
MACHINE LEARNING APPROACHES
TO IMAGE DECONVOLUTION

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von
Christian Johannes Schuler

aus Nürnberg

Tübingen
2014

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultät der Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 30. 9. 2015
Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Hendrik Lensch
2. Berichterstatter: Prof. Dr. Bernhard Schölkopf
3. Berichterstatter: Prof. Dr. Yair Weiss

Summary

Image blur is a fundamental problem in both photography and scientific imaging. Even the
most well-engineered optics are imperfect, and finite exposure times cause motion blur. To
reconstruct the original sharp image, the field of image deconvolution tries to recover recorded
photographs algorithmically. When the blur is known, this problem is called non-blind decon-
volution. When the blur is unknown and has to be inferred from the observed image, it is called
blind deconvolution. The key to reconstructing information lost due to blur and noise is to use
prior knowledge. To this end, this thesis develops approaches inspired by machine learning that
include more available information and advance the current state of the art for both non-blind
and blind image deconvolution.
Optical aberrations of a lens are encoded in an initial calibration step as a spatially-varying

point spread function. With prior information about the distribution of gradients in natural
images, the original image is reconstructed in a maximum a posteriori (MAP) estimation, with
results comparing favorably to previous methods. By including the camera’s color filter array
in the forward model, the estimation procedure can perform demosaicing and deconvolution
jointly and thereby surpass the quality of the results yielded by a separate demosaicing step.
The applicability of removing optical aberrations is broadened further by estimating the point

spread function from the image itself. We extend an existing MAP-based blind deconvolution
approach to the first algorithm that is able to remove spatially-varying lens blur blindly, inclu-
ding chromatic aberrations. The properties of lenses restrict the class of possible point spread
functions and reduce the space of parameters to be inferred, enabling results on par with the
best non-blind approaches for the lenses tested in our experiments.
To capture more information about the distribution of natural images and capitalize on the

abundance of training data, neural networks prove to be a useful tool. As other successful non-
blind deconvolution methods, a regularized inversion of the blur is performed in the Fourier
domain as an initial step. Next, a large neural network learns the mapping from the preprocessed
image back to the uncorrupted original. The trained network surpasses results of state-of-the-art
algorithms on both artificial and real-world examples.
For the first time, a learning approach also succeeds in blind image deconvolution. A deep

neural network “unrolls” the estimation procedure of existing methods for this task. After
training end-to-end on artificially generated example images, the network achieves performance
competitive with state-of-the-art methods in the generic case, and even goes beyond when
trained for a specific image category.

iii

Zusammenfassung

Unscharfe Bilder sind ein häufiges Problem, sowohl in der Fotografie als auch in der wissen-
schaftlichen Bildgebung. Auch die leistungsfähigsten optischen Systeme sind nicht perfekt, und
endliche Belichtungszeiten verursachen Bewegungsunschärfe. Dekonvolution hat das Ziel das
ursprünglich scharfe Bild aus der Aufnahmemit Hilfe von algorithmischenVerfahrenwiederher-
zustellen. Kennt man die exakte Form der Unschärfe, so wird dieses Rekonstruktions-Problem
als nicht-blinde Dekonvolution bezeichnet. Wenn die Unschärfe aus dem Bild selbst inferiert
werden muss, so spricht man von blinder Dekonvolution. Der Schlüssel zum Wiederherstellen
von verlorengegangener Bildinformation liegt im Verwenden von verfügbarem Vorwissen über
Bilder und die Entstehung der Unschärfe. Hierzu entwickelt diese Arbeit verschiedene Ansätze
um dieses Vorwissen besser verwenden zu können, basierend auf Methoden des maschinellen
Lernens, und verbessert damit den Stand der Technik, sowohl für nicht-blinde als auch für
blinde Dekonvolution.
Optische Abbildungsfehler lassen sich in einem einmal ausgeführten Kalibrierungsschritt ver-

messen und als eine ortsabhängige Punktverteilungsfunktion des einfallenden Lichtes beschrei-
ben. Mit dem Vorwissen über die Verteilung von Gradienten in Bildern kann das ursprüngliche
Bild durch eine Maximum-a-posteriori (MAP) Schätzung wiederhergestellt werden, wobei die
resultierenden Ergebnisse vergleichbare Methoden übertreffen. Wenn man des Weiteren im
Vorwärtsmodell die Farbfilter des Sensors berücksichtigt, so kann das Schätzverfahren Demo-
saicking und Dekonvolution simultan ausführen, in einer Qualität die den Ergebnissen durch
Demosaicking in einem separaten Schritt überlegen ist.
Die Korrektur von Linsenfehlern wird breiter anwendbar indem man die Punktverteilungs-

funktion vom Bild selbst inferiert. Wir erweitern einen existierenden MAP-basierenden Ansatz
für blinde Dekonvolution zum ersten Algorithmus, der in der Lage ist auch ortsabhängige opti-
sche Unschärfen blind zu entfernen, einschließlich chromatischer Aberration. Die spezifischen
Eigenschaften von Kamera-Objektiven schränken den Raum der zu schätzenden Punktvertei-
lungsfunktionenweit genug ein, so dass für die in unseren Experimenten untersuchten Objektive
die erreichte Bildrekonstruktion ähnlich erfolgreich ist wie bei nicht-blinden Verfahren.
Es zeigt sich, dass neuronale Netze von im Überfluss vorhandenen Bilddatenbanken profi-

tieren können um mehr über die Bildern zugrundeliegende Wahrscheinlichkeitsverteilung zu
lernen. Ähnlich wie in anderen erfolgreichen nicht-blinden Dekonvolutions-Ansätzen wird die
Unschärfe zuerst durch eine regularisierte Inversion im Fourier-Raum vermindert. Danach ist
es einem neuronalen Netz mit großer Kapazität möglich zu lernen, wie aus einem derart vorver-

v

Zusammenfassung

arbeiteten Bild das fehlerfreie Original geschätzt werden kann. Das trainierte Netz produziert
anderen Methoden überlegene Ergebnisse, sowohl auf künstlich generierten Beispielen als auch
auf tatsächlichen unscharfen Fotos.
Zum erstenMal ist ein lernendes Verfahren auch hinsichtlich der blinden Bild-Dekonvolution

erfolgreich. Ein tiefes neuronales Netz modelliert die Herangehensweise von bisherigen Schätz-
verfahren und wird auf künstlich generierten Beispielen trainiert die Unschärfe vorherzusagen.
Nach Abschluss des Trainings ist es in der Lage, mit anderen aktuellen Methoden vergleichbare
Ergebnisse zu erzielen, und geht über deren Ergebnisse hinaus, wenn man speziell für eine
bestimmten Subtyp von Bildern trainiert.

vi

Papers Included in this Thesis

Papers included in this thesis:

[Sch+11] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Schölkopf. “Non-stationary correction of
optical aberrations”. In: IEEE Int. Conf. Computer Vision. 2011. doi: 10.1109/iccv.
2011.6126301

[Sch+12] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Schölkopf. “Blind Correction of Optical
Aberrations”. In: Computer Vision – ECCV 2012. Lecture Notes in Computer Science.
Springer, 2012, pp. 187–200. doi: 10.1007/978-3-642-33712-3_14

[Sch+13b] C. J. Schuler, H. C. Burger, S. Harmeling, and B. Schölkopf. “A Machine Learning Ap-
proach for Non-blind Image Deconvolution”. In: IEEE Conf. Computer Vision and Pattern
Recognition. 2013, pp. 1067–1074. doi: 10.1109/cvpr.2013.142

[Sch+14] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Schölkopf. “Learning to Deblur”. In: ArXiv
e-prints (2014). arXiv: 1406.7444 [cs.CV]. Submitted to a journal.

Papers related to, but not included in this thesis:

[Hir+11] M. Hirsch, C. J. Schuler, S. Harmeling, and B. Schölkopf. “Fast removal of non-uniform
camera shake”. In: IEEE Int. Conf. Computer Vision. 2011, pp. 463–470. doi: 10.1109/
iccv.2011.6126276

[BSH12c] H. C. Burger, C. J. Schuler, and S. Harmeling. “Image denoising: Can plain Neural Net-
works compete with BM3D?”. In: IEEE Conf. Computer Vision and Pattern Recognition.
2012, pp. 2392–2399. doi: 10.1109/cvpr.2012.6247952

[BSH12a] H. C. Burger, C. J. Schuler, and S. Harmeling. “Image denoising with multi-layer percep-
trons, part 1: comparison with existing algorithms and with bounds”. In: ArXiv e-prints
(2012). arXiv: 1211.1544 [cs.CV]

[BSH12b] H. C. Burger, C. J. Schuler, and S. Harmeling. “Image denoising with multi-layer percep-
trons, part 2: training trade-offs and analysis of their mechanisms”. In: ArXiv e-prints
(2012). arXiv: 1211.1552 [cs.CV]

I would like to thank my co-authors for their permission to base chapters of my thesis on joint
publications.

vii

http://dx.doi.org/10.1109/iccv.2011.6126301
http://dx.doi.org/10.1109/iccv.2011.6126301
http://dx.doi.org/10.1007/978-3-642-33712-3_14
http://dx.doi.org/10.1109/cvpr.2013.142
http://arxiv.org/abs/1406.7444
http://dx.doi.org/10.1109/iccv.2011.6126276
http://dx.doi.org/10.1109/iccv.2011.6126276
http://dx.doi.org/10.1109/cvpr.2012.6247952
http://arxiv.org/abs/1211.1544
http://arxiv.org/abs/1211.1552

Contents

Introduction 1

1. Fundamentals 5
1.1. Mathematical problem description . 6

1.1.1. Stationary convolutions . 6
1.1.2. Spatially-varying blur . 8

1.2. Non-blind deconvolution methods . 10
1.2.1. Wiener deconvolution . 11
1.2.2. Tikhonov regularization . 11
1.2.3. Recent deconvolution methods . 12

1.3. Blind deconvolution methods . 13
1.3.1. MAP approaches . 13
1.3.2. Marginalization approaches . 15

1.4. Neural networks . 16
1.4.1. Training . 17
1.4.2. Toy example . 18

2. Non-Blind Correction of Optical Aberrations 21
2.1. Introduction . 21
2.2. Related work . 23
2.3. Aberrations as a non-stationary convolution 24
2.4. Forward model including mosaicing . 25
2.5. Estimating the non-stationary convolution 26
2.6. Recovering the corrected, full-color image 27
2.7. Results . 28

2.7.1. Simulated images . 28
2.7.2. Real images . 30

2.8. Conclusion . 34
2.8.1. Limitations . 35
2.8.2. Future work . 35

ix

Contents

3. Blind Correction of Optical Aberrations 37
3.1. Introduction . 37
3.2. Related work . 38
3.3. An efficient filter flow basis for optical aberrations 39
3.4. An orthonormal efficient filter flow basis . 40
3.5. Blind deconvolution with chromatic shock filtering 42
3.6. Implementation and running times . 45
3.7. Results . 45

3.7.1. Self-built lens with a single lens element 46
3.7.2. Canon 24mm f/1.4 . 46
3.7.3. Kee et al.’s image . 46
3.7.4. Historical images . 50

3.8. Conclusion . 50
3.8.1. Limitations . 51
3.8.2. Future work . 51

4. Learning Non-Blind Deconvolution 53
4.1. Introduction . 53
4.2. Related work . 54
4.3. Method . 55

4.3.1. Direct deconvolution . 55
4.3.2. Artifact removal by multilayer perceptrons 57

4.4. Results . 59
4.4.1. Choice of parameter values . 59
4.4.2. Comparison to other methods . 59
4.4.3. Noise dependence . 63
4.4.4. Qualitative results on a real photograph 63

4.5. Understanding . 65
4.6. Convolutional training . 69

4.6.1. Differences to patch-wise approach 69
4.6.2. Understanding the learned filters . 71

4.7. Conclusion . 72

5. Learning Blind Deconvolution 75
5.1. Introduction . 75
5.2. Related work . 76
5.3. Blind deconvolution as a layered network 77

5.3.1. Architecture layout . 78
5.3.2. Iterations as stacked networks . 81
5.3.3. Training . 84

5.4. Implementation . 85
5.5. Experiments . 85

5.5.1. Image content specific training . 85
5.5.2. Noise specific training . 87

x

Contents

5.5.3. Spatially-varying blur . 88
5.5.4. Comparisons . 90

5.6. Discussion . 91
5.6.1. Learned filters . 91
5.6.2. Dependence on the size of the observed image 95
5.6.3. Limitations . 95

5.7. Conclusion . 97

Conclusion and Outlook 99

A. Mathematical Details 103

B. Neural Network Toolbox 107

Acronyms 111

Nomenclature 113

Bibliography 115

Contributions 123

Acknowledgments 125

xi

List of Figures

1.1. Illustration of camera shake. 6
1.2. Example of an image corrupted by a stationary convolution. 7
1.3. Illustration of lens aberrations. 8
1.4. Effect of a blur on the power spectrum. 10
1.5. Distribution of gradients in natural images. 11
1.6. Blind deconvolution procedure for MAP approaches. 14
1.7. Intermediate image representations for kernel estimation. 15
1.8. Illustration of p(x,k|y) on a toy example . 16
1.9. Classification with a neural network. 19

2.1. Self-made photographic lens with one glass element only, mounted on a remote
controlled platform. 22

2.2. Image taken through self-made lens without and with lens correction. 22
2.3. Examples of optical aberrations. 24
2.4. Overview of non-blind correction of optical aberrations. 26
2.5. Comparison of joint approach vs. sequential demosaicing and deconvolution

procedures. 29
2.6. Point spread function used for simulations on the Kodak image data set. . . . 31
2.7. Comparison between original and corrected image and the respective PSF. . . 32
2.8. Comparison with DXO for images taken with a Canon EF 50mm f/1.4 lens. . 32
2.9. Interpolation of a mosaiced PSF at the example of a green PSF from the Canon

50mm f/1.4 lens. 33
2.10. Comparison with the newer method from [Hei+13] 33
2.11. Comparison of deconvolution with optimization and direct method. 34

3.1. Optical aberration as a forward model. 39
3.2. Three example groups of patches, each forming a ring. 41
3.3. Shifts to generate basis elements for the middle group of Fig. 3.2. 41
3.4. SVD spectrum of a typical basis matrix B with cut-off. 41
3.5. Chromatic shock filter removes color fringing. 42
3.6. Overview of blind correction of optical aberrations. 43
3.7. Comparison with non-blind approach, self-built lens. 47

xiii

List of Figures

3.8. Comparison between blind approach and two non-blind approaches of Kee et
al. [Kee+11] and DXO. 48

3.9. PSF comparison with non-blind approach, self-built lens. 49
3.10. Comparison with non-blind approach, Canon 24mm f1/4 lens. 49
3.11. Comparison on historical image from 1940. 50

4.1. Illustration of the effect of the regularized blur inversion. 56
4.2. Overview of learning non-blind deconvolution. 57
4.3. Comparison of performance over competitors. 60
4.4. Training curves for different MLPs. 61
4.5. Comparison of performance for Poisson noise. 62
4.6. Images from the best 5% results of scenario (d) as compared to IDD-BM3D. . 64
4.7. Images from the worst 5% results of scenario (d) as compared to IDD-BM3D. 64
4.8. Behavior of the MLP at different noise levels. 65
4.9. Removal of defocus blur in a photograph. 66
4.10. Feature detectors of an MLP trained to remove a square blur, with preprocessing. 68
4.11. Feature detectors of an MLP trained to remove a square blur, no preprocessing. 68
4.12. Input patterns found via activation maximization vs. feature generators, with

preprocessing . 68
4.13. Input patterns found via activation maximization vs. feature generators, without

preprocessing . 68
4.14. Feature detectors of a convolutional NN trained to remove a square blur. . . . 70
4.15. Effect of two filters of a convolutional NN trained to remove a square blur. . . 70

5.1. Architecture of our proposed blind deblurring network. 79
5.2. Intermediary outputs of a single-stage NN. 80
5.3. Training curves depending on number of stages. 82
5.4. Training curves depending on architecture of a single stage. 82
5.5. Training curves depending on number of learned gradient-like images. 83
5.6. Influence of the learning parameters. 83
5.7. Examples of blurs sampled from a Gaussian process. 84
5.8. Typical example images of valley and blackboard categories from ImageNet

used for content specific training. 86
5.9. Comparison of deblurring results for NNs that have been trained with image ex-

amples from the entire ImageNet dataset (content agnostic) and from particular
subsets (content specific). 86

5.10. Comparison of deblurring results for NNs that have been trained with different
amounts of noise added to the sample images during training. 87

5.11. Comparison on Butcher Shop example of state-of-the-art deblurring methods
for removing non-uniform blur together with our estimated PSF. 88

5.12. Visualisation of kernel estimation in the case of spatially-varying blur for the
Butcher Shop example. 89

5.13. Results on the benchmark dataset of Levin et al. and the extended benchmark
of Sun et al. 90

xiv

List of Figures

5.14. Comparison on real-world example images taken from the literature with spa-
tially invariant blur. 92

5.15. Comparison on real-world example images taken from the literaturewith spatially-
varying blur. 93

5.16. Learned filters of the convolution layer for each of the three iterations within a
single scale of a trained NN. 94

5.17. Comparison of learned filters. 94
5.18. Visualization of the effect of the first stage of a network with two predicted

output images on toy example with disks blurred with Gaussians of varying
size and motion blurred Lena image. 95

5.19. Results for kernel estimation for different sizes of the observed image. 96
5.20. Dependence of the estimated kernel on the size of the observed image. 96
5.21. Failure case of our approach. 97

B.1. Class hierarchy of layers of the toolbox. 109

xv

Introduction

Blur is a fundamental problem of physical imaging. Camera optics are never perfect, and
typically spread the light emanating from a single point in the scene over several pixels in
the sensor plane. It is not always possible to prevent the camera or objects in the scene from
moving during image capture, which is especially problematic for long exposure times. In both
examples, the result is a blurred image. Blur poses a problem both for everyday photography
and scientific imaging, e.g., microscopy or astronomy across all spectral regions from radio
waves to gamma rays.

One remedy is to improve the imaging device: using optics with less aberrations, or increas-
ing the sensor’s sensitivity to allow smaller exposure times. However, this increases production
costs and usually is a trade-off between several target variables. For example, it is easier to
minimize aberrations for lenses with small apertures, but small apertures collect less light
and increase exposure time. Some limits are even fundamental and independent of current
technology (cf. Abbe diffraction limit [BW99]).
Another solution is to recover the original signal computationally. This approach belongs to

the class of inverse problems and is called deconvolution. When the blurring process is known
a priori (e.g., a fixed optical system that has been measured precisely) the problem is called non-
blind deconvolution. Even though the blur is known, the reconstruction is challenging, because
high frequencies of the signal lose intensity for most blurs, often going towards zero. The noise
however, which is an issue without blur in itself, is unaffected in strength and, consequently,
can drown the signal. To recover the lost information, prior knowledge has to be incorporated,
e.g., in the form of the distribution of the expected image content or the noise.
The reconstruction becomes even more challenging when the blur is not known beforehand.

For example, in the case of camera shake, although it is possible to measure the movement of the
camera, it is usually impractical. The problem of inferring both the uncorrupted image and the
blur is known as blind deconvolution. Evenwithout noise, the problem is underdetermined since
many combinations of blur and reconstructed image could explain the observation. Again, prior
knowledge has to be taken into account for the blind case, in addition to knowledge about the
image also about the specifics of the convolution, e.g., camera shake stemming from physically
plausible translations and rotations of the camera.
Deconvolution stands as a mature field with many successful applications. Since the 1950s,

deconvolution has been used in seismology to infer the Earth’s structure from recorded seis-
mograms [Rob54]. The launch of the Hubble space telescope in 1990 motivated the use of

1

Introduction

deconvolution methods in the field of astronomy, after the telescope’s primary mirror was
found to be flawed [Wal90]. Measurements done in the twelve year period until it was repaired
necessitated the use of computational corrections. In the field of computational photography,
cameras are even designed such that the recorded image has to be post-processed in software,
optimizing the full imaging pipeline for a desired property of the final photograph. For example,
a coded aperture captures depth information of the scene by adding a depth-dependent blur
[Lev+07].
Blur and noise corrupt the information contained within an image. The key idea of recon-

structing a signal suffering from loss of information is to use available prior knowledge. Ideally,
the prior information contains the full probability distribution of the unknown quantities. Prac-
tically, the distribution of all images is computationally intractable, and with respect to its
dimensionality only sparsely sampled by even the largest collection of images. Machine Learn-
ing provides tools and methodologies to approximate the distribution explicitly or implicitly,
and thus obtain a prediction for the desired unknown quantity. This could be the most likely
solution or the solution otherwise optimal in some sense, e.g., minimizing the expected square
error. Using this approach, it is possible to counter the errors introduced by inferior hardware,
or for high-quality devices push the boundaries of what is possible.
While image deconvolution is a long-standing problem, and numerous methods exist for

both the blind and non-blind case, the work presented in this thesis was able to improve on
the state of the art in both cases. Later chapters will demonstrate that we are successful both
with maximum a posteriori (MAP) based approaches and with using neural networks to learn
to automatically solve the problem of deconvolution.
The outline of this thesis is as follows: after introducing the necessary fundamentals in

Chapter 1, we treat the problem of non-blind correction of optical aberrations in Chapter 2.
As explained above, optical aberrations cause an unwanted reduction of image quality. A
calibration step encodes the spatially-varying aberrations of the optical system. The original
image is then reconstructed by solving a MAP problem using a prior on the distribution of
gradients in natural images. The results compare favorably to existing approaches for correcting
optical aberrations. Additionally, the reconstruction procedure can include demosaicing, and
it turns out that treating demosaicing and deconvolution jointly is superior to performing both
tasks separately.
Next, the approach in Chapter 3 dispenses with the calibration step and performs blind

correction of optical aberrations. Instead of measuring the lens error for every combination of
lens, camera, and setting of the lens, the aberration can be inferred directly from the image. This
is the first time blur induced by optical aberrations is corrected blindly. The proposed approach
modifies an existing blind deconvolution method based on MAP and includes domain-specific
information to reduce the number of unknown parameters. The class of spatially-varying blurs
to be inferred is restricted to a basis of physically plausible lens blurs. Furthermore, blur that
is different across multiple color channels can be estimated.
Chapter 4 returns to the basic deconvolution problem with known spatially invariant blur and

pushes the state of the art by learning non-blind deconvolution. An initial preprocessing step
reduces the blur by performing a regularized inversion in Fourier space, a step which is also
common in previously existing deconvolution methods. A large neural network is trained on
artificially generated training examples to learn the mapping from the preprocessed image back

2

Introduction

to the uncorrupted original. The trained network achieves state-of-the-art deconvolution results,
however, it is specific to a single blur kernel. It is straightforward to include other steps from
the imaging pipeline in the reconstruction process, for example demosaicing, as demonstrated
on a real-world example.
After the success of a learning method in the non-blind case, the next logical step is to use

neural networks for learning blind deconvolution, which is presented in Chapter 5. Inspired
by existing hand-crafted blind deconvolution methods, a deep neural network “unrolls” the
blur estimation by using both conventional layers and layers specific to the problem. The
neural network toolbox designed for this procedure is available as open-source software and
is described in Appendix B. The proposed method is applicable to both spatially invariant
and spatially-varying blurs. After training, the algorithm shows competitive performance on
generic blurry images and is superior when trained on specific image categories, where the
learning approach can play to its strengths.

3

CHAPTER 1

Fundamentals

Photography is the process of collecting light which has been emitted or reflected by objects in
a scene. As is well-known from physics, light is electro-magnetic radiation that is described by
Maxwell’s equations.
The electric and magnetic field strengths present in photography are small enough such

that the polarization response of media (the density of induced electric and magnetic dipole
moments) can be assumed to be linear. This ignores effects of nonlinear optics, for example
the frequency doubling used in green laser pointers to create green light from an infrared laser
diode. However, it enables us to model our optical system as a linear system, which means the
superposition principle holds for all electric and magnetic fields. Assuming incoherent light,
i.e., electromagnetic waves with random phase differences, this also holds true for the light
intensities as measured by the camera.
Ideally, in imaging, light from a single point in the scene should be mapped to a single

position on the sensor, excluding cases where for artistic purposes the opposite may be desired.
Because of imperfections of the optical system, or movement of the camera during exposure,
this is often not the case. Therefore, because of the stated linearity of light, we model the
general image formation process as

y = Kx + n. (1.1)

where x is the vector of the intensities of pixels in the image we would measure in the absence of
any errors (a.k.a. ground truth), either for a single color or for an averaged grayscale value. For
simplicity, we represent two-dimensional images (or three-dimensional if we consider color)
reshaped as vectors. Also, this is a discrete approximation to the continuous signal of the
scene. The recorded image y is obtained after transformation by the matrix K and addition of
the measurement noise n, which could optionally also be dependent on the values of the true
signal x.
In this work, we will address corruptions K that can be described as a convolution locally,

we distinguish either stationary (Section 1.1.1) or spatially-varying (see Section 1.1.2) convo-

5

1. Fundamentals

Figure 1.1.: Left: Image of a grid of light points with stationary motion blur (artificially
created). Middle: Photo of the same grid with spatially-varying motion blur
(non-artifical). Right: Grid of light points for illustration of camera shake
(rear view).

lutions. The task is to recover x from a given observation y. If K is known, we call the problem
non-blind deconvolution, otherwise blind deconvolution.
In the following, we introduce the fundamentals necessary for removing blur from images.

First, in Section 1.1, we state the mathematical properties of blur in photos. Next, we introduce
methods to reconstruct x when the aberration is known (Section 1.2) and when it is unknown
(Section 1.3). Lastly, in Section 1.4, we explain the machine learning tools we use to go beyond
the established image reconstruction methods.

1.1. Mathematical problem description

To correct for aberrations in images, it is important to be able to describe these aberrations
mathematically. In the context of this work, we always work in the domain of discrete pixels
in an image (e.g., taken by the sensor of a digital camera), which is an approximation to the
continuous domain of the electromagnetic waves which produced this signal.

1.1.1. Stationary convolutions

If the blur is independent of the position within the image, it can be described by a stationary
convolution. An example would be a pure translation of the camera parallel to a scene that lies
within a single plane, as illustrated in Fig. 1.1 on the left. Mathematically, a convolution is
defined as

y[n] = (k ∗ x)[n] =
∞∑

m=−∞

k[m]x[n − m] =
∞∑

m=−∞

k[n − m]x[m] (1.2)

with functions y , k and x, defined on the set of integers Z, where y[n] denotes the value of y
at n. For simplicity, we only show the math for a one-dimensional convolution. Intuitively, if k
is only non-zero near 0, then y[n] is a weighted average of the values of x near n, weighted by
k. Figure 1.2 shows examples of convolutions in two dimensions, applied to an image.

6

1.1. Mathematical problem description

Sharp image Convolved with Gaussian blur Convolved with motion blur

Figure 1.2.: Example of an image corrupted by a stationary convolution.

When working on finite domains, there are two noteworthy cases of performing the convolu-
tion:

Valid: The finite input vector x of size nx is blurred by a kernel k of size nk , resulting in an
output y with size nx − nk + 1. This is the typical setting in photography, which is physically
valid. A pixel on the sensor may receive light from an object outside of the field of view because
of a blur with non-zero extent. Denoting the i-th element of a vector v as vi, we define

y = k ∗
valid

x where yn =

nk∑
m=1

km xn+nk−m. (1.3)

Circular: The discrete input signal x is assumed to be periodic with period nx , this means

y = k ∗
circ

x where yn =

nk∑
m=1

km x ((n−m) mod nx)+1, (1.4)

or creating a circulant matrix K from the entries of k,

y = Kx. (1.5)

If we perfom the computation as described in this equation, it requires O(nxnk) multiplica-
tions and additions, which can be expensive especially for two-dimensional convolutions. We
note that the discrete Fourier matrix F diagonalizes a circulant matrix C = FH Diag(Fc)F,
where “Diag” creates a diagonal matrix from a vector, c is the first column of C, and FH is
the Hermitian transpose of F. Equation (1.5) can be rewritten as the discrete version of the
convolution theorem,

y = k ∗ x = FH (Fk � Fx) , (1.6)

since Diag(a)b = a � b and assuming that k is zero-padded to the length of x. The symbol �
denotes the Hadamard product.

7

1. Fundamentals

Figure 1.3.: Left: Spatially-varying point spread function (PSF) of a self-built 120mm
lens. The measurement was performed as described in Section 2.5. Right:
Photo taken with this lens.

Using fast Fourier transforms (FFTs), the discrete Fourier matrix can be multiplied with a
vector of length n in time O(n log n), which means that the FFT applied to the convolution
theorem enables us to calculate y in time O(nx log nx). For large blurs the dependence log nx
of this approach versus nk of Eq. (1.4) results in lower computation times. Additionally, as we
will see in Section 1.2, the Fourier representation is especially advantageous when trying to
invert convolutions, i.e., reconstructing the original sharp image.
Revisiting the different convolution types, and introducing an operator Cy which appropri-

ately crops a vector by the size of the kernel minus 1 in every dimension, and furthermore an
operator CT

k which pads to the size of x, we obtain:

Valid:
y = Cy (k ∗ x) = CyFH

(
FCT

k k � Fx
)
. (1.7)

Circular:
y = k ∗ x = FH

(
FCT

k k � Fx
)
. (1.8)

Note that the transpose of a cropping matrix C is a zero-padding matrix CT.

