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1.1  Summary 

The cell undergoes dramatic structural rearrangements during the cell cycle, 

particularly the nucleus and the microtubule cytoskeleton. While, in the beginning 

of mitosis, the nucleus needs to condense its genomic content and to disassemble 

the nuclear envelope, microtubules build the elaborate and highly dynamic 

structure of the mitotic spindle. At the end of mitosis all these events need to be 

reversed in order to re-establish an interphase cell fully functional for gene 

expression and further tasks. 

Microtubules, the highly dynamic building blocks of the mitotic spindle are 

regulated by several different classes of microtubule-associated proteins. In this 

study, the Developmentally regulated GTP binding protein (DRG1) was identified 

as new player in this network. DRG1 is a highly conserved GTPase with not yet 

well understood functions. Here, I show that DRG1 binds to microtubules via 

several domains. Not only immobile binding was observed but also diffusive 

binding modes on the microtubule lattice were observed. Furthermore, DRG1 

bundles and stabilizes microtubules as well as promotes microtubule 

polymerization in vitro. The GTP hydrolysis activity of DRG1 is not necessary for 

these functions, while the full-length protein is necessary for all microtubule-

associated functions but binding. Consistent with the in vitro observations, knock 

down of DRG1 in HeLa cells slows down the regrowth of the mitotic spindle after 

cold shock as well as extends mitotic progression. 

Beside the newly described microtubule-associated functions, DRG1 seems also 

to be involved in chromatin decondensation as it happens at the end of mitosis. 

Depletion of DRG1 from Xenopus egg extract or addition of recombinant DRG1 

mutants to untreated egg extract, inhibits chromatin decondensation in vitro. 

In summary, two novel functions of DRG1 were identified in this study. If the 

spindle assembly and chromatin decondensation functions of DRG1 are 

connected to each other or independent, so called moonlightning functions, and 

thus, if these pathways are in general directly connected or not remains an 

exciting topic for future research. 
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1.2  Zusammenfassung  

Während des Zellzyklus durchläuft die Zelle enorme strukturelle 

Reorganisationen, besonders hervorzuheben sind hierbei die starken 

Veränderungen des Zellkerns und des Mikrotubuli-Zytoskeletts. Am Anfang der 

Mitose kondensiert das Chromatin im Zellkern und die Kernmembran löst sich auf. 

Das Mikrotubuli-Zytoskelett muss die aufwendige und sehr dynamische Struktur 

des mitotischen Spindelapparates aufbauen. Am Ende der Mitose müssen all 

diese Abläufe wieder umgekehrt werden, um einen funktionstüchtigen Interphase-

Zustand herzustellen, der unter anderem die Expression der Gene möglich macht. 

Mikrotubuli, die dynamischen Bausteine des mitotischen Spindelapparates, 

werden durch vielfältige Mikrotubuli-assoziierte Proteine modifiziert und reguliert. 

In dieser Arbeit wurde das „Developmentally regulated GTP binding protein 1“ 

(DRG1) als ein solches identifiziert. DRG1 ist eine hoch konservierte GTPase mit 

bislang wenig verstandenen Funktionen. In dieser Arbeit konnte ich zeigen, dass 

verschiedene Domänen von DRG1 Mikrotubuli binden. DRG1 ist nicht nur 

statisch, sondern auch mobil durch Diffusion auf den Mikrotubuli gebunden. 

Weiterhin bündelt, stabilisiert und polymerisiert DRG1 Mikrotubuli in vitro. Die 

GTPase-Aktivität von DRG1 ist nicht notwendig für die erwähnten Funktionen, 

allerdings die volle Länge des Proteins, mit Ausnahme der Mikrotubuli-Bindung. 

Übereinstimmend mit diesen in vitro Beobachtungen, führt die Herunterregulierung 

von DRG1 in HeLa Zellen zu einem verlangsamten Wiederaufbau des 

Spindelapparates nach Kälteschock, sowie zu einer Verzögerung im mitotischen 

Ablauf, von Pro- zu Anaphase. 

Neben diesen neu entdeckten Mikrotubuli-assoziierten Funktionen, scheint DRG1 

auch an der Dekondensierung des Chromatins am Ende der Mitose beteiligt zu 

sein. Depletion von DRG1 in Xenopus Eiextrakten oder Hinzufügen von 

rekombinantem DRG1 zu unbehandelten Eiextrakten, inhibiert die Chromatin-

Dekondensierung in vitro. 

Zusammenfassend wurden in dieser Arbeit zwei neue Funktionsbereiche für 

DRG1 entdeckt. Ob die unterschiedlichen Aufgaben von DRG1, den Aufbau des 

Spindel-Apparates und die Chromatin-Dekondensierung betreffend, abhängig 

oder unabhängig voneinander sind bleibt eine spannende Frage für zukünftige 

Forschung. 
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2  Abbreviations 

DRG   Developmentally regulated GTP binding protein 

DFRP   DRG family regulatory protein 

ER   endoplasmic reticulum 

γ-TURC  γ-tubulin ring complex 

γ-TuSC  γ-tubulin small complex 

GAP   GTPase activating protein 

GCP   γ-tubulin complex protein 

G-domain  GTPase domain 

GEF   guanine nucleotide exchange factor 

HTH   helix-turn-helix 

IgG   immunoglobulin G 

kDa   kilo Dalton 

Ncd   non-claret disjunctional  

NE   nuclear envelope 

NPC   nuclear pore complex 

Npl4   nuclear protein localization 4 

Rbg1   Ribosome binding GTPase 1 

SA   spindle assembly  

TIRF    Total internal reflection microscopy 

Ufd1   Ubiquitin fusion degradation 1 

VCP   valosin-containing protein 
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5 Introduction 

5.1 Mitosis 

In order to divide, cells have to undergo enormous structural rearrangements. In 

metazoans, the nuclear envelope breaks down, chromatin condenses and the 

mitotic spindle forms in the beginning of mitosis. After chromatin segregation into 

the two emerging daughter cells, performed by the mitotic spindle, these 

processes need to be reversed. The nuclear envelope including the nuclear pore 

complexes reforms, the mitotic spindle disassembles and the chromatin 

decondenses in order to be accessible for gene expression and DNA replication 

during interphase (reviewed in Schellhaus et al., 2016). 

 

Figure 1: Structural rearrangements of the cell during mitosis. Modified from (Schellhaus et al., 
2016). NE: nuclear envelope, ER: endoplasmic reticulum, SA: spindle assembly, NPC: nuclear 
pore complex. 

 

5.2 Microtubules and the mitotic spindle 

The mitotic spindle is built from microtubules, highly dynamic cytoskeletal 

filaments. The basic building blocks of microtubules are the well conserved 

GTPases α- and β-tubulin. These tubulin heterodimers assemble in a head-to-tail 

manner into protofilaments, which gives the microtubules a polarity. Protofilaments 

in turn associate laterally to form a hollow tube structure, in vivo mostly consisting 

of 13 protofilaments (Chretien et al., 1992; Tilney et al., 1973). The most 

prominent feature of microtubules is their dynamic instability. Especially at the 

plus-end, microtubules can rapidly change from growth phases into shrinkage or 

pause phases and vice versa. The transition from different phases, known as 

catastrophe and rescue, is usually governed by the nucleotide state of β-tubulin 

which faces the plus end of the microtubule (Kirschner and Mitchison, 1986; 
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Nogales et al., 1999). Upon microtubule polymerization, GTP-bound tubulin 

dimers are added to the end of the microtubule. While the GTP that is bound to α-

tubulin does not hydrolyse, the GTP bound to β-tubulin slowly hydrolyses in the 

polymerized microtubule. GTP hydrolysis and phosphate release causes a 

conformational rearrangement in the tubulin dimer altering longitudinal interfaces 

which generates strain in the microtubule lattice (Alushin et al., 2014). The 

nucleotide is only exchangeable for the last tubulin at the plus-end. If the growth 

rate exceeds the GTP hydrolysis rate, the microtubule continues to grow, while it 

depolymerizes if the GTP hydrolyses before more GTP-tubulins are added to the 

end. GTP-tubulin at the end serves as a protective “GTP-tubulin cap”, 

respectively. Using laser ablation to cut the mitotic spindle parallel to the 

metaphase plate leads to rapid depolymerization of the newly generated plus ends 

while the minus ends remain stable, highlighting the faster dynamics of the plus 

ends (Brugues et al., 2012). If a microtubule is damaged at the site of its lattice, 

GTP-tubulin can be inserted directly into the shaft (Aumeier et al., 2016). 

Interestingly, this laterally added “GTP-tubulin islands” serve also as the side of 

rescue if a microtubule depolymerizes up to this location before GTP-hydrolysis 

has happened at this site. 

In cells, the behavior of microtubules is spatially and temporally regulated by many 

microtubule-associated proteins, e.g. polymerases and depolymerases that 

directly influence the growth and shrinkage rate by favouring a straight tubulin 

conformation or by supporting intrinsic curvature which is the favourable tubulin 

conformation in solution, respectively; nucleation factors; stabilizing factors that 

perform their function e.g. by bundling microtubules or that form a cap structure at 

the microtubule ends; severing enzymes that cut microtubules and motor proteins 

that move on the microtubules often carrying cargoes like certain molecular 

assemblies, organelles or other microtubules (reviewed in Petry, 2016). In 

addition, tubulins exist in many isoforms and are target of many posttranslational 

modifications (reviewed in Gadadhar et al., 2017). Well-known protein 

modifications like acetylation and phosphorylation are observed on tubulins but 

also rather rare events like glutamylation and glycination. De-/tyrosination are 

specific for tubulin. Both, the different tubulin isoforms and posttranslational-

modifications together, form the “tubulin code” resembling the well-known histone 
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code, which is readable by microtubule-associated and motor proteins, thus also 

influencing microtubule dynamics.  

Microtubules are not only important during mitosis in the form of the mitotic spindle 

but also during interphase when they are less dynamic. Microtubules are involved 

in the overall organization of the cell by positioning, organizing and maintaining 

different organelles. Microtubules are crucial for intracellular transport processes, 

for cell motility, cell shape and cell polarity regulation e.g. for the formation and 

maintenance of neuronal axons or the polarization of asymmetric epithelial cells 

(reviewed in de Forges et al., 2012). Disruption of the interphase microtubule 

cytoskeleton was observed in diseases. For instance, in many neurodegenerative 

diseases hyperphosphorylation of the microtubule-associated protein tau which 

promotes assembly and stabilization of microtubules, leads to the disassembly of 

tau from microtubules and formation of prion-like tau aggregates accompanied by 

microtubule disassembly (reviewed in Alonso et al., 2016). 

The mitotic spindle consists of three different kind of microtubules (reviewed in 

Prosser and Pelletier, 2017): roughly 20-30 (in Ptk cells (McDonald et al., 1992)) 

kinetochore microtubules bundle into each k-fiber which connect the centrosomes 

at their minus ends with the kinetochores at the plus ends. Kinetochores are 

protein complexes assembled on centromeric chromatin. Proper attachment of the 

k-fibers, meaning the two kinetochores of sister chromatids are connected to the 

two opposite centrosomes, is monitored by the spindle assembly checkpoint 

pathway. 

The majority of the mitotic spindle consists of non-kinetochore microtubules, which 

are part of the spindle itself but not connected to the kinetochores. In C.elegans 

early embryos only roughly 200 of the 8331 microtubules in each half spindle were 

classified as kinetochore microtubules (Redemann et al., 2017). Non-kinetochore 

microtubules give stability to the spindle, are involved in the separation of the 

spindle poles and in elongation of the spindle during anaphase. Lastly, astral 

microtubules radiating from the centrosome to the cell cortex, position the spindle 

properly. 

In contrast and as extension to the classical model, it was recently shown that k-

fibers associate with bundles of overlapping non-kinetochore fibers connecting the 

two spindle poles (Kajtez et al., 2016; Polak et al., 2017). These bundles bridge 
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the two k-fibers of sister kinetochores and are hence termed bridging fibers. 

Bridging fibers are suggested to be involved in balancing forces acting on the k-

fibers. Laser ablation of a k-fiber and consequent movement of the kinetochore 

that was separated from the pole showed that the bridging fiber, the intact sister 

kinetochore fiber and the broken kinetochore fiber move together as a stable 

entity. 

Another recent study challenging the classical model of the mitotic spindle 

demonstrated that in C.elegans early embryos kinetochore microtubules are not 

directly connected to centrosomes but rather anchored into the spindle network 

(Redemann et al., 2017). According to this model, kinetochore microtubules 

nucleate from centrosomes, followed either by catastrophe or attaching to a 

kinetochore. Microtubules that attached to the kinetochores then transit into a 

shrinking state, depolymerizing from the minus end. However, C.elegans has 

holocentric kinetochores, meaning that kinetochore microtubules can bind to the 

entire chromosomal surface, and thus most likely differ in certain spindle assembly 

dynamics compared to mammals. 

 

Microtubules in the spindle are usually shorter than the spindle itself. Their 

individual half-lives are likewise shorter. Although microtubule minus ends always 

face towards the spindle poles while plus ends are facing away, minus and plus 

ends are found throughout the spindle. Especially the minus ends of the non-

kinetochore microtubules are more distributed throughout the spindle than the k-

fiber minus ends (Mastronarde et al., 1993). Microtubules in the center of the 

spindle are longer compared to microtubules at the poles (Brugues et al., 2012). 

The classical “Search & capture” spindle assembly model suggested that 

microtubules nucleate from the centrosomes and grow towards the cell equator 

searching for kinetochores (Kirschner and Mitchison, 1986; Mitchison and 

Kirschner, 1984). Dynamic instability increases the chances that a microtubule 

finds a kinetochore. Additionally, the microtubules can change their angle of 

growing and if they attach laterally to a kinetochore they can position it in a way 

that increases the chances of an end-on attachment. Nevertheless, the model is 

nowadays extended by several nucleation pathways, favorable cell mechanic 

advantages like cell rounding and factors involved in spindle assembly which 

would otherwise be much slower (reviewed in Heald and Khodjakov, 2015).  
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Nucleation does not only occur at the centrosome but also close to chromatin. 

Most prominent in this context is the Ran-pathway, resembling the regulation of 

the nuclear-cytoplasmic transport during interphase: spindle assembly factors are 

sequestered by importins but get released once RanGTP binds these transport 

factors instead (Kalab et al., 2002). RanGTP his highly increased around 

chromosomes because the guanine nucleotide exchange factor (GEF) of Ran, 

RCC1, is associated with chromatin (Carazo-Salas et al., 1999). RCC1 facilitates 

the exchange from GDP to GTP on Ran. The released spindle assembly factors 

can then nucleate microtubules around chromatin.  

Furthermore microtubules also nucleate from already existing microtubules.  

 

The spindle is further organized by motor proteins. A main player in this context is 

dynein, which transports microtubules on another microtubule, called microtubule 

sliding, constantly towards the minus ends focusing the spindle poles and also 

forming two poles in the absence of centrosomes, respectively (Heald et al., 

1997). But also plus end directed motors are involved in generating a bipolar array 

e.g. by cross-linking and sorting the plus ends. Molecular motors are furthermore 

important for the proper positioning of the chromosome arms and kinetochores 

(reviewed in Heald and Khodjakov, 2015). Microtubule sliding also plays crucial 

roles during interphase, such as for neuronal differentiation when the molecular 

motors kinein-1 and dynein establish the prominent neuronal cell shape (reviewed 

in Lu and Gelfand, 2017). 

The α- and β-tubulin homolog, γ-tubulin, is essential for microtubule nucleation. 

Together with the γ-tubulin complex proteins 2 and 3 (GCP) it forms the γ-tubulin 

small complex (γTuSC) which further assembles, with the exception of many 

yeasts,  with additional factors (GCP4, GCP5, MOZART1 and in some organisms 

GCP6, MOZART2A and 2B) into the ring shaped γ-tubulin ring complex (γTuRC). 

γTuRC serves as a template for microtubule nucleation when attached to the 

centrosome or pre-existing microtubules (reviewed in Kollman et al., 2011). α- and 

β-tubulin heterodimers most likely attach longitudinally to the γ-tubulin ring.  The 

nucleation capacity of the centrosome is increased during mitosis by recruiting 

more γ-TURC and further centrosomal components as well as by phosphorylation 

of centrosomine, one of these components (reviewed in Petry, 2016). Although the 
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centrosome is often considered to be the main microtubule nucleation site in 

metazoans, the other mentioned pathways can take over its function, shown by 

experiments in which the centrosomes were artificially removed. Naturally it also 

occurs that cells do not have centrosomes e.g. in vertebrate eggs. Therefore, 

these pathways are partially redundant. The same accounts for the numerous 

factors involved in spindle assembly. Many of them can take over each other’s 

function if necessary. For example, while the small GTPase Ran and the kinesin 

Eg5 are essential for spindle assembly in X.laevis, they are not in X.tropicalis. The 

latter has a threefold excess of Xklp2 (TPX2) and much smaller mitotic spindles 

compared to the first. The phenotype caused by inhibition of Ran and Eg5 in 

X.laevis can be reduced by increasing the TPX2 concentration showing how the 

importance of individual factors can vary between organisms and cell types by the 

individual protein levels, also reflected in different spindle sizes and morphologies 

(Helmke and Heald, 2014). 

Nevertheless, even if partially replaced by others, each missing pathway and 

factor increases the chance of chromosome missegragation. In line with this, de-

regulation of spindle assembly is observed in many types of cancer (Du et al., 

2016; Kumar et al., 2016; Schneider et al., 2017). Thus, this multi-layered 

regulation of spindle assembly seems to be a security mechanism of the cell, 

decreasing the chance of errors as much as possible, best summarized in the 

words of Rebecca Heald and Alexey Khodjakov: “Thus, the complexity of 

numerous nonessential mechanisms sustains the wonderfully simple principle of 

S&C [Search and Capture]”(Heald and Khodjakov, 2015). 

 

5.3 Chromatin decondensation at the end of mitosis 

Once the sister chromatids are successfully segregated by the mitotic spindle, the 

two daughter nuclei need to reform. The nuclear envelope reassembles around 

the chromatin including the nuclear pore complexes, but also the chromatin itself 

undergoes significant structural rearrangements (reviewed in Schellhaus et al., 

2016). While it needs to be highly compacted in order to enable segregation 

during mitosis, it has to be much less densely packed to be accessible for DNA 

replication and gene expression during interphase. The grade of chromatin 
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compaction during mitosis is highly controversial, ranging from 2 to 50-fold 

(Belmont, 2006; Vagnarelli, 2012). Thus, chromatin needs to decondense at the 

end of mitosis. This process is highly under-investigated. It can be reconstituted in 

vitro incubating isolated, mitotic chromatin clusters with interphase Xenopus laevis 

egg extracts (Magalska et al., 2014). Using this in vitro reconstitution, it was 

shown that chromatin decondensation is an active process, requiring ATP and 

GTP hydrolysis. In this assay, chromatin decondenses to a certain extend in the 

absence of membranes, but it further decondenses in the presence of membranes 

–suggesting that for the second level of decondensation a nucleus capable of 

importing cytoplasmic factors is necessary.  

Not many factors involved in chromatin decondensation are known to date. 

RuvBL1 and RuvBL2 (also known as Pontin/Tip49 and Reptin/Tip48) are AAA+-

ATPases that form a double hexameric complex. Immunodepletion of RuvBL1/2 

impairs chromatin decondensation in vitro (Magalska et al., 2014). Rescue 

experiments showed that either RuvBL1 or RuvBL2 is sufficient for chromatin 

decondensation, however ATPase mutants are not.  Next to other divers functions, 

RuvBL1/2 are known to be associated with chromatin remodeling complexes 

(reviewed in Nano and Houry, 2013) and it is tempting to speculate that they 

directly act on remodeling the chromatin at the end of mitosis.  

Another AAA+ATPase involved in chromatin decondensation is p97 (also known 

as valosin-containing protein (VCP) in vertebrates and CDC48 in yeast) forming a 

complex with its co-factors UFD1 (ubiquitin fusion degradation 1) and NPL4 

(nuclear protein localization 4) (Ramadan et al., 2007). p97 removes the kinase 

Aurora B from chromatin and thus seems to have rather a regulatory instead of a 

direct role on chromatin. If Aurora B is removed to function at a different 

localization, to prevent phosphorylation at this site or to make chromatin more 

accessible is not known.  

RuvBL1/2 are not sufficient to decondense isolated mitotic chromatin (Magalska et 

al., 2014) and it is very likely that such a fundamental process, involving the global 

decompaction and rearrangement of chromatin at the end of mitosis, depends on 

a multi-step process with numerous factors. One of this is most likely a GTPase as 

chromatin decondensation requires GTP hydrolysis (Magalska et al., 2014). It is 

also conceivable that histone modifications are involved in the process. Histone 

modifications play important roles in local chromatin rearrangements during 
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interphase but to which extend they are involved in global rearrangements at the 

transition from mitosis to interphase is not known and controversial. As an 

example, histone H3 phosphorylation at serine 10 correlates with chromatin 

condensation during mitosis and its removal with chromatin decondensation. It 

was therefore long believed that this mitotic histone mark might even be able to 

cause chromatin condensation (e.g. Hendzel et al., 1997). However, while it was 

recently suggested again to be involved in mitotic chromatin condensation in yeast 

(Wilkins et al., 2014), it can clearly be uncoupled from chromatin decondenation 

(Hsu et al., 2000; MacCallum et al., 2002; Magalska et al., 2014; Murnion et al., 

2001).  

In conclusion, chromatin decondensation at the end of mitosis is a highly under-

investigated process that still awaits major explorations to achieve deeper 

knowledge. 

 

 

5.4 Developmentally-regulated GTP binding protein 1 

In this work, Developmentally regulated GTP binding protein 1 (DRG1) was 

identified to bundle, polymerize and stabilize microtubules and to be involved in 

spindle dynamics in HeLa cells. Furthermore, it might function as a chromatin 

decondensation factor at the end of mitosis.  

DRG1 is a GTPase that belongs to the Obg subfamily of GTPases (Leipe et al., 

2002) and is highly conserved between different species (Hudson and Young, 

1993; Kumar et al., 1993; Lee et al., 1998; Sazuka et al., 1992; Schenker et al., 

1994; Shimmin and Dennis, 1989; Sommer et al., 1994). Archeabacteria usually 

contain one DRG, while eukaryotes from yeast to human contain two isoforms (Li 

and Trueb, 2000), DRG1 and DRG2, which are highly homologous (58 % identity 

on the protein level for human proteins). Plants even contain three DRGs 

(O'Connell et al., 2009). DRGs are associated with the DRG family regulatory 

proteins (DFRPs) 1 and 2 (Ishikawa et al., 2009; Ishikawa et al., 2005). While 

DFRP1 binds only to DRG1, it is under debate if DFRP2 binds only DRG2 or also 

DRG1 (Ishikawa et al., 2009; Ishikawa et al., 2005; Wout et al., 2009). The 

association with DFRPs prevents that the DRGs get ubiquitinylated and degraded 

by the proteasome and therefore DFRPs are considered to be the stabilizing 
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factors of DRGs. In agreement with this, downregulation of DFRP1 also causes 

down-regulation of DRG1.  

Not much is known about the functions of the DRGs and DFRPs although the high 

interspecies conservation of the DRGs suggested early that they might have a 

function in a highly fundamental pathway. First, DRG1 was suggested to function 

as developmental factor as its expression was observed to be upregulated in 

mouse embryonic brain, hence its name (Sazuka et al., 1992). However, DRGs 

are also widely expressed in adult tissues (Ishikawa et al., 2003; Lee et al., 1998; 

Li and Trueb, 2000). DRG1 and DFRP1 co-sediment with polysomes (Daugeron et 

al., 2011; Francis et al., 2012; Ishikawa et al., 2009; Wout et al., 2009) and DRG1 

binds RNA (Ishikawa et al., 2003) suggesting that they play a role in translation or 

other functions connected to ribosomes. Nevertheless, this still remains obscure. 

The same obscurity remains for DRGs’ repeatedly suggested involvement in cell 

growth (Devitt et al., 1999; Lu et al., 2016). 

The crystal structure of the yeast DRG1 homolog, Rbg1 (Ribosome binding 

GTPase 1), together with a C-terminal fragment of the yeast homolog of DFRP1 

(Tma46) showed that DRG1 has an N-terminal helix-turn-helix (HTH) motif and a 

C-terminal TGS-domain. In between a canonical GTPase domain (G-domain) 

performing the GTP hydrolysis is found (Francis et al., 2012). This G-domain is 

surprisingly interrupted by a S5D2L-domain. An insertion in the G-domain is 

usually found in the α-subunits of G-protein coupled receptors. In the latter case 

they are inserted between the canonical G1 and G2 box, while the insertion in 

DRG1 lies between the G3 and G4 boxes (Sommer et al., 1994). The G-domain of 

DRG1 is the only domain that shares some similarities with other GTPase families. 

DRG1 hydrolysis GTP under a wide range of pHs and temperatures with 

optimums at pH 8 to 9 and 42°C (Perez-Arellano et al., 2013). DRG1 does not 

require a GTPase activating protein (GAP) (Francis et al., 2012; O'Connell et al., 

2009; Perez-Arellano et al., 2013). In fact DFRP1 stimulates the GTPase activity 

but binds on the opposite site of the GTP binding pocket and rather stimulates the 

GTP hydrolysis by different mechanisms compared to a classical GAP, e.g. by 

increasing the affinity for potassium ions which stimulate the GTP hydrolysis 

activity. 
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Despite all these exciting characteristics, not much about the functions of the 

DRGs has been elucidated since their discovery 30 years ago but the high 

interspecies conservation most certainly suggests an important function in a 

conserved cell biology pathway. 
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6 Thesis objectives 

The cell undergoes enormous structural rearrangements during cell division. 

Especially the nucleus including the chromatin passes through dramatic 

morphological changes but also the cytoskeleton, particularly the microtubules, 

experiences major transformations. Errors in these processes can have dramatic 

consequences for the cell making it important to understand every individual 

detail. Some pathways are rather well studied, while others are highly under-

investigated. 

One of the less studied structural changes happening at the end of mitosis is 

chromatin decondensation necessary to make chromatin accessible for replication 

and transcription during interphase. Chromatin decondensation relies on GTP 

hydrolysis (Magalska et al., 2014) and prior to this thesis work, I identified the 

GTPase Developmentally regulated GTP binding protein 1 (DRG1) as a possible 

candidate to be involved in the process. DRG1 is highly conserved between 

different species but its function is unclear. 

The goal of this work was to find out if and how DRG1 is involved in chromatin 

decondensation and further mitotic processes. Chromatin decondensation was 

reconstituted in a cell-free assay using Xenopus laevis egg extracts. This 

approach was combined with immunodepletion of DRG1, DRG2 and the 

interaction partners DFRP1 and DFRP2, or with the addition of recombinant 

dominant mutants of DRG1 and 2. 

In the process of characterizing DRG1 further, it was found to be also associated 

with microtubule functions. Cell-free assays using recombinant tubulin and DRG1 

were used to test the functions of DRG1 in the context of microtubule binding, 

bundling, polymerization and stabilization activities. DRG1 not only shows these 

various functions in minimal in vitro systems, it is also involved in mitotic spindle 

dynamics in HeLa cells. 

DRG1 is directly involved in the rearrangements occurring during mitosis, 

respectively. If the chromatin- and microtubule-associated functions of DRG1 are 

functionally connected or independent of each other is unknown and remains an 

exciting topic for future investigations. 
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7 Results  

 

7.1 DRG1, DRG2, DFRP1 & DFRP2 are involved in chromatin decondensation  

7.1.1 In vitro reconstitution of chromatin decondensation  

Xenopus laevis egg extracts have been long used to reconstitute nuclear 

envelope reassembly in vitro (reviewed in Gant and Wilson, 1997). The 

advantages of Xenopus egg extracts are versatile. Extracts can be prepared in the 

mitotic or interphasic state, they can be easily manipulated e.g. by depleting or 

adding proteins or chemicals like inhibitors, and cellular proteins are highly 

enriched as transcription and translation do not start until the 4000 cell embryo is 

reached and therefore, the eggs store enough necessary factors for the first 

rounds of cell divisions (reviewed in Murray, 1991; Newmeyer and Wilson, 1991; 

Powers et al., 2001). In the context of studying nuclear envelope assembly, sperm 

chromatin is usually used which decondenses first by exchanging sperm specific 

protamines to histones performed by nucleoplasmin (Philpott and Leno, 1992; 

Philpott et al., 1991). This represents the process that is happening after 

fertilization but not what happens at the end of mitosis as mitotic chromatin is 

already bound to histones and nucleoplasmin is only expressed in oocytes 

(Burglin et al., 1987). Therefore, a novel cell-free assay was established to study 

chromatin decondensation using isolated mitotic chromatin from HeLa cells. These 

chromatin clusters decondensed upon incubation with interphase Xenopus egg 

extract in a time-dependent manner. The samples were fixed at indicated time 

points and stained with DAPI (Fig. 1 in (Magalska et al., 2014)). Furthermore, 

chromatin decondensed to a certain extend in the absence of membranes but 

even more in the presence of membranes suggesting that nuclear import of 

specific factors is necessary for the second level of decondensation (Fig. 3 in 

(Schellhaus et al., 2015)). Indeed, using this in vitro approach yielded fully 

functional nuclei capable of import and export. Chromatin decondensation 

required ATP and GTP hydrolysis suggesting that one or more ATPases and 

GTPases are involved (Fig. 3 in (Magalska et al., 2014)). 
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7.1.2 Immunodepletion of DRG1, DRG2, DFRP1 & DFRP2 inhibits chromatin 

decondensation 

In order to find a GTPase that is involved in chromatin decondensation, previously, 

I did a biochemical fractionation approach combined with the cell-free assay 

described in 7.1.1 which suggested that the GTPase DRG1 might be a possible 

candidate. DRG1, DRG2 as well as their stabilizing interaction partners DFRP1 

and DFRP2 were immunodepleted from Xenopus egg extracts (Fig.2 A & C).  

 

Figure 2: Immunodepletion of DRG1, DRG2, DFRP1 and DFRP2 from Xenopus laevis egg 
extracts. The depleted extracts were analyzed by Western blotting (A and C) and used for in vitro 
reconstitution of chromatin decondensation (B and D). Note that the antibody against DRG1 
recognized DRG1 (lower band) and DRG2 (upper band) in the Western blot in A. Scale bar: 5 µm. 

 

Individual antibodies against one of these proteins co-depleted the other three 

proteins as well which can be explained with cross-reactivity of the antibodies in 

the case of DRG1 and DRG2. However, DFRP1 and DFRP2 share only some 
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sequence conservation in the DFRP domain and are otherwise not similar 

suggesting that the four proteins might form a tetrameric complex in contrast to 

previously suggested specific DRG1-DFRP1 and DRG2-DFRP2 heterodimers. 

Immunodepletion of the DRGs and DFRPs inhibited chromatin decondensation in 

vitro (Fig. 2 B & D) suggesting that they are indeed involved in chromatin 

decondensation at the end of mitosis. 

 

7.1.3 Dominant mutants of DRG1 & DRG2 inhibit chromatin decondensation 

To further confirm that DRGs are involved in chromatin decondensation, dominant 

GTPase mutants were designed, expressed and purified. A dominant positive 

GTPase mutant is locked in its GTP-bound state while a dominant negative 

mutant is either nucleotide-free or GDP-bound. The dominant mutants of DRG1 

and 2 were designed by sequence comparison to other known GTPase mutants 

(Fig. 3): in the case of the dominant-negative mutant, a point mutation was 

introduced similar to dominant-negative mutants of the small GTPase Ran (Dasso 

et al., 1994) and of the yeast homolog of DRG1, Rbg1 ((Daugeron et al., 2011; 

Francis et al., 2012). The dominant-positive mutant was created according to the 

mutant of the Streptomyces coelicolor GTPase Obg which belongs to the same 

GTPase subfamily as the DRGs (Okamoto and Ochi, 1998). 

 

Figure 3: Sequence alignment of the G1 boxes of DRG1, DRG2 and other small GTPases. Purple 
boxes highlight the residues that were mutated to gain dominant mutants. Alignment was done 
using the “PRALINE multiple sequence alignment” software 
(http://www.ibi.vu.nl/programs/pralinewww/). 
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Addition of the recombinant dominant positive mutants, DRG1 P73V and DRG2 

P71V (Fig. 4A), the dominant negative mutants, DRG1 S78N (Fig. 4B) and DRG2 

S76N (Fig. 4C) but also of wild-type DRG1 (Fig. 4B) and DRG2 (Fig 4C) to 

Xenopus egg extract impaired chromatin decondensation as well.  

 

Figure 4: Chromatin decondensation was reconstituted in the presence of recombinant, dominant 
positive mutants of DRG1 and DRG2 (A), the wild-type and dominant negative mutant of DRG1 (B) 
or DRG2 (C). Scale bar: 5 µm. 

 

7.1.4 DRGs and DFRPs form at least two complexes 

Following the co-depletion of DRG1, DRG2, DFRP1 & DFRP2 in the 

immunodepletion experiments, Xenopus egg extracts were fractionated by gel 

filtration. The fractions were analyzed by Western blotting. The concentration of 

DRG2 and DRP2 peaked in a fraction corresponding to approximately 180 kDa 

(Fig. 5, fraction 7). DRG1 and DFRP1 showed two concentration peaks, one in the 

same fraction as DRG2 and DFRP2 (Fig. 5, fraction 7), and another one in a 

fraction corresponding to approximately 440 kDa (Fig. 5, fraction 3).  
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Figure 5: Xenopus laevis egg extracts were fractionated by gel filtration and analyzed by Western 
blotting using primary antibodies against DRG1, DRG2, DFRP1 or DFRP2. 

 

This suggested that DRG1, DRG2, DFRP1 and DFRP2 might indeed form a 

tetramer complex. Additionally, DRG1 and DFRP1 seem to be involved in a 

second bigger complex. If this complex consists solely of several copies of DRG1 

and DFRP1 or if other factors are involved remains open. The existence of at least 

two different complexes could explain the different observations described 

concerning interaction specificity of the DRGs and DFRPs. 

