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Abstract
Detection and classification of the surrounding terrain is a fundamental ability of a mo-
bile robot in outdoor navigation to enable safe and efficient path planning. Our robot
is equipped with a 3D LiDAR and a color camera, since these sensors complement
each other very well. The terrain in front of the robot is divided into a grid, and each
grid cell is classified individually using the sensor measurements. A new method for
3D LiDAR-based terrain classification with easy-to-compute and yet discriminative 3D
features based on intensity and roughness histograms is presented. The feature extrac-
tion for one grid only takes 1.5 ms on average. For classification, we use Random forests
since they outperform all other tested classifiers. When only considering the two classes
of asphalt and grass the classification results are consistently above 99.9% for different
tested light conditions. Camera-based texture classification with Local ternary patterns
is used in addition, and for grid cells where data of both sensors are present, the results
are fused accordingly.

To exploit the fact that terrain appears in contiguous areas, spatial dependencies be-
tween the individual cells of the terrain grid are taken into account by modeling the grid
as a Conditional random field. An approximately optimal configuration of terrain la-
bels is found by optimizing feature- and neighborhood-dependent energy terms using
Gibbs sampling in a simulated-annealing scheme, and an efficient way for describing
the neighborhood-dependent energy is presented. In our experiments considering the
four terrain classes asphalt, cobblestones, grass, and gravel, using spatial dependencies
improves results significantly, and we get a classification rate of 96.8%, in contrast to
81.5% when classifying grid cells individually.

As the robot moves, we constantly update a terrain map with the current classification
result. In this way, we are not only able to exploit temporal dependencies, but we are
building whole terrain maps of the environment. We show how to efficiently incorporate
the classification result of the current terrain grid into the map, how to combine it with re-
sults from previous time steps, and how to integrate the label configuration obtained from
simulated annealing. In experiments using a new data set, spatial classification yields a
classification rate of 92.2%, only using temporal classification yields 96.8%, and finally
spatio-temporal classification yields the best result with 98.4%. By additionally integrat-
ing information about obstacles, we can generate meaningful terrain and elevation maps
of the robot’s environment. Spatio-temporal classification and elevation mapping take
23.9 ms on average, which corresponds to about 41.8 Hz. This shows that our classifica-
tion method is real-time capable. Finally, we show how to use these maps for a semantic
localization of the robot.
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Kurzfassung
Das Erkennen und Klassifizieren des umliegenden Terrains ist von großer Bedeutung
für einen mobilen Roboter, der in Außenbereichen navigieren soll, da nur damit eine
sichere und effiziente Pfadplanung gewährleistet werden kann. Wir haben unseren Ro-
boter mit einem 3D LiDAR und einer Farbkamera ausgestattet, da diese Sensoren sich
gegenseitig sehr gut ergänzen. Das Terrain, das vor dem Roboter liegt, wird in ein re-
gelmäßiges Gitter unterteilt, und jede Gitterzelle wird einzeln anhand der Messdaten
der Sensoren klassifiziert. Es wird eine neue Methode für 3D-LiDAR-basierte Terrain-
klassifikation vorgestellt, mit leicht zu berechnenden, und dennoch charakteristischen
3D-Merkmalen basierend auf Intensitäts- und Rauheits-Histogrammen. Die Merkmals-
extraktion für ein Gitter benötigt durchschnittlich nur 1.5 ms. Für die Klassifikation ver-
wenden wir Random Forests, da diese von allen von uns getesteten Klassifizierern am
besten abgeschnitten haben. Werden nur die zwei Klassen Asphalt und Gras betrachtet,
sind die Klassifikationsergebnisse für unterschiedliche getestete Lichtverhältnisse durch-
gehend über 99.9%. Zusätzlich wird eine kamerabasierte Texturklassifikation mit Local
Ternary Patterns verwendet, und für Gitterzellen, bei denen Daten von beiden Sensoren
zur Verfügung stehen, werden die Ergebnisse entsprechend fusioniert.

Um die Tatsache zu nutzen, dass Terrain meist in zusammenhängenden Flächen vor-
kommt, werden räumliche Abhängigkeiten zwischen einzelnen Zellen des Terraingit-
ters mitberücksichtigt, indem das Gitter als Conditional Random Field modelliert wird.
Durch Optimieren von Merkmals- und Nachbarschafts-abhängigen Energietermen kann
eine Näherungslösung für eine optimale Konfiguration von Terrainlabels gefunden wer-
den; dazu wird ein Gibbs Sampler in einem Simulated-Annealing1-Verfahren verwendet.
Außerdem wird eine effiziente Möglichkeit, den Nachbarschafts-abhängigen Term zu
beschreiben, vorgestellt. In unseren Experimenten, bei denen die vier Terrainklassen As-
phalt, Pflastersteine, Gras und Kies betrachtet werden, verbessert die Berücksichtigung
räumlicher Abhängigkeiten die Ergebnisse signifikant, und wir erhalten eine Klassifika-
tionsrate von 96.8%, im Gegensatz zu 81.5%, wenn die Gitterzellen einzeln klassifiziert
werden.

Wenn der Roboter sich bewegt, wird eine Terrainkarte mit dem jeweils aktuellen Klas-
sifikationsergebnis aktualisiert. Auf diese Weise sind wir nicht nur in der Lage zeitliche
Abhängigkeiten zu nutzen, sondern können ganze Terrainkarten der Umgebung erstel-
len. Wir zeigen wie das Klassifikationsergebnis des aktuellen Terraingitters effizient in
die Terrainkarte integriert werden kann, wie man es mit Ergebnissen früherer Zeitschrit-

1dt.: simulierte Abkühlung
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Kurzfassung

te kombinieren kann, und wie man die Labelkonfiguration, die das Simulated Annea-
ling liefert, mitberücksichtigt. In Experimenten mit einem neuen Datensatz liefert die
räumliche Klassifikation eine Klassifikationsrate von 92.2%, verwendet man nur die zeit-
liche Klassifikation erhält man 96.8%, und die räumlich-zeitliche Klassifikation schließ-
lich liefert das beste Ergebnis mit 98.4%. Durch das Verwenden zusätzlicher Informa-
tionen über Hindernisse können wertvolle Terrain- und Höhenkarten der Umgebung
des Roboters erstellt werden. Die räumlich-zeitliche Klassifikation und Höhenkartierung
braucht durchschnittlich 23.9 ms, was ungefähr 41.8 Hz entspricht. Dies zeigt, dass un-
sere Klassifikationsmethode echtzeitfähig ist. Schließlich zeigen wir, wie diese Karten
für eine semantische Lokalisierung des Roboters verwendet werden können.
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ihre Unterstützung, und meinen Bürokollegen und -nachbarn Yasir Niaz Khan, Gerald
Rauscher und Markus Beck, sowie Timo Sachsenberg, dessen Besuche mir immer eine
willkommene Abwechslung waren.
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When it is not in our power to determine what is true,
we ought to follow what is most probable.

RENÉ DESCARTES





Chapter 1

Introduction
The reason that we can safely and efficiently navigate our everyday environment lies in
our ability to perceive our surroundings. Hereby, perception not only means seeing the
world, or more generally, receiving sensory data, but also processing this information and
drawing conclusions, in order to understand the world around us. The same must be true
for robots that have the ability to navigate autonomously. While among the early days of
robotics, most robots operated inside rooms or buildings, now they “leave the house” and
go outside, as exemplified in the growing fields of agricultural robots, autonomous cars,
or service robots such as autonomous lawnmowers. When it comes to robot perception,
localization, and navigation, there is a general difference between indoor and outdoor
environments. Man-made environments like office buildings and factories tend to feature
a geometric structure, which can be used for precisely locating a robot. In corridor-
like environments, a 2D laser scanner is often sufficient for the robot to perform basic
navigation tasks. In this case, the robot does not need a semantic understanding of its
surroundings; it only distinguishes between obstacles and non-obstacles, without the
need to understand what these obstacles really are. In contrast, outdoor surroundings
often lack this kind of structure. In order to enable a safe and efficient navigation in such
environments a comprehensive semantic perception is essential. Of particular interest is
the terrain. Often the only thing a robot can see outdoors is its surrounding terrain, and
the knowledge about it is crucial for safe and efficient path planning. For example, it
is far easier for robots to drive on asphalt roads than on rough grassy areas. However,
an autonomous lawnmower must stay on the grass, and needs to be able to detect other
types of terrain. Additionally, knowledge about the surrounding terrain is also valuable
for robot localization, as a supplement or alternative when GPS is too unreliable or not
available at all, such as near buildings, under trees, or in any situation when there is
no clear line of sight to the satellites. The accuracy requirements of such localization
depend on whether the robot is to follow fixed lines, for example, a field boundary or a
road, or whether it should travel long distances over an open field.

Perception in robotics is about processing sensor measurements, and in this thesis, we
use a 3D LiDAR in conjunction with a color camera. These sensors complement each
other very well; while the LiDAR provides range values and is less affected by different
lighting conditions, the camera is able to capture the appearance of things. Neverthe-
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Chapter 1 Introduction

less, no sensor is perfect: each one can give potentially noisy and faulty measurements.
In the case of range measurements, for instance, we can only tell how far away things
are within a certain probability, and in the case of odometry, we can only approximate
where the robot moved. In addition to the unreliability of sensor measurements, there is
always ambiguity involved in classifying terrain. Two patches of terrain never look ex-
actly the same, and classifying them based on a previous learned model always involves
uncertainty. Here, probability theory helps us to deal with these uncertain informations.
The advantage of probability theory in the context of robotics is that the combination of
different uncertain information can lead to a much higher degree of certainty.

A large part in this thesis discusses the use of probabilistic graphical models for terrain
classification, where probability theory and graphical models are combined. Using these
models it is possible to also consider spatial dependencies between individual patches of
terrain. In some cases it can be hard, even for a human, to tell whether a tiny patch of
terrain is grass or gravel, for instance, but it becomes clearer in the spatial context. In ad-
dition to these spatial dependencies, we also investigate temporal dependencies. When a
robot drives over terrain, it sees the same patch of terrain in consecutive time steps, each
time from a slightly different position and angle. As was already noted above, combining
the individual classification results should yield a better final result. Moreover, integrat-
ing the results of each time step into a common coordinate frame lets us build whole
terrain maps of the environment. By additionally integrating information about obsta-
cles, we can generate meaningful terrain and elevation maps of the robot’s environment.
Finally, these maps can be used for a semantic localization of the robot.

1.1 Outline
The remaining chapters are organized as follows:

• Chapter 2 contains a discussion of theoretical principles that are necessary for an
understanding of the algorithms and mathematical models presented in this thesis,
which involves Local ternary patterns, Random forests, and Monte Carlo localiza-
tion. It also contains a detailed description of probabilistic graphical models, since
they are fundamental to the terrain-classification method.

• Chapter 3 presents the robot platform used for data acquisition and experiments.
The main sensors are a color camera and the 3D LiDAR Nippon Signal FX6. Since
this LiDAR is rather uncommon, its theory of measurement is described in more
detail.

• In Chapter 4 a new method for 3D LiDAR-based terrain classification with easy-
to-compute and yet discriminative 3D features is presented. These results are then
combined with camera-based texture classification in order to classify a terrain
grid in front of the robot.

2



1.1 Outline

• To improve classification results, spatial dependencies between the individual cells
of the terrain grid are taken into account in Chapter 5 by describing the grid as
a probabilistic graphical model. An approximate optimal configuration of terrain
labels is found by optimizing feature- and neighborhood-dependent energy terms,
and an efficient way for describing the neighborhood-dependent energy is pre-
sented.

• Chapter 6 describes how to build spatio-temporal terrain and elevation maps of
the environment by constantly integrating the current classification results into a
map at each time step, and by taking into account temporal dependencies. Finally,
this chapter shows how to use these maps for a semantic localization of the robot.

• The conclusions in Chapter 7 offer a brief summary of the main results and an
outlook on future work.
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Chapter 2

Theoretical Principles
In this chapter the theoretical principles that are necessary for an understanding of the
following chapters are discussed. The methods presented in this thesis build on these
principles, modify and extend them. We start in Sec. 2.1 by formulating the fundamental
classification problem using probability theory. In Sec. 2.2 we present Local binary pat-
terns and Local ternary patterns, descriptors that are used for computing feature vectors
for image regions. Random forests, the classification method that builds the foundation
of all our methods, will be explained in Sec. 2.3. We then show in Sec. 2.4 how to in-
corporate structural dependencies in classification using graphical models. We compare
Markov random fields and Conditional random fields, discuss advantages and disad-
vantages of the two models, and present a method for maximum-a-posteriori inference.
Finally, in Sec. 2.5, we turn to the topic of robot localization and discuss Monte Carlo
localization, a localization method using a particle filter.

2.1 Classification and Probability
Classification, in the sense in which we use it in this thesis, is the problem of iden-
tifying to which of a set of predefined classes an instance belongs. In our work, an
instance is usually a small patch of terrain, which belongs to one of the terrain classes
asphalt, cobblestones, grass, gravel, or tiles. In general, an instance is represented by a
D-dimensional feature vector x ∈ RD. This represents what we observe, typically on the
basis of sensor measurements. A feature vector can consist, for example, of pixel values
or range measurements, and in general of any numbers that represent the characteristics
of an instance. We will see an example of such a feature vector in Sec. 2.2, where an
image region will be represented by a histogram based on differences in pixel intensi-
ties. Given a feature vector, the task is to find the class to which the instance belongs.
So-called supervised learning algorithms try to identify and represent the relationships
between feature vectors and class labels by analyzing a training data set, so that predic-
tions for previously unseen feature vectors can be made. The training data set consists
of many pairs of feature vectors and associated class labels. The assignment of labels
to feature vectors is usually done by hand. The learning algorithms thus produce an in-
ferred function that takes a feature vector as input, and outputs the predicted class label.
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Chapter 2 Theoretical Principles

However, in general, these predictions can not be made with absolute certainty, but only
with some probability. So, a preferable function is one that indicates a probability value
for each class label. We will get to know such a learning algorithm in Sec. 2.3. In the
following section, we will formalize this idea and introduce some necessary notation 1.

In order to classify not only small patches of terrain but larger areas, we divide these
areas into multiple cells. We refer to this subdivision into individual cells as a terrain
grid, and index the grid cells with 1, ...,M, where M is the number of cells. Since each
cell can take on each terrain label with a certain probability, we model these labels as a set
of random variables Y = {Y1, ...,YM}. A label configuration y = {Y1 = y1, ...,YM = yM}
assigns a class label yi to each random variable Yi, for i ∈ {1, ...,M}. Thereby, a class
label is simply the index of the corresponding class in the set of terrain classes. If there
are K classes, it is yi ∈ {1, ...,K}. The label configuration y tells us, so to speak, for each
terrain cell whether it is asphalt, cobblestones, grass, and so on. The random variables
Y are also called output variables, since their predicted assignment is the output of our
learned model. The input variables X , on the other hand, are the variables that are fed
into the model. They represent the possible values that the feature vectors of each cell
may take. While the output variables can only take on discrete values from a small set
of class labels, the input variables can in general take on an infinite number of possible
values. But in contrast to the output variables, these variables can be observed. By
computing feature vectors xi based on sensor measurements, we can assign a value to
each input variable Xi ∈ X , X = {X1, ...,XM}. Given the feature vector xi, we then are
interested in the probability p(Yi = yi | Xi = xi) that the grid cell belongs to the terrain
class with label yi. For better readability, this probability will be denoted hereinafter as
p(yi | xi). A learning algorithm that returns these probability values, and not just a class
label, has many advantages, as we shall see in the following chapters. If we nevertheless
want to assign a single label y∗i to the grid cell, we simply choose the one which is most
probable 2:

y∗i = argmax
yi

p(yi | xi) (2.1)

In the same way that p(yi | xi) denotes the probability of a single cell label given the
corresponding feature vector, p(y | x) denotes the probability of the label configuration
y of the whole grid, given the set x of all feature vectors computed for this grid. This
probability distribution over X and Y can be very complex, but if we make the assump-
tion that the labels and features of any pair of grid cells are independent of each other,
the probability distribution factorizes into the cell-wise probabilities:

1See the symbol table in the appendix for a summary of the notation used.
2When two or more labels are equally likely, one of these values is chosen at random.
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2.2 Local Binary Patterns and Local Ternary Patterns

p(y | x) =
M

∏
i=1

p(yi | xi) (2.2)

y∗ = argmax
y

M

∏
i=1

p(yi | xi) (2.3)

It is clear that this assumption is a strong limitation in the correct description of reality,
since labels of two adjacent cells very well do depend on each other. We will see in
Sec. 2.4 how we can loosen these restriction and still be able to estimate the most likely
label configuration y∗.

2.2 Local Binary Patterns and Local Ternary Patterns
To represent a small image region as a feature vector x we use Local binary patterns
(LBP) and Local ternary patterns (LTP). LBP and LTP encode the intensity differences
between a pixel and its neighborhood in a binary sequence, and are particularly well
suited for textures. LTP is an extension of LBP, and we will therefore describe LBP first.

Local binary patterns

LBP represents an image pixel by the relation to its neighboring pixels. We define this
neighborhood to be the eight surrounding pixels (see top left of Fig. 2.1). Hereby we
do not use color but grayscale values. Thus, each pixel is described by a single number,
normally between 0 and 255. Let c be the grayscale value of the centering pixel. Then,
each neighboring pixel with value p is labeled according to a function sLBP(c, p). If p is
greater or equal to c, then sLBP(c, p) equals 1, otherwise 0:

sLBP(c, p) =

{
1, if p− c≥ 0
0, otherwise

(2.4)

Starting from the right pixel going clockwise, these labels form a binary pattern of
length eight. Now, to not only represent single pixels, but a whole image region, first,
the LBPs for all pixels in this region are calculated, and then a histogram of the frequen-
cies of occurrences of these patterns is created. Since these patterns are binary strings of
length eight, the histogram consists of 28 = 256 bins (see Fig. 2.2). So, the correspond-
ing feature vector x has 256 dimensions.
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Figure 2.1: Local binary patterns (LBP) and Local ternary patterns (LTP) encode the
neighborhood of a pixel in a binary sequence, based on differences in pixel intensities.

1            ...            256

LBP

1                             …                            512

LTP

Figure 2.2: An image region (red square) is described by histograms based on the fre-
quency of occurrence of Local binary patterns, or Local ternary patterns respectively, for
the individual pixels.

Local ternary patterns

LTP extend LBP by not only checking whether the pixel differences are positive or
negative, but by checking whether the differences are greater or smaller than a threshold
k:
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2.3 Random Forests

sLTPk(c, p) =


1, if p− c > k
−1, if p− c < k
0, otherwise

(2.5)

Since each pixel now has three possible labels, the number of possible patterns, and
thus the number of histogram bins, would be 38 = 6561. To reduce this large number two
binary patterns are created (see Fig. 2.1). In the first pattern, a one is written when the
corresponding pixel is marked with one, and otherwise a zero is written. In the second
pattern, a one is written when the corresponding pixel is marked with minus one, and
otherwise a zero is written. Histograms are calculated for both patterns, which are then
concatenated. This results in a 512-dimensional feature vector x. LTP can thus describe
textures in more detail than LBP, at the expense of a longer feature vector and a threshold
parameter to be set.

2.3 Random Forests
Random forests [Breiman (2001)] is a machine-learning method that uses multiple binary
decision trees for classifying an instance, represented by a feature vector, as belonging
to one of a set of pre-defined classes. The method can also be used for regression, but we
focus on classification, since this is what we use it for in our work. In the construction
of trees in the training phase there is randomness involved at various points, hence the
name of the method. To classify unseen data, each tree classifies the corresponding
feature vector individually, giving a so-called vote for one class. The decision of the
forest is then given by the majority of votes.

Training phase

Random forests is a supervised learning method, which means that we need labeled
training data. Let S = {(x1,y1), . . . ,(xN ,yN)} be the training data set, where xi is the i-th
feature vector and yi its assigned class label, with i = 1, ...,N. The training set is used
in the training phase for constructing the decision trees of the forest. The creation of
trees is what is referred to as the actual learning process; the knowledge obtained by the
available training data is represented by the special structure and parameters of the trees.
Hereby, the construction of a decision tree is not deterministic; there are some random
elements involved.

First of all, each tree uses a different training set Sp, a so-called bootstrap sample from
the training set S, with p = 1, ...,T , where T is the number of trees in the forest. Such
a bootstrap sample is obtained by (randomly) sampling N training vectors from S with
replacement. This means that the bootstrap sample has the same size as S , but some
vectors occur more than once, while others are not included at all. For large training sets

9



Chapter 2 Theoretical Principles

the fraction of unique feature vectors is expected to be 1−1/e (≈ 63.2%) [Aslam et al.
(2007)]. The construction of each tree is based on the CART algorithm (Classification
And Regression Trees) [Breiman et al. (1984)]. It starts with the tree consisting only of
the root node. Then, the training set Sp is divided into two disjoint subsets S left

p and S right
p ,

so that these subsets are as pure as possible. In this context, pure, or rather none-pure, is
defined by an impurity measure. Intuitively, we want a partitioning of the training data,
also called a split, that keeps instances of the same class together, and separates instances
of different ones. CART, and also Random forests, use the Gini impurity IG:

0≤ IG(S) =
K

∑
i=1

fi(1− fi) = 1−
K

∑
i=1

f 2
i (2.6)

Here, fi is defined as the fraction of training instances of S that belong to the class
indicated by i, that is y = i, with a total of K classes. IG(S) is zero when all training
instances belong to the same class; the set S is then as pure as possible. The training sets
are recursively divided further until either a specified maximum depth of the tree branch
is reached, the number of training samples in the set is less than a specified threshold,
the best split is not much better than a random one, or the Gini impurity is zero. The leaf
node then contains the class label that occurs the most in the remaining set. In case of a
tie, a class label is chosen at random.

