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Abstract

Knowledge about causal relationships is important because it enables the
prediction of the effects of interventions that perturb the observed system.
Specifically, predicting the results of interventions amounts to the ability of
answering questions like the following: if one or more variables are forced into
a particular state, how will the probability distribution of the other variables
be affected? Causal relationships can be identified through randomized ex-
periments. However, such experiments may often be unethical, too expensive
or even impossible to perform. The development of methods to infer causal
relationships from observational rather than experimental data constitutes
therefore a fundamental research topic. In this thesis, we address the prob-
lem of causal discovery, that is, recovering the underlying causal structure
based on the joint probability distribution of the observed random variables.

The causal graph cannot be determined by the observed joint distribution
alone; additional causal assumptions, that link statistics to causality, are
necessary. Under the Markov condition and the faithfulness assumption,
conditional-independence-based methods estimate a set of Markov equiva-
lent graphs. However, these methods cannot distinguish between two graphs
belonging to the same Markov equivalence class. Alternative methods in-
vestigate a different set of assumptions. A formal basis underlying these
assumptions are functional models which model each variable as a function
of its parents and some noise, with the noise variables assumed to be jointly
independent. By restricting the function class, e.g., assuming additive noise,
Markov equivalent graphs can become distinguishable. Variants of all afore-
mentioned methods allow for the presence of confounders, which are unob-
served common causes of two or more observed variables.



In this thesis, we present complementary causal discovery methods employ-
ing different kind of assumptions than the ones mentioned above. The first
part of this work concerns causal discovery allowing for the presence of con-
founders. We first propose a method that detects the existence and identifies
a finite-range confounder of a set of observed dependent variables. It is based
on a kernel method to identify finite mixtures of nonparametric product dis-
tributions. Next, a property of a conditional distribution, called purity, is
introduced which is used for excluding the presence of a low-range confounder
of two observed variables that completely explains their dependence (we call
low-range a variable whose range has “small” cardinality).

We further study the problem of causal discovery in the two-variable case, but
now assuming no confounders. To this end, we exploit the principle of inde-
pendence of causal mechanisms that has been proposed in the literature. For
the case of two variables, it states that, if X — Y (X causes Y), then P(X)
and P(Y|X) do not contain information about each other. Instead, P(Y)
and P(X|Y) may contain information about each other. Consequently, esti-
mating P(Y|X) from P(X) should not be possible, while estimating P(X|Y)
based on P(Y) may be possible. We employ this asymmetry to propose a
causal discovery method which decides upon the causal direction by compar-
ing the accuracy of the estimations of P(Y'|X) and P(X|Y).

Moreover, the principle of independence has implications for common ma-
chine learning tasks such as semi-supervised learning, which are also dis-
cussed in the current work.

Finally, the goal of the last part of this dissertation is to present empirical
results on the performance of estimation procedures for causal discovery using
Additive Noise Models (ANMs) in the two-variable case.

Experiments on synthetic and real data show that the algorithms proposed
in this thesis often outperform state-of-the-art algorithms.
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Chapter 1

Introduction

Machine learning is commonly concerned with prediction tasks [Bishop, 2006,
Schélkopf and Smola, 2002, Murphy, 2012], e.g., based on observations of
the size and texture of a breast tumor, predict whether it is benign or ma-
lignant (binary classification task). However, in many situations, the aim is
to uncover the underlying causal mechanisms rather than just modeling the
observed data. Cause-effect relationships tell us that a specific variable, say
whether or not a person smokes, is not just statistically associated with a
disease, but it is causal for the disease. Judea Pearl, ACM Turing award
recipient in 2011, mentions in his book [Pearl, 2009]: “I now take causal rela-
tionships to be the fundamental building blocks both of physical reality and
of human understanding of that reality, and I regard probabilistic relation-
ships as but the surface phenomena of the causal machinery that underlies
and propels our understanding of the world.” and at a later part “...This puts
into question the ruling paradigm of graphical models in statistics according
to which conditional independence assumptions are the primary vehicle for
expressing substantive knowledge. It seems that if conditional independence
judgments are by-products of stored causal relationships, then tapping and
representing those relationships directly would be a more natural and more
reliable way of expressing what we know or believe about the world.”

Besides being a more natural representation, a model built around causal
rather than associational information offers the ability to predict the conse-
quences of interventions. An intervention is the action of changing/disturbing

13



14 CHAPTER 1. INTRODUCTION

SN

yellow lung
teeth cancer

Figure 1.1: An explanation for the correlation between yellow teeth and lung
cancer.

the “natural” probability distribution of some of the variables in a system,
e.g., setting a given variable to some specified value. Knowledge about causal
relationships enables the prediction of the effects of interventions, i.e., predic-
tion of the system reaction in hypothetical experiments that have not been
performed.

Statistics alone is unable to aid in causal inference: for example, yellow
stained teeth may be correlated with lung cancer, however this does not
mean that yellow teeth is causal for lung cancer. That is, even though the
color of the teeth can be a predictive feature for the presence of lung cancer,
nevertheless, if an intervention whitens one’s teeth (e.g., by a visit to the
dentist), this will not lead to the disappearance of the cancer. Instead, their
statistical association could be explained by the presence of a third variable,
say smoking, which is a common cause of both. This can be represented by
the structure of Fig. 1.1, where arrows indicate causal relations.

One way of obtaining causal knowledge is through randomized trials. In
our example, this would correspond to randomly staining the teeth of a
part of the population and analyzing the difference in lung cancer between
stained and not-stained populations. In the absence of difference, we would
conclude that yellow teeth is not causal for lung cancer and seek alternative
explanations for their correlation. However, randomized trials often cannot
be performed in practice: they may be too expensive, unethical or even
impossible. In this case, causal conclusions have to be drawn based solely
on observational (and not interventional/experimental) data combined with
appropriate causal assumptions.
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Under the Markov condition and the faithfulness assumption, independence-
based methods [Spirtes et al., 2000, Pearl, 2009] estimate a set of directed
acyclic graphs (DAGs), all entailing the same set of conditional indepen-
dences, the so-called Markov equivalent graphs. However, these methods
cannot distinguish between two graphs belonging to the same Markov equiv-
alence class, e.g. X — Y and Y — X. Alternative methods investigate a
different set of assumptions. A formal basis underlying these assumptions
are functional models in which each variable is modeled as a function of
its parents and some noise variable. The noise variables are assumed to be
jointly independent. Restrictions on the function class, e.g., by assuming
additive noise, can lead to distinguishing between graphs belonging to the
same Markov equivalence class.

One major challenge of causal discovery is the possible presence of con-
founders which are unobserved common causes of two or more observed vari-
ables. The aforementioned methods, combined with assumptions about the
existence of confounders, lead to different results concerning the identifiabil-
ity of the structure.

This thesis investigates approaches, complementing existing ones, to infer
the underlying causal DAG from observational data using various sets of
assumptions. Chapter 5 proposes a method to infer the existence and identify
a finite-range confounder of a set of observed dependent variables. It is based
on a kernel method to identify finite mixtures of nonparametric product
distributions. The number of mixture components is found by embedding
the joint distribution into a reproducing kernel Hilbert space. The mixture
components are then recovered by clustering according to an independence
criterion. Chapter 6 is motivated by a problem in genetics. It builds on a
property of a conditional distribution P(Y'|X'), which we call purity. Purity
is used as a criterion to infer that the underlying causal structure is X — Y,
as opposed to being a DAG containing a low-range latent variable Z in the
path between X and Y such that X 1 Y|Z (X independent of Y given 7).
Characterizing a conditional as pure is based on the location of the different
conditionals { P(Y'|X = x)}, in the simplex of probability distributions of Y.

Chapters 7 and 8 use the principle of independence of causal mechanisms
which has been proposed in the literature. For the case of only two variables,
it states that, if X — Y, the marginal distribution of the cause, P(X), and
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the conditional of the effect given the cause, P(Y|X), are “independent”, in
the sense that they do not contain information about each other. Instead,
the distribution of the effect, P(Y"), and the conditional P(X|Y') may contain
information about each other because each of them inherits properties from
both P(X) and P(Y|X), hence introducing an asymmetry between cause
and effect. This asymmetry has implications for common machine learning
tasks such as semi-supervised learning (SSL), discussed in Chapter 7. One
more implication of the principle of independence is that estimating P(Y|X)
from P(X) should not be possible. However, estimating P(X|Y") based on
P(Y) may be possible. Chapter 8 focuses on the problem of causal discovery
in the two-variable case, assuming no confounders. Employing the last im-
plication we propose CURE, a causal discovery method which decides upon
the causal direction by comparing the accuracy of the estimations of P(Y|X)
and P(X|Y) based on the corresponding marginals. To this end, we suggest
a method for estimating a conditional based on samples from the marginal,
which we call unsupervised inverse GP regression.

Finally, Chapter 9 presents empirical results on the behavior of estimation
procedures for causal discovery using additive noise models, also concerning
the two-variable case.

1.1 Thesis roadmap

In summary, this dissertation is organized as follows. Chapter 2 provides rel-
evant background and basic concepts necessary throughout the thesis. Chap-
ter 3 introduces the main problems tackled in this dissertation and Chapter 4
is devoted to a literature review of existing causal discovery methods and the
assumptions they rely on. Chapters 5 includes a method for identifying a
finite-range confounder of a set of observed variables, while Chapter 6 pro-
poses a method for ruling out the existence of a low-range confounder of two
observed variables that completely explains their dependence. Chapter 8 is
concerned with causal discovery in the two-variable case but now assuming
no confounders and is based on the principle of independence of causal mech-
anisms. This principle has implications also for common machine learning
tasks such as SSL, discussed in Chapter 7. Finally, Chapter 9 is concerned
with the empirical behavior of estimation methods for ANMs.
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Chapter 2

Background and basic concepts

In this chapter we first provide some background on graphs in Section 2.1 be-
fore introducing Bayesian Networks (BNs) (Section 2.2) and causal Bayesian
Networks (Section 2.3) to represent probabilistic and causal relationships, re-
spectively. We further discuss an alternative representation using functional
models in Section 2.4.

2.1 Graph notation

In the following, we shortly summarize definitions and notations on graphs.
Basic graph definitions can be found, for example, in [Spirtes et al., 2000]
and [Lauritzen, 1996]. A graph G consists of a set of vertices (or nodes)
V =1{1,2,...,d} and a set of edges (or links) E C V2. If (a,b) € E, then a
is said to be a parent of b and b a child of a, denoted by a — b. The graph
G1 = (V1, Ey) is called a proper subgraph of Gy = (V3, Es) if V} = V5 and
E; C E;. The skeleton of G is the undirected graph resulting from ignoring
all arrowheads in G. Moreover, a path is a sequence of distinct vertices
U1, V2, ..., U, such that (v;,vi41) € E or (vi41,v;) € Eforalli=1,...,n—1.
A directed path is a path vy, vy, ..., v, such that (v;,v;41) € E for all
t=1,...,n—1. An ancestor of a vertex a is any vertex b such that there
is a directed path from b to a. Accordingly, a descendant of a is any b such
that there is a directed path from a to b. In a path vy,...,v,, v; is called a

19
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collider if (v;41,v;) € E and (v;_1,v;) € E. A directed acyclic graph (DAG)
is a graph in which there is no directed path vy, v, ..., v, with v; = v,. A
v-structure consists of two edges whose arrows point to the same vertex
and whose tails are not connected by an edge. A topological ordering of
a DAG is a sequence vy, vs,...,v, of its vertices such that for every edge
(a,b) € E, vertex a comes before vertex b in the ordering.

A path between two vertices a and b is said to be unblocked (also called
d-connected or open) conditioned on a set of vertices Z, with neither a nor
bin Z, if and only if:

1. For every collider w in the path, either w or a descendant of w is in Z

2. No non-collider in the path is in Z

A blocked path is a path that is not unblocked.

Definition 1 (d-separation) Two disjoint sets of vertices A and B are
said to be d-separated given a set of vertices Z (also disjoint) if every path
between any vertex in A and any vertex in B is blocked conditioned on Z.

2.2 Bayesian Networks

DAGs have been extensively used to represent a set of random variables
and their conditional (in)dependences and came to be known as Bayesian
Networks (BNs) [Pearl, 1988]. In a probabilistic graphical model (Bayesian
Network), each node v € V of the graph represents a random variable X,
and the links express probabilistic relations between these variables. We
denote random variables with capital letters and their corresponding values
with lower case letters, e.g., X and x, respectively. Random vectors are
denoted with bold face capital letters and their values with bold face lower
case letters, e.g., X and x, respectively.

Consider d random variables X := (X1, Xy, ..., Xy)! with ranges X}, ..., Xy,
respectively, and denote by P(X) their joint distribution. Unless stated

'We sometimes overload notation and use X to also denote the set { X7, Xo, ..., X4}
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otherwise, assume P(X) has a density p(x) with respect to (w.r.t.) some
product measure.

Definition 2 (Markov condition) The joint distribution P(X) is Markov
w.r.t. the DAG G if the following equivalent statements hold:

e Markov factorization: p(x) factorizes as follows:

plar,za, .. x0) = [ [ plz;]pay) (2.1)

j=1
where PA; is the set of parents of X; in G.

e [ocal Markov condition: every variable in G is conditionally indepen-
dent of its non-descendants given its parents.

e global Markov condition:
A B d-separated given Z in G = A 1L B|Z
for all A,B,Z disjoint subsets of X.

Definition 3 (Bayesian Network) A Bayesian Network (BN) over X is
a pair (G, P(X)) such that the joint distribution P(X) is Markov with respect
to the DAG G.

Two DAGs G; and G; are Markov equivalent (or alternatively belong to
the same Markov equivalence class) if the set of distributions that are Markov
with respect to Gy coincides with the set of distributions that are Markov
w.r.t. Gy. This is the case if the Markov condition entails the same set of
conditional independences. Verma and Pearl [1991] show that this happens
if and only if the two graphs have the same skeleton and the same set of
v-structures. For example, the DAGs X — Z — Y and X + Z < Y are
Markov equivalent.

Definition 4 (minimality) A joint distribution P(X) satisfies minimality
with respect to the DAG G if it is Markov w.r.t. G, but not to any proper
subgraph of G.
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Definition 5 (faithfulness) A joint distribution P(X) is faithful with re-
spect to the DAG G if

A 1| B|Z = A,B d-separated given Z in G

for all A, B,Z disjoint subsets of X.

In other words, faithfulness assumes that there are no conditional indepen-
dences that are not entailed by the Markov condition.

2.3 Causal Bayesian Networks

Arrows in causal BNs do not merely represent probabilistic relations, as in
BNs, but causal relations. In what follows, we formalize this concept. If an
external intervention changes some aspect of the system under consideration,
this may lead to a change in the joint distribution P(X). Specifically, an in-
tervention corresponds to a real world experiment that changes the “natural”
probability distribution of a subset of the variables in X. We denote each such
subset by X; := (X;)ier, with range X; := X1 X, I C {1,...,d}. A special
kind of intervention is, for example, the so-called hard or perfect intervention
that forces a variable X to take on a certain value x, symbolized as do(X = )
[Pearl, 2009]. We first focus on the simplest case that |I| = 1, i.e., only one
variable, say Xj, is intervened on. Then, P(Xy, Xs,..., X4|do(X; = x;)),
with i € {1,...,d}, denotes the joint distribution resulting after intervening
on X; € X, setting X; = x;. This is called an interventional distribution.
The latter is in contrast to the so-called observational distribution P(X),
which is the joint distribution of X that we observe before conducting any
experiment.

In the more general case, we intervene on more than one variable. Then,
P(X1, Xs,..., X4|ldo(X; = x5)) denotes the interventional distribution, re-
sulting after intervening on X, setting X; = x; := (x;);er. Let Pgo(X) =
{P(X1, X, ..., Xa|ldo(X; = x1))}1er)x(x,ex,) denote the set of all possi-
ble hard interventional distributions, with Z standing for the power set of
{1,...,d}. Further, let G be a DAG.
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Definition 6 (Causal Bayesian Network) The pair (G, P(X)) is called
a causal Bayesian Network [Pearl, 2009], if, for every possible interventional
distribution P(X1, Xo, ..., Xg|do(X; = x1)) € Pgo(X):

d
plx1, 7o, .. 2l do(X; = x1)) = [ [ p(z;1pa,) [ [ 0x.a (2.2)
j=1 iel
J¢l

where 5ch¢_{ 0 if X4z

The right-hand side of Eq. (2.2) is called a truncated Markov factoriza-
tion [Pearl, 2009], since it is equal to the original Markov factorization
(Eq. (2.1)) but with some conditionals “truncated” (removed). According
to Eq. (2.2), in a causal Bayesian Network, each interventional distribution
(left-hand side) equals a truncated factorization, with the removed condi-
tionals { P(X;|PA;)}; being the ones of the intervened variables {X;};cr.

It is worth noticing that @ € Z which corresponds to the special case of no
intervention. Hence, the observational distribution P(X) can be considered
a special interventional distribution (P(X) € Pgo(X)) with no variable inter-
vened on. In this case, Eq. (2.2) boils down to the (non truncated) Markov
factorization of Eq. (2.1).

In the following, we often refer to the DAG G of a causal Bayesian Network
(G, P(X)) interchangeably as causal DAG, causal structure or causal graph.
Furthermore, the conditional of each variable given its parents, P(X;|PA;),
is often referred to as causal mechanism. We will henceforth assume that
minimality is satisfied (see Definition 4).

The parents PA; of a variable X in a causal DAG can be thought of as its
direct causes w.r.t. the set of variables in X. In the special case of a causal
DAG with only two variables in which X — Y, X is called the cause, Y the
effect and we simply say that X causes Y.

For each intervention do(X; = x;), the causal effect of X; on Y, denoted by
p(y|do(X1 = x7)), gives the resulting distribution of Y after the intervention,
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with X and Y disjoint subsets of X [Pearl, 2009, Definition 3.2.1]. Consider
two random variables X, Y € X. If there are x, 2’ such that P(Y|do(X = z))
is different from P(Y'|do(X = z')), then we say that X has a (total) causal
effect on'Y.

