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A B S T R A C T

The accretion of matter is a powerful source of energy which is responsible
for the brightest astrophysical objects and events in the Universe. In the ma-
jority of cases, this process is accompanied by the formation of an accretion
disk surrounding the gravitating object. This is a consequence of angular
momentum conservation which prevents the matter from radially falling to-
wards the center. Instead, the material gathers on circular orbits which are
determined by the balance of gravitation and the centrifugal force.

Accretion disks play an important role in astrophysics and can be found
around a variety of objects. As a result of different mechanisms in the disk,
the material generates friction. In a differentially rotating disk this means
exchange of angular momentum and consequently transport of mass. While
the matter is spiraling inwards, it continually looses energy which is radiated
away from the surface of the disk.

At the inner edge of the accretion disk, the material makes contact with
the stellar surface. It has to adopt the angular velocity of the star which is
smaller than the disk velocity. The region where the matter is slowed down
is called the Boundary Layer (BL). It has a radial extent of about 1% of the
stellar radius. Due to the large energy dissipation during the deceleration,
the BL can reach luminosities comparable to the disk. Thus, the existence of
the BL and its properties can be well examined by observations.

From a theoretical point of view, the BL is still poorly understood. It is
the aim of this work to shed light upon the non-magnetic BL of accretion
disks around white dwarfs and young stars. For this purpose, the prob-
lem is approached in different ways, each of which treats a subset of issues
concerning the BL.

Within the one-dimensional radial approximation, the radiation character-
istics of the BL are investigated. The luminosity and a simple BL spectrum
are calculated and can be compared to observations. A more sophisticated
approach involves the modeling of a vertical structure at each radius, using
the density and temperature data from the 1D simulations. Hereby, more
detailed synthetic spectra are created and compared to real observations.

A major part of this work concerns the vertical structure of the BL. It is
still unclear where the disk material is decelerated and how far it spreads
over the surface of the star. In a two-dimensional spherical approach, these
questions are addressed and it is assessed whether the competing concept
of the Spreading Layer is a valid depiction of the star-disk interface. By
comparison with previous simulations, it is evaluated whether the 1D model
is a sufficient approximation for certain questions.

Recent investigations have sparked the exploration of BL instabilities in
the equatorial plane. It is analyzed through two-dimensional simulations
under which conditions the supersonic velocity drop in the BL is prone to
instabilities and how oblique shock waves make an impact on the angular
momentum and mass transport in the BL.
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Z U S A M M E N FA S S U N G

Akkretionsscheiben spielen eine große Rolle in der Astrophysik. Sie bilden
sich immer dann, wenn ein Stern (oder ein schwarzes Loch) Materie aus
der Umgebung durch seine Gravitationswirkung einfängt. Schon die klein-
ste Rotation des Gases führt zur Bildung einer Scheibe, in der die Materie
langsam auf das Zentralobjekt zu spiralt, um von diesem aufgesammelt
(akkretiert) zu werden. Bei diesem Einspiralen wird Gravitationsenergie
freigesetzt, was zu einer Energieabstrahlung führt, welche die des zentralen
Sterns bei weitem übersteigen kann.

Am Innenrand von Akkretionsscheiben um Sterne lagert sich das Gas
auf dem Stern an und muss dazu die Geschwindigkeit der Sternoberfläche
annehmen. Diese ist im Allgemeinen sehr viel langsamer als die Rota-
tionsgeschwindigkeit der Scheibe, welche näherungsweise mit keplerscher
Geschwindigkeit rotiert. Die Abbremsung des Materials führt zu einer enor-
men Energiefreisetzung, die maximal (bei einem nicht-rotierenden Stern) die
Hälfte der gesamten Akkretionsleuchtkraft betragen kann. Da diese Energie
innerhalb eines räumlich sehr kleinen Bereichs freigesetzt wird, sind die
Temperaturen hier üblicherweise deutlich höher als in den äußeren Schei-
bengebieten. Somit kann die Existenz einer Grenzschicht im Prinzip gut
über Beobachtungen untersucht werden.

Von theoretischer Seite ist die Struktur dieser Grenzschicht noch immer
nicht ausreichend verstanden. Im Rahmen der vorliegenden Dissertation
soll darum die nicht-magnetische Grenzschicht von Akkretionsscheiben um
weiße Zwerge und junge Sterne mit Hilfe von numerischen Simulationen
erforscht werden.

Zunächst wird die Grenzschicht in der eindimensionalen radialen Nähe-
rung untersucht, wobei der Fokus auf den Strahlungseigenschaften dieser
Region liegt. Aus den Ergebnissen der Simulationen lassen sich die Leucht-
kraft und detaillierte Strahlungsspektren der Grenzschicht bestimmen. Diese
Daten werden anschließend mit Beobachtungen verglichen.

Ein wesentlicher Teil der Arbeit besteht in der Untersuchung der ver-
tikalen Struktur der Grenzschicht. Hierbei ist von besonderem Interesse, wo
das Material aus der Scheibe an Geschwindigkeit verliert und wie es sich auf
dem Stern ausbreitet. Zur Klärung dieser Fragen werden zweidimensionale,
achsialsymmetrische Rechnungen angefertigt. Diese werden weiterhin mit
1D Ergebnissen verglichen. Dadurch kann die Aussagekraft und eventuelle
Limitierungen des eindimensionalen Modells bestimmt werden.

In den letzten Jahren kam vermehrt die Frage nach der Viskosität in der
Grenzschicht auf. Dieser Aspekt wird durch zweidimensionale Rechnun-
gen in der Scheibenebene betrachtet. Es wird untersucht, unter welchen
Umständen der steile Geschwindigkeitsabfall in der Grenzschicht die Entste-
hung von Instabilitäten begünstigt. Letztlich stehen die Auswirkungen der
erzeugten Schockwellen auf den Drehimpuls- und Massentransport im Fokus.
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1 I N T R O D U C T I O N

For millions of years, organisms have relied on the seemingly inexhaustible
energy delivered by the Sun as their source of life. Plants, animals and, evo-
lution’s most complex achievement, mankind, have thrived on the warmth
that the Sun, yet millions of kilometers away, bathes the Earth in. Our cen-
tral star gains its immense power through nuclear fusion as myriads of other
stars, which appear as small gleaming dots in the night sky, do as well. We
can observe the vehemence of nuclear fusion and fission also on the Earth,
whether good or bad. There is, however, a process which surpasses even
nuclear fusion in the amount of energy liberated per unit mass: The ac-
cretion of a gram of hydrogen onto a neutron star of solar mass yields an
energy release which is almost 100 times the energy produced by nuclear
fusion. Moreover, accretion is by no means a rare event but an ubiquitous
phenomenon that appears in a multitude of astrophysical situations. It is
therefore no surprise that it has fascinated scientists for centuries and also
plays a vital role in our studies. Accretion is the point where we start to dive
into the subject of this thesis.

Accretion is powered by gravity, which also fuels the most luminous ob-
jects in the Universe. As matter approaches an object of mass M and size
R, it gains energy because it falls into the potential well of the gravitating
object and is accelerated. Apart from the distance, the energy obtained de-
pends on the ratio M/R. Compact objects such as neutron stars or white
dwarfs are therefore interesting laboratories for the study of these kinds of
processes since they feature a high mass and a small radius. Accretion of
matter is frequently accompanied by a disk which surrounds the central ob-
ject. In any such case, the reason for the formation of an accretion disk is
a non-vanishing angular momentum of the material that is accreted. As a
consequence of angular momentum conservation, the matter can not fall di-
rectly onto the object but rather forms a disk in which it circles around the
gravitating center. Stable orbits in the disk are given by the balance of gravi-
tation and the centrifugal force and their associated angular velocity is said
to be Keplerian,

ΩK(r) =

√
GM∗
r3

, (1.1)

where G,M∗ and r are the gravitational constant, the stellar mass and the
distance from the stellar center, respectively. For realistic disks, there is a
small deviation from Eq. (1.1) since the pressure is not constant and pressure
gradients act as additional forces. Those forces are directed inwards at the
beginning of the accretion disk near the star, and outwards at the surface of
the star and in the disk.

1



2 introduction

Equation (1.1) describes a differential rotation and therefore every accre-
tion disk exhibits a non-zero shear rate,

shear rate = r
dΩ

dr
. (1.2)

If the accretion disk is composed of a viscous medium, the shearing leads to
angular momentum transport and energy dissipation through friction. The
source of the viscosity is not necessarily of molecular kind but can be any
process which seeks to damp out the shearing motion of the gas and thus
act like a genuine viscosity on macroscopic scales. As a consequence, the
gas perpetually looses angular momentum and slowly moves towards the
center of the disk on a spiral path. The main characteristic of an accretion
disk is therefore that mass is traveling to the center and angular momentum
is transported outwards (Jeffreys, 1924; Weizsäcker, 1948; Lynden-Bell and
Pringle, 1974; Pringle, 1981; Verbunt, 1982; Frank et al., 2002). This situation
changes, however, when the accretion disk physically connects to the star, as
we will see in Chapter 2. While the material is moving inwards in the disk,
it constantly looses energy due to the viscous shearing. This energy comes
from the gravitational energy that the material gains by falling into the po-
tential well of the star. It is transfered into heat and eventually radiated away
from the surface of the accretion disk.

The viscosity plays an essential role in the local structure of the disk and it
determines the time scale on which accretion occurs (viscous time scale). The
actual mechanism which is responsible for the observed viscosity, however,
still is a matter of debate and ongoing research. The obvious choice, ordi-
nary molecular viscosity, has been ruled out a long time ago. Considering
typical values for the particle density and collisional cross section in accre-
tion disks, the molecular viscosity yields a time scale which is several times
the age of the Universe and thus greatly exceeds the typical lifetime of accre-
tion disks of a few million years. It is likely a mixture of several processes,
each of which operates under certain conditions at different locations in the
disk. The magnetorotational instability (MRI), found in regions with mag-
netic Prandtl numbers of order unity, is probably the most famous of these
processes (Velikhov, 1959; Chandrasekhar, 1960; Balbus and Hawley, 1991,
1998; Balbus, 2003; Balbus and Lesaffre, 2008), but may not always work (e.g.
Stoll and Kley, 2014). The term MRI describes a phenomenon which appears
in magnetic disks with decreasing angular velocity profile Ω(r) and creates
turbulence that acts like a genuine viscosity on macroscopic scales. It has
been demonstrated both by local (Brandenburg et al., 1995; Hawley et al.,
1995, 1996; Stone et al., 1996; Brandenburg, 2001; Sano et al., 2004) and by
global numerical simulations (Armitage, 1998; Hawley, 2000, 2001; Hawley
and Krolik, 2001; Stone and Pringle, 2001) that the MRI induces a turbulent
state which enables a considerable angular momentum transport in the disk.
Shakura and Sunyaev (1973) have shown that for any process which creates
turbulence in the disk, the kinematic viscosity ν can be parametrized by

ν = αcsH, (1.3)

where all the, possibly unknown, details of the mechanism are absorbed
into the parameter α. The sound speed cs and the disk scale height H are
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supposed to be the typical velocity and size of a turbulent eddy. If α can
not be derived theoretically, numerical simulations can aid to determine the
effective value (e.g. Gammie, 1998; Brandenburg, 1998; King et al., 2007).
Equation (1.3) is utilized in the great majority of accretion disk simulations.

Binary star systems are important representatives of the existence of an
accretion disk. About one half of all stars reside in binary systems (van
Albada and Blaauw, 1967; Martynov, 1971; Jaschek and Gómez, 1970). The
reason for the increased occurrence in multistar systems is the joint develop-
ment history. Stars form in groups in dense regions within molecular clouds
of the interstellar medium (Stahler and Palla, 2005) and are surrounded by
several other young stars. The main characteristic of binary systems lies in
the fact that mutual exchange of mass influences the evolution of the indi-
vidual stars (Paczyński, 1971). If one star fills up its Roche lobe due to an
increasing radius after leaving the main sequence, additional growth causes
an overflow and mass transfer via the inner Lagrangian point to the com-
panion (Martynov, 1971). The Roche lobe describes the region where the
material is gravitationally bound to the star. Another process which leads
to the exchange of mass between the two stars is the mass loss from the
surface via a stellar wind. In both cases, a significant amount of material
can be transfered to the companion where it accumulates in an accretion
disk due to its non-zero angular momentum. The evolution of such a disk
is illustrated in Fig. 1.1: An initial stream of gas leads to the formation of
a ring around the accreting companion. Due to the viscous shearing, the
ring spreads whereby mass is primarily transported inwards and angular
momentum is transported outwards (Lynden-Bell and Pringle, 1974). After
some time, a disk forms and connection of the disk material and the stellar
surface is established. Obviously, in a binary system the size of the accretion
disk is limited by the Roche lobe of the accreting star. In close binary sys-
tems such as SS Cygni, the disk has a radial extent of about 50 stellar radii
(Giovannelli et al., 1983; Martinez-Pais et al., 1994).

The class of binary star systems comprises a multitude of configurations
consisting of two stars. Out of these, cataclysmic variables (CVs) are of
special interest since they feature a luminous accretion disk and show time-
dependent behavior such as outburst and light curve oscillations. CVs are
very close binaries with an orbital period of the order of hours. They are
composed of a white dwarf (WD) which has about one solar mass and a
lighter star that has a late spectral class (e.g. Warner, 1995; Giovannelli, 1985).
The lighter star fills its Roche lobe and transfers mass to the WD where it
accumulates in an accretion disk. The luminosity of accretion depends on
how compact the accreting object is:

Lacc =
GM∗Ṁ
R∗

(1.4)

Here, G,M∗, Ṁ and R∗ are the gravitational constant, stellar mass, mass ac-
cretion rate and stellar radius, respectively. Since WDs have about the mass
of the Sun, yet only the radius of the Earth, the luminosity of an accretion
disk surrounding such objects is comparably high. The mass accretion rate
typically lies in the range of 10−11 to 10−8 solar masses per year (Patter-
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son, 1984). CVs are subdivided into four categories which characterize the
outburst behavior of the system (Maran, 1992):

• classical novae

• recurrent novae

• dwarf novae

• nova-like object

The term outburst describes a considerable increase in luminosity compared
to the system’s quiescence state. Depending on how often such outbursts
occur and what shape they assume, systems can be assigned to the above
classes. While the time scale of outbursts stretches from days to years, there
are two additional phenomena in CVs which are responsible for fast light
curve oscillations in the range of seconds. These dwarf nova oscillations
(DNOs) and quasi-periodic oscillations (QPOs) are attractive since variations
on such short time scales are very likely associated with the very inner parts
of the accretion disk or the WD itself. However, the cause of these rapid
oscillations is still poorly understood (e.g. Warner, 2004; Warner and Woudt,
2005; Pretorius et al., 2006).

The study of young stars is another large astrophysical field where ac-
cretion disks play an essential role. Since the molecular clouds in which
protostars are formed exhibit an angular momentum of a few percent of
the gravitational energy (Goodman et al., 1993), the residual material accu-
mulates in a disk around the newly born star. In some cases (HL Tau, DG
Tau), these disks can be spatially resolved by conducting interferometric ob-
servations (e.g. Beckwith et al., 1990). Their radial extent is comparable to
the size of the solar system and can reach radii of up to 1000 astronomi-
cal units. Young stars obtain a considerable amount of mass from the disk
(5-10 %, Frank et al. 2002) which is why the mass accretion rates in disks
around young stars are rather large and yield values of 10−7 (T Tauri stars,
Hartmann et al., 1993) or even 10−4 (FU Ori outburst, Reipurth, 1990) so-
lar masses per year. These disks, then named protoplanetary disks will later
be the birthplace of planets (e.g. Pollack et al., 1996; Durisen et al., 2007;
Weidenschilling, 1977; Yorke and Bodenheimer, 1999; Eisner et al., 2005).

In both of the above mentioned cases, disks around WDs in CVs and
disks around protostars, the star frequently possesses a magnetic field. Dif-
ferent manifestations of the accretion process then occur depending on the
magnitude of the magnetic field: For weak field strengths, the accretion
disk reaches all the way to the stellar surface and the material enters the
stellar surface in the equatorial plane. This is considered the case of the
non-magnetic boundary layer and the topic of this thesis. With increasing
field strength, the accretion disk is truncated and matter finally moves on
magnetic field lines towards the stellar surface. Here, a supersonic shock
occurs and high energetic radiation (hard X-rays) is emitted. For very strong
magnetic fields, no disk at all forms and the matter is purely accreted via
magnetic field lines.
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Figure 1.1: Sketch of the evolution of an accretion disk in a binary system (credits:
Verbunt, 1982).





2 C O N T E X T

In this chapter I introduce the Boundary Layer which is the main research
topic of this thesis. The problem can be tackled by different approaches
which differ mainly in dimensionality. I will bring up the Spreading Layer
(SL), an alternative concept for the disk-star interface, and delineate the main
differences between the BL and the SL. Finally, I move the topic towards
applications and describe three cases in which the BL plays an essential role
for the whole system.

2.1 the boundary layer

introduction In the accretion disk, the gas is required to rotate with the
Keplerian angular velocity in order to remain on stable orbits (see Eq. 1.1).
This causes a high rotation velocity for the innermost regions of the disk. The
stellar surface, in contrast, exhibits a lower rotation velocity of in general
. 50%ΩK(R∗) (Shapiro and Teukolsky, 1983). Thus, a supersonic velocity
difference appears at the point where the gas from the disk meets the surface
of the star. Due to the viscosity present in this region, the gas from the
disk is rapidly slowed down and smoothly connects to the stellar rotational
velocity. The region between the stellar surface and the maximum of the
angular velocity, i.e. dΩ(r)/dr = 0, is called the BL (see Fig. 2.1 for an
illustration). During the deceleration, a large part of the kinetic energy of
the gas is converted into heat and emitted from the system by radiation. The
proportion of the energy loss depends on the rotation rate of the star and
can be calculated by (Kluźniak, 1987)

LBL =
1

2

(
1−

Ω∗
ΩK(R∗)

)2

Lacc. (2.1)

In case of a non-rotating star, the luminosity of the BL therefore just equals
the luminosity of the whole accretion disk (Ldisk = 0.5Lacc). From simu-
lations (e.g. Hertfelder, 2017) as well as simple theoretical analysis (Frank
et al., 2002), it is evident that the width of the BL is tiny. It amounts to
approximately 1% of the stellar radius for the case of WDs. Since a great
deal of energy is emitted in a small region, the generated radiation is hard
and clearly visible as UV and X-ray contributions to the spectrum of the sys-
tem. This explains the great importance of the BL. In Fig. 2.1, the dynamical
width of the BL is displayed (∆r). The energy dissipation, however, occurs
over a larger area of approximately 10% of the stellar radius due to the ra-
diation transport (see Fig. 2.2). This region is usually called the thermal BL
(Regev and Bertout, 1995; Popham and Narayan, 1995). While the gas is
decelerated in the equatorial plane of the WD, the problem is dynamically
one-dimensional and only dependent on the radial distance from the star. At

7
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∆r dΩ/dr = 0

stellar surface R∗

Ω∗

ΩKepler(r)

an
gu

la
r

ve
lo

ci
ty
Ω

radius r

Figure 2.1: Sketch of the angular velocityΩ(r) in the BL and the accretion disk. The
solid black line represents the Keplerian angular velocity ΩK(r) which
results from the balance of gravitation and the centrifugal force. The
red line is the result from numerical simulations similar to Hertfelder
et al. (2013).

some point during or after the deceleration, however, the gas leaves the mid-
plane and moves towards the poles on the surface of the WD. Consequently
the BL is an intrinsically (at least) two-dimensional problem. Owing to its
complexity, the BL has nevertheless been treated in different 1D approxima-
tions, where only the radial or the vertical dependence of the variables is
considered. Two-dimensional simulations are still rare. Simple time scale
estimates were among the first efforts to understand the processes in the BL
(Lynden-Bell and Pringle, 1974; Pringle, 1977; Tylenda, 1977, 1981; Pringle
and Savonije, 1979).

radial models Within the purely radial approximation, the equations of
the BL in cylindrical coordinates are vertically integrated and axisymmetry
is assumed. The vertical velocity is set to zero and the gas is decelerated
and absorbed by the star in the equatorial plane. Due to the vertical integra-
tion, the 3D flow variables are partly replaced by 2D equivalents. The mass
density, for instance, is substituted by the surface density Σ which is given
by

Σ =

∫∞
−∞ ρdz =

√
2πρ(z = 0)H, (2.2)

where a Gaussian profile for ρ is assumed in the vertical direction. H denotes
the pressure scale height and is a measure for the thickness of the disk.
The temperature and the velocities are midplane quantities in the 1D model,
whereas the pressure is a vertically integrated 2D pressure. The vertical
direction cannot be ignored since it is important for the cooling of the disk
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Star Disc

Boundary Layer

H

H

b

Figure 2.2: Side view of the star-disk system with an optically thick BL. The width
of the dynamical BL is given by b. The thermal BL extends approxi-
mately one scale height H deeper into the disk. The sketch is not drawn
to scale. (credits: Frank et al., 2002)

and the BL. Thus, the vertical structure is approximated by an estimate of
the vertical optical depth (Hubeny, 1990).

The radiation characteristic of the BL crucially depends on the mass ac-
cretion rate of the system. In the BL, the gas is radially accelerated towards
the star. This results in a decrease of the surface density which can drop
to such an extent that the region becomes optically thin. In this case, the
gas density is not large enough so that the generated radiation can undergo
several absorption and emission processes which are necessary for a ther-
malization of the radiation. The system is thus not in thermodynamical
equilibrium. Since a considerable amount of energy is released, optically
thin BLs of WDs are very hot with temperatures of the order of the virial
temperature (∼ 108 K). The radiation corresponding to such high tempera-
tures are soft and hard X-rays (∼ 10 keV). These conditions are met for CVs in
quiescence with low mass accretion rates of 10−12 to 10−10M�/yr (Warner,
1987). Observations of such systems (e.g. Mukai and Patterson, 2004; Pan-
del et al., 2003, 2005) could be well reproduced by theoretical predictions
(e.g. Pringle and Savonije, 1979; Tylenda, 1981; King and Shaviv, 1984; Sha-
viv, 1987; Narayan and Popham, 1993; Popham, 1999). It is, however, not
yet clear how the hard X-rays are generated. Pringle and Savonije (1979)
suggested the production via strong shocks, whose existence in the BL is
controversial due to the strong shearing. Another possible explanation is
given by the evaporation of the inner parts of the disk and the formation
of a corona-like shell (Liu et al., 1995; Medvedev and Narayan, 2001; Meyer
and Meyer-Hofmeister, 1994). Recent observations of VW Hyi in quiescence
(Liu et al., 2008) seem to disagree with this theory.

For higher mass accretion rates, Ṁ & 10−10M�/yr (Pringle and Savonije,
1979; Tylenda, 1981), the BL is assumed to be optically thick and the tem-
peratures on the surface are predicted to be of the order of ∼ 105 K (Pringle,
1977; Syunyaev and Shakura, 1986). The radiation of optically thick BLs is
mostly thermalized and resembles a black body spectrum. Higher accretion
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rates occur in CVs during outburst states, when values between 10−9 and
10−8M�/yr are reached (Warner, 1987; Cannizzo et al., 1988). Observations
of such events (e.g. Cordova et al., 1980; Mauche, 2004b) demonstrate the
validity of numerical predictions (e.g. Popham and Narayan, 1995; Obach
and Glatzel, 1999), also for optically thick BLs.

multidimensional models The downside of the one-dimensional BL
models is that either the vertical or the radial velocity is assumed to be zero.
This approximation is known to limit the scope of the 1D approach (Ferland
et al., 1982). Therefore, evolutionary numerical simulations in two dimen-
sions under the assumption of axisymmetry have been performed soon after
the first 1D efforts. Robertson and Frank (1986) and Kley and Hensler (1987)
conducted the first calculations of this kind. They assumed an adiabatic flow
and either instantly released the energy generated by viscosity or did not per-
form any cooling. Accordingly, the disk and the BL became either very thin
or were puffed up considerably. More realistic 2D simulations have been
performed by Kley (1989a,b, 1991), who implemented a two-temperature
radiation treatment incorporating the flux-limited diffusion approximation
(Levermore and Pomraning, 1981; Levermore, 1984). The results indicate
that an optically thick BL is surrounded by a hot corona. At the same time,
first models for rotating stars have been simulated. However, due to the lim-
ited amount of computing resources, the grid resolution and the simulation
times were limited. More recent BL simulations feature a higher resolution,
but treat only adiabatic flows and a small domain in the direct vicinity of the
star (Fisker and Balsara, 2005; Fisker et al., 2006). Magnetic fields have been
included in 2D by Küker et al. (2003) for protostars and for CVs in 3D by
Armitage (2002), who used a low numerical resolution and short dynamical
time scales. Axisymmetric long-term simulations for the case of protostars
have been run for different accretion rates by Kley and Lin (1996, 1999). They
found that for accretion rates below 10−7M�/yr, the BL is optically thin. For
high accretion rates, Ṁ ≈ 10−5M�/yr, a thermal instability led to states of
outburst similar to the FU Ori outbursts.

More recently, detailed calculations of the BL around neutron stars in low
mass X-ray binaries (LMXB) have been made by Babkovskaia et al. (2008).
However, they included only a small patch around the star. Balsara et al.
(2009) have simulated the BL around a WD employing a somewhat arti-
ficial treatment of the dissipation function, similar to the very first multi-
dimensional efforts. Radiation processes were not taken into account. The
accretion via magnetic field lines and also the classical BL were investigated
in three-dimensional simulations by Romanova et al. (2012). As a source
of viscosity, the magnetorotational instability is explicitly simulated. These
models do, however, not include an implementation of radiation transport.

Non-axisymmetric phenomena such as spiral-shaped shock waves have
been suggested by Pringle and Savonije (1979) for the accretion onto WDs
and by Kluzniak and Wilson (1991) for the neutron star case. This field
has been explored heavily in the last few years and the possibility of a
wave-mediated angular momentum transport has been proposed (Belyaev
and Rafikov, 2012; Belyaev et al., 2012, 2013a,b; Hertfelder and Kley, 2015;
Belyaev, 2017).
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viscosity in the bl Several problems arise in connection with the vis-
cosity in the BL. We will first assume that the mechanism for the angular
momentum transport creates local turbulence and its impact on the fluid can
be described by a classical α-viscosity (Shakura and Sunyaev, 1973). Then,
attention must be payed to the transition of the mean free path of the tur-
bulence (or the maximum eddy size). In the BL, the stabilization of the gas
shifts from centrifugal to pressure forces and hence the radial pressure scale
length becomes smaller than the vertical one. The vertical pressure scale
height is usually taken as the maximum eddy size in the disk. Thus it has
been argued that the α-viscosity prescription of the disk cannot be deployed
in the BL (Papaloizou and Szuszkiewicz, 1994; Narayan et al., 1994; Kato
and Inagaki, 1994; Godon, 1995). A popular workaround for this problem
has been developed by Papaloizou and Stanley (1986), who employed a vis-
cosity prescription that considers the smaller of the radial or the vertical
length scale:

ν = αcs

(
1

H2
+

(dp/dr)2

p2

)−1/2

(2.3)

This expression for the viscosity has been used for the BL several times (e.g.
Popham and Narayan, 1995).

Many of the early BL calculations have yielded supersonic infall velocities
(e.g. Papaloizou and Stanley, 1986; Kley, 1991; Popham and Narayan, 1991).
Pringle (1977) pointed out that supersonic infall causes difficulties concern-
ing causality and is thus to be considered unphysical. Information about
the stellar boundary, such as the star’s rotation velocity, travel upstream no
faster than the speed of sound. This knowledge is required by the gas at the
inner disk edge and therefore the radial velocity must be less than the sound
speed in order to acquire consistent results. Supersonic infall can be avoided
by including so called causality factors in the viscosity formula (Shakura and
Sunyaev, 1988; Godon, 1995; Narayan, 1992; Popham and Narayan, 1992). A
slightly different approach has been pursued by Kley and Papaloizou (1997),
who implemented a relaxation time scale for the shearing component of the
viscous stress tensor (see also Papaloizou and Szuszkiewicz, 1994). By choos-
ing the right relaxation time, they were able to limit the infall to subsonic
velocities. Causality preserving factors have not been used lately since for
typical α-values in BL simulations, supersonic velocities rarely occur.

The greatest problem, however, is probably the assumption of local tur-
bulent stresses that is associated with the utilization of an α-like viscos-
ity. As pointed out by Godon (1995) and Abramowicz et al. (1996) and
recently shown by Pessah and Chan (2012), if the angular velocity increases
with radius, dΩ/dr > 0, the MRI is effectively damped out and the as-
sociated angular momentum transport oscillates around zero. Since this
situation clearly applies for the BL, we do not expect to obtain sufficient
AM transport through the MRI. There have been various alternative trans-
port mechanisms proposed, among them the Kelvin-Helmholtz instability
(Kippenhahn and Thomas, 1978), the baroclinic instability (Fujimoto, 1993),
and the Tayler-Spruit dynamo (Tayler, 1973; Spruit, 2002; Piro and Bildsten,
2004a), none of which have yet been proven to efficiently transport mass and
AM in the BL. Recently, a promising candidate for the transport has been
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proposed and investigated. According to this theory, the steep velocity drop
in the BL is prone to the sonic instability (Glatzel, 1988; Belyaev and Rafikov,
2012), which is an instability of a supersonic shear layer, much like the
Papaloizou-Pringle instability (Papaloizou and Pringle, 1984; Narayan et al.,
1987). Acoustic waves are excited in the BL as a consequence of the sonic
instability and AM can be transported by these modes in an efficient way.
This has been demonstrated for 2D flows (Belyaev et al., 2012; Hertfelder
and Kley, 2015), 3D flows in cylindrical coordinates (Belyaev et al., 2013a),
and even for 3D magnetohydrodynamical flows (Belyaev et al., 2013b). The
wave mediated AM transport implies that this process is intrinsically non-
local since the waves can potentially travel a long way before they dissipate
and release the AM to the fluid. Therefore, it is problematic to describe the
AM transport in the BL by means of a local viscosity like the α-model. As a
consequence of the BL instability, incompressible modes such as gravity or
Rossby modes might be excited at the surface of the star (Belyaev, 2017). The
concept of the sonic instability has also been applied to the spreading layer
theory (see Sec. 2.2), where it might overcome the viscosity problem on the
stellar surface (Philippov et al., 2016).

2.2 the spreading layer

The spreading layer (SL) is an alternative concept for the interface between
the disk and the star which has originally been developed by Inogamov and
Sunyaev (1999, 2010) for neutron stars. The main difference between the BL
and the SL concerns the order of deceleration and polar spreading: In the BL
theory, the gas is first slowed down in the equatorial plane where it looses
its energy and then slowly spreads on the surface of the star. Within the SL
rationale, the material from the disk is vertically spread on the surface of the
star by the ram pressure. Due to the turbulent friction between the hot gas
and the cold and dense stellar layers below, it is slowed down and the energy
is liberated in two rings above and beyond the stellar equator (see Fig. 2.3).
The position and the width of the two rings (or belts) is determined by the
mass accretion rate. The larger Ṁ is, the wider the belts are and the closer
they are shifted towards the poles. Thus, the majority of the SL luminosity
comes from these two belts. In the equatorial plane, in contrast to the BL,
the luminosity is minimal. The authors argue that a deceleration in the disk
midplane does not occur since the angular momentum stabilizes the gas
against the gravitation of the star. Not until it moves to the poles does the
gas loose this stabilization.

The gas in the active belts on the stellar surface is dominated by radiation
pressure. Since in this medium the sound speed is considerably larger than
in a plasma without radiation, the rotational motion is only moderately su-
personic (Mϕ ∼ 5). Furthermore, the meridional distribution is subsonic for
the same reason, which is important concerning the causality of the SL and
the choice of an apt model for the friction. Once the gas leaves the radiating
belt towards the pole, its azimuthal velocity drops to zero and the mate-
rial contracts and builds a cold thin layer which barely radiates. It slowly
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Figure 2.3: The spreading layer (from Inogamov and Sunyaev, 1999): (a) The stel-
lar surface is denoted by S, the one-dimensional SL by 1Dbl, the two-
dimensional transition region between disk and SL by 2D and the one-
dimensional disk by 1Dd. (b) The velocity in azimuthal direction, vϕ, as
a function of the latitude θ. The gas is mainly rotating in a belt of width
0 < θ < θ∗. In the case of a non-rotating star, matter outside this belt
has almost no rotation velocity. (c) The local radiative flux q as a func-
tion of latitude. The arrows enclose the region of increased luminosity.
Their location is also marked in panel (a).

spreads on the whole star and comes to rest beneath the hot, active layers
with which it then interacts viscously.

A major problem of the SL theory is the deceleration of the material on
the surface of the neutron star. In absence of an anomalous viscosity, the
molecular viscosity on the neutron star is much too small to considerably
slow down the gas from the disk. Additionally, more recent investigations
by Inogamov and Sunyaev (2010) revealed that the fast rotating material
spins up the outer layers of the star. Therefore, the energy release would
occur rather deep in the star (∼ 104 cm). Another problem lies in the fact
that it is difficult or even impossible to distinguish between the BL and the
SL from an observer’s point of view. On the one hand, the radiating belts
are located close to the stellar equator for low mass accretion rates and their
vertical size is comparable with the classical BL. On the other hand, in case
of a high mass accretion rate (LBL ≈ LEdd), the BL is also expected to engulf
the whole star (Popham and Sunyaev, 2001). In both cases, it will be nearly
impossible to tell the two concepts apart by looking at the observations.

Although initially developed for neutron stars, the theory of the SL has
been adapted to CVs by Piro and Bildsten (2004a,b). In this case, the lumi-
nosity of the innermost region is much smaller and the position of the rings
deviates from the midplane only for high accretion rates, as for instance dur-
ing outbursts. Suleimanov and Poutanen (2006) have extended the SL model
to account for different chemical compositions of the accreted material and
included effects of general relativity.

2.3 importance

While the BL plays an important role in every system where accretion on
a central object occurs, there are some cases where a better understanding
of the BL could explain long outstanding problems or push the knowledge
in the latest research. I will shortly outline these situations below:
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• T H E W D C A S E : The simulation of the BL around a WD is a chal-
lenging task. Due to the large mass and small radius, the WD has a
small radial scale height and the BL is very narrow. Hence a large
numerical resolution has to be chosen in order to sufficiently resolve
these regions. Accordingly, the demands for computational resources
are exceptionally high. WDs in CVs show several interesting features,
such as recurring periods of outburst and quiescence and rapid oscilla-
tions of the light curve (DNOs, QPOs). It is to be assumed that the BL
is particularly involved in such phenomena due to its vicinity to the
stellar surface. The mechanism of the AM transport is supposed to be
of vital importance.

• P L A N E TA R Y A C C R E T I O N : A protoplanet in a protoplanetary
disk will likely open a gap and accrete the majority of its mass through
a circumplanetary disk. The thermal energy of the protoplanet likely
depends on how the material from the disk is transported to the planet,
i.e. on the BL of the circumplanetary disk. It is interesting to investi-
gate the conditions that lead to a large energy deposit in the proto-
planet by the BL and to differentiate it from the opposite case, where
most of the accretion energy is radiated away. In this first hot-start
case, the protoplanet will be inflated and driven to high luminosities
through the energy deposit from the BL. In contrast, the second or cold-
start case is characterized by a considerably less luminous protoplanet.
These two scenarios are presently discussed (e.g. Owen and Menou,
2016).

• T H E YO U N G S TA R C A S E : The complexity of simulations of the
BL around a young star lies between the WD and the protoplanet case.
The ratio of stellar mass and radius is much smaller than for a WD but
larger than for a protoplanet. Young stars can have very high accre-
tion rates and thus the BL is expected to be completely optically thick.
Furthermore, the high accretion rates will allow to test the scenario
by Popham and Sunyaev (2001), according to which the BL engulfs
the star at very high Ṁ. Young stars also experience outburst phases,
which are named after the prototype system FU Orionis. The role of
the BL in this process is still unclear. Finally, the hot/cold-start scenar-
ios which we discussed in connection with protoplanetary disks also
applies to young stars and is important for the evolution of the star,
the disk and the planetary system.
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Despite strong efforts for over 30 years, the BL is still poorly understood
from a theoretical point of view and several questions remain unanswered.
It is the aim of this thesis to shed more light upon the BL mystery by ad-
dressing some of the key issues in BL research. For that purpose, the work
plan is subdivided into three stages which approach the BL with different
geometrical assumptions. Various numerical schemes and codes are devel-
oped, adapted and employed for each stage. The results of the individual
parts of the thesis interact with one another and thus finally draw the big
picture of the BL.

The first stage involves one-dimensional radial models of the BL around a
WD which resides in a cataclysmic variable system. A numerical code devel-
oped by the author will be extended by the inclusion of radiation energy in
the one-temperature approach and radiation pressure. Since the BLs around
WDs are very hot, these additions are important in order to obtain consistent
results. The aim of the first part is to compute the radial density and tem-
perature distribution in the BL. This data is then employed as an input for
detailed vertical structure models at each radius which are computed using
the stellar-atmosphere method in collaboration with Prof. Dr. Klaus Werner
and Dr. Valery Suleimanov of our institute. The acquired detailed radiation
spectra of BLs around WDs will be compared to observations of CV systems.
Simultaneously, a second approach to compare the theory with observations
will be pursued in collaboration with the group of Professor Solen Balman
from the Middle East Technical University in Ankara. The luminosity of the
BL is derived from the 1D radial models and their dependence on the stellar
mass, stellar rotation rate and mass accretion rate is thoroughly investigated.
I will search for a way to overcome the ambiguity which is omnipresent
when comparing theoretical results with observations: Different choices of
parameters yield almost identical BL luminosities.

During the second stage, I will deal with the BL around WDs in the two-
dimensional vertical approach. Perhaps the most important unanswered
question concerns the vertical structure of the BL. I will analyze the flow
properties in the vicinity of the star and on the stellar surface. I aim to de-
termine where the gas is decelerated from Keplerian rotation to the stellar
rotation rate—in the equatorial plane or somewhere on the stellar surface.
Since the deceleration is accompanied by energy dissipation which accounts
for the BL luminosity, this question is important for the emergent spectrum.
The wider the dissipation region, the softer the spectrum will be, for in-
stance. The radiation characteristics also depend on the mixing of the disk
material with the stellar layers. Therefore, I will track the evolution of the
disk material on the stellar surface and its interplay with the layers beneath.
I will finally be able to make a statement whether the competing concept of
the SL is a possible scenario or can be ruled out for the star-disk interface.

15
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Another essential goal is the comparison of the 2D results with the 1D radial
model. If I find that the luminosity and surface temperature of the 1D model
matches the more elaborate 2D approach, this would result in a huge simpli-
fication. One-dimensional simulations, which are fast, easier to set up and
more stable, could be conducted for the purpose of comparing spectra with
observations. In extension to the radiation treatment in the 1D approach, I
will employ a two-temperature radiation model, where the radiation energy
is an independent variable with an evolutionary equation which is closed by
the flux in the flux-limited diffusion approximation.

The third part of the thesis comprises two-dimensional simulations of an
infinitesimally thin BL in the disk plane. Previous simulations of the BL al-
most always considered axial symmetry. This is, in principle, a reasonable
approximation since perturbations by the secondary in CVs, for instance, are
usually very small. However, it has been found that under certain conditions
the supersonic drop of the angular velocity in the BL is prone to the sonic
instability which triggers oblique shock waves. This mechanism efficiently
transports mass and angular momentum through the BL. I will investigate if
these instabilities are a general BL phenomenon which occurs under typical
conditions. Therefore, a more physical approach than in recent publications
is pursued and the mechanism is tested for the BL around a young star. One
important consequence of the wave mediated AM transport is that the pro-
cess is non-local and it is possible that energy and AM are transported away
from their point of origin. A major aim thus entails analyzing where the
BL energy is dissipated and whether the main drawback of the SL theory
(the still undetermined mechanism which decelerates the gas on the stellar
surface) can be mitigated within this picture. Another important task will be
to examine if we are able to condense what we learn about this specific AM
transport into a simple prescription which can be used for later 2D simula-
tions in order to save resources, energy and time. Furthermore, there might
be a connection to observed variability phenomena like FU Ori outbursts,
DNOs or QPOs.



4 P U B L I C AT I O N S

In this chapter, the publications which seek to answer the questions posed
in Chapter 3 and have been written in the context of this thesis are pre-
sented. The papers are reproduced with permission from Astronomy &
Astrophysics, c© ESO, and Proceedings of Science.

In Hertfelder et al. (2013) 1, we investigate one-dimensional radial models
of the BL around WDs including radiation energy and pressure. Both the
stellar mass and the stellar rotation rate are varied and the impact of the
parameter variation on the BL is analyzed. The results of these simulations
are used in Suleimanov et al. (2014) 2 for the modeling of the EUV spec-
tra of optically thick BLs. For this purpose, the radiation-hydrodynamical
BL models are divided into a number of rings. For each ring the stellar-
atmosphere method is employed to calculate a structure model along the
vertical direction. The final spectra take into account Doppler broadening
and limb darkening and are compared to SS Cyg and U Gem.

A different approach is pursued in Hertfelder (2017) 3 where the luminos-
ity of the BL around a WD is computed from 1D radial models. Among
the varied parameters are the stellar mass, rotation rate and mass accretion
rate. A large number of models is computed and evaluated. A distinction
between the X-ray luminosity and the total luminosity is made and partic-
ularly the dependence on the stellar rotation rate is investigated. A paper
in collaboration with Armin Nabizadeh and Prof. Solen Balman of the Mid-
dle East Technical University (Ankara) in which the derived luminosities are
compared to SS Aur is in preparation.

Meanwhile, in Hertfelder and Kley (2015) 4 the BL instabilities in the disk
midplane have been investigated within the 2D planar approach. The pa-
rameters for the BL around a protostar are used and the simulations are
started from realistic 1D radial profiles which have been calculated similar
to Hertfelder et al. (2013). An ideal equation of state is assumed and radi-
ation transport in the disk and radiative cooling from the disk surfaces are
considered. No ad hoc prescription for the viscosity is applied in the BL.

Recently, the major question of the vertical structure of the BL around
WDs has been answered in Hertfelder and Kley (2017) 5. In the 2D vertical
model including the radiation energy in the two-temperature approach and
the flux-limited diffusion approximation, the polar spreading and mixing of
the disk material is analyzed. By comparing the results with the 1D radial
approach, the connection to Hertfelder et al. (2013) has been established and
the circle has been closed, resulting in a complete and consistent treatment
of the topic of this thesis.

1 Published in Astronomy & Astrophysics.
2 See footnote 1.
3 Accepted for publication in Proceedings of Science.
4 See footnote 1.
5 Accepted for publication in Astronomy & Astrophysics.
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ABSTRACT

Context. Disk accretion onto stars leads to the formation of a boundary layer (BL) near the stellar surface where the disk makes
contact with the star. Although a large fraction of the total luminosity of the system originates from this tiny layer connecting the
accretion disk and the accreting object, its structure has not been fully understood yet.
Aims. It is the aim of this work to obtain more insight into the BL around the white dwarf in compact binary systems. There are still
many uncertainties concerning the extent and temperature of the BL and the rotation rate of the white dwarf.
Methods. We perform numerical hydrodynamical simulations, where the problem is treated in a one-dimensional, radial approxima-
tion (slim disk). The turbulence is described by the α parameter viscosity. We include both cooling from the disk surfaces and radial
radiation transport. The radiation energy is treated in a one-temperature approximation.
Results. For a given Ṁ our results show a strong dependence on the stellar mass and rotation rate. The midplane and the effective
temperature rise considerably with increasing stellar mass or decreasing stellar rotation rate. Our simulations also show that the ra-
diation energy and pressure are indeed important in the BL. However, some models show a low optical depth in the BL, making it
necessary to find a better representation for optically thin regions.
Conclusions. The combination of a high mass and a small radius, characteristic of white dwarfs, can lead to an enormous energy
release in the BL, provided the WD rotates slowly. Since the radial extent of BLs is typically very small (about 0.02 to 0.05 R∗),
this leads to surface temperatures of a few hundred thousand Kelvin. All of our models showed subsonic infall velocities with Mach
numbers of <0.4 at most.

Key words. accretion, accretion disks – binaries: close – white dwarfs – methods: numerical – hydrodynamics

1. Introduction

Accretion of matter on compact objects via a disk is a ubiqui-
tous phenomenon in astrophysics and can be observed in a va-
riety of systems such as protostars, close binary systems, and
active galactic nuclei. Since accretion disks appear very fre-
quently in astrophysical situations, they have been studied ex-
tensively and several analytical models of stationary disks as-
suming axial symmetry and neglecting the vertical direction (the
equations have been vertically integrated) have been constructed
(e.g. Shakura & Sunyaev 1973; Lynden-Bell & Pringle 1974;
Pringle 1981; Verbunt 1982). The vertical structure was inves-
tigated afterwards with the help of these models (e.g. Meyer &
Meyer-Hofmeister 1982).

