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0.  Summary 

A general magnitude system is hosted in the fronto-parietal network. Neurons in 

this system represent the number of visual items in a collection, but it is unknown whether 

this system encodes null quantity (zero). We recorded from the ventral intraparietal area 

(VIP) and the prefrontal cortex (PFC) of monkeys performing a matching task including 

empty sets and countable numerosities as stimuli. Monkeys treated empty sets according 

to the null quantity they represent. This was revealed by a behavioral distance effect: 

monkeys wrongly matched empty sets with numerosity one more frequently than with 

numerosity two. However, reaction times were longer than expected in empty set trials. 

We first explored whether empty sets find a place in the visual sense of number. 

For that purpose, we analyzed neural activity during the sample epoch, when numerosity 

is visually available to the monkey. We found that VIP neurons encoded empty sets 

predominantly as a distinct category from countable numerosities. In contrast, PFC 

neurons represented empty sets more similarly to numerosity one than to larger 

numerosities, exhibiting a numerical distance effect. Crucially, only prefrontal neurons 

represented empty sets abstractly and irrespective of stimulus variations. Moreover, 

compared to VIP, the sample activity of numerosity neurons in PFC better correlated with 

behavioral tuning functions and predicted the outcome of empty-set trials. In the context 

of previous results, this data suggests a hierarchy in the processing from VIP to PFC, 

along which empty sets are detached from visual properties and gradually positioned in a 

numerical continuum. These findings elucidate how the brain transforms the absence of 

countable items, ‘nothing’, into an abstract quantitative category, ‘zero’. 

Second, we analyzed the temporal dynamics triggered by the different stimuli in 

VIP and PFC during the course of a trial. We found that, in comparison to other stimuli, 

empty sets elicit later neuronal responses and a distinct temporal response profile in the 

parieto-frontal magnitude system. Particularly, empty set trials are characterized by a late 

top-down effect from PFC to VIP. Approximately 200 ms after sample presentation, we 

identified the start of a dynamic shift in the population tuning towards a categorical 

representation of empty sets, which continues during the delay period. Consequently, in 

working memory, empty sets are over-represented in comparison to other stimuli. 

Correspondingly, a higher percent of neurons was classified as empty-set neurons in the 

delay period.  

Altogether, our results provide evidence that prefrontal cortex plays a central role 

in attaching a quantitative value to the absence of countable items. The dominant role of 

PFC in the processing of empty sets suggests that zero is treated differently with respect 

to other numerosities. In the visual sense of number, countable numerosities, as salient 

stimuli, elicit bottom-up signals from the parietal cortex. In contrast, to be treated as 

endowed with numerosity zero, empty sets seem to require a top-down signal originating 

in PFC. 
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1.  Background & research question 

The question of how quantity is coded and processed in the brain has been 

the focus of much research during the last decade. A general magnitude system 

hosted in the primate parietal and prefrontal cortices is involved in the representation 

of quantity. Specifically, VIP and dlPFC give raise to a ‘visual sense of number’. This 

capability allows primates to estimate the number of items in a collection at a single 

glance, in a perceptual-like way. But, is the absence of countable items represented 

as numerosity zero in the primate visual sense of number? Zero seems to be a special 

case. Behavioral studies in humans and other animals show that zero is represented 

and treated differently from other numbers. Then, is null-quantity encoded and 

processed in the primate parieto-frontal magnitude system as other numbers are? 

1.1   A visual sense of number 

 Humans can quickly estimate the number of items in a visual collection at a 

single glance, quickly and without counting (Stanislas Dehaene 1997; Burr and Ross 

2008). Importantly, this ability does not rely on stimuli properties which covariate with 

number, as item density or total area. Numerosity can be extracted independently 

from other stimulus properties (Park et al. 2015).  

Moreover, the fact that infants and animals are able to discriminate 

numerosities suggests that this capacity is philogenetically ancient and pre-symbolic 

in character (Brannon and Terrace 1998; Nieder 2005). Indeed, it resembles primary 

sensation in important aspects. For example, numerosity is susceptible to adaptation, 

as sensory properties are (Burr and Ross 2008). More fundamentally, our 

apprehension of number follows Weber’s psychophysical law (Shepard, Kilpatric, and 

Cunningham 1975), a signature of sensory perception.  

Weber’s law states that the minimal detectable difference between two stimuli 

is proportional to their intensity. For example, two relatively heavy objects should differ 

by a greater amount of weight than two lighter objects in order to be discriminated. 

So, the heavier two objects are, the harder it becomes to distinguish them. The 

minimum amount by which stimulus magnitude should differ or change in order to be 

noticeable in sensory experience (the ‘just noticeable difference’, JND) increases with 

stimuli intensity. In fact, the ratio between these two factors, the Weber fraction (K), 

is a constant for each sensory property and modality.  

(1) 
∆𝐼

𝐼
= 𝐾, where ∆I is the JND between two stimuli, and I is their intensity.  
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In the case of number, for two numbers to be distinguished, the required difference 

between them varies with their magnitude. Notice that Weber’s law entails the two 

behavioral signatures of numerical cognition, referred as the distance and magnitude 

effects. The distance effect describes an improvement in the discrimination of two 

quantities as the numerical difference between them increases. For example, it is 

easier to distinguish 2 from 5, than 2 from 3. This is classically evidenced by a 

decrease in response latencies or an increase in accuracy when items to compare 

are quantitatively closer to each other. The size or magnitude effect specifies that, 

for a constant numerical difference, larger numbers are more difficult to discriminate 

than small numbers. In this case, comparison reaction times increase and accuracy 

decreases for larger numbers. For example, it is harder to discriminate between sets 

with 9 and 10 items, than between sets with 2 and 3 items.  

Cognitive scientists frequently elude a ‘mental number line’ to account for 

experimental results in the field of numerical cognition. The mental number line is an 

analogue and spatially-oriented representation of the ordered numbers. There is 

relative agreement that the number line is oriented from left to right. However, its 

scaling (linear or logarithmic) and range are still topics of controversy. The scaling of 

the number line is discussed in the context of how to account for the size effect in 

numerical cognition. For that purpose, the literature offers at least two options: the 

logarithmic and the scalar variance hypotheses (Figure 1.1). In the first case, we 

could assume that our internal representation of number is non-linearly related to 

objective number. In this line, the dominant view is that the scaling of the number line 

is compressive, particularly logarithmic. Numerosity would be represented on a 

logarithmic scale with a constant level of noise along magnitudes. The second 

alternative to explain the size effect involves a linear scaling of number, but an 

increasing level of noise for larger magnitudes. According to the scalar variance 

proposal, the size effect emerges as larger magnitudes are more noisily represented. 

1.2   The parieto-frontal magnitude system 

In the early 19th century, Gall had already claimed the existence of ‘a center’ 

of calculation (Kahn and Whitaker 1991). The involvement of different cortical areas 

in magnitude estimation and comparison was first revealed by the study of deficits 

after accidental or pathological lesions in humans. Damage to the parieto-occipito-

temporal junction was early identified as a cause of acquired dyscalculia or acalculia 

(Gerstmann 1940; Henschen 1919). Moreover, posterior parietal lesions in the 

perinatal period have been pointed out as origin of developmental dyscalculia (Levy, 

Reis, and Grafman 1999; Isaacs et al. 2001). However, more anterior lesions were 

also identified as cause of impairment in magnitude processing and calculation. 

Particularly, it was reported that frontal lesions compromise the ability of patients to 
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estimate magnitudes in different domains and affect their arithmetic abilities (Shallice 

and Evans 1978). 

1.2.1 Neuroimaging evidence 

Later, functional imaging (Roland and Friberg 1985; S Dehaene et al. 1996) 

and human neurophysiological studies (S Dehaene 1996) confirmed and specified 

the role of parietal and frontal cortices in magnitude cognition. Particularly, these 

studies reported bilateral parietal and prefrontal activations when subjects were 

required to do mental arithmetic. Since then, the intraparietal sulcus has been 

consistently identified as a crucial area in the processing of digits and calculations. 

However, the IPS is also activated in tasks involving non-symbolic quantities as sets 

of dots, series of tones or light flashes (Castelli, Glaser, and Butterworth 2006; Piazza 

et al. 2004; Piazza et al. 2007; Piazza et al. 2006). Such are examples of non-symbolic 

presentations of number, commonly referred as ‘numerosities’. It has been shown 

that attending the numerosity of a stimulus elicits strong bilateral activations of the 

IPS (Castelli, Glaser, and Butterworth 2006; Piazza et al. 2006). But interestingly, this 

region encodes numerosity even when it is not behaviorally-relevant; for example, 

when subjects are passively presented with a rapid stream of sets of dots (Piazza et 

al. 2004). These findings suggest that numerosity perception is hard-wired in the 

human brain. Further support for this claim comes from studies in children and infants 

(Temple and Posner 1998). Parietal activations have been described in four-year-old 

children attending to the numerosity of visual sets (Cantlon et al. 2006). Moreover, 

event-related potentials in the right parietal cortex of infants signal changes in 

numerosity when a stream of sets of dots is presented (Izard and Dehaene 2008).  

More recently, high-field fMRI revealed a topographical representation of 

numerosity in the parietal cortex (Harvey et al. 2013). Importantly, this numerosity 

map is robust to changes in low-level stimulus features. As a correlate of the 

numerical size effect, the cortical area devoted to each numerosity decreases with 

increasing numerosity and the tuning width increases with preferred numerosity.  This 

topographical encoding of numerosity in parietal cortex resembles the 

representational organization of sensory areas, and further supports the 

characterization of a ‘sense of number’. 

1.2.2 Single-cell neurophysiology 

Any proposed neurobiological substrate for numerical cognition should 

account for the patterns observed in the way subjects deal with numerosities. Single-

cell neurophysiology offers a robust correlate of the psychophysics of numerical 

discrimination; specifically, it accounts for the distance and size effects. As shown in 
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Figure 1.1, the posterior parietal cortex and the lateral prefrontal cortex (PFC) host 

high proportions of number-tuned neurons (Nieder and Miller 2004). Among the 

explored cortical areas, lateral prefrontal cortex hosts the highest proportion of 

numerosity selective neurons. In the posterior parietal cortex, number neurons are 

more abundant in the fundus of the intraparietal sulcus, and particularly, in the ventral 

intraparietal area (VIP). Lower proportions of number selective neurons have been 

also found in the antero-inferior temporal cortex (Nieder and Miller 2004).  

The firing responses of these neurons are maximal to a ‘preferred numerosity’ 

and gradually drop off as the presented stimulus differs in quantity from such number 

(Nieder, Freedman, and Miller 2002). This pattern of response is the defining feature 

of numerical tuning. Importantly, the response of these neurons is not driven by low 

level stimulus features (e.g. total dot area, dot density) and is not affected by other 

stimuli appearance parameters (e.g. dot configuration or dot color). Two examples of 

single neurons tuned to numerosity are shown in Figure 1.2. 

The responses of subpopulations of numerosity selective neurons, with 

different preferred numerosities, create overlapping numerosity filters (Figure 1.3B). 

Notice that these filters mirror the animal performance for the different sample stimuli 

(Figure 1.3A). Interestingly, in a linear scaling, these neuronal filters are 

asymmetrical; only after a logarithmic transformation of the numerical scale they 

become symmetric Gaussian functions (Nieder and Miller 2003) (Compare Figure 

1.3B left and right). 

At the neuronal population level, the behavioral distance effect could be 

attributed to the overlap between neuronal tuning functions engaged in the 

discrimination of different numerosities. For a pair of adjacent numerosities, the large 

overlap between their corresponding filter functions makes the discrimination more 

difficult (a low signal-to-noise ratio). The numerical magnitude effect can be explained 

by the fact that, on average, neurons are less precisely tuned as preferred numerosity 

increases (Nieder 2005). For example, notice that the filter curves are narrower for 

small numerosities and wider for large numerosities when plotted on a linear scaling 

of number. 

Further neurophysiological studies confirmed these findings and extended the 

domain of such labeled line code to other types of magnitudes as lengths (Tudusciuc 

and Nieder 2007) and proportions (Vallentin and Nieder 2008). Concerning the range 

of stimuli, neurophysiological studies have shown that numerical tuning in VIP and 

PFC neurons can account for the discrimination of numerosities up to 30 (Nieder and 

Merten 2007). In contrast, in the small extreme of the natural numbers the neural 

correlates of zero have remained barely explored. Does zero find a place in the ‘neural 

number line’? 
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Fig 1.1 Lateral view of a monkey brain showing sites in 

which numerosity selective neurons have been found: LPFC, 

PPC, and aITC. The proportion of numerosity-selective neurons 

in each area is color coded. The IPS is unfolded to show the 

different areas in the lateral and medial walls. Numbers on PFC 

and PPC indicate anatomical areas. (As, arcuate sulcus; Cs, 

central sulcus; IPS, intraparietal sulcus; LF, lateral fissure; LS, 

lunate sulcus; Ps, principal sulcus; Sts, Superior temporal sulcus). 

Figure originally created after Nieder and Miller (2004) and 

reproduced from Nieder and Dehaene (2009). 

Fig 1.2 Response of a numerosity-

tuned neuron recorded from the PFC. It 

shows a graded discharge during sample 

presentation (interval shaded in gray, 500–1300 

ms) as a function of numerosities 1 to 5. The 

inset in the upper right corner show the tuning 

function the neuron in different control 

conditions. Figure reproduced from Nieder 

(2005). 

Fig 1.3 Relation between monkey behavior and numerosity-selective neurons. (A) Behavioral numerosity 

discrimination functions. The curves indicate whether the first test stimulus was judged as containing the same number of 

items as the sample display. The function peaks (and the color legend) indicate the sample numerosity from which each 

curve was derived. Behavioral filter functions are skewed on a linear scale (left), but symmetric on a logarithmic scale (right). 

(B) Averaged single-cell numerosity-tuning functions from PFC. They are also asymmetric on a linear scale, but symmetric 

after logarithmic transformation. Originally created from Nieder and Miller (2003) and reproduced from Nieder (2011). 
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1.3   The case of zero 

Zero is frequently deemed a special number. In principle, it represents the 

absence rather than the presence of items to be counted. Therefore, in contrast to 

positive integers, zero is not a counting number. Indeed, zero could be considered an 

instance of what is called “negative information”, information conveyed by the 

absence of a stimulus. Given these singularities, the understanding of zero may rely 

on different cognitive processes than those supporting the apprehension of other 

numbers. For instance, it has been suggested that the understanding of zero 

demands higher representational or symbolic capabilities. To support this hypothesis, 

zero is depicted as a ‘late comer’: Both in human history and cognitive ontogeny zero 

is considered a late achievement.  

1.3.1 Zero in human history 

 Zero emerged independently at least two times in human history (Seife 2000). 

In both cases, it appeared as a placeholder symbol in notational systems; namely, as 

a symbol marking the absence of a proper value in a certain position of the system. 

Babylonians (300-400 B.C.) first left an empty space in their cuneiform number system 

and later used a symbol (angled wedges) to mark the empty column. Zero emerged 

by second time, independently, in the New World during the first centuries A.C: the 

Mayan culture used a symbol (a shell or closed hand) to denote a placeholder in their 

vigesimal positional system. However, Indians are credited as the first civilization 

which deployed a symbol for null-quantity in arithmetic calculations. They are possibly 

inheritors of the Babylonian use of zero as a place-holder. In any case, the Indian zero 

would spread through the north of Africa and find its way to Europe around 1200 A.C. 

with the rest of Arabic numerals. 

