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Abstract 

Staphylococcus aureus (S. aureus) is an important human pathogen that 

causes severe diseases ranging from local to systemic infections. Community-

associated methicillin-resistant S. aureus (CA-MRSA) strains are highly 

resistant to antibiotic treatment and are the most dangerous and pathogenic 

strains due to their secretion of a variety of virulence factors, enabling efficient 

evasion of the host immune response. Phenol-soluble modulin (PSM) peptides 

comprise one group of secreted virulence factors that contribute to the 

pathogenicity of CA-MRSA. These peptides modulate various types of immune 

cells, including dendritic cells (DCs), which are a class of professional antigen-

presenting cells that link innate and adaptive immunity. Our group previously 

showed that PSMs in combination with a TLR2 ligand induce tolerogenic DCs, 

as identified by diminished clathrin-mediated endocytosis and a modulated 

cytokine secretion profile characterized by anti-inflammatory IL-10, ultimately 

leading to impaired T cell differentiation. PSMs induce regulatory T cell (Treg) 

priming by DCs and, in contrast, inhibit T helper 1 cell development. However, 

the underlying molecular mechanisms remained elusive. 

Within this work, we addressed the following questions: (1) Which signaling 

pathways are modulated by PSMs leading to the increased production of IL-10 

by DCs upon TLR2 ligand treatment? (2) Are the activated signaling pathways 

involved in the priming of Tregs by PSM-treated DCs? (3) Are PSMs actively 

internalized by DCs or are they acting by binding to the formyl-peptide receptor 

2 (FPR2)? (4) Do PSMs in general affect DC functions, including maturation, 

cytokine production and T cell priming, upon treatment with various TLR 

ligands?  

(1) In this study, we demonstrated that mouse bone marrow-derived DCs 

stimulated with PSMα3 and S. aureus cell lysate (a TLR2 ligand) had increased 

levels of phosphorylated ERK, p38, CREB and NF-κB. However, only the 

inhibition of phosphorylated p38 and downstream MSK1 prevented the 

secretion of IL-10 in a concentration-dependent manner. 
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(2) In DCs, the PSM-modulated p38-CREB pathway was also responsible for 

the altered differentiation of T cells. Inhibition of this axis also prevented the 

increased priming of Tregs by PSM- and TLR2-treated DCs.  

(3) PSMα3 peptides modulated the p38-CREB signaling pathway independent 

of their receptor FPR2. PSMα peptides penetrate DCs independent of 

macropinocytosis or receptor-mediated endocytosis, most likely through 

transient pore formation in the DC membrane. Furthermore, we observed that 

PSMα peptides co-localized with p38 as well as phosphorylated p38 in the 

cytosol of DCs. 

(4) PSM peptides induced a tolerogenic DC phenotype independent of the 

activated TLR receptor. The tolerogenic phenotyp was characterized by 

reduced production of the pro-inflammatory cytokines IL-12, TNF and IL-6 but 

increased IL-10. Moreover, the tolerogenic DCs displayed increased co-

stimulatory molecule expression and an enhanced activation of Tregs by 

stimulation of extracellular as well as intracellular TLRs. 

The new scientific knowledge gained in this thesis describing the ability of 

secreted S. aureus PSMs to induce tolerogenic DCs by direct modulation of the 

p38 MAPK contributes to basic insights into the immune evasion strategies of S. 

aureus and to the development of possible therapeutic strategies against CA-

MRSA infections in the future.  
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Zusammenfassung 

Staphylococcus aureus (S. aureus), ist ein bedeutender humaner 

Krankheitserreger, der dafür bekannt ist lokale als auch systemische 

Infektionen zu verursachen. Die Methicillin-resistenten Staphylococcus aureus 

(MRSA) Stämme, welche in der Lage sind auch nicht immunsupprimierte 

Menschen zu infizieren, tragen daher den Namen „community-associated“ (CA-

MRSA). Sie sind die gefährlichsten Stämme, da sie eine Vielzahl an 

Virulenzfaktoren produzieren, die zum einen Antibiotikaresistenz vermitteln aber 

auch Immunzellen beeinträchtigen. Die phenollöslichen Modulin (PSM) Peptide 

sind eine Gruppe von Virulenzfaktoren, die zur Pathogenität der CA-MRSA 

Stämme beitragen. PSMs beeinträchtigen die Funktion verschiedener 

Immunzellen, beispielsweise die der Neutrophilen und der Dendritischen Zellen 

(DCs). DCs sind professionelle Antigen präsentierende Zellen, welche die 

angeborene mit der adaptiven Immunität verknüpfen. Unsere Gruppe konnte 

bereits zeigen, dass DCs nach Behandlung mit PSMs und TLR2 Liganden 

einen tolerogenen Phänotyp besitzen. Dieser ist durch eine verringerte Clathrin-

vermittelte Endozytose und eine veränderte Zytokin-Sekretion, charakterisiert 

durch den Anstieg des anti-inflammatorischen Zytokins IL-10, gekennzeichnet. 

Diese DCs aktivieren vermehrt regulatorische T-Zellen wohingegen die 

Differenzierung zu T-Helfer 1-Zellen inhibiert ist. Die zu Grunde liegenden 

molekularen Mechanismen waren bisher unbekannt.          

Im Rahmen dieser Arbeit wurden folgende Fragestellungen untersucht: (1) 

Welche Signalwege werden von PSM Peptiden reguliert, die zu einem Anstieg 

der IL-10 Produktion in TLR2 stimulierten DCs führen? (2) Sind die durch PSM 

Peptide aktivierten Signalwege in DCs verantwortlich für die Aktivierung 

regulatorischer T-Zellen? (3) Werden PSMs von DCs aktiv aufgenommen oder 

wirken diese über die Bindung an ihren Formylpeptid Rezeptor 2 (FPR2)? (4) 

Beeinflussen PSMs im Allgemeinen die Funktionen von DCs nach Behandlung 

mit verschiedenen TLR Ligaden, wie zum Beispiel die Maturation, 

Zytokinproduktion  und T-Zellentwicklung?  
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(1) In dieser Arbeit konnte gezeigt werden, dass Knochenmark generierte DCs, 

welche mit PSMα3 und dem TLR2 Ligand S. aureus Zelllysat stimuliert wurden, 

eine erhöhte Phosphorylierung der Signalmoleküle ERK, p38, CREB und NF-κB 

aufweisen. Jedoch beeinträchtigte nur die Inhibition der p38 Phosphorylierung 

und der nachgeschalteten Kinase MSK1 konzentrationsabhängig die IL-10 

Ausschüttung der DCs.  

(2) Der durch PSMs modulierte p38-CREB Signalweg in TLR2 stimulierten DCs 

ist für eine veränderte T-Zelldifferenzierung verantwortlich. Die Hemmung 

dieses Signalweges unterband zum Großteil die Differenzierung zu 

regulatorischen T-Zellen. 

(3) PSMα3 Peptide sind in der Lage unabhängig von der Bindung an ihren 

Rezeptor FPR2 den p38-CREB Signalweg zu modulieren. PSMα Peptide 

dringen unabhängig von Makropinozytose oder rezeptorvermittelter Endozytose 

in DCs ein, höchstwahrscheinlich durch vorübergehende Porenbildung in die 

Zellmembran der DCs. Des Weiteren konnten wir beobachten, dass PSMα 

Peptide im Zytosol der DCs mit p38 ebenso wie auch phosphoryliertem p38 

kolokalisieren.      

(4) Unabhängig davon, ob ein intrazellulärer oder extrazellulärer TLR Rezeptor 

aktiviert wird, induzieren PSMs einen tolerogenen DC Phänotyp, der einerseits 

durch eine verringerte Produktion der pro-inflammatorischen Zytokine IL-12, 

TNF und IL-6 und andererseits durch einen Anstieg der IL-10 Sekretion 

charakterisiert ist. Außerdem weisen diese tolerogenen DCs eine gesteigerte 

Expression kostimulatorischer Moleküle auf und induzieren verstärkt die 

Differenzierung zu regulatorischen T-Zellen.         

Die neuen wissenschaftlichen Erkenntnisse, die wir im Rahmen dieser 

Dissertation über PSMs und deren direkte Modulierung der MAPK p38 in DCs 

erlangt haben, tragen zum grundlegenden Verständnis der 

Immunevasionsstrategien von S. aureus bei und in der Zukunft zur Entwicklung 

neuer Therapieansätze gegen CA-MRSA Infektionen.   
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1 General introduction 

 Staphylococcus aureus 1.1

The gram-positive spherical bacterium Staphylococcus aureus (S. aureus) 

belongs to the genus staphylococci, which consists of approximately 50 species 

and subspecies (Mathema et al., 2009). S. aureus is a commensal bacterium as 

well as a major human pathogen (Coates et al., 2014). Approximately 20% of 

the human population is continuously colonized, mainly in the nares but also on 

the skin and in the gastrointestinal tract, while 30% are colonized intermittently 

(van Belkum et al., 2009; Wertheim et al., 2005). However, S. aureus as a 

pathogen is a serious public health threat and causes severe diseases, ranging 

from skin and soft tissue infections (SSTIs) to life-threatening bloodstream 

infections (e.g., endocarditis or septic shock syndrome) (Fraunholz and Sinha, 

2012). A hallmark of S. aureus is its frequent recurrence in approximately 8-

33% of SSTIs or systemic infections (Kallen et al., 2010). The wide range of 

diseases associated with S. aureus is due to the variety and abundance of its 

virulence factors as well as its high-level antibiotic resistance (Morikawa et al., 

2012). Resistance began with the incidence of penicillin-resistant S. aureus 

strains after the discovery of penicillin as a useful antibiotic for the treatment of 

bacterial infections. Later, methicillin was discovered; however, shortly 

thereafter, methicillin-resistant Staphylococcus aureus (MRSA) strains arose, 

representing a therapeutic challenge. Initially, MRSA infections occurred solely 

in hospital settings, especially in patients with permanent catheters, low-birth-

weight infants, the elderly and in immunosuppressed individuals (David and 

Daum, 2010). However, in the mid-1990s, a shift to community-associated 

methicillin-resistant Staphylococcus aureus (CA-MRSA) infections was 

observed in the general population without these risk factors (David and Daum, 

2010). CA-MRSA strains are found all over the world, but the most prominent 

isolate, USA300, is responsible for more than 97% of MRSA infections in the 

United States. USA300 is also present in Europe, but ST80 is the most 

prevalent strain in this region (Mediavilla et al., 2012; Moran et al., 2006). CA-
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MRSA strains have epidemic characteristics and are able to cause serious 

infections, especially in healthy individuals (R. Wang et al., 2007). The severity 

and pathogenicity of these strains is due to increased virulence that has been 

associated with a large repertoire of immune evasion factors and cytolytic 

toxins, such as Panton-Valentine Leukocidin (PVL), α-Toxin and phenol-soluble 

modulin (PSM) peptides, which permit S. aureus to survive within the host or to 

evade the immune system (Diep et al., 2006; Foster, 2005; R. Wang et al., 

2007). PVL is a pore-forming toxin consisting of the subunits LukS-PV and 

LukF-PV and targets leukocytes (Prévost et al., 1995). Initially, the PVL 

virulence factor was thought to be the driving force for CA-MRSA epidemics. 

However, PVL-negative strains appeared to be as virulent as PVL-positive 

strains, and further studies showed that the virulence differences are dependent 

on the experimental model (Diep et al., 2008). α-Toxin is a small β-barrel pore-

forming toxin that causes lysis of different cell types, including erythrocytes, 

monocytes, neutrophils, T cells, keratinocytes and endothelial cells, depending 

on the concentration of the toxin (Bhakdi and Tranum-Jensen, 1991). The 

cellular receptor of α-Toxin is a disintegrin and metallopeptidase referred to as 

ADAM10. Binding to this receptor leads to the disruption of host cell membrane 

junctions (Wilke and Bubeck Wardenburg, 2010). In an S. aureus pneumonia 

mouse model, anti-α-Toxin antibodies protected mice from disease 

(Wardenburg and Schneewind, 2008).   

 Phenol-soluble modulin peptides 1.2

PSMs, which are secreted by all pathogenic staphylococci (Rautenberg et al., 

2011; R. Wang et al., 2007), are surfactant-like peptides that were originally 

discovered in Staphylococcus epidermidis (Mehlin et al., 1999). They consist of 

two subgroups, the α-type and the longer β-type (R. Wang et al., 2007). 



General introduction  

12 

 

Figure 1: Amino acid sequences of phenol-soluble modulin peptides (R. Wang et al., 

2007) 

PSMs are α-helical amphipathic toxins that are 20 to 44 amino acids in length. 

PSMs carry an N-formyl methionine at their N-terminus, as they are secreted 

without a signal peptide. S. aureus secretes 4 α PSMs, 2 β PSMs and δ-toxin, 

which are limited in sequence similarity (Figure 1). α PSMs and δ-toxin are 

considered the most toxic PSMs (L. D. Wang and Wagers, 2011). PSM-mec, is 

similar to the α-type PSMs; however in contrast to all other PSMs, PSM-mec is 

located on the mobile genetic element SCCmec, not the chromosome (Qin et 

al., 2016). In S. aureus, more than 50% of the protein mass secreted into the 

media is PSMs. PSMs are exported by the ATP-binding cassette transporter 

Pmt, which is essential for bacterial growth and plays a key role in virulence 

phenotypes (Chatterjee et al., 2013). The PSM genes are organized into 

subgroup specific clusters in the core genome. In CA-MRSA, PSM expression 

is elevated facilitating bacterial spread and increased severity of infection 

compared to less virulent hospital-associated MRSA strains (R. Wang et al., 

2007). PSMs are regulated by the quorum-sensing accessory gene regulator 

(Agr) system, especially by the response regulator protein AgrA. Agr ensures 

that PSMs are only expressed when a high cell density is present (Queck et al., 

2008). PSMs have multiple roles in S. aureus. Originally PSMs were identified 

as having a role in the colonization of epithelial surfaces (Periasamy et al., 

2012). According to the National Institutes of Health in the United States, 80% 

of microbial infections, including S. aureus infections, are directly connected 
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with biofilm formation (Römling and Balsalobre, 2012). On one hand, PSMs 

disrupt cell-cell connections between bacterial molecules, leading to biofilm 

dispersal and dissemination to secondary infection sites (Otto, 2013). 

Conversely, PSMα1 and PSMα4 are the main drivers of biofilm formation in S. 

aureus and mediate resistance to biofilm matrix degrading enzymes (e.g., 

DNAses and proteases). PSMα1 and PSMα4 are able to form extracellular fibril 

structures, but they show less cytotoxicity in comparison to PSMα2, PSMα3 and 

δ-toxin (Marinelli et al., 2016; Schwartz et al., 2012). The cytolytic activity of 

PSMs is dependent on the hydrophobicity of the α-helix, while the hydrophobic 

residues are responsible for PSM aggregation and thus for their amyloid 

potential (Marinelli et al., 2016). The target receptor of PSMs is the formyl-

peptide receptor 2 (FPR2) expressed on human and mouse neutrophils, 

dendritic cells and microglial cells (Kretschmer et al., 2010; Migeotte et al., 

2006; Schreiner et al., 2013). Binding to the FPR2 receptor leads to a massive 

influx of human neutrophils into the infection site and the release of a specific 

cytokine repertoire (Kretschmer et al., 2010; R. Wang et al., 2007). 