While about one half of the accretion energy is released over
almost the whole radial extent of the accretion disk, the other
half is still stored in terms of kinetic energy of the gas near the
surface of the central object. Only when the flow reaches the
surface of the star is it slowed down from the Keplerian rota-
tion rate to the rotation of the star, which will usually be much
slower. This tiny region with a radial extent of less than one
percent of the stellar radius where the accretion disk connects
to the central object is called the boundary layer (BL). Since a
great deal of energy is released in a spatially restricted area, the
BL can get very hot and might account for the observed soft
and hard X-ray and UV emission in several cataclysmic vari-
able systems (e.g. Cordova et al. 1981a,b; Cordova & Mason
1984). It is therefore of great importance when it comes to

understanding star-disk systems. The first models of the BL were
stationary calculations or estimates of timescales that were made
under various assumptions by different authors (Lynden-Bell
& Pringle 1974; Pringle 1977; Tylenda 1977, 1981; Pringle &
Savonije 1979; Regev 1983). However, because of the simplifi-
cation made there have been debates concerning the consistency
of these models with the observations (e.g. Ferland et al. 1982).
The first evolutionary calculations were performed soon after-
wards (Robertson & Frank 1986; Kley & Hensler 1987; Kley
1989a,b, 1991; Godon et al. 1995), and for the first time allowed
non-stationary phenomena like instabilities to be investigated.
Among the first analytical studies of the BL were the efforts
of Bertout & Regev (1992) and Regev & Bertout (1995), who
dealt with the one-dimensional, stationary equations by using
the method of matched asymptotic expansions (MAE).

Most of the one-dimensional BL models focus on the ra-
dial evolution of the variables, where an infinitesimal thin disk
is connected directly to the star. The vertical velocity is set to
zero and the fast moving accretion flow is slowed down within
the midplane of the disk and accreted by the star. The decelera-
tion of the gas in the BL is accomplished by a mechanism that is
not yet fully understood (cf. Pessah & Chan 2012; Belyaev et al.
2012). Here, we assume a viscous medium and use the classical
α-parametrisation from Shakura & Sunyaev (1973). The radi-
ation emitted by the BL strongly depends on the mass accre-
tion rate of the accreting object. For rather low mass accretion
rates (Ṁ ≤ 10−10 M�/yr, Warner 1987), the BL is optically thin,
reaching very high temperatures (∼108 K) and emitting soft and
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hard X-rays in the case of cataclysmic variables (e.g. Mukai &
Patterson 2004; Pandel et al. 2003, 2005, King & Shaviv 1984;
Shaviv 1987; Narayan & Popham 1993; Popham 1999). An op-
tically thick BL, on the contrary, shows a lower temperature of
about 105 K (Pringle 1977; Syunyaev & Shakura 1986; Popham
& Narayan 1995) and emits radiation that is mostly thermalized
and resembles a black body spectrum (see e.g. Cordova et al.
1980; Mauche 2004).

It should be noted that in addition to the above-mentioned
radial models, there are also one-dimensional models that inves-
tigate the vertical flow of the gas in the near proximity of the
star. Here, it is assumed that the gas spreads around the star be-
cause of the ram pressure in the BL. In contrast to the radial
models, the gas is not slowed down in the midplane of the disk,
but rather on the whole surface of the star. This alternative model
is called the spreading layer (Inogamov & Sunyaev 1999, 2010).
While this model was originally designed for the BL of a neu-
tron star, Piro & Bildsten (2004a,b) adapted it for cataclysmic
variables systems. The spreading layer concept was extended by
Suleimanov & Poutanen (2006), who included general relativity
and different chemical compositions of the accreted matter.

In contrast to these 1D models, a number of multidimen-
sional studies of the BL have been performed, mostly under
the assumption of axial symmetry. Full radiation hydrodynam-
ical simulations of that kind were performed by Kley (1989a,b,
1991), but only very few dynamical timescales could be fol-
lowed in low spatial resolution. In recent years, local BL models
with higher resolution have been presented by Fisker & Balsara
(2005) and Fisker et al. (2006) for the purely adiabatic cases.
Calculations including magnetic fields have been done in 2D by
Küker et al. (2003) and in 3D by Armitage (2002), though with
only low resolution and short dynamical timescales. Additional
2D simulations were performed by Kley & Lin (1996, 1999)
for protostars, by Babkovskaia et al. (2008) for neutron stars in
LMXB, or by Balsara et al. (2009), who simulated the BL around
a white dwarf and used a simplified energy dissipation function
without radiation transport. Three-dimensional magnetohydro-
dynamical simulations including magnetospheric accretion were
performed by Romanova et al. (2012), but without the inclusion
of radiation transport. Non-axial-symmetric phenomena were in-
vestigated only very recently by Belyaev et al. (2012), though
only with an isothermal equation of state.

In this paper we focus on the BL structure around white
dwarfs in compact binaries such as cataclysmic variable sys-
tems. Despite the existing multidimensional studies, we opted
for new one-dimensional models because of the moderate com-
putational effort. These are made more realistic by including
radiation transport in the radial direction and local cooling in
the vertical direction. To allow variability studies, we solve the
time-dependent equations. This extends the approach of Popham
& Narayan (1995), who solved the stationary equations (see
Sect. 4.4 for more details). Furthermore, we have implemented
force and dissipation terms of the radiation field and a quasi-two-
dimensional radiation transport to treat the radiation field consis-
tently in our calculations, where the radiation pressure (energy)
is comparable to the thermal pressure (energy). This work is the
first step and will be used to expand the simulations to more
dimensions. The results presented in this paper will be used to
calculate synthetic, theoretical spectra and thereby considerably
narrow the regimes for various parameters of binary systems,
like the stellar rotation rate of the white dwarf. More detailed
theoretical spectra and observational consequences will be pre-
sented in a subsequent paper.

The paper itself is organized as follows: in Sect. 2, an
overview of the used equations and assumptions is given, and
basic physics of the models is described. Section 3 is devoted to
the numerical methods that were utilized in order to solve the
equations. In Sect. 4, the models are presented and discussed.
We conclude with Sect. 5.

2. Equations

In this section, we present the one-dimensional, vertically in-
tegrated Navier-Stokes equations used in the numerical code.
Although one-dimensional BL calculations are certainly not suf-
ficient to describe the structure of the BL, they are adequate to
model the emitted energy, since the gas is slowed down in the
midplane before it engulfs the star (e.g. Kley 1989b).

2.1. Vertical averaging

The 1D equations of motion are obtained through vertical in-
tegration of the Navier-Stokes equations over the z coordinate.
Assuming a Gaussian profile for the three-dimensional density ρ
in the vertical direction, the surface density is given by

Σ =

∫ ∞

−∞
ρ dz =

√
2πρc(r)H. (1)

Here, ρc denotes the mass density in the midplane and H is the
pressure scale height, which is a measure of the vertical extent of
the disk. If we also assume hydrostatic balance and an isother-
mal equation of state in the vertical direction, the pressure scale
height reads

H =
cs

ΩK
, (2)

where cs denotes the (isothermal) sound speed, and ΩK =√
GM∗/r3 the Keplerian angular velocity (G is the gravitational

constant and M∗ is the mass of the star).
In our 1D approximation, the vertical component of the ve-

locity vector u is assumed to be negligible. Formally, this can no
longer be true in the regions where the gas leaves the midplane
and spreads to the poles of the star.

2.2. Continuity equation (conservation of mass)

The vertically integrated continuity equation in polar coordinates
is then given by

∂Σ

∂t
+

1
r
∂(rΣur)
∂r

= 0, (3)

where ur denotes the velocity component in the radial direction.

2.3. Equations of motion (conservation of momentum)

The vertically integrated equations of motion read

Σ


∂ur

∂t
+ ur

∂ur

∂r
− u2

ϕ

r

 = −∂p
∂r

+
1
r
∂(rσrr)
∂r

− 1
r
σϕϕ

− Σ
GM∗

r2 +
κRΣ

c
F, (4)

in the radial direction and

Σ

(
∂uϕ
∂t

+ ur
∂uϕ
∂r

+
uruϕ

r

)
=

1
r2

∂(r2σrϕ)
∂r

(5)
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in the azimuthal direction. Here p denotes the vertically inte-
grated thermal pressure and κR and F are the Rosseland mean
opacity and the radiative flux, respectively, which we will de-
scribe in detail in the next section. The term κRΣ

c F acts as a
radiative force on the material; σ denotes the vertically inte-
grated viscous stress tensor with the components σrr, σϕϕ and
σrϕ (Papaloizou & Stanley 1986), where we assume a vanishing
bulk viscosity.

2.4. Energy equation (conservation of energy)

Since the temperatures in the BL region around white dwarfs are
expected to be very hot even if they are optically thick (the tem-
perature is of the order of 105 Kelvin, Pringle & Savonije 1979;
Tylenda 1981), radiation pressure and radiation energy play an
important role in our models and cannot be ignored. Instead of
simultaneously solving one equation for the gas energy and one
for the radiation energy separately (called the two-temperature
approximation1), we chose a different approach in order to speed
up the calculations. In this so-called one-temperature radiation
transport (see e.g. Flaig et al. 2010), we add the two equations
for the gas and the radiation energy and obtain

ρ
d
dt

(
ε +

E
ρ

)
= −P∇u +

[
σi j − Pi j

]
∇iu j − ∇F, (6)

where ε, E, P,P and F denote the specific thermal energy of
the gas, the radiative energy density, the 3D thermal pressure
of the gas, the radiation pressure tensor, and the radiative flux,
respectively.

The assumption of a local thermodynamic equilibrium is jus-
tified for optically thick regions, as is the one-temperature ap-
proach (see e.g. Kuiper et al. 2010). Since we concentrate here
on high mass accretion rates during outbursts, the BL will stay
optically thick even for slow stellar rotation rates. In the approx-
imation of local thermal equilibrium (LTE), the radiation energy
simplifies to read E = aT 4, where a is the radiation constant and
T is the gas temperature.

In addition to the one-temperature approximation, we use
the flux-limited diffusion approximation (FLD; Levermore &
Pomraning 1981; Levermore 1984), which allows us not to con-
sider an equation for the radiative momentum. The radiation flux
is then set to

F = − cλ
κRρ
∇E = −λc4aT 3

κRρ
∇T, (7)

where λ is a dimensionless number called the flux-limiter. Here,
we adopt the formulation by Levermore & Pomraning (1981),

λ =
1
R

(
coth R − 1

R

)
, (8)

R =
|∇E|
κRΣE

· (9)

For the given flux-limiter, the corresponding approximation for
the radiation pressure tensor reads (Levermore 1984)

P =
E
2

[
(1 − fEdd)I + (3 fEdd − 1) nn

]
. (10)

1 Although often used, this term might be misleading since the ra-
diation energy cannot be described by any temperature if no LTE is
assumed.

Here, I is the identity tensor of rank 2, n = (∇E)/|∇E| is the unit
vector parallel to the gradient of E, and the Eddington factor is
given by

fEdd = λ + λ2R2. (11)

This approximation reflects the correct behaviour of the radi-
ation pressure tensor in the optically thick regime where it is
isotropic and E/3, and in the optically thin regions where its
absolute value parallel to ∇E is E. If one considers a purely
isotropic radiative pressure tensor, a approximation in the flux-
limited diffusion theory is given by P = λEI (Commerçon
et al. 2011). Our simulations showed that the difference between
Eq. (10) and the purely isotropic approximation is in general
very small.

Furthermore, if we assume that the radiation pressure tensor
is diagonal (Eddington approximation) and use the relation be-
tween the specific thermal energy and temperature ε = cvT , the
energy equation in the one-temperature approximation becomes
after a vertical integration

[
Σcv + 4aT 3 · H̃

] (∂T
∂t

+ ur
∂T
∂r

)
+ 4aT 4 · 1

r
∂(rur)
∂r

=

− p
1
r
∂(rur)
∂r

− Pi j∇iu j

+ 2νΣ


(
∂ur

∂r

)2

+

(ur

r

)2
 + νΣ

(
r
∂Ω

∂r

)2

− 2
3
νΣ

(
1
r
∂(rur)
∂r

)2

− 2σSBT 4
eff + H̃

1
r
∂

∂r

[
16σSBλ

κRΣ
rH̃T 3 ∂T

∂r

]
, (12)

where σSB is the Stefan-Boltzmann constant, Teff the effective
temperature, κR the Rosseland opacity, and H̃ =

√
2πH. The sec-

ond line describes the pressure work exerted by the thermal and
radiative pressure. The third line contains viscous dissipation,
where ν denotes the kinematic viscosity. The last line describes
emission of radiation from the disk surface and diffusion of the
radiative flux in the disk midplane. By this means we employ a
quasi-2D radiation transport.

To close the set of equations, we need some constitutive re-
lationships. For the equation of state, we use the ideal gas law.
The vertically integrated pressure then reads

p =
ΣRGT
µ

, (13)

where RG = kB/mH with kB being the Boltzmann constant, mH
the mass of hydrogen, and µ is the mean molecular weight. In
order to take the radiation pressure effects into account, we have
defined an effective sound speed (Krumholz et al. 2007)

ceff =

√
γp + (4/9) · E · H̃ · (1 − e−κRρ∆r)

Σ
. (14)

The factor (1 − e−κRρ∆r) (∆r is the width of a cell) is used to in-
terpolate between the optically thick region, where the radiation
pressure increases the effective sound speed since it contributes
to the restoring force and optically thin regions, where radiation
pressure plays no role.

For the opacity we use Kramer’s law,

κ = κ0(ρ/g cm−3)(T/K)−3.5, (15)

where κ0 = 5 × 1024 cm2 g−1. If the temperature is high enough
for the gas to be fully ionized, we can assume a lower thresh-
old for the opacity given by free electron scattering processes
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(Thomson scattering). The corresponding opacity has the con-
stant value κThomson = 0.335 cm2 g−1 (assuming a hydrogen mass
fraction of X = 0.675 for the gas composition) and is added to
Kramer’s opacity. Because we estimate the local cooling of the
disk via a blackbody radiation of temperature Teff, we need a
relation that links the effective temperature to the temperature
in the midplane of the disk. Therefore, we employ the relation
by Hubeny (1990) which is a generalisation of the grey atmo-
sphere (e.g. Rybicki & Lightman 1986) and approximates the
optical depth in the vertical direction of the disk. The relations
read (Suleymanov 1992)

T 4 = τeffT 4
eff (16)

τeff =
3
8
τR +

√
3

4
+

1
4τP

, (17)

where τR and τP (τ = κρH = 1
2κΣ) are the Rosseland and the

Planck mean optical depth (see also Kley & Crida 2008).

2.5. Viscosity

The mechanism that accounts for the angular momentum trans-
port in the BL region is still a matter of concern (Papaloizou
& Szuszkiewicz 1994; Narayan et al. 1994; Kato & Inagaki
1994; Godon 1995). The most likely driving force for the anoma-
lous viscosity in accretion disks with magnetic Prandtl numbers
of the order of unity is the magneto-rotational instability (e.g.
Balbus & Lesaffre 2008) that gives rise to the onset of turbu-
lence (Balbus & Hawley 1991, 1998; Balbus 2003) which acts
like a genuine viscosity on macroscopic scales. However, this
cannot be the case for the BL, since the magneto-rotational in-
stability is effectively damped out for a increasing rotation pro-
file Ω(r) (Godon 1995; Abramowicz et al. 1996). For lack of
a better representation, we assume that the angular momentum
transport in the BL is managed by turbulence of some kind (cf.
Pringle 1981). In that case we can use the classic α-prescription
by Shakura & Sunyaev (1973), which is a parametrisation for the
stresses caused by turbulence in an accretion disk and therefore
is still valid for MRI unstable disks, provided that a viable value
for the numerical parameter α is given. This α ansatz, which is a
frequently used expression for the disk viscosity is written as

ν = αcsH, (18)

where cs =
√

p/Σ is the isothermal sound speed. Unless stated
otherwise, Eq. (18) was used to calculate the viscosity in our
models. In the BL, the radial pressure scale height becomes
smaller than the vertical one. This is considered in the viscos-
ity prescription by Papaloizou & Stanley (1986), which reads

ν = αcs

[
1

H2 +
(dp/dr)2

p2

]−1/2

· (19)

We used Eq. (19) when we compared our calculations with that
of Popham & Narayan (1995) in Sect. 4.4.

3. Numerical methods

3.1. General remarks

The partial differential equations, Eqs. (3)–(5) and (12), are dis-
cretized on a fixed Eulerian grid using the finite differences
method and propagated in time using a semi-implicit-explicit

scheme. For this purpose a new framework, guided by the ZEUS
code by Stone & Norman (1992), has been programmed com-
pletely from scratch and tested extensively before it was used to
perform the calculations. To ensure a formal second-order accu-
racy in time and space, we employed a staggered grid in space
(see e.g. Tscharnuter & Winkler 1979) and a multistep procedure
for the time integration (operator-splitting, e.g. Hawley et al.
1984). The computational domain typically ranges from one to
two stellar radii,D = [R∗, 2 R∗], and is divided into 512 logarith-
mically spaced grid cells.

3.2. Implicit methods

For some source terms, a special treatment for the time integra-
tion is necessary, because using a time-explicit scheme would
constrain the time step considerably and slow down the simula-
tions. Hence those parts of the equations, namely the radial dif-
fusion (radiation transport) and the viscous torques and forces,
have to be solved with an implicit scheme that does not limit the
time step if we are looking for a stationary solution. In contrast
to an explicit time integration, the equations are now solved as-
suming the value of the physical quantity at the new time step
n + 1. This leads to a system of linear equations, which can be
written as a matrix-vector multiplication in a space of dimen-
sion N, where N is the number of active grid cells. However,
this system can become very large if we are using a large num-
ber of cells. Fortunately, in our one-dimensional case the use of
this implicit method only leads to a tridiagonal matrix, and the
equations can be solved easily.

3.3. The time step

One undesirable feature of explicit numerical methods in hy-
drodynamics is the limitation of the largest possible time step
(Courant et al. 1928). It must be limited with respect to the char-
acteristics of the system according to the relation known as the
CFL condition,

∆t = fC ·min j


∆r j∣∣∣u j

∣∣∣ + cs, j

 , (20)

where ∆r j is the extent of the cell j, u j its velocity, and cs, j the
sound speed. The minimum of all active cells is taken. Typically,
we use a Courant factor fC = 0.8 in Eq. (20).

3.4. Boundary and initial conditions

The modelling of the BL surrounding a star is a classical bound-
ary value problem, meaning that the solution we try to obtain
must satisfy not only the partial differential equations but also
the boundary conditions because of the finite space domain. In
mathematical terms those conditions are given as either Dirichlet
or Neumann boundary conditions where either a value or the nor-
mal derivative of a variable is specified.

Physically speaking, at the outer boundary of our computa-
tional domain, we have to allow for an incoming mass flux that
corresponds to the accretion of matter. Additionally, we require

the angular velocity to be Keplerian Ω(rout) =

√
GM/r3

out and
consider a pressure correction. At the inner boundary, where the
stellar surface is located, we set the angular velocity of the gas
to the stellar rotation rate Ω(rin) = Ω∗, i.e. we impose a no-slip
boundary condition in ϕ-direction. Instead, the radial velocity is
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not set to zero, but rather to a small but finite fraction of the
Keplerian velocity,

ur(rin) = F
√

GM∗/rin, (21)

in order to enable a mass flux out of the domain. For F we
choose a value much smaller than one, typically 10−5. This open
inner boundary is necessary to avoid the accumulation of mass
and allow for accretion onto the star. The value of F determines
how much of the stellar interior is taken into account in the sim-
ulation. The extreme case of F = 0 would imply that the whole
star is considered which does not make sense in this type of sim-
ulation. Our choice of F ensures that a sufficient part of the
stellar envelope is contained in the domain but not too much,
otherwise the temperatures become too high and slow down the
simulations. For testing purposes we have varied F and do not
find any differences in the results despite a small shift in radius.

The stellar radiation is taken care of by including the flux
F∗ = σSBT 4

eff
in the radiative diffusion routine as an inner bound-

ary condition. Because the temperature at rin is inside the star,
it is not known a priori and cannot be specified. Hence, a sim-
ple zero gradient condition for the temperature is assumed in all
other routines that require a temperature. Previous studies sug-
gest that the thermal boundary condition at the star is of great im-
portance for the BL (Regev & Bertout 1995; Godon et al. 1995).
We would like to point out that the influence of the incoming flux
is virtually nil, as test calculations have shown. Apart from the
Dirichlet conditions that have been shown above, for most other
physical variables we imposed zero gradient boundary condi-
tions, which means that the normal derivative at the boundary
equals zero (Neumann type).

Initially, we have to prescribe values for all variables. Here,
it is vital to ensure that the initial conditions are compatible with
the boundary conditions and are physically reasonable. We have
found that a reliable set of initial conditions is given by the
Shakura & Sunyaev (1973) disk solution (see e.g. Frank et al.
2002, for a compact representation), even though they are not
completely consistent with all boundary conditions. To avoid
any problems in this context, we have interpolated both regions
smoothly. For a given stellar mass M∗, radius R∗, temperature
T∗, and rotation rate ω∗, the solution will be given by the mass
inflow rate Ṁ and the viscosity parameter α.

3.5. Model parameters

In this paper, we focus on the BL around the white dwarf in
cataclysmic variable systems, and investigate its structure. We
computed several models, where we vary the mass of the white
dwarf and its rotation rate. We ran the simulations with the fol-
lowing three masses, M = 0.8 M�, 1.0 M�, and 1.2 M�, which
are typical white dwarf masses in cataclysmic variables. Another
important parameter that also determines the entire amount of
energy released in the accretion disk and BL is the radius of
the star. Here we used the mass-radius relation from Nauenberg
(1972). We imposed an effective temperature of T∗ = 50 000 K
that is, for example, consistent with the estimates of Sion et al.
(2010) for SS Cyg, where a mass accretion rate of Ṁ = 1.51 ×
10−8 M�/yr was assumed. Since we are interested in the ther-
modynamics of the BL, the rotation rate of the white dwarf is
an important parameter. It determines how much energy is dissi-
pated in the BL region and therefore has a major influence on the
temperature. We simulated a variety of models where the white
dwarf is non-rotating (Ω∗ = 0), fast rotating (Ω∗ = 0.8ΩK),
and in between. We took α = 0.01 for the viscosity parameter

throughout, which is probably too small a choice for the disk.
In the BL, however, the viscosity is supposed to be far smaller
than in the disk. Test calculations with α = 0.1 showed no major
structural differences compared to the models presented here,
except for the inflow velocity that reaches the sonic point for
models with high mass and low rotation rates. If we use Eq. (19)
instead of the classical α ansatz for the viscosity, the sonic point
is hit only for greater values of α. To avoid unphysical, super-
sonic infall velocities, it is possible to include a causality pre-
serving factor (e.g. Narayan 1992).

4. Results

4.1. The 1.0 M� model

First, we will describe the basic properties of the BL for our
standard model of a one solar mass white dwarf. In doing this,
we are going to emphasise the dependence of the structure and
thermodynamics on the rotation rate of the central star, a pa-
rameter whose exact value is still unclear in many systems. We
usually show five different stellar rotation rates (a fraction of
{0.0, 0.2, 0.4, 0.6, 0.8} of the Keplerian rotation rate at the stel-
lar surface) and use the abbreviation ω := Ω∗/ΩK(R∗).

4.1.1. Dynamic structure of the disk

Figure 1 shows the angular rotation rate of the gas in units of
the Keplerian rotation rate, ΩK =

√
GM∗/r3. We can clearly

see that outside the BL, for r/R∗ & 1.2, the gas rotates with
the Keplerian angular velocity. When moving farther inwards,
the gas rotates slightly super-Keplerian in order to compen-
sate the large inward-pointing pressure gradient that is present in
this region. Not until the gas is at a distance of less than a percent
of the stellar radius does its angular velocity decrease to connect
smoothly to the stellar rotation rate. The more the angular veloc-
ity differs from the Keplerian value, the more the gas loses radial
stabilisation via the centrifugal force. This is, however, compen-
sated by a large, now outward-pointing pressure gradient since
the star has a much higher temperature and density and so the
pressure is much higher than in the BL. Although the connec-
tion between the angular velocity of the gas and the star does not
involve discontinuities, the angular velocity strongly changes in
a very small region. The width of the BL is defined as the dis-
tance from the star (here R∗) to the point where the radial deriva-
tive of Ω(r) vanishes. We note that this point does not in general
coincide with the point where ∂/∂r(Ω/ΩK) = 0. Table 1 gives
an overview of the width of the BL for different stellar rotation
rates. We also note that R∗ is not defined unambiguously owing
to the continuous transition to the star, and the observed width
may depend on the value of F , see Eq. (21). With an increasing
stellar rotation rate, the width of the BL decreases up to ω = 0.2
at first. After that, however, it gets wider again. In general, the
width of the BL is governed by the viscosity, which in turn de-
pends on the temperature and the surface density for the case of
an α-prescription. An increasing temperature and surface density
leads to a broadening of the BL region. A look at Fig. 4, which
shows the temperature in the midplane of the disk, indicates, that
the temperature in the disk decreases with increasing stellar rota-
tion rate. This behaviour is in line with our expectations, since a
faster moving star means less friction and therefore less heating.
As a consequence of this overall temperature variation with ω,
the faster the rotation of the star, the smaller the width of the BL;
however, the surface density rises with increasing ω, as can be
seen in the inset in Fig. 3, because of an increasingly inefficient
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Fig. 1. Angular velocity Ω = uϕ/r in terms of the Keplerian angular
velocity for a central star with mass M∗ = 1.0 M� and five different
stellar rotation rates Ω∗, denoted by ω = Ω∗/ΩK(R∗). The plot depicts
two regions separated by a light grey bar that differ in the radial scaling
and enable us to show both the rapid variation in the BL and the constant
overall trend.

Table 1. Width of the BL for M∗ = 1.0 M� and different stellar rotation
rates ω = Ω∗/ΩK(R∗).

ω ∆r [R∗] umax
ϕ [cm s−1] β = Ωmax

ΩK(rmax)

0.0 0.0074 493 × 106 1.013
0.2 0.0072 493 × 106 1.012
0.4 0.0074 492 × 106 1.012
0.6 0.0079 492 × 106 1.011
0.8 0.0104 490 × 106 1.008

Notes. By definition, the BL ranges from the surface of the star to the
point where ∂Ω(r)/∂r = 0, i.e. where it has a maximum. Additionally,
the absolute value of uϕ = Ω · r at rmax is given as umax

ϕ .

mass transport through the disk (more mass can accumulate in
the disk). This is the reason for the turnaround of the trend at
ω = 0.2, when the BL starts to become broader again. Another
interesting feature is the comparatively large width of the BL for
ω = 0.8 that stands out both in Table 1 and Fig. 1, and does not
match the shape of the other models. This effect is caused by a
slightly different temperature evolution, as can be seen in the in-
set in Fig. 4. Here, as a result of reduced friction and hence less
energy release, the green line (representing ω = 0.8) is missing a
peak (compared to the other curves) and is wider than most other
temperatures over a small region.

The Mach number of the gas, which is defined as the quo-
tient of the radial velocity and the speed of sound Ma = |ur |/cs is
shown in Fig. 2. Since the radial velocity is negative throughout
the computational domain, in principle the Mach number out-
lines the velocity of the radially inward-falling material. While
the gas is moving inwards with a rather low velocity over most
parts of the disk, there is a distinct maximum of the radial ve-
locity in the BL. What drives the material to move inwards
more rapidly in the BL is the loss of angular momentum caused
by friction in the disk. Hence the radial velocity is increasing
strongly in the BL region, as can be observed in the inset in
Fig. 2. After peaking in the BL, the radial velocity decreases
again as the gas approaches the surface of the star. Here, the gas
slows down as it settles onto the atmosphere of the star, where
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Fig. 2. Radial Mach number of the gas for a stellar mass of 1.0 M�. The
Mach number is defined as a quotient of radial velocity and the sound
speed Ma = |ur |/cs. The different colours correspond to the different
stellar rotation rates ω = Ω∗/ΩK(R∗). The smaller box inside the graph
is a zoom in of the inner edge; the light grey frame denotes the zoom
area.
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Fig. 3. Surface density Σ ∼ ρH (log-scale) of the disk and a stellar mass
of 1.0 M� for five different stellar rotation rates ω = Ω∗/ΩK(R∗). The
inset is a zoom in of the inner edge; the light grey frame denotes the
zoom area.

the individual layers are stabilized by the pressure (hydrostatic
balance). The inflow velocity of the gas depends on how much
angular momentum can be removed from the material, which in
turn is dependent on the strength of the shearing. Accordingly,
the faster the stellar rotation rate, the weaker is the shearing in
the disk and hence the radial velocity should decrease with in-
creasing stellar rotation rate in the BL. We can observe this trend
in Fig. 2 where we can also see that the radial velocity is clearly
subsonic throughout the computational domain and especially
in the BL. Thus there are no problems concerning causality (e.g.
Pringle 1977) in our simulations because of the small value of α.

4.1.2. Thermal structure of the disk

In the previous section, we looked closely at the dynamical struc-
ture of the disk and the BL, which is determined by the radial
and azimuthal velocities. From an observational point of view,
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Fig. 4. Temperature Tc in the midplane of the disk, i.e. z = 0, for M∗ =
1.0 M�. The five models displayed differ in the stellar rotation rate ω =
Ω∗/ΩK(R∗). The inset is a zoom in of the inner edge; the light grey frame
denotes the zoom area. The small peak in the inset is a clear indication
of a hot BL.

however, we are much more interested in the thermodynamics
of the disk, since the quantity that we can actually observe, the
emitted radiation, depends on the temperature; therefore, we will
now explore the surface density and the temperature structure of
our models.

The surface density Σ for the 1.0 M� model is shown in
Fig. 3. We can observe a heavy depletion of material in the BL.
The surface density drops by approximately two orders of mag-
nitude compared to the weakly varying value in the disk. If we
go farther in, the surface density rises rapidly since we encounter
the surface of the star which has a density that is orders of magni-
tudes higher than in the disk. The reason for the strong decrease
of the surface density in the BL is the aforementioned increase
in inflow velocity. Since for the equilibrium state the mass ac-
cretion rate Ṁ is constant throughout the disk (see also Fig. 9
below), a local increase in inflow velocity leads to a reduced den-
sity at this point. The BL resembles a bottleneck with a higher
velocity and a lower density. In the disk the distinction between
models with different values of ω is very small; it is more pro-
nounced in the BL. The models with a slower rotating star have
a smaller surface density in the BL that is accounted for by the
greater inflow velocity.

Even more interesting than the density structure is the tem-
perature of the disk. In our one-dimensional models, we distin-
guish between the temperature in the midplane of the disk Tc
and the effective or surface temperature, which is close to the
disk temperature at τ ≈ 1. Figure 4 shows the midplane tempera-
ture for M∗ = 1.0 M� and five different stellar rotation rates. The
local heat production is proportional to the square of the shear.
Hence in the disk the temperature decreases with increasing ra-
dius r. In the BL, Ω reaches its maximum and the shear in the gas
vanishes; therefore, there is a location in the disk where the vis-
cous dissipation vanishes and the local heating is approximately
zero (apart from pressure work). For that reason, the temperature
must drop in the region where ∂Ω/∂r = 0, so in or near the BL.
The minimum of Tc does, however, not coincide with the max-
imum of Ω, since heat is transported radially through the disk
via advection and radiation. Furthermore, the cooling of the disk
through emission of radiation depends on the local optical depth
and hence is different at each location. On the other hand, after
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Fig. 5. Effective temperature Teff of the disk, calculated according to
Eq. (16). The plot shows five different models, all of which have the
same stellar mass of 1.0 M�, but different stellar rotation rates ω =
Ω∗/ΩK(R∗). The plot depicts two regions separated by a light grey bar
that differ in the radial scaling and enable us to show both the narrow
but very distinct peak of the effective temperature in the BL and the
nearly constant behaviour in the disk all in one graph.

the zero-gradient point of Ω, the shearing is very strong where
the angular velocity connects to the stellar rotation rate. As a
consequence, the temperature again rises, whereby the consid-
erably declined surface density compensates the strong shearing
to some extent. The little peak in Tc, which is located very close
to the star in the BL, is a result of the heat production in the BL
(see the inset in Fig. 4) and is a clear indication of a hot BL.
The influence of the stellar rotation rate on the temperature is
twofold. In the disk, the temperature is slightly hotter for faster
stellar rotation rates because of the larger surface density. This
trend is reversed in the area of the BL, where a smaller rota-
tion rate causes more shear and supersedes the influence of the
surface density. A special case is obviously given for very fast
rotating stars, as can be seen in Fig. 4 for ω = 0.8, where the BL
is broader and is missing a peak in the midplane temperature.
The overall temperature regime of 400 000 to 840 000 Kelvin is
very hot.

While the temperature shown in Fig. 4 corresponds to the
temperature in the midplane of the disk, we are particularly in-
terested in the emergent spectrum from the disk, which – in the
LTE approximation – is determined by the temperature on the
surface, see Eq. (16). The effective temperature Teff is shown in
Fig. 5 for the M∗ = 1.0 M� case. For outer parts of the simula-
tion domain, Teff changes only slightly and the difference in tem-
perature between various choices of ω is hardly noticeable. The
reason for the almost constant behaviour of the effective temper-
ature in the disk is the strong increase in the BL that somewhat
masks the variation in the disk. While the midplane tempera-
ture changes at most by a factor of 2 over the whole simulation
area, the effective temperature changes considerably more, by
a factor of 4–5. This is caused by a strong drop in the optical
depth in the BL by several orders of magnitude due to the drop
of the surface density. While, generally, the accretion disk is op-
tically thick, under certain circumstances, the BL can become
optically thin, since the dilution of matter is severe in this re-
gion. While the shear and the energy production are confined
to a small region called the dynamical BL, the release of the
produced energy occurs over a slightly wider area, called the
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Fig. 6. Scale height H (see Eq. (2)) of the disk for M∗ = 1.0 M� and five
different stellar rotation rates ω = Ω∗/ΩK(R∗). The disk is obviously
very thin and not flared. In the BL, it is puffed up to some extent, which
is, however, not unexpected. The inset is a zoom in of the inner edge;
the light grey frame denotes the zoom area.

thermal BL (Regev & Bertout 1995; Popham & Narayan 1995).
Therefore, the peak in Fig. 5 is less intense than the one in Fig. 4,
but instead it is wider because of the radial diffusion. According
to what has already been said above, the magnitude of the peak
of Teff in the BL depends on the stellar rotation rate to the ef-
fect that a slower rotating star causes more shear in the BL,
hence a higher energy dissipation and eventually a higher ef-
fective temperature.

Finally, we investigate the vertical extent of the disk.
According to Sect. 2.1, a measure for the height is the variable H,
which is the point where the density drops by a factor of 1/

√
e

compared to the midplane density. The scale height H(r) is de-
picted in Fig. 6 for the 1.0 M� model. The disk in the system
is, according to our simulations, rather thin with an aspect ratio
h = H/r of roughly h = 0.029 (arithmetic mean) and has a slope
of dH/dr ≈ 0.05. In the region of the BL, the disk height in-
creases noticeably because of the strong growth of temperature
in the BL that causes a high pressure which puffs up the disk
in the innermost region. Figure 6 confirms the picture of the BL
being a bottleneck that we introduced earlier. When approach-
ing the BL from the outside, the disk first starts to get thinner
and thinner until it suddenly grows in height. In the disk the ver-
tical extent is nearly identical for different ω, but in the BL it
clearly depends on the stellar rotation rate. The faster the star
spins, the less puffed out the BL is. We have already pointed out,
that the temperature depends on the stellar rotation rate. Since
the pressure depends on the temperature, the scale height in the
BL changes with different stellar rotation rates.

4.2. Dependence on the stellar mass

After having discussed the basic properties of the BL using the
example of a solar mass white dwarf, we now focus on the de-
pendence of the BL on the stellar mass. First, we will again
examine the dynamical structure of the BL (see Table 2 and
Fig. 12). The shape of the angular velocity profile is identical for

2 Additional figures can be found at: http://www.tat.physik.
uni-tuebingen.de/~hertfelder/BL2013.

Table 2. Width of the BL for three different stellar masses and the stellar
rotation rates of ω = 0.0 and ω = 0.8.

Model ∆r [R∗] ∆r [R∗] umax
ϕ [cm s−1]

ω = 0.0 ω = 0.8 ω = 0.0

M∗ = 0.8 M� 0.0086 0.0134 391 × 106

M∗ = 1.0 M� 0.0074 0.0104 493 × 106

M∗ = 1.2 M� 0.0066 0.0084 638 × 106

Notes. By definition, the BL ranges from the surface of the star to the
point where ∂Ω(r)/∂r = 0, i.e. where it has a maximum.

each of the three stellar masses. There is, however, a difference
in the width of the BL. The higher the stellar mass, the less broad
is the BL. Table 2 shows the width of the BL for the three differ-
ent stellar masses and two different stellar rotation rates, along
with the maximum value of Ω forω = 0.0. Here it becomes more
obvious that the width of the BL strongly depends on the mass of
the central star. The absolute value of the angular velocity also
depends on the stellar mass and varies significantly. The reason
for the decreasing width of the BL is the mass radius relation of
white dwarfs. The more massive the star is, the smaller the stel-
lar radius R∗ is. This causes a non-linear variation of gravity and
so affects the width of the BL. The Mach number stays more or
less the same and the inflow occurs subsonically throughout all
models.

The dynamical structure is affected by the mass of the cen-
tral star, and also the thermodynamics of the BL. To gain more
insight into this dependence, we first consider the surface den-
sity Σ for the different models. The general trend of the 0.8 and
1.2 M� models is closely related to that shown in Fig. 3. We note,
however, that the more massive the central star is, the higher the
surface density in the BL and in the disk is, for the same reason
as for the decrease of the BL width, namely a lower effective vis-
cosity. If the viscosity becomes smaller, the transport of matter
through the disk is not as effective as it is for a higher viscosity
because the shear viscosity drives the accretion of matter. Thus,
more matter can accumulate in the disk and the surface density
rises. Again, the minima of Σ are located at different radii, cor-
responding to different widths of the BL. Apart from these fea-
tures, the evolution of the surface density looks identical for dif-
ferent stellar masses. The midplane temperature, on the other
hand, shows considerable differences in magnitude between the
three models. As Table 3 shows, the 1.2 M� model is hotter than
the 0.8 M� by a factor of 1.7 throughout the BL and the disk.
This is due to the higher surface density in the high stellar mass
model. Since the viscous dissipation is proportional to the sur-
face density, an increasing Σ ensures an increase in the midplane
temperature. This effect prevails, although the viscosity is, as we
have seen, smaller than in the low mass models.

A direct comparison is shown in Fig. 7, where we have plot-
ted Tc for the three different stellar masses and ω = 0.4 in one
single diagram. This makes it clear how the midplane tempera-
ture increases overall with increasing stellar mass.

Table 3 also describes the effective temperature Teff for the
three different masses, whose general trend is given by Fig. 5.
As we have expected, the more massive the central star is, the
higher the effective temperature of the BL (and also the disk) is
and the harder the radiation emerging from the BL is, because of
the ratio of stellar mass and radius, which exclusively determines
the total amount of accretion energy that is released in the disk
and the BL. The total luminosity that can be extracted from the
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Table 3. Illustration of the midplane and effective temperature for the
models with 0.8 and 1.2 M�.

Midplane temperature Tc

peak [K]
M∗ [M�] Ω∗ [ΩK] BL disk
0.8 0.0 640 000 520 000

0.2 590 000 520 000
0.4 520 000 520 000
0.6 450 000 520 000
0.8 no peak 520 000

1.2 0.0 1 140 000 900 000
0.2 1 060 000 900 000
0.4 950 000 900 000
0.6 820 000 900 000
0.8 650 000 900 000

Effective temperature Teff

peak [K]
M∗ [M�] Ω∗ [ΩK] BL disk
0.8 0.0 400 000 64 000

0.2 360 000 64 000
0.4 300 000 64 000
0.6 235 000 64 000
0.8 165 000 64 000

1.2 0.0 690 000 125 000
0.2 625 000 125 000
0.4 540 000 125 000
0.6 440 000 125 000
0.8 300 000 125 000

Notes. The table states the maximum temperatures both in the disk and
in the BL for each stellar rotation rate.

process of accretion on a body with mass M and radius R is given
by

Lacc =
GMṀ

R
, (22)

where Ṁ is the mass accretion rate and G the gravitational con-
stant. The luminosity of the BL is at most one half of Lacc.
Therefore, the greater the relation M∗/R∗, the higher the ef-
fective temperature. The inverse mass-radius-relation of white
dwarfs enhances Lacc even more. We can also see that the width
of the thermal BL follows the trend of the dynamical BL. With
increasing stellar mass, the width of the peak of Teff decreases.
Again, we have plotted all three stellar masses in one diagram
(Fig. 8) that emphasizes the points mentioned above. To give
an overview of the radiation energy that corresponds to these
temperatures, we focus on two models that are located at the op-
posite edges of the parameter space. The ω = 0.0, 1.2 M� model
peaks at nearly 700 000 Kelvin. This corresponds to a black body
radiation spectrum where the maximum of the distribution is lo-
cated at a photon energy of 300 eV. The other model, where the
parameters are given by ω = 0.8, 0.8 M�, peaks at an effective
temperature of about 170 000 Kelvin. This corresponds to a pho-
ton energy of 73 eV at the maximum of the black body spec-
trum. The effective temperature, or in other words, the spectrum
emerging from the BL, is obviously a good way to try to deter-
mine the actual mass of the white dwarf in cataclysmic variable
systems.

Finally, we want to have a look at the vertical structure of
the disk. The scale height H of the different models again fol-
lows the trend of Fig. 6. The aspect ratio of the 0.8 M� model
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Fig. 7. Comparison of the temperature in the disk midplane Tc of the
three different models with stellar masses of 1.0, 0.8, and 1.2 M�. The
stellar rotation rate Ω has been chosen to amount to 0.4ΩK, as an illus-
trative case. It is clearly observable that with increasing stellar mass the
temperature in the disk also rises.
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Fig. 8. Analogous to Fig. 7, we compare the effective temperatures of
the three different stellar masses (1.0, 0.8, and 1.2 M�) in this plot.
Again, Ω = 0.4ΩK has been chosen as an example of the stellar ro-
tation rate. We note that the effective temperature rises with increasing
stellar mass.

is H/r ≈ 0.032, while the model with 1.2 M� is slightly thin-
ner with H/r ≈ 0.026. The solar mass model lies in between
with H/r ≈ 0.029, as has been said earlier. We can therefore
deduce that with increasing stellar mass, the vertical extent of
the accretion disk diminishes. This also holds true for the BL,
even though the midplane temperature is much higher in the high
mass model and accordingly the pressure will try to puff out the
BL with much more force. However, the gravitational field of
the central star exerts a force against the pressure and is strong
enough to outrange it. The disks are still not flared for all three
stellar masses.

4.3. Mass accretion rate and angular momentum flux

For a stationary state the continuity Eq. (3) reduces to Ṁ =
−2πrΣur, where Ṁ is the constant mass accretion rate that rep-
resents the amount of mass flowing through an annulus at a
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Fig. 9. Mass accretion rate Ṁ = −2πrΣur for M∗ = 1.0 M� and five dif-
ferent stellar rotation rates ω = Ω∗/ΩK(R∗). The imposed value equals
Ṁ = 1.51 × 10−8 M� yr−1. Since Ṁ is constant in a stationary state, this
plot is also an indication that a good equilibrium has been reached.

given radius per time. Since we imposed a mass accretion rate
of Ṁ = 1.51 × 10−8 M�/yr at the outer boundary, we require
Ṁ to attain this value throughout the disk if a steady state is
reached. The mass accretion rate after a simulation time of about
10 000 orbits at r = R∗ is shown as an example in Fig. 9 for
the 1.0 M� model. At first glance, the attained equilibrium state
looks very good and stable. The maximum deviation from the
imposed value is only about 4% for the heaviest white dwarf.
The most constant Ṁ is reached for the models that correspond
to ω = 0.8. Apart from the inner and outer boundary, where
Ṁ matches the imposed value to an accuracy of far less than
one percent, the agreement between the simulation and the im-
posed value is perfect. This holds true for any of the three stel-
lar masses. However, with decreasing stellar rotation rate and
increasing stellar mass the mass accretion rate starts to deviate
slightly from the constant value of 1.51 × 10−8 M�/yr. The de-
viations near the outer boundary, however, are induced by the
boundary conditions.

