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Abstract		

Navigating	 through	 the	 environment	 is	 one	of	 the	 important	 everyday	 tasks	 of	

the	 visual	 system.	 This	 task	 relies	 on	 processing	 of	 at	 least	 two	 visual	 cues:	 visual	

motion,	 and	 scene	 content.	 Our	 sense	 of	motion	 heavily	 relies	 on	 understanding	 and	

separating	 visual	 cues	 resulting	 from	 object	 motion	 and	 self-motion.	 Processing	 and	

understanding	 of	 visual	 scenes	 is	 an	 equally	 abundant	 task	we	 are	 exposed	 to	 in	 our	

everyday	 environment.	 Together,	 motion	 and	 scene	 processing	 allow	 us	 to	 fulfill	

navigation	tasks	such	as	way	finding	and	spatial	updating.		

In	terms	of	neural	processing,	both,	regions	 involved	in	motion	processing,	and	

regions	 involved	 in	scene	processing	have	been	studied	 in	great	detail.	However,	how	

motion	regions	are	influenced	by	scene	content	and	how	scene	regions	are	involved	in	

motion	processing	has	barely	been	addressed.	

In	 order	 to	 understand	 how	 self-motion	 and	 scene	 processing	 interact	 in	 the	

human	 brain,	 I	 completed	 a	 series	 of	 studies	 as	 part	 of	 this	 thesis.	 First	 of	 all,	 using	

planar	 horizontal	motion	 and	 visual	 scenes,	 the	 first	 study	 of	 this	 thesis	 investigates	

motion	responses	of	scene	regions.	The	next	study	investigates	whether	eye-centered	or	

world-centered	 reference	 frames	 are	 used	 during	 visual	 motion	 processing	 in	 scene	

regions,	using	objective	‘real’	motion	and	retinal	motion	during	pursuit	eye	movements	

and	 natural	 scene	 stimuli.	 The	 third	 study	 investigates	 the	 effect	 of	 natural	 scene	

content	during	objective	and	retinal	motion	processing	in	motion	regions.	The	last	study	

investigates	how	motion	speed	 is	 represented	 in	motion	 regions	during	objective	and	

retinal	 motion.	 Since	 many	 visual	 areas	 are	 optimized	 for	 natural	 visual	 stimuli,	 the	

speed	responses	were	tested	on	Fourier	scrambles	of	natural	scene	images	in	order	to	

provide	natural	scene	statistics	as	visual	input.	

I	 found	 evidence	 that	 scene	 processing	 regions	 parahippocampal	 place	 area	

(PPA)	and	occipital	place	area	(OPA)	are	motion	responsive	while	retrosplenial	cortex	

(RSC)	is	not.	In	addition,	PPA’s	motion	responses	are	modulated	by	scene	content.	With	

respect	to	reference	frames,	I	found	that	PPA	prefers	a	world-centered	reference	frame	

while	viewing	dynamic	scenes.			

The	 results	 from	motion	 regions	 (MT/V5+,	V3A,	V6	and	cingulate	 sulcus	visual	

area	(CSv))	revealed	that	motion	responses	of	all	of	them	are	enhanced	during	exposure	



	

to	 scenes	 compared	 to	 Fourier-scramble,	 whereas	 only	 V3A	 responded	 also	 to	 static	

scenes.	The	last	study	showed	that	all	motion	responsive	regions	tested	(MT/V5,	MST,	

V3A,	V6	and	CSv)	are	modulated	by	motion	speed	but	only	V3A	has	a	distinctly	stronger	

speed	tuning	for	objective	compared	to	retinal	motion.		

These	 results	 reveal	 that	 using	 natural	 scene	 stimuli	 is	 important	 while	

investigating	self-motion	responses	in	human	brain:	many	scene	regions	are	modulated	

by	motion	and	one	of	them	(PPA)	even	differentiates	object	motion	from	retinal	motion.		

Conversely,	 many	 motion	 regions	 are	 modulated	 by	 scene	 content	 and	 one	 of	 them	

(V3A)	 is	even	responsive	 to	still	 scenes.	Moreover,	 the	objective	motion	preference	of	

V3A	is	even	stronger	during	higher	speeds.	These	results	question	a	strong	separation	

of	‘where’	and	‘what’	pathways	and	show	that	scene	region	PPA	and	motion	region	V3A	

have	similar	objective	motion	and	scene	preferences.	
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1. 	Synopsis	

The	 visual	 system	 performs	many	 important	 roles	 that	we	 are	 not	 necessarily	

aware	of.	Keeping	a	stable	perception	of	the	world	despite	continuous	head-,	body-	and	

eye-movement	is	one	of	the	important	roles	of	the	visual	system.	In	order	to	distinguish	

whether	 the	 perceived	motion	 is	 self-induced	motion	 or	motion	 induced	 by	 external	

movement,	 i.e.	 real	motion,	 the	 visual	 system	needs	 to	 utilize	 retinal	 inputs	 and	non-

retinal	 motion	 cues.	 As	 a	 result,	 visual	 system	 generates	 an	 implicit	 map	 of	 self-

generated	 motion	 and	 uses	 this	 map	 on	 different	 tiers	 of	 visual	 processing	 such	 as	

motion	processing,	scene	processing	and	navigation.	Yet,	the	mechanisms	behind	stable	

perception	during	eye	movements	are	still	not	well	known.		

Self-motion	 processing	 is	 important	 for	 spatial	 processing.	 	 While	 moving	

through	 space,	 the	 visual	 system	helps	mapping	 the	 space	 for	 further	 use.	 The	 visual	

system	needs	 to	 collect	 information	 about	 the	 environment	 it	 interacts	with,	 and	 the	

visual	 basis	 of	 this	 environment	 consists	 of	 visual	 scenes.	 However,	 most	 studies	

investigating	 self-motion	 used	 simple	 dot-field	 stimuli.	 High-level	 visual	 motion	

processing	 involving	 complex	 stimuli	 remains	 unexplored.	 Scenes	 represent	 one	 such	

class	of	complex	stimuli	and	possess	additional	features	of	interest.	

Given	that	the	content	that	is	perceived	as	stable	during	eye	movements	typically	

consists	of	real-world	scenes,	it	is	also	crucial	to	investigate	how	these	mechanisms	are	

affected	by	scene	content.	For	instance,	naturalistic	stimuli	have	been	shown	to	be	more	

optimal	 for	 studying	properties	of	 the	visual	 system	(Kayser,	Kording,	&	Konig,	2004;	

Parraga,	Troscianko,	&	Tolhurst,	2000;	Vinje	&	Gallant,	2000).	In	order	to	perceive	the	

spatial	 layout	 correctly,	 the	 visual	 system	 integrates	 the	 scene	 from	 different	

viewpoints.	Visual	scenes	we	see	and	interact	with	in	daily	life	are	mostly	moving.	Yet,	

our	brain	recognizes	the	scenes	and	most	of	the	time	processes	them	without	us	even	

noticing.	The	visual	system	needs	to	keep	both	scene	specific	representations	and	scene	

invariant	representations	at	 the	same	time.	This	could	be	done	either	by	representing	

details	 of	 scene	 snapshots	 or	 by	 an	 extended	 representation	 including	 multiple	

successive	views	of	the	scene.	Most	studies	on	scene	processing	were	done	using	static	

scenes	or	snapshots	of	scenes.	Similarly,	most	studies	on	motion	processing	were	done	

using	abstract	stimuli	such	as	gratings	or	random	dot	displays.	In	real	life,	we	encounter	
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dynamic	scenes.	Little	 is	known	on	how	the	content	 such	as	 real	world	scenes	affects	

motion	responses	and	how	motion	affects	scene	processing	in	the	brain.	

During	 self-motion,	 the	 visual	 system	 needs	 to	 use	 both	 world-centered	 and	

retinotopic	representations	of	visual	data	for	spatial	updating,	such	as	keeping	track	of	

the	location	of	objects	and	self	separately.	As	we	move	through	space,	objects’	locations	

on	 our	 retina	 constantly	 change.	 Yet,	we	 do	 know	 and	 can	 keep	 track	 of	 the	 location	

information	of	objects.	This	 is	called	spatial	updating.	 In	order	to	be	able	to	do	spatial	

updating,	 the	 visual	 system	 needs	 to	 use	 both	 world-centered	 and	 retinotopic	

representations	of	visual	data,	such	as	object	location.	Indeed,	many	studies	established	

which	 brain	 regions	 are	 associated	 with	 world-centered	 representation.	 Higher-level	

motion	processing	regions	such	as	MST,	V3A	and	V6,	as	well	as	many	parietal	regions,	

are	 modulated	 by	 world-centered	 representation	 of	 the	 motion	 (Erickson	 &	 Thier,	

1991;	 Galletti,	 Battaglini,	 &	 Fattori,	 1990;	 Ilg,	 Schumann,	 &	 Thier,	 2004).	 World-

centered	 and	 eye-centered	 representations	 of	 scenes	 might	 exist	 in	 different	 visual	

regions.	

The	current	PhD	thesis	focuses	on	how	the	naturalistic	scene	stimuli	affect	self-

motion	 processing	 in	 human	 brain.	 In	 more	 detail,	 this	 thesis	 investigates	 how	 the	

visual	system	unravel	self-generated	motion	from	object	motion	during	smooth	pursuit	

eye	movements	 on	naturalistic	 stimuli	 such	 as	 visual	 scenes,	 by	 utilizing	 self-induced	

retinal	signals.	Here,	I	address	these	questions	using	continuous	horizontal	motion	and	

natural	 scene	 stimuli.	 Horizontal	motion	 is	 very	 common	 in	 nature	 and	 it	 resembles	

lateral	 head	 movements,	 eye	 movements	 or	 looking	 out	 of	 a	 moving	 train.	 It	 is	 also	

found	 in	 movies	 and	 visual	 system	 prefers	 horizontal	 motion	 (Bartels,	 Zeki,	 &	

Logothetis,	2008).	

This	thesis	presents	four	studies	that	use	functional	magnetic	resonance	imaging	

(fMRI)	 technique.	 In	 the	 experiments	 explained	 in	 chapters	 3,	 4	 &	 5,	 I	 used	 a	 well-

established	 paradigm	 with	 2	 factors;	 objective	 motion	 and	 pursuit	 eye	 movements	

(Fischer,	 Bulthoff,	 Logothetis,	 &	 Bartels,	 2012a).	 This	 design	 helped	 me	 to	 separate	

world-centered	 (‘objective’)	 and	 eye-centered	 (‘retinal’)	 motion	 responses	 during	

smooth	pursuit	eye	movements.	Before	starting	to	investigate	world-	centered	and	eye-

centered	motion	 responses	 in	 scene	 regions,	 I	 first	 conducted	 the	 study	 explained	 in	

chapter	2,	 to	characterize	motion	responses	 in	scene	regions,	 since	 this	was	not	done	
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before.	The	paradigm	was	background	moving	or	static	when	eyes	were	fixated	and	the	

background	 content	 was	 also	 varied	 i.e.	 either	 natural	 outdoor	 scenes	 or	 Fourier	

scramble	images	of	those	scenes.	That	way,	the	motion	responses	in	scene	regions	and	

whether/how	those	responses	are	modulated	by	scene	content	was	nicely	investigated	

in	one	experiment.		Next,	in	chapter	3,	I	investigated	whether	scene	regions	use	world-

centered	or	eye-centered	reference	frames.	The	stimuli	consisted	of	the	aforementioned	

paradigm	with	objective	motion	and	pursuit,	as	well	as	an	additional	factor	for	scenes.	

The	 study	 in	 chapter	 4	 investigates	 how	 the	 motion	 processing	 regions	 are	

modulated	by	scene	content	and	how	their	scene	modulation	depends	on	objective	and	

retinal	 motion,	 respectively.	 Finally,	 Chapter	 5	 examines	 the	 speed	 tuning	 of	 motion	

regions	 during	 objective	 and	 retinal	 motion.	 The	 speed	 tuning	 properties	 are	

investigated	 using	 scrambled	 scene	 images	 in	 order	 to	 provide	 naturalistic	 image	

statistics	for	the	visual	system.		

In	this	chapter,	I	give	an	overview	of	scene	processing	and	motion	processing,	a	

definition	of	objective	and	retinal	motion,	an	overview	of	literature	on	eye	movements,	

speed	 processing	 and	 reference	 frames,	 as	well	 as	 an	 overview	 of	 the	 studies	 in	 this	

thesis	and	their	results.		

1.1. Neural	processing	of	scenes	

Understanding	 and	 perceiving	 the	 environment	 around	 us	 is	 one	 of	 everyday	

tasks	of	the	visual	system.	Scene	processing	is	crucial	for	higher-level	functions	such	as	

navigation	 or	 self-motion	 perception.	 Visual	 system	 can	 recognize	 scenes	 and	 extract	

information	 regarding	 scene	 category	 or	 scene	properties	 such	 as	 scene	 layout	 easily	

and	 in	 a	 very	 short	 time.	 Previous	 studies	 on	 scene	 processing	 have	 shown	 that	 the	

parahippocampal	place	area	(PPA)	(Epstein	&	Kanwisher,	1998)	and	the	retrosplenial	

cortex	(RSC)	(Maguire,	2001),	as	well	as	a	 less	studied	area	occipital	place	area	(OPA)	

(also	known	as	 transverse	occipital	sulcus	(TOS))	(Dilks,	 Julian,	Paunov,	&	Kanwisher,	

2013;	Epstein,	Higgins,	&	Thompson-Schill,	2005;	Hasson,	Harel,	Levy,	&	Malach,	2003),	

have	 a	 key	 role	 in	 understanding	 and	 representing	 scenes.	 The	 perception	 of	 scenes	

around	us	seems	to	be	very	well	integrated	and	continuous.	To	enable	both	specificity	

and	 invariance	during	scene	processing,	multiple	 levels	of	scene	representation	might	

coexist	 in	 human	 brain.	 During	 natural	 scene	 viewing,	 the	 retinal	 image	 constantly	

changes	 and	 scene	 regions	 may	 be	 playing	 a	 role	 in	 stable	 perception	 of	 scenes,	 for	
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instance	by	using	large-scale	features	of	scenes	to	keep	the	representation	of	the	scenes	

stable.	 	 Henderson	 et	 al.	 found	 that	 PPA	 responds	 in	 a	 gradual	 way	 as	 snapshots	 of	

scenes	become	more	like	a	complete	scene	while	RSC	responds	just	to	the	presence	of	a	

complete	 scene	 (Henderson,	 Larson,	 &	 Zhu,	 2008).	 These	 results	 suggest	 scene-

processing	 areas	 are	 particularly	 sensitive	 to	 the	 3D	 geometric	 structure	 that	

distinguishes	 scenes	 from	 other	 types	 of	 complex	 and	 meaningful	 visual	 stimuli	

(Henderson	et	al.,	2008).	However,	the	exact	role	of	scene-processing	regions	in	scene	

processing	is	still	under	debate.	

PPA	 is	 the	 most	 studied	 region	 amongst	 these	 scene	 responsive	 regions.	 It	

prefers	scenes	or	houses	 to	 faces,	different	objects	and/or	scrambled	scenes	(Epstein,	

Harris,	Stanley,	&	Kanwisher,	1999).	Lesions	 in	 the	PPA	can	 lead	to	a	 total	 inability	 to	

identify	 scenes	 and	 landmarks	 (Mendez	 &	 Cherrier,	 2003).	 It	 is	 thought	 that	 PPA	 is	

selectively	processing	spatial	layout	of	the	scenes	(Epstein,	2008)	and	it	mainly	encodes	

spatial	 aspects	 of	 scenes	 (Kravitz,	 Peng,	 &	 Baker,	 2011).	 Yet,	 its	 actual	 role	 in	 scene	

processing	is	still	not	entirely	understood.	Parahippocampal	region	has	two	retinotopic	

regions,	 PHC-1	 and	 PHC-2	 ((Arcaro,	 McMains,	 Singer,	 &	 Kastner,	 2009),	 but	 also	 see	

(MacEvoy	&	Epstein,	2007),	which	concludes	that	PPA	and	RSC	are	insensitive	to	retinal	

position	 of	 the	 stimuli).	 Many	 studies	 suggest	 that	 PPA	 encodes	 spatial	 layout	 in	 a	

viewpoint	 dependent	 way	 (Epstein,	 Graham,	 &	 Downing,	 2003;	 Epstein,	 Higgins,	

Jablonski,	&	Feiler,	2007;	Epstein	et	al.,	2005;	Park	&	Chun,	2009;	Park,	Chun,	&	Johnson,	

2010).	Another	 view	on	PPA	 focuses	 on	 its	 responses	 to	physical	 features	 of	 a	 scene,	

such	as	high	spatial	frequencies	(Rajimehr,	Devaney,	Bilenko,	Young,	&	Tootell,	2011)	or	

a	preference	for	cardinal	over	oblique	orientation	(Nasr	&	Tootell,	2012).	Whether	PPA	

is	only	interested	in	low-level	scene	features	or	has	a	role	in	higher-level	processing	of	

scenes,	such	as	scene	category,	is	still	under	debate.	

Figure	 1	 shows	 scene	 responsive	 regions	 in	 human	 brain.	 As	 can	 be	 seen	 in	

Figure	 1B,	 the	 highest	 responses	 were	 induced	 by	 a	 landscape	 and	 cityscape	 scene	

images.		In	order	to	localize	scene	responsive	regions,	a	contrast	of	scenes	(landscape	+	

cityscape)	versus	face	images	was	used	in	this	thesis.		
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Figure	1.	Scene	responsive	regions	in	human	brain.	(A)	An	overview	of	regions	in	human	brain	
that	prefers	scenes	versus	faces.	Red/yellow	versus	blue/cyan	shows	higher	activity	for	scenes	
versus	 faces.	 RSC,	 PPA	 and	 TOS	 (OPA)	 are	 shown	 with	 white	 labels.	 (Nasr	 et	 al.,	 2011).	 (B)	
Response	profiles	of	PPA	and	RSC	for	various	object/stimuli	categories	(Epstein,	2008).		
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PPA	 consists	 of	 two	 subregions;	 while	 one	 part	 is	 processing	 low-level	 visual	

features	and	object	shape	and	connected	to	OPA,	the	other	subregion	is	more	involved	

in	 memory	 and	 scene	 context	 and	 is	 connected	 to	 RSC	 (Baldassano,	 Beck,	 &	 Fei-Fei,	

2013).		PPA	shows	similarities	to	both	RSC	and	OPA,	yet	there	are	also	studies	showing	

distinctions	between	PPA	and	OPA	and	between	PPA	and	RSC.	For	 instance,	both	PPA	

and	 RSC	 represent	 scenes	 in	 an	 extended	 way	 compared	 to	 the	 initial	 view	 (Park,	

Intraub,	Yi,	Widders,	&	Chun,	2007).	Some	evidence	suggests	that	PPA	and	OPA	might	

have	 distinct	 roles	 in	 scene	 processing;	 PPA	 is	 tolerant	 to	 mirror	 image	 reversals	

whereas	OPA	and	RSC	showed	mirror	image	reversal	sensitivity	(Dilks,	Julian,	Kubilius,	

Spelke,	 &	 Kanwisher,	 2011).	 PPA	 is	 not	 sensitive	 to	 egocentric	 distance	 information	

while	 this	 sensitivity	 was	 present	 in	 OPA	 and	 RSC	 (Persichetti	 &	 Dilks,	 2016).	 In	

addition,	 scene	 representations	 in	 PPA	were	 also	 dependent	 on	 how	 good	navigators	

were	 the	 participants,	 whereas	 responses	 in	 OPA	 was	 not	 sensitive	 to	 the	 ability	 to	

navigate	(Epstein	et	al.,	2005).	These	studies	reveal	similarities	and	differences	of	scene	

regions,	 but	 still	 not	 much	 is	 known	 regarding	 how	 exactly	 the	 scene	 processing	

network	works.		

Another	scene	responsive	region,	RSC,	 is	proposed	 to	have	a	 role	 in	navigation	

and	 landmark	representation.	RSC	 is	primarily	 involved	 in	spatial	memory	(Epstein	&	

Vass,	2014).	It	is	also	thought	that	RSC	connects	internal	spatial	representations	to	local	

topographical	 features	 (Marchette,	 Vass,	 Ryan,	 &	 Epstein,	 2014).	 Lesion	 studies	 have	

shown	 that	 damage	 to	 the	 RSC	 can	 lead	 to	 an	 inability	 to	 use	 landmarks	 for	 self-

orientation	 in	 space	 and	 deficits	 in	 navigational	 abilities	 (Maguire,	 2001).	 During	

navigation,	 Sherrill	 et	 al	 found	 that	 optic	 flow	 responsive	 regions	 V6,	 V3A	 and	 MT+	

shows	 a	 strong	 connectivity	 to	 regions	 involved	 in	 navigation,	 such	 as	 RSC	 and	

hippocampus	(Sherrill	et	al.,	2015).	One	view	on	RSC	is	that	it	is	a	‘higher-tier’	region	in	

scene-processing	network.	 Supporting	 this	 view,	RSC	did	not	 show	any	 topographical	

organization	(Epstein,	Parker,	&	Feiler,	2007;	Ward,	MacEvoy,	&	Epstein,	2010)	and	 it	

responds	more	to	familiar	scenes	compared	to	unfamiliar	ones	(Epstein,	Higgins,	et	al.,	

2007).	 	 Although	 it	 showed	 mirror	 image	 reversal	 sensitivity	 like	 OPA	 (Dilks	 et	 al.,	

2011),	which	 still	 could	be	 explained	by	 the	 importance	of	 this	 kind	of	 sensitivity	 for	

navigation,	 previous	 studies	 showed	 that	 RSC	 is	 viewpoint	 invariant	 (Park	 &	 Chun,	

2009;	Park	et	al.,	2010;	Vass	&	Epstein,	2013).	Moreover,	A	recent	study	showed	that	

the	most	permanent	landmarks	activated	RSC	and	that	the	strength	of	the	responses	in	
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RSC	was	dependent	on	how	good	navigators	were	the	participants	(Auger,	Mullally,	&	

Maguire,	 2012).	 The	 integration	 of	 viewpoints	 in	 RSC	 is	 dependent	 on	 whether	 the	

location	of	the	viewer	in	scene	changed,	and	whether	the	viewpoints	are	continuous	or	

not	 (Park	&	Chun,	2009).	Viewpoint	 invariance	 is	 important	 in	order	 to	represent	 the	

scene	 in	 a	 broader	 space,	 to	 be	 able	 to	 navigate	 successfully.	 	 While	 many	 of	 these	

studies	 support	 the	 view	 that	 RSC	 has	 a	 role	 in	 spatial	 navigation,	 whether	 it	 uses	

different	reference	frames	for	this	purpose	is	not	known.		

OPA	 is	 the	 least	 known	 among	 scene-responsive	 areas.	 While	 OPA	 is	 causally	

involved	in	scene	recognition	(Dilks	et	al.,	2013;	Ganaden,	Mullin,	&	Steeves,	2013),	its	

exact	 role	 in	 scene	 representation	 is	 yet	 unknown.	 It	 is	 less	 successfully	 localized	

compared	 to	 other	 scene	 responsive	 regions	 (Konkle	 &	 Oliva,	 2012;	 Korkmaz	

Hacialihafiz	&	Bartels,	2015;	Mullin	&	Steeves,	2013).	OPA		has	retinotopic	organisation	

(Grill-Spector,	2003;	Levy,	Hasson,	Harel,	&	Malach,	2004;	Nasr	et	al.,	2011).	Together	

with	 PPA,	 OPA	 is	 sensitive	 to	 peripheral	 stimuli	 (Levy,	 Hasson,	 Avidan,	 Hendler,	 &	

Malach,	2001;	Levy	et	al.,	 2004).	While	 the	 receptive	 field	 size	of	OPA	 is	 smaller	 than	

that	of	RSC	or	PPA	(MacEvoy	&	Epstein,	2007),	 it	has	 large	enough	receptive	 fields	 to	

cover	across	both	hemifields	(Ward	et	al.,	2010).	Distinct	roles	are	suggested	for	OPA	in	

scene	 processing;	 such	 as	 a	 role	 in	 encoding	 the	 higher	 order	 spatial	 relationships	

within	a	scene	(Bettencourt	&	Xu,	2013)	or	encoding	 local	scene	elements,	 thus	being	

involved	in		visually	guided	navigation	and	obstacle	avoidance	(Kamps,	Julian,	Kubilius,	

Kanwisher,	&	Dilks,	2016).	It	 is	thought	to	be	a	transitional	region	between	lower	and	

higher	cortical	levels,	former	being	retinotopic	and	latter	being	scene	selective	regions	

(Hasson	et	al.,	2003).	Its	role	in	early	stages	of	scene	processing	is	further	supported	by	

findings	 that	 show	OPA	 is	 encoding	 the	 spatial	 relationship	 between	objects	within	 a	

scene	 (Nasr,	 Devaney,	 &	 Tootell,	 2013).	 OPA	 preferred	 big	 objects	 in	 comparison	 to	

small	objects	(Konkle	&	Oliva,	2012)	and	it	responded	to	any	kind	of	scene,	regardless	of	

the	number	of	objects	within	the	scene:	on	the	contrary,	it	showed	a	lower	response	to	

non-scene	 stimuli	 even	 in	 the	 presence	 of	multiple	 objects	 (Bettencourt	&	 Xu,	 2013).		

OPA	 is	 also	 thought	 to	 have	 a	 role	 in	 navigation	 due	 to	 its	 sensitivity	 to	 egocentric	

distance	 information	 and	 was	 involved	 in	 processing	 of	 first-	 person	 motion	

information	while	viewing	scenes	(Kamps,	Lall,	&	Dilks,	2016).		As	can	be	seen	from	the	

controversial	results	presented	here,	there	is	no	consensus	on	the	exact	role	of	OPA	in	

scene	processing.	
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Motion	responsive	neurons	are	shown	to	be	not	limited	to	dorsal	visual	pathway,	

but	 also	 exist	 in	 the	 ventral	 visual	 pathway.	 A	 recent	 study	 showed	 that	 motion	

perception	 was	 dependent	 on	 ventral	 visual	 cortex	 (Gilaie-Dotan	 et	 al.,	 2013).	

Furthermore,	motion	 responses	were	 shown	 in	 object	 processing	 region	 LOC	 (lateral	

occipital	 cortex)	 (Self	 &	 Zeki,	 2005),	 in	 face	 processing	 regions	 (Pitcher,	 Dilks,	 Saxe,	

Triantafyllou,	 &	 Kanwisher,	 2011)	 and	 in	 monkey	 parahippocampal	 cortex	 (Sato	 &	

Nakamura,	 2003).	 Prior	 studies	 on	 scene	 processing	 are	 mostly	 based	 on	 stationary	

scenes	or	snapshots	of	different	views.	Therefore,	little	is	known	how	or	whether	their	

responses	are	modulated	by	visual	motion,	and	to	which	degree	their	motion-response	

depends	on	scene	content.	

Although	 there	 are	 some	 studies	 on	 scene	 processing	 done	 using	 saccadic	 eye	

movements	(Golomb,	Albrecht,	Park,	&	Chun,	2011;	Ward	et	al.,	2010)	or	snapshots	of	

different	 viewpoints	 (Epstein	 et	 al.,	 2003;	 Epstein	 et	 al.,	 2005;	 Park	&	Chun,	 2009;	V.	

Sulpizio,	Committeri,	&	Galati,	2014;	Valentina	Sulpizio,	Committeri,	Lambrey,	Berthoz,	

&	Galati,	2013),	in	real	life,	we	perceive	scenes	frequently	in	motion,	due	to	object-,	eye-	

or	self-motion.	Prior	evidence,	based	on	saccadic	changes	in	eye	position	during	viewing	

of	 scenes,	 suggests	 that	PPA	and	OPA	encode	 scenes	 in	 eye-centered	 reference	 frame	

while	RSC	doesn’t	 show	any	preference	 (Ward	et	al.,	2010).	Another	study	 found	 that	

PPA	adapted	to	views	of	the	same	scene	during	eye	movements	(Golomb	et	al.,	2011).	

Yet	 the	effect	of	continuous	retinal	motion	and	objective	(real-world)	motion	 in	scene	

responsive	regions	is	still	poorly	understood	and	further	studies	are	indeed	needed	in	

order	to	fully	understand	the	different	roles	of	these	regions	in	processing	information	

arising	from	different	types	of	motion	and	eye	movements.		

1.2. Visual	motion	processing	responses	in	cortical	regions	

In	 visual	 neuroscience,	 motion	 processing	 is	 one	 of	 the	 most	 studied	 topics.	

Visual	motion	processing	is	one	of	the	most	important	tasks	of	the	visual	system	in	daily	

life.	 	 The	 visual	 information	 that	 enters	 retina	 travels	 through	 LGN	 and	 thalamus	 to	

primary	 visual	 cortex.	 After	 primary	 visual	 cortex,	 the	 visual	 system	 is	 classically	

divided	in	two	streams	dorsal	‘where’	pathway	and	ventral	‘what’	pathway	(Goodale	&	

Milner,	 1992).	 Traditionally,	 dorsal	 pathway	 is	 associated	with	 action,	 object	 location	

and	motion	perception,	whereas	ventral	pathway	is	associated	with	perception,	object	

structure	 and	 form	 perception.	 	 Motion	 processing	 regions	 in	 human	 brain	 include	
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MT/V5,	MST,	VIP,	VPS,	V3A,	V6	as	well	as	CSv	(Figure	2).	V5/MT	and	MST	are	the	most	

studied	 motion	 responsive	 regions.	 They	 are	 lower-tier	 regions	 in	 the	 hierarchy	 of	

motion	processing	network.	Thus,	they	are	highly	responsive	to	most	types	of	motion,	

while	higher-tier	motion	regions	such	as	V3A,	V6	and	CSv	are	more	selective	to	complex	

motion	patterns	such	as	self-induced	motion.	However,	higher-level	motion	responsive	

regions	 are	 less	 studied	 and	 more	 research	 is	 needed	 in	 order	 to	 understand	 how	

different	motion	types	are	represented	in	the	human	brain.	

Previous	 studies	 in	 single	 neurons	 of	 monkey	 brain	 investigated	 various	

properties	of	V5/MT	cells.	Among	these,	motion	and	direction	sensitivity	are	the	most	

studied	 ones.	 Direction	 selective	 cells	 are	 first	 seen	 in	 V1	 in	 motion	 processing	

hierarchy	 (Hubel	 &	 Wiesel,	 1968)	 and	 most	 cells	 in	 V5/MT	 are	 direction	 selective	

(Dubner	 &	 Zeki,	 1971).	 V5/MT	 neurons’	 receptive	 fields	 are	 approximately	 10	 times	

bigger	than	those	of	V1	neurons	(Albright	&	Desimone,	1987)	and	V5/MT	neurons	show	

columnar	 organization	 (Albright,	Desimone,	&	Gross,	 1984).	 Lesions	 in	V5/MT	would	

result	 in	 akinotopsia,	 in	 which	 the	 patient	 is	 unable	 to	 perceive	motion	 while	 visual	

perception	works	normally	for	other	type	of	visual	stimuli	(Zeki,	1991).	Since	majority	

of	studies	investigating	the	response	profile	of	V5/MT	are	done	using	abstract	stimuli,	

little	 is	 known	 about	 its	 responses	 during	 natural	 visual	 stimuli	 such	 as	 scenes.	

Interestingly,	 V5/MT	 shows	 object	 responses	 regardless	 of	motion	 (Kourtzi,	 Bulthoff,	

Erb,	&	Grodd,	2002;	Kourtzi	&	Kanwisher,	2000).		However,	the	effect	of	scene	content	

in	V5/MT	responses	is	not	investigated.	

Located	adjacent	 to	V5/MT,	 area	MST	 receives	most	of	 its	 inputs	directly	 from	

V5/MT	(Maunsell	&	Van	Essen,	1983a;	Ungerleider	&	Desimone,	1986).	MST	has	very	

large	receptive	field	size,	extending	to	60	degrees	(Duffy	&	Wurtz,	1991).	MST	neurons	

have	a	role	 in	executing	smooth	pursuit	eye	movements	and	 they	presumably	receive	

extraretinal	 signals	 (Ilg	 &	 Thier,	 2003;	 Newsome,	 Wurtz,	 &	 Komatsu,	 1988;	 Thier	 &	

Erickson,	 1992)	 and	 they	 are	 sensitive	 to	 optic	 flow	 stimuli	 (Bradley,	 Maxwell,	

Andersen,	Banks,	&	Shenoy,	1996;	Duffy	&	Wurtz,	1991).	MST	contains	real	motion	cells	

and	responds	to	object	motion	regardless	of	retinal	motion	(Erickson	&	Thier,	1991).	In	

addition	to	visual	responses,	MST	also	has	multisensory	integration	responses,	since	it	

combines	vestibular	 signals	and	visual	 self-motion	 signals	 (Gu,	DeAngelis,	&	Angelaki,	

2007;	Komatsu	&	Wurtz,	1988).	Most	of	the	neurons	in	dorsal	subregion	of	MST	(MSTd)	
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prefer	complex	motion	pattern	that	has	planar	motion	as	a	component	(Duffy	&	Wurtz,	

1991).	 Whereas,	 lateral	 subregion	 of	 MST	 (MSTl)	 encodes	 object	 motion	 in	 world-

centered	 coordinates	 and	 has	 visual	 tracking	 neurons	 (Ilg,	 2008;	 Ilg	 et	 al.,	 2004).	 In	

addition,	 human	 fMRI	 studies	 defined	 homologues	 of	MT/V5	 and	MST	 (e.g.	 see	 (Huk,	

Dougherty,	&	Heeger,	2002;	Tootell	et	al.,	1995)).			

V3A	 is	 the	 second	 most	 motion	 responsive	 region	 in	 human	 brain,	 while	 in	

monkey	it	contains	fewer	motion	responsive	cells	(Tootell	et	al.,	1997).	In	monkey,	V3A	

has	been	shown	to	include	gaze	dependent	visual	neurons	and	‘real’	motion	responsive	

cells	(Galletti	&	Battaglini,	1989;	Galletti	et	al.,	1990).	In	addition,	V3A	responds	to	real-

world	 motion	 while	 compensating	 for	 self-induced	 retinal	 changes	 (Fischer	 et	 al.,	

2012a).	 V3A	 has	many	 connections	 both	 to	 ventral	 and	 dorsal	 regions	 (Tootell	 et	 al.,	

1997).	Additionally,	a	recent	study	showed	that	V3A	is	connected	to	ventral	regions	via	

a	white	matter	tract	(Takemura	et	al.,	2015).		While	previously	object	related	responses	

were	found	in	V3A,	scene	content	responses	were	not	investigated.	

Another	 higher	 level	 motion	 region	 in	 human	 brain	 is	 V6,	 which	 is	 located	 in	

parieto-occipital	 sulcus,	 is	 another	 motion	 responsive	 region	 (Galletti,	 Fattori,	

Battaglini,	Shipp,	&	Zeki,	1996;	Galletti,	Fattori,	Gamberini,	&	Kutz,	1999;	Pitzalis	et	al.,	

2006;	 Pitzalis	 et	 al.,	 2010).	 V6	 is	 retinotopically	 defined	 and	 has	 receptive	 field	 size	

bigger	than	that	of	V3A	(Galletti	et	al.,	1999;	Pitzalis	et	al.,	2006).	Similar	to	V3A,	V6	is	

also	involved	in	representing	real-world	motion	(Fischer	et	al.,	2012a).	Being	connected	

to	many	 occipital	 and	 visual	 areas	 as	 well	 as	 parietal	 regions,	 V6	 is	 thought	 to	 be	 a	

connecting	hub	between	visual	areas	and	sensorimotor	areas	(Galletti	et	al.,	2001).	V6	

prefers	 egomotion	 compatible	 motion	 (Cardin	 &	 Smith,	 2010;	 Galletti,	 Battaglini,	 &	

Fattori,	1991;	Pitzalis	et	al.,	2006).	Additionally,	V6	prefers	translational	motion,	and	is	

thought	have	a	role	in	extracting	information	about	near	and	far	objects	(Pitzalis	et	al.,	

2013).Thus,	 V6	 is	 another	 candidate	 for	 investigating	 self-motion	 related	 responses	

during	scene	content.		

Among	 the	 motion	 responsive	 regions	 identified	 in	 human	 brain,	 CSv	 has	 no	

clear	 homologue	 in	monkey.	 Previous	 studies	 have	 shown	 that	 CSv	 prefers	 coherent	

motion	(Antal,	Baudewig,	Paulus,	&	Dechent,	2008;	Wall	&	Smith,	2008)	and	2D	motion	

(Fischer,	 Bulthoff,	 Logothetis,	 &	 Bartels,	 2012b).	 CSv	 is	 thought	 to	 have	 a	 role	 in	

processing	 self-induced	visual	motion	 signals	 (Fischer,	Bulthoff,	 Logothetis,	&	Bartels,	
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2011;	Wall	&	Smith,	2008),	vestibular	signal	responses	(Smith,	Wall,	&	Thilo,	2012)	and	

heading	direction	responses	(Furlan,	Wann,	&	Smith,	2014).		Not	much	is	known	about	

the	responses	in	CSv.	

Nevertheless,	 there	 is	 still	 not	much	 knowledge	 about	 the	 exact	 roles	 of	 these	

motion	regions	on	self-motion	and	object	motion	processing	and	how	their	responses	

change	when	encountered	by	natural	scenes,	which	is	the	natural	stimuli	visual	cortex	

handles	during	visual	information	processing	in	the	real	world.		

	

	
	

Figure	2.	Motion	responsive	regions	in	the	human	brain.	Here,	motion	regions	and	early	visual	
areas	 are	 shown	 on	 flattened	 left	 hemisphere	 of	 a	 representative	 human	 brain.	 Regions	 of	
interest	 that	are	 investigated	 in	 this	 thesis	are	shown	 in	a	yellow	box	 (MT,	MST,	V3A,	V6	and	
CSv).	The	figure	is	adapted	from	(Pitzalis	et	al.,	2013).	

