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Abstract
Biochemical test development can significantly benefit from combinatorial optimization.
Multiplex assays do require complex planning decisions during implementation and sub-
sequent validation. Due to the increasing complexity of setups and the limited resources,
the need to work efficiently is a key element for the success of biochemical research and
test development.

The first approached problem was to systemically pool samples in order to create a
multi-positive control sample. We could show that pooled samples exhibit a predictable
serological profile and by using this prediction a pooled sample with the desired property.

For serological assay validation it must be shown that the low, medium, and high levels
can be reliably measured. It is shown how to optimally choose a few samples to achieve
this requirements. Finally the latter methods were merged to validate multiplexed assays
using a set of pooled samples. A novel algorithm combining fast enumeration and a set
cover formulation has been introduced.

The major part of the thesis deals with optimization and data analysis for Triple X Pro-
teomics - immunoaffinity assays using antibodies binding short linear, terminal epitopes
of peptides. It has been shown that the problem of choosing a minimal set of epitopes
for TXP setups, which combine mass spectrometry with immunoaffinity enrichment, is
equivalent to the well-known set cover problem.

TXP Sandwich immunoassays capture and detect peptides by combining the C-terminal
and N-terminal binders. A greedy heuristic and a meta-heuristic using local search is pre-
sented, which proves to be more efficient than pure ILP formulations.

All models were implemented in the novel Java framework SCPSolver, which is ap-
plicable to many problems that can be formulated as integer programs. While the main
design goal of the software was usability, it also provides a basic modelling language,
easy deployment and platform independence.

One question arising when analyzing TXP data was: How likely is it to observe mul-
tiple peptides sharing the same terminus? The algorithms TXP-TEA and MATERICS
were able to identify binding characteristics of TXP antibodies from data obtained in
immunoaffinity MS experiments, reducing the cost of such analyses.

A multinomial statistical model explains the distributions of short sequences observed
in protein databases. This allows deducing the average optimal length of the targeted
epitope. Further a closed-from scoring function for epitope enrichment in sequence lists
is derived.
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Kurzfassung
Biochemische Testentwicklung kann signifikant von kombinatorischer Optimierung pro-
fitieren. Parallele Multiplex-Assays benötigen komplexe Planungsentscheidungen bei
Implementierung und nachfolgender Validierung. Die Komplexität der Aufgaben und
begrenzte Ressourcen machen effizientes Arbeiten wichtig für den Erfolg der Testent-
wicklung.

In dieser Arbeit wurde zunächst gezeigt wie Proben systematisch gemischt werden
können um eine multi-positive Kontrollprobe zu erstellen. Probenmischungen haben ein
vorhersagbares serologisches Profil. Somit kann ein Mischungs-Vorschlag erstellt wer-
den, um in einem Schritt möglichst viele Analyten zu kontrollieren. Ausserdem müssen
für die Validierung niedrige, mittlere und hohe Konzentrationen reproduzierbar nach-
gewiesen werden. Es wird gezeigt, wie einzelne Proben für Validierungsexperimente
ausgewählt werden können, um dieses Ziel zu erreichen. Schlussendlich werden beide
Vorgehensweisen kombiniert um Probenmischungen zur Testvalidierung zu berechnen.
Der Algorithmus nutzt schnelle Aufzählungstechniken in Verbindung mit einem ganz-
zahlig linearen Programm zur Lösung des Problems.

Ein großer Teil dieser Arbeit beschäftigt sich mit der Optimierung und Datenana-
lyse für Triple X Proteomics Immunoaffinitäts-Assays, die an kurze lineare termina-
le Sequenzen von Peptiden binden. Das Problem, die kleinstmögliche Menge an Bin-
dern für eine gegebene Menge an Proteine zu wählen, entspricht dem bekannten Men-
genüberdeckungsproblem. TXP Sandwichimmunoassays kombinieren c- und n-terminale
Binder um Peptide zu identifizieren. Es wird eine Metaheuristik vorgestellt, die das Pro-
blem der minimalen Binderselektion für diesen Assaytyp besser löst, als reine gemischt-
ganzzahlige Ansätze. Alle Algorithmen wurden in der neuen Java-Bibliothek SCPSolver
implementiert. Die Bibliothek ist entwicklerfreundlich, enthält eine Modellierungsspra-
che, ist einfach einzubinden und ist multi-plattform-fähig.

Bei der Analyse von TXP Daten ist es wichtig zu wissen, mit welcher Wahrscheinlich-
keit sich eine terminale Sequenz in einem Experiment zufällig wiederholt. Der Algorith-
mus TXP-TEA berechnet dies und das MATERICS-Verfahren leitet das Bindungsmuster
eines Antikörpers aus Immunoaffinitäts-Massenspektrometrie-Daten ab.

Abschliessend wurde die Verteilung von kurzen Sequenzen in Proteomen durch ein
statistisches Modell erklärt, aus dem sich auch die optimale Durchnittslänge für Zielepi-
tope analytisch ableiten lässt. Des Weiteren wird eine geschlossene Bewertungsfunktion
für Epitopanreicherung in Sequenzlisten vorgestellt.

Die Ergebnisse dieser Arbeit steigern die Effizienz des Ressourceneinsatzes und er-
gänzen die Möglichkeiten zur Datenauswertung von Immunoaffinitätsexperimenten.

vii



viii



Acknowledgments
I would like to thank Prof. Dr. Andreas Zell for advice and financial support, and Apl.
Prof. Dr. Kay Nieselt for her helpful comments on the manuscript. Thanks to Dr. Oliver
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Chapter 1

Introduction

Protein biomarker discovery and quantification ranks among the most important chal-
lenges in modern biomedical research. Many diseases, organ malfunctions, injuries, and
treatment side effects can be potentially diagnosed by looking at the right protein profile.
Contrary to the analysis of mRNA profiles, the screening of protein expression profiles
allows for direct conclusions to be made about the molecular mechanisms involved in a
certain condition, as many cellular processes are directly related to protein functions.

Unfortunately, many proteins are very difficult to measure and cannot be reliably
quantified because they only occur in very low concentrations. E.g. albumin is up to
1,000,000,0000 times more abundant than some cytokines (Omenn, 2004).

Mass spectrometry (MS)-based protein profiling has become one of the key technolo-
gies in biomedical research and biomarker discovery. It allows for the parallel detection
of a mixture containing a limited number of peptides. For qualitative and quantitative
protein profiling of a complex sample, time-consuming sample fractionation steps, such
as 2D gel electrophoresis or multidimensional chromatography, are necessary. In this
way, small subsets of the sample are analyzed fraction by fraction. These fractionation
methods are the limiting factor in MS-based protein analysis.

This bottleneck led to the development of modern techniques that combine known
methods for better accuracy and sensitivity. Immunoaffinity-Mass Spectrometry-based
approaches combine techniques based on antibodies with mass spectrometry, thereby in-
creasing sample throughput and detection sensitivity by capturing proteins or peptides
from the sample using protein- or peptide-specific antibodies (Anderson et al., 2004a,b;
Nicol et al., 2008; Warren et al., 2004; Weiß et al., 2014). However, the drawback is the
large number of antibodies needed - one antibody per protein. In mRNA-profiling, cDNA
molecules bind to synthetic probes that are both easy to postulate and synthesize. This
allows for the comparatively cheap production of high-density microarrays that cover a
large portion of the known genome. Unfortunately, this is not applicable in the protein
world, since protein-binding molecules cannot be easily synthesized. Nevertheless, ef-
forts are ongoing to generate antibodies for the analysis of the plasma proteome by an
immunoaffinity- MS-based approach (Whiteaker et al., 2007).

TXP-antibodies are a new technique for this problem. These antibodies recognize
shorter parts of peptides and are therefore reusable for many assays. The task to select
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Chapter 1 Introduction

the right targets for TXP-antibodies can be supported by bioinformatics (Planatscher
et al., 2010, 2013a) and is one main topic of this thesis.

It will be shown that it is possible to translate this task into known optimization prob-
lems, which can be solved using different heuristic and exact methods. These were im-
plemented in the novel Java software library named SCPSolver, which will be discussed
in Chapter 3. This modeling framework itself is not restricted to the optimization prob-
lems outlined in this work, and is applicable to many problems that can be formulated
as integer programs. Some example applications, outside the realm of TXP-antibodies,
will also be discussed, including the optimal pooling of a sample for positive control
(Planatscher et al., 2013b), the selection of samples for assay validation with a minimum
number of experiments, and the placement of samples on a planar array.

After the selection, immunization, and purification, the TXP-antibodies are analyzed
for their binding specificity. Heretofore, this entails a substantial effort in the lab, as
the analysis requires synthetic peptide libraries and numerous mass spectrometry exper-
iments. The second part of this thesis will discuss algorithms for inferring the antibody-
binding motif from a mass spectrum obtained from the digest of a common cell line
after immunoprecipitation. The epitope prediction reveals the most enriched terminal
epitopes. Three different algorithms provide scores for potential epitopes and/or motifs.
TXP-TEA estimates the score by sampling random spectra from a peptide database. The
algorithm MATERICS combines the predicted sequences into more complex binding
motifs (Planatscher et al., 2014). A third approach, an alternative to the sampling-based
TXP-TEA, calculates the score from a statistical model that was specifically developed
for this purpose. A comparison with library screenings shows that the predictions made
by the novel methods are reliable and reproducible indicators of the binding properties
of an antibody.

This introductory section gives a short overview of the biochemical and mathematical
principles used and referred to in the following chapters.

1.1 Proteomics
Major achievements have been made in the large-scale study of biological systems in
the last decades. Sequencing entire genomes enabled the development of new screen-
ing methods. mRNA-microarrays enable simultaneous expression-level measurement of
thousands of genes. Next generation sequencing (NGS) promises even more insights and
an even larger amount of data.

Despite these advances in genomics, many biological and medical facts cannot be
explained solely at the genome or expression level. Organisms and cells are dynamic,
remarkably adaptive, and complex systems that, even if their DNA is the same, can de-
velop various amounts of phenotypic realizations. Measuring protein abundance in the
cell helps to explain the biological development and processes better. Proteomics is the
study of the proteome, the entire set of all expressed proteins, of a species. This includes
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1.2 Use of antibodies for bioanalytics and diagnostics

functions, structures, sub-cellular location, interactions, and possible modifications of
the proteins. The qualitative and quantitative analyses of proteins under controlled con-
ditions require highly sensitive analytical methods.

The detection and quantification of proteins and peptides by mass spectrometry is
widely used and well established in proteome analysis and biomarker discovery (Steen
and Mann, 2004). MS enables the identification of the molecular weight of a compound
up to 500 kDA, even if amounts only in the femto or attomolar scale are found in the
sample. In the ’top-down’ approach (Madsen et al., 2009), proteins are identified by the
spectrum of their ion fragments. When using the ’bottom-up’ approach (Aebersold and
Mann, 2003), proteins are proteolytically digested and then identified by the detection
of the resulting peptides. Tandem mass spectrometry (MS/MS) enables the sequencing
of the proteolytic peptides by matching fragmentation patterns to spectra predicted from
sequence databases, or by analyzing the mass differences in the spectrum.

If a complex protein mixture is analyzed, the sample is fractioned in one or more di-
mensions in order to divide the sample up into smaller portions according to a gradient.
The most important fractionation techniques are liquid chromatography, 2D-PAGE Gel
electrophoresis, and affinity chromatography. The digestion of the unprocessed protein
extract, followed by the separation of the peptides using liquid chromatography and a
read-out from a mass spectrometer is known as shotgun proteomics (Washburn et al.,
2001). Another important, and in certain cases complementary, family of screening
methods are immunoassays. Immunoassays apply specifically produced antibodies for
the detection of proteins. These methods are also called targeted proteomics because
they are very selective and sensitive, and not conducted on a large scale. If the targets are
very low in abundance, these methods still generally deliver very good results compared
to mass spectrometry approaches.

An important biomedical application of proteomics is the identification of biomarkers.
It has been shown that some proteins are indicators for severe diseases, including cancer,
heart, vascular, and neurological conditions. Large-scale proteomics approaches can be
used for the discovery of new biomarkers (Veenstra et al., 2005) if a large number of
peptides and proteins can be screened in a sample.

1.2 Use of antibodies for bioanalytics and diagnostics
Antibodies are complex and highly variable biomolecules that have evolved to recognize
the structure of other biomolecules. While these highly specific binders identify harmful
substances and antigens in the mammalian body, antibodies also became highly relevant
as diagnostic tools in the 20th century. The most important use of antibodies is in the
identification, and if possible, quantification, of the specific antigen in patient samples.
Also, the antibodies present in a patient can be used for diagnosis. In that case, immuno-
logical traces, which are antibodies produced by the body after an infection, can be used
to detect the infection and estimate the onset of symptoms. (Raem and Rauch, 2007)

3
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Figure 1.1: Domain structure of an immunoglobulin / rendering of a crystal structue (Pro-
tein Data Bank structure 1IGT visualized with Rasmol)

Antibodies specific for almost any biomolecule are conventionally obtained by im-
munization. The antigen is first injected in the body of an animal; the most commonly
used species are rabbits, chickens, rats, mice, and goats. During this process, factors
like size and dissimilarity to host-proteins will influence the probability of obtaining a
good binder. While almost any structure can act as an antigen, only proteins will induce
a full adaptive immune reaction. Adjuvants are added to the antigen to enhance its im-
munogenic properties by aggregating the antigen to particulates and delaying its release
to prolong exposure to the organism.

After immunization, blood is extracted from the host organism. By removing all solid
components and fibrinogen, the antiserum is isolated, which contains a variety of dif-
ferent antibodies. Some cross-reactive antibodies bind structures that are similar to the
target epitope. These antibodies originate from different clones of maturated B-cells.
The heterogeneous mixture of antibodies in polyclonal sera can be reduced by depletion
steps. Still, due to the lifetime limits of the host animals and the different immune re-
action of each organism, it is impossible to produce sera with the exact same properties
(Raem and Rauch, 2007). Monoclonal antibodies are obtained by fusing murine spleen
cells with murine myeloma cells. The resulting hybridoma cells have the properties of
unlimited growth and the production of a mono-specific antibody. Cells can be selected
by the specificity of the antibody to an antigen and be bred in cell lines. These cells are
an unlimited source of antibodies with stable binding properties. Antibodies used for
diagnostic kits or therapeutic treatments are generally monoclonal.

A method to produce antibodies in prokaryotic organisms is phage-display systems.
By cloning human genes VL and VH into bacteriophages, the antibodies are displayed

4
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1.3 Mass spectrometry for Proteomics

on phage surfaces. Specific binders are isolated from large phage display libraries by
selection and enrichment. These phages can then be used to introduce the genome in E.
coli to produce large amounts of mono-specific antibodies.

ELISA immunoassays (Enzyme Linked immunosorbent assay) can detect the direct
binding of antibody and analyte. An antibody marked with an enzyme is used for de-
tection. The antibody-enzyme complex specifically binds to the analyte bound by a
captured antibody fixed on a solid phase. Alternatively, in the indirect assay, a primary
antigen-specific antibody is detected by the marker antibody specific to the type of pri-
mary antibody. The same detection antibody can be used for all assays using the same
kinds of antibodies, e.g. rabbit immunoglobulins.

1.3 Mass spectrometry for Proteomics
Mass spectrometry is an experimental method to determine the masses of molecule ions
from a sample in a vacuum. The main components of a mass spectrometer are an ion
source to produce a gas stream of ions from the sample, a mass analyzer to separate
the ions according to their mass-to-charge (mz) ratio, and a detector to measure the ion
stream. The resulting mass spectrum is a list of the relative amounts of detected ion
mz-ratios (Lottspeich, 2006).

ion source mass analyzer detector

ionization separation measurement

Figure 1.2: General structure of a mass spectrometer: ion source, mass analyzer, detector

Based on this mass spectrum, the chemical structure of complex molecules, e.g. the
sequences of peptides, can be identified. Quantitative measurements are also possible,
using either labeled standards or label-free approaches.

Ionization

In the ion source of the mass spectrometer, the analytes, which are brought into the
gaseous phase, are ionized. Ionization is achieved through either the addition or loss
of an electron. Methods for ionization of non-volatile compounds include electron and
chemical ionization for gases and vapors. Electro-spray (ESI) (Yamashita and Fenn,
1984) and matrix-assisted laser ionization (MALDI) (Karas and Hillenkamp, 1988) are
used for solid and liquid samples.
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In MALDI, the ionization is performed by a nitrogen laser beam. A matrix of crystal-
lized molecules protects the biological sample. When the laser hits the matrix, the energy
is absorbed and ions are produced in the matrix. Part of the ion charge is transferred to
the analytes. The ion species produced by the charge transfer are mostly ionized by one

proton [M+H]+. The resulting mz-values are
m+1u

1
, and are thus equal in value (but not

in dimension) to the original molecular mass increased by the mass of a proton.
The electro-spray ionization method uses a strong electrical field for the generation of

an aerosol of unipolar loaded molecules. The analytes are mixed with a liquid solvent and
then forced through a metal capillary. A high voltage is applied to the tip of the capillary.
The molecules in the solvent are positively charged and diffused into an evaporation
chamber to the negatively charged inlet of the mass spectrometer. The molecules are
mostly ionized by two protons and described as [M+2H]2+, which leads to mz-values of
m
2
+1u.

Separation

After the ionization, the ions are transported to the mass analyzer by a magnetic or elec-
trical field. The mass analyzer is a component for separating the ions according to the
mass-to-charge ratio. A commonly used technique is to measure the time-of-flight (TOF)
of an ion through a tube to a detector. The potential energy Ep of a particle in an electrical
field with a potential difference U f is proportional to its charge q:

Ep =U f q . (1.1)

The potential energy is transformed to kinetic energy Ek =
mv2

2
, when the charged

particle accelerates in the tube. Since the potential energy has to be the same as the
kinetic energy, it follows that

U f q =
mv2

2
(1.2)

which enables us to relate mass and charge to velocity v. The velocity is distance over
time, which, in the case of the mass analyzer, is given by the length of the tube d and the

time t passed until the impact of the particle on the detector. By inserting
d
t

for v in the
equation, and then solving for t :

t =
d√
2U f

√
m
q

(1.3)

Because
d√
2U f

can be considered constant, it is evident that the time-of-flight is propor-

tional to the square root of the mass-to-charge ratio (Siuzdak, 2006).
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Figure 1.3: Classical fractionation techniques

Detection

After passing the mass analyzer, the ions reach the ion detector. This highly sensitive
instrument is able to detect a minimum number of charged molecules. A common type
of detector is an electron multiplier, which can be described as a linear array of high-
voltage electrodes. Other designs do not use separated electrodes, but rather a single
curve-shaped continuous electrode, but the principle of operation is the same: The ion
stream impacts the first electrode, causing an electron emission. The emitted electrons
induce a higher emission on the next electrode, and so on. This process amplifies the
initial signal until it reaches a final collection anode. The signal is then further enhanced
in a preamplifier before reaching a transient recorder, an array of high-speed analog
digital converters to achieve maximum resolution (Siuzdak, 2006).

Sample Prefractionation

Samples containing complex mixtures of compounds are divided into smaller fractions
before being inserted into the ion source. A common fractionation method is liquid
chromatography.

Here, a mobile phase is forced to pass through a column containing the stationary
phase. As different particles in the mobile phase exhibit different interactions with the
stationary phase, some compounds pass the column faster than others. Another frac-
tionation method applied to protein mixtures is sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE). This method separates the proteins according to their
electrophoretic mobility. So-called 2D Gels combine this approach with IEF (isoeletric
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focussing), which separates the compounds by the relative content of their acidic and
alkaline amino acid residues.

Peptide mass fingerprinting

Peptide mass fingerprinting is a well-established method in proteomics to identify pro-
teins from the masses of their peptides (Yates et al., 1993; Mann et al., 1993; Henzel
et al., 1993; Pappin et al., 1993; James et al., 1993). A protein is first isolated using
SDS-PAGE before being digested using a protease, such as trypsin, Glu-C, Lys-C. The
digest is then measured in a mass spectrometer. The resulting mass spectrum is then
compared to a database of protein sequences. Since the specificity of the protease and
the masses of amino acids are known, it is possible to calculate their theoretical peptide
fingerprints in silico. The more such a database pattern overlaps with an observed mass
spectrum, the higher the resulting score. Usually, the software provides a ranking of
matching proteins, along with scores, indicating the confidence of the protein identifi-
cation. It has been shown that it is possible to elucidate the linear binding epitopes of
antibodies using similar statistical approaches (Planatscher et al., 2014).

The need to isolate the protein first is a major disadvantage if a sample contains many
proteins that have to be identified. If the isolation does not work and the mass spectrum
contains signals from 2 or more proteins, then this method will be prone to misidentifi-
cations.

Tandem mass spectrometry

In tandem mass spectrometry, two steps of mass spectrometric measurements and/or
mass selection occur. In general, the first measurement determines the mass of an in-
tact molecule, or more specifically, a peptide. If certain criteria are met, the molecule
is fragmented and the fragment masses are determined. As the resulting pattern is often
characteristic of the compound, as opposed to just the mass, it can be identified more
easily. For example, the peptide SYFPHEIT has the exact same mass as EFYPHTIS, and
8!-2 other permutations, but only a few of these will have identical fragmentation pat-
terns. Fragmentation is the central physical process. The most common techniques for
fragmentation are collision-induced damage (CID), electron transfer dissociation (ETD),
and post-source decay. In CID, the ions collide with an inert gas, such as a noble gas
or purified nitrogen, in a collision cell (Siuzdak, 2006). This method is used with triple
quadrupoles, quadrupole ion traps, Fourier Transform MS, and time-of-flight mass an-
alyzers. ETD uses radical anions to induce the precursors fragmentation. ETD is used
to fragment longer amino acid sequences (Syka et al., 2004). Post-source Decay is a
fragmentation method used in MALDI mass spectrometers.

8



1.3 Mass spectrometry for Proteomics

Figure 1.4: Peptide fragmentation leads to different types of fragments, some of which
are detectable in mass spectrometers due to their charge. Fragments are de-
nominated as a-, b-, and c-ions if the fragment is from the N terminal side,
or as x-, y-, and z-ions if the fragments originate from the C terminal side.
Image by Hannes Roest (Wikipedia) Creative Commons License by-sa

Peptide sequence identification

As described, the fragmentation patterns obtained from peptides in tandem mass spec-
trometry can be used for sequencing. The most common way to do this for known
proteins is a database search. As with peptides, mass fingerprinting fragmentation pat-
terns are compared to theoretical patterns that have been calculated in silico. If one or
more spectra can be matched, the protein is considered as identified. The most popular
tools for this method are MASCOT (Perkins et al., 1999), Sequest (Eng et al., 1994),
XTandem (Craig and Beavis, 2004), and OMSSA (Geer et al., 2004).

An alternative method to identify sequences that are not known and stored in a database
a-priori is de-novo sequencing. These approaches analyze the fragment mass spectra by
looking at the absolute differences of the mz-values. As fragmentation occurs at specific
bonds, these mass differences are equivalent to masses of the amino acid at this position.
By assembling all observed differences, the full sequence may be inferred. In practice,
this is quite error-prone, but this might improve with advances in mass spectrometer
resolution.

Multiple/Single Reaction Monitoring

If the mass of a peptide (precursor) and a characteristic fragment (product) ion is known,
certain types of mass spectrometers (Triple-Quadrupoles) enable a specific search for
and isolation of these compounds. This results in very sensitive and specific measure-
ments with almost no background noise. It has been shown that the product ions signal
intensities correlate with the parent peptides/proteins abundance in the sample. Alterna-
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tively, a heavy-labeled ion is spiked in the samples. By comparing the intensity of this
internal standard, absolute quantification of the endogenous peptide species is possible.
In Multiple Reaction Monitoring (MRM), not just one many product ions are monitored,
(Kondrat et al., 1978).

1.3.1 MS-based Immunoassays
The following section on mass spectrometry-based immunoassays is a shortened version
of Weiß et al. (2014). This review article has been co-authored by the author of this
dissertation and explores the currently available mass spectrometry-based immunoassays
shown in figure 1.5 in depth.

A popular approach taken for targeted protein assessment over the last decade involves
combining an immunoaffinity enrichment step with mass spectrometric detection of two
types: in (a) Mass Spectrometric ImmunoAssays (MSIA), the enrichment is performed
at the protein level, whereas in (b) the Stable Isotope Standards and Capture by Anti-
Peptide Antibodies assays (SISCAPA assays), it is done, as the name denotes, at the pep-
tide level. With the latest improvements in mass spectrometry technology, plasma pro-
teins in the pg/ml range could be detected. However, absolute sensitivities of MS-based
immunoassays are still inferior to highly developed sandwich immunoassays, which are
capable of detecting proteins in the fg/ml range (Ekins, 1998; Fredriksson et al., 2002;
Niemeyer et al., 2005; Rissin et al., 2010). The advantage of MS-based immunoassays is
that the method is less error-prone than sandwich immunoassays, because the mass spec-
trometric read-out unambiguously confirms the identity of the analyte. Furthermore,
only one capture molecule is required when an MS-based immunoassay is used. Ad-
ditionally, the mass spectrometric read-out includes data that allows for discrimination
between different protein isoforms.

