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INTRODUCTION

In this dissertation we provide various classification results on terminal Fano varieties
with an effective torus action of complexity one.

A Fano variety is an irreducible normal projective variety, such that its anticanoni-
cal divisor class is ample. Research on these varieties was initiated by their namesake
G. Fano [20, 21] in the 1930s. The present interest in Fano varieties is motivated by their
role in the Minimal Model Program, a structured approach towards the classification
of projective varieties up to birational equivalence, initiated by S. Mori [42, 43]. The
simplest examples of Fano varieties are the projective spaces Pn. The only smooth Fano
variety of dimension one is the projective line. Fano varieties of dimension two are called
del Pezzo surfaces, named after P. del Pezzo who first studied them in [18]. There are 10
families of smooth del Pezzo surfaces, namely P1 × P1 and the blow-ups Blr(P2) of P2 in
r points in general position, for 0 ≤ r ≤ 8. In dimension three there are 105 families, a
result obtained by Iskovskikh [29, 30] and Mori/Mukai [44, 45]. For higher dimensions,
the classification problem is still widely open.

A rich source of examples in algebraic geometry is given by toric varieties. A variety is
toric if it contains an algebraic torus as an open dense subset, such that the action of the
torus on itself extends to the whole variety. Toric Fano varieties are in correspondence
with certain lattice polytopes, called Fano polytopes, and their classification reduces to a
combinatorial problem. The smooth toric Fano varieties of dimension two are well-known;
there are five of them and their Fano polytopes look as follows:

P1 × P1 P2 Bl1(P2) Bl2(P2) Bl3(P2)

In dimension three and four there are 18 and 124 smooth toric Fano varieties, respectively;
these results are mainly due to V. Batyrev in [4, 5]. Dimension five provides 866 smooth
toric Fano varieties and their classification was done by M. Kreuzer and B. Nill in [39].
Finally, in [46] M. Øbro provided an algorithm for the classification of smooth toric Fano
varieties of any dimension; explicit lists have been computed by himself up to dimension
eight and by A. Paffenholz [48] in dimension nine.
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2 Introduction

The next step is to weaken the smoothness condition and allow terminal singularities.
These arise naturally in the context of the Minimal Model Program. Restricting to the
toric case, there is a purely combinatorial criterion for terminality: a toric Fano variety
is terminal if and only if the only lattice points in its Fano polytope are the vertices
and the origin. A. Kasprzyk provided in [34] the complete list of terminal toric Fano
threefolds, which counts 634 varieties up to isomorphism. For higher dimensions, only
partial results are known.

We go one step beyond toric varieties and consider rational varieties X with an effective
action of a torus T of complexity one, i.e. dim(T ) = dim(X)− 1 holds. Our approach is
via the Cox ring

R(X) :=
⊕

[D]∈Cl(X)

Γ(X,O(D)),

which can be associated with any normal complete variety X with finitely generated
divisor class group Cl(X), see [1] for the details of this definition. The work [24, 26, 27]
by J. Hausen, E. Huggenberger and H. Süß provides an explicit description of the Cox
ring of complete rational varieties with a torus action of complexity one.

For such varieties we introduced in [8], together with B. Bechtold, J. Hausen and E. Hug-
genberger, the anticanonical complex. Similar to the toric Fano polytope, this polyhedral
complex characterizes terminality in terms of its lattice points. For the precise formula-
tion see Section 2.1.

The anticanonical complex is a fundamental tool for our first two classification results.
We only need to provide lists of Cox rings, since a Fano variety is completely determined
by its Cox ring.

Theorem. The following table lists the Cox rings R(X) of the non-toric rational termi-
nal Q-factorial Fano threefolds X having Picard number one and an effective two-torus
action; the Cl(X)-degrees of the generators T1, . . . , Tr are denoted as columns wi ∈ Cl(X)
of a matrix [w1, . . . , wr].

No. R(X) Cl(X) [w1, . . . , wr]

1.01 K[T1, . . . , T5]/〈T1T2 + T3T4 + T 2
5 〉 Z [ 1 1 1 1 1 ]

1.02 K[T1, . . . , T5]/〈T1T2 + T3T4 + T 2
5 〉 Z [ 1 5 2 4 3 ]

1.03 K[T1, . . . , T5]/〈T1T2 + T3T4 + T 2
5 〉 Z⊕ Z/5Z

[
1 1 1 1 1
2 3 1 4 0

]
1.04 K[T1, . . . , T5]/〈T1T2 + T3T4 + T 3

5 〉 Z [ 1 5 3 3 2 ]

1.05 K[T1, . . . , T5]/〈T1T2 + T3T4 + T 4
5 〉 Z [ 1 3 2 2 1 ]

1.06 K[T1, . . . , T5]/〈T1T2 + T3T4 + T 4
5 〉 Z⊕ Z/2Z

[
1 3 2 2 1
1 1 1 1 0

]
1.07 K[T1, . . . , T5]/〈T1T2 + T3T4 + T 6

5 〉 Z [ 2 4 3 3 1 ]
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1.08 K[T1, . . . , T5]/〈T1T2 + T 2
3 T4 + T 2

5 〉 Z [ 1 3 1 2 2 ]

1.09 K[T1, . . . , T5]/〈T1T2 + T 2
3 T4 + T 2

5 〉 Z [ 1 5 2 2 3 ]

1.10 K[T1, . . . , T5]/〈T1T2 + T 2
3 T4 + T 2

5 〉 Z [ 3 7 4 2 5 ]

1.11 K[T1, . . . , T5]/〈T1T2 + T 2
3 T4 + T 3

5 〉 Z [ 2 1 1 1 1 ]

1.12 K[T1, . . . , T5]/〈T1T2 + T 2
3 T4 + T 3

5 〉 Z [ 3 3 1 4 2 ]

1.13 K[T1, . . . , T5]/〈T1T2 + T 2
3 T4 + T 3

5 〉 Z⊕ Z/3Z
[
2 1 1 1 1
1 2 1 1 0

]
1.14 K[T1, . . . , T5]/〈T1T2 + T 2

3 T4 + T 6
5 〉 Z [ 3 3 2 2 1 ]

1.15 K[T1, . . . , T5]/〈T1T2 + T 2
3 T

2
4 + T 2

5 〉 Z⊕ Z/2Z
[
1 3 1 1 2
1 1 0 0 1

]
1.16 K[T1, . . . , T5]/〈T1T2 + T 2

3 T
2
4 + T 3

5 〉 Z [ 3 3 2 1 2 ]

1.17 K[T1, . . . , T5]/〈T1T2 + T 3
3 T4 + T 2

5 〉 Z [ 1 3 1 1 2 ]

1.18 K[T1, . . . , T5]/〈T1T2 + T 3
3 T4 + T 2

5 〉 Z [ 2 4 1 3 3 ]

1.19 K[T1, . . . , T5]/〈T1T2 + T 3
3 T4 + T 2

5 〉 Z [ 3 7 2 4 5 ]

1.20 K[T1, . . . , T5]/〈T1T2 + T 3
3 T4 + T 2

5 〉 Z⊕ Z/2Z
[
1 3 1 1 2
1 1 0 0 1

]
1.21 K[T1, . . . , T5]/〈T1T2 + T 3

3 T4 + T 4
5 〉 Z [ 2 2 1 1 1 ]

1.22 K[T1, . . . , T5]/〈T1T2 + T 3
3 T4 + T 4

5 〉 Z⊕ Z/2Z
[
2 2 1 1 1
1 1 1 1 0

]
1.23 K[T1, . . . , T5]/〈T1T2 + T 3

3 T
2
4 + T 2

5 〉 Z [ 3 5 2 1 4 ]

1.24 K[T1, . . . , T5]/〈T1T2 + T 3
3 T

3
4 + T 2

5 〉 Z [ 2 4 1 1 3 ]

1.25 K[T1, . . . , T5]/〈T1T2 + T 4
3 T4 + T 3

5 〉 Z [ 3 3 1 2 2 ]

1.26 K[T1, . . . , T5]/〈T1T2 + T 4
3 T

2
4 + T 3

5 〉 Z [ 3 3 1 1 2 ]

1.27 K[T1, . . . , T5]/〈T1T2 + T 5
3 T4 + T 2

5 〉 Z [ 2 4 1 1 3 ]

1.28 K[T1, . . . , T5]/〈T1T2 + T 5
3 T4 + T 3

5 〉 Z [ 3 3 1 1 2 ]

1.29 K[T1, . . . , T5]/〈T1T2 + T 6
3 T4 + T 2

5 〉 Z [ 3 5 1 2 4 ]

1.30 K[T1,...,T6]

〈T1T2+T3T4+T
2
5 ,aT3T4+T

2
5 +T2

6 〉
Z⊕ Z/2Z

[
1 1 1 1 1 1
1 1 0 0 1 0

]
1.31 K[T1, . . . , T5]/〈T1T2T3 + T 3

4 + T 2
5 〉 Z [ 1 1 4 2 3 ]

1.32 K[T1, . . . , T5]/〈T1T2T3 + T 3
4 + T 2

5 〉 Z [ 2 3 1 2 3 ]

1.33 K[T1, . . . , T5]/〈T1T2 + T 2
3 + T 2

4 〉 Z⊕ Z/2Z
[
2 4 3 3 1
1 1 1 0 0

]
1.34 K[T1, . . . , T5]/〈T1T2 + T 3

3 + T 2
4 〉 Z [ 1 5 2 3 1 ]

1.35 K[T1, . . . , T5]/〈T1T2 + T 3
3 + T 2

4 〉 Z [ 1 5 2 3 2 ]

1.36 K[T1, . . . , T5]/〈T1T2 + T 3
3 + T 2

4 〉 Z [ 1 5 2 3 3 ]

1.37 K[T1, . . . , T5]/〈T1T2 + T 3
3 + T 2

4 〉 Z [ 1 5 2 3 4 ]

1.38 K[T1, . . . , T5]/〈T1T2 + T 3
3 + T 2

4 〉 Z [ 5 7 4 6 1 ]

1.39 K[T1, . . . , T5]/〈T1T2 + T 3
3 + T 2

4 〉 Z [ 5 7 4 6 3 ]

1.40 K[T1, . . . , T5]/〈T1T2 + T 3
3 + T 3

4 〉 Z⊕ Z/3Z
[
1 2 1 1 1
1 2 2 0 0

]
1.41 K[T1, . . . , T5]/〈T1T2 + T 4

3 + T 2
4 〉 Z⊕ Z/2Z

[
1 3 1 2 1
1 1 0 1 0

]
1.42 K[T1, . . . , T5]/〈T1T2 + T 4

3 + T 2
4 〉 Z⊕ Z/2Z

[
1 3 1 2 2
1 1 0 1 1

]
1.43 K[T1, . . . , T5]/〈T1T2 + T 4

3 + T 3
4 〉 Z [ 5 7 3 4 1 ]

1.44 K[T1, . . . , T5]/〈T1T2 + T 4
3 + T 3

4 〉 Z [ 5 7 3 4 2 ]

1.45 K[T1, . . . , T5]/〈T1T2 + T 5
3 + T 2

4 〉 Z [ 3 7 2 5 1 ]
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1.46 K[T1, . . . , T5]/〈T1T2 + T 5
3 + T 2

4 〉 Z [ 3 7 2 5 4 ]

1.47 K[T1, . . . , T5]/〈T1T2 + T 6
3 + T 2

4 〉 Z⊕ Z/2Z
[
2 4 1 3 1
1 1 1 0 0

]
Our second classification result concerns the larger class of combinatorially minimal va-
rieties, i.e. those that do not have any contractible divisor. It turns out that, in our
setting, the Picard number is bounded by two. In addition to the varieties of Picard
number one, which are all combinatorially minimal, we obtain the following varieties.

Theorem. The following table lists the Cox rings R(X) of the non-toric rational com-
binatorially minimal terminal Q-factorial Fano threefolds X with an effective two-torus
action and with Picard number bigger than one. The Cl(X)-degrees of the generators
T1, . . . , Tr are denoted as columns wi ∈ Cl(X) of a matrix [w1, . . . , wr].

No. R(X) Cl(X) [w1, . . . , wr]

2.01 K[T1, . . . , T6]/〈T1T2 + T3T4 + T5T6〉 Z2
[
1 0 1 0 1 0
0 1 0 1 0 1

]
2.02 K[T1, . . . , T6]/〈T1T 2

2 + T3T 2
4 + T5T 2

6 〉 Z2
[
1 0 1 0 1 0
0 1 0 1 0 1

]
2.03 K[T1, . . . , T6]/〈T1T2 + T3T4 + T5T6〉 Z2 ⊕ Z/3Z

[ 1 0 1 0 1 0
0 1 0 1 0 1
2 1 1 2 0 0

]
2.04 K[T1, . . . , T6]/〈T1T 2

2 + T3T 2
4 + T5T 2

6 〉 Z2 ⊕ Z/3Z
[ 1 0 1 0 1 0
0 1 0 1 0 1
1 1 2 2 0 0

]
2.05 K[T1, . . . , T6]/〈T1T2 + T 2

3 T4 + T5T6〉 Z2
[
2 0 1 0 1 1
0 1 0 1 0 1

]
2.06 K[T1, . . . , T6]/〈T1T2 + T3T 2

4 + T 2
5 T

2
6 〉 Z2

[
1 1 2 0 1 0
1 1 0 1 0 1

]
2.07 K[T1, . . . , T6]/〈T1T2T3 + T4T5 + T 2

6 〉 Z2
[
1 1 0 2 0 1
0 0 2 1 1 1

]
2.08 K[T1, . . . , T6]/〈T1T2T3 + T4T 2

5 + T 2
6 〉 Z2

[
1 1 0 2 0 1
1 0 1 0 1 1

]
2.09 K[T1, . . . , T6]/〈T1T2T 2

3 + T4T5 + T 2
6 〉 Z2

[
1 1 0 2 0 1
0 0 1 1 1 1

]
2.10 K[T1, . . . , T6]/〈T1T2T 2

3 + T4T 2
5 + T 2

6 〉 Z2
[
1 1 0 2 0 1
0 0 1 0 1 1

]
2.11 K[T1, . . . , T6]/〈T1T2 + T 2

3 T4 + T 2
5 〉 Z2

[
2 0 1 0 1 1
1 1 0 2 1 0

]
2.12 K[T1, . . . , T6]/〈T1T2T3 + T 2

4 + T 2
5 〉 Z2 ⊕ Z/2Z

[ 1 1 0 1 1 0
0 0 2 1 1 1
0 1 1 1 0 0

]

Our third classification result concerns smooth projective varieties. In [19], together with
A. Fahrner and J. Hausen, we look at varieties having small Picard number and arbitrary
dimension. For toric varieties, the projective spaces are the only smooth examples with
Picard number one, and we have Kleinschmidt’s description [36] of all smooth toric
projective varieties with Picard number two. We follow that line and study smooth
projective rational varieties with a torus action of complexity one. The case of Picard
number one is done by A. Liendo and H. Süß [40, Thm. 6.5]: the only non-toric examples
are the smooth projective quadrics in dimension three and four. Our work settles the
case of Picard number two.

Theorem. The following table lists the Cox rings R(X) of the non-toric rational smooth
projective varieties X of complexity one with Picard number equal to two. The grading
by Cl(X) = Z2 is given by the matrix [w1, . . . , wr] of generator degrees deg(Ti), deg(Sj)
and the isomorphy type is specified by an ample class u ∈ Cl(X).
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No. R(X) [w1, . . . , wr] u dim(X)

1 K[T1,...,T7]

〈T1T2T
2
3 +T4T5+T6T7〉

[
0 0 1 1 1 1 1
1 1 0 a 2− a b 2− b

]
1 ≤ a ≤ b

[
1

1 + b

]
4

2 K[T1,...,T7]
〈T1T2T3+T4T5+T6T7〉

[
0 0 1 1 0 1 0
1 1 0 1 1 1 1

] [
1
2

]
4

3 K[T1,...,T6]

〈T1T2T
2
3 +T4T5+T

2
6 〉

[
0 0 1 1 1 1
1 1 0 2− a a 1

]
a ≥ 1

[
1

1 + a

]
3

4
K[T1,...,T6,S1,...,Sm]

〈T1T
l2
2 +T3T

l4
4 +T5T

l6
6 〉

m≥0

[
0 1 a 1 b 1 c1 . . . cm
1 0 1 0 1 0 1 . . . 1

]
0 ≤ a ≤ b, c1 ≤ . . . ≤ cm,

l2 = a + l4 = b + l6

[
d + 1

1

]
d := max(b, cm)

m+ 3

5
K[T1,...,T6,S1,...,Sm]

〈T1T2+T
2
3 T4+T

2
5 T6〉

m≥0

[
0 2a + 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 0 . . . 0

]
a ≥ 0

[
2a + 2

1

]
m+ 3

6
K[T1,...,T6,S1,...,Sm]

〈T1T2+T3T4+T
2
5 T6〉

m≥1

[
0 2c + 1 a b c 1 1 . . . 1
1 1 1 1 1 0 0 . . . 0

]
a, b, c ≥ 0, a < b,
a + b = 2c + 1

[
2c + 2

1

]
m+ 3

7
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥1

[
0 0 0 0 −1 1 1 . . . 1
1 1 1 1 1 1 0 . . . 0

] [
1
2

]
m+ 3

8
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥2

[
0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 0 a2 . . . am

]
0 ≤ a2 ≤ . . . ≤ am, am > 0

[
1

am + 1

]
m+ 3

9
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥2

[
0 a2 . . . a6 1 . . . 1
1 1 . . . 1 0 . . . 0

]
0 ≤ a3 ≤ a5 ≤ a6 ≤ a4 ≤ a2,
a2 = a3 + a4 = a5 + a6

[
a2 + 1

1

]
m+ 3

10
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

m≥1

[
1 1 1 1 1 0 . . . 0
−1 1 0 0 0 1 . . . 1

] [
2
1

]
m+ 2

11
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

m≥2

[
1 1 1 1 1 0 a2 . . . am
0 0 0 0 0 1 1 . . . 1

]
0 ≤ a2 ≤ . . . ≤ am, am > 0

[
am + 1

1

]
m+ 2

12
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

m≥2

[
1 1 1 1 1 0 0 . . . 0
0 2c a b c 1 1 . . . 1

]
0 ≤ a ≤ c ≤ b, a + b = 2c

[
1

2c + 1

]
m+ 2

13

K[T1,...,T8]〈
T1T2+T3T4+T5T6,
aT3T4+T5T6+T7T8

〉
a∈K∗\{1}

[
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

] [
1
1

]
4

The anticanonical divisor of the varieties can be computed explicitly. This enables us to
determine, for every dimension, the finitely many families of non-toric smooth rational
Fano varieties of Picard number two that admit a torus action of complexity one.

Theorem. The following table lists the Cox rings R(X) of the non-toric rational smooth
Fano varieties X of complexity one with Picard number equal to two. The grading by
Cl(X) = Z2 is given by the matrix [w1, . . . , wr] of generator degrees deg(Ti),deg(Sj) and
we list the anticanonical class −KX .

No. R(X) [w1, . . . , wr] −KX dim(X)

1 K[T1,...,T7]

〈T1T2T
2
3 +T4T5+T6T7〉

[
0 0 1 1 1 1 1
1 1 0 1 1 1 1

] [
3
4

]
4
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2 K[T1,...,T7]
〈T1T2T3+T4T5+T6T7〉

[
0 0 1 1 0 1 0
1 1 0 1 1 1 1

] [
2
4

]
4

3 K[T1,...,T6]

〈T1T2T
2
3 +T4T5+T

2
6 〉

[
0 0 1 1 1 1
1 1 0 1 1 1

] [
2
3

]
3

4.A
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥0

[
0 1 0 1 0 1 c 0 . . . 0
1 0 1 0 1 0 1 1 . . . 1

]
c ∈ {−1, 0},

c := 0 if m = 0

[
2 + c
2 +m

]
m+ 3

4.B
K[T1,...,T6,S1,...,Sm]

〈T1T
2
2 +T3T4+T5T6〉

m≥0

[
0 1 1 1 1 1 1 . . . 1
1 0 1 0 1 0 1 . . . 1

] [
3 +m
2 +m

]
m+ 3

4.C
K[T1,...,T6,S1,...,Sm]

〈T1T
2
2 +T3T

2
4 +T5T

2
6 〉

m≥0

[
0 1 0 1 0 1 0 . . . 0
1 0 1 0 1 0 1 . . . 1

] [
1

2 +m

]
m+ 3

5
K[T1,...,T6,S1,...,Sm]

〈T1T2+T
2
3 T4+T

2
5 T6〉

m≥1

[
0 2a + 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 0 . . . 0

]
0 ≤ 2a < m

[
2a +m + 2

2

]
m+ 3

6
K[T1,...,T6,S1,...,Sm]

〈T1T2+T3T4+T
2
5 T6〉

m≥1

[
0 2c + 1 a b c 1 1 . . . 1
1 1 1 1 1 0 0 . . . 0

]
a, b, c ≥ 0, a < b,
a + b = 2c + 1,
m > 3c + 1

[
3c + 2 +m

3

]
m+ 3

7
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

1≤m≤3

[
0 0 0 0 −1 1 1 . . . 1
1 1 1 1 1 1 0 . . . 0

] [
m
4

]
m+ 3

8
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥2

[
0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 0 a2 . . . am

]
0 ≤ a2 ≤ . . . ≤ am,
am ∈ {1, 2, 3},

4 +
∑m

k=2 ak > mam

[
m

4 +
∑m

k=2 ak

]
m+ 3

9
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥2

[
0 a2 . . . a6 1 . . . 1
1 1 . . . 1 0 . . . 0

]
0 ≤ a3 ≤ a5 ≤ a6 ≤ a4 ≤ a2,
a2 = a3 + a4 = a5 + a6,

2a2 < m

[
2a2 +m

4

]
m+ 3

10
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

1≤m≤2

[
1 1 1 1 1 0 . . . 0
−1 1 0 0 0 1 . . . 1

] [
3
m

]
m+ 2

11
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

m≥2

[
1 1 1 1 1 0 a2 . . . am
0 0 0 0 0 1 1 . . . 1

]
0 ≤ a2 ≤ . . . ≤ am,

am ∈ {1, 2},
3 +

∑m
k=2 ak > mam

[
3 +

∑m
k=2 ak
m

]
m+ 2

12
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

m≥2

[
1 1 1 1 1 0 0 . . . 0
0 2c a b c 1 1 . . . 1

]
0 ≤ a ≤ c ≤ b, a + b = 2c,

3c < m

[
3

3c +m

]
m+ 2

13

K[T1,...,T8]〈
T1T2+T3T4+T5T6,
aT3T4+T5T6+T7T8

〉
a∈K∗\{1}

[
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

] [
2
2

]
4

A closer look at the geometry of these Fano varieties reveals that they are obtained
from a series of lower dimensional varieties via iterating the following procedure: we
take a certain P1-bundle over the given variety, apply a natural sequence of flips and
then contract a prime divisor. In terms of Cox rings, this construction simply means
duplicating a free weight.
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Corollary. Every smooth rational non-toric Fano variety with a torus action of com-
plexity one and Picard number two arises via iterated duplication of a free weight from a
smooth rational projective (not necessarily Fano) variety with a torus action of complexity
one, Picard number two and dimension at most seven.

Similar to the Fano varieties, we can figure out the almost Fano ones, i.e. those with
a big and nef anticanonical divisor. Without the assumption of a torus action, the
classification of smooth almost Fano varieties of Picard number two is widely open; for
the threefold case, we refer to the work of P. Jahnke, T. Peternell and I. Radloff [32, 33].
In the setting of a torus action of complexity one, the following result together with the
previous theorem settles the problem in any dimension; by a truly almost Fano variety
we mean an almost Fano variety which is not Fano.

Theorem. The following table lists the Cox rings R(X) of the non-toric rational smooth
truly almost Fano varieties X of complexity one with Picard number equal to two. The
grading by Cl(X) = Z2 is given by the matrix [w1, . . . , wr] of generator degrees deg(Ti)
and deg(Sj), and the isomorphy type is specified by an ample class u ∈ Cl(X).

No. R(X) [w1, . . . , wr] u dim(X)

4.A
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥1

[
0 1 0 1 0 1 c1 . . . cm
1 0 1 0 1 0 1 . . . 1

]
c1 ≤ . . . ≤ cm
d := max(0, cm)

(2 +m)d = 2 + c1 + · · · + cm

[
1

1 + d

]
m+ 3

4.B
K[T1,...,T6,S1,...,Sm]

〈T1T
2
2 +T3T4+T5T6〉

m≥1

[
0 1 1 1 1 1 0 1 . . . 1
1 0 1 0 1 0 1 1 . . . 1

] [
1
2

]
m+ 3

4.C
K[T1,...,T6,S1,...,Sm]

〈T1T
2
2 +T3T

2
4 +T5T

2
6 〉

m≥1

[
0 1 0 1 0 1 −1 0 . . . 0
1 0 1 0 1 0 1 1 . . . 1

] [
1
1

]
m+ 3

4.D
K[T1,...,T6,S1,...,Sm]

〈T1T
2
2 +T3T

2
4 +T5T6〉

m≥0

[
0 1 0 1 1 1 1 . . . 1
1 0 1 0 1 0 1 . . . 1

] [
1
2

]
m+ 3

4.E
K[T1,...,T6,S1,...,Sm]

〈T1T
3
2 +T3T4+T5T6〉

m≥0

[
0 1 2 1 2 1 2 . . . 2
1 0 1 0 1 0 1 . . . 1

] [
1
3

]
m+ 3

4.F
K[T1,...,T6,S1,...,Sm]

〈T1T
3
2 +T3T

2
4 +T5T

2
6 〉

m≥0

[
0 1 1 1 1 1 1 . . . 1
1 0 1 0 1 0 1 . . . 1

] [
1
2

]
m+ 3

5
K[T1,...,T6,S1,...,Sm]

〈T1T2+T
2
3 T4+T

2
5 T6〉

m≥0

[
0 2a + 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 0 . . . 0

]
m = 2a

[
m + 2

1

]
m+ 3

6
K[T1,...,T6,S1,...,Sm]

〈T1T2+T3T4+T
2
5 T6〉

m≥1

[
0 2c + 1 a b c 1 1 . . . 1
1 1 1 1 1 0 0 . . . 0

]
a, b, c ≥ 0, a < b,
a + b = 2c + 1,
m = 3c + 1

[
2c + 2

1

]
m+ 3

7
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m=4

[
0 0 0 0 −1 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0

] [
1
2

]
7

8
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥2

[
0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 0 a2 . . . am

]
0 ≤ a2 ≤ . . . ≤ am, am > 0,
4 + a2 + . . . + am = mam

[
1

am + 1

]
m+ 3
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9
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥2

[
0 a2 . . . a6 1 . . . 1
1 1 . . . 1 0 . . . 0

]
0 ≤ a3 ≤ a5 ≤ a6 ≤ a4 ≤ a2,
a2 = a3 + a4 = a5 + a6,

m = 2a2

[
a2 + 1

1

]
m+ 3

10
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

m=3

[
1 1 1 1 1 0 0 0
−1 1 0 0 0 1 1 1

] [
2
1

]
5

11
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

m≥2

[
1 1 1 1 1 0 a2 . . . am
0 0 0 0 0 1 1 . . . 1

]
0 ≤ a2 ≤ . . . ≤ am, am > 0,
3 + a2 + . . . + am = mam

[
1

am + 1

]
m+ 2

12
K[T1,...,T5,S1,...,Sm]

〈T1T2+T3T4+T
2
5 〉

m≥3

[
1 1 1 1 1 0 0 . . . 0
0 2c a b c 1 1 . . . 1

]
0 ≤ a ≤ c ≤ b, a + b = 2c,

m = 3c

[
1

2c + 1

]
m+ 2

The present dissertation is organized as follows. The first Chapter recalls basic notions
and statements for the convenience of the reader. We review the language of Cox rings
and bunched rings. This enables the description of projective varieties with a torus
action of complexity one via certain defining matrices and bunches of cones. We follow
closely [1]. The second Chapter provides the classification of Q-factorial terminal Fano
threefolds with a torus action of complexity one having Picard number one. First we
introduce the anticanonical complex. We investigate this object in the special situation
of a rational variety of complexity one. This description provides the tools for the explicit
classification in dimension three for Picard number one. Parts of this Chapter already
appeared in [8]. The third Chapter deals with terminal Fano threefolds with a torus
action of complexity one that are combinatorially minimal, i.e. that do not admit any
divisorial contraction. A first step is to bound the Picard number. Then we go through
all possible cases and obtain the explicit classification. The fourth Chapter focuses on
smooth varieties with a torus action of complexity one, having Picard number two and
arbitrary dimension. In this context, we are able to classify all rational projective varieties
and find, among them, the Fano ones. Furthermore we discuss a geometric procedure that
allows to find all these varieties starting from lower dimensional prototypes. The results
of this Chapter are already published in [19]. The Appendix provides a compendium of
the classification results from Chapter 2 and 3. For each variety we give the defining
data and accompanying relevant information.



CHAPTER

ONE

BACKGROUND

Throughout the whole thesis K is an algebraically closed field of characteristic zero.

This Chapter provides the fundamental notions and concepts required in the rest of the
thesis and does not contain original results by the author. The main reference is the
book [1] by I. Arzhantsev, U. Derenthal, J. Hausen and A. Laface.

In Section 1.1 we review some basic facts about G-varieties and emphasize the toric
case. Section 1.2 briefly recalls the theory of Cox rings. In Section 1.3 we present the
language of bunched rings and their correspondence with Mori dream spaces. Geometric
properties of these varieties are investigated in Section 1.4. Lastly, in Section 1.5, we
recall the construction and description of T -varieties of complexity one.

1.1 G-varieties and toric geometry

An (affine) algebraic group is an (affine) variety G over K together with a group structure,
such that the group operations G × G → G, (g, h) 7→ gh, and G → G, g 7→ g−1, are
morphisms. A character of G is a morphism χ : G → K∗ of algebraic groups. The
characters of G form a group, denoted by X(G).

Definition 1.1.1. Let G be an affine algebraic group. A variety X, together with a
morphism G×X → X, is called a G-variety .

Definition 1.1.2. Let G be a reductive algebraic group and X a G-variety. The ring of
invariants is the K-algebra

O(X)G := {f ∈ O(X); f(g · x) = f(x) for all g ∈ G and x ∈ X}.

A good quotient for the action of G on X is a morphism π : X → Y such that
• π is affine, i.e. preimages of open affine subsets of Y are again affine;
• π is G-invariant, i.e. π(x) = π(g · x) holds for all g ∈ G and x ∈ X;
• the pullback π∗ : OY → (π∗OX)G is an isomorphism.

9
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If a good quotient π : X → Y for the G-action exists, then the quotient space Y is unique
up to isomorphism and we denote it by X//G.

Definition 1.1.3. A quasitorus is an affine algebraic group isomorphic to some (K∗)n×C,
where C is some finite abelian group. A connected quasitorus is a torus. We denote by
Tn := (K∗)n the standard n-torus.

Remark 1.1.4. The category of quasitori and that of finitely generated abelian groups
are equivalent via the functors

G 7→ X(G), K 7→ Spec(K[K]).

Now we turn to the correspondence between quasitori actions on affine varieties and
affine algebras graded by finitely generated abelian groups. The action of a quasitorus
H on an affine variety X defines a grading on the algebra of regular functions of X by

O(X) =
⊕

χ∈X(H)

O(X)χ with O(X)χ = {f ∈ O(X); f(h · x) = χ(h)f(x)}.

Vice versa, letK be a finitely generated abelian group and R aK-graded affine K-algebra
with K-homogeneous generators f1, . . . , fr ∈ R. Then we get a closed embedding

X := Spec(R)→ Kr, x 7→ (f1(x), . . . , fr(x)),

and X ⊆ Kr is invariant under the diagonal action of the quasitorus H := Spec(K[K])
given by the characters χwi , where wi := deg(fi), i.e.

h · x := (χw1(h)x1, . . . , χ
wr(h)xr).

Now we turn to a special case ofG-varieties, the toric varieties. For a detailed background,
refer e.g. to [15, 16, 22, 47].

Definition 1.1.5. A toric variety is a normal irreducible variety Z together with a base-
point z0 ∈ Z and an effective action of a torus TZ , such that the map TZ → Z defined
via t 7→ t · z0 is an open embedding.

We recall a few basic notions from convex geometry and their relation to toric geometry.

Let N and M be two lattices, dual to each other. Define the rational vector spaces
NQ := N ⊗ Q and MQ := M ⊗ Q. By a cone σ ⊆ NQ we always mean a convex
polyhedral cone. The pair (N, σ) is called a lattice cone. The dual cone of σ is the cone
σ∨ ⊆ MQ of linear forms u ∈ MQ for which u|σ ≥ 0 holds. A cone σ is called pointed if
σ ∩−σ = {0} holds, i.e. it does not contain any line. The dimension of a cone is defined
as the dimension of its linear hull. A face of the cone σ is a subset τ ⊆ σ such that
there exists a linear form u ∈ σ∨ with τ = σ ∩ ker(u). Faces are again cones. A face of
dimension one is called a ray , whereas a face of codimension one is called a facet .
A quasifan Σ in NQ is a finite collection of cones such that any two cones intersect in
a common face and any face of a cone in Σ is again an element of Σ. If all cones are
pointed, we call Σ a fan. The pair (N,Σ) is called a lattice fan. The support |Σ| of a
(quasi)fan Σ is the union of its cones. Σ is called complete if |Σ| = NQ holds. We denote
by Σ(k) the set of k-dimensional cones of the (quasi)fan Σ.
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Remark 1.1.6. The categories of lattice cones and that of affine toric varieties are
covariantly equivalent via a functor mapping a lattice cone (N, σ) to the affine variety
Zσ := SpecK[σ∨ ∩M ], which is toric with dense torus TZσ := SpecK[M ].
This process can be extended to the categories of toric varieties and lattice fans. Given
a lattice fan (N,Σ), we construct a toric variety ZΣ by glueing together the affine pieces
Zσ and Zτ along the common open subset Zσ∩τ for all σ, τ ∈ Σ. Note that complete
toric varieties correspond to complete lattice fans.

1.2 Cox rings

Let X be a normal irreducible variety over K. A prime divisor on X is an irreducible
subvariety D ⊂ X of codimension one. The free abelian group generated by the prime
divisors on X is denoted by WDiv(X), its elements are the Weil divisors on X. A Weil
divisor D ∈ WDiv(X) is called principal if there exists a rational function f ∈ K(X)∗

such that
D = div(f) :=

∑
E prime

ordE(f) · E ∈ WDiv(X)

holds, where ordE(f) denotes the vanishing order of f along the prime divisor E. The
subgroup of principal divisors PDiv(X) ≤WDiv(X) is the image of the homomorphism
K(X)∗ →WDiv(X), sending f to div(f).
For any open subset U ⊆ X we define the restriction of D ∈WDiv(X) to U as the Weil
divisor D|U ∈ WDiv(U), where we set D|U := D ∩ U if this intersection is non-trivial
and D|U := 0 otherwise. A Weil divisor D ∈WDiv(X) is called a Cartier divisor if it is
locally principal, i.e. there exists an open cover {Ui}i∈I of X such that D|Ui is principal
for every i ∈ I. We write CDiv(X) ≤WDiv(X) for the group of Cartier divisors.
The divisor class group and the Picard group of X are respectively

Cl(X) := WDiv(X)/PDiv(X), Pic(X) := WDiv(X)/CDiv(X).

It is clear that Pic(X) ⊆ Cl(X) holds. We define the Picard number ρ(X) as the rank
of the Picard group of X. A Weil divisor D = a1D1 + . . . + anDn is effective if the Di

are prime divisors and ai ≥ 0 holds for all i = 1, . . . , n. In this case we write D ≥ 0.

Definition 1.2.1. To any Weil divisor D on X we associate its divisorial sheaf OX(D)
of OX -modules; for any open subset U ⊆ X we define

Γ(U,OX(D)) := {f ∈ K(X)∗; div(f |U ) +D|U ≥ 0} ∪ {0}.

To any subgroup K ≤WDiv(X) we associate its sheaf of divisorial OX-algebras

S :=
⊕
D∈K

SD with SD := OX(D).

Multiplication in S is given by the usual multiplication in K(X). Note that, for f1 ∈
Γ(X,OX(D1)) and f2 ∈ Γ(X,OX(D2)), we have f1f2 ∈ Γ(X,OX(D1 +D2)).
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The following constructions are given for any normal irreducible variety X with only
constant invertible global functions and finitely generated divisor class group Cl(X).
Note that, for complete varieties, Γ(X,O∗) = K∗ is always satisfied.

Construction 1.2.2 (Cox ring). Fix a subgroup K ≤WDiv(X) such that the canonical
projection c : K → Cl(X), D 7→ [D], is surjective and set K0 := ker(c). Choose a
character χ : K0 → K(X)∗ such that div(χ(E)) = E holds for any E ∈ K0. Let S be the
sheaf of divisorial algebras associated to K as in Definition 1.2.1. Consider the sheaf of
ideals I locally generated by the sections 1 − χ(E), where E runs through all elements
of K0.
The Cox sheaf of X associated to K and χ is the quotient sheaf R := S/I together with
the Cl(X)-grading

R :=
⊕

[D]∈Cl(X)

R[D], R[D] := π

 ⊕
D′∈c−1([D])

SD′

 ,

where π : S → R is the canonical projection. The algebra of global sections R(X) of the
Cox sheaf R is the Cox ring of X:

R(X) := Γ(X,R) =
⊕

[D]∈Cl(X)

Γ(X,R[D]).

Note that, if Cl(X) is torsion-free, then the Cox sheaf can be defined by taking a group
K that is isomorphic to Cl(X) and setting R[D] := SD = OX(D).

One can show that Construction 1.2.2 does not depend on the choices of K and χ.

Definition 1.2.3. LetK be an abelian group and consider aK-graded integralK-algebra
R =

⊕
w∈K Rw.

a) An element 0 6= f ∈ R \ R∗ is called K-prime if it is homogeneous and whenever
f |gh for some homogeneous g, h ∈ R, then f |g or f |h.

b) R is called factorially K-graded if every homogeneous non-zero f ∈ R \ R∗ is a
product of K-primes.

Theorem 1.2.4. In the above setting, the Cox ring R(X) is factorially Cl(X)-graded.
Moreover if Cl(X) is torsion-free, then R(X) is factorial.

In general, the Cox ring R(X) of a variety X does not need to be finitely generated.
This motivates the next definition.

Definition 1.2.5. Let X be a normal irreducible variety X with only constant invertible
global functions and finitely generated divisor class group Cl(X). If its Cox ring R(X)
is finitely generated, then X is called a Mori dream space.

Now we turn our attention to the geometric aspects of Construction 1.2.2.
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Remark 1.2.6. Assume that X is a Mori dream space. Then R is locally of finite type
and R(X) is a factorially Cl(X)-graded finitely generated affine K-algebra. The qua-
sitorus H := Spec(K[Cl(X)]) defines an action on the affine variety X := Spec(R(X)).
We call X the total coordinate space of X. Moreover, consider X̂ := SpecX(R), the
relative spectrum of the Cox sheaf R. Note that X̂ is an irreducible normal variety. The
canonical morphism X̂ → X is an H-invariant open embedding and the complement
X\X̂ is of codimension at least two. The morphism p : X̂ → X defined by the H-action
is a good quotient and is called the characteristic space of X.

1.3 Bunched rings and Mori dream spaces

This Section recalls the theory of bunched rings, originally developed in [10, 23]. These
objects answer the problem of constructing a variety with prescribed Cox ring. It turns
out that non-isomorphic varieties may share the same Cox ring, provided they are iso-
morphic in codimension one. Bunched rings encode a Cox ring and a choice of isomorphy
type.

Construction 1.3.1. Let K be a finitely generated abelian group and R a factorially
K-graded affine K-algebra. Consider a system F = (f1, . . . , fr) of pairwise non-associated
K-prime generators of R. Define a homomorphism Q : Zr → K of abelian groups, which
maps the canonical basis vector ei ∈ E := Zr to the degree wi := deg(fi) ∈ K. This
grading defines a quasitorus action of H := Spec(K[K]) on X := Spec(R). Furthermore,
there is an H-invariant closed embedding

X → Kr, x 7→ (f1(x), . . . , fr(x)).

Definition 1.3.2. In the situation of Construction 1.3.1 we define the following:
(i) An F-face is a face γ0 � γ of the positive orthant γ := Qr

≥0, such that there is
some point x ∈ X for which xi 6= 0 holds if and only if ei ∈ γ0.

(ii) A projected F-face is an element of ΩF := {Q(γ0); γ0 is an F-face}.
(iii) An F-bunch is a non-empty collection Φ ⊆ ΩF that satisfies the following conditions:

• for any two τ1, τ2 ∈ Φ we have τ◦1 ∩ τ◦2 6= ∅.
• if τ1 ∈ Φ and τ2 ∈ ΩF satisfy τ◦1 ⊆ τ◦2 , then τ2 ∈ Φ holds.

(iv) An F-bunch Φ is called true if the image of every facet of γ belongs to Φ.
(v) The K-grading of R is called almost free if any r − 1 of the weights w1, . . . , wr

generate K as an abelian group.
(vi) A bunched ring is a triple (R,F,Φ), where

• R is an almost freely, factorially K-graded affine K-algebra, with K∗ as its
group of homogeneous units;
• F is a system of pairwise non-associated K-prime generators of R;
• Φ is a true F-bunch.
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Starting with a bunched ring (R,F,Φ), we construct a variety having R as its Cox ring.
The F-bunch fixes the isomorphy type of the variety and encodes further algebraic aspects
through following sets.

Definition 1.3.3. In the situation of Construction 1.3.1, let (R,F,Φ) be a bunched ring.
We define the set of relevant faces and the covering collection as

rlv(Φ) := {γ0 � γ; γ0 is an F-face with Q(γ0) ∈ Φ},
cov(Φ) := {γ0 ∈ rlv(Φ); γ0 minimal}.

Construction 1.3.4. In the situation of Construction 1.3.1, let (R,F,Φ) be a bunched
ring. To any F-face γ0 we associate

Xγ0 := Xf
u1
1 ···f

ur
r

for some u = (u1, . . . , ur) ∈ γ◦0 .

One can easily see that Xγ0 is independent from the choice of u. Then we define the
varieties

X̂ := X̂(R,F,Φ) :=
⋃

γ0∈rlv(Φ)

Xγ0 ,

X := X(R,F,Φ) := X̂//H.

Note that X̂ is an H-invariant subset of X. The H-action on X̂ admits a good quotient
by [1, Prop. 3.1.3.8], thus X is well-defined. We denote the quotient map by p : X̂ → X.
The pieces

Xγ0 := p(Xγ0) ⊆ X

form an affine cover of X. Moreover, every element fi of F defines a prime divisor
Di
X := p(V

X̂
(fi)) on X.

Recall that an A2-variety is a variety X with the property that any two points of X
admit a common affine open neighborhood.

Theorem 1.3.5. Let (R,F,Φ) be a bunched ring and X, X̂, X be as above. Then X is
a normal, irreducible A2-variety with

dim(X) = dim(X)− dim(KQ), Cl(X) ∼= K,

Γ(X,O∗) = K∗, R(X) ∼= R.

In particular, X is a Mori dream space. Moreover, the map p : X̂ → X is a characteristic
space.

Remark 1.3.6. In Construction 1.3.1, any vector u ∈ cone(w1, . . . , wr)
◦ ⊆ KQ defines

an F-bunch through
Φ(u) := {τ ∈ ΩF; u ∈ τ◦}.

Motivated by the following Proposition, we call a bunched ring projective if its bunch is
of the form Φ(u).
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Proposition 1.3.7. Let X be a Mori dream space. If X is projective, then X is isomor-
phic to a variety X(R,F,Φ(u)) for some projective bunched ring (R,F,Φ(u)).

Every variety X defined by a bunched ring comes with a closed embedding into a toric
variety Z, uniquely determined by the following Construction.

Construction 1.3.8. In the situation of Construction 1.3.1, let (R,F,Φ) be a bunched
ring. By setting F := E∗ and M := ker(Q), we obtain the following exact sequences

0

0

L

K

F

E

N

M 0

P

P∗Q

Set δ := γ∨ ⊂ FQ. For each γ0 � γ, let γ∗0 := γ⊥0 ∩ δ � δ be the corresponding face. We
define the enveloping collection and the following fans living in FQ and NQ respectively:

Env(Φ) := {γ0 � γ; ∃ γ1 ∈ rlv(Φ) with γ1 � γ0 and Q(γ1)◦ ⊆ Q(γ0)◦},

Σ̂ := {δ0 � δ; ∃ γ0 ∈ Env(Φ) with δ0 � γ∗0},
Σ := {P (γ∗0); γ0 ∈ Env(Φ)}.

Let Σ be the fan consisting of δ and all its faces and denote by Z := Kr the toric
variety associated to Σ. Since Σ̂ is a subfan of Σ, there is an open embedding of the
corresponding varieties Ẑ ⊆ Z. Moreover, there is a map of fans Σ̂ → Σ arising from
P : F → N . Denoting by Z the toric variety associated to Σ, we obtain a toric morphism
p : Ẑ → Z. The varieties X, X̂ and X from Construction 1.3.4 fit nicely in the following
commutative diagram:

X Z

X̂ Ẑ

X Z

ı

ı̂

ı

//H //H

where ı, ı̂, ı are closed embeddings.

Definition 1.3.9. In the setting of Construction 1.3.8, we call Z the minimal toric
ambient variety of X.

In the last part of this Section, we introduce the class of Fano varieties and that of
complete intersections, which have nice properties in the setting of bunched rings. For
the definition of an ample divisor, see Section 1.4.

Definition 1.3.10. Let X be an irreducible normal projective variety. We call X a Fano
variety if its anticanonical divisor class −KX is ample.
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Remark 1.3.11. In the setting of Construction 1.3.4 assume that X = X(R,F,Φ) is a
Fano variety. Then −KX ∈ Mov(X)◦ holds and the F-bunch is uniquely determined by
Φ = Φ(−KX).

Definition 1.3.12. Let (R,F,Φ) be a bunched ring with F = (f1, . . . , fr). We say that
it is a complete intersection if the kernel of the epimorphism K[T1, . . . , Tr]→ R, mapping
Ti to fi, is generated by K-homogeneous polynomials g1, . . . , gs where s = r − dim(R).
In this case we define the degree vectors of (R,F,Φ) as (w1, . . . , wr) and (u1, . . . , us),
where wi := deg(fi) ∈ K and uj := deg(gj) ∈ K.

Proposition 1.3.13. Let the bunched ring (R,F,Φ) be a complete intersection with
degree vectors (w1, . . . , wr) and (u1, . . . , us). Then the anticanonical divisor class of X =
X(R,F,Φ) is given in Cl(X) = K as

−KX =
r∑
i=1

wi −
s∑
j=1

uj .

1.4 Geometry of Mori dream spaces

Many geometrical properties of Mori dream spaces are naturally encoded in the combi-
natorics of their defining bunched rings. Here we present some of these descriptions.

Construction 1.4.1. Consider the situation of Construction 1.3.4. To any F-face γ0 � γ
we associate the locally closed subset

X(γ0) := {z ∈ X; fi(z) 6= 0 ⇐⇒ ei ∈ γ0 for each 1 ≤ i ≤ r} ⊆ X.

These sets give a disjoint covering of X. By taking only the subsets defined by relevant
faces and considering their images under p : X̂ → X we obtain a disjoint covering of X
in locally closed subsets

X =
⋃

γ0∈rlv(Φ)

X(γ0), X(γ0) := p
(
X(γ0)

)
.

We call any set X(γ0) a stratum of X and any set X(γ0) a stratum of X.

Let X be a normal irreducible variety. A point x ∈ X is called Q-factorial if, near x,
every Weil divisor has a non-zero multiple that is principal. A point x ∈ X is called
factorial if, near x, every Weil divisor is principal. The variety X is called (Q-)factorial
if all of its points are (Q-)factorial.

Proposition 1.4.2. Let X = X(R,F,Φ) arise from Construction 1.3.4. Consider γ0 ∈
rlv(X) and x ∈ X(γ0). Then the following statements hold:
(i) x is Q-factorial if and only if Q(γ0) is full-dimensional;
(ii) x is factorial if and only if Q maps lin(γ0) ∩ Zn+m onto Cl(X);
(iii) x is smooth if and only if x is factorial and all z ∈ p−1(x) are smooth in X̂.
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Let X be a normal irreducible complete variety. Classical geometry associates to any
such variety some cones in Cl(X)Q. These are particularly easy to describe in the setting
of bunched rings.

Recall that the effective cone is the cone Eff(X) generated by the classes of effective
divisors on X. The stable base locus of a divisor D ∈WDiv(X) is given by

sB(D) :=
⋂

n∈Z≥1

⋂
f∈Γ(X,O(nD))

supp(div(f) + nD),

where the support of a Weil divisor E =
∑

i aiEi is the set-theoretical union of the prime
divisors Ei with non-zero coefficient ai. A Weil divisor D ∈WDiv(X) is called movable
if its stable base locus sB(D) has codimension at least 2 in X and semiample if sB(D)
is empty. The moving cone is the cone Mov(X) generated by the classes of movable
divisors on X, whereas the semiample cone SAmple(X) by the classes of semiample
divisors. Lastly we call a divisor D ∈ WDiv(X) ample, if X is covered by affine sets of
the form

XnD,f := X \ supp(div(f) + nD)

for some n ∈ Z≥1. The classes of ample divisors generate the ample cone Ample(X).

Proposition 1.4.3. Let X = X(R,F,Φ) arise from Construction 1.3.4. Then the cones
of effective, movable, semiample and ample divisor classes are given in Cl(X)Q = KQ as

Eff(X) = Q(γ), Mov(X) =
⋂

γ0 facet of γ

Q(γ0),

SAmple(X) =
⋂
τ∈Φ

τ, Ample(X) =
⋂
τ∈Φ

τ◦.

In particular we have Ample(X) ⊆ SAmple(X) ⊆ Mov(X) ⊆ Eff(X).

Now we want to investigate the dimension of the strata. A similar idea appears in the
diploma thesis of B. Bechtold [6]. First we introduce a notion of height among the F-
faces and give an alternative description of the strata. This will lead to a combinatorial
computation of their dimension.

Definition 1.4.4. Let Σ be a quasi-fan and Σ̃ ⊆ Σ. The Σ̃-height of a cone σ ∈ Σ̃ is

ht
Σ̃

(σ) := max{k ∈ Z≥0 : ∃ chain σ0 ≺ . . . ≺ σk = σ in Σ̃}.

From now on we denote by F(R) the set of F-faces of the variety X = X(R,F,Φ).

Definition 1.4.5. In the setting of Construction 1.4.1, for any γ0 ∈ rlv(Φ) define

VX(γ0) :=
⋂
ei /∈γ0

VX(fi) and VX(γ0) :=
⋂
ei /∈γ0

Di
X .
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Remark 1.4.6. With the definitions above one has, for any fixed F-face γ0,

Xγ0 = X \
⋃
ei∈γ0

VX(fi) and X(γ0) = VX(γ0) \
⋃
ei∈γ0

VX(fi) .

Xγ0 = X \
⋃
ei∈γ0

Di
X and X(γ0) = VX(γ0) \

⋃
ei∈γ0

Di
X .

In particular X(γ0) and VX(γ0) share the same dimension.

Lemma 1.4.7. For any γ0 ∈ rlv(Φ) we have

dimX(γ0) = dimX(γ0)− dimQ(γ0).

Proof. First note that the restriction p : X(γ0) → X(γ0) is again a good quotient, in
particular surjective. Let A ⊆ X(γ0) be an irreducible component and define Y := p(A).
Then p : A → Y is a dominant morphism of irreducible varieties. Every fiber is a single
closed orbit, whose dimension equals dimQ(γ0). Therefore we have dim(A)− dim(Y ) =
dimQ(γ0). If we choose A of maximal dimension, then so is Y , and we obtain

dimX(γ0) = dim(Y ) = dim(A)− dimQ(γ0) = dimX(γ0)− dimQ(γ0).

Assumption 1.4.8. For the variety X = X(R,F,Φ) the two following statements hold:
• {0} is an F-face;
• for all γ0, γ1 ∈ F(R), such that γ1 ≺ γ0 and this inclusion is maximal among

F-faces, it holds that dimVX(γ1) = dimVX(γ0)− 1.

Proposition 1.4.9. If Assumption 1.4.8 holds, then for any γ0 ∈ rlv(Φ) we have

dimX(γ0) = htF(R)(γ0).

Proof. By the description of strata we have

VX(γ0) ∩
⋃
ei∈γ0

VX(fi) =
⋃

γ0�γ1∈F(R)
maximal

VX(γ1).

Hence for any {0} 6= γ0 ∈ F(R) we have

dim

(
VX(γ0) ∩ VX

( ∏
ei∈γ0

fi

))
= dimVX(γ0)− 1. (1.1)

Now we want to show that dimVX(γ0) = htF(R)(γ0) holds for any F-face γ0 � γ. We
proceed by induction over k := htF(R)(γ0).
For the base case consider k = 0. Then γ0 = {0} holds. The set VX(0) is just a point,
hence 0-dimensional.
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For the inductive step, consider a chain {0} = γ(0) ≺ . . . ≺ γ(k) = γ0 of maximal length.
In particular we have htF(R)(γ(k−1)) = k − 1. By assumption and using equation (1.1),
we obtain

k − 1 = max
γ0�γ1∈F(R)

maximal

htF(R)(γ1) = max
γ0�γ1∈F(R)

maximal

dimVX(γ1) =

= dim
(
VX(γ0) ∩

⋃
ei∈γ0

VX(fi)
)

= dimVX(γ0)− 1

and we arrive at dimVX(γ0) = k = htF(R)(γ0). Remark 1.4.6 yields dimX(γ0) = k.

Corollary 1.4.10. If Assumption 1.4.8 holds, then for any γ0 ∈ rlv(Φ) we have

dimX(γ0) = htF(R)(γ0)− dimQ(γ0).

Proof. This is a direct consequence of Lemma 1.4.7 and Proposition 1.4.9.

Corollary 1.4.11. Let X = X(R,F,Φ) be Q-factorial such that Assumption 1.4.8 holds.
Then for any γ0 ∈ rlv(Φ) we have

dimX(γ0) = htrlv(Φ)(γ0).

In particular the strata of dimension 0 are precisely those defined by elements of the
covering collection.

Proof. By Q-factoriality one has

htF(R)(γ0) = rk (Cl(X)) = dimQ(γ0) ∀ γ0 ∈ cov(Φ).

Therefore the height can be counted on the relevant faces from the covering collection
upwards, since any F-face containing a covering one is relevant, i.e.

htF(R)(γ0) = htrlv(Φ)(γ0) + rk (Cl(X)).

By Proposition 1.4.2 any relevant face projects via Q to a full-dimensional cone and with
Corollary 1.4.10 we obtain

dimX(γ0) = htrlv(Φ)(γ0).

