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Zusammenfassung 

 

In ihrer natürlichen Umgebung müssen sich Pflanzen ständig mit abiotischen wie auch 

biotischen Stressfaktoren auseinandersetzen. Betrachtet man den Teil der mikrobiellen und 

pilzlichen Angriffe ist bisher die Interaktion zwischen Arabidopsis thaliana und dem 

(hemi-)biotrophen Pathogen Pseudomonas syringae sehr genau untersucht. Hierbei leisten 

microRNAs einen wichtigen Beitrag zur pflanzlichen Verteidigung. Das Verständnis wie 

Arabidopsis thaliana mit necrotrophen Pathogenen interagiert weist immer noch erhebliche 

Lücken auf. Infolgedessen, stellen wir uns die Frage inwiefern microRNAs in der Verteidigung 

von Arabidopsis thaliana gegen den necrotrophen Modelorganismus Alternaria brassicicola, 

welcher die Kohlschwärze an praktisch allen Arten innerhalb der Brassicaceae verursacht, 

beteiligt sind. 

Um entscheidende microRNAs zu identifizieren, sequenzierte ich kleine RNAs. Hierbei 

zeigte sich, dass einige microRNAs auf eine Behandlung mit Alternaria brassicicola 

ansprechen. Die Funktion zweier gefundener microRNAs wurde hierauf im Detail untersucht. 

Die kürzlich evolvierte microRNA163 (miR163) ist deutlich hochreguliert nach einer 

Inokulation mit Alternaria brassicicola und zeigte eine Veränderung im Spleißverhältnis der 

intron-enthaltenden pri-miRNA. Infektionsassays mit dem Pilz A. brassicicola zeigten, dass 

mir163 Mutanten resistenter sind. Dies weist daraufhin, dass miR163 ein negativer Regulator 

der pflanzlichen Abwehr ist, der möglicherweise externe Stimuli durch ein verändertes 

Spleißverhalten, das einen Einfluss auf die korrekte microRNA Biogenese hat, integriert. 

Die untersuchte mir827 Mutante zeigte keinen veränderten Phänotyp nach einer 

Behandlung mit A. brassicicola. Dennoch ist die Expression der miR827 deutlich erhöht und 

eine übermäßige Steigerung der Ziel-mRNA VPT1 wird gemildert. Da miR827 wahrscheinlich 

in einem komplexen Netzwerk der Phosphatantwort eingebunden ist, könnten sowohl ein 

knock-out als auch eine Überexpression einer der Komponenten des Netzwerks unzureichend 

sind um das Netzwerk zu stören und die Resistenz verbleibt unverändert. 

Eine sich ständig erhöhende Anzahl an Studien weist darauf hin, dass DNA 

Methylierung eine Schlüsselfunktion einnimmt um die pflanzliche Abwehr zu regulieren. 

Hierfür wurde ein induzierbares Vektorsystem etabliert, das Gene, die verantwortlich sind für 

DNA Methylierung, durch artifizielle miroRNAs herunterreguliert. Die Induzierbarkeit des 

Systems erlaubt eine gezielte Herunterregulierung von Genen zu einem bestimmten Stadium 
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des Infektionsprozesses und gibt die Möglichkeit Gene zu untersuchen, die im Embryo-Stadium 

letal sind oder starke Defekte in der Entwicklung aufweisen, wenn sie ausgeschaltet werden. 
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Summary 

 

Plants constantly have to cope with abiotic and biotic stresses and they do that by a 

variety of regulatory mechanisms including adjustment of gene expression. Gene expression 

can be regulated by various means, including epigenetic regulation or post-transcriptional 

regulation by microRNAs (miRNAs). Concerning the part of microbial and fungal attacks, so 

far the interaction between Arabidopsis thaliana and (hemi-)biotrophic bacteria Pseudomonas 

syringae has been studied in detail, wherein microRNAs where shown to be an important factor 

in plant defense. The understanding how Arabidopsis thaliana interacts with necrotrophic 

pathogens still exhibits considerable gaps. Therefore, we asked the question in what way 

microRNAs are involved in defense of Arabidopsis thaliana against the necrotrophic model 

organism Alternaria brassicicola, which causes the black spot disease on virtually all plant 

species in the Brassicaceae. 

In order to identify crucial microRNAs, I conducted a small RNA sequencing approach 

showing that several microRNAs are responsive to treatments with Alternaria brassicicola. I 

picked two of them and elucidated their function in more detail. The recently evolved 

microRNA163 (miR163) is clearly upregulated after A. brassicicola inoculations and showed 

a change in the splicing ratio of the intron-containing pri-miRNA. Infections assays with the 

Alternaria brassicicola fungi exhibited a more resistant phenotype of mir163 mutants revealing 

that miR163 is a negative regulator of plant defense that putatively integrates external stimuli 

through its changed splicing ratio that affects proper miRNA processing. 

The investigated mir827 mutant did not show any changes phenotype when treated with 

A. brassicicola but miR827 is clearly upregulated and buffers the extensive increase of 

expression of its target mRNA VPT1. As miR827 is likely involved in the complex phosphate-

response network, knock-out or overexpression of one component of the phosphate network 

could be insufficient to disturb the phosphate-starvation network and resistance remains 

unaltered.  

An increasing amount of studies suggests that DNA methylation represent a key player 

in the regulation of plant defense. Therefore, I established an inducible vector system that 

knock-down DNA methylation genes by artificial microRNAs. The inducibility of this system 

allows to knock-down gene in a certain stage of the infection process and gives the opportunity 

to studies genes that are embryonic lethal or have strong developmental defects if knocked out. 
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1. Introduction 

 

1.1 Plant defense response 

 

As sessile organisms, plants are continuously challenged by abiotic stress as well as 

biotic stress and evolved strategies to cope with and defend against them. Biotic stress factors 

are for example herbivorous insects, nematodes, neighboring plants, pathogenic bacteria and 

fungi. In contrast to animals, plants do not have mobile defense cells or an adaptive immune 

system. They rely on their innate immunity defense system from each single cell (Nurnberger 

et al., 2004; Iriti and Faoro, 2007).  

A model of the plant immune system was proposed by Jones and Dangl (2006): As a 

first line of defense, plants recognize pathogen- or microbe-associated molecular patterns 

(PAMPs/MAMPs). PAMPs/MAMPs are conserved pathogenic structures. Most prominent 

examples are flg22, a conserved 22-amino acid peptide sequence of flagellin, and elf18, a 

peptide sequence of a bacterial elongation factor EF-Tu (Felix et al., 1999; Kunze et al., 2004). 

Those PAMPs/MAMPs are recognized by transmembrane pathogen recognition receptors 

(PRRs), like the flg22-sensing FLAGELLIN-SENSITIVE 2 (FLS2) (Chinchilla et al., 2006) 

and the elf18-sensing EF-TU RECEPTOR (EFR) (Zipfel et al., 2006). Recognition of a 

PAMP/MAMP results in downstream signaling and leads to pattern-triggered immunity (PTI) 

(Jones and Dangl, 2006). Typical downstream events of PTI are the production of reactive 

oxygen species, calcium ion influx, the activation of mitogen-activated protein kinases 

cascades, hormonal signaling, transcriptional reprogramming and the synthesis of antimicrobial 

metabolites (Ma and Berkowitz, 2007; Ahuja et al., 2012; Pieterse et al., 2012; Rasmussen et 

al., 2012; Baxter et al., 2014). All those reactions together are intended to prevent further 

spreading of the microbes. Successful pathogens in turn have evolved so-called effectors to 

overcome PTI leading to effector-triggered susceptibility (ETS) (Jones and Dangl, 2006). Those 

effectors are essential for the virulence of the pathogen and for instance facilitate host 

penetration or suppress the plant immune response (Gohre and Robatzek, 2008). 

During the arms race between plants and pathogens, plants evolved a subset of 

resistance genes (R-genes) against microbial effectors (McHale et al., 2006). R-genes encode 

for intracellular nucleotide-binding leucine rich repeat (NB-LRR) proteins that recognize 

pathogen-specific effectors directly or through the observation of indirect effects, called the 

“guard hypothesis” (Van der Biezen and Jones, 1998; Dangl and Jones, 2001; Jones and Dangl, 
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2006; McHale et al., 2006). The concept of the “guard hypothesis” implies that each R-protein 

monitors a cellular protein and whether the cellular protein is attacked. The recognition of a 

pathogen attack by NB-LRRs leads to effector-triggered immunity (ETI). ETI uses a common 

signaling network with PTI but ETI and PTI vary in robustness and duration and usually ETI 

includes hypersensitive response (HR) (Jones and Dangl, 2006; Tsuda and Katagiri, 2010).  

Downstream of the activation of PTI and ETI, phytohormones display the key player of 

the defense signaling pathway. Dependent on the pathogen type different phytohormones (SA, 

JA, ET) and defense responses are activated (Pieterse et al., 2009; Pieterse et al., 2012). 

Microbial plant pathogens can be generally divided in two different groups: Biotrophic 

pathogens that grow only on living host tissue and necrotrophic pathogens that kill the host 

tissue during infection process and feeds on the dead tissue (Glazebrook, 2005). Recognition 

of biotrophic pathogens like Pseudomonas syringae or Hyaloperonospora arabidopsidis 

activate the phytohormone salicylic acid (SA) and SA-mediated pathways, while jasmonic acid 

(JA) and ethylene (ET) are classical phytohormones for immunity against necrotrophs, like 

Botrytis cinerea or Alternaria brassicicola (reviewed in Pieterse et al. (2009; 2012)). 

Phytohormonal pathways of SA and JA/ET display extensive crosstalk between each other, as 

they defend against pathogens with completely different lifestyles and distinct defense genes 

and mechanisms have to be activated (reviewed in Pieterse et al. (2009; 2012)). While for 

example a hypersensitive response is an effective defense means to restrict infections with 

biotrophic pathogens, HR facilitates infections for necrotrophic pathogens (Govrin and Levine, 

2000).  

As plant-(hemi-)biotrophic pathogen model serves the interaction of Arabidopsis 

thaliana with the bacteria Pseudomonas syringae and depicts the most intensively studied 

plant-pathogen pair (reviewed in Katagiri et al. (2002)). Pseudomonas syringae pathovar 

tomato (Pst) DC3000 is the most commonly used bacteria since it is a virulent strain for 

Arabidopsis thaliana. Pst DC3000 introduces bacterial effectors via its type III secretion 

system. Modifications of Pst DC3000 by creating defects in the type III secretion system (e.g. 

Pst DC3000 hrcC-) or expressing avirulence factors (e.g. avrRpt2, AvrPto) that can be 

recognized by Arabidopsis through NB-LRRs provide a good tool to study plant interactions 

with nonpathogenic (Pst DC3000 hrcC-), virulent (Pst DC3000) and avirulent (e.g. Pst DC3000 

avrRpt2) pathogens. 

As necrotrophic model organisms serve Alternaria brassicicola and Botrytis cinerea 

amongst others, two pathogens with a broad host-range (van Kan, 2006; Cho, 2015). Important 

components for the immunity against necrotrophs are the phytohormone JA and phytoalexins 
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indicated by the enhanced susceptibility of mutants defective in biosynthesis of JA 

(coi1 mutant) and the phytoalexin camalexin (pad3 mutant) against A. brassicicola (Thomma 

et al., 1998; Thomma et al., 1999; Zhou et al., 1999). Additionally, BAK1, a co-receptor of 

PRRs, is required for resistance against A. brassicicola and B. cinerea (Chinchilla et al., 2007; 

Kemmerling et al., 2007; Halter et al., 2014). Another central role in the strategy of necrotrophs 

is the production of a variety of toxins and phytotoxic metabolites. For instance, Alternaria 

species produce Brassicicolin A and depudecin, an inhibitor of histone deacetylases, amongst 

other toxins (Kwon et al., 1998; Privalsky, 1998; Pedras et al., 2009). The concrete interactions 

of A. brassicicola with Arabidopsis thaliana are still enigmatic as so far only two virulence 

factors of Alternaria brassicicola (Cho et al., 2009) and only one NB-LRR encoding R-gene 

involved in immunity against A. brassicicola (Staal et al., 2008) were described. Likewise, no 

cellular targets for the majority of the phytotoxic metabolites and/or downstream signaling 

components were discovered. 

 

  



  INTRODUCTION 

7 

1.2 Involvement of AGO proteins and their associated small RNAs in plant 

defense 

 

In plants, several classes of endogenous small RNAs (sRNAs) have been described. 

Most are 21 - 24 nt long, are derived from a longer RNA precursor by DICER-LIKE (DCL) 

proteins and are methylated by HUA ENHANCER 1 (HEN1) (Borges and Martienssen, 2015). 

All sRNAs are loaded into the ARGONAUTE component of an RNA-induced silencing 

complex (RISC) that is directed towards its target by complementary base pairing between 

sRNA and target sequence (Borges and Martienssen, 2015). 

The most abundant sRNAs in Arabidopsis thaliana are small-interfering RNAs 

(siRNAs) that are produced from a double-stranded RNA derived from hairpin-forming RNAs 

or the activity of RNA-dependent RNA-polymerases (RDRs) on single-stranded RNA or 

natural antisense transcripts (reviewed in Willmann et al. (2011), Borges and Martienssen 

(2015)).  

Endogenous siRNAs have been described to function against viruses (Cao et al., 2014), 

herbivorous insects (Pandey et al., 2008), nematodes (Hewezi et al., 2008) and microbial 

pathogens (reviewed in Jin (2008) and Padmanabhan et al. (2009)).  

Cao et al. (2014) showed, that viral infection of Arabidopsis thaliana leads to the 

production of vasiRNAs (virus-activated siRNAs) that act together with AGO2 in silencing of 

host genes and are proposed to confer broad-spectrum antiviral activity.  

Plant infection with Pst avrRpt2 leads to the production of a natural antisense transcripts 

that is further processed into siRNAATGB2 (Katiyar-Agarwal et al., 2006). siRNAATGB2 acts 

in cis and downregulates a pentatricopeptide repeats protein-like gene that is suggested to act 

as negative regulator of the RPS2-mediated resistance (Katiyar-Agarwal et al., 2006). 

Some more R-genes have been proposed to be regulated by sRNAs. The R-gene cluster 

of the RPP5 (recognition for Peronospora parasitica 5) locus was shown to produce siRNAs 

that negatively regulate themselves (Yi and Richards, 2007). 

Another class of recently discovered sRNAs, so-called long siRNAs (lsiRNA) with a 

size of 30 - 40 nt have been connected with plant pathogen defense (Katiyar-Agarwal et al., 

2007). Derived from a natural antisense transcripts, clusters of one lsiRNAs (lsiRNA-1) are 

specifically upregulated upon Pst avrRpt2 infection and repress AtRAP in cis, a gene that is 

putatively involved in basal defense (Katiyar-Agarwal et al., 2007). 
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1.3 Involvement of microRNAs in plant defense 

 

Besides the previously described sRNAs, many sRNA of the microRNA class were 

observed to be responsive to biotic stress (Fahlgren et al., 2007; Li et al., 2010; Zhang et al., 

2011a; Sunkar et al., 2012). 

In Arabidopsis thaliana, more than 400 microRNAs are annotated 

(http://www.mirbase.org/; miRbase21). MicroRNAs are single-stranded, non-coding RNAs 

with a length of 21 - 24 nt and possess independent transcriptional units (Rogers and Chen, 

2013; Szweykowska-Kulinska et al., 2013). The biogenesis of microRNAs is briefly depicted 

in Figure 1. Mature microRNAs are processed from a much longer primary transcript 

(pri-miRNA) produced by RNA polymerase II (Xie et al., 2005; Kim et al., 2011). The 

pri-miRNA is decorated with a 5’-cap as well as a 3’-polyadenylated tail (Xie et al., 2005; 

Zhang et al., 2005) and forms an imperfect stem-loop structure through partial sequence 

complementarity. Several proteins, the CAP-BINDING PROTEINS CBP20 and CBP80, the 

zinc-finger protein SERRATE (SE), HYPONASTIC LEAVES 1 (HYL1) and DICER-LIKE 1 

(DCL1), process the pri-miRNA into the mature microRNA (Kurihara et al., 2006; Dong et al., 

2008; Kim et al., 2008; Laubinger et al., 2008). The RNAse III-like enzyme DCL1 is the active 

dicing component and processes the pri-miRNA stem-loop structure into pre-miRNA and 

miRNA/miRNA* duplex with a two nucleotide overhang at the 3’-termini (Kurihara and 

Watanabe, 2004).  

To protect the miRNA/miRNA* duplex against exonucleolytic activity, uridinylation 

and subsequent degradation, the methyltransferase HUA ENHANCER 1 (HEN1) 

2’-O-methylates the duplex at its 3’-ends (Li et al., 2005; Yu et al., 2005; Yang et al., 2006b). 

Subsequently, the methylated miRNA duplex is exported from the nucleus into the cytoplasm 

inter alia by HASTY1 (Park et al., 2005) and thereafter mainly loaded into ARGONAUTE 1 

(AGO1) (Baumberger and Baulcombe, 2005; Mi et al., 2008) and the miRNA* strand is 

removed (Rogers and Chen, 2013). Via complementary base pairing of the RISC-loaded 

microRNA with the target messenger RNA (mRNA), the target transcript is 

post-transcriptionally regulated by either cleavage through the AGO1 slicer activity followed 

by mRNA degradation or by translational inhibition (Baumberger and Baulcombe, 2005; 

Brodersen et al., 2008). 



  INTRODUCTION 

9 

 

Figure 1: MicroRNA biogenesis and action. MIR genes are transcribed by RNA 
polymerase II (Pol II) into pri-miRNA. The cap-binding complex recruits the miRNA processing 
machinery consisting of SERRATE (SE), HYPONASTIC LEAVES 1 (HYL1) and 
DICER-LIKE 1 (DCL1) that produces the miRNA/miRNA* duplex. Subsequently, the 
miRNA/miRNA* duplex is methylated by HUA ENHANCER 1 (HEN1) and loaded into the 
microRNA effector protein ARGONAUTE 1 (AGO1). Sequence complementarity of the 
microRNA with the target mRNA leads to post-transcriptional silencing through cleavage of 
target mRNA or translational repression. 

 

Several pathways have been known to control miRNA accumulation. The 

3’-5’-exonucleases SMALL RNA DEGRADING NUCLEASE (SDN) and HEN 1 

SUPPRESSOR 1 (HESO1)-mediated uridylation restrict the excessive accumulation of 

microRNAs (Ramachandran and Chen, 2008; Ren et al., 2012; Zhao et al., 2012). MiRNAs are 

also known to control the homeostasis of their biogenesis (Rhoades et al., 2002; Xie et al., 2003; 

Vaucheret et al., 2004; Meng et al., 2012). For instance, ARGONAUTE 1 is controlled via a 

negative feedback by miRNA168 (Rhoades et al., 2002; Vaucheret et al., 2004). 

Functionally, many miRNAs were described to be crucial for developmental stages, 

most of them by controlling core proteins of regulatory networks (reviewed in Jones-Rhoades 

et al. (2006)) but also other functions of miRNAs have been described, for example miRNAs 

that are induced by biotic stress (Figure 2; Fahlgren et al. (2007), Li et al. (2010), Zhang et al. 

(2011a), Sunkar et al. (2012)). 
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Figure 2: MicroRNAs described in defense against biotrophic pathogens and their 
targets.  A MicroRNAs that influence hormonal pathways. B MicroRNAs induced by biotrophic 
pathogens regulate genes that are uninvolved in hormone signaling and pathways. 

 

The first miRNA that has been reported to play a role in antibacterial PAMP-triggered 

immunity (PTI) was miR393 (Navarro et al., 2006). MiR393 is induced upon flg22 perception 

and post-transcriptionally downregulates its target genes TRANSPORT INHIBITIOR 

RESPONSE 1 (TIR1), AUXIN SIGNALING F-BOX 2 (AFB2) and AFB3 encoding 

auxin-dependent F-box proteins (Gray et al., 1999; Dharmasiri et al., 2005; Kepinski and 

Leyser, 2005). The miRNA-mediated suppression of auxin signaling is implicated to promote 

resistance to the virulent bacteria Pseudomonas syringae pv. tomato DC3000 (Navarro et al., 

2006).  