Even though considerable effort has been made by large projects to develop a proteome-
wide set of antibodies (Stoevesandt and Taussig, 2007, 2012), the unavailability of exten-
sive antibody collections hinders the wider application of these assays by the scientific
community. A prerequisite for the quantification of a tryptic peptide by means of a SIS-
CAPA, referred to later, or iMALDI assay would be an antibody that was generated with
a peptide-protein conjugate. It is common practice to develop a polyclonal or monoclonal
antibody in order to obtain a suitable capture reagent (Stoevesandt and Taussig, 2012).
The amount of polyclonal antibody that can be isolated from an immunized animal is
sufficient to perform 20,000 MS-based immunoassays. On the other hand, a monoclonal
antibody serves as an endless resource and can be produced on demand. The amount of
required antigen for the antibody generation process is quite comparable. Commonly,
two animals, typically rabbits or goats, are immunized to raise a polyclonal antibody.

Prior to the generation of such antibodies, it should be carefully evaluated whether the
immunoprecipitation should be performed on the protein or peptide level. In the first
case, the antibody has to be capable of binding the protein in its native intact form. In the
second case, the protein is denatured and fragmented into peptides. For developing an
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Figure 1.5: Different approaches to immunoaffinity mass spectrometry (image from
Weiß et al. (2014))

MSIA, the protein target itself or a larger protein fragment should be used for immuniza-
tion, presuming that the pure protein is sufficiently available. The recombinant synthesis
of a full-length protein or protein fragment is expensive; however, for peptide-centric as-
says like SISCAPA or iMALDI, peptide synthesis can provide peptides for a fraction of
the cost. Commonly, the peptide should contain an additional non-proteinogenic spacer
and a cysteine, which are not part of the target peptide sequence, to achieve successful
immunization.

Targeted MS-based immunoassays

Multiple Reaction Monitoring (MRM) mass spectrometry has evolved as a widely ac-
cepted multiplex method for quantifying analytes. However, LC-MRM assays lag be-
hind proven immunoassays with sensitivities in the fg/mL range. The combination of
two-dimensional LC setups with MRM detection will probably lead to higher sensi-
tivities, but also to longer analytical separation times. The incorporation of a targeted
enrichment step using antibodies led to further improvements in sensitivity and the de-
velopment of mass spectrometry-based immunoassays. Here, the analyte the protein
itself or a tryptic peptide thereof is enriched by an antibody prior to the mass spectro-
metric read-out. Anderson and colleagues published a method they called SISCAPA, in
which protein quantification is achieved by the simultaneous immunoprecipitation of a
tryptic fragment, derived from the target protein, and a stable isotopically-labeled syn-
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thetic reference peptide. Subsequent detection and quantification of the protein is carried
out using reversed phase liquid chromatography coupled with a triple quadrupole MS
(Anderson et al., 2004b). This rapid immunoaffinity enrichment step leads to analyte
enrichment factors of more than 8,000 (Pagans et al., 2009). Sensitivities for plasma
proteins of these types of assays are typically in the lower ng/ml range (Pagans et al.,
2009; Neubert et al., 2010; Hoofnagle et al., 2008).

Moreover, the employment of magnetic particles allows for the use of large sample
volumes (Anderson et al., 2009) and enables samples to be re-analyzed (Whiteaker and
Paulovich, 2011). By combining several antibodies in a single immunoprecipitation step,
quantitative multiplexed assays for up to 50 analytes (Whiteaker and Paulovich, 2011;
Whiteaker et al., 2011) can be set up. The capacity to generate high throughput SIS-
CAPA workflows was recently demonstrated (Razavi et al., 2012). Here, the authors
used a commercially available robotic interface to carry out simple, solid-phase extrac-
tion after the immunoprecipitation step and to inject the enriched peptide analyte di-
rectly into the mass spectrometer. As a result, the MS cycle-time could be reduced from
approximately 20 minutes down to seven seconds, which permitted the analysis of 96
immunoprecipitates in just 15 min.

Mass Spectrometric Immunoassays (MSIA), as described by Randy Nelson and his
colleagues, enrich intact proteins from plasma during immunoprecipitation in pipette
tips and detect the protein via MALDI-MS (Nelson et al., 1995; Tubbs et al., 2006) or,
alternatively, after digestion in MRM-MS (Krastins et al., 2013; Lopez et al., 2010). The
advantage of the capture step at the protein level is that the information of the entire
sequence is retained. Therefore, protein isoforms can be detected (Lopez et al., 2010;
Nedelkov et al., 2006; Tubbs et al., 2005) and post-translational modifications can be
revealed. Nevertheless, protein degradation, solubility problems, and changes in the 3D
structure can constrain the quantitative power of the MSIA approach.

The iMALDI method differs from the MSIA in that the analyte is directly eluted from
the capture antibody onto the MALDI sample target by the application of an organic
acid, which also serves as the MALDI matrix.

Novel MS-based immunoaffinity strategies are currently being developed for biomarker
discovery projects. Pattern-based or peptide group-specific immunoaffinity enrichment
enables the identification of peptide classes and can be applied to identify differentially
and post-translationally modified proteins. Applications for phosphorylation, acetyla-
tion, methylation, ubiquitinylation, nitrosylation, and nitration are well described in the
literature. The antibodies used in these strategies recognize distinct patterns in peptide
classes, rather than targeting a single peptide.

This immunoaffinity enrichment strategy, applied as a pre-fractionation step before
or after proteolytic digestion and MS detection, allows for the discovery-driven, system-
wide screening of protein/peptide classes. One type of pattern exploited for immunoaffin-
ity enrichment involves phosphorylation sites. These antibodies are capable of enrich-
ing specific phosphopeptide sequences (Mandell, 2003), phosphoserine or phosphothre-
oninepeptide motifs (Zhang et al., 2002), or anti-phosphotyrosine (Ross et al., 1981).
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Figure 1.6: Motif-specific fractionation in the TXP workflow

Unlike anti-phosphotyrosine antibodies, anti-phosphoserine and threonine antibodies are
sensitive to the amino acids surrounding the phosphorylation site (Alpha-Bazin and
Quemeneur, 2012; Fı́la et al., 2012).

Motif-specific fractionation

Another generic pattern targeted by multi-specific binders is short sequence-based mo-
tifs. Sequences in each proteome are related through their evolutionary history. These
protein families originated via the mechanism of gene duplication, where an existing
gene is copied within the same organism. The second copy, while initially sharing the
exact same sequence, can mutate in following generations. This may lead to a gene
product performing a different task (neo- or subfunctionalization), but sharing a com-
mon domain. This leads to protein families, such as the Cytochrome P450 family, TG-
Proteins, MAP Kinases, etc. With the TXP approach, it is possible to exploit sequence
conservation in protein families by enriching peptides that share a conserved terminus.

Two approaches, the Global Proteome Survey (GPS) (Wingren et al., 2009) and Triple
X Proteomics (TXP) (Poetz et al., 2009), employ binders capable of capturing short pep-
tide motifs for affinity-based proteomic approaches. Wingren et al. (2009) described
Context-Independent Motif-Specific (CIMS) antibodies, which they selected from a re-
combinant phage display library with C-terminal peptide motifs. The binders were then
used for motif-specific pre-fractionation of peptides from tryptic digests, combined with
mass spectrometric read-outs. A closer examination of the CIMS antibodies by Olsson et
al. revealed relatively broad, off-target binding effects and dissociation constants in the
M-range (Olsson et al., 2012a). However, in a SILAC experiment, Olsson and colleagues
demonstrated that the quantification of yeast proteins over 3 orders of magnitude is pos-
sible when CIMS antibodies are used in a precipitation step prior to LC-MS detection
(Olsson et al., 2011).

For the other motif-specific peptide capture technique, termed Triple X Proteomics
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(TXP) (Poetz et al., 2009), polyclonal sera were raised towards short-terminal peptide
epitopes and purified using the target. The resulting antibodies were used to enrich
and identify proteins from tryptically digested plasma (Volk et al., 2012) or cell cul-
ture samples (Hoeppe et al., 2011). Closer analyses of the antibody epitopes, by means
of positional peptide libraries, revealed low off-target binding (Hoeppe et al., 2011) and
affinities in the two-digit nM range (Volk et al., 2012). Recently, those antibodies were
applied for the targeted analysis and the quantification of G-protein coupled receptors
(Eisen et al., 2013). Even very hydrophobic target peptides, which are normally not
found in empirical mass spectrometry databases, could be identified and quantified after
undergoing enrichment with TXP-antibodies. The antigens for the antibody generation
are specifically selected in silico to cover proteotypic peptides from proteins of interest
with a minimal set of TXP antibodies (Planatscher et al., 2010).

1.4 Amino acid sequence databases
The bases of most calculations presented in this work are databases of primary amino
acid sequences. While resources such as the PDB (Protein Data Bank) concern them-
selves with structural information, these amino acid databases focus either on complete
protein sequences or on peptide sequences identified in tandem mass spectrometry ex-
periments. Sequence databases can be classified by various criteria, including curation,
redundancy, species, focus on a specific organ tissue, or body fluid.

1.4.1 UniProt
Combining the data in the databases Swiss-Prot, TrEMBL, and PIR-PSD resulted in the
creation of the universal protein resource. The UniProt Consortium, formed in 2002
by the European Bioinformatics Institute (EBI), the Swiss Institute for Bioinformatics
(SIB), and the Protein information Resource (PIR), takes care of the maintenance and
annotation of the core databases: UniProtKB/SwissProt, UniProtKB/TrEMBL, UniParc,
and UniRef.

UniProtKB/SwissProt contains only manually curated, reviewed, annotated, non-
redundant, cross-referenced entries. Due to these criteria, the amount of protein se-
quences with scarce evidence for existence is low. Only 2.7 % of all sequences in the
Release 2010 10 are based on prediction and 0.3 % have uncertain evidence. The re-
maining 97 % are based on evidence at the protein level, transcript level, or inferred
from homology.

UniProtKB/TrEMBL is a repository for automatically annotated amino acid sequences,
which are obtained by the translation of annotated coding sequences contained in EMBL-
Bank, GenBank and the DDBJ sequence database, the Protein Data Bank or gene pre-
diction (Ensembl, RefSeq, CCDS). While this ensures that all available sequence infor-
mation is systematically collected and processed coherently, the lack of manual curation
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may lead to redundancy. The UniParc database contains all available sequence informa-
tion from the most important publicly available databases. To avoid redundancy, UniParc
stores each sequence only once, even if the sequence originates from different species;
each sequence gets a unique identifier. UniRef consists of a cluster of sequences from
different organisms with varying levels of sequence identity (100 %, 90 % and 50%). The
resulting entries are linked to the UniProtKB and UniProtParc entries of the sequences,
which are contained in the cluster.

1.4.2 Peptide Databases for proteomics research

The Peptide Atlas is a database of peptides that were identified in tandem mass spec-
trometry experiments (Desiere et al., 2006). The sequences of the peptides are identified
using the search engines SEQUEST and X!Tandem. The identifications are then stored
in the database along with the raw spectra. The aim of the Peptide Atlas is to annotate
the sequenced genome of various species (Homo sapiens, Mus musculus, Caenorhab-
ditis elegans, Drosophila melanogaster, etc.) with the sequences of peptides that are
actually found by experiment. There are data packages in the Peptide Atlas that bundle
the information for a single species.

The Global Proteome Machine Organization provides the GPMDB, which is also a
central repository for mass spectrometry-based proteomics data (Fenyo et al., 2010).
Mass spectrometry data is stored along with sequence and experimental metadata. The
organisms stored in the GPMDB are Arabidopsis thaliana, Felis catus, Gallus gallus,
Ovis aries, Drosophila melanogaster, Canis lupus familiaris, Cavia porcellus, Equus
ferus caballus, Homo sapiens, Culicidae, Mus musculus, Oryctolagus cuniculus, Rat-
tus norvegicus, Oryza sativa, Schizosaccharomyces pombe, Saccharomyces cerevisiae,
Xenopus tropicalis and Danio rerio.

The PRIDE database developed at the NCBI allows for the collection of mass spectra,
peptide, and protein identifications, along with metadata (Martens et al., 2005). In con-
trast to the other databases mentioned, there is no editorial control or a unified method
for identification. Special features of PRIDE are the inclusion and mapping of biological
ontologies (OLS) and an approach to unify protein accession numbers (PICR).

The ProteomExchange consortium envisions a unified approach in the form of a cen-
tral mass spectrometry data repository by combining PRIDE, the Peptide Atlas, and
Tranche (Hermjakob and Apweiler, 2006).

ProteomicsDB is the latest effort to map the human proteome and catalogue identified
peptides by mass spectrometry (Wilhelm et al., 2014). The proteomic data resulted from
the identification of proteins corresponding to over 18,000 human genes. As of 2014, the
database covers 93% of the known human proteome. This resource gained significant
attention because it was developed using HANA, a remarkably fast in-memory database
system provided by SAP.

15



Chapter 1 Introduction

1.5 Combinatorial Optimization
Combinatorial optimization problems are found in hundreds of different real world and
academic applications. Finding the shortest routes in traffic, scheduling tasks, and the
optimal allocation of resources are only a few examples. All of these problems deal
with the curse of dimensionality, meaning that the number of feasible solutions increases
rapidly with the size of input data.

Many problems can be solved using O(nk) steps for an input of length n. These al-
gorithms are called polynomial, efficient, or good (Korte and Vygen, 2008). Fast poly-
nomial time algorithms have been developed for special cases, such as the shortest path
problem, the Euclidean minimum spanning tree, and the minimal assignment problem.

Some combinatorial problems are known to be NP complete. The interesting property
of this class of problems is that every NP-complete problem can be reformulated to any
other problem from that class. This means that if a fast algorithm is found to solve one
problem of this class, then every other problem in this class can be efficiently solved.

It is important to note that for the applications described in this thesis, 0-1 integer
linear programming has been shown to be NP-complete by Karp in 1972, among 21
combinatorial optimization problems (Karp, 1972). This particular technique is used
for several applications in this thesis. Heuristics, such as a scatter search, taboo search,
genetic algorithms, and other bio-inspired methods can find near-optimal solutions to
NP-complete problems.

1.5.1 Linear Programming

Linear programming is the most important optimization method used in operations re-
search today. It deals with the subject of solving problems of the form

max cT x (1.4)

subject to the constraints
Ax 6 b and x > 0 (1.5)

where x represents the vector of unknown variables, c and b are vectors of weights,
and A is a matrix. Each inequality describes a half-space in an n-dimensional space.
The intersection of all inequalities combined forms a convex polytope. While this form
seems very restrictive and inflexible, it has been shown that many relevant problems can
be formulated as linear programs. What is most intriguing about linear programming is
that there exist very efficient algorithms to solve very large problems.

Each linear program can be transformed to a slack form by transforming all inequali-
ties to equalities via the introduction of slack variables, e.g.

a1 jx1 + · · ·+ai jxi + · · ·+ai jxn 6 b j (1.6)
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is converted to

a1 jx1 + · · ·+ai jxi + · · ·+ai jxn + s j = b j (1.7)

In 1947, Georg Dantzig published the simplex algorithm. At present, this algorithm,
or improvements of it, is the most widely used algorithm to solve linear programs. In
graphical terms, the algorithm traverses the edges of the convex polytope, P, by moving
from the edge to a better neighboring edge. Since the polytope is convex, an optimal
solution has been reached when no adjacent edge represents a better solution than the
current one.

Simplex Phase I The first phase of the algorithm searches for a feasible starting solu-
tion. To achieve this, another linear program is solved first:

min∑
i

zi (1.8)

subject to the constraints
Ax+ z = b x,z > 0 . (1.9)

If this problem has a minimal solution with z = 0, then there must be at least one
solution x, that satisfies all constraints. This x is then the starting point for the second
phase. The minimal solution z to this helper problem is actually found by using Phase II.
This is not a paradox, as due to its construction, the problem always has a trivial starting
solution (x,z) = (0,b). In case no solution z = 0 is found, the initial problem cannot be
solved, because there is no vector x that would satisfy all initial constraints.

Simplex Phase II The second phase of the simplex algorithm essentially consists of
the iterative solution of a system of linear equations using Gaussian elimination.

For this, a simplex tableau of the form[
−cT 0

A b

]
is constructed. This structure is annotated as follows

nonbasis variables
x1 x2 . . .

−c −c1 −c2 0

ba
si

s

sa a11 a12 b1
sb a21 a22 b2
sc a31 a31 b3
. . .
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Figure 1.7: Illustration of the walk on the edges of polytope defined by the constraints in
phase II of the Simplex algorithm

Non-basis variables have value 0, whereas basis variables are non-zero. Each simplex
iteration consists of a pivot step, where a non-basis variable is introduced into the basis
and vice-versa. The numbers in the matrix are updated according to the following rules.

The pivot element is set to its reciprocal:

ars =
1

ars
.

The other elements in the pivot row are normalized accordingly:

ar j =
ar j

ars
, br =

br

ars
,

and the pivot column is divided by the pivot elements value:

ais =−
ais

ars
cs =−

cs

ars
.
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All other elements are updated according to these rules:

ai j = ai j−
aisar j

ars
c j = c j−

csar j

ars
bi = bi−

brais

ars
This leads to a new basis solution. While positive coefficients are found in c, the

solution can be improved.

Integer solutions Many combinatorial optimization problems are modeled using linear
programs by introducing constraints requiring that some or all variables must take integer
or binary values. This technique is named MILP (Mixed Integer Linear Programming).

By solving the ’relaxation’ of the problem, omitting the integer constraints, the sim-
plex algorithm finds an optimal integer solution only if the matrix A is totally unimodular.
A matrix is totally unimodular if each quadratic submatrix has determinant± 1. Surpris-
ingly, this applies to many A-matrices arising in combinatorial optimization problems
(Papadimitriou and Steiglitz, 1982), such as the incidence matrix of a bipartite graph
(Heller and Tompkins, 1956).

If A is not totally unimodular, then cutting-plane algorithms are applied. These meth-
ods iteratively add constraints to the linear program, which do not restrict any integer
feasible points, but they do sharpen the bounds of the solution space. This is repeated
until an integer solution is reached. The first proposed method to generate such con-
straints are Gomory Cuts (Gomory, 1958, 1963).

If a linear program with integer variables is solved, the final tableau will contain the
equations

xi +∑ai js j = bi , (1.10)

which include the non-basic slack variables s j, as introduced above.
Gomory proposed to construct a set of additional constraints using the fractional parts

of the coefficients ai j and bi.

xi +∑bai jc+(ai j−bai jc)s j = bbic+(bi−bbic) (1.11)

can be rearranged to this equation

xi +∑bai jcs j−bbic=+(bi−bbic)−∑(ai j−bai jc)s j (1.12)

with all integer parts on the left, and all fractional parts on the right side. The right-
hand side

(bi−bbic)−∑(ai j−bai jc)s j (1.13)

is less than 1 for all integer points of the solution. Because the left-hand side of (1.12)
is the integer, the inequality

(bi−bbic)−∑(ai j−bai jc)s j ≤ 0 (1.14)
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holds for all integer points in the feasible region. By introducing this new inequality,
no feasible integer point is excluded. In addition, the new constraint excludes the former
solution from the feasible region. As it is numerically instable to add lots of these cuts,
this technique is mostly used in a special type of branch-and-bound algorithm: Branch-
and-cut.

The branch-and-cut method starts from a relaxed version of the problem. If a solution
is found and it contains fractional values, which should be integers, cutting planes are
added. Then, the problem is branched into two subproblems, on a fractional variable xi.
One subproblem restricts xi ≤ bx′ic and the other xi ≥ dx′ie. This is recursively repeated
on the subproblems. Recursion is stopped if the solutions to the subproblems are infea-
sible or if the objective value is worse than an objective value of a previously observed
integer solution. Branch-and-cut methods have been proven to be very efficient and are
implemented in most present-day state-of-the-art solvers.

1.5.2 Greedy Algorithms
Greedy algorithms are heuristic methods that solve optimization problems by iteratively
constructing a solution. In each iteration, the solution is extended by the best local
choice. However, most greedy approaches fail to find the best solution (e.g. knapsack
problem, Travelling Salesman Problem (TSP1), etc.). The strategy is short-sighted and
uses only fractions of the available data to make its decision. That being said, in many
cases, greedy methods find fairly useful solutions very quickly and are therefore often
used in time-critical situations, such as network routing.

Well-known examples are Dijkstra’s algorithm for finding shortest paths and Kruskal’s
algorithm for the MSP on weighted graphs.

The class of problems for which greedy algorithms exist is best characterized by ma-
troid theory. A matroid is a mathematical structure defined as a set of sets with the
following properties.

• Property 1: The empty set is always in the matroid.

• Property 2: If a set is an element of the matroid, all subsets of the set also are.

• Property 3: If sets A and B are in the matroid and A has more elements than B, for
each element x in A but not B, there is also a set consisting of all elements in B
and x.

The union of all sets in the matroid is called the ground set. A basis is a set of maxi-
mum size, and is itself not a subset of any other element of the matroid.

The set of all feasible solutions and sub-solutions form a matroid. It can be shown
that the greedy algorithm always returns an optimal solution for this kind of problem in

1Travelling Salesman Problem: The optimization problem to find the shortest round-trip visiting all cities
in a list.
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a matroid (maximum-weight basis). This proof has been extended to the more general
class of greedoids, which do not satisfy matroid property 2. This allow feasible solutions
to contain non-feasible subsets. Finally Helman et al. the matroid embedding, a structure
which encompasses all problems solved by the greedy algorithm to optimality (Helman
et al., 1993).

However, many problems cannot be optimally solved by greedy algorithms, because
good solutions to local subproblems are often not optimal on the whole. The degree
to which this is true for specific problems determines how well the greedy approach
is suited as a heuristic. For many well-known optimization problems, approximation
bounds are known, which describe the effectiveness of greedy algorithms on them. For
the set covering problem, which will be introduced later in Chapter 4, the approximation
bound is

H(n) =
n

∑
k=1

1
k
≤ lnn+1 , (1.15)

where n is the size of the largest set (Lund et al., 2005). This is the best runtime /
approximation ratio for the set cover problem (Feige, 1998) in polynomial runtime. This
makes the greedy procedure a possible choice for an approximation in this case.

Large instances of the set covering have to be solved when selecting TXP antibodies
for proteome-wide coverage (Planatscher et al., 2010). Detailed comparisons and nu-
merical experiments using the greedy algorithm with integer programming formulations
can be found in Chapter 4.

1.5.3 Local Search Hybrid Approaches

Local search algorithms try to improve an existing feasible solution by changing one or
more elements of the solution. Given a valid, but not optimal tour for a TSP, a local
search could always switch two edges. If a shorter tour is found, then the solution is
kept. This method, called 2-opt, is iterated until no further improvement is achieved.
The Lin-Kernighan heuristic is a generalization of this procedure and is still considered
to be one of the most effective ways to produce near-optimal results for the TSP (Lin and
Kernighan, 1973).

It is in the nature of local search to get stuck in local optima, potentially leading to very
low-quality solutions. Meta-heuristic approaches, such as memetic algorithms, iterated
local search, variable neighborhood search, GRASP (Feo and Resende, 1995), and sim-
ulated annealing, combine global with local optimization algorithms to overcome this
problem. Each heuristic differs at which stage a local search is applied, if a problem
subset is optimized, and when the local search is stopped. While ILS simply initiates
multiple searches from different starting points, methods like simulated annealing al-
ternate to improve and distort the solution to escape local optima. The performance of
these approaches is limited by the construction of a smart neighborhood function that
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leads the search to good local optima. This is the case if the neighborhood function has
a consistent casual relationship with fitness improvement, such that the well-defined lo-
cal optima are described (Aarts and Lenstra, 2003). Other swarm-based heuristics have
been proven to be quite effective for some combinatorial optimization problems, e.g. ant
colony optimization for TSP (Dorigo and Gambardella, 1997).

In Chapter 5 a metaheuristic combining a greedy algorithm with an integer program-
ming based local search is used to solve very large instances of a linear Boolean opti-
mization with quadratic constraints (Planatscher et al., 2013a).

22



Chapter 2

The mathematical programming
framework SCPSolver
The SCPSolver library is a Java framework for solving various optimization problems
with a focus on linear and mixed-integer programming which has been developed by
the author. Although the library does not implement its own linear programming solver,
it offers a common interface for existing solvers, thus alleviating the complexity of an
individual solver implementation for the authors of linear optimization problems. This
makes it very easy to try different solvers on the same problem or to update solver com-
patibility with version changes.