Furthermore, PSMs can bind to the FPR1 receptor with lower affinity 

(Kretschmer et al., 2010). In addition, proteolytically processed products of 

PSMα1 and PSMα2 display antimicrobial activity against Streptococcus 

pyogenes, contributing to competition against colonizing pathogens (Joo et al., 

2011). Moreover, PSMs demonstrate receptor-independent lysis as determined 

by their capacity to lyse artificial phospholipid vesicles (Chatterjee et al., 2013).  

 Dendritic cells 1.3

Dendritic cells (DCs), discovered in 1973 by Ralph Steinman and Zanvil Cohn 

(Steinman and Cohn, 1973), are central coordinators of the immune system. 

This cell type links innate and adaptive immunity. In addition to monocytes, 

macrophages and B-lymphocytes, DCs are the most potent and efficient 

specialized antigen-presenting cells (APCs) that control the immune response 

by regulating the equilibrium between protective immunity to pathogens and 

self-tolerance (Volkmann et al., 1997). DCs acquire, process and present 

antigens to T cells and have the unique ability to prime naïve T cell immune 

responses. After antigen uptake via macropinocytosis, receptor-mediated 
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endocytosis or phagocytosis, DCs migrate from the peripheral tissues to 

lymphoid organs and phenotypically mature, which is characterized by the up-

regulation of major histocompatibility complexes (MHCs), co-stimulatory 

molecules and adhesins. In the lymphoid tissues, DCs present peptide-MHC 

complexes in combination with co-stimulatory molecules to antigen-specific 

lymphocytes and produce inflammatory cytokines to initiate immune responses 

against various pathogens. However, DCs also play a major role in inducing 

and maintaining immune tolerance against self-antigens (Banchereau et al., 

2000; Banchereau and Steinman, 1998). Mature DCs can induce tolerance by 

priming naïve T cells into regulatory T cells (Tregs), which are characterized by 

the secretion of the anti-inflammatory cytokine interleukin (IL)-10. The 

maturation of tolerogenic DCs is often caused by pathogens in a disease-

related background to prime Tregs instead of effector T cells (Maldonado and 

Andrian, 2010). Various pathogen-associated molecular patterns (PAMPs) are 

expressed by pathogens, and cells of the immune system sense these PAMPs 

using pattern recognition receptors (PRRs) (Saraiva and O'Garra, 2010). The 

most well-known PRRs are the Toll-like receptors (TLRs) (Merad et al., 2013). 

DCs are a heterogeneous cell population in regards to their phenotypes and 

functions and can therefore be classified into different subsets depending on 

their location and distinct marker expression. There are two main DC 

populations that arise from the same hematopoietic lineage: Steinman’s DCs, 

which have been renamed classical DCs and plasmacytoid DCs. These 

lineages differ in their morphology, phenotype and function (Colonna et al., 

2004; Shortman and Liu, 2002). Furthermore, there are differences in surface 

marker expression of the various DC subgroups in the mouse and in humans, 

differences in their location in lymphoid versus non-lymphoid organs and 

differences in function. In the mouse, classical DCs can be further divided into 

cluster of differentiation (CD)103+CD11b- and CD11b+ migratory DCs in the 

non-lymphoid tissues and resident DCs in the lymphoid tissues. For example, in 

the spleen and lymph nodes, CD11b+CD8α- and CD11b-CD8α+ DCs are distinct 

(Guilliams et al., 2010), and both subsets are able to sense pathogens. In the 

steady state, CD11b+CD8α- DCs are more efficient at presenting MHC class II 

peptide complexes to CD4+ T cells than CD11b-CD8α+ DCs, which have an 
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enhanced capacity to cross-present antigens on MHC class I molecules to 

CD8+ cytotoxic T cells (Dudziak et al., 2007; Haan et al., 2000). This is also the 

case in an inflammatory setting, where CD11b-CD8α+ DCs play a key role 

during influenza virus infection, and CD11b+CD8α- DCs play a key role during 

infection with the parasite Plasmodium (T. S. Kim and Braciale, 2009; Lundie et 

al., 2008). TLR expression differs between the DC subsets and depending on 

the species under study, 11-13 different TLRs have been identified. Various 

PAMPs can be detected by different TLRs (Figure 2).  

 

Figure 2: Toll-like receptors and their ligands (Murphy and Weaver, 2016) 

TLR2 recognizes lipopeptides together with TLR1 or TLR6 by forming a 

heterodimer. Lipopolysaccharides (LPS) are TLR4 ligands, single strain RNAs 

or imiquimod are recognized by TLR7 or TLR8, and unmethylated CpG DNA is 

a TLR9 ligand. Some TLRs are expressed on the cell surface to detect bacterial 

components, whereas others are expressed in intracellular endosomes and 

detect viral products. TLR stimulation leads to the activation of different 

transcription factors that initiate the transcription of type 1 interferons and pro-

inflammatory cytokines (Kawai and Akira, 2006). Furthermore, in DCs and 

macrophages, TLR2 signaling can result in the activation of nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-κB), the mitogen- and 
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stress-activated protein kinase (MAPK) p38 and extracellular signal-regulated 

kinase (ERK) 1 and 2. These factors are able to initiate the transcription of the 

anti-inflammatory cytokine IL-10 via cAMP response element binding protein 

(CREB) and activator protein 1 (AP-1) (Saraiva and O'Garra, 2010). 

 T cells     1.4

T cells are lymphocytes that mature in the thymus, and each T cell expresses a 

unique T cell receptor (TCR) on its cell surface. T cells play a key role in 

immunity against viral, bacterial and fungal infections but are also important for 

the control of malignant cells. Based on their glycoprotein expression type, T 

cells can be divided into CD4+ T helper (Th) cells or CD8+ cytotoxic T cells. 

Antigen-presenting cells, such as DCs, present pathogenic antigens to naïve T 

cells that become activated, differentiate into effector cells and migrate to the 

infection site to clear the pathogen. Naïve CD4+ T cells differentiate into effector 

Th1, Th2, Th17, Tregs (Figure 3) or follicular T helper cells depending on different 

cytokines (Bettelli et al., 2006; Mosmann and Coffman, 1989; Nakae et al., 

2007).  

 

Figure 3: Differentiated effector T cell subsets with their associated transcription factors 

and cytokine profiles (Zou and Restifo, 2010) 
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Each subset is characterized by the production of specific pro- or anti-

inflammatory cytokines that play critical roles in the differentiation of immune 

cells or directing effector responses. Naïve CD8+ T cells differentiate into 

cytotoxic T lymphocytes that proliferate in the presence of IL-2 to expand their 

numbers for effective target cell killing. Naïve T cells can differentiate into short-

lived effector cells or long-lived memory cells (Weaver et al., 2006). 

Tregs have several functions, including the maintenance of immunological 

tolerance in the periphery, down-regulation or suppression of other immune 

responses (e.g., against pathogens) or prevention of autoimmune diseases. 

Tregs are characterized by expression of the transcription factor forkhead box p3 

(Foxp3) and the interleukin-2 receptor CD25 (Sakaguchi et al., 1995) and are 

divided into natural Tregs derived from the thymus and induced Tregs that develop 

from Foxp3-CD4+ T cells in the periphery (Bluestone and Abbas, 2003). Tregs 

secrete the immunosuppressive cytokines IL-10 and transforming growth factor-

β (TGF-β) to prevent the production of inflammatory cytokines or the 

proliferation of effector T cells and to induce cell-cell mediated 

immunosuppression (McGuirk et al., 2002; Nakamura et al., 2001). It is 

important to consider that Tregs can be beneficial to the host by preventing 

infection-induced immunopathologies but can also benefit the pathogen through 

the suppression of protective Th1 responses, leading to evasion of the host 

immune response (Maloy et al., 2003; Suvas et al., 2004).     

 Dendritic cells and Staphylococcus aureus 1.5

DCs play an important role in host defense against various pathogens and are 

therefore required in the fight against S. aureus infections. However, depending 

on the experimental model, including host organism and S. aureus strain, 

various DC subsets are responsible for different immune reactions. Mice 

infected intravenously with S. aureus display a fast recruitment of functional 

DCs to the infection site. However, DC-depleted mice show a higher bacterial 

load in the lungs and kidneys, higher mortality, increased inflammation and 

inhibited IL-12 secretion, which can be recovered by the application of 

exogenous recombinant IL-12 (Queck et al., 2008; Schindler et al., 2012). 
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Additionally, DC-depleted mice infected intranasally with S. aureus USA300 

have an increased bacterial load in the lungs (Martin et al., 2011; Periasamy et 

al., 2012). Stimulation of human and mouse DCs and Langerhans cells with the 

S. aureus strain Cowan I results in increased production of the pro-inflammatory 

cytokine IL-12. Furthermore, epidermal DCs reduce their CCL7 production, 

which is partially responsible for the Th2-oriented immune response (Heufler et 

al., 1996; Mitsui et al., 2003; Römling and Balsalobre, 2012). Furthermore, 

some virulence factors of S. aureus initiate a Th1 immune reaction. In bone 

marrow-derived DCs (BM-DCs), the leukocidin LukF induces the secretion of 

tumor necrosis factor-alpha (TNF-α) and IL-12 (Inden et al., 2009; Otto, 2013). 

Monocyte-derived DCs stimulated with the TLR2 ligand peptidoglycan, a 

component of the S. aureus cell wall, demonstrate a pro-inflammatory immune 

response through the production of IL-12 and IL-23, thereby activating a 

Th1/Th17 response (Frodermann et al., 2011; Marinelli et al., 2016; Schwartz et 

al., 2012). Lipoteichoic acid and muramyl dipeptide stimulate TNF-α and IL-12 

production in mature human DCs (H. J. Kim et al., 2007; Marinelli et al., 2016). 

Hence, DCs play a unique and key role in the immune responses against S. 

aureus by inducing Th1 effector cells, likely through the production of the pro-

inflammatory cytokine IL-12.    

 Influence of phenol-soluble modulins on immune cells 1.6

PSMs manipulate various immune cell responses to S. aureus. The α-helical 

amphipathic structure enables their cell lytic capacity, likely through cell 

membrane disruption. PSMα3 attracts and activates human neutrophils at 

nanomolar concentrations by binding to FPR2, whereas, at micromolar 

concentrations, PSMs lyse neutrophils in a receptor-independent manner and 

induce innate immune cell killing. CA-MRSA circumvents neutrophil-mediated 

killing after phagocytosis, thereby evading the innate immune response through 

the up-regulation of virulence factor genes, genes encoding capsule synthesis 

components and oxidative stress. This capability is a central feature of the 

highly virulent CA-MRSA pathogenicity (Kretschmer et al., 2010; Voyich et al., 

2005; R. Wang et al., 2007). Confirming the in vitro studies that PSMs 

contribute to leukocyte killing, a mouse peritonitis model showed that α PSMs 
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are responsible for increased chemotaxis and the downstream killing of 

neutrophils and monocytes (R. Wang et al., 2007). In addition, PSMs are able to 

lyse human erythrocytes, which play an important role in infection progression. 

PSMα1-3 mediate direct lysis, whereas PSMβ peptides need to synergize with 

α PSMs to cause hemolysis (Cheung et al., 2012). Another immune cell type 

influenced by PSMs is osteoblasts. For this cell type, α PSMs act as intracellular 

toxins; they enter the osteoblasts and kill the cells, leading to extensive bone 

damage (Rasigade et al., 2013). Moreover, BM-DCs display an impaired 

cytokine secretion profile after treatment with PSMs. Combined stimulation of 

TLR2 is characterized by reduced production of the pro-inflammatory cytokines 

TNF, IL-6 and IL-12 but increased anti-inflammatory IL-10 secretion in vitro. In 

addition, clathrin-mediated endocytosis is impaired in these DCs, and their T 

cell priming properties towards Th1 are inhibited. In contrast, the higher 

production of IL-10 by PSM-treated DCs increases the priming of Tregs 

(Schreiner et al., 2013). 
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 Aims of the thesis 1.7

The major human pathogen S. aureus has become an increasing clinical 

challenge, especially due to the prevalence of multi-drug resistant strains. 

These highly pathogenic CA-MRSA strains cause severe diseases and produce 

a variety of virulence factors to efficiently subvert the host immune response. 

PSM peptides comprise one group of these factors that are likely responsible 

for the virulence properties of these strains. PSMs modulate different innate 

immune cells, including DCs. In general, DCs sense pathogens with their PRRs 

and therefore play a protective role in the host by activating the immune system 

to clear the S. aureus infection. However, PSMs affect the endocytic capacity 

and cytokine secretion profile of DCs, which is characterized by increased 

production of the anti-inflammatory cytokine IL-10 but reduced TNF, IL-12 and 

IL-6 pro-inflammatory cytokine secretion. Furthermore, PSMs alter the priming 

of naïve T cells by DCs towards the direction of Tregs. However, the underlying 

molecular mechanisms of PSM-mediated DC modulation remain poorly 

understood. To further investigate the mode of action of PSMs, this thesis 

addressed the following questions:          

 

(1) Which signaling pathways are modulated by PSMs resulting in increased 

production of IL-10 by DCs upon TLR2 ligand treatment? 

(2) Are the activated signaling pathways involved in the priming of Tregs by 

PSM-treated DCs?  

(3) Are PSMs actively internalized by DCs or do they act through binding to 

their receptor FPR2? 

(4) Do PSMs in general affect DC functions, including maturation, cytokine 

production and T cell priming, upon treatment with various TLR ligands? 

 

To address these questions, BM-DCs were generated, and the phosphorylation 

of different signaling molecules was determined. A variety of inhibitors was 

tested for their ability to reduce the IL-10 production induced in DCs upon PSM 

treatment and to reverse the increased priming of Tregs. Furthermore, BM-DCs 

from wild-type and FPR2-/- mice were treated with fluorescently labeled PSMs to 
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investigate the possible mode of action of PSMs in DCs by multispectral 

imaging flow cytometry. Finally, we analyzed co-stimulatory and adhesion 

molecule expression, cytokine production, antigen uptake and T cell priming of 

BM-DCs treated with PSMs in combination with various TLR ligands to address 

the generality of PSMs to modulate TLR-treated DCs.        
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Abstract 

The challenging human pathogen Staphylococcus aureus has very efficient 

immune evasion strategies causing a wide range of diseases from skin and soft 

tissue to life-threatening infections. Phenol-soluble modulin (PSM) peptides are 

major pathogenicity factors of community-associated methicillin-resistant S. 

aureus strains. In previous work, we demonstrated that PSMs in combination 

with TLR2 ligand from S. aureus induce tolerogenic dendritic cells (DCs) 

characterized by the production of high amounts of IL-10, but no pro-

inflammatory cytokines. This in turn promotes the activation of regulatory T cells 

while impairing Th1 response. However, the signaling pathways modulated by 

PSMs remain elusive. Here, we analyzed the impact of PSMs on signaling 

pathway modulation downstream of TLR2. TLR2 stimulation in combination with 

PSMα3 lead to increased and prolonged phosphorylation of NF-κB, ERK, p38 

and CREB in mouse bone marrow-derived DCs compared to single TLR2 

activation. Furthermore, inhibition of p38 and downstream MSK1 prevented IL-

10 production, which in turn reduced the capacity of DCs to activate regulatory 

T cells. Interestingly, the modulation of the signaling pathways by PSMs was 

independent of the known receptor for PSMs as shown by experiments with 

DCs lacking the formyl peptide receptor 2. Instead, PSMs penetrate the cell 

membrane most likely by transient pore formation. Moreover, co-localization of 

PSMs and p38 was observed near the plasma membrane in the cytosol, 

indicating a direct interaction. Thus, PSMs from S. aureus directly modulate the 

signaling pathway p38-CREB in DCs thereby impairing cytokine production and 

in consequence T-cell priming to increase the tolerance towards the pathogen. 