Another quantity that should attain a constant value in the
steady state, is the angular momentum flux J̇. It plays the role
of an eigenvalue in the stationary equations, whose value has
to be determined while solving the set of equations (Popham &
Narayan 1995; Kley & Papaloizou 1997). In our model, the total
angular momentum flux is composed of the angular momentum
carried in with the accreting material, and the angular momen-
tum transported by shear viscosity. Therefore, it is given as

J̇ = Ṁr2Ω + 2πr2σrϕ. (23)

Usually, the angular momentum (AM) flux is displayed as the
normalized, dimensionless j, which is J̇ from Eq. (23) divided
by the advective AM flux at the surface of the star, J̇∗ =
ṀR2

∗ΩK(R∗). This value is shown in Fig. 10 for the 1 M� star.
Again, good equilibrium states have been reached, since the de-
viations of j are very small. We also note the same trend as for
the mass accretion rate: with increasing stellar mass and decreas-
ing stellar rotation rate the deviations gain in strength. Since j
is an eigenvalue in the stationary equations, it should be con-
stant throughout the domain. For convenience, Ṁ is defined to
be positive when mass is flowing to the center of the accre-
tion disk and J̇ is positive for inward-moving angular momen-
tum (see Eq. (23)). Therefore, the net flux of angular momen-
tum is directed inward and the absolute value is slightly above
the advected angular momentum at the stellar surface and equals
the accreted angular momentum of the star. The mean values of
the normalized total angular momentum fluxes for ω = 0.0 and
ω = 0.8 are given in Table 4, along with the numerical value
of the corresponding J̇∗ in cgs-units. These values of j corre-
spond very nicely with those found by other numerical calcula-
tions, for example by Popham & Narayan (1995) who obtained
a value of j = 1.01 for a 0.6 M� mass white dwarf with a radius
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Fig. 10. Normalized angular momentum flux j = J̇/J̇∗, where J̇ is given
by Eq. (23) and J̇∗ = ṀR2

∗ΩK(R∗) is the advective angular momentum
flux at the surface of the star. Displayed is a stellar mass of 1.0 M� and
five different stellar rotation rates in Keplerian units ω. We note that j
should be constant in a stationary state.

of 8.7 × 108 cm and a mass accretion rate Ṁ = 10−8 M� yr−1.
Other deviations from the parameters used here are the usage
of a different viscosity prescription and α = 0.1. We have run
a test calculation with their set of parameters and were able to
reproduce j nearly perfectly.

The advected AM flux is pointing inward throughout the disk
since the radial velocity ur only attains negative values, that is,
matter is only moving to the center of the disk. The transport
of AM due to shear viscosity, on the other hand, changes its di-
rection at the zero-gradient location, which is the radius where
∂Ω/∂r = 0 (and also the beginning of the BL, coming from
the outside). Thus, in the disk, angular momentum is transported
outward by the shear viscosity, while in the BL, it is transported
inward. The sum of J̇adv and J̇visc remains constant. This means
that in the disk, where J̇visc < 0, the advected angular momen-
tum flux must be greater than the total flux, J̇adv > J̇. In the
BL, however, the viscous AM flux becomes positive and there-
fore J̇adv < J̇. At the inner boundary, J̇adv drops to nearly zero
because ur drops to nearly zero. Hence, J̇visc must be approx-
imately equal to J̇ although there is only very weak shearing.
Here, νΣ becomes very large, since the radial velocity is very
small and the temperature is very high, which produces a high
viscosity. If we compare the models with different stellar masses,
we find that J̇∗ gets smaller with increasing stellar mass (see
Table 4). Two points affect the absolute value of J̇∗ for different
stellar masses. On the one hand, there is the mass-radius-relation
of white dwarfs, meaning that with increasing mass, the stellar
radius gets smaller. On the other hand, with increasing stellar
mass, the Keplerian angular velocity also increases. Both effects
together cause J̇∗ to decrease only weakly with increasing stellar
mass. The values of j also decrease with increasing stellar mass.
While J̇adv gets slightly bigger with increasing stellar mass (Ṁ is
equal for all models and equals the imposed value while the an-
gular velocity increases), J̇visc also has to be larger to yield a
smaller value of j. The reason for the increasing AM transport
by viscosity is that the disk has a higher surface density and mid-
plane temperature and thus a greater viscosity. We also observe
a clear trend concerning the various values of j for different stel-
lar rotation rates ω and constant stellar mass. With increasing
stellar rotation rate Ω∗, j clearly decreases, as it also does with
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Table 4. Normalized angular momentum flux j for three different stellar
masses and two different stellar rotation rates.

Model j(ω = 0.0) j(ω = 0.8) J̇∗ [cm2 g s−2]

M∗ = 0.8 M� 1.0187 1.0155 2.6088 × 1035

M∗ = 1.0 M� 1.0164 1.0135 2.5846 × 1035

M∗ = 1.2 M� 1.0140 1.0119 2.3915 × 1035

Notes. The numbers shown are a constant fit to the results.

increasing stellar mass and constant rotation rate. Both trends
were also found by Popham & Narayan (1995). From Eq. (23)
we deduce that in the disk, J̇adv must be nearly the same for
every ω. In the BL, by contrast, it increases with higher stellar
rotation rate since Ω does not drop as much. It is harder to make
a reliable point concerning J̇visc. In the disk, however, both the
midplane temperature and the density are slightly greater for in-
creasing ω (see Figs. 3 and 4), yielding a higher viscosity and
hence a greater J̇visc. This explains the smaller values of j in the
disk. In the BL, however, the situation is not as clear, since the
surface density increases with ω while the midplane temperature
decreases.

4.4. Comparison with other BL models and equatorial radius
increase

In this section we put our simulations in context with other
work, that has been done in the field of BLs. As has been
mentioned before, our results are closely related to those pre-
sented in Popham & Narayan (1995, hereafter PN95), at least
qualitatively. However, the approach we took is quite differ-
ent from this work. While Popham & Narayan have used the
time-independent equations and performed stationary calcula-
tions, we have also propagated the physical quantities in time.
Therefore, we are able to study time-dependent phenomena as
well and we are not limited by the prerequisite that a station-
ary state exists for the given choice of parameters. Also, as we
have seen in the last section, the BL is in permanent motion,
even though most physical quantities do not change percepti-
bly. We have seen this by analysing the constant parameters Ṁ
and j. Other differences involve the treatment of the radiation in
the equations. While the authors of the quoted publication have
taken care of the radiation field by adding an expression to the
gas pressure, hence defining a total pressure, we have explicitly
added the radiation force term in the momentum equation and
a special pressure work term in the energy equation, both in the
flux limited diffusion approximation. Although both approaches
are identical in the optically thick limit, this is not necessarily
the case for the optically thin and transition regions.

In order to compare our results quantitatively with the com-
putations of Popham & Narayan (1995), we ran a set of simula-
tions with the same parameters, the basis of which is their stan-
dard model. It is composed of a 0.6 M� white dwarf with a radius
of 8.7 × 108 cm and a mass accretion rate of Ṁ = 10−8 M�/yr.
The white dwarf does not rotate and they used a special vis-
cosity prescription (see Eq. (19)) and a α-parameter of 0.1.
For the standard model, we found a dynamical BL width of
∆r = 1.017 R∗, which is exactly the same as in PN95, and an AM
flux of j = 1.004, as opposed to jPN95 = 1.00994. The dynam-
ical quantities, viz. Ω and ur, match the calculations of PN95
very closely (∼1%). Only the peak value of the infall velocity
deviates by about 10%. The peak position, on the other hand,
is accurate to about 0.4%. The good agreement is also reflected

in the thermodynamical quantities, namely the disk and the sur-
face temperatures Tc and Teff. The second has a peak value in
the BL of 227 000 K and about 54 000 K in the disk. Both tem-
peratures agree to approximately one percent with the results of
PN95. While the peak position of the midplane temperature Tc
accurately matches that of PN95, our Tc as a whole is about 30%
hotter. It is, however, Teff that determines the emergent spectra of
the BL and the disk, and since we find a very good match here,
we conclude that our simulations are in very good agreement
with the results of PN95.

Starting from the standard model described above, we per-
formed the same Ω∗ parameter study as in Popham & Narayan
(1995). We have done this in particular to state an important
point that has not been taken into account in the simulations
shown above. Since the white dwarf flattens out considerably
with increasing Ω∗, in principal we have to consider an equato-
rial radius increase. The radius of a rotating white dwarf in turn
has to be calculated from stellar structure simulations. However,
one finds (see e.g. Hachisu 1986) that for moderately rotating
white dwarfs (ω . 0.8), R∗ increases at most by a factor of ∼1.4.
The change in stellar radius affects the effective temperature of
the BL and the disk through Eq. (22), yielding slightly smaller
values. This is in agreement with the standard solution for accre-
tion disks, where the radius enters the effective temperature to
the power −3/4. Because of the non-linear variation of gravity,
the width of the BL also changes somewhat. Owing to the minor
effect of the small radius increase and since the majority of white
dwarfs are supposed to be slow rotators (Livio & Pringle 1998;
Sion & Godon 2012), we have neglected this effect in the simu-
lations above. Nevertheless, we want to illustrate the equatorial
radius increase on the basis of the fastest rotating white dwarf in
the aforementioned Ω∗ study, which has a rotation rate in terms
of the fraction of the breakup rotation rate of ω = 0.86.

The width of the dynamical BL changes from ∆r ≈ 1.018 R∗
for the model with equatorial radius increase (M1, R∗ ≈ 1.25 ×
109 cm) to ∆r ≈ 1.017 R∗ for the model without an increase in
radius (M2), i.e. R∗ = 8.7 × 108 cm. This is a variation of about
one per mill. The difference concerning the normalized AM flux
j between both models is even smaller, where jM1 = 1.0038 and
jM2 = 1.0033. The agreement of the angular velocities is very
good, as can be seen from the width of the BL. The radial veloc-
ities of both models do match each other very closely, as well.
However, the absolute peak value of M2 is about 15% greater
than that of M1. If instead we compare the Mach numbers, the
deviation shrinks to about 1%, but the differing radii manifest
themselves more obviously in the disk and effective temperature
of the models. Thus, the disk temperature Tc of model M2 is
about 30% higher throughout the whole domain which comes
to approximately 40 000 K. This is due to the greater gravita-
tional pull for smaller radii. We also find the same 30% devia-
tion in the surface temperature Teff, although here it accounts for
only 13 000 K because of the lower temperature regime of the
surface temperature. Apart from this vertical shift, both graphs
are identical, meaning that the peak is at the same location and
the thermal BL has the same radial extent. Model M1 peaks at
∼65 000 K in the BL.

Godon et al. (1995) used a time-dependent spectral numeri-
cal code and performed one-dimensional calculations of the BL
that are closely related to ours. The aim of their simulations was
to investigate the influence of the thermal inner boundary con-
dition, which can lead to both cool and hot BLs, depending on
whether the temperature is held fixed at the inner boundary or
the flux of the star is fed into the computational domain. We
have performed a simulation for the case of flux BC with the
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same parameter choice as in Godon et al. (1995), their model 3,
and were able to reproduce the results very closely.

4.5. Simulations with larger domain

For the Navier-Stokes equations it is still uncertain whether the
same solution is reached for a small, bounded domain as for an
unbounded domain. Of course, we cannot simulate our problem
on an unbounded domain. We can, however, prove that the solu-
tion we presented above does not depend on the choice of the
domain. In order to do this, we ran a test simulation, where
we enlarged the computational domain by a factor of 10, so
that it reaches from r = 1 R∗ up to r = 10 R∗. Except for
the number of grid cells, all parameters were chosen accord-
ing to the 0.8 M�, 0.4ΩK model. We find a nearly perfect agree-
ment between the models with the small and the large domain.
Differences are, apart from the boundaries, nearly imperceptible,
except for the disk temperature, where the larger domain over-
estimates the peak temperature in the BL by approximately 5%.
This is, however, due to the lower resolution of the model in this
region.

Finally, to show the agreement of our models with the stan-
dard solution for accretion disks by Shakura & Sunyaev (1973),
we compare our results with the analytically derived formulae
for thin accretion disks. Since these equations are supposed to
be a good approximation in the disk, we used the model with the
large domain for the comparison, so that we could also compare
both solutions in the disk over a farther region. The equations of
a Shakura-Sunyaev-type solution can, for example, be found in
Frank et al. (2002). In these equations, we have modified the typ-
ical factor [1−(R∗/R)1/2] by a factor of the form [1− j(R∗/R)1/2],
where j is the normalized angular momentum flux. The solution
cuts off not at R∗, but a little farther outside (∼1.02 R∗). We find
that the S-S-type solution provides a very good approximation
of the physical variables in the disk. In the BL the standard solu-
tion is insufficient. We also find that the surface temperature of
our simulation peaks at r = 1.4092 R∗ in the disk (there is also a
far more distinct peak in the BL). The S-S standard solution for
the surface temperature reads

T (r) =

{
3GM∗Ṁ
8πr3σSB

[
1 − j

(R∗
r

)1/2]}1/4

. (24)

If we plug j = 1.0175 into Eq. (24), which is the normal-
ized angular momentum flux for this simulation, we find that
the above function T (r) has a maximum at r ≈ 1.4093. Thus,
our simulation is in perfect agreement with the theoretically de-
rived formula. The temperature in Eq. (24) peaks at a value of

Tmax ≈ 0.475T∗, where T∗ is defined by T∗ =
(

3GM∗Ṁ
8πR3∗σSB

)1/4
.

According to (24), for our model this means that the tempera-
ture peaks at Tmax = 74 406 K. The simulation shows a temper-
ature of T = 74 335 K of the peak of the surface temperature
in the disk. Again, this is in perfect agreement with the theoreti-
cal value. Having matched the other quantities of our simulations
against the S-S standard solution as well, we come to the conclu-
sion that outside the BL, our simulations are perfectly described
by the standard solution.

5. Summary and conclusion

We have presented new models of the structure of the BL around
white dwarfs in compact binary star systems. One-dimensional,

time dependent radial models have been constructed which in-
clude radiative diffusion in the radial direction, vertical cooling
from the disk surfaces, and radiative pressure effects.

For a fixed mass accretion rate of Ṁ = 1.51 × 10−8 M�/yr,
which corresponds to systems in outburst, we have analysed the
BL for different masses and rotation rates of the white dwarf.

The strong shear in the BL region leads to an enormous en-
ergy release and to surface temperatures of a few hundred thou-
sand Kelvin. For a non-rotating white dwarf (with 1 M�) the
maximum temperature is about 500 000 K, while for a star ro-
tating with ω = 0.8 of the break-up velocity the maximum is
about 200 000 K. Hence, knowledge of the white dwarf mass, for
example through a dynamical mass estimate of the binary star,
and of the mass accretion rate, allows an estimate of the stel-
lar rotation rate through the observed peak temperatures. Radial
diffusion of energy leads to a more extended thermal BL with
a width of typically 0.02 to 0.05 R∗. The models for slow rota-
tion showed a tendency for instability due to the very high tem-
peratures, small vertical thicknesses, and resulting low optical
depths.

For the viscosity we use the α-parametrisation with α =
0.01. For this value, the radial velocity remains subsonic
throughout with maximum radial Mach numbers of 0.35 for
ω = 0 and 0.18 for ω = 0.8. A higher value of α = 0.1 left
the disk structure unchanged and Mach numbers close to unity
within the BL.

Varying the stellar mass leads to hotter BL for larger masses
(and smaller radii) and cooler BL for smaller masses. Hence,
when trying to infer stellar parameter through an analysis of the
BL radiation one is faced with an ambiguity that models with
different combinations of R∗ and ω∗ may yield similar peak tem-
peratures. There is the indication, however, that the width of the
thermal BL is different in these cases, such that the model spec-
tra will lead to different results. In this paper we did not calculate
synthetic, theoretical spectra for our numerical models, but leave
that for a future paper.

The validity of our simulations has been demonstrated con-
vincingly by comparing the results with related calculations and
with the standard solution for thin accretion disks by Shakura
& Sunyaev (1973). We found very good agreement with our re-
sults, both in the disk where the standard solutions holds true,
and in the BL, where we were able to reproduce basic features
shown in other works and match their results to an accuracy of
about one percent for the dynamical and observed quantities. We
also showed that our results are independent of the computa-
tional domain and the resolution. Simulations that have the same
parameters, except for the simulation area, do match each other
perfectly.

An equatorial radius increase due to a flattening of a fast
rotating white dwarf in our simulations showed the following
results. Even for the unlikely case of a rotation rate of 86% of
the breakup rotation rate, the variation of the physical quantities
that differ most is in the range of 30%, according to whether we
take the flattening into account or not. The width of the thermal
BL, which is also important for the emergent spectra, does not
change perceptibly, however. For a 0.6 M� white dwarf, the shift
in the effective temperature is of the order of 10 000 K.

Analysing the data of our simulations, we also found that
the consideration of radiation energy is indeed necessary in our
models. We see this from the radiation pressure Prad = aT 4/3,
which becomes comparable to the thermal pressure P in the BL
and even exceeds it by a factor of the order of unity for a small
radial extent. If Prad is not taken into account in the simulations,
the effective temperature peaks at far higher temperatures and
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the width of the thermal BL is distinctly smaller because of the
lack of the widening effect of Prad.

Owing to the slim disk approximation, our models do not al-
low us to answer the question of how the material settles onto the
central white dwarf. This question can only be answered by two
dimensional r-z simulations, similar to those by Balsara et al.
(2009) but with radiative transport (Kley 1991). The strong shear
in the BL can lead to unstable behaviour when considering the
ϕ-direction, as described by Belyaev et al. (2012) for isothermal
disks. This behaviour could not be found in our simulations as
they are purely radial. The next step would be to extend these to
two-dimensional r-ϕ disks.
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ABSTRACT

Context. Disk accretion onto weakly magnetized white dwarfs (WDs) in cataclysmic variables (CVs) leads to the formation of a
boundary layer (BL) between the accretion disk and the WD, where the accreted matter loses its excess kinetic energy and angular
momentum. It is assumed that angular momentum is effectively transported in the BL, but the transport mechanism is still unknown.
Aims. Here we compute detailed model spectra of recently published optically thick one-dimensional radial BL models and qualita-
tively compare them with observed soft X-ray/extreme ultraviolet (EUV) spectra of dwarf novae in outburst.
Methods. Every considered BL model with given effective temperature and surface density radial distribution is divided into a number
of rings, and for each ring, a structure model along the vertical direction is computed using the stellar-atmosphere method. The ring
spectra are then combined into a BL spectrum taking Doppler broadening and limb darkening into account.
Results. Two sets of model BL spectra are computed, the first of them consists of BL models with fixed WD mass (1 M⊙) and various
relative WD angular velocities (0.2, 0.4, 0.6 and 0.8 break-up velocities), while the other deals with a fixed relative angular velocity
(0.8 break-up velocity) and various WD masses (0.8, 1, and 1.2 M⊙). The model spectra show broad absorption features because of
blending of numerous absorption lines, and emission-like features at spectral regions with only a few strong absorption lines. The
model spectra are very similar to observed soft X-ray/EUV spectra of SS Cyg and U Gem in outburst. The observed SS Cyg spectrum
could be fitted by BL model spectra with WD masses 0.8−1 M⊙ and relative angular velocities 0.6−0.8 break up velocities. These
BL models also reproduce the observed ratio of BL luminosity and disk luminosity. The difference between the observed and the
BL model spectra is similar to a hot optically thin plasma spectrum and could be associated with the spectrum of outflowing plasma
with a mass loss rate compatible with the BL mass accretion rate.
Conclusions. The suggested method of computing BL spectra seems very promising and can be applied to other BL models for
comparison with EUV spectra of dwarf novae in outburst.

Key words. accretion, accretion disks – stars: dwarf novae – radiative transfer – methods: numerical – X-rays: binaries

1. Introduction

The importance of energy release between an accretion disk and
a central object with a surface was realized almost immediately
(Lynden-Bell & Pringle 1974) after the introduction of modern
accretion disk theory (Shakura & Sunyaev 1973). Later a sim-
ilar one-dimensional (1D) boundary-layer (BL) theory was de-
veloped (Pringle 1977; Pringle & Savonije 1979; Tylenda 1981;
Regev 1983; Bertout & Regev 1992; Regev & Bertout 1995;
Godon et al. 1995; Popham & Narayan 1995). Here we mainly
consider BLs around white dwarfs (cataclysmic variable stars
(CVs), see review in Warner 2003) and describe a few key points
of BL theory.

Depending on the accretion rate, Ṁ, a BL can be optically
thin (Ṁ < 1016 g s−1) or optically thick (Ṁ > 1016 g s−1)
(Pringle & Savonije 1979). The BL optical thickness also de-
pends on the mass and angular velocity of the white dwarf (WD),
as well as on the value of turbulent viscosity in the BL (Popham
& Narayan 1995; Collins et al. 2000a). For the description of
optically thick BLs, two qualitatively different approaches were
suggested, which reduced the problem to a 1D model. In the
first approach, the BL is considered as the inner part of the

1D axi-symmetric accretion disk (Pringle & Savonije 1979;
Regev 1983; Popham & Narayan 1995) with no vertical com-
ponent of the velocity. The condition imposed on the BL at the
inner boundary is that it rotates at the stellar equatorial velocity.
Therefore, the accreting matter has to decelerate and release its
excess energy in a relatively narrow (a few percent of the inner
disk radius) ring. Most of this energy is radiated away, but part
of it can be advected into the WD (Popham 1997; Godon 1997),
deposited to the outflow (Mauche & Raymond 2000), and can
accelerate the outer layers of the WD forming a fast rotating belt
(Long et al. 2006). In contrast, in the second approach, the matter
keeps its nearly Keplerian velocity at the central object’s equator
and spreads over the surface (Inogamov & Sunyaev 1999). The
spreading matter loses its kinetic energy gradually due to fric-
tion with the more slowly rotating surface of the central star and
radiates the released energy mainly in two bright high-latitude
belts. Initially the spreading layer model was developed for BLs
around neutron stars (Inogamov & Sunyaev 1999), but later it
was extended to the WD case, too (Piro & Bildsten 2004b).

Together with the difference in geometry, the description of
the viscosity, which provides a strong coupling of rings of matter
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moving with different velocities and an effective thermal dissi-
pation of the lost energy, is different in both approaches. In the
first model the usual α prescription for accretion disks is used,
which means that the rϕ-component of the viscosity stress ten-
sor is parameterized by the total pressure P at a given point as
wrϕ = αP (Shakura & Sunyaev 1973) or, almost equivalently,
a similar parametrization of kinematic viscosity, να, is used.
In the second approach the α viscosity is completely ignored
and only the friction between the high-velocity spreading matter
and the dense and relatively cool stellar envelope is considered.
The corresponding component of the specific frictional force,
fsl = αb ρbv

2
sl, is again scaled using the matter density at the bot-

tom of the spreading layer, ρb, and the relative spreading matter
velocity, vsl (Inogamov & Sunyaev 1999). The estimated value
of αb is relatively low, about 10−3 (Inogamov & Sunyaev 1999).
Detailed consideration of this problem shows that the matter de-
celeration due to friction with the underlying stellar envelope is
not trivial and has to be investigated more carefully (Inogamov
& Sunyaev 2010).

It is clear from both viscosity descriptions that we do not
know the physics of kinetic energy loss and angular momen-
tum transfer in BLs (see, e.g., Kato & Inagaki 1994; Narayan
et al. 1994; Godon 1995a). The magneto-rotational instability
(MRI; Velikhov 1959; Chandrasekhar 1960; Balbus & Hawley
1991), which is usually considered as a physical realization of
the α viscosity, cannot operate in the case of angular velocity de-
crease taking place in BLs (Godon 1995a). Recently, Belyaev &
Rafikov (2012) and Belyaev et al. (2012, 2013) have suggested a
new physical model for an angular momentum transport in BLs
based on acoustic instabilities. Various hydrodynamical instabil-
ities, beginning with simple shear instabilities (Kippenhahn &
Thomas 1978), were also considered before as a way of angu-
lar momentum transport (see the review in Belyaev & Rafikov
2012).

Another important feature of BLs is their 3D nature. A full
3D treatment is important to account for a correct turbulent vis-
cosity description. But BL models that use a parametrization
of the turbulent viscosity could be considered as axisymmet-
ric 2D models. The first attempts to describe the BL around the
WD using a 2D time-dependent hydrodynamical approach were
performed many years ago (Robertson & Frank 1986; Kley &
Hensler 1987; Kley 1989). The importance of the viscosity pre-
scription was also demonstrated (Kley 1991). Recently, this kind
of computation was repeated with higher, albeit insufficient tem-
poral and spatial resolution without (Fisker & Balsara 2005) and
with rudimentary radiation treatment (Balsara et al. 2009). These
investigations have confirmed that matter is spreading over the
WD surface for optically thick BLs.

Astrophysical observations give the possibility to constrain
the correct description of angular moment transport and energy
dissipation in BLs. It is necessary to compare properties of a
mature BL model with observed features. There are two ways
for this kind of comparison. The first one is to investigate flux
variability, which is probably connected with BLs, using a noise
power spectrum approach, for instance van der Klis (1989).
There are a lot of observational data about rapid flux variabil-
ity in low-mass X-ray binaries (LMXBs), such as quasi-periodic
oscillations (QPOs) and power density spectra (van der Klis
2000). The cumulative data about rapid variability of CVs, es-
pecially in the optical band, is even larger (see, e.g., Patterson
1981; Warner 1986, 2003; Warner & Pretorius 2008, and ref-
erences therein). Two types of rapid oscillations were distin-
guished (Robinson & Nather 1979), namely high-degree coher-
ent oscillations with relatively short periods (∼7−70 s) in dwarf

nova outbursts (DNOs), and less coherent quasi-periodical oscil-
lations (QPOs) with longer periods (up to tens of minutes). The
amplitudes of variability for both DNOs and QPOs are relatively
low in the optical band (<0.01 mag). On the other hand, the am-
plitude of these oscillations in X-rays can be much greater (tens
of percent, Cordova et al. 1984; Jones & Watson 1992). It is in-
teresting that the coherent oscillations in SS Cyg are observed
in soft X-rays, but not in hard X-rays (Swank 1979; Jones &
Watson 1992). This fact supports the hypothesis that the coher-
ent oscillations might be connected with an optically thick BL
that could be responsible for the soft X-ray radiation of SS Cyg
during outburst. There are a few relatively simple models to
explain DNOs and QPOs (see, e.g., Popham 1999; Warner &
Woudt 2002; Piro & Bildsten 2004a; Godon 1995b; Collins et al.
1998, 2000b), and part of them are connected with the existing
BL models.

The second way is a comparison of observed emergent spec-
tra of close binary systems with predicted spectra of accre-
tion disks and BLs. Emergent spectra could be computed for
BL models with the simple local α-viscosity, because those mod-
els consider energy release and predict some bolometric radia-
tion flux distribution over the BL. BL model spectra in black-
body approximation were computed by many authors (see, e.g.
Tylenda 1977; Kley 1991; Popham & Narayan 1995). The con-
tribution of BL radiation to the FUV spectra of some CVs was
also taken into account by computing models of BL rings us-
ing the stellar-atmosphere method (Godon & Sion 2011; Godon
et al. 2012).

Luminous LMXBs (with L > 0.05−0.1 LEdd) with neutron
stars show relatively soft and wide X-ray spectra, which can be
represented to first approximation by two blackbodies with tem-
peratures kT about 1 keV and 2.5 keV (Mitsuda et al. 1984).
It is possible to assume that the first component corresponds to
the accretion disk, and the second one corresponds to the BL.
Study of X-ray variability helped to distinguish between these
two components (Gilfanov et al. 2003; Revnivtsev & Gilfanov
2006). These authors extracted the spectra of the strongly vari-
able component of the observed X-ray flux in a few LMXBs and
found that they are very similar for all the investigated sources
and that they can be described by a comptonized plasma spec-
trum with kT ≈ 2.4 keV and electron scattering optical depth
τe ≈ 5−7. They connected these high-variability components of
the X-ray flux to the BL emission. The spectra of these com-
ponents were described by model spectra of spreading layers
(Suleimanov & Poutanen 2006). Another reference to the va-
lidity of the hypothesis that the BLs around neutron stars are
spreading layers was presented by Revnivtsev et al. (2013). The
high-variability spectral component of the X-ray transient source
XTE J1701-462 keeps the same spectral shape when the bolo-
metric luminosity varies by a factor of twenty. The maximum
temperature of this component (Wien tail color temperature) is
about 2.4−2.6 keV and coincides with the maximum color tem-
perature of the type I X-ray bursts of the same source. It is be-
lieved that the latest color temperature of a burst corresponds to
the Eddington luminosity (see, e.g., review Lewin et al. 1993).
Therefore, most probably, the BLs in LMXBs consist of a part of
the neutron star surface that radiates at the Eddington limit with
the emitting area being proportional to the luminosity, as it was
predicted by the spreading layer model (Inogamov & Sunyaev
1999).

X-ray and extreme ultraviolet (EUV) radiation of CVs,
which can be associated with BL emission, is much more diverse
and a univocal interpretation is difficult (see, e.g., Patterson &
Raymond 1985a,b). Blackbody approximation of the optically
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thick BL model spectra predicts a luminous soft X-ray/EUV
component with temperature 200−500 kK (Pringle & Savonije
1979; Popham & Narayan 1995; Collins et al. 2000a; Piro &
Bildsten 2004b; Hertfelder et al. 2013) in the spectra of all
high mass-accretion rate CVs without significant magnetic field
(dwarf novae in outburst and nova-like stars). In fact, only a few
of them have this kind of component in their spectra, e.g. SS Cyg
and U Gem in outburst (Cordova et al. 1984). The X-ray spec-
tra of other non-magnetic CVs are rather hard (van Teeseling &
Verbunt 1994; van Teeseling et al. 1996) and can be described
by the model of a cooling flow with temperatures kT from a few
keV up to tens of keV (Done et al. 1995; Mukai et al. 2003;
Baskill et al. 2005). This kind of radiation is natural for opti-
cally thin BLs (Pringle & Savonije 1979), or even for the inner
hot accretion flow (Revnivtsev et al. 2012) to be expected for
dwarf novae in quiescence, but requires some non-trivial expla-
nation for high mass-accreting CVs, like V603 Aql (see, e.g.
Patterson & Raymond 1985b). Formally, Popham & Narayan
(1995) have found that the transition to the optically thin regime
in the model BLs could be reached at sufficiently high mass ac-
cretion rates. But their results are questionable because they un-
derestimated the Rosseland “true” opacity by at least two orders
of magnitude, using Kramers opacity kkr = k0 ρT

−3.5 cm2 g−1

with k0 = 6.6×1022. The more realistic coefficient is much larger,
k0 = 5 × 1024 (Frank et al. 2002).

At present time, soft X-ray/EUV components were found
in four dwarf novae in (super-) outbursts: SS Cyg (Cordova
et al. 1980a, 1984; Mauche et al. 1995; Mauche 2004), U Gem
(Cordova et al. 1980b, 1984; Long et al. 1996), VW Hyi
(Mauche 1996), and OY Car (Mauche & Raymond 2000). The
high-inclination system OY Car shows mainly broad emission
lines arising due to resonance scattering in the strong disk wind
(Mauche & Raymond 2000). The high-resolution spectra of the
other CVs, obtained by EUVE and Chandra observations, show
numerous broad absorption- and emission-like details. These
spectra are similar to soft X-ray spectra of supersoft X-ray
sources (Lanz et al. 2005; Rauch et al. 2010) and also have to
be modeled using stellar model-atmosphere methods. The first
attempt to fit the soft X-ray spectrum of SS Cyg in outburst
(Mauche 2004) by hot LTE model-atmosphere spectra showed
the potential for success of this approach (Suleimanov et al.
2013).

With the work at hand, we start to model the various
BL models using the stellar-atmosphere method and a compari-
son of the results with the properties of observed soft X-ray/EUV
spectra of CVs mentioned above. Here we present the model
spectra of particular 1D hydrodynamic BL models that were
computed recently by Hertfelder et al. (2013).

2. Method

Our work is based on the 1D models of BLs between opti-
cally thick accretion disks and WDs that were computed in
our previous work (Hertfelder et al. 2013). Models are con-
sidered in a cylindrical coordinate system (z, ϕ, R), being ax-
isymmetric (independent of ϕ) and vertically averaged (over
z-coordinate). They were computed for a fixed mass-accretion
rate Ṁ = 1.5×10−8 M⊙ yr−1, three different values of WD mass,
MWD = 0.8, 1, and 1.2 M⊙, and five values of WD an-
gular velocity, ωWD = 0, 0.2, 0.4, 0.6 and 0.8 ωK, where
ωK is the Kepler angular velocity ω2

K = GMWD/R
3 at the

WD radius RWD. WD radii were calculated using the Nauenberg
(1972) relation. An increase of equatorial radii due to rota-
tion was ignored. A simple α prescription for the viscosity να

was used according to Shakura & Sunyaev (1973), see details in
Hertfelder et al. (2013):

να = αa2ω−1
K , (1)

where a is the sound speed. We note that ωK is taken for the
current BL radius, however, the radial extension of model BLs
is low and ωK for a given model is almost constant. A relatively
low value of the α parameter (α = 0.01) is assumed for all mod-
els in order to avoid supersonic radial motions.

For every 1D model we consider the distribution of the fol-
lowing physical parameters along the radial coordinate R: effec-
tive temperature Teff(R) (or, equivalently, the total radiated flux
F0(R)), surface density Σ0(R), BL half-thickness H0(R), and ro-
tation velocity vϕ(R). The following steps have to be performed
to compute the model emergent spectrum:

– Divide the BL model in a number of rings with equal
luminosity.

– Compute a gray model for each ring along the vertical coor-
dinate z.

– Starting from the gray model, compute a model of the each
ring using model atmosphere methods together with the local
emergent spectrum.

– Sum up the local spectra to a total BL spectrum taking the
rotation of the rings into account.

This approach is almost identical to the one that was used for the
computation of CV accretion disk spectra by many authors (Kriz
& Hubeny 1986; Shaviv & Wehrse 1991; Suleymanov 1992;
Wade & Hubeny 1998; Nagel et al. 2004). We understand that
the local 1D method assumed here is rather crude. But we be-
lieve that it gives a reasonable first approximation, which is ap-
plicable to comparison with observations. This method is a first
step to more sophisticated 2D models.

Accretion disk and BL in the 1D models presented by
Hertfelder et al. (2013) are considered as a comprehensive struc-
ture, and the boundary between accretion disk and BL is blurred.
However, the Teff(R) distributions have a local minimum at
R ≈ 1.1RWD. We adopted that radius as the boundary between
the disk and the BL and studied the BLs at radii lesser than this
boundary. We divided each BL model into a few (5−20) rings,
and the particular radius R j of a given ring with number j, for
which a local vertical structure and local emergent spectrum are
computed, is determined by the condition

F0(R j)∆R j = F0(R j) (RU
j − RL

j ) =
∫ RU

j

RL
j

F0(R) dR, (2)

where RU
j

and RL
j

are the radii of the upper and lower ring bound-

aries, respectively. We note that RU
j−1 = RL

j
.

We now describe the other steps of our method in more
detail.

2.1. BL vertical structure. Gray atmosphere approach

The approach employed here is based on the numerical method
used for modeling of accretion disk structures over the z coordi-
nate as presented by Suleimanov et al. (2007 – see also Kriz
& Hubeny 1986; Shaviv & Wehrse 1991; Suleymanov 1992;
Wade & Hubeny 1998; Nagel et al. 2004). Some modifications
are made and described additionally.

The vertical structure of each BL ring at radius R j is deter-
mined by the ring parameters Teff , Σ0, H0, and a set of differential
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equations. The first one is the hydrostatic equilibrium equation

1
ρ

dP

dz′
= gz =

(z1 − z′)
(1 + (z1 − z′)2/R2

j
)1/2
ω2

K(R j), (3)

where P = Pg + Prad is the total pressure, the sum of gas and
radiation pressure, ρ is the matter density, z1 is a parameter, the
distance from the mid-plane to the highest point of the vertical
model, and z′ = z1 − z is the vertical coordinate, which is equal 0
at the highest point of the model.

The second equation is the energy-conservation law. The cor-
rect local energy generation rate dF/dz in accretion disks as well
as in BLs is not known and a local version of the α approach is
often used (see e.g. Suleimanov et al. 2007). Fortunately, local
emergent spectra of optically thick accretion disks (and, there-
fore, the BL models considered here, too) are weakly dependent
on details of the energy generation rate, so we took the simplest
version (Shakura & Sunyaev 1973):

1
ρ

dF

dz′
= −2

F0

Σ0
· (4)

Here F is the integral (bolometric) vertical flux at given height,
F0 = σSBT 4

eff , is the emergent integral flux. The energy conser-
vation law has the integral (Shakura & Sunyaev 1973)

F(m) = F0

(
1 − 2m

Σ0

)
, (5)

where the boundary condition F(m = 0) = F0 is used. Here the
Lagrangian coordinate m is determined by the equation

dm = ρdz′, (6)

and, therefore,

Σ0 =

∫ +∞

−∞
dm ≈ 2

∫ z1

0
ρdz′. (7)

We assumed a purely radiative transport of energy in z-direction,
therefore, the third equation is the radiation transfer equation.
For the gray approach we use the first moment of that equation

1
ρ

dPrad

dz′
=
κRF

c
, (8)

where κR is the Rosseland opacity, which is determined as the
greater value of electron scattering, σe = 0.335 cm2 g−1, and
Kramers opacity, κkr = 5 × 1024ρT−3.5. The sum of these values
is also relevant (Popham & Narayan 1995).

These equations are solved together with the ideal gas law

Pg = nkT, (9)

where n is the total number density of particles. We assume full
local thermodynamic equilibrium (LTE). Therefore, the local gas
temperature T can be found from the integrated (over frequency)
mean intensity J

J =
3c Prad

4π
= B(T ) =

σSBT 4

π
· (10)

Here we used the following TE relations between radiation
energy density εrad, integral mean intensity J, and radiation
pressure:

εrad =
4πJ

c
= 3Prad. (11)

Fig. 1. Distribution of BL quantities along radius. The data are from
the model with MWD = M⊙ and ωWD = 0.8ωK. The position of the
WD surface at RWD = 5.48 × 108 cm is shown by the vertical dotted
line. Top panel: shown is the effective temperature (solid curve) together
with the relative angular velocity (dashed curve), as obtained from the
1D hydrodynamical model. These are the same for the atmosphere mod-
els. Middle and bottom panels: Rosseland optical half-thickness, τ0, and
geometrical half-thickness, H0, for the model-atmosphere models (solid
lines). The distributions obtained from the 1D hydrodynamical model
(dotted curves) and the gray model (dashed curves) are also shown.

A solar chemical composition is assumed and all ionization
states of the 15 most abundant chemical elements are taken into
account. The relation between density ρ, total number density n,
and electron number density ne is found using Saha’s equation
for each considered ionization state.

We solve Eqs. (3) and (5−8) from the surface z′ = 0 to the
mid-plane z′ = z1 by using a shooting method with the boundary
conditions

F(0) = F0, ρ(0) = 0, P(0) = Prad(0) =
2
3

F0

c
· (12)

There is one additional parameter unknown at the outset: z1. We
find it by the dichotomy method on the range (1−30) H0 using
an additional boundary condition at the mid-plane

F(z′ = z1) = 0 (13)

or, equivalently,

m(z′ = z1) =
Σ0

2
· (14)

A comparison of optical depths and half-thicknesses of the 1D
and the gray-approach models along z coordinate for one par-
ticular BL model (MWD = M⊙ and ωWD = 0.8ωK) is shown
in Fig. 1 in the two bottom panels. It is clear that the new half-
thickness of the BL model H = z1 − z(τR = 2/3) is approxi-
mately twice as large as the thickness of the 1D hydrodynamic
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Table 1. Parameters of the rings for the models with parameters
MWD = M⊙ and ωWD = 0.8, 0.6, 0.4, 0.2 ωK.

R, 108 cm Teff , 103 K Σ0, g/cm2 H, 107 cm τ0 ω/ωK

5.493 154.4 499.6 2.188 230 0.839
5.513 219.6 140.4 1.866 34.1 0.987
5.522 209.4 152.9 1.882 40.3 0.998
5.543 180.3 207.1 1.945 71.1 1.000
5.604 109.5 466.8 2.059 404 0.998

5.482 241.2 376 2.36 79.8 0.652
5.505 298.0 83.4 1.938 13.9 0.999
5.515 283.2 93.5 1.889 15.7 1.003
5.534 253.8 121.1 1.905 23.1 1.002
5.610 144.1 363.1 2.094 187 0.999

5.479 302.6 306 2.565 51.2 0.475
5.499 356.6 68.3 2.395 11.4 0.994
5.512 333.1 75.7 2.205 12.7 1.005
5.538 302.9 101 2.089 16.9 1.004
5.623 170.1 330 2.145 125 0.999

5.478 349.7 264 2.998 44.1 0.299
5.498 410.0 62 3.115 10.3 0.992
5.515 372.7 69.3 2.619 11.6 1.006
5.540 331.5 85.2 2.272 14.2 1.004
5.708 188.9 648 2.554 203 0.997

Table 2. Parameters of the rings for the models with parameters
ωWD = 0.8ωK and MWD = 1.2 and 0.8 M⊙.

R, 108 cm Teff , 103 K Σ0, g/cm2 H, 107 cm τ0 ω/ωK

3.865 222.2 565.6 1.370 179 0.829
3.873 304.3 164.7 1.187 30.6 0.961
3.886 284.1 176.7 1.180 36.5 0.993
3.895 253.0 227.2 1.204 56.9 0.993
3.936 150.5 559.9 1.275 356 0.991

7.044 113.8 461.3 3.166 299 0.848
7.065 167.9 147.7 2.784 46.2 0.965
7.092 156.8 156.0 2.788 55.1 1.002
7.114 139.5 192.0 2.850 83.9 1.004
7.205 84.37 426.8 3.026 482 1.001

model (red dotted line). This is a well known factor (Shakura &
Sunyaev 1973) because the half-thickness of 1D models is just
the pressure scale height H0 = aω−1

K , while the new thickness is
given by the height of the photosphere. The effective tempera-
tures are plotted in the top panel of Fig. 1, here the models agree
by definition. The gray temperature structure of the hottest ring
of the same BL model is shown in Fig. 2 (bottom panel). We
note that this ring is a reference model for our illustration of
the presented method. The parameters of the rings for all com-
puted BL models with five rings are shown in Tables 1−3. The
ring half-thicknesses, H, and the ring Rosseland optical depths,
τ0 =

∫ z1

0
kR ρ dz, were computed by using the gray ring models.

Every computed gray vertical ring model is interpolated to
a logarithmically equidistant column density grid with 98 depth
points in the range from∼10−7 g cm−2 to Σ0/2. This interpolated
ring model is used as a starting model for the calculation of a
non-gray model and its emergent spectrum.

Table 3. Parameters of the rings for the model with parameters
MWD = 0.8 M⊙ and ωWD = 0.6ωK.

R, 108 cm Teff , 103 K Σ0, g/cm2 H, 107 cm τ0 ω/ωK

7.022 177.7 297 3.247 85.5 0.670
7.044 233.3 78.6 2.631 14.0 0.972
7.069 222.0 83.1 2.628 16.0 1.007
7.094 196.0 115 2.751 27.2 1.006
7.200 111.3 323 3.050 215 1.002

Fig. 2. Top panel: local spectra of the hottest ring of the same BL model
as in Fig. 1 computed with (solid curve) and without (dashed curve)
spectral lines taken into account. The blackbody spectrum correspond-
ing to the effective temperature is shown by the dotted curve. Bottom
panel: temperature structures of the model with lines (solid curve) and
the gray model (dashed curve). The central temperature of the hydrody-
namical 1D model is shown by the dotted line.

2.2. Boundary layer vertical structure. Model atmosphere
approach

The non-gray model is determined by Eqs. (3) and (5), rewritten
in the form

dPg

dm
= gz − grad, (15)

where gz and grad are defined by Eqs. (3) and (20). Here we again
assume that energy is transferred by radiation alone and this is
described by the radiation transfer equation at every considered
frequency point

µ
dIν

dτν
= Iν − S ν, (16)

where the monochromatic optical depth is determined from

dτν = (σe + kν) dm, (17)
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Fig. 3. Top panel: sound speed (dashed curve) and wind velocity (solid
curve) distributions along depth in the ring model shown in Fig. 2.
Middle panel: distributions of gravity (dashed curve) and radiative ac-
celeration (solid curve) along depth. The position of the sonic point
is marked by the dotted vertical line. Bottom panel: depths where the
emergent spectrum forms (τλ = 1). The position of the sonic point is
marked by the dashed horizontal line.

and the source function can be expressed as

S ν =
kν

σe + kν
Bν +

σe

σe + kν
Jν. (18)

Here µ = cos θ is the cosine of angle θ, which is the angle
between the radiation transfer direction and the ring normal.
Eq. (16) determines the specific intensity Iν at given frequency
and µ. The mean intensity Jν and Eddington flux Hν = Fν/4π
are defined by

Jν =
1
2

∫ +1

−1
Iν dµ, Hν =

1
2

∫ +1

−1
µ Iν dµ. (19)

We took coherent electron scattering σe into account together
with the free-free and bound-free opacities kν of all ions of
the 15 most abundant elements using opacities from Verner
& Yakovlev (1995) and Verner et al. (1996). Line blanketing
was taken into account using ∼25 000 spectral lines from the
CHIANTI, Version 3.0, atomic database (Dere et al. 1997).