1.3.2 The developmental psychology of zero  

In cognitive ontogeny, a parallelism is frequently drawn: children master the 

cardinal and ordinal properties of small countable numbers before they can deal with 

zero as a numerical concept (Wellman and Miller 1986). Experiments (Wynn and 

Chiang 1998) showed that eight-month old infants detected the magical 

disappearance of a single object leaving an empty set, but failed to detect the magical 

appearance of an object surreptitiously added to an empty set. Wynn and Chiang 

argued that infants’ failure in the second condition is related to their incapacity to 

represent an initial empty set. Particularly, Wynn argues that magnitudes are primarily 

represented by a numerical accumulator. Given that there is no value for zero in such 

accumulator, children fail at representing zero. 
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However, even after children are able to represent the ‘absence’ of an object, 

the concept of zero is far from reach. The understanding of zero seems to impose 

particular cognitive challenges. For instance, one of the ‘counting-principles’ proposed 

by Gelman and Gallistell (Gelman and Gallistel 1978), the one-to-one principle, 

cannot be applied to zero. This principle states that each counting object is assigned 

its unique symbol (numeral). But the symbol for zero cannot be attached to any object 

(Wynn 1998). 

Wellman and Miller (1986) have proposed a series of stages for the 

understanding of zero by young children. First, they can verbally identify the symbol 

for zero without any understanding of what it means. Later, young preschoolers simply 

treat zero as representing “nothing” or “none”, but not yet as numerical concept. 

Particularly, they do not recognize the magnitude relations between zero and other 

numbers. For example, in this stage, they are as prone to say that zero is larger than 

two as vice versa. Moreover, they characteristically insist that one is the smallest 

number. Only by the end of preschool years, most children understand zero as a 

numerical concept by recognizing its relations with other numbers. Then, they are able 

to identify zero as the smallest natural number.  

But, could children’s initial failure be explained by the cognitive load imposed 

by the manipulation of numerals? Merrit et al. (2013) have shown that pre-scholar 

children understand the numerical value of empty sets before they have developed a 

concept of symbolic zero. Specifically, four-year olds can position empty sets in the 

context of other small numerosities. In one task (Merritt and Brannon 2013), children 

were presented two non-symbolic quantities (groups of dots presented in a square 

background) and required to select them in ascending order in a touch-sensitive 

screen. Their performance in trials involving empty sets improved as the numerical 

distance between the two stimuli increased (Figure 1.4, continuous line). Merrit et al. 

compared such distance effect for empty sets with the distance effect for numerosity 

one (Figure 1.4, dotted line with square markers). They reasoned that, if children treat 

empty sets as numerical values, these distance effects should be similar. Such was 

the case, and the authors concluded that pre-scholar children possess a non-symbolic 

notion of zero.  
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However, it is worth noting that children were better at ordering two non-

empty sets compared to pairs that included an empty set (Figure 1.5). Then, 

empty sets still represent a challenge for pre-scholar children. 

 

 

On other three tasks, the authors tested the children’s comprehension of the 

symbolic zero1. Interestingly, they found that performance on symbolic-zero tasks was 

grossly predictive of performance on the ordering of empty sets. These results 

                                                           

1  Symbolic number tasks included: (1) “Give a number” task: children were presented with 12 plastic dolphins in a pile 

and asked “Can you give me one dolphin?” A titration procedure was used, so the number of requested dolphins 

increased by one after each correct response and decreased by one after an error; (2) “How many” task: children were 

presented with 1-6 plastic dolphins in a line and were asked “How many dolphins are there? Can you count them out 

loud?”; (3) Smallest number query: Children were asked “What is the smallest number in the world?”; (4) Symbolic 

ordering task: children were presented with a pair of Arabic numerals written on cards. Then, they were asked “which 

one is the smaller number?” If a positive integer was offered as answer, the child was asked “Is there a number smaller 

than that?” The procedure was repeated until the child failed to provide a smaller number. 

Figure 1.5 Comparison of children’s 

performance on trials involving 

empty-sets and non-empty set trials. 

Data from an ordering task with non-

symbolic stimuli (sets of dots). Most data 

points lie in the non-shaded area, 

indicating better accuracy on non-empty 

set (standard trials) than on empty set 

trials. Figure reproduced from Merrit & 

Brannon (2013). 

Figure 1.4 Performance for empty 

sets and one-item sets as a function of 

numerical distance. For both empty sets 

and numerosity one, accuracy increases 

with numerical distance between the pair 

of presented stimuli. For comparison 

purposes, the authors included in the 

figure data from a previous study in 

Rhesus monkeys (Merrit et al. 2009). 

Figure reproduced from Merrit & 

Brannon (2013) . 
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suggest that children grasp the ordinal relationships between empty sets and other 

non-symbolic numerosities before they understand how the symbolic zero relates to 

other numerals. The authors conclude that children can appreciate empty sets as 

magnitudes on a mental number line, and for that purpose, they do not require 

comprehending the symbolic zero’s numerical meaning. 

 Finally, other studies have focused on how children use notations to represent 

quantities; namely, on the development of some symbolic representation of 

numerosity. For example, Bialystok and Codd (2000) examined this development of 

quantity representations in children aged 3 to 7 years old using a game-like scenario. 

Particularly, they analyzed the notations children used to represent different quantities 

(including zero) and their understanding of those representations. They found that at 

the age of 3, subjects already represented zero as absence of objects in a consistent 

way (more than half the trials). However, three-year-olds still find more difficult to deal 

with zero than with positive whole numbers. At the age of four, children solved 

problems involving zero as well as they do with other small natural numbers (Bialystok 

and Codd 2000). 

1.3.3 Zero in adult behavioral studies  

Even educated adults seem to struggle with zero. Wheeler & Feghali (1983) 

studied the understanding of zero in 52 pre-service elementary school teachers. They 

found that these subjects not only exhibited confusion as to whether zero is a number, 

but also had problems in some calculations involving zero. For example, 75% did not 

responded correctly to the question ‘What is 0 divided by 0?’ (Wheeler and Feghali 

1983).  

However, anomalies in the treatment of zero have been described in more 

basic tasks, for example, when reading numerals. The reading times of Arabic 

numerals are affected by their numerical value. Specifically, Brysbaert (1995) found 

that the time to process integers 1 to 99 increases as a function of the logarithm of 

the numerical value (Brysbaert 1995)2. To arrive to this conclusion, Brysbaert et al. 

excluded the numeral zero from his main analysis. Indeed, confirming a previous 

study, reading the numeral zero took more time than expected. For example, the 

processing time for number zero was longer than the processing time for 1 and even 

other digits. Based on these results, the authors concluded that the processing of zero 

could be “based on other principles than those used for integers between 1 and 99”. 

                                                           

2  In this study, reading times were also predicted by the frequency with which the number was presented and, in some 

cases, the length of the number name. 
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Moreover, Brysbaert suggested that the number line does not start with zero, but with 

one. 

Withstanding such evidence, Merrit et al. presented adult subjects with pairs 

of sets containing 0 to 9 dots. Subjects were requested to select first the smaller 

stimulus and subsequently the larger stimulus in the pair. As expected, reaction times 

in correct trials decreased with numerical distance between the stimuli. This distance 

effect was similar in pairs including empty sets compared to sets including numerosity 

one (Figure 1.6). 

 

Most of the evidence that the mental number line is oriented from left to right 

comes from the association between number magnitude and space. In 1993, 

Dehaene and colleagues first showed an association between numerical value and 

personal space. Subjects were asked to press one of two keys in response to an even 

number and other key to an odd number. They responded faster to smaller numbers 

with the left hand than with the right hand. The opposite happened for larger numbers 

(Stanislas Dehaene, Bossini, and Giraux 1993). The systematic interaction between 

response side and number magnitude was named as ‘spatial-numerical association 

of response codes’ (SNARC) and has been robustly replicated in different tasks. The 

SNARC effect is said to originate when, during a task, the representation of a 

particular number is automatically activated in the spatially oriented number line.  

In their initial study (Stanislas Dehaene, Bossini, and Giraux 1993), Dehaene 

et al. found shorter latencies in response to number zero with the left hand. This 

finding suggested that zero is represented in the mental number line as a small 

number. However, in this and other studies participants frequently doubted about the 

parity status of zero (Brysbaert 1995; Fias, Lauwereyns, and Lammertyn 2001).  

Figure 1.6 Reaction times as a 

function of numerical distance in 

adults. Data from an ordering task with 

non-symbolic stimuli (sets of dots). No 

significant difference was found 

between the slope corresponding to 

empty sets and one. Figure reproduced 

from Merrit & Brannon (2013). 
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In another study, Fischer and Rottmann (2005) asked participants to decide 

whether a presented integer (from -9 to 9) was smaller or larger than 0 by pressing a 

right or left button. They reported a SNARC effect in this task. Moreover, they found 

that a distance effect was evident when positive numbers were compared to 0, but 

not for negative numbers (Figure 1.7). According to the authors, this finding suggests 

that the mental number line starts with 0 and does not extend to the left of it (Fischer 

and Rottmann 2005). 

 

More recently, Pinhas and Tzelgov (2012) studied the automatic processing of 

numbers using a physical comparison task: Pairs of numerals which differ in physical 

sizes and magnitude values are presented to subjects who are requested to compare 

their sizes and ignore their value. In such type of task, faster responses are observed 

in congruent conditions (when the number which is physically larger is also 

numerically larger) than in incongruent conditions (when the physically larger number 

is numerically smaller). This ‘size congruity effect’ is measured as the difference in 

reaction times between incongruent and congruent conditions. The effect generally 

increases with the numerical distance between the numbers which are physically 

compared. But crucially, for the smallest number in the range presented the size 

congruity effect is increased, while its dependence on numerical distance is 

attenuated. The authors used this ‘end effect’ in the automatic processing of numbers 

to investigate whether zero is represented in the number line. They concluded that, 

when included in the stimulus range, “0, or 1 in the absence of 0, is perceived as the 

smallest entity on the mental number line” (Pinhas and Tzelgov 2012). 

However, other studies deploying the SNARC paradigm have challenged the 

inclusion of zero in the mental number line. In the study conducted by Fias et al. 

(2001), Arabic numerals were displayed in a screen, but were not relevant to solve 

the task. Instead, subjects had to attend a superimposed cue and report, for instance, 

if this cue (a triangle) was pointing upwards or downwards, by pressing either the left 

Figure 1.7 Categorization times 

for positive and negative digits 

when compared to zero. Left 

(white triangles) and right (black 

circles) hand responses are 

separately plotted. Figure 

reproduced from Fischer & 

Rottmann (2005). 
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or right response button3. The authors found a robust SNARC effect even when 

numerical value was not task-relevant. They computed differences in reaction times 

(dRTs) by subtracting the median RT for the left hand from the median RT from the 

right hand. An association between response side and number magnitude was 

evidenced by a negative correlation between number value and dRT. Small numbers 

elicited faster left responses, and therefore positive dRTs. However, in most of the 

experiments numeral zero elicited more negative dRTs than expected by its null-value 

(Figure 1.8). Based on these anomalies, the authors support the conclusion that “the 

semantic coding of the number zero might be different than the semantic coding of 

other numbers” (Fias, Lauwereyns, and Lammertyn 2001). 

 

 

 

Moreover, a more recent study found that zero is represented separately from 

other single-digit integers (Nuerk, Iversen, and Willmes 2004). In this study, Nuerk et 

al. primarily explored the presence of a MARC effect (Linguistic Markedness of 

Response Codes) for parity: that even numbers are responded faster with the right 

hand and odd numbers with the left hand. For that purpose, most of their analysis 

excluded zero. However, they also performed a non-metric multidimensional similarity 

scaling analysis (MDS) on correlations in the reaction time data across all numbers, 

including zero, for both response sides. Points depicted closely in the represented 

space configuration (Smallest Space Analysis, SSA) represent highly correlated 

stimuli. The authors explain that, if zero is not part of the number line, it should be 

located far away from other numbers. But, “if it is an ordinary even number, it should 

be located close to other small numbers and to other even numbers”. Given the results 

                                                           

3  The authors carried out 4 versions of the experiment. In one, referred in the main text, the subjects had to report if the 

triangle was pointing up or down. In other two versions, they had to report its color (In Experiment 2, green or red; In 

Experiment 3, light or dark cyan). Finally, in a fourth version, the cue was a line segment and participants reported its 

orientation (horizontal or vertical). 

Figure 1.8 Differences in RT 

(dRT) between right and left 

hand responses (right–left) as a 

function of the task-irrelevant 

digit. The continuous line depicts 

the predicted dRTs on the basis 

of the regression analysis. 

Figure reproduced from Fias, et 

al. (2001). 
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shown in the Figure 1.9 below, the authors concluded that such is not the case: zero 

in an unconventional number, represented far from other small numerosities. 

 

1.3.4 Animal notions of absence and zero  

Altogether, historical, developmental and behavioral considerations may 

suggest that zero is not processed in the brain as other numbers are. Moreover, it has 

been suggested that the concept of zero demands a higher level of abstraction. 

Particularly, higher symbolic or representational capabilities could be required to 

apprehend zero. Animals are commonly seen as lacking those capabilities. This belief 

could explain the scarcity of studies exploring the animal understanding of null-

quantity. But, do animals lack even a primitive non-symbolic concept of zero? Given 

the remarkable commonalities with humans in dealing with non-symbolic quantity, 

some kind of the precursor for the understanding of zero would be expected in 

animals.  

1.3.4.1 Animal cognition of absences 

The understanding of ‘absence’ seems to precede the apprehension of zero, 

at least in children. Do animals possess a concept of absence? Pepperberg (1988) 

trained an African Gray parrot, Alex, in the notions of ‘same’ and ‘different’. Objects 

with three attributes (color, shape and material) were shown in pairs to Alex. Then, he 

was questioned “What’s same?” or “What’s different?” He was expected to mention 

the property (category label) with respect to which the objects coincided or differed. 

For example, when shown a red plastic cube and a red wooden sphere, and asked 

“What’s same?”, he would reply “color”. Later, the paradigm was extended by also 

showing pairs of identical or totally dissimilar objects, so he could reply “none” to the 

Figure 1.9 SSA for positive 

Arabic numerals 0 to 8, 

responded to with the right 

hand (squares) and the left 

hand (diamonds). Based on 

this analysis Nuerk et al. 

(2004) assert that zero 

strongly differs from all other 

numbers regardless of 

whether it is responded to with 

the left or the right hand. 

Figure reproduced from 

Nuerk, et al. (2004). 
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questions “What’s different?” or “What’s same?”. After training in this type of 

questions, Alex was able to transfer his use of “none” to new stimuli: his accuracy was 

high for pairs of novel objects, and also when unfamiliar colors, shapes and materials 

were tested. Pepperberg et al. concluded that Alex possessed an abstract notion of 

‘absence’, which relied on the violation of an expectation of presence (Pepperberg 

1988). 

1.3.4.2 A zero-like concept in animals? 

A later study (Pepperberg and Gordon 2005) reported that Alex transferred his 

use of “none” to a numerical task. In this occasion, a set of differently colored blocks 

was presented. For each color, the number of blocks in the set ranged from 1 to 6. 