To characterize the DRGs further, immunoprecipitations were done (data not 

shown). Interaction partners of DRGs were analyzed by mass spectrometry 

(performed by the Proteome Center Tübingen). DRG1 interacts with several 

proteins involved in the dynamics of the mitotic spindle like XMAP215, ISWI and 

tacc3 (interaction was not confirmed yet) which suggests that DRG1 might also 

play a role in this context. 
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7.2 DRG1 is involved in microtubule dynamics 

7.2.1 DRG1 binds microtubules directly via different domains independently of a 

functional G-domain 

As DRG1 was observed to interact with many microtubule-associated proteins, it 

was analyzed if DRG1 interacts itself also with microtubules. Indeed, DRG1 as 

well as DFRP1 co-sedimented with microtubules when Xenopus egg extracts, 

HeLa nuclear extract or recombinant DRG1 and DFRPs were incubated with taxol-

stabilized microtubules while it was not the case for DFRP2 (Fig. 1 in (Schellhaus 

et al., in revision)). This showed that the binding was direct. Sensitivity of the 

binding to high salt further showed that the binding was specific and occured via 

polar/ionic interactions. Applying the GTPase mutants of DRG1, DRG1 P73V and 

DRG1 S78N, in the co-sedimantation assay showed that these as well bound to 

microtubules (Fig. 6a in (Schellhaus et al., in revision)). The same accounts for 

truncated versions of DRG1 lacking the HTH, the TGS domain or both, as well as 

the TGS or HTH domain individually. The only non-binding fragment was the 

S5D2L domain (Fig. 3 b,c in (Schellhaus et al., in revision)). Many microtubule-

associated proteins are highly positively charged and bind microtubules via the 

highly negatively charged, acidic C-terminus of tubulin which is also the main 

target of posttranslational modifications ((Redeker et al., 1992); (reviewed in 

Cooper and Wordeman, 2009)). Modelling of the DRG1 structure based on the 

known crystal structure of the yeast homolog Rbg1 (Francis et al., 2012) showed 

that DRG1 has a highly positively charged surface area opposite of the GTP 

binding pocket (Fig. 3d in (Schellhaus et al., in revision)). This surface involves all 

four domains and could explain why various different fragments bound to 

microtubules. That the S5D2L-domain is included in this area but did not bind to 

microtubules could simply be because it was not properly folded or the affinity 

without the neighbouring domains was not high enough.  

To test if DRG1 binds tubulin via its acidic C-terminal tail, taxol-stabilized 

microtubules were digested with subtilisin, a protease that removes the C-

terminus. DRG1 interacted also with microtubules lacking the extreme C-terminus 

although with a reduced affinity (Fig. 3e in (Schellhaus et al., in revision)).  
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A more detailed characterization of DRG1 binding to microtubules using an 

approach based on Total internal reflection microscopy (TIRF) enabled the 

detection of the binding in a mobile way with single molecule resolution. DRG1 not 

only bound microtubules transiently in an immobile way but also diffused on the 

microtubules in a fast or slow manner (Fig. 2 in (Schellhaus et al., in revision)). 

The slow diffusion resembled the diffusive behaviour of the depolymerase MCAK 

(Helenius et al., 2006), the fast movement that of the plus-end tracking protein 

EB1 (Chen et al., 2014). Both proteins perform their functions at the microtubule 

ends and the diffusion on the microtubule lattice increases the chances to find the 

ends compared to simple diffusion in solution. Why DRG1 binds microtubules in 

three different modes is currently unclear. It cannot be explained by the different 

nucleotide states, GTP-bound, GDP-bound and nucleotide free, as all three 

binding populations were also observed in the presence of the non-hydrolysable 

GTP analog, GTPγS (Supplementary Fig. S1 in (Schellhaus et al., in revision)). 

The proportions of the different binding populations as well as the interaction times 

of the immobile fraction were concentration-dependent: the lower the DRG1 

concentration, the higher was the proportion of immobile binding DRG1 and the 

longer were the interaction times (Fig. 2 & Supplementary Fig. S1 in (Schellhaus 

et al., in revision)). The interaction times were also slightly decreased in the 

presence of GTPγS (Supplementary Fig. S1 in (Schellhaus et al., in revision)). 

 

7.2.2 Full-length DRG1 bundles, polymerizes and stabilizes microtubules 

independently of GTP hydrolysis 

Microtubule-associated proteins are often directly involved in regulating 

microtubule dynamics and possible microtubule-associated functions of DRG1 

were further tested. Upon incubation of DRG1 with fluorescently-labeled, taxol-

stabilized microtubules, bundling was observed by confocal (Fig. 4a in (Schellhaus 

et al., in revision)) and electron microscopy (Fig. 4b in (Schellhaus et al., in 

revision)). Bundling of microtubules can give the microtubules more stability as it is 

for example the case in k-fibers which are bundles of kinetochore microtubules. 

Polymerization of tubulin for one hour at 37 °C followed by incubation on ice for 30 

minutes induced disassembly of the before assembled microtubules. Indeed, 

DRG1 stabilized microtubules in vitro and prevented disassembly on ice (Fig. 5a in 
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(Schellhaus et al., in revision)). This observation was further confirmed in HeLa 

cells stably expressing histone H2B-mCherry and eGFP-tubulin, in which DRG1 

was knocked-down by siRNA (Fig. 5b in (Schellhaus et al., in revision)). 72 hours 

post-transfection, these cells were incubated on ice for one hour. After adding 

fresh, warm medium, the regrowth of microtubules in the mitotic population was 

observed by fixing the cells at different time points. Microtubules regrew much 

slower in cells lacking DRG1 (Fig. 5c & d in (Schellhaus et al., in revision)) which 

can be either explained by little remnants of the mitotic spindles which were more 

often retained in control cells upon incubation on ice (Fig. 5c & insert 5d in 

(Schellhaus et al., in revision)). These remnants could have facilitated a faster re-

assembly of the mitotic spindle. Another possibility is that DRG1 in some way 

accelerated microtubule polymerization. Indeed, incubation of Cy3-labeled tubulin 

below the critical concentration that is necessary for self-assembly of microtubules 

(Fygenson et al., 1994) with DRG1 induced microtubule polymerization (Fig. 4c in 

(Schellhaus et al., in revision)) which was also confirmed in light-scattering 

experiments (Fig. 4d in (Schellhaus et al., in revision)). In the latter case, tubulin in 

a concentration as little as 2.5 µM was incubated with DRG1 and GTP and the 

absorption at 340 nm was measured over time. Thus, DRG1 not only bundles but 

also stabilizes and polymerizes microtubules.  

The described experiments were repeated using the recombinant dominant 

GTPase mutants as well as the truncated versions of DRG1. While the GTPase 

mutants were able to bundle, stabilize and polymerize microtubules (Fig. 6b-d in 

(Schellhaus et al., in revision)), the truncated versions were not (Supplementary 

Fig. S2 a-c in (Schellhaus et al., in revision)). Thus, DRG1 does not require its 

GTPase activity for its microtubule-associated functions but it needs to be the full-

length protein. 

7.2.3 DRG1 is involved in spindle assembly in HeLa cells 

While the in vitro approaches were not feasible to distinguish between mitotic and 

interphase microtubule functions, the cold shock experiment in HeLa cells 

suggested that DRG1 performs its microtubule-associated functions in mitosis. 

This was further confirmed by the observation that DRG1 knock-down in HeLa 

cells, stably expressing histone H2B-mCherry and eGFP-tubulin, indeed showed a 
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prolonged timing from prophase to anaphase onset, evaluated by analyzing the 

chromatin shape (based on histone H2B-mCherry staining) (Fig. 7 a & b in 

(Schellhaus et al., in revision)) and of the timing from aster to anaphase spindle 

formation (based on eGFP-tubulin staining) (Fig. 7 a & c in (Schellhaus et al., in 

revision)). Although this clearly showed, that DRG1 is involved in the dynamics of 

the mitotic spindle, it does not exclude that DRG1 might also function at the 

interphase microtubule cytoskeleton. 
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8 Discussion 

In this work, the highly conserved GTPase DRG1 was identified as microtubule-

associated protein with microtubule bundling, polymerization and stabilization 

activities as well as potential chromatin decondensation factor, possibly linking 

mitotic spindle assembly in the beginning of mitosis with chromatin 

decondensation as it happens at the end of mitosis. 

8.1 DRGs & DFRPs function as chromatin decondensation factors 

Chromatin decondensation as it happens at the end of mitosis is an active process 

requiring, next to ATP hydrolysis, GTP hydrolysis, suggesting that a GTPase is 

involved (Magalska et al., 2014). Using a biochemical fractionation approach 

combined with in vitro reconstitution of chromatin decondensation with Xenopus 

laevis egg extract, DRG1 was identified as possible candidate for this GTPase 

prior to this work.  

Immunodepletions with antibodies against DRG1, DRG2, DFRP1 or DFRP2 co-

depleted all four proteins from Xenopus egg extract. This depleted extract was not 

able to decondense mitotic chromatin as much as the mock depleted control, 

suggesting that at least one of the factors is involved in chromatin 

decondensation. Co-depletion of all four proteins was an unexpected observation 

as it was so far suggested that DFRP1 exclusively interacts with DRG1 while it is 

under debate if DFRP2 only binds DRG2 or also DRG1 (Ishikawa et al., 2009; 

Ishikawa et al., 2005; Wout et al., 2009). A tetramer complex was not described to 

date. Co-depletion of DRG1 and DRG2 can be explained by cross-reactivity of the 

polyclonal antibodies used, as the two proteins are highly similar, sharing 58 % 

sequence identity on the protein level in the case of the human proteins. However, 

DFRP1 and DFRP2 share only some homology in a small part of the protein, the 

DFRP domain which constitutes the main part of the DRG binding site. Thus, co-

depletion of all four proteins by using DFRP1 or DFRP2 antibodies happened 

most likely because of the formation of a tetramer complex.  

It has to be mentioned that little inconsistencies were observed over the course of 

immunodepletions and an add-back experiment of the depleted protein would be 

necessary to show the specificity of the observation. The main problem was that 
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the conditions necessary to deplete the DRGs and DFRPs were so strong that the 

control depletion (rabbit IgG) was often not fully decondensed as well, owing to 

decreased egg extract quality under such strong experimental conditions. 

Additionally, due to the high sequence similarities of DRG1 and DRG2 it was not 

possible to generate antibodies that do not cross-react. Nevertheless, the control 

was obviously more decondensed than the depleted samples, supporting the idea 

that DRGs and/or DFRPs are acting as chromatin decondensation factors.  

This observation was confirmed by adding recombinant dominant mutants but also 

wild-type DRG1 and DRG2 to the in vitro reconstitution reaction of chromatin 

decondensation. All recombinant proteins inhibited chromatin decondensation, 

suggesting, in the case of the dominant mutants, that a functional GTPase domain 

of the DRGs is necessary. GTP hydrolysis might be necessary in order to undergo 

a conformational change in the protein that re-shapes chromatin in parallel.  

Inhibition of decondensation by addition of wild-type DRGs could be caused by 

disturbing the GTP-bound to GDP-bound DRG ratios. This is for instance also 

observed for the small GTPase Ran which functions by gradients of its GTP- to 

GDP-bound state. GTP-bound Ran is enriched around chromatin during mitosis, 

releasing spindle assembly factors from importins by binding these transport 

factors instead (Carazo-Salas et al., 1999; Kalab et al., 2002). The same is true 

during interphase, when Ran-GTP accumulates in the nucleus, releasing cargos 

from imported importins, while Ran-GDP accumulates in the cytosol (reviewed in 

Cavazza and Vernos, 2015). These gradients are regulated by specific and 

differing localization of Ran GEFs and GAPs. Adding excess amounts of RanGTP 

to an in vitro reconstitution of nuclear envelope assembly leads to accumulations 

of membrane stacks in the cytosol due to impairment of the ratio of the different 

nucleotide states of Ran (Walther et al., 2003). This could also be the case for the 

DRGs.  

While the immunodepletion experiments did not answer the question, which of the 

four proteins functions as chromatin decondensation factor, the dominant mutants 

showed that, as expected, the DRGs are involved. The DFRPs could also have a 

chromatin decondensation function, although it is more likely that they rather 

function as stabilizer or support of the DRGs. The mentioned inconsistencies in 
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the immunodepletion experiments as well as the effect of the addition of 

recombinant wild-type DRG1 and DRG2 might also suggest that the ratio of DRG1 

to DRG2 plays an important role. The ratio of DRGs to DFRPs could similarly be 

crucial. It is also unclear, if DRG1 and DRG2 function redundantly, in association 

or antagonistically. 

 

8.2 DRG1 is a microtubule-associated protein 

In this work, DRG1 and DFRP1 were shown to bind directly to microtubules. 

Microtubule-associated proteins are often highly positively charged and bind 

tubulins at the highly acidic, negatively charged C-terminus. The C-terminal tails 

are unstructured, exposed at the microtubule surface and are the main site of 

posttranslational modifications ((Redeker et al., 1992); (reviewed in Cooper and 

Wordeman, 2009)). The only known crystal structure of DRG1 exist from its yeast 

homolog Rbg1 and showed a highly positively charged area upon electrostatic 

surface potential analysis (Francis et al., 2012). Modelling the structure of 

Xenopus DRG1 based on the Rbg1 structure, showed a similar surface. The 

positive charges stretch over the HTH, TGS, S5D2L and the G-domain opposite of 

the GTP binding pocket. It is likely that this area is the binding site for 

microtubules, in agreement with the fact that the HTH and TGS domain 

individually but also the truncated version of DRG1 lacking the TGS and/or HTH 

domain bound microtubules. The recombinant S5D2L domain alone did not bind 

microtubules, either it was not folded properly or its affinity was too low without the 

neighbouring areas. Concomitant with many individually binding domains, a 

functional GTPase domain of DRG1 was not necessary for microtubule binding. 

Surprisingly, DRG1 also bound to microtubules lacking the extreme C-terminus, 

removed by the protease subtilisin. Although the binding affinity might have been 

a bit reduced. For the drosophila non-claret disjunctional (Ncd) kinesin-like protein 

binding to two acidic patches in each tubulin monomer was observed. Both acidic 

clusters are in the C-terminal part of tubulin but the cleavage site for subtilisin lies 

in between these, thus, keeping and removing one acidic cluster each by subtilisin 

digestion. Thus, Ncd binding to subtilisin-digested microtubules was decreased 

but present (Karabay and Walker, 2003). Considering that the positively charged 
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surface of DRG1 stretches over the whole molecule and additionally, that many 

domains bound microtubules, it seems reasonable that the DRG1 binding site/s in 

the tubulins stretches over an extended area, from the extreme C-terminus further 

down. 

DRG1 bound microtubules in three different ways: immobile, slow or fast diffusive. 

It was excluded that the three states represented different nucleotide-binding 

states as all three binding populations were also observed in the presence of 

GTPγS, even if overall binding was slightly reduced. The different binding 

populations could either represent different functions such as bundling versus 

polymerization or different oligomeric states. These scenarios could also be linked: 

different oligomeric states could induce different ways of binding and could be 

linked each to a specific function. The proportions of the different binding 

populations were concentration dependent. The lower the DRG1 concentration, 

the more DRG1 molecules bound in an immobile way. This fits to the idea that 

different binding populations could represent different oligomeric states: if the 

concentration is higher, more DRG1 molecules might oligomerize into bigger 

complexes. Why the interaction times increased with smaller DRG1 

concentrations remains currently unclear. In general, the diffusion on the 

microtubule lattice resembled other proteins that target the microtubule ends, 

facilitated by the diffusion on the microtubule, to perform their functions there, e.g. 

MCAK and EB1 (Chen et al., 2014; Helenius et al., 2006). 

As expected for a protein with several microtubule binding domains, full-length 

DRG1 bundled microtubules, while DRG1 fragments did not. Microtubule bundling 

is often involved in stabilizing microtubules, for instance, in Ptk cells, roughly 20-

30 kinetochore microtubules bundle into each k-fiber (McDonald et al., 1992); 

neuronal axons contain microtubule bundles that serve as their structural 

backbone as well as transport track between the cell body and the distal synapse 

(reviewed in Voelzmann et al., 2016) and crosslinking at the microtubule ends can 

form microtubule asters (reviewed in Subramanian and Kapoor, 2012). 

DRG1 was indeed able to prevent microtubule disassembly on ice shown in a 

minimal in vitro system in which tubulin was first polymerized in the presence of 

DRG1 followed by incubation on ice. But also in mitotic HeLa cells, DRG1 knock-

down by siRNA slowed down microtubule re-growth after cold shock. Small 



31 
 

spindle remnants were more often observed in control cells after cold shock. 

These remnants could facilitate re-assembly of the mitotic spindle. Acceleration of 

microtubule re-polymerization catalyzed by DRG1 is also possible.  

DRG1 indeed polymerized tubulin into microtubules in a concentration below the 

critical concentration which is necessary for tubulin to polymerize without 

additional factors (Fygenson et al., 1994). The in vitro microtubule polymerization 

assays used, did not allow to distinguish between microtubule nucleation and 

elongation. As for the bundling activity, truncated versions of DRG1 showed no 

polymerization or stabilization activities if the same conditions as for the wild-type 

were used. It is possible that some fragments would be able to bundle, polymerize 

or stabilize microtubules in higher concentrations, but the activities were definitely 

reduced compared to the wild-type. It was previously described in a different 

context that DRG1 needs its full-length protein to function properly: triple deletion 

of the DRG1 and 2 homologs, Rbg1 and 2, together with the ATPase Slh1 caused 

a severe growth effect in yeast that could only be rescued by full-length Rbg1 but 

not by any of its truncations (Daugeron et al., 2011). 

 

In contrast to the necessity for all domains, the GTPase activity was not necessary 

for microtubule bundling, polymerization or stabilization as observed when the 

dominant DRG1 mutants were used in the in vitro assays. DRG1 was described 

before to have an intrinsic GTPase activity that does not require a GAP (Francis et 

al., 2012; O'Connell et al., 2009; Perez-Arellano et al., 2013). Thus, it seems likely 

that DRG1 needs its GTP hydrolysis activity in a different context, for instance in 

chromatin decondensation but not for its microtubule-associated functions. 

Although not using its GTPase activity in this context, it is surprising and unusual 

that the GTPase DRG1 regulates other GTPases, namely the tubulins. 

 

DRG1 could perform its microtubule-associated functions independently of each 

other for instance regulated by the oligomeric state as described above, but it is 

more conceivable that the functions are connected and influence each other: the 

bundling might stabilize microtubules preventing microtubule disassembly after a 

cold shock, respectively; the observed stabilization could also be a consequence 

of highly accelerated polymerization; the bundling could also increase the 

microtubule density around DRG1 and thus increase the polymerization in a 



32 
 

specific location; the diffusion could increase the targeting of DRG1 to the 

microtubule ends where it functions as polymerase. Different scenarios are 

conceivable. 

Certain observed characteristics of DRG1 were also described for motor proteins. 

Kinesin-1 is a plus end directed motor protein which binds microtubules not only 

via its N-terminal motor domain but also has a C-terminal microtubule binding site 

which attaches to a second microtubule. If two antiparallel microtubules are bound 

by two oppositely arranged kinesins and the kinesin motor domains move towards 

the plus ends, the two microtubules will slide away from each other. However, if 

the two microtubules are arranged in parallel, the forces of the two kinesins will 

balance each other resulting in cross-linking but not sliding of the two microtubules 

(reviewed in Lu and Gelfand, 2017). DRG1 also bundled and moved on 

microtubules. Although the TGS domain and the globular assembly of the HTH 

and S5D2L domains could function equivalent to the two globular heads of 

molecular motors, it seems rather unlikely. The DRG1 structure and size is most 

likely to small for “walking” like a typical motor complex. Second, kinesins and 

dyneins move by conformational changes induced through ATP hydrolysis while 

the microtubule-associated functions of DRG do not require GTP hydrolysis. Third, 

while kinesins and dyneins usually show a specificity for one direction, the slow 

diffusion of DRG1 seemed bidirectional rather resembling the depolymerase 

MCAK (Helenius et al., 2006). Several microtubule-binding proteins diffuse 

randomly, one-dimensional on the microtubule driven by thermal energy (reviewed 

in Cooper and Wordeman, 2009). Next to increasing the chance of reaching the 

microtubule ends compared to diffusion in solution, it was suggested to facilitate 

moving around obstacles on the microtubule surface, reaching the microtubule 

ends more rapidly over short distances and needing no energy compared to 

directed motility of motor proteins. Interestingly, some kinesins were observed to 

also have a component of random diffusive movement on top of the directed motor 

motility.  

 

DRG1 shows GTPase activity over a wide range of pHs and temperatures with an 

optimum at pH 8 to 9 and 42°C (Perez-Arellano et al., 2013) suggesting that it 

might be involved in stress response or other situations that are laborious for the 

cell. Although, concerning the GTPase activity, preferentially active at warm 
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temperatures, stabilization of microtubules during cold shock might also be an 

extreme situation that is tolerated better from DRG1 compared to other proteins. 

 

The in vitro experiments do not distinguish between mitotic and interphase 

microtubule dynamics. The cold shock experiments in HeLa cells showed that 

DRG1 is involved in spindle dynamics during mitosis, though. Furthermore, when 

DRG1 was knocked-down in HeLa cells, the timing from prophase to anaphase 

onset and the timing from aster to anaphase spindle formation were extended. 

Although, the spindle size and intensity measured via the eGFP-tubulin signal 

were not changed, the prolonged timing of mitotic phases occurred most likely due 

to a slower formation of the mitotic spindle. This is in agreement with the slower 

re-growth of the mitotic spindle after a cold shock in cells lacking DRG1. The 

slower assembly can be explained by the polymerization activity of DRG1 

accelerating the assembly directly or by the stabilization and bundling activities of 

DRG1 that might prevent disassembly of already assembled spindle microtubules. 

Despite convincing results for a mitotic involvement, it is possible that DRG1 also 

plays a role in microtubule dynamics during interphase when all the mentioned 

activities are equally important for instance in transport processes and cell shape 

establishment and maintenance (reviewed in de Forges et al., 2012). 

 

The fact that it took a long time to identify DRG1 as microtubule-associated protein 

might be explained, next to other reasons, by the many partially redundant 

pathways involved in spindle assembly causing individually often only small 

phenotypes when inhibited. Nevertheless, each missing factor and mis-regulated 

pathway increases the chance of chromosome segregation errors. Thus, it is not 

surprising that mis-regulation of microtubule-associated proteins is often observed 

in different disease contexts (e.g. Alonso et al., 2016; Du et al., 2016; Kumar et 

al., 2016; Schneider et al., 2017). 
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8.3 Possible connections of the chromatin- and microtubule-associated 

functions of DRG1 

In this work, DRG1 was identified as chromatin decondensation factor as well as 

microtubule-associated protein with various functions. Both of these fields of 

activities are performed during mitosis, spindle assembly in the beginning, 

chromatin decondensation at the end. It is conceivable that these two pathways 

and the functions of DRG1 are connected or independent of each other. If the 

latter holds true, regulation and discrimination of the functions can occur spatially 

or temporally. Spindle assembly happens prior to chromatin decondensation, 

DRG1 or its targets could therefore be temporally modified by posttranslational 

modifications or interaction partners, so that DRG1 can only act in one of the two 

pathways at a certain time point during the cell cycle or developmental stage. 

Although the latter, different functions of DRG1 during different developmental 

stages, seems less likely than cell cycle dependent functions considering the 

activities of DRG1. Regulation via interaction partners could for instance occur by 

binding to DFRP1 or by tetramer formation of DRG1, DRG2, DFRP1 and DFRP2. 

Also the ratio of DRG1 and DRG2 might be important. For chromatin 

decondensation a complex of these four proteins might be important as they co-

depleted together, or at least DRG1 and DRG2 might function redundantly or in 

association in this case. DFRP2 did not bind to microtubules, even not in HeLa 

nuclear extract, suggesting that the microtubule-associated functions of DRG1 are 

not performed in a tetramer complex.  

 

A spatial regulation is also conceivable. Regulations via different localizations in 

the cell seems thereby much more likely than by different tissue types. If DRG1 

performs its microtubule-associated functions in the early steps of spindle 

assembly, the chromatin might still be excluded from the microtubule-associated 

DRG1 molecules by the not yet fully disassembled nuclear envelope. Same if 

DRG1 performs its chromatin-associated functions in the late steps of chromatin 

decondensation, the chromatin might already (partially) be excluded from the 

cytosol by the assembling nuclear envelope, protected from microtubules. Thus, in 

this scenario, DRG1 would perform its microtubule- and chromatin-associated 

functions not only temporally but also spatially separated. 
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On the other hand, several scenarios of a connection of spindle assembly and 

chromatin decondensation are imaginable. The role of microtubules in nuclear 

envelope reformation is controversial. While on the one hand it seems that 

microtubules need to be removed before reformation of the nuclear envelope in 

order to not sterically inhibit membrane closure and also to prevent certain 

signaling molecules that delay nuclear reformation from reaching the nucleus, 

microtubules on the other hand deliver membranes and nuclear pore complex 

components to nascent nuclei. Concomitant with this, nuclei formed upon 

microtubule depletion show a reduced size while nuclear shape is disturbed upon 

excessive microtubule polymerization (reviewed in Xue and Funabiki, 2014). 

Furthermore, nuclei assembled in the presence of the microtubule-depolymerizing 

drug nocodazole or a kinesin inhibitor lack nuclear pore complexes which is in 

agreement with the decreased size possibly caused by lacking nuclear import 

(Ewald et al., 2001).  

Either way, even if the majority of microtubules needs to be removed, it is possible 

that a specific subset of microtubules remains to deliver necessary nuclear 

building blocks but maybe also to pull the chromatin apart from each other, 

inducing chromatin decondensation. Microtubules exist in many different isoforms, 

can be modified by a plethora of posttranslational modifications (reviewed in 

Gadadhar et al., 2017) and can be covered by specific factors. By this, a certain 

subset of microtubules that is responsible for pulling chromatin apart might be 

distinguishable from the bulk microtubules that need to disassemble in order to 

allow nuclear envelope reassembly. But also if this is not the case and all 

microtubules need to be removed for chromatin decondensation, DRG1 might 

connect the two pathways and needs to move from one target to the other, maybe 

even by physical connections of microtubules to chromatin that then get resolved. 

Besides DRG1, also RuvBL1/2 are involved in spindle assembly (reviewed in 

Nano and Houry, 2013) and chromatin decondensation (Magalska et al., 2014), 

supporting the idea that these processes are connected or at least regulated in 

dependence of each other, meaning for instance spindle assembly needs to get 

switched off in order to let chromatin decondensation happen. ISWI is another 

protein that shows chromatin remodeling (reviewed in Tyagi et al., 2016) but also 

microtubule-associated functions (Yokoyama et al., 2009).  

 



36 
 

For interphase it is indeed known that the microtubule cytoskeleton influences 

chromatin structure even if no polymerized microtubules are present in the 

nucleus and a direct physical link is not existing (reviewed in Maizels and Gerlitz, 

2015). This can happen by factors that are transported via microtubule motors to 

the centrosome which is in close proximity to the nucleus at that stage and 

therefore facilitates import to the nucleus. Furthermore, soluble parts of the 

cytoskeleton like tubulins are found under certain conditions in the nucleus where 

they might directly influence chromatin structure and last, mechanical forces by 

the microtubule cytoskeleton can influence chromatin arrangements via nuclear 

pore and other complexes that bridge these two. In mammalian melanoma cells, 

heterochromatin accumulates in the nucleus close to the site where the 

centrosome or microtubule organizing center is. The same was observed for 

centromeric chromatin in drosophila embryos during cellularization and in S. 

pombe. 

 

During mitosis microtubules and their molecular motor proteins are involved in 

arranging the chromosomes on the metaphase plate and in pushing the 

chromosome arms in the right positions to make the kinetochores accessible for 

bipolar microtubule-end on attachment (reviewed in Heald and Khodjakov, 2015). 

If the mitotic interaction with microtubules primes the chromosomes also further for 

chromatin decondensation and the following interphase chromatin arrangement 

remains open. Similarly, if this is the case, which role DRG1 and RuvBL1/2 play in 

this context is currently unclear. It was described before that the individual 

chromatin position in the reforming nucleus is influenced by the timing of sister 

chromatid separation which is in turn perhaps mediated by the amount of 

centromeric heterochromatin (Gerlich et al., 2003) and that chromatin 

decondenses in a radial expansion mechanisms involving little rearrangements 

which leads to chromosomes with the same neighbouring chromosomes during 

mitosis and interphase (Manders et al., 2003). This leaves room for various 

hypotheses about further connections of the mitotic spindle and re-formation of the 

interphase chromatin state. 

 

DRG1 was previously also described to be involved in translation as it co-

fractionates with poly-ribosomes (Daugeron et al., 2011; Francis et al., 2012; 
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Ishikawa et al., 2009; Wout et al., 2009), although the exact function in this context 

remains obscure. The ribosomal function of DRG1 seems not to be connected to 

the microtubule-associated functions as the latter ones were shown in a direct, 

minimal system not requiring translation and not including more factors besides 

DRG1, tubulins, GTP and buffer components. The chromatin decondensation 

function is as well uncoupled from translation as the in vitro reconstitution was 

performed in the presence of the translational inhibitor cycloheximide. Thus, either 

DRG1 plays an additional role in translation, unconnected to its microtubule- and 

chromatin-associated functions or it is not really involved in ribosomal functions 

and rather the ribosome functions as sequestering site and therefore regulation of 

DRG1. An additional function in translation could be spatiotemporal regulated and 

separated from the other functions as described before, for instance different 

cellular localizations, interaction partners or cell cycle stages could determine the 

function. As all three processes mainly happen at different times of the cell cycle, 

a regulation in this manner seems conceivable. 

 

Interesting to note, DRG1 does not need its GTPase activity for the microtubule-

associated functions while it is important for chromatin decondensation. Although 

it is possible that the inhibition of chromatin decondensation by addition of the 

dominant mutants was caused by a similar effect as the wild-type addition and not 

by the mutations. In this case a second GTPase must be involved in chromatin 

decondensation which was inhibited by GTPγS. 

 

Although many open questions remain regarding the mechanistic details and 

connections of the different pathways, DRG1 was discovered to be involved in 

chromatin decondensation at the end of mitosis as well as being a microtubule 

binding, bundling, polymerization and stabilization factor that is involved in spindle 

assembly dynamics in cells. Being involved in so fundamental pathways essential 

for the healthiness of the cell, it will be exciting to find out more about the exact 

functions, targets and interaction partners of DRG1 in the future. 
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2Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
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SUMMARY

Chromatin undergoes extensive structural changes
during the cell cycle. Upon mitotic entry, metazoan
chromatin undergoes tremendous condensation,
creating mitotic chromosomes with 50-fold greater
compaction relative to interphase chromosomes. At
the end of mitosis, chromosomes reestablish func-
tional interphase chromatin competent for replica-
tion and transcription through a decondensation pro-
cess that is cytologically well described. However,
the underlying molecular events and factors remain
unidentified. We describe a cell-free system that re-
capitulates chromatin decondensation based on pu-
rified mitotic chromatin and Xenopus egg extracts.
Using biochemical fractionation, we identify RuvB-
like ATPases as chromatin decondensation factors
and demonstrate that their ATPase activity is es-
sential for decondensation. Our results show that
decompaction of metaphase chromosomes is not
merely an inactivation of known chromatin conden-
sation factors but rather an active process requiring
specific molecular machinery. Our cell-free system
provides an important tool for furthermolecular char-
acterization of chromatin decondensation and its
coordination with concomitant processes.

INTRODUCTION

Cells have evolved highly elaborate mechanisms to transmit ge-

netic information accurately to their offspring. Thesemechanisms

often involve major cellular reorganization. In metazoa, the nu-

cleus entirely disintegrates during each round of cell division

(for a review, see Kutay and Hetzer, 2008). At the beginning of

mitosis, the nuclear envelope breaks down and the chromatin

condenses to rod-shaped chromosomes, which are captured

by the mitotic spindle and segregated to the emerging daughter

cells. The two resulting cells and their nuclei must therefore rees-

tablish the functional interphase state. This reestablishment dur-

ing mitotic exit requires the complete reversal of events that

occurred at the onset of mitosis. The chromosomes decondense,

and the nuclear envelope and other nuclear structures reform.
Developme
Whereas mitotic entry and the processes leading to success-

ful spindle formation and chromatin segregation are compara-

tively well studied (Walczak et al., 2010; Walczak and Heald,

2008) much less is known about the important processes at

the end of mitosis. In animal cells, mitotic exit is driven by the

inactivation of mitotic kinases (Peters, 2006), the extraction of

ubiquitinylated Aurora B from chromosomes by the AAA+

(ATPases associated with diverse cellular activities) ATPase

p97 (Ramadan et al., 2007), and the activation of several protein

phosphatases, most prominently, PP1 (Landsverk et al., 2005;

Steen et al., 2000; Thompson et al., 1997) and PP2A (Schmitz

et al., 2010). These events collectively result in the reversal of

mitotic phosphorylation on a broad range of substrates (De-

phoure et al., 2008; Olsen et al., 2010), yet little is known about

the actual machineries that mediate specific mitotic exit events

(Wurzenberger and Gerlich, 2011). This is especially evident for

chromatin decondensation, a prerequisite for the formation of

interphase nuclear structures. Metaphase chromosomes are

highly condensed—DNA compaction is up to 50-fold higher

than in interphase (Belmont, 2006)—but how this condensation

is achieved is still ill defined (for a review, see Hansen, 2012;

Ohta et al., 2011). However, the process that reorganizes the

genome into a structure competent for transcription and replica-

tion is largely unchartered territory. We are ignorant about the

proteins that mediate chromatin decondensation, the distinct

steps in this most likely multistep procedure, and its regulation.

To date, chromatin decondensation has mainly been exam-

ined in the context of sperm chromatin remodeling after fertiliza-

tion. Highly compacted sperm DNA undergoes reorganization

due to the presence of nucleoplasmin (NPM2) stored in oocyte

cytoplasm (Philpott et al., 1991). This process has been inten-

sively studied using Xenopus laevis egg extracts. Xenopus

sperm chromatin consists of a complex mixture of sperm-spe-

cific basic proteins and histones H3 and H4. NPM2 replaces

these basic proteins from the male pronucleus with histones

H2A and H2B stored in the egg, relaxing the tightly wound sperm

chromatin structure (Philpott and Leno, 1992). However, as

mitotic chromatin is already structured around H2A and H2B

and does not contain these sperm-specific proteins, chromatin

decondensation at the end of mitosis is likely to proceed by

another yet-unknown mechanism.

Here, we describe a cell-free assay that faithfully recapitulates

decondensation of mitotic chromatin. Using this assay, we

show that chromatin decondensation requires ATP and GTP hy-

drolysis and is, thus, an active process. We identify RuvB-like
ntal Cell 31, 305–318, November 10, 2014 ª2014 Elsevier Inc. 305
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Figure 1. Reconstitution of Chromatin Decondensation in Xenopus Egg Extracts

(A) Time course of the in vitro decondensation reaction. Mitotic chromatin clusters from HeLa cells were incubated with postmitotic Xenopus egg extracts for the

indicated time. Samples were fixed with 4% PFA and 0.5% glutaraldehyde, stained with DAPI, and analyzed by confocal microscopy. For quantification of the

decondensation reaction, the smoothness of the boundary of the chromatin (light gray) and the homogeneity of DAPI staining (dark gray) were analyzed. The

means (± SEM) of three independent experiments are shown, each including at least ten chromatin substrates for each time point, ***p < 0.001 by one-way

ANOVA, Dunnett’s C post hoc test. rel, relative.