We solve the radiation transfer equation (16) at three values
of |µ| using the short characteristics method (Olson & Kunasz
1987). The adopted µ values correspond to Chebyshev-Gauss
quadrature abscissas to accurately compute the integrals in (19).

Radiative acceleration grad is determined by

grad =
4π
c

∫ ∞

0
[σe + kν] Hν(m) dν. (20)

A correct model has to satisfy the energy balance equation which
can be written in two forms:

4π
∫ ∞

0
Hν(m) dν = F0

(
1 − 2m

Σ0

)
(21)

and

4π
∫ ∞

0
[σe + kν] [Jν − S ν] dν = −2F0

Σ0
· (22)

Of course, the initial model does not satisfy the energy balance
equation, having the relative flux error

εH(m) = 1 − F0(1 − 2m/Σ0)

4π
∫ ∞

0
Hν(m) dν

, (23)

and flux derivative error

εΛ(m) = 4π
∫ ∞

0
[σe + kν] [Jν − S ν] dν +

2F0

Σ0
, (24)

at each depth. It is possible to find corrections to the tempera-
ture ∆T (m) using two methods modified for a non-constant bolo-
metric flux over the ring depth (Suleymanov 1992): the integral
Λ-iteration together with a surface temperature correction for the
optically thin parts of the atmosphere

∆TΛ(m) = −εΛ(m)

(∫ ∞

0

[
Λν,diag − 1

1 − ανΛν,diag

]
kν

dBν

dT
dν

)−1

, (25)

where αν = σe/(kν + σe), and Λν,diag is the diagonal matrix el-
ement of the Λ-operator, and the Avrett-Krook flux correction
based on the relative flux error εH(m) for the optically thick parts
of the ring model

∆TH(m) = −dT

dm

∫ m

0
εH(x) dx. (26)

Both methods were described in detail by Kurucz (1970).
Then we find new values of the gas pressure using new grad

and recalculate the densities. Subsequently, opacities are recal-
culated and the radiation transfer equations at all frequencies
are resolved and a new temperature structure is computed. Then
we recalculate the geometrical depth scale z′(m) using the new
densities. This procedure is performed up to convergence using
our version of the computer code ATLAS (Kurucz 1970) that
was modified to deal with high temperatures (Ibragimov et al.
2003; Suleimanov & Werner 2007; Suleimanov et al. 2013). We
assumed LTE and accounted for pressure ionization effects us-
ing the occupation probability formalism (Hummer & Mihalas
1988), as described by Hubeny et al. (1994).

Because of the significant effect of spectral lines on the radia-
tion force grad, the atmosphere modeling approach is divided into
two steps. In the first step we compute a continuum model with-
out spectral lines, which provides the radiation force grad < gz

at all BL ring depths. The distributions of basic BL quanti-
ties for continuum ring models are presented in Fig. 1 by solid
curves. Hydrostatic ring models cannot be computed when spec-
tral lines are included, because then the radiation force grad be-
comes higher than the gravity gz in the upper, optically thin (in
continuum) layers of the models. Therefore, a line-driven wind
has to arise from the BL surface, which is similar to the line-
driven winds from hot stars (Castor et al. 1975; Kudritzki &
Puls 2000). This kind of wind also exists for CV accretion disks
(Drew & Verbunt 1985; Prinja & Rosen 1995; Proga et al. 1998).
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2.2.1. Line-driven wind approach

Here, we are not interested in the properties of the wind itself,
because it probably effects only the strongest spectral lines but
not the continuum or moderate and weak spectral lines. In pre-
vious works (Ibragimov et al. 2003; Suleimanov et al. 2013),
where hot WD model atmospheres were computed, the gas pres-
sure was artificially fixed to 10% of the total pressure at the up-
per layers, where grad > gz. The condition Pgas = 0.1P was cho-
sen because it was approximately correct at those atmospheric
layers, where grad ≈ gz. This condition physically means that
we assume some artificial wind velocity law that satisfies the
imposed condition. Unfortunately, this simple approach is not
working for the BL case because gravity gz depends on the verti-
cal coordinate z (it is constant for ordinary stellar atmospheres).
Therefore, we develop another simple hydrodynamic approach
which takes into consideration an expansion of the upper ring
layers. This approach is not self-consistent as we do not include
effects of motion in the radiation transfer. Thus we consider a
hydrodynamical model for the ring upper layers but the radi-
ation pressure force governing this expansion is computed for
a formally static medium. This approach allows computing the
model emergent spectra but the obtained wind properties such as
the local mass-loss rate and wind-velocity distributions are not
completely correct and cannot be considered as reliable results.

The considered approach is based on Euler’s equation

d
dz

(ṁv + Pg) = −ρ(gz − grad), (27)

where ṁ is the local mass-loss rate ([ṁ]= g s−1 cm−2) and v is
the gas velocity at given z. This equation can be rewritten as

ṁ

(
1 − a2

v2

)
dv
dz
= −ρ(gz − grad) − ρda2

dz
, (28)

where a is the sound speed connected with gas pressure and mat-
ter density by

Pg = ρa
2. (29)

Here we used the continuity equation for the plane 1D motion

ṁ = ρv. (30)

It is well known (see, e.g. Mihalas 1978) that a correct solution
of Eq. (28) has to pass through a singular point with |v| = a,
where the left and the right side of the equation vanish simulta-
neously. Therefore, these two conditions must be fulfilled in the
singular point:

a2 = v2, (31)

and

da2

dz
= −(gz − grad), (32)

or

C =
da2

dz
+ (gz − grad) = 0. (33)

We suggest the following scheme to compute a model of the
BL ring with a line-driven wind. We take the model computed
without lines as an initial model and solve the radiation-transfer
equation with spectral lines taken into account. As a result we

obtain that the radiative acceleration grad is greater than the cur-
rent gravity at the upper layers. At this stage we have the gas
pressure Pg(m) and the gas density ρ(m) distributions from the
continuum model, and the radiative acceleration grad(m) and the
gas temperature T (m) distributions after the first temperature-
correction iteration. The geometrical depth scale z(m) and cor-
responding gravity gz are connected with the gas density of the
initial (continuum) model. Using these distributions we can find
the sound-speed distribution a(m) and its derivative da(m)/dz,
and then find the depth mc where Eq. (32) is satisfied. We know
at this depth the wind velocity must be equal to the sound
speed a(mc). Therefore, we can evaluate the local mass-loss rate

ṁ = ρ(mc) a(mc)/2 (34)

using the continuity Eq. (30). Here we have taken into account
that the correct gas density ρw in the singular point for the model
with the wind must be half of that in the hydrostatic model ρst,
see Eq. (27)

ṁa + ρwa2 = ρwa2 + ρwa2 = ρsta
2. (35)

Using this mass-loss rate ṁ we solve two ordinary differential
equations

dPw

dz
= −ρ(gz − grad) (36)

and

dm′

dz
= ρ, (37)

where Pw = ṁv+ ρa2, on a new fine and equidistant geometrical
depth grid z (50 000 points) from the midplane (z = 0) up to
the surface (m′ = Σ0/2) with the boundary conditions v = 0,
m′ = 0, and Pw(0), ρ(0) = Pw(0)/a(0)2 at the midplane, using
the shooting method. The current gas density is calculated using
the current Pw

ρ =
Pw

2a2
±
√
(

Pw

2a2

)2
−
(
ṁ

a

)2
· (38)

The plus sign is used for wind velocities below the sonic point
and the minus sign in the supersonic part of the model. The wind
velocity is found using the continuity Eq. (30). The necessary
current values of the grad(m′) and da2(m′)/dz = ρd a2(m′)/d m′
are found using a spline interpolation in the dependencies
grad(m) and da2(m)/dm known from the previous iteration, tak-
ing m = Σ0/2 − m′.

Usually, the necessary conditions Eqs. (28) and (32) are not
satisfied at the sonic point for the first tried initial condition
for Pw(0). Therefore, we find the necessary Pw(0) with the di-
chotomy method. Usually, the correct initial value of the gas
pressure at the midplane differs by a few percent from the gas
pressure at the midplane found in the previous iteration. We
adopt the two following numerical convergence criteria at the
singular point

a − |v|
a
< 10−2,

C

gz

< 10−2·

After obtaining the solution, all quantities are interpolated on
the model atmosphere column density grid m (98 points) which
is used for the radiation transfer solution. Therefore, we have
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a new distribution of the gas pressure Pg = ρa
2 with the line-

driven wind taken into account which is in accordance with the
radiative acceleration grad. Then we find a new gas density dis-
tribution using the new Pg and the temperature distribution ob-
tained after the temperature-correction iteration. For this aim the
ideal gas Eq. (9) is used together with charge and number den-
sity conservation laws. Then the radiation transfer is re-solved
and a new temperature correction is performed. The above de-
scribed procedure to find a new gas-pressure distribution is re-
peated with a new radiative-acceleration distribution. There is
only one difference. The local mass-loss rate is now calculated
(see Eq. (34)) without division by 2 because the current model
takes into consideration the line-driven wind.

This iteration scheme is converging and it is stable. As a re-
sult we get a self-consistent model of the BL ring and its emer-
gent spectrum. Results of calculations for the reference ring
model are presented in Figs. 2 and 3. The emergent spectrum
(Fig. 2, top panel) is similar to hot stellar atmospheres with sim-
ilar effective temperatures (see e.g. Suleimanov et al. 2013) and
shows the same absorption edges as the continuum spectrum to-
gether with a forest of spectral absorption lines. The tempera-
ture structure (Fig. 2, bottom panel) differs significantly from the
gray temperature distribution mainly because of line-blanketing
effects. The final model’s wind velocity law (Fig. 3, top panel)
and the radiation force grad distribution (Fig. 3, middle panel)
are shown together with the sound speed a and gravity gz distri-
butions. The sonic point is seen to be located at the upper ring
layers (m ≈ 10−5 g cm−2) and the corresponding mass-loss rate
is sufficiently low (ṁ ≈ 10−5−10−6 g s−1 cm−2). Formally, the
sonic point is above the formation depths of even the strongest
spectral lines (Fig. 3, bottom panel) and, therefore, the wind does
not affect the spectrum.

2.3. Integral BL spectra

When the computation of all ring model spectra is finished, we
integrate them over the BL radial coordinate with taken Doppler
broadening due to ring rotation into account

Lλ = cos i

∫ Rout

Rin

R dR

∫ π

0
Iλ′(cos i) dϕ

≈ cos i

NR∑

j=1

Rj ∆Rj

Nϕ∑

k=1

∆ϕk Iλ′(cos i), (39)

where i is the inclination angle of the BL relative to the line of
sight, Iλ(cos i) is the local specific intensity in the direction of
the line of sight, NR is the number of considered BL rings (5 or
20), and Nϕ = 100 is a number of considered ring sectors. Here
λ′ is the Doppler shifted wavelength:

λ′ = λ +
vϕ(R)

c
sin i cosϕ. (40)

The azimuthal velocity distribution vϕ(R) is taken from the 1D
BL model. We note that integration is only performed over the
visible BL part. We assume that we see only a quarter of the total
BL surface, which is situated in front of the WD on the visible
part of the disk, and that the visible part does not depend on the
inclination angle. The change of the projection area of the BL’s
visible part is proportional to cos i. Specific intensities for every
ring model are computed using Eq. (16) for six angles relative to
the normal: 0, 15, 30, 45, 60 and 75 degrees. Therefore, integral
spectra can be computed for these inclination angles relative to
the line of sight. We ignored any relativistic effects because they
are low.

Fig. 4. Spectra of the BL model M = M⊙, ωWD = 0.8ωK for three incli-
nation angles relative to the line of sight. The corresponding blackbody
approximations are shown by dashed curves.

Fig. 5. Detail of the integral emergent fluxes of the same BL model as
in Fig. 4 computed for i = 0◦ (rotation does not affect the spectrum, thin
black curve), and 15◦ (thick red curve).

3. Results

Using the method presented above, we computed spectra of sev-
eral BL models. Examples of the integral reference BL model
spectra for three angles are shown in Fig. 4. These spectra are
calculated using the BL model partitioned in 20 rings. The spec-
tra show broad absorption and quasi-emission features. The ab-
sorption features arise due to rotational broadening and blending
as a result of many absorption lines at this place of the spectrum.
The quasi-emission features are continuum sections with a low
amount of absorption lines. These statements are illustrated by
Fig. 5, where a narrow section of the integral spectra computed
for i = 0◦ and 15◦ are shown. In Fig. 4 the spectra computed in
blackbody approximation are also shown. We focus attention on
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Fig. 6. Comparison of the spectra of the same BL model (see Fig. 4)
computed using five (dotted curve) and twenty (solid curve) rings.

the fact that the atmosphere-model intensities compared to the
blackbody spectra are different for low and high inclination an-
gles. This is the result of different limb-darkening laws for the
ring atmospheres (the intensity is mainly concentrated along the
normal) compared to the isotropic blackbody radiation.

We investigated the importance of the number of rings to
describe the model spectra. In addition to the spectrum of the
BL reference model presented above, we computed the spectrum
of the same model using five rings. A comparison of both spec-
tra is shown in Fig. 6. The difference is significant at wavelengths
longer than 120−130 Å, but the spectra are almost identical at the
shorter wavelengths. Our work was particularly motivated by the
Chandra X-ray spectrum of SS Cyg in outburst (Mauche 2004).
The grating spectra cover the wavelength range 10−130 Å, there-
fore, to model the observed BL spectra five rings are sufficient.
Moreover, even the hottest ring spectrum alone can approximate
the integral BL spectrum with a relatively good accuracy (see
Fig. 7). All BL spectra of the two grids described above were
computed using five rings.

It is important to explore the dependence of the BL model
spectra on the BL parameters. For this purpose, we computed
spectra of two model grids. In the first one we fixed the relative
WD angular velocity ωWD = 0.8ωK and investigated how the
spectra depend on the WD mass MWD. In the second set we fixed
the WD mass MWD = M⊙ and varied the relative WD angular
velocity. The obtained results are described below.

A comparison of the computed integral BL spectra for var-
ious parameters is shown in Figs. 8−10. The basic differences
of the presented spectra are determined by differences in the
BL model effective temperatures (see e.g. Fig. 8, top panel). The
radial widths of all the computed models are similar (see the
same figure and Hertfelder et al. 2013), but the luminosities can

Fig. 7. Comparison of the BL model spectrum from Fig. 4 (solid curve)
with the spectrum of the hottest ring (dotted curve) normalized to the
flux at 100 Å.

Fig. 8. Effective temperature distributions (top panel, the temperatures
of the considered rings are marked by dots) and model spectra (bottom
panel) for the models with different angular velocities (0.2, 0.4, 0.6 and
0.8ωK) and fixed WD mass (MWD = M⊙).
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Fig. 9. Spectra of the same models as in Fig. 8 in the observed wave-
length range. The spectra in the top panel are normalized to the ωWD =

0.6ωK model spectrum at 100 Å.

Fig. 10. Comparison of BL model spectra for three WD masses (0.8, 1,
1.2 M⊙) and fixed relative angular velocity (ωWD = 0.8ωK). The spectra
in the top panel are normalized to the MWD = M⊙ model flux at 100 Å.

change more significantly. So, the BL effective temperatures di-
rectly connect with the BL luminosities, which are defined by
mass accretion rate Ṁ, WD mass, and relative WD angular ve-
locity ωWD/ωK (Kluźniak 1987; Kley 1991):

LBL =
1
2

GMWDṀ

RWD

(
1 − ωWD

ωK

)2
· (41)

All the models considered here have a fixed mass accretion rate.
Therefore, luminosities and effective temperatures of these mod-
els only depend on WD masses and relative angular velocities.
Both of them increase with the WD mass and decrease with the
relative angular velocity. Higher BL effective temperatures have
to correspond to harder spectra and higher ionization degree of
the matter.

Our computations confirm these qualitative conclusions.
Emergent spectra of the BL models around a solar mass WD
with various relative angular velocities are shown in Fig. 8. The
effective temperatures increase with decreasing WD relative an-
gular velocity, and the emergent spectra become harder. As a
result, the photo-absorption edges and the intensities of quasi-
absorption and quasi-emission features are changing. In partic-
ular, the position of a notable spectral short-wavelength roll-off
shifts from 60 Å in the spectrum of BL model around the fastest
rotating WD up to 25 Å in the spectrum of the BL model around
the slowest rotating WD. The same spectra in the 15−130 Å
wavelength band on a linear flux scale are shown in Fig. 9. The
spectra, which are normalized at 100 Å, are also shown in the top
panel of the same Figure to emphasize the changes in the spec-
tral shapes.

We note that some ring models (near the minimum of the
surface density distribution) of the BL model around the non-
rotating WD (MWD = M⊙, ωWD = 0) did not converge and a cor-
responding integral BL model spectrum was not computed. The
reason is that these rings are effectively optically thin (τeff,ν =∫ Σ0/2

0

√
σe(σe + kν) dm < 1) over a wide wavelength range. We

can see that the average Rosseland opacities for the hottest rings
for the BL models around slowly rotating WDs are close to pure
electron scattering and the input of the “true” opacity kkr is neg-
ligible, because τ0 ≈ σeΣ0/2 (see Table 1). Possibly, the similar
effect may exist for other BL models around non-rotating WDs.
It could be less important for the BL around WDs with lower
masses and could be reduced for lesser mass accretion rates.

The difference between BL spectra computed for the fixed
WD relative angular velocity but various WD masses are quali-
tatively similar (Fig. 10). The spectrum of the BL model around
the heaviest WD is harder than the spectra of BL models around
less heavy WDs.

4. Comparison with observations

As mentioned in the introduction, there are only four dwarf no-
vae with observed soft X-ray/EUV radiation in outbursts, which
can be associated with optically thick BLs. One of them is
SS Cyg (Mauche 2004; Suleimanov et al. 2013). Fitting the spec-
trum gave effective temperature estimations of 190 (250) kK and
a bolometric BL luminosity 18(5) × 1033 erg s−1 for an as-
sumed distance of 160 pc. The bolometric disk luminosity of
SS Cyg at the peak of the outburst, LD ≈ 1035 erg s−1, was
estimated by Mauche (2004) using the same distance and the
data published by Polidan & Holberg (1984). We note that the
soft X-ray spectrum of SS Cyg was obtained by Chandra at
the outburst peak, too. The corresponding mass accretion rate
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Table 4. Parameters of the strongest emission lines, preliminarily iden-
tified in the subtracted spectrum.

λ, Å Ion Transition g f

49.12 S IX 2p4 3P2−3d 3Do
3 1.12

65.7 Al IX 2p3 2P3/2−3d 2D5/2 1.33
76.77 Mg VIII 2p3 4So−3d 4P 4.7a

80.5 Si VI 2p5 2Po−3d 2P 2.3a

83.97 Mg VII 2p2 3P−3d 3Do ∼7b

85.41 Mg VII 2p2 1D−3d 1Fo 4.23
88.1 Ne VIII 2s 2S−3p 2Po 0.6a

98.26 Ne VIII 2p 2Po
3/2−3d 2D5/2 2.28

106.14 Ne VII 2p 3Po−3d 3D 4.3a

107.94 Al V 2p5 2Po
3/2−3d 2D5/2 1.4

Notes. Part of them could be blends with other lines. Data were taken
from the CHIANTI database (Dere et al. 1997). (a) Doublet, the g f val-
ues are summed. (b) Triplet, the g f values are summed.

Ṁ ≈ 1.5 × 10−8 M⊙/yr, which was used for the computation
of all the BL models in this work, was obtained using this lu-
minosity for the adopted WD parameters, MWD = M⊙ and
RWD = 5.5 × 108 cm. The corresponding ratio of BL luminosity
LBL to disk luminosity LD is 0.18 (0.05). These values corre-
spond to the fit of the spectrum by a hot stellar atmosphere that
is close to Eddington limit (with log g = 6.2, Suleimanov et al.
2013), and the values in brackets were obtained using blackbody
fits with broad absorption lines (Mauche 2004). The recent de-
termination of SS Cyg’s distance by Nelan & Bond (2013) gave
a lesser value, ∼110 pc instead of ∼160 pc. It reduces the disk
and the BL luminosities mentioned before, but does not change
their ratio. The low value of LBL/LD supports the hypothesis
about a fast WD rotation in SS Cyg (Mauche 2004). In the ul-
traviolet spectrum of this CV in quiescence the absorption lines,
which are in principle available to determine the WD’s projected
rotation velocity, were not found (Sion et al. 2010). The most
probable reason for this finding are strong emission lines in the
UV spectrum of SS Cyg in quiescence (Long et al. 2005), which
could mask absorption lines in the WD spectrum. But it is neces-
sary to keep in mind that the BL luminosity estimations are very
model dependent and have large uncertainties.

We compare our BL model spectra to the observed Chandra
spectrum of SS Cyg (Mauche 2004), using the well known nor-
malization for converting the calculated spectra to the spectrum
at Earth

fλ =
Lλ

d2
, (42)

where d is the distance. A relatively good fit was obtained for the
model spectrum of a BL with parameters MWD = M⊙, ωWD =
0.8 ωK for the distance d ≈ 107 pc and the absorption by the
neutral interstellar medium with NH ≈ 7 × 1019 cm−2 (Fig. 11).
We see that the model spectrum describes some prominent fea-
tures in the observed spectrum, but there are also some additional
features. The subtracted (observed minus BL model) spectrum
(Fig. 11, bottom panel) is very similar to a spectrum of an opti-
cally thin hot plasma with a strong emission continuum of NeVII
and numerous broad emission lines. Part of them are identified
(see Fig. 11 and Table 4) as spectral lines with great g f values.
It is most probable that the difference spectrum is due to an
optically thin outflow, which is projected on the cool WD and
the accretion disc, see Fig. 12. We also show in the bottom of
Fig. 11 the absorbed (with the same NH) spectrum of the homo-
geneous slab computed in LTE approximation with temperature

Fig. 11. Top panel: comparison of the observed SS Cyg soft X-ray spec-
trum (solid curve) with the BL model spectrum for a 1 M⊙ WD and
relative angular velocity ωWD = 0.8ωK (dashed curve). Bottom panel:
subtracted (observed minus BL model) spectrum (solid curve) together
with the homogeneous slab model spectrum (dashed curve). The emis-
sion continuum of Ne VII below 60 Å and the strongest identified emis-
sion lines are marked.

T = 160 kK, density ρ = 10−7 g cm−3, and surface density
ΣW = 6 × 10−2 g cm−2. The corresponding geometrical thick-
ness of the slab is 6 × 105 cm. The spectrum is computed by
the short characteristics method and broadened using a Gauss
function with σ = 0.2 Å. This model slab spectrum cannot fit
all the emission details correctly, because the real outflow has
to be strongly inhomogeneous, and, probably, the LTE approxi-
mation is not correct there. But it reproduces the general shape
of the subtracted spectrum supporting our hypothesis. We found
that the emission area of this slab is approximately four times
greater than the visible model BL area. If we assume that the
obtained density of the slab is correct for the averaged density
of the outflow, we can estimate a total mass loss rate of ṀW ∼
ρvescS BL ∼ 10−7 g cm−3 × ∼ 108 cm s−1 × ∼1016−1017 cm2

∼1017−1018 g s−1. This guess is very crude, but, nevertheless, it
is comparable with the mass accretion rate, and, therefore, fu-
ture BL models have to be computed with mass loss taken into
account.

However, we have to point out that a recent estimation gave
a lesser WD mass in SS Cyg, MWD = 0.81 ± 0.18 M⊙ (Bitner
et al. 2007) instead of 1 M⊙. We may expect that some BL model
around a slower rotating WD with MWD = 0.8 M⊙ can have
similar effective temperatures (and a similar spectrum) as the
considered BL model with MWD = M⊙ and ωWD = 0.8ωK.
Indeed, we find that the spectra of BL models with parameters
MWD = 0.8M⊙, ωWD = 0.6ωK and MWD = M⊙, ωWD = 0.8ωK
are very similar (see Fig. 13). Therefore the spectrum of the BL
model with parameters MWD = 0.8 M⊙, ωWD ≈ 0.6ωK also has
to fit the observed SS Cyg soft X-ray spectrum in the outburst
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Fig. 12. Scheme of the BL outflow.

Fig. 13. Comparison of the BL model spectra for a 0.8 M⊙ WD and
relative angular velocity ωWD = 0.6ωK (dashed curve) and for a 1 M⊙
WD and relative angular velocity ωWD = 0.8ωK (solid curve). The flux
of the latter spectrum is multiplied by 2.5.

with d ≈ 170 pc. The ratios LBL/LD are 0.04 and 0.16 for
these BL models, respectively, and they are close to the estima-
tions obtained by Mauche (2004) and Suleimanov et al. (2013).
Therefore, the BL model spectra computed here can fit the soft
X-ray spectrum of SS Cyg in outburst.

The second bright dwarf nova that exhibited a prominent
soft X-ray/EUV flux during outburst is U Gem (Cordova et al.
1984; Long et al. 1996). But the properties of this emission
differ significantly from the case of SS Cyg. A blackbody fit
gives a temperature about 140 kK and a BL luminosity of about
4 × 1034 erg s−1 (for the distance 90 pc, Marsh et al. 1990)
with the corresponding ratio LBL/LD ∼ 0.5 (Long et al. 1996).
The earlier X-ray observations performed by the Einstein obser-
vatory gave similar relations between the blackbody tempera-
tures and the observed fluxes of these CVs’ soft X-ray spectra
(Cordova et al. 1980a,b, 1984).

The estimated rotation velocity of the WD in this CV is very
low (<100 km s−1, Sion et al. 1994) and the derived relative BL
luminosity is in accordance with the expected relative BL lu-
minosity (see Eq. (41)). But all 1D BL models including ours
predict higher effective temperatures for this luminous BL, at
least 200−300 kK, in contradiction with the observed tempera-
ture. This means that the BL emitting area in U Gem is about
5−10 times greater than in SS Cyg, i.e. the BL width can be tens
of percent of the WD radius instead of a few percent. Therefore,
a new BL model is necessary to explain this fact.

A correct theory of optically thick BLs has to explain the
observational properties of both dwarf novae. A possible rea-
son could be the 2D nature of BLs around slowly rotating WDs.
For example, the BL matter can spread over the WD surface

increasing the radiating area (Kley 1991; Fisker & Balsara 2005;
Balsara et al. 2009). Another possible physical mechanism is de-
position of a significant part of BL energy deep into the WD
(Kippenhahn & Thomas 1978; Godon et al. 1995), as it was also
considered for T Tau type stars (Bertout & Regev 1992; Regev
& Bertout 1995), with subsequent radiation of this energy by a
significant part of the WD surface above and below the equa-
torial plane. An additional possibility was suggested by Idan &
Shaviv (1996), who proposed that a significant part of the en-
ergy released in the BL might be carried away by some outflow
(wind).

The EUV spectrum of U Gem in outburst is very similar to
the soft X-ray spectrum of SS Cyg in outburst. It also shows nu-
merous broad absorption- and emission-like features, but a few
strong emission lines are also detected (Long et al. 1996). The
latter probably arise in a strong BL wind and they are visible
due to a higher inclination of U Gem’s orbital plane relative to
the line of sight (i ≈ 70◦, Zhang & Robinson 1987) in com-
parison with the inclination angle of SS Cyg (i ≈ 50◦, Bitner
et al. 2007). The even more inclined SU UMa-type dwarf nova
OY Car (i ≈ 83◦, Littlefair et al. 2008) shows an EUV spec-
trum dominated by prominent emission lines in super-outburst
as presented by Mauche & Raymond (2000). These authors eval-
uated the wind mass-loss rate (≤10−10 M⊙ yr−1) and argued that
this value cannot be explained by a line-driven disk wind. It is
possible that a line-driven BL wind as presented in our calcula-
tions can help to resolve this problem. We suggest that radiation-
driven winds are much more powerful for BLs around slowly
rotating WDs because of much higher effective temperatures at
the same emitting area (see, e.g., Table 2). Therefore, such winds
could be optically thick like the winds of Wolf-Rayet stars (see,
e.g. Nugis & Lamers 2002; Gräfener & Hamann 2005), and the
visible BL photospheres could have much greater emitting areas
in comparison with the expected BL model sizes. This would
lead to significant reduction of the averaged BL effective tem-
perature while saving the bolometric luminosity. This hypothe-
sis can explain the observed properties of the BL in U Gem. We
suggest to call this kind of BLs “photospheric radius expanded”
(PRE) BLs. A detailed BL wind investigation would be neces-
sary to test these ideas.

5. Conclusions

In this paper we presented the first attempt to compute the soft
X-ray/EUV spectra of optically thick BL models in CVs using
the model stellar-atmosphere method. We used the 1D hydro-
dynamic BL models calculated by Hertfelder et al. (2013) for
three WD masses (0.8, 1, and 1.2 M⊙) and various values of rel-
ative angular velocity (0, 0.2, 0.4, 0.6, and 0.8 ωK). Two other
parameters, the mass-accretion rate Ṁ = 1.5 × 10−8 M⊙ yr−1

and the viscosity parameter α = 0.01 were fixed. Every BL
model is divided into a few rings, and every ring model along
the z-direction is computed using the model-atmosphere method.
The total BL model spectra are summed over the ring spectra
with Doppler effect taken into account.

The effective temperatures of the considered BL model rings
range from 100 kK to 400 kK. At these conditions hydrogen
and helium are almost fully ionized and highly-charged ions
of heavy elements such as carbon, oxygen, neon, magnesium,
and silicon determine the opacities and the shape of the model
emergent spectra. The local ring spectra with numerous absorp-
tion lines of these chemical elements together with absorption
edges are smeared by the fast ring rotation and the final model
BL spectra show relatively broad absorption- and emission-like
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features, which cannot be identified with any individual absorp-
tion or emission lines. The absorption-like features arise at the
spectral parts with high number densities of strong absorption
lines and/or near blue sides of absorption edges. The emission-
like features arise at spectral parts with a low number densities
of absorption lines and/or near red sides of absorption edges.
An additional smoothing of the spectra due to a finite spec-
tral resolution of X-ray instruments has to be also considered
to form these prominent features. The predominance of spectral
lines in the BL opacities leads to strong BL line-driven winds,
which manifest themselves in EUV observations. We developed
a simple method to treat approximately the influence of a line-
driven wind on the BL model structure. This approach is not self-
consistent and it is not sufficiently correct for an investigation of
the wind properties, but it offers the possibility to compute the
model emergent spectra.

The observed soft X-ray and EUV spectra of the dwarf no-
vae SS Cyg and U Gem in outburst are very similar to the
computed model BL spectra and exhibit numerous emission-
and absorption-like features (Mauche 2004; Long et al. 1996).
Moreover, we reveal that the soft X-ray Chandra spectrum of
SS Cyg in outburst can be fitted satisfactorily by the spectrum
of our BL models with MWD = M⊙, ωWD = 0.8ωK, and
MWD = 0.8 M⊙, ωWD = 0.6ωK. with the interstellar absorp-
tion parameter NH ≈ 7 × 1019 cm−2, and the distances ≈107 and
170 pc correspondingly. The ratio of the observed BL luminosity
to the disk luminosity of SS Cyg in outburst is consistent with
the model parameters. The subtracted spectrum is a spectrum
of a hot optically thin plasma spectrum and could be associated
with the outflow from the BL surface with the mass loss rate
∼1017−1018 g s−1, which is comparable with the assumed mass
accretion rate. Therefore, future BL models have to be computed
with the mass loss taken into consideration.

On the other hand, the observed EUV flux properties of
U Gem in outburst are contradicting our model predictions. We
suggest that a powerful radiation-driven wind from U Gem’s BL
could form an extended photospheric BL surface reducing the
averaged effective temperature but saving the bolometric lumi-
nosity. The properties of this “photospheric radius expanded”
BL could be very similar to the observed U Gem BL properties.
Additional extended BL radiation-driven wind investigations are
necessary to proof this hypothesis.
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ABSTRACT

Context. Disk accretion onto weakly magnetized stars leads to the formation of a boundary layer (BL) where the gas loses its excess
kinetic energy and settles onto the star. There are still many open questions concerning the BL, for instance the transport of angular
momentum (AM) or the vertical structure.
Aims. It is the aim of this work to investigate the AM transport in the BL where the magneto-rotational instability (MRI) is not
operating owing to the increasing angular velocity Ω(r) with radius. We will therefore search for an appropriate mechanism and
examine its efficiency and implications.
Methods. We perform 2D numerical hydrodynamical simulations in a cylindrical coordinate system (r, ϕ) for a thin, vertically
integrated accretion disk around a young star. We employ a realistic equation of state and include both cooling from the disk surfaces
and radiation transport in radial and azimuthal direction. The viscosity in the disk is treated by the α-model; in the BL there is no
viscosity term included.
Results. We find that our setup is unstable to the sonic instability which sets in shortly after the simulations have been started.
Acoustic waves are generated and traverse the domain, developing weak shocks in the vicinity of the BL. Furthermore, the system
undergoes recurrent outbursts where the activity in the disk increases strongly. The instability and the waves do not die out for over
2000 orbits.
Conclusions. There is indeed a purely hydrodynamical mechanism that enables AM transport in the BL. It is efficient and wave
mediated; however, this renders it a non-local transport method, which means that models of a effective local viscosity like the
α-viscosity are probably not applicable in the BL. A variety of further implications of the non-local AM transport are discussed.

Key words. accretion, accretion disks – hydrodynamics – instabilities – waves – methods: numerical – stars: protostars

1. Introduction

One ubiquitous phenomenon in astrophysics is the accretion of
matter on a central object via an accretion disk. This process can
be observed for a variety of central objects, such as young stars,
compact objects like white dwarfs or neutron stars, and active
galactic nuclei. The physics of the accretion disk itself is reason-
ably well understood. However, the tiny region where the accre-
tion disk connects to the star is still one of the major problems.
In this region, called the boundary layer (BL), a smooth con-
nection is established between the disk, which rotates nearly at
Keplerian frequency, and the star, which in general rotates much
more slowly. It is of great dynamical and thermal importance
since the gas undergoes a supersonic velocity drop in a very
confined region of a few percent of the stellar radius and loses
up to one half of the total accretion energy during that process
(Kluźniak 1987).

The BL has been studied extensively for over 40 years, both
in an analytical (e.g. Bertout & Regev 1992) and a numerical
approach (e.g. Kley & Hensler 1987). Simulations involving the
BL around a young star have been performed by Kley & Lin
(1996, 1999), including full radiation transport. Most of the work
that has been done on the BL (see e.g. Hertfelder et al. 2013, for
a brief review of the history) assumes that the gas first slows
down in the equatorial plane of the disk and then spreads around
the star. This is the classical picture of the BL. However, there

is an alternative theory called the spreading layer (Inogamov &
Sunyaev 1999, 2010), which was initially developed for neutron
stars. Within this concept the gas first spreads around the star
because of the ram pressure in the BL and then slows down on
the whole surface of the star.

The majority of the simulations of the BL start from the
premise that the observed angular momentum (AM) transport
in the BL is driven by local turbulent stresses and the authors
consequently adopt a α-viscosity model (Shakura & Sunyaev
1973) in their simulations. Sometimes the classical α-model is
modified slightly in order to prevent supersonic infall velocities
(Kley & Papaloizou 1997) or, for instance, to take into account
the radial pressure scale height in the BL (Popham & Narayan
1995). The utilization of a local viscosity model was later jus-
tified for the disk by the discovery of the magnetorotational in-
stability (MRI) which creates turbulence that acts like a genuine
viscosity on macroscopic scales (Velikhov 1959; Chandrasekhar
1960; Balbus & Hawley 1991, 1998; Balbus 2003; Balbus &
Lesaffre 2008). However, as pointed out by Godon (1995) and
Abramowicz et al. (1996) and recently shown by Pessah & Chan
(2012), if the angular velocity increases with radius, dΩ/dr > 0,
the MRI is effectively damped out and the associated AM trans-
port oscillates about zero. Since this situation clearly applies
for the BL, we do not expect to obtain sufficient AM trans-
port through the MRI. There have been various alternative trans-
port mechanisms proposed, among them the Kelvin-Helmholtz
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instability (Kippenhahn & Thomas 1978), the baroclinic insta-
bility (Fujimoto 1993), and the Tayler-Spruit dynamo (Tayler
1973; Spruit 2002; Piro & Bildsten 2004), none of which have
yet been proven to efficiently transport mass and AM in the BL.

In this work, we will focus on the AM transport in the BL
through non-axisymmetric instabilities and therefore carry out
2D simulations in the midplane of the star-disk system using
cylindrical coordinates. Recently, a promising candidate for the
transport has been proposed and investigated in a series of pa-
pers. According to this theory, the steep velocity drop in the
BL is prone to the sonic instability (Glatzel 1988; Belyaev &
Rafikov 2012), which is an instability of a supersonic shear
layer, much like the Papaloizou-Pringle instability (Papaloizou
& Pringle 1984; Narayan et al. 1987). Acoustic waves are ex-
cited in the BL as a consequence of the sonic instability and AM
can be transported by these modes in an efficient way. This has
been demonstrated for 2D flows (Belyaev et al. 2012), 3D flows
in cylindrical coordinates (Belyaev et al. 2013a), and even for
3D magnetohydrodynamical flows (Belyaev et al. 2013b). The
wave mediated AM transport implies that this process is intrinsi-
cally non-local since the waves can potentially travel a long way
before they dissipate and release the AM to the fluid. Therefore,
it is problematic to describe the AM transport in the BL by
means of a local viscosity like the α-model. Although the above-
mentioned simulations are already quite sophisticated, the au-
thors make some simplifications that constrain the validity of
their models. This is the point where we step in with this paper
and relax three of the simplifications made. First, we make use
of a realistic equation of state instead of an isothermal one and
propagate the temperature of the system, as well. We use full ra-
diative diffusion in the disk plane and an approximation for the
vertical flux, and hence employ a quasi-3D radiation transport.
Second, we use realistic, state-of-the-art initial models like those
already published in Hertfelder et al. (2013) as a starting point
for the simulations presented here. Third, mass constantly enters
the simulation domain from the outer boundary and thus there is
a net mass flow through the disk, as is the case for a real accre-
tion disk. Because of the high computational costs the treatment
of the radiation brings with it, we perform 2D simulations and
do not yet include magnetic fields. Thus, the next steps will be to
extend the simulations presented here to 3D and also to include
magnetic fields.

The paper is organized as follows. In Sect. 2, the basic phys-
ical model is described. We give an overview of the equations
used for our simulations and present the assumptions we have
made. Furthermore, we briefly review how the AM transport due
to stresses in the fluid can be measured and quantized. Section 3
is devoted to the numerical method that we employ in our simu-
lations. We discuss the numerical code, the initial and boundary
conditions, as well as the model parameters. In Sect. 4 we start
the analysis of the results. We first discuss the sonic instabil-
ity and the acoustic modes that are excited in the BL. Then, in
Sect. 5, we investigate how these instabilities affect the physi-
cal picture of the BL and look deeply into the AM transport and
long-term behavior of our models. We conclude with Sect. 5.

2. Physics

In this section, we present the physical foundations for the sim-
ulations we have performed and that are described later in this
publication. In order to investigate non-axisymmetric behavior
in the disk plane, we utilized the vertically integrated Navier-
Stokes equations. Since the focus of our current work lies on
instability developing in the BL, we describe the flow of a

perturbed, compressible fluid and also the derivation of the re-
sulting Reynolds stresses.

2.1. Two-dimensional equations for a flat disk

In order to obtain a set of 2D Navier-Stokes equations includ-
ing radiation transport, we apply a cylindrical coordinate system
with coordinates (r, ϕ, z) and integrate the 3D equations over the
vertical coordinate z. The star lies in the center of the coordinate
system and the midplane of the disk coincides with z = 0. If we
assume a Gaussian profile for the mass density ρ, we can define
the 2D surface density by

Σ =

∫ ∞

−∞
ρ dz =

√
2π ρ(r, ϕ, 0) H, (1)

where we introduce the effective pressure scale height H, which
is a measure of the vertical extent of the disk. Under the assump-
tion of hydrostatic balance and an isothermal equation of state in
the z-direction, the pressure scale height reads

H =
cs

ΩK
, (2)

with cs and ΩK =
√

GM∗/r3 being the midplane soundspeed
and the Keplerian angular velocity, respectively. The inverse of
ΩK(R∗) is proportional to the period of a Keplerian orbit at the
surface of the star, P∗ = 2π/ΩK(R∗). Derivatives with respect to z
are neglected, as is the z-component of the velocity, uz. Clearly,
this is not a reasonable assumption if one wants to investigate the
overall structure of the BL. However, it is still justified since we
restrict ourselves to the study of non-axisymmetric flow struc-
ture in this work.

The vertically integrated continuity equation reads

∂Σ

∂t
+

1
r
∂(rΣur)
∂r

+
1
r
∂(Σuϕ)
∂ϕ

= 0. (3)

We express the momenta equations in terms of the conservative
variables and introduce the radial momentum density s = Σur
and the angular momentum density h = Σruϕ ≡ Σr2Ω. These
variables reflect the physically conserved quantities, as opposed
to the primitive variables ur and uϕ. The conservation of momen-
tum in radial direction is then given by

∂s
∂t

+
1
r
∂(rsur)
∂r

+
1
r
∂(suϕ)
∂ϕ

−Σ
u2
ϕ

r
= − ∂p

∂r
+

1
r
∂(rσrr)
∂r

+
1
r
∂(σrϕ)
∂ϕ

− 1
r
σϕϕ − Σ

∂Φ

∂r
, (4)

and the equation in azimuthal direction reads

∂h
∂t

+
1
r
∂(rhur)
∂r

+
1
r
∂(huϕ)
∂ϕ

= − ∂p
∂ϕ

+
1
r
∂(r2σrϕ)
∂r

+
∂(σϕϕ)
∂ϕ

− Σ
∂Φ

∂ϕ
· (5)

Here p denotes the vertically integrated pressure p = ΣRGT/µ,
where RG = kB/mH with Boltzmann’s constant kB and the mass
of hydrogen mH, T is the temperature, and µ is the mean molecu-
lar weight; Φ = −GM∗/r is the gravitational potential (G and M∗
are the gravitational constant and stellar mass). The components
of the vertically integrated viscous stress tensor, σi j, can be
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found in e.g. Masset (2002). The equation for the conservation
of energy is given by

∂e
∂t

+
1
r
∂(reur)
∂r

+
1
r
∂(euϕ)
∂ϕ

= −p
[
1
r
∂rur

∂r
+

1
r
∂uϕ
∂ϕ

]
+ σrr

∂ur

∂r

+ σrϕ

[
1
r
∂ur

∂ϕ
+ r

∂Ω

∂r

]
+ σϕϕ

[
∂Ω

∂ϕ
+

ur

r

]

− 2σSBT 4
eff −

H
r

[
∂(rFr)
∂r

+
∂Fϕ

∂ϕ

]
, (6)

where σSB and Teff are the Stefan-Boltzmann constant and the
effective temperature, and the factor H follows from the vertical
integration.

The last line of Eq. (6) incorporates the radiative flux in the
flux-limited diffusion approximation,

F = −KR∇T. (7)

Utilizing this approach, we assume that the BL is optically thick
both in the radial and vertical directions, where the inclusion
of a flux-limiter also allows for the treatment of optically thin
regions. Equation (7) has exactly the same mathematical form
as molecular heat conduction in a gas. The effective radiative
conductivity KR is

KR =
4λacT 3

κRρ
, (8)

where κR, a, and c are the Rosseland mean opacity, the radia-
tion constant and the speed of light, and λ is the flux limiter
(Levermore & Pomraning 1981; Levermore 1984). We adopt the
formulation given by Kley (1989) for λ. We assume that the disk
locally radiates like a blackbody of temperature Teff and asso-
ciate the vertical flux with the blackbody luminosity divided by
the radiating area, Fz = σSBT 4

eff
. The factor 2 in Eq. (6) stems

from the fact that the disk has two sides. The vertical flux pro-
vides the cooling of the disk, while the other parts of the energy
equation generate heat through viscous dissipation (second line
in Eq. (6)) or redistribute it in the disk plane (the terms with Fr
and Fϕ). The effective temperature Teff is evaluated according
to Hubeny (1990), who approximates the optical depth in the
vertical direction of the disk (see Sect. 5.3). By approximating
the flux in the vertical direction as well, we employ a quasi-3D
radiation transport.

We also adopt a piecewise prescription for the Rosseland
mean opacity, where in each temperature regime κR is given by
a power-law approximation, κR = κ0ρ

aT b, as described in Lin &
Papaloizou (1985) and Bell & Lin (1994). Each of the regimes
is characterized by a prevailing mechanism that dominates the
opacity in this region. The parameters κ0, a, and b for the various
opacity regimes are listed in e.g. Müller & Kley (2012).