Alex was asked about the color which corresponded to a particular number. For 

example, if shown four blue, three red, and two green blocks and questioned “what 

color four?” Alex would reply “blue”. Surprisingly, when by mistake Alex was 

questioned for the color of a non-present numerosity, he spontaneously answered 

“none”. According to the authors, this spontaneous transference in the use of “none” 

shows Alex is able to label a null set. Controversially, from these results, the authors 

asserted that Alex possessed a ‘zero-like concept’.  

In a follow-up study (Pepperberg 2006), concerning addition, Alex was 

sequentially shown the content of two cups, and later asked the total number of 

revealed objects. He showed some competence in summing small quantities. 

However, he failed to say “none” when asked how many items were located under 

two sequentially presented empty cups. In total, eight of these trials were presented 

to Alex. In five of those trials Alex refused to answer; in the other tree, he said “one”. 

As noted by Pepperberg, Alex response of ‘one’ is interesting given that he 

was never trained on ordinality and learned the numbers in random order. However, 

he seemed “to grasp that ‘none’ and ‘one’ represented the lower end of a number 

spectrum”. Nonetheless, Pepperberg recognized that these results expose the limits 

in the correlation between the use of ‘none’ and the concept of zero. It seems that 

Alex was using “none” to describe the absence of a particular attribute associated with 

a collection of objects, but was unable to use it to describe the absence of items 

themselves.  

1.3.4.3 A primate precursor of zero 

 There is accumulating evidence that non-human primates can recognize and 

deal with empty sets as numerically significant.  Biro et al. (2001) had trained an adult 

chimpanzee, Ai, to correlate sets of dots to numerals 1 to 9. When the chimpanzee 

was already competent in matching visual numerosities and symbols, number 0 was 

introduced to her repertoire. Then, the animal was required to correlate empty sets 
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with the numeral 0, and viceversa. This task explored the cardinal dimension of zero 

in the context of other numbers. Ai was competent in the use of zero in this task. 

However, the main purpose of the study was to determine whether the subject could 

transfer between the cardinal and ordinal meanings of zero. Therefore, in a 

subsequent task, they required Ai to sequentially select presented numerals in an 

ascending order. Without specific training in the ordinal task, the animal ordered the 

numeral zero in the context of the other numbers. Then, Ai was able to acquire the 

meaning of zero in the ordinal domain, through training in the cardinal domain (Biro 

and Matsuzawa 2001). 

The authors report that, during training and testing, zero seemed to be 

progressively shifted towards the lower end of the continuous numerical scale. This 

was evidenced by a decrease, with training time, in the average value of the labels 

that she erroneously matched to the zero stimulus. A similar pattern was observed in 

the ordering task: errors involved progressively smaller numbers. In the end, 

confusions with 1 remained the most frequently encountered errors. For example, at 

the end of the testing period, Ai still made the mistake of selecting 1 before 0 in the 

ordering task. According to the authors, this error pattern suggests that Ai understood 

the positioning of zero in relation to other number symbols. Such pattern, they argue, 

is not consistent with an “absence of items versus presence of items” scheme. 

In another study (Merritt, Rugani, and Brannon 2009), two Rhesus monkeys 

spontaneously treated empty sets according to the (null) quantity they represent in 

tasks involving the discrimination and comparison of visually displayed sets of dots. 

In the training stage of the study monkeys were shown a sample array of dots 

(comprising numerosities 1 to 12) and were subsequently required to select between 

two test arrays the one that matched in numerosity (target stimulus) with such sample. 

Subsequently, in the testing phase of the match-to-sample experiment, empty set 

stimuli were inserted in non-differentially reinforced trials; namely, trials containing 

empty sets were rewarded with juice either after selection of the target (match) or the 

distractor (non-match) stimulus. This was done to prevent learning and to avoid the 

extinction of potential behavioral effects. Additionally, experimenters performed 

controls for stimulus color and free-background area. Both monkeys were successful 

at matching empty sets without previous training and independently of the stimulus 

appearance (color or background area). Crucially, for both empty sets and numerosity 

one, accuracy increased as a function of numerical distance between the tested 

numerosities (target and distractor) (Figure 1.10).  

Concerning reaction times, the authors could only conclude that empty sets 

were treated similarly to numerosity one: One monkey showed a significant decrease 

in RT with numerical distance for both empty sets and one, while the other monkey 

failed to exhibit a distance effect for both stimuli. 
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In a second experiment, monkeys were trained to select the numerically 

smaller of two dot arrays displayed simultaneously. Empty sets were introduced as 

stimuli after monkeys were competent in the comparison of numerosities 1 to 12. In 

trials including empty sets, juice reinforcement was given regardless of the order in 

which stimuli were selected. Controls for image-like features were also performed for 

this task. Results show that both monkeys successfully ordered empty sets with 

respect to other numerosities. Again, their accuracy exhibited similar distance effects 

for empty sets and numerosity one (Figure 1.11). This pattern in monkeys’ 

performance further suggests that empty sets were treated as values on a numerical 

continuum. However, also in these case reaction times were less consistent.  

 

 

More recently, while studying the comparison of auditory and visual quantities 

by chimpanzees, Beran, (2012) found behavioral indications that empty sets were 

recognized and appropriately accommodated in the context of other quantities (Beran 

Fig 1.10 Match-to-sample task: Monkeys’ accuracy on trials including an empty set or numerosity one. In 

both monkeys, performance accuracy improves with numerical distance between the target and the distractor 

numerosity. Figure reproduced from Merritt, et al. (2009). 

 

Fig 1.11 Comparison task: Monkeys’ accuracy on trials including an empty set or numerosity one. In both 

monkeys, accuracy improves with numerical distance between the two simultaneously displayed stimuli. Figure 

reproduced from Merritt, et al. (2009). 
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2012). In a first experiment the animals were required to choose between two sets of 

food items (quantity range from 1 to 5) that were auditorily presented. The 

experimenter dropped candies at a pseudorandom rate through an opaque tube, first 

into one container and then into another. In the test phase the chimpanzees were 

expected to choose the container with the larger amount of food items. As predicted, 

their responses showed the ratio-effect commonly present in numerosity judgments.  

In order to exclude possible confounding factors, the authors conducted a 

second experiment in which one opaque container was replaced by a transparent 

plastic bowl and a complete set of items was placed into it before starting each trial. 

Additionally, the experiment included empty sets in the sequential-auditory 

presentation. Interestingly, when making an error monkeys had more likely selected 

the auditory set over the visual set. Of this errors 85% involved auditory sets of zero, 

one or two items. When zero items were presented in the auditory set the chimpanzee 

incorrectly selected that set in 79.2% of the trials in which one visible item was 

presented, 25% over 2 visual items and 8.33% over 4. This pattern in the error rate of 

comparisons involving zero items evidences, again, a distance effect for empty sets. 

Additionally, as noted by the authors, this behavior pattern cannot be explained by 

the systematic selection or avoidance of any specific visual or auditory set, but only 

by the number of items in both sets.  

It is worth noting that previous primate studies which used food as stimuli 

included ‘zero’ as ‘absence of food’ in tasks involving arithmetic manipulations 

(Rumbaugh, Savage-Rumbaugh, and Hegel 1987). Probably the first example 

corresponds to a summation study in chimpanzees conducted by was Rumbaugh et 

al. (1987). Later, in 1989, Boysen & Berntson reported that the chimpanzee Sheba 

found no difficulty in learning to match an empty food tray to the numeral 0. 

Furthermore, the animal was capable of performing addition of numerals ranging from 

zero to four (Boysen and Berntson 1989).  

In another study (Olthof, Iden, and Roberts 1997), squirrel monkeys learned to 

match Arabic numerals including zero (0,1,3,5,7,9) with corresponding quantities of 

food. Monkeys were asked to choose one of a pair of these numerals and received 

the corresponding number of peanuts. At this stage, the correct behavior involved not 

choosing zero. But later, in an addition task, monkeys correctly chose the larger of 

two sums (represented by two cards with one to three numerals printed on each of 

them) even when zero was among the displayed stimuli. 

Taken together, studies in non-human primates suggest that these animals 

can treat empty sets as representing null quantity. Crucially, it has been shown that 

primates can position empty sets in the numerical continuum and therefore, could 

possess a non-symbolic primitive representation of zero. 
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1.3.5 Neurophysiological studies  

Recently, Merten and Nieder (2012) studied how the judgment of the presence 

or absence of a stimulus is represented in the prefrontal cortex (PFC). They recorded 

prefrontal single-neuron activity in monkeys performing a visual detection task, in 

which decision was dissociated from motor preparation. As expected, they found 

neurons that actively encoded the subjective decision about the presence of a 

stimulus. But surprisingly, after the stimulus was presented and before the monkeys 

could plan their response, they found a second population of neurons that actively 

responded to the judged absence of stimuli. Such neurons, named ‘no-neurons’, 

significantly changed (in most of the cases, increased) their discharge rates in the 

delay period, whenever the monkey decided to report the absence of stimulus, both 

in correct rejections and miss trials (Merten and Nieder 2012). 

In addition, preliminary results from one monkey suggested that VIP neurons 

signal the lack of countable items (Okuyama, Kuki, and Mushiake 2015). However, 

the invariance of these neuronal responses to low level (i.e. luminance) and 

appearance stimulus features was not directly tested. Moreover, note that the concept 

of ‘zero’ is not exhausted by the notion of ‘absence’ or ‘nothing’. The latter is a binary 

notion, lacking the quantitative dimension that defines numerosities. As previously 

suggested, zero is defined by its (ordinal or cardinal) relations to other numbers. Then, 

which are the neural processes that enable primates to translate absence in to 

quantity zero? 
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2.  Identifying a neural correlate of zero 

Behavioral evidence advances the hypothesis that zero could find a place in 

the primate visual sense of number. If Rhesus monkeys are able to deal with empty 

sets as endowed with null quantity, how is such a capacity implemented in the brain? 

Is zero represented and processed in the parieto-frontal magnitude system as 

countable numerosities are? To approach these questions, we simultaneously 

recorded neuronal activity in VIP and PFC while two monkeys performed a numerosity 

discrimination task, in which empty sets were included in the stimulus pool.  

2.1 Minimal requisites of a zero neural representation 

The present study was specifically designed to explore the parieto-frontal 

encoding of empty sets as endowed with a numerosity of zero. Neuronal activity, 

either at the single-cell or population level, must satisfy three conditions to be 

considered a correlate of numerosity: 

First and fundamentally, numerosity representations reflect the cardinal 

relationships between numbers (Nieder, Freedman, and Miller 2002). Such type of 

quantitative tuning, can be evidenced by the presence of either a ‘numerical distance 

effect’ or a ‘numerical size effect’ (Nieder, Freedman, and Miller 2002; Nieder and 

Miller 2003). As previously mentioned, the distance effect describes an improvement 

in the discrimination of two quantities as the numerical difference between them 

increases. The size effect is reflected by a decrease in the discrimination of larger 

numerosities compared to smaller numerosities, even when separated by equal 

numerical distances. 

Second, numerosity representations are invariant to low level stimulus 

properties which can correlate with number (i.e. total item area, item density). In the 

case of non-controlled stimuli, these low level properties could emulate a quantitative 

tuning in neuronal responses. Ruling out this possibility is crucial in numerosity 

studies. 

Third, numerosity representations exhibit some degree of invariance to 

stimuli specificities. In the case of visual stimuli, these would be image-like features, 

which do not correlate with number (i.e. color or shape of the countable items). Note 

that a group of three blue stars and a group of three red apples are both instances of 

three-item-sets. A neuronal response to numerosity three is expected to be similar in 

both cases. This requisite guarantees a high-level of abstraction in numerical 

representations. 
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2.2 General experimental approach 

Two monkeys were trained in a delayed-match-to-sample numerosity 

discrimination task involving as stimuli sets of black dots presented against a gray 

background (Figure 2.1). Stimuli contained from 0 (empty sets) to 4 dots.  

To ensure that the monkeys solved the task by judging discrete quantity, low-

level visual features were controlled in two stimulus protocols. In the standard 

protocol, black solid dots appeared at randomized locations and their diameter was 

pseudo-randomly varied. In the control protocol, overall dot area, dot density and total 

stimulus luminance were kept constant across countable numerosities (1-4). 

Background luminance was varied across and between protocols to control for 

luminance differences that may occur for the empty set, and to detect their effect on 

neuronal responses (Figure 2.2). To test how invariant the neuronal representation 

of empty sets is to image-like features, both stimulus protocols (standard and control) 

were shown either with a circular or a square background. If a neuron or a population 

of neurons are said to represent empty sets quantitatively, they should do it 

independently of background shape, as both an empty circle and an empty square 

are instances of numerosity zero. 

We recorded simultaneously in the ventral intraparietal cortex (VIP) and the 

dorsolateral prefrontal cortex (PFC), while two monkeys performed the delay-match-

to-sample task (Figure 2.3). 

 

 

 

 

 

 

Figure 2.1 Task. Fixating monkeys were presented with a sample numerosity ranging from 0 to 4 for 500 ms. 

Monkeys had to keep the sample numerosity in memory for a 1-s delay period and match it to a subsequent test 

stimulus (either the first or the second test stimulus was correct) by releasing a lever.  
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Figure 2.2 Stimuli. Example stimuli for the 

different conditions. Numerosities 0 to 4 (factor 

‘numerosity’) were shown in standard and control 

protocols (factor ‘protocol’) on a circular or 

square background (factor ‘shape’).  

Figure 2.3 Recording sites. 

Lateral view (right) of the right 

hemisphere of a monkey brain 

indicating the topographical 

relationships of cortical landmarks. 

Coronal section (left) at the level of the 

dotted line in the lateral view 

reconstructed from a structural MRI 

scan. Red region on the frontal lobe 

and blue region in the fundus of the IPS 

mark the recording areas in PFC and 

VIP, respectively. ips, intraparietal 

sulcus; ls, lateral sulcus; sts, superior 

temporal sulcus. 

Figure 2.4 Stimuli Luminance. 

(A)Total luminance (cd), as a function of 

numerosity, for the different types of stimuli. 

(B) Ratio between dot and background 

luminance, as a function of numerosity. 
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3.    Materials & Methods 

3.1   Subjects & Surgery 

Two male adult rhesus monkeys (Macacca mulatta) weighting 6.7 and 8.5 kg 

were implanted with 2 recording chambers each, centered over the principal sulcus in 

the dorsolateral prefrontal cortex and the VIP in the posterior parietal cortex (monkey 

X, left hemisphere; monkey S, right hemisphere). Chamber implantation was guided 

by anatomical MRI and stereotaxic measurements. All surgeries were performed 

under sterile conditions while the monkeys were under general anesthesia. The 

monkeys received postoperative antibiotics and analgesics. All procedures were 

performed in accordance with the guidelines for animal experimentation approved by 

authorities (Regierungspräsidium Tübingen, Germany).  

3.2   Behavioral Protocol 

In order to start a trial, monkeys were required to grab a bar and keep eye 

fixation within 1.75 degrees of visual angle of a central white dot. Then, a green 

square or circle background appeared on the screen during a 500 ms ‘fixation period’. 