(B) Mitotic chromatin clusters from HeLa cells were incubated for 120 min with CSF-arrested Xenopus egg extracts in the absence or presence of 1 mM CaCl2,

which induces mitotic exit. Samples were fixed, and the decondensation reaction was quantified as in (A). The means (±SEM) of three independent experiments

are shown, each including at least ten chromatin substrates, ***p < 0.001 by Mann-Whitney test.

Scale bars, 5 mm. See also Figure S1.
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ATPases as crucial chromatin decondensation factors and show

that their ATPase activity is essential for decondensation. Intri-

guingly, bothmetazoan RuvB-like proteins, RuvBL1 and RuvBL2

can function alone in chromatin decondensation in contrast

to many other RuvBL1/RuvBL2-mediated processes, which re-

quire both components.

RESULTS

A Cell-free Assay to Monitor Mitotic Chromatin
Decondensation
Chromatin decondensation at the end of mitosis is underinvesti-

gated due to a lack of appropriate assays tomonitor the process.

To overcome this limitation, we have developed a cell-free assay

that recapitulates chromatin decondensation in vitro. We incu-

bated highly condensed chromosome clusters isolated from
306 Developmental Cell 31, 305–318, November 10, 2014 ª2014 Els
mitotic HeLa cells with cytosol and purified membranes derived

from Xenopus egg extracts mimicking the postmitotic state.

Using DAPI staining and confocal microscopy, we observed

sequential morphological changes of chromatin structure (Fig-

ure 1A) that resembled chromosome decondensation in cells ex-

iting mitosis (see Figure S1A available online). Highly compacted

distinguishable metazoan chromosomes decondensed in a

time-dependentmanner. After 10–20min, the individual chromo-

somes merged to an apparently single corpus, which became

progressively spherical and finally adopted an interphasic nu-

clear appearance. Chromatin decondensation was not induced

by the incubation of chromatin substrates with buffer alone, indi-

cating the presence of an essential decondensation activity in

egg extracts. Mitotic (cytostatic factor [CSF]-arrested) egg ex-

tracts did not support the decondensation of the chromatin

substrate (Figure 1B). However, addition of 1 mM Ca2+ ions to
evier Inc.
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mitotic extracts, which causes mitotic exit (Murray, 1991), did

induce chromatin decondensation, indicating that postmitotic

conditions are required for the process. An equal progressive

decondensation was observed when, instead of HeLa cell

chromatin, mitotic chromatin generated from Xenopus sperm

DNA was used (Figure S1B) demonstrating the universality of

the process.

We quantified mitotic HeLa chromatin decondensation based

on the homogeneity of DAPI staining and the smoothness of the

chromatin boundary (Figure 1A; see Experimental Procedures

for details). These features were chosen with the following ratio-

nale: when chromatin is completely decondensed, the nuclear

shape is spherical and bulk chromatin appears to be distributed

rather homogenously; when chromatin is condensed, the sur-

face appears rough and bulk chromatin is clustered in distinct

chromosomes. Both parameters increased over the time course

of HeLa chromosome decondensation and reliably built up the

process, indicating a highly reproducible progression of chro-

matin decondensation in our assay system.

In addition to chromatin decondensation, our in vitro system

recapitulates several other mitotic exit events. Histone H3

phosphorylation at serine 10, a marker of the mitotic state of

chromatin (Hendzel et al., 1997), was rapidly diminished on incu-

bation with postmitotic Xenopus egg extract (Figure 2A, upper

panel). Dephosphorylation of this site also occurredwhenmitotic

chromatin was incubated with buffer alone, indicating that the

relevant phosphatase activity is present on mitotic chromatin.

However, mitotic chromatin incubated with buffer remained

condensed (Figures 1A and 2A), consistent with previous find-

ings that this modification is not essential for the establishment

or maintenance of condensed mitotic chromatin in yeast or ver-

tebrates (Hsu et al., 2000; MacCallum et al., 2002).

The decondensing chromatin in our assay system was

enclosed by membranes, which eventually formed a smooth nu-

clear envelope (Figures 2B and 2C). The nuclear envelope con-

tained nuclear pore complexes, gatekeepers of the nucleus

that mediate nuclear import and export. Nuclear pore complex

formation was analyzed by immunofluorescence with mAB414

(Davis and Blobel, 1986), an antibody that recognizes four

different nuclear pore complex proteins (Figure 2A, middle

panel). Nuclear pore complex proteins labeled by this antibody

were first detected approximately 20 min after initiation of

decondensation. After a 60–120 min incubation in postmitotic

Xenopus extracts, the nuclei were capable of nuclear import

and export (Figure 2D). Taken together, these results show that

our cell-free system recapitulates chromatin decondensation

as well as nuclear envelope and pore reformation and is, thus,

an invaluable tool for studying mitotic exit events. Notably, in

the absence of added membranes, chromatin decondensation

similarly occurred, although nuclear envelopes and pore com-

plexes, as expected, did not reform (data not shown). This

indicates that chromatin decondensation does not require a re-

forming nuclear envelope and functional pore complexes, but it

is possible that this is a peculiarity of the cell-free assay.

Chromatin Decondensation Requires ATP
and GTP Hydrolysis
Having established the versatility of the assay, we first investi-

gated the basic requirements of chromatin decondensation.
Developme
The removal of endogenous nucleoside triphosphates from

the extracts by hexokinase treatment blocked chromatin

decondensation (Figure S2A), indicating that some energy-

consuming step is required. Nonhydrolyzable ATP or GTP ana-

logs inhibited chromatin decondensation, suggesting that both

ATP- and GTP-dependent activities are involved in chro-

matin decondensation (Figure 3). ATP dependence might be

explained by a requirement for the ATPase p97, which removes

Aurora kinase B from chromatin during decondensation

(Ramadan et al., 2007). However, inhibition of Aurora kinase

B by hesperadin, which bypasses the need for p97 in this pro-

cess (Ramadan et al., 2007), did not restore chromatin decon-

densation in the presence of nonhydrolyzable ATP analogs,

suggesting that at least one other ATPase is involved (data

not shown).

Although DNA transcription is thought to be absent in Xenopus

egg extracts (Newport and Kirschner, 1982), we wanted to

exclude that transcriptional activity is required for chromatin

decondensation in our assay system. As expected, addition of

the transcription inhibitors actinomycin D or 5,6-dichloro-1-b-

D-ribofuranosylbenzimidazole did not affect chromatin decon-

densation (Figure S2B).

RuvBL1 and RuvBL2 Can Function Individually as
ATPases in Chromatin Decondensation
To identify essential chromatin decondensation factors, we

fractionated the cytosol derived from postmitotic Xenopus egg

extracts and assayed for chromatin decondensation activity. Dif-

ferential ammonium sulfate precipitation yielded two fractions

that individually had severely reduced decondensation activity

but were highly active when combined (Figure 4A; Figure S3A).

We further purified the first of these ammonium sulfate fractions

by ion exchange and size exclusion chromatography (see Exper-

imental Procedures for detailed information) and assayed the ac-

tivities of the obtained fractions in combination with the second

ammonium sulfate fraction. By mass spectrometry analysis of

the gel filtration fractions with highest decondensation activity

(G13–G15), we identified several candidate chromatin decon-

densation factors, including the ATPase RuvBL2. RuvBL2 is

known to form a double hexameric ring complex with a second

ATPase, RuvBL1 (Jha and Dutta, 2009; Puri et al., 2007). Indeed,

western blot analysis confirmed the presence of RuvBL1 and

RuvBL2 in the active fractions throughout the purification proce-

dure and enrichment in the most active gel filtration fractions

(Figure 4A), which makes these proteins possible candidates

for the decondensation activity. RuvBL1/RuvBL2 (also known

as RVB1/RVB2, pontin/reptin, and TIP49/TIP48) are two highly

conserved members of the AAA+ superfamily. They associate

with diverse chromatin remodeling complexes, which are impli-

cated in a variety of nuclear processes, including transcriptional

regulation, DNA damage response, and small nuclear ribonu-

cleoprotein particle (snoRNP) assembly (for a review, see Jha

and Dutta, 2009; Nano and Houry, 2013; Tosi et al., 2013).

To assess the relevance of RuvBL1 and RuvBL2 for chro-

matin decondensation, we performed antibody inhibition exper-

iments in the decondensation assay. The addition of purified

anti-RuvBL1 or anti-RuvBL2 immunoglobulin G (IgG) to the

reactions significantly impaired chromatin decondensation

compared to the addition of control IgG (Figures 4B and S3B).
ntal Cell 31, 305–318, November 10, 2014 ª2014 Elsevier Inc. 307
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Figure 3. Chromatin Decondensation Re-

quires ATP and GTP Hydrolysis

HeLa mitotic chromatin was decondensed in the

presence of 10 mM ATPgS, 10 mM GTPgS, or

buffer control (CTRL). Samples were fixed with 4%

PFA and 0.5% glutaraldehyde at indicated time

points, analyzed, and quantified. The means

(±SEM) of three independent experiments are

shown, each including at least ten chromatin

substrates for each time point, ***p < 0.001 by one-

way ANOVA, Dunnett’s C post hoc test. rel, rela-

tive. Scale bar, 5 mm. See also Figure S2.
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Immunodepletion using antibodies against either RuvBL1 or

RuvBL2, respectively, removed both proteins efficiently from

the extracts (Figure 4C), indicating that, in Xenopus egg extracts,

RuvBL1 and RuvBL2 occur mostly together in heteromeric com-

plexes. Both immunodepletion procedures rendered egg ex-

tracts incompetent for chromatin decondensation in contrast

to control depletions (Figure 4D). The addition of purified recom-

binant RuvBL1-RuvBL2 complexes to a final concentration of

0.04 mg/ml, which matches the endogenous concentration (Fig-

ure S3C), was sufficient to rescue the depletion phenotype (Fig-

ure 4D), indicating on-target specificity of the immunodepletion.

These experiments demonstrate that RuvBL1/2 indeed function

in chromatin decondensation and are crucial for this process.

RuvBL1 and RuvBL2 Can Function Individually as
ATPases in Chromatin Decondensation
In many cellular processes, RuvBL1 and RuvBL2 operate

together by forming heteromeric complexes (Jha and Dutta,

2009; Nano and Houry, 2013; Nguyen et al., 2013; Tosi et al.,

2013; Venteicher et al., 2008); however, in some instances, these

proteins act antagonistically (Bauer et al., 2000; Rottbauer et al.,

2002). Surprisingly, the addition of either purified homohexa-

meric RuvBL1 or RuvBL2 complexes to depleted extracts

restored decondensation activity as efficiently as the addition

of the heteromeric RuvBL1-RuvBL2 complex (Figure 5A). This in-

dicates that both proteins can function redundantly and inde-

pendently of each other in this process.

The addition of recombinant ATPase-deficient RuvBL1/2 mu-

tants, either individually or in a heteromeric complex (RuvBL1

D302N/RuvBL2 D298N) (Matias et al., 2006; Mézard et al.,

1997) (Figure S4C), did not rescue the depletion phenotype, indi-
Figure 2. Decondensing Chromatin Assembles into Functional Nuclei

(A) Mitotic chromatin clusters from HeLa cells were incubated with Xenopus egg

shows histone H3 serine 10 phosphorylation (H3P, upper panel), nuclear pore co

(B) For visualization of nuclear envelope reformation, HeLa mitotic chromatin su

perchlorate)-labeledmembranes (upper panel) were added to the egg extracts or t

0.5% glutaraldehyde, stained with DAPI (lower panel), and analyzed by confocal

(C) Chromatin decondensation using HeLa mitotic chromatin was analyzed by tr

with 4% PFA and 2.5% glutaraldehyde, postfixed in 1% OsO4, and stained with 1

stained with uranyl acetate and lead citrate and viewed with a Philips CM10 mic

(D) HeLa mitotic chromatin was decondensed for 120 min. An enhanced green

substrate containing a nuclear localization signal and a nuclear export signal (midd

300 nM leptomycin B. Samples were stained with DAPI and analyzed by confoc

ments, each including at least 100 randomly chosen chromatin substrates, is sh

Scale bars, 5 mm.
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cating that the ATPase function of either proteins is required for

its role in chromatin decondensation (Figure 5B). The addition

of excess RuvBL1 D302N, RuvBL2 D298N, or the RuvBL1

D302N/RuvBL2 D298N complex to untreated extracts inhibited

chromatin decondensation, while the wild-type proteins and

complexes had no effect (Figures 5C and S4A). RuvB-like

ATPases perform their different cellular functions in conjunction

with a variety of cofactors (for a review, see Jha and Dutta,

2009; Nano and Houry, 2013), and this is most likely also the

case for chromatin decondensation (see Discussion). Thus, the

dominant-negative effect of ATPase-deficient RuvBL1/2mutants

is likely to be caused by a sequestration of these cofactors.

Together, these experiments using ATPase-deficient RuvBL1/2

versions demonstrate that chromatin decondensation depends

on ATPase-proficient RuvB-like proteins.

Although RuvB-like proteins are required for chromatin decon-

densation, they are not sufficient. When purified recombinant

RuvBL1, RuvBL2, or the heteromeric RuvBL1/2 complex were

added to HeLa mitotic chromatin in buffer in the presence of

ATP, no chromatin decondensation was detected (Figure S4B),

indicating that other factors are also crucially required (see

Discussion).

RuvBL1 and RuvBL2 Localize on the Decondensing
Chromatin
We next analyzed the localization of RuvBL1 and RuvBL2 during

mitotic exit. Consistent with their role in chromatin decondensa-

tion, RuvBL1 and RuvBL2 localize and enrich on postmitotic de-

condensing chromatin, both in the in vitro assay (Figure 6A) and

in HeLa cells (Figure S5A). Both RuvB-like proteins are excluded

from chromatin during earlier stages of mitosis, including
extracts for the indicated time and fixed with 4% PFA. Immunofluorescence

mplexes (NPC, middle panel), and chromatin (DAPI).

bstrates and DiIC18 (1,10-dioctadecyl-3,3,30,30-tetramethylindocarbocyanine

he buffer control. Sampleswere fixed at indicated time points with 4%PFA and

microscopy.

ansmission electron microscopy. Samples were fixed at indicated time points

% uranyl acetate. After embedding in Epon, ultrathin sections (50–70 nm) were

roscope.

fluorescent protein (EGFP)-fused import substrate (left column) or a shuttling

le and right column) was added. Nuclear export was inhibited by the addition of

al microscopy. The weighted average percentage of two independent experi-

own. Diamonds indicate data points of the individual experiments.
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metaphase in agreement with previous reports (Gartner et al.,

2003; Sigala et al., 2005).

When depleting the endogenous RuvBL1/2 complex, both

recombinant RuvBL1 and RuvBL2 could be detected on the

chromatin template (Figure 6A), indicating that both proteins

can independently localize to chromatin. This observation is

consistent with the finding that either homomeric complex can

substitute the heteromeric complex to support chromatin decon-

densation (Figure 5A). The ATPase-deficient mutants similarly

localized to chromatin, indicating that the ATPase function is

not required for chromatin localization.

Having identified RuvBL1/2 as chromatin decondensation

factors, we analyzed the fate of known chromatin condensation

factors on the chromatin on depletion of RuvB-like proteins.

Topoisomerase II, KIF4A, and the condensin II complex were de-

tected on the chromatin at all stages of the decondensation re-

action (Figures 6B and S5B), as expected (Gerlich et al., 2006;

Mazumdar et al., 2004; Tavormina et al., 2002). A similar pattern

was observed for Repo-Man, also known as CDCA2, which re-

cruits the protein phosphatase PP1 to chromatin during mitotic

exit and was shown to coordinate chromatin decondensation

and nuclear envelope reformation (Vagnarelli et al., 2011); and

for Mel28 (also referred to as ELYS), a chromatin-binding protein

that acts as a seeding point for nuclear pore complex formation

(Franz et al., 2007). The condensin I complex is lost from the

chromatin in the course of decondensation (Gerlich et al.,

2006). In all instances, depletion of RuvBL1/2 did not affect the

spatiotemporal localization of these proteins on decondensing

chromatin, indicating that RuvB-like ATPases act independently

of these factors during decondensation.

RuvB-like ATPases Are Not Required for Nuclear
Envelope and Pore Complex Formation
Our data show that the RuvB-like ATPases function as key de-

condensation factors of mitotic chromatin. In organisms un-

dergoing open mitosis, the nuclear envelope and nuclear pore

complexes break down at the beginning of mitosis and reform

on the decondensing chromatin in telophase (for a review, see

(Kutay and Hetzer, 2008; Schooley et al., 2012). On depletion

of RuvBL1/2 in the decondensation assay, we did not observe

formation of a closed nuclear envelope and nuclear pore com-

plex reassembly (data not shown). This could indicate that

RuvB-like ATPases are also involved in these processes. Alter-

natively, chromatin decondensation might be a prerequisite for

nuclear envelope and pore complex assembly. To distinguish
Figure 4. Chromatin Decondensation Requires RuvB-like ATPases

(A) Xenopus egg extracts were fractionated by differential ammonium sulfate prec

scheme on the left with the fractions showing decondensation activity in black)

chromatin after 120 min. For ion exchange and size exclusion fractions, reaction

cipitation. The lower panels show the distribution of RuvBL1 and RuvBL2 in fractio

analysis of one fractionation experiment is shown. FT, flowthrough. rel, relative.

(B) Chromatin decondensation on HeLamitotic chromatin was performed for 120

control IgGs.

(C) Western blot of untreated (UNTR), mock, and RuvBL1/2-depleted extracts, the

RuvBL2 IgG-bound beads, respectively. NPM2 serves as a control protein unaff

(D) Mock or RuvBL1/2-depleted extracts supplemented with buffer or purified r

concentration) were tested for chromatin decondensation on HeLa mitotic chrom

In (B) and (D), the means (±SEM) of three independent experiments are shown, ea

Dunnett’s C post hoc test. Scale bars, 5 mm. See also Figure S3.
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these two possibilities, we sought to bypass the need of

RuvBL1/2 for chromatin decondensation by using an already de-

compacted chromatin template. For this, Xenopus sperm heads

were incubated in postmitotic egg extracts. In this assay, which

recapitulates the processes naturally occurring after entry of

sperm DNA into an egg, pronuclei with intact nuclear envelopes

and pore complexes are formed, and this system has been

widely used to study these assembly processes (Gant and Wil-

son, 1997). Notably, sperm DNA is, in this experimental setup,

decompacted by the NPM2-mediated exchange of protamines

to histones H2A and H2B (Philpott and Leno, 1992). When sperm

heads were incubated with control or RuvBL1/2-depleted post-

mitotic extracts, pronuclei with closed nuclear envelopes and

intact nuclear pore complexes were formed (Figure 7). These ex-

periments demonstrate that, as expected, RuvB-like proteins are

not required for sperm DNA decompaction. Notably, they are

also not crucial for nuclear envelope and pore complex forma-

tion. In this experimental system, the pronuclei undergo nuclear

expansion after initial NPM2-dependent sperm DNA decompac-

tion. This process, which is also referred to as nuclear swelling/

expansion or secondary decondensation, requires nuclear

import and, thus, a functional nuclear envelope including pore

complexes (Philpott et al., 1991;Wright, 1999). TheDAPI staining

of the pronuclei assembled in the absence of RuvBL1/2 indicates

that this nuclear swelling does not require RuvB-like ATPases.

These data also show that distinct mitotic exit events such as

chromatin decondensation and nuclear envelope/pore complex

reformation can be uncoupled in vitro.

Mitotic chromatin decondensation does not require NPM2,

which, in turn, is needed for sperm DNA decompaction (Fig-

ure S6). This supports the view that sperm DNA and mitotic

chromatin decondensation are mechanistically fundamentally

different.

DISCUSSION

Here, we show that chromatin decondensation can be faithfully

reconstituted in a cell-free assay. Using this system, we demon-

strate that the process requires ATP and GTP hydrolysis. It is

not merely an inactivation of known chromatin condensation

factors but an active process involving specific molecular ma-

chinery. We identify a defined requirement for the RuvB-like

ATPases in chromatin decondensation, but not for nuclear en-

velope and pore complex formation. Our assay system is, there-

fore, a valuable tool for the dissection of the cellular processes
ipitation, ion exchange, and size exclusion chromatography (see fractionation

and were tested for the state of chromatin decondensation on HeLa mitotic

s were performed in the presence of fraction B of the ammonium sulfate pre-

ns analyzed bywestern blotting. Representative quantification andwestern blot

min in the presence of 4 mg/ml affinity-purified IgG against RuvBL1, RuvBL2, or

latter two generated by two passages over control IgG- or anti-RuvBL1 or anti-

ected by this treatment.

ecombinant RuvBL1-RuvBL2 complex (0.04 mg/ml to match the endogenous

atin (120 min time point).

ch including at least 20 chromatin substrates. ***p < 0.001 by one-way ANOVA,
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Figure 5. RuvBL1 or RuvBL2 Alone Is Sufficient to Support Chromatin Decondensation and Require ATPase Activity

(A) RuvBL1/2-depleted extracts (generated by two passages over anti-RuvBL1 or anti-RuvBL2 IgG-bound beads, respectively) were supplemented with purified

recombinant RuvBL1 or RuvBL2 (0.02 mg/ml to match the endogenous concentration) and tested for chromatin decondensation on HeLa mitotic chromatin. rel,

relative.
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that lead to the assembly of functional interphase chromatin

after mitosis.

Cell-free extracts derived from frog eggs, especially from Xen-

opus laevis, have been widely used to study cell cycle regulation

as well as many mitotic and nuclear processes since their devel-

opment and first use 30 years ago (Lohka and Masui, 1983).

These extracts recapitulate complex cellular reactions such as

chromatin condensation, spindle assembly, and nuclear enve-

lope breakdown (Galy et al., 2008; Maresca and Heald, 2006).

Nuclear envelope and pore complex formation has been inten-

sively studied in pronucleus formation using sperm DNA as a

chromatin template (for a review, see Gant and Wilson, 1997).

Here, we usemitotic chromatin to study chromatin decondensa-

tion and nuclear reformation during mitotic exit. We show that

the nuclei formed on the decondensing chromatin contain a

closed nuclear envelope with two membranes and nuclear

pore complexes (Figure 2). These nuclei are competent for nu-

clear import and export and DNA replication (Figure 2D; A.M.

andW.A., unpublished data), showing that they represent a func-

tional interphasic status.

So far, chromatin decondensation has been mainly investi-

gated in the context of male pronucleus formation around sperm

DNA. However, it is unlikely that this involves the same machin-

ery as chromatin decondensation at the end of mitosis. Indeed,

our data show that sperm DNA decompacts in the absence of

the RuvB-like ATPases (Figure 7), which are required for mitotic

chromatin decondensation. In contrast, sperm DNA deconden-

sation depends on the histone chaperone NPM2 (Philpott and

Leno, 1992; Philpott et al., 1991), which conversely is not neces-

sary for mitotic chromatin decondensation (Figure S6), consis-

tent with the fact that NPM2 is absent in somatic cells (Burns

et al., 2003).

In contrast to sperm DNA decompaction, which is an energy-

independent process (Philpott et al., 1991), mitotic chromatin

decondensation requires cellular energy (Figure S2). The inhibi-

tion of mitotic chromatin decondensation observed in the pres-

ence of nonhydrolyzable ATP (Figure 3) suggests that ATPases

are involved in the process. Indeed, we show that RuvB-like

ATPases and, specifically, their ATPase functions are compul-

sory in addition to p97, the only protein previously implicated

in the postmitotic decondensation of chromatin (Ramadan

et al., 2007).

We envision chromatin decondensation as a multistep proce-

dure involving several activities. Indeed, each fraction of our

ammonium sulfate fractionation is largely inactive on its own,

and only when they are recombined is decondensation activity

restored (Figures 4A and S3A). Consistent with the notion of mul-

tiple necessary decondensation factors, RuvB-like ATPases are

not sufficient to promote chromatin decondensation if added

alone to themitotic chromatin template (Figure S4B). Most likely,
(B) Chromatin decondensation was analyzed in RuvBL1/2-depleted extracts (gen

beads) supplemented with ATPase-deficient mutant versions of the RuvBL1, Ru

matching the endogenous concentration. WT, wild-type.

(C) Chromatin decondensation in the presence of 40-fold excess compared to e

RuvBL1-RuvBL2 complex or ATPase-deficient mutants of the respective protein

Samples were analyzed after 120 min. The means (±SEM) of three independent e

0.001 by two-way ANOVA, Sidlak post hoc test for (A) and (B) and by one-way ANO

Figure S4.
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yet-unidentified RuvBL1/2 interacting factors are crucially

required for the RuvBL1/2-mediated step in chromatin decon-

densation as in other processes mediated by these ATPases

(for a review, see Jha and Dutta, 2009; Nano and Houry, 2013).

In addition, chromatin decondensation most likely involves other

RuvBL1/2-independent steps. The inhibition by nonhydrolyzable

GTP (Figure 3) suggests that at least oneGTPase is involved. The

nature of the GTPases is currently unknown but an interesting

avenue for future research.

RuvB-like proteins are highly conserved and essential eukary-

otic AAA+ ATPases involved in a wide range of cellular reactions

as components of large protein complexes (for a review, see Jha

and Dutta, 2009; Nano and Houry, 2013). These include many

chromatin-related, but also other, processes such as chromatin

remodeling, transcriptional regulation, and DNA damage res-

ponse, as well as snoRNP, telomere, and spindle assembly

(Ducat et al., 2008; Ikura et al., 2000; Jónsson et al., 2001; Kro-

gan et al., 2003; Lim et al., 2000; Newman et al., 2000; Shen

et al., 2000; Venteicher et al., 2008; Wood et al., 2000; Zhao

et al., 2005). RuvB-like ATPases show similarity to prokaryotic

RuvB proteins but, because of an insertion into the ATPase

domain, lack the helicase activity found in the bacterial proteins

(Ikura et al., 2000; Matias et al., 2006). Currently, the precise

function of RuvB-like ATPases in the different chromatin remod-

eling and other complexes is unclear (Jha and Dutta, 2009;

Rosenbaum et al., 2013). Here, we add chromatin deconden-

sation, a yet-ill-defined but nevertheless essential process dur-

ing mitosis, to the list of RuvBL1/2-dependent processes. We

show that the ATPase activity of RuvBL1/2 is mandatory for

chromatin decondensation (Figure 5), in contrast to other

RuvBL1/2-dependent processes such as transcriptional regula-

tion (Jónsson et al., 2001). Because RuvB-like ATPases are part

of several chromatin remodeling complexes (for a review, see

Jha and Dutta, 2009; Rosenbaum et al., 2013), it is tempting to

speculate that chromatin decondensation at the end of mitosis

functionally requires histone rearrangements, a hypothesis that

needs to be addressed in the future.

Many RuvBL1/2-dependent processes rely on a heterodode-

cameric complex formed by both proteins (Nguyen et al.,

2013; Tosi et al., 2013; Venteicher et al., 2008; Zhao et al.,

2005), and our results confirm that, also in Xenopus eggs, these

proteins are found to a large extent in heteromeric complexes. In

other processes, such as Polycomb or NF-kB-mediated gene

repression and b-catenin signaling, RuvBL1 and RuvBL2 act

antagonistically (Baek et al., 2002; Bauer et al., 2000; Diop

et al., 2008; Kim et al., 2005; Rottbauer et al., 2002). Our readdi-

tion experiments suggest that RuvBL1 or RuvBL2 alone can fulfil

the RuvB-like dependent functions in chromatin decondensation

and thus, in this context, are redundant (Figure 5). Whether this

feature is also seen in other RuvB-like-dependent processes
erated by consecutive passage over anti-RuvBL1 and anti-RuvBL2 IgG-bound

vBL2, or the RuvBL1-RuvBL2 complex (RuvBL1 D302N and RuvBL2 D298N)

ndogenous concentrations of recombinant wild-type RuvBL1, RuvBL2, or the

s.

xperiments are shown, each including at least 20 chromatin substrates. ***p <

VA, Dunnett’s C post hoc test for (C). WT, wild-type. Scale bars, 5 mm. See also
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Figure 7. RuvB-like ATPases Are Specif-

ically Required for Chromatin Decondensa-

tion during Mitotic Exit

Pronuclei were assembled on Xenopus sperm

chromatin in mock-treated or RuvBL1/2-depleted

extracts (using anti-RuvBL1 or anti-RuvBL2 anti-

bodies). After 120 min, samples were fixed with

4% PFA and 0.5% glutaraldehyde and analyzed

for membrane staining (DiIC18, upper panel) or for

nuclear pore complexes (NPC, lower panel) by

immunofluorescence with the antibody mAB414.

Chromatin was stained with DAPI. Right panel

shows the quantitation of chromatin substrates

with closed nuclear envelopes as weighted

average percentage of two independent experi-

ments, each including at least 100 chromatin

substrates. Diamonds indicate data points of the

individual experiments. Scale bar, 5 mm. See also

Figure S6.

Developmental Cell

RuvBL1/2 in Chromatin Decondensation
remains to be investigated. It is also possible that chromatin de-

condensation constitutes a unique and probably archetypal pro-

cess where RuvBL1 and RuvBL2 can substitute for each other.

Interestingly, RuvB-like ATPases have been implicated in

various human cancers and have been speculated to be a prom-

ising therapeutic target (for a review, see Huber et al., 2008;

Nano and Houry, 2013). Often, the precise function of RuvBL1

and RuvBL2 in pathogenesis is not defined. Whether their role

in chromatin decondensation is relevant for this will be an

exciting and promising avenue for future research.
EXPERIMENTAL PROCEDURES

Cell-free Decondensation of Mitotic Chromatin

Cytosol was prepared by crushing activated Xenopus laevis eggs by a low-

speed centrifugation (20 min at 21,000 3 g) to obtain egg extracts, followed

by high-speed centrifugations (twice, 12 min at 360,000 3 g). Activation of

the eggs—which are naturally arrested in the second meiotic metaphase—

by treatment with a Ca2+ ionophore induces meiotic exit. Thus, extracts pre-

pared from these eggs represent a postmitotic/interphasic state and are

competent to induce late mitotic/interphasic events such as nuclear reforma-

tion or DNA replication. The protocol including the preparation of flotation

purified membranes is described in detail in Eisenhardt et al. (2014). Mitotic

chromatin was isolated as in Gasser and Laemmli (1987). In vitro chromatin de-

condensation was induced by incubating approximately 1,000 mitotic chro-

matin clusters in 18 ml of cytosol from Xenopus egg extracts and 2 ml of flotation

purified membranes supplemented with 3 mM 6-dimethylaminopurine, 10 mM

ATP, 10 mM creatine phosphate, 0.2 mg/ml creatine kinase, and 0.4 mg/ml

glycogen at 20�C. As a negative control, sucrose buffer (250 mM sucrose,

50 mM KCl, 2.5 mM MgCl2, and 10 mM HEPES [pH 7.5]) was used instead

of cytosol. At the end of the incubation time, samples were fixed in 0.5 ml

4% paraformaldehyde (PFA) and 0.5% glutaraldehyde in 80 mM PIPES [pH

6.8], 1mMMgCl2, 150mMsucrose, and 10 mg/ml DAPI for 30min on ice. Chro-

matin was reisolated by centrifugation though a 30% sucrose cushion in PBS
Figure 6. RuvBL1 and RuvBL2 Localize to the Decondensing Chromat

(A) HeLamitotic chromatin was incubated with extracts for the indicated time. Ruv

and anti-RuvBL2 IgG-bound beads) were supplementedwith buffer, recombinant

the proteins (matching the endogenous concentrations) and used in the deconden

immunofluorescence, or chromatin was reisolated and analyzed by western blot

(B) HeLa mitotic chromatin incubated as in (A) was reisolated and probed for the

antibodies, respectively), topoisomerase IIa, the chromokinesin KIF4A, and Rep

Xenopus proteins to chromatin and/or their exchange with the HeLa proteins oc

See also Figure S5.
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(15 min at 2,500 3 g) on poly-L-lysine-coated coverslips and mounted in

Vectashield (Vector Laboratories). Samples were analyzed using a confocal

microscope (FV1000; Olympus; equipped with a photomultiplier [model

R7862; Hamamatsu]) with 405, 488, and 559 nm laser lines and a 603 numer-

ical aperture 1.35 oil immersion objective lens using the FluoView software

(Olympus) at room temperature. Immunofluorescence and transmission elec-

tron microscopy was performed as in Theerthagiri et al. (2010).

For western blot analysis of reisolated chromatin (modified from Hayashi-

hara et al. (2008), the decondensation reaction was increased by a factor of

ten. At the end of the reaction, samples were immediately layered on top of

1 ml wash buffer—10 mM HEPES [pH 7.5], 50 mM KCl, 14% (v/v) Optiprep

(Sigma), 1 mM dithiothreitol, 2.5 mM MgCl2, 0.2 mM spermine, 0.5 mM

spermidine, 1 mM ATP, 10 mg/ml 4-(2-aminoethyl)-benzenesulfonylfluoride,

0.2 mg/ml leupeptin, 0.1 mg/ml pepstatin, 0.2 mg/ml aprotinin—and the chro-

matin was pelleted (30 min at 10,000 3 g in a swing-out rotor) and analyzed.

In depletion experiments, cytosol was incubated twice with antibody-

coated beads at a 1.2:1 beads-to-cytosol ratio for 20 min. CSF-arrested ex-

tracts were prepared as in Murray (1991) and released into interphase by the

addition of 1 mM CaCl2.

Quantification of In Vitro Chromatin Decondensation

Chromatin boundaries were defined by an intensity threshold, and the total

chromatin area was calculated. For the smoothness analysis, the perimeter

of the boundary was used to estimate the surface roughness as a ratio of

the perimeter squared over area. To analyze chromatin homogeneity, chro-

mosomes were defined using an edge-finding algorithm (the largest eigen-

value of the structure tensor; ImageJ plugin FeatureJ, http://www.

imagescience.org/meijering/), and the sum of the chromosomes’ areas was

computed and normalized to the total area within the boundary. To minimize

the statistical effects of very irregularly shaped (highly condensed) chromatin,

a maximum of 20% (in roughness/relative area) above the fully decondensed

state was adopted for both analyses. Surface smoothness and internal ho-

mogeneity were defined as the differences from the maximal roughness

and maximal relative area, respectively. The fully condensed state was set

to zero, and the maximal decondensed state to one and all other values

were normalized accordingly.
in

BL1/2-depleted extracts (generated by consecutive passage over anti-RuvBL1

RuvBL1-RuvBL2 complex, RuvBL1, or RuvBL2 or ATPase-deficient versions of

sation reaction for 120min. Samples were fixedwith 4%PFAand processed for

(histone H2B shows equal chromatin loading). Scale bars, 5 mm.

presence of Mel28/ELYS, the condensing I and II complex (CAP-G or CAP-D3

o-MAN. Please note that during the reisolation procedure, rapid rebinding of

curs so that they can be detected already at t = 0.
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Fractionation of Xenopus Egg Extracts

Xenopus egg cytosol was subjected to sequential fractionation to allow the

identification of factors involved in chromatin decondensation. The fractions

obtained were then tested in the in vitro assay described earlier for decon-

densation activity. First, cytosolic egg extract was fractionated by ammonium

sulfate precipitation. Proteins that precipitated in 20% ammonium sulfate

(fraction A) and those that did not precipitate (fraction B) were separated.