On the other hand, a common interface for linear program solvers makes it easy for
solver programmers to provide the users with new implementations. All that is needed is
one wrapper class that translates between the interface requirements and the underlying
implementation structure.

The SCPSolver library is capable of automatically detecting available solvers in the
classpath and providing the user dynamically with requested solvers. Solvers thus can be
distributed in individual modules called solverpacks. If a developer wants to try another
solver, the required steps are reduced to downloading the solverpack and copying it into
the classpath. Solver developers can distribute solvers in a single module containing all
the necessary class files and libraries.

2.1 Framework design goals and decisions
Many solvers already support Java by providing their own Java interface. However, most
of these APIs are quite cumbersome to set up for the developer. Precompiled binaries,
if available, have to be placed in a given directory, other libraries have to already be
installed, and so on. Even worse, this is also required when the application is delivered
to the user or customer. We have identified the following shortcomings of existing Java
APIs for linear programming: problematic setup, APIs are not object-oriented or “Java-
like”, and missing platform- independence. Not all the shortcomings are common to all
solvers. For example, CPLEX offers quite a good API and its deployment is fairly easy.
However, SCPSolver is not an approach that yields a unified Java Middleware for linear
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Figure 2.1: SCPSolver layer schema

programming. The software Java ILP (http://javailp.sourceforge.net/) has similar aims
but does not tackle the deployment problems.

Consequently the design goals of SCPSolver are to provide a familiar API to a Java
developer, the automatic deployment of binaries on multiple platforms, the ability to
define large models, separation of the model from the solvers and to provide access to
multiple solvers by using a plugin concept.

2.1.1 Ease of use

Usability was the main design goal during the development of SCPSolver. Many com-
monly used solver interfaces are not object-oriented since they just expose native C func-
tions through the Java Native Interface. This makes the learning curve rather steep for
a Java developer who is used to a certain level of abstraction. Despite the fact that
SCPSolver uses object orientation and defines several interfaces, the API has a very
moderate level of complexity. A developer with basic knowledge of mathematical op-
timization will find terms directly in the class name (e.g., Solver, LinearProgram, Lin-
earBiggerThanEqualsConstraint) and methods where they are expected (for example the
addConstraint-method in the LinearProgram class).

The LinearProgram class is a basic description for a linear program. In ordinary pro-
duction usage, this class usually gets instanced first. Then all constraints and boundaries
are added and finally, a solver is instanced to solve the linear program.
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2.1 Framework design goals and decisions

2.1.2 Platform independence
Since most available solvers are implemented in C/C++ or Fortran, the compiled bina-
ries are specific to a platform (e.g., Windows, Linux, etc.) and an architecture (e.g., x86).
Java, however, is platform-independent, and Java Virtual Machines are available on all
major operating systems. The Java Native Interface already supports a certain level of
platform independence. The Java classes that call native code do not have to be recom-
piled as the platform changes. For instance, a Windows Dynamic Link Library (DLL)
and a Linux shared library can be distributed with the Java class, and the Java Virtual
Machine (JVM) will take care of loading the correct binary.

In order to bring the efficiency of existing solvers and the platform independence of
Java together, the concept of solverpacks was developed. A solverpack is a Jar-File
consisting of all Java class files needed by the solver and the native libraries for multiple
platforms.

The factory class SolverFactory uses the Service Provider Interface to find and load
available solver classes. Additionally, this class ensures that native libraries are available
on runtime and extracts the libraries from the solverpack if necessary.

2.1.3 Multi-solver platform
All linear program solvers in the SCPSolver library share a common interface: Lin-
earProgramSolver. After creating a new linear optimization problem, a user typically
requests a new solver from the solver factory and uses this solver to compute the solu-
tion. So a common call would look as follows:

LinearProgram lp; ...

LinearProgramSolver solver = SolverFactory.newDefault();

solver.solve(lp);

An alternative method could be that the user specifically asks for a certain solver:

LinearProgramSolver solver = SolverFactory.getSolver(’GLPK’);

Solverpacks for the following solver are available, including binaries for Windows,
Linux, and Mac Os X (see the compatibility matrix in table 2.1).

GLPK The GNU Linear Programming toolkit is a solver developed under the GNU
Public License. The solver implements the revised simplex and the primal-dual interior
point method for non-integer problems. Gomory’s integer cuts are used for the solution
of integer and mixed-integer problems.

CPLEX CPLEX is a commercial high-performance solver originally developed by
Robert E. Bixby. Since 2009, the software is owned and distributed by IBM. It is con-
sidered to be one of the fastest solvers on the market (http://plato.asu.edu/bench.html).
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Table 2.1: Solverpack compatibility matrix for x86 architectures. While the solver li-
braries should also work on other distributions/editions, the matrix contains
only the tested versions.

Platform/Solver GLPK LPSOLVE CPLEX
Windows XP, 7 32-bit 32-bit 32-/64-bit
Mac Os X 10.6 64-bit 64-bit 64-bit

Ubuntu 10.4 Linux, Scientific Linux 5 32-/64-bit 32-/64-bit 32-/64-bit

lpsolve lpsolve is an open-source solver originally developed at the Eindhoven Uni-
versity of Technology. This solver is based on the revised simplex method for linear
programs and branch-and-bound for mixed-integer linear programs.

The multi-solver platforms enable an open-source developer to use commercial solvers,
like CPLEX, keeping the possibility to publish the source of the model under a free li-
cense viable. Users who do not have a license can still solve a given model using an
open-source solver.

2.2 Problem modeling

SCPSolver supports problem modeling at two levels. On a lower level of abstraction,
the user employs common double arrays or a sparse vector data type in order to define a
model. It is also possible to use a higher level of abstraction that allows easier definition
of optimization problems.

2.2.1 Basic interface

If a developer wants to use mathematical programming in an existing project, it is im-
portant to make the model definition interface as easy as possible. If the programmer
has a basic understanding of linear optimization and Java, the API should reflect the con-
struction of a linear program in an object-oriented manner using familiar terminology.
In the low-level SCPSolver-API, the developer has to understand three basic classes and
interfaces: LinearProgram, LinearConstraint, and LinearProgramSolver.

The LinearProgram object is the representation of a linear program. Consider the
following example:

min5.0x1 +10x2 (2.1)

under constraints
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3.0x1 +1.0x2 ≥ 8.0 (2.2)
4.0x2 ≥ 4.0 (2.3)
2.0x1 ≥ 2.0 (2.4)

In the SCPSolver modeling API, this could be expressed as:

LinearProgram lp = new LinearProgram(new double[]{5.0,10.0});

lp.setMinProblem(true);

lp.addConstraint(

new LinearBiggerThanEqualsConstraint(new double[]{3.0,1.0}, 8.0, "c1")

);

lp.addConstraint(

new LinearBiggerThanEqualsConstraint(new double[]{0.0,4.0}, 4.0, "c2")

);

lp.addConstraint(

new LinearSmallerThanEqualsConstraint(new double[]{2.0,0.0}, 2.0, "c3")

);

Note that there are three different classes to express the constraints. This piece of code
is entirely transparent to a Java developer.

If large numbers of variables are needed and the constraints are sparse, meaning that
the majority of coefficients are equal to zero, a sparse matrix type can also be applied
to make better use of the available memory. The LinearProgram object holds methods
to set the data type of a variable to integer or Boolean, and can also set its optimization
direction. In addition, it is possible to export a model to the CPLEX format, which is a
de facto standard and can be read by most command-line solvers.

2.2.2 High-level interface
Like other modeling toolkits, SCPSolver supports a higher-level representation of math-
ematical programs. The key object for this modeling interface is the LPWizard.

The example problem defined in (2.1)-(2.4) can be modeled as:

LPWizard lpw = new LPWizard();

lpw.plus("x1",5.0).plus("x2",10.0);

lpw.addConstraint("c1",8,"<=").plus("x1",3.0).plus("x2",1.0);

lpw.addConstraint("c2",4,"<=").plus("x2",4.0);

lpw.addConstraint("c3", 2, ">=").plus("x1",2.0);

The high-level interface balances readability and rapid modeling. It allows the incre-
mental definition of a model. New variables can be added in each new term and each
variable has a unique identifier (’variable name’), which can be used in the modeling and
results analysis.

In mixed-integer programs it often occurs that all the variables within specific con-
straints have to be declared as integer or binary. In the high level this is relatively straight
forward:
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lpw.addConstraint("c2",4,"<=").plus("x2",4.0).setAllVariablesInteger();

lpw.addConstraint("c3", 2, ">=").plus("x1",2.0).setAllVariablesBoolean();

By exposing those methods directly on the objects defining a term, they are immediately
available through syntax completion in Java Integrated Development Environments (e.g.,
Eclipse, Netbeans, etc.). All information about specific constraints, which could be the
integration of an atomic principle or a rule in a mathematical model, is kept in one place
in the code.

2.2.3 Debugging of linear programs
A common problem when using linear programming is the process of finding errors
in complex models that lead to infeasibility. If a linear program, which should have a
solution, turns out to be infeasible, one or more constraints may be too restrictive or
even flawed. When this happens the common methodology is to relax the program by
deactivating the constraints. For the Java programmer this would mean commenting out
code that defines constraints in order to isolate the error source. This process is repeated
until the problem can be solved and the method is laborious if the model consists of
many constraints. The code has to be recompiled, calculations have to be started, and the
results must be evaluated. If a set of constraints leads to infeasibility, manual debugging
becomes impractical.

Consider a linear program min cxt ,∑Ax < b with a m× n constraint matrix A and a
m-vector b. Let C denote the set of resulting constraints {ax ≤ b}. If there exists an n-
vector x satisfying all inequalities in C, the system is feasible. If no such vector exists, the
system is infeasible. If there is a subset of constraints where S⊂C is feasible, it is called
a feasible subsystem. If the expansion of a feasible subsystem S′ = S

⋃
Aix≤ b ∈C by

only one constraint makes it infeasible, S is called a maximal feasible subsystem (MFS).
A maximum cardinality feasible subsystem is defined as:

SMCF = argmaxS⊆C{|S| | S is feasible} (2.5)

The identification of SMCF is itself an NP-hard optimization problem.
In mathematical programming, several techniques are known that can be used to detect

sets of infeasible constraints. A method called elastic programming adds slack variables
to all the constraints of an unsolvable system. The system is then solved by minimizing
the sum of all the slack variables.

min ∑
j=1

s j (2.6)

∑ai jxi + s j ≤ b j ∀1≤ j ≥ m (2.7)

∑s j ≥ 0 ∀1≤ j ≥ m (2.8)
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This minimal solution to this system can be interpreted as the smallest change needed
to be made to the boundaries in order make the constraint system feasible by only al-
lowing subtraction from the constraint vector b. Without a lower boundary, the problem
itself would be infeasible. The system

min ∑
j=1

s+j + s−j (2.9)

∑ai jxi + s+j − s−j ≤ b j ∀1≤ j ≥ m (2.10)

∑s+ j,s− j ≥ 0∀1 ≤ j ≥ m (2.11)

allows the adaptation of b in the negative and positive directions by using a trick that
is applied if absolute values are present in a linear program. A positive slack variable s+i
and a negative slack variable s−i are added to each constraint. While this could lead to
a smaller sum of modifications to the b-vector, it would be more useful for a developer
who is seeking the smallest number of constraints to be modified.

This can be achieved through the following extension:

min ∑
j=1

r j (2.12)

∑ai jxi + s j ≤ b j ∀ 1≤ j ≤ m (2.13)

∑ai jxi− s j ≤ b j ∀ 1≤ j ≤ m (2.14)

s j + r jmin j ≥ 0 ∀ 1≤ j ≤ m (2.15)

s j− r jmax j ≤ 0 ∀ 1≤ j ≤ m (2.16)

r j ∈ {0,1} ∀ 1≤ j ≤ m (2.17)

Here an additional binary variable r j is introduced for every constraint. min j and max j
represent the minimum and maximum change to be applied to b j, respectively. The
complete deactivation of a constraint would be equivalent to setting b j = ±∞. Because
infinite values are not usable in a linear program, and in order to keep some control
over the constraint violations, finite boundaries were introduced. The constraints (2.15)
and (2.16) are satisfied only in the cases where: s j = 0 , meaning constraint j remains
unchanged, or min j ≤ s j ≤ max j and r j = 1, meaning constraint j is changed.

r j indicates whether a constraint has been relaxed or not. The objective is set to min-
imize the sum of r j, or phrased in another way, to minimize the number of elastic con-
straints in the constraint set, in order to achieve feasibility.
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This method is implemented in SCPSolver using a simple graphical user interface
called the LPDebugger. By inserting

LPDebugger lpd = new LPDebugger(lp),

the LPDebugger graphical user interface will open when the statement is reached dur-
ing execution. The LPDebugger graphical user interface consists of a table listing all
the constraints in a status window. The developer can select which constraints should
be deactivated and then try to solve the linear program by clicking “solve”. A trial-and-
error protocol is recorded in the lower text box, logging which constraints have been
deactivated, the feasibility of the reduced program, and if applicable, the objective value.

Figure 2.2: LPDebugger screenshot. The developer can use the “deactivate ”minimum
infeasible constraints feature in order to find the maximal feasible subsystem.
In this case, the alternative formulation 2.12 - 2.17 is generated and solved.
The bound is set in the text field next to the button.

2.3 Conclusion
It this thesis alone SCPSolver has been used to create and solve optimization models for
at least six different applications in assay development. It has been made available to the
public 2013 on scpsolver.org. SCPSolver has been downloaded 2000 times since then.
Users from Germany, UK, USA, China, India and other countries have been in contact
with the author. Recently it has been used in a study by Yahoo Research to determine
tournament payout structures for daily fantasy sports (Musco et al., 2016).

It appears that the software has a small but solid user base, and it fulfills its initial
purpose: giving Java programmers an easy to use integer programming library with some
platform and solver independence.
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Chapter 3

Applications of combinatorial
optimization for immunoassays

During the development of biochemical assays several steps and processes need to be
planned and later implemented in the lab. This chapter focuses particularly on multi-
plex serological assays for the simultaneous measurement of antibody concentrations in
serum. We identified two problems that can be addressed using combinatorial optimiza-
tion. Both problems, the systematic reference sample generation and the selection of
samples for assay validation, originate from the lack of a synthetic reference sample in
the realm of serological assays. In the third section both approaches are combined to
find sample pools for validation experiments. The fourth problem deals with the ideal
placement of a sample on a planar assay chip, with the focus being to reduce bias. All
four problems have been solved using the SCPSolver library described in the previous
chapter. Please note: If not explicitly stated otherwise, the variables described in this
chapter assume binary values.

The first section following this introduction is based on the article ’Systematic refer-
ence sample generation for multiplexed serological assays’ (Planatscher et al., 2013b),
which was written by the author of this dissertation and his colleagues. Dr. Stefanie
Rimmele conducted the lab experiments and contributed equally to this work.

Multiplexed serological assays have been applied to characterize the response against
a variety of pathogens including Hepatitis B virus, Hepatitis C virus, Helicobacter py-
lori, Mycobacterium tuberculosis (Mtb) and influenza (Boni et al., 2013; Opalka et al.,
2010; Tong et al., 2005; Waterboer et al., 2005). In addition, proteome arrays have en-
abled the definition of reactive antigen sets for a variety of pathogens like Mtb (Kunnath-
Velayudhan et al., 2010), Plasmodium falciparum (Doolan et al., 2008), Human papil-
lomavirus (Luevano et al., 2010), Burkholderia pseudomallei (Felgner et al., 2009), and
Coxiella burnetii (Beare et al., 2008; Vigil et al., 2010, 2011). Arrays containing thou-
sands of recombinant human proteins were used in the discovery of antibodies directed
against self-antigens (Gnjatic et al., 2009; Hudson et al., 2007; Vizoso Pinto et al., 2010).
Serological assays are well established within the field of autoimmune diseases (Auger
et al., 2009; Kattah et al., 2006; Robinson et al., 2002). All of these serological assays
require quality-controlled sample testing procedures.
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3.1 Systematic reference sample generation for
multiplexed serological assays

Prior to implementation into diagnostics, appropriate assay validation has to be achieved.
FDA guidelines for the development of immunoassays state that sufficient quality control
samples should be used to ensure control of the assay (FDA, 2001). As a consequence,
such quality-controlled samples should be available for assay validation as well as for
large-scale screening and diagnostic purposes (Cummings et al., 2008). Quality control
samples are necessary within every assay to ensure that it performs within specifications
and the samples should be reviewed before interpretation of the results of individual
serum samples. The purpose of a quality control is to report that all experimental steps
were executed correctly in an assay experiment and to be able to compare data over a
longer period.

Reference samples for sandwich immunoassays targeting serum proteins can be easily
generated by spiking the target analytes into a plasma or serum matrix. However, any
serological assay is based on the presence of human antibodies specific for the selected
antigens. For singleplex assays it is usually sufficient to select a serum with strong re-
activity towards its respective antigen. However, identifying single sera with appropriate
reactivity against a multitude of different antigens, as is required for antigen arrays, has
been very difficult if not impossible in many cases. Moreover, using a single serum as
a quality control to cover all targeted antigens would mean that it would only be avail-
able in limited amounts and may thus confine test development, validation, and clinical
evaluation. A common, but surprisingly little-documented approach is to create pools
from multiple sera in order to warrant reactivity towards all target antigens and generate
a sufficiently large quality control stock (Cooley et al. (2008); Wong et al. (2004)). Here
we present a mathematical approach towards a sample pooling strategy, where the com-
position of such a pool was calculated from an available data set with the aim that this
pooled sample shows a positive response for each analyte. The threshold for a positive
signal is defined by a multiple of the negative control population. In our case, we chose
four times the negative control population. If a signal in the pool exceeds this threshold,
the analyte is covered.

The serological response of 142 serum samples obtained from patients with active
tuberculosis (TB) was analyzed using a bead array consisting of 71 TB proteins. The
serological response of these sera was heterogeneous, ranging from 2-69 TB-associated
proteins per serum sample. Out of the 142 sera, we found no serum reactive to all 71
antigens under investigation. Our mathematical approach identified sets of positive sera,
which could be pooled to generate a quality control serum to react with all 71 TB pro-
teins. This strategy allowed us to create defined reference samples, revealing a simulta-
neous serological response against all TB antigens employed in the assay. Appropriate
data sets of the serological response pattern against the targeted antigens for a set of
available samples provided the basis for our calculation. A mathematical model was de-

32



3.1 Systematic reference sample generation for multiplexed serological assays

Pool

Sa
m

pl
e 

a
Sa

m
pl

e 
b

Sa
m

pl
e 

c

Figure 3.1: The red lines represent an antigen-specific threshold. Samples A-C show individual
responses and none exceed all the thresholds. Through combination, a new pooled
sample with a positive response to all antigens is created.

veloped to predict the reactivity characteristics of a given sample pool. We hypothesized
that those values could be estimated from the quantitative serological response measured
for the individual samples. Our first assumption was that if samples are combined, their
assay signals would add up (see Figure 3.1). The second assumption was, that on average
assays show a dilution linearity with a slope of 1.0. A linear integer program was con-
structed from the model, screening data, and the threshold vector. The objective function
was to maximize the number of serum reactivities given a fixed number of serum sam-
ples from which the pool should be generated. The relative dilution of the sample pool
was kept identical to the dilution of the individual serum. Results of the optimization
approach revealed suggestions for the generation of optimal sample pools, differing in
composition and size.

The screening of a set of samples S1,S2, . . . ,Sn generated a data set M and m j(Si)

designates the MFI1 -signal for target j in sample Si . An important premise is that the
assays have a predominantly linear characteristic within the range of interest. If a pooled
sample P was created from samples Sk and Sl , the MFI would approximately add up

m j(P)≈ m j(Sk)+m j(Sl) (3.1)

1Medium Fluorescence Intensity
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Chapter 3 Applications of combinatorial optimization for immunoassays

If a sample is diluted using factor α ≤ 1, the MFI will exhibit a linear change:

αm j(P)≈ m j(α-dilutedP) (3.2)

We have created pools by subsequently adding samples (S1,S1 +S2,S1 +S2 +S3, . . . ).
The threshold for a positive signal is usually defined by a multiple of the mean intensities
measured in a negative control population. The threshold for target j is designated t j.
Furthermore, the decision variable xi describes whether the sample Si is included in the
pool or not. In algorithm 1 the number of samples is fixed to a maximum, and the number
of analytes covered by the resulting positive control PC pool is the target to be optimized.
By allowing integer values for xi, the constraint

n

∑
i=0

xi = Xmax (3.3)

fixes the number of parts a pool consists of to Xmax. E.g., a pool with Xmax = 5 could
consist of three parts S3 and two parts S7. The set of decision variables a1,a2, . . . ,am in-
dicate whether an analyte should be covered by the pool or not. By defining the coverage
as

n

∑
i=0

xim j(Si)≥ a jt j, 1≤ j ≤ m (3.4)

it is ensured that only if a j = 1 will the sum of MFIs have to exceed the threshold t j.
The term to maximize in this case is the number of covered analytes

max
m

∑
j=0

a j . (3.5)

Another constraint is that the resulting pool should have the same matrix dilution as was
used in the normal sample preparation. If the input samples have been measured in a 1:n
dilution resulting in values m j(Sl), the values need to be scaled accordingly to 1:n Xmax.
The upper bound for Xmax is defined by the limit of dilutional linearity. E.g., if the limit
is 1:2000 and the original dilution was 1:200, the maximum for Xmax would be 10.

For the verification of our theoretical results, the following experiments were per-
formed. In the first experiment the assumption of the additivity of the individual signal
values of the pooled samples was tested. A suspension bead array displaying the different
tuberculosis antigens was incubated with human serum samples.

Bound human immunoglobuline G (IgG) antibodies were detected with an R-PE-
labeled anti-human IgG. The read-out was performed on a fluorescence-based bead ar-
ray reader (Luminex FlexMAP3D). Sample pools were created by subsequently pooling
samples in the scheme S1, S1 + S2, S1 + S2 + S3, up to a pool consisting of six samples.

As shown in Figure 3.2 A-E, a strong correlation (R ≥ 0.957) was observed between
the values predicted from single sample screenings and the signal generated by the sam-
ple pool. The slope of the linear regression was 1.03 for the least complex pool and

34



3.1 Systematic reference sample generation for multiplexed serological assays

Algorithm 1: Sample pool optimization
Input: M,Xmaxupperbound
Output: list of protein pool recipes
while Xmax≤ Xmaxupperbound do

m̂ j(Sl) =
m j(Sl)

Xmax
solve ILP:

max
m

∑
j=0

a j

subject to
n

∑
i=0

(xim̂ j(Si)≥ a jt j|1≤ j ≤ m)

n

∑
i=0

xi=Xmax

a j ∈ {0,1}∀ j ∈ {1, ,m}
xi ∈ N0
Xmax = Xmax +1

end
return L

decreased to 0.7 for the pool containing up to six samples. This data supports our hy-
potheses about signal additivity. The observation that the signals generated by the pools
for a given antigen get stronger when the number of sera in the pool increased is notable
(Figure 3.2). A larger number of different paratopes for the same antigen originating
from individual sera could also explain this observation.

In a subsequent experiment, our algorithm was applied to find optimal pools for the
total panel of 71 TB antigens. Here a data set derived from 142 previously tested serum
samples was used as the input. The allowed range for dilution of a single sample within
the pool was 1:200 to 1:2000. Interestingly, we found that we had to consider the possi-
bility that the signal intensities of each individual serum added to the pool are “’ diluted”’
with the other sera during the pooling process (Figure 3.2). The final serum dilution of
the pool was set to 1:200, according to the standard dilution of our serological TB as-
say. An artificial cutoff for each TB antigen was calculated from the quadruple of the
values measured in the negative control sample. The algorithm suggested ten solutions
consisting of up to ten parts of up to four different samples. Thus, as expected, it was
not possible to cover all analytes by using a single sample or by pooling two individual
samples. Our algorithm suggested that pools consisting of at least three samples would
reveal a serological response to all TB antigens. The signals of the pool for all analytes
were higher than the defined threshold. The measured values correlate with the predicted
values with a correlation coefficient of 0.98 (see Figure 3.3 A). The correlation between
the pool and the three single samples is comparatively low, as shown in Figures 3.3 B-D.
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Figure 3.2: The graphs show the strong correlation between the predicted and measured results,
although the linear slope is 0.7 for the most complex pool (E). (A) Correlation of
prediction and measurement for pool S1 + S2 (B) pool S1 + S2 + S3 (C) pool S1 +
S2 + S3 + S4 (D) pool S1 + S2 + S3 + S4 + S5 (E) pool S1 + S2 + S3 + S4 + S5 +
S6.

