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SUMMARY 

The human immune system is continuously evolving to pathogenic challenges and the innate 

immune system is the first line of defense that tackles any given pathogen. In this dissertation, I 

have utilized samples from Ghana, a malaria endemic country. I investigated the host innate 

immune factors that could potentially alter the malaria susceptibility. My investigations are 

structured as two independent chapters that are published as scientific articles. In the first chapter 

of my thesis, I have investigated the distribution of Knops blood group antigens located on 

complement receptor 1 (CR1, CD35) in Ghanaian population and compared these distribution to 

other world populations that are not endemic to malaria. The distribution of the CR1 alleles, 

genotypes and haplotypes differed significantly among geographical settings and certain CR1 

genetic variants were more specific in African populations, suggesting a potential selective 

pressure imposed by the malaria parasite. In the second chapter of my thesis, my investigation 

focuses on the association of innate immune gene variants and cytokine gene variants in a 

clinically classified malaria cohort. In particular, the investigations were carried out to 

understand the role of triggering receptor expressed on myeloid cells (TREM)-1, TREM-like 1 

(TLT-1), endothelial protein C receptor, interleukin (IL)-8 and IL-18 variants to malaria 

outcome. Higher sTREM-1 levels were observed among children suffering from severe malaria 

compared to those with uncomplicated malaria. Low TREM-1 to TREML-1 ratios were 

associated with uncomplicated malaria. The TREM1 rs2234237T variant causing the amino acid 

exchange Thr25Ser, which has been associated with higher TREM-1 plasma levels, was 

significantly more frequent among patients with severe malaria than in those with uncomplicated 

malaria. Carriage of the TREM1 rs2234237T allele appears to be a risk factor for the 

development of severe malaria. Taken together this dissertation contributes to an increased 

understanding of host genetic factors and malaria susceptibility. 



6 

 

ZUSAMMENFASSUNG 

Durch die Konfrontation mit verschieden Pathogenen unterliegt das menschliche Immunsystem 

einer stetigen Weiterentwicklung, dabei ist die angeborene Immunantwort der initiale 

Abwehrmechanismus gegen alle Erreger. In dieser Dissertation habe ich Proben aus Ghana, ein 

Malaria-endemisches Land, benutzt. Die Host-angeborenen Immunfaktoren werden untersucht, 

die möglicherweise die Malaria-Anfälligkeit verändern könnten. Meine Untersuchungen sind in 

zwei unabhängige Kapitel gegliedert, die als wissenschaftliche Artikel veröffentlicht wurden. Im 

ersten Kapitel meiner Dissertation habe ich die Verteilung der Knops-Blutgruppenantigene auf 

dem Komplementrezeptor 1 (CR1, CD35) in der ghanaischen Bevölkerung untersucht und diese 

Verteilung mit anderen Weltpopulationen verglichen, welche nicht in Malaria endemischen 

Gebieten leben. Die Verteilung der CR1-Allele, Genotypen und Haplotypen unterscheiden sich 

signifikant unter den verschiedenen geographischen Standpunkten und bestimmte CR1-

genetische Varianten waren in afrikanischen Populationen spezifischer, was auf einen 

potentiellem durch den Malariaparasiten ausgelösten, Selektionsdruck hindeuten kann. Im 

zweiten Kapitel meiner Arbeit konzentrietre ich mich auf die fragetsellung, ob es einen 

Zusammenhang zwischen genvarianten des angeborenen Immunsystems und Zytokinen in einer 

klinisch klassifizierten Malaria-Kohorte gibt. Insbesondere wurden die Untersuchungen 

durchgeführt, um die Rolle der auslösenden/triggernden Rezeptoren (TREM)-1 und TREM-

artigem (TLT-1), welche auf myleoiden Zellen exprimiert werden, des endothelialen Protein C-

Rezeptors und der Interleukine (IL)-8 und IL-18 Varianten, auf den Ausgang einer 

Malariaerkrankung, zu analysieren.. Bei Kindern mit schwerer Malaria wurden im Vergleich zu 

denen mit unkomplizierter Malaria höhere STREM-1-Spiegel beobachtet. Niedrige TREM-1 zu 

TREML-1-Verhältnisse wurden mit unkomplizierter Malaria assoziiert. Die TREM-1 

rs2234237T-Variante, die den Aminosäureaustausch Thr25Ser verursacht, welche mit einem 

höheren TREM-1-Plasmaspiegel assoziiert wurde, war bei Patienten mit schwerer Malaria 

signifikant häufiger als bei Patienten mit unkomplizierter Malaria. Das Vorhandensein des 

TREM-1 rs2234237T-Allels, scheint ein Risikofaktor für die Entwicklung einer kompl. Malaria 

zu sein. Zusammenfassend, hat diese Dissertation zu einem tieferen  Verständnis von 

Wirtsfakotren, welche eine entscheidende Rolle für die veränderte Zugänglichkeit für eine 

Krankheit spielen könnten, beigetragen. 
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1. INTRODUCTION 

1.1. Malaria  

Malaria is an endemic disease caused by an infective bite of a female Anopheles mosquito. 

Malaria occurs often in tropical and sub-tropical regions, mostly the high burden being reported 

in sub-Saharan Africa. Young infants, children, and pregnant women living in endemic areas are 

the most vulnerable group. 

Even though the global malaria cases are on the decline, the disease is still a public health 

problem, particularly in sub-Saharan Africa (Figure 1). An estimated 438,000 individual deaths 

were reported in 2015. Of those, 90 % of deaths were reported in sub-Saharan Africa, especially 

in children under five years of age [1]. Parasites causing malaria belong to the genus 

Plasmodium and infect a wide range of hosts. Six species, Plasmodium falciparum, P. vivax, P. 

malariae and P. ovale are known to infect humans, while the zoonotic P. knowlesi and P. 

cynomolgi cause infection both in Macaque monkeys and in humans [1,2]. Among all the 

different species, P. falciparum is the most virulent one and accounts for high morbidity and 

mortality. 

 

Figure 1: Countries at risk of malaria. Picture courtesy World Malaria Report 2015 [1]. 
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 Life cycle of Plasmodium spp. and pathogenesis of malaria 

Plasmodium parasites have a complex and multi-stage life cycle, including sexual and asexual 

stages, which occurs alternatively within the intermediate human host and in the definitive 

female Anopheles mosquito as depicted graphically in figure 2 below. Infection is initiated when 

an infected haemophagous female Anopheles mosquito inoculates the human host with 

sporozoites. Once injected, sporozoites quickly infect liver cells, multiply and emerge from this 

pre-erythrocytic stage in the blood stream as merozoites after 5-7 days to invade erythrocyte and 

to initiate the erythrocytic stage of infection. In case of P. ovale and P. vivax, a proportion of the 

parasites termed hypnozoites may persist in the liver in a dormant condition, and thus leading to 

emergence of clinical infection later in days, months or years. The erythrocytic stage involves 

cyclic invasion of erythrocytes by merozoites, maturation of the parasites to schizont stage, 

rupture of the infected erythrocytes to release more merozoites to repeat the cycle. Few of these 

parasites develop into the sexual forms (gametocytes) and are taken by the mosquito again and 

develop as sporozoites and subsequently infecting humans by an infective bite (Figure.2) [1,3].  

 

Figure 2: Life cycle of P. falciparum.  Figure courtesy Miller et al [3]. 

The asexual stage is associated with clinical manifestation of malaria. The clinical outcome of 

malaria is influenced by multitude of host and parasite factors (Figure 3). Most often the 
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underlying factors that determine the clinical outcome in malaria are not completely understood. 

The clinical episode of malaria ranges from mild (uncomplicated) to severe malaria leading to 

death (Figure 3).  

 

Figure 3: Factors influencing the outcome of malaria infection [3]. 

The asymptomatic P. falciparum infection occurs in older children and adults living in endemic 

areas. It involves carriage of parasites for many days or weeks without any clinical symptoms 

mainly due to host genetic predisposition and/or a high degree of anti-malaria immunity [3,4]. 

Infection could result either as uncomplicated malaria, severe malaria, accompanied by other 

conditions including vital organ dysfunction. Clinical symptoms are rather non-specific, often 

shared with other febrile conditions and commonly include fever, chills and sweats, headache, 

musculoskeletal pain, vomiting, anaemia, jaundice, splenomegaly, convulsions, diarrhoea, 

coughing and rapid shallow breathing [3,4].  

Individuals living in regions where malaria is holoendemic are often semi immune to malaria, 

whereas others not. However, young infants and children in areas where malaria is endemic who 

have not had repeated exposure to the parasite may be regarded as nonimmune. Such a condition 

is also extended to travelers and migrants from non-endemic area [5]. P. falciparum infection is 

invariably associated with severe malaria and is responsible for most of the malaria-related 

deaths. It may manifest as severe malarial anaemia which is characterized by haemoglobin 

concentration of <5 g/dl or haematocrit <15%. It may also present as cerebral malaria which is 
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associated with comatoseness. Other signs of severe malaria include deep breathing, respiratory 

distress, prostration, hypoglycaemia, acidosis amongst others [6]. Uncomplicated malaria is 

defined as parasitaemia 1000-50,000/μl on admission, no schizontaemia, circulating leukocytes 

containing malarial pigment <50/μl, not homozygous for haemoglobin S, haemoglobin >80 g/l, 

platelets >50/nl, leukocytes <12/nl, lactate <3 mmol/l, and blood glucose >50 mg/dl. Severe 

malaria is defined as severe anaemia (haemoglobin <50 g/l) and/or hyperparasitaemia (>250,000 

parasites/μl, corresponding to >5% infected erythrocytes), a Blantyre coma score ≤2 and other 

facultative signs of severe malaria such as cerebral malaria, convulsions, hypoglycaemia, and 

respiratory distress. Asymptomatic malaria is defined as individuals harbouring parasites without 

clinical signs during sample collection. 

1.2. Malaria and Immune responses 

The various stages of the malaria parasite in the human host elicit both innate and adaptive 

immune responses, which involve both humoral and cellular arms of immune responses. These 

responses against the parasite encompasses a complex network of defense mechanisms, that 

results in the release of molecules capable of limiting the growth and further development of the 

parasite or causing immunopathology, which may lead to life-threatening conditions such as 

cerebral malaria.  

Adaptive immunity to malaria 

Specific immunity to malaria is mediated by lymphocytes and their products especially the 

cytophilic antibodies. With increasing age, individuals in malaria endemic regions become 

exposed to a wider spectrum of plasmodial antigens, developing adaptive immunity first against 

severe malaria and then uncomplicated malaria, thus, achieving a state of premunition [7-10].  

Evidence for the involvement of antibodies in the anti-malarial immunity comes from a series 

passive experiment demonstrating the efficacy of IgG against the clinical manifestation of 

infection. Artificial transfer of IgG from semi-immune Africans to malaria patients with limited 

or no anti-malaria immunity drastically improved prognosis [11-13]. Naturally, passive transfer 

of maternal antibodies to infants is thought to protect them against clinical malaria in the first 

few months of life [14,15].  
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Innate immunity to malaria 

Innate immunity to malaria has both humoral and cellular components besides the natural 

resistance to the parasite or the clinical disease. Parasite-specific molecules interact with pattern 

recognition receptors (PRR) such as toll like receptor (TLR1, TLR2, TLR4, TLR6, and TLR7), 

RIG‑I-like receptors (RLRs) and NOD-like receptors (NLR) to activate phagocytosis [16,17]. 

Parasite digestive food vacuole containing haemozoin are taken up by leukocytes with the degree 

of accumulation of haemozoin in the leukocytes reflecting the severity of an infection. 

Haemozoin also elicits production of pro-inflammatory cytokines such as tumour necrosis factor 

(TNF) and interleukin (IL)‑1β, and certain chemokines from phagocytes [18,19]. Plasmodium 

falciparum derived GPI anchors are recognized by TLR1-TLR2 or TLR2-TLR6 hetero- and 

TLR4 homodimers, and during the process, innate immune cells equipped with these receptors 

are activated, producing pro-inflammatory cytokines including TNF [20-22]. Higher expression 

of TLR‐2 and TLR‐4 significantly is associated with protection from severe malaria [23]. The 

complement system is also activated, which in conjunction with antibodies, inhibit merozoites 

invasion of erythrocytes [24]. Parasites are readily phagocytosed by the phagocytic cells. This 

phagocytosis is greatly enhanced when parasites are opsonized by complement [25]. Monocytes 

have also been documented to release soluble factors following the uptake of the parasite to 

inhibit parasite growth in vitro in antibody-dependent cellular inhibition assays [26]. Similarly, 

ingestion of opsonized parasites by neutrophils triggers respiratory burst in antibody-dependent 

respiratory burst assay [25]. Effective antibody-dependent cellular inhibition and antibody-

dependent respiratory burst have been shown to associate positively with protection from clinical 

malaria [27,28]. Natural killer (NK) cells participate in this arm of immune responses by 

producing interferon gamma (IFN-γ) in response to malaria parasite [29]. In vitro 

experimentations have demonstrated an adverse effect of  IFN-γ on multiplication of the 

parasites in a dose-dependent manner [30] and higher levels are associated with reduced risk 

[31]. 