Further connection between miRNAs and auxin signaling pathway has been established, 

as miR160 and miR167 were discovered to be induced upon flg22 and Pst (hrcC-, DC3000, 

avrRpt2) treatment (Fahlgren et al., 2007; Li et al., 2010; Zhang et al., 2011a). Both miRNAs 
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target transcription factors of the AUXIN RESPONSE FACTOR (ARF) family (Rhoades et al., 

2002; Mallory et al., 2005; Wu et al., 2006; Li et al., 2010).  

Two more miRNAs, miR159 and miR390, are downregulated 6 hours after inoculation 

with Pst DC3000 (Zhang et al., 2011a). miR159 targets MYB transcription factors, that are 

positive regulators of abscisic acid (ABA) signaling (Reyes and Chua, 2007). miR390 is 

required for the production of TAS3 tasiRNAs by cleavage of TAS3, which targets ARF2, ARF3 

and ARF4 (Fahlgren et al., 2006; Yoon et al., 2010). In addition, modulation of the JA 

biosynthesis is a target of the stress-induced miR319. Pst hrcC-, Pst avrRpt2 and flg22 

treatment induce expression of miR319 (Zhang et al., 2011a) that targets TEOSINTE 

BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (TCP) transcription factors 

(Schommer et al., 2008). One of them, TCP4 regulates expression of LIPOXYGENASE 2 

(LOX2), encoding the first enzyme of the jasmonic acid biosynthesis pathway (Schommer et 

al., 2008). 

However, not only bacteria-responsive microRNAs that modulate hormonal pathways 

were implicated to have a role in plant defense (Figure 2). For example, miR398 is 

downregulated upon flg22, nonpathogenic, virulent and avirulent Pst treatment (Jagadeeswaran 

et al., 2009; Li et al., 2010; Zhang et al., 2011a). miR398 targets COPPER/ZINC SUPEROXIDE 

DISMUTASE (CSD) genes that were suggested to detoxify reactive oxygen species (ROS) from 

the oxidative burst (Jagadeeswaran et al., 2009; Li et al., 2010; Baxter et al., 2014). 

More recently, microRNAs have been described that regulate NB-LRR genes via 

production of secondary siRNAs in Arabidopsis thaliana, Medicago truncatula and Solanaceae 

(Zhai et al., 2011; Li et al., 2012; Shivaprasad et al., 2012; Boccara et al., 2014). miR472 for 

instance was described as a negative regulator of PTI and ETI through the production of 

secondary RDR6-dependent siRNAs and targeting of NB-LRR resistance genes (Boccara et al., 

2014).  

The fact that the majority of all miRNAs are loaded into an AGO1-RISC (Mi et al., 

2008; Takeda et al., 2008; Zhang et al., 2014) and that several biotic stress responsive miRNAs 

have been transcribed (Fahlgren et al., 2007; Li et al., 2010; Zhang et al., 2011a; Sunkar et al., 

2012) supports the role of AGO1 in plant immunity.  
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1.4 ARGONAUTE proteins in plant defense response 

 

To accommodate the huge variety of small RNAs, the genome of Arabidopsis thaliana 

encodes for 10 ARGONAUTE (AGO) proteins (Mallory and Vaucheret, 2010). Both together, 

sRNA and AGO protein, form the functional RNA-induced silencing complex. Hence, it is not 

surprising that besides sRNAs also AGO proteins were shown to have crucial functions in plant 

defense.  

The action of the above described lsi-RNA-1 is dependent on AGO7 as well as defense 

against turnip crinkle virus is mediated by AGO7 (Katiyar-Agarwal et al., 2007; Qu et al., 

2008). AGO4 plays a role in plant defense against tobacco rattle virus (Ma et al., 2015) and Pst 

DC3000, Pst avrRpm1 and Pseudomonas syringae pv. tabaci (Agorio and Vera, 2007). 

A broader involvement has been shown for AGO2. As AGO2 is part of antiviral defense 

against cucumber mosaic virus, potato virus X, tobacco rattle virus, turnip crinkle virus, turnip 

mosaic virus and indicates that AGO2 has been specialized in antiviral defense throughout 

evolution (Qu et al., 2008; Harvey et al., 2011; Jaubert et al., 2011; Wang et al., 2011b; 

Carbonell et al., 2012; Zhang et al., 2012; Brosseau and Moffett, 2015; Ma et al., 2015). 

Additionally, the AGO2-targeting miR403 was repressed by Pst hrcC-, Pst DC3000 and Pst 

avrRpt2 infections as well as AGO2 provides resistance together with miR393* against 

Pseudomonas syringae suggests an important role of AGO2 in plant immunity (Allen et al., 

2005; Zhang et al., 2011a; Zhang et al., 2011b). 

Especially the findings of Weiberg et al. (2013) has to be pointed out as they proved the 

first gene silencing event between kingdoms that occurs naturally. In their studies with 

Arabidopsis thaliana and Solanum lycopersicum, they showed that Botrytis cinerea releases 

fungal sRNAs into the plant host cell acting as effector molecules (Weiberg et al., 2013). Those 

fungal sRNAs are loaded into the host AGO1 protein and subsequently suppress host immunity 

genes and weaken plant immunity (Weiberg et al., 2013). This indicates that the pathogenicity 

of B. cinerea depends on the host AGO1 function. 

As many different classes of endogenous and exogenous sRNA can be loaded into 

AGO1 and AGO1 is involved in defense against hemi-/biotrophic pathogens, necrotrophic 

pathogens and viruses, AGO1 is one of the central components of RNA-silencing-mediated 

host defense (Morel et al., 2002; Qu et al., 2008; Ellendorff et al., 2009; Azevedo et al., 2010; 

Weiberg et al., 2013). 

  



  INTRODUCTION 

13 

1.5 MiRNA163 – a non-conserved microRNA with potential function in plant 

immunity 

 

As a putative microRNA candidate that is involved in plant immunity network, 

miRNA163 was suggested in the literature due to its inducibility and target genes (Seo et al., 

2001; Chen et al., 2003; Ng et al., 2011; Bielewicz et al., 2013). Furthermore, also in my studies 

miRNA163 showed up to play a role in plant immunity. 

MIR163 is a non-conserved intron-containing miRNA that has recently evolved by 

inverted duplication of target gene sequences (Allen et al., 2004) and obtains several features 

that distinguishes MIR163 from canonical miRNAs: It is 24 nt long (Kurihara and Watanabe, 

2004) and is located in a co-evolved target gene cluster (Figure 3A; Allen et al. (2004)). Hence, 

it was assumed that MIR163 evolved together with the expansion of the target gene family and 

was later converted into a miRNA (Allen et al., 2004). In addition, bioinformatic analysis 

revealed that the 5’-upstream sequence of MIR163 resembles the promoter sequence of its 

targets genes (Wang et al., 2006) supporting the microRNA evolution model of Allen et al. 

(2004). 

The promoter of MIR163 possess a canonical TATA sequence and many predicted 

positive and negative regulating elements, inter alia elicitor responsive elements (Ng et al., 

2011) and was shown to be responsive to phosphate starvation (Lundmark et al., 2010). It has 

been experimentally proven that miR163 levels are increased upon treatment with the fungal 

elicitor alamethicin and Pst DC3000 (Figure 3B; Ng et al. (2011), Bielewicz et al. (2013)). 
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Figure 3: MIR163 as several uncommon features. A MIR163 (green) is located in a gene 
cluster together with putative target genes of the SABATH methyltransferase family (blue) on 
chromosome 1 (Allen et al., 2004). B Different external stimuli were shown to induce 
miRNA163.1 levels. C MIR163 has two different splicing isoforms (No template control (NTC), 
wild type (wt), mir163-2 (SALK_034556; in further experiments named mir163-1); from 
Bielewicz et al. (2013), Fig. 1). 

 

 

MiR163 (AT1G66725) was suggested to post-transcriptionally target AT1G66690, 

AT1G66700 (PXMT1), AT1G66720, AT3G44840, AT3G44860 (FAMT), AT3G44870, that 

are members of the SABATH methyltransferase family (Zhao et al., 2008; Ng et al., 2011; 

Bielewicz et al., 2013; Chung et al., 2016). SABATH methyltransferase genes encode proteins 

involved in the methylation of small molecules like phytohormones and signaling molecules 

(Zhao et al., 2008) and were shown to play a role in plant defense (Seo et al., 2001; Chen et al., 

2003).  5’-RACE revealed, that miR163 regulates its target genes FAMT, PXMT1 and 

AT1G66690 by mRNA cleavage (Ng et al., 2011; Bielewicz et al., 2013). Consistent with this 

observation, PXMT1 and FAMT are constitutively upregulated in mir163 mutants; MIR163 

overexpression lines showed downregulated FAMT and PXMT1 transcript levels (Ng et al., 

2011). 

Target gene FAMT encodes for a FARNESOIC ACID METHYLTRANSFERASE, 

which methylates farnesoic acid (FA) to methyl farnesoate (MeFA) (Yang et al., 2006a), an 

unepoxidized precursor of the insect juvenile hormone III that interferes with insect 

development (Toong et al., 1988). PXMT1 is a putative 1,7-paraxanthine methyltransferase and 

the product of its enzymatic activity is a compound structurally related to the alkaloid caffeine 
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(Zhao et al., 2008; Ng et al., 2011). Like miR163, expression of FAMT and PXMT1 are induced 

upon alamethicin treatment supporting their hypothetical role in plant defense (Ng et al., 2011). 

In accordance with canonical 21 nt miRNAs, the biogenesis of miR163 is dependent on 

CBP20, CBP80, DCL1, HEN1, HYL1 and SE (Allen et al., 2004; Szarzynska et al., 2009; 

Bielewicz et al., 2013). In addition to that, also serine/arginine-rich splicing factors contribute 

to the biogenesis of miR163 (Bielewicz et al., 2013). Pri-miR163 can be spliced into two 

different isoforms with alternative poly(A) sites (Figure 3C), while the intron-containing 

isoform has a positive effect on accumulation of mature miR163 (Bielewicz et al., 2013; 

Schwab et al., 2013). 

Additionally, two different miRNAs can be processed sequentially from the pri-miR163 

precursor (miR163.1; miR163.2) (Kurihara and Watanabe, 2004) and dependent on their 

5’-nucleotide they are loaded into different AGO proteins: MiR163.1 (5’-U) is loaded into 

AGO1, while miR163.2 (5’-A) is preferentially loaded into AGO2 (Mi et al., 2008; Takeda et 

al., 2008; Jeong et al., 2013).  
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1.6 MicroRNAs putatively connect phosphate availability to pathogen defense 

 

Lately, a connection between the plant nutrition with phosphorus and the defense 

hormone JA as shown and therefore phosphorus is suggested to influence plant defense (Khan 

et al., 2016). Additionally, two microRNAs (miR827 and miR399) were already coupled to the 

phosphate network and thereby can putatively connect pathogen defense with phosphate 

availability (Bari et al., 2006; Hsieh et al., 2009; Pant et al., 2009). 

Phosphorus is an essential macronutrient element and is absorbed as inorganic 

phosphate (Pi) from soil. Phosphorus is part of basic biological functions as structural element 

and regulatory component for enzymes and signal transduction cascades or in energy 

metabolism.  

Recent studies provide evidence that couple phosphate stress and pathogenic stress 

(Wang et al., 2011a; Lu et al., 2014). Plants, mutant in the PHOSPHATE TRANSPORTER 4.1 

(PHT4.1), showed increased susceptibility to virulent Pseudomonas syringae indicating that 

PHT4.1 plays a role in basal plant defense (Wang et al., 2011a). Additionally, a bacterial 

effector from Phytoplasma was connected to plant immunity and phosphate deficiency (Lu et 

al., 2014). Plants overexpressing the Phytoplasma effector inhibit plant defense response and 

triggers phosphate starvation response, including the upregulation of the phosphate-responsive 

miR399 (Lu et al., 2014).  

Upregulation of miR399 was shown in a second study that explores the infection of 

citrus plant with the bacterial pathogen Candidatus Liberibacter asiaticus (Zhao et al., 2013). 

The exogenous application of phosphate was able to lower the disease symptom caused by 

Candidatus Liberibacter asiaticus indicating that phosphate availability is a factor for the 

development of disease symptoms (Zhao et al., 2013). 

miR399 is a key regulator for phosphate homeostasis in plants, that is induced upon 

phosphate starvation and negatively regulates PHOSPHATE 2 (PHO2) encoding an 

E2 conjugase (Sunkar and Zhu, 2004; Allen et al., 2005; Fujii et al., 2005; Bari et al., 2006; 

Chiou et al., 2006; Lundmark et al., 2010). MiR399 was shown to be phloem-mobile and can 

travel from shoot to root and repress there PHO2 (Pant et al., 2008). The repression of the 

E2 conjugase PHO2 in roots results in an enhanced expression of phosphate uptake transporters 

(Bari et al., 2006). Hence, upon phosphate starvation, miR399 accumulates and increases Pi 

uptake. 
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Like miR399, miR827 is highly induced upon phosphate starvation in A. thaliana and 

Brassica napus and is highly abundant under phosphate limiting conditions in phloem sap of 

Brassica napus (Rajagopalan et al., 2006; Hsieh et al., 2009; Pant et al., 2009; Lundmark et al., 

2010). Upon phosphate deficiency, induction of miR827 regulates its target gene NITROGEN 

LIMITATION ADAPTATION (NLA) post-transcriptionally (Hsieh et al., 2009; Pant et al., 2009; 

Kant et al., 2011). NLA encodes an E3 ubiquitin ligase that regulates directly and/or indirectly 

PHOSPHATE TRANSPORTER 1.1 (PHT1.1), PHT1.4 and PHOSPHATE TRANSPORTER 

TRAFFIC FACILITATOR 1 (PHF1) (Kant et al., 2011; Lin et al., 2013; Park et al., 2014). As 

second miR827 target, the tonoplast-localized VACUOLAR PHOSPHATE TRANSPORTER 1 

(VPT1) was proposed, that transports Pi into the vacuole (Liu et al., 2015). Fitting to the concept, 

that phosphate and defense response are coupled, nla mutants display higher SA levels after 

infection with Pst DC3000 and bacterial growth of Pst DC3000 is restricted compared to 

wildtype (Figure 4A, B; Yaeno and Iba (2008)). Analogous to miR399, miR827 was suggested 

to be phloem-mobile and is highly enriched in Brassica napus phloem sap under phosphate 

deficient conditions (Pant et al., 2009). Furthermore, a direct connection has been proven 

between these two pathways. The E2 conjugase PHO2 acts together with the E3 ligase NLA in 

proteasomal degradation of PHT1.4 (Park et al., 2014). 

 

 

Figure 4: MiR827 putatively links phosphate deficiency with plant immunity. 
A Bah1-D/nla mutants are more resistant against Pst DC3000 (from Yaeno and Iba (2008), 
Fig. 2A). B Bah1-D/nla mutants accumulate more salicylic acid (SA) in mock- and 
Pst DC3000-treated leaves (from Yaeno and Iba (2008), Fig. 2B). C Plants grown under 
phosphate deficient conditions have a higher jasmonic acid (JA) level in leaves (from Khan et 
al. (2016), Fig. 2). D Model of phosphate-dependent miR827 activation and repression of its 
target genes. 
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Khan et al. (2016) lately showed a possible link that could explain the interconnection 

between phosphate deficiency and defense responses. Plants with a lack of phosphate displayed 

enhanced levels of the phytohormone JA and of JA signaling pathways (Figure 4C; Khan et al. 

(2016)) needed for defense against herbivorous insects and necrotrophic pathogens (reviewed 

in Pieterse et al. (2009; 2012)). Additionally, Hewezi et al. (2016) described the role of miR827 

and its target gene NLA in the defense response against nematodes. Infections with the cyst 

nematode Heterodera schachtii activate miR827 in the syncytial feeding cells. Thus, NLA, a 

positive regulator of plant immunity, is downregulated and allows the nematode to establish the 

infection (Hewezi et al., 2016). 

However, the mechanisms that connect Pi deficiency with JA response remains to be 

elucidated as the JA response is delayed but not completely abolished in phr1 mutants. The 

transcription factor PHOSPHATE STARVATION RESPONSE 1 (PHR1) regulates the 

majority of Pi-starvation induced genes (Bustos et al., 2010), including miR399 (Bari et al., 

2006). Interestingly, phosphate starvation does also shown a slight induction of miR163, that 

seems to be negatively controlled by PHR1 (Lundmark et al., 2010). 
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1.7 DNA methylation and its involvement of plant defense 

 

Besides the post-transcriptional regulation of gene expression through microRNAs, 

gene expression can be regulated transcriptionally through epigenetic mechanisms, like DNA 

methylation. As there are many hints that epigenetic mechanisms and especially DNA 

methylation, that is coupled to sRNAs via the RNA-directed DNA methylation (RdDM) 

pathway, actively contribute to plant immune response, we decided to have a closer look how 

DNA methylation influences plant defense. 

In general, epigenetics comprise all mechanisms that regulate gene expression without 

alterations in the DNA sequence. For example, the packaging state of DNA can epigenetically 

regulate gene expression. Further, chromatin remodeling factors can influence the packing state 

of DNA and move, remove, insert or modify nucleosomes (complex of DNA and histone 

octamers) and thereby influence access/affect for the transcription machinery. Histone 

modifying enzymes modify post-translationally the globular histone proteins at their N-terminal 

tail through methylation, acetylation, phosphorylation et cetera (Pfluger and Wagner, 2007). 

These modifications can tighten or loosen the interactions of DNA with histone proteins. 

Nucleosome density, histone modifications and DNA methylation pathways are interconnected, 

contribute together to the accessibility of the DNA sequence and therefore regulate gene 

expression at a transcriptional level. In general, loosely packed euchromatin is actively 

transcribed, while densely packed heterochromatic regions are transcriptionally inactive. 

Directly, the DNA can be modified through the methylation of the base cytosine through 

DNA methyltransferases. Cytosine methylation is an epigenetic mark that silences transposable 

elements and repeats but is also involved in genomic imprinting and can occur in gene bodies 

with a so far unknown function (Law and Jacobsen, 2010).  

In Arabidopsis thaliana, DNA methylation is catalyzed by the enzymes 

METHYLTRANSFERASE 1 (MET1), DOMAINS REARRANGED 

METHYLTRANSFERASE 1 (DRM1), DRM2 and CHROMOMETHYLASE 3 (CMT3) in all 

sequence contexts (reviewed in Law and Jacobsen (2010)). Cytosine methylation in the CG 

context is catalyzed and maintained by MET1 and around one third of all Arabidopsis genes 

have CG methylations in their coding region (Zhang et al., 2006). The plant-specific enzyme 

CMT3 is able to methylate DNA in CHG sequence context and is firmly integrated in a 

reinforcing loop with histone H3K9 methylation via histone methyltransferases. Especially, the 

asymmetric and de novo methylation in the CHH sequence context through DRM1 and DRM2 
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should be drawn attention to in respect to plant defense. This de novo methylation pathway in 

plants is mediated through a small RNA-directed DNA methylation (RdDM) pathway and is 

able to establish new DNA methylation marks and is therefore predestined to react dynamically 

to a pathogenic infection (Matzke and Mosher, 2014). 

Epigenetic mechanisms have been described to be essential for adaptations and response 

towards abiotic and biotic stress factors (Pavet et al., 2006; Qi et al., 2006; Agorio and Vera, 

2007; Lopez et al., 2011; Berr et al., 2012; Dowen et al., 2012; Kinoshita and Seki, 2014). 

Concerning biotic stress, Dowen et al. (2012) showed that the DNA methyltransferases of 

Arabidopsis thaliana MET1, DRM1, DRM2 and CMT3 directly contribute to bacterial 

resistance. Both met1 mutant and the triple mutant drm1drm2cmt3 (ddc) show decreased 

bacterial growth after infections in non-pathogenic, virulent or avirulent strain of Pst and 

showed a disease resistance phenotype compared to wild type (Figure 5A; Dowen et al. (2012)). 

After analysis of differentially methylated cytosine residues, the authors suggested that the 

Pst-mediated changes of DNA methylation control transcription (Dowen et al., 2012). 

