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Zusammenfassung

Im Rahmen dieser Dissertation werden wir uns mit Schrödinger-Operato-
ren von der Gestalt

HE “´∆E
gε ` V E ` εHE

1

auf einem hermiteschen Vektorbündel (mit Totalraum) E über einer ε-
dünnen Basismannigfaltigkeit M beschäftigen. Hierbei wird die kinetische
Energie durch den Zusammenhangs-Laplace-Operator ´∆E

gε bezüglich ei-
nes metrischen Zusammenhangs∇E auf E mit Dirichlet-Randbedingungen
beschrieben. Darüber hinaus repräsentiert V E ein EndpEq-wertiges Poten-
tial und der Differentialoperator εHE

1 eine kleine Störung. Die Eigenschaft
von M ε-dünn zu sein bedeutet intuitiv, dass die Größenordnung einiger
(vertikaler) Richtungen mit einem kleinen Faktor ε ! 1 gegenüber den
übrigen (horizontalen) Richtungen skaliert. Wir hingegen werden den
gleichwertigen Standpunkt einnehmen, dass wir die vertikale Längenska-
la festhalten und die horizontalen Richtungen mit dem Faktor ε´1 groß
skalieren.

kleine Richtungen, Op1q

große Richtungen, Opε´1q

pM , gεq

Wir werden dies mittels einer riemannschen Metrik g “ gH ` gV auf M
und einer geeigneten Reskalierung

gε “ ε´2 gH` gV “ ε
´2pgH` ε

2 gVq
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umsetzen, was schließlich zu einer Aufspaltung

´∆E
gε “´ε

2∆E
H ´∆

E
V (1)

des zugehörigen Laplace-Operators führt. Die Untersuchung solcher ska-
lierten Metriken wird häufig als der adiabatische Limes bezeichnet. Wir
werden eine Komplexitätsreduktion des Operators HE durchführen, indem
wir ausnutzen, dass der Einfluss der vergleichsweise kleinen vertikalen
Richtungen immer weiter vernachlässigt werden kann. Genauer gesagt
werden wir es uns zum Ziel setzen, einen effektiven Operator HP

eff abzu-
leiten, welcher lediglich auf einem Vektorbündel P über den horizontalen
Richtungen wirkt und wesentliche Eigenschaften von HE wie die erzeugte
Dynamik oder das Spektrum approximiert.

Als Hauptanwendung für diese Fragestellung dient uns die geometrische
Situation, bei welcher M von einer Familie von ε-dünnen Tubenumge-
bungen T ε um eine Untermannigfaltigkeit eines höherdimensionalen
euklidischen Raums herrührt. Die Untersuchung des Laplace-Beltrami-
Operators (d.h. des Zusammenhangs-Laplace-Operators auf dem trivia-
len Linienbündel T ε ˆC bezüglich des flachen Zusammenhangs d) mit
Dirichlet-Randbedingungen entspricht der quantenmechanischen Bewe-
gung von ungeladenen, spinlosen Teilchen, welche innerhalb der Tube T ε

lokalisiert sind. Aus diesem Grund nennt man solche Tuben in der Literatur
auch Quantenwellenleiter. Die Erweiterung auf Zusammenhänge von der
Form d` iA erlaubt es uns geladene Quantenteilchen zu betrachten, die
an ein externes magnetisches Potential A koppeln. Zusätzlich ermöglicht
unser geometrischer Rahmen eine Verallgemeinerung zu Spin behafte-
ten, geladenen Teilchen, welche an ein möglicherweise nicht-abelsches
Eichfeld koppeln.

Die Betrachtung einer dünnen Mannigfaltigkeit mit wohl separierten
Längenskalen (große horizontale Richtungen und kleine vertikale Rich-
tungen) kann tatsächlich als ein adiabatisches Problem aufgefasst werden.
Diese Skalentrennung bedeutet, dass sich zu den vertikalen Richtungen
gehörende Eigenschaften sehr langsam entlang der horizontalen Richtun-
gen verändern und somit in einer festen Konfiguration verharren. In der
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Tat erinnert die Struktur (1) des Laplace-Operators stark an das bekann-
teste Beispiel des zuvor genannten Prinzips: Bei der Born-Oppenheimer-
Näherung in der Moleküldynamik wird die Annahme ausgenutzt, dass die
leichten (schnellen, „vertikalen“) Elektronen ihren schweren (langsamen,
„horizontalen“) Kernen adiabatisch folgen, d.h. dass sich der Eigenzustand
der Elektronen augenblicklich der momentanen Position der Kerne anpasst.
Daraus folgt, dass die Dynamik der Kerne durch eine effektive Gleichung
auf ihrem eigenen Konfigurationsraum von niedrigerer Dimension geregelt
wird, wobei der Einfluss der Elektronen durch ein effektives elektronisches
Potential zum Ausdruck kommt. Dieser Reduktionsprozess (das „Einfrieren
der elektronischen Freiheitsgrade“) nennt man adiabatisches Entkoppeln.

Aufbau der Arbeit und Übersicht der Ergebnisse

In Kapitel 2 werden wir ausführlich die Geometrie eines hermiteschen
Vektorbündels E πE

ÝÑ M über einer ε-dünnen Mannigfaltigkeit pM , gεq
beleuchten. Dabei werden wir M selbst durch ein Faserbündel M

πM
ÝÑ B

mit kompakten Fasern Mx “ π
´1
M pxq, x P B, modellieren. Es wird sich

herausstellen, dass die Verknüpfung der beteiligten Bündel als ein Faser-
bündel E über B mit Projektion ΠE “ πM ˝πE betrachtet werden kann,
wobei die Fasern Ex “ Π

´1
E pxq hermitesche Vektorbündel über Mx für alle

x P B sind (siehe Proposition 2.1). Die Aufspaltung (1) legt es nahe, den
Schrödinger-Operator HE gemäß

HE “´ε2∆E
H ` εH

E
1 `HF

auf H“ L2pEq aufzuteilen, wobei HF den ε-unabhängigen, ΠE -faserwei-
sen, selbstadjungierten Operator

HFpxq “ ´∆Ex
gMx
` V E

ˇ

ˇ

Mx

mit Dirichlet-Randbedingungen bezeichnet. Da die Fasern Mx kompakt
sind, besteht das Spektrum von HFpxq lediglich aus Eigenwerten mit end-
licher Vielfachheit. Deshalb werden wir uns mit Eigenbändern λ : B Ñ R
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befassen, für die λpxq P σpHFpxqq und die zugehörige faserweise spektra-
le Projektion P0pxq der Gleichung HFpxqP0pxq “ λpxqP0pxq für alle x P B
genügen. Das Bild von P0pxq beinhaltet gerade die λpxq-Eigenschnitte und
spannt einen faserweisen, endlich dimensionalen Unterraum von L2pExq

auf. Diese Unterräume können zu einem Vektorbündel P πP
ÝÑ B von end-

lichem Rang zusammengefügt werden, sofern das zugrunde liegende
Eigenband λ vom Rest des Spektrums durch eine gleichmäßige Lücke
getrennt ist.

Ein natürlicher Kandidat zur Approximation von HE ist der adiabati-
sche Operator HP

a “ P0HE P0 auf L2pPq. Mit der Maßgabe, dass rHE , P0s “

r´ε2∆E
H` εH

E
1 , P0s “Opεq in einem geeigneten Sinne gilt, ist der adiaba-

tische Operator ε-nahe am anfänglichen Operator auf dem adiabatischen
Unterraum P0H, d.h.

`

HE ´HP
a

˘

P0 “
`

´ε2∆E
H ` εH

E
1

˘

P0´ P0

`

´ε2∆E
H ` εH

E
1

˘

P0

“
“

´ε2∆E
H ` εH

E
1 , P0

‰

loooooooooomoooooooooon

“Opεq

P0

“Opεq.

Dies lässt sich auf eine näherungsweise Invarianz des Unterraums P0H
unter der Wirkung von e´iHE t für endliche Zeiten t “ Op1q übertragen.
Sobald man jedoch eine Invarianz für größere Zeiten beweisen will, muss
man die spektrale Projektion P0 durch eine superadiabatische Projektion
Pε “ P0`Opεq ersetzen. Deren Konstruktion wird in Kapitel 3 durchge-
führt. Wir werden dabei in Proposition 3.17 zeigen, dass für alle n P N eine
orthogonale Projektion Pε existiert, sodass rHE , Pεs “ Opεn`1q in LpHq
für beschränkte Energien gilt.

In Kapitel 4 werden wir uns der Aufstellung der (abstrakten) Haupter-
gebnisse dieser Arbeit widmen. Hierbei werden wir stets

(i) angemessene Beschränktheitseigenschaften für die Geometrie der
beteiligten Bündel E πE

ÝÑ M und M
πM
ÝÑ B (siehe Bedingung 2.2),

(ii) angemessene Beschränktheitseigenschaften für die Störung εHE
1
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und das Potential V E (siehe Bedingung 2.16)

(iii) und eine gleichmäßige spektrale Lücke für das Eigenband λ (siehe
Bedingung 2.26)

annehmen. Die superadiabatische Projektion Pε dient als Ausgangspunkt
für den letztendlichen effektiven Operator. Man erhält ihn, indem man HE

zunächst auf den superadiabatischen Unterraum PεH einschränkt und
dann mittels eines unitären Operators Uε, welcher Pε und P0 miteinander
verflechtet (siehe Lemma 4.2), zurück auf L2pPq abbildet:

Theorem 1 (Theorem 4.3) Es gelten die drei oben genannten Bedingun-
gen. Dann existieren für alle n P N und Λ ą 0 ein effektiver Operator
HP

eff “ U:ε PεH
E PεUε auf L2pPq sowie Konstanten C ą 0 und ε0 ą 0, sodass










`

e´iHE t ´ Uεe
´iHP

eff t U:ε
˘

Pε1p´8,ΛspH
Eq










LpHq
ď Cεn`1 |t|

für alle 0ă ε ă ε0 erfüllt ist.

Es sei darauf hingewiesen, dass der ursprüngliche Operator HE auf L2-
Schnitten von E (einem Vektorbündel über M von endlichem Rang) wirkt,
während HP

eff auf L2-Schnitten von P (einem Vektorbündel über B von
endlichem Rang) operiert. Die Approximation der von HE erzeugten Dyna-
mik durch die von HP

eff generierte Dynamik markiert somit einen Prozess
der Dimensionsreduktion. Neben den jeweiligen Dynamiken besteht auch
ein gewisser Zusammenhang zwischen den Spektren:

Theorem 2 (Theorem 4.4) Sei δ ą 0 beliebig und es gelten die Vorausset-
zungen von Theorem 1. Dann gibt es Konstanten C ą 0 und ε0 ą 0, sodass
µ P σpHP

effq mit µď Λ´δ

dist
`

µ,σpHEq
˘

ď Cεn`1

für alle 0ă ε ă ε0 impliziert.
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Offensichtlich ist die umgekehrte Richtung – d.h. die Approximation
von σpHP

effq durch σpHEq – genau dann möglich, wenn lediglich das
Grundzustandsband λ0pxq “minpσpHFpxqqq den signifikanten Beitrag
zum Erwartungswert von HE liefert. Mit anderen Worten: Die einzige
Möglichkeit, um eine gegenseitige Näherung der beiden betreffenden
Operatoren zu erreichen, ist die Einschränkung von σpHEq auf den zu λ0

gehörenden spektralen Unterraum. Dies kann dadurch erzielt werden,
dass man Energien oberhalb von Λ1 “ infxPBpσpH

Fpxqqzλ0pxqq mittels
einer geeigneten Abschneidefunktion χ P C8b pp´8,Λ1qq unterdrückt:

Theorem 3 (Theorem 4.5) Es gelten die Voraussetzungen von Theorem 1
für das Grundzustandsband. Sei darüber hinaus ´ε2∆E

H ` εH
E
1 nach unten

beschränkt durch ´Cε1H für eine Konstante C ą 0. Dann ist HP
effχpH

P
effq

unitär äquivalent zu HEχpHEq bis auf Fehler der Ordnung εn`1 in LpHq
für ε ą 0 klein genug.

Hieraufhin werden wir die Diskussion über den effektiven Operator mit
einer genaueren Inspizierung seiner semiklassischen Entwicklung beenden.
Hierbei werden wir die konkreten Entwicklungen Uε “ 1H `Opεq und
Pε “ P0`Opεq verwenden und im Wesentlichen

HP
eff “ HP

a `MP `Opε3q

mit dem Opε2q-term MP als erste superadiabatische Korrektur erhalten
(vergleiche Proposition 4.10). Im letzten Abschnitt dieses Kapitels werden
wir uns mit der Untersuchung von niedrigen Energien der Ordnung εα,
α P p0,2s, über dem unteren Rand von σpHEq befassen. In diesem Fall
werden wir sehen, dass der (bedeutend simplere) adiabatische Operator
eine genauere Näherung liefert, als man von HP

eff “ HP
a `Opε2q zunächst

erwartet hätte. Genauer gesagt werden wir in Proposition 4.14 zeigen, dass
sich die unteren Teile von σpHEq und σpHP

a q gegenseitig bis auf Fehler
der Ordnung ε2`α{2 approximieren. Besteht der untere Teil von σpHP

a q –
beziehungsweise der untere Teil vom Spektrum des positiven Operators
HP

a ´ Λ01L2pPq für Λ0 “ infxPBpλ0pxqq – lediglich aus Eigenwerten, so
erhält man eine noch bessere Näherung:
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Theorem 4 (Theorem 4.15) Es gelten die Voraussetzungen von Theorem 1
für das Grundzustandsband und die Störung HE

1 erfülle zusätzlich Bedin-
gung 4.11. Falls nun für ein α P p0, 2s positive Konstanten C, δ und ε0 exis-
tieren, sodass σpHP

a ´Λ01L2pPqqXp´8, pC`δqεαq aus K`1 Eigenwerten
ν0 ď ¨ ¨ ¨ ď νK unter seinem wesentlichen Spektrum für alle 0 ă ε ă ε0

besteht, so gilt:

(i) HE hat K ` 1 Eigenwerte υ0 ď ¨ ¨ ¨ ď υK unter seinem wesentlichen
Spektrum und |υ j ´ ν j | “Opε2`αq für alle j P 0, . . . , K.

(ii) Falls zusätzlich ein ν P tν0, . . . ,νKu einfach ist und vom Rest von
σpHP

a ´ Λ01L2pPqq mindestens durch Cνε
α für ein Cν ą 0 getrennt

ist, so ist der zugehörige Eigenwert υ von HE ebenfalls einfach und es
gibt eine Konstante Cυ ą 0, sodass distpυ,σpHEztυuqq ě Cυε

α gilt.

Wir werden diese Resultate in Kapitel 5 auf den geometrischen Rahmen
von verallgemeinerten Quantenwellenleiter anwenden. Letztere werden
durch eine Familie von ε-dünnen Tubenumgebungen T ε um eine glatt
eingebettete, b-dimensionale Untermannigfaltigkeit B ãÑ pRb` f ,δb` f q

modelliert. Die Untersuchung des Dirichlet-Laplace-Operators ´ε2∆ε
´βA
δb` f

auf T ε ˆ CN bezüglich eines Zusammenhangs ∇ε
´βA “ d1CN ` iε´βA

entspricht einer Eichtheorie, bei welcher geladene, nichtrelativistische
Quantenteilchen (charakterisiert durch eine lokalisierte Wellenfunktion
ψ : R Ñ L2pT ε ˆ CN q, welche die zugehörige Schrödinger-Gleichung
löst) an ein möglicherweise nicht-abelsches, CNˆN

Herm -wertiges Eichfeld A
der Stärke ε´β , β P t0,1u, koppeln. Wir werden zunächst einen Diffeo-
morphismus konstruieren, um die ε-dünnen Tuben pT ε,δb` f q isometrisch
auf eine ε-unabhängige Mannigfaltigkeit pM , Gεq abzubilden, welche die
zusätzliche Struktur eines Faserbündels M

πM
ÝÑ B mit einer gestörten rie-

mannschen Metrik Gε “ gε `Opεq aufweist. Ferner ist das induzierte
Eichfeld Aε “ A0 `Opεq ebenfalls eine zulässige Störung. Wir werden
somit folgern, dass ´ε2∆ε

´βA
δb` f unitär äquivalent zum Operator

HE “´∆
ε´βAε

Gε
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ist.

Schwache Eichfelder (β “ 0, ∇A “ d1
CN ` iA)

Wir werden die Ergebnisse zu den niedrigen Energien für verallgemei-
nerte Wellenleiter in der Anwesenheit von schwachen CNˆN -wertigen
Eichfeldern aufgreifen:

Theorem 5 (Theorem 5.12) Es erzeuge Hw
tube “ ´ε

2∆A
δb` f ` V die Dy-

namik eines nichtrelativistischen Quantenteilchens mit Spin N, welches
in einem Quantenwellenleiter lokalisiert ist und an ein schwaches CNˆN -
wertiges Eichfeld A koppelt sowie unter dem Einfluss eines CNˆN -wertigen
Potentials V steht. Sind dann die Voraussetzungen von Theorem 4 für das
Grundzustandsband für ein α P p0, 2s erfüllt und ist νε ă Cεα ein Eigenwert
von Hw

QWG “ HP
a ´Λ01L2pPq, so existiert ein Eigenwert υε von Hw

tube unter
seinem wesentlichen Spektrum mit der asymptotischen Entwicklung

υε “ Λ0` ν
ε `O

`

ε2`α
˘

.

Anschließend werden wir die auftretenden Operatoren Hw
QWG für ein spin-

loses Teilchen in Quantenröhren um eine unendlich ausgedehnte Kurve
c : RÑ R3 für folgende zwei geometrische Konfigurationen exemplarisch
ausrechnen:

• die Röhrenquerschnitte sind zentrierte, sich um die Kurve drehende
Ellipsen mit variierenden Halbachsen (Beispiel für einen massiven
Wellenleiter), siehe Korollar 5.15,

• die Röhrenquerschnitte sind zentrierte Kreise mit variierendem Ra-
dius entlang der Kurve (Beispiel für einen hohlen Wellenleiter),
siehe Korollar 5.18.

Diese Rechnungen können einfach auf andere geometrische Situationen
übertragen werden und stellen daher eine große Verallgemeinerung der
vorhandenen Ergebnisse bereit. Insbesondere können die Resultate für
massive, sich drehende Röhren im R3 mit festem Querschnitt direkt re-
produziert werden.

xii



Starke Eichfelder (β “ 1, ∇ε´1A “ d1
CN ` iε´1A)

Wir werden schließlich noch den Fall von starken abelschen Eichfeldern
der Form ε´1A1CN für verallgemeinerte Quantenwellenleiter untersuchen,
wobei A wieder einem reellwertigen magnetischen Potential entspricht:

Theorem 6 (Theorem 5.21) Es erzeuge Hs
tube “ ´ε

2∆ε
´1A
δb` f 1CN ` V die

Dynamik eines nichtrelativistischen Quantenteilchens mit Spin N, welches
in einem Quantenwellenleiter lokalisiert ist und an ein starkes magnetisches
Potential ε´1A koppelt sowie unter dem Einfluss eines CNˆN -wertigen Po-
tentials V steht. Sind dann die Voraussetzungen von Theorem 3 für das
Grundzustandsband erfüllt und ist χ P C8b pp´8,Λ1qq eine geeignete Ab-
schneidefunktion, so ist χpHP

effqHs
QWGχpH

P
effq für Hs

QWG “ HP
a `MP unitär

äquivalent zu χpHs
tubeqHs

tubeχpH
s
tubeq bis auf Fehler der Ordnung ε3 in LpHq

für ε ą 0 klein genug.

Wir werden auch hier die reduzierten Hamilton-Operatoren Hs
QWG für die

beiden beispielhaften Geometrien eines massiven Wellenleiters (vergleiche
Korollar 5.23) und eines hohlen Wellenleiters (vergleiche Korollar 5.18) be-
stimmen. Während die Resultate für den massiven Fall wiederum mit den
bereits bekannten Ergebnissen in Verbindung gebracht werden können,
werden wir für Hs

QWG im hohlen Fall einen vollständig neuen Ausdruck
erhalten.
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Chapter 1

Introduction

In this thesis, we will analyse Schrödinger-type operators of the form

HE “´∆E
gε ` V E ` εHE

1 (1.1)

on a Hermitian vector bundle (with total space) E over an ε-thin base
manifold M , where the kinetic energy operator ´∆E

gε is the connection
Laplacian associated with some metric connection ∇E on E with Dirichlet
boundary conditions, V E stands for an EndpEq-valued potential, and the
differential operator εHE

1 denotes a small perturbation. The aforemen-
tioned ε-thinness of M intuitively means that the magnitude of some
compact (vertical) directions scales by a small factor ε ! 1 compared
to the remaining (horizontal) directions. We will adopt the equivalent
approach of keeping a fixed vertical length scale and scaling the horizontal
directions by a factor ε´1 instead.

small directions, Op1q

large directions, Opε´1q

pM , gεq

This can be implemented by introducing a Riemannian metric g “ gH` gV
on M and an appropriate rescaling

gε “ ε´2 gH` gV “ ε
´2pgH` ε

2 gVq,

1



1 Introduction

which consequently leads to an adapted splitting

´∆E
gε “´ε

2∆E
H ´∆

E
V (1.2)

of the associated Laplacian. The examination of such rescaled metrics is
often referred to as the adiabatic limit. We will reduce the complexity of
the operator HE , taking advantage of the increasingly negligible influence
of the small vertical directions. More precisely, we will derive effective
operators HP

eff, acting on a vector bundle P over the large horizontal
directions alone, which approximate essential features of HE such as the
generated dynamics or the spectrum.

Our main application, and therefore motivation, is the geometric frame-
work where M arises from a family of ε-thin tubular neighbourhoods T ε

around a submanifold of some higher dimensional ambient Euclidean
space. Physically speaking, the study of the Laplace-Beltrami operator
(which is the connection Laplacian on the trivial line bundle T ε ˆC asso-
ciated with the flat connection d) with Dirichlet boundary conditions in
such tubes corresponds to the quantum mechanical motion of uncharged,
spinless particles that are localised within the tube T ε. That is why these
tubes are often referred to as quantum waveguides in the literature. Such
waveguides have been studied for more than twenty-five years, ranging
from strips around infinite curves in R2 [EŠ89] to so-called generalised
quantum waveguides [HLT15], where R2 is replaced by Rb` f for b, f P N
and the role of the curve is taken by an embedded, complete submanifold
of dimension b and codimension f . For example, the latter submanifold
could represent a vibrational equilibrium configuration of nuclei which
form a molecule, whereas the surrounding tubular neighbourhood mod-
els the region in which the nuclei carry out their small vibrations. The
extension to metric connections of the form d` iA enables us to consider
charged quantum particles coupled to some external magnetic poten-
tial A. Moreover, our geometric framework allows for the generalisation
to charged particles that carry a spin and couple to a possibly non-Abelian
gauge field.

There is a vast amount of literature dealing with the spectral analysis

2



of the Laplacian in quantum waveguides. The two main problems that
are considered are:

(i) What are natural conditions on the geometry of the tube T ε“1 (in
particular on that of the submanifold) which yield the existence of
eigenvalues below the essential spectrum (“bound states”)?

(ii) Assume that there are eigenvalues below the essential spectrum.
What is the asymptotic expansion of these eigenvalues in the shrink-
ing tube T εÑ0? Can they be approximated by means of a limiting
operator?

We will give an overview of the extensive literature addressing these ques-
tions and discuss the related results in Section 1.2 after the establishment
of the necessary geometric and analytic language. Let us finally mention
some of the related problems that will not be examined any further in this
thesis:

• Apart from quantum mechanical dynamics governed by the Schrö-
dinger equation, the Dirichlet Laplacian is also the generator of the
heat semi-group describing the conduction of heat in such thin tubes
with fixed temperature on the outside. Some of the relevant results
(effective equations, decay rate of the solutions) can be found in
[Wit07, KZ10, GKP14, KK14].

