store the gauge transformation g(x), but directly apply them to the links Uµ(x), the
equation simplifies to a sum over 2× 2 matrices for each of the three subgroups

K(x) =
∑
µ

[
Uµ(x) + U †µ(x− µ̂)

]
. (E.1)

The matrix K(x), as a sum over SU(2) elements, can be parameterized by a quaternion
(Cayley-Klein four parameter representation). The extraction of the quaternion costs 4
additions (4 FLOPs) per link. Additionally, 4 FLOPs per link are used to sum these four
elements. Thus, we have a total of

8 link× 2× 4FLOP
link = 64 FLOP (E.2)

per subgroup or 192 FLOPs per site for SU(3). From (E.1) the overrelaxation update gω
is calculated. Here we use a first order approximation of gω. The algorithm is presented
in listing Alg. 2. It needs 22 FLOPs per subgroup, where we counted the inverse square
root operation rsqrt() as two operations. In total we need 258 FLOPs for Step 1 per
lattice site.
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Algorithm 2
template<typename T>
void OrUpdate<T>::calculateUpdate( Quaternion<T>& K, T omega )
{

T ai_sq = K[1]*K[1]+K[2]*K[2]+K[3]*K[3];
T a0_sq = K[0]*K[0];

T b=(omega*a0_sq+ai_sq)/(a0_sq+ai_sq);
T c=rsqrt(a0_sq+b*b*ai_sq);

K[0]*=c;
K[1]*=b*c;
K[2]*=b*c;
K[3]*=b*c;

}

Step 2
The update operation of the links by multiplication with the gauge transformation

Uµ(x)→ g(x)Uµ(x) (E.3)
Uµ(x− µ̂)→ Uµ(x− µ̂)g†(x) (E.4)

needs much more FLOPs compared to finding the gauge transformation in Step 1. The
algorithm of multiplying the link U by a gauge transformation g(x), which is represented
as a quaternion, from the left is given in Alg. 3. The operation in mathematical notation

Algorithm 3
template<typename T>
void leftSubgroupMult( SU3<T>& U, const Quaternion<T>& g, int i, int j )
{

for( int k = 0; k < 3; k++ )
{

Complex<T> IK = Complex<T>( g[0], g[1] ) * U[i][k];
IK += Complex<T>( g[2], g[3] ) * U[j][k];

Complex<T> JK = Complex<T>( -g[2], g[3] ) * U[i][k];
JK += Complex<T>( g[0], -g[1] ) * U[j][k];

U[i][k] = IK;
U[j][k] = JK;

}
}

is given in (E.5) for the subgroup which corresponds to i = 0, j = 1 in Alg. 3.

U →

 g0 + ig1 g2 + ig3 0
−g2 + ig3 g0 − ig1 0

0 0 1

U (E.5)
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In each loop over k in Alg. 3 we have 4 complex multiplications (six FLOPs each) and
2 complex additions (two FLOPs each). Thus, we have 84 FLOPs for each of the four
Uµ(x). Equivalently, we have the same number for each of the four links Uµ(x− µ̂) (for a
multiplication with g† from the right). The total number of FLOPs for each subgroup is

2× 4× 84 FLOP
subgroup = 672 FLOP

subgroup . (E.6)

Thus, the total number for Step 2 is 2016 FLOPs.
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In this chapter we present an application of our gauge fixing code for maximally Abelian
gauge which is included in cuLGT [29]. The text already appeared in exactly this form in
[248] and therefore has a small overlap with introductions given earlier.

F.1. Introduction

Despite the long standing acceptance of quantum chromodynamics (QCD) as the correct
theory to describe the strong interactions of quarks and gluons, a basic understanding
of its main characteristic features, the dynamical breaking of the chiral symmetry and
confinement, is still lacking. Several scenarios for the underlying mechanism of confinement
have been suggested over the decades. Under the most popular ones are the Kugo–Ojima
[249] and the Gribov–Zwanziger scenarios [35, 250], as well as the dual superconductor
picture [87, 251, 252]. Some common aspects of the different confinement criteria have
been investigated in [106, 253–256].
The dual superconductor picture of confinement is especially appealing since it offers

