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Summary

Next-generation sequencing technologies, with their low costs and high throughputs, have

benefited the field of microbial research to a great degree. The application of whole-genome

shotgun sequencing to DNA extracted from an environmental sample enables avoiding the

usually complex method of cultivation of pure cultures of microorganisms in the laboratory.

This protocol is referred to as whole-genome shotgun metagenomic sequencing. The analysis

of sequencing data mainly aims at the taxonomic and functional characterization of the

microbial sample. Many algorithms and tools have been developed for the same. The design

of the analysis pipeline is usually dictated by the specific project at hand.

In this thesis, we describe several aspects of analyzing whole-genome shotgun metage-

nomic data. Analysis usually begins with the quality check of raw sequencing data followed

by its preprocessing to improve the read quality. When dealing with datasets containing

several number of large samples, the preprocessing of the samples can take up considerable

time and effort. However, if the binning of reads into different taxonomic and functional

categories is the aim, a read with bad quality automatically gets filtered making the ini-

tial preprocessing unnecessary. Thus we first look into the effect of preprocessing on the

ensuing analysis of the metagenomic samples. Next, we assess the correspondence between

the different systems of functional classification typically used for metagenomic analyses.

The reference proteins in databases like the NCBI-NR may have none or multiple identifiers

belonging to a particular classification system. Consequently, a read aligning to such a ref-

erence may be placed into a functional group depending on the mapping of the reference

to functional identifiers. We study the correspondence between the different classification

systems using a few metagenomic samples.

Further, we describe the analysis of a dataset of human gut metagenomic samples ob-

tained from obese patients undergoing a weight-loss diet-intervention. The obese patients

were also detected positive for non-alcoholic fatty liver disease (NAFLD) and Metabolic Syn-

drome. The analysis is carried out using the popular metagenomic analysis tools DIAMOND

and MEGAN. This study was carried out in order to track the effect of the diet-intervention

on the gut flora composition and to relate the clinical parameters like weight-loss, NAFLD

and metabolic syndrome to the microbiome.

A metagenomic sample could be subjected to analysis based directly on the reads or on

an assembly. Both methods have their pros and cons. We explore the differences seen in the

taxonomic and functional compositions between those two strategies and conclude that both
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provide similar results with minor differences depending on the sample being assembled.

At the end, we describe how a gene-centric assembly can be carried out with the tools

DIAMOND and MEGAN and demonstrate the usefulness of such a gene-centric assembly

in a metagenomic analysis pipeline by carrying out a gene-centric assembly across different

gene families and metagenomic samples.
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Zusammenfassung

Das Gebiet der mikrobiologischen Forschung hat in großem Maß von Next-Generation-

Sequencing Technologien aufgrund ihrer niedrigen Kosten und ihrem hohen Durchsatz prof-

itiert. Die Anwendung von Whole-Genome-Shotgun-Sequencing auf DNA, welche vorher

aus Umweltproben extrahiert wurde, ermöglicht es die hufig aufwendige Kultivierung von

Isolaten der Mikroorganismen im Labor zu umgehen. Diese Methode nennt man Whole-

Genome-Shotgun Metagenomik. Die Analyse von Sequenzierdaten zielt hauptsächlich auf

die taxonomische und funktionale Charakterisierung der mikrobiellen Probe ab. Dafür sind

viele Algorithmen und Tools entwickelt worden. Bei einem solchen Tool wird normaler-

weise das Design der verwendeten Analysepipeline speziell auf ein spezifisches Projekt hin

ausgerichtet.

In dieser Arbeit werden verschiedene Aspekte der Analyse von Daten aus der Whole-

Genome-Shotgun Metagenomik beschrieben. Solch eine Analyse beginnt normalerweise

mit der Qualitätskontrolle der Rohdaten, gefolgt von der Aufbereitung der Daten mit Ziel

die Qualität der reads zu verbessern. Bei sehr groen Datensätzen, welche sehr viele groe

Proben enthalten, können diese Vorarbeiten bereits betrchtliche Zeit und Mühe in Anspruch

nehmen. Falls jedoch die Einteilung der reads in verschiedene taxonomische und funktionale

Gruppen das Ziel ist, wird ein read mit schlechter Qualität in der Regel ohnehin automa-

tisch herausgefiltert, was diese anfngliche Vorverarbeitung unnötig macht. In dieser Arbeit

wird der Effekt der Vorbereitung auf die nachfolgende Analyse der metagenomischen Daten

studiert. Auerdem wird der Zusammenhang verschiedener Klassifikationssysteme, welche

typischerweise für metagenomische Analysen genutzt werden, untersucht. Die Referenzpro-

teine in Datenbanken, wie zum Beispiel NCBI-NR, können keine oder auch mehrere At-

tribute eines speziellen Klassifikationssystems besitzen. Daher untersuchen wir basierend

auf metagenomischen Datenstzen die Vergleichbarkeit verschiedener Klassifikationssysteme.

Zusẗzlich wird die Analyse eines Datensatzes von menschlichen Darmmikrobiomproben

beschrieben, die von adipösen Patienten genommen wurden, welche bei einer Diätinter-

vention zum Gewichtsverlust teilnahmen. Diese übergewichtigen Patienten litten zustzlich

an nicht-alkoholischer Fettleber (NAFLD) und dem Metabolischen Syndrom. Die Analyse

wurde mit den hufig verwendeten metagenomischen Softwaretools DIAMOND und MEGAN

durchgeführt. Diese Studie wurde ausgeführt um den Effekt der Diät auf die Zusammenset-

zung des Darmmikrobioms zu untersuchen und klinische Parameter, wie Gewichtsverlust,

NAFLD sowie metabolisches Syndrom, mit dem Mikrobiom in Verbindung zu bringen.
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Eine metagenomische Probe kann dabei entweder direkt auf den jeweiligen reads oder

aber auf einer Assemblierung untersucht werden. Sowohl read-basierte als auch auf Assem-

blierung basierende Analysen haben ihre Vor- und Nachteile. In dieser Arbeit untersuchen

wir die Unterschiede welche sowohl in taxonomischer als auch funktionaler Zusammenset-

zung bei beiden Verfahren beobachtet werden und stellen fest, dass beide ähnliche Ergebnisse

liefern, wobei kleine Unterschiede abhängig von der assemblierten Probe auftreten können.

Abschließend wird beschrieben, wie eine gen-zentrische Assemblierung mit den tools DIA-

MOND und MEGAN ausgeführt werden kann und zeigen den Nutzen einer solchen gen-

zentrischen Assemblierung innerhalb einer metagenomischen Analysepipeline auf, indem wir

diese auf verschiedene Genfamilien und Proben anwenden.
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Chapter 1

Introduction
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1.1 Metagenomics

Metagenomics is the sequencing and analysis of DNA extracted directly from environ-

mental samples. Next-generation sequencing technologies offer high-throughput sequencing

at reduced costs and this has provided a methodological base to carry out metagenomic

and metatranscriptomic studies. Metagenomics has opened up several doors to decipher the

biology of the various microbial communities present in different environmental conditions.

This chapter gives a brief introduction to the field of metagenomics and discusses the analy-

sis tools DIAMOND and MEGAN which can be used in combination to taxonomically and

functionally characterize a metagenomic sample.

1.1.1 The importance of microorganisms

Microorganisms are ubiquitous and are present in almost all types of terrestrial, fresh-

water and marine habitats and contribute roughly about 60% of the earth’s biomass [1, 2].

They have established symbiotic relationships with animal and plant hosts which can be mu-

tualistic, parasitic or commensalistic in nature [3]. Microorganisms play an important role in

the ecosystem that they thrive in, for example in the biogeochemical cycles on the earth, like

the carbon and the nitrogen cycle [4]. The agriculture, food, pharmacy and biotechnology

industries benefit from the numerous uses of commercial microbes. Specific microorganisms

are capable of producing certain proteins and enzymes that are commercially important, e.g.

lactic acid bacteria that are used in dairy products [5] or extremophiles that are used for

performing catalysis at extremely high temperatures [6]. Microorganisms associated with a

host play a major role in the health of the host, as is the case with the gut microbiota which

participate in the development of the innate immune system [7]. However, some microor-

ganisms also are pathogenic and cause infectious or life-threatening diseases, like Yersinia

pestis [8]. Due to the vast spectrum of the different roles that microorganisms play, they

exhibit tremendous genetic, metabolic and physiological diversity. The genomes of different

microorganisms have evolved to suit the environment that they have created a niche in [9].

Moreover, several different species of microorganisms could be a part of a niche, in that they

exist not in single, but as an assemblage.

Owing to their importance in several walks of life, large amounts of efforts have been

put into understanding their biology. Traditional microbiology relied on pure cultures to

study microbes. This method, although successful, cannot be used for microorganisms that

grow in extreme conditions because of which they are difficult to obtain as pure cultures in
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the laboratory. The Polymerase Chain Reaction (PCR) [10] was a breakthrough molecular

technique that allowed the amplification of entire genes and therefore the community profiling

with 16S rRNA sequences. With the advent of genomic technologies, sequencing became

popular and led to several bacterial genome projects being completed. The first organism

to have its complete genome sequenced was Haemophilus influenzae [11] followed by the

sequencing of the genomes of several other model organisms like Escherichia coli [12]. A

huge wealth of information has been gathered due to whole genome sequencing of several

microorganisms. It has lead to a greater understanding of molecular biology and has provided

us with a wealth of information about novel genes and biochemical pathways. Insight into

the evolution of microbes has been obtained using comparative genomics. This has also

helped in understanding pathogenesis, aiding vaccine design, crop improvement and others

[2].

In addition, advances in the throughput and reduction in the cost of next-generation

sequencing technologies have paved the way for an alternative approach to study microbes,

involving the extraction and direct sequencing of DNA from an environmental sample. Next-

generation sequencing technologies have made it possible for the new science of metagenomics

to evolve [13, 14].

1.1.2 Next-generation sequencing technologies

After the elucidation of the structure of the deoxyribonucleic acid (DNA) molecule [15],

efforts towards the sequencing of DNA molecules began. Sanger sequencing, developed by

Sanger et al., [16] is one of the most widely used traditional methods of DNA sequencing

which makes use of capillary electrophoresis to separate growing polypeptides from a tem-

plate DNA molecule. The proportion of deoxynucleotides and dideoxynucleotides ensures the

chain termination of the growing polypeptide resulting in identification of the base present

at that position. Sanger sequencing is less prone to errors and generates long reads. But

due to less throughput and intense manual laboratory work, it is not favorable for generat-

ing huge amounts of data. The next-generation sequencing technologies like the Illumina,

454-Ion Torrent, SOLiD, PacBio etc. offer very high throughput and low cost and hence are

the best suited for huge genomic or metagenomic projects [17]. 454 sequencing involves the

PCR amplification of DNA fragments that are attached to a bead and their washing over a

PicoTiterPlate. Each bead falls into one well of the plate which contains enzymes for the

polymerization of the DNA molecule. The addition of the correct base releases a pyrophos-

phate which is imaged. SOLiD is another platform which uses sequencing-by-ligation using

14



Table 1.1: Different sequencing technologies and their chemistry, run time, read length
and run types.

Sequencing
technology

Clonal
Amplification

Chemistry Run
types

Run
time

Read length

454 Emulsion PCR
Pyrosequencing
(seq-by-synthesis)

Single end 23
hours

700

Illumina R© Bridge amplifi-
cation

Reversible dye terminator
(seq-by-synthesis)

Single and
paired end

12 days 2*100

SOLiD R© Emulsion PCR
Oligonucleotide 8-mer
chained ligation
(seq-by-ligation)

Paired-end
sequencing

6 days 75 bp

Ion Torrent Emulsion PCR
Proton detection
(seq-by-synthesis)

Bidirectional
sequencing
available

4 hours 400 bp

PacBio R© N/A (single
molecule)

Phospholinked fluo-
rescent nucleotides
(seq-by-synthesis)

single
molecule

2 days 8,500 bp

Nanopore
(MinION) R© N/A (Single

molecule)

Sequencing as DNA
molecule passing through
a nanopore under an
applied electric field

– – 5400 to 10,000 bp

*Information derived from Glenn 2011, [19], Hodkinson et al., [17] and Feng et al.
[20]

a dibase incorporation system. Ion Torrent detects the change in the pH due to the release

of a proton when a new base is added to the growing DNA polymer. PacBio and Nanopore

sequencing involves the sequencing of individual DNA molecules and produce the longest

reads.

Since most of the metagenomic datasets analyzed in the following thesis have been se-

quenced with the Illumina technology, we discuss that in more detail. Illumina uses the

sequencing-by-synthesis (SBS) chemistry for sequencing and uses a flow cell with oligos at-

tached. It uses reversible dye-terminators for the sequencing reaction. Sequencing begins

with the hybridization of specific adapter sequences on the ends of the DNA fragments and

then washing of the flow cell with these fragments. Polymerization occurs to produce repli-

cates of the same fragment. Reversible dye-terminators are then used to wash the flow cell

followed by washing of excess nucleotides. The flow cell is then imaged. Illumina HiSeq

2500 sequencing offers very high throughput producing 4 billion fragments in a paired-end

fashion with 125 bases for each read in a single run. The MiSeq platform produces the

longest reads, with 300 bases in length each. In the Table 1.1, the sequencing technologies

and their corresponding read-lengths have been mentioned. Illumina sequencing has been

used extensively in metagenomic studies due to its high-throughput [18].
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1.1.3 Whole-genome shotgun metagenomic sequencing

Amplicon sequencing has long been used for the sequencing of microbial communities,

which involved the PCR amplification of only a certain phylogenetically important gene to

study the microbial diversity of environmental samples [21]. Different gene sequences can

be targeted for amplification of bacteria (16S rRNA), eukaryotes (18S rRNA and ITS) and

viruses (g23 and RdRp) [22]. Shotgun sequencing of a genome was an established protocol.

The application of this protocol to microbial communities was first pioneered in a study

by Venter et al. [4], where sampling was carried out from the Sargasso sea to characterize

the microbial community. With this seminal work, the protocol of shotgun sequencing was

applied to the total genomic DNA isolated from microbial communities. Since then, sev-

eral important microbiome projects like the Human Microbiome Project Consortium [23],

MetaHIT [24], Earth Microbiome Projects [25] etc. have been undertaken and these projects

have given us insights into the composition of the microbial communities in the respective

environments. Metatranscriptomics and metaproteomics data are also now being generated

resulting in the understanding of the complexity of microbial communities, their genetic

potential and their effect on the environment that they are part of. Co-occurrence and

correlation between different species can be studied with metagenomics. WGS has given

the opportunity to discover novel genomes [26]. The main questions to be answered when

analyzing metagenomic datasets are:

1. Who is out there?

This mainly involves determining the taxonomic content of the sample. It deals with retriev-

ing information about which species are present and in what abundance, and how diverse

the sample is in terms of different taxonomic groups present.

2. What are they doing?

This mainly involves determining the functional content of the sample. In particular, it

involves cataloging of the genes, modules and pathways present in the sample.

3. How do they compare?

This involves finding the similarities and differences between related samples. Different

metagenomic samples can be compared with each other in terms of their taxonomic and

functional content.

4. How do they relate to the environment they come from?

The correlations between the environmental factors and the taxonomic and functional con-

tent can be made to understand the biology of the microbial communities better.
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(a) Steps involved in a metagenomic study. (b) Bioinformatic analysis of metagenomic samples.

Figure 1.1: The above schematic depicts a generic outline of a metagenomic study. It also lists the
various options available for the analysis of the data.

A sufficient depth of sequencing from the DNA extracted is representative of the mi-

crobial community that it has been isolated from. Sequence analysis of this DNA allows

the characterization of both the taxonomic and functional profiles of the communities. In a

review by Thomas et al., [27] the different stages in a metagenomic workflow are described.

Figure 1.1 shows a general workflow of the metagenomic pipeline and the bioinformatic

analysis of the sequencing reads. Experiment design and planning is of utmost importance.

The biological question to be answered using sequencing has to be well defined. The micro-

bial community to be studied has to be sampled effectively before DNA can be extracted.

When sampling, it is of advantage to consider biological or technical replicates for a later

statistically sound analysis. Also, sampling along several time-points offers more insight into

community dynamics [14].

