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i. Abbreviations
BDNF brain derived neurotrophic factor

BZD benzodiazepine

CCC cation-chloride cotransporters

CCI chronic constriction injury

CFA Complete Freud’s Adjuvant

CGRP calcitonin gene-related peptide

CNS central nerve system

COX-2 cyclooxygenase-2

CUP Ca2+ uni-porter

DRG dorsal root ganglion

DRR dorsal root reflex

DZP diazepam

ER endoplasmic reticulum

FRET Fluorescence resonance energy transfer

GABA gamma-Aminobutyric acid

GAD glutamic acid decarboxylase

GAT1 GABA transporter 1

GCT gate control theory

GDNF neurotrophic factor

GECI genetically encoded calcium indicator

GlyR3 glycine receptor 3

IASP International Association for the Study of Pain

IB4 isolectin B4

KCC2 K-Cl co-transporter 2
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NCX Na+/Ca2+ exchanger

NGF nerve growth factor

NKCC1 Na-K-2Cl co-transporter

PAD primary afferent depolarization

PBS phosphate-buffered saline

PFA paraformaldehyde

PGE2 prostaglandin E2

PKA protein kinase A

PMCA plasma membrane Ca2+-ATPase

PNS peripheral nerve system

ROI region of interest

SC spinal cord

SERCA Ca2+-ATPase

TrkA tyrosine receptor kinase A

TrkB tyrosine receptor kinase B

TRPV1 transient receptor potential vanilloid subfamily type 1
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1 Abstract
GABAergic inhibition modulates nociceptive signal transmission in spinal cord via af-

fecting both presynaptic and postsynaptic elements. Damage to nerve and/or tissue (in-

flammation) often disrupts this regulation and causes pathological pain. The inhibition

of  postsynaptic  spinal  neurons had been intensively studied, while the inhibition of

presynaptic terminals of peripheral sensory neurons was less focused due to the techni-

cal difficulty. 

I generated transgenic mice, which specifically express GCaMP3, a genetically encoded

calcium indicator, in nociceptors (SNS-Ai38) or all-sensory neurons (advillin-Ai38), to

investigate the GABAergic presynaptic inhibition in spinal cord. GABA showed signifi-

cant  inhibitory  effect  on presynaptic  nociceptor  central  terminals  from intact  mice.

However, peripheral nerve injury and inflammation almost completely abolished this

inhibition,  mainly  due  to  the  NKCC1-dependent  upregulation  of  intracellular  [Cl-].

Moreover, inflammation could facilitate GABAergic excitatory effect, which was only

observed in spinal cord from SNS-Ai38 but not from advillin-Ai38. The Nociceptor-

specific  and  all-sensory  specific  GABAA  receptor  knockout  mice  (SNS-β3-/- and

advillin-β3-/-) were generated to examine the function of presynaptic inhibition in vivo.

Both SNS-β3-/- and advillin-β3-/- were more sensitive to thermal and mechanical stimuli

compare to their wild type litter mates (β3fl/fl). Yet difference between these two condi-

tional knockout line was observed. Inflammation could not further the mechanical allo-

dynia in SNS-β3-/- to the same level as it did in their β3fl/fl litter mates. Such difference

was not observed in advillin-β3-/- mice and their litter mates. The difference between

results from SNS-Cre and advillin-Cre generated transgenic mice after inflammation

most likely was caused by their different Cre recombinase expression patter in pep-

tidergic nociceptors according to immunohistochemistry study. This implies that part

of peptidergic nociceptors are crucial for inflammation induced mechanical allodynia. 

Overall, our data reveal that GABAergic presynaptic inhibition modulates thermal and

mechanical spinal nociceptive processing. Nerve injury and peripheral inflammation

can both result  in nociceptor [Cl-]  elevation and disturb the presynaptic  regulation.

Furthermore,  the malfunctioning presynaptic  control  caused by them contributes  to

pain modalities differently. 
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2 Introduction

2.1 Acute and pathological pain

International Association for the Study of Pain (IASP) defines pain as “an unpleasant

sensory and emotional experience associated with actual or potential tissue damage, or

described in terms of such damage”1. In healthy subjects, acute pain is generated by

noxious stimuli applied to receptive field of nociceptors. In pathological state, pain feel-

ing maybe more intensive when noxious stimuli  is  applied (hyperalgesia),  and pain

could be induced by non-noxious stimuli (allodynia) or even without any stimuli (spon-

taneous pain).

One major group of pathological pain is chronic pain, which had been estimated to af-

fect one-sixth of the population2. Chronic pain, not like the protective and adaptive pain

in common condition, does not carry any useful purpose. Approximately 20% of the

adult  European population33 and at  least  116 million US adults  suffer  from chronic

pain4in both the physical and emotional way. The current annual cost in society is esti-

mated more than €200 billion in Europe and $150 billion in USA3. However, 79 % suf-

ferer still have chronic pain after treatment5. According to etiology,  peripheral nerve

system (PNS) originated  chronic pain can be divided into 2 subgroups,  neuropathic

pain and inflammatory pain. Neuropathic pain is caused by a lesion or disease of the

somatosensory nervous system1. Chronic inflammatory pain, on the other hand, is gen-

erated by lesion of non-neural tissue and the following inflammatory factors release. 
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2.2 Peripheral sensory neurons related to 
nociception

2.2.1 Properties of sensory neurons

Primary sensory neurons in somatosensory system are cells that sense the external or

internal state of body, then encode the information into electrical signal and transmit it

to spinal cord (SC). They are pseudo-bipolar neurons, which have their cell soma sit in

ganglia in spine, projecting one branch of axon to periphery to sense stimuli, and an-

other to spinal cord or brain stem to relay the encoded signal to central nervous system.

Primary sensory neurons  are  highly  specialized.  Various cutaneous stimuli,  such as

gentle  touch,  temperature,  pinch etc,  are  conveyed  by  different  sensory  fibers.  The

thickest myelinated Aβ fiber neurons have a low mechanical threshold and respond to

innocuous tactile stimulus. And the majority of thin myelinated Aδ fiber and unmyeli-

nated C fiber neurons are nociceptors or thermoreceptors. Due to the fact that most Aδ

and C fiber neurons are smaller than Aβ fiber neurons, size is commonly used to sepa-

rate nociceptors from non-nociceptors. In mice, dorsal root ganglion (DRG) neurons

can be generally classified into small  (diameter < 25  μm, putative nociceptors) and

large (diameter >= 25 μm, putative non-nociceptors).

2.2.2 Nociceptors classification based on molecular markers

Nociceptors can be further subdivided into peptidergic and non-peptidergic neurons.

Peptidergic neurons are recognized by their expression of peptides, such as substance P

and calcitonin gene-related peptide (CGRP).  They require nerve growth factor (NGF)

binding to their tyrosine receptor kinase A (TrkA) for development6. Capsaicin recep-

tor, transient receptor potential vanilloid subfamily type 1 (TRPV1), is also expressed by

many of these neurons7,8. Non-peptidergic nociceptors, on the other hand, switch their

NGF-TrkA dependency to glial cell line-derived neurotrophic factor (GDNF)/Ret as an-

imal matures6, and are characterized by their binding of plant lectin isolectin B4 (IB4).

Although peptidergic and non-peptidergic neurons are commonly used term to divide

nociceptors, a notable overlapping of these 2 subpopulations had been reported by sev-

eral studies9–12.
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2.3 Spinal cord anatomy related to nociception

The anatomy of spinal cord dorsal was thoroughly studied, and its neuronal compo-

nents had been well reviewed13,14. The gray matter in spinal cord is divided into 10 lami-

nae (I – X) from dorsal horn to ventral horn according to functionally distinct popula-

tions of neurons (Figure 1). Cutaneous sensory input is relayed into dorsal horn lami-

nae including number I – V. Lamina I, which is composed of projection neurons and in-

terneurons, is a thin layer located in the most superficial part of dorsal horn gray mat-

ter. It receives input from small myelinated Aδ fiber and unmyelinated C fiber. Multiple

modalities signal such as warm, cold, itch, and pain is transmitted into this layer. Pep-

tidergic nociceptors mainly target lamina I and therefore CGRP and substance P are

usually used to mark this layer. Inhibitory and excitatory interneurons highly populate

in laminae II and III. They receive information from primary afferents and finally pass

it to projection neurons lie in Laminae I, IV and V. Although these interneurons also

make connections to each other, and this network is believed to be important for input

processing, the exact circuits for different modality inputs are still under investigated

due to technical difficulty. Non-peptidergic nociceptors mainly send input into lamina

II, thus, IB4 is commonly used to label this layer. The deeper layers of dorsal horn in-

cluding laminae III, IV and V are the main targets of myelinated Aβ fiber, which trans-

mit non-noxious tactile stimulus.
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2.4 Spinal cord circuit gating nociception

2.4.1 Gate control theory. 

Melzack and Wall published their Gate Control Theory (GCT) half century ago15 (Fig-

ure 2). GCT suggests pain signal generation and transmission does not solely depend

on pain specific pathway or is simply different from non-painful signal on magnitude

described in previous published theories. It hypothesizes that a circuit lying in spinal

cord dorsal horn, where signals from nociceptive and non-nociceptive afferents con-

verge via interneurons, is able to dynamically modify the pain signal flow from PNS to

central nerve system (CNS) like opening and closing a gate. When signal transmitted in

large-diameter  (non-nociceptive)  afferents  activates  inhibitory  interneurons,  input

from small-diameter  (nociceptive)  afferents  to  projection  neurons  is  suppressed  by

these interneurons. In other words, the gate is closed. However, noxious stimuli gener-
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Figure 1: Spinal cord laminar organization and primary afferents innervation. Spinal cord gray
matter  is divided into 10 parallel  laminae according to variations in the size and density of
neurons. (a) Rat spinal cord section stained with NeuN antibody labeling neurons. Lamina I and
Lamina II (also known as substantia gelatinosa) form superficial layer. Lamina II can be further
divide into outer (IIo) and inner (IIi) layers. (b) The innervation pattern of primary afferents is well
organized. Spinal dorsal horn (Laminae I – V) receive input from primary afferents. Deep layers,
laminae III – V, of dorsal horn are innervated by Aβ fibers transmitting non-nociceptive signal.
Aδ fibers end mainly in superficial layers with some extension into lamina III. Peptidergic fibers
arborize within lamina I and IIo layers. Non-peptidergic fibers end in lamina II layer. (From Todd,
201014)



ated activity in small-diameter afferents can turn the key to the opposite direction by

inhibiting interneurons firing, and thus open the gate. In addition to external stimuli,

descending input from brain is also applied to this circuit, which explains the role of

emotion state on pain perceptive.  

The critical component of GCT, inhibitory interneurons, were merely speculative cells

when Melzack and Wall published their theory. Following studies proved the existence

of these neurons in spinal dorsal horn with immunochemistry and electrophysiology16–

18. Furthermore, Bohlhalter et at.19 have displayed the distribution pattern of GABAA re-

ceptor in rodent spinal cord dorsal horn in detail. These studies showed evidence sup-

porting GCT interneuron concept on cellular and molecular level.  
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Figure  2: Gate control theory (GCT). The original idea introduced a neuronal circuit in spinal
dorsal horn consisting of primary afferents (L, large diameter putative non-nociceptors; S, small
diameter putative nociceptors), projection/transmission (T) cells, lamina II (substantia gelatinosa
[SG])  interneurons,  and  supraspinal  central  control.  The  core  element  of  GCT  is  SG
interneurons which regulate signal transmission from large and small diameter primary afferents
to T cells with presynaptic and postsynaptic connections. Non-nociceptive signal activates large
diameter fibers, and in turn activates interneurons which inhibit signal transmission to T cells,
i.e.  closing the gate.  Small  diameter fibers can open the gate by inhibiting the output  from
interneurons. The successful delivery of signal to T cells depends on the balance between the
input from large and small diameter fibers. (From Braz et al., 201413)  



2.4.2 Spinal GABA inhibition 

gama Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the PNS

as well as in the CNS. It is released from GABAergic neurons and binds to both of chlo-

ride permeable GABAA receptors and GABAB receptors, which are G protein coupled re-

ceptors. GABAA receptors mediate principal effect of GABA by increasing membrane

permeability to chloride. 

Mammalian GABAA receptors are ligand-gated chloride channels comprised of 5 sub-

units out of 19, including α1-6, β1-3, γ1-3, δ, ε, θ, π, and ρ1-3 (Figure 3). In spite of the

large diversity of isoforms, the majority of GABAA receptors contain two α subunits, two

β subunits, and one γ subunit (Figure 4).  They commonly have two GABA binding

sites located at α/β subunit interface, and one bensodiazepine (an exogenous modula-

tor) site located at α/γ subunit interface20.The expression pattern of GABAA receptor
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Figure 3: Dendrogram of 19 genes coding human GABAA receptor subunits. (From Sigel
et al., 201220)



subunits  have  been  mainly  studied  on  mRNA  level  and  protein  level  in  rats  and

mice19,21. In these studies, α3, β2/3, and γ2 subunits exhibited widespread expression in

the whole dorsal horn, and α1, α2 and α5 subunits were found to be expressed in multi-

ple laminae,  but distribute differently.  Staining for α1 and α5 subunits appeared in

laminae II-V, but was absent in lamina I. α2 subunits staining could be found in the

whole dorsal horn, but most prominent in superficial layer laminae I and II. These sub-

units were suggested to be expressed on both spinal neurons and primary afferent ter-

minals19,21.

In rat spinal cord dorsal horn, ~25%, 30% and 40% neurons are GABAergic in lamina I,

lamina II and lamina III respectively22.  These GABAergic interneurons have various

morphology and express  diverse chemical  markers13,14.  Dual patch clamp recordings

suggest GABAergic interneurons receive input from primary afferents23. Further, previ-

ous anatomical  studies  have revealed that  GABAergic interneurons make contact  to

projection neurons14. However, the patterns of signal flow in the circuit composed of
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Figure 4: Schematic structure of GABAA receptor. (a) membrane topology of a single subunit.
(b) Top view of a GABAA receptor subtype, α1β2γ2, with 2 GABA binding site between α and
β subunits, and a bensodiazepine between a and γ subunits. The sidedness of the subunits is
symbolized + and -. (From Sigel et al., 201220)



primary afferents, interneurons (inhibitory and excitatory) and projection neurons are

far from clear.

Intrathecal injection of GABA or positive allosteric GABAA receptor modulator benzodi-

azepine  (BZD),  such  as diazepam  (DZP),  shows  anti-nociceptive  effect  and  rescues

nerve injury induced chronic pain via enhancing spinal GABAergic inhibition24–28. Pro-

hibiting  GABAergic  inhibition  exhibits  opposite  effect,  i.e.  increasing  pain  behavior

when nociceptive stimuli applied (hyperalgesia) or even generating pain behavior with

only non-nociceptive stimuli applied (allodynia)24,29–33. These pharmacological and be-

havior  studies  suggested a spinal  inhibition in  pain perception regulation,  which is

most possibly carried by GABAergic interneurons. 

2.4.3 Postsynaptic inhibition

Original GCT only proposes pre-synaptic inhibition for gating information flow, yet the

postsynaptic regulation on projection neuron is not excluded. In fact, the information

flows  from  primary  afferents  to  interneurons,  and  finally  to  projections  had  been

proved13,14,28. 

The effect of GABAA receptor activation depends on intracellular chloride concentra-

tion. If the intracellular [Cl-] is high enough to cause the reversal potential of chloride

(ECl) positive to neuron’s membrane potential (Vm), the opening of chloride permeable

pore in GABAA receptor results in chloride efflux, which consequently depolarizes the

neuron. If the [Cl-] is so low that the ECl is negative to neuron’s Vm, activation of  GABAA

receptor causes hyperpolarization of the neuron due to the chloride ion influx. The [Cl -]

is  mainly  regulated by various cation-chloride cotransporters  (CCC).  In mammalian

neurons,  the  accumulation of  chloride is  mainly  driven by Na-K-2Cl  co-transporter

(NKCC1), and the extrusion is largely mediated by K-Cl co-transporter 2 (KCC2). In

CNS, neurons have high NKCC1 expression but very low KCC2 expression during devel-

opment34. However, in mature animal, accompanied with downregulation of NKCC1,

the increase of KCC2 reduces the [Cl-], and thus hyperpolarizes the Ecl, which is low

enough to generate chloride influx when GABAA receptor is open34. In intact mature an-

imal, the postsynaptic neurons, i.e. CNS neurons in spinal dorsal horn, are inhibited by

GABA with this mechanism. 
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2.4.4 Pre-synaptic inhibition

Compare to the postsynaptic inhibition, the story of pre-synaptic side, primary affer-

ents,  is  different.  Unlike  CNS neurons,  DRG neurons  keep high expression level  of

NKCC1 in adults, while KCC2 is expressed at very low level or even absent35–38. There-

fore, DRG neurons in adults maintain a high intracellular chloride concentration which

cause the reversal potential of chloride (ECl) more depolarized than resting membrane

potential39. Consequently, when GABA binding opens central pore of GABAA receptor,

the outflow of  chloride induces depolarization rather  than hyperpolarization.  It  has

been decades that GABA is considered to be the important transmitter to induce presy-

naptic inhibition via generating primary afferent depolarization (PAD), which reduces

excitatory transmitter release from primary afferent central terminal40. Several mecha-

nisms had been proposed to explain the inhibitory effect of PAD41. Depolarization on

nociceptor central terminals may cause inactivation of voltage-gated calcium channels,

and thus reduces calcium influx and transmitter release. Voltage-gated sodium chan-

nels may also be inactivated by PAD, together with shunting effect by opening GABAA

receptor, propagation of action potential towards primary afferents terminal could be

hampered.