 

 

Figure 5: DNA methylation and DNA demethylation mutants have an altered resistance 
against Pseudomonas syringae. (Dowen et al., 2012; Yu et al., 2013). A Mutants defective 
in CG (met1-3) and non-CG methylation (ddc) infected with Pst DC3000 (from Dowen et al. 
(2012), Fig. 1). B Different DNA methylation mutants (upper panel) and the DNA demethylation 
mutant ros1-4 (lower panel) infected with GFP-tagged Pst DC3000 (from Yu et al. (2013), 
Fig. 3). 
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Yu et al. (2013) infected leaves of the ddc triple mutants, double mutants met1,nrdp2 

(heterozygous for met1, homozygous for nrpd2) and ros1 mutants with GFP-tagged 

Pst DC3000. The mutants defective in DNA methylation displayed reduced spread of the 

GFP-tagged bacteria, demethylation defective ros1 mutant displayed increased bacterial 

spreading of GFP-tagged Pst and enlarged chlorotic and necrotic tissues surrounding the 

infection site compared to wild type (Figure 5B; Yu et al. (2013)), fitting to the study of Dowen 

et al. (2012).  

Not only in Arabidopsis thaliana, but also in Oryza sativa the DNA methylation status 

contributes to plant immunity. Chemically mediated global demethylation of rice genome 

resulted in increased expression of the resistance gene Xa21 and enhanced resistance against a 

pathogenic strain of Xanthomonas oryzae (Akimoto et al., 2007). Hypo- and hypermethylation 

was observed in all sequence contexts and indicates that cytosine can be actively and 

dynamically methylated and demethylated in response to pathogens (Dowen et al., 2012; Yu et 

al., 2013). 

Apart from DNA methylation, other epigenetic components are also involved in plant 

immunity. The SWI/SNF chromatin remodeling ATPase SPLAYED regulates the activation of 

JA- and ET-activated defense genes and contributes to defense against B. cinerea (Walley et 

al., 2008). Moreover, histone H2B ubiquitination, histone acetylation levels and histone 

methylation were connected to biotic stress defense. Mutants defective in HISTONE 

MONOUBIQUITINATION 1 (HUB1), encoding an E3 ligase that monoubiquitinates histone 

H2B, are extremely sensitive towards infections with A. brassicicola and B. cinerea (Dhawan 

et al., 2009). HISTONE DEACETYLASE 19 (HDA19) is induced upon wounding, JA, ET 

precursor and A. brassicicola treatment and overexpressing lines and RNAi lines are more 

resistant and sensitive, respectively (Zhou et al., 2005). The histone methyltransferase SET 

DOMAIN GROUP 8 (SDG8) is required for defense against pathogenic and nonpathogenic 

strains of Pseudomonas syringae and necrotrophic fungi by activating JA/ET-pathway genes 

(Berr et al., 2010; Palma et al., 2010; De-La-Peña et al., 2012). 

Taken together, different regulatory levels of epigenetic modifications were shown to 

be involved in plant immunity against biotrophic as well as necrotrophic pathogens. 

  



INTRODUCTION 

22 

1.8 Objectives on this work 

 

As indicated in many examples, the interaction between Pseudomonas syringae pv. 

tomato, as biotrophic pathogen, and Arabidopsis thaliana, as plant model, is well studied. Quite 

unexplored is the link between necrotrophic pathogens and plants in plant immunity. Therefore, 

we wondered, which plant molecular components are involved in the defense against 

necrotrophic pathogens. Small RNAs represented striking candidates as different defense 

mechanisms are described wherein small RNAs, and especially microRNAs play an important 

role.  

In order to investigate the role of small RNAs in plant defense against necrotrophic 

pathogens, Alternaria brassicicola was chosen as necrotrophic fungi. 

(I) To get a first hint if small RNAs are crucial components in plant defense against 

A. brassicicola, we analyzed the microRNA pathway mutant ago1. Phenotypic analysis of ago1 

mutants infected with A. brassicicola led to the conclusion that small RNAs, and particularly 

microRNAs are part of the defense mechanism. Small RNA sequencing revealed several 

microRNA candidates. 

(II) Putative miRNA candidates amongst others derived from small RNA sequencing 

were analyzed using phenotypic pathogen assays and molecular methods. 

(III) Besides miRNAs, several studies provided evidence, that dynamic epigenetic 

modifications especially DNA methylation may be strongly connected with and contribute to 

defense against necrotrophic pathogens. Hence, we developed a modular, inducible vector 

system that is based on the Golden Gate cloning technique. 
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2. Results 

 

2.1 AGO1 is a positive regulator of plant defense response against Alternaria 

brassicicola  

 

The response of plants during an infection with biotrophic pathogens and viruses has 

been studied quite in detail so far and showed that AGO1 is part of that defense mechanism. 

AGO1 has been described to be involved in defense against attacks of hemi-/biotrophic 

pathogens, necrotrophic pathogen as well as viruses (Morel et al., 2002; Qu et al., 2008; 

Ellendorff et al., 2009; Azevedo et al., 2010; Weiberg et al., 2013). AGO1 was shown to be a 

positive regulator of defense against Verticillium dahliae, a hemibiotrophic fungal pathogen 

(Ellendorff et al., 2009) and AGO1 itself and AGO1 loaded microRNAs are players in the 

defense against Pseudomonas syringae (Navarro et al., 2006; Li et al., 2010; Zhang et al., 

2011a). Controversial results were obtained concerning the involvement of AGO1 in antiviral 

defense. Morel et al. (2002) showed, that ago1 mutants are hypersusceptible to infection with 

the cucumber mosaic virus (CMV). Contrary to these findings, Baumberger and Baulcombe 

(2005) could not reproduce the formerly shown hypersusceptibility of ago1 as well as they 

could not detect any virus-specific siRNAs loaded in AGO1, which supports their observation 

of an unaltered disease phenotype of the ago1 mutant. However, little is known about the 

mechanism during an infection with a necrotrophic pathogen. A first study proved, that AGO1 

is involved in defense against necrotrophs as ago1 mutants have a reduced disease susceptibility 

towards Botrytis cinerea (Weiberg et al., 2013). Therefore, we wondered if and which role 

AGO1 plays in the resistance against the necrotrophic pathogen Alternaria brassicicola.  

Two characterized hypomorphic ago1 mutants were used to analyze the role of AGO1 

in defense against necrotrophs. Both ago1 mutants (ago1-26 and ago1-27) were obtained by 

ethyl methanesulfonate mutagenesis leading to amino acid exchanges at the C-terminus of the 

AGO1 protein and are deficient in post-transcriptional gene silencing (Morel et al., 2002). 

Leaves of wild type, ago1-26 and ago1-27 mutants were infected with A. brassicicola and the 

inoculated leaves were classified according to their symptom severity to characterize the 

progressive infection (Kemmerling et al., 2007).  
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Figure 6: Disease phenotype of ago1 mutants after Alternaria brassicicola inoculation.  
A Representative A. brassicicola infected leaves of wild type (WT), ago1-26 and ago1-27 are 
shown 10 days after inoculation. B Symptom score of A. brassicicola inoculated wild type (WT), 
ago1-26 and ago1-27 7 and 10 days after inoculation (n = 48). Mann-Whitney U test was 
performed to show significant differences compared to the wildtype (significance level is 
indicated with asterisks: * p-value ≤ 0.05; ** p-value ≤ 0.01; *** p-value ≤ 0.001). 
C Classification in percent of infected leaves of wild type (WT), and two ago1 mutants after 
7 and 10 days. D Trypan blue staining of infected WT and ago1-27 mutants 4 days after 
infection. 
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Leaves of both investigated ago1 mutants exhibited reduced susceptibility in response 

to A. brassicicola inoculations compared to the wild type. 10 days after inoculation, the ago1 

mutant leaves showed either clearly spreading necrosis or maceration, whereas the wild type 

displayed only locally infected tissues and beginning spreading events of necrosis (Figure 

6A, C). Leaves of ago1-26 and ago1-27 inoculated with Alternaria brassicicola spores showed 

a significantly enhanced symptom score compared to wild type at both investigated time points 

(Figure 6B) indicating an involvement of AGO1 in defense against A. brassicicola. 

As ago1-26 and ago1-27 mutants showed a very similar behavior in response to 

A. brassicicola, we decided to use the hypomorphic allele ago1-27 for further analysis, which 

is assumed to be completely deficient in post-transcriptional gene silencing (Morel et al., 2002). 

To get a clearer picture of the enhanced disease phenotype, leaves of infected plants were 

stained with trypan blue, a method to visualize lesions of plant tissue and fungal mycelia. 

Observation of the lesion and the mycelial growth provide hints of either a broken disease 

resistance or a misregulation of cell death is causal for the susceptibility of ago1-27 mutants. 

No difference could be determined in the mycelial growth between wild type and ago1-27 

(Figure 6D). Lesions of infected wild type leaves were restricted to the fungal infection site, 

whereas the ago1-27 mutant showed lesions that are spreading beyond the local infection site 

(Figure 6D) suggesting that ago1-27 has an altered cell death phenotype. Additionally, 

uninfected ago1 mutant leaves showed in general a darker staining than the uninfected wild 

type tissues in concert with recently published data (Mason et al., 2016). Taken together, ago1 

mutant are clearly more sensitive towards A. brassicicola indicating that AGO1 serves as a 

positive regulator of cell death response. 

As AGO1 is the major effector protein for microRNAs in plants (Baumberger and 

Baulcombe, 2005; Mi et al., 2008), we propose that specific microRNAs could be responsible 

for the more sensitive phenotype of the ago1 mutants compared to the wild type. It is known 

that AGO1 and other microRNA biogenesis factors regulate itself by a negative feedback loop 

through microRNAs (Rhoades et al., 2002; Xie et al., 2003; Vaucheret et al., 2004; Vaucheret 

et al., 2006; Meng et al., 2012). To exclude that changes in the abundance of microRNAs were 

regulated through modification of the microRNA biogenesis machinery, protein levels of 

several microRNA biogenesis factors and AGO1 were analyzed by immunoblotting (Figure 7). 

Additionally, AGO2 levels were determined after A. brassicicola inoculation (Figure 7B) 

because AGO2 showed connections to biotic stress defense. AGO2 is induced by viral 

infections, involved in antiviral defense (Harvey et al., 2011; Wang et al., 2011b; Brosseau and 

Moffett, 2015) and provides resistance against Pseudomonas syringae (Zhang et al., 2011b). 
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Figure 7: MiRNA biogenesis (A) and sRNA effector (B) factors are unchanged after 
Alternaria brassicicola treatment. Protein levels of various miRNA biogenesis and effector 
factors were detected by immunodetection of untreated, mock and Alternaria brassicicola 
infected plants after 3 days. One representative immunodetection out of three replicates is 
depicted. As loading control Ponceau S staining of Rubisco is shown. Asterisk depicts CBP20-
specific signal. 

 

None of the tested proteins showed altered protein levels comparing untreated, 

mock-treated and A. brassicicola-treated leaves (Figure 7). This indicated that microRNA 

biogenesis and effector proteins were unregulated during defense against A. brassicicola.  

Taken together, ago1 mutants exhibits a more sensitive phenotype and an altered cell 

death response towards A. brassicicola infection (Figure 6) indicating that AGO1 is a positive 

regulator of plant defense response and support the hypothesis that specific defense-associated 

microRNAs are crucial for the AGO1 defense phenotype. 
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2.2 Identification of A. brassicicola-induced microRNAs through RNA 

sequencing analysis 

 

We proposed that microRNAs are causal for the sensitive phenotype of ago1 mutants in 

response to A. brassicicola inoculations (Figure 6). For the identification of microRNAs 

involved in defense against A. brassicicola, a sRNA sequencing approach was chosen and two 

different kinds of sRNA libraries were created.  

First, I performed sRNA sequencing to detect changes in microRNA abundance 3 days 

after Alternaria brassicicola inoculation compared to uninfected plants. Second, I cloned and 

sequenced sRNAs associated with AGO1 3 days after mock and pathogen treatments. For this, 

AGO1 was co-immunoprecipitated together with its bound RNAs and a small 

AGO1-immunoprecipitated fraction was controlled with immunoblotting for successful 

enrichment of AGO1 (Figure 8A). From the residual AGO1-immunoprecipitated fraction, 

AGO1-bound RNAs were extracted and used as starting material for sRNA library preparation. 

Final products of both sRNA library were loaded on a sRNA gel and bands of the correct size 

were extracted (Figure 8B) and prepared for sequencing. 

 

 

Figure 8: Preparation of the sRNA library from AGO1-coimmunoprecitated small RNAs 
after A. brassicicola treatment. A Immunoblot analysis of AGO1 protein levels of input and 
AGO1-immunoprecipitated (IP) samples for sRNA library preparation. B After adapter ligations 
and amplification, the final sRNA library was loaded on a TBE gel and stained with SyBr Gold® 
nucleic acid gel stain. Here, three replicates of AGO1-immunoprecipitated sRNA library from 
A. brassicicola exposed samples are exemplarily shown. DNA fragments of the correct size 
(140 - 160 bp; green arrows) were used for sequencing, blue arrows depict adapter dimer 
by-products. 
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This approach identifies AGO1-loaded endogenous microRNAs that could be causal for 

the ago1 resistance phenotype. sRNA libraries were analyzed by Emese X. Szabó (Center for 

Plant Molecular Biology, University of Tübingen). The differentially expressed miRNAs of 

sRNA sequencing from total RNA or AGO1-immunoprecipiated RNAs are listed in Table 1 

and Table 2, respectively.  

 

Table 1: Differentially expressed microRNAs found in the sRNA library from total RNA 
(adjusted p-value < 0.1). Alternaria brassicicola treated samples were compared to untreated 
samples. 

miRNA log2 fold change adjusted p-value 

miR163 3.6 2.9E-03 

miR169 -2.7 2.3E-06 

miR172 1.0 6.9E-02 

miR399 1.3 6.9E-02 

miR827 2.5 4.1E-06 

miR840 2.1 6.8E-02 

miR846 2.2 6.8E-02 

miR866 3.9 7.3E-03 

miR6173 -2.8 2.2E-03 

miR8175 -3.8 5.7E-02 

 

 

Table 2: Differentially expressed microRNAs found in sRNA libraries from AGO1-loaded 
RNA (adjusted p-value < 0.1). Alternaria brassicicola treated samples were compared to 
untreated samples. 

miRNA log2 fold change adjusted p-value 

miR163 1.2 1.3E-03 

miR164 -1.3 6.9E-02 

miR399 1.3 1.0E-02 

miR827 1.1 1.9E-02 

miR846 1.0 3.2E-02 

miR5651 1.5 1.4E-03 

 

Analysis of both libraries showed several significant hits that were differentially 

regulated after A. brassicicola treatment (Table 1, Table 2). MiR163, miR399, miR827 and 

miR846 were significantly changed among the total as well as the AGO1 associated miRNAs. 

Three the differentially expressed miRNAs, miR163, miR399 and miR827, were upregulated 

3 days after exposure to A. brassicicola. MiR846 showed a divergent regulation of its 

expression indicating that miRNA846 is putatively not loaded in AGO1 and is not contributing 

to the ago1 mutant sensitivity phenotype. 
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To prove functional involvement of detected microRNAs, we analyzed in a 

transcriptome analysis approach, if targets of miR163, miR399 and miR827 were regulated in 

response to A. brassicicola inoculations.  

 

Table 3: Differentially expression analysis of the transcripts corresponding to the 
identified microRNA hits. (adjusted p-value > 0.1 are marked as not significant (n. s.); NA - 
no answer). 

AGI number  gene name targeted by log2 fold change adjusted p-value 

AT1G66690 - miR163 0.011 n. s. 
AT1G66700 PXMT1 miR163 5.614 9.9E-29 
AT1G66720 - miR163 -0.299 NA 
AT3G44840 - miR163 0.003 NA 
AT3G44860 FAMT miR163 3.131 3.9E-90 
AT3G44870 - miR163 -0.679 NA 
AT2G33770 PHO2 miR399 0.087 n. s. 
AT1G02860 NLA miR827 -0.319 n. s. 
AT1G63010 VPT1 miR827 0.599 1.9E-07 

 

 

Analysis of the target gene of the microRNA hits exhibit that indeed also their targets 

show a different expression after plants were exposed to A. brassicicola (Table 3). Two known 

miRNA163 targets, FAMT and PXMT1, are induced in the A. brassicicola treated samples 

compared to untreated samples (Ng et al., 2011; Bielewicz et al., 2013). Just as for miR163, 

also VPT1, target of miR827, exhibited increased expression levels while NLA did not show a 

significant altered expression (Hsieh et al., 2009; Pant et al., 2009; Kant et al., 2011; Liu et al., 

2015). PHO2, target of phosphate-starvation inducible miR399 did not exhibit a significant 

change in its expression (Sunkar and Zhu, 2004; Allen et al., 2005; Fujii et al., 2005; Bari et al., 

2006; Chiou et al., 2006; Lundmark et al., 2010). 

Based on the sRNA and mRNA library, two microRNAs (miR163, miR827) caught our 

interest as the microRNA itself and its targets display altered expression when plant are exposed 

to A. brassicicola and were chosen for subsequent analysis. 
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2.2.1 Alternaria brassicicola does not load sRNA in plant AGO1 

 

It has been shown for Botrytis cinerea that during infection the fungus releases fungal 

sRNAs into the plant host cell acting as effector molecules (Weiberg et al., 2013). Those fungal 

sRNAs were loaded into the host AGO1 protein and thereby suppress host immunity (Weiberg 

et al., 2013). 

 

 

Figure 9: Percentage of reads that do not map to Arabidopsis thaliana but could be 
mapped to the Alternaria brassicicola genome. Error bars indicate standard error of 
biological replicates (n = 3). Single dots depict values of individual replicates. 

 

Using comparative analysis of the two sRNA library, we analyzed if fungal sRNA could 

depict a commonly used mechanism or just an exception by necrotrophic fungi to overcome 

host resistance. Therefore, all sRNA reads that map to the Arabidopsis thaliana reference 

genome were excluded. On average, 99.1 % (values range from min. 97.9 - max. 99.6 %) of the 

sRNA read could be classified as A. thaliana derived (data not shown). The residual sRNA 

reads were then mapped to the Alternaria brassicicola genome. As shown in Figure 9, around 

2.5 % of the residual reads in the untreated and mock samples map to the A. brassicicola 

genome, but as plants were completely untreated with A. brassicicola and treated with 

mock-solution, respectively, we assume that this percentage displays background levels. Most 
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likely, the background level is attributed to the analysis process or is derived from soil bacteria 

and fungi that have at least partially genome sequences similar to A. brassicicola. 

For the A. brassicicola treated samples, a clear increase to ~ 12.5 % in the total sRNA 

libraries can be seen, what was expected as the harvested inoculated plant leaves were covered 

with A. brassicicola spores and mycelia. In the AGO1-immunoprecipitated 

A. brassicicola-treated libraries the percentage of A. brassicicola mapping reads drops to the 

background levels. This indicates that even if fungal sRNA could be putatively released into 

the plant host cell and interfere with plant defense, they are not loaded into AGO1 contrary to 

the situation after an infection with B. cinerea  (Weiberg et al., 2013). 
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2.3 MiR163 contributes to resistance against A. brassicicola 

 

Analysis of the sRNA sequencing data revealed miR163 to be upregulated after 

Alternaria brassicicola inoculations. MiR163 is a non-conserved microRNA that was 

suggested to regulate its co-evolved target genes of the SABATH family (Allen et al., 2004; 

Zhao et al., 2008). SABATH family enzymes were shown to play a role in plant defense (Seo 

et al., 2001; Chen et al., 2003). Therefore, miR163 is a promising candidate to be involved in 

plant defense response against A. brassicicola and we decided to investigate the function of 

miR163 in the Arabidopsis thaliana/A. brassicicola interaction in more detail. 