DNA isolation should be carried out carefully with the appropriate laboratory protocol

and contaminants should be avoided. The right sequencing technology and a good depth of

coverage and total coverage is essential for obtaining a sufficient sampling and sequencing.

In addition, recording the metadata concerning the samples is essential. This could involve

physical characteristics of the sample like the treatment group of the sample, location, pH,

or the time point that the sample was obtained from, or clinical parameters in the case
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where the sample is from a host. Raw sequencing data can be stored along with the related

metadata in public databases like the Sequence Read Archive, (SRA) [28].

1.1.4 Bioinformatics analysis of WGS metagenomic data

The huge amount of sequence data that metagenomic experiments produce necessitates

the usage of advanced computational techniques for their analysis. Sequencing technologies

are prone to error and hence the first step is the quality checking of the raw reads. FastQC

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) is a software commonly used

to check the quality of the raw data. Based on the quality, the raw reads can be processed

for further improvement. FASTX (http://hannonlab.cshl.edu/fastx toolkit/index.html) and

PRINSEQ [29] offer functions to check read lengths, filter based on read quality scores, trim

poly A/T tails, Ns etc. Specific tools for the removal of adapter sequences are also available

and they include Cutadapt [30], Trimmomatic [31] and others. If filtering of host reads is

necessary, then the reads are mapped using mapping tools like BWA or Bowtie to a genome

of the host, if available or a closely related genome. The non-host reads are then analyzed.

Several tools exist for the sequence analysis of raw reads and they can be classified into

three main categories depending on the underlying algorithm they use [32]. The first one

is sequence similarity searching or homology searching that involves the alignment of the

reads to a database of reference sequences and this returns the reads and their matches to

the reference sequences in the database. The most commonly used sequence alignment tool,

BLAST [33], with its different flavors like BLASTN, BLASTX, TBLASTX and others are

used in various scenarios. The National Center for Biotechnology Information (NCBI) holds

several reference databases like NR, NT and GenBank. In some cases, custom databases

are created if the aim is to analyze particular types of sequences. Several tools, CARMA

[34], MG-RAST [35], Kraken [36] and MEGAN [37] carry out the binning of raw reads. The

second kind of sequence analysis is composition based analysis where the k-mer compositions

are determined and used for binning of the reads. PhyloPythia [38] and PhymmBL [39] are

software tools that use sequence composition to classify sequences. The third type of analysis

is extraction of phylogenetic marker genes and their subsequent comparison to a database

of marker genes to determine the taxonomic composition of the metagenomic sample. Tools

like MetaPhyler [40] and MetaPhylAn [41] use clade-specific marker genes for placing reads

into a taxonomic group. Assembly of the metagenome to retrieve individual genomes can

be performed using tools developed specifically for the same. SOAPdenovo [42], Ray [43],

IDBA-UD [44] are some tools that are developed for this purpose. Statistical analysis and
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visualization of multiple metagenomes is an important component of the pipeline. Tools

like STAMP [45], MetaStats [46] and R packages like metagenomeSeq [47], and Vegan [48]

contain functions for statistical tests to determine differences in the relative compositions of

different species or gene families present in the sample.

1.2 The DIAMOND and MEGAN pipeline

Time efficient analysis of metagenomic data was previously a huge bottleneck. DIA-

MOND, written by Buchfink et al [49], is a very fast tool that alleviates this problem to

a great extent. It has been shown to be upto 20,000 times faster than BLASTX when

aligning short reads against the NCBI-nr database and with the same or similar sensitivity.

DIAMOND is an open source software and it can be downloaded freely from the website

- http://ab.inf.uni-tuebingen.de/software/diamond/. It uses a reduced alphabet, spaced

seeds, increased seed length and double-indexing to speed up the database searching. The

creation of a DIAMOND index for the NR database release of March 2016 took about 2.5

hours using 15 cores of a 32 core processor. A DIAMOND Alignment Archive output or

DAA file is created as output consisting of the matches of a read against the sequences of

a database. Options to set E-value and percent identity thresholds exist. The output DAA

file can be opened in the popular metagenome analysis tool, MEGAN, which now has a new

release, MEGAN 6 [37].

MEGAN is MEta Genome ANalysis tool that is used for the analysis of metagenomic

or meta-transcriptomic data. A DAA file has to be “meganized” before it can be opened

in MEGAN, using a tool called Meganizer, which is distributed as part of the software.

Meganizer takes as input the DAA file and several mapping files, like GI to taxonomy, GI to

KEGG, GI to COG, GI to InterPro2Go, GI to SEED and others. Based on the alignments

obtained for a given read, it is placed in a taxonomic group using the Lowest Common

Ancestor (LCA) algorithm. The LCA algorithm traverses through the hits obtained for a

read and for all the hits that have the same bit score, it places the read in a taxonomic bin

that is the lowest common ancestor of those hits. Alternatively, more specific assignments

are made if the read scores a “best” match to a taxonomic group. Several parameters

like the MinScore, MinSupport, MinPercentIdentity, TopPercent and others control

the behavior of the LCA. The default taxonomy used is the hierarchical NCBI taxonomy

containing the levels Domain, Kingdom, Phylum, Class, Order, Family, Genus, Species.

The functional classification of a read is based on the KEGG, SEED, COG, PFAM and
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InterPro2GO hierarchies. For outputs of a BLAST search or of other alignment programs,

the “Import from BLAST” option is used. This dialog box allows the user to specify the

mapping files required and as output produces the Read Match Archive (RMA) file which is

an indexed file with reads and its matches, alignments, and classifications. Once a MEGAN

file representing a metagenomic sample is created, it can be inspected and analyzed. Several

plotting techniques like bar plots, pie-charts, bubble diagrams and heat maps are available in

MEGAN to visualize samples. Multiple files corresponding to different metagenomic samples

can be opened together and a comparative file can be created. PCoA analysis of multiple

samples can be carried out using the Bray-Curtis, Jensen-Shannon diversity index and others.

Alpha and beta diversity can be inspected using MEGAN. The number of reads assigned to

each taxonomic or functional group is called the “read-count” data. This read count data can

be exported as a tab-separated file. Also, tab-separated files containing information about

the read names to the taxonomic or functional assignments and reads can be exported.

MEGAN also allows the incorporation of metadata associated with a metagenomic file. In

addition, the MEGANServer has been developed to access samples served on a public server.

This makes it easy to use already analyzed samples without the need to download them.

1.3 Conclusions

This chapter introduces the field of metagenomics and describes the analysis strategies

and software available for getting the most out of sequencing data. The DIAMOND and

MEGAN pipeline is a fast, easy and straightforward solution to analyzing large whole genome

shotgun metagenomic datasets.
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Chapter 2

Preprocessing of raw metagenomic

data for read quality improvement
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2.1 Introduction

Sample preparation and sequencing using next-generation sequencing technologies is as-

sociated with certain error rates [50]. Different sequencing platforms have different error

rates that depend on the underlying chemistry [51]. For example, the Illumina platform is

known to produce single nucleotide substitution errors. The raw sequencing data could have

a large number of “Ns” and low quality bases. The occurrence of poly-A/T tails is also

very common. As mentioned in the previous section, one of the first steps in the analysis

of metagenomic data is the processing of the raw reads for improvement of the read quality.

FastQC is a popular software that is used for the initial assessment of the quality of the

sequenced reads. It generates a quality report showing the per-base quality, per-base GC

content, per-sequence quality and others. Accordingly, the raw reads need to be trimmed, or

filtered. Many software tools exist for the same purpose, like FASTX toolkit, PRINSEQ etc.

Tools like Cutadapt and Trimmomatic exist for the adapter removal from sequencing data.

Samples obtained from a host warrant the removal of host-associated reads and mapping

tools are used for carrying out the filtering of such reads. In metagenomic analyses, where

binning of the reads is the goal, it may not be important for a low quality read to be filtered,

because such a read may fail to obtain any alignment, automatically filtering it out. In this

chapter, we assess the effect of preprocessing the raw sequence data for read quality on the

ensuing metagenomic analysis.

2.2 Metagenomic samples

We selected five samples from the MetaHIT Project. We used the raw reads and ran a

quality check on them using the FastQC software. Depending on the results, we designed

a pipeline for the quality processing of the raw reads. We then compared the metagenomic

samples before and after processing, with respect to their taxonomic and functional profiles.

Table 2.1 shows the number of reads before and after preprocessing and the time required

for the analysis.

2.3 Quality check and preprocessing

The FastQC quality report listed the per base sequence quality, the per sequence quality

scores, and sequence length distributions as the parameters whose values were not satis-
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Table 2.1: IDs of the MetaHIT samples used, the total number of reads before and after preprocessing
and time required for analysis.

Samples Raw Preprocessed

Number of
reads

DIAMOND
Time (m)

Meganizer
Time
(s)

Total
time
(s)

Preprocessing
Time (s)

Number of
reads

DIAMOND
Time (m)

Meganizer
Time
(s)

Total
time
(s)

bgi-MH0025 55,611,424 198 1,918 13,828 3,114 15,177,808 54 671 7,035
bgi-MH0031 55,568,300 198 1,210 13,110 3,082 9,843,691 35 295 5,485
bgi-MH0035 49,322,484 176 1,955 12,517 3,205 12,322,475 43 306 6,149
bgi-MH0072 49,297,218 175 2,356 12,913 3,293 2,835,957 10 99 3,999
bgi-MH0078 26,055,172 94 936 6,576 1,789 17,246,905 61 597 6,046
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Figure 2.1: The number of reads after preprocessing decrease significantly as also the time required
for their analysis.

factory. The PRINSEQ parameters were chosen in accordance with the report. They can

be summarized as follows: min len (minimum length of the read) which was set to 70,

min qual mean (average minimum quality of the bases in a read) which was set to 20,

trim qual right (trimming of the right end of the read with quality below the specified qual-

ity) which was set to 20. For sample bgi-MH0078, since it had a huge number of duplicates,

the derep option in PRINSEQ was used to remove exact duplicates. After the quality check,

the number of reads got reduced significantly in all samples. The time required to run the

analysis on all these samples was plot as a bar chart in Figure 2.1

2.4 Results

In order to check whether processing indeed affected the overall quality of the samples,

FastQC was run again on the processed samples. Figure 2.2 (output of the FastQC software)

shows the per base quality of the raw versus the processed samples.

For parameters such as the sequence quality and duplication levels, there was improve-

ment in the values after processing. Table 2.2 summarizes these values.

A MEGAN comparison file was then created from the 10 samples - (5 raw samples and

5 processed samples). A principle coordinate analysis (Figure 2.3) using the JensenShannon
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bgi-MH0025 - Before processing After processing

bgi-MH0035 - Before processing After processing

Figure 2.2: The FastQC reports for the quality scores before and after preprocessing, for two sam-
ples.

Table 2.2: Table showing the values of the sequence quality before and after processing.

Samples Raw : Sequence quality Processed : Sequence Quality Raw : Duplication levels Processed : Duplication levels
bgi-MH0025 31 34 4.3% 2.66%
bgi-MH0031 16 31 8.56% 2.74%
bgi-MH0035 17 32 9.96% 3.61%
bgi-MH0072 15 39 8.8% 1.1%
bgi-MH0078 39 39 43.76% 0%
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PCoA on species classifications PCoA on InterPro classifications

Figure 2.3: PCoA in MEGAN for the ten samples at the level of taxonomy and function (InterPro
classifications.)

divergence index on the taxonomy and functional classification (InterPro2GO) of the samples

shows that each pair of raw and preprocessed samples clusters together, indicating that raw

and preprocessed samples do not differ to a great extent.

Further, read-count data was extracted from the comparison file and the difference in the

read counts for the raw and processed samples was assessed. For each feature in the taxonomy

(species and genus level), KEGG, eggNOG and InterPro classifications, the ratio of the read

counts before and after processing the samples was determined. A ratio of 1.0 indicates that

the read count did not change and greater than 1.0 or less than 1.0 indicates decrease and

increase in the read count pointing to the fact that processing changed the analysis results.

The boxplots in Figure 2.4 are the ratios for each features in all the classifications considered.

The scatterplot shows the average ratios.

For all the classifications, a majority of the features have a ratio close to 1, with there

being several features having a high value for the ratios. This indicates that after prepro-

cessing, changes at the read-count level do occur. As can be seen, for bgi-MH0072, the

preprocessing filtered a lot of reads and subsequently, this sample has a high average ratio

for all the classifications tested.

To determine whether the bad quality filtered reads are assigned to a taxonomic or func-

tional classification in the raw unprocessed samples, the read-name to taxonomic assignments

for the raw samples was extracted. These assignments were checked for the presence of any

bad quality read. In all 5 samples, the bad quality reads were not a part of the taxonomic

profile of the raw samples. Thus the low-quality reads are excluded during the read assign-

ment process.
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Figure 2.4: The ratios of the read-counts for the individual features at all levels of classification
before and after preprocessing tend to be close to 1. In comparison to the species level classifications,
the genera level classifications tend to have higher ratios, since it is a higher level of classification.
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2.5 Conclusions

Metagenomic analysis starts with a quality check of the samples in consideration. Al-

though quality checking is essential, it might not always lead to a significant change in the

taxonomic and functional profiles obtained for metagenomic analysis. Preprocessing how-

ever, does improve the quality of the samples as determined by experiments on the five

samples considered. However, a considerable amount of time has to be devoted to checking

the quality and to decide what parameters are suitable for the preprocessing of the data.

This time required is not accounted for, but with a large number of samples, it is certain that

this could take up a considerable amount of time. At the read-count level, the processed and

raw samples show some differences. While an improvement in the read quality of the samples

is certain, it might not be a significant improvement. Thus, it is important to process the

samples and check sample quality, but in some cases it might be skipped because it does not

affect the final results to a great extent. It is recommended in the case where the dataset is

small.
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Chapter 3

Correspondence between different

systems of functional classification
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3.1 Introduction

After alignment of newly sequenced genomic or metagenomic data to reference sequences,

different systems for functional annotation can be used to put the reads into a biological

context like an orthologus group, pathway or a module. Several systems of functional classi-

fication exist, like the KEGG [52], SEED [53], InterPro [54] and eggNOG [55]. These systems

are employed for functional classification in MEGAN. Depending on the alignments of a read

to reference proteins, the reads are binned into a functional classification system based on the

membership of the reference protein to any orthologous group in the classification system.

In the study described in the chapter, we aimed at comparing three different classification

systems, the KEGG, InterPro and eggNOG (COG).

3.2 Mapping the classifications for reference proteins

from the NCBI-NR database

The NCBI-nr database released in June 2016 was downloaded from the NCBI FTP which

has a total of 89,362,690 sequences. The number of unique GI (Gene Identification) numbers

from the database were 2,80,103,394. This was compared with the mappings from GI to

KEGG, GI to COG and GI to InterPro. The comparisons yielded the percentage of the total

number of GI’s that have all three (KEGG, COG and InterPro) assignment, the percentage

that have only one of the three and the percentage that has any two assignments. The Venn

diagram in Figure 3.1 is annotated with these values. Only about 51% of the total number

of GIs have at least one identifier associated which leaves about 49% of the total number of

GIs in the NR database without any identifier.

3.3 Mapping the classifications for reads from

metagenomic samples

Next, we wanted to determine the correspondence between the classification systems by

tracking the assignment of each read in a metagenomic sample to the different systems.

For a given read, we determine which KEGG, COG and InterPro group it bins into. Three

metagenomic datasets analyzed with the DIAMOND and MEGAN pipeline were used for this

purpose. One is a mock metagenome consisting of 64 microbial species [56], one is a MetaHIT
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Figure 3.1: Percentage of the total number of GIs in the NCBI-nr database that have all, two or
one assignment. The percentage of the GIs that have all identifiers for all three classifications is
very low as compared to the percentage of the GIs that have only a KEGG or InterPro identifier
associated.

sample previously used for the preprocessing study and the third is a human gut microbial

sample from the study by Louis et al. [57]. For the three classification systems, CSV files

with the read name and the identifier of the category that it is binned into were downloaded.

Starting with this information, the number of reads that got assigned exclusively to an

eggNOG category, or a KEGG group or an InterPro group was calculated. The number of

reads that got assigned by all the three categories and the number of reads that got assigned

to two systems but not the third one was calculated. The Venn diagrams in Figure 3.2 depict

the percentages of the total reads that each category amounts to.