2.5 Alterations of inhibitory synaptic 
transmission in pathological states

Pain perception is not generated by a plain signal relay induced by noxious stimuli, but

a redundant and dynamic system, in which the transmission of noxious stimuli gener-

ated signal is regulated by both internal (from brain) and external (from non-noxious

and/or noxious stimuli)  input via multiple pathways involving various types of cell.

Malfunctioning component(s) may break the balance in this system and interrupt cod-

ing of somatosensory stimuli, thus causing pathological pain, such as hyperalgesia and

allodynia28,42–44. Previous studies showed intrathecal injection of GABAA receptor antag-

onist, bicuculline, resulted a dose-dependent allodynia and hyperalgesia45,46. Further,

Baba  et  al.  reported that  bicuculline  effectively  facilitated primary afferents  evoked

polysynaptic EPSCs in lamina II neurons47. And this effect of bicuculline was dramati-

cally diminished after nerve injury and inflammation47,48. Another study observed pri-

mary afferents evoked IPSCs in lamina II neurons was reduced after various types of
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nerve injury, and GABAA receptor-mediated IPSCs was decreased as well49. These evi-

dence suggests GABAA receptors dependent inhibition in spinal dorsal horn is altered

by nerve injury and this may contribute to allodynia and hyperalgesia caused by nerve

injury and inflammation.    

2.5.1 Change of postsynaptic inhibition

Because GABAA receptors mediated inhibition has different mechanisms for presynap-

tic central terminals and postsynaptic spinal neurons. The alterations caused by nerve

injury and/or inflammation may also differ. For spinal neurons, Coull et al. reported

that [Cl-] in lamina I neurons was elevated due to the reduction of KCC2 after nerve in-

jury,  and the  subsequently  shifted  reversal  potential  of  chloride  greatly  diminished

GABAergic inhibitory controls or even switch it to exciatation50. The same group after-

wards revealed the role of microglia in this change of postsynaptic inhibition51. In brief,

after nerve injury, microglias release brain derived neurotrophic factor (BDNF) upon

the stimulation of ATP, the binding of BDNF on lamina I neurons tyrosine receptor ki-

nase B (TrkB) receptors causes downregulation of KCC2 and the following [Cl-] eleva-

tion51 (Figure 5).
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2.5.2 Change of presynaptic inhibition

Due to the technical difficulty, the physiological recording of presynaptic inhibition and

its change in pathological condition were mainly studied by recording the central stump

of a cut filament of a dorsal root. Willis had reviewed that when PAD reached firing

threshold, it could generate a back-traveled action potential from primary afferent ter-

minal to peripheral side, which was named as dorsal root reflex (DRR)52. DRRs were re-

ported to increase after inflammation, and increased DRRs caused release of neuro-

transmitters  which  generated  neurogenic  inflammation  on  peripheral  side  and  in-

creased excitability of postsynaptic neurons on central side52. Possible reasons for the

increase in DRRs might be the upregulation of GABAergic system in spinal dorsal horn

or the activity increase of NKCC1, both of which may intensify the chloride outflow gen-
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Figure  5:  Postsynaptic  change in  neuropathic  pain.  Peripheral  nerve  injury  activates  spinal
microglia via ATP and/or chemokine ligand 2 (CCL2). The activated microglia release BDNF,
which binds to TrkB receptors on lamina I neurons. BDNF-TrkB signaling downregulate chloride
co-transporter KCC2, which causes the rise of intracellular [Cl-] in lamina I neurons. This [Cl-]
change disrupts the GABAA receptor mediated postsynaptic inhibition, which generates inward
flow of Cl- and hyperpolarizes the postsynaptic neurons in physiological condition. (From Braz et
al., 201413)  



erated membrane depolarization. Funk et al. reported an upregulation of  intracellular

[Cl-] of DRG neurons, which might be contributed by enhanced NKCC1 activity, after

inflammatory mediators treatment53. However, whether pathological conditions, such

as nerve injury and peripheral inflammation, has the similar impact on DRG neuron

[Cl-] remains unclear. In addition, the influence of the elevated intracellular [Cl -] on the

physiological function of presynaptic terminals has not been discovered yet.

2.6 Objectives

DRG neurons respond to cutaneous stimulation and convey the information to central

nervous system in spinal dorsal horn. This input information is then processed by post-

synaptic interneurons and projection neurons there. Studies had confirmed GABAergic

spinal  inhibition,  and  the  function  of  postsynaptic  inhibition  in  physiological  and

pathological  conditions had been well  characterized.  However,  the presynaptic  side,

central terminals of primary afferents, was less focused due to the technical difficulty.

Electrophysiological technique such as patch clamp is commonly used to study neuron

activity. The function of GABA on spinal dorsal horn neurons were well investigated

with this method. Unfortunately, it can not be applied on presynapses. Besides, calcium

imaging, which is another frequently used technique for live cell study, were prevented

from recording presynapse-only signals due to the difficulty of mass labeling central

terminals in acute spinal cord slices. Cre-Lox recombination makes it possible to specif-

ically express genetically encoded calcium indicator (GECI) in sensory neurons with

proper transgenic mouse lines, thus allowing calcium recording on central terminals of

primary afferents. 

The objective of this project includes: (1) Generating conditional GECI expressing mice

and use them to examine the proposed GABAergic presynaptic inhibition; (2) Investi-

gating whether the proposed presynaptic inhibition is affected by nerve injury and pe-

ripheral inflammation.
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3 Methods

3.1 Animal

Experiments were carried out in adult C57BL/6 and several lines of transgenic mice

(male, aged 6-12 weeks, 20-25g in weight). Mice were housed 2 to 5 per cage, and main-

tained in a temperature and humidity-controlled room on a 12/12h light/dark cycle

with access to rodent chow and water ad libitum. All experiments were conducted ac-

cording to the guidelines of German Animal Protection Law.

3.1.1 Transgenic mice

Transgenic mice expressing Clomeleon54, a ratiometric Cl- indicator, under the control

of the Thy1 promoter were used for chloride imaging.

Two Cre mice lines were used for the study.  Cre recombinase is expressed under the

regulatory  elements  of  mouse  Scn10a gene,  and  of  mouse  advillin gene  in  SNS-

Cre55 and advillin-Cre56 mice lines respectively. The former transgenic mice line is from

the group of Dr. Kuner, and the latter is from the group of Dr. Heppenstall.  Scn10a

gene encodes the tetrodotoxin-resistant Nav1.8 sodium channel which is  mainly ex-

pressed  nociceptors57,  while  advillin gene  encodes  the  homonymous  actin

regulatory/binding protein restrictedly expressed in DRG neurons and superior cervi-

cal ganglia neurons58–60.

Ai38 (#014538) and Gabrb3-loxP mice (B6;129-Gabrb3tm2.1Geh1Geh/J, #008310) are from

the Jackson Laboratory. In Ai38 mice, a loxP-flanked STOP cassette prevents transcrip-

tion of the downstream GCaMP3 fusion gene until exposed to Cre recombinase. Off-

spring of Ai38 and Cre mice will have STOP cassette deleted in Cre expressing tissue,

and express calcium indicator protein, GCaMP3, which has low EGFP fluorescence in

the absence of calcium, and brighter fluorescence when binded by calcium. Gabrb3-

loxP mice possess loxP sites on either side of exon 3 of gene encoding GABAA receptor

β3 subunit. When Gabrb3-loxP mice are bred to Cre expressing mice, Offspring will

have exon 3 deleted in Cre-expressing cells.
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SNS-Ai38 and advillin-Ai38 were generated by breeding SNS-Cre mice and advillin-Cre

mice to Ai38 mice  respectively.  SNS-β3-/- and advillin-β3-/- mice  were  generated by

breeding SNS-Cre mice and advillin-Cre mice to Gabrb3-loxP mice respectively.

Mouse genotype was verified by PCR using primers as follows: SNS-cre Forward: 5’-

GAA AGC AGC CAT GTC CAA TTT ACT GAC CGT AC-3’; Reverse: 5’-GCG CGC CTG

AAG ATA TAG AAG A-3’. Advillin-cre Forward: 5’- GCA CTG ATT TCG ACC AGG TT-

3’; Reverse: 5’-GAG TCA TCC TTA GCG CCG TA-3’. Ai38 Mutant Forward: 5’-CTT CAA

GAT CCG CCA CAA CAT CG-3’; Mutant Reverse: 5’-TTG AAG AAG ATG GTG CGC TCC

TG-3’. Ai38 Wild type Forward: 5’-CCA AAG TCG CTC TGA GTT GTT ATC-3’; Wild

type Reverse: 5’-GAG CGG GAG AAA TGG ATA TG-3’.  Gabrb3-loxP Forward: 5’-

ATT CGC CTG AGA CCC GAC T-3’; Reverse: 5’-GTT CAT CCC CAC GCA GAC-3’.

3.2 Induction of chronic pain

Chronic constriction injury (CCI)61 was used to induce neuropathic pain in mice. In

brief, animal was deeply anesthetized with 2 % isoflurane (CP-Pharma, Germany). Skin

incision was made on one side after hair shaved. Sciatic nerve at the level of the right

mid-thigh was exposed by tearing connective tissue between the gluteus superficialis

and biceps femoris muscles. Four loose silk ligatures (4/0) were placed (with ~0.5 mm

spacing) around the sciatic nerve. Ligatures were tied until they elicited a brief twitch in

the respective hind limb62. The wound was closed with sutures in the muscle and sta-

ples in the skin. 

Inflammatory pain in mice was induced by intradermal injection of Complete Freud’s

Adjuvant (CFA), which consists of inactive Mycobacterium tuberculosis in mineral oil.

Animal was deeply anesthetized with 2 % isoflurane. Syringe with 25 gauge needle was

inserted approximately 2 mm, bevel up, into the metatarsal region of hindpaw and 20

μl CFA was slowly delivered. Needle was held still for 10 s to keep pressure before with-

drawing (adapted from Fehrenbacher et al.63). 

Animal used for CCI or CFA injection were placed back to cage after surgery and al-

lowed to recover for at least 24 h before any behavior test.    
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3.3 Behavior

Animal underwent CCI or CFA injection were examined by behavior test to verify the

effect of injury or inflammation. Animal were habituated on behavior test setups for at

lease 30 min 1 day prior to baseline tests, which were performed before surgery. 2-day

later, same tests were applied again and the effect of surgery was evaluated by compar-

ing these results with baseline data. All tests were taken in the morning. Mechanical

sensitivity was measured with von Frey hairs from 0.008 to 1.4 g (0.008, 0.02, 0.04,

0.07, 0.16, 0.4, 0.6, 1, and 1.4 g)64. Animal were placed in transparent plastic box sitting

on a metal mesh. The setup allows experimenter to observe animal behavior while ap-

plying mechanical stimulation with von Frey hair. The hair was lifted perpendicular to

the mid-plantar surface of hind paw until slightly bended, and held for about 6 s. A

quick withdraw of stimulated hind paw or immediate flinching upon removal of the

hair were considered a positive response. Other cases, such as slow withdraw, animal

walking away etc, required a repeat test. 5 tests were applied with each hair with a in-

terval of at least 5 s (adapted from Chaplan et al.64).

Plantar test with hargreaves apparatus (ugo basile, Italy) was employed to examine the

sensitivity of animal to thermal stimulation. Animal were placed in the same type of

plastic box used for von Frey test, but on glass pane instead of metal mesh. A movable

infrared generator with the intensity of 270±10 mW/cm2 under the glass pane applied

infrared heat stimulus and measured hind paw withdraw latency automatically. 3 or 4

measurement were taken for each animal with an interval of 5 min to avoid repeated

heat stimulation generated.

3.4 Cell culture

Mouse L4 and L5 DRGs were dissected and collected in-ice cold phosphate-buffered

saline (PBS). DRGs were washed once with PBS prior to incubation with 2 different en-

zymes,  collagenase and trypsin  which were used to  dissociate  DRG cells  from each

other. DRGs were first treated with 1 ug/ml collagenase type IV (Sigma, Germany) in 1

ml of PBS at 37 °C for 40 min. The supernatant was removed, and DRGs were incu-

bated with 1 ml of 0.05 % trypsin (Sigma, Germany) in PBS for another 30 min. The su-

pernatant was removed and DRG medium consisting of DMEM/Hams-F-12, 8 mg ml-1
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glucose, 100 U ml-1 penicillin, 100 µg mg-1 streptomycin, and 10% heat inactivated horse

serum, was added. DRGs were gently dissociated with pipette to obtain single cell sus-

pension and centrifuged  at 800 RPM for 5 min. The supernatant was removed, and the

cells were resuspended in DRG medium and seeded on poly-lysine (500 µg ml -1, at 37

°C for 18 h) and laminin (20 µg ml-1, at 37 °C for 1 h) coated coverslips. After 3-4 h, ad-

ditional DRG medium was added to cells. Cells were cultured for 12-24 h at 37 °C in in-

cubator. 

3.5 Acute spinal cord slice

Animal was deeply anesthetized with ketamin : xylazine : saline (1.5 : 0.75 : 7.75). The

total volume of anesthetic is 1% of animal weight. The anesthetic was delivered by in-

tra-peritoneal injection in 3 divided doses at 5 min interval. ½ of the total volume was

administrated for the first dose, ¼ of total volume was administrated for the second

and third doses. Animal back was shaved, and skin incision was made along lumbar

vertebrae. Spinal laminectomy was applied to expose lumbosacral spinal cord inner-

vated by L4 and L5 spinal nerve. This part of spinal cord was isolated after pia mater

removed,  and  placed  in  cold  Prep-Ringer  solution  (2–4  °C;  87mM  NaCl,  1.25mM

NaH2PO4, 25mMNaHCO3, 2.5mM KCl, 7mM MgCl2, 0.5mM CaCl2, 25mM glucose,

75mM sucrose). Next, it was embedded in 2% low melting agarose (Bio-Rad Laborato-

ried, CA 94547). A 300 μm transverse slice was cut from the embedded spinal cord on a

vibrating blade microtome (Leica VT1200, Leica, Germany). The spinal cord slice was

stored on a cellulose nitrate filter (Sartorius Stedim Biotech GmbH, Germany) perfused

with Ringer solution saturated with 95% O2 and 5% CO2 at room temperature follow-

ing 45–60 min perfusion at 33–34 °C for slice recovery.

3.6 Chloride imaging

Clomeleon is a fusion protein consisting of Cl- insensitive CFP and Cl- sensitive YFP65.

Fluorescence resonance energy transfer (FRET) occurs between two fluorophores due

to close spatial  proximity.  Quenching of YFP by Cl- causes the ratio of fluorescence
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emission to change in response to [Cl-]66. Thus, Clomeleon can be used as a ratiometric

indicator for Cl-. 

L4 and L5 DRG were removed from clomeleon mice and stored in oxygenized Ringer's

solution (124 mM NaCl, 1.25 mM NaH2PO4, 26 mM NaHCO3, 3 mM KCl, 2 mM MgCl2,

2  mM CaCl2,  10  mM glucose)  at  room temperature.  A  commercial  2-photon setup

(LaVision,  Germany)  consisting  of  an  upright  microscope  (Olympus  BX51WI)  and

imaging  software  ImSpector  Pro  (LaVision,  Germany)  was  used  for  ratiometric  Cl-

imaging. A 1.0 numerical aperture 20×  water immersion lens (Plan- APOCHROMAT,

Zeiss) was used for the experiment. Fluorescence was elicited using a Ti: Sapphire laser

(Mai Tai HP DeepSee, Spectra-physics, Mountain View, CA) tuned to 870 nm. CFP sig-

nals (filter: 480BP 36) and YFP signals (filter: 537 BP 42) were separated by a beam-

splitter (500 LP) and recorded simultaneously. Images were acquired from Clomeleon-

positive cells in whole DRG. The data were analyzed offline with ImageJ (http://rsbwe-

b.nih.gov/ij/) and Matlab (MathWorks, Natick, Massachusetts). The fluorescence in-

tensity of YFP (FYFP) and CFP (FCFP) and their associated background signal (BYFP and

BCFP) of DRG neurons were read out in ImageJ. The ratio of YFP and CFP intensity (

R=
FYFP−BYFP

FCFP−BCFP

), which is negatively correlated to the  Cl- concentration, and related

statistics were calculated in Matlab. 