Cytokine responses during malaria 

In response to P. falciparum infection, various cells are activated and subsequently releasing 

several pro- and anti-inflammatory cytokines [18,19]. Plasma levels of TNF and IL-18 were 



12 

 

positively correlated with parasitaemia and pigment-containing phagocytes [32,33]. In synergy 

with IL-1β, IFN-γ, granulocyte-macrophage colony stimulating factor (GM-CSF), TNF promotes 

phagocytosis of merozoites by phagocytic cells [34]. Increasing levels of TNF and IL-8 were 

associated with rapid parasite clearance and recovery [35,36]. IFN-γ and IL-12 stimulate 

macrophages to produce free oxygen radicals, which are toxic to P. falciparum [37]. Excessively 

high IL-8, IL-12, IL-18, TNF and IFN-γ levels were associated with severe malaria rather than 

uncomplicated malaria [32,36,38]. These pro-inflammatory cytokines are not entirely beneficial 

to the host. A relatively higher level of TNF in comparison with IL-10, a cytokine that limits the 

detrimental effect of TNF, is mostly associated with severe malaria and severe malarial anaemia 

in particular [39,40]. In the same vein, lower levels of transforming growth factor β (TGF-β), an 

anti-inflammatory cytokine, have been documented in children suffering from severe malaria 

with a small IL-12/TGF-β ratio being a parameter for poor prognosis [41]. 

1.3. Malaria and the human genome 

Epidemiological evidence shows that certain individuals have developed some inherent 

resistance to malaria, especially due to selection pressure that has been exerted on the human 

genome over the years by the parasite. Asexual development of the parasite occurs in 

erythrocytes, as a consequence, a range of erythrocyte variants exist. These include, haemoglobin 

gene (HBB) polymorphisms HbC, HbE and HbS; regulatory defects of HBA and HBB that give 

rise to α and β thalassaemia, mutations in the CD233 (SLC4A1), which causes ovalocytosis; 

polymorphism in Duffy-antigen, which encodes DARC/Fy chemokine receptor; and mutation in 

erythrocyte enzyme gene G6PD, that causes glucose-6-phosphate dehydrogenase deficiency 

[42]. 

P. vivax uses duffy gene antigen as a receptor for attachment to erythrocytes and the lack of 

DARC/Fy chemokine receptor on erythrocyte of the Duffy negative blood individuals living in 

P. vivax endemic regions makes such people refractory to P. vivax infection. Haemoglobin (Hb) 

C protects against clinical malaria with HbS, though having little effect on infection per se 

protects against severe malaria. Other genetic factors such as α and ß- Thalassaemias and 

Glucose-6-Phosphate Dehydrogenase deficiency are protective against severe malaria. South-
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east Asian ovalocytosis/Melanesian form of ovalocytosis offers almost complete refractoriness 

against the development of cerebral malaria, even though; an individual carrying these genes is 

not immune to infection. In spite of their protective effects, the mechanisms of the protection 

accorded by these genetic factors against malaria are still not clear. However, it is evident that 

the parasite has exerted enough selective pressure leading to a positive selection of many human 

genes [42]. 

1.4. Complement system 

The complement system is made up of both membrane and plasma proteins, of which there are 

about 30 plasma proteins, which  amount to approximately 3 g/L and 15% of the globular 

fraction of plasma [43]. The system was first identified in 1896 by Bordet as a heat-sensitive 

factor in serum and named “complement” system because of its ability to complement the 

antibacterial properties of antibodies in the heat labile portion of serum [44]. Complement 

proteins influence inflammation and play a pivotal role in host defense against pathogens. 

Complement protein connect the innate and adaptive immune systems together, in particular 

through the classical pathway of complement system activation. Complement system has three 

distinctive pathways; classical, mannan-binding lectin (MBL) and alternative pathways [45].  

The classical pathway of complement system activation is triggered when complement factor 

C1q in complex with C1r and C1s serine proteases bind to Fc region of complement fixing 

immunoglobulin (Ig) G1 and IgM attached to the surface of pathogens. C1r and C1s then 

undergo autocatalytic activation and cleave C4 and C2 into C2a, C2b, C4a and C4b fragments. 

C2a and C4b then form C4bC2a complex, also called classical pathway C3 convertase, on the 

surface of pathogens. The C3 convertase cleaves C3 to a smaller C3a fragment which leaves the 

surface of the pathogen as an inflammatory mediator while the larger C3b is retained on the 

surface of the pathogen as an opsonin, marking the pathogen out as a non-self molecule for 

phagocytic uptake by phagocytes equipped with a C3b receptor. Additionally, a molecule of C3b 

may complex with C4bC2a to form C4bC2aC3b, the so-called C5 convertase of the classical 

pathway, which then produces C5a and C5b from C5. Complement system activation through the 

lectin pathway begins when mannose groups on microbes are recognized and bound by MBL or 

ficolin to activate the esterase activity of MBL-associated serine proteins (MASPs), which cleave 
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C4 and C2 to C2a, C2b, C4a and C4b. The succeeding activation and complex formation of the 

next complement zymogens through cleavage results in the formation of C3 and C5 convertases 

just like the classical pathway.  

The alternative pathway is initiated through the spontaneous hydrolysis of C3 to iC3. The later 

binds complement factor B, which is then cleaved by complement factor D to Ba and Bb, 

producing the so-called fluid phase C3 convertase (iC3Bb). The fluid phase C3 convertase 

cleaves C3 to form C3a and C3b, creating more C3b to associate with Bb to form the C3 

convertase (C3bBb) of the alternative pathway. The C3bBb as formed may be stabilized on 

microbes by properdin, which may associate with additional C3b to give rise to C5 convertase 

(C3bBbC3b) on microbes [45].  

The C5 convertase from any of the pathways then acts on C5 to produce C5a and C5b. The later 

then initiates the ‘late’ phase of complement action, a sequence of polymerization reactions 

during which the terminal complement components (C6, C7, C8 and C9) interact to form a 

membrane attack complex. Subsequently, membrane attack complex inserts into the membrane 

of the pathogen, creating pores within and disrupting the ionic and osmotic balance of the 

pathogen to kill it (Figure 4). Other effector mechanisms associated with complement system 

activation include chemotaxis (attraction of leukocytes to the site of a pathogen) and 

opsonophagocytosis. Complement system activation is potentially detrimental to the host unless 

it is tightly regulated. One of the molecules that regulate all the three complement pathways is 

complement receptor 1 (CR1) [45]. 
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Figure 4: A schematic presentation of pathways of complement system activation. Diagram 

courtesy Taylor et al [45].  

1.4.1. Complement receptor 1 

Human CR1 is a single chain; type 1 membrane-bound glycoprotein, encoded by CR1 gene 

located on the extended arm of Chromosome 1 at 1q32 locus [46]. CR1 belongs to the family of 

regulators of complement activation family of proteins. Its extracellular region is organized into 

30 short consensus repeats, also known as short complement regulators (SCR) domains, sushi 

domains or complement control protein repeats, each having 59-75 amino acids [47-49]. SCR are 

further organized, based upon the degree of internal homology, into four larger units termed long 

homologous repeats (LHR A, B, C and D). Each of the LHR A, B and C contains seven SCR 

domains while D has at least nine [47,48,50,51]. The structure of CR1 is formed by 3-6 long 

homologous repeats. The variation in the number of long homologous repeats is responsible for 
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the different CR1 isoforms: CR1*1, CR1*2, CR1*3 and CR1*4 which correspond to, under non-

reducing conditions, molecular sizes of 190 kDa, 220 kDa, 250 kDa and 280 kDa, respectively 

[52]. The four allotypes probably arose from unequal chromosomal crossover event [52]. The 

most frequently observed of the four is CR1*1 (CR1 A or F), followed by CR1*2 (CR1 B or S) 

and CR*3 (CR1 F’) with CR1*3 (CR1 D) being the rarest. CR1*1 is made up of 38 exons, 

spanning 133kb, and code for a protein of 2,039 amino acids [52].  

The polymorphisms that give rise to all known Knops blood group system antigens have been 

described in either exon 26 or exon 29 of the CR1. These polymorphisms and antigens include, 

York antigen (Yk
a+/-

, rs3737002C/T) located on exon 26 while Knops a and b (Kn
a
/Kn

b
, 

rs41274768G/A, p.V1561M), McCoy a and b (McC
a
/McC

b
, rs17047660A/G, p.K1590E), Swain-

Langley/Vilien 1 and 2 (Sl1/Sl2, rs17047661A/G, p. R1601G) [53-55], and KCAM + and – 

(KCAM+/-, rs6691117A/G, p. I1615V) are situated on exon 29 [53]. Besides the molecular 

weight, and Knop blood group system antigen polymorphisms is the density/expression 

polymorphism which defines the quantitative expression of the CR1 molecule on erythrocytes 

with some individuals being low (LL) expressors while others are either high (HH) or 

intermediate (HL) expressors [54]. 

Functionally, CR1 regulates all three pathways of complement activation by binding to C1q, 

C3b, C4b, and mannan-binding protein. CR1 dampens the intensification of the complement 

cascade by disrupting C3 convertase that cleave C3 to activate C3 and also by providing cofactor 

function to Factor I that cleaves C3b to an inactive form, iC3b, which is incapable of assembling 

a functional C3 convertase [56]. It serves as a receptor for complement fixed immune complexes 

and enhances phagocytic uptake of complement opsonized pathogens and particles by 

phagocytes and promotes antigen presentation to T lymphocytes [57].  

Several pathogens have subverted the functions of CR1 to their advantage. Epstein-Barr virus, 

human immuno deficient virus, Mycobaterium leprae, M. tuberculosis, Legionella pneumophila, 

Leshmania spp, and P. falciparum interact with and use CR1 to gain access to targeted host cells 

that include monocytes, macrophages, lymphocytes and erythrocytes [58-62]. Clinical 

presentations of several infectious diseases have been linked to CR1 expression density. A 
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decreased CR1 expression is associated with pathogenesis of severe acute respiratory syndrome 

[63] and the chronic phase of Chagas disease [64]. 

The pathology of these infections, in some cases, is subjective to variants of CR1 that result from 

the various mutations in CR1 [65-69]. In vitro experimentation associated Sl1 (rs17047661A) 

allele with more rosette formation by P. falciparum-infected erythrocytes in relation to Sl2 

(rs17047661G) allele [70]. Erythrocytes of individuals carrying Sl1 (rs17047661A) bind more 

efficiently to recombinant COS7 cells expressing Plasmodium falciparum erythrocyte membrane 

protein 1 (PfEMP-1) compared to Sl1 (rs17047661A) bearing erythrocytes [70]. Field isolates of 

P. falciparum from malaria patients also behave similarly [71] suggesting that these CR1 variants 

could be vital in the pathophysiology of  malaria and might have co-evolved with P. falciparum.  

1.5. TREM-1 and TLT-1 immune receptors  

Triggering receptor expressed on myeloid cells-1 (TREM-1) is a 30-kDa immune-regulatory 

protein, a member of the immunoglobulin superfamily, and whose expression is up-regulated on 

cells of the myeloid lineage in response to inflammatory insult [72-76]. Its activation stimulates 

the development of those cells [77], including polarization of classically activated macrophages 

[75]. It promotes inflammation in general, including the release of IL-8, monocyte 

chemoattractant protein 1, Monocyte inhibitory protein 1, TNF and Granulocyte-macrophage 

colony-stimulating factor [73,77,78], and makes dendritic cells better antigen presenting cells 

[77].  

TREM-1 is expressed on polymorphonuclear neutrophils, monocytes and macrophages (M/M) in 

response to an inflammatory insult from inflammatory cytokines, some substances from 

inflammation-damage-associated molecular, bacterial and fungal origins [73,79,80]. TREM-1 

regulates innate immunity by enhancing inflammatory signals which are initiated by pathogen-

associated molecular pattern (PAMP) receptors, for example, Toll-like receptors (TLR) [78,80-

82]. Its engagement stimulates proliferation and maturation of cells of myeloid lineage, 

expression of costimulatory molecules on macrophages, better antigen presentation by dendritic 

cells to T lymphocytes for their proliferation, and increased synthesis and secretion of 

proinflammatory cytokines [78]. Activation of neutrophils through TREM-1, in particular, 

enhances their respiratory burst activity, degranulation, phagocytosis, the release of 
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myeloperoxidase, and IL-8 [80]. By promoting inflammatory responses, TREM-1, therefore, 

accelerates activation of immune cells, but with a down side of enhancing tissue destruction too 

[77,82,83], which in certain disease conditions, for instance, malaria may be highly pathological. 