 

Introduction 

The Gram-positive bacterium Staphylococcus aureus is an opportunistic 

pathogen that can causes soft-tissue and systemic infections. Twenty percent of 

the population is permanently colonized with S. aureus and antibiotic treatment 

is often ineffective because the strains develop resistance. Methicillin-resistant 
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S. aureus (MRSA) occurs frequently in hospital-associated (HA) infections as 

well as in community-associated (CA) diseases (1, 2). CA-MRSA strains cause 

mainly skin and soft tissue infections in healthy individuals with USA 300 as the 

most prominent strain worldwide. CA-MRSA strains express a wide range of 

virulence factors consisting of Panton-Valentine Leukocidin, α-toxin and phenol-

soluble modulin (PSM) peptide toxins (1, 2). PSM peptides are secreted by CA-

MRSA strains in much higher concentrations than by HA-MRSA strains and are 

essential virulence factors in mouse models of sepsis and soft tissue infection 

(3).  

PSM peptides comprise seven different members, all arranged into an 

amphipathic α-helix. These include five α-peptides (PSMα1-4 and δ-toxin) with 

20-25 amino acids length and two β-peptides (PSMβ1-2) with 44 amino acids 

(3, 4). PSM peptides can affect the generation of bacterial biofilms because of 

their physical and chemical characteristics and their detergent activities (4). 

They can attract and activate human neutrophils at nanomolar concentrations; 

whereas at micromolar concentrations, they induce neutrophil lysis with their 

ability to form transient pores (3, 5). Nanomolar concentrations of PSM peptides 

are recognized by the human formyl peptide receptor 2 (FPR2) on neutrophils. 

Furthermore, this receptor recognizes the pathogenicity status of bacteria and 

adapts the immune reaction (6). There is a substantial body of research on the 

impact of PSM peptides on innate immune cells; however, little is known about 

cells of the adaptive immune system. 

Dendritic cells (DCs) are the most important antigen-presenting cells that trigger 

immune responses. They link the innate and adaptive immune system by their 

ability to recognize pathogens and to activate B and T cells (7). Moreover DCs 

are mediators of anti-inflammatory immune responses inducing tolerance (8). 

Mouse DCs express mFPR2 and are also attracted by PSM peptides like 

neutrophils, although higher concentrations are needed (9). In contrast to 

neutrophils, DCs are not lysed by micromolar PSM concentrations (9). Their 

phenotype changes by PSM peptide treatment showing decreased endocytosis 

and increased TLR2 ligand-induced secretion of IL-10 whereas TNF, IL-12 and 

IL-6 secretion is abrogated. Consequently, DCs treated with PSM peptides 
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demonstrate a decreased priming ability for T helper 1 cells but enhanced 

induction of FoxP3+ regulatory T cells (Tregs). However, the tolerogenic 

phenotype of DCs caused by PSM peptides is mFPR2 independent (9). A 

possible explanation is the ability of PSM peptides to generate transient pores 

into the cell membrane (5), thereby enabling access to the cytosol. However, 

the signaling pathway involved in the induction of tolerogenic DCs remains 

elusive.  

DCs detect pathogens via microbial products by pattern recognition receptors 

(10), which include e.g. Toll-like receptors (TLRs) and NOD-like receptors (11, 

12). TLRs are important regulators of the immune response as they initiate the 

production of different cytokines and chemokines (13). In myeloid DCs, TLR2 

agonists induce the expression of anti-inflammatory IL-10 via activation of 

nuclear factor-κΒ (NF-κΒ), p38 and extracellular signal-regulated kinases 

(ERKs) (10). 

Here we show that TLR2 ligand-stimulation of DCs in combination with PSMα3 

induces the phosphorylation of p38-cAMP response element binding-protein 

(CREB) pathway, independently of FPR2. Inhibition of the p38-CREB pathway 

reduced IL-10 secretion and induction of Tregs by DCs. Furthermore, our results 

point towards a specific interaction of cytosolic PSMs with p38 thereby 

potentially increasing the tolerance towards the pathogen.  

 

Materials and Methods 

Mice 

Female C57BL/6JolaHsd mice were purchased from Janvier (St. Berthevin 

Cedex, France). FPR2-/- mice (14) with a genetic C57BL/6 background were 

bred in the animal facilities of the University Clinic of Tübingen. All mice were 

held under specific pathogen-free conditions, were provided food and water ad 

libitum and were used for experiments between 6-12 weeks of age. Animal 

experiments were performed in strict accordance with the German regulations 

of the Society for Laboratory Animal Science (GV-SOLAS) and the European 

Health Law of the Federation of Laboratory Animal Science Associations 
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(FELASA). The protocol was approved by the Regierungspräsidium Tübingen 

(Anzeige 09.01.2014). 

 

Generation of bone marrow-derived DCs (BM-DCs)  

RPMI-1640 medium (Merck) supplemented with 10% fetal calf serum (FBS; 

Sigma-Adrich), 2 mM glutamine (Gibco), 100 U/ml penicillin/streptomycin 

(Gibco), 50 µM 2-mercaptoethanol (Roth), 1mM sodium pyruvate (Merck) and 

1x non essential amino acids (Merck) was used in all cell culture experiments. 

BM-DCs were prepared using granulocyte-macrophage colony-stimulating 

factor (GM-CSF) as previously described (9, 15, 16). Briefly, 2 x 106 bone 

marrow cells, flushed from the femurs and tibias of C57BL/6 and FPR2-/- mice, 

were seeded in 100 mm dishes in 10 ml medium containing 200 U/ml GM-CSF. 

After 3 days, an additional 10 ml of fresh medium containing 200 U/ml GM-CSF 

was added to the cultures. On day 6 half of the culture supernatant was 

replaced by fresh medium containing GM-CSF. At day 7-8, the slightly attached 

cells were used for the experiments described in this report. 

 

Reagents 

Formylated PSMα3 and δ-toxin peptides with the recently published sequence 

(Wang et al. 2007) and Fluorescein isothiocyanate (FITC) labeled PSMα2 and 

PSMα3 and OVA323-339 were synthesized in house. BM-DCs were treated with 

S. aureus cell lysates specifically activating TLR2 (9). Treatment of BM-DCs 

with 3 μg/ml S. aureus cell lysates was done simultaneously in combination with 

PSMα3 peptide (10 µM). Where indicated, BM-DCs were pretreated with the 

following inhibitors in different concentrations for 1h: BAY11-7082 (NF-κB 

inhibitor, Selleckchem), PD98059 (p-ERK inhibitor, Merck), SB203580 (p-p38 

MAPK inhibitor, Merck) and Gö6976 (MSK1 inhibitor, Cell Signaling). 
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Cytokine production by BM-DCs 

BM-DCs (2,5 x 105) were seeded in 96-well plates, pretreated with inhibitors 

and following incubated with S. aureus cell lysate and PSM peptides. 

Supernatants were collected after 24 h for IL-10 (BD Biosciences) and ELISAs 

were performed according to the manufacturer’s instructions.  

 

Flow cytometry  

5 x 105 BM-DCs were seeded in 48-well plates and treated as described above. 

Cells were removed from the plate using Accutase (Sigma-Aldrich) and stained 

with 7-AAD (Biomol) or Aqua Life/Dead (Invitrogen) according to the 

manufacturer’s instructions to exclude dead cells. Cells were stained for 20 min 

at 4°C with extracellular antibodies against CD11c-PE (N418) (eBioscience) 

and MHC class II-FITC (M5/114.15.2) (Miltenyi). For p-CREB staining cells 

were fixed and permeabilized with Foxp3 Staining Buffer Set (eBioscience) and 

stained with primary antibody phospho-CREB mAb (Ser133; clone 87G3) (Cell 

Signaling) for 30 min in the dark at room temperature followed by secondary 

goat anti-rabbit IgG-DyLight™649 (Jackson ImmunoResearch) for 15 min at 

4°C. To detect intracellular p-ERK, p-p38 and p-NF-κB BM-DCs were fixed with 

2% paraformaldehyde (VWR) in PBS, permeabilized with 90% freezing 

methanol (Applichem) and stained with the primary antibodies to phospho-

p44/42 MAPK (Erk1/2; Thr202/Tyr204; clone 197G2), phospho-p38 MAPK 

(Thr180/Tyr182; clone 12F8) and phospho-NF-κB p65 (93H1) (all from Cell 

Signaling) for 60 min in the dark at room temperature followed by goat anti-

rabbit IgG-PE-Cy7 (Santa Cruz Biotechnology) for 15 min at 4°C. PBS with 

0,5% bovine serum albumin (Biomol) was used for all incubations and washing 

steps. At least 50,000 cells were acquired using a Canto-II or LSRFortessa flow 

cytometer (BD Biosciences) with DIVA software (BD Biosciences) and were 

further analyzed using FlowJo 10.0.7r2 software (Tree Star).  
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Multispectral imaging flow cytometry (MIFC) 

6 BM-DCs were seeded in 1.5 ml Eppendorf tubes and stimulated for 

different times with FITC-labeled PSMα2 and PSMα3 (0.5 μM) alone or in 

combination with OVA-Alexa647 (0.5 μM). Cells were washed 3 times and 

stained with Zombie NIR (Biolegend) according to the manufacturer’s protocol 

to exclude dead cells. Cells were stained with CD11c-PE (N418, eBioscience) 

and MHC class II-eFluor 450 (M5/114.15.2, eBioscience) for 15 min at 4°C. 

Then cells were fixed and permeabilized using the Foxp3 staining buffer set 

(eBioscience). For localization analysis cells were incubated with a primary 

antibody against p38 (clone 27, BD Biosciences) or phospho-p38 (T180/Y182 

12F8 Rabbit mAb Lot #9, Cell Signaling) for 30 min at room temperature. 5% 

NGS in PBS was used to block unspecific binding sites. Goat anti-mouse IgG-

DyLight594 (Abcam) or Goat anti-rabbit IgG-PE/Cy7 (Santa Cruz 

Biotechnology) were used for 15 min at 4°C as secondary antibodies to stain 

p38 and phospho-p38, respectively. Images of up to 100,000 BM-DCs were 

then acquired with multispectral imaging flow cytometry (MIFC) using the 

ImageStreamx mkII with the INSPIRE instrument controller software. The data 

were analyzed using the IDEAS analysis software (Amnis, EMD Millipore), 

which allows an objective and unbiased analysis of thousands of images per 

sample on the single cell level. The same range of pixel intensity was set for all 

samples within an experiment and all samples were gated on CD11c+MHC II+ 

cells as shown in Fig S4B.  

 

T-cell assay 

5 x 104 BM-DCs were seeded in 96-well U-bottom plates and treated as 

described above. Splenic CD4+ T cells from C57BL/6 mice were purified using 

CD4+ T Cell Isolation Kit II (Miltenyi Biotec) according to the manufacturer’s 

instructions. 2 x 105 CD4+ T cells were added to the BM-DCs and cultured in 

RPMI-1640 medium (Merck) supplemented with 20% fetal calf serum (FBS; 

Sigma-Adrich), 2 mM glutamine (Gibco), 100 U/ml penicillin/streptomycin 

(Gibco), 50 µM 2-mercaptoethanol (Roth), 1mM sodium pyruvate (Merck), 10 
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mM HEPES-Buffer (Biochrom AG) and 1x non essential amino acids (Merck). 

96 h later T cells were stained first with Zombie NIR (Biolegend) according to 

the manufacturer’s protocol to exclude dead cells followed by CD4-

BrilliantViolet510 (V4), CD3e-PerCP/Cy5.5 (BM10-37), CD25-PE-Cy7 (B6.1) 

and Foxp3-APC (FJK-16s) (Biolegend) (Foxp3 staining buffer set, eBioscience). 

100,000 cells were acquired using LSRFortessa flow cytometer (BD 

Biosciences) with DIVA software (BD Biosciences) and were further analyzed 

using FlowJo 10.0.7r2 software (Tree Star).  

 

LDH release assay 

2 x 105 BM-DCs were seeded in 96-well U-bottom plates and treated with 10 

μM PSMα2, PSMα3, δ-toxin or OVA for 10 min. Lactate dehydrogenase (LDH) 

was analyzed in the supernatant using the Cytotoxicity Detection Kit (Roche) 

according to the manufacturer’s protocol. Absorbance was measured at 490 nm 

using an ELISA reader.   

 

Statistical analysis 

Statistical analysis was performed with the GraphPadPrism 6 software 

(GraphPad, San Diego, CA) using one-way ANOVA with Bonferroni posttest. 

The differences were considered as statistically significant if p < 0.05 (*), p < 

0.005 (**), p < 0.001 (***) or p < 0.0001 (****). 
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Results 

PSMs induce a sustained NF-κB p65 phosphorylation in TLR2-

stimulated DCs  

It has been shown that TLR2-stimulated DCs co-incubated with PSMα-peptides 

increased the production of the anti-inflammatory cytokine IL-10 (9). However, 

the intracellular signaling pathways involved in the PSM-induced cytokine 

modulation have not been elucidated. It was previously shown that the TLR-

dependent activation of the NF-κB subunit p65 leads to an extended and 

enhanced IL-10 transcription in DCs (17). To investigate whether NF-κB 

signaling plays a role in the cytokine modulation by PSMs, bone marrow-

derived (BM-) DCs (referred to as DCs) were treated with synthetic PSMα3, the 

TLR2 ligand S. aureus cell lysate or the combination of both. We have 

previously shown that S. aureus cell lysate specifically activates TLR2 and no 

other PRRs (9). Phosphorylation of NF-κB p65 (p-NF-κB) was analyzed by flow 

cytometry.  

The level of p-NF-κB in DCs was slightly increased after 60 min of treatment 

with PSMα3 and 1.5 fold with S. aureus cell lysate compared to untreated DCs 

(Fig 1). DCs treated with S. aureus cell lysate and PSMα3 revealed a significant 

2-fold increase of p-NF-κB (Fig 1). Moreover, the increased NF-κB 

phosphorylation was prolonged over a time period from 30 to 240 min (Fig 

S1A). Similar results were observed for mFPR2 deficient DCs in comparison to 

DCs from WT mice (Fig 1B), demonstrating an mFPR2-indepentent effect. 