1.5 T -varieties of complexity one

We take a closer look at rational projective varieties with an effective torus action of
complexity one. This means that the general torus orbit has codimension one. First we
recall the approach provided by [26, 24]. The Cox rings of these varieties are precisely
the rings obtained in the following way.
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Construction 1.5.1. Fix r ∈ Z≥1, a sequence n0, . . . , nr ∈ Z≥1, set n := n0 + . . .+ nr,
and fix integers m ∈ Z≥0 and 0 < s < n+m− r. The defining matrices (A,P ) are
• a 2 × (r + 1)-matrix A := [a0, . . . , ar] with pairwise linearly independent column

vectors a0, . . . , ar ∈ K2,
• an integral matrix P of size (r + s) × (n + m), the columns of which are pairwise

different primitive vectors generating Qr+s as a cone. The matrix P is divided into
blocks

P =

[
L 0
d d′

]
,

where d is an (s× n)-matrix, d′ an (s×m)-matrix and L an (r × n)-matrix built
from tuples li := (li1, . . . , lini) ∈ Zni≥1 as follows

L =

 −l0 l1 . . . 0
...

...
. . .

...
−l0 0 . . . lr

 .
Consider the polynomial ring K[Tij , Sk] in the variables Tij and Sk, where 0 ≤ i ≤ r,
1 ≤ j ≤ ni, 1 ≤ k ≤ m. For every 0 ≤ i ≤ r, define a monomial

T lii := T li1i1 · · ·T
lini
ini

.

Denote by I the set of all triples I = (i1, i2, i3) with 0 ≤ i1 < i2 < i3 ≤ r and define for
any I ∈ I a trinomial

gI := gi1,i2,i3 := αi2i3T
li1
i1

+ αi3i1T
li2
i2

+ αi1i2T
li3
i3
,

where we set αij := det(ai, aj). Let P ∗ be the transpose of P . Consider the factor group
K := Zn+m/im(P ∗), and the projection Q : Zn+m → K. We define a K-grading on
K[Tij , Sk] by setting

deg(Tij) := Q(eij), deg(Sk) := Q(ek).

Then the trinomials gI are K-homogeneous, all of the same degree µ ∈ K. In particular,
we obtain a K-graded factor ring

R(A,P ) := K[Tij , Sk; 0 ≤ i ≤ r, 1 ≤ j ≤ ni, 1 ≤ k ≤ m] / 〈gI ; I ∈ I〉.

The rings R(A,P ) are (precisely) those which occur as Cox rings of normal rational
projective (or, more generally, complete A2-) varieties with a torus action of complexity
one; see [24, Theorem 1.5]. We recall basic properties and retrieve these varieties by
means of bunched rings.

Remark 1.5.2. The K-graded ring R(A,P ) of Construction 1.5.1 is a complete inter-
section: with gi := gi,i+1,i+2 we have

〈gI ; I ∈ I〉 = 〈g0, . . . , gr−2〉, dim(R(A,P )) = n+m− (r − 1).

We can always assume that P is irredundant in the sense that li1 + . . . + lini ≥ 2 holds
for i = 0, . . . , r; note that a redundant P allows the elimination of variables in R(A,P ).
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Remark 1.5.3. The anticanonical class of the K-graded ring R(A,P ) from Construc-
tion 1.5.1 is

κ(A,P ) :=
∑
i,j

Q(eij) +
∑
k

Q(ek) − (r − 1)µ ∈ K

and the moving cone of R(A,P ) in KQ is

Mov(A,P ) :=
⋂
i,j

cone
(
Q(euv, et; (u, v) 6= (i, j)

)
∩
⋂
k

cone
(
Q(euv, et; t 6= k)

)
.

The K-graded ring R(A,P ) is the Cox ring of a Fano variety if and only if κ(A,P )
belongs to the relative interior of Mov(A,P ).

Construction 1.5.4. Let (A,P ) be defining matrices as in Construction 1.5.1 and con-
sider the K-graded ring R := R(A,P ). The variables Tij and Sk define a system F of
pairwise non-associated K-prime generators for R. For every true F-bunch Φ we obtain
a bunched ring (R,F,Φ). With Construction 1.3.4 we have the varieties

X̂ := X̂(A,P,Φ) := X̂(R,F,Φ), X := X(A,P,Φ) := X(R,F,Φ).

Remark 1.5.5. The following elementary operations on the columns and rows of the
defining matrix P do not change the isomorphy type of the associated variety X(A,P,Φ).
We call them admissible operations:
(i) swap two columns inside a block vij1 , . . . , vijni ;
(ii) swap two whole column blocks vij1 , . . . , vijni and vi′j1 , . . . , vi′jni′ ;
(iii) add multiples of the upper r rows to one of the last s rows;
(iv) any elementary row operation among the last s rows;
(v) swap two columns inside the d′ block.

The operations of type (iii) and (iv) do not change the associated ring R(A,P ), whereas
the types (i), (ii), (v) correspond to certain renumberings of the variables of R(A,P ) and
do not affect the graded isomorphy type.

Definition 1.5.6. A T -variety X is called of complexity one if T is a torus and dim(T ) =
dim(X)− 1 holds.

Theorem 1.5.7. Let X = X(A,P,Φ) be as in Construction 1.5.4. Then X is an
irreducible normal A2-variety of complexity one with

dim(X) = s+ 1, Cl(X) ∼= K, Γ(X,O) = K
−KX = κ(A,P ), Mov(X) = Mov(A,P ), R(X) = R(A,P ).

Moreover, each irreducible normal A2-variety X with Γ(X,O) = K (e.g. projective) and
a torus action of complexity one arises from Construction 1.5.4.
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Remark 1.5.8. In the setting of Construction 1.5.4, assume that X = X(A,P,Φ) is
projective. Proposition 1.3.7 tells us that Φ = Φ(u) holds for some u ∈ Eff(X). In this
case we will often write X = X(A,P, u).
Moreover, if X is a Fano variety, then Remark 1.3.11 states that the F-bunch is uniquely
determined and can be written as Φ = Φ(−KX). In this case the notation X = X(A,P )
suffices.

Example 1.5.9 (E6-singular cubic surface). Consider X := V (z1z
2
2 + z2z

2
0 + z3

3) ⊆ P3,
which is invariant under the K∗-action

t · [z0, . . . , z3] = [z0, t
−3z1, t

3z2, tz3]

on P3. The divisor class group and the Cox ring of X are given by

Cl(X) = Z, R(X) = K[T1, T2, T3, T4]/〈T1T
3
2 + T 3

3 + T 2
4 〉,

where the Cl(X)-degrees of T1, T2, T3, T4 are 3, 1, 2, 3. For the explicit computation
see [1, Example 4.4.1.8]. By defining the matrices

A =

[
1 0 −1
0 1 −1

]
, P =

 −1 −3 3 0
−1 −3 0 2
−1 −2 1 1

 ,
we retrieve the variety X as X ∼= X(A,P ).

Now we discuss a possible resolution of singularities for varieties of complexity one. The
references for complete proofs are [1, Sec. 3.4.4] and [27]. Recall that a resolution (of
singularities) of a normal projective variety X is a proper morphism ϕ : X ′ → X with
X ′ smooth and projective such that the restriction ϕ−1(U)→ U with U := X \Xsing is
an isomorphism.

Construction 1.5.10. Consider a variety X = X(A,P,Φ) as in Construction 1.5.4 and
let Z be its minimal ambient toric variety. By defining the matrices P0 := [L, 0] and
P1 := [Er, 0], where Er is the (r × r) unit matrix, we have the commutative diagram

Zn+m P //

P0 ##

Zr+s

P1||
Zr

Now, let e1, . . . , er ∈ Zr be the canonical basis vectors, set e0 := −e1 . . .− er and

%i := cone(ei), 0 ≤ i ≤ r,

and consider the fan ∆(r) := {0, %0, . . . , %r} in Qr. Note that P1 sends the ij-th column
vij of P into the ray %i and all columns vk to zero. Define λi := P−1

1 (%i) ⊂ Qr+s. With
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λ := {0} ×Qs ⊂ Qr+s we have λi = λ+ cone(ei). The tropical variety of X ∩ Tn ⊆ Z is
then given as

trop(X) = λ0 ∪ · · · ∪ λr ⊆ Qr+s.

Define a new fan Σ′ in Qr+s as

Σ′ := Σ u trop(X) = {σ ∩ P−1
1 (%i); σ ∈ Σ, 0 ≤ i ≤ r}.

Then we have a map of fans Σ′ → Σ and the associated birational toric morphism Z ′ → Z
fits into a commutative diagram

X ′ //

��

Z ′

��
X // Z

where X ′ ⊆ Z ′ is the proper transform, i.e. the closure of X∩Tr+s in Z ′. The restriction
X ′ → X is called weak tropical resolution. We call a variety X weakly tropical if Σ′ = Σ.
Any regular subdivision Σ′′ → Σ′ provides a toric resolution Z ′′ → Z ′ and induces a
resolution X ′′ → X ′.

Theorem 1.5.11. The varieties X ′ and X ′′ arising from Construction 1.5.10 are again
normal rational varieties of complexity one. In particular their Cox rings are of the form
R(A,P ′) and R(A,P ′′).

In the last part of this Section. the goal is to prove that Assumption 1.4.8 holds for all
varieties of complexity one. We follow an idea of B. Bechtold from [6].

Proposition 1.5.12. Let X be a normal complete rational A2-variety of complexity one.
Then Assumption 1.4.8 holds.

Remark 1.5.13. Consider a ring R(A,P ) as in Construction 1.5.1. Then we have

X = V (gI ; I ∈ I) = V (g0, . . . , gr−2) ⊆ Kn+m.

A face γ0 � γ is an F-face if and only if it fulfills one of the two following mutually
exclusive properties:
(i) for every i = 0, . . . , r there is a ji such that eiji /∈ γ0 holds;
(ii) there is at most one i = 0, . . . , r such that eij /∈ γ0 holds for some j.

Lemma 1.5.14. In the notation of Construction 1.5.1 and Remark 1.5.2, define X :=
V (g0, . . . , gr−2) ⊆ Kn+m. Then X ∩ V (T01) = V (g̃0, . . . , g̃r−2, T01) holds for binomials

g̃i := g0,i+1,i+2|T01=0 = αi+2,0T
li+1

i+1 + α0,i+1T
li+2

i+2 .

Proof. For i = 0 one has g̃0 = g0|T01=0. Define recursively g̃i := αi+1,i+2g̃i−1 + α0,i+1gi.
The equalities from [27, Lemma 2.3] ensure that we obtain the desired binomials and
that the equality holds.
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Lemma 1.5.15. In the notation of Construction 1.5.1 and Remark 1.5.2, let x ∈ X

and define X := V (g0, . . . , gr−2) ⊆ Kn+m. If T lii (x) = T
lj
j (x) = 0 for some i 6= j, then

T lkk (x) = 0 holds for all 0 ≤ k ≤ r.

Proof. See [27, Lemma 2.5].

Proof of Proposition 1.5.12. By Theorem 1.5.7 there exist defining matrices (A,P ) and
a true bunch Φ such that X = X(A,P,Φ) holds. In particular the Cox ring R(X) is
isomorphic to some K[T1, . . . , Tn]/〈g0, . . . , gr−2〉 and X = V (g0, . . . , gr−2) ⊆ Kn+m. For
every F-face γ0 � γ,

VX(γ0) = V (g0, . . . , gr−2, Tij , Sk; eije,k /∈ γ0)

= V (gγ00 , . . . , g
γ0
r−2, Tij , Sk; eije,k /∈ γ0)

holds, where gγ0t is obtained from gt by imposing Tij = 0 whenever eij /∈ γ0 holds.
Consider an F-face γ1 ≺ γ0, such that the inclusion is maximal. Pick some eβ ∈ γ0 \ γ1.
Note that β is an element of the index-set {ij, k}.
Case 1 : β = 1, . . . ,m or β = ij for some i, j such that Tij does not appear in any gγ0t .
Let γβ0 be the facet of γ0 that does not contain eβ . Clearly γ

β
0 is again an F-face, since it

fulfills the same property from Remark 1.5.13 as γ0. By maximality we arrive at γ1 = γβ0 .
Therefore the assertion follows from VX(γ0) ∼= VX(γ1)×K.
Case 2 : β = ij for some i, j such that Tij appears in some polynomial. In particular γ0

is an F-face of type (ii) from Remark 1.5.13. Define γ2 := γβ0 .
Subcase 2.a: the only basis vectors missing from γ0 are of type ek. Then γ2 is again an
F-face of type (ii) and by maximality one has γ2 = γ1. With Lemma 1.5.14 we obtain
VX(γ1) as complete intersection of r − 1 binomials. Therefore we arrive at the assertion
through

dimVX(γ1) = dim γ1 − (r − 1) = dim γ0 − 1− (r − 1) = dimVX(γ0)− 1.

Subcase 2.b: there is precisely one i1 = 0, . . . , r such that ei1j1 /∈ γ0 for some j1. In
particular β = i2j2 holds for some i2 6= i1. By Lemma 1.5.15, for any t = 0, . . . , r with
t 6= i1, i2 there exists some etjt ∈ γ1. Let γ3 be the maximal face of γ2 that does not
contain any of the etjt . Note that γ3 is an F-face of type (i). By maximality we achieve
γ1 = γ3 and therefore

dimVX(γ1) = dim γ1 = dim γ3

= dim γ2 − (r − 1) = dim γ0 − 1− (r − 1)

= dimVX(γ0)− 1.

Corollary 1.5.16. Let X be a normal complete rational A2-variety of complexity one.
If X is Q-factorial, then for any γ0 ∈ rlv(Φ) we have

dimX(γ0) = htrlv(Φ)(γ0).



1.5. T -varieties of complexity one 25

Example 1.5.17. We present the directed graph of relevant faces for the recurring
example, the E6-singular cubic surface from Example 1.5.9.

γ1,2,3,4

γ1,2,3 γ1,2,4 γ1,3,4 γ2,3,4

γ1 γ2 γ3,4

The nodes are given by the relevant faces of X. There is an arrow from an edge γ0 to
an edge γ1 if and only if γ0 ≺ γ1 holds and this inclusion is maximal among the relevant
faces. Using Corollary 1.5.16 we obtain

dimX(γ1,2,3,4) = 2,

dimX(γ1,2,3) = dimX(γ1,2,4) = 1,

dimX(γ1,3,4) = dimX(γ2,3,4) = 1,

dimX(γ1) = dimX(γ2) = dimX(γ3,4) = 0.





CHAPTER

TWO

TERMINAL FANO THREEFOLDS OF COMPLEXITY ONE
WITH ρ(X) = 1

In this chapter we provide the complete classification of Q-factorial terminal Fano three-
folds of complexity one having Picard number one. The results of this chapter have been
published in [8].

With that goal in mind, Section 2.1 introduces the anticanonical complex, a certain
combinatorial object that controls the discrepancies of a normal Fano variety X with a
complete intersection Cox ring R(X). Section 2.2 investigates this object in the special
situation of a rational Fano variety of complexity one and Section 2.3 provides some
preliminary results for the terminal case. Section 2.4 is dedicated to the classification
steps that deliver the Q-factorial terminal Fano threefolds of complexity one having
Picard number one. Their full list is given in Section 2.5.

2.1 The anticanonical complex

This Section deals with the development of the anticanonical complex. We follow the
spirit of the Fano polytopes from toric geometry and extend the combinatorial approach
to normal Fano varieties X with a complete intersection Cox ring R(X).

The aim is to characterize the behaviour of singularities of X in terms of lattice points
of the anticanonical complex AcX . For a precise formulation, we introduce the concept of
discrepancies following [41, Chapter 4].

Definition 2.1.1. Let X be a normal variety, whose canonical divisor KX is Q-Cartier,
i.e. some positive multiple of KX is a Cartier divisor. Let ϕ : Y → X be a resolution of
singularities. Then we consider the ramification formula

KY = ϕ∗KX +
∑

aiEi,

where the Ei are the prime components of the exceptional divisor and the ai are called
the discrepancies of the resolution. The variety X is called

27
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• log terminal , if ai > −1 for all i;
• ε-log terminal, if ai > −1 + ε for all i, for a given 0 < ε < 1;
• canonical , if ai ≥ 0 for all i;
• terminal , if ai > 0 for all i.

The definition does not depend on the choice of resolution, see e.g. [28, Prop. 6.2.6].

We already introduced toric varieties in Section 1.1. If a toric variety is Fano, then
there is a correspondence to a certain convex lattice polytope, called Fano polytope, that
describes the singularity type of the variety, see e.g. [12].

Definition 2.1.2. Let B ⊂ NQ be a full-dimensional convex polytope. Then B is called
a Fano polytope if the origin lies in its interior B◦ and all vertices of B are primitive
elements of N .

Construction 2.1.3. Consider a projective toric variety Z and let Σ be its fan in NQ.
The Fano polytope of Z is

PZ := conv(v%; % ∈ Σ(1)) ⊂ NQ,

i.e. the convex hull over the primitive generators of the rays of Σ. One sees that PZ is
indeed a Fano polytope in the sense of Definition 2.1.2.

Theorem 2.1.4. Let Z be a projective toric variety, Σ its fan and PZ its Fano polytope.
Then we have

Z is Fano ⇐⇒ Σ = Fan(PZ).

If Z is indeed a Fano variety, then it is log terminal and we also have the following
equivalences:
(i) Z has at most ε-log terminal singularities if and only if 0 is the only lattice point

of εPZ .
(ii) Z has at most canonical singularities if and only if 0 is the only lattice point in the

interior of PZ .
(iii) Z has at most terminal singularities if and only if 0 and the primitive generators

v% for % ∈ Σ(1) are the only lattice points of PZ .

Inspired by this approach to the discrepancies, we define a combinatorial object that
encodes the type of singularities for a larger family of varieties.

Construction 2.1.5. Let X be a normal Fano variety and assume that its Cox ring
R(X) is a complete intersection, i.e.

R(X) = K[T%; % ∈ R]/〈g1, . . . , gs〉

holds with pairwise non-associated Cl(X)-homogeneous prime generators T% for some
finite index set R and relations gi, such that the dimension of R(X) equals |R| − s. By
Construction 1.3.8 we have X ⊂ Z ⊂ Zc, where Zc is a complete toric variety and Z is
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the minimal open toric subvariety of Zc containing X. The divisor class group and Cox
ring of Z are given by

Cl(Z) ∼= Cl(X), R(Z) = K[T%; % ∈ R].

Consider the degree homomorphism Q : ZR → Cl(X) sending the %-th canonical basis
vector e% ∈ ZR to deg(T%) ∈ Cl(X) and let P ∗ : Zn → ZR be a linear embedding with
image ker(Q). Then we have

Cl(Z) ∼= ZR/P ∗(Zn) ∼= Cl(X).

Denote by P : ZR → Zn the dual map of P ∗. Set eZ :=
∑
e%. Then the canonical classes

of Z and X are given as

KZ = −Q(eZ), KX =

s∑
i=1

deg(gi) +KZ .

Let γR ⊆ QR be the positive orthant, spanned by the e%. Define the polytope

B(−KX) := Q−1(−KX) ∩ γR ⊆ QR.

Denote with B(gi) the Newton polytopes of the relations gi, i.e. B(gi) ⊆ QR is the convex
hull over the exponent vectors of gi. Let B := B(g1) + . . . + B(gs) be their Minkowski
sum and trop(X) ⊆ Qn be the tropical variety of X ∩ T, endowed with a fan structure
that refines the normal fan N (B) of B.

Definition 2.1.6. The anticanonical polyhedron of X is the dual polyhedron AX ⊆ Qn

of the polytope
BX := (P ∗)−1(B(−KX) +B − eZ) ⊆ Qn.

The anticanonical complex of X is the coarsest common refinement of polyhedral com-
plexes

AcX := faces(AX) u Σ u trop(X).

The relative interior of AcX is the interior of its support with respect to the tropical
variety trop(X).

Example 2.1.7. We continue Example 1.5.9. X is the E6-singular cubic surface with
divisor class group and Cox ring given by

Cl(X) = Z, R(X) = K[T1, T2, T3, T4]/〈T1T
3
2 + T 3

3 + T 2
4 〉,

where the Cl(X)-degrees of T1, T2, T3, T4 are 3, 1, 2, 3. The minimal ambient toric
variety Z is an open subset of Zc = P3,1,2,3 and the tropical variety in Q3 is

trop(X) = cone(e1,±e3) ∪ cone(e2,±e3) ∪ cone(−e1 − e2,±e3),
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where ei ∈ Q3 is the i-th canonical basis vector. The anticanonical polyhedron AX ⊆ Q3

has the vertices

(−1,−1,−1), (−3,−3,−2), (3, 0, 1), (0, 2, 1), (0, 0, 1), (0, 0,−1/5).

The anticanonical complex AcX = AX u trop(X) lives on the three cones of trop(X) and
thus is of dimension two.

Definition 2.1.8. Let ZΣ′ → ZΣ be a toric modification given by a subdivision Σ′ → Σ
of fans. Define the sets of rays R := Σ(1) and R′ := Σ′(1). The toric Cox constructions
P : ZR → Zn and P ′ : ZR′ → Zn define homomorphisms of tori

TR′ p′ // Tn TRpoo .

Let g ∈ K[T%; % ∈ R] be without monomial factors. The push-down of g is the unique
p∗(g) ∈ K[T1, . . . , Tn] without monomial factors such that Tµp∗(p∗(g)) = g holds for some
Laurent monomial Tµ ∈ K[T±1

% ; % ∈ R]. The shift of g is the unique g′ ∈ K[T%′ ; %
′ ∈ R′]

without monomial factors satisfying p′∗(g′) = p∗(g).

Definition 2.1.9. Let X be as in Construction 2.1.5.
(i) We call the modification X ′ → X arising from a subdivision Σ′ → Σ of fans a

tropical resolution of singularities if Σ′ subdivides Σ u trop(X) and X ′ is smooth
with complete intersection Cox ring defined by the shifts g′i of gi:

R(X ′) = K[T%′ ; %
′ ∈ R′]/〈g′1, . . . , g′s〉.

(ii) We say that X is strongly tropically resolvable if every subdivision of Σ u trop(X)
admits a regular refinement providing a tropical resolution of singularities.

Theorem 2.1.10. Let X be a (strongly tropically resolvable) normal Fano variety with
a complete intersection Cox ring.
(i) AcX contains the origin in its relative interior and all primitive generators of the

fan Σ are vertices of AcX .
(ii) X has at most log terminal singularities if (and only if) the anticanonical complex

AcX is bounded.
(iii) X has at most ε-log terminal singularities if (and only if) 0 is the only lattice point

in εAcX .
(iv) X has at most canonical singularities if (and only if) 0 is the only lattice point in

the relative interior of AcX .
(v) X has at most terminal singularities if (and only if) 0 and the primitive generators

v% for % ∈ Σ(1) are the only lattice points of AcX .
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A detailed proof of this Theorem can be found in [8, Section 2]. These statements
generalize the characterizations of toric singularities in terms of lattice polytopes from
Theorem 2.1.4. In the toric case, i.e. in the absence of relations gi, our anticanonical poly-
tope AX is just the Fano polytope of X and the anticanonical complex is the subdivison
of AX by the fan Σ.
We conclude the Section with some observations that may be drawn for the intersection
of AcX with the lineality space of trop(X).

Definition 2.1.11. Let trop0(X) ⊆ trop(X) denote the lineality space of the tropical
variety. The lineality part of the anticanonical complex is the polyhedral complex AcX,0 :=
AcX u trop0(X).

Proposition 2.1.12. Let X be a log terminal Fano variety and let |AcX,0| denote the
support of the lineality part of the anticanonical complex AcX .
(i) |AcX,0| is a full dimensional polytope in trop0(X) having the origin as an interior

point.
(ii) If X is ε-log terminal then the origin is the only lattice point of ε|AcX,0|.
(iii) If X is canonical then the origin is the only interior lattice point of |AcX,0|.
(iv) If X is terminal then the origin is the only lattice point of |AcX,0|.

2.2 Specializing to complexity one

In this Section we consider a Q-factorial rational Fano variety X = X(A,P ) with torus
action of complexity one and investigate the structure of its anticanonical complex AcX . It
turns out that the vertices of AcX can be computed explicitly from the defining matrix P .
Hence, as soon as we assume some restrictions on the singularities of X, Theorem 2.1.10
delivers bounding conditions on some entries of P . The main reference is [8, Section 4].

Recall that we have X ⊆ Z ⊆ Zc, where Zc is a complete toric variety (not necessarily
Fano) and Z is the minimal open toric subvariety of Zc containing X as a closed sub-
variety. The fans Σc of Zc and Σ of Z share the same set of rays % and the primitive
generators v% ∈ % are precisely the columns of the matrix

P =


−l0 l1 0 0

...
. . .

...
−l0 0 lr 0
d0 d1 dr d′


from Construction 1.5.1. The tropical variety trop(X) with its quasifan structure also
lives in Qr+s. Given λ := {0} × Qs ⊆ Qr+s, the canonical basis vectors e1, . . . , er and
e0 := −e1 − . . .− er, we have

trop(X) = λ0 ∪ . . . ∪ λr ⊆ Qr+s, where λi := cone(ei) + λ.

Note that this defines the coarsest possible quasifan structure on trop(X), and λ is the
lineality space of this quasifan.
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Definition 2.2.1. A cone σ ∈ Σ is called
• big , if σ ∩ relint(λi) 6= ∅ holds for each i = 0, . . . , r;
• elementary big if it is big, has no rays inside λ and precisely one inside each λi;
• a leaf cone if σ ⊆ λi holds for some i.

Remark 2.2.2. The big cones and the leaf cones are precisely those σ ∈ Σ such that
relint(σ) intersects trop(X). The latter property, by Tevelev’s criterion [50, Lemma 2.2],
means that the big cones and the leaf cones correspond precisely to the toric orbits of Z
intersecting X. Observe that all maximal cones of Σ are big cones or leaf cones.
Furthermore, recall the characterization of F-faces given in Remark 1.5.13. Big cones are
Gale dual to F-faces of type (i), and leaf cones to F-faces of type (ii).

Definition 2.2.3. Let σ ∈ Σ be an elementary big cone. We assign the following positive
integers to the rays % = cone(vij) ∈ σ(1) of σ and to σ itself:

l% := lij , `σ,% := l−1
%

∏
%′∈σ(1)

l%′ , `σ :=
∑
%∈σ(1)

`σ,% − (r − 1)
∏

%∈σ(1)

l%.

Moreover, in Qr+s, we define vectors and a ray:

vσ :=
∑
%∈σ(1)

`σ,%v%, v′σ := `−1
σ vσ, %σ := cone(vσ).

Finally, we denote by cσ the greatest common divisor of the entries of vσ ∈ Zr+s.

The first structural statement describes the rays of the coarsest common refinement
Σ u trop(X) of the fan Σ and the tropical variety trop(X) regarded as a quasifan.

Proposition 2.2.4. Let X = X(A,P ) be a Q-factorial Fano variety.
(i) For every elementary big cone σ ∈ Σ, we have σ ∩ λ = %σ; in particular, %σ lies in

the lineality space λ.
(ii) The set of rays of Σ u trop(X) consists of the rays % ∈ Σ and the rays %σ, where

σ ∈ Σ runs through the elementary big cones.

Proof. For (i), one directly computes the intersection σ∩λ. We prove (ii). Since all rays
of Σ lie on trop(X), the rays of Σ are also rays of Σutrop(X). By (i), the %σ, where σ ∈ Σ
is elementary big, are rays of Σutrop(X). Let %′ ∈ Σutrop(X) be any ray not belonging
to Σ. Then there exist cones σ ∈ Σ and τ ∈ trop(X) which satisfy σ ∩ τ = %′ and which
are minimal with this property. The latter means relint(%′) = relint(σ) ∩ relint(τ).
To obtain τ = λ we have to exclude the case τ = λi for some i = 0, . . . , r. Indeed if
τ = λi holds, then no ray % � σ lies in λi, because otherwise we have % ⊆ σ ∩ λi = %′,
contradicting %′ 6∈ Σ. Thus, σ has no rays inside λi. Since all rays of σ lie on trop(X),
we conclude relint(σ) ∩ relint(λi) = ∅, a contradiction.
We show that σ is an elementary big cone. First, σ must be big because otherwise we
have relint(σ) ∩ λ = ∅. Since X is Q-factorial, σ is simplicial. Thus there exists an
elementary big face η of σ. But then %η = η ∩ λ � σ ∩ λ = %′ which implies %′ = %η. By
minimality of σ, we conclude σ = η.
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In the next two Propositions we take a closer look at the discrepancies of a tropical
resolution of singularities along the divisors corresponding to the rays %σ.

Proposition 2.2.5. Let ϕ : X ′ → X be a tropical resolution of singularities given by
subdivision Σ′ → Σ of fans. Then the discrepancy α% along a divisor D% corresponding
to a ray % ∈ Σ′ satisfies

α% =
‖v%‖
‖v′%‖

− 1 if % * AcX , α% ≤ −1 if % ⊆ AcX .

Proof. See [8, Prop. 2.3].

Proposition 2.2.6. Let X = X(A,P ) be a Q-factorial Fano variety and σ ∈ Σ an
elementary big cone.
(i) If %σ leaves AX , e.g. if σ defines a log terminal singularity, then its leaving point

is v′%σ = `−1
σ vσ = v′σ.

(ii) For any tropical resolution ϕ : X ′ → X of singularities, the discrepancy along the
divisor corresponding to %σ is a%σ = −1 + c−1

σ `σ.

Proof. Recall that the intersection point v′%σ of the ray %σ with the boundary ∂AcX is
defined by

〈u, v′%σ〉 = −1, where u := (P ∗)−1(e−KX + e− eΣ)

with any vertex e−KX + e − eΣ of B(−KX) + B − eΣ minimizing v′σ :=
∑

%∈σ(1) `σ,%e%.
For vσ = P (v′σ), we obtain

〈u, vσ〉 = 〈e−KX , v
′
σ〉+ 〈e, v′σ〉 − 〈eΣ, v

′
σ〉 = 〈e, v′σ〉 − 〈eΣ, v

′
σ〉.

To compute further, set u′i :=
∑

%∈Ri
l%e% for i = 0, . . . , r, where Ri denotes the set of

rays of Σ contained in λi. Denoting by %i the unique ray of σ in λi, we have

〈u′i, v′σ〉 = l%i`σ,%i =
∏

%∈σ(1)

l%.

Consequently, for any point e ∈ B = B(g0) + . . .+B(gr−2), we obtain

〈e, v′σ〉 = (r − 1)
∏

%∈σ(1)

l%.

Thus, we obtain 〈u, vσ〉 = −`σ and the leaving point is v′%σ = `−1
σ vσ = v′σ as claimed

in (i). Assertion (ii) is then a direct consequence of Proposition 2.2.5.

As an application, we obtain first bounding conditions on the entries l% of the defining
matrix P in terms of the singularities of X.

Corollary 2.2.7. Let X = X(A,P ) be a Q-factorial Fano variety and σ ∈ Σ an ele-
mentary big cone. If the singularity defined by σ is
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(i) log terminal, then
∑

%∈σ(1) l−1
% > r − 1,

(ii) ε-log terminal, then
∑

%∈σ(1) l−1
% > r − 1 + εcσ

∏
%∈σ(1) l−1

% ,
(iii) canonical, then

∑
%∈σ(1) l−1

% ≥ r − 1 + cσ
∏
%∈σ(1) l−1

% ,
(iv) terminal, then

∑
%∈σ(1) l−1

% > r − 1 + cσ
∏
%∈σ(1) l−1

% .

Corollary 2.2.8. Let X = X(A,P ) be a Q-factorial Fano variety and consider an
elementary big cone σ = %0 + . . . + %r ∈ Σ defining a log terminal singularity. Assume
l%0 ≥ . . . ≥ l%r . Then l%3 = . . . = l%r = 1 holds and (l%0 , l%1 , l%2) is a platonic triple, i.e.
one of

(l%0 , l%1 , 1), (l%0 , 2, 2), (3, 3, 2), (4, 3, 2), (5, 3, 2).

According to these possibilities, the number `σ is given as

`σ = l%0 l%1 + l%0 l%2 + l%1 l%2 − l%0 l%1 l%2

=



l%0 + l%1 , if (l%0 , l%1 , l%2) = (l%0 , l%1 , 1),

4, if (l%0 , l%1 , l%2) = (l%0 , 2, 2),

3, if (l%0 , l%1 , l%2) = (3, 3, 2),

2, if (l%0 , l%1 , l%2) = (4, 3, 2),

1, if (l%0 , l%1 , l%2) = (5, 3, 2).

Corollary 2.2.9. Let X = X(A,P ) be a log terminal Q-factorial Fano variety. Assume
that P is irredundant and Σ contains a big cone. Then the number r − 1 of relations is
bounded by

r − 1 ≤ dim(X) + ρ(X).

Proof. Since X is Q-factorial, Pic(X) is of rank n + m − r − s. Let I ⊆ {0, . . . , r} be
the set of indices with ni > 1 and set nI :=

∑
i∈I ni. Then the rank of Pic(X) equals

nI + m − |I| − s. Since there exists a big cone, there is also an elementary big cone
σ = %0 + . . .+ %r ∈ Σ. Since P is irredundant, l%i > 1 holds for all i 6∈ I. Corollary 2.2.8
yields |I| ≥ r − 2. We conclude

ρ(X) = m+ nI − |I| − s ≥ 2|I| − |I| − s ≥ r − 2− s = r − 1− dim(X).

Definition 2.2.10. Let AcX be the anticanonical complex of X = X(A,P ). Recall that
the lineality part of AcX is the polyhedral complex AcX,0 = AcX u λ. The i-th leaf of AcX
is the polyhedral complex AcX u λi.

Corollary 2.2.11. Let X = X(A,P ) be a log terminal Q-factorial Fano variety. Then
the vertices of the anticanonical complex AcX are precisely the points v% and v′σ, where %
runs through the rays and σ through the elementary big cones of Σ. In particular, for the
supports of the lineality part and the leaves of AcX , we obtain

|AcX u λ| = conv(v%, v
′
σ; % ∈ Σ with % ⊆ λ, σ ∈ Σ elementary big),

|AcX u λi| = conv(v%, v
′
σ; % ∈ Σ with % ⊆ λi, σ ∈ Σ elementary big).
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Remark 2.2.12. Let X = X(A,P ) be a Q-factorial Fano variety and X ′ the variety
arising from the tropical refinement Σ u trop(X). Then AcX′ and AcX both generate
Σ u trop(X) but do not in general coincide, because the rays %σ of big elementary cones
σ ∈ Σ intersect the boundary of AcX′ in integral points, whereas the intersection points
v′σ with AcX do not need to be integral.

Example 2.2.13. Consider again the varietyX from Example 1.5.9, whose anticanonical
complex AcX was obtained, using the general definition, in Example 2.1.7. Here we use
Corollary 2.2.11 to directly compute the vertices of AcX . The points v% correspond to the
columns of the defining matrix P , hence

(−1,−1,−1), (−3,−3,−2), (3, 0, 1), (0, 2, 1).

There are two elementary big cones, namely

σ1 := cone(v01, v11, v21), σ2 := cone(v02, v11, v21).

Using Definition 2.2.3 we compute

v′σ1 = (0, 0, 1), v′σ2 = (0, 0,−1/5).

With Theorem 2.1.10 we conclude that X is canonical and non-terminal.

2.3 Constraints by terminality

This Section contains a simple result that is not available in the original reference and
specializes Corollary 2.2.8 to the terminal case. This allows to shorten some parts of the
proofs of next Section.

Proposition 2.3.1. Let X = X(A,P ) be a Q-factorial Fano variety and consider an
elementary big cone σ = %0 + . . .+ %r ∈ Σ defining a terminal singularity. Then at most
two l%i differ from one.

Proof. Assume l%0 ≥ . . . ≥ l%r . By Corollary 2.2.8 the triple (l%0 , l%1 , l%2) is platonic
and l%3 = . . . = l%r = 1 holds. The same Corollary lists the value of `σ, which by
Definition 2.2.3 is the denominator of the entries of v′σ. In particular for the sporadic
platonic triples

(3, 3, 2), (4, 3, 2), (5, 3, 2),

we have `σ = 3, 2, 1 respectively. Moreover, the numerator is a sum in which every
addend is a multiple of all l%i except one. Hence the vertex v′σ of AcX,0 turns out to
be a lattice point, contradicting terminality by Theorem 2.1.10. The same happens for
(l%0 , 2, 2) if l%0 is even, so we may assume l%0 ≥ 3 to be odd. Now we show that this case
provides an integral point on AcX and therefore does not define a terminal singularity.
The primitive lattice point v%i has coordinates

v%0 = (−l%0 , . . . ,−l%0 , d01, . . . , d0s)
T ,

v%i = (0, . . . , 0, l%i , 0, . . . , 0, di1, . . . , dis)
T
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for all i = 1, . . . , r, where l%i occupies the i-th coordinate. Let u := v′σ be the vertex of
AX,0 defined by σ. It has coordinates uj = 0 for j = 1, . . . , r and

ur+t = d0t +
l%0
2
d1t +

l%0
2
d2t + l%0

r∑
k=3

dkt ∀ t = 1, . . . , s .

Using the fact that l%0 is odd, we see that on the edge connecting v%0 with u lies at least
one lattice point, namely

l%0 − 1

l%0
u+

1

l%0
v%0 = (−1, . . . ,−1, q1, . . . , qs)

T ,

where for all t = 1, . . . , s holds

qt = d0t +
l%0 − 1

2
d1t +

l%0 − 1

2
d2t + (l%0 − 1)

r∑
k=3

dkt.

Hence the platonic triple (l%0 , l%1 , l%2) is of the first type, i.e. l%2 = 1.

Corollary 2.3.2. Let X = X(A,P ) be a Q-factorial Fano variety, with P irredundant.
If there is an elementary big cone σ ∈ Σ defining a terminal singularity, then n ≥ 2r.

Proof. The cone σ has exactly one ray in each of the r + 1 leaves. By Proposition 2.3.1,
there are at most two monomials with just one variable. Thus n ≥ 2(r−1) + 2 = 2r.

2.4 Picard number one

Here we show how to obtain the classification of terminal Q-factorial Fano threefolds X
of Picard number one coming with an effective action of a two-dimensional torus.
Let X be rational. This allows us to work in terms of the defining data (A,P ) of X
from Construction 1.5.1, where we always choose P to be irredundant. The main step
is to derive suitable effective bounds on the entries of P . According to Theorem 2.1.10,
terminality of X is equivalent to the fact that the anticanonical complex AcX contains
no lattice points except the origin and the vertices given by the columns of the defining
matrix P . A first observation towards bounds for the shape of P is that terminality leads
to the following situations.

Lemma 2.4.1. Let X = X(A,P ) be a non-toric terminal Q-factorial Fano threefold with
ρ(X) = 1, where P is irredundant. Then, after suitable admissible operations, P fits into
one of the following cases:
(i) m = 0, r = 2 and n = 5, where n = (2, 2, 1).
(ii) m = 0, r = 3 and n = 6, where n = (2, 2, 1, 1).
(iii) m = 0, r = 2 and n = 5, where n = (3, 1, 1).
(iv) m = 1, r = 2 and n = 4, where n = (2, 1, 1).
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Proof. Since X is non-toric, there is at least one relation in the Cox ring. This means
r ≥ 2. Moreover we have n + m = r + s + ρ(X) = r + 3, so Corollary 2.3.2 delivers
r +m ≤ 3. In particular m = 0, 1.
If m = 1 holds, then we have r = 2 and n = 4. This leads to case (iv) of the assertion.
If m = 0 holds, we distinguish r = 2 and r = 3. In the former case n = 5 holds, so
we end up with either (i) or (iii). If the latter holds, then we obtain n = 6 and with
Proposition 2.3.1 we arrive at (ii).

In the rest of this Chapter we treat extensively all cases of Lemma 2.4.1. In each of them
we take similar steps towards the complete classification.
First we fix as many entries of the defining matrix P as possible, through admissible
operations from Remark 1.5.5. Then we take a closer look at AcX,0. Its shape typically
shows some regularity, e.g. some of the edges are parallel to each other or to one of the
main axes. This delivers estimates for most values of P . Sometimes one or two entries
are still unbounded. For these cases an additional tool is provided by Theorems 2.4.4
and 2.4.5. We find suitable lattice polytopes, whose volumes are expressed as polynomials
in the entries of P , having exactly one or two interior lattice points. Bounding these
quantities leads to the last estimates needed. Sometimes it is necessary to go through
several specific configurations of the entries of the matrix P , each giving rise to a different
polytope. All cases are given in detail in the proofs for the sake of completeness.

Remark 2.4.2. The following table summarizes the relevant structural elements of each
case. For each case we list:
• the Setting that comes from using admissible operations in order to minimize the

number of non-fixed entries of P ;
• the Lemma that computes the vertices of AcX,0;
• the Remark on the shape and regularity of AcX,0;
• the Proposition(s) containing the final estimates and bounds.

Setting Lemma Remark Proposition(s)
Case (i) 2.4.7 2.4.9 2.4.10 2.4.19/2.4.20/2.4.21
Case (ii) 2.4.23 2.4.24 2.4.25 2.4.28
Case (iii) 2.4.30 2.4.31 2.4.32 2.4.35
Case (iv) 2.4.37 2.4.38 2.4.39 2.4.44/2.4.45/2.4.46

Before engaging in the details of the classification, we recall a result by Averkov, Krüm-
pelmann and Nill [2], concerning the volume of certain lattice simplices. For this purpose,
let us define the Sylvester sequence (sd)d∈Z≥1

through

s1 := 2, sd := 1 +

d−1∏
j=1

sj for d ≥ 2.
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Theorem 2.4.3 ([2, Thm. 2.2]). Let S ⊂ Qd be a lattice simplex containing exactly one
lattice point in its interior. Then we have

vol(S) ≤ 2(sd − 1)2

d!
.

In particular, if d = 3 then vol(S) ≤ 12 holds.

While this Theorem has the advantage of working in any dimension, it only applies to
simplices with one interior lattice point. Since we are considering polytopes in dimension
three, we will exploit the full classification of lattice polytopes with one interior lattice
point provided by A. Kasprzyk in [35]. Moreover, the recent result of the same author
with G. Balletti, published in [3], provides a bound on the volume of three-dimensional
lattice polytopes with two interior lattice points.

Theorem 2.4.4 ([35]). Let B ⊂ Q3 be a three-dimensional lattice polytope containing
exactly one lattice point in its interior. Then vol(B) ≤ 12 holds.

Theorem 2.4.5 ([3, Thm. 1.1]). Let B ⊂ Q3 be a three-dimensional lattice polytope
containing exactly two lattice points in its interior. Then vol(B) ≤ 18 holds.

Some of the bounds on the l-values in this Section are improvements of their counterparts
in the original source [8] partly because here we make use of the two results above.

Case (i) of Lemma 2.4.1

Lemma 2.4.6. Let X = X(A,P ) be a non-toric terminal Q-factorial Fano threefold with
ρ(X) = 1 such that P is irredundant and we have r = 2, m = 0 and n = (2, 2, 1). Then
l01 = l02 = 1 or l11 = l12 = 1 hold.

Proof. Since P is irredundant, we have l21 ≥ 2. Since ρ(X) = 1 holds, every triple of rays
(v0i, v1j , v21), for i, j ∈ {1, 2}, defines an elementary big cone. Therefore Proposition 2.3.1
applies to all of them and yields l01 = l02 = 1 or l11 = l12 = 1.

As a consequence of Lemma 2.4.6, we can focus our search for terminal varieties X(A,P )
on defining matrices P of the following type.

Setting 2.4.7. Let X = X(A,P ) be a non-toric terminal Q-factorial Fano threefold
with ρ(X) = 1 such that P is irredundant and we have r = 2, m = 0 and n = (2, 2, 1).
We can assume that l01 = l02 = 1 holds. Then, after suitable admissible operations, P is
of the form

P =


−1 −1 l11 l12 0
−1 −1 0 0 l21

0 1 d111 d112 d121

0 0 d211 d212 d221

 ,
where l11 ≥ l12 and l21 ≥ 2 hold. Moreover, denoting by Pij the matrix obtained by
removing the column vij from P , we have positive weights

w01 := det(P01), w02 := −det(P02),
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w11 := det(P11), w12 := −det(P12), w21 := det(P21).

Observe that the weight vector (w01, w02, w11, w12, w21) lies in the kernel of P . The last
three weights are explicitly given by

w11 = −l21d212 − l12d221, w12 = l21d211 + l11d221, w21 = −l11d212 + l12d211

and the first two weights can be expressed in a compact form in terms of the others as
follows:

w02 = −d111w11 − d112w12 − d121w21, w01 = l21w21 − w02.

Remark 2.4.8. In Setting 2.4.7 we can achieve, by further admissible operations, the
following for the entries of the third and fourth row of P :

0 ≤ d121, d221 < l21, d121 < d221 if d221 6= 0, 0 ≤ d112 < w11,

−(l21 + d121)w21 + d112w12

w11
< d111 < −d121w21 + d112w12

w11
.

For the third estimate we add a suitable multiple of d221(p1 − p2) + l21p4 to p3, where
pi denotes the i-th row of P (this preserves the first two estimates). The inequalities for
d111 follow directly from w02 > 0 and w01 > 0.

A first series of bounding conditions on the entries of the defining matrix P is derived
from the fact that, by terminality, the lineality part AcX,0 of the anticanonical complex
AcX has the origin as its only lattice point; we also write AcX,0 for the support of the
lineality part, which in our situation is a rational two-dimensional polytope. Here is how
it precisely looks.

Lemma 2.4.9. Let X = X(A,P ) be as in Setting 2.4.7. The vertices of AcX,0, regarded
as a subset of the lineality space Q2 of the tropical variety, are

u1 :=

[
l21d111 + l11d121

l21 + l11
,
l21d211 + l11d221

l21 + l11

]
,

u2 :=

[
l11l21 + l21d111 + l11d121

l21 + l11
,
l21d211 + l11d221

l21 + l11

]
,

u3 :=

[
l21d112 + l12d121

l21 + l12
,
l21d212 + l12d221

l21 + l12

]
,

u4 :=

[
l12l21 + l21d112 + l12d121

l21 + l12
,
l21d212 + l12d221

l21 + l12

]
.

Proof. We just compute the lineality part AcX,0 according to Corollary 2.2.11.
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Remark 2.4.10. Observe that AcX,0 as described in Lemma 2.4.9 is a trapezoid. The
edges c1 := u1u2 and c2 := u3u4 are parallel to the x-axis and the remaining two edges
are u1u3 and u2u4. Length and y-value h(ci) of the line segments ci are

|c1| =
l11l21

l11 + l21
, h(c1) =

w12

l11 + l21
,

|c2| =
l12l21

l12 + l21
, h(c2) = − w11

l12 + l21
.

Since we assumed l11 ≥ l12 in Setting 2.4.7, the lower segment c2 is shorter than the
upper segment c1. Note that the values |ci| and h(ci) are invariant under admissible row
operations of type 1.5.5 (iii).

c1

c2u3 u4

u2u1

0

h

h(c1)

h(c2)

Lemma 2.4.11. Let X = X(A,P ) be as in Setting 2.4.7. Let h := h(c1)− h(c2) denote
the total height of the trapezoid AcX,0. Then we have

l12l21

l12 + l21
< 2,

l11l21

l11 + l21
<

2(l12 + l21)− l12l21

w11
· h+

l12l21

l12 + l21
.

Moreover, following estimates hold:

w01 < w11 + w12 + w21, w02 < w11 + w12 + w21.

Proof. For the first inequality, note that the lower bounding segment c2 of AcX,0 is of
length at most 2, because otherwise the segment AcX,0 ∩ {y = 0} is of length at least 2
as well, which would imply existence of lattice points different from the origin in AcX .
Similarly, since AcX,0∩{y = 0} has length strictly smaller than 2, we arrive at the second
inequality:

|c1| <
2− |c2|
|h(c2)|

· h+ |c2|.

Explicitly computing AcX,0∩{y = 0} gives the bounding x-values −w01/(w11 +w12 +w21)
and w02/(w11 + w12 + w21). Since the origin is the only lattice point in AcX,0 ∩ {y = 0},
we arrive at estimates number three and four.

Lemma 2.4.12. Let X = X(A,P ) be as in Setting 2.4.7. If l21 ≥ 3 holds, then we
obtain the estimate

l12 <
l21 + 2

l21 − 2
≤ 5.
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Proof. Estimates three and four from Lemma 2.4.11 imply

l21w21 = l11w11 + l12w12 = w01 + w02 < 2w11 + 2w12 + 2w21.

We deduce

(l11 − 2)w11 + (l12 − 2)w12 < 2w21, (l21 − 2)w21 < 2w11 + 2w12.

Using l21 ≥ 3 we obtain

(l11 − 2)w11 + (l12 − 2)w12 <
4

l21 − 2
w11 +

4

l21 − 2
w12,

which implies

l11w11 + l12w12 <
l21 + 2

l21 − 2
w11 +

l21 + 2

l21 − 2
w12

and in particular

l12 <
l21 + 2

l21 − 2
.

Remark 2.4.13. Let X = X(A,P ) be as in Setting 2.4.7. For t > 0 the assumption
h(c2) > −t leads to

−t− l12

l21
(t+ d221) < d212 < 0.

Remark 2.4.14. Let X = X(A,P ) be as in Setting 2.4.7. If h(c1) < 1 holds, then we
have

− l11

l21
d221 < d211 < − l11

l21
d221 + 1 +

l11

l21
.

Lemma 2.4.15. Let X = X(A,P ) be as in Setting 2.4.7. Assume l21 ≥ 3. If h(c1) < 1
and h(c2) > −2 hold, then we have

l11 < 2
l21

l21 − 2
.

This bounds l11 in terms of l21 in the case h(c1) < 1 and h(c2) > −2. In particular, we
then have l11 ≤ 5 and we have l11 ≤ 2 as soon as l21 ≥ 6.

Proof. Observe that w01 + w02 = l11w11 + l12w12 holds. Thus, the third and the fourth
inequalities of Lemma 2.4.11 give us the condition

l11w11 + l12w12 < 2w11 + 2w12 + 2w21.

We arrive at the assertion by writing this out and estimating d212 as well as d211 according
to Remarks 2.4.13 and 2.4.14.
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Lemma 2.4.16. Let X = X(A,P ) be as in Setting 2.4.7. Suppose that h(c1) < 1 and
h(c2) ≤ −1 hold. Then we have l12 = 1. Moreover, if h(c2) ≤ −t holds for some t ∈ Z≥2,
then

l11l21

l11 + l21
<

t+ 1

t− 1
− 2

t− 1
· l21

1 + l21
.

Proof. Since h(c2) ≤ −1 holds, we must have |c2| < 1 and thus obtain l12 = 1. The line
segment AcX,0 ∩ {y = −1} is of length strictly smaller than 1 and AcX,0 ∩ {y = −t} is of
length at least |c2|. Since h(c1) < 1 holds, we conclude

l11l21

l11 + l21
= |c1| <

1− |c2|
t− 1

(1 + h(c1)) + 1 <
t+ 1

t− 1
− 2

t− 1
· l21

1 + l21
.

Remark 2.4.17. Let X = X(A,P ) be as in Setting 2.4.7. Assume l12 = 1 and d112 =
d212 = 0. Then w11 > 0 and w12 > 0 imply

0 < d211, − l21

l11
d211 < d221 < 0.

Moreover, the conditions h(c1) < 1 and h(c2) > −t are equivalent to the following
conditions

d211 < − l11

l21
(d221 − 1) + 1, d221 > −t(l21 + 1).

Lemma 2.4.18. Let X = X(A,P ) be as in Setting 2.4.7. Suppose that h(c1) ≥ 1 holds.
Then either l11 = l12 = 1 or l11 = l21 = 2 hold.

Proof. First observe that in this case, the segment AcX,0 ∩ {y = 1} can be of length at
most 1, because otherwise we have lattice points different from the origin and the vertices
in AcX . This means l11 = 1 or l11 = l21 = 2.

A second series of estimates makes use of the whole anticanonical complex AcX . The
strategy is to detect via AcX suitable three-dimensional lattice polytopes with precisely
one or two interior lattice points and to use the volume bounds given in Theorem 2.4.4
and Theorem 2.4.5 to control the entries of the defining matrix P . We will distinguish
several cases, using the notation of Remark 2.4.10.

Proposition 2.4.19. Let X = X(A,P ) be as in Setting 2.4.7. Suppose l11 = l12 = 1.
Then we achieve by admissible operations d112 = d212 = 0 and obtain the estimates

3 ≤ (l21 + 1)d211 < 36, 0 ≤ d111 < d211,

−d211l21 < d221 < 0,
d111d221

d211
− l21 < d121 < 0.
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Proof. Consider the convex hull B of AcX,0 and v21. We may regard B as a polytope in
Q3 by omitting the first coordinate. Then B is contained in the polytope C, given by
the vertices

(l21, d121, d221), (−1, d111, d211), (−1, 1 + d111, d211), (−1, 0, 0), (−1, 1, 0).

Now, C is a lattice polytope having (0, 0, 0) as only interior lattice point. According to
Theorem 2.4.4, its volume is at most 12. This gives the condition

2(l21 + 1)d211 = 6vol(C) < 72.

The remaining estimates follow from positivity of the weights wij .

Proposition 2.4.20. Let X = X(A,P ) be as in Setting 2.4.7. Suppose l21 = 2.
(i) If h(c1) < 1 and h(c2) > −1 hold, turn P by means of admissible operations into

the shape of Remark 2.4.8. Then we are in one of the following situations:
(a) d121 = 0, d221 = 1, with l11 + l12 ≤ 68.
(b) d121 = 1, d221 = 0, with l11 + l12 ≤ 69.
In both situations d111, d112 are bounded according to Remark 2.4.8 and we have

l11

2
(d121 − 1) < d211 ≤

l11

2
d121, − l12

2
(d221 + 1) ≤ d212 < − l12

2
d221.

(ii) If h(c1) < 1 and h(c2) ≤ −1 hold, then we have l12 = 1. Moreover, after adjusting
d112 = d212 = 0 by admissible operations, we achieve one of the following three
situations:
(a) l11 = 1 holds and Proposition 2.4.19 applies.
(b) l11 = 2 holds and we have estimates

−6 ≤ d221 ≤ −3, d211 = 1− d221.

(c) 3 ≤ l11 ≤ 24 holds and we have estimates

−5l11 + 2

l11 − 2
< d221 ≤ −3, − l11

2
d221 < d211 < − l11

2
d221 +

l11

2
.

In both cases (b) and (c), the remaining entries of P are bounded by

0 ≤ d121 < −d221,
d121d211

d221
+ 2

d211

d221
< d111 <

d121d211

d221
.

(iii) If h(c1) ≥ 1 holds, then we have l11 = l12 = 1 and Proposition 2.4.19 applies.

Proof. First we prove (i). Observe that Remark 2.4.8 yields d221 ∈ {0, 1} because of
l21 = 2. If d221 = 1 holds, then Remark 2.4.8 implies d121 = 0. If d221 = 0 holds, then
we have d121 = 1 since v21 is a primitive lattice point. Note that the same Remark
also bounds the entries d111 and d112. Moreover, we recover bounds for d211 and d212
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by writing down explicitly the positivity of the weights w11 and w12, as well as the
assumptions on the heights of c1 and c2:

l11

2
(d121 − 1) < d211 ≤

l11

2
d121, − l12

2
(d221 + 1) ≤ d212 < − l12

2
d221.

Case d121 = 0, d221 = 1: consider the lattice simplex C in Q3 given as the convex hull of
the following points:

(l11, d111, d211), (l12, d112, d212), (−2, 0, 1), (−2, 2, 1).