Anti-inflammatory cytokines however individually or synergistically inhibit its expression and 

function [84]. TREM-1 lacks signaling molecule, and therefore signals upon association with the 

immunoreceptor tyrosine-based activation motif-containing adapter protein, DAP12 to activate 

the cell species it affects [72,85]. 

A soluble isoform of TREM-1 (sTREM-1) exists and can be quantified in biological fluids [86-

88]. It is provided through proteolytic cleavage of the membrane-bound form [89] or through 

alternative splicing [90]. Increased levels of sTREM-1 in plasma are associated with systemic 

inflammation and severe pathology [86-88]. The plasma level of sTREM-1 is linked to intronic 

SNP- rs2234237 [91]. The mutant allele, rs2234237T is associated with higher sTREM-1 level, 

though other factors of unknown origin account for about 30% of its interindividual variability 

[91].The SNP- rs2234237 has been linked with severe pathologies in a number of inflammation 

associated illnesses [88,91,92] but not by others [93,94]. 

TLT-1 is expressed in megakaryocytes and platelets, and co-localizes with P-Selectin, also called 

platelet alpha-granule Membrane protein or CD62 in alpha-granules of non-activated platelets 

[95]. An alternative form of this recently described as TLT-1s with shorter cytoplasmic strand is, 

however, expressed on macrophages and osteoclast [96]. Unlike the other members of the TREM 

family, TLT-1 contains an immunoreceptor tyrosine-based inhibitory motif and is thus capable 

of delivering inhibitory signals when activated [97]. However, the intact TLT-1 promotes 

mobilization of calcium ions when activated and thus enhances cell activation rather than 

inhibition [98]. When activated, TLT-1 becomes exposed on the membrane [95] and is 

afterwards cleaved and released as soluble fragments [99-101]. The soluble isoforms of TLT 

(sTLT) may compete with the cell surface molecules as well as surface bound TREM-1 for a 

common ligand and interfere with the productive interaction between these cell surface receptors 

and their ligands [99,100]. Experimentally, binding and trapping of TREM-1 ligand by sTLT-1 

leads to reduced inflammatory response, which limits collateral organ damage, and improves 
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upon the outcome of microbial sepsis in mice [99] and protect against inflammation-associated 

haemorrhage [99]. 

1.6. EPCR and inflammation-associated diseases  

Endothelial protein C receptor (EPCR), also called activated protein C receptor or CD201 is a 

type 1 transmembrane glycoprotein and a member of the major histocompatibility complex 

(MHC)-class 1/CD1 family of proteins [102]. EPCR is encoded in humans by Protein C receptor 

gene (PROCR) and serves as a receptor for protein C [102]. It enhances protein C activation, 

which leads to inhibition of Th1 cytokine secretion and prevention of inflammation-associated 

damage of vascular endothelium [102,103]. In experimental models, increased expression of 

EPCR correlates with heightened downregulation of inflammatory responses [104].  

A recent report has however implicated EPCR in the pathophysiology of malaria. It facilitates 

parasite sequestration via binding to PfEMP-1 [105], and serological analyses have so far 

indicated loss of expression of ECPR during malaria [88,106,107], and in some cases, a lower 

level in uncomplicated malaria compared to severe malaria patients or healthy controls [108]. 

About 60% of interindividual variability in levels of EPCR are influenced by rs867186AG [109], 

a locus linked to the outcome of P. falciparum infection in a recent report [108,109] but not in 

several others [88,106,110]. 

2. STUDY AIMS  

Two distinct investigations were carried out. The first investigation with samples collected from 

healthy individuals from different world populations, the second investigation on samples from 

Ghanaian children who suffered from uncomplicated and severe malaria.  

The specific objectives addressed are: 

1. Diversity of Knop blood group antigens in malaria and non-malaria endemic populations 

(Paper I) were investigated. 

2. The circulating levels of soluble TREM-1, TLT-1 and EPCR were investigated for 

correlation with clinical  malaria (Paper II),  
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3. TREM-1, PROCR, IL-8 and IL-18 genetic variants were investigated for possible 

associations with clinical malaria (Paper II). 

3. RESULTS 

3.1. Manuscript one 

Lucas Sandri T*, Adukpo S*, Giang DP, Nguetse CN,  Andrade FA, Tong HV, Toan NL, Song 

LH, Elumalai P, Thangaraj K, Valluri VL, Ntoumi F, Meyer CG, Messias Reason IJ,  Kremsner 

PG, Velavan TP (2017). Geographical Distribution of Complement Receptor Type 1 Variants 

and their Associated Disease Risk, PLOSONE. 

*Shared first authorship (equal contribution). 

The distribution of the various CR1 genotypes in all the populations investigated was in Hardy-

Weinberg equilibrium (HWE) (p>0.05). The genotype and allele frequencies of CR1 rs17259045 

(p=0.002), rs17047660 (p<0.0001), rs17047661 (p=0.01) and KCAM+/- (rs6691117) (p<0.006) 

SNPs differed significantly amongst the five populations while those of CR1 rs41274768 and 

rs4844609 SNPs were comparable (p>0.05). The distribution of variant allele of each of McC
a/b

 

(rs17047660A/G), SI1/2 (rs17047661A/G) and KCAM+/- (rs6691117A/G) SNPs was similar in 

Ghanaian and Congolese populations (p>0.05). However, each of the derived allele of McC
a/b

 

(rs17047660A/G), SI1/2 (rs17047661A/G) and KCAM+/- (rs6691117A/G) SNPs was 

significantly over-represented in the Ghanaian and Congolese populations compared to other 

populations (p<0.01). All the investigated SNPs were polymorphic in the Brazilian population. 

The minor alleles of CR1 rs17259045A/G, Kn
a/b

 (rs41274768G/A) and rs4844609T/A SNPs were 

identified in the Brazilian population only. Except CR1 KCAM+/- (rs6691117), all the 

investigated loci were monomorphic in the Vietnamese population. The heterozygote CR1 

rs17259045AG genotype and the CR1 rs17259045G allele were more frequent in the Brazilian 

population than the other ones. In the Indian population, three SNPs, rs17259045, Kn
a/b

 

(rs41274768G/A) and KCAM+/- (rs6691117A/G) were observed.  

Haplotypes reconstruction with the six CR1 SNPs under investigation revealed a total of nine 

haplotypes. The commonest haplotype observed in Ghanaian and Congolese populations was 
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CR1*AGAGTG while CR1*AGAATA haplotype occurred more frequently in the Brazilian and 

Vietnamese populations. The CR1*AGAATG haplotype was detected mostly in the Indian 

population than any other. Linkage disequilibrium (LD) analyses indicated a medium level LD 

for CR1 SNPs SI1/2 (rs17047661) and KCAM+/- (rs6691117), and for McC
a/b

 (rs17047660) and 

SI1/2 (rs17047661) in both the Congolese and Ghanaian study groups. 

3.2. Manuscript two 

Adukpo S, Gyan BA, Ofori MF, Dodoo D, Velavan TP. (2016) Triggering receptor expressed 

on myeloid cells 1 (TREM-1) and cytokine gene variants in complicated and uncomplicated 

malaria. Trop Med Int Health. 

Acute levels of sTLT-1, sTREM-1 and sEPCR were differentially associated with severity of the 

infection. A significantly high level of sTREM-1 was found in severe malaria group compared to 

uncomplicated malaria group (p=0.049). Absolute plasma levels of sTLT-1 in both groups were 

similar (p=0.115) but a greater sTLT-1 to sTREM-1 ratio observed in severe malaria compared 

to uncomplicated malaria (p=0.033). Acute-state plasma sEPCR levels were similar in severe 

malaria and uncomplicated (p=0.095). By day 14 following the initiation of antimalarial 

treatment, plasma levels of EPCR had increased significantly in both uncomplicated malaria 

(p=0.0007) and severe malaria (p=0.0002) groups. 

The distribution of TREM-1 rs2234237A/T (p=0.451) and TREM-1 rs34727391A/C (p=0.858) 

SNPs was in HWE. The distribution of the various TREM-1 rs2234237A/T genotypes in 

uncomplicated malaria was significantly different from that of severe malaria children in a 

codominant model (AA vs. AT vs. TT, p=0.036).  The AA genotype, which is known to be 

associated with low plasma sTREM-1 level, was observed less frequently in uncomplicated 

malaria (AA vs. AT + TT, OR=2.4; 95% CI: 1.2-4.5, p=0.01). Comparing allele frequencies also 

revealed over-representation of the rs2234237A in children who suffered from uncomplicated 

malaria (p=0.018). Irrespective of the genetic model employed in the analyses, none of the 

genotypes of TREM-1 rs34727391A/C associated with uncomplicated or severe malaria (p=0.7).   
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The distributions of the two SNPs, rs867186 (p=0.567) and rs1051021 (p=0.822) detected in the 

PROCR were in HWE; their genotype frequencies were similar between the children who 

suffered from uncomplicated and severe malaria (p=0.789 and p=0.625, respectively). 

The distribution of IL-8 SNPs, rs4073A/T (p=0. 874) and rs2227538C/T (p=0. 533) was in HWE. 

The frequencies of the various genotypes of IL-8 rs4073A/T were similar in the two paediatric 

malaria groups (p=0.466) irrespective of the genetic model used in the analyses. Allele 

distribution analysis revealed no association between any of the allele and either uncomplicated 

malaria or severe malaria (OR=1.5, 95% CI: 0.9-1.7, p=0.18). Likewise, the distribution of IL-8 

rs2227538C/T SNPs was comparable in the two groups (p=0.592). None of the allele showed an 

association with either uncomplicated malaria or severe malaria (OR=1.5, 95% CI: 0.9-2.5, 

p=0.123).  

The rs1946518C/A and rs187238G/C SNPs of IL-18 were polymorphic enough for evaluation 

and were assessed about the malaria disease phenotype expression. The distribution of all IL-18 

SNPs, rs1946518C/A (p=0.973) and rs187238G/C (p=0.883), was in HWE. The frequencies of 

various genotypes of rs1946518C/A were similar in both uncomplicated malaria and severe 

malaria groups (AA vs. AC vs. CC, p=0.167). Analysis of allele frequencies of the rs1946518C/A 

SNP revealed no association between any allele and uncomplicated or severe malaria (OR=0.7, 

95% CI: 0.66 – 1.0, p=0.065). The distribution of genotypes of IL-18 rs187238G/C SNP did not 

differ between uncomplicated or severe malaria (GG vs. GC vs. CC, p=0.237). Similarly, the 

distribution of the alleles of the rs187238G/C SNP was comparable between the children who 

suffered from uncomplicated malaria and severe malaria (OR=1.5, 95% CI: 0.9-2.0, p=0.123). 

4. GENERAL DISCUSSION AND CONCLUSION   

Every organism defends against pathogens by evolving certain immune defense mechanisms 

involving both innate and adaptive immunity [111]. In order to effectively thwart an infection, 

the pathogens should be killed either by lysis or opsonization by specific immune cells. Such 

processes are mediated by PRRs, which present the pathogen to specific immune cells of the 

innate or adaptive immune system. Among many such receptors that act as immune mediators or 

as PRRs, TREM-1 and CR1 are involved in tackling the pathogen and containing them. Genes 

encoding these receptor molecules are subjected to constant pressure imposed by the parasite. 
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The pressure imposed on such immune gene loci may be selective. For instance, human genes 

undergo selection in regions where malaria is holoendemic. Such observations were reported. In 

this context, my investigations were aimed to investigate certain immune genetic variants and 

their role in malaria and non-malaria endemic population. 