	

1.3. Objective	and	retinal	motion	

Retinal	motion	simply	means	that	the	location	of	an	object	changes	physically	on	

retina.	 This	 can	 be	 caused	 either	 (a)	 an	 object	 moving	 in	 the	 real	 world	 or	 (b)	 the	

observer	moving	its	eyes,	head	or	body.	So	how	does	visual	system	differentiate	the	two	
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causes	from	each	other?	Or	when	smooth	pursuit	eye	movements	are	used	to	track	an	

object,	 the	 image	of	 the	object	on	 retina	 is	 stable	while	 the	background	 image	on	 the	

retina	moves	to	the	opposite	direction	of	the	eye	movement.	Yet,	we	perceive	a	stable	

background	 and	 the	moving	 object,	 not	 vice	 versa.	 How	 does	 the	 visual	 system	 keep	

track	of	object	motion	and	maintain	visual	stability	at	the	same	time?	Many	researchers	

tried	 to	 answer	 these	 questions.	 Objective	 motion	 is	 ‘real’	 motion	 or	 object	 motion,	

representing	the	real	movement	of	objects	in	external	world.		

Visual	 system	 uses	 non-retinal	 cues	 such	 as	 efference	 copies	 and	 vestibular	

signals	 to	 infer	 the	 origin	 of	 retinal	motion.	 Multiple	 brain	 regions	 employ	 efference	

copies	 in	 order	 to	 differentiate	 real	 motion	 from	 self-generated	 retinal	 motion.	 For	

instance,	‘real’	motion	cells	are	shown	to	exist	in	regions	MST,	VIP,	parietal	regions,	V3A	

and	V6	(Erickson	&	Thier,	1991;	Galletti	et	al.,	1990;	Ilg	et	al.,	2004).	

Figure	3	shows	an	illustration	of	objective	and	retinal	motion	paradigm	used	in	

this	 thesis	 (Fischer	 et	 al.,	 2012a).	 Here,	 using	 a	 2	 x	 2	 factorial	 design	with	 factors	 objective	

motion	and	smooth	pursuit	eye	movements,	objective	and	retinal	motion	during	smooth	pursuit	

eye	movements.	Since	eye	movements	were	present	on	both	sides	of	 the	contrasts	(as	well	as	

objective	versus	retinal	contrast),	any	effect	of	eye	movements	were	cancelled.		
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Figure	3.	Objective	and	retinal	motion	 in	this	 thesis	are	defined	using	a	2	x	2	 factorial	design	
with	 factors	 objective	 motion	 and	 pursuit.	 (A)	 Objective	 motion.	 Here,	 the	 calculation	 of	
objective	motion	 is	visualized.	Objective	motion	contrast	 is	calculated	as	conditions	 in	 the	red	
box	versus	conditions	in	the	green	box.	Objective	motion	contrast	is	calculated	as	((+/+)	+	(-/+))	
vs.	 ((+/-)	 +	 (-/-)).	 (B)	 Similar	 to	 A,	 here	 the	 calculation	 of	 retinal	motion	 is	 visualized	 as	 all	
conditions	in	the	red	box	versus	all	conditions	in	the	green	box.	Retinal	motion	is	calculated	as	
((-/+)	+	(+/-))	vs.	((+/+)	+	(-/-)).		Figure	adapted	from	(Fischer	et	al.,	2012a)	

	
1.4. Eye	movements	

The	 fovea	 region	 of	 the	 eye	 provides	 clearer	 vision	 while	 it	 contains	 more	

photoreceptors.	Thus,	we	move	our	eyes	constantly	in	order	to	put	the	object	of	interest	

on	the	central	part	of	retina,	our	fovea	(Krauzlis,	2004).	 	Two	types	of	eye	movements	



	

 14 

are	used	to	achieve	this	goal;	saccades	and	smooth	pursuit	eye	movement.		Saccades	are	

very	 fast	 eye	 movements,	 usually	 employed	 during	 static	 visual	 input	 while	 smooth	

pursuit	eye	movement	is	used	for	tracking	moving	objects	of	interest.		

Smooth	 pursuit	 eye	 movements	 are	 employed	 to	 keep	 a	 stable	 vision	 of	 the	

object	of	interest	on	fovea.	Humans	can	pursue	a	target	successfully	up	to	speeds	of	100	

deg/s	 (Meyer,	 Lasker,	 &	 Robinson,	 1985).	 	 Many	 regions	 take	 part	 in	 initiating	 and	

keeping	smooth	pursuit	eye	movements.	V5/MT	processes	retinal	motion	of	the	target	

to	pursue	and	MST	keeps	track	of	eye	position	and	provides	world-centered	coordinates	

of	 the	 target	 (Ilg	 &	 Thier,	 2003;	 Thier	 &	 Ilg,	 2005).	 Additionally,	 neurons	 whose	

responses	are	modulated	by	smooth	pursuit	eye	movements	are	also	found	in	VIP	and	

LIP	 regions	 (Bremmer,	 Ilg,	 Thiele,	 Distler,	 &	 Hoffmann,	 1997;	 Colby,	 Duhamel,	 &	

Goldberg,	1993;	Schlack,	Hoffmann,	&	Bremmer,	2003).	A	subregion	of	frontal	eye	fields	

(FEF)	is	also	involved	in	processing	pursuit	related	signals	(Gottlieb,	MacAvoy,	&	Bruce,	

1994)	as	well	as	cerebellum	(Thier	&	Ilg,	2005).	

1.5. Neural	basis	of	speed	processing	in	human	brain	

Understanding	the	speed	of	a	moving	object	 is	an	 important	role	of	 the	motion	

processing	system.	Previously,	many	studies	showed	that	most	neurons	 in	V5/MT	are	

tuned	by	motion	speed	(Maunsell	&	Van	Essen,	1983c;	Perrone	&	Thiele,	2001),	while	

others	found	contradictory	results,	saying	that	only	a	quarter	of	neurons	in	V5/MT	are	

speed	sensitive	(Priebe,	Cassanello,	&	Lisberger,	2003).	In	addition,	lesion	studies	show	

that	 V5/MT	 plays	 an	 important	 role	 in	 speed	 processing	 (Dursteler	 &	 Wurtz,	 1988;	

Newsome,	Wurtz,	Dürsteler,	&	Mikami,	1985;	Orban,	Saunders,	&	Vandenbussche,	1995;	

Pasternak	&	Merigan,	1994;	Yamasaki	&	Wurtz,	1991).	The	preferred	speed	of	majority	

of	 V5/MT	 neurons	 is	 shown	 to	 be	 around	 32	 deg/s	 (Maunsell	 &	 Van	 Essen,	 1983b;	

Mikami,	 Newsome,	 &	 Wurtz,	 1986;	 Rodman	 &	 Albright,	 1987).	 Although	 the	 speed	

responses	 of	V5/MT	neurons	 in	monkey	 are	widely	 investigated,	 speed	processing	 in	

human	brain	is	somewhat	less	studied.	

Another	region	that	is	involved	in	speed	processing	is	V3A.	Human	neuroimaging	

studies	 found	 that	 human	 V5/MT	 and	 V3A	 show	 speed	 tuning	 (Chawla	 et	 al.,	 1999;	

Chawla,	 Phillips,	 Buechel,	 Edwards,	 &	 Friston,	 1998;	 Lingnau,	 Ashida,	 Wall,	 &	 Smith,	

2009).	Majority	of	the	V3A	neurons	in	monkey	show	speed	related	responses	and	these	

responses	 are	 present	 even	 at	 high	 speeds	 (Galletti	 et	 al.,	 1990).	 Moreover,	 using	
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transcranial	magnetic	stimulation,	McKeefry	et	al	 showed	V3A’s	 involvement	 in	speed	

perception	 in	 human	 participants	 (McKeefry,	 Burton,	 Vakrou,	 Barrett,	 &	 Morland,	

2008).	V3A	and	V6	have	been	shown	to	be	speed	sensitive	during	head-centered	motion	

(Arnoldussen,	Goossens,	&	van	den	Berg,	2011,	2015).	Nevertheless,	 the	exact	roles	of	

these	different	regions	in	speed	processing	are	still	not	well	investigated.	

Most	 of	 the	 previously	mentioned	 studies	 on	 speed	 processing	 are	 done	when	

eyes	are	fixed	and	the	speed	of	the	moving	object	on	the	background	is	varied.	However,	

in	 real	 world,	 we	 would	 do	 pursuit	 eye	 movements	 to	 track	 the	 moving	 object.	

Additionally,	 the	 speed	 tuning	 properties	 of	 higher-tier	 motion	 processing	 regions	

during	smooth	pursuit	eye	movements	are	mostly	not	known.			

1.6. Spatial	reference	frames:	Eye-centered	or	world-centered?	

During	spatial	navigation	and	interaction	with	objects	around,	visual	system	uses	

different	 spatial	 reference	 frames	 to	 represent	 the	 spatial	 layout	 of	 the	 surrounding	

environment.	 	 It	 is	 important	 for	 visual	 system	 to	 quickly	 switch	 between	 spatial	

reference	frames	in	order	to	complete	an	action	or	movement.		

Both	 eye-centered	 and	 world-centered	 representations	 of	 object	 locations	 are	

found	in	various	brain	regions.	For	instance,	world-centered	response	to	object	location	

exists	in	V6	and	VIP	(Duhamel,	Bremmer,	BenHamed,	&	Graf,	1997;	Galletti,	Battaglini,	&	

Fattori,	 1993).	 Additionally,	 MST	 represents	 object	 locations	 in	 a	 world-centered	

manner	(Ilg	et	al.,	2004).	World-centered	responses	are	also	found	in	V5/MT	(d'Avossa	

et	al.,	2007).	Further,	human	V3A	and	V6	prefer	world-centered	coding	(Fischer	et	al.,	

2012a).	Spatial	reference	frames	are	used	during	spatial	navigation	and	are	present	in	

navigation	 related	 regions	 of	 the	 brain.	 Related	 to	 this,	 certain	 groups	 of	 cells	 in	

hippocampus	 such	 as	 place	 cells	 are	 shown	 to	 use	 world-centered	 representation	

(Moser,	Rowland,	&	Moser,	2015;	O'Keefe	&	Dostrovsky,	1971).		Scene	responsive	area	

RSC	has	viewpoint	independent	scene	responses.	While	some	previous	studies	showed	

that	 another	 scene	 region,	 PPA,	 represents	 viewpoint	 dependent	 layout	 of	 the	 spatial	

surroundings	and	utilizes	eye-centered	representation	of	scenes,	others	found	that	PPA	

was	 involved	 in	making	 judgements	 about	world-centered	object	 locations	 in	 a	 scene	

(Committeri	 et	 al.,	 2004;	 Galati,	 Pelle,	 Berthoz,	 &	 Committeri,	 2010).	 Similar	

controversial	 results	were	also	 found	 for	object	processing	 region	LOC;	while	 a	 study	

found	spatiotopic	representations	of	object	locations	in	LOC	(McKyton	&	Zohary,	2007),	
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another	 study	 found	 retinotopic	 organisation	 in	LOC,	 as	well	 as	 other	 ventral	 regions	

(Arcaro	 et	 al.,	 2009).	 According	 to	 one	 view	 on	 this	 topic,	 many	 brain	 regions	 use	

retinotopic	 representation	of	 locations	 (Gardner,	Merriam,	Movshon,	&	Heeger,	 2008;	

Golomb	&	Kanwisher,	2012)		

Although	these	findings	seem	controversial,	 it	 is	possible	that	eye-centered	and	

world-centered	representations	exist	together	and	are	employed	during	different	tasks	

of	 visual	 system.	 One	 such	 theory	 says	 that	 spatial	 attention	 affects	 whether	 eye-

centered	 or	 world-centered	 reference	 frame	 is	 used	 (Crespi	 et	 al.,	 2011).	 Certainly,	

more	 studies	 are	 needed	 to	 clarify	 how	 eye-centered	 and	 world-centered	 reference	

frames	 coexist	 and	 explain	 their	 interchangeable	 use	 for	 a	 continuous	 flawless	

perception	during	everyday	interactions	with	the	world	surrounding	us.	

1.7. Thesis	overview	

This	thesis	consists	of	three	parts.	The	overall	aim	of	this	thesis	is	to	advance	our	

understanding	of	how	visual	scene	and	motion	responses	 interact	 in	 the	human	brain	

during	viewing	naturalistic,	dynamic	stimuli.		

After	characterizing	motion	responses	in	scene	regions	in	the	first	study,	 in	the	

remaining	studies	I	then	consistently	used	a	motion	paradigm	that	helped	to	distinguish	

objective	motion	from	retinal	motion	(Fischer	et	al.,	2012a).		

The	first	part	consists	of	Chapter	2	and	Chapter	3	and	investigates	the	responses	

of	scene	responsive	regions	during	moving	scenes.	Part	2,	which	consists	of	Chapter	4,	

investigates	 the	 responses	 of	motion	 regions	 to	 scene	 content	 during	motion.	 Lastly,	

Part	 3,	which	 includes	 Chapter	 5,	 investigates	 speed	 tuning	 in	motion	 regions	 during	

objective	and	retinal	motion.		

Part	1	

Chapter	2:	Motion	responses	in	scene	selective	regions	

Keeping	 a	 stable	 visual	 perception	 is	 one	 of	 the	 crucial	 roles	 of	 visual	 system.	

Although	we	move	our	eyes,	head	and	body	constantly,	our	visual	system	continuously	

updates	 our	 visual	 perception	 in	 order	 to	 maintain	 a	 flawless	 experience.	 Motion	

processing	is	a	well-studied	topic	in	both	human	and	primate	brain.	However,	most	of	

these	studies	were	interested	only	in	well-known	dorsal	motion	responsive	regions.		



	

 17 

Scene	processing	is	important	to	understand	our	environment	and	has	a	role	in	

interacting	with	this	environment,	such	as	during	navigation.	

In	this	study,	I	investigated	whether	scene	regions	are	modulated	by	motion	and	

if	 they	are,	how	much	their	scene	responses	are	affected	by	visual	motion.	 In	order	to	

investigate	 this,	 I	 did	 an	 fMRI	 study	 on	 healthy	 human	participants.	We	used	 a	 2	 x	 2	

factorial	design	with	factors	being	visual	motion	(on/off)	and	scene	(scene/scramble).	

Scramble	images	were	obtained	by	phase	scrambling	of	scene	images,	which	resulted	in	

images	that	do	not	have	the	scene	content	but	all	the	low-level	image	properties	such	as	

luminance,	contrast	and	spatial	 frequency	would	be	preserved	and	same	across	image	

types.	 Results	 of	 this	 study	 showed	 that	 PPA	 and	 OPA	 were	 indeed	 responsive	 to	

motion.	 Further,	 PPA	 also	 showed	 an	 interaction	 between	motion	 and	 scene	 content,	

meaning	 that	 it	 was	 more	 responsive	 to	 motion	 during	 scenes	 compared	 to	 during	

scrambled	images.	RSC	was	not	modulated	by	motion	at	all,	but	it	showed	similar	trend	

as	PPA	for	the	scene-motion	interaction.	These	results	showed	a	differentiation	of	scene	

regions	 based	 on	 their	 responsiveness	 to	 visual	 motion.	 I	 conclude	 that	 PPA	 has	 a	

special	role	in	integrating	visual	scenes	and	visual	motion.		

Chapter	3:	Objective	(Real-world)	Motion	Responses	in	Scene	Responsive	Regions	

In	order	to	understand	the	visual	scene	surrounding	us,	we	constantly	make	eye	

movements.	 Smooth	 pursuit	 eye	 movements	 are	 the	 type	 of	 eye	 movements	 used	

especially	when	tracking	an	object	of	 interest.	Thus,	 it	 is	very	 important	for	the	visual	

system	to	distinguish	the	real	motion	of	the	object	from	retinal	changes	resulting	from	

our	 own	 eye	 movements.	 Although	 previous	 studies	 investigated	 whether	 scene-

processing	 regions	 encode	 visual	 information	 in	 eye-centered	 or	 world-centered	

reference	 frames,	 they	used	saccadic	changes	and	static	snapshots	of	 scenes.	How	the	

scene	 responsive	 regions	 utilize	 pursuit	 eye	movements	 during	 the	 visual	 analysis	 of	

scenes	is	still	not	well	known.		

In	the	second	study,	I	investigated	how	different	types	of	motion	are	processed	in	

scene	 responsive	 areas	 and	 which	 reference	 frames	 are	 used	 by	 different	 scene	

responsive	regions	during	scene	motion	responses.	In	this	fMRI	study	in	healthy	human	

participants,	I	used	a	2	x	2	x	2	factorial	design	paradigm	with	factors	objective	motion	

(on/off),	pursuit	 (on/off)	and	scene	content	(natural	scenes	versus	Fourier	scrambled	

version	of	 these	scenes).	PPA	was	responsive	to	objective	motion	while	cancelling	out	
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retinal	 motion	 responses	 completely,	 so	 that	 it	 can	 differentiate	 world-centered	

(objective)	motion	 from	eye-centered	 (retinal)	motion	and	 thus	use	 a	world-centered	

reference	frame.	PPA	was	the	only	region	significantly	preferring	objective	motion,	even	

during	 scrambled	 images,	 and	 thus	 can	 be	 differentiated	 from	 OPA	 and	 RSC.	

Interestingly,	 RSC	 did	 not	 show	 any	 motion	 responses.	 OPA,	 on	 the	 hand,	 was	

responsive	to	both	objective	and	retinal	motion	but	did	not	differentiate	between	them;	

which	fits	to	the	view	on	the	role	of	OPA	that	it	is	a	lower-tier	scene-processing	region.	

Put	together,	these	results	indicate	a	distinct	role	 for	PPA	in	differentiating	real-world	

motion	while	compensating	for	pursuit	related	eye	movement	signals,	in	order	to	create	

stable	perception.	Moreover,	all	three	scene-processing	regions	could	be	distinguished	

from	each	other	based	on	their	motion	response	profiles.	

Part	2	

Chapter	4:	Motion	regions	are	modulated	by	scene	content	

The	visual	system	is	optimized	for	processing	naturalistic	stimuli.	However,	most	

research	 in	 visual	 system	 has	 been	 done	 using	 abstract	 stimuli,	 such	 as	 gratings	 or	

moving	 dots	 (Born	 &	 Bradley,	 2005;	 Boussaoud,	 Ungerleider,	 &	 Desimone,	 1990;	

Erickson	&	Thier,	1991;	Galletti	&	Fattori,	2003;	Goossens,	Dukelow,	Menon,	Vilis,	&	van	

den	Berg,	2006;	Gu	et	al.,	2007;	Huk	et	al.,	2002;	Maciokas	&	Britten,	2010;	Smith,	Wall,	

Williams,	 &	 Singh,	 2006),	 except	 for	 one	 that	 investigated	 motion	 responses	 during	

movie	 viewing	 (Bartels	 et	 al.,	 2008).	 Additionally,	 previous	 studies	 found	 responses	

related	to	object	content	in	motion	regions	(Kourtzi	et	al.,	2002).			

In	 this	 study,	 I	 investigated	 how	 the	 motion	 responses	 in	 motion	 processing	

regions	V5+/MT+,	V3A,	V6	and	CSV	are	modulated	by	scene	content.	I	used	a	2	x	2	x	2	

factorial	 design	 with	 the	 factors	 being	 objective	 motion	 (on/	 off),	 pursuit	 (on/off)	

(Fischer	et	al.,	2012a)	as	well	as	a	 factor	 for	scene	content	(scene/	scramble).	 I	 found	

that	 all	 motion	 regions	 showed	 scene	 responses.	 However,	 only	 in	 V3A,	 the	 scene	

response	 persisted	 after	 removing	 motion.	 V3A	 could	 be	 differentiated	 from	 other	

motion	 regions	by	 its	 responsiveness	 for	 still	 scenes.	V5+/MT+	showed	a	motion	and	

scene	 content	 interaction	 both	 during	 objective	 and	 retinal	 motion,	 meaning	 higher	

motion	responses	during	scene	than	scrambled	images,	whereas	V3A	and	V6	were	only	

responsive	to	scene	and	retinal	motion	interaction	and	CSv	was	not	responsive	to	any	

scene-motion	interaction.	These	results	show	that	motion	regions	are	indeed	modulated	
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by	scene	content,	 thus	demonstrate	 the	 importance	of	using	naturalistic	 scene	stimuli	

while	studying	the	responses	of	visual	system.	 	 In	addition,	V3A	has	a	possible	role	 in	

scene	representation	in	the	brain.	

Part	3	

Chapter	 5:	 Speed	 tuning	 to	 real-world-	 and	 retinal	 motion	 in	 cortical	 motion	

regions	

Speed	 is	 one	 of	 two	 factors	 defining	 motion,	 the	 other	 being	 direction.	 Thus,	

perceiving	and	processing	speed	is	an	important	task	during	motion	processing.	Many	

studies	 examined	 speed-tuning	 properties	 of	 neurons	 in	monkey	MT/V5.	 It	 has	 been	

shown	that	many	neurons	in	V5/MT	are	speed	selective,	and	tuned	for	an	optimal	speed	

of	about	30	deg/s	 (Maunsell	&	Van	Essen,	1983c;	Newsome,	Mikami,	&	Wurtz,	1986).	

Other	electrophysiology	studies	 investigated	speed	 tuning	of	neurons	 in	other	motion	

responsive	regions,	such	as	MST,	V3	and	V6.	To	this	date,	speed-tuning	profiling	for	CSv	

has	not	been	done.		

There	are	not	many	studies	investigating	speed	tuning	in	human	brain.	The	only	

ones	 that	 are	 investigating	 speed	 responses	 in	 human	 brain	 used	 a	 combined	 retinal	

and	objective	motion;	they	investigated	speed	tuning	during	fixation	while	the	speed	of	

background	changed	compared	to	still	background	(Chawla	et	al.,	1999;	Chawla	et	al.,	

1998).			

In	this	study,	I	investigated	the	speed	tuning	of	motion	regions	V5/MT,	MST,	V3A,	

V6	and	CSv	during	objective	and	retinal	motion	separately	for	speed	levels	of	1,	2,	4,	8,	

16	and	24	deg/s	respectively.	I	used	Fourier	scrambles	of	natural	scene	images	in	order	

to	provide	naturalistic	stimuli.	I	found	that	all	regions	were	modulated	by	the	speed	of	

both	objective	and	retinal	motion.	Only	V3A	showed	a	differentiation	in	its	modulation	

by	objective	compared	to	by	retinal	motion	speeds.	All	regions	showed	a	higher	mean	

response	 to	objective	motion	 compared	 to	 retinal	motion	across	 all	 speeds.	 In	 accord	

with	 previous	 studies,	 these	 results	 suggest	 that	 V3A	 is	 mainly	 encoding	 objective	

motion	and	this	response	profile	is	consistent	across	different	speeds.		

1.8. General	discussion		

The	 studies	 described	 in	 this	 thesis	 investigate	 how	 dynamic	 scenes	 are	

processed	in	human	brain	during	retinal	and	objective	motion.	Despite	constant	feed	of	
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visual	motion	cues	due	to	our	own	movement	or	objects	moving	in	our	visual	field,	the	

visual	system	keeps	a	stable	perception	of	the	world.	Using	natural	scenes	and	phase-

scrambled	images	of	scenes	matching	in	luminance,	contrast	and	frequency	spectra,	the	

studies	in	this	thesis	were	able	to	distinguish	content	effect	of	scenes.	

Part	1	

There	are	various	opinions	on	 the	exact	roles	of	scene	processing	regions	PPA,	

RSC	and	OPA	and	their	similarities	or	differentiation	regarding	these	roles.		

Previous	studies	showed	motion	responses	in	ventral	stream	(Gilaie-Dotan	et	al.,	

2013;	Pitcher	et	al.,	2011;	Self	&	Zeki,	2005).	The	results	in	both	chapter	2	&	3	add	PPA	

to	 previous	 ventral	 stream	 regions	with	motion	 responses.	Moreover,	while	 PPA	 and	

OPA	were	motion	responsive,	RSC	was	not	sensitive	to	visual	motion.	Motion	response	

profiles	 of	 these	 regions	 can	 be	 used	 to	 differentiate	 them	 from	 each	 other.	 Motion	

responses	 in	 PPA	 (and	OPA)	 and	 lack	 of	motion	 responses	 in	 RSC	 is	 also	 compatible	

with	 PPA’s	 viewpoint	 dependency	 and	 RSC’s	 viewpoint	 independency	 (Epstein	 et	 al.,	

2003;	 Epstein	 &	 Higgins,	 2007;	 Epstein	 et	 al.,	 2005;	 Epstein,	 Parker,	 et	 al.,	 2007;	

MacEvoy	&	Epstein,	2007;	Park	&	Chun,	2009).		The	lack	of	motion	responses	in	RSC	is	

also	in	line	with	the	view	on	RSC	that	it	is	‘higher-level’	scene	processing	region	and	it	is	

more	involved	in	functions	such	as	navigation.	

OPA	 having	 the	 highest	 motion	 responses	 while	 lacking	 responses	 to	 scene-

motion	interaction	fits	the	previous	view	suggesting	that	it	is	a	“lower”	region	in	scene	

processing.		

Part	2	

In	daily	life,	our	brain	receives	visual	input	from	our	natural	surroundings.	Visual	

system	is	optimized	for	processing	of	natural	stimuli	statistics,	which	are	features	such	

as	 spatial	 frequency,	 luminance	 and	 contrast	 of	 natural	 scenes	 (Parraga	 et	 al.,	 2000).	

Previous	studies	show	that	motion	regions’	responses	are	modulated	by	object	content	

(Kourtzi	 et	 al.,	 2002).	 We	 found	 that	 motion	 regions	 have	 scene	 content	 responses.	

More	 importantly,	 V3A	 can	 be	 differentiated	 from	 other	 motion	 regions	 by	 its	

responsiveness	 to	 still	 scenes.	 Scene	 preference	 in	 V3A	 fits	 well	 with	 the	

aforementioned	 functional	 properties	 of	 the	 region,	 such	 as	 taking	 part	 in	 contour	

processing,	or	object	and	shape	processing.	
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Given	the	fact	that	V5/MT	and	V3A	were	shown	to	have	viewpoint	specific	object	

responses	(Konen	&	Kastner,	2008),	the	scene	and	motion	interaction	seen	in		V5/MT+,	

V3A	and	V6	could	be	driven	by	viewpoint	changes	in	the	given	scene.		

Part	3	

Previously,	speed	tuning	of	motion	regions	during	objective	or	retinal	speed	has	

not	 been	 systematically	 studied.	 In	 this	 study,	 using	 stimuli	 with	 natural	 image	

statistics,	 we	 found	 that	 all	 regions	we	 investigated	 (V3A,	 V6,	 V5/MT,	MST	 and	 CSv)	

showed	speed	tuning	responses	for	both	objective	and	retinal	motion.	Our	results	seem	

to	contradict	previous	studies	that	found	an	inverted	‘U’	shape	type	of	response	profile	

for	 speed	 responses	 in	 V5/MT	 and	 V3A	 (Chawla	 et	 al.,	 1999;	 Chawla	 et	 al.,	 1998).	

However,	these	studies	were	more	than	15	years	old	and	made	observations	only	with	3	

participants.	Hence,	their	results	are	quite	noisy	and	with	more	participants,	hence,	it	is	

possible	that	the	present	study	achieved	a	better	understanding	of	speed	tuning	in	these	

regions.		

The	monotonic	 increase	 in	both	objective	 and	 retinal	motion	 responses	during	

speed	 tuning	 is	 plausible	 when	 previous	 single	 cell	 studies	 are	 considered.	 Optimal	

speed	for	the	majority	of	V5/MT	neurons	is	reported	around	30	deg/s	in	various	studies	

(Maunsell	&	Van	Essen,	1983c;	Newsome	et	al.,	1986).	Similarly,	V3A	neurons	are	still	

responsive	even	for	high	speeds	(higher	than	50	deg/s)	(Galletti	et	al.,	1990).	Since	the	

highest	speed	used	in	this	study,	which	was	only	24	deg/s,	was	smaller	than	the	optimal	

values	mentioned	in	the	literature,	it	is	possible	that	the	results	here	are	showing	only	

the	lower	end	of	the	range.		

Human	motion	regions	V3A	(and	V6)	prefers	object	motion	while	compensating	

for	 retinal	motion.	 This	 study	 explored	whether	 their	 objective	motion	 preference	 is	

specific	to	a	particular	motion	speed	or	was	it	 independent	from	motion	speed.	 	Here,	

V3A	 showed	 a	 difference	 in	 the	 speed	 tuning	 for	 objective	 and	 retinal	 motion.	 Its	

objective	motion	responses	get	higher	with	the	speed	whereas	the	change	in	the	retinal	

motion	responses	is	not	as	big.		

1.9. Outlook	and	Conclusion	

The	findings	of	the	studies	in	this	thesis	extend	our	understanding	of	self-motion	

processing	in	the	brain	and	its	communication	with	scene	processing	network,	which	is	
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especially	important	for	tasks	such	as	spatial	navigation.	The	results	of	this	PhD	thesis	

show	 the	 importance	 of	 using	 naturalistic	 stimuli	 while	 investigating	 functional	

properties	 of	 visual	 system.	 In	 order	 to	 tackle	 the	 underpinnings	 of	 visual	 functions,	

future	 studies	 investigating	 the	 effect	 of	 scene	 content	 on	 more	 complex	 motion	

patterns,	such	as	3D	motion	responses	or	optic	flow	responses	are	needed.	Additionally,	

future	 studies	 could	 further	 explore	 the	 exact	 role	 of	 V3A	 in	 spatial	 processing,	

especially	in	processing	of	visual	scenes.		

In	 order	 to	maintain	 a	 stable	 vision,	many	 regions	 in	 the	 brain	work	 together.	

The	results	of	the	present	studies	point	out	that	world-centered	motion	responses	are	

present	 both	 in	 motion	 and	 scene	 processing	 regions	 of	 human	 brain.	 These	 results	

agree	with	 previous	 literature	 about	 V3A	 that	 it	 encodes	 primarily	 objective	motion.	

Additionally,	present	results	add	to	the	existing	literature	that	V3A	even	shows	different	

speed	tuning	for	objective	and	retinal	motion.	Similarly,	PPA	is	also	involved	in	world-

centered	 encoding	 of	 visual	 information,	 even	 in	 the	 absence	 of	 visual	 scenes.	

Interestingly,	V3A	is	sensitive	to	visual	scenes,	even	during	absence	of	motion.	Although	

located	 in	different	branches	of	 traditionally	defined	dorsal	 ‘where’	and	ventral	 ‘what’	

streams,	the	similarity	of	the	responses	of	scene	region	PPA	and	motion	region	V3A	is	

striking.		Perhaps	the	separation	between	‘where’	and	‘what’	pathways	is	not	as	strong	

as	 thought	 initially	and	 these	 two	regions	exchange	 information	 in	order	 to	provide	a	

stable	perception.		 	
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2. Motion	responses	in	scene	selective	regions		
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2.1. Abstract	

The	 vast	 majority	 of	 studies	 on	 scene	 processing	 were	 conducted	 using	

stationary	scenes.	However,	during	natural	vision,	scene	views	change	dynamically	due	

to	self-induced	eye-,	head-	and	body-motion,	and	these	dynamic	changes	are	crucial	for	

other	 higher-level	 functions	 such	 as	 navigation,	 self-motion	 perception	 and	 spatial	

updating.	Yet,	we	do	not	know	whether	or	how	scene	selective	regions	are	modulated	

by	visual	motion,	and	to	which	degree	their	motion	response	depends	on	scene	content.	

In	this	study	we	used	fMRI	to	examine	both	questions	using	a	2x2	factorial	design	with	

the	factors	2D	planar	motion	(motion	versus	static),	and	scene	content	(natural	scenes	

versus	 their	 fourier	 scrambles).	We	 found	 that	 among	 independently	 localized	 scene	

responsive	regions,	parahippocampal	place	area	(PPA)	and	transverse	occipital	sulcus	

(TOS),	 also	 referred	 to	 as	 occipital	 place	 area,	 (OPA)	 and	 were	 significantly	 motion	

responsive,	 whereas	 retrosplenial	 cortex	 (RSC)	 was	 not.	 Additionally,	 PPA,	 but	 not	

TOS/OPA	or	RSC,	showed	an	interaction	between	motion	and	scene	in	that	it	responded	

more	to	motion	 in	context	of	scenes	than	scramble.	These	results	suggest	 that	motion	

stimuli	 evoke	 different	 responses	 in	 motion	 responsive	 TOS/OPA	 and	 PPA	 versus	

motion	un-responsive	RSC.	

Highlights		

• Motion responses of scene regions were examined using 2-factorial 
design using fMRI 

• Factors	were	scenes	(natural	scenes	vs.	fourier	scramble)	and	motion	(on	

vs.	off)	

• TOS/OPA	responded	strongest,	PPA	less,	RSC	not	at	all	to	visual	motion	

• TOS	could	be	dissociated	from	PPA	and	RSC	in	their	motion	responses	

• PPA	 showed	 an	 interaction	 between	 scenes	 and	motion,	 although	 there	

was	no	significant	difference	between	regions	in	their	scene	and	motion	interaction.	

Keywords:		

fMRI,	PPA,	TOS,	OPA,	retrosplenial	cortex,	scenes	 	
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2.2. Introduction	

Scene	perception	and	processing	is	one	of	the	everyday	functions	of	the	human	

visual	 system.	 Its	 neural	 processing	 has	 therefore	 been	 studied	 in	 great	 detail,	

identifying	scene	selective	responses	in	the	parahippocampal	place	area	(PPA)	(Aguirre,	

Zarahn,	&	D’Esposito,	1998;	Epstein	&	Kanwisher,	1998)	as	well	as	in	comparably	less	

studied	 regions	 such	 as	 the	 retrosplenial	 cortex	 (RSC)	 (Maguire,	 2001)	 and	 the	

transverse	 occipital	 sulcus	 (TOS)	 (Grill-Spector,	 2003;	Hasson,	Harel,	 Levy,	&	Malach,	

2003;	 Nakamura	 et	 al.,	 2000)	 that	 has	 also	 been	 referred	 to	 as	 “occipital	 place	 area”	

(OPA)	 due	 to	 its	 causal	 contribution	 to	 scene	 perception	 (Dilks,	 Julian,	 Paunov,	 &	

Kanwisher,	2013).	 In	 the	past,	 scene	processing	 regions	have	almost	 exclusively	been	

studied	 using	 static	 snapshots	 of	 scenes.	 However,	 scene	 perception	 is	 not	 only	

important	 on	 its	 own,	 but	 also	 crucial	 for	 other	 higher-level	 functions	 such	 as	

navigation,	 self-motion	 perception	 and	 spatial	 updating.	 During	 natural	 vision,	 scene	

views	change	dynamically	due	to	self-induced	eye-,	head-	and	body-motion.	A	subset	of	

this	 dynamics,	 that	 of	 instant	 view	 changes	 such	 as	 induced	 by	 saccades,	 has	 been	

investigated	 by	 several	 prior	 previous	 studies,	 using	 static	 snapshots	 created	 by	

dividing	 larger	 panoramic	 scenes	 into	 partially	 overlapping	 subsections	 (Epstein,	

Higgins,	&	Thompson-Schill,	2005;	Golomb,	Albrecht,	Park,	&	Chun,	2011;	Park	&	Chun,	

2009;	Park,	Chun,	&	Johnson,	2010).	These	studies	found	viewpoint	specific	responses	

in	PPA	(Epstein,	Graham,	&	Downing,	2003;	Epstein,	Higgins,	Jablonski,	&	Feiler,	2007;	

Epstein	et	al.,	2005;	Epstein,	Parker,	&	Feiler,	2007,	2008;	Park	&	Chun,	2009;	Park	et	

al.,	2010;	Vass	&	Epstein,	2013),	and	in	TOS/OPA		(Epstein,	Higgins,	et	al.,	2007;	Epstein	

et	al.,	2005).	RSC	was	reported	to	be	viewpoint-independent	for	the	same	scene,	and	to	

distinguish	between	different	scenes	(Park	&	Chun,	2009;	Vass	&	Epstein,	2013),	or	to	

be	 partly	 viewpoint	 independent	 while	 viewpoint	 dependent	 under	 some	 conditions	

(Park	 et	 al.,	 2010).	 One	 more	 recent	 study	 found	 viewpoint	 invariance	 in	 PPA	 but	

viewpoint	 sensitivity	 in	TOS/OPA	 (Dilks,	 Julian,	Kubilius,	 Spelke,	&	Kanwisher,	 2011).	