This shows that no sample stands out in the pool and that the signal pattern is the result
of the composition of all three samples.

We have created a technical quality control for multiplexed antigen assays to make sure
that all antigens used in the assay have not lost their antigenicity and that all technical
steps are executed correctly. With this mathematical model, we can create quality control
samples for roughly 60,000 samples from only 1.5 mL of three pooled serum samples.
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Figure 3.3: While (A) the correlation between the sample pool and the predicted values (a
weighted sum of single sample values) is high, the single samples (BD) show weaker
correlation with the pool. This data shows that the unique coverage characteristic of
the serum pool is due to the combination of the three samples.

We also created a second pool consisting of four samples (10 parts; 5 parts sample 1, 3
parts sample 2, 1 part sample 3 and 4) with a correlation coefficient of 0.9 between the
predicted and observed MFI values (data not shown). Once the first pool is running out,
one can easily create a second pool consisting of different samples. Our results demon-
strate that our mathematical model for sample pools makes adequate predictions. We
demonstrated that quality controls for multiplex antigen assays can be created through
the systematic selection and pooling of samples. Our systematic approach is scalable and
can be easily adapted to other assay platforms. We believe that our method provides an
important tool for diagnostic assay development and test evaluation.

3.2 Selection of samples for validation experiments
For serological assay validation it must be shown that the low, medium, and high levels
can be reliably measured. Reference samples cannot be easily obtained in the realm of
serological assays, because the target analyte cannot be synthesized. The only correct
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Chapter 3 Applications of combinatorial optimization for immunoassays

way to validate such an assay is to measure a patient sample with low, a second sample
with medium, and yet another one with a high level of the antibody. Of course each data
point needs to be taken in multiple replicates on different days, and even with a varying
number of freeze-thaw cycles in order to prove assay stability and real-world condi-
tions. For multiplex serological assays, a whole assay panel needs to be validated. Every

! You must show that low, medium and high amounts can be reproducibly measured 

 
 

!  The analyte cannot be synthetized, you have to use scarce samples 

The problem with validation of multiplexed 
serological assay 

2 

low$intensity$

medium$intensity$

high$intensity$

si
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  1 
samples 

  2   3 

for each analyte!  

Figure 3.4: Validation requires proof that low, medium, and high levels can be reliably measured

biomarker needs to be validated on its own, so the validation step would include running
the multiplex assay on three suitable samples for each analyte in the panel. Considering
the replicate, interday, and stability check as multiplicators, the number of required ex-
periments can quickly exceed a manageable size. If it is possible to choose a few samples
such that the combination of their profiles would cover low, medium, and high for most
analytes, validation cost and effort can be reduced.

The method described in this section has been presented as a poster at HUPO 2014
Madrid2.

From the perspective of optimization, this is a set-covering problem. Select a mini-
mum number of sera such that for each analyte a low, medium, and high resolution data
point can be measured.

min∑si (3.6)

subject to

∑siai jk ≥ 1 (3.7)

2Optimal selection of samples for multiplex serological assay validation. Authors: Hannes Planatscher,
Angela Filomena, Oliver Poetz, Thomas O. Joos, Nicole Schneiderhan-Marra
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Figure 3.5: Selection of samples to cover a maximum of different ranges in validation
experiments

with

ai jk =

{
1 lb jk ≤ Si j ≤ hb jk

0 otherwise
(3.8)

If there is a budget constraint, the problem can be stated as: “Choosing a fixed number
of samples n, maximize the number of low, medium, and high level ranges for different
analytes selected for validation. ”By introducing new decision variables c jk, which in-
dicate whether an analyte range is selected (c jk = 1) or not (c jk = 0), we can write the
objective function as follows:

max∑
j
∑
k

c jk (3.9)

subject to the constraint that if range k of analyte j is subject to validation (c jk = 1),
at least one suitable sample si should be selected:

∑
i

siai jk ≥ c jk (3.10)

and the budget constraint to limit the number of samples to n is

∑
i

si ≤ n (3.11)
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Chapter 3 Applications of combinatorial optimization for immunoassays

This formulation, however, leads to solutions that maximize the number of ranges but
not the number of fully validated analytes (the low, medium, and high ranges covered).
This is achieved through the following formulation. Maximize the number of covered
targets

max∑
j

t j (3.12)

subject to the constraint to validate all l ranges for each selected target (t j = 1)

∑
k

c jk = lt j (3.13)

and subject to the constraints (3.10) and (3.11).
This method can be further refined by allowing the scheduling of multiple validation

rounds, as illustrated in figure 3.5. In each round, a maximum of n samples can be
screened. Each round validates all ranges for a number of analytes. It does not count if
the midrange is validated in one round and the high range in another. The total number
of analytes treated over all rounds is maximized.

Maximize the number of targets:

max∑
j

t j (3.14)

If a target analyte is selected (t j = 1), it must be scheduled for validation in at least
one round

∑
j

r jl ≥ t j (3.15)

In each round a maximum of smax samples is analyzed:

∑
i

si j ≤ smax (3.16)

If an analyte is selected to be validated in a specific round (ri j = 1), all ranges of this
analyte need to be covered:

∑
k

cikl = lril (3.17)

If a range k of a specific analyte j needs to be covered in round l, at least one suitable
sample i needs to be included in this screening round:

∑
i

si jai jk ≥ c jkl (3.18)
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3.3 Generation and selection of sample pools for validation experiments

3.3 Generation and selection of sample pools for
validation experiments

In this approach the methods from 3.1 and 3.2 are combined to validate a multiplexed
serological assay using a number of pooled samples.

First a side note on how pooled samples should be made, depending on the type of
serotest: IgG or IgA. These are different types of antibodies which can be measured in
serological assays. For type G immunoglobulines (IgG) the concentration of the pooled
sample must remain constant, meaning that pooled sample must be diluted in exactly the
same way as the single sample in the preceding experiments. This is due to the high
concentrations of IgG in plasma. These high amounts of free IgG can lead to matrix
effects, distorting the signal. In this case the samples signal Sit is diluted in the pool, and

the signal contributing to the pool must be corrected accordingly: Ŝit =
Sit

q
.

Other immunoglobuline subclasses as type A (IgA) and dimeric type A (dIgA) are far
less abundant in the serum. If the assay panel is aimed at these binders such corrections
are not necessary because the matrix effect is deemed negligible, thus Ŝit = Sit .

Sample pooling increases the number of serological patterns exponentially. This makes
it much more likely to find a combination of patterns that allows the validation of the ob-
served targets. The number of different serological patterns, given that n samples are

available and k different samples are pooled is
(

n
k

)
. E.g. 100 samples can be combined

to about 75 million different pools of 5, and more than 17 trillion pools of 10 samples. If
pools are allowed to include varying numbers of parts (amounts) from different samples
the combinatorial richness is even greater, as it these are multisets. A multiset is defined
like a set, but is allowed to contain repeated elements (Knuth, 1970), e.g. {a,a,a,b,b,c}.

The multiset coefficient
((

n
k

))
is the number of multisets of cardinality k with elements

for a finite set of cardinality n. The notation bears resemblance to the more widely known
binomial coefficient, which calculates the number of distinct sub-sets of a fixed size from
a larger finite superset.

The multiset number is calculated as follows:

((
n
k

))
=

(
n+ k−1

k

)
=

(n+ k−1)!
k!(n−1)!

=
n(n+1)(n+2) · · ·(n+ k−1)

k!
(3.19)

This allows combining 100 samples to 48 trillion pools consisting of a maximum of 10
parts, almost tripling the pooling potential - but also the search space. The formulation
of the linear program is as follows. Maximize the number of target ranges selected for
validation (Vtr = 1):

max ∑
r∈R

∑
t∈T

Vtr (3.20)
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with R = {low,medium,high} (ranges) and T = {t1, t2, . . . , tm} (targets). If a target-range
is selected for validation at least one pool must cover that range (Cptr = 1).

∑
p∈P

Cptr ≥Vtr (3.21)

To cover a target-range the predicted signal in the pool must be in the defined interval
[ltr,Htr].

n

∑
i=0

Ŝitapi +M(1−Cptr)≥ ltr (3.22)

n

∑
i=0

Ŝitapi−M(1−Cptr)≤ htr (3.23)

A pool contains exactly q parts:

n

∑
i=0

api = q (3.24)

The variable api defines if sample i is part of pool number p. M is a sufficiently
large number, which is added to the left hand side if the constraint should be inactive,
specifically when the respective level is not selected for validation. This ”Big M” trick is
widely used to implement such conditional constraints in linear programs. The number
of parts q and the number of pools to be composed are parametrizable, and will influence
the outcome. The larger these parameters are set the more likely a good solution can be
found, but also the more complicated and expensive the validation experiment is.

Unfortunately it turned out that even industrial strength solvers could not find good
solutions using this formulation. This is probably due to the enormous search space.
E.g. if we search for 3 pools, each composed of 10 parts chosen from 100 samples, the

size of the search space is
(((100

10

))
3

)
which is approximately 1.7× 1040. This makes

a search space reduction unavoidable. The following properties of the problem could
be exploited. Even if in theory the variety of different serological profiles is huge, the
number of distinct ’binary’ coverage patterns is limited. If the pools of given size could
be enumerated efficiently, and the set of candidate pools limited to only distinct coverage
patterns, the search is significantly reduced. Another logical property is that coverage
patterns with low cardinality (the number of coverage ranges covered by that profile) are
not interesting, if the goal is to combine them to achieve maximum coverage. Therefore
a minimum cardinality parameter was introduced. This parameter is quite important as
it is a way to expand or shrink the search-space easily. Algorithm 2 describes how the
enumeration was implemented. It is crucial that the check if a binary profile is already a
member of the result set, happens in constant time. This can be achieved using a hash-
type data-structure.
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3.4 Placement of samples in a planar array

Algorithm 2: Recursive multiset enumeration in the pooling algorithm
enum(d,p,dmax,mcard,idx,pro f ,recipe,samples,pset)
pronew← pro f ile+ p× samples [idx] recipenew← recipe∪ (p, idx) if (d = dmax)
then

binarypro f ← getBinaryPro f ile(pro fnew,bounds) if
(binarypro f /∈ pset)∧ (card(binarypro f )≥ mcard) then

pset← pset ∪{(recipenew,binarypro f )}
end
else

for i← idx+1 to |samples| do
for p′← 1 to dmax− p do

enum(d + p′,p′,dmax,mcard,i,pro fnew,recipenew,sample,pset)
end

end
end

end

After enumeration the set of distinct cover profiles is transformed into a set-covering
problem (see Chapter 4) which can be solved very efficiently using ILP solvers.

A sample benchmark experiment to test the algorithm was conducted on a real dataset
from 39 sample for a multiplex assay for 25 analytes. At first the solution for maximum
coverage using 3 un-pooled samples was calculated. Here the optimal solution covered
51 of 75 ranges (68%). If sample pooling with a maximum of 2 parts per pool was
enabled, 64 of 75 (90 %) could be covered. If 3 parts per pool were allowed, 69 of 75 (92
%) ranges were covered by the solution. A further increase of the pooling parts did not
improve the results. Calculations on this very small toy problem were extremely fast, and
took only a few seconds using the enumeration heuristic and the SCPSolver framework
with the CPLEX solver as a back-end.

3.4 Placement of samples in a planar array
In order to avoid crosstalk on reverse phase protein microarrays, it is desirable to arrange
the probes so that the bias is minimal. The resulting constraint satisfaction problem is
difficult to solve even for small instances.

Reverse phase protein microarrays (RPMAs) are used to measure protein expression
levels in the samples. The samples are immobilized on individual spots on a chip. The
chip is then incubated with a specific antibody to detect a protein in the individual sam-
ples. The detection is then performed using a luminescence read-out. A chip can hold
hundreds of samples or replicates. A common issue when designing protein microarrays
is the need to avoid side-effects during read-out. It is likely that the intensity measured on
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Figure 3.6: Results of the sample pool validation algorithm using different numbers
of parts on a dataset with 25 analytes and 39 samples (search space size
1,798,732,635,700). Uncovered ranges are marked in red, covered ranges
are marked green. This example shows that coverage improves by allowing
sample pooling up to 3-part pools.

one spot is influenced by its neighboring spots. Therefore it is desirable to avoid placing
replicates of the sample twice or more often in the same neighborhood if such a situation
can be avoided.

The resulting combinatorial design problem is related to graph coloring. Every spot
on the array is a vertex in a graph, and is connected to another vertex by an edge in that
graph if (and only if), the spot corresponding to that vertex is adjacent to a common spot.
A color is assigned to each sample, and an additional color (e.g. black) is defined as ’no
sample’. The coloring of the resulting graph, given the additional constraints that each
color must be used a specific number of times (number of replicates) - except the color
designating an empty spot.

Similar problems have also been observed and studied for cDNA microarrays. How-
ever the algorithms are not directly transferable to RPMAs because some challenges
resulting from the genechip on-spot synthesization do not apply.

We define the sample arrangement problem as follows: Given an array of m rows and
n columns, place l replicates of k samples such that no replicate of the same sample is
adjacently placed twice or more often in relation to another spot. We define the spots
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Figure 3.7: This schema depicts neighborhoods in sample placement on protein chips.
Different samples must be placed in fields a2,b1,c2 and b3. If diagonal neigh-
bourhoods are respected fields c3,c4,c5,d3,d5,e3,e4 and e5 must be spotted
with different samples.

to the left, right, top, and bottom of the spot to be neighbors in the simpler variant, and
include the diagonally adjacent in the tougher variant of the problem. Of course the first
problem requires at least five different samples and the second at least nine, to be feasible
if no empty positions are allowed.

In order to provide solutions to this practical problem in the lab, we have developed the
small application ProChOpt, which can be easily used to solve the sample arrangement
problem up to medium- or large-sized problems, depending on the applied Integer Linear
Programming (ILP ) solver package. For the SAP sample placement problem with m
rows, n columns, k samples and l replicates, a corresponding ILP can be formulated.
Given a binary variable xki j, which indicates whether a sample of type k should be placed
on the coordinates row i, column j, the following constraints are defined.

The constraint to occupy one spot with one sample type only:

∑
k

xki j ≤ 1 (3.25)

The constraints that each sample should occur only once in a neighborhood:

xki j + xk(i±1) j + xki( j±1) ≤ 1 (3.26)

or the constraints that each sample should occur only once in a neighborhood including
diagonals:

xki j + xk(i±1) j + xki( j±1)+ xk(i±1)( j±1) ≤ 1 (3.27)
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Figure 3.8: Screenshot of the ProChOpt User Interface. The user simply sets the num-
ber of columns, rows, samples, replicates and if diagonals should must be
considered. The solution is presented as a table (upper part) and as a figure
(lower part).
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3.4 Placement of samples in a planar array

Each sample should be placed in l replicates:

∑
i

∑
j

xki j = l (3.28)

This formulation has mnk binary variables and 3mnk+ k constraints. The integer linear
program has been implemented using SCPSolver.

We have also developed a straightforward graphical user interface (Figure 3.8). The
parameters number of rows, number of columns, number of samples, and number of
replicates are set by the user. With one click the ILP is constructed, solved, and then
displayed to the user. If multiple solutions are needed, e.g., for randomization, the button
can be pressed repeatedly. If a solution is found, a new constraint is added to make sure
subsequent solutions are different.

For quadragonal layouts and nine or more different samples, trivial solutions to this
problem exist:

However, layouts with sample numbers lower than nine including empty spots are
more difficult; they can be solved using the described approach. Of course problems
of these type can only be solved by introducing empty spots on the quadragonal layout,
because each spot has up to nine neighbors. Empty spots are placed on certain positions
to avoid the, else unavoidable, multiple placement of a same sample in the direct neigh-
borhood of one spot (9 neighbors - less than 9 samples). We have solved the problem
for 5x5,5x6,... up to 10x10-grid, and tried to find layout to place a maximum number of
replicates for 8 and 7 different samples. The results are shown in tables 3.1 and 3.2.

Results show that some grid sizes are comparatively inefficient. For example in a 5x7-
grid only 69 % of the available spots can be used if 8 samples are spotted. The same
number of replicates can be spotted on a 5x5-grid where in contrast 96 % of the cells are
used. This is the resulting layout, showing a distinctive pattern, all replicates of the same
sample are repeated in the shape of an asymmetrical ’T’:
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Table 3.1: This table shows the maximum number of replicates of 8 different samples
that can be placed on a quadragonal layout of a given size. The percentage in
parentheses is the share of occupied cells of the grid (e.g. 3 replicates times 8
replicates occupy 24 of 25 cells on a 5x5 layout = 96 %)

#rows/#columns 5 6 7 8 9 10
5 3 (96 %) 3 (80 %) 3 (69 %) 4 (80 %) 5 (89 %) 5 (80 %)
6 4 (89 %) 4 (76 %) 5 (83 %) 6 (89 %) 6 (80 %)
7 5 (82 %) 6 (86 %) 7 (89 %) 7 (80 %)
8 7 (87 %) 8 (89 %) 9 (90 %)
9 9 (89 %) 10 (89 %)

10 11 (88 %)

Table 3.2: This table shows the maximum number of replicates of 7 different samples
that can be placed on a quadragonal layout of a given size.

#rows/#columns 5 6 7 8 9 10
5 3 (84 %) 3 (70 %) 4 (80 %) 5 (87 %) 5 (78 %) 6 (84 %)
6 4 (78 %) 4 (67 %) 5 (73 %) 6 (78 %) 6 (70 %)
7 5 (71 %) 6 (75 %) 7 (78 %) 8 (80 %)
8 7 (77 %) 8 (78 %) 9 (79 %)
9 9 (78 %) 10 (78 %)

10 11 (77 %)

This solution to this problem instance, which is probably a singularity, is non-trivial
and the lab scientist may not have arrived at it very easily. Here the constraint pro-
gramming formulation implemented in ProChOpt was able provide an answer, also on
the question if it is at all feasible to place a number of replicates on a predefined grid,
respecting the layout restrictions, or not.
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Chapter 4

Optimization for immunoaffinity-MS

The contents of this chapter were published as an article titled ’Optimal selection of
epitopes for TXP-immunoaffinity mass spectrometry’ (Planatscher et al., 2010).

As the lab proof of concept for TXP proteomics has been shown, the question arose
which epitopes should be targeted to cover a large set of proteins with minimal effort
based on prior knowledge of a proteome sequence. A method to select and optimize
TXP-antigens, the short common terminal sequences (epitopes), is presented to cover
a given set of target proteins. This leads to a substantial reduction of antibodies to be
generated for a proteome wide immunoaffinity-MS approach. An in-silico digest of a
fully elucidated target proteome is filtered to eliminate those peptides with undesirable
properties or epitopes. The problem of selecting the minimal set of TXP-antigens is
equivalent to the set cover problem. A greedy algorithm and a boolean programming
approach is applied. These methods are extended to enhance the multiple coverage of
the protein targets for a better experimental design.

4.1 Complexity reduction through a filter pipeline

Starting from a proteome dataset (e.g. UniProt or IPI) that is defined as the background,
an in-silico tryptic digest is obtained. It is assumed that the background dataset holds
information about all proteins found in the to be studied sample.

Peptides must have certain properties to be detectable by a read-out method. The
mass of the peptide has to be known and, in addition, mass-spectrometers have limits
in resolution and mass range. Instead of including these limitations in optimization-
constraints, a filter pipeline is applied where peptides and epitopes, which do not match
the criteria, are removed.

Here, the digest of a proteome P is defined by a set of pairs D(P) = {(Pi, p j)}, where
p j is the j-th peptide in protein Pi. pi = a1a2 . . .an is an amino acid sequence composed
of the single letter amino acid alphabet. We define a peptide-antibody-combination as a
quadruple labelled ptl

i j:

ptl
i j ≡ (Pi, p j, t, l)|t ∈ {n,c}; l > 1 . (4.1)
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Donnerstag, 15. Juli 2010Figure 4.1: The filter pipeline removes peptides and epitopes with undesired properties,
e.g. the property that two or more peptides with the same terminal sequence
have a very similar mass.

Here, l defines the length of the epitope and t describes whether the terminus is n- or
c-terminal. The set

Call =C(D(P),T, lmin, lmax) = {ptl
i j} (4.2)

with

(Pi, p j) ∈ D(P) (4.3)

l ∈ {lmin, . . . , lmax};T ∈ ({n,c}) (4.4)

contains all combinations for a given proteome, length range and termini. This combi-
nation set is the raw start input for the filter pipeline. The quadruple is not needed for
every filter, but for reasons of formal continuity we use the definition through the whole
specification of the pipeline.

Knowing the weight of captured peptides is essential for the mass spectrometry read-
out. Therefore, the unknown positions filter removes peptides containing unknown posi-
tions (symbol X), as their weight cannot be calculated.

The methionine filter removes combinations with epitopes containing methionine (sym-
bol M), since chemical modifications of methionine may hamper the recognition of the
target epitope by a binding molecule, especially by an antibody.
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4.1 Complexity reduction through a filter pipeline

The high abundant epitope filter removes combinations with epitopes which would
capture a large number of peptides. An antibody affine to such an epitope would be
cluttered, and therefore be rather insensitive. We define a subset Ce ⊂C which contains
all combinations ptl

i j ∈C where epitope(ptl
i j) = e. If |Ce| is bigger than 600, the epitope

e would not be considered for optimization.
The weight filter removes combinations which share the same terminus and have al-

most the same weight. These peptides can not be measured with standard mass spec-
trometry read-out, because the resulting peaks would overlap in the spectrum. A reason-
able value for ∆min is 2-10 Da for MALDI-TOF-spectrometers. In this filter, rather than
excluding the terminus from the optimization only the almost isobaric peptides are not
counted as identifiable by combining the specific epitope and mass information. For ex-
ample the peptides AYEQLGYR and HLEILGYR could not be discriminated in a mass
spectrum of a probe enriched with an antibody affine to the epitope LGYR, because
the masses only differ by 1.068 Da, if the resolution of the mass spectrometer does not
provide the adequate resolution.

The length filter removes combinations which do not fit in the detection range of the
mass spectrometer. The detection range depends on the technical specifications of the
mass-spectrometer, but a range from 8-30 amino acids is a good rule of thumb.

Some proteins occur with great abundance in the sample, such as actin or tubulin.
Terminal epitopes of peptides from these proteins are unsuitable as epitopes for im-
munoaffinity experiments for the same reasons explained in the high abundant epitope
filter. In this last filter step an epitope stop list, generated from a hand curated list of
high-abundant proteins, is used to remove those from the list of combinations.

As shown in figure 4.1, filters are usually applied in a specific order. While the me-
thionine, unknown positions, high abundant protein filters can be applied at any position
in the pipeline, other filters are order-dependent. This is the case if a filter evaluates the
expected peptide distribution Ce of an epitope e. These filters cannot be preceded by
filters that change those distributions. The high abundant epitope filter must precede the
weight filter, which must precede the length filter.

Through the application of this filter pipeline the preselection of epitopes is adjusted
to the experimental setup and the problem dimension is significantly reduced.

The influence of the filters is shown in Table 4.1. While the unknown-positions-filter
and the methionine-filter have a relatively small impact, the high abundant epitope filter
and the weight filter remove a large number of combinations. The weight filters reduce
the number of combinations by about 43 %, while the number of epitopes is only reduced
by 3 %. The filter removes combinations from the set, which cannot contribute to the
coverage (overlapping peaks). Still the corresponding antibody can capture peptides that
are detectable by the mass spectrometer.

Some antibodies (’robinson antibodies’) capture only one peptide from one protein.
If there is an antibody that captures more peptides from the same protein and others, it
is always better to choose this one over the ’robinson antibody’. Therefore all robinson
antibodies are removed before the optimization starts.
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Table 4.1: Impact of the different filters applied to the in-silico tryptic digest of the hu-
man proteome (UniProt taxon id 9606), N-C-terminal epitopes of length 4 and
5, ∆min = 4, l f ilter

min = 6, l f ilter
max = 30

Filter # epitopes # proteins # combinations
unfiltered 671,427 20,333 4,196,636
unknown positions filter 671,253 20,333 4,195,788
methionine filter 569,365 20,332 3,839,772
high abundant epitope filter 569,354 20,332 3,312,617
weight filter 559,323 20,178 1,962,034
length filter 530,863 20,020 1,662,437
high abundant protein filter 527,164 20,010 1,598,289

4.2 Protein set cover problem formulation
The bipartite graph G = (P∪A,E) is constructed by adding proteins and epitopes as
vertices, and by connecting a protein node from the protein set P and an epitope node
from the epitope set A if a combination appears in the filtered set:

G = (P∪A,E) (4.5)

E = {(e,Pi)|ptl
i j ∈C∧ epitope(ptl

i j) = e} (4.6)

The problem is to select a minimal set of antibodies Amin ⊂ A so that every protein in
P is covered by at least one epitope. The minimum set cover is a classical problem in
computer science and complexity theory. The set cover can be formulated as a decision
problem, where the question is asked, if a covering set of size k or less exists. This
problem was shown to be NP-complete and achieving approximation ratios is no easier
than computing optimal solutions (Arora, 1998). The optimization version where the
smallest covering set has to be found is NP-hard. It was shown that a greedy algorithm
has an approximation ratio of

H(n) =
n

∑
k=1

1
k
≤ lnn+1, (4.7)

where n is the size of the largest set (Lund and Yannakakis, 1994).
This the best approximation ratio for the set cover problem (Feige, 1998). In this

algorithm (see Algorithm 3) in each step the epitope in A covering the most yet uncovered
proteins in P, is added to the solution set L, until all proteins are covered.