CR1 variants in malaria and non-malaria endemic population 

CR1 genetic variants in exon 29 are associated with CR1 expression levels, C1q or C3b binding 

activity and increased susceptibility to various infectious diseases. This study investigated the 

entire exon 29 of CR1 in five diverse populations to assess the distribution of Knops blood group 

antigens and the distinct functional CR1 SNPs. Such studies on geographically diverse 

populations can provide insights on how these CR1 alleles have spread in populations and 

contribute to the understanding of natural selection. Allele and genotype frequencies of CR1 

variants in exon 29 [rs17259045, rs41274768 (Kna/b), rs17047660 (McCa/b), rs17047661 

(Sl1/Sl2), rs4844609 (Sl4/Sl5), rs6691117 (KCAM+/-)] as well as their haplotype frequencies 

were differently distributed among the Brazilian, Vietnamese, Indian, Congolese and Ghanaian 

study groups. So far, the frequencies of these variants and especially, the distribution of blood 

group antigens have not been described explicitly for central African populations yet. CR1 

variants rs17047660A/G (McCa/b) and rs17047661A/G (Sl1/Sl2) were observed to be 

polymorphic only in the African groups compared to those from Asia and Brazil, indicating that 

the frequencies of these two SNPs result from a strong selective bias exerted by exposure to 

distinct pathogens, especially by P. falciparum. This is substantiated by a high linkage 

disequilibrium between the two variants. This locus also determines the Knops blood group 

antigen McCa/b.  

Studies have demonstrated that this blood group antigen is dominant among many ethnic groups 

of African ancestry living in malaria endemic regions. Also, the reported frequencies of these 

two loci, rs17047660A/G (Sl4/Sl5) and rs1704661A/G (Sl1/Sl2), in this study were in accordance 

with frequencies observed in other East and West African ethnicities as reported in the 1000 

Genomes database (https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes). The 

frequencies in other African populations correspond to the frequencies observed in this study 

[rs17047660A/G (McCa/b): Gambian 0.67/0.32, Kenyan 0.69/0.31, Sierra Leone 0.71/0.29 and 

https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes
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Yoruba 0.73/0.27; whereas for rs17047661A/G (Sl1/Sl2): Gambian 0.21/0.78, Kenyan 0.30/0.70, 

Sierra Leone 0.21/0.79 and Yoruba 0.30/0.70]. Higher rates of adaptive evolution are expected to 

occur especially in genes involved in the immune system, as these gene loci coevolve with 

pathogens. This is largely contributed by two factors the genetics of the population and natural 

selection. Immune genes tend to evolve rapidly as selection pressure is changing continuously 

due to various pathogenic challenges. Therefore, positive selection of rs17047660A/G (McCa/b) 

and rs1704661A/G (Sl1/Sl2) loci is expected in sub-Saharan African populations exposed to 

distinct pathogenic challenges (e.g. falciparum malaria). Such a selective advantage occurs 

mainly in immune genes involved in pathogen recognition and signaling, and the CR1 is one of 

such genes involved in innate immunity. Taken together, this study revealed significant 

differences in allele, genotype and haplotype frequencies of CR1 SNPs in five populations. This 

study, first to include population from Central Africa, may provide an increased understanding of 

the contribution of red blood cell phenotypes and the complement regulator protein with regard 

to possible associations with infectious diseases including malaria. 

TREM-1 and malaria  

TREM-1 regulates inflammatory responses during microbial infections and plays a role in anti-

malarial immunity [77,86]. The relationship between clinical malaria and serum levels of 

TREM-1 were assessed. Also, a possible association between clinical malaria and TREM1 

variants was investigated. The data indicated plasma sTREM-1 levels were significantly higher 

in uncomplicated malaria patients compared to the severe malaria patients, which concurs with 

an earlier report [86]. As high levels of sTREM-1 are linked to inflammatory pathology, the 

higher levels of sTREM-1 in severe malaria cases might, therefore suggest a very intense 

inflammatory response during the acute phase of infection, especially, in children who 

succumbed to severe malaria. Activation of immune cells through TREM-1 leads to skewed 

secretion of a larger amount of TNF in comparison to IL-10. This phenomenon is associated with 

the pathogenesis of severe malaria. Thus, stronger production of sTREM-1 in severe malaria 

might be pathogenic in nature. 

Nearly two-third of the inter-individual variations in serum levels of TREM-1 were accounted 

for by TREM1 rs2234237A/T; the rs2234237AA and rs2234237TT genotypes are associated with 
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the lowest and the highest levels respectively [91]. The rs2234237T allele is associated with 

severe malaria, indicating that one is under increased risk of developing severe malaria compared 

to uncomplicated malaria as a result of the carriage of this allele. This observation is consistent 

with the serological data and falls in line with earlier studies [86,91]. Thus, carriage of the T 

allele seems a risk factor for the development of severe malaria once an individual is infected 

with P. falciparum. Thus, the observations made here suggest that the role of TREM-1 in malaria 

may parallel its role in other inflammation associated disorders, including sepsis, where its high 

serum levels and the rs2234237T- allele have been linked with severe pathology [76,87,92].  

TLT-l transcripts share homology with the transmembrane domains of TREM-1 and compete 

with membrane-bound TREM-1 for the yet unknown TREM-1 ligand. It is, therefore, viewed as 

a de novo inhibitor of TREM-1-mediated activation of immune cells [99]. Absolute TLT-1 levels 

could not differentiate between severe and uncomplicated malaria, significantly high ratios of 

sTREM-1 to sTLT-1 were associated with severe malaria, indicating that inadequate production 

of TLT-1 relative to TREM-1 levels during malaria infection can contribute to pathology. 

Evidence from clinical trials and in vivo experiments suggests that anti-inflammatory properties 

of TLT-1 could be harnessed for therapeutic use against inflammation associated diseases 

[97,99,112]. Inadequate production of TLT-1 may, therefore, lead to severe malaria. 

Endothelial protein C receptor and malaria 

Malaria infections are associated with endothelial cell activation and damage with several 

biomarkers of endothelial damage relating positively to the severity of malaria [113,114]. High 

plasma levels of sEPCR indicate extensive endothelial damage [115,116] and/or higher cell 

membrane bound EPCR (mEPCR) expression. A trend to reduced levels of sEPCR was observed 

in severe malaria. This is in contrast to the findings of Moussiliou et al. [110]. The difference in 

that and our report is difficult to comprehend. One reason may be that the patients in our study 

were slightly older than those described earlier [110]. Our report is, however, consistent with the 

study by Moxon et al., who clearly demonstrated that unlike malaria, infection with several other 

pathogens could lead to plasma levels of EPCR above baseline values [107]. The current report 

thus fits well with the loss of EPCR expression [107] which can aggravate inflammation during 

malarial infection. Evidence from experimental studies indicates that increasing EPCR 
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expression translates into increasing anti-inflammatory response [104]. Following the interaction 

with mEPCR, endothelial protein C becomes activated and inhibits monocyte migration via 

EPCR, upregulates IL-10 production and thereby dampens inflammation [117-119].  

Loss of EPCR expression during P. falciparum infection appears to be a general phenomenon as 

sEPCR levels increased in both uncomplicated and severe malaria patients by day 14 post 

initiation of anti-malarial therapy. Even though one cannot rule out the presence of residual 

parasite materials in circulation to activate cells, even on day 14, our participants were 

aparasitaemic by microscopy and had fully recovered. Thus, the loss of EPCR expression during 

the acute state can rather be attributed to parasite factors, which could limit the activation of a 

cytoprotective and anti-inflammatory function of endothelial protein C and disrupt the blood-

brain barrier [107,120]. The limitation may precipitate increased inflammatory responses to 

cause haemorrhage in sites of parasite sequestration [105]. The occurrence of haemorrhages in 

the brain microvasculature associated with cerebral malaria [121]. This vicious cycle, involving 

reducing the interaction between mEPCR and endothelial protein C to promote pro-inflammatory 

cytokine production, may aggravate the severity of malaria. At the genetic level, no association 

between any of the genotypes and clinical malaria was observed, confirming earlier studies 

[110,122].  

IL8 and IL18 variants in clinical malaria 

None of the cytokine gene variants (IL8 rs4073, IL8 rs2227538, IL18 rs1946518, IL18 rs187238) 

could be linked to the outcome of malaria. The role of IL-8 rs4073A/T SNP in clinical malaria 

has contradictory associations [123,124]. The lack of significance could be due to the small 

sample size and the size of the effect of each of these investigated Interleukin loci. 

CONCLUSION 

Taken together, the first study demonstrates that distinct distribution of CR1 alleles especially in 

African populations, may contribute to the fact that, this locus might have a selective advantage 

conferred to immune genes involved in pathogen recognition and signaling, possibly contributing 

to disease susceptibility or resistance. The second study demonstrates that higher plasma levels 

of sTREM-1 alone or relative to sTLT-1 during malaria predisposes to the phenotype of severe 
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malaria. Carriage of the TREM1 rs2234237T allele appears to be a risk factor for the 

development of severe malaria. 
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Abstract

Background

Pathogens exert selective pressure which may lead to substantial changes in host immune

responses. The human complement receptor type 1 (CR1) is an innate immune recognition

glycoprotein that regulates the activation of the complement pathway and removes opso-

nized immune complexes. CR1 genetic variants in exon 29 have been associated with

expression levels, C1q or C3b binding and increased susceptibility to several infectious dis-

eases. Five distinct CR1 nucleotide substitutions determine the Knops blood group pheno-

types, namely Kna/b, McCa/b, Sl1/Sl2, Sl4/Sl5 and KCAM+/-.

Methods

CR1 variants were genotyped by direct sequencing in a cohort of 441 healthy individuals

from Brazil, Vietnam, India, Republic of Congo and Ghana.

Results

The distribution of the CR1 alleles, genotypes and haplotypes differed significantly among

geographical settings (p�0.001). CR1 variants rs17047660A/G (McCa/b) and rs17047661A/

G (Sl1/Sl2) were exclusively observed to be polymorphic in African populations compared to

the groups from Asia and South-America, strongly suggesting that these two SNPs may be

subjected to selection. This is further substantiated by a high linkage disequilibrium between

the two variants in the Congolese and Ghanaian populations. A total of nine CR1 haplotypes
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were observed. The CR1*AGAATA haplotype was found more frequently among the Brazil-

ian and Vietnamese study groups; the CR1*AGAATG haplotype was frequent in the Indian

and Vietnamese populations, while the CR1*AGAGTG haplotype was frequent among Con-

golese and Ghanaian individuals.

Conclusion

The African populations included in this study might have a selective advantage conferred

to immune genes involved in pathogen recognition and signaling, possibly contributing to

disease susceptibility or resistance.

Introduction

Complement receptor type 1 (CR1) is widely recognized to play a role in disease pathophysiol-

ogy, diagnosis, prognosis and in therapy [1]. The gene encoding human CR1 is located on

chromosome 1 (1q32.2; OMIM 120620) [2–4]. CR1 belongs to the regulator of complement

activation family (RCA) and is a transmembrane glycoprotein (single chain type 1), which

occurs either in membrane-bound or soluble forms [2,5]. CR1 is predominantly involved in

the transport of circulating immune complexes to the reticuloendothelial system.

CR1 acts as a regulator in the three pathways of the complement system [2], namely the

classical, the lectin and the alternative pathway. It enhances phagocytosis of opsonized particles

together with the complement components C3b, C4b, C1q, mannose-binding lectin and fico-

lin-2, thereby facilitating clearance of opsonized immune complexes. In the presence of Factor

I, CR1 suppresses the complement cascade by inactivating C3b and C4b [6]. CR1 comprises of

30 short complement regulator (SCR) domains, known as complement control protein repeats

(CCPs). Four protein isoforms have been identified based on their molecular weight and the

number of CR1 exons [3]. Groups of seven CCPs are organized into four long homologous

repeats (LHRs A to D) [7,8].

CR1 is also expressed on cells involved in both innate and adaptive immune responses

[9–11]. The erythrocyte CR1 binds to circulating immune complexes and to complement-

coated particles to transport them to the liver or spleen for subsequent phagocytosis [2,3]. CR1

deficient mice showed decreased and delayed IgM and IgG responses to West-Nile virus, thus

increasing mortality [12]. Moreover, in vitro studies have shown that CR1 has distinct adjuvant

properties [13–16], probably due to its involvement in uptake of antigen by antigen-presenting

cells [17].

Three types of polymorphisms have been characterized in the CR1 gene, namely those gen-

erating size variants, those resulting in copy number differences on red blood cells and poly-

morphisms forming the Knops blood group antigens [1,18]. Five distinct CR1 nucleotide

substitutions determine the Knops blood group phenotypes: Knops (rs41274768, Kna/b,

p.N1540S), McCoy (rs17047660, McCa/b, p.K1590E), Swain-Langley/Villien (rs17047661, Sl1/

Sl2, p.R1601G), Swain-Langley (rs4844609, Sl4/Sl5, p.T1610S), and the KCAM antigens

(rs6691117, KCAM+/-, p.I1615V) [19–23].

In the process of pathogen evasion from the host´s immune system, pathogens bind to

complement receptors and other regulatory proteins to facilitate their uptake by host cells.