The question remains of how the best split at each node is found. Each non-leaf node
of the tree contains a decision rule that determines which incoming training instances
go to the left and which go to the right. Let x = (x(1), · · · ,x(D)) be a D-dimensional
feature vector consisting of D feature values. And let p be the index that identifies all
quantities belonging to the p-th node. Then, each decision rule is fully described by two
parameters: an index jp that indicates which feature value x( jp) is to be considered, and
a threshold tp with which the values are compared (see Fig. 2.3). In order to determine
these parameters, each node does not consider all feature values, but a randomly selected
subset. The size of this subset is often set to

√
D. All values x( jp) of the subset are

possible thresholds, and the value that yields the minimal Gini index is selected.

Classification phase

Classification of new, unseen data is now straightforward. In the classification phase
a new sample x is pushed down each tree so that it ends up in a leaf node with a corre-
sponding class label y. In this way, each tree “votes” for one class. We therefore not only
get a label, but a probability p(y | x) for each label as the proportion of trees that have
voted for this label. The most probable class label then is simply the label y∗ with the
majority of votes:

y∗ = argmax
y

p(y | x) (2.9)

10
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x( jp ) < t p

true false

S p
left S p

right

S p

S left
p = {(x,y) ∈ Sp : x( jp) < tp} (2.7)

S right
p = {(x,y) ∈ Sp : x( jp) ≥ tp} (2.8)

Figure 2.3: Constructing a binary decision tree: The decision rule at node p is described
by index jp, which indicates the feature element in question, and threshold tp.

In case of a tie, a label is selected at random among those in question. As a conse-
quence, we get probability values for all classes, whereas in other models these have
yet to be constructed, as for instance with Support vector machines [Cortes and Vapnik
(1995)] using Platt’s method [Platt (1999)].

The described technique, namely the training of many weak classifiers using different
bootstrap samples, and then combining the classification results is also called Bagging
[Breiman (1996)], which is an acronym for Bootstrap aggregating. Each tree learns its
training data almost perfectly and therefore has a high variance, which causes overfit-
ting. The creation of many such high-variance classifiers and combining them by voting,
however, leads to a strong classifier with low variance.

An implementation of Random forests can be found in OpenCV [Bradski (2000)],
where they are called Random trees. [Criminisi et al. (2012)] give a good introduction
to the topic and present a unified, efficient model of random decision forests. They also
present some extensions to the classical Random forests, where, for example, not only
the forest provides probabilities for each class label, but also each node.
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2.4 Probabilistic Graphical Models
Computing feature vectors like Local ternary patterns and using machine-learning meth-
ods like Random forests we can solve the classification problem stated in Sec. 2.1.
Hereby, each cell of the terrain grid is classified individually, which leads to a conditional
probability distribution p(y | x) that factorizes according to Eq. (2.2). By not considering
the spatial dependencies between grid cells we are ignoring important information since
terrain usually appears in contiguous areas. Probabilistic graphical models (PGMs) help
here. PGMs provide a framework that combines modeling of uncertainty and structure
[Koller et al. (2007)]. Uncertainty is described using the rules of probability theory,
and the inherent structure of the problem is modeled using a graph. There are various
types of PGMs, among which Bayesian networks, Hidden Markov models, and Markov
random fields are some of the most popular. They are used in a wide variety of fields
like natural language processing [Lafferty et al. (2001)], computer vision [Li (2009)], or
bioinformatics [Durbin et al. (1998)]. In general, PGMs represent families of probability
distributions over sets of random variables by means of a graph. By assuming certain
conditional independence relationships, an otherwise complex distribution can be repre-
sented as a product of local functions on subsets of variables. Indeed, the power of the
graphical modeling framework lies in the relationship between factorization, conditional
independence, and graph structure [Sutton and McCallum (2012)].

We will now describe two graphical models, Markov random fields in Sec. 2.4.1, a
generative model that represents a joint probability distribution p(y,x), and Conditional
random fields in Sec. 2.4.2, a discriminative model that represents a conditional distribu-
tion p(y | x). The theory discussed in the context of Markov random fields also builds the
basis for understanding Conditional random fields. We will compare the two approaches
in the context of terrain classification, and present a method for maximum-a-posteriori
inference in Sec. 2.4.3.

2.4.1 Markov Random Fields
In the literature, there is a variety of — sometimes quite different — ways to approach
the topic of Markov random fields (MRFs). Since we are interested in using MRFs in
the context of terrain classification, we start with the classification problem in terms
of labels y and observations x. In general, an MRF defines a family of joint probability
distributions by means of an undirected graph. In classification, this distribution is p(y,x)
and we can relate it to the conditional distribution p(y | x) using Bayes’ rule.

p(y | x) = p(y,x)
p(x)

∝y p(y,x) = p(x | y)p(y) (2.10)

For a given set of feature vectors x, the conditional probability p(y | x) is proportional
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to the joint probability p(y,x) for all y 3. This means that when x is fixed, the label con-
figuration y∗ that maximizes p(y,x) also maximizes p(y | x), assuming that we are using
the true probability distributions underlying the data. The joint probability distribution
factorizes into two components, the conditional probability distribution p(x | y), and the
a-priori probability p(y) of the label configuration.

p(x | y) =
M

∏
i=1

p(xi | yi) (2.11)

=
M

∏
i=1

D

∏
d=1

p(x[d]
i | yi) (2.12)

=
M

∏
i=1

D

∏
d=1

1√
2πσ

[d]
yi

exp

(
−
(x[d]

i −µ
[d]
yi )

2

2σ
[d]
yi

2

)
(2.13)

=
M

∏
i=1

D

∏
d=1

exp

−(x[d]
i −µ

[d]
yi )

2

2σ
[d]
yi

2 + log

 1√
2πσ

[d]
yi

2

 (2.14)

= exp

− M

∑
i=1

D

∑
d=1

(x[d]
i −µ

[d]
yi )

2

2σ
[d]
yi

2 − log

 1√
2πσ

[d]
yi

2

 (2.15)

= exp

(
−

M

∑
i=1

D

∑
d=1

(x[d]
i −µ

[d]
yi )

2

2σ
[d]
yi

2 + log
(√

2πσ
[d]
yi

))
(2.16)

The conditional probability distribution p(x | y) models how the labels generate the
features, and that is why the MRF is called a generative model. This distribution can be
quite complex, but we make three simplifying assumptions as in [Häselich et al. (2011)].
First, in Eq. (2.11), we assume that the label of a grid cell affects only the feature vec-
tor of that very cell. And second, in Eq. (2.12), we assume that each component of the
D-dimensional feature vector is independent of the other components given the label of
the cell. Then, in Eq. (2.13), the third assumption is that each component of the feature
vector is Gaussian distributed, where µ

[d]
k and σ

[d]
k are the mean and standard deviation

of the d-th feature component for class label k = 1, ...,K. The K ·D pairs of mean and
standard deviation are learned from training data.

The distribution p(y) is the prior probability distribution of the random field. It de-
scribes the probability of a label configuration without considering feature vectors, that
is, prior to taking into account any measurements. However, it is not obvious how this

3See the symbol table in the appendix for the definition of the symbol ∝y.
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distribution should look like. In the context of terrain classification, for instance, a label
configuration where all grid cells are equal seems more likely than a configuration with a
frequent change of labels. We want to model this property of a terrain grid using a PGM.
In the following sections, we describe this model and derive the distribution p(y).

The nodes of the graph of the PGM represent the random variables Y for the labels
of the grid cells. The edges of the graph represent probabilistic interactions between the
variables. Since there is no preferred direction for this interaction, these edges are undi-
rected. Actually, each variable depends on all the others, but to reduce the complexity of
the model we set edges only for direct interactions between neighboring nodes.

y

y

y

y

y

y

y

y

y

x
x

x
x

x

x

x
x

x

Figure 2.4: The terrain label y of a grid cell depends on the observed features x, but also
on the labels of its neighboring cells.

Examples of neighborhoods are the 4-neighborhood consisting of the four direct neigh-
bors as in Fig. 2.4, or the 8-neighborhood consisting of all eight surrounding nodes. In
general, the neighborhood Ni of a node i consists of all nodes j 6= i with a direct edge to
node i. The neighborhood systemN is the collection of all neighborhoods of the random
field. Using this terminology we can now define a Markov random field Y consisting of
random variables Y as in [Deng and Clausi (2004)].

Definition 1 (Markov random field). A random field Y is a Markov random field with
respect to the neighborhood system N , if and only if

1. p(y)> 0 for all possible configurations y of Y

2. p(Yi = yi | {Yj = y j : j 6= i}) = p(Yi = yi | {Yj = y j : j ∈ Ni}) for all random
variables Yi ∈ Y .

So the probability of a configuration can be arbitrarily small, but not zero. In addition,
the value of a variable only depends on its direct neighbors. This is the generalization
of the Markov property as it is known, for instance, in Hidden Markov models in the
one-dimensional case. It means that the neighborhood Ni of node i contains all relevant
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information for determining yi, and the knowledge of other values yk with k /∈ Ni does
not affect the certainty about yi. Yi and the random variables of the non-adjacent nodes
are statistically independent. However, we still do not know how to describe p(y) in
terms of a probability distribution. Therefore we need the definition of a Gibbs random
field, which describes this distribution in terms of energy functions E(y) and potential
functions V (y) over cliques c, and the Hammersley-Clifford theorem.

Definition 2 (Gibbs random field). A random field Y is a Gibbs random field with respect
to the neighborhood system N , if and only if

p(y) =
1
Z

exp(−βE(y)) (2.17)

=
1
Z

exp

(
−β ∑

c∈C
Vc(yc)

)
. (2.18)

Theorem 1 (Hammersley-Clifford). A random field Y is a Markov random field with
respect to the neighborhood system N , if and only if it is a Gibbs random field with
respect to N .

The theorem states the equivalence of Markov random fields and Gibbs random fields,
and is also called the fundamental theorem of random fields [Lafferty et al. (2001)]. A
proof can be found in the original unpublished paper [Hammersley and Clifford (1971)],
or in [Besag (1974)]. The theorem allows us to use the Gibbs measure (Eq. (2.17) and
(2.18)) as our probability distribution. The function E(y) assigns a real number to a
label configuration. It is also called an energy function, since it is interpreted as the
energy of the configuration in the context of statistical mechanics. β is a free parameter,
and when used in a physical context, is set to the inverse temperature of the system.
Z =∑y exp(−βE(y)) is called the partition function and ensures that the total probability
for all possible configurations sums to one. The computation of the partition function
involves the computation of the probability for every possible label configuration and
is thus very time consuming, however, we will see in Sec. 2.4.3 that we do not need
to compute it. The energy function is composed of the sum of all potential functions
Vc over all cliques c ∈ C, where C is the set of all cliques of the corresponding graph.
Cliques are subsets of nodes, such that every two nodes in the clique are connected.
Using a 4-neighborhood like in Fig. 2.4, the set of cliques C consists of sets of pairs
of connected nodes. When using an 8-neighborhood, the cliques consist of up to four
fully connected nodes. However, we only consider pairwise potentials, and set all non-
pairwise potentials to zero. It remains to specify the potential function Vc(yc) where yc
denotes the label configuration of the nodes in clique c. Let C2 = {(i, j) : j ∈ Ni} be
the set of all pairs of indexes of connected label nodes. We use the pairwise potential in
[Deng and Clausi (2004)] for all c ∈ C2:
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Vc(yc) = ψ(yi,y j) =

{
−1 if yi = y j

+1 if yi 6= y j
(2.19)

For two neighboring cells having the same label the function value is negative, which
leads to a higher probability, whereas two different labels decrease the probability. We
finally arrive at the prior probability distribution of our MRF:

p(y) =
1
Z

exp

(
−β ∑

(i, j)∈C2

ψ(yi,y j)

)
(2.20)

Now we can put it all together. Inserting p(x | y) from Eq. (2.16) and p(y) from

Eq. (2.20) in p(y,x)= p(x | y)p(y), and setting φ(yi,xi) :=∑
D
d=1

(x[d]i −µ
[d]
yi )

2

2σ
[d]
yi

2 +log
(√

2πσ
[d]
yi

)
,

we get the final form of the joint probability distribution:

p(y,x) = exp

(
−

M

∑
i=1

φ(yi,xi)

)
1
Z

exp

(
−β ∑

(i, j)∈C2

ψ(yi,y j)

)
(2.21)

=
1
Z

exp

(
−

M

∑
i=1

φ(yi,xi)−β ∑
(i, j)∈C2

ψ(yi,y j)

)
(2.22)

This joint probability distribution over X and Y together with the graph shown in
Fig. 2.4 defines our MRF. Eq. (2.22) points out the two components of the MRF. On the
one hand, a feature-dependent component in the form of a potential function φ(yi,xi)
defined over all labels with their associated feature vectors. On the other hand, a context-
dependent potential function ψ(yi,y j) defined over all pairs of neighboring labels. It is
easy to see that our MRF is consistent with Definition 1. The set of random variables
is partitioned into a set of label variables Y and a set of feature variables X . p(y,x) is
always greater than zero since an exponential function is always greater than zero, and
the Markov property is satisfied by using the potential functions φ and ψ on the pairwise
cliques defined by the graph.

However, the MRF model has some shortcomings. E.g., we have to implicitly model
the probability distribution p(x) of the features (for all class labels). This distribution can
be very complex, and making simplifying assumptions, like modeling it as a Gaussian
distribution, can be a too strong restriction. The pairwise factor ψ encourages agreement,
but the way in which it does so is inflexible. The probability that two neighboring cells
have the same label should be higher when the corresponding features are similar, and
vice versa, but ψ in this model is independent of the features x. We will come back to
these issues after introducing Conditional random fields in the next section.
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2.4.2 Conditional Random Fields
In contrast to MRFs, a Conditional random field (CRF) is a discriminative model, which
means that it models the conditional distribution p(y | x) directly. As in the last section,
we start with Bayes’ rule:

p(y | x) = p(y,x)
p(x)

(2.23)

We can describe both p(y,x) and p(x) using the same unnormalized joint distribution
p̃(y,x):

p(y,x) =
p̃(y,x)

∑
y

∫
x

p̃(y,x)
(2.24)

p(x) = ∑
y

p(x | y)p(y) = ∑
y

p(y,x) =
∑
y

p̃(y,x)

∑
y

∫
x

p̃(y,x)
(2.25)

Eq. (2.25) follows from the law of total probability. When we insert Eq. (2.24) and
(2.25) into (2.23), the normalization factor that sums over y and integrates over x cancels
out, and only the normalization factor Z(x) = ∑y p̃(y,x) that sums over y remains:

p(y | x) = 1
∑
y

p̃(y,x)
p̃(y,x) (2.26)

=
1

Z(x)
p̃(y,x) (2.27)

When comparing Eq. (2.24) and (2.26) we see that when x is given, the normalization
factor only sums over y. Again, as with the MRF, we can express the (unnormalized) joint
distribution p̃(y,x) as a product of local factors defined by the associated graph, which
means that two nodes of the graph are connected by an edge whenever they appear in the
scope of the same factor. Since we model the conditional distribution p(y | x) directly,
there are no potentials that involve only input variables x, but we are otherwise free in
choosing the potential functions. We use the CRF model of [Lalonde et al. (2010)],
where the set of factors is encoded as a log-linear model:
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p(y | x) = 1
Z(x)

exp

(
−λ

M

∑
i=1

φ(yi,xi)− ∑
(i, j)∈C2

ψ(yi,y j,xi,x j)

)
(2.28)

Z(x) = ∑
y

exp

(
−λ

M

∑
i=1

φ(yi,xi)− ∑
(i, j)∈C2

ψ(yi,y j,xi,x j)

)
(2.29)

φ(yi,xi) =− log(p(yi | xi)) (2.30)

ψ(yi,y j,xi,x j) = 1{yi 6=y j} exp
(
−β (xi− x j)

2) (2.31)

This model can be seen in analogy to Eq. (2.22) defining the MRF model. The partition
function Z(x) now additionally depends on the features x, but as with the partition func-
tion of the MRF, we do not need to compute it for solving the classification problem, as
we will see in the next section. The unary potential φ(yi,xi) models the feature-dependent
component and the pairwise potential ψ(yi,y j,xi,x j) models the context-dependent part.
The influence of each of the two components is controlled by the parameter λ . It is now
no longer necessary to model the feature distribution p(x) for the unary potential and we
get the conditional distribution p(yi | xi) as output of the Random forest classifier. But
just as well, any other classifier can be used that provides these probability values. The
potential function φ(yi,xi) in Eq. (2.30) is chosen such that the conditional probability
distribution reduces to Eq. (2.2) when settings all pairwise potentials to zero and λ = 1:

pφ (y | x) =
1

Z(x)
exp

(
−

M

∑
i=1

φ(yi,xi)

)
(2.32)

=
1

Z(x)
exp

(
M

∑
i=1

log(p(yi | xi))

)
(2.33)

=
1

Z(x)

M

∏
i=1

exp(log(p(yi | xi))) (2.34)

=
M

∏
i=1

p(yi | xi) (2.35)

The partition function cancels out, since Z(x) = ∑y ∏
M
i=1 p(yi | xi) = 1.

Another big difference of the CRF model compared to the MRF is that the pairwise
potential ψ(yi,y j,xi,x j) now also depends on the features, while in Eq. (2.19) the same
dissimilarity penalty is imposed regardless of x. The idea behind Eq. (2.31) is that the
probability that two neighboring grid cells belong to the same class is high, but if they
belong to different classes, their appearance (measured by feature vector x) must also
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Figure 2.5: In the Conditional random field, the label y of a cell depends not only on
the observed features x of its own cell, but also on the features of the neighboring cells.
Highlighted are the dependencies between two neighboring cells and their associated
features.

differ. The indicator function 1{yi 6=y j} outputs 1 if the neighboring labels yi and y j are
different, and zero if they are equal. The potential is the highest if the labels are unequal
but the corresponding feature vectors xi and x j are the same, and it exponentially de-
creases with the squared difference of the feature vectors. The parameter β is a so-called
contrast-normalization constant as suggested in [Boykov and Jolly (2001)]. In general,
the pairwise potential in a CRF can take into account all feature vectors in x, but as with
the class labels we limit the scope to the neighboring grid cells. Fig. 2.5 shows these ad-
ditional dependencies as represented by the additional edges in the corresponding graph
structure, highlighted for two neighboring grid cells.

To conclude the sections about MRFs and CRFs we want to emphasize the differences
between generative models like the MRF and discriminative models like the CRF in the
context of classification. Since the generative and the discriminative model can be con-
verted into each other using Bayes’ rule, one might think that it does not really matter
which model is used. However, the two models can only then be exactly converted into
each other when we use the true distributions underlying the data. But precisely because
we do not know the true distributions but have to make assumptions and approximations,
the CRF model and the MRF model are different in practice. The CRF only models
the conditional probability distribution p(y | x), but this is all that is needed for classifi-
cation. The conditional distribution discriminates directly between the different labels.
The MRF, on the other hand, is a full probabilistic model of all variables, and as such
it also includes a model of the feature distribution p(x), which may be very difficult to
formulate, since the dimensionality of the feature vectors can be very high and there may
be complex dependencies between the vector elements. The advantage of the generative
model, however, is that it can cope with partially labeled or completely unlabeled train-
ing data, and even new samples can be generated by the model, but this is not required in
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our classification problem. So, in a nutshell, using the MRF we have to make more as-
sumptions than are necessary to solve the classification problem, whereas in the CRF we
only model the conditional distribution and do not model the feature distribution, which
may be very complex and is not required for the purpose of classification anyway.

For further informations about CRFs, we refer the interested reader to the excellent in-
troduction in [Sutton and McCallum (2012)], and also in [Nowozin and Lampert (2011)]
with a focus on applications in computer vision.

2.4.3 MAP Inference
Now that we have described the terrain grid and the relationships between observed
features and class labels through a probabilistic graphical model, we want to solve the
classification problem. That is, given the observed features x, we want to find label
configurations y∗ of maximum probability. This is also known as MAP (Maximum A
Posteriori) inference.

y∗ = argmax
y

p(y | x) (2.36)

For a grid with M cells and K class labels there are KM different possible label config-
urations y ∈ Y M. Even for small grids and few class labels it is not feasible to consider
all the exponentially many possible configurations of terrain labels in finding the opti-
mal solution. There exist several heuristics for MAP inference trading off an algorithmic
property — like generality, optimality, or determinism — for speed. [Nowozin and Lam-
pert (2011)] present some of the most common methods involving local search, graph
cuts [Boykov et al. (2001)], or simulated annealing [Kirkpatrick et al. (1983); Černý
(1985)]. We use a variant of simulated annealing using Gibbs sampling, which yields an
approximately optimal solution. It was first introduced by [Geman and Geman (1984)],
and was successfully used for image classification [Berthod et al. (1996)], image seg-
mentation [Deng and Clausi (2004)], and also for terrain classification [Häselich et al.
(2011)]. We will see that this method is particularly well suited for our needs. Since
simulated annealing works by minimizing energy terms, we first show how to formulate
our problem as an energy minimization problem, and then discuss the algorithm in detail.