3.7 Perforated patch clamp

Recordings were made from DRG neurons using fire-polished glass pipette with a resis-

tance of 3–7 MΩ. Extracellular solution contained 150 mM NaCl, 5 mM KCl, 2 mM

CaCl2, 1 mM MgCl2, 10 mM glucose and 10 mM HEPES (pH 7.4). Internal solution used

to fill glass pipette contained 140 mM KCl, 5 mM EGTA and 10 mM HEPES (pH 7.3).

Lucifer Yellow and gramicidin were freshly added into internal solution prio to record-

ing to reach to final concentration 0.1%  and 50 - 100 μg ml-1 respectivily. Membrane

current and voltage were amplified and acquired using EPC-10 amplifier (HEKA Elec-

tronik GmbH, Germany) sampled at 10 kHz. The formation of gramicidin perforation

were monitored by the Patchmaster programme (HEKA Electronik GmbH, Germany)

and the measurement was started until serious resistance dropped to < 40 MΩ. 1 mM

GABA was applied to recorded neuron at a series of holding potentials (-60, -40, -20, 0
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and 20 mV). Data was analysed with Fitmaster software (HEKA Electronik GmbH, Ger-

many). The reversal potential of GABA-induced current (ECl) was calculated using a se-

ries of current amplitudes recorded at various holding potentials. The conductance of

GABAA receptors was calculated according to ohm’s law.

3.8 Calcium imaging

3.8.1 Imaging of cultured DRG neurons 

Briefly,  fluorescence  microscopy  was  done  on  an  Observer  A1  inverted  microscope

(Zeiss, Germany) using a 0.8 numerical aperture 25× water immersion objective (Zeiss,

Germany), and a 175W Xenon lamp as a light source. Before imaging, DRG neurons

were incubated with 2 mM Fura-2 in extracellular solution containing 150 mM NaCl, 5

mM KCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM glucose and 10 mM HEPES at 37 °C for 40

min and washed with extracellular solution at 37 °C for another 30 min. When IB4

marker (Sigma, Germany)  was used, cells were incubated with 2 µg ml- IB4 in extracel-

lular solution at 37 °C for 20 min directly after Fura-2 incubation.

Excitation light was passed either through a 340-BP 30 filter or a 387-BP 16 filter. Two

filters were switched by an ultra-high speed wavelength switcher Lambda DG-4 (Sutter,

Novato, CA). Emissions elicited from both excitation wavelengths were passed through

a 510-BP 90 filter and collected by a charge-coupled device camera (Zeiss). Different

solutions were applied by multi barrel perfusion system (WAS02, DITEL, Prague). Ax-

ioVision software (Zeiss) was used to record image data. After background (B340, B380)

subtraction in each channel (F340, F380), the ratio (R340/380) of fluorescence elicited by ex-

citation light at wavelength 340 nm and 380 nm, was calculated: R=
(F340−B340)

(F380−B380)
. A high

KCl extracellular solution was used to stimulate neurons and generate calcium tran-

sient. It contains 115 mM NaCl, 40 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 10 mM glucose

and 10 mM HEPES. Drugs were perfused in either extracellular solution or high KCl ex-

tracellular solution. If the 4th highest R was larger than threshold (R0+5 stdR0 ) , the

cell was considered to show a calcium transient in response to a stimulus. Ro is the

mean value of baseline ratio. 
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Data were analyzed by using AxioVision and Matlab (MathWorks, Natick, Massachu-

setts).

3.8.2 Imaging of acute spinal cord slices

Spinal cord slice was transferred to recording chamber of the 2-photon setup and per-

fused with oxygenized Ringer's solution. 2-photon imaging setup is same as for chloride

imaging experiments, except the laser was tuned to 920 nm. GCaMP3 signal (filter: 562

BP 40) was recorded. Time series of images were acquired from the spinal cord dorsal

horn. Superficial layer of dorsal horn (not deeper than 100 mm from the spinal cord

dorsal outline) was imaged. Scanning frequency was 1 Hz. A high KCl Ringer's solution

was used to stimulate neurons. It contains 87 mM NaCl, 1.25 mM NaH2PO4, 26 mM

NaHCO3, 40 mM KCl, 2 mM MgCl2, 2 mM CaCl2, 10 mM glucose. To avoid the effect

of activation of glutamate receptor, 10 mM NMDA (N-methyl-D-aspartate) antagonist

(RS)-CPP (Tocris Bioscience, UK) and 10 mM AMPA (a-amino-3- hydroxy-5-methyl-4-

isoxazolepropionic acid) antagonist CNQX (abcamBiochem- icals, UK) were added into

high KCl Ringer's solution. Ringer's solution with 1mM GABA was used to investigate

neuron response to GABA. Short time perfusion with Ringer's solution with GABA fol-

lowed by high KCl Ringer's solution with CPP, CNQX and GABA was used to investigate

influence of  GABA on neuron excitation.  All  chemicals  were  either  perfused to  the

whole recording chamber or to the adjacent area of recording field (< 500 µm).

2-photon live imaging data was exported from LaVison customized version of ImSpec-

tor  software  (http://www.imspector.de),  and was  analyzed  offline  with ImageJ  and

Matlab (MathWorks, Natick, Massachusetts). Image stacks underwent sample moving

correction with ImageJ plugin, Image Stabilizer (K. Li, "The image stabilizer plugin for

ImageJ,"  http://www.cs.cmu.edu/~kangli/code/Image_Stabilizer.html,  February,

2008.), utilizing Lucas–Kanade method. Each recording was segmented into 5 x 5 µm

square shape regions of interest (ROIs).  Average of all  pixels'  intensity in each ROI

from a single frame was calculated and used as  fluorescence intensity (F).  All  data

points were also smoothed by using LOESS method, which is a local regression using

weighted linear least squares and a 2nd degree polynomial, with a span of 10% of data

points, and collected as FS.

Mean value of F and FS from 30 frames prior to simulation were used as baseline fluo-

rescence intensity (F0 and FSo).  180 frames following stimulation were used for re-
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sponse analysis. When the maximum F (Fmax) from these 180 response frames exceeded

threshold (F0+5 stdF0 ) by  
( Fmax−Fmin)

2
 while  the  maximum FS (Fsmax)  exceeded

threshold (FS0+2 stdFS0 ) by 
( FSmax−FSmin)

2
, a ROI was considered to have a posi-

tive response.  stdF 0
And  std SF0

are the standard deviations of F0  and SF0 respec-

tively. Fmin and FSmin are the minimum F and FS from response frames. Fmax was con-

verted to ΔF using the formula ∆ F=Fmax−F0 . In a given ROI, GABA is considered

to  decrease  high  KCl  evoked  calcium  transient  and  have  inhibitory  effect  when

( ∆ FKCl−∆ FK Cl+GABA )

∆ FKCl

>0.5 ,  or  there is  no response to high KCl Ringer's  solution

combine with GABA. When 
( ∆ FKCl+GABA−∆ FKCl )

∆ FKCl

>0.5 , or the ROI responds to high

KCl Ringer's solution with GABA, but not high KCl Ringer's solution alone, GABA is

considered  to  facilitate  calcium  transient  evoked  by  high  KCl  and  be  excitatory.  If

|∆ FKCl−∆ FKCl+GABA|
∆ FKCl

⩽0.5 , GABA influence is categorized as no influence. 

 In GABA alone stimulation piece, only ROIs showed positive responses in KCl stimula-

tion piece from the same trial were used for analysis. 

3.9 Immunohistochemistry

Mice  were  deeply  anesthetized  with  isofluorane,  and  were  perfused  with  4%

paraformaldehyde (PFA) in PBS pH 7.4. DRGs and spinal cords were then dissected

from perfused mice and post-fixed with 1% and 4% PFA overnight respectively. 10% su-

crose in PBS 1h, 20% sucrose in PBS 1h, and 30% sucrose in PBS overnight incubation

were applied to all tissue.  For NKCC1 staining, DRGs and spinal cords were isolated
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from non-perfused animal and fixed with 2% PFA in PBS pH 7.4 overnight and then in-

cubated in 25% sucrose-hanks in PBS overnight.

O.C.T. compound (Tissue-tek, Sakura Finetek) were used to embed tissue and bind to

specimen block of cryotome (Leica) for slicing. 10 - 14 µm thick samples were mounted

on SuperFrostr®  Plus microscope slides (R. Langenbrinck Labor- u. Medizintechnik)

and stored at -20 °C. 

For CGRP and IB4 staining, the sections were permeablized and blocked with 0.1% Tri-

ton X-100 (Roth) and 5% donkey serum in PBS for 1 h, and incubated with primary an-

tibody anti-calcitonin gene-related peptide (CGRP) (goat, ab36001) diluted 1:1000, or

isolectin GS-IB4 (griffonia simplicifolia, Alexa Fluor® 568 conjugated, I21412) diluted

1:400 in PBS with 0.05% Triton X-100 and 5% donkey serum at 4 °C for 18 h. Sec-

ondary antibody donkey-anti-goat (cy3 conjugated) 1 h incubation at room temperature

was used to label CGRP antibody. To label NKCC1, the sections were permeablized 3

min  with  0.1%  Triton  X-100  (Sigma-Aldrich)  in  PBS,  blocked  30  min  in  1%  BSA

(Sigma-Aldrich) in PBS, and incubated with primary antibody anti-NKCC1 (goat, Santa

Cruz Biotechnology) diluted 1:500 at 4 °C for 18 h followed by 1h secondary antibody,

donkey-anti-goat (cy3 conjugated) incubation at room temperature.

Coverslips were mounted with vectashield mounting medium (Vector Laboratories, Inc.

Burlingame). Samples were imaged with epifluorescence microscope (Zeiss) equipped

with fluorescence lamp and monochrome camera. The acquired images were analyzed

using ImageJ (NIH, Bethesda, MD; USA).

3.10Real-time PCR

Total RNA was extracted from DRGs using peqGOLD TriFast (peqlab) following the

manufacturer’s  protocol.  RNA  was  determined  with  a  peqlab  NanoDrop  ND-1000.

Complementary DNA was synthesized from 5 mg of total RNA using the SuperScript

TM  II  Reverse  Transcriptase  kit  (Invitrogen,  Carlsbad,  CA,  USA)  with  oligo(dT)

primers, according to the manufacturer’s protocol. 

The volume of each reaction was 20 µl composed of 10 µl ABsolute QPCR SYBR Green

ROX Mix  (Thermo Scientific),  1  µl  1:5  diluted  cDNA and 1  µl  forward  and reverse

primers.  3  replications were prepared for  every  test.  The real-time PCRs were per-
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formed on an ABI 7500 Real Time PCR System (ABS/ Life Technologies). Primers used

were listed in Table 1.  

Relative amounts of mRNA were determined using comparative CT method67. In brief,

CT of  each  reaction  was  readout,  ΔCT was  calculated  using  ∆ CT=CT−CT (GAPDH ) .

CT(GAPDH) is the CT value of housekeeping gene GAPDH. Then ΔΔCT was calculated with

∆ ∆CT=∆ CT−∆ CT (control) . ∆CT(control) is the ΔCT of the tested gene from control sam-

ple. Finally, the fold change was calculated as 2−ΔΔCT . 

Gene Forward (5’ - 3’) Reverse (5’ - 3’)

Gabra1 CCAAGTCTCCTTCTGGCTCAA
CA

GGGAGGGAATTTCTGGCACT
GAT

Gabra2 TTACAGTCCAAGCCGAATGTC
CC

ACTTCTGAGGTTGTGTAAGCG
TAGC

Gabra3 CAAGAACCTGGGGACTTTGTG
AA

AGCCGATCCAAGATTCTAGTG
AA

Gabra5 CGCGTAGGCGTCAAGATCAA
GT

TCATAGCCATCCAAGAGTCCG
TC

Gabrb3 GCC AGC ATC GAC ATG GTT 
TC

GCG GAT CAT GCG GTT TTT 
CA

NKCC1 TCC TCA GTC AGC CAT ACC 
CAA A

ATC CCG AAC AAC ACA CGA 
ACC

BDNF AGT CTC CAG GAC AGC AAA 
GC

TCG TCA GAC CTC TCG AAC 
CT

Trkb truncated ATC TGC AAC GAC GAT GAC 
TCT G

GTA GCA CTC GGC AAG GAA 
AAC T

Trkb full-length CCC AAA TTA CCC TGT AGT 
CCT CT

ACC CAT CCA GTG CGA TCT 
TAT

GAD65 CGC ATT GCC AAA CAA CTC 
TAA A

AGT CTG CTG CTA ATC CAA 
CCA T

GAD67 GCC ACA AAC TCA GCG GCA 
TA

CCC GGT GTC ATA GGA GAC 
GT

GAT1 CTC CAA CTA CAG CCT GGT 
CAA TAC

GCA GAA ATA CAC GAG CAC 
CCA

GAPDH ACC CTG TTG CTG TAG CCG 
TAT CA

TCA ACA GCA ACT CCC ACT 
CTC CA

Table 1: Sequence of primers used for real-time PCR experiments.
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4 Results

4.1 GABAergic presynaptic modulation after 
peripheral nerve injury 

4.1.1 Increased [Cl-] in DRGs after nerve injury 

Chronic  constriction  injury  (CCI)  of  sciatic  nerve was  reported  to  generate  various

pathological symptoms, such as mechanical allodynia, mechanical and thermal hyper-

algesia, and therefore is widely used as an animal model to study neuropathic pain44.

The effect of CCI in mouse had been assessed by my colleague with von Frey and plan-

tar tests and confirmed that both mechanical and thermal pain behaviors were induced

in this injury model61. The sensitivity of injured mice reached to peak 2 days after CCI,

and lasted at least 28 days. My interest is the early stage of chronic pain development,

therefore, 2 days post injury animal were used for further study.

The principle inhibitory effect of GABA is achieved by activating GABAA receptor which

generate chloride current and hyperpolarize cell. Therefore, the intracellular chloride

concentration is crucial. Coull et al. reported potassium-chloride cotransporters KCC2

on lamina I  projection neurons  were downregulated after  peripheral  nerve injury50.

This event, in turn, elevated intracellular [Cl-]. As a result, GABA induced postsynaptic

inhibition on projection neurons was lost or even switched to excitation due to chloride

gradient shift. I wondered whether peripheral nerve injury could also change the intra-

cellular [Cl-] in presynaptic DRG neurons, and interfere presynaptic inhibition. There-

fore, 2-photon chloride imaging were performed on acutely dissected DRGs from trans-

genic clomeleon mice, which express chloride indicators in neurons, to investigate if

CCI influence the [Cl-] of DRG neurons (Figure 6). These indicators contain both CFP

and YFP fluorophores. The ratio of YFP to CFP fluorescence (YFP/CFP) negatively cor-

relates with [Cl-].  I observed significantly decrease of YFP/CFP, representing the in-

crease of [Cl-], in both small (Control: 0.18 ± 0.003; CCI 0.13 ± 0.004) and large diam-

eter DRG neurons (Control: 0.20 ± 0.003; CCI: 0.13 ± 0.002) from nerve injured mice

(Figure 6). 
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My colleague, Jeremy Tsung-Chieh Chen, performed perforated patch clamp to investi-

gate the function of Cl- permeable GABAA receptors of DRG neurons from intact and

nerve injured mice (Figure 7). The results indicated that the reversal potential of Cl -

(ECl) are – 35.2 ± 2.5 mV and – 37.5 ± 2.4 mV in small and large neurons repectively

from control mice. And nerve injury depolarizingly shifted ECl in both small (22.7 ± 2.4

mV) and large neurons (– 28.3 ± 3.4 mV respectively). The depolarizing shift of ECl sug-

gests an increase of intracellular [Cl-] which is consistent with my chloride imaging re-

sult.  Noticeably,  the conductance of  GABAA receptors  (GGABA)  was downregulated in

both small and large neurons by nerve injury (Figure 7d).  
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Figure  6:  CCI  upregulate  intracellular  [Cl-]  of  DRG neurons.  (a)  The 2-photon images of
Clomeleon signal (FYFP/FCFP) in acutely dissected DRGs from intact (left) and 2-day post CCI
animal. (b) The increase of intracellular [Cl-] in both small and large DRG neurons after CCI
indicated by the decrease of  FYFP/FCFP (small control: n = 73; small CCI: n = 63; large control:
n = 58; large CCI n= 114; small control vs small CCI, unpaired student t-test, P < 0.001; large
control vs large CCI, unpaired student t-test, P < 0.001). Error bars indicate standard error of
the mean (SEM). Scale bars (a) 50 μm. ***P < 0.001.