 

 

2.3.1 A. brassicicola inoculation strongly induces miR163 and influences its splicing 

pattern 

 

To verify the induction of miR163 shown in the sRNA library data, I analyzed miR163 

levels after A. brassicicola inoculation by qPCR and small RNA blot analysis, respectively 

(Figure 10). As expected, the mature miR163 also showed an increase in abundance 3 days after 

A. brassicicola inoculation (Figure 10B). I also investigated the expression pattern of 

pri-miRNA163. Already one day after infection, I observed a clear induction of pri-miRNA163 

expression after A. brassicicola treatment, which was further enhanced 3 days after infection 

(Figure 10A). This result suggests that miR163 could be involved in defense against 

A. brassicicola.  

MIR163 is an intron-containing MIRNA gene and the intron plays a crucial role in proper 

miRNA production (Bielewicz et al., 2013; Schwab et al., 2013). Therefore, we tested changes 

in splicing patterns of pri-miRNA163 by semi-quantitative PCR. RT-PCR using 

intron-spanning oligonucleotides confirmed the existence of two previously reported splicing 

forms of pri-miRNA163. A change in the ratio of the two PCR products is clearly visible after 

A. brassicicola treatment (Figure 10C). Quantification of the splicing products with capillary 

electrophoresis (Agilent 2100 Bioanalyzer) revealed an two-fold increase of the unspliced 

pri-miR163 isoform after Alternaria brassicicola treatment (Figure 10D). It has been proven, 

that the unspliced form is more efficiently processed into the mature miRNA (Bielewicz et al., 

2013; Schwab et al., 2013) and the change of the splicing ratio is thereby positively contributing 

to enhanced mature miR163 levels. Taken together, these results show that A. brassicicola 
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inoculation induces pri-miRNA163, changes the predominant splicing form and leads to 

increased levels of the mature miR163. 

 

 

Figure 10: Changes in MIR163 expression and splicing pattern after A. brassicicola 
inoculation.  A Relative expression of pri-miRNA163 in a time series (0, 0.5, 1 and 3 dai) of 
mock (grey) and A. brassicicola (green) treated wild type plants. Relative expression values 
were normalized to actin. Error bars indicate standard error of three biological replicates. 
Horizontal lines depict mean average; single dots depict values of individual replicates. 
B Detection of mature miR163 by Northern Blotting in wild type in mock and A. brassicicola 
treated plants (3 dai). As loading control ethidium bromide stained gel is shown. 
C Semi-quantitative polymerase chain reaction detecting different splicing forms of MIR163 
separated on an agarose gel are shown for four biological replicates 3 dai (upper panel). Lower 
panel shows detection of an intron-spanning tubulin amplicon. Genomic DNA (gDNA) and a 
no template reaction was included in the analysis and served as controls. D Quantification of 
the different splicing form shown in C by capillary electrophoresis. Error bars indicate the 
standard error of four biological replicates. Single dots depict values of individual replicates. 
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2.3.2 MiR163 buffers the excessive induction of FAMT and PXMT1 in response to 

A. brassicicola inoculation 

 

MiR163 putatively targets genes that encode members of the plant SABATH (salicylic 

acid/benzoic acid/theobromine) methyltransferase (Zhao et al., 2008). It has been 

experimentally proven that miR163 is able to negatively regulate FAMT and PXMT1 (Ng et al., 

2011; Chung et al., 2016). FAMT encodes a farnesoic acid carboxyl methyltransferase that 

catalyzes the reaction from farnesoic acid (FA) to methyl farnesoate (MeFA) (Yang et al., 

2006a). MeFA is hypothesized to function in plant defense against attacks from herbivorous 

insects (Yang et al., 2006a). Biotic stresses, like herbivory, wounding, and phytohormone 

treatments induce FAMT expression (Chen et al., 2003; Yang et al., 2006a). PXMT1 encodes 

for a putative paraxanthine methyltransferase that methylates paraxanthine and is inducible by 

herbivory (Chen et al., 2003).  

 

 

Figure 11: Relative expression level of miR163 targets FAMT and PXMT1 in Col-0 and 
ago1-27 mutant. Relative expression values were determined at the indicated time points after 
inoculation with A. brassicicola and were normalized to actin. Horizontal lines depict mean 
average; single dots depict values of individual replicates. Error bars indicate standard error of 
three biological replicates. 

 

 

We tested if the expression of the targets genes FAMT and PXMT1 were influenced by 

A. brassicicola inoculation. Mock treatment of wild type and ago1-27 showed no changes in 

expression (Figure 11). For wild type, an induction of FAMT is present already 1 day after 

infection and drops a little after 3 days (Figure 11). In ago1-27, FAMT showed an induction 

1 dai and stayed at the same level also 3 dai (Figure 11). The second tested target gene PXMT1 
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also responded to A. brassicicola treatment. PXMT1 mRNA levels increased 1 dai and showed 

a further increase at 3 dai in wild type (Figure 11). In ago1-27 a slight induction of PXMT1 can 

be seen already half a day after infection, after 1 and 3 days a strong increase can be seen in the 

relative expression level of PXMT1 (Figure 11). In general, ago1-27 mutants exhibit a higher 

(FAMT) or faster (PXMT1) increase of the miR163 target levels, suggesting that in wild type 

situation miR163 negatively regulates FAMT and PXMT1 in response to A. brassicicola 

infection. The results obtained in qPCR analysis coincide with analysis of the transcriptome 

analysis (Table 3), wherein FAMT and PXMT1 were induced upon stress treatment. 

As ago1 and mir163 mutants have clearly opposite phenotype concerning their disease 

resistance against A. brassicicola (Figure 6, Figure 13), we asked if the target genes of miR163 

FAMT and PXMT1 show different responses in the different mutants.  

 

 

Figure 12: Relative expression level of miR163 targets FAMT and PXMT1 in mir163 
mutants 3 days after inoculation with A. brassicicola. Relative expression values were 
normalized to actin. Error bars indicate standard error of three biological replicates. Single dots 
depict values of individual replicates. 
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In mir163 mutants, FAMT was not or only slightly induced under mock-treated 

conditions compared to wild type (Figure 12). A. brassicicola inoculations increased the FAMT 

levels in the wild type in the mir163 mutants to the same extend (Figure 12) but with a huge 

variability between the samples indicated by the error bars. PXMT1 behaves slightly differently 

than FAMT after A. brassicicola inoculation. Mock-treated mir163 mutants exhibits a 

derepression of PXMT1 (Figure 12). Both wild type and mir163 mutants showed an induction 

of PXMT1 mRNA levels in response to A. brassicicola inoculation. In mir163 mutants, relative 

PXMT1 expression reached higher levels than the wild type after fungal inoculation (Figure 

12). This result indicates that miR163 negatively regulates PXMT1 and buffers its excessive 

induction as seen in mir163. The discrepancy of the behavior in ago1 and mir163 mutants after 

A. brassicicola inoculation could be explained by different courses of infections due to 

biological variance.  

All in all miR163 cushions the excessive induction of FAMT and PXMT1 in response to 

A. brassicicola inoculation.  

 

2.3.3 MiR163 is a negative regulator of plant defense against Alternaria brassicicola 

 

In order to identify the direct effect of miR163 on defense response, we inoculated two 

allelic mir163 mutants with A. brassicicola spores under our standard growth conditions. Both 

mutants have no detectable mature miR163 (Ng et al., 2011; Bielewicz et al., 2013; Schwab et 

al., 2013) hence displaying null alleles.  

7 days after inoculation, most of the inoculated mir163 leaves had only local and weak 

infection symptoms compared to the wild type situation (Figure 13A). Comparison of the 

percentage of the individually scored leaves exhibits a lower score for the mir163 mutants 

compared to wild type and 35S:MIR163 plants (Figure 13C). A significant reduction of the 

symptom score is present in both mir163 alleles compared to the wild type and 35S:MIR163, 

showing that both mir163 mutants are more resistant against the necrotrophic fungus Alternaria 

brassicicola (Figure 13B). This suggests that miR163 is a negative regulator of plant defense 

response against the necrotrophic pathogen Alternaria brassicicola. As miR163 was shown to 

be light-responsive (Chung et al., 2016), plants were grown under changed light conditions. 

Under these conditions, a different response to A. brassicicola infections was observed 

(Supplementary Figure SI5). 
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Figure 13: Disease phenotype of mir163 mutants after Alternaria brassicicola 
inoculation. A Representative A. brassicicola infected leaves of wild type (WT), mir163-1 and 
mir163-2 and 35S:MIR163 are shown 10 days after inoculation. B Symptom score of 
A. brassicicola inoculated wild type (WT), mir163-1, mir163-2 and 35S:MIR163 7 and 10 days 
after inoculation (n ≥ 49). Mann-Whitney U test was performed to show significant differences 
compared to wild type (significance level is indicated with asterisks: * p-value ≤ 0.05; 
** p-value ≤ 0.01; *** p-value ≤ 0.001). C Classification in percent of A. brassicicola infected 
leaves of wild type (WT), mir163 mutants and 35S:MIR163 after 7 and 10 days (n ≥ 49). 
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2.3.4 MiR163 is not a general defense factor against necrotrophic pathogens 

 

It has been already shown, that miR163 is induced by treatment with alamethicin, a 

fungal elicitor (Ng et al., 2011), as well as with the hemibiotrophic bacterium Pseudomonas 

syringae DC3000 (Bielewicz et al., 2013). Additionally, pri-miR163 and miR163 was clearly 

upregulated 3 days after inoculation with Alternaria brassicicola (Table 1, Table 2, Figure 

10A, B) showing that various kind of biotic stresses induce MIR163. This is supported by 

MIR163 promoter analysis that revealed several stress responsive elements (Ng et al., 2011). 

To investigate if miR163 is specific for the defense against the necrotrophic fungi 

Alternaria brassicicola or is more broadly involved in defense against necrotrophs, B. cinerea 

infections of mir163 mutants were examined. By qPCR, the transcript levels of miR163, FAMT 

and PXTM1 were determined. All three depicted a clear induction 2 days after infection (Figure 

14C, D) showing that all are responsive to infection with B. cinerea.  

If fungal infections share a common set of plant defense genes and pathways that include 

miR163, we assumed that mir163 mutants are also more resistant against Botrytis cinerea. To 

test this hypothesis, we infected leaves of mir163 mutants with the necrotrophic fungus Botrytis 

cinerea and determined disease index on basis of the expanding lesion size. Surprisingly, 

inoculated leaves of wild type, mir163 mutants and 35S:MIR163 showed the same level of 

disease symptoms 2 days after inoculation (Figure 14A, B) demonstrating that miRNA163 does 

not display a factor involved in defense against B. cinerea.  

Despite the fact that miR163, PXMT1 and FAMT were induced upon B. cinerea 

inoculations; they do not contribute to plant defense against the second tested necrotrophic 

pathogen (Figure 14). This suggested that miR163 is involved in defense against A. brassicicola 

but not against Botrytis cinerea. 
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Figure 14: Function of miR163 in defense against Botrytis cinerea. A Representative 
Botrytis cinerea infected leaves of wild type (WT), mir163-1, mir163-2 and 35S:MIR163 are 
shown 2 days after inoculation. B Symptom score of Botrytis cinerea inoculated wild type (WT), 
mir163-1, mir163-2 and 35S:MIR163 2 days after inoculation. Mann-Whitney U test showed 
no significant difference between the different lines (n ≥ 100). C Relative expression level of 
pri-miRNA163, D FAMT and PXMT1 2 days after inoculation with B. cinerea are shown. 
Relative expression values were normalized to actin. Error bars indicate standard error of four 
biological replicates. Single dots depict values of individual replicates. 
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2.4 Role of the phosphate-starvation induced miR827 in plant defense 

  

Small RNA library analysis revealed that miR827 was upregulated after A. brassicicola 

inoculation. MiR827 is a microRNA discovered by a small RNA sequencing approach 

(Rajagopalan et al., 2006) and was described to be induced upon phosphate starvation and to 

negatively regulate its target gene NITROGEN LIMITATION ADAPTATION (NLA) (Hsieh et 

al., 2009; Pant et al., 2009; Lundmark et al., 2010; Kant et al., 2011). NLA encodes an 

E3 ubiquitin ligase that is involved in the regulation of phosphate transport through direct or 

indirect influence on PHT1.1, PHT1.4 and PHF1 (Kant et al., 2011; Lin et al., 2013; Park et 

al., 2014). As second target of miR827 VPT1 was proposed, which seems to be not responsive 

to phosphate deprivation (Hsieh et al., 2009) but induced upon phosphate excess (Liu et al., 

2015). 

To verify sRNA library data, pri-miRNA827 levels were determined via qPCR showing 

an enhanced pri-miRNA827 expression 3 days after inoculation with A. brassicicola (Figure 

15A). Under unstressed conditions, NLA and VPT1 displayed unaltered expression levels in 

ago1-27 mutants compared to wild type (Figure 15A). After A. brassicicola inoculation of wild 

type and ago1-27, NLA showed no induction, which suggests that NLA is not responsive to 

A. brassicicola. For VPT1, there was an increase of expression in wild type and an even higher 

increase of expression in the ago1-27 mutant, suggesting that miR827 targets VPT1 in wild type 

background after A. brassicicola inoculation and lowers its expression. Those findings of NLA 

and VPT1 regulation match the transcriptome data, showing no induction for NLA and a slight 

but significant induction for VPT1 (Table 3). 
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Figure 15: Involvement of miR872 in antifungal defense. A Relative expression level of 
pri-miRNA827 in wild type (WT) and the miRNA827 targets NLA and VPT1 in wild type (WT) 
and ago1-27 mutants 0, 0.5, 1 and 3 days after inoculation with A. brassicicola. Relative 
expression values were normalized to actin. Error bars indicate standard error of three 
biological replicates. For pri-miRNA827 horizontal lines depict mean average and single dots 
depict values of individual replicates. Individual replicates for NLA and VPT1 are not depicted 
for clarity but are annotated in Supplementary Table SI11 and Supplementary Table SI12, 
respectively. B Symptom score of A. brassicicola inoculated wild type (WT), mir827 mutant 
and overexpressing line 35S:MIR827 7 and 10 days after inoculation (n = 32). 
Mann-Whitney U test showed no significant difference between the different lines. C Relative 
expression level of pri-miRNA827 and VPT1 in wild type 2 days after inoculation with 
B. cinerea. Relative expression values were normalized to actin. Error bars indicate standard 
error of four biological replicates. Single dots depict values of individual replicates. 
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To address the question, if miR827 actively contributes to plant resistance, a mir827 

mutant as well as a MIR827-overexpressing line were inoculated with A. brassicicola and 

disease symptoms were scored. Both lines behaved exactly like wild type 7 and 10 days after 

inoculation (Figure 15B). This suggested that miR827 does not contribute to disease resistance 

against Alternaria brassicicola or that the disturbed levels of miR827, which is tightly linked 

to a complex phosphate response network, are not sufficient to modify disease resistance. 

As pri-miRNA827 and VPT1 showed increased mRNA levels with A. brassicicola, we 

tested if they are also inducible by B. cinerea. Interestingly, pri-miRNA827 levels showed no 

increased expression levels 2 days after inoculation with B. cinerea, but VPT1 was strongly 

induced (Figure 15C). This indicates that miR827 is specifically induced in antifungal defense 

against A. brassicicola but not B. cinerea whereas VPT1 is induced by both fungi and could 

potentially contribute to general antifungal defense mechanisms.  
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2.5 MiR398 does not contribute to A. brassicicola resistance of A. thaliana 

 

MiR398 was discovered in 2004 (Jones-Rhoades and Bartel, 2004; Sunkar and Zhu, 

2004) and is responsive to various kinds of abiotic and biotic stresses (Jagadeeswaran et al., 

2009). MiR398 is down-regulated upon elicitor treatments (flg22) as well as upon treatments 

with non-pathogenic, virulent and avirulent Pst (Jagadeeswaran et al., 2009; Li et al., 2010; 

Zhang et al., 2011a). Plants overexpressing miR398 have an enhanced susceptibility to both 

Pst DC3000 and the non-pathogenic strain hrcC- and show defects in callose deposition in 

response to flg22 and Pst hrcC- treatment (Li et al., 2010). Furthermore, it was shown, that 

downregulation of miR398 in response to biotic stress leads to an increase of target mRNA 

levels (Jagadeeswaran et al., 2009; Li et al., 2010). Targets of miR398 are the COPPER/ZINC 

DISMUTASE 1 (CSD1), CSD2, COPPER CHAPERONE OF SUPEROXIDE DISMUTASE 

(CCS) (Sunkar et al., 2006; Beauclair et al., 2010). CSD1, CSD2 and CCS are enzymes 

putatively involved in the detoxification in reactive oxygen species (ROS), whose production 

is one of the first defense mechanisms that are activated while pathogen infection that leads 

inter alia to activation of the hypersensitive response (HR) (Zurbriggen et al., 2010; Baxter et 

al., 2014). ROS production and HR have been shown to enhance susceptibility to necrotrophic 

pathogens (Govrin and Levine, 2000; Torres et al., 2006; Heller and Tudzynski, 2011). As the 

ago1-27 mutant inoculated with  A. brassicicola showed an enhanced cell death response 

(Figure 6D) and ago1-27 was described to develop lesions similar to HR-mediated cell death 

coupled with local ROS production (Mason et al., 2016), we wondered if miR398 as regulator 

of ROS detoxification plays a role on the defense regulation. Therefore, we tested miR398, 

CSD1, CSD2 and CCS levels in A. brassicicola infected WT and ago1-27 plants. 
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Figure 16: Relative expression levels of miR398 and its targets CSD1, CSD2 and CCS. 
Relative expression levels of A miR398 in wild type (WT) and B the miR398 targets CSD1, 
CSD2 and CCS in wild type (WT) and ago1-27 mutants 3 days after inoculation with 
A. brassicicola. Relative expression values were analyzed were normalized to actin. Error bars 
indicate standard error of four biological replicates. Single dots depict values of individual 
replicates. 

As shown in Figure 16A, miR398 levels were not changed in WT after A. brassicicola 

inoculation. The target mRNAs CSD2 and CCS are upregulated, while CSD1 mRNA is 

unchanged in the ago1-27 mutant under unstressed conditions compared to the wild type. 

A. brassicicola inoculation did not alter the relative expression level of CSD1, CSD2 and CCS 

in wild type (Figure 16B). Except for CSD1, no clear induction or repression of the miR398 

targets were exhibited by the A. brassicicola treatment in the ago1-27 mutants (Figure 16B). 

Taken together, A. brassicicola inoculation did not significantly alter neither miR398 

nor the targets CSD1, CSD2 and CCS. This result indicates that miR398 is not involved in 

defense against Alternaria brassicicola. 
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2.6 Screen for microRNAs that contribute to plant defense using a short 

tandem target mimicry approach 

 

To test our hypothesis that lack of microRNA action is crucial for the ago1 disease 

phenotype, we tested putative candidate microRNAs by a short tandem target mimicry (STTM) 

approach; some of them have been described previously to be responsive to biotic stress 

(Fahlgren et al., 2007; Li et al., 2010; Zhang et al., 2011a; Sunkar et al., 2012). STTMs are 

characterized by two microRNA binding sites that are linked by an AT-rich spacer (Yan et al., 

2012a). A trinucleotide bulge between the position 10 and 11 of the mature miRNA results in 

non-cleavable microRNA binding sites. A scheme of a STTM on the basis of miR393 is 

depicted in Figure 17.  

 

 

 

Figure 17: Scheme of STTM393 construct. The STTM393 contains two miRNA393 target 
sequences (green) that flank the 48 nucleotide spacer region (grey). The miRNA393 target 
sequences are complementary to miRNA393 sequence (blue) and are designed with a 3 nt 
bulge resulting in a non-cleavable microRNA binding site. Optionally, BsaI restriction sites 
(here compatible as module 6) can be added at the 5’- and 3’-end of the STTM construct.  
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Figure 18: Symptom score of the STTM lines. A. brassicicola inoculated plants harboring 
an empty vector controls (EV) or the indicated STTM construct were scored 7 and 10 dai 
(n = 8 for EV, n = 18 for STTM). Mann-Whitney U test was performed to show significant 
differences (significance level is indicated with asterisks: * p-value ≤ 0.05; ** p-value ≤ 0.01; 
*** p-value ≤ 0.001). 
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It is assumed, that STTMs leads mainly to degradation of the targeted miRNA through 

the exonucleases SMALL RNA DEGRADING NUCLEASE 1 (SDN1) and SDN2 (Yan et al., 

2012a) leading to derepression of the microRNA target genes. Created STTM lines were 

screened in T1 generation for their resistance against A. brassicicola. Unexpectedly, none of 

the tested STTM lines showed a significant change in resistance 7 as well as 10 dai (Figure 18). 