This may considerably downregulate and impair the function of the complement system [24].

For instance, CR1 has been reported to facilitate entry of intracellular pathogens into host cells

and CR1 protein levels are associated with disease susceptibility. Among protozoan parasites,
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CR1 mediates immune adherence of intracellular Leishmania amastigotes [25] to present them

to macrophages, the preferred habitat of Leishmania [26,27]. Low CR1 levels were associated

with a decreased degree of opsonisation in patients with chronic Trypanosoma cruzi infection

[28]. Among viral infections, CR1 has been shown to be a secondary receptor for Epstein-Barr

virus (EBV) [29] and to expedite the entry of EBV into cells [30,31]. CR1 is associated with the

pathogenesis caused by SARS-CoV [32], adenoviruses [33] and other viral infections such as

HIV and HCV [30].

The present study utilized samples from five populations originating from Brazil, Ghana,

Republic of Congo, India and Vietnam and aimed to assess the distribution of the different

Knops blood group antigens and functional CR1 genetic variants [rs17259045, rs41274768

(Kna/b), rs17047660 (McCa/b), rs17047661 (Sl1/Sl2), rs4844609 (Sl4/Sl5), rs6691117 (KCAM+/-)]

in exon 29 that were involved in pathogen recognition and signaling, possibly contributing to

disease susceptibility or resistance.

Methods

Ethics statement

The study was approved by the Ethics Committee of the Hospital de Clı́nicas in Curitiba, Bra-

zil, the institutional Review Board of the Tran Hung Dao Hospital, Hanoi, Vietnam, the Ethics

Committee of the CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India, Ethics

Committee of the LEPRA-Blue Peter Public Health and Research Centre; the Ethics Commit-

tee of the Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo

and the Ethics Committee of the Noguchi Memorial Institute for Medical Research, Ghana.

Informed written consent was received from all studied participants (consent from parents if

the participant was under 18 years old).

Study population

A total of 441 DNA samples from healthy individuals were utilized. Investigations were carried

out in populations from Brazil [n = 102; mean age 51±7; 48% (49/102) were female and 52%

(53/102) male], Ghana [n = 77; mean age 5±3; 45% (28/62) were female and 55% (34/62)

male], Republic of Congo [n = 77; mean age 3±3; 49% (38/77) were female and 51% (39/77)

male], India [n = 86; mean age 32±18; 39% (30/78) were female and 61% (48/78) male] and

Vietnam [n = 99; mean age 26±5; 40% (36/89) were female and 60% (53/89) male].

CR1 genotyping

In order to assess the distribution of six functional variants [rs17259045, rs41274768 (Kna/b),

rs17047660 (McCa/b), rs17047661 (Sl1/Sl2), rs4844609 (Sl4/Sl5), rs6691117 (KCAM+/-)], the

complete CR1 exon 29 including their intron-exon boundaries was screened by direct sequenc-

ing in the 441 DNA samples (Table 1). A fragment of 884 bp in exon 29 of the CR1 gene was

amplified by polymerase chain reaction (PCR) using the CR1 locus specific primer CR1F
(5'-TCTTCA TAA ATA ATG CCA GAA GTG G-3') and CR1R (5'-TGCCAA TTT CAT
AGT CCT TAT ACA C-3'). PCR amplifications were carried out in a 25 μl volume of reaction

mixture containing 10X PCR buffer, 3.0 mM MgCl2, 0.2 mM dNTPs, 0.2 μM of each primer, 1

unit of Taq polymerase (Qiagen GmbH, Hilden, Germany) and 20 ng of genomic DNA on a

TProfessional Basic Thermocycler (Biometra GmbH, Göttingen, Germany). Cycling parame-

ters were initial denaturation at 94˚C for 5 minutes followed by 40 cycles of denaturation at

94˚C for 30 seconds, annealing at 55˚C for 30 seconds and elongation at 72˚C for 1 minute,

and a final elongation step at 72˚C for 10 minutes. PCR fragments were stained with SYBR
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Safe DNA Gel Stain (Invitrogen, Carlsbad, USA) and visualized on 1.5% agarose gels. PCR

products were subsequently purified using Exo-SAP-IT (USB, Affymetrix, Santa Clara, CA,

USA) and the purified products were directly used as templates for sequencing using the Big-

Dye terminator v. 1.1 cycle sequencing kit (Applied Biosystems, Foster City, CA, USA) on an

ABI 3130XL DNA sequencer according to the manufacturer’s instructions. DNA polymor-

phisms were identified by assembling the sequences with the reference sequence of the CR1
(NM_000573) using Geneious v9.1.4 software (Biomatters Ltd, Auckland, New Zealand) and

reconfirmed visually from their respective electropherograms.

Statistical analysis

Statistical analyses were performed using the GraphPad Prism 3.0 software package (GraphPad

Software, La Jolla, CA, USA) and Stata 12.0 (StataCorp, College Station, TX, USA). Normal

Chi square and two tailed Fisher’s exact tests were calculated to determine the differences of

Table 1. Genotypes and allele frequencies of the investigated six CR1 variants among world populations.

CR1 SNPs Brazilian

n = 102 (%)

Vietnamese

n = 99 (%)

Indian

n = 86 (%)

Congolese

n = 77 (%)

Ghanaian

n = 77 (%)

p value

rs17259045A/G AA 82 (80) 99 (100) 84 (98) 77 (100) 77 (100) < 0.002

AG 20 (20) 0 2 (2) 0 0

GG 0 0 0 0 0

A 184 (90) 198 (100) 170 (99) 154 (100) 154 (100)

G 20 (10) 0 2 (1) 0 0

rs41274768G/A GG 98 (96) 99 (100) 85 (99) 77 (100) 77 (100) NA

GA 4 (4) 0 1 (1) 0 0

AA 0 0 0 0 0

G 200 (98) 198 (100) 171 (99) 154 (100) 154 (100)

A 4(2) 0 1 (1) 0 0

rs17047660A/G AA 99 (98) 99 (100) 86 (100) 46 (60) 35 (45) <0.0001

AG 2 (2) 0 0 27 (35) 34 (44)

GG 0 0 0 4 (5) 8 (10)

A 200 (99) 198 (100) 172 (100) 119 (77) 104 (67)

G 2 (1) 0 0 35 (23) 50 (33)

rs17047661A/G AA 94 (93) 99 (100) 86 (100) 7 (9) 7 (9) <0.01

AG 7 (7) 0 0 31 (40) 28 (36)

GG 0 0 0 39 (51) 42 (55)

A 195 (96) 198 (100) 172 (100) 45 (29) 42 (26)

G 7 (4) 0 0 109 (71) 112 (74)

rs4844609T/A TT 99 (98) 99 (100) 86 (100) 77 (100) 77 (100) NS

TA 2 (2) 0 0 0 0

AA 0 0 0 0 0

T 200 (99) 198 (100) 172 (100) 154 (100) 154 (100)

A 2 (1) 0 0 0 0

rs6691117A/G AA 61 (60) 37 (37) 21 (24) 0 3 (4) < 0.006

AG 33 (33) 53 (53) 39 (46) 19 (25) 10 (13)

GG 7 (7) 9 (9) 26 (30) 58 (75) 64 (83)

A 155 (77) 127 (64) 81 (47) 19 (12) 16 (9)

G 47 (23) 71 (36) 91 (53) 135 (88) 138 (91)

NS, not significant; NA, not applicable

https://doi.org/10.1371/journal.pone.0175973.t001
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genotype, allele and haplotype frequencies among the different ethnicities. Genotype and allele

frequencies were determined by simple gene counting and haplotypes were reconstructed by

using the expectation-maximum (EM) algorithm as implemented in the Arlequin v3.5.2.2 soft-

ware (http://cmpg.unibe.ch/software/arlequin35/Arl35Downloads.html). The significance of

deviations from Hardy Weinberg equilibrium was tested using the approach of Guo and

Thompson random-permutation procedure implemented in Arlequin v. 3.5.2.2 software.

Linkage disequilibrium (LD) analysis was performed using the Haploview v. 3.2 program

(https://www.broadinstitute.org/haploview/downloads). The level of significance was set to a

p-value of<0.05.

Results

The frequencies of CR1 genotypes in the five populations were in Hardy Weinberg equilibrium

(p>0.05). The allele and genotype frequencies of the CR1 SNPs rs17259045, rs17047660

(McCa/b), rs17047661 (Sl1/Sl2) and rs6691117 (KCAM+/-) differed significantly among the

groups (p�0.01) (Table 1). Genotype frequencies of the CR1 variants rs41274768 (Kna/b) and

rs4844609 (Sl4/Sl5) did not differ. The rs17259045AG genotype and the rs17259045G allele

were more frequent in the Brazilian population. Moreover, the G carriers (AG and GG) and

the G allele of variants rs17047660 (McCa/b), rs17047661 (Sl1/Sl2) and rs6691117 (KCAM+/-)

were observed more commonly among the two African populations (Republic of Congo,

Ghana). Interestingly, among Congolese and Ghanaian individuals the minor allele of SNPs

rs17259045A/G, rs41274768G/A (Kna/b) and rs4844609T/A (Sl4/Sl5) did not occur at all; this

allele was observed exclusively in Brazilian individuals. Except for rs6691117 (KCAM+/-), the

Vietnamese population was monomorphic. The Indian group was monomorphic for three of

the SNPs, but not for rs17259045, rs41274768 (Kna/b) and rs6691117 (KCAM+/-). Brazilian

individuals were polymorphic for all SNPs (Table 1). The Knops blood antigen distribution

among the studied populations is summarized in Table 2.

Haplotypes were reconstructed from the six CR1 variants. A total of nine haplotypes were

observed. The haplotype distributions are summarized in Table 3 and Fig 1. The

CR1�AGAATA haplotype was more frequent among the Brazilian and Vietnamese popula-

tions; CR1�AGAATG occurred frequently among the Indian and Vietnamese groups, while

CR1�AGAGTG was observed frequently among Congolese and Ghanaian individuals. The

Table 2. Knops blood group antigens distribution among world populations.

CR1 variants Amino acid substitution Knops blood antigens Brazil

n = 202 (%)

Vietnam

n = 198 (%)

India

n = 172 (%)

Congo

n = 154 (%)

Ghana

n = 154 (%)

p value

rs41274768 V1561M Kna 200 (98) 198 (100) 171 (99.4) 154 (100) 154 (100) NS

Knb 4 (2) 0 1 (0.6) 0 0

rs17047660 K1590E McCa 200 (99) 198 (100) 172 (100) 119 (77.3) 104 (67.5) <0.0001

McCb 2 (1) 0 0 35 (22.7) 50 (32.4)

rs17047661 R1601G Sl1 195 (96.5) 198 (100) 172 (100) 45 (29.2) 42 (27.3) <0.0001

Sl2 7 (3.5) 0 0 109 (70.8) 112 (72.7)

rs4844609 T1610S Sl4 200 (99) 198 (100) 172 (100) 154 (100) 154 (100) NA

Sl5 2 (1) 0 0 0 0

rs6691117 I1615V KCAM+ 155 (76.7) 127 (64.1) 81 (47.1) 19 (12.3) 16 (10.4) <0.0001

KCAM- 47 (23.3) 71 (35.9) 91 (52.9) 135 (87.7) 138 (89.6)

NS, not significant; NA, not applicable

https://doi.org/10.1371/journal.pone.0175973.t002
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CR1�AGGGTG and CR1�AGAGTG haplotypes were observed only in Brazil and Africa, being

far more frequent among the Congolese and Ghanaian groups. Interestingly, CR1�GGAATA
was exclusively observed in the Brazilian population. Linkage disequilibrium (LD) analysis

between SNPs revealed medium levels of LD for SNPs rs17047661 (Sl1/Sl2) and rs6691117

(KCAM+/-) and for rs17047660 (McCa/b) and rs17047661 (Sl1/Sl2) in the Congolese and Gha-

naian study groups (Fig 2).

Table 3. Reconstructed CR1 haplotype distribution among world populations.