1.1.2. Spatially-varying blur

Looking at the middle part of Fig. 1.1, a photo of a point grid corrupted by camera-shake, we
see that the assumption of stationarity does not always hold for camera shake. This is clear if we
consider a rotation of the camera along the axis perpendicular to the image plane: a point in the
upper right corner of the image will be shifted in the opposite direction of a point in the lower
right corner. However, two points in spatial proximity within the scene will be transformed
similarly, this means then the blur varies smoothly also across the image plane.
A further example, lens aberrations, exhibits similar behavior, see Fig. 1.3. Again, the

corruption is locally a convolution, but varies smoothly across the image plane. In Section 2.3

8

1.1. Mathematical problem description

we explain the aberrations that cause the incoming light rays to deviate from a single focal
point.
We have seen that, in the case of linear optics, Eq. (1.1) is sufficient to describe the image

formation process. However, the computational complexity in the general case is O(n2), which
is infeasible for a large number of pixels n in the ground truth image. Noting that corruptions
like camera shake or lens aberrations are still convolutions locally, but vary smoothly, it is
possible to approximate them with the efficient filter flow (EFF) framework [Hir+10]. Its basic
idea is to cover the image with overlapping patches, to each of which a blur kernel is assigned.
In this framework, the forward operation is modeled as

y =
R∑

r=1
k(r) ∗

(
w(r) � x

)
, (1.9)

where x denotes the ideal image and y is the image degraded by optical aberrations. Here x and
y are discretely sampled images, i.e., x and y are finite-sized vectors whose entries correspond
to pixel intensities, w(r) are weighting vectors that mask out all of the image x except for a local
patch by Hadamard multiplication. The r-th patch is convolved appropriately with a local blur
kernel k(r) in two dimensions. All blurred patches are summed up to form the degraded image.
The more patches are considered (R is the total number of patches), the better the approximation
to the true non-uniform PSF [Hir12]. Note that the patches defined by the weighting vectors
w(r) usually overlap to yield smoothly varying blurs. The weights are chosen such that they sum
up to one for each pixel, i.e.,

∑R
r=1w

(r) = 1, where 1 denotes a vector of ones. This means that,
depending on the weighting vectors, every pixel can have a different blur, a linear combination
of the given blur kernels in its neighborhood. Hirsch et al. [Hir+10] show that this forward
model can be computed efficiently by making use of the short-time Fourier transform, writing
it either in terms of x or k:

y = Kx = Cy

R∑
r=1

CT
r FH Diag

(
FCT

k k
(r)

)
FCr Diag

(
w(r)

)
x, (1.10)

y = Xk = Cy

R∑
r=1

CT
r FH Diag

(
FCr Diag

(
w(r)

)
x
)

FCT
k Sr k. (1.11)

Adopting the notation of [Hir+10], the matrices Ck and Cr are appropriately chosen cropping
matrices, and Sr selects k(r) from the kernel stack k. The most expensive operation in this
formulation is the FFT (O(n log n)), whereas the other operations, including cropping and
zero-padding, are possible to perform in linear time.
From the operator notations in Eqs. (1.10) and (1.11) it is directly clear how to obtain the

transpose operators KT and XT. These are required for gradient calculations, e.g. when solving
deconvolution as an optimization problem. For example, the gradient of the log-likelihood
function E(x) = ‖Kx − y‖2, appearing in the next section, would be

∂E
∂x
= 2KT (Kx − y) . (1.12)

9

1. Fundamentals

x k ∗ x k ∗ x + n

Figure 1.4.: Effect of a blur on the power spectrum. Top row is the image in real space,
bottom row the power spectrum on a logarithmic scale. Left: Original image.
Center: Blurred with a Gaussian blur. Right: Blurred and with 1% Gaussian
noise. Note how the blur and the noise corrupt high frequencies.

For some cases of spatially-varying blur, alternative representations could be used. For exam-
ple for camera shake, the blurry image could be described by a superposition of homographies
of the true scene [Why+10]. For lens aberrations, the first few Zernike polynomials approxi-
mate the phase of the incoming light well, which is nonlinearly related to the blur throughout
the sensor plane [BW99].

1.2. Non-blind deconvolution methods

It is often possible to obtain knowledge about the blur of an image a priori. For example, the
aberrations of a lens are fixed, and even motion blur could be measured with accelerometers
and gyroscopes [Jos+10].
Given the blur, trying to invert convolution is still an underdetermined problem: we see the

effect of a convolution in Fig. 1.4, where the blur lowers the high frequencies. After adding
a small amount of noise, the signal-to-noise ratio (SNR) becomes close to 0 in a large part of
the spectrum. This is why prior knowledge has to be included to reconstruct the original image
from the remaining signal.

10

1.2. Non-blind deconvolution methods

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
Gradient value

lo
g
 p

ro
b
ab

il
it

y

Empirical

Gaussian (α=2)

Laplacian (α=1)

Hyper−Laplacian (α=0.63)

Figure 1.5.: Left: Distribution of horizontal and vertical gradients in natural images
(grayscale). The empirical distribution generated from the Kodak image data
set1and fits of three analytic distributions p(x) ∝ exp(−c |x |α) are shown.
Right: Two examples from the Kodak image data set.

1.2.1. Wiener deconvolution

In the simplest case, both the signal and the noise, which are additive, are assumed to be
stationary linear stochastic processes, i.e., they have shift-invariant linear joint probability
distribution. This also means that the processes’ spectral properties are sufficient to describe
their properties. It can then be shown that the minimum mean square error (MMSE) estimator
x̃ of the original signal is [GW02]

x̃ = FH Fk � Fy
|Fk|2 + Pn/Px

, (1.13)

assuming circular convolution and that k is appropriately zero-padded to the size of x. Here the
division, the absolute value and the conjugation (indicated by the bar above a symbol) are point-
wise operations. Additionally, we introduced the frequency dependent power spectral density
of the noise Pn and the signal Px , i.e., the Fourier transform of their respective auto-correlations.
Since this is the MMSE estimator, given our assumptions, there cannot be a better estimator in
the square error sense. Comparing Eq. (1.13) with Eq. (1.8), we see that Fk/(|Fk|2 + Pn/Px)
acts as a convolution filter on the blurry observation y. This filter is also known as the Wiener
filter.

1.2.2. Tikhonov regularization

Contrary to the previous assumptions, images are typically not generated by a linear stationary
process, which means that theWiener deconvolution of Eq. (1.13) can only be an approximation.
1http://r0k.us/graphics/kodak/

11

http://r0k.us/graphics/kodak/

1. Fundamentals

Bayes’ rule tells us that the posterior probability density function (PDF)

p(x|y) =
p(y|x)p(x)

p(y)
(1.14)

of x given an observation y is proportional to the likelihood p(y|x) and the prior p(x), normal-
ized by p(y). From Fig. 1.5 we see that a Gaussian distribution is a rough approximation to
the distribution of gradients in natural images (while a hyper-Laplacian would be better suited,
it is also less tractable [KF09]). This provides a prior p(x) ∝ exp

(
−(‖Gx‖2)/(2σ2

Gx)
)
with

standard deviation σGx and the gradient matrix G. Assuming Gaussian noise, the likelihood
is p(y|x) ∝ exp

(
−(‖k ∗ x − y‖2)/(2σ2

n)
)
with standard deviation σn. Then the PDF of x

conditioned on y is

p(x|y) ∝ exp
(
−
‖k ∗ x − y‖2

2σ2
n

)
· exp *

,
−
‖Gx‖2

2σ2
Gx

+
-
. (1.15)

In the case of a Gaussian distribution the mean and the maximum (a.k.a. mode) are at the same
point, the MMSE estimator consequently is the MAP solution. Since the logarithm is a strictly
increasing function that does not affect the position of extrema, we can instead determine the
minimum of the negative logarithm of the posterior,

‖y − k ∗ x‖2 +
σ2

n

σ2
Gx

‖Gx‖2, (1.16)

Because only L2 norms appear in this objective, in the case of circular convolution there exists
a closed-form solution [CL09]

x = FH Fk � Fy

|Fk|2 +∑
i
σ2
n

σ2
Gx

|Fgi |
2
, (1.17)

assuming that ‖Gx‖2 can be expressed as the sum
∑

i ‖gi ∗ x‖2 of convolutions with gradient
filters gi zero-padded to the size of x. Note that this result is a special case of Eq. (1.13), where
Pn = σ

2
n1 and Px =

∑
i σ

2
Gx/|Fgi |

2.
Unfortunately, the operator Cy that would be necessary for valid convolutions is not diagonal

in Fourier space, which breaks the fast inversion by Fourier division. However, this is the
convolution type appearing in photography applications. To make it applicable, the blurry
image y is tapered in the area of the edges such that there is a smooth transition between
opposite edges, e.g., by multiplying the border regions with a window function smoothly going
from 1 to 0. [KF09]

1.2.3. Recent deconvolution methods
The methods mentioned above use an explicit image prior (e.g., the Wiener filter incorporates
the power spectra of signal and noise) to reconstruct the original signal, and many other methods
with more sophisticated explicit image priors are also available. A different class of methods
instead tries to first apply the simple deconvolution from Eq. (1.17) and, in a second step,
remove the artifacts created from this imperfect reconstruction. We will discuss these two
classes of algorithms and their relation to our proposed method in more detail in Section 4.2.

12

1.3. Blind deconvolution methods

1.3. Blind deconvolution methods
Lenses have many different settings, including aperture, zoom and focus, and inertia sensors
for motion blur add additional hardware constraints, making it difficult to measure the exact
lens or motion blur. Thus, it is advantageous to infer both the true image x and the blur kernel
from the recorded image, a problem known as blind deconvolution.
In this case, the problem becomes underdetermined even without noise, because many com-

binations of blur kernel and reconstructed image could explain the observation. From a prob-
abilistic perspective, every pair of kernel k and true image x is associated with a posterior
probability

p(x,k|y) =
p(y|x,k)p(x)p(k)

p(y)
∝ p(y|x,k)p(x)p(k), (1.18)

analogous to Eq. (1.14). When solving blind deconvolution, we are interested in an estimated
solution x̃ and k̃ optimal under a certain loss, i.e., the solution that minimizes the expected
error

∫
E(x̃, k̃,x,k)p(x,k|y)dxdk with the x- and k-space volume elements dx and dk, and a

given loss E(x̃, k̃,x,k).
For a 0–1 loss, which means that the cost is 0 for the estimated solution equal to the ground

truth, and 1 for all wrong solutions, the optimal estimator is the MAP estimator [Mur12]
introduced in Section 1.2.2, argmaxx,k p(x,k|y). It is one of the two common approaches for
blind deconvolution. The other approach also considers a 0–1 loss, but only with respect to k,
and marginalized over x, i.e., argmaxk p(k|y) = argmaxk

∫
p(x,k|y)dx. In the following we

will introduce both approaches.

1.3.1. MAP approaches

The maximum a posteriori approach finds the maximum of Eq. (1.18). As above, this is equiv-
alent to the minimum of its negative logarithm. Therefore, we need to minimize

‖k ∗ x − y‖2 + gx (x) + gk (k) (1.19)

where ‖k ∗ x − y‖2 is the log-likelihood term under the assumption of Gaussian noise, and
gx (x) and gk (k) are derived from p(x) and p(k), acting as regularizers in the new objective.
The regularizer gx (x) penalizes blurry images, for example by using a sparse prior on the

gradients [SJA08], which prefers having a single large gradient instead of a smooth transition
with many small gradients. While Shan et al. [SJA08] fit to the distribution of gradients of
natural images, Xu et al. [XZJ13] are more successful with a sparsity-promoting L0 prior,
suggesting that it is more important to be discriminative between sharp and blurry images than
to use a generative distribution for sharp images. Similarly, the normalized sparsity measure
from [KTF11] is an improper prior since the integral of all prior values is not finite.
Another class of methods only uses implicit regularization for the image, without explicitly

defining a regularization term gx (x). For example, this can be achieved by nonlinear filtering
of the image such that edges are emphasized and artifacts are suppressed. Cho and Lee [CL09]
apply a shock-filter — the inversion of a diffusion process— and a bilateral filter to achieve this,
as can be seen in Figs. 1.7 and 3.5. Another method [XJ10] defines a heuristic procedure to

13

1. Fundamentals

Current
estimate

Next
estimate

Feature extraction Kernel estimation Image estimation

Figure 1.6.: Blind deconvolution procedure forMAP approaches. PSF and image estimates
are refined by repeating the three steps feature extraction, kernel estimation
and image estimation. The feature extraction shown here creates two images
in gradient space. The kernel and image estimation are often performed by
division in Fourier space, hence the division symbol ÷.

select gradients that are believed be most informative to estimate the blur kernel. Our proposed
method in Chapter 5 also falls into the category of implicit regularization, but learns the optimal
regularization operation.
Having chosen a regularization procedure, MAP approaches iterate between the following

three steps, also shown in Fig. 1.6:

Feature extraction: The feature extraction creates image representations that are useful
for kernel estimation, using one of the approaches mentioned above. This intermediate feature
image is sometimes also called unnatural image representation [XZJ13]. Compared to the
sharp image, it is dominated by step-edges and contains less details. The feature extraction is
often only performed in gradient space. Figure 1.7 shows a comparison of these intermediate
representations, including a direct regularization method [CL09], a marginalization approach
[Fer+06] explained below, and a method with implicit regularization [XZJ13] (the latter two
reconstructed from gradients).

Kernel estimation: The next step takes the extracted features to estimate the convolution
kernel. The prior on the kernel is often an analytically tractable Gaussian prior, with gk (k) ∝
‖k‖2 [CL09], or a sparsity-inducing L1 prior gk (k) ∝ ‖k‖1 [SJA08]. It is also possible to
combine a prior with a heuristic approach, e.g., support detection of the kernel [XJ10], to
detect the regions where the kernel is non-zero. It is recommended to work on images in
gradient space, since in this case the optimization problem converges faster [CL09].

14

1.3. Blind deconvolution methods

Cho and Lee [CL09] Fergus et al. [Fer+06] Xu et al. [XZJ13]

Figure 1.7.: Intermediate image representations for kernel estimation. These images are
intermediate results of blind deconvolution methods analogous to Fig. 1 in
[XZJ13]. Fergus’ result has been reconstructed from gradients.

Image estimation: Lastly, the sharp image is estimated using the current kernel estimate,
which will be the starting point for the next feature extraction step.

The three steps are repeated several times on different image scales, starting on a coarse scale
with a downsampled version of the blurry image. On the coarser scale the blur is also smaller
and easier to infer. After upsampling, the previous solution gives a better initialization for the
next scale.
An important consideration of blind deconvolution is to make it fast, i.e., it should ideally

not take more than a few seconds to deblur a standard-sized photo. Usually this requires to
solve Eq. (1.19) in a few steps, see Eq. (1.17), instead of performing many iterations with an
optimizer. While Eq. (1.17) works only for some regularization terms, e.g., gx (x) ∝ ‖x‖2,
procedures for non-L2 terms exist [KF09; XZJ13].

1.3.2. Marginalization approaches
A toy example for Eq. (1.18) is shown in Fig. 1.8 on the right. While, in this case, the distribution
is still simple with both the kernel and image being one-dimensional and only Gaussian priors,
in practice local minima pose problems. Additionally, depending on the prior, the trivial
solution where the blur is a delta peak can become the global optimum [WZ13], even though
regularization schemes as mentioned above can alleviate the problem.
Levin et al. [Lev+09] proposed to insteadmarginalize over x to obtain p(k|y) =

∫
p(x,k|y)dx

and find the k that maximizes

max
k

p(k|y) ≡ min
k
−2 log p(y|k)p(k). (1.20)

Afterwards x can be obtained by non-blind deconvolution. In the toy example, the marginal
is plotted on the left. The advantage of this approach is the reduced dimensionality of the
optimization problem. However, marginalizing over x is difficult and can only be done approx-
imately, e.g., with variational Bayes (VB) [Lev+11]. As noted by Wipf and Zhang [WZ13],

15

1. Fundamentals

x

• max p(x,k|y)

• max p(x|y)

0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2
k

p(k|y) p(x,k|y)

Figure 1.8.: Illustration of a toy example with p(x, k | y) ∝ exp
(
−

(k ·x−1)2

2·0.12 −
x2
2·22 −

k2
2·0.52

)
,

and its marginals. The mode of the full distribution is different from the mode
of its marginal p(k | y).

the assumptions behind VB are actually not ideal for blind deblurring (e.g., factorization of the
distribution). The reported superiority over MAP [Lev+11] seems to be mainly due to avoiding
local minima, and the priors should be such that they discriminate well between blurry and
sharp images, rather than being generative for sharp images. For a more in-depth review, see
[WZ13].

1.4. Neural networks
Another approach does not employ an explicit image prior p(x) but learns an estimator from
samples of the ground truth x and the corresponding observation y drawn from p(x) and p(y|x),
respectively. To draw samples from p(x), a large collection of photos can be used. We obtain
samples from p(y|x) by applying the corruption process artificially. A learning algorithm can
then obtain information about the intractable distribution p(x) of images implicitly. Artificial
neural networks (NNs) have demonstrated to be successful for this task in the context of image
processing [BSH12c], and we will also employ them in this thesis.
While the origins of NNs go back to the 1940s [MP43], they are currently seeing a resurge

in popularity, thanks to advances in neural network architectures and faster hardware. NNs are
broadly applicable to many different learning tasks and come in many different variants. In the
context of this work, NNs mean feed-forward neural networks applied to supervised learning
tasks. For a broader picture of NNs, we refer the interested reader to [Sch14].
In our setting, training a NN on a data set is a special case of nonlinear regression, where

the function to be learned is a concatenation of elementary functions

f (i) = fn
(
. . . f2

(
f1 (i,p1) ,p2

)
. . . ,pn

)
. (1.21)

16

1.4. Neural networks

In the context of neural networks, the building blocks fi (i,pi) of vector-valued functions with
input i and parameters pi are called layers. Given a loss function E(f (i), t), e.g. a square loss
‖ f (i) − t‖2 with known input and target pairs i and t, parameters pi can be learned such that
they minimize the expected loss. An architecture often used is the multilayer perceptron (MLP),
where the concatenated functions alternate between linear transformations and nonlinearities,
e.g.,

f (i) = b3 +W3 tanh(b2 +W2 tanh(b1 +W1i)), (1.22)

where fi (i,pi) = tanh(bi +Wii) with weight matrix Wi and bias vector bi is commonly called
a hidden layer.
Recently, it has been shown that even this simple architecture can achieve state-of-the-art

results for denoising [BSH12c] or digit recognition [Cir+10]. The key difference to older
architectures is the use of deep architectures, meaning four or more of the mentioned layers.
This is also the architecture we use for our non-blind deconvolution algorithm in Chapter 4.
For other challenging computer vision problems like object recognition, the NN is a more
general layered computation consisting of convolutional layers, pooling layers, normalization
layers, or rectifying linear units and other layer types [Le+12]. The learning method for blind
deconvolution proposed in Chapter 5 works in the same spirit.

1.4.1. Training

Commonly, NNs are trained with back-propagation [Wer74]. Given a training example with
input and expected output, we can calculate the gradient gi of the loss with respect to a certain
parameter vector pi by applying the chain-rule:

gi =
∂E
∂pi
=

∂E
∂ fn(i)

∂ fn(i)
∂ fn−1(i)

∂ fn−1(i)
∂ fn−2(i)

. . .
∂ fi (i)
∂pi

. (1.23)

We see that the derivative of a layer i includes all derivatives ∂ f j (i)/∂ f j−1(i) of subsequent
layers. The intermediate results can be reused from layer to layer, which means the derivative
is back-propagated. Next, every layer is updated by changing the parameters as

p(t+1)
i = p(t)

i + ∆p
(t)
i . (1.24)

One possible approach to adapt the network’s parameters in order to minimize the cost on
a training set is the stochastic gradient descent (SGD) algorithm [Bot91]. Every update is the
scaled gradient

∆p(t)
i = −ηg

(t)
i (1.25)

with learning rate η. Note that “stochastic” means that the update is calculated on a random
selection of training examples. The convergence rate can be improved by adapting the learning
rate layer-wise (e.g., dividing by a factor depending on the input dimension of each layer
[LeC+98b]).
The momentum update rule [RHW86] includes not only the current gradient, but the past

gradients with exponentially decaying importance, ∆p(t)
i =

∑t−1
τ=0 ρ

τg(t−τ)
i . This smoothens

random variations orthogonal to the dominant gradient direction.

17

1. Fundamentals

Fast convergence rates and less tuning for different architectures are achieved by the ADA-
GRAD [DHS11] method. It normalizes the update with the root mean square (RMS) of all
previous gradients, effectively setting a different learning rate for every parameter:

∆p(t)
i = −η/

√√
t∑

τ=1
(g(τ)

i)
2
· g(t)

i , (1.26)

where all operations are performed element-wise. The diverging RMS of the past gradients
causes the updates to go to zero over time, which may be desired to reduce overfitting on limited
training data.
When near infinite training data is available, for example when sampling from a generative

model, this behavior may be undesired. The ADADELTA [Zei12] method proposes to include
past gradients in the calculation of the RMS with decaying importance,

∆p(t)
i = −η

RMS[∆pi](t−1)

RMS[gi](t) g(t)
i with RMS[g](t) =

√
E[g2](t)

+ ε

and E[g2](t)
= ρE[g2](t−1)

+ (1 − ρ)g(t)2.

(1.27)

Additionally, it adds a speed-up term in the numerator, which becomes large when the previous
updates are large.
The methods mentioned here are often performed on several training examples simultane-

ously, called mini-batches, where multiple gradients are combined to a single, more meaningful
gradient. This can be advantageous because some operations in the neural network need less
instructions if performed over multiple inputs, as compared to multiple executions on a single in-
put. A good example is a single matrix-matrix multiplication instead of multiple matrix-vector
multiplications.
To successfully train NNs, there are many other important design choices, for example num-

ber of hidden units, and “tricks”, like the initialization of the parameters pi, data normalization
or layer-wise hyper-parameter settings discussed in [Ben12].

1.4.2. Toy example
Neural networks have proven to be successful for classification and regression tasks. How do
they achieve this? To give some insights, we trained2 a small MLP to solve a two dimensional
classification task with two classes which are not linearly separable (see Fig. 1.9 on the left).
The network has two input dimensions, one hidden layer with two dimensions, and two output
classes, allowing us to plot the intermediary and final outputs in their full dimensionality. While
commonly one hidden layer in an MLP means both a nonlinearity and an affine transformation,
we here view the affine transformation as separate layers.

The network maps an input i to an output o where ok is the probability of i belonging to a
class k of K total classes. When providing labels tk for the training data (1 if its true class
is k, otherwise 0), we can train the network on the cross-entropy loss −

∑K
k tk ln(ok) using

2We employed ConvNetJS (http://github.com/karpathy/convnetjs) for both training and visualization.

18

http://github.com/karpathy/convnetjs

1.4. Neural networks

Input-Layer Linear-Layer Tanh-Layer Linear-Layer Softmax-Layer

Hidden layers

Figure 1.9.: Classification with a neural network. This toy example shows an MLP with
two input dimensions, “one” hidden layer with two neurons (the linear layers
are commonly discounted in the number of hidden layers) and two output
classes. See Section 1.4.2 for details.

the training procedure of our choice, here SGD. While the network may converge to different
parameter configurations, one successful outcome after training is a network that performs the
following operations on the input:

1. Linear layer: The first hidden layer applies an affine transformation o1 = b1 +W1i. We
see from Fig. 1.9 that the input plane is rotated such that the two directions which could
separate the classes are aligned to the coordinate system of the feature space.

2. Tanh layer: Next, the data is nonlinearly transformed as o2 = tanh(o1), “straightening out”
the region between the different classes, and making the two classes linearly separable.

3. Linear layer: A second affine transformation o3 = b3 +W3i projects out the dimension
along the line separating the two classes in the nonlinear feature space, since the network
decided this dimension is not relevant for the classification decision. Also, the output of
the linear layer is rotated relative to its input to be suitable for the subsequent softmax
layer.

4. Softmax layer: The final output layer converts its input into the normalized probability
of a certain point belonging to a particular class, i.e., o = exp(o3)/

∑K
k=1 exp(o3,k). The

colored areas in Fig. 1.9 depict in red or green where the probability for class 1 or 2
is larger than 0.5, respectively. At the red end of the line the NN is certain that the
corresponding point in the input layer belongs to class 1, at the green end that it belongs
to class 2.

We see that the MLP transformed the nonlinearly separable input to a nonlinear feature space,
where it is linearly separable, allowing a classification decision.

19

CHAPTER 2

Non-Blind Correction of Optical Aberrations

Taking a sharp photo at several megapixel resolution traditionally relies on high grade lenses.
In this chapter, we present an approach to alleviate image degradations caused by imperfect
optics. We rely on a calibration step to encode the optical aberrations in a space-variant point
spread function and obtain a corrected image by non-stationary deconvolution. By including
the Bayer array in our image formation model, we can perform demosaicing as part of the
deconvolution.

The material of this chapter is based on the following publication:

[Sch+11] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Schölkopf. “Non-stationary correc-
tion of optical aberrations”. In: IEEE Int. Conf. Computer Vision. 2011. doi:
10. 1109/ iccv. 2011. 6126301

2.1. Introduction
In an ideal optical system as described theoretically by paraxial optics, all light rays emitted by
a point source converge to a single point in the focal plane, forming a clear and sharp image.
Departures of an optical system from this behavior are called aberrations, causing unwanted
blurring of the image.
Manufacturers of photographic lenses attempt to minimize optical aberrations by combining

several lenses. The design and complexity of a compound lens depends on various factors, e.g.,
aperture size, focal length, and constraints on distortions. Optical aberrations are inevitable
and the design of a lens is always a trade-off between various parameters, including price. To
correct these errors in software is still an unresolved problem.
Rather than proposing new designs for complicated compound lenses, we show that almost

all optical aberrations can be corrected by digital image processing. For this, we note that
optical aberrations of a linear optical system are fully described by their PSF. We will show

21

http://dx.doi.org/10.1109/iccv.2011.6126301

2. Non-Blind Correction of Optical Aberrations

Figure 2.1.: Self-made photographic lens with one glass element only, mounted on a re-
mote controlled platform to take photos in different angles.

Figure 2.2.: Image taken through self-made lens without and with lens correction.

how various optical aberrations encountered in real photographic lenses can be represented
and approximated as PSFs in non-stationary convolutions, as mentioned in Section 1.1.2. For a
given lens/camera combination, the parameters of the non-stationary convolution are estimated
via an automated calibration procedure that measures the PSF at a grid covering the image.
We also include demosaicing into our image reconstruction, because it fits naturally into our
forward model. Our results surpass the previous state of the art.

Main contributions: We show how to reconstruct a full-color image, i.e., all three color
channels at full resolution, given a raw image that is corrupted by various monochromatic
and chromatic aberrations, and Bayer filtered by a color filter array (CFA) of our off-the-shelf
camera. This image reconstruction is even possible for heavily degraded images, taken with
a self-constructed lens consisting of a single lens element attached to a standard camera, see
Fig. 2.1.

22

2.2. Related work

2.2. Related work

There exist many different methods solely for demosaicing, for reviews see [Ram+02; Gun+05;
AL08; LGZ08]. However, none of them model and exploit the spatially-varying aberration of
the lens to facilitate demosaicing as our method does. Most closely related is a MAP approach
that treats deconvolution and demosaicing jointly [ST09], but for blur constant across the image
and all color channels.
Chromatic aberrations arise because the refractive index of glass, and thus focal length

and image scale, is dependent on the wave length. A common approach to correct for lateral
chromatic aberrations is a non-rigid registration of the different color channels [BW92; KL05;
MW07]. Such methods correspond to restricting our model to delta-peaked PSFs, and generally
ignore other optical aberrations. The method of [CKS09] measures chromatic aberration at
edges through color differences and compensates locally, however without using a PSF model
of the lens. The approach in [JSK08] also relies on the estimation of sharp step edges and can
be used in a non-blind fashion. Even though full PSFs are estimated, they are only used to
remove chromatic aberrations, where a rough knowledge of the PSF is sufficient. None of these
approaches consider demosaicing.
A method that focuses on correcting coma has been proposed in [Gif08], showing how to

reduce coma by locally applying blind deconvolution methods to image patches. This method
is designed for grayscale images and thus does neither consider chromatic aberration nor de-
mosaicing.
Algorithmically related to our work is [FEM06], considering sparsity regularization in the

luminance channel, and Tikhonov regularization in the two chromaticity channels. However,
[FEM06] combines the image information from several images, while our method works with a
single image. Also, [FEM06] combines demosaicing with super-resolution, while we combine
it with correction for chromatic aberrations.
The image reconstruction problem we are addressing can also be dealt with using the propri-

etary software “DxO Optics Pro” (DXO), which tries to correct for image aberrations. DXO is
considered state-of-the-art among professional photographers and presumably uses the same
kind of information as our approach (it contains a custom database of lens/camera combina-
tions). It has been developed over a number of years and is highly optimized. DXO states that
it can correct for “lens softness”, which their website1 defines as image blur that varies across
the image and between color channels in strength and direction. It is not known to us whether
DXO models the blur as space-variant defocus blur of different shapes or with more flexible
PSFs as we do; neither do we know whether DXO demosaics and deblurs simultaneously as
we do. In the experimental section we show that our results compare favorably with results
obtained by DXO.
Using deconvolution to correct for lens aberrations is also discussed in [Kee+11]. This work

focuses on removing lens blur across multiple aperture and zoom settings of a given lens. A
calibration method similar to [JSK08] is used. While this method can correct aberrations across
many different settings of a lens, the blur shape is modelled as a Gaussian. As can be seen in

1https://web.archive.org/web/20110519014422/http://dxo.com/us/photo/dxo_optics_pro/
optics_geometry_corrections/lens_softness

23

https://web.archive.org/web/20110519014422/http://dxo.com/us/photo/dxo_optics_pro/optics_geometry_corrections/lens_softness
https://web.archive.org/web/20110519014422/http://dxo.com/us/photo/dxo_optics_pro/optics_geometry_corrections/lens_softness

2. Non-Blind Correction of Optical Aberrations

Spherical aberration Coma Chromatic aberration

Figure 2.3.: Examples of optical aberrations: light rays are not focused into a single point.