Defining a problem in terms of energy functions and finding the optimal solution by
minimizing these energies is a popular technique, especially in computer vision. The
term energy is used because some of these methods originate in statistical mechanics.
In contrast to the probabilistic interpretation where we are interested in solutions which
yield high probabilities, in the energy formulation we are looking for solutions bringing
a system in a state of low energy. With the special form of Eq. (2.22) for the MRF
and Eq. (2.28) for the CRF the connection between probability and energy can be easily
seen. In finding the optimal solutions y∗, maximizing the probability and minimizing the
energy is equivalent.
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y∗ = argmax
y

p(y | x) (2.37)

= argmax
y

1
Z(x)

exp

(
−∑

F
EF(yF ,x)

)
(2.38)

= argmin
y

∑
F

EF(yF ,x) (2.39)

So instead of maximizing the probability p(y | x) of the CRF, our goal is to mini-
mize the sum of the energies EF over all factors F . The same is true for MRFs, since
argmaxy p(y,x) = argmaxy p(y | x) (see Eq. (2.10)). Note that we do not need to com-
pute the partition function Z anymore, since it is constant for a given x.

The energy equivalents of the MRF factors (see Eq. (2.16) and Eq. (2.20)) are:

EMRF
1 (y,x) =

M

∑
i=1

D

∑
d=1

(x[d]
i −µ

[d]
yi )

2

2σ
[d]
yi

2 + log
(√

2πσ
[d]
yi

)
(2.40)

EMRF
2 (y) = β ∑

(i, j)∈C2

ψ(yi,y j) (2.41)

Here, we denote the energy of the unary potential with E1, and that of the pairwise
potential with E2. In the same way, the energy equivalents of the CRF factors (see Eq.
(2.28), Eq. (2.30), and Eq. (2.31)) are:

ECRF
1 (y,x) =−λ

M

∑
i=1

log(p(yi | xi)) (2.42)

ECRF
2 (y,x) = ∑

(i, j)∈C2

1{yi 6=y j} exp
(
−β (xi− x j)

2) (2.43)

Note that the energy term E2 of the CRF additionally depends on the features x. The
parameters λ and β can be learned from training data using the method of cross valida-
tion [Stone (1974)].

Now, to bring the terrain grid in a state of low energy, we use a two-stage approach.
In the first stage, we minimize the unary energy potentials E1(yi,xi) for every grid cell
individually, which corresponds to a cell-wise classification. Then, in the second stage,
we iteratively change the label configuration until the total energy of the terrain grid is
close to the minimum. So the first stage provides an initialization of the grid for the
second stage.
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EMRF
1 (yi,xi) =

D

∑
d=1

(x[d]
i −µ

[d]
yi )

2

2σ
[d]
yi

2 + log
(√

2πσ
[d]
yi

)
(2.44)

ECRF
1 (yi,xi) =−λ log(p(yi | xi)) (2.45)

Algorithm 1 Initialization with minimal energy E1 (Stage I)
1: INITIALIZATION(x)
2: Input:
3: x: observed feature vectors
4: Output:
5: y: label configuration
6: Algorithm:
7: for i = 1 to M do
8: yi← argminy E1(y,xi)
9: end for

10: return y

In the MRF the initialization corresponds to assigning to each grid cell the label
for which the observed feature vector best fits the corresponding mixture of Gaussians
learned from the training set. In the CRF the assignment of labels simply corresponds
to the output of the Random forest. For both models, the initialization yields a grid for
which the energy E1 is minimal. In order to also incorporate the pairwise energy poten-
tials E2 we make use of simulated annealing, a heuristic optimization method.

Simulated annealing was independently described by [Kirkpatrick et al. (1983)] and
[Černý (1985)]. The method is inspired by the process of annealing in metallurgy. There,
a material is first heated and then cooled down again. The cooling is done in such a grad-
ual way that the atoms have time to arrange themselves and form crystals. The physical
system then reaches a low energy state close to the optimum. In our case, the system
consists of the terrain grid with assigned class labels. The optimization algorithm starts
with an initialization of the grid, which might be random, but a better alternative is to use
a good estimate as provided by Algorithm 1. We then wander the search space in order
to find a state of low energy, where each iteration of the algorithm yields another sample
from the distribution of label configurations. Thereby, the temperature corresponds to
the probability of accepting a worse solution in an iteration step. Also accepting worse
solutions is an important ingredient of the algorithm, since otherwise we could get stuck
in a local minimum early on. So in the beginning of the algorithm, when the tempera-
ture is high, the energy differences do hardly affect the sampling process. Then, when
the temperatures decreases, the procedure reduces to a greedy algorithm that only moves
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towards better solutions.
The question remains of how to draw (approximate) samples from the distribution in

each iteration step. The original formulation of simulated annealing uses the Metropolis-
Hastings algorithm [Hastings (1970)], whereas we use the Gibbs sampler as introduced
by [Geman and Geman (1984)]. In its basic form, the Gibbs sampler is a special case
of the Metropolis-Hastings algorithm. It belongs to the class of Markov chain Monte
Carlo (MCMC) methods, which generate approximate samples from a joint probability
distribution over many variables. This multivariate distribution may be very complex,
and to draw samples from it can be very difficult, if not impossible. MCMC methods
help here by constructing a Markov chain with the desired probability distribution as
its stationary distribution. Where the Metropolis-Hastings algorithm proposes a sample
candidate in each iteration, and accepts or rejects it with a certain probability, the Gibbs
sampler accepts all samples. The key idea of the sampler is that, although it might
be difficult to sample from the joint distribution, drawing samples from the conditional
distribution of a single variable conditioned on the other variables is usually a lot easier.

y(t+1)
i ∼ p(yi | {y(t)j : j 6= i},x(t)) (2.46)

= p(yi | {y(t)j ,x(t)j : j ∈Ni}) (2.47)

So at iteration step t +1 each variable yi is sampled from the one-dimensional distri-
bution where all other variables are fixed. With the neighborhood systemN the variables
are then conditioned only on the variables of the neighboring cells. The conditional dis-
tribution can be expressed with the help of the corresponding energy potentials. In the
simulated annealing scheme, the probability of the state of a (sub-)system with tempera-
ture T having energy E is described by a Gibbs distribution:

pT (E) ∝ exp
(
−E

T

)
(2.48)

In order to compute the energy term E of a single grid cell i we need the unary potential
E1 (see Eq. (2.40) and Eq. (2.43)) and the corresponding energy term E2 for a single grid
cell, which is the sum of the pairwise potentials of the neighborhood:

EMRF
2 (y, i) = β ∑

j∈Ni

ψ(yi,y j) (2.49)

ECRF
2 (y,x, i) = ∑

j∈Ni

1{yi 6=y j} exp
(
−β (xi− x j)

2) (2.50)

Then, the total energy of a grid cell is the sum of E1 and E2:
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EMRF(y,xi, i) = EMRF
1 (yi,xi)+EMRF

2 (y, i) (2.51)
ECRF(y,x, i) = ECRF

1 (yi,xi)+ECRF
2 (y,x, i) (2.52)

In summary, an iteration step of the optimization algorithm consists of changing the
label of each grid cell by sampling from the Gibbs distribution in Eq. (2.48) using the
energy terms in Eq. (2.51) and (2.52). After each iteration, we can then compute the new
total energy E(y,x) of the whole grid (see Eq. (2.40) to (2.43)):

EMRF(y,x) = EMRF
1 (y,x)+EMRF

2 (y) (2.53)
ECRF(y,x) = ECRF

1 (y,x)+ECRF
2 (y,x) (2.54)

The optimization algorithm in pseudocode is shown in Alg. 2. First, the terrain grid
is initialized using Alg. 1. We then compute the initial energy of the grid, and set the
temperature to an initial value T0. After each iteration we compute the new energy of
the grid and compare it with the previous one. If the difference is smaller than or equal
to a threshold, we stop (see lines 25 to 27), since we then assume that not much will
change after that and we have found a state near the optimum. Otherwise, we continue
with the next iteration, but we set a limit for the total number of iterations, so that we can
bound the maximal computation time. Iterating through the cells sequentially is called
a deterministic sweep. An alternative is to iterate through the cells in a random order to
reduce the degree of correlation. At the end of each iteration the temperature is decreased
by multiplying it with the cooling rate c < 1.

In each iteration we apply the aforementioned sample technique to assign new labels
to each cell that has an associated feature vector. We therefore need to compute for
each grid cell the corresponding energies Ek for any class label k (see lines 16 to 19);
and we thus obtain for each cell K energy values, where K is the number of terrain
classes. Now, rather than taking the label with the lowest energy, we sample from the
Gibbs distribution in line 20. So the label with the lowest energy is taken most likely,
but also the other labels can be selected with some probability. Note that the function
Ē(y), and thus also the function exp(−Ē(y)/T) are only defined for y∈ {1, . . . ,K}. Fig. 2.6
illustrates the effect of different temperature values T on the Gibbs distribution. For high
temperatures, the probability of states with similar energy does not change much, and
the next sample can result in a lower or higher energy with similar probability. For really
high temperatures all label configurations are almost equally likely. On the other hand,
for low temperatures the probability mass concentrates at low energy states. Then, it is
very unlikely that the next iteration yields a state with an increased amount of energy.
This means that the changes in the label configuration can be very large at the beginning
of the optimization process, but will get less with the decrease of the temperature. To
avoid getting stuck in a local minimum, the temperature decrease has to be slow enough.
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Algorithm 2 Gibbs sampling in a simulated annealing scheme (Stage II)
1: GIBBSSAMPLING(T0, t, c, N, x)
2: Input:
3: T0: initial temperature
4: t: threshold for energy difference
5: c: cooling rate (c < 1)
6: N: maximum number of iterations
7: x: observed feature vectors
8: Output:
9: y: label configuration

10: Algorithm:
11: y← INITIALIZATION(x)
12: Eold← E(y,x)
13: T ← T0
14: for j = 1 to N do
15: for i = 1 to M do . For all grid cells
16: for k = 1 to K do . For all classes
17: yi← k
18: Ek← E(y,x, i) . Compute energy Ek for grid cell i having label k
19: end for
20: y∼ exp

(
− Ē(y)

T

)
, with Ē(k) = Ek . Sample from Gibbs distribution

21: yi← y
22: end for
23: E← E(y,x)
24: ∆E← |E−Eold|
25: if ∆E ≤ t then . Stop when the energy difference is small enough
26: break
27: end if
28: Eold← E
29: T ← c ·T
30: end for
31: return y
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Figure 2.6: Influence of different temperature factors T on the probability of the system
being in a state with energy E. The lower the temperature, the more probability mass is
concentrated at low energy states.

2.5 Monte Carlo Localization
In the previous sections we presented and discussed several models and algorithms that
we use for terrain classification. In the final section of this chapter we turn to another
topic: robot localization. We assume that the robot has an internal map of its environ-
ment containing information about terrain and obstacles. Then, the problem of robot
localization is to estimate the robot’s pose s = (x,y,θ), with position (x,y) and orienta-
tion θ , based on odometry and sensor measurements. There are two types of localization
problems: global and local localization. In global localization, the robot only knows that
it has to be somewhere on the map. When the robot has localized itself, local localiza-
tion is the task of keeping track of the robot’s position as it moves around. The so-called
kidnapped-robot problem, where the robot is carried to an arbitrary position without the
robot being aware of the change, emphasizes the need for the ability of global localiza-
tion even when the robot knows its initial position. Instead of getting kidnapped, there is
always the possibility that the localization fails completely, or the robot has to reboot its
system. We will now discuss Monte Carlo localization (MCL) [Dellaert et al. (1999)],
which can cope with both types of localization problems.

The various existing localization methods can be categorized by how they represent
the estimate of the robot’s current state. A Kalman filter [Kalman (1960)] represents the
estimated state assuming a Gaussian distribution. So there is only a single hypothesis
about where the robot is located, and the estimated position is given by the mean and the
covariance matrix. Thus, the Kalman filter can neither solve the global localization prob-
lem nor deal with ambiguities. Grid-based localization methods [Burgard et al. (1996)]
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can represent arbitrarily complex probability densities by using histograms. However,
the accuracy of the methods depends on the grid resolution, and the memory require-
ments grow with the size of the map, and can thus get very high. MCL uses a particle
filter for localization, where each particle represents a hypothesis for a potential robot
pose. Thus, the probability density function of the robot’s state is implicitly represented
by a set of samples (or particles) drawn from it. Hence, MCL combines the advantages
of the other two methods. It has the ability to represent multi-modal distributions like
the grid-based methods, but it is more accurate since it uses a continuous state space like
the Kalman filter. Besides, MCL is very easy to implement.

In global localization, when the robot knows nothing about where it is located, the
particles are spread randomly across the entire state space; this represents a state of max-
imum uncertainty. On the other hand, when we know the initial position of the robot,
the particles are distributed around this point. Since the particles represent hypothetical
poses of the robot, each particle not only has a certain position but also an associated
orientation. At each time step t, the MCL algorithm updates the robot’s belief about its
pose, represented by the set of particles Pt−1, by considering the current motion ut and
the current measurements zt , and returns the new set of particlesPt . Thereby, the Markov
property is assumed, which means that the future state of the robot only depends on the
current state, and not on previous ones.

Alg. 3 shows the MCL algorithm in pseudocode, based on [Thrun et al. (2005)].
Herein, a particle is defined as a pair (s,w) of pose s and a weight factor w. The algorithm
mainly consists of three steps: a motion update (see function MOTIONUPDATE(ut ,st−1)
in line 12), a sensor update (see function SENSORUPDATE(zt ,st ,M) in line 13), and a
resampling step (see lines 15 to 18). We will describe these steps in the following.

Motion update

When the robot moves at time step t, we also move each particle st−1 based on the
control input ut at time t, where the control input usually is the robot’s estimated motion
according to its odometry. Thus, when the robot moves forward, so do the particles,
whereas the direction of motion may differ, since each particle has its own orientation.
Because the odometry information is not perfect, we can predict the movement of the
robot only approximately. To represent this, we add Gaussian noise to the movement
of the particles. In the context of Bayesian filtering, the motion step is also referred to
as prediction step, as we predict the future state of the robot without relying on sensor
observations. If we would only use the motion update, the uncertainty regarding the pose
of the robot would grow constantly, so that a localization of the robot would become im-
possible.
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Algorithm 3 Monte Carlo localization using N particles
1: MONTECARLOLOCALIZATION(Pt−1,ut ,zt ,M)
2: Input:
3: Pt−1: Particles at time t−1
4: ut : Control input at time t
5: zt : Measurement at time t
6: M: A priori map
7: Output:
8: Pt : Particles at time t
9: Algorithm:

10: Pt ← /0
11: for i = 1 to N do
12: s[i]t ←MOTIONUPDATE(ut ,s

[i]
t−1) . Move particles

13: w[i]
t ← SENSORUPDATE(zt ,s

[i]
t ,M) . Update particle weights

14: end for
15: for i = 1 to N do
16: Sample j ∼ w[ j]

t , with j ∈ [1, ...,N] . Draw particles with replacement
17: Pt ←Pt +

(
s[ j]t ,N−1

)
. New distribution of particles

18: end for
19: return Pt
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Sensor update

In addition to position and orientation, each particle has an associated weight. When
the robot senses something at time step t, we update this weight wt based on the sensor
measurement zt at time t, the position st of the particle from the motion update, and the
constant mapM. We set this weight as the probability that the robot would sense zt if it
had the position and orientation st of the corresponding particle. For example, when the
robot senses asphalt, then particles that are in front of a patch of grass according to the
map have a low probability of being the true robot’s pose, and thus would be weighted
low.

Resampling

The resampling step is also called correction step, since we correct our prediction
based on new observations, which are now represented as particle weights. When there
is a total of N particles, we now generate a new set of particles by drawing N particles
with replacement, where the probability to draw a specific particle is proportional to its
weight. So some particles are drawn more than once, while others are not drawn at all.
In general, particles with higher weights are drawn more often than particles with low
weights. The new set of particles represents our new belief about the robot’s pose. In
contrast to the motion step, where the uncertainty increases, the resampling step reduces
it by incorporating new information.

Localization consists of a continuous prediction-correction cycle, and the particles
should ultimately converge towards the actual pose of the robot. Finally, if we need a
single estimate for the robot pose, then to choose the particle with the maximum weight
is not a good choice, since this position can jump quite a bit between two time steps. A
more robust alternative is to estimate the pose of the robot using the weighted mean of
all particles within a certain radius of the particle with the maximum weight.

29





Chapter 3

Hardware
For all data acquisition and experiments the outdoor robot Thorin, which is presented in
Sec. 3.1, was used. The main sensors we use in our work are an AVT Marlin F-046C
Color Camera and a Nippon Signal FX6 3D LiDAR. We will describe the camera briefly
in Sec. 3.2.1. The 3D LiDAR is described in Sec. 3.2.2 in a little more detail, as it
is a rather uncommon sensor, and we provide a basic understanding of its functional
principles. At the end of the chapter, in Sec. 3.3, we introduce the necessary coordinate
systems of the robot and its sensors.

3.1 Robot Platform
The outdoor robot Thorin (see Fig. 3.1) is based on a remote-controlled 1:8 model of
a monster truck, and was developed and built at our department. It is equipped with
a Mini-ITX computer running Ubuntu Linux, featuring a 2.26 GHz Core 2 Duo CPU
and a solid-state drive. An additional 32-bit microcontroller provides real-time control.
Odometry is provided by encoders inside the wheels, which count the wheel revolutions,
and a magnetic compass.

Figure 3.1: Outdoor robot Thorin with an AVT Marlin F-046C color camera and a Nip-
pon Signal FX6 3D LiDAR
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3.2 Sensors
The robot senses its environment using two sensors: an AVT Marlin F-046C color cam-
era and an FX6 3D LiDAR from Nippon Signal. The camera is only used for terrain
classification, and its technical details are described in Sec. 3.2.1. The 3D LiDAR is
used for plane detection, obstacle detection, and terrain classification. Technical details
and its measurement system are described in Sec. 3.2.2.

3.2.1 Camera
The AVT Marlin F-046C from Allied Vision Technologies GmbH is a fast and compact
machine vision camera and frequently used in industrial image processing and product
automation. It is equipped with a Sony CCD sensor and a FireWire interface. Resolution
and frame rate depend on the used color mode. We operate the camera in color mode
YUV422. Then, the picture size is 640×480 pixels, and the frame rate is 36 Hz. Actu-
ally, due to Bayer demosaicing, there are only 638× 480 pixels available. The camera
features both manual and automatic white balance, as well as an auto shutter and auto
gain function. We enable all three auto functions, as this is necessary especially in chang-
ing lighting conditions in outdoor environments. For more information see the technical
manual [AVT (2008)].

Marlin F-046C Color Camera

Vendor
Allied Vision Tech.

GmbH

Resolution
640×480 YUV422

16 bit/pixel
Frame rate 36 Hz YUV422
Interface IEEE 1394

Pentax TV Lens
Focal length 4.8 mm
Maximum

1:1.8
aperture ratio

Minimum
0.3 m

object distance

Figure 3.2: AVT Marlin F-046C Color Camera with a 4.8 mm lens

3.2.2 3D LiDAR
A LiDAR (Light RADAR) works similar to a RADAR, but uses laser light instead of ra-
dio waves or microwaves. We use the LiDAR FX6, which was developed as a prototype
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by Nippon Signal. It uses a pulse laser in the near-infrared range and is a time-of-flight
sensor, which means that it measures the distance from the sensor to an object by mea-
suring the time that the light needs to travel to the object and back to the sensor. The
sensor can measure time intervals as small as tmin = 30picoseconds, which corresponds
to a lateral resolution of dmin =

c · tmin
2 ≈ 3·108 m/s · 30·10−12 s

2 = 0.0045m = 4.5mm.

FX6 3D LiDAR
Vendor The Nippon Signal Co., Ltd.

Resolution 29×59 data points
Frame rate 8 Hz or 16 Hz

Range 0.1 m ∼ 16 m
Scan area 50◦ (hor.) and 60◦ (vert.)

Laser class Class 1 (near infrared)
Interface USB 2.0

Figure 3.3: The 3D LiDAR FX6 measures distance and intensity values in a two-
dimensional grid of 29×59 data points.

Theory of measurement

In a 2D laser scanner, a laser beam is deflected horizontally to get measurements in
a scan plane. In the FX6, the laser beam can be deflected using a 2D scanning-mirror
system called EcoScan. A moving plate with the mirror on its surface can be tilted hor-
izontally and vertically by changing electric currents. The beam then moves along a so-
called Lissajous curve (see Fig. 3.4). Lissajous figures, named after the French physicist
Jules Antoine Lissajous (1822-1880), are caused by the superposition of two harmonic
oscillations that are perpendicular to each other. More specifically, these figures involve
graphs of parametric functions of the following form:

t 7→
(

Ax sin(ω1t +φ1)
Ay sin(ω2t +φ2)

)
, t ≥ 0 (3.1)

The curve is bounded by the rectangle [−Ax,Ax]× [−Ay,Ay], with the amplitudes Ax
and Ay. The appearance of the curve mainly depends on the frequency ratio ω1/ω2 and
the phases φ1 and φ2. The functions are exactly then periodically if the frequency ratio
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( x (t)
y ( t))

Ax

A y

−A y

−A x

x(t) = Ax sin
(

2π fx t− π

2

)
(3.2)

y(t) = Ay sin
(

2π fy t− π

2

)
(3.3)

Ax : Maximum scan angle in the x-direction
Ay : Maximum scan angle in the y-direction
fx : Scan frequency in the x-direction
fy : Scan frequency in the y-direction

Figure 3.4: The FX6 scans along a Lissajous figure. By measuring at specific time points
t a regular grid of measurements is obtained.

is rational; then a closed curve is obtained in finite time. Otherwise, the rectangle will
be filled completely by the curve, for t → ∞ [Wikipedia (2014)]. For the FX6, the am-
plitudes Ax and Ay are determined by the maximum scan angle in the x- and y-direction.
With ω1 = 2π fx and ω2 = 2π fy, the frequency ratio results to ω1/ω2 = fx/fy, where fx and
fy are the scan frequencies in the x- and y-direction. This ratio is chosen so that it is ratio-
nal, and thus the function is periodic. Furthermore, it applies φ1 = φ2 =−π/2, and so the
curve starts at t = 0 at the lower left corner (x(0),y(0))T = (−Ax,−Ay)

T (see Fig. 3.4).
By measuring at specific times a regular grid of measurement points is obtained. With
the measured distance and the known scan angle, the 3D coordinates of the measured
object point can be determined for each measurement point.