Fraction B was then precipitated by increasing the ammonium sulfate

concentration to 50%. Both fractions were resuspended in sucrose buffer.

Fraction A was then applied to a Hi-Trap-Q-HP-Sepharose column (GE

Healthcare) and eluted using a step gradient of 500 mM KCl. The deconden-

sation-active fraction (P1) was further separated on a Superose 6 PC3.2/30

column (GE Healthcare) in sucrose buffer. Fractions were eluted at a 1.5–

2.0 ml retention volume. For the decondensation assay, fractions A and B

obtained from ammonium sulfate precipitation—as well as the flowthrough,

P1, and P2 from the ion exchange—were dialyzed against sucrose buffer.

The decondensation assay was always performed in the presence of fraction

B in a 1:4 volume ratio. Active fractions eluted from the size exclusion column

(G13–G15) were analyzed by mass spectrometry (described in the Supple-

mental Information).

Pronuclear Assembly Assay

For pronuclear assembly, cytosol from Xenopus egg was incubated with 1,000

sperm heads prepared from Xenopus testis (Gurdon, 1976) for 10 min at 20�C
to allow for sperm chromatin decondensation. To start the reaction, floated

DiIC18 (1,10-dioctadecyl-3,3,30,30-tetramethylindocarbocyanine perchlorate)-

labeled membranes (Antonin et al., 2005), 10 mM ATP, 10 mM creatine phos-

phate, 0.2 mg/ml creatine kinase, and 0.4 mg/ml glycogen were added. For

depletions, cytosol was incubated twice with antibody-coated beads at a

1.2:1 bead-to-cytosol ratio for 20 min.

Miscellaneous

Statistical analysis was performed with the IBM-SPSS Statistics 21 software.

Live cell imaging, nuclear import and ATPase assays, production of recombi-

nant proteins, and a description of the antibodies used can be found in the

Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and six figures and can be found with this article online at http://dx.doi.org/

10.1016/j.devcel.2014.09.001.
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Figure S1, related to Figure 1 

A) Time course of chromatin decondensation in HeLa cells recorded with time-lapse 

confocal microscopy. Chromatin is visualized as mCherry-tagged histone H2B. Time 

is normalized to telophase onset.  

B) Xenopus sperm heads were incubated in CSF-arrested Xenopus egg extracts for 60 min 

to generate mitotic chromatin. Please note that during this treatment the highly 

condensed crescent shaped sperm DNA (a) is de-compacted in CSF extracts in a 

nucleoplasmin (NPM2) dependent exchange of protamines to histones (b), which is 

not occurring during post-mitotic chromatin decondensation, and then condensed to 

mitotic chromatin (c). For a more extensive documentation of these steps see e.g. (de 



la Barre et al., 1999). The transition to interphase was induced by addition of 1 mM 

CaCl2, which initiates post-mitotic chromatin decondensation. Samples were fixed at 

indicated time points after Ca
2+

 addition with 4% PFA and 0.5% glutaraldehyde, 

stained with DAPI, and analyzed by confocal microscopy.  

Scale bars are 5 µm. 

 

  



 

 

Figure S2, related to Figure 3 

A) The decondensation reaction using HeLa mitotic clusters was incubated with 100 U of 

hexokinase (HK) to eliminate endogenous ATP. Samples were fixed at indicated time 

points with 4% PFA and 0.5% glutaraldehyde, stained with DAPI, analyzed by 

confocal microscopy.  

B) The decondensation reaction using HeLa mitotic clusters was supplemented with 12 

µM actinomycin D (Act D), a concentration sufficient to inhibit class I, II and III gene 

transcription (Bensaude, 2011), or 1 mM 5,6-dichloro-1-beta-D-

ribofuranosylbenzimidazole (DRB, both dissolved in DMSO), which inhibits class II 

gene transcription, or the same volume of DMSO. Samples were fixed after 120 min 

with 4% PFA and 0.5% glutaraldehyde, stained with DAPI, analyzed by confocal 

microscopy. 

Decondensation was quantified as in Figure 1A. The mean of three independent 

experiments each including at least ten chromatin substrates are shown. Error bars 

represent the SEM, *** represents P <0.001 by Mann Whitney test for A. For B no 

statistical significant difference (P >0.05) was detected by one-way ANOVA test. 

Scale bars are 5 µm. 

 

  



 

 

Figure S3, related to Figure 4 

A) Representative confocal images of DAPI stained HeLa mitotic chromatin incubated 

with the different fractions according to the fractionation procedure as presented in 

Figure 4A. Please note that as in Figure 4A the fractions of the ion exchange and 

size exclusion chromatography are only shown in combination with fraction B. 

B) Xenopus sperm heads were incubated in CSF-arrested Xenopus egg extracts for 60 

min to generated mitotic chromatin and pre-incubated for 5 min with 4 mg/ml 

affinity purified IgG against RuvBL1, RuvBL2 or control IgGs. Transition to 

interphase was induced by addition of 1 mM CaCl2. Samples were fixed 120 min 

after Ca
2+

 addition with 4% PFA and 0.5% glutaraldehyde, stained with DAPI and 

the fraction of decondensed chromatin templates was quantified. The weighted 

average percentage of three independent experiments, each including at least 100 



randomly chosen chromatin substrates is shown, diamonds indicate individual data 

points.  

C) Dilution series of Xenopus egg extracts and purified recombinant RuvBL1 or 

RuvBL2 were analyzed by western blot and quantified. Based on the quantitation 

the endogenous RuvBL1 and RuvBL2 concentrations are estimated both to 0.02 

µg/µl which corresponds to a 0.4 µM concentration of the monomers. The equal 

concentration of RuvBL1 and RuvBL2 is in agreement with the notion that these 

proteins are mostly found in a heteromeric complex in Xenopus egg extracts (see 

Figure 4D). 

Scale bars are 5 µm. 

 

  



 

 

Figure S4, related to Figure 5 

A) Xenopus sperm heads were incubated in CSF-arrested Xenopus egg extracts for 60 min 

to generate mitotic chromatin and pre-incubated for 5 min with recombinant wild type 

or ATPase deficient RuvBL1-RuvBL2 complex. The transition to interphase was 



induced by addition of 1 mM CaCl2. Samples were fixed 120 min after Ca
2+

 addition 

with 4% PFA and 0.5% glutaraldehyde, stained with DAPI and the fraction of 

decondensed chromatin templates quantified. The weighted average percentage of 

three independent experiments, each including at least 100 randomly chosen 

chromatin substrates is shown, diamonds indicate individual data points.  

B) Mitotic chromatin clusters from HeLa cells were incubated at 20ºC with post-mitotic 

Xenopus egg extracts or 0.4µM recombinant purified RuvBL1, RuvBL1 or the 

heteromeric RuvBL1/2 complex in sucrose buffer supplemented with 3 µM 6-

Dimethylaminopurine, 10 mM ATP, 10 mM creatine phosphate, 0.2 mg/ml creatine 

kinase, and 0.4 mg/ml glycogen.  Samples were fixed after 120 min with 4% PFA and 

0.5% glutaraldehyde, stained with DAPI, analyzed by confocal microscopy and 

decondensation was quantified as in Figure 1A. The mean of three independent 

experiments each including at least ten chromatin substrates are shown. Error bars 

represent the SEM, *** represents P <0.001 by one-way ANOVA, Sidlak post-hoc 

test. No statistical significant difference was detected within the RuvB-like ATPase 

and buffer samples (P =1). Scale bars are 5 µm. 

C) The ATPase activity of the RuvBL1, RuvBL2 and the heteromeric RuvBL1/2 

complexes as well as the ATPase deficient versions (RuvBL1 D302N, RuvBL2 

D298N or the RuvBL1 D302N/RuvBL2 D298N) was analyzed at a protein 

concentration of 2 µg/ml for RuvBL1 and RuvBL2 complexes and 4 µg/ml for 

RuvBL1/2 complexes. The rather low ATPase activity with a generation rate of 18 mol 

Pi/(min x mol RuvBL1/2), 2 mol Pi/(min x mol RuvBL1) and 3.5 mol Pi/(min x mol 

RuvBL2) is in agreement with reported values (e.g. (Puri et al., 2007)). Similarly, an 

elevated ATPase activity for the heteromeric complex has been reported before (e.g. 

(Puri et al., 2007), see also http://www.gref-bordeaux.fr/en/node/303 for a 

comprehensive summary of ATPase activity measurements of RuvB-like ATPases). 

Please note that no ATPase activity can be detected for the ATPase deficient versions. 

Scale bars are 5 µm. 
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Figure S5, related to Figure 6 

A) Time course of mitotic exit in HeLa cells stably expressing mCherry-tagged histone 

H2B and EGFP-RuvBL1 (upper panel) or EGFP-RuvBL2 (lower panel) recorded by 

time-lapse confocal microscopy. Time is normalized to the last metaphase frame 

before anaphase onset.  

B) Mitotic chromatin clusters from HeLa cells were incubated with post-mitotic Xenopus 

egg extracts for the indicated time to induce chromatin decondensation. RuvBL1/2 

depleted extracts (generated by consecutive passage over anti-RuvBL1 and anti-

RuvBL2 IgG bound beads) were supplemented with buffer or recombinant RuvBL1-

RuvBL2 complex for 120 min. Samples were fixed with 4% PFA and stained using 

antibodies against the nuclear pore complex protein Mel28/ELYS, the condensin I and 

II complex (using CAP-G or CAP-D3 antibodies, respectively), topoisomerase II and 

the chromokinesin KIF4A. 

Scale bars are 5 µm. 

  



 

 

Figure S6, related to Figure 7 

A) Western blot of untreated, mock or nucleoplasmin (NPM2) depleted Xenopus laevis 

egg extracts. The quantities of RuvBL1 and RuvBL2 in extracts are not affected by 

this treatment. 

B) Xenopus laevis sperm heads were incubated with mock or nucleoplasmin (NPM2) 

depleted extracts for 10 min, fixed with 4% PFA and 0.5% glutaraldehyde, stained 

with DAPI and analyzed on a Axiovert 200 M fluorescence wide field microscope 

(Zeiss). Please note the block in sperm chromatin de-compaction in the absence of 

nucleoplasmin as previously reported (Philpott et al., 1991). 

C) Mock or nucleoplasmin (NPM2) depleted extracts were tested for chromatin 

decondensation on HeLa mitotic chromatin (120 min time point). The mean (+/- SEM) 

of three independent experiments each including at least 20 chromatin substrates are 

shown. Mann-Whitney test showed no statistical significant difference between the 

samples (P >0.05)   

Scale bars are 5 µm. 

 

 

  



Supplemental Experimental Procedures 

 

Antibodies and recombinant proteins  

Antibodies against Ser10 phosphorylated Histone H3 were from Cell Signaling, mAb414 

from Babco, topoisomerase IIa (Ki-S1) from Millipore, RepoMan (R11611) from Sigma and 

Kif4A (H00024137-B01) from Abnova. Antibodies against Mel28/ELYS were described in 

(Franz et al., 2007). Antibodies against Xenopus CAP-D3 and CAP-G were generated as 

described (Kimura and Hirano, 2000; Ono et al., 2003). Full-length Xenopus nucleoplasmin 

(NPM2) was expressed from a pET28a construct and used for antibody production in rabbits. 

Xenopus RuvBL1 and RuvBL2 were expressed from pET30a constructs (Ducat et al., 2008), 

purified in the presence of 1 mM ATP and 0.1 mM MgCl2 by Ni-affinity chromatography and 

used for antibody production in rabbits. For biochemical experiments RuvBL1 and RuvBL2 

were further purified by size exclusion chromatography on a Superose 6 10/300GL column 

(GE-Healthcare). Purified hexameric RuvBL1 and RuvBL2 complexes were incubated 

overnight in an equimolar ratio and isolated as hetero-dodecameric complexes by size 

exclusion chromatography on a Superose 6 10/300GL column. ATPase-dead RuvBL1 and 

RuvBL2 mutants were generated by in vitro mutagenesis and purified as above.  

 

Cell culture and live-cell imaging 

HeLa cells stably expressing either EGFP-mouse RuvBL1 or EGFP-mouse RuvBL2 

generated from EGFP-tagged BACs (Poser et al., 2008) were transfected with pIRES-puro-

mCherryH2B (Steigemann et al., 2009) using FUGENE 6 (Promega) and selected in complete 

DMEM medium supplemented with 2.5 µg/ml puromycine and 500 µg/ml G418. Positive 

clones with adequate expression levels of both fluorophores were amplified in complete 

DMEM medium with 0.5 µg/ml puromycine and 500 µg/ml G418. The cells were seeded 24 

hours before live-cell imaging in µ-slide 8 well chamber (Ibidi) with complete DMEM 

medium. Live-cell confocal microscopy was conducted using an LSM 5 live microscope 

(Zeiss) equipped with a heating and CO2 incubation system (Ibidi). Images were acquired 

under the control of the ZEN software (Zeiss) as time and Z-series. A LD-Apocromant 

40x/1.1 W objective was used for image acquisition. EGFP was excited with a 488-nm diode 

laser and mCherry was excited with a 561-nm diode laser. Images were projected in Z using 

the maximum intensity projection tool of ZEN software. 

 

  



Liquid Chromatography-Mass Spectrometry (MS) Analysis 

Proteins were subjected to tryptic in-gel digestion (Borchert et al., 2010), and the peptide 

mixtures were desalted with C18 Stage Tips (Rappsilber et al., 2007). LC-MS analyses were 

performed on a nanoLC (Easy-nLC, Thermo Fisher Scientific) coupled to a 4000QTrap 

(Applied Biosystems/MDS Sciex) mass spectrometer equipped with a nanoelectrospray ion 

source. Chromatographic separation of the peptides was performed on a 15-cm fused silica 

emitter of 75-mm inner diameter (New Objective), packed in-house with reversed-phase 

ReproSil-Pur C18-AQ 3-mm resin (Dr. Maisch GmbH). The peptide mixtures were injected 

onto the column in HPLC solvent A (0.5% acetic acid) at a flow rate of 500 nl/min and 

subsequently eluted with a 43-min segmented gradient of 5%–80% HPLC solvent B (80% 

ACN in 0.5% acetic acid) at a flow rate of 200 nl/min. MS data acquisition was conducted in 

the positive ion mode. The mass spectrometer was operated in data-dependent mode to 

automatically switch between MS and MS/MS acquisition. One MS was followed by three 

MS/MS events. MS data were searched using the Mascot search engine (Matrix Science, 

London, UK) against a target-decoy database (Elias and Gygi, 2007) consisting of the X. 

laevis database (Xenbase 20100129) plus 262 commonly observed contaminants.  

All MS data were combined into a single peak list and processed in a combined database 

search using the MS Quant software package. In the database search, carbamidomethylation 

(Cys) was set as fixed modification, whereas oxidation (Met) and acetylation (protein N 

termini) were set as variable modifications. The mass tolerances for precursor and fragment 

ions were set to 1.5 Daltons and 0.5 Daltons, respectively. The identified peptides were 

classified based on their mascot ion scores; protein identification was defined as valid if at 

least two peptides with mascot scores better than P < 0.1 were identified and at least one of 

them had a score of P < 0.05. RuvBL2 was identified with two peptides covering 4.6% of the 

protein sequence, GLGLDDALEPR (peptide score 55, mass deviation 0.07945Da) and 

VYSLFLDESR (peptide score 75, mass deviation 0.03565Da). The peptide scores of both 

peptides correspond to mascot scores better than P < 0.01.  

 

In vitro nuclear transport assay 

Nuclear import and export were tested using modified Nplc-M9-M10 or Nplc-M9-NES 

reporters, respectively, from (Englmeier et al., 1999). Reporters were fused to an N-terminal 

EGFP, cloned into pET28a and purified via an N-terminal Hexa-Histidine tag and size 

exclusion chromatography on a Superose 6 10/300 GL column (GE-Healthcare). A 0.1 mg/ml 

aliquot of the purified protein was added to nuclei assembled in the decondensation reaction 



and supplemented with an energy regenerating system (10 mM ATP, 10 mM creatine 

phosphate, 0.2 mg/ml creatine kinase, and 0.4 mg/ml glycogen; final concentrations). Samples 

were incubated for another 30 min, fixed and processed for microscopy. Leptomycin B (300 

nM) was added to block nuclear export. 

 

ATPase assay 

ATPase activity was measured in sucrose buffer supplemented with 2 mM phosphoenol-

pyruvate, 1mM ATP, 0.2 mM NADH, 0.1 mg/ml BSA 2 µg/ml lactate dehydrogenase 

(Roche), 2 µg/ml pyruvate kinase (Sigma) at 25ºC on a Cary 50 spectrophotometer (Varian) 

following the rational described in (Huang and Hackney, 1994). In short, the ADP generated 

by the RuvB-like ATPases is reconverted by the pyruvate kinase to ATP. The resulting 

pyruvate is processed to lactate by the lactate dehydrogenase under consumption of NADH, 

the loss of which is monitored at 340 nm.  
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Abstract

During the vertebrate cell cycle chromatin undergoes extensive structural and functional changes. Upon mitotic entry, it massively condenses into
rod shaped chromosomes which are moved individually by the mitotic spindle apparatus. Mitotic chromatin condensation yields chromosomes
compacted fifty-fold denser as in interphase. During exit from mitosis, chromosomes have to re-establish their functional interphase state,
which is enclosed by a nuclear envelope and is competent for replication and transcription. The decondensation process is morphologically well
described, but in molecular terms poorly understood: We lack knowledge about the underlying molecular events and to a large extent the factors
involved as well as their regulation. We describe here a cell-free system that faithfully recapitulates chromatin decondensation in vitro, based on
mitotic chromatin clusters purified from synchronized HeLa cells and X. laevis egg extract. Our cell-free system provides an important tool for
further molecular characterization of chromatin decondensation and its co-ordination with processes simultaneously occurring during mitotic exit
such as nuclear envelope and pore complex re-assembly.

Video Link

The video component of this article can be found at http://www.jove.com/video/53407/

Introduction

Xenopus laevis egg extract is a powerful and widely applied tool to study complicated cellular events in the simplicity of a cell-free assay. Since
their first description by Lohka & Masui 1 they have been extensively used to study mitotic processes such as chromatin condensation 2, spindle
assembly 3, nuclear envelope breakdown 4, but also nucleocytoplasmic transport 5 or DNA replication 6. The events taking place at the end
of mitosis, necessary for reformation of the interphasic nucleus such as nuclear envelope reformation and nuclear pore complex reassembly
are much less understood compared to the early mitotic events but can be similarly studied using Xenopus egg extract 7. We have recently
established an assay based on Xenopus egg extract to study chromatin decondensation at the end of mitosis 8, an under-investigated process
that awaits its detailed characterization.

In metazoans, chromatin is highly condensed at mitotic entry in order to perform faithfully segregation of the genetic material. To ensure that
the chromatin is accessible for gene expression and DNA replication during interphase, it needs to be de-compacted at the end of mitosis.
In vertebrates, chromatin is up to fifty-fold more compacted during mitosis compared to interphase 9, in contrast to yeasts where the mitotic
compaction is usually much lower, e.g., only two-fold in S. cerevisiae 10. Vertebrate chromatin decondensation has been mostly studied in the
context of sperm DNA reorganization after egg fertilization. A molecular mechanism, in which nucleoplasmin, an abundant oocyte protein,
exchanges sperm-specific protamines to histones H2A and H2B stored in the egg. This process was also elucidated using Xenopus egg extract
11,12. However, the expression of nucleoplasmin is limited to oocytes 13 and mitotic chromatin does not contain these sperm-specific protamines.
Therefore chromatin decondensation at the end of mitosis is nucleoplasmin independent 8.

For the in vitro decondensation reaction we employ extract generated from activated X.laevis eggs and chromatin clusters isolated from
synchronized HeLa cells. Treatment of eggs with a calcium ionophore mimics the calcium release into the oocyte generated by sperm entry
during fertilization. The calcium wave triggers the cell cycle resumption and the egg, arrested in the second metaphase of meiosis, progresses
to the first interphase 14. Therefore, egg extracts prepared form activated eggs represent the mitotic exit/interphase state and are competent
to induce events specific for mitotic exit like chromatin decondensation, nuclear envelope and pore complex reformation. For the isolation of
mitotic chromatin clusters we used a slightly modified version of the protocol published by Gasser & Laemmli 15, where chromosome clusters are
released by lysis from HeLa cells synchronized in mitosis and isolated in polyamine containing buffers by gradient centrifugations.
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Protocol

Mitotic Chromatin Cluster Isolation from HeLa Cells

1. Preparations

1. Cell Culture Solutions
1. Prepare complete Dulbecco’s modified Eagle’s medium (DMEM) by adding 10% fetal calf serum, 100 units/ml penicillin, 100 µg/ml

streptomycin and 2 mM glutamine to the DMEM. Prepare Phosphate buffer saline (PBS) containing 2.7 mM KCl, 137 mM NaCl, 10 mM
Na2HPO42H2O and 2 mM KH2PO4 in deionized water, and adjust pH to 7.4 with 10 N NaOH.
 

NOTE: PBS can be kept as 10x stock solution over time at RT. Dilute it with deionized water to 1x before use. Filter the 1x solution
again if it will be used in cell culture.

2. Prepare a 40 mM stock of thymidine solution (cell culture suitable) in DMEM medium. Dissolve 0.97 g thymidine in 90 ml of DMEM
medium. Adjust final volume to 100 ml. Store stock solution at -20 °C. Dissolve (CAUTION! work under chemical hood, wear gloves
and mouth protection) nocodazole to a 5 mg/ml stock solution in DMSO.

2. Mitotic Clusters Isolation Solutions
 

NOTE: All solutions described in 1.2 need to be kept on ice after preparation/thawing throughout the whole experiment.
1. Autoclave deionized water for 105 min at 121 °C. Dissolve spermine tetrahydrochloride in autoclaved, deionized water to a final

concentration of 200 mM (69.6 mg/ml). Store stock solution at -20 °C. Dissolve spermidine trihydrochloride in autoclaved, deionized
water to a final concentration of 200 mM (50.8 mg/ml). Store stock solution at -20 °C.

2. Prepare 5 % (w/v) digitonin (CAUTION! work under chemical hood, wear gloves and mouth protection) in hot, deionized water. Filter
and store aliquots at -20 °C. Dissolve phenylmethylsulfonyl fluoride (PMSF) (CAUTION! work under chemical hood, wear gloves and
mouth protection) to a final concentration of 200 mM (35 mg/ml) in 100% ethanol. Store stock solution at -20 °C.

3. Dissolve dithiothreitol (DTT) with deionized water to a final concentration of 1 M (154 mg/ml) (CAUTION! work under chemical hood,
wear gloves). Filter and store stock solution at -20 °C.

4. Prepare a 100-fold protease inhibitor mix (CAUTION! work under chemical hood, wear gloves) by dissolving 10 mg/ml AEBSF (4-(2-
Aminoethly-)-benzensulfonylfluoride), 0.2 mg/ml leupeptin, 0.1 mg/ml pepstatin and 0.2 mg/ml aprotinin in deionized water. Store stock
solution at -20 °C.

5. Prepare a 10x stock solution of buffer A containing 150 mM Tris-Cl (pH 7.4), 800 mM KCl, 20 mM EDTA-KOH (pH 7.4), 2 mM spermine
tetrahydrochloride and 5 mM spermidine trihydrochloride. Store buffer A at 4 °C without spermine tetrahydrochloride and spermidine
trihydrochloride, which should be added freshly just before use.
 

NOTE: EDTA only dissolves at pHs higher than 8, therefore, to prepare a high concentrated EDTA-KOH stock solution (0.5 M
recommended), add 5 N KOH to pH just above 8 to dissolve it. Afterwards titrate down to pH 7.4.

6. Prepare a 20x stock solution of buffer As containing 100 mM Tris-HCl (pH 7.4), 400 mM KCl, 400 mM EDTA-KOH (pH 7.4) and 5 mM
spermidine trihydrochloride. Buffer As can be stored under same conditions as buffer A.
 

NOTE: Prepare the working solutions I to IV (see in the following steps), the glycerol gradient and the colloidal silica particles solutions
containing silica particles (15 to 30 nm diameter) coated with non-dialyzable polyvinylpyrrolidone (PVP) freshly just before the isolation
procedure (PMSF and digitonin should be added directly before use as PMSF is labile in aqueous solutions and digitonin tends to
precipitate upon long term storage on ice).

7. Prepare 100 ml of solution I by adding 0.5x buffer A, 1 mM DTT, 1:100 of the protease inhibitor mix and 0.1 mM PMSF into autoclaved,
deionized water. Prepare 50 ml of solution II (for cell lysis) by adding 1x buffer A, 1 mM DTT, 1:100 of the protease inhibitor mix, 0.1
mM PMSF, 0.1 % digitonin and 10 % glycerol into autoclaved, deionized water.

8. Prepare 200 ml of solution III containing 0.25x buffer A, 1 mM DTT, 1:100 of the protease inhibitor mix, 0.1 mM PMSF and 0.05 %
digitonin in autoclaved, deionized water. Prepare 40 ml of solution IV containing 1x buffer As, 1 mM DTT, 1:100 of the protease inhibitor
mix, 0.1 mM PMSF and 0.1 % digitonin in autoclaved, deionized water.

9. Prepare 120 ml of glycerol gradient solution by adding 25% glycerol and 0.1 % digitonin to solution I.
10. Prepare 150 ml of colloidal silica particles solution containing 60 % v/v (volume per volume) of a suspension containing silica particles

(15 to 30 nm diameter) coated with non-dialyzable polyvinylpyrrolidone (PVP), 15% glycerol, 2 mM spermidine trihydrochloride and 0.8
mM spermine tetrahydrochloride in solution IV.

11. Prepare cluster storage buffer containing 250 mM sucrose, 15 mM Hepes (pH 7.4), 0.5 mM spermidine trihydrochloride, 0.2 mM
spermine tetrahydrochloride, 1:100 of the protease inhibitor mix, 0.3% BSA and 30% glycerol. The cluster storage buffer can be kept at
-20 °C.

12. Prepare squash fix solution containing 10% formaldehyde (CAUTION! work under chemical hood, wear gloves), 50% glycerol, twofold
Mark’s Modified Ringers buffer (MMR see 4.5.) and 0.2 µg/ml DAPI (CAUTION! wear gloves). Store at 4 °C in light protected reaction
tubes. It is not crucial for the experiment to use this squash fix recipe, alternative recipes will also work.

2. Synchronization of Cells

1. On Day 1: Seed HeLa cells in five 75 cm2 (250 ml) flasks with media and incubate it at 37 °C in 5% CO2.
 

NOTE: This will yield in approximately 18 x 106 cells at the day of chromatin cluster isolation.
2. On Day 2: When cells are at least 50% confluent (roughly half of the surface is covered by cells and there is still room for cells to grow), add

thymidine to a final concentration of 2 mM (thymidine block) and culture cells for 24 hr at 37 °C in 5% CO2.
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NOTE: This will arrest the cells at the G1/S phase border.
3. On Day 3: Aspirate medium containing thymidine and add sterile PBS. Wash cells by delicate rinsing with sterile PBS. Aspirate PBS and

gently add 15-20 ml of fresh, warm complete DMEM medium and culture cells for 3 to 4 hr at 37 °C in 5% CO2 to release them from the G1/S-
phase block.

4. On day 3 (continuation): After releasing the cells from the G1/S-phase block, add nocodazole to a final concentration of 100 ng/ml. Dilute
nocodazole by adding 2 µl of stock solution (5 mg/ml) to 98 µl of fresh DMEM medium, and add 1 µl of diluted nocodazole per each ml of cell
culture. Culture cells for approximately 12 hr at 37 °C in 5% CO2. This will block the cells in mitosis.

3. Mitotic Clusters Isolation

1. On day 4: Isolate mitotic clusters. Using a bright field microscopy, check if the majority of cells are mitotic. If less than 50% of the cells are
mitotic wait until more cells reach mitosis. Collect mitotic cells by tapping vigorously at the side of the flask (or by gently spraying with the
pipette), this will detach remaining mitotic cells. Transfer the cell suspension to 50 ml conical centrifuge tubes.
 

NOTE: Mitotic cells become round and can be easily detached from the flask bottom (just like cells after trypsinization), unlike cells in other
cell cycle stages, which are flat and firmly attached to the flask.

2. Harvest mitotic cells by spinning the tubes at 1,500 x g for 10 min (4 °C or RT) and removing the supernatant afterwards. Resuspend the
cell pellet in 8 ml PBS, pool into one 50 ml conical centrifuge tube, fill the tube completely with PBS and spin again for 10 min at 1,500 x g.
Repeat this washing procedure three times in total.

3. From now on perform all steps on ice with cold solutions. Vigorously resuspend the pellet in 37 ml of cold solution II. Transfer the suspension
to a cold 40 ml glass-glass homogenizer using a 25 ml pipette and lyse cells on ice by douncing with a tight pestle until mitotic clusters are
free of cytoplasmic material. The number of strokes is highly dependent on the digitonin stock and can vary from 3 to 20 times.
 

NOTE: Homogenization can be fairly vigorous, but should be considered complete when nearly all mitotic cells are lysed and the clusters are
seen to be free of cytoplasmic material (see 3.4).

4. After a couple of strokes mix 5-10 µl of the cell suspension 1:2 with Trypan blue and check by microscopy in a Neubauer chamber. When the
cells are lysed chromatin is stained blue and free of cell membranes (NOTE: possible cytoplasmic remnants will be accumulate around the
blue stained chromatin and will be easy to distinguish).
 

NOTE: Mitotic cells will lyse before interphasic cells but nevertheless be careful not to overdo homogenization in order to avoid contamination
with interphasic nuclei and mangled chromatin.

5. Immediately layer the whole cell lysate over cold step gradients (with 5 ml of 60% colloidal silica particles solution at the bottom, overlaid with
19.5 ml of glycerol gradient solution each) in five polycarbonate centrifugation tubes (28.8 x 107.0 mm, it is recommended to place the tubes
on ice before to cool them down) using a 10 ml pipette. Do not keep cells in solution II for a long time, thus it is recommended to prepare the
tubes and the gradient beforehand (e.g., during the washing steps).

6. Centrifuge the gradients for 30 min at 1,000 x g at 4 °C in a fixed angle rotor.
 

NOTE: Nuclei, unlysed cells and clusters are recovered together at the interface of the glycerol and the colloidal silica particles layers.
7. Remove the liquid above the interphase using a pipette and transfer the rest to the cold homogenizer. Re-homogenize mixture by 3-15

strokes (again depending on the digitonin stock) with the tight pestle to eliminate aggregates and to remove cytoskeletal fibers from the
clusters. After every couple of strokes check the efficiency of homogenization. Mix 1 µl of the sample with 1 µl of squash fix supplemented
with DAPI and examine under the fluorescent microscope.
 

NOTE: The number of strokes is crucial, the presence of cluster aggregates means, that the number of strokes is insufficient, while mangled
chromatin and nuclei debris indicate that the homogenization was too strong.

8. Distribute the solution among four new polycarbonate centrifugation tubes (28.8 x 107.0 mm) (approx. 10 ml solution per tube) and fill them
completely up with 60 % colloidal silica particles solution (approx. 30 ml colloidal silica particles solution per tube).
 

NOTE: Avoid overloading the colloidal silica particles gradient since clusters can easily be trapped if there is too much cytoplasmic debris in
the gradient.

9. Spin for 5 min at 3,000 x g, followed by 30 min at 45,440 x g at 4 °C in a fixed angle rotor.
 

NOTE: As before, interphasic nuclei will be kept from entering the gradient (if homogenization was not done too heavily which releases nuclei
from cytoplasmic debris) but the clusters will accumulate around 1.5 cm from the bottom of the tube, often as a loose ball.

10. Remove the liquid above the clusters using a pipette, pool the rest into one tube, resuspend well and redistribute to two polycarbonate
centrifugation tubes (28.8 x 107.0 mm). Dilute the cluster suspension 1:4 with solution III in each tube and mix well. Mark the site were the
pellet will be and spin 1,000 x g for 15 min at 4 °C in a fixed angle rotor.

11. Resuspend the pellets in Solution III, pool into one 50 ml conical centrifuge tube and fill up with Solution III. Centrifuge at only 300 x g for
approximately 10 min. Do not centrifuge at higher velocity - it might cause irreversible aggregation of clusters.

12. Wash again with Solution III in 1.5 or 2 ml reaction tubes (resuspend the pellets and fill the tubes completely up) and centrifuge at 300 x g.
Remove the supernatant carefully with a pipette. Resuspend pellet carefully in 250 µl cluster storage buffer (if you have several pellets use
250 µl for all together and pool them). Dilute 5-10 µl of the sample 1:2 with Trypan blue and count in the Neubauer chamber. If applicable
dilute more to obtain an approximate concentration of 500 clusters/µl.

13. Push the suspension through a 100 µm cell strainer to make sure to remove cluster aggregations resulting from improper resuspension. The
clusters can be stored for months in -80 °C. To avoid multiple refreezing make appropriate aliquots and snap freeze in liquid nitrogen.

4. Preparations of Buffer for Interphasic Xenopus laevis Egg Extract

NOTE: Xenopus laevis frogs are maintained and treated in accordance with the guidelines and regulations set forth by the Convention of the
council of Europe on the protection of vertebrate animals used for experimental and other purposes (EU ratified in 1998) and the German law
pertaining to the use of vertebrate animals in research.

1. Prepare DTT and a 100-fold protease inhibitor mix according to 1.2.3 and 1.2.4. Dissolve cytochalasin B to a final concentration of 10 mg/ml
in DMSO, aliquot (10 or 20 µl recommended) and store at -20 °C.

2. Dissolve cycloheximide to a final concentration of 20 mg/ml in ethanol, aliquot (500 µl recommended) and store at -20 °C. Dissolve the
calcium ionophore A23187 to a final concentration of 2 mg/ml in ethanol, aliquot and store at -20 °C.
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NOTE: PI, DTT, cytochalasin B, cycloheximide and A23187 can be repeatedly frozen and thawed.
3. Prepare 20x Mark’s Modified Ringers buffer (MMR) containing 2 M NaCl, 40 mM KCl, 20 mM MgCl2, 40 mM CaCl2, 2 mM EDTA and 100 mM

Hepes, adjust pH to 8.0 with 5 N KOH.
 