In conclusion, nerve injury caused an increase of [Cl-] possibly potentiating the depo-

larization induced by activation of GABAA receptors. However, the associated decrease

of GGABA may limit such depolarization. 
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Figure  7:  Nerve injury (CCI)  induced a transient  depolarizing shift  of ECl and reduction of
conductance of GABA induced current in primary sensory neurons. (a) Representative traces
of GABA-activated currents recorded in DRG neurons during gramicidin perforated patch at
various holding potential mV. (b) Current–voltage relationship for GABA-activated response
from large (left)  and small  (right)  neurons.  (c)  Bar  graph showing the time course of  the
changes in ECl.  (d)  Bar graph showing the time course of the changes in conductance of
GABAA receptors. The number of neurons recorded is indicated on top of each bar in (c) and
(d). *P < 0.05; **P < 0.01; unpaired t-test. Error bars indicate SEM.



4.1.2 Proportion of DRG neurons activated by GABA is not 
changed by nerve injury 

Due to the nature that DRG neuron [Cl-] is high enough to cause the ECl more depolar-

ized than membrane potential, the activation of GABAA receptors would lead to an out-

flow of chloride ions and depolarize the cell39,40. This depolarization, as previous studies

advocated, was suggested to be the principal component of presynaptic inhibition in-

duced by GABA28. However, when this depolarization reaches firing threshold, the in-

hibitory  effect  could  be impaired.  The  CCI  generated  rise  of  [Cl-]  in  DRG neurons
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Figure 8: CCI did not change the proportion of DRG neurons displaying GABA evoked calcium
transient. (a) The bright field (left) and Fura-2 signal (F340/F380) images taken before (middle)
and immediately after (right) GABA application. (b) Representative traces showing intracellular
[Ca2+] along time in labeled cells in  a.  (c) Proportions of neurons displaying GABA evoked
calcium transient (small control:  n = 236; small CCI: n = 149; small BDNF: n = 110; large
control: n = 45; large CCI: n = 19; large BDNF n = 30; Fisher’s exact test, all P > 0.05). Scale
bar (a)  30 μm.



caused a larger electrical potential across membrane, which might increase the GABAA

receptor  mediated  chloride  current  outflow.  Whether  the slightly  elevated  [Cl-]  can

change the effect of GABA, for example,  to excitation is  unclear.  To figure this out,

DRGs from intact and injured animal were cultivated, and used for Fura-2-AM loaded

cell calcium imaging, which indirectly showed neuron activity by monitoring intracellu-

lar calcium influx (Figure 8a). Locally applied 1 mM GABA, which is in the same con-

centration range as in synaptic cleft, was found to trigger calcium transient in 44% of

small neurons and 24% of large neurons from intact animal  (Figure 8c). And these

proportions were not significantly changed in neurons from injured mice (38% in small

neurons, 16% in large neurons)  (Figure 8c).  This result showed that the GABA in-

duced depolarization could not trigger calcium transient in a bigger proportion of DRG

neurons after nerve injury. This may be due to the downregulated GGABA, which limits

the inward current to depolarize neurons.  

4.1.3 GABA loses inhibitory effect on presynapses in nerve 
injured mice

The intracellular [Cl-] increase was observed in DRG neuron somas from nerve injured

mice, but whether [Cl-] in central terminals, which locate in spinal cord dorsal horn,

rise together with neuron somas is still unclear. Besides, GABA was not found to ac-

quire excitatory effect on DRG neurons from injured mice, but its effect on presynapses

is still unclear if [Cl-] also rises there. Therefore, 2-photon calcium imaging was utilized

to investigate the central terminals of nociceptors.
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To cope with the difficulty of recognizing presynapses, I bred SNS-Cre mice, which ex-

pressed Cre recombinase in nociceptors, to Ai38 mice, in which a loxP-flanked STOP

cassette  prevented  transcription  of  the  downstream  fluorescent  calcium  indicator

GCaMP3 fusion  gene.  The offspring  (SNS-Ai38)  carried both Cre  recombinase  and

GCaMP3 fusion gene had GCaMP3 specifically expressed in nociceptors and thus all

calcium signal observed in spinal cord was from central terminals of neurons (Figure

9a).
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Figure 9: 2-photon images of acutely
dissected  spinal  cord  slices  from
SNS-Ai38  mice  (control,  CCI  and
BDNF).  (a)  A  diagram  showing
expression patter of GCaMP3 signal
in advillin-Ai38 mice. (b) Bright field
image of spinal cord slice used for 2-
photon  calcium imaging.  (c -  n)  2-
photon  microscope  imaged

GCaMP3 signal indicating [Ca2+] in
Control (c - f), CCI (g - j) and BDNF
(k - n) spinal cord superficial layer in
response  to  various  stimuli.  Scale
bars, (b) 200 μm; (c - n) 10 μm (only
shown in n)



Spinal cord innervated by L4 or L5 nerve were sliced and superficial layers of dorsal

horn, where most nociceptors innervate, was imaged with 2-photon microscopy (Fig-

ure 9b). Considering synaptic GABAA receptors are less sensitive to GABA compare to

extrasynaptic GABAA receptors68, and the perfusion to whole recording chamber might

unable to deliver the expected concentration (1 mM) of GABA and activated majority of

synaptic  GABAA receptors,  recordings  with local  perfusion  (less  than 500 μm from
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Figure  10:  The  color  maps  and  representative  traces  of  2-photon  calcium imaging  of
acutely dissected spinal cord slices from SNS-Ai38 mice (control, CCI and BDNF). (a, c, e)
Each color map represents presynaptic calcium intensity in 30 ROIs. (b, d, f)  Selected
representative traces showing calcium intensity. The figures for control (a, b), CCI (c, d)
and BDNF (e, f) groups are correlated with the example 2-photon images show in Figure
9. 



recording area) in addition to whole chamber perfusion were applied to ensure the acti-

vation of GABAA receptors. Clear calcium transient (ΔF/F0) was observed when high

KCl Ringer’s solution, with or without GABA, was applied (Figure 9d, f, h, j; 10a - d).

Noticeably, when GABA was co-applied with high KCl Ringer’s solution, majority of

high KCl responding regions of interest (ROIs) either showed similar amplitude of cal-

cium transient or attenuated calcium influx or even no influx (Whole chamber perfu-

sion: No-change: 58 %; More Ca2+ transient: 7 %; Less Ca2+ transient: 36 %. Local per-

fusion: No-change: 49 %; More Ca2+ transient: 9 %; Less Ca2+ transient: 41 %. Figure

11a). And nerve injury dramatically decreased the proportion of ROIs where GABA ex-

hibited such inhibitory effect on KCl evoked calcium transient, and boosted the propor-

tion  showing elevated calcium transient  when GABA was  co-applied  with high  KCl

(Whole chamber perfusion: CCI: No-change: 46 %; More Ca2+ transient: 45 %; Less

Ca2+ transient: 9 %. Local perfusion: CCI: No-change: 67 %; More Ca2+ transient: 30 %;

Less Ca2+ transient: 3 %. Figure 11a). 1 mM GABA perfused to the recording chamber

could trigger calcium transient in a small percentage of ROIs in spinal cord from intact

SNS-Ai38 mice (Whole chamber perfusion: 2.7 ± 1.3 %. Local perfusion: 12.5 ± 2.3 %.

Figure 11b), and nerve injury did not show significant influence on this percentage

(Whole chamber perfusion: 1.3 ± 0.7 %. Local perfusion: 19.8 ± 4.7 %.  Figure 11b). In

conclusion, these results showed the considerable inhibitory effect of GABA on nocicep-

tor  central  terminals,  and nerve injury  significantly  disturbed this  negative  control.

However, presynaptic GABAergic control, unlike postsynaptic inhibition, was not re-

versed to be excitatory, but was only disinhibited, since GABA did not generate more

calcium influx after nerve injury. 
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4.1.4 Lost of presynaptic inhibition after nerve injury 
contributes to mechanical hypersensitivity and fully 
responsible for thermal hyperalgesia (experiments carried by 
Jeremy Tsung-chieh Chen)
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Figure  11: statistics results of 2-photon calcium imaging on spinal cord from SNS-Ai38 mice
(control, CCI and BDNF). (a) The proportions of ROIs where no-change, more Ca2+ transient,
and less Ca2+ transient were observed when 1 mM GABA was applied with high KCl compare to
sole high KCl perfusion. The number of ROIs recorded is indicated on top of each bar. (whole
chamber perfusion: Control mice n = 5; CCI mice n = 4; BDNF mice n=3. chi-squared  test,
Control vs CCI, P < 0.001; Control vs BDNF, P < 0.001. local perfusion: Control mice n = 4; CCI
mice n = 3; BDNF mice n=3. chi-squared test, Control vs CCI, P < 0.001; Control vs BDNF, P <
0.001). (b) The proportion of ROIs displaying GABA evoked calcium transient was not changed
by CCI or BDNF incubation (whole chamber perfusion: Control slice, n = 6; CCI slice, n = 5;
BDNF slice, n = 5. student t-test, Control vs CCI, P > 0.05; Control vs BDNF, P > 0.05. Local
perfusion: Control slice, n = 8; CCI slice, n = 7; BDNF slice, n = 4. student t-test, Control vs CCI,
student t-test, P > 0.05; Control vs BDNF, student t-test, P > 0.05.). Error bars indicate SEM.
***P < 0.001.



The group of De Koninck50,51 provided evidence that mechanical allodynia and thermal

hyperalgesia in peripheral nerve injured mice were at least partially caused by the in-

creased postsynaptic chloride gradient which alters inhibitory GABAergic input from

interneurons. Witschi et al.69 recently selectively knockout GABAA receptor α2 subunit

on DRG nociceptors (SNS-α2-/-) by utilizing Cre-loxP method. Although, the antinoci-

ceptive effect of Diazepam (DZP) was found to be reduced in these SNS-α2-/- mice, the

thresholds to thermal and mechanical stimulation were normal, which might because

of the upregulation of bensodiazepine insensitive GABAA receptors. My colleague, by

using  SNS-cre  and  Gabrb3-loxP  mice,  generated  conditional  knockout  mouse  line

(SNS-β3-/-) in which another GABAA receptor subunit, β3, was specifically knockout in

nociceptors. Compare to control litter mates, β3fl/fl mice, SNS-β3-/- mice were signifi-

cantly more sensitive to both thermal and mechanical stimulation, yet nerve injury was

still capable of further sensitizing mechanical sensitivity (Figure 12a). However, heat

hypersensitivity could not  be further  developed (Figure 12b).  My calcium imaging

data and these behavior results together suggest that nerve injury disrupts presynaptic

inhibition, and this lost of inhibition contributes to mechanical hypersensitivity and is

fully responsible for thermal hyperalgesia.
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Figure 12: SNS-β3-/- mice were more sensitive to both mechanical and thermal stimuli. (a) Von
Frey test showed mechanical hypersensitivity was significantly reduced in SNS-β3−/−  mice, and
mechanical allodynia was further developed after CCI. n = 6 mice per group. (repeated two-way
ANOVA, β3fl/fl ipsilateral versus SNS-β3−/− ipsilateral, factor time, P < 0.001; factor genotype, P <
0.001. Bonferroni post hoc test, β3fl/fl ipsilateral versus SNS-β3−/− ipsilateral 0d, P < 0.05). (b)
SNS-β3−/− mice failed to develop thermal hypersensitivity after CCI. n = 6 mice per group. (Two-
way analysis of variance (ANOVA): β3fl/fl contralateral versus ipsilateral, P < 0.001; SNS-β3−/−

contralateral versus ipsilateral, P < 0.05; β3fl/fl ipsilateral versus SNS-β3−/− ipsilateral after injury,
P > 0.05). Error bars indicate SEM.



4.1.5 BDNF causes the lost of presynaptic inhibition after nerve
injury

Coull et al. revealed that the elevated [Cl-] in lamina I neurons after nerve injury were

caused by microglia released BDNF which down-regulates KCC2 by binding to TrkB re-

ceptors51. BDNF-TrkB signaling had been suggested to modulating intracellular [Cl-] by

regulating NKCC1, which is mainly expressed by DRG neurons, as well as KCC270,71. In

addition, TrkB receptors had been reported to also expressed at axonal terminals of pri-

mary afferent fibers in nociceptors, and depolarizing shift of chloride reversal potential

was observed in BDNF treated DRG neurons as well61,72. Therefore, it is likely that the

microglia-derived BDNF after nerve injury also has an impact on presynaptic [Cl-]. To

examine this  assumption,  calcium imaging on overnight  BDNF (50 ng ml -1)  treated

DRG cell culture was applied. GABA induced calcium transient didn’t appear in bigger

proportion of neurons compare to control, which is similar to result acquired from in-

jured mice (BDNF: small, 43 %; large, 43 %. Figure 8c).

2-Photon calcium imaging was also applied to examine the effect of BDNF on presy-

napses (Figure 9k – n; 10e – f; 11). 2h BDNF incubated spinal cord slice from SNS-

Ai38 mice exhibited a prominent loss of GABAergic inhibition on high KCl induced cal-

cium influx in presynapses located in superficial layer (Whole chamber perfusion: No-

change: 97 %; More Ca2+ transient: 2 %; Less Ca2+ transient: 2 %. Local perfusion: No-

change: 72 %; More Ca2+ transient: 7 %; Less Ca2+ transient: 21 %.), which is identical to

the change in CCI spinal cord (Figure 11a). Similarly, the proportion of ROIs display-

ing GABA-evoked calcium transient (Whole chamber perfusion: 5.2 ± 2.8 %. Local per-

fusion: 25.3 ± 7.2 %) was also unaffected (Figure 11b).  

In addition, our group previously provided behavior evidence showing BDNF and CCI

had similar effect on presynaptic terminals61. Taken together, these similarities between

CCI and BDNF groups implied the nerve injury induced lost of presynaptic inhibition is

regulated by BDNF.
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4.2 GABAergic presynaptic modulation after 
peripheral inflammation 

4.2.1 Increased [Cl-] associated with unchanged GGABA in 
nociceptors after inflammation (experiments carried by Jeremy 
Tsung-chieh Chen)

Willis had reviewed dorsal root reflex (DRR), which is only observed after peripheral

inflammation but not nerve injury, and discussed the possible mechanism causing it52.

Pharmacological studies strongly suggested that the enhanced PAD mediated by presy-

naptic GABAA receptors after inflammation was essential for DRR. Therefore, we rea-

soned that peripheral inflammation, similar to nerve injury, also likely to elevate the in-

tracellular [Cl-], which may cause a depolarization strong enough to trigger an action

potential. Indeed,  Patch clamp study from our lab revealed that CFA injection did in-

duce a depolarizing shift of ECl in small sized DRG neurons (Figure 13). Moreover, the

whole cell GGABA did not decrease like neurons from nerve injured animal and rather

show a trend towards increasing (Figure 13). Together, these electrophysiology results

implied that the activation of GABAA receptors probably generated a stronger depolar-

ization after peripheral inflammation than after nerve injury, which possibly underlied

why DRR was not observed after nerve injury.        
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My colleague found both similarities and distinctions between nerve injured and CFA

injected SNS-β3-/- mice with behavior test. CFA injection induced peripheral inflamma-
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Figure  13:  The  influence  of  CFA induced  inflammation  on  ECl and  GGABA of  cultured  DRG
neurons. (a - b) Representative traces displaying GABA generated currents in large (a) and
small (b) neurons at various holding potential. (c - d) The current – voltage curve of GABA
induced cell responses in large (c) and small (d) neurons. (e) ECl was depolarizingly shifted in
small neurons 2 days after CFA injection. This shift was recovered after 4 weeks. (student t-test,
Large: Control vs CFA 2 days, P > 0.05; Control vs CFA 4 weeks, P > 0.05; CFA 2 days vs CFA
4 days, P > 0.05. Small: Control vs CFA 2 days, P < 0.05; Control vs CFA 4 weeks, P > 0.05;
CFA 2 days vs CFA 4 days,  P < 0.05).  (f)  The conductance of  GABAA receptors was not
affected  by  CFA injection  in  neither  larger  nor  small  DRG neurons.  (student  t-test,  Large:
Control vs CFA 2 days, P > 0.05; Control vs CFA 4 weeks, P > 0.05; CFA 2 days vs CFA 4
days, P > 0.05. Small: Control vs CFA 2 days, P > 0.05; Control vs CFA 4 weeks, P > 0.05; CFA
2 days vs CFA 4 days, P > 0.05). The number of recorded neurons in indicated on top of each
bar in (e) and (f). Error bars indicate SEM. *P < 0.05.   



tion further developed the mechanical and thermal hyperalgesia in SNS-β3-/-  mice as

CCI (Figure 14a, b), yet mechanical allodynia was not fully developed after inflamma-

tion (Figure 14c). This indicates that presynaptic GABAA receptors are crucial for me-

chanical allodynia development after inflammation which was not observed in nerve in-

jured animal. 