We have vol(C) = (w11 + w12 + w21)/3. Now, put the leaf AcX ∩ λ1 of the anticanonical
complex into Q3 by removing the second coordinate (which always equals zero) from its
points. For a = 0,−1,−2, consider

H+
a := {(x, y, z); x ≥ a} ⊆ Q3, H0

a := {(x, y, z); x = a} ⊆ Q3.

Then C ∩ H+
0 equals AcX ∩ λ1 and H0

0 cuts out the lineality part AcX,0. In particular,
by terminality of X and Theorem 2.1.10, the intersection C ∩H+

0 has no interior lattice
point and inside C ∩H0

0 the origin is the only lattice point. The intersection C ∩H0
−1 is

a quadrilateral with vertices(
−1,

d111

l11 + 2
,
l11 + d211 + 1

l11 + 2

)
,

(
−1,

2l11 + d111 + 2

l11 + 2
,
l11 + d211 + 1

l11 + 2

)
,(

−1,
d112

l12 + 2
,
l12 + d212 + 1

l12 + 2

)
,

(
−1,

2l12 + d112 + 2

l12 + 2
,
l12 + d212 + 1

l12 + 2

)
.

The bounds on d211 and d212 ensure that the points of C ∩H0
−1 never have an integral

z-value. Thus we can apply Theorem 2.4.4 to vol(C) and arrive at w11 +w12 +w21 ≤ 36.
This implies w21 ≤ 34, which in turn yields l11w11 + l12w12 ≤ 68. Since all weights are
positive, we conclude l11 + l12 ≤ 68.
Case d121 = 1 and d221 = 0: here we consider the lattice simplex C given in Q3 as the
convex hull of the following points:

b1 := (l11, d111, d211), b2 := (l12, d112, d212),

b3 := (−2, 1, 0), b4 := (−2, 3, 0).

Similarly as in the previous case, C ∩H+
0 equals AcX ∩ λ1 and H0

0 cuts out the lineality
part AcX,0. The intersection C ∩H+

0 has no interior lattice point and inside C ∩H0
0 the

origin is the only lattice point.

b3

b4

b1

b2

u3

u4

u1

u2

AcX ∩ λ1
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Here the intersection C := C ∩H0
−1 is a quadrilateral with vertices(

−1,
l11 + d111 + 1

l11 + 2
,
d211

l11 + 2

)
,

(
−1,

3l11 + d111 + 3

l11 + 2
,
d211

l11 + 2

)
,

(
−1,

l12 + d112 + 1

l12 + 2
,
d212

l12 + 2

)
,

(
−1,

3l12 + d112 + 3

l12 + 2
,
d212

l12 + 2

)
,

The first two points have a positive z-value, the other two a negative one, all in absolute
value strictly smaller than one. Noting that the length of C ∩ {z = 0} is bigger than
one and smaller than two, we conclude that C contains precisely two lattice points, say
q1 and q2. It turns out that the origin lies in conv(b1, b2, q1, q2) as only interior lattice
point. Theorem 2.4.4 yields d211(l12 + 1)− d212(l11 + 1) < 72 and the assertion follows.

We turn to (ii). By Lemma 2.4.16 we have l12 = 1. With admissible operations we
achieve d112 = d212 = 0. If l11 = 1 holds, we can apply Proposition 2.4.19.
Case l11 = 2: Here u1 and u2 are half-integral points. Therefore we have h(c1) = 1/2,
which implies d211 + d221 = 1. The constraint h(c2) ≤ −1 is equivalent to d221 ≤
−3. Estimates on d111 and d121 are found by positivity of the weights and admissible
operations. For the lower bound on d221 we note that u3 lies under the bisection of the
quadrant Q≥0 × Q≤0. Requiring that no lattice point lies in AcX,0 except for the origin
only leaves a confined area to place c2, namely h(c2) ≥ −2 must hold. This provides the
bound d221 ≥ −6.
Case l11 ≥ 3: positivity of the weights and the constraints on the heights, together with
suitable admissible operations, lead to all bounds for the dijk stated in (c) except for the
lower bound on d221. For that, observe that the segment line AcX,0 ∩ {y = −1} has to be
of length strictly smaller than 1 and conclude

−5l11 + 2

l11 − 2
< d221.

The next step is to bound l11. For this, we consider the simplex D ⊆ Q3 given as the
convex hull of following points:

(l11, d111, d211), (1, 0, 0), (−2, d121, d221), (−2, d121 + 2, d221).

Now, put the leaf AcX ∩ λ1 of the anticanonical complex into Q3 by removing the second
coordinate (which always equals zero). With the same notation as in part (i) of the
proof, we see that D ∩H+

0 equals AcX ∩ λ1 and H0
0 cuts out the lineality part AcX,0. For

large l11 ≥ 10, the only possible values for d221 are −3,−4,−5. Moreover we already
have 0 ≤ d121 < −d221. Thus the allowed pairs (d121, d221) are

(0,−3), (1,−3), (2,−3), (1,−4), (3,−4),

(0,−5), (1,−5), (2,−5), (3,−5), (4,−5).

Subcase (0,−3): u3 is a lattice point, hence X is not terminal.
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Subcase (1,−3): u4 is a lattice point, hence X is not terminal.
Subcase (2,−3): AcX,0 contains the lattice point (1,−1) = (u3 + u4)/2.
Subcase (1,−4): here D contains exactly two lattice points in its interior, namely the
origin and (−1, 1,−2). By Theorem 2.4.5 we have vol(D) ≤ 18, which yields l11 < 25.
Subcase (3,−4): the lattice point (1,−1) lies in conv(0, u3, u4) ⊂ AcX,0.
Subcase (0,−5): the lattice point (0,−1) lies in conv(0, u3) ⊂ AcX,0.
Subcase (1,−5): here D contains exactly two lattice points in its interior, namely the
origin and (−1, 1,−3). By Theorem 2.4.5 we have vol(D) ≤ 18, which yields l11 < 20.
Subcase (2,−5): here D contains exactly two lattice points in its interior, namely the
origin and (−1, 2,−3). By Theorem 2.4.5 we have vol(D) ≤ 18, which yields l11 < 20.
Subcase (3,−5): the lattice point (1,−1) lies in conv(0, u3, u4) ⊂ AcX,0.
Subcase (4,−5): the lattice point (1,−1) lies in conv(0, u3, u4) ⊂ AcX,0.

Lastly we verify (iii). By Lemma 2.4.18 we have (l11, l12) ∈ {(1, 1), (2, 1), (2, 2)}. If
both exponents are equal to 1, then Proposition 2.4.19 applies straightforward. If both
exponents are equal to 2, then |c1| = |c2| = 1. Therefore the segment line AcX,0∩{y = 1}
is of length one and hence contains at least one lattice point. Lastly we show that the
case (l11, l12) = (2, 1) is also not possible. Here |c1| = 1 holds and two of the vertices are

u1 =
(1

2
d111 +

1

2
d121 ,

1

2
d211 +

1

2
d221

)
, u2 = u1 + (1, 0).

We assume h(c1) to be non-integral, otherwise we would have a lattice point on c1 itself.
Nonetheless an integral point p is always in the lineality part, precisely at the height
h(c1)− 1/2 and it can be given explicitly as p := αu1 + βu2 where

α := −k − d111 + d121 + 2

2(d211 + d221)
, β := 1 + k +

d111 + d121

2(d211 + d221)

for an appropriate k ∈ Z≥0 that makes 0 ≤ α, β < 1. Then we have

p =
(1

2
d111 +

1

2
d121 + k + 1 , h(c1)− 1

2

)
,

which is an integral point since we can always assume, via an admissible operation, that
d111 and d121 have the same parity.

Proposition 2.4.21. Let X = X(A,P ) be as in Setting 2.4.7. Suppose l21 ≥ 3.
(i) If h(c1) < 1 and h(c2) > −2 hold, then we are in one of the following three situa-

tions:
(a) We have 3 ≤ l21 ≤ 5 and the other lij are bounded according to the table

l21 3 4 5

l12 ≤ 4 ≤ 2 ≤ 2

l11 ≤ 5 ≤ 3 ≤ 2
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In this case we turn P by means of admissible operations into the shape of
Remark 2.4.8. Then we have 0 ≤ d121, d221 < l21 and the estimates

−2− l12

l21
(d221 + 2) < d212 < 0, − l11

l21
d221 < d211 < − l11

l21
d221 + 1 +

l11

l21

and the remaining two entries d111, d112 are bounded according to Remark 2.4.8.
(b) We have l21 ≥ 6 and l11 = l12 = 1. Then all entries dijk can be bounded

according to Proposition 2.4.19.
(c) We have l21 ≥ 6, l11 = 2 and l12 = 1. Then we achieve d112 = d212 = 0 by

suitable admissible operations and values and bounds for the remaining entries
are given by the table

d111 0 1 1 1 1 2 2
d211 1 2 3 4 5 3 5

l21 ≤ 45 ≤ 51 ≤ 33 ≤ 50 ≤ 33 ≤ 35 ≤ 101

and by the estimates

−2(l21 + 1) < d221 < 0,
d111d221

d211
− l21 < d121 <

d111d221

d211
.

(ii) If h(c1) < 1 and h(c2) ≤ −2 hold, then we are in one of the following two situations:
(a) We have l11 = l12 = 1. Then l21 and the entries dijk can be bounded according

to Proposition 2.4.19.
(b) We have l11 = 2, l12 = 1 and l21 = 3, 4. Then we achieve d112 = d212 = 0 by

admissible operations and obtain the following estimates

−4(l21 + 1) < d221 < 0, − 2

l21
d221 < d211 < − 2

l21
(d221 − 1) + 1,

0 ≤ d121 < −d221,
d211(d121 + l21)

d221
< d111 <

d211d121

d221
.

(iii) If h(c1) ≥ 1 holds, then we have l11 = l12 = 1 and Proposition 2.4.19 applies.

Proof. Let us verify (i) first. Lemmas 2.4.12 and 2.4.15 provide bounds on l11 and l12

in terms of l21, namely those from the table of case (a) if l21 < 6, otherwise l11 = 1, 2
and l12 = 1. The other estimates of case (a) follow directly from Remarks 2.4.8, 2.4.13
and 2.4.14. From now on we have l21 ≥ 6 and l12 = 1, thus we arrive at d112 = d212 = 0
by admissible operations. If l11 = 1 then we are in case (b) and Proposition 2.4.19 applies.
If l11 = 2 then we have to prove the estimates of case (c). Writing down explicitly the
inequalities h(c1) < 1 and h(c2) > −2, as well as the positivity of the weights, already
gives bounds for d121 and d221 and following estimates

−2d221

l21
< d211 < −2d221

l21
+
l21 + 2

l21
, 0 ≤ d111 < d211.

We still need to find an upper bound for l21. Note that by substituting the lower estimate
for d221 in the upper estimate for d211 one obtains

0 < d211 < 5 +
6

l21
≤ 6.
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Thus we have a finite range (independent from l21) for d211 and therefore for d111 too,
namely

d111 ∈ {0, 1, 2}, d111 < d211 ≤ 5.

The cases d111 = 3, 4 are discharged, because there the origin lies outside of the lineality
part AcX,0. Moreover, if d111 = 0 holds, then d211 = 1 holds by terminality. We look at
the lattice polytope C in Q3 given as the convex hull of the following points:

b0 := (l21, d121, d221), b3 := (−1, 0, 0), b4 := (−1, 1, 0).

b1 := (−2, d111, d211), b2 := (−2, d111 + 2, d211).

Now, put the leaf AcX ∩ λ2 of the anticanonical complex into Q3 by removing the first
coordinate (which always equals zero) from its points.

b0

b3

b4

b1

b2
AcX ∩ λ2

For a = 0,−1,−2, consider

H+
a := {(x, y, z); x ≥ a} ⊆ Q3, H0

a := {(x, y, z); x = a} ⊆ Q3.

Then C ∩ H+
0 equals AcX ∩ λ2 and H0

0 cuts out the lineality part AcX,0. In particular,
by terminality of X and Theorem 2.1.10, the intersection C ∩H+

0 has no interior lattice
point and inside C∩H0

0 the origin is the only lattice point. Other interior lattice points of
C may only appear in C ∩H0

−1. More than once we will use the following two simplices:

C1 := conv(b0, b1, b2, b3), C2 := conv(b0, b2, b3, b4).

They fulfill C = C1 ∪C2 and C◦1 ∩C◦2 = ∅. We go through all possible pairs (d111, d112).
Case d111 = 0, d112 = 1: C◦ contains the origin as only lattice point. We bound vol(C)
according to Theorem 2.4.4 and arrive at l21 < 46.
Case d111 = 1, d112 = 2: define q1 := (−1, 1, 1) and q2 := (−1, 2, 1). If d221 ≥ d121 − 1
holds, then C has precisely two interior lattice points, namely the origin and q1. We apply
Theorem 2.4.5 and obtain l21 < 34. If d221 < d121 − 1 holds, then C contains also q2.
We note that the origin and q1 lie in C1, whereas q2 lies in C2. Therefore Theorem 2.4.5
applies to C1 and we conclude l21 < 52.
Case d111 = 1, d112 = 3: consider q1 := (−1, 1, 1) and q2 := (−1, 2, 1). If d221 ≥
d121 − l21 − 2 holds, then C contains precisely two interior lattice points, namely the
origin and q1. We apply Theorem 2.4.5 and obtain l21 < 22. If d221 < d121 − l21 − 2
holds, then C contains in addition q2. We note that the origin and q1 lie in C1, whereas
q2 lies in C2. We apply Theorem 2.4.5 to C1 and arrive at l21 < 34.
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Case d111 = 1, d112 = 4: if d221 ≥ 2d121+1 holds, then C has precisely three lattice points
in its interior, namely the origin, q1 := (−1, 1, 1) and q2 := (−1, 1, 2). In this situation
q1 is not contained in the simplex conv(b0, b1, b2, b3), whereas the two other points are.
By bounding its volume according to Theorem 2.4.5 we reach l21 < 25. Conversely, if
d221 < 2d121 + 1 holds, then C◦ contains the points above and also q3 := (−1, 2, 2). We
note that the origin and q2 lie in the interior of conv(b0, b1, b3, q3), whereas q1 lies on its
boundary. Therefore Theorem 2.4.5 applies and we conclude l21 < 51.
Case d111 = 1, d112 = 5: this situation can be settled in the exact same way as the case
directly above. The only differences are as follows: the inequality that allows q3 to be an
interior point of C is d221 < 2d121 − l21 − 3. The new bounds are l21 < 20 and l21 < 34.
Case d111 = 2, d112 = 3: consider the points q1 := (−1, 1, 1) and q2 := (−1, 2, 1). If
d221 ≥ d121 − 1 holds, then C◦ contains precisely two lattice points, namely the origin
and q1. We apply Theorem 2.4.5 and obtain l21 < 22. If d221 < d121 − 1 holds, then C◦

contains also q2. We see that only q2 lies in the interior of conv(b0, b2, b4, q1), whereas
the origin does not. Therefore Theorem 2.4.4 yields l21 < 36.
Case d111 = 2, d112 = 5: here the polytope C contains three lattice points other than
the origin, namely

q1 := (−1, 1, 1), q2 := (−1, 1, 2), q3 := (−1, 2, 2).

The simplex conv(b0, b1, b3, q3) contains the origin and q2 in its interior, whereas q1 lies
on its boundary. We apply Theorem 2.4.5 and arrive at l21 < 102.

Now we prove (ii). By Lemma 2.4.16 we have l12=1, therefore we can always achieve
d112 = d212 = 0 by admissible operations. The same Lemma gives us l11 = 1 if l21 ≥ 5
or if h(c2) ≤ −4. This case is covered by Proposition 2.4.19. Let us therefore assume
l21 ∈ {3, 4} and h(c2) > −4, together with l11 > 1. Then Lemma 2.4.16 implies l11 = 2.
Moreover Remark 2.4.17 provides estimates on d211 and d221 in terms of l21. The last
bounds on d111 and d121 are obtained as in Remark 2.4.8.

Lastly we turn to (iii). We have l21 ≥ 3 and h(c1) ≥ 1. Then by Lemma 2.4.18 we must
have l11 = l12 = 1. Hence Proposition 2.4.19 applies.

Case (ii) of Lemma 2.4.1

Lemma 2.4.22. Let X = X(A,P ) be a non-toric terminal Q-factorial Fano threefold
with ρ(X) = 1 such that P is irredundant and we have r = 3, m = 0 and n = (2, 2, 1, 1).
Then l01 = l02 = 1 and l11 = l12 = 1 hold.

Proof. Since P is irredundant, we have l21, l31 ≥ 2. Since ρ(X) = 1, every set of rays of
the type (v0k, v1j , v21, v31), for k, j ∈ {1, 2}, defines an elementary big cone. Therefore
Proposition 2.3.1 applies to all of them. In particular lij = 1 for all i = 0, 1 and
j = 1, 2.

Setting 2.4.23. Let X = X(A,P ) be a non-toric terminal Q-factorial Fano threefold
with ρ(X) = 1 such that P is irredundant and we have r = 3, m = 0 and n = (2, 2, 1, 1).
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As a consequence of Lemma 2.4.22 we have l01 = l02 = l11 = l12 = 1 and, after suitable
admissible operations, the matrix P is of the form

P =


−1 −1 1 1 0 0
−1 −1 0 0 l21 0
−1 −1 0 0 0 l31

0 1 d111 0 d121 d131

0 0 d211 0 d221 d231

 ,

where l21 ≥ l31 ≥ 2 holds. Moreover, denoting by Pij the matrix obtained by removing
the column vij from P , we have positive weights

w01 := det(P01), w11 := det(P11), w21 := det(P21),

w02 := − det(P02), w12 := − det(P12), w31 := − det(P31).

In particular some weights have a compact form, such as w11 = −l31d221 − l21d231, as
well as w21 = l31d211 and w31 = l21d211. Then we have forms

w02 = −d111w11 − d121w21 − d131w31,

w01 = −w02 + l21l31d211, w12 = −w11 + l21l31d211.

Lemma 2.4.24. Let X = X(A,P ) be as in Setting 2.4.23. The vertices of AcX,0, regarded
as a subset of the lineality space Q2 of the tropical variety, are

u1 :=

[
l21d131 + l31d121

l21 + l31
,
l21d231 + l31d221

l21 + l31

]
,

u2 :=

[
l21d111 + l11d121 + l21l31

l21 + l31
,
l21d231 + l31d221

l21 + l31

]
,

u3 :=

[
l21d131 + l31d121 + l21l31d111

l21 + l31
,
l21d231 + l31d221 + l21l31d211

l21 + l31

]
,

u4 :=

[
l21d131 + l31d121 + l21l31d111 + l21l31

l21 + l31
,
l21d231 + l31d221 + l21l31d211

l21 + l31

]
.

Proof. We just compute the lineality part AcX,0 according to Corollary 2.2.11.

Remark 2.4.25. Observe that AcX,0 as described in Lemma 2.4.24 is a parallelogram.
The edges c1 := u1u2 and c2 := u3u4 are parallel to the x-axis and the remaining two
edges are u1u3 and u2u4. Length and y-value h(ci) of the line segments ci are

|c1| = |c2| =
l21l31

l21 + l31
, h(c1) = − w11

l21 + l31
, h(c2) =

w12

l21 + l31
.

Note that the length of the segments c1 and c2 is at least 1, since we assumed l21 ≥ l31 ≥ 2.
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c1

c2u3 u4

u2u1

0

h

h(c1)

h(c2)

In the following we denote by pi the i-th row of P .

Lemma 2.4.26. Let X = X(A,P ) be as in Setting 2.4.23. All d-values of the matrix P
can be bounded in dependence on the l-values simply by taking into account the positivity of
the weights, some admissible operations and the previous Remark. The explicit estimates
are

0 ≤ d131 < l31

0 ≤ d231 < l31

− l21

l31
(d231 + 1)− 1 < d221 < −

l21

l31
d231

−d221

l21
− d231

l31
< d211 < −

d221

l21
− d231

l31
+
l21 + l31

l21l31
,

0 ≤ d111 < d211l31,

κ− l21 < d121 < κ,

where
κ :=

d111(l21d231 + l31d221)− l21d211d131

l31d211
.

Proof. First we can bound d131 and d231 by adding a suitable multiple of p2 − p3 to p4

and p5. The combination d231(p2 − p3) + l31p5, added suitably to p4, bounds d111. Note
that this operation does not alter d131 nor d231. The weights w01 and w02 give estimates
for d121. The other weights provide a lower bound for d211 and an upper bound for d221.
The missing bounds for these two last d-values are obtained through h(c1) > −1 and
h(c2) < 1. These inequalities hold since the width of the parallelogram AcX,0 is at least
1. Therefore AcX,0 must lie in the stripe −1 < y < 1.

Lemma 2.4.27. Let X = X(A,P ) be as in Setting 2.4.23. Suppose l31 > 2. Then
l31 = 3 and l21 = 3, 4, 5.

Proof. This is a direct consequence of the shape of AcX,0. Its width, calculated in Re-
mark 2.4.25, must remain smaller than 2 in order to avoid lattice points other than the
origin on its intersection with the x-axis.

Proposition 2.4.28. Let X = X(A,P ) be as in Setting 2.4.23. Then l31 = 2, 3 holds
and we are in one of the following situations:
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(i) We have l31 = 2. Then d211 = 1 holds and we can achieve d111 = 0 by a suitable
admissible operation. The other entries of P are bounded according to the table

d131 0 1 1
d231 1 0 1

l21 ≤ 33 ≤ 24 ≤ 11

and the estimates

− l21

2
(d231 + 1)− 1 < d221 < − l21

2
d231,

− l21

2
d131 − l21 < d121 < − l21

2
d131.

(ii) We have l31 = 3. Then 3 ≤ l21 ≤ 5 holds, we obtain 0 ≤ d131, d231 < 3 and we have
the estimates

− l21

3
(d231 + 1)− 1 < d221 < − l21

3
d231,

−d221

l21
− d231

3
< d211 < −d221

l21
− d231

3
+

3 + l21

3l21
,

0 ≤ d111 < d211l31,

κ− l21 < d121 < κ,

where
κ :=

d111(l21d231 + 3d221)− l21d211d131

3d211
.

Proof. By Lemma 2.4.27 we have l31 = 2 or l31 = 3. In the latter case the same Lemma
bounds l21 as well, and Lemma 2.4.26 provides constraints for all d-values.
From now on let l31 = 2, so l21 ≥ 2 holds. Note that all bounds from Lemma 2.4.26
already hold, so we only need an upper bound for l21. The total height h of AX,0 is

h := h(c2)− h(c1) =
2l21d211

l21 + 2
.

Terminality prevents non-zero lattice points from lying in AcX,0. In particular h < 2
holds. Thus d211 = 1. According to Lemma 2.4.26, d111 ∈ {0, 1}. Since we can subtract
p5 from p4 without altering the other bounds, we may assume d111 = 0. Define the lattice
polytope B in Q3 as the convex hull of the following points:

b0 := (l21, d121, d221),

b1 := (−2, d131, d231), b2 := (−2, d131, d231 + 2),

b3 := (−2, d131 + 2, d231), b4 := (−2, d131 + 2, d231 + 2).

Consider the leaf AcX ∩λ2 of the anticanonical complex as a subset of Q3 by ignoring the
first and third coordinates, which always equal zero. For a = 0,−1,−2, consider

H+
a := {(x, y, z); x ≥ a} ⊆ Q3, H0

a := {(x, y, z); x = a} ⊆ Q3.
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Then B ∩ H+
0 equals AcX ∩ λ2 and H0

0 cuts out the lineality part AcX,0. In particular,
by terminality of X and Theorem 2.1.10, the intersection B ∩H+

0 has no interior lattice
point and inside B ∩H0

0 the origin is the only lattice point. According to Lemma 2.4.26
we have d131, d231 ∈ {0, 1}, where at least one of the two values equals 1, since v31 is
a primitive point by construction. Thus we have three distinct cases to analyze. The
goal is to find a lattice polytope containing exactly one or two interior lattice points and
bound its volume using Theorem 2.4.4 or Theorem 2.4.5 respectively.

Case d131 = 0, d231 = 1: the polytope B has exactly two interior lattice point in H0
−1,

namely q0 := (−1, 0, 1) and q1 := (−1, 1, 1). Consider the simplex C := conv(b0, b1, b2, q1).
The point q0 lies in the interior of C, whereas the origin does not. Hence we can bound
vol(C) = (l21 − d121 + 2)/3 with Theorem 2.4.4 and obtain l21 < 34.

Case d131 = 1, d231 = 0: B has two interior lattice points in H0
−1, namely q0 := (−1, 0, 1)

and q1 := (−1, 1, 1). We define two simplices C1, C2 as follows:

C1 := conv(b0, b1, b2, b3), C2 := conv(b0, b1, b3, q4).

These are not disjoint nor cover the whole polytope B. The point p1 lies in the interior
of the intersection B1 ∩ B2, while p2 does not. Hence in at least one of the Ci lie at
most two lattice interior points and the bound is obtained by applying Theorem 2.4.5 on
vol(Ci) = (2l21 + 4)/3, which results in l21 < 25.

Case d131 = 1, d231 = 1: here the only lattice point in B◦ ∩ H0
−1 is q := (−1, 1, 1). In

particular, B is a lattice polytope containing exactly two lattice points in its interior,
namely the origin and q. We apply Theorem 2.4.5 to vol(B) = (4l21 + 8)/3 and obtain
the condition l21 < 12.

Case (iii) of Lemma 2.4.1

Lemma 2.4.29. Let X = X(A,P ) be a non-toric terminal Q-factorial Fano threefold
with ρ(X) = 1 such that P is irredundant and we have r = 2, m = 0 and n = (3, 1, 1).
Then l01 = l02 = l03 = 1 holds.

Proof. Since P is irredundant, we have l11, l21 ≥ 2. Since ρ(X) = 1 holds, the elementary
big cones are precisely those of the form cone(v0j , v11, v21), for j = 1, 2, 3. Therefore
Proposition 2.3.1 applies to all of them. In particular l0j = 1 for all j = 1, 2, 3.

Setting 2.4.30. Let X = X(A,P ) be a non-toric terminal Q-factorial Fano threefold
with ρ(X) = 1 such that P is irredundant and we have r = 2, m = 0 and n = (3, 1, 1).
By Lemma 2.4.29 we have l01 = l02 = l03 = 1 and, after suitable admissible operations,
the matrix P is of the form

P =


−1 −1 −1 l11 0
−1 −1 −1 0 l21

0 1 0 d111 d121

0 0 1 d211 d221

 ,
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where l11 ≥ l21 ≥ 2 holds. Moreover, denoting by Pij the matrix obtained by removing
the column vij from P , we have positive weights

w01 := det(P01), w02 := −det(P02), w03 := det(P03),

w11 := −det(P11), w21 := det(P21).

We can write the weights explicitly as w11 = l21, w21 = l11 and w01 = l11l21−w02−w03,
where

w02 = −l21d111 − l11d121, w03 = −l21d211 − l11d221.

Lemma 2.4.31. Let X = X(A,P ) be as in Setting 2.4.30. The vertices of AcX,0, regarded
as a subset of the lineality space Q2 of the tropical variety, are

u1 :=

[
l11d121 + l21d111

l11 + l21
,
l11d221 + l21d211

l11 + l21

]
,

u2 :=

[
l11d121 + l21d111 + l11l21

l11 + l21
,
l11d221 + l21d211

l11 + l21

]
,

u3 :=

[
l11d121 + l21d111

l11 + l21
,
l11d221 + l21d211 + l11l21

l11 + l21

]
.

Proof. We just compute the lineality part AcX,0 according to Corollary 2.2.11.

Remark 2.4.32. Observe that AcX,0 as described in Lemma 2.4.31 is an isosceles right
triangle. The edge c1 := u1u2 is parallel to the x-axis whereas c2 := u1u3 is parallel to
the y-axis. They have the same length h, i.e.,

h := |c1| = |c2| =
l11l21

l11 + l21
,

Note that h ≥ 1 holds, since we assumed l11 ≥ l21 ≥ 2. Moreover we can write u1 in
terms of the weights as

u1 =
( −w02

l11 + l21
,
−w03

l11 + l21

)
.

c1

c2

0

u1 u2

u3

h

h
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Lemma 2.4.33. Let X = X(A,P ) be as in Setting 2.4.30. All d-values of the matrix P
can be bounded in dependence to the l-values simply by taking into account the positivity
of the weights, some admissible operations and Remark 2.4.32. The explicit estimates are

0 ≤ d121 < l21

0 ≤ d221 < l21

− l11

l21
d121 − l11 < d111 < −

l11

l21
d121,

− l11

l21
d221 − l11 < d211 < −

l11

l21
d221.

Proof. The entries d121 and d221 are bounded by suitably adding p2 − p1 to p3 and p4

respectively. In this way the shape obtained in Setting 2.4.30 is not altered. Positivity
of the weights w02 and w03 gives the upper bounds for the other two d-values. The
corresponding lower bounds are obtained by noting that the first coordinate of u2 and
the second coordinate of u3 must be positive to ensure that the origin lies in the interior
of AcX,0.

Lemma 2.4.34. Let X = X(A,P ) be as in Setting 2.4.30. Assume that l21 > 3 holds.
Then l21 = 4, 5 and l11 < 3l21/(l21 − 3).

Proof. This is a direct consequence of h < 3, a necessary condition to avoid non-zero
lattice points in AcX,0.

Proposition 2.4.35. Let X = X(A,P ) as in Setting 2.4.30. Then we have 2 ≤ l21 ≤ 5
and we are left with the following situations:
(i) We have l21 = 2. Then we achieve d121 = 1 by suitable admissible operations and

the remaining entries of P are bounded as follows:

l11 ≤ 24, d221 ∈ {0, 1},

−3l11

2
< d111 < −

l11

2
, − l11

2
d221 − l11 < d211 < −

l11

2
d221.

(ii) We have l21 = 3. Then we achieve 0 ≤ d121 ≤ d221 < 3 by suitable admissible
operations, the value l11 is bounded according to the table

d121 0 0 1 1 2
d221 1 2 1 2 2

l11 ≤ 71 ≤ 50 ≤ 32 ≤ 68 ≤ 50

and for the remaining entries we obtain the conditions

− l11

3
(d121 + 1)− 1 < d111 < − l11

3
d121,

− l11

3
(d221 + 1)− 1 < d211 < − l11

3
d221.
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(iii) We have l21 = 4 or l21 = 5. Then Lemma 2.4.34 bounds l11 and Lemma 2.4.33
provides estimates for all d-values.

Proof. By Lemma 2.4.34 the inequality l21 ≤ 5 holds. In particular, for l21 > 3, the value
of l11 is bounded as well, and so are the d-values with Lemma 2.4.33.

Case l21 = 2. With Lemma 2.4.33 we have d121, d221 ∈ {0, 1}. Since v21 is a primitive
lattice point, at least one of these values must be equal to one. Without loss of generality
we assume d121 = 1. Consider the leaf AcX ∩ λ1 of the anticanonical complex as a subset
of Q3 by ignoring the second coordinate, which always equals zero. For a = 0,−1,−2,
consider

H+
a := {(x, y, z); x ≥ a} ⊆ Q3, H0

a := {(x, y, z); x = a} ⊆ Q3.

Moreover define B as the convex hull of the following points:

b0 := (l11, d111, d211), b1 := (−2, 1, d221),

b2 := (−2, 3, d221), b3 := (−2, 3, d221 + 2).

Then B ∩ H+
0 equals AcX ∩ λ1 and H0

0 cuts out the lineality part AcX,0. In particular,
by terminality of X and Theorem 2.1.10, the intersection B ∩H+

0 has no interior lattice
point. The simplex B contains exactly two lattice points in its interior, namely the origin
in H0

0 and (−1, 1, d221) in H0
−1. Therefore we may apply Theorem 2.4.5 on the volume

of B, which is given by vol(B) = (2l11 + 4)/3, and arrive at l11 < 25. Lastly, with
Lemma 2.4.33 we bound the entries d111 and d211.

Case l21 = 3. According to Lemma 2.4.33 we already bound all d-values. Moreover we
can assume d121 ≤ d221, by swapping p3 with p4 as well as v02 with v03. Hence there
are five combinations for the couple (d121, d221). Each one of them will deliver a specific
upper bound for l11. To see that, define the lattice polytope B in Q3 as the convex hull
of the following points:

b0 := (l11, d111, d211), b1 := (−3, d121, d221),

b2 := (−3, d121 + 3, d221), b3 := (−3, d121, d221 + 3).

Consider the leaf AcX ∩λ1 of the anticanonical complex as a subset of Q3 by ignoring the
second coordinate, which always equals zero. Consider

H+
0 := {(x, y, z); x ≥ 0} ⊆ Q3, H0

0 := {(x, y, z); x = 0} ⊆ Q3.

Then B ∩ H+
0 equals AcX ∩ λ1 and H0

0 cuts out the lineality part AcX,0. In particular,
by terminality of X and Theorem 2.1.10, the intersection B ∩H+

0 has no interior lattice
point and inside B ∩H0

0 the origin is the only lattice point.

Subcase d121 = 0 and d221 = 1. Here the number of interior points of B varies. If l11 ≥
−2d211 holds, then B contains four integral points other than the origin. The origin ap-
pears as only interior point in one of the two following simplices: conv(b0, b1, b2, (−1, 0, 1))
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or conv(b0, b2, b3, (−1, 0, 1)). Bounding their volumes according to Theorem 2.4.4 we ob-
tain l11 < 33 and l11 < 27 respectively. On the contrary, if l11 < −2d211 holds, then B
has six interior lattice points and the origin is the only lattice point in the interior of the
simplex

conv(b0, (−1, 0, 0), (−1, 1, 0), (−1, 0, 1)).

For this situation we obtain l11 < 72.

Subcase d121 = 0 and d221 = 2. For large l11 ≥ 16, the polytope B contains six lattice
points other than the origin in its interior:

q1 := (−1, 0, 1), q2 := (−1, 1, 1), q3 := (−1, 0, 2),

q4 := (−2, 0, 2), q5 := (−2, 1, 2), q6 := (−2, 0, 3),

The origin is the only lattice point that lies in the interior of C := conv(b0, b1, b2, q1, q2).
We bound vol(C) = (2−4d211−2l11)/3 according to Theorem 2.4.4 and obtain l11 < 51.

Subcase d121 = 1 and d221 = 1. First note that in this subcase we can assume d111 ≤ d211

by admissible operations. If l11 ≥ −2d111 holds, then B◦ contains the following integral
points:

q1 := (−2, 1, 1), q2 := (−2, 2, 1), q3 := (−2, 1, 2), q4 := (−1, 1, 1).

Only the origin lies in conv(b0, b1, b2, q4) and bounding the volume of this simplex by
Theorem 2.4.4 we obtain l11 < 33. If −2d111 > l11 ≥ −2d211 holds, then two additional
points are in B:

q5 := (−1, 0, 1), q6 := (−1, 0, 2).

The origin is the only interior lattice point of conv(b0, b1, b2, q4, q5). Bounding its volume
by Theorem 2.4.4 we arrive at l11 < 24. Lastly, if l11 < −2d211, three additional point
lie in the interior of B, namely:

q7 := (−1, 0, 0), q8 := (−1, 1, 0), q9 := (−1, 2, 0).

Here the origin lies, as only interior lattice point, in the simplex conv(b0, q6, q7, q9) and
we arrive at l11 < 18. Considering the worst case we conclude l11 < 33.

Subcase d121 = 1 and d221 = 2. If l11 ≤ −2d111 − 1 holds, then B◦ contains only the
following four non-zero lattice points:

q1 := (−2, 1, 2), q2 := (−2, 2, 2),

q3 := (−2, 1, 3), q4 := (−1, 1, 1).

The origin lies, as only interior lattice point, in one of the two following simplices:

conv(b0, q4, b1, b2), conv(b0, q4, b1, b3).
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By bounding their volume accoring to Theorem 2.4.4 we arrive at l11 < 69 and l11 < 33
respectively. If l11 > −2d111−1 holds, then B◦ contains two new lattice points in addition
to the ones given above, namely:

q5 := (−1, 0, 1), q6 := (−1, 0, 2).

The origin lies in the polytope conv(b0, b1, b2, q4, q5) and is the only lattice point in its
interior, hence we obtain l11 < 51 by Theorem 2.4.4. By comparing all inequalities we
conclude l11 < 69.

Subcase d121 = 2 and d221 = 2. The polytope B has the origin and two other integral
points in its interior, namely q1 := (−1, 1, 1) and q2 := (−2, 2, 2). We define simplices
Ci := conv(q2, bj ; j 6= i) for i = 1, 2, 3. Note that q1, q2 and the origin all lie on a common
line. The point b0 does not lie on the same line, because otherwise l11 = 1 holds but P
is irredundant. Hence one of the Ci contains two interior lattice points and its volume
can be bounded according to Theorem 2.4.5. We have

vol(C1) =
1

2
d111 +

1

2
d211 +

3

2
l11 + 1, vol(C2) = vol(C3) = −1

2
d211 + 1.

The worst bound is obtained by C2, C3 and delivers l11 < 51.

Case (iv) of Lemma 2.4.1

Lemma 2.4.36. Let X = X(A,P ) be a non-toric terminal Q-factorial Fano threefold
with ρ(X) = 1 such that P is irredundant and we have r = 2, m = 1 and n = (2, 1, 1).
Then l01 = l02 = 1 hold.

Proof. Since P is irredundant, we have l11, l21 ≥ 2. Moreover ρ(X) = 1 holds, hence
cone(v0j , v11, v21), for j = 1, 2, are precisely the elementary big cones. Therefore Propo-
sition 2.3.1 applies and l01 = l02 = 1 holds.

Setting 2.4.37. Let X = X(A,P ) be a non-toric terminal Q-factorial Fano threefold
with ρ(X) = 1 such that P is irredundant and we have r = 2, m = 1 and n = (2, 1, 1).
By Lemma 2.4.36 we have l01 = l02 = 1 and after suitable admissible operations the
matrix P is of the form

P =


−1 −1 l11 0 0
−1 −1 0 l21 0

0 1 d111 d121 d′11

0 0 d211 d221 d′21

 ,
where the following relations hold

2 ≤ l21 ≤ l11, 0 ≤ d121, d221 < l21,

0 ≤ d′11 < d′21, gcd(d′11, d
′
21) = 1.
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Moreover, denoting by Pα the matrix obtained by removing the column vα from P , we
have positive weights

w01 := det(P01), w02 := −det(P02),

w11 := det(P11), w21 := −det(P21), w1 := det(P1).

Lemma 2.4.38. Let X = X(A,P ) be as in Setting 2.4.37. The vertices of AcX,0, regarded
as a subset of the lineality space Q2 of the tropical variety, are

u1 :=

[
l11d121 + l21d111

l11 + l21
,
l11d221 + l21d211

l11 + l21

]
,

u2 :=

[
l11d121 + l21d111 + l11l21

l11 + l21
,
l11d221 + l21d211

l11 + l21

]
,

u3 :=
[
d′11, d

′
21

]
.

Proof. We just compute the lineality part AcX,0 according to Corollary 2.2.11.

Remark 2.4.39. Observe that AcX,0 as described in Lemma 2.4.38 is a triangle. The
edge c := u1u2 is parallel to the x-axis, lies underneath it and has length and height

|c| =
l11l21

l11 + l21
≥ 1, h(c) =

−w1

l11 + l21
.

The third vertex u3 is a lattice point that lies in the first orthant, above the bisection.

c

0

u1 u2

u3

h(c)

Remark 2.4.40. Let X = X(A,P ) be as in Setting 2.4.37. Positivity of w02 and w1

deliver respectively

d111 < − l11

l21
d121, d211 < − l11

l21
d221.

Moreover, positivity of w01 yields

d111 > − l11

l21
d121 − l11 +

d′11

d′21

(
d211 +

l11

l21
d221

)
.
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Remark 2.4.41. Let X = X(A,P ) be as in Setting 2.4.37. The condition h(c) > −t
for some given t ∈ Q>0 is equivalent to

d211 > − l11

l21
(d221 + t)− t.

Lemma 2.4.42. Let X = X(A,P ) be as in Setting 2.4.37. Then the following holds:

l11l21

l11 + l21
< 4.

In particular we have l21 ≤ 7 and, for l21 ≥ 5, we bound l11 via

l11 <
4l21

l21 − 4
.

Proof. If h(c) > −1 holds, the assertion follows since the length of AcX,0 ∩ {y = 0} is
smaller than 2. If h(c) ≤ −1 holds, then the assertion follows from the more restrictive
fact that at height dh(c)e the intersection of the lineality part is shorter than 1.

Remark 2.4.43. Let X = X(A,P ) be as in Setting 2.4.37. If h(c) > −1 and |c| > 1,
then terminality prevents integral points from lying in the intersection of the lineality
part with {y = 1}. This implies

d′21 <
l11l21 + l11 + l21

l11l21 − l11 − l21
≤ 11.

Proposition 2.4.44. Let X = X(A,P ) be as in Setting 2.4.37. Assume d′21 > 1 and
h(c) ≤ −1. Then l11 = 3, l21 = 2, 0 ≤ d121, d221 < 2, (d′11, d

′
21) ∈ {(1, 2), (1, 3), (2, 3)}

and we have following estimates

−3

2
d221 +

5

2
(d′21 − 6) < d211 < − 3

2
d221,

−3

2
d121 − 3 +

d′11

d′21

(
d211 +

3

2
d221

)
< d111 < − 3

2
d121.

Proof. First note that h(c) < −1 holds, since |c| ≥ 1. The lineality part AcX,0 has a
non-empty intersection with {y = 2} since d′21 ≥ 2. At height {y = −1} it has a width
smaller than one, by terminality. Since h(c) < −1 holds, we conclude

l11l21

l11 + l21
<

4

3
.

This implies already l21 = 2 and l11 = 2, 3.
Case l11 = 2: here |c| = 1 holds and two of the vertices are

u1 =
(1

2
d111 +

1

2
d121 ,

1

2
d211 +

1

2
d221

)
, u2 = u1 + (1, 0).
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We assume h(c) to be non-integral, otherwise we have a lattice point on c itself. Nonethe-
less an integral point q always lies in the interior of conv(u1, u2, 0) ⊂ AcX,0, precisely at
height h(c) + 1/2. It can be given explicitly as q := αu1 + βu2 where

α := −k
2

+
d111 + d121 + 2

2(d211 + d221)
, β := 1 +

k

2
− d111 + d121

2(d211 + d221)

for an appropriate k ∈ Z≥0 that makes 0 ≤ α, β < 1 and

q =
(1

2
d111 +

1

2
d121 +

k

2
+ 1 , h(c) +

1

2

)
an integral point. Hence this case does not provide terminal varieties.

Case l11 = 3: here we have |c| = 6/5. To avoid lattice points in the lineality part at
height dh(c)e we obtain d′21 < 4. In particular, for d′21 = 2 we have h(c) > −4 and for
d′21 = 3 we have h(c) > −3. Remarks 2.4.40 and 2.4.41 deliver the estimates for d111 and
d211.

Proposition 2.4.45. Let X = X(A,P ) be as in Setting 2.4.37 Assume d′21 > 1 and
h(c) > −1. Then d′11 > 0, l11 ≥ l21 and 0 ≤ d121, d221 < l21. Moreover l21 ≤ 5 holds and
we are in one of the following situations:
(i) l21 = 2, d′21 = 2, . . . , 10 and d′11 ∈ {1, d′21 − 1}.

For d′21 = 2, 3 we obtain bounds for l11 according to the table

u3 (1, 2) (1, 3) (2, 3)

d121 0 1 1 0 1 1 0 1 1
d221 1 0 1 1 0 1 1 0 1

l11 ≤ 24 − ≤ 24 ≤ 15 ≤ 69 − − ≤ 51 ≤ 15

.

For the other values of d′21 we have

l11 < 2 · d
′
21 + 1

d′21 − 2
.

(ii) l21 = 3, u3 ∈ {(1, 2), (1, 3), (2, 3), (3, 4)} and the exponent l11 is bounded according
to the table:

u3 (1, 2) (1, 3) (2, 3) (3, 4)

l11 ≤ 14 ≤ 4 ≤ 4 = 3
.

(iii) l21 = 4, 5 and we have the estimates:

l11 <
3l21

l21 − 3
u3 = (1, 2).

In all these situations d111 and d211 are bounded by Remarks 2.4.40 and 2.4.41.
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Proof. Remarks 2.4.40 and 2.4.41 provide bounds for d111 and d211. Now consider the
lineality part AcX,0. It has a non-empty intersection with {y = 2} since d′21 ≥ 2. At
height {y = 1} it has a width smaller than one, by terminality. Since h(c) > −1 holds,
we conclude

l11l21

l11 + l21
< 3.

This implies l21 ≤ 5.

Case l21 = 4, 5: the same inequality bounds l11, with 11 and 7 respectively. With
Remark 2.4.43 we conclude d′21 = 2 and thus d′11 = 1.

Case l21 = 3: here Remark 2.4.43 delivers d′21 ≤ 4. For u3 ∈ {(1, 3), (1, 4)}, the fact
that the lineality part does not contain (0, 1) means that it cuts the x-axis right from
the point (

− 1

d′21 − 1
, 0
)
.

To avoid the point (1, 0) we get

l11 <
3

2
· d
′
21 + 1

d′21 − 2
≤ 6.

The same reasoning and result holds for u3 ∈ {(2, 3), (3, 4)}, by taking the integral point
(1, 1) instead of (0, 1).
Hence assume u3 = (1, 2). Consider the leaf C := AcX ∩ λ2. If d121 + d221 = 3 holds, we
show that C contains an integral point and hence X is not terminal. Otherwise, we give
a rational point q0 in the lineality space λ such that

1

3
· v21 +

2

3
· q0 = q1

holds for some integral point q1. By terminality we must impose q0 /∈ AcX,0. Herewith
we obtain a sharper bound on |c|, which in turn delivers a bound on l11. When this is
the case, we simply provide the points q0, q1 and the estimates for |c| and l11.
Subcase d121 = 0, d221 = 1: with q0 := (0, 0, 0,−1/2) and q1 := (0, 1, 0, 0) we obtain
|c| < 5/2, hence l11 < 15.
Subcase d121 = 0, d221 = 2: with q0 := (0, 0, 0, 1/2) and q1 := (0, 1, 0, 1) we obtain |c| < 2,
hence l11 < 6.
Subcase d121 = 1, d221 = 0: with q0 := (0, 0,−1/2, 0) and q1 := (0, 1, 0, 0) we obtain
|c| < 9/4, hence l11 < 9.
Subcase d121 = 1, d221 = 1: with q0 := (0, 0,−1/2,−1/2) and q1 := (0, 1, 0, 0) we obtain
|c| < 9/5, hence l11 < 5.
Subcase d121 = 1, d221 = 2: on the segment conv(v21, v1) ⊂ AcX,0 lie the lattice points
(−2, 1, 2) and (−1, 1, 2), contradicting terminality.
Subcase d121 = 2, d221 = 0: with q0 := (0, 0, 1/2, 0) and q1 := (0, 1, 1, 0) we obtain
|c| < 9/4, hence l11 < 9.
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Subcase d121 = 2, d221 = 1: the lattice point (1, 1, 1) lies in conv(0, v21, v1) ⊂ AcX,0. Thus
the corresponding varieties are not terminal.
Subcase d121 = 2, d221 = 2: with q0 := (0, 0, 1/2, 1/2) and q1 := (0, 1, 1, 1) we obtain
|c| < 2, hence l11 < 6.

Case l21 = 2, l11 ≥ 3: since |c| > 1, Remark 2.4.43 yields l21 ≤ 10. The length of the
segment AcX,0 ∩ {y = 0} is at least

l11l21

l11 + l21
· d′21

d′21 + 1
≥ 6

5
· d′21

d′21 + 1
=: t.

Consider the triangles:

Al = conv((0, 0), u3, (−t/2, 0)),

Ar = conv((0, 0), u3, (t/2, 0)).

At least one between Al and Ar is subset of the lineality part AcX,0. For any u3 =
(d′11, d

′
21) with d′11 /∈ {1, d′21 − 1} both Al and Ar contain integral points, a contradiction

to terminality. If d′11 = {1, d′21−1} holds and d′21 ≥ 4, then we look at the intersection of
AcX,0 with the x-axis. The fact that this segment does not contain integral points other
than the origin delivers the bounding condition

l11 < 2 · d
′
21 + 1

d′21 − 2
.

We still need to handle following possibilities for u3:

(1, 2), (1, 3), (2, 3).

We go through all combinations of u3, d121 and d221 and provide constraints on l11 based
on volumes of appropriate lattice polytopes. For this purpose consider the convex hull
B in Q3 of the following points:

b0 := (l11, d111, d211), b3 := (0, d′11, d
′
21),

b1 := (−2, d121, d221), b2 := (−2, d121 + 2, d221).

Put the leaf AcX∩λ1 of the anticanonical complex into Q3 by removing the first coordinate
(which always equals zero) from its points. For a = 0,−1,−2, consider

H+
a := {(x, y, z); x ≥ a} ⊆ Q3, H0

a := {(x, y, z); x = a} ⊆ Q3.

Then B ∩ H+
0 equals AcX ∩ λ1 and H0

0 cuts out the lineality part AcX,0. In particular,
by terminality of X and Theorem 2.1.10, the intersection B ∩H+

0 has no interior lattice
point and inside B ∩H0

0 the origin is the only lattice point. Other interior lattice points
of B may only appear in B ∩H0

−1.
Subcase u3 = (1, 2), d221 = 1: the simplex B contains only the origin and (−1, 1, 1) as
lattice points. With Theorem 2.4.5 we arrive at l11 < 25.
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Subcase u3 = (1, 2), d121 = 1, d221 = 0: here the point (0, 1, 1, 1) lies on the segment
joining v21 and v1, hence contradicting terminality.
Subcase u3 = (1, 3), d121 = 0, d221 = 1: the origin and (−1, 1, 1) are the only lattice
points in the interior of B. We apply Theorem 2.4.5 and conclude l11 < 16.
Subcase u3 = (1, 3), d121 = 1, d221 = 0: here B◦ contains two lattice points other than
the origin, namely q1 := (−1, 1, 0) and q2 := (−1, 1, 1). The origin and q1 lie in the union
of the simplices

conv(b0, b1, b2, q2), conv(b0, b1, b3, q2).

We bound l11 by considering the worse of the two estimates obtained by applying Theo-
rem 2.4.5. This returns l11 < 70 for both polytopes.
Subcase u3 = (1, 3), d121 = 1, d221 = 1: we find the lattice point (0, 1, 1, 2) between v21

and v1. Thus terminality is not fulfilled.
Subcase u3 = (2, 3), d121 = 0, d221 = 1: the point (0, 1, 1, 2) lies on the segment joining
v21 and v1, hence contradicting terminality.
Subcase u3 = (2, 3), d121 = 1, d221 = 0: here B◦ contains two lattice points other than
the origin, namely q1 := (−1, 1, 0) and q2 := (−1, 2, 1). The origin and q1 lie in the union
of the simplices

conv(b0, b1, b2, q2), conv(b0, b1, b3, q2).

We bound l11 by considering the worse of the two estimates obtained by applying Theo-
rem 2.4.5. This gives l11 < 42 and l11 < 52, respectively.
Subcase u3 = (2, 3), d121 = 1, d221 = 1: the origin and (−1, 1, 1) are the only lattice
points in the interior of B. We apply Theorem 2.4.5 and conclude l11 < 16.

Case l21 = 2, l11 = 2: the vertices u1 and u2 are half-integral points. The segment c
has length equal to 1 and height h(c) > −1. Terminality yields h(c) = −1/2, hence
d211 = −d221− 1. The bounds already found on d111 allow only two values for it, namely
−d121 − 1 and −d121 − 2. For d111 = −d121 − 1 we have d′11 = 1 (to avoid points of
the type (1, k) in the lineality part, for some k ∈ Z≥0) and consequently d′21 = 2, 3, to
prevent (0, 1) from lying in AcX,0. For d111 = −d121 − 2, the only choices for u3 that
do not include (1, 2) and (1, 1) in the lineality part AcX,0 are the points (1, 2) and (2, 3).
These situations are already included in the estimates of the assertion.

Proposition 2.4.46. Let X = X(A,P ) be as in Setting 2.4.37 and assume d′21 = 1.
Then we have d′11 = 0, l11 ≥ l21, 0 ≤ d121, d221 < l21 and

− l11

l21
d121 − l21 < d111 < − l11

l21
d121,

− l11

l21
(d221 + 1)− 1 < d211 < − l11

l21
d221.

Moreover, l21 ≤ 7 holds and l11 is bounded according to the table

l21 2 3 4 5 6 7

l11 ≤ 51 ≤ 105 ≤ 11 ≤ 19 ≤ 11 ≤ 9
.
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Proof. Since the origin is contained in the relative interior of AcX,0 and u3 = (0, 1) holds,
u1 has a negative y-value and u2 a positive one. Therefore c intersects the y-axis and
h(c) > −1 follows, in order to avoid the point (0,−1). Remarks 2.4.40 and 2.4.41 deliver
the bounds for d111 and d211. Now we still need to bound the exponents l11 and l21.
Lemma 2.4.42 implies l21 ≤ 7 and gives an explicit bound for l11 in the cases l21 = 5, 6, 7.
For l21 = 2, 3, 4 define the lattice simplex B ⊂ Q3 as the convex hull over following
points:

b1 := (−l21, d121, d221), b2 := (−l21, d121 + l21, d221),

b3 := (0, 0, 1), b0 := (l11, d111, d211).

Consider the leaf AcX,0 ∩ λ1 as a subset of Q3 by ignoring the second coordinate, which
always equals zero. For a = −l21, . . . , 0 define

H+
a := {(x, y, z); x ≥ a} ⊆ Q3, H0

a := {(x, y, z); x = a} ⊆ Q3.

Then B ∩H+
0 equals AcX ∩ λ1 and H0

0 cuts out the lineality part AcX,0. By terminality,
B ∩H+

0 does not contain lattice points and the origin is the only lattice point in AcX,0.
We go through all finitely many possible b1 and look for polytopes with precisely one or
two interior lattice points, in order to bound their volumes and obtain bounds on l11.

Case l21 = 2, d121 = 0, d221 = 1: the the origin is the only interior lattice point of B,
hence vol(B) is bounded according to Theorem 2.4.4 and we reach l11 < 34.
Case l21 = 2, d121 = 1, d221 = 0: B◦ contains exactly two lattice points, namely the
origin and (−1, 1, 0). Its volume is bounded by 18 according to Theorem 2.4.5 and we
obtain l11 < 52.
Case l21 = 2, d121 = 1, d221 = 1: the simplex B has the origin as only interior lattice
point. By Theorem 2.4.4 we arrive at l11 < 34.

Case l21 = 3, d121 = 0, d221 = 1: the point (0, 1, 0, 1) lies in on the segment that connects
v21 with v1, contradicting terminality.
Case l21 = 3, d121 = 0, d221 = 2: the point (0, 1, 0, 1) lies in conv(0, v21, v1) ⊂ AcX,0, thus
contradicting terminality.
Case l21 = 3, d121 = 1, d221 = 0: three non-zero lattice points lie always in B◦, namely

q1 := (−2, 1, 0), q2 := (−2, 2, 0), q3 := (−1, 1, 0).