This grid of measurement points is generated at a frequency of 16 Hz. A major disad-
vantage of the sensor is the low resolution of this grid with only 29×59 data points. A
great advantage on the other side is that the sensor is hardly affected by ambient light.
The photo sensor with which the returned light is received has an extremely high sen-
sitivity. In order to keep the level of received backscattered light high, and the level of
noise produced by ambient light low, both the direction of the laser beam and the field
of view of the photo diode are concentrated on each measuring point respectively. The
photo diode is also used to determine an intensity value for each measuring point, which
indicates the proportion of emitted light which arrives back at the sensor. According
to the manufacturer [Nippon (2008)], the sensor can even deal with high sunlight with
100 000 Lux and above. The empirical studies in [Rauscher et al. (2014)], as well as our
everyday experience with this sensor, confirm the FX6 as a reliable sensor, suitable for
the prevailing light conditions outdoors. The successor model FX8 comes with a slightly
higher resolution of 53×33 data points when operating at 16 Hz, and with a much higher
resolution of 97×61 data points when operating at 4 Hz ([Nippon (2010)]).
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3.3 Coordinate Frames
The following figure shows the necessary coordinate systems of the robot and its sensors.
Note that all coordinate systems are right-handed systems, as usual in robotics.

base_link laser3d_footprint

laser3d

camera

odom

x

z

Figure 3.5: The coordinate frames of the robot and its sensors. The red forward-pointing
arrows indicate the x-axes, the blue up-pointing arrows indicate the z-axes. The y-axes
are pointing away from the viewer and are not shown.

The coordinate system of the robot is referred to as base link. It is located on the
ground just between the two rear wheels, with the x-axis pointing forward and the z-
axis pointing upward. The odom frame is defined by the pose of the robot at the time
of the initialization of the system. The origin of base link expressed in coordinates of
odom indicates the current position of the robot relative to the starting position. We will
need this transformation in Chapter 6 when mapping the environment and localizing the
robot in a given map. laser3d refers to the coordinate system of the 3D LiDAR and
laser3d footprint is its projection onto the ground plane. We will see how to determine
the pose of the ground plane relative to the LiDAR in Sec. 4.3.2. The transformation
between base link and laser3d footprint is assumed to be fixed, and is measured by hand.
Finally, we also need to know the intrinsic camera parameters and the transformation
between the laser3d and the camera frame to be able to relate observations made by the
two sensors. We therefore use the calibration method described in Sec. 4.5.
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Chapter 4

Terrain Classification on Fused
3D LiDAR and Camera Data
In this chapter, we present our basic terrain classification method using the 3D LiDAR
and the color camera described in the previous chapter. The terrain in front of the robot
is divided into a grid, and each grid cell is classified individually using the sensor mea-
surements. For grid cells where data of both sensors are present, the classification results
are fused accordingly.

The chapter is based on the papers “3D LIDAR- and Camera-Based Terrain Classifi-
cation Under Different Lighting Conditions” [Laible et al. (2012)] and “Terrain Classifi-
cation With Conditional Random Fields on Fused 3D LIDAR and Camera Data” [Laible
et al. (2013)] and contains parts that were taken verbatim from these works.

4.1 Introduction
A mobile robot that navigates in outdoor environments is faced with challenges quite
different from those occurring in indoor scenarios, such as factories and office buildings.
A characteristic feature of such indoor environments is the geometric structure. This
structure simplifies autonomous navigation of a mobile robot. The detection of walls
and other obstacles is often sufficient for localization and path planning. This means
that it is sufficient to detect that there is something, without having to classify it. On
the other hand, outdoor environments often lack structure. In order to still enable a
safe and efficient navigation, a comprehensive semantic perception of the environment is
essential. Of particular interest is the surrounding terrain. Outdoor terrain varies and can
be uneven or impassable. The robot must be able to decide whether the terrain ahead is
passable easily, passable with caution, or whether it is better to avoid this terrain and to
plan another path. The detection and correct classification of the surrounding terrain is
therefore a fundamental ability of a mobile robot in outdoor navigation.

A major challenge in the field of outdoor robotics is the changing lighting conditions.
The texture of the ground may look very different depending on time of day and the
currently prevailing weather conditions. Our robot is equipped with a low-resolution
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(a) Asphalt (b) Cobblestones (c) Grass

(d) Gravel (e) Tiles

Figure 4.1: Images and 3D scans of the five terrain types under consideration. Scan
points are colored according to their intensity values.

3D LiDAR and a color camera, and both sensors are used for terrain classification.
Camera-based approaches are well studied and provide good results. A drawback of
these approaches, however, is that the quality of the classification is affected by the just
mentioned external factors. Laser scanners, on the other hand, are largely illumination-
invariant, and 3D LiDARs, which scan an entire area at a high frame rate, provide enough
information for terrain analysis. In our experiments we consider five types of terrain that
are often encountered: asphalt, cobblestones, grass, gravel, and tiles. Fig. 4.1 shows ex-
ample images and corresponding 3D scans of the five considered terrain types. There is
great variations within the terrain classes. For example, the grass has varying height and
density, some spots are covered with moss. The pattern of the cobblestones varies, and
gravel and asphalt show different textures at different spots.

This chapter presents a terrain classification method that combines the results of LiDAR-
and camera-based classification to cope with the aforementioned challenges. After dis-
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cussing related work in Sec. 4.2, we start with LiDAR-based terrain classification in
Sec. 4.3. First, by converting the range values of the LiDAR into Cartesian coordinates
we get a 3D point cloud wherein a RANSAC-based method finds the ground plane on
which the robot drives. This plane is divided into a grid and the grid cells are to be clas-
sified into the given terrain classes. We show how to extract features from these 3D scans
that are fast to compute and yet are capable of distinguishing different terrain types. We
use roughness and intensity histograms for the laser scans. Especially the distribution
of the intensity values of the scan points provides characteristic features, since it results
from the reflection properties of the different terrain types. The cells in which the height
exceeds a threshold are marked as obstacles and are not further classified. Since the Li-
DAR has a very low resolution, only for cells that are closer than about two meters to
the front of the robot enough laser measurements are available to provide a meaningful
analysis of the terrain. Finally, Random forests are used for classification.

Sec. 4.4 presents the camera-based terrain classification. We describe two texture-
based image descriptors, Local binary patterns and Local ternary patterns, and the interest-
point image descriptor TSURF. Local ternary patterns are an extension of Local binary
patterns, and both are basically histograms of binary-encoded intensity differences in
neighboring pixels. Since only differences are considered, a certain independence from
changes in illumination is achieved. TSURF is based on the famous SURF descriptor.
Then, in Sec. 4.5, in order to use the data of both sensors in the same coordinate system,
we project the grid cells of the ground plane onto the image to get the corresponding
pixels for feature extraction and classification. For the projection we need to know the
transformation between the LiDAR and the camera coordinate system, which we com-
pute using a calibration method with a checkerboard. In grid cells where data from both
sensors are available, the two classification results can then be fused. We consider four
very different lighting conditions to test the independence assumption and compare the
results of the different methods in Sec. 4.6, and conclude in Sec. 4.7.

4.2 Related Work
Camera-based approaches for terrain classification are well studied. There, the problem
is to find efficient and discriminative representations of texture information. This has
been done, for instance, in terms of co-occurence matrices, Local binary patterns, and
texton-based approaches. We use the methodology of [Khan et al. (2011)], where good
results were achieved using local image descriptors with a grid-based approach.

There exist several approaches for terrain classification that use range data in addition.
In [Rasmussen (2002)] color and texture features are combined with geometric features
obtained from laser data for the purpose of road detection. A method for classifying
the traversability of terrain is proposed in [Happold et al. (2006)]. A stereo camera
provides the data to learn geometric features for traversability, and color information
is then used to enhance the geometric information. For a quick adaptation to different

39



Chapter 4 Terrain Classification on Fused 3D LiDAR and Camera Data

lighting conditions color models are learned in an unsupervised fashion. In [Häselich
et al. (2011)] they use the 3D laser Velodyne HDL-64E S2 in addition to color cameras.
The high-resolution data that this laser delivers is used together with color and texture
information to classify the terrain in three classes: road, rough and obstacle. They further
apply a Markov random field in order to take into account the context-sensitivity of the
individual terrain grid cells.

In the just mentioned approaches only the geometric information from range data is
used. But most lasers also provide intensity values (also called remission or reflectance
values), which indicates the proportion of the emitted light that arrives back at the laser.
In [Wurm et al. (2009)] these intensity values are used to detect grass-like vegetation.
They are able to distinguish between street and grass with an accuracy of over 99%. As
an explanation of why this works so well, they state an effect well known from satellite
images analysis [Myneni et al. (1995)], namely that chlorophyll, a green pigment found
in almost all plants, strongly reflects near-IR light, such as that of a laser. Apart from the
material the intensity values also depend on the distance and the angle of incidence of
the laser beams.

We will show that with these values and the features presented in Sec. 4.3.3 not only
grass and non-grass, but several terrain classes can be distinguished from each other.
In a previous work where we presented a method for classifying plant species using a
3D LiDAR sensor and supervised learning [Weiss et al. (2010)] we also experienced the
discriminative power of the intensity values, as the features based on these values were
the most important.

4.3 3D LiDAR-Based Terrain Classification
This section describes our method for classifying terrain using only data obtained from
the 3D LiDAR. Fig. 4.2 shows the basic steps of the method.

Point Cloud

Filtering
(Sec. 4.3.1)

Ground-Plane
Detection

(Sec. 4.3.2)

Feature
Extraction

(Sec. 4.3.3)

Classification
(Sec. 4.3.4)

Figure 4.2: Overview of 3D LiDAR-based terrain classification

We get the data in form of a point cloud, where each data point consists of xyz coordi-
nates and an intensity value (see Sec. 3.2.2). First, in the filtering step, outliers and noise
are removed. In the remaining cloud, the ground plane is detected, which is the plane on
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which the robot drives. This plane is then divided into a regular grid. Terrain features are
extracted for each cell of this grid, based on which cells can then be classified.

4.3.1 Filtering
Even if the LiDAR as described in Sec. 3.2.2 is hardly affected by sunlight, erroneous
measurements and noise are inevitable. Thus, filtering of the point cloud is a crucial
preprocessing step. Some invalid measurements are indicated by an intensity value of
zero. Such measurements can occur when the laser beam does not encounter any object,
the object is too far away, or the surface on which the beam impinges is too shiny. Then,
(almost) none of the emitted light returns back at the sensor.

Noise occurs in form of measurement points that usually have no or almost no other
points in its vicinity, and do not correspond to any point of the measured scene. So to
reduce the noise in the data, every point of the cloud that does not have a certain number
m of neighbors within a fixed radius r is removed (see Fig. 4.3). To efficiently search for
neighbors in the vicinity of a point, the cloud is organized in a k-d-tree. A k-d-tree is a
binary tree, and in our case, every node of the tree corresponds to a point of the cloud.
At each node the three-dimensional space is divided by a plane through that point. The
space partitioning allows for efficient searches of nearest neighbors or neighboring points
within a specified radius in guaranteed O(logn) complexity, where n is the number of
points of the cloud [Friedman et al. (1977)].

Filtering often removes up to 20%–25% of the point cloud, by which the already small
number of measurement points is again significantly reduced. That this small number of
data points is sufficient to detect the ground plane and obstacles, and to classify terrain,
we are going to show in the next sections.

r

Figure 4.3: Noise removal in point clouds: If m = 3, then the green point in the middle
would be kept, while the red and blue points would be removed.
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4.3.2 Ground-plane detection
After filtering, the typical remaining cloud mainly consists of two types of points: those
belonging to the ground plane, and those above (see Fig. 4.4). The ground plane is the
plane on which the robot drives; and since the robot is shaking while driving, the pose of
this plane relative to the LiDAR’s coordinate system changes continuously. The points
above the ground plane belong to obstacles by definition, since the robot should not drive
there. The points of the ground plane are those of interest for terrain classification.

Figure 4.4: In our scenario, the ground plane typically makes up the largest part in the
point cloud. The points above the plane belong to obstacles by definition, marked with
red boxes.

We make the assumption here that the terrain can be described by a flat surface. As the
robot drives only on relatively flat terrain in our experiments and the scanning range of
the LiDAR is very limited, this assumption is justified. For uneven terrain, a more gen-
eral model is needed. For example, in [Wellington et al. (2006)] the three-dimensional
space is discretized into voxels, and each voxel column is modeled as a mixture of hidden
semi-Markov models to find the transition between ground and non-ground voxels. In
addition, a Markov random field is used for all voxel columns to reflect the assumption
that the ground height for different columns varies smoothly with distance. In [McDaniel
et al. (2010)] a set of range data points are classified as ground or non-ground points in a
two-stage approach. Therefore, the three-dimensional space is discretized into columns.
In the first stage, the lowest data point of each column is marked as a potential ground
point, and in a second stage, non-ground points are discarded by a Support vector ma-
chine using geometric features of the data point and the data points of its neighboring
columns.

For detecting the ground plane in the point cloud the method of least squares could be
used. This method computes the parameters of the plane so that the sum of the squared
distances of each point in the cloud to the plane is minimized. This means that each point
contributes to the solution; thus the method is very sensitive to outliers. In general, the
method of least squares works well only when the data is almost free of outliers. In our
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case, all points belonging to obstacles are outliers, and these points can make up a large
part of the cloud; and so the method of least squares would give no good results.

RANSAC and LO-RANSAC

A better alternative is to use RANSAC (RANdom SAmple Consensus) [Fischler and
Bolles (1981)], a method for estimating the parameters of a mathematical model under-
lying a set of observed data containing outliers. RANSAC is an iterative method, and
in each iteration the minimum number of data points required to estimate the model pa-
rameters are sampled from the observed data. Fig. 4.5 illustrates this for the case of a
line, where two data points are required to estimate the parameters of the model. In the
case of a plane, three points have to be sampled. Points that are not farther away from
the candidate line (respectively the candidate plane) than a certain threshold belong to
the so-called consensus set. If the consensus set consists of sufficiently many points, the
model is considered reasonable. Since this model, however, was only calculated from a
minimum number of points, and even if these points are actual inliers, it may be a bad
estimate of the true model, where the resulting consensus set does not include all other
actual inliers. For this reason, in a variant of the method called LO-RANSAC (Local
Optimised RANSAC) [Chum et al. (2004)] the model is re-estimated using all points of
the inital consensus set, that is, all potential inliers. This time it is appropriate to use the
method of least squares, with the assumption that the data points now are free of outliers.
In general, this leads to a better estimate with a more representative consensus set. After
a specified number of iterations the candidate with the largest consensus set is said to
have the highest probability to be close to the real model underlying the data.

(a) Line candidate with small consensus set (b) Line candidate with large consensus set

Figure 4.5: Line fitting with RANSAC: By sampling two random points (green points), a
candidate line is selected. Points that are closer to the line as a certain threshold belong to
the so-called consensus set (dark blue points). The candidate with the largest consensus
set has the highest probability to be close to the real line underlying the data.

In RANSAC, the model with the largest consensus set is selected, which is the model
with the fewest outliers. This is equivalent to selecting the modelM that minimizes the
sum E in Eq. (4.1), with the error function e = eRANSAC in Eq. (4.2).
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E = ∑
p∈P

e(dist(p,M)) (4.1)

eRANSAC(d) =

{
0, if d < t
1, otherwise

(4.2)

Here, dist(p,M) is a function that computes a distance measure between a data point
p ∈ P , where P is the set of all data points, and the modelM. In our case, this is the
Euclidean distance between a point of the point cloud and the selected plane. Points
that are closer to the plane than a threshold t are considered inliers, while the others are
considered outliers. So in effect, E simply counts the number of outliers.

MSAC

Increasing the threshold t increases the number of inliers. Since all inliers are weighted
equally, this can lead to bad estimates for the model M. Therefore, we use an exten-
sion of RANSAC, called MSAC (M-Estimator SAmple Consensus) [Torr and Zisserman
(2000)], which uses the error function e = eMSAC:

eMSAC(d) =

{
d, if d < t
c, otherwise (with c > t)

(4.3)

Here, inliers also contribute to the total error E, precisely with the distance d between
the inlier and the plane. Outliers still contribute with a constant factor c to the total error,
whereby this factor should be greater than the threshold t. By doing so, inliers that are far
away from the model are also punished, which gives more robust estimates without addi-
tional computational cost. Thus, not necessarily the candidate with the largest consensus
set is selected, but the one with the smallest error E.

Temporal dependence

RANSAC only estimates one model for a given data set. So in the presence of multiple
instances of the model in the data usually the dominant one is estimated, but the algorithm
might as well fail to find either one. Thus, scenes with multiple planes are problematic,
especially when the ground plane is not the largest, e.g. when the robot is driving near a
house wall (see Fig. 4.6b).

But the house wall is an extreme case in that it stands 90 degrees to the ground. Such
planes can be excluded even if the robot is shaking strongly on rough terrain. It is de-
sirable, however, to have a more general method, which no longer considers each frame
individually, but makes the assumption that the plane in the current frame has roughly
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(a) (b)

Figure 4.6: Ground-plane detection: The ground plane is detected even when there are
larger planes in the scene like in (b), by considering temporal dependencies.

the same pose as in the last ones. A simple yet robust method is to only consider points
near a reference plane and to update the parameters of this plane every frame. We use the
Hesse normal form to describe the plane: a · x+b · y+ c · z−d = 0, with the parameters
a,b,c,d ∈ R and (x,y,z)T ∈ R3.

The plane estimation for each frame consists of three steps:

1. From the set P of all points consider only those points P = {(x,y,z) : (x,y,z) ∈
P ∧ |a · x+ b · y+ c · z− d| ≤ dmin} near the reference plane R : a · x+ b · y+ c ·
z−d = 0, for a fixed threshold dmin

2. Estimate the parameters of the plane in P: (a,b,c,d) = MSAC(P)

3. If |P||P| ≥ m, for a fixed threshold m, update the reference plane R:

a := a+ (a−a)
k , b, c, d resp.

k := k+1

Hereby, the parameters dmin,m ∈ R, with dmin ≥ 0 and m ∈ [0,1], are user-defined
thresholds, the variables a,b,c,d ∈ R are initialized with zero, and k ∈ N with one. In
the Hesse normal form, n = (a,b,c)T represents the unit normal vector of the plane,
pointing from the origin of the coordinate system to the plane, and d ≥ 0 is the distance
from the origin to the plane. The distance of any point p ∈R3 to the plane is then simply
calculated by the scalar product n · p. In step 1. those pointsP are determined that are not
farther away from the reference plane R than the threshold dmin. And only these points
are used to estimate the plane parameters using MSAC in step 2. Finally, in step 3., the
parameters of the reference plane are updated, but only if the proportion of the number
of points |P| used for plane estimation to the total number of points |P| is not smaller
than the threshold m. This is to prevent distorting the reference plane by inaccurate plane
estimates made with a very small number of points. The update formulas calculate the
running average of the plane parameters, although only approximately, but memory and
computation time saving [Knuth (1997)].
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There are more sophisticated methods for spatio-temporal plane estimation using 3D
data, like the one in [Mufti et al. (2012)], where RANSAC is extended to four dimensions
by incorporating the time dimension, but our simple method has proven to be very robust
and reliable in our experiments. For completeness we want to mention that an alternative
method for detecting parameterized models like planes is using the Hough transform. In
[Dube and Zell (2011)] they efficiently extract planes from depth images based on the
Randomized Hough transform. [Borrmann et al. (2011)] evaluate different variants of
the Hough transform with respect to computational cost and their applicability to detect
planes in 3D point clouds.

Terrain grid

With the known parameters of the ground plane the points of the point cloud can now
be transformed into the robot coordinate system so that the ground plane is equal to the
x–y plane, with the x–axis pointing forward, the y–axis to the left, and the z–axis pointing
upwards. Thereafter, the ground plane in front of the robot is divided into a Cartesian
grid, which we will refer to from now on as the terrain grid. Similarly, we refer to a cell
of this grid as a terrain cell. Each point of the point cloud belongs to that cell, above,
under, or on which it is located, that is, on which its x–y projection falls. We define the
height of a cell as the maximum z value of all points of this cell. A pre-classification
can then be made by considering all cells with a height exceeding a chosen threshold to
contain an obstacle. Among the remaining cells, only those in which there is a minimum
number of data points are considered for terrain classification, since otherwise there is
just not enough information to draw any meaningful conclusions.