4.2.2 Excitatory effect of GABA on presynapses in inflamed 
mice

Therefore, I studied the function of presynaptic GABAA receptors with spinal cord (SC)

slices from CFA injected animal to investigated whether the increased [Cl-] abolishes

the inhibitory effect of GABA as it does in nerve injured animal, and whether the differ-

ence in GGABA between CCI and CFA groups leads to functional difference. 
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Figure  14:  CFA induced  peripheral  inflammation  further  sensitized  SNS-β3-/- mice.  (a)  The
mechanical  allodynia  was developed in  SNS-β3-/- mice  after  CFA injection,  but  it  was  less
sensitive than that in β3fl/fl mice. (β3fl/fl, n = 6; SNS-β3-/-, n = 8. Repeated two-way ANOVA (0 -
28d): factor time P < 0.0001, factor genotype P < 0.0001, Bonferroni post hoc, β3fl/fl vs SNS-β3-/-

on 0d,  P  <  0.0001.  Repeated  two-way  ANOVA (1  –  28d):  factor  time  P  <  0.0001,  factor
genotype P < 0.01).  (b) The development of thermal hyperalgesia was similar in SNS-β3-/- and
its control litter mates (β3fl/fl, n = 6; SNS-β3-/-, n = 8. Repeated two-way ANOVA (0 - 28d): factor
CFA injection, β3fl/fl contralateral vs ipsilateral, P < 0.0001; SNS-β3-/- contralateral vs ipsilateral,
P < 0.0001. Repeated two-way ANOVA (1 – 28d)  β3fl/fl vs SNS-β3-/- ipsilateral, P > 0.05). (c)
Error bars indicate SEM. 



2-day after CFA injection, GABA was found, like in nerve injured mice, failing to sup-

press high KCl Ringer's solution generated calcium transient in spinal cord from SNS-

Ai38 mice (Whole chamber perfusion: No-change: 66 %; More Ca2+ transient: 21 %;

Less Ca2+ transient: 13%. Local perfusion: No-change: 68 %; More Ca2+ transient: 31 %;

Less Ca2+ transient: 1 %. Figure 15; 16; 17a). In addition, GABA itself alone could gen-

erate calcium influx in more presynapses in spinal cord from CFA injected SNS-Ai38
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Figure  15:  2-photon  images  of
acutely  dissected  spinal  cord
slices from SNS-Ai38 mice.(a) A
diagram  showing  expression
patter  of  GCaMP3  signal  in
SNS-Ai38  mice.  (b)  2-photon
microscope  imaged  GCaMP3
signal  indicating  [Ca2+]  in
Control  (b - e),  CCI (f  -  i)  and
CFA  (j  -  m)  spinal  cord
superficial  layer  in  response  to
various stimuli. Scale bars, (b –
m) 10 μm (only shown in m).



mice (Whole chamber perfusion: Control: 2.7 ± 1.3 %; CFA: 6.6 ± 0.9 %. Local perfu-

sion: Control: 13 ± 2.3 %; CFA: 57 ± 12 %. Figure 15i; 16e,f; 17b).
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Figure 16:  The color maps and representative traces of 2-photon calcium imaging of acutely
dissected spinal cord slices from SNS-Ai38 mice (control, CCI, CFA). (a, c, e) Each color
map represents presynaptic calcium intensity in 30 ROIs. (b, d, f) Selected representative
traces showing calcium intensity. The figures for control (a, b), CCI (c, d) and CFA (e, f)
groups are correlated with the example 2-photon images show in Figure 15.  



2-photon calcium imaging with GABA receptor antagonists was performed to investi-

gated the contribution of GABAA and GABAB receptors to this increased calcium influx

after inflammation. As expected, GABA only induced calcium transient in few ROIs in

spinal  cord  from  intact  SNS-Ai38  mice,  and  neither  GABAB receptor  antagonist,

CGP55845, nor GABAA receptor antagonists, bicuculline and picrotoxin, changed this

(GABA:  4.6  ±  0.8  %;  GABA+CGP55845:  4.7  ±  2.4  %;

GABA+CGP55845+Bicuculline+Picrotoxin: 5.9 ± 2.9 %.  Figure 18c – e; 19a, c). In

spinal slices from CFA injected SNS-Ai38 mice, CGP55845 did not show any influence

on GABA-evoked calcium transient (GABA: 31 ± 5.8 %; GABA+CGP55845: 31 ± 5.0 %.

Figure 18h – i; 19b, c). However, bicuculline and picrotoxin successfully suppressed

the calcium transient in majority of ROIs, indicating the essential role of GABAA recep-

tors in the inflammation induced increase of GABA activity (GABA+CGP55845+Bicu-
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Figure 17: Statistics data of 2-photon calcium imaging on spinal cord from nerve injured SNS-
Ai38 mice. (a) The proportions of ROIs where no-change, more Ca2+ transient, and less Ca2+

transient were observed when 1 mM GABA was applied with high KCl compare to sole high KCl
perfusion.  The number  of  ROIs recorded  is  indicated  on top of  each bar.  (whole  chamber
perfusion: Control mice n = 5; CCI mice n = 4; BDNF mice n = 3; CFA mice n = 6. chi-squared
test, Control vs CCI,P < 0.001; Control vs BDNF, P < 0.001; Control vs CFA, P < 0.001. Local
perfusion: Control mice n = 4; CCI mice n = 3; BDNF mice n=3; CFA mice n = 3. chi-squared
test, Control vs CCI, P < 0.001; Control vs BDNF, P < 0.001; Control vs CFA, P < 0.001). (b)
The proportion of ROIs displaying GABA evoked calcium transient. (whole chamber perfusion:
Control, n = 6; CCI, n = 5; BDNF, n = 5; CFA, n = 12. student t-test, Control vs CCI, P > 0.05;
Control vs BDNF, P > 0.05; Control vs CFA, P < 0.05. Local perfusion: Control, n = 8; CCI, n =
7; BDNF, n = 4; CFA, n = 8. student t-test, Control vs CCI, P > 0.05; Control vs BDNF, P > 0.05;
Control vs CFA, P < 0.01.). Error bars indicate SEM. *P < 0.05, ***P < 0.001.



culline+Picrotoxin: 6.8 ± 3.0 %.  Figure 18j; 19b, c).In conclusion, these results im-

plies GABA does not only lose inhibitory effect, but also acquires excitatory effect in in-

flammatory pain model, which supports the previous report that the increased DRRs

were mediated by the activation of GABAA receptors after peripheral inflammation73.

And the incomplete developed allodynia of CFA injected SNS-β3-/- mice observed by my

colleague may be due to the lack of GABA excitatory effect on presynapses after inflam-

mation.
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Figure  18:   2-photon images of  acutely
dissected  spinal  cord  slices  from SNS-
Ai38  mice  showing  the  effect  of
antagonists  of  GABAA and  GABAB

receptors. (a – e)  The 2-photon images
taken from Control group. (f – j) The 2-
photon  images  taken  from  CFA  group.
Scale bars, (a – j) 10 μm (only shown in
j)



4.2.3 mRNA level of proteins related to the function of 
presynaptic GABAA receptors 

The effect of GABAA receptors mainly depends on 3 factors, the Cl- gradient, GABA con-

centration and the density of GABAA receptors. If the Cl- gradient is larger, the electro-

chemical driven force would be bigger at the same resting potential. Previous studies

reported that the sodium potassium chloride co-transporter (NKCC1) is crucial for the
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Figure 19: The GABA induced calcium transient increase in SNS-Ai38 mouse spinal superficial
layer after peripheral inflammation is mediated by GABAA receptors. (a) Color map displaying
intact SNS-Ai38 mouse spinal superficial layer presynaptic [Ca2+] change in 30 ROIs chosen
from the area shown in Figure 18a – e. (b) Color map displaying CFA injected SNS-Ai38 mouse
spinal superficial layer presynaptic [Ca2+] change in 30 ROIs chosen from the area shown in
Figure 18f – j. (c) The proportion of ROIs displaying GABA evoked calcium transient grew after
CFA injection. This increase was prohibited by co-application of  GABAA receptor antagonists,
bicuculline and picrotoxin, with 1 mM GABA (SNS-Ai38 Control, n = 5; SNS-Ai38 CFA, n = 8.
SNS-Ai38  Control:  GABA  vs  GABA+CGP55845,  student  t-test,  P  >  0.05;  GABA  vs
GABA+CGP55845+Bicuculline+Picrotoxin, student t-test, P > 0.05; SNS-Ai38 CFA: GABA vs
GABA+CGP55845,  student  t-test,  P  >  0.05;  GABA  vs
GABA+CGP55845+Bicuculline+Picrotoxin, student t-test, P < 0.01). Error bars indicate SEM.
**P < 0.01.    



Cl- homeostasis in DRG neurons38,74,75. And our group had provided evidence that the

activity of NKCC1 is important for transient hypersensitivity of  mice after nerve in-

jury61. Our previous study also showed BDNF-TrkB signaling on DRG neurons generate

a raise in intracellular [Cl-] in nerve injured animal61. I therefore examined mRNA lev-

els of all these proteins (NKCC1, BDNF, full length and truncated TrkB), which might

be in the signaling pathway upregulating intracellular [Cl-], in DRGs (Figure 20) and

spinal cord dorsal horn (Figure 21) from intact and CFA injected mice with qRT-PCR.

BDNF was found increased in ipsilateral side of both DRGs (Control: 1.00 ± 0.01; CFA:

11.68 ± 2.59) and spinal dorsal horn (Control: 1.00 ± 0.04; CFA: 1.69 ± 0.13) after CFA

injection, which is consistent with previous studies, while mRNA of full-length (DRG:

Control: 1.00 ± 0.01; CFA: 1.00 ± 0.12. SC: Control: 1.01 ± 0.02; CFA: 0.97 ± 0.03),

truncated TrkB receptors (DRG: Control: 1.00 ± 0.01; CFA: 1.23 ± 0.19. SC: Control:

1.03 ± 0.02; CFA: 1.08 ± 0.05) and NKCC1 did not show significant change (DRG: Con-

trol: 1.00 ± 0.01; CFA: 1.04 ± 0.13. SC: Control: 1.05 ± 0.03; CFA: 1.11 ± 0.06). 

The concentration of GABA can be regulated by 2 glutamic acid decarboxylase (GAD),

GAD65 and GAD67, which are enzymes catalyzing the decarboxylation of glutamate to
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Figure 20: mRNA levels of proteins potentially influencing presynaptic GABAergic control
in DRG (Control, n = 9; CFA, n = 9. Student t-test, Control vs CFA: BDNF, P < 0.001; trkB
full-length,  P > 0.05;  trkB truncated,  P > 0.05;  NKCC1,  P > 0.05;  GAD67,  P > 0.05;
Gabra1, P < 0.01; Gabra2, P < 0.01; Gabra3, P > 0.05; Gabra5, P < 0.01; Gabrb3, P >
0.05). Error bars indicates SEM. **P < 0.01, ***P < 0.001 



GABA, and GABA transporter 1 (GAT1) functioning as a GABA remover. None of them

had a change on mRNA level in spinal cord after CFA injection (GAD65: Control: 1.03 ±

0.04; CFA: 1.01 ± 0.06. GAD67: Control: 1.00 ± 0.02; CFA: 0.96 ± 0.04. GAT1: Con-

trol: 1.01 ± 0.o3; CFA: 0.97 ± 0.05), likewise GAD67 mRNA remained at the same level

in DRGs (Control: 1.01 ± 0.04; CFA: 0.88 ± 0.14). CT  value of GAD65 was found very

high (> 30) in DRGs, which represented the mRNA level was too low for reliable test,

and thus not used for analysis. mRNA level of GABA remover, GAT1, in DRGs was not

examined, since all primary afferents are excitatory13. 

Each GABAA receptors is composed of 5 subunits, and interface(s) between  α and β

subunit is/are binding site(s) for GABA76. α1-3, α5, and β3 subunits were reportedly ex-

pressed in DRG neurons77. Any change of these subunits may lead to the unexpected ef-

ficacy of GABA, therefore mRNA levels of these subunits were examined (Figure 20;

21). α1 and α2 subunits were found decreased in both DRG (gabra1: Control: 1.00 ±

0.004; CFA: 0.78 ± 0.06. gabra2: Control: 1.00 ± 0.01; CFA: 0.85 ± 0.06) and spinal

cord (gabra1: Control: 1.04 ± 0.03; CFA: 0.93 ± 0.02. gabra2: Control: 1.05 ± 0.01;

CFA: 0.90 ± 0.02)  after  inflammation,  while  α5 subunit  was elevated only in DRG
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Figure  21:  mRNA levels  of  proteins potentially influencing presynaptic GABAergic control  in
spinal dorsal horn ipsilateral side (Control, n = 18; CFA, n = 15. Student t-test, Control vs CFA:
BDNF, P < 0.001; trkB full-length, P > 0.05; trkB truncated, P > 0.05; NKCC1, P > 0.05; GAD65,
P > 0.05; GAD67, P > 0.05; GAT1, P > 0.05; Gabra1, P < 0.01; Gabra2, P < 0.01; Gabra3, P >
0.05; Gabra5, P > 0.05; Gabrb3, P > 0.05). Error bars indicates SEM. **P < 0.01, ***P < 0.001 



(DRG: Control: 1.00 ± 0.01; CFA: 1.16 ± 0.05. SC: Control: 1.06 ± 0.04; CFA: 0.95 ±

0.04). No change was observed for mRNA levels of α3 (DRG: Control: 1.00 ± 0.01;

CFA: 0.93 ± 0.15. SC: Control: 1.03 ± 0.02; CFA: 0.95 ± 0.04) and β3 subunits (DRG:

Control: 1.00 ± 0.01; CFA: 0.76 ± 0.13. SC: Control: 1.04 ± 0.03; CFA: 1.01 ± 0.06). 

In summary, a raise of BDNF may influence the BDNF-TrkB signaling pathway, but no

significant change of NKCC1 mRNA was observed. The proteins responsible for GABA

production and removal were not affected by CFA injection on mRNA level in both

DRGs and spinal dorsal horn. Variations in mRNA levels of GABAA receptor subunits

were  observed after  inflammation.  However,  the  conduction of  GABAA receptors  in

DRG neurons was not significantly shifted by CFA injection, which might due to the in-

crease of α1 and α2 subunits and decrease of α5 subunits compensate each other.

4.2.4 Upregulated NKCC1 contributed to mechanical 
hypersensitivity development after peripheral 
inflammation (experiments carried by Flavia Frattini)

Although mRNA level of NKCC1 in DRGs was not altered after peripheral inflmmation,

this does not rule out that intracellular [Cl-] increase depends on the enhanced activity

of NKCC1, which is determined by the protein level of plasma membrane NKCC1. My

colleague did NKCC1 staining on DRG cryosections from intact and CFA injected mice

and quantified the fluorescence intensity on cell membrane. The result revealed that

the  CFA induced  peripheral  inflammation  significantly  upregulated  NKCC1 level  in

plasma membrane of both small and large neurons (Figure 22).  
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Our previous study had shown that bumetanide, a NKCC1 inhibitor, is able to alleviate

the thermal hyperalgesia caused by nerve injury61, likely via lightening the upregulated

NKCC1 induced intracellular [Cl-] uprise. Due to the fact that the CFA injection also

leads to the increase of [Cl-] and NKCC1 in DRG neurons, we reasoned that bumetanide

probably  had  an  analgesic  effect  in  inflammatory  pain.  Mice  were  treated  with

bumetanide 2, 7, 14, and 28 days after CFA injection (Figure 23). The paw withdraw

latency upon mechanical  stimulation was significantly increased on the 2nd day and
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Figure  22:  Peripheral  inflammation upregulated cell  surface  NKCC1 level  in  DRG neurons.
NKCC1 (red) and DAPI (blue) were labeled on DRG slices from control (a) and CFA injected
mice (b). (c) the normalized fluorescence intensity of NKCC1 increased in both small and large
DRG neurons 2-day after CFA injection from 3 control and 3 CFA injected mice (small control: n
= 106; small CFA: n = 61; large control: n = 76; large CFA n= 80; small control vs small CCI,
unpaired student t-test, P < 0.01; large control vs large CCI, unpaired student t-test, P < 0.01) .
Error bars indicates SEM. **P < 0.01. Scale bars, (a, b) 20 μm (only shown in b).



even furthered on the 7th day, and the increased baseline level of withdraw latency from

the 7th day suggested a long term effect of bumetanide (Figure 23a).  Interestingly,

bumetanide treatment did not show any influence on inflammation induced thermal

hyperalgesia (Figure 23b). 