• Other interesting questions arising from the Laplacian in thin tubes
concern the consideration of Neumann boundary conditions, the
location of nodal domains of the eigenfunctions, and the analysis
of thin neighbourhoods of embedded graphs. A nice survey of the
corresponding questions and methods is given by Grieser [Gri08].

• Another conceivable application for this framework is the vector
bundle E “ Λk M of alternating k-Forms over pM , gεq. Weitzen-
böck’s formula implies that the Hodge Laplacian ∆Hodge

gε ,k on k-forms
differs from the connection Laplacian, whose associated connec-
tion is induced by the Levi-Civita connection ∇gε , merely by an

3
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EndpΛk Mq-valued potential [BGV92]. If M is a compact manifold,
de Rham’s theorem [BGV92, Theorem 3.54] then states that the
kernel of ∆Hodge

gε ,k is isomorphic to the k-th de Rham cohomology
group, providing insights into the differential topological structure
of M . Consequently, it should be possible to associate kerp∆Hodge

gε ,k q

with the (less complicated) kernel of an effective operator and link
this to already existing results concerning the adiabatic limit of the
Hodge Laplacian [MM90, For95, LK00, Lot02].

The treatment of a thin manifold, where the length scales of large hor-
izontal directions and small vertical directions are well separated, can
actually be considered as an adiabatic problem. This separation means
that properties related to the vertical directions vary slowly along the hor-
izontal directions and thus remain in a fixed configuration. The structure
of (1.2) is in fact evocative of the most famous example of the aforemen-
tioned principle: The Born-Oppenheimer approximation within molecular
dynamics exploits the assumption that the light (fast, “vertical”) electrons
follow their heavy (slow, “horizontal”) nuclei adiabatically, i.e., the eigen-
state of the electrons instantaneously adjusts to the momentary position of
the nuclei [BO27]. It follows that the dynamics of the nuclei are governed
by an effective equation on their own lower dimensional configuration
space, whereas the effects of the electrons are expressed by an effective
electronic potential. This reduction procedure (“freezing of the electronic
degrees of freedom”) is called adiabatic decoupling.

For this reason we use the techniques of higher order space-adiabatic per-
turbation theory which were developed in the context of Born-Oppenhei-
mer approximation [MS02, Sor03, Teu03, NS04, PST07, MS09] for flat
geometries. These ideas have been extended to constrained quantum
systems for a great variety of geometries, where the localisation proce-
dure was implemented through either a strongly confining potential for
non-compact vertical directions [WT14] or Dirichlet boundary conditions
for the compact case [Lam14]. In this thesis, we will adopt the geomet-
ric framework introduced in the last-mentioned work and broaden the

4



1.1 Derivation of Effective Operators

viewpoint from operators acting on complex-valued functions on M to
operators acting on sections of a CN -vector bundle E over M that can
locally be represented by CN -valued functions (N P N).

1.1 Derivation of Effective Operators

We will explore the geometry of a Hermitian vector bundle E πE
ÝÑ M over

an ε-thin manifold pM , gεq in great detail throughout Chapter 2. The latter
manifold itself will be modelled by a fibre bundle M

πM
ÝÑ B with compact

fibres Mx “ π
´1
M pxq, x P B. It will turn out that the composition of the

involved bundles can be viewed as a fibre bundle E over B with projection
ΠE “ πM ˝πE , where the fibres Ex “ Π

´1
E pxq are Hermitian vector bundles

over Mx for all x P B (see Proposition 2.1). The decomposition (1.2)
suggests to split

HE “´ε2∆E
H ` εH

E
1 `HF

on H“ L2pEq, where HF is the ε-independent, ΠE -fibrewise, self-adjoint
operator

HFpxq “ ´∆Ex
gMx
` V E

ˇ

ˇ

Mx

with Dirichlet boundary conditions. The compactness of the fibres Mx

implies that the spectrum of HFpxq consists solely of eigenvalues of finite
multiplicity. We will therefore deal with eigenbands λ : B Ñ R such that
λpxq P σpHFpxqq and its associated fibrewise spectral projection P0pxq
satisfy HFpxqP0pxq “ λpxqP0pxq for all x P B. The image of P0pxq exactly
contains the λpxq-eigensections and spans a fibrewise finite-dimensional
subspace of L2pExq. These subspaces may be merged into a finite-rank
eigenspace bundle P πP

ÝÑ B if the primary eigenband is separated from
the rest of the spectrum by a uniform gap.

A natural candidate for the approximation of HE is given by the adia-
batic operator HP

a “ P0HE P0 acting on L2pPq. Provided that rHE , P0s “

r´ε2∆E
H`εH

E
1 , P0s is of order ε in a suitable sense, the adiabatic operator

5
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is ε-close to the initial operator on the adiabatic subspace P0H by virtue
of the fact that

`

HE ´HP
a

˘

P0 “
`

´ε2∆E
H ` εH

E
1

˘

P0´ P0

`

´ε2∆E
H ` εH

E
1

˘

P0

“
“

´ε2∆E
H ` εH

E
1 , P0

‰

loooooooooomoooooooooon

“Opεq

P0

“Opεq.

This translates into an approximate invariance of the subspace P0H un-
der e´iHE t for finite times t “Op1q. If one wants to prove invariance for
larger time scales, one has to replace the spectral projection P0 by a super-
adiabatic projection Pε “ P0`Opεq. Its construction will be carried out
in Chapter 3. We will demonstrate in Proposition 3.17 that for all n P N
there exists an orthogonal projection Pε such that rHE , Pεs “ Opεn`1q

holds in LpHq for bounded energies.
Chapter 4 will be dedicated to stating the main (abstract) results of this

thesis. Here, we will always assume

(i) suitable boundedness properties for the geometry of the involved
bundles E πE

ÝÑ M and M
πM
ÝÑ B (cf. Condition 2.2),

(ii) suitable boundedness properties for the perturbation εHE
1 and the

potential V E (cf. Condition 2.16),

(iii) and a uniform spectral gap of the eigenband λ (cf. Condition 2.26).

The super-adiabatic projection Pε serves as the starting point for the
ultimate effective operator. This operator is obtained by first restricting HE

to the super-adiabatic subspace PεH and then mapping it back to L2pPq
via a unitary operator Uε which intertwines Pε and P0. We will prove in
Theorem 4.3 that the effective operator HP

eff “ U:ε PεH
E PεUε is self-adjoint

on L2pPq and satisfies
`

e´iHE t ´ Uεe
´iHP

eff t U:ε
˘

Pε “O
`

εn`1 |t|
˘

6



1.1 Derivation of Effective Operators

in LpHq for bounded energies. We remark that while the initial operator
acts on L2-sections of E (which is a finite rank vector bundle over M),
the effective operator acts on L2-sections of P (which is a finite rank
vector bundle over the lower dimensional manifold B). Hence the ap-
proximation of HE by HP

eff represents a dimensional reduction procedure.
Apart from the dynamics, there also exists a certain relationship between
the respective spectra. More precisely, we will show in Theorem 4.4 that
distpµ,σpHEqq “Opεn`1q for any µ P σpHP

effq. It is clear that the converse
direction – namely the approximation of σpHP

effq by σpHEq – is possible if
and only if the ground state band λ0pxq “ minpσpHFpxqqq contributes
significantly to the expectation value of HE . Put differently, the only
possible way to obtain a mutual approximation of the two operators in
question is the restriction of σpHEq to the spectral subspace which is
associated with λ0. This can be implemented by the suppression of en-
ergies above Λ1 “ infxPBpσpH

Fpxqqzλ0pxqq via some appropriate cut-off
function χ P C80 pp´8,Λ1qq. Theorem 4.5 will then yield that HEχpHEq

is unitarily equivalent to HP
effχpH

P
effq up to errors of order εn`1 in LpHq.

We will then end the discussion of the effective operator by taking a closer
look at its semi-classical expansion. To do so, we will use the concrete
expansions Uε “ 1H`Opεq and Pε “ P0`Opεq and essentially obtain

HP
eff “ HP

a `MP `Opε3q

in Proposition 4.10, including the Opε2q-term MP as first super-adiabatic
correction. Section 4.4 will deal with the examination of low energies,
which are of order εα, α P p0,2s, above the bottom of σpHEq. In this
case we will see that the (much simpler) adiabatic operator provides a
more accurate approximation for such energies than one would expect
from HP

eff “ HP
a ` Opε2q. More precisely, we will prove that the low-

lying parts of σpHEq and σpHP
a q approximate each other up to errors

of order ε2`α{2 (see Proposition 4.14). Moreover, if the low-lying part
of σpHP

a q solely consists of eigenvalues, Theorem 4.15 will give that the
mutual approximation of the eigenvalues is valid even up to errors of
order ε2`α.

7
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1.2 Application to Quantum Waveguides

We will apply the aforementioned results to the geometric framework of
generalised quantum waveguides [HLT15]. These are a family of ε-thin
tubular neighbourhoods T ε around a smoothly embedded, b-dimensional
submanifold B ãÑ pRb` f ,δb` f q. The analysis of the Dirichlet Lapla-
cian ´ε2∆A

δb` f on T εˆCN associated with a connection ∇A “ d1CN ` iA
corresponds to a gauge theory where charged, non-relativistic quantum
particles (described by a localised wave function ψ : RÑ L2pT ε ˆCN q

that solves the corresponding Schrödinger equation) couple to a possibly
non-Abelian, CNˆN

Herm -valued gauge field A. In Section 5.1, we will specify
a diffeomorphism in order to map the ε-thin tubes pT ε,δb` f q isomet-
rically to an ε-independent Riemannian manifold pM , Gεq that has the
additional structure of a fibre bundle M

πM
ÝÑ B with a Riemannian metric

Gε “ gε `Opεq that is perturbed in an admissible manner. Moreover, the
induced gauge field likewise has the structure of an admissible perturba-
tion Aε “A0`Opεq. Thus, we will conclude that ´ε2∆A

δb` f is unitarily
equivalent to the Born-Oppenheimer-like Laplacian

HE “´∆
Aε

Gε “´∆
A0
gε `Opεq “ ´ε2∆

A0
H ´∆

A0
V `Opεq.

In the course of this section, we will try to cover at least a small part of
the vast amount of literature concerning quantum waveguides (with and
without gauge field). Moreover, we will relate the results for A ‰ 0 to
those obtained in Section 5.2 and Section 5.3.

1.2.1 Absence of Gauge Fields

Let us first survey the existing literature for the case of a vanishing gauge
field A (or equivalently of uncharged quantum particles). The components
of the wave functionψ then decouple (the Laplacian∆A“0

δb` f “∆
L.B.
δb` f 1CN is

obviously diagonal with respect to the spin degrees of freedom) and each
component may be treated separately. We thus restrict ourselves to the
case N “ 1 of spinless particles without loss of generality. The object of

8



1.2 Application to Quantum Waveguides

interest is the Laplace-Beltrami operator ∆L.B.
δb` f in such waveguides with

Dirichlet boundary conditions. Most of the relevant literature deals with
quantum strips (b “ 1 and f “ 1), quantum tubes (b “ 1 and f ě 2),
and quantum layers (b ě 2 and f “ 1). We refer to Figure 5.1 for an
illustration of their lower dimensional realisations.

Existence of Bound States

Quantum strips were initially considered as planar tubular neighbourhoods
around bent curves with respective cross-sections being an interval of
constant length. This corresponds to a fibre bundle M “ Rˆr´1, 1s with
isometric fibres in our picture. In this context, the authors of [EŠ89, GJ92]
proved the existence of bound states for asymptotically flat strips, while
Duclos and Exner obtained the same result for more general non-straight
strips [DE95]. Their results imply that the bending of the curve always
has an attractive character. Later the range of geometry was broadened to
varying strips. From our viewpoint this is implemented by an x-dependent
function hą 0 within the unscaled metric

g “ dx b dx
looomooon

“gH

`hpxq dy b dy
looomooon

“gV

.

For instance the authors of [BGRB97, FS08b] analysed straight strips with
a local bump and with periodic cross-sections, respectively.

The existence of curvature-induced bound states for quantum tubes
with f “ 2 was first proved by Goldstone and Jaffe as well as by Duclos
and Exner for disc-shaped cross-sections [GJ92, DE95]. Beyond that, the
addition of a further codimension significantly enriches the geometric
variety of the waveguide: Another interesting effect besides the attractive
bending arises if one considers quantum tubes T ε“1 where the cross-
sections are all isomorphic to a fixed, not rotationally invariant domain
F Ă R f and are allowed to twist around the curve with respect to a
“reference framing” induced by some x-dependent SOp f q-transformation
for the transversal directions. The existence of bound states for bent (but
asymptotically straight) and twisted tubes was proven for example in

9



1 Introduction

[CDFD05]. It is shown that twisting has a repulsive character [EKK08,
Kre08] for f “ 2. Particularly, twisting can destroy bound states if the
curve is only mildly bent.

In the case of quantum layers, which are built over complete, oriented
and non-compact1 hypersurfaces with a constant interval as cross-section
at each point, the effect of bending is not necessarily attractive. It was
pointed out in [Haa12] that bending is attractive for b “ 1, non-repulsive
for b “ 2 and indefinite for b ě 3, irrespective of the codimension f .
Hence, further conditions have to be imposed on the hypersurface in order
to guarantee the existence of bound states. This was done for instance in
[DEK01, CEK04, LR12] for asymptotically flat hypersurfaces in the case
b “ 2. Lin and Lu eventually introduced the notion of asymptotically flat,
parabolic hypersurfaces and showed the existence of eigenvalues below
the essential spectrum for arbitrary b ě 2 [LL06b].

Let us also mention some of the less studied geometric generalisations.
Krejčǐrík considered strips which are embedded into an asymptotically
flat Riemannian manifold [Kre03]. In this situation the effects of bending
consists of both a purely attractive part induced by the extrinsic curvature
of the curve and an indefinite part induced by the intrinsic curvature of
the ambient surface. Lin and Lu studied the existence of discrete spectrum
for tubular neighbourhoods of fixed radius around complete, oriented and
non-compact submanifolds with arbitrary dimensions b, f ě 1 [LL06a].
Wittich investigated tubular neighbourhoods of closed submanifolds of am-
bient Riemannian manifolds in the context of the heat equation [Wit07].
Finally, the authors of [HLT15] generalised the framework of [LL06a] to
allow for varying cross-sections. Moreover, they introduced an entirely
new class of conceivable geometries: In contrast to the previous (“mas-
sive”) waveguides, whose cross-sections are given by the closure of an
open and bounded domain, “hollow” waveguides are modelled on the
basis of the latter by restricting to their boundary in each cross-section.

1We can obviously exclude the compact case since then the associated Laplacian always
admits a purely discrete spectrum [Dav95, Theorem 6.2.3].
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1.2 Application to Quantum Waveguides

Asymptotic Expansion of the Eigenvalues

Once the existence of eigenvalues of the Dirichlet Laplacian ´ε2∆L.B.
δb` f on

T ε ˆ C is assumed, one might ask for their asymptotic expansion as ε
tends to zero. Most of the existing literature deals with the low-lying
eigenvalues that are associated with the non-degenerate, positive ground
state φ0 of the vertical operator ´∆L.B.

V with associated eigenband λ0.
The general strategy is to specify an ε-independent limiting operator H0

on the lower dimensional submanifold B and to show

´∆L.B.
δb` f ´

Λ0
ε2 1H

εÑ0
ÝÝÑ H0b 1, H0 :“´∆L.B.

gB
` V (1.3)

on the subspace L2pB, gBq b spanpφ0q ĂH, where Λ0 “ infxPB λ0pxq de-
notes the bottom of the vertical mode and V is some appropriate potential
on B.

The majority of the literature is restricted to a constant ground state
band λ0 “ Λ0. This is for example satisfied for twisted waveguides with
isometric cross-sections F . The convergence in (1.3) has to be under-
stood in the sense of resolvents [BMT07, Gru09, KŠ12] or in the sense
of quadratic forms [deO11], which only implies strong resolvent conver-
gence. The potential V “ Vbend`Vtwist in the limiting operator H0 encodes
the effects of bending and twisting. Particularly for the case pb, f q “ p1, 2q
of a bent and twisted tube around a smoothly embedded curve c : RÑ R3,
where the twisting with respect to the “reference framing” can be charac-
terised by means of a smooth angle function ϑ : RÑ R, the two respective
potentials are given by

Vbend “´
‖c2‖2

R3

4
, Vtwist “ pϑ

1q2
ż

F

�

�py ˆ∇yqφ0py
1, y2q
�

�

2
dy,

where φ0 is the x-independent ground state of the Dirichlet Laplacian on
F Ă R2. These expressions were derived in [BMT07] for a finite curve
and by the authors of [Gru09, deO11, KŠ12] for unbounded curves. It
was ultimately shown in [HLT15] that the corresponding potentials for
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generalised (massive) quantum waveguides read in our notation

Vbend “ lim
εÑ0

ε´2Vρε , Vtwist “

ż

Mx





PHM gradg φ0







2

g
volgV

with geometric potential Vρε (2.18) depending on the embedding of the
curve. The convergence of resolvents in norm yields an expansion

υεi “ Λ0` ε
2νi ` opε2q, i P I (1.4)

for the eigenvalues of ´ε2∆L.B.
δb` f , where tνiuiPI are the eigenvalues of H0

if they exist. The limiting operator H0 b 1 coincides with the leading
order of the rescaled adiabatic operator ε´2pHP

a ´λ01Hq that is related
to the ground state band. If one takes into account the entire ε-dependent
adiabatic operator with eigenvalues tνεi uiPI , [HLT15, Theorem 3.3] states
that the low-lying eigenvalues of ´ε2∆L.B.

δb` f have the even more accurate
expansion

υεi “ Λ0` ε
2νεi `Opε4q, i P I.

While the level spacing of the low-lying eigenvalues tυεi uiPI is of or-
der ε2 for a constant ground state band, the situation changes if one looks
at a varying ground state band x ÞÑ λ0pxq. In this situation one expects a
spacing of order εα for α P p0, 2q, which is in particular the case if λ0 has
a unique minimum. Let us consider for example a one-dimensional base
(b “ 1) and λ0pxq “ Λ0 ` cx2k `Opx2k`1q for some c ą 0 and k P N.
Then the first eigenvalues of ´ε2∆L.B.

δb` f asymptotically behave as

υεi “ Λ0` ε
2k

k`1νi ` o
`

ε
2k

k`1
˘

, i P I,

where tνiuiPI are the eigenvalues of the limiting operator H0 with poten-
tial Vpxq “ cx2k. Friedlander and Solomyak considered a similar situation
for straight strips [FS08a], while de Oliveira and Verri investigated the
case k “ 1 (α “ 1) for bent and twisted tubes in R3 [deOV11]. They
found that the effects of bending and twisting are no longer apparent on
this energy scale. Given that the level spacing of

´

´ε2∆L.B.
gB
`
`

λ0pxq ´Λ0

˘

¯

b 1
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is of order εα, the low-lying eigenvalues of ´ε2∆L.B.
δb` f may be expanded

as [HLT15, Theorem 3.3]

υεi “ Λ0` ε
ανεi `Opεα`2q, i P I,

where tνεi uiPI are the ε-dependent eigenvalues of ε´αpHP
a ´Λ01Hq.

1.2.2 Presence of Gauge Fields

The behaviour of the discrete spectrum associated with the Dirichlet
Laplacian

´ε2∆ε
´βA
δb` f “ pεd1CN ` iε1´βAq˚pεd1CN ` iε1´βAq

in tubular neighbourhoods with a gauge field A P C8b pT
˚T ε ˆCNˆN

Herm q has
been far less explored. The parameter β P t0, 1u in the Laplacian reflects
the strength of the coupling of the gauge field. We will refer to β “ 0 as
weak gauge fields and to β “ 1 as strong gauge fields.

Weak Gauge Fields (β “ 0, ∇A “ d1
CN ` iA)

Most of the literature deals with the case of a real-valued gauge field A
and charged spinless particles. This corresponds to the line bundle T εˆC,
where A represents an ordinary Abelian magnetic potential. Therefore,
we will always assume N “ 1, unless otherwise indicated.

The authors of [EJK01, EK05, BEK05] considered quantum strips T ε“1

and showed that the magnetic effects have a repulsive nature. Exner et al.
confined the motion of a quantum particle to a straight line by means
of a strong harmonic oscillator potential in a homogeneous magnetic
field, and allowed a periodic perturbation in the longitudinal direction.
They proved that the spectrum of the magnetic Laplacian is absolutely
continuous at the bottom. Ekholm and Kovařík examined a straight strip
with either a L8loc- or Aharonov-Bohm field and proved that the discrete
spectrum for both a local bump and a mildly curved strip is empty, although
both configurations induce bound states in the absence of the magnetic
field [DE95, BGRB97]. Borisov et al. demonstrated that eigenvalues
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below the essential spectrum in a straight strip in the presence of a C1
0 -

magnetic potential can be produced by the inclusion of a sufficiently
large Neumann window on the boundary. By gauging away the vertical
component of the magnetic potential, however, the authors of [KR14]
showed that the magnetic effects are not apparent to leading order for
shrinking strips T εÑ0. More precisely, they proved a convergence result

´∆A
δ2 ´

λ0
ε2 1H

εÑ0
ÝÝÑ H0b 1

on L2pR, dx b dxq b spanpφ0q in the norm resolvent sense for curved
equidistant strips with limiting operator H0 “ ´∆

L.B.
dxbdx ` Vbend. Here,

λ0 stands for the (once again constant) ground state band of ´∆L.B.
V .

Moreover, they approximated the eigenvalues below the essential spectrum
according to (1.4).

Shrinking quantum tubes with magnetic potentials in R3 were inves-
tigated in [Gru08, BdeOV13] for B “ S1 and in [KR14] for B “ R. In
both cases, the leading order of the vertical magnetic potential can be
gauged away completely, which results in |λm

0 ´λ0| “Opε4q for the dif-
ference of the ground state bands with and without magnetic potential.
Consequently, they obtained

´∆A
δ3 ´

λ0
ε2 1H

εÑ0
ÝÝÑ HpABq

0 b 1

in the norm resolvent sense for a twisting but fixed, simply connected
cross-section. Since it also possible to simultaneously gauge away the
leading order of the horizontal component for an unbounded curve B “ R,
Krejčǐrík and Raymond obtained H0 “ ´∆

L.B.
dxbdx ` Vbend ` Vtwist for the

limiting operator, which again gives an approximation of the eigenval-
ues (1.4) [KR14]. In contrast to this, the horizontal contribution of A
cannot be gauged away in general for a closed curve B “ S1, and Bedoya
et al. thus derived the limiting operator

HAB
0 “´∆

AB
dxbdx ` Vbend` Vtwist, ∇AB “ d` iAB

with magnetic potential AB “ c˚A (i.e., ABpBxq|x “ Acpxqpc
1pxqq for

all x P S1), where c : S1 Ñ R3 is the embedding of the closed curve
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1.2 Application to Quantum Waveguides

[BdeOV13]. Grushin considered more general Schrödinger operators with
an additional potential of the form V px , y1, y2q “ V1pxq ` ε

´2V2py
1, y2q.

Then Λ0 “ λ0 is the ground state of the vertical operator ´∆L.B.
V ` V2

and V1 is simply added to the limiting operator H0.
As far as quantum layers are concerned, it is always possible to gauge

away the single vertical component of the magnetic potential (just as
is done for quantum strips). Ferrari and Cuoghi, as well as de Oliveira,
considered the quantum mechanical motion of a particle that is confined
to the vicinity of a hypersurface in R3 by a large constraining potential
that does not change its shape along the surface [FC08, deO14]. In the
limit where the strength of that potential tends to infinity, the dynamics
converge to a product of dynamics on the surface generated by a limiting
operator HAB

0 “ ´∆AB
gB
` Vbend and highly oscillating dynamics for the

transversal mode. Here, AB denotes the restriction of the horizontal mag-
netic potential to the surface. Krejčǐrík et al. proved the norm resolvent
convergence result

´∆A
δ3 ´

λ0
ε2 1H

εÑ0
ÝÝÑ HAB

0 b 1

for equidistant layers with Dirichlet boundary conditions [KRT15]. More-
over, they determined the corresponding magnetic field BB “ ‹dAB on B
to be the component BK of the initial magnetic field perpendicular to the
surface.