NOTE: The 20x MMR can be kept over long time at RT. Depending on the amounts of eggs, for one preparation of interphasic egg extract 1
L of 1x MMR per injected frog and an additional 5-10 liters for the washing steps are necessary. Re-adjust the pH of 1x MMR to 8.0 with 5 N
KOH. 1x MMR prepared to keep the frogs in O/N x 1 should be at RT. 1x MMR prepared for the extract preparation should be kept cold until it
is used, however it is not crucial for the experiment that the 1x MMR is really cold.

4. Prepare 1 L of sucrose buffer containing 250 mM sucrose, 50 mM KCl, 2.5 mM MgCl2 and 10 mM Hepes pH 7.5. Sucrose buffer should be
prepared the day before using sterile water and should be kept at 4 °C.

5. Prepare the dejellying solution freshly on the morning of the experiment by dissolving 2% L-cystein in 0.25x MMR. Adjust pH to 7.8 with 5 N
KOH. Keep at 4 °C until it is used.

5. Protocolfor Interphasic Xenopus laevis Egg Extract

1. Inject 120 I.E. pregnant mare's serum gonadotropin (PMSG) into the dorsal lymph sac of each frog 3-10 days before the experiment (5 ml
syringes, 27 G ¾‘‘ needles).
 

NOTE: This injection will induce ovulation. The amount of eggs one frog lays varies a lot. A well laying frog might produce eggs occupying a
volume of up to 7 ml after being de-jellynated which corresponds to up to 3.5 ml of crude extract. However, consider that some frogs might
not lay or will lay bad eggs.

2. Inject 500 I.E. human chorionic gonadotropin (hCG) per frog the evening before the experiment (5 ml syringes, 27G ¾‘‘ needles). This will
induce the release of the eggs. Keep the frogs for 13-17 hr at 18 °C in individual tanks containing 1.2 l 1x MMR (pH 8).

3. Collect the eggs by pouring them into 600-1,000 ml glass beakers.
 

NOTE: Take only the good batches of eggs that are individually laid, similar in size and clearly pigmented with a dark and a light colored half.
Do not take eggs that form strings or that look puffy and white. These should be sorted out throughout the whole procedure using a plastic
Pasteur pipette. For a detailed description of good versus bad eggs see Gillespie et al. 6

4. Wash eggs intensively, approximately 4 times, with 1x MMR by decanting the supernatant when the eggs have settled down and refilling the
beaker with fresh buffer afterwards.
 

NOTE: The eggs are stable before they are dejellynated and the washing buffer can be directly applied on the eggs.
5. Dejellynate the eggs by incubation in the 2% cystein solution. Change buffer once after 2-4 min by decanting the buffer and carefully filling the

beaker with fresh buffer. Considerdejellying complete when the volume of the eggs drastically decreases and the eggs become more densely
packed.
 

NOTE: The dejellying needs approximately 5-7 min and should be stopped when visible but latest after 10 min.
6. Wash eggs approximately 4 times with 1x MMR by decanting and refilling the buffer supernatant.

 

NOTE: The eggs are more fragile after being dejellynated and, hence, the washing steps need to be done more carefully. The MMR should
be rather rinsed on the wall of the beaker instead of directly onto the eggs.

7. Activate eggs in 100 ml 1x MMR by adding 8 µl of the calcium ionophore (2 mg/ml in ethanol). Stop activation when animal cap contraction
becomes visible or after 10 min.
 

NOTE: The animal cap contraction can be identified by the compaction of the black half of the egg.
8. Wash carefully 4 times with 1x MMR by decanting and refilling the buffer supernatant.
9. Incubate eggs for 20 min in 1x MMR at RT.
10. Prepare the centrifugation tubes during the incubation time: Place 50 µl sucrose buffer, 50 µl 100-fold protease inhibitor mix, 5 µl 1 M DTT ,

12.5 µl cycloheximide (to prevent translation, especially of cyclin B) and 2.5 µl cytochalasin B (to prevent actin polymerization) in 5 ml
centrifugation tubes (13 x 51 mm). Alternatively, for more than 30 ml of eggs, 14 ml tubes (14 x 95 mm) can be used, in this case increase
volumes by 2.4 times.

11. Wash the eggs twice with cold sucrose buffer (decant and refill buffer in the glass beaker) and transfer them into centrifugation tubes using a
plastic Pasteur pipette with wide opening (cut off the narrow end).

12. Pack eggs by spinning for 1 min at 130 x g. Put the tubes in 15 ml conical centrifuge tubes for this purpose (put the 14 ml tubes in 50 ml
conical centrifuge tubes, respectively). The goal is to remove as much buffer as possible to prevent dilution of the extract. After centrifugation,
remove excess of buffer using a plastic Pasteur pipette and eventually fill more eggs on top.

13. Spin in a 6 x 5 ml swing rotor for 20 min at 21,000 x g at 4 °C.
14. Remove low speed extract using a 5 ml syringe with a 16 G 1 ½‘‘ needle, between yellow yolk on top and dark broken egg debris in the

bottom. For this purpose, push the syringe needle through the wall of the centrifuge tube just above the layer of broken egg debris in the
bottom. Hold the tube against a resistance when pushing with the needle.
 

NOTE: A filled 5 ml centrifugation tube gives between 1.8-2.5 ml of extract.
15. Per 1 ml of extract add 10 µl 100-fold protease inhibitor mix, 1 µl of 1 M DTT, 2.5 µl cycloheximide (20 mg/ml) and 0.5 µl cytochalasin B (10

mg/ml). Keep the extract on ice.
 

NOTE: The extract can be either used directly for the experiment or aliquoted, snap frozen and stored in liquid nitrogen for several months.
Freezing the extract will decrease its activity. For delicate experiments like immunodepletion it is highly recommended to use fresh extract
immediately.

6. Preparation of Buffers for In Vitro Reconstitution of Chromatin Decondensation

1. Prepare the energy mix stock solution containing 25 mM ATP, 25 mM GTP, 127.5 mg/ml creatine phosphate and 2.5 mg/ml creatine kinase in
buffer containing 250 mM sucrose, 1.2 mM Hepes, 5.9 mM KCl and 0.3 mM MgCl2. Aliquot and store at -80 °C. Use freshly after thawing, do
not refreeze.

2. Dissolve 0.2 g/ml glycogen in deionized water. Store at -20 °C. Dissolve 6-dimethyl aminopurine (DMAP) to a final concentration of 0.25 M in
DMSO. Aliquot and store at -20 °C. Use freshly after thawing, do not refreeze.
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3. Prepare 30 % (w/v) sucrose in PBS, filter and store at 4 °C. Prepare 4 % VikiFix solution containing 80 mM PIPES pH 6.8, 1 mM MgCl2, 150
mM sucrose and 4 % paraformaldehyde (PFA) (CAUTION! work under chemical hood, wear gloves and mouth protection).
 

NOTE: The PFA is difficult to dissolve therefore it is recommended to do it as following: For 1 l Viki-Fix dissolve 24.2 g PIPES and 40 g PFA
in separate beakers, both in hot (almost boiling) deionized water. Both will dissolve through addition of 10 N NaOH but be careful to not add
too much. Add 51.4 g sucrose and 1 ml 1 M MgCl2 to the PFA solution. Add the PIPES solution to the other mix. Fill up to 1 l final volume and
adjust pH to neutral by adding NaOH.

4. Dissolve 10 mg/ml 4',6-diamidino-2-phenylindole (DAPI) in water (CAUTION! wear gloves). Store in the dark at -20 °C.

7. Protocol for In Vitro Reconstitution of Chromatin Decondensation

1. Spin low speed interphasic extract for 12 min at 386,000 x g in a fixed angle 20 x 0.2 ml or at 355 000 x g in a 10 x 2.0 ml rotor.
2. Gently remove the lipid layer on top using a vacuum pump or pipette and take the supernatant (thereafter called high speed extract) avoiding

membrane contamination from the bottom layer and discard the pellet.
 

NOTE: To reduce possible membrane contamination it is advisable to spin the extract twice or to dilute the extract with 20 % of the volume
with sucrose buffer before the centrifugation. However, dilution and additional centrifugation steps can reduce the extract activity.

3. Pipet 18 µl of high speed extract into a 1.5 ml reaction tube, add 0.7 µl mitotic cluster (amount can be slightly varied according to chromatin
stock concentration), 0.5 µl glycogen, 0.5 µl energy mix and 0.3 µl DMAP. Use tips with wide opening to mix the reaction as soon as the
chromatin is added to prevent shearing of the decondensing chromatin.
 

NOTE: The reaction can be performed in the presence or absence of membranes (see Figure 3). To decondense chromatin in the presence
of membranes, add 2 µl of floated membranes prepared according to the protocol described by Eisenhardt et al. 16

4. Incubate the reaction mixture for up to 2 hr (or less to study earlier time points of the decondensation process) at 20 °C.
5. Fix the sample by adding ice cold 0.5 ml Viki-Fix containing 0.5% glutaraldehyde and 0.1 mg/ml DAPI and incubation for 20-30 min on ice.

 

NOTE: If the samples will be further processed for immunofluorescence, the fixation should be done without glutaraldehyde as this often
interferes with the antibody staining. However if only the DAPI staining will be analyzed, the addition of glutaraldehyde will preserve a nicer
chromatin structure.

6. Incubate round coverslips (diameter 12 mm) for 5 min with poly-L-lysine solution to increase the affinity of the coverslips to chromatin. Dry the
coverslips on filter paper afterwards.

7. Assemble flat-bottom centrifugation tubes (6 ml, 16/55 mm) by putting the coverslips with the coated site to the top on the bottom of the
centrifugation tube. Add 800 µl of the 30 % sucrose cushion and layer the fixed sample on top.

8. Spin for 15 min at 2,500 x g at 4 °C.
 

NOTE:The flat-bottom centrifugation tubes fit to rotors that adopt 15 ml conical centrifuge tubes.
9. Decant the supernatant, then remove the coverslips from the tubes by poking carefully the bottom of the centrifugation tube with a 16 G 1 ½‘‘

syringe needle. For this purpose tape the lid of the needle and the needle itself together at their bottoms and cut the front end of the lid so
that the needle sticks about 3 mm out. When the coverslip is lifted by the needle on one site, use tweezers to remove the coverslip.

10. Wash the coverslip quickly by dipping it in deionized water, dry it gently by touching its side to a filter paper and place it on the microscope
slide on a drop of mounting media. Seal it with nail polish, dry and keep in dark.
 

NOTE:Samples fixed without glutaraldehyde can be stored in PBS in a 24-well plate and used further for immunofluorescence staining. If
stored for several days, add 0.05 % sodium azide (CAUTION! wear gloves) to the PBS to avoid contamination with bacteria.

11. Analyze the samples by fluorescence microscopy of the DAPI signal (using e.g., a confocal microscope with a 405 nm laser).

8. Preparation of Buffer for Immunofluorescence Staining of In Vitro Reconstituted
Chromatin Decondensation Samples

1. Prepare PBS according to 1.1.1. Dissolve NH4Cl to a final concentration of 50 mM in PBS. Keep this solution at 4 °C. Dissolve 5 µg/ml DAPI
in PBS (prepare freshly). Add 0.1 % Triton X-100 to PBS. Keep at 4 °C. Prepare blocking buffer freshly before use by diluting 3 % bovine
serum albumin (BSA) in PBS + 0.1 % Triton X-100.

9. Protocol for Immunofluorescence Staining of In Vitro Reconstituted Chromatin
Decondensation Samples

NOTE: All following incubations of the coverslips are made in a 24-well plate with at least 250 µl solution per well, if not stated otherwise. In vitro
decondensed chromatin samples are more sensitive than fixed cells therefore be careful when adding or removing solutions. It is recommended
to use plastic Pasteur pipettes cut angular. For washing steps and secondary antibody incubation place the plate at RT on rocking or rotating
platform, moving not faster than 100 rpm.

1. Quench samples by incubating coverslips with 1 ml NH4Cl in PBS for 5 min. Block samples by incubating them with 1ml blocking buffer for at
least 30 min.

2. Assemble a humidity chamber for the incubation with the primary antibody: Put a wet tissue on the bottom of a closable box and the lid of
the 24-well plate upside down on top of the wet tissue. Place parafilm into the lid and add 70 µl of the antibody solution per sample on the
parafilm. For the antibody solution, dilute antiserum or affinity purified antibodies 1:100 in blocking buffer.

3. Place the coverslips upside down on top of the antibody solution and incubate them for 1 to 2 hr. Place the coverslips back to the 24-well
plate with the sample side facing up and wash samples three times for 10 min with 1 ml 0.1 % Triton X-100 in PBS.

4. Incubate coverslips for 1 hr at RT in 250 µl secondary fluorescent-tagged antibody diluted in blocking buffer to a concentration recommended
by the manufacturer. Protect from light. Wash three times for 10 min with 1 ml 0.1 % Triton X-100 in PBS.

5. Incubate the samples for 10 min with 1ml of 5 µg/ml DAPI in PBS. Wash three times for 5 min with 1 ml 0.1 % Triton X-100 in PBS.
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6. Wash the coverslip quickly by dipping it in deionized water, dry it gently by touching its side to a filter paper and place it on the microscope
slide on top of a drop of mounting media. Seal it with nail polish, dry and keep at 4 °C in the dark until used. Analyze the samples by
fluorescence microscopy.

Representative Results

Time dependence of the decondensation reaction

Figure 1 shows a typical time course of the decondensation assay. The cluster of chromosomes visible at the beginning of the reaction
decondenses and merges into a single, round and smooth nucleus. When the egg extract is replaced by sucrose buffer the chromosome cluster
remains condensed, which suggest that decondensation activity is present in the egg extract.

Chromatin decondensation is an energy dependent process

The in vitro decondensation reaction can be conveniently manipulated e.g., by addition of inhibitors. In the experiment shown on Figure 2, the
non-hydrolyzable ATP or GTP analogs, ATPγS or GTPγS, were added to the reaction. Both inhibit the decondensation showing, that it is an ATP
and GTP dependent, active process (Figure 2).

Chromatin decondensation and nuclear envelope reformation can be separated

The decondensation assay was performed in the presence or absence of membranes (Figure 3). Please note that in both conditions chromatin
undergoes decondensation, however addition of membranes results in bigger nuclei. Most probably, reformation of the nuclear envelope induces
a secondary decondensation step by yet another mechanism dependent on nuclear transport.

 

Figure 1. Time course of the in vitro decondensation reaction. Mitotic chromatin clusters from HeLa cells were incubated with interphasic
Xenopus egg extract. Samples were fixed at indicated time points with 4% PFA and 0.5% glutaraldehyde, stained with DAPI and analyzed by
confocal microscopy. Re-printed from Magalska et al. 8. Scale bar is 5 µm. Please click here to view a larger version of this figure.
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Figure 2. Chromatin decondensation requires ATP and GTP hydrolysis. Chromatin decondensation was performed in the presence of 10
mM ATPγS, 10 mM GTPγS or control buffer. Samples were fixed with 4% PFA and 0.5% glutaraldehyde at indicated time points and analyzed by
confocal microscopy. Re-printed from Magalska et al. 8. Scale bar is 5 µm. Please click here to view a larger version of this figure.

 

Figure 3. Chromatin decondensation in the presence and absence of membranes. Chromatin decondensation was performed
in the absence (A) or presence (B) of floatation purified membranes for 120 min. Samples were fixed with 4% PFA and 0.5 %
glutaraldehyde and analyzed by confocal microscopy. Chromatin is stained with DAPI, membranes with DiIC18 (1,1'-Dioctadecyl-3,3,3',3'-
tetramethylindocarbocyanine perchlorate). Scale bar is 5 µm. Please click here to view a larger version of this figure.

Discussion

Xenopus laevis egg extracts are a very useful tool to faithfully reproduce cellular processes in vitro, and this system was successfully used
in the characterization of cell cycle and cell division events 2,3,5,6,17. Due to large stores of nuclear components sequestered in the egg during
oogenesis, egg extracts are an excellent source of cellular components. Compared to other approaches like RNAi on mammalian tissue cell lines
or genetic manipulation, it offers several advantages: The cell-free system allows studying cellular processes in which cellular viability would
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be otherwise a limitation. Moreover single steps of complex processes can be analyzed in simple assays. The here presented decondensation
assay allows studying molecular mechanisms of postmitotic decondensation with no interference from other mitotic events, respectively.
Xenopus egg extracts are easy to manipulate by depletion of specific proteins and addition of inhibitors or mutated proteins 8. For example,
Figure 2 shows the result of adding the non-hydrolyzable ATP or GTP analogs, ATPγS and GTPγS to the decondensation assay. By dilution and
differential centrifugation of Xenopus eggs components like membranes and cytosol can be separated 16. Figure 3 shows the decondensation
assay performed in the presence or absence of membranes. Finally, the cell-free assay can also be used to identify novel factors e.g., by a
fractionation approach. Using such a strategy we have identified the AAA+-ATPases RuvBL1/RuvBL2 as crucial decondensation factors 8.

In vitro systems based on X. laevis eggs have been employed with different DNA templates: Forbes et al. showed that injection of phage λ
DNA into unfertilized X. laevis eggs induced the assembly of chromatin on naked phage λ DNA. As injection of viral DNA activated the egg,
the assembly of chromatin was followed by formation of a nucleus-like structure 18 and similarly λ-phage DNA can be used in combination
with egg extracts to generate nucleus like structures in vitro 19. Magnetic beads coated with DNA have been used to study chromatinization
of DNA 20 and recruitment of nuclear membranes 21 as well as assembly of a nuclear envelope and pore complexes 22, although it remains
open to which extent this resembled a bona fide nuclear re-assembly process. The protocol presented here allows decondensation of isolated
mitotic chromatin clusters from HeLa cells using extract generated from activated Xenopus eggs. It thoroughly reconstructs events leading
to a reformation of an interphasic nucleus 8. Compared to the widely applied nuclear assembly reaction used to study the formation of the
nuclear envelope and the nuclear pore complexes at the end of mitosis, in the decondensation assay HeLa mitotic chromatin clusters instead
of sperm DNA are used. Sperm DNA can be assembled into mitotic chromatin or even individual chromosomes upon incubation with extract
prepared from unfertilized and non-activated eggs 3. We decided to use mitotic clusters as chromatin source to simplify the procedure and avoid
interference from chromatin condensation. In addition, the preparation of the egg extract is slightly modified: For the chromatin decondensation
low speed extract cleared by two high speed centrifugation steps in fixed angle rotors are used. Low speed extract can be stored for up to 6
month in liquid nitrogen without losing its activity. In contrast, in the nuclear assembly reactions, cytosol and floated membranes are generated
from low speed extracts by dilution and differential high-speed centrifugation before possible freezing (see Eisenhardt et al. 16 for a detailed
protocol). In our assay system, addition of membranes allows the formation of a closed nuclear envelope including nuclear pore complexes. The
resulting nuclei are competent for nuclear import and export 8. Thus, this system supports both chromatin decondensation and nuclear envelope
reformation. Interestingly, chromatin decondensation is also possible in the absence of membranes (Figure 3). However addition of membranes
results in slightly bigger nuclei. Most likely, the reformation of the nuclear envelope induces a secondary decondensation step by yet undefined
mechanisms, which depends on nuclear import.

For the isolation of mitotic chromatin clusters from HeLa cells, a modified version of the protocol established by Gasser and Laemmli 15 was
used. Synchronized mitotic cells are lysed in a buffer containing the non-ionic detergent digitonin and by mechanic forces. The chromatin is
isolated as clusters that contain all chromosomes from one nucleus. The crucial difference compared to single chromosome isolation protocols
is the fact that the cells are not hypotonically swollen but cooled down to 4 °C before lysis. This prevents the disconnection of the individual
chromosomes 15,23. Compared to the protocol published by J.R. Paulson 23 who recognized the advantage of the isolation of whole chromatin
clusters, Gasser & Laemmli used EDTA-containing polyamine buffers instead of Mg2+ based buffers to reduce the activity of kinases, nucleases,
proteases and phosphatases and by this decrease the amount of protein and DNA modifications occurring during the isolation process 15.
Additionally, using a colloidal silica particles gradient during differential centrifugation highly reduces cytoplasmic contamination. The protocol can
also be used to isolate mitotic chromatin clusters from Chinese hamster ovary and mouse cells 15.

Altogether, our protocol faithfully reconstitutes chromatin decondensation as it happens at the end of mitosis. The ATP dependence of the in vitro
chromatin decondensation can be at least in part explained by the involvement of RuvBL1/2 but also another AAA+-ATPase, p97, which removes
the mitotic kinase Aurora B from the chromatin during mitotic exit 24. Why the process requires GTP hydrolysis is one of the open questions that
we intend to answer using this setup.
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Abstract

Cells have developed highly sophisticated ways to accurately pass on their genetic information to the
daughter cells. In animal cells, which undergo open mitosis, the nuclear envelope breaks down at the
beginning of mitosis and the chromatin massively condenses to be captured and segregated by the mitotic
spindle. These events have to be reverted in order to allow the reformation of a nucleus competent for DNA
transcription and replication, as well as all other nuclear processes occurring in interphase. Here, we
summarize our current knowledge of how, in animal cells, the highly compacted mitotic chromosomes are
decondensed at the end of mitosis and how a nuclear envelope, including functional nuclear pore complexes,
reassembles around these decondensing chromosomes.

Crown Copyright © 2015 Published by Elsevier Ltd. All rights reserved.
Introduction

The defining feature of the eukaryotic cell is the
compartmentalization of genetic material inside the
nucleus. The spatial and temporal separation of
transcription and translation has enabled eukaryotes
to achieve a level of regulatory complexity that is
unprecedented in prokaryotes. This is accomplished
by the nuclear envelope (NE), which serves as the
physical barrier between the cytoplasm and the
nucleoplasm (Fig. 1). Nuclear pore complexes
(NPCs) are the gateways of the NE allowing diffusion
of small substances and regulated trafficking of
macromolecules up to a size of 50 nm (for review,
see Ref. [1]). The NE consists of two membranes
that are separated by the perinuclear space. The
inner nuclear membrane (INM) is connected to the
outer nuclear membrane (ONM) via the pore
membrane, points of fusion where NPCs reside. In
addition, the ONM is connected to the membrane
network of the endoplasmic reticulum (ER) (Fig. 1).
Thus, INM and ONM form a continuum with the ER
and can be considered as subcompartments of the
latter. However, the INM is additionally characterized
by a distinct protein composition. Integral membrane
proteins of the INM interact at multiple sites with
chromatin and the nuclear lamina, which forms a
ht © 2015 Published by Elsevier Ltd. All rig
tight proteinous network underlying and stabilizing
the NE.
For cell division, the genetic material needs to be

passed on to the two emerging daughter cells. After
the DNA is replicated in S-phase, it must be
physically separated by the mitotic spindle, a
microtubule-based structure assembled from pre-
dominantly cytoplasmic components. In order to
allow microtubule contact to chromosomes, different
strategies have evolved (for review, see Ref. [2]):
many eukaryotes, including yeasts, employ closed
or semiclosed mitosis, during which tubulin and
microtubule-associated proteins are imported into
the nucleus and an intranuclear spindle assembles.
In contrast, metazoan cells divide by open or
semiopen mitosis (Fig. 2). In this mode, the NE is
at least partially disassembled during prophase to
allow microtubules access to the chromatin. Con-
comitantly, the chromatin becomes increasingly
condensed and individualized. During metaphase,
chromosomes align at the metaphase plate. Once
the spindle assembly checkpoint is satisfied due to
proper kinetochore–microtubule attachment and
tension, chromosomes are segregated in anaphase
to the two emerging daughter cells by the mitotic
spindle. In late anaphase and telophase, the nucleus
starts to reform. We will discuss here nuclear
hts reserved. J Mol Biol (2016) 428, 1962–1985

http://dx.doi.org/


NPCPC

lamina
inner nuclear membrane
perinuclear space
outer nuclear membrane

endoplasmic reticulum

nuclear pore complex
cytoplasm

nucleoplasm

Fig. 1. The metazoan interphase nuclear envelope. The nuclear envelope is formed by two membranes, the inner and
outer nuclear membranes that enclose the perinuclear space and that are continuous with the lumen of the ER. Embedded
in the nuclear envelope are nuclear pore complexes (red) that shape the two nuclear membranes to a pore. The is defined
by a specific set of integral membrane proteins (green) that interact with chromatin (blue), chromatin-associated proteins
(violet) and the lamina (beige), a protein meshwork of lamins stabilizing the nuclear envelope.

1963Review: Nuclear Reformation at the End of Mitosis
reformation at the end of mitosis in animal cells, with
an emphasis on chromatin decondensation and the
reassembly of a functional NE and pore complexes.
Comprehensive overviews on how other nuclear
structures including nucleoli reform are given in other
recent reviews (e.g., see Ref. [3]).
In the last years, progress in answering the

relevant questions concerning nuclear reformation
has been made both by life cell imaging, mostly in
mammalian tissue culture cells (e.g., see Refs. [4–
6]) but also in Caenorhabditis elegans (for review,
see Ref. [7]), and by detailed biochemical analysis.
The latter often relies on the use of egg extracts from
Xenopus laevis that have been extremely instru-
mental to reconstitute and functionally dissect
complicated cellular reactions in a test tube. Often,
sperm DNA is used as a chromatin template, around
which, after its decompaction, a closed NE including
pore complexes is formed. This process occurs
naturally when a sperm enters the egg. Although
nuclear reassembly in dividing cells has, as far as we
know, much in common with this pronuclear assem-
bly, especially, for example, in terms of NPC
assembly, some aspects might be adapted to the
specific needs of early embryogenesis. In addition,
some peculiarities of the cell-free system are
attributed to the preparation method. For example,
during breakage of the eggs, the ER network
fragments and forms vesicles. These vesicles bind
to chromatin and fuse to a closed NE upon chromatin
incubation in egg extracts, which has been mis-
interpreted as proof for the existence of membrane
vesicles as source of the NE during nuclear
reformation at the end of mitosis (for discussion,
see Ref. [8]). In this review, we will also attempt to
point out where results from in vitro experiments
should be taken with a grain of skepticism and would
benefit from confirmation in living cells.
Mitotic Exit Regulation

Processes initiating the entry of mitosis (Fig. 2)
such as NE breakdown, spindle assembly and
chromosome alignment are driven by various mitotic
kinases, most importantly the cyclin-dependent
kinase 1 (CDK1)/cyclin B complex and members of
the Aurora and Polo-like kinase (PLK) families
(reviewed in Ref. [9]). In addition to its regulation
via phosphorylation and dephosphorylation, CDK
activation requires binding of cyclins (reviewed in
Ref. [10]). In contrast, PLK1 is mainly regulated by its
targeting to diverse proteins at different cellular sites
throughout the cell cycle that have been primed
before by phosphorylation (reviewed in Ref. [11]).
Similarly, the localization of Aurora B kinase is tightly
regulated during mitotic progression (reviewed in
Refs. [12] and [13]). Aurora B is the catalytic subunit
of the chromosomal passenger complex (CPC) that
additionally consists of the targeting subunits Bor-
ealin and Survivin, as well as the bridging subunit
INCENP (inner centromere protein). The targeting
subunits regulate CPC's localization and translocate
the complex from the chromosome arms to the inner
centromeric chromatin in early mitosis, where it
controls proper attachment of the spindle to the
kinetochores. Subsequently, in anaphase, the CPC
localizes to the spindle midzone, where it is involved
in its stabilization and in cytokinesis.
Mitotic kinases phosphorylate various substrates

including nucleoporins (i.e., NPC proteins, Nups),
lamins and histones, and they cause a global
hyperphosphorylated mitotic state in the cell (e.g.,
see Ref. [14]). Once the spindle is properly bipolarly
attached to the kinetochores, the spindle assembly
checkpoint is satisfied and in turn stops inhibiting the
anaphase promoting complex (APC) activity
(reviewed in Ref. [15]). The active APC, in a complex
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with its cofactor CDC20, ubiquitinylates cyclin B and
securin and primes them for their proteasomal
degradation. The degradation of securin releases
the protease separase that is now free to cleave a
subunit of the cohesin complex allowing sister
chromatid separation. Cyclin B degradation, on the
other hand, causes an inactivation of CDK1 that
results in the transition from metaphase to ana-
phase, which is a point of no return. Later in
anaphase, the decreased CDK1 activity allows
APC to assemble with a different cofactor, CDH1
(CDC20 homolog 1), which broadens its substrate
specificity to, for example, Aurora B, PLK1 and its
earlier cofactor CDC20. The inactivation and/or
degradation of mitotic kinases are necessary but
not sufficient to induce mitotic exit. The manifold
phosphorylations, previously introduced by mitotic
kinases, need to be reversed from their targets to
allow for mitotic progression including chromosome
segregation, spindle elongation, cytokinesis and
reestablishment of the interphasic nucleus. Thus,
the ratio of kinase to phosphatase activity defines the
shift from early to late mitotic events.
Budding yeast employs a well-studied mitotic exit

regulation mechanism, mainly driven by the phos-
phatase CDC14 (reviewed in Ref. [16]). CDC14 is
activated by its release from the nucleolus in early
anaphase, induced by the signaling cascade net-
work FEAR (CDC fourteen early anaphase release
network) and later sustained by the signaling
cascade network MEN (mitotic exit network). How-
ever, whereas mitotic entry regulation by the
different mitotic kinases is generally conserved in
all eukaryotes, CDC14 does not play the prevalent
role in mitotic exit regulation in metazoans. Although
homologs are found in a large variety of organisms,
they seem to have functions unrelated to mitotic
exit—however, a role in mitotic exit cannot be
excluded either (reviewed in Ref. [17]). Instead,
members of the PP1 and PP2A protein phosphatase
families seem to be the key players in regulating
mitotic exit in metazoans.
The number of catalytic protein phosphatase

subunits encoded by the human genome is much
smaller as compared to the number of protein
kinases. An increased substrate specificity and
regulation spectrum is achieved by a large number
of regulatory subunits that associate with the
catalytic subunits and change their substrate binding
capability and localization. PP1 typically forms a
heterodimer consisting of one of the four almost
identical catalytic subunits, PP1α, PP1β/δ, PP1γ1 or
PP1γ2 in mammals and one of several regulatory
subunits. PP2A usually forms a heterotrimeric
complex consisting of the catalytic subunit PP2Aα
or PP2Aβ, the scaffolding subunit PR65 (protein
phosphatase 2 regulatory subunit) α or β and one of
at least 15 different isoforms of regulatory subunits
that belong to the B55, B56, B″ or B‴ families.
Although it is controversial whether PP1 and PP2A
are direct or indirect antagonists of CDK phosphor-
ylation, both certainly play important roles during
mitotic exit.
So far, four different regulatory subunits have been

described to be involved in late mitotic functions of
PP1: Repo-Man, PNUTS (phosphatase 1 nuclear
targeting subunit), Ki-67 and AKAP149 (A-kinase
anchoring protein). Repo-Man targets PP1γ to
anaphase chromosomes (Fig. 2, inset II) [18]
resulting in dephosphorylation of histone H3 at T3,
S10 and S28 [5]. Loss of Repo-Man impairs the
reversal of these mitotic H3 phosphorylations and
causes abnormally shaped nuclei with irregular NEs
and cytoplasmic NPC formation [5]. These observa-
tions point to a regulatory role of Repo-Man in NPC
reassembly in the reforming NE at the end of mitosis,
as cytoplasmic NPC formation, so-called annulate
lamellae, is often seen upon interfering with this
process [19,20]. Repo-Man binds and recruits
importin β, a key regulator of NE/NPC reassembly
(see sections “Establishing a Nuclear Envelope
Membrane Domain” and “Regulating NPC Assembly
at the End of Mitosis”), to anaphase chromosomes
but the molecular details and mechanisms of the
nuclear reformation defects seen upon Repo-Man
depletion remain to be elucidated.
Another factor that targets PP1γ to anaphase

chromosomes, only recently identified, is Ki-67
(Fig. 2, inset II). Ki-67 is part of the perichromosomal
layer, a coat of mainly nucleolar proteins and RNAs
assembling around mitotic chromatin forming an
intersection to the surrounding cytoplasm (reviewed
in Ref. [21]). Depletion of Ki-67 reduces PP1γ
targeting in anaphase but does not detectably affect
NE reformation [22,23]. It remains to be seen
whether Ki-67 function is at least in part redundant
with Repo-Man and whether codepletion of both
targeting subunits aggravates mitotic exit defects.
The targeting subunit PNUTS recruits PP1α to the

reforming nucleus—probably via reviving nuclear
import—during mitotic exit but later than chromatin
recruitment of PP1γ by Repo-Man [18,24]. PNUTS
accumulates at the nuclear periphery just before the
sealing of the NE and has been suggested to
regulate chromatin decondensation [24] but the
precise targets of PP1α-mediated dephosphoryla-
tion important for this remain to be identified.
The transmembrane-domain-containing protein