Subsequently, a sample stimulus consisting of a gray background containing 0 to 4 

dots was shown for 500 ms. Following a 1-second-delay, during which the green 

background was again shown, a test stimulus appeared and the monkeys were 

expected to release the bar if it matched the sample stimulus in quantity. That was 

the case in 50% of the trials, referred to as ‘match trials’. Otherwise, in non-match-

trials, a 300 ms second delay was followed by a second test stimulus (500 ms) which 

always matched sample number. The green fixation and delay background displays 

framed the sample. This background was chosen to match in luminance with the gray 

level displayed in the trial sample stimulus. Match and non-match trials were pseudo-

randomly intermixed. Correct responses were rewarded with water. Eye position was 

monitored with an infrared eye tracking system (ISCAN, 120 Hz sampling rate). 

CORTEX software (NIH, Bethesda, MD) was used in task implementation and 

behavioral data acquisition. 

3.3   Stimuli specifications 

Stimuli were shown on an LCD screen 57 cm in front of the monkey’s eyes. 

Numerosity stimuli consisting of multiple-dot patterns against a gray background 

(diameter of 5.7° visual angle) were created using custom-written MatLab software. 

These routines enabled the generation of new stimuli sets for each session. To 

prevent the monkeys from memorizing the visual patterns of the displays, each 

quantity was tested with different images per session, and the sample and test 
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displays were never identical in one trial. Additionally, all conditions were shown in 

pseudo-randomized order in each session. 

In standard trials parameters as total dot area, dot density, total stimulus 

luminance and background-dot ratio gradually increase or decrease with the number 

of dots in the stimuli, while average dot size is constant. Conversely, in control trials 

total dot area, dot density, total stimulus luminance and background-dot ratio are kept 

constant across countable numerosities (1-4) and differ drastically from empty sets, 

drawing a step-like function (Fig. 2.4). However, in control trials individual dot size 

decreases with numerosity (1-4).  

As previously explained, in order to test how invariant is the neural 

representation of empty sets to image-like features we included other variants across 

trials. First, in each trial the background could be either a circle or a square. Second, 

we included two gross luminance levels (high and low) for the stimulus background. 

To keep the number of conditions manageable we collapsed this variant with protocol. 

So, control trials always exhibited a darker background (average 9.40 cd/m2) than 

standard trials (average 28.6 cd/m2). Again, we would expect a neural representation 

of zero not to vary with background luminance level (dark or light).  

For behavioral reasons we introduced, in each of these ‘protocol’ groups, 2 

sublevels of background luminance which could appear in the same trial. This strategy 

prevented monkeys from solving the task by identifying empty sets as those with a 

slightly higher total stimulus luminance (no black dots). Additionally, we could test the 

capacity of monkeys to match empty sets independently of how they look, darker or 

lighter.  

3.4   Neurophysiological Recordings 

In each session, arrays of up to eight glass-coated tungsten microelectrodes 

(Alpha Omega LTD, Israel) were inserted in each recording chamber using a grid 

(Crist Instruments, USA) with 1-mm spacing. Neurons were selected at random, as 

no attempt was made to preselect neurons according to response properties. Only 

stable and well isolated neurons were recorded. A MAP Plexon system was used for 

signal acquisition, amplification, filtering and digitalization. Waveform separation was 

performed off-line (Plexon Systems, USA). 

3.5   Analytical Methods 

Behavioral data analysis. For each session, behavioral performance functions were 

obtained based on the percent correct responses to all possible stimulus 

combinations. The overall performance tuning function was derived by averaging 

behavioral tuning functions over sessions.  
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Neuronal data analysis. Neurons were required to satisfy two criteria to be considered 

for further analysis: first, a minimum average firing rate of 1 Hz in the period from the 

start of fixation to the end of the first delay; second, at least 3 stimulus repetitions per 

specific condition (20 specific conditions from 5 sample numerosities x 2 types of 

protocol x 2 background shapes). A total of 861 parietal neurons and 476 prefrontal 

neurons fulfilled these criteria. 

Epoch defined numerosity selectivity and tuning curves. Neuronal activity in response 

to numerosities during the sample phase was derived from a 500 ms interval following 

stimulus onset. To account for average response latencies in the respective recording 

areas, the analysis window was shifted by 50 ms after sample onset for VIP and 100 

ms for PFC neurons. Selectivity during the delay period was evaluated in a 900 ms 

window starting 200 ms after the sample stimulus disappears and 100 ms after the 

test stimulus appears. To determine numerosity-selectivity of individual neurons, we 

run a 3-way ANOVA with factors number (5 sample numerosities), protocol (standard 

and control) and shape (circle and square). Significance was evaluated for each factor 

at p<0.01. To create neuronal filter functions, activity rates were normalized by setting, 

for each neuron, the firing rate to the most preferred numerosity as 1 and to the least 

preferred numerosity as 0. The normalized individual tuning curves were then 

averaged across neurons with the same preferred numerosity. 

Error trial analysis. For comparing firing rates in error and correct trials we included 

selective neurons with at least three non-correct trials per stimulus. We used a 

Wilcoxon-signed-rank test to evaluate differences between neuronal firing rates in 

error and correct trials.  

Quantitative Index (QI). For each neuron the quantitative index was calculated as: 

1 − 
𝐴𝑈𝑅𝑂𝐶0−1

𝐴𝑈𝑅𝑂𝐶𝑚𝑜𝑠𝑡−𝑙𝑒𝑎𝑠𝑡 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑

 

The denominator in the AUROC ratio normalizes QI with respect to the maximal 

discriminability of each neuron and guarantees unbiased comparisons between the 

two cortical areas.  

Gaussian-Process Factor Analysis (GPFA). GPFA extracts smooth, low dimensional 

neuronal trajectories from the noisy spiking activity of hundreds of neurons on 

individual trials. While other techniques perform smoothing over time as a first step 

and dimensionality reduction as a second, GPFA combines these operations in one 

common probabilistic framework. The method was implemented using MATLAB 

toolboxes (Yu et al. 2009). To include a comparable number of pseudosimultaneously 

recorded neurons in both cortical areas and guarantee robust results, we required 

neurons to be recorded during a certain number of correct trials per stimulus type. We 

considered prefrontal neurons with at least 30 trials per numerosity (364 neurons) and 

parietal neurons with at least 37 trials per numerosity (377 neurons). Firing rates in 
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correct trials were processed using five latent dimensions and a bin width of 50 ms. 

Correspondent figures show average trajectories obtained after sorting trial 

trajectories according to sample numerosity. Trajectories are depicted in the space 

defined by the top 3 (orthonormalized) dimensions, sorted according to the data 

covariance they explain. The same analysis was repeated for exclusive selective 

neurons. 

SVM Multiclass Classifier. In each cortical area, we created a pseudo-population of 

200 neurons from the whole population. For this purpose, we considered neurons 

recorded by at least 20 repetitions per stimulus class. From those neurons, we 

selected 40 neurons preferring each sample numerosity, according to a SNR 

measure. This measure was calculated in the sample period as the ratio between 

modulation depth and variability within numerosity classes. For each neuron, we 

obtained firing rates from spike data using a sliding window (150 ms bin, 50 ms step). 

We used a multi-class linear support vector machine (SVM) classifier (Chang and Lin 

2011). The ‘one-versus-one’ classification method was deployed to deal with our five 

classes (0-4). Ten-fold cross-validation was performed using the ‘leave-one-group-

out’ paradigm. The firing rates of each neuron were normalized by z-scoring within 

each cross-validation repetition; normalization parameters were obtained only from 

the training trials. The whole procedure was repeated 50 times, each time selecting a 

random set of trials for each condition and then creating a new set of cross-validation 

splits. We report the mean performance and standard deviation over the 50 

resamples. For the generalization analysis, we run the classification procedure in both 

directions of training and testing (for example, from circles to squares and vice versa). 

Given that no important asymmetries were found, we report the average in the main 

text. 

Size effect Index. At the population level, we quantified how graded or categorical is 

the scaling of the size effect in both cortical areas. For that purpose, we devised a 

parameter that considers the magnitude of this effect between numerosity one and 

either empty sets and countable numerosities. Specifically, the parameter is 

calculated by dividing the difference between the discriminability for one and (the 

average discriminability for) larger numerosities, by the difference between the 

discriminability for empty sets and one: 

(𝐴𝑈𝑅𝑂𝐶1−𝑜𝑡ℎ𝑒𝑟𝑠)  − ∑
𝐴𝑈𝑅𝑂𝐶𝑐−𝑜𝑡ℎ𝑒𝑟𝑠

3
4
𝑐=2

(𝐴𝑈𝑅𝑂𝐶0−𝑜𝑡ℎ𝑒𝑟𝑠 )  − (𝐴𝑈𝑅𝑂𝐶1−𝑜𝑡ℎ𝑒𝑟𝑠)
 

Time-defined ω2 and definition of responses. To assess the influence of different 

factors on trial firing rates we used ω2 PEV as measure. This parameter reflects how 

much of the firing rate variance across trials can be explained by different stimulus 

factors. ω2 was calculated for each neuron in a sliding window (200 ms kernel, 20 ms 

step) from a 3-way ANOVA with main factors number, protocol and shape. Twenty 

five balanced permutations were run and the mean was taken as reference value. To 
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assess the significance of actual values, we shuffled trial labels and calculated the 

time defined ω2 1000 times. For each neuron and factor, a time bin was considered 

significant if the probability that its actual ω2 value is caused by chance is 1% or less, 

taking the 1000 shuffled corresponding values as reference (permutation test). A 

‘numerosity selective response’ was defined as at least 3 consecutive bins 

(encompassing a minimum of 240 ms) which were significant for main factor 

number. The stringency of our criteria was confirmed by the low incidence of 

numerosity selective responses, so defined, during fixation in both prefrontal and 

parietal neurons (<1% of responses in the sample period, with the same duration).  

Selectivity Latencies. Selectivity latencies were determined by calculating ω2 with a 

high temporal resolution (50 ms kernel, 1 ms shift). In each neuron the selectivity 

latency was defined by the first of 25 continuous bins with a significant ω2 for number, 

according to a permutation test (1000 shuffled permutations, p<0.05). 

Response Latencies. For each neuron, we obtained firing rates in sliding 10 ms 

windows stepped by 1 ms. Visual latencies were determined by the first of 5 

consecutive bins after sample presentation in which firing rates diverged by at least 2 

standard deviations from the baseline level (taken as the middle fixation period). In 

each neuron, we sorted trials according to the type of sample stimulus and calculated 

response latencies. 

Characterization of tuning profile. Following Engel (2015, for different purposes) we 

fitted the tuning curve of each empty set neuron with a generalized linear model (GLM) 

that contained a linear combination of two regressor functions: a decreasing linear 

function (graded tuning) and a step-like function (binary tuning). We defined the best 

parameters of such functions for each tuning curve by fitting. Then, we applied the 

GLM and obtained β coefficients. To determine whether the resulting β coefficients 

were significantly different from zero, we used a t-test to compare β against the 

distribution of shuffled β values, which was obtained by randomizing the trial order 

and then refitting the linear regression model (1,000 reshuffles). The tuning profile of 

neurons was classified as graded (quantitative), categorical (binary) or mixed, guided 

by the GLM coefficients. Each neuron was then classified as direction-tuned or 

category-tuned if the corresponding β was significantly different from zero (P<0.05), 

mixed direction- and category-tuned if both β’s were significantly different from zero 

and nonselective if neither β was significantly different from zero. 
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4.  Do monkeys treat empty sets as endowed with 

null quantity? 

Matching empty sets does not demand a quantitative treatment of the stimuli. 

For example, the capacity to distinguish the absence and presence of countable items 

would suffice to succeed in trials involving empty sets. However, if monkeys treat 

empty sets according to the quantitative value (zero) they convey, behavior should 

display two hallmarks of numerical cognition: the distance and magnitude effects. The 

presence of these effects would amount to evidence that monkeys not only can 

discriminate empty sets from other stimuli, but attribute them a quantitative value in 

relation to countable numerosities. 

4.1    Task Performance 

Empty sets were introduced in the stimulus pool after monkeys had reached a 

stable performance with sets of 1 to 4 dots. A total of 49 behavioral sessions for 

monkey X and 54 for monkey S were analyzed. Behavioral tuning curves (Figure 4.1) 

show how often animals judged test stimuli as equal in quantity to each sample 

numerosity. Curve peaks depict the percentage of correct match trials, while non-peak 

values correspond to errors in non-match trials. 

Notice that increasing the frequency of errors would turn the curves wider. In 

fact, the width of these curves reflects how accurately a sample numerosity is 

represented. As it is harder to discriminate large numerosities (‘magnitude effect’), 

curves become wider (i.e. less selective) with increasing sample number. This 

translates into an increasing sigma when the curves per session are fitted with 

Gaussian functions on a linear numerical scale (Figure 4.3 A,C,E,G).  

As expected if empty sets were attached a low quantitative value, the sigma of 

their function (red dot in Figure 4.3 E,G) is either smaller or similar to that of the 

smallest countable numerosity, one (X: 0.295±0.022 for empty sets versus 

0.355±0.013 for 1, p<0.01; S: 0.452±0.018 for empty sets vs. 0.469±0.015 for 1, 

p>0.05, Mann-Whitney U-test). Moreover, the sigma of the empty set curve is in any 

case significantly smaller than the sigma for larger countable numerosities (2 to 4) (X: 

0.295±0.022 versus 0.503±0.015 (sample 2, p<0.001), 0.907±0.014 (sample 3, 

p<0.001), 0.888±0.015 (sample 4, p<0.001); S: 0.454±0.018 versus 0.613±0.017 

(sample 2, p<0.001), 1.006±0.011 (sample 3, p<0.001), 1.078±0.027 (sample 4, 

p<0.001), Mann-Whitney U-test). The presence of a behavioral ‘size effect’, situates 

empty sets in the small extreme of countable numerosities (1-4).  
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Figure 4.1 Behavioral Performance. Behavioral tuning curves derived from the monkeys’ performance when 

different stimuli were presented as sample (0-4). The functions reflect the probability that a monkey judged displays 

in the test period as containing the same number of items as the sample numerosity (indicated in various colors). 

The peak data point of each colored curve indicates the correct performance in match trials for the different sample 

numerosities. Data points to the left and right of the peak reflect performance in non-match trials (i.e. when the first 

test numerosity was smaller or larger than the sample). 

Figure 4.2 Reaction Times. Reaction times for the different stimuli in match trials. If treated as endowed with 

numerosity 0, empty sets should elicit shorter reaction times than numerosity 1. However, reaction times in empty 

set trials are longer than expected in both subjects. 

 



T h e  n e u r o n a l  r e p r e s e n t a t i o n  o f  z e r o  | 32 

 

 

 

 

 Figure 4.3 Behavioral Fittings. Tuning curves per session were fitted with a Gaussian function in a linear (A,C) and 

a logarithmic (B,D) numerosity scaling. In a linear scaling, fitted sigmas tend to increase with sample numerosity (E,G). 