Fig. 2.9 this is not appropriate for strong aberrations considered in this paper. Also, the problem
of demosaicing is not treated.
There exist several papers which suggest calibration procedures to measure the lens, e.g.

[SA94; Ste02; JSK08]. However, they mainly focus on correcting geometric distortion or do
not address monochromatic aberrations.
A closely related method published after the material of this chapter also infers the spatially-

varying PSF in a measurement step and removes the blur algorithmically [Hei+13]. It obtains
the lens aberration from a calibration pattern and then performs non-blind deconvolution with
a cross-channel term designed to minimize color fringing.

2.3. Aberrations as a non-stationary convolution
While the aberrations of an imaging system can be described as a simple matrix operator, we
have noted in Chapter 1 that the required matrix-vector multiplication would be computationally
expensive. As can be seen in Fig. 2.7 on the left, the aberration can also be represented as PSFs
that vary in size, shape, orientation and intensity, depending on the position in the image.
Since the PSFs also vary smoothly across the image plane, using EFF (Section 1.1.2) is a valid
approximation in this case.
Lenses are affected by a variety of different aberrations. Each of them have in common

that light rays are not focused into a single point anymore. In the following, we explain the
categories of aberrations that we can include in our model and remove in the reconstruction
step:

Monochromatic aberrations. This class of aberrations includes spherical aberration (in
spherical lenses, the focal length is a function of the distance from the axis, see Fig. 2.3 on
the left) as well as a number of off-axis aberrations: coma occurs in an oblique light bundle
when the intersection of the rays is shifted with respect to its axis (Fig. 2.3 in the middle);
field curvature occurs when the focal surface is non-planar; astigmatism denotes the case when

24

2.4. Forward model including mosaicing

the sagittal and tangential focal surfaces do not coincide (i.e., the system is not rotationally
symmetric for off axis light bundles); distortion, which is the only aberration we do not address,
is related to a spatially-varying image scale. All these monochromatic aberrations lead to
blur that varies across the image. Any such blur can be expressed in the EFF framework by
appropriately choosing the local blur kernels k(1), . . . , k(R) in Eq. (1.9).

Chromatic aberration. The refraction index of most materials including glass is dependent
on the wavelength of the transmitted light. Axially, this results in the focus of a lens being a
function of the wavelength (longitudinal chromatic aberration, Fig. 2.3 on the right); off-axis,
we observe lateral chromatic aberration caused by the fact that the different focal lengths for
different wavelengths directly imply that the image scale slightly varies with wavelength. By
modeling the three color channels with separate space-variant PSFs, we are able to describe
such chromatic aberration. This means on the red, green and blue color channels xR, xG, and
xB each acts a blur KR, KG and KB, which we can also write as a blur K acting on the full color
image x.

Vignetting. Because oblique light bundles do not reach the focal plane in their entirety, the
intensity of the image falls off towards the image corners. This can be corrected by photograph-
ing a flat field frame, i.e., an image of a homogeneous background, and dividing the image
by it. While this is straightforward, the EFF framework can also include vignetting into our
model by omitting the energy conservation constraint, in that case the filters k(r) in Eq. (1.9)
do not have to sum up to one, i.e., we only require

∑
j k (r)

j ≤ 1 and k (r)
j ≥ 0 for all j and r . By

allowing dimmer filters we automatically correct for vignetting using our procedure. Note that
summation constraint of the windows w (r) is unaffected by relaxing the energy conservation
constraint.

2.4. Forward model including mosaicing

Both demosaicing and deblurring are ill-posed linear inverse problems. Demosaicing aims
at recovering a full-color image from the spatially undersampled color samples yielded by an
image sensor overlaid with a CFA as used in most modern digital cameras.
The image blurred by the blur K is the image that will enter the CFA, just before being

mosaiced (cf. Fig. 2.4). The operation of the CFA can be described as a linear map represented
by some matrix D, whose result will be the image that hits the photo-sensitive sensor behind the
CFA. Note that D is a rectangular matrix with three times as many columns as rows. The entries
of D will linearly combine pixels in x, e.g., the first pixels of xR, xG, and xB will be linearly
combined to form the first pixel of y with weights dependent on whether the corresponding
spot on the CFA has a red, blue, or green color filter.
The forward model combines the lens aberration and Bayer filtering into a single matrix A

and adds noise n, i.e.,

y = DKx + n = Ax + n. (2.1)

25

2. Non-Blind Correction of Optical Aberrations

Ground truth

MAP estimation

Lens-blurred image Recorded image

Measurement of
lens blur

Image priors

Figure 2.4.: Overview of our approach for non-blind correction of optical aberrations. The
ground truth image x is blurred by the lens blur K and converted to grayscale by
the Bayer matrix D. The recorded image y is the input to our MAP estimation,
which employs a spatially-varying measurement of the lens blur and suitable
image priors to reconstruct the original image.

In the next two sections we will describe the steps necessary to obtain an estimate of x from
the observation y. First we measure the spatially-varying blur K , then we perform a MAP
estimation incorporating prior knowledge about the ground truth image.

2.5. Estimating the non-stationary convolution

In our non-blind approach for correction of optical aberrations, we require a measurement of
the local blur kernels k(r) that constitute K .
Leaving aside diffraction effects (e.g., by ensuring the pixel size to be larger than the Airy

disk), a point light source should influence just a single pixel on the imaging sensor of a digital
camera. However, this would only happen if a digital camera was a perfect optical system. In
practice, the various lens aberrations discussed above will spread out the point light source over
a larger region of the imaging sensor. This local pattern characterizes the PSF, so by recording
these patterns across the image plane we can set the filters of the non-stationary convolution
described above.
To automate the measurements, we mounted a camera on a motor-driven platform with two

rotational degrees of freedom. A lens measurement process is conducted in a completely dark
room by remotely changing the angles of the camera towards a point light source (a gas lamp
emitting light through an aperture of 100 µm in 12 meters distance) such that in subsequent
exposures the light point is captured at equidistant locations on the sensor.

26

2.6. Recovering the corrected, full-color image

In our experiments we use a 18 times 27 grid of supporting points for the EFF framework.
The blur kernels were recorded by averaging three dark frame subtracted images of the point
light source and thresholding noise. This simple setup gives sufficiently good measurements
for the PSF, as can be seen in the final deconvolution results in Section 2.7.2.

2.6. Recovering the corrected, full-color image

In this section we describe how we construct and optimize a MAP objective function to estimate
the ground truth image from the image recorded on the sensor of the camera and a measurement
of the spatially-varying blur.
When we assume the weights in the Bayer matrix D are fixed and known (we use a trivial

Bayer matrix disregarding cross-talk between color channels), the linear transformation A, i.e.,
the PSF, is parameterized by the set of filters that determine the EFF matrices KR, KG, and KB
for the three color channels. These filters depend on the lens and the camera used and can be
measured according to the procedure of the previous section.
Assuming the noise in Eq. (2.1) to be Gaussian, we could recover the unknown full-color

image x from a measured raw image y by solving a least-squares problem, i.e., by minimizing
‖y − Ax‖2 wrt. x. However, the PSF parameterized by the EFF framework is only an approxi-
mation to the true PSF and is subject to errors. Using stochastic robust matrix approximation
[BV04], we add a regularization term ‖(E[UTU])1/2x‖2, where U is an additive random vari-
able that corrupts A, and E[·] denotes the expectation value. Assuming that each of the n
elements of the PSF exhibits a standard deviation of σ with zero mean, we add nσ2‖x‖2 just
for the EFF matrices. Including the Bayer matrix with twice as many green pixels as blue and
red pixels, the regularization can be approximated as nσ2(‖xR‖

2/4 + ‖xG‖
2/2 + ‖xB‖

2/4).
One challenge of processing real photos is that pixels might be saturated, their true values

may be clipped due to limited dynamic range. Thus the measured values of clipped pixels
are not in agreement with the physical model of the blur. We exclude saturated pixels in the
data-fidelity term ‖y − Ax‖2 by summing only over non-saturated pixels.
This term corresponds to the likelihood term (or data fit) of the implicitly underlying proba-

bilistic model. However, because we are trying to estimate three color channels from a single
raw image, which means there are three times as many unknowns as observations, our deblur-
ring problem is ill-posed. To regularize it we include prior knowledge about natural images: it
has been shown that the image gradients approximately follow a hyper-Laplacian distribution
[KF09; SA96], as also illustrated in Fig. 1.5. This can be incorporated into the optimization
problem by adding a regularization term of the form |Gx|γ to the objective function. The effect
of this regularization is to penalize strong gradients and therefore to smooth the image. We
follow Farsiu et al. [FEM06] who transformed the RGB image to a luminance/chrominance
color space (here we use YUV) before applying the regularization. This allows us to regularize
more strongly in the chrominance channels, and less in luminance. Note that the human eye is
more sensitive to differences in luminance than in chrominance, i.e., a visually pleasing result
has to be sharp in the luminance channel. The transformation from RGB to YUV is simply a
matrix vector multiplication [xT

Y,x
T
U,x

T
V]

T
= C[xT

R,x
T
G,x

T
B]

T with appropriately chosen matrix

27

2. Non-Blind Correction of Optical Aberrations

C. With xY, xU, and xV we we can write our combined objective function as

y − Ax2 + α��GxY��γ + β��GxU��γ + β��GxV��γ + nσ2(‖xR‖2/4 + ‖xG‖2/2 + ‖xB‖2/4). (2.2)

We obtained good results by setting α = 10−4, β = 10−3, γ = 0.65 and σ = 10−3 in our
simulated experiments. On real images, the optimal values for α and β were smaller by a factor
of ten.
We minimize the non-convex objective function with respect to x by adapting Krishnan and

Fergus’ [KF09] approach to our setup. The minimization problem

min
x,wY,wU,wV

y − Ax2 + nσ2(‖xR‖2/4 + ‖xG‖2/2 + ‖xB‖2/4)+

c
2

(GxY − wY2 + GxU − wU2 + GxV − wV2
)
+ α��wY��γ + β��wU��γ + β��wV��γ, (2.3)

which introduces the auxiliary variables wY, wU and wV, is equivalent to minimizing Eq. (2.2)
when c → ∞. This new objective is convex in x and non-convex in w, for a fixed c it can be
solved by iterating between the x- and w-subproblem:

• x-subproblem: The convex phase minimizes with respect to x by employing the iterative
quasi-Newton method L-BFGS-B2, where it is necessary to provide the gradient of the
objective. The non-trivial part of this gradient is the expression AT = DTKT, which
requires KT from Eq. (1.10).

• w-subproblem: The non-convex phase solves

min
wY

c
2

GxY − wY2 + α��wY��γ, (2.4)

which can be done component-wise for all entries of wY (and analogously for wU and
wV). Furthermore, since this process has to be repeated many times for every iteration
(number of pixels times color channels), precomputing a lookup table of solutions gives
a large speed-up [KF09].

For a fixed c we alternate two times between convex and non-convex phase. Afterwards, c is
increased by a factor of 2

√
2. Our schedule for c starts with c = 1 and increases its value five

times.

2.7. Results

2.7.1. Simulated images
To test our method under controlled conditions, we artificially blurred test images usually
used for evaluating demosaicing algorithms from the Kodak PhotoCD. To simulate the lens
aberrations, we created a 4 × 6 filter array containing measured blur kernels of a Canon 50mm
2https://github.com/pcmoritz/traffic-project/tree/master/lbfgsb-matlab

28

https://github.com/pcmoritz/traffic-project/tree/master/lbfgsb-matlab

2.7. Results

Ground truth Blurred (a) Deconv. (b) Demosaic. (c) Joint
and mosaiced then demosaic. then deconv. approach
input image PSNR 24.77 dB PSNR 27.87 dB PSNR 28.46 dB

Figure 2.5.: Comparison of our joint approach vs. sequential demosaicing and deconvo-
lution procedures. The PSF used for the simulations are shown in Fig. 2.6.
Gaussian noise with a PSNR of 50 dB has been added.

f/1.4 lens at maximum aperture on a Canon 5DMk II. This filter array contains the parameters of
a non-stationary convolution that represent our estimated model of the artificial lens aberrations.
To account for the fact that the true PSF is not exactly known, we modify these filters with a
low pass filter before convolving the ground truth images. In the image reconstruction process,
the non-modified blur filters were used. We then added white noise with a peak signal-to-noise
ratio (PSNR) of 50 dB and mosaiced the result with a Bayer filter array.
With the simulated experiments we want to investigate whether (a) we should apply the

aberration correction separately on each color channel and subsequently demosaic with a state-
of-the-art demosaicing algorithm [Pal+07], whether (b) our aberration correction should be
better applied to images that have been already demosaiced by a standard demosaicing pro-
cedure, or whether (c) it is best to apply the forward model that includes the mosaicing (as
described in Section 2.4), i.e., to jointly correct the aberrations and the demosaicing.
Table 2.1 compares the PSNRs of the reconstructed images for the approaches (a), (b), and

(c) on the image data set. For all 24 images the joint approach (c) leads to the best results,
approach (b) being a close runner-up. This finding is also visually confirmed in Fig. 2.5 where
approach (c) leads to the best reconstruction. Note that to suppress influence of the border
region, a 15 pixel border on all edges has been excluded in the calculation of the PSNR.
We believe that our approach is able to compete with state-of-the-art demosaicing algorithms

because separating demosaicing and deblurring has the disadvantage that it does not require the
result to be consistent with the image formation model. Because of the blur, we gain knowledge
about possible values for missing color information. For example, if we measure no light at

29

2. Non-Blind Correction of Optical Aberrations

Image (a) Deconv. (b) Demosaic. (c) Joint approach
then demosaic. then deconv.

1 23.09 25.92 26.35
2 30.11 31.92 32.23
3 30.67 33.47 33.68
4 29.12 32.23 32.49
5 22.58 26.08 26.62
6 24.84 27.09 27.47
7 27.87 33.07 33.47
8 20.32 23.77 24.28
9 28.02 32.11 32.51
10 28.54 31.53 31.96
11 25.92 28.77 29.11
12 29.51 32.67 33.04
13 21.32 23.32 23.81
14 25.34 28.32 28.79
15 28.90 32.14 32.52
16 28.41 30.40 30.68
17 28.22 31.33 31.68
18 25.06 27.75 28.20
19 24.77 27.87 28.46
20 27.66 31.40 31.78
21 25.27 28.17 28.63
22 26.86 29.61 29.95
23 30.00 34.08 34.59
24 23.74 26.06 26.34

Average 26.51 29.54 29.94

Table 2.1.: Comparison of PSNR in dB for Kodak image data set. Consistently, the joint ap-
proach outperforms the sequential demosaicing and deconvolution procedures
(higher number means better reconstruction).

a certain pixel, we can infer that in the deblurred image the surrounding region given by the
size of the PSF also has to be dark. Furthermore, typical demosaicing algorithms do not take
chromatic aberration into account, which leads to a spatial separation of edge information
across different color channels.
In fact, lens aberrations can even assist in debayering. Imagine a perfect lens mapping each

point to a point on the sensor, imaging a single red dot. If this red dot happens to fall on a
green or blue filter of the Bayer pattern, it is lost. If, however, the red dot leads to a slightly
larger PSF, then in principle there is enough information to recover the dot even if its center
did not fall on a pixel with red filter. This observation is the reason why DSLR manufacturers
generally put a spatial smoothing (low pass) filter in front of the Bayer pattern.

2.7.2. Real images

Using the automated procedure from Section 2.5, we approximate the PSFs of three different
lenses: (i) Canon 50mm f/1.4, (ii) Canon 24mm f/1.4 L, and (iii) a self-built lens consisting
of a single glass element, see Fig. 2.7. For the Canon lenses, we took several pictures with a

30

2.7. Results

Figure 2.6.: Point spread function used for simulations on the Kodak image data set.

Canon 5D Mk II digital camera, for the self-built lens we used a Canon 5D Mk I. We applied
our image reconstruction procedure described in Section 2.6 to these images and next describe
the results.
In our PSF measurement we only obtain mosaiced versions. However, as can be seen in

Fig. 2.9, the blur is sufficiently well behaved such that bilinear interpolation gives a good
approximation to the true PSF.

Canon 50mm f/1.4. First, we use a Canon 50mm f/1.4 prime lens on a Canon 5D Mark II
at maximum aperture. The comparison between original photo and the image corrected for lens
errors is in Fig. 2.7. In Fig. 2.8, it is compared with the result of DXO version 6 (see Section 2.2),
a software that is also able to correct for lens aberrations. Similar to our approach, it relies on
previously recorded information about the error of a certain lens/camera combination. In the
comparison, all image improvements except the correction for “lens unsharpness”, chromatic
aberration and vignetting were deactivated. While in the DXO result the edges are sharpened,
the objects have a halo, e.g., around the wooden bars, which is not present in the original scene.
This means the blur introduced by the lens is not completely removed.

Canon 24mm f/1.4. Furthermore, we correct the errors of a Canon EF 24mm f/1.4 at
maximum aperture, which exhibits considerably visible errors in the border regions of the
image at fully open aperture. The original and the corrected image can be seen in Fig. 2.7. In
the recorded image strong chromatic aberration is visible as green and red lines near edges,
which are reduced in the deconvolved result. This lens is not available in the DXO database for
the Canon 5D Mk II, so DXO cannot be applied.

Self-built lens with a single lens element. The two lenses used above are high-end
lenses with a complicated system of compound lenses that are built to minimize optical errors.
Trying to make our algorithm fail, we constructed a simple photographic lens from a single
convex-concave lens with focal length 120mm. Amazingly, the image can be well reconstructed
as can be seen in Figures 2.2 and 2.7. In Figure 2.7, nearly no detail is recognizable in the grain

31

2. Non-Blind Correction of Optical Aberrations

Point spread functions Recorded image Corrected image
Ca

no
n
24

m
m

f/1
.4

(u
pp

er
le
ft
co
rn
er
)

Ca
no

n
50

m
m

f/1
.4

(r
ig
ht

ed
ge
)

Se
lf-
m
ad
e
le
ns

12
0m

m
(u
pp
er

rig
ht

co
rn
er
)

Figure 2.7.: Comparison between original and corrected image and the respective PSFs.

Blurred image DXO Our approach

Figure 2.8.: Comparison with DXO for images taken with a Canon EF 50mm f/1.4 lens.

32

2.7. Results

Figure 2.9.: Interpolation of a mosaiced PSF at the example of a green PSF from the Canon
50mm f/1.4 lens.

Recorded image Corrected with [Hei+13] Our result

Figure 2.10.: Comparison with the newer method from [Hei+13]. Shown is a patch from
the upper right corner of Fig. 2.2.

of the wood in the original image. Also, the pegs on the right and upper edge of the image are
hardly visible. The corrected image does not suffer from these problems.
A method published after the material of this chapter slightly improves on our results. As

can be seen from Fig. 2.10, it exhibits less color artifacts at sharp edges, for example at the
right border of the window.

Running time. For the 21.1 megapixel photos taken with the Canon lenses, the full-color
non-convex optimization problem has more than 60M unknowns. It needs about 5 hours
running time on a quad-core computer. For the self-built lens, we used a camera which produces
12.8 megapixel images and a blur size of 200 × 200. In the EFF framework with 27 × 18
supporting points, the processing takes about 7 hours using a MATLAB implementation of the
algorithm.
This running time is impractical. However, we show how the EFF framework can be used

to do Direct Deconvolution in Fourier space with a slightly modified version of our objective
function. Since the demosaicing operator is not diagonal in Fourier space, we work on each

33

2. Non-Blind Correction of Optical Aberrations

Figure 2.11.: Comparison of deconvolution with optimization (left) and direct method
(right).

already demosaiced color channel separately and solve the problem

y − Kx2 + α��Gx��γ + nσ2‖x‖2. (2.5)

This can be done with the approach of [KF09], which describes a fast solution for the non-
convex problem of reconstructing an image with invariant blur assuming a hyper-Laplacian
gradient distribution. It iterates between a convex and non-convex phase, where the convex
sub-problem is similar to Eq. (1.16), enabling a closed-form solution Eq. (1.17) in Fourier
space.
This is also the approach we adapted in Section 2.6 to solve Eq. (2.2). However, we relied

on an iterative quasi-Newton solver to minimize the convex phase, since the matrix D does not
diagonalize in Fourier space, as would be necessary for a one-step solution.
Without mosaicing, this is possible. Using the expression from Eq. (1.10), K can be approx-

imately inverted as

x ≈ v �
∑

r

Diag (w(r))
1/2

CT
r FH FCT

k k(r) � (FCr Diag (w(r))1/2 y)

|FCT
k k(r) |2 + α

∑
i |FCT

gigi |
2 + nσ2

, (2.6)

similar to Eq. (8) in [Hir+11]. The filters gi have a regularizing effect and assume that the
gradient operator G can be expressed convolutionally such that Gx ≡ ∑

i gi ∗ x. The transposes
of the cropping matrices Cgi appropriately zero-pad gi to the correct size. The weighting v
is obtained by applying the inversion to a constant image and is necessary to remove artifacts
stemming from inverting the windows. In Fig. 2.11 the results obtained by optimizing the more
sophisticated objective function (Eq. (2.2)) are compared to the direct method. While losing a
small amount of image quality, the running time is only 2 minutes for a 21.1 megapixel image.

2.8. Conclusion
In this chapter, we have proposed a method to correct the aberrations in optical imaging systems.
A spatially-varying PSF is obtained in a calibration step, encoding the errors of the imaging

34

2.8. Conclusion

system. These are then removed by non-stationary deconvolution. Furthermore, by requiring
the corrected image to be consistent with the image formation model, we are able to recover
missing image information. We have shown this using the example of reconstructing color data
lost in a mosaicing process.
Using controlled experiments on images artificially convolved with a non-stationary PSF, we

have seen that our linear image formationmodel leads to better results than separately deblurring
and demosaicing Bayer-filtered photos. More importantly, we were able to show that in a real
imaging setup, we can correct the optical aberrations rather well both for commercial camera
lenses and optically poor single element lenses. The results compare favorably to DXO, a
commercially available software package considered state-of-the-art in lens error correction
among professional photographers.

2.8.1. Limitations
For the image taken with a one-element lens, we have seen that although a drastic improvement
can be achieved, a perfect reconstruction was not possible. Moreover, our measurement proce-
dure suffers from the fact that the PSFs obtained are already subject to mosaicing, therefore the
PSFs used in the joint demosaicing/deblurring are only an approximation. A better PSF could,
e.g., be obtained with a monochromatic camera and color filters. The general quality of the
PSF could for example be improved with wavefront measurement.
Also, the lens aberrations depend to a certain extent on the settings of the lens (aperture, focus,

zoom), which cannot be trivially modeled. In the case of lens blurs that can be approximated
as a Gaussian with spatially-varying parameters, it has been demonstrated how the change of
the lens aberrations can be modeled [Kee+11]. In the case of non-Gaussian blurs, as treated in
this work, this problem has still to be solved. This would make our method feasible for lenses
with a large number of possible settings, e.g., zoom lenses.

2.8.2. Future work
Imperfections in image deblurring due to the varying distance could be handled by building
a database of PSFs at different distances. Combining this with a semi-blind deconvolution
approach, a correct deconvolution might yield partial information about the depth-map of the
photograph.
Furthermore, the current sampling of the PSF on a regular grid does not exploit the fact that

for most lenses the PSF is nearly constant (and often rather small) over a large region in the
center of the image. There is thus potential to get away with fewer supporting points in the
EFF.
A further common error of imaging systems, distortions, can in principle also be encoded in

a spatially-varying PSF. However, in the case of strong distortions this would require PSFs as
large as 500× 500 pixels, say, and a large computational load. It would, however, be an elegant
method for correcting all optical aberrations in one framework.
We believe that the results of this can have significant implications for the design of lenses,

which today are probably the most expensive components of high-end camera systems.

35

CHAPTER 3

Blind Correction of Optical Aberrations

Camera lenses are a critical component of optical imaging systems, and lens imperfections
compromise image quality. While, traditionally, sophisticated lens design and quality control
aim at limiting optical aberrations, recent works [JSK08; Kee+11] promote the correction
of optical flaws by computational means. These approaches rely on elaborate measurement
procedures to characterize an optical system, and perform image correction by non-blind
deconvolution.
In this chapter, we present a method that utilizes physically plausible assumptions to estimate

non-stationary lens aberrations — as opposed to the previous chapter — blindly, and thus
can correct images without knowledge of specifics of camera and lens. The blur estimation
features a novel preconditioning step that enables fast deconvolution. We obtain results that
are competitive with state-of-the-art non-blind approaches.

The material of this chapter is based on the following publication:

[Sch+12] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Schölkopf. “Blind Correction of Op-
tical Aberrations”. In: Computer Vision – ECCV 2012. Lecture Notes in Computer
Science. Springer, 2012, pp. 187–200. doi: 10. 1007/ 978-3-642-33712-3_ 14

3.1. Introduction
In the previous chapter we have seen that lens aberrations can be modeled as a non-stationary
convolution. With this knowledge, we were able to perform deconvolution and correct the
shortcomings of the optical system in software. This enabled us to improve the imaging quality
of both low-quality and high-end lenses. A major disadvantage, however, was that we had to
measure each camera/lens combination in a time-consuming calibration procedure. This is
especially an issue for lenses with a multitude of settings: zoom, aperture, focus. While some
of these parameters have only a minor influence on the aberrations (e.g., focus), others are quite

37

http://dx.doi.org/10.1007/978-3-642-33712-3_14

3. Blind Correction of Optical Aberrations

significant (e.g., aperture). Sometimes, the camera is not available anymore, for example for
old photos recorded over a century ago, which may still be of sentimental or historical value.
To overcome these issues, we propose to use non-stationary blind deconvolution. Decon-

volution is a hard inverse problem, which implies that in practice, even non-blind uniform
deconvolution requires assumptions to work robustly, as we have seen in the previous chapter.
Blind deconvolution is harder still, since we additionally have to estimate the blur kernel, and
non-uniform deconvolution means that we have to estimate the blur kernels as a function of
image position. The art of making this work consists of finding the right assumptions, suf-
ficiently constraining the solution space while being at least approximately true in practice,
and designing an efficient method to solve the inverse problem under these assumptions. Our
approach is based on a forward model for the image formation process that incorporates two
assumptions:

1. The image contains certain elements typical of natural images, in particular, there are
sharp edges.

2. Even though the blur due to optical aberrations is non-uniform (spatially-varying across
the image), there are circular symmetries that we can exploit.

Inverting a forward model has the benefit that if the assumptions are correct, it will lead
to a plausible explanation of the image, making it more credible than an image obtained by
sharpening the blurry image using, say, an algorithm that filters the image to increase high
frequencies.
Furthermore, we emphasize that the approach of this chapter is blind, i.e., it requires as an

input only the blurry image, and not a point spread function that we may have obtained using
other means such as a calibration step. This is a substantial advantage, because of the mentioned
dependence of the blur not only on the particular photographic lens but also on settings such as
focus, aperture and zoom. Also, this approach scales easily to the countless, already existing
lenses and cameras, which is especially important since the aberration on a pixel level also
depends on the exact combination between camera and lens.

Main contributions: We design a class of PSF families containing realistic optical aber-
rations, via a set of suitable symmetry properties. Furthermore, we represent the PSF basis
using an orthonormal basis to improve conditioning, and allow for direct PSF estimation. With
this, we show how to avoid calibration for specific camera/lens combinations by proposing a
blind approach for inferring the PSFs, widening the applicability to any photographs (e.g., with
missing lens information such as historical images). We also extend blur estimation to multiple
color channels to remove chromatic aberrations as well, and finally we present experimental
results showing that our approach is competitive with non-blind approaches.