If d211 ≤ 2d111 + l11 + 1 holds, then they are the only ones and conv(b0, b1, b3, q3) has the
origin as only interior lattice point. Bounding its volume with 12 we arrive at l11 < 105.
If d211 > 2d111 + l11 + 1 holds, the point q4 := (−1, 0, 0) also lies in B◦. We bound the
volume of conv(b0, b2, b3, q4), which contains the origin and q3 an only interior lattice
points, and arrive at l11 < 78.
Case l21 = 3, d121 = 1, d221 = 1: if 2d211 ≥ −l11− 1 holds, then B contains the origin as
only interior lattice point and Theorem 2.4.4 yields l11 < 21. If 2d211 < −l11 − 1 holds,
then q := (−1, 1, 0) lies also in B◦, together with one between (−1, 0, 0) or (−1, 2, 0).
The simplices conv(b0, b1, b3, q) and conv(b0, b2, b3, q) contain at most two interior lattice
points and one of the contains the origin. With Theorem 2.4.5 we conclude l11 < 106.
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Case l21 = 3, d121 = 1, d221 = 2: other than the origin, B◦ contains only the lattice
point (−1, 1, 1). Hence we can directly apply Theorem 2.4.5 and obtain l11 < 33.
Case l21 = 3, d121 = 2, d221 = 0: three non-zero lattice points lie always in B, namely

q1 := (−2, 2, 0), q2 := (−2, 3, 0), q3 := (−1, 1, 0).

If d211 +2d111 +3l11 ≤ 1 holds, then they are the only ones and conv(b0, b1, b3, q3) has the
origin as only interior lattice point. Bounding its volume with 12 we arrive at l11 < 31.
If d211 + 2d111 + 3l11 ≥ 2 holds, the point q4 := (−1, 2, 0) also lies in B◦. We bound
the volume of conv(b0, b1, b3, q4), which contains the origin and q3 an only interior lattice
points, and arrive at l11 < 78.
Case l21 = 3, d121 = 2, d221 = 1: here the exact same process works as in case l21 = 3,
d121 = 1, d221 = 1.
Case l21 = 3, d121 = 2, d221 = 2: other than the origin, B contains only the lattice point
(−1, 1, 1). Hence we can directly apply Theorem 2.4.5 and obtain l11 < 33.

Case l21 = 4: here we only work with the leaf C := AcX ∩ λ2. If d121 is even, then we
can always show that C contains an integral point and hence X is not terminal. If d121

is odd, we give a rational point q0 in the lineality space λ such that

1

4
· v21 +

3

4
· q0 = q1

holds for some integral point q1. By Theorem 2.1.10 we must impose q0 /∈ AcX,0. As
a consequence we obtain a sharper bound on |c|, which in turn delivers a bounding
condition on l11. When this is the case, we simply provide the points q0, q1 and the
estimates for |c| and l11.
Case l21 = 4, d121 = 0, d221 = 1: the point (0, 2, 0, 1) lies between v21 and v1.
Case l21 = 4, d121 = 0, d221 = 3: the point (0, 2, 0, 2) lies between v21 and v1.
Case l21 = 4, d121 = 1, d221 = 0: with q0 := (0, 0,−1/3, 0) and q1 := (0, 1, 0, 0) we obtain
|c| < 8/3, hence l11 < 8.
Case l21 = 4, d121 = 1, d221 = 1: with q0 := (0, 0,−1/3,−1/3) and q1 := (0, 1, 0, 0) we
obtain |c| < 5/2, hence l11 < 7.
Case l21 = 4, d121 = 1, d221 = 2: with q0 := (0, 0,−1/3,−2/3) and q1 := (0, 1, 0, 0) we
obtain |c| < 12/5, hence l11 < 6.
Case l21 = 4, d121 = 1, d221 = 3: with q0 := (0, 0,−1/3, 1/3) and q1 := (0, 1, 0, 1) we
obtain |c| < 3, hence l11 < 12.
Case l21 = 4, d121 = 2, d221 = 1: the point (0, 2, 1, 1) lies between v21 and v1.
Case l21 = 4, d121 = 2, d221 = 3: the point (0, 2, 1, 2) lies between v21 and v1.
Case l21 = 4, d121 = 3, d221 = 0: with q0 := (0, 0, 1/3, 0) and q1 := (0, 1, 1, 0) we obtain
|c| < 8/3, hence l11 < 8.
Case l21 = 4, d121 = 3, d221 = 1: with q0 := (0, 0, 1/3,−1/3) and q1 := (0, 1, 1, 0) we
obtain |c| < 5/2, hence l11 < 7.
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Case l21 = 4, d121 = 3, d221 = 2: with q0 := (0, 0, 1/3,−2/3) and q1 := (0, 1, 1, 0) we
obtain |c| < 12/5, hence l11 < 6.
Case l21 = 4, d121 = 3, d221 = 3: with q0 := (0, 0, 1/3, 1/3) and q1 := (0, 1, 1, 1) we
obtain |c| < 3, hence l11 < 12.

2.5 Classification

Theorem 2.5.1. The following table lists the Cox rings R(X) of the non-toric rational
terminal Q-factorial Fano threefolds X with ρ(X) = 1 and an effective two-torus action;
the Cl(X)-degrees of the generators T1, . . . , Tr are denoted as columns wi ∈ Cl(X) of a
matrix [w1, . . . , wr].

No. R(X) Cl(X) [w1, . . . , wr]

1.01 K[T1, . . . , T5]/〈T1T2 + T3T4 + T 2
5 〉 Z [ 1 1 1 1 1 ]

1.02 K[T1, . . . , T5]/〈T1T2 + T3T4 + T 2
5 〉 Z [ 1 5 2 4 3 ]

1.03 K[T1, . . . , T5]/〈T1T2 + T3T4 + T 2
5 〉 Z⊕ Z/5Z

[
1 1 1 1 1
2 3 1 4 0

]
1.04 K[T1, . . . , T5]/〈T1T2 + T3T4 + T 3

5 〉 Z [ 1 5 3 3 2 ]

1.05 K[T1, . . . , T5]/〈T1T2 + T3T4 + T 4
5 〉 Z [ 1 3 2 2 1 ]

1.06 K[T1, . . . , T5]/〈T1T2 + T3T4 + T 4
5 〉 Z⊕ Z/2Z

[
1 3 2 2 1
1 1 1 1 0

]
1.07 K[T1, . . . , T5]/〈T1T2 + T3T4 + T 6

5 〉 Z [ 2 4 3 3 1 ]

1.08 K[T1, . . . , T5]/〈T1T2 + T 2
3 T4 + T 2

5 〉 Z [ 1 3 1 2 2 ]

1.09 K[T1, . . . , T5]/〈T1T2 + T 2
3 T4 + T 2

5 〉 Z [ 1 5 2 2 3 ]

1.10 K[T1, . . . , T5]/〈T1T2 + T 2
3 T4 + T 2

5 〉 Z [ 3 7 4 2 5 ]

1.11 K[T1, . . . , T5]/〈T1T2 + T 2
3 T4 + T 3

5 〉 Z [ 2 1 1 1 1 ]

1.12 K[T1, . . . , T5]/〈T1T2 + T 2
3 T4 + T 3

5 〉 Z [ 3 3 1 4 2 ]

1.13 K[T1, . . . , T5]/〈T1T2 + T 2
3 T4 + T 3

5 〉 Z⊕ Z/3Z
[
2 1 1 1 1
1 2 1 1 0

]
1.14 K[T1, . . . , T5]/〈T1T2 + T 2

3 T4 + T 6
5 〉 Z [ 3 3 2 2 1 ]

1.15 K[T1, . . . , T5]/〈T1T2 + T 2
3 T

2
4 + T 2

5 〉 Z⊕ Z/2Z
[
1 3 1 1 2
1 1 0 0 1

]
1.16 K[T1, . . . , T5]/〈T1T2 + T 2

3 T
2
4 + T 3

5 〉 Z [ 3 3 2 1 2 ]

1.17 K[T1, . . . , T5]/〈T1T2 + T 3
3 T4 + T 2

5 〉 Z [ 1 3 1 1 2 ]

1.18 K[T1, . . . , T5]/〈T1T2 + T 3
3 T4 + T 2

5 〉 Z [ 2 4 1 3 3 ]

1.19 K[T1, . . . , T5]/〈T1T2 + T 3
3 T4 + T 2

5 〉 Z [ 3 7 2 4 5 ]

1.20 K[T1, . . . , T5]/〈T1T2 + T 3
3 T4 + T 2

5 〉 Z⊕ Z/2Z
[
1 3 1 1 2
1 1 0 0 1

]
1.21 K[T1, . . . , T5]/〈T1T2 + T 3

3 T4 + T 4
5 〉 Z [ 2 2 1 1 1 ]

1.22 K[T1, . . . , T5]/〈T1T2 + T 3
3 T4 + T 4

5 〉 Z⊕ Z/2Z
[
2 2 1 1 1
1 1 1 1 0

]
1.23 K[T1, . . . , T5]/〈T1T2 + T 3

3 T
2
4 + T 2

5 〉 Z [ 3 5 2 1 4 ]
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1.24 K[T1, . . . , T5]/〈T1T2 + T 3
3 T

3
4 + T 2

5 〉 Z [ 2 4 1 1 3 ]

1.25 K[T1, . . . , T5]/〈T1T2 + T 4
3 T4 + T 3

5 〉 Z [ 3 3 1 2 2 ]

1.26 K[T1, . . . , T5]/〈T1T2 + T 4
3 T

2
4 + T 3

5 〉 Z [ 3 3 1 1 2 ]

1.27 K[T1, . . . , T5]/〈T1T2 + T 5
3 T4 + T 2

5 〉 Z [ 2 4 1 1 3 ]

1.28 K[T1, . . . , T5]/〈T1T2 + T 5
3 T4 + T 3

5 〉 Z [ 3 3 1 1 2 ]

1.29 K[T1, . . . , T5]/〈T1T2 + T 6
3 T4 + T 2

5 〉 Z [ 3 5 1 2 4 ]

1.30 K[T1,...,T6]
〈T1T2+T3T4+T 2

5 ,aT3T4+T 2
5 +T 2

6 〉
Z⊕ Z/2Z

[
1 1 1 1 1 1
1 1 0 0 1 0

]
1.31 K[T1, . . . , T5]/〈T1T2T3 + T 3

4 + T 2
5 〉 Z [ 1 1 4 2 3 ]

1.32 K[T1, . . . , T5]/〈T1T2T3 + T 3
4 + T 2

5 〉 Z [ 2 3 1 2 3 ]

1.33 K[T1, . . . , T5]/〈T1T2 + T 2
3 + T 2

4 〉 Z⊕ Z/2Z
[
2 4 3 3 1
1 1 1 0 0

]
1.34 K[T1, . . . , T5]/〈T1T2 + T 3

3 + T 2
4 〉 Z [ 1 5 2 3 1 ]

1.35 K[T1, . . . , T5]/〈T1T2 + T 3
3 + T 2

4 〉 Z [ 1 5 2 3 2 ]

1.36 K[T1, . . . , T5]/〈T1T2 + T 3
3 + T 2

4 〉 Z [ 1 5 2 3 3 ]

1.37 K[T1, . . . , T5]/〈T1T2 + T 3
3 + T 2

4 〉 Z [ 1 5 2 3 4 ]

1.38 K[T1, . . . , T5]/〈T1T2 + T 3
3 + T 2

4 〉 Z [ 5 7 4 6 1 ]

1.39 K[T1, . . . , T5]/〈T1T2 + T 3
3 + T 2

4 〉 Z [ 5 7 4 6 3 ]

1.40 K[T1, . . . , T5]/〈T1T2 + T 3
3 + T 3

4 〉 Z⊕ Z/3Z
[
1 2 1 1 1
1 2 2 0 0

]
1.41 K[T1, . . . , T5]/〈T1T2 + T 4

3 + T 2
4 〉 Z⊕ Z/2Z

[
1 3 1 2 1
1 1 0 1 0

]
1.42 K[T1, . . . , T5]/〈T1T2 + T 4

3 + T 2
4 〉 Z⊕ Z/2Z

[
1 3 1 2 2
1 1 0 1 1

]
1.43 K[T1, . . . , T5]/〈T1T2 + T 4

3 + T 3
4 〉 Z [ 5 7 3 4 1 ]

1.44 K[T1, . . . , T5]/〈T1T2 + T 4
3 + T 3

4 〉 Z [ 5 7 3 4 2 ]

1.45 K[T1, . . . , T5]/〈T1T2 + T 5
3 + T 2

4 〉 Z [ 3 7 2 5 1 ]

1.46 K[T1, . . . , T5]/〈T1T2 + T 5
3 + T 2

4 〉 Z [ 3 7 2 5 4 ]

1.47 K[T1, . . . , T5]/〈T1T2 + T 6
3 + T 2

4 〉 Z⊕ Z/2Z
[
2 4 1 3 1
1 1 1 0 0

]
where a ∈ K∗ \ {1} in No. 1.30. Any two of the Cox rings listed in the table correspond
to non-isomorphic varieties. No. 1.01 is the only smooth one.

Proof. By Lemma 2.4.1 there are only four possible cases for the matrix P defining a
terminal Q-factorial Fano threefold X = X(A,P ) with effective two-torus action and
Picard number ρ(X) = 1. The Propositions listed in the last column of the table of
Remark 2.4.2 give bounds on all entries of P in all cases. Among all of these candidates,
one can figure out the terminal ones by checking the condition of Theorem 2.1.10 (v);
we do it by computer using [25], where the anticanonical complex AcX is implemented.
By comparing the data, one directly sees that any two varieties listed above are non-
isomorphic.
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Appendix A contains detailed information about all varieties of Theorem 2.5.1; in par-
ticular one finds possible defining matrices P .

Remark 2.5.2. For K = C, any Fano variety X with at most log terminal singularities,
has finitely generated divisor class group Cl(X); see [31, Sec. 2.1]. If X comes in addition
with a torus action of complexity one, then X is rational and its Cox ring is finitely
generated; see [1, Remark 4.4.1.5].

Remark 2.5.3. By Remark 2.5.2, the assumption of rationality can be omitted in The-
orem 2.5.1, for K = C. Alternatively, rationality can be replaced by the property “Cl(X)
is finitely generated”.





CHAPTER

THREE

COMBINATORIALLY MINIMAL TERMINAL FANO
THREEFOLDS OF COMPLEXITY ONE

In the work [34] of A. Kasprzyk, one of the steps in the classification of terminal Fano
toric threefolds consists in finding all minimal terminal Fano polytopes, i.e. those that
do not contain any smaller terminal Fano polytope. These correspond to varieties that
do not admit the contraction of a prime divisor. From the minimal polytopes one can
obtain all others systematically. Following the same line, we study here terminal Fano
threefolds of complexity one that do not admit the contraction of a prime divisor.

In Section 3.1 we introduce the concept of combinatorial minimality, with focus on the
(Fano) varieties of complexity one. Section 3.2 specializes to the three-dimensional case
and provides a bound on the Picard number in the Q-factorial terminal situation. Sec-
tion 3.3 is dedicated to the actual classification work. Its results are given in Section 3.4.

3.1 Combinatorially minimal T -varieties of complexity one

A small quasimodification is a birational mapX 99K X ′ of complete varieties that restricts
to a regular isomorphism U → U ′ between open subsets U ⊆ X and U ′ ⊆ X ′ having
complements of codimension at least two in X and X ′ respectively. We say that a Mori
dream space X is combinatorially minimal if it has no contractible prime divisors in the
sense that any birational map X 99K X ′ which is defined in codimension two is a small
quasimodification.

Remark 3.1.1. A projective Mori dream space X is combinatorially minimal if and only
if its cone of movable divisor classes coincides with its cone of effective divisor classes.
In particular for a variety X = X(A,P, u) of complexity one, this precisely means that
every extremal ray of the effective cone Eff(X) ⊆ ClQ(X) hosts the degrees of at least
two of the generators Tij , Sk of the Cox ring R(X) = R(A,P ), see [23].

In the following we give a characterization for the defining matrix P of a combinatorially
minimal variety X = X(A,P, u). Moreover we derive bounds on the Picard number in
the case where the variety is also Q-factorial, log terminal and Fano.

71
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First we recall the result [1, Lemma 2.2.3.2]. Consider two mutually dual exact sequences
of finite dimensional rational vector spaces

0

0

LQ

KQ

FQ

EQ

NQ

MQ

0

0
Q

Denote by (f1, . . . , fr) a basis for FQ and by (e1, . . . , er) its dual basis for EQ. Moreover
define δ := cone(f1, . . . , fr) and γ := cone(e1, . . . , er). We call an element e ∈ EQ an
LQ-invariant separating linear form for δ1, δ2 � δ if

e|LQ = 0, e|δ1 = 0, e|δ2 = 0, δ1 ∩ e⊥ = δ2 ∩ e⊥ = δ1 ∩ δ2.

Lemma 3.1.2 (Invariant Separation Lemma [1, Lemma 2.2.3.2]). Consider δ1, δ2 � δ
and their corresponding faces γi := δ⊥i ∩ γ � γ. Then the following statements are
equivalent:
• there exists an LQ-invariant separating linear form for δ1, δ2;
• Q(γ1)◦ ∩Q(γ2)◦ 6= ∅.

Consider the weights wij := deg(Tij) and wk := deg(Sk). We call a variable Tij , Sk
extremal if its weight wij , wk ∈ ClQ(X) sits on an extremal ray of the effective cone
Eff(X) ⊆ ClQ(X). Moreover, we call a weight w ∈ {wij , wk} exceptional , if Q≥0w is an
extremal ray of Eff(X) and no other weight lies on Q≥0w. All variables with exceptional
weights are extremal, but the converse does not hold. Note that, by Remark 3.1.1, X is
combinatorially minimal if and only if no weight is exceptional.

Only in this Section, we rename the weights w1, . . . , wn+m and let v1, . . . , vn+m be the
corresponding columns of P .

Lemma 3.1.3. The weight w ∈ {wij , wk} is exceptional if and only if Qr+s is already
generated as a cone by all columns of P except the one that corresponds to w.

Proof. An exceptional weight wi is characterized by the fact that cone(wj ; j 6= i) and
cone(wi) allow a separating linear form. By the Invariant Separation Lemma 3.1.2, this
is equivalent to the fact that the corresponding Gale dual cones intersect in their relative
interiors, i.e.

cone(vj ; j 6= i)◦ ∩ cone(vi)
◦ 6= ∅.

This is the case if and only if vi ∈ cone(vj ; j 6= i)◦ holds. Since the cone over all columns
is Qr+s, the last condition is equivalent to cone(vj ; j 6= i) = Qr+s.

Proposition 3.1.4. The variety X = X(A,P, u) is combinatorially minimal if and only
if for every column v% of P the following holds:

cone(v%′ ; %
′ ∈ Σ(1) \ {%}) 6= Qr+s.

Proof. The assertion follows directly from Lemma 3.1.3.
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Given a matrix P and an index-set I ⊂ Z≥1, we denote with PI the matrix obtained
from P by deleting the i-th column, for all i ∈ I.

Corollary 3.1.5. Let X = X(A,P, u) be a Q-factorial projective variety of complexity
one with Picard number ρ(X) ≥ 2. Assume that cone(wi) = cone(wj) holds for two
weights wi, wj, with i 6= j. Then det(PI) = 0 holds for every I ⊂ {1, . . . , n + m} such
that i, j ∈ I and |I| = ρ(X).

Proof. Since X is Q-factorial, we have n+m = r + s+ ρ(X). Define

τi :=cone(v1, . . . , v̂i, . . . , vn+m),

τj :=cone(v1, . . . , v̂j , . . . , vn+m).

According to Lemma 3.1.3 neither of them equals Qr+s. Moreover, by the Invariant
Separation Lemma, there is a linear form separating them, i.e. τi ∩ τj is a proper face
of both cones. This means that τi ∩ τj = cone(v1, . . . , v̂i, . . . , v̂j , . . . , vn+m) is not full-
dimensional. In particular any collection of r + s columns of P that does not contain vi
nor vj is linearly dependent.

We turn to bounding conditions on the Picard number. In the sequel, let α denote the
difference between the number of extremal rays of the effective cone Eff(X) and the
Picard number ρ(X).

Lemma 3.1.6. Let X = X(A,P, u) be combinatorially minimal and Q-factorial. Then
one of the following holds:
• dim(X) ≥ ρ(X) and m ≥ 2ρ(X)− 2;
• dim(X) ≥ α+ 2 +m/2 and m < 2ρ(X)− 2.

Proof. The effective cone Eff(X) ⊆ ClQ(X) is of full dimension and has ρ(X)+α vertices.
SinceX is combinatorially minimal, the number n+m of variables Tij , Sk is bounded from
below by n+m ≥ 2ρ(X) + 2α. If the number m of variables Sk satisfies m ≥ 2ρ(X)− 2,
then the assertion follows from

dim(X) = n+m+ 2− (r + 1)− ρ(X) ≥ m+ 2− ρ(X) ≥ ρ(X).

So, consider the case m < 2ρ(X)− 2. There are at least two extremal variables of type
Tij having their weights on different rays and we have in total at least 2ρ(X) + 2α−m
extremal variables of type Tij . For each of these Tij , we must have ni ≥ 2. This gives

n− (r + 1) = (n0 − 1) + . . .+ (nr − 1) ≥ 2ρ(X) + 2α−m
2

.

The assertion then follows from

dim(X) = n+m+ 2− (r + 1)− ρ(X)

≥ 2ρ(X) + 2α−m
2

+m+ 2− ρ(X)

= α+
m

2
+ 2.
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For X = X(A,P, u), we denote by η the number of extremal variables of type Tij and
by ζ = n− η the number of non-extremal variables of type Tij .

Lemma 3.1.7. Let X = X(A,P, u) be Q-factorial and combinatorially minimal. Then
we have

ρ(X) ≤ dim(X) + r − 1− ζ − 2α.

Proof. Just observe that dim(X)+ρ(X)+r−1 = η+ζ+m ≥ 2ρ(X)+2α+ζ holds.

The above estimate is useful for large ζ, for example ζ ≥ r−2. For small ζ, we need state-
ments concerning the cases α = 0 and α = 1. Observe that the following three Lemmas,
including the estimate for the case α = 0, do not require combinatorial minimality.

Lemma 3.1.8. Let X = X(A,P ) be Q-factorial, log terminal and Fano. Let b be the
number of elementary big cones. Then m+ b ≥ dim(X).

Proof. The lineality part AcX,0 has m+ b vertices. According to Proposition 2.1.12, AcX,0
is full-dimensional in the lineality space λ of trop(X), i.e. it has dimension s. This is
only possible with at least s+ 1 vertices, hence the assertion follows.

Lemma 3.1.9. Let X = X(A,P ) be Q-factorial, log terminal and Fano. If m < dim(X),
then we have

n+m

2
≤ dim(X) + ρ(X).

Proof. Lemma 3.1.8 ensures the existence of an elementary big cone. Therefore we can
apply Corollary 2.2.9 and obtain that r − 1, the number of relations, equals at most
dim(X) + ρ(X). The assertion follows from

n+m = dim(X) + ρ(X) + r − 1 ≤ 2(dim(X) + ρ(X)).

Recall that µ indicates the unique degree of the relations in the Cox ring. We know that
µ lies in the effective cone Eff(X), but not necessarily in its interior.

Lemma 3.1.10. Let X = X(A,P ) be a Q-factorial log terminal Fano variety, such that
µ ∈ Eff(X)◦. If α = 0, ζ ≤ r − 2 and m < dim(X) hold, then we have

ρ(X) ≤ 2

r − 1− ζ
dim(X)− m+ ζ

r − 1− ζ
.

Proof. In the relations of R(A,P ), consider the monomials T lii consisting only of extremal
variables Tij . Since µ ∈ Eff(X)◦ and α = 0 hold, each such monomial comprises at least
ρ(X) variables. There are at least r + 1− ζ such monomials. We obtain

n = η + ζ ≥ (r − 1− ζ)ρ(X) + 2ρ(X) + ζ.

Since X is log terminal with m < dim(X), we can apply Lemma 3.1.9 and see that
2 dim(X) + 2ρ(X) is bigger or equal to n + m. Combining the two estimates gives the
assertion.
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For the case α = 1, we use geometrical properties of d-dimensional polyhedral cones with
d+ 1 extremal rays. Here we gather and prove the relevant facts.

Lemma 3.1.11. Let d ≥ 3 and σ ⊆ Qd be a pointed convex polyhedral d-dimensional cone
with d + 1 extremal rays. Let v1, . . . , vd+1 ∈ Qd be primitive generators of the extremal
rays of σ and w1, . . . , wd+1 ∈ Q the Gale dual configuration. Set D := {1, . . . , d + 1}
and

D− := {i ∈ D; wi < 0}, D0 := {i ∈ D; wi = 0}, D+ := {i ∈ D; wi > 0}.

Moreover, for any subset I ⊆ D, denote by Ic ⊆ D its complement and define cones
σI := cone(vi; i ∈ I) ⊆ Qd and τI := cone(wi; i ∈ Ic) ⊆ Q. Then the following
statements hold:
(i) σI is a proper face of σ if and only if τI = {0} or τI = Q holds.
(ii) There are at least two i with wi > 0 and at least two j with wj < 0.
(iii) We have σ◦I ⊆ σ◦ if and only if D− ∪D0 ⊆ I or D+ ∪D0 ⊆ I holds.
(iv) We have σ◦I ∩ σ◦J 6= ∅ if and only if D− ⊆ I, D+ ⊆ J , I ∩D0 = J ∩D0 or D+ ⊆ I,

D− ⊆ J , I ∩D0 = J ∩D0 holds.
In particular, σ− := cone(vi; i ∈ D− ∪ D0) and σ+ := cone(vi; i ∈ D+ ∪ D0) form the
unique pair of minimal cones satisfying σ◦± ⊆ σ◦, cone(σ−, σ+) = σ and σ◦− ∩ σ◦+ 6= ∅.

Proof. Let P : Qd+1 → Qd be the linear map sending ei to vi and Q : Qd+1 → Q the one
sending ei to wi. For I consider δI := cone(ei; i ∈ I) ⊆ Qd+1 and γI := cone(ei; i ∈ Ic) ⊆
Qd+1. The Invariant Separation Lemma 3.1.2 yields for any two I, J ⊆ {1, . . . , d+1} the
following statements:
• There is a ker(P )-invariant separating linear form for δI and δJ if and only if
τ◦I ∩ τ◦J 6= ∅ holds,
• We have σ◦I ∩ σ◦J 6= ∅ if and only if there is a ker(Q)-invariant separating linear

form for γI and γJ .
Observe that σI , σJ intersect in a common face if and only if δI , δJ admit a ker(P )-
invariant separating linear form.
Now, assertion (i) is an immediate consequence of the first of the above two items. Since
{0} is a face of σ, we see that there must be positive and negative wi. Assertion (ii)
reflects the fact that every ray σ{i} is a face of σ. Assertion (iii) is a special case of (iv)
which in turn is obtained by adapting the second of the above items to the setting of the
Lemma.

We are ready to estimate the Picard number for the case α = 1 and small ζ. Again, this
statement does not assume combinatorial minimality.

Lemma 3.1.12. Let X = X(A,P ) be a Q-factorial log terminal Fano variety, such that
µ ∈ Eff(X)◦. Assume α = 1 and ζ ≤ r − 2. Then we have

ρ(X) ≤ dim(X) + 3 + ζ − r −m ≤ dim(X) + 1−m.
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Proof. Let ω−, ω+ ⊆ Eff(X) be the minimal pair of subcones as in Lemma 3.1.11 and
denote by a−, a+ their respective numbers of extremal rays. Then we have

a− ≥ 2, a+ ≥ 2, a− + a+ ≥ ρ(X) + 1.

Consider a monomial T lii with only extremal variables Tij and let ωi be the cone generated
by the deg(Tij). We say that T lii is of type (−) if ω− ⊆ ωi holds and of type (+) otherwise.
Lemma 3.1.11, with µ ∈ Eff(X)◦, shows that any T lii of type (+) satisfies ω+ ⊆ ωi. Let
b− and b+ denote the respective numbers of monomials of these types that occur in the
(r − 1) relations. Then we have

b− + b+ ≥ r + 1− ζ, η ≥ b−a− + b+a+.

For the first estimate, we use that there are at least r + 1− ζ monomials involving only
extremal variables. For the second one, note that every monomial of type (±) has at
least a± distinct variables. We conclude

dim(X) + ρ(X) + r − 1 = η + ζ +m

≥ b−a− + b+a+ + ζ +m

≥ 2(ρ(X) + 1) + (b− − 2)a− + (b+ − 2)a+ + ζ +m

≥ 2(ρ(X) + 1) + 2(r + 1− ζ − 4) + ζ +m.

Proposition 3.1.13. For any X = X(A,P, u), the degree µ of the relations gI lies
in the effective cone Eff(X) ⊆ ClQ(X). Moreover µ lies in its interior if and only if
0 /∈ cone(vk1 , . . . , vkt)

◦ holds for any collection 1 ≤ k1 < . . . < kt ≤ m.

Proof. The first assertion is trivial. The degree µ lies on a facet τ of Eff(X) if and only
if all weights wij lie on τ as well. By the Invariant Separation Lemma, this is precisely
the case, when there exist vk1 , . . . , vkt such that 0 ∈ cone(vk1 , . . . , vkt)

◦.

3.2 The 3-dimensional case

In this Section we specialize to three-dimensional Q-factorial, terminal and combinato-
rially minimal Fano varieties X = X(A,P ) and give a bound on their Picard number.
Moreover, we establish the analogue of Lemma 2.4.1, i.e. we find a finite list of possible
shapes for the defining matrix P . First we allow X to have log terminal singularities.

Proposition 3.2.1. Let X = X(A,P ) be a 3-dimensional Q-factorial, log terminal and
combinatorially minimal Fano variety. Then ρ(X) ≤ 3 holds.

Proof. Lemma 3.1.6 tells us that, besides ρ(X) ≤ 3, we have to consider the following
two situations:

α = 0 and m ≤ 2, α = 1 and m = 0.
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Case µ ∈ Eff(X)◦: If α = 0 holds, then Lemma 3.1.7 with ζ ≥ r− 2 gives ρ(X) ≤ 4 and
Lemma 3.1.10 with ζ ≤ r−3 gives ρ(X) ≤ 3. If α = 1 holds, Lemma 3.1.7 with ζ ≥ r−2
gives ρ(X) ≤ 2 and Lemma 3.1.12 with ζ ≤ r− 3 gives ρ(X) ≤ 3. So we have to exclude
ρ(X) = 4, which only appears in the case α = 0 with ζ ≥ r − 2. Lemma 3.1.7 yields in
this case ζ ≤ r−2, thus we have ζ = r−2. In particular we have a relation involving only
extremal variables, say the one with monomials T l00 , T

l1
1 , T

l2
2 . Together with µ ∈ Eff(X)◦

and α = 0, this implies n0, n1, n2 ≥ 4. On the other hand, Lemma 3.1.10 gives us
m+ ζ ≤ 2 and thus r ≤ 4. This shows n+m = 7+ r−1 ≤ 10, a contradiction to n ≥ 12.

Case µ /∈ Eff(X)◦: According to Proposition 3.1.13 we have m ≥ 2, therefore α = 0 and
m = 2. In particular the weights wij generate a (ρ(X)− 1)-dimensional facet of Eff(X).
For r ≤ ζ, Lemma 3.1.7 already yields ρ(X) ≤ 2, so assume r ≥ ζ + 1. Since there are at
least r + 1 − ζ monomials having only extremal variables and each of these monomials
must have at least ρ(X)− 1 variables we conclude

dim(X) + ρ(X) + r − 1 = η + ζ +m ≥ (r + 1− ζ)(ρ(X)− 1) + ζ +m

and thus (r − ζ)(ρ(X)− 2) ≤ dim(X)−m = 1. It follows ρ(X) ≤ 3.

Restricting to the terminal case, we can prove that the degree µ of the relations lies in
the interior of the effective cone Eff(X).

Proposition 3.2.2. Let X = X(A,P ) be a non-toric, 3-dimensional, combinatorially
minimal, terminal, Q-factorial Fano variety, where the defining matrix P is irredundant.
Then µ ∈ Eff(X)◦ holds.

Definition 3.2.3. Consider a convex set C ⊂ {0} × Qd ⊂ Qd+1 and a point x ∈ Qd+1

with first coordinate x1 > 0. The shadow of C from x is

sw(C, x) := {y ∈ Qd+1 ; x ∈ conv(y, C)} ⊆ Qd+1.

Moreover, for any t ∈ Q with t ≥ x1, we define the sliced shadow at height t as

swt(C, x) := {y ∈ sw(C, x) ; y1 = t}.

Example 3.2.4. The following picture clarifies the origin of the name shadow. Consider
C := conv((0, 2), (0,−1)) ⊂ Q2 and x := (3, 1) ∈ Q2. The area in grey is sw(C, x):

0

C
x

The convex hull over the line segment C and any point from the grey area contains x.
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Lemma 3.2.5. Consider the triangle C := conv(e2, e3,−e2 − e3) ⊂ Q3. Let x ∈ Z3 be a
lattice point with first coordinate x1 ≥ 2. If the only lattice points of conv(C, x) are its
four vertices and the origin, then x1 = 3 holds.

Proof. Note that conv(C, x) always contains its four vertices and the origin. A further
lattice point y lies in it if and only if x ∈ sw(C, y) holds. Therefore we look for a point
x that does not lie in any sw(C, y) for x 6= y ∈ Z3.
At height t = 2 all integral points are of the form (2, a, b) for some a ∈ {2u, 2u+ 1} and
b ∈ {2v, 2v + 1}, and they lie in the respective sw2(C, (1, u, v)).
For every t ≥ 4, the union of the shadows swt(C, z), for all z ∈ Z3 with z1 = 1, contains
all integral points at the height t, except for the multiples of q1 := (3, 3u+ 1, 3v− 1) and
q2 := (3, 3u − 1, 3v + 1). Since 0 ∈ C holds, these points lie in sw(C, q1) and sw(C, q2),
respectively. Thus the assertion follows.

Recall that a variety is called weakly tropical if the fan of its minimal ambient toric
variety is supported on trop(X). This means that there are only leaf cones.

Proof of Proposition 3.2.2. By Proposition 3.2.1 we only have to consider ρ(X) ≤ 3. The
assertion is clear for ρ(X) = 1, since Eff(X) = Q≥0 and µ > 0 hold.
Turn to the case ρ(X) = 2. Then we have n+m = r+ 4, which implies m ≤ 3. Suppose
that µ /∈ Eff(X)◦ holds. Then Proposition 3.1.13 yields m ≥ 2 and we have only two
possible constellations:
(a) m = 2, r = 2 and n = (2, 1, 1),
(b) m = 3, r ≥ 2 and n = (1, . . . , 1).

By combinatorial minimality, constellation (a) can only happen if the weights of the two
free variables lie on one of the two extremal rays of Eff(X) and all the weights wij lie on
the other extremal ray. This means that the variety is a product of P1 with a del Pezzo
surface. By [27, Prop. 5.10] there are no non-toric terminal del Pezzo K∗-surfaces, hence
this case is not compatible with the assumptions. Constellation (b) allows three weight
dispositions:

disp 1
w1 w2 w3

wr1

...
w01

disp 2
w02 w11

w3

wr1

...
w01

disp 3
w1 w2

wr1

...
w01

w3

Note that, by almost freeness of the grading, in all three cases one can assume Eff(X) =
Q2
≥0. The first two dispositions correspond to products of varieties, hence we rule them

out just like before. Consider disposition 3. By Proposition 2.3.1 and irredundancy of P ,
there cannot be elementary big cones, hence X is weakly tropical. Therefore −KX lies
in cone(w01, w3)◦, the cone colored in grey in the picture above. Since m = 3, we can
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assume, with admissible operations, that the last three columns of P are (0, . . . , 0, 1, 0),
(0, . . . , 0, 0, 1) and (0, . . . , 0,−1,−1). These three points are also the vertices of the
lineality part AcX,0. Consider now the i-th leaf AcX ∩ λi of the anticanonical complex,
given as the convex hull of AcX,0 and vi1, since ni = 1. Terminality implies that AcX ∩ λi
does not contain additional integral points. By Lemma 3.2.5 we follow li1 = 3 for all
i = 0, . . . , r. This yields wi1 = (0, 1) and hence µ = (0, 3). The torsion-free part of the
anticanonical class in KQ is

−KX = (r + 1)

(
0
1

)
+ w1 + w2 + w3 − (r − 1)

(
0
3

)
=

(
w1

1 + w1
2 + w1

3

4− 2r + w2
3

)
.

Since r ≥ 2, the anticanonical class does not lie in cone(w01, w3), a contradiction.

Lastly consider ρ(X) = 3. Assume that µ /∈ Eff(X)◦ holds. Proposition 3.1.13 yields
m ≥ 2. We also have the relation n + m = r + 5, hence m ≤ 4. Note that m = 3 is
excluded by Lemma 3.1.6. Therefore we have three constellations:
(a) m = 2, r = 2 and n = (2, 2, 1),
(b) m = 2, r = 3 and n = (2, 2, 1, 1),
(c) m = 4, r ≥ 2 and n = (1, . . . , 1).

We treat both constellations (a) and (b) at once. By combinatorial minimality the
effective cone Eff(X) is simplicial and the three extremal rays are

cone(w01) = cone(w11), cone(w02) = cone(w12), cone(w1) = cone(w2).

We apply Remark 3.3.1 to the relevant face γ01,12,1,2 and achieve Eff(X) = Q3
≥0. Thus

we are looking at a product of P1 with a surface. This is a contradiction, as already seen
before. In the constellation (c) every monomial consists of only one variable, hence the
respective weights all lie on the same extremal ray of Eff(X), while the weights of the
free variables lie on the other two extremal rays, two each. Since the grading is almost
free, we can assume that Eff(X) = Q3

≥0 holds, hence X is product of three curves, again
a contradiction to complexity one.

Remark 3.2.6. The result of Proposition 3.2.2 does not hold if we allow X = X(A,P )
to have non-terminal singularities. Consider any Q-factorial log terminal Fano K∗-surface
S with ρ(S) = 1, e.g. the E6-surface from Example 1.5.9. Then S × P1 is a Q-factorial
log terminal (but not terminal) Fano variety of complexity one with Picard number two,
such that the degree µ lies on an extremal ray of its effective cone.

Here comes the Lemma that states the existence of finitely many possible shapes for the
defining matrix P and provides the list of those shapes.

Lemma 3.2.7. Let X = X(A,P ) be a non-toric, three-dimensional, combinatorially
minimal, terminal, Q-factorial Fano variety, where the matrix P is irredundant and
ρ(X) > 1 holds. Then, after suitable admissible operations, P fits into one of the following
cases:
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(i) We have ρ(X) = 3 and one of the following constellations:
(a) m = 0, r = 2 and n = 7, where n = (3, 3, 1).
(b) m = 0, r = 3 and n = 8, where n = (3, 3, 1, 1).
(c) m = 0, r = 3 and n = 8, where n = (2, 2, 2, 2).
(d) m = 0, r = 4 and n = 9, where n = (2, 2, 2, 2, 1).
(e) m = 0, r = 5 and n = 10, where n = (2, 2, 2, 2, 1, 1).

(ii) We have ρ(X) = 2 and one of the following constellations:
(a) m = 0, r = 2 and n = 6, where n = (2, 2, 2).
(b) m = 0, r = 3 and n = 7, where n = (2, 2, 2, 1).
(c) m = 0, r = 4 and n = 8, where n = (2, 2, 2, 1, 1).
(d) m = 0, r = 2 and n = 6, where n = (3, 2, 1).
(e) m = 0, r = 3 and n = 7, where n = (3, 2, 1, 1).
(f) m = 0, r = 2 and n = 6, where n = (4, 1, 1).
(g) m = 1, r = 2 and n = 5, where n = (2, 2, 1).
(h) m = 1, r = 3 and n = 6, where n = (2, 2, 1, 1).
(i) m = 1, r = 2 and n = 5, where n = (3, 1, 1).
(j) m = 2, r = 2 and n = 4, where n = (2, 1, 1).

Proof. First of all, note that we have ρ(X) ≤ 3 and µ ∈ Eff(X)◦, by Proposition 3.2.1
and Proposition 3.2.2 respectively.
Case ρ(X) = 3: here we have the relation

n+m = r + 5 (3.1)

coming from n+m = r + s+ ρ(X). Since n ≥ r + 1 always holds, we obtain m ≤ 4.
The case m = 4 does not fit combinatorial minimality in the following sense: according
to (3.1) we would have n = r + 1, meaning that every monomial consists only of one
variable; therefore all their weights must lie in the interior of the effective cone and
consequently the extremal variables are maximal 4, contradicting the fact that there are
at least 2ρ(X) = 6 extremal variables.
The case m = 3 is excluded by Lemma 3.1.6. Therefore we have m < 3 = dim(X)
and there is always a big elementary cone. This implies r ≤ 5 −m by Corollary 2.3.2.
Combining Proposition 2.3.1 with the assumption that P is irredundant we see that at
most two of the ni equal one.
If m = 2 holds, then we have following constellations:
• n = (3, 1, 1): here only 5 variables can be extremal, a contradiction to combinatorial

minimality.
• n = (2, 2, 1): there are exactly 6 extremal variables, so α = 0 holds. Every possible

disposition contradicts µ ∈ Eff(X)◦.
• n = (2, 2, 1, 1): there are exactly 6 extremal variables, so α = 0 holds. Every

possible disposition contradicts µ ∈ Eff(X)◦.
If m = 1 holds, then we have following constellations:
• n = (4, 1, 1): here only 5 variables can be extremal, a contradiction to combinatorial

minimality.
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• n = (3, 2, 1): there are exactly 6 extremal variables, so α = 0 holds. Every possible
disposition contradicts µ ∈ Eff(X)◦.
• n = (2, 2, 2): there are exactly seven variables that can be extremal, so α = 0 holds.

Every possible disposition contradicts µ ∈ Eff(X)◦ or combinatorial minimality.
• r > 2: any constellation is obtained from the previous ones by adding a monomial
T lrr with nr = 1. This means that wr1 lies on the half-line spanned by µ and the
same contradictions as above arise.

If m = 0 holds, then we have following constellations:
• n = (5, 1, 1): here only 5 variables can be extremal, a contradiction to combinatorial

minimality.
• n = (4, 2, 1): there are exactly 6 extremal variables, so α = 0 holds end every
wij with ni 6= 1 lies on an extremal ray of Eff(X). In particular n1 = 2 implies
µ /∈ Eff(X)◦, a contradiction.
• n = (3, 3, 1): this is case (a).
• n = (3, 2, 2): of the 7 variables at least 6 are extremal. In particular we can

assume that both variables T11 and T12 are extremal. This implies µ /∈ Eff(X)◦, a
contradiction.
• n = (4, 2, 1, 1): same contradiction as in n = (4, 2, 1).
• n = (3, 3, 1, 1): this is case (b).
• n = (3, 2, 2, 1): same contradiction as in n = (3, 2, 2).
• n = (2, 2, 2, 2): this is case (c).
• n = (3, 2, 2, 1, 1): same contradiction as in n = (3, 2, 2).
• n = (2, 2, 2, 2, 1): this is case (d).
• n = (2, 2, 2, 2, 1, 1): this is case (e).

Case ρ(X) = 2: here we have n+m = r+ 4, which implies m ≤ 3. If m = 3 holds, then
so does n = r+ 1, i.e., every monomial consists of only one variable. In particular, since
µ ∈ Eff(X)◦, their weights all lie in the interior of the effective cone. There are at most
three exceptional weights, namely the ones corresponding to the free variables. This
contradicts the fact that there are at least 2ρ(X) extremal variables. Therefore we have
m < 3 = dim(X) and there is always a big elementary cone. By Corollary 2.3.2 we obtain
r ≤ 4−m. Combining Proposition 2.3.1 with the assumption that P is irredundant we
see that at most two of the ni equal one. All possible constellations are listed in the
assertion.

In the next Proposition we show that we can exclude the constellations with Picard
number equal to three.

Proposition 3.2.8. Let X = X(A,P ) be non-toric, three-dimensional, combinatorially
minimal, terminal, Q-factorial and Fano. Then ρ(X) ≤ 2 holds.

Proof. If ρ(X) > 1, we can assume P irredundant and apply Lemma 3.2.7. Therefore we
need to exclude the constellations of part (i), where ρ(X) = 3 holds.
Case (a): the weights w0i and w1j , for i, j = 1, 2, 3, all lie on extremal rays of Mov(X)
by combinatorial minimality. In particular Mov(X) is simplicial. We can always assume
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that cone(w0i) = cone(w1i) holds. The elementary big cones are precisely those of type
cone(v0i, v1j , v21), with i 6= j. By Proposition 2.3.1 the corresponding triples of exponents
must all contain at least one element equal to 1. Up to rearranging of variables, there
are only two possible exponents configurations:

A l0 = (1, 1, 1);
B l0 = (1, 1, l03) and l1 = (1, 1, l13).

In configuration A, admissible operations lead to

P =


−1 −1 −1 l11 l12 l13 0
−1 −1 −1 0 0 0 l21

0 1 0 d111 d112 d113 d121

0 0 1 d211 d212 d213 d221

 .
By applying Corollary 3.1.5 on the sets {2, 5, 6}, {1, 4, 6}, {2, 4, 5}, {3, 5, 6}, {3, 4, 6},
{1, 4, 5}, we obtain

d111 = − l11

l21
d121, d112 = − l12

l21
d121 − l12, d113 = − l13

l21
d121,

d211 = − l11

l21
d221, d212 = − l12

l21
d221, d213 = − l13

l21
d221 − l13.

This matrix delivers very special vertices for the lineality part AcX,0; some of them are( l11l21

l11 + l21
, 0
)
,

(
− l12l21

l12 + l21
, 0
)
,

(
0,− l13l21

l13 + l21

)
.

Terminality and l21 ≥ 2 imply l11 = l12 = l13 = 1 and by admissible operations we can
assume d111 = d211 = 0. The previous equations force d121 = d221 = 0, contradicting the
primitivity of v21.
Turning to configuration B, admissible operations lead to the shape

P =


−1 −1 −l03 1 1 l13 0
−1 −1 −l03 0 0 0 l21

0 1 d103 0 d112 d113 d121

0 0 d203 0 d212 d213 d221

 .
We apply Corollary 3.1.5 to {3, 5, 6} and {3, 6, 7} and obtain d221 = d212 = 0. Similarly
we have 0 = det(P{2,3,5}) = −d121d213 but neither of the two values may equal zero. If
d121 = 0, then v21 is not a primitive vector, whereas if d213 = 0, then the columns of P
do not generate Q4 as a cone.
Case (b): the situation is similar to the previous case. Combining terminality, Proposi-
tion 2.3.1 and admissible operations, we can achieve the form

P =


−1 −1 −1 1 1 1 0 0
−1 −1 −1 0 0 0 l21 0
−1 −1 −1 0 0 0 0 l31

0 1 0 0 d112 d113 d121 d131

0 0 1 0 d203 d212 d213 d221

 ,
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with cone(w0j) = cone(w1j) for j = 1, 2, 3. Applying Corollary 3.1.5 to {2, 5, 7} and
{3, 6, 7}, we get d113 = d212 = 0 and, with {1, 4, 8}, also d112 = d213. Using once again
the same Corollary, this time with {1, 2, 5} and {1, 3, 6}, we obtain

d131 = − l31

l21
d121, d231 = − l31

l21
d221.

The vertices of the lineality part AcX,0 ⊂ Q2 yield to a contradiction to terminality. For
example, the vertex defined by the big elementary cone P (δ01,12,21,31) is(

0, 0, 0,
l21l31

l21 + l31
d112, 0

)
.

Since d112 6= 0 and l21l31 ≥ 2 hold, the absolute value of the non-zero entry is bigger or
equal to one, i.e. there is a non-zero integral point in AcX,0.
Case (c): all weights wij , for i = 0, 1, 2, 3 and j = 1, 2, lie on extremal rays. In particular
we can always assume cone(w0j) = cone(w1j) and cone(w2j) = cone(w3j) for j = 1, 2.
As a consequence, following cones are among the elementary big ones:

cone(v0,i, v1,3−i, v2,j , v3,3−j), i, j = 1, 2.

Therefore there are only three configurations for the exponents, up to renumbering of
variables and of monomials:

A l0 = l1 = (1, 1);
B l0 = l2 = (1, 1);
C l01 = l11 = l21 = l31 = 1.

In configuration A we can achieve for P the shape

P =


−1 −1 1 1 0 0 0 0
−1 −1 0 0 l21 l22 0 0
−1 −1 0 0 0 0 l31 l32

0 1 0 d112 d121 d122 d131 d132

0 0 0 d212 d221 d222 d231 d232

 .
We apply Corollary 3.1.5 on the set {6, 7, 8} and obtain d212 = 0. Terminality implies
that conv(0, v11, v12) ⊂ AcX does not contain integral points other than its vertices, hence
d112 = ±1 holds. The vertices of AcX,0 defined by the above-mentioned big elementary
cones are:

u1 =
( l21l32 + l21d132 + l32d121

l21 + l32
,
l21d232 + l32d221

l21 + l32

)
,

u2 = u1 +
l21l32

l21 + l32

(
1− d112, 0

)
,

u3 =
( l22l31 + l22d131 + l31d122

l22 + l31
,
l22d231 + l31d222

l22 + l31

)
,

u4 = u3 +
l22l31

l22 + l31

(
1− d112, 0

)
.
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Therefore d112 = −1 holds. At least one among the still unbounded l-values must be equal
to 1, otherwise the length of AcX,0 ∩ {y = 0} is at least 2, in contradiction to terminality
of X. Without loss of generality let l21 = 1. Then we can assume d121 = d221 = 0.
Using once again Corollary 3.1.5, this time on {4, 6, 8} and afterwards on {1, 3, 8}, we
obtain d231 = d131 = 0. Since v31 is primitive, we also have l31 = 1. Now it is possible to
show that l22 = l32 must hold. First, we see that Corollary 3.1.5 applies to {4, 5, 7} and
{1, 3, 4}. This allows to write v22 and v32 in the following forms

v22 = (0, l22, 0, d122, d222) =
(

0, l22, 0,−
l22

l32
d132,−

l22

l32
d232

)
,

v32 = (0, 0, l32, d132, d232) =
(

0, 0, l32,−
l32

l22
d122,−

l32

l22
d222

)
.

Primitivity of these vectors implies that both l22/l32 and l32/l22 are integers, thus l22 =
l32. Assume now l22 > 1. Then −KX ∈ Q(γ2,3,5,7)◦ = Q(γ1,4,5,7)◦ holds, hence P (δ1,4,6,8)
and P (δ2,3,6,8) are elementary big cones. These define vertices (−l31/2, 0) and (l31/2, 0)
for the lineality part, so the variety X is not terminal. The remaining case l22 = l32 = 1
is invalid as well, because the resulting variety is not Q-factorial: among others γ1,4 is a
relevant face whose projected cone is not full-dimensional.
Now we turn to configuration B. First we use admissible operations to achieve

P =


−1 −1 l11 l12 0 0 0 0
−1 −1 0 0 1 1 0 0
−1 −1 0 0 0 0 l31 l32

0 1 d111 d112 0 d122 d131 d132

0 0 d211 d212 0 d222 d231 d232

 .
By subsequently using Corollary 3.1.5 on the sets {4, 6, 8}, {3, 6, 8}, {4, 5, 7}, {2, 4, 8},
{1, 3, 6} and {1, 3, 4}, we can express the d-values of the columns v11, v12 and v32 in
terms of some l-values and entries of v31. Following the idea already used for the previous
configuration, primitivity of these vectors ultimately yields l11 = l12 = l31 = l32. The
lineality part AcX,0 is now a trapezoid with two edges parallel to the x-axis, both of length
l11. Terminality implies l11 = 1, hence we are again in configuration A.
Lastly we want to discharge configuration C. We use the same principles used up to this
point: first we use admissible operations to let appear as many zeros as possible in P ,
then we use Corollary 3.1.5 to express some d-values in terms of others and last we show
that, by primitivity of the columns of P , l02 = l12 and l22 = l32 hold. If one of the two
is equal to one, we reduce to configuration A. If both are strictly greater than one, then
we have

−KX =
∑
i,j

wij − 2µ = w11 + w31 + (2− l12)w12 + (2− l32)w32,

and as such X is not Fano, since −KX does not lie in the interior of the moving cone.
Case (d): the disposition of the weights is the same as in the previous case, with the
new weight w41 lying in the interior of the effective cone. In this case we only have two
configurations:
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A l0 = l1 = l2 = (1, 1);
B l0 = l1 = (1, 1) and l21 = l31 = 1.

Take configuration A; after admissible operations we get

P =



−1 −1 1 1 0 0 0 0 0
−1 −1 0 0 1 1 0 0 0
−1 −1 0 0 0 0 l31 l32 0
−1 −1 0 0 0 0 0 0 l41

0 1 0 d112 0 d122 d131 d132 d141

0 0 0 d212 0 d222 d231 d232 d241

 .

With Corollary 3.1.5, applied to {6, 7, 8}, {4, 6, 8}, {4, 5, 7}, {2, 4, 8} and {1, 3, 8}, we are
able to express some d-values in terms of others, namely

d212 = 0, d231 = − l31

l41
d241, d232 = − l32

l41
d241 − l32d222,

d131 = − l31

l41
d141, d112 = −1.

Consider the vertices of the lineality part AcX,0 defined by big elementary cones of type
cone(v0i, v1,3−i, v2j , v3,3−j , v41) for i, j = 1, 2. These define a trapezoid, with two edges,
L1 and L2, parallel to the x-axis, whose lengths l(Li) and heights h(Li) are

l(L1) = 2
l31l41

l31 + l41
, l(L2) = 2

l32l41

l32 + l41
,

h(L1) = d222
l31l41

l31 + l41
, h(L2) = d222

l32l41

l32 + l41
.

Since l41 ≥ 2, both lengths are at least 1, thus the heights are smaller than 1 in absolute
value, in order to avoid non-zero integral points in AcX,0. This implies l31 = l32 = 1.
Looking back at d131 and d231, their representation implies that l41 divides both d141 and
d241. This contradicts the primitivity of v41.
Turn to configuration B; after achieving the form

P =



−1 −1 1 1 0 0 0 0 0
−1 −1 0 0 1 l22 0 0 0
−1 −1 0 0 0 0 1 l32 0
−1 −1 0 0 0 0 0 0 l41

0 1 0 d112 0 d122 0 d132 d141

0 0 0 d212 0 d222 0 d232 d241


via admissible operations, we just apply Corollary 3.1.5 to the index-sets {6, 7, 8}, {4, 6, 8}
and {1, 3, 8} to obtain d212 = d241 = 0 and d141 = −l41(d112+1). It follows a contradiction
to v41 primitive.
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Case (e): the disposition of the weights is the same as in the previous case, with the new
weight w51 lying on cone(w41). Due to the fact that there are two monomials with only
one variable, Proposition 2.3.1 implies li1 = li2 = 1 for i = 0, . . . , 3. Therefore admissible
operations lead to

P =



−1 −1 1 1 0 0 0 0 0 0
−1 −1 0 0 1 1 0 0 0 0
−1 −1 0 0 0 0 1 1 0 0
−1 −1 0 0 0 0 0 0 l41 0
−1 −1 0 0 0 0 0 0 0 l51

0 1 0 d112 0 d122 0 d132 d141 d151

0 0 0 d212 0 d222 0 d232 d241 d251


.