In a logarithmic scaling, (F,H) fitted sigmas become similar for the different sample numerosities. 
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A non-linearly compressed number line could account for the increase in sigma 

for larger numerosities. We explored whether behavioral performance curves could 

be better described on a linear or nonlinearly compressed number line. For that 

purpose, we now fitted the behavioral curves with a Gaussian function when plotted 

on a logarithmic (log2(n+1)) numerical scale (Figure 4.3 B,D). The goodness-of-fit 

(r²)-values were taken as a measure of which scaling scheme describes better the 

data. For each monkey, the fittings were significantly better on a logarithmically 

compressed number line (both monkeys r²=0.98) than on a linear scale (versus 

r²=0.94 in monkey S and r²=0.95 in monkey X, p<0.001 in both subjects; Wilcoxon 

sign rank test). Thus, as predicted by the Weber-Fechner law, skewed behavioral 

curves became more symmetric when plotted on a logarithmic scale. Moreover, as 

previously described, on a logarithmic scale performance curves exhibit similar 

sigmas for the different numerosities (Figure 4.3 F,H).  

Finally, since empty sets are represented very precisely (small sigmas), 

monkeys made few mistakes in trials in which they appeared. However, the 

distribution of those errors offers further insight into how empty sets are ordered with 

respect to countable numerosities. When empty sets were presented as sample (red 

line in Figure 4.1), monkeys mistakenly matched them to numerosity 1 more 

frequently than to numerosity 2 (Monkey S: 12.48±1.31% vs. 1.27±0.41%, p<0.001; 

Monkey X: 4.82±1.32% vs. 2.02±0.69%, p=0.0011, Wilcoxon signed rank test). This 

pattern in behavior, a ‘numerical distance-effect’, suggests empty sets were situated 

closer to 1 than to 2 in the number line. 

4.2    Reaction Times 

Altogether, the presence of distance and magnitude effects in performance 

suggests empty sets were properly positioned in the numerical continuum and so 

treated in a quantitative way. However, such treatment demanded more time than 

expected in the case of empty sets. Given that larger numerosities are represented 

less precisely, reaction times tend to increase with numerosity. We can see this 

pattern in our data with numerosities ranging from 1 to 3. For numerosity 4 short 

reaction times can be explained by an ‘edge effect’: the border elements in the range 

of stimuli are easier to discriminate. 

 All these considerations taken into account, one would expect that, if zero 

finds a place in our visual sense of number, it triggers very fast responses. But 

reaction times are longer in match trials involving empty sets than in those involving 

numerosity one (Monkey S: 336.28±1.69 versus 326.89±1.70 ms, p<0.001; Monkey 

X: 322.47±2.79 versus 292.86±1.68 ms, p<0.001, Wilcoxon signed rank test) (Figure 

4.2). This pattern prevails when the different conditions are separately analyzed 

(Figure S1). Additionally, this is the case even long after the introduction of empty 
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sets in the stimuli pool (Figure S1), and thus this effect cannot be explained by 

stimulus novelty. 

5.  Is zero represented in the primate visual sense 

of number? 

In this first part of the project, our main aim was to explore whether zero is 

encoded in the primate visual sense of number. Therefore, we focused our analysis 

in the trial epoch when stimuli are available to the monkey: the sample period. In 

total, 861 VIP neurons (431 from monkey X and 430 cells from monkey S) and 

476 prefrontal neurons (279 neurons from monkey X and 197 cells from monkey S) 

satisfied the basic criteria to be further considered in the initial analysis of the sample 

epoch (See Methods for details).  

5.1  Single-neuron representation of empty sets 

During the sample period an important proportion of neurons were strongly 

modulated by sample numerosity, as their firing rates reflected the numerical distance 

between stimuli. Figure 5.1 shows three example neurons from VIP (Figures 5.1 A-

C) and PFC (Figures 5.1 D-F). As with countable numerosities, many neurons 

discharged maximally to empty sets (empty sets as ‘preferred numerosity’) 

(Figure 5.5 A,D) or responded least to them (‘least preferred numerosity’) 

(Figures 5.1 B,C,E,F). 

Table 5.1 shows the proportions of cells which, during the sample period, were 

selective for the different main factors and interactions between main factors. Neurons 

which only showed a significant main effect for factor ‘number’ and no significance for 

any other main factor or factor interactions were identified as ‘exclusive number 

selective neurons’. In the sample period, 8% (70/861) VIP neurons and 16% (78/476) 

PFC neurons belonged to this most conservatively determined subpopulation. 

ANOVA Factor VIP 
(n=861) 

PFC  
(n=476) 

Number 18.9% 38.9% 

  Excl. Number 8.1% 16.4% 

Protocol 8.8% 12% 

Shape 17.7% 18.9% 

Number-Protocol 3.7% 5.5% 

Number-Shape 4.6% 10.9% 

Protocol-Shape 2.7% 3.8% 

Table 5.1   

Neuronal selectivity for the 

different task factors in the 

sample period. Calculated 

with 3-factor ANOVA on sample 

trial firing rates and evaluated at 

p<0.01. 
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Hereafter, the terms ‘factor number’, ‘factor protocol’ and ‘factor shape’ are 

used to refer to the different conditions. Nonetheless, ‘factor protocol’ incorporates 

not only dot density and total dot area, but also background luminance and contrast 

parameters. Additionally, ‘factor number’ includes empty sets and stimuli with 1 to 4 

dots. However, we do not assume empty sets are neurally represented as a 

numerosity. 

We identified the preferred numerosity of each selective response, defined as 

the stimulus that elicited the highest average activity. Figures 5.2 B,D show the 

distribution of preferred numerosities in VIP and PFC during the sample period. In 

prior studies, not including empty sets, numerosity one, the smallest numerosity in the 

stimulus pool, is preferred with the highest frequency. Accordingly, in both cortical 

areas and both epochs empty sets are the most frequently preferred stimulus, both in 

VIP (Figure 5.2B) and PFC (Figure 5.2D).  

We constructed population tuning functions of exclusive selective neurons by 

normalizing the firing rates of individual neurons to the different sample stimuli, and 

then averaging those with the same preferred numerosity (See Methods for details). 

The tuning curves of neurons preferring countable numerosities 1 to 4 in VIP 

(Fig. 5.2A) and PFC (Fig. 5.2C) showed a clear distance effect, i.e. a progressive 

drop-off of activity with increasing numerical distance from the preferred numerosity. 

Next, we investigated which scaling scheme (linear of logarithmic) accounted 

better for the neuronal data. In VIP, a logarithmic scaling did not result in better fittings 

of selective neurons’ tuning functions (r²=0.79 for both scaling schemes, p=0.83, 

Wilcoxon sign rank test, n=70). In numerosity-selective PFC neurons, however, the 

goodness-of-fit values were significantly higher in a logarithmic scaling (r²=0.82) than 

in a linear scaling (r²=0.80) (p<0.05, Wilcoxon sign rank test, n=78). This indicates 

that, in agreement with the behavioral data, numerical magnitudes in PFC are best 

represented on a non-linearly compressed scale. 

5.2  VIP neurons represent empty sets as a different stimulus 

from countable numerosities 

At this point a crucial clarification needs to be done: That a neuron fires 

maximally to empty sets does not mean it represents numerosity zero. We would 

expect zero-tuned neurons to show not only maximal activity for empty sets, but also 

a distance effect in its firing rates. Particularly, zero neurons should fire more to 

numerosity one than to other countable numbers, as the former is closer to zero in 

the numerical continuum. Figures 5.2 A,C show the average tuning curves of empty-

set preferring neurons in red, respectively in VIP and PFC. Note that VIP empty set 
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neurons respond to countable numerosities with similar levels of activity (Fig. 5.2A) 

(0.318±0.05 for 1, 0.233±0.037 for 2, 0.181±0.02 for 3, 0.166±0.045 for 4, n=28). For 

example, the response to 1 does not differ from the response to numerosity 2 

(0.318±0.05 for 1 vs. 0.233±0.037 for 2, p=0.096, n=28). Then, these parietal neurons 

seem to discriminate empty sets from all countable numerosities in a more binary 

fashion, drawing a step-like function (Fig. 5.3A). This type of tuning could reflect a 

categorical representation, in which empty sets are represented as different from all 

countable numerosities. 

Differently, the average tuning curve of PFC empty set tuned neurons (Fig. 

5.2C, solid red line) exhibits a progressive decline in firing rates with increasing 

numerosity (0.463±0.06 for 1, 0.229±0.033 for 2, 0.116±0.025 for 3, 0.043±0.016 for 

4, n=24). Particularly, prefrontal neurons responding maximally to empty sets fired 

more to numerosity 1 than to numerosity 2 (p<0.001, n=24; Wilcoxon signed rank 

test). Subsequently, prefrontal empty set neurons also responded more to numerosity 

2 than to numerosity 3 (0.12±0.025) (p<0.01). Such pattern of response entails a 

‘distance effect’ for empty sets and is characteristic of numerical representations. 

Finally, note that in a binary tuning profile numerosity 1 is represented farther 

from empty sets and closer to other numbers (Fig. 5.3A). Comparatively, in graded 

responses, numerosity 1 lies closer to empty sets and farther from larger countable 

numbers (Fig. 5.3B). We devised an index to measure how graded or binary is the 

neuronal tuning for empty sets. This ‘quantitative index (QI)’ uses ROC analysis to 

evaluate the discriminability between empty sets and numerosity 1, relative to the 

maximal discrimination capacity of a given neuron (See Methods for details). For 

clarity purposes, lower QI values indicate a more binary tuning profile, while high QI 

values correspond to a more graded tuning. 

QI = 1- 
𝐴𝑈𝑅𝑂𝐶0−1

𝐴𝑈𝑅𝑂𝐶𝑚𝑜𝑠𝑡−𝑙𝑒𝑎𝑠𝑡
 

The denominator in the AUROC ratio normalizes QI with respect to the 

maximal discriminability of each neuron and guarantees unbiased comparisons 

between the two cortical areas. Binary tuning profiles correspond to lower GI values, 

while the graded tuning characterizing number selectivity will be marked by high 

values.  

Empty set neurons in VIP exhibit a lower QI value than prefrontal empty set 

neurons (0.071±0.016 in VIP versus 0.155±0.023 in PFC, p<0.01, Mann-Whitney U-

test). Importantly, that was also the case for all exclusive number neurons, 

irrespective of their preference (0.114±0.011 in VIP versus 0.154±0.013 in PFC, 

p<0.05, Mann-Whitney U-test) during the sample period. 
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Figure 5.1 Neurons with numerosity selective responses during the sample period. (A-C) Example 

numerosity selective neurons in VIP. Top panel shows dot-raster histograms (each dot represents an action potential); bottom panel 

depicts averaged spike density functions (activity averaged in a sliding 150 ms window). The first 500 ms represent the fixation 

period, followed by the sample and delay periods. Inset in spike density plot shows the neuron’s tuning function (i.e., discharge rates 

as a function of the number of presented items) during the grey shaded sample period. (D-F) Example numerosity selective neurons 

in PFC. 
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Figure 5.4 Error Trial Analysis.  (A& 

B) Behavioral Relevance of empty-set 

preferring neurons in empty set trials 

(preferred stimulus) and countable 

numerosity trials (least-preferred 

stimulus). The neuronal firing rates in the 

sample period are compared between 

correct and error trials. (C&D) Firing 

rates of VIP and PFC countable-

numerosity preferring neurons in correct 

and erroneous empty-set trials. Error 

bars indicate the SEM. 

 

Figure 5.3 Empty-set preferring neurons. Schematic 

representation of two types of tuning in neurons responding 

maximally to empty sets. 

 

Figure 5.2 (A,C) Population tuning curves obtained by averaging 

the normalized tuning curves of VIP and PFC neurons with the 

same preferred stimulus. The average tuning curve of empty set 

preferring neurons is shown in red. (B,D) Proportion of neurons in 

VIP and PFC responding maximally to each of the stimulus types. 
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5.3 Behavioral relevance of selective-neurons’ activity during the 

sample period 

To further investigate to what extent the activity of exclusive numerosity 

selective neurons in either VIP or PFC is related to behavioral performance, we 

compared their activity in error and correct trials. First, we explored whether the firing 

rate of empty-set tuned neurons correlated with successful completion of the task. If 

the responses of these neurons to empty sets (their preferred stimulus, i.e. eliciting 

maximal responses) were relevant for trial outcomes, lower firing rates would be 

expected in failed empty set trials. Indeed, the responses of VIP (Fig. 5.4A) and PFC 

empty-set neurons (Fig. 5.4B) were decreased in erroneous empty set trials during 

the sample period (VIP: 6.33 ±1.26 Hz versus 5.03 ±0.10 Hz, n=15, p<0.05; PFC: 

13.04 ±3.94 Hz versus 7.58 ±2.34 Hz, p<0.05, n=10; Wilcoxon signed-rank test). This 

result suggests that the activity of empty set neurons in both VIP and PFC is relevant 

for the outcome of trials in which an empty set was presented as sample. 

Does the activity of empty-set neurons also correlate with performance in 

countable numerosity trials? In correct trials, countable numerosities were encoded 

with low firing rates by empty set neurons. If this low activity were relevant for 

performance, higher firing rates to the non-preferred numerosities of empty set 

neurons might lead to errors. We compared the firing rates of empty set neurons to 

their least preferred stimulus (a countable numerosity) in correct and error trials. 

Empty-set neurons in VIP (Fig. 5.4A) and PFC (Fig. 5.4B) exhibited higher firing rates 

to their non-preferred numerosity in error compared to correct trials during the sample 

period (VIP: 2.61±0.63 Hz versus 3.01±0.63 Hz, for correct and error trials, p<0.05, 

n=24; Wilcoxon signed-rank test, PFC: 6.54±2.5 Hz versus 7.67±2.74 Hz, for correct 

and error trials, p<0.05, n=23; Wilcoxon signed-rank test). Thus, the activity of empty-

set neurons in both cortical areas was also correlated with the outcome of trials in 

which countable numerosities were presented as sample. 

Finally, is the activity of countable-numerosity neurons, in turn, correlated with 

performance in empty-set trials? In this case, we analyzed the error-trial activity of 

countable-numerosity neurons which fired the least for empty sets in correct trials. 

The activity of countable-numerosity neurons in VIP (Fig. 5.4C) did not differ in error 

and correct empty set trials (4.51±1.60 versus 4.73±1.7, p=0.86, n=14). In countable-

numerosity PFC neurons (Fig. 5.4D), however, the activity during the sample period 

increased in erroneous empty-set trials (4.33±0.80 versus 8.49±2.35, p=0.04, n=9; 

Wilcoxon signed-rank test). So, only the activity of PFC countable-numerosity 

neurons during the sample period is correlated with the outcome of empty-set trials. 

Particularly, when empty sets are shown as sample, a decrease in the response of 

PFC number neurons is necessary for the successful completion of the trial. Only in 
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PFC, neurons preferring countable numerosities contribute to the representation of 

empty sets.  

5.4  Population tuning for empty sets in VIP and PFC 

Then, we explored how VIP and PFC whole neuronal populations, irrespective 

of selectivity status or stimulus preference, encode empty sets. In both parietal and 

prefrontal cortices some stimulus or task features have been found to be randomly 

represented across neurons (Mante et al. 2013; Raposo, Kaufman, and Churchland 

2014). So, a certain parameter could be encoded in the combined activity of an 

arbitrary number of neurons. Therefore, at the population level empty sets could be 

represented in the numerical continuum even if selective single-neurons do not seem 

to encode them so. 

