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Abstract

Genomic sequencing and other -omic’ technologies are slowly changing biomedical practice.
As a result, patients now can be treated based on their molecular profile. Especially the
immune system’s variability, in particular that of the human leukocyte antigen (HLA)
gene cluster, makes such a paradigm indispensable when treating illnesses such as cancer,
autoimmune diseases, or infectious diseases. It can be, however, costly and time-consuming
to determine the HLA genotype with traditional means, as these methods do not utilize
often pre-existing sequencing data. We therefore proposed an algorithmic approach that
can use these data sources to infer the HLA genotype. HLA genotyping inference can
be cast into a set covering problem under special biological constraints and can be solved
efficiently via integer linear programming. Our proposed approach outperformed previously
published methods and remains one of the most accurate methods to date.

We then introduced two applications in which a HLA-based stratification is vital for
the efficacy of the treatment and the reduction of its adverse effects. In the first example,
we dealt with the optimal design of string-of-beads vaccines (SOB). We developed a math-
ematical model that maximizes the efficacy of such vaccines while minimizing their side
effects based on a given HLA distribution. Comparisons of our optimally designed SOB
with experimentally tested designs yielded promising results. In the second example, we
considered the problem of anti-drug antibody (ADA) formation of biotherapeutics caused
by HLA presented peptides. We combined a new statistical model for mutation effect
prediction together with a quantitative measure of immunogenicity to formulate an opti-
mization problem that finds alterations to reduce the risk of ADA formation. To efficiently
solve this bi-objective problem, we developed a distributed solver that is up to 25-times
faster than state-of-the art solvers. We used our approach to design the C2 domain of factor
VIII, which is linked to ADA formation in hemophilia A. Our experimental evaluations of
the proposed designs are encouraging and demonstrate the prospects of our approach.

Bioinformatics is an integral part of modern biomedical research. The translation
of advanced methods into clinical use is often complicated. To ease the translation, we
developed a programming library for computational immunology and used it to implement a
Galaxy-based web server for vaccine design and a KNIME extension for desktop PCs. These
platforms allow researchers to develop their own immunoinformatics workflows utilizing

the platform’s graphical programming capabilities.






Zusammenfassung

Genomics und andere -omics’ Technologien verdndern langsam die biomedizinische Praxis.
Sie erlauben die molekulare Charakterisierung von Patienten und damit eine individuali-
sierte Abstimmung der Therapie. Gerade die Variabilitédt des Immunsystems - insbesondere
im Bereich der Human Leukocyte Antigen (HLA) Gruppe - hat einen starken Einfluss auf
die Effektivitéat einer Therapien und muss daher bei der Entwicklung von neuen Behand-
lungsmethoden von Krebs-, Infektions- und Autoimmunerkrankungen beachtet werden. Die
herkémmlichen Methoden zur Identifikation eines HLA Genotyps kénnen jedoch zeit- und
kostenintensiv sein. In vielen Kliniken werden allerdings bereits standardméfig Sequenzda-
ten fiir andere diagnostische Zwecke erhoben. Um diese vorhandenen Daten auch fiir die
HLA-Genotypisierung nutzbar zu machen, wird im ersten Teil dieser Arbeit ein algorithmi-
sches Verfahren vorgestellt, dass in der Lage ist, den HLA Genotyp eines Patienten akkurat
abzuleiten. Das Problem wurde als Mengeniiberdeckungsproblems formuliert und konnte
in einem Leistungsvergleich alle bereits publizierten Methoden iibertreffen.

Im weiteren Verlauf dieser Arbeit wurden zwei Anwendungsbeispiele vorgestellt bei
denen eine HLA-basierte Stratifizierung nétig ist um die Effektivitdt der Therapie zu ge-
wahrleisten und um deren Nebenwirkungen zu reduzieren. Im ersten Beispiel wurde ein
neues Modell zur Polypeptid-Vakzin Entwicklung vorgestellt. Das mathematische Modell
optimiert die Wirksamkeit des Impfstoffes und reduziert dessen Nebenwirkungen ausgehend
von einer gegebenen HLA-Verteilung. Vergleiche von optimierten Polypeptidvakzinen mit
experimentell getesteten Konstruktionen lieferten vielversprechende Ergebnisse. Im zweiten
Beispiel wurde das Problem der Anti-Arzneimittel-Antikorper (engl., Anti-Drug-Antibody,
ADA) Bildung behandelt. Hierzu wurde ein algorithmisches Verfahren vorgestellt, das ein
neuartiges statistisches Modell zur Abschitzung von Mutationseffekten mit einem quanti-
tativen Maf fiir Immunogenitét kombiniert um Modifikationen des Biotherapeutikums zu
identifizieren, die das Risiko der ADA-Formation senken. Um das bikriterielle Optimierungs-
problem effizient zu 16sen, wurde ein Losungsverfahren entwickelt, das 25-fach schneller ist
als Standardtechniken. Das vorgestellte Verfahren wurde genutzt, um die C2 Doméne von
Faktor VIII, die fiir die ADA formation in Hemophilia A Patienten veranwortlich ist, zu
modifizieren. Die anschlieffende experimentelle Evaluation der berechneten Modifikationen
war ermutigend und demonstrierte das Potential der vorgestellten Methode.

Die Bioinformatik ist ein integraler Bestandteil der modernen biomedizinischen For-
schung. Die Translation von computergestiitzten Methoden in die klinische Anwendung ist
allerdings oft kompliziert. Um diesen Schritt zu erleichtern, wurden mehrere Softwarelésun-
gen entwickelt, die im zweiten Teil dieser Arbeit néher beschrieben werden. Zunéchst wurde
eine Programmierschnittstelle fiir Immunoinformatik konzipiert, die im dann genutzt wurde
um einen Galaxy-basierten Webservers fiir Vakzindesign und eine KNIME-Erweiterung fiir
Immunoinformatik zu entwickeln. Diese beiden Plattformen ermoglichen es Forschern, ihre
eigenen Immunoinformatik-Workflows mit Hilfe der grafischen Programmierumgebungen

beider Softwarelsungen zu entwerfen.
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Chapter 1

Introduction

The ever decreasing costs of genome sequencing and other ’-omic’ technologies allows the
characterization of an individual’s molecular state at an unprecedented level. This wealth
of data is slowly changing how patients are treated. Diseases can now be categorized
based on their molecular aberrations, patients can be treated based on their molecular
characteristics, and new drugs can be developed that take these molecular variations into
account. This paradigm shift in biomedical research and its application is summarized
under the umbrella term precision medicine (PM). PM attempts to tailor a customized
treatment of an individual’s disease based on the gathered patient- as well as disease-related
molecular, lifestyle and environmental information to increase the efficacy of the therapy
while decreasing side-effects. It also allows targeting diseases that could not be treated
effectively before due to their highly personalized characteristics, such as cancer and rare
genetic diseases.

The molecular characterization of diseases allows the development of highly effec-
tive drugs that target specific molecular aberrations, but only work in a particular sub-
population of patients. Vemurafenib for example is successfully used to treat melanoma but
is only effective in tumors exhibiting specific BRAF mutations (V600E, V600K)Y. Patients
which do not possess these tumor mutations, however, do not benefit; the drug might
even promote tumor growth®>. Molecular screening also allows the repurposing of already
existing drugs for other diseases in so called ’off label” approaches. In our example, the same
BRAF variation is also observed in pulmonary adenocarcinoma, even though less frequently.
Consequently, a study has shown that patients respond to Vemurafenib in such cases as
well?. Especially patients with rare diseases benefit the most from molecular screening
approaches. A study conducted by Zhu et al. demonstrated the usage of genomic analysis
which resulted in the diagnosis of 24% of prior undiagnosed patients®. Such analyses could

eventually lead to a therapy that would otherwise be impossible to identify.



1. Introduction

Ultimately, the goal of PM is to transform our healthcare system from a reactive to a
preventive system by recognizing the onsets of a disease much earlier and by treating each

patient with the best, most personalized treatment possible.

The Role of the Immune System in Precision Medicine

The immune system, primarily adaptive immunity, plays a significant role in many disease
etiologies including that of cancer, autoimmune diseases, and infectious diseases. It is,
therefore, necessary to account for the genetic variability of the immune system when
making a treatment decision or while developing new therapies. Especially the human
leukocyte antigen (HLA) cluster of genes is the source of the largest part of the adaptive
immune system’s variability. In fact, it is the most polymorphic region of the human
genome. Due to its high polymorphism and polygenicity, it is very unlikely that any

two individuals express the same HLA genotype. The polymorphism is also the reason
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Figure 1.1: Worldwide distribution of four selected HLA alleles. Images by Solberg
et al®

why the HLA allele distribution varies drastically between populations and geographic
regions (Figure [I.1). The HLA genes encode membrane-bound molecules that present
small peptides to other cells of the immune system. Upon binding of the HLA-peptide

(pHLA) complex, immune cells, in particular T-lymphocytes, are activated which leads to



an immune response and ultimately to the elimination of the source protein (called antigen)
of the peptide. These proteins can be either of pathogenic origin or aberrations of human
proteins such as tumor antigens. Each HLA molecule exhibits a slightly different specificity
towards subsets of peptides. Thus, the genetic variability of HLA, among others factors,
shape the space of peptides the immune system can act on. It is therefore indispensable to
stratify patients based on their HLA genotype for immunomodulatory treatments and to
account for the HLA allele prevalence in a population when developing a new vaccines and
other therapeutic products.

As of now, the identification of a patient’s HLA genotype is labor-intensive and uses
complex protocols that require the generation of biological data solely for the purpose of
identifying the HLA genotype. Many clinical centers, however, have started to routinely
sequence their patient’s genomes for diagnostic and therapeutic purposes. Thus, our first
scientific contribution presented in this work is the development of an algorithmic and
mathematical solution to identify a patient’s HLA genotype utilizing these routinely gener-
ated data. The method casts the HLA typing problem into a well-studied combinatorial
optimization problem that can be efficiently solved via integer linear programming. With
this algorithmic approach, the diagnostic phase of treatment can be accelerated, costs
reduced, and extensive sequencing studies like the 1,000 Genomes Project” or the Cancer
Genome Atlas project® can be analyzed retrospectively.

Individual HLA genotyping has seen great use in oncology and especially in individu-
alized cancer vaccine immunotherapy. Here, the unique genetic variation of tumor cells is
exploited to find altered peptide sequences that uniquely characterize the tumor. These
peptides, so-called neo-epitopes, can be used as therapeutic vaccines to redirect the pa-
tient’s immune system on the cancerous cells again. The patient’s HLA genotype has to be
characterized first, however, to identify neo-epitopes that can bind to the HLA molecules
of the patient via algorithmic or experimental means. Once a suitable set of neo-epitopes
is selected, the peptides have to be assembled into a vaccine. One particular approach that
combines the neo-epitopes by concatenating them like beads on a string has been widely
and successfully used. These so-called string-of-beads vaccines are either administered as
synthetic long peptides (SLP)?MY or as RNA/DNA minigene constructs*2. The efficacy
of these string-of-beads vaccines relies heavily on the correct processing within the cells.
Especially proteasomal and additional cleavage events have a substantial impact on vaccine
efficacy. If the string-of-beads is incorrectly cleaved, therapeutic neo-epitopes are destroyed
and additional artificial peptides can arise with unwanted immune reactions®. Amino acids
adjacent to the cleavage site, which are determined by the ordering of the neo-epitopes,
influence these cleavage events?®. To positively modulate the peptide cleavage and thus
increase vaccine efficacy, several groups started using short spacer sequences to connect two

neo-epitopes #1948 But, as of now, no systematic approach exists to determine the optimal
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ordering and spacer sequence for a particular string-of-beads vaccine. We therefore devel-
oped a mathematical framework that can determine the optimal spacer sequence and length
in conjunction with the optimal neo-epitope ordering to increase the recovery likelihood of
each neo-epitope while decreasing the probability of unwanted immune reactions.

The need of HLA genotype-based stratification has also become apparent in other areas
of drug development. For many therapeutically used proteins, inefficacy and side-effects
have been linked to immunological effects. These side-effects stem from non-self peptides
that are presented on HLA molecules and originate from the biotherapeutic. Presentation
and recognition of these peptides (called epitopes) lead to the activation of B cells that
consequently produce antibodies specifically targeting the biotherapeutic. The antibodies
bind the biotherapeutic, which leads to its neutralization, thus reducing or even nullifying
the intended therapeutic effect. In severe cases, especially when the biotherapeutic is
used as replacement therapy, these anti-drug antibody (ADA) formations can lead to

11 To decrease the risk of

systemic, potentially life-threatening, autoimmune reactions
ADA formation, several groups have started targeting specifically the presented epitopes
of a particular biotherapeutic by introducing single point alterations to hinder the epitope
binding to HLA molecules®® 2. The introduction of amino acid alterations can potentially
negatively influence the structural stability and function of the biotherapeutic. Thus, it
is necessary to find alterations that (1) hinder the ADA causing epitopes to bind to HLA
and (2) do not disrupt the structural and functional integrity of the biotherapeutic at the
same time. Experimentally identifying such mutations is extraordinarily time-consuming
and resource-intensive. The process usually entails immunogenicity testing of overlapping
peptides of the biotherapeutic, alanine screenings or other mutagenesis techniques on the
identified immunogenic regions to find immunogenicity reducing mutations, incorporating
those mutations into the full protein sequence, and finally testing for functionality and
overall immunogenicity®t. To redirect experimental efforts to only promising designs,
hereby reducing time and cost expenses, we developed an optimization framework that
can efficiently deal with the inherent multi-objectivity of the design problem. It finds
designs that maximally reduce the immunogenicity of the biotherapeutic while minimally
disrupting its structural and functional integrity. The optimization framework can be used
in a stratified manner taking the HLA distribution of particular population into account,
or, in a very personalized setting, considering only the HLA genotype of a patient during

optimization.

The Role of Bioinformatics in Precision Medicine

Precision medicine heavily relies on new technologies and computational models to identify

the specific patient and disease characteristics to make informed decisions on how to treat



a patient optimally and design new drugs based on this information. Hence, bioinformatics
is an integral part of precision medicine, dealing with genetic data storage, development of
reliable and reproducible analysis workflows, and the creation of mathematical models to
support the development of new personalized therapies.

The development time of such workflows is often long due to non-standardized data
formats and software interfaces of bioinformatics tools. While some fields of bioinformatics,
for example parts of the genomics and proteomics community, have developed their own
standards, other research areas such as immunoinformatics have not yet experienced such
consolidation. Especially the lack of a unified software interface and output formats of epi-
tope prediction methods makes interoperability difficult. We therefore developed a Python
module called FRamework for Epitope Discovery (FRED) 2 that acts as a unifying layer
between state-of-the-art immunoinformatics tools and the workflow developer to enable
interoperability and provides identical output formats and many pre- and post-processing
functionalities routinely used in such applications. Overall, it decreases development time
and allows for rapid prototyping.

Even with the use of FRED 2, the development of immunology related workflows
is still a challenging task and requires trained software engineers or bioinformaticians.
To translate advanced immunoinformatics methods into a daily working environment of
practitioners, clinicians, and biologists, two main problems have to be overcome: (1)
Bioinformatics software is often very complex and challenging to install; (2) the required
software solution should have a simple user interface, but must be powerful enough to
allow the user to combine single components interactively to complex workflows. Web-
based solutions like Galaxy?? circumvent the problem of installing and configuring software
packages and enable the user to connect individual components to workflows with a simple
graphical user interface via drag-and-drop. We thus developed a Galaxy-based web service
specifically targeting immunoinformatics-relevant applications such as HLA genotyping,
epitope prediction, and vaccine design.

Often data volume or legal restrictions such as data protection and privacy agreements
in biomedical research restrict the use of web services. Thus, local desktop solutions are
needed that still retain the benefits of a Galaxy-based web service. One possible software
platform that possesses such qualities is the Konstanz Information Miner (KNIME)23:24,
KNIME is a desktop data analytics and reporting platform that enables the user to design
workflows graphically out of individual components, called nodes. Via Generic KNIME
nodes (GKN)%? any command line tool can be easily integrated into KNIME. To avoid
the necessity of installing the required bioinformatics tools that might run only on some
operation systems, we extended GKN to interact seamlessly with so-called containerized
applications. Docker is a flat virtual environment that allows for convenient packaging

of pre-configured software and to execute them on any operating system. Together with
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the extended GKN, we developed an immunoinformatics application toolbox mimicking
the functionality of the Galaxy web service in conjunction with a Docker container that

comprises of all necessary software applications.

Thesis Outline

The thesis is structured in eight chapters. First, the necessary immunological and method-
ological background in Chapters [2] and [3]is introduced respectively. Then the mathematical
model for HLA genotyping is derived and evaluated in Chapter [ followed by the de-
scription and evaluation of the string-of-beads design framework in Chapter [l Chapter
[6] describes the mathematical model an algorithm to de-immunize biotherapeutics, and
Chapter [7] introduces the developed software applications. Finally, Chapter [§] concludes

this thesis and provides an outlook to future research questions.



Chapter 2
Biological Background

This chapter establishes the biological background of this thesis by providing a general
overview of the immune system in Section followed by a detailed description of the
cellular and humoral immune response in Sections [2.3] and respectively. For a more
comprehensive introduction, the reader is kindly referred to Kindt et al.?% or Murphy et

al 27

2.1 The Immune System

The main function of the immune system is to detect and eliminate infectious agents
(pathogens) and abnormal cells (e.g., cancer cells) within an organism. The immune system
must thus be able to distinguish between various pathogens like viruses, bacteria, and
parasites, or abnormal cell from own, healthy cells. In vertebrates, two distinct, but
intertwined, defense systems evolved: the innate and the adaptive immune system. The
innate immune system acts as the first line of defense and includes physical barriers like the
skin, mucus membranes, and physiological mechanisms like increasing body temperature.
It is also capable of recognizing a broad array of pathogen-associated molecule patterns
(PAMPs) with generic pattern recognition receptors (PRRs), which lead to inflammatory
responses, and the recruitment of other immune cells.

The moment the infection reaches a critical stage, the immune system activates its
second line of defense, the adaptive immune system (Section , via attracted antigen
presenting cells (APCs). These APCs are capable of phagocytosing infectious agents for
degradation (Section [2.3.2). Once an APC has phagocytized a pathogen, it migrates
towards lymph nodes to present degraded pathogenic peptides, so-called epitopes, to naive
cells of the adaptive immune system. These cells transform to effector cells, which are able

to induce an individually tailored immune response against the invading pathogen.
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2.2 Adaptive Immunity

The adaptive immune system is capable of adapting and learning from its encounter with
a pathogen. Once a pathogen has been recognized, cells of the adaptive immune system
develop into memory cells that act stronger and more rapidly upon a repeated encounter
of the same pathogen. These memory cells determine the immunological memory and
guarantee a long-term protection or immunity against a pathogen.

The major cellular components of the adaptive immune system are T and B cells, which
belong to the family of lymphocytes. These cells carry receptors capable of recognizing
foreign pathogenic proteins, so-called antigens. An antigen is not recognized in its entirety;
only a small peptide sequence, called epitope, interacts with the T- and B-cell receptors.
On recognition, the B and T cells proliferate into short-lived effector and long-lived memory
cells. The effector cells actively eliminated the recognized antigen, while the memory cells
form a long lasting protection against the same antigen.

The T-cell antigen receptor (TCR) is a membrane-bound receptor that is only capable
of recognizing epitopes once they are bound to a family of membrane proteins encoded by
genes of the major histocompatibility complex (MHC, Section . In humans this gene
cluster is also known as human leukocyte antigen (HLA). The induced adaptive immune
reaction of a T cell is called cellular immune response and will be outlined in Section 23]

The antigen receptor of B-cells (BCR) is a membrane-bound, Y-shaped protein called
antibody. In contrast to TCRs, antibodies can also recognize epitopes of antigens that are
(free-floating) in solution. Similar to dendritic cells, B cells are also capable of presenting
epitopes to T cells and are therefore classified as professional APCs. The adaptive immune
reaction induced by B-cell recognition is called humoral immune response and will be

described in Section .41

2.3 Cellular Immune Response

The main protagonists of the cellular immune response are T cells, which originate in the
bone marrow and mature in the thymus. During maturation, the TCR variant is formed
using a genetic recombination mechanism that results in over a billion possible sequence
variants. The TCR is a heterodimer with each chain consisting of both constant and
variable regions. Rearrangement of genes that encode the different segments of light and
heavy chain generates the vast sequence diversity. Cells that have not produced a correctly
folded TCR are driven into apoptosis; the remaining cells undergo positive and negative
selection in the thymus. The positive selection ensures that T cells can adequately bind to
HLA molecules; weakly binding T cells go into apoptosis. At this stage, the T-cell subtype

is also determined, depending on the HLA molecule class they first interact with. The



Cellular Immune Response

negative selection on the other hand guarantees that no T cells mature that are capable
of binding self-epitopes and thus would induce an autoimmune reaction. T cells that
successfully underwent the positive and negative selection, the so-called naive T cells are
released into the blood, where they circulate between the blood stream and the lymph
nodes patrolling for APCs presenting epitopes they can recognize.

T cells can be classified into three subtypes according to their primary functionality
and by the co-stimulation receptors they express: T helper (Tx), cytotoxic (CTL), and
regulatory T cells (Trgg). TH cells additionally express the cluster of differentiation 4
receptor (CD4) on their surface that stabilizes the interaction of the TCR with HLA-II

molecules.

Cytokines

@)

Figure 2.1: The three singals in T-cell activation. The interaction between epitope-
HLA and T-cell receptor (1) together with its co-stimulatory signal caused by the
interaction between CD28 and CD80/86 activates the T cell. This leads to the secretion
of cytokines that stimulate the T cell to proliferate and affect the differentiation into
subtype clones.

CTLs express the co-receptor CD8. CTLs kill infected cells or abnormal cells by
recognizing non-self epitopes bound to HLA-I. CDS8, similar to CD4, interacts with the
exterior of HLA-I molecules and stabilizes the complex. Once an antigen is identified as
non-self, perforins and granzymes are released forming pores in the infected cell’s membrane
causing the lysis of the target cell. Released granzymes additionally penetrate the infected
cell through the formed pores and induce the apoptosis of the cell.

Trec regulate the immune response and suppress other T effector cells preventing

excessive or autoimmune reactions. The suppressive effect is induced by direct cell-to-cell
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contact, secretion of immune suppressive cytokines, and deprivation of immune stimulating
cytokines. Trpg are characterized by the expression of CD4, FoxP3, and CD25 and are
most likely derived from naive T helper cells“®.

The activation of a T cell is controlled by three major signals (Figure . The TCR
binding of the epitope-HLA complex (pHLA) strengthened by the T cell’s co-receptors
CD4/8, is the primary activating signal. The second signal is given by the interaction
of another T-cell co-receptor, CD28, and its ligands CD80/86 on the APC. Without a
co-stimulation via CD28, the T cell will go into an inactivated state, called anergy, which is
another mechanism to prevent autoimmune reactions against proteins that are not expressed
in the thymus during T cell maturation. Both signals are required for the activation of a
naive T cell, which then drastically changes the expression of various surface proteins. The
activation also triggers a signal cascade that eventually leads to the increased production of
interleukin 2 (IL-2). IL-2 and other cytokines constitute the third signal that is primarily
responsible for the differentiation of the T cells into their respective subtypes. Once a naive
T cell has proliferated into effector and memory cells, the second and third signal is not

needed to activate the cell to perform its primary duties.

2.3.1 The Major Histocompatibility Complex

HLA molecules play an important role in the adaptive immune system and fall into one
of two classes, HLA-I and HLA-II. HLA-I molecules are expressed on all human nucleated

cells, whereas HLA-II molecules are exclusively expressed on APCs. HLA-I molecules

C X )

Chromosome6 ~ _____-----mTTTTTTT HLA >~
______________________ 6p21.1-6p21.3 >~

~
~
~
~

TAP DP DM LMP/TAP DO DQ DR B C A
HLA Class Il HLA Class |

Figure 2.2: The human leukocyte antigen (HLA) gene cluster. The HLA gene cluster
is located at the small arm of chromosome 6. It comprises genes that encode for the
HLA class I and II molecules, besides other genes involved in the immune system.
HLA-T and HLA-II are polygenic and encode for three genes respectively - A, B, and
C in case of HLA-I, and DR, DQ, and DP in case of HLA-II.

consist of two a-subunits and a smaller 5o microglobulin stabilizing the complex. The ay
and ae domains form the enclosed epitope-binding groove, restricting the HLA-I epitope

length to 8-11 amino acids (AA), which are intracellularly derived. HLA-II molecules, on

10
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the other hand, consist of an a- and a 8 chain. The binding groove of HLA-II molecules is
formed by a; and (1 subunits, is open on both ends, and presents extracellular epitopes
of length 13 to 18 amino acids. But only a peptide substring of about nine amino acids
directly interacts with the HLA-II binding groove and the TCR2.

Since HLA molecules are responsible for the presentation of pathogenic peptides, a
large evolutionary pressure is exerted upon pathogens to escape the presentation by HLA.
The polygenesis and polymorphism of HLA impede immune evasion to some extent. Both
molecules are encoded by multiple genes, which are co-dominantly expressed. The HLA-I
a-chain is encoded by three major (HLA-A, -B, and -C) and three minor (HLA-E, -F, and
-G) genes, whereas the a- and (-chain of HLA-II are encoded by three major (HLA-DR,
-DP, -DQ) and two minor (HLA-DO, and -DM). HLA-DO and -DM are used during antigen
processing to load and stabilize the HLA-II molecule and are not expressed on the surface
of APCs. The HLA genes cluster is located on chromosome 6p21 and is ~ 3 mega base pairs
(bp) long (Figure . HLA-I genes are composed of eight approximately 275 bp long exons,
of which the most polymorphic exons 2 and 3 encode for the binding groove. HLA-DRA
gene, encoding for the DR «, is composed of five exons. The S-chain encoding DRB genes
consist of six exons, of which only exon 3 contains all polymorphisms relevant for epitope
binding. Both genes encoding for the a- and S-chain of HLA-DQ and HLA-DP, consist
of five exons, and carry polymorphisms relevant for epitope binding. Genetic linkages
between and within the HLA-IT genes increase the genetic complexity. Strong linkage
disequilibrium exists between HLA-DR and HLA-DQ alleles. Also, a varying number of
HLA-DRB genes are expressed in different combinations®”. Although nine HLA-DRB loci

have been identified, only a few are present in distinct combinations in every individual.

Figure 2.3: The official HLA allele nomenclature proposed by the WHO Nomencla-
ture Committee for Factors of the HLA System™!.

Today, more than 10,574 HLA-I and 3,658 HLA-II alleles are known that encode for
7,563 HLA-I molecules and 4,094 HLA-IT molecules (IEDB®2, release 3.23.0). Due to the
polygenicity, codominant expression and high polymorphism, each human expresses three
to six different HLA-I and up to eight HLA-II different molecules.

11



2. Biological Background

To name each allele, a complex nomenclature was established*!(Figure . The first
element describes the HLA gene separated by an asterisk followed by two digits indicating
the locus. The next two digits describe the particular HLA protein, followed by synonymous
variations within exons, and mutation in intronic regions. An alphabetic suffix is used to

indicate the expression status of the HLA gene.

2.3.2 Antigen Processing

Antigens undergo a process called antigen processing that leads to the degradation of the
proteins and subsequently to the presentation of antigenic peptides on HLA molecules
(Figure [2.4]). Depending on the origin of the antigens they go through slightly different

processing steps.

Proteasorr:e . TAP
B e LT ~ ¢
. . ° TS
Ant|g.en|c \@Q . > /@@ =_—) =
peptides +
ﬁ HLA-I CD8 \\

Intracellular T-Cell
antigen

Endosome . &//
% = ¢ T HADO
\ﬁ => => °° HLA-II # _ =
: HLA-DM A
Extracellular li CD4
antigen T-Cell

Figure 2.4: Top: The intracellular antigen processing pathway. Intracellular proteins
of potential pathogenic origin are degraded by the proteasome and transported via
TAP into the ER where the peptides are loaded onto HLA-I molecules. Bottom: The
extracellular antigen-processing pathway. Extracellular antigens are phagocytized
and degraded in endosomes by various proteases. The endosomal vesicles coalesce
with lysosomes carrying HLA-IT molecules. The peptide contained in the endosomes
supplant CLIP, a small protein fragment that protected the peptide-binding groove
from loading intracellular peptides during HLA class II folding and transport from
the ER. The loaded HLA molecules are transported to the surface of the cell where
they present the loaded peptides to T lymphozytes.