Interventions are not only limited to hard interventions that set variables
to constants. A more general intervention corresponds to changing a causal
mechanism P(X;|PA;) to a new one, P(X,|PA;). Then, the truncated fac-
torization in the right-hand side of Eq. (2.2) is replaced by the following
factorization:

d

H p(z;|pa;) H p(zi|pa;)
j=1 i€l
J¢l

Usually the new set of parents PNA]- is either empty or equals the old one, PA ;.
In the former case, the type of intervention is often called stochastic [KKorb
et al., 2004, while in the latter mechanism change [Tian and Pearl, 2001] or
parametric [Eberhardt and Scheines, 2007].

There are several advantages of causal Bayesian Networks over Bayesian
Networks. The former are useful for predicting the effects of interventions,
without having to actually perform the interventional experiment itself. Let
(G, P(X)) be a causal Bayesian Network. By Definition 6, each interventional
distribution in Pgo(X) can be computed just based on the causal DAG G
and the observational distribution P(X), without actually performing any
experiment. An interventional distribution can be obtained with only minor
modifications in the Markov factorization of P(X), specifically, by just re-
placing the conditionals of the intervened variables. A second advantage of
causal BNs is that, roughly speaking, they are more natural and meaningful.
For example, a machine learning scientist, not interested in causality, would
still consider the graph of Fig. 1.1 a more natural way to encode beliefs about
conditional independences than a graph in which the arrow between yellow
teeth and smoking is reversed, even though both represent exactly the same
conditional independences.

Note that there are cases where there is no causal BN over a set of variables.
For example [Peters, 2012, Example 1.6, let X <- Z — Y be the DAG of
a causal BN over the variables X,Y,Z. Then, there is no causal BN over
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only X,Y since there is no DAG satisfying Definition 6 only for these two
variables. On the other hand, if X — Z — Y is the DAG of a causal BN over
X,Y, Z, then there is a causal BN over XY with DAG X — Y. In contrast,
there are (non causal) BNs over X,Y, with DAGs X — Y or Y — X, in
both of the above scenarios, since P(X,Y") is Markov to both of these DAGs.

Proposition 1 (uniqueness) If there is a causal BN (G, P(X)) over X and
P(X) satisfies minimality w.r.t G, then G is unique in the sense that there
is no other graph G' such that (G', P(X)) is a causal BN over X [Peters,
2012, Proposition 1.4].

Definition 7 (causal sufficiency) Xi, Xs,..., Xy is a causally sufficient
set of variables if there is a causal BN over them [Peters, 2012, Definition
1.9].

An alternative definition of causal sufficiency can be found in the literature,?
e.g., [Spirtes, 2010]: the random variables in X are causally sufficient if and
only if there is no variable C' ¢ X such that C is a direct cause of two or
more variables in X relative to C'U X. If such a variable C' exists, it is called
a confounder, so causal sufficiency amounts to assuming that there are no
confounders.

2.4 Functional models

An alternative way of expressing causal/probabilistic relationships is in the
form of functional causal/probabilistic models [Pearl, 2009]. They consist of
deterministic functional equations and probabilities are introduced through
the assumption that certain variables (noise) in the equations are unobserved.

2This definition is slightly different from Definition 7. For an example consult the
Appendix.
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2.4.1 Functional probabilistic models

A functional probabilistic model (FPM) consists of a set of d equations, one
for each X; € X:

where PA; C X, for all j, and Ny, Ny, ..., N; represent latent noise variables
d
which are assumed to be jointly independent: P(N) = [[ P(N;).
j=1

Drawing directed edges from each variable in PA; to X, for each j, we obtain
a directed graph G corresponding to the FPM. This explains the common
symbol PA; of this representation with the BN representation of Sections 2.2
and 2.3. In addition, G is required to be acyclic (DAG).

An FPM (for specific functions fi,..., f4, noise distributions P(Ny),...,
P(Ny4), and parents sets PA,... PA,) induces a unique joint distribution
over X: using a topological ordering® of the DAG, each variable X; can
be written as a function of the noise variables of the preceding variables.
If the induced distribution of an FPM is identical to the joint distribution
P(X) that we consider, we say that “the FPM induces/entails a distribution
identical to P(X)” or, shortly, that “the FPM induces/entails P(X)”.

Pearl [2009, Theorem 1.4.1] shows that if P(X) is induced by an FPM then it
is Markov w.r.t. the DAG G of the FPM. Thus, (G, P(X)) is a Bayesian Net-
work. Moreover, for every Bayesian Network (G, P(X)) there exists an FPM
that induces a distribution identical to P(X) (see [Pearl, 2009, p. 31] and
references therein). So, we can regard FPMs as an alternative to Bayesian
Networks to encode joint distributions: the parent sets define the structure
while the functions and noise distributions the parameters (conditional distri-
butions). Note, however, that an FPM contains more information than a BN
since many combinations of functions and noise distributions can correspond
to the same conditional distributions.

An FPM refers to fixed functions, parent sets and noise distributions of
the equations in (2.3), inducing a unique joint distribution. Varying parent

3The definition of topological ordering is included in Section 2.1.
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sets, functions and/or noise distributions results in different FPMs inducing
various joint distributions.

Finally, it should be emphasized that FPMs are purely statistical models,
as are Bayesian Networks, and not causal. We describe in the next section
functional causal models (a.k.a. structural equation models) which are causal
models, as are causal Bayesian Networks. A topological ordering of the
DAG corresponding to an FPM does not necessarily correspond to a causal
ordering. Instead, the FPM describes P(X) only through the fact that its
induced distribution coincides with P(X). An FPM can be alternatively
thought of as a set of regression models, one for each variable.

2.4.2 Functional causal models

Functional causal models (FCMs) (often referred to as Structural Equation
Models (SEM)) [Pearl, 2009] are the causal counterpart of FPMs, same as
causal Bayesian Networks as compared to Bayesian Networks. Specifically,
similar to an FPM, a functional causal model consists of a set of d equations,
one for each X; € X (Eq. 2.3).

The crucial difference is that a functional causal model M, just like a causal
BN, represents the system under interventions [Pearl, 2009]: every interven-
tional distribution P(Xy, Xo, ..., X4|do(X; = x1)) € Pgo(X) is equal to the
distribution induced by the following set of equations:

Xj:fj(PAijj)v jél
Xi:ZL'i, 1€l

This set of equations is constructed from M by replacing the equations cor-
responding to the intervened variables with X; = z;, i € I, while leaving the
rest of equations intact. Thus, if G is the (causal) DAG of an FCM inducing
P(X), then (G, P(X)) is a causal Bayesian Network.

We finally note that functional causal models, as defined above, are called
Markovian causal models by Pearl [2009, p. 30].
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2.5 When the graph is known

If the causal graph G is known, for example from prior knowledge, then causal
effects (see Section 2.3) can be computed. For example, the causal effect of
a variable X on another variable Y is given by the following formula [Pearl,
2009, Theorem 3.2.2] known as parent adjustment or adjustment for direct

causes I4

plyldo(X; = ) = Y plylz:, pay)p(pay)

It is enough if the parents of the intervened variable are observed in this case.
Yet the more challenging problem is to derive causal effects in situations
where some members of PA,; are unobserved. A causal effect is called identi-
fiable if it can be computed from the observational (pre-intervention) distri-
bution and the graph structure. Graphical tests exist for deciding whether
causal effects are identifiable like the back- and front-door criteria [Pearl,
2009]. More generally, the calculus of interventions, the so-called do-calculus,
was developed by Pearl to facilitate the identification of causal effects. It has
been proven to be complete [Shpitser and Pearl, 2006, Huang and Valtorta,
2006], that is, all identifiable causal effects can be computed by an iterative
application of its three rules. Moreover, graphical criteria exist [Tian and
Shpitser, 2010, Huang and Valtorta, 2006] to find these causal effects.

The literature is rich in what can be achieved in case that the causal graph
G is known, but further details fall out of the scope of this thesis. This
dissertation concerns, instead, scenarios in which G is unknown and we seek
to find it.

4The sum could also be an integral.



Chapter 3

Problem statement

The previous chapter motivated the need for causal models: based only on
the causal DAG G and the observational distribution P(X), the effects of
interventions can be predicted. However, the causal DAG is usually not
available and needs to be learned from the observed data, supplemented
with additional assumptions. In what follows, we state the general problems
concerning (causal) structure learning.

Consider d variables X := (Xj, Xy,..., Xy) and denote by P(X) their joint
distribution.

Problem 1 (structure learning) Consider a Bayesian Network (G, P(X))
or a functional probabilistic model with DAG G that induces P(X). If G
is unknown, can G (or properties of/features of/information about G) be
recovered from P(X)? Under what conditions/additional assumptions?

Clearly, without additional assumptions, G cannot be uniquely recovered
from P(X), since there are many DAGs to which P(X) is Markov, e.g., to any
fully connected acyclic graph. Imposing appropriate additional assumptions
on the set of possible FPMs or BNs can lead to structure-identifiability,
explained below:

Definition 8 (structure-identifiability) A set of BNs is called structure-
identifiable if for any two Bayesian Networks (Gy, Pi(X)) and (G, P (X))

29
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mn this set:

In other words, structure-identifiability means that the DAG can be uniquely
recovered based on the joint distribution.! The assumptions made often do
not allow one to uniquely determine G but only a set of DAGs. We then
have identifiability up to a class of DAGs. Definition 8 can also be adjusted
to refer to FPMs apart from BNs: a set of FPMs is structure-identifiable if
for any two FPMs with DAGs G; and G; inducing distributions P;(X) and
P5(X), respectively, (3.1) holds.

Problems 2, 3 and 4, that follow, describe variations of Problem 1 when G is
a causal graph and/or when latent variables are allowed. If the DAG G, that
we seek for, is a causal DAG then structure learning is referred to as causal
discovery or causal structure learning.

Problem 2 (causal structure learning) Consider a causal Bayesian Net-
work (G, P(X)) or a functional causal model with graph G that entails P(X).
If G is unknown, can G (or properties of G) be recovered from P(X)# Under
what conditions/additional assumptions?

Let L := (Ly,Ls,...,L;) be [ unobserved random variables. Denote by
P(X,L) the joint distribution of (X, L).

Problem 3 (structure learning with latent variables) Consider a BN
(G,P(X,L)) or a functional probabilistic model with DAG G that induces
P(X,L). If G is unknown, can G (or properties of G) be recovered from
P(X)? Under what conditions/additional assumptions?

IStructure-identifiability is often referred to, in related literature, simply as identifia-
bility. In this thesis we use this term to discriminate it from parameter-identifiability (see
Section 5.2) which means that the model parameters can be uniquely recovered from the
joint distribution. Whenever the meaning is clear from the context, we also simply refer
to an identifiable model without further specification.

2Without conducting any interventional experiments.



31

Problem 4 (causal structure learning with latent variables) Consi-
der a causal Bayesian Network (G, P(X, L)) or a functional causal model with
graph G that induces P(X,L). Can G (or properties of G) be recovered from
P(X)? Under what conditions/additional assumptions?

This thesis proposes methods to solve variations of Problems 2 and 4 by
considering appropriate additional assumptions. For simplicity, sometimes
we first present a method for usual structure learning (Problems 1 or 3)
before attaching a causal meaning to it (Problems 2 or 4, respectively). In
the former the additional assumptions considered can be viewed as statistical
assumptions while in the latter as causal assumptions.
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Chapter 4

Literature review

In this chapter, we review various methods for (causal) structure learning.
The following approaches tackle the problems of Chapter 3 by considering
additional assumptions that render G identifiable (often up to a class of
DAGs) from the joint distribution. Section 4.1 deals with Problems 1 and 2,
while Section 4.2 concerns Problems 3 and 4. Since there is a lot of related
work on structure learning methods, this review is not exhaustive and mainly
focuses on methods intended for causal structure learning.

4.1 Structure learning without latent vari-
ables

The literature is rich in methods for learning the structure of a Bayesian
Network (Problem 1) or a causal Bayesian Network (Problem 2), assuming no
latent variables. These can be divided based on the assumptions they make,
e.g., faithfulness or additive noise, leading to different structure-identifiability
results, e.g., identifiability up or within Markov equivalence classes.
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4.1.1 Independence-based methods

To solve Problems 1 and 2, conditional-independence-based methods [Spirtes
et al., 2000, Pearl, 2009] (often referred to as constraint-based methods)
assume that the observed joint distribution P(X) is not only Markov but
also faithful relative to G (see Definition 5). This means that two disjoint
subsets of variables A and B are conditionally independent given Z (also
disjoint) if and only if A and B are d-separated given Z in G:

A, B d-separated given Z < A 1 B|Z.

These methods are based on conditional independences between variables in
X: for two variables X,Y € X, if there exists a subset Z of X \ {X,Y}
such that X L Y|Z, then there is no edge between X and Y in G. This
way the skeleton of G can be found. At a subsequent stage, a number of
orientation rules is used to direct some of the edges. The output is a graph
representing a set of Markov equivalent DAGs, all entailing the same set
of conditional independences. Graphs within this Markov equivalence class
cannot be distinguished without further assumptions. For example, if no
conditional independences are observed, in the case of only two variables,
X = (X,Y), constraint-based methods output both X — Y and ¥ — X.

Algorithms in this category include the IC [Pearl, 2009], the SGS [Spirtes
et al., 2000] and the PC [Spirtes et al., 2000] algorithm. There are differ-
ences between them including, but not limited to, the number of required
conditional independence tests and the size of the conditioning sets. Condi-
tional independence testing with large conditioning sets is a challenging task
in practice.

4.1.2 Bayesian/score-based methods

Score-based methods, e.g., Cooper and Herskovits [1992], Heckerman et al.
[1995], Geiger and Heckerman [1994], Heckerman [1995], Chickering [2002],
have two basic components: a scoring metric and a search procedure. The
metric computes a score for every candidate DAG, reflecting the goodness-
of-fit of the structure to the data. In Bayesian methods, the score is pro-
portional to the posterior probability of a structure given the data and any
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prior knowledge. The search procedure generates networks that are evalu-
ated by the scoring metric. For discrete variables a multinomial likelihood
can be used [Cooper and Herskovits, 1992, Heckerman et al., 1995], whereas
for continuous variables a linear Gaussian model can be employed [Geiger
and Heckerman, 1994]. DAGs that are Markov equivalent receive usually the
same score, but there are some exceptions [Cooper and Herskovits, 1992].

Finally, there exist hybrid approaches that combine aspects of both constraint-
based and score-based methods, e.g., Tsamardinos et al. [2006], Claassen and
Heskes [2012].

4.1.3 Methods restricting the class of functional model

Unless supplemented with domain or expert knowledge, most of the previous
structure learning methods cannot, in general, distinguish between DAGs
belonging to the same Markov equivalence class (even if few score-based
methods assign different scores to DAGs belonging to the same equivalence
class, their motivation seems unclear). In order to be able to distinguish
between Markov equivalent DAGs (based only on observational data), the
approaches presented in this section use the functional model representation
(Section 2.4) along with additional appropriate assumptions.

We first focus on Problem 1. Without further assumptions, P(X) could be
induced by many DAGs. The idea of this group of methods is to restrict
the functions of the FPM. Restricting the function class, restricts the set of
distributions that can be induced.

One such restriction is realized using Additive Noise Models (ANMs) pro-
posed by Hoyer et al. [2009] and Peters et al. [2014]. An ANM is an FPM in
which the noise is additive, that is the set of equations in (2.3) become:

X; = f;(PA;) + N, j=L....d

Hoyer et al. [2009] and Peters et al. [2014] prove structure-identifiability (see

Definition 8) of ANMs, explained below for the simplest case of two variables,
X =(X,Y).
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Consider an ANM with DAG X — Y

X =Ny

whose induced distribution is P(X,Y’). Then, in the generic case (up to some
exceptions like the case of linear f and Gaussian X and Ny ), there is no ANM
with DAG Y — X inducing the same joint distribution P(X,Y’). That is,
there is no function g and noise variable Nx such that X = g(Y') 4+ Nx, with
Y I Nyx. This means that, in the generic case, the DAG can be uniquely
recovered from the joint distribution, i.e., ANMs are structure-identifiable.
We often simply say that ANMs are identifiable. The structure learning
algorithm then reads: whenever there is an ANM with DAG in one direction
(say, X — Y) inducing the joint distribution P(X,Y’), but there is no ANM
with DAG in the other direction (Y — X) inducing P(X,Y), then the DAG
corresponding to the former direction is inferred (in this case X — Y).

The generalization to more than two variables is described in Peters et al.
[2014]. Previous work by Shimizu et al. [2006] proves identifiability of ANMs
when restricted to linear functions and non-Gaussian input and noise distri-
butions (Linear Non-Gaussian Acyclic Model (LINGAM)). A generalization
of ANMs are the Post-Nonlinear Models (PNL) [Zhang and Hyvérinen, 2009],
where Y = h(f(X)+ Ny), with Ny 1 X and h an invertible function, which
are also identifiable, except for some special cases.

The approaches of this category overcome some disadvantages of the previous
methods: they allow inference of the DAG within the Markov equivalence
class and do not need to assume faithfulness, but only minimality.

Causal counterpart We can use the method above to solve Problem 2 by
considering FCMs instead of FPMs. Then, the inferred DAG is the causal
DAG G of Problem 2. Janzing and Steudel [2010] justify why causal struc-
ture learning using ANMs is reasonable. In particular, they show that if
P(X,Y) can be induced by an ANM with DAG X — Y, then the causal
DAG Y — X is unlikely because it would require a specific tuning between
the hypothetical distribution of the cause P(Y) and the hypothetical causal
mechanism P(X|Y") to generate a distribution that admits an additive noise
model from X to Y.! Furthermore, Mooij et al. [2014] present empirical

'Provided that P(Y) is sufficiently complex.
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results providing evidence that additive-noise methods are indeed able to
distinguish cause from effect using only purely observational data.

