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Abbreviations and Symbols 
AADC aromatic amino acid decarboxylase 

G5A green fluorescent protein – 5 repeats of linker sequence – aequorin 

GDP guanosine diphosphate 

GEF guanine nucleotide exchange factor 

GFP green fluorescent protein 

GTP guanosine triphosphate 

GPCR G-protein coupled receptor 

TDC tyrosine decarboxylase 

TRH thyrotropin-releasing hormone 
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Zusammenfassung  

G-Protein-gekoppelte Rezeptoren (GPCRs) sind ein wichtiger Rezeptor-Typ mit 

vielen unterschiedlichen Arten von Liganden, zu denen unter anderem 

Neuropeptide und biogene Amine gehören. Viele GPCR-Familien sind in allen 

Tieren konserviert, was ihre Bedeutung in der neuronalen und hormonellen 

Signalweiterleitung unterstreicht. Während die Liganden vieler GPCRs des 

Menschen und populärer Modellorganismen bekannt sind, ist für die meisten 

GPCRs anderer Tiere kein Ligand bekannt (“orphan GPCRs”) oder der Ligand 

wurde nur aufgrund von Sequenzähnlichkeit zu bekannten GPCRs vorhergesagt. 

Besonders innerhalb des wenig erforschten Phylums der Lophotrochozoa wurden 

bisher nur wenige GPCRs biochemisch untersucht. 

In dieser Dissertation stelle ich eine Herangehensweise zur Deorphanisierung von 

GPCRs im großen Maßstab vor, sowie einen großen Datensatz an 

deorphanisierten Rezeptoren aus dem Lophotrochohzoen Platynereis dumerilii 

und weiteren marinen Invertebraten. Darunter befinden sich Rezeptoren für 

Neuropeptide und biogene Amine. 

Ich habe 87 GPCRs gegen 126 Neuropeptide getestet und konnte dadurch 19 

neuropeptiderge GPCRs deorphanisieren. Darunter befinden sich GPCRs aus 

bisher noch nicht beschriebenen Familien. Einige davon, nämlich die FMRFamid-

Rezeptoren, Achatin-Rezeptoren und Elevenin-Rezeptoren, sind in Bilateriern 

konserviert. Andere kommen nur in Lophotrochozoen vor. Ich habe außerdem 

einen Liganden für den Thyreotropin Releasing Hormon-Rezeptor identifiziert. 

In einer zweiten Studie habe ich mich auf Rezeptoren von biogenen Aminen 

konzentriert. Ich habe adrenerge, octopaminerge und tyraminerge Rezeptoren 

aus Platynereis sowie dem Ecdysozoen Priapulus caudatus und dem 

Deuterostomier Saccoglossus kovalewskii, einem Hemichordaten, deorphanisiert. 

Dadurch konnte ich zeigen, dass alle drei Rezeptorfamilien in Bilateriern 

konserviert sind. Sie sind also viel älter als bisher angenommen wurde. Außerdem 

beweist dies, dass Octopamin eindeutig nicht das Äquivalent zu Noradrenalin ist, 

wie dies von Forschern in diesem Feld häufig behauptet worden war. 

Zusammenfassend beleuchtet mein Datensatz die Evolution der GPCRs in 

Bilateriern. Wichtige Aspekte der Evolution von GPCRs, die bisher übersehen 

worden waren, da nur Stichproben aus wenigen Taxa untersucht wurden, sind 
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nun aufgeklärt. Außerdem wird dieser Datensatz eine wichtige Ressource für die  

Deorphanisierung von weiteren GPCRs darstellen. 

Summary 
G-protein coupled receptors (GPCRs) are an important receptor class that can 

have various types of ligands, including neuropeptides and biogenic amines. Many 

GPCR families are conserved throughout animals, highlighting their importance in 

neuronal and hormonal signaling. While the ligands of many human GPCRs and 

GPCRs from popular model organisms are known, most of the GPCRs of other 

animals remain without a known ligand (“orphan GPCRs”) or their ligands have 

only been predicted based on sequence similarity to known GPCRs. Especially 

within the understudied phylum of the lophotrochozoa, few GPCRs have been 

biochemically characterized. 

In this thesis, I present an approach for the large-scale deorphanization of G-

protein coupled receptors and a large dataset of deorphanized receptors from the 

lophotrochozoan Platynereis dumerilii and other marine invertebrates. Among 

these are neuropeptide receptors and biogenic amine receptors. 

By testing 87 GPCRs against 126 neuropeptides, I could deorphanize 19 

neuropeptide GPCRs. Among them are GPCRs that belong to hitherto undescribed 

families. Some of these, namely the FMRFamide receptors, achatin receptors, and 

elevenin receptors, are conserved across bilateria. Others are restricted to the 

lophotrochozoa. I also identified a ligand for the Platynereis thyrotropin-releasing 

hormone receptor. 

In a second study, I concentrated on biogenic amine receptors. I deorphanized 

adrenergic, octopaminergic and tyraminergic receptors from Platynereis as well 

as the ecdysozoan Priapulus caudatus and the deuterostome Saccoglossus 

kovalewskii, a hemichordate. This way I could show that all three receptor families 

are conserved across bilaterians. They are therefore much older than was 

previously appreciated. Also, this is proof that octopamine is clearly not an 

equivalent of norepinephrine, as was often suggested by scientists in the field. 

Taken together, my dataset sheds light on the evolution of GPCRs in bilateral 

animals. Important aspects of GPCR evolution that had been overlooked because 
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of limited taxon sampling were cleared up. Also, the dataset presented here will 

be an important resource for future GPCR deorphanizations. 
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Introduction 

G-protein coupled receptors 

G-protein coupled receptors (GPCRs) are a large class of receptors with hundreds 

of members present in most animals (Bradford et al. 2013). They are commonly 

made up of seven transmembrane helices connected by short loops. Their name 

derives from the fact that they couple to heterotrimeric G proteins with αβγ 

subunits (Dohlman et al. 1987). GPCRs can be activated by a wide range of ligands, 

including biogenic amines, peptides, chemokines, lipids, and light. Usually, the 

binding of an activating ligand will slightly change the relative position of the 

transmembrane helices (Manglik and Kobilka 2014; Rasmussen et al. 2011), 

which turns the GPCR into a guanine nucleotide exchange factor (GEF) for the Gα 

subunit of the coupled G protein (Gilman 1987), facilitating the exchange of 

guanosine diphosphate (GDP) for guanosine triphosphate (GTP). The GTP-loaded 

Gα will then dissociate and elicit further downstream signaling, potentially 

involving a plethora of second messengers and other factors. These downstream 

signaling components evolved independently, only later acquiring the need of 

GPCR activation to function (Bradford et al. 2013). 

Generally, GPCRs are classified using the GRAFS system (Fredriksson et al. 2003), 

in which GRAFS is an acronym for the names of the five main classes Glutamate, 

Rhodopsin, Adhesion, Frizzled and Secretin. At least the first four classes are 

ancient to animals (Krishnan et al. 2014).  

Interesting insights into GPCR function come from protein crystal structures, 

which have only recently become available. They show the sequence of 

conformational changes that a GPCR undergoes upon activation (Choe et al. 2011; 

Rasmussen et al. 2011). 

Other recent developments include the finding that many GPCRs across the animal 

kingdom dimerize (Kasai and Kusumi 2014; Sakai et al. 2012), which potentially 

allows for additional means of manipulating GPCR signaling with drugs (Fujita et 

al. 2014). Another hot topic in GPCR research is functional selectivity (also called 

biased agonism), the fact that some ligands activate their receptors in a way that 

primarily triggers one of several potential downstream signaling pathways 

(Wisler et al. 2014; Nobles et al. 2011).  
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Deorphanization of G-protein coupled receptors 

GPCRs without known ligands are called orphan. Hence, the process of 

establishing a ligand-receptor relationship is called deorphanization. Historically, 

bioactive ligands were purified from animal tissue extracts and were used as a 

starting point to find a receptor that would be activated by them (Caers et al. 

2012). This approach is known as forward pharmacology. With the advent of 

genomics, the approach has changed drastically: cloned GPCRs are now expressed 

in cell culture, coupled to a readout format like luminescence (Civelli et al. 2013) 

and synthetic potential ligands are tested, usually one by one. This more modern 

approach is known as reverse pharmacology (Civelli et al. 2013). 

Many human GPCRs, as well as GPCRs from rat and mouse were already 

deorphanized in the last decades of the 20th century. Also, the GPCR complements 

of popular models like Drosophila (Blenau and Baumann 2001; Caers et al. 2012) 

and C. elegans (Frooninckx et al. 2012) are rather well studied. However, some 

GPCRs still remain orphan to date, with the human GPCRs drawing most attention 

because of their potential use as drug targets (Tang et al. 2012). 

Beside the pharmacological exploitation of orphan GPCRs, there are also gaps in 

the knowledge of GPCR evolution, mostly owing to limited taxon sampling. Only 

few select species have been studied in regard to GPCR deorphanization 

(Frooninckx et al. 2012; Caers et al. 2012; Civelli et al. 2013), and often even 

species with annotated genomes have no GPCRs that were biochemically tested 

for their specific ligands. Specifically, many neuropeptide GPCRs have been 

identified in vertebrate species like human, rat and mouse (Pawson et al. 2014), 

as well as Drosophila melanogaster (Caers et al. 2012; Hewes and Taghert 2001) 

and Caenorhabditis elegans (Frooninckx et al. 2012), but only very few in 

nonmodel species (Tensen, Cox, Smit, et al. 1998; Tensen, Cox, Burke, et al. 1998; 

Cox et al. 1997; Kim et al. 2010; Conzelmann, Williams, Tunaru, et al. 2013; Bigot 

et al. 2014; Lee et al. 2016; Sekiguchi et al. 2015). This gap in knowledge is what 

the present thesis is about. 

Neuropeptides 

Neuropeptides are a diverse class of signaling molecules that can function as 

neurotransmitters or hormones. They form the largest group of 



 8 

neurotransmitters (Liu et al. 2008). Generally, peptides are generated from longer 

precursor molecules, the prepropeptides, which can contain multiple copies of the 

peptide sequence. The prepropeptides are cleaved at conserved sites that often 

are made up of two basic amino acids (Hook et al. 2008). Biochemical 

modifications, like conversion of a C-terminal glycine to an amide group or 

conversion of an N-terminal glutamate to pyroglutamate, make the peptide 

mature (Eipper et al. 1992). The mature peptides are stored in dense core vesicles, 

from which they are secreted upon a signal. 

Many peptide families are conserved throughout animals (Mirabeau and Joly 

2013; Jékely 2013). Often, however, the relatedness of peptides is unclear, because 

their short amino acid sequences can quickly mutate beyond recognition 

(Semmens et al. 2015). In these cases, it is often better to rely on GPCR 

deorphanization: the peptide ligands and their receptors often coevolve (Kim et 

al. 2012; Mirabeau and Joly 2013; Jékely 2013). The fact that GPCR sequences are 

usually better conserved than neuropeptide sequences makes it possible to use 

the receptor identity to assign a neuropeptide to its family (Semmens et al. 2015). 

The monoamines norepinephrine, octopamine and tyramine 

Norepinephrine (also called noradrenaline), octopamine and tyramine are 

signaling molecules that belong to the class of monoamines. They are synthesized 

from tyrosine by decarboxylation and hydroxylation. Their structures are 

therefore quite similar. Also, the enzymes that catalyse their synthesis are similar 

enough to accept slightly different substrates and make both dopamine and 

tyramine (in the case of aromatic amino acid decarboxylase, (Lindemann and 

Hoener 2005)) or both octopamine and noradrenaline (in the case of dopamine β-

hydroxylase and tyramine β-hydroxylase (Monastirioti et al. 1996; Wallace 1976; 

Kaufman et al. 1968)). 

Noradrenaline signaling is well-studied in vertebrates, where it has roles in 

autonomic functions like blood pressure and heart beat (Kim et al. 2002), as well 

as behavioral functions like wakefulness/arousal (Singh et al. 2015) and 

aggression (Marino et al. 2005). In invertebrates, norepinephrine is usually 

considered to be absent. Instead, it seems that octopamine has the analogous role 
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(Roeder 2005), at least in insects (Zhou et al. 2008; Crocker and Sehgal 2008; 

Florey and Rathmayer 1978; Crisp et al. 2010).  

The receptors for norepinephrine, octopamine and tyramine are generally G-

protein coupled receptors (Verlinden et al. 2010), with the exception of a 

tyramine-gated ion channel that has been identified in C. elegans (Ringstad et al. 

2009; Pirri et al. 2009). For norepinephrine, three major receptor families exist in 

vertebrates: α1-adrenergic, α2-adrenergic and β-adrenergic receptors. In 

invertebrates, two classes of octopamine receptors have been found, with one 

showing a lot of sequence similarity to α-adrenergic receptors, while the other 

class is more similar to β-adrenergic receptors. Hence, these families are called 

octopamine-α and octopamine-β receptors, respectively (Verlinden et al. 2010). 

Tyramine receptors also form two distinct classes in invertebrates, termed 

tyramine type 1 and type 2 receptors (Verlinden et al. 2010; Cazzamali et al. 2005), 

which are not to be confused with the more distantly related trace amine 

associated receptors found in vertebrates (Borowsky et al. 2001; Eyun et al. 2016). 

All of these receptors show sequence similarity and can be partially cross-

activated by their respective ligands (Verlinden et al. 2010), making it sometimes 

difficult to assign a GPCR to its correct class if not all potential ligands are tested 

(Arakawa et al. 1990; Saudou et al. 1990). 