a rather intuitive approach to confinement. Type II superconductors in their supercon-
ducting phase are known to repel external magnetic fields below a critical value of the
external field strength. If the magnetic field exceeds that value, tubes of magnetic flux
(Abrikosov vortices) begin to penetrate the superconductor. The flux tubes are encircled
by Cooper pairs which squeeze the latter. Identifying the penetrating magnetic flux tubes
with the color electric field of the Yang–Mills vacuum, and moreover the condensed electric
monopoles (Cooper pairs) with color magnetic monopoles, one finds a dual picture where
hypothetical magnetic monopoles at the beginning and end of the Abrikosov vortices cor-
respond to the confined quarks of QCD. Therefore, it is suggested that confinement is
due to the condensation of color magnetic monopoles which squeeze the color electric flux
tube between quarks and antiquarks. The dual superconductor picture has a far reaching
consequence: the Abelian parts of the gauge fields should dominate the nonperturbative
infrared (IR) dynamics [72].
While confinement is the reason why individual quarks and gluons have never been

observed in experiment, the theory still allows to investigate correlation functions of sin-
gle quark and gluon entities: the QCD Green’s functions. QCD is a gauge theory and
therefore the gauge has to be fixed in order to study the fundamental two-point func-
tions. The maximally Abelian gauge, as the name suggests, rotates the gauge fields such
that the diagonal, i.e., Abelian parts of the gauge fields are enhanced over the off-diagonal
parts. This renders the maximally Abelian gauge particularly suitable to study IR Abelian
dominance.
Lattice QCD provides an approximation to the continuum formulation with a finite

number of degrees of freedom which allows to perform numerical simulations. Various
attempts of investigating the dual superconductor picture in lattice QCD have been carried
out, see, e.g., [257, 258]. IR Abelian dominance has been demonstrated in lattice gauge
field theory in SU(2) [74, 75, 79] and more recently in SU(3) [77, 78] by studying the
infrared behavior of the gluon propagator in the maximally Abelian gauge. In the recent
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study [80] almost perfect Abelian dominance of the string tension on large physical volumes
in quenched SU(3) has been found. Additionally, IR Abelian dominance has been found
in an alternative lattice formulation [76] which does not rely on the maximally Abelian
gauge. Complementary to the lattice approach several continuum investigations of Abelian
dominance were performed. In [259] the authors showed that the off-diagonal gluon and
ghost contributions become massive, a necessary condition for the effective model described
in [81]. Furthermore, Abelian dominance has been analyzed perturbatively [82, 83] and in
Dyson–Schwinger and renormalization group equation studies [84–86].
It is interesting to study the influence of Abelian dominance on chiral symmetry breaking

and the hadron spectrum; in [260] it has been found that SU(2) Abelian projected fields
give a chiral condensate which closely resembles the results of strongly coupled gauge
theory. In [261] quenched hadron spectra in Abelian gauge fields, extracted by maximal
Abelian projection have been studied: the ratios of the hadron mass to the square root of
the string tension of the Abelian fields are similar to those of the full SU(3) theory. The
authors concluded that they have found Abelian dominance (and monopole dominance)
for the hadron spectra.
In the current paper we advance previous investigations of the gluon propagator in

maximally Abelian gauge from pure Yang–Mills theory [77, 78] to full dynamical QCD
by adopting Nf = 2 + 1 gauge field configurations. Furthermore, we analyze for the first
time the maximally Abelian gauge quark propagator. In order to obtain insights in the
dependence of chiral symmetry breaking and the dynamic mass generation of quarks on
the type of gluon background, we invert the Dirac matrix separately on the diagonal and
off-diagonal gluon fields.
The remainder of this work is structured as follows. In Sec. F.2 we introduce the maxi-

mally Abelian gauge and discuss some aspects of its implementation on the lattice. After
reviewing the methods to extract the QCD Green’s functions on the lattice in Sec. F.3,
we list details of our lattice setup in Sec. F.4 and present our results.