Taken together, these results indicated that the putative nociceptor NKCC1 upregula-

tion, which is likely responsible for the depolarizing shift of ECl in small diameter neu-

rons, caused by CFA injection induced inflammation specifically contributes to the de-

velopment  of  mechanical  hypersensitivity.  This  is  consistent  with  the idea  that  the
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Figure 23: Intraperitoneal administration of NKCC1 inhibitor bumetanide alleviated mechanical
but not thermal hypersensitivity caused by peripheral inflammation. Saline or bumetanide were
intraperitonealy injected in mice (CFA + Saline: n = 6; CFA + Bumetanide: n = 6) on the 2nd, 7th,
14th and 28th day after CFA injection. Both mechanical and thermal sensitivity were evaluated in
these mice.  (a)  Bumetanide injection alleviated mechanical  allodynia on the 2nd and 7th day
( Bumetanide effect was analyzed with repeated two-way analysis of variance (ANOVA) (factor
1: time; factor 2: injection): variance of sensitivity according to time (factor 1), 2nd day, p < 0.01;
7th day, p > 0.05; 14th day, p > 0.05; 28th day, p > 0.05. post-hoc Bonferroni: 2d vs 2d-1h, p <
0.05; 2d vs 2d-2h, p <0.001; 2d vs 2d-3h, p <0.001; 2d vs 2d-4h, p < 0.001; 7d vs 7d-1h, p <
0.05; 7d vs 7d-2h, p < 0.01). Although no further anti-nociceptive effect was observed on the
14th and 28th day, the baseline mechanical sensitivity was upregulated for the 7 th day after CFA
injection (repeated two-way ANOVA: variance of sensitivity according to injection (factor 2), 2nd

day, p > 0.05; 7th day, p < 0.05; 14th day, p < 0.05; 28th day, p < 0.05). (b) CFA induced thermal
hypersensitivity could not  be alleviated by bumetanide injection (repeated two-way ANOVA:
factor 1, p > 0.05 for 2nd, 7th, 14th and 28th day; factor 2, p > 0.05 for 2nd, 7th, 14th, and 28th day).
Error bars indicate SEM. *P < 0.05; **P < 0.01; ***P < 0.001.



GABAA receptors  mediated  presynaptic  control  contributes  to  the  inflammation  in-

duced mechanical hypersensitivity suggested by the behavior result of SNS-Ai38 mice

(Figure 14c).

4.3 A subpopulation of nociceptors crucial for 
presynaptic mediated mechanical allodynia in 
inflammatory pain

4.3.1 Difference between SNS-Cre and advillin-Cre

In addition to SNS-Ai38 mice, advillin-Ai38 mice were also used for 2-photon calcium

imaging to study presynaptic GABAergic control. Advillin-Ai38 mice were generated by

crossing advillin-cre mice, which express Cre recombinase in majority of sensory neu-

rons including both nociceptors and non nociceptors. Due to the fact that superficial

layer of spinal dorsal horn is only innervated by nociceptors, 2-photon calcium imaging

using spinal cords from SNS-Ai38 and advillin-Ai38 mice in this area was expected to

show accordant results. Indeed, the inhibitor effect of GABA on KCl induced calcium

transient was also observed in advillin-Ai38 mice spinal cord (Whole chamber perfu-

sion: No-change: 43 %; More Ca2+ transient: 8 %; Less Ca2+ transient: 49 %. Local per-

fusion: No-change: 41 %; More Ca2+ transient: 14 %; Less Ca2+ transient: 45 %. Figure

24c, e; 25a), and this inhibition could be abolished after nerve injury (Whole chamber

perfusion: No-change: 52 %; More Ca2+ transient: 35 %; Less Ca2+ transient: 13 %. Local

perfusion:  No-change:  67 %;  More Ca2+ transient:  27  %;  Less  Ca2+ transient:  7  %),

BDNF treatment (Whole chamber perfusion: No-change: 57 %; More Ca2+ transient: 28

%; Less Ca2+ transient: 14 %. Local perfusion: No-change: 70 %; More Ca2+ transient: 26

%; Less Ca2+ transient: 4 %) and CFA injection induced inflammation (Whole chamber

perfusion: No-change: 65 %; More Ca2+ transient: 9 %; Less Ca2+ transient: 25 %. Local

perfusion: No-change: 55 %; More Ca2+ transient: 43 %; Less Ca2+ transient: 2 %) (Fig-

ure 24; 25; 26a). And the calcium influx caused by GABA (Whole chamber perfusion:

1.7 ± 0.9 %. Local perfusion: 10.7 ± 2.3 %) was also not significantly altered by nerve in-

jury (Whole chamber perfusion: 2.1 ± 1.4 %. Local perfusion: 10.3 ± 8.3 %) and BDNF
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treatment in advillin-Ai38 spinal cord (Whole chamber perfusion: 1.6 ± 0.7 %. Local

perfusion: 18.8 ± 2.3 %) (Figure 24; 25; 26b). However, the CFA injection induced

increase of  GABA generated calcium influx observed in  SNS-Ai38 mice  spinal  cord

(Figure  17b),  suggesting  an  enhanced  excitatory  effect  of  GABA,  was  absent  in

advillin-Ai38 mice spinal cord (Whole chamber perfusion: CFA: 1.1 ± 0.4 %. Local per-

fusion: CFA: 18.7 ± 4 %. Figure 24p; 25d; 26b). Meanwhile, my colleague found that

the mechanical allodynia was only partially developed in SNS-β3-/- mice after CFA injec-

tion  (Figure 14c),  while  advillin-β3-/-  mice,  generated  by crossing advillin-Cre and

β3fl/fl mice developed mechanical allodynia to the same level as their control litter mates

(β3fl/fl)  (Figure 27).  These  difference  between  advillin-Cre  and  SNS-Cre  generated

transgenic  mice strongly  suggested the different  expression patterns  between 2 Cre

mouse lines, and this difference may be used to study the subpopulation of nociceptors

important for peripheral inflammation induced mechanical allodynia.  
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Figure 24: 2-photon images of acutely dissected spinal cord slices from advillin-Ai38
mice  (control,  CCI,  BDNF,  CFA).(a)  A  diagram  showing  expression  patter  of
GCaMP signal in advillin-Ai38 mice. 2-photon microscope imaged GCaMP3 signal
indicating [Ca2+] in Control (b - e), CCI (f – I), BDNF (j – m) CFA (n - q) spinal cord
superficial  layer in response to various stimuli.  Scale bars,  (b – q)  10 μm (only
shown in q)
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Figure  25: The  color  maps  of  2-photon  calcium
imaging of acutely dissected spinal cord slices from
advillin-Ai38  mice.  Each  color  map  represents
presynaptic  calcium  intensity  in  30  ROIs.  The
figures for control (a), CCI (b), BDNF (c) and CFA
(d)  groups  are  correlated  with  the  example  2-
photon images show in Figure 24.   
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Figure 26: The influence of GABA on presynaptic activity in acutely dissected spinal cord
slices from advillin-Ai38. The effect of GABA was examined by using 2 different application
methods,  whole  chamber  perfusion  and  local  perfusion,  which  can  influence  the
concentration of applied chemicals. (a) The inhibitory effect of 1 mM GABA on high KCl
induced Ca2+ influx was attenuated by CCI, BDNF treatment and CFA injection (Whole
chamber perfusion: Control mice n = 5; CCI mice n = 6; BDNF mice n = 3; CFA mice n = 3.
chi-squared test, Control vs CCI, P < 0.001; Control vs BDNF, P < 0.001; Control vs CFA,
P < 0.001. Local perfusion: Control mice n = 3; CCI mice n = 3; BDNF mice n = 3; CFA
mice n = 3. chi-squared test, Control vs CCI, P < 0.001; Control vs BDNF, P < 0.001;
Control vs CFA, P < 0.001.). (b) GABA induced Ca2+ transient was not influenced by CCI,
BDNF treatment or CFA injection (Whole chamber perfusion: Control  slice,  n = 4; CCI
slice, n = 5; BDNF slice, n = 6; CFA slice, n = 6. Student t-test, Control vs CCI, P > 0.05;
Control vs BDNF, P > 0.05; Control vs CFA, P > 0.05. Local perfusion: Control slice, n = 6;
CCI slice, n = 11; BDNF slice, n = 3; CFA slice, n = 6. Student t-test, Control vs CCI, P >
0.05; Control vs BDNF, P > 0.05; Control vs CFA, P > 0.05.). Error bars indicate SEM. ***P
< 0.001. 



4.3.2 Advillin-Cre is not expressed in all peptidergic 
nociceptors as SNS-Cre

SNS-Cre and advillin-Cre lines are widely used to study nociceptors and all  sensory

neurons respectively. However, N Agawal et al., who originally produced SNS-Cre mice

used in my study, showed that about 93% of small neurons in DRG are Cre positive55.

And S Zurborg et al. Suggested Cre recombinase could be found in more than 80% of

DRG neurons in advillin-Cre mouse56. Considering about 70% of DRG neurons are no-

ciceptors78, it is very possible that a subpopulation of SNS-Cre expressing nociceptors

would not express advillin, i.e. this subpopulation falls into the 20% of DRG neurons

which are advillin negative. And they might be responsible for the difference in 2-pho-

ton calcium imaging between SNS-Ai38 and advilllin-Ai38 mice, and difference in me-

chanical allodynia development between SNS-β3-/- and advillin-β3-/- mice as well.

page 57 of 98

Figure  27:  Mechanical  allodynia  induced by peripheral  inflammation developed to  similar
level in advillin-β3-/-  and β3fl/fl (β3fl/fl: n = 7; advillin-β3-/-: n = 6. Repeated two-way ANOVA (0 -
28d): factor time P < 0.0001, factor genotype P < 0.01, Bonferroni post hoc β3fl/fl vs advillin-
β3-/- on 0d, P < 0.0001. Repeated two-way ANOVA (1 – 28 day): factor time P < 0.01, factor
genotype P > 0.05) .



Nociceptors can be divided into 2 classes, peptidergic and non-peptidergic nociceptors.

Calcitonin gene-related peptide (CGRP) and isolectin B4 (IB4) are commonly used to
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Figure 28:  A big proportion of CGRP positive neurons are GCaMP3 negative in advillin-
Ai38 mice. (a) upper 2 panels showed GCaMP3 and CGRP signals in DRGs from advillin-
Ai38 and SNS-Ai38 mice. Lower 2 panels showed GCaMP3 and CGRP signals in spinal
cords from advillin-Ai38 and SNS-Ai38 mice. (b) 51% and 99% of CGRP positive DRG
neurons expressed GCaMP3 in advillin-Ai38 and SNS-Ai38 mice respectively (advillin-
Ai38, 3 mice, n = 197; SNS-Ai38, 3 mice, n = 156. Fisher’s exact test, p < 0.001). Scale
bars (a) DRG: 50 μm; SC: 100 μm.*** p < 0.0001 



mark these 2 classes respectively. DRGs and spinal cords with fluorescent calcium indi-

cator,  GCaMP,  from  SNS-Ai38  and  advillin-Ai38  animal  were  cryosectioned  and

stained with CGRP (Figure 28) and IB4  (Figure 29) to investigate the expression

patterns of corresponding Cre recombinases.  Interestingly,  Almost all  (99 %) CGRP

positive neurons carried GCaMP signal in SNS-Ai38 DRGs compare to 51 % in advillin-

Ai38 DRGs (Figure 28b), while GCaMP signal were found in virtually all IB4 positive

neurons from both SNS-Ai38 (97 %) and advillin-Ai38 DRGs (100 %) (Figure 29).

The staining on spinal cords exhibited consistent results. As expected, CGRP positive

area,  lamina I  and lamina II  out  layer,  perfectly  overlaps  the very  dorsal  region of

GCaMP signal in spinal cord from SNS-Ai38 mice (Figure 28a). However, the CGRP

staining on spinal cord from advillin-Ai38 mice reveals that the CGRP positive area has

weaker GCaMP signal compare to other GCaMP positive area (Figure 28a). IB4 stain-

ing, on the other hand, co-localized with GCaMP signal in spinal cord from both SNS-

Ai38 and advillin-Ai38 mice (Figure 29). 
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Figure  29: All IB4 positive DRG neurons expressed GCaMP3 signal in both advillin-Ai38 and
SNS-Ai38 mice.  (a)  upper 2 panels showed GCaMP3 and IB4 signals in DRGs from advillin-
Ai38 and SNS-Ai38 mice. Lower 2 panels showed GCaMP3 and CGRP signals in spinal cords
from  advillin-Ai38  and  SNS-Ai38  mice.(b)  100%  and  97%  of  IB4  positive  DRG  neurons
expressed GCaMP3 in advillin-Ai38 and SNS-Ai38 mice respectively (advillin-Ai38, 3 mice, n =
108; SNS-Ai38, 3 mice, n = 111. Fisher’s exact test, p > 0.05). Scale bars (a) DRG: 50 μm; SC:
100 μm.



In conclusion, these immunohistochemistry results revealed that there is a expression

difference  of  Cre  recombinase  in  peptidergic  nociceptors  between  SNS-Cre  and

advillin-Cre lines. This difference suggests that the excitatory effect of GABA observed

in SNS-Ai38 after inflammation was contributed by central terminals of a subpopula-

tion of peptidergic nociceptors, which does not express Cre in advillin-Cre animal. And

the fully developed mechanical allodynia of advillin-β3-/-  mice might be due to the in-

complete knockout of GABAA receptor β3 subunits in peptidergic nociceptors.

4.3.3 IB4 negative and positive putative nociceptor were similar
changed by peripheral inflammation

To further investigate the difference between peptidergic and non-peptidergic nocicep-

tors after inflammation, I labeled non-peptidergic DRG neurons with IB4 and thus sep-

arated them from peptidergic nociceptors in primary cell culture. Calcium imaging was

applied to examine their  physiological  properties.  CFA injection,  different from CCI

and BDNF incubation, successfully altered the response of small-sized DRG neurons to

GABA. The percentages of neurons displaying calcium transient were significantly in-

creased by CFA injection in small-sized neurons (IB4- Control: 17 %; IB4- CFA: 38 %;

IB4+ Control: 32 %; IB4+ CFA: 63 %. Figures 30). This result is consistent with my

observation of presynapses after inflammation and offers more evidence of excitatory

effect switch of GABA on DRG nociceptors caused by CFA injection. However, a bigger

proportion of IB4+ neurons exhibited GABA-evoked calcium transient compare to IB4-

neurons in both control and CFA groups (Figures 30). 
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The amplitude of calcium transient (R340/380 - R0) induced by high KCl in IB4- and IB4+

neurons was raised by inflammation (IB4- Control: 1.06 ± 0.07; IB4- CFA: 1.49 ± 0.07;

IB4+ Control: 1.04 ± 0.08; IB4+ CFA: 1.54 ± 0.09. Figure 31a), and co-application of

GABA could not significantly change this increase (IB4- Control:  0.85  ± 0.06; IB4-

CFA: 1.09  ± 0.07; IB4+ Control: 0.82  ± 0.07; IB4+ CFA: 1.18  ± 0.08.  Figure 31a).

However, GABA effectively decreased KCl generated calcium transient in all small di-

ameter neurons in spite of CFA injection (Figure 31b), which is different from the re-

sult of 2-photon calcium imaging on presynapses (Figure 17a, c). This may be due to

the prominent shunting effect caused by GABAA receptors activation in cell soma in

both control and CFA groups. This effect could weaken KCl induced depolarization and

in turn decrease the calcium transient. The amplitude of GABA-evoked calcium tran-

sient was only seen increased in IB4- neurons but not in IB4+ neurons after inflamma-

tion (IB4- Control: 0.06  ± 0.02; IB4- CFA: 0.13  ± 0.03; IB4+ Control: 0.07  ± 0.02;

IB4+ CFA: 0.10 ± 0.02. Figure 30b) suggesting a stronger GABA induced depolariza-

tion in IB4- putative nociceptors.
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Figure  30:  The  proportion  of  small  diameter  neurons  displaying  GABA  evoked  calcium
transient significantly increased in IB4- and IB4+ subpopulations after peripheral inflammation
(IB4- Control vs IB4- CFA, chi-squared test, P < 0.001; IB4+ Control vs IB4+ CFA, chi-squared
test, P < 0.001). The proportion of GABA activated neurons is higher in IB4+ subpopulation
despite of CFA injection (IB4- Control vs IB4+ Control, chi-squared test, P < 0.05; IB4- CFA vs
IB4+ CFA, chi-squared test, P < 0.01). Control mice, n = 4; CFA mice, n = 3. The number of
recorded neurons is on top of each bar. *P < 0.05, **P < 0.01, ***P < 0.001.