Now apply Corollary 3.1.5 to the index-sets {6, 8, 9}, {4, 6, 8}, {3, 5, 7}, {1, 3, 10}, {2, 4, 8}
and {1, 3, 5} and then look at the vertices defined by big elementary cones of the type
cone(v0i, v1,3−i, v2j , v3,3−j , v41, v51) for i, j = 1, 2. Their convex hull is a trapezoid, with
two edges parallel to the x-axis, both of length at least 2. This implies that the in-
tersection AcX,0 ∩ {y = 0} contains at least one integral point other than the origin, a
contradiction to terminality of X.

3.3 The 3-dimensional case with ρ(X) = 2

The goal of this Section is the classification of combinatorially minimal Q-factorial ter-
minal Fano threefolds. First we study the effect of terminality on the strata of such
varieties, more precisely on the corresponding subsets of weights.

Remark 3.3.1. According to Proposition 1.4.2, the stratum X(γ0) ⊂ X consists of
factorial points of X = X(A,P,Φ) if and only if Q(lin(γ0) ∩ Zn+m) = Cl(X) holds. In
dimension three, terminal singularities occur as isolated points, see e.g. [41, Cor. 4.6.6].
According to Corollary 1.5.16, every γ0 ∈ rlv(Φ) \ cov(Φ) defines a stratum X(γ0) of
positive dimension. This has to be smooth, in particular factorial. Therefore its weights
generate Cl(X) as an abelian group.

We go through the cases of Lemma 3.2.7 (ii) and keep the numbering introduced there.
Throughout this Section, Q denotes only the torsion-free part of the actual degree matrix
Q; the same holds for the degree µ = (µ1, µ2) and the weights w = (w1, w2) ∈ Z2.

Case (a) of Lemma 3.2.7 (ii)

We have r = 2, m = 0, n = 6 and n = (2, 2, 2). Combinatorial minimality prescribes
at least two weights on each of the two extremal rays of Eff(X). All six weights may be
placed on these rays, therefore we end up with five possible dispositions:
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disp 1
w01 w11 w21

w02

w12

w22

disp 2

α

w01 w11 w21

w02

w12

w22

disp 3

α

β

w11 w21

w02

w12

w22

w01

disp 4
w01 w11

w02

w12 w21

w22

disp 5

α1

α2

α3

w11 w21

w12

w02

w22

w01

In disposition 2 and 3 define α := cone(w02, w12)◦ and β := cone(w01, w02)◦. In disposi-
tion 5 define α1 := cone(w02, w12)◦, α2 := cone(w01, w12)◦ and α3 := cone(w01, w11)◦.
With Proposition 2.3.1 we obtain a list of possible exponent configurations:

A l0 = (1, 1);
B l2 = (1, 1);
C l01 = l11 = l21 = 1;
D l11 = l21 = 1;
E l02 = l12 = 1;
F l01 = l21 = 1.

Due to terminality, every disposition allows only a few of these configurations, sometimes
even just for restricted situations, depending on the position of the anticanonical class.
The following table summarizes the totality of possible situations:

config A config B config C config D config E config F
disp 1 X X
disp 2 X X X Xα

disp 3 X X Xα,β Xα

disp 4 X X X
disp 5 X X Xα1,α2 Xα1

The combinations of dispositions and configurations that need to be studied are marked
with the sign X. A subscript indicates that the anticanonical class −KX has to lie in the
given cone(s).
This case provides the first six varieties of the table of Theorem 3.4.1, namely No. 1 and 3
from situation 1A, No. 2 and 4 from 1C, No. 5 from 2A and No. 6 from 4B.

Disposition 1: since all weights are located on the two extremal rays, we can assume
Eff(X) = Q2

≥0. For each wij , the two weights wk` such that k 6= i and ` 6= j lie on
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the other extremal ray. The three together form a relevant face, to which Remark 3.3.1
applies. Hence the degree matrix assumes the form

Q =

[
1 0 1 0 1 0
0 1 0 1 0 1

]
.

Situation 1A: admissible operations, together with equations from P ·QT = 0, yield

P =


−1 −1 1 1 0 0
−1 −1 0 0 1 1

0 1 0 d112 0 −d112 − 1
0 0 0 d212 0 −d212

 ,
where we can also assume 0 ≤ d112 < d212. Therefore we only need to bound d212. For
this, take a look at the lineality part AcX,0. Its vertices are

u1 =
1

2
(d112, d212), u2 = u1 +

(
1

2
, 0

)
,

u3 =
1

2
(−1, 0), u4 = u3 + (1, 0),

u5 =
1

2
(−d112 − 1,−d212), u6 = u5 +

(
1

2
, 0

)
.

The value d212 is odd, otherwise one between u1 and u2 would be a lattice point, contra-
dicting terminality. Since AcX,0 contains no integral point other than the origin, there are
only two possibilities for (d112, d212), namely (0, 1) and (1, 3). Both define valid varieties,
respectively No. 1 and No. 3.

Situation 1C: here the anticanonical class is −KX = (2, 3−l02). Since X is a Fano variety
and Mov(X) = Q2

≥0 holds, we have l02 < 3. From now on we assume l02 = 2, because
l02 = 1 has been already discussed in situation 1A. Admissible operations and P ·QT = 0
yield

P =


−1 −2 1 2 0 0
−1 −2 0 0 1 2

0 1 0 d112 0 −d112 − 1
0 0 0 d212 0 −d212

 ,
with 0 ≤ d112 < d212. In order to bound d212, take a look at the lineality part AcX,0. Its
vertices are

u1 =
1

3
(d112, d212), u2 =

1

2
(d112 + 1, d212),

u3 =

(
−1

2
, 0

)
, u4 =

(
1

3
, 0

)
u5 =

1

3
(−d112 − 1,−d212), u6 =

1

2
(−d112,−d212).
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Consider C := conv(u3, u4, u5) ⊂ AcX,0. The point u5 lies under the bisection of the third
orthant and, because of the terminality of X, C does not contain integral points. We
conclude d212 < 20. Using the MDSpackage [25] we see that (d112, d212) can assume the
values (0, 1) and (1, 3). These data correspond to varieties No. 2 and 4 respectively.

Disposition 2: we can apply Remark 3.3.1 to the relevant faces γ01,11,22, γ01,12,21 and
γ01,12,22 and obtain

Q =

[
1 w1

02 w1
11 0 w1

21 0
0 w2

02 0 1 0 1

]
.

Situation 2A: homogeneity of the relation delivers 1 + w1
02 = l11w

1
11 = l21w

1
21 and w2

02 =
l12 = l22. We show that the anticanonical class lies in cone(w11, w02)◦. If we suppose
otherwise, then γ02,12,22 is a relevant face and in particular w1

02 = 1. This yields l11, l21 ∈
{1, 2}, but then the anticanonical class does not lie in the prescribed cone. So −KX ∈
cone(w11, w02)◦ holds, the face γ02,11,21 is relevant and we conclude l12 = 1. Without loss
of generality assume l11 ≤ l21. The requirement 0 < det(−KX , w02) yields

w1
02

1 + w1
02

<
l11 + l21

2l11l21
.

Since the left side is at least 1/2, we get l11 = 1. Now Remark 3.3.1 with γ11,12,21,22

implies l21 = w1
02 + 1. Substituting these equalities in the inequality above we arrive

at l21 < 3, therefore we have l21 = 2 (for l21 = 1 refer to situation 2C). Taking P into
account, we use admissible operations and equalities from P ·QT = 0 and achieve

P =


−1 −1 1 1 0 0
−1 −1 0 0 2 1

0 1 d111 0 −2d111 − 1 −1
0 0 d211 0 −2d211 0

 ,
where 0 ≤ d111 < d211 holds. In order to find an upper bound for d211 we turn to the
lineality part AcX,0 of the anticanonical complex. Its vertices are

u1 =
1

2
(d111 − 1, d211), u2 = u1 +

(
1

2
, 0

)
,

u3 =
1

2
(−1, 0), u4 = u3 +

(
5

6
, 0

)
,

u5 =
1

3
(−2d111 − 1,−2d211), u6 = u5 +

(
2

3
, 0

)
.

Consider C := conv(u2, u3, u4) ⊂ AcX,0. The point u3 lies over the bisection of the first
orthant and, because of the terminality of X, C does not contain integral points. We
conclude d211 < 20. With the MDSpackage [25] we find out that (d111, d211) assumes the
value (0, 1) and delivers variety No. 5.
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Situation 2B: homogeneity of the relation yields l02 = l12 = w2
02 = 1 for the second

component and l01 + w1
02 = l11w

1
11 = w1

21 for the first component. With Remark 3.3.1
applied to γ11,12,21,22 we conclude w1

11 = 1, hence w1
21 = l21 and w1

02 = l11 − l01. We can
discharge the possibility that −KX ∈ cone(w02, w22)◦ holds, since in that case γ02,12,22

is a relevant face and w1
02 = 1 follows, contradicting the fact that the anticanonical

class lies in that prescribed cone. Thus −KX ∈ cone(w01, w02)◦ holds. In particular
det(−KX , w02) > 0 holds, which implies l11 = l01 + 1. We use admissible operations and
P ·QT = 0 and reach

P =


−l01 −1 l01 + 1 1 0 0
−l01 −1 0 0 1 1
d101 0 −d101 −1 0 1
d201 0 −d201 0 0 0

 ,
with 0 ≤ d101 < d201. We find bounds on d201 and l01 by considering the lineality part
AcX,0, whose vertices are

u1 =
1

l01 + 1
(d101 − l01, d201), u2 = u1 +

(
l01

l01 + 1
, 0

)
,

u3 =
1

2
(−1, 0), u4 =

1

2l01 + 1
(l201 + d101 + l01, d201)

u5 =
1

l01 + 2
(−d101,−d201), u6 = u5 +

(
l01 + 1

l01 + 2
, 0

)
.

In particular, consider the width lC of C := conv(0, u1, u2, u4) at the height h(u4) of u4,
i.e.

lC =
l01(l01 + 2)

2l01 + 1
.

Since l01 > 1 (otherwise we are in configuration A), the width lC is greater than 1 and as
a consequence h(u4) < 1 holds by terminality. This gives d201 ≤ 2l01. The length of the
line segment AcX,0 ∩ {y = 0} increases when l01 increases. By terminality, it cannot be
greater than 2, hence we conclude l01 < 5. The MDSpackage [25] finds a lattice point in
AcX for each variety defined by such data, hence this situation does not provide terminal
varieties.

Situations 2C and 2D: homogeneity delivers w1
11 = w1

21 = l01 + l02w
1
02. Hence, by

Remark 3.3.1, the relevant face γ11,12,21,22 yields w1
11 = 1. Since all terms on the right

side of the equation are greater or equal to one, we reach a contradiction.

Disposition 3: we start with the following degree matrix Q:

Q =

[
w1

01 w1
02 w1

11 0 w1
21 0

w2
01 w2

02 0 w2
12 0 w2

22

]
,

where we could assume Eff(X) = Q2
≥0 thanks to Remark 3.3.1 applied to γ11,12,21,22.

We can assume that −KX ∈ cone(w01, w12)◦ holds, thus γ01,12,22 is a relevant face and
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w1
01 = 1 follows. If −KX ∈ cone(w02, w12)◦ holds, then γ02,11,21 is a relevant face and

w2
02 = 1 would hold, contradicting det(w01, w02) > 0. Hence −KX ∈ cone(w01, w02)◦,

γ02,12,22 is a relevant face and w1
02 = 1 holds.

Situation 3A: by homogeneity of the relation 2 = µ1 = l11w
1
11 = l21w

1
21 holds. At least

one of the exponents is equal to two, since γ11,12,21,22 is relevant and Remark 3.3.1 can
be applied to it. Let l11 = 2, so l21 ∈ {1, 2}. Using admissible operations we can assume
d101 = d201 = d202 = 0 and d102 = 1. Then Proposition 3.1.4 with {3, 5} and {4, 6},
together with equations coming from P ·QT = 0, delivers

d121 = −1

2
l21(d111 + 1), d221 = − l21d211

2
, d222 = − l22d212

l12
.

The vertices of the lineality part AcX,0 ⊂ Q2 are

u1 =
l21(2d112 − l12d111 − l12, 2d212 − l12d211)

2(l12 + l21)
, u2 = u1 +

(
l12l21

l12 + l21
, 0

)
,

u3 =
l21

l21 + 2
(−1, 0), u4 = u3 +

(
2l21

l21 + 2
, 0

)
,

u5 =
(l12(2d122 + l22d111), l22(l12d211 − 2d212))

l12(l22 + 2)
, u6 = u5 +

(
2l22

l22 + 2
, 0

)
.

We go through both cases l21 = 1, 2.
First assume that l21 = 1 holds. Then we achieve d121 = d221 = 0 by admissible
operations, and P · QT = 0 also yields d111 = −1. In order for u3 and u4 to be both
vertices, l12 = 1 must hold. For l22 > 1, the intersection of conv(0, u5, u6) with the line
{y = −1} has length one, thus contains an integral point and contradicts terminality,
whereas l22 = 1 will be handled in situation 3B.
Now assume that l21 = 2 holds. By admissible operations we achieve 0 ≤ d111, d211 < 2.
Since v11 and v21 are primitive, we arrive at d111 = 0 and d211 = 1. In order for u3 and u4

to be both vertices, at least one between l12 and l22 is equal to one. Since Remark 3.3.1
applies to γ11,12,21,22, they cannot be both equal to one. Without loss of generality say
l12 = 1 and l22 ≥ 2. Therefore AcX,0 ∩ {y = 0} has length one and the length of the edge
u5u6 is at least one. This means |u2

5| < 1, i.e. d212 = 0, 1. Using homogeneity in the
second component and once again P ·QT = 0 we arrive at

Q =

[
1 1 1 0 1 0

l22 + d122 −d122 0 l22 0 1

]
.

In particular the anticanonical class is −KX = (2, l22 + 1). The inequalities coming from
det(w02,−KX) > 0 and det(w01, w02) > 0 are incompatible with d122 being an integer:

−1

2
l22 −

1

2
< d122 < −1

2
l22.

Therefore we reach a contradiction.
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Situation 3B: homogeneity delivers l01 + l02 = l11w
1
11 = w1

21 and l12w
2
12 = w2

22. With
γ11,12,21,22 relevant face we conclude w1

11 = 1 = w2
12. Therefore the anticanonical class is

−KX = (3, w1
01 +w1

02 +1). Now det(w01, w02) > 0 and det(w02,−KX) > 0 yield w2
02 < 1,

a contradiction to the disposition.

Situations 3C and 3D: the same argument as situations 2C and 2D above works here
too.

Disposition 4: without loss of generality we assume that −KX ∈ cone(w01, w21)◦ holds.
In particular γ01,11,21 and γ01,11,22 are relevant faces, to which Remark 3.3.1 applies; we
arrive at

Q =

[
w1

01 0 w1
11 0 w1

21 w1
21

0 w2
02 0 w2

12 1 1

]
.

Situation 4A: we use homogeneity of the relation and Remark 3.3.1 together with relevant
faces γ01,02,11,12 and γ01,02,12,21,22 in the usual ways and achieve

Q =

[
l11 0 1 0 1 1
0 l11 0 1 1 1

]
.

Moreover we use admissible operations on P to achieve d101 = d201 = d202 = 0 and
d201 = 1. The equations of P ·QT = 0 allow us to write

v12 = (l12, 0, d112, d212),

v11 = v12 + (0, 0, l21 + l22, 0).

This means that there are integral points on the segment between v11 and v12, contra-
dicting terminality by Theorem 2.1.10.

Situation 4B: we have l02w
2
02 = l12w

2
12 = 2. We may assume that one of those exponents

is greater than one, otherwise see situation 4E. Without loss of generality let l12 = 2 and
w2

12 = 1. Using all the equations coming from P ·QT = 0 we can write

P =


−l01 −l02 l11 2 0 0
−l01 −l02 0 0 1 1

− l01d111
l11

− 1
2 l01 −1

2 l02(d112 + 1) d111 d112 0 1

− l01d211
l11

−1
2 l02d212 d211 d212 0 0

 ,

Q =

[ 2
l01
w1

21 0 2
l11
w1

21 0 w1
21 w1

21

0 2
l02

0 1 1 1

]
.

In particular we see that l02 = 1, 2 holds.
First we rule out the case l02 = 1; if it holds, we can reach d112 = 1 and d212 = 0 by
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means of admissible operations. The vertices of AcX,0 are

u1 =
1

l11 + 1
(d111 − l11, d211), u2 = u1 +

(
l11

l11 + 1
, 0

)
,

u3 =
1

3
(−1, 0), u4 = u3 +

(
2

3
, 0

)
,

u5 =
2l01

(l01 + 2)l11
(−d111,−d211), u6 = u5 +

(
2l01

l01 + 2
, 0

)
.

The only way to ensure that u3 and u4 are vertices is to set l11 = 1. Hence the weights
relative to the relevant face γ02,11,21 are (2, 0), (0, 2) and (1, 1). These points do not
generate Z2 as a lattice. Therefore the stratum X(γ02,11,21) consists of singular points,
contradicting terminality by Remark 3.3.1.
Now assume l02 = 2. Again, we look at the vertices of AcX,0 and have to set l11 = 1,
after which we achieve d111 = d211 = 0 by admissible operations. Moreover, since v01 is
primitive, l01 = 2 holds. We have

P =


−2 −2 1 2 0 0
−2 −2 0 0 1 1
−1 −1− d112 0 d112 0 1

0 −d212 0 d212 0 0


and the vertices of the lineality part are

u1 =
1

2
(d112 − 1, d212), u2 = u1 + (1, 0) ,

u3 =
1

2
(−1, 0), u4 = u3 + (1, 0) ,

u5 =
1

3
(−d112 − 1,−d212), u6 = u5 +

(
2

3
, 0

)
.

Since conv(u1, u2, u3, u4) does not contain integral points other than the origin, we con-
clude d212 = 1 and, with an admissible operation, d112 = 0. These data define a valid
variety, namely No. 6.

Situation 4E: homogeneity implies µ2 = w2
02 = w2

12 = l21 + l22. Moreover, Remark 3.3.1
applied on γ01,02,11,12 prescribes w2

02 = 1. This means l21 + l22 = 1, a contradiction.

Disposition 5: applying Remark 3.3.1 to γ02,11,21 and γ02,11,22 we obtain the degree matrix

Q =

[
w1

01 0 1 w1
12 w1

21 0
w2

01 1 0 w2
12 0 w2

22

]
.

Situation 5A: we divide this situation into three subcases. They differ from one another
by the Mori chamber αi ⊂ Eff(X) in which the anticanonical class −KX lies. In all three
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cases we use admissible operations and bring the defining matrix P into the following
shape:

P =


−1 −1 l11 l12 0 0
−1 −1 0 0 l21 l22

0 1 d111 d112 d121 d122

0 0 d211 d212 d221 d222

 .
Situation 5A with −KX ∈ α1: here γ02,12,22 is a relevant face, hence Remark 3.3.1 yields
w1

12 = 1. Homogeneity of the relation implies

w1
01 = l11 + l12, w1

21 =
l11 + l12

l21
,

w2
12 =

w2
01 + 1

l12
, w2

22 =
w2

01 + 1

l22
.

Note that γ01,02,21,22 is also a relevant face. Hence w1
21 = 1 holds, i.e. l21 = l11+l12. Since

the anticanonical class lies in α1, we have det(w12,−KX) > 0. This implies l12 > 2l22,
in particular l12 ≥ 3. Through equations from P ·QT = 0 we have

d111 = −d112 − d121, d211 = −d212 − d221, d212 = − l12d222

l22
.

Consider the vertices u1 and u2 of the lineality part AcX,0, defined by the elementary big
cones cone(v01, v1j , v21), for j = 1, 2 respectively. The segment line u1u2 intersects the
x-axis in the point (0, 0, (l11 + l12)/3, 0). Since l12 ≥ 3 holds, the lattice point (0, 0, 1, 0)
lies in conv(0, u1, u2) ⊂ AcX,0, a contradiction to terminality.
Situation 5A with −KX ∈ α2: we use homogeneity of the relation and Remark 3.3.1 on
the relevant face γ01,02,21,22 to arrive at

Q =

[
l21 0 1 (l21 − l11)/l12 1 0
w2

01 1 0 (w2
01 + 1)/l12 0 (w2

01 + 1)/l22

]
.

In particular l21 ≥ l11 + l12 holds. The matrix Q allows us to compute the anti-
canonical class −KX according to Proposition 1.3.13. Since −KX ∈ α2 holds, we have
det(−KX , w12) > 0. Writing down this condition explicitly we obtain l21 < l11 + 2l22.
Now we turn to the matrix P . Using equations from P ·QT = 0 we determine

d111 = −d112(l21 − l11)

l12
− d121,

d211 = −d222(l21 − l11)

l22
− d221,

d212 = − l12d222

l22
.

Now consider the vertices u1 and u2 of the lineality part AcX,0, defined by the elementary
big cones cone(v02, v1j , v21), for j = 1, 2 respectively. The segment line u1u2 intersects
the x-axis in the point (

0, 0,
l12l21

2l12 + l21 − l11
, 0
)
.
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By terminality the lattice point (0, 0, 1, 0) does not lie conv(0, u1, u2) ⊂ AcX,0. This
implies l11 = l12 = 1. In this special situation, we achieve

P =


−1 −1 1 1 0 0
−1 −1 0 0 l21 l22

0 1 0 d112 −d112(l21 − 1) −l22d112 − 1
0 0 0 d212 −d212(l21 − 1) −l22d212

 ,
Q =

[
l21 0 1 l21 − 1 1 0

l22 − 1 1 0 l22 0 1

]
,

where we can assume 0 ≤ d112 < d212 and l21, l22 ≥ 2. Consider the leaf AcX ∩ λ2 of the
anticanonical complex, embedded in Q3 by removing the first coordinate (which always
equals zero) from its points. Define B ⊂ Q3 as the convex hull of the following points

b1 := (l21, d121, d221), b2 := (l22, d122, d222),

a1 := (−1, 0, 0), a2 := (−1, 1, 0),

a3 := (−1, d112, d212), a4 := (−1, d112 + 1, d212).

Then the leaf AcX ∩ λ2 corresponds to the intersection B ∩ {(x, y, z) ∈ Q3;x ≥ 0}. By
terminality, the only integral points of the leaf are b1, b2 and the origin. Hence B contains
the origin as only interior point and, with Theorem 2.4.4, vol(B) is bounded by 12. This
gives the condition

d212(l21 + l22 + 2) < 36.

Therefore all entries of P are bounded. We use the MDSpackage [25] to check all possi-
bilities. It turns out that none of the matrices defines a terminal variety.
Situation 5A with −KX ∈ α3: here γ01,11,21 is a relevant face, so Remark 3.3.1 yields
w2

01 = 1. Using homogeneity of the relation and γ01,02,21,22 relevant face we arrive at

Q =

[
l21 0 1 (l21 − l11)/l12 1 0
1 1 0 2/l12 0 2/l22

]
.

Since the anticanonical class lies in α3, we have det(−KX , w01) > 0. This condition is
equivalent to the inequality

l11l22 + 2l12l21 − 2l12l22 + l21l22 < 0.

By looking at the matrix Q we see that l12, l22 ∈ {1, 2} holds. None of the possible
combinations satisfies the condition above, hence we reach a contradiction.

Situation 5B: homogeneity implies w1
21 = l01w

1
01 and w2

22 = l12w
2
12. Using Remark 3.3.1,

respectively with γ01,02,21,22 and γ11,12,21,22, we obtain w1
01 = 1 and w2

12 = 1. Since
w2

01, w
1
12 > 0 holds, we arrive at a contradiction with the disposition of the weights,

because det(w01, w12) > 0 holds.

Situations 5C and 5F: homogeneity yields w1
01 = w1

21 = l11 + l12w
1
12. By Remark 3.3.1

with γ01,02,21,22 ∈ rlv(X), we have w1
01 = 1 but then l11 + l12w

1
12 = 1 holds. This is a

contradiction, since all values appearing on the left side are at least one.
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Case (b) of Lemma 3.2.7 (ii)

We have r = 3, m = 0, n = 8 and n = (2, 2, 2, 1). Combinatorial minimality requires at
least two weights on each of the two extremal rays of Eff(X). There are six weights that
can be placed on these rays, therefore we have five possible dispositions:

disp 1
w01 w11 w21

w02

w12

w22

disp 2

α

w01 w11 w21

w02

w12

w22

disp 3

α

w11 w21

w02

w12

w22

w01

disp 4
w01 w11

w02

w12 w21

w22

disp 5

α

w11 w21

w12

w02

w22

w01

The weight w31 always lies on the dotted line, which is the cone spanned by the degree
µ of the relations. In disposition 2, 3 and 5 we define α := cone(w02, w12)◦.
With Proposition 2.3.1 we obtain a list of possible exponent configurations:

A l0 = l1 = (1, 1);
B l1 = l2 = (1, 1);
C l0 = (1, 1) and l11 = l21 = 1;
D l1 = (1, 1) and l01 = l21 = 1;
E l2 = (1, 1) and l02 = l12 = 1.

Due to terminality, every disposition allows only a few of these configurations, sometimes
even just for restricted situations, depending on the position of the anticanonical class.
The following table summarizes the totality of possible situations:

config A config B config C config D config E
disp 1 X
disp 2 X X Xα

disp 3 X X Xα

disp 4 X X X
disp 5 X X Xα

The combinations of dispositions and configurations that need to be studied are marked
with the sign X. A subscript indicates that the anticanonical class −KX has to lie in the
given cone.
In the following we show that none of these situations provides a valid variety.
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Situation 1A: by almost freeness of the grading we can assume Eff(X) = Q2
≥0. With

Remark 3.3.1 applied to γ01,12,22 and γ02,11,21 we achieve w01 = (1, 0) and w02 = (0, 1).
Hence µ = (1, 1) holds, which implies l31 = 1, a contradiction to P irredundant.

Disposition 2: we can apply Remark 3.3.1 to γ01,11,22, γ01,12,21 and γ01,12,22 in order to
arrive at

Q =

[
1 w1

02 w1
11 0 w1

21 0 w1
31

0 w2
02 0 1 0 1 w2

31

]
.

Situation 2A and 2B: the degree of the relations is µ = (w1
11, 1). Therefore l31w

2
31 = 1

holds, which contradicts irredundancy of P .

Situation 2C: here −KX ∈ cone(w02, w12)◦ is required. Therefore γ02,12,22 is a relevant
face and w1

02 = 1 holds by Remark 3.3.1. With admissible operations we achieve

P =


−1 −1 1 l12 0 0 0
−1 −1 0 0 1 l22 0
−1 −1 0 0 0 0 l31

0 1 0 d112 0 d122 d131

0 0 0 d212 0 d222 d231

 .

Using the equations coming from P ·QT = 0 we can fix most of the values of the defining
matrices. In particular in P we get

v22 = (0, l12, 0,−d112 −
l12

2
,−d212) and v31 = (0, 0, 2,−1, 0).

This allows us to express the vertices of the lineality part of the anticanonical complex
in the following way:

u1 =

(
2d112 − l12

l12 + 2
,

2d212

l12 + 2

)
, u2 = u1 +

(
2l12

l12 + 2
, 0

)
,

u3 =

(
−1

3
, 0

)
, u4 = u3 +

(
2

3
, 0

)
,

u5 =

(
−2d112 − 2l12

l12 + 2
,
−2d212

l12 + 2

)
, u6 = u5 +

(
2l12

l12 + 2
, 0

)
.

We notice that the length of the edges u1u2 and u5u6 is at least 2/3, hence u3 and u4

are not both vertices, a contradiction.

Situation 3A: by Remark 3.3.1 applied to γ01,12,22 we can achieve w1
12 = w1

22 = 0 and
w01 = (1, 0). Since homogeneity requires w2

12 = l22w
2
22, we also obtain w2

22 = 1.
Suppose for a moment that −KX ∈ cone(w02, w12)◦ holds. Then γ02,12,22 is relevant,
so w1

02 = 1. Homogeneity implies l21 = l31 = 2 (otherwise see situation 3C) and the
anticanonical class is

−KX =

(
2, 1− w2

02 −
1

2
l22

)
.

Since l22, w
2
02 ≥ 1, the anticanonical class does not lie in the prescribed cone.
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Hence from now on let −KX ∈ cone(w01, w02)◦. By homogeneity, the inequalities w2
11 < 0

and w2
31 ≥ 1 turn into l22 > w2

02 and w2
02 ≥ l31. Since l31 ≥ 2 holds by irredundancy of

P , we conclude l22 ≥ 3. With Proposition 3.1.4 applied to {4, 6} and {3, 5} we can write

d221 = − l21

l31
d231 and d221 = − l22

l31
d232 − l22d212.

The vertices of AcX,0 defined by the elementary big cones P (δ0i,11,22,31) for i = 1, 2 are

u1 =

(
l22d131 + l31d122

l22 + l31
,− l22l31d212

l22 + l31

)
u2 = u1 +

(
l22l31

l22 + l31
, 0

)
.

Since l31 ≥ 2 and l22 ≥ 3 hold, the intersection of conv(0, u1, u2) ⊂ AcX,0 with {y =
−d212} exists and has length equal to one. Therefore it contains a lattice point and this
contradicts terminality.

Situation 3B: here we can assume that the weights w12 and w22 lie in cone(e2), i.e.
w1

12 = w1
22 = 0. By homogeneity of the relations we also get w1

11 = w1
21 = l31w

1
31.

Since w11 and w21 lie on the same half-line, we conclude w2
11 = w2

21 and consequently
w2

12 = w2
22. These equalities, together with Remark 3.3.1 applied to γ01,12,22, deliver

w01 = (1, 0) and w2
12 = 1. At this point, homogeneity requires l02w

2
02 = µ2 = w2

11 + 1.
This contradicts the configuration of the weights, because w2

02 ≥ 1 but w2
11 < 0.

Situation 3C: here −KX ∈ cone(w02, w12)◦ holds. We proceed the same way as in situ-
ation 2C, namely we use the relevant faces γ01,12,22 and γ02,12,22, then we work with P
and lastly find the six vertices of the lineality part of the anticanonical complex. The
same kind of contradiction follows here too.

Situation 4A: by means of admissible operations, we achieve the following defining matrix

P =


−1 −1 1 1 0 0 0
−1 −1 0 0 l21 l22 0
−1 −1 0 0 0 0 l31

0 1 0 d112 d121 d122 d131

0 0 0 d212 d221 d222 d231

 .
Applying Proposition 3.1.4 to {5, 6} we obtain d212 = 0. We can assume −KX ∈
cone(w01, w21)◦ and compute the vertices of the lineality part AcX,0. A contradiction
is reached: it turns out that three vertices lie on the same line segment.

Situation 4B: here Remark 3.3.1 applies to γ01,11,21 and γ01,11,22 and yields w2
01 = w2

11 = 0,
w2

21 = w2
22 = 1 and w1

21 = w1
22. Moreover, homogeneity of the relations delivers

2 = µ2 = l02w
2
02 = w2

12 = l31w
2
31.

This means already l02 = l31 = w2
12 = 2 and w2

02 = w2
31 = 1. In particular, multiplying

Q from left with an appropriate unimodular matrix, we achieve w1
02 = w1

12 = 0. We use
homogeneity in the first component to arrive at

Q =

[
2w1

21
l01

0 2w1
21 0 w1

21 w1
21 w1

21

0 1 0 2 1 1 1

]
.
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At the same time we can use admissible operations on P and achieve

P =


−l01 −2 1 1 0 0 0
−l01 −2 0 0 1 1 0
−l01 −2 0 0 0 0 2
d101 d102 0 1 0 d122 d131

d201 d202 0 0 0 d222 d231

 .

With P ·QT = 0 we obtain the following equalities:

d102 = −d122 − d131 − 2 and d202 = −d222 − d231.

We look specifically at the vertices of AcX,0 ⊂ Q2 defined by the two elementary big cones
cone(v02, v11, v2j , v31) for j = 1, 2, which are respectively(

−1− 1

2
d122 , −

1

2
d222

)
and

(
−1 +

1

2
d122 ,

1

2
d222

)
.

The integral point (−1, 0) lies on the segment joining the two vertices, henceAcX,0 contains
a forbidden lattice point and X is not terminal.

Situation 4E: we assume −KX ∈ cone(w01, w21)◦ without loss of generality. With the
usual game on homogeneity, relevant faces, admissible operations and equations from
P ·QT = 0 we arrive at

P =


−l01 −1 l11 1 0 0 0
−l01 −1 0 0 1 1 0
−l01 −1 0 0 0 0 2
d101 0 d111 0 1 0 −1
d201 0 d211 0 0 0 0

 .

The vertices of the lineality part AcX,0 ⊂ Q2 are

u1 =
1

l11 + 2
(2d111 − l11, 2d211), u2 = u1 +

(
2l11

l11 + 2
, 0

)
,

u3 =
1

3
(−1, 0), u4 = u3 +

(
2

3
, 0

)
,

u5 =
1

l01 + 2
(2d101 − l01, 2d201), u6 = u5 +

(
2l01

l01 + 2
, 0

)
.

We see that, for any choice of l01 and l11, at least one between u3 and u4 is not a vertex,
a contradiction.

Disposition 5: here we can assume −KX ∈ cone(w01, w02)◦ without loss of generality.
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Situation 5A: Applying Remark 3.3.1 to γ02,11,21 and γ02,11,22 we obtain Eff(X) = Q2
≥0,

with w02 = (0, 1) and w11 = (1, 0). Using homogeneity of all monomials we arrive at the
following grading matrix:

Q =

[
w1

01 0 1 w1
01 − 1

w1
01
l21

0
w1

01
l31

w2
01 1 0 w2

01 + 1 0
w2

01+1
l22

w2
01+1
l31

]
.

Assume for a moment det(w12,−KX) > 0. Then −KX ∈ cone(w02, w12)◦ holds, γ02,12,22

is a relevant face and Remark 3.3.1 yields w2
01 and l31 = 2. This contradicts the deter-

minantal assumption. Therefore −KX lies in cone(w01, w12). We turn to the matrix P .
With admissible operations we achieve

v01 = (−1,−1,−1, 0, 0),

v02 = (−1,−1,−1, 1, 0),

v11 = (1, 0, 0, 0, 0).

Moreover, Corollary 3.1.5 applied to P{3,5} delivers

d231 = −l31d212 −
l31d222

l22
.

Consider cone(v0j , v11, v22, v31) for j = 1, 2. These are big elementary cones and define
two vertices u1 and u2 of the lineality partAcX,0 ⊂ Q2. The triangle C := conv(0, u1, u2) ⊂
Q2 has an edge c := u1u2 parallel to the x-axis. The height h(c) and length `(c) of c are

h(c) = −d212
l22l31

l22 + l31
, `(c) =

l22l31

l22 + l31
.

By terminality, C does not contain integral points other than the origin, hence `(c) < 1
holds. This implies l22 = 1. By admissible operations we achieve d122 = d222 = 0. Using
the fact that P ·QT = 0 holds, we write explicitly

w1
01 =

d212l21

d221
, w2

01 = −d112l31 + d131 + l31

d112l31 + d131
.

Now consider w1
21 and w2

31, which satisfy

w1
21 =

d212

d221
, w2

31 = − 1

d112l31 + d131
.

Since they are both integers, we conclude d131 = −d112l31 − 1 and d212 = bd221 for some
integer b ∈ Z≥1. For the anticanonical class we have

−KX =
(
b+ b

l21

l31
, l31 + 1

)
.

The condition det(−KX , w21) > 0 implies l21 = 1, 2. We leave l21 = 1 for situation 5B,
thus we have l21 = 2. The same determinantal condition yields b = 1 and, by looking
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at w1
31, we conclude l31 = 2. Furthermore, P ·QT = 0 also delivers d112 = d121 − 1. To

finally achieve a contradiction to terminality, take a look at the vertices u3 and u4 of the
lineality part, defined by cone(v02, v1j , v21, v31) for j = 1, 2 respectively:

u3 =
1

2
(−d121 + 3,−d221), u4 =

1

2
(d121 + 1, d221).

The midpoint of the segment line connecting these two vertices is (1, 0), a contradiction
to Theorem 2.1.10.

Situation 5B: Combining Remark 3.3.1 applied to many relevant F-faces, homogeneity
of the monomials and admissible operations on P , we arrive at Eff(X) = Q2

≥0 and

P =


−l01 −l02 1 1 0 0 0
−l01 −l02 0 0 1 1 0
−l01 −l02 0 0 0 0 l31

d101 d102 0 1 0 d122 d131

d201 d202 0 0 0 d222 d231

 .

Q =

[
w1

01 0 1 l01w
1
01 − 1 l01w

1
01 0

l01w1
01

l31
l31−l02
l01

1 0 l31 0 l31 1

]
.

Equations given by P ·QT = 0 deliver

d201 = − l01d231

l31
, d231 = − l

2
31d222

l02
− l31d202

l02
.

These help us write down the explicit coordinates of the vertices of AcX,0 ⊂ Q2. Five
vertices u1, . . . , u5 are always present and given by

u1 =
1

l01 + l31
(l01d131 + l31d101 + l01l31d122, l01l31d222), u2 = u1 +

(
l01l31

l01 + l31
, 0

)
,

u3 =
1

l01 + l31
(l01d131 + l31d101 + l01l31, 0),

u4 =
1

l02 + l31
(l02d131 + l31d102,−l231d222), u5 = u4 +

(
l02l31

l02 + l31
, 0

)
.

The coordinates of the sixth vertex u6 depend on the position of the anticanonical class,
i.e. if it lies in α := cone(w02, w12) or in β := cone(w01, w12), because these two cases
allow different big elementary cones.
Assume for a moment −KX ∈ α. Then γ02,12,22 is a relevant face, implying l01w

1
01 = 2

and l31 = 2 by Remark 3.3.1. Moreover the sixth vertex is defined by P (δ01,11,21,31) and
yields l02 < l01, hence l01 = 2 and l02 = 1, which contradicts w2

01 ∈ Z.
Therefore −KX ∈ β holds and the vertex u6 is defined by the elementary big cone
P (δ02,11,22,31). Consider the polyhedron C := conv(u1, u2, u4, u5) ⊂ AcX,0, which is a
trapezoid with edges c1 := u1u2 and c2 := u4u5 parallel to the x-axis. The height of
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c2 is negative and smaller than −1. If both l01 and l02 are greater than 1, then both
edges ci are longer than 1 and C contains integral points at height {y = −1}. Hence we
follow l02 = 1 and l01 ≥ 2. (the case l01 = 1 is covered in situation 5D). With admissible
operations we achieve d102 = d202 = 0. We find the bounding condition l01 ≤ 4 by
imposing that the segment AcX,0 ∩ {y = 0} has length at most 2. For all cases of l01 we
find out that the segment AcX,0∩{y = 1} is longer than 1, hence AcX,0 contains a non-zero
lattice point, contradicting terminality.

Situation 5D: −KX ∈ cone(w12, w02)◦ is required. Here γ02,11,21, γ02,11,22 and γ02,12,22

are relevant faces to which Remark 3.3.1 applies. Therefore, after setting Eff(X) = Q2
≥0,

we obtain w1
11 = w1

12 = w2
02 = 1. In particular µ1 = 2 holds, hence l31 = 2 and

Q =

[
2 0 1 1 2 0 1
w2

01 1 0 w2
12 0 w2

22 w2
31

]
.

Using homogeneity of the relations we can write all weights of the second row of Q in
terms of w2

01. For the anticanonical class −KX we obtain

−KX =

(
3, 1 +

1

2
w2

01 −
1

2
l02 +

w2
01 + l02

l22

)
.

It turns out that det(w12,−KX) < 0 holds, in contradiction to the hypothesis of this
situation on the position of the anticanonical class.

Case (c) of Lemma 3.2.7 (ii)

We have r = 4, m = 0, n = 8 and n = (2, 2, 2, 1, 1). Combinatorial minimality prescribes
at least two weights on each of the two extremal rays of Eff(X). There are six weights
that can be placed on these rays, therefore we end up with five possible dispositions:

disp 1
w01 w11 w21

w02

w12

w22

disp 2
w01 w11 w21

w02

w12

w22

disp 3
w11 w21

w02

w12

w22

w01

disp 4
w11 w21

w12

w22 w01

w02

disp 5
w11 w21

w12

w02

w22

w01
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The weights w31, w41 always lie on the thin dotted line, which is the cone spanned by the
degree µ. Note that in every disposition the following cones are elementary big:

cone(v01, v11, v22, v31, v41), cone(v02, v12, v21, v31, v41).

In particular, every ray vij appears at least once in an elementary big cone. With
Proposition 2.3.1 we obtain li = (1, 1) for i = 0, 1, 2. Admissible operations on P deliver

P =



−1 −1 1 1 0 0 0 0
−1 −1 0 0 1 1 0 0
−1 −1 0 0 0 0 l31 0
−1 −1 0 0 0 0 0 l41

0 1 0 d112 0 d122 d131 d141

0 0 0 d212 0 d222 d231 d241

 ,

where we can also assume 0 ≤ d141, d241 < l41 ≤ l31.
While treating any of the above mentioned dispositions, it is possible to conclude non-
terminality in two steps: first one needs to apply Corollary 3.1.5 whenever possible,
then look at the lineality part AcX,0 of the anticanonical complex and see that it always
contains a non-zero integral point.

Case (d) of Lemma 3.2.7 (ii)

We have r = 2, m = 0, n = 6 and n = (3, 2, 1). Combinatorial minimality requires at
least two weights on each of the two extremal rays of Eff(X). There are five weights that
can be placed on these rays, therefore we end up with three possible dispositions:

disp 1
w01 w02

w03

w12

w21

w11

disp 2
w02 w11

w03

w12

w21

w01

disp 3
w01 w02 w11

w03

w12

w21

In every disposition we find the following elementary big cones:

cone(v0i, v1j , v21), ∀(i, j) ∈ {1, 2, 3} × {1, 2} with (i, j) 6= (3, 2).

In particular we assumed, without loss of generality, that the anticanonical class in dispo-
sition 2 lies in cone(w01, w03)◦, the light-grey cone in the picture. With Proposition 2.3.1,
we find three possible configurations of the exponents:

A l0 = (1, 1, 1);
B l1 = (1, 1);
C l01 = l02 = l11 = 1.

We will see that this case contributes with four varieties, namely No. 7 (from 1A), No. 8
(from 2A), No. 9 (from 1C) and No. 10 (from 3C).
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Disposition 1: we apply Remark 3.3.1 to γ01,02,12, γ01,03,12 and γ02,03,12 and achieve, for
the grading matrix,

Q =

[
1 1 0 w1

11 0 w1
21

0 0 w2
03 w2

11 1 w2
21

]
.

Situation 1A: homogeneity of the monomials implies l21 = 2, w1
21 = 1, w1

11 = 2/l11 and
w2

03 = 2w2
21. With γ01,02,03,21 ∈ rlv(Φ) and Remark 3.3.1, we conclude w2

21 = 1. In
particular we have w11 = (2/l11, w

2
11) and w21 = (1, 1). Since the disposition requires

0 < det(w11, w21), we obtain l11 = w2
11 = 1. Using admissible operations and equations

resulting from P ·QT = 0 we can fix the remaining entries of both matrices. We get

P =


−1 −1 −1 1 1 0
−1 −1 −1 0 0 2

0 1 0 0 1 −1
0 0 1 0 −2 0

 , Q =

[
1 1 0 2 0 1
0 0 2 1 1 1

]
.

These data define variety No. 7.

Situation 1B: we have

w1
11 = l01 + l02, w2

11 = l03w
2
03 − 1,

w1
21 =

l01 + l02

l21
, w2

21 =
l03w

2
03 − 1

l21
,

d203 = − l03d221

l21
,

where the equations on the weights come from homogeneity of the relation and the last
equality is due to Corollary 3.1.5 applied to {1, 2}. We need to understand whether the
anticanonical class −KX lies in cone(w01, w11)◦ or in cone(w03, w11)◦. In order to do
that, consider the lineality part AcX,0 ⊂ Q2. In both cases, the following rational points
are vertices of AcX,0:

u1 =

(
d121l01 + d101l21

l01 + l21
,
d221l01 + d201l21

l01 + l21

)
, u2 = u1 +

(
l01l21

l01 + l21
, 0

)
,

u3 =

(
d121l03 + d103l21

l03 + l21
, 0

)
,

u4 =

(
d121l02 + d102l21

l02 + l21
,
d221l02 + d202l21

l02 + l21

)
, u5 = u4 +

(
l02l21

l02 + l21
, 0

)
.

Assume for a moment that −KX ∈ cone(w01, w11)◦ holds. Then γ01,02,11 is a relevant
face and Remark 3.3.1 applies, yielding w2

11 = 1, hence l03w
2
03 = 2 and l21 = 2. If

l03 = 2 and w2
03 = 1 hold, then we arrive at a contradiction since the anticanonical class

is (2 + (l01 + l02)/2, 2), but this point does not lie in the prescribed cone. If l03 = 1 and
w2

03 = 2 hold, then there is a sixth vertex of AcX,0, namely u6 = u3 + (2/3, 0). Since
both u1u2 and u4u5 are edges of AcX,0, with a length of at least 2/3, the points u3 and
u6 cannot be both vertices: a contradiction.
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Therefore we can assume −KX ∈ cone(w03, w11)◦. In particular γ03,11,12,21 is a relevant
face; with Remark 3.3.1 we obtain l21 = l01 + l02. Equalities from P ·QT = 0 deliver

d121 = −d101 − d102, d221 = −d201 − d202.

These estimates put the vertices u1, . . . , u5 of the lineality part in a special position. As
a matter of fact, the intersection of the x-axis with the segment line u2u5 is the point

1

3
(l01 + l02, 0).

Since l01 + l02 ≥ 3 holds (otherwise we are in situation 1C), we obtain (1, 0) ∈ AcX,0, a
contradiction to the terminality of X.

Situation 1C: we apply some admissible operations to simplify the form of P and obtain
the following shape:

P =


−1 −1 −l03 1 l12 0
−1 −1 −l03 0 0 l21

0 1 d103 0 d112 d121

0 0 d203 0 d212 d221

 .
Using P · QT = 0 with the first row of Q we get w1

11 = 2, w1
21 = 1, l21 = 2, d121 = −1

and d221 = 0. Similarly, the second row of Q, together with the first and second rows of
P , yield

w2
11 = l03w

2
03 − l12 and w2

21 =
1

2
l03w

2
03.

Note that γ01,02,03,21 ∈ rlv(Φ) is not in the covering collection, hence we apply Re-
mark 3.3.1 and obtain gcd(w2

03, w
2
03l03/2) = 1. This leaves us with two cases: either

w2
03 = 2 and l03 is odd, or w2

03 = 1 and l03 is even.
The first case can be discharged as follows: w2

11 > 0 here means 2w2
03 > l12, and, since

det(w11,−KX) > 0 holds, we also have 4l03 < 6 + l12. But these inequalities combined
imply l03 < 3, hence l03 = 1, a situation already studied in situation 1A.
Therefore we assume that w2

03 = 1 holds and l03 is even. Here, too, we obtain two
inequalities, namely l12 < l03 and 2l03 < 4 + l12. We conclude l03 = 2 and hence l12 = 1.
The last equalities from P · QT = 0 deliver d103 = 1 − d112 and d203 = −d212. The
matrices look as follows:

P =


−1 −1 −2 1 1 0
−1 −1 −2 0 0 1

0 1 1− d112 0 d112 −1
0 0 −d212 0 d212 0

 ,
Q =

[
1 1 0 2 0 1
0 0 1 1 1 1

]
.

Among the vertices of the lineality part AcX,0 of the anticanonical complex we find

u1 :=
(
−1

3
, 0
)
, u2 :=

(1

3
, 0
)
, u3 :=

(
−1

2
d112,−

1

2
d212

)
.
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With admissible operations we can assume 0 ≤ d112 < d212 and, since terminality implies
that conv(u1, u2, u3) does not contain any integral point, we arrive at d212 < 12. We
check the varieties given by these parameters with the MDSpackage [25]. It turns out
that there is one terminal variety among them, namely with d112 = 0 and d212 = 1; this
occurs as No. 10 in Theorem 3.4.1.

Disposition 2: the F-face γ02,03,11 is relevant and is not in the covering collection, hence
with Remark 3.3.1 we can assume that the effective cone is the positive orthant. By
applying the same Remark, on the relevant faces γ01,03,12, γ02,03,12 and γ02,03,11, we arrive
at

Q =

[
1 1 0 w1

11 0 w1
21

w2
01 0 1 0 w2

12 w2
21

]
.

Situation 2A: homogeneity of the relation implies 2 = µ1 = l21w
1
21, i.e. l21 = 2 and

w1
21 = 1. Therefore 2w2

21 = µ2 = w2
01 + 1 holds. Together with det(w01, w21) ≥ 0 we

conclude w2
01 = w2

21 = 1 and µ2 = 2. Since γ01,11,12,21 is a relevant face, at least one
between w1

11 and w2
12 must equal 1. Without loss of generality let w2

12 = 1, hence l12 = 2.
If w1

11 = 1 holds, then the anticanonical class is (2, 2): this contradicts Q-factoriality by
Proposition 1.4.2 since (2, 2) ∈ cone(w01)◦. Therefore we have w1

11 = 2 and l11 = 1. The
last entries of P are determined by P ·QT = 0. This delivers variety No. 8.

Situation 2B: by homogeneity of the relation we achieve w1
11 = l21w

1
21 and w2

12 = l21w
2
21.

The relevant faces γ02,11,12,21 and γ03,11,12,21, together with Remark 3.3.1, imply w21 =
(1, 1). This contradicts det(w01, w21) > 0 and w2

01 > 0.

Situation 2C: through suitable admissible operations the matrix P assumes the following
form:

P =


−1 −1 −l03 1 l12 0
−1 −1 −l03 0 0 l21

0 1 d103 0 d112 d121

0 0 d203 0 d212 d221

 .
By imposing P ·QT = 0 we obtain several equalities, which altogether deliver the following
degree matrix Q:

Q =

[
1 1 0 2 0 1

w2
01 0 1 0

w2
01+l03
l12

w2
01+l03

2

]
.

We can assume l03, l12 ≥ 2, otherwise we go back to configurations A and B respectively.
Moreover we have l12 ≥ 3, since l12 = 2, together with γ02,11,12,21 ∈ rlv(Φ), implies
w2

01 = l03 = 1. At this point a contradiction is reached, since this disposition requires
det(w01,−KX) > 0.

Disposition 3: using Remark 3.3.1 applied to the relevant faces γ01,02,12, γ01,03,11, γ01,03,12,
γ02,03,12, we can achieve the degree matrix

Q =

[
1 1 0 w1

11 0 w1
21

0 0 1 0 1 w2
21

]
.

Situations 3A and 3B: here µ2 = w2
03 = 1 holds. This implies l21 = 1, a contradiction to

irredundancy of P .
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Situation 3C: the matrix P , via admissible operations, takes the form

P =


−1 −1 −l03 1 l12 0
−1 −1 −l03 0 0 l21

0 1 d103 0 d112 d121

0 0 d203 0 d212 d221

 .
By imposing P ·QT = 0 we obtain several equalities, which altogether deliver the following
matrices P and Q:

P =


−1 −1 −l03 1 l03 0
−1 −1 −l03 0 0 2

0 1 1
2 l03 − d112 0 d112 −1

0 0 −d212 0 d212 0

 ,

Q =

[
1 1 0 2 0 1
0 0 1 0 1 1

2 l03

]
.

Note that l03 must be even. Moreover, since the anticanonical class −KX is equal to
(3, 2 − 1

2 l03) and lies in the positive orthant, the inequality l03 < 4 holds, thus l03 = 2.
By terminality, the lineality part AcX,0 does not contain integral points other than the
origin. This implies d212 = 1 and, with an admissible operation, d112 = 0. The resulting
matrix P defines indeed a valid variety, namely No. 10.

Case (e) of Lemma 3.2.7 (ii)

We have r = 3, m = 0, n = 7 and n = (3, 2, 1, 1). Combinatorial minimality requires
at least two weights on each of the two extremal rays of Eff(X). There are five weights
that can be placed on these rays, therefore we arrive at with three possible dispositions:

disp 1
w01 w02

w03

w12

w21

w31

w11

disp 2
w02 w11

w03

w12

w21

w31

w01

disp 3
w01 w02 w11

w03

w12

w21

w31

By specifying w11 ∈ cone(w01, w21)◦ in disp 1 and w01 ∈ cone(w11, w21) \ cone(w11) in
disp 2, the three pictures represent mutually exclusive situations. We prove that none of
these dispositions defines a valid variety.
Some preliminary considerations can be done in general. Note, for example, that in all
dispositions, every ray of the type vij appears in at least one elementary big cone. Hence
Proposition 2.3.1 delivers l0 = (1, 1, 1) and l1 = (1, 1). With admissible operations we
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achieve

P =


−1 −1 −1 1 1 0 0
−1 −1 −1 0 0 l21 0
−1 −1 −1 0 0 0 l31

0 1 0 0 d112 d121 d131

0 0 1 0 d212 d221 d231

 ,
with 0 ≤ d131, d231 < l31.

Disposition 1: we apply Corollary 3.1.5 to the set {3, 5} and obtain

d221 = − l21d231

l31
.

Now we take a look at the vertices of AcX,0 ⊂ Q2. The disposition shows that there are
five elementary big cones and the respective vertices are:

u1 =

(
d121l31 + d131l21

l21 + l31
,

l21l31

l21 + l31

)
.

u2 =

(
d121l31 + d131l21

l21 + l31
, 0

)
, u3 = u1 +

(
l21l31

l21 + l31
, 0

)
,

u4 = u1 +
l21l31

l21 + l31
(d112, d212) , u5 = u3 +

(
l21l31

l21 + l31
, 0

)
,

Since l21, l31 ≥ 2 holds, the parallelogram conv(u2, u3, u4, u5) contains at least one lattice
point at height {y = −1}. This contradicts terminality.

Disposition 2: we apply Corollary 3.1.5 to the sets {3, 5}, {2, 4} and obtain

d221 = − l21d231

l31
, d112 = −d121

l21
− d131

l31
.

Using these equalities, the vertex of AcX,0 ⊂ Q2 defined by cone(v01, v12, v21, v31) is(
0 , d212

l21l31

l21 + l31

)
.

This implies d212 6= 0. Since l21, l31 ≥ 2 holds, the point (0, d212) lies in AcX,0, a contra-
diction to terminality by Proposition 2.1.12.

Disposition 3: the same considerations of the previous disposition apply here.

Case (f) of Lemma 3.2.7 (ii)

We have r = 2, m = 0, n = 6 and n = (4, 1, 1). We show that no valid variety arises
from this case. By combinatorial minimality there is only one disposition of the weights,
as sketched in the picture:
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w01 w04

w02

w03

w11

w21

In particular, all cones of type cone(v0j , v11, v21) are elementary big and Proposition 2.3.1
delivers l0j = 1 for j = 1, . . . , 4. With admissible operations, and using the fact that
conv(0, v0j ; j = 1, 2, 3, 4) ⊂ AcX does not contain integral points other than the vertices,
we achieve

P =


−1 −1 −1 −1 l11 0
−1 −1 −1 −1 0 l21

0 1 0 1 d111 d121

0 0 1 1 d211 d221

 .
Regarding the weights, we can set w2

01 = w2
04 = 0. Applying Remark 3.3.1 to γ01,02,04

and γ01,03,04 we obtain w2
02 = w2

03 = 1, which allows us to further assume w1
02 = w1

03 = 0.
Now, homogeneity of the relation yields 2 = µ2 = l11w

2
11 = l21w

2
21, hence l11 = l21 = 2

and w2
11 = w2

21 = 1. Since the last two weights lie on the same half-line, we also have
w1

11 = w1
21. Up to this point, the matrix Q can be written down as follows:

Q =

[
w1

01 0 0 w1
04 a a

0 1 1 0 1 1

]
,

for some a ∈ Z≥1. In particular the anticanonical class is −KX = (2a, 2). Hence −KX
lies in cone(w11) = Q(γ11,21), which is a non-fulldimensional projected relevant F-face.
This contradicts Q-factoriality of X by Proposition 1.4.2.