4.1.4 Methods based on the principle of independence
of causal mechanisms

To solve Problem 2, other causal inference methods are based on the principle
of independence of causal mechanisms [Janzing and Schélkopf, 2010, Lemeire
and Dirkx, 2006, Janzing et al., 2012, Daniusis et al., 2010, Scholkopf et al.,
2012] which we state below for the simplest case of a causal BN with only
two observed variables, assuming no confounders:

Postulate 1 (independence of input and mechanism) If X — Y, the
marginal distribution of the cause, P(X), and the conditional distribution
of the effect given the cause, P(Y|X), are “independent” in the sense that
P(Y|X) contains no information about P(X) and vice versa.

The (causal) conditional P(Y'|X) can be thought of as the mechanism trans-
forming cause X to effect Y. Then, Postulate 1 is plausible if we are dealing
with a mechanism of nature that does not care what (input P(X)) we feed
into it. This independence can be violated in the backward direction: the
distribution of the effect P(Y) and the conditional P(X|Y") may contain in-
formation about each other because each of them inherits properties from
both P(X) and P(Y|X). This constitutes an asymmetry between cause and
effect. While Postulate 1 is abstract, the aforementioned approaches provide
formalizations by specifying what is meant by independence or information:
Janzing and Schoélkopf [2010] postulate algorithmic independence of P(Y|X)
and P(X), i.e. zero algorithmic mutual information: I(P(X) : P(Y|X)) = 0.
This is equivalent to saying that the shortest description (in the sense of Kol-
mogorov complexity) of P(X,Y) is given by separate descriptions P(X) and
P(Y|X). Since Kolmogorov complexity is uncomputable, practical imple-
mentations must rely on other notions of (in)dependence or information.

When causal relations are deterministic, with Y = f(X), P(Y|X) is com-
pletely determined by f, so independence between P(X) and P(Y|X) boils
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down to independence between P(X) and f. For deterministic non-linear
relations, Janzing et al. [2012] and Daniusis et al. [2010] define independence
through uncorrelatedness between logf’ and the density of P(X) w.r.t. the
Lebesgue measure,? both viewed as random variables on [0, 1] with uniform
measure. This is reformulated in terms of information geometry as a certain
orthogonality in information space. The corresponding Information Geo-
metric Causal Inference (IGCI) method sometimes also works for sufficiently
small noise. The performance of IGCI on both real-world and simulated data
has also been thoroughly studied by Mooij et al. [2014].

Mooij et al. [2010] infer the causal direction by Bayesian model selection,
defining non-parametric priors on the distribution of the cause and the condi-
tional of the effect given the cause that favor distributions of low complexity.
The motivation of their method stems also from Postulate 1.

4.2 Structure learning with latent variables

This section is mainly concerned with Problem 4: causal discovery with la-
tent variables. Fast Causal Inference (FCI) [Spirtes et al., 2000] extends PC
to causal discovery with latent variables. It assumes that the joint distribu-
tion P(X, L) in Problem 4 is, apart from Markov, also faithful relative to G.
Based on conditional independences among the observed variables X, it out-
puts a set of Markov equivalent maximal ancestral graphs (MAGs) [Richard-
son and Spirtes, 2002]. MAGs are another type of graphs that are closed un-
der marginalization (as opposed to DAGs), a useful property when it comes
to latent variables. Claassen et al. [2013] propose FCI+, a more computa-
tionally efficient version of FCI.

To distinguish between Markov equivalent graphs, other methods make more
assumptions. Silva et al. [2006], apart from faithfulness, make the following
assumptions:

e No variable in X is an ancestor of a variable in L.

2Note that a joint density w.r.t. a product measure does not exist in this case.
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e The joint distribution of Y := (X, L) is induced by a linear ANM:

They propose a framework that distinguishes among different causal graphs
based on observable tetrad constraints [Silva et al., 2006]. Their contribution
is two-fold: their method (1) finds disjoint subsets of the observed variables
for which the members of each subset are d-separated by a latent common
cause, and (2) finds features of the Markov equivalence class of the latent
structure.

Shimizu et al. [2009] extend LINGAM [Shimizu et al., 2006] for Problems 3
and 4, assuming that P(X, L) is entailed by a linear ANM with non-Gaussian
noise distributions. They further assume that P(X,L) is faithful to G to
output all possible DAGs where each latent variable is a root node and has
at least two children.

Finally, Janzing et al. [2009] extend ANMs [Hoyer et al., 2009] for Problems
3 and 4 but for the special case of two observed (X = (X,Y)) and at most
one latent variable, i.e., [ = 0 or [ = 1, which (if it exists) is a confounder
of X and Y. Specifically, their method distinguishes between the following
DAGs: X - Y, Y —- X or X < Z — Y, with Z an unobserved latent
variable (confounder).
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Chapter 5

Identifying finite mixtures of
nonparametric product
distributions and causal
inference of confounders

5.1 Introduction

This chapter is concerned with Problems 3 and 4 (structure learning with
latent variables). Specifically, the ultimate goal is to detect the existence
and identify a finite-range hidden common cause, i.e., confounder, of a set of
observed dependent variables. Consider, for example, that we observe three
dependent variables X7, X5, X3. The goal is to be able to detect whether or
not their dependence is (only) due to a fourth latent variable, in practice
of low range!, say W, that is a common cause of all of them (Fig. 5.1). In
case that the DAG of Fig. 5.1 is inferred, we can also recover the full joint
distribution P(X;, Xs, X3, W), i.e., identify the confounder W.

To this end, we first propose a kernel method to identify finite mixtures of
nonparametric product distributions. It is based on a Hilbert space embed-

'We call low range a random variable whose range has “small” cardinality.
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Figure 5.1: Motivating example of DAG to be inferred (the dotted circle
represents an unobserved variable).

ding of the observed joint distribution. The rank of the constructed tensor
is proven to be equal to the number of mixture components. We present
an algorithm to recover the components by partitioning the data points into
clusters such that the variables are jointly conditionally independent given
the cluster label. We, then, show how this method can be used to identify
finite-range confounders.

In Section 5.2, finite mixtures of product distributions are introduced. In
Section 5.3, a method is proposed to determine the number of mixture com-
ponents. Section 5.4 discusses established results on the identifiability of the
component distributions. Section 5.5 presents an algorithm for determining
the component distributions and Section 5.6 uses the findings of the previous
sections for confounder detection and identification. Finally, the experiments
are provided in Section 5.7.

5.2 Mixture of product distributions

Consider d > 2 continuous observed random variables X;, X, ..., Xy with
ranges { X }1<j<q and assume that their joint distribution P(Xj,. .., X,) has
a density with respect to the Lebesgue measure. Further, let Z be a finite-
range (i.e., that takes on values from a finite set) latent variable? with values
in {z® ... 2™} Only for Sections 5.3-5.5, let X1, ..., Xy be jointly con-
ditionally independent given Z, denoted by X; 1L Xy I ... L X,|Z. This

2We often simply say “finite variable” to mean a finite-range variable.
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implies the following decomposition of P(X7, ..., X,) into a finite mixture of
product distributions:

P(Xy,...,Xo) =Y PE) ] PGD) (5.1)

where P(2)) = P(Z = z:0) £ 0.

By parameter identifiability of model (5.1), we refer to the question of when
P(X3,...,X,) uniquely determines the following parameters: (a) the num-
ber of mixture components m, and (b) the distribution of each component
P(X1,...,X4/2") and the mixing weights P(2*) up to permutations of z-
values.® In the next three sections, we focus on determining (a) and (b), when
model (5.1) is identifiable. This can be further used to infer the existence of
a latent variable confounding a set of observed variables and reconstruct this
confounder (Section 5.6).

5.3 Identifying the number of mixture com-
ponents

Various methods have been proposed in the literature to select the number
of mixture components in a mixture model (e.g., Feng and McCulloch [1996],
Bohning and Seidel [2003], Rasmussen [2000], Iwata et al. [2013]). However,
they impose different kind of assumptions than the conditional independence
assumption of model (5.1), e.g., that the distributions of the components be-
long to a certain parametric family. Assuming model (5.1), Kasahara and
Shimotsu [2010] proposed a nonparametric method that requires discretiza-
tion of the observed variables and provides only a lower bound on m. In
the following, we present a method to determine m in (5.1) without making
parametric assumptions on the component distributions.

3We interchangeably refer to m as the number of mixture components or as the number
of states of Z.
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5.3.1 Hilbert space embedding of distributions
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Our method relies on representing P(X7, ..., Xy) as a vector in a reproducing
kernel Hilbert space (RKHS). We briefly introduce this framework. For a
random variable X with range X', an RKHS H on X with kernel % is a space
of functions f : X — R with dot product (-,-), satisfying the reproducing
property [Scholkopf and Smola, 2002]:

(f(),k(z,-)) = f(x), and consequently,
<I{Z<I, ')7 k(xla )> = k(xv l’/)

The kernel thus defines a map = — ¢(x) := k(z,.) € H satisfying k(z,2’) =
(p(x), p(x")), i.e., it corresponds to a dot product in H.

Let P denote the set of probability distributions on X', then we use the
following mean map [Smola et al., 2007] to define a Hilbert space embedding
of P:

piP =M P(X) e Ex[6(X)] (5.2)

We will henceforth assume this mapping to be injective, which is the case if
k is characteristic [Fukumizu et al., 2008], as the widely used Gaussian RBF
kernel k(z,z') = exp(— ||z — 2'||* /(202)).

We use the above framework to define Hilbert space embeddings of distribu-
tions of every single X;. To this end, we define kernels k; for each X;, with
feature maps x; — ¢;(z;) = k(z;,.) € H;. We thus obtain an embedding s,
of the set P; into H; as in (5.2).

We can apply the same framework to embed the set of joint distributions
aon Xp x ... x X;. We simply define a joint kernel k; 4 by

77777

kl ,,,,, d((xla s wxd)a (xlb te 7'%.21)) = ij<xj’x;>
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with

where (&) stands for the Hilbert space tensor product. We use the following
mapping of the joint distribution:

d
pi,.d:Prd— ®HJ
j=1
d
P<X1> 7Xd) = Ex,..., Xd[® ¢J(XJ)]
j=1

5.3.2 Identifying the number of components from the
rank of the joint embedding

By linearity of the maps j;
decomposes into:

4 and p;, the embedding of the joint distribution

.....

m d
Ux,..x, =l d<P(X1,...,Xd)>:ZP(Z@)®Exj[¢j<Xj>|z<“] (5.3)

=1

Definition 9 (full rank conditional) Let A, B be two random variables
with ranges A, B, respectively. The conditional probability distribution P(A|B)
is called a full rank conditional if {P(A|b)}pes is a linearly independent set
of distributions.

Recalling that the rank of a tensor is the minimum number of rank 1 tensors
needed to express it as a linear combination of them, we obtain:

Theorem 1 (number of mixture components) If P(Xy,..., Xy) is de-
composable as in (5.1) and P(X;|Z) is a full rank conditional for all1 < j < d,
then the tensor rank of Ux, . x, is m.

.....
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Proof. From (5.3), the tensor rank of Uy, . x, is at most m. If the rank is
m' < m, there exists another decomposition of Uy, . x, (apart from (5.3))
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.....

as Zzl ®j:1 v; j, with non-zero vectors v; ; € H;. Then, there exists a vector
w € Hy,s.t. w L spanfvy g, ..., v} and w ¥ span{(Ex, [¢1(X1)]29])1<i<m }-
The dual vector ,w) defines a linear form H; — R. By overloading nota-
tion, we consider it at the same time as a linear map Hi ® -+ ® Hyq —
Ho®- ®’Hd , by extendmg it with the identity map on Hsy® - ®Hd Then,

<Zz 1®J VUi w) = S0 (i, w) @, viy = 0 but (Ux, . x,,w) # 0. So,
]

The assumption that P(X;|Z) is a full rank conditional, i.e., { P(X;|2)}icpm
is a linearly independent set, is also used by Allman et al. [2009] (see Sec-
tion 5.4). It does not prevent P(X,|2(@) from being itself a mixture distribu-
tion, however, it implies that, for all j,q, P(X;|2(?) is not a linear combina-
tion of {P(X;|2)},»,. Theorem 1 states that, under this assumption, the
number of mixture components m of (5.1) (or equivalently the number of val-
ues of Z) is identifiable and equal to the rank of Ux, . x,. A straightforward
extension of Theorem 1 reads:

.....

Lemma 1 (infinite Z) If Z takes values from an infinite set, then the ten-
sor rank of Ux, ... x, 1s infinite.

.....

Although their connection to causal discovery may not be obvious yet, Theo-
rem 1 and Lemma 1 are used later, in Section 5.6, for detecting the existence
of a finite-range confounder.

5.3.3 Empirical estimation of the tensor rank from fi-
nite data

Given empirical data for every X {:L‘gl), T; , ce 3

x,, We replace it with the empirical average

} to estimate the rank

,,,,,

U, = % > ® o). (5.4)
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which is known to converge to the expectation in Hilbert space norm [Smola
et al., 2007].

The vector U x1,...x, still lives in the infinite dimensional feature space H; . 4,
which is a space of functions X} x --- x X3 — R. To obtain a vector in a
finite dimensional space, we evaluate this function at the n? data points
(xgql), . ,xqu)) with ¢; € {1,...,n} (the d-tuple of superscripts (qi,. .., qq)
runs over all elements of {1, ..., n}%). Due to the reproducing kernel property,
this is equivalent to computing the inner product with the images of these

points under ¢; g4

d
. A 1 ; ;
Vs, = <uxl,...,xd, ®¢j<x§qﬂ>>> =Y kG 65
j=1 '

For d = 2, V is a matrix, so one can easily find low rank approximations
via truncated Singular Value Decomposition (SVD) by dropping low SVs.
For d > 2, finding a low-rank approximation of a tensor is an ill-posed prob-
lem [De Silva and Lim, 2008|. By grouping the variables into two sets, say
Xi,..., Xsand X4iq,..., Xy without loss of generality, we can formally ob-
tain the d = 2 case with two vector-valued variables. This amounts to reduc-
ing V in (5.5) to an n X n matrix by setting ¢; = -+ = gs and gs11 = - -+ = qq-
In theory, we expect the rank to be the same for all possible groupings. In
practice, we report the rank estimation of the majority of all groupings. The
computational complexity of this step is O(2¢71n?).

5.4 Identifiability of component distributions

Once we have determined the number of mixture components m of model
(5.1), we proceed to step (b) (see Section 5.2) of recovering the distribution
of each component P(X7, ..., X,|z®) and the mixing weights P(z(). In the
following, we describe results from the literature on when these parameters
are identifiable, for known m. Hall and Zhou [2003] proved that when m = 2,
identifiability of parameters always holds in d > 3 dimensions. For d = 2 and
m = 2 the parameters are generally not identifiable: there is a two-parameter
continuum of solutions. Allman et al. [2009] established identifiability of the
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parameters whenever d > 3 and for all m under weak conditions®, using a
theorem of Kruskal [1977]. Finally, Kasahara and Shimotsu [2010] provided
complementary identifiability results for d > 3 under different conditions
with a constructive proof.

5.5 Identifying component distributions

Theorem 1 states that the number of mixture components m of model
(5.1) can be identified with the rank of the Hilbert space embedding of
P(Xy,...,X4). Further, Section 5.4 presented existing results concerning
the identifiability of the component distributions {P(X1, ..., X4[2®) }i<icm.
In this section, we propose an algorithm that identifies the mixture compo-
nents. Specifically, consider n data points drawn from P(Xj,..., Xy), with
P(Xy,...,X4) belonging to an identifiable model (5.1). Further, let m be
known (it can be estimated as described in Section 5.3.3). Our goal is to
cluster the n data points using m labels in such a way that the distribution
of points with label ¢ is close to the unobserved empirical distribution of every
mixture component, P,(X1,...,X4/2®). In what follows, we often refer to
the number of mixture components m as the number of clusters.

5.5.1 Existing methods

Probabilistic mixture models or other clustering methods can be used to iden-
tify the mixture components (clusters) (e.g., von Luxburg [2007], Béhning
and Seidel [2003], Rasmussen [2000], Iwata et al. [2013]). However, they
impose different kind of assumptions than the conditional independence as-
sumption of model (5.1) (e.g., Gaussian mixture model). Assuming model
(5.1), Levine et al. [2011] proposed an Expectation-Maximization (EM) algo-
rithm for nonparametric estimation of the parameters in (5.1), given that m
is known. Their algorithm uses a kernel as smoothing operator. They choose
a common kernel bandwidth for all the components because otherwise their
iterative algorithm is not guaranteed not to increase from one iteration to

“The same assumption used in Theorem 1, namely that P(X;|Z) is a full rank condi-
tional for all j.
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another. As stated also by Chauveau et al. [2010], the fact that they do
not use an adaptive bandwidth [Benaglia et al., 2011] can be problematic
especially when the distributions of the components differ significantly.

5.5.2 Proposed method: clustering with independence
criterion (CLIC)

The proposed method, CLIC (CLustering with Independence Criterion), as-
signs each of the n observations to one of the m mixture components (clus-
ters). We do not claim that each single data point is assigned correctly
(especially when the clusters are overlapping). Instead, we aim to yield the
variables jointly conditionally independent given the cluster (label) in order
to recover the mixture components according to model (5.1).

To measure conditional independence of X1, ..., Xy given the cluster we use
the Hilbert Schmidt Independence Criterion (HSIC) [Gretton et al., 2008].
It measures the Hilbert space distance between the kernel embeddings of the
joint distribution of two (possibly multivariate) random variables and the
product of their marginal distributions. If d > 2, we test for mutual indepen-
dence. For that, we perform multiple tests, namely: X; against (Xo, ..., Xy),
then X, against (X3,...,X,) etc. and use Bonferroni correction. For each
cluster, we consider as test statistic the HSIC from the test that leads to the
smallest p-value (“highest” dependence).