To investigate this possibility, we analyzed the coding capacity and dynamics 

of population responses as a whole by performing a multidimensional state space 

analysis (Gaussian-Process Factor Analysis, GPFA) (Yu et al. 2009) on similarly sized 

pseudo-populations of neurons in VIP and PFC. This approach extracts trajectories 

from the spiking activity of a neuronal population in individual trials. Such trajectories 

reflect the instantaneous firing rate of the respective neuronal population as they 

evolve over time. Figures 5.5 A,B depict average population trajectories for the 

different sample stimuli in a space defined by the top three most meaningful 

dimensions. To guarantee robust results we required neurons to satisfy a signal to 

noise ratio criterion and include a certain number of correct trials per stimulus type 

(377 neurons in VIP and 364 neurons in PFC). 

To evaluate the population numerical tuning, we measured Euclidian distances 

between trial trajectories corresponding to different samples. In VIP, parietal 

population dynamics did not exhibit a distance effect for empty sets (Fig. 5.5C). The 

inter-trajectory distances between empty sets and different countable numerosities 

(0-1, 0-2, 0-3 and 0-4) do not differ from each other (time defined Kolmogorov Smirnov 

permutation test, comparing the distributions of inter-trial distances for the different 

pairs of stimulus, 1000 random permutations, alpha level 0.05, Fig. 5.5E).  

In contrast, in the ordered layout formed by prefrontal trajectories (Figure 

5.5B), a population distance effect could be clearly identified. Trajectories take 

distance from each other after sample stimulus presentation and, notably, their 

positioning reflects the quantitative relations between sample numerosities. The 

closer two numerosities were in the numerical continuum, the more similar were their 

patterns of population activity, and vice versa. This held true for empty sets. The 

distance between population trajectories in empty set trials and other trials increased 

with the sample magnitude of the latter (Figure 5.5D, inset). Indeed, all inter-trajectory  
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Figure 5.5 Population dynamics in VIP and PFC (A & B) Average whole population state-space trajectories 

in VIP (A) and PFC (B) in trials with different sample stimuli. (C & D) Average distances between trials with different 

sample numerosities in the whole population of VIP neurons (C) and PFC neurons (D). (E & F) Statistical comparison 

of pairs of inter-trajectory distances that define a distance effect for empty sets in the whole population of VIP (E) and 

PFC neurons (F). The distributions of trial intertrajectory distances were compared with a Kolmogorov-Smirnov 

permutation test per time bin. The significance threshold for each comparison, evaluated at an alpha of 0.05 is marked 

with a dotted line and a lateral colored arrow.  
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Figure 5.6 Dynamics in VIP and PFC populations of selective neurons. (A, B) Average whole 

population state-space trajectories in VIP (A) and PFC (B) in trials with different sample stimuli. (C, D) Average 

distances between trials with different sample numerosities in the population of VIP (C) and PFC selective neurons 

(D). (E) Statistical comparison of pairs of inter-trajectory distances that define a distance effect for empty sets in 

both populations. (F) Mean intertrajectory distance between all pairs of sample numerosities in VIP and PFC 

populations. 
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distance comparisons which defined a distance effect for empty sets surpassed their 

significant threshold in PFC (Figure 5.5F) during the sample period. In addition, the 

analysis was performed in the exclusive selective population of neurons (Figure 5.6). 

Results exhibited the same patterns: a distance effect was largely absent in VIP 

exclusive number selective neurons, but clearly present in PFC exclusive number 

selective neurons. 

5.5  Decoding stimulus identity from population activity 

We trained a support vector machine (SVM) classifier to discriminate 

numerosity on the spiking activity of either VIP or PFC neurons (see Methods). 

Preference-balanced pseudo-populations of 200 neurons were assembled per 

cortical area. Figures 5.7 A&B show the cross-training performance of the VIP and 

PFC classifiers, i.e. their accuracy to identify the correct numerosity when tested on 

the activity from a certain trial time period after being trained on another time. With a 

chance performance of 20% (for five classes), the classifier accuracy was higher in 

prefrontal than in parietal neurons throughout the sample phase (Figure 5.7C, VIP 

50.1%±7.7%; PFC 67.8%±7.1%, mean±s.d. over resamples, training and testing in 

the same time bin). 

Additionally, classification performance reflected the effects described in 

behavior. In general, accuracy decreased along the diagonal of the confusion matrix 

with increasing numerosities (‘size effect’), and the probability of misclassification of 

trials (perpendicular to the diagonal) increased the closer two classes are in the 

numerical space (‘distance effect’) (Figure 5.8).  

The confusion matrix for VIP (Figure 5.8, left) shows a robust accuracy for 

empty sets and numerosity 1, but only weak accuracy for other numerosities in VIP 

neurons (see also the resulting flat accuracy curves derived from the confusion matrix 

in the top left panel of Figure 5.8). In contrast, classification performance with PFC 

neurons was robust for all stimulus classes (Fig. 5.8, right), which was also reflected 

by sharp accuracy curves (Figure 5.8, right top panel). 

Next, we evaluated the ability of the classifier to discriminate each class 

(sample stimulus) from all others using the area under the ROC-curve (AUROC) as 

measure (Figure 5.9; chance level 0.5). If magnitude classes were ordered along a 

numerical continuum, we would expect a graded decrease of discriminability with 

increasing numerical magnitude as a signature of the ‘numerical size effect’. In VIP 

the average AUROC-values during the sample period were 0.94±0.04 for empty sets, 

0.81±0.09 for numerosity 1, and 0.68±0.07 for larger numerosities (mean ± standard 

deviation over resamples).  
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Note that the classifier’s capacity to discriminate numerosity 1 was similar to 

the discriminability of larger numerosities (Figure 5.9, left). This indicates only a mild 

size effect in VIP neurons for countable numerosities. In contrast, the classifier’s 

discriminability function for empty sets showed higher values compared to the 

discriminability of all countable numerosities. This decoding pattern again suggests 

that empty sets are treated as categorically different from other stimuli.  

In PFC, however, a clear gradation of discriminability values from empty sets 

to higher numerosities was present (Figure 5.9, right). Numerosity 1 was 

discriminated much better than other countable classes and slightly worse than empty 

sets (empty sets: 1.0±0.01, numerosity 1: 0.95±0.04, other numerosities: 0.80±0.06, 

mean ± standard deviation over resamples). Note the graded decrement in the 

discriminability of empty sets, numerosity 1 and larger numerosities in PFC. This 

pattern evidences a ‘numerical size effect’ at the population level and provides further 

evidence that prefrontal neurons integrate empty sets as part of the numerosity 

continuum. 

To quantify how graded or categorical is the scaling of the size effect in both 

cortical areas we used a parameter that considers the magnitude of this effect 

between countable numerosities and with respect to empty sets. Specifically, the 

parameter is calculated by dividing the difference between the discriminability for one 

and (the average discriminability for) larger numerosities, by the difference between 

the discriminability for empty sets and one: 

(𝐴𝑈𝑅𝑂𝐶1−𝑜𝑡ℎ𝑒𝑟𝑠) − ∑
𝐴𝑈𝑅𝑂𝐶𝑐−𝑜𝑡ℎ𝑒𝑟𝑠

3
4
𝑐=2

(𝐴𝑈𝑅𝑂𝐶0−𝑜𝑡ℎ𝑒𝑟𝑠 ) − (𝐴𝑈𝑅𝑂𝐶1−𝑜𝑡ℎ𝑒𝑟𝑠)
  

 The higher the value of this ratio, the more graded is the scaling of the size 

effect. Analysis of the size effect in the classifiers’ performance reveals a more graded 

stimuli encoding in PFC and a more categorical encoding in VIP (VIP 1.37±0.26, 

versus PFC 3.46±0.26, p<0.001, Mann-Whitney U test). 

5.6  Level of abstraction of empty set representations 

So far, we excluded the putative effect of low level visual features on tuning by 

analyzing exclusively numerosity selective neurons. To directly address the level of 

abstraction of empty-set representations at the whole population level, we tested the 

effects of protocol and background shape with a decoding approach. We trained the 

SVM classifier on circle trials and tested it on square trials, and vice versa (shape 

generalization). We also tested generalization across protocols, with different 

background gray level. 
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Figure 5.7 Decoding numerosity from 

population activity with a SVM classifier. 

(A&B) Temporal cross-training classification 

accuracy in VIP (left) and PFC (right) populations. 

(C) Numerosity classification accuracy in VIP 

(blue) and PFC (red) when training and testing are 

performed in the same time bin. 

Figure 5.8 Decoding accuracy during the 

sample period for the different stimuli. 

Confusion matrices show the proportion of test 

trials in which the classifier labeled the activity 

elicited by a stimulus (true class) as corresponding 

to other stimulus type (predicted class).  

A B 

C 
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Figure 5.9 Discrimination of different sample numerosities by the SVM classifier. AUROC values 

were used to evaluate the discriminability of each numerosity versus the others by the SVM classifier. Numerosity was 

decoded from the firing activity of parietal (left) and prefrontal (right) neurons. 

Figure 5.10 Generalization performance of the SVM classifiers in VIP and PFC. The discriminability 

of empty sets is depicted in solid lines, whereas dotted lines represent the discriminability of countable numerosities. 

Performance when training and testing were implemented in trials from different protocols (standard and control) is 

depicted in blue. Yellow represents generalization performance across different background shapes (circles and 

squares). The bars in the insets show the average discriminability of empty sets by the classifier during the sample 

period, when the stimulus is visually available to the subject. The performance achieved across different conditions 

is compared to the base performance, when both training and testing were performed on mixed datasets, including 

trials from all conditions. ES: Empty sets, CN: Countable numerosities. 
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Interestingly, the discriminability of empty sets by VIP neurons (0.94±0.04, 

mean ± standard deviation over resamples) dropped by 19.7 % (0.85±0.04) when 

training and testing were implemented in trials with different protocols (Figure 5.10, 

left, compare black and blue lines). Similarly, discriminability decreased by 22 % 

(0.84±0.05) in shape generalization (Figure 5.10, left, compare black and yellow 

lines). Parietal representations of empty sets are thus considerably influenced by 

visual stimulus properties.  

Classification performance based on PFC neurons, however, fully generalized 

across sample appearance (Fig. 5.10, right). The classifier’s ability to discriminate 

empty sets (1.0±0.01) was not affected by training and testing on trials from different 

conditions. Discriminability decreased by only 0.2 % in protocol generalizations, and 

by 0.8% in shape generalization (Fig. 5.10, right, compare black line to blue and 

yellow lines, respectively). Thus, PFC representation of empty sets is invariant to 

background shape and gray level. This result points to a more abstract representation 

of empty sets in PFC, detached from stimulus appearance and low level properties. 

5.7  Conclusions 

We assessed the neuronal representation of empty sets in two monkeys 

trained to perform a delayed match-to-sample task using empty sets and countable 

numerosities as stimuli. Behavioral performance confirmed that monkeys assess 

empty sets according to the null quantity they convey. Simultaneous recordings from 

VIP and PFC showed that, as for countable numerosities (1-4), a proportion of 

recorded neurons are tuned to empty sets.  

A differential tuning for empty sets emerged between the two cortical areas. 

Parietal empty set neurons responded similarly to different countable numerosities, 

failing to exhibit a neuronal distance effect. The absence of a progressive drop-off of 

activity with numerical distance disqualifies the characterization of these neurons as 

numerosity tuned. The resulting binary tuning profile can be better described as 

signaling the presence or absence of countable items. Our population analysis argues 

that VIP does not genuinely represent empty sets as part of the numerosity 

continuum. Rather, empty sets were encoded as a separate category, different from 

all other numerosities. The population state space analysis confirmed the absence of 

a distance effect for empty sets not only in exclusively selective neurons, but also in 

the whole population. Moreover, by implementing a decoding approach, we found that 

VIP neurons rely on low level visual features to identify empty sets. Thus, the parietal 

encoding of empty sets by VIP neurons lacks the abstract character of numerical 

representations. 



T h e  n e u r o n a l  r e p r e s e n t a t i o n  o f  z e r o  | 48 

 

 

 

In contrast to VIP, empty set neurons in PFC exhibit a numerical distance effect 

in their tuning. The positioning of empty sets with respect to other numerosities was 

evidenced by the ordered layout formed by the sample-driven neuronal trajectories in 

the state space analysis. Particularly, the presence of a significant distance effect for 

empty sets during the sample period showed that these stimuli were encoded in a 

quantitative way by PFC. Complementing this finding, a size effect emerged in the 

discriminability of different samples by the classifier in PFC. Moreover, decoding 

results showed that while the representation of empty sets in prefrontal cortex is 

invariant to stimulus features. Namely, the SVM classifier in PFC fully generalized 

across the different visual presentation formats for empty sets. These results point to 

a quantitative and abstract representation of empty sets in the prefrontal cortex. Then, 

only the prefrontal encoding of empty sets meets the criteria of a primitive correlate of 

numerosity zero. 

The analysis of error trials offered additional evidence of the differential 

integration of empty sets as quantitative stimuli in VIP and PFC. While the activity of 

empty-set neurons in both cortices was relevant for behavioral performance, we found 

differences in the role played by standard number neurons (preferring countable 

numerosities) in empty sets trials. Particularly, only the activity of prefrontal number 

neurons during empty-set presentation affected trial outcomes. The tuning curves of 

neurons preferring countable numerosities predict a low firing rate for empty sets. 

However, this low level of activity in response to empty sets is functionally relevant in 

prefrontal, but not in parietal cortex. This finding further supports the statement that 

prefrontal neurons integrate empty sets in the stimuli range they encode, together with 

other numerosities. 
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6. Are empty sets processed as other 

numerosity stimuli in the parieto-frontal 

magnitude system? 

Behavioral studies in human and non-human primates suggest that zero is 

processed differently than countable numerosities. For example, even when pre-

scholar children can treat empty sets according to their null value, this is rather an 

effortful accomplishment. In an ordering task, pre-scholar children still exhibit worse 

accuracy in trials including empty sets than in standard trials (Merritt and Brannon 

2013). Behavioral studies in adults also offer contradictory results. On the one hand, 

the SNARC effect suggests that zero is represented as a small number, in the left 

extreme of the mental number line (Stanislas Dehaene, Bossini, and Giraux 1993).  

On the other hand, reading times of the numeral zero are longer than predicted by its 

null-numerical value (Brysbaert 1995). Analogously, primate studies consistently 

report a distance effect for empty sets in performance accuracy, but reaction times 

are either inconsistent or longer than expected (Merritt, Rugani, and Brannon 2009). 

6.1  Performance & reaction times 

We have previously shown that, even in a delay-match-to-sample numerosity 

task, Rhesus monkeys treat empty sets as endowed with a zero value. The presence 

of distance and size effects for empty sets in the monkeys’ performance supported 

this conclusion. However, empty sets elicited long reaction times, even after extensive 

training. Particularly, reaction times in empty set trials were longer than in numerosity-

one trials. This finding suggests that empty sets are processed differently with respect 

to other numerosity stimuli. Then, it is possible that the quantitative treatment of empty 

sets is the result of a different and longer processing in the parieto-frontal magnitude 

system. To investigate this possibility, we analyzed the temporal dynamics elicited by 

different stimuli in VIP and PFC. 