Case (g) of Lemma 3.2.7 (ii)

We have r = 2, m = 1, n = 5 and n = (2, 2, 1). Taking combinatorial minimality into
account, there are three possible weight dispositions:

disp 1
w01 w11

w21

w02

w12

w1

disp 2
w11 w1

w21

w02

w12

w01

disp 3
w01 w11 w1

w02

w12
w21

where in disposition 1 we may assume without loss of generality that−KX ∈ cone(w02, w1)◦

holds. Therefore all three dispositions present the following elementary big cones:

cone(v01, v11, v21), cone(v01, v12, v21), cone(v02, v11, v21).

Following Proposition 2.3.1, we find three configurations for the exponents:
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A l0 = (1, 1);
B l1 = (1, 1);
C l01 = l11 = 1.

Note that, in both dispositions 1 and 3, configurations A and B coincide after admissible
operations on P of type (i) and (ii). We show that this case delivers variety No. 11 from
the table of Theorem 3.4.1, specifically in situation 2A.

Situation 1A: here Remark 3.3.1 applied to γ01,02,11,12 ensures that Eff(X) = Q2
≥0 holds.

Together with homogeneity of the relation and the relevant faces γ01,02,12,21 and γ01,02,11,21

we arrive at l11 = l12 = l21 and

Q =

[
l21 0 1 0 1 w1

1

0 l21 0 1 1 w2
1

]
.

Now we turn to P . With admissible operations we achieve d101 = d201 = 0 as well as
d′11 = 0 and d′21 = 1. Moreover we can assume 0 ≤ d202 < d102. Using the equations
coming from the third row of P ·QT = 0 we obtain

d111 = −d121 and d112 = −d121 − l21d102.

The three elementary big cones listed above and the ray in the lineality space of trop(X)
define the four vertices of the lineality part AcX,0 ⊂ Q2 of the anticanonical complex:

u1 =
1

2
(0 , d211 + d221) ,

u2 =
1

2
(−l21d102 , d212 + d221) ,

u3 =
1

2
(l21d102 , d211 + d221 + l21d202) ,

u4 = (0 , 1) .

Note that u1 lies on the y-axis. By terminality (0,−1) /∈ AcX,0 holds, hence we arrive
at d211 + d221 = −1. This can be used to simplify the form of u3. We have u1

3 ≥ 1 as
well as u1

3 > u2
3 ≥ −1/2. Since (1, 0) and (1, 1) do not lie on the lineality part AcX,0, the

previous inequalities imply d102 = 1, d202 = 0 and l21 = 2. Now we look at d212 + d221:
if it is even, then u2 is a lattice point, if it is odd, then a lattice point lies between v11

and v12. In both cases we obtain a contradiction to terminality of X.

Situation 1C: by Remark 3.3.1 applied to γ01,02,11,12, we can assume that Eff(X) = Q2
≥0

holds. Together with homogeneity of the relation we are able to express the first row of
the grading matrix Q as follows[

w1
01 0 w1

01 0
w1

01
l21

w1
1

]
.

Using again Remark 3.3.1 with γ01,02,11,12 we conclude w1
01 = 1 and hence l21 = 1, a

contradiction to P irredundant.
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Disposition 2: we apply Remark 3.3.1 to the relevant faces γ02,11,1 and γ02,12,1 and achieve
the following degree matrix:

Q =

[
w1

01 0 w1
11 0 w1

21 1
w2

01 1 0 w2
12 w2

21 0

]
.

Situation 2A: homogeneity of the relation delivers

w1
11 =

w1
01

l11
, w1

12 =
w1

01

l21
,

w2
21 =

w2
01 + 1

l12
, w1

22 =
w2

01 + 1

l21
.

We apply Remark 3.3.1 to γ01,02,11,12 and obtain w1
01 = l11. Note that there are

two possibilities for the anticanonical class −KX : it lies either in cone(w1, w01)◦ or in
cone(w01, w02)◦. We rule out the first cone because then γ01,11,1 would be a relevant face
and Remark 3.3.1 would imply w2

01 = 1, l21 = 2 and l12 = 1, 2. This in turn forces −KX
outside of cone(w1, w01)◦, a contradiction.
Hence the anticanonical class lies in cone(w01, w02)◦. This means in particular that
γ01,02,12,21 is relevant, which implies l11 = l21. We turn to the matrix P . With admissible
operations we set d101 = d201 = 0, as well as d′11 = 0 and d′21 = 1. Looking at P ·QT = 0
we also obtain d111 = −d121 and d211 = −d221 − 1. With more admissible operations we
can assume 0 ≤ d202 < d102 and 0 ≤ d121, d221 < l21. The three elementary big cones
listed above and the lattice point v1 ∈ trop0(X) define the four vertices of the lineality
part AcX,0 ⊂ Q2, namely:

u1 =

(
0 , −1

2

)
,

u2 =
1

l12 + l21
(l21d112 + l12d121 , l21d212 + l12d221) ,

u3 =
1

2
(l21d102 , l21d202 − 1) ,

u4 = (0 , 1) .

By the previous inequalities, we have u1
3 ≥ 1 as well as u1

3 > u2
3 ≥ −1/2. Since (1, 0)

and (1, 1) do not lie in the lineality part, we get d102 = 1, d202 = 0 and l21 = 2. By
the same inequalities we have d121, d221 ∈ {0, 1}. They are not both equal to zero,
because v21 is primitive. Since v11 is also primitive, we get d121 = 1. Proposition 3.1.4
used on {3, 6} yields d212 = −l12d221/2. This means that u2 lies on the x-axis. Hence
terminality requires −1 < u1

2 < 0, i.e. −l12 ≤ d112 < −l12/2. Now, the only value of
P still unbounded is l12. First assume that l12 = 1. Then d112 = −1 and d221 = 0
hold and these data define a valid variety, namely No. 11. So assume l12 > 1. Since the
anticanonical class lies in cone(w01, w02), we have 0 < det(w01,−KX) and obtain

1 ≤ w2
01 <

l12 + 2

2l12 − 2
.
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This implies immediately l12 < 4 and w2
01 = 1. The case l12 = 3 is not valid, because w2

12

would not be an integer. The case l12 = 2 delivers a variety that is not terminal, since
we obtain d112 = −2, d221 = 1 and finally an integral point on the segment line joining
v12 and v1, namely (1, 0,−1, 0).

Situation 2B: as a first step we exploit homogeneity of g0:

w1
11 = l01w

1
01, w2

12 = l01w
2
01 + l02,

w1
21 =

l01w
1
01

l21
, w2

21 =
l01w

2
01 + l02

l21
.

We apply Remark 3.3.1 to γ01,02,11,12 and γ02,11,1 to obtain w1
01 = 1 and l21 = l01.

Applying it again, this time to γ11,12,21,1, leads to a contradiction to the disposition,
since we get w2

21 = 1 and this means w2
01 = 1− l02

l01
< 1.

Situation 2C: it is sufficient to look at the first row of Q. By homogeneity, w1
01 = w1

11 =
l21w

1
21 holds. With Remark 3.3.1 applied to γ01,02,11,12 we get µ1 = w1

01 = 1 and conclude
l21 = 1, a contradiction to P irredundant.

Situation 3A: by almost freeness we can assume Eff(X) = Q2
≥0 and, exploiting the

homogeneity of the relation, we can write

Q =

[
w1

01 0
w1

01
l11

0
w1

01
l21

w1
1

0 w2
02 0

w2
02
l12

w2
02
l21

0

]
.

Using Remark 3.3.1 first on γ02,12,1 and γ01,02,11,12 and then on γ01,02,11,21 and γ01,02,12,21

we arrive at l11 = l12 = l21 and

Q =

[
l21 0 1 0 1 1

0 l21 0 1 1 0

]
.

We use admissible operations to achieve v01 = (−1,−1, 0, 0) and v1 = (0, 0, 0, 1). The
equations resulting from P ·QT = 0 fix some relations between the d-values, so that we
can write the matrix P as

P =


−1 −1 l21 l21 0 0
−1 −1 0 0 l21 0

0 d102 −d121 −l21d102 − d121 d121 0
0 d202 −d221 − 1 −l21d202 − d221 d221 1

 .
The vertex u of the anticanonical complex arising from the elementary big cone P (δ01,12,21)
is −1

2(l21d102, l21d202). Since l21 ≥ 2 holds, the integral point (−d102,−d202) lies between
the vertex u and the origin. This is a contradiction to terminality.

Situation 3C: the same proof as in situation 1C applies.
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Case (h) of Lemma 3.2.7 (ii)

We have r = 3, m = 1, n = 6 and n = (2, 2, 1, 1). Combinatorial minimality prescribes
at least two weights on each of the two extremal rays of Eff(X). Since there are five
weights that can be placed on these rays, we find the following three dispositions:

disp 1
w02 w12

w1

w01

w11

disp 2
w02 w12

w01

w1

w11

disp 3
w02 w12 w1

w01

w11

In these pictures, the weights w21 and w31 always lie on the thin dotted half-line, which
is spanned by the degree µ of the relations. The following cones are elementary big in
all three dispositions:

cone(v01, v12, v21, v31), cone(v02, v11, v21, v31).

Therefore Proposition 2.3.1 implies l01 = l02 = l11 = l12 = 1. With suitable admissible
operations we can achieve the form:

P =


−1 −1 1 1 0 0 0
−1 −1 0 0 l21 0 0
−1 −1 0 0 0 l31 0

0 d102 0 d112 d121 d131 0
0 d202 0 d212 d221 d231 1

 ,
where we also have 0 ≤ d121, d221 < l21 and, if d102 6= 0, then 0 ≤ d202 < d102.

Disposition 1: we assume that −KX ∈ cone(w02, w1) holds, otherwise one only needs to
swap v01 with v02 and v11 with v12. This implies that cone(v01, v11, v21, v31) is elementary
big. Moreover we can assume w2

02 = w2
12 = 0. By using the fact that all monomials have

the same degree, we achieve the following degree matrix:

Q =

[
w1

01 w1
02 w1

01 w1
02

w1
01+w1

02
l21

w1
01+w1

02
l31

w1
1

w2
01 0 w2

01 0
w2

01
l21

w2
01
l31

w2
1

]
.

Now we can use Remark 3.3.1. In particular, with γ01,02,11,12,21 and γ01,02,11,12,31 we
obtain l21 = l31 = w2

01. By applying it to γ02,12,1, one gets det(w02, w1) = 1, and
concludes w1

02 = w2
1 = 1. Since w2

21 = w2
31 = 1 holds, by suitably adding the second row

to the first one we achieve the following degree matrix:

Q =

[
w1

01 1 w1
01 1 0 0 w1

1

l21 0 l21 0 1 1 1

]
.

By homogeneity, w1
01 = −1 holds. A contradiction to the disposition of the weights

arises as follows: det(w1, w01) > 0 is not possible, since it implies w1
1l21 + 1 > 0 but w1

1

is negative.
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Disposition 2: we can assume that w02 and w12 lie on cone(e1), so w2
02 = w2

12 = 0 holds.
By homogeneity of the relations, the second row of Q looks as follows:[

w2
01 0 w2

01 0
w2

01
l21

w2
01
l31

w2
1

]
.

Applying Remark 3.3.1 to γ01,02,11,12,21 and γ01,02,11,12,31 one gets l21 = w2
01 = l31. Using

P ·QT = 0, specifically for the second row of Q, we obtain the following equalities:

d121 = −d131, d221 = −d231 − 1.

Altogether, these equalities simplify the entries of the vertices of AcX,0 ⊂ Q2:

u1 =

(
l21

2
d102 ,

l21

2
d202 −

1

2

)
,

u2 =

(
l21

2
d112 ,

l21

2
d212 −

1

2

)
,

u3 =

(
0 , −1

2

)
,

u4 = (0 , 1) .

The first three are given respectively by cone(v01, v12, v21, v31), cone(v02, v11, v21, v31)
and cone(v01, v11, v21, v31), whereas the last one is v1, the last column of P . Note that
we can assume d202 > 0. Otherwise d202 = 0 implies d102 = ±1 by terminality and
the determinant obtained by P{3,7} cannot be zero, contradicting Corollary 3.1.5 and
combinatorial minimality. With d102 > d202 > 0 we conclude that u1

1 > u2
1 and u1

1 > 1
hold. Hence, to avoid (1, 1) from lying in the lineality part we have u2

1 < 1, which
translates into d202 = 1 and l21 = 2. Furthermore, as soon as d102 ≥ 3 holds, we have
integral points in conv(0, u1, u3, u4). The only possibility left is d102 = 2, but even in
this case (1, 0) lies in the lineality part. This leaves no valid variety.

Disposition 3: Corollary 3.1.5 can be applied to {1, 3}, {2, 4}, {2, 7} and delivers

d112 = −d102, d131 = −d121l31

l21
, d231 = −d221l31

l21
.

The elementary big cones cited above define the following two vertices of AcX,0:

u1 =
l21l31

l21 + l31
(−d102, d212) ,

u2 =
l21l31

l21 + l31
(d102, d202) .

Since l21, l31 ≥ 2 holds, the points (−d102, d212) and (d102, d202) lie in the lineality part
of AcX , contradicting terminality.
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Case (i) of Lemma 3.2.7 (ii)

We have r = 2, m = 1, n = 5 and n = (3, 1, 1). This case provides No. 12 in the list of
Theorem 3.4.1. First note that combinatorially minimal only allows one disposition of
the weights, up to renumbering of variables:

w01 w02

w11

w21w1

w03

This leads to all cones of type cone(v0j , v11, v21), for j = 1, 2, 3, being elementary big.
Hence Proposition 2.3.1 implies l0 = (1, 1, 1). With admissible operations we arrive at

P =


−1 −1 −1 l11 0 0
−1 −1 −1 0 l21 0

0 d102 d103 d111 d121 0
0 d202 d203 d211 d221 1


and 0 ≤ d121, d221 < l21. More can be said about Q, first by assuming that w01 and w02

lie on cone(1, 0) and then by using Remark 3.3.1 with γ01,02,1. We achieve

Q =

[
w1

01 w1
02 0 w1

11 w1
21 0

0 0 w2
03 w2

11 w2
21 1

]
.

Remark 3.3.1, applied on γ01,03,1 and γ02,03,1, implies w1
01 = w1

02 = 1. Then, from the
homogeneity of the monomials we obtain

w1
11 =

2

l11
, w2

11 =
w2

03

l11
, w1

21 =
2

l21
, w2

21 =
w2

03

l21
.

These imply in particular l11 = l21 = 2. Considering once again Remark 3.3.1, with
γ01,02,03,11 and γ01,02,03,21, we see that gcd(w2

03, w
2
11) = gcd(w2

03, w
2
21) = 1 holds, hence

w2
03 = 2. The matrix Q is now

Q =

[
1 1 0 1 1 0
0 0 2 1 1 1

]
.

Corollary 3.1.5 applied to the set {1, 2} and P · QT = 0 applied to the third and forth
rows of P yield

d103 =
1

2
d102, d111 =− d102 − d121,

d203 =
1

2
(d202 − 1), d211 =− d202 − d221.



116 Chapter 3. Combinatorially minimal terminal Fano threefolds of complexity one

It is clear that d102 6= 0 holds, otherwise v01, v02, v03 all lie on a common line. Therefore
we can assume d102 > 0 and 0 ≤ d202 < d102 by using more admissible operations, that
do not destroy any of the equalities found up to now. In order to bound d102, we look at
the vertices of the lineality part AcX,0 ⊂ Q2, which are

u1 =

(
−1

2
d102, −

1

2
d202

)
, u3 =

(
0, −1

2

)
,

u2 =

(
1

2
d102,

1

2
d202

)
, u4 = (0, 1) .

By terminality, AcX,0 does not cointain integral points other than the origin. In particular
(1, 1) /∈ AcX,0 implies d202 < 2, hence d202 = 1. Finally, with (1, 0) /∈ AcX,0 we conclude
d102 < 4, hence d102 = 2. Among the very few varieties left, the MDSpackage [25] shows
that only the one listed as No. 12 in Theorem 3.4.1 fulfills all assumptions.

Case (j) of Lemma 3.2.7 (ii)

We have r = 2, m = 2, n = 4 and n = (2, 1, 1). We show that this case does not provide
valid examples for the family of varieties studied. Due to combinatorial minimality, there
is only one possible disposition for the weights, as illustrated below:

w01 w1

w11

w21w02

w2

Since both cone(v01, v11, v21) and cone(v02, v11, v21) are elementary big, Proposition 2.3.1
yields l01 = l02 = 1. Using admissible operations we can achieve

P =


−1 −1 l11 0 0 0
−1 −1 0 l21 0 0

0 d102 d111 d121 1 0
0 d202 d211 d221 0 1

 ,
In order to bring v1 and v2 into the form above, we ruled out the case v1 = −v2 with
Propositions 3.1.13 and 3.2.2 combined and then noted that, by terminality, conv(0, v1, v2)
cannot contain integral points other than its vertices.
Applying Corollary 3.1.5 to the sets {1, 5} and {2, 6} we obtain equalities for d102 and
d211 respectively. These simplify the coordinates of the vertex u of the anticanonical
complex, corresponding to the elementary big cone cone(v02, v11, v21), as follows:

u =

(
0, d202

l11l21

l11 + l21

)
.
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Since l11, l21 ≥ 2 and u does not coincide with the origin, the last coordinate of u is
bigger than one in absolute value. Hence the point (0,−1) lies in AcX,0, contradicting
terminality.

3.4 Classification

Theorem 3.4.1. The following table lists the Cox rings R(X) of the non-toric rational
combinatorially minimal terminal Q-factorial Fano threefolds X with an effective two-
torus action and with Picard number at least two. The Cl(X)-degrees of the generators
T1, . . . , Tr are denoted as columns wi ∈ Cl(X) of a matrix [w1, . . . , wr].

No. R(X) Cl(X) [w1, . . . , wr]

2.01 K[T1, . . . , T6]/〈T1T2 + T3T4 + T5T6〉 Z2 [ 1 0 1 0 1 0
0 1 0 1 0 1 ]

2.02 K[T1, . . . , T6]/〈T1T 2
2 + T3T

2
4 + T5T

2
6 〉 Z2 [ 1 0 1 0 1 0

0 1 0 1 0 1 ]

2.03 K[T1, . . . , T6]/〈T1T2 + T3T4 + T5T6〉 Z2 ⊕ Z/3Z
[
1 0 1 0 1 0
0 1 0 1 0 1
2 1 1 2 0 0

]
2.04 K[T1, . . . , T6]/〈T1T 2

2 + T3T
2
4 + T5T

2
6 〉 Z2 ⊕ Z/3Z

[
1 0 1 0 1 0
0 1 0 1 0 1
1 1 2 2 0 0

]
2.05 K[T1, . . . , T6]/〈T1T2 + T 2

3 T4 + T5T6〉 Z2 [ 2 0 1 0 1 1
0 1 0 1 0 1 ]

2.06 K[T1, . . . , T6]/〈T1T2 + T3T
2
4 + T 2

5 T
2
6 〉 Z2 [ 1 1 2 0 1 0

1 1 0 1 0 1 ]

2.07 K[T1, . . . , T6]/〈T1T2T3 + T4T5 + T 2
6 〉 Z2 [ 1 1 0 2 0 1

0 0 2 1 1 1 ]

2.08 K[T1, . . . , T6]/〈T1T2T3 + T4T
2
5 + T 2

6 〉 Z2 [ 1 1 0 2 0 1
1 0 1 0 1 1 ]

2.09 K[T1, . . . , T6]/〈T1T2T 2
3 + T4T5 + T 2

6 〉 Z2 [ 1 1 0 2 0 1
0 0 1 1 1 1 ]

2.10 K[T1, . . . , T6]/〈T1T2T 2
3 + T4T

2
5 + T 2

6 〉 Z2 [ 1 1 0 2 0 1
0 0 1 0 1 1 ]

2.11 K[T1, . . . , T6]/〈T1T2 + T 2
3 T4 + T 2

5 〉 Z2 [ 2 0 1 0 1 1
1 1 0 2 1 0 ]

2.12 K[T1, . . . , T6]/〈T1T2T3 + T 2
4 + T 2

5 〉 Z2 ⊕ Z/2Z
[
1 1 0 1 1 0
0 0 2 1 1 1
0 1 1 1 0 0

]
Any two of the Cox rings listed in the table correspond to non-isomorphic varieties.
No. 2.01 and No. 2.02 are the only smooth ones.

Proof. Lemma 3.2.7 lists all possible cases for the matrix P defining a terminalQ-factorial
combinatorially minimal Fano threefold X = X(A,P ) with effective two-torus action and
Picard number at least two. Proposition 3.2.8 ensures that ρ(X) = 2 holds. The cases
treated in Section 3.3 deliver the list from the assertion. Furthermore, by comparing the
data, one directly sees that any two varieties listed above are non-isomorphic.

Appendix A contains detailed information about all varieties of Theorem 3.4.1; in par-
ticular one finds possible defining matrices P .

Remark 3.4.2. By Remark 2.5.2, the assumption of rationality can be omitted in The-
orem 3.4.1, for K = C. Alternatively, rationality can be replaced by the property “Cl(X)
is finitely generated”.





CHAPTER

FOUR

SMOOTH T -VARIETIES OF COMPLEXITY ONE WITH ρ(X) = 2

This Chapter contributes to the classification of smooth (almost) Fano varieties with
torus action. The toric case already produced classification results up to dimension
nine [4, 51, 5, 39, 46, 48], based on the description via lattice polytopes. We are interested
in varieties of complexity one. The results of this chapter have been published in [19], a
joint work of the author of this thesis with A. Fahrner and J. Hausen.

Here we look at varieties of arbitrary dimension with small Picard number. Recall that
in toric geometry the projectives spaces are the only smooth examples of Picard number
one, and we have Kleinschmidt’s description [36] of all smooth toric varieties with Picard
number two, which in particular allows to figure out the (almost) Fano ones in this
setting. We follow that approach and study first arbitrary smooth projective rational
varieties with a torus action of complexity one. The case of Picard number one is basically
settled by a result of Liendo and Süß [40, Thm. 6.5]: the only non-toric examples are the
smooth projective quadrics in dimension three and four. For Picard number two we need
to provide an analogue of Kleinschmidt’s description for complexity one T -varieties.

In Section 4.1, we derive first bounding conditions on the defining data for smooth
varieties of complexity one and Picard number two. Section 4.2 is devoted to proving the
main classification results, which are listed in Section 4.3. In Section 4.4, we introduce
and discuss duplication of free weights and show how to obtain the Fano varieties of
Theorem 4.3.2 via this procedure from lower dimensional varieties. Finally, in Section 4.5,
we describe the Fano varieties of Theorem 4.3.2 in more geometric terms.

4.1 First structural constraints

We derive conditions on the defining matrices of smooth rational projective varieties
X = X(A,P, u) with a torus action of complexity one and ρ(X) = 2. Throughout the
whole Chapter, P is irredundant in the sense of Remark 1.5.2. Moreover, let Z be the
minimal toric ambient variety of X, with fan Σ, as in Construction 1.3.8.

119



120 Chapter 4. Smooth T -varieties of complexity one with ρ(X) = 2

Recall from Proposition 1.4.2 that X is smooth if and only if it is factorial and quasi-
smooth, where we call X quasismooth if X̂ is smooth.

First we study the impact of X being factorial on the defining matrix P . Recall that X
is called weakly tropical if and only if Σ consists only of leaf cones. In the notation of
Construction 1.5.10, this means that every cone σ ∈ Σ is contained in a leaf λi ⊂ trop(X)
for some 0 ≤ i ≤ r.
Lemma 4.1.1. Let X = X(A,P, u) be non-toric and factorial. If X is weakly tropical,
then ni ≥ 2 holds for all i = 0, . . . , r.

Proof. Suppose that ni = 1 holds for some i. Since X is weakly tropical, there exists
a cone σ ∈ Σ of dimension s + 1 contained in the leaf λi. Because of ni = 1 we have
σ = %i1 + τ with a facet τ � σ such that τ ⊆ λ. Now, σ = P (γ∗0) holds for some
γ0 ∈ rlv(X). Since the points of X(γ0) are factorial, σ is a regular cone. This implies
li1 = 1, contradicting irredundancy of P .

Lemma 4.1.2. Let X = X(A,P, u) be non-toric and factorial. If X is weakly tropical,
then ρ(X) ≥ r + 3 holds.

Proof. Lemma 4.1.1 ensures ni ≥ 2 for all i = 1, . . . , r, hence n ≥ 2 · (r + 1) holds. The
s-dimensional lineality space λ = {0} ×Qs ⊆ trop(X) is a union of cones of Σ. Thus P
must have at least s+ 1 columns vk which means m ≥ s+ 1. Together this yields

ρ(X) = n+m− (r − 1)− (s+ 1) ≥ r + 3.

Lemma 4.1.3. Let X = X(A,P, u) be non-toric and not weakly tropical. If X is Q-
factorial, then there is an elementary big cone in Σ.

Proof. Since X is not weakly tropical, there exists a big cone σ ∈ Σ. We have σ = P (γ∗0)
with γ0 ∈ rlv(X). Since the points of X(γ0) are Q-factorial, the cone σ is simplical. For
every i = 0 . . . , r choose a ray %i � σ with %i ∈ λi. Then σ0 := %0 + . . . + %r � σ is as
wanted.

Corollary 4.1.4. Let X = X(A,P, u) be non-toric and factorial. If ρ(X) ≤ 4 holds,
then there exists an elementary big cone σ ∈ Σ.

Next we investigate the effect on the defining matrix P of quasismoothness of X. This
will lead to constraints on P via the Jacobian of the defining relations of X.

Remark 4.1.5. Let (A,P ) be defining matrices. Then the Jacobian Jg of the defining
relations g0, . . . , gr−2 has the shape Jg = (J, 0) with a zero block of size (r − 1) × m
corresponding to the variables S1, . . . , Sm and a block

J :=


δ10 δ11 δ12 0
0 δ21 δ22 δ23 0

...
δr−2,r−3 δr−2,r−2 δr−2,r−1 0

0 δr−1,r−2 δr−1,r−1 δr−1,r


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of size (r − 1) × n, where each vector δa,i is a nonzero multiple of the gradient of the
monomial T lii :

δa,i = αa,i

(
li1
T lii
Ti1

, . . . , lini
T lii
Tini

)
, αa,i ∈ K∗.

For given 1 ≤ a, b ≤ r − 1, 0 ≤ i ≤ r and z ∈ X, we have δa,i(z) = 0 if and only if
δb,i(z) = 0. Moreover, the Jacobian Jg(z) of a point z ∈ X is of full rank if and only if
δa,i(z) = 0 holds for at most two different i = 0, . . . , r.

Lemma 4.1.6. Assume that X = X(A,P, u) is non-toric and that there is an elementary
big cone σ = %0j0 + . . . + %rjr ∈ Σ. If X is quasismooth, then liji ≥ 2 holds for at most
two i = 0, . . . , r.

Proof. We have σ = P (γ∗0) with a relevant face γ0 ∈ rlv(X). Since X is quasismooth,
any z ∈ X(γ0) is a smooth point of X. Thus, Jg(z) is of full rank r − 1. Consequently,
δa,i(z) = 0 holds for at most two different i. This means liji ≥ 2 for at most two
different i.

Corollary 4.1.7. Let X = X(A,P, u) be non-toric and quasismooth. If there is an
elementary big cone in Σ, then ni = 1 holds for at most two different i = 0, . . . , r.

Lemma 4.1.8. Let (A,P ) be defining matrices. Consider the rays γk := cone(ek) and
γij := cone(eij) of the orthant γ ⊆ Qr+s and the two-dimensional faces

γk1,k2 := γk1 + γk2 , γij,k := γij + γk, γi1j1,i2j2 := γi1j1 + γi2j2 .

(i) All γk, resp. γk1,k2, are F-faces and each X(γk), resp. X(γk1,k2), consists of singular
points of X.

(ii) A given γij, resp. γij,k, is an F-face if and only if ni ≥ 2 holds. In that case,
X(γij), resp. X(γij,k), consists of smooth points of X if and only if r = 2, ni = 2
and li,3−j = 1 hold.

(iii) A given γij1,ij2 with j1 6= j2 is an F-face if and only if ni ≥ 3 holds. In that case,
X(γij1,ij2) consists of smooth points of X if and only if r = 2, ni = 3 and lij = 1
for the j 6= j1, j2 hold.

(iv) A given γi1j1,i2j2 with i1 6= i2 is an F-face if and only if we have ni1 , ni2 ≥ 2 or
ni1 = ni2 = 1 and r = 2. In the former case, X(γi1j1,i2j2) consists of smooth points
of X if and only if one of the following holds:
• r = 2, nit = 2 and lit,3−jt = 1 for a t ∈ {1, 2},
• r = 3, ni1 = ni2 = 2, li1,3−j1 = li2,3−j2 = 1.

Proof. The statements follow from the structure of the defining relations g0, . . . , gr−2 of
R(A,P ) and the shape of the Jacobian Jg.



122 Chapter 4. Smooth T -varieties of complexity one with ρ(X) = 2

We now restrict to the case, in which the rational divisor class group Cl(X)Q = KQ of
X = X(A,P, u) is of dimension two. Set τX := Ample(X). Then the effective cone
Eff(X) is of dimension two and is uniquely decomposed into three convex sets

Eff(X) = τ+ ∪ τX ∪ τ−,

such that τ+, τ− do not intersect the ample cone τX and τ+ ∩ τ− consists of the origin.
Recall that u lies in τX and that, due to τX ⊆ Mov(X), each of τ+ and τ− contains at
least two of the weights wij , wk.

τX

u

τ+

τ−

Remark 4.1.9. Consider X = X(A,P, u) such that Cl(X)Q is of dimension two. Then,
for every F-face {0} 6= γ0 � γ precisely one of the following inclusions holds

Q(γ0) ⊆ τ+, τX ⊆ Q(γ0)◦, Q(γ0) ⊆ τ−.

The F-faces γ0 � γ satisfying the second inclusion are exactly those with γ0 ∈ rlv(X),
i.e. the relevant ones.

Lemma 4.1.10. Let X = X(A,P, u) be non-toric with rk (Cl(X)) = 2.
(i) Suppose that X is Q-factorial. Then wk /∈ τX holds for all 1 ≤ k ≤ m and for all

0 ≤ i ≤ r with ni ≥ 2 we have wij /∈ τX , where 1 ≤ j ≤ ni.
(ii) Suppose that X is quasismooth, m > 0 holds and there is 0 ≤ i1 ≤ r with ni1 ≥ 3.

Then the wij , wk with ni ≥ 3, j = 1, . . . , ni and k = 1, . . . ,m lie either all in τ+ or
all in τ−.

(iii) Suppose that X is quasismooth and there is 0 ≤ i1 ≤ r with ni1 ≥ 4. Then the wij
with ni ≥ 4 and j = 1, . . . , ni lie either all in τ+ or all in τ−.

(iv) Suppose that X is quasismooth and there exist 0 ≤ i1 < i2 ≤ r with ni1 , ni2 ≥ 3.
Then the wij with ni ≥ 3, j = 1, . . . , ni lie either all in τ+ or all in τ−.

(v) Suppose that X is quasismooth. Then w1, . . . , wm lie either all in τ+ or all in τ−.

Proof. We prove (i). By Lemma 4.1.8 (i) and (ii), the rays γk, γij � γ with ni ≥ 2
are F-faces. Since X is Q-factorial, the ample cone τX ⊆ KQ of X is of dimension two
and thus neither τX ⊆ Q(γij)

◦ nor τX ⊆ Q(γk)
◦ is possible. Remark 4.1.9 yields the

assertion.
We turn to (ii). By Lemma 4.1.8 (i) and (ii), all γk, γij , γij,k � γ in question are F-faces
and the corresponding strata in X consist of singular points. Because X is quasismooth,
none of these F-faces is relevant. Thus, Remark 4.1.9 gives wi11 ∈ τ+ or wi11 ∈ τ−;
say we have wi11 ∈ τ+. Then, applying again Remark 4.1.9, we obtain wk, wij ∈ τ+ for
k = 1, . . . ,m, all i with ni ≥ 3 and j = 1, . . . , ni.
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Assertion (iii) is proved analogously: treat first γi11,i12 with Lemma 4.1.8 (iii), then
γi11,ij with Lemma 4.1.8 (iii) and (iv). Similarly, we obtain (iv) by treating first γi11,i21

and then all γi11,ij and γi21,ij with Lemma 4.1.8 (iii) and (iv). Finally, we obtain (v)
using Lemma 4.1.8 (i).

Proposition 4.1.11. Let X = X(A,P, u) be non-toric, quasismooth and Q-factorial
with ρ(X) = 2. Assume that there is an elementary big cone in Σ and that we have
n0 ≥ . . . ≥ nr. If m > 0 holds, then there is a γij,k ∈ rlv(X), we have r = 2 and the
constellation n of the ni is (n0, 2, 2), (2, 2, 1) or (2, 1, 1).

Proof. According to Lemma 4.1.10 (v), we may assume w1, . . . , wm ∈ τ+. We claim that
there is a wi1j1 ∈ τ− with ni1 ≥ 2. Otherwise, use Corollary 4.1.7 to see that there exist
weights wij with ni ≥ 2 and Lemma 4.1.10 (i) to see that they all lie in τ+. Since all
monomials T lii have the same degree in K, we obtain in addition wi1 ∈ τ+ for all i with
ni = 1. But then no weights wij , wk are left to lie in τ−, a contradiction.
Having verified the claim, we may take a weight wi1j1 ∈ τ− with ni1 ≥ 2. Then γi1j1,1 ∈
rlv(X) is as desired. Moreover, Lemma 4.1.8 (ii) yields r = 2 and ni1 = 2. If n0 ≥ 3
holds, then Lemma 4.1.10 (ii) gives wij ∈ τ+ for all i with ni ≥ 3. Moreover, as all
monomials share the same degree, we have wi1 ∈ τ+ for all i with ni = 1. For the same
reason, one of the wi11, wi12 must lie in τ+. As τ− contains at least two weights, there
is a wi2j2 ∈ τ− with ni2 = 2 and i1 6= i2. Thus, the constellation n is as claimed.

Proposition 4.1.12. Let X = X(A,P, u) be non-toric, quasismooth and Q-factorial
with ρ(X) = 2. Assume that there is an elementary big cone in Σ and that we have
n0 ≥ . . . ≥ nr. If m = 0 holds, then there is a γi1j1,i2j2 ∈ rlv(X), we have r ≤ 3 and the
constellation n of the ni is one of the following

r = 2: (n0, 2, 2), (3, 2, 1), (3, 1, 1), (2, 2, 2), (2, 2, 1);
r = 3: (2, 2, 2, 2), (2, 2, 2, 1), (2, 2, 1, 1).

Proof. We first show n1 ≤ 2. Otherwise we have n1 ≥ 3 and, according to point (iv) of
Lemma 4.1.10, we may assume that all the wij with ni ≥ 3 lie in τ+. In particular, w11

lies in τ+. By homogeneity of all monomials, also wi1 ∈ τ+ holds for all i with ni = 1.
At least two weights wi1j1 and wi2j2 must belong to τ−. For these, only ni1 = ni2 = 2
and i1 6= i2 is possible. Applying Lemma 4.1.8 (iv) to γ11,i1j1 ∈ rlv(X) gives r = 2,
contradicting n0 ≥ n1 ≥ 3 and ni1 = ni2 = 2.
We treat the case n0 ≥ 4. By Lemma 4.1.10 (iii), we can assume w01, . . . , w0n0 ∈ τ+. As
before, we obtain wi1 ∈ τ+ for all i with ni = 1 and we find two weights wi1j1 , wi2j2 ∈ τ−
with ni1 = ni2 = 2 and i1 6= i2. Then γ01,i1j1 ∈ rlv(X) is as wanted. Lemma 4.1.8 (iv)
gives r = 2 and we end up with (n0, 2, 2).
Now let n0 = 3. Lemma 4.1.10 (i) guarantees that no w0j lies in τX . If weights w0j

occur in both cones τ+ and τ−, say w01 ∈ τ+ and w02 ∈ τ−, then γ01,02 is as wanted.
Lemma 4.1.8 (iii) yields r = 2 and we obtain the constellations (n0, 2, 2), (3, 2, 1) and
(3, 1, 1). So, assume that all weights w0j lie in one of τ+ and τ−, say in τ+. Then
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we proceed as in the case n0 ≥ 4 to obtain a γ01,i1j1 ∈ rlv(X) and r = 2 with the
constellation (3, 2, 2).
Finally, let n0 ≤ 2. Corollary 4.1.7 yields n0 = 2. According to Lemma 4.1.10 (i) no wij
with ni = 2 lies in τX . So we may assume w01 ∈ τ+. Moreover, all wij with ni = 1 lie
together in one among τ+, τX or τ−. Since each of τ+ and τ− contains two weights, we
obtain n1 = 2 and some γ0j1,1j2 is as wanted. Lemma 4.1.8 (iv) shows r ≤ 3.

As a byproduct we retrieve a special case of [17, Cor. 4.18].

Corollary 4.1.13. Let X = X(A,P, u) be smooth with ρ(X) = 2. Then the divisor class
group Cl(X) is torsion-free.

Proof. By Corollary 4.1.4, there is an elementary big cone in Σ. Thus, Propositions 4.1.11
and 4.1.12 deliver a two-dimensional γ0 ∈ rlv(X). The corresponding weights generate
K as a group. This gives Cl(X) ∼= K ∼= Z2.

The following result lists the possible shapes of the defining matrix P .

Proposition 4.1.14. Let X be a non-toric smooth rational projective variety with a
torus action of complexity one and Picard number ρ(X) = 2. Then X ∼= X(A,P, u),
where P is irredundant and fits into one of the following cases:
(I) We have r = 2 and one of the following constellations:

(a) m ≥ 0 and n = 4 + n0 with n = (n0, 2, 2), where n0 ≥ 3.
(b) m = 0 and n = 6 with n = (3, 2, 1).
(c) m = 0 and n = 5 with n = (3, 1, 1).
(d) m ≥ 0 and n = 6 with n = (2, 2, 2).
(e) m ≥ 0 and n = 5 with n = (2, 2, 1).
(f) m ≥ 1 and n = 4 with n = (2, 1, 1).

(II) We have r = 3 and one of the following constellations:
(a) m = 0 and n = 8 with n = (2, 2, 2, 2).
(b) m = 0 and n = 7 with n = (2, 2, 2, 1).
(c) m = 0 and n = 6 with n = (2, 2, 1, 1).

Proof. The variety X is isomorphic to some X(A,P, u), where after suitable admissible
operations we may assume n0 ≥ . . . ≥ nr. Thus, Propositions 4.1.11 and 4.1.12 apply.

4.2 Towards the classification

We obtain a complete classification by going through the cases established in Proposi-
tion 4.1.14: we deal with a smooth projective variety X = X(A,P, u) of Picard number
two coming with an effective torus action of complexity one.

From Corollary 4.1.13 we know that Cl(X) = K = Z2 holds. With wij = Q(eij) and
wk = Q(ek), the columns of the 2× (n+m) degree matrix Q will be written as

wij = (w1
ij , w

2
ij) ∈ Z2, wk = (w1

k, w
2
k) ∈ Z2.
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Recall that all relations g0, . . . , gr−2 of R(A,P ) have the same degree in K = Z2, namely

µ = (µ1, µ2) := deg(g0) ∈ Z2.

We will frequently work with the following faces of the positive orthant γ = Qn+m
≥0

introduced in Lemma 4.1.8:

γij,k = cone(eij , ek) � γ, γi1j1,i2j2 = cone(ei1j1 , ei2j2) � γ.

Remark 4.2.1. Consider a face γ0 � γ of type γij,k or γi1j1,i2j2 . Write e′, e′′ for the
two generators of γ0 and w′ = Q(e′), w′′ = Q(e′′) for the corresponding columns of the
degree matrix Q such that (w′, w′′) is positively oriented in Z2. Then Proposition 1.4.2
tells us

γ0 ∈ rlv(X) ⇒ det(w′, w′′) = 1.

So, if γ0 ∈ rlv(X), then we may multiply Q from the left with a unimodular (2×2)-matrix
transforming w′ and w′′ into (1, 0) and (0, 1). This change of coordinates on Cl(X) does
not affect the defining data (A,P ). If w′ = (1, 0) and w′′ = (0, 1) hold and e ∈ γ is a
canonical basis vector with corresponding column w = Q(e), then we have

cone(e′, e) ∈ rlv(X) ⇒ w = (w1, 1),

cone(e′′, e) ∈ rlv(X) ⇒ w = (1, w2).

We are ready to go through the cases of Proposition 4.1.14; we keep the numbering
introduced there.

Case (I) (a) of Proposition 4.1.14

We have r = 2, m ≥ 0 and n = (n0, 2, 2), where n0 ≥ 3. This leads to No. 1 and No. 2
in Theorems 4.3.1 and 4.3.2.

In a first step we show that there occur weights w0j in each of τ+ and τ−. Otherwise,
we may assume that all w0j lie in τ+, see Lemma 4.1.10 (i). Then Lemma 4.1.10 (ii)

says that also all wk lie in τ+. Moreover, we have deg(T lii ) ∈ τ+ for i = 0, 1, 2. Thus,
we may assume w11, w21 ∈ τ+ and obtain w12, w22 ∈ τ−, as there must be at least two
weights in τ−. Finally, we may assume that cone(w01, w12) contains w02, . . . , w0n0 and
w22. Applying Remark 4.2.1 first to γ01,12, then to all γ0j,12, γ12,k and γ01,22, γ12,21 yields

Q =

[
0 w1

02 . . . w1
0n0

w1
11 1 w1

21 1 w1
1 . . . w1

m

1 1 . . . 1 w2
11 0 1 w2

22 1 . . . 1

]
,

with w1
0j ≥ 0 and w2

22 ≥ 0. Since γ01,12, γ01,22 ∈ rlv(X) holds, Lemma 4.1.8 (iv) implies
l11 = l21 = 1. Applying P ·QT = 0 to the first row of P and the second row of Q gives

0 < 3 ≤ n0 ≤ l01 + . . .+ l0n0 = w2
11 = 1 + w2

22w
1
11,

where the last equality is due to γ11,22 ∈ rlv(X) and thus det(w22, w11) = 1. We conclude
w2

22 > 0 and w1
11 > 0. Because of γ0j,22 ∈ rlv(X), we obtain det(w22, w0j) = 1. This

implies w1
0j = 0 for all j = 2, . . . , n0. Applying P ·QT = 0 to the first row of P and the

first row of Q gives w1
11 + l12 = 0, a contradiction.
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Knowing that each of τ+ and τ− contains weights w0j , we can assume w01, w02 ∈ τ+ and
w03 ∈ τ−. Lemma 4.1.10 (ii) and (iii) show n0 = 3 and m = 0. There is at least one
other weight in τ−, say w11 ∈ τ−. By applying Lemma 4.1.8 (iii) to γ0j,03 ∈ rlv(X) for
j = 1, 2 and (iv) to suitable γ0j1,i2j2 ∈ rlv(X), we obtain

l01 = l02 = 1, l11 = l12 = 1, l21 = l22 = 1.

Moreover, Remark 4.2.1 applied to γ01,03, γ02,03 and γ01,11 brings Q into the shape

Q =

[
0 w1

02 1 1 w1
12 w1

21 w1
22

1 1 0 w2
11 w2

12 w2
21 w2

22

]
.

Observe that the second component of the degree of the relation is µ2 = 2. There are
three possible dispositions of the weights w2j :

τXw01

w02

τ+

w03 w11

w21 w22

τ−

(i)

τXw01 w02
w22

τ+

w03

w11 w21

τ−

(ii)

τX
w01 w02
w21 w22

τ+

w03
w11

τ−

(iii)

We will see that dispositions (i) and (ii) give No. 1 and No. 2 of Theorem 4.3.1 respectively
and disposition (iii) does not provide any smooth variety.

In (i) we assume w21, w22 ∈ τ−. Then γ01,21, γ01,22 ∈ rlv(X) holds and Remark 4.2.1
shows w1

21 = w1
22 = 1. This implies µ1 = 2. Similarly, considering γ02,21, γ02,22 ∈ rlv(X),

we obtain w1
02 = 0 or w2

21 = w2
22 = 0. The latter contradicts µ2 = 2 and thus w1

02 = 0
holds. We conclude l03 = µ1 = 2. Furthermore w1

12 = µ1 − w1
11 = 1. Together, we have

g0 = T01T02T
2
03 + T11T12 + T21T22, Q =

[
0 0 1 1 1 1 1
1 1 0 a 2− a b 2− b

]
,

where a, b ∈ Z. Observe that w12 ∈ τ− must hold; otherwise, γ03,12 ∈ rlv(X) holds and
Remark 4.2.1 yields w2

12 = 1, contradicting w12 = (1, 1) = w11 ∈ τ−. The semiample cone
is SAmple(X) = cone((0, 1), (1, d)), where d = max(a, 2− a, b, 2− b). The anticanonical
class is −KX = (3, 4). Hence X is an almost Fano variety if and only if d = 1, which is
equivalent to a = b = 1. In this situation X is already a Fano variety.

In (ii) we assume w21 ∈ τ− and w22 ∈ τ+. Remark 4.2.1, applied to γ01,21, γ03,22 ∈
rlv(X), shows w1

21 = w2
22 = 1. The latter implies w2

21 = µ2 − w2
22 = 1. We claim

w2
11 6= 0. Otherwise, we have w2

12 = µ2 = 2. This gives det(w03, w12) = 2. We conclude
γ03,12 6∈ rlv(X) and w12 ∈ τ−. Then γ01,12 ∈ rlv(X) implies w1

12 = 1. Thus, w22 = (1, 1)
and w12 = (1, 2) hold, contradicting w22 ∈ τ+ and w12 ∈ τ−. Now, γ11,22 ∈ rlv(X) yields
w2

11w
1
22 = 0 and thus w1

22 = 0. We obtain µ1 = 1 and as a consequence l03 = 1, w1
02 = 0

and w1
12 = 0. Therefore w12 ∈ τ+ holds. Now γ03,12 ∈ rlv(X) implies w2

12 = 1 and
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w2
11 = µ2 − w2

12 = 1. We arrive at

g0 = T01T02T03 + T11T12 + T21T22, Q =

[
0 0 1 1 0 1 0
1 1 0 1 1 1 1

]
.

The anticanonical class is −KX = (2, 4) and the semiample cone is SAmple(X) =
cone((0, 1), (1, 1)). In particular X is Fano.

We turn to (iii), where both weights w21 and w22 lie in τ+. Homogeneity of g0 implies
w12 ∈ τ+. Thus, γ03,12, γ03,21, γ03,22 ∈ rlv(X) holds and Remark 4.2.1 delivers w2

12 =
w2

21 = w2
22 = 1. We conclude w2

11 = µ2−w2
12 = 1. Similarly, γ02,11, γ11,21, γ11,22 ∈ rlv(X)

yields w1
02 = w1

21 = w1
22 = 0. This gives 0 6= l03 = µ1 = w1

21 + w1
22 = 0, which is not

possible.

Case (I) (b) of Proposition 4.1.14

We have r = 2, m = 0, n = 6 and n = (3, 2, 1). This leads to No. 3 in Theorems 4.3.1
and 4.3.2.

Since there are at least two weights in τ+ and another two in τ−, we can assume
w01, w02 ∈ τ+ and w03, w12 ∈ τ−. By Lemma 4.1.8 (iii) and (iv) we obtain l01 = l02 =
l11 = l12 = 1. We may assume that cone(w01, w03) contains w02. Applying Remark 4.2.1
first to γ01,03, then to γ02,03 and γ01,12, we obtain

Q =

[
0 w1

02 1 w1
11 1 w1

21

1 1 0 w2
11 w2

12 w2
21

]
,

with w1
02 ≥ 0. For the degree µ of g0, we have µ2 = 2. We conclude w2

11 = 2− w2
12 and

l21w
2
21 = 2, which in turn implies l21 = 2 and w2

21 = 1. For γ02,12 ∈ rlv(X), Remark 4.2.1
gives det(w12, w02) = 1 and thus w1

02 = 0 or w2
12 = 0 must hold.

We treat the case w1
02 = 0. Then µ = (l03, 2) holds. We conclude w1

11 = l03 − 1 and
w1

21 = l03/2. With c := l03/2 ∈ Z≥1 and a := w2
12 ∈ Z, we obtain the degree matrix

Q =

[
0 0 1 2c− 1 1 c
1 1 0 2− a a 1

]
.

We show w11 ∈ τ−. Otherwise, w11 ∈ τ+ holds, we have γ03,11 ∈ rlv(X) and Remark 4.2.1
yields a = 1. But then w01 = (0, 1) ∈ τ+ and w11 = (2c−1, 1) ∈ τ+ imply w12 = (1, 1) ∈
τ+, a contradiction. So we have w11 ∈ τ−. Then γ01,11 ∈ rlv(X) holds. Remark 4.2.1
gives det(w11, w01) = 1, which means c = 1 and, as a consequence, l03 = 2. Together, we
have

g0 = T01T02T
2
03 + T11T12 + T 2

21, Q =

[
0 0 1 1 1 1
1 1 0 2− a a 1

]
,

where we may assume a ≥ 2−a that means a ∈ Z≥1. The semiample cone is SAmple(X) =
cone((0, 1), (1, a)), and the anticanonical class is −KX = (2, 3). In particular, X is an
almost Fano variety if and only a = 1 holds. In this situation X is already a Fano variety.
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We turn to the case w2
12 = 0. Here, w2

11 = µ2 = 2 leads to det(w03, w11) = 2 and
thus the F-face γ03,11 does not belong to rlv(X); see Remark 4.2.1. Hence w11 ∈ τ−

and thus γ01,11 ∈ rlv(X). This gives w1
11 = 1 and thus w11 = (1, 2). Because of

w02 = (w02, 1) ∈ τ+, we must have w1
02 = 0 and the previous consideration applies.

Case (I) (c) of Proposition 4.1.14

We have r = 2, m = 0, n = 5 and n = (3, 1, 1). This case does not provide smooth
varieties.

Each of τ+ and τ− contains at least two weights. We may assume w01, w02 ∈ τ+ and
w03, w11, w21 ∈ τ−. Then γ01,03, γ02,03 ∈ rlv(X) holds and Lemma 4.1.8 (iii) yields
l01 = l02 = 1. By Remark 4.2.1 we can assume w03 = (1, 0) and w2

01 = w2
02 = 1. This

implies µ2 = 2 and, as a consequence, l11 = l21 = 2. By [24, Thm. 1.1], this leads to
torsion in Cl(X), a contradiction to Corollary 4.1.13.

Case (I) (d) of Proposition 4.1.14

We have r = 2, m ≥ 0, n = 6 and n = (2, 2, 2). Suitable admissible operations lead to
one of the following dispositions for the weights wij :

τXw01 w11
w21

τ+

w02

w12 w22

τ−

(i)

τX
w01 w02
w11 w21

τ+

w12
w22

τ−

(ii)

τX
w01 w02
w11 w12
w21

τ+

w22

τ−

(iii)

τX

w01 w02
w11 w12
w21 w22

τ+

τ−

(iv)

Disposition (i) amounts to No. 4 in Theorems 4.3.1, 4.3.2 and 4.3.3, disposition (ii) to
No. 5, disposition (iii) to Nos. 6 and 7, and disposition (iv) to Nos. 8 and 9.

Disposition (i). We have w01, w11, w21 ∈ τ+ and w02, w12, w22 ∈ τ−. We may assume
wk ∈ τ+ for all k = 1, . . . ,m. If m > 0, we have γi2,1 ∈ rlv(X) and Lemma 4.1.8 (ii)
gives li1 = 1 for i = 0, 1, 2. If m = 0, we use γi11,i22 ∈ rlv(X) and Lemma 4.1.8 (iv) to
obtain li12 = 1 or li21 = 1 for all i1 6= i2. Thus, for m = 0, we may assume l01 = l11 = 1
and are left with l21 = 1 or l22 = 1.
We treat the case m ≥ 0 and l01 = l11 = l21 = 1. Here we may assume w11, w21, w22 ∈
cone(w01, w12). Applying Remark 4.2.1 first to γ01,12 and then to γ01,22, γ12,21 and all
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γ12,k gives

Q =

[
0 w1

02 w1
11 1 w1

21 1 w1
1 . . . w1

m

1 w2
02 w2

11 0 1 w2
22 1 . . . 1

]
.

Using w11, w21, w22 ∈ cone(w01, w12) and the fact that the determinants of (w02, w01),
(w12, w11) and (w22, w21) are positive, we obtain

w1
11, w

1
21, w

2
22 ≥ 0, w1

02, w
2
11 > 0, 1 > w2

22w
1
21.

The degree µ of the relation satisfies

0 < µ1 = l02w
1
02 = w1

11 + l12 = w1
21 + l22,

0 < µ2 = 1 + l02w
2
02 = w2

11 = 1 + l22w
2
22.

In particular, w2
02 ≥ 0 holds and thus all components of the wij are non-negative. With

γ02,11, γ02,21,∈ rlv(X) and Remark 4.2.1, we obtain

w1
02w

2
11 = 1 + w2

02w
1
11, w1

02 − 1 = w2
02w

1
21.

We show w2
22 = 0. Otherwise, because of 1 > w2

22w
1
21, we have w1

21 = 0. This implies
w1

02 = 1 and thus
w2

11 = 1 + w2
02w

1
11 = 1 + l02w

2
02.

This gives w2
02 = 0 or w1

11 = l02. The first is impossible because of l02w
2
02 = l22w

2
22 and

the second because of l02 = l02w
1
02 = w1

11 + l12.
Knowing w2

22 = 0, we directly conclude w2
11 = 1 and w2

02 = 0 from µ2 = 1. This gives
w1

02 = 1. With a := w1
11 ∈ Z≥0, b := w1

21 ∈ Z≥0 and ck := w1
k ∈ Z we are in the situation

g0 = T01T
l02
02 + T11T

l12
12 + T21T

l22
22 , Q =

[
0 1 a 1 b 1 c1 . . . cm
1 0 1 0 1 0 1 . . . 1

]
,

where we may assume 0 ≤ a ≤ b and c1 ≤ . . . ≤ cm. Observe that l02 = a+ l12 = b+ l22

holds. The anticanonical class and the semiample cone of X are given by

−KX = (3 + b+ c1 + . . .+ cm − l12, 2 +m),

SAmple(X) = cone((1, 0), (d, 1)),

where d := max(b, cm). Consequently, X is a Fano variety if and only if the following
inequality holds

3 + b+ c1 + . . .+ cm − l12 > (2 +m)d.

A necessary condition for this is 0 ≤ d ≤ 1 with l12 = 1 if d = 1 and l12 ≤ 2 if d = 0.
The tuples (a, b, d, l02, l12, l22) fulfilling that condition are

(0, 0, 0, 2, 2, 2), (0, 0, 0, 1, 1, 1), (1, 1, 1, 2, 1, 1).
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Each of these three tuples allows indeed a Fano variety X; the respectively possible
choices of the ck lead to Nos. 4.A, 4.B and 4.C of Theorem 4.3.2 and are as follows:

c1 = . . . = cm = 0, −1 ≤ c1 ≤ 0 = c2 = . . . = cm, c1 = . . . = cm = 1.