3.2. Related work
The existing deconvolution methods to reduce blur due to optical aberrations are non-blind
methods, i.e., they require a time-consuming calibration step to measure the PSF of the given

38

3.3. An efficient filter flow basis for optical aberrations

…
PSF basis elements

= *

…

Figure 3.1.: Optical aberration as a forward model.

camera-lens combination, and, in principle, they require this for all parameter settings. The
previous chapter introduced an approach in this spirit, and we discussed comparable methods
in Section 2.2.
The background for techniques to deconvolve optical aberration blindly is recent progress

in the area of removing camera shake. For a detailed discussion, we refer to Sections 1.3
and 5.2. As opposed to Chapter 5, instead of creating a new blind deconvolution method from
scratch, we here start with an existing blind method and adapt it to our specific problem domain,
mainly that our spatially-varying blur has specific properties, and that we have to deal with
color-dependent PSFs. Methodically, our general procedure is related to the stationary method
Cho and Lee and a variant for non-uniform camera shake [Hir+11]. These were chosen for
their fast runtime and their modifiability towards handling full-color blurs. However, this is the
first method to correct for lens aberrations blindly.

3.3. An efficient filter flow basis for optical aberrations

Since optical aberrations lead to image degradations that can be locallymodeled as convolutions,
the EFF framework from Section 1.1.2 is a valid model. However, not all blurs expressible in
the EFF framework do correspond to blurs that could be caused by optical aberrations. We thus
define a PSF basis that constrains the EFF framework to physically plausible PSFs only. This
step is important to reduce the dimensionality of the problem significantly and make a blind
solution feasible.
To define the basis we introduce a few notions. As usual in the EFF framework, the image y

is split into overlapping patches. For each patch, the symbol l (r) denotes the line from the patch
center to the image center, and d (r) the length of line l (r), i.e., the distance between patch center
and image center. We assume that local blur kernels k(r) originating from optical aberrations

39

3. Blind Correction of Optical Aberrations

have the following properties:

1. Local reflection symmetry: a local blur kernel k(r) is reflection symmetric with respect
to the line l (r).

2. Global rotation symmetry: two local blur kernels k(r) and k(s) at the same distance to
the image center (i.e., d (r) = d (s)) are related to each other by a rotation around the image
center.

3. Radial behavior: along a line through the image center, the local blur kernels change
smoothly. Furthermore, the maximum size of a blur kernel is assumed to scale linearly
with its distance to the image center.

Note that these properties are compromises that lead to good approximations of real-world
lens aberrations. Due to issues such as decentering, real world lenses may not be absolutely
rotationally symmetric. Our exemplar of the Canon 24mm f/1.4 (see Fig. 3.10) exhibits PSFs
that deviate slightly from the local reflection symmetry. The assumption, however, still turns
out to be useful in that case.
For two dimensional blur kernels, we represent the basis by M basis elements bm each con-

sisting of R local blur kernels b(1)
m , . . . ,b(R)

m . Then the actual blur kernel k(r) can be represented
as linear combinations of basis elements,

k(r) =

M∑
m=1

τmb(r)
m (3.1)

with weights τm. To define the basis elements we group the patches into overlapping groups,
such that each group contains all patches inside a certain ring around the image center, i.e., the
center distance d (r) determines whether a patch belongs to a particular group. Basis elements
for three example groups are shown Fig. 3.2. All patches inside a group will be assigned similar
kernels. The width and the overlap of the rings determine the amount of smoothness between
groups (see property (c) above).
For a single group we define a series of basis elements as follows. For each patch in the

group we generate matching blur kernels by placing a single delta peak inside the blur kernel
and then mirror the kernel with respect to the line l (r) (see Fig. 3.3). For patches not in the
current group (i.e., in the current ring), the corresponding local blur kernels are zero. This
generation process creates basis elements that fulfill the symmetry properties listed above. To
increase smoothness of the basis and avoid effects due to pixelization, we place little Gaussian
blurs (standard deviation 0.5 pixels) instead of delta peaks.

3.4. An orthonormal efficient filter flow basis

The basis elements constrain possible blur kernels to fulfill the above symmetry and smoothness
properties. However, the basis is overcomplete and direct projection on the basis is not possible.

40

3.4. An orthonormal efficient filter flow basis

Figure 3.2.: Three example groups of patches, each forming a ring.

(a) outside parallel to l (r) (a) inside parallel to l (r) (c) perpendicular to l (r)

Figure 3.3.: Shifts to generate basis elements for the middle group of Fig. 3.2.

200 400 600 800 1000 1200 1400 1600
0

2

4

6

8

10

S
in

g
u
la

r
v
al

u
es

Figure 3.4.: SVD spectrum of a typical basis matrix B with cut-off.

41

3. Blind Correction of Optical Aberrations

Original Blurry Shock filter [OR90] Chromatic shock filter

Figure 3.5.: Chromatic shock filter removes color fringing (adapted from [OR90]).

Therefore, we approximate it with an orthonormal one. To explain this step with matrices, we
stack each local blur kernel b(r)

m for all patches r:

bm =

[
b(1)

m
T
. . . b(R)

m
T

]T
. (3.2)

Let B be the matrix containing the basis vectors b1, . . . ,bM as columns. Then we can calculate
the singular value decomposition (SVD) of B,

B = USVT. (3.3)

with S being a diagonal matrix containing the singular values of B. Figure 3.4 shows the SVD
spectrum and the chosen cut-off of some typical basis matrix B, with approximately half of the
eigenvalues being below numerical precision.
We define an orthonormal EFF basis Ξ that is the matrix that consists of the column vectors

ofU that correspond to large singular values, i.e., that contains the relevant left singular vectors
of B. Properly chopping the column vectors of Ξ into shorter vectors, one per patch, we obtain
orthonormal basis vectors ξ(r)

m for the EFF framework that are tailored to optical aberrations.
This representation can be plugged into the EFF forward model in Eq. (1.9),

y = µ � x :=
R∑

r=1

*
,

M∑
m=1

µmξ
(r)
m

+
-
∗

(
w(r) � x

)
. (3.4)

Note that the resulting forward model is linear in the parameters µ.

3.5. Blind deconvolution with chromatic shock
filtering

Having defined a PSF basis, we perform blind deconvolution by extending [CL09] to our non-
uniform blur model Eq. (3.4) (similar to [HHS10; Hir+11]). However, instead of considering
only a grayscale image during PSF estimation, we are processing the full-color image. This
allows us to better address chromatic aberrations by an improved shock filtering procedure that

42

3.5. Blind deconvolution with chromatic shock filtering

Current
estimate

Next
estimate

Feature extraction Kernel estimation Image estimation

Basis

Figure 3.6.: Overview of our approach for blind correction of optical aberrations. Similar
to Fig. 1.6, our method iterates between feature extraction, kernel estimation
and image estimation, but incorporates a spatially-varying lens blur basis, and
operates on full-color images.

is tailored to color images. The color channels xR, xG and xB are shock filtered separately but
share the same sign expression depending only on the grayscale image z:

xt+1
R = xt

R − ∆t · sign(zt
ηη) |∇xt

R |

xt+1
G = xt

G − ∆t · sign(zt
ηη) |∇xt

G | with zt = (xt
R + x

t
G + x

t
B)/3

xt+1
B = xt

B − ∆t · sign(zt
ηη) |∇xt

B | (3.5)

where zηη denotes the second derivative in the direction of the gradient. We call this extension
chromatic shock filtering since it takes all three color channels simultaneously into account.
Figure 3.5 shows the reduction of color fringing on the example of Osher and Rudin [OR90]
adapted to three color channels.
Combining the forward model y = µ � x defined above and the chromatic shock filtering,

the PSF parameters µ and the image x (initialized with y) are estimated by iterating over three
steps, as illustrated in Fig. 3.6:

1. Feature extraction: the current estimate x is first denoised with a bilateral filter, then
edges are emphasized with chromatic shock filtering and by zeroing flat gradient regions
in the image (see [CL09] for further details). The gradient selection is modified such that
for every radius ring the strongest gradients are selected.

2. Kernel estimation: if we work with the overcomplete basis B, we would like to find

43

3. Blind Correction of Optical Aberrations

coefficients τ that minimize the regularized fit of the gradient images Gy and Gx,

Gy −
R∑

r=1
(B(r)τ) ∗ (w(r) � Gx)2 + α

R∑
r=1

GB(r)τ2 + β
R∑

r=1

B(r)τ2 (3.6)

where B(r) is the matrix containing the basis elements for the r-th patch. Note that τ is the
same for all patches. This optimization can be performed iteratively. The regularization
parameters α and β are set to 0.1 and 0.01, respectively.
However, the iterations are costly, and we can speed up things by using the orthonormal
basis Ξ. The blur is initially estimated unconstrained and then projected onto the or-
thonormal basis. In particular, we first minimize the fit of the general EFF forward model
(without the basis) with an additional regularization term on the local blur kernels, i.e.,
we minimize

Gy −
R∑

r=1
k(r) ∗ (w(r) � Gx)2 + α

R∑
r=1

Gk(r)2 + β
R∑

r=1

k(r)2 (3.7)

This optimization problem is approximately minimized using a single step of direct
deconvolution in Fourier space, i.e.,

k(r) ≈ FH FCrGx � (FCr Diag(w(r)) CT
yy)

|FCrGx|2 + α∑
i |FCT

gigi |
2 + β

for all r . (3.8)

This approximation is inspired by Eq. (8) in [Hir+11]. The matrices C and CT crop
and zero-pad image and kernel appropriately, and G is assumed to be expressible with
convolution filters gi as in Eq. (2.6).
Finally, the resulting unconstrained blur kernels k(r) are projected onto the orthonormal
basis Ξ, leading to the estimate of the blur parameters µ.

3. Image estimation: For image estimation given the blurry image y and blur parameters
µ, we apply Tikhonov regularization with γ = 0.01 on the gradients of the latent image
x, i.e.,

y − µ � x2 + γGx2. (3.9)

As in [Hir+11] Eq. (8), this expression can be approximately minimized with respect to
x using a single step of the following direct deconvolution:

x ≈ v �
∑

r

CT
r FH FCT

bΞµ � (FCr Diag(w(r)) CT
yy)

|FCT
bΞµ|

2 + γ
∑

i |FCT
gigi |

2
. (3.10)

with the appropriate zero-padding and croppingmatricesCT
b ,C

T
y ,CT

gi andCr . The normal-
ization factor v accounts for artifacts at patch boundaries which originate fromwindowing
(see [Hir+11]) and is obtained by applying the inversion to a constant image.

44

3.6. Implementation and running times

image image dims local blur patches using B using Ξ NBD
bridge 2601 × 1733 19×19 10×8 127 sec 16 sec 1.4 sec
bench 1097 × 730 81×81 10×6 85 sec 14 sec 0.7 sec
historical 2191 × 1464 29×29 10×6 103 sec 13 sec 1.0 sec
facade 2817 × 1877 29×29 12×8 166 sec 21 sec 1.7 sec

(a) (b) (c) (d) (e) (f)

Table 3.1.: Runtime comparison for blind removal of optical aberrations: (a) image sizes,
(b) size of the local blur kernels, (c) number of patches horizontally and ver-
tically, (d) runtime of PSF estimation using the overcomplete basis B (see
Eq. (3.6)), (e) runtime of PSF estimation using the orthonormal basis Ξ (see
Eq. (3.7)) as used in our approach, (f) runtime of the final non-blind deconvo-
lution.

Similar to [CL09] and [Hir+11] the algorithm follows a coarse-to-fine approach, solving first a
downsampled version of the problem, and then repeatedly initializing the next, larger scale with
the kernel estimate from the smaller scale. Having estimated the final blur parameters µ we
use a non-uniform version of Krishnan and Fergus’ approach [KF09; Hir+11] for the non-blind
deconvolution to recover a high-quality estimate of the true image, similar to Eq. (2.5). The
solution of the x-subproblem is based on the direct deconvolution formula Eq. (3.10) instead
of Eq. (2.6).

3.6. Implementation and running times

The algorithm is implemented on a GPU in Python using PyCUDA1. All experiments were
performed on a 3.0GHz Intel Xeon with an NVIDIA Tesla C2070 GPU with 6GB of memory.
The basis elements generated as detailed in Section 3.3 are orthogonalized using the SVDLIBC
library2. Calculating the SVD for the occurring large sparse matrices can require a few minutes
of running time. However, the basis is independent of the image content, so we can compute
the orthonormal basis once and reuse it. Table 3.1 reports the running times of our experiments
for both PSF and final non-blind deconvolution along with the EFF parameters and image
dimensions. In particular, it shows that using the orthonormal basis instead of the overcomplete
one improves the running times by a factor of about six to eight.

3.7. Results

In the following, we show results on real photos and do a comprehensive comparison with other
approaches for removing optical aberrations. Image sizes and blur parameters are shown in
Table 3.1.
1http://mathema.tician.de/software/pycuda
2http://tedlab.mit.edu/~dr/SVDLIBC/

45

http://mathema.tician.de/software/pycuda
http://tedlab.mit.edu/~dr/SVDLIBC/

3. Blind Correction of Optical Aberrations

3.7.1. Self-built lens with a single lens element

Chapter 2 showed deblurring results on images taken with a lens that consists only of a single
element, thus exhibiting strong optical aberrations, in particular coma. The previous approach
is non-blind and measures the non-uniform PSF with a point source and applies non-blind
deconvolution. In contrast, the current chapter’s approach is blind and is directly applied to the
blurry image.
To better approximate the large blur of that lens, we additionally assume that the local blurs

scale linearly with radial position, which can be easily incorporated into our basis generation
scheme. For comparison, we apply Photoshop’s “Smart Sharpening” function for removing
lens blur. It depends on the blur size and the amount of blur, which are manually controlled by
the user. Thus we call this method semi-blind since it assumes a parametric form. Even though
we choose its parameters carefully, we are not able to obtain comparable results.

Comparing our blind method against the non-blind approach of the previous chapter, we
observe that our estimated PSF matches the measured PSFs rather well (see Fig. 3.9). However,
surprisingly we do get an image that may be considered sharper. The reason could be over-
sharpening or a less conservative regularization in the final deconvolution; it is also conceivable
that the calibration procedure used previously is not sufficiently accurate. Note that neither
DXO nor Kee et al.’s approach can be applied, lacking calibration data for this lens.

3.7.2. Canon 24mm f/1.4

The PSF constraints we are considering assume local axial symmetry of the PSF with respect
to the radial axis. For the Canon 24mm f/1.4 lens also used in the previous chapter, this is
not exactly fulfilled, which can be seen in the inset in Fig. 3.10. The wings of the green blur
do not have the same length. Nonetheless, our blind estimation with enforced symmetry still
approximates the PSF shape well and yields a comparable quality of image correction. We
stress the fact that this was obtained blindly in contrast to Chapter 2.

3.7.3. Kee et al.’s image

Figure 3.8 shows results on an image taken from Kee et al. [Kee+11]. The close-ups reveal
that Kee’s non-blind approach is slightly superior in terms of sharpness and noise-robustness.
However, our blind approach removes chromatic aberration to a greater degree. A general
problem of methods relying on a prior calibration is that optical aberrations depend on the
wavelength of the transmitting light continuously: an approximation with only a few (generally
three) color channels therefore depends on the lighting of the scene and could change if there is
a discrepancy between the calibration setup and a photo’s lighting conditions. This is avoided
with a blind approach.

We also apply “DxO Optics Pro 7.2” to the blurry image. DXO uses a database for combi-
nations of cameras/lenses. While it uses calibration data, it is not clear whether it additionally
infers elements of the optical aberration from the image. For comparison, we process the photo
with the options “chromatic aberrations” and “DxO lens softness” set to their default values.

46

3.7. Results

Blurred image Our approach (blind)

Adobe’s “Smart Sharpen” (semi-blind) Approch of Chapter 2 (non-blind)

Figure 3.7.: Comparison with non-blind approach, self-built lens. Full image and lower
left corner.

47

3. Blind Correction of Optical Aberrations

Blurred image Our approach (blind)

DXO Kee et al. [Kee+11] (non-blind)

Figure 3.8.: Comparison between blind approach and two non-blind approaches of Kee
et al. [Kee+11] and DXO. Full image and upper right corner.

48

3.7. Results

Blindly estimated by our approach Measured

Figure 3.9.: PSF comparison with non-blind approach, self-built lens. Lower left corner
of the PSF.

Blurred image

Our approach Approch of Chapter 2
(blind) (non-blind)

Figure 3.10.: Comparison with non-blind approach, Canon 24mm f1/4 lens. Shown is the
upper left corner of the image. PSF inset is three times the original size.

49

3. Blind Correction of Optical Aberrations

Blurred image Our approach Adobe’s “Smart Sharpen”
(blind) (semi-blind)

Figure 3.11.: Comparison on historical image from 1940.

The result is good and exhibits less noise than the other two approaches (see Fig. 3.8), however,
it is not clear if an additional denoising step is employed by the software.

3.7.4. Historical images

A blind approach to removing optical aberrations can also be applied to historical photos, where
information about the lens is not available. The left column of Fig. 3.11 shows a photo (and
some detail) from the Library of Congress archive that was taken around 19403. Assuming that
the analog film used has a sufficiently linear light response, we applied our blind lens correction
method and obtained a sharper image. However, the blur appeared to be small, so algorithms
like Adobe’s “Smart Sharpen” also give reasonable results. Note that neither DXO nor Kee et
al.’s approach can be applied here since lens data is not available.

3.8. Conclusion

We have proposed a method to blindly remove spatially-varying blur caused by imperfections
in lens designs, including chromatic aberrations. Without relying on elaborate calibration
procedures, results comparable to non-blind methods can be achieved. By creating a suit-
able orthonormal basis, the PSF is constrained to a class that exhibits the generic symmetry
properties of lens blurs, while fast PSF estimation is possible.

3http://www.loc.gov/pictures/item/fsa1992000018/PP/

50

http://www.loc.gov/pictures/item/fsa1992000018/PP/

3.8. Conclusion

3.8.1. Limitations
Our assumptions about the lens blur are only an approximation for lenses with poor rotation
symmetry.
The image prior used in this work is only suitable for natural images, and is hence content

specific. For images containing only text or patterns, in particular camera test charts used for
quantifying the image quality, this would not be ideal.

3.8.2. Future work
While it is useful to be able to infer the image blur from a single image, the PSF does not change
for photos taken with the same lens settings. On the one hand, this implies that we can transfer
the PSFs estimated for these settings for instance to images where our image prior assumptions
are violated. On the other hand, it suggests the possibility of improving the quality of the PSF
estimates by utilizing a substantial database of images.
Finally, while optical aberrations are a major source of image degradation, a picture may also

suffer from motion blur. By choosing a suitable basis, these two effects could be combined. It
would also be interesting to see if non-uniform motion deblurring could profit from a direct
PSF estimation step as introduced in the present work.

51

CHAPTER 4

Learning Non-Blind Deconvolution

Image deconvolution is the ill-posed problem of recovering a sharp image, given a blurry one
generated by a convolution. In this chapter, we deal with space-invariant, non-blind deconvo-
lution.
Currently, the most successful methods involve a regularized inversion of the blur in Fourier

domain as a first step. This step amplifies and colors the noise, and corrupts the image informa-
tion. In a second (and arguably more difficult) step, one then needs to remove the colored noise,
typically using a cleverly engineered algorithm. However, the methods based on this two-step
approach do not properly address the fact that the image information has been corrupted.
In this chapter, we also rely on a two-step procedure, but learn the second step on a large

dataset of natural images, using a neural network. We will show that this approach outperforms
the previous state of the art on a large dataset of artificially blurred images. We demonstrate the
practical applicability of our method in a real-world example with photographic out-of-focus
blur.

The material of this chapter is based on the following publication:

[Sch+13b] C. J. Schuler, H. C. Burger, S. Harmeling, and B. Schölkopf. “A Machine Learning
Approach for Non-blind Image Deconvolution”. In: IEEE Conf. Computer Vision
and Pattern Recognition. 2013, pp. 1067–1074. doi: 10. 1109/ cvpr. 2013. 142

4.1. Introduction

In the previous chapters we discussed how to remove image blur caused by imperfections in
the optical system. Specifically, in Chapter 2 we assumed that the blur is known, and the main
challenge we were confronted with was that lens blur was non-stationary.

53

http://dx.doi.org/10.1109/cvpr.2013.142

4. Learning Non-Blind Deconvolution

However, as we discussed in Section 1.2, even stationary convolutions with known kernels
are hard to invert, especially in the case of noise, where the blurry image y is given by y =
x ∗k+n. Solving this ill-posed problem as best as possible is the foundation for also improving
performance in the spatially-varying applications of the previous chapters.
Therefore, we now address space-invariant non-blind deconvolution, i.e., we want to recover

x given y and k and assume k to be constant (space-invariant) over the image. Even though
this is a long-standing problem, it turns out that there is room for improvement over the best
existing methods. While most methods are well-engineered algorithms, we ask the question:
is it possible to automatically learn an image deconvolution procedure? We will show that this
is indeed possible.

Main contributions: We present an image deconvolution procedure that is learned on a
large dataset of natural images with a neural network. We compare our approach to other
methods on a large dataset of synthetically blurred images, and obtain state-of-the-art results
for all tested blur kernels. Our method also achieves excellent results on a real photograph
corrupted by out-of-focus blur. The execution time of our approach is reasonable (once trained
for a specific blur) and scales linearly with the size of the image. We provide a toolbox on our
website to test our method.1

4.2. Related work

Image deconvolution methods can be broadly separated into two classes. The first class of
methods is based on probabilistic image priors, whereas the second class of methods relies on
a preprocessing step followed by denoising.
Levin et al. [Lev+07], Krishnan and Fergus [KF09], FoE [SSR11], and Zoran and Weiss

[ZW11] belong to the first category. Levin et al., Krishnan and Fergus, and EPLL seek a
MAP estimate of the clean image x, given a blurry (and noisy) version y and the PSF k. In
other words, one seeks to find the x maximizing p(x|y,k) ∝ p(y|x,k)p(x). The first term is a
Gaussian likelihood, but modeling the marginal distribution of images p(x) is a long-standing
research problem and can be handled in a number of ways. Levin et al. as well as Krishnan and
Fergus assume that the image gradients follow a hyper-Laplacian distribution (this is a common
and well-founded assumption, see Fig. 1.5 or [SA96]). EPLL [ZW11] models p(x) using a
Gaussian mixture model. FoE [SSR11] uses a Bayesian MMSE instead of a MAP estimate and
uses the Fields of Experts [RB09] framework to model p(x).
The second category of methods applies a regularized inversion of the blur, followed by a

denoising procedure. In Fourier domain, the inversion of the blur can be seen as a pointwise di-
vision by the blur kernel. This makes the image sharper, but also has the effect of amplifying the
noise, as well as creating correlations in the noise, see Fig. 4.1. Hence, these methods address
deconvolution as a denoising problem. Unfortunately, most denoising methods are designed to
remove additive white Gaussian (AWG) noise [Por+03; EA06; Dab+07]. Deconvolution via
denoising requires the denoising algorithm to be able to remove colored noise (non-flat power
1http://webdav.is.mpg.de/pixel/neural_deconvolution/

54

http://webdav.is.mpg.de/pixel/neural_deconvolution/

4.3. Method

spectrum of the noise, not to be confused with color noise of RGB images). Methods that are
able to remove colored noise, such as DEB-BM3D [Dab+08], IDD-BM3D [DKE12] and others
(e.g. [GMP08]) have been shown to achieve good deconvolution results. A method published
at the same time as the material of this chapter [Sch+13a] does not completely fit this second
category. While also a discriminative approach without generative prior, it does not employ an
explicit preprocessing step, but trains a model consisting of a cascade of Gaussian conditional
random fields.
Image denoising is itself a well-studied problem, with methods too numerous to list here.

Some approaches to denoising rely on learning, where learning can involve learning a proba-
bilistic model of natural images [RB09], or of smaller natural image patches [ZW11]. In that
case, denoising can be achieved using a maximum a posteriori method. In other cases, learning
involves learning a discriminative model for denoising, for example using convolutional neural
networks [LeC+98a]. In [JS08], it is shown that convolutional neural networks can achieve
good image denoising results for AWG noise.
More recently, it was shown that a type of neural network based on stacked denoising auto-

encoders [Vin+10] can achieve good results in image denoising for AWG noise as well as
for “blind” image inpainting [XXC12] (when the positions of the pixels to be inpainted are
unknown).
Also recently, plain neural networks achieved state-of-the-art results in image denoising for

AWG noise, provided the neural nets have enough capacity and that sufficient training data
is provided [BSH12c; BSH12a]. It was also shown that plain neural networks can achieve
good results on other types of noise, such as noise resembling stripes, salt-and-pepper noise,
JPEG-artifacts and mixed Poisson-Gaussian noise.

Differences and similarities to our work: We address the deconvolution problem as
a denoising problem and therefore take an approach that is in line with [Dab+08; DKE12;
GMP08], but different from [KF09]. However, as opposed to engineered algorithms [Dab+08;
DKE12; GMP08], ours is learned. In that respect, we are similar to [RB09; ZW11; Sch+13a].
However, our method is a discriminative method, and therefore more in line with [JS08; XXC12;
BSH12c]. We make no effort to use specialized learning architectures [JS08; XXC12] but use
multilayer perceptrons, similar to [BSH12c].

4.3. Method
The most direct way to deconvolve images with neural networks is to train them directly on
blurry/clean patch pairs. However, as we will see in Section 4.4, this does not lead to good
results. Instead, our method relies on two steps, as illustrated in Fig. 4.2: (i) a regularized
inversion of the blur in Fourier domain and (ii) a denoising step using a neural network. In this
section, we describe these two steps in detail.

4.3.1. Direct deconvolution
The goal of this step is to make the blurry image sharper. This has the positive effect of
localizing information, but it has the negative side-effect of introducing new artifacts. In our

55

4. Learning Non-Blind Deconvolution

φ(x) = x ∗ k + n
↓ ↓ ↓

F−1(R � Fφ(x)) = F−1(R � Fx � Fk) + F−1(R � Fn)
z = xcorrupted + ncolored

Figure 4.1.: Illustration of the effect of the regularized blur inversion. The goal of im-
age deconvolution is to deblur y. The result z of the regularized inversion
is the sum of a corrupted image xcorrupted and colored noise ncolored. Other
methods [Dab+08; DKE12; GMP08] attempt to remove ncolored but ignore
the noise in xcorrupted, whereas our method learns to denoise z and therefore
addresses both problems.

model, the underlying true (sharp) image x is blurred with a PSF k and corrupted with AWG
noise n with standard deviation σ:

y = k ∗ x + n. (4.1)
Assuming a Gaussian prior on the gradients of x, and that our measurement of the blur

kernel is corrupted by AWG, we know from Section 1.2.2 that the MMSE estimator is found
by minimizing

‖y − k ∗ x‖2 + ασ2‖Gx‖2 + β‖x‖2, (4.2)
where similar to Section 2.6 we assumed that our measurement of the blur kernel could be
corrupted byAWG, adding a further term β‖x‖2 (see Sec. 6.4.1 in [BV04]). As noted previously,
this can be solved in Fourier domain in a single step in the case of circular convolution (cf.
Eq. (1.17)). We introduce the regularized inverse of the blurring transformation as

R =
Fk

|Fk|2 + ασ2 ∑
i |Fgi |

2 + β
, (4.3)

assuming for notational simplicity that k and gi are zero-padded to the size of x and y. The
hyper-parameters α and β are responsible for the regularization: If both α = 0 and β = 0, there
is no regularization. Using the regularized inverse R, we can estimate the true image by the
so-called direct deconvolution (following [Hir+11])

z = F−1(R � Fk) = F−1 (R � (Fx � Fk + Fn))

= F−1(R � Fx � Fk) + F−1(R � Fn), (4.4)

56

4.3. Method

Corrupted
image

Regularized
blur inversion

Training: true image
Testing: predicted image

MLP

Figure 4.2.: Overview of our non-blind deconvolution approach. The method consists
of two steps: first, the image is preprocessed by performing a regularized
blur inversion, localizing the image information, but also introducing new
artifacts. Next, a MLP predicts the ground truth image patch-wise from the
the preprocessed image. The MLP has to be trained on a large dataset of
patches.

where � as previously defined is element-wise multiplication. Hence, the image recovered
through the regularized inverse is given by the sum of the colored noise image F−1(R � Fn)
and an image F−1(R�Fx�Fk) (as illustrated in Fig. 4.1). The latter image is exactly equivalent
to x if α = β = 0 and the blur kernel doesn’t exhibit zeroes in its frequency spectrum, but
otherwise generally not. We therefore see that methods trying to remove the colored noise
component F−1(R � Fn) ignore the fact that the image itself is corrupted. We propose as step
(ii) a procedure that removes the colored noise and additional image artifacts.