These manifold similarities (biogenic amine structure and synthesis, receptor 

structure and function) have led to the notion that norepinephrine signaling in 

vertebrates and octopamine signaling in invertebrates are equivalent 

counterparts (Roeder 2005; El-Kholy et al. 2015).  

Overview of bilaterian evolution 

Animals with a bilateral body plan are considered to be monophyletic, with the so-

called urbilaterian as their last common ancestor. About 550 million years ago, the 

bilaterian lineage is traditionally considered to have split into deuterostomes and 

protostomes. This view has recently been challenged by the fact that the phyletic 

placement of chaetognaths and xenacoelomorphs is uncertain (Cannon et al. 

2016). Xenacoelomorphs habe been proposed to be either part of the 

deuterostomes or a sister group to all other bilaterians (Bourlat et al. 2006; 

Philippe et al. 2011; Cannon et al. 2016). Here, the classical protostome-
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deuterostome categories will be kept for simplicity. From the protostome-

deuterostome split, several deuterostomian lineages have emerged, with 

chordates being the most well-studied one, since they include the vertebrates. 

Other deuterostomian lineages, like the ambulacrarians, including the 

hemichordates and echinoderms, have received less attention. In this thesis, the 

hemichordate Saccoglossus kovalewskii will be of importance. 

Among the protostomian phyla are the ecdysozoans and lophotrochozoans. 

Ecdysozoans comprise, among others, the insects, with Drosophila melanogaster 

as one of the most popular model organisms, and the nematodes, among which 

Caenorhabditis elegans has been studied in detail. Among the lophotrochozoa, 

which include mollusks and annelids, not many species have been studied, leading 

to an undersampling of this superphylum. The marine annelid Platynereis 

dumerilii is therefore getting the most attention in this study. 

The marine ragworm Platynereis dumerilii 

The annelid Platynereis dumerilii is a marine ragworm with a pelagic-benthic 

biphasic life cycle (Fischer et al. 2010). It is slowly evolving, and therefore has an 

ancient genomic complement (Raible et al. 2005). This puts Platynereis in contrast 

to popular protostomian models like Drosophila or C. elegans, which both have a 

shorter generation time and a faster mutation rate. The fact that Platynereis can 

be bred in the lab with freshly hatched larvae available all year round makes it a 

powerful emerging lab model, with the possibility of behavioral studies 

(Conzelmann et al. 2011), pharmacological interference (Tosches et al. 2014), the 

use of genetics tools (Zantke et al. 2014; Gühmann et al. 2015) and the study of 

neuroanatomy (Asadulina et al. 2012) and connectomics (Randel et al. 2014; 

Shahidi et al. 2015).  

The neuropeptide complement of Platynereis has been studied by a combination 

of mass-spectrometric and bioinformatics approaches (Conzelmann, Williams, 

Krug, et al. 2013). However, a receptor was found only for one of its neuropeptides 

(Conzelmann, Williams, Tunaru, et al. 2013).  
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Other species used in this study 

Saccoglossus kovalewskii 

The acorn worm Saccoglossus kovalewskii is an invertebrate belonging to the 

hemichordates, a subphylum of the deuterostomes. It lives in U-shaped burrows 

in the seabed, where it filter feeds. Hemichordates are closely related to 

echinoderms (Cannon et al. 2014) with which they form the ambulacrarians. The 

genome of Saccoglossus has been sequenced (Simakov et al. 2015) and serves as a 

reference of deuterostome development before the split of the chordates about 

535 million years ago. Its repertoire of GPCRs is very similar to that of vertebrates 

(Krishnan et al. 2013). 

Priapulus caudatus 

The penis worm, Priapulus caudatus, is an early-branching Ecdysozoan and 

therefore belongs to the protostomes (Dunn et al. 2008) despite its deuterostome-

like development (Martín-Durán et al. 2012). Archaeal priapulids have been 

identified in the Burgess Shale, showing their presence in the Middle Cambrian 

about 505 million years ago (Vannier et al. 2010). They live on the sea floor where 

they dig into the sediment so that the mouth just stays at the surface. There they 

feed on slow-mowing invertebrates like polychaetes. Because of its ancient 

features (Martín-Durán et al. 2012; Webster et al. 2006), Priapulus caudatus here 

serves as a reference of early ecdysozoa. 

Branchiostoma floridae 

The lancelet Branchiostoma floridae is a fish-like marine chordate. It belongs to 

the cephalochordates, the most basal subphylum of the chordates (Gee 2008). The 

genome of Branchiostome floridae has been sequenced (Putnam et al. 2008), 

making it an important model of vertebrate ancestors (Holland et al. 2004; Garcia-

Fernàndez and Benito-Gutiérrez 2009). 

Aplysia californica 

The sea hare Aplysia californica is a giant sea snail that can become up to 75 cm 

long. Belonging to the mollusks, it is a representative of the lophotrochozoa. It is 

one of the few lophotrochozoan species that have served as a model in biology. 
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Because of its easily identifiable giant neurons, it has been popular for studies in 

neurobiology (Kandel et al. 2014). Its genome has been sequenced. 
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Objectives of this thesis 
Many G-protein coupled receptors from model species are deorphanized and 

described. However, to clarify the evolutionary history of many GPCR families, 

data from non-model species is lacking. Limited taxon sampling, especially in the 

superphylum of the lophotrochozoa, leads to an undersampling of GPCRs. Even 

more importantly, some GPCR families only present in invertebrate animals have 

not been described yet at all. 

The goal of this thesis is the deorphanization of GPCRs from the marine annelid 

Platynereis dumerilii. GPCR deorphanization is necessary to unequivocally 

establish the nature of a given GPCR, because bioinformatic methods, especially 

the automated annotation of genomes, are not very reliable in doing so. 

Obtaining a large dataset of deorphanized Platynereis GPCRs is useful for the 

confirmation of the origins of ancient GPCR families, providing support for their 

conservation across large evolutionary distances. These GPCRs will also aide in 

the understanding of neuropeptide evolution, since the sequence conservation of 

peptides is often limited and the establishment of neuropeptide homology across 

large evolutionary distances needs additional support from coevolved receptor 

sequences. Furthermore, a large-scale approach in deorphanization will help to 

discover previously undescribed GPCR families, thus helping to drive our 

knowledge of GPCR families toward completion. 

A rich dataset of deorphanized GPCRs can also be used to test hypothesis about 

peptide-receptor coevolution and generate more such hypotheses. 

In the long term, ligand-receptor pairs will be useful to complement 

neuroanatomical data from connectomics studies, when molecular identities can 

be assigned to individual neurons and synapses.  

The GPCRs from this dataset might also serve as targets to study neurotransmitter 

function, for example by knockout, knockdown, or pharmacological interference 

with the receptor. 

A specific goal of this thesis is also to clear up the evolutionary history of 

adrenergic, tyraminergic and octopaminergic receptors. To this end, additional 

species were sampled for these receptors. 
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Results  

Summary of publication 1 

Introduction 

Neuropeptides commonly signal via G-protein coupled receptors. Neuropeptide 

GPCRs have been deorphanized in vertebrate models (Civelli et al. 2013; Pawson 

et al. 2014), as well as Drosophila melanogaster (Caers et al. 2012; Hewes and 

Taghert 2001) and Caenorhabditis elegans (Frooninckx et al. 2012), but only very 

few other invertebrates. To remedy the lack of deorphanized neuropeptide GPCRs 

especially in the lophotrochozoan phylum, I undertook the effort of a large-scale 

deorphanization of Platynereis GPCRs.  

Results 
I identified putative Platynereis GPCR sequences in a mixed stages transcriptome 

(Conzelmann, Williams, Krug, et al. 2013). I selected GPCRs that were predicted to 

be neuropeptidergic by the best BLAST result in SwissProt and subcloned them 

into the mammalian expression vector pcDNA3.1 to express them in CHO-G5A 

cells (Tunaru et al. 2005). This cell line features a reporter construct called G5A 

(for GFP, 5 repeats of linker sequence, aequorin (Baubet et al. 2000)) that allowed 

me to test for GPCR activation by recording calcium-induced luminescence. To do 

this, I cotransfected the promiscuous Gα protein Gα-16 (Offermanns and Simon 

1995) that couples many GPCRs to the phospholipase C pathway that eventually 

leads to calcium release.  

To identify many new GPCR-neuropeptide ligand pairs in a short time, I developed 

a combinatorial screening strategy in which I tested 87 GPCRs against 126 

synthetic neuropeptides (10,962 combinations). Synthetic Platynereis 

neuropeptides were obtained as they were predicted in (Conzelmann, Williams, 

Krug, et al. 2013). To save time, I applied three complex peptide mixtures to the 

GPCR-expressing cells as a first screening step. Each mixture contained up to 52 

peptides. Only a subset of the GPCRs was activated by each mixture, which 

indicated that these signals were the result of specific GPCR activation.  

The GPCRs that were activated by these mixtures were then further tested in a 

second step with submixtures that were designed by using the rows and columns 

of a matrix containing all peptides from the original mixture. If two submixtures 
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representing one row and one column activated a GPCR, I considered the peptide 

at the intersection as the top candidate to be a specific ligand.  

For some GPCRs, it was also possible to predict the ligand based on sequence 

similarity to deorphanized GPCRs from other species. In the third experimental 

step, I tested the predictions from the submixture experiments as well as from 

sequence similarity comparisons. For this, I used single synthetic peptides at a 

fixed concentration of 1 µM to try to activate a GPCR. 

The fourth step was to validate the identified ligands from the fixed-concentration 

experiments. To do this, I recorded dose-response curves for all receptor-ligand 

pairs. This way, I was able to confirm 25 receptor-ligand pairs for 19 GPCRs. I 

found the following receptors: an FLamide receptor (which was also activated by 

prokineticin short peptide 1), two allatotropin receptors, a neuropeptide KY 

receptor (activated by both neuropeptide KY versions and cross-activated by 

FMRFamide), a luqin receptor, two elevenin receptors, an RGWamide receptor, an 

FMRFamide receptor, an excitatory peptide receptor, a neuropeptide-Y-4 receptor 

(also activated by neuropeptide-Y-1 and 3), an EFLGamide receptor, an 

allatostatin-A receptor (which was only activated by a specific copy of allatostatin-

A, called allatostatin-A-2-2), an achatin receptor, a myomodulin receptor 

(activated by at least two different myomodulins), two diuretic hormone 31 

receptors, a vasotocin receptor, and an allatostatin-C receptor. 

To learn more about the evolution of these 19 GPCRs, I analyzed metazoan 

neuropeptide GPCR sequences by clustering. I collected sequences of 

deorphanized GPCRs from the literature (Conzelmann, Williams, Tunaru, et al. 

2013; Caers et al. 2012; Frooninckx et al. 2012; Pawson et al. 2014; Bigot et al. 

2014; Cox et al. 1997; Tensen, Cox, Burke, et al. 1998; Kim et al. 2010) and used 

the sequences of my 19 newly deorphanized GPCRs to seed BLASTP searches in 

metazoan genomes. All collected sequences were used for similarity-based 

clustering with the program CLANS2 (Frickey and Lupas 2004). This method had 

previously been used to recover orthologous groups of GPCRs (Jékely 2013). I 

could assign all 19 Platynereis GPCRs to well-resolved sequence groups. 

Eleven of the Platynereis GPCRs clustered to groups that contained characterized 

sequences from other animal models. For eight of these, their ligand had been 

previously recognized as an ortholog of other known peptides: this was the case 
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for the allatostatins A and C, vasotocin (an ortholog of both vasopressin and 

oxytocin), allatotropin (an orexin ortholog), luqin (orthologous to insect 

RYamide), and diuretic hormone 31 (an ortholog of calcitonin). 

In some cases, the clustering confirmed hypotheses of orthology among receptor-

ligand pairs that had previously been suggested (Jékely 2013): the myomodulin 

receptor clustered with arthropod myosuppressin receptors, confirming the 

orthology of myomodulins and myosuppressin. Also, a suggested relationship of 

excitatory peptide with CCHamide and neuromedin-B peptides (Roller et al. 2008; 

Jékely 2013) was confirmed this way. Similarly, neuropeptide KY receptors 

clustered with neuropeptide Y and neuropeptide F receptors, confirming that the 

sequence similarity of the respective peptides is a sign of their homology. 

I also found several new receptor families that had not been described previously. 

In these cases, the Platynereis GPCR was the only deorphanized member of a 

cluster. These families are the FMRFamide receptors, elevenin receptors, achatin 

receptors, RGWamide receptors, FLamide receptors (surprisingly also containing 

a receptor for diuretic hormone 31), and the neuropeptide-Y-4 receptors. 

Orthologous sequences from different phyla indicate that three of these receptors 

were present in the urbilaterian, namely the FMRFamide, elevenin, and achatin 

receptors. Sequences from the deuterostomes Saccoglossus kovalewskii and 

Branchiostoma floridae cluster with the respective Platynereis sequences. 

Interestingly, for the FMRFamide receptor there is even an ortholog in the 

cartilaginous fish Callorhinchus milii, which has a particularly slowly evolving 

genome (Venkatesh et al. 2014). Notably, the FMRFamide receptors cluster does 

not contain a previously described FMRFamide receptor from Drosophila 

(Cazzamali and Grimmelikhuijzen 2002), which instead forms a distinct cluster 

with other arthropod sequences.  