Another approach to the solution of the set cover problem is to formulate it as a binary
linear program. The binary decision variables sa reflect the inclusion of an epitope a to
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4.2 Protein set cover problem formulation

Algorithm 3: The greedy set cover algorithm
Input: bipartite epitope-protein graph G(P∪A,E)
Output: set of epitopes L
Pcov = /0;
L = /0;
while P\Pcov 6= /0 do

foreach a ∈ A\L do
//calculate how many new proteins are covered by the epitope a
score(a) = |{(a, p) ∈ E|p /∈ Pcov}|;

end
//select the epitope a with the highest score
as = argmax

a
score(a);

L = L∪{as};
Pcov = Pcov∪{p | (as, p) ∈ E};
//remove the covered proteins from the graph
G = G((A∪P)\ (Pcov∪L),E \{(as,P) ∈ E});

end
return L

the solution set. The number of the selected epitopes forms the objective function:

min ∑
a∈A

sa (4.8)

A = {a|∃a = epitope(ptl
i j); ptl

i j ∈C} (4.9)

sa ∈ {0,1} (4.10)

The linear program is subject to the constraint that every protein P has to be covered by
one or more epitopes in the solution:

∑
a∈A

cov(ptl
i j,a)sa ≥ 1∀Pi ∈ P (4.11)

cov(ptl
i j,a) =

{
1 a = epitope(ptl

i j)

0 otherwise
(4.12)

This program can be solved with available solvers such as CPLEX or GLPK. This will
lead to optimal solutions, if the problem dimension is small.

To enhance the accuracy of the proteomics experiments, it would be beneficial to cap-
ture the same or multiple peptides from a protein by different binders. In addition it is
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beneficial to include alternative binders in the experimental planning, in case the gener-
ation of a binder affine to a specific epitope fails.

The multicovering problem (MCP) is a generalization of the set covering problem.
Several algorithms have been proposed by Dobson (1982) , Nicholas G. Hall (1992) and
Rajagopalan and Vazirani (1993). Those heuristics would solve the problem of covering
each protein twice or more. As it would be cost-prohibitive to double the number of
binders, it is not possible to cover all target proteins more than once. This is the case
at least for proteins that are covered by a very specific epitope. The following approach
solves the pragmatic variant of the problem.

The greedy algorithm can be modified to enhance the probability of the selection of
an epitope set that meets the multicoverage requirement for the target proteins. In this
variant (see appendix) the scoring function combines two different optimization targets,
minimality and redundancy, by summation to a one-dimensional multiobjective fitness
function.

The function is a weighted sum of the number of proteins which are not yet covered

ncov(a) = |{(a, p) ∈ E|p /∈ Pcov}| , (4.13)

and the number of proteins which are covered again by this antibody

nmcov(a) = |{(a, p) ∈ E|p ∈ Pcov}| . (4.14)

E denotes the edge set in the bipartite graph and Pcov the set of already covered pro-
teins. The influence of new and already covered proteins on the overall score of an
epitope is weighted by the parameters smcov and scov:

score(a) = ncov(a) · scov +nmcov(a) · smcov (4.15)

As the original version, the algorithm terminates with a total number of epitopes lower
or equal as the number targets, because every added epitope is required to cover at least
one new target protein.

The choice of the parameters smcov and scov has a high impact on the results, and de-
pends heavily on the size of the dataset. The number of epitopes with high capacity is
considerably lower in small datasets than in large datasets. Because of this the probabil-
ity that a protein can be covered more than once by different high capacity epitopes is
small. In large datasets the situation is the opposite. As many epitopes have a very large
capacity, and possibly cover up to a few hundred peptides from many different proteins,
it is more probable that the sets of captured proteins overlap. In this configuration it is
better to score innovation over redundancy. While this is intuitively clear, it would be
a big effort to determine the best values analytically. For large datasets smcov should be
chosen smaller than scov, for small datasets smcov > scov.

Multiple coverage can be integrated to the Integer Program formulation by changing
the coverage constraints to

∑
a∈A

cov(ptl
i j,a)sa ≥ 2 (4.16)
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for all proteins that can be covered at least twice. However this will lead to inclusion of
elongated, already selected, epitopes (e.g. IER and EIER), to satisfy the double coverage
constraints.

This formulation requires that all proteins are multiply covered by the solution. A
better formulation reads as follows: Maximize the number of multiply covered proteins
in a valid covering of all proteins, by using a fixed number of epitopes. The objective
function maximizes the number of proteins which are multi-covered.

max
m

∑
i=1

Si (4.17)

If the binary variable Si is set to one, protein i has to be covered at least twice. This is
guaranteed by using the following constraint:

∑
a∈A

cov(ptl
i j,a)sa−Si ≥ 1∀Pi ∈ P (4.18)

If Si is selected, at least two covering epitopes have to be selected in order to satisfy
the constraint. This problem would be easily solved just by picking two epitopes ran-
domly for each protein. In order the get an optimal usage of the epitopes their number is
restricted by an additional constraint:

∑
a∈A

sa ≤ costmax (4.19)

Here costmax denotes the maximum number of antibodies to be chosen, and this has to be
set by the user and may just depend on the available funding for antibody generation or
purchase. An upper bound for costmax is the size of the optimal solution to the original
multicover ILP, which already covers all proteins in the dataset twice or more. A lower
bound is the minimal cost for the normal covering.

4.3 Optimal antibody subset selection with fixed cost
Budget constraints are very common in scientific projects. Using available funds to
achieve the highest possible impact is crucial. In research projects using TXP-antibodies,
it would be desirable to capture as many proteins as possible with a given number of
binders. Of course this can be achieved using the greedy algorithm just by the inclusion
of a termination criterion, when the maximal number of antibodies is reached.

The problem can be easily modelled as a linear optimization program:

max ∑
i=0

pi (4.20)

∑
a∈A

cov(Pi,a)sa ≥ pi ∀Pi ∈ P (4.21)
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∑
a∈A

sa = k (4.22)

The boolean variable pi states whether protein i should be included or not. The sum of
the selected proteins has to be maximized. If pi is set to 1 the coverage constraints (4.21)
ensure that at least one antibody has to be selected in order to cover the protein Pi. Finally
the budget constraint (4.22) limits the maximal number of antibodies in the solution to k.
This boolean linear program has |A|+ |P| binary variables and |P|+1 constraints.

4.4 Results and Discussion
Proteomes of various organisms (Homo sapiens, Mus musculus, Rattus norvergicus, Bos
taurus, Saccharomyces cervisiae) were obtained from UniProtKB (Wu et al., 2006).
Only reviewed sequences were included in the dataset. The proteomes were trypsin-
digested in-silico, by cutting after lysine (K) or arginine (R), if no proline (P) followed. A
complete digest without missed cleavages or mis-cleavages was assumed. The resulting
digests were pre-processed and filtered as described. To investigate the use case of assay
designs for a limited number of targets, the lists of proteins associated to the pathways
for TGFβ , WNT and TLR signaling were obtained from the KEGG (Kyoto Encyclope-
dia of Genes and Genomes) PATHWAY database (Ogata et al., 1999). The KEGG gene
IDs in the pathway descriptions were mapped to UniProt IDs. The combination sets for
the pathways were extracted from the filtered combination set of the human proteome.

The coverage score
|L|
|P|

of a solution L is the number of required epitopes relative to the

number of proteins to cover.
The solutions of the integer program delivered by the industry standard ILP solver

CPLEX after a limited running time of 12 hours were, not surprisingly, superior to the
solutions provided by the greedy algorithm on all tested proteomes and epitope-length
combinations (see Table 4.2). The inclusion of epitopes of length five increased the
problem dimension considerably, because of the much larger number of potential epi-
tope sequences (O(20lmax)). This increased the number of coverable proteins in the final
combination set. Nevertheless the number of required epitopes was decreased in three of
five proteomes (Homo sapiens, Rattus norvegicus, Bos taurus). When including termi-
nal sequences of length four and five, the set cover will include shorter epitopes in most
cases as they cover more proteins. If for a specific protein all epitopes of length four
have been filtered out, longer sequences can still be used to cover it.

The solutions provided by the multicoverage integer program are significantly larger
than the solutions, in which multicoverage was not enforced. The multicoverage greedy
approach only favors but does not enforce multicoverage, so the solutions provided by
this method are smaller, but not necessarily superior to those provided by the multicover-
age integer program. As shown in Table 4.3 the number of multicovered proteins (Homo
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Table 4.2: Comparison of the solution size (smaller is better) of the integer program IP
(CPLEX solver, running time limited to 12 hours) and the greedy set cover
algorithm on proteomes of different species, and epitope length settings. |A|
denotes the number of different epitopes, |P| the number of target proteins, the

percentage next to solution sizes is the coverage score
solutionsize
|P|

proteome length IP Greedy |A| |P|
Homo sapiens 4-5 2,020 (10.1 %) 2,292 (11.5 %) 527,164 20,010
Mus musculus 4-5 1,541 (9.6 %) 1,727 (10.8 %) 473,406 15,995
Rattus norvegicus 4-5 851 (11.7 %) 970 (13.3 %) 273,558 7,295
Bos taurus 4-5 790 (14.2 %) 903 (16.1 %) 199,735 5,584
Saccharomyces cervisiae 4-5 1,000 (15.6 %) 1,134 (17.6 %) 240,253 6,422
Homo sapiens 4 2,026 (10.1 %) 2,306 (11.5 %) 86,963 19,979
Mus musculus 4 1,529 (9.6 %) 1,737 (10.9 %) 83,073 15,974
Rattus norvegicus 4 858 (11.8 %) 975 (13.4 %) 64,058 7,294
Bos taurus 4 792(14.2 %) 896 (16.1 %) 53,751 5,576
Saccharomyces cervisiae 4 995 (15.5 %) 1,130 (17.6 %) 58,464 6,405

Table 4.3: Comparison of the solution size (smaller is better) of the IP MC, IP MMC, the
greedy set cover algorithm, and the modified algorithm (Greedy MC, scov =
100,smcov = 1) on the in-silico tryptic digest of the human proteome (UniProt
taxon id 9606), N-C-terminal epitopes of length 4, |L| denotes the total size of
the solution.

solver # prot. single covered # prot. multicovered |L|
IP MC 223 19,756 3,895
IP MMC (costmax=2,314) 3,665 16,314 2,314
IP 6,164 13,815 2,026
Greedy MC 4,126 15,853 2,314
Greedy 5,132 14,847 2,306
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Table 4.4: Comparison of the solution size (smaller is better) of the integer program
(IP), integer multicover (IP MC), the greedy set cover (Greedy) and multi-
cover (Greedy MC, scov = 1,smcov = 10 ), integer maximization multicover
(IP MMC, costmax was set to result of Greedy MC), algorithm on different
pathways (subsets of the Homo sapiens proteome), and epitope length set-
tings. The percentage in parentheses is the degree of multicoverage (bigger
is better) on the dataset, e.g. a value 50% means that half of the proteins are
multiply covered.

pathway length IP IP MC Greedy Greedy MC IP MMC |P|
WNT 4-5 55 (13.5 %) 107 (96.2 %) 60 (22.6 %) 88 (54.1 %) 88 (77.4 %) 133
TGF 4-5 36 (8.9 %) 70 (93.7 %) 40 (19.0 %) 57 (49.4 %) 57 (74.7 %) 79
TLR 4-5 47 (5.3 %) 92 (94.7 %) 51 (16.0 %) 72 (46.8 %) 72 (70.2 %) 94
WNT 4 56 (16.6 %) 108 (94.0 %) 63 (15.8 %) 85 (48.8 %) 85 (70.7 %) 133
TGF 4 36 (8.9 %) 71 (89.9 %) 39 (13.9 %) 57 (48.1 %) 57 (69.6 %) 79
TLR 4 47 (3.2 %) 94 (93.6 %) 50 (11.7 %) 70 (45.7 %) 70 (62.8 %) 94

sapiens, length = 4) was increased from 14,847 (Greedy) to 15,853 (Greedy MC) by
only eight additional epitopes in the solution, compared to the solution of the standard
greedy algorithm. This was achieved with a setting of scov = 100,smcov = 1, which scores
not yet covered proteins one hundred times higher than already covered proteins. The
solution of the IP MC is 3,895 large, so the effort of multicovering all 19,756 proteins
nearly doubles the number of epitopes compared to the solution of the standard IP, where
only 13,815 proteins are multicovered. By using IP MMC with the costmax set to the so-
lution size of the Greedy MC the number of multicovered proteins was increased from
15,853 to 16,314.

On the smaller pathway datasets it is possible to calculate the best possible solutions
with CPLEX and GLPK in a very short amount of time (less than 2 seconds). Table 4.4
shows a comparison of the solution size and the multicoverage percentages on pathway
datasets. On pathway datasets the solution sets are proportionally larger than on pro-
teome datasets. This was expected, because the probability of shared terminal epitopes is
smaller if the number of target proteins is reduced. Nevertheless coverage scores of 42 %
(WNT, length=4-5, IP, 55 epitopes to cover 133 proteins) are a substantial improvement
to the scenario of choosing peptide- or protein-specific antibodies for immunoaffinity-
MS. The multicoverage integer program provided solutions with coverage scores from
81 % (WNT, length=4-5) to 100 % (TLR, length=4).

The settings of the multicoverage greedy algorithm were changed to scov = 1 and
smcov = 10, because the probability of multicoverage through one epitope is proportional
to the size of the datasets. In this way the multicoverage score begins to take effect
earlier during the iterative optimization. Table 5 contains results of a grid search on
the parameters of the greedy MC algorithm applied to the WNT pathway example. The
multicoverage enhancing effect shows only if already covered proteins are scored higher
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than new proteins. If scov is chosen bigger than smcov the multicoverage effect almost
completely vanishes on small datasets.

Table 4.5: Grid search on the parameters scov and smcov of the modified greedy set
cover algorithm (Greedy MC) on the WNT pathway, N-C-terminal epitopes
of length 4: solution size (multicovered proteins)

PPPPPPscov

smcov 1 2 3 4 5 6 7 8 9 10

1 73 (50) 84 (65) 86 (67) 85 (65) 85 (65) 85 (65) 85 (65) 85 (65) 85 (65) 85 (65)
2 63 (36) 73 (50) 79 (60) 84 (65) 86 (67) 86 (67) 86 (67) 85 (65) 85 (65) 85 (65)
3 61 (33) 64 (37) 73 (50) 79 (60) 80 (61) 84 (65) 86 (67) 86 (67) 86 (67) 86 (67)
4 61 (33) 63 (36) 64 (37) 73 (50) 79 (60) 79 (60) 80 (61) 84 (65) 86 (67) 86 (67)
5 61 (33) 61 (33) 64 (37) 64 (37) 73 (50) 79 (60) 79 (60) 80 (61) 80 (61) 84 (65)
6 61 (33) 61 (33) 63 (36) 64 (37) 64 (37) 73 (50) 79 (60) 79 (60) 79 (60) 80 (61)
7 61 (33) 61 (33) 61 (33) 64 (37) 64 (37) 64 (37) 73 (50) 79 (60) 79 (60) 79 (60)
8 61 (33) 61 (33) 61 (33) 63 (36) 64 (37) 64 (37) 64 (37) 73 (50) 79 (60) 79 (60)
9 61 (33) 61 (33) 61 (33) 61 (33) 64 (37) 64 (37) 64 (37) 64 (37) 73 (50) 79 (60)
10 61 (33) 61 (33) 61 (33) 61 (33) 63 (36) 64 (37) 64 (37) 64 (37) 64 (37) 73 (50)

After the calculation of the greedy multicover the resulting cost (solution size) was
used as the cost limit costmax for the maximization multicover (IP MMC) formulation.
The results were significantly better multicoverage percentages for all datasets for the
same costs (Table 4.4, compare columns Greedy MC and IP MMC).

Both approaches for budget-constrained scenarios have been tried on the described
datasets . On the smaller pathway datasets the greedy algorithm performed well. Near-
optimal results were found for all pathways. By solving the integer program the coverage
could be improved by one to two proteins for WNT and TLR. The solution of the integer
program takes only a few seconds, so even if the benefit for solving the integer program
is small, it is cheap from the computational perspective.

Table 4.6: Comparison of the achieved coverage size (bigger is better) of the integer pro-
gram (IP), the greedy set cover (Greedy) algorithm on different pathways (sub-
sets of the Homo sapiens proteome)

pathway length k IP Greedy |A| |P|
WNT 4,5 5 31 29 9.047 133
TGF 4,5 5 22 21 5.185 79
TLR 4,5 5 21 21 6.177 94
WNT 4,5 10 46 44 9.047 133
TGF 4,5 10 37 36 5.185 79
TLR 4,5 10 36 36 6.177 94

On the larger proteome datasets the greedy algorithm delivered optimal results for k =
10. For budgets of k = 50 the solution of the integer program led to small improvements.
However if the budget was limited to 100 antibodies the IP approaches delivered better
results for all datasets, with the restriction of wall clock time to 24 hours.
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Table 4.7: Comparison of the achieved coverage size (bigger is better) of the integer pro-
gram (IP), the greedy set cover (Greedy) algorithm on different proteomes on
the subset cover problem with different budget constraints k

proteome length k IP Greedy |A| |P|
Homo sapiens 4,5 10 988 987 527,164 20,010
Mus musculus 4,5 10 923 923 473,406 15,995
Bos taurus 4,5 10 502 502 273,558 5,584
Saccharomyces cervisiae 4,5 10 639 639 240,253 6,422
Homo sapiens 4,5 50 3,974 3.966 527,164 20,010
Mus musculus 4,5 50 3,644 3,636 473,406 15,995
Bos taurus 4,5 50 1,760 1759 273,558 5,584
Saccharomyces cervisiae 4,5 50 2,036 2,034 240,253 6,422
Homo sapiens 4,5 100 6,494 6,578 527,164 20,010
Mus musculus 4,5 100 5,890 5,923 473,406 15,995
Bos taurus 4,5 100 2,685 2,674 273,558 5,584
Saccharomyces cervisiae 4,5 100 3,032 3,031 240,253 6,422

This result puts the additional effort of solving the ILP for proteome-sized problem
into perspective, as the relative improvements are small. The greedy approach seems to
solve k-size covering problem adequately for larger datasets.

4.5 Conclusions
Starting from the real-world lab engineering task, we have shown that the problem of
choosing a minimal set of epitopes is equivalent to the well-known set cover problem.
In combination with a filter pipeline that eliminates unsuitable peptide-epitope combina-
tions, we proposed different methods for the solution of the problem.

For small datasets (a few hundred proteins) it is possible to solve the problem to op-
timality with minimal computational effort using commercial or free solvers. Larger
datasets, like full proteomes, require the use of heuristics, or respectively a running time
limitation of the branch-and-bound search in the integer program solvers. Large sets of
proteins can theoretically be covered by TXP-antibodies with a fraction (down to 9.57
%, see Table 4.2) of the otherwise required peptide-specific antibodies for every protein.
We further proposed methods to enforce (IP MC) or enhance (Greedy MC, IP MMC) the
multiple coverage of a protein for a better experimental design.
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Chapter 5

Optimization for TXP
Sandwich-Immunoassays

Contents of this chapter have been presented as a talk at the ’26th European Conference
on Operational Research’ (Planatscher et al., 2013a) and have been subject of a patent
application (Joos et al., 2010).

In this approach two TXP-antibodies with epitopes of 3-5 amino acids length will
be combined to a sandwich-immunoassay. When both antibodies concurrently bind,
a unique ’split epitope’ of 6-10 amino acids is identified. This is often sufficient to
specifically identify a signature peptide from a protein.

In the classical setup each analyte would be recognized by two specifically made anti-
bodies. Because TXP-antibodies can recognize the same epitope on many peptides, it is
possible to reuse them in several combinations. In the best scenario a set of n C-terminal
TXP-antibodies and a set of m N-terminal TXP-antibodies can be combined to m×n im-
munoassay kits. In comparison the same number of antibodies would only be sufficient

for
n+m

2
classical sandwich-assays.

The task of selecting the smallest-possible sets of C- and N-terminal epitopes for a
given set of proteins is different from the immunoaffinity-MS optimization problem dis-
cussed in chapter 4. Here quadratic constraints have to be considered. These can be
linearized, which leads to problem formulations of even higher dimension. Because of
the huge problem dimensions these formulations are very difficult to solve. Therefore a
greedy heuristic and a meta-heuristic using local search is presented.

5.1 Problem statement
Peptides - sharing the same terminal sequence - are enriched by using 3 to 5 amino acid
specific terminal antibodies after a proteolytic digest. In a detection step using a second
3-5 amino acid specific terminal antibody, the peptide is identified. In this case two
antibodies bind simultaneously to the peptide.

This process is called a sandwich-assay. In this method, a first set of binding molecules,
the capture set, is immobilized on a support or on e.g. Luminex microspheres. A com-
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plex protein sample is subjected to fragmentation by tryptic digest. Subsequently, the
resulting peptide mixture is brought into contact with the support or the beads. Subse-
quently, unbound peptides are removed in a washing step.

Then second binding molecules, the detection set, are applied on the support or the
beads, respectively. After washing, specific peptides or proteins can be detected. Thereby,
it is preferred, if the binding molecules bind to the termini of the detected peptides. More
specifically, it is preferred, if the first binding molecules bind to the N-terminus of the
peptides while the second binding molecules bind to the C-terminus of the peptides. Of
course, this order can be reversed.

5.2 Fast greedy algorithm
After a preprocessing step basic filters are applied to remove peptides with unknown
positions or methionine in the terminal sequence from the peptide pool (see chapter 4).

Then a data structure called ’epitope combination graph’ is built, which contains all
existing epitope combinations. For each epitope a ’node’ is found in the data structure.
If a peptide has a certain epitope combination, the nodes corresponding to the epitopes
are connected with a ’peptide edge’. These edges are directed, meaning that they have
start and end epitope. The direction of an edge defines which epitope is used for capture
(start) and detection (end). Only peptides (length 12 AA) which can bind two antibodies
are added to the graph. Parallel peptide edges occur when a terminal combination is not
unique, meaning that two or more peptides have the same n- and c-terminal sequence. If
the optimizaton is done for a sandwich immunoassay, these edges must be removed, as
the read-out by immunofluorescence can not distinguish the signals afterwards.

After this step, referred to as interference filter, the epitope combination graph is ready
for the optimization step.

In the optimization step a score is assigned to every epitope node. The score is a
weighted sum of the number of newly captured proteins and the number of newly iden-
tified proteins, by adding this binder to the solution set:

score(a) = |cap(a)\Pcap|wcap + |cov(a)∩Pcap|wcov (5.1)

Table 5.1 shows the impact of the weights wcap and wcov in the scoring function on the
final outcome. In this problem instance best coverage was achieved by a wcap = 5 and
wcov = 2. In any case wcap > wcov produces better outcomes.

After the scoring, the highest ranking node is selected. If a protein has been identified,
all peptides from this protein are removed from the graph. The scores are then updated.

The update process can be done in constant time, because of the used graph data struc-
ture can be traversed efficiently. Each peptide-edge is a node in a peptide-protein-graph.
By traversing all peptide-edges adjacent to the epitode-node, all proteins including this
epitope can be visited in linear time.
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5.2 Fast greedy algorithm

(a) Uniqness filter

(b) Example iteration 1 and 2

(c) Example iteration 2 and 3

Figure 5.1: This figure shows an example for an instance of the TXP sandwich im-
munoassay greedy approach
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Algorithm 4: The parametrized greedy algorithm
Input: bipartite epitope-protein graph G(P∪A,E)
Output: set of epitopes S
Pcov = /0;
foreach a ∈ A\L do

//calculate how many new proteins are covered by the epitope a
score(a) = |cap(a)\Pcap|wcap + |cov(a)∩Pcap|wcov;

end
while P\Pcov 6= /0 do

//select the epitope a with the highest score
as = argmax

a
score(a);

Pcov = Pcov∪{cov(a)∩Pcap};
Pcap = {Pcap∪ cap(a)} /∈ Pcov;
S = S∪{as};
//update all epitope-scores
update();

end
return L

Each epitope node contains variables counting how many not yet captured proteins
could be covered and how many captured proteins could be marked by the binder. When
an epitope is selected, the algorithm updates these counters for all epitopes adjacent to the
newly captured/identified proteins. The update procedure can be summarized as follows:
For all peptide-edges connected to the selected node, visit the adjacent protein-node,
from there iterate over all peptide-edges and update the counters in the epitope nodes.