From these analyses we conclude that the assignment rate of the COG classification

system is the highest in the three samples studied. There is a consistency between the results

for the three samples, as is evidenced from the values. One identifier from any functional

classification system is expected to map to multiple identifiers from the other classification

systems. For each identifier from each classification system, the number of different KEGG,

eggNOG and InterPro identifiers it maps to was determined. An average of these values was

calculated, shown in Table 3.1

That the scores tend to have a value greater than 1, reveals that each identifier may map

to multiple other identifiers in other classification systems. The highest values are for the

InterPro identifiers. This may be because InterPro mostly characterizes protein domains,
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Figure 3.2: Venn diagrams depicting the overlaps between the classification systems. (a)-(c) :
Percentage overlap shared by the reads in the samples, (b) : Mock metagenome, (c) : AS50 0 (d) :
bgi-MH0025
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Table 3.1: Average number of the different orthologous groups mapping to a given identifier.

Classification system KEGG InterPro COG
KEGG – 1.52 1.47
InterPro 1.88 – 2.37
COG 1.71 1.69 –

Table 3.2: Table of the shared and non-shared triplets.

Type Sample Unique
in NR

Total
in read-
mappings

Present Absent

Triplets Total 13,734
Mock
metagenome

715,902 1,578 714,324

bgi-MH0025 52,415 1,332 51,083
AS50 0 78,474 1,256 77,218

Doublets InterPro
and KEGG

Total 18,218

Mock
metagenome

150,588 1,925 148,663

bgi-MH0025 42,000 1,522 40,478
AS50 0 30,170 1,297 28,873

Doublets KEGG
and COG

Total 13,779

Mock
metagenome

433,286 2,373 430,913

bgi-MH0025 21,287 1,694 19,593
AS50 0 25,945 1,509 24,436

Doublets InterPro
and COG

Total 24,429

Mock
metagenome

595,986 2,784 593,202

bgi-MH0025 58,591 1,836 56,755
AS50 0 35,722 1,565 34,157

and a single protein may have multiple domains.

We expect that the mappings derived from the publicly available mapping files will be

the same as the mappings obtained from the metagenomic samples. However, an analy-

sis of the triplets, that is read-mappings of the InterPro-KEGG-COG revealed that from

the metagenomic datasets, triplets could be found that do not occur in the NR mappings.

However, some of them are common. The unique GI-KEGG-InterPro-COG mappings were

considered. Then from the three datasets, unique KEGG-InterPro-COG triplets were ex-

tracted. The Table 3.2 contains the number of unique triplets and doublets and the number

of triplets or doublets that appear in both the NR mappings and read mappings. Figure 3.3

shows the number of unique triplets and doublets encountered in the NR and the samples.
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Figure 3.3: The number of unique triplets and doublets as derived from the NR and the metagenomic
samples. The number of triplets and doublets is very high in the mock metagenomic sample.
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The unique number of triplets and doublets in the read-mappings is much more than

what is present in the GI to functional category mappings. This is because for a given read,

it may align to multiple reference sequences and the sequence that the read is finally assigned

to may not be associated with an identifier from all the classification systems. This difference

is especially stark in the mock metagenomic sample, where the number of reads is very high.

3.4 Conclusions

The comparison of the different systems for functional classifications reveal that the

orthologous groups as defined by a given classification system may correspond to one or more

orthologous groups from other classification systems. Different systems have different rates of

assignment. One orthologous group in a given system of classification in effect corresponds to

multiple different groups in another system of classification. It is recommended that multiple

different systems of classification be used when analyzing metagenomic samples. Comparing

the annotations for a given read as per each classification system is also informative. In

the future, efforts could be concentrated towards creating a meta-viewer which combines the

annotations and simultaneously classifies a read into multiple classification systems.
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Chapter 4

Analysis of a dataset of gut

metagenome samples from obese

patients
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Metagenomics has proven to be of great utility in studying the different microbes present

on and inside the human body, particularly the human gut microbiota. The intestinal

flora play a vital role in the health of its human host and their dysbiosis has been proved

to be instrumental in shaping several diseases like obesity, metabolic syndrome and non-

alcoholic fatty liver disease. Studies have suggested that strong connections exist between

gut microbiota, diet and obesity. In this chapter we discuss the analysis of the metagenomic

samples obtained from shotgun sequencing of fecal samples from 16 obese patients undergoing

a formula diet treatment for weight-loss. We discuss the key results and observations from

the analysis.

4.1 The human gut microbiota

The human body is inhabited by millions of commensal microorganisms that help in the

normal functioning and the maintenance of good health of the human body [58, 59]. The

number of microbial cells outnumber the somatic cells [23] and contribute to the biomass.

Tremendous diversity of bacteria, archaea, viruses and fungi are present as part of the

microbiome. In recent years the advancement of genomic technologies have made it possible

to characterize the human microbiome [60]. For example the Human Microbiome Project

aimed at sequencing samples from different individuals and various body sites like the oral

tract, gastrointestinal tract, the skin and others. These studies have revealed that microbes

have created specific niches on the human body [61].

One of the most complex and intriguing microbial ecosystems in the human body is the

gut microbial system. The gut microbiota possess genes that are important in the metabolism

and hence they are extremely important and are deemed a vital organ of the human body

[62]. Colonization of the intestine begins at birth and rapidly changes and attains an adult

stage, with major changes occurring again at old age. They are composed of trillions of

cells representing several different species [7]. Species from seven phyla are present in the

gut namely, Bacteroidetes, Firmicutes, Actinobacteria, Verrucomicrobiota, Tenericutes, and

Fusobacteria. Bacteroidetes and Firmicutes are the groups that are most predominant. They

harvest nutrients from the diet that are otherwise inaccessible to the host. Many species

especially from the Bacteroidetes phyla possess polysaccharide degrading enzymes that their

mammalian hosts do not have. The gut microbiota take part in fat storage. They carry out

the metabolism of drugs and other xenobiotics and protect the host from colonization by

pathogens. Development of the innate immune system also depends on the gut microbiota.
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They also play a role in the production of vitamins [63]. In spite of similarities at high

taxonomic levels like the phylum, the gut microbial composition varies substantially between

individuals across geographical locations and age [64]. In the study by Arumugam et al., [65]

three enterotypes corresponding to three dominating species were described. Apart from the

enterotypes, many factors contribute to the variability of the gut microbiome such as the

age and lifestyle. The gut microbiome is also known to vary over time. In addition, several

disease states have been associated with the increase or decrease in relative abundance of

specific species. Dysbiosis of the the gut flora has been linked to inflammatory bowel disease

[66], obesity [67], colorectal cancer [68] and other medical conditions.

4.2 Hohenheim Obesity Project

4.2.1 Gut microbiota, diet and obesity

Obesity is an important public health issue in recent times and is associated with co-

morbidities like metabolic syndrome and non-alcoholic fatty liver diseases. Obese people

are prone to high blood pressure. Many factors such as lifestyle, eating habits and genetics

contribute to it. Proper treatment and care is of huge importance if the patient is known to

be clinically obese, as it can even cause life threatening diseases like cardiovascular diseases

[69].

The gut microbiota have been shown to play a role in obesity in several mouse and human

experiments. Dysbiosis of the gut microbiota has been seen in obese versus lean patients

[70]. By fermenting the indigestible polysaccharides, the gut microbiota contribute to the

energy harvest from diet. This has mostly been linked to the relative abundance of members

of the Firmicutes and Bacteroidetes phyla [71].

Diet is known to have a rapid and reversible impact on the gut microbiota. Diet inter-

ventions are a common method of treating obesity and they primarily have an effect on the

composition of the gut microbiota [72]. Studies that look at the effect of diet on the gut

microbiota for a long period of time are scarce. In the work described in this chapter, we

were interested in examining the gut microbiome of obese patients who underwent a diet

intervention over a period of two years.

The gut microbiome of 16 obese patients who participated in a weight-loss interven-

tion was characterized. Formula diet was used as intervention and DNA extracted from

fecal samples was sequenced. Weight-loss, non-alcoholic fatty liver disease (NAFLD), and

Metabolic Syndrome were monitored. This dataset will be further referred to as the “Ho-

39



henheim Dataset” and the study “Hohenheim Obesity Project”, described in Louis et al.,

[57]. 1

4.2.2 The study

Selection of subjects

16 obese patients from a multi-center clinical trial and research project “Obesity and the

gastrointestinal tract” (ClinicalTrials.gov identifier: NCT01344525) were selected. At the

start of the study, written and informed consent was obtained from all the patients. The

patients were excluded for chronic or current gastrointestinal disease, severe eating disorders,

and treatment with anti-, pre- or probiotics within 3 months before collection of the samples.

All patients belong to the Bacteroides-enterotype as determined through the sequencing of

the first sample. The patients with a similar BMI and a similar age at the start of the study

were considered. The final cohort consisted of 16 subjects (9 women) with a mean BMI of

43 ± 7 kg*m-2 and age of 40 ± 8 years at the start of the study. A defined multidisciplinary

weight-loss program was then carried out for 12 months followed up for another 12 months.

During this period, the participants were examined at six time points, at the start, (T0)

and at 3, 6, 12, 18 and 24 months (T3-T24). At T0, all participants underwent a thorough

medical examination. A set of clinical tests were performed at all time points, explained in

a later section.

Weight-loss intervention

The multidisciplinary weight-loss program (OPTIFAST R© 52, Nestlé Inc.) has a positive

effect on the weight-loss of the patients, explained at a great length in [73]. The 52 week

program involves lifestyle modification based on psychology, medicine, dietetics and exercise.

It also consists of consumption of a low-carbohydrate, inulin containing formula diet for 3

months. Inulin is the only source of energy during this period. The three months of diet

intervention are followed by 8 weeks of reintroduction to normal food. This is again followed

by a maintenance phase where the patients slowly begin the intake of normal food, while

keeping their weight stable. Compliance to the program was assessed through participation

in the meetings. Patients were also given dietary diaries to fill before the start of the program.

1The metagenomic analysis and its results in the publication was carried out using MALT, however with
the availability of DIAMOND, the samples were re-analyzed and the results are described in this thesis. The
main results with MALT and DIAMOND software tools do not differ.
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Clinical parameters

At every time-point, several clinical parameters like the weight, height, blood and liver

parameters were measured. Liver sonography was performed by a trained physician. Blood

serum was analyzed for alanine aminotransferase (ALT), gamma-glutamyl-transferase (GGT),

C-reactive protein (CRP), leukocytes, fasting glucose, insulin, HbA1c, total-, LDL- and

HDL-cholesterol, and triglycerides in a certified medical laboratory (Laborärzte Sindelfin-

gen, Germany). The Homeostasis Model Assessment-Insulin Resistance (HOMA-IR) index

was calculated to estimate insulin sensitivity. The Fatty Liver Index (FLI) is a validated

marker of risk for fatty liver disease and this was calculated. We used the definition of the In-

ternational Diabetes Foundation (http://www.idf.org/metabolic-syndrome) for determining

the metabolic syndrome state of study participants at different time points. IDFmetSynd

and NCEmetSynd are the parameters measured for metabolic syndrome. The parameters

were later correlated with the microbiome composition to inspect correlations between them.

Analysis of gut microbiota by shotgun sequencing

Collection of fecal samples was carried out at the six time-points. DNA extraction from

the stool samples was performed using the “PSP-Spin-Stool-DNA-Plus Kit with lyses en-

hancer according to the manufacturers instruction (Stratec Molecular, Berlin, Germany).

Whole-metagenome shotgun sequencing was done by the company CeGat, Tuebingen, Ger-

many. Illumina HiSeq 2500 sequencer was used for producing 2x100 (paired-end) reads. On

an average, the sequencing led to 2.1 GB per sample, with a sequencing depth of 10.9 mil-

lion reads per paired-end sequencing (s=6.3 million). Out of the 96 samples expected to be

obtained (16x6), 4 samples were missing.

4.2.3 Weight-loss, NAFLD and Metabolic Syndrome

Towards the end of the diet intervention, that is at the end of three months (T3), all

patients showed a significant decrease in the weight (i.e. a high value of relative weight-

loss). This relative weight-loss did not remain constant throughout the reintroduction and

maintenance phases, with there being many fluctuations. At the end of the diet intervention,

some patients were successful in losing more than 10% of their initial weight (a total of 9

patients) and the rest of the patients lost less than 10% of their initial weight (a total of 7

patients). This led us to divide the patients into two groups, the successful intervention group

and the non-successful intervention group. The relative weight-loss in shown in Figure 4.1.
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Figure 4.1: Relative weight-loss over the period of the study for the 16 patients. Black : positive
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participants and the dotted lines to depict male participants.2
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Both the grade of NAFLD and also the values of the Metabolic Syndrome parameter

reduced for most patients after the diet intervention.

4.2.4 Objectives of the study

The main focus of the study was the characterization of the changes in the gut microbiome

with respect to taxonomical and functional composition during the participation of the

patients in the diet intervention. We wanted to know which bacterial groups, if any, fluctuate

most in their abundance values during this time period. The second goal was to relate

external measurements of weight, NAFLD and Metabolic Syndrome to the microbiome and

assess whether significant differences are present in the gut microbiota composition between

patients who have significantly different values for the assessed clinical parameters. Another

aim was to determine whether the success or failure of the diet treatment is dictated by the

initial composition of the gut microbiota, that is at T0.

4.3 Sequencing and bioinformatics analysis

4.3.1 Characterization of changes in the gut microbiome

composition over the diet-intervention

Sequencing of the DNA extracted from the fecal samples was carried out with the Il-

lumina HiSeq 2500 technology. Paired-end reads with 100 base-pairs each were generated.

A quality check was performed using the FastQC software. Processing of the raw sequence

data was carried out with the PRINSEQ software. The reads were filtered for Ns and mean

quality. The resulting reads were subjected to a DIAMOND analysis against the NCBI-

NR (February-2015) version. The so obtained DAA files were meganized and imported

in MEGAN. Metagenome data is available at the NCBI Server under Bioproject ID PR-

JNA290729. The DAA files are available on the MeganServer in the LouisEtAl2016 folder.

A MEGAN comparison file was created by normalizing the read counts obtained. It also

indicates the number of reads that got assigned to the Taxonomy, KEGG, COG and In-

terPro2GO classifications. Considering all 92 samples together, the most abundant phyla

were Bacteroidetes (67.35%), Firmicutes (27.29%), Proteobacteria (2.23%), Actinobacte-

ria (1.41%) and Verrucomicrobia (0.99%). The most abundant KEGG pathways were the

2We wanted to investigate whether the gender of the patient is an important factor in weight-loss, but
the analysis showed no correlation between gender and dietintervention.
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Biosynthesis of amino acids, Metabolism of cofactors and vitamins, Carbon metabolism,

Purine metabolism and Pyrimidine metabolism. The predominant InterPro terms in all

samples considered together were the IPR026892 Glycoside hydrolase family 3, IPR005094

Endonuclease relaxase, MobA/VirD2, IPR004764 Hydrophobe/amphiphile efflux-1 HAE1,

IPR025705 Beta-hexosaminidase, IPR000322 Glycoside hydrolase family 31, IPR027256

P-type ATPase, subfamily IB, IPR006275 Carbamoyl-phosphate synthase, large subunit,

IPR012754 DNA-directed RNA polymerase, subunit beta-prime, IPR004602 UvrABC sys-

tem subunit A, IPR011895 Pyruvate-flavodoxin oxidoreductase, IPR001668 Plasmid recom-

bination enzyme and IPR000743 Glycoside hydrolase, family 28. There can be seen a huge

abundance of carbohydrate fermenting proteins.