We regard the negative sum of the logarithms of all p-values (each one cor-
responding to one cluster) under the null hypothesis of independence as our
objective function. The proposed algorithm is iterative. We first randomly
assign every data point to one mixture component. In every iteration we
perform a greedy search: we randomly divide the data into disjoint sets of
¢ points. Then, we select one of these sets and consider all possible assign-
ments of the set’s points to the m clusters (m¢ possible assignments). The
assignment that optimizes the objective function is accepted and the points
of the set are assigned to their new clusters (which may coincide with the
old ones). We, eventually, repeat the same procedure for all disjoint sets and
this constitutes one iteration of our algorithm. After every iteration we test
for conditional independence given the cluster. The algorithm stops after
an iteration when any of the following happens: we observe independence in
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Algorithm 1 CLIC
1: input data matrix x of size n x d, m, ¢

2: random assignment cluster(i) € {1,...,m},i =1,...,n of the data into
m clusters

3: while conditional dependence given cluster and clusters change do

4:  obj = computeObj(cluster)

5. choose random partition S;,7 =1, ..., J of the data into sets of size c

6: for j=1to Jdo

7: newCluster = cluster

8: for all words w € {1,...,m}° do

9: newCluster(S;) = w

10: objNew(w) = computeObj(newCluster)

11: end for

12: wOpt = argmin(objNew)

13: cluster(S;) = wOpt

14: end for
15: end while

16: if conditional independence given cluster then
17:  output cluster

18: else

19:  output “Unable to find appropriate clusters.”
20: end if

all clusters, no data point has changed cluster assignment, an upper limit of
iterations has been reached.

The algorithm may not succeed at producing conditionally independent vari-
ables for different reasons: e.g., incorrect estimation of m from the previous
step or convergence to a local optimum. In that case, CLIC reports that it
was unable to find appropriate clusters.

Along the iterations, the kernel test of independence updates the bandwidth
according to the data points belonging to the current cluster (in every dimen-
sion). Note, however, that this is not the case for the algorithm in Section 5.3.
There, we are obliged to use a common bandwidth, because we do not yet
have any information about the mixture components.

The parameter ¢ allows for a trade-off between speed and avoiding local
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optima: for ¢ = n, CLIC would find the global optimum after one step,
but this would require checking m"™ cluster assignments. On the other hand,
¢ = 1 leads to a faster algorithm that may get stuck in local optima. In all
experiments we used ¢ = 1 since we did not encounter serious problems with
local optima. Considering ¢ to be a constant, the computational complexity
of CLIC is O(m®n?) for every iteration. Algorithm 1 includes the pseudocode
of CLIC.

5.6 Identifying latent variables/confounders

In this section, we use the results of the previous sections of this chapter for
Problems 3 and 4. Before stating our assumptions and main theorem (The-
orem 5), we first present some necessary definitions, lemmas and theorems.

Definition 10 (full rank BN) A BN (G, P(X)) (or an FPM inducing
P(X)) is called full rank if P(X;|PA;) is a full rank (f.r.) conditional’ for
all j.

The following theorem includes an example of full rank FPM, namely ANM
with injective functions:

Theorem 2 (ANM is full rank) If P(X) is induced by an ANM:
Xj=fiPA)+N;,  j=1,....d
with {N;} jointly independent and { f;} injective functions, then { P(X;|PA;)};

are full rank conditionals. So, an ANM with injective functions is full rank.

The proof is a straightforward application of Lemma 2:

Lemma 2 (shifted copies) Let R be a probability distribution on R and
TiR its copy shifted by t € R to the right. Then {T;R}iecr are linearly inde-
pendent.

5See Definition 9.
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Proof. Let .
> T, R=0, (5.6)
j=1

for some ¢ and some g-tuple a1,..., 0, Let R be the Fourier transform of
R. If we set g(w) := Y 9_; a;e™ then (5.6) implies g(w)R(w) = 0 for all
w € R, hence g vanishes for all w with R(w) = 0, which is a set of non-zero
measure. Since g is holomorphic, it therefore vanishes for all w € R and thus

all coeflicients are zero. O

Lemma 3 (full rank conditional given parent) If A € PAy is one of
the parents of X in a f.r. BN, then, since P(X|PAx) is a f.r. conditional
(by Definition 10), P(X|A) is also a f.r. conditional (after marginalization).

Remark: If A — B — C is part of the DAG of a f.r. BN, then P(B|A) and
P(C|B) are f.r. conditionals (Lemma 3), which implies that P(C|A) is also
a f.r. conditional, since it results from their multiplication.

Theorem 3 (rank of parent-child pair) Assume A is a parent of B in
a f.r. BN. Then, the rank of Ua p is equal to the number of values that A
takes, if A is finite. If A is infinite, then the rank of Ua p is infinite.

Proof. According to Lemma 3, P(B|A) is a fr. conditional. Since
A 1L BJA (trivially), applying Theorem 1 for finite Z := A we conclude
that the rank of U, p is equal to the number of values of A. For infinite A,
we similarly apply Lemma 1 and we get infinite rank of U4 5. O

Theorem 4 (rank of d-separated pair) Assume A < C — B is the
DAG of a full rank BN. Then, the rank of Ua p is equal to the number of
values of C.

Proof. The proof is straightforward: by Definition 10, P(A|C) and P(B|C)
are f.r. conditionals. Additionally, A I B|C and then, according to The-
orem 1, the rank of U, p is equal to the number of values of Z := C (for
infinite C, the rank is infinite). O
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Theorems 3 and 4 state what is the expected rank of Uy p for various fr.
BNs. Instead, our goal is to infer the structure (see Problems 3 and 4). We
first focus on Problem 3. Unlike other methods, we neither make explicit
assumptions on the distribution of the variables nor assume faithfulness.
Instead, we assume that:

Assumption 1

(a) the Bayesian Network (G, P(X,L)) (and the FPM) considered in Prob-
lem 3 is full rank.

(b) there is at most one (if any) latent variable, i.e., either { =1 orl = 0.

(c) latent variables are not descendants of observed ones.

The following theorem uses Theorem 3 to infer G based on the rank of the
Hilbert space embedding of the observed joint distribution P(X).

Theorem 5 (identifying latent variables) Assume that the observed vari-
ables X1, ..., Xy are continuous, pairwise dependent. If Assumption 1 holds

and the rank of Ux, .. x,, with d > 3, is finite, then Fig. 5.2 depicts the only

possible DAG G and P(Xy,..., X4, W) is identifiable up to reparameteriza-

tions of the unobserved variable W.

Proof. Assume there is at least one edge between two observed variables in
G: X; — Xy. Then, according to Theorem 3, the rank of Uy, x,, and thus
the rank of Ux, . x,, would be infinite. Therefore, edges between the {X;}
can be excluded. Then, the statistical dependences between the {X;} can
only be explained by latent variables. Since G, by Assumption 1(b), has at
most one latent variable and the observed variables are pairwise dependent,
the only possible f.r. DAG is depicted in Fig. 5.2 (with L = W). This
implies X; 1L Xy L ... L X;|W (according to the Markov condition), so
model (5.1) holds, with Z := W being the latent variable. According to the
previous sections (Theorem 1 and Section 5.4), this model is identifiable. [

Based on Theorem 1, the number of values of W is equal to the rank of
Ux,  x, and P(Xy,..., X4, W) can be identified according to Section 5.5.
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Figure 5.2: Inferred DAG G (the dotted circle represents an unobserved
variable).

Note that the single latent variable W could be the result of merging many
latent variables Wi, ..., W} to one vector-valued variable W. Thus, at first
glance, it seems that one does not lose generality by assuming only one
latent. However, Assumption 1(a), then, excludes the case where W consists
of components each of which only acts on some different subset of the {Xj}.
Wi, ..., Wy should all be parents of all {X}.

Note that Theorem 5 solves Problem 3 under Assumption 1, when the rank of
,,,,, x, 1s finite. In contrast, if the rank is infinite, no structure is inferred:
infinite rank can be due to edges between the observed variables and/or due
to continuous latent variables, etc.

Since we are given only finite data, the estimated rank of Ux, . x, is always
finite, highly depending on the strength of the dependences and the sample
size. Then, we are faced with the issue that, based on Theorem 5, we would
always infer that Fig. 5.2 depicts the only possible f.r. BN, with the number
of values of W being equal to the estimated rank. However, the lower the
rank, the more confident we get that this is, indeed, due to the existence of a
latent variable that renders the observed variables conditionally independent
(Fig. 5.2). On the other hand, high rank can also be due to edges between
the observed variables or continuous latent variables. For that, we consider
Theorem 5 to be more appropriate for inferring the existence of a latent vari-
able with a small number of values which would lead to low rank. However,
we admit that what is considered “high” or “low” is not well defined. For
example, how much “high” rank values we expect for the DAG X; — X,
depends on the strength of the dependence: roughly speaking, low depen-
dence between X; and X5 could lead to low estimated rank. In practice, we
could make a vague suggestion that whenever the estimated rank is below 5
(although the dependence between the {X;} is strong), it is quite possible
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that this is due to a latent variable (Fig. 5.2) but for higher rank it is getting
more difficult to decide upon the underlying structure.

Causal counterpart Using Assumption 1 for the causal BN considered in
Problem 4, Theorem 5 gets directly applicable to Problem 4. In this case, the
inferred DAG of Fig. 5.2 is the causal DAG G of Problem 4 and the latent

variable W is a confounder.

5.7 Experiments

We conduct experiments both on simulated and real data. In all our ex-
periments we use a Gaussian RBF kernel k(z, 2') = exp (—||z — 2'||?/(20?)).
Concerning the first step of determining the number of mixture components:
a common way to select the bandwidth o; for every k; is to set it to the me-
dian distance between all data points in the jth dimension of the empirical
data. However, this approach would usually result in an overestimation of
the bandwidth, especially in case of many mixture components (see also [Be-
naglia et al., 2011]). To partially account for this, we compute the bandwidth
for every X; as the median distance between points in the neighborhood of
every point in the sample. The neighborhood is found by the 10 nearest
neighbors of each point computed using all other variables apart from X;.
To estimate the rank of V', we find its SVD and report the estimated rank as
m = argmin,(SV;;1/SV;) within the SVs that cover 90-99.999% of the total
variance. Finally, concerning CLIC, we use 7 as the maximum number of
iterations, but usually the algorithm terminates earlier.

5.7.1 Simulated data

Simulated data are generated according to the DAG of Fig. 5.2 (we henceforth
refer to them as the first set of simulated data), i.e., model (5.1) holds with
Z :=W,since X7 L Xy L ... L X4|W. We first generate Z from a uniform
distribution on m values. Then, the distribution P(X;]2()) of each mixture
component in every dimension is chosen randomly between: (i) a normal
distribution with standard deviation 0.7, 1, or 1.3, (ii) a t-distribution with
degrees of freedom 3 or 10, (iii) a (stretched) beta distribution with alpha



MIXTURES OF PRODUCT DISTRIBUTIONS

CHAPTER 5.\ ND INFERENCE OF CONFOUNDERS

56
0.5 or 1 and beta 0.5 or 1, and (iv) a mixture of two normal distributions
with variance 0.7 for each. The distance between the components in each
dimension is distributed according to a Gaussian with mean 2 and standard
deviation 0.3. We choose the distance and the mixtures such that the exper-
iments cover different levels of overlap between the components and at the
same time {P(X;|2)};<,, are generically linearly independent. This way
the assumptions of Theorem 1 are satisfied so we expect the rank of Ux, . x,
to be m. We run 100 experiments for each combination of d = 2,3,5 and
m = 2,3,4,5, with the sample size being 300 x m.

For comparison, we additionally generate data where there are edges also
between the observed variables and thus are conditionally dependent given
the confounder (we henceforth refer to them as the second set of simulated
data). For that, we first generate data according to the DAG of Fig. 5.2,
as above, for d = 2 and m = 1 (which amounts to no confounder) and for
d = 2 and m = 3 (3-state confounder). X, is then shifted by 4.X; to simulate
X1 — Xs. In this case, according to Theorem 3, the rank of Uy, x, is infinite.

Identifying the number of mixture components

We first report results on the first part of identification, i.e. identifying the
number of mixture components m of (5.1). The empirical rank estimation
may depend on the strength of the dependences, the kernel bandwidth selec-
tion, the sample size and the way to estimate the rank by keeping only large
eigenvalues. Figures 5.3, 5.4, 5.5 and 5.6 illustrate histograms of the esti-
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60, 60
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12345678910 12345678910 12345678910
Estimated m Estimated m Estimated m

Figure 5.3: Histograms of the estimated number of mixture components m
for the first set of simulated data, for m = 2 throughout, and d = 2 (left),
d = 3 (middle), d = 5 (right).
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Figure 5.4: As Fig. 5.3 but for m = 3.
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Figure 5.5: As Fig. 5.3 but for m = 4.
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Figure 5.6: As Fig. 5.3 but for m = 5.



MIXTURES OF PRODUCT DISTRIBUTIONS

58 CHAPTER 5 ) ND INFERENCE OF CONFOUNDERS
20 15
15
10
10
5
5

0 0
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
Estimated m Estimated m

Figure 5.7: Histograms of the estimated m (estimated rank of Ux, x,) for
the second set of simulated data, i.e., with an edge between the observed
variables. Left: no confounder, right: 3-state confounder. As expected, we
get relatively “high” values as compared to the estimated m for the first set
of simulated data (see Figs. 5.3-5.6).

mated number of mixture components (equivalently the estimated number
of values of the confounder) for the first set of simulated data for m = 2,3, 4
and 5, respectively. Each figure contains one histogram for every value of
d = 2,3 and 5. We can observe that as m increases the method becomes
more sensitive in underestimating the number of components, a behavior
which can be explained by the common sigma selection for all the data in
each dimension or by high overlap of the distributions (which could violate
Assumption 1(a)). On the other hand, as d increases the method becomes
more robust in estimating m correctly due to the grouping of variables that
allows multiple rank estimations. The “low” estimated rank values provide
us with some evidence that the DAG of Fig. 5.2 is true (Theorem 5). Of
course, as stated also at the end of Section 5.6, it is difficult to define what
is considered a low rank.

Figure 5.7 depicts histograms of the estimated number of mixture compo-
nents for the second set of simulated data. According to Theorem 3, the
edge X; — Xj results in an infinite rank of Ux, x,. Indeed, we can observe
that in this case the estimated m is much higher. The “high” estimated rank
values provide us with some evidence that the underlying DAG may include
edges between the observed variables or confounders with a high or infinite
number of values. Note that, depending on the strength of the dependence
between X; and X5, we may get higher or lower rank values. For example,
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X2

Figure 5.8: (a) Ground truth, (b) input, (¢) CLIC output, (d) Levine output,
and (e) EM output for simulated data generated for m = 3 and d = 2. Each
color represents one mixture component. EM incorrectly merges two clusters
since it assumes a Gaussian mixture model and not model (5.1), as opposed

to CLIC and Levine methods.

if the strength is very weak we get lower rank values since the dependence
between X; and X5 tends to be dominated by the confounder (that has a
small number of values).

Full identification framework

Next, we perform experiments using the first set of simulated data to evaluate
the performance of the proposed clustering method (CLIC) (Section 5.5.2),
the method of Levine et al. [2011] (Section 5.5.1) and the EM algorithm
using a Gaussian mixture model (EM is repeated 5 times and the solution
with the largest likelihood is reported). In the following, we refer to these
methods as CLIC, Levine, and EM, respectively. For each data point, the
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Figure 5.9: Squared MMD between output and ground truth clusters, for
each of the three methods, for simulated data with (a) d = 3,m = 2, (b)
d=3,m=3and (¢c) d = 5,m = 2. CLIC and Levine methods perform
significantly better than EM, since they assume model (5.1).

two latter methods output posterior probabilities for the m clusters, which we
sample from to obtain cluster assignments. Figure 5.8 illustrates the cluster
assignments of these three methods for one simulated dataset® with m = 3
and d = 2. Note that permutations of the colors are, as expected, due to the
ambiguity of labels in the identification problem. However, EM incorrectly

6This example is intended for visualization purposes only, because for these values of
d and m model (5.1) is not always identifiable according to Section 5.4.
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identifies a single component (having a mixture of two Gaussians as marginal
density in X; dimension) as two distinct components. It is clear that this is
because it assumes that the data are generated by a Gaussian mixture model
and not by model (5.1), as opposed to CLIC and Levine methods.

We compare the distribution of each cluster output, for each of the three
methods, to the empirical distribution, P,(X7,...,X4|2"), of the corre-
sponding mixture component (ground truth). For that we use the squared
maximum mean discrepancy (MMD) [Gretton et al., 2012] that is the dis-
tance between Hilbert space embeddings of distributions. We only use the
MMD and not one of the test statistics described in [Gretton et al., 2012],
since they are designed to compare two independent samples, whereas our
samples (output and ground truth) have overlapping observations. To ac-
count for the permutations of z-values, we measure the MMD for all cluster
permutations and select the one with the minimum sum of MMD for all
clusters. Figures 5.9(a)-5.9(c) report the squared MMD results of the three
methods for different combinations of m and d. Each point corresponds to
the squared MMD for one cluster of one of the 100 experiments. Results are
provided only for the cases that the number of components m is correctly
identified from the previous step. The CLIC method is unable to find ap-
propriate clusters in 2 experiments for d = 3 and m = 3 and in 13 for d =5
and m = 2. Without claiming that the comparison is exhaustive, we can
infer that both CLIC and Levine methods perform significantly better than
EM, since they impose conditional independence. For higher d, EM improves
since the clusters are less overlapping. However, the computational time of
CLIC is higher compared to the other two methods.