Intracellular antigens, like any other intracellular protein, are eventually ubiquitinated
and degraded by the proteasome, a protein complex equipped with several proteolytic
subunits. The catalytic core of the proteasome is composed of four heptameric rings,
33

forming a tube that is called the 20S proteasome While the outer rings consist of

seven « subunits regulating the access, the inner rings contain seven 3 subunits, of which
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51, B2, and 5 are catalytically active. (1 cleaves after acidic residues, while 52 has a
preference to cleave after basic residues, and 85 cleaves after hydrophobic residues®4. Two
regulator particles, called 19S, bind to one or both ends of the 20S proteasome, forming
the so-called 26S proteasome. The 19S5 molecules facilitate the degradation of the ubiquitin
chains and catalyze the unfolding of the antigen®?. During immune response, stimulated
by interferon «, B, and -y, the catalytic subunits are replaced by counterparts forming
the so-called immunoproteasome. These subunits have an increased ability to cleave after
basic and hydrophobic residues, which generates peptides that are more likely to bind to
HLA-I molecules. The peptides produced by the proteasome are then transported into
the endoplasmatic reticulum (ER) via the adenosine triphosphate-dependent transporter
associated with antigen processing (TAP). In the ER, peptides are further degraded by
aminopeptidase associated with antigen processing (ERAAP). The peptide-HLA-I complex
is then transported to the cell surface via the Golgi apparatus.

Extracellular antigens are endo- or phagocytosed by APCs. The so formed double-
layered endosome fuses with a lysosome, which leads to acidification of the compartment.
Mediated by a decreasing pH, different proteases - cathepsins B, D, S, and L, as well
as thiolreductase - are activated and degrade the antigens. The fused lysosome contains
HLA-IT molecules that were also folded in the ER. To protect the HLA-II molecule for
loading intracellular peptides, its binding groove is blocked by the invariant chain (Ii). The
invariant chain is degraded in the lysosome compartment, and a small fragment called Class
II-associated invariant chain peptide (CLIP) remains in the binding groove to stabilize the
HLA-II molecule®?, CLIP is eventually replaced by a higher affinity extracellular peptide.
HLA-DM supports the dissociation, fine-tuned by HLA-DO shaping the antigenic peptide
repertoire®®. The pHLA-II complex is exocytosed and presented on the APC’s surface to
CD4+ T cells.

2.4 Humoral Immune Response

Many bacteria and viruses linger in the extracellular space, either to proliferate or to
migrate from cell to cell. The humoral immune response protects the extracellular space
via antibody-secreting B cells. B cells develop from haematopoietic stem cells within the
bone marrow. Similar to T cells, they undergo a positive and negative selection during
development. The positive selection ensures that BCRs and even pre-BCRs are properly
expressed on the surface. The negative selection recognizes autoreactive B cells that bind
self-antigens expressed in the bone marrow milieu®”. This leads to either clonal deletion,
receptor editing via genetic recombination, or anergy. Once the selection process is finished,
the immature B cells travel to the spleen and other secondary lymphoid tissues, where
they are activated (Section . Upon activation, B cells differentiate into plasma cells,

13
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which have a short lifespan and immediately secrete larger amounts of antibodies, and long
living memory cells that allow a rapid immune response at the next encounter of the same
antigen.

Antibodies bind to a specific antigen and reveal the pathogen’s presence to specialized
phagocytic cells (opsonization), or prevent the bacterial and viral adherence to healthy cells
by blocking essential pathogenic membrane proteins (neutralization). A third mechanism
of the antibody response activates the complement system, a set of plasma proteins that
belong to the innate immune system. The complement enhances the opsonization and lysis
of bacteria. To generate the needed diversity of 3 x 10! distinct antibodies, a genetic

recombination mechanism, similar to that of T-cell receptors, is used.

2.4.1 B-cell Activation

B-cell activation occurs in the secondary lymph nodes by binding either free-floating or
antigens presented by APCs. In contrast to T cells, a B cell can recognize a wide range of
antigen types, including polysaccharides, glycoproteins, lipopolysaccharides, and proteins.
B cells are either activated in the presence of CD4+ T-cells (T-cell dependent activation,
TD), or can be independently activated via extensive crosslinking of BCRs with the same
antigen (T-cell independent activation, TI). TT activated B cell proliferate and form short-
lived plasma cells, but tend to generate low affine, mostly IgM antibodies against the
recognized antigen.

TD-activated B cells interact directly with CD4+ T cells by presenting epitopes of
the BCR-~bound antigen on HLA-IT molecules. Interestingly, the HLA presented epitope
is not necessarily required to be the same epitope that is recognized by the BCR, which
opens up possibilities to modulate the B-cell response via T-cell epitope editing (Chapter
@. B cells also need a co-stimulatory signal, which originates from the interplay between
the co-receptor CD40 expressed on the B-cell surface and the CD40L ligand of the T cell.
The interacting T cell becomes polarized and secretes IL-4 and other cytokines in the
direction of interaction. Together, these three signals stimulate the B cell to proliferate into
short-lived plasma cells also secreting mostly IgM antibodies (Figure . But some of the
activated B-cells form a germinal center (GC). Within this specialized microenvironment,
B cells extensively proliferate (clonal expansion), and undergo somatic hypermutation to
increase the antigen binding affinity by introducing point mutations. During the phase
of clonal expansion, activated B cells are called centroblasts and express BCRs at low
abundance. After a considerable number of proliferation cycles, the centroblasts move into
another region of the GC, which is more enriched by CD4+ T cells, and dendritic cells.
Here, the centroblast clones are called centrocytes and express a high number of BCRs on

the surface. The centrocytes undergo a positive and negative selection process to ensure
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Figure 2.5: T cell-dependent activation of B cells. Upon interaction with CD4+ T
cells that recognize epitopes derived from the B cell bound antigen, B cells are activated
and form a germinal center. There, B cells undergo clonal expansion and somatic
hypermutation. After positive and negative selection, the B-cell clones experience
isotype switching and differentiate into different Ig subtypes.
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that the hypermutated BCRs are still functioning and express an increased affinity for the
foreign antigen. B cells that pass the GC undergo isotype switching and differentiate into

memory cells or long-lived plasma cells secreting highly specific antibodies.
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Chapter 3
Algorithmic Background

This chapter serves as an introduction to integer linear programming (Section and
multiobjective optimization (Section . It establishes the necessary theoretical concepts
and algorithms to solve (multi-)objective combinatorial optimization problems. The reader
is kindly referred to Wolsey et al®® and Ehrgott®? for a comprehensive introduction to

combinatorial optimization and multiobjective optimization.

3.1 Combinatorial Optimization

Combinatorial optimization is concerned with finding an optimal object minimizing or
maximizing an objective function z(-), while imposing constraints on a finite set of possible
alternatives. The combinatorial objects are represented by variables z;, with ¢ € {1,..,n},
that are subject of the optimization. Their domain is a subset of the positive natural
numbers Z’'. Usually, these combinatorial objects have a concise interpretation (e.g., a
particular permutation, or a path through a graph), and grow exponentially in the size
of their variable domain, thereby prohibiting an exhaustive enumeration of all possible
solutions in large combinatorial problems. In fact many combinatorial problems are known
to be NP-hard (e.g., traveling salesman problem, knapsack problem, boolean satisfiability
problem), but there exist also special cases of hard problems and combinatorial problems
for which polynomial time algorithms exist (e.g., minimum spanning tree, shortest path,
sequence alignment). Depending on the form of the objective function and constraints,
optimization problems can be categorized into different classes. In this thesis, only linear
objective functions and constraints are considered, which define the class of integer linear
programs (ILPs). Many combinatorial problems can be expressed as an ILP, which is

generally formulated as follows:
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min ¢’ x (3.1)

st. Ax>Db

x €7,

where ¢ € R" is a constant coefficient vector, and A € R™ ™ is a constant coefficient
matrix. b € R™ is the constant vector representing the lower bounds of the constraints. The
set X := {x € Z"}|Ax < b} is called the feasible set, and represents the set of alternatives
or search space. Each element x € X is a feasible solution of Equation 3] A solution
x* € X is called optimal, if Vx € X z(x*) < z(x) holds. The space, of which X" is a subset,
is called decision space. The image of X under z(-) is denoted Y := {z(x)|x € X'} and
represents the feasible set in criterion space™?. Integer linear programs can be generalized
by relaxing the integrality constraint for a subset of variables y € R’!'. This class is then

called mixed integer programs (MILP), which is formulated as follows:

mincx 4+ hly (3.2)
st. Ax+ Gy >b

xeZl,y ERﬂ,

In the following, a selection of algorithms for solving MILPs is introduced. Most exact
methods utilize the efficiently solvable linear program (LP) relaxation of a MILP, which
disregards the restriction of x to an integer domain. The solution to the LP relaxation is
the dual bound of the MILP. The most prominent algorithm to solve LPs is the simplex
algorithm proposed by Georg Dantzig in 194749 Therefore, we will first introduce the
simplex algorithm followed by exact MILP solving algorithms such as the branch-and-

bound, the cutting plane, and the branch-and-cut methods.

3.1.1 The Simplex Algorithm

The simplex algorithm was one of the first methods proposed to solve LPs and is the basis of
many exact algorithms for MILPs due to its favorable connections to dual theory. While its
worst-case runtime is exponentiall, its average-case complexity is polynomial under many
probability distributions®4, explaining its observed efficiency in practice. Geometrically,
the simplex algorithm moves along the extreme points of the polytope spanned by the half-
spaces of the constraints until it reaches a local minimum, which is due to the convexity

of LPs also the global minimum (Figure . This observation can also be obtained
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YA

Figure 3.1: (A) Graphical representation of a linear program (LP). Each constraint
defines a half-space that restricts the search space of the LP. The dots represent integer
solutions of the LP. The simplex algorithm moves along the vertices of the polytope
defined by the constraints until the maximum/minimum is reached. (B) Depiction
of the cutting-plane method. In each iteration, a new constraint is generated which
separates the current LP solution from all integer solutions. The cutting procedure is
repeated until an integer solution is obtained by the simplex algorithm.

algebraically. We first note that the constraint matrix A is w.l.o.g. full row ranked, and
can be decomposed into a basis B of [ linearly independent columns and in the non-basic
columns N of A, accordingly a feasible solution x* is called basic feasible, if all variables
xg contained in the basis fulfill 23 = B~1b < 0 and all variables that are not contained in
the basis xzx are zero. We can show that for each LP that is closed and bounded, there
exists at least one basic feasible solution that solves the LP, and that each basic feasible
solution corresponds to a vertex of the polytope (and wvice versa)43.

Algorithmically, the simplex algorithm is comparable to the Gaussian elimination proce-
dure??. In each iteration, the LP is revised into an equivalent form that has some additional
structure, which is called pivoting. After several iterations and rewriting, the solution can
be easily obtained from the transformed LP.

To apply the simplex algorithm, a LP has to be formulated in standard-slack form
first by introducing slack variables s to transform the inequality constraints into equality

constraints:

minc’ x (3.3)
st. Ax+s=Db

n m
x € R}, s € RY.
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In this form the LP is expressed in terms of its basic xg and non-basic variables x s (the

non-negative constraint is implicitly assumed in the following):

min cgxp + CAXN (3.4)
s.t. Bxg+ Nxpy =b

To determine whether the optimum is reached, the objective function is reformulated

in terms of its non-basic variables:

c’'x = chxp + cixn (3.5)

with xg = B7'b — B"!Nx, we obtain:
= c(B7'b — B 'Nxy) + cixn

= cEB7'b +ekxw,

where é}f/ = c/:f/ — ch_lN represents the possible reduction costs of the non-basic
variables. If no non-basic variable has negative reduced costs associated, the optimal
solution is reached. Otherwise a pivoting operation is applied by selecting a non-basic
variable xj, h € N with negative reduced cost and integrating it into the basis. Thus, a
basic variable has also to be identified that will exit the basis. Geometrically, increasing
xp, corresponds to moving along an edge of the polytope in the direction d € R", where

dp=1,dg=—-B 1A, and dy;, = 0. For each basic variable xp, the maximal step length

Azxg, = d:Z until xp,; reaches zero is calculated. The basic variable x5, with the minimum

3

step lengthz:
xp, = argmin{Axp,|z; € B} (3.6)

is selected as exiting basic variable and set to zero. The selected non-basic variable xy, is
set to z, = Axp, and enters the new basis. All other basic variables are moved into the

direction d with the determined step length Azp, :
g, = xB, + Azxp,dp,, Vi # k. (3.7)

Duality in Linear Programs

Duality is a very important concept in mathematical optimization, and especially in linear
programming. It provides bounds on the original problem and another way to prove
optimality. Each LP in standard form, which is also called the primal problem, has a

complementary dual problem. Both problems can be symmetrically transformed into each
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other:
Primal: Dual: (3.8)
min  ¢'x max blr
st. ATx>b st. ATr<c
x € R} r € R

Primal and dual form of an LP are connected via two theorems, called the weak and
strong duality theorem. The weak duality theorem states that for a given primal feasible
solution X and a dual feasible solution T of the corresponding dual problem b’T < ¢’x
always holds true. In other words, the dual solution is always a lower bound on the primal
solution. Moreover, the strong duality theorem states that for an optimal primal solution
x*, the corresponding dual solution r* must be dual optimal and r* = ¢”x* holds. The
complementary slackness theorem offers an algorithmic approach to verify that a given
primal feasible solution X is optimal and to obtain its corresponding dual feasible solution
X. It states that the following conditions are necessary and sufficient for X and T to be

optimal#4:

m
=1

and

n
Zai]’fi =b;, or r;= 0 Vie [1,..,m]
j=1

The dual simplex algorithm utilizes the complementary slackness to retain a dual feasible
solution during the simplex steps until a primal feasible solution is obtained, and thus the
optimum is reached. The dual simplex algorithm is in many cases faster than the primal
simplex algorithm, especially when constraints are added iteratively, or b is changedL.
The manipulation of the primal LP can lead to infeasibility of the current basic feasible
solution; therefore the complete modified primal LP has to be solved again. The dual basic
optimal solution, however, remains feasible after the addition of new primal constraints
or modification of b, but probably loses optimality. Therefore, a few dual pivoting steps,
starting from the current dual basis, usually suffice to find the optimal solution of the
modified LP. The iterative introduction of constraints and efficient solving of the modified
problem is particularly important in branch-and-bound methods to solve ILPs, which we
will discuss in the following section [3.1.2]
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3.1.2 Branch-and-Bound

Branch-and-Bound (B&B) is an algorithmic paradigm to solve hard combinatorial optimiza-
tion problems. The algorithm was first proposed by A. H. Land and A. G. Doig in 196042
and has remained the main algorithmic approach to solving NP hard combinatorial prob-
lems. For simplicity, we only consider strict integer linear programs in the description of
the algorithm, but any of the concepts can be applied to mixed integer linear programming
as well.

B&B recursively enumerates the solution space X by partitioning it into disjoint subsets
X, .., Xk, which are solved independently. The recursive process is called branching. Usually,
the resulting subproblems Aj, .., X} are still hard to solve efficiently, however in the case
of integer linear programs, a local lower bound LLB(X;) of the optimal solution can be
efficiently computed by solving the LP relaxation of the corresponding ILP subproblem. In
case the optimal solution x} € &; of the LP relaxed subproblem is integral, the objective

*

value z(x}

*) is an upper bound and x is a feasible solution of the original ILP. Whenever

z(x!

*) is smaller as the lowest upper bound found so far, the objective value is set as new

global upper bound GUB, and x} is called incumbent solution. If the solution x; C &; of
the LP-relaxed subproblem is not integral, a fractional variable zp € X; is selected and two
constraints x < |2} ] and xj > 2} ] are added to the newly branching subproblems of X;
respectively.

Another important concept of B&B, besides branching, is bounding. Bounding enables
the algorithm to disregard a potentially large proportion of the search space that provably
cannot contain the optimal solution of the ILP. Whenever the optimal solution of a relaxed
subproblem &; is larger as the current GUB(i.e., LLB(X;) > GUB), the subproblem and
all its subproblems X; C &; can be disregarded as they cannot contain a globally optimal
solution of the ILP. The algorithm terminates when all subproblems are bounded by the
current GUB, which proves the global optimality of the incumbent solution.

Obviously, B&B does not change the exponential worst-case runtime complexity of
combinatorial problems but works quite efficiently in many real world applications up to a

certain problem size.

3.1.3 Cutting Planes

The cutting plane method is another important paradigm in combinatorial optimization.
It was first described by Fulkerson and Dantzig for a specific combinatorial optimization
problem®® and later generalized to ILPs and MILPs by Gomory in 195847, The general
idea of cutting planes is to efficiently and iteratively find new constraints that separate
the integer feasible region from the convex hull of the LP relaxation (Figure . These

so called cuts are added to the problem and the LP relaxation is re-optimized until an
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integral solution is obtained. The cut-generating methods described by Gomory can be
applied to any MILP. We therefore will briefly introduce Gomory’s cuts in the context of
strict integer linear programming.

Gomory’s cuts can be directly generated from the primal, non-integral solution x* of
the LP relaxation. To identify a valid cut separating the integral search space from the

non-integral search space, a row of the basic feasible solution

rB, + Z Aijij = 61', (310)
JEN
with b = B™!'b, and b; fractional, is selected. The row is then reformulated in terms

of its integral and non-integral parts:

25+ 3 Ay ey + 3 (Ay — [ Ay Dy = 1] + (i — 5. (3.11)
JEN JEN
Rearranging the equation so that the integral part is on the left-hand side and the fractional
is on the right-hand side yields:

B, + Z Ajlaj — =b; — [bi] — Z( ij — [Aij))z; (3.12)

jeN JjEN
Notice that the left-hand side is an integer for any integer solution, while the right-hand side
is a fraction < 1. Thus, we can formulate the following inequality which will be satisfied

by all solutions of the ILP but not of the current LP relaxation:

v, + Y |Aijlay < |bi] + (b — [bi)). (3.13)

JEN

As (b; — |b;]) is the only fractional part, the following inequality is also satisfied:

zp, + Y [Aiglzs < [bil. (3.14)
JEN
By substituting zp, = b — JEN Ajjx;, and adding an additional slack variable s the

final Gomory cut

sk 3 (Ay — LAig D)y = B — [B:]) (3.15)

JjeEN

is added to the LP relaxation. The modified LP is re-optimized and the cut generation

routine is repeated until an integral solution is obtained.
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3.1.4 Branch-and-Cut

The Branch-and-Cut (B&C) method is a combination of B&B and cutting-plane methods
- in particular Gomory’s cuts - and was proposed in the mid-1990’s by Cornuéjols et al.48.
Cuts can be added at each branch of the B&B search tree to tighten the calculated bounds,
which in turn can lead to significant pruning of subproblems. Despite the NP hardness
of MILP, B&C works very efficiently in practice and is often much faster than pure B&B.
The runtime, however, is influenced by multiple factors such as size and complexity of the
MILP model, the employed branching rule and processing of the subproblems, as well as

the choice and number of cuts applied at each subproblem.

3.2 Multiobjective Optimization

Many real-world optimization problems involve multiple, possibly conflicting objectives.
Multiobjective optimization (MO), or bi-objective optimization in the special case of two
objectives, offers a theoretical foundation to make optimal decisions in these circumstances.
Often, no single solution exists that simultaneously optimizes all p € N22 objective func-
tions. Thus, in MO the set of all optimal trade-off solutions (or a subset thereof) is wanted.

In general a multiobjective optimization problem (MOP) can be defined as

minz(x) = (z1(x), .., 2p(x)) (3.16)
st. xe k.

All definitions introduced in Section [3.1] can be extended to the multiobjective case. How-
ever, the notion of optimality of z : X — RP has to be redefined as there exists no canonical
order in RP. Therefore, a MOP additionally has to define an ordered space (RP, <) and a
mapping function () that maps from RP to the order space (RP, <)%, Using this definition,
a feasible solution x* € X is said to be an optimal solution of an MOP if A x € X, x # x*
such that

0(2(x)) < 0(z(x")). (3.17)

Based on the tuple of ordered space and mapping function -/6/(RP, <), MOPs can be
divided into multiobjective optimization classes®?. In this work, only two multiobjective
classes are considered, the class of lexicographical ordered MOPs (X, z(), RP)/id /(RP, <jex)
(Chapter [5), and the class of component-wise MOPs (X, z(), RP)/id /(RPF, <) (Chapter []).
We will focus on the latter and will only discuss properties of the component-wise MOP in

the reminder of this section.
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3.2.1 Efficiency and Nondominance

An optimal solution of a component-wise MOP x’ € X is called efficient or Pareto optimal,
if 3 x € X such that z;(x) < z(x') for i € [1,..,p] and z(x) # z(x'). Its corresponding
objective vector z(x’) is called a non-dominated point>?. The set of all efficient solutions
x" € X is denoted by X, whereas the set of all non-dominated points is denoted by Yy
and often referred to as Pareto front (Figure (A)). Finding the whole Pareto front of a
given MOP is the goal of multiobjective optimization. In the context of MOLPs supported
efficient solutions become relevant. An efficient solution x’ € X’g is called supported efficient
if there exists a A € R‘i such that x” is an optimal solution to the following transformed
single objective optimization problem:

min Mz(x). (3.18)
The corresponding objective vector z(x’) is called supported non-dominated point and is
located on the convex hull of the Pareto front??. Efficient solutions of an MOLP are
all supported and also connected, i.e. all points on a line between two consecutive non-
dominated points are also non-dominated®?. Thus the whole Pareto front of an MOLP can

be sufficiently described by the extreme points of its convex hull.

3.2.2 Scalarization Methods

The classical approach to solving MOPs transforms the MOP into a parameterized single
objective problem that is solved multiple times with altering parameters. Such methods
are summarized under the term scalarization.

The most prominent and widely used scalarization technique due to the MOLP proper-
ties discussed in Section is the so-called weighted-sum method (Figure (B)). The

weighted-sum method combines the different objectives into a weighted sum

p

Eéi}{l; Nizi(x), with A € RY (3.19)
1=

and finds all extreme supported non-dominated points by altering these weights.

A second regularly applied scalarization method, usually in the context of MOILPs,
is the e-constraint method®!. It focuses on one objective and adds all other objective
functions as constraints with an upper limit to the problem formulation (Figure (©)).

Xmei}r(l zj(x) (3.20)
st zi(x) <€ Vie][l,.p,i#j
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Figure 3.2: (A) Biobjective minimzation example. The points on the red line
constitute the Pareto front. All points behind the front are feasible solutions but are
dominated by at least one point on the Pareto front (indicated by the vertical and
horizontal lines). y! represents the ideal point where both objectives would become
minimal if it were obtainable. (B) The weighted sum approach linearly combines
the objective functions to a single-objective optimization problem, but therefore is
only able to find non-dominated points residing on the convex hull of the Pareto
front (dotted line and white points). (C) The e-constraint method optimizes only one
objective and adds all other with an upper bound as constraints to the single-objective
model. By iteratively changing the upper bounds - indicated by the dotted line - all
non-dominated points can be obtained.

It iteratively solves the single-objective model and subtracts a small, constant value ¢; from
the constrained objectives to obtain a new non-dominated point in the next iteration.
Other methods combine both approaches® or relax the objective constraints®®. The
last method presented here is the augmented weighted Tchebycheff method that is applicable
to linear MOPs®#5Y Tt searches for non-dominated points by minimizing the distance to

the ideal point y/ = z/(x) defined by yé = mingex ¢l x:

=

. P T I T I
_ 4 E X — 3.21
peX hon V(% ~ Vi) 7k—l(Ck i .

where v > 0 and v > 0 are usually chosen as small positive weights. By altering the

parameters v and -y, all non-dominated points can be obtained.

3.2.3 Multiobjective Integer Programming

Multiobjective integer (MOILP) and mixed integer linear problems (MOMILP) are in many
ways much harder to solve than MOLPs. This is not only attributable to the NP-hardness
of general MILPs, but also to the existence of so-called unsupported non-dominated points,

i.e. non-dominated points that do not lie on the convex hull of the Pareto front.
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Due to the existence of these unsupported non-dominated points, simple scalarization
techniques such as the weighted-sum approach do not yield the complete non-dominated
set. The e-constraint method and derivatives thereof, on the other hand, are able to
recover the unsupported non-dominated points as they usually do not rely on convexity
assumptions. But the constraints on objective values usually render the problem NP-
hard, even if the objective function can be solved in polynomial time3?. The augmented
weighted Tchebycheff method is also able to retain all non-dominated points, but has to
be reformulated in order to linearize the max-term by introducing new constraints based
on parts of the objective function. This again suggests that the augmented weighted
Tchebycheff method is also NP-hard®”.
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Chapter 4

NGS-based HLA Genotyping using

Combinatorial Optimization

Parts of this chapter were published in:

Szolek, A.*, Schubert, B.*, Mohr, C.*, et al. (2014).
OptiType: precision HLA typing from next-generation sequencing data.
Bioinformatics, 30(23), 3310-3316.

* Joint First Authors.

4.1 Introduction

The human leukocyte antigen (HLA) cluster is one of the most important loci of the
adaptive immune system. It encodes for all major and minor HLA class I and II molecules,
which present small, potentially immunogenic peptides to CD4% or CD8T T-cells to induce
an immune reaction. Hence, the identification of a person’s HLA genotype is of interest

57158

in many biomedical applications, such as vaccinology , regenerative and translational

2900 and in autoimmune disease-related research®2. Due to its high polymorphic

medicine
variation and strong sequence similarity between alleles and even across loci, standard
short-read sequencing based methods are ill-equipped to identify the HLA genotype of
an individual unambiguously. Alignment-based genotyping methods cannot be used due
to massively ambiguous read alignment (Figure , as well as the absence of a suitable
reference sequence. Therefore, established methods make use of labor- and time-intensive
techniques constructing allele-specific oligonucleotide probes for hybridization, or they use
allele-specific primers for PCR amplification®. Other, non-sequence based methods use

specifically designed antibodies to identify HLA isoforms®.
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HLA minor

HLA Class Il

Figure 4.1: HLA read alignment matrix. Reads for each known HLA allele were
constructed and aligned against all other HLA alleles. Each row and column represents
an HLA allele and the entry represents how many reads of one HLA allele mapped to
another.

In recent years, new NGS-based sequencing protocols were proposed, overcoming some
of the very time-consuming steps of older methods® 7. These methods remain labor-
intensive with a turnover of approximately two days9% and artificially amplify the HLA locus.
However, using algorithmic solutions addressing the deconvolution of read ambiguities and
the reference problem on standard non-amplified NGS data, it should be theoretically
possible to determine the HLA genotype of an individual without the need to generate
additional data for the sole purpose of HLA genotyping. Such an approach would decrease
time and cost expenses, since in many clinical centers the sequencing of patients has become

standard practice for diagnostic purposes.

Related Work

The first computational work on the topic was proposed by Erlich et al. in 201198, It was
based on posterior probability estimation of allele pairs and was fully integrated into a
454 Titanium sequencing pipeline®®. Two years later, Warren et al. published the first
algorithmic solution, called HLAminer, that was able to infer the HLA genotype without
the need to specially tailor NGS-pipelines®Y. HLAminer used de novo assembly to overcome
the problem of the non-existing alignment reference and used an allele-specific scoring based

on the aligned contigs. The HLA alleles with the highest scoring of each locus assembled
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the HLA genotype of the individual. In 2012, Bbgel et al. proposed an alignment-based
greedy algorithm, called seq2HLA. The authors used all known HLA sequences and aligned
reads against the so-constructed set of reference sequences. The first HLA alleles are
independently determined for each locus based on the number of reads aligned to it. In a
second step, a potential second heterozygous allele is selected that explains a significant
amount of unassigned reads™. Both methods, HLAminer and seq2HLA, exemplify the two
strategies utilized to overcome the high polymorphism of the HLA cluster. ATHLATES,
proposed by Liu et al. ™, combined the reference approach with de novo assembly to select
HLA allele pairs with the smallest Hamming distances of the aligned contigs to known
exonic regions of all HLA alleles. Others used complicated tree structures to deconvolute
the aligned reads (HLAforest'™), or used filtering criteria based on coverage depth and base
coverage as pre-processing step™. All methods showed moderate accuracy in benchmark
studies. seq2HLA was only able to accurately predict two-digit HLA genotypes; HLAminer
and HLAforest achieved an accuracy of 85-90% correctly predicted four-digit HLA genotypes
on RNA-Seq data. For short-read RNA-Seq and WGS data, the performance was even
lower. Major et al. were able to yield a performance of 94% correctly predicted four-digit
HLA genotypes on exome data that fulfilled all their strict quality criteria, but had to
omit a significant percentage of samples of their test set as they did not fulfill their quality
criteria. ATHLATES claimed to produce predictions with 99% accuracy, but was only
tested on 15 samples of which only 11 were publicly available. Thus, the performance
cannot be assessed independently and might be overestimated.