The 92 samples part of the dataset were visualized as a PCoA (Figure 4.2) using the

Jenson-Shannon index at the level of species and KEGG classifications in MEGAN. Each

point in the PCoA corresponds to a sample and is colored and shaped according to the

patient and the time-point that it belongs to. For the PCoA using the species counts,

no strong separation is seen between the samples, although a general observation is that

the samples from the same patient but at different time points tend to cluster. For the

KEGG classification, no specific clusters are seen. The green and orange arrows depict the

biplots and the triplots. At the species level, the Bacteroides species, namely, Bacteroides

massiliensis, Bacteroides plebeius DSM 17135 and Prevotella copri DSM 18205 are the

species responsible for the most difference between samples. For the KEGG classifications,

K12373 hexosaminidase [EC:3.2.1.52], K01190 beta-galactosidase [EC:3.2.1.23], K03205 type

IV secretion system protein VirD4 are responsible for most separation between samples. In

both cases, the clinical parameters IDFmetSynd and NCEmetSynd are the ones responsible

for most difference between samples. This is in line with a common observation that related

gut microbiota samples tend to exhibit very similar composition at the level of function but

in fact show many differences at the level of species and taxonomic composition. To gain a

better understanding, we inspected the taxonomic composition at the level of genera. The

Figure 4.3 depicts the abundance at the level of genera with the legend in Figure 4.4

In order to statistically test the differences between the composition along the time-

points, we carried out Wilcoxon test at all taxonomic levels as well as functional levels. The

Wilcoxon test was carried out between T0 - T3, T3 - T6, T6 - T12, T12 - T18 and T18

- T24. Additionally, we carried the tests at T0 - T6, T0 - T12, T0 - 18 and T0 - T24.

This was done at all phylogenetic levels like Phylum, Class, Order, Family, Genus, Species
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Figure 4.2: PCoA of the 92 samples at the level of species shows clustering of the samples from the
same patient at different time-points. At the level of functional classification, no specific clustering
is seen.

as well as the functional level, InterPro2GO, KEGG and COG. A p value of less than 0.05

was considered significant. The Wilcoxon tests revealed that the most changes occur before

and after the actual diet intervention, that is from time point T0 and T3 and T3 and T6.

This is also the period corresponding to most weight-loss. At higher phylogenetic levels the

changes in relative abundance are less conspicuous, but at the level of genera and the species,

there are many groups with significant changes in relative abundance. This also points to

the idea that different individuals show a greater degree of dissimilarity when lower levels of

taxonomy are considered than when higher taxonomic levels are considered. The strongest

changes are between the relative abundances of many species of Alistipes and Roseburia.

The Alistipes species showed a significant increase in the abundance from T0 to T3 and

a significant decrease from T3 to T6. Roseburia showed a decrease from T0 to T3 but an

increase from T3 to T6. Figure 4.5 and Figure 4.6 depict the species with the most abundant

changes as per the Wilcoxon tests are shown as a tree in MEGAN.

The number of changes at the level of species decreases for the later time points. The

changes from T6 to T12, T12 to T18 and T18 and T24 are shown in Figure 4.7 as a tree. From

T12 to T18, a general decrease in Bacteroidetes species and an increase in the Firmicutes

species is observed.

For the functional levels the most changes were observed from T0 to T3 and T3 to
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Samples
0

10

20

30

40

50

60

70

80

90

100

N
um

be
r 

of
 r

ea
ds

 (
%

)

AS44_3

AS50_3

AS51_3

AS53_3

AS56_3

AS58_3

AS60_3

AS62_3

AS63_3

AS64_3

AS65_3

AS66_3

(c) T0 (Start of intervention) (d) T3 (End of intervention)

Taxonomy profile at the level of genera for T6
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Taxonomy profile at the level of genera for T12
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Taxonomy profile at the level of genera for T18
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Taxonomy profile at the level of genera for T24
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Figure 4.3: Stacked bar-plots of the read-count data at the level of genera shows the increase in the
abundance of the Alistipes genera at the end of the diet-intervention.
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Legend (Taxa):
Bacteroides Alistipes Faecalibacterium Parabacteroides Prevotella unclassified Lachnospiraceae Subdoligranulum Oscillibacter Akkermansia Roseburia Sutterella
Ruminococcus Bifidobacterium Eubacterium Barnesiella Blautia Clostridium unclassified phages Bilophila Lachnoclostridium Collinsella Dialister
Phascolarctobacterium Odoribacter Ruminiclostridium Paraprevotella Coprococcus Acidaminococcus unclassified Clostridiales (miscellaneous) unclassified Ruminococcaceae
Megamonas Dorea Butyricimonas Intestinimonas environmental samples <Bacteria> Desulfovibrio Flavonifractor Parasutterella Pseudoflavonifractor Hungatella
Peptoclostridium Holdemania Butyrivibrio Anaerotruncus Escherichia unclassified Firmicutes sensu stricto (miscellaneous) unclassified Oscillospiraceae Streptococcus
unclassified sequences Butyricicoccus Tannerella [Bacteroides] pectinophilus Coprobacter Eggerthella Paenibacillus Porphyromonas Marvinbryantia Oribacterium
unclassified Burkholderiales (miscellaneous) unclassified Erysipelotrichaceae Trichuris Tyzzerella bacterium MS4 Veillonella Rhizobiales Lachnospira Enterococcus
Treponema Mitsuokella Coprobacillus Lactobacillus Bacillus Campylobacter Dehalobacter Gordonibacter Anaerostipes Helicobacter
environmental samples <Proteobacteria> Erysipelatoclostridium Pseudobutyrivibrio Holdemanella Adlercreutzia Staphylococcus Faecalitalea Robinsoniella Leuconostoc
Selenomonas Haemophilus Sellimonas Dysgonomonas Homo Candidatus Soleaferrea Rhodobacteraceae Rikenella Peptoniphilaceae Fusobacterium Streptomyces
Slackia Enterorhabdus Alloprevotella Atopobiaceae Catonella environmental samples <clostridial firmicutes> Cellulomonas unclassified Bacteroidales (miscellaneous) Dielma
environmental samples <Lachnospiraceae> Cyanobacteria Sphingobacteriaceae Lachnoanaerobaculum Actinomyces Phi29likevirus Catenibacterium Mucinivorans
Thermobrachium Rickettsiales Citrobacter Lactococcus Desulfitobacterium Megasphaera Acholeplasma Pyramidobacter Synergistes unclassified Podoviridae
Caldicoprobacter Gemella Anaerovorax Varibaculum Acetobacteraceae Sanguibacteroides Rothia Intestinibacter Triticinae Sphaerochaeta Cytophagales
unclassified Coriobacteriaceae bacterium LF-3 Sphingomonadales Euryarchaeota Desulfotomaculum unclassified Opitutaceae Ethanoligenens Zunongwangia Klebsiella
Oryza [Eubacterium] nodatum Oxalobacter Turicibacter Propionibacterium unclassified Siphoviridae Acetobacterium Sedimentibacter Hallella Macaca Lachnobacterium
Autographivirinae Saccharomycetales unclassified Clostridiales Family XIII. Incertae Sedis Enterocytozoon Tepidanaerobacter Stomatobaculum Burkholderiaceae
unclassified Peptostreptococcaceae Flavobacterium Desulfobacterales Acinetobacter Haloferula Pentapetalae Shigella Magnetospirillum Youngiibacter Mogibacterium
Succinivibrionaceae

Figure 4.4: Legend detailing the different genera.

Bacteroides dorei
Bacteroides oleiciplenus
Bacteroides stercorirosoris
Bacteroides vulgatus

Bacteroides

Parabacteroides merdae CAG:48
Parabacteroides sp. D25

Parabacteroides

Alistipes finegoldii
Alistipes onderdonkii
Alistipes sp. AL-1
Alistipes sp. HGB5
Alistipes finegoldii CAG:68
Alistipes sp. CAG:29

environmental samples <Alistipes>

Alistipes

Bacteroidales

Parasutterella excrementihominis
Sutterella parvirubra
Sutterella wadsworthensisSutterella

Sutterellaceae

Treponema
Bifidobacterium adolescentis
Collinsella aerofaciens

Actinobacteria <phylum>

Bacillus
Paenibacillus

Bacillales

Butyricicoccus pullicaecorum
Clostridium sp. ATCC 29733
Hungatella hathewayi

Clostridiaceae

Eubacterium rectale CAG:36
Agathobacter rectalis
Blautia producta
Marvinbryantia formatexigens
Roseburia intestinalis CAG:13
Roseburia intestinalis
Roseburia inulinivorans

Roseburia

Lachnospiraceae

Oscillibacter valericigenes
Peptoclostridium difficile
Anaerotruncus colihominis
Anaerotruncus sp. G3(2012)

Anaerotruncus

Ruminococcus bicirculans
Ruminococcus callidus

Ruminococcus

Subdoligranulum variabile

Ruminococcaceae

Intestinimonas butyriciproducens
Pseudoflavonifractor capillosus
Clostridiales bacterium NK3B98
Clostridiales bacterium VE202-15
Clostridiales bacterium VE202-21

unclassified Clostridiales (miscellaneous)
unclassified Clostridiales

Clostridiales

Holdemania filiformis

Firmicutes
Terrabacteria group

Bacteria

uncultured organism

root

Species

Figure 4.5: The species that significantly change in relative abundance over T0 and T3 are shown.
Orange : The mean read-count of the species for T0 over all patients. Gray : The mean read-
count of the species for T3 over all patients. As compared to T0, the relative abundance of several
species of Alistipes increase in abundance. Species belonging to other genera, notably the Roseburia,
decrease in relative abundance.
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Figure 4.6: Red : The mean read-count of the species for T3 over all patients. Gray : The mean
read-count of the species for T6 over all patients. From the end of diet-intervention (T3) to the
start of the maintenance phase, (T6), a reversal of the previous changes occurs, with decrease in
the relative abundance of Alistipes species and increase in the relative abundance of the Roseburia
species.
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Figure 4.7: The tree represents the genera that significantly change in relative abundance for the
maintenance phase. Fewer significant changes are observed, pointing to the resilience of the gut
microbiota, where Green : previous time-point and Gray : later time-point.
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Significant change in relative abundance over intervention : Species
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Figure 4.8: The species most fluctuating in relative abundance as determined by the Friedman’s test
are shown as a stacked bar-plot. Each value in the bar is the mean read-count for the particular
time-point for each of the species, over all patients.

T6. The most abundant and significantly changing KO groups belonged to carbohydrate

metabolism enzymes like beta-galactosidase, alpha-glucosidase and others. These enzymes

usually decreased from T0 to T3. In the changes from T3 to T6, the KO groups belonged

to a range of pathways and not only the carbohydrate pathways. A Friedman’s test was

carried out to check the overall changes in the gut microbial composition. The species

most fluctuating in relative abundance and the KEGG groups most fluctuating in relative

abundance are shown in Figure 4.8 and Figure 4.9. The mean abundance of all patients of

a given species (or KO group) at a given time-point is plot.

Table 4.1 describes the KO groups that are abundant in the samples and significantly

change in relative abundance. As can be seen, for the KO groups, the values over the time-

points are constant, unlike the case with the species composition. It is a common observation

that the abundance of functional categories are similar across related samples, and are not
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Figure 4.9: The Friedman’s test for the KEGG functional classifications

Table 4.1: Description of the KO groups determined to be significantly changing in their relative
abundance over the intervention.

KO Orthologous group Pathway
K00266 glutamate synthase (NADPH/NADH) small chain Biosynthesis of amino acids
K00688 starch phosphorylase Carbohydrate metabolism
K01209 alpha-N-arabinofuranosidase Carbohydrate metabolism
K01662 1-deoxy-D-xylulose-5-phosphate synthase Metabolism of cofactors and vitamins
K01740 O-acetylhomoserine (thiol)-lyase Amino acid metabolism
K01893 asparaginyl-tRNA synthetase Translation
K02112 F-type H+-transporting ATPase subunit beta Energy metabolism
K03150 2-iminoacetate synthase Metabolism of cofactors and vitamins
K04041 fructose-1,6-bisphosphatase III Glycolysis / Gluconeogenesis
K07407 alpha-galactosidase Galactose metabolism
K12308 beta-galactosidase Galactose metabolism
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Figure 4.10: The colors are reflective of whether the read-count abundance increased or decreased
with respect to T0 along the rest of the time-points. For every individual, this trend is different.

variable as is the case with the species.

The statistical tests helped in determining the taxonomic groups that are most fluctu-

ating, however, every patient reacts differently and hence it is important to consider the

individual trends. For the species determined to be significantly changing, the read-count

abundance relative to T0 was calculated and plot as heatmaps (Figure 4.10).

We therefore conclude that inspecting the general trends in a gut microbiome dataset is

important, but it is also of interest to study the dynamics of the gut microbiome of a single

patient over the time-points. This would lead to more understanding of the individualistic

nature of the gut microbiome and help in personalized treatment of obesity.

4.3.2 Differences between the gut microbiota of patients with

successful (PI) and non-successful (NI) diet-intervention

Depending on the relative weight-loss at the end of the diet-intervention, the patients

were grouped into two categories – the successful intervention group consisting of patients
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Figure 4.11: PCoA plots at the species level showing the clustering between the different samples,
blue : non-successful diet intervention, yellow : successful diet intervention.

that lost at least 10 % or more of their weight with respect to the weight at the start of

the intervention (T0) and non-successful intervention group, consisting of patients that lost

less than 10 % of their weight. A Student’s t-test was performed to find whether significant

differences exist between the two groups. The main difference between the groups was in

the Firmicutes to Bacteroidetes ratio at the start and end of the intervention, Figure 4.11

At T3, the patients with more than 10% weight-loss at T24 have a significantly high

amount of Firmicutes to Bacteroidetes as compared to the patients with less than 10%

weight-loss at T24. Thus a greater relative abundance of the members of the Firmicutes

species are indicative of success in the intervention (Figure 4.12).

This also points to the idea that the success of the diet intervention may depend on

the initial composition of the gut microbiome and also on the individual patients. Obesity

needs a personalized treatment and studies such as these could provide with essential clues

regarding the design of the treatment.
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Figure 4.12: Boxplot of the Firmicutes and Bacteroidetes ratio. NI - Non-successful Intervention,
SI - Successful Intervention

4.3.3 Relating the clinical parameters for NAFLD and Metabolic

Syndrome

Fatty Liver Index (FLI) and HOMA-IR were used for the diagnosis of NAFLD. The

diet intervention had a positive effect on the grade of NAFLD. At T3, most patients had a

reduced grade or negative result for presence of NAFLD. At T3, a total of 8 patients were

not positive for NAFLD as measured by the two parameters. At T24, 8 patients were not

positive for NAFLD. At time points T3 and T24, the differences in the relative abundances

of species between the patients with or without NAFLD were tested.

Tests performed for finding significant differences revealed that those patients with NAFLD

had much lower counts of the bacterium Subdoligranulum variabile as compared to the pa-

tients that did not have NAFLD. This agrees with the observation by Bajaj et al., [74] who

found out that cirrhotic patients had reduced relative abundance of this bacterium.

For Metabolic Syndrome, the bacterium Faecalibacterium prausnitzii and Eubacterium

ventriosum was found to be significantly higher in patients without any metabolic syndrome.

4.3.4 Time-series clustering of the patients.

The above study was carried out over a period of 2 years and produced time-series data.

The time-series is not a long one, since only few time-points are recorded. This is often a
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problem with huge metagenomic projects, especially whole-genome shotgun projects where

obtaining data for several time points, although possible, is limited due to the finances

involved. Many methods specifically focus on the statistical analysis of time-series metage-

nomic data as reviewed in [75]. However, many of the methods are statistical-model based

and it is not possible to create statistical models with few data-points. Thus, there is always

a need of novel statistical techniques to analyze time-series metagenomic data. Many studies

on time-series metatranscriptomic data are available. In the case of the Hohenheim Project,

one of the questions we aimed at answering was whether any difference existed between the

microbiomes of successful and non-successful patients. For this it was also important to

find the “overall” microbiome composition along the time-points for each patient. In order

to determine how the patients cluster overall during the entire time-period, we binned the

patients in clusters along each time-point, and then determined which samples have the

propensity to be in a given group.

Specifically, read-count data at the level of genera was extracted and normalized for

the 16 patients at each time-point. The Vegan veg-dist package was used for creating a

distance matrix according to Bray-Curtis metric. The distance matrix was then subjected

to a Partitioning Around Medoids (PAM) clustering. The output of the PAM clustering for

each time-point was used to determine, for each pair of patients, the number of times they

are together in a cluster. Based on this, a distance matrix was created, and to visualize it,

a dendrogram was created (Figure 4.13).

This offers some additional insight into how the patients/samples themselves are related,

however, these clusters do not explain a particular phenotype, for example weight-loss or

NAFLD.