AKAP149 targets PP1 in a phosphorylation-regu-
lated manner to the reforming NE at the end of
mitosis (Fig. 2, inset IV) [25–28]. The PP1 anchoring
by AKAP149 is necessary for the dephosphorylation
of lamin B resulting in the reformation of the nuclear
lamina.
In addition to the recruitment of PP1 catalytic

subunits at a specific time point to their site of action,
PP1 activity is further controlled via modifications of
its regulatory subunit. For example, phosphorylation
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of Repo-Man by CDK1/cyclin B prevents PP1
binding, as well as stable chromatin targeting
[5,29]. In addition, the catalytic subunit can also be
directly regulated. In Xenopus egg extracts, protein
kinase A phosphorylates the inhibitor 1 upon mitotic
entry that, in turn, binds and blocks PP1 [30]. The
catalytic subunit of PP1 is further inhibited through
direct phosphorylation by CDK1. Low CDK1 levels
during mitotic exit are proposed to trigger PP1 to
dephosphorylate itself, as well as inhibitor 1 in order
to obtain full phosphatase activity. It remains to be
seen how conserved this regulation is. Nevertheless,
it is conceivable that regulation of PP1 occurs in
time, by controlling the activity of the catalytic
subunits, and in space, by defining the localization
of the complex via its targeting subunits.
In addition to PP1 phosphatases, PP2A com-

plexes have been implicated in mitotic exit regula-
tion. A genome-wide RNAi screen against
phosphatases identified the PP2A–B55α complex
as key mitotic exit phosphatase [31]. Downregulation
of the regulatory subunit B55α delayed exclusively
mitotic exit, while the catalytic and scaffolding
subunits retarded also mitotic entry, hinting to
additional early mitotic functions of these PP2A
subunits. The assembly of the holoenzyme is
prevented by mitotic phosphorylation of B55α [31]
but might be in addition controlled by phosphoryla-
tion and methylation of the catalytic subunit [32].
Furthermore, importin β interaction with the PP2A–
B55α is suggested to regulate mitotic exit function of
the complex via nucleoplasmic/cytoplasmic trans-
port or via importin β's function as a molecular
chaperone [31]. In contrast to the latter study in
human cells, another PP2A regulatory subunit,
B55δ, was implicated in mitotic exit regulation
using Xenopus egg extracts [33]. Immunodepletion
of PP2A–B55δ leads to premature mitotic entry and
blocks exit from mitosis. The experiments suggest
that this effect is due to direct or indirect dephos-
phorylation of CDK substrates.
One of the crucial targets for PP2A dephosphor-

ylation might be the small chromatin binding protein
BAF (barrier-to-autointegration factor). BAF func-
tions as a bridge between chromatin, lamins and
INM proteins (reviewed in Ref. [34]) and is involved
in late nuclear mitotic events, for example, the
reformation of the NE, further discussed in later
paragraphs (see section “Establishing a Nuclear
Envelope Membrane Domain”). Aside from its
manifold other interaction partners, BAF binds to
the INM protein LEM4 (LEM domain containing 4)
[35]. Upon mitotic entry, BAF is phosphorylated by
VRK1 (the vaccinia-related kinase 1) that leads to its
dissociation from chromatin, LEM4 and other INM
proteins. This occurs simultaneously with NE break-
down [36,37]. Upon mitotic exit, LEM4 inhibits VRK1
and recruits PP2A. PP2A dephosphorylates BAF
and enables its chromatin and INM protein binding
capability that is necessary for the nuclear reforma-
tion [35] (Fig. 3). Thus, it is conceivable that LEM4
acts as a PP2A regulatory subunit in this case. This,
however, is a matter of controversy, as a different
study suggests that PP4 is the major BAF phospha-
tase [38] and thus additional features of BAF
regulation during mitotic exit might be involved.
Nevertheless, the LEM4–BAF pathway shows that
further possibilities of tuning protein phosphatase
activities and new regulatory subunits might be
involved in mitotic exit control, awaiting their identi-
fication and characterization.
In summary, PP1 and PP2A phosphatases have

each been independently linked to mitotic exit
control (Fig. 2, insets II and IV). However, the
relative contributions and respective importance of
the two phosphatase families remain controversial.
As both are controlled by phosphorylation, it is
conceivable that PP1 and PP2A activities interde-
pend from each other by cross-dephosphorylation or
inhibiting the corresponding inactivating kinases.
Indeed, a mitotic phosphatase relay system was
recently described in fission yeast, where PP1
activation is required for the reactivation of PP2A
to coordinate mitotic progression and exit [39]. It will
be interesting to see whether similar principles also
account for mitotic exit regulation in metazoans.
Chromatin Decondensation

Chromatin structure in the interphase nucleus is
not random: instead, chromosomes assemble in
specific territories, which are often cell type specific
and maintain a relative radial position with respect to
the nuclear periphery (reviewed in Refs. [40] and
[41]). Within the last years, it has become increas-
ingly clear that this three-dimensional organization
plays an important role in regulation of gene
expression (reviewed in Ref. [42]). Also, on smaller
scales, many local and long-range contacts among
genes and other sequence elements that organize
the genome exist. A number of controversial models
of the interphasic chromatin structure aim explaining
genome organization, each based on different
microscopy techniques, as well as genomic ap-
proaches such as 3-C, 4-C, 5-C and Hi-C (reviewed
in Ref. [43]). The first level of compaction is achieved
by wrapping the DNA around nucleosomes—con-
sisting of core histone octamers—to form a 10-nm
chromatin fiber (referring to the diameter of the fiber).
Already the next layer of compaction is disputed:
recent results question the existence of the 30-nm
fiber for which different models have been proposed
based on electron microscopy and in vitro assembly
studies, and these rather suggest a more dynamic,
disordered folding accompanied by nucleosome
fluctuations influencing the chromatin accessibility
(reviewed in Ref. [44]). The mechanism of formation
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of any higher-order organization, although clearly
evident from a variety of experiments, remains
similarly controversial.
Equally unsecured is our knowledge about the

structural organization of mitotic chromosomes, a
topic that has been fascinating biologists for de-
cades. Although it was apparent from early days of
mitosis research that mitotic chromatin is con-
densed, estimates about the compaction grade of
mitotic chromatin in animal cells compared to its
interphase state differ considerably, from 2-fold to
50-fold [45,46]. As for the interphasic chromatin
structure, microscopic, biophysical and recently
chromosome conformation capture methods led to
various models attempting to explain how these
structures are organized. These models fall mainly
into two broad categories: one class of models
proposes that the DNA hierarchically folds into
increasingly higher-order structures (e.g., see Refs.
[47] and [48]). The second class suggests that
mitotic chromatin forms series of loops that are
attached to a central chromosome scaffold axis (e.g.,
see Ref. [49]). Interestingly, recent chromosome
conformation capture results suggest that mitotic
chromatin indeed consists of loops of various sizes
[50]. According to this study, compartmentalization
and specific domains of interphasic chromatin are
lost during formation of mitotic chromosomes,
leading to homogenous mitotic chromosome struc-
tures independent of the cell type. In contrast,
another recent study suggests that the DNase I
sensitivity profile of mitotic and interphasic chromatin
is not changed globally [51]. This indicates that the
accessibility of chromatin is not altered during the
cell cycle, with a few local exceptions such as
hypersensitive regions in interphase that indeed lose
accessibility to a larger extent than other regions.
Although many potential chromatin condensation

factors have been identified, their exact functions
often remain controversial. This might be attributed
to the fact that mitotic chromatin condensation, in
preparation for sister chromatid separation, most
likely requires several distinct activities that are due
to their contemporaneous and probably interdepen-
dent nature hard to distinguish in molecular terms:
this includes disentanglement of sister chromatid
DNA molecules, compaction of chromatin into the
thread-like structure and probably the formation of a
longitudinal scaffold axis with a certain rigidity.
Condensins and topoisomerase II, both major
chromosomal components, are often regarded as
key factors in establishing the mitotic chromosome
structure. Because of its decatenation activity [52],
topoisomerase II is certainly involved in DNA
disentanglement [53]. Whether it is in addition
required for chromatin compaction is controversial:
experiments in fission yeast and Xenopus egg
extracts have implicated a requirement for topo-
isomerase IIα in chromatin condensation [54,55], in
agreement with pioneering work from the Laemmli
laboratory, where the protein was identified as a
major nonhistone component of the scaffold axis
[56,57] involved in chromatin condensation [58,59].
However, knockdowns of topoisomerase IIα in fly
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and human cell lines impair chromosome segrega-
tion but do not result in prominent condensation
defects [60,61]. Condensins have been identified as
chromatin condensation factors in Xenopus egg
extracts [62,63]. In most eukaryotes, two condensin
complexes exist, condensin I and condensin II,
which form a ring-like structure including an ATPase
subunit. There is universal agreement that conden-
sins are involved in sister chromatid disentangle-
ment [53,64]. Whether these protein complexes
actually drive mitotic chromatin compaction has
always been controversial (reviewed in Ref. [65]).
RNAi data from various organisms suggest that cells
lacking condensins are defective in chromosome
segregation rather than chromatin condensation
[66–68]. Alternatively, a so-far unknown regulator
of chromosome architecture was suggested to
induce mitotic chromatin formation, later inhibited
by the Repo-Man–PP1 complex and replaced by
condensins in their possible function of stabilizing
mitotic chromosomes [29]. This model results from
the observation that conditional knockout of the
shared condensins I and II subunit SMC2 causes
anaphase chromatin bridges and loss of compact
chromosome architecture, which can be rescued by
the inhibition of Repo-Man-guided PP1 recruitment
to anaphase chromosomes. However, recent exper-
iments show that, at least in meiotic cell divisions in
mice, condensins have a crucial role in chromatin
thread formation [69] and indicate that condensins
might be indeed functioning in both DNA disentan-
glement and compaction.
Two condensin interacting proteins have been

implicated in mitotic chromatin condensation,
MCPH1 (microcephalin 1) and KIF4A (kinesin family
member 4A) [70,71]. MCPH1 is thought to regulate
loading of condensin II on chromatin [70]. MCPH1
mutations lead to premature condensation, delayed
decondensation and disturbed metaphase chroma-
tin structure [72]. This seemingly counterintuitive
phenotype for a condensation factor loading protein
might be explained by an altered ratio of condensins
I and II on the chromatin. In line with this, shifting the
ratio of condensin I to condensin II complexes affects
mitotic chromatin structure in Xenopus egg extracts
[73], pointing to the possibly of counteracting or at
least nonredundant functions of condensins I and II,
which also target to chromatin at different time points
during mitotic entry [74]. In the case of KIF4, its
depletion was suggested to cause hypercondensa-
tion [71]. However, recent results indicate that KIF4A
depletion rather affects structural integrity of mitotic
chromosomes [75]. Therefore, it was proposed that
KIF4A and condensins promote lateral chromosome
compaction by loop formation, while topoisomerase
II promotes axial compaction upon decatenation of
the loops.
Histone modifications are crucial regulators of

chromatin structure and function, most prominently
in remodeling interphasic chromatin in order to
stimulate or repress gene expression. Whether
changes in chromatin structure induced by histone
modifications also play a role in mitotic chromatin
compaction and decompaction is arguable. Some
posttranslational histone modification patterns de-
pend on the developmental or cell cycle stage
(reviewed in Ref. [76]). For example, H3K27
trimethylation shows a different pattern in interphase
compared to mitosis, hinting to partial remodeling of
the epigenome during mitosis [77]. Striking mitotic
marks are phosphorylations of threonine 3 and
serine 10 of histone H3. The former is involved in
recruiting CPC to the centromere in early mitosis
(reviewed in Ref. [13]). The second, widely used as a
convenient mitotic mark, was due to its correlation
with the compacted chromatin state thought to be
involved in or even cause chromatin condensation
and conversely dephosphorylation of H3S10 in
chromatin decondensation (e.g., see Ref. [78]).
However, H3S10 phosphorylation and chromatin
condensation can be uncoupled and are thus not
essential for each other [79–82]. Thus, H3S10
phosphorylation might be part of another mitotic
function, unrelated to chromatin condensation. It is,
for example, required for the release of the hetero-
chromatin protein HP1 from chromatin [83] and it is
conceivable that it is similarly involved in the
detachment and/or recruitment of other chromatin
binding factors during mitosis. Newer results obtain-
ed by cross-linking experiments in yeast argue again
for an involvement of H3S10 phosphorylation in
chromatin condensation by recruiting the histone
deacetylase Hst2p to this modified site. Hst2p
deacetylates H4K16, enabling the interaction of the
H4 tail with the neighboring nucleosome leading
ultimately to chromatin condensation [84]. However,
it remains open whether this mechanism also
contributes to mitotic chromatin condensation in
metazoans. Yeasts undergo closed mitosis and
compact their chromatin to a much smaller extent
[85] and thus might use a different, less sophisticat-
ed, mechanism. Additionally, the decrease of the
distance of two loci on a single chromosome as
analyzed by Wilkins et al. [84] does not necessarily
reflect the condensation of the whole genome.
The highly condensed mitotic chromatin is segre-

gated to the two emerging daughter cells once the
spindle assembly checkpoint is satisfied. Maximal
compaction of mitotic chromosomes is, however, not
attained at metaphase but rather at late anaphase
when segregation is almost complete [86]. This
compaction is achieved by axial shortening of the
chromosome arms in a condensin-independent
manner, regulated by Aurora B kinase activity. The
late maximal compaction could be necessary to
resolve anaphase chromatin bridges by a “pull-
ing-apart” mechanism, or it could serve as a security
mechanism shortly before NE reformation to ensure
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that all chromosomes are integrated into the
reconstituted nucleus. The chromokinesin KIF22 is
involved in this maximal axial compaction in late
anaphase, although the exact function still needs to
be uncovered [87]. Later on, the compacted chro-
matin decondenses in a yet-ill-defined process.
Chromatin decondensation has been mostly in-

vestigated on sperm chromatin after fertilization. The
highly compacted sperm DNA decondenses by
exchanging the protamines X and Y—sperm-speci-
fic histones—to the canonical core histone proteins
H2A and H2B. This exchange is executed by the
oocyte protein nucleoplasmin in an ATP-indepen-
dent manner [88,89]. This process differs from
decondensation of somatic chromatin at the end of
mitosis, as the latter does not involve protamine to
histone exchange. Indeed, chromatin decondensa-
tion at the end of mitosis does not require nucleo-
plasmin [82], consistent with the fact that
nucleoplasmin is absent from somatic cells [90].
Using a cell-free assay based on Xenopus egg
extracts and isolated mitotic chromatin from somatic
cells, it was shown that mitotic chromatin deconden-
sation requires cellular energy in the form of ATP
and GTP [82]. This suggests that chromatin decon-
densation is an active process and not simply
chromatin relaxation caused by the dissociation of
chromatin condensation factors. Consistently, in this
assay, chromatin decondensation depends on the
presence of egg extracts, in contrast to earlier
observations where a basal decondensation activity
of mitotic chromatin was observed in the presence of
only buffer and an ATP-regenerating system [24].
This discrepancy might be explained by a less harsh
chromatin isolation procedure used in Landsverk et
al. [24] that might retain more proteins on the
chromatin.
The ATP dependence is, at least in part, explained

by the dependence of chromatin decondensation on
the AAA+-ATPase p97 (also known as valosin-con-
taining protein (VCP) in vertebrates and CDC48 in
yeast) [91]. p97, in a complex with its cofactors
UFD1 (ubiquitin fusion degradation 1) and NPL4
(nuclear protein localization 4), is required for the
removal of ubiquitinylated Aurora B kinase from
chromatin (Fig. 2, inset IV). It is currently unclear
whether Aurora B needs to be removed from
chromosomes in order to inhibit its kinase activity
toward chromosomal substrates. Alternatively, re-
moval might be necessary in order to function at a
different location at this late mitotic state or simply to
increase chromatin accessibility for chromatin
decondensation factors at specific sites. In HeLa
cells, p97-UFD1-NPL4 seems to be directly antag-
onizing Aurora B activity already at early mitotic
stages, which is required for faithful chromosome
segregation [92]. Also in this case, the relevant
Aurora B targets, whose phosphorylations need to
be prevented, are unidentified.
A second ATPase complex formed by RuvBL1
and RuvBL2 (RuvB-like 1/2, also known as Pontin/
Tip49 and Reptin/Tip48) is involved in chromatin
decondensation at the end of mitosis [82]. RuvBL1
and RuvBL2 are AAA+ -ATPases that form together
a mixed dodecameric complex. They are involved in
a variety of cellular processes including snoRNP,
telomerase complex and spindle assembly, chroma-
tin remodeling, transcriptional regulation and signal
transduction (reviewed in Ref. [93]). The precise
function of RuvBL1/2 in chromatin decondensation,
like in many other processes, still needs to be
uncovered. However, their chromatin enrichment
during mitotic exit [82] and their known function as
components of different chromatin remodeling com-
plexes in interphase implicate that they might
similarly act by restructuring chromatin at the end
of mitosis. Certainly, it is also possible that RuvBL1/2
recruits and activates, or removes and inactivates,
relevant chromatin decondensation or condensation
factors, respectively, to their site of action. Although
the recombinant RuvBL1/2 complex rescues the
depletion phenotype of these ATPases from Xeno-
pus egg extracts regarding chromatin decondensa-
tion, the complex alone is not sufficient to drive
chromatin decondensation, indicating that other,
yet-unknown crucial factors are required [82]. The
fact that chromatin decondensation depends on
GTP hydrolysis [82] suggests that a GTPase is
involved in the process. Although being involved in
many mitotic processes [94] including NE and pore
complex reformation at the end of mitosis (see
sections “Establishing a Nuclear Envelope Mem-
brane Domain” and “Regulating NPC Assembly at
the End of Mitosis”), RAN (Ras-related nuclear
protein) seems not to be involved, as excess of
RAN mutants does not block chromatin deconden-
sation (our unpublished data). Therefore, future
studies are needed to identify the GTPase involved
in chromatin decondensation and its precise
function.
To establish a fully functional interphase nucleus,

not only the chromatin needs to decondense but also
an NE needs to reform (discussed in detail in section
“The Nuclear Envelope Emerges from the Mitotic
ER”). Formation of the NE was suggested to
contribute to chromatin decondensation, via involve-
ment of the INM proteins SUN1 (Sad1 and UNC84
domain containing 1) and the lamin B receptor
(LBR). In the case of LBR, a truncated version of the
protein, missing the domain necessary for the
chromatin interaction, causes failure of NE assembly
and inhibition of chromatin decondensation [95].
However, cells expressing truncated LBR undergo
apoptosis in early G1 phase of these daughter cells
and the observed condensed phenotype might be
attributed to apoptosis that is also characterized by
hypercondensed chromatin. SUN1, a member of the
LINC (linker of nucleoskeleton and cytoskeleton)
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complex, which in interphase connects the cytoplas-
mic and nuclear cytoskeleton, accumulates in
anaphase on the chromosome periphery concomi-
tantly with the initiation of the NE reformation. SUN1
is suggested to target the histone acetylase hALP,
which acetylates histones H2B and H4 on several
sites, to the NE [96]. siRNA-mediated downregula-
tion of SUN1 leads to delayed decondensation, often
accompanied by apoptosis, while a fusion protein
consisting of the N-terminus of SUN1 lacking the
transmembrane region and full-length hALP induces
premature decondensation, even before chromatin
segregation. Although it is not clear to which extent
the N-terminus of SUN1 enhances hALP chromatin
localization, these results suggest that histone
modifications are involved in the chromatin conden-
sation–decondensation cycle. To which extent the
NE contributes to this remains unclear. In vitro,
chromatin decondensation and formation of a closed
NE can be functionally separated [82]. Here,
chromatin can decondense in the absence of NE
formation. However, the presence of membranes
leads to a further enlargement of the volume
occupied by chromatin [82,97]. This is most likely
due to the fact that formation of a functional NE
including NPCs allows for nuclear import. This
increase in nuclear volume is referred to as nuclear
swelling or nuclear expansion [89,98]. Whether it
only reflects an increase of nuclear volume due to
the presence of more nucleoplasmic proteins or
indeed a further decompaction of the chromatin
remains to be seen.
We still are largely ignorant about the factors

involved in chromatin decondensation, as well as
their regulation or the exact structural rearrange-
ments occurring, but it is important to consider that
mitotic chromatin consists of different structural and
functional compartments: one can, at least, distin-
guish the chromosome arms, the centromeres
involved in mitotic spindle attachment via the
kinetochores and telomeres that protect the chro-
mosome ends (Fig. 2, inset I). It is most likely too
simple to imagine that all these domains decon-
dense via the same mechanism—however, we are
far from understanding the differences yet. Chroma-
tin regions that are more densely packed during
interphase undergo less compaction/decompaction
during mitosis compared to less densely packed
areas—although both undergo obvious condensa-
tion/decondensation [99]. This is in line with the
formation of homogenous mitotic chromosomes [50].
Also, decompaction of the chromatin is not the only
requirement for the formation of a properly functional
nucleus. The chromatin needs to acquire a highly
elaborated structure consisting of different territories
and domains with different grades of compactio-
n—often correlating with the transcriptional activity
(reviewed in Ref. [40]). Additionally, nuclear bod-
ies—most prominent thereby nucleoli—need to
reform, each enriching different protein and RNA
factors usually at specific gene loci to fulfill their
individual functions in the interphase nucleus
(reviewed in Refs. [3] and [100]).
The global interphase chromatin pattern is similar

between the mother and daughter cells [101]. Life cell
imaging of chromatin decondensation revealed a radial
expansion mechanism with little relative rearrange-
ments, meaning that “mitotic chromatin neighbors” also
become “interphasic neighbors” [99]. Thus, the inter-
phasic genome structure is already established before
NE reformation. How can the cell inherit this specific
structure if all mitotic chromosomes show a similar,
homogenous structure? The timing of sister chromatid
separation—probably defined by the individual amount
of centromeric heterochromatin—defines the position
of single chromosomes in the reforming nucleus [101]:
sister chromatids positioned close to the spindle poles
separate earlier than the ones close to the cleavage
furrow. It is unlikely that sister chromatid separation
timing is the onlymechanism to transfer the information
necessary to reestablish such a subtle interphasic
nuclear structure. Epigenetic memory cannot only be
retained by chromatin localization but it is conceivable
that chromatin modification scenarios are involved.
Among these, retention of transcription factors and
other chromatin binding proteins on the chromatin
during mitosis—although globally removed as tran-
scription is inhibited during mitosis - or maintenance of
some specific posttranslational histone modifications
could contribute (reviewed in Ref. [102]). How these
events are coordinated with overall chromatin decom-
paction and NE reformation remains to be seen.
The Nuclear Envelope Emerges from the
Mitotic ER

The NE reforms on the decondensing chromatin
and reestablishes the barrier between the nucleo-
plasm and the cytoplasm. The nuclear membranes
are continuous with the ER membranes; therefore,
the NE can be regarded as a subdomain of the ER.
This becomes especially obvious during metazoan
mitosis, when the NE breaks down and its mem-
branes merge into, and are, at least on a light--
microscopical level, undistinguishable from the bulk
ER [103–105]. The morphology of the mitotic ER and
thus the starting point for ER restructuring leading to
NE reestablishment at the end of mitosis is a matter
of debate. Some studies suggest that ER sheets
convert into fenestrated sheets and tubules [106–
108] whereas others propose that tubules transform
into sheets [109–112]. Depending on the model of
mitotic ER structure, NE reformation at the end of
mitosis is differently envisioned: ER tubules are
thought to extend from the ER network, contact the
decondensing chromatin, become immobilized and
flatten and expand to give rise to INM and ONM
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sheets [106] (Fig. 4, Ia and Ib). Alternatively, flat ER
membrane sheets would contact and subsequently
enclose the chromatin to form the NE [111] (Fig. 4,
IIa and IIb). As both interphasic and mitotic ER
network morphologies vary considerably between
cell types [107,113], it is conceivable that both
modes of NE formation exist, depending on the cell
type.
The ER interacts with microtubules in interphase

and this interconnection undergoes important re-
modeling during mitosis. The mitotic ER is excluded
from the central spindle area and from the chromo-
somes until the onset of NE reformation in late
anaphase [108,114]. In mitosis, the association of
ER membranes with microtubules is strongly re-
duced, and it is very likely that this contributes to ER
exclusion from the spindle [112,115,116]. Indeed,
mitotic phosphorylation of the integral ER membrane
protein STIM1 (stromal interaction molecule 1)
abolishes its interaction with microtubules and a
STIM1 phosphorylation mutant causes aberrant
accumulation of ER membranes within the mitotic
spindle in HeLa cells [116]. Microtubule binding of
another ER membrane protein, CLIMP-63 (cytoske-
leton-linking membrane protein 63), is similarly
negatively regulated by mitotic phosphorylation
[117,118] and it is conceivable that this modification
similarly helps to exclude the ER from the spindle
area. In addition, an active mechanism contributes to
the clearance of the ER from the central spindle
area: the ER membrane proteins REEP3 and
REEP4 (receptor expression-enhancing proteins 3
and 4) function as linkers between the ER and
microtubules and transport the ER that has entered
the spindle area to the spindle poles [4]. Depletion of
REEP3/REEP4 causes cytokinesis and chromo-
some segregation defects, as well as aberrant
shaped nuclei in interphase. This highlights the
importance of correct mitotic ER morphology and
distribution.
Microtubules per se seem not to be required for NE

reformation [112,119,120] and microtubule forma-
tion rather needs to be inhibited close to chromatin
[121]. Depletion of DPPA2 (developmental pluripo-
tency associated 2), a chromatin binding and
microtubule destabilizing protein, from Xenopus
egg extracts or the addition of the microtubule
stabilizing drug taxol, prevents NE formation. Inter-
estingly, nuclear expansion is inhibited by perva-
sively depolymerizing microtubules when DPPA2 is
delocalized from chromatin and thus ectopically
active or when microtubule depolymerizing agents
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such as colcemid or nocodazol are added [121,122].
This effect could be due to a reduction of ER
membranes around the reassembled nuclei, as ER
membranes are required for nuclear membrane
expansion to allow nuclear growth [122–124].
Notably, the NE formed in vitro in the presence of
colcemid and nocodazol reportedly does not contain
NPCs [120] and hence the subsequent, expected
lack of nuclear import could explain, at least in part,
the nuclear growth defect. Consistently, long-term
exposure of sublethal concentrations of the microtu-
bule inhibitor colchicine or viniblastine induces
formation of annulate lamellae in tissue culture
cells [125] that also indicates, as previously men-
tioned, a malfunction in NPC reassembly into the
reforming NE at the end of mitosis [19,20]. The lack
of NPCs could indicate that microtubules contribute
to the proper segregation of nuclear membrane
domains from the ER membrane continuum at the
end of mitosis, including transmembrane nucleopor-
ins crucially required for NPC formation [126,127]. It
remains to be seen whether an NE reformed in the
absence of functional microtubules contains typical
INM proteins at a comparable level.
Establishing a Nuclear Envelope Mem-
brane Domain

In late anaphase, nuclear membranes start ap-
proaching chromatin [103,104,128]. It is thought that
integral membrane proteins of the INM and their
chromatin binding affinity are the driving force for this
process [123,129]. Many INM proteins including LBR
[130–132] and the LEM-domain-containing proteins
LAP2β (lamin-associated polypeptide 2β) [133,134],
MAN1/LEMD3 [135] and emerin [136] associate with
chromatin, in the case of LBR by interacting with
HP1 [137]. LEM-domain-containing proteins interact
with the previously introduced chromatin-associated
protein BAF (see section “Mitotic Exit Regulation”).
BAF recruits LEM-domain-containing proteins to
chromatin during mitotic exit, and the LEM proteins
reciprocally modulate the distribution of BAF during
interphase [138–140]. In addition to BAF-mediated
recruitment, binding of several INM proteins to
chromatin, including transmembrane nucleoporin
NDC1 (nuclear division cycle 1) and POM121
(pore membrane protein), can occur by a direct
DNA binding capability that relies on the presence of
basic domains [129]. The rapid recruitment of
membranes to chromatin at the onset of anaphase
might therefore be explained by the existence of
more than one chromatin interaction strategy of INM
proteins. These multiple interactions might also
explain why individual INM proteins are nonessential
for nuclear reassembly in vivo, with the exception of
LBR, for which opposing results have been reported
[95,123].
Binding of both, soluble and membrane proteins, to
the chromatin surface at the end of mitosis does not
occur uniformly but can be referred to two zones on the
chromatin area, called core and noncore chromatin
regions (Fig. 2, inset III). The core (or central) region is
established on the surfaces proximal and distal to the
mitotic spindle, and the noncore region is established
on the surfaces lateral to the mitotic spindle. The core
region is enriched in A-type lamins but also with emerin
and LAP2β, which are recruited locally by BAF
[138,141]. Other factors such as lamin B, LBR and
nucleoporins localize preferentially on the peripheral
noncore region [138,142,143]. Interestingly, the initial
steps of NPC formation, that is, the binding of
chromatin by the nucleoporin MEL28/ELYS (maternal
effect lethal/embryonic large molecule derived from
yolk sac) and the recruitment of Nup107-160 complex
on the noncore region, control the formation of
chromatin subdomains [144], linking NPC assembly
to the establishment of chromatin reorganization at the
end of mitosis. It is currently unclear which specific
features of noncore chromatin render it competent for
MEL28/ELYS binding and subsequent NPC
assembly.
The reassociation of nuclear membranes with

chromatin and the reestablishment of the NE are
tightly regulated in time and space. Different
mechanisms are involved, including phosphoryla-
tion/dephosphorylation cycles on INM proteins,
regulation of the chromatin proteins BAF and HP1,
presumably the RAN system and potentially also
histone modifications (summarized in Fig. 3). Chro-
matin binding of nuclear membranes is controlled in
vitro by the counteracting activities of CDK1/cyclin B
[145–147], which blocks chromatin association, and
protein phosphatases, namely PP1 [146,148], which
promote membrane recruitment. A variety of integral
NE proteins, including GP210, LBR, LAP2β, emerin,
MAN1, NDC1 and POM121 are phosphorylated at
the onset of mitosis, which is thought to prevent their
association with chromatin and contribute to the
disassembly of the NE [14,127,149–151]. Converse-
ly, one would expect that dephosphorylation of these
proteins during mitotic exit triggers their chromatin
recruitment. Although this is conceivable, in most
instances, evidence for a direct contribution of
phosphorylation/dephosphorylation cycles in the
regulation of chromatin binding and NE dynamics
of these proteins is lacking. The best-characterized
example is the recruitment of LBR to chromatin at the
end of mitosis, which also points out that the
regulation might be more complex. LBR binding to
chromatin is prevented in vitro by phosphorylation of
a specific serine residue in an arginine/serine repeat
domain [148,152,153]. The timing of ER membrane
recruitment of LBR to anaphase chromosomes is
controlled by LBR dephosphorylation in human cells
[154]. In addition to dephosphorylation in its arginine/
serine repeat domain, phosphorylation of LBR by the
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serine/arginine-rich protein-specific kinase SRPK1
[152,153,155] is required for its association with
chromatin in vitro.
Two chromatin-associated proteins, HP1 and

BAF, link chromosome decondensation and NE
formation. Chromatin recruitment of HP1 requires
the dephosphorylation of histone H3 at S10 and is
promoted by H3K9 methylation, a characteristic
histone modification of heterochromatin [83,156–
158]. HP1 chromatin recruitment in anaphase [159]
could cooperate in the association of LBR with
chromatin during mitotic exit, in addition to the fact
that LBR can also interact directly with DNA,
histones and other chromatin-associated proteins
[160]. The presence of Aurora B on mitotic chromo-
somes prevents the recruitment of nuclear mem-
branes and by that ensures that the NE does not
assemble before successful segregation of the
chromatin [91,161]. The putative phosphorylation
targets of Aurora B in this process are unknown, but
it is possible that serine 10 phosphorylation of
histone H3 is involved: this particular phosphoryla-
tion, in fact, would prevent HP1 chromatin localiza-
tion [83]. Chromatin recruitment of BAF during
anaphase is crucial for NE reassembly and is
regulated by its phosphorylation. BAF phosphoryla-
tion by the kinase VRK1 reduces its affinity for
chromatin [37], and loss of the BAF-mediated link
between chromatin and nuclear membranes con-
tributes to NE disassembly [36]. As discussed above
(see section “Mitotic Exit Regulation”), the INM
LEM4 is required for BAF dephosphorylation during
mitotic exit by recruiting PP2A and by inhibiting
VRK1 [35]. Thus, the NE/chromatin interaction via
LEM proteins is at least in part regulated by
cell-cycle-dependent phosphorylation/dephosphory-
lation cycles of BAF (Fig. 3).
Cell-cycle-dependent waves of phosphorylation

and dephosphorylation can account for the temporal
coregulation of mitotic chromosome decondensa-
tion, NE formation and NPC assembly. However, NE
assembly, as well as NPC assembly, must be
restricted to the chromatin. This regulation is thought
to be provided by the small GTPase RAN, which in
interphase functions in nucleoplasmic/cytoplasmic
transport of cargos across the NPC. RAN, in its
GTP-bound state that is locally generated in the
nucleus, stimulates the release of importin-bound
cargo in the nucleoplasm, but it is also required for
many mitotic processes. Despite the absence of an
NE, chromatin is demarcated by a high concentra-
tion of the GTP-bound RAN throughout the cell cycle
[162] and GTP-bound RAN-mediated release of
importins from a variety of target proteins controls a
range of processes, varying from spindle assembly
and chromatin segregation to assembly of the
nuclear membranes and nuclear pores around
chromatin, in later stages of mitosis (for review,
see Ref. [94]). It is conceivable that the RAN/importin
system, used by the cell to target integral membrane
proteins to the NE in interphase [20,163], also
regulates the recruitment of INM proteins to post-
mitotic chromatin in a similar way (Fig. 3) [164].
Importin β binds LBR during mitosis [95,165] and this
inhibitory complex dissociates in the presence of
GTP-bound RAN [165]. The importin family might
prevent undesired interactions between the positive-
ly charged DNA binding domains of INM proteins
and chromatin during mitosis. In the case of LBR, the
importin β and chromatin binding sites overlap.
Indeed, a functional RAN cycle is essential for
nuclear assembly in vitro [166,167] but whether
this is directly via regulation of NE/chromatin
interactions remains to be seen.
In parallel with RAN as a spatial marker for

chromatin, chromatin modifications during mitotic
exit might also contribute to the regulation of nuclear
membrane recruitment. In addition to the possible
involvement of H3 Ser10 dephosphorylation in
regulation of HP1 chromatin localization, the lysine--
specific demethylase LSD1 has been implicated in
regulation of NE reformation. LSD1 catalyzes the
demethylation of monomethylated and dimethylated
lysines K4 and K9 of histone H3 tails [168].
Downregulation in HeLa cells extends telophase
and affects NE reassembly [97]. In vitro experiments
suggest that nuclear membrane recruitment to
chromatin is impaired upon inhibition or removal of
LSD1. Although nonhistone protein targets of LSD1
demethylase activity cannot be excluded, the iden-
tification of the histone demethylase LSD1 as an
essential regulator of nuclear assembly indicates
that cell cycle regulated chromatin state and more
precisely histone modifications play a role in
controlling nuclear membrane binding on the decon-
densing chromatin (Fig. 3).
In summary, the reversal of mitosis-specific

phosphorylations on nuclear membrane proteins
regulates the timing of nuclear membrane recruit-
ment to chromatin; nonetheless, the precise sites of
modification have yet to be identified and it is
currently not clear how prevalent this mode of
regulation is. Changes on the chromatin landscape
at the end of mitosis contribute similarly; these
include binding of chromatin-associated factors such
as BAF and HP1 and probably also changes in the
histone modification patterns. Spatial organization
by the RAN system might facilitate the binding of
nuclear membrane proteins to chromatin by expos-
ing their DNA binding domains proximally to chro-
matin, but the contribution of such a mechanism has
not been proved yet.
Nuclear Envelope Sealing