5.7.2 Real data

We further apply our framework to the Breast Cancer Wisconsin (Diagnostic)
dataset from the UCI Machine Learning Repository [Bache and Lichman,
2013]. The dataset consists of 32 features of breast masses along with their
classification as benign (B) or malignant (M). The sample size of the dataset
is 569 (357 B, 212 M). We select 3 features, namely perimeter, compactness
and texture, which are pairwise dependent (the minimum p-value is pval =
2.43e — 17), but become (close to) mutually independent when we condition
on the class (B or M) (pvalg = 0.016, pvaly; = 0.013). We apply our method
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Figure 5.10: (a) Ground truth, (b) input, (c¢) output CLIC, (d) Levine, and
(e) EM for the breast data. Levine’s method clustering is far from the ground
truth for this dataset.
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Figure 5.11: Squared MMD between output and ground truth clusters for
(a) breast and (b) arrhythmia data.

to these three features (assuming the class is unknown) and we succeed at
correctly inferring that the number of mixture components is 2. Figure 5.10
depicts the ground truth of the breast data, the input and the results of
CLIC, Levine and EM, and Fig. 5.11(a) the corresponding squared MMDs.
We can observe that Levine method performs very poorly for this dataset.

Additionally, we select different features, namely perimeter and area, and
concavity and area, which are not conditionally independent given the binary
class. In this case, we get rank values higher than two, in particular 62 and
8, respectively (Fig. 5.12).

We similarly apply our framework to the Arrhythmia dataset (sample size
452)[Bache and Lichman, 2013]. We select 3 features, namely height, QRS
duration and QRSTA of channel V1 which are dependent (minimum pval =
8.96e — 05), but become independent when we condition on a fourth feature,
the sex of a person (male or female) (pvaly, = 0.0607, pvalp = 0.0373). We
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Figure 5.12: Breast data: features conditionally dependent given the class.
In this case the estimated m is much higher than 2. Top: estimated m = 62,
bottom: estimated m = 8.

apply our method to the three features and succeed at correctly inferring
that the number of mixture components is 2. Figure 5.13 depicts the ground
truth, the input and the results of CLIC, Levine and EM, and Fig. 5.11(b)
the corresponding squared MMDs. We can observe that Levine and EM
methods perform very poorly for this dataset.

Finally, we apply our method to a database with cause-effect pairs’ (version
0.8), a detailed description of which has recently been provided by Mooij

Thttp://webdav.tuebingen.mpg.de/cause-effect /
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Figure 5.13: (a) Ground truth, (b) input, (¢) output CLIC, (d) Levine, and
(e) EM for the arrhythmia data. Both Levine and EM methods perform very
poorly for this dataset.
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Figure 5.14: Four cause-effect pairs. Estimated m: (a) m
(¢c) m =8, and (d) m = 63.

et al. [2014]. It includes pairs of variables from various domains with known
causal structure, X — Y. Since X — Y, we expect the rank of Uxy to
be infinite given our assumptions (Theorem 3), even if there exist hidden
confounders. However, the estimated rank from finite data is always finite,
its magnitude strongly depending on the strength of the dependence and the
sample size, as mentioned in Section 5.6. Figure 5.14 depicts 4 cause-effect
pairs with the same sample size (1000 data points) but various degrees of
dependence, specifically: (a) pval = 7.16e — 12, (b) pval = 9.41e — 63, (c)
pval = 1.21e — 317 and (d) pval ~ 0. The estimated ranks are m = 1,4,8
and 63, respectively. Note that when X and Y are close to independent (e.g.,
Fig. 5.14(a)) the assumption of pairwise dependence of Theorem 5 is almost
violated.
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5.8 Conclusion

In this chapter, we introduce a kernel method to identify finite mixtures of
nonparametric product distributions. The method is further used to infer
the existence and identify a finite hidden common cause of a set of observed
variables. Experiments on simulated and real data were performed for eval-
uation of the proposed approach. The proposed method has the advantage
of being nonparametric. On the downside, it is difficult to arrive at definite
conclusions from finite data and the method is in practice more appropriate
for the identification of a confounder with a small number of states.
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Chapter 6

Ruling out the existence of
confounders

6.1 Introduction

The findings of this chapter are complementary to those of the previous,
again concerning a specific variant of Problems 3 and 4. Particularly, our
goal is, based on P(X,Y), to distinguish between X — Y and DAGs in
which there exists a low range hidden variable Z in the path between X and
Y that d-separates them, e.g. X < Z — Y.

The motivation stems from statistical genetics. An important problem in
biology and medicine is to find genetic causes of phenotypic differences among
individuals. Let Y describe a phenotypic difference among individuals such as
the presence or absence of a disease, the size of a plant, or the expression level
of a gene. These phenotypes are known to correlate with polymorphic loci
in the genome, such as single-nucleotide polymorphisms (SNPs). However,
due to the strong dependences among nearby SNPs, it is hard to identify
those that influence the phenotype. Given a SNP X that is correlated with
a phenotype of interest Y, we want to detect whether this marker is causal
or it only correlates with a causal one. Specifically, the task is to decide
whether the dependence between X and Y is because X influences Y or only
due to statistical dependence between X and some other unobserved SNPs 7

69
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influencing Y. Z could be also some environmental condition that influenced
X (via evolution) and Y. Thus, we have either

1. X =Y or

2. X+ Z =Y or X <& Z — Y, where <+ symbolizes that X and Z are
related by a common cause.

We assume that Z in the second category is a low range variable, which is
the case if, for example, it describes only a small number of SNPs, each of
which is a binary variable. Note that domain knowledge excludes ¥ — X.
Moreover, cases in which both categories 1. and 2. hold, e.g., X — Y and
they are confounded by Z, are also included in the first category, since the
goal is to decide whether SNP X influences Y. In case of the first category,
we call X a causal SNP and (X, Y) a causal pair while in the second category
X is called a non-causal SNP and (X,Y") a non-causal pair.!

We propose a method to distinguish the first DAG (X — Y) from the rest
where a low range unobserved variable Z d-separates X and Y. The pro-
posed method is based on a property of conditionals which we call purity.
The characterization of a conditional as pure depends on the location of the
conditional distributions {P(Y|X = )}, in the simplex of all probability
distributions of Y. A pure conditional P(Y|X) excludes the existence of a
low range unobserved variable that d-separates X and Y, thus leading to
X =Y.

Purity is introduced in Section 6.2 and Section 6.3 describes how to estimate
it from finite data. Section 6.4 includes experimental results followed by a
conclusion in Section 6.5.

6.2 Pure conditionals

We introduce a property of a conditional distribution P(Y|X), called purity.
Let X, ), Z denote the ranges of three random variables X, Y, Z, respectively,

!This naming is due to the role of SNP X with respect to the phenotype Y: in the
first category X is causal for Y, while in the second it is not.
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Figure 6.1: Visualization of the location of different {P(Y|X = z)}, in the
simplex Py, here for |Y| = 3: (a) pairwise pure, because the line connecting
P(Y|X = z1) and P(Y|X = 23) (the black dots) cannot be extended without
leaving the simplex; (b) one-sided pairwise pure; (c¢) and (d) are not pairwise
pure, although both points in (d) are not in the interior of Py.

and Py, Py, Pz denote the simplex of probability distributions on these sets,
respectively. Clearly, P(Y|X = z) € Py for every x € X and also every
convez combination of distributions { P(Y|X = z)}, lies in Py. Whether also
affine combinations that contain some negative coefficients yield distributions
in Py is an interesting property of P(Y|X). We assume that P(X,Y’) has a
density p(z,y) w.r.t. a product measure.

Definition 11 (pure conditional)
A conditional P(Y|X) is called k-wise pure if for every k-tuple of different
x-values (xq,...,x) the following condition holds: for all A € R*\ [0,1]*
k
Jy: Y oyl <0

j=1
We also say “pairwise pure” instead of “2-wise pure”. P(Y|X) is called one-
sided pairwise pure if for every pair (ry,xs) with Ty # xo and for all p < 0
either

Jy o wp(ylrr) + (1 — p)p(yles) <0
or Jy: pp(ylzra) + (1 — p)p(ylr:) <0

(see Fig. 6.1 for some examples).
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Lemma 4 (quotient of densities)
P(Y|X) is pairwise pure if and only if for every pair (z1,xs) with x1 # 3

0 p(y|$1)
yeY :p(yle2)#0 p(y|xy)

—0. (6.1)

One-sided pairwise purity holds if and only if, for every pair (x,z'), (6.1)
holds either for x1 = x and xo = x’ or for x1 =z’ and x5 = x.

Proof. If (6.1) does not hold we set ¢ := inf, p(y|z1)/p(y|zr2) with 0 < ¢ < 1.
Then choosing the coefficient 1 = 1/(1 — ¢) (such that 1 — u is negative)
ensures

pp(yle:) + (1 — pw)p(ylre) >0, (6.2)

for all y with p(y|za) # 0. If p(ylze) = 0, the left hand side of (6.2) is
non-negative anyway. Hence, purity is violated. On the other hand, if
P(Y|X) is not pure there is by definition a pair (z1,z2) and u < 0 such
that (1 — p)p(y|z1) + pp(y|ze) > 0 for all y, then % > 1, which con-

tradicts (6.1). O

The following theorem states that if a conditional P(Y'|X) is pairwise pure
then the existence of an unobserved variable (with compact range and P(Z|x)
having continuous strictly positive densities) that d-separates X and Y can
be excluded, thus leading to X — Y.

Theorem 6 (excluding compact 7)
If P(Y|X) is pairwise pure then there is no variable Z with compact range

and all {P(Z|x)}, having continuous strictly positive densities such that
X 1Y|Z

Proof. Assume such a variable Z existed. Since {P(Z|z)}, have continuous
strictly positive densities and Z has compact range, the conditional P(Z]X)
is not pairwise pure according to Lemma 4 (see also Lemma 3 of Janzing
et al. [2011]). This means that, according to Definition 11, there is a pair
(x1,x2) and a coefficient A < 0 or A > 1 for which, for every z:

Ap(=|) + (1 = Ap(zaz) = 0,
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which implies that

Ammm>+a—Am@mg:y/mmamﬂmmZ+u—xy/MM@ma@mZ

= [Owlelon) + (1= NpeJaa)pllz)d= = 0
However, the latter cannot happen since P(Y'|X) is pairwise pure.

g

If both X and Z are binary, one can easily see that every non-deterministic
relation between X and Z destroys pairwise purity. It is worth noticing that
Theorem 6 is in practice applicable for low range Z. For large range of Z, the
densities of {P(Z|x)}, can often be close to zero for some z-values. Then,
non purity may not be detectable from empirical data.

So, according to Theorem 6, if a conditional P(Y'|X) is pairwise pure, then
the existence of a low range variable Z, such that X 1 Y'|Z, is excluded. This
implies that graphs belonging to the second category (see Section 6.1) are
excluded. As a result, if a conditional P(Y|X) is pairwise pure we conclude
that X — Y. Note, however, that non-pairwise-purity does not disprove
that X — Y (see for example Lemma 7 in [Janzing et al., 2011]).

6.3 Empirical estimation of purity

To decide whether P(Y'|X) is pairwise pure, Lemma 4 is used. We employ
kernel density estimation, using a Gaussian kernel, to estimate the condi-
tional density p(y|z) from finite data. Then, for all pairs (z,2’), we need to
compute the minimum p(y|z)/p(y|z’) over y. Minimizing over all possible
y is not feasible because the density estimate is unreliable in areas far from
observed data points. Hence, we revert to a pragmatic solution, constraining
y € U, with ¥ being a set of equally spaced points in the interval [Ymin, Ymax],
where ymin and Ymax denote the minimum and the maximum of all observed
y-values. That is, we compute min,ecy(p(y|z)/p(y|z’)) for all pairs (x,z’)
and refer to the max(, ») (minyew (p(y|x)/D(y|2'))) as the purity ratio of the
conditional P(Y|X).
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Figure 6.2: Histogram of the purity ratios for the two experimental settings;
for the simulation setting X — Y the purity ratio values are closer to zero
than for X «+ Z — Y.

6.4 Experiments

6.4.1 Simulated data

We consider variables XY, Z with ranges X :={0,1}, Z :={0,1}, Y := R,
respectively. We first simulate the setting X — Y. For that, we generate
data according to a linear additive noise model Y = wX + N, with w a weight
drawn from a zero mean Gaussian with unit variance. We choose N to be
distributed according to a mixture of two Gaussians. Further, X is drawn
from a Bernoulli distribution with success probability chosen uniformly at
random from [0, 1].

We then consider the setting X <— Z — Y. We generate data using a linear
additive noise model Y = wZ + N with Z drawn from a Bernoulli distribu-
tion with success probability chosen uniformly at random from [0,1]. The

observed variable X is simulated using randomly chosen transition probabil-
ities P(X|Z). Specifically, P(X = 0|Z =0) and P(X = 0|Z = 1) are drawn
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uniformly from [0, 1].

We perform 1000 repetitions of each of the two experimental settings de-
scribed above, drawing 1000 independent samples in each repetition. For
each repetition we compute the purity ratio of P(Y|X) (see Section 6.3).
Figure 6.2 depicts the histogram of the estimated ratios for both settings.
We can observe that purity ratios of P(Y|X) from the first setting (X — Y')
are predominantly smaller than 0.1, whereas purity ratios of P(Y|X) from
the second setting (X < Z — Y) tend to yield higher values. Therefore,
purity appears to be quite discriminative for these two settings.

6.4.2 Applications to statistical genetics

We next apply our method to a problem in statistical genetics, as already
mentioned in the motivation of this work (Section 6.1). Reliable ground
truth is difficult to obtain in genetic studies, and hence, following previous
work (e.g., Platt et al. [2010]), we consider realistic simulated settings. Our
simulation is based on data from a 250K SNP chip from Arabidopsis, con-
sisting of 1200 samples (downloaded http://walnut.usc.edu/2010/data/
250k-data-version-3.06). Hence, only the dependence between real ge-
netic data and phenotype measurements is simulated, whereas the joint dis-
tribution of SNPs is based on real data.

Identifying causal SNPs using purity and correlation

We investigate to what extend the purity ratio is indicative of a causal rela-
tionship between a SNP and a phenotype. As a comparison, we also consider
correlation, a basic measure of association that is commonly used in genetical
studies [Balding, 2007].

We again consider two experimental settings. First, we simulate SNP-
phenotype associations according to the setting X — Y, first choosing a SNP
X at random from the 250K SNPs, and then generating the phenotype Y
from a linear additive noise model Y = wX + N as before (see Section 6.4.1),
where N here follows a Gaussian distribution.


http://walnut.usc.edu/2010/data/250k-data-version-3.06
http://walnut.usc.edu/2010/data/250k-data-version-3.06
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Figure 6.3: Scatter plot of the correlation between each SNP and its phe-
notype versus the negative logarithm of the purity ratio of P(Y'|X). Shown
are SNPs that are causal (black) and non-causal (grey) separately. Even for
strongly correlated non-causal SNPs, the negative logarithm of the purity
ratio remains low and hence does not give false evidence for a causal link.

Analogously, we simulate associations according to the setting X <> Z — Y.
Here, Z is a SNP randomly selected among the set of all SNPs. We generate
the phenotype Y, again according to a linear ANM, Y = wZ + N. The
non-causal SNP X is chosen to be next to Z. This choice is motivated by
the strong correlation between nearby SNPs, leading to an ambiguity as to
which SNP is the causal one among a set of SNPs that may all exhibit strong
correlation to the same phenotype.

In total, we generate 1000 (SNP X, phenotype Y) pairs according to each
of the two settings described above, each pair consisting of 1200 samples as
mentioned above. For each pair we estimate the purity ratio of P(Y|X) as
well as the correlation coefficient 7?(X,Y). Fig. 6.3 shows the relationship
between the correlation coefficients and the negative logarithm of the cor-
responding purity ratios, for both experimental settings. Notice that, high
correlation coefficients are observed in both settings, while purity appears to
discriminate between the settings. Even for strongly correlated non-causal
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SNPs, the negative logarithm of the purity ratio remains low and hence does
not give false evidence for a causal link X — Y.

High correlation between the phenotype and the non-causal SNPs

Misleading correlation structure is a challenge in real association studies. A
study in Platt et al. [2010] investigates very similar simulated models to high-
light the risk of positively misleading answers from correlation analyses. We
design this experiment such that the correlation between a non-causal SNP
and its corresponding simulated phenotype can be higher than the correlation
between the causal SNP and the phenotype.

We first simulate causal (SNP X, phenotype Y') pairs, generating Y as
Y:w1X+w2V+N,

where X is any random SNP, V' is simulated as a corrupted version of another
SNP located far from X and wy = 2w;. Accordingly, we generate non-causal
(X,Y) pairs, first choosing X randomly from the set of all SNPs and then
generating Y as

Y =wZ+wV+ N,

where 7 is simulated as a corrupted version of X, V' is a SNP located far
from X and w; = 2w,. To simulate a corrupted version of a SNP, we invert a
certain percentage (corruption level) of its samples (here, Z := X @& C, with
C :={0,1} and P(C = 1) being the corruption level).