4.4 Conclusions and discussion

Whole genome shotgun sequencing of the fecal samples to study the gut microbiota is now

commonplace and has given us the opportunity to study the gut flora at the taxonomic and

functional level. For the Hohenheim Project, the metagenomic sequencing coupled with the

correlation of clinical parameters contributes towards understanding how the gut microbiota

are affected after a weight-loss formula diet treatment. Longitudinal analysis proved to be

beneficial in tracking the gut microbial changes long after intervention. However, a deeper

depth of sequencing and more time-points could have contributed to the robustness of the

analysis.
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Figure 4.13: Clustering of the patients according to similar taxonomic profiles over the diet-
intervention.
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Formula diet treatment results in significant loss in weight accompanied by change in the

microbial composition of the gut microbiota, but this change is transient and does not persist

in the maintenance phase (for a longer period of time). The greatest impact was seen at

month 3, at the end of the diet intervention. Samples from the same patient, but at different

time points are more similar than samples from other patients. The diet intervention was

characterized by significant changes in many groups of bacteria, both from the Bacteroidetes

and Firmicutes phyla. But the Firmicutes to Bacteroidetes ratio was significantly high in

the patients with a successful diet intervention treatment. This indicates that there is a

possibility that the success of diet intervention could be detected at an early stage.

Several different groups of species like the Alistipes, Akkermansia, and the butyrate

producing Roseburia are all important species in the diet intervention. Differences in the

taxonomic composition are easily observable, but it is difficult to do so at the level of function.

However, studies such as these are bring us closer in understanding the interplay between

diet, obesity and the gut flora and designing personalized care for obese patients.
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Chapter 5

To assemble or not to assemble
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Metagenomic assembly is a complex computational problem due to the size of the datasets

and the presence of reads from multiple different organisms in different coverages in the

datasets. The specific goals of the metagenomic project dictate whether assembly is required

or could be skipped. This chapter compares the taxonomic and functional profiles obtained

by assembly and analysis of the contigs, with the profiles obtained by raw read analysis.

5.1 Challenges involved in the de novo assembly of

metagenomic datasets

The size and complexity of WGS metagenomic datasets render their assembly a complex

task. However, the ease of assembly of such datasets depends on the taxonomic diversity

of the microbial sample being assembled and also the depth and coverage of the sequencing

[76]. In the case of a microbial sample with a low taxonomic diversity, for example a mock

metagenomic community consisting of a few organisms, the sequencing can be designed to

have a sufficient depth and coverage. In this case, the sample will consist of sufficient number

of reads originating from all the organisms present and with a satisfactory uniform coverage

across all genomes. Here assembly is a relatively easy task. In the case where there is huge

taxonomic diversity, for example a soil microbial sample, the different organisms present in a

community are not uniformly abundant. The different organisms have varying genome sizes.

As a result, the depth of sequencing may not be uniform across all the genomes present

in the sample. The sequenced reads often may not represent the complete complement of

the organisms present in the sample, making assembly harder. In any case, the repeats

in the genomes pose a challenge. De novo assembly is generally a time consuming and

computationally intensive task requiring much hands-on work.

5.2 Tools used for the assembly of metagenomic

datasets

In spite of the challenges, many tools carrying out de novo assembly of metagenomic

samples exist. Ray is an assembler that makes use of a de Bruijn graph for determining

seeds from the coverages, and these seeds are extended based on overlaps. The process stops

when the seed cannot be extended and the contigs are returned. Ray-Meta offers options for

using multiple cores and this distributed computing helps to make the software scalable. In
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addition to assembly, it also offers taxonomic profiling. The IDBA-UD assembler also uses

de Bruijn graphs, but iteratively produces scaffolds by first starting from a minimum value

of k, and increasing this value in the next iteration. Also, the threshold for removing low

depth contigs is increased. Meta-Velvet [77], MetAMOS [78] and other assemblers also use

de Bruijn graphs. Some tools can combine short-read data with long read data, for example

the software Cerculean [79].

5.3 De novo assembly as compared to a raw read

based analysis

Both read-based and assembly-based approaches have been successful in profiling a mi-

crobial community using metagenomic data. The problem with short reads is that they

may align with equivalent scores to multiple reference sequences and hence for short reads

from highly conserved regions of the genome, their organism of origin cannot be easily de-

termined. Various algorithms and software tools are being continuously developed for short

read assignment. Depending on the goal of the project, the analysis pipeline can be de-

signed for either the sequence analysis of the reads leading to their binning into taxonomic

and functional categories or their assembly into contigs. The contigs can then be analyzed

with the appropriate tools. These two approaches can be used separately or in combination.

As already discussed, assembly is a complex problem and even though both read-based and

assembly-based analyses are known to be equally good approaches, an assembly still remains

important. In the following chapter we describe the results obtained from comparison of the

taxonomic and functional profiles using short reads with the profiles using long contigs. The

raw reads and the long contigs warrant a different approach for their analysis. However a

comparison can be made between the taxonomic and functional profile that is generated as

a result of the analysis. Short reads are binned based on their alignments to a database

and the contigs are subjected to ORF calling and annotation of the obtained ORFs. A

pictorial representation of the possible analysis strategies of the read-based and contig-based

approaches is shown in Figure 5.1
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Figure 5.1: a. A generic approach for assembly-based analysis. b) A generic approach for raw-read
based analysis.

We considered three metagenomic samples for the study. The first sample is a mock

metagenomic sample from the study by Shakya et al. [56]. This mock community consists

of 48 bacterial and 16 archael organisms. Illumina sequencing data generated from this

mock community with 101 million reads and a read length of 101 bases was used for the

study. The second sample was taken from the Hohenheim Obesity Project, sample AS53 6

(SRS1028280). This sample was chosen because of its average size as compared to other

samples in the dataset. The third metagenomic sample is a simulated metagenomic sample

created from a total of 10 bacterial species commonly found in the human gut. The 10

bacterial species and their abundances are summarized in the Table 5.1. The simulation

tool ART [80] was used for creating 101 base-pair reads with a 20-fold coverage. The raw

reads were subjected to the DIAMOND and MEGAN pipeline and the read count data was

extracted, both at the level of taxonomy and functional classification. For both the datasets,

the raw-read pipeline and the contig pipeline as described in the Figure 5.1 was used. The

Table 5.2 summarizes the number of reads present in the samples, time required for the

analysis, number of reads assigned to taxonomic and functional categories and the number

of contigs generated after assembly.
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Table 5.1: Organisms used for creating a simulated metagenome and their abundance (number of
genomes used).

Organism NCBI Accession Genome count
Bacteroides xylanisolvens XB1A FP929033 1
Eubacterium siraeum 70/3 FP929044 1
Odoribacter splanchnicus DSM NC 015160 1
Bifidobacterium longum subsp NC 004307 1
Akkermansia muciniphila ATCC NC 010655 2
Parabacteroides distasonis ATCC NC 009615 3
Faecalibacterium prausnitzii L2-6 NZ GG697149 4
Alistipes finegoldii DSM NC 018011 5
Butyrate-producing bacterium SS3/4 FP929062 5
Bifidobacterium adolescentis ATCC NC 008618 9

Table 5.2: Number of reads per sample, number of reads assigned and number of contigs.

Sample
Number of

reads
MEGAN + DI-

AMOND Time

(s)

Assigned Taxa Assigned Func-

tion (KEGG)

Assembly Time Number of con-

tigs

Mock

metagenome

101,000,000 1,07,460
76,119,959

(∼ 75 %)

23,377,731

(∼23 %)
7 days 71,550

AS53 6 17,892,974 22,903
10,984,455

(∼ 61%)

2,326,503

(∼13%)
13 hours, 25

minutes

318,478

Simulated

metagenome

20,480,388 11,163
16,436,900

(∼80%)

1,898,704

(∼ 9%)
4 hours 11,701

The mock sample is huge in size with 101 million reads but produced 71,550 contigs which

were few as compared to the human gut sample (AS53 6) which has 17,892,974 reads but

produced 3,18,478 contigs. The simulated metagenome produced the least number of contigs

(11,701). The human gut sample is the most diverse and hence a huge number of contigs

was expected. There are fewer contigs in samples with a less diverse taxonomic composition.

5.4 Comparison of the taxonomic profiles

For the mock metagenome, out of the 76,119,959 reads assigned to a taxonomic group,

20,831,992 are assigned to the species level, 7,296,701 reads are assigned at the strain level,

11,170,251 at the species level, and 2,365,040 are false positives. The taxonomic profile of

the raw reads has 24 different phyla, 38 classes, 51 orders, 62 families, 77 genera and 132
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species. Out of 132 species, 23 were correct at level of strain, 50 at the level of species and

59 were false positives. A high number of false positives is expected in a read-based analysis.

The false positive organisms share a phylogenetic closeness with the species part of the mock

community, since most of them belong to the same genera or family. The profile does not

contain any false negatives, in that all the 64 organisms part of the profile have at least a

few reads aligning to them.

The contigs produced for the mock metagenome were subjected to BLASTN against the

NCBI-NT database. Analysis of the BLASTN output file of the contigs revealed that out of

71,550 contigs, a total of 66,652 contigs found an alignment (4,898 contigs did not align to

any reference). Out of 66,652 contigs, 64,431 belonged to true positive references and 2,221

in total belonged to false positive references. All 64 organisms are part of the profile and no

false negatives exist.

For the human gut microbiome sample AS53 6, the taxonomic profile for the raw reads has

216 different bacterial species. The taxonomic profile for the contigs contained 1,008 different

species. Out of the 3,18,478 contigs, 54,523 obtained an alignment. It was unexpected that

the profile for the raw reads contained less contigs than the profile for the contigs.

For the simulated metagenome, the taxonomic profile for the reads contained a vast num-

ber of false positives. The most abundant organisms were the ones that belonged to the 10

species part of the simulated metagenome. However, the read counts were not representa-

tive of the abundance of the different species in the metagenome. For example, the most

reads should belong to the species Bifidobacterium adolescentis ATCC since it is the most

abundant, however, this was not the case. For the contigs, the taxonomic profile consisted

of all the 10 species.

For a more direct comparison, the reads from each sample were mapped to the respective

contigs. The read to taxonomic group assignment was compared with the contig to taxonomic

group assignment. We expect that, if a read is placed in a particular taxonomic group, the

contig that the read is part of, will probably be placed in the same taxonomic group. We then

calculate the percentage of reads, that are part of a contig, and map to the same taxonomic

group, to the resolution of strain or species. The Figure 5.2 is a bar plot depicting the

percentage of reads inspected that have the same taxonomic annotation as the contig it was

mapped into.

For the simulated metagenome and the mock metagenome, about 50% of the reads that

map to a contig are assigned to the same strain as the contig. Thus, for a simple and less

diverse sample, short-read assignment is easier than for a more diverse sample such as the
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Figure 5.2: Barplot showing the percentage of reads that are assigned to the same strain, or the
same species as the contig that it maps to.
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gut microbial sample.

5.5 Comparison of the functional profiles

The read based functional profile were extracted from the MEGAN files. For the func-

tional profiling of the contigs, open reading frames were called on the contigs using the

tool MetaGeneMark [81]. The ORFs were output as amino-acid sequences and DIAMOND

BLASTP analysis was carried out against the NR database for the assignment of functions

to contigs. The meganized DIAMOND output file was imported in MEGAN and the func-

tional profiles were examined. The assignment rate of the contigs was very low for the ORFs.

The number of ORFs for the mock, AS53 6 and the simulated metagenome are shown in

Figure 5.3

For the functional profiles across the metagenomes, there was a strong correlation between

the number of reads and the number of contigs assigned to the orthologous groups. However,
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Table 5.3: InterPro profile of AS53 6 for the 10 most abundant orthologous groups. The 10 most
abundant InterPro groups as derived from the analysis of the reads is the same as the 10 most
abundant InterPro groups as derived from the analysis of the contigs.

InterPro ID Contig Abundance Read Abundance
IPR002528 Multi antimicrobial extrusion protein 1,636 56,004
IPR020449 Transcription regulator HTH, AraC- type 1,008 39,773
IPR026892 Glycoside hydrolase family 3 890 43,638
IPR027256 P-type ATPase, subfamily IB 606 18,854
IPR025705 Beta-hexosaminidase 422 31,713
IPR010327 FldB/FldC dehydratase alpha/beta subunit 416 11,271
IPR004805 DNA polymerase III, alpha subunit 360 13,931
IPR000322 Glycoside hydrolase family 31 337 23,535
IPR006275 Carbamoyl-phosphate synthase, large subunit 333 19,148
IPR003373 Ferrous iron transport protein B 331 10,534
IPR015937 Aconitase/isopropylmalate dehydratase 329 14,316
IPR003688 Type IV secretion system protein TraG/VirD4 319 29,669
IPR005094 Endonuclease relaxase, MobA/VirD2 310 41,860
IPR005936 Peptidase, FtsH 296 10,407
IPR018044 Peptidase S11, D-alanyl-D-alanine carboxypeptidase A 293 5,566
IPR004576 Transcription-repair coupling factor 292 12,643
IPR001463 Sodium:alanine symporter 287 8,816

the abundance as defined simply by the number of reads or the number of ORFs present in

the specific bin, is not always concordant. For example, for the analysis of contigs (ORFs),

the four most abundant KO groups K03088 (RNA polymerase sigma-70 factor), K06147

(ATP-binding cassette), K02003 (putative ABC transport system ATP-binding protein) and

K02004 (putative ABC transport system permease protein) have no contigs assigned to them,

whereas these KO groups fetch a significant amount of reads. For the InterPro2GO analysis,

the abundance profile for both the reads and the contigs was similar. There was a strong

correlation between the number of reads and the number of ORFs that bin into that group.

For the eggNOG assignments as well, there was a strong correlation.

Thus, the functional composition by the read analysis or by the contig analysis both result

in fairly similar results with small discrepancies. In this analysis, the KEGG classification

system showed the most deviations. It must be noted that change in mapping files due to

newer releases of the databases might result in differences in the functional assignments.

As an example of the correspondence between the profile obtained for reads and contigs,

Table 5.3 lists the most abundant InterPro identifiers.

5.6 Conclusions

An attempt was made at comparing the results obtained for a read-based and an assembly-

based analysis of metagenomic samples. The assembly of the samples took significantly more

time as compared to a read-based analysis. But the time required depends on the size and
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complexity of the sample (when using a particular assembler). When analyzing multiple

metagenomes, this could be a bottleneck. In two out of the three cases, the raw read based

taxonomic profile yielded a lot of false positives as compared to the contig taxonomic profile

of the metagenome. Since short reads align with less specificity, this was expected. Taxo-

nomic or functional assignment depends on the alignments and since short reads align with

less specificity, their analysis might yield slightly different results as compared to the contigs.

As revealed by the above study, some differences exist between read profiles and contig pro-

files, though they may not affect the conclusions about taxonomic diversity that are made

with them. The two analysis strategies could be useful in different situations. Alternatively,

they could be used in consolidation, usually by mapping the reads back to the contigs for

improved assignment.

In conclusion, metagenomic assembly could be carried out provided sufficient compu-

tational power and time is at disposal. Moreover, a read-based analysis and an assembly

together can also be useful. Mapping the reads back to the assembled contigs can better

determine the taxonomic origin of the read.
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Chapter 6

Gene-centric assembly of orthologous

gene families in microbiome

sequencing data using MEGAN 6
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A gene-centric assembly involves the assembly of all reads in a microbiome sample that

have been assigned to a specific gene family, after the sequence analysis of the reads. As

opposed to a de novo assembly of an entire microbiome sequencing sample, a gene-centric

assembly could be computationally less intensive. A new algorithm based on the overlap-

layout-consensus paradigm has been developed in MEGAN 6 which can be used to assemble

reads belonging to one or more orthologous gene families. This chapter demonstrates how a

gene-centric assembly is performed with the DIAMOND and MEGAN 6 pipeline and eval-

uates the performance of MEGAN as compared to other well-known assemblers like SOAP-

denovo, Ray and IDBA-UD. Examples of how a gene-centric assembly could be included

as part of a metagenome analysis pipeline is provided by running MEGAN’s assembler on

different kinds of gene families and metagenomic samples.

6.1 Introduction to gene-centric assembly

Next-generation sequencing technologies that are used for the sequencing of microbiome

samples produce short reads. They can either be subjected to a de novo assembly or can

be analyzed using homology searching against a reference database, or both [82]. Homology

searches for short reads, for example using the DIAMOND and MEGAN pipeline, ulti-

mately lead to the binning of the reads into different taxonomic and functional categories.