These data show a cooperating effect of PSMα3 and the TLR2 ligand S. aureus 

leading to enhanced and prolonged NF-κB activation in DCs.  
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FIGURE 1. PSMs induce a sustained NF-κB p65 phosphorylation in TLR2-

stimulated DCs. BM-DCs from wildtype and FPR2-/- mice were incubated for 60 min 

with S. aureus cell lysate (sa lysate), PSMα3 and in combination. The cells were 

stained with CD11c and MHC II antibodies followed by intracellular staining against p-

NF-κB and analysis by flow cytometry. (A) Representative histogram overlays of p-NF-

κB in DCs (gated on CD11c+MHC II+ cells). The heatmap shows fold change (FC) of p-

NF-κB normalized to untreated DCs (medium). Heatmap and histogram overlays are 

colored according to FC of phosphorylation. (B) Statistical analysis of p-NF-κB staining 

shown in (A). Graph shows three independent experiments performed in triplicates 

(mean ± SD). * indicates statistically significant differences (one-way ANOVA with 

Bonferroni post-test). 

 

Enhanced MAPK phosphorylation in DCs induced by PSMs and 

TLR2 

The virulence factor β hemolysin/cytolysin of Group B streptococcus was shown 

to induce IL-10 secretion in macrophages by activating p38 MAPK (18). 

Furthermore, TLR2 stimulation of DCs leads to phosphorylation of ERK1/2, 

which induces IL-10 production (19). To investigate whether the MAPKs play a 

role in the cytokine modulation by PSMs, we stimulated DCs as described 

above and analyzed phopho-p44/42 MAPK (p-ERK1/2) or phospho-p38 MAPK 

(p-p38) by flow cytometry. Treatment of DCs with PSMα3 did not affect p-ERK, 

whereas a strong increase for S. aureus cell lysate was observed 15 min post-
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treatment compared to untreated DCs (Fig 2). DCs incubated with S. aureus 

cell lysate combined with PSMα3 revealed a 2.2 fold increase of ERK 

phosphorylation (Fig 2). Similar results were observed for mFPR2 deficient DCs 

(Fig 2B). These results were only visible shortly after treatment, as no increased 

p-ERK could be detected 30 min post-stimulation (Fig S1B), indicating a strong 

but short activation of the ERK pathway. 

 

FIGURE 2. Enhanced ERK phosphorylation in DCs induced by PSMs and TLR2. 

BM-DCs from wildtype and FPR2-/- mice were incubated for 15 min with S. aureus cell 

lysate (sa lysate), PSMα3 and in combination. The cells were stained with CD11c and 

MHC II antibodies followed by intracellular staining against p-ERK and analysis by flow 

cytometry. (A) Representative histogram overlays of p-ERK in DCs (gated on 

CD11c+MHC II+ cells). The heatmap shows FC of p-ERK normalized to untreated DCs 

(medium). Heatmap and histogram overlays are colored according to FC of 

phosphorylation. (B) Statistical analysis of p-ERK staining shown in (A). Graph shows 

three independent experiments performed in triplicates (mean ± SD). * indicate 

statistically significant differences (one-way ANOVA with Bonferroni post-test). 

 

No significant change in the phosphorylation of p38 was observed in DCs 

treated with PSMα3 compared to untreated cells over time, whereas in DCs 

treated with S. aureus cell lysate phosphorylation of p38 was increased by 1.5 

fold starting 30 min post treatment (Fig 3 and Fig S1C). DCs incubated with S. 

aureus cell lysate and PSMα3 for 30 min revealed a significant 2.5 fold increase 
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of p38 phosphorylation, which was independent of mFPR2 (Fig 3). The data 

likewise show a cooperating effect of PSMα3 and the TLR2 ligand S. aureus 

cell lysate for the activation of MAPKs in DCs independently of mFPR2.  

 

FIGURE 3. Enhanced p38 phosphorylation in DCs induced by PSMs and TLR2. 

BM-DCs from wildtype and FPR2-/- mice were incubated for 30 min with S. aureus cell 

lysate (sa lysate), PSMα3 and in combination. The cells were stained with CD11c and 

MHC II antibodies followed by intracellular staining against p-p38 and analysis by flow 

cytometry. (A) Representative histogram overlays of p-p38 in DCs (gated on 

CD11c+MHC II+ cells). The heatmap shows FC of p-p38 normalized to untreated DCs 

(medium). Heatmap and histogram overlays are colored according to FC of 

phosphorylation. (B) Statistical analysis of p-p38 staining shown in (A). Graph shows 

two independent experiments out of three performed in triplicates (mean ± SD). * 

indicates statistically significant differences (one-way ANOVA with Bonferroni post-

test). 

 

Enhanced CREB phosphorylation in DCs induced by PSMs and 

TLR2 

It was shown that in macrophages and myeloid DCs p38 and ERK activate 

MSK1/2 that directly phosphorylate CREB, which eventually binds to the IL-10 

promoter (8, 20). To investigate whether CREB signaling plays a role in the 

cytokine modulation by PSMs, DCs were stimulated with PSMα3, S. aureus cell 

lysate and in combination and CREB phosphorylation (p-CREB) was analyzed 
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by flow cytometry (Fig 4). Similar results as for p-p38, p-ERK and p-NF-κB were 

observed for p-CREB with the highest phosphorylation levels in DCs treated 

with the combination of PSMα3 and S. aureus cell lysate for 30 and 60 min (Fig 

4 and Fig S1D). Taken together PSMα3 in collaboration with TLR2 stimulation 

enhances the activation of various signaling pathways downstream of TLR2 

involved in the production of the anti-inflammatory molecule IL-10. 

 

FIGURE 4. Enhanced CREB phosphorylation in DCs induced by PSMs and TLR2. 

BM-DCs from wildtype and FPR2-/- mice were incubated for 60 min with S. aureus cell 

lysate (sa lysate), PSMα3 and in combination. The cells were stained with CD11c and 

MHC II antibodies followed by intracellular staining against p-CREB and analysis by 

flow cytometry. (A) Representative histogram overlays of p-CREB in DCs (gated on 

CD11c+MHC II+ cells). The heatmap shows FC of p-CREB normalized to untreated 

DCs (medium). Heatmap and histogram overlays are colored according to FC of 

phosphorylation. (B) Statistical analysis of p-CREB staining shown in (A). Graph shows 

two independent experiments out of three performed in triplicates (mean ± SD). * 

indicate statistically significant differences (one-way ANOVA with Bonferroni post-test). 

 

The p38-CREB axis mediates IL-10 secretion in TLR2 and PSM-

treated DCs  

The production of IL-10 was analyzed to address whether the enhanced 

activation of the signaling pathways NF-κB, p38 and ERK has an impact on the 

modulation of cytokine secretion by PSMα3. IL-10 is exclusively produced by 
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DCs stimulated with the combination of PSMα peptides and S. aureus cell 

lysate (Figure 5 and (9)).  

Pretreatment of DCs with various concentrations of the NF-κB inhibitor BAY 11-

7082 had no effect on IL-10 production except for the 10 μM concentration (Fig 

5A). However, this concentration was cytotoxic for the cells as determined by 

cell viability assay using 7-AAD (Fig S2A). Thus, enhanced NF-κB activation by 

PSMα3 is not involved in IL-10 production by DCs. 

Pre-incubation of DCs with various concentrations of the p-ERK inhibitor PD 

0325901 did not affect the IL-10 production after stimulation with S. aureus cell 

lysate and PSMα3, indicating no impact of enhanced ERK phosphorylation on 

IL-10 production (Fig 5B). In contrast, pretreatment with the p-p38 MAPK 

inhibitors SB 203580 and BIRB 0796 lead to a concentration dependent 

inhibitory effect of IL-10 production (Fig 5C and 5D). Furthermore, inhibition of 

MSK1 by Gö6976, which acts downstream of p38 and ERK and upstream of 

CREB, revealed a concentration dependent decrease of IL-10 secretion by DCs 

(Fig 5E). No toxic effect was observed for the used inhibitor concentrations as 

well as for the vehicle (Fig S2B-F). The specificity of the inhibitors was 

assessed by flow cytometry for p38 or CREB phosphorylation. SB 203580 and 

BIRB 0796 prevented the phosphorylation of p38 and Gö6976 of CREB in a 

dose dependent manner (Fig S3), respectively, whereas these inhibitors had no 

effect on activation of other signaling pathways (data not shown). Together, our 

data demonstrate the involvement of the p38-CREB axis in IL-10 production 

induced by PSMα3.  
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FIGURE 5. The p38 – CREB axis mediates IL-10 secretion in TLR2 and PSM-

treated DCs. BM-DCs were treated for 1h with the indicated concentrations of the NF-

κB inhibitor BAY 11-7082 (A), the p-ERK inhibitor PD 0325901 (B), the p-p38 inhibitors 

SB 203580 (C) and BIRB 0796 (D), or the MSK1 inhibitor Gö6976 (E) prior to treatment 

with S. aureus cell lysate (sa lysate) and PSMα3. 24 h later cell culture supernatants 

were collected and analyzed for IL-10 by ELISA. The graphs show one representative 

out of two to three (A, C-E) or pooled data from two (B) independent experiments 

performed in triplicates (mean ± SD). * indicate statistically significant differences (one-

way ANOVA with Bonferroni post-test). 
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Enhanced activation of p38-CREB-IL-10 axis by PSMs in TLR2-

stimulated DCs primes Tregs  

Previously we showed that increased IL-10 production by DCs upon TLR2 and 

PSM stimulation primes regulatory T cells (9). To directly address whether the 

p38-CREB-IL-10 axis is involved in the priming of Tregs by PSMs, DCs were 

treated with p38 inhibitors prior to incubation with S. aureus cell lysate and 

PSMα3. 24h later DCs were incubated with naive CD4+ T cells and T cell 

priming was assessed 4 days later by flow cytometry. The frequency of 

CD4+CD25+FoxP3+ T cells was significantly increased when DCs were treated 

with S. aureus cell lysate and PSMα3 compared to S. aureus cell lysate alone 

(Fig 6 and Fig S4A: gating strategy). Inhibition of p38 signaling by the inhibitors 

SB 203580 and BIRB 0796 prevented this increase in CD4+CD25+FoxP3+ T 

cells mediated by PSMα peptides in a dose-dependent manner (Fig 6). Thus, 

PSMs induce Tregs by modulating the p38-CREB-IL-10 axis in DCs. 

 

FIGURE 6. Activation of p38-CREB-IL-10 axis by PSMs in DCs primes Tregs. BM-

DCs were pretreated with or without the indicated inhibitors for 1h and were 

subsequently incubated with S. aureus cell lysate (sa lysate) and PSMα3 for 24 h. 

Then splenic CD4+ T cells isolated from wildtype mice were added to the culture for 96 

h. (A) Representative dot plots show flow cytometry analysis of CD4+CD25+FoxP3+ T 

cells (gating see Fig S4). Numbers adjacent to outlined areas indicate frequency of 
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CD4+CD25+FoxP3+ T cells in the culture. (B) Statistical analysis of CD4+CD25+FoxP3+ 

T cells after co-culture with BM-DCs. Data are from two to four independent 

experiments performed in quadruplicates (mean ± SEM). * indicate statistically 

significant differences (one-way ANOVA with Bonferroni post-test). 

 

PSMs penetrate DCs by transient pore formation and directly 

interact with p38 MAPK in DCs  

It has been reported that PSM peptides can induce an effective inflammatory 

immune response by binding to the FPR2 receptor, whereas their cytolytic 

activity is FPR2 independent (6, 9). It is assumed that PSMα peptides like δ-

toxin are able to form transient pores (5). To address whether PSMs are 

internalized by DCs via mechanisms of antigen uptake e.g. receptor mediated 

endocytosis WT and FPR2-/- mice were incubated with fluorescently labeled 

PSMα peptides and analyzed by multispectral imaging flow cytometry. PSMα2 

was located in the cytosol in WT as well as FPR2-/- DCs after 10, 30 and 60 min 

of incubation (Fig 7A, Figure S4B (gating strategy) and data not shown). The 

frequency of PSMα2+ DCs was comparable in WT and FPR2-/- DCs (Fig 7A), 

showing that PSMs penetrate DCs by an FPR2-independent mechanism. To 

address whether PSMs are actively internalized by DCs via macropinocytosis or 

receptor-mediated endocytosis DCs from WT mice were incubated with FITC-

labeled PSMα2 on ice preventing actin-rearrangement and thereby endocytosis 

and compared to incubation at 37°C enabling endocytosis. Incubation of FITC-

labeled PSMα2 with DCs on ice did not prevent PSM penetration into DCs (Fig 

7B). Furthermore, simultaneous incubation of DCs with OVA-Alexa647, which is 

taken up by macropinocytosis and receptor-mediated endocytosis, and PSMα2-

FITC on ice revealed intracellular PSMα2-FITC, whereas no OVA-Alexa647 

was taken up by DCs (Fig. 7B). These data show that PSMs penetrate DCs 

independently of endocytosis most likely by pore formation.  

To address the hypothesis that pore formation by PSMs is responsible for cell 

penetration LDH release by DCs upon PSM-treatment was analyzed. LDH is a 

soluble cytoplasmic enzyme that is present in almost all cells and is released 

into the supernatant when the plasma membrane is damaged (21, 22). Indeed, 
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10 min after treatment with PSMα3 a significant amount of LDH was released 

from DCs, which was comparable with the LDH release of δ-toxin, known to 

induce transient pore formation (23) (Fig 7C). In contrast, nearly no LDH 

release was observed when DCs were treated with OVA peptide, further 

supporting that PSMs induce transient pore formation in DCs.  

 

FIGURE 7. PSMs gain access to the cytosol by transient pore formation. 

Multispectral imaging flow cytometry analysis of PSMα-FITC+ DCs (gating see Fig S4B) 

30 min (A) or 10 min (B) after incubation with FITC-labeled PSMα2 (37°C or ice) in the 

presence (B) or absence of OVA-Alexa647 (A). Representative bright field (BF) and 

fluorescence images of DCs are shown from two or more independent experiments 

with similar results performed in triplicates (A-B). The graph shows the frequency of 

PSMα2-FITC+ DCs from WT and FPR2-/- mice (A). (C) DCs were treated with the 

indicated reagents for 10 min. Graph shows the frequency of LDH release in relation to 

DCs treated with 1% Triton-X100 (positive control). Graph shows one out of two 
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independent experiments with similar results performed in triplicates (mean ± SD). * 

indicate statistically significant differences (one-way ANOVA with Bonferroni post-test). 