We will apply the results of the low energy asymptotics to generalised
quantum waveguides in the presence of CNˆN

Herm -valued gauge fields in
Section 5.2. More precisely, we will show in Theorem 5.12 that the
low-lying eigenvalues of ´ε2∆A

δb` f can be approximated by those of the
appropriate adiabatic operator linked to the ground state band of the
vertical operator up to errors of order ε2`α. We will calculate the operators
for quantum tubes around an infinite curve c : RÑ R3 with two geometric
configurations:

• the cross-sections are centred ellipses with varying semi-axes twist-
ing around the curve (massive waveguide),

15



1 Introduction

• the cross-sections are centred circles with varying radius along the
curve (hollow waveguide).

These calculations can be easily transferred to other geometric realisations
and therefore provide a great generalisation of the existing results. In
particular, the results for massive twisted tubes in R3 with fixed cross-
section [BdeOV13, KR14] can be recovered immediately.

Strong Gauge Fields (β “ 1, ∇ε´1A “ d1
CN ` iε´1A)

Brüning et al. examined a charged spin-1{2-particle (N “ 2) which is
constrained around a surface B ãÑ R3 using a steep constraining poten-
tial V εc [BDNT08, BDN09]. The latter is modelled on B’s normal bundle
by means of the scaling behaviour V εc pνq “ Vcpε

´1νq (see also [WT14]).
Moreover, the particle is influenced by an external electric potential ϕ and
a magnetic potential A which induces a homogeneous magnetic field B.
In the “thin layer limit” of very strong confinement εÑ 0, they derived,
under appropriate conditions, an effective scalar Schrödinger equation

iε d
dtψptq “

`

´ε2∆ε
´1AB

gB
`λ`ϕB ` ε

2Vbend

˘

ψptq (1.5)

on the submanifold B with restricted electric potential ϕB and magnetic
potential AB, bending potential Vbend as before and eigenband λ of the
vertical C2ˆ2-valued operator

HF “
`

´∆L.B.
V ` Vc

˘

loooooomoooooon

operator
without spin

1C2 `

ˆ

B3 B1´ iB2

B1` iB2 ´B3

˙

looooooooooooomooooooooooooon

coupling of the spin
with magnetic field

.

Here, the time t is measured in macroscopic units (whereas the longi-
tudinal scale of the layer is of order one). Hence, solutions of (1.5)
are expected to have non-trivial effects, i.e., to propagate macroscopic
distances in finite times t “Op1q.

Krejčǐrík and Raymond examined the effects of a strong external mag-
netic field for the geometric framework of shrinking quantum tubes in R3

[KR14] which twist around infinite curves with fixed, simply connected

16



1.2 Application to Quantum Waveguides

cross-section F Ă R2. They again derived a limiting operator H0 in the
norm resolvent sense, given by

H0 “

A

φ0,´∆BKˆy
H p¨φ0q

E

L2pF,dyq
` Vbend` VeffpB‖,φ0q

Here, B‖pxq P R and BKpxq P R2 denote the components of the magnetic
field parallel and perpendicular to the curve, respectively, and φ0 is the
ground state of the vertical Laplacian ´∆L.B.

dybdy with Dirichlet boundary
conditions on L2pF, dyq.

We will consider the initial operator ´ε2∆ε
´1A
δb` f 1CN ` V on T ε ˆCN for

generalised quantum waveguides with an Abelian magnetic potential A
and CNˆN -valued potential V in Section 5.3. To do so, we will approx-
imate parts of the initial spectrum by those of an appropriate effective
operator HP

eff “ HP
a `MP `Opε3q associated with the ground state band

up to errors of order ε3 (see Theorem 5.21). We will again examine the
two geometric configurations of infinite massive and hollow quantum
tubes in R3. While the results for the massive case may be related to those
of [KR14], we will obtain a completely new expression for the effective
operator in the hollow case.
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2
Chapter 2

The Framework

This chapter gives a detailed presentation of the framework within which
we will develop the general super-adiabatic perturbation theory. We
will begin with an explanation of the double bundle structure that was
mentioned in the introduction. Hereupon, we will turn to the connection
Laplacian and thoroughly examine its decomposition into a horizontal
and vertical differential operator. We will then introduce the conditions
on the ultimate Schrödinger operator (1.1) and discuss two possible
situations leading to an admissible perturbation. Finally, we will explain
the fundamentals of adiabatic perturbation theory.

2.1 Geometric Setting

An adequate decomposition of M into horizontal and vertical directions is
naturally obtained by the imposition that M has the additional structure
of a fibre bundle with compact fibres. More precisely, we assume that
there exist

• a smooth, connected manifold M with or without boundary (total
space),

• a smooth, connected manifold B without boundary (base manifold),

• a smooth, compact manifold F with or without boundary (typical
fibre),
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2 The Framework

• and a smooth surjective map πM : M Ñ B,

such that for all x P B there exists an open neighbourhood U Ă B of x
together with a diffeomorphism Φ : π´1

M pUq Ñ U ˆ F for which the
diagram

π´1
M pUq

Φ - U ˆ F

U
pr1�πM

-

commutes.

Mx

M

x B

πM

Figure 2.1: Illustration of a manifold M that has the additional structure
of a fibre bundle M

πM
ÝÑ B with base manifold B “ R and typical fibre

F “ B2
1p0q Ă R

2.

We set b :“ dimpBq, f :“ dimpFq, and consequently b` f “ dimpMq, for
the respective dimensions of the involved manifolds. Moreover, we denote
by Mx :“ π´1

M pxq the fibres of M , all being diffeomorphic to the typical
fibre F . It follows that BM “

Ť

xPB BMx , and thus M has a boundary if
and only if F does. Here, one should always keep in mind the concrete
example of a “massive tube” as depicted in Figure 2.1, where the base B
is given by the real line and the typical fibre F by a two-dimensional disc.

We also introduce a CN -vector bundle over M for some N P N (see
Definition A.1), i.e., there additionally exist
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2.1 Geometric Setting

• a smooth manifold E ,

• and a smooth surjective map πE : E Ñ M ,

such that for all p P M

(i) there exists an open neighbourhood W Ă M of p together with a
diffeomorphism Λ : π´1

E pW q ÑW ˆCN for which the diagram

π´1
E pW q

Λ - W ˆCN

W
pr1�πE

-

commutes,

(ii) and the fibre Ep :“ π´1
E ppq is a complex N -dimensional vector space

and Λ|Ep
: Ep Ñ tpuˆCN is a vector space isomorphism.

2.1.1 Double Fibre Bundle

The composition of the involved fibre bundles allows us to view E as
the total space of a fibre bundle over B (see Figure 2.2). The following
proposition makes this precise:

Proposition 2.1 Let πM : M Ñ B be a smooth fibre bundle with compact
typical fibre F and πE : E Ñ M be a smooth CN -vector bundle. Then
ΠE : E Ñ B is a smooth fibre bundle with projection ΠE :“ πM ˝ πE ,
where its typical fibre F carries a unique (up to isomorphism) structure of a
CN -vector bundle πF : F Ñ F.

PROOF. Let x0 P B be arbitrary and U Ă B be an open, contractible,
x0-centred neighbourhood1 that comes along with a local trivialisation

1We will introduce a Riemannian metric gB on B in Subsection 2.1.3 such that we can
choose U to be for example a geodesic ball Brpx0q with radius r ă rinjpB, gBq.
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2 The Framework

Φ : π´1
M pUq Ñ U ˆ F . Instead of considering Π´1

E pUq “ E |π´1
M pUq, we

rather restrict our attention to the associated pullback bundle

Ē :“ pΦ´1q˚ E |π´1
M pUq

“

!

`

px , yq,ψ
˘

P pU ˆ Fq ˆ E |π´1
M pUq such that ψ P EΦ´1px ,yq

)

over U ˆ F , whose fibre over px , yq coincides with tpx , yqu ˆ EΦ´1px ,yq,
and define πF : F Ñ F to be the CN -vector bundle (“the model”) with
total space

F :“
!

py,ψq P F ˆ Ē such that ψ P Ēpx0,yq “
 

px0, yq
(

ˆ EΦ´1px0,yq

)

and projection πF :“ pr1 : py,ψq ÞÑ y. The contractibility of U now
induces a diffeotopy h : pU ˆ Fqˆ r0, 1s Ñ U ˆ F between 1UˆF “ hp¨, 1q
and tx0uˆ 1F “ hp¨, 0q, and [Hat09, Theorem 1.6], which is also valid in
the smooth case, states that 1˚UˆF Ē “ Ē and

ptx0uˆ 1F q
˚Ē “

!

`

px , yq,ψ
˘

P pU ˆ Fq ˆ Ē such that ψ P Ēpx0,yq

)

“ U ˆ
 

py,ψq P F ˆ Ē such that ψ P Ēpx0,yq

(

looooooooooooooooooooooomooooooooooooooooooooooon

“F

are diffeomorphic vector bundles over U . In summary, we constructed a
local trivialisation Ψ : Π´1

E pUq Ñ U ˆF , for which the diagram

Π´1
E pUq

Ψ - U ˆF

U
pr1�ΠE

-

commutes.
We finally cover B with a set tUνuνPI of such contractible neighbour-

hoods, apply the described construction of the corresponding (model)
bundles for each Uν and observe that, due to the fact that B is a connected
manifold, these models are pairwise isomorphic. l
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2.1 Geometric Setting

Given a local trivialisation Φ : π´1
M pUq Ñ U ˆ F of M

πM
ÝÑ B and a point

x0 P U , the above proof shows that the model F is isomorphic to the
pullback bundle pΦ|´1

Mx0
q˚E .

x x

Mx

πM

p

πE

Ep

ΠE “ πM ˝πE

Ex

M

B B

E E

Figure 2.2: Due to the double bundle structure E πE
ÝÑ M and M

πM
ÝÑ B,

we may consider E as the total space of a fibre bundle over the base
B, where the typical fibre itself is a CN -vector bundle over M ’s typical
fibre F .

2.1.2 Metrics and Connections

We now introduce Riemannian metrics g on M and gB on B, which turnπM

into a Riemannian submersion [ONe66]. This means that the differential
TπM : TM Ñ TB induces an isometry TM{kerpTπM q Ñ TB, which yields
an orthogonal decomposition of M ’s tangent bundle into a horizontal and
vertical subbundle with respect to g:

TM “ kerpTπM q
K‘ kerpTπM q “: HM ‘ VM . (2.1)
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2 The Framework

Note that the vectors in the kernel of TπM are tangent to the fibres,
i.e., VξM “ TξMx for all ξ P Mx . Consequently, g may be written as

g “ π˚M gB ` gV,

where gV P C8pΣ2VMq is the restriction of g to the vertical subbundle,
i.e., gVph, ¨q for all h P HM . We finally note that the horizontal subbun-
dle HM is isomorphic to π˚MTB for any metric g. Given a smooth vector
field X P C8pTBq, there exists a unique horizontal vector field on M that
is πM -related to X . This vector field is referred to as the horizontal lift
XH P C8pHMq and therefore satisfies

gpXH, V q “ 0 for all V P C8pVMq ù XH is horizontal,

and

TπM ˝ XH “ X ˝πM ù XH is a lift.

πM

pB, gBq

pM , gq

Figure 2.3: The differential TπM induces the decomposition (2.1): While
the integral curves of horizontal vector fields (red) are lifts of integral
curves in B, the integral curves of vertical vector fields (green) are
tangent to the fibres in M .

We introduce the integrability tensorΩH P C8pΛ2HMbVMq of the horizon-
tal distribution and the second fundamental form IIV P C8pΣ2VM bHMq
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2.1 Geometric Setting

of the fibres to be

ΩHpX
H, Y Hq :“ PVM

`

rXH, Y Hs
˘

“ rXH, Y Hs ´ rX , Y sH

and

IIVpV, W q :“ PHM
`

∇g
V W

˘

,

respectively. The gV-trace of the latter is the horizontal mean curvature
vector

ηV :“ trgV

`

IIVp¨, ¨q
˘

. (2.2)

Note that ηV|Mx
coincides with the mean curvature of the submanifold

Mx ãÑ M (see Definition A.11(iii)) for all x P B.
As far as the vector bundle E is concerned, we introduce a Hermitian

bundle metric h P C8pE˚b2q and a metric connection ∇E : C8pEq Ñ
C8pT˚M b Eq.

The fibres Ex “ Π
´1
E pxq of the composed bundle E ΠE

ÝÑ B coincide with
the pullback bundles ι˚x E for all x P B, where Mx

ιx
ãÝÑ M is the embedding

of the fibre Mx into M . In this context, we equip each of these bundles Ex

with the pullback bundle metric hx “ ι
˚
x h P C8pE˚b2

x q and the pullback
connection ∇Ex “ ι˚x∇

E : C8pExq Ñ C8pT˚Mx b Exq, as well as each
of the related base manifolds Mx with the pullback Riemannian metric
gMx

“ ι˚x gV P C8pΣ2TMxq, and obtain fibrewise Hermitian vector bundles
πEx

: pEx , hx ,∇Ex q Ñ pMx , gMx
q.

2.1.3 Boundedness Properties

In order to study global properties of differential operators on a vector
bundle over a non-compact base, we need to specify additional uniformity
conditions on the geometric objects.

We first require suitable boundedness properties for the Riemannian
manifold pM , gq with an additional fibre bundle structure. Therefore, we
transfer the notion of a vector bundle of bounded geometry to a fibre
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2 The Framework

bundle with compact fibres, in that we require the existence of a suitable
set of local trivialisations with uniform bounds. This concept of so-called
uniformly locally trivial fibre bundles was introduced in [Lam14, Section
A.1]. In particular, Lampart proved that

• pM , gq is a B-manifold of bounded geometry in the sense of Defini-
tion A.15 if BF ‰H,

• and pM , gq is manifold of bounded geometry in the sense of Defini-
tion A.14 if BF “H.

Thus, we can finally impose uniform boundedness properties for the
CN -vector bundle over M . Let us state the precise requirements on the
underlying geometry that will be used throughout this thesis:

Condition 2.2 With the notation previously introduced in this section,
we require that

(i) πM : pM , gq Ñ pB, gBq be a uniformly locally trivial fibre bundle
(see [Lam14, Definition A.3]) with compact typical fibre F , i.e.,

• pB, gBq is a manifold of bounded geometry,

• and there exists a Riemannian metric gF on F such that for all
r ă rinjpB, gBq and x P B there is a local trivialisation

Φ :
`

π´1
M pUq, g

˘

Ñ pU ˆ F, gB ˆ gF q

on the geodesic ball U “ Brpxq for which TΦ and Φ˚ are
bounded tensors together with all their covariant derivatives
uniformly in r and x ,

(ii) and πE : E Ñ M together with the set of local synchronous trivi-
alisations (see Definition A.18) be a CN -vector bundle of bounded
geometry. ◊

Remark 2.3 The bounded geometry of the manifold pB, gBq implies the
existence of an atlas tpUν,κνquνPN0

of geodesic balls Uν “ Brpxνq with
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2.1 Geometric Setting

centres xν and fixed radius r ă rinjpB, gBq, see Lemma A.16. In this
context, we introduce ν-dependent models Fν as Hermitian CN -vector
bundles pF , hν,∇νq

πF
ÝÑ pF, gF q, each of them endowed with bundle metric

hν “ pΨν|
´1
Exν
q˚hxν and metric connection ∇ν “ pΨν|

´1
Exν
q˚∇Exν for local

trivialisations Φν : π´1
M pUνq Ñ Uν ˆ F and Ψν : Π´1

E pUνq Ñ Uν ˆ F .
Note that Remark A.13 yields W kpFνq “W kpFν1q for all k,ν,ν1 P N0 as
topological vector spaces. ◊

One might now ask for the boundedness properties of the composed

fibre bundle E ΠE
ÝÑ B. If one could show that F as a Riemannian manifold

endowed with the (most natural) Sasaki metric gF , see Definition A.9,
is a manifold of bounded geometry, one could adapt the definition of a
uniformly locally trivial fibre bundle by replacing the compact manifold
with a manifold of bounded geometry and obtain local trivialisations that
are bounded with all their derivatives. pF , gFq, however, is not a manifold
of bounded geometry since the associated curvature RgF atψ P Fy , y P F ,
grows with the length ‖ψ‖ of the vector ψ (see [Bla10, Section 9.1]).
Nevertheless, we will show in the remainder of this subsection that the
local trivialisations of F πF

ÝÑ F constructed in Proposition 2.1 are in fact
uniformly bounded. To start with, let Φ : π´1

M pUq Ñ U ˆ F be the local
trivialisation of M that is provided for an geodesic ball U Ă B. Then for any
x , x 1 P U and y, y 1 P F there is a length-minimising curve γ : r0, 1s Ñ UˆF
with end points px , yq and px 1, y 1q. The Riemannian distance between
the points Φ´1px , yq and Φ´1px 1, y 1q may thus be estimated from above
by the length of the curve Φ´1 ˝ γ : r0, 1s Ñ π´1

M pUq, i.e.,

distg

`

Φ´1px , yq,Φ´1px 1, y 1q
˘

ď

ż 1

0

b

g
`

Φ˚ 9γ,Φ˚ 9γq dt

ď

ż 1

0
CpΦqpgB ˆ gF qp 9γ, 9γq dt

ď CpΦq
`

distgB
px , x 1q ` distgF

py, y 1q
˘

. (2.3)
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Note that C can be chosen independently of U (i.e., independently of Φ)
due to the uniform local triviality of pM , gq

πM
ÝÑ pB, gBq.

Lemma 2.4 There exist rB ă rinjpB, gBq and a covering of pF, gF q by normal
charts tpVλ,$λquλPZ such that each setΦ´1pUˆVλq is contained in a normal
chart of pM , gq for all geodesic balls U “ Brpxq Ă B with radius r ă rB,
where Φ : π´1

M pUq Ñ U ˆ F is the local trivialisation associated with U.

PROOF (BM “H). We choose rB ă rinjpB, gBq as well as rF ă rinjpF, gF q

small enough such that rB`rF ă
rinjpM ,gq

C with constant C ą 0 as in (2.1.3).
This gives

distg

`

Φ´1px , yq,Φ´1px 1, y 1q
˘

ă rinjpM , gq

for all x 1 P BrB
pxq, y 1 P BrF

pyq and px , yq P B ˆ F , and it follows that
Φ´1pBrB

pxq ˆ BrF
pyqq is entirely contained in an pM , gq-geodesic ball

around Φ´1px , yq with radius rinjpM , gq. We conclude by choosing points
tyλuλPN0

in F such that
ď

λPN0

BrF
pyλq

loomoon

“:Vλ

“ F.

l

PROOF (BM ‰H). We have data trC,M , rinjpBM , g|BM q, rI,Mu for pM , gq,
rinjpB, gBq for pB, gBq and trC,F , rinjpBF, gF |BF q, rI,Fu for pF, gF q. We want
to construct an atlas of pF, gF q as in Lemma A.16. Therefore, we reduce
the collar width of F in such a way that rC,F ă

rC,M

C with C ą 0 derived
in (2.1.3). This implies

Φ´1
`

Brpxq ˆNCF prC,F q
˘

Ă NCM prC,M q (2.4)

for all 0ă r ă rinjpB, gBq and x P B. We treat the cases of boundary collar
charts tpVλ,$λquλă0 and interior charts tpVλ,$λquλPN0

separately:

28
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Boundary Collar Charts:

Let y P BF be arbitrary. Choose rB ă rinjpB, gBq and rB,F ă rinjpBF, gF |BF q

small enough such that rB ` rB,F ă
rinjpBM , g|BM q

C , which means

Φ´1
`

BrB
pxq ˆ BrB,F

pyq
˘

Ă BrinjpBM , g|BM q

`

Φ´1px , yq
˘

for all px , yq P BˆBF . Moreover, we apply (2.4) to further scale down rB

and rB,F so that

Φ´1
´

BrB
pxq ˆKF

`

BrB,F
pyq ˆ r0, rC,F q

˘

¯

Ă KM

´

BrinjpBM , g|BM q

`

Φ´1px , yq
˘

ˆ
“

0, rC,M

˘

¯

(cf. Definition A.15 for the precise meaning of the collar maps KF and KM ).

KM p. . . q

BM

NCM prC,M q

Φ´1

Φ´1px , yq
px , yq

rC,F

U ˆBF

U ˆKF p. . . q

M

Note that this downsizing can always be carried out uniformly in x P B
and y P BF , which can be seen as follows: By the triangle inequal-
ity, the set BrB

pxq ˆ KF pBrB,F
pyq ˆ r0, rC,F qq is completely contained in

a pgB ˆ gF q-metric ball around px , yq with radius rB ` rB,F ` rC,F for all
px , yq P B ˆ BF . The image of the latter ball under Φ´1 is in turn con-
tained in a g-metric ball B around Φ´1px , yqwith radius CprB`rB,F`rC,F q.
We then scale down rB, rB,F and rC,F (if necessary) until the former ra-
dius goes below some x-independent constant r “ rprC,M , rinjpBM , g|BM q

and [Sch96, Lemma 3.19] is applicable, asserting that B is contained in
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KM pBrinjpBM , g|BM q
pΦ´1px , yqqˆ r0, rC,M qq. We then choose points tyλuλă0

in BF such that the set tBrB,F
pyλquλă0 is covering of BF , i.e.,

ď

λă0

KF

`

BrB,F
pyλq ˆ r0, rC,F q

˘

loooooooooooooomoooooooooooooon

“:Vλ

“ NCF prC,F q.

Interior Charts:

For any point y P FzNCF p
2rC,F

3 q, we consider geodesic balls Brin,F
pyqwith ra-

dius rin,F ă rI,F small enough such that Brin,F
pyqX FzNCF p

rC,F

3 q “H. Then
BrB
pxq ˆ Brin,F

pyq is contained in a pgB ˆ gF q-metric ball around px , yq
with radius rB ` rin,F for all x P B. Consequently, the image of the ball
under Φ´1 is contained in a g-metric ball B around Φ´1px , yq with radius
CprB ` rin,F q. By scaling down rB and rin,F appropriately, we can make
this radius smaller than some constant r “ rprC,M , rinjpBM , g|BM q, rI,M q

and [Sch96, Lemma 3.19] yields again an pM , gq-normal coordinate
chart pW,τq – either a boundary collar chart (red) or an interior chart
(green) – such that B ĂW .

U ˆBF

px , yq

ě
2rC,F

3

U ˆ Brin,F
pyq

Φ´1 Φ´1px , yq
Φ´1px , yq

BM

NCM prC,M q

M

W

W

Finally, we again choose points tyλuλPN0
in F such that

ď

λPN0

Brin,F
pyλq

looomooon

“:Vλ

“ FzNCF

` 2rC,F

3

˘

.

l
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Due to the compactness of F , the covering provided by the previous
lemma always admits (after a possible renaming of the indices) a finite
subcovering tpVλ,$λqu

K
λ“1 with normal coordinates.

We may now link the boundedness properties of the two involved
bundles in the following sense:

Lemma 2.5 Let rB ă rinjpB, gBq and tpVλ,$λqu
K
λ“1 be the quantities of

Lemma 2.4. Cover pB, gBq with any set of geodesic balls tUν “ BrpxνquνPN0

with radius r ă rB and obtain local trivialisations Φ´1
ν pUνq Ñ Uνˆ F. Then

there exist local trivialisations

Λνλ : E |Φ´1
ν pUνˆVλq

Ñ Φ´1
ν pUνˆ Vλq ˆCN , pν,λq P N0ˆt1, . . . , Ku

of πE : E Ñ M which are bounded with all their derivatives uniformly in ν
and λ.