The targeted assembly of all reads belonging to a specific orthologous group of genes (that

is belonging to a particular bin), is referred to as a gene-centric assembly. A new algorithm

based on the overlap-layout-consensus paradigm has been implemented in MEGAN 6 that

makes use of protein alignments, that is alignment of reads to protein references, for as-

sembly of the reads. In this protein-alignment-guided assembly, perfect overlaps of reads

aligning to the same protein reference are used for the creation of an overlap graph. One

or more nodes belonging to one or more functional classification systems like KEGG [52],

InterPro2GO [54], SEED [53] can be assembled using MEGAN. The different parameters

for the assembly algorithm are the minOverlap, which is the minimum number of bases

that the two reads should overlap by, minReads, the minimum number of reads required

for a contig, minLength, minimum length for a contig, minAvCoverage the minimum

average coverage for a contig and maxPercentIdentity, the maximum percent identity

that two contigs are allowed to have. Other software that have specifically been designed for

gene-centric assembly are Xander [83] and SAT assembler [84]. These software align reads

to HMMs and assemble those reads that find a significant alignment to the HMMs. A raw
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Figure 6.1: Overview of a gene-centric assembly approach.

2.0 of 173.6G GC-content=44.3 % Coverage=251.4   Alignment: 1804 x 699

|100 |200 |300 |400 |500 |600
Alignment for reference sequence '>gi|500479428|ref|WP_011943107.1|':

>gi|499466886|ref|WP_011153526.1|:: 1905
>gi|501267553|ref|WP_012310571.1|:: 1819
>gi|500479428|ref|WP_011943107.1|:: 1804
>gi|501809585|ref|WP_012645104.1|:: 1804
>gi|490182897|ref|WP_004081511.1|:: 1802
>gi|503672454|ref|WP_013906530.1|:: 779
>gi|501501084|ref|WP_012509313.1|:: 773
>gi|499318651|ref|WP_011009143.1|:: 767
>gi|500220730|ref|WP_011890841.1|:: 761
>gi|499186579|ref|WP_010884119.1|:: 759
>gi|504546088|ref|WP_014733190.1|:: 753
>gi|499322644|ref|WP_011013136.1|:: 743
>gi|499168848|ref|WP_010867124.1|:: 735
>gi|500064220|ref|WP_011744137.1|:: 725
>gi|499425098|ref|WP_011112562.1|:: 693
>gi|573024145|gb|AHF79679.1|:: 686
>gi|499234306|ref|WP_010931846.1|:: 682

List of 476 available reference sequences for 'K02863 large subunit ribosomal protein L1' (double click on one to see alignment):

1.5 of 173.6G GC-content=44.3 % Coverage=251.4   Alignment: 1804 x 699

|100 |200 |300 |400 |500 |600
Alignment for reference sequence '>gi|500479428|ref|WP_011943107.1|':

>gi|499466886|ref|WP_011153526.1|:: 1905
>gi|501267553|ref|WP_012310571.1|:: 1819
>gi|500479428|ref|WP_011943107.1|:: 1804
>gi|501809585|ref|WP_012645104.1|:: 1804
>gi|490182897|ref|WP_004081511.1|:: 1802
>gi|503672454|ref|WP_013906530.1|:: 779
>gi|501501084|ref|WP_012509313.1|:: 773
>gi|499318651|ref|WP_011009143.1|:: 767
>gi|500220730|ref|WP_011890841.1|:: 761
>gi|499186579|ref|WP_010884119.1|:: 759
>gi|504546088|ref|WP_014733190.1|:: 753
>gi|499322644|ref|WP_011013136.1|:: 743
>gi|499168848|ref|WP_010867124.1|:: 735
>gi|500064220|ref|WP_011744137.1|:: 725
>gi|499425098|ref|WP_011112562.1|:: 693
>gi|573024145|gb|AHF79679.1|:: 686
>gi|499234306|ref|WP_010931846.1|:: 682

List of 476 available reference sequences for 'K02863 large subunit ribosomal protein L1' (double click on one to see alignment):

(a) Alignment of reads (b) Alignment of contigs

Figure 6.2: The alignment viewer in MEGAN. (a) Alignment of reads against a protein reference
sequence. (b) Alignment of the reads as part of the contigs against a protein reference sequence.

metagenomic sample can be analyzed with DIAMOND, meganized with the mapping files

for the desired classifications and imported in MEGAN. One or more orthologous groups can

be selected and assembled. The Figure 6.1 is a pictorial representation of an overview of a

gene-centric assembly workflow using MEGAN.

MEGAN also provides an alignment viewer for visualizing the alignment of reads to the

protein references, and also the alignment of the contigs produced as a result. The alignment

viewer is shown in Figure 6.2. In addition, the overlap graph can be exported as an image

file.

6.2 Evaluation of the MEGAN assembler using a set

of gene families

The evaluation of the MEGAN assembler was carried out in order to achieve two goals -

one, as proof-of-principle that using gene-centric assembly is convenient and easily feasible

using the DIAMOND and MEGAN pipeline and second, to compare the performance of
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MEGAN’s assembler with other established metagenomic assemblers. We analyzed a mock

metagenomic community described in the study by Shakya et al., [56], consisting of 64

organisms. Exactly 38 single-copy phylogenetic marker genes from the study by [85] and 3

multiple-copy genes (cheA, ftsZ and atoB) were assembled using the gene-centric assembler.

We expect that if 64 organisms are part of a community, then for each single-copy gene, 64

contigs should be produced. Each of the 64 contigs should ideally cover 100 percent of the

span of the gene. A sequence analysis of these contigs (for e.g. carrying out BLASTN, or

BLASTX) should result in the alignment of each contig to one of the 64 organisms, with no

false positives or false negatives.

First, DIAMOND was run on the raw reads. The DIAMOND output file was imported in

MEGAN and a gene-centric assembly of the marker genes was carried out. The reads aligning

to the gene families were used as an input to other assembly software like SOAPdenovo [42],

Ray [43] and IDBA-UD [44]. The contigs thus produced for all the marker genes by all the

assembly algorithms were further evaluated for their assembly quality.

6.2.1 Mock metagenomic dataset

A mock metagenomic dataset described in the publication from [56], composed of 48

bacterial and 16 archael genomes was chosen for the study (SRA run SRR606249). The

synthetic mock community was created from known amounts of purified gDNA of the 64

organisms and was used for metagenomic sequencing using 454 and Illumina sequencing

technologies. The Illumina dataset consists of 101 base-pair long paired end reads with

about 54 million reads per paired end file. This raw sequence data was obtained and used

for the study. DIAMOND analysis of the raw reads of the mock metagenome against the

NR protein database (version - February 2015) was carried out. This resulted in more than

1 billion alignments, involving 87 million reads. The DIAMOND output file was meganized

with default LCA parameters and imported in MEGAN 6.

6.2.2 Genes used for evaluation

The phylogenetic marker genes for bacteria and archaea as described in a study by Wu et

al. [85] were used for the evaluation. The KEGG Orthologous (KO) groups corresponding

to the marker genes were inspected in the dataset. Out of the 40 marker genes that are

part of the list, 35 genes had corresponding KO groups in the dataset. In addition, the well

known marker gene rpoB and archael rpoB’ and rpoB” were included, along with the three
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mentioned multiple-copy genes, resulting in a total of 41 gene families. The protein sequences

from all 64 genomes were downloaded. BLASTX was used to retrieve the protein sequences

for the gene families used for evaluation. From these, reference lengths of the proteins

sequences were calculated. Further, the complete genome sequences of the 64 organisms was

downloaded. Table 6.1 contains the KO groups with their descriptions.

6.2.3 Gene-centric assembly in MEGAN

MEGAN’s gene-centric assembler was run on the 41 gene-families with default parameters

and a 98 percent similarity cut-off. The reads binned into the KO groups corresponding to

the 41 genes were extracted. These reads were used as input to SOAPdenovo, Ray and IDBA-

UD assemblers and contigs were thus obtained for the genes from each of the 4 assemblers

using default parameters. The minimum length of the contigs was set to 200 base-pairs. The

contigs were further evaluated for their coverage of the gene and the taxonomic profile (the

number of different true positive references detected).

6.2.4 Evaluation of the contigs produced

The contigs produced for each of the 38 genes with the different assemblers were evalu-

ated in the following three ways:

1. Contig Statistics

Basic contig statistics like the number of contigs generated by each assembler for each marker

gene, the lengths of the contigs produced for each gene was determined using custom scripts.

2. Validation of the contigs by sequence analysis

The contigs produced by the assemblers were subjected to a BLASTN analysis against the

NCBI-NT database. Our assumption is that the quality of the alignments of the contigs pro-

duced for each gene to the nucleotide sequences available in the database will point to the

authenticity of the contigs. Also, alignment of a contig to any one of the reference organism

present in the mock community will further validate that contig. The BLASTN output files

were imported in MEGAN and were used for a first inspection of the BLASTN results. The

BLASTN text output files were parsed using a custom script for a detailed analysis of the

results. Each BLASTN output file, corresponding to the alignments of the contigs produced

for one gene, was parsed separately. For each contig, out of the total number of hits that it
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Table 6.1: KO groups and their descriptions : Single-copy gene families

KO group Description
K00626 acetyl-CoA C-acetyltransferase
K03044 archael rpoB1
K03045 archael rpoB2
K03043 bacterial rpoB
K03531 cell division protein
K01889 phenylalanyl-tRNA synthetase alpha subunit
K01890 phenylalanyl-tRNA synthetase beta subunit
K01933 phosphoribosylformylglycinamidine cyclo ligase
K03470 ribonuclease HII
K02863 ribosomal protein L1
K02864 ribosomal protein L10
K02867 ribosomal protein L11
K02871 ribosomal protein L13
K02874 ribosomal protein L14
K02876 ribosomal protein L15
K02878 ribosomal protein L16
K02881 ribosomal protein L18
K02886 ribosomal protein L2
K02890 ribosomal protein L22
K02895 ribosomal protein L24
K02897 ribosomal protein L25
K02904 ribosomal protein L29
K02906 ribosomal protein L3
K02926 ribosomal protein L4
K02931 ribosomal protein L5
K02933 ribosomal protein L6
K02946 ribosomal protein S10
K02948 ribosomal protein S11
K02950 ribosomal protein S12
K02952 ribosomal protein S13
K02956 ribosomal protein S15
K02961 ribosomal protein S17
K02965 ribosomal protein S19
K02967 ribosomal protein S2
K02982 ribosomal protein S3
K02988 ribosomal protein S5
K02992 ribosomal protein S7
K02994 ribosomal protein S8
K02996 ribosomal protein S9
K03110 signal recognition particle protein
K03407 two-component system
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obtained, the hit with the best bit score was considered. The hits with at least 90 percent

of the score of the best hit were evaluated. If any of the hits thus evaluated belonged to

any one of the 64 organisms, then this contig was considered a true positive. If none of

these hits correspond to any one organism from the mock community, then the contig was

deemed false positive. If the contig did not fetch any alignment, it was a “no-hit”. Thus a

contig was annotated as either true positive, false positive or “no-hit”. For each gene, the

total complement of the reference organisms that had an aligned contig is referred to as the

taxonomic profile for the gene. For a reference organism, it is either a true positive, if it is

part of the 64 organisms present in the mock community or false positive if it is not a part of

the mock community. From the 64 organisms, if an organism is absent from the organisms

detected to be present, then it is a false negative reference. Thus a reference is annotated as

either true positive, false positive or false negative.

3. Mapping against the 64 reference genomes

The contigs were mapped against a database of the full genome sequences of the 64 organ-

isms using the BWA [86] mapping tool. In case of BWA, a contig was annotated either

a true positive when it mapped to any reference, or a no-hit when it did not map to any

reference. A reference is either a true positive if at least one contig mapped to it or a false

negative if no contig mapped to it. For each contig of each gene, the BLASTN and the

BWA output was compared. The output SAM files were used as input to SAMtools [87]

to produce MD tags for the SAM files. The MD tags were used to determine the cover-

age of the longest contig. The coverage is defined as the total number of identities in the

alignment, that is the length of the alignment subtracted by the number of bases that are

mismatches. The percent coverage is defined as the total coverage divided by the length

of the reference. The coverage was plot as heatmap with the 64 organisms on the X-axis

and the genes on the Y-axis. Sensitivity of the assembler is determined by calculating the

number of true positive references that are covered at least 50% by the longest contig align-

ing to it, divided by the total number of references expected to be present for the gene-family.

4. Validation using DNA-protein alignment

The contigs that fail to obtain an alignment using BLASTN were subjected to a DNA-protein

alignment (BLASTX). This was done in order to evaluate whether such contigs were truly

invalid, or whether they fetch an alignment in a DNA-protein alignment. The BLASTX

output files were parsed in order to determine whether the contig aligns to the same gene
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that it is produced for. In this case, only the best hit was considered. All contigs align to a

valid reference in either a DNA-DNA or DNA-protein alignment.

6.2.5 Results

Contig statistics

The number of contigs that were produced for each marker gene by each assembler had

a positive correlation with the number of reads that got recruited per marker gene. For

example, the rpoB gene had the highest number of reads assigned to it, and also the highest

number of contigs produced for it, i.e. 184 (by MEGAN’s assembler). All assemblers produce

a comparable number of contigs, as shown in Figure 6.3. IDBA-UD tends to produce the

least number of contigs per gene. All the contigs produced by the assemblers get validated,

either through a DNA-DNA (BLASTN) or a DNA-protein (BLASTX) alignment. For all

assemblers, on an average ∼ 98% of the contigs aligned with ∼ 98 % identity to a true

positive reference.

Sensitivity of determining a true positive reference

In the ideal case, for each single-copy gene, one contig for each of the 64 organisms is

expected to be produced. But the taxonomic profile obtained for each gene does not contain

all 64 organisms. We describe a reference to be “detected” if at least 50% of it is covered by

the longest contig produced for it. Figure 6.4 shows the sensitivity of the different assemblers

for the genes. MEGAN shows a very high sensitivity in most cases as compared to the other

assemblers.

No assembler produces contigs that represent the complete complement of 64 organisms

that are part of the mock community. In some cases, for example the archael rpoB, it is

expected that some of the bacterial reference organisms will not appear in the total number

of true positives. The rpoB gene codes for the beta-subunit of the bacterial RNA polymerase

and is an important single-copy gene involved in transcription. In archael genomes, rpoB’

and rpoB” code for the beta-subunit of the gene. For rpoB, the total number of true positive

organisms was thus 48 and for both rpoB’ and rpoB” it is 16. For ribosomal protein L29,

the number of reads assigned is the lowest leading to very few contigs being generated for

the same. Consequently, few organisms are part of the profile generated for it. There

are some references however, that are not part of the profile for any gene. For example,

Sulfurihydrogenibium yellowstonense SS-5 is not a part of any profile. This bacterium has
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Figure 6.3: The number of contigs produced and validated by all assemblers is shown as a scatter
plot.
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Figure 6.4: The sensitivity of the assemblers in detecting the reference organisms for different genes.
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a low number of reads assigned to it as compared to the other organisms. An Illumina read

simulation of the genome of this bacterium using the ART simulator [80] was carried out and

the resulting reads were analyzed using DIAMOND. However very few KEGG orthologous

groups are detected to be present for this bacterium. This explains why the bacterium is a

false negative for all the genes.

Coverage of the genes by the longest contig

For a given gene family, the coverage of the longest gene to its reference was calculated.

The Figures 6.5, 6.6, 6.7, 6.8 are the percent coverages plot as heatmaps, darker the color,

higher is the percent. The value -1 indicates that no contig maps to the reference. The

coverage plot also shows the true positive references obtained per gene. Overall, the percent

coverage by the contigs produced by MEGAN is high. SOAPdenovo and Ray produce long

contigs for most genes, but do not produce contigs for several reference organisms.

The taxonomic profile created for a specific gene is similar across the assemblers. For

example, in the case of phenylalanyl-tRNA synthetase alpha subunit and phenylalanyl-tRNA

synthetase beta subunit, the profiles cluster with respect to the gene and not with respect

to the assembler. As shown in Figure 6.9, the profiles generated for alpha subunit by the

assemblers are more similar to each other than the profiles generated for the beta subunit.

All assemblers perform uniformly over the genes, serving as a sanity check and pointing to

the fact that a targeted assembly is a useful analysis strategy.