2.2. Viscosity

In the simulations presented here, we strictly distinguish be-
tween the BL and the disk with regard to viscosity. As has al-
ready been mentioned in Sect. 1, the AM transport in the disk
is mainly driven by turbulent stresses due to the MRI and can
therefore be parametrized with the classic α-viscosity approach
by Shakura & Sunyaev (1973). The effective kinematic viscosity
is written as

ν = αcsH (9)

in this ansatz, where α is a dimensionless parameter whose
value is derived from MRI simulations. The cause of the AM

in the BL and its investigation is, however, the subject of this
work. Consequently, we do not make use of an additional vis-
cosity term in the BL region. The entire AM transport in the BL
is therefore due solely to the Reynolds stresses exerted by the
gas.

From a numerical point of view, the distinction between the
BL and the disk is made by searching for the global maximum
of the radial angular velocity profile, Ω(rmax) = Ωmax. This has
to be done for every angle ϕ in order to prevent a suppression
of non-axisymmetric perturbations. We can then computation-
ally realize the viscosity as pointed out above by utilizing the
following conditions:

– if r < rmax, we set α = 0 in Eq. (9) and no viscosity is applied
(BL region);

– if r > rmax, α is set to the default value, α = 0.01, and the
viscous stress tensor does not vanish (disk region).

2.3. Reynolds stresses

Gas flows in general can be characterized by a laminar bulk flow
with superimposed perturbations. One typical approach is to de-
compose the flow variables f into an averaged or filtered part f̄
and a fluctuating or subfiltered, unresolved part f ′:

f (r, t) = f̄ (r, t) + f ′(r, t). (10)

Within the classical Reynolds approach, the averaging is per-
formed over an ensemble of systems, thus f̄ is an ensemble
mean. In the case of a statistically steady or stationary flow field,
or when it is homogeneous, ergodicity can be assumed. This
means that both a sufficiently long time average over many time
scales and a spatial average over many length scales correspond
to the ensemble mean. Often, practical flows are inhomogeneous
and the ensemble mean is replaced by a time average:

f̄τ(r, t; τ) =
1
τ

∫ t

t−τ
f (r, t′) dt′. (11)

If, on the other hand, there is a symmetry in at least one direction,
as there is in our case, a spatial average is also a viable solution.

The actual average process in the Reynolds decomposition
is a simple arithmetic mean over space or time (see Eq. (11)). A
more common approach in the case of compressible flows, how-
ever, is to use a density-weighted Reynolds average for the fil-
tered part of the variables (Gatski & Bonnet 2013; Peyret 1996;
Balbus & Papaloizou 1999). These density-weighted, or Favre
variables are given by a decomposition, which reads

f = f̃ + f ′′ with f̃ =
ρ f
ρ̄
, (12)

where the bar denotes a Reynolds average and the tilde a Favre
average.

After performing a decomposition (of any kind) of the flow
field, one can then derive the Navier-Stokes equations for the
mean or resolved field. They are called the Reynolds-averaged
Navier-Stokes (RANS) equations, or, in the case of a Favre
mean, the Favre-averaged Navier-Stokes (FANS) equations (e.g.
Gatski & Bonnet 2013; Peyret 1996). Those mean field equa-
tions contain additional terms, however, that are dependent on
the fluctuating part of the flow variables. In many engineering
applications where simulations of the mean field are performed,
those parts are unknown and have to be dealt with by using ap-
propriate closure relations or models. Here, on the other hand,
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we are running direct numerical simulations and solve for the
actual values of the flow field variables. From these simulations,
we can compute the additional terms, which appear in the aver-
aged equations.

From the FANS equations, we obtain the Reynolds stresses
exerted by the fluctuating motion of the gas. For accretion disks,
the dominant contribution is given by

Rrϕ = Σuruϕ − Σũrũϕ, (13)

where we have already performed a vertical integration. The
quantity Rrϕ appears in the angular momentum Eq. (5), where
it adds to σrϕ. We note that for the second part in Eq. (13), it
is incorrect to use either the mean values of the laminar flow
(i.e. the initial values, when starting from a relaxed model) or
assume ũr ≈ 0. Our simulations showed that the instability-
dominated state has other mean values than the laminar flow
state, and that both terms in Eq. (13) are approximately of the
same order of magnitude. Our simulations also showed that for
the quasi-stationary state both temporal and azimuthal averaging
procedures yield the same mean values since the evolution of the
BL is significantly slower than an orbital period. Therefore, we
mostly used azimuthal averaging for the mean values since it is
computationally far less expensive.

The vertically integrated Reynolds stress, which has the di-
mensions of a 2D pressure, can be expressed by a dimensionless
parameter αRe via

αRe =
Rrϕ

Σc2
s
· (14)

Comparing the strength of the Reynolds stresses and the viscous
stresses, we can identify Rrϕ = −σrϕ and calculate an effective
viscous αν from this equation. This relation is given by

αν = − Rrϕ

Σcs`r ∂Ω
∂r

, (15)

where ` is the turbulent scale height in the BL, which is approx-
imated to be the smaller of the disk scale height H and the radial
pressure scale height (see Papaloizou & Stanley 1986; Popham
& Narayan 1995).

2.4. Transport of mass and angular momentum

The mass and AM transport in the disk are two important quan-
tities when we are interested in the effectivity of the Reynolds
stresses in the BL. Both result from the 1D stationary hydrody-
namic equations, where they play the role of eigenvalues. The
mass flux is obtained from the continuity equation and reads

Ṁ = 2πrΣur. (16)

The angular momentum flux follows from the momentum equa-
tion in azimuthal direction and is given by

J̇ = 2πr2Σuruϕ − 2πr2σrϕ + 2πr2Rrϕ. (17)

Most commonly, the AM flux J̇ is expressed as a dimensionless
parameter j, which is the AM flux normalized to the advective
AM flux at the surface of the star:

j =
J̇
J̇∗
, J̇∗ = ṀR2

∗ΩK(R∗). (18)

Either flux is defined such that if mass or AM are traveling out-
ward, Ṁ and J̇ are positive. The three terms in Eq. (17) can be

identified as the advective AM transport, the viscous transport,
and the transport due to Reynolds stresses. Both Ṁ and j are
constant with respect to space and time only if the system has
reached a stationary state, i.e. ∂/∂t = 0. Then, Ṁ equals the
imposed mass flux that is set as a boundary condition. For non-
stationary states, Ṁ and j represent the local mass and AM flux
at a certain time.

3. Numerics

3.1. General remarks

We used the code fargo (Masset 2000) with modifications of
Baruteau (2008) for the simulations presented in this paper.
fargo is a specialized hydrodynamics code for simulations of
an accretion disk in cylindrical coordinates (r, ϕ) that exploits
the advantages of the FARGO algorithm (Masset 2000). The
FARGO algorithm is a special method for the azimuthal trans-
port in differentially rotating disks that is able to speed up the
simulations by up to one order of magnitude and exhibits a
lower numerical viscosity than the usual transport algorithm.
The speed-up works best when the velocity perturbations are
smaller than the bulk flow in azimuthal direction. Since the
average azimuthal velocity uϕ(r) changes significantly in the
course of the simulations, the background rotational profile for
the FARGO algorithm is updated at each time step in order to
gain full benefit of the method. The algorithm has also been
shown to produce valid results when shocks are created in the
disk (Masset 2000). The radiative diffusion in the flux-limited
approximation (Eq. (7)) is solved implicitly using a successive
over-relaxation (SOR) method (see Müller & Kley 2013). The
code has been tested and used extensively for a variety of ap-
plications. In order to verify its suitability for simulations of the
BL, we compared it to the 1D BL code described in Hertfelder
et al. (2013) and found a perfect agreement for the 1D models.

3.2. Boundary and initial conditions

To model the BL with a net mass flow through the disk we
have implemented specific boundary conditions in fargo. At
the outer boundary we impose a mass flux Ṁ which goes into
the disk and whose absolute value can be chosen as a parameter.
We require the azimuthal velocity to be Keplerian at the outer
boundary, uϕ(rout) = routΩK(rout). Modeling the inner bound-
ary, i.e. the beginning of the star, is more difficult. Since we are
treating the problem in cylindrical geometry in the disk plane,
we cannot simultaneously simulate the outer parts of the star.
Therefore, we start the simulation domain of all our simulations
at rin = 1R∗, where R∗ is the radius of the chosen star, and set
the azimuthal velocity to the velocity of the rigidly rotating star,
uϕ(rin) = R∗Ω∗, i.e. we impose a no-slip boundary condition in
ϕ-direction. The radial velocity is set to a certain fraction F of
the Keplerian velocity

ur(rin) = −F rinΩK(rin). (19)

This is obviously an outflow BC for the radial velocity at the
inner boundary and it is necessary since the matter which is in-
serted in the domain from the outer boundary must be allowed
to leave again at the inner boundary. The factor F determines
how deep the inner boundary rin is located inside the star: the
smaller F is, the deeper the domain ranges into the star. The ac-
tual choice of F is a trade-off between containing a sufficient
part of the stellar envelope in the domain and avoiding densities
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and temperatures that are too high at the inner boundary to pre-
vent the simulations from being slowed down too much. A value
of F = 10−6 is used in our simulations. We have tested differ-
ent values of F and found that it does not have any influence
on the initial models apart from shifting the radial profiles by
a small amount in r. In particular, it does not have an effect on
the mass flux through the inner boundary once the initial model
is in an equilibrium state. Instead, the density adjusts such that
Ṁ at the inner boundary equals the value at the outer boundary.
Apart from the special boundary treatment mentioned above, we
impose zero-gradient or Neuman-type boundary conditions for
the remaining variables, which means that the normal derivative
at the boundary vanishes.

The 2D simulations were started from fully relaxed 1D ax-
isymmetric BL models which were generated using the same
methods as in Hertfelder et al. (2013). Those simulations use
a classical α-parametrization for the viscosity with a uniform
value of α = 0.01 both in the disk and the BL. We employed
these models to have realistic profiles for the density and temper-
atures as initial conditions. After the 1D models reached a sta-
tionary state we extended them to 2D input data for fargo and
ran them again with a small number of azimuthal cells until they
were fully relaxed. Following this burn-in procedure we started
the actual simulations from these axisymmetric initial conditions
with full resolution in r and ϕ. Prior to the start, the radial veloc-
ity was randomly perturbed by 1% of the Keplerian velocity at
the surface of the star. The initial profiles are shown in Fig. 10
below (dashed lines).

3.3. Model parameters

In this paper we focus on the non-axisymmetric instabilities and
the AM transport in the BL. We chose the physical system of a
BL around a young star, because the ratio of the mass and the
radius of the star, M∗/R∗, is much smaller than, for instance, for
a white dwarf, which we considered in a previous paper about
the BL. This ratio determines the radial scale height in the BL
and the smaller H is, the higher the resolution must be in order
to resolve the BL correctly. Therefore, the computational costs
increase enormously when one goes to more compact objects.
However, we expect what we find here to be the generic case.

The young star we consider in this paper has one solar mass,
M∗ = M�, and is three times the radius of the sun, R∗ = 3 R�.
It has an effective temperature of T∗ = 3000 K which yields a
luminosity of 3 L�. The star is not rotating, i.e. Ω∗ = 0, which is
slightly below the observations (Cohen & Kuhi 1979), but was
chosen for the sake of a large velocity drop. We impose a mass
accretion rate of Ṁ = 10−6 M�/yr, which is a typical value for
T Tauri stars such as HL Tau (Hayashi et al. 1993; Lin et al.
1994), and is two orders of magnitude smaller than the accretion
rate FU Orionis stars can reach in outburst phases (Hartmann
et al. 1993). We took α = 0.01 for the viscosity parameter in
the disk and α = 0 for the BL (see Sect. 2.2). We consider the
following four simulations for this work.

– Simulation A: it has a resolution of 512 × 512 and the radial
domain ranges from R∗ to 2R∗. This simulation features the
lowest resolution of all runs performed.

– Simulation B: this is the reference simulation, and unless
stated otherwise, we always refer to it in the text. It has a sim-
ulation domain of [R∗, 2R∗] and a resolution of 1024× 1024.

– Simulation C: here, the number of grid cells is dou-
bled in each direction and hence the resolution is given
by 2048 × 2048. The simulation time for this resolution is

very high and we are not able to study the long-term evolu-
tion for this run.

– Simulation D: in order to ensure that the radial domain in
simulations A-C is not too small, we increased it to [R∗, 5R∗].
While the first three simulations utilized an arithmetic grid,
we chose a logarithmic spacing in radius for this run along
with a resolution of 1024 × 1024.

4. Boundary layer instability

In this section, we will summarize the key features of the sonic
instability and its associated acoustic waves in the BL (Glatzel
1988; Belyaev & Rafikov 2012; Belyaev et al. 2012, 2013a)
and demonstrate that our models are also prone to the sonic
instability.

4.1. Sonic instability

The sonic instability arises in supersonic shear flows and is a
non-local instability similar to the Papaloizou-Pringle instability
(Papaloizou & Pringle 1984; Narayan et al. 1987; Glatzel 1988).
It is the analogue of the classical KH instability in the regime of a
supersonic drop in the velocity of a compressible, stratified fluid.
The sonic instability has recently been studied in the context of
the BL extensively by Belyaev & Rafikov (2012).

There are two ways by which the sonic instability operates:
The first is the overreflection of sound waves from a critical layer
that corresponds to the corotation resonance in a rotating fluid,
i.e. the radius where the pattern frequency of the mode matches
the rotation frequency of the bulk flow. This mechanism results
in a dispersion relation that features several sharp peaks and
hence discrete modes are clearly favored, especially if the den-
sity contrast across the shear interface is high (see e.g. panel (n)
of Fig. 3 in Belyaev & Rafikov 2012). Each mode can be asso-
ciated with a pseudo-energy, or conserved action (angular mo-
mentum), which can leak through the critical layer when a mode
is reflected at the corotation resonance (Narayan et al. 1987).
The tunneled wave has the opposite sign of the action and, since
it is a conserved quantity, the reflected wave must undergo an
increase in its action in order to globally compensate for the ad-
ditional negative action. Thus, the reflected wave is amplified.
Furthermore, if a mode is trapped such that it performs multiple
reflections at the corotation resonance, this amplification mech-
anism, called the corotation amplifier (e.g. Mark 1976), eventu-
ally leads to instability.

The other destabilizing mechanism is the radiation of en-
ergy away from the BL. If a mode inside the BL has a negative
action density, it becomes even more negative through the radi-
ation mechanism and, consequently, is amplified, which results
in further instability. The dispersion relation of this destabilizing
mechanism is a smooth function of the wave vector. Therefore,
a continuum of modes are associated with it. This mechanism
dominates the overreflection for a small density contrast on ei-
ther side of the interface (see again Fig. 3 of Belyaev & Rafikov
2012).

Each mechanism, the overreflection and the radiation, is
most efficient in the regime of large density contrast or equal
density, respectively, and they operate together. The growth rates
of the sonic instability are approximately 1/P∗, and the depen-
dence of the growth rate on the density contrast is small, de-
spite the different destabilizing mechanisms. This further dis-
tinguishes the sonic instability from the KH instability. In the
numerical simulations of the BL, a very high numerical res-
olution is necessary to correctly reproduce the growth rate of
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Fig. 1. Total radial kinetic energy as a function of the very first orbits
for three simulations mentioned in Sect. 3.3, which differ only in their
spatial resolution. At around orbit 5, the sonic instability starts to op-
erate in all three cases, and as a result, the radial kinetic energy rises
rapidly. The growth rates were obtained by applying an exponential fit
to the first exponential increase.

the sonic instability. Such a high resolution is computationally
very demanding and costly, especially for investigations of the
long-term evolution of the BL. However, as has been shown
by Belyaev & Rafikov (2012) and revisited in Belyaev et al.
(2012), a lower resolution merely leads to a slower growth of
the instability.

We confirm this point by comparing the growth rates of three
simulations with different spatial resolution. Figure 1 shows the
evolution of the radial kinetic energy when the sonic instability
starts to set in for the three resolutions 512 × 512, 1024 × 1024,
and 2048 × 2048. Indeed, the simulation with the lowest spatial
resolution underestimates the growth rate by a factor of ∼1.8.
However, the simulations with 10242 and 20482 cells both yield
an almost identical growth rate of 1.09 per orbit. The shear layer
with positive gradient of Ω is initially resolved with approxi-
mately 150 and 300 cells in radial direction, respectively. In sim-
ulation A, we only have about 75 cells across the velocity drop.
We also verify by Fig. 1 that the growth rates of the sonic insta-
bility, which are of the order of 1 per orbit, are actually very high.
We will now focus again on our reference simulation, although
all simulations behave basically the same. After about ten orbits,
the rise of the radial kinetic energy is interrupted briefly and then
continues with a slightly different growth rate. The paused in-
crease in the instability and the change in growth rate is due to
the change in density and velocity in the shearing region with
time. Since the mass inside the BL is delivered from the disk,
the density in the vicinity of the velocity drop rises. The veloc-
ity itself changes as a result of the initiated angular momentum
transport. As has already been mentioned and is elucidated in
Belyaev & Rafikov (2012), the growth rate of the sonic instabil-
ity shows a weak dependence on the density ratio and the modes
depend on the slope of the velocity drop, as well. Thus, a change
in the instability mechanism can be observed at this time.

We now have a closer look at how the sonic instability man-
ifests itself in the radial velocity and consider Fig. 2 for this pur-
pose. The upper panel is a snapshot taken after five orbits and the
lower panel shows ur at t = 10 orbits. In both panels, the veloc-
ity is normalized to the Keplerian velocity at the surface of the
star. Figure 2a features a distinct boundary at rcrit ≈ 1.19, which

coincides with the inflection point in Ω(r) and we can clearly see
sound waves on either side, propagating away from the bound-
ary. The pattern speed equals the rotation rate of the unperturbed
flow at the location of the boundary and thus we associate it with
the critical layer, or corotation resonance, which we have already
introduced. It is also clearly noticeable that the modes undergo
a phase shift across the critical layer. Both features are a clear
signature of the sonic instability and we can compare Fig. 2a to
Fig. 2 of Belyaev et al. (2012) and Fig. 5a of Belyaev & Rafikov
(2012) to verify that our model is indeed unstable to the sonic
instability.

Figure 2b depicts the radial velocity five orbits later and the
appearance has already noticeably change. The amplitude of the
sound waves in the lower panel is at least a factor of 2 larger
than that in the upper panel and amounts to a large percentage
of the azimuthal velocity. The picture shows a distinct pattern of
wave front crossings and reflections for r < rcrit and the critical
layer at rcrit = 1.19 has already begun to smear out at this point
in time. When the color scale is saturated we recognize three
regions where the amplitude of the waves is dropping owing to
the wave fronts crossing each other. They lie at r ≈ 1.16, 1.12,
and 1.07. Inside the corotation resonance, the waves are reflected
near the inner boundary and at the critical layer, and are thus
trapped between the two radii. We have traced three wave fronts
with the black lines to illustrate the pattern that is exactly the
overreflection mechanism that we have already elucidated. The
pattern number of the sonic instability (15 for the simulation
shown in Fig. 2) does not depend on details of the inner bound-
ary condition. This has been verified by running the same simu-
lation with identical perturbations with modified boundary con-
ditions, where all variables are kept at their initial values for all
time (“do-nothing” BCs). The pattern number is, instead, set by
the initial random perturbation. For a different seed of the ini-
tial perturbations the pattern number will be different. When the
trapped waves undergo a reflection at the critical layer, part of the
wave action leaks through the critical layer and has the opposite
sign compared to the reflected wave, whose amplitude grows as
a consequence of the global conservation of wave action. Thus,
the whole process is self-sustaining and even grows with time.
The leakage of wave action is also clearly visible in Fig. 2b for
r > rcrit. Now the reason for the change in the growth rate of
the sonic instability after about ten orbits (see Fig. 1) becomes
apparent: It is simply the overreflection mechanism setting in,
gaining in strength, and growing dominant.

4.2. The BL modes

In Sect. 4.1 we described the linear growth regime of the sonic
instability and analyzed its manifestation in our models. After
only 20–30 orbits the sonic instability saturates and the system
remains in the excited state with a radial kinetic energy that is
approximately three orders of magnitude larger than before the
sonic instability set in. There are still considerable variations in
the radial kinetic energy (see Fig. 6); however, we suggest that
they a result of a secondary KH like instability that sets in peri-
odically and dies out shortly after. This theory is examined thor-
oughly in Sect. 5.2.

After the sonic instability has saturated we observe waves
that are acoustic in nature propagate through the largest part of
the domain. Those modes have been excited by the sonic insta-
bility and do not die out for the whole simulation time, which
amounts to over 2000 orbits. Considerable effort has been ex-
pended by Belyaev & Rafikov (2012) and Belyaev et al. (2012,
2013a) in order to analyze these acoustic modes by means of
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Fig. 2. r-ϕ plot of the radial velocity in units of uK(R∗) at t = 5 a) and t = 10 b) orbits. The velocity in the upper panel, a), has been multiplied
by a factor of 2 in order to use the same colormap as below. Both snapshots show the linear stage of the sonic instability and the middle branch in
action. The sound waves are propagating toward the inner and the outer edge of the domain in an oblique fashion. The three black lines in panel b)
illustrate the wavefronts. The arrows denote the direction of the unperturbed azimuthal flow.

linear stability analysis and derive proper dispersion relations.
Since this undertaking is quite involved we limit ourselves to re-
viewing those elements that are crucial for the understanding of
our results.

One finds that the acoustic modes of the BL are related to the
waves in a plane parallel vortex sheet in the supersonic regime
(Belyaev et al. 2013a). For a discontinuous drop of velocity in
the isothermal vortex sheet in absence of stratification or rota-
tional effects it can be shown that the linearized Euler equations
yield three different expressions for the dispersion relation ω,
which are denoted the lower, middle, and upper branch (Belyaev
& Rafikov 2012). The three branches differ in the direction of
propagation of the modes on either side of the interface (ve-
locity drop) and their general appearance is depicted in Fig. 4
of Belyaev et al. (2013a). The lower and upper branch are very
similar to each other. They both show a region where the waves
propagate parallel to the interface and a region where the wave
vector forms an angle between 0 and π/2 with respect to the
normal vector of the interface. Transferred to the formalism of
our models, the modes of the lower branch propagate purely in
ϕ-direction in the BL and both in r and in ϕ in the disk, where
kr/kϕ � 1, however. For the upper branch, the opposite ap-
plies. Modes of the middle branch propagate in an oblique man-
ner both in the disk and in the BL with the same wave vector.
Furthermore, the waves undergo a phase shift of π at the inter-
face. This holds true for all branches. The dispersion relations of
the three branches of the vortex sheet can then be extended by

including radial stratification and the effects of rotation (Coriolis
force) and one can find approximate dispersion relations for a
more realistic case of a BL. This was done in Belyaev et al.
(2013a) for the isothermal BL. It would be interesting to see how
a realistic equation of state and the radiation transport affect the
dispersion relations. However, this is beyond the scope of this
paper.

Figure 3 is a r-ϕ plot of the radial velocity after 45 orbits.
Three white dashed contour lines of the azimuthal velocity uϕ
have been overdrawn. All velocities are, as usual, given in units
of the Keplerian velocity at the surface of the star. The image
shows a standing wave in azimuthal direction for radii .1.17
and a wave that propagates into the disk with wave vector com-
ponents in both r- and ϕ-directions. Additionally, the amplitude
of the wave changes sign at r ≈ 1.17, i.e. the phase is shifted
by π/2. This pattern is a clear signature of the lower branch of
the acoustic modes, which we can observe in action here. The
contour lines of uϕ reveal that the interface between the disk and
the BL, or in other words the region where the velocity starts
to deviate substantially from Keplerian, is strongly deformed.
The deformation of the interface is evidently due to the large
scale vortices that reside at the base of the BL (see Fig. 3). At
r = 1.2 the sound speed amounts to ∼8% of the Keplerian veloc-
ity, whereas the gas rotates with 70%uK(R∗). Therefore, the az-
imuthal motion is still nearly ten times super sonic and informa-
tion about the interface deformation cannot propagate upstream.
Hence the oblique shocks, which are clearly visible in the radial
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Fig. 3. Two-dimensional plot of the radial velocity ur at t = 45 orbits.
The direction of the unperturbed flow is from bottom to top, i.e. in the
direction of growing ϕ. The dashed white lines are contour lines of the
azimuthal velocity at the levels 0.15, 0.3, and 0.7 (from left to right).
All velocities are given in units of uK(R∗). The radial velocity develops
a pattern with vortices in the BL and shocks at the top of the BL. This
pattern most likely resembles the lower branch of the acoustic modes
discussed in Belyaev et al. (2013a).

velocity, have developed. The whole system described above ro-
tates in a prograde way with a pattern speed of Ωp = ω/m, where
ω is the oscillation frequency in the inertial frame and m the az-
imuthal wavenumber. For the episode described here (orbit 45),
Ωp ≈ 0.3.

The waves of the lower branch, which we find almost exclu-
sively in our simulations, are tightly wound with a leading spiral
and we expect kr/m � 1, where k and m are the radial and az-
imuthal wave numbers, respectively. Therefore, one can apply
the WKB approximation and assume perturbations of the form

δ f ∝ exp
[
i (kr + mϕ − ωt)

]
. (20)

A linear stability analysis for a fluid disk with a polytropic equa-
tion of state then yields the dispersion relation

(ω − mΩ)2 = κ2 + k2c2
s , (21)

where κ =
(

2Ω
r

d
d r (r2Ω)

)0.5
is the epicyclic frequency and ω/m =

Ωp (Binney & Tremaine 2008). Of course, Eq. (21) is only an
approximation to the dispersion relation of the waves in our
fully radiative disk. However, it will mainly be used to explain
the wave dynamics in the disk. Furthermore, the WKB approx-
imation is no longer valid in the BL where we have seen that
kr ≈ 0. In the disk we can assume a Keplerian rotation pro-
file, Ω ∝ r−1.5, and consequently the epicyclic frequency is
real. Therefore, there is a region around the corotation resonance
Ω = Ωp, flanked by two Lindblad resonances Ω = Ωp ± κ/m,
where k is imaginary and the waves are evanescent. Formally,
according to Eq. (21) the wave number k becomes zero at the
Lindblad resonances. However, the WKB approximation breaks
down at these points since the assumption kr/m � 1 is no longer
valid. Since the whole pattern of waves and interface deforma-
tions rotates with a pattern speed 0 < Ωp < 1, there are two
corotation resonances, one in the BL and one in the disk, ei-
ther of them flanked by two Lindblad resonances. Assuming

the disk rotates with Keplerian frequency, we can easily derive
the corotation and Lindblad resonance, which are then located
at rcor = Ω

−2/3
p and rLind = (Ωpm/(m ± 1))−2/3. The waves or

the weak shocks we discussed earlier launched at the BL now
propagate into the disk until they reach the Lindblad resonances,
where they are reflected and propagate back toward the BL. In
the BL the waves might be reflected by Lindblad and corotation
resonances as well; however, Eq. (21) is not applicable there.
Through this process of consecutive reflections the waves can
become trapped between the BL and the disk.

This idea of the trapped modes has been proposed by
Belyaev et al. (2012) and was indeed observed in their simu-
lations. In Fig. 3 we do not find such clear evidence for reflected
shocks. Reflection of the wave depends, however, on whether
the modes are absorbed before they reach the evanescent region
in the disk. We observe that the modes in our simulation can
only travel until r ≈ 1.5 before they are substantially damped
by shocks, radiation, or viscous damping due to the α-viscosity
applied in the disk (see Sect. 2.2). We have run simulations with
larger domains in order to investigate a possible influence of the
outer boundary on the reflection of the waves. These test runs
confirm the early damping of the waves observed in the simula-
tions presented in this work. The effective viscosity in the disk is
likely to play a major role in this damping process. The actual in-
teraction between the waves and the MRI turbulence in the disk
can, however, only be investigated in real MHD simulations.

In Fig. 4 we plot the velocities ur and uϕ as a function of (r, ϕ)
at t = 173 orbits, a more energetic state than the one depicted in
Fig. 3 (see Fig. 6 below). It is immediately apparent that the state
at t = 173 orbits is far more violent than the situation shown in
Fig. 3. The amplitude of the radial velocity has increased by a
factor of 2 and the shocks have grown more intense and vigor-
ous. While the general pattern of the radial velocity remains un-
changed and still constitutes the lower branch with the vortices
at the base of the BL and the outgoing waves at the top of the BL,
the wavefronts are now heavily deformed by the shocks. These
shocks are a consequence of the strongly distorted interface as
can be seen in Fig. 4b. The lines of constant uϕ in the r-ϕ space
(the contours) have a wave-like shape with many irregularities
and the transition from zero rotation rate to Keplerian rotation is
spread over ∼0.2R∗ and has broadened considerably. Though the
radial velocity is more chaotic in Fig. 4b than in Fig. 3, there is
still a dominant mode visible and the azimuthal wave numbers
are m = 14 and 24, respectively. As we shall see later, the an-
gular momentum transport by the waves is very efficient in this
stage.

For completeness, in Fig. 5 we show a r-ϕ-plot of the radial
velocity that spans the whole simulation domain. The snapshot
was taken after 200 orbits while the system was in a quiet state.
The pattern of the lower branch with its vortices at the base of the
BL is clearly visible. We can also see that the waves emerging
from the top of the BL are indeed tightly wound and that the
spirals are leading. Figure 5 shows another azimuthal wave with
m = 3 that we had not detected before, which is still a little faint
is this figure. Interestingly, Belyaev et al. (2012) also find such a
large-scale m = 3 global mode in their full 2π simulations. The
wavenumber of the high-frequency pattern at the base of the BL
is given by m = 24.

The middle branch is a transient mode and dominates during
the linear growth of the sonic instability. It can be observed in
the early stages of the simulation and the oblique wavefronts
on either side of the interface are clearly visible in Fig. 2. Both
panel a) and b) show features of the middle branch, yet they are
more distinct in b). The upper branch, on the other hand, might
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Fig. 4. r-ϕ plot of the radial velocity a) and the azimuthal velocity b) at t = 173 orbits. Both quantities are given in units of uK(R∗). The dashed
white lines in both plots trace the contour of uϕ = 0.15 and 0.6 (from left to right). The direction of the unperturbed flow is from bottom to top. The
images have been taken at a high activity state and the strong shocks in ur and the heavy deformation of the interface (see b)) are clearly visible.

Fig. 5. Full-disk plot of ur at t = 200 orbits. The direction of the un-
perturbed flow is counterclockwise. The radial velocity is given in units
of uK(R∗).

be observed during the late times of the simulations. We defer
the discussion of this issue to Sect. 5.5.

5. The effects of the instabilities

In the previous section we discuss the hydrodynamical instabil-
ities in the BL in detail. Now we show the implications of the
BL instabilities and the physical results of our simulations of the
radiative BL around a young star.

5.1. Temporal evolution of the BL

Figure 6 visualizes the total radial kinetic energy, Ekin,rad =∫
disk

1
2 Σu2

r dA, for which we summed the radial kinetic energy
of every cell in the simulation domain. For a given time, the
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Fig. 6. Temporal evolution of the radial kinetic energy of our refer-
ence simulation. The time is given in units of the Keplerian orbit at
r = R∗, P∗. The switching between quiet and outburst states described
in the text is clearly noticeable. We have marked the exact times for
some of the outbursts for easier comparison with the text.

radial kinetic energy reflects the strength of the instabilities.
Therefore, we can monitor the time-dependence of the insta-
bilities by tracking Ekin,rad. The reference simulation shows a
strongly time-dependent behavior that can be characterized as
a recurring series of states of outburst and quiescence. When
the kinetic energy reaches a maximum, the instabilities are vig-
orous and the interface between the BL and the disk is heav-
ily deformed (see Fig. 4). In the quiescence states, on the other
hand, the amplitude of the velocity perturbations drops con-
siderably, often by a factor of more than 10, and the interface
deformation is less strongly pronounced. The strength of the out-
bursts does not follow a clear pattern. In the beginning, the out-
bursts get stronger, with the second outburst at t ≈ 173 orbits
being the most powerful. During this outburst the amplitude of
the perturbations in the radial velocity reaches over 20% of the
Keplerian velocity at the surface of the star. Thus, the amplitude
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Fig. 7. Upper panel: temporal evolution of the mass accretion rate in the radial direction, Ṁ(r, t), in units of solar masses per year. It is obtained from
the mass accretion rate per cell (see Eq. (16)) by integrating over the azimuthal direction. Lower panel: visualization of the AM flux normalized
to the advective AM flux at the stellar surface (see Eq. (18)), which is also integrated over azimuth. We note that we applied a so-called symlog
scaling for the plot, which means that we have a logarithmic scaling for both the positive and the negative values. Only in the vicinity of 0 is the
scale linear. A negative value means that mass or AM is transported to the center of the disk. The phases of strong activity in the radial velocity
(see Fig. 6, marked with the black dashed lines here) correspond to phases of increased mass and AM transport. The diagonal features in the upper
panel are a clear signature of waves, which have alternating signs of mass transport. This sloshing behavior spreads to the AM flux (lower panel)
via the advective component of j.

of the radial velocity becomes comparable to that in azimuthal
direction, or even exceeds it for r . 1.1. The third outburst at
t ≈ 280, which is less intense than the second one, is followed
by a longer period of less activity or quiescence during which
some small peaks suggest the occurrence of very weak micro-
outbursts. After more than 500 orbits, the system starts to go
through a series of outbursts again.

The high and low instability states mentioned above corre-
spond to episodic phases of high and low activity in mass accre-
tion and angular momentum transport, as can be seen by com-
paring Figs. 6 and 7. Figure 7 depicts the time-dependence of
the mass accretion rate, Eq. (16), and of the angular momentum
transport, Eq. (17), for all radii inside the computational domain.
In phases of outbursts, which are marked by the vertical dashed
lines, the mass flux through the disk is higher than in the qui-
escence state. In certain regions, Ṁ increases by more than two
orders of magnitude. In the high activity phases, Ṁ distinctly
rises in the outer parts of the simulation domain as well. The an-
gular momentum transport, j, shows a similar trend. At times of
strong instability, the transport of angular momentum, which is
mainly directed to the center of the disk, also grows remarkably,
quite often by a factor of about 100.

Unlike in a stationary state where mass and AM are trans-
ported to the center of the disk (see Eq. (17)), we observe that
the transport of mass does not have a preferred direction in cer-
tain regions of the simulation domain. We consider for this pur-
pose the upper panel of Fig. 7. There is a clear boundary at
r ≈ 1.2−1.3R∗, which is approximately given by the location
of the maximum of Ω and divides the rather organized, inward
directed mass flux in the disk from the alternating transport in
the BL, where mass is sloshing about back and forth in radius
because of the passage of waves which have alternating signs
of mass transport. This is clearly visible in the form of the di-
agonal features in the upper panel of Fig. 7. Thus, the direc-
tion of the mass transport in the BL is both a function of time
and radius, and the variability with time is on the order of one
orbit. After roughly 600 orbits, the strength of the mass trans-
port ceases slightly, only gaining strength again during the sub-
sequent outburst periods. This development matches that of the
radial kinetic energy (Fig. 6) where we can also detect a change
in activity starting after 600 orbits. After 1200 orbits another ma-
jor change in the mass transport pattern takes place. The whole
system seems to calm down and the sloshing behavior with its
frequent changes in direction ceases.
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Fig. 8. Velocity in azimuthal direction in units of the Keplerian velocity
at the stellar surface for seven different orbits. The curves demonstrate
the spin-up of the gas for r . 1.2 and the spin-down for r & 1.2 over
time.

The AM flux does not feature a variability as intense as the
mass flux; however, the diagonal features that have also been
discussed in the context of Ṁ are still present. An analysis of
the individual components of j confirms that these features arise
from the advective part of the AM flux, which shows a slosh-
ing behavior similar to the mass flux. Apart from these features,
j assumes mostly negative values (see the lower panel in Fig. 7),
meaning that AM is transported inward. This evidence agrees
with our expectations that in the disk j is negative for the rea-
sons pointed out earlier. One very distinct feature in the graph
of the AM flux is the very pronounced boundary that starts at
the beginning of the simulation at r close to 1.2R∗ and moves
inward up to r ≈ 1.025R∗ during the first 800 orbits. This line
can be characterized by an enhanced AM flux in its near vicin-
ity and a shift in direction from inward (r < rline) to outward
(r > rline). Figure 8 visualizes the destination of the AM which
is accumulated at this interface as a result of transport from both
sides. It is spent to spin up the gas at r . 1.2. Hence, the BL
is broadened considerably during the course of the simulation.
The AM needed for the spin-up of the inner layers is extracted
from the faster rotating part at r & 1.2, which is, consequently,
slowed down. By comparing Figs. 7 and 8, we can deduce that
the AM transport is the strongest where the gradient of Ω is high-
est, i.e. where the shearing is strongest.

It can be recognized from Fig. 7 that AM is mostly trans-
ported inward although the mass flux is also directed outward.
Especially when Ṁ > 0 and large, one would expect a con-
siderable amount of AM to be transported outward along with
the matter. Thus, one possibility for the AM flux to still remain
negative is that the Reynolds part of Eq. (17) is negative and
larger than the advective part (the viscous part is zero in the BL).
However, an analysis of several time steps showed that very of-
ten the advective AM transport is negative and large while the
mass flux is positive and large. This apparent discrepancy be-
tween the mass and the AM flux is due to an anti-correlation
between the radial and azimuthal velocity. The mass accretion
rate periodically points in- and outward, depending on azimuth,
owing to the vortices of the radial velocity. The sum of Ṁ over
the whole azimuthal domain for a given radius can therefore be
positive (meaning that mass is transported outward). However,
according to Eq. (17), the total advective AM flux can eas-
ily remain negative if uϕ is smaller at azimuthal locations of
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Fig. 9. Upper panel: mass accretion rate; middle panel: radial velocity;
and lower panel: azimuthal velocity. All three quantities are plotted as
functions of azimuth at the fixed radius r = 1.12R∗ after 145 orbits. The
upper two curves are shifted in phase with respect to the lower one such
that maxima in Ṁ (nearly) coincide with minima in uϕ.

positive Ṁ than where it is negative. This is indeed very often
the case and we have picked an illustrative example to stress this
point (see Fig. 9). It is a snapshot of the mass accretion rate, the
radial velocity, and the angular velocity at orbit 145, where we
plotted the dependence on azimuth for r = 1.12R∗. The figure
clearly shows that whenever Ṁ(ϕ) is positive and large, uϕ(ϕ) is
small. The comparison between the radial and the azimuthal ve-
locity reveals that the anti-correlation between ur and uϕ is such
that an extreme of the azimuthal velocity coincides with a root
of the radial one. Therefore, the two patterns that are similar,
although not perfectly equal, are shifted by one quarter of the
azimuthal wavelength of the m = 7 mode at this annulus.

5.2. Outburst sequence

We now take a closer look at the cause of the periodic outbursts
and the behavior of the primitive variables in the disk during
such an outburst and we consider Fig. 10 for this purpose. The
graphic shows the velocity in azimuthal direction, the surface
density, the pressure, and the temperature in the midplane of the
disk for five different times that are centered around the outburst
at t = 173 orbits and are not equidistant. These time steps cover
the second outburst in Fig. 6. This part of the radial kinetic en-
ergy evolution is shown as a zoom-in in the lower right panel of
Fig. 10.

At the beginning of the outburst, the surface density has in-
creased quite strongly, especially in the vicinity of r ≈ 1.25
where it is almost two orders of magnitude higher than at the
beginning of the simulation. This pile-up of mass is a result of
the fact that mass is constantly entering the BL from the outer
disk, but the instabilities in the BL are not yet efficient enough
to guide it all through. This situation is universal for all observed
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Fig. 10. Azimuthal velocity, the surface density, the pressure, and the midplane temperature for five time steps centered around the second outburst.
The dashed lines denote the initial conditions of the simulations. The dash-dotted line in the upper left panel gives the azimuthal velocity for pure
Keplerian rotation. In the lower right panel we have included a zoom-in of Fig. 6 for better identification of the exact location of the plot times.

outbursts, which are preceded by a phase of quiescence dur-
ing which the activity and the mass transport in the BL are not
as strong as in outburst phases. Therefore, the whole process
described here using the example of the first outburst can be
equally applied to the other outbursts. During the accumulation
of the mass just outside the BL, the azimuthal velocity profile is
smooth and quasi-stationary. The high amount of mass leads to
a high temperature and hence a high pressure, which means that
uϕ is remarkably sub-Keplerian in the first half of the domain
since the gas is stabilized by pressure.

After a sufficient amount of mass has accumulated, a run-
away process sets in during which uϕ and the other quantities
change very rapidly. According to Figs. 7 and 10 a great amount
of mass is guided through the BL onto the star over such an out-
burst. The process is initiated outside the BL at about r ≈ 1.3.
The gas is both accelerated and decelerated in azimuthal direc-
tion by the Reynolds stresses in and near the BL, with the bound-
ary between the spin-up and spin-down region moving inward
with time. Since the effect of the deceleration is much stronger,
mass moves inward. As a consequence of the decreasing den-
sity, the pressure decreases and the gas is even less stabilized
and can accelerate its inward movement. After the density is sat-
isfactorily depleted, the Reynolds stresses decrease and the vio-
lent accretion process comes to an end. Then the density grows
again because of the lower stresses and the azimuthal velocity is
slowly regains its pre-outburst profile.

The variation of the midplane temperature during the out-
burst phase is consistent with what we have already discussed
for the other physical quantities. At the beginning, despite the

decreasing density, the temperature rises for r . 1.6R∗ and
even develops a small bump around r = 1.25R∗. The increase
in temperature is due to the dissipation of energy through the
growing Reynolds stresses and indicates the region where the
energy release by the waves is largest. This radius is in agree-
ment with what we expected from the plot of the azimuthal
velocity if we also take into account that the energy is redis-
tributed by radiative diffusion. Subsequently, the surface density
drops more and more and the Reynolds stresses decrease as well.
Accordingly, the temperature also drops, and even drops below
the level of the initial state. After enough mass has again piled
up around the BL, the temperature will rise to its pre-outburst
level.

The outburst sequence shown here for the second outburst of
the reference simulation is exemplary for the general behavior
of outbursts. What we have just discussed might be less clearly
visible or even more distinct, depending on the strength of the
outburst. However, the mechanism is the same throughout. From
simulation C, which has a resolution of 2048 × 2048, we find
that the outburst is far more violent than the one we discussed
here. The azimuthal velocity frequently develops an even more
pronounced local maximum and minimum for r < 1.2R∗ and
the depletion of mass is more effective. Thus, it is possible that
the instabilities become stronger with increasing resolution. The
increasing strength of the outbursts might instead be due to the
other modes becoming excited through the initial perturbations,
as is typical for classical KH instability.

We propose the following scenario for the physical cause of
an outburst such as the one described above. The radial velocity
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Fig. 11. Derivative of the vorticity, ∂Z/∂r, as a function of radius for
orbit 50 (quiet state), orbit 150 (pre-outburst state), and orbit 200 (post-
outburst state). The inset is a zoom-in of the region 1.2 ≤ r ≤ 1.4 where
multiple changes of sign are clearly visible for orbit 150.

has developed weak shocks at the top of the BL. Every time a
fluid element passes through that shock it is slowed down by
these oblique shocks. The cumulative effect of all these shock
passages leads to a decrease in the azimuthal velocity of the gas
and creates a wide plateau in the velocity profile (see e.g. or-
bit 160 in Fig. 10). Such a flat region with a weak velocity gradi-
ent is prone to the classical Kelvin-Helmholtz (KH) instability,
which sets in and induces the rapid changes in the BL. In ab-
sence of rotation, it follows from Rayleigh’s stability equation
that a necessary condition for instability is the occurrence of an
inflection point in the velocity. A stronger form of this condi-
tion was given by Fjørtoft (1950), who showed that the velocity
profile not only needs to have an inflection point, but also has to
satisfy the condition u′′(u−us) < 0 somewhere in the flow, where
us is the velocity at the inflection point. However, this require-
ment is only true for parallel flows. A normal-mode analysis of
the linearized Euler-equations of a rotating incompressible flow
with zero mean radial velocity eventually yields

(ω + imΩ)
(
∂2

∂r2 +
1
r
∂

∂r
− m2

r2

)
φ − im

1
r
∂Z
∂r
φ = 0 (22)

for 2D disturbances. Here, φ(r) is the amplitude of a stream
function ψ′(r, ϕ, t) = φ(r) exp(ωt + imϕ) such that u′r = imφ/r
and u′ϕ = −∂φ/∂r, where the prime denotes perturbed quantities;
Z = 1/r ∂(ruϕ)/∂r is the vorticity. Equation (22) is the equiva-
lent of Rayleigh’s equation for a rotating fluid. Rayleigh showed
that if φ = 0 at two boundaries R1 and R2 enclosing the flow, a
necessary condition for instability is that the gradient of Z must
change sign at least once in the interval R1 < r < R2 (Drazin &
Reid 2004). We take this analogue of Rayleigh’s inflection point
theorem as a motivation to study the vorticity and its derivative,
though Eq. (22) is clearly an idealization of the situation at hand.
However, a detailed stability analysis of the RHD equations of a
rotating stratified fluid is beyond the scope of this work.