PROOF. Lemma 2.4 states that every set Φ´1
ν pUνˆ Vλq is completely con-

tained in an pM , gq-normal chart pW,τq, for which the bounded geometry
of E πE

ÝÑ M provides a local synchronous trivialisation Λ : π´1
E pW q Ñ

W ˆCN . Therefore, the restrictions

Λνλ :“ Λ|Φ´1
ν pUνˆVλq

have all the desired boundedness properties uniformly in ν and λ. l

We are now in a position to give a result for the boundedness properties

of the fibre bundle E ΠE
ÝÑ B. We will therefore revise the construction of

the local trivialisations tΨν : π´1
E pUνq Ñ U ˆFuνPN0

obtained in Proposi-
tion 2.1 by thoroughly following the steps in the proof of [Hat09, Theorem
1.6] and specifying all involved objects explicitly.

Proposition 2.6 Let πM : pM , gq Ñ pB, gBq be a uniformly locally trivial fi-
bre bundle with compact typical fibre pF, gF q and πE : E Ñ M be a CN -vector
bundle of bounded geometry. Cover pB, gBq with geodesic balls tUνuνPN0

with radius r ă rB and obtain local trivialisations Φ´1
ν pUνq Ñ Uν ˆ F.

Then the corresponding local trivialisations Ψν : Π´1
E pUνq Ñ Uν ˆ Fν of
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Proposition 2.1 are bounded with all their derivatives uniformly in ν in the
following sense: For all synchronous trivialisations ΛE : π´1

E pW q ÑWˆCN

and ΛFν : π´1
F pV q Ñ V ˆCN of E and Fν (cf. Remark 2.3), respectively, the

mappings
`

1Uν ,ΛFν

˘

˝Ψν ˝Λ
´1
E ˝

`

Φ´1
ν ,1CN

˘

(2.5)

and their inverses are homomorphisms on CN , bounded with all their deriva-
tives on ΦνpW q X pUνˆ Fq uniformly in ν.

PROOF. The first ingredient is the diffeotopy

hν : pUνˆ Fq ˆ r0, 1s Ñ Uνˆ F,

px , y, tq ÞÑ
´

κ´1
ν

`

tκνpxq
˘

, y
¯

“: pt x , yq,

which describes the shrinking of the geodesic ball Uν with constant speed
to the point xν “ κ

´1
ν p0q using the normal chart κν : UνÑ Bb

r p0q. Hence,
it holds that

 

pt x , yq such that px , yq P Uνˆ F
(

Ă Uνˆ F

for all t P r0,1s and

hp¨, 1q “ 1UνˆF , hp¨, 0q “ txνuˆ 1F .

This induces pullback bundles according to the following diagram (with
the shortcut Eν :“ Π´1

E pUνq):

Eν -

“:Ēν
hkkkikkkj

pΦ´1
ν q

˚Eν -

“:Êν
hkkkkkikkkkkj

h˚ν pΦ
´1
ν q

˚Eν

π´1
M pUνq

πE ?
�
Φ´1
ν

Uνˆ F

π̄E
?
�

hν
pUνˆ Fq ˆ r0, 1s

π̂E
?

The utilised covering tpVλ,$λqu
K
λ“1 of the fibre pF, gF q comes along with

a smooth partition of unity tχλu
K
λ“1, which also induces a partition of
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2.1 Geometric Setting

unity of Uν ˆ F via χνλpx , yq :“ χλpyq. Then the family tζνσpx , ¨quK
σ“0

defined by the relations

ζν0 ” 1 , ζνσpx , yq :“
σ
ÿ

λ“1

χνλpx , yq “
σ
ÿ

λ“1

χλpyq for σ ě 1

is monotonically increasing and approaches the constant function ζνK ” 1
pointwise. Two neighbouring mappings ζνσ and ζν,σ´1 obviously differ
only on the set Uνˆ Vσ. Then for all σ P t0, . . . , Ku we set

Ξνσ :“ graphpζνσq Ă pUνˆ Fq ˆ r0,1s, σ P t0, . . . , Ku

and consider the respective restriction

Êσν :“ Êν
ˇ

ˇ

Ξνσ
“

"

´

`

x , y,ζνσpx , yq
˘

,ψ
¯

P Ξνσ ˆ Ēν

such that ψ P
`

Êν
˘

pζνσpx ,yqx ,yq

*

as a vector bundle over Uνˆ F , whose fibre at px , yq is given by that of E
at Φ´1

ν pζσpx , yqx , yq Ă π´1
M pUνq. Consequently, we get (see the proof of

Proposition 2.1)

ÊK
ν “ Êν

ˇ

ˇ

pUνˆFqˆt1u “ hp¨, 1q˚Ēν “ Ēν

and

Ê0
ν “ Êν

ˇ

ˇ

pUνˆFqˆt0u “ hp¨, 0q˚Ēν “ UνˆF

at the endpoints σ “ K and σ “ 0, respectively.

prνσ

Ξν0

Ξνσ

Ξν,σ´1

p¨, yq P Uνˆ F0

1

Uνˆ Vσ

ΞνK
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2 The Framework

We note that these bundles come along with local trivialisations

Λ̂σ
ν|λ

: Êσν
ˇ

ˇ

UνˆVλ
Ñ pUνˆ Vλq ˆCN ,

´

`

x , y,ζνσpx , yq
˘

,ψ
¯

ÞÑ
`

x , y, pr2Λνλpψq
˘

(2.6)

for all λ P t1, . . . , Ku, where tΛνλu
K
λ“1 are the local trivialisations of Eν

constructed in Lemma 2.5.

ÊK
ν “ Ēν

Eν
pΦ´1
ν q

˚

- Ēν ........-

1Ēν
-

Êν
.....

.....
.....

.-

Ê0
ν “ UνˆF

Υν

?

................-Ψν

�

-

It remains to specify the diffeomorphism Υν : ĒνÑ Uν ˆF , whose con-
struction is actually carried out in the proof of [Hat09, Theorem 1.6].
To do so, we first need to lift each projection prνσ : ΞνσÑ Ξν,σ´1 to an
isomorphism PRνσ : Êσν Ñ Êσ´1

ν . Therefore, we note that ζνσ “ ζν,σ´1

on UνˆAVσ implies

Êσν
ˇ

ˇ

UνˆAVσ
“ Êσ´1

ν

ˇ

ˇ

UνˆAVσ
.

Moreover, on Uν ˆ Vσ we identify vectors of pÊσν qp¨,ζνσp¨qq with those of
pÊσ´1
ν qp¨,ζν,σ´1p¨qq

by means of the local trivialisations (2.6). This eventually
leads to

PRνσ :“

#

1Êσν
, on Êσν

ˇ

ˇ

UνˆAVσ
`

Λ̂σ´1
ν|σ

˘´1
˝ Λ̂σ

ν|σ
, on Êσν

ˇ

ˇ

UνˆVσ
,
σ P t1, . . . , Ku.

Due to the fact that χσ ” 0 on AVσ, the transition function pΛ̂σ´1
ν|σ
q´1˝Λ̂σ

ν|σ

is the identity over all px , yq P UνˆAVσ, in particular near UνˆBVσ, so
there is no discontinuity there. The desired diffeomorphism is finally
obtained by the finite composition

Υν “ PRν1 ˝ ¨ ¨ ¨ ˝ PRνK .
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2.1 Geometric Setting

Now take trivialisations ΛE and ΛFν as in the statement and let Λ̄E be
the induced local trivialisation of Ēν over ΦνpW q. Suppose without loss of
generality that ΦνpW qXpUνˆ Fq ‰H (otherwise the statement would be
trivial) and take any point px , yq of this intersection. Denote the elements
of the set

 

λ P t1, . . . , Ku such that y P Vλ
(

by θ1 ă ¨ ¨ ¨ ă θL . Then there is an open neighbourhood of px , yq over

which we have Υν “ PRνθ1
˝ ¨ ¨ ¨ ˝ PRνθL

. Using the fact that Λ̂θs´1
ν|θs

“ Λ̂
θs´1

ν|θs

for all s P t1, . . . , Lu (with θ0 “ 0), we consequently find that (2.5) turns
into

´

`

1Uν ,ΛFν

˘

˝
`

Λ̂0
ν|θ1

˘´1
¯

˝

´

Λ̂
θ1

ν|θ1
˝
`

Λ̂
θ1

ν|θ2

˘´1
¯

˝ ¨ ¨ ¨ ˝

´

Λ̂
θL

ν|θL
˝ Λ̄´1

E

¯

near px , yq.

• As far as the last term is concerned, it follows that (since ΞνθL
” 1

near px , yq) EθL
ν “ ÊK

ν “ Ēν near px , yq, and hence Λ̂θL

ν|θL
˝ Λ̄´1

E is
essentially a transition function between synchronous trivialisations
of Ēν.

• Each intermediate term

Λ̂
θs

ν|θs
˝
`

Λ̂
θs

ν|θs`1

˘´1
, s P t1, . . . , L´ 1u

is a transition function of the bundle Êθs
ν over Uν ˆ pVθs

X Vθs`1
q,

smooth and its bounds depend on those of tΛ̂νλu
K
λ“1, tχλu

K
λ“1

and κν.

• We note that Λ̂0
ν|θ1

– although it is the restriction of the local triviali-
sation pΦν,1CN q ˝Λνθ1

to txνuˆVθ1
– does not give an synchronous

trivialisation of Fν since it is associated with normal coordinates
on pM , gq which do in general not restrict to normal coordinates
on pMx , gMx

q, for example if Mx ãÑ M is not totally geodesic. At
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2 The Framework

the expense of introducing further transition functions on E and Fν,
however, we may assume that both pΦ,1CN q ˝Λνθ1

and p1Uν ,ΛFνq

stem from parallel transport along normal coordinates that are
centred around the same point pxν, ȳq. Then the transition func-
tion p1Uν ,ΛFνq ˝ pΛ̂

0
ν|θ1
q´1 is obtained by parallel transport along

a closed curve in Uνˆ Vθ1
, starting/ending at pxν, yq and passing

through pxν, ȳq, and therefore given by the holonomy of pΦ´1
ν q

˚∇E .
In view of [GS13, Lemma 5.13], this can be bounded in terms of the
bounds on Φν and RE by writing it as the solution of a differential
equation.

pxν, yθ1
q Φνppνθ1

q

pxν, ȳq

pxν, yq
px , yq

Uνˆ Vθ1

txνuˆ Vθ1

p1Uν ,ΛFνq

pΛ̂0
ν|θ1
q´1

Since all bounds are independent of px , yq and uniform in ν, the statement
is proven. l

Due to the compactness of F , another choice of bundle metric and metric
connection onF still gives bounded trivialisations. These bounds, however,
may then depend on x , which occurs for example if one scales the bundle
metric hν with an x-dependent factor.
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2.1 Geometric Setting

We close this subsection by collecting the characteristics which reflect
the uniform boundedness of the underlying geometry:

Definition 2.7 We establish the following properties associated with the
bundles πE : E Ñ M and πM : M Ñ B:

• Since pB, gBq is a manifold of bounded geometry without boundary,
it comes along with an atlas U :“ tpUν,κνquνPN0

of geodesic balls
Uν “ Brpxνqwith centres xν and uniform radius r ă rB ă rinjpB, gBq,
and a subordinate partition of unity tχνuνPN0

with finite multiplic-
ity NU as in Lemma A.16.

• We equip each ball Uν with a gB-orthonormal frame tX νi u
b
i“1 of

TB|Uν “ TUν, obtained by parallel transport along radial geodesics
starting at xν with respect to the Levi-Civita connection ∇gB . These
form a set of smooth sections, uniformly bounded in i and ν because
of the bounded geometry.

• The uniformly locally trivial fibre bundle πM : M Ñ B provides
local trivialisations Φν : pπ´1

M pUνq, gq Ñ pUνˆF, gBˆ gF q for ν P N0,
bounded uniformly in ν with all their derivatives.

• Proposition 2.1 states that each local trivialization Φν induces a
local trivialisation Ψν : Π´1

E pUνq Ñ Uν ˆFν of ΠE : E Ñ B. These
trivialisations are bounded uniformly in ν with all their derivatives
due to Proposition 2.6. ◊

Note that tχM
ν :“ χν ˝πMuνPN0

is a smooth partition of unity of M that
is subordinate to the covering tπ´1

M pUνquνPN0
and is bounded with all its

derivatives.

2.1.4 The Adiabatic Limit

Our aim now is to consider a family of rescaled Riemannian submersion
metrics

gε “ ε´2π˚M gB ` gV (2.7)
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on M , which blows up the volume of the base B (the volume of the
horizontal directions in M). This is also referred to as the adiabatic limit
and was introduced by Witten to investigate the limit of the η-invariant of
the Dirac operator [Wit85]. We remark that the horizontal distributionHM
was fixed for gε“1 and hence remains ε-independent.

Definition 2.8 Let tX iu
b
i“1 and tVju

f
j“1 be local orthonormal frames of

the Euclidean vector bundles pTB, gBq and pVM , gVq, respectively. We call
the local orthonormal frame ptεXH

i u
b
i“1, tVju

f
j“1q of pTM , gεq adapted to

the decomposition (2.1). ◊

Let us consider the ε´2 gB-geodesic ball around any x P B with radius

r ă rinjpB, gBq “ εrinjpB,ε´2 gBq ă rinjpB,ε´2 gBq, 0ă ε ă 1.

This geodesic ball Bε
´2 gB

r pxq “ BgB
εr pxq is contained in the ball BgB

r pxq for
all 0 ă ε ă 1. Thus, we may cover pB,ε´2 gBq with a possibly greater
number of balls tUεν “ Bε

´2 gB
r pxενquνPN0

, all of them being contained in
balls BgB

r px
ε
νq which depend on ε only via their centres. We can hence use

the same (suitably restricted) local trivialisations of pM , gq
πM
ÝÑ pB, gBq

for all 0 ă ε ă 1 and conclude that πM : pM , gεq Ñ pB,ε´2 gBq is a
uniformly locally trivial fibre bundle with ε-independent bounds on the
trivialisations. Moreover, pM , gεq is a (B-)manifold of bounded geometry
and the constants and bounds appearing in Definition A.15 can be chosen
to be those of pM , gq [Lam14, Proposition A.9].

Remark 2.9 Lemma A.16 allows us to equip pM , gεq with a countable
atlas tpW ε

µ ,τεµquµPZ consisting of geodesic cylinders (µă 0) and geodesic

balls (µ P N0) with radius r ă 1
3 mintrinjpBM , g|BM q, rIu and centres pεµ,

and a subordinate partition of unity tχεµuνPZ.

(i) In view of [Sch96, Theorem A.1], the bounds on the metric coeffi-
cients pgεµqαβ and their inverse pgεµq

αβ in these normal coordinates
can be chosen independently of ε.
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2.1 Geometric Setting

(ii) As can be seen in the construction in [Sch96, Lemma 3.22], both
the bounds on tDapτεµ˚χ

ε
µq P C8b pR

b` f quµPZ for all a P Nb` f
0 and

the multiplicity NM can be chosen independently of ε. ◊

Passing over to the vector bundle πE : pE , h,∇Eq Ñ pM , gεq, one can
similarly show that the bounds on the ε-dependent curvature RE of ∇E

improve with decreasing parameter ε. More precisely, if X , Y P C8b pTBq
are of gB-length one, the related horizontal lifts εXH,εY H P C8b pHMq are
of gε-length one and we obtain for any V, W P C8b pVMq and ψ P C8b pEq:




RE`εXH,εY H
˘

ψ






h “ ε
2




RE`XH, Y H
˘

ψ






h ,




RE`εXH, V
˘

ψ






h “ ε




RE`XH, V
˘

ψ






h ,




REpV, W qψ






h “




REpV, W qψ






h .

As far as the local synchronous trivialisations (see Definition A.18) asso-
ciated with the normal coordinates introduced in Remark 2.9 are con-
cerned, we can argue as before to see W ε

µ Ă W ε“1
µ for all 0 ă ε ă 1.

Hence, we may again use the same (suitably restricted) trivialisations as
for pE , h,∇Eq

πE
ÝÑ pM , gq.

Remark 2.10 Let pΓ Eµ q
A
αB forα P t1, . . . , b` f u and A, B P t1, . . . , Nu be the

Christoffel symbols of ∇E with respect to the synchronous trivialisations
that arise from the atlas tpW ε

µ ,τεµquµPZ introduced in Remark 2.9. Then
[Eic91, Theorem B], which can be extended to the case of B-base manifolds
of bounded geometry by means of Definition A.18 (in the spirit of [Sch96,
Theorem A.1]), asserts that all derivatives of the Christoffel symbols can
be bounded uniformly in µ P Z, i.e., for all k P N0 there is a constant
Cpkq ą 0 such that







Da
´

τεµ˚pΓ
E
µ q

A
αB

¯









8
ď Cpkq

for all µ P Z and all multi-indices a P Nb` f
0 with |a|ď k. Moreover, these

bounds Cpkq depend only on those of Rε, and in particular, can be chosen
to be those for ε “ 1. ◊
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2.2 The Laplacian

Denote by H :“ L2pE , volgq the ε-independent Hilbert space of square-
integrable sections of the vector bundle πE : pE , h,∇Eq Ñ pM , gq, which
is endowed with the scalar product

xψ,φyH “
ż

M
hpψ,φ

˘

volg .

We will deal with Schrödinger operators on H whose kinetic part is es-
sentially the (negative of the) connection Laplacian ´∆E

gε with Dirichlet
boundary conditions. As is mentioned in Section A.3, the latter is initially
defined as a differential operator on C80 pE

˝q by the relation

´∆E
gεψ“´ trgε

`

p∇Eq2ψ
˘

and extends to a positive self-adjoint operator on H with domain

dom
`

´∆E
gε
˘

“W 2
`

E , volgε
˘

XW 1
0

`

E , volgε
˘

.

If we take an adapted local orthonormal frame of pTM , gεq as in Defi-
nition 2.8, we observe, using Einstein’s sum convention in the case of
repeated indices (which will always be employed throughout the thesis),
that this Laplacian resembles the kinetic energy operator of the molecular
Born-Oppenheimer Hamiltonian [PST07]:

´∆E
gε

(A.14)
“ ´

´

∇E
εXH

i
∇E
εXH

i
´∇E

∇gε

εXHi
εXH

i

¯

´

´

∇E
Vj
∇E

Vj
´∇E

∇gε
Vj

Vj

¯

“ ´ε2
´

∇E
XH

i
∇E

XH
i
´∇E

p∇gB
Xi

X iq
H

¯

´

´

∇E
Vj
∇E

Vj
´∇E

∇V
Vj

Vj
´∇E

IIεVpVj ,Vjq

¯

“ ´ε2
´

∇E
XH

i
∇E

XH
i
´∇E

p∇gB
Xi

X iq
H

¯

`∇E
ηεV
´

´

∇E
Vj
∇E

Vj
´∇E

∇V
Vj

Vj

¯

“ ´ε2∆E
H ´∆

E
V , (2.8)

where we abbreviated

∇V
V W :“ PVM ∇gε

V W (A.3)
“ PVM ∇g

V W
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2.2 The Laplacian

for vertical vector fields V, W P C8pVMq. The horizontal Laplacian

∆E
H “ trπ˚M gB

`

p∇Eq2¨q ´∇E
ε´2ηεV

“ trπ˚M gB

`

p∇Eq2¨
˘

´∇E
ηV

incorporates all derivatives in the horizontal directions including the mean
curvature vector ηV of the fibres in pM , gεq, which equals ε2 times the
respective vector ηV of the fibres in pM , gq [Lam14, Lemma 1.6]. The
remainder∆E

V incorporates only vertical derivatives and is therefore called
the vertical Laplace operator. The latter will be the starting point for the
analysis of fibrewise acting operators of the following subsection.

2.2.1 Function Space Bundles

We begin with the observation that the vertical Laplacian is compatible
with the embedding Mx

ιx
ãÝÑ M of the fibres for all x P B in the sense that

ι˚x
`

∆E
Vψ

˘

“∆Ex
gMx
ι˚xψ, ι˚xψ P C8pExq

holds for ψ P C8pEq. Put differently, the vertical Laplace operator ∆E
Vpxq

at x P B coincides with the connection Laplacian

∆Ex
gMx
“ trgMx

`

∇T˚MxbEx∇Ex ¨
˘

, ∇gMx “ ι˚x∇
V

on the vector bundle pEx , hx ,∇Ex q
πEx
ÝÑ pMx , gMx

q. This can easily be
seen as the covariant derivative ∇E

Vψ along the vertical vector fields
V P tVj ,∇V

Vj
Vju at ξ P Mx merely depends on the values of ψ along a

curve in Mx that is tangent to V pξq P TξMx and thus

ι˚x
`

∇E
Vψ

˘

“∇Ex

V |Mx
ι˚xψ.

It follows that the vertical Laplacian operates for each x P B on the
fibrewise Hilbert space

L2pExq “

!

mappings φ : Mx Ñ Ex with φpξq P pExqξ such

that ‖φ‖2
L2pEx q

(A.11)
“

ş

Mx
‖φpξq‖2

phx qξ
volgMx

pξq ă 8
)

.
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We saw at the end of Subsection 2.1.2 that these spaces L2pExq are all
isomorphic to the topological vector space L2pFq. Hence, we may think
of these as the fibres of an infinite-dimensional vector bundle over B
with typical fibre L2pFq. More generally, we aim to construct vector
bundles over B with various function spaces X pFq as typical fibre, for
instance certain Sobolev spaces and therefore the completions of C80 pFq
and C80 pF

˝q. A detailed exposition of the construction of continuous
vector bundles πX : X pF ;ΠEq Ñ B with typical fibre X pFq is given in
[Lam14, Appendix B.1] for the case of a trivial line bundle E “ M ˆC
over M . But all of the arguments occurring there may be transferred
immediately to our situation, so we will only briefly give the necessary
modifications.

We take initial data from Definition 2.7 and define C8pF ;ΠEq in terms
of transition functions (using the abbreviation Uνν1 :“ UνX Uν1)

tνν1 : Uνν1 ˆ C8pFq Ñ Uνν1 ˆ C8pFq, px ,φq ÞÑ
`

x ,gνν1pxqφ
˘

,

where

gνν1pxq : C8pFq Ñ C8pFq,

φ ÞÑ Ψν|Ex
˝ Ψν1 |

´1
Ex
˝φ ˝ Φν1 |Mx

˝ Φν|
´1
Mx

. (2.9)

F
Ψν1 |

´1
Ex- Ex

Ψν|Ex - F

F

φ
6

�
Φν1 |Mx

Mx
�
Φν|

´1
Mx

F

gνν1pxqφ
6

The completion of C8pFq with respect to the ‖¨‖W kpFq-norm, which is
independent of the choice of bundle metric and metric connection on F
by Remark A.13, uniquely defines the structure of a continuous vector
bundle πWk

: W kpF ;ΠEq Ñ B with fibres W kpF ;ΠEq
ˇ

ˇ

x “ W kpExq if the
transition functions tνν1 are continuous mappings from Uνν1 ˆW kpFq
to Uνν1 ˆW kpFq for all ν,ν1 P N0 [Lam14, Lemma B.4]. By the uniform
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2.2 The Laplacian

boundedness principle, this requirement is equivalent to the strong con-
tinuity of gνν1 : Uνν1 Ñ LpW kpFqq for all ν,ν1 P N0. For this purpose,
the uniform local triviality of M

πM
ÝÑ B and Proposition 2.6 yield that the

local trivialisations used for the “transition matrices” (2.9) are bounded
uniformly with all their derivatives and the family (cf. Remark 2.3)

!

gνν1 : Uνν1 Ñ L
`

W kpFνq
˘

with ν,ν1 P N0 such that Uνν1 ‰H
)

is actually strongly equicontinuous. Thus, the infinite-dimensional vector
bundles W kpF ;ΠEq are well-defined and their associated local trivialisa-
tions Θν : W kpF ;ΠEq

ˇ

ˇ

Uν
Ñ Uν ˆW kpFνq are given in each fibre by the

homeomorphisms

Θν|W kpEx q
: W kpExq ÑW kpFνq, φ ÞÑ Ψν|Ex

˝φ ˝ Φν|
´1
Mx

for x P Uν.

Ex

Ψν|Ex - Fν

Mx

φ 6

�
Φν|

´1
Mx

F

Θν|W kpEx q
φ6

Consequently, the latter are bounded uniformly in the following sense:
For all k P N0 there exists a constant Cpkq ą 0 such that




Θν|W kpEx q







LpW kpEx q,W kpFνqq
ď Cpkq (2.10)

for all x P Uν and ν P N0.