Using the above setting for the weights of the models, we often get high cor-
relations between simulated non-causal SNPs and their corresponding phe-
notypes and low correlations between simulated causal SNPs and their corre-
sponding phenotype, which can be misleading for the inference of the causal
direction. We compare the ability of purity and correlation to classify a
SNP as causal or non-causal after generating 1000 causal SNP /phenotype
and 1000 non-causal SNP/phenotype pairs. Fig. 6.4 shows the area under
the receiver operating characteristic (ROC) curve (AUC) for both methods
(purity and correlation) and for a range of different corruption levels. We can
observe that purity consistently makes more accurate decisions than naive
correlation analysis. In particular, for the limit of zero corruption both meth-
ods fail due to the strong coupling of non-causal SNPs with a simulated cause
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Figure 6.4: Area under the receiver operating characteristic curve (AUC) as a
function of the corruption level, both using purity and correlation to identify
a causal SNP. In the deterministic case (corruption=0) both methods fail, as
non-causal SNPs are deterministically coupled with a simulated cause of Y.
In the regime of high corruption levels (0.5), both methods perform equally
well, since non-causal SNPs are not correlated anymore with the phenotype.
In the relevant regime of an intermediate level of corruption, purity clearly
outperforms the correlation measure.

of their corresponding Y": it is impossible to distinguish between too strongly
coupled variables. In the regime of higher corruption, purity outperforms the
correlation-based approach. Finally, in the limit of maximal corruption, both
methods perform equally well, since the non-causal SNPs are not correlated
anymore with the phenotype.
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6.5 Conclusion

Motivated by a problem from statistical genetics, a method for causal dis-
covery is proposed in this chapter that builds on a property of a conditional
P(Y'|X), which we call purity. Purity is used as a criterion to infer X — Y as
opposed to DAGs containing an unobserved low range variable Z in the path
between X and Y that d-separates them. The characterization of a condi-
tional as pure is based on the location of the different { P(Y'|X = z)}, in the
simplex of probability distributions of Y. We conducted experiments to es-
timate purity from finite data. The proposed method was found to perform
better than standard correlation as of distinguishing cause-effect relations
from spurious associations.
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Chapter 7

Semi-supervised learning in
causal and anticausal settings

7.1 Introduction

The motivation of this chapter is to study whether causal knowledge can
be beneficial for traditional machine learning tasks like prediction problems.
The goal of this chapter, as opposed to the previous ones, is not causal
discovery. Instead, we argue that knowing the causal structure can have
implications for semi-supervised-learning (SSL) tasks. Section 7.2 briefly
describes SSL and the implication of causal knowledge for this task and
Section 7.3 presents some empirical results.

7.2 SSL in causal and anticausal settings

In supervised learning we are given training data sampled from P(X,Y).
The goal is to learn a mapping from X to Y, i.e., to estimate P(Y|X) (or
properties thereof, e.g., its expectation). Then, the value of Y can be pre-
dicted for a new test value of X. X is called feature or predictor, while Y is
called target. In case that the task is classification where Y is discrete, Y is
often also called label or class.

81
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In semi-supervised learning [Chapelle et al., 2006], the difference is that,
apart from the samples drawn from P(X,Y’), we are given an additional set
of unlabeled inputs from P(X). In order to have a more accurate prediction
by taking into account the unlabeled inputs, the distribution of the unlabeled
data P(X) has to carry information relevant for the estimation of P(Y|X).

Consider first the task of SSL in case that we have the additional knowledge
that the underlying causal structure is X — Y. We call this the causal
setting since we predict the effect Y from the cause X. Based on the prin-
ciple of independence of causal mechanisms (see Postulate 1 in Section 4.1.4
and discussion thereafter), P(X) contains no information about P(Y[X). A
more accurate estimate of P(X), as may be possible by the addition of the
unlabeled inputs from P(X), does thus not influence an estimate of P(Y|X),
and SSL is pointless for this scenario.

Consider now the task of SSL in case Y — X, which we call the anticausal
setting since we predict the cause Y from the effect X. In this setting, the
marginal distribution of the effect, P(X), may contain information about
P(Y|X). The additional inputs from P(X) may hence allow a more accurate
estimate of P(Y|X).

In conclusion, SSL is pointless in the causal setting (where X — Y') but
it may be helpful in the anticausal one (where Y — X). The next section
includes empirical results to support this hypothesis.

7.3 Empirical results

We do not perform new experiments. Instead, we check our hypothesis ana-
lyzing existing results of other papers. We compare the performance of SSL
algorithms with that of base classifiers that use only labeled data.

For many datasets, X is vector-valued.! We first assign each dataset to one
of the following three categories:?

1Only for this chapter we use the same notation X for both univariate and vector-
valued variables. The rest of the chapters use bold face letters for vector-valued variables.

2The dataset categorization was performed in advance, before seeing the results of the
meta-analysis, and was based on common sense.
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1. Anticausal/confounded: (a) datasets in which at least one feature X;
is an effect of the target Y to be predicted (anticausal) (includes also
cyclic causal relations between X; and Y') and (b) datasets in which at
least one predictor X; has an unobserved common cause with the target
Y to be predicted (confounded). In both (a) and (b) the mechanism
P(Y|X;) can be dependent on P(X;). For these datasets, additional
data from P(X) may thus improve prediction.

2. Causal: datasets in which some predictors are causes of the target, and
there is no predictor which (a) is an effect of the target or (b) has a
common cause with the target. Based on the principle of independence
of causal mechanisms, SSL should be futile on these datasets.

3. Unclear: datasets which are difficult to categorize into one of the afore-
mentioned categories. Some of the reasons for that are incomplete doc-
umentation and lack of domain knowledge.

In practice, we count a dataset already as causal when we believe that the
dependence between X and Y is mainly due to X causing Y, although addi-
tional confounding effects may be possible.

Table 7.1: Categorization of eight benchmark datasets as anti-
causal /confounded, causal or unclear

] Category \ Dataset \ Reason of categorization ‘
g241c The class causes the 241 features.
Anticausal/ | g241d Thc.e class (bmary) and the features are confounded by a
variable with four states.
confounded — -
Dieit1 The positive or negative angle and the features are con-
& founded by the variable of continuous angle.
The class and the features are confounded by the 10-state
USPS . .
variable of all digits.
COIL The six-state class and the features are confounded by
the 24-state variable of all objects.
] Causal \ SecStr \ The amino acid is the cause of the secondary structure.
Unclear E‘S(It’ Unclear which is the cause and which the effect.
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Figure 7.1: Accuracy of base classifiers (star shape) and different SSL meth-
ods on eight benchmark datasets.

7.3.1 Semi-supervised classification

We first analyze the results in the benchmark chapter of a book on SSL
(Tables 21.11 and 21.13 of Chapelle et al. [2006]), for the case of 100 labeled
training points. The chapter compares 11 SSL methods to the base classifiers
1-NN and SVM. In Table 7.1, we give details on our subjective categorization
of the eight datasets used in the chapter.

In view of our hypothesis, it is encouraging to see (Fig. 7.1) that SSL does
not significantly improve the accuracy in the one causal dataset, but it helps
in most of the anticausal/confounded datasets. However, it is difficult to
draw conclusions from this small collection of datasets; moreover, three ad-
ditional issues may confound things: (1) the experiments were carried out
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Figure 7.2: Plot of the relative decrease of error when using self-training,
for six base classifiers on 26 UCI datasets. Here, relative decrease is defined
as (error(base) — error(self-train)) / error(base). Self-training, a method for
SSL, overall does not help for the causal datasets, but it does help for several
of the anticausal/confounded datasets.

in a transductive setting. Inductive methods use labeled data to arrive at a
classifier which is subsequently applied to an unknown test set; in contrast,
transductive methods use the test inputs to make predictions. This could po-
tentially allow performance improvements independent of whether a dataset
is causal or anticausal; (2) the SSL methods used cover a broad range, and
are not extensions of the base classifiers; (3) moreover, the results on the
SecStr dataset are based on a different set of methods than the rest of the
benchmarks.

We next consider 26 UCI datasets and six different base classifiers. The orig-
inal results are from Tables III and IV in Guo et al. [2010], and are presently
re-analyzed in terms of the above dataset categories. The comprehensive
results of Guo et al. [2010] allow us the luxury of (1) considering only self-
training, which is an extension of supervised learning to unlabeled data in
the sense that if the set of unlabeled data is empty, we recover the results of
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the base method (in this case, self-training would stop at the first iteration).
This lets us compare an SSL method to its corresponding base algorithm.
Moreover, (2) we included only the inductive methods considered by Guo
et al. [2010], and not the transductive ones (cf. our discussion above).

Table 7.2 describes our subjective categorization of the 26 UCI datasets into
anticausal /confounded, causal, or unclear.

In Fig. 7.2, we observe that SSL does not significantly decrease the error
rate in the three causal datasets, but it does increase the performance in
several of the anticausal/confounded datasets. This is again consistent with
our hypothesis that if mechanism and input are independent, SSL will not
help for causal datasets.

7.3.2 Semi-supervised regression

Classification problems are often inherently asymmetric in that the inputs are
continuous and the outputs categorical. It is worth reassuring that we obtain
similar results in the case of semi-supervised regression (SSR). To this end,
we consider the co-regularized least squares regression (co-RLSR) algorithm,
compared to regular RLSR on 32 real-world datasets by Brefeld et al. [2006]
(two of which are identical, so 31 datasets are considered). We categorize
them into anticausal/confounded, causal, or unclear as in Table 7.3, prior to
the subsequent analysis. Note that the categorization of Tables 7.2 and 7.3 is
subjective and was made independently. That’s the reason why the heart-c
dataset (which coincides with the cleveland dataset) is categorized as unclear
in Table 7.2 and as anticausal/confounded in Table 7.3. Nevertheless, this
does not create any conflict with our claims.

We deem seven of the datasets anticausal, i.e., the target variable can be
considered as the cause of (some of) the predictors; Fig. 7.3(a) shows that
SSR reduces the root mean square errors (RMSEs) in all these cases. Nine
of the remaining datasets can be considered causal, and Fig. 7.3(b) shows
that there is usually little performance improvement for those. Like Brefeld
et al. [2006], we use the Wilcoxon signed rank test to assess whether SSR
outperforms supervised regression in the anticausal and causal cases. The
null hypothesis is that the distribution of the difference between the RMSE
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Figure 7.3: RMSE for (a) anticausal/confounded datasets and (b) causal
datasets.
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produced by SSR and that by supervised regression is symmetric around 0
(i.e., that SSR does not help). On the anticausal datasets, the p-value is
0.0156, while it is 0.6523 on the causal datasets. Therefore, we reject the
null hypothesis in the anticausal case at a 5% significance level, but not in
the causal case.

7.4 Conclusion

The aim of this chapter is to study whether causal knowledge can be beneficial
for traditional machine learning tasks, specifically for semi-supervised learn-
ing. Our hypothesis is that SSL is pointless when predicting the effect from
the cause, while it may be helpful when predicting the cause from the effect.
The empirical results support this since the accuracy does not significantly
improve for the causal datasets. A more rigorous analysis and understanding
of the relation between the causal direction and the performance of SSL is
left for future research.
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Table 7.2: Categorization of 26 UCI datasets as anticausal/confounded,
causal or unclear

\ Categ. \ Dataset

\ Reason of categorization

Anticausal/confounded

breast-w

The class of the tumor (benign or malignant) causes some
of the features of the tumor (e.g., thickness, size, shape).

diabetes

Whether or not a person has diabetes affects some of the
features (e.g., glucose concentration, blood pressure), but
is also an effect of some others (e.g., age, number of times
pregnant).

hepatitis

The class (die or survive) and many of the features (e.g.,
fatigue, anorexia, liver big) are confounded by the presence
or absence of hepatitis. Some of the features, however, may
also cause death.

iris

The size of the plant is an effect of the category it belongs.

labor

Cyclic causal relationships: good or bad labor relations can
cause or be caused by many features (e.g., wage increase,
number of working hours per week, number of paid vaca-
tion days, employer’s help during employee ’s long term
disability). Moreover, the features and the class may be
confounded by elements of the character of the employer
and the employee (e.g., ability to cooperate).

letter

The class (letter) is a cause of the produced image of the
letter.

mushroom

The attributes of the mushroom (shape, size) and the class
(edible or poisonous) are confounded by the taxonomy of
the mushroom (23 species).

segment

The class of the image is the cause of its features.

sonar

The class (Mine or Rock) causes the sonar signals.

vehicle

The class of the vehicle causes the features of its silhouette.

vote

This dataset may contain causal, anticausal, confounded
and cyclic causal relations. E.g., having handicapped in-
fants or being part of religious groups in school can cause
one’s vote, being democrat or republican can causally in-
fluence whether one supports Nicaraguan contras, immi-
gration may have a cyclic causal relation with the class.
Crime and the class may be confounded, e.g., by the envi-
ronment in which one grew up.

vowel

The class (vowel) causes the features.

waveform-5000

The class of the wave causes its attributes.

balance-scale

The features (weight and distance) cause the class.

heart-c, heart-h,
heart-statlog,
ionosphere, sick

Causal | kr-vs-kp The board-description influences whether white will win.
splice The DNA sequence causes the splice sites.
breast-cancer,
li lic. ORI .
z?egftf: lsreod}i{t-q In some of the datasets, it is unclear whether the class label
Unclea ’ & may have been generated or defined based on the features

(e.g., ionoshpere, credit, sick).
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Table 7.3: Categorization of 31 UCI datasets as anticausal/confounded,
causal or unclear

] \ Dataset \ Target variable \ Reason of categorization
breast Tumor| tumor size causing predictors such as inv-nodes and deg-
< malle .
S cholesterol | cholesterol causing predictors such as resting blood pres-
S| sure and fasting blood sugar
§ cleveland presence of heart dis- | causing predictors such as chest pain type, rest-
= ease in the patient ing blood pressure, and fasting blood sugar
3| lowbwt birth weight causing the predictor indicating low birth
_§ weight
=| pbe histologic stage of | causing predictors such as Serum bilirubin,
= disease Prothrombin time, and Albumin
pollution age-adjusted mortal- | causing the predictor number of 1960 SMSA
ity rate per 100,000 | population aged 65 or older
wisconsin time to recur of | causing predictors such as perimeter, smooth-
breast cancer ness, and concavity
autoMpg city-cycle fuel con- | caused by predictors such as horsepower and
sumption in miles | weight
per gallon
2| cpu cpu relative perfor- | caused by predictors such as machine cy-
§ mance cle time, maximum main memory, and cache
O memory
fishcatch fish weight caused by predictors such as fish length and
fish width
housing housing values in | caused by predictors such as pupil-teacher ratio
suburbs of Boston and nitric oxides concentration
machine_cpu| cpu relative perfor- | see remark on “cpu”
mance
meta normalized predic- | caused by predictors such as number of ex-
tion error amples, number of attributes, and entropy of
classes
pwLinear value of piecewise | caused by all 10 involved predictors
linear function
sensory wine quality caused by predictors such as trellis
servo rise time of a ser- | caused by predictors such as gain settings and
vomechanism choices of mechanical linkages
auto93 (target: midrange price of cars); bodyfat (target: percentage of body fat);
autoHorse (target: price of cars); autoPrice (target: price of cars);
baskball (target: points scored per minute);
cloud (target: period rainfalls in the east target); echoMonths
§ (target: number of mpnths pa.tient surYived); fru.itﬁ}{ (target: longevi.ty of mail. fruit.ﬂies);
< pharynx (targct: patient survlval); pyrim (quantltatlvc structure activity rclatlonshlps);
§ sleep (target: total sleep in hours per day); stock (target: price of one particular stock);

strike (target: strike volume); triazines (target: activity); veteran (survival in days)




Chapter 8

Inference of cause and effect
with unsupervised inverse
regression

8.1 Introduction

The goal of this chapter is to solve Problem 2 (causal structure learning)
for the case of only two variables, i.e., X = (X,Y). Specifically, the task
is to decide between X — Y and Y — X (assuming no confounders) for
two continuous univariate random variables X and Y, given a sample from
their joint distribution, P(X,Y). We assume that P(X,Y) has a density
px.y(2,y) with respect to the Lebesgue measure.

We employ the principle of independence of causal mechanisms (Postulate 1).
As discussed in Section 4.1.4, for deterministic non-linear relations, Janzing
et al. [2012] and Daniusis et al. [2010] define independence through uncor-
relatedness between logf’ and pyx, both viewed as random variables. For
non-deterministic relations, considered in this chapter, it is not obvious how
to explicitly formalize independence between P(X) and P(Y|X). Motivated
by the previous chapter, we propose an implicit notion of independence,
namely that P(Y|X) cannot be estimated based on P(X). However, it may
be possible to estimate P(X|Y") based on P(Y).

91
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In Chapter 7 we argued that knowing the causal direction has implications
for semi-supervised learning. Specifically, if X — Y, P(X) contains no
information about P(Y|X) according to Postulate 1. As a result, a more
accurate estimate of P(X), as may be possible by the addition of the extra
unlabeled points in SSL, does not influence an estimate of P(Y|X), and
SSL is pointless in this scenario. In contrast, SSL may be helpful in case
Y — X. Thus, the notion of independence between P(X) and P(Y|X)
implicitly reads: the former is not helpful for estimating the latter.

The use of Postulate 1 in this chapter complies with the latter notion of
independence: if X — Y, estimating P(Y|X) based on P(X) should not
be possible. In contrast, estimating P(X|Y) given P(Y) may be possible.
Employing this asymmetry, we propose CURE (Causal discovery with Unsu-
pervised inverse REgression), a method to infer the causal graph in case of
two variables, that is appropriate for non-deterministic relations. The pro-
posed causal discovery method infers X — Y if the estimation of P(X|Y)
based on P(Y) is more accurate than the one of P(Y|X) based on P(X).
Otherwise, Y — X is inferred.

To this end, we propose a method for estimating a conditional distribution
based on samples from the corresponding marginal. We call it unsupervised
inverse GP regression for the following reason: in standard supervised regres-
sion, given a sample from P(X,Y’), the goal is to estimate the conditional
P(Y|X). We call supervised inverse regression the task of estimating the
conditional P(X|Y’), without changing the original regression model of ¥ on
X that was used for the estimation of P(Y|X). Our task is to estimate the
conditional P(X|Y’) based only on samples from the marginal P(Y). We,
thus, call it unsupervised inverse regression.