These	discrepancies	 illustrate	 that	 these	 regions	 exhibit	 distinct	 functional	properties	

that	 have	 not	 been	 fully	 understood	 yet.	 In	 particular,	 the	 response	 to	 motion	 or	 to	

scene	motion	of	scene-selective	regions	has	not	been	addressed	at	all	until	now.	Given	

the	 importance	 and	 abundance	 of	 scene	motion	 in	 real	 life	 conditions,	 this	 seems	 an	

important	question	worth	addressing	in	a	systematic	way.		
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Hence,	in	this	fMRI	study	we	examined	two	main	questions:	are	scene	responsive	

regions	 in	 the	 human	 brain	 modulated	 by	 motion	 during	 viewing	 of	 natural	 and	

scrambled	 scenes,	 and	 if	 they	 are,	 do	 their	 responses	 show	 any	 interaction	 between	

scene	 content	 and	motion?	We	 investigated	 these	 questions	 by	 using	 scene	 and	 non-

scene	stimuli	that	were	either	shown	statically	or	in	horizontal	linear	motion.	This	led	

to	a	two-by-two	factorial	design	allowing	for	full	factorial	control	over	main	effects	and	

their	 interaction.	 The	 factorial	 design	 also	 ensured	 that	 every	 contrast	 was	 fully	

balanced	 in	 terms	of	 low-level	 stimulus	properties.	The	scene	 images	were	gray-scale	

photographs	of	 land-	and	city-scapes.	For	non-scene	stimuli	we	used	phase-scrambled	

images	of	the	scenes	matched	in	luminance,	contrast,	and	frequency	spectra	to	the	gray-

scale	 scene	 images.	 We	 chose	 horizontal	 motion	 as	 it	 is	 among	 the	 most	 abundant	

motion	 types	 in	natural	 scenes	and	as	our	visual	 system	has	a	 tuning	bias	 to	cardinal	

motion	directions	(see	e.g.	(Bartels,	Zeki,	&	Logothetis,	2008;	Gros,	Blake,	&	Hiris,	1998).	

We	found	that	scene	responsive	regions	showed	differential	responses	to	motion,	with	

TOS/OPA	 showing	 highest,	 PPA	 intermediate,	 and	 RSC	 lacking	 motion	 responses.	

TOS/OPA	 could	 be	 differentiated	 from	 PPA	 and	 RSC	 in	 their	 motion	 responses.	

Moreover,	 PPA	 showed	 a	 significant	 interaction	 between	 scene	 content	 and	 motion,	

whereas	 this	 effect	 was	 not	 significant	 in	 RSC	 or	 TOS/OPA,	 although	 there	 was	 no	

significant	 difference	 between	 regions	 in	 their	 responses	 to	 scene	 and	 motion	

interaction.			
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2.3. Materials	and	Methods	

Subjects	

17	 healthy	 subjects	 (9	 female,	 1	 left	 handed,	 age	 between	 20	 and	 36	 (mean	 =	

27.8))	participated	in	this	study.	All	subjects	had	normal	or	corrected-to	normal	vision	

and	gave	written	informed	consent	before	the	experiments.	The	study	was	approved	by	

the	local	ethics	committee	of	the	University	Hospital	of	Tübingen.		

Experimental	Paradigm	and	Setup	

Two	functional	experiments	were	carried	out:	a	functional	scene	region	localizer	

and	 the	main	experiment,	 plus	 a	 structural	 scan.	The	 functional	 localizer	was	used	 to	

localize	scene-	responsive	regions	PPA,	RSC,	and	TOS/OPA.		

Visual	 stimuli	were	gamma	corrected	and	projected	via	a	projector	outside	 the	

scanner	room	onto	a	screen	behind	the	participants’	head	yielding	a	visual	field	of	view	

subtending	 19	 x	 15	 visual	 degrees.	 The	 experiment	 was	 programmed	 using	

Psychtoolbox-3	(Brainard	1997;	Kleiner,	Brainard	et	al.	2007)	on	MATLAB	7.10.0	(The	

Mathworks,	Natick,	MA,	2010)	and	presented	using	a	windows	PC.	

Main	Experiment	

Paradigm	

The	main	 experiment	 was	 designed	 as	 a	 2x2	 factorial	 design	 with	 the	 factors	

scene	(on/off)	and	motion	(on/off),	resulting	in	four	conditions:	moving	scenes,	moving	

scramble,	still	scenes	and	still	scramble	(figure	1).		

Each	condition	was	presented	4	times	per	run	in	a	block-design,	with	a	total	of	

16	 blocks	 per	 run.	 The	 condition	 sequence	 was	 pseudorandomized	 such	 that	 each	

condition	preceded	all	 conditions	equally	 frequently.	Each	block	 lasted	12	seconds.	 In	

order	to	additionally	counterbalance	initial	conditions,	one	additional	block	was	added	

to	the	beginning	of	each	run.	

Each	run	started	with	6.9	seconds	of	gray	screen	(luminance:	144	cd/m2)	with	

fixation	 and	 ended	with	 10	 seconds	 of	 gray	 screen	with	 fixation.	 Throughout	 the	 full	

duration	 of	 the	 experiment,	 participants	 fixated	 on	 a	 gray	 fixation	 disk	 (width:	 0.74	

degrees,	 luminance:	 282	 cd/m2)	 and	 performed	 the	 fixation	 task	 described	 below	 to	
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ensure	matched	attentional	demands	across	conditions.	There	were	a	total	of	4	runs	per	

participant.	

Stimuli	

Stimuli	consisted	of	32	gray	scale	images	of	outdoor	scenes,	namely	landscapes	

and	cityscapes,	and	of	 their	phase-scrambled	versions.	Half	of	 these	 images	were	 left-

right	flipped	duplicates	to	balance	potential	horizontal	differences	in	spatial	frequency.	

We	 equated	 luminance	 and	 contrast	 across	 images	 (luminance:	 144	 cd/m2,	 contrast:	

32.4	cd/m2	root-mean-square	(RMS)	contrast,	leading	to	an	average	Michelson	contrast	

of	0.9004	±	0.0925).	Image	selection	was	randomized	for	each	condition	separately	and	

the	 images	 chosen	 from	 different	 image	 categories	 (landscape	 and	 cityscape)	 were	

balanced	 across	 conditions,	 in	 order	 to	 prevent	 bias	 resulting	 in	 different	 spatial	

properties	due	to	different	scene	categories	(Oliva	&	Torralba,	2001;	Walther,	Caddigan	

E	 Fau	 -	 Fei-Fei,	 Fei-Fei	 L	 Fau	 -	 Beck,	 &	 Beck,	 2009).	 Phase	 scrambled	 images	 were	

obtained	 by	 applying	 a	 Fourier	 transformation	 followed	 by	 a	 reconstruction	 with	

random	 phases.	 As	 a	 result,	 scene	 content	 was	 removed	 while	 preserving	 low-level	

image	attributes	like	luminance	and	contrast	and	spatial	frequencies.	During	each	block,	

the	 same,	 randomly	 chosen,	 image	 was	 presented.	 	 Images	 were	 larger	 than	 display	

width,	 allowing	 for	 lateral	 left-right	 panning	 motion	 across	 the	 screen	 in	 motion	

conditions.	Motion	of	the	stimuli	was	horizontal,	following	a	sine	velocity	trajectory	that	

ensured	 smooth	 motion	 (velocity	 range:	 0	 -	 3.08	 deg/sec,	 mean:	 2.53	 deg/sec).	 The	

trajectory	period	spanned	4	cycles	per	block,	and	its	spatial	extent	was	limited	to	1.98	

visual	 degrees	 in	 each	direction.	 The	 starting	direction	of	motion	was	pseudorandom	

and	counterbalanced	across	runs.		

Fixation	Task	

During	 the	 main	 experiment,	 subjects	 performed	 a	 1-back	 character-matching	

task	in	order	to	ensure	fixation	and	to	balance	attention	across	conditions.	It	consisted	

of	 a	 sequence	of	 randomly	presented	 alphabetical	 characters	 (a-z)	 displayed	one	 at	 a	

time	 on	 the	 fixation	 disk.	 Characters	 were	 shown	 for	 1	 second	 with	 83	 ms	 blank	

intervals,	 with	 repetitions	 occurring	 between	 3	 and	 8	 presentations.	 Subjects	 were	

instructed	 to	 report	 character	 repetitions	 via	 button	 press.	 Button	 responses	 were	

recorded	and	included	in	the	GLM	as	regressor	of	no	interest.		
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Figure	 1.	 Illustration	 of	 the	 four	 stimulus	 conditions	 used	 in	 the	 main	 experiment.	 The	
conditions	 formed	 a	 2	 x	 2	 factorial	 design	 with	 the	 factors	 “scene”	 (scene/scramble)	 and	
“motion”	 (moving/still).	 There	was	 a	 gray	 fixation	 disk	 present	 at	 all	 times,	 with	 a	 one-back	
matching	character	task.	Motion	was	horizontal	with	a	sinusoidal	left-right	velocity	profile.	The	
four	 conditions	were	as	 follows:	mov/sce:	moving	 scene,	 sti/sce:	 still	 scene,	mov/scr:	moving	
scramble,	sti/scr:	still	scramble.	

	

Functional	Localizer	

PPA,	 RSC	 and	 TOS/OPA	 were	 localized	 using	 an	 independent	 localizer	

experiment	consisting	of	3	conditions.	Subjects	viewed	grayscale	images	of	scenes,	faces	

and	phase	scrambled	versions	of	these	in	a	block-design.	Each	block	lasted	15	seconds.	

In	each	block,	5	different	images	from	the	same	category	were	shown	to	subjects,	each	

for	3	s.	Blocks	were	separated	by	1	second	of	blank	screen.	Each	condition	was	shown	9	

times	during	 the	run,	which	started	with	6.9	seconds	of	gray	screen	with	 fixation	and	

ended	 with	 10	 seconds	 of	 blank	 screen	 with	 fixation.	 PPA,	 RSC	 and	 TOS/OPA	 were	

localized	 using	 the	 contrast	 scenes	 versus	 faces	 (Epstein	 &	 Kanwisher,	 1998).	 The	

regions	were	 defined	 using	 an	 individual	 p-value	 for	 each	 subject	 (between	 p	 <	 0.05	

uncorrected	and	p	<	0.0001	FWE	corrected)	 in	order	 to	keep	 the	ROIs	approximately	
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similar	 in	 size	 across	 participants	 and	 to	 account	 for	 individual	 variance	 in	 BOLD	

responsiveness,	 also	 referred	 to	 as	 variable	 thresholding	 technique	 (Fox,	 Iaria,	 &	

Barton,	2009;	Murray	&	Wojciulik,	2004).	Mean	MNI	coordinates	and	mean	volumes	of	

the	ROIs	are	shown	in	table	1.	There	was	a	central	fixation	cross	at	all	times.		

	

Table	1.	Mean	MNI	coordinates	and	volume	of	regions	of	interest	locations	across	participants,	
for	 PPA,	 RSC	 and	 TOS/OPA.	 N	 indicates	 number	 of	 hemispheres	 in	 which	 ROIs	 could	 be	
identified.	

ROI	 X	 Y	 Z	 Volume	(mm3)	 N	

Left	PPA	 -24,2 ± 2,5	 -44,8	± 4,8	 -8,6	± 5,5	 1258,8	± 399,4	 17	

Right	PPA	 24,7	±	4,3	 -43,3 ±	5,1	 -9,5 ±	3,2	 1354,9	± 372,3	 17	

Left	RSC	 -15,0	± 3,8	 -57,6	± 2,9	 14,3	± 5,7	 728,5	± 359,8	 16	

Right	RSC	 17,4	± 4,2	 -54,9	± 5,2	 16,2	± 6,0	 960,0	± 482,2	 17	

Left	TOS/OPA	 -35.6	± 6.7	 -78,1	± 4,5	 16,4	± 5,5	 663,4	± 347,3	 14	

Right	TOS/OPA	 34,1	± 4,3	 -77,9	± 4.9	 21.4	± 5,8	 568,0	± 336,7	 14	

	

Image	Acquisition	

FMRI	 data	were	 recorded	with	 a	 Siemens	Magnetom	 PRISMA	 3	 Tesla	 scanner	

using	a	64-channel	phased-array	head	coil	(Siemens,	Erlangen,	Germany).	T2*	weighted	

functional	 images	 were	 recorded	 using	 a	 gradient-echo	 sequence	 to	 optimize	 blood-

oxygen-level	dependent	(BOLD)	contrast,	with	a	TR	of	2.3	s,	TE	of	35	ms,	and	a	flip	angle	

of	79°.	Each	brain	volume	consisted	of	32	slices	with	a	voxel	size	of	3	x	3	x	3	mm3.	The	

first	3	volumes	of	each	run	were	discarded	to	allow	for	T1	equilibration.		

In	addition,	T1-weighted	high-resolution	anatomical	images	were	obtained	with	

a	resolution	of	1	x	1	x	1	mm3.	

FMRI	Data	Preprocessing	

Functional	 images	 were	 preprocessed	 using	 SPM5	 (Friston	 et	 al.	 1995,	

www.fil.ion.ucl.ac.uk/spm/)	and	MATLAB	7.10.0.	Functional	 images	were	resliced	and	

realigned.	The	structural	image	was	coregistered	to	the	mean	functional	image,	and	all	

images	 were	 normalized	 to	 the	 standard	 SPM	 template	 approximating	 the	 Montreal	
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neurological	institute	(MNI)	space.	Images	were	spatially	smoothed	with	a	6	mm	kernel	

for	 single	 subject	 analyses,	 and	with	12	mm	 for	 group	analyses.	 For	 the	 extraction	of	

ROIs,	6	mm	smoothing	was	used.	Time-series	were	high-pass	 filtered	with	a	cut	off	of	

128	s	to	remove	low-frequency	drifts	in	the	signal.		

Statistical	Analysis	

The	 general	 linear	model	 (GLM)	 approach	 was	 used	 to	 analyze	 the	 responses	

from	each	subject	separately.	In	addition,	a	second-level	random	effects	group	analysis	

was	performed	using	contrast	images	from	the	first	 level	analyses.	The	first	 level	GLM	

included	 one	 regressor	 for	 each	 of	 the	 four	 conditions	 as	 well	 as	 one	 regressor	 for	

button	responses.	As	regressors	of	no	interest	six	motion	realignment	parameter	time	

series	were	included,	plus	one	additional	regressor	for	global	signal	variance	that	was	

orthogonalized	with	 respect	 to	 the	 conditions	 of	 interest	 (Desjardins,	 Kiehl,	&	 Liddle,	

2001;	Van	Dijk	et	al.,	2010).		

ROIs	 were	 defined	 based	 on	 the	 independent	 localizer	 for	 each	 individual	

subject.	Mean	beta	values	(averaged	over	all	voxels)	for	each	ROI	of	each	subject	were	

extracted	from	data	of	the	main	experiment.		

In	order	to	make	response	magnitudes	comparable	across	the	different	ROIs,	we	

normalized	the	ROI	responses	as	follows.	For	a	given	ROI	(e.g.	PPA),	we	first	subtracted	

the	 group	mean	 response	 to	 the	 condition	 still	scramble,	 then	divided	 it	 by	 the	 group	

mean	 response	 to	 still	 scenes.	 This	 way,	 for	 each	 of	 the	 three	 ROIs,	 the	 group	 mean	

response	to	still	scramble	was	set	to	zero,	and	the	group	mean	response	to	still	scenes	to	

one.	 Note	 that	 this	 normalization	 preserved	 the	 between-subject	 variances	 for	 each	

condition	in	every	ROI,	therefore	not	affecting	within-ROI	analyses.	Repeated	measures	

ANOVAs	 were	 performed	 on	 the	 normalized	 ROI	 data	 to	 investigate	 the	 differential	

effects	across	the	four	conditions	and	their	interactions	within	each	ROI,	and	also	across	

ROIs,	 using	 SPSS	 version	 22	 (IBM	 SPSS	 Statistics	 for	 Macintosh,	 Version	 22.0).	

Greenhouse-Geisser	correction	was	used	in	case	of	violation	of	sphericity,	according	to	

Mauchly's	sphericity	 test.	Since	classical	post-hoc	tests	are	not	permitted	 for	repeated	

measures	 ANOVAs,	 paired	 t-tests	 were	 performed	 where	 significant	 interactions	

between	 effects	 and	 ROIs	 were	 found	 in	 the	 ANOVA	 in	 order	 to	 investigate	 which	

responses	 drove	 between-ROI	 differences.	 T-tests	 were	 then	 Bonferroni-Holm	

corrected	for	the	number	of	tests	performed.	
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Finally,	 whole-brain	 random	 effects	 group	 analyses	 were	 carried	 out	 by	

conducting	t-tests	on	contrast	images	obtained	from	every	subject	for	the	scene-motion	

interaction.	

Eye	Tracking	

Eye	positions	were	recorded	during	the	experiment	at	a	sampling	rate	of	60	Hz	

using	an	infrared	camera	based	eye	tracker	(Eye-Trac	6;	Applied	Science	Laboratories).		

Eye	position	data	were	preprocessed,	which	included	blink	removal	and	smoothing	of	x	

and	y	gaze	points	using	a	200	millisecond	running	average	window.	Fixation	accuracy	

was	then	calculated	using	two	measures.	The	first	measure	was	the	average	distance	of	

actual	eye	position	relative	to	the	fixation	disk.	The	second	measure	was	the	standard	

deviation	of	 the	distances.	These	values	were	calculated	 for	each	condition	separately	

across	 runs,	 yielding	 one	 value	 per	 subject	 and	 condition.	 Separate	 one-way	ANOVAs	

were	then	conducted	for	each	measure	to	examine	differences	across	conditions.	
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2.4. Results	

ROI	Analyses	

We	investigated	the	main	effects	of	visual	horizontal	motion	(on	vs.	off),	of	scene	

content	(outdoor	scenes	vs.	phase-scramble),	and	of	their	interaction	on	independently	

localized	scene	processing	regions	PPA,	TOS/OPA,	and	RSC.	PPA	was	localized	in	34	of	

34	hemispheres,	TOS/OPA	 in	28	of	34	hemispheres	and	RSC	 in	33	of	34	hemispheres	

(see	 table	 1	 for	 mean	 coordinates	 and	 volumes).	 Figure	 2A	 shows	 raw	 mean	 beta	

responses	to	all	conditions	for	each	ROI.		

To	examine	within-ROI	effects,	we	analyzed	each	ROI	separately	using	a	two-way	

repeated	measures	 ANOVA	with	 the	 factors	 motion	 and	 scene.	 The	main	 effects	 and	

interaction	effects	for	each	ROI	are	shown	in	Figure	3.	

In	PPA,	there	were	significant	effects	of	scene	(F	(1,33)	=	227.4,	p	=	2.3	*	10-16),	

motion	(F	(1,33)	=	24.9.	p	=	1.9	*	10-5)	and	a	significant	interaction	between	scene	and	

motion	(F	(1,33)	=	9.4,	p	=	0.004).		

In	RSC,	there	was	a	significant	effect	of	scene	(F	(1,32)	=	66.4,	p	=	2.6		*	10-9)	but	

there	 was	 neither	 a	 significant	 effect	 of	 motion	 (F	 (1,32)	 =	 0.33,	 p	 =	 0.57)	 nor	 a	

significant	interaction	between	scene	and	motion	(F	(1,32)	=	0.96,	p	=	0.33).		

In	TOS/OPA,	there	were	significant	effects	of	scene	(F	(1,27)	=	71.9,	p	=	4.3	*	10-

9)	and	motion	(F	(1,27)	=	34.4,	p	=	3.0	*	10-6)	but	there	was	no	significant	 interaction	

between	scene	and	motion	(F	(1,27)	=	1.2,	p	=	0.29).		

In	sum,	all	regions	responded	as	expected	to	scenes,	but	only	PPA	and	TOS/OPA	

had	 responses	 to	 visual	 motion,	 which	 were	 absent	 in	 RSC	 (Figure	 3A).	 Only	 PPA	

showed	a	significant	interaction	between	motion	and	scene-content,	 in	that	 its	motion	

response	 was	 higher	 in	 scene	 compared	 to	 scramble	 conditions,	 although	 the	 BOLD	

responses	of	RSC	was	also	in	a	similar	pattern	(Figure	3B).	

Next,	 we	 compared	 the	 different	 ROIs	with	 each	 other.	 Since	 overall	 response	

magnitudes	differed	substantially	between	ROIs,	presumably	due	to	different	distances	

to	the	MR-coil,	we	normalized	them	such	that	their	mean-response	to	still	scenes	were	

equalized.	We	did	 this	 by	 first	 subtracting	 the	 group	mean	 response	 to	 still	 scramble	

(i.e.	 this	was	now	0),	 then	dividing	 all	 responses	by	 the	 group	mean	 response	 to	 still	

scenes	 (this	 now	 equaled	 one	 in	 each	 ROI).	 This	 normalization	 preserved	 individual	
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variance	 across	 participants	 in	 each	 condition.	 The	 normalized	 beta	 estimates	 are	

shown	in	Figure	2B.	

	

	

Figure	2.	ROI	responses	to	the	experimental	conditions.	(A)	Raw	beta	estimates	of	ROIs	to	the	
conditions	 moving	 scene,	 still	 scene	 and	 moving	 scramble.	 To	 provide	 a	 better	 estimate	 of	
variance	 for	 the	 remaining	 conditions,	 the	 condition	 still	 scramble	 was	 subtracted	 from	 all	
conditions	 for	 each	 subject	 (note	 that	 repeated-measures	 statistics	were	 carried	 out	without	
this	step).	(B)	Normalized	beta	estimates.	Same	data	as	in	(A),	but	all	responses	were	divided	by	
the	mean	response	of	still	scene.	Again,	for	statistics,	the	group	mean	of	still	scramble	had	been	
subtracted	 instead	 of	 each	 individual	 response.	 Error	 bars	 show	 standard	 error	 of	 the	mean	
(SEM).	

	

The	normalized	ROI	data	were	submitted	to	a	3	x	2	x	2	x	2	repeated	measures	

ANOVA,	 with	 the	 factors	 ROI	 (PPA/RSC/TOS	 (OPA)),	 hemisphere	 (left/right),	 motion	
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(on/off)	and	scene	(on/off).	Since	there	was	no	significant	effect	of	hemisphere	or	any	

significant	 interaction	between	hemisphere	 and	any	of	 the	 factors,	we	 combined	data	

from	 left	 and	 right	 hemispheres	 and	 conducted	 a	more	 tractable	 three	 factor	ANOVA	

with	ROI,	motion	and	scene	as	factors.	The	results	revealed	significant	main	effects	for	

motion	(F	(1,27)	=	17.0,	p	=	3.2	*	10-4)	and	scene	(F	(1,27)	=	142.5,	p	=	2.8	*	10-12),	and	

significant	 interactions	 between	 ROI	 and	motion	 (F	 (1.27,35.8)	 =	 4.3,	 p	 =	 0.034)	 and	

between	motion	and	scene	(F	(1,27)	=	4.1,	p	=	0.05)	but	not	between	ROI,	motion	and	

scene	(F	(1.33,36.1)	=	0.375,	p	=	0.6),	ROI	and	scene	(F	(2,54)	=	0.16,	p	<	0.86)	and	no	

significant	main	effects	for	ROI	(F	(1.30,35.1)	=	1.9,	p	=	0.17).	

Since	post-hoc	tests	are	invalid	for	repeated	measures	ANOVAs,	we	followed	up	

the	significant	ANOVA	results	using	Bonferroni-Holm	corrected	t-tests.	

	 In	 order	 to	 examine	 which	 differences	 between	 ROIs	 drove	 the	 interaction	

between	ROI	and	motion	in	the	ANOVA,	we	compared	ROI	responses	for	motion	using	

paired	 t-tests	 across	 ROIs,	 Bonferroni-Holm	 corrected	 for	 three	 comparisons	 (see	

Figure	3A).	We	found	significant	differences	between	PPA	and	TOS/OPA	(t	(27)	=	2.678,	

p	=	0.036	corrected)	and	RSC	and	TOS/OPA	(t	(27)	=	2.402,	p	=	0.046	corrected)	but	not	

between	PPA	and	RSC	(t	(32)	=	1.071,	p	=	0.292).		
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Figure	 3.	 Main	 effects	 of	 motion,	 scene	 and	 their	 interaction	 for	 each	 ROI,	 shown	 for	 data	
normalized	 to	static	 scene	effects.	 (A)	Main	effect	of	motion,	 i.e.	moving	vs.	 still	 across	scenes	
and	scramble.	A	three-way	ANOVA	with	factors	ROI,	scene	and	motion	showed	significant	ROI-
by-motion	interaction,	and	targeted	t-tests	between	ROIs	showed	significant	motion	preference	
of	TOS/OPA	compared	to	both,	PPA	and	RSC.		(B)	Interaction	between	scene	and	motion	effects,	
i.e.	 (moving	 scene	 vs	 moving	 scramble)	 vs.	 (still	 scene	 vs	 still	 scramble).	 Only	 PPA	 showed	
significant	effects.	(C)	Main	effect	of	scene,	i.e.	scene	vs.	scrambled	across	moving	and	still.	Note	
that	data	were	normalized	such	that	static	scene	vs	static	scramble	equaled	one	in	each	ROI	(see	
Figure	2B).	**	:	p	<	0.005,	*	:	p	<	0.05,	Bonferroni-Holm	corrected.	Error	bars	show	standard	error	
of	mean	(SEM).	
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Whole	Brain	Analyses	

Whereas	 scene	 and	motion	 responses	 per	 se	 have	 been	 reported	 in	 numerous	

prior	studies,	their	interaction	has	not	been	examined	brain-wide	before.	We	therefore	

performed	additional	whole-brain	random-effects	analyses	across	all	voxels	of	the	brain	

in	 order	 to	 test	 whether	 regions	 beyond	 the	 scene	 selective	 ROIs	 responded	 to	 the	

interaction	 between	 motion	 and	 scene.	 The	 whole-brain	 RFX	 analysis	 showed	 no	

activation	 for	 the	 interaction	of	 scenes	 and	motion	 surviving	FDR	or	 FWE	 correction.	

However,	Figure	4	shows	that	the	interaction	was	evident	in	PPA	at	uncorrected	levels,	

with	peak	T-statistic	values	of	t	=	2.54	in	left	PPA	and	t	=	2.13	in	right	PPA.	

	

	
	

Figure	 4.	 Group	 data	 for	 interaction	 of	 scenes	 and	motion.	A	random	effects	whole-brain	
analysis	 for	 the	 interaction	between	 scene	and	motion	yielded	no	 significant	 voxels	 surviving	
FDR	or	FWE	correction.	However,	voxels	in	PPA	were	evident	at	uncorrected	thresholds,	shown	
here	in	coronal	and	sagittal	slices	with	peak	T-statistic	values	of	t	=	2.54	in	left	PPA	and	t	=	2.13	
in	right	PPA,	shown	thresholded	at	p	<	0.05	uncorrected	for	illustration.	

	

Behavioral	Data	

Throughout	 the	 experiment	 subjects	 had	 performed	 a	 fixation	 character	 back-

matching	 task	 intended	 to	 maintain	 vigilance	 and	 to	 balance	 attention	 across	

conditions.	 The	 average	 rate	 of	 correct	 responses	 was	 near	 ceiling	 with	 0.87	±	0.06	

(mean	± std).	The	mean	response	time	was	0.56	s	 ±	0.14	s	(mean	± std).	As	a	measure	
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of	 attentional	 engagement	 we	 performed	 an	 ANOVA	 over	 reaction	 times	 across	

conditions	and	found	no	difference	(F	(1,3)	=	0.43,	p	=	0.73)	across	conditions.	

Eye	Tracking	Data	

Eye	 position	 data	 had	 been	 collected	 throughout	 the	 experiment,	 and	 we	

extracted	two	measures	 for	each	of	 the	 four	conditions:	average	eye-position	distance	

from	the	central	 fixation,	and	 the	standard	deviation	of	 the	 fixation-error.	For	each	of	

these	 two	 measures,	 separate	 ANOVAs	 were	 calculated	 across	 the	 four	 stimulus	

conditions.	 Neither	 ANOVA	 showed	 differences	 across	 conditions	 (for	 the	 average	

distances,	F	(3,268)	=	0.31,	p	=	0.8167,	for	the	standard	deviation	of	average	distances,	F	

(3,268)	=	0.19,	p	=	0.9025).		
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2.5. Discussion	

In	this	study	we	addressed	two	simple	but	fundamental	questions:	first,	whether	

scene	processing	regions	are	modulated	by	visual	planar	motion	and	second,	to	which	

extent	their	motion	responses	are	modulated	as	a	function	of	scene	content.	To	answer	

these	 questions	 we	 conducted	 fMRI	 experiments	 using	 scene	 and	 scramble	 stimuli	

combined	with	 horizontal	 linear	motion	 as	 visual	 stimuli.	 Horizontal	 panning	motion	

was	 chosen	 as	 it	 is	 one	 of	 the	 most	 abundant	 motion	 types	 natural	 scenes	 (see	 e.g.	

(Bartels	et	al.,	2008;	Gros	et	al.,	1998),	occurring	e.g.	in	the	background	when	we	track	a	

laterally	moving	object	in	the	foreground.	We	focused	on	independently	identified	scene	

responsive	regions,	namely	PPA	(Epstein	&	Kanwisher,	1998),	RSC	(Maguire,	2001)	and	

TOS/OPA	 (Dilks	 et	 al.,	 2013;	Grill-Spector,	 2003;	Hasson	 et	 al.,	 2003)	 as	 their	motion	

responses	 have	 not	 been	 examined	 previously.	 The	 results	 showed	 that	 motion	

responses	 of	 TOS/OPA	was	 significantly	 different	 from	motion	 responses	 of	 PPA	 and	

RSC,	 and	 that	 only	 PPA	 showed	 a	 significant	 dependence	 of	 its	 motion-response	 on	

natural	 scene	content,	 although	 there	was	no	significant	difference	between	PPA,	RSC	

and	TOS	in	their	responses	to	scene	and	motion	interaction.		

Content-dependent	motion	responses	in	Scene	Selective	Regions	

PPA	responded	significantly	 to	motion,	and	showed	a	scene-motion	 interaction	

in	that	its	motion	response	(vs.	still)	was	higher	in	context	of	scenes	than	in	context	of	

scrambled	scenes.	This	 interaction	was	not	 found	 in	RSC	or	TOS/OPA	even	 though	all	

three	 regions	 responded	 significantly	 to	 scenes	 compared	 to	 scramble	 and	 the	 three	

regions’	responses	did	not	differ	from	each	other	significantly	for	this	interaction.	This	

pattern	of	results	is	compatible	with	prior	studies	that	used	static	stimuli	and	suggested	

that	PPA	 responses	are	viewpoint	dependent	 (Epstein	et	 al.,	 2003;	Epstein	&	Higgins,	

2007;	Epstein	et	al.,	2005;	Epstein,	Parker,	et	al.,	2007;	MacEvoy	&	Epstein,	2007;	Park	

&	 Chun,	 2009).	 These	 studies	 showed	 that	 PPA	 responses	 were	 heightened	 upon	

presentation	 of	 statically	 presented	 but	 horizontally	 shifted	 scenes	 in	 comparison	 to	

non-shifted	 scenes.	 There	 are	 however	 other	 studies	 suggesting	 that	 PPA	 becomes	

viewpoint	 invariant	 when	 the	 difference	 between	 viewpoints	 is	 small	 (Ewbank,	

Schluppeck,	 &	 Andrews,	 2005)	 or	 when	 subjects	 become	 familiar	 with	 the	 scenes	

(Epstein	 et	 al.,	 2005).	 For	 this	 reason,	we	 intentionally	 limited	 the	 absolute	 extent	 of	

motion	to	a	 few	visual	degrees	to	minimize	appearance	of	new	scene	content	through	
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motion.	The	maximal	range	of	scene	shift	covered	±1.98	visual	degrees	(preserving	73.6	

%	of	preserved	overlap	between	extreme	views),	whereas	some	prior	studies	used	16	

degrees	(33	%	of	preserved	overlap)	(Park	&	Chun,	2009).	Our	results	therefore	suggest	

that	 even	 small	 continuous	 viewpoint	 changes	 of	 less	 than	 ±2.5	 degrees	 drive	 PPA,	

specifically	in	context	of	scenes,	indicating	a	high	sensitivity	of	PPA	for	dynamic	changes	

in	viewpoint.	

	PPA	 and	 RSC	 are	 thought	 to	 have	 distinct	 roles	 in	 scene	 processing	 (Epstein,	

Parker,	 et	 al.,	 2007).	 RSC	 is	 thought	 to	 be	 more	 involved	 in	 navigation	 and	 route	

learning,	 integrating	spatial	 representation	 from	different	 sources	 (Wolbers	&	Buchel,	

2005),	mediating	also	the	recognition	of	known	scenes,	whereas	PPA	has	been	proposed	

to	have	a	more	visual	 role	 supporting	 the	 immediate	perception	scenes,	 regardless	of	

familiarity	or	navigational	relevance	(Epstein,	Higgins,	et	al.,	2007).	For	example,	while	

RSC	 responses	 are	 viewpoint	 invariant,	 it	 is	 sensitive	 to	 mirror	 image	 reversal	 that	

implies	 distinct	 scenes,	 whereas	 the	 reverse	 was	 found	 in	 PPA	 (Dilks	 et	 al.,	 2011).	

Moreover,	 a	 recent	 study	 showed	 that	 RSC	 signaled	 permanent	 landmarks	 (Auger,	

Mullally,	&	Maguire,	2012).		

Seen	this	way,	the	lack	of	scene-motion	interactions	found	here	in	RSC	is	in	line	

with	 previous	work	 showing	 that	while	 PPA	 is	 viewpoint	 sensitive,	 RSC	 is	 viewpoint	

invariant	(Park	&	Chun,	2009;	Park	et	al.,	2010).	The	viewpoint	 invariance	of	RSC	has	

been	shown	to	depend	on	the	continuity	of	the	static	snapshots	presented	(Park	&	Chun,	

2009),	 consistent	 with	 the	 continuous	 viewpoint	 change	 conferred	 in	 our	 moving	

stimuli.		

Another	 explanation	 for	our	 results	 could	be	 that	 the	difference	 in	 the	 content	

information	of	dynamic	scenes	compared	to	still	scenes	drives	the	difference	in	PPA	and	

RSC.	 Since	 the	 scenes	 that	 were	 shown	 for	 different	 conditions	 were	 balanced,	 the	

amount	of	 information	provided	by	the	scenes	differed	between	conditions	because	of	

moving	scenes	spanning	across	a	wider	view.	Previously,	PPA	and	RSC	were	shown	to	

have	 a	 larger	 representation	 of	 the	 scene	 beyond	 the	 shown	 physical	 view,	 which	 is	

known	as	‘boundary	extension‘	and	while	PPA	showed	attenuation	to	same	views,	RSC	

did	 not	 (Park,	 Intraub,	 Yi,	 Widders,	 &	 Chun,	 2007),	 which	 indicates	 that	 while	 RSC	

integrates	the	present	view	of	the	scene	into	a	more	general	representation	of	the	space,	

which	is	needed	for	navigation,	PPA	is	more	sensitive	to	physical	attributes	of	the	scene.	
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This	could	explain	our	content	related	findings	in	PPA	and	RSC,	while	PPA	being	more	

sensitive	 to	 physical	 properties	 of	 the	 viewpoint	 would	 result	 in	 scene	 motion	

interaction,	this	interaction	would	not	be	as	significant	in	RSC	since	RSC	places	a	given	

view	of	 the	scene	 into	a	 larger	view	 in	 the	 first	encounter.	Our	results	are	compatible	

RSC	 being	 higher	 in	 the	 scene	 processing	 hierarchy	 than	 PPA,	 in	 the	 sense	 that	 it	

integrates	the	viewpoint	of	the	scene	to	a	broader	scene	perception,	presumably	for	the	

purpose	 of	 spatial	 navigation,	 whereas	 PPA	 is	 in	 lower	 than	 RSC	 and	 is	 presumably	

responsible	 for	 encoding	 physical	 properties	 of	 the	 given	 viewpoint	 of	 the	 scene.		

However,	in	our	stimuli,	the	order	of	conditions	was	balanced	(moving	scenes	similar	to	

wide	view	whereas	still	scenes	are	similar	to	close	view)	and	their	results	showed	the	

attenuation	effect	only	happens	when	a	close	view	was	followed	by	wide	view,	but	not	

the	 other	 way	 around.	 Moreover,	 our	 design	 can	 also	 be	 reviewed	 in	 the	 light	 of	

viewpoint	 specificity	 of	 PPA,	 where	 the	 moving	 scene	 condition	 could	 be	 seen	 as	 a	

continuous	set	of	different	viewpoints	of	an	image,	compared	to	a	given	viewpoint	of	the	

image	 in	 still	 scenes	 condition(Epstein	 et	 al.,	 2003;	 Schmidt	 et	 al.,	 2007).	 Yet,	 future	

studies	 are	needed	 to	 establish	 the	underlying	mechanisms	of	 the	 content	 dependent	

motion	responses	in	scene	responsive	regions.		

Motion	responses	in	Scene	Selective	Regions	

In	recent	years,	there	has	been	increasing	interest	in	motion	responses	of	regions	

in	the	ventral	visual	pathway	that	is	traditionally	not	considered	to	be	motion	selective.	

Motion	 responses	 and	 even	direction	 specificity	 have	been	 shown	 to	 also	 exist	 in	 the	

ventral	 visual	 pathway,	 even	 in	 relatively	 early	 regions	 such	 as	 V4	 (Tolias,	 Keliris,	

Smirnakis,	&	Logothetis,	2005;	Tolias,	Smirnakis,	Augath,	Trinath,	&	Logothetis,	2001).	

Motion	responses	have	also	been	found	in	the	object	processing	pathway,	specifically	in	

the	lateral	occipital	cortex	(LOC)	(Self	&	Zeki,	2005).	Even	the	perception	of	motion	can	

depend	on	ventral	visual	cortex	integrity	(Gilaie-Dotan	et	al.,	2013).	A	growing	body	of	

literature	 showed	 that	 face	 selective	areas	 show	 increased	 responses	 to	dynamic	 face	

stimuli	(Pitcher,	Dilks,	Saxe,	Triantafyllou,	&	Kanwisher,	2011;	Schultz	&	Pilz,	2009),	and	

even	directional	selectivity	in	both	ventral	and	dorsal	face	processing	regions	(Reinl	&	

Bartels,	2014).		