4.3.3 Feature extraction
Having a grid of terrain cells in front of the robot, we now want to compute charac-
teristic features for each cell using the xyz coordinates and the intensity values of the
corresponding data points. Due to the low resolution of the LiDAR only very few points
per cell are present. Despite this limitation the features must be discriminative enough
to distinguish between different terrain types. We use some of the most discriminative
features described in [Laible (2009); Weiss et al. (2010)], where they were used for the
related task of plant-species classification, along with new more terrain-specific features.
We group the features in three feature groups: height features, intensity features, and cell
features.

Height features

The height of the points above the ground plane not only is suitable for distinguishing
between cells with obstacles and free cells, but the height values can also be used to
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distinguish between smooth and rough terrain.

1. Maximum height hmax: Maximum height of all points of a terrain cell regarding the
detected ground plane. After the transformation of the point cloud this is simply
the maximum z value of all points of the cell

2. Standard deviation of height hσ : Standard deviation of all height values. Again,
this is just the standard deviation of all z values

Intensity features

As stated in Sec. 4.2 the intensity values provide good features for terrain classifica-
tion.

3. – 4. Minimum and maximum intensities Imin, Imax: Minimum and maximum intensity
values of all points of a terrain cell

5. Range of intensity Ir: Difference between the minimum and maximum intensity
value

6. – 8. Mean, median and standard deviation of intensity Iµ , Im, Iσ : Mean, median and
standard deviation of the intensity values of all points of a cell

Cell features

The intensity values not only depend on the characteristics of the material which is
encountered by the laser beam, but also on the distance of the point of impact, and the
angle of incidence. The number of data points of a cell also strongly depends on the
distance and angle of the cell in relation to the sensor.

9. Distance d: Distance of the cell center to the laser origin

10. Angle of incidence α: Angle between the ground plane and the vector from the
cell center to the laser origin

11. Number of points N: Number of data points belonging to the cell

This group of features is different in that it does not describe characteristics of the
terrain itself, but characteristics of the terrain cell. But theses values are necessary to
interpret the intensity features correctly, and so in order to learn a good representation of
the terrain, they need to also be taken into account.

Overall, we thus obtain a feature vector xscan of length eleven:

xscan =
(
hmax,hσ , Imin, Imax, Ir, Iµ , Im, Iσ ,d,α,N

)
(4.4)
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4.3.4 Classification
Now that we can compute a feature vector xscan for each cell of the terrain grid that has
enough scan points in it, we want to use these height and intensity features to predict the
correct terrain class labels of these cells. Therefore, we use Random forests, which learn
the relationships between features and class labels on the basis of training data. Hereby,
the training data set consists of many pairs (xscan,y) of feature vectors with associated
class labels y, which have to be assigned manually. The more training data are available
and the more diverse the data are, the better is the generalization of the model. Then, the
Random forests, as described in Sec. 2.3, assign to each grid cell and to each terrain class
the probability p(y | xscan) that this cell has class label y given the features xscan. If we
want to assign a single label to the cell, we just take the most probable one (see Fig. 4.7).

(a) (b)

Figure 4.7: Result of LiDAR-based terrain classification. Green: grass, black: asphalt,
red: obstacles

4.4 Camera-Based Terrain Classification
In addition to the LiDAR-based method we also want to use a camera for terrain clas-
sification. Regardless of the classification results cameras have some advantages over
LiDARs with respect to terrain classification. A camera has a wider field of view making
it possible to plan further ahead when terrain classification is used for planning a safe and
efficient path. Also, cameras are usually cheaper and most mobile robots are equipped
with cameras anyways. In camera-based terrain classification we classify small image
patches. We will see in the next section how we can determine for each terrain grid cell
the corresponding pixels in the camera image. Then, for each image patch local features
are computed, which characterize the texture information of that patch. We use three
local image descriptors: Local binary patterns, Local ternary patterns and TSURF. The
former two are texture-based image descriptors and the corresponding feature vectors are
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histograms with 256, respectively 512 bins, whereas TSURF is an interest-point image
descriptor. These image descriptors have shown their strength in terrain classification on
mobile robots [Khan et al. (2011)]. While we have presented Local binary patterns and
Local ternary patterns in Sec. 2.2, we will now briefly describe TSURF.

TSURF [Khan et al. (2011)] is based on the popular interest point detector and de-
scriptor SURF (Speeded Up Robust Features) [Bay et al. (2008)], and the T in the
name stands for Terrain. SURF, in turn, is inspired by SIFT (Scale Invariant Feature
Transform) [Lowe (2004)], and while it gives similar results to SIFT it is three times
faster according to [Bay et al. (2008)]. Interest points are found by using the determinant
of the Hessian matrix, which indicates intensity extrema. The elements of the Hessian
matrix are Laplacians of Gaussians, and while SIFT approximate these values by differ-
ences of Gaussians, SURF uses convolutions with box filters in conjunction with integral
images, which is much faster. In order to find repeatable, distinctive, and robust features
that are scale invariant, SIFT and SURF look for interest points at different scales of the
image. SIFT realizes this so-called scale space through an image pyramid, which is build
by iteratively convolving an image with a Gaussian kernel and reducing the size of the
image, that is, a Gaussian filter smooths subsequent layers of the pyramid. In SURF,
however, the image does not need to be changed at all, only the size of the box filters
are varied, which again leads to a significant speed up. Interest points (x,y,σ) are local
extrema in this three-dimensional scale space regarding surrounding points in the same
scale and in neighboring layers, where σ denotes the scale factor. In addition to scale,
a dominant orientation can be determined for each interest point on the basis of Haar
wavelet responses in x- and y-directions within a circular neighborhood.

The SURF descriptor describes the distribution of pixel intensities around an interest
point. Therefore, a window of size 20σ is considered, with the interest point in the center,
and aligned with the dominant orientation. This window is divided into 4×4 subregions,
and in each subregion Haar wavelets are computed for 25 uniformly distributed sample
points. Haar wavelets are simple filters for finding gradients dx and dy in x- and y-
direction. We can then use these 25 wavelet responses to compute a feature vector v for
each subregion.

v =
(
∑dx,∑dy,∑|dx|,∑|dy|

)
(4.5)

Computing a feature vector for each subregion and concatenating them together yields
an overall feature vector xTSURF of size 4×4×4 = 64.

Put simply, TSURF consists of computing the SURF descriptor at fixed points in the
image with a fixed scale factor and an upright orientation. We set the fixed points to
be the centers of the terrain grid cells that we want to describe. Since we set the points
manually and do not get them as local extrema of the scale space. there is also no corre-
sponding scale factor. This factor is then a parameter to be set, which is then used in the
computation of all descriptors. With the assumption that the appearance of the terrain is
isotropic, no dominant orientation is determined, which speeds up the computation. It
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is important to note that the region in the image that is used for the computation of the
descriptor does not depend on the cell size, but is determined only by the scale factor σ .
Since the size of this region in pixels is 20σ × 20σ , it can exceed the grid cell signifi-
cantly, and in extreme cases include the whole image.

Overall, we thus obtain three different types of feature vectors:

xLBP =
(
h[1]

LBP, ...,h
[256]
LBP

)
(4.6)

xLTP =
(
h[1]

LTP, ...,h
[512]
LTP

)
(4.7)

xTSURF = (v(1,1),v(1,2), ...,v(4,4)) (4.8)

4.5 Fusion of 3D LiDAR and Camera Data
On the one hand, we are now able to classify each cell of the terrain grid in front of
the robot using the LiDAR data. On the other side, we can classify patches of camera
images. We now want to combine both classification methods, for which we need the
rigid transformation between the LiDAR and the camera coordinate system. For the
calibration process we use several image-scan pairs of a checkerboard (see Fig. 4.8)
taken from different positions and angles. The following sections describe how we first
determine the intrinsic parameters of the camera [Bouguet (2008)], and then estimate the
transformation between the LiDAR and the camera frame using a two-stage optimization
procedure [Unnikrishnan and Hebert (2005)].

Intrinsic camera calibration

The simplest model to describe the optical properties of a camera is the pinhole camera
model. In a pinhole camera the aperture is just a tiny hole and no lenses are used. The
parameters of the model are represented by the camera matrix C:

C =

 fx αc fx cx
0 fy cy
0 0 1

 (4.9)

The camera matrix describes the geometric relation of a point in 3D and its projection
on the image plane. It contains the horizontal and vertical focal lengths fx and fy, and
the principal point (cx,cy), which, in the ideal case, is in the center of the image. αc
describes the angle between the x and y sensor axes, and often times is assumed to be
90°. In contrast to the pinhole-camera model, real cameras use lenses to gather sufficient
light. These lenses also introduce some distortion effects that cannot be ignored. A
more advanced model thus takes into account theses effects with additional distortion
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(a) Camera image (b) Scan image with pixels colored ac-
cording to the intensity values of the scan
points

(c) Colored point cloud

Figure 4.8: Several camera-LiDAR observation pairs of a checkerboard taken from dif-
ferent positions and angles are used to estimate the rigid transformation between the
LiDAR and the camera frame. The point cloud can then be colored by reprojecting the
points onto the corresponding image.

coefficients D:

D = (k1,k2, p1, p2,k3) (4.10)

D contains the coefficients k1,k2, and k3 of the radial distortion and the coefficients
p1 and p2 of the tangential distortion. While radial distortion is caused by the curvature
of the camera lens and causes straight lines to appear curved in the image, tangential
distortion appears when the lens is not aligned perfectly parallel to the imaging plane,
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which happens almost inevitably during the manufacturing process.
We use the calibration method of [Bouguet (2008)] to determine the intrinsic camera

parameters. There, you need several images of a checkerboard with known dimensions,
taken from different angles and positions. By marking the corners between the black
and white squares, we obtain equations that must be solved in order to determine the
intrinsic parameters. In theory, two images of the checkerboard are enough for a well-
posed equation system, but since there is always some image noise, we need several such
images in practice. Solving the resulting overdetermined system of equations yields the
intrinsic parameters that best fit the data.

With the intrinsic camera parameters we can establish a relationship between the pixel
coordinates and the coordinates in the real three-dimensional world. More specifically,
we can set up a ray equation for each pixel of the image, and we know that the corre-
sponding object point has to lie somewhere on this ray. Without additional information
we can not determine the exact position of the object. For the same reasons we can not
determine the size of an object in the real world based on its pixel representation. It can
always be the case that the object is, for instance, twice as big and twice as far away as
we think, resulting in the same representation of the object in the image. However, since
we know the exact dimensions of the checkerboard we use, we can compute the transla-
tion and rotation of the checkerboard in relation to the camera for every image used in
the calibration process.

Extrinsic LiDAR-camera calibration

To compute the transformation between the LiDAR and the camera, we also need the
positions and orientations of the checkerboard as seen by the LiDAR. In the scan of
the LiDAR the 3D coordinates of the data points are directly available. We select the
points belonging to the board by hand. This is best done in the intensity image since the
checkerboard is usually easy to recognize there (see Fig. 4.8b). A least-squares estimator
then fits a plane to the selected points. With these image-scan pairs of planes we now
want to estimate the rigid transformation between the LiDAR and the camera. Since each
pair of observations describes the same plane, once from the perspective of the camera,
and once from the perspective of the LiDAR, the first thing that comes to mind is to try to
find the transformation that minimizes the distance between the two representations. But
as they state in [Unnikrishnan and Hebert (2005)], it is not so obvious to find a distance
metric for planes, and we instead use their two-stage estimation process to compute the
transformation.

In the first stage, the transformation is estimated by considering the translation and
the rotation part separately. The optimal translation is the one that translates the planes
as seen by the LiDAR such that the differences in distance from the camera origin to
each plane representation is minimized; similarly, the optimal rotation is the one that
minimizes the angular differences between the plane normals. The second stage is an it-

52



4.5 Fusion of 3D LiDAR and Camera Data

erative optimization procedure, which takes the result of the first stage as initial estimate.
The objective function that is to be minimized here is the sum of the differences of the
transformed scan points to the plane as seen by the camera.

With the known transformation between the two sensors we can now determine for
each scan point the corresponding pixel coordinate in the image. This could be used,
for example, to color the scan points according to the corresponding pixel values (see
Fig. 4.8c). We investigated several methods for increasing the resolution of the 3D scans
using color information of the images [Hanten (2011)], based on the proposed interpola-
tion methods of [Andreasson et al. (2007)]. In [Diebel and Thrun (2005)], they even use
a Markov random field to take into account the fact that discontinuities in range and color
often occur together. However, this is irrelevant for our method of terrain classification,
since we do not gain more information by this kind of interpolation. Instead, we need
the intrinsic camera parameters and the transformation between LiDAR and camera to
determine for each grid cell of the terrain grid the corresponding pixels in the camera
image. Fig. 4.9c shows the projection of the grid onto the image. So, we obtain for each
grid cell the relevant image patch and can then compute the corresponding image fea-
tures. Due to perspective distortion more pixels are available for grid cells nearby than
for more distant cells.

Sensor fusion

For a terrain grid cell with enough scan measurements we get probabilities pscan(y)
for each terrain class label y. Since we assume that the grid cell belongs exclusively to
one of the predefined classes, the probabilities of one cell have to sum up to one, that
is, ∑y pscan(y) = 1. Accordingly, for a cell with an associated image patch that is large
enough we get probabilities pimage(y). Again, this probabilities have to sum up to one.
Is neither scan nor image information available, we can not favor any class label over
another, and all probabilities are equally set to 1/K, where K is the number of class labels.

For grid cells where data of both sensors are present, we want to combine the proba-
bilities pscan and pimage in order to get the best out of each classifier. Two easy ways to
do so is by either calculating the weighted sum pk or by taking the maximum probability
pmax:

pk = (1− k) · pscan + k · pimage, with k ∈ [0,1] (4.11)
pmax ∝ max(pscan, pimage) (4.12)

In the weighted sum in Eq. (4.11) we weight the confidence in each sensor with a
weighting factor k ∈ [0,1]. In the extreme cases when k = 0, we only use the scan data,
and when k = 1, we only use the image data. The new probability values for a cell also
have to sum up to one, and that this is the case is easy to prove:
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(a) Scan points of the LiDAR (b) LiDAR-based classification with
height and intensity features

(c) Projection of terrain grid
onto image for feature extrac-
tion

(d) Fused classification result

Figure 4.9: Fusion of LiDAR- and image-based terrain classification. Each cell of the
terrain grid is classified based on height and intensity features of the corresponding scan
points of the LiDAR. To integrate the image data, the terrain grid is projected onto the
image and then, for every projected cell, features based on Local ternary patterns are
extracted. (Gray: asphalt, blue: cobblestones, green: grass, yellow: gravel)

∑
y

pk(y) = ∑
y

(
(1− k) · pscan(y)+ k · pimage(y)

)
(4.13)

= (1− k) ·∑
y

pscan(y)+ k ·∑
y

pimage(y) (4.14)

= 1− k+ k (4.15)
= 1 (4.16)

In Eq. (4.12) we get the new probability value by taking the maximum of pscan and
pimage, trusting the classifier that is the most confident about the class label. In con-
trast to the weighted sum, the probabilities here do not sum up to one. In general, it is
∑y max(pscan(y), pimage(y)) ≥ 1. So to get proper probability values pmax, we have to
normalize the new values. Fig. 4.9d shows an example of a fused classification result
using Eq. (4.12) with k = 0.5.
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4.6 Experiments and Results
In order to assess the capabilities of the classification methods described in this chapter
under varying lighting conditions, we test them in four different settings:

1. Cloudy morning: no direct sunlight, soft shadows

2. Sunny midday: lots of sun, harsh shadows

3. Dusk: rapidly changing illumination

4. Night: diffuse light from street lamps

In filtering, we set the search radius r = 0.15m and the minimum number of neighbors
m = 3 (see Sec. 4.3.1). In ground-plane detection we set the minimal distance d = 0.1m
and the maximum number of iterations m = 100 (see Sec. 4.3.2).

We start with testing the 3D LiDAR-based approach of Sec. 4.3, without using the
camera. We first test the approach for each setting separately to see how well it deal
with each in particular. Then, a general model for all scenarios is built by taking the
same number of training data from each setting. The method is grid-based and has been
tested with different grid resolutions, namely with grid cells of side lengths 20 cm, 35 cm,
and 50 cm. The data set used consists of 2 000 samples for each grid resolution, each
setting, and each terrain class, for a total of 120 000 samples of terrain patches. We have
considered only patches with at least ten scan points, since otherwise there is too little
information for a meaningful classification. Then, because of the low resolution of the
LiDAR, only for cells that are closer than about two meters to the front of the robot
enough measurements are available to classify the cell. Tab. 4.1 shows the classification
rates for the different settings and grid resolutions after a five-fold cross-validation using
Random forests with 100 trees.

Table 4.1: Classification rates in % for LiDAR-based terrain classification with five ter-
rain classes, for different grid sizes and under different lighting conditions

Grid size \ Setting Morning Midday Dusk Night General
20cm 93.4 94.6 90.0 92.3 90.5
35cm 92.6 94.4 89.8 91.7 89.9
50cm 93.1 93.8 90.2 91.1 90.0

Here, the classification rate is the average true positive rate (averaged over all classes),
with the true positive rate for a single class being the proportion of instances which were
classified as this class among all instances which truly have this class [Hall et al. (2009)].
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When all classes in the data set have the same number of instances, the classification rate
simply is the percentage of correctly classified instances.

The LiDAR-based classification provides consistently good results regardless of ex-
ternal conditions and the chosen grid resolution, with classification rates of up to 90.5%
for the general model. It performs best in the midday setting with classification rates of
up to 94.6%, and worst in the dusk setting with classification rates of up to 90.2%.

Only considering the two classes of grass and asphalt for classification demonstrates
the laser scanner’s ability to detect vegetation as mentioned in Sec. 4.2. Then, the clas-
sification rates for all settings and all grid resolutions are above 99.9% (see Fig. 4.7b for
an example of a classified point cloud).

Table 4.2: Classification rates in % for LiDAR-based terrain classification only consid-
ering the terrain classes grass and asphalt

Grid size \ Setting Morning Midday Dusk Night General
20cm 100.00 99.99 100.00 100.00 99.99
35cm 100.00 100.00 100.00 100.00 99.98
50cm 100.00 100.00 100.00 99.98 99.99

The choice of grid resolution depends on the specific requirements of the application.
A higher resolution increases the computational effort, since then the number of grid
cells increases, too, and more features have to be extracted and classified. When the grid
cells get too small, too few scan points per cell are available for classification. Taking
into account the size and computing power of our robot, 20 cm is an appropriate resolu-
tion and we will hereinafter keep it for all our experiments.

In previous work on camera-based terrain classification [Khan et al. (2011)] Random
forests achieved good results and outperformed the other tested classifiers. In the fol-
lowing experiment we test other classifiers in our LiDAR-based method as well, to see
whether Random forests also provides the best results here. For this experiment we use
Weka [Hall et al. (2009)], a software suite for machine learning written in Java, which
provides implementations of many popular machine-learning algorithms. Of these, we
use the following four:

• MultilayerPerceptron: Neural net that uses backpropagation to classify instances

• J48: Pruned C4.5 decision tree [Quinlan (1993)]

• Logistic: Multinomial logistic regression model with a ridge estimator, with some
modifications to [le Cessie and van Houwelingen (1992)]

56



4.6 Experiments and Results

• SMO: Implementation of John Platt’s sequential minimal optimization algorithm
for training a support vector classifier [Platt (1998)]

Table 4.3: Classification rates in % for LiDAR-based terrain classification for different
classifiers and different numbers of trees for Random forests

Classifier \ Setting Morning Midday Dusk Night General
Random Forests (10 trees) 92.3 94.0 88.8 91.1 89.0

Random Forests (100 trees) 93.4 94.6 90.0 92.3 90.5
Random Forests (200 trees) 93.5 94.7 90.1 92.3 90.7

MultilayerPerceptron 90.5 92.9 87.7 89.4 86.3
J48 89.3 91.6 86.1 87.7 85.0

Logistic 88.0 88.4 86.6 85.4 84.2
SMO 87.4 87.8 85.9 85.0 82.3

In addition to these classifiers, we test Random forests with different numbers of de-
cision trees. The results can be seen in Tab. 4.3. Of the classifiers mentioned above, the
neural net performs best with a classification rate of 86.3% for the general setting, fol-
lowed by the decision tree with 85.0% and the logistic regression model with 84.2%. The
support vector machine yields the worst results with only 82.3%. As with the Random
forests, the results in all lighting conditions are similar, with the best results at midday
and in the morning, and the worst results at dusk and at night. However, Random forests
outperform all of these classifiers for all settings. The computation time for Random
forests regarding training and classification increases linearly with the number of deci-
sion trees. But when more trees are used, there are also more weak classifiers to average
over, and the final results get usually better. As can be seen in the result table, the results
do not change much whether 100 or 200 trees are used, so using 100 trees is a good
trade-off between quality of classification results and computational cost.

Now that we have examined LiDAR-based terrain classification, we turn to the camera-
based terrain classification of Sec. 4.4 and the sensor fusion of Sec. 4.5. Therefore, we
generated a data set consisting of 125 labeled terrain grids for each of the four settings;
and all 500 terrain grids are used for the general setting. Because the cells of a grid
are projected onto the camera image in order to get the corresponding image regions,
these regions can have very different sizes, and some are very small or elongated. Just
as with the LiDAR, no meaningful classification is possible with too little information,
and we only consider image regions with at least 200 pixels and a minimum side length
of ten pixels, so cells that are closer than about three to four meters are classified using
image data. For evaluation using k-fold cross validation, we randomly partition the set
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of terrain grids into k subsets. Thus, it can not happen that different cells of the same
grid occur in the training set as well as in the test set. This may not make much differ-
ence for the image descriptors LBP and LTP, but it can make a difference when using
the interest-point descriptor TSURF. Since TSURF, depending on the scale parameter,
also considers pixels far outside the respective cell, there could be feature vectors in the
training and in the test set that have been partially computed based on the same data,
namely the same pixels. This could distort the results of the evaluation; and to prevent
this, cells of the same terrain grid are not separated during cross validation. In contrast
to the LiDAR-based classification, we use a ten-fold cross validation now.