Figure 11 displays the derivative of the vorticity, ∂Z/∂r, for
three points in time. At orbit 50, the system is in a state of quies-
cence (see also Fig. 6). After 150 orbits the second outburst has
just started to evolve, and 50 orbits later the system is recover-
ing from the outburst. While the vorticity derivative of the quiet
and post-outburst state does not change sign for r > 1.2R∗, it
does change several times for orbit 150. The region r > 1.2R∗ is

Fig. 12. z-component of the vorticity, ∇ × u, at the peak of the second
outburst at t = 172.6 orbits. The patterns in this image might be indica-
tive of a KH-like instability.

of interest here because this is where the rotation profile is flat.
There are, of course, multiple changes of sign for r < 1.2R∗ in
all curves. However, those points are associated with the strong
shearing regions that we have already discussed in Sect. 4. After
analyzing several time steps before, during, and after outbursts,
we draw the following picture: The consecutive shock passages
near the maximum of Ω cause the flow field to adjust such that
multiple changes of sign are created in the derivative of the vor-
ticity. Since this is a necessary condition for the instability of
a rotating, hydrodynamical flow, it is probable that a classical
KH instability develops in the flat regions of the flow. The role,
however, that the KH instability plays in the context of the en-
hanced accretion and AM transport is not yet entirely clear. It
might, on the one hand, act as a trigger for a mode of the sonic
instability which is excited during the outburst and efficiently
drives the accretion. Once a sufficient amount of the mass in the
BL has been accreted, the mode can no longer be sustained and
the system returns to quiescence. One candidate for this mode
might be the upper branch, which we normally do not observe
in our simulations. A scenario similar to this option was also
discussed in Belyaev et al. (2013a). If, on the other hand, the
KH instability itself is responsible for the enhanced accretion,
AM should be transported mainly by turbulent stresses, as op-
posed to the wave transport through the mode mentioned above.
We did not find clear signs of turbulence during the outburst, nor
did we find evidence of the upper mode. It is, however, plau-
sible that the AM transport is still accomplished by waves and
the KH instability might trigger or enhance a mode of the lower
branch.

We did find evidence for the existence of a KH instabil-
ity during the outburst. We consider for this purpose Fig. 12,
a 2D image of the z-component of the vorticity ∇ × u at or-
bit 172.6, i.e. at the peak of the second outburst. It shows patterns
that are commonly associated with the classical KH instability,
for instance, the curly arms and the cat’s eyes. By analyzing
simulation C we find that these patterns become more distinct
with increasing resolution (see also Fig. 11 in Belyaev et al.
2012). The KH features are, however, masked to some extent
by the waves generated by the main instability. This becomes
clear when we investigate the outbursts at later times when the
main instability is decreasing. In addition, the flat region where
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Fig. 13. Azimuthally averaged effective temperature of the BL for six
time steps centered around the second outburst (see Fig. 6). Teff in-
creases considerably during the outburst and then declines to approx-
imately the pre-outburst level ∼30 orbits after the peak of the outburst.
The black dashed line corresponds to the surface temperature of the
standard solution of Shakura & Sunyaev (1973).

we expect KH instability to work occurs in the fast rotating part
of the disk. Static grid codes suffer from disadvantages when the
fluid is boosted and fluid mixing instabilities can be suppressed
(Springel 2010).

5.3. Effective temperature

We now investigate the outburst described in Sect. 5.2 from an
observer’s point of view and look at the radiation emitted by the
BL and the disk. In Fig. 10 we have exclusively considered phys-
ical quantities, which are measured in the equatorial plane of the
disk, among them the midplane temperature Tc. If the medium is
optically thick, however, the emergent spectrum is dominated by
the temperature on the surface of the disk where the vertical op-
tical depth is approximately one, and locally resembles the spec-
trum of a blackbody radiating with temperature Teff . Since we
have no knowledge of the vertical structure of the disk, we use
the approximation of Hubeny (1990), which is a generalization
of the gray atmosphere (e.g. Rybicki & Lightman 1986). The ef-
fective temperature can then be calculated with an approximated
optical depth in vertical direction (Suleymanov 1992):

T 4
eff = T 4

c /τeff

τeff =
3
8
τR +

√
3

4
+

1
4τP
· (23)

Here, τR and τP (τ = κρH = 0.5κΣ) are the Rosseland and the
Planck mean optical depth, respectively.

Figure 13 shows the effective temperature of simulation B
calculated according to Eq. (23). At the beginning of the outburst
(orbit 160) the effective temperature features only a slight peak
in the BL and the temperature in the BL and in the disk differ at
most by 500 Kelvin. The reason why the effective temperature of
the BL and the disk are very similar at the beginning of the out-
burst episode is the following. The system, which is just on the
verge of an outburst at this point in time, comes out of a preced-
ing state of quiescence. Therefore, the energy dissipation of the
waves is small and the density is rather high owing to the ineffi-
cient mass transport. Consequently, both the midplane tempera-
ture and the optical depth in the BL are comparable to the disk

Fig. 14. 2D plot of the effective temperature of the BL at orbit 173,
which marks the peak of the second outburst (see Fig. 6). Teff strongly
varies in azimuthal direction and reaches temperatures up to 10 000 K.
The curly arms visible for r < 1.2 are indicative of a KH-like instability.

and Teff is only slightly larger in the BL. Over the course of the
next 13 orbits, however, the system goes through an episode of
effective mass and AM transport, and the midplane temperature
increases and the surface density decreases (see Fig. 10). Thus,
according to Eq. (23), Teff increases rapidly in the BL yielding
a maximum of 6000 K at r ≈ 1.3, which is twice the temper-
ature in the disk. Care should be taken when comparing Teff in
our models with conventional BL models where an α-viscosity
has been applied. The latter typically feature a BL that is con-
siderably smaller in radial extent than in the models presented
here. The luminosity of the BL, however, does only depend on
the physical parameters of the system and must be the same in
both models ( 1

2GMṀ/R∗ for a non-rotating star). Since the lumi-
nosity is the integral of the flux F = σSBT 4

eff
over the area of the

BL, it follows that the thinner the BL, the higher the effective
temperature must be, and vice versa. The relation between the
maximum effective temperature in the BL θBL and in the disk,
θd, can roughly be estimated by (Lynden-Bell & Pringle 1974)

θBL

θd
= 1.56

(
δ

R∗

)−1/4

, (24)

where δ is the width of the thermal BL (see e.g. Regev & Bertout
1995; Popham & Narayan 1995). Equation (24) yields a factor
of ∼2 for δ = 0.3R∗, which is in good agreement with what
we observe in our simulation (see Fig. 13). Also visualized in
Fig. 13 (black dashed line) is the surface temperature according
to Shakura & Sunyaev (1973), which is given by

Teff(r) =

(
3GM∗Ṁ
8πr3σSB

[
1 − j

(R∗
r

)1/2])1/4

, (25)

where j is the normalized AM flux. We took j = 1.1 for Fig. 13,
which is the mean normalized AM flux at orbit 160 measured
from the simulation. The effective temperature derived from our
simulation agrees very well with Eq. (25) in the disk. In the BL,
of course, the analytically derived formula fails to capture the
rise of the effective temperature.

Another important point for the observational appearance
of the BL is the azimuthal dependence of the effective tem-
perature, which is visualized in Fig. 14 for orbit number 173.
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Fig. 15. Time-radius image of αRe spanning several hundred orbits. We note that the values of αRe have been multiplied by (−1) in order to allow
for the logarithmic scale. For each point in time the values have been time average over ten orbits. The vertical dashed lines denote the locations
of the outbursts mentioned earlier in the text.

We can see from this depiction that Teff reaches temperatures
of nearly 10 000 K in the simulation domain which is high,
considering the case of a young star. There is strong variation
of Teff in ϕ-direction, especially for the annulus r ≈ 1.3, which
is due to the shocks of the radial velocity that create density
perturbations in the surface density and then affect the vertical
optical depth and the effective temperature. The ϕ-dependent
pattern of Teff rotates with the pattern speed of the acoustic
modes, which is close to the Keplerian velocity, and will ex-
press itself in time-dependent variations of the light curve. This
is an important point because many systems show light curve
oscillations with periods that are close to the orbital period at
the surface of the star. In cataclysmic variables, for instance,
one observes rapid oscillations called dwarf novae oscillations
(DNOs, Warner & Robinson 1972) and quasi-periodic oscilla-
tions (QPOs, Patterson et al. 1977). Both phenomena are not yet
fully understood and it is tempting to see a connection to the
BL modes on the basis of the protostar simulations presented
here. However, further research is necessary to clarify this point.
We also note that Fig. 14 shows clear indications of KH insta-
bilities. These features are even more pronounced in snapshots
of Teff taken before the peak of the second outburst and reinforce
the point that a KH-like instability is responsible for the frequent
outbursts.

5.4. Angular momentum transport by waves

In Fig. 7 we visualized the total AM flux in the disk, which con-
sists of the advective part, the viscous part in the disk, and the
Reynolds part (see Eq. (17)). It is, however, of great interest to
see how much the instabilities contribute to the total AM flux and
to deduce the efficiency of this transport. As we have described
in Sect. 4, the instability in the BL leads to the development of
acoustic waves that are launched from the interface and propa-
gate into the disk and the star. As a consequence, AM transport in
our models is dominated by acoustic radiation, i.e. sound waves
carrying AM. We do not observe any turbulence in our simula-
tions and hence rule out turbulent stresses as a major contribu-
tion to the AM flux. Unlike the turbulent stresses, the AM trans-
port by waves is a non-local process. Waves can carry AM of
either sign from one point in the domain, e.g. the interface in the
BL where they are launched to another point in the disk where
they deposit the AM into the fluid through wave dissipation.

Thus, the long-range exchange of angular momentum between
regions that are otherwise uncorrelated is possible through the
wave transport. This is a major difference from the α-models
which yield a local effective viscosity due to a local AM ex-
change phenomenon, such as turbulence. Therefore, it is ques-
tionable whether the processes in the BL can be described by a
local prescription like the α-model.

We now analyze the efficiency of the wave mediated
AM transport and consider Fig. 15 for this purpose. It shows the
dimensionless Reynolds stresses αRe, which has been calculated
according to Eq. (14), as a function of radius and time. We can
apply this description to the AM transport since waves trans-
port angular momentum exclusively by stresses. The Reynolds
stress is evidently very strong with peak values up to the or-
der of unity and it is largest at the top of the BL, at around
r = 1.2, which is very interesting since in that region Ω reaches
its maximum. Thus, our simulations reveal that the stresses are
largest around the very point where they would vanish accord-
ing to a conventional α-viscosity model. Strictly speaking, this
renders a local prescription that depends on the shear of the an-
gular velocity inapplicable for the BL. Figure 15 also shows that
the AM transport due to the waves includes a large part of the
domain, 1.05 . r . 1.4, and spreads out farther into the disk
during outbursts. This reinforces the point that the AM trans-
port ultimately generated by the shear in the BL is not confined
to the BL, but in fact ranges over long distances. As we saw
earlier, the activity rises during outbursts and therefore αRe is
enhanced during these periods as well. The value of αRe is al-
most exclusively negative, meaning that angular momentum is
transported toward the star. This behavior is characteristic of the
lower branch of the acoustic modes (Belyaev et al. 2013a). We
refrain from presenting plots of the parameter αν that can be cal-
culated according to Eq. (15) because it is artificial to boil the
non-local AM transport down to a local parameter. However, for
the sake of completeness, it should be mentioned that Eq. (15)
yields values on the order of 10−3−1 for our models.

Finally, we investigate how the strong AM transport in and
around the BL affects the width of the region where the az-
imuthal velocity rises from stellar rotation to the Keplerian rota-
tion in the disk. Figure 16 depicts the BL thickness as a function
of time for all four simulations. The thickness of the BL is de-
fined to be the region in which

0.02 < uϕ(r)/uK(r) < 0.8. (26)
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Fig. 16. Width of the BL as a function of time for the four simulations
mentioned in Sect. 3.3. The width is calculated from the radii of the
region where 0.02 < uϕ/uK < 0.8. All four simulation settle down to a
BL width of approximately 20 percent of the stellar radius. Simulation
A approaches this value more slowly and in a slightly different manner,
which is due to the very low resolution of this particular simulation
(512 × 512).

The width of the BL increases very rapidly and grows in size
by a factor of 2 at the beginning of the simulation, i.e. when the
sonic instability has grown to establish an efficient AM trans-
port. After the initial fast growth the width of the BL increases
on average linearly over the course of approximately 500 orbits
until it settles down at a value of ∼0.2R∗. We have run additional
simulations in order to test the robustness of the BL thickness
of 20% of the stellar radius. In these simulations, the initial dis-
tance of the velocity drop from the inner edge of the simulation
domain has been extended by altering both the parameter F (see
Sect. 3.2) and the point where the computational domain begins.
We thereby test whether the thickness is affected by the BL run-
ning up against the inner edge of the domain. However, these
runs are in perfect agreement with the simulations presented here
and saturate at a BL width of ∼0.2R∗ as well.

There are several spikes in the temporal evolution of the
BL width for all three simulations that are clearly associated
with the frequent outbursts. During the high activity state the BL
broadens considerably in a very short period of time and typi-
cally resides at a larger width in the aftermath of the outburst.
Because of the high resolution and the resulting long simula-
tion times we can follow the highly resolved simulation only for
about 200 orbits. During that time it behaves exactly like the
other simulations with the exception that the width of the BL in-
creases much more quickly. This is in good agreement with the
fact that the growth rate of the sonic instability depends on the
resolution in such a way that it is faster when the resolution is
higher (see Sect. 4). Since the BL widens to a large extent, it
extends very far into the disk and into the star. The latter means
that a consistent simultaneous treatment of the star is required
for numerical simulations involving large simulation times. We
will discuss this point in detail in the next section.

5.5. The long-term evolution of our simulations

We ran and monitored our reference simulation for over
2000 orbits (see Fig. 6), and the instability and the periodic
outbursts do not die out during that time. There is, however, a
change in the pattern of the acoustic waves that occurs around

orbit 1200, which coincides precisely with the moment when
the base of the BL reaches the inner boundary of the simula-
tion domain. We consider this a problematic moment, since it
is not possible to treat the star correctly in 2D r-ϕ simulations.
The geometry of the coordinate system inherently gives the star
a cylindrical shape in our simulations. In Sect. 3.2 we describe
how we treat the inner boundary in order to approximate the be-
ginning of the star and that the radial velocity is set to outflow
with a certain velocity at this point. Therefore, we might expect
unphysical and artificial processes once the vortices of the acous-
tic modes reach this point because the radial velocity is fixed to
a certain value and an inflow in the domain is not supported.
Furthermore, we force the azimuthal velocity to zero at the inner
boundary. However, the acoustic modes seem to be quite robust
since they do not die out despite the difficulties with the arti-
ficial inner boundary. The change in the pattern at orbit 1200
might be due to a switching of the modes to the upper branch,
since the spiral arms of the waves are unwinding considerably
and changing from leading to trailing. Another 1000 orbits later
the process is reversed again and the system switches back to the
lower branch.

However, in order to capture the physics correctly at these
late stages in time and to still make reliable statements once the
BL extends all the way to the surface of the star or even into
the star, it is necessary to attach a realistic model of the star to
the disk. We consider, for instance, a wave launched in the BL
that propagates toward the star. It can penetrate deep into the
star before it is stopped by the steep density gradient and dissi-
pates the angular momentum somewhere in the star. On the other
hand, many problems arise when the star is treated consistently.
The problem must then be simulated in spherical coordinates,
i.e. 3D simulations are necessary, and the density varies consid-
erably from the interior of the star to the disk. Simulations of this
kind are very demanding from a computational point of view, but
also very tempting, and we plan to investigate this problem in the
future.

6. Summary and conclusion

We have performed highly resolved, 2D hydrodynamical sim-
ulations of the BL surrounding a young star in order to inves-
tigate the AM transport driven by instabilities. Extending pre-
vious simulations, we have a net mass flow through the disk,
we utilized a realistic equation of state, and (within the frame-
work of one-temperature approximation) we included full radia-
tive transfer in the disk plane as well as vertical cooling through
an realistic estimate of the vertical optical depth, thereby em-
ploying a quasi 3D radiation transport. Moreover, those simula-
tions were started from state-of-the-art 1D models of the BL and
thus comprise realistic profiles for the density and temperature.
We ran the simulations for over two-thousand orbits in order to
study the long-term behavior.

Our simulations confirm that the supersonic velocity drop in
the BL is indeed prone to the sonic instability, a kind of super-
sonic shear layer instability whose subsonic counterpart is the
Kelvin-Helmholty instability (Belyaev & Rafikov 2012). Shortly
after starting the simulations, the sonic instability sets in and
starts to grow rapidly for about 15 orbits. It then saturates and
the BL is dominated by acoustic waves that propagate both into
the disk and into the star. These acoustic modes manifest them-
selves in three distinct patterns that can be related to the three
branches of the instability of a plane parallel vortex sheet and do
not die out for the whole simulation time.
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Additionally, the system repeatedly undergoes outbursts
where the wave activity as well as the AM and mass transport
increase considerably. We argue that these outburst are likely
triggered by a secondary KH instability that develops in the flat
region of the azimuthal velocity profile due to several changes of
sign of the vorticity. Since the effective temperature also shows
strong variations during outbursts, they may play an important
role in explaining variations in the light curve, such as FU Or-
outbursts or DNOs and QPOs in the case of BLs around white
dwarfs. It is tempting to associate these phenomena with the out-
bursts we observe in our simulations; however, this topic must be
looked into further in order to draw reliable conclusions. Such an
investigation would certainly involve the study of how the out-
burst reacts to a change in parameters, among other things. It is
also vital to perform 3D simulations on this question since there
might be a dependence on dimensionality (Belyaev et al. 2013a).

Our main objective in this work was the clarification of the
AM transport in unmagnetized astrophysical BLs. We found that
the acoustic modes indeed transport AM through the BL and the
disk, and that this mechanism is even highly efficient, reaching
values for the dimensionless Reynolds stress αRe of ∼0.01 in
quiet states and up to unity in high activity states (see Fig. 15).
Along with AM, mass is also transported efficiently through the
domain (see Fig. 7). The BL reacts to the enhanced transport by
widening considerably until it reaches a thickness of about 0.2R∗
(see Fig. 16).

One of the most important elements of wave mediated
AM transport is the intrinsic non-locality of this process, i.e.
waves can extract AM from one point in the disk and release it
in another farther off. There are several implications that emerge
from this: Thus far, α-models for the parametrization of the vis-
cosity have been used both in the disk and in the BL, possibly
with some corrections for the BL. This prescription is justified
in the disk where, under certain conditions, the system is sus-
ceptible to the MRI. The MRI leads to turbulence in the gas and
angular momentum is transported via turbulent stresses. This is a
local process that also depends on the shearing at this point and a
local effective viscosity can be derived by the model of Shakura
& Sunyaev (1973). Furthermore, it allows for efficient mixing
of the gas through the turbulence. In contrast, the AM trans-
port we have investigated in this work does not depend on the
local shearing, for instance, but is a non-local mechanism, in-
stead. Therefore, it is doubtful whether a conventional α-model
is applicable in the BL, and it will be hard to give a simple
parametrization for the AM transport in the BL at all. However,
αRe features a rather smooth behavior and might be utilized for a
simplified picture of the stresses in the BL. In addition, the mix-
ing in the BL might not be as pronounced as in the disk, which
could have important implications concerning the spectrum of
the BL.

Connected with the notion of non-local AM transport is the
fact that the kinetic energy, which resides in the gas shortly be-
fore it is decelerated to stellar rotation, does not need to be re-
leased as locally as was previously assumed. Waves also trans-
port energy and release it to the fluid where they are damped
or dissipate. This might have important implications for the
structure and observational appearance of the BL. We consider,
for instance, the alternative BL theory of the spreading layer
(Inogamov & Sunyaev 1999, 2010) where the gas is not deceler-
ated in the disk midplane but rather in two belts in the northern
and southern hemisphere of the star. It is difficult to bring a lo-
cal viscosity model into accordance with this theory, since the
friction on the surface of the neutron star is far too small. The

non-local AM transport described in this work could, however,
shed new light upon the theory of the spreading layer.

Simulations that investigate both the vertical structure and
the non-axisymmetric properties can only be performed in 3D,
however. This is a vital extension that should be taken as the next
step in order to bring the models closer to reality. In a 3D spheri-
cal geometry, it would also be possible to simultaneously model
the star, a point that has been illustrated in Sect. 5.5. Another ma-
jor extension is the inclusion of magnetic fields, i.e. performing
magnetohydrodynamical simulations of the BL. It would then be
possible to relinquish any viscosity prescription whatsoever and
directly simulate the MRI in the disk and the acoustic modes in
the BL. There might be important interactions between the tur-
bulent disc and the BL modes and new wave branches might add
to the three discussed here. However, the extensions mentioned
above will greatly increase the computation time and possibly
require more efficient codes and faster hardware.
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The Boundary Layer in compact binaries
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The structure and the thermodynamics of the non-magnetic boundary layer (BL) of accretion
disks has been an outstanding problem in the field of theoretical astrophysics for years. The BL is
a ubiquitous phenomenon that appears in a variety of astrophysical situations and systems where
non-magnetic accretion occurs, i.e. where an accretion disk (AD) is present. The AD is an effi-
cient mechanism to transport matter from the exterior of the disk to the gravitating center. Here,
at the inner edge of the AD, the circulating matter comes upon the surface of the central object
and is decelerated to match the object’s rotation rate. During this process, an enormous amount
of energy is released from the tiny BL region. This in turn generates hard radiation which can be
clearly identified in the observed spectrum of the object. We perform numerical hydrodynamical
simulations in order to calculate the luminosity and the spectrum of the BL and its dependence
on parameters like the mass, rotation rate or mass accretion rate of the central white dwarf (WD).
Therefore, we treat the problem in the one-dimensional, radial slim disk approximation. We
employ a classical α-viscosity to account for the turbulence and include cooling from the disk
surfaces as well as radial radiation transport. To account for the high temperatures in BLs around
WDs, we also consider the radiation energy in a one-temperature approximation. We find that
1D models of the BL are well suited if one is interested in the radiation characteristics of the BL.
The BL luminosity directly depends on the varied parameters which makes it possible to draw
conclusions about real systems by comparing observations with our synthetic models. Ambigu-
ities concerning different models with identical luminosities can be mitigated by regarding the
emitted spectrum. We therefore present a method to gain information about a system by probing
the radiation of the BL.
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1. Introduction

Cataclysmic variables (CVs) are binary systems which are of great interest within the context
of accretion physics since one of their main features is the mutual exchange of mass (Paczyński
1971). This leads to the formation of an accretion disk around a roughly solar mass white dwarf
(WD) which is fueled by the Roche lobe overflow of the lighter main sequence companion star
(Warner 1995; Giovannelli 1985). The accretion disk is an efficient mechanism for the matter to
get rid of its angular momentum and travel towards the central WD. During this journey, energy is
released due to the fact that the matter is falling deeper into the gravitational potential of the WD
(e.g. Shakura & Sunyaev 1973; Lynden-Bell & Pringle 1974; Pringle 1981; Verbunt 1982). Over
the whole extent of the disk, about one half of the accretion energy, which is given by

Lacc =
GM∗Ṁ

R∗
(1.1)

(G,M∗,Ṁ and R∗ are the gravitational constant, WD mass, mass accretion rate and radius) for non-
rotating stars, becomes available. The other half of the energy specified by Eq. (1.1) is stored in
terms of kinetic energy of the gas which rotates with Keplerian velocity ΩK = GM∗

r3 near the surface
of the WD. In order to match the rotation rate of the WD, which is in general much slower or
even zero, the gas must be strongly slowed down before it can settle on the stellar surface. During
this deceleration, an enormous amount of energy is released in a spatially confined region which
is called the BL and has a radial extent of around one percent of the stellar radius for the case of
a WD. The resulting UV and soft and hard X-ray emission of these hot BLs has been observed
in several CVs (e.g. Cordova et al. 1981a,b; Cordova & Mason 1984). Depending on the mass
accretion rate of the WD, the BL can either be optically thin (Ṁ ≤ 10−10M�/yr, Warner 1987) and
the radiation will be dominated by soft and hard X-rays (e.g. Mukai & Patterson 2004; Pandel et al.
2003, 2005, King & Shaviv 1984; Shaviv 1987; Narayan & Popham 1993; Popham 1999), or it can
be optically thick and emit thermal radiation (see e.g. Cordova et al. 1980; Mauche 2004).

For nearly 50 years now, it has been the goal of many astrophysicists to theoretically repro-
duce the BL. There have been several approaches to accomplish this task, one of the first being
stationary calculations or timescale estimates (Lynden-Bell & Pringle 1974; Pringle 1977; Tylenda
1977, 1981; Pringle & Savonije 1979; Regev 1983). With increasing computational power, the era
of numerical hydrodynamics was introduced and the first evolutionary calculations have been per-
formed (Robertson & Frank 1986; Kley & Hensler 1987; Kley 1989a,b, 1991; Godon et al. 1995).
The latter authors used a one-dimensional approximation of the BL, which is still a viable approach
for certain aims. The gas is assumed to be slowed down in the midplane of the disk before it is
spread on the surface of the star. Within this model, considering only the radial dependence of
the physical variables, is then sufficient for the calculation of the total radiation emerging from the
BL. A modern version of this approach has been presented in Hertfelder et al. (2013) where we
included a quasi-two-dimensional radiation transport and special treatment for the radiation field.

Some questions about the BL cannot be answered by the 1D approximation of the BL and
therefore, multidimensional models have been pursued as well. Among the first full radiation
hydrodynamical simulations were the efforts by Kley (1989a,b, 1991), who did two-dimensional
r-ϑ -simulations assuming axisymmetry. Those simulations are apt to investigate the structure of
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the BL and the fate of the disk material, i.e. the meridional spreading and the mixing with the
stellar material. With the availability of large compute clusters and parallel hydrodynamics codes,
simulations of this kind nowadays feature amazing numerical resolutions and long evolution times,
while including sophisticated physics and an advanced treatment of radiation (see Hertfelder &
Kley 2017, in preparation). However, two-dimensional simulations in the disk plane (r-ϕ) were
of great interest in the recent years. In order to slow down the gas in the BL, some mechanism of
angular momentum (AM) transport must be present. In wide parts of the disk, this is done by the
magnetorotational instability (MRI), which creates turbulence that acts like a genuine viscosity on
macroscopic scales. In this case, the viscosity can be considered using the classical α-prescription
by Shakura & Sunyaev (1973). In the BL, though, the source of the observed AM transport is still
a matter of ongoing research. Recent simulations revealed the existence of a supersonic instability
in the BL, which excites acoustic waves that are able to transport AM and mass (see Hertfelder
& Kley 2015, for details). Full three-dimensional simulations have been done sporadically (e.g.
Armitage 2002), however, the computational costs for highly resolved models are immense and the
simulation times are very long.

In this work, we focus on the BL around a solar mass WD in a cataclysmic variable system. We
extent the study presented in Hertfelder et al. (2013) and analyze the luminosity and the compound
black body spectrum of the BL as a function of important system parameters such as the mass
accretion rate and the stellar rotation rate. Detailed spectra, that also take the vertical structure into
account, have been presented in Suleimanov et al. (2014).

2. Model & Physics

The problem is approached in a one-dimensional approximation in a cylindrical coordinate
system (r, ϕ , z). For this purpose, the Navier-Stokes equations have been integrated in the vertical
direction and derivatives with respect to the azimuthal direction ϕ have been dropped due to the
assumption of axisymmetry. This approximation is called the thin disk approach and the variables
depend only on radius and time (r, t). The mass density ρ is replaced by a vertically integrated
surface density Σ which can be derived by

Σ =
∫ ∞

−∞
ρdz =

√
2πρ(z = 0)H, (2.1)

where we assumed a Gaussian profile for ρ in the vertical direction. H is the pressure scale height
and thus a measure for the height of the disk. Assuming hydrostatic balance and an isothermal
equation of state in z-direction, it reads

H =
cs

ΩK
, (2.2)

where cs is the sound speed. In the radial direction we use the ideal gas law for the pressure.
Since radiation pressure and energy are not negligible due to the high temperatures in the

BL, we employ the one-temperature radiation transport (see e.g. Flaig et al. 2010), where the two
equations for the gas and the radiation energy density are added up. We then propagate the total
energy, consisting of gas and radiation energy, in time. This approach is a good approximation for
optically thick regions (e.g. Kuiper et al. 2010) and justified since the BLs we are regarding here
are optically thick. The radiation energy equation is closed by employing the flux-limited diffusion

3
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approximation (FLD; Levermore & Pomraning (1981); Levermore (1984)) for the radiative flux
~F and we adopt the formulation by Levermore & Pomraning (1981) for the flux-limiter λ . The
opacity κ is determined using Kramer’s law,

κ = 5×1024ρT−3.5 [cm2g−1], (2.3)

with a lower threshold given by Thomson scattering. The disk can cool vertically via a blackbody
radiation of temperature Teff, which is calculated from the midplane temperature T by using a
generalization of the gray atmosphere for the optical depth in the vertical direction (Hubeny 1990).
The exact equations for our model can be found in Hertfelder et al. (2013).

The partial differential equations are discretized on a fixed Eulerian grid using finite differ-
ences. For the time propagation, a semi-implicit-explicit scheme is employed since some source
terms, especially the viscous ones, require an implicit treatment so that the time step is not restricted
too severely. The code (see also Hertfelder et al. 2013) maintains a formal second-order accuracy in
time and space and uses a multi step procedure for the time integration (operator splitting), which
is controlled by the CFL condition that limits the largest possible time step.

The boundary conditions are implemented such that the disk is fed from the outer radius with
a constant rate Ṁ. We impose Keplerian rotation at the outer edge and stellar rotation Ω∗ at the
inner edge. For the other variables, we assume zero gradient boundary conditions. The models are
started from initial profiles given by the disk solution by Shakura & Sunyaev (1973) which have
been interpolated to the stellar surface.

2.1 Model Parameters

We focus on the BL around a WD in a cataclysmic variable system. Accordingly, simulations
for a WD with 0.6,0.8 and 1.0 solar masses have been performed. We assumed different values
for the mass accretion rate Ṁ that range from 10−10 up to 10−8 solar masses per year. As can be
seen from Eq. (1.1), another crucial parameter for the luminosity of the BL is the stellar radius R∗.
For WDs, mass and radius are not independent but connected via an inverse relation; i.e. the larger
the stellar mass, the smaller the radius. We use the relation from Nauenberg (1972) to determine
the exact value of R∗. The stellar rotation rate also plays an important role for the luminosity of
the BL. We varied it between 0.0 and 0.9ΩK(R∗), which corresponds to non-rotating up to nearly
break-up velocity. The parameter for the α-viscosity was taken to be 0.01 throughout.

3. Results

3.1 The general structure of the BL

We will begin our discussion of the results by first presenting the basic properties of the BL.
For this purpose we adduce the case with M∗ = 0.8M� and Ṁ = 10−8M�/yr as a standard model
and basis for the parameter variations.

Figure 1 shows the dynamical structure of the BL. On the left hand side, the angular velocity
divided by the Keplerian angular velocity is depicted in the region between the stellar surface and
the disk. Viewing the situation from the outside to the inside, the gas initially rotates with Keplerian
velocity in the disk due to the force balance of gravitational and centrifugal forces. There is a small,
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Figure 1: Angular velocity Ω = vϕ/r in terms of the Keplerian angular velocity (left panel) and radial Mach
number Ma =−vr/cs (right panel) as a function of the radial coordinate in units of R∗. The different colors
denote the different stellar rotation rates Ω∗ which can be inferred from the left panel at r = 1.

additional pressure support since the temperature decreases with increasing radius and thus the gas
may rotate sub-Keplerian. This situation changes when the pressure gradient is pointing inwards as
we come closer to the BL. Then, the gas rotates slightly super-Keplerian. When entering the BL,
the gas reaches the maximum rotational velocity, a point which is called the zero-torque point, since
no viscous torques exist at this point due to the vanishing gradient of Ω. Going further inwards, the
gas is decelerated smoothly down to the velocity of the stellar surface. Here, it is mainly stabilized
by pressure support. The region between the stellar surface and the maximum of Ω is denoted by
the dynamical BL width and there is a tendency for an increasing BL width with increasing stellar
rotation rate.

The radial or infall velocity of the matter is reflected by the Mach number shown in the right
panel of Fig. 1. Approaching the BL from the outside, the infall velocity of the gas increases and
reaches its maximum at the zero-torque point before it drops rapidly to almost zero at the surface of
the star. Thus, there is no shocking of the gas at the stellar surface. The increasing radial velocity
is due to the loss of angular momentum caused by friction in the disk and the slower the star spins,
the higher is the infall velocity. Apparently no supersonic infall velocities are reached, which is an
important issue in connection with the causality (see e.g. Pringle 1977; Popham & Narayan 1992;
Kley & Papaloizou 1997). In general, we do not find supersonic infall velocities in any of our
models for small values of α .

The thermal structure of the BL is illustrated in Fig. 2 with the surface density Σ (see Eq. 2.1)
on the left hand side and the effective temperature on the right hand side. The color coding is
analogue to Fig. 1). The plot of the surface density shows that the BL is heavily depleted of gas, Σ
decreases by almost two orders of magnitude compared to the disk. The BL can thus be seen as a
bottleneck, where the matter has to squeeze through in order to reach the surface of the star. This
notion is in accordance with the behavior of the radial velocity: The smaller the surface density
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Figure 2: Surface density Σ (left panel) and effective or surface temperature Teff (right panel). The different
colors represent models with different stellar rotation rate and match those of Fig. 1.

becomes, the greater the radial velocity is in order to maintain a constant mass accretion rate,

Ṁ =−2πrΣvr. (3.1)

Equation 3.1 can directly be derived from the conservation of mass. Furthermore, the depletion of
mass in the BL depends on the stellar rotation rate and is most severe for a non-rotating star. This
does not apply for the disk where all models have about the same density. The rapid increase of Σ
at r ≈ 1 marks the beginning of the WD.

Although the physical model presented here is one-dimensional in nature, we can calculate a
surface temperature from the midplane temperature by using an appropriate approximation for the
vertical structure (see Sec. 2). Teff then represents the temperature of the disk and BL at an optical
depth of τ ≈ 1 and thus determines the radiation emerging from the system. Figure 2 shows that the
surface temperature increases tremendously in the BL, reaching up to almost 350000 Kelvin. This
peak is due to the strong shearing in the BL where the gradient of Ω is large (see Fig. 1) and a great
deal of heat is produced through friction. With increasing stellar rotation rate, the maximum value
of Teff in the BL shrinks, since the shearing becomes less intense. In the disk, there is no difference
between the presented models. The surface temperature shows a second peak at r ≈ 1.41 with
Teff = 67152 Kelvin which is in perfect agreement with the disk solution by Shakura & Sunyaev
(1973). Although the region where the energy is produced has a radial extent of only about one
percent of the stellar radius, the major peak of Teff spreads over almost 10 percent. The reason is the
radial diffusion which transports energy through the disk and the resulting region has been named
the thermal BL (Regev & Bertout 1995; Popham & Narayan 1995). It is the area from which the
BL radiation that can be observed escapes.

3.2 The width of the BL

Table 1 shows the width of the dynamical BL for the reference model. It is defined to be the
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ω ∆r [R∗]
0.0 0.0071
0.1 0.0071
0.2 0.0071
0.3 0.0071
0.4 0.0072
0.5 0.0076
0.6 0.0081
0.7 0.0089
0.8 0.0112
0.9 0.0182

Table 1: Width of the boundary layer for the standard model with M∗ = 0.8M�, Ṁ = 10−8M�/yr and stellar
rotation rates ω = Ω∗/ΩK(R∗) spanning from 0.0 up to 0.9. By definition, the BL ranges from the surface
of the star to the point where ∂Ω(r)/∂ r = 0, i.e. where it has a maximum.

region ranging from the stellar surface, which is at r ≈ 1 in our simulations, to the zero-gradient
point where ∂Ω/∂ r = 0, i.e. the angular velocity has its maximum. This point is not identical with
the maximum point of the curves in the left panel of Fig. 1. The width of the BL around a WD
is extremely small with values of less than one percent of the stellar radius in most cases. Only
for fast rotating WDs is the BL becoming significantly wider. The reason for the narrow BL is
the large value of M∗/R∗ for WDs which have a mass comparable to our sun but a radius of only
a hundredth of the solar radius. This fraction appears in the gravitational force which is, among
other parameters, responsible for the temperature and surface density of the disk and the BL. The
width is in general governed by the viscosity, which in turn depends on the surface density and the
temperature if we employ a α-prescription. Thus, the high ratio of stellar mass and stellar radius in
WDs leads to very thin BLs, as opposed to young stars, for instance. This is one of the reasons why
BL simulations of WDs are demanding from a computational point of view, since a high numerical
resolution has to be applied in order to resolve this small area sufficiently.

With increasing stellar rotation rate, the temperature in the BL decreases, since the gas retains
more and more of its angular momentum and less kinetic energy is released. Although a colder
BL should be thinner than a hot one (one can think of the heat puffing up the BL), we observe the
opposite, namely an increasing BL width (see Table 1). The reason is that the depletion of mass
in the BL depends on the rotation rate as well (see Fig. 2, left panel), and Σ is larger for high Ω∗.
The complex interplay of surface density and midplane temperature arranges it such that the BL
becomes wider. The thermal BL, however, is about ten times larger and diminishes in size with
increasing stellar rotation due to the decreasing energy release in the BL.

Figure 3 visualizes the width of the dynamical BL as a function of the WD rotation rate and
mass for three different values of the mass accretion rate Ṁ. We will first refer to the graph on
the left hand side, where the marker colors correspond to the mass accretion rate and the line color
represents the mass of the WD. The reference model is shown with cyan markers and a green dashed
line. As has been discussed in connection with Table 1, we recognize a clear trend for an increasing
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Figure 3: The width of the dynamical BL as a function of the WD rotation rate (left panel) and the WD mass
(right panel) in units of the WD radius R∗. The marker color represents the mass accretion rate of the WD in
both plots where cyan equals 10−8, magenta 10−9 and yellow 10−10 solar masses per year. On the left hand
side, the line color illustrates the mass of the WD with blue, green and red being 0.6,0.8 and 1.0M�. On the
right hand side, the line color tells the rotation rate of the model and blue, green and red correspond to 0.2,
0.7 and 0.9ΩK(R∗), respectively.

BL width with growing stellar rotation rate. This is, however, not the case in some other models
considered in Fig. 3. Especially for lower values of the mass accretion rate, the BL might shrink
in width before it is getting larger with increasing stellar rotation rate. Consider, for instance,
the bottom red line with yellow markers, which corresponds to 1.0M�,10−10M�/yr, where this
behavior is visible. The reverse of the trend is due to the complex interplay of surface density
and midplane temperature, which has been mentioned before. Depending on the specific choice
of parameters, the BL is either growing continually with increasing rotation rate, or it is shrinking
slightly in the beginning before it is widening again. It is impossible to give a general answer to
this issue, however, there seems to be a tendency for models with low mass accretion rate and high
stellar mass to adopt the latter behavior. Apart from this detail, all models show a similar overall
trend: The width is increasing slowly in the beginning and more severely for high stellar rotation
rates. Thus, if one is able to identify the width of a BL (e.g. from the radiation characteristics), it
helps to distinguish between fast rotating WDs but not between low or non-rotating ones.

The right panel of Fig. 3 shows how the mass of the WD influences the width of the BL.
Again, the mass accretion rate is visualized by the differently colored markers. We have picked
three stellar rotation rates for each mass accretion rate and WD mass, given by 0.2 (blue line),
0.7 (green line) and 0.8 (red line) times the breakup velocity. Clearly, the BL is shrinking with
increasing WD mass. The reason is the increasing gravitational pull, which is enhanced even more
by the inverse mass-radius relation for WDs. It arranges it so that the surface density is decreasing
and the temperature is increasing with growing WD mass and the width is decreasing, finally. The
width of the thermal BL is increasing with M∗, on the other hand, although only weakly. This is due
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Figure 4: The width of the dynamical BL as a function of the WD mass accretion rate in units of solar
masses per year. The marker color represents the mass of the WD and cyan, magenta and yellow correspond
to 0.6, 0.8 and 1.0 solar masses, respectively. The line color indicates the rotation rate of the model such
that blue, green and red correspond to 0.2, 0.7 and 0.9ΩK(R∗), respectively.

to the fact that more energy is released with increasing WD mass which is distributed on a wider
area. It seems that the dependence on the stellar mass is approximately linear in a logarithmic
plot. Thus, as a rule of thumb, we infer that the width of the BL is decreasing exponentially with
increasing WD mass.

Finally, we investigate the dependence on the mass accretion rate of the WD and consider
Fig. 4 for this purpose. Shown here are the same nine models as in Fig. 3. There is a clear trend for
the BL width to grow with increasing mass accretion rate. Again, this is influenced by the surface
density and the temperature which are both growing drastically with increasing mass accretion
rate since a higher Ṁ means that more mass accumulates in the disk. Accordingly, the energy
dissipation through shear is enhanced and leads to a higher disk temperature. The same holds for
the effective temperature and thus the width of thermal BL is growing even more drastically than
the dynamical BL. For high stellar rotation rates (red line), the trend is almost linear in the double
logarithmic plot of Fig. 4. With decreasing stellar rotation rate, however, the trend seems to deviate
slightly from linear. Therefore, while the BL width increases exponentially with the logarithm of
the mass accretion rate for high stellar rotation rates, it does only roughly so for lower rotation
rates. We note that the width of the BL is in all cases given in units of the stellar radius, which
depends on the stellar mass.

3.3 The luminosity of the BL

The luminosity of the BL is of great importance when comparing the results of our simulations
with real observations. In our model, the BL and the disk radiate like a black body at each surface
point with a temperature that is given by the effective temperature Teff. Therefore, the luminosity
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Figure 5: The luminosity of the BL as a function of the WD rotation rate. The luminosity is normalized to
the total accretion luminosity Lacc = GM∗Ṁ/R∗. The left hand side visualizes the total luminosity of the BL
and square fit to the data points. In the right hand side picture, only the X-ray luminosity (0.1 to 10 keV) is
taken into account and plotted along with a cubic fit to the data.

of one ring is given by

Li = 2
∫ 2π

0

∫ rR
i

rL
i

σT 4
eff,i r dr dϕ, (3.2)

where the factor 2 comes from the two sides of the disk and rL,R means the left and the right limit
of the individual ring. The total BL luminosity is then obtained by summing up all rings up to the
point where the disk starts. The end of the BL and the beginning of the disk, respectively, is derived
by comparing the effective temperature of our models with the surface temperature given by the
standard solution of the accretion disk by Shakura & Sunyaev (1973):

T (r) =

[
3GMṀ
8πr3σ

(
1−
(

R∗
r

)1/2
)]1/4

(3.3)

The disk of our models is perfectly described by the standard solution and especially Eq. 3.3 and
thus we define the thermal BL to extent up to the point where Teff comes to within five percent of
the standard solution.

Figure 5 visualizes the luminosity as a function of the stellar rotation rate for the reference
model with 0.8M∗ and Ṁ = 10−8M�/yr. With increasing stellar rotation rate, the luminosity of the
BL decreases drastically. This is due to the fact that almost all energy which is released in the BL
originates from the difference in kinetic energy of the gas just outside the BL and at the surface of
the WD. The faster the star spins, the less the gas is slowed down and less energy becomes free and
contributes to the observed luminosity. Thirty years ago, there has been a debate about the relation
that ties the luminosity of the BL to the stellar rotation rate (see e.g. Kluźniak 1987; Kley 1991;
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Figure 6: The total luminosity of the BL as a function of the stellar mass M∗ and mass accretion rate
Ṁ. The green data points visualize the luminosity for the three different mass accretion rates 10−10,10−9

and 10−8M�/yr and the blue data points correspond to the mass dependence of the luminosity. The WD is
non-rotating in the left panel, Ω∗ = 0.0ΩK(R∗), and has a rotation rate of Ω∗ = 0.5ΩK(R∗) in the right panel.

Popham & Narayan 1995), however, the consent has been to utilize

LBL =
1
2

Lacc

(
1− Ω∗

ΩK(R∗)

)2

(3.4)

as a formula. The functional dependence of Eq. (3.4) almost perfectly describes the data as can be
seen from the fit (red curve) in Fig. 5. However, we found from our simulations that the prefactor
of 1/2 is too low and the fit yielded a value of 0.51 for the reference model. This has to do with the
definition of the inner disk radius and thus small variations are possible due to different setups.