Moreover X is a truly almost Fano variety if and only if the following equality holds

3 + b+ c1 + . . .+ cm − l12 = (2 +m)d.

This implies 0 ≤ d ≤ 2 and the only possible parameters fulfilling that condition are
listed as Nos. 4.A to 4.F in the table of Theorem 4.3.3.
We turn to the case m = 0, l01 = l11 = 1 and l21 ≥ 2. Lemma 4.1.8 (iv) applied to
γ01,22, γ11,22 ∈ rlv(X) gives l02 = l12 = 1. If l22 = 1, then suitable admissible operations
bring us to the previous case. So, let l22 ≥ 2. We may assume w11 ∈ cone(w01, w12). We
apply Remark 4.2.1 first to γ01,12, then to γ01,22, γ12,21 and arrive at

g0 = T01T02 + T11T12 + T l2121 T
l22
22 , Q =

[
0 w1

02 w1
11 1 w1

21 1
1 w2

02 w2
11 0 1 w2

22

]
,

where w1
11 ≥ 0 and w2

11 = det(w12, w11) > 0 hold. We have µ = w02 + w01 = w11 + w12

and thus w02 = w11 + w12 − w01. Because of γ02,11 ∈ rlv(X), we obtain

1 = det(w02, w11) = det(w12 − w01, w11) = w1
11 + w2

11.

We conclude w11 = (0, 1) and µ = (1, 1). Using µ = l21w21 + l22w22 and l21, l22 ≥ 2 we
see w1

21, w
2
22 < 0. On the other hand, 0 < det(w22, w21) = 1 − w1

21w
2
22, a contradiction.

Thus l22 ≥ 2 does not occur.

Disposition (ii). We have w01, w02, w11, w21 ∈ τ+ and w12, w22 ∈ τ−. We may assume
that w02, w12 ∈ cone(w01, w22) holds. Applying Remark 4.2.1 first to γ01,22 ∈ rlv(X) and
then to γ01,12, γ02,22, γ11,22 ∈ rlv(X) we obtain

Q =

[
0 w1

02 w1
11 1 w1

21 1 w1
1 . . . w1

m

1 1 1 w2
12 w2

21 0 w2
1 . . . w2

m

]
,

where we have w1
02, w

2
12 ≥ 0 due to w02, w12 ∈ cone(w01, w22). Moreover, w2

21 > 0 holds,
as we infer from the conditions

0 ≤ µ1 = l02w
1
02 = l11w

1
11 + l12 = l21w

1
21 + l22,

0 < µ2 = l01 + l02 = l11 + l12w
2
12 = l21w

2
21.

We show l11 ≥ 2. Otherwise, the above conditions give l12w
2
12 > 0 and thus w2

12 > 0.
For γ02,12 ∈ rlv(X), Remark 4.2.1 gives det(w12, w02) = 1 which means w2

12w
1
02 = 0

and thus w1
02 = 0. This implies l21w

1
21 + l22 = 0 and thus w1

21 < 0; a contradiction
to 1 = det(w12, w21) = w2

21 − w2
12w

1
21 which in turn holds due to γ12,21 ∈ rlv(X) and

Remark 4.2.1.
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Lemma 4.1.8 (iv) applied to γ02,12, γ01,12, γ21,12 ∈ rlv(X) shows l01 = l02 = l22 = 1.
Putting together µ2 = 2 = l11 + l12w

2
12 and l11 6= 1, we conclude l11 = 2 and w2

12 = 0.
With γ12,21 ∈ rlv(X) and Remark 4.2.1 we obtain w2

21 = 1 and hence l21 = µ2 = 2. From

0 ≤ µ1 = w1
02 = 2w1

11 + 1 = 2w1
21 + 1

we conclude w1
11 = w1

21 ≥ 0 and thus w1
02 > 0. Lemma 4.1.8 (ii) implies that possible

weights of type wk lie in τ−. Thus Remark 4.2.1 and γ01,k imply w1
k = 1 for all k.

Moreover, since γ02,k ∈ rlv(X) holds, the latter implies w2
k = 0. All in all, we arrive at

g0 = T01T02 + T 2
11T12 + T 2

21T22, Q =

[
0 2a+ 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 0 . . . 0

]
,

with a ∈ Z≥0. The anticanonical class is −KX = (2a+ 2 +m, 2) and the semiample cone
is SAmple(X) = cone((1, 0), (2a + 1, 1)). Therefore X is an almost Fano variety if and
only if m ≥ 2a holds and X is a Fano variety if and only if m > 2a holds.

Disposition (iii). We have w01, w02, w11, w12, w21 ∈ τ+ and w22 ∈ τ−. As there must
be another weight in τ−, we obtain m > 0. Lemma 4.1.10 (v) yields w1, . . . , wm ∈
τ−. We may assume w02, w11, w12, wk ∈ cone(w01, w1), where k = 2, . . . ,m. Applying
Remark 4.2.1 first to γ01,1 ∈ rlv(X) and then to the remaining faces γ01,22, γ01,k, γij,1
from rlv(X) leads to the degree matrix

Q =

[
0 w1

02 w1
11 w1

12 w1
21 1 1 1 . . . 1

1 1 1 1 1 w2
22 0 w2

2 . . . w2
m

]
with at most w1

21, w
2
22 negative. We infer l01 = l02 = l11 = l12 = l22 = 1 from

Lemma 4.1.8 (ii). For γ02,22, γ11,22, γ12,22 ∈ rlv(X) Remark 4.2.1 tells us

w2
22 = 0 or w1

02 = w1
11 = w1

12 = 0.

We treat the case w2
22 = 0. Here l21 = µ2 = 2 holds. Thus µ1 = w1

02 = 2w1
21 + 1

holds. Because of w1
02 ≥ 0, we conclude w1

02 > 0 and w1
21 ≥ 0. Remark 4.2.1 applied to

γ02,k ∈ rlv(X) gives w2
k = 0 for all k = 2, . . . ,m. We arrive at

g0 = T01T02 + T11T12 + T 2
21T22, Q =

[
0 2c+ 1 a b c 1 1 . . . 1
1 1 1 1 1 0 0 . . . 0

]
,

where a, b, c ∈ Z≥0 and a + b = 2c + 1. Furthermore, the anticanonical class is −KX =
(3c+ 2 +m, 3) and we have SAmple(X) = cone((1, 0), (2c+ 1, 1)). In particular, X is an
almost Fano variety if and only if 3c+ 1 ≤ m holds and a Fano variety if and only if the
corresponding strict inequality holds.
Now we consider the case w1

02 = w1
11 = w1

12 = 0. We have µ1 = 0, which implies l21 = 1,
w1

21 = −1. Consequently, µ2 = 2 gives w2
22 = 1. Since γ21,k ∈ rlv(X) for 2 ≤ k ≤ m, we

conclude w2
k = 0 for all k. Therefore we obtain

g0 = T01T02 + T11T12 + T21T22, Q =

[
0 0 0 0 −1 1 1 . . . 1
1 1 1 1 1 1 0 . . . 0

]
.

Finally, we have −KX = (m, 4) and SAmple(X) = cone((1, 1), (0, 1)). Thus, X is a Fano
variety if and only if m < 4 holds. Moreover, X is an almost Fano variety if and only if
m ≤ 4 holds.
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Disposition (iv). All wij lie in τ+. Then we have m ≥ 2 and one and hence all wk lie
in τ−, see Lemma 4.1.10 (v). Applying Lemma 4.1.8 (ii) to γij,1 ∈ rlv(X), we conclude
lij = 1 for all i, j. Thus we have the relation

g0 = T01T02 + T11T12 + T21T22.

We may assume that cone(w01, w1) contains all wij , wk. Remark 4.2.1 applied to γ01,1 ∈
rlv(X) leads to w1 = (1, 0) and w01 = (0, 1). All other weights lie in the positive orthant.
For γij,1, γ01,k ∈ rlv(X) Remark 4.2.1 shows w2

ij = w1
k = 1 for all i, j, k. Consider the

case where all w2
k vanish. Then the degree matrix is of the form

Q =

[
0 a2 a3 a4 a5 a6 1 . . . 1
1 1 1 1 1 1 0 . . . 0

]
,

where ai ∈ Z≥0 and a2 = a3 + a4 = a5 + a6. We have −KX = (2a2 + m, 4) and
SAmple(X) = cone((1, 0), (a2, 1)). Hence X is a Fano variety if and only if 2a2 < m
holds and an almost Fano variety if and only if 2a2 ≤ m holds.
Finally, let w2

k > 0 for some k. Note that we may assume 0 ≤ w2
2 ≤ . . . ≤ w2

m; in
particular w2

m > 0. Since γij,m ∈ rlv(X) for all i, j, Remark 4.2.1 yields w1
ij = 0 for all

i, j. Thus we obtain the degree matrix

Q =

[
0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 0 a2 . . . am

]
,

where 0 ≤ a2 ≤ . . . ≤ am and am > 0. The anticanonical class and the semiample cone
are given as

−KX = (m, 4 + a2 + . . .+ am), SAmple(X) = cone((0, 1), (1, am)).

In particular, X is a Fano variety if and only if 4 + a2 + . . . + am > mam holds. Note
that for the latter am ≤ 3 is necessary. Moreover, X is a truly almost Fano variety if
and only if the equality 4 + a2 + . . .+ am = mam holds.

Case (I) (e) of Proposition 4.1.14

We have r = 2, m ≥ 0, n = 5 and n = (2, 2, 1). This leads to Nos. 10, 11 and 12 in
Theorems 4.3.1, 4.3.2 and 4.3.3.

We divide this case into the following three dispositions, according to the way some
weights lie with respect to τX .

τXw02

w12

τ+

w01
w11

τ−

(i)

τXw02

w1

τ+

w01

w11 w12

τ−

(ii)

τXw1

w2

τ+

w01 w02

w11 w12

τ−

(iii)

We show that disposition (i) does not provide any smooth variety, whereas (ii) delivers
No. 10 and (iii) delivers Nos. 11 and 12.
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In disposition (i) we have w01, w11 ∈ τ− and w02, w12 ∈ τ+. We may assume that
w11 ∈ cone(w01, w12) holds. Remark 4.2.1 applied to γ01,12 ∈ rlv(X) leads to w01 = (1, 0)
and w12 = (0, 1). Observe w1

11, w
2
11 ≥ 0. Due to det(w11, w12) > 0, we even have w1

11 > 0
and det(w01, w02) > 0 gives w2

02 > 0. Since T l00 and T l11 share the same degree, we have

l01w01 + l02w02 = l11w11 + l12w12.

Lemma 4.1.8 (iv) says l02 = 1 or l11 = 1, which allows us to resolve for w02 or for w11 in
the above equation. Using γ02,11 ∈ rlv(X), we obtain

l02 = 1 =⇒ 1 = det(w11, w02) = det(w11, l12w12 − l01w01) = l12w
1
11 + l01w

2
11,

l11 = 1 =⇒ 1 = det(w11, w02) = det(l01w01 − l12w12, w02) = l01w
2
02 + l12w

1
02.

We show l02 > 1. Otherwise, l02 = 1 holds. The above consideration shows w2
11 = 0 and

l12 = w1
11 = 1. Thus, l21w

2
21 = l12 = 1 holds and we obtain l21 = 1; a contradiction to P

being irredundant. Thus, l02 > 1 and l11 = 1 must hold. Because of w2
02 > 0, we must

have w1
02 ≤ 0. With

1 = det(w11, w02) = w1
11w

2
02 − w2

11w
1
02

we see w2
11w

1
02 = 0 and w1

11 = w2
02 = 1. But then we arrive at 1 = l11w

1
11 = l21w

1
21. Again

this means l21 = 1; a contradiction to P being irredundant.

In disposition (ii) we have w01, w11, w12 ∈ τ− and w02, w1 ∈ τ+. In particular m ≥ 1.
Lemma 4.1.10 (v) yields w2, . . . , wm ∈ τ+. Applying Remark 4.2.1 first to γ11,1 ∈ rlv(X)
an then to γ01,1, γ12,1, γ02,11, γ11,k ∈ rlv(X) leads to

Q =

[
1 w1

02 1 1 w1
21 0 w1

2 . . . w1
m

w2
01 1 0 w2

12 w2
21 1 1 . . . 1

]
.

Applying Lemma 4.1.8 (ii) to γ01,1, γ12,1, γ11,1 ∈ rlv(X) we obtain l02 = l11 = l12 = 1.
For the degree µ of the relation g0 we note

µ1 = l01 + w1
02 = 2 = l21w

1
21, µ2 = l01w

2
01 + 1 = w2

12 = l21w
2
21.

From µ1 = 2 we infer l21 = 2 and w1
21 = 1. Consequently, µ2 is even and both l01, w

2
01

are odd. Using again µ1 = 2 gives w1
02 6= 0. For γ02,12 ∈ rlv(X) Remark 4.2.1 yields

det(w12, w02) = 1 which means w1
02w

2
12 = 0. We conclude w2

12 = 0 = µ2. This implies
w2

21 = 0, w2
01 = −1, l01 = 1 and w1

02 = 1. We obtain

g0 = T01T02 + T11T12 + T 2
21, Q =

[
1 1 1 1 1 0 . . . 0
−1 1 0 0 0 1 . . . 1

]
,

where w1
2 = . . . = w1

m = 0 follows from Remark 4.2.1 applied to γ01,k ∈ rlv(X). The
semiample cone is given as SAmple(X) = cone((1, 0), (1, 1)) and the anticanonical class
as −KX = (3,m). Therefore X is a Fano variety if and only if m < 3, i.e m = 1, 2.
Moreover, X is an almost Fano variety if and only if m ≤ 3.
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In disposition (iii) we have w01, w02, w11, w12 ∈ τ− and w1, w2 ∈ τ+. In particular
m ≥ 2. Lemma 4.1.10 (v) ensures w3, . . . , wm ∈ τ+. We can assume that all wij , wk lie
in cone(w01, w1). Applying Remark 4.2.1, first to γ01,1 and then to all relevant faces of
the types γij,1 and γ01,k, we achieve

w01 = (1, 0), w1 = (0, 1), w1
02 = w1

11 = w1
12 = 1, w2

2 = . . . = w2
m = 1.

Lemma 4.1.8 (ii) applied to all γij,1 shows lij = 1 for all i, j. We conclude µ1 = 2, which
in turn implies l21 = 2 and w1

21 = 1. In particular, we have the relation

g0 = T01T02 + T11T12 + T 2
21.

We treat the case where w1
1 = . . . = w1

m = 0 holds. All columns of the degree matrix lie
in cone(w01, w1) and thus Q is of the form

Q =

[
1 1 1 1 1 0 0 . . . 0
0 2c a b c 1 1 . . . 1

]
,

where a, b, c ∈ Z≥0 and a + b = 2c. The anticanonical class is −K = (3,m + 3c) and
we have SAmple(X) = cone((0, 1), (1, 2c)). Therefore X is a Fano variety if and only if
m > 3c. Moreover, X is an almost Fano variety if and only if m ≥ 3c.
We treat the case where w1

k > 0 holds for some k. Then we obtain w2
02 = 0 by applying

Remark 4.2.1 to γ02,k. This yields µ2 = 0 and thus w2
ij = 0 for all i, j. Consequently, the

degree matrix is given as

Q =

[
1 1 1 1 1 0 w1

2 . . . w1
m

0 0 0 0 0 1 1 . . . 1

]
,

where we can assume 0 ≤ w1
2 ≤ . . . ≤ w1

m. The semiample cone and the anticanonical
divisor are given as

SAmple(X) = cone((1, 0), (w1
m, 1)), −K = (3 + w1

2 + . . .+ w1
m,m).

We see that X is an almost Fano variety if and only if mw1
m ≤ 3 + w1

2 + . . . + w1
m and

that X is a Fano variety if and only if the corresponding strict inequality holds.

Case (I) (f) of Proposition 4.1.14

We have r = 2, m ≥ 1, n = 4 and n = (2, 1, 1). This case does not provide any smooth
variety.

We can assume w01 ∈ τ− and w1 ∈ τ+. Lemma 4.1.10 (v) ensures w2, . . . , wm ∈ τ+.
Applying Remark 4.2.1 first to γ01,1 ∈ rlv(X) and then to the remaining γ01,k ∈ rlv(X),
we achieve

Q =

[
1 w1

02 w1
11 w1

21 0 w1
2 . . . w1

m

0 w2
02 w2

11 w2
21 1 1 . . . 1

]
.
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Moreover γ01,1 ∈ rlv(X) implies l02 = 1 by Lemma 4.1.8 (ii). Recall from Corollary 4.1.13
that Cl(X) is torsion-free. Thus [24, Thm. 1.1] implies that l11 and l21 are coprime.
Consider the case w02 ∈ τ−. Then γ02,1 ∈ rlv(X) holds, Lemma 4.1.8 (ii) yields l01 = 1
and Remark 4.2.1 shows w1

02 = 1. We conclude µ1 = 2 and thus obtain l11 = l21 = 2, a
contradiction.
Now let w02 ∈ τ+, which implies γ01,02,11 ∈ rlv(X). Since X is factorial, Proposi-
tion 1.4.2 (ii) shows that w2

02 and w2
11 are coprime. Now we look at

µ2 = w2
02 = l11w

2
11 = l21w

2
21.

We infer that l21 divides w2
02 and w2

11. This contradicts coprimality of w2
02 and w2

11,
because irredundancy of P requires l21 ≥ 2.

Case (II) of Proposition 4.1.14

We have r = 3, m = 0 and n = (2, 2, n2, n3) with 2 ≥ n2 ≥ n3 ≥ 1. This leads to No. 13
in Theorems 4.3.1 and 4.3.2.

We treat constellations (a), (b) and (c) all at once. First observe that for every wi1j1 with
ni1 = 2, there is at least one wi2j2 with ni2 = 2 and i1 6= i2 such that τX ⊆ Q(γi1j1,i2j2)◦

and thus γi1j1,i2j2 ∈ rlv(X). Since r = 3, we conclude lij = 1 for all i with ni = 2; see
Lemma 4.1.8 (iv).
We can assume w01, w11 ∈ τ− and w02, w12 ∈ τ+ as well as w11 ∈ cone(w01, w12).
Applying Remark 4.2.1 to γ01,12,∈ rlv(X), we obtain w01 = (1, 0) and w12 = (0, 1).
Moreover w1

11, w
2
11 ≥ 0 holds and, because of w11 6∈ τ+, we even have w1

11 > 0. For the
degree µ of the relations we note

µ1 = w1
02 + 1 = w1

11, µ2 = w2
02 = w2

11 + 1.

Therefore we can express w02 in terms of w11. Remark 4.2.1 applied to γ02,11 ∈ rlv(X)
gives 1 = det(w11, w02) = w1

11 + w2
11. We conclude w11 = (1, 0) and w02 = (0, 1). In

particular, the degree of g0 and g1 is µ = (1, 1).
In constellations (b) and (c), we have n3 = 1 and µ = (1, 1). This implies l31 = 1, a
contradiction to P being irredundant. Thus, constellations (b) and (c) do not occur.

We are left with constellation (a). This means that we have n0 = . . . = n3 = 2. As seen
before, lij = 2 for all i, j. Thus, the relations are

g0 = T01T02 + T11T12 + T21T22, g1 = aT11T12 + T21T22 + T31T32,

where a ∈ K∗ \ {1}. In this situation, we may assume w21, w31 ∈ τ−. Applying Re-
mark 4.2.1 to the relevant faces γ02,21, γ02,31, we conclude w1

21 = w1
31 = 1. Since µ1 = 1

and lij = 1, we obtain w1
22 = w1

32 = 0. Thus, w22 and w32 lie in τ+. Again Remark 4.2.1,
this time applied to γ01,22, γ01,32 ∈ rlv(X), yields w2

22 = w2
32 = 1. Since µ2 = 1 and

lij = 1, we conclude w2
21 = w2

31 = 0. Hence we obtain the degree matrix

Q =

[
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

]
.
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The semiample cone is SAmple(X) = (Q≥0)2 and the anticanonical divisor is −KX =
(2, 2). In particular, X is a Fano variety.

4.3 Classification results

Theorem 4.3.1. Every smooth rational projective non-toric variety of Picard number
two that admits a torus action of complexity one is isomorphic to precisely one of the
following varieties X, specified by their Cox ring R(X) and an ample class u ∈ Cl(X),
where we always have Cl(X) = Z2 and the grading is fixed by the matrix [w1, . . . , wr] of
generator degrees deg(Ti), deg(Sj) ∈ Cl(X).

No. R(X) [w1, . . . , wr] u dim(X)

1 K[T1,...,T7]
〈T1T2T 2

3 +T4T5+T6T7〉

[
0 0 1 1 1 1 1
1 1 0 a 2− a b 2− b

]
1 ≤ a ≤ b

[
1

1 + b

]
4

2 K[T1,...,T7]
〈T1T2T3+T4T5+T6T7〉

[
0 0 1 1 0 1 0
1 1 0 1 1 1 1

] [
1
2

]
4

3 K[T1,...,T6]
〈T1T2T 2

3 +T4T5+T 2
6 〉

[
0 0 1 1 1 1
1 1 0 2− a a 1

]
a ≥ 1

[
1

1 + a

]
3

4
K[T1,...,T6,S1,...,Sm]

〈T1T
l2
2 +T3T

l4
4 +T5T

l6
6 〉

m≥0

[
0 1 a 1 b 1 c1 . . . cm
1 0 1 0 1 0 1 . . . 1

]
0 ≤ a ≤ b, c1 ≤ . . . ≤ cm,

l2 = a + l4 = b + l6

[
d + 1

1

]
d := max(b, cm)

m+ 3

5
K[T1,...,T6,S1,...,Sm]
〈T1T2+T 2

3 T4+T 2
5 T6〉

m≥0

[
0 2a + 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 0 . . . 0

]
a ≥ 0

[
2a + 2

1

]
m+ 3

6
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T 2

5 T6〉
m≥1

[
0 2c + 1 a b c 1 1 . . . 1
1 1 1 1 1 0 0 . . . 0

]
a, b, c ≥ 0, a < b,
a + b = 2c + 1

[
2c + 2

1

]
m+ 3

7
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥1

[
0 0 0 0 −1 1 1 . . . 1
1 1 1 1 1 1 0 . . . 0

] [
1
2

]
m+ 3

8
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥2

[
0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 0 a2 . . . am

]
0 ≤ a2 ≤ . . . ≤ am, am > 0

[
1

am + 1

]
m+ 3

9
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥2

[
0 a2 . . . a6 1 . . . 1
1 1 . . . 1 0 . . . 0

]
0 ≤ a3 ≤ a5 ≤ a6 ≤ a4 ≤ a2,
a2 = a3 + a4 = a5 + a6

[
a2 + 1

1

]
m+ 3

10
K[T1,...,T5,S1,...,Sm]
〈T1T2+T3T4+T 2

5 〉
m≥1

[
1 1 1 1 1 0 . . . 0
−1 1 0 0 0 1 . . . 1

] [
2
1

]
m+ 2

11
K[T1,...,T5,S1,...,Sm]
〈T1T2+T3T4+T 2

5 〉
m≥2

[
1 1 1 1 1 0 a2 . . . am
0 0 0 0 0 1 1 . . . 1

]
0 ≤ a2 ≤ . . . ≤ am, am > 0

[
am + 1

1

]
m+ 2

12
K[T1,...,T5,S1,...,Sm]
〈T1T2+T3T4+T 2

5 〉
m≥2

[
1 1 1 1 1 0 0 . . . 0
0 2c a b c 1 1 . . . 1

]
0 ≤ a ≤ c ≤ b, a + b = 2c

[
1

2c + 1

]
m+ 2
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13

K[T1,...,T8]〈
T1T2+T3T4+T5T6,

aT3T4+T5T6+T7T8

〉
a∈K∗\{1}

[
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

] [
1
1

]
4

Moreover, each of the listed data defines a smooth rational non-toric projective variety of
Picard number two coming with a torus action of complexity one.

The anticanonical divisor of the varieties listed in Theorem 4.3.1 can be computed
through Proposition 1.3.13. This enables us to determine for every dimension the finitely
many families of non-toric smooth rational Fano varieties of Picard number two that
admit a torus action of complexity one.

Theorem 4.3.2. Every smooth rational non-toric Fano variety of Picard number two that
admits a torus action of complexity one is isomorphic to precisely one of the following
varieties X, specified by their Cox ring R(X), where the grading by Cl(X) = Z2 is given
by the matrix [w1, . . . , wr] of generator degrees deg(Ti),deg(Sj) ∈ Cl(X) and we list the
(ample) anticanonical class −KX .

No. R(X) [w1, . . . , wr] −KX dim(X)

1 K[T1,...,T7]
〈T1T2T 2

3 +T4T5+T6T7〉

[
0 0 1 1 1 1 1
1 1 0 1 1 1 1

] [
3
4

]
4

2 K[T1,...,T7]
〈T1T2T3+T4T5+T6T7〉

[
0 0 1 1 0 1 0
1 1 0 1 1 1 1

] [
2
4

]
4

3 K[T1,...,T6]
〈T1T2T 2

3 +T4T5+T 2
6 〉

[
0 0 1 1 1 1
1 1 0 1 1 1

] [
2
3

]
3

4.A
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥0

[
0 1 0 1 0 1 c 0 . . . 0
1 0 1 0 1 0 1 1 . . . 1

]
c ∈ {−1, 0},

c := 0 if m = 0

[
2 + c
2 +m

]
m+ 3

4.B
K[T1,...,T6,S1,...,Sm]
〈T1T 2

2 +T3T4+T5T6〉
m≥0

[
0 1 1 1 1 1 1 . . . 1
1 0 1 0 1 0 1 . . . 1

] [
3 +m
2 +m

]
m+ 3

4.C
K[T1,...,T6,S1,...,Sm]
〈T1T 2

2 +T3T 2
4 +T5T 2

6 〉
m≥0

[
0 1 0 1 0 1 0 . . . 0
1 0 1 0 1 0 1 . . . 1

] [
1

2 +m

]
m+ 3

5
K[T1,...,T6,S1,...,Sm]
〈T1T2+T 2

3 T4+T 2
5 T6〉

m≥1

[
0 2a + 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 0 . . . 0

]
0 ≤ 2a < m

[
2a +m + 2

2

]
m+ 3

6
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T 2

5 T6〉
m≥1

[
0 2c + 1 a b c 1 1 . . . 1
1 1 1 1 1 0 0 . . . 0

]
a, b, c ≥ 0, a < b,
a + b = 2c + 1,
m > 3c + 1

[
3c + 2 +m

3

]
m+ 3

7
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

1≤m≤3

[
0 0 0 0 −1 1 1 . . . 1
1 1 1 1 1 1 0 . . . 0

] [
m
4

]
m+ 3

8
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥2

[
0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 0 a2 . . . am

]
0 ≤ a2 ≤ . . . ≤ am,
am ∈ {1, 2, 3},

4 +
∑m

k=2 ak > mam

[
m

4 +
∑m

k=2 ak

]
m+ 3
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9
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥2

[
0 a2 . . . a6 1 . . . 1
1 1 . . . 1 0 . . . 0

]
0 ≤ a3 ≤ a5 ≤ a6 ≤ a4 ≤ a2,
a2 = a3 + a4 = a5 + a6,

2a2 < m

[
2a2 +m

4

]
m+ 3

10
K[T1,...,T5,S1,...,Sm]
〈T1T2+T3T4+T 2

5 〉
1≤m≤2

[
1 1 1 1 1 0 . . . 0
−1 1 0 0 0 1 . . . 1

] [
3
m

]
m+ 2

11
K[T1,...,T5,S1,...,Sm]
〈T1T2+T3T4+T 2

5 〉
m≥2

[
1 1 1 1 1 0 a2 . . . am
0 0 0 0 0 1 1 . . . 1

]
0 ≤ a2 ≤ . . . ≤ am,

am ∈ {1, 2},
3 +

∑m
k=2 ak > mam

[
3 +

∑m
k=2 ak
m

]
m+ 2

12
K[T1,...,T5,S1,...,Sm]
〈T1T2+T3T4+T 2

5 〉
m≥2

[
1 1 1 1 1 0 0 . . . 0
0 2c a b c 1 1 . . . 1

]
0 ≤ a ≤ c ≤ b, a + b = 2c,

3c < m

[
3

3c +m

]
m+ 2

13

K[T1,...,T8]〈
T1T2+T3T4+T5T6,

aT3T4+T5T6+T7T8

〉
a∈K∗\{1}

[
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

] [
2
2

]
4

Moreover, each of the listed data defines a smooth rational non-toric Fano variety of
Picard number two coming with a torus action of complexity one.

For K = C, the assumption of rationality can be omitted in Theorem 4.3.2, due to [31,
Sec. 2.1] and [1, Rem. 4.4.1.5].

Similar to the Fano varieties, we can figure out the almost Fano varieties from Theo-
rem 4.3.1, i.e. those with a big and nef anticanonical divisor. Without the assumption
of a torus action, the classification of smooth almost Fano varieties of Picard number
two is widely open; for the threefold case, we refer to the work of Jahnke, Peternell and
Radloff [32, 33]. In the setting of a torus action of complexity one, the following result
together with Theorem 4.3.2 settles the problem in any dimension; by a truly almost
Fano variety we mean an almost Fano variety which is not Fano.

Theorem 4.3.3. Every smooth rational projective non-toric truly almost Fano variety of
Picard number two that admits a torus action of complexity one is isomorphic to precisely
one of the following varieties X, specified by their Cox ring R(X) and an ample class
u ∈ Cl(X), where we always have Cl(X) = Z2 and the grading is fixed by the matrix
[w1, . . . , wr] of generator degrees deg(Ti), deg(Sj) ∈ Cl(X).

No. R(X) [w1, . . . , wr] u dim(X)

4.A
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥1

[
0 1 0 1 0 1 c1 . . . cm
1 0 1 0 1 0 1 . . . 1

]
c1 ≤ . . . ≤ cm
d := max(0, cm)

(2 +m)d = 2 + c1 + · · · + cm

[
1

1 + d

]
m+ 3

4.B
K[T1,...,T6,S1,...,Sm]
〈T1T 2

2 +T3T4+T5T6〉
m≥1

[
0 1 1 1 1 1 0 1 . . . 1
1 0 1 0 1 0 1 1 . . . 1

] [
1
2

]
m+ 3

4.C
K[T1,...,T6,S1,...,Sm]
〈T1T 2

2 +T3T 2
4 +T5T 2

6 〉
m≥1

[
0 1 0 1 0 1 −1 0 . . . 0
1 0 1 0 1 0 1 1 . . . 1

] [
1
1

]
m+ 3
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4.D
K[T1,...,T6,S1,...,Sm]
〈T1T 2

2 +T3T 2
4 +T5T6〉

m≥0

[
0 1 0 1 1 1 1 . . . 1
1 0 1 0 1 0 1 . . . 1

] [
1
2

]
m+ 3

4.E
K[T1,...,T6,S1,...,Sm]
〈T1T 3

2 +T3T4+T5T6〉
m≥0

[
0 1 2 1 2 1 2 . . . 2
1 0 1 0 1 0 1 . . . 1

] [
1
3

]
m+ 3

4.F
K[T1,...,T6,S1,...,Sm]
〈T1T 3

2 +T3T 2
4 +T5T 2

6 〉
m≥0

[
0 1 1 1 1 1 1 . . . 1
1 0 1 0 1 0 1 . . . 1

] [
1
2

]
m+ 3

5
K[T1,...,T6,S1,...,Sm]
〈T1T2+T 2

3 T4+T 2
5 T6〉

m≥0

[
0 2a + 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 0 . . . 0

]
m = 2a

[
m + 2

1

]
m+ 3

6
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T 2

5 T6〉
m≥1

[
0 2c + 1 a b c 1 1 . . . 1
1 1 1 1 1 0 0 . . . 0

]
a, b, c ≥ 0, a < b,
a + b = 2c + 1,
m = 3c + 1

[
2c + 2

1

]
m+ 3

7
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m=4

[
0 0 0 0 −1 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0

] [
1
2

]
7

8
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥2

[
0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 0 a2 . . . am

]
0 ≤ a2 ≤ . . . ≤ am, am > 0,
4 + a2 + . . . + am = mam

[
1

am + 1

]
m+ 3

9
K[T1,...,T6,S1,...,Sm]
〈T1T2+T3T4+T5T6〉

m≥2

[
0 a2 . . . a6 1 . . . 1
1 1 . . . 1 0 . . . 0

]
0 ≤ a3 ≤ a5 ≤ a6 ≤ a4 ≤ a2,
a2 = a3 + a4 = a5 + a6,

m = 2a2

[
a2 + 1

1

]
m+ 3

10
K[T1,...,T5,S1,...,Sm]
〈T1T2+T3T4+T 2

5 〉
m=3

[
1 1 1 1 1 0 0 0
−1 1 0 0 0 1 1 1

] [
2
1

]
5

11
K[T1,...,T5,S1,...,Sm]
〈T1T2+T3T4+T 2

5 〉
m≥2

[
1 1 1 1 1 0 a2 . . . am
0 0 0 0 0 1 1 . . . 1

]
0 ≤ a2 ≤ . . . ≤ am, am > 0,
3 + a2 + . . . + am = mam

[
1

am + 1

]
m+ 2

12
K[T1,...,T5,S1,...,Sm]
〈T1T2+T3T4+T 2

5 〉
m≥3

[
1 1 1 1 1 0 0 . . . 0
0 2c a b c 1 1 . . . 1

]
0 ≤ a ≤ c ≤ b, a + b = 2c,

m = 3c

[
1

2c + 1

]
m+ 2

Moreover, each of the listed data defines a smooth rational non-toric truly almost Fano
variety of Picard number two coming with a torus action of complexity one.

Proof of Theorems 4.3.1, 4.3.2 and 4.3.3. The preceeding analysis of the cases of Propo-
sition 4.1.14 shows that every smooth rational non-toric projective variety of Picard num-
ber two coming with a torus action of complexity one occurs in Theorem 4.3.1 and, among
these, the Fano ones in Theorem 4.3.2 and the truly almost Fano ones in Theorem 4.3.3.
Comparing the defining data, one directly verifies that any two different listed varieties
are not isomorphic to each other. Finally, using Proposition 1.4.2 one explicitly checks
that indeed all varieties listed in Theorem 4.3.1 are smooth.
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4.4 Duplicating free weights

Up to isomorphy, there are just two smooth non-toric projective varieties with a torus
action of complexity one and Picard number one, namely the smooth projective quadrics
in dimension three and four. In Picard number two we obtained examples in every
dimension and this even holds when we restrict to the Fano case. Nevertheless, also in
Picard number two we can observe a certain finiteness feature: each Fano variety listed
in Theorem 4.3.2 arises from a smooth, but not necessarily Fano, variety of dimension at
most seven via an iterated generalized cone construction. In terms of the Cox ring the
generalized cone construction simply means duplicating a free weight.

For the precise treatment, the setting of bunched rings (R,F,Φ) is most appropriate.
Recall from Section 1.3 that R is a normal factorially K-graded K-algebra, F a system of
pairwise non-associatedK-prime generators for R and Φ a certain collection of polyhedral
cones in KQ defining an open set X̂ ⊆ X = SpecR with a good quotient X = X̂//H by
the action of the quasitorus H = SpecK[K] on X. Dimension, divisor class group and
Cox ring of X are given by

dim(X) = dim(R)− dim(KQ), Cl(X) = K, R(X) = R.

Following Costruction 1.3.4, we call X := X(R,F,Φ) the variety associated with the
bunched ring (R,F,Φ).

Construction 4.4.1. Let R = K[T1, . . . , Tr]/〈g1, . . . , gs〉 a K-graded algebra presented
by K-homogeneous generators Ti and relations gj ∈ K[T1, . . . , Tr−1]. By duplicating the
free weight deg(Tr) we mean passing from R to the K-graded algebra

R′ := K[T1, . . . , Tr, Tr+1]/〈g1, . . . , gs〉, deg(Tr+1) := deg(Tr) ∈ K,

where gj ∈ K[T1, . . . , Tr−1] ⊆ K[T1, . . . , Tr, Tr+1]. If (R,F,Φ) is a bunched ring with
F = (T1, . . . , Tr), then (R′,F′,Φ) is a bunched ring with F′ = (T1, . . . , Tr, Tr+1).

Proof. The K-algebra R′ is normal and, by [7, Thm. 1.4], factorially K-graded. Obvi-
ously, the K-grading is almost free. Moreover, (R,F) and (R′,F′) have the same sets
of generator weights in the common grading group K and the collection of projected
F′-faces equals the collection of projected F-faces. We conclude that Φ is a true F′-bunch
and thus (R′,F′,Φ) is a bunched ring.

Here are some basic features of the procedure of Construction 4.4.1.

Proposition 4.4.2. Let (R′,F′,Φ) arise from the bunched ring (R,F,Φ) via Construc-
tion 4.4.1. Set X ′ := X(R′,F′,Φ) and X := X(R,F,Φ).
(i) We have dim(X ′) = dim(X) + 1.
(ii) The cones of semiample divisor classes satisfy SAmple(X ′) = SAmple(X).
(iii) The variety X ′ is smooth if and only if X is smooth.
(iv) The ring R′ is a complete intersection if and only if R is a complete intersection.
(v) If R is a complete intersection, deg(Tr) semiample and X Fano, then X ′ is Fano.
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Proof. By construction, dim(R′) = dim(R) + 1 holds. Since R and R′ have the same
grading group K, we obtain (i). Moreover, R and R′ have the same defining relations gj ,
hence we have (iv). According to Proposition 1.4.3, the semiample cone is the intersection
of all elements of Φ and thus (ii) holds.
To obtain the third assertion, we show first that X̂ ′ is smooth if and only if X̂ is smooth.
For every relevant F-face γ0 � Qr

≥0 consider

γ′0 := γ0 + cone(er+1), γ′′0 := cone(ei; 1 ≤ i < r, ei ∈ γ0) + cone(er+1).

Then γ0, γ
′
0, γ
′′
0 � Qr+1

≥0 are relevant F′-faces and, in fact, all relevant F′-faces are of this
form. Since the variables Tr and Tr+1 do not appear in the relations gj , we see that a
stratum X(γ0) is smooth if and only the strata X ′(γ0), X ′(γ′0) and X ′(γ′′0 ) are smooth.
Now Proposition 1.4.2 gives (iii).
Finally, we show (v). As we have complete intersection Cox rings, Proposition 1.3.13
applies and we obtain

−KX′ =

r+1∑
i=1

deg(Ti)−
s∑
j=1

deg(gj) = −KX + deg(Tr+1).

Since X and X ′ share the same ample cone, we conclude that ampleness of −KX implies
ampleness of −KX′ ,

We interpret the duplication of free weights in terms of birational geometry: it turns
out to be a composition of a contraction of fiber type, a series of flips and a birational
divisorial contraction, where both contractions are elementary; see [14] for a detailed
study of the latter type of maps in the context of general smooth Fano 4-folds.

Proposition 4.4.3. Let (R′,F′,Φ) arise from the bunched ring (R,F,Φ) via Construc-
tion 4.4.1. Set X ′ := X(R′,F′,Φ) and X := X(R,F,Φ). Assume that X is Q-factorial.
Then there is a sequence

X ←− X̃1 99K . . . 99K X̃t −→ X ′,

where X̃1 → X is a contraction of fiber type with fibers P1, every X̃i 99K X̃i+1 is a flip
and X̃t → X ′ is the contraction of a prime divisor. If deg(Tr) ∈ K is Cartier, then
X̃1 → X is the P1-bundle associated with the divisor on X corresponding to Tr.

Proof. In order to define X̃1, we consider the minimal toric embedding X ⊆ Z in the
sense of Construction 1.3.8. Let Σ be the fan of Z and P = [v1, . . . , vr] be the matrix
having the primitive generators vi ∈ Zn of the rays of Σ as its columns. Define a further
matrix

P̃ :=

[
v1 . . . vr−1 vr 0 0
0 . . . 0 −1 1 −1

]
.

We denote the columns of P̃ by ṽ1, . . . , ṽr, ṽ+, ṽ− ∈ Zn+1, write %+, %− for the rays
through ṽ+, ṽ− and define a fan

Σ̃1 := {σ̃ + %+, σ̃ + %−, σ̃; σ ∈ Σ}, σ̃ := cone(ṽi; vi ∈ σ).
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The projection Zn+1 → Zn is a map of fans Σ̃1 → Σ. The associated toric morphism
Z̃1 → Z has fibers P1. If the toric divisor Dr corresponding to the ray through vr is
Cartier, then Z̃1 → Z is the P1-bundle associated with Dr. We define X̃1 ⊆ Z̃1 to be the
preimage of X ⊆ Z. Then X̃1 → X has fibers P1. If deg(Tr) is Cartier, then so is Dr

and hence X̃1 → X inherits the P1-bundle structure.
Now we determine the Cox ring of the variety X̃1. For this, observe that the projection
Zr+2 → Zr defines a lift of Z̃1 → Z to the toric characteristic spaces and thus leads to
the commutative diagram

π̃](X̃1) ⊆

π̃
��

W̃1
//

π̃
��

W

π

��

π](X)⊇

π

��
X̃1 ⊆ Z̃1

// Z X⊇

where π̃](X̃1) and π](X) denote the proper transforms with respect to the downwards
toric morphisms. Pulling back the defining equations of π](X) ⊆ W , we see that
π̃](X̃1) ⊆ W̃1 has coordinate algebra R̃ := R[S+, S−] graded by K̃ := K × Z via

deg(Ti) := (wi, 0), w+ := deg(S+) := (wr, 1), w− := deg(S−) := (0, 1),

where wi := deg(Ti) ∈ K. TheK-algebra R̃ is normal and, by [7, Thm. 1.4], factorially K̃-
graded. Moreover the K̃-grading is almost free, as the K-grading of R has this property
and F̃ = (T1, . . . , Tr, S

+, S−) is a system of pairwise non-associated K̃-prime generators.
We conclude that R̃ is the Cox ring of X̃1.
Next we look for the defining bunch of cones for X̃1. Observe that K sits inside K̃ as K×
{0}. With θ := SAmple(X)×{0} we obtain a GIT-cone θ1 := cone(θ, w+)∩ cone(θ, w−)
of the K̃-graded ring R̃. The associated bunch Φ̃1 consists of all cones of the form

τ̃ + cone(w+), τ̃ + cone(w−), τ̃ + cone(w+, w−),

where τ̃ = τ × {0}, τ ∈ Φ. Since Φ is a true bunch, so is Φ̃1. Together we obtain a
bunched ring (R̃, F̃, Φ̃1). By construction, the fan corresponding to Φ̃1 via Gale duality
is Σ̃1. We conclude that X̃1 is the variety associated with (R̃, F̃ , Φ̃1) and X̃1 ⊆ Z̃1 is the
canonical toric embedding.
Observe that X̃1 → X corresponds to the passage from the GIT-cone θ1 to the facet θ.
In particular, we see that X̃1 → X is a contraction of fiber type. To obtain the flips and
the final divisorial contraction, we consider the full GIT-fan.

wr

w+

w−

θ

θ1

θt

θt+1
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Important are the GIT-cones inside θ + cone(w−). There we have the facet θ and the
semiample cone θ1 of X̃1. Proceding in the direction of w−, we come across other full-
dimensional GIT-cones, say θ2, . . . , θt+1. This gives a sequence of flips X̃1 99K . . . 99K X̃t,
where X̃i is the variety with semiample cone θi. Passing from θt to θt+1 gives a morphism
X̃t → X̃t+1 contracting the prime divisor corresponding to the variable S− of the Cox
ring R̃ of X̃t. Note that X̃t+1 is Q-factorial, as it is the GIT-quotient associated with a
full-dimensional chamber.
We show X̃t+1

∼= X ′. Recall that X ′ arises from X by duplicating the weight deg(Tr).
We have Cl(X ′) = K and the Cox ring R′ = R[Tr+1] of X ′ is K-graded via deg(Ti) = wi
for i = 1, . . . , r and deg(Tr+1) = wr. In particular, the fan of the canonical toric ambient
variety of X ′ has as its primitive ray generators the columns of the matrix

P ′ =

[
v1 . . . vr−1 vr 0
0 . . . 0 −1 1

]
.

On the other hand, the canonical toric ambient variety Z̃t+1 of X̃t+1 is obtained from Z̃t
by contracting the divisor corresponding to the ray %−. Hence P ′ is as well the primitive
generator matrix for the fan of Z̃t+1. We conclude

Cl(X̃t+1) = Zr+1/ im((P ′)∗) = Cl(X ′) = K.

Similarly, we compare the Cox rings of X̃t+1 and X ′. Let Z̃t denote the canonical toric
ambient variety of X̃t. Then the projection Zr+2 → Zr+1 defines a lift of Z̃t → Z̃t+1 to
the toric characteristic spaces and thus leads to the commutative diagram

π̃](X̃t) ⊆

π̃
��

W̃t
//

π̃
��

W̃t+1

π
��

π](X̃t+1)⊇

π
��

X̃t ⊆ Z̃t // Z̃t+1 X̃t+1⊇

where the proper transforms π̃](X̃t) and π](X̃t+1) are the characteristic spaces of X̃t and
X̃t+1 respectively and the first is mapped onto the second one. We conclude that the
Cox ring of X̃t+1 is R[S+] graded by deg(Ti) = wi for i = 1, . . . , r and deg(S+) = wr
and thus is isomorphic to the Cox ring R′ of X ′.
The final step is to compare the defining bunches of cones Φ̃t+1 of X̃t+1 and Φ′ of X ′.
For this, observe that the fan of the toric ambient variety Z̃t+1 contains the cones σ̃+%+,
where σ ∈ Σ. Thus, every τ ∈ Φ′ belongs to Φ̃t+1. We conclude

SAmple(X̃t+1) ⊆ SAmple(X ′).

Since X̃t+1 is Q-factorial, its semiample cone is of full dimension. Both cones belong to
the GIT-fan, hence we see that the above inclusion is in fact an equality. Thus Φ̃t+1

equals Φ′.

We return to the Fano varieties of Theorem 4.3.2. We first list the (finitely many)
examples which do not allow duplication of a free weight and then present the starting
models for constructing the Fano varieties via duplication of weights.
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Proposition 4.4.4. The varieties of Theorem 4.3.2 containing no divisor with infinite
general isotropy are precisely the following ones:

No. R(X) [w1, . . . , wr] −KX dim(X)

1 K[T1,...,T7]
〈T1T2T 2

3 +T4T5+T6T7〉

[
0 0 1 1 1 1 1
1 1 0 1 1 1 1

] [
3
4

]
4

2 K[T1,...,T7]
〈T1T2T3+T4T5+T6T7〉

[
0 0 1 1 0 1 0
1 1 0 1 1 1 1

] [
2
4

]
4

3 K[T1,...,T6]
〈T1T2T 2

3 +T4T5+T 2
6 〉

[
0 0 1 1 1 1
1 1 0 1 1 1

] [
2
3

]
3

4.A K[T1,...,T6]
〈T1T2+T3T4+T5T6〉

[
0 1 0 1 0 1
1 0 1 0 1 0

] [
2
2

]
3

4.B K[T1,...,T6]
〈T1T 2

2 +T3T4+T5T6〉

[
0 1 1 1 1 1
1 0 1 0 1 0

] [
3
2

]
3

4.C K[T1,...,T6]
〈T1T 2

2 +T3T 2
4 +T5T 2

6 〉

[
0 1 0 1 0 1
1 0 1 0 1 0

] [
1
2

]
3

13

K[T1,...,T8]〈
T1T2+T3T4+T5T6,

aT3T4+T5T6+T7T8

〉
a∈K∗\{1}

[
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

] [
2
2

]
4

Proof. For a T -variety X = X(A,P, u), the divisors having infinite general T -isotropy
are precisely the vanishing sets of the variable Sk. Thus we just have to pick out the
cases with m = 0 from Theorem 4.3.2.

Theorem 4.4.5. Let X be a smooth rational Fano variety with a torus action of com-
plexity one and Picard number two. If there is a prime divisor with infinite general
isotropy on X, then X arises via iterated duplication of the free weight wr from one of
the following varieties Y :

No. R(Y ) [w1, . . . , wr] u dim(Y )

4.A K[T1,...,T6,S1]
〈T1T2+T3T4+T5T6〉

[
0 1 0 1 0 1 0
1 0 1 0 1 0 1

] [
1
1

]
4

4.A K[T1,...,T6,S1,S2]
〈T1T2+T3T4+T5T6〉

[
0 1 0 1 0 1 −1 0
1 0 1 0 1 0 1 1

] [
1
1

]
5

4.B K[T1,...,T6,S1]
〈T1T 2

2 +T3T4+T5T6〉

[
0 1 1 1 1 1 1
1 0 1 0 1 0 1

] [
2
1

]
4

4.C K[T1,...,T6,S1]
〈T1T 2

2 +T3T 2
4 +T5T 2

6 〉

[
0 1 0 1 0 1 0
1 0 1 0 1 0 1

] [
1
1

]
4

5 K[T1,...,T6,S1]
〈T1T2+T 2

3 T4+T 2
5 T6〉

[
0 2a + 1 a 1 a 1 1
1 1 1 0 1 0 0

]
a ≥ 0

[
2a + 2

1

]
4

6 K[T1,...,T6,S1]
〈T1T2+T3T4+T 2

5 T6〉

[
0 2c + 1 a b c 1 1
1 1 1 1 1 0 0

]
a, b, c ≥ 0, a < b,
a + b = 2c + 1

[
2c + 2

1

]
4

7 K[T1,...,T6,S1]
〈T1T2+T3T4+T5T6〉

[
0 0 0 0 −1 1 1
1 1 1 1 1 1 0

] [
1
2

]
4

8 K[T1,...,T6,S1,S2]
〈T1T2+T3T4+T5T6〉

[
0 0 0 0 0 0 1 1
1 1 1 1 1 1 0 a

]
a ∈ {1, 2, 3}

[
1

a + 1

]
5

8 K[T1,...,T6,S1,S2,S3]
〈T1T2+T3T4+T5T6〉

[
0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 a− 1 a

]
a ∈ {1, 2}

[
1

a + 1

]
6
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8 K[T1,...,T6,S1,...,S4]
〈T1T2+T3T4+T5T6〉

[
0 0 0 0 0 0 1 1 1 1
1 1 1 1 1 1 0 0 0 1

] [
1
2

]
7

9 K[T1,...,T6,S1,S2]
〈T1T2+T3T4+T5T6〉

[
0 a2 . . . a6 1 1
1 1 . . . 1 0 0

]
0 ≤ a3 ≤ a5 ≤ a6 ≤ a4 ≤ a2,
a2 = a3 + a4 = a5 + a6

[
a2 + 1

1

]
5

10 K[T1,...,T5,S1]
〈T1T2+T3T4+T 2

5 〉

[
1 1 1 1 1 0
−1 1 0 0 0 1

] [
2
1

]
3

11 K[T1,...,T5,S1,S2]
〈T1T2+T3T4+T 2

5 〉

[
1 1 1 1 1 0 a
0 0 0 0 0 1 1

]
a ∈ {1, 2}

[
a + 1

1

]
4

11 K[T1,...,T5,S1,S2,S3]
〈T1T2+T3T4+T 2

5 〉

[
1 1 1 1 1 0 0 1
0 0 0 0 0 1 1 1

] [
2
1

]
5

12 K[T1,...,T5,S1,S2]
〈T1T2+T3T4+T 2

5 〉

[
1 1 1 1 1 0 0
0 2c a b c 1 1

]
0 ≤ a ≤ c ≤ b, a + b = 2c

[
1

2c + 1

]
4

For Nos. 4, 8 and 11, the variety Y is Fano and any iterated duplication of wr produces
a Fano variety X. For the remaining cases, the following table tells which Y are Fano
and gives the characterizing condition when an iterated duplication of wr produces a Fano
variety X:

No. 5 6 7 9 10 12

Y Fano a = 0 c = 0 X a2 = 0 X c = 0

X Fano m > 2a m > 3c+ 1 m ≤ 3 m > 2a2 m ≤ 2 m > 3c

Proof. A T -variety X = X(A,P, u) has a divisor with infinite general T -isotropy if and
only if m ≥ 1 holds. In the cases 4.A, 4.B, 4.C, 5, 6, 7, 9, 10 and 12 we directly infer
from Theorem 4.3.2 that the examples with higher m arise from those listed in the table
above via iterated duplication of wr.
We still have to consider Nos. 8 and 11. If X is a variety of type 8, then the condition
for X to be a Fano variety is

4 + a2 + . . . ,+am > mam,

where am = 1, 2, 3 and 0 ≤ a2 ≤ . . . ≤ am. This is satisfied if and only if one of the
following conditions holds:
(i) a2 = . . . = am ∈ {1, 2, 3}.
(ii) a2 + 1 = a3 . . . = am ∈ {1, 2}, with m ≥ 3.
(iii) a2 = a3 = 0 and a4 = . . . = am = 1, with m ≥ 4.
Similarly for No. 11 the Fano condition in the table of Theorem 4.3.2 is equivalent to the
fulfillment of one of the following:
(i) a2 = . . . = am ∈ {1, 2}.
(ii) a2 = 0 and a3 = . . . = am = 1, with m ≥ 3.

In both cases this explicit characterization makes clear that we are in the setting of the
duplication of a free weight.
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Remark 4.4.6. Consider iterated duplication of wr for a variety X = X(A,P, u) as
in Theorem 4.4.5. Recall that the effective cone of X is decomposed as τ+ ∪ τX ∪ τ−,
where τX = Ample(X). Lemma 4.1.10 (i) says wr 6∈ τX and thus we have a unique
κ ∈ {τ+, τ−} with wr /∈ κ. Then the number of flips per duplication step equals

|{cone(wij), cone(wk); wij , wk ∈ κ}| − 1.

In particular, for Nos. 4.A, 4.B, 4.C, 8, 11, No. 9 with ai = 0 and No. 12 with b = 0, the
duplication steps require no flip.

Remark 4.4.7. For toric Fano varieties, there is no statement like Theorem 4.4.5. Recall
from [9] that all smooth projective toric varieties Z with Cl(Z) = Z2 admit a description
via the following data:
• weight vectors w1 := (1, 0) and wi := (bi, 1) with 0 = bn < bn−1 < . . . < b2,
• multiplicities µi := µ(wi) ≥ 1, where µ1 ≥ 2 and µ2 + . . .+ µn ≥ 2.

(µ1)

(µ2)(µ3)(µ4)
(µn)

The variety Z arises from the bunched ring (R,F,Φ), where R equals the polynomial
ring K[Sij ; 1 ≤ i ≤ n, 1 ≤ j ≤ µi] with the system of generators F = (S11, . . . , Snµn) and
the bunch Φ = {cone(w1, wi); i = 2, . . . , n}. In this setting Z is Fano if and only if

b2(µ3 + . . .+ µn) < µ1 + µ3b3 + . . .+ µn−1bn−1.

For any n ∈ Z≥4 and i = 2, . . . , n set µi := 1 and wi := (n− i, 1). Then, with µ1 := 2 we
obtain a smooth (non-Fano) toric variety Z ′n of Picard number two and dimension n− 1.
Moreover, for µ1 := 1 + (n − 2)(n − 1)/2 we obtain a smooth toric Fano variety Zn of
Picard number two that is Fano and is obtained from Z ′n via iterated duplication of w1

but cannot be constructed from any lower dimensional smooth variety this way.