Table 4.4: Classification rates in % for LiDAR- and camera-based terrain classification

Method \ Setting Morning Midday Dusk Night General
LBP 87.7 84.5 66.6 60.2 72.5
LTP 90.0 89.6 72.5 66.8 78.5

TSURF 79.5 81.4 84.4 68.8 78.1
TSURF (isolated patches) 69.3 72.3 60.5 45.8 59.2

Fusion with LTP (weighted sum) 92.6 91.7 77.5 72.6 81.4
Fusion with LTP (maximum value) 92.7 90.6 76.6 71.2 80.5

We start with testing the camera-based approach, without using the LiDAR. We tested
different values for the threshold parameter k ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15,
20, 25, 30} of LTP and different values for the scale parameter σ ∈ {1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 15, 20, 25, 30, 50} of TSURF. Here, the best results were obtained
with k = 9 and σ = 30, and these results are shown in Tab. 4.4. LBP achieves the worst
results with a classification rate of 72.5% for the general setting, and LTP outperforms
LBP in all settings. LTP achieves better results than TSURF in the morning, midday,
and general settings, and worse results in the dusk and night settings. In the camera-
based classification the results are more dependent on the lighting conditions and all
three descriptors perform worst in the night setting. To compute a feature vector for a grid
cell, TSURF considers far more pixels than those belonging to that cell, as mentioned
previously. Only considering isolated image patches, results are much worse, as can be
seen in the table. TSURF therefore needs large image regions to get good results. Due
to the classification results and because LTP is much faster than TSURF, as we shall see
shortly, we use LTP as image descriptor for all remaining experiments.

To fuse LiDAR- and camera-based classification results, we test the fusion method
using weighted sums (see Eq. (4.11)) with different weighting factors k ∈ {0.0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, and the method using maximum probability (see
Eq. (4.12)). Both methods improve the pure camera-based classification. The method
using weighted sums with k = 0.5 gets the best results with a classification rate of 81.4%
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for the general setting.

Table 4.5: Average runtimes per frame and corresponding standard deviations of the main
parts of the algorithm

Average time [ms] Std. dev. [ms]
Preprocessing
Filtering 6.3 2.1
Ground-plane detection 0.1 1.4
Feature extraction
LiDAR 1.5 0.2
LBP 9.3 0.2
LTP 11.3 0.3
TSURF 24.1 1.4
Classification (incl. LiDAR)
LBP 5.8 0.7
LTP 6.0 0.7
TSURF 6.4 1.4

Finally, we look at the average runtimes of the methods described in this chapter for
processing a single frame consisting of a point cloud and an image. For the experiments,
a computer having a CPU with 2.8 GHz was used. In the preprocessing, filtering of the
point cloud takes a relatively long time with 6.3 ms, but the detection of the ground plane
is very fast with only 0.1 ms. In feature extraction, extracting LiDAR features requires
by far the least amount of time with 1.5 ms. LTP with 11.3 ms is only slightly slower
than LBP with 9.3 ms, and TSURF needs clearly the longest time with 24.1 ms. The
classification itself takes about 6 ms, independent of the descriptor used.

4.7 Conclusions
In this chapter, we studied 3D LiDAR- and camera-based terrain classification under dif-
ferent lighting conditions. We consider five terrain classes: asphalt, cobblestones, grass,
gravel, and tiles, and four different lighting conditions at different times of day: cloudy
morning, sunny midday, dusk, and night. After removing outliers from the point cloud, a
RANSAC-based method detects the ground plane in the remaining points. We can then
classify a terrain grid in front of the robot. We present easy to compute 3D LiDAR fea-
tures based on intensity and roughness histograms. The classification results are largely
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illumination-invariant and independent of the chosen grid resolution. In the general case,
regarding all scenarios, classification rates of up to 90.5% were achieved, using Random
forests with 100 decision trees. When only considering the two classes of grass and as-
phalt, the rates for all settings were above 99.9%. A disadvantage of the 3D LiDAR used
in our experiments is the limited range due to its low resolution.

In the camera-based classification the results are more dependent on the lighting con-
ditions, and all tested image descriptors, LBP, LTP, and TSURF, perform worst at night.
In terms of classification quality and computation cost, LTP performs best with a clas-
sification rate of 78.5% for the general setting and an average runtime of 11.3 ms for
extracting all features of a terrain grid. When using both sensors and fusing classifica-
tion results for grid cells where data of both sensors are present, the final result improves
to 81.4%.
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Chapter 5

Terrain Classification Considering
Spatial Dependencies
In the previous chapter, each cell of the terrain grid was considered and classified inde-
pendently of the other cells. This ignores the fact that terrain occurs in contiguous areas.
By modeling the terrain grid as a Conditional random field we are able to additionally
consider spatial dependencies between the cells, which improves classification results
substantially.

The chapter is based on the papers “Terrain Classification With Conditional Random
Fields on Fused 3D LIDAR and Camera Data” [Laible et al. (2013)] and “Building Lo-
cal Terrain Maps Using SpatioTemporal Classification for Semantic Robot Localization”
[Laible and Zell (2014)] and contains parts that were taken verbatim from these works.

5.1 Introduction
Terrain appears in contiguous areas. This is an important information that is ignored
when classifying each grid cell individually. There, we get the most likely label y∗ =
argmaxy p(y | x) for a cell directly from the Random forest given the extracted features
x. It may then happen that the terrain labels assigned to the grid cells change often
even in small areas, which rarely occurs in structured outdoor environments in which
our robot normally drives. There, rather large coherent areas of the same terrain type
occur, with clear boundaries between areas of different terrain. We now want to keep the
feature-dependent classification, but also consider the spatial context in which a grid cell
appears. To take these spatial dependencies into account, we model the terrain grid using
a framework known as Probabilistic graphical models (PGMs). This framework allows
us to combine probability theory and graphical modeling. We investigate two kinds of
PGMs in the context of terrain classification:

• Markov random fields (MRFs) and

• Conditional random fields (CRFs).
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MRFs are generative models and define a family of joint probability distributions
p(y,x) represented by means of an undirected graph. CRFs are discriminative mod-
els that model the conditional distribution p(y | x) directly.

The remainder of this chapter is organized as follows. In Sec. 5.2 we discuss related
work where MRFs and CRFs are used. In Sec. 5.3 we present our new terrain classifi-
cation method that takes into account spatial dependencies. The theoretical foundations
discussed in Sec. 2.4 are important for an understanding of the method. These founda-
tions are repeated here only briefly. Otherwise, we only describe our modifications and
extensions in the context of terrain classification. In Sec. 5.4 we present our experiments
and results and conclude in Sec. 5.5.

5.2 Related Work
Our work is inspired by [Häselich et al. (2011)]. They use data from the high-resolution
3D LiDAR Velodyne HDL-64E S2 in addition to color and texture information from
color cameras to classify the terrain into three classes: road, rough and obstacle. To
take into account the context-sensitivity of the individual terrain grid cells, they apply an
MRF and get a recall ratio of about 90%.

Several works show that CRFs are more appropriate than MRFs for many classifi-
cation tasks. In [Kumar and Hebert (2003)] the authors compare both models for the
task of detecting man-made structures in images, where they also divide the images into
grids. The CRF yields higher detection rates with lower false positives. Multi-scale
CRFs are used in [He et al. (2004)] for the task of image labeling. Their CRFs model
local and global structures and yield better results than a MRF, which requires stricter
independence assumptions.

A two-stage training is used in [Fulkerson et al. (2009)] for identifying and localizing
object classes in images. In the first stage, superpixels (small image regions obtained by
segmentation) are trained with an SVM, and in the second stage they refine their results
by using a CRF. A similar approach is used in [Lalonde et al. (2010)] for detecting
shadows in images. They first use a decision tree to find potential shadow contours and
then optimize the results with a CRF. The model we use for classifying the cells of the
terrain grid comes closest to theirs.

5.3 Spatial Terrain Classification
In the previous chapter we presented our method for classifying terrain based on 3D Li-
DAR and camera data. Therefore, the terrain in front of the robot is divided into a grid
of terrain cells, and LiDAR and image features are extracted for each cell. Using these
features Random forests then assign a terrain label to each cell. Fig. 4.9d shows a typ-
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ical classification result and although quite good, many grid cells are still misclassified.
Depending on the particular application this classification quality may not be sufficient.
It would be difficult, for instance, to plan a path for a robot that is not capable of driving
on rougher terrain like grass, since there is no clear boundary between the asphalt and
grass area. Similar problems would be encountered by a robotic lawn mower, which is
not allowed to leave the grass area. A human can relatively easy see that the terrain in
Fig. 4.9d is in fact divided into two adjacent areas of asphalt and grass. The reason for
this is that we do not expect terrain labels assigned to the grid cells to change often in
small areas, since this rarely occurs in most outdoor environments, in which our robot
normally drives. There, rather large coherent areas of the same terrain type occur, with
clear boundaries between areas of different terrain. So, classifying each grid cell indi-
vidually ignores the context-sensitive nature of the terrain, which means that we ignore
important information. We will now describe how to incorporate spatial dependencies in
terrain classification in Sec. 5.3.1, where we formulate the classification task as an energy
minimization problem. In Sec. 5.3.2, we show how to speed up the spatial classification
by defining a new energy term for neighborhood relations.

5.3.1 Spatial Dependencies
On the one hand, we want to keep the feature-dependent classification, but in addition,
we now also want to consider the spatial context in which each grid cell appears. To take
these spatial dependencies into account, a suitable mathematical model is needed. Such
models exist in the form of probabilistic graphical models like Markov random fields
(MRF) and Conditional random fields (CRF). MRFs, in essence, define a family of joint
probability distributions p(y,x) represented by means of an undirected graph; CRFs, in
contrast, define a family of conditional probability distributions p(y | x). We described
these models in Sec. 2.4 extensively and showed how to model the terrain grid as a graph,
so we will not go into detail here. But to recap: the nodes of the graph correspond to the
random variables used in the classification problem. The set of random variables is split
into input and output variables. The input variables correspond to the observed features
x, and the output variables correspond to the terrain labels y of the grid cells. The edges
of the graph are undirected and represent probabilistic interactions between variables. Of
course, there is an edge between the label y of a grid cell and its associated feature vector
x, but there are also edges between different labels. In order to limit the complexity of
the model we define a neighborhood N that determines for each grid cell which other
cells do have a direct influence on that cell. This neighborhood can consist, for example,
of the four direct neighbors as in Fig. 5.1, or as we define it, of the 8-neighborhood, that
is, the eight surrounding cells.

The classification process now consists of two stages. In the first stage, features are
extracted for each terrain grid cell using LiDAR and camera data. When using the CRF,
the grid cells are classified based on this features using Random forests. In the case of
the MRF, the mixture of Gaussians which best fits the feature vector determines the label
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Figure 5.1: The terrain label y of a grid cell depends on the measured features x, but also
on the labels of its neighboring grid cells.

of a cell. Both the Random forest models and the mixture of Gaussians are learned from
training data. Therefore, the first stage of the CRF-based approach exactly corresponds
to the cell-wise classification method described in the previous chapter.

In the second stage, the optimal label configuration y∗, which maximizes the condi-
tional probability p(y | x), is to be found. And now also spatial dependencies between
grid cells are taken into account. Since it is not feasible to consider all the exponentially
many possible configurations of terrain labels in finding the optimal solution for a grid,
we use an approximate inference method, namely a Gibbs sampler in a simulated an-
nealing scheme, introduced in the influential paper of [Geman and Geman (1984)]. In
this scheme, the label configuration is changed iteratively until a convergence criterion
is reached. These changes can be very large at the beginning, but with the decreasing of
a temperature factor will be less. So it is possible to find the global optimum in the pres-
ence of many local optima. In general, this optimum, which is the maximum probability
p(y∗ | x) in our case, is found by bringing a system in a state of minimum energy.

Details about the second stage of our classification approach, including Gibbs sam-
pling and simulated annealing, can be found in Sec. 2.4.3, where we also formulate the
classification of the terrain grid as an energy minimization problem. There exist two
types of energy potentials: a unary potential E1 for each grid cell with its associated fea-
ture vector, and pairwise potentials E2 for each pair of neighboring cells. We will recap
the neighborhood energy used in the CRF in the next section, along with discussing prac-
tical considerations and modifications. In addition, we introduce a new neighborhood-
energy formulation that is probabilistically motivated.

5.3.2 Neighborhood Energy
Both MRFs and CRFs have two types of energy potentials, namely unary and pairwise
potentials. In contrast to the MRF, the pairwise potentials of the CRF also depend on
the feature vectors. This means that for the computation of the pairwise potentials of
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the MRF only a priori knowledge is used, whereas the pairwise potentials of the CRF
additionally depend on the observed features. We define the neighborhood energy of cell
i as the sum of all pairwise energies to neighboring cells, according to the neighborhood
Ni. For the CRF, this corresponds to Eq. (2.50):

ECRF
2 (y,x, i) = ∑

j∈Ni

1{yi 6=y j} exp
(
−β (xi− x j)

2) (5.1)

The key idea behind this formulation of ECRF
2 is that it is very likely that two adjacent

cells belong to the same type of terrain, but if they do not, i.e. yi 6= y j, their appearance
must also differ greatly, with this difference expressed by the squared difference (xi−x j)

2

of the feature vectors. The cost for computing the energy terms is a crucial factor. The
term exp(−β (xi− x j)

2) has to be computed for each pair (i, j) of cells for which yi 6= y j
in at least one label configuration during simulated annealing. The time required for
calculating this difference depends on the length of the feature vectors. In fact, it turned
out that using LTPs here takes too much computation time, so we used simpler features,
namely the average RGB color values of an image patch. Thus, we are using LTPs as
global features, which describe the overall appearance of a terrain patch, and we are us-
ing the average color to describe the relative change between neighboring patches. On
the other hand, it is also questionable whether the difference of two LTP vectors, or other
high-dimensional features, reflects the differences in appearance adequately. Therefore,
we developed an alternative description of the neighborhood-dependent energy.

We set two requirements for the new energy term ÊCRF
2 . First, the differences in ap-

pearance are not to be described by the difference of two feature vectors, but also by
probabilities. And second, the distinction should not simply be made between neighbors
of the same terrain type and those of different terrain types. Instead, the actual types
should be considered, since different types are adjacent to each other with a different
probability.

We meet these requirements by defining the neighborhood energy ÊCRF
2 as the energy

equivalent of the average probability that a neighboring cell is of its assigned type y j,
given the observed features x j of that cell and the label yi of the centered cell (see
Fig. 5.2), with a weighting factor β :

ÊCRF
2 (y,x, i) =−β |Ni|−1

∑
j∈Ni

log(p(y j | x j,yi)) (5.2)

Using Bayes’ theorem and the observation that x j and yi are conditionally independent
(see Fig. 5.2), it follows that:
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y i

y j

x j

p ( y j∣x j )

p ( y j∣y i )
p ( y j )

Figure 5.2: Both the feature vector x j and the label yi of the adjacent grid cell have an
influence on the probability of the label y j.

p(y j | x j,yi) =
p(x j | y j,yi)p(y j | yi)

p(x j | yi)

=
p(x j | y j)p(y j | yi)

p(x j)

=
p(y j | x j)p(x j)p(y j | yi)

p(y j)p(x j)

=
p(y j | x j)p(y j | yi)

p(y j)
(5.3)

Note that we do not need xi in the computation of the probability of y j. Since we
set yi to a fixed value, y j and xi are conditionally independent, that is, p(y j | xi,x j,yi) =
p(y j | x j,yi). The features xi are important for determining the label yi, but since we
know yi already, xi gives no additional information. In the energy term ECRF

2 in Eq. (5.1)
the feature vector of a cell is compared to the feature vectors of its neighboring cells in
order to compare their visual appearance. The best way to compute the visual differences
depends on the particular type of features (LBP, LTP, TSURF, ...); and a simple vector
difference may not be an appropriate representation. Although the feature vector xi does
not occur in the energy term ĒCRF

2 , all features of the surrounding cells are taken into
account. In contrast to the MRF, where no features but only labels are considered in the
pairwise energy terms, p(y j | x j) in Eq. (5.3) serves as a weighting factor that weights the
probability according to the labels with the probability according to the features. Since
we represent the influence of the features using probability values, the formulation is
independent of the actual type of features, and the corresponding length of the feature
vectors does not affect computation time. The probabilities p(y j | x j) are provided by
the Random forests, and p(y j | yi) and p(y j) can be set as required or be learned from
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training data, for instance by simply counting how often terrain patches with label y j
are adjacent to patches with label yi. On our campus, for example, asphalt and grass
are often adjacent to each other, while asphalt and gravel are not. So the probability
p(“grass” | “asphalt”) is high, and the probability p(“gravel” | “asphalt”) is almost zero.
As Fig. 5.3 illustrates, having a bad initial classification based on Random forests, using
the energy term ECRF

2 of Eq. (5.1) can make things even worse, whereas the energy term
ÊCRF

2 of Eq. (5.2) improves the result significantly.

(a) Camera image of two adjacent areas
of different terrain

(b) Result after classifying each grid cell
individually

(c) Context-sensitive classification went
wrong

(d) Good classification result using ÊCRF
2

(see Eq. (5.2))

Figure 5.3: The classification of the terrain in the camera image (a) can give poor results
when the grid cells are classified only individually (b). Since most cells were incorrectly
classified as gravel, the results get even worse when considering spatial context (c). How-
ever, when integrating the observation that asphalt and gravel areas are rarely adjacent in
the specific environment in which the robot operates, the classification result gets very
satisfactory (d). (Gray: asphalt, blue: cobblestones, green: grass, yellow: gravel, red:
obstacles)
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The histogram in Fig. 5.3d shows the probability distribution of the four terrain classes
for the red-bordered cell. This is an example that illustrates that a cell that would be
wrongly labeled as gravel when only considering the measured features, is now correctly
assigned to the class “grass” by also considering the spatial context of that cell, and
the characteristics of the specific environment. The new energy term can therefore use
additional information about the environment to make better predictions. As we will see
in the next section, it is also much faster to compute without loss of quality.

5.4 Experiments and Results
In the experiments of the previous chapter, all cells of a terrain grid were of the same
type. Since we are now interested in classification that takes into account spatial rela-
tionships between cells, the terrain grids of this data set were taken to a large extent at
transitions between two (or sometimes three) types of terrain (see Fig. 5.4). We con-
sider a total of four types of terrain, which make up most of the ground of our campus,
where the experiments were conducted, namely asphalt, cobblestones, grass, and gravel.
In contrast to the previous chapter, we no longer consider tiles, since there are too few
terrain transitions involving tiles for a meaningful analysis. For the experiments in this
section, we use two different data sets. We first introduce these data sets and then inves-
tigate context-sensitive terrain classification with MRFs and CRFs. Finally, we look at
the runtimes of the main parts of the classification algorithm.

To evaluate the different classification methods we need a set of frames (scans and
corresponding images) with ground-truth data for the terrain grid. We therefore hand-
labeled the images, which build the basis for the labeling of the terrain grid. This labeling
was refined using the scan points of the LiDAR. The ground in front of the robot is
divided into a grid with a cell size of 20cm× 20cm, which is a high enough resolution
for subsequent tasks such as path planning. This is the same for both data sets, but there
are also differences:

• Data set I (from [Laible et al. (2013)]):

The data set consists of 135 hand-labeled terrain grids. For the LiDAR-based clas-
sification only cells with at least ten scan points are considered. Therefore, because
of the low resolution of the FX6, only cells that are closer than about two meters
to the front of the robot can be classified with this sensor. The projection of the
terrain grid determines the size of the individual image patches. Only patches with
at least 200 pixels are considered, so cells that are closer than about three to four
meters are classified with the image data.
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• Data set II (from [Laible and Zell (2014)]):

The LiDAR was re-adjusted for this data set and it is now tilted a little further to
the front. It is mounted on the robot at a height of approximately 50 cm and at an
angle of about 25◦ to the horizontal, with the camera mounted on top of it. Again,
we only classify grid cells with at least ten laser measurement points in it, or with
at least 200 pixels and, in addition, a minimum side length of ten pixels for the
corresponding image patches. These limitations lead to a lower detection range,
the LiDAR can detect terrain in a range of about 1.5 m in front of the robot, whereas
the camera has a detection range of about 3 m; but the classification provides better
results, which pays off in the end in temporal classification in the next chapter. This
data set consists of 200 terrain grids.

In the first experiments, we test our MRF and CRF models with data set I. All classifi-
cation rates are determined using 10-fold cross-validation. When using the MRF, the first
stage of our two-stage classification approach consists of assigning to each cell of the ter-
rain grid that label that best fits the learned mean and standard deviation of the underlying
Gaussian model. It turns out that this yields very poor results in our case. Only regarding
the LiDAR data, the classification rate is 49.5%. Considering spatial dependencies in the
second stage only moderately improves the classification result to 54.9%. For the image
data the results using the Gaussian model are even worse with 33.8%. With such a bad
feature-dependent classification it makes no sense to try to improve the classification by
considering the neighborhood of the cells. The poor results show that the assumption of
a Gaussian distribution for the features used in our work does not hold. Especially the
elements of the LTP feature vector, which represent histogram bins, do not appear to be
Gaussian distributed.