Findings	 showing	 that	 some	 neurons	 in	 monkey	 parahippocampal	 cortex	

responded	 to	 motion	 stimuli	 are	 directly	 relevant	 for	 the	 current	 study	 (Sato	 &	
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Nakamura,	 2003).	 Previous	 human	 studies	 failed	 to	 find	 motion	 responses	 in	 PPA	

(Epstein,	 Harris,	 Stanley,	 &	 Kanwisher,	 1999;	 Hasson	 et	 al.,	 2003)	 or	 in	 TOS/OPA	

(Hasson	et	al.,	2003),	presumably	because	they	did	not	achieve	the	sensitivity	afforded	

by	 our	 dedicated	 factorial	 design	 and	 they	 did	 not	 use	 planar	 motion.	 One	 of	 the	

aforementioned	studies	used	expanding	and	contradicting	moving	rings	(Hasson	et	al.,	

2003),	whereas	the	other	one	used	a	sequence	of	photographs	of	a	scene	taken	during	

forward	motion	of	the	camera	(Epstein	et	al.,	1999).	Relevant	in	this	context	may	be	the	

recently	discovered	specific	preference	of	PPA	for	cardinal	orientations	(Nasr	&	Tootell,	

2012)	 that	 would	 render	 horizontal	 motion	 as	 employed	 here	 a	 particularly	 salient	

stimulus	for	this	region.	

TOS/OPA	is	the	least	studied	scene	selective	region,	its	functional	role	compared	

to	 that	 of	 the	 other	 regions	 is	 comparably	 poorly	 understood	 (Dilks	 et	 al.,	 2013;	

Ganaden,	Mullin,	 &	 Steeves,	 2013),	 and	 it	 is	 less	 easily	 localizable	 compared	 to	 other	

scene	responsive	regions	(Konkle	&	Oliva,	2012;	Mullin	&	Steeves,	2013)	(and	our	own	

observations).	 While	 TOS/OPA	 plays	 a	 role	 in	 encoding	 the	 higher	 order	 spatial	

relationships	 of	 objects	 within	 a	 scene	 (Bettencourt	 &	 Xu,	 2013;	 Nasr,	 Devaney,	 &	

Tootell,	 2013),	 it	 has	 been	 suggested	 to	 contribute	 to	 early	 steps	 of	 scene	processing	

(Dilks	 et	 al.,	 2011;	 Dilks	 et	 al.,	 2013;	MacEvoy	 &	 Epstein,	 2007),	 since	 it	 has	 smaller	

receptive	fields	than	those	of	PPA	or	RSC	(MacEvoy	&	Epstein,	2007),	even	though	they	

cover	both	hemifields	(Ward,	MacEvoy,	&	Epstein,	2010).		

Our	 results	 showing	 that	 TOS/OPA	 has	 the	 highest	 motion	 responses	 among	

scene	processing	regions	is	compatible	with	its	dorsal	location.		

In	 contrast	 to	 PPA	 and	 TOS,	 RSC	 did	 not	 have	 any	 motion	 responses	 or	

interactions	between	motion	and	content.	This	 is	unlikely	due	 to	 lack	of	 signal	 in	 this	

region,	as	RSC	showed	highly	significant	scene	responses.	The	reason	is	thus	more	likely	

to	 be	 found	 in	 its	 above-discussed	 high-level	 function	 and	 invariance	 to	 (continuous)	

changes	of	scene	views.		

2.6. Conclusion	

We	conclude	that	scene	responsive	regions	can	be	differentiated	from	each	other	

in	 the	 motion	 sensitivity	 of	 TOS/OPA	 and	 the	 lack	 thereof	 in	 RSC.	 Moreover,	 PPA’s	

differed	from	both	other	regions	in	showing	a	significant	interaction	between	scene	and	
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motion,	indicating	its	particular	sensitivity	to	continuous	changes	in	scene-views	rather	

than	 a	 low-level	 sensitivity	 to	 motion.	 To	 our	 knowledge,	 these	 results	 are	 first	 to	

systematically	 examine	 motion	 responses	 and	 motion-content	 relationships	 in	 scene	

processing	regions.	

Our	results	support	the	view	of	viewpoint	dependent	representation	of	scenes	in	

PPA,	 content-driven,	 motion	 invariant	 responses	 in	 RSC,	 and	 comparably	 more	 low-

level	 responses	 in	 TOS/OPA	 driven	 by	 both	 content	 and	motion.	 The	 present	 results	

provide	 insight	 into	 modulation	 and	 invariance	 of	 TOS/OPA,	 PPA	 and	 RSC	 to	 the	

abundant	 low-level	 feature	 of	 planar	 motion	 that	 dominates	 visual	 input	 in	 natural	

conditions.	 Further	 studies	 are	 needed	 to	 investigate	 responses	 of	 scene	 responsive	

regions	 to	 different	 types	 of	 motion	 in	 interaction	 with	 scene	 content,	 and	 to	

understand	 their	 exact	 role	 in	 integrating	 scenes	 into	 a	 continuous,	 navigatable	 view	

despite	constant	motion.	
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3.1. Abstract		

We	perceive	scenes	as	stable	even	when	eye	movements	induce	retinal	motion,	

for	 example	 during	 pursuit	 of	 a	 moving	 object.	 Mechanisms	 mediating	 perceptual	

stability	have	primarily	been	examined	in	motion	regions	of	the	dorsal	visual	pathway.	

Here	we	examined	whether	motion	responses	 in	human	scene	regions	are	encoded	 in	

eye-	 or	 world	 centered	 reference	 frames.	 We	 recorded	 brain	 responses	 in	 human	

participants	using	fMRI	while	they	performed	a	well-controlled	visual	pursuit	paradigm	

previously	used	to	examine	dorsal	motion	regions.	In	addition,	we	examined	effects	of	

content	 by	 using	 either	 natural	 scenes	 or	 their	 Fourier	 scrambles.	 We	 found	 that	

parahippocampal	place	area	(PPA)	responded	to	motion	only	in	world-	but	not	in	eye-

centered	 coordinates,	 regardless	 of	 scene	 content.	 The	 occipital	 place	 area	 (OPA)	

responded	to	both,	objective	and	retinal	motion	equally,	and	retrosplenial	cortex	(RSC)	

had	 no	 motion	 responses	 but	 responded	 to	 pursuit.	 Only	 PPA’s	 objective	 motion	

responses	 were	 higher	 during	 scenes	 than	 scrambled	 images,	 although	 there	 was	 a	

similar	 trend	 in	 OPA.	 These	 results	 indicate	 a	 special	 role	 of	 PPA	 in	 representing	 its	

content	 in	 real-world	 coordinates.	 Our	 results	 question	 a	 strict	 subdivision	 of	 dorsal	

“what”	 and	 ventral	 “where”	 streams,	 and	 suggest	 a	 role	 of	 PPA	 in	 contributing	 to	

perceptual	stability.	
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3.2. Introduction		

Keeping	a	stable	visual	perception	is	one	of	the	crucial	roles	of	the	visual	system.	

Our	 visual	 system	 continuously	 integrates	 retinal	 inputs	 with	 eye-,	 head-	 and	 body	

movements	in	order	to	keep	our	subjective	visual	percept	stable	and	in	register	with	the	

external	 world.	 The	 mechanisms	 behind	 this	 constant	 updating	 are	 only	 partially	

known.	Prior	studies	have	primarily	focused	on	high-level	parietal	regions,	 identifying	

several	 that	 engage	 in	 so-called	 remapping,	 potentially	 allowing	 for	 stable	perception	

(Fischer,	 Bulthoff,	 Logothetis,	 &	 Bartels,	 2012a,	 2012b;	 Galletti,	 Battaglini,	 &	 Fattori,	

1990;	 Ilg,	 Schumann,	 &	 Thier,	 2004;	 Zhang,	 Heuer,	 &	 Britten,	 2004).	 Given	 that	 the	

content	 that	 is	 perceived	 as	 stable	 during	 eye	 movements	 typically	 consists	 of	 real-

world	 scenes,	 it	 seems	 reasonable	 to	 examine	 this	 question	 also	 in	 scene-selective	

regions.	

Scene	 processing	 has	 been	 shown	 to	 take	 place	 in	 PPA	 (Aguirre,	 Zarahn,	 &	

D’Esposito,	 1998;	 Epstein	 &	 Kanwisher,	 1998),	 RSC	 (Maguire,	 2001)	 and	 OPA	 (also	

known	as	transverse	occipital	sulcus	(TOS))	(Dilks,	Julian,	Paunov,	&	Kanwisher,	2013;	

Grill-Spector,	 2003;	 Hasson,	 Harel,	 Levy,	 &	 Malach,	 2003;	 Nakamura	 et	 al.,	 2000).	

Several	 studies	 have	 examined	 spatial	 updating	 in	 these	 regions	 using	 saccadic	 eye	

movements	(Golomb,	Albrecht,	Park,	&	Chun,	2011;	Ward,	MacEvoy,	&	Epstein,	2010)	or	

snapshots	of	different	viewpoints	(Epstein,	Graham,	&	Downing,	2003;	Epstein,	Higgins,	

&	Thompson-Schill,	2005;	Park	&	Chun,	2009;	V.	Sulpizio,	Committeri,	&	Galati,	2014;	

Valentina	Sulpizio,	Committeri,	Lambrey,	Berthoz,	&	Galati,	2013).	These	studies	have	

however	not	 led	 to	a	clear	agreement	with	regard	to	 the	reference	 frames	encoded	 in	

scene	regions.	One	study	suggested	that	PPA	and	OPA	utilize	eye-centered	coding	while	

RSC	does	not	show	any	preference	(Ward	et	al.,	2010).	Another	study	 found	that	PPA	

partially	adapted	to	views	of	 the	same	scene	during	saccadic	eye	movements,	but	 this	

adaptation	 did	 not	 differ	 when	 the	 scene-snapshot	 moved	 with	 the	 saccade	 or	 not	

(Golomb	et	al.,	2011).	This	study	hence	suggested	that	scene	encoding	is	primarily	eye-

centered,	yet	with	 limited	world-centered	contribution.	A	problem	with	 these	saccade	

studies	was	 that	 due	 to	methodological	 considerations,	 saccades	were	 executed	 on	 a	

blank	screen,	hence	preventing	true	spatial	updating	of	the	scene	during	the	saccade.		

Here,	 we	 re-examine	 the	 important	 question	 whether	 scene	 regions	 encode	

visual	 input	 in	 eye-centered	 or	 world-centered	 coordinates	 using	 continuous	motion	
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and	 visual	 pursuit	 instead	 of	 using	 snapshots	 and	 saccades.	 This	 has	 multiple	

advantages.	Pursuit	can	be	carried	out	on	the	scenes	rather	than	on	intermittent	blank	

screens,	 and	 updating	 occurs	 continuously	 rather	 than	 only	 a	 few	 times	 per	 stimulus	

block	 or	 between	 blocks.	 Updating-related	 signal	 can	 hence	 be	 expected	 to	 be	

considerably	higher	as	it	is	generated	continuously	throughout	each	block.	PPA	and	OPA	

have	previously	been	shown	to	be	motion	responsive	(Korkmaz	Hacialihafiz	&	Bartels,	

2015),	as	well	as	neurons	of	the	parahippocampal	gyrus	in	monkey	(Sato	&	Nakamura,	

2003).	However,	no	study	differentiated	between	retinal	and	world	centered	reference	

frames	of	 these	motion	responses.	Even	among	dorsal	motion-selective	regions	only	a	

subset	encodes	motion	primarily	 in	world-centered	reference	 frame,	 such	as	V3A	and	

V6	(Fischer	et	al.,	2012a).	

We	designed	stimuli	according	to	a	well-controlled	2	x	2	factorial	design	with	the	

factors	 objective	 motion	 (on/off),	 pursuit	 (on/off)	 that	 allows	 separating	 eye-	 from	

world-centered	motion	encoding	(Fischer	et	al.,	2012a).	A	third	factor	of	scene	content	

(gray	 scale	 landscape	 and	 cityscape	 scenes	 or	 Fourier	 their	 scrambles)	 (Korkmaz	

Hacialihafiz	 &	 Bartels,	 2015)	 was	 added	 as	 a	 third	 factor	 to	 examine	 content-

dependence	of	 reference	 frame	preference.	To	balance	attention	across	all	 conditions,	

participants	 performed	 a	 central	 character-matching	 task	 at	 all	 times.	 Importantly,	

effects	 of	 eye	movements	 cancelled	 out	 for	 the	 important	 contrasts,	 since	 conditions	

including	 pursuit	 eye	 movements	 were	 present	 in	 both	 sides	 of	 the	 equation.	 Scene	

responsive	regions	were	identified	using	an	independent	localizer	scan.	We	performed	

GLM	whole-brain	 analyses	 as	well	 as	 region	 of	 interest	 (ROI)	 analyses.	 Results	 show	

that	the	key	scene	responsive	regions,	PPA,	OPA	and	RSC,	can	be	completely	dissociated	

on	the	basis	of	responsiveness	to	pursuit	or	their	preference	for	the	distinct	reference	

frames.		 	
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3.3. Materials	and	Methods	

Participants	 	

17	healthy	participants	with	normal	or	corrected-to	normal	vision	(9	 female,	1	

left	 handed,	 age	between	20	and	36,	mean	=	27.8	 years)	 took	part	 in	 this	 study	after	

giving	written	 informed	consent.	The	 study	was	approved	by	 the	ethics	 committee	of	

the	University	Hospital	of	Tübingen.		

Experimental	Setup	

This	 study	 consisted	 of	 one	main	 experiment,	 one	 functional	 localizer	 and	 one	

structural	 scan.	 The	 functional	 localizer	 aimed	 to	 identify	 scene-	 responsive	 regions:	

PPA,	RSC,	and	OPA.		

Visual	 stimuli	 were	 gamma	 corrected	 and	 back-projected	 onto	 a	 screen	 via	 a	

projector	outside	 the	scanner	room.	The	screen	was	viewed	via	an	angled	mirror	and	

subtended	a	visual	field	of	19	x	15	visual	degrees.	

The	experiment	was	programmed	using	Psychtoolbox-3	(Brainard	1997,	Kleiner,	

Brainard	et	al.	2007)	on	MATLAB	7.10.0	 (The	Mathworks,	Natick,	MA,	2010)	and	was	

presented	using	a	windows	PC.	

Main	Experiment	

Figure	1	illustrates	the	eight	conditions	of	the	main	experiment.	It	was	a	2	x	2	x	2	

factorial	design	with	 the	 factors	objective	motion	 (on/off),	pursuit	 (on/off)	 and	scene	

(on/off).	 The	 design	 of	 the	 first	 two	 factors	 (on-screen	 motion	 and	 pursuit)	 was	

identical	 to	 that	described	 in	a	prior	study	(Fischer	et	al.,	2012a).	Here,	a	background	

image	 (described	 by	 the	 third	 factor:	 either	 a	 natural	 scene	 or	 Fourier-scramble	

thereof)	was	either	stationary	or	moved	on	a	horizontal	trajectory	left-	and	right-wards.	

A	 horizontal	 trajectory	 was	 chosen	 as	 this	 corresponds	 to	 common	 eye-	 and	 head-

rotations	 in	 natural	 situations	 and	 correspondingly	 predominates	 in	 feature	 movies	

(Bartels,	Zeki,	&	Logothetis,	2008).	The	velocity	followed	a	sine	function	with	a	cycle	of	

3	s,	and	each	block	contained	4	cycles,	hence	lasting	12	s.	The	velocity	varied	between	0	

and	3.08	deg/s,	yielding	a	mean	velocity	of	2.53	deg/s.	The	motion	extended	1.98	visual	

degrees	 in	 each	 direction.	 The	 starting	 direction	 of	 motion	 of	 each	 block	 was	

pseudorandomized	and	counterbalanced	across	runs.		
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The	 same	 parameters	 applied	 to	 the	 fixation	 disc,	 that	 could	 also	 either	 be	

stationary	 or	moving.	 In	 conditions	when	 both,	 the	 fixation	 disc	 and	 the	 background	

moved,	the	motion	of	both	was	locked,	such	that	there	was	no	relative	motion.	

Background	images		

We	 picked	 32	 images	 of	 outdoor	 scenes	 (both	 landscapes	 and	 cityscapes)	 and	

converted	 them	 to	 gray	 scale.	 These	 gray	 scale	 images	 and	 their	 phase-scrambled	

versions	composed	the	stimuli.	In	order	to	prevent	unbalanced	stimuli	due	to	horizontal	

inequalities	 in	 the	 images,	 half	 of	 the	 images	were	 left	 right	 flipped	 duplicates	 of	 the	

other	 half.	 All	 images	 were	 adjusted	 so	 that	 they	 had	 equal	 contrast	 and	 luminance	

(luminance:	 144	 cd/m2,	 contrast:	 32.4	 cd/m2	 root-mean-square	 (RMS)	 contrast,	

resulting	in	an	average	Michelson	contrast	of	0.9004	±	0.0925).	Images	were	larger	than	

the	screen	to	allow	their	displacement	while	filling	the	screen	at	all	times.		

Phase-scrambled	 versions	 of	 the	 images	 were	 created	 using	 Fourier	

transformation	and	reconstruction	with	random	phases.	This	 resulted	 in	preservation	

of	 low-level	 features	of	 the	 image	such	as	 luminance,	 contrast	and	spatial	 frequencies	

while	removing	scene	content.	The	same	images	were	used	in	one	of	our	prior	studies	

(Korkmaz	Hacialihafiz	&	Bartels,	2015).	

Paradigm	

The	 stimuli	 were	 presented	 in	 a	 block	 design.	 Each	 consisted	 of	 33	 stimulus	

blocks.	Each	block	lasted	12	seconds.	The	eight	conditions	were	pseudorandomized	and	

back	 matched	 so	 that	 each	 condition	 was	 preceded	 by	 all	 conditions	 with	 equal	

frequency	across	two	runs.	Each	participant	took	part	in	4	runs	in	total.	Moreover,	one	

additional	 block	 was	 added	 to	 the	 beginning	 of	 each	 run	 in	 order	 to	 ensure	 full	

counterbalancing	 for	 the	 first	 block.	 Each	 condition	was	presented	4	 times	 in	 total	 in	

each	run.	Background	images	were	randomly	chosen	for	each	block	and	only	one	image	

was	used	for	an	entire	block.		

Each	run	started	with	6.9	seconds	of	gray	screen	with	fixation	and	ended	with	10	

seconds	of	gray	screen	with	fixation	(luminance	of	gray	screens:	144	cd/m2)	leading	to	

a	total	duration	of	412.9	seconds.	During	the	experiment,	there	was	a	gray	fixation	disk	

(width:	 0.74	 deg,	 luminance:	 282	 cd/m2)	 present	 at	 all	 times	 on	 the	 center	 of	 the	

screen,	with	the	fixation	task	described	below.	
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Fixation	Task	

In	order	to	ensure	fixation	and	balanced	attention,	participants	were	required	to	

perform	a	1-back	character-matching	task.	The	task	was	as	follows:	on	the	fixation	disk	

a	randomly	chosen	alphabetical	character	 (a-z)	was	presented	 for	1	second	each	with	

83	ms	 blank	 intervals	 in	 between.	 At	 random	 intervals,	 every	 3	 to	 8	 presentations,	 a	

repetition	 of	 the	 presented	 character	 occurred,	 which	 participants	 were	 required	 to	

report	via	button	press.	The	 timings	of	button	presses	were	recorded	and	 included	 in	

the	GLM	analyses	as	a	regressor	of	no	interest.		

Functional	Localizer	and	ROI	definition	

We	 used	 a	 separate	 localizer	 experiment	 in	 order	 to	 localize	 scene	 selective	

regions	PPA	(Aguirre	et	al.,	1998;	Epstein	&	Kanwisher,	1998),	RSC	(Maguire,	2001)	and	

OPA/TOS	(Dilks	et	al.,	2013;	Grill-Spector,	2003;	Hasson	et	al.,	2003;	Nakamura	et	al.,	

2000)	 for	 every	 subject	 in	 each	 hemisphere.	 The	 localizer	 consisted	 of	 3	 conditions;	

gray	 scale	 images	 of	 scenes	 (which	 were	 different	 than	 the	 ones	 used	 in	 the	 main	

experiment),	 faces	 and	 phase-scrambled	 versions	 of	 these	 scenes	 and	 faces.	 The	

localizer	 consisted	of	 one	 run,	 and	 the	 stimuli	were	 shown	 in	 a	 block	design.	 In	 each	

block	5	different	 images	 from	 the	 same	 category	were	 shown	 for	3	 s	 each,	 yielding	 a	

block	 length	of	15	s	and	1	s	gray	screen	following	each	block.	The	experiment	started	

with	6.9	s	of	gray	screen	with	 fixation,	had	27	blocks	 in	 total	 (9	 times	x	3	conditions)	

and	 ended	 with	 10	 s	 of	 gray	 screen	 with	 fixation.	 There	 was	 a	 fixation	 cross	 and	

participants	were	asked	to	fixate	at	this	central	fixation	cross	at	all	times.	All	three	ROIs	

were	 identified	using	 the	contrast	 (scenes	>	 faces),	using	 the	MarsBaR	 toolbox	 (Brett,	

Anton,	 Valabregue,	 &	 Poline,	 2002).	 In	 order	 to	 keep	 the	 ROIs	 similar	 in	 size	 across	

participants,	we	used	an	individual	p-value	for	each	participant	and	ROI	when	defining	

the	ROIs	 (Fox,	 Iaria,	 &	Barton,	 2009;	Murray	&	Wojciulik,	 2004).	 Out	 of	 a	 total	 of	 34	

hemispheres,	 PPA	 was	 defined	 in	 34	 hemispheres,	 OPA	 in	 28,	 and	 RSC	 in	 33	

hemispheres.	

Data	Acquisition	

T2*	weighted	functional	images	were	acquired	using	a	64-channel	phased-array	

head	 coil	 in	 a	 Siemens	Magnetom	 PRISMA	 3T	 scanner	 (Siemens,	 Erlangen,	 Germany)	

with	 the	 following	 parameters:	 voxel	 size	 3	 x	 3	 x	 3	 mm3,	 TR:	 2.3	 seconds,	 TE:	 35	



	

 66 

milliseconds,	flip	angle	was	79°,	32	slices	acquired	in	ascending	order.	In	order	to	allow	

T1	equilibration,	 the	 first	3	volumes	of	data	were	discarded.	Anatomical	 images	were	

collected	for	each	participant	using	T1-weighted	images	(1	x	1	x	1	mm3	resolution).	

	

	

Figure	1.	Conditions	presented	in	the	main	experiment.	A	2	x	2	x	2	factorial	design	with	factors	
objective	 motion	 (on,	 off),	 pursuit	 (on,	 off)	 and	 scene	 (scene,	 scrambled)	 resulted	 in	 eight	
conditions	shown	above.	In	the	“±/±”	notation,	the	first	position	refers	to	pursuit,	the	second	to	
objective	motion.	 “+”	 refers	 to	 presence	 and	 “-“	 to	 absence.	 Objective	motion	was	 horizontal	
motion	 of	 the	 background	 image	 (scenes	 or	 scrambled	 images)	 and	 pursuit	 was	 horizontal	
motion	of	 the	 fixation	disk.	There	was	 a	 one-back	 character-matching	 task	 inside	 the	 fixation	
disk	(shown	larger	for	illustration).	

	

FMRI	Data	Preprocessing	and	Statistical	Analysis	

Preprocessing	was	performed	using	SPM5	(www.fil.ion.ucl.ac.uk/spm)	with	 the	

following	steps:	slice-time	correction,	realignment	for	motion	correction,	coregistration	

of	 the	structural	 image	to	 the	mean	functional	 image,	normalization	of	 the	data	to	 the	
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SPM	 template	 in	 Montreal	 neurological	 institute	 (MNI)	 space,	 and	 spatial	 smoothing	

with	6	mm	full-width	at	half	maximum	Gaussian	kernel	 for	single	participants	and	12	

mm	for	group	level	analyses,	respectively.		

Data	of	each	participant	were	analyzed	separately	using	the	GLM	(general	linear	

model)	in	SPM5.		We	modeled	each	of	the	eight	conditions	as	boxcars	convolved	by	the	

canonical	 hemodynamic	 response	 function	 (hrf).	 Button	 presses	 were	 modelled	 as	

events.	A	total	of	seven	regressors	of	no	interest	were	included,	consisting	of	six	motion	

realignment	 regressors	 and	 one	 additional	 regressor	 for	 global	 signal	 variance	

(Desjardins,	 Kiehl,	 &	 Liddle,	 2001;	 Van	 Dijk	 et	 al.,	 2010).	 The	 global	 signal	 variance	

regressor	 was	 orthogonalized	 to	 the	 conditions	 of	 interest.	 The	 data	 were	 high	 pass	

filtered	 using	 a	 cut-off	 value	 of	 128	 s.	 Beta	 images	 from	 the	 first	 level	 GLMs	 of	 each	

participant	were	used	for	group	level	analyses.		

The	ROI	analyses	were	done	by	first	extracting	mean	beta	values	for	each	ROI	for	

each	condition	of	each	participant.	Beta	values	were	normalized	in	the	range	between	0	

and	 1	 for	 each	 ROI	 and	 participant	 separately	 as	 follows:	 for	 each	 ROI	 of	 a	 given	

participant	there	were	32	mean	beta	values	resulting	from	4	runs	and	8	conditions.	The	

minimum	of	all	32	beta	values	was	subtracted,	and	then	all	32	beta	values	were	divided	

by	 their	 maximal	 value.	 After	 this,	 an	 average	 beta	 value	 was	 calculated	 for	 each	

condition.	This	normalization	ensured	that	all	ROIs	were	comparable	in	mean	and	range	

of	beta	values.	Repeated	measures	ANOVAs,	as	well	as	paired	t-tests	were	conducted	in	

order	 to	 analyze	 the	effects	of	 conditions	using	 statistical	 analysis	 software	 IBM	SPSS	

Statistics	version	22.0.	Greenhouse-Geisser	correction	was	utilized	 in	case	of	violation	

of	sphericity	as	determined	by	Mauchly’s	sphericity	test.	

The	 contrasts	 used	 in	 the	 analysis	were	 defined	 as	 follows:	 “objective	motion”	

was	defined	using	all	conditions	with	moving	background	versus	all	conditions	with	still	

background,	 i.e.	 left	 vs.	 right	 column	 in	 Figure	 1.	 “Retinal	motion”	was	 defined	 by	 all	

conditions	 where	 retinal	 input	 changed	 versus	 all	 conditions	 where	 retinal	 input	

remained	the	same,	 i.e.	 in	Figure	1	(+/-)	+	(-/+)	versus	(+/+)	+	(-/-).	Objective	versus	

retinal	motion	was	hence	equivalent	 to	 (+/+)	versus	 (+/-)	 (Fischer	et	al.,	2012a).	The	

contrast	 “Scene”	 was	 defined	 using	 all	 conditions	 with	 scene	 vs.	 all	 with	 scramble.	

“Pursuit”	 was	 defined	 as	 all	 conditions	 with	 pursuit	 versus	 all	 conditions	 with	 eyes	

fixed,	i.e.	top	row	vs.	bottom	row	in	figure	1.	Note	that	all	contrasts	except	for	“pursuit”	
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were	balanced	in	terms	of	eye	movements.	The	contrast	“pursuit”	contained	both,	eye-

movement-related	 effects	 as	 well	 as	 effects	 related	 to	 peripheral	 visual	 stimulation	

induced	 by	 pursuit,	 but	 can	 nevertheless	 serve	 to	 functionally	 distinguish	 ROI	

properties.		

Eye	Tracking		

Eye	 tracking	 of	 participants	 during	 the	 main	 experiment	 was	 done	 using	 an	

infrared	camera	based	eye	tracker	system	(Eye-Trac	6;	Applied	Science	Laboratories).			

Preprocessing	 included	 blink	 removal,	 and	 smoothing	 of	 x	 and	 y	 positions	 using	 a	

running	average	window	of	200	milliseconds.	We	calculated	the	fixation	accuracy	by	the	

root	 mean	 square	 error	 of	 actual	 eye	 position	 relative	 to	 the	 fixation	 disk	 for	 each	

condition	across	participants	and	runs.	We	then	used	repeated	measures	ANOVAs	and	t-

tests	to	examine	condition-related	effects.	 	
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3.4. Results	

We	 investigated	 responses	 of	 independently	 localized	 scene-selective	 regions	

PPA,	 RSC	 and	 OPA	 to	 visual	 motion	 in	 world-centered	 (objective	 motion)	 and	 eye-

centered	(retinal	motion)	reference	frames.	The	experiment	was	a	2	x	2	x	2	design	with	

the	factors	pursuit	(on,	off)	and	visual	motion	(on,	off),	carried	out	using	two	types	of	

content	 (natural	 scenes,	 their	 Fourier	 scrambles)	 as	 a	 third	 factor	 (see	 Figure	 1).	

Figures	2A	and	2B	show	raw	and	normalized	mean	beta	responses	to	all	conditions	and	

each	ROI,	 respectively.	 The	 contrasts	 of	 interest,	 such	 as	 for	 objective	motion,	 retinal	

motion,	or	pursuit,	were	calculated	using	normalized	responses	that	allowed	for	inter-

region	comparisons.	

ROI	Analyses	

We	 examined	 the	 effects	 of	 objective	 motion,	 pursuit,	 scene	 and	 their	

interactions	using	repeated	measures	ANOVAs	in	PPA,	RSC	and	OPA.	

In	 order	 to	 test	 for	 lateralization	 effects,	 we	 performed	 a	 3	 x	 2	 x	 8	 repeated	

measures	ANOVA	with	the	factors	ROI,	hemisphere	and	condition.	There	was	no	main	

effect	of	hemisphere	 (F	 (1,12)	=	0.027,	p	=	0.873),	nor	any	 interaction	of	hemisphere	

with	 any	 factor	 (hemisphere	 and	 ROI:	 F	 (2,24)	 =	 0.002,	 p	 =	 1.00,	 hemisphere	 and	

condition:	F	(3.488,41.855)	=	0.25,	p	=	0.89	and	hemisphere,	ROI,	condition:	F	(14,168)	

=	 1.618,	 p	 =	 0.079).	 For	 the	 remaining	 analyses	 we	 hence	 pooled	 data	 from	 both	

hemispheres	for	each	ROI.		

First,	 we	 conducted	 within-ROI	 analyses	 utilizing	 separate	 repeated	 measures	

ANOVAs	with	the	factors	scene,	objective	motion	and	pursuit	for	each	ROI.	We	primarily	

focused	on	objective	motion	and	retinal	motion	(i.e.	 the	 interaction	between	objective	

motion	 and	 pursuit),	 and	 on	 scene,	 and	 their	 interactions.	 These	 contrasts	 were	

completely	balanced	in	terms	of	pursuit-related	effects.	We	also	report	pursuit,	but	we	

note	 that	 it	 includes	 combined	 effects	 related	 to	 control	 of	 eye-movements,	 and	 to	

peripheral	 motion	 beyond	 the	 controlled	 visual	 screen	 induced	 by	 eye-movement,	

respectively.		
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Figure	2.	Responses	to	all	eight	conditions	across	ROIs.	(A)	Raw	beta	estimates	in	PPA,	RSC	and	
OPA.	(B)	Normalized	beta	estimates	(see	methods).	‘Moving/static’	refers	to	background	motion	
whereas	‘pursuit/fixation’	notation	refers	to	eye	movement.	Plots	show	mean	±	standard	error	
of	mean	(SEM).		
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Motion	in	eye-	and	world	centered	reference	frames	

Figure	 3	 shows	 main	 effects	 related	 to	 motion	 in	 eye-	 and	 world-reference	

frames	(i.e.	retinal	and	objective	motion)	and	to	pursuit	for	each	ROI.	Each	scene	region	

had	a	distinctly	different	signature	in	terms	of	its	motion	response.	

PPA	responded	robustly	to	objective	motion	(F	(1,33)	=	34.56,	p	=	1	*	10-6),	but	

not	at	all	to	retinal	motion	(F	(1,33)	=	0.00047,	p	=	0.98),	nor	to	pursuit	(F	(1,33)	=	3.19,	

p	=	0.083).	RSC	did	not	 respond	 to	objective	motion	 (F	 (1,32)	=	0.32,	p	=	0.57),	or	 to	

retinal	motion	(F	(1,32)	=	0.41,	p	=	0.53),	but	it	responded	robustly	to	pursuit	(F	(1,32)	

=	17.58,	p	=	0.0002).	OPA	 responded	 to	both,	 objective	motion	 (F	 (1,27)	=	24.78,	p	=	

0.00003),	 and	 retinal	motion	 (F	 (1,27)	=	18.61,	p	=	0.00019),	 as	well	 as	 to	pursuit	 (F	

(1,27)	=	7.51,	p	=	0.011).		

	

	

Figure	 3.	 Responses	 of	 PPA,	 RSC,	 and	 OPA	 to	 objective	 motion,	 retinal	 motion,	 scene	 and	
pursuit.	(A)	PPA.	(B)	RSC	(C)	OPA.	Note	that	data	of	each	ROI	was	normalized.		**	:	p	<	0.001,	*	:	
p	<	0.05.	Plots	show	mean	±	standard	error	of	mean	(SEM).		

	

Interactions	between	scene	content	and	motion	

Next	we	 tested	whether	motion	responses	were	differentially	driven	by	scenes	

and	 scramble	 content.	 This	 is	 important,	 as	 in	 principle	 some	 of	 the	 scene	 region’s	

motion	responses	could	be	accounted	for	by	the	increase	in	exposed	scene-content	by	

lateral	motion,	 even	 though	 this	was	kept	deliberately	 small	 in	 our	 stimuli,	with	1.98	

visual	degrees	in	each	direction	out	of	19	degrees	stimulus	width.	The	most	important	

test	 was	 however	 whether	 objective	 motion	 responses	 persisted	 also	 for	 Fourier-

scramble	stimuli	that	lacked	any	scene	content.	
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Figure	 4A	 shows	 that	 all	 three	 ROIs	 responded	 robustly	 to	 scenes.	 Figure	 4B	

shows	that	PPA	responses	were	significant	for	objective	motion,	both	during	scenes	(t	

(33)	=	6.33,	p	=	1.1	*	10-6)	and	scrambled	(t	 (33)	=	3.51,	p	=	0.003),	and	that	 it	had	a	

significant	interaction	between	objective	motion	and	scene	(t	(33)	=	2.57,	p	=	0.015).	In	

RSC,	neither	scenes	(t	 (32)	=	0.96,	p	=	0.34)	nor	scrambled	 images	(t	 (32)	=	0.06,	p	=	

0.95)	 resulted	 in	 significant	 responses	 during	 objective	 motion	 and	 there	 were	 no	

significant	 interactions	 (t	 (32)	 =	 0.66,	 p	 =	 0.51).	 In	 OPA,	 objective	motion	 responses	

were	significant	both	during	scenes	(t	(27)	=	4.15,	p	=	0.0009)	and	scrambled	images	(t	

(27)	 =	 4.14,	 p	 =	 0.0006).	 Figure	 4C	 shows	 that	 PPA	 did	 not	 have	 retinal	 motion	

responses	during	scenes	(t	(33)	=	1.3,	p	=	0.2)	or	scrambled	images	(t	(33)	=	-1.47,	p	=	

0.15)	and	there	was	no	significant	interaction	(t	(33)	=	1.61,	p	=	0.12).	 	In	RSC,	retinal	

motion	responses	were	similar	to	PPA’s	(during	scenes:	t	(32)	=	1.54,	p	=	0.13,	during	

scrambled	 images:	 t	 (32)	 =	 -0.496,	 p	 =	 0.62).	 In	 OPA,	 retinal	motion	 responses	were	

significant	both	during	scenes	(t	(27)	=3.39,	p	=	0.006)	and	scrambled	images	(t	(27)	=	

3.46,	p	=	0.006),	but	there	was	no	significant	interaction	(t	(27)	=	0.864,	p	=	0.395).	P-

values	are	Bonferroni-Holm	corrected	for	3	comparisons	for	each	ROI.	

Next,	 we	 tested	 which	 regions	 differed	 in	 the	 contrast	 (“objective”	 versus	

“retinal”	motion).	We	analysed	this	contrast	for	scene	and	scrambled	images	separately.		

Figure	 4D	 shows	 that	 PPA	 was	 the	 only	 region	 with	 a	 significant	 preference	 for	

objective	motion	both	during	scenes	 (t	 (33)	=	3.79,	p	=	0.0025,	Bonferroni	corrected)	

and	scramble	(t	(33)	=	3.52,	p	=	0.0052,	Bonferroni	corrected).	Neither	RSC	nor	OPA	had	

a	preference	for	objective	versus	retinal	motion.	No	region	differed	between	scenes	and	

scramble	(PPA:	t	(33)	=	0.11,	p	=	3.66,	RSC:	t	(32)	=	-0.67,	p	=	2.03,	OPA:	t	(27)	=	-0.31,	p	

=	3.05).	

Comparisons	between	ROIs	

Next,	 we	 tested	 for	 differences	 between	 ROIs.	 We	 performed	 a	 3	 x	 2	 x	 2	 x	 2	

repeated	 measures	 ANOVA	 with	 the	 factors	 ROI	 (PPA,	 RSC,	 OPA),	 objective	 motion	

(on/off),	pursuit	(on/off)	and	scene	(scene/	scrambled).	The	factor	ROI	had	significant	

interactions	 with	 each	 of	 the	 remaining	 factors	 (objective	 motion:	 F	 (1.51,	 40.71	 =	

13.53,	 p	 =	 0.00013;	 retinal	motion	 (i.e.	 objective	motion	 and	 pursuit):	 F	 (1.62,43.79)	

=8.60,	p	=	0.001;	scene:	F	(2,54)	=	24.64,	p	=	2.5	*	10-8;	pursuit:	F	(1.54,41.47)	=	4.37,	p	=	

0.027).	 There	 were	 no	 triple	 interactions.	 Direct	 comparisons	 between	 ROIs	 using	
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Bonferroni	 corrected	 t-tests	 showed	 highly	 significant	 dissociations	 between	 ROIs.	