On the right hand side of Fig. 5 we display the X-ray luminosity of the BL for the energy
band between 0.1 and 10 keV. In order to derive LBL,X−ray, we assume Planck’s law for every
ring with the temperature Teff(r) and integrate over the solid angle and the disk area to obtain the
spectral luminosity of the BL. We can then confine the energy interval of interest and calculate the
luminosity of that band. For our reference model, the X-ray luminosity of the BL around a non-
rotating WD amounts to roughly 40% of the total BL luminosity and drops very fast for increasing
stellar rotation because only very high effective temperatures significantly contribute to the X-ray
band. The drop is considerably faster than that of the total luminosity and goes with the third power
of the stellar rotation rate. Thus, we postulate as a rule of thumb for the X-ray luminosity of the
BL the law:

LBL,X = 0.2
(

1− Ω∗
ΩK(R∗)

)3

(3.5)

The prefactor might also depend on other parameters of the system. The functional dependence,
however, seems to be solid for the cases we simulated within this study.

In Figure 6, we verify the dependence of the luminosity on the WD mass and mass accretion
rate, which is given by Eq. (1.1). The green data points and connecting dashed line refer to the
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Figure 7: Spectral luminosity Lν for the reference model (0.8M�,10−8M�/yr) and a stellar rotation rate of
0.0 (blue), 0.3 (green), 0.6 (red) and 0.9ΩK(R∗) (cyan). The black dashed line indicates a fit with a single
temperature Planck law.

three different mass accretion rates of 10−10,10−9 and 10−8 solar masses per year. In the double
logarithmic plot the data points lie on one straight line which means that indeed LBL ∝ Ṁ, inde-
pendent of Ω∗. Both plots of Fig. 6 differ only in stellar rotation rate. In the left hand side plot, the
WD is non-rotating and on the right hand side it rotates with 50% of the breakup velocity. The data
points for the three different WD masses 0.6,0.8 and 1.0M� are situated also on a straight line,
though in a semi logarithmic representation. This means that there seems to be a rather weak ex-
ponential dependence between BL luminosity and WD mass. We note that mass and radius are not
independent due to the mass-radius relation for WDs. Therefore, the exact dependence on stellar
mass is rather given by the relation M∗/R∗, which depends on the mass-radius relation. However,
for the small mass spectrum observed in WDs, a good first approximation is a linear increase in
luminosity with increasing stellar mass.

Finally, in Fig. 7 we show the spectrum of the BL of the reference model which has a 0.8
solar mass WD and a mass accretion rate of 10−8 solar masses per year. The spectral luminosity is
obtained by imposing Planck’s law with temperature Teff for each ring of the BL and subsequently
adding them up while taking into account the area of the ring. In the graph, four different stellar
rotation rates, 0.0 (blue), 0.3,0.6 and 0.9ΩK(R∗) (cyan) are presented. The spectrum becomes
considerably harder with decreasing stellar rotation rate which is in accordance with the discussion
of the effective temperature shown in Fig. 2. The high energetic part of the spectrum stems from
the hottest parts of the thermal BL, i.e. where the maximum of the effective temperature is located.
The dashed black line in Fig. 7 indicates a black body fit to the spectrum of the non-rotating WD.
To this purpose we tried to approximate the compound BL spectrum by a single temperature Planck
law which gives a rough estimate of the shape of the spectrum. In this case, the fit yields a black
body temperature of approximately 270000 Kelvin. This temperature can then be compared with
black body fits of real observations.

12



The BL in compact binaries Marius Hertfelder

4. Summary and conclusion

In this study, we have presented elaborate one-dimensional simulations of the BL around a WD
in a cataclysmic variable system. We employed the thin disk approximation where axisymmetry
is assumed and the disk is vertically integrated. The novelty of our model involves the detailed
treatment of radiation in that radiation transport in the radial as well as in the vertical direction has
been implemented and that the radiation energy has been propagated in time along with the thermal
energy. For the purposes considered within this study the 1D approximation is sufficient and,
together with observationsi, our results can help to identify system parameters of CVs like SS Aur
(Nabizadeh, Balman, Hertfelder 2017, in preparation). There are, however, questions which involve
the structure, the mixing or instabilities in the BL that can not be answered withing the realm of
the 1D model presented here. One must then perform two- or higher dimensional simulations (e.g.
Hertfelder & Kley 2017, in preparation).

The parameter study we presented here comprises models of the BL around WDs of the masses
0.6,0.8 and 1.0 solar masses and thus covers the typical mass range of WDs in CVs. For each mass,
three mass accretion rates, viz. 10−10,10−9 and 10−8 solar masses per year, were considered.
Finally, for every M∗-Ṁ combination, ten stellar rotation rates were imposed, spanning the whole
domain from a non-rotating up to a nearly at break-up velocity rotating WD. Thus, we have run 90
models in total which gave us a good starting point for a thorough parameter study. As a reference
model we took the simulation with 0.8M� and 10−8M�/yr and started by discussing the basic
properties of a non-magnetic BL.1

The BL connects the disk in which the gas is moving with Keplerian velocity with the stellar
surface that in general rotates with a lower velocity and thus the gas looses a good part of its
angular momentum and kinetic energy in this region. Our simulations show that the BL takes the
form of a bottleneck in order to accomplish this task: The radial infall velocity increases drastically
due to the loss of the stabilizing angular momentum and simultaneously the surface density drops
considerably in order to maintain the constant mass flux. During the deceleration of the azimuthal
velocity component a great deal of energy comes free which is responsible for the sudden rise of the
effective temperature in the BL. Temperatures of up to almost 350000 Kelvin are reached for the
non-rotating WD of the reference model. Since the energy originates from the deceleration process,
consequently with increasing stellar rotation the maximum temperature of the BL decreases more
and more rapidly.

The width of the BL is one of the important parameters that we deeper looked into. At first, we
have to distinguish between the terminologies of the dynamical and the thermal BL. The dynamical
BL orients itself to the behavior of the angular velocity only and the width is defined to be the
region from the stellar surface up to the maximum of Ω(r). With increasing WD rotation rate, the
width of the dynamical BL in general increases as well. However, depending on parameters like
stellar mass and mass accretion rate, it is not an uncommon phenomenon that it first shrinks before
growing perceptibly. For variations in M∗ and Ṁ, the situation is clear: With increasing mass or
decreasing mass accretion rate, the dynamical BL becomes considerably thinner. The dynamical
width is an important parameter since it defines the region where the energy which is later radiated

1Due to the high number of simulations it is not possible to include data such as the BL luminosity for each model
in this paper. However, numbers not presented here can naturally be requested by email to the author.
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away is produced. The more confined this region is, the harder the radiation will be. However,
in this context it is more convenient to refer to the thermal BL. The radiation produced in the
dynamical BL is distributed through radiative diffusion in the radial direction before it can escape
from the system. The region where the heat spreads is denoted as the thermal BL and with a radial
extent of ∼ 10% of the stellar radius it is roughly ten times as wide as its dynamical counterpart.
In contrast to the dynamical BL, the thermal BL becomes smaller with increasing stellar rotation
rate. Its width directly influences the spectrum of the BL.

The most important parameter when comparing one-dimensional BL simulations with obser-
vations is the luminosity. We confirmed that indeed the BL luminosity decreases quadratically with
increasing stellar rotation rate Ω∗. An interesting result arises when considering the X-ray band
of the BL luminosity only: In this case, we observe a cubic dependence on the stellar rotation
rate. One problem that arises in connection with the BL luminosity is clearly the ambiguity that
different models may yield the same total BL luminosity. For instance, a model with high stellar
rotation rate but also a high mass accretion rate can yield the same luminosity as a model with a
smaller mass accretion rate but also a lower rotation rate. Here, one can step in with the additional
information from the X-ray luminosity and utilize the formula we provided for an estimate of the
system parameters. Another possibility is given by regarding the spectrum of the BL which will
also help to clear up the ambiguity outlined above.

In the end, we want to learn more about systems that can be observed in space. Thus, by com-
bining the insight gained from theoretical simulations and observation we should be able to learn
more about its parameters. The approach presented here answers these purposes in that it is elabo-
rated enough to come to unambiguous conclusions by comparing the results with observations, but
at the same time it is still fast enough to run a large number of models which are necessary for the
parameter hunt.
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ABSTRACT

Context. Mass transfer due to Roche lobe overflow leads to the formation of an accretion disk around a weakly magnetized white
dwarf (WD) in cataclysmic variables. At the inner edge of the disk, the gas comes upon the surface of the WD and has to get rid of
its excess kinetic energy in order to settle down on the more slowly rotating outer stellar layers. This region is known as the boundary
layer (BL).
Aims. In this work we investigate the vertical structure of the BL, which is still poorly understood. We shall provide details of the
basic structure of the two-dimensional (2D) BL and how it depends on parameters such as stellar mass and rotation rate, as well as the
mass-accretion rate. We further investigate the destination of the disk material and compare our results with previous one-dimensional
(1D) simulations.
Methods. We solve the 2D equations of radiation hydrodynamics in a spherical (r-ϑ) geometry using a parallel grid-based code that
employs a Riemann solver. The radiation energy is considered in the two-temperature approach with a radiative flux given by the
flux-limited diffusion approximation.
Results. The BL around a non-rotating WD is characterized by a steep drop in angular velocity over a width of only 1% of the stellar
radius, a heavy depletion of mass, and a high temperature (∼ 500 000 K) as a consequence of the strong shear. Variations in Ω∗,M∗,
and Ṁ influence the extent of the changes of the variables in the BL but not the general structure. Depending on Ω∗, the disk material
travels up to the poles or is halted at a certain latitude. The extent of mixing with the stellar material also depends on Ω∗. We find that
the 1D approximation matches the 2D data well, apart from an underestimated temperature.
Conclusions.

Key words. accretion, accretion disks – hydrodynamics – methods: numerical – white dwarfs – binaries: close

1. Introduction

Accretion of matter onto a non-magnetized star is accompanied
by the formation of a boundary layer (BL) where the Keplerian
rotation rate of the disk smoothly connects to the stellar rotation
rate, that is, in general, much smaller. In the BL, up to ∼ 50%
of the total accretion luminosity is liberated in a spatially very
confined region. In this publication we focus on the BL around
a white dwarf (WD) that resides in a cataclysmic variable (CV)
system. The BL around a WD typically has a radial extent of
. 1% of the stellar radius (Lynden-Bell & Pringle 1974; Hert-
felder et al. 2013). The extent of the energy released in the BL
depends on the rotation rate of the WD. When the gas enters the
BL from the outer parts of the disk, it gradually gets rid of one
half of the accretion energy during its inward drift through the
disk. The other half of the energy gained by falling into the grav-
itational potential of the star is stored in terms of kinetic energy.
The difference of the kinetic energy at this point and on the sur-
face of the star of each gas particle is liberated in the BL and ra-
diated away in the form of soft and hard X-ray and UV emission
(e.g., Cordova et al. 1981a,b; Cordova & Mason 1984). There-
fore, the slower the star spins, the higher the energy output of
the BL. Apart from the stellar mass and radius, another parame-
ter that heavily influences the radiation characteristics of the BL
is the mass-accretion rate Ṁ, which can vary over a wide range
for CVs. If it is relatively low, Ṁ ≤ 10−10M�/yr (Warner 1987),

? e-mail: marius.hertfelder@gmail.com

the BL is optically thin and very high temperatures of the or-
der 108 K are reached, resulting in soft and hard X-ray emission
(e.g., Mukai & Patterson 2004; Pandel et al. 2003, 2005, King &
Shaviv 1984; Shaviv 1987; Narayan & Popham 1993; Popham
1999). Higher mass-accretion rates lead to optically thick BLs
with lower temperatures of about 105 K (Pringle 1977; Syun-
yaev & Shakura 1986; Popham & Narayan 1995) in which case
the radiation is mostly thermalized (see e.g., Cordova et al. 1980;
Mauche 2004).

From a numerical point of view, the BL problem has initially
been approached by timescale estimates and stationary calcula-
tions (Lynden-Bell & Pringle 1974; Pringle 1977; Tylenda 1977,
1981; Pringle & Savonije 1979; Regev 1983). With increasing
computational power, evolutionary simulations became viable
and made the investigation of the temporal evolution and non-
stationary phenomena possible (Robertson & Frank 1986; Kley
& Hensler 1987; Kley 1989a,b, 1991). Godon et al. (1995) per-
formed one-dimensional simulations, where axial symmetry is
assumed and the equations are integrated over the vertical (z)
direction. This procedure is known as the thin-disk approach
and provides a good first approximation for the BL problem.
In a previous paper series we performed (one-dimensional) 1D
simulations including vertical cooling, radiation transport, and
the treatment of the radiation energy, and calculated detailed
emergent spectra from these models (Hertfelder et al. 2013;
Suleimanov et al. 2014).
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In this paper we consider the problem in two-dimensional
(2D) spherical coordinates. As in the 1D case, we still assume
axisymmetry in order to get rid of the ϕ-coordinate. We conduct
full radiation hydrodynamics simulations, where the radiation
energy is treated in the two-temperature approximation (Kuiper
et al. 2010; Commerçon et al. 2011), which means that an ad-
ditional evolutionary equation for the radiation energy is con-
sidered. Since the BLs we study here are mostly optically thick,
we employ the flux-limited diffusion approximation (Levermore
& Pomraning 1981; Levermore 1984) for the radiative flux. We
use realistic boundary conditions with a vertically spread mass
inflow at the outer edge of the simulation domain (disk) and a so-
phisticated initial model, which is constructed from different 1D
codes (see Sec. 3.2). Our studies are hence related to the work
by Kley (1989a,b, 1991) but can span much longer dynamic
timescales and feature a much higher resolution due to the par-
allel code and the available computing power. Multidimensional
simulations of the BL have also been done by Fisker & Balsara
(2005); Fisker et al. (2006), although only for the adiabatic case,
or Balsara et al. (2009), who used a simplified energy dissipation
function without radiation transport. Kley & Lin (1996, 1999)
also did full radiation hydrodynamics simulations for protostars
and studied the evolution of FU Orionis outbursts in protostel-
lar disks, and Babkovskaia et al. (2008) studied the BL around
neutron stars in low-mass X-ray binaries. Magnetic fields have
been included in 2D by Küker et al. (2003) and in three dimen-
sions (3D) by Armitage (2002). In both cases, however, only low
resolution and short dynamical timescales have been presented.
Romanova et al. (2012), for example, performed 3D magnetohy-
drodynamical simulations and also considered magnetospheric
accretion but did not include radiation transport.

Simulations in the disk plane have been performed by
Belyaev et al. (2012, 2013a,b); Hertfelder & Kley (2015); Philip-
pov et al. (2016); Belyaev (2017) in order to investigate the trans-
port of mass and angular momentum (AM) in the BL. Since
it has been shown that due to the increase of the angular ve-
locity Ω with radius, the magnetorotational instability (MRI,
Velikhov 1959; Chandrasekhar 1960) is ineffective in the BL
(Godon 1995; Abramowicz et al. 1996; Pessah & Chan 2012),
alternative concepts are currently being looked into. A promis-
ing candidate is the AM transport by acoustic waves excited by
the sonic instability (Glatzel 1988; Belyaev & Rafikov 2012).

A different approach to describe the interface between the
star and the disk was pursued by Inogamov & Sunyaev (1999,
2010) who introduced the concept of the spreading layer (SL).
The SL is a 1D, vertical approximation for the deceleration of
disk material on the stellar surface, which is connected to the
disk by a 2D transition region. The main difference with the ra-
dial BL model is, that the rotating gas is spread on the star where
it is then decelerated by turbulent interaction with colder stellar
layers beneath it. As a consequence, the SL radiation emerges
from two rings on the northern and southern hemisphere of the
star. This concept was originally developed for neutron stars
and later adapted to WDs in CVs (Piro & Bildsten 2004b,a).
(Suleimanov & Poutanen 2006) extended the model for the ef-
fects of general relativity and different chemical compositions of
the accreted matter.

In this publication, we want to study the vertical structure
and the long-term evolution of the BL around a WD. A high res-
olution is employed in order to monitor the polar spreading and
mixing of the disk material on the stellar surface. We decipher
whether or not the results show indications of a SL and com-
pare the midplane profiles with 1D simulations as presented in
Hertfelder et al. (2013).

The paper is organized as follows. In Sect. 2 we present the
basic physical model and list the equations used for production
and postprocessing. Section 3 is dedicated to the numerical back-
ground of our work. We describe the code, boundary and initial
conditions and how we constructed the models, which are shown
and detailed in Sect. 4. We finish with Sect. 5, where we discuss
the results and come to a conclusion.

2. Physics

In this section, we present the physical foundations for the sim-
ulations we have performed and that are described later in this
publication. In order to investigate the vertical structure of the
BL we use the Navier-Stokes equations in spherical coordinates
(r, ϑ, ϕ) and assume symmetry in the azimuthal direction. We
therefore drop all derivatives with respect to the azimuthal coor-
dinate ϕ but do hold on to the momentum equation in the corre-
sponding direction.

2.1. Vertical structure equations

The conservation of mass is represented by the continuity equa-
tion, which is given by

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

where ρ and u = (ur, uϑ) are the gas density and velocity, respec-
tively. The equations for the momentum conservation are conve-
niently expressed in terms of the physically conserved quantities
s, g, and h. We therefore introduce the radial momentum density
s = ρur, the polar momentum density g = ρruϑ and the angular
momentum density h = ρruϕ sinϑ = Ωr2 sin2 ϑ. With regards to
these variables, the momentum equations read

∂s
∂t

+ ∇ · (su) = ρ


u2
ϑ

r
+

u2
ϕ

r

 −
∂p
∂r

+ ∇ · σr +
1
r
σrr − ρ∂Ψ

∂r
(2)

for the radial direction,

∂g
∂t

+ ∇ · (gu) = ρ cotϑu2
ϕ −

∂p
∂ϑ

+ ∇ · (rσϑ) − cotϑσϕϕ (3)

for the polar direction and

∂h
∂t

+ ∇ · (hu) = ∇ · (r sinϑσϕ) (4)

for the azimuthal direction. In the above equations p denotes the
gas pressure p =

ρRGT
µ

, where RG = kB
mH

with Boltzmann’s con-
stant kB and the mass of hydrogen mH, T is the gas temperature
and µ is the mean molecular weight. Ψ = −GM∗

r is the gravita-
tional potential and G and M∗ are the gravitational constant and
the mass of the star, respectively.

The viscous stress tensor is denoted by σ and can be dis-
played in a coordinate-system-independent way by means of the
covariant formulation

σi j = η

(
ui ; j + u j ; i − 2

3
uk

; kgi j

)
, (5)

where um ; n and um
; n are the co- and contravariant derivative of

the m-th component of the velocity with respect to n, while gi j is
the metrical tensor of the coordinate system and η is the dynamic
viscosity. We note that Eq. (5) gives the covariant components
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of the stress tensor that have to be translated to physical compo-
nents by employing the metric coefficients. The same applies for
the co- and contravariant formulation of the velocity. For details
of this procedure as well as an insight into tensor calculus we
refer the interested reader to classical textbooks such as Arfken
& Weber (2005) or Mihalas & Mihalas (1984). The latter book
also contains a summary of the individual physical components
of σ in spherical coordinates. The vector representations of the
stress tensor in Eqs. (2-4) are given by σr = (σrr, σrϑ, σrϕ) (σϑ
and σϕ similarly) and the divergence is calculated accordingly.

The equation for the conservation of energy is given by
∂e
∂t

+ ∇ · (eu) = −p∇ · u + Φ − κPρc
(
aRT 4 − E

)
, (6)

where e = ρε = ρcVT is the internal energy of the gas (ε and cV
are the specific internal energy and heat capacity, respectively),
and Φ is the viscous dissipation function which relates to the
stress tensor via Φ = (σ∇)u = 1

2ηTr (σ2) (see e.g., Mihalas &
Mihalas 1984). The last term in brackets on the right-hand side of
equation Eq. (6) accounts for the heating and cooling through the
energy exchange between the gas and the radiation field due to
emission and absorption processes, and E denotes the radiation
energy density, which is also evolved in time in our model. The
according equation reads:
∂E
∂t

+ ∇ · F = κPρc
(
aRT 4 − E

)
. (7)

Here, F is the radiative flux and κP, c, and aR are the Planck
mean opacity, the speed of light, and the radiation constant. The
approach that incorporates two coupled equations for the gas
energy (6) and the radiation energy density (7), respectively, is
called the two-temperature approximation (Kuiper et al. 2010;
Commerçon et al. 2011).

In order to close the set of equations, we need an assump-
tion for the radiative flux F. Here we use the flux-limited diffu-
sion approximation (Levermore & Pomraning 1981; Levermore
1984, FLD) where the radiative flux is given by

F = − cλ
κRρ
∇E, (8)

with the Rosseland mean opacity κR and the flux limiter λ. The
flux limiter mediates between optically thick regions, where ra-
diation and matter are in thermal equilibrium, and optically thin
regions, where photons can travel much farther before they in-
teract with matter. In our simulations we utilize the formulation
of the flux limiter given by Minerbo (1978) where λ is calculated
by

λ(R) =


2

3+
√

9+12R2
0 ≤ R ≤ 3

2
1

1+R+
√

1+2R
3
2 ≤ R ≤ ∞ , (9)

with

R =
|∇E|
κRρE

. (10)

The Rosseland mean opacity is further determined following
Kramer’s law,

κ = κ0

(
ρ

g cm−3

) (T
K

)−3.5

, (11)

where κ0 = 5 × 1024 cm2 g−1, which we also use for the Planck
mean opacity (see also Bitsch et al. 2013). As a lower threshold,
we consider a constant opacity κThomson = 0.4 cm2 g−1 which ac-
counts for free-electron scattering processes at very high temper-
atures (Thomson scattering).

2.2. Viscosity

As has been discussed in Sect. 1, the driving mechanism for
angular momentum transport in the BL is still a matter of on-
going research. We do not yet have a suitable prescription to
implement the wave-mediated AM transport in the equations of
hydrodynamics without directly simulating it. This, however, is
not feasible for the kind of simulations presented in this publi-
cation, considering the huge demand of computational resources
for highly resolved, three dimensional radiation hydrodynamics
simulations (see e.g., Hertfelder & Kley 2015). We therefore em-
ploy the classic α-prescription by Shakura & Sunyaev (1973),
which considers turbulent stresses in the accretion disk respon-
sible for the observed AM transport and parametrizes them ac-
cording to

ν = αcsH, (12)

where ν = η/ρ is the kinematic viscosity and cs =
√
γ p
ρ

is the
sound speed. H is a length scale that stands for the maximum
eddy size of the turbulence. We define it according to Papaloizou
& Stanley (1986):

1
H2 =

1
H2

d

+
1

H2
r
. (13)

By employing Eq. (13) for the length scale, we account for the
fact that in the BL the radial pressure scale height Hr becomes
smaller than the vertical one. The relations for the scale heights
read

Hd =
cs

ΩK
and Hr =

p
|dp/dr| , (14)

where ΩK =
√

GM∗/r3 is the Keplerian angular velocity. Inside
the star, which is included, to a lesser extent, in our simulations,
we apply a constant small viscosity νconst = 1012cm2/s. In the
low-density region above the disk, no viscous heating occurs.

2.3. One-dimensional disks and stellar structure equations

In Sect. 3 we describe in detail the workflow we used in order to
create the vertical models of the BL. Apart from the actual 2D
simulations, the initial conditions also involve 1D disk profiles
as well as a simple representation of the star. The underlying
equations shall be presented here in short.

The 1D disk profiles are created using the thin disk approx-
imation where the Navier-Stokes equations are vertically inte-
grated and azimuthal symmetry is assumed. The 3D equations
are thus reduced to depend only on the time t and the cylindrical
radius R = r ·sinϑ. The mass density ρ is replaced by the surface
density Σ during the vertical integration. Since a Gaussian pro-
file is assumed for the vertical density stratification of the disk,
we can recalculate the midplane mass density from the results
of the 1D simulations and approximate the vertical density and
temperature structure. The equations of the slim disk approach
and details about the code we used to obtain the 1D profiles can
be found in Hertfelder et al. (2013).

The outermost layers of the star are obtained from the radial
hydrostatic equilibrium and flux conservation:

dp
dr

= −ρGM∗
r2 (15)

r2F = R2
∗σSBT 4

∗ = const. (16)
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Here, F = Frad + Fconv is the stellar flux, which consists of a
radiative and a convective part, T∗ is the effective temperature of
the star (i.e., T at the optical depth τ = 1) and σSB is the Stefan-
Boltzmann constant. All other quantities are identical to the ones
described earlier. We neglect the convective flux in Eq. (16) since
we found that it is sufficient to only use the radiative flux to
obtain a robust starting model for the star that can be plugged
into the full 2D simulation. The two stellar structure equations
are coupled ordinary differential equations that can be solved for
ρ(r) and T (r). The radius of the star R∗ is determined from the
mass-radius relation for white dwarfs by Nauenberg (1972).

3. Numerics

3.1. General remarks

We mainly used the code PLUTO (Mignone et al. 2007) for the
simulations presented in this publication. In PLUTO, the conser-
vation laws Eqs. (1,2 - 4,6) are discretized on a static grid using
the finite volume (FV) formalism where volume averages evolve
in time. A high-resolution shock-capturing (HRSC) scheme is
applied, with the algorithm being based on a reconstruct–solve–
average (RSA) strategy. This means, that the variables are in-
terpolated to the cell interfaces where subsequently a Riemann
problem is solved for the two discontinuous states. Finally, the
system is evolved in time using the fluxes computed by the Rie-
mann solver. In order to approximate the variables at the cell
interfaces, we used the piecewise parabolic method (PPM, 5th or-
der), which is known to handle curvilinear coordinates and non-
uniform grid spacing more correctly than other implemented
methods1. The code retains a global 2nd-order accuracy as fluxes
are computed at the interface midpoints. PLUTO offers a variety
of slope limiters for the reconstruction step that differ in diffusiv-
ity. We have found that for our problem it is adept to start with
a more diffusive limiter (minmod-limiter) and switch to the least
diffusive monotonized central difference limiter (MC-limiter)
once the simulation converges to the equilibrium. The Riemann
problem is solved using the approximative HLLC solver, which
is a Harten, Lax, Van Leer method that also considers the con-
tact discontinuity. Finally, a dimensionally unsplit third-order
TVD Runge-Kutta scheme with a variable time step based on
the Courant-Friedrichs-Lewy condition (Courant et al. 1928) is
employed for the temporal integration. The code has been tested
and used extensively for a variety of applications2.

Since we also considered the evolution of the radiation en-
ergy density (Eq. 7), we made use of the additional module by
Kolb et al. (2013). Here, an additional step is performed af-
ter the non-radiative part has been accomplished. In this step,
the radiation energy is solved together with the corresponding
absorption-emission term in the gas energy equation. This results
in a system of two coupled differential equations (see also Com-
merçon et al. 2011). Since radiation processes typically happen
on much shorter timescales than hydrodynamical processes, an
explicit treatment of these equations would confine the time step
severely and render the method impractical. Therefore, an im-
plicit scheme is applied to handle the radiative part. The result-
ing system of equations, which is partially linearized following
Commerçon et al. (2011), is solved using the matrix solver from
the PETSc library. For our problem, the improved stabilized ver-
sion of the biconjugate gradient squared method (KSPIBCGS)
in connection with a block jacobian or hypre preconditioner has

1 See plutocode.ph.unito.it/files/userguide.pdf
2 See plutocode.ph.unito.it/Publications.html.

turned out to be a fast and reliable combination. A variety of
tests have been performed in order to confirm the correctness of
the implementation and applicability of the method (Kolb et al.
2013). Due to the fact that the radiation module as described
above can only handle 3D problem setups, we have modified it
to support one and two dimensions, as well, and have redone the
test cases.

3.2. Initial conditions

During the preparations and the first runs we noticed that PLUTO
is quite susceptible to crashes due to negative density or pres-
sure. In the BL problem, large density contrasts appear between
the star-disk system and the virtually empty space above the
disk, where high radial infall velocities are reached. However,
the closer the initial model3 matches the equilibrium state, the
more stable the simulations are. Thus, we developed a strategy
where we build the full problem step by step from smaller sub-
problems and perpetually construct initial models from the re-
sults of the preceding step. We outline this approach below:

We begin by constructing the very outer layers of the star.
For that purpose the stellar structure Eqs. (15, 16) are solved for
ρ(r) and T (r) using a fourth-order Runge-Kutta integrator. The
integration starts at r = 1 and is performed outwards. The initial
density ρ(r = 1) is varied until we obtain T = T∗ at optical
depth τ = 1. Then, the integration starts at r = 1 again and
is performed inwards. The simulation domain of the star spans
[0.99, 1.01] and a large number of grid cells is needed due to the
large gradients.

The following step entails calculating a radial 1D profile for
the disk; we use our self-developed code, which solves the par-
tial differential equations on a fixed Eulerian, staggered grid us-
ing a semi-implicit-explicit time stepping scheme with operator
splitting (see also Stone & Norman 1992). In contrast to the sim-
ulations performed in Hertfelder et al. (2013) we do not simulate
the BL, but only the disk for this step. Therefore we shift the in-
ner boundary to r = 1.1 and require the azimuthal velocity to be
Keplerian while we impose zero-gradient boundary conditions
for all other variables. The outer boundary resides at r = 5 and
the BCs remain unchanged. After the 1D disk has reached its
equilibrium state we switch to the PLUTO code, load in the 1D
profiles and extrapolate them by using a Gaussian vertical strati-
fication. The disk simulation is now 2D with a domain that spans
from ϑ = 0 to π/2. We run the PLUTO code until the 2D disk has
reached a stationary state.

Finally, we join together the ingredients mentioned above.
The domain now ranges from 0.99 to 5 in radius with 1118 log-
arithmically spaced grid cells and from 0 to π/2 with 1000 grid
cells in polar angle. The number of cells has been chosen such
that each cell is approximately quadratic. The stellar structure
model and the 2D disk are loaded in and the small region [1, 1.1]
in radius that has no yet been simulated is simply extrapolated
from the disk. In this region, the BL starts to build immediately
after starting the full 2D simulation.

We have chosen the aforementioned procedure since it mini-
mizes the time effort and maximizes the chances for a successful
run without crashes. Another obvious way to pursue would be
to simulate 1D BL profiles and attach these to the star and ex-
tend them to 2D. This approach is, however, much more time
consuming and the initial model is less stable.

3 In general, the boundary conditions play a more important role within
the Navier-Stokes equations than the initial conditions.
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3.3. Boundary conditions and density floor

At the outer boundary at r = 5, mass is continuously entering
the domain, representing the mass flux Ṁ through the disk. Nu-
merically this is accomplished by manipulating the flux into the
outermost active cells that is actually calculated by the Riemann
solver. We spread the mass influx over a vertical extent assum-
ing a Gaussian profile whose width is determined through the
disk height that comes out of the 1D disk simulation. The influx
is realized such that the mass-accretion rate Ṁ is a simple run-
time input parameter. The inflowing matter further receives an
azimuthal momentum so that uϕ matches the Keplerian velocity
at the outer boundary. The radiation energy density at the outer
boundary is fixed at a value corresponding to T = 100 K. In
the disk, we impose a no-flux condition since the radial trans-
port is very small. The other quantities are implemented with
zero-gradient BCs. Above the disk, the outer radial boundary is
closed to prevent additional mass from falling in.

The inner boundary at r = 0.99 is a rigid wall where the
radial and polar velocities equal zero. The azimuthal velocity
is implemented as an input parameter so we can easily change
the rotation rate of the star Ω∗. For the radiation energy density,
the radiative flux of the star at the inner domain edge is used as
a boundary condition. All other variables are again implemented
using zero-gradient or Neuman-type boundary conditions, which
means that the normal derivative at the boundary vanishes. At
the polar axis (ϑ = 0) and in the equatorial plane (ϑ = π/2)
we apply symmetry conditions (vanishing gradients) as bound-
ary conditions.

We apply a lower threshold for the density of 5×10−14g/cm3

, which is approximately ten orders of magnitude smaller than
the disk midplane density. It is effective in the empty area above
the disk and prevents negative densities due to infalling material.
The density floor, however, also causes a flat density structure in
this region. Along with the small radiation energy density above
the disk, the computation of the flux-limiter becomes inaccurate
and flux barriers develop that prevent the cooling of the disk.
Since this process is unphysical, we reset the flux-limiter to 1/3
in areas of low ρ and E in order to maintain a radiative flux to-
wards the domain boundary. Since the ambient region is dynam-
ically unimportant due to its low density, this intervention does
not affect the validity of the model.

3.4. Model parameters

In this publication, we are interested in the structure of the BL
around a weakly magnetized white dwarf, a situation that is fre-
quently found in cataclysmic variable systems. White dwarfs in
CVs typically have masses in the range of one solar mass and ef-
fective temperatures of T∗ ∼ 50 000 K (e.g., Sion et al. 2010, for
SS Cygni). We leave the effective temperature fixed at 50 000 K.
The radial scale height of the star grows with T∗ and it is easier
to simulate a star with a larger scale height since a lower reso-
lution may be chosen. The mass of the WD, on the other hand,
is one parameter that we have varied during our research. Anal-
ogous to Hertfelder et al. (2013), we considered three masses,
M∗ = 0.8M�, 1.0M� and 1.2M�. Alongside the mass, the radius
of the WD is the crucial parameter that determines the strength
of the gravitational pull. We used the mass-radius relation from
Nauenberg (1972) in order to calculate R∗, which, for instance,
yields R∗ ≈ 5.6 × 108 cm for M∗ = 1.0M�. An equatorial radius
increase for rapidly rotating WDs is automatically taken into ac-
count in the simulations. The WD rotation rate Ω∗ itself is an im-
portant parameter that we vary from 0.0ΩK (non-rotating) up to

0.9ΩK for fast rotating stars. Ω∗ determines the amount of kinetic
energy that the gas loses before meeting the star and therefore the
total luminosity of the BL. The last parameter that we modify
is the mass-accretion rate Ṁ , which can comprise several or-
ders of magnitude in CVs. We consider mass-accretion rates of
Ṁ = (10−8 − 10−10) M�/yr. Furthermore, we took α = 0.01 for
the viscosity parameter and γ = 5/3 (monoatomic ideal gas) for
the adiabatic index. The gas is assumed to consist of completely
ionized hydrogen, so we adopt µ = 0.5 for the mean molecular
weight.

4. Results

4.1. The basic structure of the 2D BL

We begin the presentation of the results by discussing the general
structure and basic properties of the 2D BL. For this purpose we
adopt the parameter set of M∗ = 0.8M�, Ṁ = 10−8M�/yr,Ω∗ =
0.0ΩK as our reference model which serves as the starting point
for our analysis. The measured mass-accretion rate of the refer-
ence model is nearly constant throughout the domain. The max-
imum deviation from the imposed value is below 10%. This also
applies to the simulations mentioned later in the text. Typically
the models reach a state where the general flow structure remains
steady after some tens of orbits. It does, however, take a few hun-
dred orbits for the temperature to settle down to the equilibrium
value and for the mass-accretion rate to exactly match the im-
posed value. All models presented in this paper are virtually in a
steady state.

The thermal structure of the BL after 688 orbits is illustrated
in Fig. 1 with the mass density ρ on the left hand side (a) and
the temperature T on the right hand side (b). Additional con-
tour lines are added to panel (a) in order to clarify the structure
of the disk. We first discuss the density structure of the refer-
ence model. A heavy depletion of mass is observed directly in
front of the stellar equator and the density decreases by approx-
imately two orders of magnitude compared to the disk. This re-
gion, which connects the disk with the stellar surface, is called
the BL. Due to the decreasing density and increasing infall ve-
locity, it resembles a bottleneck where matter has to go through
before it can come to rest on the star. At the surface of the star,
the density rises rapidly with decreasing distance from the center
and is several orders of magnitude larger than in the disk, which
begins on the other side of the BL. The density in the disk is
highest in the equatorial plane and decreases like a Gauss func-
tion in the vertical direction until it reaches the density floor. This
area is represented in the plot by the dark blue color-coding. The
gas from the disk accumulates in an equatorial shell around the
star, which is barely visible since it is very thin. This is an indi-
cation for efficient radiative cooling of the gas that is heated up
in the BL. The thin layer of disk material floats on the stellar sur-
face and slowly spreads towards the poles. After almost 700 or-
bits it reaches a latitude of ∼ 35◦ and continues to crawl towards
the pole. One orbit is given by the time needed for a point on the
stellar surface to make a full rotation, T = 2π/ΩK(R∗) ≈ 11.5 s.

The temperature distribution of the gas is visualized in Fig. 1
(b). The main feature is the peak in the equatorial plane at r ≈ 1
with a temperature of almost 550 000 K. It is the consequence
of the strong shearing in the BL due to the abrupt drop of the
angular velocity. The shearing component of the stress tensor is
the dominant part for the dissipation, and the heat production
is proportional to the square of the shear. At the maximum of
the angular velocity at r = 1.0065, the shear vanishes since the
gradient is zero, ∂Ω/∂r = 0 (zero-torque point). Thus the heat
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Fig. 1. Density (a) and temperature (b) for the reference model as a function of radius r and vertical coordinate z in cgs units at orbit 688. Contour
lines for the levels (0.8, 5, 10, 20, 30) × 10−6g/cm3 are overlaid in the plot of the density (a). The white line in panel (b) denotes the points where
the optical depth is unity, τ = 1.

Fig. 2. Radiation energy density E of the reference model in g/(cm s2)
as a function of radius and height for the inner part of the accretion disk
at orbit 688. The arrows denote the direction of the radiative flux as
specified in Eq. (8).

production declines for greater radii r & 1 before it rises again
in the accretion disk. This minimum of T is visible at r ≈ 1.1 in
the equatorial plane in Fig. 1 (b). The location of the minimum
does, however, not coincide with the zero-torque point because
of the transport of energy mainly through radiation. Moreover,
the cooling rate strongly depends on the density, which changes
drastically in this region and thus also influences the tempera-

ture distribution. Another important point is that due to the high
radial velocities in this area, the components σrr and σϕϕ also
become important concerning the heat production. It is there-
fore a complex interplay of several factors that arranges the tem-
perature here. In the disk, beyond r = 1.1, the midplane tem-
perature increases again because of the ever-present shear of a
differentially rotating accretion disk. It peaks at r = 1.51 and
T = 495 857 K and decreases again for larger radii with a slope
approximately proportional to r−1/2 due to the influence of the
BL. For larger radii r � 1, T approaches the r−3/4 variation of
the standard disk solution. In the vertical direction, the disk can
cool efficiently and hence the temperature drops rapidly to a few
thousand K. The temperature of the low-density material above
the disk decreases with radius.

The radiation energy density E shows the same features as
the gas temperature since the medium is mainly optically thick
in the disk and BL. The energy dissipation in the BL also leads
to a drastic increase in radiation energy density. In addition to E,
Fig. 2 visualizes the radiative flux F which is computed accord-
ing to Eq. (8). At around r ≈ 1.1 there is also a minimum in E
that lies between the BL and the disk in the equatorial plane. Due
to the gradient of the radiation energy density inwards and out-
wards from this minimum, there is considerable radiation trans-
port towards the point r ≈ 1.1. The energy produced in the BL
is therefore transported outwards by radiation. Also some part
of the energy produced in the disk is transported inwards. Thus
there is a significant redistribution of energy both from the BL
and from the disk to a wider region of about 10 percent of the
stellar radius in radial extent. This region is called the thermal
BL (Regev & Bertout 1995; Popham & Narayan 1995). In the
disk, the cooling from the surface is accounted for by the radia-
tion transport in the vertical direction, which is indicated by the
nearly vertical arrows pointing upwards in Fig. 2. Directly above
the BL, the radiative flux is very strong and pushes the disk sur-
face flux outwards. At higher stellar latitudes, Fig. 2 shows that
the flux is directed towards the star. This unexpected behavior
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is probably a consequence of the small density in the corona
and the numerical problems for the radiation transport associ-
ated with the density floor. However, this region does not influ-
ence the structure or the thermodynamics of the BL.

In Fig. 3 (a) the dynamic structure of the star-BL-disk sys-
tem is displayed. The density is shown as an orientation for the
velocity vectors that visualize the direction and the magnitude of
the flow. The disk shows a steady slow inflow towards the star.
The inflow velocity is larger near the disk surface than in the
midplane. As the gas approaches the stellar surface it is consid-
erably sped up. This is clearly visible in Fig. 3 (b), where the
radial velocity ur in the disk midplane is shown in red. The infall
of material is accelerated until r ≈ 1.05 and then rapidly decel-
erated as the matter comes to the surface of the star. The peak
of ur corresponds to a Mach number of approximately 0.25, so
the infall occurs subsonically for our chosen value of α, which
is important for causality reasons (e.g., Pringle 1977). Due to
the friction in the disk, the gas loses angular momentum and its
stabilizing force so that the infall velocity increases. As a con-
sequence, the density in this region must decrease accordingly
in order to maintain a constant mass-accretion rate through the
disk. The mass flux through concentric spherical shells of radius
r is given by

Ṁ = −4πr2ρur. (17)

Thus, if the velocity becomes larger, the density must decrease.
Ṁ can be derived from Eq. (1) assuming a stationary state
(∂t = 0). Also shown in Fig. 3 (b) is the angular velocity Ω,
which describes the rotation of the gas around the star. In the
disk, the gas rotates with Keplerian frequency and there is a force
balance between the gravitational force of the star and the cen-
trifugal force of the circular motion. Additional forces arising
through pressure gradients are, in general, small in the disk and
influence Ω only slightly. As the gas approaches the stellar sur-
face, it is decelerated and smoothly connects to the rotation rate
of the star, which is zero in this case. The deceleration happens
very fast and causes a supersonic velocity drop over a range of
less than one percent of the stellar radius. Here, the stabiliza-
tion of the gas switches from centrifugal to pressure support.
The large gradient of Ω during the velocity drop is responsible
for the heat production in the BL and drives the high temperature
observed in the thermal BL. In contrast, by definition the dynam-
ical BL is the region from the stellar surface to the maximum of
Ω (zero-torque point) and it is extremely small for BLs around
WDs. In this case, the width amounts to ∆r = 0.01. We begin
to measure the BL width when the angular velocity deviates by
more than 1% from the stellar-rotation rate. Only the velocities,
especially ur and uϕ, vary considerably on a scale of the order of
the dynamical BL width (∼ 1%R∗). For the other quantities, it is
usually not necessary to resolve the dynamical BL in the figures
since no rapid changes happen (see e.g., Fig. 3 (b) vs. Fig. 6,
lower panels). From an observational point of view, the thermal
BL is the essential region. However, if we compare the dynamics
or the width of the BL, we refer to the dynamical BL.

Once the gas has reached the surface of the star, it has lost
almost all of its angular and radial momentum and has settled to
a dense shell in the equatorial plane. It is slowly driven to the
poles of the star. Above the disk we set the velocities to zero
whenever the density floor is applied. We thus limit the velocity
of the inevitably infalling gas since it dissipates energy when it
shocks on the surface of the star or the disk and heats up the low-
density regions. Therefore, no velocity arrows are visible in the
dark blue regions of Fig. 3.

We now compare the reference model with the results of
the 1D approach where the BL equations in cylindrical coordi-
nates are vertically integrated and axisymmetry is assumed (see
Hertfelder et al. 2013). The vertically integrated density (sur-
face density), which is extracted from the 2D data by integrating
vertically at constant spherical radius, is similar for the two ap-
proaches. In the disk, the differences are small (. 5%). The only
significant deviation (∼ 40%) is given in the BL where the 1D
model predicts a surface density that is slightly too low. The tem-
perature deviates by approximately 50 000 K or 10% throughout
the domain, see Fig. 4. In order to be sure that the reason for
this mismatch is not given by a non fully relaxed 2D midplane
temperature, we looked at snapshots of different times and found
that in the equatorial plane, the model is in thermal equilibrium.
We conclude that the 1D approximation slightly underestimates
the disk temperature. Apart from the general deviation, the over-
all trend is well reproduced. The 1D approach insufficiently ap-
proximates the vertical structure of the disk. This leads to a lower
temperature as well as a lower disk height. In the 1D model, thus,
the disk is too thin. This is a consequence of the vertical cooling,
which relies on an approximation of the vertical optical depth
analog to a gray atmosphere. If the estimate for the vertical opti-
cal depth is too low, the cooling is more efficient and, hence the
temperature in the equatorial plane lower. The dynamical struc-
ture of the 1D model matches the 2D simulation very well. The
shape of Ω and the width of the BL are virtually identical for
the two different approaches. The infall velocity is also a close
match, though it is slightly larger in the BL since the surface
density is smaller (see Eq. 17).