6.3 Gene-centric assembly across samples and

gene-families

In the following section, we describe the analysis of contigs assembled with MEGAN’s

assembler from reads belonging to a wide range of orthologous gene families and from both

real and simulated datasets.

6.3.1 Mock metagenome, multiple-copy genes

In order to examine the contigs produced from a gene-centric assembly of gene families

that are involved in metabolism and are not usually single-copy genes, we considered a wider

range of gene families. We run the analysis on all genes belonging to the Glycolysis pathway.

The KO groups and their descriptions are listed in Table 6.2.

79



A
ci

d
o
b
a
ct

e
ri

u
m

 c
a
p
su

la
tu

m
A

ci
d
u
lip

ro
fu

n
d
u
m

 b
o
o
n
e
i

A
kk

e
rm

a
n
si

a
 m

u
ci

n
ip

h
ila

A
rc

h
a
e
o
g
lo

b
u
s 

fu
lg

id
u
s

B
a
ct

e
ro

id
e
s 

th
e
ta

io
ta

o
m

ic
ro

n
B

a
ct

e
ro

id
e
s 

v
u
lg

a
tu

s
B

o
rd

e
te

lla
 b

ro
n
ch

is
e
p
ti

ca
B

u
rk

h
o
ld

e
ri

a
 x

e
n
o
v
o
ra

n
s 

LB
4
0

0
C

a
ld

ic
e
llu

lo
si

ru
p
to

r 
b
e
sc

ii
C

a
ld

ic
e
llu

lo
si

ru
p
to

r 
sa

cc
h
a
ro

ly
ti

cu
s

C
h
lo

ro
b
iu

m
 l
im

ic
o
la

C
h
lo

ro
b
iu

m
 p

h
a
e
o
b
a
ct

e
ro

id
e
s

C
h
lo

ro
b
iu

m
 p

h
a
e
o
v
ib

ri
o
id

e
s

C
h
lo

ro
b
iu

m
 t

e
p
id

u
m

C
h
lo

ro
fl
e
x
u
s 

a
u
ra

n
ti

a
cu

s 
J-

1
0
-f

l
C

lo
st

ri
d
iu

m
 t

h
e
rm

o
ce

llu
m

D
e
in

o
co

cc
u
s 

ra
d
io

d
u
ra

n
s 

R
1

D
e
su

lf
o
v
ib

ri
o
 p

ig
e
r

D
e
su

lf
o
v
ib

ri
o
 v

u
lg

a
ri

s 
D

P
4

D
ic

ty
o
g
lo

m
u
s 

tu
rg

id
u
m

E
n
te

ro
co

cc
u
s 

fa
e
ca

lis
Fu

so
b
a
ct

e
ri

u
m

 n
u
cl

e
a
tu

m
 n

u
cl

e
a
tu

m
G

e
m

m
a
ti

m
o
n
a
s 

a
u
ra

n
ti

a
ca

G
e
o
b
a
ct

e
r 

su
lf
u
rr

e
d
u
ce

n
s 

P
C

A
H

a
lo

fe
ra

x
 v

o
lc

a
n
ii

H
e
rp

e
to

si
p
h
o
n
 a

u
ra

n
ti

a
cu

s
H

y
d
ro

g
e
n
o
b
a
cu

lu
m

 s
p
. 
Y
0
4
A

A
S
1

Ig
n
ic

o
cc

u
s 

h
o
sp

it
a
lis

Le
p
to

th
ri

x
 c

h
o
lo

d
n
ii

M
e
th

a
n
o
ca

ld
o
co

cc
u
s 

ja
n
n
a
sc

h
ii

M
e
th

a
n
o
co

cc
u
s 

m
a
ri

p
a
lu

d
is

 C
5

M
e
th

a
n
o
co

cc
u
s 

m
a
ri

p
a
lu

d
is

 S
2

M
e
th

a
n
o
p
y
ru

s 
ka

n
d
le

ri
M

e
th

a
n
o
sa

rc
in

a
 a

ce
ti

v
o
ra

n
s 

C
2
A

N
a
n
o
a
rc

h
a
e
u
m

 e
q
u
it

a
n
s

N
it

ro
so

m
o
n
a
s 

e
u
ro

p
a
e
a

N
o
st

o
c 

sp
. 
P
C

C
 7

1
2
0

P
e
lo

d
ic

ty
o
n
 p

h
a
e
o
cl

a
th

ra
ti

fo
rm

e
P
e
rs

e
p
h
o
n
e
lla

 m
a
ri

n
a
 E

X
-H

1
P
o
rp

h
y
ro

m
o
n
a
s 

g
in

g
iv

a
lis

P
y
ro

b
a
cu

lu
m

 a
e
ro

p
h
ilu

m
 I
M

2
P
y
ro

b
a
cu

lu
m

 a
rs

e
n
a
ti

cu
m

P
y
ro

b
a
cu

lu
m

 c
a
lid

if
o
n
ti

s
P
y
ro

co
cc

u
s 

fu
ri

o
su

s
P
y
ro

co
cc

u
s 

h
o
ri

ko
sh

ii
R

h
o
d
o
p
ir

e
llu

la
 b

a
lt

ic
a

R
u
e
g
e
ri

a
 p

o
m

e
ro

y
i

S
a
lin

is
p
o
ra

 a
re

n
ic

o
la

S
a
lin

is
p
o
ra

 t
ro

p
ic

a
S
h
e
w

a
n
e
lla

 b
a
lt

ic
a
 O

S
1
8
5

S
h
e
w

a
n
e
lla

 b
a
lt

ic
a
 O

S
2
2
3

S
u
lf
it

o
b
a
ct

e
r 

sp
 E

E
-3

6
S
u
lf
it

o
b
a
ct

e
r 

sp
. 
N

A
S
-1

4
.1

S
u
lf
o
lo

b
u
s 

to
ko

d
a
ii

S
u
lf
u
ri

h
y
d
ro

g
e
n
ib

iu
m

 s
p
. 
Y
O

3
A

O
P
1

S
u
lf
u
ri

h
y
d
ro

g
e
n
ib

iu
m

 y
e
llo

w
st

o
n
e
n
se

 S
S
-5

8
5

T
h
e
rm

o
a
n
a
e
ro

b
a
ct

e
r 

p
se

u
d
e
th

a
n
o
lic

u
s

T
h
e
rm

o
to

g
a
 n

e
a
p
o
lit

a
n
a
 D

S
M

 4
3
5
9

T
h
e
rm

o
to

g
a
 p

e
tr

o
p
h
ila

 R
K

U
-1

T
h
e
rm

o
to

g
a
 s

p
. 
R

Q
2

T
h
e
rm

u
s 

th
e
rm

o
p
h
ilu

s 
H

B
8

T
re

p
o
n
e
m

a
 d

e
n
ti

co
la

W
o
lin

e
lla

 s
u
cc

in
o
g
e
n
e
s

Z
y
m

o
m

o
n
a
s 

m
o
b
ili

s

K00626

K03044

K03045

K03043

K03531

K01889

K01890

K01933

K03470

K02863

K02864

K02867

K02871

K02874

K02876

K02878

K02881

K02886

K02890

K02895

K02897

K02904

K02906

K02926

K02931

K02933

K02946

K02948

K02950

K02952

K02956

K02961

K02965

K02967

K02982

K02988

K02992

K02994

K02996

K03110

K03407

Coverage of the longest contig - MEGAN

0

15

30

45

60

75

90

Figure 6.5: Percentage coverage of the longest contig - MEGAN
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Figure 6.6: Percentage coverage of the longest contig - SOAPdenovo
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Figure 6.7: Percentage coverage of the longest contig - Ray
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Figure 6.8: Percentage coverage of the longest contig - IDBA-UD

83



phenylalanyl_tRNA_synthetase_beta_subunit-MEGAN

phenylalanyl_tRNA_synthetase_alpha_subunit-MEGAN

phenylalanyl_tRNA_synthetase_beta_subunit-SOAPdenovo

phenylalanyl_tRNA_synthetase_alpha_subunit-SOAPdenovo

phenylalanyl_tRNA_synthetase_beta_subunit-Ray

phenylalanyl_tRNA_synthetase_alpha_subunit-Ray

phenylalanyl_tRNA_synthetase_beta_subunit-IDBA-UD

phenylalanyl_tRNA_synthetase_alpha_subunit-IDBA-UD

0.01

Figure 6.9: Clustering of the taxonomic profiles generated by the contigs for the phenylalanyl-tRNA
alpha and beta genes shows that the profiles for alpha and beta subunits from all the assemblers
cluster together. The clustering was performed in MEGAN using the Jensen-Shannon Divergence
method.
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Table 6.2: KO groups and their descriptions : Glycolysis pathway gene families

KO group Description
K01895 acetyl-CoA synthetase
K00873 pyruvate kinase
K00382 dihydrolipoamide dehydrogenase
K01803 triosephosphate isomerase (TIM)
K00927 phosphoglycerate kinase
K01689 enolase
K01834 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase
K01624 fructose-bisphosphate aldolase, class II
K00845 glucokinase
K00850 6-phosphofructokinase 1
K00134 glyceraldehyde 3-phosphate dehydrogenase
K01810 glucose-6-phosphate isomerase
K00001 alcohol dehydrogenase
K01596 phosphoenolpyruvate carboxykinase (GTP)
K03738 aldehyde:ferredoxin oxidoreductase
K00171 pyruvate ferredoxin oxidoreductase delta subunit
K00172 pyruvate ferredoxin oxidoreductase gamma subunit
K00169 pyruvate ferredoxin oxidoreductase alpha subunit
K00170 pyruvate ferredoxin oxidoreductase beta subunit
K03841 fructose-1,6-bisphosphatase I
K00128 aldehyde dehydrogenase (NAD+)
K00627 pyruvate dehydrogenase E2 component (dihydrolipoamide acetyltransferase)
K00161 pyruvate dehydrogenase E1 component alpha subunit
K00162 pyruvate dehydrogenase E1 component beta subunit
K00016 L-lactate dehydrogenase
K13953 alcohol dehydrogenase, propanol-preferring
K01785 aldose 1-epimerase
K01610 phosphoenolpyruvate carboxykinase (ATP)
K01835 phosphoglucomutase
K00121 S-(hydroxymethyl)glutathione dehydrogenase / alcohol dehydrogenase
K00163 pyruvate dehydrogenase E1 component
K02446 fructose-1,6-bisphosphatase II
K01623 fructose-bisphosphate aldolase, class I
K13954 alcohol dehydrogenase
K01792 glucose-6-phosphate 1-epimerase
K01222 6-phospho-beta-glucosidase
K04041 fructose-1,6-bisphosphatase III
K00886 polyphosphate glucokinase
K02779 PTS system, glucose-specific IIC component
K04072 acetaldehyde dehydrogenase / alcohol dehydrogenase
K02777 PTS system, sugar-specific IIA component
K01223 6-phospho-beta-glucosidase
K02791 PTS system, maltose/glucose-specific IIC component
K11532 fructose-1,6-bisphosphatase II / sedoheptulose-1,7-bisphosphatase
K00844 hexokinase
K00129 aldehyde dehydrogenase (NAD(P)+)
K00114 alcohol dehydrogenase (cytochrome c)
K14028 methanol dehydrogenase (cytochrome c) subunit 1
K00002 alcohol dehydrogenase (NADP+)
K13810 transaldolase / glucose-6-phosphate isomerase
K00131 glyceraldehyde-3-phosphate dehydrogenase (NADP+)
K06859 glucose-6-phosphate isomerase, archaeal
K00150 glyceraldehyde-3-phosphate dehydrogenase (NAD(P))
K00918 ADP-dependent phosphofructokinase/glucokinase
K01905 acetyl-CoA synthetase (ADP-forming)
K11389 glyceraldehyde-3-phosphate dehydrogenase (ferredoxin)
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Figure 6.10: A two-way hierarchical clustering shows the organisms grouping according to the pres-
ence or absence of contigs belonging to the gene families studied.

Since this pathway is one of the predominant pathways in most metagenomic datasets and

consists of many different genes, it was chosen for the analysis. As described previously, a

gene-centric assembly was carried out in MEGAN with default parameters and the resulting

contigs were mapped against the genome database of 64 reference genomes (with the BWA

tool). Depending on whether at least one contig per gene mapped to a reference organism

from the mock community, a matrix was created, with the values 1 and 0. The value 1

indicates that at least one contig mapped to the reference and the value 0 indicates that

no contig mapped to the reference. The matrix was subjected to a two-way hierarchical

clustering using the Python Scipy [88] library and was plot as a heatmap, Figure 6.10.

The clusters so formed are related genes that have similar taxonomic profiles and related

organisms that have similar gene profiles. Most reference organisms have at least one contig

that belongs to the following KO groups - K01895, K00873, K00382, K01803, K00927 and
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Table 6.3: Lysine pathway gene families

KO group Description
K01929 UDP-N-acetylmuramoyl-tripeptide–D-alanyl-D-alanine ligase
K01928 UDP-N-acetylmuramoyl-L-alanyl-D-glutamate–2 6-diaminopimelate ligase
K00290 saccharopine dehydrogenase NAD L-lysine forming
K05825 2-aminoadipate transaminase
K03340 diaminopimelate dehydrogenase
K01586 diaminopimelate decarboxylase
K10206 LL-diaminopimelate aminotransferase
K01778 diaminopimelate epimerase
K01439 succinyl-diaminopimelate desuccinylase
K00821 acetylornithine N-succinyldiaminopimelate aminotransferase
K00674 2 3 4 5-tetrahydropyridine-2-carboxylate N-succinyltransferase
K00215 4-hydroxy-tetrahydrodipicolinate reductase
K01714 4-hydroxy-tetrahydrodipicolinate synthase
K00133 aspartate-semialdehyde dehydrogenase
K12524 bifunctional aspartokinase homoserine dehydrogenase 1
K00928 aspartate kinase
K00003 homoserine dehydrogenase

K01689. These KO groups correspond to the most important enzymes in the glycolysis

pathway and their ubiquity is expected. Similarly, the KO groups K00169, K00170, K00171

and K00172 which are the pyruvate ferredoxin oxidoreductase alpha, beta, delta and gamma

subunits, cluster according to their presence in a subset of the organisms. The grouping

of the 14 archaeal organisms is based on the presence of the contigs for the gene-families

K00131, K06859 , K00150, K00918, K01905, K11389 which play a glycolytic role in the

hyperthermophilic archaea [89]. Contigs for these genes are missing in the profile for the

other organisms. In this case, the contigs obtained after assembly could be segregated

depending on their taxonomic origin and studied further.

6.3.2 Real metagenome, single-copy and multiple-copy genes

A gut microbiome sample from the Hohenheim Obesity Project was chosen for the anal-

ysis of the performance of gene-centric assembly on samples from a real metagenomic se-

quencing experiment. Both single (38 marker genes) and multiple-copy genes were assembled.

Out of all different pathways, the lysine biosynthesis pathway attracts an average amount

of reads and therefore was chosen for the analysis. The list of those genes is provided in the

Table 6.3. Ideally, we would expect the taxonomic profile as analyzed using the reads to be

similar to the taxonomic profile obtained by the analysis of the contigs produced for each

gene. However, since the sequencing depth may not always be high, one or more contigs per

gene for the rare taxonomic groups is highly unfeasible. To analyze the contigs, we carry

out BLASTN against a genome database and compare the taxonomic profile thus obtained

to the taxonomic profile obtained with raw reads.
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The sample chosen for this was AS66 6 (SRA run SRR2155395), also because of its aver-

age size. The DAA file is available at the MeganServer database in the folder LouisEtAl2016.

The 38 single copy genes and the lysine biosynthesis pathway genes were assembled with de-

fault parameters. They were analyzed using the usual DIAMOND and MEGAN pipeline.

Out of the 38 genes, 34 were assembled, since no reads were assigned to 4 genes. Both

BLASTN and BLASTX were carried out. In addition to the gene-centric assembly, the

reads belonging to the orthologous groups studied were extracted and DIAMOND was run

on them. The meganized DAA file was imported in MEGAN 6.

The number of reads and the contigs for single and multiple copy genes are shown in the

Figure 6.11.