It is well-known that the intracellular calcium concentration ([Ca2+]) is crucial for vari-

ous neuronal processes including neuronal excitability, transmitter release, gene tran-
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Figure  31: GABA inhibited the high KCl triggered calcium transient in IB4- and IB4+ small
diameter neurons. (a) CFA injection caused the increase of peak value of calcium transient
(R340/380 - R0) triggered by high KCl (IB4- Control vs IB4- CFA, P < 0.001; IB4+ Control vs IB4+
CFA, P < 0.001. Student t-test) and GABA (1mM) +KCl (IB4- Control vs IB4- CFA, P < 0.01;
IB4+ Control vs IB4+ CFA, P < 0.001. Student t-test) in IB4- and IB4+ neurons. The rise of 1
mM GABA evoked calcium peak only appeared in IB4- group after inflammation (IB4- Control
vs IB4-  CFA,  P < 0.05;  IB4+ Control  vs IB4+ CFA,  P >  0.05.  Student  t-test),  and 1  μM
capsaicin evoked calcium peak was not altered by inflammation (IB4- Control vs IB4- CFA, P >
0.05; IB4+ Control vs IB4+ CFA, P > 0.05. Student t-test). (b) GABAergic inhibition on high KCl
induced calcium transient was not influenced by CFA induced inflammation in IB4- and IB4+
small diameter neurons (IB4-: Control vs CFA, P > 0.05. IB4+: Control vs CFA, P > 0.05).
Control mice, n = 4; CFA mice, n = 3. The number of recorded neurons is on top of each bar.
Error bars indicate SEM. *P < 0.05, **P < 0.01, ***P < 0.001.



scription etc79. Therefore, the homeostasis of [Ca2+] is profoundly important for proper

function of neurons. Calcium dysregulation in brain neurons had been reported in nu-

merous  pathological  conditions80.  Although  an  upregulation  of  resting  [Ca2+]  was

mostly observed in brain neurons in pathological conditions80, previous studies sug-

gested that resting [Ca2+] decreased in DRG neurons after nerve injury81. Consistently,

my results showed the resting [Ca2+] (R340/380) in CCI small diameter neurons (CCI: 0.59

± 0.03) was significantly lower than that in Control neurons (Control: 0.77  ± 0.02)

(Figure 32a).  In  addition,  CFA induced peripheral  inflammation also significantly

downregulated the resting [Ca2+] in both IB4- and IB4+ small diameter neurons (IB4-

Control: 0.83  ± 0.04; IB4- CFA: 0.72  ± 0.03; IB4+ Control: 0.24  ± 0.06; IB4+ CFA:

0.96 ± 0.04. Figure 32b). Interestingly, the resting [Ca2+] of IB4- neurons was lower

than that of IB4+ neurons in both control and CFA injected groups (Figure 32b). No-

ticeably, BDNF treatment increased the resting [Ca2+] rather than decreasing it (BDNF:

0.89 ± 0.03. Figure 32a) despite it could mimic the effect of CCI on both cellular and

behavior levels61.   
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Figure 32: The resting [Ca2+] in small diameter DRG neurons was influenced by nerve injury,
BDNF and peripheral inflammation. (a) The resting [Ca2+] was downregulated in small diameter
neurons from CCI mice (Control vs CCI, student t-test, P < 0.001). BDNF treatment elevated
the resting [Ca2+] in small diameter neurons (Control vs BDNF, student t-test, P < 0.001). (b)
The resting [Ca2+]  was downregulated in  IB4-  and IB4+ small  diameter  neurons from CFA
injected mice (IB4-: Control vs CFA, P < 0.05. IB4+: Control vs CFA, P < 0.001. Student t-test).
The  resting  [Ca2+]  in  IB4+  neurons  is  higher  than  IB4-  neurons  despite  of  CFA  injection
(Control: IB4- vs IB4+, P < 0.001. CFA: IB4- vs IB4+, P < 0.001. Student t-test). Control mice, n
= 4; CFA mice, n = 3. The number of recorded cells is on top of each bar. Error bars indicate
SEM. *P < 0.05, **P < 0.01, ***P < 0.001. 



In general, these calcium imaging data showed dramatic changes of small sized DRG

neurons after inflammation, and it suggested there is a considerable variation between

IB4- and IB4+ neurons. GABA exhibited a more excitatory effect after inflammation,

which is consistent with 2-photon imaging data from spinal cords of SNS-Ai38 mice.

However, whether the differences between SNS-cre and advillin-cre generated trans-

genic mice in 2-photon calcium imaging (SNS-Ai38 and advillin-Ai38) and behavior

tests (SNS-β3-/- and advillin-β3-/-) are due to the different Cre expression in peptidergic

neurons cannot be concluded yet. First, IB4- and IB4+ neurons were generally changed

towards the same direction by inflammation; Second, cultured DRG neurons may offer

valuable information, but the recordings on somas may also provide different results

compare to recordings on central terminals. Therefore, further approach with clear la-

beling of peptidergic and/or non-peptidergic central terminals is required to answer

this question.
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5 Discussion

5.1 GABAergic presynaptic control in 
neuropathic pain

5.1.1 Intracellular [Cl-] and presynaptic GABAergic inhibition

The principle  inhibitory  effect  of  GABA is  mediated by the activation of  ionotropic

GABAA receptors which increase membrane permeability to chloride. Thus the intracel-

lular [Cl-] is critical for a proper functioning GABAergic inhibition. The cation chloride

cotransporters, such as inwardly directed NKCCs and outwardly directed KCCs, play a

major role in maintaining intracellular [Cl-]. In CNS, highly expressed KCC2 keeps low

intracellular [Cl-] in mature neurons34, so the activation of GABAA receptors generates

an inward flow of Cl- and hyperpolarizes the neurons.  Mature DRG neurons, unlike

CNS neurons, do not extrude chloride ions to the level lower than extracellular space

due maintain a relatively high intracellular [Cl-]34 compare to CNS neurons due to the

predominantly expressed NKCC1 and low or absent expression of KCC2, and the rever-

sal  potential  of  Chloride  is  more  positive  than  membrane  potential.  Therefore,  the

mechanism of GABAergic inhibition on DRG neurons is different from that on CNS

neurons. The opening of ionotropic GABAA receptors permits an outflow of Cl- and de-

polarized the DRG neurons, which is named as PAD (primary afferent depolarization)

when this happens on central terminals. PAD rather inhibits transmitter release than

facilitates it. Two explanations had been proposed for its inhibitory effect: suppressing

the transmitter release by inactivating the voltage gated calcium channels; hampering

the action potential by either inactivating the voltage gated sodium channels or shunt-

ing effect, or both of them. It is reasonable to speculate that the stronger PAD may fail

the inhibition based on these proposed mechanisms, and it may even be converted to

excitation and activate the transmitter release when itself could directly evoke action

potentials.

Previous studies have suggested an increase of intracellular [Cl-] in DRG neurons after

nerve injury by showing the increased activity of NKCC1 and a depolarizing shift  of
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Ecl
61,74,82–84. My chloride imaging on Clomeleon mice DRGs and my colleague’s perfo-

rated patch clamp results confirmed the rise of intracellular [Cl-] in both small and

large DRG neurons on ex vivo level 2 days after nerve injury. And it seems like this in-

crease is not strong enough for GABA to switch its role from inhibitory to excitatory,

since the proportion of neurons displaying GABA-evoked calcium transient was not

changed by nerve injury. Takkala et al., by using computer simulations and dynamic

clamp experiments, provided evidence that the depolarizing shift of ECl and increased

intrinsic excitability were both necessary for PAD-induced spiking85. Therefore, the rea-

son that no change of GABA-evoked calcium transient was observed after nerve injury

may because that the intrinsic excitability of DRG neurons probably was not affected.

Besides, the reduced GGABA may also limit the depolarization caused by GABA. Never-

theless, all these evidences about elevated [Cl-] in pathological conditions were acquired

from neuron soma studies; whether the [Cl-] increases in central terminals after nerve

injury and therefore enhances PAD was still unclear. 

5.1.2 Nerve injury elevates presynaptic [Cl-] and abolishes 
GABAergic presynaptic inhibition 

The 2-photon calcium imaging on central terminals of nociceptors was employed to in-

vestigate the effect of GABA on presynapses. Acute spinal cord slices were prepared

from  advillin-Ai38  and  SNS-Ai38  mice,  where  calcium  indicator  GCaMP3  was  ex-

pressed in advillin-Cre positive (sensory neurons) and SNS-Cre positive (nociceptors)

cells respectively. The recordings on superficial layers demonstrated that GABA-evoked

calcium transient  in  nociceptor  central  terminals  was  not  affected  by  nerve  injury,

which  is  consistent  with  result  acquired  from  cultured  neurons.  However,  GABA

showed presynaptic inhibitory effect by suppressing the high KCl induced calcium tran-

sient in these presynaptic terminals, and nerve injury could disrupt such presynaptic

inhibition.  These  evidence  suggest  that  nerve  injury  abolishes  the  GABA  mediated

presynaptic  inhibition rather than converts  it  to  excitation.  This  disinhibition effect

may be due to the combine effect of upregulated intracellular [Cl-] and reduced GGABA 
61.

The latter one probably restrains the increased strength of PAD. Since the intrinsic ex-

citability of DRG neurons is essential for PAD-induced spikes, it probably not affected

in central terminals after nerve injury. Yet, further study is required to address this. My

colleagues also discovered that the NKCC1 inhibitor bumetanide effectively alleviated

nerve injury induced thermal hypergesia while did not show any influence on mechani-
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cal allodynia suggesting presynaptic chloride concentration is crucial for thermal hy-

peragesia in neuropathic61.  Interestingly, the efficacy of bumetanide decreased along

time: strong on 2nd day after injury, weak on 14th day after injury, and no analgesic ef-

fect on 21st day after injury. This time dependent effect is consistent with the depolariz-

ingly shifted ECl 2-day post nerve injury, which further indicates that the lost of presy-

naptic inhibition caused by intracellular chloride elevation contributes to thermal hy-

peragesia in the early stage of neuropathic pain.

To clarify the function of presynaptic inhibition in vivo, our group tried to generate no-

ciceptor specific GABAA receptor deficient mice.  Every GABAA receptor is assembled

from 5 subunits. α and γ subunits form the BZD binding site at their interface, and α

and β subunits form the binding site for GABA20. Mutation of α and γ subunits was re-

ported that only affect bensodiazepine sensitivity without changing the response to GA-

BA69,86. On the other hand, β subunits are only responsible for GABA but not BZD bind-

ing effect, and β3 subunit-containing GABAA receptors selectively mediate the action of

intravenous general anesthetics87.  Moreover, β3 subunits, the most dominant β sub-

units expressed by DRG neurons88,89, are widely expressed in spinal cord and DRG sug-

gesting a possible role in presynaptic inhibition90,91. Therefore, β3 subunits were chosen

to knock out in nociceptors by crossing SNS-Cre to floxed β3 mice to create SNS-β3 -/-

mice61.  The SNS-β3-/- mice showed hypersensitivity to both mechanical  and thermal

stimulations compare to their control litter mates. Moreover, nerve injury could further

develop their mechanical sensitivity but not the thermal sensitivity. These observations

indicated  presynaptic  inhibition  contributes  to  modulation  of  both  mechanical  and

thermal nociceptive signal, especially the latter one, which is almost solely controlled

by presynaptic inhibition.

5.1.3 BDNF-TrkB signaling regulates nerve injury induced lost 
of GABAergic presynaptic inhibition

BDNF-TrkB signaling is crucially involved in regulating the survival and differentiation

of  neuronal  populations  during  development  stage,  and plays  an  important  role  in

modulating synaptic  transmission  and plasticity  in  CNS in  adult  stage92,93.  Previous

studies had indicated BDNF-TrkB signaling could decrease GABAergic  inhibition by

rising intracellular [Cl-] through down-regulation of KCC294,95. When intracellular [Cl-]

is elevated, the activation of GABAA  receptors will generated less or no hyperpolariza-
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tion, i.e. less or no inhibition. The group of De Koninck reported that the inverted post-

synaptic inhibition on nociceptive signal transmission after nerve injury was due to the

same mechanism, and the source of BDNF is ATP activated microglias51. Although DRG

neurons barely express KCC2, previous studies suggested BDNF-TrkB signaling might

also modulate intracellular [Cl-] via regulating NKCC1, which is heavily expressed by

sensory neurons35–38,70,71.  Indeed, my colleague observed a depolarizing shift of Ecl in

BDNF treated DRG neurons, which is similar to the Ecl of neurons from nerve injury

animal61. In addition, the depolarizing shift of Ecl was successfully reversed by BDNF

scavenger TrkB-Fc61. Consistently, disinhibition effect of GABA observed in nerve in-

jury group also appeared in BDNF treatment group in 2-photon calcium imaging. To-

gether, these results suggested the presynaptic inhibition caused by nerve injury is reg-

ulated by BDNF-TrkB signaling. 

5.2 GABAergic presynaptic control in 
inflammatory pain

5.2.1 The GABAergic presynaptic control in inflammatory pain 
is different from the one in neuropathic pain

A declined inhibitory control in spinal cord dorsal horn after peripheral inflammation

had been addressed by several reviews13,28. It is widely agreed that the hypersensitivity

caused by inflammation is  due to the diminished glycinergic inhibition proposed by

Zeilhofer’s group: the peripheral inflammation increases the expression of cyclooxyge-

nase-2 (COX-2), in turn, leads to the release of pronociceptive and proinflammatory

prostaglandin E2 (PGE2) in spinal cord; The PGE2 binds to neuronal EP2 receptors ex-

pressed by interneurons, and decreases the glycinergic inhibitory control on these neu-

rons via a protein kinase A (PKA) dependent phosphorylation of the glycine receptor 3

(GlyR3) subtype of strychnine-sensitive glycine receptors96. Nevertheless, this well-es-

tablished mechanism only covers postsynaptic control, because there is no evidence in-

dicating glycine plays any role in PAD or presynaptic inhibition97–100, and glycine recep-

tors are not expressed by nociceptors101. 
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Besides the different postsynaptic  disinhibition mechanisms, the behavior results of

GABAergic studies also set the inflammatory pain apart from neuropathic pain. We had

previously reviewed that most studies showed GABAA receptor agonists still exhibited

analgesic effect in neuropathic pain condition, while their effect is controversial in in-

flammatory pain: both agonists and antagonists of GABAA receptor had been suggested

to regulate analgesia77. This ambiguous effect of GABAergic pathway may be attributed

to a special event - DRR, which is only observed after inflammation but not after nerve

injury52. DRR had been well reviewed by Willis52. Briefly, DRR is generated by an in-

tense form of PAD capable of triggering action potential. At this moment, PAD rather

performs an excitatory effect instead of inhibition. Therefore, the balance of postsynap-

tic GABAergic inhibition and presynaptic GABAergic excitation caused by intensified

PAD might decide whether GABA holds an analgesic effect after peripheral inflamma-

tion. It had been proposed that action potentials of nociceptive fibers could be presy-

napticlly evoked by non-nociceptive activated Aβ fibers through GABAergic interneu-

rons, and this action potential would travel both retrogradely and anterogradely to in-

duce neurogenic inflammation by DRR and contribute to hypersensitivity respective-

ly43,77,102,103. 

5.2.2 Peripheral inflammation induces the GABAergic 
presynaptic disinhibition and excitation

A possible cause of the vigorous PAD after inflammation, similar to presynaptic disinhi-

bition in neuropathic pain, is the increase of intracellular [Cl-] regulated by NKCC177. In

fact, CFA injection could induce a depolarizing shift of ECl without changing the GGABA in

nociceptors. The presynaptic disinhibition effect of GABA was also observed in spinal

dorsal horn superficial layers by using 2-photon calcium imaging. In addition, the acti-

vation of GABAA receptors even generated presynaptic calcium transient in a bigger

proportion of ROIs, which suggests a switch to excitatory effect of GABA. Considering

that  the activity of  NKCC1 can be upregulated by inflammation53,82,  and NKCC1 in-

hibitor, bumetanide, is able to abolish DRR, the increase of intracellular [Cl-] possibly

depends on NKCC1104. Although the mRNA level of NKCC1 was not changed by periph-

eral inflammation, an upregulation of NKCC1 expression on membrane was observed in

both small and large DRG neurons. Interestingly, the depolarizing shift of ECl was only

observed in small neurons. The mechanism underlying this is still unknown. An intra-

cellular [Cl-] related negative feedback system to regulate the activity of NKCC1 had

page 70 of 98



been suggested by previous study39. It is possible that this feedback system was still in-

tact in large neurons after CFA injection. Further study on this feedback system and its

possible change in various pathological conditions would be helpful to understand the

role of NKCC1 in pathological pain. On behavior level, the NKCC1 inhibitor bumetanide

was found to reduce mechanical sensitivity developed by CFA injection without affect-

ing the thermal hypersensitivity, and this treatment exhibited a long term effect. No-

ticeably,  bumetanide  only  alleviated  thermal  hyperalgesia  in  our  neuropathic  pain

model61. Both mechanical and thermal sensitivity of SNS-β3-/- mice could be furthered

by CFA injection suggesting that presynaptic element only partially contributes to me-

chanical and thermal hypersensitivity induced by CFA injection.  