The clusters for RGWamide receptor, FLamide receptor/diuretic hormone 31 

receptor 2, and neuropeptide-Y-4 receptor only contained lophotrochozoan 

sequences, indicating that these families developed after the split of ecdysozoa 

and lophotrochozoa. 

One of the Platynereis GPCRs, the EFLGamide receptor, clustered with vertebrate 

thyrotropin-releasing hormone (TRH) receptors. Previously, no ligand for 

invertebrate TRH receptors had been known. This was due to the fact that TRH is 
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a very short peptide (pyroGlu-His-Pro-NH2) whose primary sequence is not well 

conserved across the superphyla. Only the combination of GPCR deorphanization 

and clustering analysis revealed the orthology of Platynereis EFLGamide and 

vertebrate TRH. A neuropeptide that shows limited sequence similarity with both 

vertebrate TRH and Platynereis EFLGamide has been identified in the sea urchin 

Strongylocentrotus purpuratus (Rowe and Elphick 2012), which further argues for 

the orthology of these peptides. 

I found that achatin, a peptide containing a D-amino acid (Gly-D-Phe-Gly-Asp) 

(Kamatani et al. 1989), but not its all-L-counterpart, activates the Platynereis 

achatin receptor. To test if this mode of signaling is conserved, I examined the 

GPCR sequences in the achatin receptor cluster. This cluster contained 

lophotrochozoan and deuterostome sequences, but no sequences from ecdysozoa. 

To test conservation of achatin signaling across a large evolutionary distance, I 

chose GPCRs from Aplysia californica, Saccoglossus kovalevskii and Branchiostoma 

floridae for additional tests. I expressed these GPCRs from synthetic DNA and 

tested the D- and L-versions of the achatin peptides found in each organism. Only 

D-amino acid containing achatins activated their receptors. Thus, I could show 

that achatin receptors are activated by D-peptides and this was already true for 

the urbilaterian. 

Discussion 
In this publication, I presented the deorphanization of 19 Platynereis 

neuropeptide GPCRs. A combinatorial screening strategy enabled me to quickly 

test 126 neuropeptides on 87 GPCRs, which makes a total of 10,962 possible 

combinations. Only few receptors got activated by the application of complex 

peptide mixtures, which highlights the specificity of their activation. Using 

combinations of smaller mixtures, I could readily identify specific GPCR ligands. 

By this unbiased approach, I was able to identify new GPCR families whose ligands 

could not have been predicted based on available data.  

Among the newly discovered families are the FMRFamide receptors. FMRFamides 

form one of the oldest and most conserved neuropeptide families (Jékely 2013; 

Mirabeau and Joly 2013), but the FMRFamide receptors have long remained 

elusive. An FMRFamide receptor was identified in Drosophila (Cazzamali and 

Grimmelikhuijzen 2002), but it only has homologs in arthropods. The newly 
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discovered Platynereis FMRFamide receptor has different orthologous animal 

GPCRs, mainly from invertebrate deuterostomes and lophotrochozoans. I also 

identified an orthologous receptor in the hemipteran brown planthopper 

Nilaparvata lugens, which shows that this type of FMRFamide receptor was 

retained for a while in ecdysozoans before it was lost and replaced with a different 

receptor. 

Another discovery that was only possible by unbiased combinatorial testing of 

ligands was that Platynereis EFLGamide is the ligand of Platynereis TRH receptor. 

An interesting question is whether the biological functions of EFLGamide 

resemble those of vertebrate TRH (Laudet 2011), particularly the regulation of 

thyroid hormone synthesis. Thyroid hormones are present in Aplysia (Heyland et 

al. 2006) and could therefore be an ancient bilaterian feature. 

The identification of new GPCR families makes the prediction of some new GPCR-

ligand pairs easier. To demonstrate this, I tested putative achatin receptors from 

Aplysia californica, Saccoglossus kovalevskii and Branchiostoma floridae based on 

my predictions by sequence clustering. These receptors could not have been 

predicted correctly before, as they had been annotated as crustacean cardioactive 

peptide receptors by automatic genome annotation tools. I confirmed their 

identity as achatin receptors and thereby showed that the deorphanized 

Platynereis GPCRs can be used to predict further neuropeptide GPCRs across 

phyla. 

In general, my results add to our current knowledge of deorphanized GPCRs by 

exploring lophotrochozoan receptors. Only very few of these had been 

biochemically characterized so far. The new data will be a valuable resource for 

future GPCR and ligand discoveries and the study of neuropeptide signaling in 

general, especially in invertebrates. By demonstrating the broad phylectic 

distribution of some conserved neuropeptides, it also highlights the complexity of 

the neuropeptide complement of the urbilaterian. 

Summary of publication 2 

Introduction 

Norepinephrine is an important monoamine that controls autonomic responses in 

vertebrates via its GPCRs, the adrenergic receptors (Kim et al. 2002). 
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Norepinephrine signaling has traditionally been considered absent from 

invertebrates. Octopamine, a monoamine that shows many similarities with 

noradrenaline, including similar receptors, is a well-described transmitter found 

in insects and other invertebrates (Roeder 2005). It is often considered the 

invertebrate equivalent of noradrenaline. The precursor of octopamine, called 

tyramine, also has functions as a neurotransmitter, working via its own dedicated 

receptors (reviewed in (Lange 2009)). 

In this study, I show that adrenergic, octopaminergic and tyraminergic signaling 

are much older and more widespread than previously thought by demonstrating 

the coexistence of dedicated receptors in the protostomes Platynereis dumerilii 

and Priapulus caudatus as well as in the deuterostome Saccoglossus kovalewskii. 

Results 

I analyzed monoamine receptor sequences from bilateral animals by clustering 

with CLANS2 (Frickey and Lupas 2004). Doing this, I found GPCRs from 

lophotrochozoa and ecdysozoa that clustered with α1-adrenergic and α2-

adrenergic receptors, among them sequences from Platynereis dumerilii and 

Priapulus caudatus. A cluster of β-adrenergic receptors only contained sequences 

from deuterostomes and xenacoelomorphs. I also found sequences from the 

deuterostome Saccoglossus kovalewskii that clustered with octopamine and 

tyramine receptors. 

To confirm the phylogenetic placement of these GPCRs, I constructed a maximum 

likelihood tree based on multiple alignments of a representative collection of 

GPCR sequences, involving many deorphanized octopamine and tyramine 

receptors. I could resolve the following well supported clades: Tyramine class I 

and II receptors, octopamine-α and -β receptors, α1-adrenergic receptors, α2-

adrenergic receptors and β-adrenergic receptors. Serotonin receptors served as 

an outgroup. All clades except the β-adrenergic receptors contained sequences 

from Platynereis, Priapulus and Saccoglossus. Representatives of α1- and α2-

adrenergic receptor orthologs were also present in other ecdysozoans and 

lophotrochozoans, including Daphnia pulex and Aplysia californica. A receptor 

from the moth Chilo suppressalis that had previously been described as a new type 
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of octopamine receptor (Wu et al. 2014) clustered with α2-adrenergic receptors. 

This cluster also contained some nematode sequences. 

Regarding β-adrenergic receptors, the cluster only contained sequences from 

vertebrates, cyclostomes, tunicates, and the xenacoelomorph Meara stichopi. If the 

xenacoelomorpha are indeed a sister group to all other bilaterians, this would 

mean that the β-adrenergic receptors are an ancient bilaterian feature that was 

lost early in the protostomian lineage. 

 

To confirm the identity of some of the monoamine receptors from different phyla, 

I cloned selected GPCRs from Platynereis, Priapulus and Saccoglossus. Since 

monoamine receptors tend to be cross-reactive, which can lead to 

misidentifications (Saudou et al. 1990; Arakawa et al. 1990), I figured that only the 

recording of dose-response curves for all relevant monoamines on each receptor 

could be a fail-safe way to characterize them biochemically. For this, I used the 

calcium mobilization assay from my previous publication. 

I tested representatives of putative α1- and α2-adrenergic receptors from all three 

species. In my assays, all of these were activated by norepinephrine in small 

concentrations. Most of them were also activated by epinephrine at similarly small 

concentrations, with the exception of a Priapulus α1-adrenergic receptor on which 

epinephrine was inactive. The agonist clonidine activated all α2-adrenergic 

receptors. In contrast, octopamine, tyramine and dopamine were either inactive 

on the candidate adrenergic receptors or only activated them at higher 

concentrations. These results confirm the tested receptors as bona fide adrenergic 

receptors. Adrenergic signaling is therefore probably present in protostomes and 

not confined to deuterostomes as previously thought. 

I also tested some putative octopamine and tyramine receptors. Since octopamine 

and tyramine signaling is already well-described in ecdysozoa, especially C. 

elegans (Rex and Komuniecki 2002; Alkema et al. 2005; Pirri et al. 2009) and 

Drosophila (Saraswati et al. 2004; Nagaya et al. 2002; Saudou et al. 1990) , I did 

not clone the Priapulus octopamine and tyramine receptors. Instead, I focused on 

receptors from Platynereis, because no tyramine receptors had been described in 

lophotrochozoans yet, and from Saccoglossus, for neither octopamine nor 

tyramine signaling had so far been described in any deuterostome. Two 
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Platynereis receptors were activated by tyramine at about 100-fold smaller 

concentrations than by octopamine or other monoamines. In contrast, a third 

Platynereis receptor was more readily activated by octopamine. This confirms that 

Platynereis has at least one receptor each of the tyramine type 1, tyramine type 2 

and octopamine-α families. A putative octopamine-β receptor was not active in my 

assays. These results show that adrenergic signaling coexists with octopaminergic 

and tyraminergic signaling in Platynereis and probably also in Priapulus. These 

monoamine signaling systems can therefore not be functionally equivalent 

counterparts or even homologs, as had previously been assumed (Roeder 2005; 

Schwaerzel et al. 2003; Nall and Sehgal 2014; Shakiryanova et al. 2011; El-Kholy 

et al. 2015). 

Of the Saccoglossus receptors tested, three were preferentially activated by 

tyramine and two by octopamine. Other substances tested only activated the 

receptors at higher concentrations or failed to activate them altogether. Thus, I 

could confirm an octopamine-α and an octopamine-β receptor from Saccoglossus, 

as well as two tyramine type 2 receptors and a tyramine type 1 receptor. Another 

putative tyramine type 1 receptor is present in the phylogeny, but I was not able 

to clone it.  

A hallmark of tyramine and octopamine signaling, apart from the presence of 

dedicated receptors, is the presence of the enzyme tyrosine decarboxylase (TDC), 

which decarboxylates tyrosine to yield tyramine. In contrast to other aromatic 

amino acid decarboxylases (AADCs), this enzyme is specifically used for the 

production of tyramine and octopamine in neuronal signaling (Alkema et al. 

2005). By constructing a maximum likelihood tree, I could show that TDC is not 

only present in Platynereis and Priapulus, but also in Saccoglossus and can be 

distinguished from other, more general purpose AADCs. These results confirm 

that tyramine and octopamine signaling are not an exclusively protostomian 

feature, but also exist in the deuterostome Saccoglossus.  

To further characterize the cloned receptors pharmacologically, I tested the 

inhibitors yohimbine and mianserin on them. Both substances are known to 

inhibit α-adrenergic receptors, but are not specific to them. I found that many of 

the cloned receptors were inhibited by yohimbine and/or mianserin to some 
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extent. The lack of specificity presents a caveat regarding the use of these two 

substances to study the neurobiology of invertebrates. 

Discussion 

To unequivocally establish a substance as a neurotransmitter, a lot of criteria have 

to be met (Lange 2009): it must be present in a signaling cell, released upon 

stimulation of that cell, removed from the extracellular space by reuptake or 

degradation, specific receptors have to be present on a target cell, application of 

the substance to the target cell has to mimic the effect of signaling from the 

signaling cell, and inhibition of the receptor must cancel the activity of the 

substance. Showing that all of these criteria are met for norepinephrine, 

octopamine and tyramine in the three representative species Platynereis, 

Priapulus and Saccoglossus would by far go beyond the scope of this thesis. 

Instead, I reasoned that the presence of specific monoamine receptors is a good 

indicator for the use of this monoamine in neuronal signaling. In contrast, 

monoamines for which no specific receptors are present might still occur in an 

animal in trace amounts without being used in signaling. Also, the presence or 

absence of biosynthetic enzymes might be misleading, as some of these enzymes 

are not very substrate specific (Monastirioti et al. 1996; Wallace 1976; Kaufman 

et al. 1968; Lindemann and Hoener 2005) and might be used by different 

organisms in different ways. 

I identified and biochemically characterized two families of adrenergic receptors 

in the lophotrochozoan Platynereis and the ecdysozoan Priapulus as well as in the 

hemichordate Saccoglossus. Furthermore, I showed that two families each of 

tyraminergic and octopaminergic receptors coexist with the adrenergic receptors 

in these animals. The presence of specific receptors across the three animal phyla 

shows the ancient bilaterian origin of adrenergic, octopaminergic and 

tyraminergic signaling. These signaling systems are therefore much older and 

more widespread than was previously acknowledged. Also, they cannot be 

functionally equivalent (although some degree of functional redundancy cannot 

be excluded). This misconception came about because tyramine and octopamine 

receptors were lost from vertebrates, and adrenergic receptors were lost from 

many ecdysozoans, including the popular model species Drosophila and C. elegans. 
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An α2-adrenergic receptor from Chilo suppresalis has already been described (Wu 

et al. 2014), but misidentified as a novel type of octopamine receptor. This 

highlights the danger of misidentifying receptors because of their cross-reactivity 

to related monoamines (Arakawa et al. 1990; Saudou et al. 1990). I circumvented 

this by testing several monoamines on each receptor, including norepinephrine, 

octopamine, tyramine and dopamine. 