4.5 Geometry of the Fano varieties

We take a closer look at the Fano varieties X listed in Theorem 4.3.2 and describe
explicitly their Mori fiber spaces and their divisorial contractions. The approach uses
suitable toric ambient varieties. The following Remark can be found, at least partially,
for example in [15, Section 7.3].

Remark 4.5.1. Let Z be a smooth projective toric variety of Picard number 2, given
by weight vectors w1 := (1, 0) and wi := (bi, 1) with 0 = bn < bn−1 < . . . < b2, and
multiplicities µi := µ(wi) ≥ 1, where µ1 ≥ 2 and µ2 + . . . + µn ≥ 2 as in Remark 4.4.7.
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Then the toric variety Z is a projectivized split vector bundle of rank r over a projective
space Ps, where s := µ1 − 1 and r := µ2 + . . .+ µn − 1. More precisely, we have

Z ∼= P

(
µn⊕
i=1

OPs ⊕
µn−1⊕
i=1

OPs(bn−1)⊕ . . .⊕
µ2⊕
i=1

OPs(b2)

)
.

The bundle projection Z → Ps is the elementary contraction associated to the divisor
class w1 ∈ Z2 = Cl(Z). If n = 2 holds, then we have Z ∼= Ps × Pr. If n = 3 and
µ3 = 1 hold, then the class w3 ∈ Z2 = Cl(Z) gives rise to a divisorial contraction onto a
weighted projective space:

Z → Z ′ := P(1, . . . , 1︸ ︷︷ ︸
µ1

, b2, . . . , b2︸ ︷︷ ︸
µ2

).

The exceptional divisor EZ ⊆ Z is isomorphic to Ps × Pµ2−1 and the center C(Z ′) ⊆ Z ′
of the contraction is isomorphic to Pµ2−1. In particular, for µ2 = 1, we have EZ ∼= Ps
and C(Z ′) is a point.

From the explicit description of the Cox ring of our Fano variety X, we obtain via
Construction 1.3.8 a closed embedding X → Z into a toric variety Z. As a byproduct
of our classification, it turns out that, whenever X admits an elementary contraction,
then X inherits all its elementary contractions from Z. Remark 4.5.1 together with the
explicit equations for X in Z will then allow us to study the situation in detail. We now
present the results. The cases are numbered according to the table of Theorem 4.3.2.
Moreover, we denote by Q3 ⊆ P4 and Q4 ⊆ P5 the three and four-dimensional smooth
projective quadrics and we write P(aµ11 , . . . , aµrr ) for the weighted projective space, where
the superscript µi indicates that the weight ai occurs µi times.

No. 1. The variety X is of dimension four and admits two elementary contractions,
Q4 ← X → P1. The morphism X → Q4 is a divisorial contraction with exceptional
divisor isomorphic to P1 × P1 × P1 and center isomorphic to P1 × P1. The morphism
X → P1 is a Mori fiber space with general fiber isomorphic to Q3 and singular fibers
over [0, 1] and [1, 0] each isomorphic to the singular quadric V (T2T3 + T4T5) ⊆ P4.

No. 2. The variety X is of dimension four and admits two elementary contractions,
Q4 ← X → P3. The morphism X → Q4 is a divisorial contraction with exceptional
divisor isomorphic to a hypersurface of bidegree (1, 1) in P1 × P3 and center isomorphic
to P1. The morphism X → P3 is a Mori fiber space with fibers isomorphic to P1.

No. 3. The variety X is of dimension three and occurs as No. 2.29 in the Mori-Mukai
classification [44]. Moreover, X admits two elementary contractions, Q3 ← X → P1.
The morphism X → Q3 is a divisorial contraction with exceptional divisor isomorphic
to P1 × P1 and center isomorphic to P1. The morphism X → P1 is a Mori fiber space
with general fiber isomorphic to P1 × P1 and singular fibers over [0, 1] and [1, 0] each
isomorphic to V (T1T2 + T 2

3 ) ⊆ P3.
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No. 4A. Case 1: we have c = −1. Then X admits two elementary contractions
Y ← X → P2, where Y := V (T1T2 + T3T4 + T5T6) ⊆ Pm+4 is a terminal factorial Fano
variety which is smooth if and only if m = 1 holds. The morphism X → Y is a divisorial
contraction with exceptional divisor isomorphic to a hypersurface of bidegree (1, 1) in
P2× Pm+1 and center isomorphic to Pm+1. The morphism X → P2 is a Mori fiber space
with fibers isomorphic to Pm+1.

Case 2: we have c = 0. Then X is a hypersurface of bidegree (1, 1) in P2 × Pm+2.
Moreover, X admits two Mori fiber spaces Pm+2 ← X → P2. The Mori fiber space
X → P2 has fibers isomorphic to Pm+1, whereas the Mori fiber space X → Pm+1 has
general fiber isomorphic to P1 and special fibers over V (T1, T2, T3) ⊆ Pm+2 isomorphic
to P2. For m = 0, we have dim(X) = 3 and X is the variety No. 2.32 in [44].

No. 4B. The variety X admits two elementary contractions Y ← X → P2, where
Y := V (T 2

1 + T2T3 + T4T5) ⊆ Pm+4 is a terminal factorial Fano variety. The variety Y
is smooth if and only if m = 0 holds and in this case X occurs as No. 2.31 in [44].
The morphism X → Y is a divisorial contraction with exceptional divisor isomorphic
to a hypersurface of bidegree (1, 1) in P2 × Pm+1 and center isomorphic to Pm+1. The
morphism X → P2 is a Mori fiber space with fibers isomorphic to Pm+1.

No. 4C. The variety X is a hypersurface of bidegree (2, 1) in P2 × Pm+2; for m = 0
we have dim(X) = 3 and X is No. 2.24 in [44]. Moreover, X admits two Mori fiber
spaces Pm+2 ← X → P2. The morphism X → P2 has fibers isomorphic to Pm+1. To
describe the fibers of ϕ : X → Pm+2, set Yi := VPm+2(Ti), Yij := VPm+2(Ti, Tj) and
Y123 := VPm+2(T1, T2, T3). Then we have

ϕ−1(z) ∼=


P2 if z ∈ Y123,

P1 if z ∈ (Y12 ∪ Y13 ∪ Y23) \ Y123,

VP2(T1T2) if z ∈ (Y1 ∪ Y2 ∪ Y3) \ (Y12 ∪ Y13 ∪ Y23),

P1 otherwise.

No. 5. The variety X admits a Mori fiber space ϕ : X → Pm+1, whose general fiber is
isomorphic to P1 × P1. More precisely, with Y1 := VPm+1(T1) and Y2 := VPm+1(T2), we
have

ϕ−1(z) ∼=


VP3(T1T2) if z ∈ Y1 ∩ Y2,

VP3(T1T2 + T 2
3 ) if z ∈ Y1 \ Y2 or z ∈ Y2 \ Y1,

P1 × P1 otherwise.

No. 6. The variety X admits a Mori fiber space X → Pm, with general fiber isomorphic
to Q3 and singular fibers over V (T1) ⊆ Pm each isomorphic to V (T1T2 + T3T4) ⊆ P4.

No. 7. The variety X admits a divisorial contraction X → Pm+3 with exceptional
divisor isomorphic to the projectivized split bundle

P
( m⊕

i=1

OP1×P1 ⊕OP1×P1(1, 1)

)
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and center isomorphic to P1×P1. Moreover, if m = 1 holds, X admits a further divisorial
contraction X → Q4 with exceptional divisor isomorphic to P3 and center a point.

No. 8. Here we have X = P(OQ4 ⊕OQ4(a2) . . .⊕OQ4(am)). Thus, there is a Mori fiber
space X → Q4 with fibers isomorphic to Pm−1. If a2 = . . . = am > 0 holds, then X
admits in addition a divisorial contraction X → Y , where Y := V (T1T2 +T3T4 +T5T6) ⊆
P(16, am−1

2 ). The exceptional divisor is isomorphic to Q4×Pm−2 and the center to Pm−2.

No. 9. The variety X is a bundle over Pm−1 with fibers isomorphic to Q4. In particular,
if ai = 0 holds for all 2 ≤ i ≤ 6, then X ∼= Q4 × Pm−1.

No. 10. The variety X admits a divisorial contraction X → Pm+2 with exceptional
divisor isomorphic to the projectivized split bundle

P
( m⊕

i=1

OP1 ⊕OP1(1)

)
and center isomorphic to P1. Form = 1, we have dim(X) = 3 andX is No. 2.30 from [44];
in this case it admits a further divisorial contraction X → Q3 with exceptional divisor
isomorphic to P2 and center a point.

No. 11. Here X = P(OQ3 ⊕OQ3(a2) . . .⊕OQ3(am)) holds. Thus, there is a Mori fiber
space X → Q3 with fibers isomorphic to Pm−1. If a2 = . . . = am > 0 holds, then X
admits a divisorial contractionX → Y , where the variety Y equals V (T1T2+T3T4+T 2

5 ) ⊆
P(15, am−1

2 ). The exceptional divisor is isomorphic to Q3×Pm−2 and the center to Pm−2.

No. 12. The varietyX is a bundle over Pm−1 with fibers isomorphic toQ3. In particular,
if a = b = c = 0 holds, then X ∼= Q3 × Pm−1.

No. 13. This case presents a one-parameter family of varieties Xa, with parameter
a ∈ K∗ \{1}. They are generally non-isomorphic to each other, except for the pairs
Xa
∼= Xa−1 for all a. The variety Xa is the intersection of two hypersurfaces

D1 = V (T1S1 + T2S2 + T3S3), D2 = V (aT2S2 + T3S3 + T4S4),

both of bidegree (1,1) in P3 × P3, where the Tj are the coordinates of the first P3 and
the Sj those of the second. Note that each Di has an isolated singularity, which is not
contained in the other hypersurface. Both D1, D2 are terminal and factorial. Moreover,
X admits two Mori fiber spaces P3 ← X → P3, both with typical fiber P1 and having
four special fibers, all isomorphic to P2 and lying over the points [1, 0, 0, 0], [0, 1, 0, 0],
[0, 0, 1, 0] and [0, 0, 0, 1].

Remark 4.5.2. In contrast to the toric case, a smooth projective variety of Picard
number 2 with torus action of complexity one need not admit a non-trivial Mori fiber
space. For example, in Theorem 4.3.2, this happens in precisely two cases, namely No. 7
and No. 10, both with m = 1.
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Remark 4.5.3. In the list of Theorem 4.3.2 there are several examples where the effective
cone coincides with the cone of movable divisor classes: No. 4A with c = 0, No. 4C, No. 5
with a = 0, No. 6 with a = 0, No. 8 with a2 = 0, No. 9 with a3 = 0, No. 11 with a2 = 0,
No. 12 with a = 0 and No. 13. Thus, these varieties admit no divisorial contraction.
They are combinatorially minimal in the sense of Remark 3.1.1.

Remark 4.5.4. In Theorem 4.3.1 it is possible for non-isomorphic varieties to share the
same Cox ring. In that case they differ from each other by a small quasimodification, i.e.
only by the choice of the ample class. This happens precisely in the following cases:
(i) No. 4 with 2 = l4 = 2, l6 = 1, a = 0, b = 1, ci = 0 for all i = 1, . . . ,m has the same

Cox ring as No. 5 with a = 0. Note that for m = 0 both varieties are truly almost
Fano, whereas for m ≥ 1 No. 5 is Fano.

(ii) For m ≥ 1, No. 4 with 2 = 2, l4 = l6 = 1, a = b = 1, ci = 0 for all i = 1, . . . ,m has
the same Cox ring as No. 6 with a = c = 0 and b = 1. Note that for m = 1 both
varieties are truly almost Fano, whereas for m ≥ 2 No. 6 is Fano.

(iii) Form ≥ 2, No. 7 has the same Cox ring as No. 9 with a2 = 2 and a3 = . . . = a6 = 1.
Note that for m = 2, 3 No. 7 is Fano, for m = 4 both varieties are truly almost
Fano, whereas for m ≥ 5 No. 9 is Fano.

(iv) For m ≥ 2, No. 10 has the same Cox ring as No. 12 with a = b = c = 1. Note that
for m = 2 No. 10 is Fano, for m = 3 both varieties are truly almost Fano, whereas
for m ≥ 4 No. 12 is Fano.



APPENDIX

A

COMPENDIUM OF THE CLASSIFIED FANO VARIETIES

In this last part of the thesis we give detailed information about the varieties from
Theorem 2.5.1 and Theorem 3.4.1. For each X = X(A,P ) we list

• the Cox ring R(X);
• the divisor class group Cl(X);
• the grading matrix Q;
• a possible defining matrix P ;
• the anticanonical class −KX ∈ Cl(X);
• the selfintersection number (−KX)3 (only for varieties from Theorem 2.5.1);
• the first terms of the Hilbert series H(t) following Construction A.1.1.

Furthermore, we provide a sketch of the lineality part AcX,0 defined by the given matrix
P . We give the vertices ui explicitly as rational points in Q2. Hollow circles represent
lattice points in the proximity of AcX,0.

No. 1.01

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0g0 = T1T2 + T3T4 + T 2
5

Cl(X) = Z
Q =

[
1 1 1 1 1

]
P =


−1 −1 1 1 0
−1 −1 0 0 2
0 1 0 0 −1
0 0 1 0 −1


u1 = (−1/3, 1/3)
u2 = (1/3, 1/3)
u3 = (−1/3,−1/3)
u4 = (1/3,−1/3)

−KX = 3, (−KX)3 = 54

H(t) = 1 + 30t+ 140t2 + 385t3 + 819t4 + 1496t5 + 2470t6 + . . .
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No. 1.02

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0

g0 = T1T2 + T3T4 + T 2
5

Cl(X) = Z
Q =

[
1 5 2 4 3

]
P =


−1 −1 1 1 0
−1 −1 0 0 2
0 1 2 0 −3
0 0 3 0 −2


u1 = (1/3, 4/3)
u2 = (1, 4/3)
u3 = (−1,−2/3)
u4 = (−1/3,−2/3)

−KX = 9, (−KX)3 = 729/20

H(t) = 1 + 20t+ 94t2 + 259t3 + 552t4 + 1009t5 + 1666t6 + . . .

No. 1.03

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0

g0 = T1T2 + T3T4 + T 2
5

Cl(X) = Z⊕ Z/5Z

Q =

[
1 1 1 1 1
2 3 1 4 0

]

P =


−1 −1 1 1 0
−1 −1 0 0 2
0 1 2 0 −3
0 0 5 0 −5


u1 = (1/3, 5/3)
u2 = (1, 5/3)
u3 = (−1,−5/3)
u4 = (−1/3,−5/3)

−KX = (3, 0), (−KX)3 = 54/5

H(t) = 1 + 6t+ 28t2 + 77t3 + 163t4 + 300t5 + 494t6 + . . .

No. 1.04

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0g0 = T1T2 + T3T4 + T 3
5

Cl(X) = Z
Q =

[
1 5 3 3 2

]
P =


−1 −1 1 1 0
−1 −1 0 0 3
0 1 1 0 −4
0 0 2 0 −3


u1 = (−1/4, 3/4)
u2 = (1/2, 3/4)
u3 = (−1,−3/4)
u4 = (−1/4,−3/4)

−KX = 8, (−KX)3 = 512/15

H(t) = 1 + 19t+ 88t2 + 243t3 + 517t4 + 945t5 + 1561t6 + . . .
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No. 1.05

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0g0 = T1T2 + T3T4 + T 4
5

Cl(X) = Z
Q =

[
1 3 2 2 1

]
P =


−1 −1 1 1 0
−1 −1 0 0 4
0 1 0 0 −3
0 0 1 0 −2


u1 = (−3/5, 2/5)
u2 = (1/5, 2/5)
u3 = (−3/5,−2/5)
u4 = (1/5,−2/5)

−KX = 5, (−KX)3 = 125/3

H(t) = 1 + 23t+ 108t2 + 297t3 + 632t4 + 1154t5 + 1906t6 + . . .

No. 1.06

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0g0 = T1T2 + T3T4 + T 4
5

Cl(X) = Z⊕ Z/2Z

Q =

[
1 3 2 2 1
1 1 1 1 0

]

P =


−1 −1 1 1 0
−1 −1 0 0 4
0 1 1 0 −5
0 0 2 0 −4


u1 = (−1/5, 4/5)
u2 = (3/5, 4/5)
u3 = (−1,−4/5)
u4 = (−1/5,−4/5)

−KX = (5, 0), (−KX)3 = 125/6

H(t) = 1 + 12t+ 54t2 + 148t3 + 316t4 + 577t5 + 953t6 + . . .

No. 1.07

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0g0 = T1T2 + T3T4 + T 6
5

Cl(X) = Z
Q =

[
2 4 3 3 1

]
P =


−1 −1 1 1 0
−1 −1 0 0 6
0 1 0 0 −4
0 0 1 0 −3


u1 = (−4/7, 3/7)
u2 = (2/7, 3/7)
u3 = (−4/7,−3/7)
u4 = (2/7,−3/7)

−KX = 7, (−KX)3 = 343/12

H(t) = 1 + 16t+ 74t2 + 204t3 + 434t4 + 792t5 + 1308t6 + . . .
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No. 1.08

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0
g0 = T1T2 + T 2

3 T4 + T 2
5

Cl(X) = Z
Q =

[
1 3 1 2 2

]
P =


−1 −1 2 1 0
−1 −1 0 0 2
0 1 −3 0 0
0 0 0 −1 1


u1 = (−3/2, 1/2)
u2 = (−1/2, 1/2)
u3 = (0,−1/3)
u4 = (2/3,−1/3)

−KX = 5, (−KX)3 = 125/3

H(t) = 1 + 23t+ 108t2 + 297t3 + 632t4 + 1154t5 + 1906t6 + . . .

No. 1.09

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0g0 = T1T2 + T 2
3 T4 + T 2

5

Cl(X) = Z
Q =

[
1 5 2 2 3

]
P =


−1 −1 2 1 0
−1 −1 0 0 2
0 1 −3 −1 1
0 0 1 −1 0


u1 = (−1, 1/2)
u2 = (0, 1/2)
u3 = (−1/3,−2/3)
u4 = (1/3,−2/3)

−KX = 7, (−KX)3 = 343/10

H(t) = 1 + 19t+ 89t2 + 244t3 + 520t4 + 950t5 + 1569t6 + . . .

No. 1.10

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0
g0 = T1T2 + T 2

3 T4 + T 2
5

Cl(X) = Z
Q =

[
3 7 4 2 5

]
P =


−1 −1 2 1 0
−1 −1 0 0 2
0 1 −2 −2 1
0 0 1 −2 0


u1 = (−1/2, 1/2)
u2 = (1/2, 1/2)
u3 = (−1,−4/3)
u4 = (−1/3,−4/3)

−KX = 11, (−KX)3 = 1331/84

H(t) = 1 + 9t+ 41t2 + 113t3 + 241t4 + 439t5 + 725t6 + . . .
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No. 1.11

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1
0g0 = T1T2 + T 2

3 T4 + T 3
5

Cl(X) = Z
Q =

[
2 1 1 1 1

]
P =


−1 −1 2 1 0
−1 −1 0 0 3
0 1 −1 0 0
0 0 1 0 −1


u1 = (−3/5, 1/5)
u2 = (3/5, 1/5)
u3 = (0,−1/4)
u4 = (3/4,−1/4)

−KX = 3, (−KX)3 = 81/2

H(t) = 1 + 23t+ 106t2 + 290t3 + 616t4 + 1124t5 + 1855t6 + . . .

No. 1.12

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0

g0 = T1T2 + T 2
3 T4 + T 3

5

Cl(X) = Z
Q =

[
3 3 1 4 2

]
P =


−1 −1 2 1 0
−1 −1 0 0 3
0 1 −1 0 −1
0 0 2 0 −1


u1 = (−1, 4/5)
u2 = (1/5, 4/5)
u3 = (−1/4,−1/4)
u4 = (1/2,−1/4)

−KX = 7, (−KX)3 = 343/12

H(t) = 1 + 16t+ 74t2 + 204t3 + 434t4 + 792t5 + 1308t6 + . . .

No. 1.13

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0g0 = T1T2 + T 2
3 T4 + T 3

5

Cl(X) = Z⊕ Z/3Z

Q =

[
2 1 1 1 1
1 2 1 1 0

]

P =


−1 −1 2 1 0
−1 −1 0 0 3
0 1 −1 −1 1
0 0 1 −1 0


u1 = (−1/5, 3/5)
u2 = (1, 3/5)
u3 = (−1/2,−3/4)
u4 = (1/4,−3/4)

−KX = (3, 2), (−KX)3 = 27/2

H(t) = 1 + 8t+ 35t2 + 97t3 + 205t4 + 374t5 + 619t6 + . . .
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No. 1.14

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0g0 = T1T2 + T 2
3 T4 + T 6

5

Cl(X) = Z
Q =

[
3 3 2 2 1

]
P =


−1 −1 2 1 0
−1 −1 0 0 6
0 1 0 0 −3
0 0 1 0 −2


u1 = (−3/4, 1/4)
u2 = (3/4, 1/4)
u3 = (−3/7,−2/7)
u4 = (3/7,−2/7)

−KX = 5, (−KX)3 = 125/6

H(t) = 1 + 12t+ 55t2 + 150t3 + 318t4 + 579t5 + 956t6 + . . .

No. 1.15

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0
g0 = T1T2 + T 2

3 T
2
4 + T 2

5

Cl(X) = Z⊕ Z/2Z

Q =

[
1 3 1 1 2
1 1 0 0 1

]

P =


−1 −1 2 2 0
−1 −1 0 0 2
0 1 −3 −2 1
0 0 1 −1 0


u1 = (−1, 1/2)
u2 = (0, 1/2)
u3 = (−1/2,−1/2)
u4 = (1/2,−1/2)

−KX = (4, 1), (−KX)3 = 64/3

H(t) = 1 + 12t+ 56t2 + 152t3 + 324t4 + 591t5 + 977t6 + . . .

No. 1.16

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0g0 = T1T2 + T 2
3 T

2
4 + T 3

5

Cl(X) = Z
Q =

[
3 3 2 1 2

]
P =


−1 −1 2 2 0
−1 −1 0 0 3
0 1 −2 1 0
0 0 −1 −2 2


u1 = (−6/5, 1/5)
u2 = (0, 1/5)
u3 = (3/5,−2/5)
u4 = (9/5,−2/5)

−KX = 5, (−KX)3 = 125/6

H(t) = 1 + 12t+ 55t2 + 150t3 + 318t4 + 579t5 + 956t6 + . . .
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No. 1.17

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0
g0 = T1T2 + T 3

3 T4 + T 2
5

Cl(X) = Z
Q =

[
1 3 1 1 2

]
P =


−1 −1 3 1 0
−1 −1 0 0 2
0 1 −1 0 −1
0 0 −1 −1 1


u1 = (−1, 1/5)
u2 = (1/5, 1/5)
u3 = (−1/3,−1/3)
u4 = (1/3,−1/3)

−KX = 4, (−KX)3 = 128/3

H(t) = 1 + 24t+ 111t2 + 305t3 + 648t4 + 1183t5 + 1953t6 + . . .

No. 1.18

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0g0 = T1T2 + T 3
3 T4 + T 2

5

Cl(X) = Z
Q =

[
2 4 1 3 3

]
P =


−1 −1 3 1 0
−1 −1 0 0 2
0 1 −1 −1 0
0 0 0 −1 1


u1 = (−2/5, 3/5)
u2 = (4/5, 3/5)
u3 = (−2/3,−1/3)
u4 = (0,−1/3)

−KX = 7, (−KX)3 = 343/12

H(t) = 1 + 16t+ 74t2 + 204t3 + 434t4 + 792t5 + 1308t6 + . . .

No. 1.19

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0
g0 = T1T2 + T 3

3 T4 + T 2
5

Cl(X) = Z
Q =

[
3 7 2 4 5

]
P =


−1 −1 3 1 0
−1 −1 0 0 2
0 1 −2 −2 1
0 0 2 −1 0


u1 = (−1/5, 4/5)
u2 = (1, 4/5)
u3 = (−1,−2/3)
u4 = (−1/3,−2/3)

−KX = 9, (−KX)3 = 1331/84

H(t) = 1 + 9t+ 41t2 + 113t3 + 241t4 + 439t5 + 725t6 + . . .
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No. 1.20

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0g0 = T1T2 + T 3
3 T4 + T 2

5

Cl(X) = Z⊕ Z/2Z

Q =

[
1 3 1 1 2
1 1 0 0 1

]

P =


−1 −1 3 1 0
−1 −1 0 0 2
0 1 −3 −2 1
0 0 1 −1 0


u1 = (−3/5, 2/5)
u2 = (3/5, 2/5)
u3 = (−1,−2/3)
u4 = (−1/3,−2/3)

−KX = (4, 1), (−KX)3 = 64/3

H(t) = 1 + 12t+ 56t2 + 152t3 + 324t4 + 591t5 + 977t6 + . . .

No. 1.21

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0
g0 = T1T2 + T 3

3 T4 + T 4
5

Cl(X) = Z
Q =

[
2 2 1 1 1

]
P =


−1 −1 3 1 0
−1 −1 0 0 4
0 1 −2 0 0
0 0 −2 −1 3


u1 = (−8/7, 1/7)
u2 = (4/7, 1/7)
u3 = (0,−1/5)
u4 = (4/5,−1/5)

−KX = 3, (−KX)3 = 27

H(t) = 1 + 16t+ 72t2 + 195t3 + 413t4 + 752t5 + 1240t6 + . . .

No. 1.22

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1
0g0 = T1T2 + T 3

3 T4 + T 4
5

Cl(X) = Z⊕ Z/2Z

Q =

[
2 2 1 1 1
1 1 1 1 0

]

P =


−1 −1 3 1 0
−1 −1 0 0 4
0 1 −3 2 −1
0 0 −1 −1 2


u1 = (−15/7, 2/7)
u2 = (−3/7, 2/7)
u3 = (7/5,−2/5)
u4 = (11/5,−2/5)

−KX = (3, 0), (−KX)3 = 27/2

H(t) = 1 + 8t+ 36t2 + 97t3 + 207t4 + 376t5 + 620t6 + . . .
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No. 1.23

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1
0g0 = T1T2 + T 3

3 T
2
4 + T 2

5

Cl(X) = Z
Q =

[
3 5 2 1 4

]
P =


−1 −1 3 2 0
−1 −1 0 0 2
0 1 −2 3 −1
0 0 −1 −2 1


u1 = (−7/5, 1/5)
u2 = (−1/5, 1/5)
u3 = (1,−1/2)
u4 = (2,−1/2)

−KX = 7, (−KX)3 = 343/15

H(t) = 1 + 13t+ 60t2 + 164t3 + 348t4 + 635t5 + 1048t6 + . . .

No. 1.24

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1
0g0 = T1T2 + T 3

3 T
3
4 + T 2

5

Cl(X) = Z
Q =

[
2 4 1 1 3

]
P =


−1 −1 3 3 0
−1 −1 0 0 2
0 1 −3 2 −1
0 0 −1 −2 1


u1 = (−9/5, 1/5)
u2 = (−3/5, 1/5)
u3 = (1/5,−1/5)
u4 = (7/5,−1/5)

−KX = 5, (−KX)3 = 125/4

H(t) = 1 + 18t+ 82t2 + 224t3 + 476t4 + 868t5 + 1432t6 + . . .

No. 1.25

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0
g0 = T1T2 + T 4

3 T4 + T 3
5

Cl(X) = Z
Q =

[
3 3 1 2 2

]
P =


−1 −1 4 1 0
−1 −1 0 0 3
0 1 −3 0 0
0 0 −2 −1 2


u1 = (−9/7, 2/7)
u2 = (3/7, 2/7)
u3 = (0,−1/4)
u4 = (3/4,−1/4)

−KX = 5, (−KX)3 = 125/6

H(t) = 1 + 12t+ 55t2 + 150t3 + 318t4 + 579t5 + 956t6 + . . .
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No. 1.26

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0
g0 = T1T2 + T 4

3 T
2
4 + T 3

5

Cl(X) = Z
Q =

[
3 3 1 1 2

]
P =


−1 −1 4 2 0
−1 −1 0 0 3
0 1 −3 0 0
0 0 −1 −1 1


u1 = (−9/7, 1/7)
u2 = (3/7, 1/7)
u3 = (0,−1/5)
u4 = (6/5,−1/5)

−KX = 4, (−KX)3 = 64/3

H(t) = 1 + 13t+ 57t2 + 155t3 + 327t4 + 595t5 + 981t6 + . . .

No. 1.27

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0
g0 = T1T2 + T 5

3 T4 + T 2
5

Cl(X) = Z
Q =

[
2 4 1 1 3

]
P =


−1 −1 5 1 0
−1 −1 0 0 2
0 1 −4 0 0
0 0 −2 −1 1


u1 = (−8/7, 1/7)
u2 = (2/7, 1/7)
u3 = (0,−1/3)
u4 = (2/3,−1/3)

−KX = 5, (−KX)3 = 125/4

H(t) = 1 + 18t+ 82t2 + 224t3 + 476t4 + 868t5 + 1432t6 + . . .

No. 1.28

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0
g0 = T1T2 + T 5

3 T4 + T 3
5

Cl(X) = Z
Q =

[
3 3 1 1 2

]
P =


−1 −1 5 1 0
−1 −1 0 0 3
0 1 −3 0 0
0 0 −3 −1 2


u1 = (−9/8, 1/8)
u2 = (3/4, 1/8)
u3 = (0,−1/4)
u4 = (3/4,−1/4)

−KX = 4, (−KX)3 = 64/3

H(t) = 1 + 12t+ 55t2 + 150t3 + 318t4 + 579t5 + 956t6 + . . .
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No. 1.29

R(X) = K[T1, . . . , T5]/〈g0〉

u3 u4

u2u1

0
g0 = T1T2 + T 6

3 T4 + T 2
5

Cl(X) = Z
Q =

[
3 5 1 2 4

]
P =


−1 −1 6 1 0
−1 −1 0 0 2
0 1 −5 0 0
0 0 4 0 −1


u1 = (−5/4, 1/4)
u2 = (1/4, 1/4)
u3 = (0,−1/3)
u4 = (2/3,−1/3)

−KX = 7, (−KX)3 = 343/15

H(t) = 1 + 13t+ 60t2 + 164t3 + 348t4 + 635t5 + 1048t6 + . . .

No. 1.30

R(X) = K[T1, . . . , T6]/〈g0, g1〉

u3 u4

u2u1

0
g0 = T1T2 + T3T4 + T 2

5

g1 = aT3T4 + T 2
5 + T 2

6

Cl(X) = Z⊕ Z/2Z

Q =

[
1 1 1 1 1 1
1 1 0 0 1 0

]

P =


−1 −1 1 1 0 0
−1 −1 0 0 2 0
−1 −1 0 0 0 2
0 1 0 0 −1 0
0 0 1 0 −2 1


u1 = (−1/2, 1/2)
u2 = (1/2, 1/2)
u3 = (−1/2,−1/2)
u4 = (1/2,−1/2)

−KX = (2, 1), (−KX)3 = 16

H(t) = 1 + 9t+ 43t2 + 115t3 + 245t4 + 445t5 + 735t6 + . . .

No. 1.31

R(X) = K[T1, . . . , T5]/〈g0〉

u1 u2

u3

0
g0 = T1T2T3 + T 3

4 + T 2
5

Cl(X) = Z
Q =

[
1 1 4 2 3

]
P =


−1 −1 −1 3 0
−1 −1 −1 0 2
0 1 0 −2 1
0 0 1 −2 0


u1 = (−1/5,−4/5)
u2 = (1,−4/5)
u3 = (−1/5, 2/5)

−KX = 5, (−KX)3 = 125/4

H(t) = 1 + 18t+ 82t2 + 224t3 + 476t4 + 868t5 + 1432t6 + . . .
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No. 1.32

R(X) = K[T1, . . . , T5]/〈g0〉

u1 u2

u3

0

g0 = T1T2T3 + T 3
4 + T 2

5

Cl(X) = Z
Q =

[
2 3 1 2 3

]
P =


−1 −1 −1 3 0
−1 −1 −1 0 2
0 1 0 −3 1
0 0 1 −2 1


u1 = (−3/5,−1/5)
u2 = (3/5,−1/5)
u3 = (−3/5, 1)

−KX = 5, (−KX)3 = 125/6

H(t) = 1 + 12t+ 55t2 + 150t3 + 318t4 + 579t5 + 956t6 + . . .

No. 1.33

R(X) = K[T1, . . . , T5]/〈g0〉

u1 u2

u3

0

g0 = T1T2 + T 2
3 + T 2

4

Cl(X) = Z⊕ Z/2Z

Q =

[
2 4 3 3 1
1 1 1 0 0

]

P =


−1 −1 2 0 0
−1 −1 0 2 0
0 1 −3 1 2
0 0 −2 1 3


u1 = (−1,−1/2)
u2 = (0,−1/2)
u3 = (2, 3)

−KX = (7, 1), (−KX)3 = 343/24

H(t) = 1 + 8t+ 37t2 + 102t3 + 217t4 + 396t5 + 654t6 + . . .

No. 1.34

R(X) = K[T1, . . . , T5]/〈g0〉

u1 u2

u3

0

g0 = T1T2 + T 3
3 + T 2

4

Cl(X) = Z
Q =

[
1 5 2 3 1

]
P =


−1 −1 3 0 0
−1 −1 0 2 0
0 1 −4 1 0
0 0 −2 1 1


u1 = (−1,−1/5)
u2 = (1/5,−1/5)
u3 = (0, 1)

−KX = 6, (−KX)3 = 216/5

H(t) = 1 + 24t+ 112t2 + 308t3 + 655t4 + 1197t5 + 1976t6 + . . .



163

No. 1.35

R(X) = K[T1, . . . , T5]/〈g0〉

u1 u2

u3

0

g0 = T1T2 + T 3
3 + T 2

4

Cl(X) = Z
Q =

[
1 5 2 3 2

]
P =


−1 −1 3 0 0
−1 −1 0 2 0
0 1 −4 1 0
0 0 −1 0 1


u1 = (−1,−2/5)
u2 = (1/5,−2/5)
u3 = (0, 1)

−KX = 7, (−KX)3 = 343/10

H(t) = 1 + 19t+ 89t2 + 244t3 + 520t4 + 950t5 + 1569t6 + . . .

No. 1.36

R(X) = K[T1, . . . , T5]/〈g0〉

u1 u2

u3

0
g0 = T1T2 + T 3

3 + T 2
4

Cl(X) = Z
Q =

[
1 5 2 3 3

]
P =


−1 −1 3 0 0
−1 −1 0 2 0
0 1 −4 1 0
0 0 −3 1 1


u1 = (−1,−3/5)
u2 = (1/5,−3/5)
u3 = (0, 1)

−KX = 8, (−KX)3 = 512/15

H(t) = 1 + 19t+ 88t2 + 243t3 + 517t4 + 945t5 + 1561t6 + . . .

No. 1.37

R(X) = K[T1, . . . , T5]/〈g0〉

u1 u2

u3

0
g0 = T1T2 + T 3

3 + T 2
4

Cl(X) = Z
Q =

[
1 5 2 3 4

]
P =


−1 −1 3 0 0
−1 −1 0 2 0
0 1 −4 1 0
0 0 −2 0 1


u1 = (−1,−4/5)
u2 = (1/5,−4/5)
u3 = (0, 1)

−KX = 9, (−KX)3 = 729/20

H(t) = 1 + 20t+ 94t2 + 259t3 + 552t4 + 1009t5 + 1666t6 + . . .
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No. 1.38

R(X) = K[T1, . . . , T5]/〈g0〉

u1 u2

u3

0

g0 = T1T2 + T 3
3 + T 2

4

Cl(X) = Z
Q =

[
5 7 4 6 1

]
P =


−1 −1 3 0 0
−1 −1 0 2 0
0 1 −2 0 1
0 0 −2 1 2


u1 = (−4/5,−1/5)
u2 = (2/5,−1/5)
u3 = (1, 2)

−KX = 11, (−KX)3 = 1331/70

H(t) = 1 + 11t+ 50t2 + 136t3 + 289t4 + 528t5 + 871t6 + . . .

No. 1.39

R(X) = K[T1, . . . , T5]/〈g0〉

u1 u2

u3

0

g0 = T1T2 + T 3
3 + T 2

4

Cl(X) = Z
Q =

[
5 7 4 6 3

]
P =


−1 −1 3 0 0
−1 −1 0 2 0
0 1 −4 1 1
0 0 −3 1 2


u1 = (−1,−3/5)
u2 = (1/5,−3/5)
u3 = (1, 2)

−KX = 13, (−KX)3 = 2197/210

H(t) = 1 + 6t+ 27t2 + 75t3 + 159t4 + 290t5 + 479t6 + . . .

No. 1.40

R(X) = K[T1, . . . , T5]/〈g0〉

u1 u2

u3

0

g0 = T1T2 + T 3
3 + T 3

4

Cl(X) = Z⊕ Z/3Z

Q =

[
1 2 1 1 1
1 2 2 0 0

]

P =


−1 −1 3 0 0
−1 −1 0 3 0
0 1 −4 2 0
0 0 −3 2 1


u1 = (−1,−1/2)
u2 = (1/2,−1/2)
u3 = (0, 1)

−KX = (3, 2), (−KX)3 = 27/2

H(t) = 1 + 8t+ 35t2 + 97t3 + 205t4 + 374t5 + 619t6 + . . .
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No. 1.41

R(X) = K[T1, . . . , T5]/〈g0〉

u1 u2

u3

0

g0 = T1T2 + T 4
3 + T 2

4

Cl(X) = Z⊕ Z/2Z

Q =

[
1 3 1 2 1
1 1 0 1 0

]

P =


−1 −1 4 0 0
−1 −1 0 2 0
0 1 −5 1 0
0 0 −1 0 1


u1 = (−1,−1/3)
u2 = (1/3,−1/3)
u3 = (0, 1)

−KX = (4, 1), (−KX)3 = 64/3

H(t) = 1 + 12t+ 56t2 + 152t3 + 324t4 + 591t5 + 977t6 + . . .

No. 1.42

R(X) = K[T1, . . . , T5]/〈g0〉

u1 u2

u3

0
g0 = T1T2 + T 4

3 + T 2
4

Cl(X) = Z⊕ Z/2Z

Q =

[
1 3 1 2 2
1 1 0 1 1

]

P =


−1 −1 4 0 0
−1 −1 0 2 0
0 1 −5 1 0
0 0 −4 1 1


u1 = (−1,−2/3)
u2 = (1/3,−2/3)
u3 = (0, 1)

−KX = (5, 0), (−KX)3 = 125/6

H(t) = 1 + 12t+ 54t2 + 148t3 + 316t4 + 577t5 + 953t6 + . . .

No. 1.43

R(X) = K[T1, . . . , T5]/〈g0〉

u1 u2

u3

0

g0 = T1T2 + T 4
3 + T 3

4

Cl(X) = Z
Q =

[
5 7 3 4 1

]
P =


−1 −1 4 0 0
−1 −1 0 3 0
0 1 −5 2 0
0 0 −3 2 1


u1 = (−1,−1/7)
u2 = (5/7,−1/7)
u3 = (0, 1)

−KX = 8, (−KX)3 = 512/35

H(t) = 1 + 9t+ 39t2 + 106t3 + 224t4 + 408t5 + 672t6 + . . .
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No. 1.44

R(X) = K[T1, . . . , T5]/〈g0〉

u1 u2

u3

0

g0 = T1T2 + T 4
3 + T 3

4

Cl(X) = Z
Q =

[
5 7 3 4 2

]
P =


−1 −1 4 0 0
−1 −1 0 3 0
0 1 −5 2 0
0 0 −2 1 1


u1 = (−1,−2/7)
u2 = (5/7,−2/7)
u3 = (0, 1)

−KX = 9, (−KX)3 = 729/70

H(t) = 1 + 6t+ 28t2 + 75t3 + 159t4 + 290t5 + 478t6 + . . .

No. 1.45

R(X) = K[T1, . . . , T5]/〈g0〉

u1 u2

u3

0

g0 = T1T2 + T 5
3 + T 2

4

Cl(X) = Z
Q =

[
3 7 2 5 1

]
P =


−1 −1 5 0 0
−1 −1 0 2 0
0 1 −6 1 0
0 0 −3 1 1


u1 = (−1,−1/7)
u2 = (3/7,−1/7)
u3 = (0, 1)

−KX = 8, (−KX)3 = 512/21

H(t) = 1 + 14t+ 64t2 + 175t3 + 371t4 + 677t5 + 1117t6 + . . .

No. 1.46

R(X) = K[T1, . . . , T5]/〈g0〉

u1 u2

u3

0
g0 = T1T2 + T 5

3 + T 2
4

Cl(X) = Z
Q =

[
3 7 2 5 4

]
P =


−1 −1 5 0 0
−1 −1 0 2 0
0 1 −6 1 0
0 0 −2 0 1


u1 = (−1,−4/7)
u2 = (3/7,−4/7)
u3 = (0, 1)

−KX = 11, (−KX)3 = 1331/84

H(t) = 1 + 9t+ 41t2 + 113t3 + 241t4 + 439t5 + 725t6 + . . .
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No. 1.47

R(X) = K[T1, . . . , T5]/〈g0〉

u1 u2

u3

0

g0 = T1T2 + T 6
3 + T 2

4

Cl(X) = Z⊕ Z/2Z

Q =

[
2 4 1 3 1
1 1 1 0 0

]

P =


−1 −1 6 0 0
−1 −1 0 2 0
0 1 −7 1 0
0 0 −4 1 1


u1 = (−1,−1/4)
u2 = (1/2,−1/4)
u3 = (0, 1)

−KX = (5, 1), (−KX)3 = 125/8

H(t) = 1 + 9t+ 41t2 + 112t3 + 238t4 + 434t5 + 716t6 + . . .

No. 2.01

R(X) = K[T1, . . . , T6]/〈g0〉 u1 u2

u3

u4

u5 u6

0
g0 = T1T2 + T3T4 + T5T6

Cl(X) = Z2

Q =

[
1 0 1 0 1 0
0 1 0 1 0 1

]

P =


−1 −1 1 1 0 0
−1 −1 0 0 1 1
0 1 0 −1 0 0
0 0 0 −1 0 1


u1 = (0, 1/2)
u2 = (1/2, 1/2)
u3 = (−1/2, 0)
u4 = (1/2, 0)
u5 = (−1/2,−1/2)

−KX = (2, 2) u6 = (0,−1/2)

H(t) = 1 + 27t+ 125t2 + 343t3 + 729t4 + 1331t5 + 2197t6 + . . .
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No. 2.02

R(X) = K[T1, . . . , T6]/〈g0〉 u1
u2

u3

u4

u5
u6

0
g0 = T1T

2
2 + T3T

2
4 + T5T

2
6

Cl(X) = Z2

Q =

[
1 0 1 0 1 0
0 1 0 1 0 1

]

P =


−1 −2 1 2 0 0
−1 −2 0 0 1 2
0 −1 0 0 0 1
0 −1 0 1 0 0


u1 = (0, 1/3)
u2 = (1/2, 1/2)
u3 = (−1/2, 0)
u4 = (1/3, 0)
u5 = (−1/3,−1/3)

−KX = (2, 1) u6 = (0,−1/2)

H(t) = 1 + 18t+ 80t2 + 217t3 + 459t4 + 836t5 + 1378t6 + . . .

No. 2.03

R(X) = K[T1, . . . , T6]/〈g0〉 u1 u2

u3

u4

u5 u6

0
g0 = T1T2 + T3T4 + T5T6

Cl(X) = Z2 ⊕ Z/3Z

Q =

1 0 1 0 1 0
0 1 0 1 0 1
2 1 1 2 0 0


P =


−1 −1 1 1 0 0
−1 −1 0 0 1 1
0 1 0 −2 0 1
0 0 0 −3 0 3


u1 = (1/2, 3/2)
u2 = (1, 3/2)
u3 = (−1/2, 0)
u4 = (1/2, 0)
u5 = (−1,−3/2)

−KX = (2, 2, 0) u6 = (−1/2,−3/2)

H(t) = 1 + 9t+ 41t2 + 115t3 + 243t4 + 443t5 + 733t6 + . . .
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No. 2.04

R(X) = K[T1, . . . , T6]/〈g0〉 u1
u2

u3

u4

u5

u6

0

g0 = T1T
2
2 + T3T

2
4 + T5T

2
6

Cl(X) = Z2 ⊕ Z/3Z

Q =

1 0 1 0 1 0
0 1 0 1 0 1
1 1 2 2 0 0


P =


−1 −2 1 2 0 0
−1 −2 0 0 1 2
0 −2 0 1 0 1
0 −3 0 3 0 0


u1 = (1/3, 1)
u2 = (1, 3/2)
u3 = (−1/2, 0)
u4 = (1/3, 0)
u5 = (−2/3,−1)

−KX = (2, 1, 0) u6 = (−1/2,−3/2)

H(t) = 1 + 6t+ 26t2 + 73t3 + 153t4 + 278t5 + 460t6 + . . .

No. 2.05

R(X) = K[T1, . . . , T6]/〈g0〉 u1 u2

u3 u4

u5 u6

0

g0 = T1T2 + T 2
3 T4 + T5T6

Cl(X) = Z2

Q =

[
2 0 1 0 1 1
0 1 0 1 0 1

]

P =


−1 −1 2 1 0 0
−1 −1 0 0 1 1
0 1 0 0 1 −1
0 0 1 0 −1 0


u1 = (−2/3, 1/3)
u2 = (0, 1/3)
u3 = (−1/2, 0)
u4 = (4/3,−1/3)
u5 = (1/2,−1/2)

−KX = (3, 2) u6 = (1,−1/2)

H(t) = 1 + 23t+ 107t2 + 293t3 + 623t4 + 1137t5 + 1877t6 + . . .



170 Appendix A. Compendium of the classified Fano varieties

No. 2.06

R(X) = K[T1, . . . , T6]/〈g0〉 u1 u2

u3

u4

u5 u6

0

g0 = T1T2 + T3T
2
4 + T 2

5 T
2
6

Cl(X) = Z2

Q =

[
1 1 2 0 1 0
1 1 0 1 0 1

]

P =


−1 −1 1 2 0 0
−1 −1 0 0 2 2
0 1 0 −1 −1 0
0 0 0 −1 0 1


u1 = (0, 1/3)
u2 = (2/3, 1/3)
u3 = (−1/2, 0)
u4 = (1/2, 0)
u5 = (−1,−1/2)

−KX = (3, 2) u6 = (0,−1/2)

H(t) = 1 + 16t+ 74t2 + 201t3 + 427t4 + 778t5 + 1284t6 + . . .

No. 2.07

R(X) = K[T1, . . . , T6]/〈g0〉 u1

u2 u3

u4 u5

0
g0 = T1T2T3 + T4T5 + T 2

6

Cl(X) = Z2

Q =

[
1 1 0 2 0 1
0 0 2 1 1 1

]

P =


−1 −1 −1 1 1 0
−1 −1 −1 0 0 2
0 1 0 0 1 −1
0 0 1 0 −2 0


u1 = (−1/3, 2/3)
u2 = (−1/3, 0)
u3 = (1/3, 0)
u4 = (1/3,−4/3)

−KX = (3, 3) u5 = (1,−4/3)

H(t) = 1 + 19t+ 88t2 + 241t3 + 513t4 + 936t5 + 1545t6 + . . .
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No. 2.08

R(X) = K[T1, . . . , T6]/〈g0〉 u1
u2

u3

u4 u5

0

g0 = T1T2T3 + T4T
2
5 + T 2

6

Cl(X) = Z2

Q =

[
1 1 0 2 0 1
1 0 1 0 1 1

]

P =


−1 −1 −1 1 2 0
−1 −1 −1 0 0 2
0 1 0 0 1 −1
0 0 1 0 −1 0


u1 = (−1/3, 2/3)
u2 = (0, 1/2)
u3 = (−1/3, 0)
u4 = (0,−1/2)

−KX = (3, 2) u5 = (1,−1/2)

H(t) = 1 + 16t+ 74t2 + 201t3 + 427t4 + 778t5 + 1284t6 + . . .

No. 2.09

R(X) = K[T1, . . . , T6]/〈g0〉 u1 u2

u3 u4

u5

0

g0 = T1T2T
2
3 + T4T5 + T 2

6

Cl(X) = Z2

Q =

[
1 1 0 2 0 1
0 0 1 1 1 1

]

P =


−1 −1 −2 1 1 0
−1 −1 −2 0 0 2
0 1 1 0 0 −1
0 0 −1 0 1 0


u1 = (−1/3, 2/3)
u2 = (1/3, 2/3)
u3 = (−1/3, 0)
u4 = (1/3, 0)

−KX = (3, 2) u5 = (0,−1/2)

H(t) = 1 + 23t+ 106t2 + 290t3 + 616t4 + 1124t5 + 1855t6 + . . .

No. 2.10

R(X) = K[T1, . . . , T6]/〈g0〉 u1 u2

u3 u4

u5

0
g0 = T1T2T

2
3 + T4T

2
5 + T 2

6

Cl(X) = Z2

Q =

[
1 1 0 2 0 1
0 0 1 0 1 1

]

P =


−1 −1 −2 1 2 0
−1 −1 −2 0 0 2
0 1 1 0 0 −1
0 0 −1 0 1 0


u1 = (−1/2, 1/2)
u2 = (1/2, 1/2)
u3 = (−1/3, 0)
u4 = (1/3, 0)

−KX = (3, 1) u5 = (0,−1/2)

H(t) = 1 + 16t+ 72t2 + 195t3 + 413t4 + 752t5 + 1240t6 + . . .
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No. 2.11

R(X) = K[T1, . . . , T6]/〈g0〉 u1

u2

u3 u4

0

g0 = T1T2 + T 2
3 T4 + T 2

5

Cl(X) = Z2

Q =

[
2 0 1 0 1 1
1 1 0 2 1 0

]

P =


−1 −1 2 1 0 0
−1 −1 0 0 2 0
0 1 −1 −1 1 0
0 0 −1 0 0 1


u1 = (0, 1)
u2 = (−1/3, 0)
u3 = (0,−1/2)
u4 = (1,−1/2)

−KX = (3, 3)

H(t) = 1 + 19t+ 88t2 + 241t3 + 513t4 + 936t5 + 1545t6 + . . .

No. 2.12

R(X) = K[T1, . . . , T6]/〈g0〉 u1

u2

u3 u4

0

g0 = T1T2T3 + T 2
4 + T 2

5

Cl(X) = Z2 ⊕ Z/2Z

Q =

1 1 0 1 1 0
0 0 2 1 1 1
0 1 1 1 0 0


P =


−1 −1 −1 2 0 0
−1 −1 −1 0 2 0
0 2 1 −3 1 0
0 1 0 −1 0 1


u1 = (0, 1)
u2 = (1, 1/2)
u3 = (−1,−1/2)
u4 = (0,−1/2)

−KX = (2, 3, 1)

H(t) = 1 + 8t+ 37t2 + 100t3 + 214t4 + 389t5 + 642t6 + . . .

A.1 The Hilbert series of a Fano variety

Construction A.1.1. Let R = ⊕w∈KRw be an integral affine K-algebra graded by a
finitely generated abelian group K. The weight cone of R is the convex cone ω(R) ⊆ KQ
generated by all weights w ∈ K with Rw 6= 0. We call the grading pointed if R0 = K
holds and ω(R) is a pointed cone.
In this setting we define the Hilbert function F as

F : K → Z≥0, w 7→ dimK(Rw).

Fix a degree w ∈ K. The w-truncated Hilbert series of R is the formal series

Hw(t) :=
∞∑
n=0

F (nw)tn.
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Now consider a Fano variety X with finitely generated Cox ring and pointed grading.
The Hilbert series H(t) of X is defined as the (−KX)-truncated Hilbert series of the Cox
ring R(X) of X, i.e.

H(t) := H−KX (t) =

∞∑
n=0

F (−nKX)tn

=
∞∑
n=0

dim(R(X)−nKX )tn.

Remark A.1.2. Some of the Fano varieties X listed in this Appendix share the same
Hilbert series. Moreover, in some cases we retrieve the same Hilbert series of a toric
Fano threefold; these can be found in the Graded Ring Database [13]. Here we give all
cases of coinciding Hilbert series within our classifications and two examples of toric Fano
threefolds that share their Hilbert series with one of our classified varieties:

• 1.02 and 1.37;
• 1.04 and 1.36;
• 1.05 and 1.08;
• 1.06 and 1.42;
• 1.07, 1.12 and 1.18;
• 1.09 and 1.35;
• 1.10, 1.19 and 1.46;
• 1.11 and 2.09;
• 1.13 and 1.40;
• 1.14, 1.16, 1.25 and 1.32;

• 1.15, 1.20 and 1.41;
• 1.21 and 2.10;
• 1.23 and 1.29;
• 1.24, 1.27 and 1.31;
• 1.26 and 1.28;
• 2.06 and 2.08;
• 2.07 and 2.11;
• 1.01 and P1 × P2;
• 2.01 and (P1)3.
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G-variety, 9
K-grading, 12

almost free, 13
pointed, 172

F-bunch, 13
true, 13

F-face, 13
projected, 13

admissible operation, 21
algebraic group, 9
anticanonical class, 21
anticanonical complex, 29

i-th leaf of, 34
lineality part of, 31

anticanonical polyhedron, 29

bunched ring, 13
projective, 14

character, 9
characteristic space, 13
combinatorially minimal, 71
complete intersections, 16
complexity one T -variety, 21
cone, 10

Σ̃-height of, 17
ample, 17
big, 32
dimension of, 10
dual, 10
effective, 17
elementary big, 32
lattice, 10

leaf, 32
moving, 17, 21
pointed, 10
semiample, 17

covering collection, 14
Cox ring, 12
Cox sheaf, 12

defining matrices, 20
diagonal action, 10
discrepancy, 27
divisor, 11

ample, 17
Cartier, 11
effective, 11
movable, 17
prime, 11
principal, 11
restriction of, 11
semiample, 17
support of, 17

divisor class group, 11
divisorial sheaf, 11
duplicating a free weight, 140

enveloping collection, 15
exceptional weight, 72
extremal variable, 72

face, 10
relevant, 14

facet, 10
fan, 10

complete, 10
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lattice, 10
support of, 10

Fano polytope, 28

good quotient, 9

Hilbert function, 172
Hilbert series, 173

invariant separating linear form, 72
irredundant matrix, 20

log terminal, 28

Mori dream space, 12

Picard group, 11
Picard number, 11
platonic triple, 34

quasifan, 10
quasitorus, 10

ramification formula, 27
ray, 10
resolution

of singularity, 22
tropical, of singularity, 30
weak tropical, 23

ring of invariants, 9

shadow, 77
sliced, 77

singularity
canonical, 28
terminal, 28

small quasimodification, 71
stable base locus, 17
stratum, 16
strongly tropically resolvable, 30
Sylvester sequence, 37

toric
minimal ambient variety, 15
variety, 10

torus, 10

total coordinate space, 13

variety
A2-property, 14
Q-factorial, 16
almost Fano, 138
factorial, 16
Fano, 15
quasismooth, 120
tropical, 23
truly almost Fano, 138
weakly tropical, 23, 78, 120

weight cone, 172
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