4.3.2. Artifact removal by multilayer perceptrons

For our proposed method we use a simple NN, an MLP as introduced in Section 1.4, which is
of the form

f (i) = b3 +W3 tanh(b2 +W2 tanh(b1 +W1i)), (4.5)

with weight matrices Wi and vector-valued biases bi. We denote the architecture of an MLP by
a tuple of integers, e.g. (392,2047,2047,2047,2047,132) describes an MLP with four hidden
layers (each having 2047 nodes) and patches of size 39 × 39 as input, and of size 13 × 13 as
output. Such an MLP has approximately 1.6×107 parameters to learn, which is similar in scale
to other large networks reported in literature [Cir+10; SL11]. All our MLPs are fully connected,
meaning that the weight matrices Wi are dense. One could also imagine MLPs which are not
fully connected, using sparse weight matrices. Sparsely connected MLPs have the advantage
of being potentially computationally easier to train and evaluate.

57

4. Learning Non-Blind Deconvolution

Training procedure: Our goal is to learn an MLP that maps corrupted input patches to
clean output patches. How do we generate training examples? Starting with a clean image x
from an image database, we transform it by a function φ that implements our knowledge of
the image formation process. For instance, in the simulated experiment in Section 4.4.2, the
clean image x is blurred by the PSF k and additionally corrupted by noise n. In this case φ is
equivalent to the linear blur model in Eq. (4.1).
The real-world photograph deblurred in Section 4.4.4 requires a more complicated φ as

described in that section. We apply the direct deconvolution to φ(x) to obtain the image

z = F−1(R � Fφ(x)), (4.6)

which is an image containing artifacts introduced by the direct deconvolution. Input-output
pairs for training of the MLP are obtained by chopping z and x into patches. Using a large
image database we can generate an abundance of training pairs.
The free parameters of the MLP are learned on such pairs of corrupted and clean image

patches from z and x, using SGD [LeC+98a]. The parameters of the MLP are then updated
using the back-propagation algorithm [RHW86] explained in Section 1.4.1, minimizing the
pixel-wise squared error between the prediction of the MLP and the clean patch. The use of
the squared error is motivated by the fact that we are interested in optimizing the PSNR, which
is monotonically related to the square error. We follow the setup described in [BSH12a] for the
training procedure.
Specifically, this means:

• Data normalization: the mean and variance of the input data should be close to zero and
one, respectively. For natural images with a range between 0 and 1, this is achieved by
subtracting 0.5 and dividing by 0.2.

• Weight initialization: to use both the linear and the non-linear part of the tanh activa-
tion functions, the entries of the weight matrices Wi should be drawn from a uniform
distribution between −

√
6/(ni + ni+1) and +

√
6/(ni + ni+1), where ni is the number of

input dimensions to the layer i. This procedure assumes that the input to the MLP is
normalized as described above.

• Choice of learning rate: the global learning rate is adapted to the different number of
parameters of each layer by dividing by the number of its input dimensions ni. We use a
global learning rate of 0.05 for all experiments.

We perform the training procedure on a modern GPU, resulting in a speedup factor of ap-
proximately an order of magnitude compared to a CPU implementation.

Application to images: To deblur an image, we first apply the direct deconvolution. The
resulting image (showing characteristic artifacts) is then chopped into overlapping patches and
each patch is processed separately by the trained MLP. The resulting reconstructed patches
are placed at the locations over their corrupted counterparts and averaged in regions where
they overlap. As described in [BSH12c], instead of choosing every sliding-window patch, we

58

4.4. Results

use a stride size of 3 (we pick every third patch) to achieve a speed-up factor of 9, while still
achieving excellent results. This way, we can remove artifacts from an image of size 512 × 512
in approximately one minute on a modern computer (on CPU in Matlab).

4.4. Results

4.4.1. Choice of parameter values

Which experimental setups lead to good results? To answer this question, we monitor the results
achieved with different setups at different times during the training procedure. Figure 4.4 shows
that the results tend to improve with longer training times, but that the choice of the MLP’s
architecture as well as of the regularization strength α during direct deconvolution is important.
Using four hidden layers instead of one leads to better results, given the same setting for direct
deconvolution. If four hidden layers are used, better results are achieved with α = 20 than with
α = 10. This is explained by the fact that too weak a regularization amplifies the noise too
much, making its removal more difficult and training potentially unstable. In our experiments,
we use α = 20 for the direct deconvolution and (392,4 × 2047,132) for the architecture.

As mentioned above, it is also conceivable to train directly on blurry/clean patch pairs (i.e.,
on pairs φ(x) and x, instead of on pairs z and x), but this leads to results that are approximately
1.5 dB worse after convergence (given the same architecture).

4.4.2. Comparison to other methods

To compare our approach to existing methods (described in Section 4.2), we first perform
controlled experiments on a large set of images, where both the underlying true image and the
PSF are known. Since the PSF is known exactly, we set β to zero. We train five MLPs, one for
each of the following scenarios.

(a) Gaussian blur with standard deviation 1.6 (size 25 × 25) and AWG noise with σ = 0.04.

(b) Gaussian blur with standard deviation 1.6 (size 25 × 25) and AWG noise with σ =
2/255 (≈ 0.008).

(c) Gaussian blur with standard deviation 3.0 (size 25 × 25) and AWG noise with σ = 0.04.

(d) Square blur (box blur) with size 19 × 19 and AWG noise with σ = 0.01.

(e) Motion blur from [Lev+09] and AWG noise with σ = 0.01.

Scenarios (a) and (b) use a small PSF and (c) and (d) use a large PSF, whereas (b) and (d) use
weak noise and (a) and (c) use strong noise. Scenarios (a), (b) and (c) have been used elsewhere,
e.g., [DKE12]. All of these blurs are particularly destructive to high frequencies and therefore
especially challenging to deblur. Scenario (e) uses a motion blur recorded in [Lev+09], which
is easier to deblur. Each MLP is trained on randomly selected patches from about 1.8 · 108
photos from the ImageNet dataset [Den+09]. Results seem to converge after approximately

59

4. Learning Non-Blind Deconvolution

100 200 300 400 500
−1

−0.5

0

0.5

1

1.5

2

2.5

(a) Gaussian blur σ=1.6

AWG noise σ=0.04

Sorted image index

Im
p
ro

v
em

en
t

in
 P

S
N

R
 o

v
er

 c
o
m

p
et

it
o
r

[d
B

]

DEB−BM3D: avg. 0.40 dB

IDD−BM3D: avg. 0.23 dB

Krishn. & Ferg.: avg. 0.62 dB

Levin et al.: avg. 0.68 dB

EPLL: avg. 0.47 dB

100 200 300 400 500

(b) Gaussian blur σ=1.6

AWG noise σ=2/255

Sorted image index

DEB−BM3D: avg. 0.47 dB

IDD−BM3D: avg. 0.22 dB

Krishn. & Ferg.: avg. 0.60 dB

Levin et al.: avg. 0.67 dB

EPLL: avg. 0.46 dB

100 200 300 400 500

(c) Gaussian blur σ=3.0

AWG noise σ=0.04

Sorted image index

DEB−BM3D: avg. 0.45 dB

IDD−BM3D: avg. 0.30 dB

Krishn. & Ferg.: avg. 0.43 dB

Levin et al.: avg. 0.44 dB

EPLL: avg. 0.35 dB

100 200 300 400 500
−1

−0.5

0

0.5

1

1.5

2

2.5

(d) Square blur 19x19

AWG noise σ=0.01

Sorted image index

Im
p
ro

v
em

en
t

in
 P

S
N

R
 o

v
er

 c
o
m

p
et

it
o
r

[d
B

]

DEB−BM3D: avg. 0.50 dB

IDD−BM3D: avg. 0.23 dB

Krishn. & Ferg.: avg. 0.43 dB

Levin et al.: avg. 0.53 dB

EPLL: avg. 0.27 dB

100 200 300 400 500

(e) Motion blur

AWG noise σ=0.01

Sorted image index

DEB−BM3D: avg. 0.58 dB

IDD−BM3D: avg. 0.13 dB

Krishn. & Ferg.: avg. 1.04 dB

Levin et al.: avg. 0.97 dB

EPLL: avg. 0.21 dB

Figure 4.3.: Comparison of performance over competitors. Values above zero indicate that
our method outperforms the competitor.

60

4.4. Results

0 0.5 1 1.5 2 2.5 3

x 10
8

4

4.5

5

5.5

Number of training samples

IP
S

N
R

 [
d
B

]

α=20, (39
2
,4×2047,13

2
)

α=10, (39
2
,4×2047,13

2
)

α=20, (39
2
,1×2047,13

2
)

Levin et al.

Krishn. & Ferg.
DEB−BM3D

EPLL

IDD−BM3D

Figure 4.4.:MLPs with more capacity lead to better results. If the regularization in the
direct deconvolution is weak, strong artifacts are created, leading to bad results.
IPSNR refers to the mean improvement in PSNR over 11 test images over their
blurry counterparts. A square blur was used to produce this figure. The labels
on the right indicate the results achieved with competing methods.

2 · 108 training samples, corresponding to two weeks of GPU time. However, most competing
methods are surpassed within the first day of training.
We evaluate our method as well as all competitors on black-and-white versions of the 500

images of the Berkeley segmentation dataset. The exponent of the sparseness prior in Krishnan
and Fergus [KF09] was set to 0.8. Levin et al. [Lev+07], EPLL [ZW11] and Krishnan and Fer-
gus each require one regularization parameter, IDD-BM3D [DKE12] has two hyper-parameters.
We optimized unknown values of these parameters on 20 randomly chosen images from Im-
ageNet. Since only the methods using an image prior would be able to treat the boundary
conditions correctly, we use circular convolution in all methods but exclude the borders of the
images in the evaluation (we cropped by half the size of the blur kernel).
A performance profile of our method against all others on the full dataset is shown in Fig. 4.3

and two example images are shown in Figs. 4.6 and 4.7. Our method outperforms all com-
petitors on most images, sometimes by a large margin (several dB). The average improvement
over all competitors is significant. In Figs. 4.6 and 4.7 we see that in smooth areas, IDD-
BM3D [DKE12] and DEB-BM3D [Dab+08] produce artifacts resembling the PSF (square
blur), whereas our method does not. The results achieved by Levin et al. and Krishnan and
Fergus look “grainy” and the results achieved by EPLL [ZW11] look more blurry than those
achieved by our method. However, IDD-BM3D yields better results than our method in areas
with repeating structures.

A comparison with the Fields of Experts based method [SSR11] was infeasible on the Berke-
ley dataset, due to long running times. Table 4.1 summarizes the results achieved on 11 standard
test images for denoising [Dab+07], downsampled to 128 × 128 pixels.
For our scenarios IDD-BM3D is consistently the runner-up to our method. The other methods

rank differently depending on noise and blur strength. For example, DEB-BM3D performs

61

4. Learning Non-Blind Deconvolution

50 100 150 200 250 300 350 400 450 500
−1

−0.5

0

0.5

1

1.5

2

2.5

Sorted image index

Im
p
ro

v
em

en
t

in
 P

S
N

R
 [

d
B

]

Poisson: avg. 0.48 dB

Gaussian with equal variance: avg. 0.45 dB

Figure 4.5.: Comparison of performance over BM3D for Poisson noise. The experiment
is equivalent to scenario (c), but with Poisson noise of equal average variance
instead of the Gaussian noise. Values above zero indicate that our method
outperforms the competitor.

(a) (b) (c) (d) (e)
EPLL [ZW11] 24.36 26.75 21.82 22.30 29.32
Levin et al. [Lev+07] 24.09 26.51 21.72 21.91 28.33
Krishnan and Fergus [KF09] 24.17 26.60 21.73 22.07 28.17
DEB-BM3D [Dab+08] 24.19 26.30 21.48 22.20 28.26
IDD-BM3D [DKE12] 24.68 27.13 21.99 22.69 29.41
FoE [SSR11] 24.07 26.56 21.61 22.04 28.83
MLP 24.76 27.23 22.20 22.75 29.42

Table 4.1.: Comparison on 11 standard test images. Values in dB.

well for the small PSFs.

Poisson noise: For scenario (c) we also consider Poisson noise with equivalent average
variance. Poisson noise is approximately equivalent to additive Gaussian noise, where the
variance of the noise depends linearly on the intensity of the underlying pixel. We compare
against DEB-BM3D, for which we set the input parameter (the estimated variance of the noise)
in such a way as to achieve the best results. Averaged over the 500 images in the Berkeley dataset,
the results achieved with an MLP trained on this type of noise are slightly better (0.015 dB)
than with equivalent AWG noise, whereas the results achieved with DEB-BM3D are slightly
worse (0.022 dB) than on AWG noise (see also Fig. 4.5). The fact that our results become
somewhat better is consistent with the finding that equivalent Poisson noise is slightly easier
to remove [MF11]. We note that even though the improvement is slight, this result shows that
MLPs are able to automatically adapt to a new noise type, whereas methods that are not based
on learning would ideally have to be engineered to cope with a new noise type (e.g. [MF11]

62

4.4. Results

describes adaptations to BM3D [Dab+07] for mixed Poisson-Gaussian noise, [CWL11] handles
outliers in the imaging process).

4.4.3. Noise dependence
A disadvantage of our method is that it is only optimal for the noise level used during train-
ing. Other methods, e.g. DEB-BM3D, can incorporate this as a parameter during application.
However, as we see in Fig. 4.8 the performance of the MLP degrades gradually and is still
acceptable if the noise strength differs by a factor of 2.
Recently, Wang and Morel [WM14] showed that normalizing the input patches can help to

remove the noise dependence of a denoising-type neural network. This is achieved by scaling
input patches by a factor of σtrained/σ, such that the standard deviation σ of the noise of the
observed image is equal to the standard deviation σtrained of the noise the network was trained
on. However, this scaling may produce patches that are unlike the patches the MLP was trained
on. To reduce this effect, the mean (of the image content, not of the noise) of every scaled patch
is shifted to be equal to the mean where the training distribution of the MLP was densest, and
where the MLP is most likely to have learned about patches similar to the rescaled patches. If
we apply this procedure to a deconvolution-type neural network (scaling the observed image
before the regularized blur inversion), we see from Fig. 4.8 that this extends the applicability of
the MLP to noise strengths larger than it was trained on. The effect is reversed for small noise
levels, presumably since in this case the scaling factor σtrained/σ > 1 also increases artifacts
created by the blur inversion.

4.4.4. Qualitative results on a real photograph
To test the performance of our method in a real-world setting, we remove defocus blur from
a photograph. We use a Canon 5D Mark II with a Canon EF 85mm f/1.2 L II USM lens
to take an out-of-focus image of a poster, see Fig. 4.9. In order to make the defocus blur
approximately constant over the image plane, the lens is stopped down to f/5.6, which minimizes
lens aberrations.
The function φ mimicking the image formation for this setup performs the following steps.

First, an image from the training dataset is gamma-decompressed and transformed to the color-
space of the camera (coefficients can be obtained from DCRAW). Then the image is blurred
with a pillbox PSF (a circular averaging filter) with radius randomly chosen between 18.2 and
18.6. The radius of the actual PSF can be estimated by looking at the position of the first
zero-frequency in Fourier domain. The randomness in the size of the pillbox PSF expresses
that we do not know the exact blur and a pillbox is only an approximation. This is especially
true for our lens stopped down by eight shutter blades. Then the color image is converted to
four half-size, grayscale images to model the Bayer pattern. Next, noise is added to the image.
The variance of readout noise is independent of the expected illumination, but photon shot
noise scales linearly with the mean, and pixel non-uniformity causes a quadratic increase in
variance [Mar]. Our noise measurements on light frames are in agreement with this and can
therefore be modeled by a second-order polynomial. We have shown in Section 4.4.2 that our
method is able to handle intensity-dependent noise.

63

4. Learning Non-Blind Deconvolution

20.36 dB 26.49 dB 25.81 dB
Ground Truth Corrupted EPLL [ZW11] Krishn. & Ferg. [KF09]

25.76 dB 25.39 dB 26.44 dB 27.02 dB
Levin et al. [Lev+07] DEB-BM3D [Dab+08] IDD-BM3D [DKE12] MLP

Figure 4.6.: Images from the best 5% results of scenario (d) as compared to IDD-
BM3D [DKE12].

19.34 dB 24.34 dB 24.05 dB
Ground Truth Corrupted EPLL [ZW11] Krishn. & Ferg. [KF09]

23.78 dB 24.25 dB 24.80 dB 24.81 dB
Levin et al. [Lev+07] DEB-BM3D [Dab+08] IDD-BM3D [DKE12] MLP

Figure 4.7.: Images from the worst 5% results of scenario (d) as compared to IDD-
BM3D [DKE12].

64

4.5. Understanding

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0.5

1

1.5

2

Noise level σ

Im
p
ro

v
em

en
t

in
 P

S
N

R
 o

v
er

re
g
u
la

ri
ze

d
 b

lu
r

in
v
er

si
o
n

our method trained on σ=0.04

our method with normalized input

DEB−BM3D

EPLL

Figure 4.8.: Behavior of the MLP from scenario (c) at different noise levels, evaluated on
11 standard test images for denoising. The plot shows the improvement over
the regularized blur inversion. DEB-BM3D and EPLL take only the noise
level as a parameter and should be optimal at every noise level. The MLP was
trained only on σ = 0.04, where its performance peaks, for other values it
degrades slowly. With input normalized according to [WM14] the MLP can
adapt to high noise levels.

To generate the input to the MLP we preprocess each of the four channels generated by the
Bayer pattern via direct deconvolution using a pillbox of the corresponding size at this resolution
(radius 9.2). Because of the uncertainty of the true kernel we set β = 10−3. With this input, we
learn the mapping to the original full resolution images with three color channels. The problem
is higher-dimensional than in previous experiments, which is why we also increase the number
of units in the hidden layers to 3071 (the architecture is therefore (4 × 392,4 × 3071,3 × 92)).
In Fig. 4.9 we compare to the best visual results we could achieve with DEB-BM3D, the top
algorithm with only one tunable parameter. The results were obtained by first demosaicing and
then deconvolving every color channel separately, as shown in Fig. 4.9.
In summary, we achieve a visually pleasing result by simply modeling the image formation

process. By training on the full pipeline, we even avoid the need for a separate demosaicing
step. It is not clear how this can be optimally incorporated in an engineered approach.

4.5. Understanding

Our MLPs achieve state-of-the-art results in image deblurring. But how do they work? In this
section, we provide some answers to this question.
Following [BSH12b], we call weights connecting the input to the first hidden layer feature de-

65

4. Learning Non-Blind Deconvolution

Defocused Image Direct Deconvolution

Krishnan and Fergus [KF09] DEB-BM3D [Dab+08]
(deconv., then demosaic.) (deconv., then demosaic.)

DEB-BM3D [Dab+08] MLP
(demosaic., then deconv.)

Figure 4.9.: Removal of defocus blur in a photograph.

66

4.5. Understanding

tectors and weights connecting the last layer to the output feature generators, both of which can
be represented as patches. Assigning an input to anMLP and performing a forward pass assigns
values to the hidden units, called activations. Finding an input pattern i∗ that maximizes the ac-
tivation of a specific hidden unit a(i) can be performed using activation maximization [ECB10],

i∗ = argmax
i s.t. ‖i‖<ρ

a(i). (4.7)

The solution is constrained to have a norm smaller than ρ to prevent input patterns with values
not observed during training. A local maximum to this non-convex optimization problem is
found via gradient ascent.
We will analyze two MLPs trained on the square PSF from scenario (d), both with the

architecture (392,4 × 2047,132). The first MLP is trained on patches that are preprocessed
with direct deconvolution, whereas the second MLP is trained on the blurry image patches
themselves (i.e., no preprocessing is performed).

Analysis of the feature detectors: We start with the feature detectors of theMLP trained
with preprocessed patches, see Fig. 4.10. The feature detectors are of size 39 × 39 pixels. The
area covered by the output patch lies in the middle of the patches and is of size 13 × 13 pixels.
Some feature detectors seem to focus on small features resembling a cross. Others detect
larger features in the area covered by the output patch (the middle 13 × 13 pixels). Still other
feature detectors are more difficult to describe. Finally, some feature detectors detect edges that
are completely outside the area covered by the output patch. A potential explanation for this
surprising observation is that these feature detectors focus on artifacts created by the regularized
inversion of the blur.
We perform the same analysis on the MLP trained on blurry patches, see Fig. 4.11. The

shape of the blur is evident in most feature detectors: they resemble squares. In some feature
detectors, the shape of the blur is not evident (the three rightmost). We also observe that all
features are large compared to the size of the output patch (the output patches are three times
smaller than the input patches). This was not the case for the MLP trained with preprocessing
(Fig. 4.10) and is explained by the fact that in the blurry inputs, information is very spread
out. We clearly see that the direct deconvolution has the effect of making the information more
local.

Analysis of the feature generators: We now analyze the feature generators learned
by the MLPs. We will compare the feature generators to the input patterns maximizing the
activation of their corresponding unit. We want to answer the question: what input feature
causes the generation of a specific feature in the output?
We start with the MLP trained on preprocessed patches. Figure 4.12 shows eight feature

generators (bottom row) along with their corresponding input features (top row), maximizing
the activation of the same hidden unit. The input patterns were found using activation maxi-
mization [ECB10]. Surprisingly, the input patterns look similar to the feature generators. We
can interpret the behavior of this MLP as follows: if the MLP detects a certain feature in the
corrupted input, it copies the same feature into the output.

67

4. Learning Non-Blind Deconvolution

Figure 4.10.: Eight feature detectors of an MLP trained to remove a square blur. The
MLP was trained on patches preprocessed with direct deconvolution. The
two rightmost features detect edges that are outside the area covered by the
output patch, presumably detecting artifacts.

Figure 4.11.: Eight feature detectors of an MLP trained to remove a square blur. The MLP
was trained on the blurry patches themselves (i.e., no preprocessing). The
features are large compared to the output patches because the information in
the input is very spread out, due to the blur.

Figure 4.12.: Input patterns found via activation maximization [ECB10] (top row) vs. fea-
ture generators (bottom row) in an MLP trained on preprocessed patches.
We see a clear correspondence between the input patterns and the feature
generators. The MLP works by generating the same features it detects.

Figure 4.13.: Input patterns found via activation maximization [ECB10] (top row) vs. fea-
ture generators (middle row) in an MLP trained on blurry patches (i.e., no
preprocessing). The input patterns look like the feature generators convolved
with the PSF (bottom row). The MLP works by detecting blurry features and
generating sharp ones.

68

4.6. Convolutional training

We repeat the analysis for the MLP trained on blurry patches (i.e., without preprocessing).
Figure 4.13 shows eight feature generators (middle row) along with their corresponding input
features (top row). This time, the features found with activation maximization look different
from their corresponding feature generators. However, the feature detectors look remarkably
similar to the feature generators convolved with the PSF (bottom row). We interpret this obser-
vation as follows: if the MLP detects a blurry version of a certain feature in the input, it copies
the (non-blurry) feature into the output.

Summary: Our MLPs are nonlinear functions with millions of parameters. Nonetheless,
we were able to make a number of observations regarding how the MLPs achieve their results.
This was possible by looking at the weights connecting the input to the first hidden layer and the
weights connecting the last hidden layer to the output, as well as through the use of activation
maximization [ECB10].
We have seen that the MLP trained on blurry patches has to learn large feature detectors,

because the information in the input is very spread-out. The MLP trained on preprocessed
patches is able to learn finer feature detectors. For both MLPs, the feature generators look
similar: many resemble Gabor filters or blobs. Similar features are learned by a variety of
methods and seem to be useful for a number of tasks [EA06; Vin+10]. We were also able to
answer the question: which inputs cause the individual feature generators to activate? Roughly
speaking, in the case of the MLP trained on preprocessed patches, the inputs have to look like
the feature generators themselves, whereas in the case of the MLP trained on blurry patches,
the inputs have to look like the feature generators convolved with the PSF. Additionally, some
feature detectors seem to focus on typical preprocessing artifacts.

4.6. Convolutional training

4.6.1. Differences to patch-wise approach

Additionally, as an alternative to the training approach described in Section 4.3.2 and published
in [Sch+13b], where the MLP was trained on patches from the images z and x, it is also possible
to train a network convolutionally on uncropped pairs of images z and x. A convolutional
network could be more suited to encode the translation invariance of the distribution of natural
images.
Training is performed on whole images, not on cropped patches. The first layer creates

several image-like like feature representations from the input image by performing convolutions
with different filters. These filters will be learned during training. Next, every pixel in every
feature representation is nonlinearly transformed with a tanh. The subsequent step then linearly
recombines these transformed feature representations pixel-wise to a number of new feature
representations, with weights learned during training. The last two steps, the tanh and the
linear recombination, can be repeated several times, until finally the feature representations are
combined to a single output, an estimate of the sharp image. The main difference to an MLP
of the form of Eq. (4.5) therefore is the first layer, which creates a matrix where each row i is
z ∗ fi, the input image z convolved with a learned filter fi.

69

4. Learning Non-Blind Deconvolution

Architecture 1 × 2048 4 × 128 4 × 256 4 × 512 4 × 1024
Avg. PSNR (dB) 24.24 24.67 24.76 24.78 24.59

PSNR after “fine-tuning” 24.83 24.85

Table 4.2.: Results of convolutional neural networks for scenario (d). The architecture is
described as number of hidden layers × number of hidden representations. The
patch-wise MLP achieved a PSNR of 24.84 dB. For the two most successful
architectures we continued training with a learning rate reduced by a factor of
10 (also called “fine-tuning” [BSH12b]).

Figure 4.14.: Eight feature detectors of a convolutional NN trained to remove a square
blur. The NN was trained on patches preprocessed with direct deconvolution.
Note that all learned filters are centered, as opposed to Fig. 4.10.

xcorrupted ncolored f1 ∗ z f2 ∗ z

log|Fxcorrupted |2 log|Fncolored |2 |Ff1 |2 |Ff2 |2

Figure 4.15.: Effect of two filters of a convolutional NN trained to remove a square blur.
Left two columns: Corrupted image xcorrupted and colored noise ncolored, and
their respective power spectra in logarithmic scale. Right two columns: Two
filters f1 and f1 applied to the preprocessed input (filters as inset), and their
respective power spectra. The filter f1 concentrates mostly on the colored
noise, f2 on the image information unaffected by noise.

70

4.6. Convolutional training

This becomes more clear by comparing the convolutional procedure to a (392,256,128,12)-
MLP trained patch-wise: instead of multiplying a vectorized input patch with a 256×392 weight
matrix, the first layer of the new network applies 256 convolutions with learned filters of size
392 to the image z, creating 256 hidden image-like representations. After transforming every
pixel in these hidden representations nonlinearly with a tanh, the next layer linearly recombines
the 256 images to 128 new images. This is equivalent to applying a 128 × 256 weight matrix
pixel-wise to every pixel across the 256 input images, as the MLP does for a single input vector
of length 256. The last layer recombines the 128 hidden representations to a single prediction
for x, while the patch-wise MLP predicts only a single pixel. However, in both approaches,
every pixel in the output is created from 392 pixels in the input, the size of the input patch or
the size of the convolution filter.
We see that our proposed convolutional network is comparable to a patch-wise trained MLP

with an output patch of size 1. For a patch-wise trained MLP smaller output patches reduce
the dimensionality of the back-propagated gradient and lead to worse results [BSH12b]. The
convolutional approach, on the other hand, back-propagates gradient information from the
whole image, not from a single pixel, and consequently should not exhibit worse results.

To test the proposed approach, we trained several convolutional neural networks for scenario
(d), each with a filter size of 392, but with different numbers of hidden representations and
hidden layers. To avoid having to find a successful layer-wise adaption of the learning rate in
SGD to the number of hidden representations, the filter size and the image size, we instead
employed the adaptive training method ADADELTA (see Eq. (1.27)). A learning rate of 0.1
and a decay rate of 0.95 proved to work well. The results of different architectures are shown
in Table 4.2. We see that larger architectures are more successful, but with diminishing returns.
Deep models with too many hidden representations, however, seem to fail to converge to a good
parameter setting.
Following [BSH12b], we also employ “fine-tuning”. After training with a certain learning

rate until convergence (which similar to the patch-wise MLP takes about two weeks on GPU),
we continue training with a learning rate reduced by a factor of 10 (for about an additional two
days). While this procedure did not significantly boost the patch-wise MLPs, it improves the
results produced by the convolutional NNs. As can be seen from the bottom row of Table 4.2, the
final convolutional performance is nearly identical to the patch-wise approach (within 0.01 dB
for both the convolutional net with 256 and the one with 512 hidden representations). This
means a convolutional net can achieve the same performance as patch-wise trained MLP with
only 4% of the number of parameters. We will discuss a possible reason for this result in the
next subsection. Even though the final performance and the training time are not improved as
compared to patch-wise MLPs, the reduced number of parameters speeds up the application
to blurry images and makes the convolutional model an interesting alternative to be further
investigated, also with respect to denoising.

4.6.2. Understanding the learned filters

While the analysis of feature generators is not applicable to the convolutional approach, the
learned filters are equivalent to feature detectors of the patch-wise MLPs.