A major factor of the poor performance might be the independence assumption made to
deconvolute the ambiguously aligned reads. All mentioned methods either treat each allele
or each locus independently and, therefore, count ambiguous reads mapping across alleles
and loci multiple times. Also, an unexploited source of information for WGS and exome date
are intronic sequences. A study by Blasczyk et al. showed that the observed polymorphic
variability in intronic segments stems from highly systematic mutations reflecting the
ancestral lineage of the allele™. Thus, harnessing intronic information could increase
prediction performance. However, incorporating intronic sequences is non-trivial, as 94%
of all known HLA alleles contained in IMGT®2 - the largest database of HLA sequences -

are incomplete.

Project Overview

To overcome the depicted problems and include the available intronic information, we
developed a new alignment-based algorithm called OptiType, that simultaneously selects all
major and minor HLA class I alleles to maximize the number of reads that can be explained

by the predicted genotype, thereby adequately addressing the problem of cross-allele, and
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cross-loci mapped reads. A read is said to be explained by an inferred genotype if the

OptiType \

Read mapping against /(B) alleles
Sequenced reads
q all HLA alleles —
I
max wTx
> s.t. Ax<b
SRR0123.456 1
HLA allele sequences

k Hit matrix construction J

Figure 4.2: OptiType’s four-digit HLA typing pipeline. Reference libraries for ge-
nomic and CDS sequences are generated by extracting exons 2 and 3 from each known
HLA-T allele. For genomic sequences, flanking intronic regions are also extracted. If
some of these regions are missing, phylogenetic information is used to reconstruct
the missing segments from the closest relative HLA-T allele. NGS reads are mapped
against the so-constructed HLA allele reference (A). From the mapping result, a binary
hit matrix C®*H is constructed for all reads » € R mapping to at least one allele
h € H of the reference with C, ; = 1 iff read r could be mapped to allele i otherwise,
C, = 0 (B). Based on this hit matrix, an ILP is formulated that optimizes the
number of explainable reads by selecting up to two alleles (columns of the hit matrix)
for each HLA-I locus (C). The selected alleles represent the most probable genotype

HLA00719

reads

read aligns to at least one HLA allele of the genotype with no more mismatches than to
any other allele. This formulation circumvents the problem of considering ambiguously
mapped reads multiple times during inference but comes with the cost of a combinatorial
explosion of potential HLA allele combinations. To efficiently solve the stated HLA genotype
inference problem, we embedded it into a well-studied combinatorial problem, namely into
a particular case of the set covering problem. The optimization form of the set covering
problem selects up to k sets .S; to maximize the size of their union U;c;S; with S; being
a subset of a universe U. Here, the universe U consists of all mapped reads, and a subset
is characterized by an HLA allele and the reads explained by it. For each locus either one
(homozygous case) or two (hehterozygous case) HLA alleles can be selected simultaneously.
The algorithm follows three steps to construct the set covering instance for HLA genotype
inference (Figure . First, reads are mapped against an HLA allele reference set. Since
only exon 2 and 3 have been fully sequenced for all HLA-I alleles, we considered only
these regions during mapping so that no allele is disadvantaged due to missing sequence
information (Figure A). For exome and WGS data, we additionally included intronic
sequences flanking exon two and three and developed a phylogenetic-based schema to
impute missing intronic segments. From these mapped reads a binary hit matrix was
constructed in a second step (Figure B). Each entry of the matrix indicated whether a
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particular read could be explained by an HLA allele or not. Based on this hit matrix, a

set covering instance is formulated and solved as integer linear program (Figure Q).

4.2 Materials and Methods

4.2.1 Reference Construction

HLA exon coding sequences (CDS), genomic sequences, as well as annotations were ex-
tracted from the IMGT/HLA database (Release 3.14.0, July 2013%2). The RNA reference
database was constructed by concatenating exon 2 and 3 of all HLA alleles. For exome
and WGS data, flanking intronic sequences were also considered. Partially sequenced HLA
alleles with missing intronic sequences were reconstructed by imputing the closest, fully
sequenced alleles with respect to sequence similarity based on k-tuple measure™ calculated
by ClustalOmega™ 1.1.0. On average, partial alleles had 1.6(4-1.04) fully sequenced nearest
neighbors with unique intron sequences. For sequences with multiple nearest neighbors, all
possible combinations were generated resulting in 10,779 reconstructed sequences for 6,489
partial alleles™ ). A leave-one-out cross validation was performed using the fully sequenced
HLA alleles to validate the quality of the reconstruction procedure. Exon 1, 2, and 3 of
one allele were discarded and reconstructed based on the remaining once. The sequence
similarity of the reconstructed and original HLA allele was 99.89%(+0.43%), correspond-
ing to an average 1.2 edit distance error on the three introns combined. For comparison,
sequence similarity between introns of the same loci was found to be 97.36% (£2.15%),

corresponding to 29 bp differences on average.

4.2.2 Read Mapping

Read mapping was performed with RazerS37® 3.1. All best alignments for every read with
a sequence identity of at least 97% were taken into account (—percentidentity 97 —distance-
range (). The maximum number of reported best matches (—maz-hits) was set to infinity.

All read matches fulfilling those criteria were reported and stored.

4.2.3 Hit Matrix Construction

Based on the aligned reads r € R to HLA alleles h € L, a binary hit matrix C**% was
constructed with C, j, = 1 iff read r could be mapped to HLA allele h; otherwise C,.;, = 0.
The columns of rare alleles that were not reported in allelefrequency.net™ or dbMHCB were
removed. Identical rows, resembling reads with the same mapping profile, were collapsed
and represented by a weighting vector o,.. To further reduce the dimensionality, alleles were
identified that were unlikely part of the HLA genotype. An allele was deemed unlikely, if

all its explained reads could have originated from another allele which explained additional

33



4. NGS-based HLA Genotyping using Combinatorial Optimization

reads. As a result, these identified alleles were deleted, since their biological evidence
could be explained by another, more likely HLA allele. More formally, columns for which
(CT,C..y = C.4) A(|C. 4| <|C.g4) with h,g € L hold true, were dropped as these columns

never could be part of an optimal solution.

4.2.4 Formulation of the Set Covering Problem

We base our formulation of the HLA genotype inference problem on the premise that the
correct genotype also explains the majority of mappable reads. Thus, we are searching for
a combination of up to six major and minor HLA-I alleles that maximize the number of
mappable reads under the biological constraints that at least one and at most two alleles
are selected per locus (constraint C1 and C2 in Eq. 4). Constraint C1 and C2 reflect the
diploid nature of the human genome and allow for homozygosity in the genotype. Such
problems can be conveniently modeled as a set covering problem, which in turn can be
expressed and solved as an integer linear program (ILP). In the following, we derive the
ILP representing the set covering formulation for HLA-I genotype inference.

We introduce a binary variable zj, for each HLA allele h € L with x; = 1 iff allele A is
part of the optimal HLA genotype S C L. Another binary variable y,., representing each

CF*Lis additionally introduced. Based on the hit matrix, a constraint

read of matrix
(C3) is formulated that forces y, = 1 iff read r could originate from the current genotype
S (i.e., it could be mapped to at least one of the alleles h € S). With these formulations

we arrive at the following ILP:

(01) max Z or - Yr (4.1)
reR
s.t.
(C1) VX e{AB,CG,H,DJ} > w2
heX
(C2) VX e{ABCG,HJ} dap =1
heX
(C3)  VreR > Con-an >y,
hel

with o, being the number of previously collapsed rows with the same mapping profile,
and A, B,C,G, H and J the sets of alleles for the major loci HLA-A, B, C and the minor
loci HLA-G, H, J.

While this formulation favors heterozygous loci combinations due to spurious hits caused

by sequencing errors and other sources of error, it is necessary to correct the objective
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function with a regularization term g¢(r) to account for homozygosity:

> her Th — ntoc ify, =1

0 otherwise

g(r) =

where n!°¢ describes the number of loci. The regularization term is weighted by a
constant S representing the proportion of reads that have to be additionally explained by
an allele combination to choose a heterozygous solution over a homozygous one. The defined
regularization term can be integrated into the existing ILP by introducing an additional
integer variable g, for each read r € R and three constraints (C4-C6). In addition, we
introduce a small penalizing constant  to prioritize alleles with full sequence information
over reconstructed alleles contributing to equally good solutions. The final ILP formulation

is thus given by:

(01) max Z or(yr — Bgr) — Z xp, (4.2)

reR heLR
s.t.
(C1) VXe{ABCG,H.J} > a2
heX
(C2) VX e{AB,CG, H,J} S ap>1
heX
(C3)  VreR > Conn > yr
heL
(C4)  VYreR gr < 7%,
(C5) VreR gr < Z zp, — o
heL
(C6) VreR gr > (Z xp, — nlod) — ploci(1 —y)
heL

where L C L is the set of reconstructed alleles, and 7 is a small constant factor penalizing
the use of reconstructed alleles (y = 0.01).

£ was fit with five-fold cross-validation on 230 samples of the 1,000 Genomes project.
The cross-validation folds have been stratified regarding homozygous and heterozygous

genotypes. Best performance was achieved with 8 = 0.09.

4.2.5 NGS Test Data Sets

To allow comparison with other published methods, the same publically available samples

have been used to evaluate OptiType. We therefore extracted 16 colorectal cancer RNA-Seq
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[SRP010181], and 20 low-coverage WGS samples of the HapMap Project®! from the NCBI
Sequence Read Archive®. Both data sets have been used by Warren et al. and Kim et
al. and contained pair-end samples with 100 to 102 bp long reads®®?. Additional 50
lymphoblastic cell line short read RNA-Seq samples [ERA002336]%2, as well as 12 WGS
samples of the HapMap Project have been extracted to be comparable with Boegel et
al. and Major et al. 7%, The short-read RNA-seq samples were pair-end and contained
37 bp long reads. Furthermore, 161 exome sequencing samples of the 1,000 Genomes

t83 were obtained, which have been used by Major et al. ™ and extended to 253

Projec
exome sequencing samples generated by Illumina HiSeq 2000 and Genome Analyzer II of
the 1,000 Genomes Project. The eleven used samples to evaluate ATHLATES™! have been
part of the extended 1,000 Genomes data set. A list of the used samples with accession

IDs is given in Appendix Table

4.2.6 Performance Metric

We used the percentage of correctly predicted HLA alleles and loci per sample as perfor-
mance measure, as it was already used by Boegel et al. and Warren et al.. The percentage
of correctly predicted zygosity was used as a second independent performance measure. We
defined the zygosity of a locus to be accurately predicted if it matched the experimental

zygosity without considering whether the HLA alleles were correctly predicted.

4.2.7 Implementation

OptiType was implemented in Python 2.7 using Pandas with HDF 5 support. The necessary
read mapping was performed with RaserzS3%4 and Bowtie28%. The ILP was formulated
in Pyomo 3.3%% a Python-based modeling language, and solved with CPLEX 12.5 (www,
ilog.com). OptiType is published under a three-clause BSD license and available at
http://github.com/FRED-2/0ptiTypel

The statistical analysis was performed in R 3.0.2. Bootstrapping with 100,000 repeti-
tions was used to calculate 95% confidence intervals. Statistical comparisons have been
carried out with a one-sided sign test if not stated otherwise and considered significant at

a significance level of 0.05.

4.3 Results

To establish OptiType’s overall performance, we tested its performance on a large hetero-
geneous data set consisting of WGS, WES, and RNA-Seq data of varying read lengths.
We then compared OptiType’s performance with previously published methods on subsets

used in the respective publications and established the benefits of our intron-reconstruction
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Results

approach. Our analysis was concluded with a sensitivity study on the performance influ-
ence of read length and coverage depth, two main factors we believed to be influential on

prediction accuracy.

4.3.1 Overall Accuracy and Comparison

OptiType was tested in total on 361 samples and achieved an accuracy of 97.1% (Clgs 96.1 —
97.8%) on four-digit level, and 99.3% (Clgs 98.7 — 99.7%) on two-digit level, correctly
predicting 939 of 950 (98.8%) heterozygous and 127 of 133 (95.5%) homozygous loci.

OptiType significantly outperformed HLAminer, seq2HLA, HLAForest, and the ap-
proach of Major et al. on the data sets the different methods were evaluated on respectively
(Figure . The accuracy gain amounted to 4 to 15%, corresponding to a 65 to 83% de-
crease of incorrectly predicted alleles. Only ATHLATES showed comparable performance
on its small benchmark set consisting of 11 samples.

On the complete 1,000 Genome data set, OptiType achieved an average accuracy of
97.6% (Clgs 96.7 — 98.4%), with 667 of 676 (98.7%) correctly predicted heterozygous and
80 of 83 (96.4%) correctly predicted homozygous loci.

HEN OptiType WM HLAminer [ HLAforest [ Majoretal. E=

ATHLATES
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Figure 4.3: Performance comparison of HLA typing algorithms. OptiType’s average
prediction accuracy for major HLA-I loci was compared with four other published HLA
typing methods capable of four-digit typing on publicly available datasets previously
used to evaluate these methods

4.3.2 Influence of Intronic Reconstruction

To evaluate the influence of intronic sequence reconstruction for WGS, and WES data, a
reference database was constructed using only exon 2 and 3. Instead of using RazerS3 for

read mapping, we used Bowtie2 with enabled local alignment (soft clipping) to avoid losing
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reads at exonic boundaries. Mismatch tolerance was similar to that of RazerS3’s settings
(Section [4.2.2).

As the length of exon 2 and 3 is ~ 275 bp, paired-end mapping is complicated. Hence,
only one mate could be mapped of a significant amount of paired-end reads. To account
for this, we developed two approaches for confusion matrix construction. The first method
strictly used pairs of reads, where only matched mates were used, whereas the second also
used reads with unmappable mates.

These configurations were tested on the 1,000 Genomes data set and compared to the
performance of OptiType with sequence reconstruction. On average, OptiType yielded
an accuracy of 93.5% (Clgs 91.8 — 95.1%) with the strict matrix construction rule and
90.6% (Clgs 89.0 —92.3%) with the hybrid approach of using single-end hits as well. These
results correspond to a 2.7- to 3.9-fold increase in error compared to OptiType with intronic

sequence reconstruction.

4.3.3 Influence of HLA Enrichment and Coverage Depth

As to study the effects of specific HLA enrichment on accuracy, we tested OptiType on a
WES sample that was prepared with a custom SureSelect HLA enrichment kit provided
by Michael Wittig (Institute of Clinical Molecular Biology, Christian-Albrechts-University
of Kiel, Germany) and Agilent Technologies. The sample additionally was prepared with
a SureSelectXT Human All Exon V5 kit (Agilent Technologies, Boblingen, Germany) and
sequenced with an Illumina HiSeq 2500 with 101 bp long reads. Due to the HLA enrichment,
the HLA-I loci exhibited an average coverage depth of ~ 4,100x.

From this sample, a subset of reads with decreasing sizes was extracted to simulate
different coverage depths. OptiType achieved a fully correct genotype prediction with as
little as 0.3% of the total number of reads, corresponding to ~ 12x coverage depth. This
amount equals ~ 15% of reads of a standard, non-HLA enriched WES sample.

To determine the influence of coverage depth on a broader sample, we used all 1,000
Genomes Project exome sequencing samples in a similar manner. Different amounts of
reads were randomly re-sampled over 4,000 times to simulate different coverage depths.
The reads were additionally trimmed to 2 x 32 bp to study the influence of read length as
well (Figure . An accuracy of 95% could be achieved with 10x coverage depth while
no effect on accuracy could be attributed to the shortened reads.

Overall the runtime of OptiType was manly influenced by coverage depth. On average
WES samples, OptiType has an approximate runtime of 90 minutes®’, of which the majority
of time is spent in the read-mapping and hit matrix construction steps. A solution to the

set covering problem, however, can usually be obtained in a few minutes if not seconds.
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— 1000 Genomes exome, 2x76 to 2x101 bp
— 1000 Genomes exome trimmed to 2x37 bp
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Figure 4.4: Coverage and read length dependence of prediction accuracy. To deter-
mine the influence of coverage depth on HLA typing accuracy, reads of 253 exome
sequencing runs of the 1,000 Genomes Project were subsampled > 4,000 times to
simulate different coverage depth conditions. To investigate the impact of read length
on performance, original reads were trimmed to 37 bp and evaluated with the same
subsampling procedure. Read length alone shows little effect on prediction accuracy
and an average coverage depth greater than 10x over the HLA-I loci has been found
to already yield maximal accuracy

4.4 Discussion

The HLA genotype is of great importance for many biomedical applications. Standard
technology to deduce the HLA genotype of a patient is very time-consuming and costly
since it involves the development of custom primers to enrich the HLA region artificially
during sequencing. As sequencing of patients is becoming more and more routinely applied
in clinics, NGS data not primarily generated for HLA genotyping become a cost and time
effective alternative to standard methodologies. Previous attempts also proved that, with
the help of algorithmic solutions, it is possible to infer the HLA genotype based on these
data%®™2 The accuracy of these early attempts, however, was unsatisfactory, mostly due to
drastic assumptions, such as the independence of all HLA alleles, made in the models to infer
the most probable genotype. We therefore developed a new method called OptiType, that
overcomes these drawbacks and over-simplifications of these early models. OptiType is fully
automated and infers the HLA type with four-digit resolution on NGS data from RNA-Seq,
WES, and WGS technologies. On an extensive benchmark, it demonstrated its superiority
to previously published in silico HLA typing by significantly outperforming them on both
two- and four-digit resolution with an accuracy of 99.3% (Clgs: 98.7-99.7%) and of 97.1%
(Clgs: 96.1-97.80%) respectively. The latter is especially important in clinical applications

like individualized vaccine design, prevention of graft-versus-host disease and treatment of
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autoimmune diseases. Additionally, OptiType, as an in silico approach, provides the benefits
of great cost reduction and a decrease of turnaround time in comparison to state-of-the-art
experimental HLA typing methods. In terms of zygosity prediction, OptiType achieved an
accuracy of 98.4% (Clgs: 97.5-99.1%) on 361 benchmarked runs, correctly predicting 939
of 950 heterozygous loci and 127 of 133 homozygous loci. Since its publication, OptiType’s
performance was again validated in two independent studies by Shukla et al.®® in 2015 and
Bauer et al.®” in 2016 and remains the most accurate HLA genotype inference method for
HLA-I genotypes available.

In general, coverage depth, as seen in the enrichment and simulation studies, does not
play a major role above a certain level. As previously observed by Major et al., the number
of covered bases has a stronger influence on the prediction outcome than coverage depth.
Short reads, while increasing the complexity of the problem because of higher mapping
ambiguities, did not have a negative effect on our method’s performance.

Incorrect predictions were mostly found to be caused by three distinct issues. First,
sequence stretches not covered by any reads can make it impossible to resolve the ambiguity
between the correct allele and alleles differing only on the uncovered segments. Second,
zygosity detection occasionally fails in cases where alleles with high sequence similarity
constitute a heterozygous locus. In such cases, including both alleles in the solution has
little impact on the total number of explained reads compared with including just one
of them; therefore, OptiType favors the homozygous solution. This problem is normally
encountered if the two alleles’ distinguishing segments have considerably lower coverage
than the rest of their sequence. Third, while typing minor loci generally helps with finding
the actual source of reads, mapping to both minor and major loci does not always resolve
all ambiguities for every genotype. Additionally, experimental typings of the benchmark
datasets were sometimes found to be inaccurate, as also observed for the 1,000 Genomes
Project samples®. This limits the concordance that can be achieved on these datasets.

It is important to ensure an equal a priori chance for every allele to be identified by
minimizing the disadvantage of alleles with only partial sequence information. Therefore,
only exons 2 and 3 and their flanking intron sequences were used as a reference, recon-
structing unknown intron sequences with a phylogeny-based approach for incomplete alleles.
Including intron sequences not only helped to retain more read pairs, but information from
intronic hits was found to be beneficial to performance increasing OptiType’s accuracy
by 4.5% corresponding to a 2.7-fold decrease in error. Furthermore, with an increasing
number of completely sequenced HLA alleles, the used reference sequences could be ex-
tended beyond regions surrounding exons 2 and 3, reducing ambiguities and increasing
prediction accuracy of OptiType. Also the underlying integer linear model of OptiType can
be easily extended to Type II HLA alleles by incorporating the slightly different biological
constraints of HLA-DRB, -DQ, and -DP. As to overcome the OptiTypes current bottleneck,
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the initial read alignment and hit-matrix construction, pre-build k-mer indexing structures

8990 could be used, which would

as used in modern RNA-Seq expression analysis algorithms
in turn decrease the runtime of OptiType tremendously, with no to minimal expected loss
in accuracy, as could be seen from the read length sensitivity analysis.

To summarize, OptiType is a fast and accurate HLA typing method based on NGS
data, which provides an alternative approach to common HLA genotyping methods. It
can be easily adapted to predict genotypes for loci other than HLA-I such as HLA-II and
transporter associated with antigen processing. Nevertheless, the predictions are restricted

to the used reference and, therefore, can predict only known alleles.
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Chapter 5

Designing String-of-beads Vaccines

with Optimal Spacers

Parts of this chapter were published in:

Schubert, B.* & Kohlbacher, O. (2016).
Designing String-of-beads Vaccines with Optimal Spacers.
Genome Medicine, 8(1), 1.

5.1 Introduction

The invention of vaccines is one of the greatest achievements in human medical history
and has led to the eradication of many infectious diseases”!. Vaccines work on the premise
of inducing long-term memory cells of the adaptive immune system without inducing an
actual illness to quickly mount an immune response against future infections of a specific
pathogen. Traditional vaccines typically consist of whole attenuated or dead pathogens, a
selection of antigens or parts of antigens administered as whole proteins, or DNA /RNA
fragments®292 Although these traditional vaccines have been very successful, they bear
risks of reversion to infectiousness, especially attenuated, living vaccines. The development
and production of traditional vaccines is also complex and costly®. As the knowledge
of our immune system and the mechanics of infections grew, novel rational-based vaccine
design strategies emerged reducing the vaccines to the parts that are necessary to induce
the wanted immune reaction. The center of this rational-based vaccine design approach are
epitope-based vaccines (EV). EV use only epitopes, small immunogenic regions of antigens,
to induce an immune reaction. The selection of these epitopes is very flexible and can be

tailored to fit the pathogen’s molecular characteristics and those of the patient, making

43



5. Designing String-of-beads Vaccines with Optimal Spacers

~ (1) Epitope Discovery

000000000

000000000

22228223

. 2) Epitope Selection

8 Candidate 8 (2) Epitop

S - Epitopes  §

QuuLeweewUuUuO

888888338 9383888
000000000 ©0000

Selected 43 EPitope Assembly
Epitopes

String-of-Beads (a) COO@COOO@O
String-of-Beads w/ Spacer (b) O@OOSOOOSO
Mosaic Vaccine (c) C_ Tl -

Vaccine

Figure 5.1: Schematic steps of EV design. Given a set of antigens, candidate epitopes
are identified using experimental or algorithmic methods (1). Out of these candidate
epitopes, a subset is selected that maximizes vaccine efficacy (2). These therapeutic
epitopes are then assembled into a final vaccine (3). This can be done by concatenating
the peptide sequences potentially using short spacer sequences to connect adjacent
epitopes (3a-b), or by constructing a polypeptide of overlapping sequences (3c).

EV a perfect fit for highly personalized therapies. Moreover, EV possess many advantages
over traditional vaccines in particular concerning safety, manufacturing, quality control,
and storage.

The rational development of EVs can be divided into three steps (Figure: (1) epitope
discovery, (2) epitope selection, and (3) epitope assembly. In each step, bioinformatics plays
an essential role. Supervised machine learning approaches like neural networks, support
vector machines, or probabilistic approaches are used during epitope discovery to predict
immunogenic peptides within an antigen to accelerate this step. The selection of epitopes
is the most vital step in the design process, therefore several methods have been developed

for a review). These methods differ in

to assist the selection process (see Schubert et al.
their emphasis of various aspects of EVs, as this topic is still highly controversial and not
well understood. Nevertheless, the assembly and delivery of EVs remains a major obstacle.
Several strategies haven be explored in studies delivering the selected epitopes directly
98]

as peptide cocktails, or assembled as polypeptides®®. One particular prominent approach
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assembles the epitopes like beads on a string and is hence called string-of-beads vaccines
(SBV). The efficacy of such SBVs is dependent on the correct intracellular processing
such that the majority of the selected immunogenic peptides are recovered during antigen
processing and subsequently presented on HLA molecules. A major factor in optimal
recovery is the correct cleavage of the epitopes, which was linked to the ordering of the
peptides within the SBV due to its influence on cleavage probability™. An unfavorable order
can lead to miscleaved epitopes, which in turn reduces the efficacy of the vaccine (Figure
5.2). Even new cleavage sites and non-therapeutic neo-epitopes can arise at junctions

between epitopes, which can have detrimental effects®?.

junction cleavage site

prm—
-6

non-junction cleavage site

@) (b) l (©

) e
Partly cleaved - m

Correctly cleaved Neo-Epitope formation

Figure 5.2: Possible cleavage outcomes of a SBV. The efficacy of a SBV depends on
correct proteasomal cleavage. Desired is a cleavage pattern that correctly recovers all
contained epitopes (a). Not all junction cleavage sites might be cleaved, which results
in a partly cleaved and less effective SBV (b). Cleavage of the SBV at non-junction
sites can create neo-epitopes. Generation of neo-epitopes can induce unwanted immune
responses and reduces the amount of desired epitopes generated by the SBV (c).

Several experimental groups have proposed the use of so-called spacers, small amino acid
sequences connecting two epitopes, to increase the recovery probabilities of the therapeutic
epitopesE However, the length and sequence of these spacers were not thoroughly
optimized and often the same spacer sequence was used throughout the whole SBV due
to the high experimental burden, although it was clear that the spacer sequence has to be
individually determined for each epitope pair to fully exploit its potential. An experimental
validation of all possible designs, however, is impossible even for relatively small SBVs.
A dozen of therapeutic epitopes can be combined in about half a billion distinct SBVs.
Considering additional spacer sequences of varying length and sequences would increase the
possibilities many times over. Also, with increasing spacer length, the problem of inducing
neo-epitopes and new cleavage sites becomes increasingly challenging. Thus, as of now,
it was unclear how to determine the optimal length and amino acid sequence of a spacer

connecting an epitope pair and the optimal order of the SBV.
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Related Work

Only a few computational approaches have been proposed that address SBV construction.
Vider-Shalit et al. suggested a genetic algorithm to simultaneously select and arrange ther-
apeutic epitopes to a SBVIY, Toussaint et al. embedded the epitope assembly problem
into the well-known traveling salesman problem (TSP) and solved it via integer linear

LIl But neither of these approaches considered spacer se-

102

programming or heuristically
quences. Only the method proposed by Antonets et al.*Y<, allowed for the construction
of spacer sequences and assembled the epitope-spacer pairs into a final SBV using the
TSP embedding proposed by Toussaint et al. However, the method uses a uninterpretable
objective function as it combines multiple terms resembling predictable aspects of the HLA
I antigen processing pathway by arbitrary weights. In addition, it uses exhaustive search
to find the best spacer of a predefined set of spacer sequences for pairs of epitopes, and

uses a genetic algorithm to solve the arising TSP problem.

Project Overview

In this work, we propose a framework to determine a provably optimal spacer sequence of
fixed length for a given HLA-I restricted epitope pair. We also extend the formulation to
determine the optimal spacer length and combine this approach with that of Toussaint et
al 1% to design an optimal SBV with flexible spacer sequences. Additionally, we account
for the problem of arising neo-epitopes and cleavage sites by formulating the problem of
designing a spacer sequence as multi-objective optimization problem that maximizes the
recovery probability of the desired epitopes, minimizes the immunogenicity of neo-epitopes,
and (optionally) minimizes the cleavage probability at non-junction sites at the same time.