Remark 2.11 L2pFq-derivatives of the mapping x ÞÑ gνν1pxqφ incorpo-
rate vertical derivatives of φ P W kpFq due to the chain rule, and so
in general Bxgνν1pxq is expected to be continuous only from W k´1pFq
to W kpFq and consequently Bxgνν1pxq R LpW kpFqq. Hence, differentia-
bility is too strong a requirement for these infinite-dimensional vector
bundles. ◊
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One can similarly construct spaces of bounded bundle maps between
two vector bundles W kpF;ΠEq and W lpF;ΠEq for k, l P N0 [Lam14,
Lemma B.5]. For example, any fibrewise operator T with

Tpxq P L
`

W kpExq, W lpExq
˘

is a section of the bundle LpW kpF ;ΠEq, W lpF ;ΠEqq.
We close the discussion by returning to the initial motivation for this

subsection and therefore introduce the vector bundles

HF :“W 0pF ;ΠEq “ L2pF ;ΠEq (2.11a)

and

DF :“W 2pF ;ΠEq XW 1
0 pF ;ΠEq. (2.11b)

The fact that the fibrewise vertical Laplacian´∆E
Vpxq defines a self-adjoint

operator on L2pExq “ HF |x with Dirichlet domain domp´∆E
Vpxqq “

W 2pExq XW 1
0 pExq “ DF |x for all x P B can be merged into the state-

ment ´∆E
V P L8pLpDF ,HFqq.

2.2.2 Elliptic Regularity

The structure of the composed fibre bundle E ΠE
ÝÑ B suggests that we

introduce adapted Sobolev spaces on E which take into account the ε-
dependent scaling of the horizontal and vertical directions of M via the
rescaled submersion metric gε (2.7), which causes the different scaling
of horizontal and vertical derivatives in ´∆E

gε “´ε
2∆E

H ´∆
E
V .

Definition 2.12 With the notation of Definition 2.7, we denote by W k
ε pEq

the completion of C80 pEq with respect to the norm

‖ψ‖2
W k
ε pEq

:“
ÿ

νPN0

ÿ

|a|ďk

ż

Uν
















b
ź

i“1

`

∇E
εΦ˚ν X νi

˘aiχM
ν ψ
















2

W k´|a|pEx q
loooooooooooooooooomoooooooooooooooooon

includes |a| B-horizontal and
k´ |a| vertical derivatives

volgB
pxq.
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Moreover, the spaces W k
0,εpEq stand for the completion of C80 pE

˝q with
respect to the same norm. ◊

We will give a more detailed discussion of the so-called B-horizontal vector
fields Φ˚νX νi P C8b pTM |π´1

M pUνq
q at the beginning of Section 3.1 and content

ourselves at this point with the intuition that these vector fields are tangent
to the boundary BM and are obtained by slightly tilting the respective
horizontal lifts pX νi q

H P C8b pHM |π´1
M pUνq

q.

Remark 2.13 Let ψ P C80 pEq be arbitrary. We then obtain on the one
hand

‖ψ‖2
W 0
ε pEq

“
ÿ

νPN0

ż

Uν





χM
ν ψ






2
L2pEx q

volgB
pxq

“
ÿ

νPN0

ż

Uν

ˆ
ż

Mx





pχM
ν ψqpξq






2
phx qξ

volgMx
pξq

˙

volgB
pxq

“
ÿ

νPN0

ż

π
´1
M pUνq

χM
ν

2
ppq




ψppq






2
hp

volgppq

ď
ÿ

ν1PN0

ÿ

νPN0

ż

M
χM
ν ppqχ

M
ν1 ppq




ψppq






2
hp

volgppq

“
ÿ

νPN0

ż

M
χM
ν ppq




ψppq






2
hp

volgppq

“ ‖ψ‖2
H ,

while on the other hand it holds that

‖ψ‖2
H “

ÿ

νPN0

ÿ

ν1PN0

ż

M
χM
ν χ

M
ν1 ‖ψ‖

2
h volg

ď
ÿ

ν,ν1PN0
Uνν1‰H

ż

M

1
2

´

χM
ν

2
`χM

ν1
2
¯

‖ψ‖2
h volg

ď
ÿ

νPN0

NU

ż

M

1
2

´

χM
ν

2
`χM

ν

2
¯

‖ψ‖2
h volg
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“ NU

ÿ

νPN0

ż

π
´1
M pUνq

χM
ν

2 


ψppq






2
h volg

“ NU ‖ψ‖
2
W 0
ε pEq

.

The second inequality is valid because there are at most NU partition
functions χM

ν1 ď 1 with Uνν1 ‰H for all ν P N0 and similarly for the second
term. Thus, W 0

ε pEq “H as topological vector spaces with ε-independent,
equivalent norms

‖ψ‖W 0
ε pEq

ď ‖ψ‖H ď N1{2
U ‖ψ‖W 0

ε pEq
. (2.12)

◊

We now show that the two norms ‖¨‖W k
ε pEq and ‖¨‖W kpE,volgε q

are equiva-

lent. The required constants are ε-independent up to a global factor εb,
which comes from the fact that we used volgB

for the volume measure in
Definition 2.12 instead of volε´2 gB

.

Proposition 2.14 For every k P N0 there are constants 0 ă cpkq ď Cpkq
such that

cpkq‖ψ‖W k
ε pEq

ď εb ‖ψ‖W kpE,volgε q
ď Cpkq‖ψ‖W k

ε pEq

for all ψ PW k
ε pEq.

PROOF. We choose

• a covering tpUεν ,κενquνPN0
of pB,ε´2 gBq with local trivialisations

Φν : π´1
M pU

ε
νq Ñ Uεν ˆ F of M

πM
ÝÑ B,

• a covering tpVλ,$λquλPZ of pF, gF q with synchronous trivialisations
Λ

Fν
λ

: π´1
F pVλq Ñ Vλ ˆ CN of the typical bundle Fν

πF
ÝÑ F (see

Remark 2.3) for all ν P N0,

• a covering tpW ε
µ ,τεµquµPZ of pM , gεqwith synchronous trivialisations

ΛE
µ : π´1

E pW
ε
µ q ÑW ε

µ ˆC
N of E πE

ÝÑ M ,

• and local trivialisations Ψν : Π´1
E pU

ε
νq Ñ Uεν ˆF of E ΠE

ÝÑ B.
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We saw in Subsection 2.1.4 that all constants and curvature bounds, that
belong to pM , gεq, can be chosen independently of ε. In particular, there
is a partition of unity tχεµuµPZ subordinate to the cover introduced above
with derivatives and multiplicity NM uniformly bounded in ε (cf. Re-
mark 2.9(ii)).

The coordinate changes tλµν in virtue of the diagram

CN
ΛE
µ ˝Ψ

´1
ν ˝ p1Uν ,Λ

Fν
λ
q´1

- CN

Rb` f

φ
6

�
pκεν,$λq ˝Φν ˝ pτ

ε
µq
´1 R

b` f

tλνµφ
6

are continuous maps from W kpRb` f ,CN q to W kpRb` f ,CN q with bounds
uniform in λ, µ and ν due to Proposition 2.6, [Lam14, Proposition A.9]
and the fact that both E πE

ÝÑ M and F πF
ÝÑ F are vector bundles of bounded

geometry (having the base manifolds pM , gεq and pF, gF q of bounded
geometry). Moreover, the latter bounds are independent of ε because
tεΦ˚νX νi u

b
i“1 extends to a gε-orthonormal basis at pν P π

´1
M pUνq. Hence,

the coordinate changes are orthogonal maps to first order while the higher
derivatives are bounded by the very construction of the coordinates. Con-
sequently, if we expand both norms in their local expressions and rescale
the volume measure properly, they are related by globally bounded maps.
These expressions can be patched together using Lemma A.16. l

We are finally able to formulate an elliptic regularity statement for the
connection Laplacian ∆E

gε with Dirichlet boundary conditions:

Proposition 2.15 Let ψ PW 2
ε pEq XW 1

0,εpEq and k P N0 such that ∆E
gεψ P

W k
ε pEq. Then ψ PW k`2

ε pEq and there is a constant Cpkq ą 0 such that

‖ψ‖2
W k`2
ε pEq

ď Cpkq
´





∆E
gεψ






2
W k
ε pEq

` ‖ψ‖2
H

¯

.

Due to the fact that the coefficients of the Laplacian are smooth, this
proposition implies in particular that solutions of the Dirichlet boundary
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value problem

´∆E
gεψ“ φ, ψ|BM “ 0 (2.13)

have infinite (classical) derivatives if φ PW8pEq. Moreover, an iterated
application of this proposition and appropriate interpolation inequalities
for Sobolev spaces [GT98, Theorem 7.28] provide the estimate

‖ψ‖2
W 2kpEq ď C̃pkq

ˆ










`

∆E
gε
˘k
ψ









2

H
` ‖ψ‖2

H

˙

(2.14)

for all k P N0.

OUTLINE OF PROOF (of Proposition 2.15). Since Proposition A.20 shows
that Sobolev norms are first calculated locally on subsets of Rb` f ˆCN

and then patched together accordingly, the proof consists of consider-
ing local boundary value problems that are induced by normal coordi-
nates and synchronous trivialisations associated with the vector bun-
dle pE , h,∇Eq

πE
ÝÑ pM , gεq of bounded geometry. More precisely, let

tpW ε
µ ,τεµquµPZ be a cover of M by normal coordinates (with respective

centres pεµ) andΛE
µ : π´1

E pW
ε
µ q ÑW ε

µˆC
N the corresponding synchronous

trivialisations. For the sake of clarity, we use q “ τεµppq to distinguish be-

tween points p P W ε
µ Ă M and coordinates q P τεµpW

ε
µ q Ă R

b` f (in
particular, we have τεµpp

ε
µq “ 0 for all µ P Z). We then denote by

q ÞÑ ψpqq “ pψ1pqq, . . . ,ψN pqqq a section of the trivial vector bundle
τεµpW

ε
µ q ˆ C

N Ă Rb` f ˆ CN in these coordinates. Consequently, the
boundary value problem (2.13) is transferred to a countable system of
local boundary value problems

#

pLµ,εψq
A “ φA in Ωbc :“ Bb`p f´1q

rB,M
p0q ˆ r0, rC,M q

ψA “ 0 on BΩbc

on boundary collar charts (µă 0) and

pLµ,εψq
A “ φA in Ωin :“ Bb` f

rin,M
p0q
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2.2 The Laplacian

on interior charts (µ P N0) for all A P t1, . . . , Nu. Note that these subsets
Ωbc,in Ă Rb` f are the same for all µ P Z and all 0 ă ε ă 1, while the
coefficients of the differential operator

Lµ,ε “´pg
ε
µq
αβpqq1CN BqαBqβ `Aαµ,εpqqBqα `Bµ,εpqq

depend on the metric coefficients pgεµq
αβ , the Christoffel symbols pΓ Eµ q

A
αB

of∇E and their respective derivatives up to second order. Remark 2.9 and
Remark 2.10 reveal that Aαµ,ε and Bµ,ε can be bounded uniformly in µ P Z
and 0ă ε ă 1.

Following the exposition of [Sch96, Chapter 4], we need (2.13) to be a
uniformly elliptic boundary value problem, i.e., we have to check that

(i) the local boundary value problems are elliptic in the classical sense
(cf. [Hör76, Definition 10.6.2]),

(ii) Lµ,ε is a uniformly elliptic differential operator with ellipticity con-
stants that are uniform in µ (and ε),

(iii) and the local problems admit (after a possible contraction of Ωbc

and Ωin) local fundamental solutions

Rbc
µ,ε : L2pΩbc,CN q ‘W 3{2pBΩbc,CN q ÑW 2pΩbc,CN q, µă 0

and

Rin
µ,ε : L2pΩin,CN q ÑW 2pΩin,CN q, µ P N0

that are bounded uniformly in µ (and ε).

Sufficient conditions for a boundary value problem to be uniformly elliptic
are derived in [Sch96, Proposition 5.13]. In particular, this criterion
merely depends on the principal parts

LP
µ,εpq,ζq “ ´gεµpζ,ζq

ˇ

ˇ

q1CN , ζ P T˚q
`

τεµpW
ε
µ q
˘

– Rb` f
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of the involved differential operators and their respective derivatives.
These requirements are verified in [Sch96, Proposition 5.14] for the Hodge
Laplacian with Dirichlet boundary conditions, which clearly transfers to
our case. Moreover, this procedure explicitly preserves the ε-uniformity
(cf. Remark 2.9(i)). Finally, [Sch96, Theorem 4.15] immediately implies
the desired inequality for the ‖¨‖W kpE,volgε q

-norm, which is equivalent to

the ‖¨‖W k
ε pEq-norm up to a global factor εb due to Proposition 2.14. l

2.3 The Schrödinger Operator

We will consider specific “perturbations” of the connection Laplacian intro-
duced in the previous section. More precisely, we will analyse Schrödinger
operators satisfying the following prerequisites:

Condition 2.16 Let

HE :“´∆E
gε ` εH

E
1 ` V E (2.15)

be the densely defined operator with Dirichlet boundary conditions, where

(i) the perturbation HE
1

• is symmetric on domp´∆E
gε q ĂH and bounded independently

of ε as a map from W k`2
ε pEq to W k

ε pEq for all k P N0,

• and carries additional B-horizontal smoothness, i.e., HE
1 T P

Ap`2,q for every T PAp,q
H (see Definition 3.5),

(ii) and the ε-independent potential V E is an element of C8b pHermpEqq,
where HermpEq Ă EndpEq denotes the subbundle of self-adjoint
(Hermitian) vector bundle endomorphisms of E . ◊

Under these conditions, HE is self-adjoint on H with domain

dompHEq “ dom
`

´∆E
gε
˘ (A.19)
“ W 2

ε pEq XW 1
0,εpEq
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and bounded from below by the Katō-Rellich theorem [RS75, Theo-
rem X.12]. From now on HE always denotes this self-adjoint operator,
while expressions like the Laplacian ∆E

gε or HE
1 may also stand for a differ-

ential operator without reference to a specific domain. The smoothness
conditions on the perturbation HE

1 and the potential V E allow us to ex-
tend the elliptic estimates for the Laplacian ´∆E

gε to the Schrödinger
operator HE :

Corollary 2.17 Let ψ P dompHEq and k P N be such that pHEqkψ P H
for HE satisfying Condition 2.16. Then ψ PW 2k

ε pEq and there are constants
ε0pkq, Cpkq ą 0 such that

‖ψ‖2
W 2k
ε pEq

ď Cpkq
´





pHEqkψ






2
H` ‖ψ‖

2
H

¯

for 0ă ε ă ε0pkq, and in particular domppHEqkq ĂW 2k
ε pEq for ε ą 0 small

enough.

PROOF. Condition 2.16 yields that the operator HE defines a bounded
map from W 2l`2

ε pEq to W 2l
ε pEq for all l P N0 with bounds independent

of ε. The aspired estimate then follows using iterated elliptic regularity
of the Laplacian (see Proposition 2.15):

‖ψ‖2
W 2k
ε pEq

(2.14)
ď Cpkq

ˆ










`

´HE ` εHE
1 ` V E

looooooooomooooooooon

“∆E
gε

˘k
ψ









2

H
` ‖ψ‖2

H

˙

ď Cpkq

˜

23k´1
n`m“k
ÿ

n,m“0

Cnm








 pHEqk´pn`mq
`

εHE
1

˘n
pV Eqm

looooooooooooooomooooooooooooooon

this ordering is symbolical as the mixed
terms are clearly not in this order!

ψ









2

H

` ‖ψ‖2
H

¸
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ď Cpkq
ˆ

23k´1




pHEqkψ






2
H`

´

1` 23k´1




V E






2k
LpHq

¯

‖ψ‖2
H

˙

` Cpkq23k´1
n`m“k´1

ÿ

n“1,m“0

Cnm








 pHEqk´pn`mq
`

εHE
1

˘n
pV Eqm

looooooooooooooomooooooooooooooon

this ordering is symbolical as the mixed
terms are clearly not in this order!

ψ









2

H

looooooooooooooooooooomooooooooooooooooooooon

ďcnmε2n‖ψ‖2

W
2pk´mq
ε pEq

.

The remaining sum in the last line is of order ε. Thus, it can be moved
to the left hand side and be absorbed into ‖ψ‖2

W 2k
ε pEq

for ε “ εpkq small
enough. l

We will now discuss two types of perturbations which occur in the
context of generalised quantum waveguides. As will become clear from
Section 5.1, such a waveguide is modelled by a family of ε-thin tubular
neighbourhoods around a smoothly embedded submanifold B ãÑ Rb` f

and may be mapped diffeomorphically to the total space M of an appro-
priate fibre bundle M

πM
ÝÑ B. The initial tube operator (without potential)

will turn out to be unitarily equivalent to the Dirichlet Laplacian ´∆E,ε
Gε

associated with some Riemannian metric Gε “ gε`Opεq on M and metric
connection ∇E,Aε “∇E `Opεq on a vector bundle E πE

ÝÑ M in a suitable
sense. We will analyse the effects due to these perturbations separately.

2.3.1 Perturbation of the Riemannian Submersion

Let us consider the connection Laplacian

´∆E
Gε “´ trGε

`

p∇Eq2¨
˘

with Dirichlet boundary conditions on L2pE , volGε q associated with some
perturbed Riemannian metric

Gε “ gε `Opεq (2.16)
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on M . We will see that ´∆E
Gε is unitarily equivalent to an operator of the

form (2.15). More precisely, let

ρε :“
volGε
volgε

“ 1`Opεq

be the Radon-Nikodym density of the two volume measures. In view of the
fact that volgε “ ε

´b volg , this induces a unitary map pUρε :“ pε´bρεq
1{21E

from L2pE , volGε q to L2pE , volgq “ H. Equation (2.16) suggests that the
unitarily transformed operator

HE “ pUρε
`

´∆E
Gε
˘

pU:ρε

equals ´∆E
gε to leading order, whereas the subsequent orders encode the

difference between the two metrics. Therefore, we first observe that

divGε pKqvolGε “ LK volGε “ LK

`

ρε volgε
˘

“ dρεpKqvolgε `ρεLK volgε

“
`

d lnρεpKq ` divgε pKq
˘

volGε

holds true for arbitrary K P C8pTMq, and hence

divGε “ divgε `d lnρε. (2.17a)

We now need to express the 7-isomorphism in terms of both metrics. In
this context, we introduce the tensor sε :“ rGε´ rgε P C8pΣ2T˚Mq and get

Ξ7,G
ε

“ Ξ7,g
ε

` sεpΞ, ¨q (2.17b)

for all Ξ P C8pT˚Mq.

Lemma 2.18 It holds that

pUρε
`

´∆E
Gε
˘

pU:ρε “´∆
E
gε `∇

E,˚,gε ˝ SE ` Vρε1E

on C80 pE
˝q

dense
Ă H. Here, SE P Diff1pE ,T˚M b Eq is given by

SE :ψ ÞÑ
`

p5, gεq b 1E
˘

˝

´

trTM ,p13q

`

sε b∇Eψ
˘

¯
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and the geometric potential by

Vρε :“ 1
2∆

L.B.
Gε plnρεq ´

1
4





gradGε plnρεq






2
Gε ,

where ∆L.B.
Gε “ divGε ˝gradGε is the Laplace-Beltrami operator on functions

introduced in Example A.24.

An alternative expression for the geometric potential is given by

Vρε
(2.17a)
“

1
2 divgε ˝gradGε plnρεq `

1
4





gradGε plnρεq






2
Gε . (2.18)

In order to avoid ambiguity when dealing with the adjoints (˚ and :)
or the musical isomorphisms (7 and 5), we indicate the underlying Rie-
mannian metric in the notation for these operations.

Example 2.19 Let us examine the special case of a trivial line bundle
E “ M ˆC equipped with the flat connection ∇MˆC “ d. We then obtain
for the action of SMˆC on any ψ P C80 pMzBM ˆCq – C8pMzBM ,Cq:

SMˆCψ“
`

p5, gεq b 1C
˘

˝

´

trTM ,p13q

`

sε b dψ
˘

¯

“

´

`

sε b dψ
˘

pωα, ¨, vαq
¯5,gε

“

´

sεpωα, ¨q b dψpvαq
¯5,gε

“ sε
`

ωαb dψpvαq
loooooomoooooon

“dψ

, ¨
˘5,gε

,

and so

d˚,gε
`

SMˆCψ
˘

“ d˚,gε
`

sεpdψ, ¨q5,g
ε˘ (A.17)

“ ´divgε
`

sεpdψ, ¨q
˘

.

Consequently, the Laplace-Beltrami operator ´∆L.B.
Gε is unitarily equivalent

to an operator whose action on smooth functions ψ vanishing on BM
reads

´∆L.B.
gε ψ´ divgε

`

sεpdψ, ¨q
˘

` Vρεψ,

in accordance with [Lam14, Equation (1.7)]. ◊

54



2.3 The Schrödinger Operator

PROOF (of Lemma 2.18). We use Lemma A.22 and calculate for arbitrary
ψ P C80 pE

˝q:

pUρε
`

´∆E
Gε
˘

pU:ρεψ“ ρ
1{2
ε ∇

E,˚,Gε∇E`ρ´1{2
ε ψ

˘

“ ρ1{2
ε ∇

E,˚,Gε
`

ρ´1{2
ε ∇Eψ` dρ´1{2

ε bψ
˘

“ ρ1{2
ε ∇

E,˚,Gερ´1{2
ε

`

∇Eψ´ 1
2 d lnρε bψ

˘

.

Denote by tvαu
b` f
α“1 and tωαub` f

α“1 local dual frames of TM and T˚M , respec-
tively. In virtue of (A.16) and Lemma A.21, the first term then evaluates
as

ρ1{2
ε ∇

E,˚,Gερ´1{2
ε ∇Eψ

“ ρ1{2
ε ∇

E,˚,Gε
`

ωαbρ´1{2
ε ∇E

vα
ψ
˘

“ ρ1{2
ε

´

´∇E
pωαq7,Gε

ρ´1{2
ε ∇E

vα
ψ´ divGε

`

pωαq7,G
ε˘

ρ´1{2
ε ∇E

vα
ψ
¯

“ ´∇E
pωαq7,Gε

∇E
vα
ψ` 1

2 d lnρε
`

pωαq7,G
ε˘

∇E
vα
ψ

´ divGε
`

pωαq7,G
ε˘

∇E
vα
ψ

(2.17a)
“ ´∇E

pωαq7,Gε
∇E

vα
ψ` 1

2 d lnρε
`

pωαq7,G
ε˘

∇E
vα
ψ

´

´

divgε
`

pωαq7,G
ε˘

` d lnρε
`

pωαq7,G
ε˘
¯

∇E
vα
ψ

(2.17b)
“

´

´∇E
pωαq7,gε

∇E
vα
´ divgε

`

pωαq7,g
ε˘

∇E
vα

¯

loooooooooooooooooooooooomoooooooooooooooooooooooon

“´∆E
gε , cf. the proof of Lemma A.22

ψ´ 1
2∇

E
gradGε plnρεq

ψ

`

´

´∇E
sεpωα,¨q´ divgε

`

sεpωα, ¨q
˘

¯

∇E
vα
ψ

looooooooooooooooooooooomooooooooooooooooooooooon

“(˚)

,

where we used the expansion gradGε plnρεq “ d lnρεppω
αq7,G

ε

qvα. As far
as the second term is concerned, we proceed similarly and obtain

´
1
2ρ

1{2
ε ∇

E,˚,Gερ´1{2
ε d lnρε bψ

“´
1
2ρ

1{2
ε

´

´∇E
pρ
´1{2
ε d lnρεq7,G

ε
ψ´ divGε

`

pρ´1{2
ε d lnρεq

7,Gε
˘

ψ
¯
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“
1
2∇

E
pd lnρεq7,G

εψ`
1
2 divGε

`

pd lnρεq
7,Gε

˘

ψ

`
1
2ρ

1{2
ε Gε

`

gradGε pρ
´1{2
ε q

looooooomooooooon

“´
1
2ρ
´1{2
ε gradGε plnρεq

, pd lnρεq
7,Gε

˘

ψ

“
1
2∇

E
gradGε plnρεq

ψ

`

´

1
2 divGε

`

gradGε plnρεq
˘

´
1
4





gradGε plnρεq






2
Gε

¯

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

“Vρε

ψ.