71

4. Learning Non-Blind Deconvolution

From Fig. 4.14 we see that the filters after training have a structure comparable to the fea-
ture detectors we previously observed. Some feature detectors are cross-like, others focus on
structures at the edge of the receptive field defined by the filter. However, unlike the feature
detectors from Figs. 4.10 and 4.11, all filters possess a clear center. This could explain the
observed competitive performance of a convolutional NN that possesses fewer parameters than
a respective patch-wise MLP: the MLP uses capacity for learning to predict image structures
shifted within the input and output patches, while the convolutional NN is translation invariant
by design, since every pixel in its output image originates from a single region (as defined by
the filter size) in the input image.
While the nonlinearities of the NN complicate interpreting the effect of a specific filter in

the first layer, some insights into the cross-like structures can be gained — which to a certain
extent occur in most of the convolutional filters, and in some of the feature detectors of the
MLP — at the example of the first two filters from Fig. 4.14. In Fig. 4.15 on the left the power
spectra of the corrupted image and the colored noise are shown. It is instructive to look at the
power spectra of the convolution filters, which have a multiplicative effect on the power spectra
of their input (|Fxoutput |2 = |Ff |2 |Fxinput |2). On the right, it can be seen that the power spectra
of the two filters focus on different parts of the preprocessed blurry image: filter f1 is non-zero
at frequencies where the colored noise is strong, filter f2 at frequencies of the corrupted image
that are not affected by the noise.

4.7. Conclusion
We have shown that neural networks achieve a new state of the art in image deconvolution.
This is true for all scenarios we tested. Our method presents a clear benefit in that it is based
on learning: we do not need to design or select features or even decide on a useful transform
domain, the neural network automatically takes care of these tasks. An additional benefit related
to learning is that we can handle different types of noise, whereas it is not clear if this is always
possible for other methods. Finally, by directly learning the mapping from a corrupted input
to a clean output, we handle both types of artifacts introduced by the direct deconvolution,
instead of being limited to removing colored noise. We were able to gain insight into how
our networks operate: they detect features in the input and generate corresponding features in
the output, either patch-wise or convolutionally. Our networks have to be trained on GPU to
achieve good results in a reasonable amount of time, but once learned, deblurring on CPU is
practically feasible. A limitation of our approach is that each network has to be trained on only
one blur kernel: results achieved with networks trained on several blur kernels are inferior to
those achieved with one trained on a single blur kernel. This makes our approach less useful for
motion blurs, which are different for every image. However, in this case the deblurring quality
is currently more limited by errors in the blur estimation than in the non-blind deconvolution
step. Possibly our method could be further improved with a meta-procedure, such as [JNR12].

72

73

CHAPTER 5

Learning Blind Deconvolution

In this chapter, we describe a learning-based approach to blind image deconvolution. It uses
a deep layered architecture, parts of which are borrowed from recent work on neural network
learning, and parts of which incorporate computations that are specific to image deconvolution.
The system is trained end-to-end on a set of artificially generated training examples, enabling
competitive performance in blind deconvolution, both with respect to quality and runtime.

The material of this chapter is based on the following publication:

[Sch+14] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Schölkopf. “Learning to Deblur”.
In: ArXiv e-prints (2014). arXiv: 1406. 7444 [cs.CV]. Submitted to a journal.

5.1. Introduction
In Chapters 2 and 3 we have seen how to extend both non-blind and blind deconvolution to the
problem of removing lens aberrations. In Chapter 4, we investigated the fundamental problem
of non-blind deconvolution and demonstrated how to achieve state-of-the-art results with a pure
learning based approach. The missing piece is extending the success of a learned method to
the more challenging problem of blind deconvolution.
Similar to the previous chapter, we focus on stationary blurs, even thoughwe also demonstrate

how to extend this method to non-uniform corruptions. Hence, we again start with

y = k ∗ x + n. (5.1)

As explained in Section 1.3, the task of blind image deconvolution is to recover x given only
the blurry image y, without knowing k or the noise n. A number of approaches [Fer+06; CL09;
XJ10] introduced in Section 1.3.1 infer the true image implicitly or explicitly by regularizing
towards a sharp solution. Usually, these methods are fast and follow an iterative, multi-scale
estimation scheme, alternating between blur and latent image estimation.

75

http://arxiv.org/abs/1406.7444

5. Learning Blind Deconvolution

The idea of the proposed method is to “unroll” this reconstruction procedure and pose it
as a nonlinear regression problem, where the optimal parameters are learned from artificially
generated data. As a function approximator, we use a layered architecture akin to a deep neural
network (DNN) or multilayer perceptron. Some of the layers are convolutional, as popular
in many recent approaches, while others are non-standard and specific to blind deconvolution.
Overall, the system is inspired by [BG91] who formulated the idea of neural networks as general
processing schemes with large numbers of parameters. This is in contrast to the previous chapter,
which relied on a basic MLP.1

Using extensive training on a large image dataset in combination with simulated camera
shakes, we train the blind deconvolution NN to automatically obtain an efficient procedure to
approximate the true underlying image, given only the blurry measurement.
A common problem with NNs, and in particular with large custom built architectures, is

that the devil is in the details and it can be nontrivial to get systems to function as desired. We
thus put particular emphasis on describing the implementation details, and we make the code
publicly available.2

Main contributions: We show how a trainable model can be designed in order to be able
to learn blind deconvolution. Results are comparable to the state of the art of hand-crafted ap-
proaches and go beyond when the model is allowed to specialize to a particular image category.

5.2. Related work
Some recent approaches to blind deconvolution in photography have already been mentioned
above and in Section 1.3. We refer the interested reader to [WZ13] for an overview of the
subject, and focus only on how NNs have been previously used for deconvolution.
Neural networks have been used extensively in image processing. Comprehensive reviews

are [ERH02; DeR+03], both of which present broad overviews of applying NNs to all sorts of
image processing operations, including segmentation, edge detection, pattern recognition, and
nonlinear filtering.
Image deconvolution, often also called image reconstruction, has been approached with NNs

for a long time. However, these approaches are quite different from our proposed work:

• NN to identify the type of blur: [Aiz+06] and similarly [KN11] apply NNs to identify the
type of blur from a restricted set of parametrized blurs, e.g. linear-motion, out-of-focus
and Gaussian blur, and possibly their parameters.

• NN to model blurry images: [CD91] models the blurry image as the result of a neural
network where at the different layers the blur kernel and the true image appear.

• NN to inversely filter blurry images: [TOM96] learns an inverse filter represented by a
NN to deblur text.

1However, we could also view the regularized inversion step that preprocesses the MLP’s input as its first layer,
making the previous approach more similar to the idea of the current chapter.

2http://webdav.is.mpg.de/pixel/neural_blind_deconvolution/

76

http://webdav.is.mpg.de/pixel/neural_blind_deconvolution/

5.3. Blind deconvolution as a layered network

• NN to optimize a regularized least squares objective: [SF94] proposes also the common
two-stage procedure to first estimate the blur kernel and then to recover the image. For
both tasks Hopfield networks are employed to solve the optimization problems.

• NN to remove colored noise: The previous chapter presented a method for non-blind
deblurring that starts with a straight-forward division in Fourier space and then removes
the resulting artifacts (mainly colored noise) with large neural networks.

Other learning-based approaches for blind deconvolution try to learn the deconvolution solution
for a single image, in particular they attempt to learn an appropriate sparse representation for
a given blurry image, e.g. [HHY10]. In our work, we follow a different strategy: instead of
learning the solution or part of a solution for a single fixed image, we use a neural network
to learn a general procedure that is directly applicable to other images and to different blurs.
Closest to our approach is the work of [Sch+13a], who train a deblurring procedure based on
regression tree fields. However, even though their approach is not limited to a specific blur or
a specific image, they consider only the problem of non-blind deblurring, i.e., their method as-
sumes that the blur kernel is known. This is in contrast to our contribution, which demonstrates
how to train a NN to solve the blind deconvolution problem. This is a much harder problem,
since not only do we have to solve an underdetermined linear problem (originating from the
least-squares formulation of non-blind deconvolution), but an underdetermined bilinear prob-
lem, which appears since the entries of the unknown blur kernel k and the pixel values of the
unknown image x are multiplied by the convolution, see Eq. (5.1).
Finally we note that deconvolutional networks, introduced in [Zei+10] and further extended

in [ZTF11], are not architectures for image deconvolution. Instead, they use convolutions to
link sparse features to given images. Their goals are good image representations for tasks such
as object recognition and image denoising.

5.3. Blind deconvolution as a layered network
As explained in Section 1.3.1, existing fast blind deconvolution methods work by alternating
between the following steps [XZJ13; XJ10; CL09]:

1. Feature extraction

2. Kernel estimation

3. Image estimation

We will represent these steps by a trainable DNN, thus adding more flexibility to them and
allowing them to optimally adapt to the problem. The layers of the network alternate between
(1) a local convolutional estimation to extract good features, (2) the estimation of the blur
kernel, globally combining the extracted features, and finally (3) the estimation of the sharp
image. Parts (2) and (3) are fixed (having only one hyper-parameter for regularization). The
free parameters of the network appear in part (1), the feature extraction module. Thus, instead
of having to learn a model on the full dimensionality of the input image, which would not be

77

5. Learning Blind Deconvolution

doable using realistic training set sizes, the learning problem is naturally reduced to learning
filters with a limited receptive field.

5.3.1. Architecture layout

Below, we describe the different parts of the network (cf. Fig. 5.1).

Feature extraction module

What makes a good feature for kernel estimation can reasonably be assumed to be a translation
invariant problem, i.e., independent from the position within the image. We therefore model
the feature extractors using shared weights applying across all image locations, i.e., as a con-
volutional NN layer,3 creating several feature representations of the image. This is followed
by two layers that introduce nonlinearity into the model. First, every value is transformed by
a tanh-unit, then the feature representations are pixel-wise linearly combined to new hidden
images, formally speaking

ỹi =
∑

j

αi j tanh(f j ∗ y) and x̃i =
∑

j

βi j tanh(f j ∗ y) (5.2)

where f j are the filters of the convolution layer (shared for x̃i and ỹi), the function tanh operates
coordinate-wise, and αi j and βi j are the coefficients to linearly combine the hidden represen-
tations. Note that we usually extract several gradient-like images x̃i and ỹi. Depending on the
desired nonlinearity, these two layers can be stacked multiple times, leading to the final image
representations based on features useful for kernel estimation. The feature extraction module
is similar to the convolutional network from Section 4.6, except that it can have multiple input
and output images.

Kernel estimation module

Given x̃i and ỹi which contain features tuned for optimal kernel estimation, the kernel k̃ can be
estimated by minimizing ∑

i

‖k̃ ∗ x̃i − ỹi‖
2 + βk ‖k̃‖2 (5.3)

for k̃ given the results from the previous step x̃i and their blurry counterparts ỹi. Assuming no
noise and a kernel without zeros in its power spectrum, the true gradients of the sharp image
x and its blurred version y would return the true kernel for βk = 0. Typically, in existing
methods ỹi are just the gradients of the blurry image, while here these can also be learned

3Note that this convolution has nothing to do with the convolution appearing in our image formation model
(Eq. (5.1)) — causally, it goes in the opposite direction, representing one step in the inverse process turning
the blurry image into an estimate of the underlying image.

78

5.3. Blind deconvolution as a layered network

First stage

Blurry
image

Feature extraction
module

Kernel estimation
module

Image estimation
module

Predicted
kernel

Blurry
image

Latent
image

Feature
extraction
module

Kernel
estimation

module

Image
estimation

module

Feature
extraction
module

Kernel
estimation

module

Image
estimation

module

Second stage Last stage

Figure 5.1.: Architecture of our proposed blind deblurring network. First the feature ex-
traction module transforms the image to a learned gradient-like representation
suitable for kernel estimation. Next, the kernel is estimated by division in
Fourier space, then similarly the latent image. The next stages, each consist-
ing of these three operations, operate on both the blurry image and the latent
image.

79

5. Learning Blind Deconvolution

Feature extraction module

Kernel estimation module

Blurry
image

Conv-Layer

Tanh-Layer

Linear-Layer

Tanh-Layer

Linear-Layer

Estimated
Kernel

Figure 5.2.: Intermediary outputs of a single-stage NN with architecture 8 × Conv, Tanh,
8 × 8, Tanh, 8 × 4.

80

5.3. Blind deconvolution as a layered network

representations predicted from the previous layer. The minimization problem can be solved in
one step in Fourier space if we assume circular boundary conditions (cf. Eq. (1.17)):

k̃ = FH
∑

i Fx̃i � Fỹi∑
i |Fx̃i |

2 + βk
. (5.4)

This is only possible because we use a simple Gaussian prior on the kernel. We call this step
the quotient layer, which is an uncommon computation in NNs that usually only combine linear
layers and nonlinear thresholding units. The final kernel is returned by cropping to the particular
kernel size and thresholding negative values. To reduce artifacts from the incorrect assumption
of circular boundary conditions, the borders of the image representations are weighted with a
Barthann window such that they smoothly fade to zero.
Due to varying size of the input image, we set βk = 10−4 for numerical stability only. This

forces the network to not rely on the prior, which would lose importance for a larger input image
relative to the likelihood term (since the kernel size is fixed).

Image estimation module

Before adding another feature extraction module, the estimated kernel is used to obtain an
update of the sharp latent image: analogously to Eq. (5.3), we solve

‖k̃ ∗ x̃ − y‖2 + βx ‖x̃‖2 (5.5)

for x̃, which can also be performed with a quotient layer. This can be done in one step (which
would not be possible when using a sparse prior on x̃). The following convolution layer then
has access to both the latent image and the blurry image, which are stacked along the third
dimension (meaning that the learned filters are also three-dimensional). The hyper-parameter
βx is also learned during training.

5.3.2. Iterations as stacked networks

The feature extraction module, kernel estimation module and the image estimation module
can be stacked several times, resulting in the network shown in Fig. 5.1, and corresponding
to multiple iterations in non-learned blind deconvolution methods. This leads to a single NN
that can be trained end-to-end with back-propagation by taking the derivatives of all steps
(see Appendix A for the derivatives of the solutions to Eq. (5.3) and the analogous Eq. (5.5)),
increasing the performance as shown in Fig. 5.3 (but at the same time increasing runtime).
Similar to other blind deconvolution approaches and the approach of Chapter 3, we also use a

multi-scale procedure. The first (and coarsest) scale is just a network as described above, trained
for a particular blur kernel size. For the second scale, the previous scale network is applied to
a downsampled version of the blurry image, and its estimated latent image is upsampled again
to the second scale. The second scale network then takes both the blurry image and the result
of the previous scale as input. We repeat these steps until the final scale can treat the desired
blur kernel size on the full resolution image.

81

5. Learning Blind Deconvolution

0 1 2 3 4 5 6 7 8 9 10

x 10
5

2

3

4

5

6
x 10

−5

Training iterations

T
ra

in
in

g
 M

S
E

 f
o
r

k
er

n
el

Single stage network

Double stage network

Triple stage network

Figure 5.3.: Deeper networks are better at kernel prediction. One stage for kernel predic-
tion consists of a convolutional layer, two hidden layers and a kernel estimation
module.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
6

3

3.5

4

4.5

5
x 10

−5

Training iterations

T
ra

in
in

g
 M

S
E

 f
o
r

k
er

n
el

8xConv, Tanh, 8x8, Tanh, 8x4

16xConv, Tanh, 16x16, Tanh, 16x4

32xConv, Tanh, 32x32, Tanh, 32x4

32xConv, Tanh, 32x4

Figure 5.4.: The performance of the network for kernel estimation depends on the archi-
tecture. More filters in the convolutional layer and more hidden layers are
better.

82

5.3. Blind deconvolution as a layered network

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
6

3

3.2

3.4

3.6

3.8

4
x 10

−5

Training iterations

T
ra

in
in

g
 M

S
E

 f
o
r

k
er

n
el

Predefined gradients

One learned feature image

Two learned feature images

Four learned feature images

Figure 5.5.: The performance of the network depends on the number of the predicted
gradient-like images used in the kernel estimation module. Predefining ỹi to
x- and y-gradients and not learning these representations slows down training.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
6

3

3.5

4

4.5

5

5.5

6
x 10

−5

Training iterations

T
ra

in
in

g
 M

S
E

 f
o
r

k
er

n
el

Learning rate 0.001, decay 0.95

Learning rate 0.01, decay 0.95

Learning rate 0.1, decay 0.95

Learning rate 0.01, decay 0.9

Learning rate 0.01, decay 0.99

SGD, learning rate 0.01

Figure 5.6.: Influence of the parameters of ADADELTA [Zei12] or SGD on the conver-
gence of the network.

83

5. Learning Blind Deconvolution

Figure 5.7.: Examples of blurs sampled from a Gaussian process (left: 33 px, right: 17 px).

5.3.3. Training
To train the network, we generate pairs of sharp and blurry images. The sharp image is sampled
from a subset of about 1.6 million images of the ImageNet [Den+09] dataset, randomly cropped
to a size of 256 × 256. Next, a blur trajectory is generated by sampling both its x- and y-
coordinates separately from a Gaussian Process

f x (t), f y (t) ∼ GP
(
0, k (t, t′)

)
, k (t, t′) = σ2

f
*
,
1 +
√
5|t − t′|

l
+
5(t − t′)2

3l2
+
-
exp *

,
−

√
5|t − t′|

l
+
-
,

(5.6)
where k (t, t′) is a Matérn covariance function with ν = 3/2 [RW06] (samples from a Gaussian
Process are distributed according to a multivariate normal distribution with its covariance
matrix defined by the covariance function). The length scale l is set to 0.3, the signal standard
deviation σ f to 1/4. The coordinates are then scaled to a fixed blur kernel size and the final
kernel is shifted to have its center of mass in the middle. This simple procedure generates
realistic looking blur kernels, examples for both small and large kernel sizes are illustrated
in Fig. 5.7. For every setting, we generate 1 million noise-free training examples, and add
Gaussian noise during training (by default, σ = 0.01).
To avoid that the training process is disturbed by examples where the blur kernel cannot

be estimated, e.g., a homogeneous area of sky without any gradient information, we reject
examples where less than 6% pixels have gradients in x- and y-direction with an absolute value
0.05 or above.
As described in the previous subsection, a network for a certain blur kernel, i.e., a particular

scale, consists of several stages, each iterating between the feature extraction, kernel estimation
and the image estimation module.
We use pre-training for our network: we start by training only one stage minimizing the L2

error between the estimated and the ground truth kernel, then add a second stage after about
1 million training steps. For the next 1000 steps, the parameters of the first stage stay fixed
and only the parameters of the second stage are updated. After that, the network is trained
end-to-end, until a potential next stage is added.
For the update of the parameters, convergence proved to be best with ADADELTA [Zei12],

a heuristic weighting scheme of parameter updates using gradients and updates from previous
training steps, see Eq. (1.27). For the influence of its parameters on the convergence speed
see Fig. 5.6. For our experiments, we choose a learning rate of 0.01 and a decay rate of 0.95.
Moreover, it makes training more robust to outliers with strong gradients since it divides by the
weighted root-mean-square of the seen gradients, including the current one. Responsible for the
mentioned strong gradients are typically images dominated by abrupt step-edges, which create
ringing artifacts in the deconvolution Eq. (5.5). In ImageNet these often are photos of objects

84

5.4. Implementation

Blur size 255 × 255 800 × 800 1024 × 1024 2048 × 2048
17 × 17 1.1 5.2 9.5 53.1
25 × 25 1.2 14.3 18.5 89.1
33 × 33 1.6 10.7 22.6 91.9

Table 5.1.: The method is very fast: runtime in seconds for kernel estimation with varying
image size on an Intel i5 in Matlab.

with trimmed background. To make the training even more robust, we don’t back-propagate
examples with an error above 10 times the current average error.

5.4. Implementation

We make the code for both training and testing our method available for download.4 For
training, we use our own C++/CUDA-based neural network toolbox described in Appendix B.
After training once for a certain blur class (e.g., camera shake), which takes about two days
per stage, applying the network is very fast and can be done in Matlab without additional
dependencies.
The runtimes on an Intel i5 using only Matlab are shown in Table 5.1. The most expensive

calculation is the creation of the multiple hidden representations in the convolutional layer of
the NN (in this example: 32).

5.5. Experiments

If not otherwise stated, all experiments were performed with a multi-scale, triple stage archi-
tecture. We use up to three scales for kernels of size 17 × 17, 25 × 25, 33 × 33. On each scale
each feature extraction module consists of a convolution layer with 32 filters, a tanh-layer, a
linear recombination to 32 new hidden images, a further tanh-layer, and a recombination to four
gradient-like images, two for x̃i and ỹi each (in the third stage: eight gradient-like images). In
the case of the network with blur kernels of size 33 × 33, we deconvolve the estimated kernels
with a small Gaussian with σ = 0.5 to counter the over-smoothing effect of the L2 norm used
during training. For the specific choice of the architecture, we refer to the influence of model
parameters on the kernel estimation performance in Figs. 5.3 to 5.4.

5.5.1. Image content specific training

A number of recent works [HY12; Sun+13; Wan+13] have pointed out the shortcoming of
state-of-the-art algorithms [CL09; XJ10] to depend on the presence of strong salient edges and
their diminished performance in the case of images that contain textured scenes such as natural
landscape images. The reason for this is the deficiency of the so-called image prediction step,

4http://webdav.is.mpg.de/pixel/neural_blind_deconvolution/

85

http://webdav.is.mpg.de/pixel/neural_blind_deconvolution/

5. Learning Blind Deconvolution

Figure 5.8.: Typical example images of valley (top row) and blackboard (bottom row)
categories from ImageNet used for content specific training.

PSNR 24.13 dB PSNR 24.61 dB PSNR 24.96 dB

PSNR 20.71 dB PSNR 23.87 dB PSNR 26.32 dB
Blurry image Xu et al. [XZJ13] Cont. agnostic training Cont. specific training

Figure 5.9.: Comparison of deblurring results for NNs that have been trained with image
examples from the entire ImageNet dataset (content agnostic) and from par-
ticular subsets (content specific), i.e., image categories valley (top) and black-
board (bottom). We also show results of the state-of-the-art method [XZJ13].

Valley image Xu et al. Agnostic Specific
(Flickr ID) [XZJ13] training training
fCetj6 24.13 24.61 24.96
hR7YPb 28.59 27.96 28.32
i1GWi8 20.70 20.17 20.91
nz5BxB 22.97 22.28 22.80
nRuiRC 23.32 23.20 23.44
Average 23.94 23.64 24.09

Blackboard Xu et al. Agnostic Specific
img. (Flickr ID) [XZJ13] training training

bkkdz3 26.37 23.63 27.53
btKo6w 20.71 23.87 26.32
dbQBYX 20.88 22.36 24.25
f9jSxK 23.63 21.60 24.41
fK3V16 25.32 23.77 25.22
Average 23.38 23.04 25.55

Table 5.2.: PSNRs of content agnostic vs. content specific training. Values in dB. All
images were downloaded from Flickr in resolution “medium” and have been
blurred with blur kernel 2 from [Lev+09].

86

https://flic.kr/p/fCetj6
https://flic.kr/p/hR7YPb
https://flic.kr/p/i1GWi8
https://flic.kr/p/nz5BxB
https://flic.kr/p/nRuiRC
https://flic.kr/p/bkkdz3
https://flic.kr/p/btKo6w
https://flic.kr/p/dbQBYX
https://flic.kr/p/f9jSxK
https://flic.kr/p/fK3V16

5.5. Experiments

PSNR 23.17 dB PSNR 23.28 dB PSNR 23.52 dB
Blurry image Zhong et al. [Zho+13] Noise agnostic training Noise specific training

Figure 5.10.: Comparison of deblurring results for NNs that have been trained with dif-
ferent amounts of noise added to the sample images during training. The
network that has been trained with the same amount of noise as the input
blurry image (5% noise) performs best. We also show the results of a recently
proposed deblurring method tailored for increased levels of noise [Zho+13].

which applies a combination of bilateral and shock filtering to restore latent edges that are used
for subsequent kernel estimation.
In this context, learning the latent image prediction step offers a great advantage: by training

our network with a particular class of images, it is able to focus on those features that are
informative for the particular type of image. In other words, the network learns content specific
nonlinear filters, which yield improved performance.
To demonstrate this, we used the same training procedure as described above, however, we

reduced the training set to images from a specific image category within the ImageNet dataset.
In particular, we used the image category valley5 containing a total of 1395 pictures. In a
second experiment, we trained a network on the image category blackboard6 with a total of
1376 pictures. Figure 5.8 shows typical example images from these two classes. Figure 5.9
compares deblurring results of the state-of-the-art algorithm described in [XZJ13] with our
approach trained on images sampled from the entire ImageNet dataset, and trained on the
aforementioned image categories only. Table 5.2 compares the two networks on a random
selection of photos taken from Flickr. We see that content specific training outperforms content
agnostic training for all examples, and demonstrates on par performance with [XZJ13] for the
category valley. For category blackboard, which is more distinct from generic natural images,
it surpasses its competitor by a large margin.

5.5.2. Noise specific training
Typically, image noise impedes kernel estimation. To counter noise in blurry images, current
state-of-the-art deblurring algorithms apply a denoising step during latent image prediction such
as bilateral filtering [CL09] or Gaussian filtering [XJ10]. However, in a recent work [Zho+13],
the authors show that for increased levels of noise current methods fail to yield satisfactory
5ImageNet 2011 Fall Release > Geological formation, formation > Natural depression, depression > Valley, vale
(http://www.image-net.org/synset?wnid=n09468604)

6ImageNet 2011 Fall Release > Artifact, artifact > Sheet, flat solid > Blackboard, chalkboard (http://www.
image-net.org/synset?wnid=n02846511)

87

http://www.image-net.org/synset?wnid=n09468604
http://www.image-net.org/synset?wnid=n02846511
http://www.image-net.org/synset?wnid=n02846511

5. Learning Blind Deconvolution

Blurry image Harmeling et al. [HHS10] Hirsch et al. [Hir+11]

Estimated PSF Ours Xu et al. [XZJ13]

Figure 5.11.: Comparison on Butcher Shop example [HHS10] of state-of-the-art deblur-
ring methods for removing non-uniform blur together with our estimated
PSF.

results and propose a novel robust deblurring algorithm. Again, if we include image noise in our
training phase, our network is able to adapt and learn filters that perform better in the presence
of noise. In particular, we trained a network on images with Gaussian noise of 5% added during
the training phase. Figure 5.9 compares the results for an image taken from [Zho+13] with 5%
Gaussian noise for a network trained with 1% and 5% of added Gaussian noise during training,
respectively. We also show the result of [Zho+13] and compare PSNR for objective evaluation.
All results use the same non-blind deconvolution of [Zho+13]. The noise specific training is
most successful, but even the noise agnostic NN outperforms the non-learned method on this
example.

5.5.3. Spatially-varying blur

Since the prediction step of our trained NN is independent of the convolution model, we can
also use it in conjunction with the recently proposed fast forward model of [Hir+11] to restore
images with spatially-varying blur. To this end, we replace the objective function Eq. (5.5)
with Eq. (8) of [Hir+11] in our kernel estimation module in a network trained for spatially
invariant deconvolution. We solve for k in a two-step procedure: first we compute local blur
kernels using the EFF model of [Hir+10]; in a second step we project the blur kernels onto
a motion basis aka [Hir+11], as explained below. Figure 5.11 shows a comparison between
recent state-of-the-art algorithms for spatially-varying blur along with our deblurring result
that features comparable quality.

88

5.5. Experiments

Result of direct kernel estimation Result after basis projection Result after basis projection
and subsequent sparsification

Figure 5.12.: Visualisation of our kernel estimation in the case of spatially-varying blur
for the Butcher Shop example shown in Fig. 5.11. The left panel shows the
kernel estimated with Eq. (5.8), the middle and right panels show the kernel
after applying a subsequent projection step to our motion basis, i.e., the result
of Eq. (5.9) with η set to 1.0 and 0.0314, respectively.

For the estimation of spatially-varying blur we solve the following objective∑
i

‖ X̃i k̃ − ỹi‖
2 + βk ‖k̃‖2 (5.7)

in our kernel estimation module. Here X̃i denotes the EFF matrix of x̃ (cf. Eq. (1.11)) and k̃
the stacked sequence of local kernels k̃(r), one for each patch that are enumerated by index r .
Since Eq. (5.7) is quadratic in k̃, we can solve for a local blur k̃(r) in a single step

k̃(r)
direct ≈ FH

∑
i FCr Diag(w(r)) x̃i � (FCr Diag(w(r)) ỹi)∑

i |FCr Diag(w(r)) x̃i |
2 + βk

. (5.8)

Note that Eq. (5.8) is only approximately true and is motivated by Eq. (8) in [Hir+11]. Subse-
quently, we project the estimated kernel computed by Eq. (5.8) to a motion blur kernel basis.
In our experiments we use the same basis as [Hir+11] comprising translations within the image
plane and in-plane rotations only. This additional projection step constrains the estimated blur
to physically plausible ones. Formally, we compute

k̃(r)
est ≈ B(r) Tη

∑
r

(B(r))
T k̃(r)

direct︸ ︷︷ ︸
µ

, (5.9)

where again we make use of the notation chosen in [Hir+11], i.e., B(r) denotes the motion
blur kernel basis for patch r . Then µ are the coefficients in the basis of valid motion blurs. Tη
denotes a thresholding operator that sets all elements to zero below a certain threshold whereby
the threshold is chosen such that only η percent of entries remain non-zero. This thresholding
step is motivated by [CL09], who also apply a hard thresholding step to the estimated kernels in
order to get rid of spurious artefacts. Figure 5.12 shows the intermediate results of our kernel
estimation procedure in the case of spatially-varying blur.