In my study, I could not identify any tyramine or octopamine receptors in 

chordates. In contrast, β-adrenergic receptors seem to be present in chordates and 

xenacoelomorphs only. They might have taken over functions previously occupied 

by tyramine or octopamine receptors. 

What the ancestral functions of adrenergic, tyraminergic and octopaminergic 

signaling systems were remains unclear. To gain insights into this, their function 

must be studied in organisms in which all three signaling systems still coexist. We 

can, however, rule out that they have equivalent functions, as was assumed so far. 

Studies comparing octopamine signaling in invertebrates with norepinephrine 

signaling in vertebrates will have to be interpreted carefully against this 

background. 

General Discussion 

In this study, I deorphanized a total of 24 Platynereis GPCRs and 12 GPCRs from 

other marine invertebrates. These proved very informative regarding the 

evolution of GPCRs and their ligands. Several of my findings, like the identification 

of novel neuropeptide GPCR families and the identification of EFLGamide as a 

ligand for Platynereis TRH receptor, highlight the importance to characterize 

GPCRs biochemically. In silico analysis of these GPCRs by multiple sequence 

alignments could not have led to these results. Apart from that, the monoamine 

receptors from Saccoglossus and Priapulus that I analyzed had been correctly 

labeled by automatic genome annotation, but had been overlooked so far. My 

experiments confirmed the identities of these receptors. 

The fact that I discovered GPCR families in some phyla where they were not 

expected shows that these families are older and more widespread than 

previously thought. This study adds to taxon sampling mainly by presenting data 
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from Platynereis, a member of the understudied lophotrochozoan phylum. But 

also other marine invertebrates proved to have interesting GPCR complements, as 

exemplified by Saccoglossus kovalewskii, Branchiostoma floridae, Priapulus 

caudatus, and Aplysia californica. This highlights the usefulness of studying slowly 

evolving marine species, since their genomes retained genes of ancient ancestry. 

In my neuropeptide GPCR study, I was able to show that the D-amino acid in the 

neuropeptide achatin is conserved. This raises the question of the function of this 

D-amino acid, because it is costly for an animal to make. The achatin precursor is 

first produced as a standard, all L-amino acid containing prepropeptide from a 

regular mRNA transcript (Conzelmann, Williams, Krug, et al. 2013) and cleaved 

into small propeptides (Bai et al. 2013). Then, presumably, a dedicated L-D-

convertase enzyme converts the phenylalanine at position 2 of the peptide to the 

D-form (Jilek et al. 2005). The production of this dedicated enzyme is costly for 

the organism, therefore the D-amino acid probably has an important role. What 

this role might be is, however, unclear. It could make the achatin peptide more 

stable than other peptides, because peptidases are usually specific to L-amino acid 

containing peptides (Kreil 1997). Another possibility is that the unique three-

dimensional structure that is caused be D-amino acid (Ishida et al. 1992) is needed 

for receptor activation and that there is no easy way to evolve a different receptor 

specificity. 

The dataset of deorphanized GPCRs I have created is a valuable resource for 

further neuropeptide and GPCR research. Based on my data, putative achatin 

receptors were identified in two chelicerates: the scorpion Mesobuthus martensii 

and the African social velvet spider Stegodyphus mimosarum (Veenstra 2016).  

Orthologs of the elevenin receptors that I identified are present in arthropods, 

including insects (Veenstra 2014). The distribution of these receptors matches the 

distribution of the elevenin peptides well. 

FMRFamides are probably orthologs of the FIRFamide peptides that occur in  

chelicerates, who are early-branching ecdysozoans. An interesting feature of some 

chelicerates is that they have both “Platynereis-type” and “Drosophila-type” 

FMRFamide receptors (Veenstra 2016). It will be interesting to find out what 

these receptors do, which might hint at why the “Platynereis-type” receptors were 

lost from most hexapods. 
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I identified EFLGamide as the probable ortholog to vertebrate TRH via the 

orthology of their receptors. A peptide with intermediate sequence characteristics 

was known from the sea urchin Strongylocentrotus purpuratus (Rowe and Elphick 

2012). A similar TRH-type peptide sequence was since then found in the 

transcriptome of the starfish Asterias rubens with the predicted structure pQWYT-

NH2 (Semmens et al. 2016), providing another example of the sequence variation 

of TRH-type peptides. 

It is hypothesized that the arthropod EFLamide genes might be orthologs to 

Platynereis EFLGamide (Veenstra 2016). It is, however, notable that EFLamide 

seems to be absent from insects, although a TRH receptor is present in a few of 

them, namely Nilaparvata lugens, Rhodnius prolixus and Diaphorina citri. It will be 

interesting to find out what the TRH receptor ligand is in these species. 

Recently, siGOLD, an immunogold labeling technique to identify peptidergic 

neurons in transmission electron microscopy, was developed (Shahidi et al. 2015). 

The combination of my GPCR dataset with mapping of peptidergic neurons in 

electron microscopy makes it possible to study neuropeptide signaling at cellular 

level. Since neuropeptide signaling can happen without synapses over large 

distances, it represents an alternative mode of signaling connectivity between 

neurons. In this case, the target cells are defined by their receptor expression 

profile rather than their synaptic connections. Using the information about 

neurotransmitter-receptor pairs from my present work, together with expression 

data and anatomical information at the single-neuron level, it is possible to define 

chemical neuronal signaling networks with sparse and specific connectivity.  
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Conclusion 

Here I present a large dataset of deorphanized GPCRs from Platynereis dumerilii 

and other marine invertebrates. This data is an important resource that reduces 

gaps in GPCR sampling. By identifying many new receptors, I contribute to our 

understanding of the evolution of neuropeptide receptors and monoamine 

receptors. Highlights of my work are the evidence that many receptor families are 

more broadly conserved across phyla and of more ancient origin than was 

appreciated before, as well as the discovery of hitherto undescribed receptor 

families. 
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Correspondence
gaspar.jekely@tuebingen.mpg.de

In Brief

Bauknecht and Jékely report the
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SUMMARY

Neuropeptides, representing the largest class of
neuromodulators, commonly signal by G-protein-
coupled receptors (GPCRs). While the neuropeptide
repertoire of several metazoans has been charac-
terized, many GPCRs are orphans. Here, we develop
a strategy to identify GPCR-peptide pairs using
combinatorial screening with complex peptide mix-
tures. We screened 126 neuropeptides against 87
GPCRs of the annelid Platynereis and identified li-
gands for 19 receptors. We assigned many GPCRs
to known families and identified conserved families
of achatin, FMRFamide, RGWamide, FLamide, and
elevenin receptors. We also identified a ligand for
the Platynereis ortholog of vertebrate thyrotropin-
releasing hormone (TRH) receptors, revealing the
ancient origin of TRH-receptor signaling. We pre-
dicted ligands for several metazoan GPCRs and
tested predicted achatin receptors. These receptors
were specifically activated by an achatin D-peptide,
revealing a conserved mode of activation. Our work
establishes an important resource and provides
information about the complexity of peptidergic
signaling in the urbilaterian.
INTRODUCTION

Neuropeptides represent the largest and most diverse class

of neuron-secreted signaling molecules. These peptides can

have neuromodulatory, neurotransmitter, or hormonal func-

tions and can affect development, physiology, and the activity

in neural circuits. The majority of neuropeptides signal by

G-protein-coupled receptors (GPCRs), with some exceptions

(Chang et al., 2009; Leung et al., 1987; Lowe et al., 1989;

Rechler and Nissley, 1985). While the neuropeptide repertoire

of an animal can be determined using a combination of

sequencing and mass-spectrometry approaches (Collins

et al., 2010; Conzelmann et al., 2013a; Dircksen et al., 2011;

Hauser et al., 2010; Li et al., 2008; Xie et al., 2010), the deter-

mination of neuropeptide receptors is more difficult and is

usually carried out using in vitro experiments with individual

peptide-receptor pairs.
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Several years of effort have led to the identification of�35 neu-

ropeptide GPCRs inDrosophila melanogaster (Caers et al., 2012;

Hewes and Taghert, 2001), 23 in Caenorhabditis elegans (Froo-

ninckx et al., 2012), 50 in human and mouse, and only a few in

non-model organisms (Bigot et al., 2014; Conzelmann et al.,

2013b; Cox et al., 1997; Kim et al., 2010; Tensen et al., 1998a,

1998b).

Among the lophotrochozoans, an animal superphylum that

with ecdysozoans and deuterostomes forms the Bilateria (Tel-

ford and Copley, 2011), peptidergic neuromodulation has

been extensively studied in several species (Cropper et al.,

1987; Kamatani et al., 1989; Rajpara et al., 1992; Hoek

et al., 2005; Willows et al., 1997). However, the lack of infor-

mation regarding neuropeptide receptors hinders the identifi-

cation of the downstream signaling mechanisms underlying

neuromodulation.

The annelid Platynereis has emerged in recent years as a

powerful lophotrochozoan laboratory animal for the study of

development, neuronal circuits, and zooplankton behavior

(Jékely et al., 2008; Randel et al., 2014; Tosches et al., 2014;

Zantke et al., 2014). Its larval stages represent accessiblemodels

for studying the role of neuropeptides in behavior, development,

and physiology at the whole-organism level (Conzelmann et al.,

2011, 2013b; Williams et al., 2015). Platynereis has an ancestral

neuropeptide repertoire, including 30 ancestral bilaterian pro-

neuropeptide families (Conzelmann et al., 2013a); however,

only one neuropeptide receptor has been identified so far (Con-

zelmann et al., 2013b).

Here, building on established transcriptomic and peptidomic

resources (Conzelmann et al., 2013a), we present a large-scale

deorphanization screen of Platynereis neuropeptide GPCRs.

We identified the peptide ligand of 19 Platynereis receptors.

We also perform a phylogenetic analysis of Platynereis and other

metazoan neuropeptide GPCRs to gain insights into the evolu-

tion of peptidergic signaling in bilaterians.

RESULTS

Combinatorial Screening for Platynereis GPCR-
Neuropeptide Ligand Pairs
To facilitate the rapid identification of neuropeptide GPCRs, we

developed a combinatorial cell-culture-based screening strat-

egy (Figure 1).

We reasoned that complex peptide mixtures could be used to

identify receptors activated by specific peptides present in these

mixtures. Mixtures of subsets of peptides (submixtures) would

mailto:gaspar.jekely@tuebingen.mpg.de
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Figure 1. Schematic of the Combinatorial

Screen for Platynereis Neuropeptide

GPCRs

(A)We used a cell-culture assaywith CHO-K1 cells

stably transfected with a calcium-sensitive biolu-

minescent GFP-aequorin fusion protein (G5A).

(B) In the primary screen, 87 Platynereis GPCRs

were tested against three complex neuropeptide

mixtures. This screen identified 28 responder

GPCRs.

(C) A secondary screen based on peptide sub-

mixtures and bioinformatic predictions identified

35 receptor-ligand pairs. See also Figure S1.

(D) Individual peptide-receptor dose-response

measurements validated 25 receptor-ligand

pairs. A phylogenetic analysis provided informa-

tion about GPCR-ligand coevolution across

bilaterians. See also Figure S1 and Table S1.
then allow the unambiguous identification of a single active

peptide.

We screened 87 orphan Platynereis GPCRs (Table S1) against

126Platynereis neuropeptides, pooled into threemixtures based

on peptide pI and solubility (Table S2). We used a Ca2+-mobiliza-

tion assay with CHO-K1 cells stably transfected with a calcium-

sensitive bioluminescent GFP-aequorin fusion protein (Tunaru

et al., 2005). This screen identified 28 GPCRs that responded

reproducibly to at least one of the peptide mixtures (Figure 2;

Table S3).

We focused on these receptors and tested them with

peptide mixtures derived by decomposing the original active

mixture into the rows and columns of a matrix (Tables S2

and S3). If two mixtures representing a row and a column in

the matrix activate the receptor, the peptide at the intersect

likely represents a specific ligand. We defined an activation

value for each peptide in the matrix as the square root of the

product of the measured values of two intersecting mixtures

(Figure 1; Figure S1). Using this approach, we found candidate

receptors for the neuropeptides FLa (also activated by proki-

neticin short peptide 1 [SP-1]), allatotropin, neuropeptide KY

(NKY), luqin, elevenin (two receptors), RGWa, FMRFa, excit-

atory peptide, neuropeptide-Y-4 (NPY-4), achatin, EFLGamide
Cell Reports 12, 684–
(EFLGa), and diuretic hormone 31

(DH31) (Figure S1; Table S3).

For six receptors, we were able to pre-

dict the ligands based on orthology rela-

tionships (see below). These included

candidate receptors for vasotocin, alla-

tostatin-A, allatotropin, myomodulin, alla-

tostatin-C, and DH31 (Table S3). The

GPCR-ligand pairs identified either by

combinatorial screening or bioinformatic

prediction were further tested in individ-

ual receptor ligand assays (Table S3).

Validation of 25 GPCR-Ligand Pairs
To confirm that the identified peptides are

indeed specific ligands to the respective

GPCRs, we recorded dose-response
curves for each of the identified receptor-ligand pairs. After

excluding a few receptors with inconsistent activation in repli-

cate experiments, we identified 25 GPCR-ligand pairs with half

maximal effective concentration (EC50) values in the nanomolar

or low-micromolar range (Table 1; Figure 3).