The addition of both terms finally yields the statement, since

(˚)“
`

∇E
sεpωα,¨q

˘:,gε∇E
vα
ψ

(A.16)
“ ∇E,˚,gε

´

`

sεpωα, ¨q
˘5,gε

b∇E
vα
ψ
¯

loooooooooooooomoooooooooooooon

“SEψ

,

again due to Lemma A.21. l

Remark 2.20 Again let tvαu
b` f
α“1 be a local frame of TM and tωαub` f

α“1 its
local dual frame. Then note that

ż

M

`

pGεqαβ ´ pgεqαβ
˘

loooooooooomoooooooooon

“sεpωα,ωβ q

h
`

∇E
vα
φ,∇E

vβ
ψ
˘

volgε

“

ż

M
h
`

∇E
vα
φ, sεpωα,ωβq∇E

vβ
ψ
˘

volgε

“

ż

M
h
´

φ,
`

∇E
vα

˘:,gε
sεpωα,ωβq∇E

vβ
ψ
¯

volgε

“

ż

M
h
´

φ,∇E,˚,gε
`

pvαq
5,gε b sεpωα,ωβq∇E

vβ

˘

ψ
looooooooooooooooomooooooooooooooooon

“SEψ

¯

volgε

for all φ,ψ P C80 pE
˝q. Multiplication of the latter equality by a con-

stant factor εb (which corresponds to replacing the volume measure volgε

by volg “ ε
b volgε) shows that the operator

´∆E
gε `∇

E,˚,gε ˝ SE
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2.3 The Schrödinger Operator

is given by the quadratic form
A

ψ, p´∆E
gε `∇

E,˚,gε ˝ SEqψ
E

H
“

ż

M
trGε

´

h
`

∇E
¨
ψ,∇E

¨
ψq

¯

volg

and thus defines a positive operator. ◊

The following definition gives precise meaning to the vague nota-
tion (2.16) of Gε being ε-close to gε:

Definition 2.21 We call Gε an admissible perturbation of gε, denoted by
Gε “ gε `Opεq, if the matrix representing the difference Gε ´ gε with
respect to any adapted local orthonormal frame (cf. Definition 2.8) is
bounded and of order ε with all its derivatives, i.e., for all a P Nb` f

0 there
exists an ε-independent constant Cp|a|q ą 0 such that




DapGε ´ 1mˆmq






8,Mat ď C
`

|a|
˘

ε,

independently of the chosen local frames of TB and VM . ◊

If we apply the musical isomorphism p5, gεq : TM Ñ T˚M to some adapted
local orthonormal frame, we obtain a local orthonormal frame of T˚M ,
which we will also call adapted since it still respects the orthogonal de-
composition T˚M “ H˚M ‘ V˚M with respect to rgε.

Lemma 2.22 Let Gε be an admissible perturbation of gε. Then for all
a P Nb` f

0 there exists a constant cp|a|q such that the matrix representation
of sε with respect to any adapted local orthonormal frame of pT˚M , rgεq
satisfies

‖Dasε‖8,Mat ď cp|a|qε

for all 0ă ε ă 1, independently of the chosen frame.

PROOF. The matrix representation rGε with respect to an adapted local or-
thonormal frame of pT˚M , rgεq can be expressed by a convergent Neumann
series

rGε “
`

1mˆm´ p1mˆm´ Gεq
˘

looooooooooooomooooooooooooon

“Gε

´1
“

8
ÿ

k“0

p1mˆm´ Gεqk,
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where Gε is the matrix representation with respect to the dual adapted
local orthonormal frame of pTM , gεq. Thus, the matrix norm of

sε “ rGε ´ 1mˆm “

8
ÿ

k“1

p1mˆm´ Gεqk

can be estimated as

‖sε‖8,Mat ď
1

1´




1mˆm´ Gε






8,Mat

´ 1

“




1mˆm´ Gε






8,Mat
loooooooooomoooooooooon

ďCp|0|qε

`Opε2q

“Opεq.

Any derivative

Dasε “ Da
`

rGε ´ 1mˆm

˘

“ Da
rGε, |a|ě 1

is a polynomial of degree |a|, where the monomials are given by the
composition of at least one matrix of the form DbGε for 1ď |b|ď |a| with
norm




DbGε






8,Mat ď




Db1mˆm







8,Mat
loooooooomoooooooon

“0

`




DbpGε ´ 1mˆmq






8,Mat

“ εC
`

|b|q

and the matrix rGε with norm of order one. Consequently, the norms
‖Dasε‖8,Mat “Opεq depend only on |a|. l

Proposition 2.23 Let Gε be an admissible perturbation of gε. Then the
Dirichlet Laplacian ´∆E

Gε is unitarily equivalent to an operator which satis-
fies Condition 2.16.

PROOF. We already know that

pUρε
`

´∆E
Gε
˘

pU:ρε “´∆
E
gε ` εH

E
1
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2.3 The Schrödinger Operator

holds for the perturbation

HE
1 :“ ε´1

`

∇E,˚,gε ˝ SE ` Vρε1E
˘

in virtue of Lemma 2.18. As far as the volume density ρε is concerned, one
obtains with the aid of an adapted local orthonormal frame of pTM , gεq:

lnρε “ ln

d

detpGεq
detp1mˆmq

“
1
2 ln

´

det
`

pGε ´ 1mˆmq ` 1mˆm

˘

¯

“
1
2 tr

´

ln
`

pGε ´ 1mˆmq ` 1mˆm

˘

¯

“
1
2 tr

´

pGε ´ 1mˆmq
loooooomoooooon

‖...‖Mat,8ďCp0qε

`O
`

‖Gε ´ gε‖2
Mat,8

˘

¯

. (2.19)

“Opεq

Thus, the geometric potential (2.18) is of order ε in C8b pMq. If we finally
express HE

1 over π´1
M pUq with U P U from Definition 2.7 and use an

adapted local orthonormal frame, we arrive at a second-order differential
operator whose coefficients are given in terms of the matrix entries of ε´1sε

(smooth and bounded with all their derivatives), and are of order one by
Lemma 2.22. This implies that HE

1 is a continuous map from W k`2
ε pEq

to W k
ε pEq for all k P N0 with ε-independent bounds and HE

1 T PAp`2,q for
all T PAp,q

H (see Definition 3.5). The proof is completed by the remark that
the resulting operator is clearly bounded from below, since it is unitarily
equivalent to the positive operator ´∆E

Gε . l

2.3.2 Perturbation of the Connection

Since two connections on E always differ by an EndpEq-valued one-form,
we may obtain a new connection by an appropriate extension of the initial
(“reference”) connection ∇E :

∇E,ω :“∇E `ω, ω P C8
`

T˚M b EndpEq
˘

.
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Provided that the reference connection ∇E is metric with respect to a
given bundle metric h, we want the extended connection ∇E,ω to be
metric (with respect to the same bundle metric) as well. One can easily
verify that ∇E,ω is metric if and only if ω is anti-self-adjoint everywhere,
i.e.,

h
`

ψ,ωpKqφ
˘

“´h
`

ωpKqψ,φ
˘

holds for all K P C8pTMq and ψ,φ P C8pEq. Thus, we restrict to connec-
tions of the form ∇E ` iA with A P C8pT˚M bHermpEqq:

Definition 2.24 Let πM : pE , h,∇Eq Ñ pM , gq be a CN -vector bundle. We
call the family

∇E,Aε

:“∇E ` iεAε, 0ď ε ă 1,

an admissible perturbation of ∇E , denoted by ∇E,Aε

“ ∇E ` Opεq, if
Aε P C8b pT

˚M bHermpEqq has bounds independent of ε. ◊

The smallness of the difference between the involved connections implies
that the respective Laplacians are also ε-close to each other, i.e.,

´∆E,Aε

gε “´∆E
gε `Opεq

with errors in LpdompHEq,Hq. More specifically, it will turn out to be
beneficial for the applications to expand only the horizontal deviation of
these operators and to keep the unaffected vertical operator

´∆E,Aε

V “´∆E
V `Opεq

with errors in LpDF ,HFq.

Proposition 2.25 Let ∇E,Aε

be an admissible perturbation of ∇E . Then

´∆E,Aε

gε “´ε2∆E
H ´∆

E,Aε

V ` εHE
1 ,

where the perturbation HE
1 satisfies Condition 2.16.
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2.3 The Schrödinger Operator

PROOF. We take an adapted local orthonormal frame of pTM , gεq from
Definition 2.8 and perform similar calculations as for (2.8). In this context,
the entire horizontal Laplacian

´ε2∆E,Aε

H “´ε2

„

´

∇E
XH

i
` iεAεpXH

i q

¯´

∇E
XH

i
` iεAεpXH

i q

¯

´

´

∇E
p∇gB

Xi
X iq

H ` iεAε
`

p∇gB
X i

X iq
H˘
¯

´

´

∇E
ηV
` iεAεpηVq

¯



splits into the sum of the unperturbed horizontal Laplacian ´ε2∆E
H and

the symmetric perturbation

HE
1 “´iεAεpXH

i q∇
E
εXH

i

´iε∇E
εXH

i

`

AεpXH
i q
˘

` iε2Aε
´

`

∇gB
X i

X i

˘H
`ηV

¯

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

“

„

´iεAεpXH
i q∇

E
εXHi

:

with Lemma A.21

` ε3AεpXH
i qA

εpXH
i q

“ ´2iε trπ˚M gB

`

Aε b∇E
ε¨

˘

` iε2
´

AεpηVq ´ trπ˚M gB

`

∇T˚MbEndpEqAε
˘

¯

` ε3 trπ˚M gB

`

Aε bAε
˘

,

where ∇EndpEq :“ r∇E , ¨s is the connection on EndpEq “ E˚bE associated
with the reference connection∇E and∇T˚MbEndpEq stands for the induced
tensor product connection (A.5). The C8-boundedness of Aε implies
that HE

1 defines a first-order horizontal differential operator, which is
a bounded map from W k`1

ε pEq to W k
ε pEq with ε-independent constants

for all k P N0. In particular, it has the desired properties discussed in
Remark 3.8. l
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2.4 Adiabatic Perturbation Theory

We split the Schrödinger operator (2.15) according to

HE “´ε2∆E
H ` εH

E
1 `HF

with fibrewise acting vertical operator HF

HFpxq :“´∆E
Vpxq ` V E

ˇ

ˇ

Mx
“´∆Ex

gMx
` V E

ˇ

ˇ

Mx
.

The latter defines a self-adjoint operator on L2pExq “ HF |x (2.11a) with
Dirichlet domain W 2pExq XW 1

0 pExq “ DF |x (2.11b) due to the Katō-
Rellich theorem. Hence we treat it as an essentially bounded section
of LpDF ,HFq. The compactness of the fibres pMx , gMx

q yields that the
spectrum of the elliptic operator HFpxq is the discrete set of eigenvalues

´




V E
ˇ

ˇ

Mx







L8pEndpEx qq
ď λ0pxq ď λ1pxq ď λ2pxq ď . . .

of finite multiplicity accumulating at infinity [Nic96, Theorem 10.4.19].
In this context, an eigenband is a function λ : B Ñ R with the property
λpxq P σpHFpxqq for all x P B. Throughout this thesis, we will exclusively
be interested in eigenbands with the following specific property:

x P B

δ

δ

σpHFpxqq

λpxq
f`pxq

f´pxq

remaining
eigenbands

Figure 2.4: The eigenband λ : B Ñ R satisfies the subsequent gap con-
dition and is separated from the rest of HF ’s spectrum by at least 2δ,
i.e., it holds that infxPB distpλ,σpHFqzλq ě 2δ.
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2.4 Adiabatic Perturbation Theory

Condition 2.26 We say that an eigenband λ : B Ñ R has a spectral gap,
if there exist δ ą 0 and f˘ P CbpBq with distp f˘pxq,σpH

Fpxqqq ě δ such
that

“

f´pxq, f`pxq
‰

Xσ
`

HFpxq
˘

“ λpxq

for all x P B. ◊

Given any eigenband λ, we can assign a fibrewise spectral projection P0

that satisfies HF P0 “ λP0. One clearly has the estimates

‖P0‖LpHF q|x
ď 1 , ‖P0‖LpDF q|x

ď
�

�λpxq
�

�` 1

for all x P B, and so P0 is an essentially bounded section of both LpHFq and
LpDFq provided that the eigenband λ is a bounded function. The finite
multiplicity of the eigenvalues of HFpxq immediately implies the finite
rank of the projection P0pxq for all x P B. If the eigenband λ is additionally
separated from the rest of σpHFq by a spectral gap, then P0 as a section
of LpHFq is continuous (see Proposition 3.14), and q “ rankpP0q “ trpP0q

must be constant and the eigenspace bundle P :“ P0HF is a well-defined
subbundle of HF of finite rank q. Via the identification H – L2pHFq

(cf. [Lam14, Corollary B.6]), the operator P0 defines a bounded operator
on H, whose image P0H is isomorphic to L2pPq, the L2-sections of the
Cq-vector bundle πP : P Ñ B.

Remark 2.27 The considerations of Subsection 2.3.2 show that an ad-
missible perturbation ∇E,Aε

“ ∇E ` iεAε of the connection leads to an
additional perturbation

HF
1 “∇

E,˚ ˝ piAεq ` piAεq˚` εpiAεq˚ ˝ piAεq

“ trgV

`

´2iAε b∇E ´∇T˚MbEndpEqAε ` εAε bAε
˘

within the (by now ε-dependent) vertical operator

HF ,ε “´∆E
V ` εH

F
1 ` V E

ε ,

where the potential V E
ε is allowed to depend on ε as well. As long as

Condition 2.16 and Condition 2.26 are still fulfilled, i.e.,
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• the perturbation HF
1 P L8pLpDF ,HFqq is symmetric on DF and

carries additional B-horizontal smoothness (which will be stated
more precisely in the discussion directly after Lemma 3.12) with
bounds that are independent of ε,

• the bounds of the potential V E
ε P C8b pHermpEqq can be chosen

independently of ε,

• and the spectral gap condition is maintained uniformly in ε,

the methods presented in the following chapter are also applicable. All
objects derived from HF ,ε (like eigensections, eigenbands λε with associ-
ated spectral projections Pε0 and eigenspace bundles Pε), however, then
depend on ε, making the notation somewhat laborious. Therefore, we
will drop the superscript ε and will not treat such ε-dependences explicitly,
but bear in mind that the uniformity conditions on the perturbation HF

1 ,
the potential V E

ε and the spectral gap δ are sufficient in order to obtain
the main results. ◊

The adiabatic approximation consists of comparing certain features
of HE with those of the much simpler adiabatic operator

HP
a :“ P0HE P0 “ P0

`

´ε2∆E
H ` εH

E
1

˘

P0`λP0.

Due to the fact that HP
a p1H ´ P0q “ 0, a mutual approximation of HE

and HP
a is possible only on the adiabatic subspace P0H. If one initially

starts on the image of P0, Duhamel’s principle allows for the comparison
of the respective generated dynamics

`

e´iHE t ´ e´iHP
a t
˘

P0 “´e´iHE t
ż t

0

d
ds

`

eiHE se´iHP
a s
˘

P0 ds

“´ie´iHE t
ż t

0
eiHE spHE ´HP

a qP0e´iHP
a s P0 ds

“´ie´iHE t
ż t

0
eiHE srHE , P0sP0e´iHP

a s P0 ds
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2.4 Adiabatic Perturbation Theory

by means of a commutator estimate

rHE , P0sP0 “
“

´ε2∆E
H ` εH

E
1 , P0

‰

P0 “Opεq

in a suitable sense. Therefore, one has approximate invariance of the
subspace P0H under e´iHE t only for finite times t of order one. The growth
of the basis pB,ε´2 gBq by a factor ε´1, however, yields that non-trivial
dynamical effects do not occur until times t “Opε´1q. This deficiency is
the actual motivation for the considerations of the following chapter: For
all n P N we will construct a super-adiabatic projection Pε “ P0 `Opεq
that satisfies rHE , Pεs “Opεn`1q in a suitable sense.
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3
Chapter 3

Super-Adiabatic

Perturbation Theory

In this chapter, we will introduce the tools required to derive effective
operators which give an accurate approximation of Schrödinger oper-
ators (2.15) in the adiabatic limit ε ! 1. Therefore, we will use the
techniques of super-adiabatic perturbation theory and extend the ideas
developed by Lampart in [Lam14], where he considered operators acting
on complex-valued functions on an ε-thin fibre bundle M

πM
ÝÑ B with

compact typical fibre F (sections of the trivial line bundle M ˆC pr1
ÝÑ M).

More precisely, we will investigate operators that act on sections of a
Hermitian, possibly non-trivial CN -vector bundle E πE

ÝÑ M .
The rigorous assumptions on the underlying geometry are listed in

Condition 2.2. We saw in Section 2.1 that these bundles give rise to a
double fibre bundle structure, i.e., we may treat ΠE : E Ñ B as a fibre
bundle, where the typical fibre is itself a CN -vector bundle F πF

ÝÑ F .
The boundedness properties of the individual bundles allow for local
trivialisations of the composed fibre bundle that are bounded in a suitable
manner (see Proposition 2.6).

Let H be the ε-independent Hilbert space of square-integrable sections
of pE , h,∇Eq

πE
ÝÑ pM , gq associated with the unscaled Riemannian submer-

sion metric g. We will consider Schrödinger operators

HE “´∆E
gε ` εH

E
1 ` V E “´ε2∆E

H ` εH
E
1 `HF
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3 Super-Adiabatic Perturbation Theory

with Dirichlet boundary conditions, which mark suitable extensions of the
connection Laplacian ´∆E

gε in the sense of Condition 2.16. We mentioned
in Section 2.3 that HE is self-adjoint on H with domain dompHEq “

W 2
ε pEqXW 1

0,εpEq and satisfies reasonable elliptic regularity estimates (see
Corollary 2.17). The vertical operator

HF “´∆E
V ` V E

acts fibrewise with respect to the fibres of E ΠE
ÝÑ B. It defines an operator

on the Hilbert space HF , which is a vector bundle over the base man-
ifold B with infinite-dimensional typical fibre L2pFq. Moreover, it was
shown in Section 2.4 that HF is a self-adjoint operator with Dirichlet
domain DF ĂHF and possesses a spectrum consisting only of eigenbands
of finite multiplicity. In fact, we will deal with eigenbands that obey a
spectral gap condition (see Condition 2.26). This allows us to associate
a spectral projection P0 with λ (such that HF P0 “ λP0) and to construct
the eigenspace bundle P “ P0HF , which is a finite-rank vector bundle
over B.

3.1 Introduction of Suitable Algebras

We will see that the construction of the super-adiabatic projection Pε “
P0`Opεq relies heavily on the fact that the commutator rHE , P0s is small
in a suitable sense. Inasmuch as P0 commutes with HF and the perturba-
tion εHE

1 itself is small, this reduces to locally proving

“

´ε2∆E
H, P0

‰

“Opεq. (3.1)

If λ is separated from the rest of σpHFq by a gap δ, P0 is defined locally
by Riesz’s formula in terms of a contour integral of the resolvent of HF so
that

P0pxq “ 1pλpxq´δ,λpxq`δq

`

HFpxq
˘

.
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Thus, it seems natural to first consider the commutator r´ε2∆E
H, HF s,

which basically means we need to calculate commutators of the form
rε∇E

XH , HF s for X P C8pTBq, and then to use the functional calculus to
analyse (3.1). However, the latter commutator is delicate in the presence
of a boundary BM : Since XH is generally not tangent to the boundary
(cf. Figure 2.3), the derivative ∇E

εXHφ (for φ P C8pEq with φ|BM “ 0)
need not vanish on BM in general. Consequently, the object r∇E

XH , HF s has
no sensible meaning on DF . In contrast, one would ultimately calculate
derivatives of ´∆E

V ` V E on C8pEq rather than on C80 pE
˝q.

In order to circumvent these difficulties, we want to work with vector
fields on M that are adapted to the boundary. These are naturally given in
terms of local trivialisations Φ : π´1

M pUq Ñ Uˆ F of M because they come
along with trivialisations of the boundary π´1

M pUq X BM – U ˆBF . More
precisely, for any X P C8pTUq, whose product lift onto U ˆ F is tangent
to UˆBF , the vector fieldΦ˚X P C8pTM |π´1

M pUqq is tangent to BM . We will
refer to such fields as B-horizontal vector fields. Note that TπM ˝pΦ

˚X q “ X ,
soΦ˚X is a lift of X and we may locally decompose XH “ Φ˚X`V , where V
is a smooth section of kerpTπM q “ VM . Consequently, we obtain

∇E
εXH “ ε∇E

V ` ε∇
E
Φ˚X “ T0

`

ε∇E
Φ˚X

˘0
` T1

`

ε∇E
Φ˚X

˘1
,

and so we consider ∇E
εXH locally as a polynomial of degree one in ε∇E

Φ˚X
with fibrewise (vertical) operators as coefficients T0 and T1 which carry
an additional B-horizontal smoothness. This section will deal with making
this idea more precise.

We recall that Definition 2.7 yields gB-orthonormal, uniformly C8-
bounded frames tX νi u

b
i“1 of TUν for all ν P N0 and that each of the respec-

tive horizontal lifts has the decomposition

pX νi q
H
“ Φ˚νX νi ` V νi (3.2)

with V νi P C8pVM |π´1
M pUνq

q.

Lemma 3.1 The vector fields V νi defined by (3.2) are C8-bounded uni-
formly in i P t1, . . . , bu and ν P N0.
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PROOF. The horizontal lifts pX νi q
H are uniformly bounded by [Lam14,

Corollary A.6 (5)] due to X νi P C8b pTUνq. The uniform local triviality

of M
πM
ÝÑ B further implies Φ˚νX νi P C8b pTM |π´1

M pUνq
q in a uniform manner.

Thus, the difference V νi “ pX
ν
i q

H
´Φ˚νX νi itself is uniformly bounded with

all its derivatives. l

Note that the gε-length of V νi is of order ε compared to that of pX νi q
H.

Hence, the choice of B-horizontal vector fields corresponds to locally
assigning ε-tilted horizontal directions and is suitable for dealing with
operators on E

• which are locally given by polynomials in ∇E
εΦ˚ν X νi

“ ε∇E
Φ˚ν X νi

,

• and whose coefficients are L8-sections of LpHFq (i.e., the fibrewise
acting operators in LpHq) or LpHF ,DFq and carry an additional
B-horizontal smoothness.

This is stated precisely within the next two definitions:

Definition 3.2 Let tX νi u
b
i“1 be the gB-orthonormal, C8-bounded frame

of TUν for all ν P N0 provided by Definition 2.7.

(i) We denote by Cν Ă L8pLpHFq|Uνq the space of those linear opera-
tors T for which

„

∇E
Φ˚ν X νi1

,
”

. . . ,
“

∇E
Φ˚ν X νik

, T
‰

. . .
ı



P L8
`

LpHFq|Uν

˘

holds for all k P N0 and i1, . . . , ik P t1, . . . , bu.

(ii) We similarly define CνH Ă L8pLpHF ,DFq|Uνq to be the space of
those linear operators T for which

„

∇E
Φ˚ν X νi1

,
”

. . . ,
“

∇E
Φ˚ν X νik

, T
‰

. . .
ı



P L8
`

LpHF ,DFq|Uν

˘

holds for all k P N0 and i1, . . . , ik P t1, . . . , bu. ◊
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Equivalently, the subspace CνH consists of those linear operators T P Cν

that additionally fulfil HF T P Cν.

Definition 3.3 Let tX νi u
b
i“1 be the gB-orthonormal, C8-bounded frame

of TUν for all ν P N0 provided by Definition 2.7.