F.2. The maximally Abelian gauge on the lattice

The continuum gauge fields are given by

Aµ(x) = 1
2

8∑
i=1

λiA
(i)
µ (x) , (F.1)

where the λi are the Gell-Mann matrices and A(i)
µ (x) are real. On the lattice, the latter

translate to the lattice link variables Uµ(x) ∈ SU(3). The continuum and lattice fields are
related via

Uµ(x) = eiag0Aµ(x) (F.2)

with a being the lattice spacing and g0 the bare coupling constant. A gauge transformation
in the language of lattice QCD reads

Uµ(x)→ g(x)Uµ(x) g(x+ µ̂)† (F.3)

with local gauge transformations g(x) ∈ SU(3).
The maximally Abelian gauge (MAG) aims at minimizing the off-diagonal part of the

gauge fields, i.e., A(i)
µ (x) with i 6= 3, 8. This is equivalent to maximizing the following
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functional of the link variables,

F gMAG3[U ] =
∑
x,µ

trλ3Uµ(x)λ3Uµ(x)† (F.4)

+ trλ8Uµ(x)λ8Uµ(x)† (F.5)

where λ3 and λ8 build the Cartan subalgebra of SU(3). Once the functional Eq. (F.4)
resides in a local maximum, the gauge condition

θ = 1
V Nd

∑
x,j

(∑
µ

u(j)
µ (x)σ3 u

(j)
µ (x)† (F.6)

+u(j)
µ (x− µ̂)† σ3 u

(j)
µ (x− µ̂)

)2
(F.7)

becomes small. Here Nd is the number of Euclidean spacetime indices, V the number
of lattice sites and the u(j)

µ (x), j = 1, 2, 3 are the SU(2) subgroup elements of the link
variables Uµ(x).1 In practice we reach a gauge precision of θ < 10−13. More details of the
implementation can be found in Refs. [29, 262].
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Figure F.1.: The relative frequency of the gluon field components A(i)
µ (x) (in lattice

units) from a single gauge field configuration in Landau gauge and MAG.
In Landau gauge the eight field components follow the same normal distri-
bution while in MAG a trend of the off-diagonal components (MAG-off )
towards smaller values compared to the diagonal components (MAG-diag)
is manifest.

Once a maximum of Eq. (F.4) has been reached, the diagonal gluon fields, A(i)
µ (x) with

i = 3, 8 are favored over the off-diagonal gluons. In Fig. F.1 we show the distribution of
the gluon fields A(i)

µ (x) from a single lattice gauge field configuration. While in Landau
gauge none of the gauge fields is favored and thus their distribution lies on top of each
1Two SU(2) matrices overlap on the diagonal of Uµ(x) and the third one consists of the corners of Uµ(x).
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other, the distribution of the MAG fields shows a clear shift of the diagonal fields towards
larger values and correspondingly a shift towards smaller values for the off-diagonal parts.
The MAG functional Eq. (F.4) is invariant under gauge transformations of the form

gd(x) = exp
(
iω(3)λ3 + iω(8)λ8

)
(F.8)

and therefore the MAG is an incomplete gauge condition; it leaves a remaining U(1)3 ×
U(1)8 gauge freedom. The latter we remove by enforcing that Uµ(x) fulfills in addition to
the MAG the Landau gauge condition

F gLandau[U ] = Re
∑
µ,x

trg(x)Uµ(x) g(x+ µ̂)† !−→ max. , (F.9)

with respect to diagonal gauge transformations g(x) = gd(x).
Lastly, in order to study the diagonal and off-diagonal parts of the gluon fields sepa-

rately, we extract the fields Aµ(x) from the link variables Eq. (F.2) via the first order
approximation

Aµ(x) = 1
2iag0

(
Uµ(x)− Uµ(x)†

) ∣∣∣
traceless

. (F.10)

Note that we do not make use of the “exact” logarithmic definition of the lattice gluon
fields in order to stay consistent with the definition of the gluon fields in the Landau gauge
condition [29].2

F.3. QCD propagators

F.3.1. Gluon propagator

In Landau gauge the gluon propagator in momentum space is transverse and diagonal in
color space

Dµν(k2) = 1
8

8∑
i=1

〈
A(i)
µ (k)A(i)

ν (−k)
〉

(F.11)

=
(
δµν −

kµkν
p2

)
D(k2), (F.12)

whereA(i)
µ (k) are the Fourier transformed gauge fields extracted from the links by Eq. (F.10).