After the update step the epitope ranking must be re-sorted, to get the next top-scoring
node. This would require an O(nlogn) step at each iteration. Given the very large epitope
lists (≥ 106), this leads to unnecessary long computation times.

To avoid resorting all nodes according to their changed score, a queuing data structure
is used. This queue allows to reorder only the nodes which have actually changed score.
The data-structure can be updated in O(mlogk)-time where m is the number of changed
nodes and k is the number of different score values. Without going into too much detail
the nodes are sorted in score slots. By the use of memory-expensive hash-tables each
element can be quickly located and removed from or inserted in the correct score slot.

The current implementation of this greedy algorithm takes less than a second to pro-
vide a solution for very large proteome sized instances, after the epitope combination has
been constructed. Even though the implementation trades speed for memory about 2 GB
of memory are sufficient for all calculations presented in the following sections.
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5.3 Linear integer programming approach

w/v 1 2 5 10 100 1000
1 13,670 13,652 13,624 13,612 13,612 13,612
2 13,702 13,670 13,603 13,624 13,612 13,612
5 13,828 13,762 13,670 13,652 13,612 13,612

10 13,820 13,828 13,702 13,670 13,612 13,612
100 13,887 13,919 13,871 13,820 13,670 13,612
1000 13,867 13,867 13,867 13,867 13,820 13,670

Table 5.1: Dataset: Homo sapiens, 17885 identifiable proteins, 296170 peptides, 76866
different terminal epitopes

5.3 Linear integer programming approach
The optimization problem stated above can be formulated as a quadratically constrained
integer program. The objective is to minimize the number of selected antibodies out of
the set A,

min ∑
a∈A

sa (5.2)

subject to the constraint that every protein in P can be identified:

∑
a∈cap(Pi)

∑
b∈mark(a,Pi)

sasb ≥ 1 ∀Pi ∈ P (5.3)

sa ∈ {0,1} ∀a ∈ A (5.4)

. The function cap(Pi) returns the set of all antibodies capturing an antibody in protein
Pi. The function mark(a,Pi) returns the marking antibodies for a selected antibody a in
protein Pi. If sa is 1, then antibody a is selected.

This quadratically constrained boolean linear program can be reformulated as a linear
boolean program by introducing new variables and constraints.

min ∑
a∈A

sa (5.5)

subject to the constraint that for each protein in P one peptide is selected:

∑
p∈D(Pi)

sp ≥ 1 ∀Pi ∈ P̄ (5.6)

and that each selected peptide is covered by at least one antibody on the n-terminus and
one at the c-terminus

∑
a∈nterm(p)

sa ≥ sp ∀sp (5.7)
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∑
a∈cterm(p)

sa ≥ sp ∀sp (5.8)

sa ∈ {0,1} ∀a ∈ A sp ∈ {0,1} ∀p ∈ D(p) (5.9)

The functions nterm(pi)/cterm(pi) return the n/c-terminal antibodies for a peptide pi.
Latter formulation can be solved by an advanced solver for integer linear programs as
GLPK or CPLEX. The number of variables is |D(P)|+ |A|, the number of constraints
is |D(P)|+ |P|, excluding the integer constraints. The drawback of this formulation is
that the numbers of variables and proteins gets very large fast, e.g. the number of vari-
ables used in the model for the human proteome would exceed one million binary vari-
ables. This makes it difficult to solve those whole proteome instances with this classical
approach. Smaller instances, as pathways or other protein groupings, however can be
solved to optimality.

5.4 Metaheuristics

The naive linearized mathematical program for the solution of the TXP sandwich cover
problem has a huge number of binary decisions and constraints, which makes it hard to
solve directly even using state of the art MILP solvers. We propose a hybrid method,
which calculates a solution using the greedy algorithm first, then removes a subset of
that solution, and then solves a linear program to repair the solution in an optimal way.

Algorithm 5: The metaheuristic algorithm
Input: bipartite epitope-epitope graph G = (Acap∪Amark,E,E→ P),
Output: set of epitopes S
L = Greedy(v,w,G);
while it ≤ itmax do

L̂⊂ L with |L̂|= s;
for i = 1; i≤ s; i = i+1 do

j = rnd(|L\ L̂|);
L̂ = L̂ ∪ {l j};

end
L = SolveSubsetILP(G,L\ L̂);

end
return L

The integer linear program for conducting the local search is defined as follows. First
a subset L̂ of size m is selected from the current solution epitope set L. Determine the set
of proteins P̂ which is not covered anymore by the remaining solution set L\ L̂.
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5.4 Metaheuristics

Figure 5.2: Phases of the local search algorithm: Greedy solution, random removal of
solution vertices, new solution improved by local search

Now the linear program to augment the solution set such that all proteins are covered
again is formulated. The objective function

min ∑
a∈A

casa (5.10)

of the linearized integer program is changed such that all epitopes, which have not
been removed have zero cost:

ca =

{
0 a ∈ L\ L̂
1 otherwise

(5.11)

This way only epitopes that are newly included in the solution set are minimized,
while epitopes already present in the solution set will not impact the objective value of
the function.

The linear program is subject to the constraint that for each uncovered protein in P̂ one
peptide is selected:

∑
p∈D(Pi)

sp ≥ 1 ∀Pi ∈ P̂ (5.12)

As of before each selected peptide must be covered by at least one binder on the n-
terminus and one on the c-terminus

∑
a∈nterm(p)

sa ≥ sp ∀sp (5.13)

∑
a∈cterm(p)

sa ≥ sp ∀sp (5.14)
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sa ∈ {0,1} ∀a ∈ A sp ∈ {0,1} ∀p ∈ D(p) (5.15)

The linear program is smaller than the model to solve the full problem, and can be
influenced by the subset size m. Large values of m can lead to very expensive local
search steps, while small values of m are too small perturbations to leave the greedy
local optimum. If the optimal solution to this problem has an objective smaller than the
size of the removed subset m, the local search found a better solution to the optimization
problem. This process is repeated iteratively.
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Figure 5.3: Influence of the subset size on the fitness-plot.

Eventually after a number of iterations only little or no more progress is made, because
the heuristic has converged to a local optimum. The influence of the subset size on the
speed of convergence is shown in figure 5.3 and figure 5.4. The figures summarize the
progress of multiple runs of the heuristic applied to the same datasets which has been
used for table 5.1. The runtime was restricted to 300 seconds. Results show that small
subset sizes (100, 200, 500) lead to convergence of the search process in local optima
far from the optimal solution. A lower bound for this problem instance is 12.558 (best
non-integer node found by CPLEX after 10 minutes). The initial greedy solution size is
13.603 and the best integer solution obtained by CPLEX is 12.744. The average solution
size obtained by the metaheuristic after 5 minutes with a subset size of 200 is 13.100,
which is a significant improvement over the greedy solution, but still far away from the
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5.5 Optimal antibody subset selection with fixed cost

optimal solution. Using a subset size of 1.000, solutions sizes around 12.750, similar to
the ILP approach, were found. When the subset size parameter was set to larger values,
final solution sizes were improved over the best solution provided by CPLEX.
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Figure 5.4: Influence of the subset size on the fitness-plot.

Surprisingly even if the perturbations to the solution set were very large, the models
could still be solved quickly enough to allow multiple iterations of local search, except
for subset size 10.000. In this case some of the local search problems were too large
to be solved in the time constraint. This resulted in the two outliers visible in figure
5.4 at subset size 10.000. In any case the reached final solution sizes in multiple runs
were stable, meaning that if the subset size parameter was not changed, results of similar
quality were obtained on the same dataset in multiple runs.

5.5 Optimal antibody subset selection with fixed cost
Often budget constraints exist and the number of TXP-antibodies is restricted. In this
case the number of covered proteins is maximized:

max ∑
P∈P̄

sP (5.16)

subject to constraint that for each protein in P one peptide is selected:

∑
p∈D(Pi)

sp ≥ sP ∀Pi ∈ P̄ (5.17)

69



Chapter 5 Optimization for TXP Sandwich-Immunoassays

and that each selected peptide is covered by at least one peptide on the n-terminus and
the c-terminus

∑
a∈nterm(p)

sa ≥ sp ∀sp (5.18)

∑
a∈cterm(p)

sa ≥ sp ∀sp (5.19)

and to the constraint that a maximum of n antibodies is selected in total

∑
a∈A

sa ≤ n (5.20)

sa ∈ {0,1} ∀a ∈ A sp ∈ {0,1} ∀p ∈ D(p) (5.21)

This linear program has |P̄|+ ∑
P∈P̄

|D(P) | constraints and |P̄|+ ∑
P∈P̄

|D(P) |+ |A| vari-

ables.
In an experiment the model was applied to the H. sapiens dataset used earlier for

epitope lengths 3 and 4, and subset sizes 20, 50 and 100. In this experiment the maximum
computation time has been limited to 30 minutes. For the shorter epitope size the results
were of course better, due to the larger peptide set enriched by shorter epitopes. For
a subset size of k = 100 the best solution covered 233 proteins. The same number of
distinct antibodies could only cover 50 proteins in the standard setup. This is a theoretical
advantage of 233 %. For the epitope length 4 the coverage was worse, however the
number of assays can still be doubled using the split epitope assay compared to standard
sandwich immunoassays.

Table 5.2: Solutions for the fixed cost sandwich assay cover problem for epitope lengths
3 and 4, and subset sizes 20,50 and 100 on the human proteome set. The
rightmost column shows the theoretical advantage of the solution over stan-
dard sandwich immunoassays using two specific antibodies per assay.

proteome epitope length k IP advantage
Homo sapiens 3 20 26 260 %
Homo sapiens 3 50 82 328 %
Homo sapiens 3 100 233 466 %
Homo sapiens 4 20 19 190 %
Homo sapiens 4 50 60 240 %
Homo sapiens 4 100 114 228 %
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Chapter 6

Identification of short terminal motifs
using peptide mass fingerprinting

The contents of this chapter were published as an article titled ’Identification of short
terminal motifs enriched by antibodies using peptide mass fingerprinting’ in Planatscher
et al. (2014).

In the TXP approach, antibodies bind to short linear epitopes present in multiple pep-
tides of complex samples after protein fragmentation by trypsin. In silico selection of
antigens reduces to minimum the set of TXP antibodies required to cover a pre-defined
protein target list (Planatscher et al., 2010).

Search space restriction gained from the revealed binding epitope could improve pro-
tein identification from MS and MSMS data. However, the enrichment of proteotypic
peptides with TXP antibodies leads to new challenges in the analysis of mass spectromet-
ric datasets. Results from immunoaffinity experiments using TXP-antibodies revealed
the enrichment of peptides containing the targeted epitope. Some identified peptides
also matched sequence variants (Hoeppe et al., 2011). In that study it became clear
that the terms ’specific’ and ’unspecific’ must be considered inappropriate in character-
izing these binders. ’Specificity’ generally refers to binding of one protein or peptide
to an antibody. Other binding events are deemed to be unspecific, off-target or cross-
reactive. In the TXP strategy, the binding of the antibody towards multiple peptides is
inherent. Therefore, novel concepts for epitope identification are needed, which would
enable properties of the antibody binding domain to be distinguished from interactions
occurring elsewhere.

There are three main reasons why unexpected peptides can be detected in the immuno-
precipitates. Firstly, this could be due to epitope variations in the polyclonal antibody.
Secondly, off-target binding can occur due to sequence similarity, and unlike the im-
munized antigen, this involves the apparent epitope or binding motif of the antibody
mixture. Thirdly, carry-over peptides may remain detectable in the sample, solely due to
their persisting massive presence, despite multiple washing steps and meticulous care on
the part of the lab operator. While carry-over is merely noise, it is worth quantifying the
variation caused by polyclonality and the apparent epitope.

Using recombinant motif-specific antibodies (GPS/CIMS-binders) which also enrich

71
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classes of peptides, Olsson et al. (2012b) observed that these binders were markedly
promiscuous. They compared sequence data obtained from tandem mass spectrometry
(LC-ESI-LTQ Orbitrap) with structural information. Their findings showed that the an-
tibodies not only captured peptides containing the targeted epitope but also variations of
it. Thus, the enriched peptides revealed binding motifs. Different amino acid side chains
are known to interact with the antibody binding site at individual positions. However,
such in-depth characterizations of epitope motifs analysis call for extensive experiments.

A common approach to elucidate a detailed linear epitope is to conduct an interaction
analysis between an antibody and peptide libraries. These libraries comprise synthetic
peptides which have at least one modified position (Houghten et al., 1991). For instance,
if an antibody is raised against the C-terminal sequence LGYR, the peptide library for
an epitope would consist of XGYR, LXYR, LGXR and LGYX-peptides, with the X
representing all 20 amino acids. Instead of adding a single amino acid at step n, all 20
are added in equal amounts. This leads to a library of 80 different peptides for a four-
amino-acid epitope. The synthesis and subsequent measurement of these peptides are
significant cost drivers in this phase of antibody development. Moreover, the quality
control for such a binder would be more expensive than its generation. Our study aimed
at devising a simpler, cost-effective method entailing less effort than that required in the
labour-intensive peptide library approach. We present an algorithm for calculating the
detailed epitope using MS data from an immunoaffinity-MS experiment.

Peptide mass fingerprinting is a well established method in proteomics (Yates et al.,
1993; Mann et al., 1993; Henzel et al., 1993; Pappin et al., 1993; James et al., 1993),
on which we based the TXP-TEA (Terminal sequence Enrichment Analysis) algorithm.
The original technique involves identifying an isolated and subsequently digested protein
by the characteristic pattern in the peptide mass spectrum. TXP-TEA performs searches
for patterns related to sets of peptides sharing a specific terminal amino acid sequence,
instead of spectral patterns associated with a specific protein. The method compares the
masses observed in the measurement with a theoretical spectrum from a database. The
MATERICS algorithm we describe here merges the results of TXP-TEA to the antibody
binding motif.

6.1 Terminal sequence enrichment
When an antibody enriches peptides with a common sequence, it can be anticipated
that the mass spectrometer will detect more matching signals. The TXP-TEA algorithm
scores signals from an observed peak list, based on a scoring table which indicates the
probability of observing the same signal in a random peak under the same conditions.
The less likely such a signal is, the more probable it is that the observed peak list is not
random. The software reports every sequence and score that is found.

A peak list is a set of mass-to-charge/intensity pairs (mz1, i1) , .. , (mzn, in), obtained
from a mass spectrum by further signal processing (noise filtering, peak-picking, nor-
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6.1 Terminal sequence enrichment

Figure 6.1: This flow diagram outlines the main source of epitope variation in the final
screening result

malization, etc.). The dominant ion species produced in MALDI mass spectrometry

has the charge +1[M +H]+. The mz-values are
m+Mh

1
and thus equal in value, but

not in dimension, to the molecule plus a proton mass. By subtracting the proton mass
mi = mzi−MH , the mz-values mz1, ...,mzn are transformed into mass values m1, ...,mn.

The sequence database contains information about peptides that can be expected in
samples of a given species. Protein sequence databases, such as UniProt (Wu et al.,
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2006) and proteotypic peptides databases such as the Global Proteome Machine (Fenyo
et al., 2010) or the Peptide Atlas (Deutsch et al., 2008) are well-established data repos-
itories. Proteotypic peptide databases are particularly valuable because each sequence
had already been observed in mass spectrometry-based experiments. In our algorithm, a
database D is a set of peptide sequences {p1, ..., p j}.

Using database D, TXP-TEA first makes a comprehensive list of peptides with theoret-
ical masses, whose observed mass in Mobs matches a mass in the peak list by a predefined
error threshold. Common MALDI mass spectrometers operate at a medium resolution
and mass errors below 30 parts per million are normal. Due to the limited resolution and
isobaric peptides, each signal in a spectrum can originate from different peptides. The
set of selected peptides in range is:

S(D,Mobs,εtol) = {pi|
Mobs−Mpi

Mpi

106| ≤ εtol} (6.1)

The result is a set of peptides

DM =
⋃

Mobs∈M

S(D,Mobs,εtol) (6.2)

and finally a list of possible epitope candidates is generated. Each candidate epitope can
explain signals in the spectrum, provided that the peptides matching that specific termi-
nal sequence have been enriched. The number of matching peptides found in the full
database search is also relevant because it defines the background probability. For exam-
ple, if 5 masses in a 73-peak spectrum match peptides sharing the c-terminal sequence
LGYR and 65 peptides in the full database terminate in LGYR, this event must be rated
by estimating the probability of finding 5 (or more) out of 65 (or less) peptides which
share the same c-terminal sequence of length 4 in a random 73-peak spectrum.

We define an enrichment event EΦ(i, j) as: i matching signals out of j masses from
the same epitope class, by applying the parameters Φ = (D,εtol, t, l,k) in a peak list of k
masses. TXP-TEA estimates the likelihood of such enrichment events by sampling from
random spectra. The parameters Φ of the sampling are: the terminus (c- or n-terminal)
t, sequence length l, number of peaks k, mass error tolerance εtol and peptide database
D. The number of masses in the peak list k is also a sampling parameter. Each setting of
these parameters requires a dedicated sampling table. Sampling generates many random
peak lists by randomly selecting theoretical masses from the peptide database.

The random peak lists are then processed as described above. Algorithm 6 counts
the number of repeated enrichment events and generates a sampling table. A sampling
table is an n×m-matrix SΦ. m is the size of the largest epitope class in the database.
n is the largest number of peaks attributable to one epitope-class, observed in a random
spectrum, during the sampling process. SΦ(i, j) is the frequency of the event that i of j
expected masses match, depending on the parameters Φ.

Table 6.1 is the result of a sampling run of 25,000 iterations for mass spectra of
100 peaks and a mass tolerance of 30 ppm in a consensus data peptide database (Φ =

74



6.1 Terminal sequence enrichment

(ConsensusDB,εtol = 30, t =C, l = 4,k = 100)). For example: The event of observing 4
out of 17 peptides with a common terminus occurred 127 times in 25,000 random spec-
tra. The sampling table is not a perfect lower triangular matrix because of the occurrence
of overlapping peaks. If the mass of a peptide with a unique terminal sequence is in
within close range of two masses in a random spectrum, the event-counter for EΦ(2,1)
increases (i.e. observed 18,373 times in sampling table 6.1).

Table 6.1: Sampling table S for the consensus peptide database, number of sampled ran-
dom spectra 25,000, number of peaks 100, mass tolerance 30 ppm

number of peptides observed in spectrum
occurrence 1 2 3 4 5

1 3205722 18373 85 0 0
2 2111151 22101 182 0 0
3 1445403 21227 235 0 0
4 1189578 23363 350 5 0
5 1074187 25731 457 6 0
6 983959 27333 536 5 0
7 900073 28868 704 14 0
8 1009570 37708 1004 13 1
9 879334 36178 1009 21 1

10 858291 38574 1187 34 1
11 918326 46414 1495 48 1
12 931052 50009 1830 49 2
13 829150 49125 2086 69 0
14 762225 47894 2035 69 2
15 790782 53216 2445 75 2 0
16 888119 64125 3099 109 1
17 858695 66359 3463 127 7
18 692556 55687 2949 128 2
19 887858 77471 4556 198 2
20 796262 72015 4481 211 9
. . . . . . . . . . . . . . . . . .

It is better to use standard settings to limit the available choices relating to the assumed
error tolerance, background database, terminus, and sequence length. This limits the
computational effort to a required minimum.

However the parameter k, number of peaks, varies from spectrum to spectrum. The
sampling algorithm 6 solves this difficulty by incrementally updating the sampling table.
It creates the sampling table for 73-peak spectra by adding a random peak to all 72-peak
spectra, from the 72-peak sampling table in the previous step. This is considerably faster
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Chapter 6 Identification of short terminal motifs using peptide mass fingerprinting

Algorithm 6: The sampling algorithms result is a table S necessary to estimate the
distribution of epitope detection events in random spectra of up to n peaks.

Input: parameters Φ = (D,εtol, t, l,kmax), iterations n
Output: sampling table S
foreach seq ∈ D do

term = getTerminalE pitope(seq, l, t);
tcount[term]++ // count background distribution

end
Φ
′ = (D,εtol, t, l,0);

SΦ = emptymatrix;
j = 1;
while k ≤ kmax do // increase peak count until maximum

Φ
′ = (D,εtol, t, l,k);

SΦ′ = SΦ;
i = 0 ;
while i≤ n do // for each random spectrum

/* select random peptide and others with similar mass */

randompep = D [randomInteger(|D|)] ;
P = getPeptides(D,mass(randompep),εtol) ;
foreach seq ∈ P do

term = getTerminalE pitope(seq, l, t);
count[i][term]++;
T = T ∪ term;

end
foreach term ∈ T do

if count[i][term]> 1 then
/* terminus term has been observed one more time

for the additional mass, therefore the

previously counted event must be removed from

the count. */

SΦ′[count[i][term]−1, tcount[term]]−−;
end
/* increase the count for the event */

SΦ′[count[i][term], tcount[term]]++;
end
i = i+1;

end
Φ = Φ

′;
k = k+1;

end
return S
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than analyzing 73 peaks from scratch.
TXP-TEA estimates the p-value p̂(EΦ(i, j)) by dividing the count of the same and

more extreme events by the total number of events:

p̂(EΦ(i, j)) =
∑k≥i ∑l≥ j SΦ(k, l)

∑k ∑l SΦ(k, l)
. (6.3)

In general the p-value is the probability of observing a specific or more extreme event,
given that the null hypothesis is true. If a rare event occurs, the estimated p-value is suf-
ficiently small. The null hypothesis (Pharoah, 2007) can be rejected, because observing
such data under this assumption is improbable. The null hypothesis in TXP-TEA is: ’The
binder does not enrich any single terminal sequence in the sample.’ A simple alternative
hypothesis is: ’The binder enriches the terminal epitope LGYR in the sample.’

Mass accuracy and the number of peaks determine the number of different candidate
epitopes to be analyzed by TXP-TEA in a search. Each candidate represents an alter-
native hypothesis. As these represent different hypotheses, it is important to correct for
multiple testing. By assuming a significance level of α = 0.05 and 3,000 different epi-
topes in a single search, 3,000×0.05 = 150 epitopes will have a significant p-value by
chance, provided that the p-values follow a uniform distribution. Bonferroni correction
adapts the significance level to α

′ =
α

n
, dividing by the number of candidate sequences.

Finally TXP-TEA reports enrichment of a terminal epitope sequence if p̂(EΦ(i, j))≤ α
′.

Figure 6.2 visualizes p-values obtained from sampling tables generated by 25,000 ran-
dom spectra from a background peptide database for H. sapiens (merged GPM, Pep-
tideAtlas, in-silico tryptic digest UniProt). If mass accuracy is high, the number of pep-
tides matching a mass will reduce. This also reduces matches of peptides with the same
epitope to different peaks in the spectrum. This explains why higher mass accuracy al-
lows TXP-TEA to detect significant enrichment events with low numbers of matching
masses.

6.2 From sequences to complex epitopes
MS/MS experiments revealed that the enriched epitopes are more complex than the im-
munization antigen sequence. The antibody binds to variations of a main sequence,
therefore with less affinity (Olsson et al., 2012a,b). Variation often occurs mainly in
one or two positions, while the other positions remain constant. These findings form the
central idea of the MATERICS (mass-spectrometric analysis of terminal epitope enrich-
ment in complex samples) algorithm, a novel approach to ascertain the motif rapidly and
automatically.

Residue variation at key positions is a well-known concept which is applied by com-
putational immunologists to MHC molecules, cell surface proteins similar to antibodies.
The binding specificity of MHC-molecules is often charaterized by peptide motifs (Falk
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Figure 6.2:
Visualization of scoring tables p̂(Eφ (i, j)) with different mass tolerances and peak num-
bers. The blue areas mark events that are considered to be statistically significant. The
α = 0.05 was Bonferroni-corrected by the average number of events which occurred
during sampling: 50 peaks/50 ppm 4966 events, 50 peaks/10 ppm 1452 events.

and Rötzschke, 1993; Stern, 2007). A MHC class I peptide motif defines one or two
internal anchor positions and an additional fixed position at the C-terminus. Each MHC
allele has a characteristic motif (Sherman, 2006).

Regular expressions such as LG[AYL]R describe such sequence motifs. This expres-
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sion matches LGAR, LGYR and LGLR. This form gives no information about which of
the three different amino acids is more probable at the variable position. Another com-
mon way to define a peptide motif is to use a position weight matrix (PWM). For a given
alignment of amino acid sequences, these matrices assign a probability pi j to each amino
acid Ai for a specific sequence position s j in a sequence s.