In addition to intracellular [Cl-],  the effect of GABA also depends on the release of

GABA and the density of GABAA receptors. The first one can be regulated by GABA cat-

alyzing enzymes, GAD65 and GAD67, and the GABA remover GAT1. The mRNA level of

three were unchanged neither in DRG nor in spinal cord after inflammation. α and β

GABAA receptor subunits form binding sites for GABA. Five of them were found ex-

pressed in DRG neurons77.  α1 subunits were reported to have low expression level in

superficial layer and rather concentrate in lamina III19,21. The upregulation of α1 mRNA

implies an increase of this subunit in non-nociceptor terminals. GABAA receptors con-

taining α2 subunits  are predominantly expressed by C fibers21, and had been reported

to be crucial for spinal anti-hyperalgesic effects of BZD105 in inflammatory and neuro-

pathic pain. Here I showed significant decrease of α2 subunits mRNA in both DRG and

spinal cord dorsal horn samples. It’s likely that there was a downregulation of α2 sub-

units on both presynaptic and postsynaptic sides, though further study, such as in situ

hybridization and immunohistochemistry, should be employed to confirm this. A re-

duction of KCC2 had been observed in spinal cord after peripheral inflammation as well

as after nerve injury. This implies a similar postsynaptic disinhibition happens in neu-

ropathic pain.  And the downregulation of α2 subunits in postsynaptic  neurons may

weaken the BZD induced analgesic effect. If the α2 subunits are decreased in primary

afferent central terminals, the effect of BZD is also lessened, which may decrease the

strength of PAD. Interestingly, an increase of α5 subunits mRNA was also observed but

only  in  DRG.  α5 subunits  are  mainly  expressed  by  extrasynaptic  GABAA receptors,

which generate a tonic conductance and produce a shunt affecting excitability and gain

control106–110. CNS studies, especially on hippocampus, strongly indicated GABAA recep-

tors containing α5 subunits play a critical role in the regulation of plasticity which is

important for learning and memory109,111.  Recently,  Perez-Sanchez et al.  showed that
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these receptors in spinal cord also contributed to a tonic current. In spite of no hyper-

sensitivity was observed in mice lacking α5 subunits, these mice had a prolonged recov-

ery from inflammatory and neuropathic pain, and increased response in the late phase

of the formalin test112. These results imply that α5 subunits are important for central

sensitization and synapse plasticity. However, the contributions from presynaptic and

postsynaptic sides remain to be determined. The mRNA level of β3 subunits was not in-

fluenced by CFA injection induced inflammation. But the inflammation may change β3

subunits in another way. There is evidence that PGE2, which is released in spinal cord

after inflammation, is able to increase cAMP level in DRG neurons as well as in spinal

neurons96,113, which is able to subsequently upregulate PKA mediated protein phospho-

rylation. And McDonald et al. showed that the phosphorylation of β3 subunits could

enhance the activity of GABAA receptors114. Together, these results imply that the re-

lease of PGE2 boosts GABAA receptors containing β3 subunits via PKA mediated phos-

phorylation in presynaptic and postsynaptic neurons. Factors described above imply

that the slightly increased GGABA after inflammation may be due to the balance of down-

regulation of α2 subunits and enhanced activity of β3 subunits containing receptors.      

In conclusion, the NKCC1-dependent increase of intracellular [Cl-] causes the malfunc-

tion of presynaptic inhibition in inflammatory pain as well as in neuropathic pain. Al-

though this presynaptic malfunction contributes to both mechanical and thermal hy-

persensitivity in neuropathic and inflammatory pain, its role is more prominent in ther-

mal hyperalgesia induced by nerve injury and in mechanical allodynia generated by in-

flammation. The later one is likely due to the excitatory switch of GABA effect, which is

caused by enhanced PAD strong enough to trigger action potentials. 
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5.3 A subpopulation of peptidergic nociceptors 
is essential for inflammation induced mechanical 
allodynia

5.3.1 Difference between SNS-Cre and advillin-Cre generated 
transgenic mice 

Nociceptors can be classified based on conduction velocities (caused by different level

of  myelination),  innervation  patterns,  specificity  to  various  sensory  modalities,  and

molecular  markers.  And  these  various  classifications  also  correlated,  for  example,

TRPV1 positive and Mrgprd positive nociceptors mediate noxious thermal and mechan-

ical stimuli respectively115,116. Nerve injury and peripheral inflammation not only disturb

spinal circuit controlling nociceptive signal transmission, but can also cause sensitiza-

tion of DRG neurons which is attributable to hypersensitivity117–119.  Study on TRPV1-/-

mice revealed that these transgenic mice did not develop heat hyperalgesia after CFA

injection,  but  nerve injury  successfully  generated  heat  hyperalgesia  in  them117.  This

finding  suggests  that  the  population  of  neurons  sensitized  by different  pathological

conditions are different. Here, my 2-photon calcium imaging results provide evidence

supporting this idea by showing that primary afferent central terminals in advillin-Ai38

and SNS-Ai38 mice had similar change after nerve injury, disinhibition effect of GABA

was observed in both of them, yet the excitatory effect of GABA generated by peripheral

inflammation was only seen in SNS-Ai38 spinal cord slices. Consistent with this, the

difference between advillin-β3-/- and SNS-β3-/- in behavior test was also observed: me-

chanical  and thermal  sensitivities  were  both further  developed by CFA injection  in

these two transgenic mouse lines, but SNS-β3-/- did not fully develop the mechanical al-

lodynia. 

5.3.2 Different expression patterns of SNS-Cre and advillin-Cre 
in nociceptors

Zurborg et al., who generated advillin-Cre mice, reported that the Cre recombinase was

expressed in 82.28% or 87.74% of all-sized sensory neurons depends on different inves-

tigation methods56. On the other hand, Cre recombinase was reported to be expressed

in 93% of small sensory neurons in SNS-Cre transgenic mice55. Therefore, the possible
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explanation of the different results between advillin-Cre and SNS-Cre generated trans-

genic mice is the different Cre expression patterns in nociceptors from there two mouse

lines. Indeed, I found almost all (99%) CGRP positive DRG neurons from SNS-Ai38

mice expressed GCaMP3, and half (49%) of CGRP positive neurons from advillin-Ai38

mice did not express GCaMP3. Yet, virtually all IB4 positive DRG neurons from adillin-

Ai38 (100%) and SNS-Ai38 (97%) mice are  GCaMP3 positive.  These immunohisto-

chemistry results indicates that the Cre expression driven by the regulatory elements of

advillin gene is absent in a big proportion of peptidergic nociceptors. 

Together with presynaptic calcium imaging and behavior study from advillin-Cre and

SNS-Cre generated mice, these immunochemistry results imply that the peptidergic no-

ciceptors, at least part of them, are responsible for the presynaptic excitatory effect of

GABA and mechanical allodynia in inflammatory pain. This is strongly supported by

the observation of Brenneis et al.119. They found that the silencing of TRPV1 receptors,

which are mainly expressed in peptidergic neurons12, only abolished mechanical hyper-

sensitivity developed by peripheral inflammation but not by nerve injury.  

5.3.3 Comparison between peptidergic and non-peptidergic 
nociceptors

Further investigation of peptidergic  and non-peptidergic  nociceptors  was carried on

cultured DRG neurons thanks to IB4 labeling of alive neurons. The calcium imaging re-

sults revealed that  the peptidergic  and non-peptidergic small diameter neurons had

similar changes after peripheral inflammation. The proportion responding to GABA ap-

plication was increased in both peptidergic and non-peptidergic neurons. This is only

partially consistent with the result of the 2-photon calcium imaging on spinal cords,

since  the difference  between advillin-Ai38 and SNS-Ai38 mice  implied that  the  in-

creased of GABA triggered calcium transient in nociceptor central terminals was mainly

contributed by peptidergic nociceptors. One possible explanation for this controversy

between calcium imaging on cultured neurons and central terminals is that the expres-

sion pattern of GABAA receptors in the somas of cultured neurons is different from cen-

tral terminals. The GABA induced depolarization may be enhanced in both peptidergic

and non-peptidergic nociceptor central terminals after inflammation, likely due to in-

tracellular [Cl-] increase and the change of GABAA receptor expression, but it is only

strong enough to trigger calcium transient in former ones, which is supported by the re-
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sult showing the amplitude of GABA-evoked calcium transient was only upregulated in

IB4- neurons after inflammation. In primary neuron culture, the GABA generated de-

polarization could be more intensive in neuron somas due to  the higher density of

GABAA receptors, and triggered calcium transient in non-peptidergic neurons as well.

The increased amplitude of calcium transient caused by high KCl, with and without

GABA, suggested an upregulated sensitivity of all putative nociceptors after inflamma-

tion. This probably is contributed by the upregulated activity of voltage gated sodium

channels120 and the lowered resting [Ca2+], which built up a larger driven force for Ca2+

influx. Noticeably, GABA suppressed high KCl triggered calcium influx in majority of

putative nociceptors from both intact and CFA injected mice. This may be due to the

more intense shunting effect of GABA in somas than central terminals. 

Although peptidergic and non-peptidergic neurons were similarly modulated after in-

flammation, the discrepancy between these 2 subpopulations should not be neglected.

In cell culture, GABA triggered calcium transient in more IB4+ neurons than in IB4-

neurons regardless of CFA injection. The resting [Ca2+] of IB4- neurons is lower than

that of IB4+ neurons. However, whether these differences are consistent in central ter-

minals, and the functional difference underlain by them remains to be investigated. 

5.3.4 Calcium homeostasis in pathological condition

Homeostasis of [Ca2+] is crucial for neurons to function properly, because [Ca2+] influ-

ences action potential transportation and transmitter release, and Ca2+ is also an 2nd

messenger in various signaling pathways79. The rise of neuronal [Ca2+] is usually initi-

ated by action potential, which opens voltage gated calcium channels, and generates a

Ca2+ influx which can then trigger the release of endoplasmic reticulum (ER) and mito-

chondrion stored Ca2+ via signaling pathway. The excessive Ca2+ can be purged away to

extracellular  space  or  organelles  by  various  Ca2+ pumps  and  exchangers,  such  as

Na+/Ca2+ exchanger (NCX) and plasma membrane Ca2+-ATPase (PMCA) in cell mem-

brane, sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) in ER membrane and Ca2+

uni-porter  (CUP) in  mitochondrion membrane (reviewed by Gleichmann and Matt-

son121 and Zündorf and Reiser80).

It had been reported that nerve injury rather decreased the resting intracellular [Ca2+]

of DRG neurons than increases it122, which is often observed in brain neurons in patho-
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logical conditions80. My calcium imaging result indicats that not only nerve injury but

peripheral  inflammation  also  reduces  the  intracellular  [Ca2+]  of  DRG  nociceptors.

Gemes et at. indicated that the upregulated activity of PMCA leads to the reduction of

resting Ca2+ level in axotomized sensory neurons. Compare to the elevated PMCA, the

activity of SERCA responsible for returning Ca2+ to ER decreased after injury123, which

can disturb the role of ER as a calcium sink. CUP and other calcium transporters on mi-

tochondrion have not been investigated in DRG neurons. The important role of mito-

chondrion in calcium homeostasis is to sequester excess Ca2+ during the development

of calcium transient124. Interruption of presynaptic mitochondrial Ca2+ uptake may sig-

nificantly influence the recovery from high [Ca2+] and the transmitter release. The al-

tered dynamic control of [Ca2+] due to the changed resting [Ca2+] and modulated Ca2+

transporters  can  also  influence  the  calcium-sensitive  signaling  pathways  regulating

gene  expression  and  enzyme  activity.  Nevertheless,  the  activities  of  all  these  Ca2+

pumps and exchangers in DRG neurons and their contributions to the homeostasis of

Ca2+ remain to be examined in pathological conditions. 

Noticeably, there was a rise of resting [Ca2+] level in BDNF treated DRG neurons which

is consistent with previous study indicating BDNF elevates intracellular [Ca2+]125. Al-

though  BDNF  is  released  in  spinal  dorsal  horn  after  nerve  injury  and  inflamma-

tion51,126,127, the resting [Ca2+] was rather lowered in DRG neurons. These phenomena

suggest a spatial specific effect of BDNF, which is limited in central terminals of DRG

neurons, and the [Ca2+] change in neural soma is possibly regulated by other factors. 

5.4 Brief summary

5.4.1 Summary of results

In present study I explored the character of GABAergic presynaptic control for nocicep-

tive signal transmission in spinal dorsal horn in physiological and pathological condi-

tions. I found GABAergic presynaptic disinhibition in neuropathic and inflammatory

pain animal models. The disinhibition after nerve injury, which most likely mediated by

spinal BDNF, is essential for thermal hyperagesia. In inflammatory pain model, in ad-

dition to disinhibition, GABA also acquired more excitatory effect on central terminals
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of CGRP positive neurons (peptidergic nociceptors), which leaded to mechanical allo-

dynia.

Half  a  century  ago,  Melzack  and Wall  proposed the  classic  GCT which describes  a

spinal circuit where the dorsal horn inhibitory interneurons occupy the key position

and regulate the nociceptive signal transmission from PNS to CNS. Nowadays, the im-

proved GCT suggests this regulation is employed by both presynaptic and postsynaptic

inhibition. GABA is the major inhibitory neurotransmitter in the nervous system, and

GABAA receptors had been found to express on both central terminals of primary affer-

ents and spinal neurons21. Pharmacological studies with GABA and its antagonists pro-

vided huge body of evidence indicating GABAergic inhibition has an analgesic effect.

However,  the contribution of pre- inhibition to this analgesic effect had never been

clearly addressed separately. 

Previously, most direct recording for presynaptic inhibition study on cellular level were

carried on cultured DRG neurons. Recently, Zeilhofer’s group tried to study the genuine

presynaptic control by generating a conditional nociceptor-specific GABAA receptor α2

subunit deficient mouse line (SNS-α2-/-)69. It was reported that DZP lost its potentiating

effect on PAD and a major part of its spinal anti-hyperalgesic action against inflamma-

tory hyperalgesia in these mice. However, This SNS-α2-/-  mouse line exhibited normal

GABAA receptor currents, and behavior to mechanical and thermal stimulation, and de-

veloped neuropathic and inflammatory pain sensitization as wild type animal. These

characters of SNS-α2-/- mice make it an excellent tool to study the effect of positive al-

losteric modulator on presynaptic GABAA receptors, but the contribution of GABAA re-

ceptors mediated PAD in physiological and various pathological conditions kept un-

solved. 

Here in addition to investigation on neuron somas in cell culture and acutely dissected

whole mount DRG, I managed to selectively record presynaptic activity by specifically

express GCaMP3 in sensory neurons. All-sensory neuron- and nociceptor-specific GECI

mice (advillin-Ai38 and SNS-Ai38) were generated by crossing two different Cre mouse

lines, advillin-Cre56 and SNS-Cre55, to Ai38 mice carrying a floxed STOP cassette pre-

venting GCaMP3 expression. Recording on these slices, for the first time, provided ex

vivo evidence for GABAergic inhibition on presynapses, and its change after nerve in-

jury and inflammation. These results together with the work of my colleagues, for the

first time, confirmed the contribution of presynaptic inhibition on nociceptive signal

regulation. We discovered that nerve injury and peripheral inflmmation could disturb
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GABAergic presynaptic inhibition, mainly due to the upregulation of intracellular [Cl-]

and change of GGABA, and leaded to the lost of GABAergic presynaptic inhibition and the

GABAergic  presynaptic  excitation  respectively  (Figure  33).  These  malfunctioning

presynaptic inputs contributed to neuropathic and inflammatory pain differently. Fur-

ther more, The difference between advillin-Cre and SNS-Cre generated transgenic mice

and study with non-peptidergic marker, IB4, further indicated that the malfunction of

GABAergic presynaptic inhibition on peptidergic and non-peptidergic nociceptors con-

tributed to the hypersensitivity responding to different modality inputs. These new un-

derstandings suggest, from a presynaptic point of view, neuropathic and inflammatory

pain should be treated accordingly. Furthermore, modality specific pain treatment in

various condition can focus on specific subpopulation.
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Figure  33:  Hypothetical  scheme showing the presynaptic  control  on nociceptors  in  different
conditions. High threshold nociceptors are activated by nociceptive stimuli and transmit action
potentials  to  their  central  terminals  innervating  postsynaptic  projection  neurons  which  can
transport the nociceptive signals to brain. Both the presynaptic central terminals of nociceptors
and  postsynaptic  projection  neurons  are  regulated  by  GABAergic  inhibitory  interneurons
receiving  input  from  non-peptidergic  sensory  neurons.  (a)  In  pathological  condition,  the
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activation of non-nociceptive sensory neurons can suppress the nociceptive signal, i.e., close
the gate of pain, by inhibiting the presynaptic central terminals. This presynaptic inhibition is
disturbed in pathological conditions. (b) After nerve injury, the presynaptic [Cl-] is upregulated by
a BDNF-TrkB signaling activated pathway. This [Cl-] alteration ceases the presynaptic inhibition
mediated by GABAA receptors. In other words, presynaptic GABA losses its ability to close the
gate of pain, and nociceptive stimuli generates stronger pain. (c) The peripheral inflammation
also  elevates  [Cl-]  in  presynaptic  nociceptors.  However,  GGABA is  not  diminished  as  in
neuropathic  pain  condition.  This  probably  further  enhances the  GABAA receptors  mediated
depolarization,  which  is  strong  enough  to  trigger  action  potentials  in  nociceptor  central
terminals.  This  action potential  anterogradely  activates  postsynaptic  projection  neurons and
retrogradely facilitates peripheral inflammation. In this case, the gate of pain is opened, and low
threshold stimuli could generate pain which is termed as allodynia.
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