We recorded two sets of dose-response curves with different

normalizations, using responses of either the Platynereis MIP

receptor or an endogenously expressed histamine receptor as

reference (Figure 3; Figure S2). For three receptors, we identified

two or three ligands derived from distinct precursors (FLamide,

NKY, and NPY-4 receptors), and for four peptides (allatotropin,

FMRFamide, elevenin, and DH31), we identified two receptors.

Overall, we established neuropeptide ligands for 19 Platynereis

GPCRs (Table 1).

To partially characterize the signaling mechanism of these re-

ceptors, we tested them in the same assay, but without co-trans-

fecting the Ga-16 construct. If receptor activation leads to Ca2+

increase without the promiscuous G protein, this indicates that

the GPCR couples to the endogenous Gq-a to activate the phos-

pholipase C (PLC)/inositol trisphosphate (IP3)/Ca
2+ release

pathway. Ligand stimulation of ten receptors (allatotropin-1

and -2, FLamide, FMRFamide, luqin, elevenin-1 and -2, DH31-2,

and vasotocin receptors) produced Ca2+ signals without Ga-16,
693, July 28, 2015 ª2015 The Authors 685



Figure 2. Primary Screen of 87 Platynereis

GPCRs against Three Complex Peptide

Mixtures

28 responder GPCRs that showed consistent

activation in three replicate experiments were

studied further. Mean relative luminescence

values from three replicates are shown with color-

coding. GPCR54 was not tested with Mix1. See

also Table S3.
suggesting that these receptors couple to Gq-a (Table 1; Table

S3). Given the limitations of the GFP-aequorin assay, we did not

test Gi-a and Go-a signaling.

Phylogenetic Analysis of Platynereis
Neuropeptide GPCRs
Recent bioinformatic analyses found strong support for the long-

term stability of GPCR-neuropeptide ligand pairs across animal

phyla (Janssen et al., 2010; Jékely, 2013; Mirabeau and Joly,

2013; Park et al., 2002). However, given the limited knowledge

of GPCR ligands among the lophotrochozoans, it has not been

possible to rigorously assess receptor-ligand coevolution across

all three superphyla of Bilateria. Our deorphanized GPCR

resource provides a large-scale dataset to test the generality

of inter-phyletic receptor-ligand coevolution.

To identify orthologs of the 87 Platynereis GPCRs used in

the screen, we performed similarity-based clustering, a method

previously shown to be an efficient means of recovering ortholo-

gous groups of GPCRs (Jékely, 2013), with results similar to tree-

based molecular phylogenetic analyses (Mirabeau and Joly,

2013). First, we seeded BLASTP searches with the Platynereis

GPCR sequences in metazoan genomes. We also collected

further representative neuropeptide GPCRs, including an anno-

tated list of GPCRs whose peptide ligands have been experi-

mentally characterized. We then separately clustered the 68

orphan Platynereis receptors and the 19 deorphanized Platyner-

eis receptors with their respective BLASTP hits and further

GPCR representatives (Figure 4; Figure S3). Clustering analysis
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of the 68 orphan receptors identified

orthologs for 20 of them with a known

peptide ligand in another species (Fig-

ure S3; Table S1). For 14 of these GPCRs,

the corresponding Platynereis peptides

were present in our mixtures. There can

be several reasons why we did not see

activation for these receptor-peptide

pairs: (1) GPCR expressions may have

failed, (2) the ligands may not have been

dissolved or were unstable, (3) the ligand

changed during evolution, or (4) some

clusters may contain closely related pa-

ralogous receptors with different ligands.

Clustering analysis of the 19 deorphan-

ized Platynereis GPCRs allowed us to

assign all of them to well-resolved

sequence groups (Figure 4; Figure S3).

Many of these sequence clusters repre-
sentedestablished orthology groupsofmetazoanGPCRs (Jékely,

2013; Mirabeau and Joly, 2013) containing already-characterized

GPCRs. Inmostcases, thePlatynereis receptorwasactivatedbya

peptide that was a previously recognized ortholog of known pep-

tide ligands in that cluster (allatostatin-A, allatostatin-C, vaso-

pressin/oxytocin, allatotropin/orexin, luqin/insect-RYamide, and

DH31/calcitonin). These Platynereis receptors, together with pre-

viously identified mollusk receptors (Bigot et al., 2014; Tensen

et al., 1998a, 1998b), represent deorphanized lophotrochozoan

members of their respective families. These examples provide

further evidence for receptor-ligandconservationduringevolution.

Furthermore, our GPCR analysis could confirm the orthology

relationships of some annelid neuropeptide families that had

previously been proposed based on peptide-sequence similarity

alone. Annelid and mollusk myomodulins (Cropper et al., 1987;

Veenstra, 2011) were suggested to be orthologs of arthropod

myosuppressins (Holman et al., 1986) based on limited peptide

similarity (Jékely, 2013). The orthology of thePlatynereismyomo-

dulin receptor to the arthropod myosuppressin receptor con-

firms this (Figure 4).

Similarly, annelid excitatory peptides (Oumi et al., 1995) were

suggested to belong to the bilaterian CCHamide/neuromedin-B

family (Jékely, 2013; Roller et al., 2008). The Platynereis excit-

atory peptide receptor clusters with CCHamide/neuromedin-B

receptors, confirming this (Figure 4).

The NKY receptors we identified are related to bilaterian NPY/

NPF receptors (Bigot et al., 2014; Mertens et al., 2002) and

their paralogs, the short neuropeptide F (sNPF) receptors from



Table 1. Summary of Validated Receptor-Ligand Pairs

Receptor Name Ligand Name Sequence of Tested Ligand

EC50 Normalized to

Histamine Receptor

Response

EC50 Normalized

to MIP Receptor

Response

Activation

without

Ga-16

Allatotropin receptor1 allatotropin GFRTGAYDRFSHGF-NH2 116 nM 840 nM yes

Allatotropin receptor2 allatotropin GFRTGAYDRFSHGF-NH2 7.8 nM 6.0 nM yes

EFLGa receptor1 EFLGa FSEFLG-NH2 350 nM 5.4 nM no

FLamide receptor1 FLamide AKYFL-NH2 8.9 nM 2.0 nM yes

FLamide receptor1 prokineticin-short

peptide1

GRSRPLFV-NH2 47 nM 390 nM yes

FMRFamide receptor1 FMRFamide FMRF-NH2 78 nM 1.5 nM yes

NKY receptor1 NKY-1 KAFWQPMMGGPLPVETRLASFGS

RIEPDRTEPGSGPNGIKAMRY-NH2

120 nM 120 nM no

NKY receptor1 NKY-2 NNGIWIWMPAQGYVSVPHQQEGG

AADEGKPGKIMRY-NH2

410 nM 390 nM no

NKY receptor1 FMRFamide FMRF-NH2 1.4 mM 840 nM no

NPY-4 receptor1 NPY-4 DPSFISSGPPVRPSSFKSPEELMEY

LQKVRAYYNVMSRPRF-NH2

350 nM 110 nM no

NPY-4 receptor1 NPY-3 pGluNMEGPPPRPAIFRTPQELRDY

LSDLNEYFMIVGRPRF-NH2

630 nM 1.0 mM no

NPY-4 receptor1 NPY-1 KVLEEMPTLQQIPLKPVRPNRFRNK

DELHSYLQSLRDYYSVIGRPRF-

NH2

420 nM 3.7 mM no

Luqin receptor1 luqin WRPQGRF-NH2 5.2 nM 0.86 nM yes

RGWamide receptor1 RGWamide RGW-NH2 2.9 nM 10 nM no

Excitatory peptide

receptor1

excitatory peptide KCSGQWAIHACAGGN-NH2 7.9 nM 15 nM no

Allatostatin-A receptor1 allatostatin-A-2-2 NDALKFSGL-NH2 12 mM 15 mM no

Elevenin receptor1 elevenin (L11) PDCTRFVFHPSCRGVAA 62 nM 120 nM yes

Elevenin receptor2 elevenin (L11) PDCTRFVFHPSCRGVAA 1.3 nM 2.3 nM yes

Achatin receptor1 D-Achatin G{dF}GD 120 nM 150 nM no

Achatin receptor1 L-Achatin GFGD not available 11 mM no

Myomodulin receptor1 myomodulin-2 AMGMLRM-NH2 26 nM 9.6 nM no

Myomodulin receptor1 myomodulin-1 AMSMLRM-NH2 10 nM �10 nM no

DH31 receptor1 DH31 RIDAGYGSRYAAGASVGSKLRALK

QAADWNGP-NH2

180 nM 87 nM no

DH31 receptor2 DH31 RIDAGYGSRYAAGASVGSKLRALK

QAADWNGP-NH2

34 nM 15 nM yes

Vasotocin receptor1 vasotocin CFVRNCPPG-NH2 1.1 mM 920 nM yes

Allatostatin-C receptor1 allatostatin-C pGluPVQCLVNIVSCW-NH2 1.0 mM 1.2 mM no

Aplysia achatin receptor Aplysia D-achatin G{d-F}FD 14 nM 62 nM no

Aplysia achatin receptor Aplysia L-achatin GFFD not available 190 mM no

Branchiostoma Achatin

receptor

Branchiostoma

D-Achatin

G{d-F}GN 0.87 nM 2.4 nM yes

Branchiostoma achatin

receptor

Branchiostoma

L-Achatin

GFGN not available >1 M not

available

Saccoglossus achatin

receptor

Saccoglossus

D-Achatin

G{d-F}GN 16 nM 27 nM no

Saccoglossus achatin

receptor

Saccoglossus

L-Achatin

GFGN 15 mM 13 mM no

Name and sequence of the tested ligands are shown. pGlu indicates N-terminal pyroglutamylation. -NH2 indicates C-terminal amidation. Cys residues

that form disulfide bonds are underlined. EC50 values of dose-response curves are shown for the two different normalizations. All receptors were also

tested without cotransfecting the promiscuous Ga-16. Activation in the absence of Ga-16 in the GFP-aequorin assay indicates that the receptor

couples to the Gq-a protein endogenously present in the CHO cells.
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Figure 3. Dose-Response Curves of Platynereis Deorphanized GPCRs Treated with Varying Concentrations of Peptides

Data, representing luminescence units relative to the control response (1 mM histamine), are shown as mean ± SEM (n = 3). Dose-response curves fitted to the

data are shown. Ligand names are shown beside the curves. EC50 values are listed in Table 1. RLU, relative luminescence unit; AstC, allatostatin-C; AstA,

allatostatin-A; EP, excitatory peptide. See also Figure S2.
mollusks and insects (Bigot et al., 2014). The NKY peptides of

annelids and mollusks show similarity to NPY/NPF peptides,

including the RF/Yamide motif, a proline-rich stretch, and an

acidic stretch (Conzelmann et al., 2013a) (Figure S4A). These

results establish NKY and NPY/NPF peptides as paralogs.
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Ligand Discoveries for Uncharacterized GPCR Families
We also identified six GPCR clusters where the only member

with a known ligand was one of the deorphanized Platynereis

GPCRs. These included clusters of sequences orthologous to

Platynereis FMRFamide, L11/elevenin, achatin, RGWamide,



Figure 4. Sequence-Similarity-Based Clus-

tering of Neuropeptide Class A GPCRs

Nodes represent sequences, and edges represent

BLASTP connections. Edges are colored accord-

ing to BLASTP p values. Nodes are colored based

on taxonomy. Only deorphanized Platynereis

GPCRs were included and are indicated as red

stars. The PlatynereisMIP receptor was described

previously (Conzelmann et al., 2013b).

Deorphanized receptors from other species are

marked with a small red dot. Clusters are named

according to the name of the deorphanized

family members. DH31-receptor1 and other

class B GPCRs were clustered separately and are

shown in Figure S3A. AKH, adipokinetic hormone;

AstC, allatostatin-C; AstA, allatostatin-A; CCK,

cholecystokinin; EP, excitatory peptide; ETH,

ecdysis triggering hormone; GnRH, gonadotropin-

releasing hormone; MCH, melanin-concentrating

hormone; MIP, myoinhibitory peptide; Nmed-B,

neuromedin-B; NMU, neuromedin-U; NPF/Y,

neuropeptide F/Y; NPFF, neuropeptide FF;

PRLH, prolactin releasing hormone; QRFP,

pyroglutamylated RFamide peptide; SK, sub-

stance-K; SPR, sex peptide receptor; TRH,

thyrotropin releasing hormone. The Clans

file is available at https://github.com/JekelyLab/

GPCR_Clans_Maps. See also Figures S3, S4,

and S6.
FLamide, DH31-rec2 and NPY-4 receptors (Figure 4). These

clusters represent conserved neuropeptide GPCR families with

an identified ligand in Platynereis.

Three of the identified families (FMRFamide, elevenin, and

achatin) have both protostome and deuterostome orthologs,

representing ancient bilaterian orthology groups (Figure 4). In

contrast, the GPCR clusters containing the Platynereis RGWa-

mide and FLamide receptors are restricted to lophotrochozoans

(Figure 4).

The FMRFamide receptor cluster we identified is related

to luqin receptors and contains several mollusk and annelid

sequences, as well as sequences from the non-vertebrate

deuterostomes Branchiostoma and Saccoglossus (Figure 4).