Each motif represents a trade-off between sensitivity, specificity and model complex-
ity. A PWM, which assigns equal probability to all amino acids at all positions, obviously
matches all peaks in the observed set. Such a motif lacks any useful information, whereas
a motif which assigns a probability of 1.0 to one specific amino acid at every position as
well as matches a peptide for all peaks in the spectrum is a remarkable finding.

Information content, IC, derived from Shannon Entropy, is a complexity measure for
PWMs (Lund et al., 2005). H(X) denotes a measure of uncertainty

H(X) =
n

∑
j

p(xi) · log(p(xi)) (6.4)

to a discrete random variable X with n different outcomes. H(X) is minimal if all events
are equally probable and the uncertainty is thus maximal. If one event occurs, the uncer-
tainty is minimal, and the entropy term will maximize and approach 0. The complexity
measure for a PWM P

IC(P) =−
L

∑
i

N

∑
j

pi j · log(pi j) (6.5)

follows, by applying the entropy score to each position and calculating the sum.
The space of possible PWM epitopes is

E = {x ∈ [R20
[0,1]|∑xi = 1.0]l} (6.6)

While that set is not countable, the set of wildcards W = P(A)l is enumerable. A
denominates the set of amino acids. With |P(A)| = 220 = 1,048,576 the number of
possible wildcards of length 4 is 1,048,5764 ≈ 1.209×1024. MATERICS can appropri-
ately limit a search from start, or abort it timely during the process.

In the first step of MATERICS, TXP-TEA generates the ranking of enriched sequences.
MATERICS scores all motifs with one unspecific position (?XXX,X?XX,XX?X,XXX?)
by combining the p-values of all the matching terminal sequences using Fisher’s Method.
This method is applied in meta-analysis statistics to accumulate evidence from different
studies. The sum ρ of logarithms of p-values

ρ =−2
k

∑
i=1

loge(pi) (6.7)

from independent tests follows a χ
2 distribution. The complementary χ

2 cumulative
distribution function with 2k degrees of freedom is
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pvalc(ρ,k) = 1−
γ(2k

2 ,
ρ

2 )

Γ(2k
2 )

(6.8)

= 1−
γ(k, ρ

2 )

Γ(k)
(6.9)

= 1−
γ(k, ρ

2 )

(k−1)!
(6.10)

(6.11)

which gives the combined p-value. γ(k,ρ) is the lower incomplete gamma function.
The list L will include epitopes for further processing, if the combined p-value is lower
than 0.1, divided by the total number of motifs scored. This step removes candidate epi-
topes from the search, which, even in the context of similar epitopes, will not contribute
to a relevant motif.

EIER 

ELER ELLR 

ELLR TVVR TVVR ESLR 

2x3x2x1 
=12 

1x2x2x1 
= 4 

2x3x3x1 
= 18 

1x3x2x1 
= 6 

1x2x1x1 
= 2 

1x2x2x1 
= 4 

1x1x1x1 
= 1 

Figure 6.3: Tree representation of the recursive enumeration

In the next step, MATERICS combines sequences using recursive enumeration (see
figure 6.3) and calculates the complexity of each motif. The recursion stops if the com-
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plexity exceeds a certain limit. During recursion, the method updates the coverage score
using Fisher’s Method. The recursive loop calculates the sum of logarithms incremen-
tally.

MATERICS uses a suitable property of Fisher’s method as a recursion bound. Assum-
ing the method is applied to a vector of sorted p-values

(p1, p2, . . . , p j, . . . , pn)

and that the combined p-value pvalc(ρ j, j) increases

pvalc(ρ j−1,( j−1))≤ pvalc(ρ j, j)

at one point, it follows that by adding further tests (with p-values > p j) there will be no
improvement in the combined p-value. This means that pvalc has a well-defined global
optimum. The algorithm can terminate recursion once the combined p-value starts to
increase. Other termination criteria include a complexity measure exceeding a prede-
fined limit and sequence p-values lower than 0.05. These bounds ensure reasonably fast
processing. A motif prediction takes from few seconds up to a minute on a single AMD
Phenom X6 core clocked at 3.3 Ghz.

Algorithm 7: Recursive enumeration in the MATERICS algorithm: The function
traverses the tree shown in figure 6.3, and combines epitopes from the result list
L until the p-value combined by Fishers method starts increasing. All results are
stored in a Pareto front data structure, which keeps only non-dominated (complex-
ity and/or p-value) results.

enum(L,i,cmax, c′, pvals,E, ρ ,d)
if ((c′ < cmax)) then

for j← il to |L| do
E ′←addToEpitope(E,L j) ;
c′←−IC(E ′) ; // motif complexity

ρ ← ρ + log(pvals[L j]) ;

pval′← 1−
γ(2d

2 , −2sumlogpval
2 )

Γ(2d
2 )

; // motif score

updateParetoFront(E ′,−c′,score′) ; // add to pareto front

if ((pval′ < old pval)∧ (pvals[L j]< 0.05)) then
/* call recursively if combined pvalue decreases */

enum(L, j,cmax,c′,pvals,E ′, pval′,ρ ,d +1) ;
end

end
end

The algorithm will include a motif in the solution set M if - and only if - no motif
with lower complexity and a higher score was found. It reports motifs representing good
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Chapter 6 Identification of short terminal motifs using peptide mass fingerprinting

compromises between complexity and p-value in the final output. This concept is known
as Pareto optimality in the field of multi-objective optimization. A motif M1 with a
complexity score IC(M1) and a p-value pval(M1) will dominate a second motif M2 -
if and only if - IC(M1) > IC(M2) and pval(M1) < pval(M2). It reflects the process of
model building by the expert, which also weighs model complexity, against how much
the model can explain.

The user interface presents each solution in M, enabling the user to make an informed
judgement. Whereas during enumeration of the motif subspace equal probabilities were
assumed at each position, the candidate PWMs are refined afterwards. The set of match-
ing sequences denominates S and fa j is the frequency of amino acid a at position j:

pa j =
fa j

|S|
(6.12)

The Matthews correlation coefficient (Matthews, 1975) is a good indicator of the ro-
bustness of the identified models. It measures the suitability of a classification model by
the number of true positive, true negative, false positive and false negative predictions.
It is impossible to compress true/false positives/negatives in a single number without in-
formation loss. However the coefficient is well established, and is particularly useful in
dealing with heavily imbalanced two-class classification problems.

MCC =
T P×T N−FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(6.13)

MATERICS deals with the MCC as an alternative measure for robustness. This con-
vention for model fitness evaluation was applied to PWM models for TXP-epitopes en-
richment in mass spectra:

presence predicted absence predicted
observed TP FN

not observed FP TN

The number of true negatives (absence predicted, not observed) is estimated by the
number of distinguishable peaks in the range from 800-2500 Da and the specified error
tolerance.

Our work compares the novel algorithms to peptide libraries for motif elucidation. Ex-
periments included measurements before and after immunoprecipitation (IP) took place.
The difference between measured signal intensities is the effect of the antibody speci-
ficity at the given position.

The pre-IP measurements account for sequence-specific ionization characteristics in
the mass spectrometer as well as differences in the outcome of the peptide synthesis.
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The signal intensities were used to normalize the data from the post-IP experiment. The
normalization coefficient for a specific peptide found in the library is:

F (a) =
A(ma)

∑b∈D A(mb)
|D| (6.14)

where ma is the known mass of the library peptide with amino acid a at a variable
position, A(ma) the peak area at the respective position, and D the set of peptides found
in the library. This ’flight factor’ reflects the ionization properties: thus even if all the
synthetic peptides are equally abundant in the library, the measured signal intensities will
differ by orders of magnitude. Peptide prevalence P(A) can be calculated by using F(A)
and the post-IP data

P(a) =
A(Ma)F (a)

∑b∈D A(Mb)F (b)
(6.15)

For amino acid exchanges which are not distinguishable by the resolution of the mass
spectrometer, the probability is shared in the inferred motif. Therefore leucine and
isoleucine will always appear as equally probable in motifs constructed by the peptide
library approach. MATERICS is able to discriminate isobaric exchanges, because pre-
dictions are based on sequence database information. For example if MATERICS detects
only enriched peptide sequences with leucine, but none with isoleucine at the respective
position, this will be reflected in the motif.

6.3 Experiments
Three different antibodies generated against the 4mer peptides AMTR, LGYR and EIER
were analyzed using the MATERICS workflow. Four peptide libraries per binder were
used, one for each amino acid position. Detailed lab methods can be found in Planatscher
et al. (2010).

In our study, we used 5 µg antibody and, accordingly, 25 µL protein G-coated mag-
netic beads. Immunoprecipitations were carried out thrice per cell line.

The spots were analysed using an Ultraflex III MALDI-TOF/TOF mass spectrometer
(Bruker Daltonics) in positive ion reflectron mode. The deflector cutoff was set up to 500
Da. Mass calibration was performed by using pre-spotted calibrants on PAC II 384 plates.
The detection mass range was set from 600 to 4000 Da. The laser power was adjusted
manually. The signal intensities of 2000 shots were accumulated per spot. Peaks were
annotated automatically with a signal-to-noise threshold of 3 and a mass range from 750
to 4000 Da using flexAnalysis 3.0 software (Bruker Daltonics).

Each replicate was analyzed with MATERICS by means of a unified peptide database
containing the peptide sequences from GPM (Beavis, 2006), PeptideAtlas (Deutsch et al.,
2008), and peptide identification from the Human Plasma Proteome Project (Omenn
et al., 2006), with 30 ppm error tolerance, and maximum complexity 2.0.
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In addition benchmark experiments were performed using artificial data to test the
influence of noise on the performance of MATERICS.

6.4 Results
Table 6.3 summarizes the results for the positional peptide library experiments as well
as those for the MATERICS algorithm in the cell line experiments. The library results
for the ’AMTR’ antibody indicate minor variation at the first and third positions and
high variation at the second position. MATERICS predictions detected a high degree of
variation at the second position.

Table 6.2: Summary of the MCC scores observed on the highest ranked (p-value sorted)
results for three binders/tissues in three IP replicates. First column is the av-
erage MCC and the number of technical replicates/spectra with a prediction
result, the second column contains the standard MCC deviation.

AMTR LGYR EIER
HELA 0.202 (4) 0.018 0.16 (4) 0.011 0.107 (3) 0.018
HELA 0.216 (4) 0.016 0.189 (4) 0.036 0.127 (4) 0.006
HELA 0.182 (3) 0.028 0.171 (4) 0.030 0.124 (2) 0.000
HEK 0.19 (4) 0.036 0.178 (4) 0.046 (0)
HEK 0.18 (4) 0.040 0.212 (4) 0.034 0.096 (1) 0.000
HEK 0.173 (4) 0.026 0.222 (4) 0.034 (0)
A357 0.208 (4) 0.025 0.192 (4) 0.035 0.167 (4) 0.018
A357 0.154 (4) 0.040 0.178 (4) 0.009 0.149 (4) 0.042
A357 0.19 (2) 0.018 0.193 (3) 0.043 0.137 (1) 0.000

For the ’LGYR’-antibody, the library experiments revealed low variations at the first,
third and fourth positions and high variations at the second position. Since isoleucine
(I) and leucine (L) are isobaric and therefore indistinguishable by mass spectrometry,
the library method assigns equal probability to both amino acids at the first position.
MATERICS predictions suggest a variation at the second position in the enriched peptide
samples precipitated from the digested HELA and A397 cell line. Our results do not
indicate that isoleucine is bound at the first position, the prediction only showed leucine.
When applied to HEK293 immunoprecipitate mass spectra, the algorithm suggests an
alternative binding of valin (V) at the first position.

The ’EIER’-antibody showed a high preferential binding to its antigen sequence. Se-
quences which vary at the first and third position have low binding affinity. The predic-
tion confirmed the low variability at the first position in the HELA and A397 immunopre-
cipitate. MATERICS detected sequence variability at the second position in all samples.
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It also predicted equal probabilities to leucine and isoleucine, and detected binding to
methionine at the second position in the HEK293 and A397 cell line. The algorithm
predicted variability at the third position of the motif in the HELA sample. Table 6.2
displays the average performance of the top-ranked solutions measured by MCC. Note
that solutions ranked lower by p-value can have better MCC scores.

Table 6.4 compares the models obtained by the spectra of different immunoprecipitates
and technical replicates of the same sample.
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Table 6.3: Comparison of the peptide library results to the best (smallest combined p-
value) results obtained by a run of MATERICS with 30 ppm error tolerance,
maximum complexity 2.0 using the consensus peptide database
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Table 6.4: Results for all biological and technical replicates for anti-LGYR serum in
combination with digested HELA-cell-lysates
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6.5 In Silico Benchmarks

The benchmark tests the prediction performance of MATERICS under the influence of
noise. We used artificial mass lists, generated by mixing sequences matching a prede-
fined motif and random sequences from a database, as input. MATERICS was used to
infer the respective motif back from the mass lists. By varying the size of the fraction of
motif-matching sequences in the artificial list, it was possible to estimate the influence
of noise on the prediction performance.

The tests were performed by generating artificial lists of 100 mass peaks. Each arti-
ficial peak list contained 4, 9, 14, 19, 24 or 29 peaks related to sequences containing a
sequence matching an arbitrary ’true motif’. The masses were randomly drawn from the
unified database (see article). Also Gaussian noise (10, 25 and 50 ppm) was added to
the peak list. We tested if MATERICS predicted motifs which, in combination with the
database, enabled to re-identify the associated ’true’ peptide sequences.

1. Define true epitope

2. Select n related peptides containing true epitope from a database

3. Select (100 - n) other peptides from the database

4. Save peptide list A

5. Save peak list (protonated masses of peptides)

6. Add gaussian noise to each mass

7. Use MATERICS to predict epitope from artificial peak list

8. Find peptide sequences in the database which correspond to mass in the peaklist
and the motif(s) predicted by MATERICS

9. Compare the predicted peptides to peptide list A

A benchmark script analyzes the MATERICS prediction and calculates scores using
the known sequences (list A). Each predicted motif is analyzed and scored. The over-
all score for a MATERICS prediction is measured by the area under the curve of the
specificity/sensitivity pareto plot as shown in figure 1.

An AUC of 1.0 is achieved, only if MATERICS was able predict a motif that was 100
% specific and 100 % sensitive. This signifies that one motif in the results list identified
all peptides belonging to the enriched group. An AUC of 0.5 can be achieved by guess.
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Figure 6.4: This sketch shows the pareto plot for MATERICS prediction results. The
area under the pareto curve (AUC) is the overall score for the prediction.

6.5.1 Example

The following example should illustrate the scoring method.
In the example a peak list containing 14 peaks for peptide sequences containing the

true motif ’LG[ALYES]R’ was used. The output of the benchmark script lists true pos-
itive, false positive and false negatives sequence matches for all predicted motifs and
prints the AUC score, summarizing MATERICS’ overall performance:

Peptide matches for predicted motif LG[A|E|L|Y]R

true sequence sequence predicted by MATERICS

GMDYLGSR related to epitope, no prediction false negative

MLDNLGYR MLDNLGYR true positive

HLDFLDILLGAR HLDFLDILLGAR true positive

QCCDCCGLGLR QCCDCCGLGLR true positive

AQPWADFTLLGAR ALQGALMIYFYR false positive

SSTAMTVMADLGER SSTAMTVMADLGER true positive
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GVGQADWTPDLGLR GVGQADWTPDLGLR true positive

VAAQQGFDLDLGYR VAAQQGFDLDLGYR true positive

FQNAYLELGGLGER FQNAYLELGGLGER true positive

HLMDPQVLEFLGSR related to epitope, no prediction false negative

VVFTCQATANPEILGYR LLDMELEMAFFVGPGNR false positive

PAQPESLCIVEMGGTEKQDELGER PAQPESLCIVEMGGTEKQDELGER true positive

EQPLDEELKDAFQNAYLELGGLGER EQPLDEELKDAFQNAYLELGGLGER true positive

EQPLDEEMKEAFQNAYLELGGLGER EQPLDEEMKEAFQNAYLELGGLGER true positive

GRSSLSLAKSVSTTNIAGHFNDESPLGLR GRSSLSLAKSVSTTNIAGHFNDESPLGLR true positive

LPWVCEEGAGIPTVLQGHIDCGSLLGYR LPWVCEEGAGIPTVLQGHIDCGSLLGYR true positive

TP FP TN FN specificity sensitivity

12 2 84 2 0.977 0.857

Peptide matches for predicted motif LG[E|L|Y]R

true sequence sequence predicted by MATERICS

GMDYLGSR related to epitope, no prediction false negative

MLDNLGYR MLDNLGYR true positive

HLDFLDILLGAR related to epitope, no prediction false negative

QCCDCCGLGLR QCCDCCGLGLR true positive

SSTAMTVMADLGER SSTAMTVMADLGER true positive

GVGQADWTPDLGLR GVGQADWTPDLGLR true positive

VAAQQGFDLDLGYR VAAQQGFDLDLGYR true positive

FQNAYLELGGLGER FQNAYLELGGLGER true positive

HLMDPQVLEFLGSR related to epitope, no prediction false negative

VVFTCQATANPEILGYR LLDMELEMAFFVGPGNR false positive

PAQPESLCIVEMGGTEKQDELGER PAQPESLCIVEMGGTEKQDELGER true positive

EQPLDEELKDAFQNAYLELGGLGER EQPLDEELKDAFQNAYLELGGLGER true positive

EQPLDEEMKEAFQNAYLELGGLGER EQPLDEEMKEAFQNAYLELGGLGER true positive

GRSSLSLAKSVSTTNIAGHFNDESPLGLR GRSSLSLAKSVSTTNIAGHFNDESPLGLR true positive

LPWVCEEGAGIPTVLQGHIDCGSLLGYR LPWVCEEGAGIPTVLQGHIDCGSLLGYR true positive

TP FP TN FN specificity sensitivity

11 1 85 3 0.988 0.786

Peptide matches for predicted motif LG[E|Y]R

true sequence sequence predicted by MATERICS

GMDYLGSR related to epitope, no prediction false negative

MLDNLGYR MLDNLGYR true positive

HLDFLDILLGAR related to epitope, no prediction false negative

QCCDCCGLGLR related to epitope, no prediction false negative

SSTAMTVMADLGER SSTAMTVMADLGER true positive

GVGQADWTPDLGLR related to epitope, no prediction false negative

VAAQQGFDLDLGYR VAAQQGFDLDLGYR true positive

FQNAYLELGGLGER FQNAYLELGGLGER true positive

HLMDPQVLEFLGSR related to epitope, no prediction false negative

VVFTCQATANPEILGYR LLDMELEMAFFVGPGNR false positive

PAQPESLCIVEMGGTEKQDELGER PAQPESLCIVEMGGTEKQDELGER true positive
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EQPLDEELKDAFQNAYLELGGLGER EQPLDEELKDAFQNAYLELGGLGER true positive

EQPLDEEMKEAFQNAYLELGGLGER EQPLDEEMKEAFQNAYLELGGLGER true positive

GRSSLSLAKSVSTTNIAGHFNDESPLGLR related to epitope, no prediction false negative

LPWVCEEGAGIPTVLQGHIDCGSLLGYR LPWVCEEGAGIPTVLQGHIDCGSLLGYR true positive

TP FP TN FN specificity sensitivity

8 1 85 6 0.988 0.571

Peptide matches for predicted motif LGER

true sequence sequence predicted by MATERICS

GMDYLGSR related to epitope, no prediction false negative

MLDNLGYR related to epitope, no prediction false negative

HLDFLDILLGAR related to epitope, no prediction false negative

QCCDCCGLGLR related to epitope, no prediction false negative

SSTAMTVMADLGER SSTAMTVMADLGER true positive

GVGQADWTPDLGLR related to epitope, no prediction false negative

VAAQQGFDLDLGYR related to epitope, no prediction false negative

FQNAYLELGGLGER FQNAYLELGGLGER true positive

HLMDPQVLEFLGSR related to epitope, no prediction false negative

PAQPESLCIVEMGGTEKQDELGER PAQPESLCIVEMGGTEKQDELGER true positive

EQPLDEELKDAFQNAYLELGGLGER EQPLDEELKDAFQNAYLELGGLGER true positive

EQPLDEEMKEAFQNAYLELGGLGER EQPLDEEMKEAFQNAYLELGGLGER true positive

GRSSLSLAKSVSTTNIAGHFNDESPLGLR related to epitope, no prediction false negative

LPWVCEEGAGIPTVLQGHIDCGSLLGYR related to epitope, no prediction false negative

TP FP TN FN specificity sensitivity

5 0 86 9 1.000 0.357

Overall MATERICS prediction score:

epibench2_9_15_10.peaklist 0.923172757475083 AUC

Sensitivity and specificity are for all predicted motifs are summarized in table 6.5.

predicted motif specificity sensitivity
LG[AELY]R 0.977 0.857
LG[ELY]R 0.988 0.786
LG[EY]R 0.988 0.571

LGER 1.000 0.357
Table 6.5: Summary results for all predicted motifs on an artificial peak list for the true

motif LG[ALYES]R

LG[AELY]R, LG[ELY]R and LGER form the pareto front.The AUC is calculated
from the sensitivity and specificity values by adding rectangular and triangular areas (see
figure 6.4)) :
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1.000 * 0.357 +

0.988 * (0.786 - 0.357) +

0.977 * (0.857 - 0.786) +

(1.000 - 0.988) * 1 / 2 +

(0.988 - 0.977) * (0.786 - 0.357) / 2 +

(0.977 - 0.000) * (1.000 - 0.857) / 2 = 0.9231

Three c-terminal motifs were used for generating artificial data: LGYR, LG[ALYES]R
and F[GT][WE]K. 10 artificial peak lists were generated for each motif, number of re-
lated peaks and noise setting. All peak lists were analyzed in MATERICS and scored
using the benchmark script.

The boxplots (figure 6.5, 6.6 and 6.7) summarize the overall MATERICS benchmark
results for the tested motifs. Of course prediction is easier if many peaks are attributable
to the motif. However, results show that prediction is feasible even if less than 10 % of
the peaks are related to motif enrichment (see figures 6.5 and 6.6). If a larger fraction
(20%) of the signal is related to the motif, MATERICS almost always achieves more
than 0.95 AUC. The method is more robust if signal noise is low. The prediction was
most stable if only a noise level of 10 ppm was added to the artificial data. This is most
visible for the F[GT][WE]K motif (figure 6.7). While prediction was robust at 10 ppm
for spectra with only 9 related peaks, this was not possible at signal noise level of 25 and
50 ppm.

6.6 Discussion
The predictions by MATERICS closely reproduced the binding motifs identified by the
positional peptide library experiments in different cell lines for the three antibodies.
However the comparison also revealed some discrepancies between the control exper-
iment and the MATERICS results. The motif for the anti-AMTR antibody found by the
library experiment is more complex than the motifs predicted by MATERICS. This could
be a consequence of complexity restrictions by the algorithm. The complexity scoring
function penalizes an additional amino acid at the first position ([AS]?TR instead of
A?TR) in terms of the degree of variability at the second position. The motif exceeds the
complexity bound and is therefore not considered.

The binding property of the anti-EIER antibody was the most difficult to predict. MA-
TERICS did not detect a significant enrichment in the pre-selection step for most spectra.
Instead of predicting a wrong motif, it did not make any prediction at all, and instead
reported that no significant enrichment was detectable. If the input data passed the pre-
selection step, the predicted motifs were observable close to the results of the peptide
libraries. On only one occasion did MATERICS make a wrong prediction: a comparison
to the other technical replicates of the same immunoprecipitation ruled out this result.
As shown in table 6.2, experiments for the anti-EIER antibody resulted in bad quality
spectra for the HEK cell lysate, whereas immunoprecitipations from HELA- and A357-
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Figure 6.5: Box plots of the MATERICS AUC benchmark for artificial peaklists (n = 10)
with the true epitope LGYR
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Figure 6.6: Box plots of the MATERICS AUC benchmark for artificial peaklists (n = 10)
with the true epitope LG[ALYES]R
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Figure 6.7: Box plots of the MATERICS AUC benchmark for artificial peaklists (n = 10)
with the true epitope F[GT][WE]K
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digests enabled motif prediction in many technical replicates. On the whole the HELA
digest appears to be the most stable ’standard’ sample for motif prediction pertaining to
the three observed binders.

Although the results are obviously dependent on the observed epitope, it must be noted
that using HELA cell lysate does not always produce the best prediction results. Some
terminal epitopes are more abundant in some cell lines than others. Reports concluded
that each cell line leads to the best MCC score for a given binder (results marked bold
in table 6.2). There was adequate reproducibility within different immunoprecipitates
and the technical replicates, at least for the stronger binders. The results obtained from
different cell lines show a reasonable level of agreement. Apart from the minor variation
described, this novel approach appears to work independently of the chosen line. This
strengthens flexibility as cell lines in stock at the lab can be used to perform MATERICS
experiments.