Table 5.1: Classification results for data set I

Classification method Classification
rate in %

Image-based 80.4
Fusion of LiDAR and image data 81.5

Conditional random field 94.2

Classification rates after 10-fold cross-validation for the image-based classification with
local ternary patterns, the fused classification, and the classification with a Conditional
random field.

Tab. 5.1 shows the classification results for our standard CRF model described in
Sec. 2.4.2. Using only the LiDAR data and the Random forest classifier we get a classi-
fication rate of 93.1%. This result seems very good, but it also has to be considered that
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only a small area in front of the robot can be classified hereby. Therefore, it can not be
directly compared with the other results. Using Random forest with the LTP features of
the image (where a threshold value of 2 gave the best results) yields a rate of 80.4%. By
fusing both sensor data this can be improved to 81.5%, whereby each sensor was equally
weighted. Again, the reason that this improvement is so low is due to the small area
which is covered by the laser.

The parameters λ = 0.5 and β = 2.0 of the CRF were determined using cross-validat-
ion. With this setting the CRF achieves a classification rate of 94.2%, which is a huge
improvement. A few typical classification results can be seen in Fig. 5.4, where transi-
tions between terrain types are shown, as these are the most interesting cases.

Table 5.2: Classification results for data set II

Classification method Classification
rate in %

Cell-wise classification 82.0
CRF with ECRF

2 (Eq. (5.1)) 96.8
CRF with ÊCRF

2 (Eq. (5.2)) 96.8

Classification rates using 10-fold cross-validation for the cell-wise classification, and the
spatial classification with the old and new energy terms ECRF

2 and ÊCRF
2 , respectively.

In the next experiment, we test the influence of the different neighborhood-energy
terms of Sec. 5.3.2 with data set II, and the results are shown in Tab. 5.2. Classify-
ing each grid cell individually using Random forests only yields a classification rate of
82.0%. For our dataset we get the same results, on average, regardless of whether we are
using the old or the new energy term, namely 96.8%. However, in some environments as
we have seen in Sec. 5.3.2, using the new energy term ÊCRF

2 along with the additional in-
formation about the terrain can improve results significantly. Moreover, the computation
is also much faster as shown in Tab. 5.3.

Since we want to use terrain classification on the robot in real-time, we are interested
in the runtimes of the algorithms. Tab. 5.3 shows the average runtimes of the main parts
of the spatial terrain classification method for data set II, using a CPU with 3.20 GHz.
The spatial classification consists of the LiDAR- and image-feature extraction, the ini-
tial cell-wise classification, and the simulated annealing used for finding the optimal
label configuration considering spatial dependencies. The features of the LiDAR data
are very fast and simple to compute and the total computation takes only 0.4 ms. The
computation of the LTPs takes 9.5 ms and the initialization of the CRF takes 11.2 ms
on average. The Gibbs sampler in the simulated annealing scheme takes 8.9 ms when
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(a) Images of transi-
tions between two ter-
rain classes

(b) Fusion of LiDAR- and image-
based classification

(c) Final classification with a Con-
ditional random field

Figure 5.4: Terrain classification with Conditional random fields on fused LiDAR and
image data. The left column shows images of terrain transitions captured by the robot.
The middle column shows the results of the classification with Random forests, which
contain many wrongly classified cells. In the right column the results of the classification
using a CRF are shown, which are significantly better. This image is best viewed in
color. (Gray: asphalt, blue: cobblestones, green: grass, yellow: gravel, red: cells with
high elevations (> 0.15 m))
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the neighborhood-energy term ECRF
2 (Eq. (5.1)) is used. The standard deviation is high,

because the annealing scheme stops when the error falls below threshold t = 0.05, and
this takes different amounts of time. Since the feature-dependent classification on its
own already gives good results, and the annealing process is initialized with this clas-
sification, we start with a low initial temperature T0 = 2 (c = 0.98, N = 100), which
accelerates convergence. The use of the new energy term ÊCRF

2 (Eq. (5.2)) accelerates the
process considerably. Simulated annealing then only takes 1.7 ms, and the whole spatial
classification takes 22.8 ms on average.

Table 5.3: Average runtimes of the main parts of the spatial terrain classification method

Average time Std. dev.
[ms] [ms]

LiDAR-feature extraction 0.4 0.1
Image-feature extraction 9.5 0.4
Cell-wise classification 11.2 1.5
Simulated annealing with ECRF

2 (Eq. (5.1)) 8.9 6.7
Simulated annealing with ÊCRF

2 (Eq. (5.2)) 1.7 1.0
Entire spatial classification with ÊCRF

2 22.8 3.0

5.5 Conclusions
In this chapter, we extended our terrain classification method by taking into account spa-
tial dependencies between the cells of the terrain grid. We therefore modeled the grid as a
Markov random field (MRF) and a Conditional random field (CRF). To find an (approx-
imately) optimal label configuration we have to formulate the classification as an energy
minimization problem, and we can then use a Gibbs sampler in a simulated annealing
scheme. In a classification setting with four terrain classes the classification with the
MRF gave very bad results. The reason that the MRF does not work for our problem lies
in the type of features that we use. Since we not only differentiate between passable and
non-passable terrain but also classify the type of terrain, we need a model that is suited
for more complex dependencies between the features. For simple features that can be
modeled as Gaussians, the MRF can provide great results as shown in [Häselich et al.
(2011)] in the context of terrain classification. The CRF, however, gave very good results
and we could significantly improve the cell-wise classification with a classification rate
of 81.5% to a classification rate of 94.2% for the context-sensitive classification.

We also presented a new way to formulate the neighborhood-dependent energies in
the CRF. We tested both energy formulations, the previous and the new one, in another
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data set. In both cases, the classification rate could be improved to 96.8%, compared
to the cell-wise classification with a classification rate of 82.0%. Although both terms
provide the same results in our experiments, the new one is still preferable because it is
much faster to compute, and these energies have to be computed very often in simulated
annealing. The annealing then only takes 1.7 ms on average, whereas it takes 8.9 ms
with the previous formulation. The whole spatial classification then only takes 22.8 ms
on average.
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Chapter 6

Building Terrain Maps for Semantic
Robot Localization
In this chapter, we now also consider temporal dependencies as the robot moves. This
not only further improves results, but makes it possible to build terrain maps of the envi-
ronment. We describe how to efficiently integrate the classification results of each time
step into the map in a probabilistic manner. By also detecting obstacles with the LiDAR,
the robot can build combined terrain and elevation maps. We show that these maps can
be used for semantic robot localization.

The chapter is based on the paper “Building Local Terrain Maps Using Spatio-Temporal
Classification for Semantic Robot Localization” [Laible and Zell (2014)] and contains
parts that were taken verbatim from that work.

6.1 Introduction
In the previous two chapters, we presented our method for classifying terrain using Li-
DAR and camera data. With this method, we can classify a terrain grid in front of the
robot. By additionally taking into account spatial dependencies between grid cells, we
can improve the classification results significantly. However, temporal dependencies
have not been considered so far. In each time step, the grid is classified independently of
previous classification results. But since the robot moves just a little further between two
time steps, the same terrain is classified multiple times. And using results from previous
time steps would give additional information for further improving results. We show in
Sec. 6.3 how to build a whole terrain map of the environment by updating this map at
each time step with the current classification result while considering temporal depen-
dencies. In addition to terrain, the LiDAR provides us with information about obstacles
in front of the robot. We describe in Sec. 6.4 how to incorporate this information into
our map to build combined terrain and elevation maps.

One of the most frequently mentioned applications for terrain classification in robotics
is the recognition and avoidance of impassable terrain. But apart from this, the knowl-
edge about the surrounding terrain is also valuable for robot localization, as an addition
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or alternative when GPS (Global Positioning System) is too unreliable or not available at
all, e.g. near buildings, under trees, or in general when there is no clear line of sight to
the satellites. The accuracy requirements of such a localization depend on whether the
robot is to follow, for example, a field boundary or a road, or whether it should travel
long distances over open field. The terrain maps together with the robot’s odometry do
not provide a precise positioning of the robot, but a semantic localization, where, for
example, transitions between different types of terrain are recognized. We discuss the
localization framework in Sec. 6.5. It is easy to incorporate other types of information
into this framework, like to what kind of object a detected obstacle belongs. It makes
a big difference for localization if the robot finds itself next to a car or next to a rose
bush, for instance. Therefore, we investigate object detection and classification based on
3D scan points in Sec. 6.6. Finally, we discuss experiments in Sec. 6.7 and conclude in
Sec. 6.8.

Before we start with temporal classification, we first discuss related work on terrain
mapping and semantic localization.

6.2 Related Work
There are several related works about terrain classification and mapping that consider
spatial or temporal dependencies. In Wolf et al. (2005) a 2D LiDAR is used for terrain
mapping. The terrain is classified in navigable and non-navigable regions using hidden
Markov models. Small classification errors in the map are removed with a Markov ran-
dom field. In Komma and Zell (2010) vibration data acquired by an inertial measurement
unit is used to segment different types of terrain with an unsupervised learning approach.
The clustering is based on a Markov random field to consider temporal dependencies be-
tween consecutive measurements. Häselich et al. (2013) also use Markov random fields,
for considering spatial dependencies between cells of a terrain grid. They use a high-
resolution 3D LiDAR and several color cameras to classify the terrain into the classes
road, rough and obstacle. In addition to taking into account spatial dependencies, they
use the robot’s estimated egomotion to fuse previous classification results with current
sensor data. A 2D LiDAR is used in Wurm et al. (2013) to distinguish between vege-
tation and asphalt by looking at the intensity values of laser measurement points. They
show that it is also possible to distinguish between a dark street and light tiles. Results
from consecutive measurements are combined probabilistically.

Semantic perception and classification of the environment for mapping and localiza-
tion is used, for example, in Weiss et al. (2010) in the domain of agricultural robotics.
They present an alternative to GPS-based navigation for a robot driving through a maize
field. The robot can localize itself by detecting states like being in the middle of a row,
at a row gap, or at the end of the row. In Nüchter and Hertzberg (2008) semantic maps
are generated by labeling coarse scene features like walls and floors, and more complex
objects detected by a classifier. Such maps that contain annotations of known objects in
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addition to spatial information can be very beneficial for localization tasks.

6.3 Temporal Classification
This section presents our method for spatio-temporal terrain classification. As the robot
moves, we constantly update a terrain map with the current classification results. In this
way, we are not only able to exploit temporal dependencies, but we are also building
whole terrain maps of the environment. When building these maps, we only use odom-
etry to estimate the robot’s position and we do not use techniques like scan matching
and loop closure detection to reduce or eliminate the inevitable drift in odometry. So our
maps are only locally consistent, but this is quite sufficient for many applications.

Point Cloud Filtering Ground-Plane
Detection

Camera Image Terrain
Classification

Odometry
Terrain

Mapping Visualization

Figure 6.1: Overview of spatio-temporal terrain classification

In the following, we will differentiate between the terrain grid G in front of the robot
and the terrain mapM (see Fig. 6.2b). Since the map is to be built as the robot moves,
and since in the beginning we do not know how large the map will be, we let the map
grow dynamically. Starting with a single cell (or a specified minimum number of cells),
each time the robot reaches a border of the map, the size of the map is doubled in this di-
rection. Internally, the map is stored as a one-dimensional array, where an array element
corresponds to a cell of the map. Every time the map grows, the elements of the array
have to be reordered. Letting the map grow in powers of two is a good trade-off between
keeping the map size small and reducing the number of array reorderings, and is inspired
by the vector class of the C++ standard library [ISO (2012)], which automatically han-
dles memory allocations in this manner. If the building of the map is completed, the size
of the map can still be reduced accordingly afterwards.
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We start in Sec. 6.3.1 by describing how to enter the terrain probabilities of the terrain
grid into the map. Since the map cells already contain probabilities themselves, the
values have to be combined accordingly, as shown in Sec. 6.3.2. As it will turn out, the
results of the spatial classification cannot be integrated into the map without further ado.
Sec. 6.3.3 presents our method to solve this problem.

6.3.1 Projection of Grid Cells Onto the Terrain Map
At each time step, terrain classification consists of assigning to each cell i of a terrain grid
G in front of the robot probability values p(Yi = y) for all terrain labels y. And just like
the grid cells, each cell of the terrain mapM contains probability values for all labels,
too. Thus, updating the terrain map with the current classification result means updating
the terrain probabilities of the relevant map cells. Fig. 6.2b shows an example of how G
andM might overlap.

M i

A j
i

G j

(a) (b)

Figure 6.2: (a) Projection of grid G (red lines) onto mapM (black lines). Ai
j outlines the

sectional area between grid cell G j and map cell Mi. (b) As the robot moves, the current
classification results (represented by local terrain grid G) are used to constantly update a
terrain mapM of the environment.

To compute the probabilities for map cell Mi that correspond to the current measure-
ment, the probabilities of all grid cells G j that overlap with Mi need to be considered (see
Fig. 6.2a). The influence of each grid cell G j is proportional to the sectional area Ai

j of
Mi and G j. So for all terrain classes y the probability p(Y M

i = y) that map cell i has label
y is calculated as:
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p(Y M
i = y) = η ∑

j

Ai
j

Ai
p(Y G

j = y) (6.1)

η =

(
∑
y

∑
j

Ai
j

Ai
p(Y G

j = y)

)−1

(6.2)

Here, Ai is the area of the map cell Mi, which is usually constant throughout the map.
To compute the sectional area Ai

j efficiently we use the Sutherland-Hodgman algorithm
[Sutherland and Hodgman (1974)], originally invented for fast polygon clipping in the
field of computer graphics. Fig. 6.3 illustrates the individual steps of the algorithm for
clipping a projected grid cell (blue polygon) against a map cell (black square).

(a) (b) (c)

(d) (e) (f)

Figure 6.3: Sutherland-Hodgman algorithm for clipping polygons. At each iteration of
the algorithm the blue polygon is clipped against an extended edge of the square.

In general, the algorithm works for clipping arbitrary, convex or concave polygons
by arbitrary, convex polygons, and in our case, the polygons are always convex and
quadrilateral. At each iteration, an edge of the clip polygon is extended in both directions.
We start with the bottom edge in Fig. 6.3b. The path of the blue polygon is traversed and
every time we cross the extended bottom edge of the clip polygon, we add the intersection
to the list of vertices. On the other side, vertices that are below the edge are removed.
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This is repeated for all edges of the black square. As we can see in Fig. 6.3c and 6.3d,
it is possible that in one iteration step a new vertex is added that lies outside the black
square, but this vertex is removed again in the next step. At the end of the algorithm,
the vertices (a1,b1),(a2,b2), . . . ,(an,bn) of the sectional area remain. The actual surface
area Ai

j can then be calculated as follows [Beyer (1984)]:

Ai
j =

1
2

n

∑
k=1

(akbk+1−ak+1bk) (6.3)

6.3.2 Temporal Updating of Terrain Probabilities
We just showed how to associate the probabilities of the grid cells with the cells of the
map. In contrast to the grid cells whose values are based solely on the actual measure-
ment at time step t, the values in a map cell represent the terrain probabilities given all
previous measurements x1:t−1. To update the map with the current measurement xt , we
use the same update formula as in [Wurm et al. (2013)] where they map two terrain
classes, vegetation and non-vegetation, and which was originally used for Occupancy
grid maps [Moravec (1988)].

p̃(y | x1:t) =

(
1+

1− p(y | xt)

p(y | xt)

1− p(y | x1:t−1)

p(y | x1:t−1)

p(y)
1− p(y)

)−1

(6.4)

p(y | x1:t) = η p̃(y | x1:t) (6.5)

η =

(
K

∑
y=1

p̃(y | x1:t)

)−1

(6.6)

Hereby, the probability values p(y | xt) are stored in the grid cells, and the probability
values p(y | x1:t−1) are stored in the map cells. Since we not only have two classes, such
as occupied and unoccupied, or vegetation and non-vegetation, we have to normalize the
probabilities by dividing by ∑

K
y=1 p̃(y | x1:t), where K is the number of different terrain

classes. The derivation of the update formula uses Bayes’ rule and the Markov assump-
tion that the current observation is independent of previous observations given the actual
terrain label, and can be found in [Wurm et al. (2013)].

6.3.3 Recomputation of Terrain Probabilities
Until now, when we update the terrain map with the update formula of the last section,
we loose the results of the spatial classification, and the probability values stored in the
map cells are a result of a purely temporal classification.

The reason for this is that the temporal updating of the map is solely based on proba-
bilities, which means in particular that the actual label configuration y is not considered.
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On the other hand, only labels and no probabilities are changed in the second stage of
the spatial-classification process. In order to take into account the result of the MAP
inference method, namely the optimal configuration y∗ (see Eq. (2.36)), we need to in-
corporate this configuration in the terrain probabilities of the grid cells. The idea now
is similar to that for the definition of the neighborhood energy in Eq. (5.2), namely to
involve the neighborhood of a cell for computing new terrain probabilities (see Fig. 6.4).

y i

y j

x i

p ( y i∣x i )

p ( y i∣y j )

p ( y i )

Figure 6.4: The updated terrain probabilities p(yi | xi,{y j : j ∈ Ni}) stored in the map
not only depend on the features xi, but also on the labels {y j : j ∈Ni} of the neighboring
cells.

Using analogous considerations as in the derivation of Eq. (5.3), and considering the
whole neighborhood Ni, it follows that:

p(yi | xi,{y j : j ∈Ni}) =
p(xi | yi,{y j})p(yi | {y j})

p(xi | {y j})

=
p(xi | yi)p(yi | {y j})

p(xi)

=
p(yi | xi)p(xi)p(yi | {y j})

p(yi)p(xi)

=
p(yi | xi)p(yi | {y j})

p(yi)

=
p(yi | xi)

p(yi)
∏
j∈Ni

p(yi | y j) (6.7)

(For better readability, we abbreviated {y j : j ∈ Ni} with {y j} in the intermediate
steps.)

The recomputation of the terrain probabilities makes in fact a big difference in the
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final classification results as can be seen in Fig. 6.6d. After this final step, our method of
terrain classification now considers both, spatial and temporal dependencies.

6.4 Elevation Mapping
In addition to the probabilities of the terrain classes each cell of our map also stores a
height value h and the corresponding variance σ2

h . We use a Kalman filter-based ap-
proach for elevation mapping as described in [Kleiner and Dornhege (2007)] where the
height of a cell is estimated given all previous height observations.

After detecting the ground-plane in the point cloud of the 3D LiDAR and transforming
the cloud so that the ground plane equals the xy plane with the z-axis pointing upwards,
the current height observation of a cell is simply the maximal z-value zmax of the scan
points belonging to that cell. The estimated variance σ2

z of this observed height is com-
puted by the plane-detection module and is updated at each time step. With zmax and
σ2

z we can now update h and σ2
h by applying a Kalman filter. Since the laser scanner

is tilted it can measure very different heights for the same cell when driving towards
vertical obstacles like walls. To account for this, no Kalman update is performed when
|h− zmax| > σh, but h is set to max{h,zmax} instead. With this exception rule the esti-
mated height h can grow by leaps and bounds, but not shrink in the same manner. The
latter is, however, desirable in case of dynamic obstacles or incorrectly measured obser-
vations. We change the rule in [Kleiner and Dornhege (2007)] thus slightly and update
yet again if the observed height z is below a given threshold, that is, almost zero.

6.5 Semantic Localization
With the spatio-temporal classification method described in the previous sections and
chapters the robot is now able to build maps of the environment, containing terrain and
obstacles. Detecting and classifying obstacles and terrain by itself is an important ability
of a mobile outdoor robot for planning safe and efficient driving maneuvers. Moreover,
as we will show now, such maps can also be used for robot localization. Our goal here is
not a precise localization of a robot working in a small area, but a semantic localization
when traversing long distances. “The semantic localization problem in robotics consists,”
according to [Martı́nez-Gómez et al. (2016)] “in determining the place where a robot is
located by means of semantic categories.” In our case, these semantic categories are the
different terrain classes; or different object classes as we will see in Sec. 6.6. In many
ways, semantic localization corresponds more to how a human would localize itself, as
opposed to a precise metric localization. A transition from a lawn area to an asphalt road,
for example, often is a more important information than high-precision coordinates.

In order to utilize the results of terrain classification for localization, we use Monte
Carlo localization [Dellaert et al. (1999)], since this method has proven to be very ef-
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fective for our purposes. Monte Carlo localization uses a particle filter for estimating
the pose of the robot, that is, both the position and the orientation; and each particle
is a candidate for the actual pose. In our case the motion prediction for the particles
is based solely on the odometry. Measurements are used to set importance weights for
the particles, with these weights being proportional to the resampling probability. These
two steps, movement and measurement, let the particles converge to the true pose of the
robot. In our case the measurements are, on the one hand, the grid cells with assigned
terrain labels, and on the other side, the height values of the obstacles. We discuss the
general method of Monte Carlo localization in Sec. 2.5, so we will not go into detail
here, but instead show how to compute importance weights wt ,wh ∈ [0,1] from terrain
and height measurements, respectively. Since often several thousand particles are used,
the calculation of these weights must be very fast.