CR1 haplotypes (+4659/+4721/+4808/+4841/+4868/+4883) Brazil

n = 202 (%)

Vietnam

n = 198 (%)

India

n = 172 (%)

Congo

n = 154 (%)

Ghana

n = 154 (%)

p value

CR1*AGAATA 130 (64) 127 (64) 79 (45.9) 19 (12.3) 14 (9) <0.0005

CR1*AGAATG 39 (19) 71 (36) 90 (52.3) 26 (17) 26 (16) <0.0016

CR1*GGAATA 19 (9) 0 0 0 0 NA

CR1*AGGGTG 1 (0.5) 0 0 35 (22.7) 51 (33) <0.0001

CR1*AGAGTG 3 (1.5) 0 0 74 (48) 63 (41) <0.0001

CR1*AAAATG 4 (2) 0 1 (0.6) 0 0 NS

CR1*AGGATA 1 (0.5) 0 2 (1.2) 0 0 NS

CR1*AGAAAA 2 (1) 0 0 0 0 NA

CR1*AGAGTA 3 (1.5) 0 0 0 0 NA

NS, not significant; NA, not applicable

https://doi.org/10.1371/journal.pone.0175973.t003

Fig 1. Distribution of CR1 haplotypes in world populations.

https://doi.org/10.1371/journal.pone.0175973.g001
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Discussion

Pathogens exert strong selective pressure on the human host, leading to substantial changes in

host immune regulation thereby evading immune responses. This study utilized samples from

population exposed to diverse infectious diseases, where a strong selective pressure is exerted

by these infectious pathogens on the human immune locus. The samples utilized in this study

are from different case-control cohorts investigated for possible associations of CR1 variants

with different infectious diseases (unpublished data). Brazilian, Vietnamese and Indian sam-

ples utilized in this study are from an endemic area to Chagas disease, viral hepatitis and lep-

rosy respectively. The Republic of Congo and Ghanaian samples are from malaria

holoendemic sites.

CR1 genetic variants in exon 29 are associated with CR1 expression levels, C1q or C3b bind-

ing activity and increased susceptibility to various infectious diseases. This study investigated

the entire exon 29 of CR1 in five diverse populations in order to assess the distribution of

Knops blood group antigens and the distinct functional CR1 SNPs. Such studies on geographi-

cally diverse populations can provide insights on how these CR1 alleles have spread in popula-

tions and contribute to the understanding of natural selection.

Allele and genotype frequencies of CR1 variants in exon 29 [rs17259045, rs41274768 (Kna/b),

rs17047660 (McCa/b), rs17047661 (Sl1/Sl2), rs4844609 (Sl4/Sl5), rs6691117 (KCAM+/-)] as well

as their haplotype frequencies were differently distributed among the Brazilian, Vietnamese,

Indian, Congolese and Ghanaian study groups. So far, the frequencies of these variants and espe-

cially, the distribution of blood group antigens have not been described explicitly for central Afri-

can populations yet.

CR1 variants rs17047660A/G (McCa/b) and rs17047661A/G (Sl1/Sl2) were observed to be

polymorphic only in the African groups compared to those from Asia and Brazil, indicating

that the frequencies of these two SNPs result from a strong selective bias exerted by exposure

Fig 2. Linkage disequilibrium (LD) of CR1 single nucleotide polymorphisms. LD was calculated based on the data for Brazilian, Indian, Congolese

and Ghanaian populations, being the pairwise correlation coefficient values (r2) between tag SNPs referred by numbers inside the squares that show the

amount of LD between two SNPs. Black, gray, and white squares represent high, medium and low levels of LD, respectively. Relative position of SNPs on

CR1 gene is indicated on the abscissas. (*) Vietnamese population was found monomorphic for five variants except for the variant rs6691117 in CR1

gene, therefore the LD plot for Vietnamese population was not possible.

https://doi.org/10.1371/journal.pone.0175973.g002
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to distinct pathogens especially by Plasmodium falciparum. This is substantiated by a high link-

age disequilibrium between the two variants. Of the reconstructed CR1 haplotypes,

CR1�AGAGTG and CR1 �AGGGTG were observed to be unique among the Congolese and

Ghanaian groups. CR1�AGAGTG contains the allele of the rs17047660A. This locus also deter-

mines the Knops blood group antigen McCa/b. Studies have demonstrated that this blood

group antigen is dominant among many ethnic groups of African ancestry living in malaria

endemic regions [34].

Higher rates of adaptive evolution are expected to occur especially in genes involved in the

immune system, as these gene loci coevolve with pathogens. This is largely contributed by two

factors the genetics of the population and natural selection. Immune genes tend to evolve rap-

idly as selection pressure is changing continuously due to various pathogenic challenges.

Therefore, positive selection of rs17047660A/G (McCa/b) and rs1704661A/G (Sl1/Sl2) loci is

expected in sub-Saharan African populations exposed to distinct pathogenic challenges (e.g.

falciparum malaria). Such a selective advantage occurs mainly in immune genes involved in

pathogen recognition and signaling, and the CR1 is one of such genes involved in innate

immunity.

In addition, the reported frequencies of these two loci, rs17047660A/G (Sl4/Sl5) and

rs1704661A/G (Sl1/Sl2), in this study were in accordance with frequencies observed in other

East and West African ethnicities as reported in the 1000 Genomes database (https://www.

ncbi.nlm.nih.gov/variation/tools/1000genomes). The frequencies in other African populations

correspond to the frequencies observed in this study [rs17047660A/G (McCa/b): Gambian

0.67/0.32, Kenyan 0.69/0.31, Sierra Leone 0.71/0.29 and Yoruba 0.73/0.27; whereas for

rs17047661A/G (Sl1/Sl2): Gambian 0.21/0.78, Kenyan 0.30/0.70, Sierra Leone 0.21/0.79 and

Yoruba 0.30/0.70]. Also the reported frequencies in other studied Asian and Brazilian popula-

tions were in accordance with the frequencies described in the 1000 Genomes database.

There is growing evidence of ethnic differences in susceptibility to some infectious diseases

and of genetic adaptation to diverse pathogens [18,35]. This study investigated five antigens of

the Knops blood group including the Knops (rs41274768, Kna/b, p.N1540S), the McCoy

(rs17047660, McCa/b, p.K1590E), the Swain-Langley/Villien (rs17047661, Sl1/Sl2, p.R1601G),

the Swain-Langley (rs4844609, Sl4/Sl5, p.T1610S), and the KCAM antigens (rs6691117,

KCAM+/-, p.I1615V) [19–23]. These Knops blood group polymorphisms have been found

associated with various infectious diseases (Table 4). In particular, the two Knops blood group

variants McCb (rs1704660G, E1590K) and Sl2 (rs1704661G, R1601G) have specific distribu-

tions among African populations, which has been related to selective pressure by malaria in

Africa [36–42]. The substitution of lysine to glutamic acid at 1590 aa position modulates the

epitope conformation and serologic reactivity due to its surface exposed feature, affecting the

overall CR1 binding capacity [22]. A high frequency of the rs1704661G (Sl2) allele was

observed in the African groups. The high frequency of the rs6691117G (KCAM-, I1615V) allele

in Africa and India indicates that this allele, similar as the rs1704660G (McCb) and

rs1704661G (Sl2) alleles, might also be subjected to selection. The presence of rs1704661G
(McCb), which is almost limited to African populations, suggests that rs1704661A (Sl1) may be

the ancestral allele [43]. Also a differential distribution of rs6691117A/G (KCAM+/-) variants

was observed. For instance, in the Vietnamese and Brazilian groups, rs6691117A (KCAM+) is

a major allele, while the variant rs6691117G (KCAM-) was observed to be the major allele in

Africa. A study from India compared exon 29 CR1 variants in endemic and non-endemic pop-

ulations and concluded that a differential association with falciparum malaria in regions of

varying disease endemicity exists [44]. However, the Indian samples from the present study

originate from an area not endemic for malaria.
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Taken together, this study revealed significant differences in allele, genotype and haplotype

frequencies of CR1 SNPs in five populations. A limitation of this study might be a small sample

size. However, this study, first to include population from Central Africa, may provide an

increased understanding of the contribution of red blood cell phenotypes and the complement

regulator protein with regard to possible associations with infectious diseases. Further studies

are warranted with increased sample sizes, to determine the role of CR1 in disease associations

and pathogenesis mechanisms.
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Table 4. Significance of CR1 exon 29 Single nucleotide polymorphisms.

CR1 genetic variants Knops antigens Amino acid change Associated outcome Reference(s)

rs17259045 (4659A>G) N1540S Alzheimer disease [45]

rs41274768 (4721G>A) Kna/b V1561M Sickle cell trait [38]

rs17047660 (4808A>G) McCa/b K1590E Sickle cell trait [38]

Malaria [36,37,40,42]

Tuberculosis [46]

Leprosy [47]

rs17047661 (4841A>G) Sl1/Sl2 R1601G Sickle cell trait [38]

Malaria [36,37,39,41,42,48]

Tuberculosis [46]

rs4844609 (4868T>A) Sl4/Sl5 T1610S Alzheimer disease [49–52]

Cognitive decline [53,54]

rs6691117 (4883A>G) KCAM +/- I1615V Erythrocyte Sedimentation Rate [55]

Alzheimer Disease [56]

Gastric cancer [57]

Lung cancer [58]

Glioblastoma multiforme [59]

Preterm birth [60]

https://doi.org/10.1371/journal.pone.0175973.t004
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Abstract background Malaria elicits inflammatory responses, which, if not well regulated, may exert

detrimental effects. When activated, triggering receptor expressed on myeloid cells 1 (TREM-1)

enhances inflammatory responses by increasing secretion of IL-8 and other Th1 cytokines. In

contrast, TREM-like transcript 1 (TREML-1) promotes anti-inflammatory responses by binding to

TREM-1 ligands and competing with TREM-1, thus antagonizing TREM-1 activation to reduce

inflammation. Endothelial protein C receptor (EPCR) also mediates anti-inflammatory responses by

activating endothelial protein C (PC). Upon microbial stimulation, soluble forms of TREM-1

(sTREM-1) and soluble EPCR (sEPCR) are released. Their plasma levels reflect the degree of

inflammation and the severity of infection.

methods In a cross-sectional study comparing patients with severe with uncomplicated malaria,

sTREM-1, soluble TREML-1 (sTREML-1) and sEPCR plasma levels as well as plasma levels of

sEPCR derived from convalescent patients were quantified. Samples were collected on admittance of

paediatric patients infected with Plasmodium falciparum to hospitals in Accra, Ghana. Distinct

genetic regions of the genes encoding TREM-1, EPCR, interleukin (IL)-8 and IL-18 encompassing

known genetic polymorphisms that influence plasma levels underwent DNA sequencing.

results Higher sTREM-1 levels were observed among children suffering from severe malaria

compared to those with uncomplicated malaria (P = 0.049). Low TREM-1 to TREML-1 ratios were

associated with uncomplicated malaria (P = 0.033). The TREM1 rs2234237T variant causing the

amino acid exchange Thr25Ser, which has been associated with higher TREM-1 plasma levels, was

significantly more frequent among patients with severe malaria than in those with uncomplicated

malaria (P = 0.036). Low levels of sEPCR were observed in severe and uncomplicated malaria, while

variant genotypes of IL8, IL18 and EPCR did not show any association.

conclusion Higher plasma levels of sTREM-1 alone or relative to sTREML-1 during malaria

predispose to the phenotype of severe malaria. Carriage of the TREM1 rs2234237T allele appears to

be a risk factor for the development of severe malaria.

keywords Malaria, TREM-1, TREML-1, EPCR, sTREM-1, sTREML-1, sEPCR

Introduction

Malaria-associated fatality results almost exclusively from

severe malaria, which manifests mainly as severe malarial

anaemia and cerebral malaria. These syndromes predomi-

nantly occur in children in malaria-endemic regions,

whose adaptive immunity is still maturing, and in preg-

nant women and malaria-na€ıve individuals. Severe

infection may develop when the initial host immune

response required to clear the parasite [1] becomes dys-

regulated [2], resulting in the production of excessive

amounts of pro-inflammatory factors and possibly in

death [3].

The innate immune response is the first line of defence

against malaria parasites in non-immune individuals.

Triggering receptor expressed on myeloid cells 1
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(TREM-1) regulates innate immune responses by increas-

ing inflammatory signals initiated by pathogen recogni-

tion receptors such as Toll-like receptors (TLRs) and

NOD-like receptors (NLRs). TREM-1 is also critical in

inducing inflammation [4–7]. Cross-linking of TREM-1

with DAP12, a signalling adapter for recognition recep-

tors, activates distinct cells of the myeloid lineage, in par-

ticular neutrophils, monocytes, macrophages and

dendritic cells [8, 9] to enhance inflammatory responses.

Activation of TREM-1 increases secretion of the Th1

cytokines IL-8, tumour necrosis factor and monocyte

chemoattractant protein-1 [4–7]. Production of inter-

leukin (IL)-8 is also induced by IL-18 [10] with high

plasma levels of both IL-8 and IL-18 linked to the patho-

genesis of severe malaria [11–13]. Soluble TREM-1

(sTREM-1) is released after proteolytic cleavage of the

membrane-bound form or provided through alternative

splicing [14]. Activation and increased levels of TREM-1

in plasma are associated with systemic inflammation [15]

and implicated in several infectious disorders [15, 16].