Interestingly, we also identified a GPCR belonging to this

group from the cartilaginous fish, the elephant shark Callor-

hinchus milii. The elephant shark genome represents the

slowest evolving vertebrate genome thus far identified (Ven-

katesh et al., 2014). We also identified FMRFamide-receptor

orthologs from a hemipteran insect, but no other arthropods

(Table S4). The FMRFamide-receptor family thus represents

a conserved bilaterian family that has been lost in most

vertebrates and arthropods but is retained in lophotrocho-

zoans and non-vertebrate deuterostomes. An FMRFamide

receptor has also been identified in Drosophila (Cazzamali

and Grimmelikhuijzen, 2002), but this sequence belongs to

an arthropod-specific group and is not closely related to

the FMRFamide receptors we describe here (Figure 4). In
Cell Reports 12, 684–
mollusks, FaNaCs, members of the

DEG/ENaC family, have been identi-

fied as FMRFamide receptors (Lin-
gueglia et al., 1995), but no FMRFamide GPCR has yet

been found.

The receptors for Platynereis L11/elevenin peptide also

belonged to a conserved bilaterian family with members in

nematodes, insects, annelids, mollusks, Branchiostoma, and

Saccoglossus (Figure 4; Table S4). Elevenin orthologs are

known from annelids (Veenstra, 2011), mollusks (Veenstra,

2010), and nematodes and arthropods (Jékely, 2013), but we

predict that they are also present in some non-vertebrate

deuterostomes.

The receptor for Platynereis achatin clustered with orthologs

from mollusks, annelids and non-vertebrate deuterostomes

(Figure 4). Achatin was described from mollusks (Veenstra,

2010), annelids (Veenstra, 2011), and Branchiostoma and

Saccoglossus (Jékely, 2013), but has been lost from verte-

brates and most ecdysozoans (it is present in the chelicerate

Stegodyphus mimosarum) (Figure S4B). The identification of

a receptor family showing the same phyletic distribution

establishes the achatin receptor-ligand pair as an ancient bi-

laterian system.

RGWamide and FLamide peptides are known from annelids

and mollusks (Conzelmann et al., 2013a), and we identified

distinct receptor clusters containing the Platynereis receptors

and other annelid and mollusk sequences (Figure 4; Table S4).

We also identified a second DH31 peptide receptor, closely

related to FLamide receptor. We could not identify members

of these receptor families outside the lophotrochozoans.
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Figure 5. Dose-Response Curves of Bilaterian Achatin Receptors

Treated with Varying Concentrations of D-achatin Peptides
The Platynereis (A), Aplysia (B), Branchiostoma (C), and Saccoglossus (D)

receptors were tested with the species-specific achatin peptide containing a

D-Phe. Data, representing luminescence units relative to the control response

(1 mM histamine), are shown as mean ± SEM (n = 3). Dose-response curves

fitted to the data are shown. EC50 values are listed in Table 1. Responses to

L-achatin peptides and a separate set of measurements normalized to MIP

receptor are shown in Figure S5.
A Platynereis Ortholog of Thyrotropin-Releasing
Hormone
The identification of the ligand for the annelid ortholog of

vertebrate thyrotropin-releasing hormone receptors sheds

light on the evolution of this family. Thyrotropin-releasing

hormones (TRHs) have so far only been identified in deutero-

stomes. However, the presence of GPCRs in some proto-

stomes showing orthology to deuterostome TRH receptors

suggested that TRH orthologs are present in some proto-

stomes (Jékely, 2013; Mirabeau and Joly, 2013). We identified

EFLGa as the ligand of the Platynereis TRH receptor ortholog

(Figure 4; Table 1). EFLGa has already been described in

Platynereis, other annelids, and mollusks (Conzelmann et al.,

2013a), but its identity as a potential TRH ortholog was

not recognized, since the sequence of the mature peptide

(FSEFLGamide) is not similar to vertebrate TRH (pQHPamide,

with pQ indicating pyroglutamate). Intriguingly, however, Pla-

tynereis EFLGa shows some similarity to the TRH ortholog of

the sea urchin Strongylocentrotus purpuratus (Rowe and

Elphick, 2012) (Figure S4C). Uniquely among the deutero-

stomes, the sea urchin peptide (Q[W/Y]PGamide) is a Gamide.

This sea urchin sequence shows intermediate characteristics

and bridges the gap between the protostome and deutero-

stome families, further suggesting the orthology of Platynereis

EFLGa and deuterostome TRH.
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An Ancient Bilaterian Family of Achatin Receptors
Activated by a D-peptide
Our sequence analyses provide additional support for the wide-

spread conservation of neuropeptide-GPCR signaling pairs. This

allows us to predict ligands for several lophotrochozoan GPCRs,

including receptors from Capitella teleta, Aplysia californica, and

Crassostrea gigas, and deuterostome receptors from Branchios-

toma and Saccoglossus (Table S4).

To test our predictions, we focused in more detail on the

achatin family. Achatin receptors represent one of the ancient bi-

laterian families we identified (Figure 4), allowing us to test the

feasibility of ligand predictions across Bilateria. We performed

activation assays with putative achatin receptors from the sea

slug A. californica, and the deuterostomes S. kowalewskii and

B. floridae (Figure 5; Figure S5).

Achatins are 4-amino-acid peptides that share the G[FYM]

[GAF][DNG] motif (Figure S4B). Achatin was identified in the

giant snail Achatina fulica (Kamatani et al., 1989) and was shown

to contain a D-amino acid (Gly-D-Phe-Ala-Asp). Achatin is a

potent neuroexcitatory peptide, and this activity is specific to

the D-form. We therefore also tested species-specific achatin

ligands synthesizedwith a D-Phe.We found that D-achatins acti-

vated all receptors with EC50 values in the nanomolar range, but

L-achatins were poor agonists (in the highmicromolar, millimolar

range) (Figure 5; Figure S5; Table1).

These results show that the D-form of achatin has been

conserved throughout evolution as a ligand for the bilaterian

orthology group of achatin GPCRs. This indicates that our recep-

tor-ligand predictions (Table S4) are reliable and can be used to

predict receptor-ligand pairs across Bilateria.

DISCUSSION

Here, we described a large-scale screen for neuropeptide

GPCRs in Platynereis. Our combinatorial strategy allowed us to

quickly screen 10,962 receptor-ligand combinations without

the need to assay all combinations individually. We could identify

specific receptor-ligand pairs and study them in individual

assays. However, measurements with peptide mixtures also re-

vealed the high specificity of the interactions. We screened each

receptor against 126 neuropeptides, but we found strong activa-

tion by only one or two related peptides. This strategy is gener-

ally applicable for GPCR ligand screens and could speed up

ligand discovery. Here, we reported 19 deorphanized receptors

and 25 validated receptor-ligand pairs from Platynereis. Based

on these results, we now provide an updated overview (Jékely,

2013) of the phyletic distribution of peptides and peptide recep-

tors in metazoans (Figure S6).

Importantly, many of the receptors we found represent GPCR

families for which the ligand could not have been predicted

based on available data. As more ligand-receptor pairs are

discovered, however, ligand predictions will become increas-

ingly straightforward.

Our results illuminate large, poorly studied areas of the GPCR

sequence space within the lophotrochozoans, where only few

receptors have been characterized biochemically.

The Platynereis GPCR-ligand pairs and our bioinformatic ana-

lyses provide further evidence for the long-term coevolution of



neuropeptides and their receptors across bilaterians. One

exceptionmay be the FMRFamide receptors of arthropods (Caz-

zamali and Grimmelikhuijzen, 2002). These GPCRs evolved in

stem arthropods but respond to FMRFamides derived from an

older FMRFamide precursor. The presence of the ancestral bilat-

erian FMRFamide receptor in hemipterans indicates that the two

receptors coexisted for some time, but the ancestral receptor

was lost from most arthropod genomes.

Receptor-ligand conservation allowed us to predict the pep-

tide ligand for many yet uncharacterized receptors from lopho-

trochozoans and non-vertebrate deuterostomes. Using achatin

as an example, we demonstrated that ligand predictions work

across phyla.

Our results also provide information about the complexity

of neuroendocrine signaling in the urbilaterian. We present re-

ceptor or ligand evidence for urbilaterian peptidergic systems,

including TRH, elevenin, FMRFamide, and achatin signaling.

The presence of TRH orthologs in annelids and mollusks is

particularly interesting and begs the question whether TRH

signaling regulates thyroid hormone synthesis in these animals,

similar to its function in some vertebrates (Laudet, 2011). Thyroid

hormones have been described from Aplysia (Heyland et al.,

2006) and may have ancestrally regulated postembryonic devel-

opmental transitions in bilaterians (Laudet, 2011). This possibility

is supported by the parallel loss of TRH and thyroid hormone re-

ceptors from the ecdysozoans that use ecdysone to orchestrate

life-cycle transitions (Laudet, 2011).

The deorphanized GPCR dataset we describe here represents

a valuable resource for the study of neuropeptide signaling in

invertebrates, including annelids and mollusks. Similar combi-

natorial screening strategies could also be used for other

species and receptor classes and could speed up GPCR ligand

discovery.
EXPERIMENTAL PROCEDURES

Gene Identification and Receptor Cloning

Platynereis genes were identified from a Platynereis mixed-stages transcrip-

tome assembly (Conzelmann et al., 2013a). GPCRs were cloned from cDNA

or expressed sequence tag clones into pcDNA3.1(+) (Thermo Fisher Scien-

tific). Forward primers consisted of a spacer (50-ACAATA-30) followed

by a BamHI or EcoRI restriction site, the Kozak consensus sequence

(50-CGCCACC-30), the start codon (50-ATG-30) and a sequence corre-

sponding to the target sequence. Reverse primers consisted of a spacer

(50-ACAATA-30), a NotI restriction site, a STOP codon, and reverse comple-

mentary sequence to the target sequence. Primers were designed to end

with a C or G with 72�C melting temperature. PCR was performed using Phu-

sion polymerase (New England Biolabs GmbH).

Open reading frames coding for achatin GPCRs from Aplysia

(XP_005106606.1), Branchiostoma (XM_002600016.1), and Saccoglossus

(XM_006815704.1) were generated by gene synthesis (GenScript). The

sequence of the Branchiostoma receptor was complemented based on infor-

mation from Metazome v3.0.

Cell Culture and Receptor Deorphanization

CHO-K1 cells were kept in Ham’s F12 Nut Mix medium (Thermo Fisher Scien-

tific) with 10% fetal bovine serum and PenStrep. We used a stable cell line

expressing a luminescent reporter apoaequorin-GFP fusion protein (G5A)

that has been shown to emit more light than apoaequorin alone (Baubet

et al., 2000). Cells were seeded in 96-well plates (Thermo Fisher Scientific)

at�10,000 cells/well. After 1 day, cells were transfected with plasmids encod-
ing a GPCR and the promiscuousGa-16 protein (60 ng each) using 1.5 ml of the

transfection reagent TurboFect (Thermo Fisher Scientific). To measure dose-

response curves, cells were also cotransfected with the G5A construct to

increase the expression of the reporter. After 2 days of expression, themedium

was removed and replaced with Hank’s balanced salt solution (HBSS) supple-

mented with 1.8 mMCa2+, 10 mM glucose, and 1 mM coelenterazine h (Prom-

ega). After incubation at 37�C for 2 hr, cells were tested by adding synthetic

peptides (GenScript) in HBSS supplemented with 1.8 mM Ca2+ and 10 mM

glucose. Luminescence was recorded for 45–60 s in a plate reader (BioTek

Synergy Mx or Synergy H4, BioTek). Data during the screen were normalized

using the response of Platynereis MIP receptor to 10 nM MIP-7 (Conzelmann

et al., 2013b). The final dose-response curves were normalized using the

response of the same well to 1 mM histamine that was recorded following

the peptide treatment. To record the second set of dose-response curves,

data were normalized using the response of the Platynereis MIP receptor to

10 nMMIP-7. The MIP control values were recorded from three separate wells

on each plate.

Deorphanization Strategy

All Platynereis GPCRs were first tested with three peptide mixtures containing

up to 48 synthetic peptides (Table S2) at 1 mMeach. Measurements were done

in triplicate. Those GPCRs that showed a response compared to the negative

control (empty pcDNA3.1) were tested further. We tried to predict the specific

ligand from the active mixture based on receptor clustering using CLANS2

(Frickey and Lupas, 2004) and tested individual peptides where deorphanized

orthologs were identified. Alternatively, GPCRs were tested with submixtures

of synthetic peptides arranged in three matrices, corresponding to the decom-

position of mixtures 1–3 (Table S2). The combination of mixtures that elicited a

response pointed to the active ligand. These measurements were done in sin-

gle wells or in duplicate. Using this information, individual ligands were tested.

After identification of a bona fide ligand, dose-response curves were recorded

using concentrations between 0.01 nM and 200 mM. Data for dose-response

curves were recorded in triplicate for each concentration. Dose-response

curves were fitted with a four-parameter curve using Prism 6 (GraphPad).