Appropriate for the Symanzik-improved Lüscher–Weisz gauge action [263], we define the
momentum variable as

kµ = 2
a

√
sin2

(
pµa

2

)
+ 1

3 sin4
(
pµa

2

)
, (F.13)

where
pµ = 2πnµ

aLµ
(F.14)

are the discrete lattice momenta. The transversality of the momentum space propagator
is a direct consequence of the Landau gauge condition ∂µAµ(x) = 0.
2We performed some checks using the logarithmic definition: the qualitative behavior of the gluon prop-
agator is the same, as it was also found in Ref. [231]. The main difference here is, as expected, that
the diagonal part of the longitudinal gluon propagator from the logarithmic definition does not vanish.
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For the MAG case we split the propagator in a diagonal

Ddiag
µν (k2) = 1

2
∑
i=3,8

〈
A(i)
µ (k)A(i)

ν (−k)
〉

(F.15)

and an off-diagonal part

Doff
µν(k2) = 1

6
∑
i 6=3,8

〈
A(i)
µ (k)A(i)

ν (−k)
〉
. (F.16)

Due to the residual U(1)3 ×U(1)8 Landau gauge fixing, the diagonal propagator is trans-
verse, whereas the off-diagonal propagator has a longitudinal and a transverse component

Doff
µν(k2) =

(
δµν −

kµkν
k2

)
Doff

T (k2) + kµkν
k2 Doff

L (k2). (F.17)

F.3.2. Quark propagator

In manifestly covariant gauges, the interacting quark propagator S(µ; p2), renormalized
at the renormalization point µ, can be decomposed into Dirac scalar and vector parts

S(µ; p2) =
(
i/pA(µ; p2) +B(µ; p2)

)−1
(F.18)

or equivalently as

S(µ; p2) = Z(µ; p2)
(
i/p+M(p2)

)−1
. (F.19)

In the last equation the wave-function renormalization function Z(µ; p2) = 1/A(µ; p2)
carries all the information about the renormalization scale and the mass functionM(p2) =
B(µ; p2)/A(µ; p2) is a renormalization group invariant.

The lattice regularized quark propagator SL(p2; a), which depends on the lattice spacing
a, can then be renormalized at renormalization scale µ with the momentum independent
quark wave-function renormalization constant Z2(µ; a),

SL(p2; a) = Z2(µ; a)S(µ; p2). (F.20)

The momentum subtraction scheme (MOM) has the renormalization point boundary con-
ditions Z(µ;µ2) = 1 and M(µ2) = m(µ) where m(µ) is the running mass.

The nonperturbative functions M(p2) and Z(p2) ≡ Z2(µ; a)Z(µ; p2) can be extracted
directly from the lattice. To this end we invert the Asqtad fermion matrix [245] in order
to obtain the quark propagator which we subsequently Fourier transform to momentum
space. Taking basic Clifford algebra properties into account we can extract the dressing
functions. For details we refer to [264, 265]. Note that the lattice dressing functions will
be functions of the lattice quark momenta (which differ from the gluon momenta (F.13))
and for the Asqtad action these are defined by

kµ = sin(pµ)
(

1 + 1
6 sin2(pµ)

)
. (F.21)

We perform a cylinder-cut [242] on all our data and average over the discrete rotational
and parity symmetries of SL(p2; a) to increase statistics.
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F.4. Results

F.4.1. Gauge configurations

For our simulation we adopted two sets of gauge field configurations generated by the MILC
collaboration [266–269]: a “coarse” set of size 203 × 64 with lattice spacing a = 0.12 fm,
which consists of five dynamical plus a quenched ensemble, and furthermore a “fine” set
consisting of a single ensemble of size 403 × 96 with lattice spacing a = 0.09 fm. The con-
figurations were generated with the Symanzik-improved Lüscher–Weisz gauge action [270]
and have been made available to the lattice community via the Gauge Connection [271].
Both sets include two light degenerate (l) and one heavier quark flavor (s) (except the
quenched ensemble), implemented with the Asqtad improved action [245]. The parame-
ters of the lattices are summarized in Table F.1; for the reported lattice scales and quark
masses we refer to the original work [266–269].