Figure 5 shows the surface temperature of the BL and the
disk. In the 1D radial approximation, the surface temperature is
derived from the midplane temperature by employing the esti-
mate for the vertical optical depth τeff by Hubeny (1990):

T 1D
c = 4

√
τeffT 1D

surface. (18)

For the 2D model, the radiation temperature is computed accord-
ing to

Trad =

(E
a

)1/4

, (19)

where a is the radiation constant. The surface temperature is then
obtained by evaluating Trad in an optical depth of τ = 1. Since the
line of constant τ = 1 approximately equals the visible surface,
the surface temperature is a measure for the radiation emitted
by the system. The 1D and the 2D approaches yield remarkably
similar values of Tsurf (Fig. 5). The peak of the 2D surface tem-
perature is slightly shifted towards the star since the BL of the
2D model lies closer to the star than in the 1D case (see also
Fig. 4). The peak is marginally lower and the descent less steep.
In the 2D model, the thermal BL is thus slightly wider and less
hot than in the 1D approximation. In the disk, both models de-
crease to about 55 000 K and the radiation is comparable to the
WD. The 2D surface temperature is not as smooth as the 1D
counterpart and shows frequent edges and small spikes. The rea-
son is, that, coming from above, the density in the disk rapidly
rises to the point where τ = 1 and the number of grid cells in this
region is limited. By increasing the resolution at the transition to
the disk, the smoothness of the profile could be improved.

4.2. The influence of the WD rotation

The rotation rate of the WD is an important parameter since it
determines the amount of energy released in the BL. With in-
creasing stellar rotation rate, the amount of kinetic energy that is
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Fig. 3. (a) The density as shown in Fig. 1 as an orientation for the over plotted velocity vectors. The color-bar indicates the absolute value of the
velocity of each vector in units of vK(R∗). Only the radial and polar component of the velocity vector have been taken into account. (b) The angular
velocity Ω = uϕ/r (blue) and the radial velocity ur (red) in the equatorial plane as a function of the radius r. The y-axis on the left-hand side refers
to Ω and the y-axis on the right-hand side refers to ur. All velocities are normalized to the Keplerian (angular) velocity at the surface of the star,
vK(R∗) =

√
GM∗/R∗. Both snapshots are taken after a time of 688 orbits.
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Fig. 4. Midplane temperature T as a function of radius. We compare the
results from 1D (red) and 2D (blue) simulations. A general deviation of
about 10% is due to an insufficient approximation of the vertical optical
depth in the 1D approach.

transformed into heat in the BL decreases. The luminosity of the
BL decreases quadratically with increasing stellar rotation rate,

LBL =
1
2

Lacc

(
1 − Ω∗

ΩK(R∗)

)2

, (20)
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Fig. 5. The surface temperature as a function of radius for the 1D radial
model and the 2D model. In the latter, the radiation temperature Trad is
calculated following Eq. (19) and the surface temperature of the disk
and BL is given by Trad at an optical depth of τ = 1.

where Lacc = GM∗Ṁ/R∗ is the total accretion luminosity. Equa-
tion (20) can be derived theoretically (Popham & Narayan 1995)
and has been verified numerically (Hertfelder 2017).

We considered five different stellar rotation rates ranging
from non-rotating up to nearly break-up rotation velocity. The
differences between these models are illustrated in Fig. 6 where
the midplane radial dependency of the angular velocity, radial
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Fig. 6. Angular velocity Ω and radial velocity ur (both in dimensionless units) and density ρ and temperature T in cgs units. All variables show
the radial dependency in the equatorial plane. The different colors denote the different stellar rotation rates of 0, 0.3, 0.5, 0.7 and 0.9 times the
Keplerian angular velocity at the stellar surface. The snapshots are taken after 688, 251, 248, 263 and 253 orbits. The blue lines correspond to the
reference model.

velocity, density and temperature are shown. The angular veloc-
ity Ω decreases smoothly from Keplerian rotation in the disk
to the stellar-rotation rate. The faster the star spins, the more
the dynamical BL is shifted to greater radii since the star in-
creases its equatorial radius due to the centrifugal force im-
posed by its rotation. For a WD that spins at 70% of ΩK, the
equatorial radius increase amounts to already ∼ 4% of the stel-
lar radius. Also, the dynamical BL width becomes larger with
increasing stellar rotation; ∆r = 0.01, 0.015, 0.016, 0.025 for
Ω∗ = 0.0, 0.3, 0.5, 0.7ΩK(R∗). The reason for the increasing BL
width is the complex interplay of density and temperature, both
of which influence the viscosity, which ultimately governs the
width of the BL. In the disk, the angular velocity of all models
is nearly Keplerian, with a small deviation due to the outward
pointing pressure gradient, which adds as a stabilizing force.

The infall velocity ur shows a behavior which is not expected
from 1D BL simulations where the maximum of the radial ve-
locity decreases with rising rotation rate (e.g., Hertfelder et al.
2013). In contrast, the 2D simulations propose a trend where the

peak of ur first increases significantly before decreasing again.
The turnaround point seems to be in the range of Ω∗ ≈ 0.3
and only for a high stellar rotation rate of Ω∗ = 0.7 is the peak
smaller than in the non-rotating model. Here it would certainly
be interesting to run additional models with different Ω∗ to in-
vestigate the trend in depth. Apart from the peak behavior, the
shape of ur reflects our expectations. Coming from the disk, ur
is small and increases as the BL is approached. In the BL, it
peaks and then decreases rapidly as the stellar surface is encoun-
tered. Although two models peak at a higher infall velocity than
the reference model, the infall is still well sub-sonic.

The unexpected behavior of the rotating models continues to
occur in the density and the temperature. While in 1D models
there is a clear trend that the (surface) density increases and the
temperature decreases as the star spins up, Fig. 6 points towards
a different picture. The density in the BL for the Ω∗ = 0.3 case is
smaller than in the non-rotating model. The same applies for the
model where the star rotates at half of the break-up velocity. The
trend of each ρ(r) curve, however, is in perfect agreement with
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the non-rotating model. The temperature, instead of decreasing
with increasing rotation rate, seems to rise at first glance. Im-
portant, though, is the BL temperature which corresponds to the
region directly in front of the steep rise as we enter the star. Here,
the non-rotating model has a higher temperature than the 0.3 and
0.5 cases, which is in agreement with Eq. (20). The 0.7 model
deviates from this picture since the equatorial radius increase is
already very pronounced. The cause for the increased infall ve-
locity in the rotating models is unclear. Perhaps the lack of a sta-
bilizing pressure force due to a lower BL temperature is respon-
sible for the accelerated inflow. As has been mentioned earlier, ρ
will adjust to the radial velocity such that the mass flux remains
constant, see Eq. (17). This could also explain the lower density
in these cases. In general, however, the inflow velocity should
be proportional to the loss of angular momentum and thus be
higher for lower Ω∗. This point remains to be clarified through
further investigation. The temperature of the Ω∗ = 0.9 model is
not visible in Fig. 6 since it is larger than 800 000 K throughout
the plotted region due to the high density.

A special case is given by the model with a stellar rotation
rate of 0.9. Due to the high rotation rate of the star, the sys-
tem has reached a state where matter is fed into the disk by the
star and transported outwards by the disk. This phenomenon is
called a decretion disk. The radial velocity is pointing outwards
throughout the disk. Due to this exotic state of the disk, no BL is
formed and the density and temperature are much higher than in
the other cases since the hot stellar material is transported out-
wards. We find that a decretion disk is formed in each model that
has a rotation rate of 0.9 and therefore exclude those cases from
our further analysis.

For the models with a rotating star we found that the material
does not continue its journey to the poles unhindered as was the
case for the non-rotating star. We investigate the polar spreading
of the material, which depends on the stellar rotation rate, in
detail in Sec. 4.4.

4.3. Dependency on stellar mass and mass-accretion rate

We now investigate to what extent the stellar mass and the mass-
accretion rate of the system influence the structure of the BL. To
this end, we consider the following models (see also Table 1):
For the Ṁ-study, we leave the stellar mass fixed at M∗ = 0.8M�
and compare three different mass-accretion rates, 10−8, 10−9 ,
and 10−10M�/yr. We then fix Ṁ at 10−8M�/yr and change the
stellar mass to 0.8, 1.0, and 1.2M�. All models feature a non-
rotating WD.

The upper two panels of Fig. 7 show the density ρ and the
temperature T in the equatorial plane as a function of radius
for three different mass-accretion rates. With decreasing Ṁ the
density also drops significantly. A difference of two orders of
magnitude in mass-accretion rate leads to a density drop of one
and 1.5 orders of magnitude in the disk and in the BL, respec-
tively. A similar trend applies to the temperature, which also de-
creases with ceasing mass-accretion rate. Here we find a factor
of more than three between the temperature in the disk with an
accretion rate of 10−10 and 10−8 solar masses per year. While
the hottest model reaches over 500 000 K in the BL, the coldest
model lies at only roughly 150 000 K, apart from the interest-
ing peak, which we discuss later. The more mass is transported
through the disk, the more massive the disk will grow and hence
the density increases with Ṁ. This behavior is also reflected in
the disk height, which increases along with Ṁ. Due to the higher
disk density, the depletion of mass in the boundary layer is less
severe for the high Ṁ case as well. There are two major reasons

Table 1. Width of the boundary layer for a parameter variation of the
stellar mass and the mass-accretion rate. By definition, the BL ranges
from the surface of the star to the point where ∂Ω(r)/∂r = 0, that is,
where it has a maximum.

M∗ [M�] Ṁ [M�/yr] ∆r [R∗] sim. time [orbits]
0.8 1 × 10−8 0.0100 688
0.8 1 × 10−9 0.0066 604
0.8 1 × 10−10 0.0048 395
1.0 1 × 10−8 0.0084 395
1.2 1 × 10−8 0.0064 387

for the increasing temperature: On the one hand, the total accre-
tion luminosity scales linearly with the mass-accretion rate:

Lacc =
GM∗Ṁ

R∗
. (21)

It describes the total amount of energy the gas loses in the disk
and the BL around a non-rotating star per time. Thus, the higher
the mass-accretion rate, the higher the energy production and
also the temperature, since there is simply more material in the
disk, which produces heat through shearing. On the other hand,
a higher disk density amplifies the energy dissipation. In the BL,
again, the increase in temperature is more distinct than in the
disk.

With decreasing mass-accretion rate, an interesting feature
arises for the temperature in the BL. In the zoom-in box of Fig. 7,
which magnifies the BL region [0.99, 1.03], small peaks for 10−9

and 10−10M�/yr are visible, which seem to grow larger with de-
creasing Ṁ. Those temperature peaks directly reflect the heat
production in the BL where the dissipation rate has its maxi-
mum and are also observed in 1D simulations (e.g., Hertfelder
et al. 2013). Since at this location the density is very low due
to the peak of the radial velocity, the matter cannot cool ef-
ficiently enough. The radiation transport depends on the opac-
ity, which strongly depends on the density and the temperature.
The lower the mass-accretion rate, the smaller also the density
and the transport of energy away from this region by radiation,
thus cooling this region down, becomes more and more difficult.
Therefore this peak grows more pronounced with decreasing Ṁ.

In the lower two panels of Fig. 7, the midplane density and
temperature for the three different stellar masses are presented.
The density plot confirms, that a higher stellar mass leads to
higher density in the disk and in the BL. The variation is roughly
exponentially and equally pronounced in the disk and the BL.
With increasing stellar mass, the radius of the WD decreases
due to the inverse mass-radius relation. This causes a non-linear
variation of gravity and the disk height for high-mass WDs is
considerably smaller than for lower-mass WDs. Since the mass-
accretion rate remains fixed, the amount of mass transported
through the disk also remains constant and thus the density in-
creases with M∗. According to Eq. (21) and in combination with
the higher density, the temperature also increases strongly. For
the case of a very massive 1.2 solar mass WD, the one mil-
lion K temperature mark is reached. Again, the temperature in
the BL grows stronger than in the disk with increasing M∗. A
peak in the BL is not visible due to the high mass-accretion rate
and the effective radiative cooling. For reference, we state the
radii for the WDs of masses 0.8, 1.0, and 1.2M∗ which amount
to 7.1 × 108, 5.6 × 108 , and 4 × 108 cm, respectively.

The dynamical structure does not significantly change with
the stellar mass or the mass-accretion rate and can be de-
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Fig. 7. Density and temperature in the equatorial plane as a function of radius. In the upper two panels the variables are displayed for three different
mass-accretion rates. The plot of the temperature has an additional zoom box to make the thin peaks in the BL more visible. The lower two panels
show ρ and T for three different stellar masses.

scribed by the general flow structure of the reference model
(see Sec. 4.1). The width of the BL, however, depends on Ṁ
and M∗ as can be extracted from Table 1. There is a clear trend
for all stellar masses that the BL shrinks with decreasing mass-
accretion rate. The width further decreases with increasing stel-
lar mass. High mass-accretion rates lead to broader BLs since
the density and the temperature are larger and consequently the
BL hotter. This effect is reinforced by the inefficient radiation
transport in the BL for low mass-accretion rates, which prevents
a more distinct expansion. When considering the stellar masses,
however, higher densities and temperatures cause quite the op-
posite, namely a shrinking BL width. Here, we have to take into
account the increased gravitational pull, which dominates in this
case and drags the disk as close as possible to the stellar surface.
Several factors contribute to the width of the BL and it is there-
fore difficult, to come to a unique conclusion without running
simulations. The radial velocities and Mach numbers are almost
identical, apart from the slight radial shift due to the different BL

widths. We also observe an unhindered, slow polar spreading of
the disk material shell in all models.

4.4. Polar spreading and mixing

In Fig. 8, the destination of the disk material on the stellar sur-
face is visualized. To this purpose, we have added a tracer in
the equatorial plane just short of the stellar surface in the sim-
ulations. The tracer behaves like a scalar quantity for which an
advection equation is solved. It thus illustrates in which direc-
tion the material from the disk is going. Along with the tracer
we have added the line of constant τ = 2/3 with a dotted black
line that is approximately the visible surface of the star. Four
different stellar rotation rates are given.

In Figure 8 (a) the situation is shown for the reference model
with the non-rotating WD. As was mentioned earlier, the disk
material is gathered in a very thin shell that slowly moves to
the poles. Since the WD is not rotating and the material has been
completely depleted of its angular momentum near the midplane,
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Fig. 8. Black and white image of the tracer, which has been inserted in the equatorial plane in order to visualize the mixing and polar spreading
of the disk material of a 0.8M� WD with Ṁ = 10−8 M�/yr. The plots differ in the stellar-rotation rate, which is given by 0.0 (a, orbit 688), 0.3 (b,
orbit 251), 0.5 (c, orbit 248) and 0.7ΩK(R∗) (d, orbit 263). The dotted black line denotes the optical depth of τ = 2/3.
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Fig. 9. The maximum latitude reached by the disk material on its way
to the pole as a function of the stellar-rotation rate. The different curves
correspond to different choices of stellar mass and mass-accretion rate
(see legend). The maximum latitude angle is measured towards the
equatorial plane and is given in degrees.

the surface of the WD is an equipotential area. The gas is pushed
up towards the poles by the pressure that has developed in the
midplane at r ≈ 1 due to the deceleration of the disk. On the
WD surface, the movement is slowed down by friction. If the
viscosity νconst of the WD is reduced, we observe that the mate-
rial reaches the poles faster than in the reference model. In these
cases, we can actually follow the simulation for the time that is
needed for the gas to reach the pole. However, the choice of an

overly small νconst is problematic since it prevents the BL from
building up in the first place. For the rotating models it is espe-
cially important that νconst is large enough so that the WD rotates
like a solid body. We have found that νconst = 1012cm2/s is a
good choice for this purpose.

The picture changes when the star begins to rotate. In this
case, there is a centrifugal barrier that initially prevents the gas
from leaving the midplane. However, the pressure force in the
equatorial plane is large enough to overcome this barrier and
push the material towards the pole. At a certain latitude, an equi-
librium of pressure and centrifugal force is established and the
movement is halted. This situation is illustrated in panels (b) - (d)
of Figure 8, where the WD rotates with 30%, 50%, and 70% of
ΩK(R∗). Since with increasing stellar rotation rate the centrifugal
force increases and the pressure force decreases, the maximum
latitude shrinks considerably.

The mixing of the stellar and disk material also becomes
more pronounced with increasing rotation rate. In all three cases
where the WD spins at a non-zero rate, the τ = 2/3 is engulfed
in a mixture of material from the disk and the star. Therefore it
is to be expected that the radiation of the star is reprocessed in
regions partly dominated by disk material; material that might
have a composition different from the stellar mixture in some
cases. This situation occurs, however, only for a part of the star
and two caps at the poles, which increase in size as the star spins
up and remain untouched by the disk material.

Figure 9, where the maximum latitude as a function of Ω∗
is shown, visualizes how the spreading is influenced by M∗ and
Ṁ. The trend of the polar spreading of material decreasing with
stellar radius from Fig. 8 is confirmed by Fig. 9 for various com-
binations of stellar mass and mass-accretion rate. The gas faces
a centrifugal barrier when traveling to the poles due to the fact
that it retains an increasing amount of angular momentum with
growing stellar rotation rate when reaching the stellar surface.
The viscosity on the stellar surface on regions off the equatorial
plane is far too low to decelerate the material efficiently and rid
it of its excess angular momentum. This also explains the unhin-
dered slow movement of the disk gas in the non-rotating case.
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Figure 9 further suggests that an increase in stellar mass
leads to a considerable growth of the maximum latitude. The
rotational velocity on the surface of the star is proportional to√

M∗/R∗ and thus is growing with increasing stellar mass. This
means that a point on the equator of a 1.2M� WD that rotates
with 30% of the break-up velocity moves at almost 2000km/s,
whereas for a 0.8M� WD the velocity is only about 1200km/s.
The important quantity for the polar spreading, however, is the
angular momentum, which scales ∝ √M∗R∗ on the surface and
thus decreases with increasing stellar mass due to the inverse
mass-radius relation of WDs. The material can therefore reach
higher latitudes on the WD. The mass-accretion rate, on the con-
trary, does not seem to influence the polar spreading at all. The
small deviations between the blue, cyan, and magenta curves in
Fig. 9 are probably due to inaccuracies in measurement. There is
therefore no increased pressure force to drive the material further
to the poles for increasing mass-accretion rate. The angular mo-
mentum of the gas remains the key issue in the polar spreading.
It would be interesting to investigate the shape of the Ω∗ depen-
dence of the maximum latitude further, however, with only three
data points per curve we feel that an interpretation beyond the
general trend is too speculative. We leave that issue for future
studies.

In all of the simulations we have performed, the disk mate-
rial is decelerated in the midplane and the radiation of the BL
emerges in proximity to the stellar equator. The situation de-
picted in Fig. 2 also holds true for increasing stellar rotation rate
Ω∗ and only the amount of dissipated energy decreases. The disk
material that finally spreads towards the poles has the same ro-
tational velocity as the stellar surface. Therefore, we do not ob-
serve a spreading layer (SL) as mentioned in Inogamov & Sun-
yaev (1999, 2010), where the rotating material first spreads on
the star and is decelerated and radiates within two rings above
and beyond the equator. The latitude of these rings depends on
the mass-accretion rate. However, we also do not detect any such
changes in the BL when the mass-accretion rate is varied (for in-
stance Fig. 9).

5. Summary and conclusion

For this publication we have performed 2D simulations of the
non-magnetic BL around WDs in CVs in a spherical geometry
assuming axisymmetry. The hydrodynamical model based on the
Navier-Stokes equations is extended by an additional equation
for the radiation energy, which is closed using the flux-limited
diffusion approach. We employ Kramer’s opacity, which suits
the temperatures found in the inner disk around WDs and utilize
a modified α-prescription for the viscosity, which also takes into
account the radial scale height in the BL. A total of 45 models
have been prepared in a complex way (see Sec. 3.2) and run with
varied M∗ (0.8, 1.0, 1.2M�), Ṁ (10−8, 10−9, 10−10M�/yr) and Ω∗
(0.0, 0.3, 0.5, 0.7, 0.9ΩK(R∗)). Each model features a high reso-
lution (∼ 1.1 million cells) and has been run for several hundred
orbits, both of which are unprecedented, especially when consid-
ering the elaborate physics included in the model. The downside
of this advanced setup are simulation times of & 1 week with 560
parallel cores on the most recent cluster hardware. However, this
can be coped with thanks to the availability of high-performance
computing centers in Baden-Württemberg, Germany.

We found that in the BL the angular velocity of the gas de-
creases smoothly from the Keplerian rotation in the disk towards
the non-rotating stellar surface. Due to the loss of stabilization by
angular momentum, the infall velocity of the gas increases and
peaks in the BL. This goes along with a severe depletion of mass

which is characteristic for the BL and suggests the picture of a
bottleneck. Since the gas loses a great amount of energy before
coming to rest on the star, very high temperatures of ∼ 550 000 K
for a 0.8M∗ WD with a mass accretion of 10−8M∗/yr are reached.
Whereas the dynamical BL, that is, the region where Ω drops to
Ω∗, is very small (. 1%R∗), the area over which the dissipated
energy is radiated away is considerably larger (∼ 10%R∗). This
is of particular interest for the observational appearance of the
BL, since a wider region means less hard radiation. The radia-
tive flux further reveals that the hottest (i.e., closest to the star)
part of the disk also contributes to the thermal BL. This might
lead to an overestimated Ω∗ since the BL dissipation is assumed
slightly too large when comparing observations with synthetic
BL models.

By increasing the stellar-rotation rate, the general structure
of the BL does not change. The angular velocity still smoothly
connects to the surface velocity and the density and tempera-
ture in the BL are small and large, respectively. The dynamical
width, however, increases due to the changing viscosity which
is governed by the temperature. One open question remains with
the infall velocity that, against our expectations, increases with
rising Ω∗ at first and decreases only for Ω∗ & 0.3. An interest-
ing case is found for the high stellar-rotation rate of 0.9ΩK(R∗)
throughout the M∗, Ṁ parameter space. Here, a decretion disk
is formed and material from the star is transported outwards
through the disk. In general, the stellar-rotation rate is an impor-
tant parameter since it determines the amount of energy liberated
and radiated away in the BL and can in principle be identified by
analyzing the BL luminosity from observations. There is, how-
ever, an ambiguity in that different choices of Ω∗,M∗ , and Ṁ can
lead to similar luminosities, which complicates this process. One
way to circumvent this difficulty entails measuring the BL X-ray
luminosity along with the bolometric luminosity since Hertfelder
(2017) has recently shown that the X-ray luminosity scales ∝ Ω3

∗
as opposed to the ∝ Ω2

∗ dependency of the total luminosity.
The mass-accretion rate and the stellar mass both affect the

BL such that a higher value leads to an increase in density and
temperature. In the first case, the higher amount of mass in the
disk due to the higher accretion rate and hence the increased dis-
sipation is responsible for the rise in density and temperature. In
the other case, a higher M∗ intensifies the gravitational pull on
the material. A process which is supported by the inverse mass-
radius relation of WDs. The width of the BL decreases with in-
creasing stellar mass or decreasing mass-accretion rate for the
same reasons. The height of the disk also follows this trend. In-
triguingly, with decreasing mass-accretion rate a thin but pro-
nounced temperature peak within the dynamical BL becomes
visible due to an inefficient radiative cooling under these con-
ditions. At these mass-accretion rates, the BL starts to become
optically thin. The value matches other studies, which give a
threshold of about 10−10M�/yr for an optically thin BL (e.g.,
Warner 1987). Whether or not the peak becomes higher and
more pronounced with further decreasing mass-accretion rate,
as well as whether or not this finally results in soft and hard X-
ray emission from the BL, should be investigated through future
studies.

Due to its complexity and resource consumption, the BL is
still frequently treated in a 1D approximation (see for instance
Hertfelder et al. 2013; Hertfelder 2017). We found that this ap-
proach is well justified if the right conclusions are drawn from
the results. Insight into the vertical structure or the interplay be-
tween BL and star is clearly inaccessible by this method. The
radiation and luminosity, however, can be deduced even from
1D models, especially since the surface temperatures are almost
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identical. One must bear in mind, though, that the 1D model pre-
dicts an overly low midplane temperature and disk height due to
an insufficient approximation of the vertical optical depth. Apart
from this drawback and a small artificial radial shift, the mid-
plane profiles are amazingly similar between the two different
approaches. Because of the vastly reduced simulation time (∼
hours), 1D models are to be preferred for luminosity calcula-
tions, for instance.

The results further indicate that the polar spreading, that is,
the motion of the disk material in the direction of the poles of the
star, depends on the rotation rate. For a non-rotating star, a dense
shell creeps towards the poles and does not come to rest before
reaching them. With increasing rotation rate, the maximum lat-
itude reached by the gas recedes due to the angular momentum
that the gas is not able to get rid of on the slippery stellar sur-
face at higher latitudes. Also, the mixing with the stellar mate-
rial becomes more pronounced with increasing stellar rotation
and the gas from the disk comes to rest on and around the ob-
servable surface. As a consequence, the stellar radiation might
be reprocessed in a mixture of star and disk material and carry
away the spectral features of both. We note, however, that in our
setup, differences in the mean molecular weight of the accreted
and WD material and gravitational settling are not taken into ac-
count. While variations in mass-accretion rate have little or no
influence on the polar spreading, a higher stellar mass leads to
higher maximum latitudes. The angular momentum at the stellar
surface for a fixed rotation rate (e.g., 0.3ΩK(R∗)) decreases with
increasing stellar mass due to the inverse mass-radius relations
of WDs. Thus for regular relations, as for instance in young stars,
the maximum latitude is likely to decrease with increasing stel-
lar mass. Our simulations show no indication of a deceleration
of the disk material above (or beyond) the stellar equator for any
chosen parameter set. Therefore, we can rule out the concept of
the SL for our setup. It remains to be investigated whether or not
this picture changes when a different mechanism for the viscos-
ity is employed (e.g., Belyaev & Rafikov 2012).

In general, our results are in good agreement with Kley
(1991) who performed simulations of the BL around a solar mass
WD. We find a slightly smaller BL width for comparable param-
eters. This is, however, probably a consequence of small differ-
ences in the applied viscosity prescription. Furthermore, we do
not detect the extremely hot corona (∼ 108 K) above the disk
found in Kley (1991). In contrast, this region has a temperature
of only ∼ 104 K, which is probably too low and a consequence
of the simplified radiation treatment in the optically thin corona.
The author also mentions that if a turbulent ansatz for the vis-
cosity is taken (similar to Eq. 12), the flow shows a strong time
variability with an irregular and eddy-like structure. The ques-
tion is raised of whether this is a consequence of inconsisten-
cies with initial conditions or a general feature of accretion disk
flows. Analyzing our simulations, we believe now that this is a
transient phenomenon due to some involuntary initial perturba-
tions, which disappears after several orbits of simulation time.
A higher numerical resolution also mitigates this problem. We
can, however, not rule out that, for a specific choice of param-
eters, a real physically unstable state develops. Instabilities are
more likely found in the disk plane though (e.g., Hertfelder &
Kley 2015). More recently, Balsara et al. (2009) conducted sim-
ulations of the BL around a WD with a strong focus on the outer
stellar layers. They varied the α parameter and found optically
thick BLs that extend to more than 30◦ to either side of the disk
plane after a short time. While we also find optically thick BLs
for α = 0.01 and high mass-accretion rates, the inflation of the
BL is absent in our simulations and both the disk and the BL

are rather thin, as is expected around a compact object. The un-
physical treatment of the dissipated energy most likely causes
the behavior observed in Balsara et al. (2009). We also did not
detect gravity waves or Kelvin-Helmholtz instabilities although
the outer stellar layers are included and are highly resolved in
our setup.

The non-magnetic BL has been investigated in a 1D radial
approximation (Hertfelder et al. 2013), in a 2D cylindrical ap-
proach in order to examine the instabilities in the disk plane
(Hertfelder & Kley 2015), and finally in the current paper in a
2D spherical geometry that reveals the vertical structure. The
mammoth task that still remains to be accomplished is the com-
bination of the latter two. Full 3D simulations will reveal how
the AM transport by the BL instability influences the vertical
structure and vice versa. Sadly, this lies beyond what is compu-
tationally feasible at this time since a high resolution in all three
coordinate directions is necessary (especially in the azimuthal
direction) and particularly the 3D radiation transport will slow
down the simulations considerably. There are, however, other
open questions in connection with the BL such as the influence
of magnetic fields or the role of the BL around protoplanets in
disks which can be tackled in a 1D or 2D approach.
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5 C O N C L U S I O N

In this chapter, a brief overview of the results obtained within the scope of
this thesis is given. I will highlight the most important findings of the publi-
cations presented in Chapter 4. For further details which are not mentioned
here, the reader is referred to the respective publications.

5.1 implications for the radial approximation

Within the one-dimensional radial approach, simulations of the BL around
a WD in a cataclysmic variable system have been performed (Hertfelder
et al., 2013; Hertfelder, 2017). The thin disk approximation, in which ax-
isymmetry is assumed and the disk is vertically integrated, is employed. We
extent previous 1D models by the inclusion of radiation transport in the ra-
dial and the vertical direction and by considering the radiation energy as an
additional quantity which is propagated in time.

The results provide a picture of the BL which can be described as a bottle-
neck. When the material approaches the stellar surface, the surface density
decreases considerably. Simultaneously, the radial infall velocity increases
so that a constant mass flux is maintained. It reaches its maximum in the
BL (see Figs. 1 & 2 in Hertfelder 2017 and Figs. 1-5 in Hertfelder et al. 2013).
During the deceleration of the azimuthal velocity component, a great deal
of energy is released which causes a sudden rise of the effective temperature
in the BL (see Fig. 2, right panel, in Hertfelder 2017). Temperatures of up
to almost 350 000 K are reached for a non-rotating 0.8M� WD with a mass
accretion rate of 10−8M�/yr. With increasing stellar rotation rate, the max-
imum temperature of the BL decreases since the gas retains more and more
kinetic energy.

Based on the surface temperature, the luminosity of the BL models is
computed (cf. Eq. 3.2 in Hertfelder 2017). In the radial model, the BL and
the disk radiate like a black body at each surface point with a temperature
that is given by Teff. The luminosity decreases quadratically with increasing
stellar rotation rateΩ∗. In addition to this well known result, we could show
that, if only the luminosity in the X-ray band (0.1-10 keV) is considered, a
cubic dependence is found (see Fig. 5.1):

LBL,X = 0.2Lacc

(
1−

Ω∗
ΩK(R∗)

)3

(5.1)

Lacc is the total accretion luminosity, see Eq. (1.4). The different scaling of the
total and the X-ray luminosity provides a way to overcome the ambiguity
which arises when synthetic BL models are compared to observations: A
model with high stellar rotation rate but also a high mass accretion rate can
yield the same luminosity as a model with a smaller mass accretion rate but
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Figure 5.1: The luminosity of the BL as a function of the WD rotation rate. The
luminosity is normalized to the total accretion luminosity (see Eq. 1.4).
The left panel visualizes the total luminosity of the BL and a square fit
to the data points. In the right panel, only the X-ray luminosity (0.1-10
keV) is taken into account and plotted along with a cubic fit to the data.
The WD has 0.8M� and Ṁ = 10−8M�/yr. From Hertfelder (2017).

also a lower rotation rate. The factor of 0.2 in Eq. (5.1) is independent of Ω∗,
but varies with the stellar mass and mass accretion rate.

Extending the analysis of the BL radiation, the spectral luminosity can be
obtained by imposing Planck’s law with temperature Teff for each ring of the
BL and subsequently adding them up while taking into account the area of
the ring. The spectrum becomes considerably harder with decreasing stel-
lar rotation rate (see Fig. 7 in Hertfelder 2017) since the maximum of Teff,
which is responsible for the high energetic part of the spectrum, increases.
The compound BL spectrum can be approximated by a single temperature
Planck law which gives an estimate of the shape of the spectrum and can be
compared to observations. This study is currently in progress in collabora-
tion with the group of Prof. Balman of the Middle East Technical University
in Ankara.

A more sophisticated approach to calculate spectra of the BL has been pur-
sued in Suleimanov et al. (2014) which constitutes the first comprehensive
attempt to model the soft X-ray/EUV spectra of optically thick BLs in CVs.
The 1D hydrodynamic BL models which have been calculated in Hertfelder
et al. (2013) are employed as the basis for the computation of a vertical struc-
ture using the stellar-atmosphere method. Doppler broadening and Limb
darkening are taken into account when deriving the total BL model spectra
from the individual rings.

We find that, at conditions present in the BL, the opacity and the shape
of the emergent spectra are determined by highly-charged ions of heavy el-
ements such as carbon, oxygen, neon, magnesium and silicon. Hydrogen
and helium are almost fully ionized. The final model BL spectra feature rel-
atively broad absorption- and emission-like characteristics which arise from
numerous lines of heavy elements smeared by the fast ring rotation. It was
further pointed out that the predominance of spectral lines in the BL opac-
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Figure 5.2: Top panel: Comparison of the observed SS Cyg soft X-ray spectrum (solid
curve) with the BL model spectrum for a 1M� WD with rotation rate
Ω∗ = 0.8 (dashed curve). Bottom panel: Subtracted (observed minus
BL model) spectrum (solid curve) together with the homogeneous slab
model spectrum (dashed curve). The emission continuum of Ne VII be-
low 60 Å and the strongest identified emission lines are marked. From
Suleimanov et al. (2014).

ities leads to strong line-driven winds which manifest themselves in EUV
observations.

The key result of Suleimanov et al. (2014) is that the observed soft X-ray
and EUV spectrum of the dwarf nova SS Cyg in outburst is very similar to
the computed model BL spectrum. It also exhibits various absorption- and
emission-like features (Mauche, 2004a; Long et al., 1996). We show that the
soft X-ray Chandra spectrum can be fitted by two model spectra (see Fig. 5.2):

• M∗ =M�, Ṁ = 1.5× 10−8M�/yr,Ω∗ = 0.8, distance ≈ 107 pc

• M∗ = 0.8M�, Ṁ = 1.5× 10−8M�/yr,Ω∗ = 0.6, distance ≈ 170 pc

Also, the ratio of observed BL luminosity to the disk luminosity is consistent
with the above models. The ambiguity arises due to the unknown distance
of SS Cyg which, if known, could rule out one of the above models.

The workflow described in Hertfelder et al. (2013) and Suleimanov et al.
(2014), or in Hertfelder (2017) and the forthcoming publication in collabo-
ration with METU, demonstrates how theory (numerical simulations) and
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Figure 5.3: Density (a) and temperature (b) for the standard model
(0.8M�, 10−8M�/yr, non-rotating) as a function of radius r and
vertical coordinate z in cgs units at orbit 688. Contour lines for the
levels (0.8, 5, 10, 20, 30) × 10−6g/cm3 are overlaid in the plot of the
density. The white line in panel (b) denotes the points where the optical
depth is unity, τ = 1. From Hertfelder and Kley (2017).

observations can be jointly utilized in order to reveal important characteris-
tics of real astrophysical objects. One-dimensional radial models will play
an important role in this facet of BL research in the future. Their clear advan-
tage is the relative simplicity and short simulation times. After a few hours,
a steady state with a constant mass and angular momentum flow is reached
(see Figs. 9 & 10 in Hertfelder et al. 2013). Recently, the validity of the 1D
approach has been confirmed by two-dimensional simulations (Hertfelder
and Kley, 2017). We found that the 1D model predicts a too low midplane
temperature and disk height due to an insufficient approximation of the ver-
tical optical depth. The surface temperatures, however, are almost identical
(see Figs. 4 & 5 in Hertfelder and Kley 2017). Therefore, the radiation and
luminosity of the BL can be deduced also from 1D models. Insight into the
vertical structure, though, is clearly inaccessible by this method.

5.2 implications for the vertical structure

In order to overcome the drawback of the 1D approach, two-dimensional
simulations to clarify the vertical structure of the BL have been conducted
in Hertfelder and Kley (2017). These models focus on the BL around a WD
and feature a high resolution (∼ 1.1 million grid cells) and large simulation
times (hundredth of orbits). They extent the few 2D BL studies that have
been performed until today (e.g. Kley, 1991; Balsara et al., 2009).

The BL structure and dynamics in the equatorial plane is well described by
the 1D radial approximation. Figure 5.3 shows the vertical structure of the
disk, the BL and the star. The picture of the bottleneck is confirmed by the
2D simulations. Directly in front of the star, a considerable depletion of mass
occurs. The temperature, however, has a distinct maximum located next to
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Figure 5.4: B/w coding of the tracer which has been inserted in the equatorial plane
in order to visualize the mixing and polar spreading of the disk material
for the standard model. The plots differ in the stellar rotation rate,
which is given by Ω∗ = 0.0, 0.3, 0.5 and 0.7 ((a) through (d)). The dotted
black line denotes the optical depth of τ = 2/3. From Hertfelder and
Kley (2017).

the stellar equator. Very high temperatures of ∼ 550 000 K are reached for
the standard model (0.8M�, 10−8M�/yr, non-rotating). The width of the
region, where the angular velocity drops to zero, is only about 1% of the
star. Visualizations of the radiation energy and the flux vectors show, how-
ever, that the energy generated in the BL is partly transported outwards and
radiated away over a larger region of ∼ 10% of the stellar radius (see Fig. 2

in Hertfelder and Kley 2017). This redistribution, along with the thermaliza-
tion in an optically thick BL, is responsible that the BL radiation is less hard
despite the enormous energy dissipation.

The mass accretion rate and the stellar mass both affect the BL such that
a higher value leads to an increase in density and temperature. The width
of the BL and the disk height decrease with increasing M∗ and Ṁ. A grow-
ing peak in the midplane temperature directly in front of the star is found
with decreasing mass accretion rate (see Fig. 7 in Hertfelder and Kley 2017).
Under these conditions, the radiative cooling becomes more and more inef-
ficient and the heat generated in the BL cannot be transported away. This
marks the threshold to the case of an optically thin BL where the radiation
is not thermalized and very hard. The stellar rotation rate does not change
the general structure of the BL considerably. The luminosity decreases as de-
scribed in Hertfelder (2017) and visualized in Fig. 5.1. Somewhere around
Ω ≈ 0.9, however, the disk changes its state and forms a decretion disk,
where mass is transported outwards. The transition towards a decretion
disk is possibly a two-dimensional phenomenom since it is not observed in
1D simulations (see also Popham and Narayan, 1991).

In Hertfelder and Kley (2017), we could show for the first time that the
polar spreading, i.e. the motion of the disk material in direction of the
poles of the star, depends on the stellar rotation rate and decreases with
growing Ω∗ (see Fig. 5.4). The reason for this trend is the growing angular
momentum barrier that prevents the material from reaching too high lati-
tudes. Thus, with increasing stellar mass, the polar spreading also increases.
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Figure 5.5: Time-radius image of αRe spanning several hundred orbits. We note
that the values of αRe have been multiplied by (−1) in order to allow for
the logarithmic scale. For each point in time the values have been time
averaged over ten orbits. The vertical dashed lines denote the locations
of outbursts. From Hertfelder and Kley (2015).

This is, however, only true for an inverse mass-radius relation (WDs) where
the angular momentum at the stellar surface decreases with increasing mass.
Furthermore, a pronounced mixing with the stellar material is observed for
a non-zero rotation rate. As a consequence, the stellar radiation will be re-
processed in a mixture of star and disk material and carry away the spectral
features of both. A special case is observed for a non-rotating WD: A dense
shell creeps slowly up to the poles beneath the observable surface and does
not come to rest before reaching the poles. Another major result is that our
simulations show no indication of a deceleration of the disk material above
the stellar equator for any chosen parameter set. Therefore, we can rule out
the concept of the Spreading Layer for our setup.

5.3 implications for the viscosity in the bl

For the investigation of the viscosity mechanism, we conducted highly
resolved, two-dimensional simulations of the BL surrounding a young star
(Hertfelder and Kley, 2015). In this part of the project, we chose a protostar
since the ratio M∗/R∗ is smaller than for a WD and lower resolution in
radial direction can be chosen. This increases the amount of orbits that
can be simulated within a reasonable physical time. Recent simulations
were extended by including a net mass flow through the disk, utilizing a
realistic equation of state and employing a quasi three-dimensional radiation
transport. The simulations were started from radial 1D models similar to
Hertfelder et al. (2013).

We could confirm that the supersonic velocity drop in the BL is suscepti-
ble to the sonic instability, a kind of supersonic shear layer instability whose
subsonic counterpart is the Kelvin-Helmholtz instability. The sonic instabil-
ity governs the BL for the first ∼ 15 orbits (see Fig. 2 in Hertfelder and Kley
2015), saturates and hands over control to the acoustic modes. They are
persistent acoustic waves that propagate both into the disk and into the star
(see Figs. 3-5 in Hertfelder and Kley 2015). The acoustic modes efficiently
transport angular momentum and mass through the BL and the disk. Fig-
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ure 5.5 shows the dimensionless Reynolds stress αRe which reaches values
up to unity in high activity states.

An important consequence of the findings of Hertfelder and Kley (2015)
is that there is considerable evidence that the AM transport in the BL is
an intrinsically non-local process. Waves can extract AM from one point
in the disk and release it in another one farther off. Energy is released to
the fluid where the waves are damped or dissipate. The non-locality of the
process means that the popular α-prescription is probably not applicable in
the BL, since the AM transport does not depend on the local shearing. Direct
simulations of the wave mediated AM transport are computationally too
expensive if another aspect of the BL is examined1. Therefore it is desirable
to find a prescription similar to the α-model. We come to the conclusion
that αRe might be a good candidate for this task. The width of the BL reacts
to the wave mediated AM transport with an increase compared to classical
α-viscosity simulations (see Fig. 8 in Hertfelder and Kley 2015).

Another interesting feature we found during this study is that the sys-
tem repeatedly undergoes outbursts where the wave activity as well as the
AM and mass transport increase considerably (e.g. Fig. 7 & 14 in Hertfelder
and Kley 2015). These outbursts are likely triggered by a secondary Kelvin-
Helmholtz instability that develops in plateaus of the azimuthal velocity pro-
file due to several changes of sign of the vorticity. The effective temperature
also shows strong variations during outbursts. These might play an impor-
tant role in explaining light curve variations such as FU Ori outbursts or
DNOs and QPOs in the case of WDs.

1 For this reason, the effects of the MRI are condensed into the α-viscosity.
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In this thesis I presented a comprehensive approach to address several
questions about the non-magnetic BL of accretion disks. Although many
answers emerged from this effort, some aspects of the BL still remain to be
researched through future studies.

Regarding the one-dimensional radial model, it would be desirable to in-
vestigate the value of the prefactor in Eq. (5.1) by conducting a large parame-
ter study. Thereby one can perhaps find an explicit dependence on the stellar
mass and mass accretion rate or at least produce a table with the according
values. Then also the absolute value of the X-ray luminosity could be calcu-
lated for arbitrary parameter combinations. In Suleimanov et al. (2014) we
found that the temperatures in combination with the disk material leads to
strong BL line-driven winds. Through comparison with real observations, a
mass loss rate of ∼ 1017-1018g/s due to the outflow from the BL surface was
derived. Since these values are comparable with the assumed mass accretion
rate, future BL models should be computed with the mass loss taken into
consideration. It should be investigated whether the mass loss can be consis-
tently included in the 1D radial model and how this might be accomplished.
Finally, since our 2D simulations revealed a pronounced mixing of material
from the disk with stellar gas, the spectral properties of this mixture could
be considered for the emergent spectra.

Concerning multidimensional simulations of the BL, several interesting
tasks could be realized. The vertical structure of the 2D BL around a WD
should be investigated for conditions in which an optically thin BL is ex-
pected (Ṁ . 10−10M�/yr). Perhaps the treatment of the radiation energy
and the radiative flux must be adjusted for this case. A major task will be
the inclusion of the wave mediated AM transport in the investigation of the
vertical structure. For this purpose, three-dimensional simulations with ex-
traordinary numerical resolution in each coordinate direction would have to
be conducted in order to capture both the instability/acoustic waves and the
stellar and BL scale heights. We have attempted such simulations, however,
they are computationally not feasible at this time. In connection with the BL
viscosity, it is tempting to associate phenomena like FU Ori outbursts, DNOs
or QPOs with outbursts seen in our simulations. This topic must be further
investigated in order to draw reliable conclusions. Such an investigation
would certainly involve the study of how the outburst reacts to a change in
parameters, among other things. It is also vital to perform 3D simulations on
this question since there might be a dependence on dimensionality (Belyaev
et al., 2013a).

In order to examine the vertical structure in the light of the wave mediated
AM transport, another approach would involve finding an apt prescription
for the macroscopic effects of this transport. We suggest the dimensionless
Reynolds stress αRe as a starting point for this endeavor. However, since we
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are dealing with a non-local process, it is unclear if an ad-hoc prescription
can approximate the consequences of this process, at all. Furthermore, the
concept of the SL should be reconsidered in the light of the wave mediated
AM transport.

Finally, a major extension is the inclusion of magnetic fields. This means
that magnetohydrodynamical simulations of the BL including radiation trans-
port have to be conducted. It would then be possible to relinquish any vis-
cosity prescription whatsoever and directly simulate the MRI in the disk and
the acoustic modes in the BL. There might be important interactions between
the turbulent disk and the BL modes and new wave branches might add to
the three non-magnetic ones. Moreover, by including a stellar dipole field,
the influence of magnetic fields on the vertical structure of the BL could be
investigated. However, these extensions will greatly increase the computa-
tion time and possibly require more efficient numerical methods and codes.
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