Bioinformatics

For clustering, a previous collection of GPCRs (Jékely, 2013) was comple-

mented with deorphanized Platynereis sequences and deorphanized GPCR

sequences from human, mouse, and rat retrieved from the IUPHAR database

(Pawson et al., 2014). Deorphanized GPCRs from D. melanogaster and other

insects (Caers et al., 2012), C. elegans (Frooninckx et al., 2012), and other

organisms (Bigot et al., 2014; Conzelmann et al., 2013b; Cox et al., 1997;

Kim et al., 2010; Tensen et al., 1998a, 1998b) were also included. Furthermore,

the sequences of all Platynereis GPCRs tested in the screen were used to

initiate BLAST searches at NCBI with an e-value cutoff of 1e-50, and all hits

were downloaded and added to the collection. Deorphanized sequences

were tagged ‘‘deorphanized.’’ All sequences were complemented with taxo-

nomic information based on the NCBI taxonomy identifier (taxid) using a bio-

perl script (https://github.com/JekelyLab/GPCR_Clans_Maps), or taxonomy

information was added manually. Redundant sequences were removed from

the collection using CD-HIT (Li and Godzik, 2006). Clustering analysis was

done using CLANS2 (Frickey and Lupas, 2004) with a BLOSUM62 matrix

and a p value cutoff of 1.e-50. Deorphanized and orphan Platynereis receptors

were clustered separately with their respective orthologs. Clusters that con-

tained no Platynereis sequences were removed from the map (including

relaxin, melanocortin, bradykinin, urotensins, and neurotensin receptors).
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Jékely, G. (2013a). The neuropeptide complement of the marine annelid Platy-

nereis dumerilii. BMC Genomics 14, 906.

Conzelmann, M., Williams, E.A., Tunaru, S., Randel, N., Shahidi, R., Asadulina,

A., Berger, J., Offermanns, S., and Jékely, G. (2013b). Conserved MIP recep-
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Abstract

Background: Norepinephrine/noradrenaline is a neurotransmitter implicated in arousal and other aspects of
vertebrate behavior and physiology. In invertebrates, adrenergic signaling is considered absent and analogous
functions are performed by the biogenic amines octopamine and its precursor tyramine. These chemically similar
transmitters signal by related families of G-protein-coupled receptors in vertebrates and invertebrates, suggesting
that octopamine/tyramine are the invertebrate equivalents of vertebrate norepinephrine. However, the evolutionary
relationships and origin of these transmitter systems remain unclear.

Results: Using phylogenetic analysis and receptor pharmacology, here we have established that norepinephrine,
octopamine, and tyramine receptors coexist in some marine invertebrates. In the protostomes Platynereis dumerilii
(an annelid) and Priapulus caudatus (a priapulid), we have identified and pharmacologically characterized adrenergic
α1 and α2 receptors that coexist with octopamine α, octopamine β, tyramine type 1, and tyramine type 2
receptors. These receptors represent the first examples of adrenergic receptors in protostomes. In the deuterostome
Saccoglossus kowalevskii (a hemichordate), we have identified and characterized octopamine α, octopamine β, tyramine
type 1, and tyramine type 2 receptors, representing the first examples of these receptors in deuterostomes. S.
kowalevskii also has adrenergic α1 and α2 receptors, indicating that all three signaling systems coexist in this animal. In
phylogenetic analysis, we have also identified adrenergic and tyramine receptor orthologs in xenacoelomorphs.

Conclusions: Our results clarify the history of monoamine signaling in bilaterians. Given that all six receptor families
(two each for octopamine, tyramine, and norepinephrine) can be found in representatives of the two major clades of
Bilateria, the protostomes and the deuterostomes, all six receptors must have coexisted in the last common ancestor of
the protostomes and deuterostomes. Adrenergic receptors were lost from most insects and nematodes, and tyramine
and octopamine receptors were lost from most deuterostomes. This complex scenario of differential losses cautions
that octopamine signaling in protostomes is not a good model for adrenergic signaling in deuterostomes, and that
studies of marine animals where all three transmitter systems coexist will be needed for a better understanding of the
origin and ancestral functions of these transmitters.
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Background
Norepinephrine is a major neurotransmitter in verte-
brates with a variety of functions, including roles in
promoting wakefulness and arousal [1], regulating ag-
gression [2], and autonomic functions such a heart beat
[3]. Signaling by the monoamine octopamine in proto-
stome invertebrates is often considered equivalent to
vertebrate adrenergic signaling [4], with analogous roles
in promoting aggression and wakefulness in flies [5, 6],
and the regulation of heart rate in annelids and arthro-
pods [7, 8]. Octopamine is synthesized from tyramine
(Fig. 1a) which itself also acts as a neurotransmitter or
neuromodulator in arthropods and nematodes [4, 9–15].
Octopamine and norepinephrine are chemically similar,
are synthesized by homologous enzymes [16, 17], and
signal by similar but not orthologous G-protein-coupled
receptors (GPCRs) [4, 18].
Tyramine also signals via non-orthologous receptors

in invertebrates and vertebrates. In insects and nema-
todes, tyramine signals via a GPCR that is related to oc-
topamine receptors [12, 19]. In vertebrates, tyramine is
only present at low levels and signals via the trace-amine
receptors, a vertebrate-specific GPCR family only dis-
tantly related to the invertebrate tyramine receptors
[20, 21]. Given these differences, the precise evolu-
tionary relationships of these monoamine signaling
systems are unclear.
The evolution of neurotransmitter systems has been

analyzed by studying the distribution of monoamines or
biosynthetic enzymes in different organisms [22]. This
approach has limitations, however, because some of the
biosynthetic enzymes are not specific to one substrate
[16] and because trace amounts of several monoamines
are found across many organisms, even if specific recep-
tors are often absent [22]. For example, even if inverte-
brates can synthesize trace amounts of norepinephrine,
these are not considered to be active neuronal signaling
molecules, because the respective receptors are lacking.
Consequently, the presence of specific monoamine re-
ceptors is the best indicator that a particular monoamine
is used in neuronal signaling [11, 23].
To clarify the evolutionary history of adrenergic, oc-

topamine, and tyramine signaling in animals, we under-
took a comparative phylogenetic and pharmacological
study of these receptor families in bilaterians. Bilaterian-
s—animals with bilateral symmetry—comprise proto-
stomes, deuterostomes, and xenacoelomorphs [24].
Deuterostomes include chordates and ambulacrarians
(hemichordates and echinoderms), and protostomes are
formed by the clades Ecdysozoa, Lophotrochozoa (Spira-
lia), and Chaetognatha. Ecdysozoa includes arthropods,
nematodes, priapulids and other phyla. Lophotrochozoa
includes annelids, mollusks, and other, mostly marine
groups. Xenacoelomorpha, a group including acoel
flatworms, nemertodermatids, and Xenoturbella, has
been proposed to belong to the deuterostomes, or repre-
sent a sister group to all remaining bilaterians [25–27].
Here, we have attempted to establish the orthologous re-
lationships of adrenergic, octopamine, and tyramine re-
ceptors across bilaterians. We found that six receptor
families originated at the base of the bilaterian tree. We
then pharmacologically characterized adrenergic recep-
tors from an annelid and a priapulid, and octopamine
and tyramine receptors from an annelid and a hemi-
chordate. The broad phylogenetic sampling and com-
parative pharmacology paint a richer picture of the
evolution of these receptors, characterized by ancestral
coexistence and multiple independent losses.

Results
Using database searches, sequence-similarity-based clus-
tering, and phylogenetic analysis, we reconstructed the
phylogeny of α1, α2, and β adrenergic, octopamine α, oc-
topamine β, and tyramine type-1 and type-2 receptors.
Each family formed well-resolved clusters in a sequence-
similarity-based clustering analysis and well-supported
clades in molecular phylogenetic analysis (Fig. 1b, c and
Additional file 1).
We identified several invertebrate GPCR sequences

that were similar to vertebrate adrenergic α1 and α2 re-
ceptors (Fig. 1b, c). An adrenergic α1 receptor ortholog
is present in the sea urchin Strongylocentrotus purpura-
tus. Adrenergic α1 and α2 receptors were both present
in Saccoglossus kowalevskii, a hemichordate deutero-
stome (Fig. 1b, c and Additional files 1, 2, and 3), as pre-
viously reported [28]. We also identified adrenergic α1
and α2 receptor orthologs in annelids and mollusks
(members of the Lophotrochozoa), including Aplysia
californica, and in the priapulid worm Priapulus cauda-
tus (member of the Ecdysozoa) (Fig. 1b, c and Additional
files 1, 2, and 3). Adrenergic α receptors are also
present in a few arthropods, including the crustacean
Daphnia pulex and the moth Chilo suppressalis (the
Chilo α2 receptor was first described as an octopa-
mine receptor [29]), but are absent from most other
insects (Additional files 1, 2, and 3). Adrenergic α2
receptors are also present in the xenacoelomorphs
Xenoturbella bocki and Meara stichopi. M. stichopi
also has two adrenergic α1 receptor orthologs (Fig. 1c
and Additional files 1, 2, and 3).
The identification of adrenergic α1 and of α2 receptor

orthologs in ambulacrarians, lophotrochozoans, ecdy-
sozoans, and xenacoelomorphs indicates that both fam-
ilies were present in the bilaterian last common
ancestor.
Adrenergic β receptors are found in chordates, includ-

ing urochordates and cephalochordates. In addition, we
identified an adrenergic β receptor ortholog in the



Fig. 1 Biosynthesis of monoamines and phylogeny of adrenergic, tyramine, and octopamine G-protein-coupled receptor (GPCR) sequences.
a Biosynthesis of tyramine, octopamine, norepinephrine, and epinephrine from tyrosine. The enzymes catalyzing the reaction steps are indicated.
b Sequence-similarity-based cluster map of bilaterian octopamine, tyramine, and adrenergic GPCRs. Nodes correspond to individual GPCRs and
are colored based on taxonomy. Edges correspond to BLAST connections of P value >1e−70. c Simplified phylogenetic tree of bilaterian adrenergic,
tyramine, and octopamine GPCR sequences. The tree is rooted on 5HT receptors (5HTR). Abbreviations: Pdu P. dumerilii, Pca P. caudatus, Sko S.
kowalevskii, Msti M. stichopi, Xboc X. bocki
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xenacoelomorph M. stichopi (Additional file 4). If xena-
coelomorphs are sister to all remaining bilaterians, then
this receptor family also originated at the base of Bila-
teria and was lost from all protostomes.
To characterize the ligand specificities of these puta-

tive invertebrate adrenergic receptors, we cloned them
from S. kowalevskii, Priapulus caudatus, and the marine
annelid Platynereis dumerilii. We performed in vitro
GPCR activation experiments using a Ca2+-mobilization
assay [30, 31]. We found that norepinephrine and epi-
nephrine activated both the adrenergic α1 and α2 recep-
tors from all three species with half maximal effective
concentration (EC50) values in the high nanomolar range
or lower. In contrast, tyramine, octopamine, and dopa-
mine were either inactive or only activated the receptors
at concentrations approximately two orders of magni-
tude higher (Fig. 2, Table 1). These phylogenetic and
Fig. 2 Dose–response curves of adrenergic G-protein-coupled receptors from
treated with varying concentrations of ligand. Data, representing luminescenc
shown as mean ± standard error of the mean (n = 3). Half maximal effective c
pharmacological results collectively establish these inver-
tebrate receptors as bona fide adrenergic α receptors.
To investigate if adrenergic signaling coexists with oc-

topamine and tyramine signaling in protostomes, we
searched for octopamine and tyramine receptors in Pla-
tynereis dumerilii and Priapulus caudatus. In phylogen-
etic and clustering analyses, we identified orthologs for
tyramine type 1 and type 2 and octopamine α and β re-
ceptors in both species (Fig. 1b, c and Additional files 5,
6, 7, and 8). We performed activation assays with the
Platynereis dumerilii receptors. The tyramine type 1 and
type 2 receptors orthologs were preferentially activated
by tyramine with EC50 values in the nanomolar range
(Fig. 3, Table 1). The Platynereis dumerilii octopamine α
receptor was activated by octopamine at a lower concen-
tration than by tyramine and dopamine (Fig. 4, Table 1).
The Platynereis dumerilii octopamine β receptor was
Platynereis dumerilii, Priapulus caudatus, and Saccoglossus kowalevskii
e units relative to the maximum of the fitted dose–response curves, are
oncentration (EC50) values and significance values are listed in Table 1
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Fig. 3 Dose–response curves of tyramine G-protein-coupled receptors from Platynereis dumerilii and Saccoglossus kowalevskii treated with varying
concentrations of ligand. Data, representing luminescence units relative to the maximum of the fitted dose–response curves, are shown as mean
± standard error of the mean (n = 3). EC50 values and significance values are listed in Table 1
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not active in our assay. These results show that specific
receptor systems for norepinephrine, octopamine, and
tyramine coexist in Platynereis dumerilii and very likely
also Priapulus caudatus.
When did tyramine and octopamine signaling origin-

ate? To answer this, we surveyed available genome se-
quences for tyramine and octopamine receptors. As
expected, we identified several receptors across the pro-
tostomes, including ecdysozoans and lophotrochozoans
(Additional files 5, 6, 7, and 8). We also identified recep-
tors for tyramine, but not octopamine, in xenacoelo-
morphs. However, chordate genomes lacked orthologs of
these receptors. Strikingly, we identified tyramine type 1
and 2 and octopamine α and β receptor orthologs in the
genome of the hemichordate S. kowalevskii (Fig. 1b, c,
Additional files 5, 6, 7, and 8). In phylogenetic analyses,
we recovered at least one S. kowalevskii sequence in
each of the four receptor clades (one octopamine α, one
octopamine β, two tyramine type 1, and two tyramine
type 2 receptors), establishing these sequences as deu-
terostome orthologs of these predominantly protostome
GPCR families (Additional files 5, 6, 7, and 8).
We cloned the candidate S. kowalevskii tyramine and

octopamine receptors and performed ligand activation
experiments. The S. kowalevskii type 2 receptors were
preferentially activated by tyramine in the nanomolar
range. The type 1 receptor was only activated at higher
ligand concentrations. The octopamine α and β recep-
tors were preferentially activated by octopamine in the
nanomolar range (Figs 3 and 4, Table 1). These data
show that octopamine and tyramine signaling also coex-
ist with adrenergic signaling in this deuterostome, as in
Platynereis dumerilii and Priapulus caudatus. The pres-
ence of tyramine signaling in S. kowalevskii is also



Fig. 4 Dose–response curves of octopamine G-protein-coupled receptors from Platynereis dumerilii and Saccoglossus kowalevskii treated with
varying concentrations of ligand. Data, representing luminescence units relative to the maximum of the fitted dose–response curves, are shown
as mean ± standard error of the mean (n = 3). Half maximal effective concentration (EC50) values and significance values are listed in Table 1
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supported by the phylogenetic distribution of tyrosine
decarboxylase, a specific enzyme for tyramine synthesis
[32]. Tyrosine decarboxylase is present in protostomes
and S. kowalevskii but is absent from other deutero-
stomes (Additional file 9). In mammals, aromatic amino
acid decarboxylases are involved in synthesizing low
amounts of tyramine [33].
We also tested the α adrenergic agonist clonidine and

the GPCR antagonists mianserin and yohimbine on sev-
eral receptors from all three species. These chemicals
did not show specificity for any of the receptor types,
Fig. 5 Evolution of adrenergic, octopamine, and tyramine signaling in bilat
the presence/loss of specific G-protein-coupled receptor (GPCR) families ind
GPCR families across major bilaterian clades. Half squares mean losses in a
suggesting these chemicals may not be useful for study-
ing individual biogenic amine receptors in vivo (Table 1
and Additional file 10).