 

PSMs were predominantly localized close to the plasma membrane in spots 

devoid of endosomal and lysosomal markers independently whether they where 

activated via TLR2-stimuation or not (Fig 8 and data not shown). Instead, PSMs 

co-localized with p38 (Fig 8A) and p-p38 (Fig 8B) molecules as shown by 

imaging flow cytometry. DCs treated with PSMs and S. aureus cell lysate 

showed an increased max pixel intensity of p-p38 gated on PSMα-FITC+p-p38+ 

DCs compared to DCs treated with PSMs alone, indicating an increased 

phopsphorylation of p38 upon TLR2 activation (Fig 8B and 8C). These data 

point towards a direct interaction of PSMα peptides with the p38 MAPK 

signaling pathway. 
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FIGURE 8. Co-localization of PSMs with p38 and p-p38. Multispectral imaging flow 

cytometry analysis of DCs (gating see Fig S4B) 30 min after incubation with FITC 

labeled PSMα2 or PSMα3 in the presence or absence of S. aureus cell lysate (sa 

lysate). Representative bright field (BF) and fluorescence images of PSMα-FITC+ DCs 

additionally stained with p38 (A) and p-p38 (B). Yellow spots indicate intracellular 

PSMα2 co-localized with p38 (A) or p-p38 (B). The histogram overlay shows the 

intensity of p-p38 in DCs treated with PSMα2-FITC (gray) and the combination of S. 

aureus cell lysate and PSMα2-FITC (red) (C). Numbers in histogram indicate the 

median intensity of p-p38. Data show representative images out of two or more 

independent experiments with similar results performed in triplicates. 
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Discussion 

PSMs play a key role in the pathogenicity of CA-MRSA strains (3). They bind to 

human and mouse FPR2 thereby initiating chemotaxis of neutrophils and DCs 

(6, 9). We have previously shown that PSMα peptides induce a tolerogenic 

phenotype in DCs upon TLR2 stimulation, characterized by the production of IL-

10 and impaired secretion of pro-inflammatory cytokines (9). Consequently, 

these tolerogenic DCs favored the priming of regulatory T cells (9). How PSMs 

induce IL-10 secretion and which signaling pathways are involved remained 

elusive. Here we show that PSMs penetrate DCs via transient pore formation, 

directly interact with p38 and upon TLR2 activation enhance its phosphorylation 

and downstream CREB activation. This consequently increased IL-10 

production and induction of Tregs.  

Pore-forming toxins (PFT) comprise approximately 25% of all bacterial toxins 

and represent the largest class of bacterial virulence factors (24, 25). The 

amphipathic PSMα-peptide δ-toxin was shown to form receptor-independent 

transient pores in solution (5, 23). Based on these experiments we hypothesize 

that δ-toxin and potentially other PSMs form dimers and bind to the cytoplasmic 

membrane at low peptide density and oligomers span the membrane and 

induce pore formation at high peptide density (5, 23). However, the PSM side of 

action in DCs remains unclear. Do PSMs act as PFTs in DCs? Can PSMs reach 

the cytosol via pore formation or are they internalized by DCs via 

macropinocytosis or receptor-mediated endocytosis? We show that PSMs are 

located in the cytosol independently of FPR2 (Fig 7). Although the localization 

of PSMs appears point-shaped, they are not in endosomes or lysosomes (data 

not shown) arguing against their active internalization by DCs via 

macropinocytosis or receptor-mediated endocytosis. In agreement with this, 

PSMs are similarly found in the cytosol when endocytosis (shown here with 

OVA) is prevented during ice incubation. Furthermore, the direct interaction of 

PSMs with p38 supports this conclusion, as p38 is located in the cytoplasm and 

not in subcellular fractions (26, 27). Moreover, FPR2 is not involved in the 

cytotoxic activity of PSMs on neutrophils (6) and the production of IL-10 by DCs 
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(9), strongly supporting the hypothesis that receptor independent processes are 

responsible for cytosolic localization of PSMs. Recently, Grosz et al. 

demonstrated that PSMα peptides are required for phagosomal escape of 

various cytolytic S. aureus strains in professional and non-professional 

phagocytes enabling cytoplasmic replication of these strains (28). In conclusion 

our data obtained by imaging flow cytometry and LDH release provide evidence 

that transient pore formation is mediating the transport of PSMs to the 

cytoplasm.  

TLR2 agonists are able to induce the expression of anti-inflammatory IL-10 via 

activation of NF-κΒ, p38 and ERK in DCs (10). Furthermore, pathogens 

triggering the C-type lectin DC-SIGN can modify TLR signaling in DCs. Upon 

TLR-dependent signaling DC-SIGN activates the kinase Raf-1, which acetylates 

the p65 subunit of NF-κΒ leading to an extended and enhanced IL-10 

transcription (17). In TLR2 stimulated DCs the phosphorylation of ERK is 

increased, which induces the IL-10 production and represses IL-12(p70) (19). 

Although NF-κΒ and ERK signaling were increased by PSMs, blocking of these 

signaling pathways with chemical inhibitors had no effect on IL-10 production by 

PSM-treated DCs. Our data indicate a direct interaction of PSMα peptides with 

p38 thereby enhancing its phosphorylation and via CREB activation (20) 

eventually lead to high IL-10 production in DCs upon TLR2 ligand-stimulation. 

This is supported by Bebien et al. showing that the virulence factor β 

hemolysin/cytolysin of Group B streptococcus induces IL-10 secretion via p38 

MAPK activation (18). PFTs activate MAPK signaling pathways in different 

eukaryotic cells - whether this is beneficial or detrimental for the pathogen is 

species dependent (29-36). 

Besides PFTs other pathogenicity factors of Gram-negative bacteria or viruses 

modulate p38 signaling in host cells (29, 37). YopJ from Yersinia 

pseudotuberculosis inhibits p38 and JNK phosphorylation thereby preventing 

the production of TNF-α in macrophages (15, 37). Additionally, YopP from Y. 

enterocolitica (also termed YopJ) prevents IL-10 production by DCs (15, 29). 

Accordingly, many effector proteins of Gram-negative bacteria were shown to 

impair p38 MAPK activation thereby preventing pro-inflammatory cytokine 
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secretion (29, 38). Moreover, Leghmari et al. suggest a new immune escape 

mechanism for HIV-1 infection, by which the Tat protein induces IL-10 

production in monocytes in a p38 MAPK dependent manner (38-41). Thus, we 

demonstrate a new function of the PFTs PSMα peptides acting as further 

pathogenicity factors by modifying p38 MAPK signaling pathway. 

Their capacity to induce Tregs via production of anti-inflammatory molecules 

that may be secreted, membrane bound, or both define tolerogenic DCs. A 

variety of Treg differentiation models demonstrated the necessity of IL-10 

secretion by tolerogenic DCs for tolerance induction (39-42) and for the 

maintenance of suppressive Tregs upon strong inflammatory signals (9, 42-44). 

Like PSMα peptides, Candida albicans, Cryptococcus neoformans and Fasciola 

hepatica subvert the immune system by promoting DC tolerogenicity and Treg 

differentiation (9, 43-45). How these pathogens impair recognition and signaling 

remains unknown. Here, we describe the p38-CREB-IL-10 axis as molecular 

mechanism for DC tolerogenicity and Treg differentiation induced by PSMα 

peptides in vitro (Fig 6). Whether this holds true in vivo has to be shown. 

For the treatment of increasing antibiotic resistant bacteria the development of 

new narrower-spectrum or virulence targeted antimicrobial therapeutics is 

necessary (45, 46). PFTs were used as live vaccines in various disease 

models, but successful immunization against a PFT does not always prevent 

disease (46). Other examples like inhibiting PFTs and using competitive 

inhibitors were shown to effectively prevent or cure the infection (46). 

Furthermore, boosting host defense e.g. by using drugs modulating MAPK 

signaling pathways is discussed as immunotherapy against infections. Our data 

point towards the use of a p38 inhibitor in the case of CA-MRSA infection 

possibly preventing the induction of tolerogenic DCs and thereby immune 

escape.  
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Figure S1. Phosphorylation of various signaling pathways in DCs induced 

by PSMs and TLR2. 

BM-DCs were incubated for the indicated times with S. aureus cell lysate (sa 

lysate), PSMα3 and in combination. The cells were stained with CD11c and 

MHC II antibodies followed by intracellular staining against p-NF-κB (A), p-ERK 

(B), p-p38 (C) and p-CREB (D) and analysis by flow cytometry. The graphs 

show fold change (FC) of phosphorylation normalized to untreated DCs 

(medium). Data are pooled from two independent experiments out of three 

performed in triplicates. * indicate statistically significant differences compared 

to DCs treated with the combination of S. aureus cell lysate and PSMα3 at the 

respective time (one-way ANOVA with Bonferroni post-test). 
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Figure S2. Cell viability assay.  

BM-DCs were treated for 1h with the indicated concentrations of the NF-κB 

inhibitor BAY 11-7082 (A), the p-ERK inhibitor PD 0325901 (B), the p-p38 

inhibitors SB 203580 (C) and BIRB 0796 (D), the MSK1 inhibitor Gö6976 (E) 

and the vehicle DMSO (F) prior to treatment with S. aureus cell lysate (sa 

lysate) and PSMα3 for 24h. Cells were stained with 7-AAD, CD11c and MHC II 

and analyzed by flow cytometry for the frequency of living (7-AAD-) DCs. 

Graphs show one experiment performed in triplicates. * indicate statistically 

significant differences compared to DCs treated with the combination of S. 

aureus cell lysate and PSMα3 (one-way ANOVA with Bonferroni post-test).  
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Figure S3. Determination of inhibitor specificity. 

BM-DCs were treated for 1h with the indicated concentrations of the p-p38 

inhibitors SB 203580 (A) and BIRB 0796 (B) and the MSK1 inhibitor Gö6976 (C) 

prior to treatment with S. aureus cell lysate (sa lysate) and PSMα3. The cells 

were stained with CD11c and MHC II antibodies followed by intracellular 

staining against p-p38 (A and B) and p-CREB (C). Graphs show the median 

fluorescence intensity of p-p38 (A and B) and p-CREB (C) of DCs analyzed by 

flow cytometry. Graphs show one out of one (B, C) or two (A) independent 

experiments performed in triplicates (mean ± SD). * indicate statistically 

significant differences compared to DCs treated with the combination of S. 

aureus cell lysate and PSMα3 (one-way ANOVA with Bonferroni post-test).  
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Figure S4. Gating strategies. 

(A) Dot plots show the gating strategy used to define CD4+CD25+ T cells by flow 

cytometry 4 days after co-culture of PSM-treated DCs and naïve CD4+ T cells. 

Cells were gated as follows: singlets/lymphocytes/living/CD4+/CD25+. (B) Dot 

plots show the gating strategy used to define CD11c+MHC II+ DCs by 

multispectral imaging flow cytometry. Cells were gated as follows: cells in 

focus/single cells/living cells/DCs. 
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Abstract 

Dendritic cells (DCs) are key players of the immune system and thus a target 

for immune evasion by pathogens. We recently showed that the virulence factor 

phenol-soluble modulin (PSM) produced by community-associated methicillin-

resistant Staphylococcus aureus strains induces tolerogenic DCs upon Toll-like 

receptor (TLR) 2 activation via the p38-CREB-IL-10 pathway. Here, we 

addressed the question whether this tolerogenic phenotype of DCs induced by 

PSMs is specific for TLR2 activation. Therefore, bone marrow-derived DCs 

were treated with various ligands for extracellular and intracellular TLRs 

simultaneously with PSM3. We show that PSM3 modulates antigen uptake, 

maturation and cytokine production of DCs activated by TLR1/2, TLR2/6, TLR4, 

TLR7, and TLR9. Pre-incubation of DCs with a p38 MAP kinase inhibitor 

prevented the PSM3-induced IL-10 secretion, as well as MHC class II up-

regulation upon TLR activation. In consequence, the tolerogenic DCs induced 

by PSM3 in response to several TLR ligands promoted priming of regulatory T 

cells. Thus, PSMs could be useful as inducers of tolerogenic DCs upon TLR 

ligand stimulation for therapeutic applications. 

 

Introduction 

Dendritic cells (DCs) are the most essential antigen presenting cells that link the 

innate and adaptive immunity by activating T and B cells (Merad et al., 2013). 

Immature DCs are able to actively internalize antigens because of their high 

endocytic capacity. Simultaneously, inflammatory signals induce the maturation 

of DCs. As a result, DCs reduce antigen uptake, yet enhance antigen 

processing and presentation thereby enabling efficient T-cell activation (Garrett 

et al., 2000). DCs recognize pathogen-associated molecular patterns by their 

pattern recognition receptors (Saraiva and O'Garra, 2010) e.g. Toll-like 

receptors (TLRs) (Merad et al., 2013). TLRs respond to exogenous microbial 

products resulting in the activation of the adaptive immune system by 

downstream signaling leading to the expression of cytokines, chemokines and 
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interferons (Michelsen, 2001; Re and Strominger, 2004). Additionally, TLR 

signaling in DCs leads to the downregulation of endocytosis, up-regulation of 

the co-stimulatory molecules CD80 and CD86, as well as MHC class II 

molecules and cytokine production (Merad et al., 2013). The pro-inflammatory 

cytokines e.g. TNF-α, IL-6 and IL-12 recruit other immune cells for pathogen 

clearance and induce T helper cell differentiation (Dinarello, 2000; Elenkov and 

Chrousos, 2002). In contrast, the anti-inflammatory cytokine IL-10 elicits 

important immunoregulatory function by inhibiting IL-12 production which 

regulates regulatory T-cell (Treg) development (Ouyang et al., 2011). 

The Gram-positive bacterium Staphylococcus aureus is the leading cause of 

more than fifty percent of skin and soft-tissue infections worldwide (Brown et al., 

2015; Talan et al., 2011). In treatment of this disease, antibiotic abuse has led 

to the emergence of methicillin-resistant S. aureus (MRSA) strains. Both healthy 

and immunocompromised patients are susceptible to community-associated 

(CA) MRSA strains e.g. USA300, which is the most prevalent strain in the world 

(DeLeo et al., 2009; Otto, 2010). Because S. aureus possesses many virulence 

factors it is very effective at evading the host’s innate and adaptive immune 

system (Brown et al., 2015; Otto, 2010). For example, CA-MRSA strains 

express α-toxin, Panton-Valentine Leukocidin and phenol-soluble modulin 

peptides (PSMs) (Otto, 2010; Thammavongsa et al., 2015). Also contributing to 

CA-MRSA strains pathogenicity is its ability to secrete large amounts of PSMs 

compared to other MRSA strains (Wang et al., 2007). PSMs contain five α-

peptides (δ-toxin and PSMα1-4) and two β-peptides (PSMβ1-2) (Peschel and 

Otto, 2013; Wang et al., 2007). PSMs attract human neutrophils by binding to 

the cell surface human formyl peptide receptor 2 (FPR2) (Kretschmer et al., 

2010; Wang et al., 2007). Furthermore, mouse DCs expressing the mouse 

FPR2 are also attracted by PSMs (Schreiner et al., 2013). The α-helical and 

amphipathic PSMs possess a pore forming activity (Wang et al., 2007). 