6.2  The dynamics of number, shape and protocol in VIP and PFC  

In order to quantify the strength with which different stimulus factors are 

encoded by neuronal firing rates in time, we calculated the percentage of explained 

variance, specifically omega squared (PEV ω2), from a sliding three-way-ANOVA (200 

ms window, 20 ms step, 25 permutations) in both cortical areas.  
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Figure 6.1 shows the dynamics of ω2 for factors number, shape and protocol 

in the whole population of parietal and prefrontal neurons. Information about shape 

increases sharply when the background (either a circle or a square) is first shown, in 

the beginning of the fixation period. In contrast, numerosity is available to the monkey 

only after the sample stimulus is displayed. Then, number information increases more 

steeply in PFC than in VIP. During the first part of the delay, when the stimulus has 

disappeared, ω2 slowly decreases in both areas. Notice that the influence of main 

factor protocol is more prominent in VIP than in PFC during the sample period, which 

could be explained by the sensitivity to low level features attributed to parietal cortex. 

6.3  Two surges of numerosity selectivity in VIP  

Then, we analyzed how numerical selectivity and tuning changed in the course 

of a trial. For that purpose, we identified the start and end of numerosity selective 

responses in each neuron taking ω2 value as parameter. For each factor and their 

interactions, significance in a time bin was determined by a permutation test for ω2 

(1000 shuffled values, p<0.01). A ‘numerosity selective response’ was defined as at 

least 3 consecutive bins (encompassing a minimum of 240 ms) which were significant 

for main factor number. The stringency of our criteria was confirmed by the low 

incidence of numerosity selective responses, so defined, during fixation in both 

prefrontal and parietal neurons (<1% of responses in the sample period, with the same 

duration). We identified 320 numerosity selective responses from 228 neurons in the 

parietal cortex and 424 responses from 276 neurons in the prefrontal cortex. 

Responses are classified as sample and delay responses according to their timing. 

Neurons with at least one numerosity selective response are henceforth referred to 

as ‘selective neurons’. Examples of selective neurons in PFC and VIP are shown in 

Figure 6.2. The red bar at the bottom of the PSTH marks the duration of a numerosity 

selective response, as previously defined. Response tuning curves are shown in 

insets. The bottom panel depicts ω2 for main factors number, shape and protocol 

along time. 

Figure 6.3 A shows ω2 for numerosity in the population of sample selective 

neurons in VIP and PFC. Neurons which prefer empty sets (solid lines) are 

distinguished from those preferring other stimuli (dotted lines). Figure 6.3A suggests 

that, after sample presentation, number selectivity increases faster in prefrontal 

neurons than in parietal neurons. This finding was confirmed by calculating ω2 with a 

high temporal resolution (50 ms kernel, 1 ms shift). In each neuron the selectivity 

latency was defined by the first of 25 continuous bins with a significant ω2 for factor 

number, according to a permutation test (1000 shuffled permutations, p<0.05). We 

compared the selectivity latencies of neurons that satisfied this criterion during the 

sample period in the two cortices (98 VIP and 185 PFC neurons).   
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Figure 6.1 PEV (ω2) in 

the whole population 

of VIP and PFC 

neurons. 

Percentage of intertrial 

variance in firing rates 

explained by the different 

stimulus factors (number, 

protocol and shape). 

Figure 6.5 Mean response latencies. Mean response latencies for the different sample stimuli in numerosity 

selective neurons. 
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Figure 6.2 Numerosity selective neurons in VIP and PFC. (A-C) Example numerosity selective neurons 

in VIP. Top panel shows dot-raster histograms (each dot represents an action potential); middle panel depicts averaged 

spike density functions (activity averaged in a sliding 150 ms window); bottom panel depicts PEV (left axis) for the 3 

main factors number (pink), protocol (blue) and shape (yellow); and the index QI (right axis, dotted line). The first 500 

ms represent the fixation period, followed by the sample and delay periods. Inset in spike density plot shows the neuron’s 

tuning function (i.e., discharge rates as a function of the number of presented items) during the grey shaded sample 

period. (D-F) Example numerosity selective neurons in PFC. 
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Figure 6.3 Selectivity, 

tuning and response 

dynamics in numerosity 

selective neurons. 

 (A) Dynamics of numerosity 

information in sample selective 

neurons. (B) Temporal dynamics 

of QI in sample selective neurons 

(C-D) Average firing responses for 

different types of stimuli (Empty 

sets, numerosity 1 and larger 

numerosities) in empty set 

preferring neurons (solid lines) and 

countable numerosity preferring 

neurons (dotted lines) in VIP (C) 

and PFC (D).  
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Figure 6.4 Selectivity latencies and numerosity preference during the sample period. (A&B) 

Distributions of number selectivity latencies in VIP and PFC neuronal populations. The distribution of parietal 

selectivity latencies in VIP is significantly bimodal. (C&D) Neurons are ordered according to their selectivity latency 

and selective responses during the sample period are colored according to stimulus preference. (E&F) Percent of 

selective responses having empty sets as preferred stimulus along the sample period. 
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Surprisingly, in average, parietal neurons showed longer selectivity latencies 

than prefrontal neurons (230.6±13.7 ms in VIP versus 160.7±7.3 ms in PFC, p<0.001, 

Mann-Whitney U-test). 

In previous studies, which did not include empty sets, we had consistently 

found the opposite: shorter latencies in parietal cortex than in prefrontal cortex. 

However, in the present study, parietal selectivity latencies exhibit a significantly 

bimodal distribution (Figure 6.4A, Hartigan dip test, p < 0.05). There are two surges 

of parietal neurons becoming selective, by first time, during the sample period. In 

contrast, selectivity latencies in PFC are unimodally distributed (Figure 6.4B). Similar 

results were obtained by defining selectivity latencies differently or using alternative 

methods (AUROC between activity for the most and least preferred numerosities).  

Figure 6.4C&D show the cumulative distributions of selectivity latencies in VIP 

and PFC, respectively. Selective responses, defined in this high definition ω2 analysis, 

are color coded according to their preferred stimulus. Figure 6.4E&F show the 

percent of selective responses in the population which prefer empty sets along the 

sample period. In VIP, soon after sample presentation, this proportion starts 

increasing in a steady way (Figure 6.4E). In contrast, the percent of responses 

preferring empty sets slowly decreases in PFC (Figure 6.4F) during the sample 

period. 

6.4  Late neuronal responses for empty sets 

Selectivity latencies reflect the time at which neurons start discriminating 

between different stimuli. To explore the neuronal dynamics particularly elicited by 

empty sets we calculated visual latencies in neurons with numerosity selective 

responses in the sample period, defined by (133 VIP neurons and 205 PFC neurons). 

Examination of single-cell neurons in VIP and PFC suggested that, in comparison to 

other stimuli, empty sets evoke late neuronal responses (Figure 6.2 B,D,E). To test 

this possibility, in each neuron, we sorted trials according to the type of sample 

stimulus and calculated response latencies. Figure 6.5 shows (page 51) the average 

response latencies for the different numerosities in the population of VIP and PFC 

neurons.  

6.5  Empty sets elicit a distinct temporal response profile 

Then, we explored the response dynamics elicited by different stimuli in VIP 

and PFC (Figures 6.3 A-D). For that purpose, firing rates were calculated in a sliding 

200 ms window, which was stepped in 20 ms intervals over the course of the trial. 

Trial firing rates were z-scored, in each neuron, by subtracting the mean baseline rate 



T h e  n e u r o n a l  r e p r e s e n t a t i o n  o f  z e r o  | 56 

 

 

 

and dividing by the baseline standard deviation across trials plus a correction factor 

(0.1). Then, average firing rates were calculated for the different sample stimulus 

(empty sets, numerosity one and other numerosities). Neurons which prefer empty 

sets (solid lines) were distinguished from those preferring other stimuli (dotted lines).  

Approximately, two hundred milliseconds after stimulus presentation, the 

response of prefrontal empty set neurons reaches a peak and slowly drops off 

afterwards (Figures 6.3 D). A very different view emerges in VIP. The temporal 

response profile of parietal empty set neurons differs in trials involving empty sets and 

other stimuli (Figures 6.3 C). When a set containing dots is presented as sample, 

empty-set preferring neurons in VIP show an early phasic response with firing rates 

slowly declining in the late sample period. In empty set trials, only the first part of this 

response is preserved. Approximately 200 ms after an empty set is presented the 

population firing rate stops its decline and starts rising. This sudden change in 

response dynamics during the sample period can also be observed at the single 

neuron level (Figures 6.6). Some parietal neurons start responding early after sample 

presentation and suddenly change their tuning later (i.e. Figure 6.6 A-D, F), while 

other neurons respond by first time later in the epoch (i.e. Figure 6.6 E). This latter 

group explains the bimodal distribution in selectivity latencies in VIP. 

6.6  A dynamic shift in the population tuning towards a categorical 

representation of empty sets 

The differences in responses elicited by empty sets and other stimuli suggest 

that population tuning is changing in both cortical areas along the course of a trial. To 

quantify how numerosity tuning changed in VIP and PFC during the course of a whole 

trial, we derived time-defined tuning curves from sliding time windows (200 ms 

duration, 20 ms step) in each neuron. Then, we performed tuning-curve cross-

correlation (Diester & Nieder 2008) between subsequent pairs of tuning curves. This 

method quantifies the extent to which tuning curves change from one bin to another. 

Figures 6.7 A&B show CC values in the course of a trial in VIP and PFC populations 

of sample selective neurons. A decrease in CCs values represent a change in 

neuronal tuning. Figures 6.7 C&D show the mean CCs along time in the populations 

of VIP and PFC sample selective neurons. 

Interestingly, we found that 200 ms after sample presentation, tuning curves 

change importantly in many VIP sample selective neurons. This is reflected in a 

negative deflection in Figure 6.7 C. This finding suggests that at this moment of the 

trial the tuning of selective parietal neurons suddenly changes in VIP.  
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 Figure 6.6 Empty sets elicit a change in parietal single-neuron response dynamics during 

the sample period. In empty set trials the response of numerosity selective neurons in VIP changes during 

the sample period.  
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Figure 6.8 Mean cumulative shift in numerical preference. (A) Average cumulative change in numerical 

preference during the sample period in the populations of sample selective neurons in VIP and PFC. (B) Mean 

cumulative change during the delay epoch in the populations of delay selective neurons  in VIP and PFC. 

Figure 6.7 Tuning Curve Cross-correlations along time. (A&B) Cross-correlation values between 

subsequent tuning curves in VIP and PFC individual neurons. (D&E) Average cross-correlation values in the 

population on VIP and PFC neurons. 
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Then, we investigated in which respects the tuning curves evolved in time. 

Particularly, tuning variations can be described in terms of a change in preferred 

numerosity and tuning profile (categorical versus quantitative). At the population level, 

stimulus preference shifts towards empty sets in the course of a trial (Figure 6.8). 

Particularly, Figure 6.8A shows the change in numerical preference during stimulus 

presentation in VIP and PFC sample selective neurons. The accumulated shift 

towards empty sets is more prominent in VIP than in PFC. Figure 6.8B depicts the 

cumulative shift in both cortical areas during the subsequent 1-second period, when 

the stimulus is not visually available anymore, in delay selective neurons.  

Notice that, independently of their numerosity preference, a neuron can have 

either a binary or a graded tuning profile for empty sets. We used our quantitative 

index (QI) to explore this aspect of tuning. High values reflect a more graded tuning, 

while low values correspond to a more binary tuning (nothing versus something) for 

empty sets. Figure 6.3B depicts how this index evolves in time in both cortical areas. 

After sample presentation, QI initially increases in VIP and PFC empty set neurons. 

However, approximately 200 ms later, QI suddenly starts decreasing in this population 

(Figure 6.3 \B, blue solid line). This pattern suggests that, in the middle of the sample 

period, parietal tuning becomes more categorical. In contrast, QI continues rising in 

prefrontal neurons in the late sample period. In the delay period tuning becomes 

gradually more categorical with respect to empty sets in both cortical areas. Crucially, 

this is not the case for other individual numerosities. 

6.8  Differential contributions of PFC and VIP to behavior 

We furthermore explored whether the strength of numerosity representation in 

selective neurons, irrespective of their stimulus preference, is related with successful 

completion of the task. To that end, we compared the amount of information about 

numerosity carried by neurons when monkeys made mistakes and when they 

responded correctly. As measure, we quantified ω2 explained variance in number 

selective neurons with a sufficient number of error trials per stimulus numerosity, 

including empty sets (VIP 12 neurons, PFC 19 neurons, Figure 6.9A&B). Omega 

squared was compared between correct and error trials, in both areas, after averaging 

across neurons in specific trial periods (sample and delay). If the encoding of 

numerosity in exclusive selective neurons is relevant for behavior, the amount of 

information they carry could predict the execution of mistakes by the monkeys. We 

found that, in error trials, ω2 is reduced in prefrontal neurons during both the sample 

and delay periods (Sample: 4.14±1.13 versus 1.07±0.5, p=0.005; Delay: 5.26±1.12 

versus 1.93±0.58, p=0.039, for correct and error trials, respectively, Wilcoxon signed-

rank test). In parietal neurons, we did not find outcome-related differences in ω2 

(Sample: 3.86±1.33 versus 5.63±2.53, p=0.922; Delay: 3.23±0.09 versus 4.43±2.66, 
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p=0.38, for correct and error trials) (Figure 6.9). This finding suggests behavior is 

predominantly influenced by the strength of numerosity representation in PFC.  

 

6.9 Characterization of empty set preferring neurons 
 

A recent report from one monkey postulated that, according to their tuning, two 

distinct types of empty set preferring neurons can be identified in the parietal cortex 

(Okuyama, Kuki, and Mushiake 2015). The authors characterize such types of 

neurons with respect to their tuning properties, which correspond to what we have 

called ‘binary-categorical’ and ‘graded-quantitative’ tuning. 

6.9.1  A continuum tuning profile of empty-set preferring responses  

In order to approach this question we fitted the tuning curve of each empty-set 

preferring response with a generalized linear model (GLM) that contained a linear 

combination of two regressor functions: a linear equation and a step-like function (See 

Figure 6.10). We analyzed the distributions of beta values across empty-set-

preferring responses. These values correspond to the weight assigned to each 

regressor in the GLM and therefore reflect to what extent a particular tuning curve can 

be described as the corresponding category. A bimodal distribution of beta values 

would suggest that two types of empty set responses can be identified according to 

their tuning functions. However, for both regressors, the beta values were unimodally 

distributed (Hartigan dip test, 1000 bootstrapings). That was also the case when we 

looked at the distribution of the sigmas fitted in the Gaussian equation. These results 

already suggest that two distinct types of responses preferring empty sets cannot be 

clearly differentiated. Thus, we conclude that empty-set preferring responses are 

situated in the poles of a continuous progression. 

Following the approach used by (Engel et al. 2015), we classified the tuning 

profile of responses. In comparison to VIP, PFC shows a lower percent of empty set 

neurons with a continuous tuning profile and a higher percent of neurons with a 

categorical profile in the sample period. However, these differences did not reach 

statistical significance (Step 35.9% versus 41.7%, X2(1,87)=0.3, p=0.583; Lineal 

43.6% versus 31.3%, X2(1,87)=1.4, p=0.235, in PFC and VIP, respectively).  