More formally:

Problem Definition: Given a set E of N epitopes ey, .., en, we search for the optimal
order of all N epitopes as well as the length and sequences of the N — 1 spacers between
the epitopes that maximizes the recovery of the epitopes while minimizing the creation of
undesired neo-epitopes. An optimal spacer s;j of length k connecting two epitopes e; and e;
is defined as the sequence s;; that maximizes the likelihood that epitopes e; and e; are cleaved
at their respective junction cleavage sites ¢; and c;. This in turn potentially increases the
likelihood of recovering the therapeutic epitopes and thus the likelihood of being loaded and
presented on HLA-I molecules. In the case of neo-epitope formation spanning the connected
epitope-spacer pair e;8;;€;5, s;; should be additionally designed to reduce the immunogenicity

of the neo-epitopes and thus to reduce potential adverse effects.

To quantify the neo-epitope immunogenicity and cleavage likelihood of the epitopes,

standard machine learning methods have to be integrated into the optimization process.

46



Methods

Since computational prediction methods for proteasomal cleavage and HLA-I binding are
well-established, we focus our efforts solely on HLA-I antigen processing. As the spacer
sequence is defined over a discrete alphabet, namely that of all naturally occurring amino
acids X, and, as the ordering of the epitopes is also finite, we deal with a combinatorial
optimization problem. Depending on the chosen prediction models for cleavage likelihood
and immunogenicity, the whole problem can become impractical to solve even for small
instances (for non-linear, convex prediction models) or its underlying decision problem
becomes undecidable (in the case of non-linear, non-convex prediction methods) as these
models would lead to non-linear, (non-convex), mixed integer and constraint optimization

103104

problems . Therefore, we restrict the prediction models used within the optimization

to be linear.

5.2 Methods

5.2.1 Spacer Design as a Multiobjective Optimization Problem

As we could see from the discussion before, multiple design goals have to be considered
when designing spacer sequences for a SBV. On the one hand, the spacer sequence s;; that
connects the epitope pair e; and e; should be designed to maximize the cleavage probability
C(-) of the two. On the other hand, s;; should be designed to decrease the potential harmful
effects of arising neo-epitopes by reducing the neo-immunogenicity I(-) of the complete
concatenated sequence S := e;s;;je;. This naturally leads us to multiobjective optimization.
But solving a multiobjective optimization problem can be difficult, especially in the case of
discrete problems as discussed in Section Since increasing the cleavage likelihood and
thus increasing the efficacy of the SBV is clearly more important than to reduce potential
number of neo-epitopes by decreasing the neo-immunogenicity, the stated problem exhibits
a clear priority in its objectives. Hence, finding a Pareto-optimal solution can be drastically
simplified by applying lexicographic optimization (LO)%?. In LO, the objectives are ranked
based on their importance for the designer and several single objective problems of the

form

mingz;(z) (5.1)
s.t. zj(z) < zj(2)
where i € {1, N},j € {1,i —1}ifi > 1,
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can be solved to find a lexicographically optimal solution. Here, ¢ represents the priority
of the objective function and z;(&) the optimum of the j-th objective function found at

the j-th iteration.

5.2.2 Cleavage Site Model

We define the cleavage objective of spacer s;; and epitope pair e;,e; as the linear combination
of the individual cleavage likelihoods of cleavage site ¢; and ¢; predicted by a linear cleavage
site model ¢ : 2 X Ny — R:

ne—1

Clei ejlsiy) == Y de(Slic +1,1) + ¢e(Slje +11,1)- (5.2)
1=0

Here S := e;s;;¢; denotes the concatenated sequence of a spacer and its enclosing epitope
pair, S[z| indicates the z-th character of sequence S, n. represents the number of amino
acids used to predict a cleavage site, and i.,j. denote the start of the segments used to
predict the cleavage likelihood at site ¢; and c¢;, respectively. The value of ¢.(a, ) of amino
acid a at position 7 represents the influence of that amino acid at a position ¢ on the
cleavage log-likelihood. Thus the log-likelihood is obtained by summing over the values of

¢c(X[i], 1) for a given amino acid sequence X of length n..

5.2.3 Immunogenicity Model

The immunogenicity objective is based on the formulation proposed by Toussaint et al.1%,
which was used in the context of epitope selection. The formulation assumes that each
epitope contributes independently to the overall immunogenicity with respect to a target
population or an individual represented by a set of HLA alleles H. The impact of each
HLA allele is directly proportional to its probability pp of occurring in any individual of
the target population. In the case of a personalized setting, p, could be substituted with
normalized relative expression of the respective HLA allele, or simply equally weighted.
Since immunogenicity prediction of an epitope is still an unsolved problem, binding
affinity is often used to approximate the immunogenicity of a single peptide as there is a
strong correlation between those two propertiest’®. However, peptides with an insufficient
binding affinity are considered as non-binders, and thus should not contribute to the (neo)-
immunogenicity of a SBV construct. Hence, it is only necessary to alter the spacer sequence
si; connecting the epitope pair e;, e; if the artificial peptides of length n. spanning the
two epitopes and the connecting spacer exceed a certain binding threshold 7, necessary
to bind to HLA allele h. To account for that, only artificial peptides above the defined

binding threshold enter the objective function, while non-binding peptides do not influence
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the objective. We thus arrive at the immunogenictiy objective I:

n—ne ne—1
I(S|H) ==Y pn »_ max(0, > &r(S[i+ jl, b, §) — 7), (5.3)
heH i=1 j=0

where S is the input sequence of length n, and ¢r : ¥ x H x Ny — R>( represents a
linear binding affinity prediction model for an HLA allele h € H.

5.2.4 Spacer Design with Fixed Length

We first formulate the problem of designing a spacer of fixed length k as a bi-objective mixed
integer linear program (BOMIP) and cast it into its LO representation. We represent each
position in S := e;s;5¢; as a set of amino acids. The sets describing e; and e; only contain
the amino acids appearing in e; and ej: Sy := {S[l]} for I € [0, .., |e;], |ei| + &, ..., |ei|+k+e;]].
The sets defining the spacer sequence s;; can contain all naturally occurring amino acids:
Sy =X for | € [|ei],|eil + k — 1]. Additionally, each position 7 and amino acid a € S; is
assigned a binary decision variable z;, taking on z;, = 1 iff amino acid a at position i
is chosen in the final design. To ensure correct peptide sequences, a constraint has to be
added allowing only one amino acid per position. The complete bi-objective mixed integer

problem thus becomes:

Nne—1
max DY Tigradela )+ Y @josipde(b1)) (5.4)
=0 CLES“,_‘_Z bESJC+l
n—"ne ne—1
min y pp Y max(0,(Y Y irjadi(a,h, ) =)
heH i=1 7=0 aESi+j
s.t.
(C1) Vie{ln} > ma.<l1
a€S;

To obtain a lexicographically optimal solution of this BOMIP, we solve two consecutive
MIPs:
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Lospacer(€i7 €, k) = (5.5)
ne—1
Pl: % = max S Ticvradela D)+ D wjpipbe(d 1))
=0 aeSzC+l bGS]c+l
s.t.
Vie{l,n} megl
a€S;
n—"ne Nne—1
P2 Ze=miny pp oy max(0,(Y D zirjadr(ah.j)) =)
heH =1 7=0 aeSiH
s.t.
Vie{l,n} Y zia<1
a€S;
ne—1
Z Z Lic+, a®e(a,l) Z Lo+, poe(b, 1)) > azy
=0 (IGSZCJrl beSJc-H

Here, we restrict P2 to obtain at least o € [0, 1] fraction of the maximal cleavage score
achieved by solving P1. « represents the trade-off between cleavage likelihood and the

likelihood of decreasing the immunogenicity score.

5.2.5 Non-junction Cleavage Site Minimization

As to further reduce side effects and increase efficacy, non-junction cleavage sites arising
due to the introduced spacer sequences and order of the epitopes within the SBV, should
be kept at a minimum. This can be achieved by additionally minimizing the non-junctional
cleavage likelihood, which we define as the linear combination of the predicted cleavage
likelihoods ¢, of all non-junctional cleavage sites. Such an additional design goal can easily

be incorporated into the already existing framework by adding a third optimization problem
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to the sequences of consecutively solved MILPs:

LOspacerEx<ei; €5, k) = (56)

n—"ne ne—1

P3  Zgi=mine > > > Zipjate(a,]) (5.7)

i=TsiiciAje j=0 a€Siy;

s.t.
Vie{ln} Y i<l
a€S;
ne—1
Z Z xzc-i—lagbc a, l Z Ljo+1, b¢c(b l)) > az
=0 aGSZC_H bESJc-H
n—ne ne—1
doon Yy max(0,(Y ] D wirjadr(ah,j) —m) < (2- 5z
heH — i=1 j=0 a€S;;

Here again, o € [0,1] and § € [0, 1] represent the trade-offs between the three objective

functions.

5.2.6 String-of-Beads Design with Spacers of Flexible Length

To design SBVs with spacer sequences of flexible length, the LO formulation is iteratively
solved for each epitope pair and varying spacer length k € [0, .., K]. The spacer design
with the highest minimum of both cleavage site likelihoods is selected for each epitope pair
(Algorithm [5.3a)).

To find the best orientation, a fully connected and directed graph is initialized, where
each node represents an epitope, and each edge represents the best spacer connecting the
two epitopes. The edge weights are assigned to the negative cleavage log-likelihood of the
corresponding spacer-epitope pair. Following Toussaint et al., a TSP instance is formulated
based on this graph by adding a node that represents the N- and C-terminus of the SBV
and connecting it with zero edge weights to all other nodes (Figure . Solving this
formulated TSP instance yields an optimal ordering of the epitopes. Together with the
optimized spacers we thus obtain an optimal sequence for the entire vaccine construct.

This TPS instance can be solved using ILP techniques. Many different compact and
non-compact ILP formulations of the TSP exist varying in their tightness of the optimality-

107) " However, runtime can still be impracticable even for

108
I’

gap (surveyed in Orman et al.
small instances. That is why we use the TSP heuristic proposed by Lin and Kernighan
which was later refined by Helsgaun"?., The Lin-Kernighan heuristic (LKH-2) is a local
search algorithm using the k-opt move as main search routine. A k-opt move changes a

tour by replacing k edges from the tour with k£ new edges such that the resulting tour is
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input : FE set of epitopes
input : K max. spacer length

output : Optimal spacer s;; for each epitope pair

e;,ej € B
1 begin
2 A + —oo (a matrix of size E x E)
3 S < 0 (an array holding spacers s;;)
4 //For-Loops are executed in parallel KLLEPVLLL
5 foreach e;,e; € E x E do
6 for k < 0 to K do
7 sij < LOgpacer(€i,€ej, k)
8 if min(C(eilsij), C(ejlsij)) > Ali, ]
then
9 Alt, j] <
min(C(eilsiz), C(ejlsij))
10 S[i, gl < sij Terminus
11 end
12 end
13 end . .
14 end SVASTIWDGVQVK
(a) Spacer design of flexible length (b) TSP graph for SBV design

Figure 5.3: (a) The algorithm for designing spacer sequences of flexible length for
each epitope-pair. (b) Based on the optimal spacer sequences and length a fully
connected and directed graph is generated, where each node represents an epitope
and each edge represents the determined spacer with its negative cleavage likelihood.
By adding a dummy node and connecting it with all other nodes, a traveling salesman
instance can be formulated, which determines the optimal ordering of the string-of-
beads vaccine that maximizes the overall epitope recovery.

shorter. Because the number of moves increases exponentially with k, k is usually restricted
to k =2 or k = 3. The used k-opt move in LKH-2 however is an exception. Instead of a
prior specifying k, LKH-2 is adaptive and selects the k that leads to a shorter tour. The
runtime of LKH-2 is approximately O(n?2)HY,

5.2.7 Implementation

The framework was implemented in Python 2.7 and fully integrated into Fred 2 (Section
7.2). To efficiently solve the LO formulation we employed CPLEX 12.6 together with
Pyomo 4.2. For the epitope ordering we used the LKH-2 implementation of Helsgaunt?,
The implementation supports SYFPEITHI'M, SMMM2 SMMPBMC, and BIMASYS as
internal linear binding affinity prediction model, and PCM™M4 and ProteaSMMY1Y as
internal cleavage site prediction model. The source code is published under a 3-clause BSD

license and can be found at https://github.com/FRED-2/0ptiVac.
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Results

5.3 Results

For the purpose of this study SYFPEITHI™ and PCM™ have been used if not stated
otherwise. Statistical analysis was performed with R (www.r-project.org). Statistical
significance was considered at a significance level of 0.05.

A pool of nine-mer epitopes was predicted for proteins of the cytomegalic virus strain
AD169 (UniProt Proteom ID: UP000008991). A peptide was considered an epitope if it
exceeded a predicted SYFPEITHI-Score of 20 for at least one HLA allele prevalent in the
European population. Based on this epitope pool, several experiments were conducted to

validate the model performance.

5.3.1 Evaluation of in silico Designed Spacers

One thousand random epitope pairs, were generated and spacers of length 1-6 designed, op-
timized for the HLA distribution of the European population using a = 0.99. Fold-changes
in cleavage likelihood as well as neo-immunogenicity were compared with concatenated
epitopes without spacers, a commonly used fixed spacer (AAY), and with optimally
determined spacers (Figure [5.4)).

Desired Epitope Recovery Neo-epitope Immunogenicity
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Figure 5.4: Fold change in cleavage likelihood and differences in neo-immunogenicity
compared for 1,000 randomly sampled epitope pairs. Spacers of lengths 1 - 6 were
designed with the described model. The cleavage probability (left) and immunogenic-
ity (right) were compared for epitope pairs concatenated without a spacer sequence,
epitope pairs combined with a commonly used spacer sequence (AAY), and pairs com-
bined with optimally designed spacers. Black error bars represent the 68% confidence
intervals.

At each spacer length, a significant increase in cleavage likelihood could be observed
for epitope pairs with optimized spacers compared to epitope pairs without spacers (paired
one-sided Wilcoxon signed-rank test, Bonferroni-corrected). Also, the optimized spacers
outperformed the constructs with fixed spacer after a length of two (paired one-sided

Wilcoxon signed-rank test, Bonferroni-corrected). Maximal increase in cleavage likelihood
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was already achieved with a spacer length of four, which is not surprising since the applied
cleavage model uses four C- and two N-terminal amino acids to predict a cleavage site.
The use of optimal spacer sequences resulted in a 7.7-fold increase in cleavage likelihood
compared to epitope pairs without spacer sequences and a two-fold increase compared to
epitope pairs with a fixed AAY-spacer. Also, significant improvements could be observed
in terms of reduced neo-immunogenicity when using optimized spacers compared to both
designs with fixed spacers and without spacers (paired one-sided Wilcoxon signed-rank test,
Bonferroni-corrected). With increasing spacer length, the immunogenicity decreased when
using optimal spacer sequences. An average neo-immunogenicity reduction of 1.9-fold and
2.7-fold could be achieved at a spacer length of four compared to epitope pairs without

spacers and fixed spacers respectively.

5.3.2 Evaluation of String-of-beads Designs with Optimal Spacers

Out of the pool of epitopes, random sets of size [ = {3, 5,10, 15,20, 25,30} were selected
and the optimal ordering was determined for the string-of-beads construct without (SBV)
and with spacer sequences (SBVgpacer) for a maximal spacer length of £ = 6 amino acids.
Additionally, ten randomly ordered string-of-beads with fixed AAY spacers (SBVaay) for
the given epitope set were generated. This procedure was repeated fifty times for each set
size and the junction cleavage likelihood averaged over the number of arising junction sites,
the fraction of recovered epitopes (i.e., epitopes with preceding and succeeding C-terminal
cleavage site scores with positive cleavage score), as well as the neo-immunogenicity of the
complete construct normalized by the number of included epitopes were compared between
the string-of-beads with spacer, without spacer sequences, and the average performance of
the random constructs with fixed spacers (Figure .

The average junction cleavage scores of SBVgpacer and SBV sy were stable and well
above the cleavage threshold of zero for all set sizes with an average score of 1.74 £+
0.63 and 0.73 4+ 0.53 respectively, whereas the average junction cleavage score of SBV
decreased with increasing set sizes and was below the cleavage threshold even for small set
sizes with an average score of —0.85 + 1.09. This was also reflected in the percentage of
recovered epitopes. SBV exhibited a decreasing recovery with increasing set sizes with an
average of 15.4424.3%, while SBVgpacer and SBVay achieved a stable average recovery of
78.3 +£16.2% and 62.7 £+ 15.2%, corresponding to a 5-fold and 4-fold increase, respectively.
SBVpacer also consistently outperformed SBVaay both in cleavage likelihood (2.38-fold
increase) and recovery rate (1.25-fold increase). The differences in neo-immunogenicity
were not as pronounced, which was expected due to the chosen value of a. SBVgpacer

consistently achieved a lower neo-immunogenicity score (average 1.88 £+ 0.59) than SBV
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Figure 5.5: Comparison of string-of-beads with and without spacer sequences. Aver-
age junction cleavage likelihood (a), recovery percentage (b), and neo-immunogenicity
(c) were measured for optimal string-of-beads designs with, without, and fixed AAY
spacers. The string-of-beads constructs comprised 3 to 30 randomly selected epitopes.
For each set size, the sampling was repeated 50 times. The maximum spacer length
was set to k = 6. Black error bars and colored outlines represent the 68% confidence
intervals.

(average 3.37 £ 0.93) and SBVaay (average 4.31 £ 0.99) resulting in a decrease of 44.2%
and 56.8%, respectively.

The optimal spacer length averaged at 3.23 & 0.50 AA. The runtime for instances with
30 epitopes was 5 min on average on current commodity hardware (12-core Intel Xeon
E5-2620 running at 2 GHz).

5.3.3 Comparison of Experimentally used Designs with Optimized De-
signs

Several spacer sequences have been proposed in various settings ranging from prophylac-
tic vaccine to therapeutic cancer vaccine studies T3S0 However, these spacer
sequences are not universally applicable and their effectiveness depends on the epitope
pairs they connect. To show the potential efficacy of the proposed model, we compared
multiepitope studies that used spacers with our in silico designed spacers in terms of
epitope recovery and induced neo-epitopes. An epitope was considered recovered if its
preceding and succeeding cleavage sites were likely to be cleaved, as predicted by PCM114
(i.e., PCM-score > 0.0). Neo-epitope prediction was performed with SYFPEITHI™ using
the default threshold (i.e., SYFPEITHI-Score > 20).

Levy et al. proposed a therapeutic multiepitope polypeptide consisting of HLA-A*02:01
restricted modified epitopes derived from different melanoma associated antigens (gp100:209-
217(210M): IMDQVPFSV, gp100:280-288(288V): YLEPGEVTYV; Mart1:27-35(27L): LAGIG-
ILTV; tyrosinase: 368-376(370D): YMDGTMSQV) and showed the proteasomal dependent

efficacy in vitro using PBMC of healthy donors and patients undergoing treatment™6. To
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Figure 5.6: Spacer sequences were constructed with SYFPEITHIML, BIMAS™3 and SMMI2. Cleavage prediction
was performed with PCMT classifying a site as cleaved if its score was greater than zero. The epitope thresholds
used for neo-epitope detection were SYFPETHI-score > 20, BIMAS > 100 Tj /5, and SMM < 500 nM. Red bars
represent predicted epitopes and the intensity indicates overlapping epitopes at that position. The blue rectangles
represent predicted C-terminal cleavage sites. Spacer sequences are marked in red. A tick indicates the start position
of a predicted nine-mer epitope. Although the different prediction methods yielded different spacer sequences, the
overall result remained the same. The in silico designed spacers were superior in terms of recovered epitopes and
neo-epitope formation.



Discussion

combine the selected peptides, naturally derived spacer sequence (RKSY(L)) as well as
experimentally derived spacers (AAY, ALL/SSL) were used. The selected epitopes were
included multiple times in the polypeptide combined with the different spacers to maximize
the recovery probability. Therefore, we compared the different segments of the vaccine that
were connected with the same spacer sequences (Figure .

In general, the optimal SBV design outperformed the experimentally used spacer se-
quences both in terms of therapeutic epitope recovery and in reduced neo-epitope appear-
ance. With the designed spacers, 100% of therapeutic epitopes could be recovered without
generating neo-epitopes spanning the spacer sequences. The experimentally used spacers on
the other hand either generated neo-epitopes or were not able to recover an essential amount
of the therapeutic epitopes. With the spacer RKSY (L), only one out of four epitopes could
be recovered. ALL induced five neo-epitopes spanning the spacer and the Martl derived
epitope, while the combination of SLL and AAY generated neo-epitopes and did result in
recovery of one out of four epitopes only. Even the design with optimally ordered epitopes
and selected experimental spacer sequences could not recover all epitopes and introduced
neo-epitopes. In order to establish the effect of different (linear) epitope prediction methods,
the comparison was repeated with different methods (BIMAS™2 SMM™2). The recovery
analysis was again performed with PCM, and default thresholds for BIMAS (predicted
T/, > 100) and SMM (predicted IC5p < 500nM) were used for neo-epitope detection. All
therapeutic epitopes could be recovered using the in silico designed spacers with a smaller
or equal number of neo-epitope compared to the best experimentally used spacer sequence.
While there are differences in detail between the methods, their overall behavior remained
the same (Figure . Differences can be attributed to variation in prediction accuracy of
the methods.

Similar results could be observed for the proposed SBV construct of Ding et al.l?
(Appendix Figure . The proposed SBV was composed of HBV X protein derived T-
cell epitopes, which were combined with different spacer sequences to reduce the number
of junction neo-epitopes. With the in silico designed spacer sequences, all therapeutic
epitopes could be recovered without introducing neo-epitopes, whereas the experimentally

used spacers induced neo-epitopes and were not able to recover all therapeutic epitopes.

5.4 Discussion

In this work we proposed a mathematical model for designing spacer sequences of flexible
length for string-of-beads vaccines by exploiting existing proteasomal cleavage and epitope
prediction methods, and combined the model with a TSP approach for optimal epitope
ordering. We also addressed the problem of neo-epitopes and non-junction cleavage sites

arising by spacer sequences and order of epitopes within the string-of-beads by extending the
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formulation with two additional objective functions. To efficiently solve the multi-objective
optimization problem we employ lexicographical optimization techniques.

The efficacy of the model was shown by comparing the recovery rates and neo-immunogenicity
of optimal designs with commonly used fixed spacer sequences and spacer-less designs. The
optimal design led in each case to increased predicted epitope recovery and reduced gen-
eration of neo-antigens. We also compared experimentally tested string-of-beads designs
that used spacer sequences with our optimized designs. The experimentally used spacer
sequences were often sub-optimally chosen for the connecting epitopes. As a consequence,
neo-epitopes spanning the spacer sequences arose or proteasomal cleavage could not be
guided to cleave the therapeutic epitopes correctly. In contrast, the in silico designed
string-of-beads with optimally determined spacers showed improved cleavage patterns and
reduced neo-immunogenicity. Often, all therapeutic epitopes could be correctly cleaved
without introducing neo-epitopes.

An obvious limitation of the current method is its reliance on computational models
for proteasomal cleavage and epitope prediction. While models for HLA class I binding
prediction exhibit a high accuracy, proteasomal cleavage models still leave room for im-

121" Currently, the approach is restricted to HLA class I epitopes but could be

provements
effortlessly extended to HLA class II epitopes once a cleavage prediction method for HLA-
II ligands becomes available. Also, the framework is designed flexibly enough to replace
the underlying proteasomal cleavage prediction method, once more reliable computational
prediction models are published.

An experimental validation of selected optimal spacer designs is a non-trivial task. It
cannot be performed as exhaustively as our computational study - the mere number of
possible designs is simply too large. An experimental validation will thus most likely be
limited to comparing only a few selected optimal designs to fixed-spacer or spacer-less
designs.

In conclusion, our method is the first framework that optimally designs both epitope
order and spacers for a string-of-beads vaccine design. The mathematical method employs
state-of-the-art prediction methods, but does not depend on specific methods. Our model
predicts an increased recovery of desired epitopes and a reduced production of neo-epitopes

compared to both fixed-spacer and spacer-less designs.
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Chapter 6

De-immunization of Biotherapeutics

The content of this chapter is part of an unpublished manuscript:

Schubert, B.*, Schdrfe, C.S., Donnes, P., et al. (2016).

De-immunization of Factor VIII using the evolutionary Hamiltonian.

6.1 Introduction

Biopharmaceutical drugs, produced by recombinant expression, have become the third pillar
of the pharmaceutical industry, besides chemically synthesized small molecule drugs and
natural products?t®?. Biopharmaceutical drugs, also called biotherapeutics, are biomolecules
that display specific pharmacological activities that can be harnessed for therapeutic use or
diagnostic purposes. The majority of biotherapeutics are protein drugs such as cytokines,
hormones, growth factors, enzymes, and antibodies. But also, DNA and RNA therapies, as
well as vaccines belong to the category of biopharmaceutical drugs. Since the development
of recombinant insulin in the 1980s, the market of biotherapeutics has drastically increased
and reached a cumulative market value of $140 billion in 2013423, Also, the number of
approved biotherapeutics remains steady with ~ 55 new products annually since the mid-
1990s, representing roughly 26% of all genuinely new drugs (averaged over a four year
period starting 1995)143,

Although biotherapeutics show high activity and specificity and often are the only
available treatment, a critical drawback of their use is the buildup of the patient immune
response over timel, This immune response involves the formation of anti-drug antibodies
(ADA) to these biotherapeutics and can cause reduced efficacy up to complete loss of effect

or even adverse reactions 122124 ADA formation is an inherent problem of all classes of
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Figure 6.1: Intrinsic and extrinsic factors influencing the immunogenicity of a bio-
therapeutic. Besides extrinsic factors such as impurities, dosage, and duration, as well
as the route of administration, intrinsic factors specific to the biotherapeutic and the
patient using the drug influence the immunogenicity of the protein and thus the liklei-
hood of anti-drug antibody formation. Icons designed by Freepik and Madebyoliver
from Flaticon.
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biotherapeutics and is caused by multiple factors that can be distinguished by intrinsic and
extrinsic factors (Figure .

Manufacturing factors such as the host cell system that is used for recombinant protein
production, contaminants and process-related impurities, as well as the type of storage, have
an influence on immunogenicity of the biotherapeutic early on'”. But also, the treatment
factors such as route of administration, as well as the dosage and duration are extrinsic
factors contributing to the immunogenicity of the biotherapeutic. Several studies have
shown that an intramuscular and subcutaneous administration route is correlated with
high immunogenicity, whereas an intravenous route is comparably less immunogenetict22:126,
Chronic administration and high dosages are also accompanied by a high risk of developing
an anti-drug immune reaction”. Even though, it seems that dosage and duration do not
have a cumulative effect27,

Intrinsic factors include sequence variations, genetic factors of the patient, and post-
translational modification of the biotherapeutic. Not surprisingly, biotherapeutics derived

128

from non-human sources (e.g., streptokinase®, salmon calcitonin’®?, bovine adenosine

130)

deaminase are more immunogenic than human-derived therapeutics. Although, even

biotherapeutics of human origin can elicit strong, clinically relevant immune reactions31 134,
Also, patients that suffer from a deficient gene and are treated with a replacement therapy
such as factor VIII in the case of hemophilia A are more prone to develop ADAs since they
might lack the tolerance healthy individuals with a functioning gene would havel#?. In
some cases, the adverse immune reaction of the biotherapeutic is related to a specific HLA
genotype 29137 Post-translation modification of the biotherapeutic (or the lack thereof)
also has been associated with the immunogenicity of several biotherapeutics. For example,
the high immunogenicity of the nonglycosylated, bacteria-derived form of granulocyte
macrophage colony stimulation factor (GM-CSF) is caused by the exposure of antigenic

138

sites"2®. While hyper-glycosylation has not been found to be correlated with increased

immunogenicity so far13?