Previously, we showed that PSMs, most likely via pore-formation, modulate the 

cytokine production of DCs independently of the mouse FPR2 (expression) by 

increasing the TLR2 ligand-induced production of the anti-inflammatory cytokine 

IL-10 via specific interaction with the MAPK p38 (Armbruster et al., 2016). In 

contrast, PSMs inhibit the TLR2 ligand-induced pro-inflammatory cytokine 
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secretion of TNF-α, IL-12 and IL-6 (Armbruster et al., 2016; Dinarello, 2000; 

Elenkov and Chrousos, 2002; Schreiner et al., 2013). As a consequence, the 

PSM-treated DCs show an impaired T helper 1 cell priming capacity, but an 

increased induction of Foxp3+ Tregs via p38-CREB-IL-10 modulation in DCs 

(Armbruster et al., 2016; Schreiner et al., 2013). As p38 MAPK signaling is 

activated upon TLR-stimulation in general, we hypothesize that PSMs affect DC 

functions including maturation, cytokine production and T-cell priming upon 

treatment with various TLR ligands. The aim was to test whether PSMs could 

be useful as general inducers of tolerogenic DCs for therapeutic applications.  

The major innate immune-stimulating compounds of S. aureus are lipoproteins 

(Hashimoto et al., 2006; Stoll et al., 2005). They induce a fast and strong 

cytokine release by mouse peritoneal macrophages via TLR2-MyD88 signaling 

leading to increased pathogenicity (Schmaler et al., 2009). Lipoproteins of 

S.aureus are either di- or tri-acylated, depending on the growth phase 

(Kurokawa et al., 2012). Therefore, we tested di- and tri-acylated lipopeptides 

(Pam2- and Pam3-Cys) in this study. Moreover, we used ligands for TLR4, and 

antigen uptake, maturation and cytokine production in DCs upon extracellular 

as well as intracellular TLR-stimulation. In consequence, these tolerogenic DCs 

increased priming of Tregs. 

 

Materials and Methods 

Mice 

Female C57BL/6JolaHsd and BALB/cAnNRj mice were purchased from Janvier 

(St. Berthevin Cedex, France). FPR2-/- mice (Chen et al., 2010) with a genetic 

C57BL/6 background were bred in the animal facilities of the University Clinic of 

Tübingen. All mice were held under specific pathogen-free conditions, were 

provided with food and water ad libitum and used for experiments between 6-12 

weeks of age. Animal experiments were performed in strict accordance with the 

German regulations of the Society for Laboratory Animal Science (GV-SOLAS) 

and the European Health Law of the Federation of Laboratory Animal Science 
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Associations (FELASA). The protocol was approved by the 

Regierungspräsidium Tübingen (Anzeige 09.01.2014). 

 

Generation of bone marrow-derived DCs (BMDCs)  

RPMI-1640 medium (Merck) supplemented with 10% FBS (Sigma-Adrich), 2 

mM L-glutamine (Gibco), 100 U/ml penicillin/streptomycin (Gibco), 50 µM 2-

mercaptoethanol (Roth), 1 mM sodium pyruvate (Merck) and 1x non essential 

amino acids (Merck) was used in all cell culture experiments. BMDCs were 

prepared using GM-CSF as previously described (Armbruster et al., 2016; 

Schreiner et al., 2013). Briefly, 2 x 106 bone marrow cells, flushed from the 

femurs and tibias of C57BL/6 and FPR2-/- mice, were seeded in 100 mm dishes 

in 10 ml medium containing 200 U/ml GM-CSF. After 3 days, an additional 10 

ml of fresh medium containing 200 U/ml GM-CSF was added to the cultures. On 

day 6 half of the culture supernatant was replaced by fresh medium containing 

GM-CSF. At day 7-8, the slightly attached cells were used for the experiments 

described in this report. 

 

Reagents for stimulation of BMDCs 

Formylated PSMα3 peptides with the recently published sequence (Wang et al., 

2007) and reversed PSMα4 peptides (used as control peptide) were 

synthesized in house. BMDCs were treated with 100 ng/ml Pam2CSK4 

(InvivoGen) for TLR2/TLR6, 1 μg/ml Pam3CSK4 (InvivoGen) for TLR1/TLR2, 3 

μg/ml S. aureus cell lysates (produced in house) for TLR2 (Schreiner et al., 

2013), 100 ng/ml LPS (Sigma) for TLR4, 1 μg/ml CpG ODN 1826 (InvivoGen) 

for TLR9 and 5 μg/ml Imiquimod (InvivoGen) for TLR7 activation. Furthermore 

BMDCs were treated simultaneously in combination with 10 µM PSMα3 peptide 

or 10 µM control peptide. Where indicated BMDCs were pretreated with 25 µM 

to 0.2 µM p-p38 MAPK inhibitor SB 203580 (Merck) prior to TLR-ligand 

treatment.   
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Cytokine production by BMDCs 

BMDCs (2,5 x 105) were seeded in 96-well plates and incubated with different 

TLR ligands and peptides as described above. Supernatants were collected 

after 6 h to determine TNF-α (eBioscience) and IL-6 (BD Biosciences) levels 

and after 24 h for IL-10 (BD Biosciences) and IL-12 (BioLegend) measurement. 

ELISAs were performed according to the manufacturer’s instructions. 

 

Flow cytometry staining of stimulated BMDCs 

For maturation analysis BMDCs (2 x 105) were seeded in 96-well plates and 

incubated with different TLR ligands and peptides as described above for 3h. 

Extracellular staining was performed for 20 min at 4°C, using the antibodies 

CD11c-APC (N418; Miltenyi Biotec), MHC class II-eFluor450 (M5/114.15.2; 

eBioscience), CD54-FITC (3E2; BD Biosciences), CD80-PE (16-10A1; BD 

Biosciences) and CD86-PE (GL-1; BD Biosciences), CD40-PerCP/Cy5.5 (3/23; 

BioLegend). Dead cells were excluded using either 7-aminoactinomycin D 

(Biomol) after the extracellular staining or using Zombie Aqua (BioLegend) 

before extracellular staining according to the manufacturer’s instructions. The 

cells were washed with PBS with 1% fetal calf serum (FCS; Sigma-Aldrich) and 

2 mM ethylenediaminetetraacetic acid (Sigma-Aldrich) prior and acquired using 

a Canto-II flow cytometer (BD Biosciences) with DIVA software (BD 

Biosciences). Data analysis was performed using FlowJo 10.0.7r2 software 

(Tree Star).  

 

OVA uptake by BMDCs after stimulation 

To test the antigen uptake capability of BMDCs, 5 x 106 cells were seeded in 

48-well plates and treated for 24 h as described above. Thereafter, cells were 

incubated with AlexaFluor647-labeled Ovalbumin (OVA) (10 μg/ml) for 30 min at 

37°C. Then the cells were washed with ice-cold PBS with 2% FCS followed by 

extracellular staining with MHC class II-eFluor450 (M5/114.15.2; eBioscience) 
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and CD11c-PE (N418; eBioscience) antibodies and flow cytometry 

measurement as described above.  

 

T-cell assay 

5 x 104 BMDCs were seeded in 96-well U-bottom plates and treated for 20 h as 

described above. Splenic CD4+ T cells from BALB/c mice were purified using 

the CD4+ T-Cell Isolation Kit II (Miltenyi Biotec) according to the manufacturer’s 

instructions. 2 x 105 CD4+ T cells were added to the BMDCs and cultured in 

RPMI-1640 medium (Merck) supplemented with 20% FCS (Sigma-Adrich), 2 

mM L-glutamine (Gibco), 100 U/ml penicillin/streptomycin (Gibco), 50 µM 2-

mercaptoethanol (Roth), 1mM sodium pyruvate (Merck), 10 mM HEPES-Buffer 

(Biochrom AG) and 1x non essential amino acids (Merck). 96 h later 

supernatants were collected for IL-17A (eBioscience) and IFN-γ (eBioscience) 

measurement and T cells were first stained with Zombie Aqua (BioLegend) 

according to the manufacturer’s protocol to exclude dead cells, followed by 

extracellular staining with CD4-eFluor450 (RM4-5; eBioscience), CD3e-APC-

Cy7 (145-2C11; BioLegend), CD25-APC (PC61; BioLegend), fixed and 

permeabilized (Foxp3 Staining Buffer Set, eBioscience) and stained intracellular 

with Foxp3-PE (eBioscience). 100,000 cells were acquired using Canto-II flow 

cytometer (BD Biosciences) as described above.  

 

Statistical analysis 

Statistical analysis was performed with the GraphPad Prism 6 software 

(GraphPad, San Diego, CA) using one-way ANOVA with Bonferroni posttest. 

The differences were considered as statistically significant if p < 0.05 (*), p < 

0.005 (**), p < 0.001 (***) or p < 0.0001 (****).  
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Results and Discussion 

PSMs generally modulate the TLR-induced cytokine release by DCs  

Previous data from our group showed that DCs treated with a TLR2 ligand (S. 

aureus lysate) in combination with PSMα peptides produce low amounts of the 

pro-inflammatory cytokines TNF, IL-12 and IL-6, but high amounts of the anti-

inflammatory cytokine IL-10 (Schreiner et al., 2013). Here, we addressed 

whether PSMs generally modulate TLR-stimulated cytokine release by DCs or 

whether this mechanism is specific for TLR2-activation. To investigate the effect 

of different TLRs, BMDCs (DCs) were treated with the following TLR ligands: 

Pam2CSK4 for TLR2/TLR6, Pam3CSK4 for TLR1/TLR2, S. aureus cell lysate 

mainly for TLR2 (Schreiner et al., 2013), LPS for TLR4, CpG ODN 1826 for 

TLR9, and Imiquimod for TLR7 in combination with a synthetic PSMα3 or a 

control peptide. Cell culture supernatants were taken after 6 h and 24 h and 

analyzed by ELISA. Treatment for 24 h with PSMα3 was not cytotoxic for the 

DCs, determined by a cell viability assay using Zombie Aqua (Fig. S1).  

IL-10 secretion by DCs treated with TLR ligands alone was comparable to DCs 

treated with TLR ligands in combination with the control peptide (Fig. 1A and 

Fig. S2A). The amount of IL-10 was significantly increased after DC treatment 

with TLR ligands in combination with PSMα3, with the highest amount produced 

after stimulation with the TLR-ligands S. aureus lysate, CpG and Imiquimod. 

Similar results although with minor differences were observed for mFPR2-

deficient DCs treated under the same conditions (Fig. S3A).  

The levels of the pro-inflammatory cytokines IL-6, TNF, and IL-12 were also 

increased 6 h and/or 24 h after DC treatment with the different TLR ligands 

alone or in combination with control peptide compared to the untreated DCs 

(Fig. 1B-D and Fig. S2B-D). Treatment of DCs with TLR ligands in combination 

with PSMα3 significantly impaired the production of all three cytokines tested 

compared to treatment with the TLR ligands alone (Fig. 1B-D and Fig. S2B-D).  
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FIGURE 1. PSMs modulate the TLR-induced cytokine release of wildtype DCs. 

BMDCs from wildtype mice were incubated for 24 h (A-B) or 6 h (C-D) with the 

indicated TLR ligands alone, TLR ligands in combination with PSMα3 peptide or TLR 

ligands in combination with control peptide. DCs without TLR ligand +/- PSMα3 or 

control peptide were used as negative controls (medium). Cell culture supernatants 

were collected and analyzed for IL-10 (A), IL-12 (B), TNF (C) and IL-6 (D) by ELISA. 

Data show one representative out of three independent experiments performed in 

triplicates (mean ± SEM). * indicate statistically significant differences compared with 

TLR ligand treated DCs. *p < 0.05, **p < 0.005, ***p < 0.001, ****p < 0.0001, one-way 

ANOVA with Bonferroni posttest. 
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Similar results were observed for mFPR2-/- DCs treated under the same 

conditions with minor significance compared to wildtype DCs (Fig. S3). Although 

PSMs bind to mFPR2 on the surface of DCs, our data are in accordance with 

previous results demonstrating an FPR2-independent modulation of cytokine 

production by DCs (Schreiner et al., 2013). Furthermore, the increase of the 

anti-inflammatory cytokine IL-10 upon PSM treatment is caused by direct 

interaction of intracellular PSM with p38 MAPK (Armbruster et al., 2016) and is 

therefore mainly receptor-independent. Together the data demonstrate a 

general effect of PSMα3 in modulating the cytokine production by DCs treated 

with various TLR ligands. The synergy between the various TLR ligands and 

PSMα3 in the induction of IL-10 production suggests that two signals may be 

required to activate or inhibit the production of certain cytokines from DC in 

vitro. The induction of a tolerogenic DC phenotype characterized by impaired 

secretion of pro-inflammatory cytokines (Li and Shi, 2015), but increased 

production of the anti-inflammatory cytokine IL-10 is described for various 

pathogens. For example, DCs produce high amounts of IL-10 in response to 

TLR4-activation and Bordetella pertussis infection (Higgins et al., 2003; 

McGuirk et al., 2002) as well as in response to Mycobacterium bovis activating 

TLR2 and TLR4 (Demangel and Britton, 2000; Uehori et al., 2003) and Yersinia 

pestis via TLR6 activation (DePaolo et al., 2008). Moreover, DC treatment with 

the enterotoxin cholera toxin from Vibrio cholerae in combination with LPS 

induced high IL-10 secretion (Lavelle et al., 2003) and the immunomodulatory 

molecule ES-62 from the parasite Filarial nematodes affects, dependent of 

TLR4 and MyD88 signaling, the IL-12 and TNF-α production by DCs (Goodridge 

et al., 2004). Thus, although the mechanisms are not fully understood, various 

bacterial and parasitic products induce DCs with a tolerogenic cytokine profile 

upon engagement of TLRs.  

 

PSMs affect the TLR-induced maturation of DCs  

Different TLR ligands induce maturation of DCs associated with the up-

regulation of MHC class II, co-stimulatory molecules like CD40, CD80 and 
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CD86 and adhesion molecules e.g. intercellular adhesion molecule 1 (CD54) 

(Merad et al., 2013). To analyze the effect of PSMs on the maturation process, 

DCs were treated for 3 h or 24 h with several TLR ligands and in combination 

with PSMα3 or the control peptide. Maturation markers were analyzed by flow 

cytometry (gating strategy in Figure S4). All TLR ligands alone and in 

combination with the control peptide led to maturation of DCs, characterized by 

up-regulation MHC class II (Fig. 2A and Fig. S5A), CD86 (Fig. 2B and Fig. 