89

5. Learning Blind Deconvolution

20

22

24

26

28

30

32

34

36
A

v
er

ag
e

P
S

N
R

 (
d
B

)

Ours

Levin et al.

Cho and Lee

Xu et al.

20

22

24

26

28

30

32

34

Ours

Levin et al.

Cho and Lee

Krishnan et al.

Sun et al.

Xu and Jia

Figure 5.13.: Results of the benchmark dataset of Levin et al. [Lev+09] and the extended
benchmark of Sun et al. [Sun+13]. The results are sorted according to blur
kernel size. While for kernels up to a size of 25 × 25 pixels, our approach
yields comparable results, it falls short for larger blur kernels. Reasons for
the performance drop are discussed in Section 5.6.3.

5.5.4. Comparisons

Benchmark Datasets

We evaluate our method on the standard test sets from [Lev+09; Sun+13]. The four images
of [Lev+09] are 255×255 pixels in size and are artificially blurred each with eight different blur
kernels and contain 1% additive Gaussian noise. The performance is illustrated in Fig. 5.13 on
the left, with blur kernels sorted according to increasing size. We compare with Levin et al.
[Lev+11], Cho and Lee [CL09], and Xu et al. [XZJ13]. While our method is competitive with
the state of the art for small blur kernels, our method falls short in performance for blur kernel
sizes above 25× 25 pixels. We discuss reasons for this in Section 5.6.3. The second benchmark
from [Sun+13] extends this dataset to 80 new images with about one megapixel in size each,
using the same blur kernels as in [Lev+09]. Results are shown in Fig. 5.13 on the right. Here
we compare with Levin et al. [Lev+11], Cho and Lee [CL09], Krishnan et al. [KTF11], Sun
et al. [Sun+13], and Xu and Jia [XJ10], where however [Sun+13] has runtime in the order of
hours. Again, we see competitive performance for small blur kernels.

90

5.6. Discussion

Real-World Images

In Figs. 5.14 and 5.15 we show results of our method on real-world images. Figure 5.14 shows
examples for invariant blur, while Fig. 5.15 depicts images with spatially-varying camera shake.
In both examples, our approach is able to recover images comparable in quality with the state
of the art.

5.6. Discussion

5.6.1. Learned filters

The task of the Feature Extraction Module is to emphasize and enhance those image features
that contain information about the unknown blur kernel. Figure 5.16 shows the learned filters of
the convolution layer for each of the three stages within a single scale of a trained NN for kernel
size 17 × 17 pixels. While the first stage takes a single (possibly down-sampled) version of a
blurry image as input, the subsequent stages take both the restored latent image (obtained by
non-blind deconvolution with the current estimate of the kernel) and the blurry image as input.
The outputs of each stage are nonlinearly filtered versions of the input images. In Fig. 5.18 we
visualize the effect of the first stage of a NN with two predicted output images on both the Lena
image and a toy example image consisting of four disks blurred with Gaussians of varying size.
Note that our feature extraction module outputs nonlinearly filtered images for both the blurry
and the latent sharp image, both of which serve as input to the subsequent quotient layer, which
in turn computes an estimate of the blur kernel. This is in contrast to other existing approaches
[CL09; XJ10], which apply a nonlinear filter to the current estimate of the latent image, but
use only a linearly filtered version of the blurry input image for kernel estimation.
Once these feature images have passed the subsequent tanh and recombination layer, they

serve as input to the quotient layer, which computes an estimate of the unknown blur kernel.
Figure 5.2 shows the intermediary results directly after the convolution layer and how they
progressively change after passing through tanh and linear recombination layer two times,
which seem to emphasize strong edges.

While the learned filters of the first stage are reminiscent of gradient filters of various extent
and orientations including Gabor and Laplace-like filters, the filters of the subsequent stages
are much more intricate and more difficult to interpret.
As discussed in Section 5.5, the learned filters depend on the image set that the NN was

trained with, i.e., the feature extraction module learns image content specific features that are
informative about the unknown blur kernel. In Fig. 5.17, we show the learned filters of the
experiments in Section 5.5.1 for the valley and blackboard image category of the ImageNet
dataset; they indeed differ from the ones trained on all images. For example, most of the filters
learned for valley images are mirror or rotational symmetric, unlike many filters of the generic
NN.

91

5. Learning Blind Deconvolution

Blurry image Cho et Lee [CL09] Our results

Blurry image Fergus et al. [Fer+06] Our result

Blurry image Shan et al. [SJA08] Our result

Figure 5.14.: Comparison on real-world example images taken from the literature with
spatially invariant blur.

92

5.6. Discussion

Blurry image Joshi et al. [Jos+10] Our result

Blurry image [Why+10] Whyte et al. [Why+10] Our result

Blurry image [Gup+10] Gupta et al. [Gup+10] Hirsch et al. [Hir+11]

Xu et al. [XZJ13] Our result

Figure 5.15.: Comparison on real-world example images taken from the literature with
spatially-varying blur.

93

5. Learning Blind Deconvolution

First iteration

Second iteration

Third iteration

Figure 5.16.: Learned filters of the convolution layer for each of the three iterations within
a single scale of a trained NN for kernel size 17 × 17 pixels. See text for
details.

NN trained on all images

NN trained on valley images

NN trained on blackboard images

Figure 5.17.: Learned filters of the convolution layer for three different types of images.

94

5.6. Discussion

Blurry image Learned blurry Learned blurry Learned latent Learned latent
feature image ỹ1 feature image ỹ2 feature image x̃1 feature image x̃2

Figure 5.18.: Visualization of the effect of the first stage of a network with two predicted
output images on toy example with disks blurred with Gaussians of varying
size (top row) and motion blurred Lena image (bottom row). While for the
circles in ỹi the different sizes of the Gaussian blurs are clearly visible, the
NN replaces them in x̃i with shapes of comparable sharpness.

5.6.2. Dependence on the size of the observed image

As noted by Hu and Yang [HY12], blind deblurring methods are most successful in predicting
the kernel in regions of an image that exhibit strong salient edges. Other regions are less
informative about the kernel, and have been shown to even hurt kernel estimation when included
in the input to the blind deconvolution algorithm. Ideally, an estimation procedure should weight
its input according to its information content. In the worst case, a larger input would not improve
the results, but would not cause a deterioration either.
We study the behavior of our method with respect to the size of the observed image. It is

possible that the NN learned to ignore image content detrimental to the kernel estimation. In
Fig. 5.19 the predicted kernels for different sized crops of a blurry image are shown. Indeed,
this example suggests that for our learned algorithm the kernel converges with input images
increasing in size, while a non-learned state-of-the-art algorithm [XZJ13] exhibits no such trend.
The more thorough analysis in Fig. 5.20 confirms this behavior: when evaluating the MSE for
three different kernels, averaged over the 52 largest images from [Sun+13], it monotonously
decreases for larger crops of the blurry image. We also see that the NN outperforms the
competing method for the two small blur kernels.

5.6.3. Limitations

A limitation of our current approach is the performance drop in the case of larger blur kernels.
Figure 5.21 shows an example failure case from the benchmark dataset of [Lev+09]. We
believe the reason for this is the suboptimal architecture of our multi-scale approach at higher

95

5. Learning Blind Deconvolution

Figure 5.19.: Results for kernel estimation for different sizes of the observed image. Top
row: Differently sized inputs to the blind deblurring algorithm. Middle row:
Estimated kernels of our method. Larger inputs lead to better results. Bottom
Row: Estimated kernels of [XZJ13]. No clear trend is visible.

200 400 600

8

9

10

11

12
x 10

−5

Edge length of image

M
S

E
 f

o
r

k
er

n
el

 p
re

d
ic

ti
o
n

Ours

Xu et al.

200 400 600
3.5

4

4.5

5

5.5

6
x 10

−5

Edge length of image

Ours

Xu et al.

200 400 600
5

5.5

6

6.5

7
x 10

−5

Edge length of image

Ours

Xu et al.

Figure 5.20.: Dependence of the estimated kernel on the size of the observed image. We
show the MSE of predictions of three kernels for different sized inputs (cf.
Fig. 5.19), averaged over the 52 largest images from [Sun+13]. The MSE of
the NN decreases monotonously with image size.

96

5.7. Conclusion

Blurry image Failure case of our approach Ground truth

Figure 5.21.: For larger blur kernels our approach falls short in yielding acceptable deblur-
ring results. Here, an example of the benchmark dataset of [Lev+09] with a
blur kernel of size 27 × 27 pixels is shown.

resolution scales. While a multi-scale approach exhibits better performance compared to a
single scale network, the observed performance drop for larger blurs suggests that using the
same architecture at all scales is not optimal.

5.7. Conclusion
We have shown that it is possible to automatically learn blind deconvolution by reformulating
the task as a single large nonlinear regression problem, mapping between blurry input and
predicted kernel. The key idea is to incorporate the properties of the generative forward model
into our algorithm, namely that the image is convolved with the same blur kernel everywhere.
While features are extracted locally in the image, the kernel estimation module combines them
globally. Next, the image estimation module propagates the information to the whole image,
reducing the difficulty of the problem for the following iteration.
Our approach can adapt to different settings (e.g., blurry images with strong noise, or specific

image classes), and it could be further extended to combine deblurring with other steps of the
imaging pipeline, including over-saturation, Bayer filtering, HDR, or super-resolution.
The blur class also invites future research: instead of artificially sampling from a stochastic

process, one could use recorded spatially-varying camera shakes, or a different source of un-
sharpness, like lens aberrations or atmospheric turbulences in astrophotography. Additionally,
the insights gained from the trained system could be beneficial to existing hand-crafted methods.
This includes using higher-order gradient representations and extended gradient filters.
Scalability of our method to large kernel sizes is still an issue, and this may benefit from

future improvements in neural net architecture and training. To invite research in this direction,
we make the code publicly available.

97

Conclusion and Outlook

Image deconvolution is a long-standing problem, and the key to recover images is to infer lost
information by making use of prior knowledge. This thesis has gone beyond the previous state
of the art both in non-blind and blind deconvolution, and has improved reconstruction results
by including more prior knowledge.
We saw in Chapter 2 that even the simplest lenses consisting of a single glass element

produce acceptable photos when corrected in software. The measured optical aberrations were
encoded in a spatially-varying PSF and reduced in a MAP estimation with a prior on statistics
of image gradients. This formulation also allows us to infer full-color information from a sensor
sampling only one color channel per pixel. While most blur-inducing optical aberrations could
be corrected, geometrical distortions were not included. It may be beneficial to add them to the
forward model and remove them jointly in a single elegant formulation.
In Chapter 3, it turned out that an image affected by optical aberrations reveals the spatially-

varying blur so well that additional calibration is not necessary. The physical properties of
photographic lenses could be encoded in a linear basis for valid PSFs and thus the dimensionality
of the solution space could be reduced. The approach was based on an existing MAP estimation
procedure with an heuristic prior on sharp images, and extended to full-color blurs, which
are responsible for chromatic aberrations. Since properties of lenses were included as hard
constraints on symmetries of the resulting PSF, some manufacturing mistakes were excluded
from correction. Instead, a prior distribution on deviations from the symmetries may be more
suitable. Further, we did not capitalize on multiple images captured with the same lens. Ideally,
our knowledge about the optical aberrations should increase with the size of the photographer’s
growing photo collection.
In Chapter 4 it was shown that the basic non-blind deconvolution problem with spatially

invariant blur profits from better prior knowledge of natural images. Neural networks extracted
the required information from a large training set of pairs of artificially generated blurry and
sharp images and learned to correct both the noise and the image artifacts remaining after
an initial preprocessing step. Larger models were more successful, and we also gained some
insights into the learned image correction mechanism. The main downside — that a network
must be trained for each blur kernel separately — could possibly be remedied by an approach
akin to [Sch+13a].
Finally, Chapter 5 demonstrated that a learning approach is successful even for the more

challenging case when the blur is not known a priori. The properties of the blind deconvolution

99

Summary and Outlook

problem, in particular that the kernel has a limited size and is reproduced in the blur of the
observation everywhere, guided the layout of a deep neural network. By iterating between
extraction of information locally, and propagating the information globally, the relevant fea-
tures are learned automatically. A learning algorithm has a competitive edge when allowed
to specialize on single categories of image content or blur type, but there is still room for im-
provement for large kernels. Hopefully, future hand-engineered methods will also profit from
insights into the problem as discovered by the neural network.
The proposed methods have been successful in advancing the state of the art of image decon-

volution for photography applications. As mentioned above, there are still many possibilities for
further improvements. However, it will be especially interesting to see how these approaches
can extend to other problem domains. Blur is an issue important to resolve for medical and
scientific imaging on all scales, from MRI diagnostics in radiology, to the nanoscopic analysis
of new materials, to the search for exoplanets.

100

101

APPENDIX A

Mathematical Details

Quotient Layer

As introduced in Eq. (5.4), the quotient layer performs the operation

k̃ = FH
∑

i Fx̃i � Fỹi∑
i |Fx̃i |

2 + βk
(A.1)

to estimate the kernel k̃ from images x̃i and their blurry counterparts ỹi, both predicted by the
previous layers of the NN. When we exchange the role of blur and kernel, the deconvolution is
similar to Eq. (1.17), the solution of the optimization problem in Eq. (1.16).
The quotient layer also includes a learned regularization parameter βk . As we have seen in

Section 1.4, to train the NN, we need the gradients of the output with respect to its parameters
(in this case x̃i, ỹi and βk) in every layer. From these we obtain the gradient steps ∆x̃ j , ∆ỹk
and ∆βk in terms of ∆k̃, where ∆k̃ is determined by the loss for the current training example,
back-propagated through the layers subsequent to the quotient layer.

Derivative with respect to sharp images

To obtain ∆x̃ j , we first determine the differential form in numerator layout, which means for
vectors u, v and a matrix M that

du =
*..
,

du1
du2
...

+//
-
,

du
dv
=

*...
,

du1
dv1

du1
dv2

· · ·
du2
dv1

du2
dv2

· · ·

...
...

. . .

+///
-

and dM =
*..
,

dm11 dm12 · · ·
dm21 dm22 · · ·
...

...
. . .

+//
-
. (A.2)

103

A. Mathematical Details

Therefore, assuming that only x̃ j is variable, with the rules of matrix calculus [PP12] we arrive
at

dk̃ = FH Fdx̃ j � Fỹ j∑
i |Fx̃i |

2 + βk
− FH (

∑
i Fx̃i � Fỹi) � d(Fx̃ j � Fx̃ j)

(
∑

i |Fx̃i |
2 + βk)2

=

= FH Diag
(

Fỹ j∑
i |Fx̃i |

2 + βk

)
F︸ ︷︷ ︸

A

dx̃ j

− FH Diag *
,

(
∑

i Fx̃i � Fỹi) � Fx̃ j

(
∑

i |Fx̃i |
2 + βk)2

+
-

F︸ ︷︷ ︸
B

dx̃ j − FH Diag *
,

(
∑

i Fx̃i � Fỹi) � Fx̃ j

(
∑

i |Fx̃i |
2 + βk)2

+
-

F︸ ︷︷ ︸
C

dx̃ j ,

(A.3)

with the Hadamard product a � b = Diag(a)b and the operation “Diag” that creates a diagonal
matrix from a vector. Additionally, x̃i is real, and therefore dx̃ j = dx̃ j .
With the differential dk̃ = Mdx̃ j (where M = A + B + C) in numerator layout, we note that

the derivative dk̃
dx̃ j = M and the gradient step ∆x̃ j = MT∆k̃. Additionally, we use that BT∆k̃

is real since it is the inverse Fourier transform of a point-wise product of vectors all with Her-
mitian symmetry (they are themselves purely real vectors that have been Fourier transformed).
Hermitian symmetry for a vector v of length n means vn−i+1 = vi for all its components i.
Therefore,

∆x̃ j = AT
∆k̃ − BT

∆k̃ − CT
∆k̃ = AT

∆k̃ − BT∆k̃ − CT
∆k̃ =

= FH F∆k̃ � Fỹ j∑
i |Fx̃i |

2 + βk

− FH
∑

i Fx̃i � Fỹi � Fx̃ j � F∆k̃
(
∑

i |Fx̃i |
2 + βk)2

− FH (
∑

i Fx̃i � Fỹi) � Fx̃ j � F∆k̃
(
∑

i |Fx̃i |
2 + βk)2

= FH
*...
,

F∆k̃ � Fỹ j∑
i |Fx̃i |

2 + βk
−

2<
(∑

i Fx̃i � Fỹi � F∆k̃
)
� Fx̃ j

(
∑

i |Fx̃i |
2 + βk)2

+///
-

, (A.4)

since the transpose has no effect on a diagonal matrix. The real part of a vector v is denoted as
<(v) = 1

2 (v + v).

Derivative with respect to blurry images

The derivation for the gradient ∆ỹ j is similar. We again start with the differential form

dk̃ = FH Fx̃ j � Fdỹ j∑
i |Fx̃i |

2 + βk
= FH Diag *

,

Fx̃ j∑
i |Fx̃i |

2 + βk

+
-

F︸ ︷︷ ︸
A

dỹ j , (A.5)

104

this time assuming dx̃ j and dβk to be zero. Next, we use again that a real vector is unchanged
by conjugation, and we obtain

∆ỹ j = AT
∆k̃ = AT∆k̃ = FHDiag *

,

Fx̃ j∑
i |Fx̃i |

2 + βk

+
-
F∆k̃ = FH *

,

Fx̃ j � F∆k̃∑
i |Fx̃i |

2 + βk

+
-
. (A.6)

Derivative with respect to the regularization parameter

Following the previous procedure for the regularization parameter βk we arrive at

dk̃ = FH
∑

i Fx̃i � Fỹi

(
∑

i |Fx̃i |
2 + βk)2︸ ︷︷ ︸

A

dβk , (A.7)

assuming only βk to be variable. Then, multiplying ∆k̃ by the transpose of dk̃
d β̃k
= A we get

∆βk = AT
∆k̃ = *

,
FH

∑
i Fx̃i � Fỹi

(
∑

i |Fx̃i |
2 + βk)2

+
-

T

∆k̃. (A.8)

105

APPENDIX B

Neural Network Toolbox

In Chapters 4 and 5 we learn to deconvolve with neural networks. To fit the specific needs for
the applications in this thesis, we provide a specialized C++ neural network toolbox available
for Linux, Windows and OS X as open source software1 (also to be published on GitHub).
The toolbox is layer-based, and a neural network is represented as an acyclic graph on layers.

Layers can either be GPU or CPU based, and data is only transferred between the video card’s
memory and the system’s memory if necessary. While the toolbox is in C++, it provides
wrappers both for Python and for Matlab (unlike, e.g., the Python-only Theano neural network
software package2). Trained networks are saved in HDF5 format to be accessible also from
external tools (for Chapter 4, however, an early toolbox version without HDF5 support was
employed).
Because of the long training times involved, optimization for speed is crucial. To minimize

development time and guarantee operations to be efficient also on the next generation of com-
puting hardware, we “stand on the shoulders of giants” and express most computations such
that they can be performed by heavily optimized linear algebra libraries. Specifically, these
are libraries implementing the Basic Linear Algebra Subprograms (BLAS), for example Open-
BLAS3 on CPU or cuBLAS on GPU4. The C++ code for operations not included in BLAS, for
example tanh, is written such that a suitable compiler can automatically make use of a CPU’s
single instruction, multiple data (SIMD) capabilities (e.g., auto-vectorization in GCC5). For
the MLPs used in Chapter 4, our toolbox is within 3% of the performance of version 0.6 of the
highly optimized Theano library, according to our benchmarks.
Layers currently implemented in the toolbox are shown in Fig. B.1. They include typical neu-

ral network layers, e.g., for linear transformations (LinearLayer) and nonlinearities (TanhLayer
1http://webdav.is.mpg.de/pixel/files/nnet_toolbox.zip
2https://github.com/Theano/Theano
3http://xianyi.github.com/OpenBLAS
4https://developer.nvidia.com/cuBLAS
5http://gcc.gnu.org/projects/tree-ssa/vectorization.html

107

http://webdav.is.mpg.de/pixel/files/nnet_toolbox.zip
https://github.com/Theano/Theano
http://xianyi.github.com/OpenBLAS
https://developer.nvidia.com/cuBLAS
http://gcc.gnu.org/projects/tree-ssa/vectorization.html

B. Neural Network Toolbox

or RectLayer). Some layers are specific to the application in Chapter 5, e.g., the DeconvLayer
used in the kernel estimation module. For a detailed description, see the documentation in-
cluded with the toolbox. A standard NN consists of an InputLayer, several transformation layers,
and a Criterion layer which specifies the cost criterion to be minimized. The class NeuralNet
facilitates creating such a network, as the following code example for learning the exclusive
disjunction (XOR) problem demonstrates, using the Matlab wrapper of the toolbox:

% Creates neural network with two input neurons.
nnet = NeuralNet(2);
% Linear transformation from two input to two hidden neurons.
nnet.add_layer(LinearLayerGpu(2, 2));
% Adds nonlinear tanh transformation.
nnet.add_layer(TanhLayerGpu());
% Linear transformation from two hidden neurons to one output neuron.
nnet.add_layer(LinearLayerGpu(2, 1));
% Uses mean square error criterion as cost function.
nnet.add_layer(MseCriterionGpu());

% Sets input and target to the four states of the XOR problem.
nnet.set_input([-1 1 -1 1; -1 1 1 -1]);
nnet.set_target([-1 -1 1 1]);
% Sets learning rate of SGD training.
nnet.set_update(0.1);
% Performs 250 training iterations on permutations of the training data.
nnet.train_permuted(250);

% Applies trained network to a single example.
nnet.set_input([-1; -1]);
nnet.forward();
output = nnet.get_output();

After training, this simple MLP with two neurons in its hidden layer should have learned the
XOR function, i.e., the variable output in the last line should be near −1.

108

Layer

ConcatLayerGpu

ConvLayerGpu

Criterion

CropPadLayerGpu

DeconvLayerGpu

DropoutLayer

DropoutLayerGpu

GaussianNoiseLayer

GaussianNoiseLayerGpu

InputLayer

L1NormLayerGpu

LinearLayer

LinearLayerGpu

LinearPlaneLayerGpu

LogSoftMaxLayer

MaxLayerGpu

MultiplyLayerGpu

RectLayer

RectLayerGpu

ScalarTransformLayerGpu

SoftSignLayer

SubArrayLayerGpu

TanhLayer

TanhLayerGpu

TeeLayer

L1CriterionGpu

LinearCriterion

LinearCriterionGpu

MarginCriterion

MseClassif icationCriterion

MseClassif icationCriterionGpu

MseCriterion

MseCriterionGpu

Figure B.1.: Class hierarchy of layers of the toolbox. A neural network is an acyclic graph
on different layers, typically starting with a single InputLayer and ending with
an implementation of a Criterion layer.

109

Acronyms

AWG additive white Gaussian 54

BLAS Basic Linear Algebra Subprograms 107

CFA color filter array 22

DNN deep neural network 76

EFF efficient filter flow 9

FFT fast Fourier transform 8

MAP maximum a posteriori iii, 2

MLP multilayer perceptron 17

MMSE minimum mean square error 11

NN artificial neural network 16

PDF probability density function 12

PSF point spread function 8

PSNR peak signal-to-noise ratio 29, 30

RMS root mean square 18

SGD stochastic gradient descent 17

SIMD single instruction, multiple data 107

SNR signal-to-noise ratio 10

VB variational Bayes 15

XOR exclusive disjunction 108

111

Nomenclature

Matrices and vectors
α, σ, t scalar values
v, x, k column vectors
M, X, K matrices
vi the i-th element of a vector v
Mi j the ij-th element of a matrix M

v, M complex conjugate of a vector or matrix
vT, MT vector or matrix transpose
vH, MH conjugate transpose of a vector or matrix
M−1 matrix inverse
Diag v diagonal matrix with vector v on diagonal
F discrete Fourier matrix
1 vector of all ones

Other symbols
Z set of integers
∗ convolution operator
� fast forward model operator
� element-wise multiplication∑

summation operator∫
integral operator

f [n] value of a function f at n, where f is defined on Z

113

Bibliography

[Aiz+06] I. Aizenberg, D. Paliy, C. Moraga, and J. Astola. “Blur identification using neural
network for image restoration”. In: Computational Intelligence, Theory and Ap-
plications. Vol. 38. Springer, 2006, pp. 441–455. doi: 10.1007/3-540-34783-
6_45.

[AL08] D. Alleysson and B. C. de Lavarène. “Frequency selection demosaicking: A re-
view and a look ahead”. In: Proc. SPIE Visual Communications and Image Pro-
cessing. Vol. 6822. 2008, p. 68221M. doi: 10.1117/12.771656.

[Ben12] Y. Bengio. “Practical recommendations for gradient-based training of deep archi-
tectures”. In: Neural Networks: Tricks of the Trade. Lecture Notes in Computer
Science. Springer, 2012, pp. 437–478. doi: 10.1007/978-3-642-35289-8_26.

[BG91] L. Bottou and P. Gallinari. “A Framework for the Cooperation of Learning Al-
gorithms”. In: Advances Neural Information Processing Systems. 1991, pp. 781–
788.

[Bot91] L. Bottou. “Stochastic Gradient Learning in Neural Networks”. In: Proceedings
Neuro-Nîmes 91. Vol. 91. 8. 1991.

[BSH12a] H. C. Burger, C. J. Schuler, and S. Harmeling. “Image denoising with multi-layer
perceptrons, part 1: comparison with existing algorithms and with bounds”. In:
ArXiv e-prints (2012). arXiv: 1211.1544 [cs.CV].

[BSH12b] H. C. Burger, C. J. Schuler, and S. Harmeling. “Image denoising with multi-layer
perceptrons, part 2: training trade-offs and analysis of their mechanisms”. In:
ArXiv e-prints (2012). arXiv: 1211.1552 [cs.CV].

[BSH12c] H. C. Burger, C. J. Schuler, and S. Harmeling. “Image denoising: Can plain Neural
Networks compete with BM3D?” In: IEEE Conf. Computer Vision and Pattern
Recognition. 2012, pp. 2392–2399. doi: 10.1109/cvpr.2012.6247952.

[BV04] S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge University
Press, 2004. doi: 10.1017/cbo9780511804441.

[BW92] T. E. Boult and G. Wolberg. “Correcting chromatic aberrations using image warp-
ing”. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition. 1992,
pp. 684–687. doi: 10.1109/cvpr.1992.223201.

115

http://dx.doi.org/10.1007/3-540-34783-6_45
http://dx.doi.org/10.1007/3-540-34783-6_45
http://dx.doi.org/10.1117/12.771656
http://dx.doi.org/10.1007/978-3-642-35289-8_26
http://arxiv.org/abs/1211.1544
http://arxiv.org/abs/1211.1552
http://dx.doi.org/10.1109/cvpr.2012.6247952
http://dx.doi.org/10.1017/cbo9780511804441
http://dx.doi.org/10.1109/cvpr.1992.223201

Bibliography

[BW99] M. Born and E. Wolf. Principles of optics: electromagnetic theory of propagation,
interference and diffraction of light. Cambridge University Press, 1999. isbn: 978-
0521642224.

[CD91] C. M. Cho and H. S. Don. “Blur identification and image restoration using a
multilayer neural network”. In: IEEE Int. Joint Conf. Neural Networks. 1991,
pp. 2558–2563. doi: 10.1109/ijcnn.1991.170774.

[Cir+10] D. C. Cireşan, U. Meier, L. M. Gambardella, and J. Schmidhuber. “Deep, big,
simple neural nets for handwritten digit recognition”. In: Neural Computation
22.12 (2010), pp. 3207–3220. doi: 10.1162/neco_a_00052.

[CKS09] S. W. Chung, B. K. Kim, and W. J. Song. “Detecting and eliminating chro-
matic aberration in digital images”. In: IEEE Int. Conf. Image Processing. 2009,
pp. 3905–3908. doi: 10.1109/icip.2009.5413971.

[CL09] S. Cho and S. Lee. “Fast motion deblurring”. In: ACM Trans. Graphics 28.5
(2009), p. 145. doi: 10.1145/1618452.1618491.

[CWL11] S. Cho, J. Wang, and S. Lee. “Handling Outliers in Non-blind Image Deconvo-
lution”. In: IEEE Int. Conf. Computer Vision. 2011. doi: 10.1109/iccv.2011.
6126280.

[Dab+07] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. “Image denoising by sparse
3-D transform-domain collaborative filtering”. In: IEEE Trans. Image Processing
16.8 (2007), pp. 2080–2095. doi: 10.1109/tip.2007.901238.

[Dab+08] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. “Image restoration by sparse
3D transform-domain collaborative filtering”. In: Proc. SPIE Image Processing:
Algorithms and Systems VI. Vol. 6812. 2008, p. 681207. doi: 10.1117/12.
766355.