Although early vigorous inflammatory responses are

required to curtail infection, a timely and sufficient anti-

inflammatory response is crucial to prevent

immunopathology [2, 17]. TREML-1, the only member

of the TREM family of receptors with an immuno-

receptor tyrosine-based inhibitory motif, can deliver inhi-

bitory signals when activated [18, 19]. Structurally, sol-

uble TREML-1 (sTREML-1) is similar to TREM-1 and

may compete with TREM-1 for its ligand [20]. Such

competition can minimise TREM-1 and its ligand interac-

tions and reduce TREM-1-mediated activation of immune

cells and hence inflammation. TREML-1 has therefore

been suggested to be the natural inhibitor of TREM-1

[21]. It has been experimentally shown in mouse models

to protect against inflammation-associated haemorrhage

[22].

Cytoprotection is also mediated by the endothelial

protein C receptor (EPCR) through activation of the

endothelial protein C (PC) following interactions

between the two. Activation of the PC upon interaction

with EPCR leads to inhibition of Th1 cytokine secre-

tion and prevention of inflammation-associated damage

of vascular endothelia [23]. In experimental models,

increasing expression of EPCR corresponds with

increasing anti-inflammatory responses to endotoxins

[24]. Excessive inflammation and endothelial damage

have both been suggested to aggravate severity of

malaria. Given the clinical significance of TREM-1,

TREML-1 and EPCR pathways in modulating inflam-

matory processes and integrity of the vascular endothe-

lium, it may be important to elucidate their role in the

prognosis of malaria.

We measured and compared levels of sTREM-1,

sTREML-1 and soluble EPCR (sEPCR) between patients

with uncomplicated malaria (UM) and severe malaria

(SM). About 60% of variability in levels of sTREM-1

and sEPCR are influenced by the TREM1 rs2234237 and

EPCR rs867186 variants, respectively [25, 26]. There-

fore, we determined the genotype distribution of TREM1

rs2234237 and EPCR rs867186 in different malaria phe-

notypes in a cross-sectional design involving children

who presented at hospitals in Accra, Ghana. IL-8 is posi-

tively regulated by both TREM-1 and IL-18. As plasma

levels of IL-8 are associated with the IL8 variant rs4073

[27] and IL-18 levels are linked to the IL18 variants

rs1946518 and rs187238 [28], the distribution of these

variants was also evaluated.

Methods

Malaria patients and sampling

Blood samples from paediatric malaria patients who

reported to the Department of Child Health of the Korle-

Bu Teaching Hospital during 2003–2014 with a diagnosis

of P. falciparum malaria were included in the study. All

participants were febrile at enrolment (>37.5 °C) and
P. falciparum positive as assessed by light microscopy,

with no other diagnosis. The study participants were of

haemoglobin AA genotype only. Plasma samples were

available from 37 and 49 children with a diagnosis of

UM and SM, respectively. Buffy coat samples for genetic

analyses were from 95 SM and 147 UM patients. Malaria

treatment was carried out according to the Ghanaian

National Guidelines at the time of enrolment. Blood sam-

ples were obtained from all participants before initiation

of antimalarial treatment and in convalescence (14 days

post-initiation of treatment) when they were apara-

sitaemic by light microscopy and showed no clinical signs

suggestive of malaria. Each blood sample was centrifuged

and separated into plasma and cell samples before storing

at �80 °C until further use.

Serological assays

TREM-1 ELISA. Microtitre plates (NUNC MAXI-

SORPTM, Roskilde, Denmark) were coated with purified

monoclonal mouse antibody against human TREM-1

(R&D Systems, Minneapolis, USA) in phosphate-buffered

saline (PBS; GIBCO, Waltham, MA, USA) at a concentra-

tion of 800 ng/ml and incubated overnight at room tem-

perature. Each well was blocked with 300 ll of 1%
bovine serum albumin (BSA) for 2 h at ambient tempera-

ture. Test sera and serially diluted recombinant human
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TREM-1 (6000–46.875 pg/ml with 1% BSA; R&D Sys-

tems, USA) were added and incubated for 2 h at room

temperature. Thereafter, 400 ng/ml of biotinylated goat

anti-human TREM-1 antibody (R&D Systems, Wiesba-

den, Germany) was added to each well and incubated for

2 h at room temperature. Streptavidin–horseradish perox-

idase (Streptavidin-HRP; R&D Systems) was added at

200 ng/ml, and the reaction mixtures were incubated for

30 min at room temperature. Colour development was

carried out in the dark for 20 min with 3,305,50-Tetra-
methylbenzidine substrate (TMB; R&D Systems, Wiesba-

den, Germany), and optical densities were read at 450/

570 nm. PBS with 0.05% Tween-20 was used as washing

buffer. The plates were washed three times after each

incubation step preceding addition of the substrate.

TREML-1 ELISA. Purified mouse monoclonal antibody

against human TREML-1 (R&D Systems, Wiesbaden,

Germany) in PBS (GIBCO, Waltham, MA, USA) was

added to the plates at a concentration of 800 ng/ml and

at 100 ll/well. The plates were incubated overnight at

room temperature followed by blocking of each well with

300 ll of 1% BSA for 2 h at ambient temperature. Sera

and serially diluted recombinant human TREML-1

(1000–7.8 pg/ml with 1% BSA; R&D Systems) were

added and incubated for 2 h at room temperature. Subse-

quently, 200 ng/ml of biotinylated goat anti-human

TREML-1 antibody (R&D Systems) was added to each

well and incubated for 2 h (room temperature). After

incubation, 200 ng/ml of Streptavidin-HRP (R&D

Systems, Wiesbaden, Germany) was added, and the reac-

tion mixtures were incubated for 30 min, again at room

temperature. The plates were developed with TMB

(R&D Systems) substrate in the dark for 20 min, and

optical densities were read at 450/570 nm. PBS with

0.05% Tween-20 was used as washing buffer, and after

each incubation step, the plate was washed three times.

Endothelial protein C receptor ELISA

Microtitre plates (NUNC MAXISORPTM) were coated

with purified goat anti-human endothelial protein C

receptor (EPCR) antibody (R&D Systems) in PBS at

5 lg/ml and were incubated overnight at 4 °C. Plates
were blocked with 300 ll/well of 1.5% BSA in PBS for

2 h. Test sera or the recombinant EPCR (R&D Systems),

serially diluted from 20 to 0.156 ng/ml, were added and

incubated at ambient temperature for 2 h. Thereafter,

200 ng/ml of biotinylated goat anti-human TREM-1 anti-

body (R&D Systems) was added and incubated for 2 h.

After the incubation step, 200 ng/ml of Streptavidin-HRP

(R&D Systems) was added and the contents were

incubated for 30 min. The plates were developed with

TMB (R&D Systems) substrate in the dark for 20 min

and optical densities read at 450/570 nm. All incubation

steps were performed at room temperature. After each

incubation step, plates were washed three times using

PBS with 0.05% Tween-20 as washing buffer.

Extraction of DNA, PCR, DNA sequencing

DNA was purified from buffy coat samples using the

Qiagen DNA purification kit (Qiagen, Hilden, Germany).

The concentration of the DNA was estimated by measur-

ing absorbance at 260 nm using the NanoDrop 1000

spectrophotometer (NanoDrop, Wilmington, NC, USA).

A total of 809 base pairs encompassing variant

rs2234237 within exon 2 of the TREM1 gene (OMIM

605085) (primers 50-GGAGGCCTCAAGAACCTCAT-30

[forward], 50-CACCAAACGCATCCTTGGGA-3 [re-

verse]), 619 bp of the promoter region of IL8 (OMIM

146930) (primers 50-TTGGCTGGCTTATCTTCACCA-3

[forward], 50- AGGAAAACGCTGTAGGTCAGAA-3 [re-

verse]) and 651 bp of the promoter region of IL18

(OMIM 600953) (primers AACACTGGAAACTGCAA

GTAAAT-3 [forward], 50-TCCTAGGGCAATGG

AAGTCG-3 [reverse]) were amplified. In the case of

EPCR (OMIM 600646), published primers [26] were

used to amplify 668-bp surrounding variant rs867186

A/G in exon 4. The total volume of each reaction mix

was 20 ll. The conditions were 2 mM of each primer,

1.25 mM of each dNTP, 1 unit of Taq� DNA poly-

merase (Biomol, Hamburg, Germany) and the corre-

sponding 109 reaction buffer. PCR conditions were

denaturation at 95 °C for 5 min, followed by 35 cycles

of 95 °C for 30 s, 58 °C (59 °C for EPCR) for 30 s and

72 °C for 1 min with a final extension step at 72 °C for

10 min. PCR products were purified using exonuclease 1

and alkaline phosphatase. Amplicons were sequenced

using the sense PCR primer (BigDye� Terminator v3.1;

Applied Biosystem, Foster City, CA, USA) and analysed

with the ABI 3031 Genetic Analyzer (Applied Biosystem,

Foster City, CA, USA).

Statistical analyses

Levels of sTREM-1, TREML-1 and sEPCR in the two

groups were compared using Mann–Whitney U-tests as

data were not normally distributed. Genotype frequencies

were tested for deviation from Hardy–Weinberg equilib-

rium by chi-square (v2) test [29]. Two-tailed Fisher’s

exact test was performed to compare allelic frequencies

in UM and SM groups. The relationship between geno-

types and disease severity is given as odds ratios (OR)
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with 95% confidence intervals (CI). In all comparisons,

the level of significance was set at P < 0.05. All analyses

and graphical presentations were performed using Graph-

Pad Prism (GraphPad Software Inc, La Jolla, CA, USA).

Ethics

We used plasma and buffy coat samples from previous

prospective studies [30–32] conducted at the Department

of Child Health of the Korle-Bu Teaching Hospital in

Accra, Ghana, and the paediatric units of three other

health facilities in the Accra Metropolitan Area in this

study. Ethical approval was granted by the Institutional

Review Board of the Noguchi Memorial Institute for Med-

ical Research and the Ethics Committee of the University

of Ghana Medical and Dental School. Study participants

or parents/guardians of children provided written

informed consent before inclusion in the study and granted

approval for re-use of their samples for research purposes.

Results

Patient characteristics

The participants were aged between 6 months and

12 years. Results are presented as medians with mini-

mum and maximum values. The median age in the SM

group was significantly lower than that of the UM group

(P < 0.0001). Likewise, the median haemoglobin levels in

the SM group were significantly lower than in the UM

group (P < 0.0001) while parasitaemia levels were higher

in the SM than in the UM group (P = 0.04) (Table 1).

Plasma levels of TREM-1 and TREML-1 of patients at

admission

Acute-state plasma levels of sTREM-1 were measured in

samples obtained from all patients. Levels were signifi-

cantly higher in SM than UM children (P = 0.049) (Fig-

ure 1), indicating increased expression of TREM-1 in

SM. In contrast, acute-state plasma levels of sTREML-1

did not differ between UM and SM patients (P = 0.115)

(Figure 2), but a greater TREM-1 to TREML-1 ratio was

associated with SM (P = 0.033) (Figure 2b).

sEPCR levels in the acute and convalescent phase of

malaria

Acute-state sEPCR levels were similar in UM and SM

(P = 0.095) (Figure 3). By day 14 after initiation of anti-

malarial treatment, sEPCR levels had increased signifi-

cantly in both SM (P = 0.0002) and UM (P = 0.0007)

groups (Figure 3).

TREM1 polymorphisms rs2234237A>T and

rs34727391A>C

The frequencies of TREM1 variants rs2234237 and

rs34727391 were in Hardy–Weinberg equilibrium (HWE)

(P = 0.451 and P = 0.858, respectively). The genotypic

and allelic distributions of rs2234237A>T and

rs34727391A>C SNPs are given as counts and frequencies

(Table 2). The distributions of the various genotypes in

UM differed significantly from those in SM children in a

codominant model (AA vs. AT vs. TT; P = 0.036). There

was a significantly higher representation of the AT+TT
genotypes, which are known to be associated with inter-

mediate-to-high TREM-1 production [25], in SM (AA vs.

AT & TT, OR = 2.4; 95% CI: 1.2–4.5, P = 0.01). Com-

paring allele frequencies also revealed a disproportionate

representation of the T allele in SM (OR = 2.1, 95% CI:

1.2–3.8, P = 0.018) vs. UM (Table 2). Rs34727391 was

not associated with any disease phenotype either at the

genotype or allele level (Table 2).