S5B), CD80 (Fig. 2C and Fig. S5C), CD54 (Fig. 2D and Fig. S5D), and CD40 

(Fig. S5E) compared to untreated DCs. However, PSMα3 enhanced the co-

stimulatory potential of DCs via up-regulation of CD86 and CD80 expression in 

response to TLR ligands, but impaired the up-regulation of CD54 and CD40 

after 3 h and 24 h, respectively (Fig. 2D and Fig. S5D-E).  
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FIGURE 2. PSMs affect the TLR-induced maturation of DCs. BMDCs from wildtype 

mice were incubated for 3 h with the indicated TLR ligands, TLR ligands along with 

PSMα3 peptides or TLR ligands in combination with control peptide. The cells were 

stained with CD11c, MHC class II, CD86, CD80 and CD54 antibodies and analyzed by 

flow cytometry. Representative histogram overlays showing the median expression of 

MHC class II (A), CD86 (B), CD80 (C), and CD54 (D) on the surface of LPS-treated 

DCs (left). Graphs (right) show the statistical analysis of the depicted median 

normalized to untreated cells (medium) from TLR ligand-treated DCs (gated on 

CD11c+MHC II+ cells). Graphs show pooled data from three independent experiments 

performed in triplicates (mean ± SEM). * indicate statistically significant differences 

compared with TLR ligand treated DCs. *p < 0.05, **p < 0.005, ***p < 0.001, ****p < 

0.0001, one-way ANOVA with Bonferroni posttest. 
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Together these data show that PSMs in principle modulate TLR-induced DC 

maturation towards an intermediate phenotype, a prerequisite for priming of 

regulatory T cells. Tolerogenic DCs show, in addition to their modified cytokine 

pattern, high levels of MHC class II, CD80 and CD86 molecules but low 

expression of CD40 and CD54 (Mills, 2004).  

DCs lacking CD40 expression were shown to induce IL-10 secreting Tregs while 

suppressing primery immune responses (Martin et al., 2003). Interaction of 

CD54 with LFA-1 promotes TH1 priming independently of IL-12, while this TH1 

priming is blocked when DCs express high levels of CD80 and CD86, but low 

levels of CD40 and CD54 on their surface (McGuirk et al., 2002). Likewise DCs 

treated with cholera toxin and LPS showed enhanced CD80 and CD86 but 

reduced CD40 and CD54 expression (Lavelle et al., 2003). CD40 belongs to the 

TNFR superfamily (Quezada et al., 2004) and its expression is among others 

regulated by TNF-. We found that synergistic treatment of DCs with PSMα3 

and TLR ligands inhibits TNF-production already within 6 h, which likely 

prevents up-regulation of CD40 at later times as previously shown in a setting of 

Crohn’s disease (Danese et al., 2006). 

 

PSM-mediated modulation of TLR-induced DC maturation and 

cytokine secretion is p38-dependent 

Previously, we showed that PSMs directly interact with the MAPK p38, leading 

to its phosphorylation in DCs (Armbruster et al., 2016). To investigate the role of 

p38 phosphorylation in PSM-dependent maturation and cytokine secretion, DCs 

were pretreated with the p-p38 inhibitor SB 203580 for 1 h prior to stimulation 

with TLR ligands in combination with PSMα3. As described above, PSMα3 

enhanced the TLR ligand-induced up-regulation of MHC class II on DCs (Fig. 

2A, Fig. S5A and Fig. S6). In contrast, inhibition of p-38 signaling prevented this 

enhanced MHC class II up-regulation as DCs treated with SB 203580 together 

with TLR ligand and PSMα3 showed similar MHC class II surface expression 
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than DCs treated with the TLR ligand alone (Fig. S6). Moreover, inhibition of p-

38 signaling prevented the PSM-induced production of IL-10 upon TLR 

activation with Pam2 (Fig. 3A), Pam3 (Fig. 3B), sa lysate (Fig. 3C), LPS (Fig. 

3D), CpG (Fig. 3E), and Imiquimod (Fig. 3F).  

 

FIGURE 3. PSM-mediated modulation of TLR-induced DC maturation and cytokine 

secretion is p-p38-dependent. BMDCs were treated for 1h with the indicated 

concentrations of the p-p38 inhibitor SB 203580 prior to treatment with PSMα3 and 

Pam2 (A), Pam3 (B), S. aureus cell lysate (sa lysate) (C), LPS (D), CpG (E) and 

Imiquimod (F). 24 h later, cell culture supernatants were collected and analyzed for IL-

10 by ELISA. The graphs show one representative out of three independent 

experiments performed in triplicates (mean ± SEM). **p < 0.005, ***p < 0.001, ****p < 

0.0001, one-way ANOVA with Bonferroni posttest.   
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These data point towards a direct modulation of the MAPK p38-signaling 

pathway by PSMα3 upon TLR activation with various TLR ligands thereby 

enhancing MHC class II expression and IL-10 secretion by DCs. 

It is known that the MAPK p38 plays a critical role in DC maturation. 

Hemagglutinin B, a virulence factor of Porphyromonas gingivalis that binds to 

TLR4 activates the MAPK p38 thereby inducing DC maturation, indicated by up-

regulation of CD86 (Gaddis et al., 2009). Pre-treatment with the p38 MAPK 

inhibitor SB 203580 prevents p38 phosphorylation induced by TLR ligands in 

human DCs and thereby blocks the up-regulation of HLA-DR, CD80 and CD86 

(Arrighi et al., 2001). This is consistent with our hypothesis that PSM-mediated 

p38 phosphorylation accounts for enhanced up-regulation of MHC class II, 

CD80, and CD86 molecules in DCs. In this study we show that p38, modulated 

by PSMs, is one of the signaling molecules responsible for inducing maturation 

(MHC class II upregulation) and thus possibly affect co-stimulatory and 

adhesion molecule expression on DCs treated with TLR ligands. 

TLR activation in general leads to IL-10 expression in DCs via p38 MAPK 

signaling (Saraiva and O'Garra, 2010). PSM peptides of S. aureus (Armbruster 

et al., 2016), as well as the pathogenicity factor β hemolysin/cytolysin of Group 

B Streptococcus activate the p38 MAPK pathway thereby increasing the 

secretion of IL-10 (Bebien et al., 2012). 

 

PSMs attenuate antigen uptake of TLR-activated DCs 

Several molecules induce the differentiation of immature antigen-capturing DCs 

to mature antigen-presenting DCs (Merad et al., 2013; Steinman et al., 2003). 

To investigate whether PSMs affect antigen uptake upon TLR-activation, DCs 

were treated with various TLR ligands for 24 h, along with PSMα3 or the control 

peptide. Antigen uptake was analyzed by flow cytometry 30 min after incubation 

with the fluorescently labeled model antigen Ovalbumin (OVA). DCs treated 

with TLR ligands with or without the control peptide showed a decrease in OVA 

uptake compared to untreated immature DCs (medium) (Fig. 4), except for 
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Imiquimod treatment. TLR ligand treatment together with PSMα3 significantly 

further reduced OVA uptake by DCs compared to the ligands alone (Fig. 4).  

 

FIGURE 4. PSMs attenuate antigen uptake of TLR-activated DCs. BMDCs from 

wildtype mice were treated for 24 h with the indicated TLR ligands, TLR ligands in 

combination with PSMα3 peptides or control peptide, incubated with OVA-Alexa647 for 

30 min and analyzed by flow cytometry. Representative histogram overlay of OVA-

Alexa647 median in DCs treated with LPS, LPS together with PSMα3 peptide and in 

combination with control peptide (gated on CD11c+ MHC II+ cells) (left) and statistical 

analysis of the OVA-Alexa647 median from TLR ligand-treated DCs (right). Data show 

one representative out of three independent experiments performed in triplicates (mean 

± SEM). * indicate statistically significant differences compared with TLR ligand treated 

DCs. **p < 0.005, ***p < 0.001, one-way ANOVA with Bonferroni posttest. 

These data demonstrate that PSMα3 generally impairs OVA uptake by TLR 

ligand-treated DCs. 

The main function of immature DCs is to internalize antigens by endocytosis. In 

response to pro-inflammatory cytokines and microbial or viral products, which 

directly or indirectly interact with TLRs, DCs change their phenotype to mature 

DCs characterized by decreased endocytic but increased antigen presenting 

capacity (Cella et al., 1997; Garrett et al., 2000; Hackstein et al., 2002). LPS-

treated BMDCs demonstrated long-term down-regulation of macropinocytosis 

via actin remodeling and MAPK signaling (West, 2004). In contrast, toxin B from 

Clostridium difficile completely blocked macropinocytosis in immature BMDCs 

but did not affect the receptor-mediated endocytosis of FITC-transferrin (Garrett 

et al., 2000; West, 2004). We used OVA, which is mainly taken up by clathrin-

mediated endocytosis via the macrophage mannose receptor but also by 

macropinocytosis (Autenrieth et al., 2007; Burgdorf et al., 2006). The reduced 
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OVA uptake 24 h after TLR ligand treatment reflects the down-regulation of 

macropinocytosis upon DC maturation. As described previously, PSMs 

additionally impair clathrin-mediated endocytosis of OVA ((Schreiner et al., 

2013) and Fig. 4). In general, endocytosis is regulated by p38 MAPK signaling 

triggered by TLR stimulation (Zaru et al., 2007). Accordingly, OVA uptake by 

DCs is impaired by YopP, a virulence factor of Yersinia enterocolitica, via MAPK 

inhibition (Autenrieth et al., 2007). These results coincide with the observation 

that OVA uptake by DCs treated with different TLR ligands is impaired by PSMs 

via modulation of p38 signaling.  

 

PSMs induce TLR-activated DCs to prime Tregs  

We recently reported that PSMs lead to enhanced priming of Tregs in TLR2-

treated DCs by increased activation of the p38-CREB-IL-10 axis (Armbruster et 

al., 2016). To determine whether this is a TLR2-specific mechanism or also 

applies to other TLRs, DCs were treated with different TLR ligands in 

combination with PSMα3 or the control peptide for 24 h. Afterwards DCs were 

co-cultured with naïve CD4+ T cells for 96 h and T-cell priming was evaluated 

by flow cytometry. The frequency of CD4+CD25+Foxp3+ T cells within the 

fraction of living cells was significantly increased when DCs were treated with 

TLR ligands along with PSMα3 compared to DCs treated with TLR ligands 

alone (Fig. 5A-B). Moreover, we analyzed IFN-γ and IL-17-A in the supernatant 

of the co-cultures, to investigate T-cell priming towards Th1 and Th17 cells, 

respectively. CD4+ T cells co-cultured with DCs treated with TLR ligand alone or 

in combination with the control peptide produced significant amounts of IFN-γ 

and IL-17A (Fig. 5C-D). However, DCs treated with TLR ligands along with 

PSMα3 failed to prime Th1 and Th17 cells, as only low amounts of these 

cytokines were detected in the supernatants (Fig. 5 C-D).  
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FIGURE 5. PSMs induce TLR-activated DCs to prime Tregs. BMDCs from wildtype 

mice were incubated for 24 h with the indicated TLR ligands, TLR ligands in 

combination with PSMα3 peptides or control peptide. Then splenic CD4+ T cells 

isolated from Balb/c mice were added to the culture for 96 h. (A) Representative dot 

plots show flow cytometry analysis of CD4+CD25+Foxp3+ T cells from the co-culture of 

DCs treated with LPS (gating see Fig S7). Numbers adjacent to outlined areas indicate 

frequency of CD4+CD25+Foxp3+ T cells within the fraction of living cells. (B) Statistical 

analysis of CD4+CD25+Foxp3+ T cells after co-culture with DCs. (C-D) Cell culture 

supernatants were collected and analyzed for IFN-γ (C) and IL-17A (D) by ELISA. 

Graph shows one representative out of two (C-D) or three (A-B) independent 

experiments performed in triplicates (mean ± SEM). * indicate statistically significant 

differences compared with TLR ligand treated DCs. *p < 0.05, **p < 0.005, ***p < 

0.001, ****p < 0.0001, one-way ANOVA with Bonferroni posttest. 
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Together these data show that priming of Tregs by PSMα3-treated DCs, instead 

of Th1 or Th17, is a common mechanism for the various TLRs. 

The main function of mature DCs is to prime naïve T cells and induce their 

differentiation into various T-cell subsets. Tolerogenic DCs induce Tregs, which 

are beneficial for the host e.g. by mediating mucosal homeostasis against 

commensal bacteria as well as tolerance against self-antigens. On the other 

hand, increased numbers of Tregs mediating suppressive activity may contribute 

to the immune escape of pathogens or tumors (Maldonado and Andrian, 2010; 

Steinman et al., 2003; Yamazaki and Steinman, 2009). Indeed, depletion of 

Tregs in mice with malignancies or chronic S. aureus infection improve anti-tumor 

or anti-infection immune responses, respectively (Tebartz et al., 2015; Zou, 

2006). Therefore, understanding how DCs activate Tregs is critical for the 

development of therapeutic strategies in autoimmune dieseases, allograft 

rejection, allergies, asthma and various forms of hypersensitivity.  

Certain pathogens have evolved immune escape mechanisms via the induction 

of Tregs (Maldonado and Andrian, 2010). Still, the contribution of tolerogenic DCs 

in these settings is unclear. Some pathogens, like F. hepatica, C. albicans, S. 

japonicum, S. mansoni, B. pertussis and V. cholerae have been shown to 

promote DC tolerogenicity and induce Treg differentiation. However, the 

molecular basis for their recognition and signaling remain largely unknown 

(Maldonado and Andrian, 2010). Likewise, adoptive transfer of BM-DCs 

incubated with Cholera toxin primed IL-10 secreting T cells (Lavelle et al., 

2003). 

The data from this study are a proof of concept of the potential usefulness of S. 

aureus’ PSMα3 to induce tolerogenic DCs when different TLRs are activated. 

One could speculate to use in vitro generated PSM-treated tolerogenic DCs for 

cellular therapy (Lutz, 2012; Maldonado and Andrian, 2010). A major problem of 

systemic immunosuppressors is that they exert extensive side effects on 

immune cells. On the contrary, tolerogenic DCs may induce tolerance to the 

pathologic immune responses in a patient without affecting the immune defense 

against pathogens or tumors. However, the ability of PSMs to generate 
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tolerogenic DCs in the human system remains to be confirmed before applying 

them as cellular therapy. 
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Figure S1: Cell viability assay  

BMDCs from wildtype mice were treated for 24 h with the indicated TLR ligands 

alone, TLR ligands in combination with PSMα3 peptide or TLR ligands in 

combination with control peptide. Cells were stained with Zombie Aqua, and 

analyzed by flow cytometry for the frequency of living (Zombie Aqua-) DCs. 