[Den+09] J. Deng et al. “ImageNet: A large-scale hierarchical image database”. In: IEEE
Conf. Computer Vision and Pattern Recognition. 2009. doi: 10.1109/cvpr.
2009.5206848.

[DeR+03] D. De Ridder et al. “Nonlinear image processing using artificial neural networks”.
In: Advances Imaging and Electron Physics 126 (2003), pp. 352–450.

[DHS11] J. Duchi, E. Hazan, and Y. Singer. “Adaptive subgradient methods for online
learning and stochastic optimization”. In: Journal Machine Learning Research
12 (2011), pp. 2121–2159.

[DKE12] A. Danielyan, V. Katkovnik, and K. Egiazarian. “BM3D frames and variational
image deblurring”. In: IEEE Trans. Image Processing 21.4 (2012), pp. 1715–
1728. doi: 10.1109/tip.2011.2176954.

[EA06] M. Elad and M. Aharon. “Image denoising via sparse and redundant represen-
tations over learned dictionaries”. In: IEEE Trans. on Image Processing 15.12
(2006), pp. 3736–3745. doi: 10.1109/tip.2006.881969.

[ECB10] D. Erhan, A. Courville, and Y. Bengio. Understanding Representations Learned
in Deep Architectures. Tech. rep. 1355. Université de Montréal/DIRO, 2010.

116

http://dx.doi.org/10.1109/ijcnn.1991.170774
http://dx.doi.org/10.1162/neco_a_00052
http://dx.doi.org/10.1109/icip.2009.5413971
http://dx.doi.org/10.1145/1618452.1618491
http://dx.doi.org/10.1109/iccv.2011.6126280
http://dx.doi.org/10.1109/iccv.2011.6126280
http://dx.doi.org/10.1109/tip.2007.901238
http://dx.doi.org/10.1117/12.766355
http://dx.doi.org/10.1117/12.766355
http://dx.doi.org/10.1109/cvpr.2009.5206848
http://dx.doi.org/10.1109/cvpr.2009.5206848
http://dx.doi.org/10.1109/tip.2011.2176954
http://dx.doi.org/10.1109/tip.2006.881969

Bibliography

[ERH02] M. Egmont-Petersen, D. de Ridder, and H. Handels. “Image processing with
neural networks—a review”. In: Pattern recognition 35.10 (2002), pp. 2279–
2301. doi: 10.1016/S0031-3203(01)00178-9.

[FEM06] S. Farsiu,M. Elad, and P.Milanfar. “Multiframe demosaicing and super-resolution
of color images”. In: IEEE Trans. Image Processing 15.1 (2006), pp. 141–159.
doi: 10.1109/tip.2005.860336.

[Fer+06] R. Fergus et al. “Removing camera shake from a single photograph”. In: ACM
Trans. Graphics 25.3 (2006), pp. 787–794. doi: 10.1145/1141911.1141956.

[Gif08] S. Gifford. “Astronomical Coma Image Restoration Through The Use of Local-
ized Deconvolution”. In: Soc. Astronomical Sciences Annu. Symp. Vol. 27. 2008,
p. 141.

[GMP08] J. A. Guerrero-Colón, L. Mancera, and J. Portilla. “Image restoration using space-
variant Gaussian scale mixtures in overcomplete pyramids”. In: IEEE Trans. Im-
age Processing 17.1 (2008), pp. 27–41. doi: 10.1109/tip.2007.911473.

[Gun+05] B. K. Gunturk et al. “Demosaicking: color filter array interpolation”. In: IEEE
Signal Processing Mag. 22.1 (2005), pp. 44–54. doi: 10.1109/MSP.2005.
1407714.

[Gup+10] A. Gupta et al. “Single Image Deblurring Using Motion Density Functions”. In:
IEEE Europ. Conf. Computer Vision. 2010.

[GW02] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Prentice Hall, 2002.
isbn: 0-201-18075-8.

[Hei+13] F. Heide et al. “High-quality computational imaging through simple lenses”. In:
ACM Trans. Graphics 32.5 (2013), p. 149. doi: 10.1145/2516971.2516974.

[HHS10] S. Harmeling, M. Hirsch, and B. Schölkopf. “Space-Variant Single-Image Blind
Deconvolution for Removing Camera Shake.” In: Advances Neural Information
Processing Systems. 2010, pp. 829–837.

[HHY10] Z. Hu, J.-B. Huang, and M.-H. Yang. “Single image deblurring with adaptive
dictionary learning”. In: IEEE Int. Conf. Image Processing. 2010, pp. 1169–1172.
doi: 10.1109/icip.2010.5651892.

[Hir+10] M. Hirsch, S. Sra, B. Schölkopf, and S. Harmeling. “Efficient filter flow for space-
variant multiframe blind deconvolution.” In: IEEE Conf. Computer Vision and
Pattern Recognition. 2010, pp. 607–614. doi: 10.1109/cvpr.2010.5540158.

[Hir+11] M. Hirsch, C. J. Schuler, S. Harmeling, and B. Schölkopf. “Fast removal of non-
uniform camera shake”. In: IEEE Int. Conf. Computer Vision. 2011, pp. 463–470.
doi: 10.1109/iccv.2011.6126276.

[Hir12] M. Hirsch. “Blind Deconvolution in Scientific Imaging & Computational Photog-
raphy”. PhD thesis. Universität Tübingen, 2012.

[HY12] Z. Hu and M.-H. Yang. “Good Regions to Deblur”. In: Computer Vision – ECCV
2012. Lecture Notes in Computer Science. Springer, 2012, pp. 59–72. doi: 10.
1007/978-3-642-33715-4_5.

117

http://dx.doi.org/10.1016/S0031-3203(01)00178-9
http://dx.doi.org/10.1109/tip.2005.860336
http://dx.doi.org/10.1145/1141911.1141956
http://dx.doi.org/10.1109/tip.2007.911473
http://dx.doi.org/10.1109/MSP.2005.1407714
http://dx.doi.org/10.1109/MSP.2005.1407714
http://dx.doi.org/10.1145/2516971.2516974
http://dx.doi.org/10.1109/icip.2010.5651892
http://dx.doi.org/10.1109/cvpr.2010.5540158
http://dx.doi.org/10.1109/iccv.2011.6126276
http://dx.doi.org/10.1007/978-3-642-33715-4_5
http://dx.doi.org/10.1007/978-3-642-33715-4_5

Bibliography

[JNR12] J. Jancsary, S. Nowozin, andC. Rother. “Loss-Specific Training ofNon-Parametric
Image RestorationModels: A New State of the Art”. In: Computer Vision – ECCV
2012. Lecture Notes in Computer Science. Springer, 2012, pp. 112–125. doi:
10.1007/978-3-642-33786-4_9.

[Jos+10] N. Joshi, S. B. Kang, C. L. Zitnick, and R. Szeliski. “Image deblurring using
inertial measurement sensors”. In: ACM Trans. Graphics 29.4 (2010), p. 30. doi:
10.1145/1833351.1778767.

[JS08] V. Jain and H. S. Seung. “Natural image denoising with convolutional networks”.
In: Advances Neural Information Processing Systems (2008), pp. 769–776.

[JSK08] N. Joshi, R. Szeliski, and D. J. Kriegman. “PSF estimation using sharp edge
prediction”. In: IEEE Conf. Computer Vision and Pattern Recognition. 2008. doi:
10.1109/CVPR.2008.4587834.

[Kee+11] E. Kee, S. Paris, S. Chen, and J. Wang. “Modeling and Removing Spatially-
Varying Optical Blur”. In: IEEE Int. Conf. Computational Photography. 2011.
doi: 10.1109/iccphot.2011.5753120.

[KF09] D. Krishnan and R. Fergus. “Fast Image Deconvolution using Hyper-Laplacian
Priors”. In: Advances Neural Information Processing Systems. 2009, pp. 1033–
1041.

[KL05] V. Kaufmann and R. Ladstädter. “Elimination of color fringes in digital pho-
tographs caused by lateral chromatic aberration”. In: Proc. XXth Int. CIPA Symp.
Vol. 26. 2005, pp. 403–408.

[KN11] C. Khare and K. K. Nagwanshi. “Image Restoration in Neural Network Domain
using Back Propagation Network Approach”. In: Int. J. Computer Information
Systems 2.5 (2011), pp. 25–31.

[KTF11] D. Krishnan, T. Tay, and R. Fergus. “Blind deconvolution using a normalized
sparsity measure”. In: IEEE Conf. Computer Vision and Pattern Recognition.
2011. doi: 10.1109/cvpr.2011.5995521.

[Le+12] Q. Le et al. “Building high-level features using large scale unsupervised learning”.
In: Int. Conf. Machine Learning. 2012.

[LeC+98a] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied
to document recognition”. In: Proc. IEEE 86.11 (1998), pp. 2278–2324. doi:
10.1109/5.726791.

[LeC+98b] Y. LeCun, L. Bottou, G. Orr, and K. Müller. “Efficient BackProp”. In: Neural
Networks: Tricks of the Trade. Lecture Notes in Computer Science. Springer, 1998.
doi: 10.1007/3-540-49430-8_2.

[Lev+07] A. Levin, R. Fergus, F. Durand, and W. T. Freeman. “Image and depth from
a conventional camera with a coded aperture”. In: ACM Trans. Graphics 26.3
(2007), p. 70. doi: 10.1145/1276377.1276464.

118

http://dx.doi.org/10.1007/978-3-642-33786-4_9
http://dx.doi.org/10.1145/1833351.1778767
http://dx.doi.org/10.1109/CVPR.2008.4587834
http://dx.doi.org/10.1109/iccphot.2011.5753120
http://dx.doi.org/10.1109/cvpr.2011.5995521
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1007/3-540-49430-8_2
http://dx.doi.org/10.1145/1276377.1276464

Bibliography

[Lev+09] A. Levin, Y.Weiss, F. Durand, andW. T. Freeman. “Understanding and evaluating
blind deconvolution algorithms”. In: IEEE Conf. Computer Vision and Pattern
Recognition. 2009, pp. 1964–1971. doi: 10.1109/cvpr.2009.5206815.

[Lev+11] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. “Efficient marginal likeli-
hood optimization in blind deconvolution”. In: IEEE Conf. Computer Vision and
Pattern Recognition. 2011. doi: 10.1109/cvpr.2011.5995308.

[LGZ08] X. Lia, B. Gunturkb, and L. Zhangc. “Image demosaicing: A systematic survey”.
In: Proc. SPIE Conf. Visual Communications and Image Processing. 2008. doi:
10.1117/12.766768.

[Mar] E. Martinec. Noise, Dynamic Range and Bit Depth in Digital SLRs. Visited on
05/22/14. url: http://theory.uchicago.edu/~ejm/pix/20d/tests/
noise/.

[MF11] M. Mäkitalo and A. Foi. “Optimal inversion of the Anscombe transformation
in low-count Poisson image denoising”. In: IEEE Trans. Image Processing 20.1
(2011), pp. 99–109. doi: 10.1109/tip.2010.2056693.

[MP43] W. S. McCulloch and W. Pitts. “A logical calculus of the ideas immanent in
nervous activity”. In: Bulletin Mathematical Biophysics 5.4 (1943), pp. 115–133.
doi: 10.1007/bf02478259.

[Mur12] K. P. Murphy. Machine Learning: a Probabilistic Perspective. MIT Press, 2012.
isbn: 978-0262018029.

[MW07] J. Mallon and P. F. Whelan. “Calibration and removal of lateral chromatic aber-
ration in images”. In: Pattern Recognition Lett. 28.1 (2007), pp. 125–135. doi:
10.1016/j.patrec.2006.06.013.

[OR90] S. Osher and L. I. Rudin. “Feature-Oriented Image Enhancement Using Shock
Filters”. In: SIAM J. Numerical Analysis 27.4 (1990), pp. 919–940. doi: 10.1137/
0727053.

[Pal+07] D. Paliy et al. “Spatially adaptive color filter array interpolation for noiseless and
noisy data”. In: Int. J. Imaging Systems and Technology 17.3 (2007), pp. 105–122.
doi: 10.1002/ima.20109.

[Por+03] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli. “Image denoising
using scale mixtures of Gaussians in the wavelet domain”. In: IEEE Trans. Image
Processing 12.11 (2003), pp. 1338–1351. doi: 10.1109/tip.2003.818640.

[PP12] K. B. Petersen and M. S. Pedersen. The matrix cookbook. 2012.
[Ram+02] R. Ramanath, W. E. Snyder, G. L. Bilbro, and W. A. Sander III. “Demosaicking

methods for Bayer color arrays”. In: J. Electronic Imaging 11.3 (2002), pp. 306–
315. doi: 10.1117/1.1484495.

[RB09] S. Roth and M. J. Black. “Fields of experts”. In: Int. J. Computer Vision 82.2
(2009), pp. 205–229. doi: 10.1007/s11263-008-0197-6.

119

http://dx.doi.org/10.1109/cvpr.2009.5206815
http://dx.doi.org/10.1109/cvpr.2011.5995308
http://dx.doi.org/10.1117/12.766768
http://theory.uchicago.edu/~ejm/pix/20d/tests/noise/
http://theory.uchicago.edu/~ejm/pix/20d/tests/noise/
http://dx.doi.org/10.1109/tip.2010.2056693
http://dx.doi.org/10.1007/bf02478259
http://dx.doi.org/10.1016/j.patrec.2006.06.013
http://dx.doi.org/10.1137/0727053
http://dx.doi.org/10.1137/0727053
http://dx.doi.org/10.1002/ima.20109
http://dx.doi.org/10.1109/tip.2003.818640
http://dx.doi.org/10.1117/1.1484495
http://dx.doi.org/10.1007/s11263-008-0197-6

Bibliography

[RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning representations
by back-propagating errors”. In: Nature 323.6088 (1986), pp. 533–536. doi: 10.
1038/323533a0.

[Rob54] E. A. Robinson. “Predictive decomposition of time series with applications to
seismic exploration”. PhD thesis. Massachusetts Institute of Technology, 1954.

[RW06] C. E. Rasmussen andC.K. I.Williams.Gaussian Processes forMachine Learning.
2006. isbn: 978-0262182539.

[SA94] S. Shah and J. K. Aggarwal. “A simple calibration procedure for fish-eye (high
distortion) lens camera”. In: Proc. IEEE Conf. Robotics and Automation. 1994,
pp. 3422–3427. doi: 10.1109/robot.1994.351044.

[SA96] E. P. Simoncelli and E. H. Adelson. “Noise removal via Bayesian wavelet coring”.
In: Proc. IEEE Int. Conf. Image Processing. Vol. 1. 1996, pp. 379–382. doi:
10.1109/icip.1996.559512.

[Sch+11] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Schölkopf. “Non-stationary cor-
rection of optical aberrations”. In: IEEE Int. Conf. Computer Vision. 2011. doi:
10.1109/iccv.2011.6126301.

[Sch+12] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Schölkopf. “Blind Correction
of Optical Aberrations”. In: Computer Vision – ECCV 2012. Lecture Notes in
Computer Science. Springer, 2012, pp. 187–200. doi: 10.1007/978-3-642-
33712-3_14.

[Sch+13a] U. Schmidt et al. “Discriminative Non-blind Deblurring”. In: IEEE Conf. Com-
puter Vision and Pattern Recognition. 2013, pp. 604–611. doi: 10.1109/cvpr.
2013.84.

[Sch+13b] C. J. Schuler, H. C. Burger, S. Harmeling, andB. Schölkopf. “AMachine Learning
Approach for Non-blind Image Deconvolution”. In: IEEE Conf. Computer Vision
and Pattern Recognition. 2013, pp. 1067–1074. doi: 10.1109/cvpr.2013.142.

[Sch+14] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Schölkopf. “Learning to Deblur”.
In: ArXiv e-prints (2014). arXiv: 1406.7444 [cs.CV].

[Sch14] J. Schmidhuber. “Deep Learning in Neural Networks: An Overview”. In: ArXiv
e-prints (2014). arXiv: 1404.7828.

[SF94] R. J. Steriti and M. A. Fiddy. “Blind deconvolution of images by use of neural
networks”. In: Optics letters 19.8 (1994), pp. 575–577. doi: 10.1364/ol.19.
000575.

[SJA08] Q. Shan, J. Jia, and A. Agarwala. “High-quality motion deblurring from a single
image”. In: ACM Trans. Graphics 27.3 (2008), p. 73. doi: 10.1145/1360612.
1360672.

[SL11] P. Sermanet and Y. LeCun. “Traffic sign recognition with multi-scale convolu-
tional networks”. In: IEEE Int. Joint Conf. Neural Networks. 2011, pp. 2809–2813.
doi: 10.1109/ijcnn.2011.6033589.

120

http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1109/robot.1994.351044
http://dx.doi.org/10.1109/icip.1996.559512
http://dx.doi.org/10.1109/iccv.2011.6126301
http://dx.doi.org/10.1007/978-3-642-33712-3_14
http://dx.doi.org/10.1007/978-3-642-33712-3_14
http://dx.doi.org/10.1109/cvpr.2013.84
http://dx.doi.org/10.1109/cvpr.2013.84
http://dx.doi.org/10.1109/cvpr.2013.142
http://arxiv.org/abs/1406.7444
http://arxiv.org/abs/1404.7828
http://dx.doi.org/10.1364/ol.19.000575
http://dx.doi.org/10.1364/ol.19.000575
http://dx.doi.org/10.1145/1360612.1360672
http://dx.doi.org/10.1145/1360612.1360672
http://dx.doi.org/10.1109/ijcnn.2011.6033589

Bibliography

[SSR11] U. Schmidt, K. Schelten, and S. Roth. “Bayesian deblurring with integrated noise
estimation”. In: IEEE Conf. Computer Vision and Pattern Recognition. 2011,
pp. 2625–2632. doi: 10.1109/cvpr.2011.5995653.

[ST09] F. Soulez and E. Thiébaut. “Joint deconvolution and demosaicing”. In: IEEE
Int. Conf. Image Processing. 2009, pp. 145–148. doi: 10.1109/ICIP.2009.
5414151.

[Ste02] G. Stein. “Lens distortion calibration using point correspondences”. In: Proc.
IEEE Conf. Computer Vision and Pattern Recognition. 2002, pp. 602–608. doi:
10.1109/cvpr.1997.609387.

[Sun+13] L. Sun, S. Cho, J. Wang, and J. Hays. “Edge-based blur kernel estimation using
patch priors”. In: IEEE Int. Conf. Computational Photography. 2013. doi: 10.
1109/iccphot.2013.6528301.

[TOM96] J. E. Tansley, M. J. Oldfield, and D. J. MacKay. “Neural network image deconvo-
lution”. In: Maximum Entropy and Bayesian Methods. Fundamental Theories of
Physics. Springer, 1996, pp. 319–325. doi: 10.1007/978-94-015-8729-7_25.

[Vin+10] P. Vincent et al. “Stacked denoising autoencoders: Learning useful representations
in a deep network with a local denoising criterion”. In: J. Machine Learning
Research 11 (2010), pp. 3371–3408.

[Wal90] M. M. Waldrop. “Hubble: The Case of the Single-Point Failure: The technical
glitch in Hubble’s mirror has been found; what remains to be identified are the
managerial problems that led to it”. In: Science 249.4970 (1990), pp. 735–736.
doi: 10.1126/science.249.4970.735.

[Wan+13] C. Wang et al. “Nonedge-specific adaptive scheme for highly robust blind motion
deblurring of natural images”. In: IEEE Trans. Image Processing 22.3 (2013),
pp. 884–897. doi: 10.1109/tip.2012.2219548.

[Wer74] P. Werbos. “Beyond regression: New tools for prediction and analysis in the be-
havioral sciences”. PhD thesis. Harvard University, 1974.

[Why+10] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce. “Non-uniform Deblurring for
Shaken Images”. In: IEEE Conf. Computer Vision and Pattern Recognition. 2010,
pp. 491–498. doi: 10.1109/cvpr.2010.5540175.

[WM14] Y. Wang and J. Morel. “Can a single image denoising neural network handle
all levels of Gaussian noise?” In: IEEE Signal Processing Letters 21.9 (2014),
pp. 1150–1153. doi: 10.1109/LSP.2014.2314613.

[WZ13] D. Wipf and H. Zhang. “Revisiting Bayesian Blind Deconvolution”. In: ArXiv
e-prints (2013). arXiv: 1305.2362 [cs.CV].

[XJ10] L. Xu and J. Jia. “Two-Phase Kernel Estimation for Robust Motion Deblurring”.
In: Computer Vision – ECCV 2010. Lecture Notes in Computer Science. Springer,
2010, pp. 157–170. doi: 10.1007/978-3-642-15549-9_12.

121

http://dx.doi.org/10.1109/cvpr.2011.5995653
http://dx.doi.org/10.1109/ICIP.2009.5414151
http://dx.doi.org/10.1109/ICIP.2009.5414151
http://dx.doi.org/10.1109/cvpr.1997.609387
http://dx.doi.org/10.1109/iccphot.2013.6528301
http://dx.doi.org/10.1109/iccphot.2013.6528301
http://dx.doi.org/10.1007/978-94-015-8729-7_25
http://dx.doi.org/10.1126/science.249.4970.735
http://dx.doi.org/10.1109/tip.2012.2219548
http://dx.doi.org/10.1109/cvpr.2010.5540175
http://dx.doi.org/10.1109/LSP.2014.2314613
http://arxiv.org/abs/1305.2362
http://dx.doi.org/10.1007/978-3-642-15549-9_12

Bibliography

[XXC12] J. Xie, L. Xu, and E. Chen. “Image Denoising and Inpainting with Deep Neural
Networks”. In: Advances Neural Information Processing Systems (2012), pp. 350–
358.

[XZJ13] L. Xu, S. Zheng, and J. Jia. “Unnatural l0 sparse representation for natural image
deblurring”. In: IEEE Conf. Computer Vision and Pattern Recognition. 2013,
pp. 1107–1114. doi: 10.1109/cvpr.2013.147.

[Zei+10] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. “Deconvolutional net-
works”. In: IEEEConf. Computer Vision and Pattern Recognition. 2010, pp. 2528–
2535. doi: 10.1109/cvpr.2010.5539957.

[Zei12] M. D. Zeiler. “ADADELTA: An Adaptive Learning Rate Method”. In: ArXiv
e-prints (2012). arXiv: 1212.5701 [cs.LG].

[Zho+13] L. Zhong et al. “Handling Noise in Single Image Deblurring Using Directional
Filters”. In: IEEE Conf. Computer Vision and Pattern Recognition. 2013, pp. 612–
619. doi: 10.1109/cvpr.2013.85.

[ZTF11] M. D. Zeiler, G. W. Taylor, and R. Fergus. “Adaptive deconvolutional networks
for mid and high level feature learning”. In: IEEE Int. Conf. Computer Vision.
2011, pp. 2018–2025. doi: 10.1109/iccv.2011.6126474.

[ZW11] D. Zoran and Y. Weiss. “From learning models of natural image patches to whole
image restoration”. In: IEEE Int. Conf. Computer Vision. 2011, pp. 479–486. doi:
10.1109/iccv.2011.6126278.

122

http://dx.doi.org/10.1109/cvpr.2013.147
http://dx.doi.org/10.1109/cvpr.2010.5539957
http://arxiv.org/abs/1212.5701
http://dx.doi.org/10.1109/cvpr.2013.85
http://dx.doi.org/10.1109/iccv.2011.6126474
http://dx.doi.org/10.1109/iccv.2011.6126278

Contributions

Except otherwise explicitly stated, all mathematical derivations, algorithmic implementations
and experimental evaluations were performed by the author of this thesis. Experimental evalu-
ations of cited methods have either been produced by the authors of the respective method or
with implementations of the method provided by the authors.

The images shown in Chapter 1 in Fig. 1.1 were created by Michael Hirsch and Stefan
Harmeling. Michael Hirsch also provided his implementations of [CL09; XZJ13] that were
used in generating the results shown in Fig. 1.7 and he helped with the experiments for Fig. 1.3.
The content of Chapter 2 is based on a manuscript created in cooperation with Michael

Hirsch, Stefan Harmeling and Bernhard Schölkopf [Sch+11], who also provided the idea for
this chapter. Michael Hirsch assisted with the experimental setup used in the measurement
of the spatially-varying PSF and helped to build the 120mm lens and take the photos shown
as examples. Furthermore, he provided a Matlab implementation of the EFF framework and
helped to derive Eq. (2.6).
The content of Chapter 3 is based on a manuscript created in cooperation with Michael

Hirsch, Stefan Harmeling and Bernhard Schölkopf [Sch+12]. Michael Hirsch also helped with
the Python implementation of the EFF framework and the derivations of Eqs. (3.8) and (3.10).
The content of Chapter 4 is based on a manuscript created in cooperation with Christopher

Burger, Stefan Harmeling and Bernhard Schölkopf [Sch+13b]. Christopher Burger also assisted
with the creation of Figs. 4.10 to 4.13 and provided valuable advice on the training of neural
networks.
The content of Chapter 5 is based on a manuscript created in cooperation with Michael

Hirsch, Stefan Harmeling and Bernhard Schölkopf [Sch+14]. Philipp Hennig assisted with the
GP-based sampling of the blur trajectory. Michael Hirsch created Fig. 5.8 and Fig. 5.12 and
helped with the derivation of Eq. (5.8).
Raffi Enficiaud contributed to the development of the neural network toolbox in Appendix B

by improving the CMake build scripts and ensuring compatibility with OS X and Windows-
based systems.

123

Acknowledgements

First and foremost, I would like to thank Prof. Dr. Schölkopf for enabling me to do this work and
supporting me in every way. I would also like to thank Dr. Stefan Harmeling for his supervision
and his constant help with all aspects of my research. I am indebted to Prof. Dr. Hendrik Lensch
for agreeing to become my “Doktorvater” and supporting this dissertation.
Special thanks go to Dr. Christopher Burger and Dr. Michael Hirsch for incredibly valuable

discussions that defined the direction of my research. Likewise, great thanks to my co-authors
Prof. Dr. Schölkopf, Dr. Stefan Harmeling, Dr. Christopher Burger and Dr. Michael Hirsch
for working together with me and for letting me reuse material from joint publications for this
thesis. Thanks also to Martin Kiefel and Dr. Philipp Hennig for working with me on topics
not directly related to this thesis, but contributing to my development as a scientist. Thanks to
everyone who helped proof-read this document, including the people above, and, additionally
Matthias Moeferdt and Michael Schober. I would also like to thank my office mates Alexander
Loktyushin and Rolf Köhler for interesting discussions and making my days in the office more
enjoyable.
It is also important to mention Prof. Dr. Kurt Busch here who supervised my diploma thesis

and helped to lay the foundations for my scientific career. Additionally, thanks go to everyone
at Google who contributed to further my software engineering skills and my knowledge about
machine learning.
My gratitude goes to everyone who worked in the background to support my thesis, especially

Sebastian Stark, Sabrina Rehbaum and Andrea Odermatt, who assisted me with all of my
numerous requests. Sebastian Stark never got tired of making yet another modification to our
computing resources, allowing me to carry out my countless experiments.
Finally, thanks to my family and my parents who have supported me in all of my decisions

throughout my life.

Thank you!

125

	Introduction
	Fundamentals
	Mathematical problem description
	Stationary convolutions
	Spatially-varying blur

	Non-blind deconvolution methods
	Wiener deconvolution
	Tikhonov regularization
	Recent deconvolution methods

	Blind deconvolution methods
	MAP approaches
	Marginalization approaches

	Neural networks
	Training
	Toy example

	Non-Blind Correction of Optical Aberrations
	Introduction
	Related work
	Aberrations as a non-stationary convolution
	Forward model including mosaicing
	Estimating the non-stationary convolution
	Recovering the corrected, full-color image
	Results
	Simulated images
	Real images

	Conclusion
	Limitations
	Future work

	Blind Correction of Optical Aberrations
	Introduction
	Related work
	An efficient filter flow basis for optical aberrations
	An orthonormal efficient filter flow basis
	Blind deconvolution with chromatic shock filtering
	Implementation and running times
	Results
	Self-built lens with a single lens element
	Canon 24mm f/1.4
	Kee et al.'s image
	Historical images

	Conclusion
	Limitations
	Future work

	Learning Non-Blind Deconvolution
	Introduction
	Related work
	Method
	Direct deconvolution
	Artifact removal by multilayer perceptrons

	Results
	Choice of parameter values
	Comparison to other methods
	Noise dependence
	Qualitative results on a real photograph

	Understanding
	Convolutional training
	Differences to patch-wise approach
	Understanding the learned filters

	Conclusion

	Learning Blind Deconvolution
	Introduction
	Related work
	Blind deconvolution as a layered network
	Architecture layout
	Iterations as stacked networks
	Training

	Implementation
	Experiments
	Image content specific training
	Noise specific training
	Spatially-varying blur
	Comparisons

	Discussion
	Learned filters
	Dependence on the size of the observed image
	Limitations

	Conclusion

	Conclusion and Outlook
	Mathematical Details
	Neural Network Toolbox
	Acronyms
	Nomenclature
	Bibliography
	Contributions
	Acknowledgments