Note that, from sample to delay, beta values assigned to the step-function 

increase while those assigned to the lineal function decrease significantly in both 

cortical areas (PFC: step function 0.472±0.035 vs. 0.648±0.028, p=0.00048; lineal  
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 Figure 6.10 Fitting the tuning curves of empty 

set neurons.  The beta values assigned to the two 

regressors (linear function and step function) are shown in 

red for PFC and blue for VIP.   

Figure 6.9 PEV in correct and error 

trials.  PEV during the sample and delay 

periods in VIP (top) and PFC (bottom), 

respectively. 
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Figure 6.11 Location of numerosity selective neurons preferring empty sets in VIP and 

PFC.  The proportion of selective neurons responding maximally to empty sets during the sample (top) or 

delay period (bottom) is shown color-coded for the different recording locations. 
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function 0.475±0.04 vs. 0.318±0.025, p=0.0031. VIP: step function 0.507±0.035 vs. 

0.596±0.024, p=0.041; lineal function 0.417±0.03 vs. 0.298±0.024, p=0.0023, for 

sample and delay, respectively, Mann-Whitney U-test). This pattern confirm that 

empty sets are represented in a more categorical fashion during the delay period. 

6.9.2  Location of empty set preferring neurons 

  Neuroimaging studies (Harvey et al. 2013) have described a topographic 

representation of numerosity in the parietal cortex. We found no evidence that 

neurons with empty-set preferring responses were clustered in a certain location of 

VIP or PFC (Figure 6.10). This holds true when selectivity and numerical preference 

are derived from activity in different trial epochs (whole sample or delay) or by defining 

selective responses in time. However, it is worth noting that our recordings only allow 

us to sample small extensions of the parietal or prefrontal cortex with a few channels 

(max. 8 channels per area in one session). Therefore, our negative results should be 

interpreted cautiously. 
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7. Discussion 

We investigated the neuronal representation of empty sets in two monkeys 

trained to perform a delayed match-to-sample task using empty sets and countable 

numerosities as stimuli. Behavioral performance confirmed that monkeys assess 

empty sets according to the null quantity they convey. Simultaneous recordings from 

VIP and PFC showed that, as for countable numerosities (1-4), a high proportion of 

selective neurons are tuned to empty sets. Importantly, prefrontal population 

responses exhibited both a distance and a size effect for empty sets. In contrast, 

parietal population responses to empty sets lacked such quantitative traits and 

distinguished empty sets from all other stimuli classes in a categorical fashion. 

Moreover, decoding results showed that while the representation of empty sets in 

prefrontal cortex is invariant to stimulus features, their parietal representation is driven 

to a larger extent by visual properties. Therefore, only the prefrontal encoding of 

empty sets meets the criteria of a primitive correlate of numerosity zero.  

7.1  Monkeys treat empty sets as conveying a null quantitative 

value 

The performance of both monkeys suggested that empty sets were 

positioned closer to numerosity 1 than to numerosity 2 on the monkeys’ mental 

number line. This finding, a behavioral distance effect, signals a representational 

continuity between empty sets and countable numerosities. Our behavioral results are 

in agreement with the conclusions of behavioral studies in chimpanzees (Beran 2012) 

and monkeys (Merritt, Rugani, and Brannon 2009). Particularly, our data corroborates 

the findings of a study in which the accuracy of rhesus monkeys in matching and 

ordering tasks revealed a distance effect for empty sets (Merritt, Rugani, and Brannon 

2009). The effect appeared in non-differentially reinforced trials and, importantly, 

prevailed when extensive controls were imposed (background size, background color, 

items color). Our data extends such results by showing that a behavioral distance 

effect for empty sets also emerges when the test stimulus is not simultaneously, but 

sequentially presented. More importantly, our results show that this effect does not 

completely extinguishes with extensive training (differentially rewarded trials). 

Interestingly, behavioral findings in monkeys are reminiscent of the way pre-

school children treat empty sets (Merritt and Brannon 2013). Moreover, a distance 

effect for empty sets has also been shown in adult numerate humans (Merritt and 

Brannon 2013).  

Humans and non-human primates treating empty sets similarly points to a 

common primitive and non-symbolic representation of null-quantity. Such pre-

symbolic representation might constitute a precursor of the human concept of ‘zero’.  
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7.2  Differential tuning for empty sets in VIP and PFC  

To test how the brain represents empty sets, we simultaneously recorded 

single neuron activity from VIP and PFC in two behaving monkeys. These cortical 

regions have been shown to play cardinal roles in numerosity discrimination in 

animals and humans (Harvey et al. 2013; Piazza et al. 2004; Nieder and Dehaene 

2009). As reported in previous studies (Nieder and Miller 2004; Viswanathan and 

Nieder 2013; Nieder and Miller 2003), we found neurons tuned to countable 

numerosities in both cortical areas. However, we also identified a relatively high 

proportion of neurons that responded maximally to empty sets. Importantly, to exclude 

the effect of appearance (i.e. shape) and low level visual properties (i.e. dot density, 

total dot area, total stimulus luminance) on numerosity tuning, only ‘exclusive’ number 

neurons were considered to investigate the representation of empty sets at the single 

neuron level. 

A differential tuning for empty sets emerged between the two cortical areas. 

Empty-set neurons in VIP barely discriminated countable numerosities, failing to 

exhibit a neuronal distance effect. The absence of a progressive drop-off of activity 

with numerical distance disqualifies the characterization of these neurons as 

numerosity tuned. The resulting binary-like tuning profile can be better described as 

signaling the presence or absence of countable items.  

Recently, Okuyama et al. (Okuyama, Kuki, and Mushiake 2015) reported VIP 

neurons which were tuned to the absence of countable stimuli in one monkey. This 

monkey was trained to assess the numerosity of a target display (that could show no 

items) and add or subtract items in a second display to match the target numerosity. 

These authors classified neurons which responded maximally to empty sets into two 

distinct groups: ‘exclusive-discrete types’ which showed no modulation to 

numerosities 1 to 4 (based on an ANOVA), and ‘continuous types’ that exhibited a 

significant response to numerosity 1. Two-thirds of the empty-set neurons they 

recorded in VIP were classified as a discrete type and the rest as a continuous type. 

No further statistical tests were applied to explore whether these cells belonged to 

two distinct classes. Even when the exclusive-discrete type of tuning was predominant 

in the population, the authors asserted that parietal neurons represent numerosity 

zero. Furthermore, of the representation to image and luminance related parameters 

was not addressed.  

In our recordings from two monkeys, we found an even higher proportion of 

93% VIP selective empty set neurons that belonged to the ‘discrete type’ class 

according to the definition of Okuyama et al. (Okuyama, Kuki, and Mushiake 2015). 

Additionally, we found no evidence for two strict classes of empty-set neurons in VIP 

but rather a continuum of more discrete to more continuous empty-set detectors. In 

both studies the neuronal recordings were derived from an initial ‘target phase’, when 



T h e  n e u r o n a l  r e p r e s e n t a t i o n  o f  z e r o  | 66 

 

 

 

the numerosity the monkey had to match at the end of the trial was displayed. Task 

demands seem comparable at this initial point of the trial, and therefore could hardly 

account for results discrepancies. Rather, differences in stimulus protocols and data 

processing might account for the observed discrepancies. Particularly, we excluded 

the effect of visual stimulus features (luminance level and shape) on neuronal 

responses to numerosity. Consequently, we found that VIP neurons represent empty 

sets primarily as a separate category, distinct from all countable numerosities.  

Our population analysis confirmed that VIP does not genuinely represent 

empty sets as part of the numerosity continuum. First, analyses at the population level 

showed that a binary tuning is present in VIP neurons, irrespective of their selectivity 

and stimulus preference. Specifically, the population state space analysis (GPFA) 

confirmed the absence of a distance effect for empty sets not only in exclusively 

selective neurons, but also in the whole population. Second, by implementing a 

decoding approach, we found that VIP neurons rely on low level visual features to 

identify empty sets. Thus, the parietal encoding of empty sets by VIP neurons lacks 

the abstract character of numerical representations. 

The discrepancy between behavior and parietal population tuning could be 

resolved by the responses of prefrontal neurons. In contrast to VIP, empty-set 

neurons in PFC showed a gradual drop-off of activity with increasing numerosity. 

Moreover, at the whole population level, the positioning of empty sets with respect to 

other numerosities was evidenced by a significant distance effect in the state space 

analysis. The ordered layout formed by the sample-driven neuronal trajectories during 

the sample period showed that empty sets were encoded in a quantitative way by 

PFC. Complementing these findings, a ‘size effect’ emerged in the discriminability of 

different samples by the classifier in PFC. These results suggest that the prefrontal 

cortex does integrate numerosity zero as the lower end of the numerical continuum. 

7.3  Behavioral relevance of parietal and prefrontal 

representations of empty sets 

The analysis of error trials also points to a differential integration of empty sets 

as quantitative stimuli in VIP and PFC. While the activity of empty-set neurons in both 

cortices was behaviorally relevant, we found differences in the role played by standard 

number neurons (preferring countable numerosities) in empty sets trials. Particularly, 

only the activity of prefrontal countable-numerosity neurons during empty-set 

presentation affected trial outcomes. The tuning curves of neurons preferring 

countable numerosities predict a low firing rate for empty sets. However, the reduced 

response of these neurons to empty sets is functionally relevant in prefrontal, but not 

in parietal cortex. This finding further supports the statement that prefrontal neurons 

integrate empty sets in the stimuli range they encode, together with other 

numerosities.  
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In addition, as for behavioral performance functions, a logarithmic number line 

accounted better for the tuning curves of numerosity selective neurons in PFC, but 

not in VIP. Thus, neuronal activity in the prefrontal cortex shows a stronger correlation 

with behavior than parietal activity. 

7.4  Level of invariance of empty-set representations to stimulus 

features 

Some degree of abstraction is required from any neural correlate of 

numerosity. Therefore, we would expect a neural representation of empty sets to be 

invariant to image-like and low level features of the stimuli. In our task, we varied 

background shape and controlled for luminance. Neurons sensitive to these non-

numerical parameters were excluded from single-neuron analyses. Moreover, at the 

population level, a decoding approach allowed us to explore the invariance of empty 

set representations in VIP and PFC. We found that the discrimination of empty sets 

by parietal neurons was reduced across stimulus features. This finding could be 

explained by a mixture of visual and numerical selectivity in VIP. In contrast, PFC 

represented empty sets abstractly, as evidenced by high decoding performance 

across stimulus properties.  

Previously, the idea of abstract number representations was deemed 

premature based on some behavioral and human functional imaging studies (Cohen 

Kadosh and Walsh 2009). Over the past years, however, neurons indiscriminant to 

spatio-temporal and cross-modal number variations have been found, particularly in 

the PFC (Nieder, Diester, and Tudusciuc 2006; Nieder 2012). Recent human imaging 

studies also report that the extraction of numerosity is only minimally influenced by 

the processing of physical stimulus features (Park et al. 2015). These findings suggest 

that at least some neurons in association cortices represent numerosities abstractly. 

Of course, abstract number information could also be extracted from population 

activity as evidenced by the analyses presented in the current study. Still, whether 

PFC neurons encode empty-sets in different formats (across modalities and spatio-

temporal presentation) requires further investigation. 

7.5  Numerosity zero in the labeled line code for number 

Several computational models of numerosity detection operate with 

intermediate-stage summation units that show monotonically increasing or 

decreasing discharges as a function of number (also found in area LIP (Roitman, 

Brannon, and Platt 2012)) before giving rise to peak-tuned numerosity detectors at 

the output stage. Being zero the smallest numerosity tested, empty-set cells show 

decreasing rate functions reminiscent of decreasing summation units. On average, 

however, their tuning curves were too selective (i.e., narrow) to render them suitable 
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graded summation units over a range of numerosities. This suggests that empty-set 

preferring neurons are better considered as detectors tuned to numerical value 0. 

Additionally, during the sample period, we found and important number of neurons 

preferring intermediate numerosities (1 to 3). Those high percentages are higher than 

expected by noise in a neuronal population which is monotonically tuned to number. 

Finally, we obtained time-defined numerosity tuning curves and performed spectral 

clustering analysis on them. Five clusters of tuning curves, rather than two, account 

better for the diversity of numerosity tuning.  

Conversely, the class of frequent neurons tuned to numerosity 4 may mirror 

increasing summation units. However, this class could include neurons preferring 

higher numerosities whose tuning curves has not been completely sampled. When 

broader ranges of numerosities (1 to 30) are tested, numerosity tuning preference 

becomes evenly distributed (Nieder and Merten 2007), supporting the notion that 

numerosity selective cells in VIP and PFC are essentially tuned to specific numerical 

values. 

7.6  Numerosity zero in a logarithmic numerical scaling 

We have previously reported that behavioral and neuronal representations of 

numerosity in monkeys and crows (Ditz and Nieder 2015; Ditz and Nieder 2016) are 

best described on a non-linearly compressed, logarithmic number scale. This finding 

is confirmed in the current study with a new set of data. The logarithmic scheme 

accounts for the decrease in the discrimination of two stimuli when their magnitude 

increases (as predicted by Weber-Fechner psychophysical law). A non-linearly 

compressed scaling of numerosity has the advantage of providing scale-invariance 

and preference-independent neuronal variability. Even though the logarithm of 0 is 

not defined, the differences between numerical values can still be represented on a 

log scale. Note that Weber-Fechner law is concerned with the perception of 

differences, rather than absolute magnitudes. Starting with the interval between 

numerosity 0 (n) and numerosity 1 (n+1), all differences between higher numbers can 

be represented on a log scale. Representations of cardinality 0 would therefore not 

dispute the notion of a nonlinearly compressed scaling. 

7.7  From ‘nothing’ to ‘zero’ 

Sense organs have evolved to encode the intensity of a stimulus. Then, how 

can the absence of stimulation be detected? In order to make use of this information, 

the nervous system needs to encode it actively. Indeed, it has been shown that 

neurons in the frontal lobe increase their discharge rate to the categorical absence of 

a stimulus (Merten and Nieder 2012; Merten and Nieder 2013). Zero is an example of 

information conveyed by the lack of a signal. In this case, the brain generates a 

quantitative representation (‘zero’) from the absence of a behaviorally relevant 
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sensory signal (‘nothing’). This process that would require a high level of cognitive 

control.  In this context, it may not be surprising that neurons in the PFC are 

particularly engaged in the representation of null-quantity.  

It has been argued that the conceptual demands imposed by representing 

‘nothing’ as a numerical category may explain the delayed discovery of zero in human 

history. Zero first appeared as a placeholder symbol in notational systems. Only later, 

Indians used zero also as a numeral signifying null quantity in mathematics. This 

cultural delay is mirrored in ontogeny: children seem to master the cardinal and ordinal 

properties of small numbers before they can deal with zero (Wellman and Miller 1986). 

Still, it has been suggested that pre-scholar children understand the numerical value 

of numerosity zero and position empty sets in the context of other small numerosities 

before they have developed a concept of symbolic zero (Merritt and Brannon 2013). 

These results suggest that the representation of empty sets as non-symbolic carriers 

of null-quantity can be grasped by children and some animals. Our results suggest 

that a humble precursor of the non-symbolic zero can be identified in the primate 

prefrontal cortex. 
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