Sections 8.2 and 8.3.2 describe the building blocks for unsupervised inverse
regression, presented in Section 8.3.1. Section 8.4 then describes CURE,
which applies unsupervised inverse regression two times, one for each direc-
tion, and infers the causal direction by comparing the resulting estimations
of the conditionals P(X|Y) and P(Y|X). We evaluate CURE on synthetic
and real data (Section 8.6). On the latter, our method outperforms existing
causal inference methods.
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8.2 Gaussian process latent variable model

The Gaussian process latent variable model (GP-LVM) [Lawrence, 2005] can
be interpreted as a multi-output Gaussian process (GP) model [Rasmussen
and Williams, 2006] in which only the output data are observed, while the
input remain latent. Let y € R™*¢ be the observed data where n is the num-
ber of observations and d the dimensionality of each observation. Further,
let x € R™*? denote the unobserved input data. The purpose is often dimen-
sionality reduction, thus p < d. GP-LVM defines a mapping from the latent
to the observed space by using GPs, with hyperparameters 6. Assuming
independence across the dimensions, the likelihood function is given as:

p(Y’Xv 9) = Hp(yj|X7 0)

where y; the j™ column of y,
p(yilx, 0) = N(y;;0, Ky x + 0°1,),

and Kx x the n x n covariance function defined by a selected kernel function.
Thus, p(y|x,0) is a product of d independent Gaussian processes where the
input, x, is latent.

For the present work, only univariate random variables are relevant, thus
d = p = 1. This defines a single-output GP-LVM, i.e., just one GP model
with latent input. In this case, y € R", x € R™ and the likelihood function
of single-output GP-LVM is given as:

p(ylx,0) = N(y;0, Ky x + 0°1,) (8.1)

with @ = (¢, 0¢,0), where we choose the RBF kernel
D) 1 ; AN 2
k(x( )7x(1)) = {Kyx}ij = JJ% exp (_ﬁ (x() — x(])) )

with x = (2, ..., ™),
Lawrence [2005] finds x (for multiple-output GP-LVM), by MAP estimation,
selecting a Gaussian prior for x, while jointly maximizing with respect to
0. In Bayesian GP-LVM [Titsias and Lawrence, 2010], instead, x is varia-

tionally integrated out and a lower bound on the marginal likelihood p(y) is
computed.
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8.3 Unsupervised inverse regression

As mentioned in the introduction of this chapter, if X — Y estimating
P(X]Y') based on the distribution of the effect, P(Y’), may be possible. In
this section we present a method to accomplish this. Throughout the rest of
the chapter, let {(2™,y™M), ..., (2™, 4™)} be a sample of n independently
and identically distributed (i.i.d.) observations from P(X,Y). Further let
x:= (zW ... 2™)and y := (yO,...,y™). Moreover, x and y are rescaled
between zero and one.

The goal of this section is to estimate px|y based on y.

8.3.1 Unsupervised inverse GP Regression

Since the estimation of the conditional is based only on samples y from the
marginal P(Y'), X is considered latent. A Gaussian process regression model
of Y on X is used, which can be alternatively seen as single-output GP-LVM
described in Section 8.2. Specifically, according to Eq. (8.1):

p(ylx, 0) = N(y; 0, Ky x + 0°I,)

Further, a uniform prior, ¢(0,1), is chosen for the distribution of X. A
uniform prior is, additionally, placed over 8 which suppresses overly flexible
functions (small ¢) to restrict the function class.

Using the aforementioned model, we estimate px|y based on y by

The predictive distribution p(x|y,y) is given by marginalizing over the latent
n-dimensional vector x and the unknown GP hyperparameters 6:

p(xly,y) =/ p(x,0,xly,y)dxd0
X,0

=/ p(zly,y,x,0)p(x, 0|y, y)dxdd
X,0
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~ / p(zly, v, x, 0)p(x, O]y)dxdo (8.2)
X,0

The first factor, p(x|y,y,x,8), is the predictive distribution of supervised
inverse GP regression, which is described in Section 8.3.2 (Eq. (8.5)). The
second factor, p(x, 8|y), is the posterior distribution over x and the hyper-
parameters 6, given the observed y.

By Bayes’ theorem:

p(y[x, 8)p(x)p(0)
p(y)
= p(y|x,0) = N(y;0, Ky x + 0°1,,) (8.3)

p(x,0ly) = oc p(ylx,0)p(x)p(0)

Note that the computation of the latent’s posterior distribution p(x, 8|y)
is analytically intractable since x appears non-linearly inside the inverse of
Ky x+0%I, [Titsias and Lawrence, 2010]. In our implementation, we approx-
imate the posterior p(x, 0|y) using a Markov Chain Monte Carlo (MCMC)
method, slice sampling [Neal, 2003]. The sample size n determines the di-
mensionality of the space to sample from, which is n+ 3 (including the three
hyperparameters). Thus, the computational complexity is determined by n
and this step poses the main computational bottleneck of our algorithm.

p(z|y,y) is then estimated by replacing the integral in (8.2) with a sum over
m MCMC samples from p(x, 0]y):

m

1
plely,y) ~ — > plzly.y.xi, 0) (8.4)

1=1

So, p(z|y,y) is computed as the average of predictive distributions of super-
vised inverse regressions. Fach predictive distribution p(z|y,y,x;, 0;) uses
the i*" sample, (x;,8;), from the posterior p(x, O]y).

8.3.2 Supervised inverse GP Regression

Following from the previous section, the remaining task is to compute
p(zly,y,x;,0;) in (Eq. (8.4)), for each MCMC sample ¢, with 1 < i < m.
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Figure 8.1: The predictive distributions of standard GP regression at three
x values (green) and the predictive distribution of supervised inverse GP
regression at one y value (blue). The latter is not Gaussian.

Since X is independent of the hyperparameters and the distribution of X is
uniform, by Bayes’ theorem we get:

p(x|ya Y, X, 07,) X p<ya y|Xia z, ez)p($|xlv 07,)
- N’(Y? Y, 07 K(xi,x),(xi,x) + 01'2]77,) (85)

Notice that, unlike standard GP regression, the predictive distribution of in-
verse GP regression, p(x|y,y,x;,0;), is not Gaussian (for fixed y). We first
compute N(y,y; 0, K(x, 2),(x:.0) + 0i°L5,) at the points of a grid on the range
of X, [0, 1], and then normalize appropriately to get p(z|y,y,x;, 8;). Fig. 8.1
illustrates an example of supervised inverse regression. The predictive dis-
tributions of standard GP regression, p(y|z,%;,y,0;), (for some i) at three
x values are depicted in green and the predictive distribution of inverse GP
regression, p(z|y,y, X;, 6;), at one y value (yellow line), in blue.

The usual practice to estimate p(z|y,y,x;, 6;) would be to learn directly a
map from Y to X (discriminative model). However, we need to use GP
regression of Y on X and not of X on Y in order to comply with the model
used in Section 8.3.1.

To conclude, p(x|y,y) is computed from Eq. (8.4), using Eq. (8.5) for each
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p(z|y, y,x;,0;). Likewise, we can compute p(y|z, X) repeating the above pro-
cedure with a GP regression model of X on Y.

8.3.3 Evaluation

In Sections 8.3.1 and 8.3.2 we proposed a method to estimate px|y based on
Yy by
Py © (@) = p(aly,y),

with p(z|y,y) computed from Eq. (8.4), using Eq. (8.5). In this section we
evaluate the accuracy of our estimation of pxy. We compute the negative
log likelihood LuXrﬁfp = —>", 10gﬁ§(|y(x(z),y(z)) at X, y to measure the
performance of unsupervised inverse regression. We could also evaluate it
at new test points if we had a separate test set Xio, yi.. However, since the
task is unsupervised, we do not have overfitting issues and use all data for
estimating px|y. In order to evaluate the accuracy of the estimation of px|y,

we compare L?f;p with the accuracy of the corresponding supervised inverse

regression Ly = — S log ﬁi‘yy(:v(i), y), using again a uniform prior for
X but with @ computed by maximization of p(y|x,8) w.r.t. 8. Specifically,

ZA)>)<(7|yY : (xvy) Hp(x|y7Y7X70)7

with p(z]y,y,x,0) obtained according to Eq. (8.5). This way, we measure
how much the performance degrades due to the absence of x, specifically by:

Dy =L35w _ 1300 (8.6)

8.4 CURE

The ultimate goal of this chapter is to decide upon the causal direction,
X - YorY — X, given x and y. According to Postulate 1, if X — Y,
estimating P(Y|X) from P(X) should not be possible. In contrast, estimat-
ing P(X|Y) based on P(Y') may be possible. So, CURE is given as follows:
if we can estimate P(X|Y) based on samples from P(Y') more accurately



98 CHAPTER 8. CURE

than P(Y|X) based on samples from P(X), then X — Y is inferred. Oth-
erwise, Y — X is inferred. In particular, we apply unsupervised inverse GP
regression two times. First, Dxy is computed as in (8.6):

n
__ runsup sup __ A~y X,y (i)
DX|Y _LX\Y L)?|y Zlogpx‘y 7 +Zlogpx‘y Y ())
i=1
to evaluate the estimation of px|y based on y. Then, Dy|x is computed as:

Dyjx = LY[YP — L3R = =Y log i (y, 29) + > " log oY (y™, 29)
i=1 i=1

to evaluate the estimation of py|x based on x. Finally, we compare the two
performances: if Dx)y < Dy|x, then we infer the causal direction to be
X — Y, otherwise we output ¥ — X.

8.5 Discussion

Figure 8.2 depicts three datasets generated according to causal models with
DAG X — Y (grey points) (note the exchanged axes in the last figure). In
particular, in Figs. 8.2(a) and 8.2(c) the grey points are generated according
toY = 2X3+ X + E, with X having a uniform distribution and E zero-mean
Gaussian noise. On the other hand, the distribution of X in Fig. 8.2(b) is
sub-Gaussian and the noise is not additive. Since X — Y, we expect to
be able to estimate P(X|Y') based on P(Y') more accurately than P(Y|X)
based on P(X). The quality of the estimation strongly depends on the
generated MCMC samples from the high-dimensional posterior in Eq. (8.3).
Figures 8.2(a) and 8.2(b) refer to the estimation of P(X|Y) based on sam-
ples from P(Y'), whereas Fig. 8.2(c) to the estimation of P(Y|X) based on
samples from P(X). In Figs. 8.2(a) and 8.2(b) the y-coordinates of the red
points correspond to y and the z-coordinates to one MCMC sample from
p(x,0ly) (Eq. (8.3)). Given the sample (x;,6;), p(x|y,y,x;, 8;), plotted in
blue for a fixed y, is computed by supervised inverse GP regression. We can
observe (Fig. 8.2(b)) that even when data are not generated according to
the simple model used in Section 8.3.1 we often still get relatively “good”
MCMC samples.
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Figure 8.2: The grey points are generated according to X — Y. (a), (c¢): uni-
form P(X), additive Gaussian noise, (b): sub-Gaussian P(X), non-additive
noise. (a), (b): the y-coordinates of the red points correspond to y and
the xz-coordinates to one MCMC sample from p(x,0|y). Given the sample
(x4,0,), p(zly,y,x;,0;), plotted in blue, is computed by supervised inverse
GP regression. (c¢): note that x and y axes are exchanged. The z-coordinates
of the red points correspond to x and the y-coordinates to one sample from
p(y, 0]x). Given the sample (y;, 0;), p(y|z = 0.64,x,y;,0;), plotted in blue,
is computed by inverse regression. In (b) we see that a relatively “good”
MCMC sample is obtained when using only the distribution of the effect,
even when the distribution of the cause is not uniform and the noise is not
additive. In contrast, when using only the distribution of the cause, we often
get “bad” MCMC samples, like the one depicted in red in (c).
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On the contrary, in Fig. 8.2(c) the z-coordinates of the red points correspond
to x and the y-coordinates to one MCMC sample from p(y, 8|x). In this case
we often get “bad” MCMC samples as expected since we should not be able
to estimate P(Y|X) based on samples from P(X) (Postulate 1). So, even in
cases where the (unrealistic) model assumptions of Section 8.3.1 do not hold,
the estimation of P(X|Y) is often still better than that of P(Y|X). That is,
even though the estimation of P(X|Y") can be far from the true P(X|Y), the
estimation of P(Y|X) can be even further from the true P(Y|X). Proving
such a claim, however, is not trivial, but the experiments are encouraging in
this direction.

The step of sampling from the high dimensional distribution p(x, @|y) is not
trivial. Additionally, there are two modes with equal probabilities, namely,
one that corresponds to the ground truth x and one to the “mirror” of x
(flipping x left to right). Good initialization is crucial for sampling from this
high-dimensional space. The good news is that, for the purpose of causal
inference, we have the luxury of initializing the sampling algorithm with the
ground truth x, since this is given (but we treat it as a latent variable),
and with hyperparameters computed by maximizing the likelihood p(y|x, @)
w.r.t. 6. This is fair as long as it is done for both causal directions to be
checked. With this initialization, slice sampling starts from the correct mode
of p(x, 8]y) and usually (apart from very noisy cases), we do not get samples
from the “mirror” mode. In any case, for every sample, x is used to decide to
keep either this or its mirror. Initializing slice sampling with x, we still get
an asymmetry between cause and effect: even by initializing with the ground
truth x, if ¥ — X and we try to predict P(X|Y) from P(Y) (which are
independent), then we eventually often get “bad” MCMC samples similar
to the one in Fig. 8.2(c). Of course, this slice sampling initialization is only
feasible for the purpose of causal inference, where both x and y are given.
If the goal is just estimating P(X|Y") based on samples from P(Y), then we
only get to see y and such a sampling initialization is not possible. In that
sense, to be precise, the conditional P(X|Y) is not estimated based only on
y, but also using some side information for x (for sampling initialization).

One final point of discussion is the choice of the hyperparameters’ prior.
Non-invertible functional relationships between the observed variables can
provide clues to the generating causal model [Friedman and Nachman, 2000].
In contrast, in the invertible case it gets more difficult to infer the causal
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direction. This is one more reason to restrict @ to favor more regular functions
(of large length-scale).

8.6 Experiments

8.6.1 Simulated data

We generate data both with additive noise, according to Y = f(X) + N,
with f(X) = bX? + X, and non-additive noise. Non-additive noise is sim-
ulated according to Y = f(X) + N, with P(N) = oN(0,1) [sin(2rvX)| +
1oN(0,1) [sin(27(10v) X)|.! By multiplying with a sinusoidal function the
width of the noise varies for different values of X. The parameter v controls
the frequency of the wave. The results are included in Fig. 8.3, for a non-
linear f (setting b = 2), and in Fig. 8.4, for a linear f (setting b = 0). The
three first columns of the figures refer to data generated with additive noise
and the fourth column with non-additive noise. We use four distributions
for P(X): standard uniform, sub-Gaussian, Gaussian and super-Gaussian,
each one corresponding to one row of Figs. 8.3 and 8.4. For sub- and super-
Gaussian, data are generated from a Gaussian distribution and their absolute
values are raised to the power ¢ while keeping the original sign. ¢ = 0.7 for
the sub-Gaussian distribution (which is also close to bimodal), while ¢ = 1.3
for the super-Gaussian. Similarly, three distributions are used for P(N):
sub-Gaussian, Gaussian, and super-Gaussian, each one corresponding to one
of the first three columns of Figs. 8.3 and 8.4. The z-axis of the first three
columns refers to the standard deviation (std) of the noise. Three values of
std are used: 0.25,0.45 and 0.8, each multiplied by the standard deviation
of f(X) in order to get comparable results across different experiments. The
x-axis of the fourth column is the frequency of the sinusoidal wave, v, with
values from {4,0.5,025}. We generate n = 200 samples for each simulated
setting.

We compare the proposed causal inference method (CURE) with some of

Note that we call Y = f(X)+ N an additive noise model only if X I N. This comes
from the perspective of structural equations where the noise term is independent of X.
Then, a conditional P(Y|X) generated by dependent additive noise can only be generated
by a structural equation with non-additive noise.
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Figure 8.3: Performance (percentage of correct causal inferences) of various
causal inference methods for simulated data with a non-linear function f.
Rows correspond to the distribution of the cause, P(X). The three first
columns correspond to the distribution, P(N), of the additive noise term,
with the z-axis referring to 3 different standard deviations of the noise. The
last column corresponds to non-additive noise, with the z-axis referring to
3 different frequencies of the sinusoidal wave (used to simulate non-additive
noise).

the causal inference methods reviewed in Chapter 4: additive noise models
(ANMs) [Hoyer et al., 2009, Peters et al., 2014], information-geometric causal
inference (IGCI) [Daniusis et al., 2010, Janzing et al., 2012] and Bayesian
model selection (GPI) [Mooij et al., 2010]. CURE uses a uniform prior so
a preprocessing step is first applied to X and Y to remove possible isolated
points (low-density points). For CURE, m = 15000 MCMC samples are
generated from the 203-dimensional (n = 200) posterior using the slice sam-
pling method, from which the first 5000 are discarded. Since it is difficult to
sample from this very high-dimensional space, to get a more robust answer,
we report the average Dyy and Dy|x across 4 repetitions of CURE for each
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Figure 8.4: As in Fig. 8.3 but with a linear function f.

dataset. We call those repetitions “internal” repetitions of the CURE algo-
rithm to distinguish them from the repetitions of the simulations. Assume
ngy is the output of the " internal repetition. Then, Dxy = 1 Zf L Déﬂy
and Dy x = }1221:1 Y| - We conduct 20 repetitions for each combination
of method and simulation setting, apart from CURE which is repeated 10
times, due to the high computational complexity of the MCMC sampling
step. The y-axis of Figs. 8.3 and 8.4 corresponds to the percentage of correct
causal inferences.

For non-linear f (Fig. 8.3), we can observe that CURE (red) infers correctly
the causal direction when P(X) is uniform or sub-Gaussian and for all noise
distributions. The accuracy degrades in some cases of Gaussian and super-
Gaussian P(X) (due to the uniform prior) with high standard deviation of
P(N). IGCI (green) infers the causal direction correctly in almost all cases,
even though it was proposed for deterministic relations. ANM (blue) gets
100% correct decisions on the additive noise data, however, its performance
really degrades when it comes to non-additive noise. Finally, GPI (brown)
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performs better with uniform P(X) than with Gaussian or super-Gaussian,
where its results are worse compared to the other methods.