In addition, none of the STTM lines in T1 generation showed expected developmental defects 

(Yan et al., 2012a) and the STTM163 line exhibited no altered resistance in response to 

A. brassicicola. As the STTM163 line is supposed to mimic a miR163 knockdown, a similar 

response after A. brassicicola inoculation of the STTM163 was suspected as described in Figure 

13 for the mir163 mutants.  

Therefore, we tested if the STTM approach leads to a successful targeting of the 

corresponding microRNA what should lead to an upregulation of the microRNA target mRNA 

levels. By qPCR, the targeted mRNA levels were determined in pooled leaves of at least 

7 independent T1 lines (Figure 19). For STTM160, ARF16 relative expression level was 

unchanged while ARF17 was clearly upregulated in the STTM160 lines (Figure 19). The 

NAC mRNA levels in the STTM164 line showed no difference compared to the empty vector 

control (Figure 19). For STTM156/7 and the STTM163 line, a slight downregulation of the 

target mRNAs were observed (Figure 19). These results indicate that some of the generated 

STTMs are not functional. This could explain the different behavior of the STTM163 line 

compared to the mir163 mutants (Figure 13, Figure 19). In STTM167, STTM172 and 

STTM319, the target mRNA levels are upregulated suggesting that those STTMs are functional 

in planta (Figure 19). 

Taken together, using the STTM approach to mimic miRNA mutants, no further 

microRNA that are potentially involved in A. brassicicola defense could be identified. 
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Figure 19: Several STTMs lines were tested to prove successful targeting of the 
corresponding microRNA by derepression of miRNA target mRNA. For the qPCR 
analysis, at least seven leaves of individual STTM lines in T1 were pooled. 
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2.7 Construction of an inducible and easy to clone tool to study involvement 

of DNA methylation in plant pathogen defense 

 

Epigenetic mechanisms including DNA methylation has been suggested to play a role 

in plant defense response (Dowen et al., 2012; Yu et al., 2013; Ding and Wang, 2015). To study 

the role of DNA methylation in response to stress, an inducible vector system was developed 

to knock-down DNA methylation genes by amiRNAs.  

Therefore, we used the pOp6/LhGR system (Craft et al., 2005; Samalova et al., 2005) 

and combined it with Golden Gate assembly (Engler et al., 2008; Engler et al., 2009). The 

pOp6/LhGR system consists of two modules: First, a chimeric LhGR composed of the ligand 

binding domain of a glucocorticoid receptor (GR) that was fused N-terminal to the synthetic 

transcription factor LhG4 (Moore et al., 1998; Craft et al., 2005). Hence, the LhG4 is controlled 

by the steroid-inducible, ligand binding GR domain. Second, an orientation-independent 

promoter pOp6 composed of 6 lac operators spaced by direct repeats flanked by two divergent 

35S minimal promoters and translation enhancer sequence (Craft et al., 2005).  

The pOp6/LhGR system was shown to fulfill several desired criteria for an inducible 

system: (I) It has an undetectable basal activity. (II) It is highly sensitive to dexamethasone 

treatment and therefore treatment does not interfere with plant development or physiology. 

(III) It allows spatial and temporal control through the combination of tissue-specific promoters 

and the application of dexamethasone. (IV) It can be induced locally or systemically. (V) It is 

effective in different plant species (Craft et al., 2005; Samalova et al., 2005).  

The Golden Gate cloning system is based on type IIS restriction enzymes, that cleave 

DNA downstream of the recognition site and produce overhangs of 4 nucleotides (Engler et al., 

2008; Engler et al., 2009). For the modular cloning, we used BsaI, the most commonly used 

type IIS restriction endonuclease. BsaI cleaves downstream of its recognition site and allows to 

determine the sequence of the 4 nt overhang as sticky ends for following cloning procedures 

and correct assembly of many modules in one reaction. Single module representing building 

blocks for the assembly are listed in Table 4. 
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Table 4: Single modules available for the dexamethasone inducible system. 

Module Vector Insert 

1 pCR®8/GW/TOPO® 35S promoter 

2 pCR®8/GW/TOPO® LhGR + terminator 

3 pCR®8/GW/TOPO® nos terminator 

4 pCR®8/GW/TOPO® amiR-GFP1 

4 pCR®8/GW/TOPO® amiR-Luciferase1 

4 pCR®8/GW/TOPO® eYFP 

4 pCR®8/GW/TOPO® GUS 

4 pCR®8/GW/TOPO® LUC 

5 pUC57 pOp6 bidirectional promoter 

6 pCR®8/GW/TOPO® amiR-CMT3-1 

6 pCR®8/GW/TOPO® amiR-CMT3-2 

6 pCR®8/GW/TOPO® amiR-CMT3-endo 

6 pCR®8/GW/TOPO® amiR-DRM1-1 

6 pCR®8/GW/TOPO® amiR-DRM1-2 

6 pCR®8/GW/TOPO® amiR-DRM2-1 

6 pCR®8/GW/TOPO® amiR-DRM2-2 

6 pCR®8/GW/TOPO® amiR-ft-2 

6 pCR®8/GW/TOPO® amiR-GFP1 

6 pCR®8/GW/TOPO® amiR-lfy-1 

6 pCR®8/GW/TOPO® amiR-Luciferase1 

6 pCR®8/GW/TOPO® amiR-MET1-1  

6 pCR®8/GW/TOPO® amiR-MET1-2 

6 pCR®8/GW/TOPO® amiR-MET1-3 

6 pCR®8/GW/TOPO® amiR-trichome 

6 pCR®8/GW/TOPO® amiR-white-2 

6 pCR®8/GW/TOPO® eYFP 

6 pCR®8/GW/TOPO® GUS 

6 pCR®8/GW/TOPO® LUC 

7 pCR®8/GW/TOPO® ocs terminator 

8 pENTR™3C lacZ2 
1 cloned by Dr. C. Speth               2 cloned by M. Ohmer 

 

 

A model of the Golden Gate assembled vector expression cassette is shown in Figure 

20. The LhGR is constitutively expressed under the control of the 35S promoter. After 

dexamethasone treatment, LhGR is released from the complex with the HSP90 chaperone 

protein and is able to move from the cytosol into the nucleus. Nuclear LhGR binds to the pOp6 

promoter and acts as transcriptional activator of both pOp6 driven genes. 
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Figure 20: Schematic overview over Golden Gate assembly and modular structure of 
the dexamethasone-inducible system. A Assembled module of the designed system at its 
4 nt overhangs. Insertion into the lacZ gene disrupting its functionality and allows negative 
blue-white selection. B Restriction sequence of BsaI; N stands for any base. C For the Golden 
Gate assembly, the desired module vectors were mixed with pENTRTM3C-lacZ in a one-pot 
reaction with BsaI restriction enzyme and T4 DNA ligase resulting in pENTRTM3C with the 
assembled BsaI modules. D Using Gateway recombination, the assembled BsaI-modules 
were transferred into Gateway binary vector pGWB601 (Nakamura et al., 2010). Attachment 
sites for Gateway recombination are marked with yellow stars.  

 

We cloned constructs combining artificial miRNAs (amiRNAs) targeting DNA 

methyltransferase and controls genes (module 6) with eYFP and LUC reporter constructs 

(module 4), respectively (Table 5), and introduced them in Arabidopsis thaliana. Both reporters 

can be detected in vivo and analyzed non-invasively. Fluorescent proteins have the advantage 

that no substrate is necessary. Firefly luciferase enables a non-invasive analysis in real-time but 

the substrate needs to be supplied exogenously. It is highly sensitive and lacks post-translational 

modification. 

For each DNA methyltransferase (CMT3, DRM1, DRM2, MET1), three amiRNAs were 

created. They were designed by the amiRNA designer WMD3 (http://wmd3.weigelworld.org/) 

and all have separate target sites on the mRNA. The already published amiRNAs (amiR-ft-2, 

amiR-lfy-1, amiR-trichome, amiR-white-2) should serve as control for the effectiveness of the 

system (Schwab et al., 2006). As negative controls, amiRNAs against firefly luciferase and GFP 

were planned and constructed (Manavella et al., 2012; Grant-Downton et al., 2013). 
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Table 5: Cloned combinations of reporters and artificial microRNA. 

Module 4 Module 6 

eYFP amiR-CMT3-1 

eYFP amiR-CMT3-2 

eYFP amiR-CMT3-endo 

eYFP amiR-DRM1-1 

eYFP amiR-DRM1-2 

eYFP amiR-DRM2-1 

eYFP amiR-DRM2-2 

eYFP amiR-MET1-1  

eYFP amiR-MET1-2 

eYFP amiR-MET1-3 

eYFP amiR-ft-2 

eYFP amiR-lfy-1 

eYFP amiR-trichome 

eYFP amiR-white-2 

LUC amiR-CMT3-1 

LUC amiR-CMT3-2 

LUC amiR-CMT3-endo 

LUC amiR-DRM1-1 

LUC amiR-DRM1-2 

LUC amiR-DRM2-1 

LUC amiR-DRM2-2 

LUC amiR-MET1-1  

LUC amiR-MET1-2 

LUC amiR-MET1-3 

LUC amiR-ft-2 

LUC amiR-lfy-1 

LUC amiR-trichome 

LUC amiR-white-2 

 

 

For successful activation of luciferase reporter gene activity two constructs were 

exemplarily tested (Figure 21). Luciferase activity could be detected in transiently transformed 

Nicotiana benthamiana leaves as well as stable transformed Arabidopsis thaliana in T1 

generation after dexamethasone treatment. 
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Figure 21: Pseudo-colored image of firefly luciferase reporter activity of two exemplarily 
shown dexamethasone-inducible constructs. (module 4: LUC, module 6: amiRNA) 
A Luciferase activity in transiently transformed Nicotiana benthamiana leaves (Upper panel: 
Co-infiltrated with dexamethasone; lower panel: One day after infiltration leaves were 
dexamethasone treated). B Stable transformed Arabidopsis thaliana with the indicated 
constructs (Upper panel: Image of plants before luciferase detection; lower panel: 
Pseudo-colored image of luminescence signal). Grayscale intensity values of the 
pseudo-colored images were mapped to the indicated color intensity. 

 

 

A closing analysis of the cloned constructs including necessary controls in the stable 

transformed A. thaliana lines concerning properties like efficiency of amiRNAs and putative 

silencing effects in these lines, was not yet done because lines were not yet finally selected for 

homozygous, single insertion lines.  

The here described tool is designed to investigate dynamic changes in the DNA 

methylation pattern that contribute to the plant immunity pathway.  
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3. Discussion 

 

3.1 Role of AGO1 and identification of microRNAs involved in plant defense 

 

In this study, the role of microRNAs in defense against necrotrophic pathogens was 

examined. As a first step, the microRNA effector mutants ago1-26 and ago1-27 were 

investigated after exposure to A. brassicicola. Infections of ago1 mutants revealed that AGO1 

is a crucial factor in plant immunity response against necrotrophs. The hypomorphic ago1 

alleles were significantly reduced in their defense performance against A. brassicicola (Figure 

6A - C). Furthermore, ago1-27 mutants showed a disturbed cell death phenotype (Figure 6D; 

Mason et al. (2016)).  

In several reports, either a direct or an indirect way was suggested or shown how AGO1 

is part of pathogenic defense. AGO1 is actively involved in antiviral defense (Morel et al., 2002; 

Qu et al., 2008; Azevedo et al., 2010) and in defense against bacteria and fungi (Ellendorff et 

al., 2009; Li et al., 2010; Zhang et al., 2011a; Sunkar et al., 2012; Weiberg et al., 2013). In 

addition, studies showed that miR168, the microRNA that targets AGO1, is responsive to 

pathogen treatment and is actively targeting AGO1 thereafter (Várallyay et al., 2010; Baldrich 

et al., 2014).  Based on our findings and the previously reported involvement of AGO1 and 

AGO1-loaded sRNAs in virus resistance and defense against biotrophs and necrotrophs, we 

conclude that AGO1 is an important intersection in pathways defeating pathogens. 

The main class of endogenous sRNAs, which is loaded in AGO1, is depicted by 

microRNAs (Mi et al., 2008; Takeda et al., 2008; Zhang et al., 2014) and like other sRNAs, the 

expression of many microRNAs and their targets in plants can be induced upon external stimuli 

(Lewis et al., 2009; Zhang et al., 2011a; Sunkar et al., 2012). For instance, miR393 is responsive 

to bacterial attacks (Navarro et al., 2006), miR399 is induced upon phosphate starvation (Bari 

et al., 2006) and miR398 is coupled to oxidative stress (Sunkar et al., 2006). AGO1, which was 

described herein as positive regulator of necrotrophic defense, supports the potential of 

microRNAs in necrotrophic defense. Therefore, microRNAs are promising candidates to confer 

resistance. Hence, the focus of this study was the identification of crucial microRNAs in defense 

against necrotrophic pathogens.  

A first candidate was depicted by miR398. This microRNA was previously described 

as responsive to flg22 and Pst (Jagadeeswaran et al., 2009; Li et al., 2010; Zhang et al., 2011a). 

The targets of miR398 are involved in detoxification of ROS. The production of ROS is one of 
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the first defense reaction activated after pathogen infections leading to HR (Zurbriggen et al., 

2010; Baxter et al., 2014). Both ROS and HR promote susceptibility towards necrotrophic fungi 

(Govrin and Levine, 2000; Torres et al., 2006; Heller and Tudzynski, 2011). As an enhanced 

cell death response was observed in ago1-27 (Figure 6D; Mason et al. (2016)), we the 

expression of miR398 and its target genes. Putative downregulation of miR398 and 

derepression of the ROS-detoxifying targets could increase resistance of Arabidopsis thaliana 

towards A. brassicicola. Quantitative PCR results of the A. brassicicola-infected plants, reveals 

unaltered miR398 levels and antagonistically regulated or unregulated targets. This result 

indicated that miR398 is not involved in plant immunity against A. brassicicola. Quantitative 

results only reveal pathogen responsiveness of microRNAs but this does not necessarily 

implicate a role in defense against A. brassicicola. Hence, two other different approaches were 

used to unmask pivotal microRNAs in antifungal defense against A. brassicicola.  

First, several STTM constructs were cloned and introduced into plants. Therefore, many 

STTMs that targets putatively involved pathogen-responsive microRNAs (Fahlgren et al., 

2007; Li et al., 2010; Zhang et al., 2011a; Sunkar et al., 2012) were constructed and introduced 

into Arabidopsis thaliana. Screening the T1 generation of the STTM lines did not exhibit 

crucial microRNAs, as none of the lines showed a constantly altered disease development 7 and 

10 days after exposure to A. brassicicola (Figure 18). Putative silencing events in the STTM 

lines and partial ineffectiveness of the STTMs (Figure 19), respectively, hindered the successful 

identification of crucial microRNAs. More effort would have been necessary to improve STTM 

effectiveness and plant selection from transformation to stable lines with a single insertion is a 

time-consuming process. Additionally, this approach fails to include not yet described 

microRNAs putatively involved in biotic stress defense.  

Second, a sequencing approach was chosen that overcomes above stated problems of 

the STTM approach. Therefore, sRNA libraries from total RNA and AGO1-immunoprecipiated 

RNA (no treatment, mock treatment, A. brassicicola treatment; 3 biological replicates) were 

sequenced and analyzed. They revealed several identical significant hits in both library settings. 

Two of them (miR163 and miR827) were examined in more detail as comparison of the 

microRNAs with target mRNAs from transcriptome sequencing data showed that the 

expression level of the microRNA targets were also altered in samples exposed to 

A. brassicicola.   
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3.2 MiR163 serves as negative regulator of plant defense 

 

MiR163 was already suggested due to its alamethicin and Pst DC3000-mediated 

inducibility (Ng et al., 2011; Bielewicz et al., 2013) and its targets of the SABATH family (Seo 

et al., 2001; Chen et al., 2003) to be part of the plant immunity network. Fitting to previously 

published data, the results of this study revealed, that infections with A. brassicicola as well as 

B. cinerea increase pri-miRNA163, FAMT and PXMT1 transcript levels (Table 1, Table 3, 

Figure 10 - Figure 14). Additionally, a change in the splicing ratio of miR163 was observed in 

the conducted experiments (Figure 10), indicating that the transcript processing machinery 

could be part of necrotrophic defense.  

 

 

Figure 22: Model of miRNA163 in defense against Alternaria brassicicola. 

 

Taken all results together, we propose a model for the miR163 regulation after 

A. brassicicola inoculations, which is depicted in Figure 22. The hypothesis is that 

A. brassicicola infections accumulate mature miR163.1 while both enhanced expression of 

MIR163 and changes in the splicing ratio contribute to this. In parallel, SABATH 

methyltransferases, the targets of miR163, were induced as the promoter sequences of MIR163 

and its target clusters are evolutionary young and similar (Allen et al., 2004; Wang et al., 2006). 

Hence, the suggestion is that miR163.1 buffers the excessive induction of FAMT and PXMT1 
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after A. brassicicola infections. A direct prove that miR163 targets FAMT and PXMT1 could 

be analyzed with microRNA-resistant forms of the target genes.  

The two tested mir163 mutants both displayed an enhanced basal expression level of 

PXMT1 while FAMT levels were not clearly upregulated (Figure 12). This could explained by 

the general higher expression of FAMT in plants while PXMT1 is nearly undetectable (qPCR 

experiments and Ng et al. (2011)). The increased constitutive and induced expression of PXMT1 

in mir163 mutants (Figure 12) could be the reason for the enhanced resistance and indicates 

that PXMT1 activity is an important factor in plant immunity against A. brassicicola. This could 

be a hint that PXMT1 is a specialized protein in defense in addition to its recently discovered 

miR163-dependent function in early plant development (Chung et al., 2016). Chung et al. 

(2016) reported that miR163 represses PXMT1 in a light-dependent manner and thereby 

promotes seed germination and seedling de-etiolation.  

 

The most striking evidence, that miR163 is part of the defense mechanism in 

Arabidopsis thaliana, is the more resistant phenotype of mir163 mutants compared to WT that 

could be complemented by introducing a 35S-driven MIR163 construct (Figure 13). 

Unexpectedly, plants grown under different light conditions and humidity lose their resistant 

phenotype towards A. brassicicola (Supplementary Figure SI5).  MiR163 and its target PXMT1 

was shown to contain several light-responsive promoter elements (Ng et al., 2011) and as the 

first microRNA, miR163 was shown to function in light-dependent processes (Chung et al., 

2016). MiR163 levels increase during seed germination and seedling de-etiolation upon light 

perception; the highest induction of pri-miR163 is under white and blue light conditions in 

seedlings (Chung et al., 2016). Negatively correlated with the miR163 expression profile in 

light-perceiving seedlings is the abundance of the PXMT1 transcript that is targeted by miR163. 

Pri-miR163 is also induced in 3-week old mature plants by light, but maturation of 

pri-miRNA163 to miR163 is unaffected. Therefore, miR163 levels are stable in mature plants, 

while PXMT1 mRNA levels are low. However, it is not known, if different light qualities affect 

the miR163 levels in mature plants, but it could display an explanation for the altered defense 

phenotype of miR163 under different light conditions.  

 

Commonly and herein used small RNA sequencing analysis using the 

miRBase-annotated microRNAs as reference precludes all herein unannotated microRNAs in 

the first place. For miR163 (miR163.1), a second microRNA isoform miR163.2 is present but 

not annotated in miRBase (Kurihara and Watanabe, 2004; Jeong et al., 2013). MiR163.2 
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contains 21 nt and is located immediately downstream of miR163.1 (Kurihara and Watanabe, 

2004; Jeong et al., 2013). Parallel analysis of RNA ends (PARE) revealed that although 

miR163.2 is base-pairing with PXMT1 mRNA, it is not cleaving its target mRNA like miR163.1 

(Jeong et al., 2013). The same analysis proved that miR163.2 but not miR163.1 targets 

AT4G11680 encoding for a RING-domain containing protein with in vitro ubiquitin ligase 

activity (Stone et al., 2005; Jeong et al., 2013). PARE analysis only reveals post-translational 

regulation through cleavage of the target mRNAs. Therefore, it should be kept in mind that 

miR163 can target more genes of the SABATH family apart from PXMT1 and that target 

mRNAs could be translationally inhibited instead of cleaved. 