6.5.1 Particle Weights
Let It be the set of indices of those grid cells to which a terrain label was assigned, with
that label being denoted as y j for j ∈ It . Let further be i( j) the corresponding map cell
index obtained by projecting the grid cell center onto the map, and pi( j) the distribution
of terrain labels of that cell. Then, the measurement weight wt ∈ [0,1] for the terrain
labels is defined as:

wt = |It |−1
∑
j∈It

pi( j)(y j) (6.8)

We call a cell occupied if its height value h exceeds a threshold τ . As a measure of
whether the observation is consistent with the map, we define for every grid cell with
index j ∈ Ih, where Ih is the set of indices of those grid cells that are occupied:

H j =

{
1 if hi( j) > τ

0 else
(6.9)

We then set the weight wh ∈ [0,1] as follows:

wh = |Ih|−1
∑
j∈Ih

H j (6.10)

The final importance weight w = κwt +(1−κ)wh of a particle is a combination of wt
and wh, with κ ∈ [0,1].

6.6 3D LiDAR-Based Object Detection and Classification
In the previous section we have seen how to use information about terrain and obstacles
to help the robot localize. Therefore, we differentiated between different types of terrain,
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and between grid cells containing obstacles, and those without. Instead of treating all
obstacles the same, it would be preferable to also classify them according to a set of pre-
defined classes, just like with the terrain. For example, whether a robot is located next to
a lamppost or next to a rose bush is a valuable information. In this section we present our
approach for 3D LiDAR-based object detection and classification. We first cluster the
scan points to detect objects in the point cloud, and then extract features for each object
in order to classify them.

(a) (b)

Figure 6.5: Object detection and classification based on 3D LiDAR data. We first cluster
the scan points to detect objects in the point cloud, and then extract features for each
object in order to classify them according to a set of predefined classes.

To detect objects in a point cloud we only consider scan points that are above the
ground plane. These points are grouped into clusters using a method referred to as Eu-
clidean cluster extraction [Rusu (2009)]. First, a k-d tree representation of the scan points
is created (see Sec. 4.3.1), so that we can efficiently find the neighbors of a point that are
within a threshold radius r. A cluster C with respect to r is then defined as follows: The
cluster consists either of a single point, or for each point p ∈ C there exists another point
q ∈ C,q 6= p, so that the Euclidean distance between p and q is smaller than r. To find
the maximal clusters of the point cloud, we start with an arbitrary point and add it to an
empty cluster. Every neighboring point that lies within radius r will also be added to the
cluster. The first point is then marked as processed. We now iterate recursively through
all unprocessed cluster points, adding scan points that lie within radius r and that are not
yet processed, until no unprocessed cluster point is left. Then, the resulting cluster is
maximal. We continue with another unprocessed scan point and a new cluster, until all
points of the cloud are processed. Clusters where the number of points is too low are dis-
carded. We then determine a bounding box for each cluster. Since we assume that most
objects are perpendicular to the ground, we assume the bounding box to be upright as
well. The orientation in the xy plane is determined by computing the oriented bounding
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box of the two-dimensional projection of the points onto the xy plane, using their Eigen
vectors. The height of the bounding box results from the highest cluster point. We will
need this bounding boxes later, for feature extraction and for integrating the classifica-
tion results into our map. Since we know the transformation between the LiDAR and the
camera (see Sec. 4.5), we can also project the bounding boxes onto the image plane (see
Fig. 6.5a). This could be used in image-based object classification, for example.

Each cluster contains all the scan points belonging to an object, and we want to deter-
mine for each object a feature vector that describes it. Therefore, we adapt the features
computed for the terrain grid cells, with some modifications. We group the features in
two feature groups: geometric features and intensity features.

Geometric features

1. – 3. Dimensions x, y, z: Dimensions of the bounding box of the cluster in x, y, and z
direction

4. Density ρ: Density of the points in the cluster, that is, the number of points N
divided by the volume of the bounding box: ρ = N

x·y·z

Intensity features

5. – 6. Minimum and maximum intensities Imin, Imax: Minimum and maximum intensity
values of all points of a cluster

7. Range of intensity Ir: Difference between the minimum and maximum intensity
value

8. – 10. Mean, median and standard deviation of intensity Iµ , Im, Iσ : Mean, median and
standard deviation of the intensity values of all points of a cluster

11., ... Intensity histogram h[1], ...,h[B]: Histogram with B bins of the intensity values of all
points of a cluster

Overall, we thus obtain a feature vector xobject of length 10+B:

xobject =
(
x,y,z,ρ, Imin, Imax, Ir, Iµ , Im, Iσ ,h[1], ...,h[B]

)
(6.11)

After training a model, like Random forests, we can classify objects using these fea-
tures. In addition to terrain probabilities, all grid and map cells now also store proba-
bility values for each object class. To integrate the classification results into the map,
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we project the bounding box of each cluster onto the map, and each map cell whose
center lies within the projected bounding box is updated with the current classification
result. We can use the same update rule here as for the terrain (see Eq. (6.4) - (6.6)).
And finally, when we want to use the results of object classification for localization, as
mentioned above, we can now also use the same particle weights here as for the terrain
(see Eq. (6.8)).

6.7 Experiments and Results
In this section, we present our experiments on temporal terrain classification, semantic
robot localizaton, and 3D LiDAR-based object classification.

Temporal terrain classification

For evaluation of the temporal-classification method five terrain maps like the one
shown in Fig. 6.6c were labeled by hand for having ground truth. Since the ground-truth
data generated for such large maps is less precise than for the individual terrain grids,
the classification rates are only approximate values, but with a tendency towards under-
estimation. Tab. 6.1 shows the results of temporal classification, and for comparison,
the results of cell-wise and spatial classification from the previous chapter. Only using
temporal classification, that is, without considering spatial dependencies, a classification
rate of 92.2% is achieved. This is a better result then classifying cells individually, but it
is worse than the spatial classification results. And finally, using spatio-temporal classi-
fication with recomputed probabilities as described in Sec. 6.3.3 yields an almost perfect
classification with 98.4%. An example of what a difference the recomputation of terrain
probabilities makes can be seen in Fig. 6.6d. Here, the information of the left map cannot
be used by the robot to drive along the grass border.

Table 6.1: Results of the various terrain-classification methods

Classification method Classification
rate in %

Cell-wise classification 82.0
Spatial classification 96.8
Temporal classification w/o recomp. 92.2
Temporal classification w/ recomp. (Eq. (6.7)) 98.4

Classification rates using 10-fold cross-validation for cell-wise classification, spatial
classification, and temporal classification without and with recomputation of terrain
probabilities
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Table 6.2: Average runtimes of the various terrain-classification methods and robot lo-
calization using a particle filter

Average time Std. dev.
[ms] [ms]

Spatial classification 22.8 3.0
Temporal classification 1.0 0.2
Elevation mapping 0.1 0.4
Spatio-temporal classification 23.9 3.6
Localization w/ 2000 particles 29.9 0.4

Tab. 6.2 shows the average runtimes of the various terrain-classification methods (us-
ing a CPU with 3.20 GHz). Temporal classification, which consists of projecting grid
cells onto the terrain map, and recomputation and temporal updating of terrain probabil-
ities, is very fast and only takes 1.0 ms on average. Together with spatial classification
and elevation mapping, we get an average runtime for spatio-temporal classification of
23.9 ms, which corresponds to about 41.8 Hz. This shows that our classification method
is real-time capable.

Semantic robot localization

To show that these terrain and elevation maps can also be used for robot localization,
we recorded five log files of our robot driving along the test track seen in Fig. 6.6a, with
an approximate length of 120 m. Since we are not interested in a precise but a semantic
localization, we define a successful localization as one where the robot can localize itself
from the beginning (at spot 1©) to the end (at spot 3©) of the track, and where it knows
at any time in which exact terrain segment of the track it is located; otherwise, the whole
localization test is regarded as not successful. For this purpose, from each of the log files
a map was built, while localization was tested with the other four. The whole procedure
was repeated five times for a total of 80 localization tests. Using a particle filter with
2000 particles and κ = 0.5, of these 80 tests 66 were successful, which is 82.5%. The
localization uncertainty grows as the robot drives over open field (see Fig. 6.6c), but
decreases abruptly as a different terrain type or a wall is seen.

3D LiDAR-based object classification

For the experiments on our object-classification method, we consider six classes of
objects that occur outdoors: bench, birch, boxwood, car, roses, and stone (see Fig. 6.8).
In order to generate a ground-truth data set, approximately 500 samples per class were
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labeled by hand. We tested different numbers of bins B = 2, ...,30 for the intensity his-
togram, and various classifiers. For descriptions and references of the tested classifiers
see Sec. 4.6. Tab. 6.1 shows the results after 10-fold cross-validation, with the number B
that gave the best results. Again, random forests outperform the other tested classifiers,
with a classification rate of 93.6% (if 100 trees are used).

Table 6.3: Classification rates for 3D LiDAR-based object classification

Classifier Number of bins B Classification
rate in %

RandomForest (10 trees) 8 91.6
RandomForest (100 trees) 14 93.6
RandomForest (200 trees) 13 93.8

MultilayerPerceptron 27 87.9
J48 18 85.5

Logistic 25 84.0
SMO 25 81.0

Table 6.4: Average runtimes of 3D LiDAR-based object classification

Average time Std. dev.
[ms] [ms]

Clustering (per point cloud) 2.4 3.5
Feature extraction (per object) 0.1 0.3
Classification (per object)
(random forest w/ 100 trees) 0.1 0.2

Tab. 6.4 shows the average runtimes of the method (using a CPU with 2.80 GHz). For
clustering we set the radius r = 0.2m. Clustering then takes 2.4 ms per point cloud, with
a high standard deviation since the runtime depends on how many scan points lie above
the ground plane. Feature extraction and classification is very fast with a mean runtime
of 0.1 ms each per detected object.
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(a) Aerial view of the test track (only used for il-
lustrative purposes). On the right side, the route
leads through a covered passage.

(b) The robot building a map as it drives past
spot 2©

(c) The final terrain and elevation map. At spot 4© the particles of the particle filter are seen as
red dots.

(d) Left: Mapping with-
out recomputation of ter-
rain probabilities, right:
with recomputation as de-
scribed in Sec. 6.3.3

(e) Another example of
the impact of consider-
ing spatial dependencies
in terrain classification

Figure 6.6: An aerial view of the test track with manually drawn route is shown in (a).
(b) shows a 3D view of the mapping process with visible laser measurement points. The
final terrain and elevation map can be seen in (c), and (d) shows what a difference the
consideration of spatial dependencies can make. (Gray: asphalt, blue: cobblestones,
green: grass, yellow: gravel, red:obstacles)
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(a) Bench

(b) Birch

(c) Boxwood

Figure 6.7: Images and 3D scans of three object classes under consideration
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(a) Car

(b) Roses

(c) Stone

Figure 6.8: Images and 3D scans of another three object classes under consideration
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6.8 Conclusions
We presented a method for building local terrain and elevation maps with spatio-temporal
terrain classification. The surrounding terrain of a driving robot could be classified with
a classification rate of 98.4% using four terrain classes. (Only considering spatial depen-
dencies gave a classification rate of 96.8%, and only considering temporal dependencies
gave 92.2%.) We exploit the fact that terrain occurs in contiguous areas and therefore
has a high spatial and temporal coherence. Considering this dependencies in a proba-
bilistic manner provides very high classification rates. The presented method is hereby
not limited to only terrain classification, but can be used for all grid-based classification
problems. We also showed how the results of spatial classification can be used for tem-
poral classification by updating the terrain probabilities accordingly and by integrating
the terrain grids into the map efficiently. The whole classification and mapping process
runs at 41.8 Hz and is thus real-time capable.

We also showed that the terrain maps can be used for semantic robot localization using
a particle filter, where the robot localizes itself based on terrain and obstacles. Other
information can be easily integrated into our existing framework as well. We therefore
presented a 3D LiDAR-based object-classification method and got a classification rate of
93.6 % in our experiments considering six object classes.
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Chapter 7

Conclusions
This conclusion offers a brief review of the most important points and significant results.
Since all scientific work is only an intermediate step, this section also includes possible
directions for future work.

Chapter 4 began with the classification of terrain using only a 3D LiDAR and a con-
sideration of the five terrain classes: asphalt, cobblestones, grass, gravel, and tiles. A
robust method was presented for detecting the ground plane in each 3D scan by exploit-
ing temporal coherences between consecutive frames. The terrain in front of the robot
can then be divided into a terrain grid. Despite the fact that the resolution of the LiDAR
is very low, and therefore only a few scan points per grid cell are available, we were
able to extract characteristic feature vectors for each cell. It was possible to create 3D
features that are based on height and intensity variations and that are very fast and easy
to compute. In that case, the intensity values provide particularly good features, since
each of the various types of terrain reflects the incident infrared beams of the LiDAR in
a different characteristic manner. The feature extraction for one grid only takes 1.5 ms
on average. Since for robots that drive outdoors changing lighting conditions represent a
formidable challenge, this approach was tested at different times of the day, from bright
sunlight at midday to only diffuse lights from street lamps at night. The LiDAR-based
approach provides consistently good results independent of the conditions, with a best
classification rate of 94.6% at midday, and the worst result at dusk, with 90.0%, using a
terrain grid with a resolution of 20 cm. A general model trained for use at all conditions
achieves a classification rate of 90.5%. For classification, we use Random forests since
they outperform all other tested classifiers. Interestingly, when only considering the two
classes of asphalt and grass the classification results are consistently above 99.9% for all
conditions. The chlorophyll in grass reflects near-IR light like that of the LiDAR much
more than asphalt, so these two classes can be distinguished almost perfectly.

Due to the low resolution of the 3D LiDAR only grid cells under two meters in front
of the robot can be classified. Cameras have a wider field of view, and this approach
incorporates the texture information of the camera images in order to classify more dis-
tant cells. To this end, we used LTP, a texture descriptor based on differences in pixel
intensities. For grid cells where data of both sensors are present, the results are fused
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accordingly. We can then classify grid cells up to four meters in front of the robot. In
contrast to the LiDAR-based approach, the results of camera-based classification, and
thus also the fused results, depend to a great deal on the prevailing light conditions. In
the experiments the best fused results occur in the morning with 92.6% and the worst in
the night, with 72.7%, and a classification rate of 81.4% for the general model.

In Chapter 5, the cell-wise classification is extended by taking into account spatial de-
pendencies between grid cells using Conditional Random Fields (CRFs). We show that
they are better suited for our task than Markov Random Fields. This new classification
method consists of two stages. In the first stage, the cells of the terrain grid are classified
individually using the extracted LiDAR and camera features and the learned Random
forests, as in Chapter 4. In the second stage, the classification result is improved. This
is achieved by considering the feature-dependent results, on the one hand, but addition-
ally favoring contiguous areas of terrain, on the other. An approximate optimal solution
can be found in formulating the classification task as an energy-minimization problem
and using Gibbs sampling in a simulated-annealing scheme. To test the method we use
a data set with the four terrain classes: asphalt, cobblestones, grass, and gravel, (since
these are the terrain classes mainly encountered by our robot), and with many terrain
grids with two or more terrain classes. These experiments show that taking spatial de-
pendencies into account indeed leads to a huge improvement, with a classification rate
of 81.5% after the first stage, and a rate of 94.2% after the second stage of our approach.
In addition, we have developed a new energy term for describing spatial dependencies
between neighboring cells, which is very fast to compute. Tested on a new data set, both,
the previous as well as the new energy term, can improve cell-wise classification with a
classification rate of 82.0% to 96.8% in the second stage. However, with the new energy
term, the computation of the second stage is more than five times faster.

After incorporating spatial dependencies, temporal dependencies are additionally con-
sidered in Chapter 6. This not only improves results further, but we are now able to build
whole terrain maps of the environment by using the classification result of the current
time step to constantly update the map as the robot drives. This chapter shows how to
efficiently incorporate the terrain probabilities of the terrain grid into the map, how to
combine them with results from previous time steps, and how to integrate the label con-
figuration obtained from simulated annealing by recomputing the terrain probabilities
afterwards. In experiments using a new data set, spatial classification yields a classifica-
tion rate of 96.8%, only using temporal classification (without recomputation of terrain
probabilities) yields 92.2%, and finally spatio-temporal classification yields the best re-
sult with 98.4%.

In addition to terrain, this method also uses information about detected obstacles in
our maps to build combined terrain and elevation maps. Thereby, each map cell contains
a height value with associated variance in addition. Cells with a height value that exceeds
a certain threshold are considered as obstacles. Spatio-temporal classification and eleva-
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tion mapping take 23.9 ms on average, which corresponds to about 41.8 Hz. This shows
that our classification method is real-time capable. We can use these maps to localize
the robot using Monte Carlo localization. Therefore, we compute particle weights that
involve measurements about terrain and obstacles. Using a particle filter, it is simple to
incorporate additional information like GPS or visual odometry.

This thesis demonstrates how considering spatial and temporal dependencies improves
results significantly, with cell-wise classification as the basis of the method. Despite the
fact that we get nearly perfect results in these test scenarios, each model and each method
has its limitations, and we discuss some potential directions for future work.

In recent work [Otte et al. (2015)] we deal with improving cell-wise classification.
There, we use local ternary patterns in combination with recurrent neural networks in-
stead of Random forests. Another way to improve the classification results is to use a
more complex model of the terrain grid. Since this study only considers probabilistic in-
teractions between neighboring terrain cells, frequent cases — like an asphalt road with
grass on both sides — are not covered. Therefore, long-distant interactions had to be
considered, which would lead to a more complex model of the terrain grid and a much
higher computational effort. A possible approach to make this model tractable is to not
consider all interactions between grid cells in finding the optimal label configuration, but
rather only consider a few by using sampling techniques.

The approaches mentioned above would further improve results, but they do not change
our general approach: namely that we use a model of the terrain, regarding appearance
and spatial dependencies, that is learned once and then never touched at all. Although
this a-priori knowledge can be very powerful, and the learned models can cope with
terrain that looks very different from the training data — in terms of lighting, texture,
or even leaves on the ground — this approach has its limitations. There are problems
when the appearance of the terrain differs too much from the learned model, because of
seasonal changes, for instance, like snow or foliage, or because of mowed grass. Even
if the learned model could cover all conceivable cases, the quality of this general model
would suffer with respect to a more specialized model. A solution to this problem could
be to use a semi-supervised learning method with an adaptive model that starts with a-
priori knowledge, but constantly updates its knowledge as new information is received.
To incorporate this into our method, the Random forests would need to be updated with
features of terrain patches that belong to a certain terrain class with a high probability,
but that look different than the other patches of this class. Hereby, the terrain map helps,
since as well as we can draw conclusions about the position of the robot based on terrain,
we can also draw conclusions about the terrain in front of the robot when we know the
robot’s position. So when the appearance of the terrain gradually changes, the model can
adapt.
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Symbols

S Sets are denoted by calligraphic letters
N The cardinality of a set is denoted by capital letters

x D-dimensional feature vector of a terrain grid cell
x[i] i-th component of feature vector x
y Class label of a terrain grid cell
xi Feature vector of i-th cell
yi Class label of i-th cell
x Feature configuration of entire terrain grid
y Label configuration of entire terrain grid

X ,Y Random variables
X ,Y Sets of random variables
X = x X takes value x

p(Y = y | X = x) Probability of Y taking value y, given that X takes value x
p(y | x) Shorthand notation for p(Y = y | X = x)
p̃(y) Unnormalized probability value, which can be normalized by

dividing by ∑y p̃(y)

F(y,x) ∝y G(y,x) ≡ ∀x∃k∀y F(y,x) = kG(y,x)
F(y,x) is proportional to G(y,x) for all y, when x is fixed.

argmaxy F(y) = {y : ∀y′ F(y′)≤ F(y)}
Set of values of y that maximize F(y)

1{a6=b} Indicator function defined as: 1{a6=b} =

{
1, if a 6= b
0, if a = b

y∼ p(y) Sample y from the distribution p(y)

97





Bibliography
Andreasson, H., Triebel, R., and Lilienthal, A. (2007). Non-iterative Vision-based Inter-

polation of 3D Laser Scans. Autonomous Robots and Agents, 76, 83–90.

Aslam, J. A., Popa, R. A., and Rivest, R. L. (2007). On Estimating the Size and Con-
fidence of a Statistical Audit. In Proceedings of the USENIX Workshop on Accurate
Electronic Voting Technology, EVT’07, page 8, Berkeley, CA, USA. USENIX Asso-
ciation.

AVT (2008). Technical Manual For CCD models with serial numbers: xx/yy-6zzzzzzz
and all CMOS models. Allied Vision Technologies GmbH, Taschenweg 2a D-07646
Stadtroda / Germany, v2.4.0 edition.

Bay, H., Ess, A., Tuytelaars, T., and van Gool, L. (2008). Speeded-up Robust Features
(SURF). Computer Vision and Image Understanding (CVIU), 110(3), 346–359.

Berthod, M., Kato, Z., Yu, S., and Zerubia, J. (1996). Bayesian Image Classification
Using Markov Random Fields. Image and Vision Computing, 14, 285–295.

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal
of the Royal Statistical Society. Series B, 36, 192–236.

Beyer, W. H. (1984). C.R.C. Standard Mathematical Tables. CRC Press.

Borrmann, D., Elseberg, J., Lingemann, K., and Nüchter, A. (2011). The 3D Hough
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Wurm, K. M., Stachniss, C., Kümmerle, R., and Burgard, W. (2009). Improving Robot
Navigation in Structured Outdoor Environments by Identifying Vegetation from Laser
Data. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
St. Louis, MO, USA.
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