Graphs show one representative out of more than three independent 

experiments performed in triplicates (mean ± SEM).  
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Figure S2: PSMs modulate the TLR-induced cytokine release of wildtype 

DCs  

BMDCs from wildtype mice were incubated for 6 h (A-B) or 24 h (C-D) with the 

indicated TLR ligands alone, TLR ligands in combination with PSMα3 peptide or 

TLR ligands in combination with control peptide. Untreated DCs (medium) were 

used as negative control. Cell culture supernatants were collected and analyzed 

for IL-10 (A), IL-12 (B), TNF (C) and IL-6 (D) by ELISA. Data show one 

representative out of two independent experiments performed in triplicates 

(mean ± SEM). * indicate statistically significant differences compared with TLR 

ligand treated DCs. *p < 0.05, **p < 0.005, ***p < 0.001, ****p < 0.0001, one-

way ANOVA with Bonferroni posttest.  
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Figure S3: PSMs modulate the TLR-induced cytokine release of mFPR2-/- 

DCs  

BMDCs from FPR2-/- mice were incubated for 24 h (A-B) or 6 h (C-D) with the 

indicated TLR ligands alone, TLR ligands in combination with PSMα3 peptide or 

TLR ligands in combination with control peptide. Untreated DCs (medium) were 

used as negative control. Cell culture supernatants were collected and analyzed 

for IL-10 (A), IL-12 (B), TNF (C) and IL-6 (D) by ELISA. Data show one 

representative out of three independent experiments performed in triplicates 

(mean ± SEM). * Statistically significant differences compared with TLR ligand 

treated DCs. *p < 0.05, **p < 0.005, ***p < 0.001, ****p < 0.0001, one-way 

ANOVA with Bonferroni posttest.  
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Figure S4: Gating strategy DCs 

Dot plots show the gating strategy used to define CD11c+MHC II+ DCs by flow 

cytometry. Cells were gated as follows: single cells/leucocytes/living cells/DCs. 
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Figure S5: PSMs affect the TLR-induced maturation of DCs after 24h 

BMDCs from wildtype mice were incubated for 24 h with the indicated TLR 

ligands, TLR ligands along with PSMα3 peptides or TLR ligands in combination 

with control peptide. The cells were stained with CD11c, MHC class II, CD86, 

CD80, CD54 and CD40 antibodies and analyzed by flow cytometry. Statistical 

analysis of the median of MHC class II (A), CD86 (B), CD80 (C), CD54 (D) and 

CD40 (E) expression from TLR ligand-treated DCs (gated on CD11c+MHC II+ 

cells). Graphs show one representative out of two independent experiments 

performed in triplicates (mean ± SEM). * indicate statistically significant 

differences compared with TLR ligand treated DCs. *p < 0.05, **p < 0.005, ***p 

< 0.001, ****p < 0.0001, one-way ANOVA with Bonferroni posttest.  
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Figure S6: PSMs modulate the maturation of BMDCs in a p38-dependent 

manner 

BMDCs from wildtype mice were pretreated for 1 h with the p-p38 inhibitor SB 

203580 and then incubated for 3 h with the indicated TLR ligands and TLR 

ligands along with PSMα3 peptide. The cells were stained with CD11c and 

MHC class II antibodies and analyzed by flow cytometry. Bar graphs represent 

the median MHC class II expression normalized to untreated cells (medium). 

Data show one representative out of three independent experiments performed 

in triplicates (mean ± SEM). * Statistically significant differences compared with 

TLR ligand treated DCs.  *p < 0.05, **p < 0.005, ***p < 0.001, ****p < 0.0001, 

one-way ANOVA with Bonferroni posttest. 
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Figure S7: Gating strategy Tregs 

Dot plots show the gating strategy used to define CD4+CD25+ T cells by flow 

cytometry 4 days after co-culture of TLR- and PSM-treated DCs with naïve 

CD4+ T cells. Cells were gated as follows: single cells/leukocytes/living 

cells/CD4+/CD25+ 

 

 

 

 

 

 

 

 

 

 

  



General discussion  

97 

 

4 General discussion 

 p38 MAPK signaling in immune cells modulated by virulence factors 4.1

The major human pathogen S. aureus produces a broad repertoire of secreted 

and cell surface-associated factors to evade the host immune system. Multi-

resistant CA-MRSA strains, such as USA300, are specialized in high-level 

production and secretion of virulence factors, leading to different pathologies 

ranging from local SSTIs to severe sepsis (R. Wang et al., 2007). Various 

immune cells, especially those of the innate immune system, interact with these 

molecules produced by the invading pathogen. PSMs, a significant group of 

virulence factors secreted by CA-MRSA fold into a structure that enables these 

peptides to lyse neutrophils, which are the first line of defense against bacterial 

infections (R. Wang et al., 2007). DCs, specialized APCs that link the innate 

and adaptive immunity, are affected by PSMs in their response to TLR2 ligands 

and are subsequently affected in T cell priming. This effect is characterized by 

inhibited production of the pro-inflammatory cytokines IL-12, TNF and IL-6 but 

increased secretion of the anti-inflammatory cytokine IL-10; reduced 

endocytosis of antigens; and inhibited Th1 differentiation but increased priming 

of Tregs (Schreiner et al., 2013). These mechanisms allow the pathogen to evade 

the host immune response. However, it is not known which signaling pathway is 

modulated by PSMs leading to the increased IL-10 production upon TLR2 

ligand treatment in DCs. 

Within this work, we show that BM-DCs treated with S. aureus cell lysate (a 

TLR2 ligand) and PSMα3 display increased phosphorylation of the p38-CREB 

signaling pathway. Blocking this pathway leads to the inhibition of IL-10 

secretion, as well as inhibition of the induced Treg priming in the presence of 

PSMs. However, immunomodulatory properties, including activating the MAPK 

p38 pathway, are not unusual for various pathogens.  

A compromised immune response is an often caused problem by secreting 

factors of pathogens that mediate host immune system evasion and therefore 
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are associated with more serious diseases. Other studies have revealed that α-

Toxin, a virulence factor of S. aureus, induces the phosphorylation of p38 

MAPK in the non-virally transformed HaCaT keratinocyte cell line, thereby 

activating cellular recovery mechanisms, as p38 is considered a survival protein 

in these cells. (Husmann et al., 2006). PVL, another virulence factor of CA-

MRSA, also increases p38 MAPK phosphorylation in human and mouse 

neutrophils in a concentration-dependent manner to modulate the cytokine 

immune response, as we observed for PSMs in murine BM-DCs (Yoong and 

Pier, 2012). Moreover, in line with our findings, one group showed that the β 

hemolysin/cytolysin toxin from Group B Streptococcus leads to the production of 

IL-10 in macrophages in a p38-dependent manner (Bebien et al., 2012). IL-10 

production in response to a microbial stimulus was also observed in a viral 

context. The A52R protein of Vaccinia virus activates MAPKs and is able to 

induce the IL-10 promoter. A52R also serves as a co-inducer of TLR4-triggered 

IL-10 production by LPS (Maloney et al., 2005). Furthermore, the hepatitis B 

virus modulates the ability of natural killer cells to control infection by 

suppressing p38 with the two viral antigens HBsAg and HBeAg (Yang et al., 

2016). In addition, parasites modulate p38 signaling as a mechanism of immune 

evasion. For example, Neospora caninum increases p38 phosphorylation in 

macrophages (Mota et al., 2016); in contrast, Leishmania donovani 

promastigotes prevent MAPK activation in naïve macrophages (Privé and 

Descoteaux, 2000). Moreover, BM-DCs treated with tumor culture conditioning 

medium have induced p38 MAPK activation but inhibit DC differentiation. This 

effect allows the tumor to evade detection by immune cells (S. Wang et al., 

2006).  

Furthermore, we show in BM-DCs both that p38 is modulated and that there is a 

direct co-localization between PSMα2 and p38 or phosphorylated p38 MAPK. 

However, PSMs are not the only virulence factors known to directly interact with 

MAPKs. For example, YopJ of Yersinia binds directly to MKKs; however, in 

contrast to PSMs, YopJ blocks the phosphorylation and activation of MKKs. 

This interaction results in the inhibition of a pro-inflammatory cytokine response 

(Orth et al., 1999).  
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In summary, the capacity of various pathogens or their released factors to 

modulate the phosphorylation state of the p38 MAPK (or other MAPK family 

members) highlights the value of future research on this signaling molecule as a 

potential target for treatment of infections. The signaling molecule p38 plays a 

variety of key roles in many cellular mechanisms; therefore, specificity is an 

important factor when targeting MAPKs to avoid side effects, such as the 

inhibition of other protein kinases. Specific kinase inhibitors often cannot be 

used because of toxicity or solubility concerns. The development of molecules 

that interfere with this pathway through inhibition of protein kinase activity can 

support the discovery of new therapeutic targets against bacteria that are highly 

resistant to antibiotic treatment, such as CA-MRSA.     

 Mechanism of virulence factor interaction with innate immune cells  4.2

S. aureus utilizes secretion of various types of virulence factors to promote 

severe infections. Among these are different secreted toxins, which play a key 

role in the evasion of the host immune response as well as in pathogenesis 

directly through the killing of several diverse cell types or the interruption of 

different barriers in the host. S. aureus virulence factors are classified into 

different groups depending on their ability to damage the membrane in a 

receptor-dependent or independent manner or depending on their enzymatic 

activity (Otto, 2014). The virulence factors α-Toxin and PVL belong to the 

receptor-dependent group due to the interaction with their specific receptors 

ADAM10 and the complement receptor C5aR, respectively, to initiate cytolytic 

activity (Otto, 2014; Spaan et al., 2013; Wilke and Bubeck Wardenburg, 2010). 

Although PSMs are able to bind to the FPR2 receptor expressed on different 

immune cells, they also attach to the membrane in a receptor-independent non-

specific mechanism, leading to membrane disruption. The α-helical structure 

and detergent-like properties of PSMs may contribute to their cell-damaging 

capabilities. The factors that play important roles in the sensitivity of cells to 

PSMs are phospholipid constitution and charge of the cell membrane (Otto, 

2014). 
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Our data show that PSMα2 and PSMα3 are internalized by DCs independently 

of binding to their receptor FPR2 and independently of macropinocytosis or 

receptor-mediated endocytosis. Instead, PSMα3 peptides penetrate DCs by 

transient pore formation. For δ-toxin, one member of the PSM group, it is 

already known that short-lived pores are formed, and these are dependent on 

peptide density. High concentrations induce polymer structures that disturb the 

membrane and ultimately lead to membrane fragmentation (Talbot et al., 2001). 

These findings support our results, as δ-toxin showed the same lactate 

dehydrogenase (LDH) release levels from DCs as PSMα3, and δ-toxin is 

classified as an α-type PSM based on its structure and functions. In neutrophils, 

high concentrations of PSMα3 cause lysis of the cells independent of the FPR2 

receptor, which is also likely due to membrane damage (Kretschmer et al., 

2010; R. Wang et al., 2007). Thus, PSMs can be classified into the group of 

pore-forming toxins (PFTs), which are known for their virulence properties in a 

large number of pathogens. Furthermore, PFTs can induce the production of 

various cytokines, including TNF-α, IL-1β and IL-6, which are mainly produced 

by phagocytes (Chopra et al., 2000). PFTs are also beneficial for the bacteria 

by subverting the host immune response via their cytotoxic activity against 

immune cells or by supporting intracellular survival of the pathogens. Other 

studies have already shown that PSMα peptides are essential for the 

phagosomal escape of S. aureus and their intracellular replication, which further 

supports the theory that PSMs belong to the PFT family (Grosz et al., 2014).  

In summary, PFTs are essential for S. aureus to ensure survival against the 

host innate immune response, where α-type PSMs play a crucial role in 

pathogenesis. In addition, β-type PSMs are critical for the processes of surface 

colonization and/or biofilm formation. This group of virulence factors has the 

potential to be used as a target for new therapeutic strategies, as PFTs are 

widespread among bacterial pathogens. In the search for new potential 

abtibacterial drugs or new targets for vaccination, targeting virulence factors like 

PFTs may be a promising possibility in fighting multi-resistant S. aureus strains. 

Furthermore, PFTs can be used as a component of cocktails to attack infected 

cells.     
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 Tolerogenic DCs induced by various virulence factors 4.3

DCs, which are essential APCs, play an important role in linking innate and 

adaptive immunity and are also in the position to suppress or resolve ongoing 

immune responses. These cells are key players in the induction and 

maintenance of central and peripheral tolerance (Steinman et al., 2003). The 

so-called tolerogenic DCs induce tolerance through several different 

mechanisms, including the priming of regulatory T cells, the suppression of T 

effector cells, the initiation of apoptosis of autoreactive T cells and the 

production of immunomodulatory and immunosuppressive molecules (Bonasio 

et al., 2006; Ilarregui et al., 2009; Maldonado and Andrian, 2010). Different 

frameworks exist to distinguish between a more tolerogenic or more 

inflammatory DC. The activation status of the DC, as well as the 

microenvironment of the progenitor cells, plays a key role in this distinction 

(Tisch, 2016; Xia et al., 2016). Tolerogenic DCs contain different DC subgroups 

comprising immature DCs as well as DCs with a more mature activation status. 

At first, immature DCs were described as having a low-level MHC class II and 

co-stimulatory molecule expression with the ability to prime naïve CD4+ T cells 

into Tregs; however, more mature DCs share this capacity (Spörri and Reis e 

Sousa, 2005). Immature DCs can be manipulated by exposure to different 

cytokines or pathogenic factors, leading to a mature DC phenotype 

characterized by an increased expression of MHC class II and co-stimulatory 

molecules, but their functions in priming Tregs are not altered (Tisch, 2016).  

Here, we demonstrate that BM-DCs stimulated with various TLR ligands and 

PSMα3 of S. aureus show a tolerogenic phenotype. The stimulation leads to 

increased expression of MHC class II, CD80 and CD86 as well as increased 

priming of Tregs, but it also results in reduced production of the Th17 cytokine IL-

17A and complete inhibition of the Th1 cytokine IFN-γ. S. aureus is not the only 

pathogen that uses the production of toxins to induce tolerogenic DCs, which 

then support the pathogen by subverting the host immune system. Adenylate 

cyclase toxin CyaA from Bordetella pertussis in combination with a TLR signal 

reprograms DCs towards a tolerogenic phenotype that induces a Th2/Treg 

response. CyaA promotes a similar cytokine profile to PSMα3 in tolerogenic 



General discussion  

102 

 

DCs, including suppression of IL-12 but enhanced IL-10 production combined 

with an increase in MHC class II, CD80 and CD86 (Ross et al., 2004). 

Furthermore, VacA, a pore-forming toxin of Helicobacter pylori, displays a 

similar phenotype to PSMα peptides in inducing tolerogenic DCs. VacA-

stimulated BM-DCs in combination with the TLR4 ligand LPS prevent IL-12 

production and induce priming of T regulatory cells. In contrast, VacA mutants 

demonstrat an enhanced Th1 and Th17 response, further supporting our results 

(Oertli et al., 2013). Priming of Tregs by PSMα3 and TLR-stimulated BM-DCs 

through increased production of IL-10 by these cells is dependent on the MAPK 

signaling molecule p38. CyaA and VacA are also well known for their ability to 

modulate MAPK p38 activation (Hickey et al., 2008; Isomoto et al., 2010).  

In general, tolerogenic DCs appear to be an interesting target as they are 

triggered by various different pathogens and have a wide influence on host cell 

immune responses in both healthy and disease states. Further understanding 

the mechanisms that induce tolerogenic DCs will be beneficial in the future to 

generate tolerogenic DCs ex vivo as potential new strategies for different 

therapeutic approaches. With their increased IL-10 secretion, tolerogenic DCs 

play key roles in bacterial infections and inflammatory diseases, including 

multiple sclerosis, and in promoting the long-term survival of transplant patients 

and people with autoimmune diseases.       
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