The two miR163 isoforms are loaded in different ARGONAUTE proteins according to 

their 5’-terminal nucleotide: miR163.1 (5’-U) into AGO1, miR163.2 (5’-A) preferentially into 

AGO2 (Mi et al., 2008; Takeda et al., 2008; Jeong et al., 2013). Surprisingly, miR163.2 levels 

loaded in AGO2 increased upon infection with Pst avrRpt2 (Jeong et al., 2013) as well as AGO2 

protein levels were induced upon Pst treatment (Zhang et al., 2011b). Together with miR393*, 

AGO2 contributes to defense against an avirulent Pst strain (Zhang et al., 2011b). These 

findings support the possibility that miR163.2 together with AGO2 is involved in defense 

against A. brassicicola due to the antagonistic signaling pathways of biotrophic and 

necrotrophic pathogens (Pieterse et al., 2009; Pieterse et al., 2012). In contrast to Pst infections, 

AGO2 levels were not increased after exposure to A. brassicicola (Figure 7) and so far levels 

of miR163.2 were not determined. Putatively, the splicing events in the precursor of miR163 

also influences the accumulation of the miR163.2 isoform. If and to what extent miR163.2 

affects pathogen defense needs further investigation and could provide an additional layer of 

control through the regulation of its unique target gene AT4G11680. 

 

For the intron-containing miR163, we showed that the miR163.1 is differentially spliced 

after infection with A. brassicicola (Figure 10). Three proteins, CBP20, CBP80 and  SE, were 

reported to function in both, microRNA processing and the splicing process (Laubinger et al., 

2008). These are also essential for proper accumulation of mature miR163 (Bielewicz et al., 

2013) and were furthermore proposed to display a starting point to recruit different factors, 

which can function in the pathways of microRNA biogenesis and splicing (Laubinger et al., 

2008). 

Beside the previously mentioned cap-binding complex and SE, other microRNA and 

splicing factors are involved in the biogenesis of the intron-containing MIR163 (Allen et al., 

2004; Szarzynska et al., 2009; Bielewicz et al., 2013). Mutants of microRNA biogenesis and 
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splicing factors showed an altered splicing ratio resulting in a disturbed accumulation of mature 

miR163 (Bielewicz et al., 2013) because the unspliced version of miR163 is favored over the 

spliced version to be diced into the mature miR163 (Bielewicz et al., 2013; Schwab et al., 2013). 

In case of miR163, it was shown that the 5’-splice site is essential for miRNA biogenesis and 

it was proposed that U1 small nuclear ribonucleoproteins (snRNPs) are involved in crosstalk 

between splicing and microRNA processing of MIR163 (Bielewicz et al., 2013). In general for 

all microRNAs, it was postulated that U1 components interact with intron-containing 

pri-miRNAs and thereby lead to an increased efficiency of miRNA biogenesis (Szweykowska-

Kulinska et al., 2013) as the 5’-splice site is bound by the U1 complex. Szweykowska-Kulinska 

et al. (2013) underpin their postulation by their unpublished observation that SE is able to 

interact with U1 snRNPs. 

Also in mammals, a connection between U1 and the microRNAs biogenesis was shown 

for microRNAs, which reside in intronic sequences of protein-coding or non-coding genes. For 

two microRNA in mammals, it was shown that binding of U1 to the 5’-splice site precedes 

binding of further components of the microRNA biogenesis and the subsequent splicing of the 

intron (Janas et al., 2011).  

Not only for miR163 differentially spliced isoforms are known (Kurihara and Watanabe, 

2004; Bielewicz et al., 2013; Schwab et al., 2013) but also other microRNAs were shown to 

have differently spliced isoforms (Aukerman and Sakai, 2003; Hirsch et al., 2006). So for 

example, also the pri-miR399a transcript is alternatively spliced. For this microRNA, the 

3’-splice site is selected differently in the two isoforms resulting in different sequences in the 

3’-exon as well as different polyadenylation sites (Sobkowiak et al., 2012). The role and 

biological function of the two splicing isoform are still undiscovered. Further, the cistronic 

microRNA pair, MIR846 and MIR842, are produced from the same transcript but from 

ABA-regulated alternatively spliced isoforms  (Jia and Rock, 2013). In 2012, it was firstly 

proven, that accumulation of a certain microRNA is regulated through alternative splicing 

induced by environmental stress (Yan et al., 2012b). For miR163, Bielewicz et al. (2013) 

showed that the intron and its functional splice sites regulate miR163 biogenesis during 

bacterial infection. In addition, a changed splicing ratio of pri-miRNA163 can be seen after 

infection with A. brassicicola (Figure 10). In general, there is a big potential for alternative 

splicing to regulate microRNA biogenesis, as around 50 % of all microRNAs in Arabidopsis 

contain introns (Szweykowska-Kulinska et al., 2013). Hence, it could be a possible explanation, 

that alternative splicing events integrate biotic stress stimuli into the splicing process of miR163 

and thereby regulate its accumulation post-transcriptionally. 



DISCUSSION 

60 

MIR163 is a recently evolved gene in the plant lineage (Allen et al., 2004) and is highly 

expressed in all plant organs of Arabidopsis thaliana (Guo et al., 2005; Ng et al., 2011). In 

contrast to Arabidopsis thaliana, in Arabidopsis arenosa, which is closely related to 

Arabidopsis thaliana diverging about 5 million years ago (Koch et al., 2000), miR163 is nearly 

undetectable (Ng et al., 2011). Ng et al. (2011) showed that, MIR163 of Arabidopsis arenosa 

has a higher similarity with its target At1G66700 than in Arabidopsis thaliana. This suggests 

that MIR163 has undergone more mutation events in Arabidopsis thaliana. In general, the 

regulation of MIR163 and its targets are still quite similar in response to external stimuli (Figure 

10A, B, Figure 12, Ng et al. (2011)). A reason for this could be displayed by the recent evolution 

of gene bodies and their promoter sequences (Allen et al., 2004; Wang et al., 2006). 

 Taken together, it is not yet clarified if miR163 and its targets or only its targets are 

contributing to defense in Arabidopsis thaliana. Overall, the regulation of MIR163 and its 

targets seems to be not yet perfected and is still an evolutionary playground. 
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3.3 MIR827 couples phosphate stress and plant defense 

 

Apart from miR163, I investigated miR827 concerning its role in plant immunity against 

necrotrophs. Sequencing data and qPCR analysis, respectively, revealed that mature miR827 

and pri-miRNA827 is strongly induced after plant leaves were exposed to A. brassicicola 

(Table 1, Table 2, Figure 15A). Likewise, the miR827 target VPT1, a tonoplast-localized 

phosphate transporter ((Liu et al., 2015), is induced and down-regulated in an AGO1-dependent 

manner after infections with A. brassicicola (Figure 15A). The second described target NLA is 

neither directly nor indirectly responsive to A. brassicicola in leaves (Figure 15A).  

MiR827 and its targets NLA and VPT1 were described to be involved in the regulation 

of phosphate homeostasis (Kant et al., 2011; Liu et al., 2015). We therefore wondered why the 

expression of phosphate responsive genes was altered after inoculations with A. brassicicola. 

Recently, phosphate deficiency and the defense of herbivorous insects were linked together as 

both pathogens were shown to activate JA biosynthesis and signaling components (Khan et al., 

2016). Beside the role of JA in defense against herbivory, JA is also necessary for the activation 

of defense responses against necrotrophic pathogens. We therefore propose that the JA pathway 

could be responsible for the activation of miR827 as it was found to be induced under phosphate 

limiting conditions (Hsieh et al., 2009; Pant et al., 2009; Lundmark et al., 2010) as well as 

A. brassicicola infection (Table 1, Table 2).  

A putative regulatory pathway of miR827 after infection with A. brassicicola is depicted 

in Figure 23. MiR827 targets VPT1 in leaves and therefore prevents storage of Pi in the vacuole 

and makes more Pi availably in the cells. Additionally, we propose that miR827 is loaded into 

the phloem and transported into roots based on the phloem mobility of miR827 in Brassica 

napus (Pant et al., 2009). Subsequently in roots, miR827 can degrade VPT1 and NLA mRNA. 

Targeting of NLA ends in a derepression of phosphate transporters and enhanced phosphate 

uptake.  

For VPT1, different scenarios or a combination of both are possible. Repression of VPT1 

in both roots and leaves could lead to reduced storage of cytosolic Pi into the vacuole and more 

available Pi in the cell. All effects together increase the phosphate levels in the plant and 

putatively contribute positively to defense against A. brassicicola. A second scenario for VPT1 

could be imagined as VPT1 exhibited an unchanged expression level under phosphate 

deprivation (Hsieh et al., 2009) but increased upon phosphate excess and has a role in 

sequestration and detoxification of surplus Pi in the vacuole (Liu et al., 2015). Due to the 
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enhanced Pi uptake (degradation of NLA and derepression of phosphate transporters) and 

increasing Pi concentrations in the plant cells, VPT1 is induced to sequester excessive Pi in the 

vacuole. 

 

Figure 23: Model of miRNA827 action after Alternaria brassicicola infection. 

 

The induction of phloem-mobile miR399 but unaltered target PHO2 expression in 

leaves as indicated by sequencing data (Table 1 - Table 3) would fit into the phloem-mobile 

model having no effect of miR399 in the leaves. After transport to the roots, miR399 could 

target PHO2. The two targets of miR827 and miR399, NLA and PHO2, were shown to act 

together in degradation of a phosphate transporter (Park et al., 2014). The downregulation of 

NLA and PHO2 results subsequently in derepression of phosphate transporters and hence 

augmented phosphate uptake. The fact that NLA is not downregulated in leaves could be 

explained by a tissue-specific non-overlapping expression pattern of miR827 and NLA. 
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In the A. brassicicola infection assay, miR827 and pri-miRNA827 were induced (Table 

1, Table 2, Figure 15A). Surprisingly, infections with the necrotrophic pathogen B. cinerea did 

not influence pri-miRNA827 expression (Figure 15C).  

In tomato, a special strategy from B. cinerea was described that could explain this 

different behavior. To overcome the host defense system in tomato, Botrytis cinerea produces 

an elicitor that activates the SA pathway and thereby antagonizing the essential JA signaling 

pathway for defense against B. cinerea  (El Oirdi et al., 2011). As functional protein that 

mediates this phytohormonal crosstalk between SA and JA, NONEXPRESSOR OF 

PATHOGENESIS-RELATED GENES 1 (NPR1) was suggested in tomato and proven in 

Arabidopsis thaliana, respectively (Spoel et al., 2003; El Oirdi et al., 2011). Under the 

assumption that the phytohormonal crosstalk-manipulating mechanism of B. cinerea is 

functional in Arabidopsis thaliana, it provides an explanation for the discrepancy between 

A. brassicicola and B. cinerea infections on the activation of miR827. 

A knock-out of miR827 did not display an altered defense phenotype against 

A. brassicicola as well as an overexpression of MIR827 was not sufficient to manipulate 

response to a fungal infection (Figure 15B). As both miRNAs (miR399, miR827) are likely 

involved in the complex phosphate-response network, knock-out or overexpression of one 

component could be insufficient to disturb the complex phosphate-starvation network and 

resistance remains unaltered.  

Several studies support the notion that the phosphate nutrition state and the plant 

immune defense are coupled (Zhao et al., 2013; Hewezi et al., 2016; Hiruma et al., 2016). So 

for example it has been shown that phosphate nutrient status is important for successful defense 

against the phloem-restricted bacteria Candidatus Liberibacter asiaticus in citrus (Zhao et al., 

2013). Exogenous application of phosphate was able to reduce the severity of the disease 

symptoms (Zhao et al., 2013) indicating that sufficient phosphate availability is an important 

component for successful defense response. This study in citrus also proved, that the phosphate-

starvation inducible miR399 is activated upon Candidatus Liberibacter asiaticus infection 

(Zhao et al., 2013). Up to date, it is not clearly understood, which phytohormonal pathway is 

responsible for the defense against Candidatus Liberibacter asiaticus since both SA and JA 

pathways are upregulated after infection (Martinelli et al., 2012). 

In the model for miR827 action, I proposed that miR827 mainly acts in roots after its 

transport through the phloem (Figure 23) and is therefore putatively active against root 

pathogens or parasites. A vague connection might be seen as Candidatus Liberibacter asiaticus 

belongs to the family of the soil bacteria Rhizobiaceae, a diverse group containing plant 
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symbionts like Rhizobium as well as plant pathogens like Agrobacterium (Duan et al., 2009). 

Further, this is supported by the studies of Hiruma et al. (2016) und Hewezi et al. (2016), both 

working with root endophytes and root parasites, respectively.  

Hiruma et al. (2016) described a beneficial interaction of Brassicaceae with the root 

endophyte Colletotrichum tofieldiae under phosphate starving conditions. Similar to the 

arbuscular-mycorrhizal symbiosis (Bucher, 2007), the fungal interaction partner provides 

insoluble and therefore for the plant inaccessible phosphate to the plant under phosphate 

deficient conditions and thus promotes plant growth and fertility (Hiruma et al., 2016). 

Interestingly, secondary metabolites from the group of indole glucosinolates, which are active 

compounds of the innate immune response, play the major role in this interaction. Indole 

glucosinolates are necessary to establish and control the beneficial interaction with the root 

endophyte Colletotrichum tofieldiae, while a lack of all tryptophan-derived metabolites leads 

to an overgrowing of the host roots by fungal mycelia and subsequent killing of the plant roots 

(Hiruma et al., 2016) like in a pathogenic relationship. More directly, Hewezi et al. (2016) 

connected miR827 with plant defense against a cyst nematode showing that miR827 and NLA 

regulate resistance against Heterodera schachtii. Taken together, those studies indicate that 

miR827 mainly acts in root tissue and one can speculate that miR827 plays its major role in 

defense against root pathogens and parasites rather than leaf pathogens. 

However, it is not clear yet, how phosphate deficiency and defense response against 

necrotrophs are directly coupled. One could speculate that attacks from necrotrophs lead to a 

lack of Pi and therefore the increased uptake of Pi is of advantage to counteract against 

necrotrophic pathogens.  

All in all, a direct prove is necessary that miR827 targets VPT1 and NLA after infection 

with A. brassicicola. Therefore, microRNA resistant forms of VPT and NLA in combination 

with a co-modification of the miR827 displays a helpful tool. Additionally, tagged proteins or 

protein-specific antibodies are useful to examine downregulation on protein level and not only 

on RNA level. Also protein levels of phosphate transporters and the phosphate content should 

be investigated after plants were exposed to A. brassicicola.  

MiR827 is a conserved microRNA and annotated in monocotyledons and dicotyledons 

(http://www.mirbase.org/; miRbase21). Therefore, the herein described and discussed principle 

of regulation and connection of phosphate stress and pathogen defense could be transferable in 

other plant species and modifications of its components could potentially confer increased 

resistance against pathogen and phosphate stress. 
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3.4 Dexamethasone-inducible system is a skillful and easy to clone system for 

the investigation of DNA methylation and its role in plant immunity 

 

Several studies connected epigenetic modifications with plant immune response 

towards biotrophic and necrotrophic pathogens (Dowen et al., 2012; Yu et al., 2013; Ding and 

Wang, 2015). 

For pathogen assays, an unaltered development and phenotype is of advantage to 

exclude influences on pathogen response. Knockout of several epigenetic components like 

MET1, or components of the chromatin remodeling complex are embryonic lethal, have strong 

developmental and/or transgenerational aggravating defects (Kakutani et al., 1996; Cao and 

Jacobsen, 2002; Wagner and Meyerowitz, 2002; Sarnowski et al., 2005; Chan et al., 2006; 

Hurtado et al., 2006; Mathieu et al., 2007). Hence, we chose an inducible system that suits best. 

Owing to these facts, a plastic tool based on Golden Gate cloning procedure combined with a 

steroid-inducible system was developed. The system was tested due to its reporter gene activity 

and is functional in transiently transformed tobacco and stable A. thaliana (Figure 21). A 

successful downregulation of the amiRNA targets after induction is still pending. Combining 

the inducible constructs introduced in A. thaliana with the A. brassicicola pathogen assay can 

reveal the importance and involvement of the DNA methyltransferases in the dynamic 

regulation of cytosine methylation and plant immunity. 

Single candidate genes can be investigated with Chop-PCR based on methylation-

sensitive or -dependent restrictions enzymes or bisulfite PCR. Both methods reveal differences 

in the methylation pattern of a single amplicon. A broader analysis could be done for CHH 

methylation through the sRNA libraries and transcriptome data. Analysis of altered siRNAs 

from the sRNA libraries (total RNA) can reveal putative siRNAs that can lead to different 

expression pattern in the targeted gene. Comparing the altered siRNA loci with the 

transcriptome data help to identify altered CHH methylation that leads to transcriptional 

silencing. 

For global analysis of DNA methylation after pathogen attack bisulfite sequencing after 

is the method of choice. Therefore, the pOp6 system is induced firstly by dexamethasone 

treatment and downregulated the DNA methyltransferase of interested and secondly 

A. brassicicola infections were performed. Plant material from before and after pathogen 

treatment serve as material for bisulfite sequencing. 
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The inducible system itself is highly plastic and easy to clone. Its modular construction 

allows an easy adjustment for individual need. So it can be used for many different fields of 

applications beyond pathogen assays or epigenetic investigations. 
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4. Material and Methods 

 

4.1 Cloning 

 

In general, DNA fragments-of-interest were amplified with Phusion High-Fidelity DNA 

Polymerase (ThermoFisher Scientific). After purification (GeneJet™ PCR Purification Kit 

(Thermo Fisher Scientific)), PCR products were cloned into a gateway-compatible entry vector 

with pCR™8/GW/TOPO® TA Cloning Kit (Thermo Fisher Scientific). Entry vectors were 

controlled by sequencing after cloning at the Genome Center of the Max-Planck-Institute for 

Developmental Biology (Tübingen, Germany). Selection of E. coli (strain DH5α) was done on 

antibiotics-containing LB agar (ampicillin 100 µg/ml, kanamycin 25 µg/ml or spectinomycin 

50 µg/ml) and if needed additional blue-white selection (top agar with 50 µl of X-Gal (20 mg/ml 

in dimethylformamide) and 50 µl of 100 µM IPTG). 

LR reaction in the destination vectors pGWB602 (for STTM constructs) or pGWB601 

(dexamethasone-inducible constructs) (Nakamura et al., 2010) was performed with the 

Gateway® LR Clonase® II Enzyme mix (Invitrogen). 

 

Short tandem target mimicry constructs were separated with a 48-nt spacer (sequence 

5’-GTTGTTGTTGTTATGGTCTAATTTAAATATGGTCTAAAGAAGAAGAAT-3’) (Yan 

et al., 2012a) and named with numbers corresponding to the targeted microRNA. STTM 

constructs were amplified with overlapping primers by two consecutive extension steps. 

Sequence of the STTM constructs and used oligonucleotides are listed in Supplementary Table 

SI13. Template for the first STTM construct was the synthesized vector pUC57-STTM393 

(GenScript). Most of the STTMs were designed to be compatible with the dexamethasone-

inducible vector system as module 6 (optional 5’-end: 5’-ggtctcgTGCA-3’; optional 3’-end: 

5'-ggtctcgTGTT-3’). Single module for the dexamethasone-inducible vector system were 

cloned by PCR amplification to add the necessary BsaI sites. Internal BsaI site in the 35S 

promoter sequence was removed by PCR-based mutagenesis. Oligonucleotides and templates 

for the single modules are listed in Supplementary Table SI15. The bidirectional promoter pOp6 

for module 5 was synthesized and inserted into pUC57 by GenScript. Sequence of pOp6 with 

the according BsaI sites are indicated in Supplementary Information SI14. 

Besides reporter genes, several artificial microRNAs were cloned. Artificial microRNA 

(amiRNA) constructs were designed using the amiRNA designer WMD3 
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(http://wmd3.weigelworld.org/) and amplified by PCR-based mutagenesis using pRS300 as 

template (Schwab et al., 2006). Used oligonucleotides are listed in Supplementary Table SI16. 