Complete fusion of the membranes at the newly
forming nucleus is required for reestablishment of
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nuclear compartmentalization. As the NE and the ER
are connected and share similar mechanics, it is
possible that NE fusion employs the same machin-
ery and factors as the bulk ER. In Xenopus egg
extracts, NSF (NEM-sensitive factor) and α-SNAP
(soluble NSF adaptor protein), factors of the SNAP
receptor (SNARE) activation, are critically required
for formation of a closed NE [112,169], suggesting
that SNARE-mediated membrane fusion is needed.
However, the specific SNARE proteins involved in
NE formation still await identification. Formation and
maintenance of an ER network additionally requires
integral membrane GTPases, atlastins, which medi-
ate fusion between ER tubules [170,171]. In vitro,
formation of a closed NE is blocked by a dominant
negative version of atlastin [112], suggesting an
involvement of this GTPase, most likely because the
NE formation is initiated in this experimental setup by
an ER network formed on the chromatin surface
[166]. Given the controversy whether ER sheets or
tubules are the membrane structure initiating NE
formation, it remains to be seen whether and to
which extent atlastins also directly contribute to
closed NE formation in vivo.
Two recent studies indicate components of the

ESCRT-III (endosomal sorting complex required for
transport) complex as involved in NE reformation, as
depletion of ESCRT-III constituents results in failure
to seal the NE and, therefore, in leaky nuclei
[172,173]. ESCRT-III is known to participate in
constricting the neck of membrane buds or even
entire cells, during vesicle formation into multi-
vesicular bodies, HIV virus egress and cytokinesis.
During NE reformation, it is suggested to function in
a topologically similar event: the closure of final gaps
that remain open when NE encloses the chromatin.
These gaps might be holes in the NE that remain
after membrane flattening and expansion of an ER
network [106] if not filled by NPCs (Fig. 4, insets Ia
and Ib, see below). Alternatively, the holes could be
the ones remaining when sheet-like membranes
enclosing the chromatin merge (Fig. 4, insets IIa and
IIb) [111].
Although the studies in Refs. [172] and [173] agree

on the crucial role of the ESCRT-III complex in NE
closure, each adds distinctive insights into ESCR-
T-III function in nuclear sealing. Vietri and collabo-
rators show that the ESCRT-III complex recruits the
microtubule severing ATPase spastin [173]. Spastin
is suggested to disassemble spindle microtubules,
which would otherwise prevent NE sealing. Olmos
and colleagues show that the ATPase p97 recruits
the ESCRT-III complex via its adaptor protein UFD1
to function in NE sealing [172]. Interestingly, earlier
in vitro data suggested that p97 is required for NE
reassembly together with UFD1 and another cofac-
tor, NPL4 [174]. p97 depletion impairs formation of a
closed NE, although membrane vesicles still bind but
fail to fuse to an ER-like network on the chromatin
template. This phenotype is difficult to reconcile with
sealing of small holes in the reforming NE mediated
by the ESCRT-III complex. It rather suggests that
p97 is also involved in additional, yet-uncharacter-
ized steps in NE reformation. As sperm chromatin
was directly incubated with interphasic extracts in
these experiments [174], it is unlikely that the
extraction of Aurora B from chromatin mediated by
p97, observed on mitotic chromatin [91], accounts
for the crucial p97 function also in this experimental
system.
During vesicle formation in multivesicular body

formation, the ESCRT machinery recognizes ubiqui-
tinylated membrane proteins [175]. The fact that p97,
which recognizes ubiquitinylated proteins via its
adaptors UFD1 and NPL4, is involved in the pore
sealing process [176] points into the same direction.
If so, it remains to be seen which NE membrane
proteins are crucial ubiquitinylated targets for the
ESCRT-III function in NE sealing.
Building NPCs into the Nuclear Envelope

The coordinated reassembly of NPCs begins
concomitantly with the reformation of the NE.
NPCs form large pores in the envelope with a
diameter of approximately 130 nm at the sites where
the ONM and INM fuse [177]. Only a few of the
roughly 30 different nucleoporins are integral mem-
brane proteins residing in the ER during mitosis.
Most nucleoporins are soluble during open mitosis in
animals and are recruited from the cytosol to
reassemble NPCs during mitotic exit. Two profound-
ly different modes for NPC reassembly at the end of
mitosis have been proposed, insertion or enclosure
(see Fig. 4, discussed in Ref. [178]). According to
insertion models, NPCs assemble and integrate into
the two juxtaposed membrane sheets of an intact NE
[111,179,180]. NPC formation would thus follow the
formation of a closed NE and requires the fusion of
the ONM and INM across the NE lumen. Alterna-
tively, enclosure models propose that NPC reas-
sembly does not occur by insertion into the sealed
NE, but it is rather accomplished by the contact and
envelopment of the assembling NPCs on the
chromatin surface by the outgrowing ER-derived
membranes [178,181–183]. Both suggested modes
of NE formation (an ER network that forms and
flattens on the chromatin surface or outgrowing ER
membrane sheets; discussed earlier in the text) are
compatible not only with enclosure but also with
insertion models (Fig. 4).
The general NPC structure can be regarded as a

stack of three rings with cytoplasmic and nucleo-
plasmic extensions: the outer or cytoplasmic ring is
connected to the cytoplasmic filaments whereas the
nuclear ring is connected to the nuclear basket.
Sandwiched between those two peripheral rings and
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Fig. 5. Ordered NPC assembly at the end of mitosis.
The chromatin binding nucleoporin MEL28/ELYS initiates
NPC assembly on the chromatin (I) by recruiting the
Nup107-160 complex (II), which in turn associates with the
nuclear envelope membranes via the transmembrane
nucleoporin POM121 (III). The recruitment of the Nup93
complex is mediated by its membrane-associated nucleo-
porins, Nup53 and Nup155, which interact with integral
membrane proteins at the nascent pore membrane (IV)
and promote the incorporation of Nup93, Nup188 and
Nup205 to complete the structural backbone of the NPC
(V). The subsequent recruitment of FG-repeat-containing
nucleoporins of the Nup62 complex (VI) combined with the
previous association Nup98 (data not shown) establishes
the central channel, a hydrophobic meshwork that confers
the transport properties of the NPC. The fully assembled
NPC (VII) consists of multiple copies of the component
nucleoporins, which are arranged in octagonal symmetry
to create a cylindrical channel. Peripheral structures
include the cytoplasmic filaments and the nuclear basket,
protruding from opposite faces of the NPC.
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located in the midplane of the NE lays the so-called
spoke or inner ring. The inner ring is laterally linked
to the pore membrane and connected to the central
transport channel formed mostly by the FG-repeat--
containing nucleoporins. Although NPC dimensions
and masses vary among organisms, this general
structural arrangement, including the 8-fold symme-
try, is conserved (for review, see Ref. [184]).
Understanding the assembly pathway of these
huge structures lastly embedded in the two mem-
branes of the NE remains a formidable task.
Xenopus egg extracts have been extensively
employed for delineating the assembly pathway, as
individual steps such as initiation, membrane asso-
ciation, termination of the NPC scaffold assembly
and establishment of the transport channel can be
disconnected and studied separately in this system.
Despite the differences in the models for NPC

reassembly at the end of mitosis, it is commonly
agreed that the process is initiated on chromatin
(Fig. 5) by the nucleoporin MEL28/ELYS [19,185–
187]. MEL28/ELYS can bind DNA directly, but recent
elegant reconstitution experiments show that its
binding to histone-containing chromatin is crucial
for NPC assembly [188,189]. MEL28/ELYS acts as a
seeding point for NPC formation and recruits the
Nup107-160 complex to assembly sites [19]. The
Nup107-160 complex is an essential scaffolding
component of NPCs and forms the largest part of the
cytoplasmic and nucleoplasmic rings [177,190]. In
vitro, MEL28/ELYS and the Nup107-160 complex
can bind to chromatin in the absence of membranes
[19,183,186,191]. The first connection between the
assembling NPC and nuclear membranes is
achieved by the subsequent association of the
transmembrane nucleoporin POM121 with the
newly forming pores [126], a process likely mediated
by binding of POM121 to the Nup107-160 complex
[192,193]. It is also likely that NDC1, another
transmembrane nucleoporin that is found at forming
pores at the same time [127], also contributes to the
connection of NPCs to membranes, but the mech-
anism remains to be established.
The following steps can be ordered starting from

the membrane sites of the pore and proceeding
toward the center of the pore. First, nucleoporins of
the second major structural complex within NPCs,
the Nup93 complex, join the assembling pore,
presumably forming the majority of the inner ring
[6]. The Nup93 complex contains the nucleoporins
Nup93, Nup53 and Nup155 and the two orthologues
Nup188 and Nup205. In contrast to the Nup107-160
complex, which is recruited as a preassembled
complex, the Nup93 complex builds from individual
components [124,194–196]. In assembled NPCs,
the different components of the complex are present
in different numbers ranging from 16 to 48 [197]. The
precise arrangement of these nucleoporins, with
respect to each other and within the inner ring,
remains to be defined. In the assembly process of
the Nup93 complex, Nup53 is the first to associate
with the nascent pore, followed by Nup155
[198,199]. Both proteins can directly bind mem-
branes [194,200] and both also interact with the
transmembrane nucleoporins NDC1 and POM121
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[127,192,193] and therefore constitute a second
connection between the NPC and membranes at the
pore. Interaction of Nup53 with NDC1 also modu-
lates Nup53's membrane bending activity, which is
crucial for successful NPC assembly [198]. This
indicates that protein–protein and protein–mem-
brane interactions are not only required for timely
recruitment of the different NPC components but
also involved in a more sophisticated interplay that
we just begin to unravel. Nup93 interacts with Nup53
and is subsequently incorporated [196], together
with its binding partners Nup188 and Nup205 [124],
to complete the structural backbone of the pore.
Nup93, probably together with interactions via
Nup205/Nup188, recruits the FG-repeat-containing
nucleoporins of the Nup62 complex [196,201]. The
Nup62 complex members Nup62, Nup58 and
Nup54/45, together with the FG-containing nucleo-
porin Nup98, form a large part of the hydrophobic
meshwork localized in the center of the pore. Nup98
is recruited at the same time as the Nup93 complex
[6] by a still-ill-defined mechanism. It is possible that
its interaction to the Nup107-160 [202] takes part in
Nup98 recruitment.
The formation of peripheral NPC structures, such

as the nuclear basket on the nucleoplasmic side and
the cytoplasmic filaments, follows the establishment
of the structural pore and central channel [6]. On the
nuclear side, Nup153 is required for the recruitment
of Nup50 and TPR [203–205]. It is likely that Nup153
itself is recruited via its interaction with the
Nup107-160 complex [202]. If so, it remains to be
seen why Nup153 only interacts with Nup107-160
complexes located in the nuclear ring structure. The
order of events in the assembly of the cytoplasmic
filaments is less defined, but Nup358 is required for
this [206].
Despite significant progresses in delineating the

assembly pathway of NPCs, a number of important
questions remain. Many nucleoporins are symmet-
rically distributed within the nucleoplasmic and
cytoplasmic rings of the NPC, including the
Nup107-160 complex [177], but the timing and
details of the mechanism by which the cytoplasmic
portion of the NPC assembles remain elusive. Within
the nucleoplasmic and cytoplasmic rings, 16
Nup107-160 complexes arrange into two concentric
rings of eight units [177]. It is unclear whether these
rings assemble simultaneously or whether these are
distinguishable events. The Nup107-160 complex
interacts with different nucleoporins in the nucleo-
plasmic and cytoplasmic rings, for example, with
MEL28/ELYS in the nucleoplasmic ring and Nup358
in the cytoplasmic ring. What defines these different
interaction patterns remains to be elucidated. The
same questions apply for Nup98, which is present in
48 copies within the vertebrate NPC [197]. Finally,
despite the known octagonal symmetry of the pore,
further work is needed to establish whether the
numerous copies of each subcomplex are recruited
simultaneously around the pore circumference.
Once a closed NE with functional NPCs has

reassembled, the nuclei further expand, and they
assemble and accommodate more NPCs, a process
that continues during all interphase and that is hence
referred to as interphase or de novo NPC assembly.
It is a matter of debate whether NPC reformation at
the end of mitosis and interphase NPC assembly
follow the overall same pathway. In all likelihood, at
least in interphase, NPC assembly follows an
insertion pathway as NPC integrates into the already
intact NE. Whereas NPC reformation at the end of
mitosis critically requires MEL28/ELYS [19,185], it is
dispensable for NPC formation occurring in inter-
phase [20]. New evidences suggest that the function
of MEL28/ELYS as initiating assembly point is taken
over by Nup153 in interphase NPC assembly.
Nup153 would then direct the Nup107-160 complex
to the INM and pore assembly sites [207]. This
functional difference in initiation, on the chromatin at
the end of mitosis and on the nuclear membranes
during interphase, might be an indication that, in
contrast to interphase NPC assembly, NPC reas-
sembly at the end of mitosis follows an enclosure
pathway. The need for membrane deforming and/or
membrane deformation sensing modules required in
some nucleoporins specifically for interphase NPC
assembly [20,194,207] is in agreement with this
hypothesis. However, a step toward a definitive
answer will be made when the fusion machinery
required for the fusion of ONM and INM is identified.
The prediction for the enclosure model is that NPC
reassembly does not depend on this machinery, in
contrast to interphase NPC assembly. On the other
hand, the insertion model forecasts that both
assembly modes depend, in all likelihood, on the
same fusion machinery.
Regulating NPC Assembly at the End of
Mitosis

As the NE breaks down at the beginning of mitosis,
NPCs disassemble into their building blocks, which
are, with the exception of the few transmembrane
nucleoporins, largely dispersed in the mitotic cytosol
as single proteins or in some cases as subcom-
plexes and do not reassemble into NPCs until mitotic
exit. Some nucleoporins have additional functions
during mitosis outside of NPC formation, including
centrosome positioning, spindle assembly, kineto-
chore organization, the spindle assembly check-
point, chromosome segregation and cytokinesis (for
review, see Ref. [94]). Several nucleoporins, includ-
ing members of the Nup107-160 complex, Nup98,
Tpr and Nup53, are hyperphosphorylated during
mitosis [127,150,208–212] and it has been sug-
gested that this phosphorylation cascade acts as a
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general mechanism to keep nucleoporins dissociat-
ed, preventing premature NPC reassembly and at
the same time allowing for their diverse mitotic
functions. For instance, hyperphosphorylation of
Nup98 initiates the NPC disassembly at the begin-
ning of mitosis [209]. Conversely, interactions
between nucleoporins could be promoted by late
mitotic dephosphorylations. However, the fact that
the kinases and phosphatases involved perform a
variety of functions in mitotic entry, progression and
exit (see section “Mitotic Exit Regulation”) results in
the lack of direct evidence for such a mechanism.
Moreover, identifying causative phosphorylation
events is complicated by a high degree of redun-
dancy, as exemplified by the Nup98 case: Nup98 is
phosphorylated by CDK1 and members of the
NIMA-related kinase family at 13 different sites to
allow for its dissociation from NPC at the entry of
mitosis [209]. In addition, it remains to be seen
whether other posttranslational changes on nucleo-
porins regulate NPC disassembly and reassembly.
NPC reassembly is initiated on, and thus directed

to, the chromatin surface by RAN. As discussed for
NE reassembly, high concentrations of RAN-GTP
generated in the vicinity of the chromatin are
supposed to release transport receptors from
nucleoporins that, in turn, can interact and assemble
to NPCs. Good evidence for this model is the
aberrant formation of NPCs in ER membrane stacks
distal from the NE, annulate lamellae, when the
RAN-GTP gradient is disturbed [213]. MEL28/ELYS
and the Nup107-160 complex are likely candidates
for such a RAN-dependent regulation because they
bind transport receptors and associate with chroma-
tin in the early stages of NPC assembly
[19,186,191,213]. However, many nucleoporins
bind transport receptors to facilitate nuclear trans-
port, and these events are not restricted to FG-re-
peat-containing regions, as in Nup50 and Nup153
for example [214,215]. In addition, nucleoporins also
bind transport receptors to allow their import to the
nucleoplasmic side of the pore, where they function
in de novo NPC assembly during the entire
interphase [20,207,216]. Notably, Nup153 mem-
brane interaction capability, which is required for
initiating interphase NPC assembly, is regulated in
vitro by the transport receptor transportin [207]. This
opens the possibility that both initiating steps,
MEL28/ELYS chromatin recruitment after mitosis
and Nup153 INM binding in interphase, are regulat-
ed by RAN, consistent with the proposal that
interphase NPC assembly is also regulated by this
GTPase [217]. However, definitive proof for this
model is lacking.
As similarly discussed for the regulation of NE

reformation, changes on the chromatin landscape
during mitotic exit might regulate NPC reassembly.
Despite its DNA binding activity, MEL28/ELYS
requires nucleosomes for its proper recruitment to
initiate NPC reassembly on the chromatin [188,189].
It is tempting to speculate that histone modifications
might contribute to this, especially as MEL28/ELYS
distribution is nonhomogenous on the chromatin
during mitotic exit, but it first accumulates at the
chromosomal noncore region [144]. Furthermore,
downregulation of the lysine demethylase LSD1
affects NPC reformation indicated by a high presence
of annulate lamellae [97], and in vitro, MEL28/ELYS
chromatin interaction is reduced upon LSD1 deple-
tion. Whether a corresponding increase in methylated
histoneH3 is causative for the effects andwhether the
phenotype is primarily an NE defect or an NPC
assembly defect remain to be established.
Lamina and LINC Complex Reassembly

In addition to proper NE and NPC formation,
nuclear assembly at the end of mitosis must include
reestablishment of additional structures. The nuclear
lamina is a fibrous structure formed by lamins and
located underneath the NE. It is connected to the NE
via interactions of lamins with INM proteins and
members of the LINC complex. The lamina is
depolymerized at the onset of mitosis [218] by the
CDK1-mediated phosphorylations of lamins
[219,220]. Conversely, lamins are dephosphorylated
at the end of mitosis to allow reassembly of this
structure. PP1, which is recruited to the NE by
AKAP149, removes mitotic phosphorylations from
lamin B in telophase [25,221]. Although some
association of nuclear lamins is observed during
early stages of NE reformation [103], the bulk of
nuclear lamins are reassembled into the lamina only
after the nuclei have regained competence for
nuclear import [26,222]. Arrangements of lamins
into the lamina during interphase have been studied
intensively, but we still miss a clear picture of how the
assembly process occurs (reviewed in Ref. [223]).
Similarly, we do not know when the interactions to
NPCs are established [103,224], occurring most
likely via the lamin-interacting nucleoporin Nup153
[225,226].
The LINC complexes provide physical connection

between the backbone scaffold of the intranuclear
and extranuclear compartments and play pivotal
roles in a vast series of evolutionally divergent tasks,
from yeast to mammals (reviewed in Ref. [227]).
Since nuclear integrity is lost at the onset of mitosis,
it is conceivable that the LINC complexes lose
connection with both sides of the NE. Indeed, the
LINC complex component SUN1 is phosphorylated
by CDK1 at the onset of mitosis that disrupts its
lamina interaction [228], whereas binding to KASH
domains on the lumenal side is not affected. As the
LINC complexes provide mechanical stability to the
nucleus, it is possible that torsional stress that tears
the nucleus during prophase contributes to release
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the LINC. Whether LINC complexes themselves
remain intact during mitosis as suggested previously
[228] for SUN1 and Nesprin 2 remains to be seen
under nonoverexpression conditions and for other
LINC complex pairs. Independent of this, at the end
of mitosis, the LINC complex needs to reestablish its
interaction to the nucleoskeleton and probably also
to the cytoskeleton. If the LINC complex disassem-
bles during mitosis, it also needs to reassemble and
all these pathways remain to be established.
Conclusion

At the end of the open mitosis in metazoans, the
interphase nucleus competent for DNA transcription
and replication, pre-RNA processing and many other
nuclear functions such as biogenesis of ribosomal
subunits need to reestablish. For some processes
including NE and pore complex reassembly, we
have a detailed knowledge about the steps and
factors involved despite the fact that a number of
open questions remain. For others such as chroma-
tin decondensation, we are just beginning to identify
the factors involved and we are largely ignorant
about the molecular mechanisms. In addition, the
regulation in time and space of the different
processes occurring at the end of mitosis is far
from being understood and especially how they are
coordinated with each other. It is similarly often
unclear but conceivable that malfunctions in the
different pathways or their coordination would have
implications for human diseases. For example,
lamina assembly faults are linked to a variety of
human diseases, summarized as laminopathies (for
review, see Ref. [229]). It remains to be seen
whether this applies also to other processes and
will be an interesting avenue for future research.
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Abstract 

The mitotic spindle, essential for segregating the sister chromatids into the two evolving daughter 

cells, is composed of highly dynamic cytoskeletal filaments, the microtubules. The dynamics of 

microtubules are regulated by numerous microtubule associated proteins. We identify here 

Developmentally regulated GTP binding protein 1 (DRG1) as a microtubule binding protein with 

diverse microtubule-associated functions. DRG1 can diffuse on, promotes polymerization of, bundles, 

and stabilizes microtubules in vitro. HeLa cells with reduced DRG1 levels show prolonged progression 

from pro- to anaphase because spindle formation is slowed down. To perform its microtubule-

associated functions, DRG1, although being a GTPase, does not require GTP hydrolysis. Yet, all 

domains are required as truncated versions show none of the mentioned activities beside 

microtubule binding. 
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Introduction 

Microtubules are key cytoskeletal structures that play a vital role in a variety of cellular processes 

such as intracellular trafficking, regulation of cell polarity, cell shape maintenance, and chromatid 

segregation during cell division. Microtubules are polar assemblies built from α-/β-tubulin 

heterodimers, both of which are GTPases. The most prominent aspect of microtubules is their 

dynamic instability: Microtubules can shift rapidly between growth and shrinkage especially at the 

plus tip. This instability is more pronounced during mitosis when the mitotic spindle forms.  

Several types of microtubules are found in the mitotic spindle. The kinetochore microtubules connect 

the centrosome at the minus end with the kinetochore at the plus end, a protein complex assembled 

on centromeric chromatin. Usually 20-30 kinetochore microtubules are bundled into stable K-fibers, 

which mediate chromosomal movement. The non-kinetochore microtubules are a part of the spindle 

body without being attached to the kinetochore. They are important for separating the poles and 

mitotic spindle stability. Lastly, astral microtubules radiate from the centrosomes toward the cell 

cortex and, thereby, position the spindle (reviewed in detail in 1,2). 

Although pure  tubulin dimers are in the presence of GTP sufficient to generate microtubules in 

vitro, in cells nucleating factors are required (reviewed in detail in 1-3). For the mitotic spindle 

centrosomes are the most prominent nucleation centers but other nucleation pathways exist: 

microtubules can nucleate around chromosomes which is regulated by the small GTPase Ran. Spindle 

assembly factors are sequestered by nuclear transport factors like importin  and  and released 

close to chromosomes by RanGTP. Additionally, microtubules can nucleate from already existing 

microtubules within the spindle. These other pathways can take over function if no centrosomes are 

present, e.g. in the second meiotic division of vertebrates, or artificially removed but are also crucial 

for timely spindle assembly in the presence of centrosomes. The additional nucleation pathways 

raise the chances that a microtubule finds a kinetochore by increasing microtubule density around 

chromosomes. In addition, many microtubule associated proteins and mechanics like cell rounding 

during mitosis are involved in spindle assembly and facilitate the microtubule-kinetochore 

attachment1,2.  

Several classes of microtubule-associated proteins are known: microtubule polymerases and de-

polymerases, nucleation factors, severing enzymes, microtubule bundling/crosslinking proteins that 

stabilize microtubule fibers, stabilizing factors that prevent catastrophes, motor proteins that are 

also essential to establish the bipolar array e.g. by sliding microtubules, microtubule capping/end-

binding/tracking factors and many more (reviewed in 3). One difficulty of elucidating unknown 

pathways and factors or characterizing the function of a newly found factor is that mitotic spindle 

processes are redundant. However, errors of chromosome segregation increase with missing factors 

or pathways and can ultimately lead to severe consequences like chromosome mis-segregation. The 

presence of numerous diverse yet partially redundant factors and pathways most likely represents an 

inbuilt security mechanism of the cell. Hence, it is crucial as well as challenging to identify such 

partially redundant factors during spindle assembly and maintenance, which are deregulated in many 

disease contexts4-6. 

Here, we identify Developmentally regulated GTP-binding protein 1 (DRG1) as a microtubule 

polymerase that also bundles and stabilizes microtubules. DRGs were independently identified in a 

variety of organisms in the 1990’s by several groups7-13 and belong to the subfamily of Obg 
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GTPases14. Soon, it was clear that a new GTP-binding protein was found that is highly conserved from 

archaebacterial having one DRG to eukaryotes from yeast to human, who contain DRG1 and DRG215. 

Plants even have three DRGs16. Beside the canonical G-domain they do not share similarities with 

other known GTPases and their function is still largely unclear. As DRG1 is highly upregulated in 

mouse embryonic brain it was suggested to act as a developmental factor8. However, DRG is also 

expressed widely in adult tissue7,15,17. Several studies suggested that DRGs are involved in cell growth 

although the underlying mechanism is still unclear18,19.  

DRGs are associated with DRG family regulatory proteins (DFRPs) which stabilize DRGs and prevent 

their ubiquitination and degradation by the proteasomes20,21. Consistently, DRG1 is substantially 

downregulated after DFRP1 knock-down. While DRG1 and 2 are highly similar (58 % identity for 

human proteins), the two DFRPs, DFRP1 and 2 share only similarities in their DFRP domain. This 

domain is important for DRG interaction but the binding area extends further22. DFRP1 binds 

specifically to DRG1 while it is under debate if DFRP2 binds exclusively to DRG2 or also to DRG120,21,23. 

Like other Obg GTPases DRG1 and its interaction partner DFRP1 might be involved in translation 

because they co-sediment with polysomes21-24 and bind RNAs17. However, the precise role of DRG1 in 

the process is ambiguous. The crystal structure of the yeast DRG1 homolog, Rbg1 (Ribosome binding 

GTPase 1), together with a C-terminal fragment of the yeast homolog of DFRP1 (Tma46) shows that 

the canonical G-domain of the DRGs is interrupted by another domain, the S5D2L domain22. DRG1 

seems to have an intrinsic GTPase activity that does not necessarily need a GTPase activating protein 

as is usually the case for most small GTPases16,22,25. Potassium ions stimulate this activity as well as 

DFRP1 binding. It is unclear whether DFRP1 functions as GTPase activating protein as it binds 

opposite to the GTP binding pocket suggesting it stimulates the GTPase activity differently e.g. by 

improving the affinity to potassium ions. 

Despite all these eclectic findings and the high interspecies conservation, the function of DRGs is 

poorly understood. Using in vitro approaches, we show that DRG1 binds to microtubules and bundles 

them. Furthermore, DRG1 can promote polymerization of microtubules and stabilizes them in the 

cold. Consistent with this observation, DRG1 is involved in spindle dynamics in human cells. 

 

Results 

DRG1 directly interacts with microtubules 

DRG1 has been recently shown to localize at the mitotic spindle19, which raises the question whether 

the protein can interact with microtubules. To test this, Xenopus laevis egg extracts, arrested in a 

mitotic state, were incubated with polymerized, taxol-stabilized microtubules. After sedimentation of 

the microtubules by centrifugation, the tubulin-bound fraction was eluted with a high salt buffer (Fig. 

1a). Whereas DRG1 and its interaction partner DFRP1 were not pelleted in the absence of 

microtubules, both proteins were found in the pellet fraction in the presence of microtubules. Both, 

DRG1 and DFRP1 were eluted with high salt from microtubules indicating that they bind specifically 

to microtubules. Similar results were obtained from experiments using HeLa nuclear extracts (Fig. 1b, 

only the eluate is shown). DRG1 and DFRP1 can be pelleted with microtubules and eluted with high 

salt, similar to two known microtubule-associated proteins MEL28/ELYS and chTOG, the human 

homolog of XMAP215. In contrast, we did not find the chromatin-associated condensin subunit CAP-

G and DFRP2 in the microtubule-bound fraction. A number of microtubule binding proteins are 
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regulated by nuclear import factors and the Ran-GTP pathway. Similar to MEL28/ELYS26, DRG1 and 

DFRP1 show a reduced microtubule association in the presence of importin  and , which is 

reversed by the dominant positive mutant of Ran, RanQ69L (“RanGTP”). 

To test whether DRG1 and DRFP1 bind directly to microtubules we incubated taxol-stabilized 

microtubules with recombinant DRG1, DRFP1 or DFRP2 (Fig. 1c). Whereas DRG1 and DFRP1 pelleted 

with microtubules, DFRP2 and a negative control protein remained in the supernatant. Addition of 

500 mM NaCl to the incubation buffer prevented DRG1 and DFRP1 microtubule association indicating 

that the binding is specific and occurs via polar/charge interactions. 

DRG1 diffuses on microtubules  

To confirm and characterize DRG1 microtubule binding further, we used a total-internal-reflection- 

fluorescence (TIRF) microscopy-based assay to observe the DRG1 binding and mobility with single-

molecule resolution. We observed that DRG1 interacted with microtubules in three different ways 

(Fig. 2a): DRG1 transiently bound to microtubules either in an immobile (green arrows) or diffusive 

manner, whereby the diffusion was either fast (magenta arrows) or slow (blue arrows). We analyzed 

the different proportions of DRG1 binding modes as a function of the DRG1 concentration (Fig. 2b). 

With decreasing DRG1 concentrations from 40 nM to 80 pM, we observed a decline of the DRG1 

fraction showing diffusive microtubule binding and, conversely, an increase in the proportion 

showing immobile binding. We calculated the interaction times – i.e. the average time that a DRG1 

molecule spends on the microtubule lattice – for the different populations. For the lower 

concentrations of DRG1, the interaction times of the immobile species of DRG1 increased from about 

5 s to 12 s, while the interaction time of the slow diffusive DRG1 population decreased with 

decreasing DRG1 concentrations. The interaction times of the fast diffusive DRG1 population were 

faster than the image acquisition time of 0.1 s. To test if these three binding modes represent 

different nucleotide binding states of DRG1, we repeated the experiment in the presence of the non-

hydrolysable GTP analogue GTPS (Supplementary Figure S1). Although the overall amount of DRG1 

bound to microtubules was decreased, DRG1 also bound to microtubules in the presence of GTPS. 

We did not see a significant difference in the proportions of the mobile versus immobile DRG1 

populations in comparison to experiments performed in the presence of GTP suggesting that DRG1 

binding to microtubules is not determined by the nucleotide state of DRG1. For the lower 

concentrations of DRG1, the interaction times of the immobile population of DRG1 decreased slightly 

in the presence of GTPS compared to GTP. The slow diffusive movement of DRG1 on the 

microtubule lattice resembles that of MCAK, a microtubule depolymerase that diffuses on the 

microtubule to target both ends and performs its function there27. The fast diffusing fraction 

resembles the behavior of the plus-end tracking protein EB128. In both cases, the diffusion towards 

the ends of microtubules facilitates “end-finding” and thus, increases the concentration of the 

proteins at the microtubule ends as compared to random diffusion in solution. Since microtubule 

binding did not depend on the nucleotide state, the different behavior might be due to 

oligomerization of DRG1 or due to different binding domains. Interestingly, different DRG1 intensities 

visible on the kymograph suggest that DRG1 may bind microtubules not only as a monomer but also 

as a multimer. 
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DRG1 binds microtubules via multiple regions 

Having observed a direct microtubule interaction of DRG1, we were wondering which domains of the 

protein are required for microtubule binding. DRG1 consists of an N-terminal helix-turn-helix (HTH) 

motif, followed by the GTPase domain, which is interrupted by the S5D2L domain; the TGS domain 

constitutes the C-terminal part of the protein22 (Fig. 3a). As observed in Figure 1, full-length DRG1 

pelleted together with taxol-stabilized microtubules in a high salt sensitive manner (Fig. 3b). The 

truncated proteins lacking the N-terminal HTH or the C-terminal TGS domain were similarly pelleted 

with microtubules. A varying fraction, depending on the truncation, was also in the supernatant 

indicating a weaker and differential association with microtubules. Interestingly, both the HTH and 

the TGS domain individually bound microtubules whereas the isolated S5D2L domain did not show 

this association. We also detected salt-sensitive microtubule binding for a truncated DRG1 version 

lacking both the HTH and TGS domain, indicating that the GTPase domain of DRG1 also interacts with 

microtubules (Fig. 3c). These results show that several domains of DRG1 are able to bind 

microtubules. We modeled the Xenopus DRG1 structure based on the available yeast Rbg1 structure 

(Fig. 3d). When calculating the electrostatic surface potential, we found an extensive positively 

charged surface formed by parts of the TGS, the HTH, the S5D2L and the G-domain opposite of the 

GTP-binding site as previously observed for Rbg122. As microtubule-associated proteins often interact 

with microtubules via positively charged domains this whole area might be the microtubule binding 

site of DRG1. 

DRG1 binds to microtubules lacking the negatively charged C-terminus of tubulin 

Many microtubule-binding proteins bind tubulin via its acidic, negatively charged, unstructured C-

terminus, which is also the site of many posttranslational modifications29,30. This C-terminus can be 

cleaved off by the protease subtilisin. Repeating the microtubule co-sedimentation assay using 

subtilisin-digested microtubules showed that DRG1 still bound tubulin lacking the negatively charged 

C-terminus although the binding affinity might have been reduced (Fig. 3e). 

DRG1 bundles microtubules 

Since multiple domains of DRG1 were binding microtubules, we tested whether DRG1 could bundle 

them. To this end, we incubated taxol-stabilized, fluorescently-labeled microtubules with DRG1. 

Addition of 1 µM recombinant DRG1 induced microtubule bundling as observed by fluorescence 

microscopy (Fig. 4a). Electron microscopy analysis confirmed microtubule bundling in the presence of 

DRG1 (Fig. 4b). This bundling activity is consistent with DRG1 having multiple microtubule binding 

sites. 

DRG1 promotes microtubule polymerization 

Many microtubule binding proteins regulate microtubule dynamics3. When we added DRG1 to a 

fluorescently-labeled tubulin solution provided below the critical concentration for spontaneous 

microtubule growth31, we observed microtubule polymerization. A control without DRG1 showed no 

microtubule growth (Fig. 4c). We confirmed this observation by light scattering experiments: 

polymerization of tubulin at a relatively low concentration of 2.5 µM was observed when DRG1 was 

added (Fig. 4d). Thus, DRG1 is a GTPase that induces microtubule polymerization. 
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DRG1 stabilizes microtubules  

The bundling and polymerization activities of DRG1 could indicate that DRG1 might also have a 

stabilizing effect on microtubules. To test whether DRG1 stabilizes microtubules, we polymerized 

microtubules from a high concentration of tubulin (12 µM) in the presence or absence of DRG1 at 

37°C for one hour and afterwards placed the sample on ice for 30 minutes. Note that we did not use 

taxol. Polymerized and stabilized microtubules were pelleted by centrifugation. The microtubules 

polymerized efficiently under these conditions but disassembled upon placing on ice in the buffer 

control. In the presence of DRG1, microtubules remained in the polymerized state despite the 

incubation on ice (Fig. 5a).  