, oligosaccharide side chain enrichment has become a widespread
technique to increase serum half-life, solubility, and stability4Y. Another method to increase
serum half-life, stability, and in some cases also to reduce immunogenicity is PEGylation.
In the process of PEGylation, the biotherapeutic reacts with monomethoxy polyethylene
glycol (mPEG) via a linker such as the primary amino groups -NHy of the N-terminus or

14 Other commonly used

from the lysine residues of the therapeutic protein or peptide
functional groups are thiol (-SH), which are used for side specific pegylation in antibodies,
and secondary amine groups (-NH-) in oligonucleotides, or carboxylic acid (-COOH) or
hydroxyl (-OH) in small molecules"4L.

Since immunogenicity of therapeutic proteins is an intrinsic problem, reduction of
immunogenicity has become a major factor in drug development. The invention of immuno-

genicity reducing strategies for biotherapeutics was mainly driven by the development of
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monoclonal antibodies (mAbs) and resulted in a process called humanization. Humanized
mAbs only comprise the foreign complementarity determining regions of the variable re-
gions, while the remainder of the structure is of human origin. In recent years, fully human
mADbs have also been developed using bioengineering techniques combined with in vivo
screening in mice?#2. These classes of humanized and human antibodies reduced the risk
of undesirable immune reactions in antibody-based therapies?43.

Although humanization is quite effective, it is not applicable to other classes of bio-
therapeutics and even humanized, and fully human mAbs can still induce a clinically
relevant anti-drug immune response’#*. Besides the many extrinsic factors, the cellular
presentation and recognition of peptides, originating from the biotherapeutic, by the CD4+

1491 (Section

T-cell-mediated adaptive immune system mainly affect the induction of ADAs
2.4]). Therefore, the systematic removal of these epitopes by sequence alteration, referred
to as de-immunization, has been successfully used as an alternative approach to reducing

the immunogenicity of mAbs and other therapeutic proteingt&:44146:148]

Related Work

The identification of HLA-II epitopes and introduction of immunogenicity-reducing muta-
tions into the protein is highly complex and time-consuming. Often large screening efforts
only result in very few candidate designs. Therefore, computational screening approaches
have been developed to increase the success rate and decrease cost and time expense. The
most simple approaches use the well-established HLA-II epitope prediction methods to
predict promiscuous epitopes and reduce their predicted immunogenicity by locally altering
the protein sequence™#?120 But, the introduced mutations can have a significant impact on
the protein’s stability and function. Hence, such naive approaches will inevitably produce
designs impacting the biotherapeutic function. A more advanced approach proposed by
Cantor et al. therefore combined experimental and in silico methods to preserve protein
function™®!. First, HLA-II epitope clusters are identified in silico and a side-directed mu-
tagenesis under selective conditions that ensures to retain the protein’s function is applied.
The so created pool of variants is tested for HLA-II binding, followed by a biochemical
characterization of promising candidates. Finally, T-cell activation assays and antibody
titers in transgenic mice are conducted to assess the immunogenicity of the candidatel2Y,
Clearly, such a protocol is still labor intensive. Therefore, advanced computation methods
were developed that incorporated prediction methods, which can predict the impact of a
mutation on function and stability?!. Consequently, functionally harmful mutations were
excluded from the search space?!. But, using such a method ignores compensating effects
of multiple mutations. That is why the most recent methods simultaneously minimize the

protein’s immunogenicity and its stability as a proxy for function by either using quantum
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mechanical force fields (i.e. structural information)422

fitness using sequence information1®3.

or try to approximate the proteins

Project Overview

Even the advanced approaches use a simple epitope counting objective as an approximation
of immunogenicity ignoring the varying frequencies of HLA alleles in different populations.
They also employ native amino acid frequency and pairwise frequencies as protein fitness
estimate or rely on structural information, which is often not available. In this work
we present a new formulation of the de-immunization problem that solely uses sequence
information by leveraging recent advances in ab initio protein structure and variants effect
prediction24198  We also introduce a more expressive and quantitative immunogenicity
objective that accounts for the HLA distributions within different populations or the HLA
expression of an individual.

We define the de-immunization problem as to identify sequence alterations that remove
CD4+ T-cell epitopes - and thus reduce the risk of ADA formation, without disrupting the
structural and functional integrity of the protein excessively. More formally, we define the

problem as follows:

Problem Definition: Given a protein sequence S of length n and a set M; of possible
mutation per position 1 < i < n. Find a mutated sequence S’ of S with k mutation for
which S'[i] € M; V1 <1i < holds and that minimize simultaneously:

(1) I(S'|H)
(2) E(S")

Objective (1) describes the immunogenicity of the target biotherapeutic with H being the
set of HLA alleles under consideration. Here, we use the same definition as in Chapter
[ but replace the linear HLA-I epitope binding model with an appropriate linear HLA-II
epitope binding model. Objective (2), on the other and describes the overall fitness of the

protein (i.e, stability and function).

6.2 Methods

6.2.1 Protein Fitness Objective

This work is based on recent developments in ab initio prediction of protein structure
through evolutionary information contained in multiple sequence alignments (MSA) of
closely related protein sequences #1599 Pair-wise global entropy models (also known as

Potts models), allowed for the first time to accurately predict pair-wise contacts of residues
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in a protein structure from sequence information alone, which in turn could be used to infer
the complete structure of proteins or even of complexes 198 More importantly, though,

159H161 Here

the model has been shown to be predictive of effects of mutational changes
we will recap the statistical model and explain its usage in the context of biotherapeutic
deimmunization (nomenclature follows Ekeberg et al.194).

In the context of statistical structure inference, a protein sequence of a multiple sequence
alignment with length n is represented by a vector o = (01, ..0n), where o; € {1, .., ¢} with
q = 21 representing the 20 amino acids and the gap sign. Hence, a MSA of size B can be
represented by a matrix {a’b}szl. The single frequency for position ¢ € 1,..,n and character
k € {1,..,q} and pair-wise frequencies of positions i,j € 1,..,n and residues k,l € {1, ..,q}

can then be calculated as:

1 B

filk) =5 > (o, k) (6.1)
1 b;l
b=1

where 0(k, () is the Kronecker delta. The Potts model is than the simplest statistical model
P(o) that can reproduce f;(k) and f;;(k,1)"%? and is defined as:
1 n
P(o) = ZQXP(Z hilod)+ Y Jij(0i,07)) (6.3)
i=1 1<i<j<n
s.t.

Ploi=k) = ZP(U):fi(k?)

o
o=k

P(oi = k,05=1)= Y P(o) = fi;(k1),

e
07;:]{?
o=l
where w; and J; ; are Lagrange parameters that are fitted to match the observed single-side
and pair-wise residue frequencies of the MSA | and Z is the partition function. As the Potts
model is highly overparameterized, regularization is used to keep the model from overfitting.

In particular, an lp-regularizer is used on h; and J; ; of the following form:

n

Ry =X Y Ihll5+ X5 > 11403, (6.4)

i 1<i<j<n

where A, and Aj are hyperparameters that are experimentally chosen to be A, = 0.01

and Ay = 0.2(n — 1)%%9. To estimate suitable parameters for h; and J; ;, the negative
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log-likelihood I(h, J)

I(h,J) = Z; = D> faik D ik, 0) (6.5)

1<i<j<nk,l=1

is minimized, penalized by the regularization term R;,. As an exact solution is unobtainable,

due to the intractability of Z, instead of solving the log-likelihood of P(o) the pseudo-log

likelihood is used as approximationt62,

As to predict interacting residues, the inferred quantities of J; ; have to be summarized.
For that, the Frobenius norm SF]N of the zero-gauged transformed values of J;J is used,

SFN

where S; ) is defined as:

FN
Si,j = HJi,j

|2

As to account for phylogenetic bias and insufficient sampling, the Frobenius norm is nor-

malized using average-product correction introduced by Dunn et al.16%:
GFN gFN
SC FN 5] 1y
Sij =5ij — —gFN (6.7)

where - corresponds to the average over the concerning position. The top-ranked coupled
pairs are then used as residue-residue restrictions to fold the protein.

The presented statistical model can be seen as an approach to capture the evolutionary
process of a protein family, and thus is also a description of the complex evolutionary
pressure the protein family has evolved under. Since the model follows a Boltzmann-like

statistic, it has been postulated!®® that the statistical energy term

H(oj,05) Zh (04) Z Jij(0i,05), (6.8)

1<i<j<n

(or Hamiltonian) can be used to predict mutational effects on thermostability. However,
the authors noted that the correlation of Hamiltonian change AH and AG might be
confounded by the usually stronger functional aspect of the evolutionary pressure the protein

L59RI0L showed that indeed the Hamiltonian

is subjected to1%?. Recent empirical studies
captures not only the stability of a protein, but also functional aspects. In this sense,
the Hamiltonian can be seen as a more general measure of fitness describing the complex
evolutionary constraints of a protein. It is thus not surprising that the mutational change in

the Hamiltonian is most predictive for phenotypes that resembled the natural evolutionary
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pressuret®. We therefore use the Hamiltonian of the inferred Potts model as the second

objective function to quantify the fitness of the de-immunized biotherapeutic.

6.2.2 De-immunization Model

We solve the stated problem of de-immunization as a bi-objective mixed integer linear
program (BOMILP). The model is based on Kingsford et al.’s ILP formulation of the

0 as its objective can be interpreted as Hamiltonian and

side-chain placement problem9
the imposed constraints guarantee to establish the correct interactions between variables.
But instead of selecting energetically favorable rotamers, we encode each state of the model
as a possible amino acid variant at each position. To this end, a binary decision variable
xjq for each position i € {1,..,n} and each possible variation a € M; is introduced with
ziq = 1 iff the variant is part of the final mutant S’. An additional binary variable is
introduced for each pair of variants and positions wj j,p With w; ., = 1 iff variant a
at position ¢ and variant b at position j are selected as part of the solution S’. Using
x;, the immunogenicity objective introduced in Chapter [5| can be formulated (O1). But
here, ®;() represents a HLA-II binding model; in particular we used the linear prediction
model of TEPITOPEpan1®?. TEPITOPEpan is a transfer learning approach using the
original position specific scoring matrices of TEPITOPEYS and a BLOSUM-based sequence
similarities of HLA binding pockets to construct new position specific scoring matrices for
HLA alleles not included in the original TEPITOPE model®”. To be able to compare
the predicted quantities of TEPITOPEpan’s allele-specific models, the matrices are z-score
normalized and their binding threshold adopted accordingly, as the HLA models exhibited

a different score distribution.

n—"ne Ne—1
(01)  min) pp Yy max(0,(Y Y Fisjadrlah.j) —m) (6.9)
heH i=1 7=0 a€S;y;
n n
(02)  max} D wiahiat D, D D, D Wijashijes
i=1 a€M; i=1i<j<n acM; be M;
s.t.
(C1) VYie{l,n} Y omi. <1
a€M;
(02) v i,a € Mi,i >j S {1, ..,TL} Z Wijab = Tia
bEMj
(03) Y j,b S Mi,j <1€ {1, ..,n} Z Wijab = Tjb
a€eM;
n
(C4) Z Z (1-— xm) < k
=1 acW;
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The binary decision variables x; , and w; j 4 are associated with their corresponding fitness
terms h; o and J; j 45 to form the second objective function (02). To construct a consistent
model, three constraints are introduced guaranteeing that only one amino acid per position
is selected (C1) and that only pairwise interactions are considered for selected variants (i.e
Wijap, =1 > Tiqa=1Az;, =1, see C2 and C3). Constraints C2 and C3 can be further

166 which is

relaxed by dividing the pairwise fitness values into positive and negative sets
in practice done but disregarded here for ease of presentation. To be able to restrict the
mutant to a specific number of introduced variations, constraint C4 limits the number of

deviating amino acids to the wild type sequence W.

6.2.3 Pre-processing

To reduce the search space, a filtering based on position-specific amino acid frequency
fi(a) (i.e., conservation) is applied. Only amino acids at position i € 1..n exceeding a
certain frequency threshold gy are considered as possible variants at this site. Hence,
the set of possible variants per position is defined as M; := {a € X|fi(a) > Theq}. The
wild type amino acid of the target protein is additionally added if it does not exceed the
frequency threshold. This filtering is based on the assumption that variants, that are not or
infrequently observed, are harmful due to either destabilizing effects, reduction of function,
or intervening effects with interaction partners.

Other filtering methods for example based on summarized EC scores or based on prior
knowledge gathered from experimental studies are imaginable. A position-wise summarized
EC score SlS’C represents the position’s importance on overall fitness/structure. Hence,
positions with high summarized EC score could be excluded from potential mutations to
reduced stability disruption. However, this filtering scheme might restrict the optimization
strongly, rendering epitope clusters impossible to remove due to too far reduced search
space. Also, experimentally determined disease-linked mutations or in general deleterious
mutations known prior to the de-immunization could be excluded as well. But, this
could also lead to a strongly restricted optimization, as often mutational studies can only
evaluate the effect of single mutations disregarding potential compensating mutations at

other positions within the protein6?.

6.2.4 Solving a Bi-Objective ILP

Many real-world problems can only be adequately described by using multiple, often con-
flicting criteria. Such multiobjective optimization (MO) approaches can also be found

in many different areas of bioinformatics. Such include phylogenetict®? gene-, protein-,

170H172 1735175

and metabolic network inference , structure predic-

1761177 1781179

, protein and drug design

tion , as well as sequence and structure alignment8U18L While continuous
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linear problems can be easily and exactly solved due to their convexity while combining
the objectives into one with appropriate weights, discrete MOs are hard to solve, due to
the existing of unsupported non-dominated points (Section [3.2.3]). Often heuristics such as

1821184 185086 o1 scattered

multiobjective evolutionary algorithms , particle swarm algorithm
search!®” have been usually applied to discrete multi-objective problems. But with the
increasing efficiency of highly optimized single-objective solvers such as CPLEX or Gurobi,
the research area of discrete multiobjective exact optimization has attracted attention. So
called criterion-search algorithms started to emerge, leveraging the power of single-objective
optimizers by reducing the multiobjective problem into multiple single objective ones that
have to be solved iteratively.

However, these existing methods generally cannot utilize modern multicore systems,
and lack sophisticated implementations. Even commercial solvers such as CPLEX only
provides weighted-sum approaches to deal with bi-objective optimization problems, which
are unusable for the purpose of discrete multiobjective optimization due to the existence
of unsupported non-dominated points in such optimization problems. Recently, Boland
et al®” developed a new criterion search algorithm, called balanced box approach. It
applies only to bi-objective optimization problems, but Boland et al. could show that the
balanced box approach is significantly more efficient than any other of the criterion search

4J " The balanced box method is a simple divide-and-conquer approach that

approaches
initially defines a search rectangle based on the optimal values of the two objectives while
constraining the other and subsequently dividing the search rectangle into two smaller
search rectangles in each divide-step. But again, no implementation is available of the
presented method. The authors also did not exploit the obvious parallel nature of their
proposed approach. Consequently, our goal was to provide a highly scalable implementation
of the balanced box algorithm and efficiently exploit its parallel structure. To overcome the
weak parallel nature of divide-and-conquer in the early phases of the search, we developed
a two-phase approach combining techniques of the e-constraint method and the balanced
box method. In the first phase, we generate an approximate frontier using an evenly spaced
e-constraint grid. The new found non-dominated points are then used to initialize the
balanced box algorithm starting in a deeper level of the divide-and-conquer search tree. In
the following, we sketch the approach. For further detail on the balanced box approach,

the reader is kindly referred to Boland et al.%.

Preliminary Definitions

First we introduce necessary notations and concepts. A bi-objective optimization problem

can be stated as follows (notation adopted from Boland et al.4”): Let z! = (21, 24) and

z2 = (22, 22) be two points in solution space with 2; < 22 and 23 < zi. Further we
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define R(z!,z2) to be the rectangle spanned by z' and z?. A non-dominated point within
R(z',2?) can be found with the following sequential operation (the reader is referred to

Boland et al.#” for the detailed proof):

lexgréigvl{zl(x),ZQ(x) :2(x) € R(z',2%)} :=

1) z; = mi
(1) z Jgrcrél)r(lzl(x)

s.t z(x) € R(z',2?)

(2) zZp = min z9(x)

s.t. z(z) € R(z',2?%) and 2 (z) < 7

and is denoted as z = lexmingcx{21(7), 22(z) : 2(z) € R(z!,z2)}. This operation will
find a non-dominated point with smallest value of z; within the search rectangle R(z!,z?).
To find the non-dominated point with smallest value in zo, the sequence of single-objective
problems that have to be solved is reversed. When solving lex min,cx{z1(x), 22(z) : z(z) €
R(z',2z2)}, we can always assume that z? is a non-dominated point and together with other
specific properties of the balanced box method, one can simplify the lex min,cy operation
to solving two single-objective optimization problems with only one additional constraint
added each®:

lexgéi/ryl{zl (x), 22(x) :2(x) € R(z',2%)} :=

(1) zi = min z (z)
reX

st zp(z) < 23

-1 .
(2) z5 = min zo(x)

s.t. 2z (x) < Z1.

The Parallel Two-phase Balanced Box Approach

Boland’s first implementation only exploited the parallel implementations of the single-
objective solver used to perform the lex min,cy operation but not the parallel structure of
the balanced box approach, thus only marginal runtime speedups could be achieved using
multicore systems compared to a single threaded version of the balanced box method4?.
Here, we describe our parallel implementation of the balanced box method and certain
adjustments we took to overcome the weak parallel nature of the balanced box method to

increase the scalability and enable efficient use of multicore systems.
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A) ®) ©) (D)

Rb,

Figure 6.2: Depiction of the parallel two-phase balanced box approach. (A) first,
the boundaries of the Pareto front are identified. (B) Then, the space between the
boundaries is evenly divided and searched in parallel for Pareto points using the
e-constraint method. (C) The identified Pareto points are used to initiate rectangle
search spaces which can be processed in parallel using the standard rectangle-splitting
approach, by splitting the rectangle in half and searching independently the bottom
and top half (D). If the corner points of the rectangles are found during the search, it
is proven, that no further Pareto point resides within the search space and all points
have been identified.

As a first step, the anchor points of the Pareto front are calculated by solving zT =
lex mingex{21(x), 22(x) : 2(x) € R((—00,00),(—00,00))} and zB = lexmingex{22(x),
21(x) @ 2(x) € R((—00,00), (—00,00))} in parallel (Figure (A)). Then, the search space
within R(zT,zB) is evenly constrained based on boundary conditions enforced w.l.o.g. on
z1 (Figure (B)). The boundaries are calculated for a predefined number of constraints

m with

=T i - 2) with 1 < i < m. (6.10)

Each of the so defined sections of the search space can be searched independently by
solving z! = lexmingex{z1(x), 22(x) : 2(x) € R((77",21),zP)} and the resulting new
non-dominated points can be used as initial approximation of the Pareto front. The so
found non-dominated points might contain duplicates and also might not resemble the
complete Pareto front. Therefore, it is necessary to filter for duplicates and perform
a refinement of the Pareto front with the remaining non-dominated points. The non-
dominated points are thus sorted in nondecreasing order such that zll < z% <. < zf
Each consecutive pair of points spans a search rectangle R(z!,2z) with i < j. These
rectangles can now be searched in parallel by the balanced box algorithm (Figure (C)).

The search rectangles are split in half. First, the bottom half RP is searched by solving

for z! = lexmingex{21(x), 22(x) : 2(x) € R((2%, Z%Zé),zj)}. If a non-dominated point

. iy
is found, the upper half RT is further restricted and spans now R(z’, (z1 — e, Z2+22)) in

2
which z? = lex mingex{22(x), 21(x) : 2(x) € R(z!, (2 — e, zé;zg))} is searched for. Each

newly found point spans a new independent search rectangle R(z¢,z*) and R(z',z’) with

its adjacent point. These rectangles are searched in parallel with the described procedure
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(Figure (D)). If the sear;h operation yielded the known point z’ for R((z%, zé;'zé ), z7)

. . . % J
and z' for R(z’, (2] —¢, ZQ;ZQ )) accordingly, then this proves that the area does not contain

further non-dominated points. The rectangle search procedure is carried out until the
complete search space has been searched. Note that the rectangle R(z2,z!) cannot contain
any non-dominated points and, therefore, can be disregarded. The complete description in

pseudo code can be found in Algorithm [T}

Approximation

We use an approximation technique introduced by Boland et al.*? which is based on the
hypervolume indicator and an adjusted hypervolume indicator introduced by Zitzler et
al 188 that allows a quality assessment of an approximated Pareto front.

The measurement indicates the percentage of unexplored search space that could po-
tentially contain undiscovered non-dominated points. Hence, it constitutes a pessimistic
bound on the quality of the obtained solution. The search for further Pareto points is

stopped, when a certain percentage of unexplored space is reached.

6.2.5 Implementation

JackHMMER"%? was used for MSA construction that formed the basis of the statistical
fitness model. To increase residue coverage and sequence diversity, the alignment was

0720 and

created using five search iterations. Sequences with an E-value greater than 1
more than 70% gaps, as well as columns with more than 50% gaps where excluded from
the subsequent inference of the model. To further reduce sampling bias, the sequences
were clustered into bins with 90% sequence similarity, and weighted by the number of
cluster members. The parameters of the Potts model and EC scores were inferred using
EVfoldP™MI58  Additional structure-based fitness predictions were performed with the
FoldX server™ using the default settings. The resulting bi-objective integer linear program
was solved by the newly developed, distributed solver. Statistical analysis was done in R
3.2.1 and in Python using the module SciKit-learn 0.18.

The parallel two-phase balanced box approach was implemented in Python 2.7 using
Numpy, Polygon, and the CPLEX Python API. A message passing protocol was imple-
mented using the multiprocessing module of Python to be able to leverage distributed
cluster systems. The master process handles the algorithmic procedures, whereas the slave
processes implement the lex min-operation. An intermediary broker process, maintaining
a job and result queue, was used allowing master and slaves to work independently with-
out any direct communication, which in turn improves the scalability compared to direct

message passing between master and slaves, as it allows for asynchronous communication
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Algorithm 1: Two-phase balanced box algorithm in pseudo code.

1 DoneQ.init();
2 JobQ.init();
List.init();

[

//init search rectangle;
JobQ.add(lex min(z1, z2, R((—00, 0), (—o0, 00)));

)
JobQ.add(lex min(zz, z1, R((—00, 00), (—00, 0)));
JobQ.join();

S = I

]

//Phase one - epsilon grid;
9 27, R"=DoneQ.pop();

10 z”,R®=DoneQ.pop();

11 List.add(z7);

12 List.add(z%);

13 for i € [1,N] do

14 =21 + 2P =),

v — ~1 N ’
15 JobQ.add(lex min(z1, z2, R((7s, 23), 2%));
16 end

17 JobQ.join();
18 while /DoneQ.empty() do

19 z,R = DoneQ.pop();
20 List.add(z);
21 end

22 //Phase two - balanced box refinement;
23 List.sort();

24 running = 0;

25 for ¢ € [1, List.length — 1] do

26 z' = List.get(i);

27 z/ = List.get(i + 1);

28 JobQ.add(lex min(z1, 22, R((21, Zégzé ),27));

29 running ++;

30 end

31 while running # 0 do

32 islex miny, z, R(z*, 27 )=DoneQ.pop();

33 List.add(z);

34 running --;

35 if islexmin; then

36 JobQ.add (lex min(zz, 21, R(z", (Z1 — ¢, Zézzé )));
37 running +-;

38 if z # 2z’ then

39 JobQ.add(lex min(z1, z2, R((Z1, #), z7));
40 running ++;

41 end

42 else

43 if Z# z' then

a4 JobQ.add(lex min(z1, z2, R((2%, z§;22 ), 22));
45 running +-;

16 end

ar end

48 end

49 return List
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between the two. It also enables an efficient management of accumulating tasks, as every

solved problem spawns two new subproblems.

6.3 Results

6.3.1 Solver Evaluation
Benchmark Dataset

To evaluate the scalability and runtime behavior of the newly developed two-phase balanced
box approach, a benchmark data set was gathered from http://hdl.handle.net/1959)
13/1036183(accessed March 04, 2016), which consisted of bi-objective, two-dimensional 0-1
Knapsack problems (2DKP) of the following form:

(01) xg{l(%i(}n c’'x (6.11)
(02) xer?(%i(}n d’x

s.t.

(c1) afx<b (6.12)
(C2) efx<f

with a,c,d,e € R"™; b, f € R.

with n = 375, 500, 670, up to 750 items, respectively, to select from. The problem
instances were designed to consist of a large number of non-dominated points and exhibit

similar properties as benchmark datasets used before in the literature®?.

Solver Scalability and Runtime Analysis

All analysis were conducted on an Intel Xeon CPU E7-4850 v2 with 48 processors running
at 1.20 GHz, repeating each instance five times. As the single-objective problem instances
could be quickly solved, CPLEX was restricted to using one thread to avoid unnecessary
overhead. Note however that multithreading should be enabled, if the single-objective
reformulation of the problem cannot be solved efficiently.

An instance with 375 items was solved with 1, 2, 4, 8, 16, and 32 workers with a
parallel implementation (BBparaniel) and the two-phase implementation (BBiywo-phase) Of the
balanced box algorithm (Figure [6.3).
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Figure 6.3: Scalability comparison. An instance of the bi-objective, 2D Knapsack
problem with 375 items was solved with a parallel implementation of the standard
balanced box and the two-phase balanced box algorithm with increasing numbers of
cores. The gained speedup is shown compared to the single threaded version of the
balanced box algorithm and to the theoretically optimal linear speed (dashed line).

The maximum runtime speedup of 24.42 + 0.09 and 22.25 + 0.62 could be achieved for
BBitwo-phase and BBpararlel, respectively, using 32 processes. Both versions scaled optimally
with a low number of processes (up to four) and started to diverge from the ideal speedup
when using more than eight processes. The benefit of the two-phase approach became
visible with a larger number of processes (more than 16) and could further decrease the
runtime by additional 9% compared to the standard parallel version of the balanced box
algorithm. The runtime differences BBiywo-phase and BBparael amounted roughly to the
time needed for BBparanel to generate the number of identified non-dominated points found
by BBiwo-phase it its first phase. Thus, one can expect a much more prominent runtime
difference between the two-phase approach and the parallel version of the balanced box
algorithm with increasing runtime of the transformed single-objective problems.

The benchmark was extended to include all extracted instances. BBiwo-phase With
32 processes was compared to the single threaded version of the standard balanced box
algorithm (Table . On average, a speedup of 25.59 £ 1.35 could be achieved. With
increasing problems sizes, the speedup was more prominent, which might be due to the
fact that all processes could be used over a longer period of time in these large instances

than in the smaller instances.
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Instance #Items Runtime (p=1) [s] Runtime (p=32) [s] Speedup

A2 375 2526.11 103.45 24.42
A3 375 4749.48 190.58 24.92
A4 375 2542.89 111.60 22.79
Ab 375 3655.78 151.17 24.18
B7 500 11183.04 436.82 25.60
B8 500 8741.45 334.73 26.12
B9 500 5868.75 231.24 25.38
B10 500 6783.91 271.89 24.95
C11 670 14866.88 967.41 26.20
C12 670 15085.83 579.13 26.05
C13 670 17114.68 633.67 27.01
C14 670 11870.85 454.90 26.10
C15 670 10869.00 417.11 26.06
D20 750 19033.68 668.93 28.45

Table 6.1: Runtime and speedup analysis of the two-phase balanced box algorithm.

6.3.2 Application: De-immunization of Factor VIII
Factor VIII and Hemophilia A

To illustrate the model’s capability, we used factor VIII as use case. Factor VIII is essential
for blood clotting. Its gene is located on the long arm of the X chromosome (Xq28), being
approximately 186 kbp long and consisting of 26 exons and introns!?!. The gene product
comprises 2,332 AA and is structured into six domains, A1-A2-B-A3-C1-C2, of which Al-
A2 and parts of the B domain form the heavy chain and A3-C1-C2 the light chain’?2, The
protein is produced in sinusoidal cells of the liver as well in endothelial cells of the whole
body??¥. Bound to the von Willibrand factor (vWF), it circulates in the blood. Upon
injury of blood vessels, it separates from vWF and is activated via proteolysis of both the
heavy and light chain!?3, Factor VIII recruits and forms a complex with factor IX, another
coagulation factor. The complex formation leads to the activation of factor IX and factor
X, which initialize a positive feedback cascade that ultimately results in the formation of
stable fibrin clots?#4.