Figure	5	shows	that	PPA	and	OPA	differed	in	their	objective	motion	response	from	RSC	

(PPA	vs.	RSC	(t	(32)	=	4.78,	p	=	0.00011);	RSC	vs.	OPA	(t	(27)	=	-3.85,	p	=	0.002).	OPA	

differed	in	its	retinal	motion	response	from	PPA	(t	(27)	=	3.93,	p	=	0.0016)	and	RSC	(t		

(27)	 =	 2.92,	 p	 =	 0.021).	 Only	 RSC	 and	 OPA	 responded	 to	 pursuit,	 with	 the	 former	

differing	 significantly	 from	PPA	and	RSC	 (t	 (32)	=	 -3.56,	p	=	0.0035).	All	 p-values	 are	

Bonferroni	corrected	for	3	comparisons.	

	

	

	

Figure	 4.	 Effect	 of	 scene	 content	 on	 ROI	 responses.	 (A)	Main	 effect	 of	 content,	 scene	 versus	
scrambled	 across	 all	 conditions	 (B)	 Responses	 to	 objective	 motion	 for	 scene	 and	 scrambled	
content.	 The	 figure	 shows	 responses	 to	 objective	motion,	 separately	 for	 scene	 and	 scrambled	
backgrounds.	 	 (C)	 Responses	 to	 retinal	 motion	 for	 scene	 and	 scrambled	 content.	 The	 figure	
shows	 responses	 to	 retinal	 motion,	 separately	 for	 scene	 and	 scrambled	 backgrounds.	 (D)	
Objective	 versus	 retinal	 motion	 preferences	 across	 ROIs.	 Objective	 versus	 retinal	 motion	
responses,	shown	for	scenes	and	scrambled	backgrounds	separately.	Brackets	across	ROIs	refer	
to	tests	calculated	for	the	average	response	across	scene	and	scramble	*	:	p	<	0.05,	**	:	p	<	0.001,	
Bonferroni	corrected.	Plots	show	mean	±	standard	error	of	mean	(SEM).		
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Figure	 4C	 shows	 that	 PPA	 had	 a	 higher	 preference	 to	 objective	 versus	 retinal	

motion	than	both,	OPA	(t	(27)	=	2.964,	p	=	0.019,	Bonferroni	corrected)	and	RSC	(t	(32)	

=	5.012,	p	=	0.57	*	10-4,	Bonferroni	corrected).		

	

	
	
	
Figure	5.	Responses	of	PPA,	RSC,	and	OPA	to	objective	motion,	retinal	motion	and	pursuit.	(A)	
Main	effect	of	objective	motion.	(B)	Main	effect	of	retinal	motion.	Note	that	this	is	the	interaction	
of	 objective	 motion	 and	 pursuit.	 (C)	 Main	 effect	 of	 pursuit.	 Note	 that	 data	 of	 each	 ROI	 was	
normalized.		**	:	p	<	0.001,	*	:	p	<	0.05,	Bonferroni	corrected.	Plots	show	mean	±	standard	error	
of	mean	(SEM).		
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In	 summary,	 objective	 motion	 responses	 were	 unique	 to	 PPA	 and	 OPA,	 and	

retinal	 motion	 responses	 were	 unique	 to	 OPA.	 PPA	 was	 the	 only	 ROI	 that	 showed	

significant	objective	motion	preference	over	retinal	motion.		RSC	stood	out	with	strong	

pursuit	responses,	and	PPA	was	the	only	region	lacking	them	(Figure	5C).		

With	 regards	 to	 content-motion	 interactions,	 PPA	 was	 the	 only	 region	 with	

content-motion	 interaction,	 with	 higher	 activation	 to	 motion	 during	 scenes	 than	

scramble.	This	interaction	was	not	present	in	the	comparison	between	objective	motion	

with	 retinal	 motion.	 Importantly,	 the	 objective	 motion	 responses	 of	 PPA	 and	 OPA	

cannot	be	accounted	for	only	by	moving	scene-content,	as	they	were	highly	significant	

also	for	moving	Fourier	scramble.		

Adaptation	Index	

In	a	final	analysis,	we	provide	a	comparison	point	to	a	related	study.	Golomb	and	

colleagues	 used	 a	 similar	 paradigm	 yet	 with	 crucial	 differences.	 That	 study	 used	

saccades	and	still	images	rather	than	pursuit	and	continuous	motion,	respectively,	and	

spatial	 updating	 (i.e.	 saccades)	 occurred	 in	 the	 absence	 of	 a	 stimulus	 (Golomb	 et	 al.,	

2011).	All	their	results	were	quantified	statistically	in	the	form	of	adaptation	indices,	so	

we	applied	the	same	formula	to	our	data	to	allow	for	a	comparison.	We	did	so	for	scene	

conditions	only	as	they	did	not	have	scramble	conditions,	and	we	used	the	(+/+/sce)	as	

most	responsive	condition	as	baseline.	Using	range-normalized	data,	we	calculated	the	

adaptation	index	for	each	ROI,	each	subject	and	each	condition	with	scene	background	

as	follows:		

Adaptation	index=	(	(+/+)	-	condition)	/	(	(+/+)	+	condition)	

Figure	6	 shows	AIs	 for	 all	ROIs	 and	 conditions.	 For	PPA,	 the	 (+/-)	 condition	 (t	

(33)	 =	 3.97,	 p	 =	 0.003)	 and	 (-/-)	 condition	 (t	 (33)	 =	 4.83,	 p	 =	 0.0003)	 showed	 a	

significant	 adaptation	whereas	 no	 adaptation	was	 found	 for	 (-/+)	 condition	 (t	 (33)	 =	

0.24,	p	=	0.8).	All	p-values	are	Bonferroni-Holm	corrected	for	9	tests.	

Additionally,	we	also	calculated	the	significance	of	adaptation	indices	for	RSC	and	

OPA.	For	RSC,	 there	was	a	significant	adaptation	for	(-/-)	condition	(t	(31)	=	3.91,	p	=	

0.003),	but	there	was	no	adaptation	for	(-/+)	(t	(31)	=	2.56,	p	=	0.08)	or	(+/-)	conditions	

(t	(31)	=	-0.87,	p	=	0.39).	OPA	showed	similar	adaptation	responses	to	RSC;	there	was	a	
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significant	adaptation	for	(-/-)	(t	(21)	=	3.08,	p	=	0.034)	condition	but	no	adaptation	was	

found	for	(-/+)	(t	(21)	=	-1.52,	p	=	0.14)	or	(+/-)	(t	(21)	=	0.26,	p	=	0.8)	conditions.		

	

	

	
	
Figure	6.	Adaptation	indices	for	PPA,	OPA	and	RSC.	The	baseline	was	calculated	using	(+/+)	
condition	during	scenes.	Adaptation	indices	are	only	calculated	during	scenes.	*	:	p	<	0.05;	**	:	p	
<	0.005	(Bonferroni-Holm	corrected).	Plots	show	mean	±	standard	error	of	mean	(SEM).	

	

Whole	brain	Analyses	

Beyond	 the	 ROI	 analyses,	 we	 performed	 additional	 random-effects	 analyses	

across	all	voxels	of	the	brain	in	order	to	test	whether	other	regions	outside	the	selected	

ROIs	 responded	 to	 objective	 versus	 retinal	motion	 contrast.	 Group	 level	 whole-brain	

analysis	 revealed	 that	 voxels	 overlapping	with	PPA	 showed	 activation	 at	 uncorrected	

levels	 (p	 <	 0.05	 uncorrected),	 as	well	 as	 voxels	 near	 posterior	 occipital	 sulcus	 (POS),	

coinciding	with	motion	sensitive	region	V3A	(figure	7).	Previously,	V3A	was	shown	to	

be	sensitive	to	objective	versus	retinal	motion	contrast	when	random	dots	were	used	as	

stimuli	(Fischer	et	al.,	2012a).	The	activation	overlapping	with	PPA	has	peak	T-statistic	

values	3.26	and	1.90,	respectively	in	right	(30,	-44,	-6)	and	left	PPA	(-26,		-48,	-8).	
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Figure	 7.	 Objective	 versus	 retinal	 motion	 group	 data	 across	 all	 subjects.	 Voxels	
overlapping	 with	 PPA	 were	 activated	 at	 uncorrected	 thresholds,	 shown	 here	 inside	 the	 red	
circle	in	the	sagittal	slice	in	the	left	hemisphere	and	in	the	coronal	slice	in	the	right	hemisphere.	
The	 dorsal	 activity	 near	 posterior	 occipital	 sulcus	 (POS)	 coincides	 with	 V3A	 (Fischer	 et	 al.,	
2012a).	 Peak	 t-statistic	 values	 3.26	 in	 right	 and	 1.90	 in	 left	 PPA	 (not	 shown	 here).	 For	
illustration	only,	the	map	is	shown	at	p	<	0.05	uncorrected.	

	
Behavioral	Data		

Participants	 performed	 a	 character	 back-matching	 task	 intended	 to	 maintain	

vigilance	 and	 balance	 attention	 across	 conditions	 during	 the	 main	 experiment.	 The	

mean	correct	response	rate	was	near	ceiling	with	0.85	±	0.07	(mean	±	S.D.).	The	mean	

response	time	was	0.57	±	0.14	s	(mean	±	S.D.).	We	analyzed	response	times	using	a	3-

way	 repeated	measures	ANOVA	with	 the	 factors	 objective	motion,	 pursuit	 and	 scene.	

There	were	only	significant	effects	of	pursuit	(F	(1,16)	=	5.06,	p	=	0.039)	but	no	other	

main	 effects	 (objective	motion:	 F	 (1,16)	=	0.005,	p	=	0.95;	 scene:	 F	 (1,16)	=	0.39,	 p	=	

0.54),	nor	interactions	(objective	and	pursuit	(i.e.,	retinal	motion):	F	(1,16)	=	0.93,	p	=	

0.35;	objective	and	scene:	F	(1,16)	=	0.00029,	p	=	0.99;	pursuit	and	scene	(1,16)	=		1.58,	

p	 =	 0.23;	 objective,	 pursuit	 and	 scene:	 F	 (1,16)	 =	 0.98,	 p	 =	 0.34).	 There	was	 also	 no	

difference	between	objective	and	retinal	motion	(t	(1,16)	=	-.81,	p	=	0.43).	

Eye	tracking	Data	

We	 analyzed	 eye-position	 error	 using	 the	 same	 3-way	 ANOVA	 as	 used	 for	 the	

behavioral	 data.	 Like	 in	 behavior,	 the	 only	 significant	 effect	 was	 the	 main	 effect	 of	

pursuit	 (F(1,67)	 =	 682.38,	 p	 =	 7.55	 *	 10-37),	 with	 no	 other	 main	 effects	 (objective	
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motion:	F(1,67)	=	0.055,	p	=	0.82;	scene:	F(1,67)	=	0.00014,	p	=	0.99),	or	 interactions	

(retinal	motion:	F(1,67)	=	0.28,	p	=	0.60;	objective	motion	and	scene:	F(1,67)	=	0.14,	p	=	

0.71;	pursuit	and	scene:	F(1,67)	=	2.80,	p	=	0.10;	objective	motion,	pursuit	and	scene:	F	

(1,67)	=	0.16,	p	=	0.69).	There	was	no	objective	versus	retinal	difference	(t	(67)	=	0.13,	p	

=	0.90).	
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3.5. Discussion		

The	aim	of	this	study	was	to	determine	to	which	extent	scene	responsive	regions	

PPA	(Aguirre	et	al.,	1998;	Epstein	&	Kanwisher,	1998),	RSC	 (Maguire,	2001)	and	OPA	

(Dilks	 et	 al.,	 2013;	 Grill-Spector,	 2003;	 Hasson	 et	 al.,	 2003;	 Nakamura	 et	 al.,	 2000)	

encode	 visual	 motion	 cues	 in	 eye-centered	 (i.e.	 retinal)	 or	 world-centered	 (i.e.	

objective)	reference	frames.	We	used	a	previously	established	paradigm	that	combined	

pursuit	 eye-movements	 with	 on-screen	 motion	 (Fischer	 et	 al.,	 2012a)	 to	 determine	

retinal-	and	objective	motion	responses	in	independently	defined	scene-selective	ROIs.	

To	dissociate	scene-dependent	effects	from	low-level	motion	responses,	we	repeated	all	

conditions	 using	 natural	 scenes	 and	 their	 Fourier	 scrambled	 versions,	 allowing	

examining	motion-content	interactions.	

We	found	that	each	of	the	scene	responsive	regions	had	unique	and	dissociable	

response	 profiles.	 In	 particular,	 PPA	was	 unique	 in	 its	 sensitivity	 to	 objective	motion	

while	not	responding	at	all	to	retinal	motion	or	to	pursuit	eye	movements.	While	PPA’s	

response	 to	objective	motion	was	enhanced	by	scene-content,	 its	 invariance	 to	retinal	

motion	 and	 its	 response	 to	 objective	motion	were	 both	preserved	 also	 for	 scrambled	

content.	In	contrast,	OPA	was	the	only	scene	region	responsive	to	retinal	motion	(along	

with	objective	motion),	and	RSC	responded	strongly	to	pursuit	but	not	to	either	motion	

type.	Apart	from	providing	a	functional	segregation	of	scene	regions	in	terms	of	motion	

reference	 frames,	 the	 present	 results	 show	 that	 PPA	 is	 able	 to	 represent	 a	 stable	

environment	during	self-induced	retinal	motion.	

Controversy	ventral	stream	reference	frame	

The	visual	system	uses	different	spatial	representations	in	order	to	keep	a	stable	

vision	of	the	world	and	these	representations	are	reported	in	various	brain	areas.	For	

instance,	retinotopic	representations	are	reported	in	early	visual	areas	as	well	as	higher	

level	 visual	 regions	 (Gardner,	 Merriam,	 Movshon,	 &	 Heeger,	 2008;	 Golomb	 &	

Kanwisher,	 2012)	 whereas	 world-centered	 spatial	 representations	 are	 thought	 to	 be	

encoded	 in	dorsal	 regions,	 parietal	 regions	 and	high	 level	motion	 areas	 (Crespi	 et	 al.,	

2011;	d'Avossa	et	al.,	2007;	Fischer	et	al.,	2012a,	2012b;	Galletti,	Battaglini,	&	Fattori,	

1993;	 Ilg	 et	 al.,	 2004).	 The	 spatial	 representation	 in	 ventral	 regions	 is	 rather	 under	

debate;	both	retinotopic	(Amano,	Wandell,	&	Dumoulin,	2009;	Larsson	&	Heeger,	2006)	

and	spatiotopic	(McKyton	&	Zohary,	2007)	maps	are	reported	in	LOC	(lateral	occipital	
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cortex)	and	previous	research	indicate	both	eye	centered	(Golomb	et	al.,	2011;	Ward	et	

al.,	 2010)	 and	 world	 centered	 (MacEvoy	 &	 Epstein,	 2007)	 spatial	 representation	 in	

scene	selective	parahippocampal	cortex.	

Choice	of	reference	frame	in	scene	regions	

Previous	 studies	 demonstrated	 viewpoint	 dependency	 and	 specificity	 in	 scene	

representation	 of	 PPA	 in	 context	 of	 static	 scene	 views	 (Epstein	 et	 al.,	 2003;	 Epstein,	

Parker,	 &	 Feiler,	 2007;	MacEvoy	&	 Epstein,	 2007;	 Park	 &	 Chun,	 2009;	 Park,	 Chun,	 &	

Johnson,	2010).	The	objective	motion	contrast	used	here	is	–	conceptually	–	comparable	

to	 the	kind	of	viewpoint	 changes	of	 static	 scene	views	used	 in	previous	 studies,	 since	

both	 involved	a	gradual,	 even	 if	 step-wise,	 lateral	 translation	of	 the	 scene.	 It	 is	worth	

noting	 that	 none	 of	 the	 previous	 studies	 mentioned	 involved	 motion	 or	 pursuit	 eye	

movements,	 since	 they	were	mostly	 carried	out	during	 eye	 fixation.	The	problem	 lies	

within	the	never	changing	position	of	eyes.		When	the	eyes	are	fixated,	the	motion	of	the	

scenes	in	the	background	results	in	a	combined	objective	and	retinal	motion.	Therefore,	

it	 is	 not	 possible	 to	 differentiate	whether	 the	mechanism	 behind	 the	mentioned	 PPA	

responses,	which	was	described	as	viewpoint	dependency	or	specificity,	are	retinal	or	

world-centered	viewpoint	dependency.	In	their	2011	study,	Golomb	and	her	colleagues	

tried	 to	address	 this	problem	and	 they	 found	evidence	 for	both	 reference	 frames,	but	

concluded	that	the	results	in	PPA	are	mainly	driven	by	retinotopic	responses	(Golomb	

et	 al.,	 2011).	 	Using	 an	 adaptation	paradigm,	 they	 reported	 that	 PPA	was	 adapting	 to	

successive	 views	 of	 the	 same	 scene	 when	 the	 participants	 did	 saccades	 across	 the	

scenes,	which	 resulted	 in	matching	 retinal	 input	 (Golomb	et	 al.,	 2011).	We	 calculated	

adaptation	 indices	 similar	 to	 theirs	 to	 directly	 compare	 our	 results.	 Since	 our	

experimental	design	did	not	 include	a	novel	 scene	condition	 (and	 it	 is	not	possible	 to	

have	novel	 scenes	 condition	with	pursuit),	we	used	+/+	 scenes	 condition	 as	baseline.	

This	was	feasible	because	this	condition	covered	both	types	of	motion	(smooth	pursuit	

eye	movements	and	objective	motion)	and	elicited	the	highest	beta	responses	in	PPA.		

Similar	 to	 the	 results	 of	 Golomb	 et	 al	 (Golomb	 et	 al.,	 2011),	 our	 results	 also	

revealed	 that	PPA	showed	significant	adaptation	when	eyes	moved	over	 static	 scenes	

but	not	when	eyes	were	fixated	and	scene	was	moved.		Moreover,	our	results	reporting	

PPA	 responses	 during	 fixation	 is	 also	 in	 agreement	 with	 their	 results	 in	 PPA	 during	

fixation.	 However,	 the	main	 inconsistency	 between	 our	 and	 their	 results	 arises	 from	
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PPA	adaptation	 responses	during	 eye	movements.	 	 In	 our	 experiment,	 pursuit	 during	

scene	motion	 ((+/+)	 condition	 during	 scenes)	 resulted	 in	 highest	 beta	 responses	 and	

there	was	no	adaptation	whereas	they	reported	significant	adaptation	during	saccades	

on	scrolling	scenes.		This	difference	between	our	results	and	theirs	might	be	rising	from	

the	use	of	saccades	 in	their	study	versus	the	use	of	smooth	pursuit	eye	movements	 in	

our	 experiment.	 Although	 smooth	 pursuit	 and	 saccades	 are	 traditionally	 thought	 to	

have	 partially	 overlapping	 neural	 networks,	 it	 is	 known	 that	 these	 networks	 are	 not	

identical.	For	 instance,	 smooth	pursuit	eye	movements	and	saccades	are	processed	 in	

different	subregions	of	frontal	eye	fields	(Rosano	et	al.,	2002).	Moreover,	pursuit	related	

neurons	are	found	in	regions	such	as	V5/MT,	MST	and	VIP	(Ilg,	2008;	Thier	&	Ilg,	2005).	

V3A	 is	also	 thought	 to	have	a	role	 in	encoding	pursuit	 (Fischer	et	al.,	2012a),	while	 it	

does	not	have	any	role	in	encoding	saccades.	Another	difference	between	saccades	and	

pursuit	 eye	movements	 is	 that	 saccadic	 suppression	 generates	 stable	 visual	 input	 by	

actively	suppressing	the	vision,	particularly	via	suppression	of	magnocellular	pathway	

(Burr,	Morrone,	&	Ross,	1994;	Thiele,	Henning,	Kubischik,	&	Hoffmann,	2002).		Thus,	it	

is	 possible	 that	 saccadic	 eye	movements	 and	 smooth	 pursuit	 eye	movements	 engage	

different	 brain	 regions.	 Another	main	 difference	 between	 the	 experimental	 design	 of	

present	 study	 and	 the	 study	 of	 Golomb	 et	 al	 (Golomb	 et	 al.,	 2011)	 is	 that	 in	 their	

experiment,	the	saccades	were	executed	during	blank	screen,	preventing	remapping	of	

the	 actual	 scene,	 whereas	 in	 our	 experiment	 smooth	 pursuit	 eye	 movements	 were	

carried	 out	 on	 scenes,	 allowing	 for	 direct	 continuous	 remapping.	 Lastly,	 it	 is	 also	

possible	 that	 using	 saccades	 and	 pursuit	 eye	movements	 during	 the	 stimuli	might	 be	

resulting	 in	 perceptually	 different	 inputs.	 Further	 studies	 are	 needed	 in	 order	 to	

directly	compare	the	effect	of	eye	movement	types	during	dynamic	scene	perception.	

In	OPA	and	RSC,	our	results	indicate	adaptation	only	during	(-/-)	condition,	and	

no	adaptation	was	 found	 for	 the	other	 conditions.	Golomb	et	 al	 (Golomb	et	 al.,	 2011)	

reported	 that	 they	 found	only	 retinotopic	 adaptation	 in	OPA	and	RSC,	noting	 that	 the	

responses	 they	 observed	 in	 OPA	 and	 RSC	 were	 much	 noisier	 than	 the	 responses	

observed	 in	 PPA.	 	 It	 is	 interesting	 to	 note	 that	 in	 the	 present	 study,	 similar	 to	 their	

results,	 RSC	 did	 not	 adapt	 to	 overlapping	 scenes	 when	 eyes	 fixated	 whereas	 this	

condition	 was	 previously	 reported	 to	 result	 in	 significant	 adaptation	 in	 RSC	 (Park	 &	

Chun,	2009).	As	they	discussed,	this	difference	could	be	driven	by	different	tasks	used	in	

our	experiment	and	abovementioned	previous	studies(Golomb	et	al.,	2011).	OPA	lacked	
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adaptation	during	any	type	of	motion.	This	fits	well	with	previous	view	about	OPA	being	

a	lower-tier	scene	responsive	region.		

Similarity	to	V3A	

The	objective	motion	preference	of	PPA	was	so	pronounced,	also	with	regard	to	

the	complete	absence	of	retinal	motion,	that	it	bears	similarity	to	that	of	dorsal	motion	

areas	V3A	and	V6	that	have	a	similar	response	profile	(Fischer	et	al.,	2012a).		

Content	–	motion	interactions	

Our	finding	that	PPA	responses	showed	an	interaction	between	objective	motion	

and	 scene	 content,	 in	 that	 it	 showed	 higher	 responses	 to	motion	 during	 scenes	 than	

during	 scrambled	 images,	 extend	 our	 previous	 findings,	 which	 were	 carried	 out	 by	

moving	scenes	and	scrambled	 images	during	fixation	(Korkmaz	Hacialihafiz	&	Bartels,	

2015).	One	could	argue	that	the	objective	motion	response	in	PPA	could	be	explained	by	

the	fact	that	objective	motion	conditions	revealed	more	of	the	scene	image	than	static	

conditions.	This	 is	however	an	unlikely	explanation.	First,	 the	preference	for	objective	

motion	was	 still	 significant	 in	 PPA	 in	 context	 of	 scrambled	 images	 lacking	 any	 scene	

content.	 Second,	 the	 difference	 contrast	 of	 (objective	 –	 retinal)	 was	 equally	 large	 for	

scene	and	 for	 scramble,	 implying	 that	 content	played	no	 role	whatsoever	here.	Third,	

the	 displacement	 of	 the	 background	 images	was	 a	mere	1.98	 visual	 degrees	 in	 either	

direction,	with	a	field	of	view	of	19	degrees,	hence	only	revealing	marginally	new	scene	

content,	 in	 the	 periphery	where	 it	 is	 hard	 to	 recognize.	 It	 is	 thus	 highly	 unlikely	 that	

motion	responses	in	PPA	can	be	explained	by	increased	scene	content	only.		

Responses	in	OPA	

OPA	was	the	only	scene	responsive	region	that	showed	significant	retinal	motion	

responses,	and	could	be	differentiated	by	this	response	profile	from	PPA	and	RSC,	which	

lacked	retinal	motion	responses	entirely.	OPA	responded	to	both	objective	and	retinal	

motion	 equally.	 These	 findings,	 and	 the	 fact	 that	 OPA	 lacks	 adaptation	 during	 both	

retinal	and	objective	motion,	are	compatible	with	the	previously	proposed	theory	that	

OPA	 constitutes	 a	 comparably	 early	 level	 in	 the	 hierarchy	 amongst	 scene	 responsive	

regions	due	to	its	physical	location	and	close	proximity	to	dorsal	regions	(Dilks,	Julian,	

Kubilius,	Spelke,	&	Kanwisher,	2011;	Dilks	et	al.,	2013;	MacEvoy	&	Epstein,	2007).	This	

view	was	further	supported	by	a	number	of	studies	reporting	low-level	features	of	OPA.	
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For	 instance,	 OPA	 has	 been	 shown	 to	 have	 lower	 visual	 field	 bias	 (Silson,	 Chan,	

Reynolds,	Kravitz,	&	Baker,	2015)	and	its	receptive	field	sizes	were	smaller	compared	to	

other	scene	responsive	ROIs	(MacEvoy	&	Epstein,	2007;	Silson	et	al.,	2015).			

No	pursuit	in	PPA	

Another	notable	result	is	that	PPA	did	not	respond	to	pursuit	at	all,	whereas	OPA	

and	RSC	did.	This	 shows	an	extreme	degree	of	 invariance	 to	motion	 in	 the	peripheral	

field	 of	 view	 invariantly	 induced	 by	 pursuit,	 and	 potentially	 powerful	 mechanisms	

cancelling	 eye-movement	 related	 jitter	 everywhere	 in	 its	 visual	 representations.	

Overall,	 this	 is	 compatible	with	 the	 view	 of	 PPA	 representing	 scenes	 (and	 any	 visual	

signal)	in	a	manner	robustly	independent	of	precise	fixation	points.	This,	together	with	

PPA’s	unique	representation	of	motion	only	in	world-	but	not	eye-centered	coordinates	

would	 clearly	 facilitate	 perception	 of	 a	 continuous	 world	 from	 discontinuous	 views.	

Stable	 scene	 representations	 are	 also	 supported	 by	 the	 ability	 to	 extrapolate	 views	

through	 boundary	 extension,	 a	 property	 PPA	 shares	 with	 RSC	 (Park,	 Intraub,	 Yi,	

Widders,	&	Chun,	2007).		

Responses	in	RSC	

The	lack	of	motion	responses	in	RSC	is	comparable	to	previous	studies	reporting	

that	RSC	has	viewpoint	invariant	properties	(Park	&	Chun,	2009;	Park	et	al.,	2010)	and	

that	RSC	shows	little	change	in	activity	when	the	stimuli	presented	in	different	locations	

(other	 than	 central	 fixation	 point)	 (MacEvoy	 &	 Epstein,	 2007;	 Ward	 et	 al.,	 2010).	

However,	 the	 pursuit	 response	 in	 RSC,	 especially	when	 considered	 together	with	 the	

lack	 of	 motion	 responses,	 is	 rather	 interesting.	 Previously,	 correlations	 between	 the	

activity	 of	 frontal	 eye	 fields	 (FEF)	 and	 Brodmann	 areas	 that	 constitute	 retrosplenial	

cortex	 were	 found	 during	 resting	 state	 (Hutchison	 et	 al.,	 2012).	 In	 primates,	

retrosplenial	cortex	is	found	to	have	projections	to	peripheral	vision	regions	in	MT	and	

MST	(Palmer	&	Rosa,	2006).	Moreover,	a	recent	fMRI	study	in	humans	showed	that	in	

comparison	 to	 other	 scene	 regions	 PPA	 and	 OPA,	 RSC	 showed	more	 peripheral	 bias	

(Baldassano,	 Fei-Fei,	 &	 Beck,	 2016)	 and	 RSC	 is	 located	 near	 the	 peripheral	 visual	

regions	 in	 V1	 and	 V2	 (Nasr	 et	 al.,	 2011).	 During	 pursuit	 condition,	 peripheral	 visual	

changes	are	not	controlled	in	the	present	study.	So,	pursuit	responses	in	RSC	could	have	

been	 driven	 by	 peripheral	 bias	 in	 RSC	 responses	 during	 scene	 representation.	 More	
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studies	are	needed	in	order	to	understand	the	mechanisms	behind	the	pursuit	related	

responses	in	RSC.	

3.6. Conclusion	

In	conclusion,	our	results	reveal	a	novel	dissociation	between	scene	responsive	

regions	 PPA,	 OPA	 and	 RSC	 in	 their	 responses	 to	 real-world	motion.	 In	 particular,	we	

found	 that	 PPA	 could	 be	 differentiated	 from	 OPA	 and	 RSC	 in	 objective	 motion	

preference	to	retinal	motion	of	PPA	and	no	preference	in	OPA	and	RSC.	OPA,	given	its	

location	and	probably	mid-level	position	in	scene	processing	hierarchy,	was	responsive	

to	 both	 objective	 and	 retinal	motion.	 RSC,	which	 is	 thought	 to	 be	 involved	 in	 higher-

level	 functions	 such	 as	 spatial	 navigation	 and	 which	 was	 shown	 to	 have	 viewpoint	

independent	responses,	 lacked	motion	responses	but	was	activated	by	smooth	pursuit	

eye	movements.	 Altogether,	 these	 findings	 shed	 light	 into	 our	 understanding	 of	 how	

PPA,	 OPA	 and	 RSC	 responses	 are	 adjusted	 by	 real	 world	 motion.	 Present	 findings	

suggest	a	role	for	PPA	in	providing	input	for	stable	visual	perception,	by	separating	real-

world	 motion	 from	 self-induced	 retinal	 motion,	 similar	 to	 the	 selectivity	 previously	

shown	in	V3A	and	partially	in	V6	(Fischer	et	al.,	2012a).	
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4.1. Abstract		

Creating	a	stable	perception	of	the	world	during	pursuit	eye	movements	is	one	of	

the	 everyday	 roles	 of	 visual	 system.	 Some	 motion	 regions	 have	 been	 shown	 to	

differentiate	 between	 motion	 in	 the	 external	 world	 from	 that	 generated	 by	 eye	

movements.	However,	in	most	circumstances,	perceptual	stability	is	consistently	related	

to	 content:	 the	 surrounding	 scene	 is	 typically	 stable.	 However,	 no	 prior	 study	 has	

examined	to	which	extent	motion	responsive	regions	are	modulated	by	scene	content,	

and	 whether	 there	 is	 an	 interaction	 between	 content	 and	 motion	 response.	 In	 the	

present	 study	 we	 used	 a	 factorial	 design	 that	 has	 previously	 been	 shown	 to	 reveal	

regional	 involvement	 in	 integrating	 efference	 copies	 of	 eye-movements	 with	 retinal	

motion	 to	mediate	perceptual	 stability	and	encode	real-world	motion.	We	 then	added	

scene	 content	 as	 a	 third	 factor,	 which	 allowed	 us	 to	 examine	 to	 which	 extent	 real-

motion,	 retinal	 motion,	 and	 static	 responses	 were	 modulated	 by	 meaningful	 scenes	

versus	their	Fourier	scrambled	counterpart.	We	found	that	motion	responses	in	human	

motion	 responsive	 regions	 V3A,	 V6,	 V5+/MT+	 and	 cingulate	 sulcus	 visual	 area	 (CSv)	

were	 all	modulated	by	 scene	 content.	Depending	on	 the	 region,	 these	motion-content	

interactions	 differentially	 depended	 on	whether	motion	was	 self-induced	 or	 not.	 V3A	

was	the	only	motion	responsive	region	that	also	showed	responses	to	still	scenes.	Our	

results	 suggest	 that	 contrary	 to	 the	 two-pathway	hypothesis,	 scene	 responses	are	not	

isolated	to	ventral	regions,	but	also	can	be	found	in	dorsal	areas.	
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4.2. Introduction	

The	visual	system	encounters	different	types	of	motion	in	dynamic	scenes	every	

day	and	processes	visual	scenes.	Prior	studies	on	motion	processing	are	mostly	based	

on	 abstract	 stimuli,	 like	 gratings	 or	 random	 dot	 displays	 (Born	 &	 Bradley,	 2005;	

Boussaoud,	Ungerleider,	&	Desimone,	1990;	Erickson	&	Thier,	1991;	Galletti	&	Fattori,	

2003;	 Goossens,	 Dukelow,	 Menon,	 Vilis,	 &	 van	 den	 Berg,	 2006;	 Gu,	 DeAngelis,	 &	

Angelaki,	2007;	Huk,	Dougherty,	&	Heeger,	2002;	Maciokas	&	Britten,	2010;	Smith,	Wall,	

Williams,	 &	 Singh,	 2006).	 However,	 most	 of	 these	 previous	 studies	 on	 motion	

processing	have	not	used	natural	scenes,	except	for	one	that	differentiated	self-motion	

and	object	motion	during	movie	viewing	(Bartels,	Zeki,	&	Logothetis,	2008).	Hence,	little	

is	 known	how	scene-content	 influences	motion	processing	 and	whether	 these	motion	

regions’	responses	are	modulated	by	natural	scene	content.		

Compared	 to	V5+/MT+,	which	 is	a	well-studied,	 low-level	 region	 in	 the	motion	

processing	 hierarchy	 (Dubner	 &	 Zeki,	 1971;	 Zeki	 et	 al.,	 1991),	 higher-level	 motion	

responsive	regions	such	as	V6,	V3A,	or	CSv	are	involved	in	processing	of	more	complex	

motion,	for	instance	self-induced	visual	motion	(Fischer,	Bulthoff,	Logothetis,	&	Bartels,	

2011),	 integration	of	 self	motion	cues	with	vestibular	 signals	 (Chowdhury,	Takahashi,	

DeAngelis,	 &	 Angelaki,	 2009;	 Gu	 et	 al.,	 2007),	 or	 full-field	 flow	 compatible	 with	 ego-

motion	(Arnoldussen,	Goossens,	&	van	den	Berg,	2011;	Goossens	et	al.,	2006).		

Previous	 studies	 showed	 content	 related	 responses	 in	 motion	 processing	

regions.	 For	 instance,	 human	 V5/MT	 has	 object	 responses	 and	 shows	 an	 interaction	

between	object	 content	 and	motion	 (Kourtzi,	 Bulthoff,	 Erb,	&	Grodd,	 2002;	Kourtzi	&	

Kanwisher,	2000).	V5/MT,	as	well	as	another	motion	region	V3A,	were	shown	to	have	

object	selective,	size	dependent	and	viewpoint	dependent	responses	(Konen	&	Kastner,	

2008).	 	 Further,	 V3A	 is	 shape	 sensitive	 (Denys	 et	 al.,	 2004;	 Grill	 Spector,	 Kushnir,	

Edelman,	 Itzchak,	 &	 Malach,	 1998)	 and	 involved	 in	 form	 processing	 (Schira,	 Fahle,	

Donner,	 Kraft,	 &	 Brandt,	 2004).	 Importantly,	 V3A	was	 shown	 to	 have	 a	 role	 in	 scene	

segmentation	(Scholte,	Jolij,	Fahrenfort,	&	Lamme,	2008).	Additionally,	another	higher-

level	motion	area	V6,	that	is	neighbouring	V3A,	analyses	form	and	movement	in	visual	

field	(Galletti	et	al.,	2001).		Despite	the	number	of	studies	pointing	out	responses	related	

to	shape,	form	or	object	processing,	the	effect	of	scene	content	on	motion	regions	is	not	

truly	known	yet.	
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In	 this	 fMRI	 study,	 we	 were	 interested	 in	 whether	motion	 responsive	 regions	

modulated	 by	 scene	 content	 and	 if	 they	 are,	 how	 their	motion	 responses	 depend	 on	

scene	 content.	 To	 investigate	 these	 questions,	 we	 designed	 stimuli	 according	 to	 a	

previously	established	2	x	2	factorial	design	with	the	factors	objective	motion	(on/off)	

and	pursuit	 (on/off)	and	 this	design	 led	us	 to	distinguish	objective	 ‘real’	motion	 from	

retinal	motion	during	smooth	pursuit	eye	movements	(Fischer,	Bulthoff,	Logothetis,	&	

Bartels,	2012).	 In	addition,	we	also	added	another	factor	for	scene	content	(gray	scale	

landscape	 and	 cityscape	 scenes	 or	 Fourier	 scrambled	 versions	 of	 these	 scenes).	 To	

balance	 attention	 across	 all	 conditions,	 participants	 performed	 a	 central	 character-

matching	task	at	all	times.	We	performed	GLM	whole-brain	analyses	as	well	as	region	of	

interest	 (ROI)	 analyses.	 Motion	 responsive	 regions	were	 identified	 using	 a	 dedicated	

localizer	scan.	

We	 found	 that	 all	 motion	 responsive	 regions	 tested	 in	 this	 study,	 namely	

V5+/MT+,	V3A,	V6	and	CSv,	indeed	showed	scene	responses	in	context	of	motion.	More	

interestingly,	only	V3A	was	responsive	to	still	scenes.	The	responses	in	V5+/MT+	were	

modulated	by	scene	content	during	both	objective	and	retinal	motion,	whereas	in	V3A	

and	V6,	the	responses	were	only	modulated	by	scene	content	during	retinal	motion.	In	

CSv,	 although	 significant	 responses	were	 present	 for	 scenes,	we	 did	 not	 observe	 any	

interaction	between	motion	and	 scene	 content.	These	 results	 show	 the	 importance	of	

naturalistic	 stimuli	 use	 in	 understanding	 the	 visual	 system	 and	 its	 adaptation	 to	

everyday	natural	scenes.		
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4.3. Materials	and	Methods		

Participants	

17	healthy	participants	with	normal	or	corrected-to	normal	vision	(9	 female,	1	

left-handed,	 between	 the	 age	 of	 20	 and	 36)	 gave	 written	 informed	 consent	 before	

participating	 in	 this	 study.	 The	 study	 was	 approved	 by	 ethics	 committee	 of	 the	

University	 Hospital	 of	 Tübingen.	 All	 participants	 were	 given	 instructions	 about	 the	

experiment	and	the	task	before	going	into	the	scanner.	