 

For blue-white selection of successful assembly, lacZ gene was amplified from pFUS_A 

(Addgene plasmid # 31028; Cermak et al. (2011)) and NotI and SalI restriction site included in 

the oligonucleotides were added. Using NotI and SalI restriction enzymes (Thermo Scientific™ 

FastDigest™), the amplified lacZ gene was classically cloned into pENTR™3C (Invitrogen). 

The single modules of the dexamethasone inducible system were assembled based on the 

protocol of Engler et al. (2009). 150 ng of each module vector and 150 ng of pENTR™3C-lacZ 

was mixed with 1 µl BsaI (10 U/µl, New England Biolabs), 1 µl T4 DNA ligase (5 U/µl; 

Thermo Fisher Scientific) and 10x T4 DNA ligase buffer (Thermo Fisher Scientific) in a total 

volume of 20 µl. Reaction mix was incubated in a cycling program (10 cycles of incubation at 

37 °C for 8 min (digestion) and at 16 °C for 15 min (ligation), followed by 50 °C for 5 min and 

80 °C for 5 min). Afterward, 1 µl plasmid-safe™ ATP-dependent DNase (10 U/µl; Epicentre) 

and 1 µl ATP (25 mM; Epicentre) were optionally added and incubated at 37 °C for 1 h.  

 

 

4.2 Plant transformation  

 

Floral dip transformation by Agrobacterium tumefaciens (strain: GV3101 (pMP90)) 

was used to introduce the recombinant destination vectors into Arabidopsis thaliana Col-0 

(Clough and Bent, 1998). Transformed plants were selected on Basta-watered soil (0.1 % (v/v)) 

and screened in T1 generation.  

For transient gene expression, Nicotiana benthamiana leaves were infiltrated with 

Agrobacterium tumefaciens. Bacteria were adjusted to an optical density of 0.5 at a wavelength 

of 600 nm in infiltration solution (10 mM magnesium chloride, 10 mM 2-(N-morpholino)-

ethanesulfonic acid pH 5.7, 100 µM acetosyringone; de Felippes and Weigel (2010)).  
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4.3 Plant Materials 

 

Plants were grown under short day conditions (8 h light, 22 °C) in an Arabidopsis 

growth chamber (Percival Scientific, Model AR-66L3; incandescent and LED lightning) and 

were cultivated with a high humidity in GS90 soil for around 5 - 6 weeks before an experiment 

was conducted. Ago1-26 and ago1-27 mutants were derived from an ethyl methanesulfonate 

mutagenesis and previously described and characterized (Morel et al., 2002). Mir163-1 

(SALK_034556), mir163-2 (SAIL_875_G02) and 35S:MIR163 (in mir163-1 background) 

were described in (Ng et al., 2011; Bielewicz et al., 2013; Schwab et al., 2013) and kindly 

provided by Dr. Rebecca Schwab. Mir827 (SALK_020837) and 35S:MIR827 were kindly 

provided by Prof. Dr. Steven J. Rothstein (Kant et al., 2011). All mutants used are in Col-0 

background. 

 

 

4.4 Dexamethasone treatment and luciferase assays 

 

Infiltrated leaves of Nicotiana benthamiana were either co-infiltrated with Agrobacteria 

or their adaxial side was sprayed one day after infiltration with 10 - 30 µM dexamethasone 

solution. Arabidopsis thaliana lines were sprayed with dexamethasone solution 1.5 days before 

detection of luciferase activity. 

To visualize luciferase activity in tobacco, small pieces of Nicotiana benthamiana 

leaves, were put with the abaxial side on top in 24-well culture plate 3 days after infiltration 

with Agrobacterium tumefaciens. Stably transformed Arabidopsis thaliana T1 lines were 

observed as whole plants. Leaf pieces of Nicotiana benthamiana and aerial parts of Arabidopsis 

thaliana plants were sprayed with luciferin solution (1 mM D-Luciferin Firefly, potassium salt 

(Biosynth) in 10 mM Tris-phosphate, pH 8) and luminescence signal was detected with a CCD 

camera (Peqlab). Pseudo-colored images of detected luminescence signals were created with 

ImageJ 1.46r (http://imagej.nih.gov/ij/). 
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4.5 Fungal pathogen assays 

 

For symptom scoring, two leaves of each ~ 6-week old plant were infected with 2 drops 

of 5 µl Alternaria brassicicola (strain: MUCL 20297) spore solution (1 x 106 spores/ml) 

(Kemmerling et al., 2007). Disease symptoms were scored 7 and 10 days after inoculation. For 

gene expression analysis and library preparation, plants were sprayed with spore solution 

(1 x 106 spores/ml; 0.01 % Silwet L-77). Rosette leaves were harvested at indicated time points. 

Inoculations with Botrytis cinerea (strain: B05.10) were done as described in Van Wees 

et al. (2013) with minor modifications. B. cinerea was grown under continuous light and 

harvested conidia were filtered through miracloth. 

Pictures of representative infected leaves were taken with Nikon D5100 18-105 VR Kit 

(Nikon Instruments Europe B.V., Amsterdam, The Netherlands). Symptom scores were 

statistically analyzed with the Mann-Whitney U test using IBM® SPSS® Statistics (Version 

23.0.0.0) using single leaves as biological replicates. P-values are listed in the Supplementary 

Information (Supplementary Table SI1 - Supplementary Table SI4). Alternaria brassicicola 

(strain MUCL 20297) and Botrytis cinerea (strain B05.10) were kindly provided by Dr. Birgit 

Kemmerling and Dr. Andrea Gust, respectively.  

 

 

4.6 Trypan blue staining 

 

To visualize dead plant cells, leaves were stained with trypan blue (Kemmerling et al., 

2007). Briefly, leaves were covered in trypan blue staining solution (10 ml lactic acid, 10 ml 

glycerol, 10 ml phenol, 10 ml water, 80 ml ethanol, 2.5 mg/ml trypan blue), heated up in a water 

bath (100 °C) for 1 min and incubated for 5 min at room temperature. Afterwards, leaves were 

destained with chloral hydrate (1 mg/ml). Pictures were taken with the fluorescence 

stereomicroscope Leica MZ FLIII. 
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4.7 RNA isolation and RT-PCR analyses 

 

Total RNA was extracted using the Direct-zol RNA MiniPrep Kit (ZymoResearch). 

Copy DNA (cDNA) was prepared from 250 ng - 1.5 mg of DNase-treated total RNA with 

RevertAidTM first-strand cDNA synthesis kit (Thermo Fisher Scientific, 

http://www.thermoscientific.com). RNA was reverse transcribed using oligo(dT) primers and 

optionally with specific stem-loop oligonucleotides for miRNA detection (Varkonyi-Gasic et 

al., 2007). Quantitative real-time PCR was performed in a CFX384 system (Bio-Rad, 

http://www.bio-rad.com/) using SYBR Green (Thermo Fisher Scientific) as photometrical 

readout. ACTIN served as reference gene in all experiments.  

Splicing analysis was performed on cDNA with DreamTaq DNA Polymerase (Thermo 

Fisher Scientific) for 25 (TUB2) or 35 cycles (MIR163) according to manufacturer’s instruction 

and visualized on a 2 % agarose gel. For quantification, RT-PCR products were analyzed by 

capillary electrophoresis (Agilent 2100 Bioanalyzer with DNA1000 Chip) according to 

manufacturer’s instructions. Peak areas were used to calculate the ratio between unspliced and 

spliced products. Genomic DNA was extracted with DNeasy® Plant Mini Kit (Qiagen, 69104) 

and concentrated with DNA Clean & Concentrator™-5 (Zymo research, D4014). Used 

oligonucleotides for RT-PCR analyses are listed in Supplementary Table SI17. Values of the 

individual replicates for time course experiments are listed in the Supplementary Information 

under “5.3 Relative expression values of each replicate in the time course experiment”, 

Supplementary Table SI7 - Supplementary Table SI12. 

 

 

4.8 Small RNA library preparation 

 

For preparation of small RNA libraries from total RNA, sRNAs were isolated from 8 µg 

total RNA as described in (Gilbert et al., 2014).  

For sRNA libraries from AGO1-loaded RNAs, an AGO1-Immunoprecipiation was 

done. For this, around 2.5 mg of plant material was ground in liquid nitrogen, resuspended in 

extraction buffer (50 mM Tris pH 7.5; 150 mM sodium chloride; 10 % glycerol; 0.05 % 

Nonidet P-40; Proteinase Inhibitor Roche cOmplete (EDTA-free); 1 mM 

phenylmethanesulfonyl fluoride), incubated at 4 °C for 20-30 min on a rotator and centrifuged 

at 4 °C at 3,200 g for 30 min. The protein extract was filtered (2x miracloth and 1x syringe 
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driven filter unit) and pre-cleared with 100 ml protein A agarose beads for 30 min on a rotator. 

After removal of the beads, supernatant was split in two fractions and incubated with/without 

5 µl of AGO1 antibody (Agrisera; AS09 527) at 4 °C for 2 h on a rotator and an additional hour 

with 50 µl protein A agarose beads. Beads were collected by centrifugation and washed several 

times with extraction buffer. AGO1 complex was eluted from beads with AGO1 peptide 

(Agrisera; AS09 527P) as described in Qi and Mi (2010) with minor modifications. AGO1 

complex was eluted in 100 µl peptide elution solution (50 µg/ml). RNA and protein from the 

complex was extracted by adding TRIzol® reagent and incubation at 50 °C for 5 min. Using 

chloroform, aqueous and organic phase were separated. The RNA containing, aqueous phase 

was further cleaned with chloroform and precipitated over night with one vol. isopropanol 

at -20 °C followed by centrifugation and washed with 80 % ethanol. The organic phase was 

precipitated with 3 volumes of acetone at -20 °C followed by centrifugation and washed with 

80 % acetone. As control, AGO1 enrichment in the protein fraction was controlled by 

SDS-PAGE and immunodetection (see 4.11 Western Blot analysis). The extracted RNA was 

concentrated with RNA Clean and ConcentratorTM-5 (ZymoResearch).  

 

Both sRNA libraries were prepared with Illumina-compatible Kits. The pooled libraries 

were sequenced as technical replicates on two lanes on Illumina HiSeq 2000. The sequencing 

data have been deposited in NCBI's Gene Expression Omnibus (Edgar et al., 2002) and can be 

accessed through the GEO Series accession number GSE83488 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE83488). The subseries of the sRNA 

sequencing data are additionally available through GEO Series accession number GSE83487 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE83487). 

 

 

4.9 mRNA library preparation 

 

For transcriptome analysis, polyadenylated RNA were isolated from 3 µg total RNA 

with NEBNext® Poly(A) mRNA Magnetic Isolation Module (NEB) and used as input for the 

ScriptSeq™  v2 RNA-Seq Library Preparation Kit (Epicentre). Size selection (250 – 650 bp) 

was performed on the pooled libraries using BluePippin (Sage Science). The pooled library was 

sequenced on Illumina HiSeq 3000.  
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The sequencing data have been deposited in NCBI's Gene Expression Omnibus (Edgar 

et al., 2002) and can be accessed through GEO Series accession number GSE83488 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE83488). The subseries of the mRNA 

sequencing data are additionally available through the GEO Series accession number 

GSE83478 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE83478). 

 

 

4.10 Small RNA blot analysis 

 

Total RNA (8 µg, concentrated with RNA Clean and ConcentratorTM-5 

(ZymoResearch)) was separated on a 17 % urea acrylamide gel and stained with ethidium 

bromide to check equal loading. After that, RNA was transferred on Amersham 

Hybond-N+ membrane (GE Healthcare Life Science) and crosslinked to the membrane using 

UV light (Stratalinker; 120,000 µJ/cm2). Membrane was pre-hybridized with PerfectHyb™ Plus 

Hybridization Buffer (Sigma) at 38 °C for 1 hour in permanent rotation, incubated with 5 pmol 

of denatured and DIG-labelled probe at 38 °C overnight under constant rotation and washed 

twice with 4x SSC (600 mM sodium chloride, 60 mM sodium citrate; pH 7,0) at 38 °C. Probe 

detecting mature miRNA163 (5’-ATCGAAGTTCCAAGTCCTCTTCAA-3’) was labeled with 

DIG oligonucleotide tailing kit, 2nd generation (Roche), according to manufacturer´s 

instructions. For miRNA detection, membrane was incubated for 30 min in Blocking Reagent 

(Roche) with gentle agitation and for 1 h with the anti-Digoxigenin-AP antibody (Roche) 

(1:10,000 in Blocking Reagent). Afterwards, membrane was washed 4x in Washing Buffer 

(100 mM maleic acid, 150 mM sodium chloride, 0.3 % (v/v) Tween-20; pH 7.5) for 15 min and 

equilibrated for 5 min in Detection Buffer (100 mM Tris, 100 mM sodium chloride; pH 9.5). 

For detection, membrane was incubated with the chemiluminescent substrate CSPD 

ready-to-use (Roche) in dark at 37 °C for 10 min and light emission was detected with a CCD 

camera (Peqlab).  
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4.11 Western Blot analysis 

 

For protein extraction, plant material was ground in liquid nitrogen and resuspended in 

protein extraction buffer (50 mM Tris pH 7.5, 150 mM sodium chloride, 10 % (v/v) glycerol, 

1 mM ethylenediaminetetraacetic acid, and freshly added 1 mM phenylmethanesulfonyl 

fluoride, 1 mM dithiothreitol, and Proteinase-Inhibitor Roche cOmplete (EDTA-free). Plants 

debris were removed by two centrifugation steps at 4°C (12,000 rpm, 10 min). Protein 

concentration was determined via Bradford assay (BioRad). 15-25 µg of protein extract was 

loaded in 5x Laemmli buffer (250 mM Tris pH 6.8, 50 % (v/v) glycerol, 10 % (v/v) sodium 

dodecyl sulfate, 1 mg/ml bromophenol blue and freshly added 500 mM dithiothreitol) on a 

denaturing polyacrylamide gel. Western Blot analysis was performed according to Speth et al. 

(2014). For Immunodetection, protein-specific antibodies against AGO1, CBP20, CBP80, 

DCL1, HYL1, SE (all Agrisera), AGO2 (Abiocode) and a HRP-conjugated goat-anti-rabbit IgG 

(Agrisera) were used. Signals were detected with a luminol-based chemiluminescent substrate 

(ECL reagent Kit; GE Healthcare) and a CCD camera (Peqlab). 
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5. Supplementary information 

 

5.1 Significance level of symptom scoring 

 

Supplementary Table SI1: P-values of Mann-Whitney U Test, shown in Figure 6B. 

7 dai Col-0 ago1-26 ago1-27 

Col-0 - 2.53E-13 1.232E-09 

ago1-26  - 0.742 

ago1-27   - 

 

10 dai Col-0 ago1-26 ago1-27 

Col-0 - 1.49E-13 1.22E-11 

ago1-26  - 0.329 

ago1-27   - 

 

 

 

Supplementary Table SI2: P-values of Mann-Whitney U Test, shown in Figure 13B. 

7 dai Col-0 mir163-1 mir163-2 
35S:MIR163 
in mir163-1 

Col-0 - 8.14E-05 1.04E-03 0.287 

mir163-1  - 0.690 2.66E-05 

mir163-2   - 2.62E-04 

35S:MIR163 
in mir163-1 

   - 

 

10 dai Col-0 mir163-1 mir163-2 
35S:MIR163 
in mir163-1 

Col-0 - 2.30E-03 1.96E-03 0.347 

mir163-1  - 0.928 1.14E-03 

mir163-2   - 1.06E-03 

35S:MIR163 
in mir163-1 

   - 
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Supplementary Table SI3: P-values of Mann-Whitney U Test, shown in Figure 14B. 

2 dai Col-0 mir163-1 mir163-2 
35S:MIR163 
in mir163-1 

Col-0 - 0.930 0.571 0.147 

mir163-1  - 0.523 0.141 

mir163-2   - 0.382 

35S:MIR163 
in mir163-1 

   - 

 

 

 

Supplementary Table SI4: P-values of Mann-Whitney U Test, shown in Figure 15B. 

7 dai Col-0 mir827 35S:MIR827 

Col-0 - 0.383 0.693 
mir827  - 0.676 
35S:MIR827   - 

 

10 dai Col-0 mir827 35S:MIR827 

Col-0 - 0.329 0.750 
mir827  - 0.621 
35S:MIR827   - 

 

  



  SUPPLEMENTARY INFORMATION 

77 

5.2 Different light conditions can influence the resistance phenotype of 

mir163 mutants 

 

 

Supplementary Figure SI5: miR163 mutants behave differently dependent on growth 
conditions. A  Symptom score of A. brassicicola inoculated wild type (WT), mir163-1, 
mir163-2 and 35S:MIR163 7 and 10 days after inoculation (n ≥ 23). Mann-Whitney U test was 
performed to show significant differences compared to wild type (significance level is indicated 
with asterisks: * p-value ≤ 0.05; ** p-value ≤ 0.01; *** p-value ≤ 0.001). B Classification in 
percent of A. brassicicola infected leaves of wild type (WT), mir163 mutants and 35S:MIR163 
after 7 and 10 days (n ≥ 23). Margaux Kaster (Center for Plant Molecular Biology, University 
of Tübingen) conducted this experiment. 

 

MiR163 is the first microRNA that was shown to be influenced by light (Chung et al., 

2016). Growing the plants under light conditions that differ from the standard conditions (short 

day, humidity of 50 %, 20 - 21 °C, illuminated by Osram L18W/77 Fluora and Osram L 

18W/840 LUMILUX CoolWhite),  the resistant phenotype of mir163 mutants actually changed 

into an unaltered or slightly more sensitive phenotype compared with WT after A. brassicicola 

inoculation (Supplementary Figure SI5). This experiment was conducted by Margaux Kaster 

(Center for Plant Molecular Biology, University of Tübingen). 
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Supplementary Table SI6: P-values of Mann-Whitney U Test, shown in Supplementary 
Figure SI5. 

7 dai Col-0 mir163-1 mir163-2 
35S:MIR163 
in mir163-1 

Col-0 - 0.101 0.021 0.881 

mir163-1  - 0.504 0.267 

mir163-2   - 0.111 

35S:MIR163 
in mir163-1 

   - 

 

10 dai Col-0 mir163-1 mir163-2 
35S:MIR163 
in mir163-1 

Col-0 - 0.283 0.010 0.887 

mir163-1  - 0.090 0.223 

mir163-2   - 0.008 

35S:MIR163 
in mir163-1 

   - 
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5.3 Relative expression values of each replicate in the time course 

experiments 

 

Supplementary Table SI7: Relative expression values of pri-miRNA163 for each replicate. 
Average and standard error are displayed in Figure 10A. 
 Untreated Mock Alternaria brassicicola 

Replicate 0d 0.5 d 1 d 3 d 0.5 d 1 d 3 d 

WT - 1 1.000 0.667 1.866 2.144 0.293 8.846 19.093 

WT - 2 1.000 0.525 1.597 0.681 0.207 6.277 17.448 

WT - 3 1.000 0.543 1.613 1.133 0.260 7.464 18.189 

Average 1.000 0.578 1.692 1.319 0.253 7.529 18.244 

Standard 
error 

0.000 0.045 0.087 0.432 0.025 0.742 0.476 

 

 

 

Supplementary Table SI8: Relative expression values of FAMT for each replicate. Average 
and standard error are displayed in Figure 11. 

 Untreated Mock Alternaria brassicicola 

Replicate 0d 0.5 d 1 d 3 d 0.5 d 1 d 3 d 

WT - 1 1.000 0.048 0.530 0.545 0.059 5.426 1.803 

WT - 2 1.000 0.063 0.898 0.475 0.040 2.908 2.329 

WT - 3 1.000 0.124 0.438 0.454 0.075 3.021 3.031 

Average 1.000 0.078 0.622 0.491 0.058 3.785 2.388 

Standard 
error 

0.000 0.023 0.140 0.028 0.010 0.821 0.356 

 

 Untreated Mock Alternaria brassicicola 

Replicate 0d 0.5 d 1 d 3 d 0.5 d 1 d 3 d 

ago1-27 - 1 2.612 0.010 1.057 0.521 0.173 4.155 5.426 

ago1-27 - 2 0.889 0.015 1.003 0.710 0.471 8.427 7.185 

ago1-27 - 3 1.505 0.024 1.181 0.826 0.356 5.776 4.500 

Average 1.669 0.016 1.080 0.686 0.334 6.119 5.704 

Standard 
error 

0.504 0.004 0.053 0.089 0.087 1.245 0.787 
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Supplementary Table SI9: Relative expression values of PXMT1 for each replicate. Average 
and standard error are displayed in Figure 11. 