Gene defects in factor VIII result in the development of hemophilia A, of which 67%
are nonsynonymous point mutations, 25% are caused by small deletions and insertions, and
6% are large deletions???. In 40%-50% of patients suffering from severe hemophilia A, it
is caused by an inversion gene defect in intron 22, which leads to a complete disruption
of the protein. This gene defect can be traced back to errors in DNA replication during

t 196

spermatogenesis of the male parent™**. These gene defects lead to hindered clot forma-

tion and subsequently to haemorrhagic diathesis, which manifests in prolonged bleeding
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episodes, and spontaneous bleeding into soft tissues, joints, and muscles. Repeated haem-
orrhages were reported to cause chronic arthropathy, joint deformation, and loss of joint
movement I8,

The only on-demand or prophylactic treatment currently available is the administration
of functioning factor VIII to establish homeostasis. The treated dosage, frequency, and
number of infusions are strongly dependent on the severity of the illness. Prophylactic
treatment to prevent bleeding and joint damage has become a standard procedure, starts
at very young age (< 2 years), and is nowadays even tailored to the personal needs of the
patient often times using pharmacokinetic models and computer simulations®#,

The treatment, especially with prophylactic therapy, can be severely hampered by the
formation of anti-drug antibodies (ADAs). In 10-15% of patients with mild, and in 30% of
patients with severe hemophilia A develop ADA?Y: hence patients with the highest need
for therapy are those least likely to benefit. This correlation between severity of the disease
and lack of efficacy follows from the fact, that the body is more likely to recognize the
therapeutic factor VIII as foreign the more severe the natural mutation. In the extreme,
mutations that cause a total loss of factor VIII production are most strongly related to
ADA development?*2%2 The process of ADA development has been shown to be T-cell
dependent?? directed by the presentation of factor VIII-derived peptides on HLA molecules
of the patient. Driven by these serious side-effects, we focused our de-immunization efforts
on the C2-domain of factor VIII, which has been shown to be highly immunogenic and

involved in ADA development /4209

De-immunization of Factor VIII

To identify immunogenic clusters the factor VIIT C2-domain sequence (UniProt: FA§ HUMAN,
residues 2,188-2,345) was screened with TEPITOPEpan with the three most prevalent HLA
alleles in the European population DRB1*03:01, DRB1*07:01, and DRB1*15:01 with a
binding threshold of 5%. The screening identified a large region starting at residue 2,312
and ending at residue 2,340 (Figure (A)). In total, sixteen epitopes, of which nine
epitopes were located in the identified region, were predicted to bind to at least one of the
three HLA alleles. Also, three of the five most interacting residues resided in the region.
The region was in general significantly enriched with predicted strongly coupled residues
compared to other regions of the same size (sign test, s = 124, n = 130, p-value < 2.2e-16,
Clgs = [0.91, 1.00]). It is structurally characterized by a long beta-sheet as well as a loop
region (Figure (C)). Also, the region starting at residue 2,332 to residue 2,334 has been
described as an important component of the membrane binding motif4"®.
De-immunization efforts were thus focused on the identified immunogenic region of

factor VIII. The described model was used to calculate the Pareto fronts of mutation
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78

ID Mutation Epitopes Almmunogenicity AHamiltonian
wt 16
0 V2333E 11 -0.38 1.14
1 L2321F 16 2.25 0.83
2 Q2335H 16 4.91 0.77
3 Y2324L,V2333E 9 -2.16 6.47
4 Y2324H,V2333E 10 -1.84 5.96
5 R2326K,V2333E 10 -1.84 4.31
6 L2321T,V2333E 10 -1.59 3.68
7 L12321Y,V2333E 11 -1.01 3.48
8 L2321F V2333E 12 -0.99 1.97
9 V2333E,Q2335H 12 0.43 1.93
10 L2321F,Q2335H 17 4.3 1.47
11 V2313M,Y2324L,V2333E 8 -2.52 7.99
12 L23217T,12327L,V2333E 8 -2.39 6.47
13 L2321F,R2326K,V2333E 10 -2.21 5.32
14 V2313M,L2321T,V2333E 9 -1.95 5.16
15 L2321F,12313V,V2333E 10 -1.92 4.92
16 L2321F,12313L,V2333E 10 -1.53 4.61
17 V2313T,L2321F,V2333E 10 -1.36 4.58
18 V2313M,L2321F,V2333E 11 -1.34 3.52
19 L2321F,Y2324F V2333E 12 -1.05 3.26
20 L2321F,V2333E,Q2335H 13 -0.19 2.62
21 L2321F,Y2324F,Q2335H 17 4.24 2.55

Table 6.2: De-immunization results for mutation loads of k=1,2,3.
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loads between 1 and 3 simultaneous point mutations. Only residues with a site-specific
occurrence of more than 1% were considered as potential substitutions. TEPITOPEpan
with a binding threshold of 5% was used as internal prediction method for immunogenicity
prediction. Sequence alterations were only allowed to appear in the described region, but
were still selected based on the global alternation of the fitness landscape (i.e., all network
constraints of the fitness model were considered).

The de-immunization yielded sequence alterations shown in Table The trade-
off between immunogenicity and the fitness objectives was strongly visible. The less
immunogenic the designs became, the stronger effected was the fitness of the construct.
However, the fitness of the designs remained in close proximity of the wild type fitness
with an average distance of 0.81 + 0.43%. In general, no design yielded a stabilizing effect
suggesting that the wild type is close to an energetically optimal conformation within the
defined design space.

The maximal reduction of immunogenicity could be achieved with design 11 (V2313M,
Y2324L, V2333E), yielding an immunogenicity reduction of 44.99% of the whole domain
deleting 8 out of 9 epitopes within the selected region by simultaneously decreasing the
protein’s fitness by only 1.71%. The next best triple mutant (L2321T, 12327L, V2333E)
also achieved a deletion of eight epitopes by an immunogenicity reduction of 42% and
destabilization by 1.28%. Generally, all fitness scores resided in 95% percentile or higher
except of design 11 (V2313M, Y2324L, V2333E), which was located in the 90% percentile.

Experimental Immunogenicity Evaluation

In order to experimentally verify the predicted mutants, 15- to 16-mer peptides were
designed to span the predicted mutation sites and most of the predicted epitopes influenced
by the introduced mutation. As control their wild type counterparts were also tested. The
so designed peptides covered all designs with one mutation as well as a selection of double
and triple mutant designs (Appendix Table .

The peptides were tested with a commercial REVEAL HLA-Peptide binding assay
of Prolmmune (www.proimmune.com) for the same HLA alleles used in the in silico de-
immunization. The peptides were synthesized with the PEP-screen custom library method.
The used experimental method compares the affinity of the custom peptides to the affinity
of a known and highly affine reference peptide. The affinity of the peptide in question is
then reported as percentage of the signal generated by the control peptide. The affinity is
measured twice at time point HO, at the beginning of the incubation and again after 24
hours (H24) (Appendix Table [F.3)).

The allele-specific scores were summarized by linearly combining the measured affinity
scores of each HLA allele (Figure (C)). As predicted, most of the introduced mutations
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reduced the overall immunogenicity of the peptides. The highest reduction of 86.04% was
achieved by M-8 at HO. The strongest increase in immunogenicity of 87.01% at HO was
observed for M-4 confirming the predictions (predicted increase of 86.37%). Overall, the
measured and predicted immunogenicity of the tested peptides correlated strongly at HO

with r = 0.76 (Clgs = [0.47, 0.90], t = 4.85, df = 17, p-value = 1.5e-4, Figure (A)).

C
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Figure 6.5: (A) Correlations of measured and predicted immunogenicity of each
designed peptide of factor VIII at time point HO and after 24h H24. (B) Correlations
of the approximately measured and predicted change in immunogenicity for the com-
plete region of interest at both time points. (C) Illustration of how the measured
immunogenicity scores S of each epitope e; and HLA allele h € H were combined.
Colored bars represent introduced mutations.

To compare the predicted and measured gain or loss in immunogenicity caused by
the introduced mutations of the complete designs, overlapping peptides were used to
reconstruct the targeted region. The measured scores were again linearly combined and
normalized against the number of overlapping peptides used for reconstruction (Figure
(C)). The difference between wild type and mutant of the so calculated scores resemble the
approximated gain or loss in immunogenicity of the complete region. These tendencies were
compared with the differences between predicted wild type and mutant immunogenicity
for both time points (Figure (B)). At time point HO, a strong linear correlation of r =
0.85 could be observed (Clgs = [0.35, 0.97|, t = 3.87, df = 6, p-value = 8.3e-3). Similar

results were obtained for the data set collected at time point H24.

Evaluation of Functional Predictions

In a next step, we validated whether the evolutionary Hamiltonian can be estimated

accurately for factor VIII. As the alignment used for inference contained 4,800 sequences,
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we attained a sequence coverage of 30 x n (n = 157 AA, the length of the C2 domain),
which should suffice for high quality inference.

To validate the quality of the inferred model, we used the spatial accuracy of the total
epistatic constraints between residue pairs as an approximation of the model’s validity
assuming that correctly predicted distance constraints of residue pairs are a direct measure
of the model’s quality. We therefore compared predicted distances of the top 90 residues to
a known crystal structure of the factor VIII’'s C2 domain“"® (pdb: 3hny, Figure (A)).
Seventy-nine out of 90 ECs of the two residue pairs were spatially close (below 5 A) in the
used crystal structure, which corresponds to a model precision of 83%.

To further show the applicability of the Hamiltonian to predict structural effects of
mutations, we used the Hamiltonian model in a multinomial and logistic regression to
predict hemophilia A severity based on patient data collected from the factor VIII variant
database (http://www.factorviii-db.org). Since the severity of hemophilia A is directly
correlated with instability and malfunctioning of factor VIII, the prediction of disease
severity based on Hamiltonian changes can be seen as a proxy for functional and structural
effect prediction. A multinomial linear regression model was fit to single point mutation data
with known severity status that resided in the C2 domain of factor VIII (Appendix Table
?77?7). The change of Hamiltonian was used as independent variable, while the dependent
variable was categorized into three severity classes (severe, moderate, and mild) based on
a one-stage factor VIII:C assay. The data were randomly divided into training and test
set (70:30%-split) in a stratified manner. This process was repeated two hundred times
and the performance averaged over the runs. The multinomial regression model achieved
moderate prediction performance with a F1-micro score of 0.65 & 0.09, a F1-macro score
of 0.47 £+ 0.07, and a log-loss of 0.95 4+ 0.12. We combined the severe and moderate class,
and performed a logistic regression based on the same training and testing procedure. The
logistic regression model achieved good performance with a weighted AUC of 0.72 £ 0.11,
a weighted Fl-score of 0.73 + 0.11, and a log-loss of 0.63 4+ 0.06. By disregarding the
moderate class, the prediction performance could be further increased to weighted AUC of
0.75 £ 0.11, weighted F1-score of 0.74 + 0.12, and log-loss of 0.59 4 0.06.

We also compared the predicted changes of the Pareto front designs to a commonly
used structure-based approach namely FoldX (Figure . This method relies on structure,
rather than sequence, and predicts mutational effects on proteins based on a force field, thus
providing orthogonal information to the employed sequence-based approach. A significant
correlation of r = 0.44 (CI95 = [0.02, 0.73], t = 2.17, df = 20, p-value = 4.2e-2; Figure
(A)) could be observed. The two most deviating mutations were design 11 (V2313M,
Y2324L, V2333E) and design 3 (Y2324L, V2333E), both of which introduced a mutation at a
membrane binding position?"Y. This is why FoldX was under-predicting the deleteriousness

of these two designs, as a force field-based approach cannot capture such functional relations.
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Figure 6.6: Correlation between predicted mutational influence using the maximum
entropy model and FoldX before (left) and after (right) outlier correction.

In contrast, the Hamiltonian-based model was able to capture these relationships. After
removing these two outliers, a strong correlation of r = 0.84 (CI95 = [0.63,0.93]) could be
observed between the Hamiltonian-based predicted influences and the FoldX predictions (t
= 6.50, df = 18, p-value = 4.1e-6; Figure (B)).

Taking together the collected evidence, we are confident that the evolutionary Hamil-

tonian captures and predicts the protein fitness of mutational changes with good accuracy.

6.4 Discussion

Immunogenicity and the formation of anti-drug antibodies (ADAs) is a major problem of
all classes of biotherapeutics. Large, time-consuming experimental screening efforts have to
be conducted to find a few suitable sequence modifications to reduce the immunogenicity of
the biotherapeutic without major impediment of its structure or function. Computational
methods can help to guide these screening experiments, thus allowing to explore a larger
design space while reducing time and cost expense. Here, we introduced a computational
method that finds sequence alterations to reduce the protein’s immunogenicity while main-
taining its stability requiring only sequence information of the target protein. The method
uses a new immunogenicity objective that is, on the contrary to previous approaches, quan-
titative and integrates HLA allele distribution information of a target population. Since
the HLA distribution differs tremendously between populations, this will influence the
immunogenicity of a protein and hence T-cell epitopes that should be prioritized during
the de-immunization process.

To solve the resulting bi-objective combinatorial problem, we developed a new parallel
solving strategy that efficiently exploits modern distributed computing systems. Our

benchmark experiments showed that the implementation is highly effective yielding average
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speedups of 25-fold. Also the results suggest that the two-phase approach taken to overcome
some problems of the early stages of the balanced box algorithm could be highly beneficial
when using a large amount of processes and if the transformed single-objective problems
do need a significant amount of time to be solved. The efficacy of the solver can be further
increased by using the multi-threading capabilities of several single-objective solvers, such
as CPLEX, to even further exploit the structures of modern distributed cluster, grid, and
cloud systems. However criterion-space search algorithm and particular the balanced box
algorithm elicit a weakness. Due to the fact that these algorithms in general manipulate
floating point values multiple times, and in the case of the balanced box method even
compare for equality, inaccuracies can arise which can lead to numerical instabilities, if the
floating point accuracy parameters are not carefully chosen.

21152 relied on the

While previous approaches for Pareto-optimized de-immunization
existence of solved tertiary structures and force-field based approaches for mutational free
energy prediction, such as FoldX, we demonstrated that at least a similar performance
can be achieved using the evolutionary record of the target protein alone given that there
is a sufficient amount of diverse sequence information available. The high precision of
the predicted evolutionary couplings compared to a solved 3D structure showed that the
sequence-based global co-evolution model is sufficiently accurate for fitness prediction. The
strong correlation between fitness changes predicted by the hamiltonian and FoldX stability
predictions, as well as the good performance in predicting hemophilia A severity further
supports this assumption.

In a proof-of-principle study we applied our method to de-immunize the C2 domain of
factor VIII. Factor VIII is used as substitution therapy in hemophilia A patients, albeit
adverse immune reactions and ADA-formation are frequently observed exacerbating the
therapy tremendously. The C2 domain has been shown to be highly immunogenic and

involved in ADA formation42%205

. Thus, by identifying and removing epitope clusters via
de-immunization within the domain could decrease ADA formation and thus side effects of
the biotherapeutic. The fact that the identified epitope cluster coincided with a highly evo-
lutionary connected as well as functional important region underlines the need for intelligent
methods that are capable of incorporating structural and functional integrity prediction
in the de-immunization process. The in silico de-immunization step using the proposed
method demonstrates the power of such approaches; the immunogenicity of the complete
domain could be reduced by 44.99% by only focusing on the most immunogenic region with-
out disrupting the fitness landscape extensively. Moreover, the observed highly significant
correlations between measured and predicted immunogenicity both on individual peptide
and (reconstructed) region level affirmed that the underlying assumptions made by the

model are sufficient enough to predict the influence of mutation in terms of immunogenicity.

83



6. De-immunization of Biotherapeutics

The next step in an experimental validation of the factor VIII variants described here
could involve an in vivo mouse model as the one used by Moise et al.’®Y. Another alternative
would be to use PBMCs from hemophilia A patients with known inhibitor status to study
T-cell proliferation. Furthermore, it would also be very intriguing to further investigate
the effects on a personal level, studying mutations within the factor VIII gene, inhibitor
status, and HLA type of the patient.

While the utilization of the protein’s evolutionary record can be of use in cases when
the crystallization of the target proteins poses a problem, its dependence on a strong
evolutionary background can be problematic for target molecules that are chimeras or
engineered. In this case, it is currently not possible to obtain a sufficiently large and diverse
record for model inference. Thus, a combination of both sequence-based and structure-
based stability approximation methods could be combined to overcome the problems of both
approaches. Also, all proposed models can only indirectly predict the functional impact
of newly introduced mutations on interacting protein partners. Structural information of
interaction partners could be used to identify interacting residues and subsequently exclude
these from the pool of potential mutation sites. However, such data is scarce. Recently,
the used statistical model was generalized to predict interacting residues of protein-protein
interactions based on sequence information alone®®?. Such predictions could also be directly
incorporated into the fitness objective or used to exclude interacting positions as possible
mutation sites, if crystal structures of the interacting partners are not available.

In summary, we proposed a novel de-immunization model that integrates quantitative
immunogenicity optimization with sequence-based fitness optimization. We then demon-
strated the use of this model and the validity of our underlying assumptions by comparing
predictions for human factor VIII de-immunization to experimentally determined immuno-
genicity scores and well established structural-based stability prediction methods. Hence,
this approach will allow bioengineers to reliably explore the design space of the target

protein to select promising candidates for experimental evaluation.
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Chapter 7

Translational Immunoinformatics

7.1 Introduction

Computational immunology has significantly matured over the last decade and its applica-
tions are now widely used in biomedical research, especially in the field of basic cancer and
applied immunotherapy research™*8. These applications often require complex pipelines,
including pre- and post-processing, and use many different tools. The lack of standardized
data formats and interfaces in the immunoinformatics community makes the development
of such pipelines and the interoperability of various prediction tools difficult. Also, most
state-of-the-art immunoinformatics software has been developed for Unix-based operation
systems only and involves complex installation procedures. It is thus often challenging for
inexperienced researchers to apply these tools to their biomedical question.

Only a few attempts have been made to overcome these issues. The framework for
epitope detection (FRED)2U7 tries to unify interfaces to several prediction methods by
building a Python-based framework around them. It allows for rapid development of
complex immunoinformatics pipelines and easy interchangeability of different prediction
methods. The authors of Epitopemap?’® use a similar idea and developed a Python
interface for the IEDB supported epitope prediction methods together with a web-based
platform for epitope prediction and visualization.

Building on the idea of an unifying framework, we modernized FRED by completely re-
implementing and significantly extending its functionality, covering pre- and post-processing,
epitope binding, antigen processing prediction, HLA inference, and vaccine design (Section
72).

While FRED partly solves the issue of interoperability and rapid development, the
installation and usage remains problematic for the average biomedical researcher. Web
services, like the ones offered by the Center Biological Sequences (CBS) for their NetMHC
prediction family (http://www.cbs.dtu.dk/biotools/), or the Immune Epitope Database
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(IEDB)“% Analysis toolbox (http://www.iedb.org/) could solve the requirement of in-
stalling multiple software suites. However, these web services only offer little guidance to

t210 represents a notable exception. It carefully guides

the inexperienced user. EpiToolKi
the user step-by-step through the configuration of the tool with detailed explanations. But
none of these web services allow for a smooth interaction between different tools to build
analysis workflows. That is why we re-implemented and extended EpiToolKit to enable
such advanced functionality without losing its philosophy (Section [7.3]).

Factors such as data volume, speed, or legal restrictions (e.g., data privacy), often
prevent the use of web-based solutions, especially in biomedical research. These web
services can also be unreliable in terms of reachability and they can be slow depending on
the infrastructure of the web service. To meet the demands and reliability of biomedical
research, we developed ImmunoNodes (Section , an immunoinformatics toolbox that is
tightly integrated into the Konstanz Information Miner Analytics Platform (KNIME)23:24
an application for visual workflow development. It allows users to build complex workflows
with an easy to use and intuitive interface with a few clicks on any desktop computer.
Together with the KNIME Server and Grid Engine?, users can utilize their local distributed

computing system to scale-up their application if needed.

7.2 FRED 2 - An Immunoinformatics Framework for Python

Parts of this chapter were published in:

Schubert, B.*, Walzer, M., Brachvogel, H. P., et al. (2016).
FRED 2: an immunoinformatics framework for Python.
Bioinformatics, 32(13) 2044-2046.

FRED 2 (FRamework for Epitope Detection) is an open-source, Python-based frame-
work for computational immunology. It is the completely re-implemented successor of
FRED"" and provides a unified interface to many immunoinformatics related prediction
tools. We implemented routines covering data pre-processing, HLA typing, epitope and
antigen processing prediction, epitope selection, as well as epitope assembly. FRED 2
is flexibly designed to allow easy extension by providing well-defined interfaces. Build-
ing on top of popular modules such as BioPython (http://biopython.org) and Pandas
(http://pandas.pydata.org), FRED 2 allows for rapid prototyping of complex and inno-

vative immunoinformatics applications.
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FRED 2 - An Immunoinformatics Framework for Python

7.2.1 Implementation

FRED 2 is divided into four major packages: Core, 10, Vaccine Design, and Prediction
(Figure . In Core, classes are found that represent the most important biological
entities Transcript, Protein, Peptide, and HLA Allele, as well as Variant. It also provides
pre-processing functions to integrate Variants into Transcripts and generator functions to
cast one entity into the other if appropriate.

10 provides functionalities to read standard biological file formats such as FASTA,
or ANNOVAR“M as well as Variant Effect Predictor®l? generated VCF files and pro-
vides interfaces to major databases such as UniProt?l3] RefSeq“!4 and Ensemble?l? via
Biomart?1®, All database adapters have a unified interface ADBAdapter enforced through
Python’s AbstractBaseClass?.L.

Prediction methods are split into four packages EpitopePrediction, TAPPrediction,
CleavagePrediction, and HLATyping, each providing factory classes as single entry points
for the supported prediction methods (detailed overview of all supported prediction methods
can be found in Appendix Table . These factory classes serve as registration of all pre-
diction methods of a single type (e.g., epitope prediction). Newly implemented prediction
methods are automatically registered in the corresponding factory class via metaprogram-
ming by correctly inheriting from the suitable metaclass interface. The prediction methods
return A Result objects, which are functionally extended Panda.DataFrames.

FRED 2 also offers functionality for rational vaccine design. It implements OptiTope,

the mathematical framework for epitope selection proposed by Toussaint et al.t0°

101

, as well
as the epitope assembly approach suggested by Toussaint et al.*** and the one discussed in
Chapter [} We additionally extended the TSP method by Toussaint et al. to a bi-objective
problem, called ParetoEpitopeAssembly, in which the first objective optimizes the cleavage
likelihood as before, while the second objective minimizes the neo-epitope counts that are
pre-computed for any epitope pair with a supported epitope prediction method. We solve
the bi-objective model with the standard e-constraint method (Section [3.2.2)).

FRED 2 is open-source (http://fred-2.github.io/)) and released under a three-clause
BSD license. It is designed to be open and easily extendable by providing self-explanatory
interfaces using abstract base classes so that implementation of new functionality by a

wider community can be easily accomplished.

7.2.2 Application

Using FRED 2, complex pipelines can easily and quickly be implemented. To demonstrate
FRED 2’s capabilities, we re-implemented the minor histocompatibility antigen (miHA)
identification pipeline described by Fehldhahn et al.?!8, Minor histocompatibility antigens

play a crucial role in transplantation settings especially in hematopoietic stem cell trans-
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Figure 7.1: Simplified UML diagram of FRED 2. FRED 2 can be divided into four major packages that provide classes and
functions for recurring tasks in immunoinformatics. All packages provide pre-defined interfaces in the form of abstract base classes
(indicated with a leading A) to guide extensions.
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plantation (alloHCL) as a treatment for certain hematologic malignancies?!?. They are
often the cause for graft rejections in transplantation or graft-vs-host diseases in alloHCL,
but can also be used to support traditional cancer therapy by exploiting their beneficial

graft-vs-leukemia or graft-vs-tumor effects induced by donor T-cells?20.

Listing 7.1: Individualized miHA identification pipeline using FRED 2.

from Fred2.Core import Allele, generate_peptides_from_variants

from Fred2.EpitopePreidction import EpitopePredictorFactory

from Fred2.I0 import read_annovar_exonic, read_lines, MartsAdapter, EIdentifierTypes
from operator import ge

#initialize Biomart Adapter
marts = MartsAdapter()

#read matched HLA alleles
hlas = read_lines("matched_hlas.tsv", in_type=Allele)

#read donor and patient wvariants
donor_vars = read_annovar_exonic("donor_variants.vcf")
patient_vars = read_annovar_exonic("patient_variants.vcf")

#generate peptides and filter for potential miHA epitopes
donor_pep = generate_peptides_from_variants(donor_vars, 9, marts, EIdentifierTypes.ENSAMBLE)
patient_pep = generate_peptides_from_variants(patient_vars, 9, marts, EIdentifierTypes.ENSAMBLE)

candidate_pep = set(patient_pep)-set(donor_pep)

#init epitope prediction method, predict binding affinity for candidate_pep,

#and filter for binders (threshold < 500nM)

netMHCpan = EpitopePredictorFactor("netmhcpan")

filtered_binding = netMHCpan.predict(candidate_pep, alleles=hlas).filter_result((netMHCpan.name,ge,0.425))

#write results to file
filtered_binding.to_csv("candidate_miHA.tsv")

The aim of this pipeline is to identify potential miHA epitopes of an HLA-matched
donor-patient pair for T-cell priming to increase the graft-vs-leukemia effect after bone
marrow transplants. Given the variants of the patient and donor for genes relevant in
the hematopoiesis as well as the matched HLA alleles, one can generate the peptides of
both donor and patient of the relevant genes and filter for peptides that are unique to the
patient and bind to at least one of the matched HLA alleles. Such a pipeline can be easily
implemented in a few lines of code using FRED 2 (Listing [7.1)).
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7.3 EpiToolKit - A Web-based Workbench for Vaccine De-

sign

Parts of this chapter were published in:

Schubert, B.*, Brachvogel, H., Jirges, C., and Kohlbacher, O. (2015).
EpiToolKit - A Web-based Workbench for Vaccine Design.
Bioinformatics, 81(183), 2211-2213.

EpiToolKit (ETK) 2 is a web-based platform for computational vaccine design and
other immunoinformatics related applications. It supports every design step from HLA
genotyping of individuals, epitope discovery, epitope selection, to epitope assembly and
can be used for personalized or population optimized vaccine development. ETK 2 is
based on a customized version of the open-source platform Galaxy, which allows for a
flexible combination of tools as workflows, a reliable recording and sharing of results, and
the interaction with high-performance computing resources. In close resemblance to the
old implementation, ETK 2 also offers "all-in-one" versions of the tools that guide the

inexperienced user through each step of the configuration.

7.3.1 Implementation

ETK 2 was designed to ease the use for inexperienced users while still retaining great
flexibility in combining the different tools Galaxy offers. To accomplish this, ETK 2 is
divided into two sections.

Under Single Tools, Galaxy’s interface has been heavily customized to simplify the
configuration process of the different tools. The input pages are separated into several
configuration steps. The user is guided with individual help texts in each configuration step,
similar to its predecessor ETK (Figure . Each tool is also accompanied by an extended
help page in ETK 2’s wiki. Galaxy’s standard interface was extended with custom Back
and Next buttons, that allow the user to navigate between the different configuration steps
without losing previously entered configurations. Once a tool has been fully configured and
the task is submitted, its progress can be monitored on the History panel.

Under Workflow, these configuration steps are available as independent nodes, allowing

the development of complex workflows using Galaxy’s excellent graphical workflow editor.

EpiToolKit’s Tools

ETK 2 offers currently six immunoinformatics-related tools all implemented using FRED

2 (Section [7.2)):
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Figure 7.2: Screen shot of ETK 2’s web-interface. (1) The left panel lists all available
tools. (2) The middle panel visualizes the tool configuration and results pages. In
Single Tools view, the tool configuration is separated into several steps which can be
navigated via custom build buttons (3). Each step offers a help text (4) to guide the
users’ configurations (5). All submitted tasks are then displayed on the right History
panel (6).

Epitope Prediction: summarizes several HLA I and II epitope prediction tools into
one user interface. Different sequence input options provide access to protein databases
like NCBI RefSeq? and UniProt® in addition to manually entered protein or peptide

sequences.