Experimental	Setup	

This	 study	 consisted	 of	 one	 main	 experiment,	 one	 functional	 localizer	 for	

identifying	motion	regions	V5+/MT+,	V3A,	V6	and	CSv	and	one	structural	scan.		

The	 gamma	 corrected	 visual	 stimuli	 was	 back-projected	 onto	 a	 screen	 via	 a	

projector	outside	 the	 scanner	 room.	The	visual	 field	of	 the	 screen	was	19	x	15	visual	

degrees.	

The	main	 experiment	 was	 programmed	 using	 Psychtoolbox-3	 (Brainard	 1997,	

Kleiner,	Brainard	et	al.	2007)	whereas	the	functional	 localizer	experiment	that	 is	used	

for	localizing	motion	regions	was	prepared	using	Cogent	Graphics	v.1.29	developed	by	

John	 Romaya	 at	 the	 Wellcome	 Department	 of	 Imaging	 Neuroscience	

(http://www.vislab.ucl.ac.uk/cogent.php).	 All	 stimuli	 was	 then	 presented	 using	 a	

windows	PC	and	MATLAB	7.10.0	(The	Mathworks,	Natick,	MA,	2010)	(MATLAB,	2010).	

Main	Experiment	

The	main	experiment	consisted	of	eight	conditions	forming	a	2	x	2	x	2	factorial	

design	with	 the	 factors	objective	motion	(on/off),	pursuit	 (on/off)	and	scene	(on/off),	

resulting	 in	 the	 eight	 conditions	 (Figure	1).	 The	 first	 two	 factors	were	described	 in	 a	

previous	study	(Fischer	et	al.,	2012).		

We	 picked	 32	 images	 of	 outdoor	 scenes	 (both	 landscape	 and	 cityscape)	 and	

converted	them	to	grayscale,	identical	to	the	images	used	in	one	of	our	previous	studies	

(Korkmaz	 Hacialihafiz	 &	 Bartels,	 2015).	 These	 grayscale	 images	 and	 their	 phase-

scrambled	versions	composed	the	stimuli.	In	order	to	balance	horizontal	inequalities	in	

the	images,	half	of	the	images	were	left	right	flipped	duplicates	of	the	other	half	of	the	

images.	 All	 images	 were	 adjusted	 so	 that	 they	 had	 equal	 contrast	 and	 luminance	
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(luminance:	 144	 cd/m2,	 contrast:	 32.4	 cd/m2	 root-mean-square	 (RMS)	 contrast,	

resulting	 in	 an	 average	Michelson	 contrast	 of	 0.9004	±	0.0925).	We	used	 images	 that	

were	large	enough	to	give	a	feeling	of	moving	across	the	screen.		

In	 order	 to	 construct	 phase-scrambled	 versions	 of	 the	 images,	 Fourier	

transformation	was	applied	and	images	were	reconstructed	with	random	phases.	This	

resulted	in	preservation	of	low-level	features	of	the	image	such	as	luminance,	contrast	

and	spatial	frequencies	while	removing	scene	content.		

The	stimuli	were	presented	in	a	block	design.	Each	run	consisted	of	33	blocks	per	

run.	Each	block	 lasted	12	seconds.	 	The	eight	conditions	were	pseudorandomized	and	

back	matched	so	that	each	condition	was	preceded	by	all	the	other	conditions	equally.		

The	sequence	that	allowed	this	back	matching	was	then	divided	into	two	runs.	We	did	

this	twice	in	order	to	obtain	4	runs	in	total.	Each	participant	took	part	in	4	runs	in	total.	

This	 way,	 each	 condition	 preceded	 by	 each	 condition	 in	 equal	 frequency	 across	 two	

runs.	Moreover,	one	additional	block	was	added	to	the	beginning	of	each	run	in	order	to	

initially	 counterbalance	 the	 first	 block.	 The	 images	 were	 randomly	 chosen	 for	 each	

block	 and	 only	 one	 image	 was	 used	 for	 an	 entire	 block.	 Stimuli	 followed	 a	 sine	

trajectory,	 extending	 across	 4	 cycles	 per	 block,	 in	 order	 to	 have	 a	 smooth	 horizontal	

motion.	The	velocity	varied	between	0	and	3.08	deg/s,	yielding	a	mean	velocity	of	2.53	

deg/s	and	the	motion	extended	up	to	1.98	visual	degrees	in	each	direction.	The	starting	

direction	of	motion	was	pseudorandomized	and	counterbalanced	across	runs.	Each	run	

started	with	6.9	seconds	of	gray	screen	with	fixation	and	ended	with	10	seconds	of	gray	

screen	with	fixation	(luminance	of	gray	screen(s):	144	cd/m2).	Each	run	lasted	a	total	of	

412.9	seconds.	During	the	experiment,	there	was	a	gray	fixation	disk	(width:	0.74	deg,	

luminance:	282	cd/m2)	present	at	all	times	on	the	center	of	the	screen,	with	the	fixation	

task	described	below.	

Fixation	Task	

There	 was	 a	 1-back	 character-	 matching	 task	 at	 all	 times	 in	 both	 main	

experiment	 and	 localizer	 experiment	 to	 provide	 fixation	 and	 balanced	 attention	 of	

participants.	On	 the	 fixation	disk,	 a	 randomly	 chosen	alphabetical	 character	 (a-z)	was	

presented	 for	 1	 second	 each	 with	 83	 ms	 blank	 intervals	 in	 between.	 Every	 3	 to	 8	

presentations,	 a	 repetition	 of	 the	 presented	 character	 occurred,	 where	 participants	



	

 95 

were	 required	 to	 press	 a	 button	 once	 they	 see	 the	 repetition.	 The	 timings	 of	 button	

presses	were	recorded	and	used	in	GLM	analyses	as	a	regressor	of	no	interest.		

	

	
	

Figure	 1:	 Stimuli.	 Eight	 conditions	 were	 obtained	 by	 a	 2	 x	 2	 x	 2	 factorial	 design	 with	 the	
following	factors:	objective	motion	(on/off),	pursuit	(on/	off)	and	scene	(scene/	scrambled).	.	In	
the	“±/±”	notation,	the	first	position	refers	to	pursuit,	the	second	to	objective	motion.	“+”	refers	
to	 presence	 and	 “-“	 to	 absence.	 Objective	 motion	 was	 horizontal	 motion	 of	 the	 background	
image	 (scenes	 or	 scrambled	 images)	 and	 pursuit	 was	 horizontal	 motion	 of	 the	 fixation	 disk.	
There	 was	 a	 one-back	 character-matching	 task	 inside	 the	 fixation	 disk	 (shown	 larger	 for	
illustration).	

	

Functional	Localizer		

Visual	 stimuli	 for	 the	 functional	 motion	 localizer	 consisted	 of	 random	 dot	

patterns.	7	conditions	were	present	in	this	localizer	and	each	condition	was	presented	6	

times	during	 the	session	 in	a	pseudorandom	history-matched	manner.	The	conditions	

were	as	following:	3D	fullfield	motion	(coherent	motion),	random	motion,	right	and	left	

hemifield	3D	fullfield	motion	(left	or	right	1/3rd	of	the	screen),	2D	lateral	motion	with	
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synched	pursuit	 (coherent	motion),	 smooth	pursuit	with	 static	 background	and	 static	

dots	with	static	fixation	task.	Each	block	lasted	12	seconds.	Participants	performed	a	1-

back	 character-matching	 task,	 identical	 to	 the	 task	 in	main	 experiment.	Motion	 areas	

V3A,	V6	and	CSv	were	localized	as	described	previously	(Fischer	et	al.,	2011,	2012)	and	

V5+/MT+	was	localized	using	random	motion.	

Due	to	technical	problems,	we	could	not	use	right	and	left	hemifield	3D	fullfield	

motion	conditions	in	order	to	define	MT	and	MST	separately,	as	established	previously.	

Instead,	 V5+/MT+	was	 localized	 using	 responses	 to	 random	 dot-motion	 versus	 static	

dots.	 CSv	was	 localized	 as	 described	 previously,	 using	 responses	 to	 fullfield	 coherent	

motion	 with	 coherently	 moving	 fixation	 dot	 versus	 random	 dot-motion	 with	 still	

fixation(Fischer	 et	 al.,	 2011).	V6	was	 also	 localized	using	 the	 same	 contrast.	V3A	was	

localized	using	 responses	 to	 coherent	2D	motion	versus	moving	 fixation	dot	on	 static	

background	consisting	of	dots.	All	regions	are	defined	using	an	individual	p-value.	

Data	Acquisition	

T2*	weighted	functional	images	were	acquired	using	a	64-channel	phased-array	

head	 coil	 in	 a	 Siemens	Magnetom	PRISMA	3T	 scanner	 (Siemens,	 Erlangen,	Germany).	

The	voxel	size	was	3	x	3	x	3	mm3	and	TR	was	2.3	seconds,	while	TE	was	35	ms	and	flip	

angle	was	79°.	The	images	included	32	slices,	 in	an	ascending	order.	 In	order	to	allow	

T1	equilibration,	 the	 first	3	volumes	of	data	 (the	 first	4	volumes	 for	motion	 localizer)	

were	 discarded.	 We	 also	 collected	 anatomical	 images	 for	 each	 participant	 using	 T1-

weighted	images	(1	x	1	x	1	mm3	resolution).	

FMRI	Data	Preprocessing	and	Statistical	Analysis	

SPM5	 toolbox	 in	 MATLAB	 7.10.0	 was	 used	 in	 order	 to	 preprocess	 functional	

images	with	the	following	steps:	reslicing	and	realignment,	followed	by	coregistration	of	

the	 structural	 image	 to	 the	 mean	 functional	 image,	 normalization	 of	 the	 data	 to	 the	

Montreal	 neurological	 institute	 (MNI)	 space	 and	 finally	 spatial	 smoothing	with	 6	mm	

full-width	at	half	maximum	Gaussian	kernel	for	single	participants	and	12	mm	for	group	

level	analyses.		

Data	of	each	participant	were	analysed	separately	using	the	GLM	(general	linear	

model)	in	SPM5.		We	modelled	each	condition	and	button	presses,	as	well	as	regressors	

of	no	interest,	which	were	six	motion	realignment	parameter	series	and	one	additional	
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regressor	 for	global	 signal	 variance	 (Desjardins,	Kiehl,	&	Liddle,	2001;	Van	Dijk	 et	 al.,	

2010).	 The	 global	 signal	 variance	 regressor	 was	 orthogonalized	 to	 the	 conditions	 of	

interest.	The	data	were	high	pass	filtered	using	a	cut-off	value	of	128s.	In	addition,	the	

beta	 images	 from	 the	 first	 level	 GLMs	 of	 each	 participant	 were	 used	 for	 group	 level	

analyses.		

The	 ROI	 analyses	were	 done	 by	 defining	 ROIs	 using	 independent	 localizer	 for	

each	participant	separately	and	 then	extraction	of	mean	beta	values	 for	each	ROI	and	

for	 each	participant.	We	used	MarsBaR	 toolbox	 in	order	 to	define	ROIs	 (Brett,	Anton,	

Valabregue,	&	Poline,	2002).	Beta	values	were	 range	normalized	between	0	and	1	 for	

each	ROI	and	participant	 separately.	For	4	 runs	and	8	 conditions,	 the	minimum	of	 all	

these	32	beta	values	were	subtracted	from	all	32	beta	values	and	then	all	of	them	were	

divided	 by	 maximum	 of	 these	 32	 beta	 values,	 for	 each	 participant	 and	 each	 ROI	

separately.	 Repeated	measures	 ANOVAs,	 as	 well	 as	 paired	 t-tests	 were	 conducted	 in	

order	 to	 analyze	 the	effects	of	 conditions	using	 statistical	 analysis	 software	 IBM	SPSS	

Statistics	 version	 22.0.	 Mauchly’s	 sphericity	 test	 results	 were	 considered	 for	 the	

definition	of	violation	of	sphericity	and	Greenhouse-Geisser	correction	was	used	in	case	

of	violation	of	sphericity.	

Eye	Tracking	

Eye	 tracking	 of	 participants	 during	 the	 main	 experiment	 was	 done	 using	 an	

infrared	camera	based	eye	tracker	system	(Eye-Trac	6;	Applied	Science	Laboratories).			

The	steps	of	preprocessing	included	blink	removal,	smoothing	of	x	and	y	positions	using	

a	running	average	window	of	200	milliseconds.	We	calculated	the	fixation	accuracy	by	

the	root	mean	square	error	of	actual	eye	position	relative	to	the	fixation	disk	for	each	

condition	across	participants	and	runs.	Repeated	measures	ANOVAs	were	facilitated	in	

order	to	analyse	eye-tracking	data	
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4.4. Results	

After	independently	localizing	motion	responsive	regions	V5+/MT+,	V3A,	V6	and	

CSv,	 we	 analyzed	 their	 responses	 to	 scene	 content.	 We	 localized	 V5+/MT+	 in	 30	

hemispheres,	V3A	in	29	hemispheres,	V6	in	28	hemispheres	and	CSv	in	25	hemispheres.	

For	all	ROIs,	raw	and	normalized	mean	beta	responses	are	shown	separately	in	figure	2.	

	

	
	

Figure	 2:	 Responses	 to	 all	 conditions	 across	 ROIs.	 (A)	 Raw	 beta	 estimates	 in	 motion	 ROIS	
V5+/MT+,	V3A,	CSv	and	V6.	(B)	Normalized	beta	estimates	(see	methods).	In	the	“±/±”	notation,	
the	first	position	refers	to	pursuit,	the	second	to	objective	motion.	“+”	refers	to	presence	and	“-“	
to	absence.	scr:	scramble,	sce:	scene.	Plots	show	mean	±	standard	error	of	mean	(SEM).		
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A	4	x	2	x	8	repeated-measures	ANOVA	with	the	factors	ROI,	hemisphere,	planar	

motion,	 pursuit	 and	 scene	was	 conducted	 in	 order	 to	 test	 for	 hemisphere	 effect.	 For	

each	 ROI	 we	 pooled	 data	 from	 both	 hemispheres	 since	 there	 was	 no	 effect	 of	

hemisphere	(F	(1,5)	=	0.209,	p	=	0.667)	or	any	interactions	including	hemisphere	as	a	

factor	(hemisphere	and	ROI:	F	(6,30)	=	0.721,	p	=	0.636,	hemisphere	and	planar	motion:	

F	 (1,5)	 =	 0.280,	 p	 =	 0.620,	 hemisphere	 and	 pursuit:	 F	 (1,5)	 =	 0.212,	 p	 =	 0.664,	 ROI,	

hemisphere	 and	 planar	motion:	 F	 (6,30)	 =	 0.643,	 p	 =	 0.695,	 ROI,	 hemisphere,	 planar	

motion	and	pursuit:	F	(6,30)	=	0.980,	p	=	0.456,	hemisphere	and	scene:	F	(1,5)	=	0.014,	p	

=	 0.911,	 ROI,	 planar	 motion,	 hemisphere	 and	 scene:	 F	 (6,30)	 =	 0.288,	 p	 =	 0.938,	

hemisphere,	pursuit	and	scene:	F	(1,5)	=	1.526,	p	=	0.272	and		hemisphere,	ROI,	planar	

motion,	pursuit	and	scene:	F	(6,30)	=	1.172,	p	=	0.347)	.		

Next,	we	analyzed	scene	responses	in	these	ROIs	and	then	we	analyzed	content	

related	motion	responses,	meaning	the	interactions	between	scene	and	different	motion	

types	in	all	ROIs	separately.	

Scene	responses		

We	tested	scene	responses	of	all	ROIs	using	paired	t-tests,	using	the	contrast	for	

all	 conditions	with	 scenes	 compared	 to	 all	 conditions	with	 scramble	 images.	 All	 ROIs	

had	a	significant	scene	response	(V5+/MT+:	t	(29)	=	8.44,	p	=	0.11	*	10-7,	V3A:	t	(28)	=	

7.99,	 p	=	0.32	 *	10-7,	 CSv:	 t	 (24)	=	2.2,	 p	=	0.038,	V6:	 t	 (27)	=	5.99,	 p	=	0.4	 *	10-5,	 all	

Bonferroni-Holm	 corrected	 for	 4	 comparisons).	 Either	 scenes	 themselves	 or	 motion	

responses	could	drive	the	scene	responses	in	these	regions.	In	order	to	investigate	this,	

we	compared	scene	versus	scramble	during	still	((-/-/+)	versus	(-/-/-))	responses	using	

paired	t-tests	on	each	motion	responsive	ROI	separately.	Only	V3A	showed	a	significant	

difference	between	responses	to	scenes	and	responses	to	scrambled	images	during	still	

(t	 (28)	 =	 4.41,	 p	 =	 0.0006,	 Bonferroni-Holm	 corrected	 for	 four	 comparisons).	 This	

difference	was	not	present	 in	other	motion	responsive	 regions	we	 investigated	 (V6	 (t	

(27)	=	0.87,	 p	=	0.39),	V5+/MT+	 (t	 (29)	=	0.69,	 p	=	0.49)	 and	CSv	 (t	 (24)	=	0.36,	 p	=	

0.72).	Figure	3A	shows	scene	responses	of	all	ROIs.	Next,	we	tested	whether	V3A	could	

be	differentiated	from	other	regions	in	its	responses	to	still	scenes.	Indeed,	V3A	can	be	

differentiated	from	all	regions	by	its	scene	responses	(V3A	vs.	V5+/MT+:	t	(27)	=	2.47,	p	

=	 0.02,	 V3A	 vs.	 V6:	 t	 (25)	 =	 2.61,	 p	 =	 0.03,	 V3A	 vs.	 CSv:	 t	 (22)	 =	 3.36,	 p	 =	 0.009,	 all	
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corrected	 using	 Bonferroni-	 Holm	 correction	 for	 3	 comparisons).	 Figure	 3B	 shows	

responses	to	still	scenes	in	all	ROIs.		

We	also	tested	scene	versus	scramble	responses	during	background	motion	with	

eye	fixation	((-/+/sce)	vs.	(-/+/scr)).	As	seen	in	figure	3C,	V5+/	MT+	(t	(29)	=	8.11,	p	=	

0.25	 *	 10-7),	 V3A	 (t	 (28)	 =	 6.72,	 p	 =	 0.81	 *	 10-6),	 and	 V6	 (t	 (27)	 =	 4.27,	 p	 =	 0.0004)	

significantly	responded	to	scenes	with	background	motion	during	fixation,	whereas	CSv	

did	not	(t	(24)	=	1.08,	p	=	0.29)	(Corrected	using	Bonferroni-Holm	correction	for	 four	

comparisons).			

	
	

Figure	 3:	 Scene	 responses	 in	 V5+/MT+,	 V3A,	 V6	 and	 CSv.	 	 (A)	 Main	 effect	 of	 scenes.	 (B)	
Responses	 to	still	 scenes	vs.	still	 scramble	 images.	 (C)	Responses	 to	moving	scenes	vs	moving	
scramble	images	during	fixation	(-/+/sce	vs.	-/+/scr).	**:	p	<	0.001,	*:	p	<	0.05.	Bonferroni-Holm	
corrected.	Plots	show	mean	±	standard	error	of	mean	(SEM).	
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Content	effect	on	motion	responses		

Next,	 we	 tested	 the	 interactions	 between	 motion	 and	 scene	 content	 in	 the	

regions	of	interests.	

First,	 we	 tested	 objective	 motion	 responses	 during	 scenes,	 during	 scrambled	

images	and	their	interaction.	As	expected,	in	all	regions	there	were	significant	objective	

motion	responses	during	scenes	(V5+/MT+:	t	(29)	=	15.51,	p	=	0.17	*	10-13,	V3A:	t	(28)	=	

11.95,	p	=	0.18	*	10-10,	V6:	t	(27)	=	7.59,	p	=	0.26	*	10-6,	CSv:	t	(24)	=	5.2,	p	=	0.13	*	10-3)	

and	scrambled	images	(V5+/MT+:	t	(29)	=	10.33,	p	=	0.29	*	10-9,	V3A:	t	(28)	=	11.78,	p	=	

0.23	*	10-10,	V6:	t	(27)	=	9.7,	p	=	0.22	*	10-8,	CSv:	t	(24)	=	5.74,	p	=	0.42	*	10-4).	However,	

there	was	a	significant	interaction	between	objective	motion	and	scene	content	only	in	

V5+/MT+	 (t	 (29)	 =	 2.94,	 p	 =	 0.024),	 although	 in	 V3A	 and	 V6,	 there	 was	 a	 trend	 for	

higher	 objective	 motion	 responses	 during	 scenes	 compared	 to	 during	 scramble	 (All	

corrected	for	12	comparisons	using	Bonferroni-Holm	correction).		

Next,	 we	 tested	 retinal	 motion	 responses	 during	 scenes,	 scrambles	 and	 their	

interaction.	 All	 regions	 showed	 significant	 retinal	 motion	 responses	 during	 scenes	

(V5+/MT+:	t	(29)	=	15.28,	p	=	0.25	*	10-13,	V3A:	t	(28)	=	5.24,	p	=	0.14	*	10-3,	V6:	t	(27)	=	

4.58,	p	=	0.65	*	10-3,	CSv:	t	(24)	=	4.94,	p	=	0.43	*	10-3).	Interestingly,	only	V5+/MT+	(t	

(29)	=	9.99,	p	=	0.75	 *	10-9)	 and	CSv	 (t	 (24)	=	3.63,	p	=	0.005)	had	significant	 retinal	

motion	responses	during	scramble	images	while	V3A	(t	(28)	=	0.49,	p	=	0.627)	and	V6	(t	

(27)	=	1.28,	p	=	0.211)	did	not.		All	regions	except	CSv	showed	a	significant	interaction	

between	retinal	motion	and	scene	content	(V5+/MT+:	t	(29)	=	4.74,	p	=	0.41	*	10-3,	V3A:	

t	(28)	=	4.03,	p	=	0.0024,	V6:	t	(27)	=	3.06,	p	=	0.02,	CSv:	t	(24)	=	1.57,	p	=	0.129)	(All	

corrected	for	12	comparisons	using	Bonferroni-Holm	correction).	
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Figure	 4.	Objective	 and	 retinal	motion	 preferences	 across	ROIs.	 (A)	Objective	motion	
responses,	shown	for	scenes	and	scrambled	backgrounds	separately	and	their	interactions.	(B)	
Retinal	motion	 responses,	 shown	 for	 scenes	and	 scrambled	backgrounds	 separately	 and	 their	
interactions.		**:	p	<	0.001,	*:	p	<	0.05,	Bonferroni-Holm	corrected.	Plots	show	mean	±	standard	
error	of	mean	(SEM).	

 

Whole	brain	Analyses	

Since	 V3A	 is	 responsive	 to	 still	 scenes,	we	wanted	 to	 check	 if	 it	 overlaps	with	

scene	responsive	areas	in	the	group	level	analysis.	We	first	calculated	the	contrast	still	

scenes	 vs.	 still	 scramble	 images	 in	 group	 level,	 with	 p	 <	 0.05	 uncorrected.	 Next,	 we	

defined	V3A	using	 the	previously	established	contrast	 (Fischer	et	al.,	2012);	objective	

vs.	retinal	motion	during	both	scenes	and	scramble	images	in	the	group	level	using	p	<	

0.001	uncorrected.	Figure	5	shows	the	overlap	between	these	two	contrasts.		
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Figure	5:	Whole	brain	results	showing	overlap	between	V3A	and	scene	responsive	areas.	The	
contrasts	were	 created	using	 (a)	 still	 scene	 vs	 still	 scrambled	 images,	 shown	by	blue	 and	 (b)	
objective	versus	retinal	motion	to	define	V3A	(during	both	scenes	and	scramble	images),	shown	
by	red	and	their	interaction	is	shown	by	green.	

	

Behavior	Data	

Participants	 performed	 a	 character	 back-matching	 task	 during	 the	 main	

experiment.	 The	mean	 correct	 response	 rate	was	 0.85	 ±	 0.07	 (mean	 ±	 std),	 whereas	

mean	response	time	was	0.57	±	0.14	s	(mean	±	std).	We	analyzed	response	times	using	

a	 3-way	 repeated	 measures	 ANOVA	 with	 the	 factors	 objective	 motion,	 pursuit	 and	

scene.	There	were	only	significant	effects	of	pursuit	(F	(1,16)	=	5.06,	p	=	0.039)	but	no	

other	main	effects	(objective	motion:	F	(1,16)	=	0.005,	p	=	0.95;	scene:	F	(1,16)	=	0.39,	p	

=	0.54),	nor	interactions	(objective	and	pursuit	(i.e.,	retinal	motion):	F	(1,16)	=	0.93,	p	=	

0.35;	 objective	 and	 scene:	 F	 (1,16)	 =	 0.00029,	 p	 =	 0.99;	 pursuit	 and	 scene	 F	 (1,16)	 =	

1.58,	p	=	0.23;	objective,	pursuit	and	scene:	F	(1,16)	=	0.98,	p	=	0.34).		

Eye	tracking	Data	

Eye	tracking	data	were	collected	for	each	participant	during	scanning	and	were	

preprocessed	as	described	in	methods.	Following	preprocessing,	RMSE	of	eye	position	

relative	 to	 the	 fixation	disk	was	 calculated	and	 these	RMSE	were	used	 for	 calculation	

and	 comparison	 of	 fixation	 accuracy.	 The	 average	RMSE	 across	 participants	 and	 runs	
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and	conditions	is	1.54	±	0.73	deg	(mean	±	std).	 	We	used	2	x	2	x	2	repeated	measures	

ANOVA	 with	 factors	 objective	 motion,	 pursuit	 and	 scene	 using	 the	 RMSE	 data	

mentioned	above.	There	was	an	effect	of	pursuit	(F	(1,	67)	=	682.38,	p	=	0.75	*	10-36),	

but	there	were	no	effects	of	objective	motion	(F	(1,	67)	=	0.06,	p	=	0.82)	or	scene	(F	(1,	

67)	=	0.0001,	p	=	0.99).	Moreover,	there	were	no	interaction	between	objective	motion	

and	 pursuit	 (which	 gives	 us	 retinal	 motion)	 (F	 (1,	 67)	 =	 0.28,	 p	 =	 0.56),	 between	

objective	motion	and	scene	(F	(1,	67)	=	0.14,	p	=	0.71),	between	pursuit	and	scene	(F	(1,	

67)	=	2.8,	p	=	0.099)	and	between	objective	motion,	pursuit	and	scene	(F	(1,	67)	=	0.16,	

p	=	0.69).		
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4.5. Discussion		

Here,	 we	 sought	 answers	 to	 the	 following	 questions:	 are	 motion	 responsive	

regions	modulated	by	scene	content	and	if	they	are,	how	do	their	responses	to	objective	

and	retinal	motion	change	with	scene	content	modulation?	We	used	a	2	x	2	x	2	factorial	

design	 with	 the	 factors	 being	 real	 world	 scenes	 versus	 their	 scrambled	 versions,	

horizontal	 panning	motion	 and	 smooth	 pursuit	 eye	movements.	We	 chose	 horizontal	

panning	 motion	 and	 pursuit	 eye	 movements,	 as	 they	 are	 frequently	 found	 and	 are	

natural	 in	 daily	 life.	 We	 examined	 well-known	motion	 responsive	 regions	 V5+/MT+,	

V3A,	V6,	and	CSv.		

We	 found	 that	 the	 motion	 responses	 of	 all	 motion	 regions	 showed	 a	 scene	

preference,	 whereas	 only	 V3A	 also	 responded	 significantly	 to	 still	 scene	 images	

compared	 to	 still	 scrambles.	 Moreover,	 V5+/MT+,	 V3A	 and	 V6	 showed	 motion	 and	

scene	content	interaction	whereas	this	was	absent	in	the	responses	of	CSv.		

Scene	responses	in	V3A	

V3A	was	the	only	region	with	significant	scene	responses	even	in	the	absence	of	

any	type	of	motion.		V3A	is	an	intermediate-tier,	retinotopic	region	with	relatively	large	

receptive	field	size	and	representing	both	upper	and	lower	visual	 fields	(Tootell	et	al.,	

1997).	So,	it	is	unlikely	that	responses	to	static	scenes	could	be	driven	by	possible	local	

visual	 field	 irregularities	 between	 scenes	 and	 scrambled	 images.	 Human	 V3A	 is	

neighbouring	a	scene	responsive	region,	occipital	place	area	(OPA),	which	is	also	known	

as	 transverse	 occipital	 sulcus	 (TOS)	 (Nasr	 et	 al.,	 2011).	 Interestingly,	 some	 recent	

studies	 have	 shown	 that	 OPA	 partially	 overlaps	 with	 V3A	 (Bettencourt	 &	 Xu,	 2013;	

Silson,	 Groen,	 Kravitz,	 &	Baker,	 2016).	 Additionally,	 a	 recent	 study	 found	 that	 V3A	 is	

connected	to	ventral	regions	(hV4/	VO-1)	via	a	major	white	matter	pathway	in	human	

brain,	namely	vertical	occipital	fasciculus	(VOF)	(Takemura	et	al.,	2015).	More	research	

is	needed	to	understand	the	exact	role	of	V3A	in	scene	processing.		

Although	V3A	is	known	as	a	motion-processing	region,	its	exact	role	is	still	under	

investigation.	 Previous	 studies	 have	 shown	 that	 V3A	 processes	 three-dimensional	

structure	and	depth	cues	and	as	well	as	shapes	defined	by	colour	or	motion	(Georgieva,	

Peeters,	 Kolster,	 Todd,	 &	Orban,	 2009;	 Paradis	 et	 al.,	 2000;	 Self	 &	 Zeki,	 2005).	 Other	

findings	 include	 that	 V3A	 has	 a	 role	 in	 shape	 integration,	 contrıbutes	 to	 contour	
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integration,	is	modulated	by	context	(Aspell,	Wattam-Bell,	Atkinson,	&	Braddick,	2010;	

Schira	et	al.,	2004),	has	shape	sensitive	responses	and	is	involved	in	object	processing	

(Denys	 et	 al.,	 2004;	Grill	 Spector	 et	 al.,	 1998)	 and	has	 a	 role	 in	 not	 only	 in	 boundary	

detection,	but	also	in	scene	segmentation	and	texture	segregation	(together	with	other	

early	level	visual	areas)	(Kastner,	De	Weerd,	&	Ungerleider,	2000;	Scholte	et	al.,	2008).	

The	 responses	 to	 still	 scenes	 in	 V3A	 shown	 here	 could	 be	 driven	 by	 continuous	

contours,	which	exist	in	scene	images	but	absent	scrambled	images,	or	by	higher-level	

image	features	such	as	shapes	or	objects	within	the	scenes.		

Our	results	also	showed	an	interaction	between	scene	and	retinal	motion	in	V3A,	

meaning	 that	 V3A’s	 scene	 responses	 were	 higher	 during	motion.	 Interestingly,	 while	

V3A	showed	significant	responses	to	retinal	motion	during	scenes,	it	did	not	show	any	

significant	retinal	motion	responses	during	scrambled	images.		We	believe	this	could	be	

driven	by	viewpoint	 changes	across	 scenes,	 since	 in	a	previous	 study,	V3A,	as	well	 as	

MT,	was	shown	to	have	viewpoint	specific	object	selective	responses	(Konen	&	Kastner,	

2008).		

V3A	 has	 many	 connections	 with	 parietal	 regions	 and	 is	 thought	 to	 provide	

information	 about	 object	 location	 and	 motion	 to	 these	 regions.	 This	 information	 is	

probably	 used	 by	 parietal	 regions	 during	 self-object	 interaction	 such	 as	 reaching	 and	

grasping.	 While	 encoding	 object	 location	 and	 motion,	 V3A	 is	 involved	 in	 depth	

perception	and	having	a	representation	of	visual	scenes	could	be	useful	with	this	role	of	

V3A.		

Content-dependent	responses	in	motion	processing	regions	

V5+/MT+	 showed	 significant	 interaction	 between	 scene	 and	 objective	 motion	

and	 between	 scenes	 and	 retinal	 motion,	 meaning	 that,	 it	 responded	more	 to	 motion	

(both	 objective	 and	 retinal	 motion)	 when	 there	 were	 scenes	 in	 the	 background,	

compared	to	when	there	were	scrambled	images	in	the	background.	It	 is	unlikely	that	

these	responses	are	due	to	differences	of	spatial	frequency	in	lower	and	upper	parts	of	

the	visual	scene	images	since	human	V5/MT	and	MST	show	no	upper-lower	visual	field	

bias	 (Kolster,	 Peeters,	 &	 Orban,	 2010).	 In	 addition	 to	 its	 well-known	motion	 related	

responses	 such	 as	 responses	 to	 optic	 flow,	 speed	 and	 direction	 selective	 responses,	

V5/MT	 also	 shows	 object	 and	 shape	 sensitivity	 as	 well	 as	 viewpoint	 specific	 object	

responses	(Denys	et	al.,	2004;	Kolster	et	al.,	2010;	Konen	&	Kastner,	2008;	Kourtzi	et	al.,	
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2002;	 Kourtzi	 &	 Kanwisher,	 2000).	 Our	 results	 are	 parallel	 to	 the	 aforementioned	

findings	regarding	content	effect	in	V5+/MT+.	

Interestingly,	 V6	 showed	 scene	 related	 responses	 during	 retinal-motion.	

Previous	studies	on	V6	showed	its	involvement	in	optic	flow	responses	and	processing	

of	 self-motion	 related	 cues	 (Cardin	&	 Smith,	 2010;	 Fischer	 et	 al.,	 2012;	 Pitzalis	 et	 al.,	

2010).	Additionally,	 V6	 contains	 representations	 of	 both	upper	 and	 lower	 visual	 field	

(Pitzalis	 et	 al.,	 2006).	 V6	 is	 highly	 connected	 to	 parietal	 regions	 and	 its	 visuomotor	

neighbor	 V6A.	 V6A	 and	 parietal	 regions	 are	 particularly	 interested	 in	 reaching	 and	

grasping.	 In	relation	to	this,	a	study	showed	that	V6	is	more	responsive	to	near	visual	

field	 compared	 to	 far	 visual	 field,	 and	 suggested	 that	 these	 responses	 are	 related	 to	

object	locations	for	reaching	(Quinlan	&	Culham,	2007).	It	is	possible	that	scene	content	

responses	 are	 also	 related	 to	 distance	 encoding	 in	 V6	 in	 order	 to	 provide	 input	 to	

parietal	regions	 for	reaching	and	grasping.	Thus,	motion	during	scene	generates	more	

response	compared	to	motion	during	scrambled	images.	

CSv	only	showed	scene	responses	but	no	interaction	or	no	scene	response	during	

motion	or	no	motion.	 It	 is	possible	 that	scene	responses	 in	CSv	are	modulated	by	eye	

movements,	 but	 since	pursuit	 condition	 is	 not	well	 controlled,	we	did	not	 investigate	

pursuit	related	responses	in	this	study.	CSv	is	located	in	posterior	cingulate	cortex	and	

has	 been	 shown	 to	 contain	 information	 about	 heading	 direction	 during	 self-motion	

(Furlan,	Wann,	&	Smith,	2014).	CSv	also	 showed	vestibular	 responses	 (Smith,	Wall,	&	

Thilo,	 2012).	 Furthermore,	 CSv	 has	 been	 shown	 to	 integrate	 eye	 movements	 with	

retinal	 motion	 (Fischer	 et	 al.,	 2011).	 Cingulate	 sulcus	 has	 been	 previously	 shown	 to	

have	place	category	responses	(Epstein	&	Higgins,	2007).	Natural	scene	images,	as	we	

used	in	this	experiment,	resembles	everyday	experience	for	the	visual	cortex	in	a	way	

that	 it	 provides	 realistic	 input	 (compared	 to	 scrambled	 images)	 and	 perceptually,	

provides	more	 important	 cues	 regarding	 heading	 and	 self-motion.	 So,	 in	 this	 context,	

CSv	responses	could	be	explained	by	more	engagement	of	CSv	during	eye	movements	in	

natural	 scenes	 since	 this	 resembles	 perceptually	 more	 natural	 input	 regarding	 self-

motion	extraction	or	heading	direction.	

Our	 result	 showing	 scene	 related	higher	 activation	 in	 every	motion	 responsive	

region	 is	 rather	 interesting.	 Scenes	 related	 responses	 can	 be	 used	 during	 depth	

perception	 via	 textures	 or	 perspective	 whereas	 this	 is	 absent	 in	 scrambled	 images.	
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Previous	studies	showed	that	natural	stimuli	are	preferred	by	the	visual	cortex	(Kayser,	

Kording,	&	Konig,	2004).	However,	more	studies	on	contextual	effects	of	natural	scene	

stimuli	 on	 visual	 processing	 regions	would	 provide	 a	 better	 insight	 about	 the	 effects	

seen	here.	