Discussion
The discovery of adrenergic signaling in some proto-
stomes and xenacoelomorphs and octopamine and tyram-
ine signaling in a deuterostome changes our view on the
evolution of monoamine signaling in bilaterians (Fig. 5). It
is clear from the phylogenetic distribution of orthologous
receptor systems that at least six families of octopamine,
erians. a Phylogenetic tree of major clades of bilaterian animals with
icated. b Phyletic distribution of adrenergic, octopamine, and tyramine
large number of species in a phylum
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tyramine, and adrenergic receptors were present in the
bilaterian last common ancestor (Additional file 11).
These include the adrenergic α1 and α2 receptors,
the tyramine type 1 and type 2 receptors, and the oc-
topamine α and β receptors. From the six ancestral
families, the octopamine and tyramine receptors have
been lost from most deuterostomes, and the adrener-
gic receptors from most ecdysozoans. Interestingly,
the xenacoelomorph M. stichopi also has an adrener-
gic β receptor, representing the only ortholog outside
chordates. Octopamine α receptors have likely been
lost from xenacoelomorphs, given that the split of the
six receptor families (four with well-resolved xenacoe-
lomorph sequences) pre-dated the divergence of the
main lineages of bilaterians (Fig. 1c).
Although we performed the receptor activation assays

in a heterologous system that might not mimic the
in vivo situation very well, we found clear evidence of
ligand preferences for each receptor. In general, there
was two orders of magnitude difference in the EC50

values between the best ligand and other related ligands
for the same receptor measured under the same condi-
tions. We consider these in vitro ligand preferences as
indicative of the physiological ligands for these recep-
tors. Furthermore, there was high congruence between
the in vitro ligand specificities and the phylogenetic
placement of the different classes of receptors, further
strengthening our receptor-type assignments. The most
potent ligand of all six orthologous receptor families we
analyzed was the same across protostomes and deutero-
stomes, indicating the evolutionary stability of ligand–
receptor pairs, similar to the long-term stability of
neuropeptide GPCR ligand–receptor pairs [34, 35].
Understanding the ancestral role of these signaling sys-

tems and why they may have been lost differentially in dif-
ferent animal groups will require functional studies in
organisms where all three neurotransmitter systems coexist.

Conclusions
We have established the coexistence of adrenergic, octo-
paminergic, and tyraminergic signaling in the deutero-
stome S. kowalevskii and the protostomes Platynereis
dumerilii and Priapulus caudatus. Signaling by norepin-
ephrine in vertebrates has often been considered as
equivalent to signaling by octopamine in invertebrates.
Our results change this view and show that these signal-
ing systems coexisted ancestrally and still coexist in
some bilaterians. The extent of functional redundancy in
species where all six receptor systems coexist will re-
quire experimental studies. It may be that some of these
monoamines ancestrally had partially overlapping roles.
In that case, following the loss of a receptor, functions
associated with that ligand–receptor pair may have been
taken over by another pair. However, regardless of such
potential shifts in function, it is clear that octopamine
signaling in invertebrates and adrenergic signaling in
vertebrates is not equivalent or homologous from an
evolutionary point of view. This has important implica-
tions for our interpretation of comparative studies of the
function of these neurotransmitter systems and their
neural circuits. Our study also contributes to the under-
standing of nervous system evolution in bilaterians by
revealing extensive losses during the history of one of
the major classes of neurotransmitter systems.

Methods
Gene identification and receptor cloning
Platynereis protein sequences were collected from a Pla-
tynereis mixed-stage transcriptome assembly [36]. GPCR
sequences from other species were downloaded from
NCBI. GPCRs were cloned into pcDNA3.1(+) (Thermo
Fisher Scientific, Waltham, MA, USA) as described be-
fore [31]. Forward primers consisted of a spacer
(ACAATA) followed by a BamHI or EcoRI restriction
site, the Kozak consensus sequence (CGCCACC), a start
codon (ATG), and a sequence corresponding to the tar-
get sequence. Reverse primers consisted of a spacer
(ACAATA), a NotI restriction site, a STOP codon, and a
reverse complementary sequence to the target sequence.
Primers were designed to end with a C or G with a 72 °C
melting temperature. Polymerase chain reaction was
performed using Phusion polymerase (New England
Biolabs GmbH, Frankfurt, Germany). The sequences
of all Platynereis GPCRs tested here were deposited
in GenBank (accession numbers: α1-adrenergic re-
ceptor [GenBank: KX372342]; α2-adrenergic recep-
tor [GenBank: KX372343], Tyramine-1 receptor
[GenBank: KP293998]; Tyramine-2 receptor [Gen-
Bank: KU715093]; Octopamine α receptor [Gen-
Bank: KU530199]; Octopamine β receptor [GenBank:
KU886229]). Tyramine receptor 1 has previously been
published [31] as Pdu orphan GPCR 48. The Gen-
Bank accession numbers of the S. kowalevskii and
Priapulus caudatus sequences tested are: S. kowalevskii
α1-adrenergic [GenBank: ALR88680]; S. kowalevskii α2-
adrenergic [GenBank: XP_002734932]; Priapulus cauda-
tus α1-adrenergic [GenBank: XP_014662992]; Priapulus
caudatus α2-adrenergic [GenBank: XP_014681069]; S.
kowalevskii Tyramine-1 [GenBank: XP_002742354]; S.
kowalevskii Tyramine-2A [GenBank: XP_002734062]; S.
kowalevskii Tyramine-2B [GenBank: XP_006812999]; S.
kowalevskii Octopamine α, [GenBank: XP_006823182];
and S. kowalevskii Octopamine β [GenBank: XP_
002733926].

Cell culture and receptor deorphanization
Cell culture assays were done as described before [31].
Briefly, CHO-K1 cells were kept in Ham’s F12 Nut Mix
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medium (Thermo Fisher Scientific) with 10% fetal bo-
vine serum and penicillin-streptomycin (PenStrep,
Thermo Fisher Scientific). Cells were seeded in 96-well
plates (Thermo Fisher Scientific) at approximately
10,000 cells/well. After 1 day, cells were transfected with
plasmids encoding a GPCR, the promiscuous Gα-16
protein [37], and a reporter construct GFP-apoaequorin
[38] (60 ng each) using 0.375 μL of the transfection re-
agent TurboFect (Thermo Fisher Scientific). After 2 days
of expression, the medium was removed and replaced
with Hank’s Balanced Salt Solution (HBSS) supple-
mented with 1.8 mM Ca2+, 10 mM glucose, and 1 mM
coelenterazine h (Promega, Madison, WI, USA). After
incubation at 37 °C for 2 h, cells were tested by adding
synthetic monoamines (Sigma, St. Louis, MO, USA) in
HBSS supplemented with 1.8 mM Ca2+ and 10 mM glu-
cose. Solutions containing norepinephrine, epinephrine,
or dopamine were supplemented with 100 μM ascorbic
acid to prevent oxidation. Luminescence was recorded
for 45 s in a plate reader (BioTek Synergy Mx or Synergy
H4; BioTek, Winooski, VT, USA). For inhibitor testing,
the cells were incubated with yohimbine or mianserin
(Sigma) for 1 h. Then, synthetic monoamines were
added to yield in each case the smallest final concentra-
tion expected to elicit the maximal response in the ab-
sence of inhibitor, and luminescence was recorded for
45 s. Data were integrated over the 45-s measurement
period. Data for dose–response curves were recorded
as technical triplicates for each concentration. Mea-
surements were performed from adjacent wells on the
same plate to minimize variation introduced by cell
seeding and transfection. Dose–response curves were
fitted with a four-parameter curve using Prism 6
(GraphPad, La Jolla, CA, USA). The curves were nor-
malized to the calculated upper plateau values (100%
activation). The different EC50 values for each receptor
were compared with the extra sum-of-squares F test in
a pairwise manner using Prism 6.

Bioinformatics
Protein sequences were downloaded from the NCBI. Re-
dundant sequences were removed from the collection
using CD-HIT [39] with an identity cutoff of 70%. Se-
quence cluster maps were created with CLANS2 [40]
using the BLOSUM62 matrix and a P-value cutoff of
1e−70. For phylogenetic trees, protein sequences were
aligned with MUSCLE [41]. Alignments were trimmed
with TrimAI [42] in “Automated 1” mode. The best
amino acid substitution model was selected using
ProtTest 3 [43]. Maximum likelihood trees were cal-
culated with RAxML [44] using the CIPRES Science
Gateway [45] or with IQ-TREE and automatic model
selection (http://www.iqtree.org/). Bootstrap analysis
in RAxML was done and automatically stopped [46]
when the Majority Rule Criterion (autoMRE) was
met. The resulting trees were visualized with FigTree
(http://tree.bio.ed.ac.uk/software/figtree/). The identi-
fiers of deorphanized adrenergic, octopamine, and tyr-
amine receptors [12, 29, 47–59] were tagged with
_AA1, AA2, _Oa, _Ob, _T1, or _T2. The trees were
rooted on 5HT receptors. The full phylogenetic tree
is available in nexus format (Additional file 11).
Additional files

Additional file 1: Maximum likelihood tree of adrenergic, octopamine,
and tyramine receptors. Bootstrap support values are shown. This tree
contains all investigated GPCRs. The tree was rooted on 5HT receptor
sequences. Sub-trees are shown in Additional files 2, 3, 4, 5, 6, 7, and 8.
(PDF 118 kb)

Additional file 2: Maximum likelihood tree of α1-adrenergic receptors.
Bootstrap support values are shown for selected nodes. This tree is part
of a larger tree containing all investigated GPCRs. (PDF 16992 kb)

Additional file 3: Maximum likelihood tree of α2-adrenergic receptors.
Bootstrap support values are shown for selected nodes. This tree is part
of a larger tree containing all investigated GPCRs. (PDF 17168 kb)

Additional file 4: Maximum likelihood tree of β-adrenergic receptors.
Bootstrap support values are shown for some nodes of interest. This tree
is part of a larger tree containing all investigated GPCRs. (PDF 759 kb)

Additional file 5: Maximum likelihood tree of tyramine type 1 receptors.
Bootstrap support values are shown for selected nodes. This tree is part
of a larger tree containing all investigated GPCRs. The identifiers of
deorphanized tyramine receptors were tagged with _T1. (PDF 17028 kb)

Additional file 6: Maximum likelihood tree of tyramine type 2 receptors.
Bootstrap support values are shown for selected nodes. This tree is part
of a larger tree containing all investigated GPCRs. The identifiers of
deorphanized tyramine receptors were tagged with _T2. (PDF 17007 kb)

Additional file 7: Maximum likelihood tree of octopamine-α receptors.
Bootstrap support values are shown for selected nodes. This tree is part
of a larger tree containing all investigated GPCRs. The identifiers of
deorphanized octopamine receptors were tagged with _Oa. (PDF 16730 kb)

Additional file 8: Maximum likelihood tree of octopamine-β receptors.
Bootstrap support values are shown for selected nodes. This tree is part
of a larger tree containing all investigated GPCRs. The identifiers of
deorphanized octopamine receptors were tagged with _Ob. (PDF 16730 kb)

Additional file 9: Maximum likelihood tree of tyrosine decarboxylase
and aromatic amino acid decarboxylase enzymes. Bootstrap support
values are shown for selected nodes. P. dumerilii, P. caudatus, and S.
kowalevskii sequences are highlighted in color. The Caenorhabditis elegans
tyrosine decarboxylase was experimentally shown to be required for
tyramine biosynthesis [32]. (PDF 566 kb)

Additional file 10: Dose–response curves of adrenergic, tyramine, and
octopamine receptors from P. dumerilii, P. caudatus, and S. kowalevskii
treated with varying concentrations of inhibitors. Data, representing
luminescence units relative to the maximum of the fitted dose–response
curves, are shown as mean ± SEM (n = 3). IC50 values are listed in Table 1.
(TIF 956 kb)

Additional file 11: Maximum likelihood tree of octopamine, tyramine,
and adrenergic α receptors, in nexus format. (NEXUS 37 kb)
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