(i) Denote by A Ă LpW8pEq,Hq the set of those operators T that
satisfy

• πM psupp Tψq Ă πM psuppψq for all ψ PW8pEq,

• and T is locally given by the polynomial

T |π´1
M pUνq

“
ÿ

aPNb
0

Tνa pε∇
E
Φ˚ν X ν1

qa1 . . . pε∇E
Φ˚ν X νb

qab

“
ÿ

aPNb
0

Tνa ε
|a|p∇E

Φ˚ν X ν1
qa1 . . . p∇E

Φ˚ν X νb
qab (3.3)

with Tνa P C
ν such that













„

∇E
Φ˚ν X νi1

,
”

. . . ,
“

∇E
Φ˚ν X νik

, Tνa
‰

. . .
ı















LpHF q|Uν

ă Cpa, kq

holds for all ν P N and there exists l P N0 such that Tνa “ 0 for
|a|ą l.

(ii) AH is defined similarly, with the modifications that Tνa P CνH and
that the commutators are bounded in LpHF ,DFq|Uν . ◊

We will write Cν
‚

if any statement holds for Cν as well as for CνH , and
introduce A‚ analogously. Moreover, we will frequently use the self-
explanatory notations

`

ε∇E
Φ˚ν X ν

˘a
“

b
ź

i“1

`

ε∇E
Φ˚ν X νi

˘ai
“ ε|a|

b
ź

i“1

`

∇E
Φ˚ν X νi

˘ai .

Lemma 3.4 Each of the two spaces A and AH , equipped with the composi-
tion, forms an algebra.
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PROOF. Take two elements S, T PA‚. One clearly has πM psupp STψq Ă
πM psupp Tψq Ă πM psuppψq by definition. In order to see that ST is
locally of the form (3.3) over some U P U (see Definition 2.7), one has to
commute all B-horizontal derivatives∇E

Φ˚X j
of S to the right appropriately.

Hence, one gets commutators of the form
“

∇E
Φ˚X j

, Ta

‰

P C‚

and
“

∇E
Φ˚X j

,∇E
Φ˚X l

‰

“∇E
Φ˚rX j ,X l s

`RE`Φ˚X j ,Φ
˚X l

˘

for j ą l.

The latter curvature term restricted to Mx defines a C8-bounded section
of EndpExq for all x P U by Definition A.19. Thus, iterated commutators

„

∇E
Φ˚X i1

,
”

. . . ,
“

∇E
Φ˚X ik

, RE`Φ˚X j ,Φ
˚X l

˘‰

. . .
ı



(3.4)

are bounded both in LpHFq|U as well as in LpDFq|U (more precisely, the
latter are elements of L8pW8pF ;ΠEq|Uq) and preserve the regularity.
Consequently, if one commutes all terms (3.4) to the left, one has

ST |π´1
M pUq “

ÿ

a,b

SaTb

`

ε∇E
Φ˚X

˘a`b
` lower order polynomials,

where the lower order polynomials are of degree at most |a|` |b|´ 1 and
the coefficients

Sa

“

. . . , r. . . , Tbs . . .
‰

”

. . . ,
“

. . . , RE`Φ˚X j ,Φ
˚X l

˘‰

. . .
ı

are bounded in LpHFq|U and LpHF ,DFq|U . l

We now grade these algebras by the degree of the polynomials (3.3) and
the ε-order of the coefficients Tνa :

Definition 3.5 We introduce the filtrations

Ap
‚

:“
 

T PA‚ such that p|a|ą p ñ Tνa “ 0q for all ν P N0

(
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and

Ap,q
‚

:“
 

T PAp
‚

such that the constants Cpa, kq

introduced in Definition 3.3 are of order εq
(

for p, q P N0. ◊

A p-th-order differential operator is also one of order p` 1, which gives
Ap
‚
ĂAp`1

‚
. Furthermore, if the above constants Cpa, kq are of order εq`1,

they clearly also are of order εq, hence Ap,q`1
‚

ĂAp,q
‚

.
We end this section with some comments on the algebras A‚ and their

relationship to the W p
ε pEq-spaces.

Remark 3.6 (i) The condition πM psupp Tψq Ă πM psuppψq for any
T PAp implies

‖Tψ‖2
H

(2.12)
ď NU ‖Tψ‖

2
W 0
ε pEq

“ NU

ÿ

ν1PN0





χM
ν1 Tψ






2
H “ NU

ÿ

ν1PN0













χM
ν1

ÿ

νPN0

T
`

χM
ν ψ

˘

looomooon

support in
π
´1
M pUνq













2

H

“ NU

ÿ

ν1PN0













χM
ν1

ÿ

νPN0

ÿ

|a|ďp

Tνa
`

ε∇E
Φ˚ν X ν

˘a`

χM
ν ψ

˘

looooooooooooooomooooooooooooooon

Nb,p :“
řp

k“0 bk terms













2

H

ď N2
UNb,p

ÿ

ν,ν1,|a|








χM
ν1 T

ν
a

`

ε∇E
Φ˚ν X ν

˘a
pχM
ν ψq









2

H

ď N2
UNb,p

ÿ

ν,ν1,|a|

ż

Uν





χM
ν1 T

ν
a







2
LpHF q|x

ˆ










`

ε∇E
Φ˚ν X ν

˘a
pχM
ν ψq









2

L2pEx q
looooooooooooooomooooooooooooooon

ď‖...‖2
W p´|a|pEx q

volgB
pxq
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ď N2
UNb,p

ÿ

νPN0

ˆ

NU sup
ν1PN0

max
|a|ďp





χM
ν1 T

ν
a







2
L8pLpHF q|Uν

loooooooooooooooooomoooooooooooooooooon

ďmax|a|ďp‖Tνa‖
2

L8pLpHF q|Uν

˙

ˆ
ÿ

|a|ďp

ż

Uν










`

ε∇E
Φ˚ν X ν

˘a
pχM
ν ψq









2

W p´|a|pEx q
volgB

pxq

ď N3
UNb,p

ˆ

sup
νPN0

max
|a|ďp





Tνa






2
L8pLpHF q|Uν

˙

ˆ
ÿ

νPN0

ÿ

|a|ďp

ż

Uν










`

ε∇E
Φ˚ν X ν

˘a
pχM
ν ψq









2

W p´|a|pEx q
volgB

pxq
loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

“ ‖ψ‖2
W p
ε pEq

, see Definition 2.12

for all ψ PW p
ε pEq. Thus, Ap Ă LpW p

ε pEq,Hq with the norm

‖T‖p :“ ‖T‖LpW p
ε pEq,Hq ď N3{2

U N 1{2
b,p sup

νPN0

max
|a|ďp





Tνa






L8pLpHF q|Uν
.

In particular, we may calculate these norms locally with respect to
the covering tπ´1

M pUνquνPN0
of M .

(ii) Let p1 ě p2. Then ‖ψ‖W p1
ε pEq ě ‖ψ‖W p2

ε pEq for all ψ PW p1
ε pEq

dense
Ă

W p2
ε pEq implies

‖Tψ‖H
‖ψ‖W p1

ε pEq
ď
‖Tψ‖H
‖ψ‖W p2

ε pEq

for all T P Ap2 Ă Ap1 . Moreover, the inequality still holds after
passing to the supremum over all ψ PW p1

ε pEq on the left hand side
and over all ψ P W p2

ε pEq on the right hand side. We thus have
‖T‖p1

ď ‖T‖p2
if p1 ě p2. In addition, T P Ap,q yields ‖T‖p “

Opεqq.

(iii) Now let T PAp
H . Then

HE T “´ε2∆E
HT `εHE

1 T `HF T
loooooooomoooooooon

PAp`2
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holds true and ´ε2∆E
HT

ˇ

ˇ

π
´1
M pUq for U P U from Definition 2.7 consists

of p`2 B-horizontal derivatives of the form ε∇E
Φ˚X . If we commute

all of these derivatives to the right (similar calculations will be
carried out in Lemma 3.7), we finally observe that ´ε2∆E

HT PAp`2.
Thus, sections in the image of T satisfy Dirichlet boundary conditions
and HE T P Ap`2 Ă LpW p`2

ε pEq,Hq. This already implies that T ,
and therefore Ap

H , is contained in LpW p`2
ε pEq, dompHEqq. ◊

3.2 Classification of the Constituents

Now that we have introduced the algebras A‚ with their respective fil-
trations, we want to classify accordingly the essential building blocks
that are needed for the construction of the super-adiabatic projection Pε.
These building blocks will turn out to be the connection Laplacian (more
precisely the commutator of ∆gε with elements of AH), the resolvent of
the vertical operator HF and the spectral projection P0 associated with
an eigenband λ with spectral gap.

3.2.1 The Connection Laplacian

Let us start with the connection Laplacian and its horizontal contribution.
The following lemma states that the commutation with those operators
raises the order of the resulting B-horizontal differential operator by one,
while the commutator with ε2∆E

H additionally gives a “free” ε:

Lemma 3.7 Let S, T PAH with ST PAp,q
H . It then holds that

(i) rε2∆E
H, SsT PAp`1,q`1,

(ii) r∆E
gε , SsT PAp`1,q

PROOF. In view of Remark 3.6(i), the spaces Ap together with their
norms ‖¨‖p are characterised by means of local quantities induced by
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3 Super-Adiabatic Perturbation Theory

the cover U of B introduced in Definition 2.7. Thus, it suffices to show the
claims for one (and thus all) U P U.

(i) We write

ε2∆E
H

ˇ

ˇ

π
´1
M pUq “

b
ÿ

i“1

`

ε∇E
Φ˚X i

˘`

ε∇E
Φ˚X i

˘

` ε2D,

where D contains first-order differential operators and second-order
parts with at least one vertical derivative. Let us first consider the
commutator

“

∇E
Φ˚X i

, S
‰

ˇ

ˇ

ˇ

π
´1
M pUq

“
ÿ

aPNb
0

ε|a|
´

“

∇E
Φ˚X i , Sa

‰

looooomooooon

PCH

`

∇E
Φ˚X

˘a

` Sa

”

∇E
Φ˚X i

,
`

∇E
Φ˚X

˘a
ı¯

for arbitrary i P t1, . . . , bu. Here, the second commutator may
be evaluated as a finite linear combination of monomials of the
form p∇E

Φ˚X q
b with |b|“ |a| and lower order polynomials, which in-

volve iterated commutators (3.4) that are – in combination with Sa –
bounded in LpHF ,DFq|U . The commutator r∇E

Φ˚X i
, Ss over π´1

M pUq
then is of the same order in AH as S (and analogously for T) and it
locally holds with Einstein’s sum convention that

”

`

ε∇E
Φ˚X i

˘`

ε∇E
Φ˚X i

˘

, S
ı

T

“ ε
´

`

ε∇E
Φ˚X i

˘ “

∇E
Φ˚X i

, S
‰

T
looooomooooon

PAp,q
H

loooooooooooomoooooooooooon

PAp`1,q
H

`ε
“

∇E
Φ˚X i

, S
‰“

∇E
Φ˚X i

, T
‰

loooooooooooomoooooooooooon

PAp,q
H

looooooooooooomooooooooooooon

PAp,q`1
H ĂAp`1,q

H

` ε
“

∇E
Φ˚X i

, S
‰

T
looooomooooon

PAp,q
H

`

ε∇E
Φ˚X i

˘

looooooooooooomooooooooooooon

PAp`1,q
H

¯

PAp`1,q`1
H ĂAp`1,q`1.
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As far as the remaining commutator with D is concerned, observe
that all vertical covariant derivatives contained in D are along C8-
bounded vertical vector fields, since Vi “ XH

i ´Φ
˚X i is bounded by

Lemma 3.1 and

ηV “ g
`

XH
i ,ηV

˘

XH
i

“ gB

`

X i ,TπM pηVq
˘

Φ˚X i ` gB

`

X i ,TπM pηVq
˘

Vi

is bounded by [Lam14, Corollary A.6 (4)]. Hence, one locally has

ε2D “ εDi

`

ε∇E
Φ˚X i

˘

` ε2D0,

where Di P L8pLpW 1pF ;ΠEq,HFq
ˇ

ˇ

Uq is a first-order vertical dif-
ferential operator and D0 P L8pLpDF ,HFq|Uq is a second-order
vertical differential operator. Thus, we may evaluate the commuta-
tor rε2D, Ss over π´1

M pUq as:

rε2D, Ss “ ε DiSa
loomoon

PC

”

ε∇E
Φ˚X i

,
`

ε∇E
Φ˚X

˘a
ı

` ε Di

“

∇E
Φ˚X i

, Sa

‰

looooomooooon

PCH
looooooomooooooon

PC

`

ε∇E
Φ˚X

˘a

` εSa

”

Di ,
`

ε∇E
Φ˚X

˘a
ı

loooooooomoooooooon

“(˚)

`

ε∇E
Φ˚X i

˘

` ε
“

Di , Sa

‰

loomoon

PC

`

ε∇E
Φ˚X

˘a`

ε∇E
Φ˚X i

˘

` ε2Sa

”

D0,
`

ε∇E
Φ˚X

˘a
ı

loooooooomoooooooon

“(˚)

`ε2
“

D0, Sa

‰

loomoon

PC

`

ε∇E
Φ˚X

˘a
.

It suffices to treat the terms (˚), since the other four terms are clearly
elements of Ap̃`1,q̃`1 if S P Ap̃,q̃

H . To do so, if one commutates all
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the derivatives ε∇E
Φ˚X j

to the right, one ends up calculating iterated
commutators of the form

“

∇E
V ,ε∇E

Φ˚X j

‰

“ ε
´

∇E
rV,Φ˚X js

`RE`V,Φ˚X j

˘

¯

,

where V P C8b pVM |π´1
M pUqq and rΦ˚X j , Y s is again a C8-bounded

vertical field because rXH
j , V s is vertical [Lam14, Lemma 1.4 (4)].

Consequently, both SarDi , pεΦ
˚X qas and SarD0, pεΦ˚X qas gain a

“free” ε and hence are elements of Ap̃´1,q̃`1 ĂAp̃`1,q̃`1 if S PAp̃,q̃
H .

(ii) This claim immediately follows from (i) due to the fact that
“

∆E
V , T

‰

S “ ∆E
V T

loomoon

PA

S´ T ∆E
VS

loomoon

PA

PAp,q,

i.e.,
“

∆E
gε , S

‰

T “
“

ε2∆E
H, S

‰

T
looooomooooon

PAp`1,q`1ĂAp`1,q

`
“

∆E
V , S

‰

T
looomooon

PAp,qĂAp`1,q

PAp`1,q.

l

In view of Remark 3.6(ii), the calculations of the previous lemma show
in particular that (if we again commute all B-horizontal derivatives to the
right)






“

´ε2∆E
H, T

‰






p`1`l ď






“

´ε2∆E
H, T

‰






p`1 “Opεq`1q (3.5)

for all l P N0 if T PAp,q
H .

Remark 3.8 The requirement that HE
1 T P Ap`2,q for every T P Ap,q

H in
the perturbation within Condition 2.16 is fulfilled if HE

1 takes the local
form

HE
1

ˇ

ˇ

π
´1
M pUq “

ÿ

|a|“2

Aa

`

ε∇E
Φ˚X

˘a
`

ÿ

|b|“1

Bb

`

ε∇E
Φ˚X

˘b
` C ,

where the coefficients satisfy Aa P C, Bb P L8pLpW 1pF ;ΠEq,HFq
ˇ

ˇ

Uq and
C P L8pLpDF ,HFq|Uq as well as commutator conditions analogous to
those of Definition 3.2. ◊
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3.2.2 The Vertical Resolvent

We now want to classify the resolvent of the vertical operator in view of
Definition 3.5:

Lemma 3.9 Let z P C8b pB,Cq with distpzpxq,σpHFpxqqq ě C ą 0. Then

RFpzq :“
`

HF ´ z1H
˘´1

PA0,0
H .

The main part of the proof consists of showing the boundedness of the
commutator r∇E

Φ˚ν X
, RFpzqs in LpHF ,DFq|Uν for X P C8b pTUνq for some

(and thus all) ν P N0. In order to make sense of this expression (HF

has an x-dependent domain!), it is more convenient to consider the
corresponding operators on the local product Uν ˆ F rather than on
E |π´1

M pUνq
“ Π´1

E pUνq. Therefore, as we saw in Subsection 2.2.1, the
completion of C8pFq with respect to ‖¨‖L2pFq yields a vector bundle
isomorphism (cf. Remark 2.3)

Θν : HF |Uν Ñ Uνˆ L2pFνq, (3.6)

L2pExq Q φ ÞÑ
´

pΘνφqpxq P L2pFνq : y ÞÑ Ψν ˝φ ˝Φ
´1
ν px , yq

¯

by means of the local trivialisations Φν : π´1
M pUνq Ñ Uν ˆ F of M

πM
ÝÑ B

and Ψν : Π´1
E pUνq Ñ UνˆFν of E ΠE

ÝÑ B. This induces a (weak) covariant
derivative

∇ΘνX : L2
`

Uν, W 1pFνq
˘

XW 1
`

Uν, L2pFνq
˘

Ñ L2
`

Uν, L2pFνq
˘

along X P C8pTUνq given by the extension of

C8
`

Uν, C8pFq
˘

Q φ ÞÑ∇ΘνX φ :“
`

Θν ˝∇E
Φ˚ν X

˝Θ´1
ν

˘

φ.

This mapping in fact satisfies

∇Θνf X “ f∇ΘνX φ , ∇ΘνX p f φq “ d f pX q ` f∇ΘνX φ

for all φ P C8pUν, C8pFqq, X P C8pTUνq and f P C8pUνq. In order to
not overburden the notation, we will drop the index ν for the rest of this
subsection.
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Lemma 3.10 There exists a “connection one-form” AΘ such that for all
X P C8b pTUq the mapping AΘpX q : U Ñ LpW kpFqq is smooth and bounded
with all its derivatives for all k P N0, and satisfies

∇ΘXφ “ X ¨φ` AΘpX qφ

for allφ P L2pU , W 1pFqqXW 1pU , L2pFqq. Here, X ¨φ denotes the pointwise
L2pFq-limit

pX ¨φqpxq :“ d
dt

ˇ

ˇ

t“0φ
`

γX
x ptq

˘

,

for the integral curve γX
x : p´δ,δq Ñ U of X through γX

x p0q “ x with
δ “ δpxq ą 0 small enough.

PROOF. Let us calculate the covariant derivative ∇ΘX along X P C8b pTUq
at any x P U: The corresponding integral curve γX

x induces a B-horizontal
curve αX

x ,y : p´δ,δq Ñ π´1
M pUq, t ÞÑ Φ´1pγX

x ptq, yq for all y P F , which
coincides with the integral curve of Φ˚X through αX

x ,yp0q “ Φ
´1px , yq.

Moreover, we denote by pX
x ,yptq : EαX

x ,yp0q
Ñ EαX

x ,yptq
the parallel transport

along αX
x ,y with respect to the connection ∇E , i.e., pX

x ,yptq satisfies the
differential equation (A.2)

∇E
9αX

x ,yptq

`

pX
x ,yptqw

˘

“ 0

for all w P EΦ´1px ,yq and t P p´δ,δq. This finally yields the smooth
mapping tXx ,y : p´δ,δq Ñ AutpFyq defined by

tXx ,yptq :“ Ψ|M x̃
˝ pX

x ,yptq ˝ Ψ|
´1
Mx

, x̃ “ γX
x ptq.

Thus, we may think of ∇ΘX in terms of the induced parallel transport tX
¨,¨ in

view of [KN63, Section III.1], i.e.,
`

∇ΘXφ
˘

pxq “ d
dt

ˇ

ˇ

t“0

`

tXx ,¨ptq
˘´1

˝φ ˝ γX
x ptq

“

´

d
dt

ˇ

ˇ

t“0t
X
x ,¨ptq

¯´1
φ
`

γX
x p0q

˘

loooomoooon

“φpxq

`
`

tXx ,¨p0q
˘´1

loooomoooon

“1F

d
dt

ˇ

ˇ

t“0φ
`

γX
x ptq

˘

loooooooomoooooooon

“pX ¨φqpxq
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for allφ P C8pU , C8pFqq
dense
Ă P L2pU , W 1pFqqXW 1pU , L2pFqq, and iden-

tify pAΘpX qqpxq P C8b pEndpFqq as the mapping

y ÞÑ
´

d
dt

ˇ

ˇ

t“0t
X
x ,yptq

¯´1
“

d
dt

ˇ

ˇ

t“0t
X
x ,yp´tq P EndpFyq

if X P C8b pTUq.

x x̃
U

yy

γX
x ptq

αX
x ,yptq

pX
x ,yptq

Fy Fy

F F

π´1
M pUq

ξ ξ̃

Mx M x̃

Eξ Eξ̃

Ψ|
´1
Mx

Ψ|M x̃

v ṽ

w w̃

tXx ,yptq

The boundedness of AΘpX q is clearly implied by the uniform boundedness
properties of the local trivialisations Φ (uniform local triviality of M

πM
ÝÑ B)

and Ψ (see Proposition 2.6) as well as the C8-boundedness of the parallel
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transport map pX
¨,¨ which stems from the bounded geometry of the vector

bundle pE , h,∇Eq
πE
ÝÑ pM , gq. In particular, AΘpX q defines a smooth and

uniformly bounded mapping from U to LpW kpFqq for all k P N0. l

The vector bundle isomorphism (3.6) induces a bounded map

W : L2
`

HF |Uq Ñ L2
`

U , L2pFq
˘

, φ ÞÑ Θφ

between Hilbert spaces. This allows us to transfer various operators to
the local product with identical fibres:

Definition 3.11 Let DpFq :“ W 2pFq XW 1
0 pFq Ă L2pFq be the x-inde-

pendent Dirichlet domain of the Laplacian.

(i) The operator

HFp¨q :“W ˝HF ˝W´1 : U Ñ L
`

DpFq, L2pFq
˘

,

x ÞÑ ´∆Fpxq
` VFpxq

is fibrewise self-adjoint with L2pFq-domain dompHFpxq
q “ DpFq

for all x P U . Here,

• ∆Fpxq
stands for the connection Laplacian associated with the

connection

∇Fpxq
:“

`

Ψ|
´1
EX

˘˚∇Ex : C8pFq Ñ C8pT˚F bFq

on F and the Riemannian metric

gpxqF :“
`

Φ|
´1
Mx

˘˚
gMx

P C8pΣ2TFq

on F ,

• and VFp¨q : U Ñ C8b pEndpFqq is the potential given by

VFpxq
:“ pΨ|´1

Ex
q˚ V E

ˇ

ˇ

Ex
“ Ψ|Ex

˝ V E ˝ Φ|
´1
Mx

.

(ii) The associated resolvent

RFp¨qpzq :“W ˝ RFpzq ˝W´1 : U Ñ L
`

L2pFq,DpFq
˘
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is the mapping

x ÞÑ
`

HFpxq
´ zpxq1L2pFq

˘´1

“
`

´∆Fpxq
` VFpxq

´ zpxq1L2pFq
˘´1

.

(iii) Let λ : B Ñ R be an eigenband of HF . We let

PFp¨q
0 :“W ˝ P0 ˝W´1 : U Ñ L

`

L2pFq
˘

XL
`

DpFq
˘

denote the spectral projection of HFp¨q related to λ|U . ◊

Note that σpHFpxqq coincides with σpHFpxq
q and one has the equivalence

HF P0 “ λP0 ô HFpxq
PFpxq

0 “ λpxqPFpxq

0 for all x P U .

Furthermore, Condition 2.26 on the spectral gap immediately carries over
with the same parameter δ. It is important to assure that the x-dependence
of the operators introduced in the previous definition is appropriate:

Lemma 3.12 Let U P U be a geodesic ball in B from Definition 2.7. More-
over, let λ : U Ñ R be an eigenband of HFp¨q with a spectral gap and
z P C8b pU ,Cq with zpxq P CztσpHFpxq

qu for all x P U. Then the mappings

(i) HFp¨q : U Ñ LpDpFq, L2pFqq,

(ii) RFp¨qpzq : U Ñ LpL2pFq,DpFqq,

(iii) PFp¨q
0 : U Ñ LpL2pFq,DpFqq Ă LpL2pFqq

are smooth and bounded with all their derivatives.