Polymorphic Epitope Prediction: extends FEpitope Prediction by incorporating
variant information. From these variants, neo-antigens are constructed which enables the
discovery of neo-epitopes that are influenced by the used variant information. Variant
information can either be retrieved from dbSNP22U or from ANNOVARZM generated VCF
files. Polymorphic Epitope Prediction is based on SNEP?22 and was extended to handle

indels and frame shift mutations beside single nucleotide polymorphisms.

HLA Genotyping: provides an interface to OptiType, a novel approach for HLA
genotyping based on NGS data (Chapter .

Epitope Selection: is an interface to OptiTope 0223 4 highly flexible mathematical
framework for epitope selection. It selects a set of k epitopes that maximizes the overall
immunogenicity and thus the probability of inducing a long lasting immunity under certain

user-defined constraints.

Epitope Assembly: is an implementation of Toussaint et al.’s traveling salesman

formulation™ of the epitope assembly problem discussed in Chapter
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Spacer Design: provides an interface to the epitope assembly and spacer design

approach discussed in Chapter

Input Summary

Predicton Methods:  Syfpeithi,Calisimm /NetMHC
Peptide Length: 9 (1)

Epitope Prediction Results

Notice: The returned values represent prediction scores. They are not comparable between methods!
Typically, prediction with higher scores mean stronger binding.

(2) | erint || save

(3) Search:

Peptide *  Method A*01:01 A*02:01 A*03:01 A*11:01 A*24:02 A*26:0
AAAASARAS calisimm -0.058 -0.018 -0.018 -0.018 -0.041 -0.018
AAAASARAS netmhc 0.035 0.026 0.039 0.062 0.008 0.050

Figure 7.3: Screen shot of ETK 2’s epitope prediction result page. The result
page offers a configuration summary (1), search and export functionality (2), and an
interactive, sortable results table (3).

In the Workflow view, additional tools become available that are usually included as a

configuration step of the tools available under the Single Tools view:

Epitope Conservation: consumes a multiple sequence alignment of proteins and
calculates the consensus sequence. Based on this, it generates a list of k-mers and their
conservation scores, which is defined as the product of column-wise conservation of the
multiple sequence alignment™®. If an epitope could have originated from multiple sites,
the maximum epitope conservation is taken. The epitope conservation output can be used

in Epitope Selection to filter weakly conserved epitopes.

Epitope Filter: consumes the internal output of an epitope prediction task and filters

the predictions based on a user defined threshold.

Allele Selection: offers predefined lists of HLA alleles prevalent in different popu-

lations and geographic regions. It also allows to enter or select a user defined HLA list.

Allele Frequencies: consumes a HLA allele list and assigns allele frequencies based
on a selected population or geographic region. It also allows to assign custom frequencies

to the input alleles, or allocates a uniform probability per HLA locus.

All tools generate two outputs: an interactive presentation of the results in HTML and

an internal representation. The internal representation is a simple tab-delimited format
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that can be used as input to other tools provided by ETK 2 or Galaxy enabling the user to
build complex analysis workflows with Galaxy’s visual workflow editor. The HTML display
is making use of AJAX and jQuery libraries to allow high responsiveness and interactivity.
The HTML result pages offer a static configuration summary, as well as an interactive table
that can be sorted, searched, and exported to CSV or Excel (Figure .

7.3.2 Application

To demonstrate ETK 2’s capabilities, we developed a workflow for designing population-

optimized vaccines for seasonal influenza (Figure [7.4)).

Allele Selection x Allele Frequencies x Epitope Prediction % Epitope Selection x Epitope Assembly %
output_galaxy (allele) Allele List Protein fasta History Prediction Table Peptide list from
....................................................... Histo
output_galaxy (tabular) HLA Allele File HLA Allele File ry .......................................
..................... s ) ) output_file (html) %
Input dataset x output_file (html) ® Epitope Conservation
File output_galaxy (pep)
output Epitope Conservation % output_galaxy (pred) 23 I | | | | | cermsmemememsmensmenis
output_file (html) &®
Multiple MSA
output_galaxy (pep)
conservation (tabular)
consensus_fasta (fasta)

Figure 7.4: Example workflow for population-based vaccine design. Allele Selection
allows for specifying the target population represented by their HLA alleles. Allele
Frequencies then assigns frequencies to the chosen HLA alleles based on pre-assembled
data or manually assigned frequencies. Epitope Conservation takes a file containing
multiple MSA of antigens and constructs consensus sequences for each of them and
calculates conservation scores for each k-mer peptide generated from the consensus
sequences. Epitope Prediction performs the epitope prediction for the specify HLA
alleles and the consensus sequences. Epitope Selection consumes the prediction results
and selects a pre-defined number of epitopes under constraints for the specified target
population and antigens. Epitope Assembly arranges the selected epitopes such that
their recovery probability after proteasomal cleavage is maximal.

Based on the yearly WHO recommendations, a dataset consisting of HIN1 and H3N2
strains was extracted from the Influenza Research database?¥. Using NetMHC223 and
default configurations for the epitope selection step, 10 epitopes were selected (Appendix
Figure . The epitopes covered 5 out of 10 antigens and 26 out of 47 HLA alleles with a
population coverage of 99.66%. On average, each epitope was predicted to bind to 14 4 3.3
HLA alleles. According to the Immune Epitope Database22?, 10 out of 10 epitopes are
known HLA binders or substrings of known binders and 5 out of 10 are T-cell reactive

epitopes or substrings of such epitopes (Appendix Table [F.6]).
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7.4 ImmunoNodes - Bringing Immunoinformatics to KNIME

The content of this chapter is part of an unpublished manuscript:

Schubert, B.*, De la Garza, L., Mohr, C., et al. (2016).

ImmunoNodes - Graphical Development of Complex Immunoinformatics Workflows

ImmunoNodes is an immunoinformatics toolbox that is fully integrated into a visual
workflow development environment called Konstanz Information Miner Analytics Platform
(KNIME)2324 KNIME is a free, stand-alone, open-source, workflow development frame-
work for personal computers. Out of the box, it includes hundreds of sample workflows,
more than 1,000 nodes with a comprehensive range of solutions for statistics analysis, data
acquisition, and visualization. Since it is based on the Eclipse Integrated Development
Environment (IDE), is possible to run KNIME on all major platforms. Using the plugin
features of Eclipse, it is easy to extend the basic KNIME workbench functionalities by writ-
ing extensions, making it the perfect platform for integrative immunoinformatics analysis

and pipeline execution within the users’ local computing environment.

7.4.1 Implementation

ImmunoNodes provides the same functionality as ETK 2 (Section [7.3) and was also written
in Python using FRED 2 (Section [7.2)), but is independent of a web service. Being fully
integrated into KNIME, immunoinformatics workflows can be executed locally either on a
personal computer or on distributed computing systems like clusters or grids. It thus solves
technical and legal issues that would otherwise prevent the usage of web-based solutions
such as ETK.

ImmunoNodes’ KNIME integration was made possible by using the Generic KNIME
node (GKN) extension. GKN was developed to assist users to add arbitrary command line
tools into KNIME. Each command line tool must provide a description of how to interact
with it in the form of Common Tool Descriptor (CTD) file??. A CTD file is an XML
document that defines the inputs, outputs, and parameters of a command line tool, as
well as the excepted parameter types (Listing . Using such a CTD file, GKN can then
automatically create the command line call and execute the program.

Many of the software components used in ImmunoNodes are often difficult to install
for untrained individuals and are only available in Unix-based operating systems. To
overcome these limitations, we have extended GKN to natively execute command line tools
provided within a Docker container. Docker is a software project that enables a lightweight
virtualization of software applications, which internally allows an easy deployment of fully

configured software suites to the end user. In other words, the burden of installation is
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Listing 7.2: Sample CTD file describing the interaction between EpitopePrediction
and the end user.

<tool name="EpitopePredicton">

<PARAMETERS>
<NODE description="Epitope prediction" name="EpitopePredicton">
<ITEM name="input" type="input-file" supported_formats="*.tsv,*.csv"/>
<ITEM name="alleles" type="input-file" supported_formats="*.tsv,*.csv"/>
<ITEM name="output" type="output-file" supported_formats="*.tsv,*.csv"/>
<ITEM name="method" type="string" restrictions="netmhc, smmpmbec"/>
<ITEM name="length" type="int" restrictions="8:16" />
</NODE>
</PARAMETERS>
<cli>
<clielement optionIdentifier="--input">
<mapping referenceName="EpitopePredicton.input" />
</clielement>
<clielement optionIdentifier="--alleles">
<mapping referenceName="EpitopePredicton.alleles" />
</clielement>
<clielement optionIdentifier="--output">
<mapping referenceName="EpitopePredicton.output" />
</clielement>
<clielement optionIdentifier="--method">
<mapping referenceName="EpitopePredicton.method" />
</clielement>
<clielement optionIdentifier="--length">
<mapping referenceName="EpitopePredicton.length" />
</clielement>
</cli>
</tool>

shifted from the user to the developer, who has to provide fully configured so-called Docker
images. But by far the greatest advantage of Docker is the execution of Linux-restricted
software on Windows and Mac OS X operating systems. GKN is now able to automatically
generate the required Docker calls and can handle the interaction between the host system
and the virtualized Docker container (Figure[7.5).

To enable GKN to perform these tasks, two new classes were introduced, DockerCom-

mandGenerator and LocalDockerToolEzecutor. Once a particular Docker-extended GKN
node is executed, DockerCommandGenerator identifies input and output files and defines
the mount points within the Docker container of that node, generates the command line
call by parsing the provided CTD file, and alters the input and output paths to fit the
mount points defined within the Docker container. LocalDockerToolEzecutor is executing
the Docker modified command line call, checks whether the Docker daemon is running,
and starts the daemon if necessary. In addition to that, we extended the property file,
which each GKN project has to provide, to include a specification of which Docker-daemon
should be employed, and which Docker image each node of the GKN project should use

respectively.
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KNIME

GKN A

GKN B

O

>docker run -v input:/data/in

-v output:/data/out
immunonodes
<CTD-command>

Docker

Docker Container

Figure 7.5: Interaction between Generic KNIME Nodes (GKN) and Docker contain-
ers. We extended GKN in order to be able to execute command line tools wrapped in
a Docker container directly from KNIME. A Docker-extended GKN node first gathers
all input and output files to define mount points within the Docker container. Then
it generates the standard command line call based on the provided Common Tool
Descriptor (CTD) file, while substituting the input and output paths of the host
system with the newly generated mount points within the Docker container. Finally,
it adds the Docker-specific command line calls, and activates a pre-defined Docker
image, which contains the relevant command line tool.

7.4.2 Application

Immunotherapy-based neo-epitopes have become a promising tool in the fight against

cancer. Therefore, it is vital to be able to identify potential neo-epitopes quickly, given

the tumor-specific mutations of a patient. Immunoinformatics plays a critical role in this

effort. To illustrate the usage of ImmunoNodes for neo-epitope identification, we extracted

publicly available somatic mutations of a patient (TCGA-A6-2670-01) from the cancer

genome atlas that was part of the colon adenocarcinoma cohort?28. The variants were

Sequence A*02:01 (nM) Antigen Variants (GRCh37) COSMIC ID
KLFSVFYAV 3.02 OR2F1 g.143657901A>G 265540
KLIQFLMSL 7.98 HSF1 £.145535024C>G 265532
VLTPMLNPM 161.63 OR2F1 g.143657901A>G 265540
SLKDKAWKL 180.10 CYTL1 g.5018601G>A 734242, 265525
LIQFLMSLV 302.70 HSF1 g.145535024C>G 265532

Table 7.1: Predicted neo-epitopes of TCGA-A6-2670-01.

annotated with ANOVARZ (2015Dec03), filtered for missense mutations, and used as
input into the neo-epitope prediction node. Since the HLA genotype of the patient was not
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known, and sequencing data of TCGA for HLA inference with the HLATyping node was
restricted, we used HLA-A*02:01 for this illustrative purpose. Five neo-epitopes could be
identified falling below a binding threshold of < 500nM (Table , of which two originated
from antigen OR2F1, two from HSF1, and one from CYTL1. OR2F1 and HSF1 were
highly expressed in the patient’s tumor sample compared to the rest of the cohort (in the
98% percentile and 83% percentile respectively), while CYTL1 was only weakly expressed,
making the neo-epitopes that origin from OR2F1 and HSF1 possible vaccine candidates

(expression data retrieved from cBioPortal?27).

7.5 Discussion

Rapid prototyping and development of reliable pipelines is at the heart of any fast-paced
research area such as precision medicine. Non-compliant software interfaces and the lack
of standardized output formats prolong the implementation process inadvertently, which
is particularly the case for growing fields such as computational immunomics, where no
consolidation has happened yet. That is why we developed FRED 2, a versatile immunoin-
formatics software framework enabling a unified interface to many tools, from epitope
prediction, HLA typing, to epitope selection and assembly. FRED 2 allows developers
to implement novel analysis workflows quickly while maintaining interoperability via well-
defined interfaces and output formats. Its openness, intuitive use, and easy extensibility
make FRED 2 a perfect hub for advanced immunoinformatics application development,
thus constituting a great asset for the future progress of the field. With a growing developer
base, the much-needed standardization of interfaces and formats could be established and
refined.

The transfer of advanced immunoinformatics applications into a routine usage by clini-
cians and biologists remains challenging due to often complicated installation procedures
and confusing user interfaces with little to no guidance. We therefore developed a web
service called EpiToolKit 2 based on the Galaxy platform that enables users to create
immunoinformatics workflows by just visually combining simple building blocks without
the need of installing any software. Additionally, EpiToolKit 2 provides extensive guidance
in each configuration step of the individual components. It also allows the user to store,
version control, and share the developed workflows together with the used tool settings
increasing reproducibility. Beyond the presented application, EpiToolKit 2 can be used to
tackle a manifold of other immunological questions and thus should not only be valuable
for applied but also for basic immunological research.

The unique nature of biomedical research, however, often restricts the usage of web-
based solutions due to data volumes or legal issues. Having these aspects in mind, we

developed ImmunoNodes, an immunoinformatics KNIME plug-in for desktop computers
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that has the same functionality as EpitToolKit 2 and maintains all benefits of Galaxy-
based web service. Due to our newly developed GKN extension, which enables the call of
dockerized software from within KNIME, the complexity of installation and configuration
of required third-party libraries has been lifted from the end user as a result of the provided
Docker images. The newly developed capability of GKN of calling arbitrary dockerized
command line tools opens up a broad variety of bioinformatics applications that could
be integrated into KNIME with minimal effort. Several initiatives, such as BioDocker
(http://biodocker.org/), BioBox (http://bioboxes.org/), and BioShaDock??8 have
already begun to compile pre-configured bioinformatics software that could potentially
be integrated into KNIME using the extended GKN making KNIME to one of the most
attractive platforms for bioinformatics practitioners. It would allow quick and straightfor-
ward implementations of complex workflows needed in, for example, multi-omics studies or
immunotherapy development.

To summarize, we developed software solutions that enable bioinformatics developers to
implement novel immunoinformatics pipelines quickly while sustaining interchangeability
of methods due to unified interfaces and output formats. We also established a web-based
and a desktop solution for practitioners to build immunoinformatics analysis workflows
using a graphical interface with pre-defined building blocks facilitating the daily use of

advanced immunoinformatics methods in biomedical research.
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Chapter 8

Conclusion and Outlook

Precision and personalized medicine is a revolutionizing step in health care practice that
tailors the treatment decision and the development of new drugs to fit the genetic prereg-
uisites of a specific sub-population or even an individual patient, thereby increasing the
efficacy of the treatment while decreasing its side effects. Its main application so far has
been in oncology, where the immune system plays a vital role for a successful treatment.
The subtle immunological and genetic differences between patients can have a large effect
on treatment outcome. Thus, it is important to address the immune system’s heterogeneity,
in particular that of the HLA gene cluster, when treating a patient with cancer or other
diseases where the immune system is involved (e.g., autoimmune diseases or infectious
diseases).

In the first part of this thesis, we presented a new and highly efficient method to
identify an individual’s HLA genotype based on standard NGS sequencing data (Chapter
4)). In contrast to traditional methods that require the creation of additional data to
elucidate the HLA genotype, this method can directly utilize pre-existing sequencing data
used for other diagnostic purposes and thus reduce cost and time. Especially in oncology,
where sequencing-based diagnostics have been widely implemented and will become part
of the standard care in the near future, algorithmic-based solutions pose a cost-effective
alternative to traditional HLA genotyping. However, there are several shortcomings of
existing methods. Most algorithmic solutions do not achieve the needed accuracy for
clinical applications, although a recent comparative study indicates sufficient performance
of OptiType on high quality data®’. This should be further explored to (a) identify
quality criteria of biomedically used sequencing data and (b) to thoroughly re-evaluate the
genotyping performance of OptiType on such high quality data. On a related note, the
prediction performance of current HLA typing algorithms is tightly linked to the quality
of the underlying reference database. An immediate quality increase could be achieved

by fully characterizing the partly sequenced HLA alleles. Also, OptiType currently lacks
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a quality measure of its prediction, which is vital for clinical applications. One possible
indicator could be the skewness of the top a-percent solutions. The distance between
the top solution and the next best solutions should reflect the uncertainty of the inferred
genotype under the premise that the solution ought to explain the majority of reads. A
more radical approach would be the re-formulation of OptiType’s model in a Bayesian
setting using a sparsity inducing hierarchical model with a group or set-cover prior22?,
We then discussed two scenarios, in which a stratification based on a populations’ HLA
distribution or on an individuals’ HLA genotype is necessary to improve treatment outcome
while reducing adverse effects. In the first example (Chapter [5]), we developed an advanced
approach to design so-called string-of-beads vaccines, that are polypeptide or RNA/DNA
vaccines composed of concatenated epitopes. The approach maximizes the recovery like-
lihood of the contained therapeutic peptides in order to increase vaccine efficacy. The
recovery is influenced by the ordering of the epitopes and the connecting spacer sequences
between epitopes. HLA stratification was used to reduce the risk of unwanted immune reac-
tions by newly arising artificial peptides that can bind to HLA molecules after miscleavage
events. We compared the in silico designed string-of-beads vaccines with experimentally
tested vaccines and showed that the experimental spacer sequences used in the literature
are often sub-optimally chosen. Together with collaborators, we are now working on an
experimental study to substantiate the method’s efficacy. To this end, we designed pairs
of string-of-beads vaccines with highest and lowest recovery probability based on prior
extracted epitopes with identified reactive T cell clones. In such a setting, it is possible
to directly identify the presented epitopes and thus measure the algorithm’s influence on
epitope recovery by comparing the predicted worst performing with the predicted best per-
forming string-of-beads construct. A general problem of the proposed method is its reliance
on existing cleavage prediction methods, which have been far from the prediction accuracy
of HLA binding methods. The development of more accurate approaches is mainly ham-

pered by the lack of high quality datal2!

. With newly developed mass spectrometry-based
HLA-ligand identification methods*, large, high-quality data will be available in the near
future that can be utilized to develop advanced cleavage prediction methods. These data,
however, are generated by a mixture of various cleavage events, from (immuno)proteasomal
cleavage to alternative pathways. Thus, methods seeking to use these data have to account
for its heterogeneity to optimally capitalize on the wealth of data.

While we have taken an iterative approach to vaccine design, by relying upon the
identification of a set of therapeutically usable epitopes before assembly, both selection
and assembly methods could be combined using integer linear programming. To this
end, two combinatorial problems, the traveling salesman problem and the subset selection
problem, have to be jointly solved. This class of problems is often encountered in operations

research under the name of orienteering or selective traveling salesman problem3Y. Such
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an orienteering model could also be used to design so-called mosaic vaccines by using

h232 a5 the underlying data structure on which the traveling

a peptide overlapping grap
salesman instance is defined. A mosaic vaccine is a polypeptide constructed by highly
overlapping peptide sequences and is a largely unexplored class of vaccines with primary
application in vaccine development against highly polymorphic viruses, such as influenza
and HIV233235 Mosaic vaccines possess the benefit of incorporating a larger proportion of
therapeutic epitopes than string-of-bead vaccines, and thus can cover a substantial fraction
of virus and HLA variability at once. However, such models are very hard to solve and
need sophisticated approximation algorithms to tackle realistic problem sizes.

In the second example (Chapter @, we discussed the issue of anti-drug antibody (ADA)
formation of biotherapeutics that causes a reduction of therapeutic efficacy or even systemic
allergic reactions. We also introduced an experimental procedure - termed de-immunization
- that targets ADA causing epitopes presented on HLA-II molecules by sequence alteration.
Such a procedure is highly time- and resource consuming and can only explore low amounts
of mutations (in the order of 1-3) simultaneously. We therefore developed a computational
approach that finds immunogenicity-reducing variants without disrupting the functional
and structural integrity of the protein strongly. For this purpose, we utilized a recently
developed sequence-based statistical model for structural ab initio and variant effect pre-
diction and combined it with the immunogenicity function developed in Chapter [5| in a
bi-objective mixed integer linear programming framework. We then applied our math-
ematical model to de-immunize the C2 domain of factor VIII, which is linked to ADA
formation in hemophilia A patients treated with factor VIII. Our subsequent experimental
analysis of the found mutations confirmed our underlying assumptions and yielded several
immunogenicity-reducing candidates for further study.

Similar ideas could be applied to antibody humanization. The sequence-based statistical
model could be used to identify suitable human antibody templates for a given murine
monoclonal antibody. To do so, the two-dimensional Hamiltonian has to be condensed to
a one-dimensional measure that can be utilized for sequence comparison. In theory, this
condensed sequence profile can be more expressive than standard sequence similarity-based
matrices, as it not only encodes evolutionary but also structural and functional information.
Generally, Potts models could potentially replace hidden Markov models for sequence
profiling and similar tasks where hidden Markov models are standardly employed.

In conjunction with this study, we developed a new and highly parallelized bi-objective
integer linear programming solver to be able to handle the inherent multiobjective nature
of the de-immunization problem. Our computational analysis showed its excellent runtime
behavior compared to other conventional approaches with a 25-fold speedup compared
to one of the best criterion search algorithms, the balanced box algorithm. The solver is

generically applicable to all bi-objective mixed integer linear programs, where only one
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objective exhibits the mixed integer property. Thus, the solver will be useful in other areas,
since freely available implementations of multiobjective solvers and especially of distributed
solvers, are rare. Nevertheless, solving a de-immunization problem of considerable size takes
a substantial amount of time due to the form of the protein fitness function, as its has been
shown to be NP-hard“* and inapproximable3’. Exact solutions, therefore, can only be
obtained for medium-sized problem instances. To overcome these limitations, approximate

solving schemes based on belief propagation435232

could be used by reparameterizing the
likelihood to incorporate the second objective function. Solving such a model iteratively
with different values of the mixing hyperparameter of the two objectives would yield
approximate non-dominated points that reside on the convex hull of the true Pareto front.

Both presented applications use an abstract approximation of immunogenicity based
on HLA binding affinity. Despite the progress immunoinformatics has made in the last
decades, the prediction of T-cell epitopes (i.e., epitopes that elicit a T-cell response) is still
an unsolved problem. The development of such prediction methods will be a major effort in
the near future, and will have great impact on vaccine design and other immunomodulatory
therapies where an immune reaction should be invoked. In the presented applications,
however, using HLA binding as a proxy of immunogenicity suffices, as the goal is to
suppress an immune response and hindering HLA binding is enough to do so.

In general, it is difficult to measure an immune reaction, as multiple entities are involved
and no single well-characterized indicator exists. Especially the dynamics of an immune
reaction during treatment are not well understood. It will thus become important in the
near future to develop reliable methods to adequately describe the entirety of the immune
reaction. This entails the identification and quantification of involved immunity related
cells (including cells of the innate immune system), as well as the prevalent T and B cell
clonal population by using sequencing technologies or other means. Such methods will
have immediate effect on applied oncological research as the standard care, as well as
experimental treatments are not well understood in terms of their immunological influence.
Once the immunological dynamics are well characterized, rational combination therapies
can be devised and optimal vaccination schedules can be established, which will help to
overcome the problem of tumor resistance.

In the second part of the thesis (Chapter 7)), we developed programming libraries and
software solutions to enable a rapid development and daily use of advanced immunoin-
formatics applications in biomedical research. In particular, we implemented FRED 2, a
Python framework for immunoinformatics applications that offers developers unified inter-
faces and output formats for various immunoinformatics tools, as well as necessary pre- and
post-processing procedures. It allows examining different prediction tools without losing in-

teroperability and without the need of developing custom input and output parsers. Due to

102



FRED 2’s open nature and well-defined interfaces, it could become an immunoinformatics
development hub as OpenMS?4Y has become in the field of mass spectrometry.

Based on FRED 2, we developed two software applications that liberate biomedical
researchers to craft their own immunoinformatics analysis workflows without the need of
knowing a programming language by using visual workflow managers such as Galaxy and
KNIME. In the case of the latter, we extended its capability via the generic KNIME node
extension to interact with Docker, a lightweight virtualization engine that allows for the
pre-packing and executing of software independent of the users operation system (OS).
This extension will ease the development of future KNIME extensions, as developers do
not have to account for OS dependencies and peculiarities. It also enables the KNIME
community to exploit already existing Docker images to increase KNIME’s functionality

tremendously with little effort.

To summarize, the presented methods represent a small contribution to precision
medicine and will be of interest to basic immunological research, oncology, and applied
biomedical research. It also could have a substantial impact on vaccine as well as bio-
therapeutic development. One of the remaining challenges is the translation of these
advanced computer-aided approaches into clinical practice. Providing intuitively usable
web-applications or graphical programming front ends, like the ones presented here, consti-

tute such a possibility.
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Appendix A

Abbreviations

Amino acids in a general are abbreviated in standard one-letter code. Mutations are
denoted with the 1-one letter amino acid reference followed by the position of the mutation

and the mutated amino acid as suffix.

AA Amino acid

ADA Anti-drug antibody

ANN Artificial neural network N
APC Antigen presenting cell

BCR B-Cell receptor

BOMIP Bi-objective mized integer program
bp base pair

B&B Branch-and-Bound

B&C Branch-and-Cut

CD Cluster of differentiation

CI Confidence interval

CDS Coding sequence

CTD Common tool descriptor

CTL Cytotoxic T lymphocyte

EV Epitope-based vaccine

ER Endoplasmic reticulum

ERAAP Aminopeptidase associated with antigen processing
ETK EpiToolKit

Fab Antigen binding fragment

Fc Fragment of crystallization
FRED Framework for epitope detection
GC Germinal center

GKN Generic KNIME node
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A. Abbreviations

GUB
HLA
HBV
ICs0

Ii

1L
ILP
IDE
KNIME
LKH
LLB
LP
LO
mAb
MHC
MILP
ML
MO
MO(MI)LP
MSA
NGS
PAMP
pHLA
PM
PRR
PSSM
SBV
SLP
SVM
TAP
T
TrEG
TSP
Iy
vWF
WES
WGS
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Global upper bound

Human leukocyte antigen

Hepatitis B virus

Half mazximal inhibitory concentration
Immunoglobulin

Invariant chain

Interleukin

Integer linear program

Integrated development environment
Konstanz information miner
Lin-Kernighan-Helsgaun heuristic
Local lower bound

Linear program

Lezicographic optimization
Monoclonal antibody

Magjor histocompatibility complex
Mized integer linear program
Machine learning

Multiobjective optimization
Multiobjective (mized integer) linear program
Multiple sequence alignment
Next-generation sequencing
Pathogen-associated molecular pattern
HLA-peptide complex

Precision medicine

Pattern recognition receptor
Position-specific scoring matrix
String-of-beads vaccine

Synthetic long peptides

Support vector machine

Transporter associated with antigen processing
T-helper cell

regqulatory T cell

Traveling Salesman problem

Half-life

Von Willebrand factor

Whole exome sequencing

Whole genome sequencing



Appendix B

Notations

IS

AERmX’rL
ceR"
b € R™

z = (21,..-2n)

B,N

B,N

X5, XA
0(i,7):=1ifi=jelse 0
¢c()

¢1()
H

E
Sli]
R
by

Scalar value

Vector

Matriz

Set of solutions, search space

Set of efficient solutions

Objective space

Set of non-dominated points, Pareto front
Discreet variables of a (MO)MILP
Constraint matriz of a (MO)MILP
Coefficient vector of a MILP

Right hand side vector of a (MO)MILP
Slack variable of an LP

Ideal Point

Objective function

Vector of objective functions

Objective value

Vector of objective values

Basic and non-basic constraint matriz of a LP
Indices of basic and non-basic variables
Basic and non-basic variables of a LP
Kronecker delta

Linear cleavage site likelthood model
Linear immunogenicity model

Set of HLA alleles if not other stated

Set of epitopes if not other stated
Indicates the i-th character of sequence S
{y eR"y > 0}

Alphabet of all natural occurring amino acids
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Contributions

All ideas, approaches and results presented in this work were developed and discussed with
Prof. Dr. Oliver Kohlbacher (OK). The following co-workers besides myself (BS) also
contributed to the different projects:

e H.P. Brachvogel
e Dr. P. Dénnes

(

(
e Dr. M. Feldhahn (MF)
o L. dela Garza (LD)
e Dr. T. Hopf (TP)
o C. Jiirges (CJ)
e C. Mohr (CM)
e Prof. Dr. D. Marks (DM)
e C. Schirfe (CS)
e A. Szolek (AS)
e Dr. M. Sturm (MS)
e M. Walzer (MW)

Chapter NGS-based HLA Genotyping using Combinatorial Optimization
AS, BS, and CM designed and implemented the HLA typing pipeline. BS designed the

mathematical model. AS designed the pre-processing and HLA-reconstruction procedure.
AS, CM, and BS designed, performed, and evaluated the experiments. CM, MF, AS, BS,
MS prepared the data. BS, CM, AS, and OK wrote the manuscript. All authors read and
approved the manuscript. OK designed the study. Text and figures from this manuscript
appeared in the chapter.
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Chapter Designing String-of-beads vaccines with optimal spacer
BS designed implemented and evaluated the mathematical framework. BS and OK designed

the study and wrote the manuscript. Text and figures from this manuscript appeared in

the chapter.