 Untreated Mock Alternaria brassicicola 

Replicate 0d 0.5 d 1 d 3 d 0.5 d 1 d 3 d 

WT - 1 1.000 0.365 0.847 2.888 2.742 88.035 139.585 

WT - 2 1.000 1.815 1.659 0.719 4.272 33.708 121.938 

WT - 3 1.000 1.125 0.611 0.557 3.694 35.629 303.384 

Average 1.000 1.102 1.039 1.388 3.569 52.457 188.302 

Standard 
error 

0.000 0.419 0.317 0.751 0.446 17.797 57.766 

 

 Untreated Mock Alternaria brassicicola 

Replicate 0d 0.5 d 1 d 3 d 0.5 d 1 d 3 d 

ago1-27 - 1 3.063 0.949 1.248 0.318 30.803 167.730 195.361 

ago1-27 - 2 0.671 0.441 1.919 1.202 13.454 266.871 196.039 

ago1-27 - 3 0.693 1.469 0.574 0.584 25.457 114.167 235.568 

Average 1.476 0.953 1.247 0.701 23.238 182.923 208.990 

Standard 
error 

0.794 0.297 0.388 0.262 5.130 44.732 13.291 

 

 

 

Supplementary Table SI10: Relative expression values of pri-miRNA827 for each replicate. 
Average and standard error are displayed in Figure 15A. 
 Untreated Mock Alternaria brassicicola 

Replicate 0d 0.5 d 1 d 3 d 0.5 d 1 d 3 d 

WT - 1 1.000 0.722 0.693 0.787 2.370 3.959 13.086 

WT - 2 1.000 0.398 0.629 0.238 1.945 2.189 9.747 

WT - 3 1.000 0.877 0.753 0.618 3.084 6.453 18.001 

Average 1.000 0.665 0.691 0.548 2.467 4.200 13.612 

Standard 
error 

0.000 0.141 0.036 0.162 0.332 1.237 2.397 
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Supplementary Table SI11: Relative expression values of NLA for each replicate. Average 
and standard error are displayed in Figure 15A. 

 Untreated Mock Alternaria brassicicola 

Replicate 0d 0.5 d 1 d 3 d 0.5 d 1 d 3 d 

WT - 1 1.000 0.815 0.695 0.644 0.821 0.622 0.500 

WT - 2 1.000 0.685 1.091 0.648 1.133 0.669 0.518 

WT - 3 1.000 0.660 0.871 0.618 0.983 0.904 0.590 

Average 1.000 0.720 0.885 0.637 0.979 0.732 0.536 

Standard 
error 

0.000 0.048 0.114 0.010 0.090 0.087 0.028 

 

 Untreated Mock Alternaria brassicicola 

Replicate 0d 0.5 d 1 d 3 d 0.5 d 1 d 3 d 

ago1-27 - 1 1.505 0.595 0.631 0.457 0.782 0.705 1.185 

ago1-27 - 2 1.053 0.509 0.657 0.697 1.053 0.841 1.214 

ago1-27 - 3 1.028 0.664 0.853 0.693 0.785 0.796 0.651 

Average 1.196 0.589 0.714 0.616 0.873 0.780 1.017 

Standard 
error 

0.155 0.045 0.070 0.079 0.090 0.040 0.183 

 

 

 

Supplementary Table SI12: Relative expression values of VPT1 for each replicate. Average 
and standard error are displayed in Figure 15A. 

 Untreated Mock Alternaria brassicicola 

Replicate 0d 0.5 d 1 d 3 d 0.5 d 1 d 3 d 

WT - 1 1.000 0.826 1.185 0.976 0.959 3.605 2.612 

WT - 2 1.000 0.785 1.945 1.017 0.737 2.799 2.497 

WT - 3 1.000 0.631 1.137 0.997 0.807 2.227 2.751 

Average 1.000 0.747 1.422 0.997 0.834 2.877 2.620 

Standard 
error 

0.000 0.060 0.262 0.012 0.066 0.400 0.074 

 

 Untreated Mock Alternaria brassicicola 

Replicate 0d 0.5 d 1 d 3 d 0.5 d 1 d 3 d 

ago1-27 - 1 1.003 0.481 1.042 1.098 1.266 4.579 5.521 

ago1-27 - 2 0.497 0.473 1.324 0.963 1.141 4.823 4.908 

ago1-27 - 3 0.844 0.635 1.693 1.292 1.619 3.160 4.070 

Average 0.781 0.530 1.353 1.118 1.342 4.187 4.833 

Standard 
error 

0.150 0.053 0.189 0.096 0.143 0.518 0.421 

 

  



SUPPLEMENTARY INFORMATION 

82 

5.4 Oligonucleotides used for cloning and qPCR analysis 

 

Supplementary Table SI13: Oligonucleotides used for cloning of the short tandem target 
mimicry constructs. 

Name Sequence 5'-to-3' 
miRNA 
target 

STTM156/157 
F1 

TCACTCCTGTCTTCTGTCAGTTGTTGTTGTTATGGTC 
miR156/
157 

STTM156/157 
R1 

AGAAGACTTGAGTGAGCACATTCTTCTTCTTTAGAC 
miR156/
157 

STTM156/157 
F2 

GTGCTCACTCCTGTCTTCTG 
miR156/
157 

STTM156/157 
R2 

TGACAGAAGACTTGAGTGAGCA 
miR156/
157 

STTM158 F1 TGTCTCAGACATTTGGGGGTTGTTGTTGTTATGGTC miR158 

STTM158 R1 ATTGTGACAGACAAAGCAATTCTTCTTCTTTAGACCA miR158 

STTM158 F2 TGCTTTGTCTCAGACATTTG miR158 

STTM158 R2 CCCCAAATGTGACAGACAAAG miR158 

STTM160 F1 ATACAGGAGAGAGCCAGGCAGTTGTTGTTGTTATGGTC miR160 

STTM160 R1 TGGCTCGGACCTGTATGCCAATTCTTCTTCTTTAGACCA miR160 

STTM160 F2 GGTCTCGTGCATGGCATACAGGAGAGAGCCAG miR160 

STTM160 R2 GGTCTCGTGTTTGCCTGGCTCGGACCTGT miR160 

STTM161 F1 GATGTATCGGTCACTTTCAGTTGTTGTTGTTATGGTC miR161 

STTM161 R1 GTGACGATTACATCGGGGTATTCTTCTTCTTTAGACCA miR161 

STTM161 F2 GGTCTCGTGCAACCCCGATGTATCGGTCACT miR161 

STTM161 R2 GGTCTCGTGTTTGAAAGTGACGATTACATC miR161 

STTM162 F1 TGCAGATACGGTTTATCGAGTTGTTGTTGTTATGGTC miR162 

STTM162 R1 ACCCATTCTGCATCCAGATTCTTCTTCTTTAGACCA miR162 

STTM162 F2 GGTCTCGTGCACTGGATGCAGATACGGTTTATC miR162 

STTM162 R2 GGTCTCGTGTTTCGATAAACCCATTCTGCATC miR162 

STTM163 F1 AGTTCCAAGCGATCCTCTTCAAGTTGTTGTTGTTATGGTC miR163 

STTM163 R1 GAATCCTTGGAACTTCGATATTCTTCTTCTTTAGACCA miR163 

STTM163 F2 ATCGAAGTTCCAAGCGATCCTC miR163 

STTM163 R2 TTGAAGAGGAATCCTTGGAACT miR163 

STTM164 F1 GTGCCCGGATGCTTCTCCAGTTGTTGTTGTTATGGTC miR164 

STTM164 R1 AAGCAAGCGGGCACGTGCAATTCTTCTTCTTTAGACCA miR164 

STTM164 F2 GGTCTCGTGCATGCACGTGCCCGGATGCT miR164 

STTM164 R2 GGTCTCGTGTTTGGAGAAGCAAGCGGGCACGT miR164 

STTM166 F1 GAGCCAGCTTACAACAGTCCGTTGTTGTTGTTATG miR166 

STTM166 R1 TGTGTATCCTGGCTCGAGGATTCTTCTTCTTTAGA miR166 

STTM166 F2 CCTCGAGCCAGCTTACAACAG miR166 

STTM166 R2 GGACTGTTGTATCCTGGCT miR166 

STTM166 F2 GGTCTCGTGCACCTCGAGCCAGCTTACAACAG miR166 

STTM166 R2 GGTCTCGTGTTGGACTGTTGTATCCTGGCT miR166 

STTM167 F1 TCATGCTATCGGCAGCTTCAGTTGTTGTTGTTATGGTC miR167 

STTM167 R1 CTGCCCTAAGCATGATCTAATTCTTCTTCTTTAGACCA miR167 

STTM167 F2 GGTCTCGTGCATAGATCATGCTATCGGCAG miR167 

STTM167 R2 GGTCTCGTGTTTGAAGCTGCCCTAAGCATGA miR167 
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Supplementary Table SI13 (continued): Oligonucleotides used for cloning of the short 
tandem target mimicry constructs. 
 

Name Sequence 5'-to-3' 
miRNA 
target 

STTM169 F1 CAAGTCACTCTCCTTGGCTAGTTGTTGTTGTTATG miR169 

STTM169 R1 CAAGGAGTCTGACTTGCCTGATTCTTCTTCTTTAGA miR169 

STTM169 F2 GGTCTCGTGCACAGGCAAGTCACTCTCCTTG miR169 

STTM169 R2 GGTCTCGTGTTTAGCCAAGGAGTCTGACTTGCCT miR169 

STTM170 F1 TGACACAGTGGCTCAATCAGTTGTTGTTGTTATGGTC miR170 

STTM170 R1 GAGCCTGAGTGTCAATATCATTCTTCTTCTTTAGACCA miR170 

STTM170 F2 GGTCTCGTGCAGATATTGACACAGTGGCTC miR170 

STTM170 R2 GGTCTCGTGTTTGATTGAGCCTGAGTGTCA miR170 

STTM171 F1 TGGCGCACTGGCTCAATCAGTTGTTGTTGTTATGGTC miR171 

STTM171 R1 TGAGCCTAAGCGCCAATATCATTCTTCTTCTTTAGACCA miR171 

STTM171 F2 GGTCTCGTGCAGATATTGGCGCACTGGCTC miR171 

STTM171 R2 GGTCTCGTGTTTGATTGAGCCTAAGCGCCA miR171 

STTM172 F1 AGCATCAGGGTCAAGATTCTGTTGTTGTTGTTATG miR172 

STTM172 R1 TCTTGAAACTGATGCTGCAGATTCTTCTTCTTTAGA miR172 

STTM172 F2 GGTCTCGTGCACTGCAGCATCAGGGTCAAGATTC miR172 

STTM172 R2 GGTCTCGTGTTAGAATCTTGAAACTGATGCTGCA miR172 

STTM173 F1 CTTACAACGCAGAGAATCAGTTGTTGTTGTTATGGTC miR173 

STTM173 R1 TCTGGTATGTAAGCGAAAATTCTTCTTCTTTAGACCA miR173 

STTM173 F2 GGTCTCGTGCATTTCGCTTACAACGCAGAG miR173 

STTM173 R2 GGTCTCGTGTTTGATTCTCTGGTATGTAAGCGA miR173 

STTM319 F1 AGCTCCCGCATTCAGTCCAAGTTGTTGTTGTTATGGTC miR319 

STTM319 R1 ACTGAAAATGGGAGCTCCCTATTCTTCTTCTTTAGAC miR319 

STTM319 F2 GGTCTCGTGCAAGGGAGCTCCCGCATTCAGTC miR319 

STTM319 R2 GGTCTCGTGTTTTGGACTGAAAATGGGAGCT miR319 

STTM391 F1 GCTATCTTACCTCCTGCGAAGTTGTTGTTGTTATGGTC miR391 

STTM391 R1 AGGAGCATAGATAGCGCCAATTCTTCTTCTTTAGACCA miR391 

STTM391 F2 GGTCTCGTGCATGGCGCTATCTTACCTCCTG miR391 

STTM391 R2 CAGAGCACAATTCGCAGGAGCATAGATAG miR391 

STTM393 F GGTCTCGTGCAGGATCAATGCGAGTCTCCCT miR393 

STTM393 R GGTCTCGTGTTTCCAAAGGGAATTTCGCATTG miR393 

STTM396 F1 CAAGAATCTAGCTGTGGAAGTTGTTGTTGTTATGGTC miR396 

STTM396 R1 AGCTACATTCTTGAACTTATTCTTCTTCTTTAGACCA miR396 

STTM396 F2 GGTCTCGTGCACAGTTCAAGAATCTAGCTGTG miR396 

STTM396 R2 GGTCTCGTGTTTTCCACAGCTACATTCTTG miR396 

STTM397 F1 ACGCTGTGACACTCAATGAGTTGTTGTTGTTATGGTC miR397 

STTM397 R1 GAGTGAGTCAGCGTTGATGATTCTTCTTCTTTAGACCA miR397 

STTM397 F2 GGTCTCGTGCACATCAACGCTGTGACACTC miR397 

STTM397 R2 GGTCTCGTGTTTCATTGAGTGAGTCAGCG miR397 
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Supplementary Information SI14: Synthesized sequence of pOp6. 

 

5’-GGTCTCGTGCACTAGCTGTAGTTGTAGAATGTAAAATGTAATGTTGTTGTTGTTTGTTG

TTGTTGTTGGTAATTGTTGTAAAAATACGCGCGTCTAGCTTCAGCGTGTCCTCTCCAAAT

GAAATGAACTTCCTTATATAGAGGAAGGGTCTTGCGAAGATCGATCCACTAGTCTTTCAA

TTGTGAGCGCTCACAATTCTTTCTCTTCCCTTTCTTCTTTCTAGTCTAGTCTTTCAATTGT

GAGCGCTCACAATTCTTTCTCTTCCCTTTCTTCTTTCTAGTCTAGTCTTTCAATTGTGAGC

GCTCACAATTCTTTCTCTTCCCTTTCTTCTTTCTAGTCTAGTCTTTCAATTGTGAGCGCTC

ACAATTCTTTCTCTTCCCTTTCTTCTTTCTAGTCTAGTCTTTCAATTGTGAGCGCTCACAA

TTCTTTCTCTTCCCTTTCTTCTTTCTAGTCTAGTCTTTCAATTGTGAGCGCTCACAATTCTT

TCTCTTCCCTTTCTTCTTTCTAGTCTTTCAATTGTGAGCGCTCACAATTCTTTCTCTTCCC

TTTCTTCTTTCTAGCTCCACCGCGGTGGCGGCCGGCCGCTCTAGTGGATCGATCTTCGC

AAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGAGGACACGCTGAAGCTAGA

CGCGCGTATTTTTACAACAATTACCAACAACAACAACAAACAACAACAACATTGCCACGA

GACC-3’ 
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Supplementary Table SI15: Oligonucleotides used for cloning of inducible vector system. 
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Supplementary Table SI15 (continued): Oligonucleotides used for cloning of inducible vector 
system. 
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Supplementary Table SI16: Oligonucleotides used for cloning of artificial microRNAs.  
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Supplementary Table SI16 (continued): Oligonucleotides used for cloning of artificial 
microRNAs.  
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Supplementary Table SI16 (continued): Oligonucleotides used for cloning of artificial 
microRNAs.  
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Supplementary Table SI16 (continued): Oligonucleotides used for cloning of artificial 
microRNAs.  
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Supplementary Table SI16 (continued): Oligonucleotides used for cloning of artificial 
microRNAs.  
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Supplementary Table SI16 (continued): Oligonucleotides used for cloning of artificial 
microRNAs.  
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Supplementary Table SI17: Oligonucleotides used for quantitative and semi-quantitative 
PCR analysis. 

 

Name Sequence 5'-to-3'  Reference 

ACT2-F CTTGCACCAAGCAGCATGAA Czechowski et al. (2005) 

ACT2-R CCGATCCAGACACTGTACTTCCTT Czechowski et al. (2005) 

AP2-F ATACTCCCAATTCAAACCACC  

AP2-R TCAAGAAGGTCTCATGAGAGG  

ARF16-F GATCAATTCGATTCCAGTACCT  

ARF16-R CAAACCTGATGCATCATGAAC  

ARF17-F AGCACCTGATCCAAGTCCTTCTATG  

ARF17-R TGGTGAATAGCTGGGGAGGATTTC  

ARF8-F ATTGGACTCCTTGCTGCTGCTG  

ARF8-R GTACCTGCGGACACTCGACTCT  

CCS-F CCACAGCTGGTGTATCAACG  

CCS-R CATCGGTCTTGTACACCACG  

CSD1-F CTCAAGCACTTGATTCTTTCC  

CSD1-R AGACATGCAACCGTTAGTGG  

CSD2-F CTAACAACATGACACACGGAG  

CSD2-R GAGGTCATCCTTAAGCTCGTG  

FAMT-F TCCTCTGGACCGAACACTTTCAC Ng et al. (2011) 

FAMT-R 
GTCTTGAAGAGAGTGTTAAAATCGTTGTTTG
AAG 

Ng et al. (2011) 

HAP2C-F AACTCCGATAAACCGAGCC  

HAP2C-R TCTTGGTCGTTCTTGTGATGTC  

miR 
universal-R 

GTGCAGGGTCCGAGGT 
designed after Varkonyi-
Gasic et al. (2007) 

miR398 
stemloop 
RT 

GTCGTATCCAGTGCAGGGTCCGAGGTATTC
GCACTGGATACGACTTGGGG 

designed after Varkonyi-
Gasic et al. (2007) 

miR398-F GGGCAGTGTGTTCTCAGGTCA 
designed after Varkonyi-
Gasic et al. (2007) 

MYB33-F TCCCTTCATTCCAATATTCAG  

MYB33-R GAGTTTCATCTGCATTTTGTGTG  

NAC2-F GTACAAAGGTTCCAATGTCA   

NAC2-R GGACTCGTGGACAAGTCTTT  

NLA-F ACAATTGTTCTCGTGAATGCCC Liang et al. (2015) 

NLA-R GAGCATGCTCGTTAAACCATCC Liang et al. (2015) 

PHV-F ATCAGCATCCTCAGCGTGAT   

PHV-R TTCCACTGCAGTTGCGTGAA  
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Supplementary Table SI17 (continued): Oligonucleotides used for quantitative and 
semi-quantitative PCR analysis. 
 

Name Sequence 5'-to-3'  Reference 

pri-miR163-F CCTCTTCAACGACAACGATTTCAACAC  

pri-miR163-R TGATATGGACTCACTCTCAGGAACCG  

pri-miR163-F 
splicing 

GAGAGTGAGAAAAATAAAGAG Bielewicz et al. (2013) 

pri-miR163-R 
splicing 

AGGATGTTGACACGTGTAAAC Bielewicz et al. (2013) 

pri-miR827-F CACATGTTGATCATCCTTGTG  

pri-miR827-R CGAGATTCCAAGAAGCGATG  

PXMT1-F GATTGGAGGAGACGGTCCTGAGA Ng et al. (2011) 

PXMT1-R GGCTGAGATCGCCTTGGTCAT Ng et al. (2011) 

SPL3-F ACGCTTAGCTGGACACAACGAGAGAAG  

SPL3-R TGGAGAAACAGACAGAGACACAGAGGA  

TCP3-F CATCCAGTTTATAGCCAAAG  

TCP3-R ATGGCGAGAATCGGATGAAG  

TUB2-F GAGCCTTACAACGCTACTCTGTCTGTC  

TUB2-R ACACCAGACATAGTAGCAGAAATCAAG  

VPT1-F GTTGGGATCAGCAAGAGCTG  

VPT1-R AGCCATTCCAAGAGCACTTG  
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