EPCR polymorphisms rs867186A>G and rs1051021G>C

The distributions of EPCR variants rs867186 and

rs1051021 were in HWE (P = 0.567 and P = 0.822,

respectively); their genotype frequencies are shown in

Table 1 Clinical, parasitological and
demographic characteristics of the

uncomplicated (UM) and severe malaria

(SM) study population

Uncomplicated malaria Severe malaria P-value

Number of patients 147 133

Median age (years) 5 (0.5–12) 2 (0.5–11) <0.0001
Male/Female ratio 74/73 70/63 NS
Haemoglobin (g/dl) 9.9 (8–14.5) 4.8 (2.4–10.8) <0.0001
Parasite density (103/ll blood) 26.0 (0.203–393.6) 47.7 (0.32–1200) 0.04

NS, not significant.
Values reported are medians with minimum and maximum values in parentheses.

Gender composition of each group is reported as male/female ratio. Differences between

groups were considered significant at a P < 0.05.
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Table 2. None of the SNPs appeared to influence the out-

come of infection, irrespective of the genetic model

employed.

IL8 and IL18 promoter polymorphisms and severe

malaria

The frequencies of IL8 SNPs rs4073 and rs2227538were in

HWE (P = 0.873 and P = 0.533, respectively). Likewise,

the distribution of IL18 SNPs rs1946518 and rs187238

(P = 0.973 and P = 0.883, respectively) was in HWE.None

of the SNPs showed any association with UM or SM

(Table 2), irrespective of whether codominant, dominant or

recessive models were applied in the analyses.

Discussion

TREM-1 regulates inflammatory responses during micro-

bial infections [33] and plays a role in antimalarial

immunity. In this study, high plasma levels of TREM-1

were associated with the development of SM (Figure 1).

As increased levels of sTREM-1 associate positively with

inflammatory pathology [34], increased levels of sTREM-

1 during severe malaria might, therefore, indicate stron-

ger inflammatory responses during the acute phase of

infection [35, 36].

About 60% of interindividual variation in TREM-1

levels are accounted for by rs2234237 with its AA geno-

type associated with lower levels of sTREM-1 [25].

Under a dominant model, the T allele is associated with

SM, with the odds of developing SM as a result of T

allele carriage being 2.1 (Table 2), a finding consistent

with the serological data and confirming earlier studies

[25, 37]. Carriage of either the TT or the AT genotype

is, therefore, a risk factor for SM. Thus, our observations
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Figure 1 High levels of soluble TREM-1 associated with severe

malaria. High plasma levels of sTREM-1 associated with SM,

indicating TREM-1 may play a role in pathogenesis of severe
malaria. The middle lines represent the median values with the

upper and lower whiskers corresponding to the minimum and

maximum values, respectively. Comparisons were made by
Mann–Whitney U-test with a significance level set at P < 0.05.
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Figure 2 Levels of sTREML-1 and sTREM/sTREML-1 ratios in UM and SM. Absolute plasma levels of TREML-1 and relative

TREM-1/TREML-1 levels in UM and SM, suggesting that TREML-1 may limit the detrimental effect of TREM during malaria. The

middle lines represent the median values with the upper and lower whiskers, respectively, indicating the minimum and maximum

values. Comparisons were made by Mann–Whitney U-test with a significance level set at P < 0.05.
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Figure 3 Comparison between acute phase and convalescent
state levels of soluble EPCR. Comparisons between acute phase

(at admission) and convalescent phase (after 14 days) levels of

sEPCR in UM and SM patients. The middle lines show the med-

ian values with the lower and upper whiskers marking the mini-
mum and maximum values, respectively. Comparisons were

made by Mann–Whitney U-test with a significance level set at

P < 0.05. Levels increased by day 14, indicating restoration of
expression following treatment.
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Table 2 Allele and genotype frequencies in the UM and SM

SNPs UM n (%) SM n (%) OR (95% CI) P-value

TREM1-rs2234237 A/T

Codominant

AA 94 (83) 61 (68) Reference
AT 18 (16) 28 (31) 2.4 (1.2–4.7) 0.036

TT 1 (1) 1 (1) 0.7 (0.04–10.6) NS

Allele

A 206 (91) 150 (83) Reference
T 20 (9) 30 (17) 2.1 (1.2–3.8) 0.018

Dominant

AA 94 (83.2) 61 (67.8) Reference
AT & TT 199 (16.8) 26 (32.2) 2.4 (1.2–4.5) 0.01

Recessive

AA & AT 112 (99) 89 (99) Reference

TT 1 (1) 1 (1) 1.2 (0.08–20.4) NS
TREM1-rs34727391 A/C

Codominant

AA 107 (97) 87 (98) Reference

AC 3 (3) 2 (2) 0.8 (0.1–5.2) NS
CC 0 0 NA NA

A 217 (99) 176 (99) Reference

C 3 (1) 2 (1) 0.82 (0.1–4.9) NS
EPCR-rs867186 A/G

Codominant

AA 91 (91) 79 (93) Reference

AG 9 (9) 6 (7) 0.7 (0.3–2.3) NS
GG 0 0 NA NA

Allele

A 191 (95) 164 (96) Reference

G 9 (5) 6 (4) 0.78 (0.3–2.2) NS
EPCR-rs1051021 G/C

Codominant

GG 67 (66) 63 (72) Reference

GC 30 (29) 23 (26) 0.8 (0.4–1.6) NS
CC 5 (5) 1 (1) 0.2 (0.002–1.9) NS

G 164 (80) 149 (86) Reference

C 40 (20) 25 (14) 0.7 (0.4–1.2) NS
Dominant

GG 67 (66) 63 (72) Reference

AA & GC 35 (34) 24 (28) 0.7 (0.4–1.4) NS

Recessive
GG & GC 97 (95) 86 (99) Reference

CC 5 (5) 1 (1) 0.2 (0.03–2.0) NS

IL8-rs4073 A/T

Codominant
AA 88 (79) 68 (72) Reference

AT 21 (19) 25 (26) 1.5 (0.8–2.9) NS

TT 2 (2) 2 (2) 1.3 (0.2–9.4) NS
Allele

A 197 (89) 161 (85) Reference

T 23 (11) 29 (15) 1.4 (0.8–2.5) NS

Dominant
AA 88 (79) 68 (72) Reference

AT & TT 23 (21) 27 (28) 1.5 (0.8–2.9) NS
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suggest that the role of TREM-1 in malaria may parallel

its role in other inflammation-associated disorders, where

its high levels and the rs2234237T allele have been linked

with severe pathology [7, 15, 33, 34, 38].

TREML-l transcripts share homology with the trans-

membrane domains of TREM-1 and compete with mem-

brane-bound TREM-1 (mTREM-1) for the yet unknown

TREM-1 ligand. It is, therefore, viewed as a de novo

Table 2 (Continued)

SNPs UM n (%) SM n (%) OR (95% CI) P-value

Recessive

AA & AT 109 (98) 93 (98) Reference

TT 2 (2) 2 (2) 1.2 (0.2–8.5) NS

IL8-rs2227538 C/T
Codominant

CC 62 (56) 58 (61) Reference

CT 44 (40) 32 (34) 0.8 (0.4–1.4) NS
TT 4 (4) 5 (5) 1.3 (0.3–5.2) NS

Allele

C 168 (76) 148 (78) Reference

T 52 (24) 42 (22) 0.9 (0.6–1.5) NS
Dominant

CC 62 (56) 58 (61) Reference

CT & TT 48 (44) 37 (39) 0.8 (0.5–1.4) NS

Recessive
CC & CT 106 (96) 90 (95) Reference

TT 4 (4) 5 (5) 1.5 (0.4–5.6) NS

IL18-rs1946518 A/C

Codominant
CC 64 (57) 42 (44) Reference

AC 42 (37) 43 (45) 1.6 (0.9–2.8) NS

AA 7 (6) 10 (11) 2.2 (0.8–2.4) NS
Allele

A 56 (25) 63 (33) Reference NS

C 170 (75) 127 (67) 0.7 (0.4–1.1) 0.06

Dominant
CC 64 (57) 42 (44) Reference

AC & AA 49 (44) 53 (56) 1.7 (0.9–2.9) NS

Recessive

CC & CA 106 (94) 85 (90) Reference
AA 7 (6) 10 (10) 1.8 (0.7–4.9) NS

IL18-rs187238 G/C

Codominant
GG 81 (72) 60 (63) Reference

GC 30 (27) 30 (32) 1.4 (0.7–2.5) NS

CC 2 (1) 5 (5) 3.4 (0.6 –18) NS

Allele
G 192 (85) 150 (79) Reference

C 34 (15) 40 (21) 1.5 (0.9–2.5) NS

Dominant

GG 81 (72) 60 (63) Reference
CG & CC 32 (28) 35 (37) 1.5 (0.8–2.7) NS

Recessive

GG &CG 111 (98) 90 (95) Reference

CC 2 (2) 5 (5) 3.1 (0.6–16.3) NS

NA, not applicable. NS, not significant.

Overall frequencies of alleles and genotypes. Odds Ratios (OR) and 95% confidence intervals (CI) were determined using Fisher’s exact
test with significance levels in all analyses set at P < 0.05.

The P-values were corrected for age and gender.
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inhibitor of TREM-1-mediated activation of immune cells

[18]. Even though absolute TREML-1 levels did not dif-

fer between SM and UM (Figure 2a), significantly high

ratios of TREM-1 to sTREML-1 were associated with

SM (Figure 2B), indicating that inadequate production of

TREML-1 relative to TREM-1 levels during malaria

infection can contribute to pathology. Evidence from clin-

ical trials and in vivo experiments suggests that anti-

inflammatory properties of TREML-1 could be harnessed

for therapeutic use against inflammation-associated dis-

eases [39, 40]. Thus, inadequate production of TREML-1

may lead to SM, which results from a multitude of para-

site and host factors [41, 42].

Malaria infections are associated with endothelial cell

activation and damage with several biomarkers of

endothelial damage relating positively to the severity of

malaria [32, 43]. High plasma levels of sEPCR indicate

extensive endothelial damage [44, 45] and/or higher cell

membrane-bound EPCR (mEPCR) expression. A trend

to reduced levels of sEPCR was observed in SM (Fig-

ure 3). This is in contrast to the findings of Moussiliou

et al. [46], and difficult to comprehend. One reason

may be that the patients in our study were slightly

older than those described in Ref. [46]. Our report is,

however, consistent with the study by Moxon et al.,

who clearly demonstrated that unlike malaria, infection

with several other pathogens can lead to plasma levels

of EPCR above baseline values [47]. The current report

thus fits well with the loss of EPCR expression [47] that

can aggravate inflammation during malarial infection.

Evidence from experimental studies indicates that

increasing EPCR expression translates into increasing

anti-inflammatory response [24]. After interaction with

mEPCR, PC becomes activated and inhibits monocyte

migration via EPCR, upregulates immunoregulatory

cytokine IL-10 production and thereby dampens inflam-

mation [48–51].
Loss of EPCR expression during P. falciparum infec-

tion appears to be a general phenomenon, as sEPCR

levels increased in both SM and UM patients by day 14

postinitiation of anti-malarial therapy (Figure 3).

Although one cannot rule out the presence of residual

parasite materials in circulation to activate cells, even on

day 14, our participants were aparasitaemic by micro-

scopy and had fully recovered. Thus, the loss of EPCR

expression during the acute state may be attributed to

parasite factors that could limit the activation of a cyto-

protective and anti-inflammatory function of PC and dis-

rupt the blood brain barrier [47, 52]. The limitation may

precipitate increased inflammatory responses to cause

haemorrhage in sites of parasite sequestration [53]. Hae-

morrhages in the brain microvasculature are associated

with cerebral malaria [54]. This vicious cycle, involving

reducing the interaction between mEPCR and PC to pro-

mote pro-inflammatory cytokine production, may aggra-

vate the severity of malaria. At the genetic level, no

association between any of the genotypes and disease

phenotype was observed (Table 2), confirming earlier

studies [46, 55].

None of the cytokine gene variants (IL8 rs4073, IL8

rs2227538, IL18 rs1946518, IL18 rs187238) could be

linked to the outcome of malaria. The lack of significance

could be due to the small sample size and the size of the

effect of each of these loci.

The limitations of this work are a small sample size, not

allowing us to measure the convalescent state levels of

sTREM-1 and sEPCR. Nevertheless, we have confirmed in

our study earlier reports on the involvement of TREM-1

and EPCR in the pathogenesis of malaria.We also provide

evidence that links reduced production of TREML-1 rela-

tive to TREM-1 to the outcome of malaria.
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