Low-level	versus	high-level	interpretations	

One	 can	 think	 that	 the	 results	 shown	 here	 are	 due	 to	 confound	 regarding	 low	

level	 differences	 across	 scenes	 and	 their	 scrambled	 versions.	 Phase	 scrambling	 was	

used	 in	 order	 to	 conserve	 low-level	 image	 features	 such	 as	 spatial	 frequency	 while	

eliminating	 contextual	 effect,	 thus	making	 the	high	 level	 aspect	 of	 the	 image	 (such	 as	

scenes	 as	 in	 here,	 but	 also	 used	 for	 objects	 and	 faces)	 unrecognizable.	 	 Traditionally,	

applying	phase	scrambling	while	keeping	 luminance	and	contrast	equal	across	 images	

and	their	scrambled	versions	is	thought	to	result	in	no	response	from	early	visual	cortex	

but	 engage	 higher	 level	 regions’	 (or	 ventral	 regions’)	 responsiveness.	 However,	 a	

number	of	studies	raised	concerns	about	using	phase-scrambled	images	in	this	way.	For	

instance,	 a	 comparison	 of	 the	 contrasts	 of	 natural	 scenes	 and	 their	 scrambled	

counterparts	 resulted	 in	 higher	 number	 of	 peaks	 in	 the	 histogram	 of	 natural	 images	

(Dumoulin,	Dakin,	&	Hess,	 2008).	Also,	 scrambling	 scatters	 local	 constructions	within	

the	 image	 all	 over	 (Kay,	Winawer,	Rokem,	Mezer,	&	Wandell,	 2013).	Related	 to	 these	

concerns,	 modifications	 to	 phase	 scrambling	 and	 even	 different	 scrambling	 methods	

have	been	proposed	(Ales,	Farzin,	Rossion,	&	Norcia,	2012;	Stojanoski	&	Cusack,	2014).	

Hence,	 it	 cannot	 be	 ruled	 out	 that	 our	 findings	 regarding	 higher	 scene	 responses	 in	

motion	responsive	regions	might	be	related	to	higher-order	or	localized	differences	in	

low-level	image	features	such	as	lines	or	contours.	Numerous	studies	have	investigated	

how	different	level	features	are	processed	in	human	brain.	More	related	to	our	findings,	

extra-striate	 visual	 cortex	 has	 been	 shown	 to	 have	 contour-based	 responses	 to	 scene	

images	(Dumoulin	et	al.,	2008).	Another	study	showed	that	a	comparison	of	 lines	and	

edges	to	phase	scrambled	images	created	higher	responses	for	lines	and	edges	in	most	

of	 the	 visual	 areas,	 even	 early	 visual	 cortex	 (Perna,	 Tosetti,	 Montanaro,	 &	 Morrone,	

2008).	 For	 ventral	 scene-responsive	 regions,	 a	 series	 of	 recent	 studies	 provided	

evidence	that	 low-level	 features	may	account	 for	 their	previously	reported	preference	

to	certain	high-level	categories	(Nasr,	Echavarria,	&	Tootell,	2014;	Nasr	&	Tootell,	2012;	

Rajimehr,	 Devaney,	 Bilenko,	 Young,	 &	 Tootell,	 2011).	 These	 studies	 argued	 that	 low-
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level	features	typically	associated	to	scenes,	such	as	cardinal	orientations,	rectilinearity,	

and	 high	 spatial	 frequencies	 alone	 selectively	 activate	 PPA.	 However,	 more	 recent	

evidence	 showed	 that	 even	 when	 all	 low-level	 features	 are	 controlled	 for,	 PPA	 still	

prefers	high-level	interpretations	of	features	perceived	as	spatial	arrangements	(Bryan,	

Julian,	 &	 Epstein,	 2016;	 Schindler	 &	 Bartels,	 2016).	 Clearly,	 further	 more	 detailed	

studies	 are	 needed	 in	 order	 to	 clarify	 the	 underlying	 mechanism	 of	 scene	 related	

responses	in	motion	responsive	regions.	

4.6. Conclusion		

In	conclusion,	V5+/MT+,	V3A,	V6	and	CSv	had	content	effect	due	to	scene	content	

during	 motion.	 V3A	 also	 had	 scene	 responses	 during	 still	 scenes.	 These	 results	

contribute	 to	 our	 understanding	 of	 how	 V5+/MT+,	 V3A,	 V6	 and	 CSv	 responses	 are	

modulated	by	scene	content.		

These	 results	 support	 the	 view	 that	 unlike	 the	 traditional	 theories	 about	

completely	 segregated	dorsal	 ‘what’	 and	ventral	 ‘where’	 streams,	 these	 two	pathways	

functionally	interact.		Consistent	with	this	view,	our	results	could	be	interpreted	as	V3A	

taking	part	in	analysing	the	3D	overlay	of	the	visual	scenes,	which	can	be	useful	when	

calculating	the	motion	of	objects	in	depth.	Further	studies	are	needed	to	investigate	the	

role	of	motion	regions,	especially	V3A,	in	detail	during	scene	viewing.	
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5.1. Abstract		

Motion	signals	can	arise	for	two	reasons	in	the	retina:	due	to	self-motion	or	due	

to	real	motion	in	the	environment.	Prior	studies	on	speed	tuning	always	measured	joint	

responses	 to	 real	 and	 retinal	 motion,	 and	 for	 some	 of	 the	 more	 recently	 identified	

human	motion	 processing	 regions,	 speed	 tuning	 has	 not	 been	 examined	 in	 at	 all.	We	

localized	motion	regions	V3A,	V6,	V5/MT,	MST	and	cingulate	sulcus	visual	area	(CSv)	in	

20	human	participants,	and	then	measured	their	responses	to	motion	velocities	from	1-

24	 degrees	 per	 second.	 Importantly,	 we	 used	 a	 pursuit	 paradigm	 that	 allowed	 us	 to	

quantify	 responses	 to	 objective	 and	 retinal	 motion	 separately.	 In	 order	 to	 provide	

optimal	stimulation,	we	used	stimuli	with	natural	image	statistics	derived	from	Fourier	

scrambles	of	natural	images.	The	results	show	that	all	regions	increased	responses	with	

higher	 speeds	 for	both,	 retinal	and	objective	motion.	V3A	stood	out	 in	 that	 it	was	 the	

only	region	whose	slope	of	the	speed-response	function	for	objective	motion	was	higher	

than	 that	 for	 retinal	motion.	 V6,	 V5/MT,	MST	 and	 CSv	 did	 not	 differ	 in	 objective	 and	

retinal	speed	slopes,	even	though	V5/MT	and	MST	tended	to	respond	more	to	objective	

motion	at	all	speeds.	These	results	reveal	highly	similar	speed	tuning	functions	for	early	

and	high-level	motion	regions,	and	support	the	view	that	human	V3A	encodes	primarily	

objective	rather	than	retinal	motion	signals.		
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5.2. Introduction		

Motion	perception	is	a	crucial	function	of	the	visual	cortex.	Perceiving	the	speed	

of	motion	is	important	for	many	everyday	tasks	of	the	visual	system,	such	as	pursuing	a	

target	or	interacting	with	a	moving	object,	or	even	for	compensating	self-induced	retinal	

motion	 with	 non-retinal	 signals.	 Although	 visual	 motion	 perception	 and	 processing	

have	been	widely	studied,	our	understanding	of	speed	processing	 is	still	 limited.	Most	

prior	 studies	 on	 speed	 processing	 focused	 on	 V5/MT	 both	 in	 humans	 and	 primates.	

Majority	of	V5/MT	neurons	were	shown	to	be	speed	selective	((Maunsell	&	Van	Essen,	

1983b;	 Perrone	&	Thiele,	 2001)	 but	 also	 see	 (Priebe,	 Cassanello,	&	 Lisberger,	 2003))	

and	V5/MT	plays	an	important	role	in	speed	perception	and	discrimination,	which	was	

shown	 by	 lesion	 studies	 (Dursteler	 &	 Wurtz,	 1988;	 Newsome,	 Wurtz,	 Dürsteler,	 &	

Mikami,	1985;	Orban,	Saunders,	&	Vandenbussche,	1995;	Pasternak	&	Merigan,	1994;	

Yamasaki	&	Wurtz,	1991).	Neurons	are	clustered	according	to	preferred	speed	with	no	

columnar	 organisation	 for	 speed	 in	 V5/MT	 (Liu	 &	 Newsome,	 2003).	 The	 range	 of	

preferred	 speeds	 of	 neurons	 were	 reported	 differently	 in	 different	 studies,	 such	 as	

between	 2-256	 deg/s	 (Maunsell	 &	 Van	 Essen,	 1983b)	 	 or	 	 between	 5-150	 deg/s	

(Rodman	&	Albright,	1987).	The	peak	of	preferred	speeds	across	neurons	was	reported	

as	 32	 deg/s	 (Maunsell	 &	 Van	 Essen,	 1983b)	 and	 speed	 representation	 in	 V5/MT	 is	

thought	 to	 be	 in	 logarithmic	 scale	 (Nover,	 Anderson,	 &	 DeAngelis,	 2005).	 Speed	

perception	 is	 shown	to	be	consistent	with	average	responses	 from	V5/MT	neurons	of	

macaques	(M.	M.	Churchland	&	Lisberger,	2001;	Priebe	&	Lisberger,	2004),	although	it	

has	 also	 been	 shown	 in	monkeys	 that	 overall	 sensitivity	 of	 V5/MT	 neurons	 to	 speed	

discrimination	is	less	than	the	behavioural	responses	(Liu	&	Newsome,	2005).		Despite	

the	 vast	 number	 of	 studies	 to	 characterize	 speed	 responses	 of	 V5/MT	 neurons	 in	

nonhuman	 primates,	 our	 knowledge	 about	 the	 speed	 responses	 in	 human	 V5/MT	 is	

limited.		

Previous	studies	in	human	psychophysics	about	speed	discrimination	show	that	

humans	can	discriminate	even	small	differences	in	speed	when	the	speed	is	between	4-

32	 deg/s	 (Beauchamp,	 Cox,	 &	 DeYoe,	 1997;	 Orban,	 de	 Wolf,	 &	 Maes,	 1984).	 Speed	

coding	 in	 human	 V5/MT	 using	 an	 adaptation	 paradigm	was	 shown	 by	 fMRI	 findings	

(Lingnau,	 Wall,	 &	 Smith,	 2009)	 and	 application	 of	 TMS	 (transcranial	 magnetic	

stimulation)	 to	 human	 V5/MT	 induced	 deficits	 in	 speed	 perception,	 revealing	 an	
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important	 role	 of	 V5/MT	 in	 speed	 perception	 in	 humans	 (McKeefry,	 Burton,	 Vakrou,	

Barrett,	&	Morland,	2008).	Using	fMRI,	Chawla	and	colleagues	found	that	optimal	speed	

responses	in	human	V5/MT	were	between	7	deg/s	and	30	deg/s	in	one	study	(Chawla,	

Phillips,	 Buechel,	 Edwards,	 &	 Friston,	 1998)	 and	 between	 4	 deg/s	 and	 8	 deg/s	 in	

another	 study	 (Chawla	 et	 al.,	 1999).	 Additionally,	 some	 researchers	 investigated	 how	

other	 image	 features	 effect	 the	 speed	 perception.	 For	 instance,	 in	 both	 humans	 and	

monkeys,	it	has	been	shown	that	changes	in	contrast	result	in	both	altered	perception	of	

speed	 and	 altered	 speed	 tuning,	 more	 specifically	 low-contrast	 causes	 lower	 speed	

perception	 and	 shifts	 in	 neural	 responses	 to	 lower	 speed	 tuning	 and	 firing	 rate	

(Krekelberg,	Boynton,	&	van	Wezel,	2006).			

Some	 previous	 studies	 examined	 speed-dependent	 responses	 also	 in	 another	

motion	responsive	region,	V3A	(Arnoldussen,	Goossens,	&	van	den	Berg,	2011;	Chawla	

et	 al.,	 1999;	Chawla	 et	 al.,	 1998;	McKeefry	 et	 al.,	 2008).	 	 In	macaques,	 almost	 all	V3A	

neurons	 are	 reported	 to	 have	 speed	 sensitivity,	which	 is	 present	 for	 a	wide	 range	 of	

speeds,	even	faster	than	50	deg/s	(Galletti,	Battaglini,	&	Fattori,	1990).	In	human,	fMRI	

results	showed	that	V3A	has	speed	responses	similar	 to	MT,	although	 in	V3A,	optimal	

speed	range	 is	 reported	 to	be	between	4-16	deg/s	 (Chawla	et	al.,	1999;	Chawla	et	al.,	

1998)	 and	 application	 of	 TMS	 to	 V3A	 has	 been	 shown	 to	 impair	 speed	 perception	

(McKeefry	et	al.,	2008).	Particularly,	V3A	is	responsive	to	headcentric	speed	of	motion	

(Arnoldussen	et	al.,	2011).	Apart	from	its	speed	tuning,	human	V3A	is	just	as	sensitive	to	

motion	as	V5+/MT+	(Bartels,	Zeki,	&	Logothetis,	2008;	Tootell	et	al.,	1997).	Importantly	

though,	it	differs	substantially	from	the	human	V5/MT+	complex	in	that	it	is	primarily	

driven	by	real-world	motion,	with	nearly	no	response	to	retinal	motion	per	se	(Fischer,	

Bulthoff,	 Logothetis,	 &	 Bartels,	 2012a).	 Consistent	with	 this,	 in	monkey,	 it	 contains	 a	

large	 fraction	 of	 real-motion	 neurons,	 similar	 to	 MST	 (Galletti	 &	 Battaglini,	 1989;	

Galletti	et	al.,	1990;	Ilg,	Schumann,	&	Thier,	2004).		

All	 prior	 studies	 examining	 speed	 responses	 measured	 joint	 responses	 to	

objective	 and	 retinal	motion,	 since	 participants	 fixated	while	 speed	 of	 the	 (objective)	

background	motion	 varied.	 This	 induced	motion	 on	 the	 retina	 that	 was	 the	 result	 of	

physical	motion	on	the	screen.	However,	during	eye-	and	head-	movements,	the	visual	

system	continuously	compares	retinal	motion	with	efference	copies	of	the	eye,	in	order	

to	estimate	world-centered	motion.	This	 allows	 it	 to	 create	a	 stable	perception	of	 the	
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world	 despite	 retinal	 motion,	 or	 to	 infer	 object-motion	 also	 when	 eye-movements	

reduce	retinal	motion	to	zero.	Previously,	human	visual	areas	V3A	and	V6	were	shown	

to	compensate	for	self-induced	retinal	motion	and	encode	almost	exclusively	objective	

motion	 during	 smooth	 pursuit	 eye	 movements	 (Fischer	 et	 al.,	 2012a).	 To	 a	 weaker	

extent,	 also	CSv	was	 shown	 to	discount	 self-induced	 retinal	motion	 (Fischer,	Bulthoff,	

Logothetis,	&	Bartels,	2012b).	CSv	responds	to	egomotion	related	visual	signals	(Cardin	

&	 Smith,	 2010;	 Fischer	 et	 al.,	 2012b;	Wall	&	 Smith,	 2008),	 heading	 direction	 (Furlan,	

Wann,	&	Smith,	2014),	and	vestibular	signals	(Smith,	Wall,	&	Thilo,	2012).		

V6	 is	 located	 in	 parieto-occipital	 sulcus	 (POS)	 (Pitzalis	 et	 al.,	 2006),	 shows	

retinotopic	 organisation	 both	 in	 humans	 and	macaque	 (Galletti,	 Fattori,	 Gamberini,	&	

Kutz,	1999;	Pitzalis	et	al.,	2006;	Pitzalis	et	al.,	2010)	with	a	stronger	representation	of	

periphery,	 although	 fovea	 is	 also	 represented	 (Pitzalis	 et	 al.,	 2006)	 and	 responds	

preferentially	 to	 wide	 field	 stimulation,	 and	 responds	 to	 ego-motion	 compatible	

coherent	motion	(Cardin	&	Smith,	2010;	Pitzalis	et	al.,	2006;	Pitzalis	et	al.,	2013;	Pitzalis	

et	al.,	2010).	V6,	together	with	V3A,	distinguishes	real	motion	from	self-induced	retinal	

motion	 (Arnoldussen	 et	 al.,	 2011;	 Fischer	 et	 al.,	 2012a).	 Moreover,	 V6	 is	 involved	 in	

processing	 of	 head-centric	 translation	 and	 rotation	 speed	 (Arnoldussen	 et	 al.,	 2011;	

Arnoldussen,	 Goossens,	 &	 van	 den	 Berg,	 2015).	 For	 none	 of	 these	 regions	 speed	

responses	have	been	measured	separately	for	retinal	and	objective	motion.	

Here	we	used	a	pursuit	paradigm	that	allowed	us	to	do	 just	that	(Fischer	et	al.,	

2012a):	participants	fixated	a	disc	that	was	either	stationary	or	moved	along	a	circular	

trajectory	 around	 the	 screen.	 At	 the	 same	 time,	 either	 a	 stationary	 background	 was	

shown	or	one	that	moved	on	the	same	circular	trajectory.	This	2	x	2	factorial	design	led	

to	 four	conditions	 that	allowed	separating	 responses	 to	 retinal	or	objective	motion	 in	

the	 absence	 of	 pursuit-related	 confounds.	 We	 applied	 this	 paradigm	 at	 six	 different	

levels	 of	 speed	 (1,	 2,	 4,	 8,	 16,	 and	 24	 degrees	 per	 second)	 in	 order	 to	 obtain	 speed-

tuning	profiles	 for	 retinal	 and	objective	motion	 for	 separately	 localized	visual	motion	

regions	 V5/MT,	 MST,	 V3A,	 V6	 and	 CSv.	 The	 background	 stimulus	 was	 derived	 from	

Fourier	 scrambles	 of	 natural	 images	 in	 order	 to	 match	 natural	 image	 statistics.	 This	

provides	a	closer	match	to	the	spatio-temporal	exposure	in	real-life	and	has	been	shown	

to	provide	more	optimal	stimuli	for	the	visual	system	(Kayser,	Kording,	&	Konig,	2004;	

Vinje	&	Gallant,	2000).	Further,	speed	responses	in	MT	were	enhanced	when	the	stimuli	
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had	multiple	spatial	 frequencies	and	 this	was	 thought	 to	be	a	 result	of	natural	 scenes	

containing	 multiple	 spatial	 frequencies	 (Priebe	 et	 al.,	 2003;	 Priebe,	 Lisberger,	 &	

Movshon,	2006).	We	 found	 that	only	 in	V3A,	 the	 slope	of	objective	motion	speed	was	

siginificantly	 higher	 than	 the	 slope	 of	 retinal	 motion.	 Additionally,	 all	 regions	 were	

modulated	by	the	speed	of	both	types	of	motion.		
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5.3. Materials	and	Methods		

Participants	

20	healthy	participants	with	normal	or	corrected	vision	(14	female,	7	male,	4	left	

handed,	 age	 between	 18	 and	 37	 (average:	 26),	 1	 author)	 took	 part	 in	 this	 study.	 All	

participants	 gave	 written	 informed	 consent	 before	 the	 experiment	 and	 were	

compensated	 for	 their	 participation.	 The	 study	 was	 approved	 by	 the	 local	 ethics	

committee	of	the	University	Hospital	of	Tübingen.	

Main	Experiment	

Stimuli	and	Paradigm	

We	 applied	 a	 2	 x	 2	 factorial	 pursuit	 paradigm	 that	 allowed	 us	 to	 measure	

responses	 to	 objective	 and	 retinal	 motion	 separately	 (Fischer	 et	 al.,	 2012a).	 This	

paradigm	was	applied	using	6	different	levels	of	speed	(1,	2,	4,	8,	16,	and	24	degrees	per	

second).	The	 factors	pursuit	 (on/off)	and	objective	planar	motion	(on/off)	 resulted	 in	

the	 following	 4	 conditions:	 fixation	 on	 a	 static	 background,	 fixation	 on	 a	 moving	

background,	pursuit	on	a	static	background,	and	pursuit	on	a	moving	background.	In	the	

last	condition,	the	pursuit	trajectory	was	locked	to	that	of	the	background,	thus	nulling	

retinal	motion.		

The	motion	 trajectory	 of	 the	 background	 and	 pursuit	 followed	 a	 circular	 path	

with	a	radius	of	4	degrees	(1/4th	of	the	screen	height,	with	screen	dimensions	of	22	x	16	

degrees).	 The	 motion	 radius	 was	 chosen	 such	 that	 the	 area	 of	 controlled	 visual	

stimulation	was	maximal:	the	nearest	border	to	the	screen	edge	was	at	all	times	further	

away	than	4	visual	degrees,	leading	to	controlled	visual	stimulation	within	at	least	8	x	8	

visual	degrees	(Fischer	et	al.,	2012a).	 	The	rotation	direction	and	starting	point	of	 the	

fixation	cross	was	randomized	and	counter	balanced	within	each	participant.	Note	that	

the	upper	speed	limit	of	24	deg/s	was	set	following	piloting	by	the	authors	showing	that	

this	speed	could	still	be	reliably	pursued	on	 its	circular	 trajectory,	while	considerably	

higher	speeds	could	not.	

For	the	background,	100	pink	noise	images	were	created	from	100	natural	scene	

images	 using	 Fourier	 phase	 scrambling.	 The	 images	were	 converted	 to	 grayscale	 and	

contrast	 and	 luminance	 were	 matched	 across	 the	 images	 before	 phase	 scrambling.	

Stimuli	were	chosen	randomly	for	each	trial	and	back-projected	with	1024	x	768	pixels	
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resolution	and	120	Hz	refresh	rate.	The	size	of	the	images	was	2048	x	1536	pixels,	with	

737.5	cd/m2	luminance	and	147.5	root-mean-square	(RMS)	contrast.		

Procedure	

The	experiment	was	presented	in	a	block	design	manner;	each	condition	lasted	

12	s,	and	was	preceded	by	1	s	fixation	and	followed	by	2	s	fixation,	leading	to	an	inter-

trial	 interval	 of	 15	 s.	 The	 fixations	 at	 the	 beginning	 and	 end	 of	 each	 trials	 were	

presented	in	order	to	minimize	confounds	related	to	eye	movements	at	the	beginning	of	

each	 trial	 since	 the	 location	 of	 starting	 point	 in	 each	 trial	 was	 randomized.	 Each	

condition	was	shown	4	times	per	run,	yielding	a	total	number	of	17	blocks	including	one	

initial	 additional	 block	 for	 counterbalancing.	 We	 used	 back-matched	 pseudorandom	

sequences	 (Brooks,	2012)	 such	 that	 each	 condition	was	preceded	equally	often	by	all	

conditions.	The	 initial	block	 inserted	for	counterbalancing	was	discarded	from	further	

analyses.	Each	run	started	with	1.74	s	grey	screen	with	fixation	and	ended	with	10	s	of	

grey	 screen	 with	 fixation.	 There	 was	 a	 grey	 fixation	 disk	 (width:	 0.74	 degrees,	

luminance:	 1153.7	 cd/m2)	with	 a	 fixation	 task	 (see	 below)	 at	 all	 times.	 The	 order	 of	

runs	was	also	pseudorandomized	for	half	of	the	participants	and	the	flipped	version	of	

this	run	sequence	was	used	for	the	other	half.		

In	 total	 six	 runs	were	acquired	 from	each	participant,	 each	 run	 containing	one	

speed	 level.	 The	 sequence	 of	 speed	 levels	 was	 random	 and	 counterbalanced	 across	

participants.	

The	 main	 experiment	 was	 presented	 using	 Psychtoolbox	 3.0	 (Brainard,	 1997;	

Kleiner	et	al.,	2007)	and	Matlab	7.10.0	(MATLAB,	2010).	

Motion	Localizer	

In	 order	 to	 localize	 V5/MT,	 MST,	 CSv,	 V3A	 and	 V6,	 we	 used	 an	 independent	

motion	 localizer	 that	 was	 previously	 described	 (Fischer	 et	 al.,	 2012a,	 2012b).	 It	

consisted	of	7	conditions	presented	12	s	each	in	7	counterbalanced	repetitions:	3D	full	

field	 motion	 (coherent	 expanding/contracting	 motion),	 random	 motion	 (with	

trajectories	matched	to	3D	motion),	right	and	left	hemifield	3D	full	field	motion	(left	or	

right	 2/5th	 of	 the	 screen),	 2D	 planar	motion	with	 synched	 pursuit,	 static	 background	

with	pursuit,	and	static	baseline.	In	each	condition	except	baseline,	random	patterns	of	

black	and	white	dots	on	a	grey	background	were	used	as	stimuli.	The	baseline	consisted	
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of	blank	grey	screen.	As	in	the	main	experiment,	there	was	a	gray	fixation	disk	(width:	

0.74	 degrees)	 with	 the	 fixation	 task	 (see	 below).	 The	 stimuli	 were	 presented	 using	

Cogent	 2000	 developed	 by	 the	 Cogent	 2000	 team	 at	 the	 FIL	 and	 the	 ICN	 and	 Cogent	

Graphics	developed	by	John	Romaya	at	the	LON	at	the	Wellcome	Department	of	Imaging	

Neuroscience	 (http://www.vislab.ucl.ac.uk/	 cogent_graphics.php)	 and	 Matlab	 7.10.0	

(MATLAB,	2010).	

Region	of	interest	(ROI)	definitions	

ROIs	were	 defined	 using	 the	MarsBar	 toolbox	 as	 follows:	MST	was	 defined	 as	

ipsilateral	 response	 within	 the	 V5+/MT+	 complex	 using	 hemifield	 motion	 versus	

baseline	 contrast,	 V5/MT	 was	 defined	 as	 contralateral	 response	 during	 the	 same	

contrast	 excluding	MST	 voxels.	 V6	 and	 CSv	were	 localized	 using	 3D	 coherent	motion	

versus	random	motion.	V3A	was	localized	using	2D	lateral	motion	with	pursuit	versus	

smooth	pursuit	with	static	background.	For	each	participant,	each	region	was	localized	

using	 an	 individual	 p-value,	 and	when	ROIs	 could	 not	 reliably	 be	 detected	 it	was	 not	

defined	at	all	(Fox,	Iaria,	&	Barton,	2009;	Murray	&	Wojciulik,	2004).	

Fixation	Task	

In	order	to	balance	attention	across	conditions,	participants	were	required	to	do	

a	 1-back	 character-matching	 task,	 which	 was	 a	 randomly	 presented	 sequence	 of	

alphabetical	 characters	 displayed	 one	 at	 a	 time	 on	 the	 fixation	 disk.	 There	 was	 a	

repeating	character	between	every	3	to	8	character	presentations,	which	were	reported	

by	participants	via	button	press.	The	timing	of	these	button	presses	was	included	in	the	

GLM	analysis	as	a	regressor.		

Image	Acquisition	

Data	were	acquired	with	a	Siemens	Magnetom	PRISMA	3	Tesla	scanner	using	a	

64-channel	 phased-array	 head	 coil	 (Siemens,	 Erlangen,	 Germany).	 A	 gradient	 echo	

sequence	 consisting	 of	 T2*	weighted	 images	with	 the	 following	parameters	was	used	

for	 functional	 scans:	 	 TR	 =	 0.87	 s,	 TE	 =	 30	 ms,	 flip	 angle	 =	 57°,	 Generalized	

Autocalibrating	 Partially	 Parallel	 Acquisitions	 (GRAPPA)	 g-factor	=	2,	 multi-band	

factor	=	4,	voxel	size	=	2	x	2	x	2	mm3.	56	slices	were	acquired	in	an	interleaved	order.		

T1	weighted	anatomical	images	were	acquired	with	a	resolution	of	1	x	1	x	1	mm3.	The	



	

 124 

first	2	 functional	volumes	of	each	run	were	discarded	for	T1	equilibration.	 	Field	map	

images	were	also	acquired	in	order	to	correct	for	B0	field	distortions.		

		 	

 
 

Figure	 1:	 Four	 stimulus	 conditions	 presented	 in	 the	main	 experiment,	which	were	 produced	
from	a	2	x	2	factorial	design	with	factors	“pursuit”	(on/off)	and	“objective	motion”	(on/off).		The	
gray	fixation	disk	with	a	one-back	character-matching	task	was	present	at	all	times.	Motion	was	
planar	 on	 a	 circular	 trajectory.	 Movement	 of	 the	 fixation	 task	 resulted	 in	 pursuit	 whereas	
movement	 of	 the	 background	 on	 the	 same	 trajectory	 produced	 objective	 motion.	 The	 four	
conditions	 were	 as	 follows:	 +/+:	 moving	 fixation	 task	 with	 moving	 background	 (both	
trajectories	were	locked),	-/+:	static	fixation	task	with	moving	background,	+/-:	moving	fixation	
task	with	static	background	and	-/-:	both	fixation	task	and	background	are	static.		

	

FMRI	Data	Preprocessing	

Data	were	 analysed	using	 SPM8	 (www.fil.ion.ucl.ac.uk/spm/)	 and	MATLAB	8.4	

(2014b).	Preprocessing	steps	were	as	follows:	the	functional	images	were	realigned	and	

the	anatomical	image	was	coregistered	to	mean	functional	image.	The	anatomical	image	

was	also	normalized	to	MNI	space.	Functional	images	were	smoothed	with	a	4	mm	full-

width	at	half	maximum	Gaussian	kernel.		
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Statistical	Analysis	

After	 preprocessing,	 each	 run	 of	 each	participant	 (corresponding	 to	 one	 speed	

level)	 was	 analysed	 separately	 using	 the	 general	 linear	 model	 (GLM)	 approach.	

Regressors	included	one	regressor	for	each	of	the	four	conditions,	and	one	regressor	for	

button	presses.	 In	 addition,	 the	 following	 regressors	of	no	 interest	were	 included:	 six	

motion	 realignment	 regressors,	 and	 an	 additional	 regressor	 of	 global	 mean	 signal,	

which	was	orthogonalized	with	respect	to	the	conditions	of	interest	in	the	design	matrix	

(Desjardins,	Kiehl,	&	Liddle,	2001;	Van	Dijk	et	al.,	2010).	High	pass	filtering	with	128	s	

cut-off	value	was	applied.		

For	each	participant	and	each	ROI,	beta	values	were	extracted	for	each	condition	

and	each	speed	level.	For	each	participant,	the	resulting	24	(4	x	6)	beta-values	per	ROI	

were	 z-normalized	 prior	 to	 contrast	 calculations	 and	 random	 effects	 ANOVA	

calculations:	the	mean	was	subtracted,	followed	by	division	by	the	standard	deviation.	

This	yielded	24	z-values	for	each	participant	and	each	ROI.		

For	each	of	the	repeated	measures	ANOVAs	conducted,	Mauchly's	sphericity	test	

was	applied	and	 in	 case	of	 violation	of	 sphericity,	Greenhouse-Geisser	 correction	was	

used.		

Statistical	Contrasts	

‘Objective	 motion’	 was	 defined	 as	 the	 contrast	 of	 both	 conditions	 containing	

background	motion	versus	both	that	did	not,	i.e.	((-/+)	plus	(+/+))	versus	((+/-)	plus	(-

/-)).	Note	that	pursuit	was	matched	(equally	present	on	either	side).		

‘Retinal	motion’	was	defined	as	both	conditions	containing	retinal	motion	versus	

both	that	did	not	((-/+)	plus	(+/-))	versus	((+/+)	plus	(-/-)).	Again	pursuit	was	matched.		

‘Motion	diff’:	 the	difference	between	objective	and	retinal	motion	boils	down	to	

((+/+)	versus	(+/-))	that	again	has	matched	pursuit	conditions.	This	difference	reliably	

and	near-exclusively	activates	V3A	in	every	participant	(Fischer	et	al.,	2012a).		

‘Motion	sum’	is	the	sum	of	objective	and	retinal	motion	((-/+)	versus	(-/-)).	This	

equals	 moving	 versus	 static	 background	 during	 fixation,	 and	 corresponds	 to	 the	

contrast	 used	 by	 previous	 motion	 studies,	 including	 those	 on	 speed	 processing.	 The	

responses	to	this	contrast	were	calculated	only	for	visualization	and	as	a	reference.	
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‘Pursuit’	was	defined	as	((+/+)	plus	(+/-))	versus	((-/+)	plus	(-/-)).	This	contrast	

contains	 several	 poorly	 controlled	 contributing	 factors,	 i.e.	 in	 addition	 to	 pursuit-

controlling	 neural	 mechanisms	 also	 peripheral	 retinal	 motion	 beyond	 the	 projection	

screen	 that	 is	 not	 controlled,	 and	 a	 higher	 fixational	 error	 compared	 to	 non-pursuit	

(Fischer	et	al.,	2012a).	This	contrast	was	therefore	not	analysed	further,	but	included	in	

illustrations	as	a	reference.		

The	 above	 contrasts	 were	 calculated	 for	 each	 speed	 separately,	 using	 the	 z-

normalized	beta-values.		

Eye	Tracking	

An	infrared	camera	based	eye	tracker	(Eye-Trac	6;	Applied	Science	Laboratories)	

was	 used	 in	 order	 to	 record	 eye	 position	 during	 the	 experiment	 together	 with	

Viewpoint	Eyetracker	software	(Arrington	Research,	Scottsdale,	USA)	with	a	sampling	

rate	of	60	Hz.	Eye	tracking	data	was	analysed	by	the	following	steps:	preprocessing	was	

done	by	removing	blinks	and	smoothing	with	a	200	ms	running	average	window.		The	

data	was	grouped	according	to	the	conditions.	Root	mean	square	error	(RMSE)	of	eye	

position	 relative	 to	 the	 fixation	 disk	 was	 used	 to	 calculate	 fixation	 accuracy.	 This	

calculation	was	 done	 separately	 for	 each	 condition,	 participant	 and	 speed.	 The	 same	

tests	as	conducted	for	the	ROI	data	were	applied	to	eye-tracking	data.	
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5.4. Results		

We	explored	the	responses	to	6	different	levels	of	speed,	separately	for	objective	

motion	and	retinal	motion,	in	independently	localized	motion	responsive	ROIs	V3A,	V6,	

V5/MT,	MST	and	CSv.		

For	reference,	Figure	2	plots	values	for	the	sum	of	objective	and	retinal	motion.	

The	 sum	 (i.e.	 moving	 versus	 static	 background	 during	 fixation)	 corresponds	 to	 the	

contrast	used	 in	previous	studies	on	motion	and	speed	processing	(e.g.	 (Chawla	et	al.,	

1999;	Chawla	et	al.,	1998).	

	

	
	
Figure	 2.	 Contrast	 for	 ‘motion	 sum’.	 (-/+)	 vs.	 (-/-),	 as	 a	 function	 of	 speed.	 Here,	 values	 for	
moving	 background	 vs.	 static	 during	 fixation	 as	 a	 function	 of	 speed	 are	 shown	 for	 each	 ROI	
separately.		This	contrast	would	result	in	the	sum	of	objective	and	retinal	motion	and	was	used	
in	previous	studies.	Note	that	all	data	are	z-normalized.	Error	bars	show	standard	error	of	mean	
(SEM).		
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Figure	3	plots	contrast	values	for	objective	and	retinal	motion	(see	methods	for	

contrast	 definitions)	 as	 a	 function	 of	 speed.	 Contrast	 values	were	 calculated	 for	 each	

speed	 separately	 using	 z-normalized	 beta-values	 (see	 methods).	 The	 difference	

between	objective	and	retinal	motion,	i.e.	preference	for	objective	over	retinal	motion,	

has	previously	been	shown	to	strongly	activate	V3A	(Fischer	et	al.,	2012a).		

	

	
	

Figure	3.	Contrast	values	for	objective	and	retinal	motion	as	a	function	of	speed.	Note	that	all	
data	are	z-normalized.	Error	bars	show	standard	error	of	mean	(SEM).		

	

The	 results	 plotted	 in	 Figure	 3	 suggest	 three	 main	 findings.	 First,	 all	 regions	

tended	to	increase	their	responses	with	increasing	speeds	for	both,	objective	and	retinal	

motion.	Second,	V3A,	V6	and	to	a	lesser	extent	also	V5/MT	and	MST	had	a	higher	overall	
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response	 (i.e.	 offset)	 of	 objective	 relative	 to	 retinal	 motion.	 Third,	 the	 slope	 of	 the	

objective	and	retinal	speed	respons	differed	in	V3A,	with	a	steeper	slope	for	objective	

motion.		

In	order	to	quantify	these	raw	observations,	we	modelled	each	response	using	a	

simple	linear	fit	to	obtain	a	measure	for	the	slope	(b)	and	one	for	the	offset	(a),	i.e.	y	=	

b*x	+a,	with	y	being	the	normalized	contrast	values,	and	x	being	the	speed	and	 it	was	

scaled	 between	 -0.5	 and	 +0.5.	 Previous	 single-unit	 recording	 studies	 for	 V5/MT	

reported	a	 logarithmic	speed	tuning	 in	motion	responsive	regions	(Nover	et	al.,	2005;	

Priebe	 et	 al.,	 2003),	 and,	 compatible	with	 those,	 prior	 fMRI	 speed	 tuning	 studies	 also	

found	log-like	tuning	in	the	speed	range	tested	here	(Chawla	et	al.,	1999).	

We	 hence	 directly	 tested	 two	 regression	 models:	 one	 modelled	 linear	 speed	

levels	(x-axis:	1,	2,	4,	8,	16,	24	deg/s)	and	the	other	logarithmic	scaling	of	speed	(x-axis:	

0,	1,	2,	3,	4,	4.585).	We	 then	 tested	which	one	provided	a	better	 fit	by	calculating	 the	

correlation	 coefficient	 for	 each,	 and	 comparing	 them	 in	paired	 t-tests	 (after	 Fischer-Z	

transforming	r-values	to	z-values)	for	each	ROI	across	participants	(Table	1).		