N3
s ×Nt a [fm] ml [MeV] ms [MeV] # configs.

203 × 64 0.12

11.5

82.2

976
16.4 573
32.9 391
49.3 432
65.8 350
∞ ∞ 408

403 × 96 0.09 6.8 68.0 187

Table F.1.: Overview of the gaugefield parameters: the lattice size N3
s ×Nt, lattice spac-

ing a, dynamical quark masses ml and ms (∞ indicating quenched gauge
fields) and the number of configurations that enter our analysis.

F.4.2. Gluon propagator

The gluon propagator in the maximally Abelian gauge has already been studied both in
SU(2) [74, 75] and SU(3) [77, 78] for pure Yang–Mills theory. Here we extend those studies
to full QCD with 2 + 1 flavors of dynamical quarks. In Fig. F.2 we show the propagators
of the coarse ensemble for the different quark masses including the quenched dataset.
In addition to the three MAG propagators (diagonal transverse, off-diagonal longitudinal
and off-diagonal transverse) we include the Landau gauge propagator for comparison. The
Landau gauge propagator has been studied on the same dataset in [272]. Following their
setup we use the same renormalization condition

D(k2 = µ2) = 1
µ2 (F.22)

at µ = 4 GeV. In the IR we find suppression of the propagator with dynamical quarks
due to screening effects. Compared to Landau gauge, this effect is more pronounced in
the maximally Abelian gauge. Decreasing the quark mass leads to a further suppression
in the IR, however the dependence on the quark mass is small.
In Fig. F.3 we present the gluon form factors of the fine ensemble. It is very important

to note that in both Figs. F.2 and F.3, it is obvious that the diagonal parts of the MAG
gluon propagator are pronounced as compared to the Landau gauge counterparts, and,
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Figure F.2.: The gluon propagator of the coarse ensembles of Table F.1 renormalized at
µ = 4 GeV.

respectively, the off-diagonal parts are suppressed. This extends previous findings of IR
Abelian dominance from pure Yang–Mills theory to full QCD.

Our findings for the fine ensemble in Fig. F.3 are in very good agreement with the SU(2)
results of [75] considering the fact that we study the SU(3) propagator and included
dynamical quarks. There the authors found a wide maximum of the dressing function
k2Doff

L (k2) at around 2 GeV and a sharp peak of k2Ddiag(k2) around 0.7 GeV. To compare
our results with the quenched SU(3) results of [78] we applied a fit to our data with the
their function

D(k2) = Z

(k2 +m2)ν (F.23)

in the same momentum regime k < 3 GeV. Qualitatively, the results compare well to the
quenched results from Ref. [78].

m [GeV] ν Z χ2/n.d.f.
Doff

T 1.47(2) 1.18(2) 14.9(6) 0.9
Doff

L 1.66(3) 1.77(4) 36.2(36) 1.0
Ddiag 0.78(1) 1.85(1) 181.6(54) 1.7

Table F.2.: Results of a fit of the maximally Abelian gluon propagators to (F.23).
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Figure F.3.: The gluon form factors of the fine ensemble. The solid lines illustrate the
fit to Eq. (F.23).

F.4.3. Quark propagator
We obtain the quark propagator in the standard way by inverting the (Asqtad) Dirac
operator for a point source on a gauge field background. This is performed in Landau
gauge and in the maximally Abelian gauge with U(1)3 × U(1)8 Landau residual gauge
fixing. Additionally, we split the maximally Abelian gauge gluon fields in their diagonal
and off-diagonal components and invert the Dirac operator on the two parts separately.
Thus, we obtain four “kinds” of quark propagators from each ensemble.