This in vitro stabilization effect was confirmed in HeLa cells stably expressing histone H2B-mCherry 

and eGFP-tubulin. For this purpose, DRG1 expression was downregulated by siRNA for 72 hrs (Fig. 

5b). Afterwards, the cells were placed for one hour on ice which induced spindle disassembly in the 

mitotic population. Then, warm medium was added and the re-growth of microtubules was analyzed 

by fixing and analyzing the samples at different time points. Microtubules re-grew much slower in 

cells with reduced levels of DRG1 compared to the control cells (Fig. 5c and d). Thus, mitotic spindles 

recover much faster after a cold shock in cells having endogenous DRG1 levels suggesting that DRG1 

either accelerates microtubule re-polymerization once warm medium is added or DRG1 prevents the 

complete disassembly of the spindle upon cold treatment. Noticeably, remnants of the mitotic 

spindle are often observed in control cells after 1h on ice (insert Fig. 5d, 0 min) but less frequent in 

cells lacking DRG1. These remnants might cause a faster re-assembly of the mitotic spindle. Both 

hypotheses are in agreement with our in vitro findings that DRG1 promotes microtubule 

polymerization and stabilization. 

The GTPase activity of DRG1 is not necessary for its microtubule functions 

DRG1 is a member of the small GTPase superfamily. To test whether its GTP binding and hydrolyzing 

activity is required for its microtubule functions, we used a dominant positive Xenopus DRG1 mutant, 

with a P73V exchange in the G1 box of the GTPase domain, which stabilizes the GTP-bound state32, 

and a dominant negative mutant, DRG1 S78N, which represents the GDP- bound or nucleotide free 

state of the GTPase22,24. Both mutants were still able to bind microtubules (Fig. 6a), which is 

consistent with our observation that several domains are able to bind microtubules on their own (Fig. 

3b). The mutants are also able to polymerize tubulin (Fig. 6b) and bundle (Fig. 6c) as well as to 

stabilize microtubules (Fig. 6d). This suggests that DRG1 does not require its GTPase activity for its 

microtubule-associated functions. 

Full-length DRG1 is necessary to bundle, polymerize and stabilize microtubules 

As shown above, most truncated versions of DRG1 were capable of binding microtubules. We were 

curious to see if they are also able to bundle, polymerize and stabilize microtubules. Therefore, we 

repeated the previously described assays using the recombinant DRG1 fragments. Fragments lacking 

the HTH, the TGS domain or both, as well as the HTH, the TGS or the S5D2L domain individually were 

neither able to bundle microtubules (Supplementary Fig. S2a), nor promoted polymerization 

(Supplementary Fig. S2b) or stabilized them upon cold stress (Supplementary Fig. S2c) under the 

same conditions used for the wild-type (Fig. 4 and 5). It was observed before in a different context 

that the full-length protein is necessary for its in vivo function22. 
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DRG1 impacts spindle dynamics in cells 

Our results show that DRG1 influences microtubule behavior. To assess its impact on microtubule 

dynamics in cells, we analyzed HeLa cells stably expressing histone H2B-mCherry and tubulin-eGFP 

while passing through mitosis. DRG1 expression was down-regulated by siRNA. 24 hours post-

transfection, live-cell imaging was carried out for 48 hours (Fig. 7a). Analysis of chromatin features 

using the software CellCognition33 showed that the time from prophase to anaphase onset was 

extended upon DRG1 downregulation as compared to the control conditions (Fig. 7b). Analyzing the 

spindle features showed that a partial knock-down of DRG1 does not change the size or intensity of 

the spindle (data not shown), but the time from aster to the anaphase spindle formation was 

extended (Fig. 7c). 

Recently, Stolz et al.34 introduced an assay to identify microtubule plus-end regulators: Inhibition of 

the mitotic kinesin Eg5 by monastrol, which prevents centrosome separation in the beginning of 

mitosis, causes monoaster formation. Stolz et al. observed that these monoasters are asymmetric if 

microtubule plus-end assembly rates are increased and that this asymmetry can be rescued by low 

doses of taxol. We knocked down DRG1 by siRNA and treated the cells with monastrol. Indeed, 

spindles in cells with reduced DRG1 level showed much more asymmetric monoasters when 

compared to the control (Fig. 8a and b). This phenotype was also rescued by addition of low doses of 

taxol (Fig. 8c). This phenotype again suggests an involvement of DRG1 in spindle dynamics. 

 

Discussion 

The function of DRG1 has been long debated. Considering its high evolutionary conservation, it was 

suggested that DRG1 has an important function in a fundamental cell biological process. We identify 

here that DRG1 is involved in spindle assembly. DRG1 binds microtubules and can diffuse on the 

microtubule lattice in vitro. DRG1 promotes microtubule polymerization and bundling and stabilizes 

them. To perform these latter activities, DRG1 does not require GTP hydrolysis but all its domains as 

only the full-length protein is functional in these assays. Consistent with these observations DRG1 is 

also involved in spindle dynamics in HeLa cells: microtubules regrow faster after a cold shock induced 

disassembly if DRG1 is present; early mitotic progression is extended if DRG1 is downregulated and a 

high number of asymmetric monoasters forms upon monastrol treatment in cells lacking DRG1. 

DRG1 binds directly to microtubules consistent with its previously shown localization at the mitotic 

spindle19. Truncated versions of DRG1 lacking the TGS and/or HTH domain as well as the TGS and 

HTH domain individually are still able to bind microtubules while the S5D2L domain alone is not, 

although we cannot exclude that the latter is not properly folded. Electrostatic surface potential 

analysis shows that DRG1 has a highly positively charged surface stretching over the TGS, the HTH, 

the S5D2L and the G-domain opposite of the GTP-binding site. Many microtubule binding proteins 

are highly positively charged. Therefore, this positively charged region might be the binding region of 

DRG1 to microtubules. This would also explain why most of the domains bind microtubules 

individually. The interaction of positively charged microtubule binding proteins with microtubules 

usually occurs via the negatively charged C-terminus of tubulin. However, DRG1 still binds to 

microtubules lacking the C-terminal ends after subtilisin digestion indicating that this is not the major 

binding site. Similarly, the drosophila non-claret disjunctional (Ncd) kinesin-like protein does not 

strictly depend on the C-terminus of tubulin for microtubule interaction35. 
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In addition to binding microtubules as an immobile molecule, DRG1 can also diffuse on the 

microtubule lattice, either fast or slow. This behavior resembles e.g. the microtubule depolymerase 

MCAK27. MCAK functions at both ends of microtubules. Its random diffusion towards the ends 

enhances the chances that MCAK binds microtubule ends compared to simple diffusion in solution. It 

is possible that DRG1 also targets to the microtubule ends to promote microtubule polymerization 

there. The proportion of the three different binding modes, immobile, slow diffusive and fast 

diffusive, was depended on the concentration of DRG1. The lower the concentration, the more 

immobile and the less diffusive DRG1 was. It is unlikely that the three different binding modes 

represent DRG1 in the three different nucleotide bound states, GTP-bound, GDP-bound and 

nucleotide free, as we observed similar proportions of the three different binding modes in the 

presence of the non-hydrolysable GTP analogue GTPS. Although the overall binding was decreased 

in the presence of GTPS, the interaction times of the immobile species were extended at low 

concentrations. The three binding modes might perform three different functions such as 

polymerization versus bundling, might represent the different binding sites, or different oligomeric 

states. 

While the GTP hydrolysis is not necessary for the microtubule-related functions of DRG1 shown here, 

the truncated versions of DRG1 have highly reduced or no bundling, polymerization or stabilization 

activity although mostly still binding microtubules. It was previously shown that the severe growth 

phenotype caused by triple deletion of the DRG1 and 2 homologs, Rbg1 and 2 together with the 

ATPase Slh1 in yeast can be rescued by full-length Rbg1 but not by any of the tested truncations24. 

The polymerization, bundling and stabilization activities of DRG1 could be completely independent 

functions or connected to each other: the bundling of microtubules could also stabilize them; the 

polymerization activity could increase the amount of microtubules in a population that is in the 

growth phase and thereby stabilize them; the bundling could increase polymerization by increasing 

the microtubule density close to DRG1. In this respect, it is surprising that tubulins as GTPases are 

directly regulated by another GTPase, DRG1, although not using its GTP hydrolysis activity in this 

context. 

Consistent with the biochemical assays, in HeLa cells microtubules that depolymerized on ice regrew 

faster if DRG1 was present. This faster recovery can be either explained by the polymerization 

activity of DRG1 or by the stabilization activity, which might stabilize small microtubule remnants 

that regrow faster afterwards when cells were provided with fresh, warm medium. It was observed 

before that DRG1 shows some thermophilic behavior: DRG1 hydrolyzes GTP over a wide range of 

temperatures with an optimum at 42°C25. Maybe DRG1 is also more active at cold temperatures 

compared to other proteins or performs its functions mainly under extreme, stress-situations. 

Microtubules have important functions in mitosis and interphase. Our in vitro data shows that DRG1 

has many functions connected to microtubules but the assays cannot distinguish between mitotic 

and interphasic functions. The cold shock experiment in HeLa cells suggests that DRG1 performs its 

function in the mitotic spindle, confirmed by our observation that the timing from prophase to 

anaphase and from aster formation to anaphase spindles is extended in HeLa cells, in which DRG1 

was downregulated by siRNA. Cells treated with monastrol after DRG1 knock down showed a higher 

proportion of asymmetric spindles compared to the control cells, and this phenotype could be 

rescued with low doses of taxol. This effect was observed before when negative growth, plus tip 

regulators were downregulated34. In our biochemical analysis, DRG1 promoted microtubule 
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polymerization and acted rather as a positive growth factor. It was shown before for XMAP215 that it 

can act as a microtubule polymerase or de-polymerase depending on the conditions, like a classical 

metabolic enzyme catalyzing a reaction theoretically in both direction36,37. We cannot exclude that 

this is also the case for DRG1. However, as we do not understand well the reason for asymmetric 

aster formation it is more likely that the monastrol assay scores likewise for down-regulating positive 

and negative regulators. 

DRG1 has been suggested to possess a function connected to ribosomes and translation as it co-

fractionates with ribosomes. The function in this context is still not fully understood. The probably 

independent functions of DRG1 concerning microtubules and translation could be spatially or 

temporally regulated e.g. DRG1 might have different functions during different cell cycle stages or 

one of the functions could be induced upon stress situations as suggested before16. Likewise, the 

function could be regulated by its binding partners. 

Together, our analysis shows that DRG1 is a microtubule binding, bundling, polymerization and 

stabilization factor. It does not need its GTPase activity to perform these functions. Truncated 

versions bind microtubules but have highly reduced or none of the other activities. Downregulation 

of DRG1 in HeLa cells indicated that the protein is involved in mitotic spindle assembly. Deregulation 

of DRG1 was suggested to be involved in cancer formation19 and it is conceivable that the function of 

DRG1 in mitotic spindle assembly is connected to this. It is also possible that the microtubule 

function of DRG1 is not limited to mitosis. How DRG1 potentially affects interphase microtubule 

function is an interesting question awaiting detailed investigation.  

 

Methods 

Protein expression and purification 

Constructs for Xenopus laevis full-length DFRP1 and DRG1 as well as DRG1 fragments and human full-

length DFRP2 were generated from a synthetic DNA optimized for codon usage in E.coli (Geneart) 

and cloned into a pET28a vector or modified pET28a vectors with a SUMO or eGFP-tag. Recombinant 

protein was expressed in E.coli and purified by Ni-affinity chromatography. For fluorescently labeled 

DRG1, the eGFP-tag was N-terminal. For motility binding assays, the recombinant protein was further 

purified by ion exchange chromatography (Tricorn High Performance Columns, Mono Q 5/50GL, GE). 

Proteins were dialyzed against the individual assay buffers. 

To gain dominant GTPase mutants, we designed point mutations in the GTPase domain by sequence 

alignment to other GTPases: to obtain a dominant-negative DRG1 mutant we mutated serine 78 to 

asparagine, which is a conserved residue that causes a dominant negative mutant e.g. in the small 

GTPase Ran38 and in Rbg122,24. To obtain a dominant-positive DRG1 mutant we exchanged proline 73 

to valine according to the dominant positive mutant of the Streptomyces coelicolor GTPase Obg32. 

The DRG1 S78N and P73V mutants were generated by mutagenesis using the QuickChange site-

directed mutagenesis kit (Agilent). DRG1 fragments used were aa 49-367 (ΔHTH), aa 1-293 (ΔTGS), aa 

1-46 (HTH), aa 293-367 (TGS), aa 175-238 (S5D2L) and aa 49-293 (ΔHTHΔTGS), all based on the 

Xenopus laevis sequence and expressed as His6-tagged protein from a pET28a vector. 
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Antibodies 

Polyclonal antibodies against full-length Xenopus and human His6-DRG1, Xenopus His6-DFRP1 and 

Xenopus His6-SUMO-DFRP2A were raised in rabbits and used 1:1,000 in western blotting. Antibodies 

against MEL2839 and ch-TOG26 as well as CAP-G40 have been described previously. The β-actin 

(A5441), β-tubulin (T7816) and α-tubulin (DM1A) antibodies were obtained from Sigma and the 

centromere (CREST) antibody (15-234) from Antibodies Incorporated.  

Preparation of taxol-stabilized microtubules 

To polymerize microtubules for the co-sedimentation assay, porcine brain tubulin (Cytoskeleton, 

T240) was resuspended in BRB80 (80 mM PIPES, 1 mM MgCl2, 1 mM EGTA, pH 6.8) to 10 mg/ml. The 

microtubules were polymerized by adding 2 mM GTP and incubation for 30 minutes at 37 °C. Taxol 

was added to a final concentration of 20 µM. After 10 min incubation, the solution was centrifuged 

for 10 min at 110,000 x g in a TLA120 rotor (Beckman) and 37 °C. The pellet was resuspended in 

BRB80 + 20 µM taxol and the concentration was measured using a Bradford assay. 

Microtubules for the bundling assay were prepared in a slightly modified way41: 10 mg/ml unlabeled 

tubulin, 2 mg/ml Cy3-labeled tubulin and 1 mM GTP were incubated at 37 °C for 30 minutes. The 

solution was then diluted tenfold with BRB80 + 20µM taxol, the microtubules were pelleted by 

centrifugation for 10 min at maximum speed in a 1.5 ml reaction tube centrifuge at RT and 

resuspended as above. 

Microtubule binding assay with extracts 

HeLa nuclear extracts (4C Biotech) were diluted with CSF–XB buffer (100 mM KCl, 0.1 mM CaCl2, 2 

mM MgCl2, 50 mM sucrose, 10 mM Hepes, 5 mM EGTA, pH 7.7) to 1 mg/ml. CSF-arrested Xenopus 

egg extracts were diluted 1:3 with CSF-XB buffer. After centrifugation at 100,000 g for 10 min at 20°C 

the supernatant was incubated with 2 µM taxol-stabilized microtubules (for CSF extracts 4 µM) at RT 

for 15 min in the presence of 1mM GTP and 10 µM taxol. The samples were centrifuged at 100,000 g 

for 10 min at 20 °C through a cushion of 40 % glycerol in CSF-XB containing 20 µM taxol. Pellets were 

resuspended in wash buffer (CSF-XB buffer containing 1 mM DTT, 1 mM GTP, and 20 µM taxol) and 

spun for 10 min at 100,000 x g. The washing was repeated one more time. Microtubules binding 

proteins were eluted with 500 mM NaCl and the pellet and eluate were analyzed by SDS–PAGE and 

immunoblotting. 

Microtubule binding, bundling and polymerization assays with recombinant protein 

The microtubule binding, bundling and polymerization assays were done as in 42. In short, 

recombinant protein in CSF-XB buffer was incubated with 2 mM GTP, with or without 12 µM taxol-

stabilized microtubules and with or without 500 mM NaCl in CSF-XB + 20 µM taxol for 15 min at RT. 

Afterwards, the solution was spun for 10 min at 100,000 x g in a TLA100 rotor and 20 °C. The 

supernatant and pellet were analyzed by SDS-PAGE. 

For microtubule bundling, 0.1-0.3 µM Cy3-labeled microtubules41 were incubated with 1 µM 

recombinant protein in 10 µl BRB80 buffer + 20 µM taxol for 10 minutes at RT. Samples were 

squashed between a coverslip and slide without fixation and analyzed by confocal microscopy using a 

LSM780 Zeiss microscope equipped with a Plan-Apochromat 63x/1.4 Oil DIC objective and 561nm-

Diode Lasers. For electron microscopy, the samples were stained in 2 % uranyl acetate. Images were 
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acquired with a CMOS camera (TemCam-F416, TVIPS, Gauting, Germany) mounted on a Tecnai Spirit 

(Thermo Fisher Scientific, Eindhoven, The Netherlands) operated at 120 kV. 

For microtubule polymerization, 1 µM recombinant protein was incubated with 4 µM porcine brain 

tubulin and 1 µM Cy3-labeled tubulin and 1 mM GTP for 30 min at 37 °C in BRB80 buffer. The 

samples were fixed in 400 µl BRB80 buffer containing 0.25 % glutaraldehyde, 10 % glycerol and 0.1 % 

TritonX-100 for at least 10 min. Samples were spun through 2 ml 25 % glycerol in BRB80 for 20 min at 

4,600 x g in a Sorvall Heraeus 75002027K swing rotor and RT onto a coverslip. The coverslips were 

post-fixed with methanol at -20 °C for 10 min, washed with PBS and mounted with Mowiol. Samples 

were imaged by a LSM780 Zeiss equipped with a Plan-Apochromat 63x/1.4 Oil DIC objective and 

561nm-Diode Lasers. 

To digest the taxol-stabilized microtubules with subtilisin, the protease was added to 0.3 mg/ml for 3 

hrs. Another 0.3 mg/ml subtilisin were added after the first 90 minutes. The digestion was stopped 

by addition of 7 mM PMSF and 1:19 of a protease inhibitor mix (10 mg/ml AEBSF, 0.2 mg/ml 

leupeptin, 0.1 mg/ml pepstatin, 0.2 mg/ml aprotinin) for 15 min. Another 1:12 of protease inhibitor 

mix was added followed by 40 min of incubation. The microtubules were pelleted by centrifugation, 

washed several times and resuspended in BRB80 + 20 µM taxol. (Concentrations of taxol-stabilized 

microtubules were decreased in the co-sedimentation assay to reach for the same amount of 

subtilisin-digested and not digested microtubules.) 

Microtubule motility binding assay 

For microtubule polymerization 20-30 µM porcine tubulin were incubated with 5% DMSO, 4 mM 

MgCl2, 1 mM ATP in BRB80 (pH 6.9) for 1h at 37°C. Upon finishing, BRB80 supplemented with 10 µM 

taxol was added to the reaction tube. Afterwards, the microtubules were spun down at 22psi using a 

Beckman airfuge. The pellet was re-suspended in BRB80 containing 10 µM taxol.  

The flow cell was constructed as described in 43, but the surface was coated with 

Chlorotrimethylsilane (MTS, Merck Millipore 102333). The flow channels were washed 4-5 times with 

sterile filtered BRB80 buffer, followed by incubation with anti-β-tubulin (Sigma Aldrich, T7816) for 

15-20 minutes at RT. Afterwards, the channels were washed once with BRB80 and blocked using 1 % 

Pluronic F-127 (Sigma-Aldrich, P2443) in BRB80 for 20-25 minutes, followed by 5 times washing with 

BRB80 and incubation with 10 % rhodamine labelled taxol-stabilized microtubules for 15 minutes. 

The assay buffer (BRB80, 112.5 mM Casein, 1 mM GTP, 20 mM D-Glucose, 250 nM glucose oxidase, 

134 nM catalase, 0.5 % -mercaptoethanol) containing the protein was added after a quick wash of 

the channel. Samples were imaged at 25°C on a home built total internal reflection fluorescence 

(TIRF) microscope combined with epifluorescence. The TIRF microscope was equipped with a sCMOS 

camera (Orca Flash 4.0, Hamamatsu Photonics) and an oil immersion TIRF objective (60x, Nikon). To 

visualize DRG1 binding, 40 s time-lapse videos were recorded at 10 fps using a continuous image 

acquisition mode at 100 ms exposure at various concentrations. The fluorophore/protein was excited 

using 488 laser line (Omicron, LuxX 488-100). Data was primarily processed using FIJI 

(http://fiji.sc/Fiji). The kymographs were generated by a custom written macro and were analyzed 

for different populations and interaction times at various concentrations. The graphs were plotted 

using Origin 9.1. 

 

http://fiji.sc/Fiji
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Microtubule polymerization measured by light-scattering 

The protocol for the light scattering experiment was adapted from 44. 1 µM recombinant protein was 

mixed with 2.5 µM tubulin and 1 mM GTP in polymerization buffer (80 mM PIPES, 2 mM MgCl2, 0.5 

mM EGTA and 10 % glycerol) in a total volume of 200 µl in a 96-well plate with flat bottom. The 

absorbance at 340 nm and 37 °C was measured for up to 2:15 hrs in a BioTek Synergy H4 Hybrid 

Multiplate reader. Data was collected every 38 seconds. 

Microtubule stabilization in the cold 

The protocol was adapted from 44: tubulin (12 µM) was polymerized in the absence or presence of 

recombinant protein (5 µM), GTP (1mM) and DTT (1mM) in BRB80 buffer for 1 h at 37 °C. Afterwards 

the sample was incubated on ice for 30 min, followed by centrifugation at 312,000 x g for 20 min at 

4°C. The supernatant and pellet were analyzed by SDS-PAGE. 

Cell Culture and transfection  

Cell culture experiments were performed according to 45. HeLa cells were maintained in Dulbecco's 

modified Eagle's medium (DMEM) supplemented with 2mM L-glutamine, 10% fetal bovine serum 

(FBS) and 500 units/ml penicillin-streptomycin (all from Gibco). The H2B–mCherry and tubulin–eGFP 

cell line46 was a gift from Daniel Gerlich (IMBA, Vienna) and was maintained in DMEM supplemented 

with 2 mM L-glutamine, 10 % fetal bovine serum (FBS) and additionally with 0.5 µg/ml puromycin 

(Gibco) and 500 µg/ml G-418 (Geneticin; Life Technologies). The knockdown experiments were 

performed with the following siRNA oligonucleotides: siDRG1-1 (HSS107061),                                      

5′-GAAGGCUUUGGCAUUCGCUUGAACA-3′, siDRG1-2 (HSS181476), 

5′-CAGCACACCACUUAGGGCUGCUUAA-3′, siDRG1-3 (HSS181477), 

5′-CCUGUAACUUGAUCUUGAUUGUUCU-3′ (Thermofisher), and AllStars negative control siRNA (from 

Qiagen). HeLa cell suspensions were transfected with 40 nM siRNA using Lipofectamine RNAiMAX 

(Invitrogen) according to the manufacturer's instructions.  

Live-cell imaging experiments  

Live-cell imaging was adapted from 45. HeLa H2B–mCherry and tubulin–eGFP cells were transfected 

with siRNA oligonucleotides in 8-well µ-slide chambers (Ibidi). The cells were imaged for 48 h starting 

at 24 h post-transfection (approx.), using a Plan-Apochromat 20× NA 0.8 objective and a 488-nm and 

561-nm diode lasers on a LSM 5 live confocal microscope (Zeiss) equipped with a heating and CO2 

incubation system (Ibidi). ZEN software (Zeiss) was used to acquire images from seven 3.6-µm-spaced 

optical z-sections at various positions every 3 min. Then, single position files were generated from 

the maximum intensity projections in ZEN and converted into image sequences with free licensed 

AxioVision software (LE64; V4.9.1.0). Segmentation, annotation, classification and tracking of cells 

progressing through mitosis were performed using the Cecog analyser 

(http://www.cellcognition.org/software/cecoganalyzer)33. The subsequent analysis was performed in 

Microsoft excel and GraphPad Prism. Three independent experiments were performed.  
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Cold shock regrowth experiments  

HeLa cells expressing H2B–mCherry and tubulin–eGFP were seeded on glass coverslides and 

transfected with siRNA oligonucleotides in 24-well well plates (Greiner Bio-One). 72 h post-

transfection the cells were incubated on ice for 1 h allowing to depolymerize spindle microtubules47. 

Then, cold media was replaced with warm medium and the cells were incubated at 37°C. The cells 

were fixed at indicated times in 4% PFA after one wash with PBS. Afterwards, Z-Stacks (z-scaling 

250nm / Pinhole 26µm) from ten random prometaphase cells per siRNA, time point and experiment 

(n=2) were acquired using a LSM780 Zeiss equipped with a Plan-Apochromat 63x/1.4 Oil DIC 

objective and 488nm-Argon and 561nm-Diode lasers. The spindle size quantitation in voxels was 

obtained using Imaris (Bitplane) by absolute intensity based segmentation of the tubulin-eGFP signal 

in the spindle. The data was exported as excel files and analyzed using GraphPad Prism.  

Evaluation of monoastral mitotic spindles  

HeLa cells were seeded on glass coverslides and transfected with siRNA oligonucleotides in 24-well 

well plates (Greiner Bio-One). 72 h post-transfection the cells were incubated with 70 µM monastrol 

(Sigma) in the presence or absence of 2 nM taxol for 3 h34, washed with PBS and fixed for 

immunofluorescence with 4 % PFA. For immunofluorescence staining samples were incubated for 1h 

in blocking buffer (PBS + 0,1 % Triton-X100 + 3 % BSA). Afterwards the samples were incubated for 2 

hrs at RT with anti-α-tubulin (mouse DM1A; Sigma) and anti-human centromere (CREST) (Antibodies 

Incorporated 15-234) antibodies. As secondary antibodies anti-Alexa-Fluor-488-anti-mouse and anti-

Alexa-Fluor-647-anti-human (Life technologies) were used (1 h at RT). After staining with DAPI for 10 

min, samples were mounted in mowiol 4-88 (Calbiochem). Z-Stacks (z-scaling 350nm / Pinhole 25um) 

from five to eight random positions per siRNA and condition were acquired using a LSM780 Zeiss 

equipped with a Plan-Apochromat 40x/1.3 Oil DIC M27 objective and 405nm-DPSS, 488nm-Argon 

and 633nm-Diode lasers. The quantification of asymmetric monopolar spindles is based on at least 4 

independent experiments with monastrol treatment and on two independent experiments with 

monastrol and monastrol + taxol treatment. Per condition between 15 and 98 cells with monopolar 

spindles were analyzed.  

Statistical analysis for experiments in HeLa cells 

When possible the data was tested for normality by D'Agostino & Pearson omnibus normality test 

and the variances were compared using an F test (P<0.05). If a Gaussian distribution could be 

assumed for the data series and they had no significantly different variances, a two-tailed student´s t-

test was performed. If a Gaussian distribution could be assumed for the data series and they had 

significantly different variances, a two-tailed student´s t-test with Welch´s correction was performed. 

If a Gaussian distribution could not be assumed, a Mann-Whitney test was performed. 
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Figure legends 

Figure 1: DRG1 and DFRP1 bind microtubules 

(a) 4 µM taxol-stabilized microtubules (MTs) were incubated with Xenopus cytostatic factor arrested 

(CSF) extract. Microtubules were co-sedimented together with MT-binding proteins and eluted by 

500 mM NaCl in CSF-XB buffer. The pellet and the elution were analyzed by western blotting. (b) 2 

µM taxol-stabilized microtubules were incubated with HeLa nuclear extract (NE) and sedimented. 

The eluates (obtained by 500 mM NaCl) were analyzed by western blotting with the indicated 

antibodies. Importin α and β (α/β) were added to the reaction as well as RanQ69L, which is fixed in 

the GTP bound state (RanGTP) to test if the binding is regulated by Ran. (c) Recombinant Xenopus 

laevis DRG1 and DRFP1 as well as human DFRP2 were incubated with 12 µM taxol-stabilized 

microtubules to test if the observed binding is direct. RanQ69L served as a negative control (neg. 

ctrl.). S: supernatant, P: pellet. 

 

Figure 2: DRG1 interacts with the microtubule lattice in distinct binding modes 

(a) Kymographs showing three different binding modes (fast diffusion, slow diffusion, immobile) of 

eGFP-DRG1 over four different concentrations (0.08 nM, 0.4 nM, 4 nM, 40 nM). Every kymograph 

represents a microtubule on its horizontal axis observed over time (vertical). The proportions (b) and 

interaction times (c) of the different DRG1 binding populations are shown at aforementioned 

concentrations. Color scheme: fast diffusion (magenta), slow diffusion (cyan), immobile (green).  

 

Figure 3: Different DRG1 domains interact with microtubules 

(a) Scheme of DRG1 indicating the different domains. (b) Full-length and truncated versions of 

Xenopus laevis DRG1 were incubated and co-sedimented with taxol-stabilized MTs as in Figure 1c. (c) 

Full-length DRG1 and its truncated versions lacking both the HTH and TGS domains were incubated 

and co-sedimented with taxol-stabilized MTs. (d) Structure prediction of Xenopus DRG1 modeled 

with Swiss-Model48. Blue color represents the positively charged surface and red the negative 

charges (± 5 kT/e). Lower structure shows a cartoon representing the different domains using the 

color code from (a). (e) Taxol-stabilized MTs were digested by the protease subtilisin and employed 

in the co-sedimentation assay with full-length DRG1. 

 

Figure 4: DRG1 bundles and polymerizes microtubules in vitro 

(a/b) 0.3 µM taxol-stabilized, Cy-3 labeled MTs were incubated with 1 µM DRG1, BSA or buffer for 10 

min at RT. Samples were analyzed by confocal microscopy (a) or electron microscopy (b). (c) 5 µM 

tubulin (mixed in a 1:4 Cy3 labeled:unlabeled ratio) were incubated with 1 mM GTP and 1 µM DRG1, 

BSA or buffer for 30 min at 37 °C, fixed with BRB80 buffer containing 0.25 % glutaraldehyde, 10 % 

glycerol and 0.1 % Triton X-100, spun down on coverslips and post-fixed with cold methanol. Samples 

were analyzed by confocal microscopy. MT only polymerized if DRG1 was present. (d) Light-

scattering experiments were carried out by mixing 2.5 µM tubulin, 1 mM GTP and 1 µM DRG1 in a 
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96-well plate which was followed by immediately measuring absorbance at 340 nm every 38 seconds 

for 2:10 hours. 

 

Figure 5: DRG1 stabilizes microtubules in the cold 

(a) 12 µM tubulin was polymerized in the absence or presence of 5 µM DRG1 for 1 h at 37 °C and 

placed on ice for 30 min. MTs were then pelleted by centrifugation, while free tubulin stays in the 

supernatant. Pellet and supernatant were analyzed by SDS-PAGE. (b) Western blotting shows that 

DRG1 was knocked-down in HeLa cells stably expressing histone H2B-mCherry and eGFP-tubulin by 

siRNA 72h post-transfection. (c) siRNA treated HeLa cells were placed 72 hrs after transfection on ice 

for 1 hour to induce MT disassembly. Warm medium was then added to the cells which were fixed 

with 4 % PFA at indicated time points. Maximum intensity projections of Z-stacks from representative 

prometaphase cells at the given time points are shown. (d) The spindle size in voxels was quantified 

in 20 random prometaphase cells (from 2 independent experiments) per time point and siRNA (mean 

and SD are plotted). *** 0.001<P; ** 0.01<P; * 0.01<P. Insert shows the spindle size at 0 min 

enlarged. 

 

Figure 6: 

Microtubule binding, bundling, polymerization and stabilization activity of DRG1 does not require 

GTP hydrolysis  

(a) MT co-sedimentation was done as in figure 1 with DRG1 S78N and DRG1 P73V. (b) MT-

polymerization assay was done as in figure 5 using 1 µM DRG1 WT, S78N and P73V. (c) MT bundling 

assay was done as in figure 5 using 1 µM DRG1 WT, S78N and P73V. (d) DRG1 S78N and DRG1 P73V 

were employed in the microtubule stabilization assay as in figure 6.  

 

Figure 7: DRG1 regulates mitotic progression and spindle assembly in cells 

(a) HeLa cells stably expressing histone H2B–mCherry and tubulin–eGFP were transfected with siRNA 

oligonucleotides against DRG1 or a control. The cells were imaged every 3 min for 48 h starting at 24 

h post-transfection. (b) A cumulative histogram of the timing from prophase to anaphase onset 

based on chromatin morphology (based on H2B-mCherry) and (c) of the timing from aster formation 

to anaphase spindle (based on eGFP-tubulin) are shown. Mean and SD from 3 independent 

experiments containing more than 150 cell trajectories per siRNA and experiment are plotted. 

 

Figure 8: DRG1 plays a role in spindle dynamics in vivo 

(a) HeLa cells were seeded on glass coverslides and transfected with DRG1 or control siRNA 

oligonucleotides. 72 h post-transfection cells were incubated with 70 µM monastrol with or without 

2 nM taxol for 3 h34, fixed and stained with antibodies against α-tubulin (green) and anti-human 

centromere (magenta). DAPI in blue. (b/c) Quantitation of cells with asymmetric asters. Z-Stacks 
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from five to eight random positions per condition were acquired and quantified (4 independent 

experiments for monastrol treatment (b) and two independent experiments (represented by the two 

dots/squares) for monastrol treatment with rescue by taxol (c)). Between 15 and 98 cells with 

monopolar spindles were evaluated per siRNA knockdown per experiment. Mean and SD are plotted. 

*** 0.001<P; ** 0.01<P; * 0.01<P. 

 

 



















Developmentally Regulated GTP binding protein 1 (DRG1) controls microtubule dynamics 

Anna Katharina Schellhaus (1, 2), Daniel Moreno-Andrés (1, 2), Mayank Chugh (3), Hideki Yokoyama 
(1, 2), Athina Moschopoulou (1), Suman De (3), Fulvia Bono (4), Katharina Hipp (4), Erik Schäffer (3), 
Wolfram Antonin* (1, 2) 

*corresponding author 

 

 

Supplemental material: 

 

Supplementary Figure S1: The different microtubule-binding modes of DRG1 exist also in the 
presence of GTPγS 

Motility assays were repeated as in figure 2 but in the presence of GTPγS. (a) Kymographs 
representing different binding modes (fast diffusion, slow diffusion, immobile) of eGFP-DRG1 over 
four different concentrations (0.08 nM, 0.4 nM, 4 nM, 40 nM). The proportions (b) and interaction 
times (c) of the different DRG1 populations are shown at aforementioned concentrations. Color 
scheme: fast diffusion (magenta), slow diffusion (cyan), immobile (green).  

 

Supplementary Figure S2: Full-length DRG1 is necessary to bundle, polymerize and stabilize MTs  

Truncated DRG1 versions were tested in the MT bundling (a) and polymerization (b) and stabilization 
(c) assay.  
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