The number of reads and the number of contigs have a positive correlation. The reads

taxonomic profile contains many more species than the contigs taxonomic profile. For the

genes in this case, the MEGAN read count data consisting of the organism and the number

of contigs that are binned into the group were considered as input to clustering. The genus

and species level ranks were selected. A taxonomic group was considered only if at least

one contig aligns to it. As can be seen from the heatmap for the single-copy genes, most

species do not have a contig for all the 34 genes. The taxonomic groups that are known to

be abundant in the dataset obtain at least one contig for almost all the genes. The different

genera abundant in the sample are the Alistipes, Clostridium, Bacteroides, Faecalibacterium,

Eubacterium, Suttarella, Roseburia etc. and each of these genera have one or more contigs

aligned to them, that belong to different gene-families. Thus a gene-centric assembly in this

case may produce contigs for the organisms that are abundant in the sample and therefore

have a sufficient number of reads belonging to them. This explains the positive correlation

between the number of reads and the number of contigs. The Figure 6.12 is a two-way

hierarchical clustering of the data.

Same is the case for mulitple-copy genes where the contigs are created only for the most

abundant organisms. However, as compared to the single-copy genes, this profile is still less

diverse. One explanation could be that for the single-copy genes, they are ubiquitous, and

are expected to be most present in most species, and therefore more number of species are

expected to be a part of it. In the case of these genes, the number of “no-hits” is very high.

The contigs belonging to these nodes were subjected to a BLASTX against the NCBI-NR

database. The contigs align to the reference proteins that they are expected to be from.

One reason for the presence of such contigs could be due to the presence of uncharacterized

species that are part of the gut microbiota.
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Figure 6.12: A two-way hierarchical clustering of the profile for the AS66 6 single copy genes. The
abundant species in the sample have at least one contig for most gene families belonging to them.
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The Figure 6.13 is a two-way hierarchical clustering of the data.

6.3.3 Simulated metagenome, single-copy and multiple-copy

genes

For the simulated metagenome used in the assembly study, a gene-centric assembly was

run on the reads assigned to the 38 single-copy genes and the genes from the lysine pathway.

Figure 6.14 shows the number of reads, and the number of contigs and a boxplot of the

length of the contigs.

The simulated metagenome was used to determine whether perfect contigs for all the

genes studied are obtained, since this is an easy sample with deep enough sequencing. Also

in the case of the simulated metagenome, the taxonomic profile for the reads and the con-

tigs differs, with the profile for the contigs being less diverse. For single-copy genes, most

reference organism had at least one contig aligned to it. But for multiple-copy genes like the

lysine pathway gene-families, only a few contigs corresponding to all reference organisms is

produced.

It is expected that for single-copy genes, for 10 organisms in the community, 10 contigs

will be produced. In the case of the rpoB gene, 73 contigs were produced where multiple

contigs find an alignment to each reference organism and at least one contig for each of the

10 organisms is present. For most other genes, not all organisms had a contig aligning to

them, with the profile for each gene being different. The profile for related genes is, however

similar, and phenylalanyl-tRNA synthetase is a good example. For example, the alpha

and beta subunit of the gene have a similar taxonomic profile, barring just one organism

(Figure 6.15).

For aspartate kinase, 10 contigs corresponding to the 10 genomes were produced (Fig-

ure 6.16). With a simple, less diverse and very well sequenced metagenome, contigs for

every species present is relatively easy to obtain, however this depends on the gene being

assembled, in this case aspartate kinase.

Figure 6.17 is the two-way hierarchical clustering heatmap for the taxonomic profile of the

contigs belonging to single-copy genes and Figure 6.18 for the Lysine pathway genes. Even

for a simple, less diverse and deeply sequenced sample like the simulated metagenome, there

are cases where contigs for all reference sequences are not obtained. This further confirms

that the gene family being assembled affects the results of the assembly.
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Figure 6.15: The taxonomic profile for the phenylalanine-tRNA alpha and beta subunits are highly
similar to each other as compared to the other genes.
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Figure 6.16: The aspartate kinase gene with all 10 contigs corresponding to 10 genomes of the
simulated metagenome.
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Figure 6.17: A two-way hierarchical clustering of the profile for the simulated metagenome single-
copy genes. For most gene families, at least one contig per reference sequence is obtained.
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Figure 6.18: A two-way hierarchical clustering of the profile for the simulated metagenome Lysine
pathway genes.
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Table 6.4: The orthologous gene families and the number of reads assigned to them

Orthologous group InterPro #Reads KEGG #Reads COG #Reads
Ornithine carbamoyltransferase IPR024904 30,994 K00611 25,720 COG0078 26,682
Orotate phosphoribosyltransferase IPR023031 18,446 K00762 18,800 COG0461 14,684
Sulphite reductase beta subunit IPR011808 10,664 K11181 9338 COG2221 23,892
Inorganic pyrophosphatase IPR008162 11,056 K01507 8541 COG0221 7308
DNA polymerase III, delta subunit IPR005790 18,022 K02340 20,522 COG1466 15,923

6.3.4 Gene-centric assembly of related orthologous groups from

different classification systems.

Different functional classification systems like the KEGG, COG, InterPro2GO and SEED

may have different number of reads assigned to related orthologous groups. In order to study

the results obtained from carrying out a gene-centric assembly from the same orthologous

group but from different classification systems, the following genes were chosen from the

mock community and assembled. The orthologous groups are shown in Table 6.4:

The scatterplot depicts the number of contigs resulting from it (Figure 6.19).

The number of contigs produced may differ in a few cases. We therefore conclude that

choice of functional classification system may affect the result of a gene-centric assembly. It

may be useful to produce assemblies using different classification systems and compare the

contigs produced.

6.4 Conclusions

In the case where specific genes are to be studied, a gene-centric assembly of metagenomic

data could prove advantageous as shown by this study. A gene-centric assembly adds to the

repertoire of the different analyses that are part of the WGS metagenome analysis pipeline.

Targeted assembly is also less computationally intensive and requires comparatively less

amount of time.

MEGAN’s assembler does as well as and in some cases better than other assemblers,

for example in the “detection” of reference organisms. SOAPdenovo and Ray tend to be

similar in performance. IDBA-UD produces very few contigs, is highly specific but performs

worse than MEGAN in the “detection” of the references. The number of contigs produced

and the performances of all assemblers is similar on a per-gene basis, for example as shown

in the case of the phenylalanyl t-RNA alpha and beta genes. This shows that gene-centric

assembly, as an approach itself, is robust and useful. The advantage of MEGAN over the

other assemblers is perhaps the easy-to-use GUI and less amount of computation required
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to get the assembler running. MEGAN 6 also provides a good visualization of the alignment

of the reads to the reference sequences, and enables the export of the overlap-layout graph

produced for the reads belonging to the node being assembled. At the algorithmic level, even

though a gene-centric assembly strategy is not novel for metagenomic data analysis, using

BLASTX for the recruitment of the reads is novel.

The gene-centric assembly of the 38 genes yielded contigs, most of which could be mapped

or aligned back to the organisms present in the mock community. In each case, there were

some reference organisms for which no contig mapped to it. This could be due to absence

of that specific gene in the genome or it could be because of there being no coverage of

sequencing in that region of the genome.

The quality of the contigs produced after a gene-centric assembly depends on the specific

gene that is to be studied and differs from gene to gene. The single-copy genes that are

universal, are much better assembled than multiple-copy genes. In the evaluation study for

example, contigs produced for most of the ribosomal protein coding genes are true positive

and with a few number of false negative references. The taxonomic profile generated for

a gene may not represent the complete taxonomic diversity of the sample. This could be

due to the absence of that particular gene in some genomes that are part of the community.

Most of the contigs detected to be false positives through the BLASTN search align to

reference organisms that are closely related to the reference organisms actually present in

the mock community. Appearance of false positives or false negatives is not always due to

error in assembling, but due to the inherent nature of microbial genomes which are prone

to horizontal gene transfer or presence of highly conserved genes. Some genes might not get

assembled and usually these are the gene-families that have very few reads assigned to them.

Another expected but important observation is that there is a strong correlation between

the number of reads assigned and the number of contigs generated. Some genes have a

wider taxonomic representation than others. The assembled contigs may vary slightly when

using different classification systems, depending again on the number of reads that it has

obtained. A gene-centric assembly can be incorporated in many different ways in a typical

whole genome shotgun metagenomic analysis pipeline.
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Chapter 7

Conclusions and Outlook
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The work presented in this thesis was concentrated on the bioinformatics analysis of

whole-genome shotgun metagenomic sequencing data and examining in detail a few of the

several aspects involved. The results obtained could serve as a guideline when analyzing

metagenomic datasets.

7.1 Potential of whole-genome shotgun metagenomic

studies

Culture-independent methods have made it possible to study the otherwise unknown

microbes in different environments, study their genetic makeup and to correlate this infor-

mation with the physical properties of the source of the sample. WGS metagenomic data are

one step ahead of amplicon sequencing data as they enable the profiling a microbial commu-

nity both at a taxonomic and functional level. A species-level resolution of the taxonomic

profile can be obtained with WGS sequencing as opposed to generally only a genera-level

resolution with 16S ribosomal RNA (rRNA) sequencing. Discovery of novel genes, genomes

and pathways is feasible with WGS sequencing. Metadata accompanying the sequencing

data aids in putting forth a context for its analysis. For example, in the case of the Hohen-

heim Obesity Project, different clinical parameters that were measured enabled the grouping

of the patients into distinct categories. Then the analysis of whether significant differences

exist in the gut microbial compositions between the groups could be carried out, leading to

interesting observations.

However, even though WGS provides a catalogue of the species and genes present, they

do not help with understanding the mechanisms of microbial function in the community.

Metagenomic studies need to be coupled with metatranscriptomics, metaproteomics and

metabolomics to better understand the workings of microbial communities.

7.2 Designing a WGS metagenomic experiment

Collaborative efforts between biologists and bioinformaticians is very important for metage-

nomic studies. In order to glean the most information from a WGS metagenomic dataset, it

is important to design the sequencing experiment optimally. The biological question(s) that

are aimed to be answered with the sequencing should be formulated concretely. As a first,

observations related to the community should be translated to a specific hypothesis. For ex-

ample, in the case of the Hohenheim Obesity Project, the observation that the patients lose a
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significant amount of weight after going through the weight-loss treatment was accompanied

with a hypothesis that the microbiota undergo several changes along the diet treatment.

Sequencing at different time-points help in understanding community dynamics. Technical

and biological replicates are important since they enable the consolidation of observations

with statistical and biological significance. Unfortunately this depends on the finances avail-

able. Good sequencing data invariably guarantees that the analysis will result in biologically

important results. Detailed metadata should be collected and used appropriately.

7.3 Designing the analysis pipeline

The time available and the computational power at disposal are important factors to

consider when designing the analysis pipeline for a metagenomic dataset. Specifics of the

analysis pipeline, like whether the preprocessing is essential, which functional classification

systems to use and whether assembly of raw reads is required, depends on the goals of the

metagenomic project.

The analysis results depend heavily on the samples being analyzed. Deeply sequenced

samples are prone to give better results. The microbial diversity in the sample also has

an effect on the analysis results. For example, a mock metagenome with a relatively low

diversity is an easy dataset to analyze as compared to a more diverse sample with a huge

number of uncharacterized microbial species, like a gut sample or a soil sample.

Development of various tools for the analysis of metagenomic data is necessary. The

problem of binning short reads and read-assignment is still a challenging one and novel

ideas are needed to solve this problem. Metagenomic datasets coupled with metadata need

good statistical and visualization techniques for determining patterns in the datasets. For

example, novel ideas for the statistical analysis and visualization of time-series metagenomic

data are crucial.

7.4 Gene-centric assembly as an analysis strategy

Targeted assembly of metagenomic data is a useful analysis strategy. The DIAMOND

and MEGAN 6 pipeline that can be used to carry out a gene-centric assembly is fast and

easy to use. The evaluation reveals that it performs as well as or better than some other

assemblers. However, the quality and quantity of the contigs produced depends on the gene

being assembled and the sample it is being assembled from. Mock metagenomic datasets
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that have a low diversity and are deeply sequenced, produce a good number of contigs for

most gene families. When used on real sequencing samples, a gene-centric assembly could

be helpful for revealing novel patterns in the sample.

7.5 Future perspectives

A more comprehensive analysis of the correspondence between the different systems of

functional classification could be carried out. This could be achieved by comparing at the

level of pathways and analyzing more metagenomic datasets. The gene-centric assembly

approach could be used for the analysis of more datasets, and studied in different contexts,

for example metatranscrptiome data. Visualization and statistical approaches for analyzing

time-series metagenomic data could be developed. There is a possibility for combining the

ecological information with the time-series information to decipher community dynamics

from the time-series metagenomic data.
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APPENDIX
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8.1 Contributions

(a) Preprocessing

Daniel Huson (DH) put forth the idea, Rewati Tappu (RT) designed the analysis pipeline.

(b) Corresponding between the functional classification systems

Daniel Huson (DH) and Rewati Tappu (RT) put forth the idea. RT ran the analysis.

(c) Hohenheim Obesity Project

Laboratory work and experiment design was done by the Stephan C. Bischoff, Sandrine

Louis and Antje Damms-Machado of the Institute of Clinical Nutrition, University of Hohen-

heim, Stuttgart, Germany. RT analyzed the dataset using the tools DIAMOND developed

by Benjamin Buchfink (BB) and MEGAN developed by DH. Statistical analysis was carried

out by RT and SL.

(d) Gene-centric assembly

DH put forth the idea and implemented the algorithm in MEGAN. The evaluation of the

contigs was designed by RT, Dr. Adam Bazinet (AB), Prof. Dr. Michael Cummings, Dr.

Rohan Williams and Prof. Dr. Kay Nieselt. RT tested the algorithm on different samples

and gene-families.

8.2 Publications

Louis S, Tappu RM, Damms-Machado A, Huson DH, Bischoff SC. Characterization of

the Gut Microbial Community of Obese Patients Following a Weight-Loss Intervention Using

Whole Metagenome Shotgun Sequencing. PLoS One. 2016 Feb PMID: 26919743

Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, Ruscheweyh HJ, Tappu

R. MEGAN Community Edition - Interactive Exploration and Analysis of Large-Scale Mi-

crobiome Sequencing Data. PLoS Comput Biol. 2016 Jun PubMed PMID: 27327495
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Huson DH, Tappu R, Bazinet AL, Xie C, Cummings MP, Nieselt K, Williams R. Fast

and simple protein-alignment-guided assembly of orthologous gene families from microbiome

sequencing reads. Microbiome. 2017 Jan 25 PMID: 28122610.

8.3 Bachelors and Masters thesis supervised

(a) Fast comparison of metagenomic samples - Marc Uwe Engelhardt

(b) Analysis of microbiome data in the context of Adipositas - Sanja Köhler

(c) Comparison of the KEGG and InterPro functional classification systems - Baiyu Lin
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8.4 Supplementary materials

8.4.1 Preprocessing of metagenomic reads

bgi-MH0025

bgi-MH0025_processed

bgi-MH0031

bgi-MH0031_processed

bgi-MH0035

bgi-MH0035_processed
bgi-MH0072

bgi-MH0072_processed

bgi-MH0078

bgi-MH0078_processed

PCoA of EGGNOG using SqrtJensenShannonDivergence: PC 1 (57.4%) vs PC 2 (16.5%)

(a) eggNOG

bgi-MH0025

bgi-MH0025_processed

bgi-MH0031

bgi-MH0031_processed

bgi-MH0035

bgi-MH0035_processed

bgi-MH0072

bgi-MH0072_processed

bgi-MH0078

bgi-MH0078_processed

PCoA of KEGG using SqrtJensenShannonDivergence: PC 1 (54.2%) vs PC 2 (16.2%)

(b) KEGG

Figure 8.1: The PCoA plots of the MetaHIT samples before and after preprocessing. (a) : For the
eggNOG classifications, (b): For the KEGG classifications.
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8.4.2 Hohenheim Obesity Project

(a) The KO groups significantly shown to be changing in relative abundance are plot as

the mean of the read-count values for the time-point.
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T3 T6

(b) T3 to T6

Figure 8.2: Important KO groups that are affected with the diet-intervention are plot as their mean
value over all patients for the specific time-point.
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8.4.3 Gene-centric assembly

(a) The average-coverage of a given gene family for all the 64 reference-organisms is plot

as a scatterplot.
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Figure 8.3: The average-coverage over 64 references for the gene families.
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