Quark mass dependence

On the five dynamical coarse ensembles of Table F.1, we calculate the quark propagator in
Landau gauge, in maximally Abelian gauge (MAG), on a pure diagonal MAG background
(MAG-diag) and a pure off-diagonal MAG background (MAG-off ). The mass parameter
of the valence quark propagator has been set to the value of the corresponding light sea
quark mass for these five ensembles. This will allow for a systematic extrapolation to the
chiral limit.
In Fig. F.4 the quark mass function M(k2) is shown for the four types of gluon back-

grounds (Landau gauge, MAG, MAG-diag and MAG-off ) from all coarse ensembles, in-
cluding a linear extrapolation to the chiral limit. In analog, Fig. F.5 shows the corre-
sponding quark wave-function renormalization functions Z(k2).
When comparing the Landau gauge quark propagator to the quark propagator in MAG,

the first observation is that the MAG data, with the same statistics, results in more gauge
noise from the Monte Carlo integration. Moreover, the running masses of the MAG data
lie higher than the corresponding Landau gauge masses, which holds from the largest mass
of ml = 65.8 MeV down to the chiral limit. The dynamically generated infrared masses,
on the other hand, appear compatible within the error bars.
It is evident that M(k2) from the MAG-diag gluon background nicely resembles the

Landau gauge analog (despite being more noisy), whereas M(k2) from MAG-off gluons is
constant, lying roughly 40% higher than the corresponding bare quark mass. In the chiral
limit it is compatible with zero. Similarly, the wave-function renormalization function
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Figure F.4.: The quark mass function from the coarse ensembles of Table F.1. The bare
quark masses are set to the values of the dynamical light quark masses.
Additionally, a linear extrapolation to the chiral limit is shown.

from MAG-off gluons comes out close to its tree-level value, Z(k2) ≈ 1, independent of
the quark mass.

Infrared behavior

The coarse ensembles cannot provide a clear picture of the infrared behavior of the quark
propagators. To improve thereon we adopt the fine MILC ensemble of Table F.1. In order
to keep the gauge noise and the simulation costs at an acceptable level, we use a valence
quark with the mass of the heavier dynamical strange quark, ms = 68.0 MeV, instead of
setting it to the light quark mass of ms = 6.8 MeV.

In Fig. F.6 we compareM(k2) and Z(k2) in MAG, MAG-diag and MAG-off, respectively,
directly to the Landau gauge counterparts. While the MAG and Landau gauge mass
functions agree within the error bars over the whole momentum range, Z(k2) appears to
be stronger IR suppressed in MAG as compared to Landau gauge.
Similarly, the MAG-diag mass function agrees over the whole momentum range within

the error bars with its Landau gauge counterpart. The renormalization function exhibits
qualitatively the same IR behavior as in Landau gauge. In contrast, the MAG-off quark
dressing functions hardly show any non-trivial dynamics. This is the main finding of this
study: it shows that the Abelian parts of the gluon fields not only dominate the purely
gluonic interactions, but also the infrared interactions of quarks.
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Figure F.5.: The quark function renormalization function from the coarse ensembles of
Table F.1. The bare quark masses are set to the values of the dynamical
light quark masses. A linear extrapolation to the chiral limit is shown. All
data have been been renormalized at µ = 3 GeV.

F.5. Summary
We have fixed dynamical SU(3) lattice gauge fields to the combined maximally Abelian
gauge and U(1)3×U(1)8 Landau gauge. From the lattice link variables we have extracted
the continuum gluon fields which we subsequently separated into purely diagonal (Abelian)
and off-diagonal components.

We investigated the gluon propagator from diagonal and off-diagonal gluon fields. Dy-
namical quarks lead to an IR suppression compared to the quenched case. The suppression
becomes stronger when decreasing the quark mass. The screening is more pronounced in
the MAG propagators compared to the Landau gauge propagator. Our findings confirm
the manifestation of infrared Abelian dominance in the gluon propagator as found in earlier
studies on quenched lattices.
Finally, for the first time the maximally Abelian gauge quark propagator has been

analyzed on a background of purely diagonal gluons as well as on the remaining, off-
diagonal gluon background. The hypothesis of Abelian dominance implies that the non-
Abelian gluon field does not propagate at a long-distance scale and hence that only the
Abelian component is relevant at a long-distance scale. In accordance therewith, we have
demonstrated that the quark propagator from a non-Abelian gluon background hardly
shows any effects while the quark propagator from an Abelian gluon background closely
resembles its Landau gauge counterpart.
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Figure F.6.: The quark mass function (left column) and renormalization function (right
column) from the fine ensemble of Table F.1. The MAG (top row), MAG
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