Chapter [6; De-immunization of Biotherapeutics

BS designed and implemented the mathematical model as well as the bi-objective integer
solver. BS, CS, and PD designed the evaluation. BS and CS gathered and performed
the evaluation. TH provided code to infer the statistical fitness model. BS, CS, PD, DM,
OK wrote the manuscript. BS and OK designed the study. Text and figures from this

manuscript appeared in the chapter.

Chapter [7} Translational Immunoinformatics

BS and MW designed and implemented FRED 2. HPB, AS, and CM contributed source
code. BS, MW, and OK wrote the manuscript. BS and OK designed the project. Text
and figures from this manuscript appeared in the chapter.

BS designed and implemented EpiToolKit 2. HPB and CJ helped implementing the
web-service. BS and OK wrote the manuscript. BS and OK designed the project. Text
and figures from this manuscript appeared in the chapter.

BS implemented ImmunoNodes and extended the Generic KNIME Node. LD imple-
mented the continues integration and helped to extend the Generic KNIME Node. CM and
MW contributed an additional node and a workflow example not mentioned in this work.
BS, LD, and OK wrote the manuscript. Text and figures from this manuscript appeared

in the chapter.
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Appendix E

Supporting Figures

String-of-Beads with optimal spacer sequences

* *%
|—VLHKRTLGLHHD|—CLFKDWEELHHAKFVAAWTLHHYKLVCSPAPCHHHHHA"HLSLRGLPV
HLA-A*02:01 [ T] \ [T1 [T] [TT [T1 [ \ \ 0 Neo-epitopes
Cleavage [T WL W W || | | B EREEE [T [1]100%Recovery

String-of-Beads with experimental spacer sequences

N Y 5.0
|—VLHKRTLGLKAAKFVAA|—WTLGAAAKLVCSPAPCNArAArHL|—SLR|—GLPVGAA|—CLFKDWEEL
HLA-A*02:01 [TTTINT] 4 Neo-epitopes
Cleavage [TT TN TTTTT I WY T 77T T NN T 77 [ NN 777 (7 ([ [TTT11]0%Recovery
String-of-Beads with optimal ordering 0.0

and optimal experimental spacer sequences
KLvcspapcnAAAlCLFKDWEELNAAAVLHKRTLGLNAMAHLISLRGLPYNAAAK FVAAWTL
HLA-A*02:01 (LTI TTTTTTITT PR 1T P T T [ [ [ 11 [[]]2Neo-epitopes
Cleavage [T [T 1] NEEG_—_—TT D W [ D [ [ [ DO [ 60% Recovery

* MHC-II epitope
** Peptide was predicted to be non-binding for A*02:01 by Syfpeithi and NetMHC

Figure E.1: Comparison of experimentally used and in silico designed spacers based
on the polypeptide proposed by Ding et al. . Red bars represent predicted epitopes
and the intensity indicates overlapping epitopes at that position. The blue rectangles
represent predicted C-terminal cleavage sites. Spacer sequences are marked in red. A
tick indicates the start position of a predicted nine-mer epitope. Epitope and cleavage
site prediction were performed with SYFPEITHI and PCM, respectively. A nine-mer
was predicted as an epitope if its predicted score was equal to or above a threshold
of 20 (default threshold of SYFPEITHI). A cleavage site was said to be cleaved if the
predicted PCM score was above zero. An epitope was defined as recovered if both the
preceding and succeeding cleavage sites were predicted to be cleaved
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Figure E.2: Epitope Selection for an influenza dataset consisting of HIN1 and H3N5
strains. The epitope set was optimized for the European population. NetMHC was
used for epitope discover and default constraints of 50% HLA allele and antigen

coverage and 20% epitope conservation was used.




Appendix F

Supporting Tables

CRC 1000 Genomes exome
Sample ID Run ID Sample ID Run ID Sample ID Run ID Sample ID Run ID Sample ID Run ID
17 SRR396926 NA06985 SRR709972 NA18537 ERR032033 NA18971 SRR078842 NA19207 SRR081256
SRR396998 NA06994 SRR070528 NA18537 ERR032034 NA18972 SRRO77490 NA19209 SRRO077489
SRR397070 NA06994 SRRO070819 NA18542 ERRO031855 NA18972 SRR081255 NA19209 SRRO77859
SRR397142 NAO07000 SRR766039 NA18545 ERRO031856 NA18973 SRRO77861 NA19210 SRRO078845
NA07048 SRR099452 NA18547 ERR031957 NA18973 SRR078846 NA19210 SRR081222
20 SRR396928 NAOQ7056 SRR764718 NA18550 ERRO031958 NA18974 SRRO77456 NA19222 SRR748214
SRR397000 NAOQ7357 SRR764689 NA18552 ERR031959 NA18974 SRR081248 NA19223 SRR071186
SRR397072 NAO07357 SRR764690 NA18555 ERRO031857 NA18975 SRRO078849 NA19223 SRR071193
SRR397144 NA10847 SRR070531 NA18558 ERR031960 NA18975 SRR081225 NA19238 SRR071173
NA10847 SRRO070823 NA18561 ERRO031858 NA18976 SRRO77451 NA19238 SRRO071195
42 SRR396942 NA10851 SRR766044 NA18562 ERRO031859 NA18976 SRRO77757 NA19238 SRR792121
SRR397014 NA11829 SRR710128 NA18563 ERRO031860 NA18978 SRR716650 NA19238 SRR792165
SRR397086 NA11830 SRR766026 NA18564 ERR031861 NA18980 SRR716652 NA19239 SRR792097
SRR397158 NA11831 SRR709975 NA18566 ERRO031862 NA18980 SRR716653 NA19239 SRR792159
NA11832 SRR766003 NA18570 ERR031863 NA18981 SRRO77477 NA19240 SRR792091
49 SRR396946 NA11840 SRRO070532 NA18571 ERRO031868 NA18981 SRRO77751 NA19240 SRR792767
SRR397018 NA11840 SRR070809 NA18572 ERR031869 NA18987 SRR077491 NA20313 SRR359098
SRR397090 NA11881 SRR766021 NA18573 ERRO031870 NA18987 SRRO77853 NA20313R SRR359108
SRR397162 NA11992 SRR701474 NA18576 ERRO031871 NA18990 SRRO77454 HGO01756 SRR359102
NA11994 SRR701475 NA18577 ERRO032035 NA18990 SRRO0O77486 HGO01757 SRR359103
53 SRR396949 NA11995 SRR766010 NA18577 ERR032036 NA18991 SRR077450 HGO01872 SRR359298
SRR397021 NA12003 SRR766061 NA18579 ERRO032037 NA18991 SRRO77855 HGO01873 SRR359295
SRR397093 NA12004 SRR766059 NA18579 ERR032038 NA18992 SRR716428 HG01886 SRR360655
SRR397165 NA12005 SRR718067 NA18582 ERRO031961 NA18994 SRR716431 HGO01953 SRR360288
NA12006 SRR716422 NA18592 ERR031962 NA18995 SRR764775 HG01968 SRR360391
65 SRR396959 NA12043 SRR716423 NA18593 ERRO034531 NA18997 SRR702078 HG02014 SRR360148
SRR397031 NA12043 SRR716424 NA18603 ERR031872 NA18998 SRR766013 HG02057 SRR359301
SRR397103 NA12044 SRR766060 NA18605 ERRO031873 NA18999 SRR112297
SRR397175 NA12144 SRR766058 NA18608 ERR031874 NA19000 SRR099528
NA12154 SRR702067 NA18609 ERRO031875 NA19003 SRR099532
66 SRR397206 NA12155 SRR702068 NA18611 ERRO031876 NA19005 SRR715906
SRR397266 NA12156 SRR764691 NA18612 ERRO034593 NA19007 SRR099549
SRR397326 NA12234 SRR716435 NA18620 ERR031877 NA19012 SRR112294
SRR397386 NA12249 SRRO070525 NA18621 ERRO034595 NA19092 SRR100012
NA12249 SRRO070798 NA18622 ERR032027 NA19093 SRR100033
70 SRR397210 NA12716 SRR081269 NA18622 ERRO032028 NA19098 SRRO77453
SRR397270 NA12716 SRR081274 NA18623 ERR032008 NA19098 SRR077460
SRR397330 NA12717 SRRO71172 NA18624 ERRO031928 NA19099 SRR748771
SRR397390 NA12717 SRRO71177 NA18632 ERR031929 NA19099 SRR748772
NA12750 SRRO077449 NA18633 ERRO031878 NA19102 SRR100034
75 SRR397214 NA12750 SRR081238 NA18635 ERR031879 NA19116 SRR100021
SRR397274 NA12750 SRR794547 NA18636 ERRO031930 NA19119 SRRO77471
SRR397334 NA12750 SRR794550 NA18637 ERR031931 NA19119 SRR081271
SRR397394 NA12751 SRRO071136 NA18853 SRR100011 NA19129 ERRO034558
NA12751 SRR071139 NA18856 SRR098533 NA19130 SRR107026
81 SRR397217 NA12760 SRR081223 NA18858 ERRO034553 NA19131 SRR070494
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SRR397277 NA12760 SRR081251 NA18861 ERRO034554 NA19131 SRR070783
SRR397337 NA12761 SRRO77753 NA18870 SRR100031 NA19137 SRR081226
SRR397397 NA12761 SRR081267 NA18871 SRR100029 NA19137 SRR081237
NA12762 SRR718076 NA18912 SRR111960 NA19137 SRR792542
83 SRR397218 NA12763 SRRO77752 NA18940 ERRO034596 NA19137 SRR792560
SRR397278 NA12763 SRR081230 NA18942 ERRO034597 NA19138 SRR070472
SRR397338 NA12812 SRR715913 NA18943 ERRO034598 NA19138 SRRO70776
SRR397398 NA12813 SRR718077 NA18944 ERRO034599 NA19141 SRRO077433
NA12813 SRR718078 NA18945 ERR034600 NA19141 SRRO077464
88 SRR397222 NA12814 SRR715914 NA18947 ERRO034601 NA19143 SRRO077445
SRR397282 NA12815 SRR716646 NA18948 ERRO034602 NA19143 SRR081272
SRR397342 NA12872 SRR716647 NA18949 ERRO034603 NA19144 SRRO077392
SRR397402 NA12873 SRR702070 NA18951 ERRO034604 NA19144 SRRO77468
NA12874 SRR764692 NA18952 ERRO034605 NA19152 SRR071135
90 SRR397224 NA12878 SRR098401 NA18953 SRR099546 NA19152 SRR071167
SRR397284 NA12891 SRR098359 NA18956 SRR766028 NA19153 SRR070660
SRR397344 NA12892 ERRO034529 NA18959 SRR099545 NA19153 SRR070846
SRR397404 NA18501 SRR100022 NA18960 SRR099533 NA19159 SRR070478
NA18502 SRR764722 NA18961 SRR099544 NA19159 SRR070786
95 SRR397229 NA18502 SRR764723 NA18964 SRR099539 NA19160 SRRO077482
SRR397289 NA18504 SRR100028 NA18965 SRR764771 NA19160 SRR081250
SRR397349 NA18505 SRR716648 NA18965 SRR764772 NA19171 SRRO077492
SRR397409 NA18505 SRR716649 NA18966 SRRO71175 NA19171 SRRO077493
NA18507 SRR764745 NA18966 SRR071180 NA19172 SRR111962
97 SRR397231 NA18507 SRR764746 NA18967 SRR071192 NA19200 SRRO077432
SRR397291 NA18508 SRR716637 NA18967 SRR071196 NA19200 SRRO078847
SRR397351 NA18508 SRR716638 NA18968 SRRO77480 NA19201 SRRO77439
SRR397411 NA18516 SRR100026 NA18968 SRR081231 NA19201 SRR077462
NA18517 ERRO034551 NA18969 SRR081266 NA19204 SRRO77857
99 SRR397233 NA18522 SRR107025 NA18969 SRR081273 NA19204 SRR081263
SRR397293 NA18523 ERRO034552 NA18970 SRR071116 NA19206 SRR070491
SRR397353 NA18526 ERRO031854 NA18970 SRRO71127 NA19206 SRRO070781
SRR397413 NA18532 ERRO031956 NA18971 SRRO77447 NA19207 SRR081254
Low-coverage HapMap WGS CEU
Sample ID Run ID Sample ID Run ID Sample ID Run ID Sample ID Run ID
NA06985 SRR400039 NA06985 ERRO009159 NA12003 ERRO009121 NA12812 ERR009104
NA11832 SRR385763 NA06994 ERR009168 NA12004 ERR009139 NA12813 ERR009114
NA12005 SRR385767 NA07000 ERR009154 NA12005 ERR009155 NA12814 ERR009134
NA12044 SRR393991 NAO07051 ERR009147 NA12006 ERR009123 NA12815 ERR009151
NA12760 SRR385773 NAO07346 ERR009133 NA12043 ERR009163 NA12872 ERR009099
NA18912 SRR350153 NA07347 ERR009146 NA12044 ERR009157 NA12873 ERR009111
NA18960 SRR442016 NAO07357 ERR009167 NA12045 ERR009113 NA12874 ERR009145
NA18968 SRR359062 NA10847 ERR009097 NA12144 ERR009117 NA12891 ERR009105
NA18971 SRR359095 NA10851 ERR009124 NA12154 ERR009129
NA18974 SRR360136 NA11829 ERR009122 NA12155 ERR009115
NA18975 SRR359070 NA11830 ERR009140 NA12156 ERR009136
NA18976 SRR359110 NA11831 ERR009096 NA12234 ERR009144
NA18981 SRR359083 NA11832 ERR009109 NA12249 ERR009107
NA18991 ERR052929 NA11840 ERR009142 NA12716 ERR009118
NA19092 SRR189830 NA11881 ERR009135 NA12717 ERR009164
NA19119 SRR359106 NA11918 ERR009166 NA12750 ERR009137
NA19131 SRR359096 NA11920 ERR009149 NA12751 ERR009132
NA19152 SRR359097 NA11992 ERR009119 NA12760 ERR009130
NA19171 SRR359061 NA11993 ERR009103 NA12761 ERR009106
NA19204 SRR359064 NA11994 ERR009141 NA12762 ERR009156
NA12006 SRR385760 NA11995 ERR009108 NA12763 ERR009152

Table F.1: Sample ID and Run ID of HLA-typing NGS benchmark dataset.
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ID Covered Variation Sequence

WT-1 VNSLDPPLLTRYLRI
WT-2 RIHPQSWVHQIALRM
WT-3 LTRYLRIHPQSWVHQ
WT-4 LRIHPQSWVHQIALRM
M-1 L2321F VNSLDPPLFTRYLRI
M-2 L2321T VNSLDPPLTTRYLRI
M-3 L2321Y VNSLDPPLYTRYLRI
M-4 Q2335H RIHPQSWVHHIALRM
M-5 Q2335H LRIHPQSWVHHIALRM
M-6 V2333E LRIHPQSWEHQIALRM
M-7 Y23241.,V2333E LTRLLRIHPQSWEHQ
M-8 Y2324H,V2333E LTRHLRIHPQSWEHQ
M-9 R2326K,V2333E LTRYLKIHPQSWEHQ
M-10 L2321F,V2333E FTRYLRIHPQSWEHQ
M-11 L2321T,V2333E TTRYLRIHPQSWEHQ
M-12  L2321Y,V2333E YTRYLRIHPQSWEHQ
M-13 L2321F,Q2335H FTRYLRIHPQSWVHH
M-14  L2321T,12327L VNSLDPPLTTRYLRL
M-15 12327L,V2333E LRLHPQSWEHQIALRM
M-16  L2321T,12327L,V2333E LTTRYLRLHPQSWEH

Table F.2: Peptide designs of the de-immunization constructs for experimental

evaluation.
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HO

ID Var Seq DRB1*03:01 DRB1*07:01 DRB1*15:01 SUM
WT-1 VNSLDPPLLTRYLRI 0.697 0.810 7.274 8.781
WT-2 RIHPQSWVHQIALRM 0.226 40.243 5.029 45.499
WT-3 LTRYLRIHPQSWVHQ 0.243 87.324 30.478  118.045
WT-4 LRIHPQSWVHQIALRM 0.200 56.788 50.927 107.915
M-1 L2321F VNSLDPPLFTRYLRI 0.165 6.490 0.427 7.082
M-2 L2321T VNSLDPPLTTRYLRI 0.100 0.100 0.000 0.200
M-3 L2321Y VNSLDPPLYTRYLRI 0.000 3.600 0.000 3.600
M-4 Q2335H RIHPQSWVHHIALRM 0.005 75.329 9.756 85.090
M-5 Q2335H LRIHPQSWVHHIALRM 0.555 65.265 47.784  113.604
M-6 V2333E LRIHPQSWEHQIALRM 0.157 32.020 44.319 76.496
M-7 Y2324L, V2333E LTRLLRIHPQSWEHQ 0.026 33.528 5.445 39.000
M-8 Y2324H, V2333E LTRHLRIHPQSWEHQ 0.000 2.480 13.999 16.480
M-9 R2326K, V2333E LTRYLKIHPQSWEHQ 1.668 28.951 5.434 36.053
M-10 L2321F, V2333E FTRYLRIHPQSWEHQ 0.020 43.779 2.906 46.705
M-11 L2321T, V2333E TTRYLRIHPQSWEHQ 0.544 71.612 6.575 78.731
M-12 L2321Y, V2333E YTRYLRIHPQSWEHQ 0.155 59.728 3.876 63.758
M-13 L2321F, Q2335H FTRYLRIHPQSWVHH 1.449 39.809 16.564 57.822
M-14"  L2321T, [2327L VNSLDPPLTTRYLRL

M-15 12327L,V2333E LRLHPQSWEHQIALRM 0.032 42.841 18.099 60.972
M-16 L2321T, 123271, V2333E LTTRYLRLHPQSWEH 0.236 56.611 8.924 65.771
H24

ID Var Seq DRB1*03:01 DRB1*07:01 DRB1*15:01 SUM
WT-1 VNSLDPPLLTRYLRI 0.000 0.370 0.000 0.370
WT-2 RIHPQSWVHQIALRM 0.000 35.522 0.003 35.524
WT-3 LTRYLRIHPQSWVHQ 0.243 74.002 15.728 89.973
WT-4 LRIHPQSWVHQIALRM 0.021 38.252 17.219 55.491
M-1 L2321F VNSLDPPLFTRYLRI 0.165 0.497 0.000 0.662
M-2 L2321T VNSLDPPLTTRYLRI 0.000 0.000 0.000 0.000
M-3 L2321Y VNSLDPPLYTRYLRI 0.000 0.900 0.000 0.900
M-4 Q2335H RIHPQSWVHHIALRM 0.000 53.300 0.000 53.300
M-5 Q2335H LRIHPQSWVHHIALRM 0.000 40.700 20.400 61.100
M-6 V2333E LRIHPQSWEHQIALRM 0.000 19.800 11.600 31.400
M-7 Y2324L, V2333E LTRLLRIHPQSWEHQ 0.000 20.100 0.100 20.200
M-8 Y2324H, V2333E LTRHLRIHPQSWEHQ 0.000 0.100 2.000 2.100
M-9 R2326K, V2333E LTRYLKIHPQSWEHQ 0.000 17.900 0.300 18.200
M-10 L2321F, V2333E FTRYLRIHPQSWEHQ 0.000 27.400 0.300 27.700
M-11 L2321T, V2333E TTRYLRIHPQSWEHQ 0.000 49.600 1.600 51.200
M-12 L2321Y, V2333E YTRYLRIHPQSWEHQ 0.200 40.700 0.700 41.600
M-13 L2321F, Q2335H FTRYLRIHPQSWVHH 0.000 29.800 7.500 37.300
M-14"  L2321T, 12327L VNSLDPPLTTRYLRL

M-15 12327L,V2333E LRLHPQSWEHQIALRM 0.000 21.500 5.300 26.800
M-16 L2321T, 12327L, V2333E LTTRYLRLHPQSWEH 0.236 13.754 8.924 22.914

* Failed synthesis

Table F.3: Experimentally determined immunogenicity scores of designed peptides generated by
a commercial REVEAL HLA-peptide binding assay of Prolmmune (www.proimmune.com). The
measurements were taken at the start of incubation (HO) and after 24 hours (H24).
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Variant ID  Amino acid (HGVS)  Amino acid (Legacy) Protein Change  Severity Inhibitors
1682 2200 2181 E2200D Mild Yes
1685 2204 2185 12204T Mild No
1691 2209 2190 12209N Moderate

1692 2211 2192 A2211P Moderate  No
1711 2237 2218 A2237T Mild Yes
1723 2247 2228 E2247D Mild Yes
1724 2248 2229 W2248S Moderate

1726 2249 2230 L2249R Severe Yes
1728 2250 2231 Q2250H Mild No
1729 2251 2232 V2251E Severe

1737 2264 2245 T2264A Mild

1741 2266 2247 G2266R Severe No
1743 2266 2247 G2266E Severe No
1745 2272 2253 T2272P Mild No
1746 2272 2253 T2272P Mild No
1747 2274 2255 M2274K Mild No
1751 2276 2257 V2276G Severe Yes
1754 2279 2260 F2279C Severe Yes
1753 2279 2260 F2279S Severe No
1755 2280 2261 L2280P Severe No
1756 2281 2262 12281T Severe

1757 2284 2265 S2284R, Mild No
1760 2290 2271 W2290L Moderate

1771 2302 2283 F2302V Moderate  No
1772 2302 2283 F2302S Severe No
2135 2310 2291 T2310P Mild No
1784 2314 2295 N2314Y Mild No
1790 2323 2304 R2323G Mild No
1793 2323 2304 R2323L Mild No
1796 2326 2307 R2326G Severe No
2136 2329 2310 P2329S Mild No
1801 2329 2310 P2329L Severe No
1807 2332 2313 W2332S Moderate  No
1815 2339 2320 R2339M Moderate  No
1820 2343 2324 1.2343P Mild No
1823 2344 2325 G2344C Moderate No
1821 2344 2325 G2344S Severe

1825 2344 2325 G2344A Mild No
1824 2344 2325 G2344D Severe

1826 2345 2326 C2345Y Severe

Table F.4: Hemophilia A severity data for single point mutations within the C2
domain extracted from factor VIII variant database (http://www.factorviii-db,

org).
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F. Supporting Tables

Method Version  Usage Platform Compatibility  Reference

HLA binding:

SYFPEITHI 1.0  T-cell epitope Windows, Linux, Mac (Rammensee et al., 1999)111
BIMAS 1.0 HLA-I binding Windows, Linux, Mac (Paerker et al., 1994)113
SVMHC 1.0 HLA-I binding Windows, Linux, Mac (Dénnes et al., 2002)24L
ARB 1.0 HLA-I binding Windows, Linux, Mac (Bui et al., 2005)242

SMM 1.0 HLA-I binding Windows, Linux, Mac (Pepters et al., 2005)112
SMMPMBEC 1.0 HLA-I binding Windows, Linux, Mac (Kim et al., 2009)243
Epidemix 1.1  HLA-I binding Windows, Linux, Mac (Feldhahn et al., 2009)207
Comblib Sidney 2008 1.0 HLA-I binding Windows, Linux, Mac (Sidney et al., 2008)244
PickPocket” 1.1 HLA-I binding Linux, Mac (Zhang et al., 2009)242
NetMHC™ 3.0, 3.4, 4.0 HLA-I binding Linux, Mac (Lundegaard et al., 2008)225
NetMHCpan™ 2.4,2.8,3.0 HLA-I binding Linux, Mac (Hoof et al., 2009)246
HAMMER 1.0 HLA-II binding Windows, Linux, Mac (Sturniolo et al., 1999)247
TEPITOPEpan 1.0 HLA-II binding Windows, Linux, Mac (Zhang et al., 2012)167
NetMHCIT® 2.2 HLA-II binding Linux, Mac (Nielsen et al., 2007)248
NetMHCIIpan® 3.0, 3.1 HLA-II binding Linux, Mac (Karosiene et al., 2013)249
UniTope 1.0 T-cell epitope Windows, Linux, Mac (Toussaint et al., 2011)250
NetCTLpan™ 1.1  T-cell epitope Linux, Mac (Stranzl et al., 2010)251
Cleavage Prediction:

PteaSMM (C/S20) 1.0 Cleavage site Windows, Linux, Mac (Tenzer et al., 2005)112
PCM 1.0 Cleavage site Windows, Linux, Mac (Dénnes et al., 2005)114
NetChop™ 3.1 Cleavage site Linux, Mac (Nielsen et al., 2005)252
Ginodi 1.0 Cleavage fragment Windows, Linux, Mac (Ginodi et al., 2008)253
TAP Prediction:

SVMTAP 1.0 TAP affinity Windows, Linux, Mac (Dénnes et al., 2005)114
SMMTAP 1.0 TAP affinity Windows, Linux, Mac (Peters et al., 2003)22%
Additive matrix method 1.0 TAP affinity Windows, Linux, Mac (Doytchinova et al., 2004)255
Epitope Selection:

OptiTope™ 1.0 Epitope selection for vaccine design ~ Windows, Linux, Mac (Toussaint and Kohlbacher, 2009)223
Epitope Assembly:

TSP approach™ 1.0 String-of-beads design Windows, Linux, Mac (Toussaint et al., 2011)101
Spacer design + TSP 1.0 Spacer design Windows, Linux, Mac (Schubert and Kohlbacher, 2016)226
HLA Typing:

OptiType” 1.0 HLA-I typing Linux, Mac (Szolek et al., 2014)T7
Polysolver” 1.0 HLA-I typing Linux, Mac (Shukla et al., 2015)88
Seq2HLA™ 2.2 HLA-I/II typing Linux, Mac (Bogel et al., 2013)79
ATHLATES" 1.0  HLA-I/II typing Linux, Mac (Liu et al., 2013)L

* Installation of external software is required.

+ An integer linear programming solver such as CBC (https://projects.coin-or.org/Cbc) is required. For epitope assembly the LKH approximation software (http:

//www.akira.ruc.dk/"keld/research/LKH) is advised to use.
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Table F.5: Supported prediction methods of FRED 2.
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Epitope HLA-Ligand T-Cell reactive IEDB ID
FMYSDFHFI Yes Yes 17119
MMMGMFNML  Yes Yes 42143
YLMAWKQVL Yes 124888
FVANFSMEL Yes Yes 97314
WMMAMRYPI  Yes 124859
FLARSALIL Yes No 16522
FMQALQLLL Yes 178842
LLIDGTASL Subsequence  Yes 129079, 129607, 212044, 218205
ATYQRTRAL Yes Yes 5230, 7655, 41793, 79763, 146073, 164384, 181194
FVRQCFNPM Yes 18274
Table F.6: Experimental evidence for the in silico predicted and selected epitopes

and their corresponding IEDB IDs.
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