For the linear case (Fig. 8.4), the performance of almost all methods gets
worse since it gets more difficult to recover the causal direction. Specifically,
the case of linear f and Gaussian P(X) and P(N) is non-identifiable [Hoyer
et al., 2009]. This is also supported by the results: in this case the decision
of all methods is close to 50% (random guess). For uniform P(X), CURE
outperforms the other methods, however for non-uniform P(X) its perfor-
mance often degrades. ANM generally performs relatively well with additive
noise, however, it again fails in the non-additive noise case. GPI performs
much better in the linear compared to the non-linear case, outperforming the
other methods in several cases. Finally, IGCI often fails in the linear case.

8.6.2 Real data

Further, we evaluate the performance of our method on real-world data,
namely on the database with cause-effect pairs® (version 0.9) [Mooij et al.,
2014]. Tt consists of 86 pairs of variables from various domains with known
causal structure, the first 41 of which are from the UCI Machine Learning
Repository [Bache and Lichman, 2013]. The task is to infer the causal direc-
tion for each of the pairs. Each pair is weighted as suggested in the database.
Five of the pairs have multivariate X or Y and are excluded from the anal-
ysis. At most n = 200 samples from each cause-effect pair are used (less
than 200 only if the pair itself has less samples). For CURE, m = 10000
MCMC samples are generated, after burning the first 10000 samples and
additionally discarding every other sample. The average Dxy and Dy x
across 8 internal repetitions of CURE are computed for each dataset. Two
more methods (introduced in Section 4.1.3) participate in this comparison:
Post-Nonlinear Models (PNL) [Zhang and Hyvérinen, 2009] and Linear Non-
Gaussian Acyclic Models (LINGAM) [Shimizu et al., 2006]. The results for
all the methods are depicted in Fig. 8.5. The y-axis corresponds to the per-
centage of correct causal inferences. As the causal inference methods we
compare with, we also output a ranking of the pairs according to a confi-
dence criterion along with the decisions on the causal direction. The method

2http://webdav.tuebingen.mpg.de/cause-effect /
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Figure 8.5: Results of various causal inference methods for 81 cause-effect
pairs (86 excluding 5 multivariate pairs), showing the percentage of correct
causal inferences for each decision rate.

is more certain about the decided direction of the top-ranked pairs as op-
posed to the low-ranked ones. Using this ranking, we can decide on the
causal direction of only a subset of the pairs for which we are more confident
about. This way, we trade off accuracy versus the number of decisions taken.
The z-axis of Fig. 8.5 corresponds to the percentage of pairs for which we
infer the causal direction (100% means that we are forced to decide upon
the direction of all 81 pairs). A good confidence criterion corresponds to
the accuracy being lowest for decision rate 100% and increase monotonically
as the decision rate decreases. As a confidence criterion we choose to use
the ratio between op, . = std({ Dy }i<i<s) and op,,, = std({ Dy, x h<i<s),
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with denominator the one that corresponds to the inferred causal direction
(smaller D). The idea is that, if X — Y and we try to predict P(X|Y") based
on P(Y'), the empirical variance of the algorithm across internal repetitions
is expected to be small: MCMC samples are expected to correspond to con-
ditionals close to the ones of the ground truth. On the other hand, when
predicting P(Y'|X) based on P(X) (which are independent), the variance is
higher across internal repetitions.

We consider the null hypothesis that “the causal inference algorithm out-
puts random decisions with probability 1/2 each”. Then the grey area of
Fig. 8.5 indicates the 95% confidence interval of a binomial distribution with
k trials where k is the (weighted) number of cause-effect pairs (the weights
given as suggested in the database). Thus, the area outside the grey area
corresponds to results significantly correlated with the ground truth. We can
observe that CURE (bold red) outperforms the other methods for all deci-
sion rates, however it is difficult to draw any definite conclusions about the
relative performance of these methods based on only 81 cause-effect pairs.
Moreover, the ratio of standard deviations that is used as a confidence crite-
rion for CURE seems to be a good choice: for low decision rates we even get
100% accuracy, decreasing more or less monotonically as the decision rate
increases. IGCI performs well for high decision rates but its confidence cri-
terion does not behave as expected. ANM has a better confidence criterion,
however, its performance is quite low compared to CURE and IGCI when it
is forced to take a decision. The result of PNL is marginally significant in
the forced-decision regime. Finally, the results of GPI and LINGAM are not
significantly correlated with the ground truth in the forced-decision regime.

Increasing n, the performance is obviously increasing. For example, running
ANM with all the available samples of the 81 cause-effect pairs results in an
accuracy of 72% [Peters et al., 2014], much higher than its accuracy with
n = 200 (Fig. 8.5). Unfortunately, the computational complexity of CURE
does not allow for it to be run for such a big sample size (thousands for some
pairs). However, we consider very encouraging the fact that CURE can yield
accuracy 75% already with n = 200.
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8.7 Conclusion

We propose a method (CURE) to infer the causal direction between two
random variables given a sample from their joint distribution. It is based
on the principle of independence of causal mechanisms (Postulate 1). If we
can estimate P(X|Y) based on P(Y) more accurately than P(Y|X) based
on P(X), then X — Y, is inferred. Otherwise, Y — X is inferred. For that,
unsupervised inverse GP regression is proposed as a method to estimate a
conditional from samples from the corresponding marginal. CURE was eval-
uated both on simulated and real data, and found to perform well compared
to existing methods. In particular, it outperforms five existing causal infer-
ence methods on our real data experiments. A downside is the comparably
high computational cost due to the large number of required MCMC steps.
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Chapter 9

Empirical performance of
ANMs

This chapter is concerned with the empirical behavior of estimation methods
for causal discovery using Additive Noise Models (ANMs) [Hoyer et al., 2009,
Peters et al., 2014]. We focus on the two-variable case, i.e., X = (X,Y).
Existing methods (see Section 4.1.3) have proven identifiability of ANMs: if
Y = f(X)+ Ny with X 1 Ny, then, in the generic case, there is no function
¢ and noise variable Nx such that X = ¢g(Y') + Nx, with Y L Nx.

The structure learning algorithm then reads: whenever there is an ANM in
one direction inducing the joint distribution P(X,Y"), but there is no ANM
in the other direction inducing P(X,Y’), then the DAG corresponding to the
former direction is inferred (for more details see Section 4.1.3). In partic-
ular, causal discovery under ANM is performed according to the following
procedure [Hoyer et al., 2009]:

1. Regress Y on X and obtain the residuals Ny y =Y — f(X).
2. Regress X on Y and obtain the residuals Nx, = X — g(Y).

3. Infer X — Y if Ny L X but Nx, L Y. Decide Y — X if the reverse
holds true, abstain otherwise.

109
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Instantiations of the above procedure vary in the regression methods em-
ployed for function fitting and in the independence measures employed.
Hoyer et al. [2009] perform the regression using Gaussian Processes [Ras-
mussen and Williams, 2006] and the independence tests using the Hilbert
Schmidt Independence Criterion (HSIC) [Gretton et al., 2008]. We employ
two different regression methods: kernel regression (KR) and kernel ridge
regression (KRR). The following lemma is used to explain the measure of
independence that we use.

Let H and I denote differential entropy and mutual information, respectively
[Cover et al., 1994].

Lemma 5

H(X)+H(Nyys)=HY)+ H(Nxy4) —I(Nx,,Y)— I(Nyy, X).

Proof. By the chain rule of differential entropy we have

HX,)Y)=H(X)+ HY|X)=H(X)+ H(Ny/|X)
= H(X)+ H(Ny,) — I(Nyy,X), similarly

H(X,)Y)=H(Y)+ H(Nx,4) —I(Nx,Y).

Equate the two r.h.s. above and rearrange. O

Note that whenever Ny s I X, we have I(Ny,, X) = 0. Therefore, by the
above lemma, if Ny, 1 X then Cxy := H(X) + H(Nyy) is smaller than
Cyx = H(Y)+H(Nx,). So, the third step of the above procedure becomes:

3. Infer X - Y if Cyx — Cxy > 0. Decide Y — X if Cyx — Cxy < 0,
abstain otherwise.

This yields a measure of independence which is relatively cheap to estimate.
In particular the test depends only on the marginal distributions of X, Y and
residuals, and does not involve estimating joint distributions or conditionals,
as is implicit in most independence tests.

In practice we are given a finite sample {(z yM), ... (2™ y™)} drawn
iid. from P(X,Y). Then, let f, denote an estimate for the regression
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function f and g, an estimate for g. Further, let Ny, and Nx 4, the corre-
sponding residuals. Let H, denote an entropy estimator. For entropy esti-
mation we employ a resubstitution estimate using a kernel density estimator
[Beirlant et al., 1997].

We consider two different estimation scenarios described below.

Definition 12 (Decoupled estimation) f, and g, are learned on half of
the sample {(z®,y)}1<i<, and the H,(Nyy,) and H,(Nx,, ) are learned
on the other half of the sample (w.l.o.g. assume n is even). H,(X) and
H,(Y) could be learned on either half or on the entire sample.

Definition 13 (Coupled estimation) All f,, g, and entropies H, are
learned on the entire sample {(z9, D)} cicy.

We present a series of experimental results. Specifically, in all our experi-
ments, simulated data are generated as Y = bX3 + X + N. X is sampled
from a uniform distribution on the interval [—2.5,2.5], while N is sampled
as |NV|? - sign(N) where N is a standard normal. The parameter b controls
the strength of the nonlinearity of the function while ¢ controls the non-
Gaussianity of the noise: ¢ = 1 gives a Gaussian, while ¢ > 1 and ¢ < 1
produces super-Gaussian and sub-Gaussian distributions, respectively.

In each of the plots of Figs. 9.1 and 9.2 the y-axis is the estimated difference
(Cyx — Cxy). Moreover, coupled and decoupled estimation are overlayed,
illustrated by blue and red colors, respectively. Figure 9.1 concerns using
kernel regression as opposed to Fig. 9.2 which includes results using kernel
ridge regression. In Fig. 9.1, (Cyx — Cxy) is plotted against varying the
richness of the regression algorithm (Fig. 9.1(a)), the sample size (Fig. 9.1(b))
and the tail of the noise (Fig. 9.1(c)). Specifically, we control the richness
of the algorithm by varying the kernel bandwidth of regressor and the tail
of the noise by varying ¢q. The experiments of Figs. 9.1(b) and 9.1(c) are
repeated using kernel ridge regression and the results are depicted in Figs.
9.2(a) and 9.2(b), respectively. In all figures, apart from Fig. 9.1(a), the
kernel bandwidth of the regressor is tuned by cross-validation. For every
combination of the parameters, each experiment is repeated 10 times and
average results for (Cyx — Cxy) are reported along with standard deviation
across repetitions.
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Figure 9.1 (previous page): Plots of the difference between the complexity
measures, (Cyx —Cxy), for coupled and decoupled estimation in various sce-
narios using kernel regression (KR). For every combination of the parameters,
each experiment is repeated 10 times and average results for (Cyx — Cxy)
are reported along with standard deviation across repetitions. (a): increas-
ing kernel bandwidth of regressor geometrically (by factors of [ = 1.5), i.e.
decreasing richness of the algorithm. When the capacity of the regression al-
gorithm is too large, the variance of the causal inference is large for coupled
estimation (due to overfitting) but remains low for decoupled estimation.
(b): increasing sample size. For tuned bandwidth, the variance of the causal
inference is only due to the sample size, so the coupled estimation, which
estimates everything on a larger sample, becomes the better procedure. (c):
increasing ¢, i.e. the tail of the noise is made sharper. For faster decreasing
tail of the noise, the causal inference performs better.

By decoupling regression and entropy estimations, we reduce the potential of
overfitting, during entropy estimation, the generalization error of regression.
This generalization error could be large if the regression algorithms are too
rich. Our simulations show that, when the regression algorithm is too rich,
the variance of the causal inference is large for coupled estimation but remains
low for decoupled estimation (Fig. 9.1(a)). By decreasing the richness of the
class (simulated by increasing the kernel bandwidth for a kernel regressor) the
source of variance shifts to the sample size, and coupled estimation (which
estimates everything on a larger sample) becomes the better procedure and
tends to converge faster (Fig. 9.1(b)).

In Kpotufe et al. [2014], we suggest that convergence of causal inference is
likely faster if the noise has faster decreasing tail. This is verified in our
simulations where we vary the tail of the noise (Fig. 9.1(c)).

Comparing Figs. 9.1 and 9.2, the selection of regression method does not
seem to matter for the causal inference results.

Mooij et al. [2014] recently also presented some empirical results on the per-
formance of ANMs on real and simulated data, focusing on different aspects
such as model misspecification.
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Figure 9.2: (a) Same experiment as Fig. 9.1(b) but using KRR and (b) same
experiment as Fig. 9.1(c) but using KRR. For properly tuned parameters,
the selection of regression method does not seem to matter for the causal
inference results.



Chapter 10

Conclusions and future work

This thesis introduces several novel, mostly nonparametric, methods for
causal discovery from observational data. In this chapter we provide a brief
summary of them before proposing possible directions for future research.
Chapters 5 and 6 are concerned with causal discovery when allowing for
confounders while Chapters 8 and 9 are devoted to causal discovery in the
two-variable case, assuming no confounders. In Chapter 7 we argue that
causal knowledge can be useful for standard machine learning tasks, such as
semi-supervised learning.

In particular, in Chapter 5 we present a method for identification of finite
mixtures of product distributions. The proposed method is further used for
identifying confounders. Chapter 6, motivated by an application in genetics,
introduces a property of a conditional distribution, called purity. Using pure
conditionals we are able to exclude the existence of a low range unobserved
variable that d-separates two observed ones.

Chapters 7 and 8 are based on the principle of independence of causal mech-
anisms. Chapter 8 proposes CURE, a causal discovery method for the two-
variable case. The method suggests to infer the causal direction by comparing
the estimations of the conditionals based on the corresponding marginals in
both directions. Chapter 7 argues that SSL is meaningful only in the anti-
causal setting, where the target is the cause and the feature the effect. On the
contrary, in the causal setting SSL is pointless. Finally, Chapter 9 presents
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empirical results concerning the behavior of estimation methods for causal
discovery using ANMs in the two-variable case.

There are several open questions for future research:

Principle of independence of causal mechanisms. Chapters 7 and 8
are using Postulate 1. Future research should concentrate on being more
explicit as to what is meant by independence or information. As mentioned
in Section 4.1.4, Janzing and Schélkopf [2010] postulate algorithmic inde-
pendence of P(Y|X) and P(X), i.e. zero algorithmic mutual information.
This is equivalent to saying that the shortest description (in the sense of Kol-
mogorov complexity) of P(X,Y) is given by separate descriptions P(X) and
P(Y|X). Since Kolmogorov complexity is uncomputable, practical imple-
mentations must rely on other notions of (in)dependence or information. For
deterministic non-linear relations, Janzing et al. [2012] and Daniusis et al.
[2010] define independence through uncorrelatedness between logf’ and the
density of P(X) w.r.t. the Lebesgue measure. In the non-deterministic case
there is room for future research on providing formalizations of Postulate
1 and specifying what kind of information the conditional shares with the
marginal.

CURE. CURE, proposed in Chapter 8, argues that, according to Postulate
1, if X — Y, estimating P(Y|X) based on P(X) should not be possible.
In contrast, estimating P(X|Y") given P(Y') may be possible. The proposed
causal discovery method exploits this asymmetry and infers X — Y if the es-
timation of P(X|Y') based on P(Y’) is more accurate than the one of P(Y|X)
based on P(X). Otherwise, Y — X is inferred. Future work should focus
on better understanding what kind of information is used to estimate the
conditional from the corresponding marginal distribution of the effect and
for which distributions the asymmetry is expected to hold. For example, it
would be interesting to understand under what conditions or assumptions
the simple model used in Section 8.3.1 is guaranteed to better infer the con-
ditional when based on the marginal of the effect as opposed to the marginal
of the cause.

Hypothesis test for purity. It would be interesting to develop a hypothesis
test to decide when to reject the null hypothesis of a conditional being pure.

Larger networks. The causal discovery methods presented in this thesis
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concern mostly simple networks such as the two-variable case (e.g., Chap-
ters 8 or 9) or networks with at most one latent variable (e.g., Chapter 5).
Future research should focus on the generalization of these ideas to larger
networks. One simple extension, for example, could be the following: in the
method of Chapter 5, instead of taking into account only the rank of the
Hilbert space embedding of the joint distribution of all observed variables,
Ux, consider also the rank of the embedding of the joint distribution of sub-
sets of X. Combining these partial informations, one could arrive at more
conclusions. Consider, for example, the DAG G of Fig. 10.1. The current
algorithm would not arrive at any conclusions since the rank of Ux, x, x; x,
is infinite.! However, with the added extension of also checking the rank
of the subsets, the finite rank of Ux, x, x, would lead to the detection and
reconstruction of the confounder W.

Real data. Future work should also focus on conducting more real data ex-
periments. Ultimately, we should aim at developing causal discovery methods
applicable to large scale real applications from various domains, such as bi-
ology, medicine, finance etc. To this end, assumptions that are more realistic
for practical applications should be considered.

! Assuming, according to Section 5.6, that the {X;} are continuous, W has a small
number of states and (G, P(X1, Xa, X3, X4, W)) is a full rank BN.
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Appendix A

Causal sufficiency example

This Appendix presents an example that explains the difference between
the two definitions of causal sufficiency included in Section 2.3. Specifically,
the set {X,Y} of the DAG in Fig. A.1 is causally sufficient according to
Definition 7 but not according to the standard definition of causal sufficiency,
e.g., [Spirtes, 2010], since Z is an unobserved common cause of X and Y.

Figure A.1: An example where {X, Y} is a causally sufficient set of variables
in the sense of Definition 7 but not in the sense of the usual causal sufficiency
definition found in the literature, since Z := (Nx, Ny) is a direct cause of
both X and Y w.rt. {X,Y, Z}.
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