Benchmark experiments using artificial data showed, that MATERICS can make reli-
able predictions even if only a minor fraction of the signals found in a peak list is related
to the enriched epitope.

6.7 Conclusion
Our experimental study shows that TXP-TEA and MATERICS are able to identify ter-
minal binding motifs in immunoaffinity MS experiments. The motifs obtained closely
resemble patterns found by using a peptide library approach. The described methods for
motif elucidation lead to a substantial reduction in costs. In addition the novel method en-
ables the weighting of isobaric variations in the binding motifs. These techniques might
well lead to improved peptide identification algorithms, which exploit the existing data
on potentially enriched sequences during the search process. Our findings are relevant to
other fields of bio-medical research, such as in the identification of the binding proper-
ties of MHC molecules. Future versions of the algorithms will include options to identify
internal epitopes and binding motifs as well as new ways to deal with post-translational
modifications.
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Chapter 7

A model for the distribution of short
epitopes in proteomes

The purpose of this short chapter is to analyze the set of possible TXP epitopes in a
proteome from a theoretical perspective. This makes it possible to estimate the potential
of the TXP method, when applied on a set of peptides of arbitrary size, and the effect
of choosing epitope length or different proteolytic agents. Also a closed-form statisti-
cal model for the enrichment of terminal sequences in peptide lists is introduced, and
compared to the MATERICS approach described in Chapter 6.

7.1 Proteolytic cleavage of protein sequences

The ’bottom-up’ proteomics approach always includes the enzymatic digestion of pro-
teins prior to further analysis. Endopeptidases (e.g. trypsin, Lys-C, Arg-C,..) with a
known specificity cleave proteins within the amino acid chain. These enzymes are usu-
ally found in the digestive system and, in higher mammals, are involved in blood clotting,
the immune system and inflammation. The enzyme-specific cleavage pattern is mostly
determined by the amino acids at the cleavage site. In order to build a reasonable hy-
pothesis on which peptides can be expected in a digested complex protein sample de-
rived from body-fluids or tissues, it is necessary to select a complete database of protein
sequences and perform an in-silico digestion of the sequences.

The most commonly used enzyme is certainly trypsin. Trypsin catalyzes the cleavage
of peptide bonds c-terminal from arginine and lysine. If proline is found in the n-terminal
position the cleavage is strongly inhibited. There are several tools for the calculation of
in-silico tryptic digest like Peptide Cutter and EMBOSS digest. In the further analysis
we assume a full tryptic digest. Miscleavage (unexpected cleavage) and missed cleavage
events are dismissed. While such events are almost always observed they are considered
to be non-reproducible exceptions. Resulting peptides are therefore not suited as targets
for quantitative analysis.
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Chapter 7 A model for the distribution of short epitopes in proteomes

7.2 Epitope statistics
How many different epitopes should be expected in an average proteome? And how
often does an epitope repeat? Answers to these questions will be found in this section.

The total number of possible epitopes depends on the epitope length and the used
protease. Naively the number of all possible sequences of length l is 20l , since there
are 20 different amino acids. If the probability for each amino acid at all positions is
higher than 0, we expect to find all possible epitopes in a large body of sequences. How-
ever if a protease is used, the set of sequences changes according to the specificity of
the protease. Trypsin cleaves c-terminal of L (lysine) or K (arginine), if no P (proline)
follows. Thus the number of c-terminal epitopes is 18l−12, or 18l−12+ 2(l− 2)18l−32
when considering the proline as an inhibitor of trypsin cleavage.

If m epitopes are possible, how many of them are to be found in a database of N dif-
ferent peptides? The probability P(k|m,N) that exactly k different epitopes are observed,
could be calculated using the binomial distribution, if each epitope would occur with the
same probability. Thus the P(k|m,N) could be expressed as

P(k|m,N) =

(
m
k

)((
1− 1

n

)m)k(
1−
(

1− 1
n

)m)n−k

(7.1)

and the expected number of different terminal epitopes could be estimated by

E(n,m) = m
(

1−
(

1− 1
n

)m)
(7.2)

The distributions of epitope frequencies in real datasets, as the UniProt reference pro-
teomes, however do not seem to be binomial at all (see figure 7.1). This can be explained
by the oversimplified assumption that the different terminal sequences have equal oc-
currence probability 1/n. It is known, that some amino acids occur less frequently than
others, so this can not be the case. Studies have shown that the amino acid frequencies
are related to length of the bio-synthesis pathway and the number of synonymous codons
(Akashi and Gojobori, 2002).

This must reflect in the distribution of epitope frequencies as it influences the likeliness
of each n-gram. Given a terminal epitope sequence t = a1a2a3a4a5 . . .an its probability
to be found in a proteome is

Pseq(t) = ∏
i

pai (7.3)

. Since each n-gram has a distinct probability a multinomial distribution function has
to be used. It directly follows that in large datasets about N Pseq(t) peptides terminating
in t should be found.

In order to know how well TXP antibodies could cover a proteome of arbitrary size,
the distribution of epitope frequencies is key.
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Table 7.1: Amino acid frequencies from different sources and databases

TREMBL Swissprot Expasy

Ala A 8,6% 8,3% 8,3%
Arg R 5,4% 5,5% 5,7%
Asn N 4,1% 4,1% 4,4%
Asp D 5,3% 5,5% 5,3%
Cys C 1,2% 1,4% 1,7%
Gln Q 4,0% 3,9% 4,0%
Glu E 6,2% 6,8% 6,2%
Gly G 7,1% 7,1% 7,2%
His H 2,2% 2,3% 2,2%
Ile I 6,1% 6,0% 5,2%

Leu L 9,9% 9,7% 9,0%
Lys K 5,3% 5,8% 5,7%
Met M 2,5% 2,4% 2,4%
Phe F 4,1% 3,9% 3,9%
Pro P 4,6% 4,7% 5,1%
Ser S 6,6% 6,6% 6,9%
Thr T 5,6% 5,3% 5,8%
Trp W 1,3% 1,1% 1,3%
Tyr Y 3,1% 2,9% 3,2%
Val V 6,8% 6,9% 6,6%

First the terms epitope frequency class and epitope frequency set should be defined. A
frequency class tk is defined as the set of epitopes repeating exactly k times. E.g. if the
epitope -AMTR and -LGYR are the only epitopes repeating 42 times in the database t42
would be {-AMTR , -LGYR } and |t42|= 2. The respective epitope frequency set r42 con-
tains the 84 peptides matching the epitopes in t42. The probability set ~p = {Pseq(t)|∀t ∈
Tl,protease} contains probabilities of all possible epitopes.

Good (1953) describes how to estimate the ’frequencies of frequencies’, the size of
any epitope frequency class tn, from the vector of individual probabilities. The expected
size of an epitope frequency class tk is calculated as follows

Nk = E(|tk|) = ∑
t∈Tl,protease

(
N
k

)
Pseq(t)k(1−Pseq(t))N−k (7.4)

with database size N, set of epitopes Tl,protease and associated probabilities. The prob-
ability of a peptide x to be part of the epitope peptide set rk can be estimated as

P(x ∈ rk|N, p) =
k E(|tk|)

N
(7.5)

Using a table of amino acid frequencies one can calculate the probabilities of all 183×
2 = 11.664 tryptic tetra-peptides using a simplified model, neglecting the occurrence
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Chapter 7 A model for the distribution of short epitopes in proteomes

of RP or KP within the terminus. As shown in the plot in figure 7.1 using amino acid
frequencies as found in table 7.1 lead to a close fit to observed epitope repeat frequencies.
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Figure 7.1: Fit of the Good model using TREMBL (solid line), Expasy (dashed line)
from table 7.1 to the observed epitope frequency distribution for tryptic
UniProt peptides (blue). The plot also shows a fit using an amino acid com-
position from the same dataset (dotted line)

The expected number of epitopes is a special case, also found in Good (1953):

E(k|N, p) = |T |−∑
t∈T

(1− pt)
N (7.6)

with database size N, set of epitopes E and associated probabilities p. The plot if
figure 7.2 shows the number of expected different epitopes depending on the database
size. A database containing 100.000 tryptic peptides is expected to contain already 99%
of all possible terminal sequences of length 4.

The Good model explains the observations very well, so it should be possible to use it
for some deductions, for example on the length of the targeted epitope.

We shall further calculate the probabilities for peptides to belong to a given frequency
class in average sized proteome digest of 106 peptides, depending on the epitope length.
From the perspective of wishing to cover a decent, but not too large number of proteins,
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Figure 7.2: Relationship of the database size to the expected number of different tryptic
tetramer epitopes usind TREMBL AA frequencies

by a single TXP antibody such a binder should theoretically bind 50 to 600 peptides. In

other words ideally the binder is part of
600⋃

k=50

rk, the union of these frequency classes r50

to r600. This is given by

P

(
x ∈

600⋃
k=50

rk

)
=

600

∑
k=50

E(|tk|)k
N

. (7.7)

The results are 5.7 % for epitopes of length 3, 87.2 % for length 4 and 0.5 % for
length 5. These numbers have been calculated using the respective probability vectors
derived from the amino acid frequencies found in table 7.1 . This means that epitopes
of length 4 in theory are best suited regarding this aspect. It is almost certain that a
protein digested to approximately 40-50 different peptides contains at least one tryptic
epitope which is nor extremely rare and neither very common in the proteome. When
considering longer or shorter epitope lengths many epitopes will either repeat very often
or be almost unique, nullifying the advantage of these binders.
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7.3 Epitope enrichment in sequence lists
A central question arising when analyzing TXP data is: ’How likely is it to observe
multiple peptides sharing the same terminus in a list of sequences?’ This is particularly
important when analyzing the capture specificity and quality of newly generated antibod-
ies. As presented in chapter 6 one solution is to use sampling to estimate p-values for an
enrichment event EΦ(i, j), which is defined as: i matching signals out of j masses from
the same epitope class, by applying the parameters Φ = (D,εtol, t, l,k) in a peak list of k
masses. This approach works reasonably well (Planatscher et al., 2014), however it be-
comes increasingly inaccurate and sampling needs to be redone for each database/search
configuration. We shall deduce an analytical approach to this question in this chapter,
also including distribution models introduced earlier in this section.

When introducing the TXP-TEA and MATERICS algorithms in chapter 6 we exclu-
sively deal with enrichment events to be observed in mass lists deduced from spectra.
Working with masses always includes dealing with measurement tolerances, isobaric se-
quences, etc. For simplicity the following probabilistic models start from sequence lists.
Note, that this does not dilute the applicability of the deduction to real datasets. In the
case of MS data the mass list can be easily transformed to a sequence list, and tandem
MS experiments directly lead to sequence list results anyway.

In order to work with lists of sequences instead of masses or signals, the enrichment
event EΠ(i, j) will be further defined as: i matching sequences out of j sequences from
the same epitope class, using the parameters Π = (D, t, l,k), in a list of k sequences. The
probability of observing EΠ(i, j) of course depends on the size of the epitope frequency
set r j. N j denotes the expected number of j-repeating epitopes.

We also introduce the event ẼΠ(i, j), as the event of observing one specific - opposed
to any - epitope from t j. The probability of this event follows a hypergeometric distri-
bution. In this case the database is the ’urn’ containing N ’balls’, the peptides matching
the specific epitope in database j is the number of ’red’ balls, the number of matching
peptides in the sample i is the number of successful picks, and the sequence list length k
gives the number of tries :

P(ẼΠ(i, j)) =

( j
i

)(N− j
k−i

)(N
k

) (7.8)

E.g. if the database of 106 peptides contains 15 LGYR-peptides and we would ran-
domly pick 200 peptides, the probability of oberving 2 LGYR-peptides would be:

P(ẼΠ(2,15)) =

(15
2

)(106−15
200−2

)(106

200

) = 4.16826e−06 (7.9)

which is, of course, an extraordinarily improbable event. The odds to observe it are
about 1:240000. However we are not interested in the odds of observing 2 of 15 LGYR
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peptides, but the odds of observing 2 peptides of any epitope occurring 15 times in the
database. This odds can be derived from the probability for the specific event. The event
EΠ(i, j) is the inclusive disjunction of the N j possible ẼΠ(i, j)-events.

EΠ(i, j) =
N j⋃

ẼΠ(i, j) (7.10)

All specific ẼΠ(i, j)-events can be considered as independent. This is a valid assump-
tion for i� k (only few of the k observed sequences have identical terminal epitopes),
which is the relevant case in real datasets. Because the events are independent the union
probability can be simplified to a closed form using DeMorgan’s law:

P(ẼΠ(i, j)) = P

(N j⋃
ẼΠ(i, j)

)
(7.11)

= 1−P

(N j⋂
¬ẼΠ(i, j)

)
(7.12)

= 1−
N j

∏(1−P(ẼΠ(i, j))) (7.13)

= 1− (1−P(ẼΠ(i, j)))N j (7.14)

= 1−

(
1−

( j
i

)(N− j
k−i

)(N
k

) )N j

(7.15)

When ranking sequence enrichments by p-value-based scores, the score also includes
events which are more extreme. A more extreme event would be either observing more
than i of j sequences, or i of less than j epitopes, or both. The event of observing ’i
or more of j or less’ shall be formalized as EΠ(≥ i,≤ j). The event of observing ’i or
more of j’ shall be formalized as EΠ(≥ i, j). In analogy to P(EΠ(i, j)) the probability
of EΠ(≥ i, j) is
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P(EΠ(≥ i, j)) = P

(N j⋃
ẼΠ(≥ i, j)

)
(7.16)

= 1−P

(N j⋂
¬ẼΠ(≥ i, j)

)
(7.17)

= 1−
N j

∏(1−P(ẼΠ(≥ i, j))) (7.18)

= 1− (1−P(ẼΠ(≥ i, j)))N j (7.19)

= 1−

(
1−

(
1−

i−1

∑
a=0

( j
a

)(N− j
k−a

)(N
k

) ))N j

(7.20)

= 1−

(
i−1

∑
a=0

( j
a

)(N− j
k−a

)(N
k

) )N j

(7.21)

Furthermore the p-value can be deduced by forming the inclusive disjunction for the
epitope frequency classes ti, ti+1, . . . , t j:

P(EΠ(≥ i,≤ j)) = P

(
j⋃

m=i

EΠ(≥ i,m)

)
(7.22)

= 1−P

(
j⋂

m=i

¬EΠ(≥ i,m)

)
(7.23)

= 1−
j

∏
m=1

(1−P(EΠ(≥ i,m))) (7.24)

By inserting (7.21) into (7.24), a closed form can be found:

P(EΠ(≥ i,≤ j)) = 1−
j

∏
m=i

1−

1−

(
i−1

∑
a=0

(m
a

)(N−m
k−a

)(N
k

) )Nm
 (7.25)

= 1−
j

∏
m=i

(
i−1

∑
a=0

(m
a

)(N−m
k−a

)(N
k

) )Nm

(7.26)

This score can be efficiently calculated even for very large sequence lists. Since the
size of the epitope frequency classes N j can be estimated using (7.4), it is possible to
return a score for databases of arbitrary size. Alternatively N j can be tabulated for each
individual database, reflecting the specific distribution characteristics.
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Numerically it makes sense to calculate the logarithmic probability of the counter-
event, because the P(EΠ(≥ i,≤ j)) can become very small, leading to underflows.

EScore(Π, i, j)) = log(P(¬EΠ(≥ i,≤ j))) (7.27)

= log

 j

∏
m=i

(
i−1

∑
a=0

(m
a

)(N−m
k−a

)(N
k

) )Nm
 (7.28)

=
j

∑
m=i

log

( i−1

∑
a=0

(m
a

)(N−m
k−a

)(N
k

) )Nm
 (7.29)

=
j

∑
m=i

Nmlog

(
i−1

∑
a=0

(m
a

)(N−m
k−a

)(N
k

) )
(7.30)

The score has the characteristic of a p-value and only makes sense in conjunction with
a significance threshold. As observed for the TXP-TEA algorithm every score calculated
is the result of a significance test, which falls under the definition of multiple testing,
if strictly interpreted. Therefore the usual threshold of 5% should be divided by the
number of tested epitopes m, using the Bonferroni correction for multiple comparisons.
This gives an EScore-threshold EScoret of

EScoret(α) =−log
(

α

m

)
(7.31)

Only enrichment events with an EScore≥ EScoret(α) should be considered as signif-
icant, and should eventually be included in a model for the true binding characteristics of
the antibody. For sequence list L the set SΠ(L) should denote the epitopes fulfilling this
criterion. A simple procedure to combine all enriched sequence variants to one model
is to calculate rate of enrichment, defined as the relative amount of sequences in the
database which have been observered in the sample

re(a) =
count[a]

totalcount[a]
=

i
j

(7.32)

for all significantly enriched sequences. The weight of this epitope in the overall binding
motif for a sequence list L can then be obtained by:

w(a,X) =
re(a)

∑b∈SΠ(L) re(b)
=

i
j

(7.33)

All of these operations can be implemented in a spreadsheet, providing lookup table for
the epitope occurence (totalcount[a] or j) and repeat frequencies (Nm), and integrate
well to the usual workflow in the lab. The user just copies the sequence list L to the
spreadsheet, and obtains the ranking of enriched epitopes and a link to the resulting
motif depicted as a sequence logo.
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Table 7.2: Average Spearman rank correlation coefficient when comparing E-Score rank-
ing to TXP TEA ranking based on results from 108 different mass spectra

A357 HEK HELA average
AMTR 0.928 0.931 0.930 0.930
EIER 0.908 0.893 0.910 0.904
LGYR 0.927 0.929 0.926 0.927
average 0.921 0.918 0.922 0.920

7.4 Validation of the model
In order to compare the result obtained by the TXP TEA algorithm based on sampling
estimation and the enrichment model described in this chapter, screening results from
the MATERICS paper (Planatscher et al., 2014) have been analyzed by both methods. It
has already been shown that results obtained by TXP TEA are comparable to data from
expensive peptide library experiments. If the enrichment model calculates similar linear
epitope rankings, the model itself and its assumptions are valid.
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Figure 7.3: Comparison of the E-Score and the TXP-TEA p-value for a specific
prediction

The methodology of comparison is described as follows. First a ranking based on the
p-value of TXP-TEA and the E-score of the model are calculated. Then the rankings are

compared using Spearmans Ranking Corrrelation coefficient rs = 1− 6∑i d2
i

n · (n2−1)
where

di = rtea(ei)− rmodel(ei) is the difference in rank.
Result of this evaluation are shown in table 7.4 and figure . On average the correlation

coefficient is 0.920 for all tested rankings (108 mass spectra). This demonstrates that the
ranking by E-Score is highly correlated to the results obtained by TXP TEA.

106



Chapter 8

Summary and concluding remarks

It has been shown that modern biochemical test development can significantly profit from
combinatorial optimization.

Multiplex assays do require complex planning decision during implementation and
subsequent validation. This work shows that classical integer programming approaches
can help to find optimal solutions to these decision problems.

First this thesis elaborated on multiplex serological assays for the simultaneous mea-
surement of antibody concentrations in serum. Three problems have been modelled in
this application domain, which could be addressed by combinatorial optimization.

The first treated problem was to systemically pool samples in order to create a multi-
positive control sample. While this has been done before, here a theoretical foundation
has been proposed and proven by an actual algorithmic implementation and systematic
experiments. We could show that pooled samples exhibit a predictable serological pro-
file. A pooled sample with the desired properties can be created by using this prediction.

The next two problems dealt with multiplexed assay validation -an essential require-
ment imposed by health authorities. For serological assay validation it must be shown
that low, medium, and high levels can be reliably measured. Reference samples cannot
be easily obtained in the realm of serological assays, because the target analyte cannot be
synthesized. The only feasible way to validate such an assay is to measure a patient sam-
ple with low, a second sample with medium, and yet another one with a high level of the
antibody. We have shown that it is possible to choose a few samples such that the com-
bination of their profiles would cover all ranges for most analytes, such that validation
cost and effort was significantly reduced.

The last approached problem in the serological assay domain combined the latter
methods to validate multiplexed assays using a set of pooled samples. By the composi-
tion of sample pools the number of serological patterns is extended exponentially. This
made it much more likely to find a combination of patterns that allows the validation
of the observed targets. A novel algorithm combining fast enumeration and a set cover
formulation has been introduced. Using the approach it was possible to improve assay
validation to optimality.

The next problem was a detour to the domain of planar assay and combinatorial de-
signs. A common issue when designing protein microarrays is the need to avoid side-
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effects during read-out. It is likely that the intensity measured on one spot is influenced
by its neighboring spots. Therefore it is desirable to avoid placing replicates of the sam-
ple twice or more often in the same neighbourhood if such a situation can be avoided. In
order to provide solutions to this practical problem in the lab, a small application named
ProChOpt was developed, which can be easily used to solve up to medium- or large-sized
sample arrangement problems. The constraint programming formulation implemented in
ProChopt was able to provide answers also on the question if it is at all feasible to place
a number of replicates on a predefined grid, respecting the imposed layout restrictions,
or not.

The major part of the thesis dealt with optimization and data analysis for Triple X Pro-
teomics - immunoaffinity assays using antibodies binding short linear, terminal epitopes
of peptides.

It has been shown that the problem of choosing a minimal set of epitopes for TXP
setups, which combine mass spectrometry with immunaffinity enrichment, is equivalent
to the well-known set cover problem. In combination with a filter pipeline that eliminates
unsuitable peptide-epitope combinations, we proposed different methods for the solution
of the problem. For small datasets it was possible to solve the problem optimally with
minimal computational effort using commercial or free solvers. Larger datasets, like full
proteomes, required the use of heuristics, or respectively a running time limitation of the
branch-and-bound search in the integer program solvers.

Sandwich immunoassays (SIA) use two antibodies to capture and detect a target mole-
cule. TXP SIAs do the same with peptides as targets, by combining the respective C-
terminal and N-terminal binder. The task of selecting the smallest-possible sets of C- and
N-terminal epitopes for a given set of proteins was different from the immunoaffinity-MS
optimization problem. Here quadratic constraints had to be considered. These models
were linearized, resulting in very high dimensional problem formulations. Because of
the huge dimensions these models were too difficult to solve. A greedy heuristic and a
meta-heuristic using local search was presented, which proved to be more efficient than
pure ILP formulations.

This concluded the optimization section of the work. All models described in this
thesis were implemented in the novel Java software framework named SCPSolver. This
modelling framework itself is not restricted to the optimization problems outlined in this
work, and is applicable to many problems that can be formulated as integer programs.
While the main design goal of SCPSolver was usability, it also provides a basic modelling
language, easy deployment and platform independence.

The various applications of combinatorial mathematics in validation, planning and
conception of immunoaffinity assay experiments which have been tackled in this work,
represent merely a fraction of the potential for mathematical optimization in the realm of
lab work. Due to the increasing complexity of setups, such as the degree of multiplexity,
and the access to data and sample material in bio-banks, and the limited availability
of lab-time - the need to make optimal decisions is a key element for the success of
biochemical research and test development.
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The second part of this thesis explored epitope enrichment statistics for Triple X Pro-
teomics. One question arising when analyzing TXP data was: ’How likely is it to observe
multiple peptides sharing the same terminus?’ This is particularly important when ana-
lyzing the capture specificity and quality of newly generated antibodies. The algorithms
TXP-TEA and MATERICS, presented in this thesis, were able to identify binding char-
acteristics of TXP antibodies from data obtained in immunoaffinity MS experiments. The
resulting motifs closely resembled patterns found by using an expensive peptide library
approach. The described methods for motif elucidation lead to a substantial reduction in
costs. In addition the novel method enables the weighting of isobaric variations in the
binding motifs. Similar techniques might well improve peptide identification algorithms,
which exploit the existing data on potentially enriched sequences during the search pro-
cess. Our findings are relevant to other fields of bio-medical research, such as in the
identification of the binding properties of MHC molecules.

Also the set of possible distinct TXP epitopes in a proteome has been examined from
a theoretical perspective. A multinomial statistical model explains the distributions ob-
served in sequence databases, and it was possible to use it for strategical deductions on
the length of the targeted epitope. E.g. using the model, it has been shown the epitope
length of 4 amino acids provides the best balance of coverage and specificity.

Further it was possible to derive an alternative analytical scoring method for epitope
enrichment in sequence lists. This model can certainly be expanded to detect enrich-
ment of internal sequences, and therefore be applied to analyze binding epitopes of any
peptide-specific binding structure.

Through this work resources in the lab can be used more efficiently and it provides
new tools for immunoaffinity data analysis. Hopefully, this will contribute to the devel-
opment of validated, well-characterized and economically feasible new tests in research
and diagnostics.
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