	

Table	1:	Results	of	t	tests	comparing	the	fitness	of	regression	models	between	linear	scale	and	
logarithmic	 scale	 of	 speed.	 For	 objective	 motion,	 retinal	 motion	 and	 pursuit,	 separately,	 we	
fitted	regression	models	using	either	linear	scale	(1,	2,	4,	8,	16,	24	deg/s)	or	logarithmic	scale	(0,	
1,	 2,	 3,	 4,	 4.585	 deg/s)	 for	 speed.	 Next,	 for	 each	 ROI	 and	 motion	 type,	 we	 compared	 the	
correlation	coefficients	using	t	tests.	P	values	that	are	significant	after	Bonferroni	correction	are	
shown	in	bold.		

p values CSV V3A V5/MT MST V6 

objective 
0.77 

(t(37) = -0.3) 

0.328 

(t(37) = -1) 

0.157 

(t(39) = -1.4) 

0.155 

(t(37) = -1.5) 

0.189 

(t(37) = -1.3) 

retinal 
0.322 

(t(37) =1.) 

0.823 

(t(37) = -0.23) 

0.964 

(t(39) = -0.05) 

0.984 

(t(37) = -0.02) 

0.00056 

(t(37) = 3.8) 

pursuit 
0.77 

(t(37) = 0.3) 

0.027 

(t(37) = 2.3) 

0.326 

(t(39) = 1) 

0.525 

(t(37) = 0.6) 

0.954 

(t(37) = 0.06) 

	

After	 applying	 Bonferroni	 correction	 for	 15	 comparisons,	 the	 only	 significant	

result	was	for	V6,	showing	that	retinal	motion	was	fitted	better	by	logarithmic	scaling.	
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Judging	from	the	low	t-values	for	all	other	tests,	there	was	no	clear	preference	for	either	

type	of	scaling,	even	though	objective	motion	values	tended	towards	linear	scaling	for	

all	ROIs.	We	used	logarithmic	scaling	of	speed	for	the	rest	of	the	analysis.		

Next,	we	 tested	 regression	 slopes	 for	 each	motion	 type	 and	 every	 ROI	 against	

zero,	 and	 compared	 regression	 slopes	 between	 objective	 and	 retinal	motion	 for	 each	

ROI	using	paired	t-tests.	Independently	of	this,	we	also	tested	the	mean	signal	(offset)	in	

the	same	way.	Figure	4A	shows	the	regression	slopes	for	objective	and	retinal	motion	

for	all	ROIs,	figure	4B	mean	signals.		All	t-test	results	were	corrected	for	15	comparisons	

using	Bonferroni-Holm	correction.	As	shown	in	table	2,	 the	slope	for	objective	motion	

was	 significantly	 different	 than	 zero	 for	 all,	 whereas	 for	 retinal	 motion,	 it	 was	 only	

significant	 for	V5/MT	and	but	 not	 for	 or	V6.	 The	 comparison	 of	 objective	 and	 retinal	

motion	 regression	 slopes	 was	 only	 significant	 for	 V3A.	 As	 shown	 in	 table	 3,	 mean	

responses	to	objective	and	retinal	motion	were	significant	for	all	ROIs	and	V3A,	V5/MT	

and	V6	had	significantly	higher	mean	responses	to	objective	motion	than	retinal	motion.		

	

Table	2.	Paired	t-test	results	for	slopes	

p values CSV V3A V5/MT MST V6 

Objective slope 
0.0001 

(t(37)=4.33) 

0.3 * 10-9 

(t(37)=8.38) 

0.2 * 10-6 

(t(39)=6.26) 

0.2 * 10-5 

(t(37)=5.59) 

0.2 * 10-4 

(t(37)=4.87) 

Retinal slope 
0.005 

(t(37)=2.95) 

0.2 * 10-4 

(t(37)=4.87) 

0.7 * 10-7 

(t(39)=6.61) 

0.2 * 10-4 

(t(37)=4.93) 

0.004 

(t(37)=3.03) 

Objective slope vs. 

retinal slope 

0.59 

(t(37)=0.54) 

0.0009 

(t(37)=3.58) 

0.24 

(t(39)=-1.19) 

0.99 

(t(37)=-0.001) 

0.4 

(t(37)=0.85) 
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Figure	 4:	Regression	slopes	and	mean	signal	 for	objective	and	retinal	motion.	 (A)	Regression	
slopes	 calculated	 for	 objective	 and	 retinal	 motion,	 for	 each	 ROI	 separately.	 	 Every	 ROI	 was	
modulated	by	both	objective	motion	 and	 retinal	motion	 speed.	Only	 in	V3A,	 objective	motion	
speed	 slope	was	 significantly	 higher	 than	 the	 slope	 of	 retinal	motion	 speed.	 	 (B)	Mean	 signal	
(offset)	 for	objective	and	retinal	motion.	 	For	every	ROI,	 the	mean	objective	motion	and	mean	
retinal	motion	was	significantly	greater	than	zero	and	mean	objective	motion	was	significantly	
higher	 than	mean	 retinal	motion.	Note	 that	 all	data	are	 z-normalized.	 	 	 **	p<0.001	 ,	 *	p<0.05,	
Bonferroni-Holm	corrected.	Error	bars	show	standard	error	of	mean	(SEM).		
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Table	3.	Paired	t-test	results	for	mean	responses	

p values CSV V3A V5/MT MST V6 

Mean 
objective 

0.1 * 10-6 

(t(37)=6.47) 

0.3 * 10-15  

(t(37)=13.51) 

0.9 * 10-18 

(t(39)=16.05) 

0.4 * 10-13 

(t(37)=11.53) 

0.9 * 10-10 

(t(37)=8.76) 

Mean retinal 
0.5 * 10-5 

(t(37)=5.32) 

0.3 * 10-6 

(t(37)=6.16) 

0.2 * 10-14 

(t(39)=12.69) 

0.4 * 10-12 

t(37)=10.67) 

0.4 * 10-5 

(t(37)=5.36) 

Mean 
objective vs 
mean retinal 

0.01 

(t(37)=2.71) 

0.2 * 10-11 

(t(37)=10.01) 

0.1 * 10-4 

(t(39)=5.09) 

p=0.04 

(t(37)=2.13) 

0.7 * 10-7 

(t(37)=6.64) 

	

Behavioral	Data	

During	the	experiment,	participants	were	required	to	perform	a	character	back-

matching	task	at	all	times.		Average	rate	of	correct	responses	was	0.83	±	0.04	(mean	±	

std)	 and	 mean	 response	 time	 was	 0.52	 ±	 0.12	 s	 (mean	 ±	 std	 Similar	 to	 fMRI	 data	

analysis,	for	each	participant,	we	first	calculated	correct	response	rate	during	objective	

motion	 and	 retinal	motion	 separately.	 Next,	 for	 each	 participant,	we	 fit	 two	 separate	

GLMs	 to	 the	 correct	 response	data	with	2	 regressors	 each;	one	 for	 the	 speed	and	 the	

other	being	all	ones.	The	speed	regressor	was	first	calculated	in	logarithmic	scale	(0,	1,	

2,	3,	4,	4.585	deg/s)	and	then	scaled	between	-0.5	and	+0.5.		This	way	the	first	regressor	

modeled	the	slope	while	the	second	one	was	modeling	for	the	mean	correct	response.		

For	 each	 participant,	 we	 calculated	 slope	 of	 correct	 responses	 during	 objective	 and	

retinal	motion	speeds	separately.	

Using	paired	t-tests	we	tested	the	correct	response	rate	slopes	during	objective	

and	 retinal	 motion.	 We	 also	 did	 additional	 t-tests	 to	 compare	 objective	 and	 retinal	

motion	slopes.		None	of	the	test	results	reached	significance	(objective	motion:	t	(19)	=	

1.41,	p	=	0.176;	retinal:	t	(19)	=	0.08,	p	=	0.936;	objective	vs.	retinal:	t	(19)	=		0.54,	p	=	

0.594).	 	 The	 slopes	 for	 task	 responses	 during	 objective	 and	 retinal	motion	 speed	 are	

shown	in	figure	5A.		
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Figure	 5.	 Regression	 slopes	 for	 behavioural	 and	 eye	 tracking	 data.	 (A)	 Regression	 slopes	
calculated	for	correct	task	responses	during	objective	motion	speed	contrast	and	retinal	motion	
speed	 contrast	 separately.	 There	 is	 no	 significant	 effect	 of	 speed	 during	 retinal	 and	 objective	
motion	 and	 there	 is	 no	 significant	 difference	 between	 task	performance	during	 objective	 and	
retinal	motion	speed.	(B)	Regression	slopes	calculated	for	RMSE	of	eye	position	relative	to	the	
fixation	disk	during	objective	motion	speed	and	retinal	motion	contrast	separately.	Here,	there	
is	 no	 significant	 effect	 of	 objective	 motion	 speed	 or	 retinal	 motion	 speed	 on	 RMSE	 of	 eye	
position	and	 there	 is	no	 significant	difference	between	objective	 and	 retinal	motion	 speed	on	
RMSE	of	eye	position.	Error	bars	show	standard	error	of	mean	(SEM).	

	

Eye	Tracking	Data	

We	collected	eye-tracking	data	for	13	of	the	20	participants.	After	preprocessing	

of	the	data,	we	calculated	RMSE	of	eye	position	relative	to	the	fixation	disk	and	used	this	

for	 comparing	 fixation	 accuracy	 across	 conditions	 and	 different	 levels	 of	 speed.	 The	

mean	RMSE	±	SEM	across	participants	for	each	speed	and	condition	is	shown	in	table	4.		

	
Table	4:	RMSE	of	eye	position	for	each	condition	and	speed..	Values	illustrate	mean	±	standard	
error	of	mean	(SEM)	

Conditions 1 deg/s 2 deg/s 4 deg/s 8 deg/s 16 deg/s 24 deg/s 

(+/+) 2.24 ± 0.30 2.02±0.21 2.13±0.21 2.44±0.29 2.83±0.19 3.65±0.15 

(-/+) 1.35 ± 0.21 1.57±0.18 1.57±0.24 1.28±0.22 1.43±0.25 1.49±0.19 

(+/-) 2.01 ± 0.22 2.26±0.25 2.28±0.27 2.25±0.21 2.86±0.20 3.56±0.10 

(-/-) 1.75 ± 0.31 1.31±0.18 1.66±0.25 1.23±0.18 1.57±0.29 1.44±0.22 
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For	each	participant,	using	RMSE	of	eye	position,	we	calculated	regression	slopes	

for	objective	and	retinal	motion	speed	separately.	We	calculated	RMSE	of	eye	position	

during	 objective	 and	 retinal	 motion	 for	 each	 participant	 separately	 and	 fit	 GLMs	 to	

calculate	slopes,	similar	to	fMRI	and	behavioral	data	analyses.		

Next,	we	did	paired	t	tests	to	test	the	significance	of	objective	and	retinal	motion	

slopes	as	well	as	to	compare	objective	and	retinal	motion	slopes.	None	of	t	tests	yielded	

a	 significant	 result	 (objective	motion:	 t	 (12)	=	1.13,	 p	=	0.28;	 retinal	motion:	 t	 (12)	=	

0.18,	p	=	0.859;	objective	vs.	retinal	motion:	t	(12)	=	0.56,	p	=	0.589).		The	slopes	for	eye	

position	during	objective	and	retinal	motion	are	shown	in	figure	5B.		
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5.5. Discussion		

Many	 motion	 processing	 regions	 contain	 neurons	 that	 differentiate	 between	

world-centered	 (objective)	 and	 eye-centered	 (retinal)	 motion	 (Dicke,	 Chakraborty,	 &	

Thier,	2008;	Erickson	&	Thier,	1991;	Galletti	et	al.,	1990;	Ilg	et	al.,	2004;	Zhang,	Heuer,	&	

Britten,	2004).	Correspondingly,	recent	fMRI	studies	showed	that	net	BOLD	responses	

in	human	motion	regions	can	vary	strongly	by	their	preferences	to	both	types	of	motion	

(Arnoldussen	 et	 al.,	 2011;	 Fischer	 et	 al.,	 2012a).	 Speed	 dependency	 of	 either	 type	 of	

motion	has	never	been	examined	before.	Prior	speed	studies	(that	measured	that	sum	of	

both	motion	types)	are	over	15	years	old,	used	only	3	participants,	and	no	distraction	

task,	 and	may	 contain	 attention-speed	 interactions,	 and	 potentially	 low-level	motion-

streak	 effects	 due	 to	 older	 projection	 technology	 (Chawla	 et	 al.,	 1999;	 Chawla	 et	 al.,	

1998).	Finally,	speed	tuning	is	entirely	unknown	for	several	regions	that	only	recently	

came	into	the	spotlight	of	human	fMRI	research,	such	as	CSv	and	V6.		

Hence,	in	this	study,	we	re-addressed	the	question	of	speed	dependent	responses	

across	independently	localized	visual	motion	areas	V3A,	V6,	V5/MT,	MST	and	CSv,	in	20	

participants.	 We	 used	 stimuli	 with	 natural	 image	 statistics	 in	 order	 to	 stimulate	 the	

motion	 system	with	 stimulus	properties	 it	 evolved	 for.	 In	addition,	we	used	a	pursuit	

paradigm	 to	 address	 this	 question	 that	 enabled	 us	 to	 separate	 objective	 and	 retinal	

motion	 while	 matching	 eye	 movements	 across	 both	 types	 of	 motion	 (Fischer	 et	 al.,	

2012a).	 	 Finally,	 we	 used	 a	 projector	 with	 of	 120	 Hz	 refresh	 rate	 that	 had	 been	

specifically	selected	for	low	motion-streak	effects.	

We	 found	 that	 all	 regions	 increased	 responses	 monotonically	 as	 a	 function	 of	

speeds	 for	 both,	 retinal	 and	 objective	 motion,	 for	 speeds	 between	 1-24	 deg/s.	 In	

contrast	 to	prior	 fMRI	 studies,	we	did	not	observe	an	 inversed	 ‘u’	 shape	 response	 for	

either	type	of	motion.	This	was	most	likely	due	to	our	upper	limit	of	24	deg/s,	whereas	

electrophysiology	 studies	 show	 that	 in	many	motion	 regions	 optimal	 speed	 tuning	 is	

between	32	deg/s	or	far	beyond	(see	below).	We	were	constrained	here	to	24	deg/s,	as	

beyond	this	reliable	pursuit	performance	would	have	been	difficult	to	achieve.	

The	 responses	 in	 all	 regions	were	 fit	 well	 using	 either	 a	 linear	 or	 logarithmic	

speed-tuning	 function.	 The	 slopes	 of	 the	 speed-response	 functions	 did	 not	 differ	

between	objective	and	retinal	motion	in	all	ROIs,	except	for	V3A.	V3A	stood	out	in	that	

its	objective	motion	slope	was	significantly	higher	than	that	for	retinal	motion.	In	V3A,	
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also	 the	 mean	 response	 to	 objective	 motion	 was	 by	 far	 higher	 than	 that	 to	 retinal	

motion,	with	a	significant	difference	also	being	present	in	V6,	V5/MT,	and	MST	and	CSv,	

in	descending	order.		

One	 could	 argue	 that	 the	 speed	 responses	 here	 could	 have	 resulted	 from	 eye	

movement	 related	 biases	 between	 conditions.	 It	 is	 hence	 important	 to	 note	 that	 for	

both,	objective	and	retinal	motion,	pursuit-versus-non-pursuit	conditions	were	entirely	

matched	 and	 cancelled	 out.	 Moreover,	 our	 eye	 tracking	 and	 behavioral	 data	 results	

show	no	confound;	there	were	no	effects	of	speed	during	objective	or	retinal	motion.		

To	 our	 knowledge	 this	 is	 the	 first	 systematic	 study	 of	 speed	 tuning	 conducted	

using	 modern	 imaging	 standards,	 eye-tracking,	 a	 demanding	 attention	 task,	 and	

including	 human	 motion	 regions	 V6	 and	 CSv.	 In	 addition,	 it	 is	 the	 first	 to	 segregate	

objective	and	retinal	motion	speed	tuning.		

Speed	Encoding	in	V5/MT	and	MST	

In	this	study,	V5/MT	and	MST	showed	significant	speed	tuning	to	both	objective	

and	retinal	motion.	Moreover,	neither	V5/MT	nor	MST	seemed	to	differentiate	between	

speed	of	objective	motion	and	speed	of	retinal	motion	in	terms	of	response	slopes,	but	

both	regions	had	marginally	higher	overall	responses	to	objective	motion.		

As	 shown	 by	 single	 neuron	 recordings	 and	 lesion	 studies,	 motion	 responsive	

regions	V5/MT	has	a	role	in	speed	perception	and	processing	of	speed	related	motion	

signals	as	most	MT	neurons	are	speed	responsive	(Dursteler	&	Wurtz,	1988;	Krekelberg	

et	al.,	2006;	Liu	&	Newsome,	2005;	Maunsell	&	Van	Essen,	1983b;	Newsome	et	al.,	1985;	

Orban,	 Saunders,	 et	 al.,	 1995;	 Pasternak	 &	 Merigan,	 1994;	 Perrone	 &	 Thiele,	 2001;	

Yamasaki	 &	 Wurtz,	 1991).	 Moreover,	 different	 studies	 reported	 different	 preferred	

range	 of	 speed	 in	 monkey	 V5/MT	 neurons,	 for	 instance	 between	 2	 and	 256	 deg/s	

(Maunsell	&	Van	Essen,	1983b)	or	5-250	deg/s	 (Rodman	&	Albright,	 1987)	while	 the	

optimal	 speed	 is	 shown	 to	 be	 around	 32	 deg/s	 in	 many	 studies	 (Cheng,	 Hasegawa,	

Saleem,	 &	 Tanaka,	 1994;	 Mikami,	 Newsome,	 &	 Wurtz,	 1986;	 Newsome,	 Mikami,	 &	

Wurtz,	1986).	Our	results	therefore	fit	to	the	previous	findings	since	we	do	not	see	any	

optimal	range	of	speed	and	only	observe	monotonic	increase	in	speed	responses	when	

tested	between	1	 to	24	deg/s.	Testing	higher	speed	ranges	might	provide	 the	optimal	

speed	range	in	human.		
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Similarly,	 single	 neuron	 studies	 in	 monkey	 MST	 also	 showed	 speed	 tuning	 in	

these	 neurons	 (Duffy	 &	 Wurtz,	 1997).	 These	 authors	 tested	 speed	 tuning	 of	 MST	

neurons	for	radial	and	circular	motion	types	and	found	that	in	about	2/3rd	of	the	tested	

neurons,	responses	were	modulated	by	speed	when	tested	for	speed	range	between	10-

80	deg/s	(Duffy	&	Wurtz,	1997).		Previous	studies	reported	that	MST	neurons	preferred	

high	 stimulus	 speeds	both	during	 laminar	motion	 and	optic	 flow	 (A.	K.	 Churchland	&	

Lisberger,	 2005;	Duffy	&	Wurtz,	 1997;	Kawano,	 Shidara,	Watanabe,	&	 Yamane,	 1994;	

Orban,	 Lagae,	 Raiguel,	 Xiao,	 &	 Maes,	 1995;	 Tanaka	 &	 Saito,	 1989).	 While	 Orban	 and	

colleagues	 reported	 the	 optimal	 speed	 range	 of	 MST	 neurons	 between	 15-20	 deg/s	

(Orban,	Lagae,	et	al.,	1995),	Duffy	and	colleagues	found	that	approximately	40%	of	the	

neurons	 tested	 showed	 increasing	 response	 profile	 with	 increasing	 speed	 (Duffy	 &	

Wurtz,	1997).	Additionally,	Kawano	and	colleagues	reported	the	optimal	speed	for	MST	

single	neuron	responses	as	160	deg/s	(Kawano	et	al.,	1994).	These	results	reveal	 that	

while	 there	 seems	 to	 be	 no	 consensus	 on	 optimal	 speed	 range	 of	MST	 neurons,	 it	 is	

possible	that	similar	to	the	case	in	V5/MT,	we	also	did	not	reach	optimal	speed	range	in	

MST.	

Single	 neuron	 studies	 showed	 that	MT	 processes	 retinal	 signals	 whereas	MST	

responses	 take	 both	 retinal	 and	 extraretinal	 signals	 into	 account	 (Erickson	 &	 Thier,	

1991;	Galletti	&	Fattori,	2003;	Ilg	&	Thier,	2003).	In	monkey,	a	large	fraction	of	neurons	

in	MSTd	have	been	shown	to	compensate	 for	speed	of	pursuit	during	eye	movements	

whereas	neurons	in	V5/MT	are	generally	more	responsive	to	retinal	motion	(Chukoskie	

&	 Movshon,	 2009;	 Inaba,	 Miura,	 &	 Kawano,	 2011;	 Lee,	 Pesaran,	 &	 Andersen,	 2007;	

Shenoy,	 Crowell,	 &	 Andersen,	 2002).	 For	 instance,	 MSTd	 neurons	 were	 shown	 to	

compensate	for	pursuit	speed	when	tested	for	pursuit	the	speed	of	2.58,	5.05	and	9.22	

deg/s	(Shenoy	et	al.,	2002).	Moreover,	the	same	study	showed	that	MSTd	uses	both	and	

extraretinal	 input	 to	 compensate	 for	 pursuit,	 since	 the	 preferred	 pursuit	 and	 retinal	

motion	directions	are	opposite	of	each	other	(Shenoy	et	al.,	2002).	 	Similarly,	Lee	and	

colleagues	found	that	MSTd	neurons	also	compensate	for	changes	in	translation	speed	

(Lee	et	al.,	2007).		

Perceptual	effects	

The	question	thus	arises	why	here	V5/MT	showed	higher	mean	objective	motion	

compared	 to	 retinal	 motion.	 One	 possible	 account	 may	 have	 to	 do	 with	 perceptual	
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effects,	 which,	 in	 contrast	 to	 spiking	 activity,	 are	 often	 dominantly	 reflected	 in	 fMRI	

signal	 (Bartels,	 Logothetis,	&	Moutoussis,	 2008).	 In	humans,	V5/MT+,	 as	well	 as	V3A,	

was	previously	 shown	 to	have	a	 role	 in	 speed	perception	 (McKeefry	et	 al.,	 2008)	and	

V5/MT+	 was	 shown	 to	 have	 headcentric	 speed	 tuning	 during	 optic	 flow	 stimuli	

(Arnoldussen	 et	 al.,	 2011).	 Also	 previous	 electrophysiology	 studies	 showed	 that	 MT	

responses	 correlate	 with	 speed	 perception	 (Krekelberg	 &	 van	 Wezel,	 2013;	 Liu	 &	

Newsome,	2005).		Additionally,	the	speed	of	background	motion	during	eye	fixation	has	

been	shown	to	be	perceived	higher	than	the	speed	of	retinal	motion	of	smooth	pursuit	

eye	movements	on	a	static	background,	even	though	the	retinal	speed	induced	in	both	

conditions	 are	 exactly	 the	 same	 (Aubert-Fleischl	 effect)	 (Aubert,	 1886;	 Dichgans,	

Körner,	&	Voigt,	1969).	Regarding	this,	it	is	possible	that	in	the	present	study,	the	speed	

during	objective	and	retinal	motion	conditions	were	perceived	differently,	meaning	the	

speed	 during	 (-/+)	 condition	 was	 perceived	 higher	 than	 the	 speed	 during	 (+/-)	

condition.	 Additionally,	 the	 visual	 system	 is	 thought	 to	 be	 more	 tolerable	 to	 retinal	

motion	 in	 the	 opposite	 direction	 of	 the	 pursuit,	 since	 this	 type	 of	 motion	 is	 natural	

during	pursuit	and	could	be	arising	from	the	eye	movements	itself	and	less	tolerable	to	

retinal	 motion	 in	 the	 same	 direction	 as	 pursuit,	 as	 this	 could	 indicate	 ‘real’	 object	

motion	(Lindner,	Schwarz,	&	Ilg,	2001).	This	was	shown	by	previous	studies;	when	brief	

injections	 of	 background	 motion	 was	 introduced	 during	 smooth	 pursuit	 eye	

movements,	it	only	caused	an	increase	in	eye	velocity	when	it	is	in	the	same	direction	as	

pursuit,	but	did	not	cause	any	increase	when	it	 is	 in	opposite	direction	(Lindner	et	al.,	

2001).	Additionally,	V5/MT	and	MST	are	densely	connected	 to	each	other	and	MST	 is	

higher	 in	 the	 visual	 processing	 hierarchy	 than	 V5/MT	 (Boussaoud,	 Ungerleider,	 &	

Desimone,	 1990;	 Maunsell	 &	 Van	 Essen,	 1983a;	 Ungerleider	 &	 Desimone,	 1986).	

Another	 possibility	 is	 that	 feedback	 from	MST	 to	V5/MT	 could	 be	 resulting	 in	 higher	

objective	motion	responses	compared	to	retinal	motion	responses.			

Relation	to	prior	fMRI	studies	

Two	 fMRI	 studies	 showed	 that	when	 combined	objective/retinal	motion	 speed	

was	used	with	the	range	of	speed	between	3.7	and	61.6	degrees	and	between	1	and	32	

degrees,	V5/MT	(and	V3A)	showed	nonlinear	(inverted	U	shape)	speed	responses	and	

their	optimal	speed	range	was	between	7	deg/s	and	30	deg/s	and	between	4	deg/s	and	

8	deg/s	in	two	separate	studies	(Chawla	et	al.,	1999;	Chawla	et	al.,	1998).			
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However,	our	results	disagree	with	the	optimal	speed	ranges	reported	by	Chawla	

and	 colleagues	 (Chawla	 et	 al.,	 1999;	 Chawla	 et	 al.,	 1998).	 According	 to	 their	 reports,	

speed	range	used	in	the	present	study,	which	is	between	1-24	deg/s,	should	be	more	or	

less	 the	optimal	 range	 to	 result	 in	 inverted	U-shape	 speed	 responses,	 similar	 to	 their	

findings.	 	 Although	 some	 previous	 single	 neuron	 studies	 report	 a	 similar	 inverted	 U-

shaped	speed	response,	the	range	of	speeds	reported	in	those	studies	are	much	wider	

and	 the	 for	 the	 majority	 of	 cells,	 optimal	 speed	 is	 considerably	 higher	 than	 those	

reported	by	Chawla	and	colleagues	(Chawla	et	al.,	1999;	Chawla	et	al.,	1998;	Cheng	et	

al.,	1994;	Mikami	et	al.,	1986;	Rodman	&	Albright,	1987).		One	can	think	the	stimuli	used	

as	 one	main	difference.	 	 In	 both	mentioned	 studies,	 Chawla	 and	 colleagues	used	dots	

moving	 radially	 from	 centre	 towards	 the	 edges	 of	 the	 screen	 (optic	 expansion	 flow)	

(Chawla	et	al.,	1999;	Chawla	et	al.,	1998).		However,	they	do	not	report	how	many	dots	

were	implemented	or	whether	new	dots	appeared	at	the	centre	of	the	screen.	Inherent	

to	 any	 expansion	 flow	 display	 is	 that	 dot-appearances,	 typically	 foremost	 near	 the	

centre	of	the	screen,	scale	with	speed.	In	this	case,	the	inverted-U	shape	could	simply	be	

an	artefact	of	temporal	frequency	tuning.	It	is	well	known	that	V5/MT	is	responsive	to	

flickering	 static	 stimuli	 (Malonek,	 Tootell,	 &	 Grinvald,	 1994;	 Tootell	 et	 al.,	 1995).	

Further,	in	a	previous	fMRI	study,	Singh	and	colleagues	(Singh,	Smith,	&	Greenlee,	2000)	

investigated	spatial	and	temporal	frequency	tuning	of	visual	areas	in	human	brain	and	

found	 a	 very	 similar	 inverse-U	 shape	 response	 tuning	 for	 temporal	 frequency.	

Additionally,	Chawla	et	al.	studies	did	not	have	any	attention	task	(apart	from	fixation)	

and	this	could	lead	to	potential	attentional	load	differences	across	speed	(Chawla	et	al.,	

1999;	Chawla	et	al.,	1998).	Previously,	attention	to	speed	was	shown	to	strengthen	the	

responses	in	MT	(Beauchamp	et	al.,	1997).	One	should	also	keep	in	mind	that	mere	data	

quality,	field-strength,	and	standards	for	number	of	participants	(3	participants	vs.	20)	

have	changed	dramatically	(Chawla	et	al.,	1999;	Chawla	et	al.,	1998).			

Speed	Encoding	in	V3A	

It	is	well	known	that	V3A	is	a	part	of	motion	processing	network	(Galletti	et	al.,	

1990;	 Tootell	 et	 al.,	 1997).	 In	 humans,	 V3A	has	 the	 second	highest	motion	 responses	

after	MT	and	motion	responses	 in	human	V3A	are	more	similar	to	that	of	monkey	V3,	

not	V3A	(Tootell	et	al.,	1997).	However,	speed	tuning	of	V3A	is	not	extensively	studied	

for	 different	 types	 of	motion.	 In	 humans,	 attention	 to	 speed	 of	motion	 activated	 V3A	



	

 140 

(Sunaert,	 Van	 Hecke,	 Marchal,	 &	 Orban,	 2000).	 In	 the	 present	 study,	 V3A	 responses	

show	 speed	 tuning	 for	 both	 objective	 and	 retinal	 motion	 types.	 These	 results	 are	 in	

accord	with	previous	 studies	 that	 showed	 that	V3A	have	 a	 crucial	 role	 for	perceiving	

stimulus	 speed	 (McKeefry	 et	 al.,	 2008;	 Pitzalis,	 Strappini,	 De	 Gasperis,	 Bultrini,	 &	 Di	

Russo,	 2012).	 It	 is	 possible	 that	we	 explored	 only	 the	 lower	 end	 of	 the	 speed	 range,	

since	V3A	neurons	 in	macaque	monkey	 are	 shown	 to	 be	 sensitive	 to	 a	wide	 range	 of	

speeds	and	they	are	even	activated	at	speeds	higher	than	50	deg/s	(Galletti	et	al.,	1990).		

Previous	studies	on	single	neuron	responses	showed	that	V3A	neurons	showed	

real-motion	preference	(Galletti	et	al.,	1990)	and	approximately	half	of	the	V3A	neurons	

in	monkey	were	found	to	be	gaze	dependent	(Galletti	&	Battaglini,	1989).	In	this	study,	

V3A	was	 the	 only	 region	 to	 significantly	 differentiate	 between	 the	 speed	 of	 objective	

and	 retinal	 motion.	 Moreover,	 V3A	 prefers	 objective	 motion	 to	 retinal	 motion	 at	 all	

speeds.	 This	 is	 compatible	with	previous	 studies	 about	 real	motion	 responses	 in	V3A	

(Fischer	et	al.,	2012a;	Galletti	&	Fattori,	2003).	Even	during	3D	motion,	V3A	has	been	

shown	to	have	strong	self-	motion	responses	and	encodes	headcentric	speed	of	rotation	

(Arnoldussen	 et	 al.,	 2011,	 2015).	 We	 conclude	 that	 during	 2D	 motion,	 V3A	 is	 speed	

tuned	to	both	objective	and	retinal	motion,	and	it	can	differentiate	between	the	speed	of	

objective	motion	and	retinal	motion.		

Speed	Responses	in	V6	

V6	 is	 a	motion	 responsive	 region	with	 large-field	 responses,	 and	 in	 particular	

responds	 to	 egomotion	 compatible	 motion	 such	 as	 3D	 flow	 (Cardin	 &	 Smith,	 2011;	

Fattori,	Pitzalis,	&	Galletti,	2009;	Pitzalis	et	al.,	2006;	Pitzalis	et	al.,	2013;	Pitzalis	et	al.,	

2010).	V6	neurons	in	macaque	respond	to	a	wide	variety	of	speeds,	reported	between	0	

deg/s	 to	 900	 deg/s	 (Galletti,	 Fattori,	 Battaglini,	 Shipp,	 &	 Zeki,	 1996)	 and	 a	 previous	

study	 reported	 that	 it	 showed	 higher	 responses	 for	 the	 fast	 speed	when	 tested	 for	 3	

deg/s	and	25	deg/s	(Pitzalis	et	al.,	2012).	Further,	Arnoldussen	et	al.	(Arnoldussen	et	al.,	

2011)	 showed	 that	V6,	 together	with	V3A	and	MT+,	 is	 encoding	headcentric	 speed	of	

motion.	We	found	that	V6	showed	speed-tuned	responses	to	objective	motion,	and	to	a	

lesser	extent	to	retinal	motion	and	that	it	did	not	show	differential	responses	between	

objective	and	retinal	motion	speed	tuning.			

Similar	to	V3A,	V6	is	also	responsive	to	real	motion	(Fischer	et	al.,	2012a;	Galletti	

&	 Fattori,	 2003).	 V6	 is	 thought	 to	 be	 encoding	 extrapersonal	 space	 since	majority	 of	
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neurons	in	macaque	V6	are	reported	to	be	eye	position	sensitive	and	some	neurons	are	

reported	to	be	 ‘real-position’	cells	 (Galletti,	Battaglini,	&	Fattori,	1995).	 In	 the	present	

study,	we	used	2D	planar	motion,	whereas	most	of	the	previous	studies	mentioned	here	

used	 3D	 coherent	 motion.	 When	 2D	 planar	 motion	 was	 used,	 V6	 responses	 were	

supressed	 during	 retinal	 motion	 (Fischer	 et	 al.,	 2012a).	 Objective	 motion	 preference	

found	in	V6	in	this	study	is	in	accord	with	egocentric	/	headcentric	motion	preference	of	

V6.	

In	humans,	V6	 is	 shown	 to	prefer	near	 field	 stimuli	 (Quinlan	&	Culham,	2007).	

Together	with	this	and	its	connections	to	V6A	and	other	parietal	regions	that	have	a	role	

in	 grasping	 and	 to	 visual	 cortex	 (Galletti	 et	 al.,	 2001),	V6	 is	 thought	 to	have	 a	 role	 in	

encoding	 the	 movement	 of	 graspable	 objects	 (Galletti	 &	 Fattori,	 2003;	 Galletti	 et	 al.,	

2001).	Being	able	to	differentiate	objective	and	retinal	motion,	as	well	as	preference	for	

high	speeds,	can	both	be	explained	by	the	preference	for	near	visual	field	and	encoding	

of	 graspable	 object	 motion.	 Objects	 that	 are	 closer	 to	 us	 seem	 to	 move	 faster	 than	

objects	that	are	further	away.	Thus,	the	higher	speed	preference	in	V6	is	in	line	with	its	

role	in	encoding	for	graspable	objects	that	are	in	peripersonal	space.		

Speed	Responses	in	CSv	

CSv	is	a	recently	defined	visual	region	in	dorsal	posterior	cingulate	sulcus	(dPCC)	

that	 is	 responsive	 to	 complex	 motion	 and	 it	 is	 specialized	 in	 processing	 self	 motion	

related	 signals	 and	 parsing	 optic	 flow	 (Antal,	 Baudewig,	 Paulus,	 &	 Dechent,	 2008;	

Cardin	&	 Smith,	 2010;	 Fischer	 et	 al.,	 2012b;	Wall	&	 Smith,	 2008).	 Although	 there	 are	

studies	in	macaque	posterior	cingulate	sulcus	showing	visual	responses	(Dean,	Crowley,	

&	Platt,	2004),	 it	 is	not	clear	whether	there	is	a	homologue	of	human	CSv	in	primates.	

Thus,	there	are	not	so	many	electrophysiology	studies	that	are	directly	comparable.		

Previously	 CSv	 has	 been	 shown	 to	 monitor	 eye	 position	 during	 saccades	 and	

smooth	pursuit	eye	movements	(Olson,	Musil,	&	Goldberg,	1996).	CSv	was	also	shown	to	

compensate	for	self-induced	retinal	eye	movements	(Fischer	et	al.,	2012b).	Our	results	

regarding	higher	mean	objective	motion	 responses	 compared	 to	mean	 retinal	motion	

responses	 in	 CSv	 are	 consistent	with	 these	 studies.	 	 A	 recent	 fMRI	 study,	which	was	

conducted	using	3D	optic	flow	motion,	reported	no	significant	speed	tuning	for	retinal	

or	headcentric	motion	in	CSv,	whereas	there	was	a	significant	speed	tuning	response	for	

pursuit	 (Arnoldussen	 et	 al.,	 2011).	 While	 our	 results	 seem	 to	 disagree	 with	 those	
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findings,	 it	 is	 possible	 that	 eye	 position	 related	 signals	 used	 for	 compensation	 of	 eye	

movements	 could	be	 involved	differently	 in	 calculations	 regarding	planar	motion	and	

more	 complex	 motion	 such	 as	 heading	 related	 optic	 flow	 signals	 (for	 a	 detailed	

discussion,	please	see	(Fischer	et	al.,	2012a)).			

To	our	knowledge,	this	 is	the	first	study	to	systematically	 investigate	the	speed	

tuning	 in	CSv.	 	We	 found	 that	CSv	 showed	 significant	 speed	 tuning	 for	both	objective	

motion	 and	 to	 a	 lesser	 extent	 for	 retinal	 motion,	 but	 its	 speed	 tuning	 did	 not	

differentiate	between	 these	 two	 types	of	motion.	Although	 the	mean	objective	motion	

response	 in	 CSv	was	 significantly	 higher	 than	 the	mean	 retinal	motion	 response,	 this	

was	not	consistent	cross	all	speeds	(Figure	3).		

5.6. Conclusion		

In	conclusion,	our	results	provide	the	speed	tuning	of	motion	responsive	regions	

during	 objective	 and	 retinal	motion.	 Furthermore,	 V3A	 is	 the	 only	motion	 responsive	

region	that	shows	different	speed	tuning	to	objective	and	retinal	motion,	even	though	

all	motion	responsive	regions	we	 investigated	show	speed	tuning	to	objective	motion.	

These	results	support	the	view	that	human	V3A	encodes	primarily	objective	rather	than	

retinal	motion	signals	even	during	a	range	of	motion	speeds.		
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