PROOF. (i) The Laplacian ∆Fp¨q is a second-order vertical differential
operator whose coefficients are smooth mappings from U to EndpFq
with uniform bounds due to the bounded geometry of the involved
bundles E πE

ÝÑ M and M
πM
ÝÑ B (see again Proposition 2.6). To make

the latter precise, note that we need to check differentiability only
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locally thanks to the compactness of F . Therefore, we take any
normal coordinate chart V Ă F and a C8-bounded gF -orthonormal
frame tVju

f
j“1 of TF |V . Then

∆Fpxq
ˇ

ˇ

ˇ

UˆF|V
“ a j j1pxq∇F

Vj
∇F

Vj1
` b jpxq∇F

Vj
` cpxq,

where a j j1 : U Ñ C8pV q and b j , c : U Ñ EndpF |V q depend on
the coefficients of gp¨qF (and its inverse), the Christoffel symbols

of the associated Levi-Civita connection ∇gp¨qF and the Christoffel
symbols of ∇Fp¨q . But these functions are bounded uniformly with
all their derivatives, since they arise from the respective coefficients
associated with gV and ∇E (transported back via the smooth and
bounded maps Φ and Ψ). Moreover, VFp¨q “W ˝V E ˝W´1 is clearly
bounded with all its derivatives.

(ii) We first show that RFp¨q : U Ñ LpL2pFq,DpFqq is differentiable
with bounded derivatives. Therefore, again let γX

x : p´δ,δq Ñ U
be the integral curve of X P C8b pTUq through γX

x p0q “ x . Writing

Rpt, zptqq :“ RFpγ
X
x ptqq
pzpγX

x ptqqq and Hptq :“ HFpγ
X
x ptqq

, we obtain
for the difference quotient with the aid of the resolvent identities:

`

X ¨ RFp¨qpzq
˘

pxq

“ lim
tÑ0

Rpt, zptqq ´ Rp0, zp0qq
t

“ lim
tÑ0

ˆ

Rpt, zptqq ´ Rp0, zptqq
t

`
Rp0, zptqq ´ Rp0, zp0qq

t

˙

“´ lim
tÑ0

˜

R
`

t, zptq
˘Hptq ´Hp0q

t
R
`

0, zptq
˘

´ R
`

0, zptq
˘zptq ´ zp0q

t
R
`

0, zp0q
˘

¸

“

´

´RFp¨qpzq
`

X ¨HFp¨q ´ dzpX q1L2pFq
˘

RFp¨qpzq
¯

pxq,
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where we used part (i) of the lemma, z P C8b pU ,Cq and the conti-

nuity of the mapping x ÞÑ RFpxq
pzpxqq (which can easily be checked

by a similar calculation) in order to take the limit. Consequently,

X ¨ RFp¨qpzq

“ ´RFp¨qpzq
`

X ¨HFp¨q ´ dzpX q1L2pFq
˘

RFp¨qpzq

defines a bounded map from U to LpDpFq, L2pFqq. Iteration of the
argument proves the statement.

(iii) Let x0 P U be arbitrary and γ be the circle of radius δ around λpx0q

in C. The rest of the spectrum σpHFpx0qqztλpx0qu is entirely con-
tained outside of the circle around λpx0q of radius 2δ due to the
spectral gap condition (cf. Figure 2.4). Hence, there is a neigh-
bourhood Ũ Ă U of x0 such that σpHFpxq

qztλpxqu Ă ApB3δ{2px0qq

and thus distpγ,σpHFpxq
qq ą δ{2 for all x P Ũ . The spectral projec-

tion PFp¨q
0 on Ũ is finally given by Riesz’s projection formula [Kat80,

Theorem III – 6.17]

PFp¨q
0 “

i
2π

ż

γ

RFp¨qpzq dz.

Now (ii) and the compactness of the contour γ allow us to prove
the claim by using the dominated convergence theorem applied to
the Bochner integral. For instance, one has

X ¨ PFp¨q
0 “

i
2π

ż

γ

X ¨ RFp¨qpzq dz.
l

As pointed out in Remark 2.27, one often treats perturbed vertical
operators of the form

HFp¨q,ε “W ˝
`

´∆E
V ` εH

F
1 ` V E

ε

˘

˝W´1

“´∆Fp¨q ` εHFp¨q
1 ` VFp¨q

ε .
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The Katō-Rellich theorem ensures that this is a smooth and bounded
mapping from U to LpDpFq, L2pFqq if the potential VFp¨q

ε : U Ñ LpL2pFqq
and the perturbation HFp¨q

1 : U Ñ LpDpFq, L2pFqq are also smooth and
bounded. This is satisfied if the initial perturbation HF

1 P L8pLpDF ,HFqq

carries additional B-horizontal smoothness in the sense of Definition 3.3:
Take C8-bounded orthonormal frames tX νi u

b
i“1 of pTUν, gBq for all ν P N0

according to Definition 2.7 and require that












„

∇E
Φ˚ν X νi1

,
”

. . . ,
“

∇E
Φ˚ν X νik

, HF
1

ˇ

ˇ

π
´1
M pUνq

‰

. . .
ı















LpDF ,HF q|Uν

ă Cpkq

for all k P N0 and ti1, . . . , iku P t1, . . . , bu.
We now have all the necessary tools at hand in order to prove the

property claimed for the vertical resolvent.

PROOF (of Lemma 3.9). The operator RFpzq acts fibrewise with norms







`

RFpzq
˘

pxq






2
LpHF q|x

ď
1

C2 ,







`

RFpzq
˘

pxq






2
LpHF ,DF q|x

ď

ˆ

1` |zpxq|C

˙2

`
1

C2 ď 2`
1`2|zpxq|2

C2

for all x P B, and hence RFpzq P L8pLpHFqq X L8pLpHF ,DFqq. There-
fore, it remains to check the commutator condition












„

∇E
Φ˚X i1

,
”

. . . ,
“

∇E
Φ˚X ik

, RFpzq
‰

. . .
ı















LpHF ,DF q|U

ă Cpkq (3.7)

for some U P U from Definition 2.7.
Let us first consider a single commutator r∇E

Φ˚X i
, RFpzqs. By virtue

of (2.10), the boundedness of this commutator in LpHF ,DFq|U (uniformly
in x P U) amounts to proving uniform boundedness of

“

∇ΘX i
, RFpxq

pzq
‰

“W ˝
“

∇E
Φ˚X i

, RFpzq
‰

˝W´1
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in LpL2pFq,DpFqq. To do so, we compute for anyφ P C8pU , C8pFqq
dense
Ă

L2pU , L2pFqq:
“

∇ΘX i
, RFp¨qpzq

‰

φ “∇ΘX i

`

RFp¨qpzqφ
˘

´ RFp¨qpzq∇ΘX i
φ

“ X i ¨
`

RFp¨qpzqφ
˘

` AΘpX iq
`

RFp¨qpzqφ
˘

´ RFp¨qpzq
`

X i ¨φ
˘

´ RFp¨qpzqAΘpX iqφ

“

´

`

X i ¨ R
Fp¨qpzq

˘

`
“

AΘpX iq, RFp¨qpzq
‰

¯

φ.

Thus, the fibrewise operator
“

∇ΘX i
, RFpxq

pzq
‰

“ X i ¨ R
Fpxq

pzq `
“

AΘpX iq, RFpxq
pzq

‰

is an element of LpL2pFq,DpFqq with bounds uniform in x P U and
i P t1, . . . , bu because both the resolvent RFp¨qpzq : U Ñ LpL2pFq,DpFqq
and the “connection one-form” AΘpX q : U Ñ LpL2pFqq X LpDpFqq are
smooth and bounded with all their derivatives by virtue of Lemma 3.12(ii)
and Lemma 3.10.

The same arguments apply to iterated commutators (3.7) and the com-
mutator condition follows. l

3.2.3 The Spectral Projection

We continue with the classification of the spectral projection P0 associated
with an eigenband λ : B Ñ R that has a spectral gap:

Lemma 3.13 Let λ : B Ñ R be an eigenband of HF with a spectral gap,
i.e., λ satisfies Condition 2.26. Then the associated spectral projection
satisfies P0 PA

0,0
H .

PROOF. The spectral gap condition yields that each x0 P B possesses
an open neighbourhood Ũ Ă B such that distpγ,σpHFpxq

qq ą δ{2 for
all x P Ũ , where γ is the circle of radius δ around λpx0q just as in the
proof of Lemma 3.12(iii). Thus,

P0 “
i

2π

ż

γ

RFpzq dz
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for all x P Ũ and P0 PA
0,0
H follows from Lemma 3.9. l

Next we show that the corresponding eigenspace bundle P “ P0HF is
a well-defined subbundle of HF and that the associated eigenband is a
smooth function that is bounded together with all its derivatives.

Proposition 3.14 Let λ : B Ñ R be an eigenband of HF with a spectral gap.
Then the corresponding eigenspace bundle P ĂHF is a smooth, finite-rank
subbundle and λ P C8b pBq.

PROOF. We first note that the smoothness of the projections

PFp¨qν
0 : UνÑ Lp

`

L2pFνq
˘

, x ÞÑ PFpxq
ν

0

for all ν P N0 (cf. Remark 2.3), which was shown in Lemma 3.12(iii),
implies that qpxq :“ rankpP0pxqq ă 8 is continuous and therefore con-
stant. Moreover, for every x0 P B we may show the existence of an open
neighbourhood Ux0

Ă B around x0 and an associated, smooth local trivial-
isation Λx0

: π´1
P pUx0

q Ñ Ux0
ˆCq as follows: Choose ν P N0 with x0 P Uν

and let Px0
“ impP0px0qq be spanned by the vectors φ x0

1 , . . . ,φ x0
q , which

induce vectors

ψ
x0
j :“

Wν|L2pEx0
qφ

x0
j





Wν|L2pEx0
qφ

x0
j







L2pFνq

P L2pFνq, j P t1, . . . , qu.

Again due to Lemma 3.12(iii), there exists a constant rx0
ă rinjpB, gBq

such that












´

PFpxq
ν

0 ´ PFpx0q
ν

0

¯

ψ
x0
j













L2pFνq
ď

1
2

for all j “ 1, . . . , q and x P Brx0
px0q “: Ux0

. Then the mappings

x ÞÑψ
x0
j pxq :“ PFpxq

ν

0 ψ
x0
j , j P t1, . . . , qu
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are smooth, form a fibrewise basis of pWνPq|Ux0
Ă L2pUx0

, L2pFνqq and
provide a smooth local trivialisation

Λx0
: π´1

P pUx0
q Ñ Ux0

ˆCq,

φpxq “ W|´1
Px

´

řq
j“1c jψ

x0
j pxq

¯

ÞÑ
`

x , pc1, . . . , cqq
˘

.

Let us now turn to the boundedness of the eigenband λ. Its restriction
to Uν for some ν P N0 satisfies the formula

λ|Uν “
1
q tr

´

HFp¨qν PFp¨qν
0

¯

.

The directional derivative of λ|Uν along some X P C8b pTUνq then reads

X ¨λ“ rX ,λs

“
1
q tr

ˆ

”

X , HFp¨qν PFp¨qν
0

ı

˙

“
1
q tr

ˆ

HFp¨qν PFp¨qν
0

”

X , PFp¨qν
0

ı

`HFp¨qν
”

X , PFp¨qν
0

ı

PFp¨qν
0

`

”

X , HFp¨qν
ı

PFp¨qν
0

˙

by means of the projection property PFp¨qν
0 ˝ PFp¨qν

0 “ PFp¨qν
0 . Each of those

three resulting terms is trace class, since each has finite rank of at most q,
and defines a continuous and bounded mapping from Uν to LpL2pFνqqq be-
cause of Lemma 3.12(i),(iii). Thus, pX ¨λq|Uν is continuous and bounded
for all X P C8b pTUνq and ν P N0, which proves λ P C1

b pBq. Iterated appli-
cation of these arguments yields iterated commutators, which are again
bounded and continuous for the same reasons. l

We end this subsection with the classification of the reduced resolvent

RFpλq :“ pHF ´λ1Hq
´1p1H´ P0q

related to an eigenband λ:
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Corollary 3.15 Let λ : B Ñ R be an eigenband of HF with a spectral
gap and P0 its associated spectral projection. Then the reduced resolvent
satisfies RFpλq PA0,0

H .

PROOF. This immediately follows from the formula

RFpλq “ p1H´ P0q

ˆ

i
2π

ż

γ

1
λ´ z

RFpzq dz
˙

p1H´ P0q

together with Lemma 3.9 (RFpzq P A0,0
H ), Lemma 3.13 (P0 P A0,0

H ) and
Proposition 3.14 (λ P C8b pBq). l

3.3 Construction of Super-Adiabatic

Projections

We start this section with the construction of an “almost-projection” Pn

for n P N0, which will be the basis for the super-adiabatic projection Pε:

Lemma 3.16 For every n P N0 there exist Pk P A2k ,0
H for k P t0,1, . . . , nu,

such that

Pn :“
n
ÿ

k“0

εk Pk

satisfies

(i) pPnq2´ Pn PA2n`1,n`1
H ,

(ii)




rHE , Pns






2n`2 “Opεn`1q on dompHEq.

The proof is based on [Teu03, Lemma 3.8]. In contrast to using the
methods of pseudo-differential calculus, we instead explicitly construct
the expansion in terms of commutators. This is possible since we consider
(isolated) eigenbands and not more complicated subsets of σpHFq.
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Let us first introduce the notation PK0 :“ 1H ´ P0. The decomposi-
tion H“ P0H‘ PK0 H allows for the splitting of an operator

T “
ˆ

P0T P0 P0T PK0
PK0 T P0 PK0 T PK0

˙

into a diagonal block

T D :“

ˆ

P0T P0 0
0 PK0 T PK0

˙

“ P0T P0` PK0 T PK0

and an off-diagonal block

T O :“

ˆ

0 P0T PK0
PK0 T P0 0

˙

“ P0T PK0 ` PK0 T P0.

Moreover, we remark that

rT, P0s “
“

T, P2
0

‰

“ P0rT, P0s ` rT, P0sP0,

and so

P0rT, P0sP0 “ P2
0 rT, P0sP0` P0rT, P0sP

2
0 “ 2P0rT, P0sP0

ô P0rT, P0sP0 “ 0,

i.e., any commutator with P0 is always off-diagonal.

PROOF (of Lemma 3.16). We prove the statement by induction.

Base Case (n “ 0):

P0 :“ P0 is an element of A0,0
H ĂA20,0

H by Lemma 3.13.

(i) It holds that P2
0 ´ P0 “ 0 PA20`1,0`1

H since P0 is a spectral projection.

(ii) Using the fact that rHF , P0s “ 0, we get




rHE , P0s






20`2 ď




r´ε2∆E
H, P0s






3
loooooooomoooooooon

“Opεq by (3.5)

`ε




rH1, P0s






3
looooomooooon

“Op1q

“Opε0`1q

since both H1P0 and P0H1 are elements of A2,0 Ă A3,0 due to the
fact that P0 PA

0,0
H .
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Inductive Step (n Ñ n ` 1):

Let Pn “
řn

k“0 be given We will frequently use the fact that

Pn “ P0`A2n,1
H . (3.8)

We then define the additional term within Pn`1 “ Pn` εn`1Pn`1 by

εn`1Pn`1 :“´P0

`

pPnq2´ Pn
˘

P0` PK0
`

pPnq2´ Pn
˘

PK0
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

“εn`1 PD
n`1

´PK0
`

RFpλqrHE , Pns
˘

P0` P0

`

rHE , PnsRFpλq
˘

PK0
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

“εn`1 PO
n`1

.

This is an element of A2n`1,n`1
H (i.e., Pn`1 PA

2n`1,0
H ) because

• P0, PK0 PA
0,0
H and pPnq2´Pn PA2n`1,n`1

H by the inductive hypothesis
for the diagonal term,

• and P0, PK0 P A0,0
H , RFpλq P A0,0

H as well as rHE , Pns P A2n`2,n`1
H Ă

A2n`1,n`1
H by the inductive hypothesis, since 2n`1 ě 2n`2 for ně 1,

for the off-diagonal term.

We will verify the two properties by separately examining the diagonal
and off-diagonal blocks.

(i) For the P0-P0-block we get:

P0

`

pPn`1q2´ Pn`1
˘

P0

“ P0

`

pPnq2´ Pn
˘

P0

` εn`1P0

`

PnPn`1` Pn`1Pn´ Pn`1

˘

P0

` ε2n`2P0P2
n`1P0

looooooomooooooon

PA2n`1`2n`1,2n`2
H
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(3.8)
“ P0

`

pPnq2´ Pn
˘

P0
looooooooomooooooooon

“´εn`1 P0 PD
n`1 P0

` εn`1 P0

`

P0Pn`1` Pn`1P0´ Pn`1

˘

P0
loooooooooooooooooomoooooooooooooooooon

“P0 Pn`1 P0“P0 PD
n`1 P0

`A2n`2,n`2
H

PA2n`2,n`2
H .

The considerations for the PK0 -PK0 -block are essentially the same.

As far as the PK0 -P0-block is concerned, we first observe that

PK0
`

pPn`1q2´ Pn`1
˘

P0

equals

PK0
`

pPnq2´ Pn
˘

P0` ε
n`1PK0

`

Pn`1Pn´ Pn`1

˘

P0

`εn`1PK0 PnPn`1P0` ε
2n`2PK0 P2

n`1P0
loooooooomoooooooon

PA2n`1`2n`1,2n`2
H

.

The second and the third term are in A2n`1`2n,n`2
H ĂA2n`2,n`2

H :

εn`1PK0
`

Pn`1Pn´ Pn`1

˘

P0

(3.8)
“ εn`1PK0

´

Pn`1

`

P0`A2n,1
H

˘

´ Pn`1

¯

P0

“ εn`1
`

PK0 Pn`1P0´ PK0 Pn`1P0

˘

loooooooooooooomoooooooooooooon

“0

`A2n`1`2n,n`2
H

PA2n`1`2n,n`2
H

and

εn`1PK0 PnPn`1P0
(3.8)
“ εn`1PK0

`

P0`A2n,1
H

˘

Pn`1P0
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“ εn`1 PK0 P0
loomoon

“0

Pn`1P0`A2n`2n`1,n`2
H

P A2n`2n`1,n`2
H .

Hence, PK0 ppP
n`1q2´ Pn`1qP0 simplifies to

PK0
`

pPnq2´ Pn
˘

pPn` P0´ PnqP0
looooooooomooooooooon

“P0

`A2n`2,n`2
H

“ PK0
`

pPnq2´ Pn
˘

PnP0

` PK0
`

pPnq2´ Pn
˘

loooooomoooooon

PA2n`1,n`1
H

pP0´ Pnq
looomooon

PA2n ,1
H

P0

looooooooooooooomooooooooooooooon

PA2n`1`2n ,n`2ĂA2n`2,n`2
H

`A22n`2,n`2
H

“ PK0 Pn
`

pPnq2´ Pn
˘

P0` PK0
“

pPnq2´ Pn, Pn

‰

loooooooomoooooooon

“0

P0

`A2n`2,n`2
H

(3.8)
“ PK0 pP0`A2n,1

H q
`

pPnq2´ Pn

˘

loooooomoooooon

PA2n`1,n`1
H

P0`A2n`2,n`2
H

“ PK0 P0
loomoon

“0

`

Pnq2´ Pn

˘

P0`A2n`2,n`2
H

PA2n`2,n`2
H .

The computations for the P0-PK0 -block are similar.

(ii) Once again we begin with the diagonal block. Therefore, we first
consider

P0rH
E ,εn`1PO

n`1sP0 “ ε
n`1P0pH

E PK0 PO
n`1´ PO

n`1PK0 HEqP0.
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Adding

0“ εn`1P0

`

´rHE , P0s `HE P0´ P0HE˘

looooooooooooooooomooooooooooooooooon

“0

PO
n`1P0

` εn`1P0PO
n`1PK0

`

´rHE , P0s `HE P0´ P0HE˘

looooooooooooooooomooooooooooooooooon

“0

P0

“´εn`1
`

P0rH
E , P0sP

O
n`1P0` P0PO

n`1PK0 rH
E , P0sP0

˘

´ εn`1
`

P0HE PO
n`1P0´ P0PO

n`1PK0 HE P0

˘

to the equality, a rearrangement of the terms yields that

P0rH
E ,εn`1PO

n`1sP0

is equal to

εn`1
´

´P0rH
E , P0sP

O
n`1P0´ P0Pn`1PK0 rH

E , P0sP0

˘

`εn`1
`

P0HE pPK0 ´ 1Hq
loooomoooon

“´P0

PO
n`1P0

looooooooomooooooooon

“0

´P0PO
n`1PK0 HE P0` P0PO

n`1PK0 HE P0
looooooooooooooooooooomooooooooooooooooooooon

“0

¯

“ εn`1
´

´P0 rH
E , P0sP

O
n`1

loooooomoooooon

PA2n`1`2,1 by
Lemma 3.7(i)

P0´P0Pn`1PK0 rH
E , P0sP0

loooomoooon

PA1,1 by
Lemma 3.7(i)

loooooooooooomoooooooooooon

PA2n`1`1,1ĂA2n`1`2,1

¯

PA2n`1`2,n`2.

This implies





P0

“

HE ,εn`1PO
n`1

‰

P0







2n`1`2
“Opεn`2q
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by Remark 3.6(ii). It remains to prove a similar estimate for the
term Pn`1´ εn`1PO

n`1 “ Pn` εn`1PD
n`1:

P0rH
E , Pn` εn`1PD

n`1sP0

“ P0rH
E , Pn` εn`1P0PD

n`1P0
looooooomooooooon

“´P0ppPnq2´PnqP0

sP0

“ P0rH
E , PnsP0

´

´

P0HE P0

`

pPnq2´ Pn

˘

P0
looooooooooooomooooooooooooon

“P0HEppPnq2´PnqP0

`P0rH
E ,P0sppP

nq2´PnqP0

´ P0

`

pPnq2´ Pn
˘

P0HE P0
looooooooooooomooooooooooooon

“P0ppP
nq2´PnqHE P0

`P0ppP
nq2´PnqrP0,HE sP0

¯

“ P0rH
E , PnsP0´ P0

“

HE , pPnq2´ Pn
‰

P0

´ P0 rH
E , P0s

`

pPnq2´ Pn
˘

loooooomoooooon

PA2n`1,n`1
H

loooooooooooomoooooooooooon

PA2n`1`1,n`2 by Lemma 3.7(i)

P0

` P0

`

pPnq2´ Pn
˘

loooooomoooooon

PA2n`1,n`1

rP0, HE sP0
loooomoooon

PA1,1 by
Lemma 3.7(i)

“ 2P0rH
E , PnsP0´ P0

“

HE , pPnq2
‰

P0`A2n`1`2,n`2

“ P0 pP0´ Pnq
looomooon

PA2n ,1
H by (3.8)

rHE , Pns
looomooon

“Opεn`1q

P0` P0 rH
E , Pns

looomooon

“Opεn`1q

pP0´ Pnq
looomooon

PA2n ,1
H by (3.8)

P0

`A2n`1`2,n`2

and thus




P0rH
E , Pn` εn`1PD

n`1sP0







2n`1`2
“Opεn`2q

using Remark 3.6(ii), which is what we wished to prove. The
remaining PK0 -PK0 -block is again similar.

Dealing with the off-diagonal block, we already know that
“

´ε2∆E
H `λ1H` εH

E
1 , Pn`1

‰

P0 PA2n`1`2,1
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by Lemma 3.7(i), Proposition 3.14 and the fact that rHE
1 , Pn`1s P

A2n`1`2,0. It then follows that

PK0 rH
E , Pn`1sP0

“ PK0 rH
E , PnsP0` ε

n`1PK0 rH
F ´λ1H, Pn`1sP0

` εn`1PK0 r´ε
2∆E

H `λ1H` εH
E
1 , Pn`1sP0

loooooooooooooooooooooooomoooooooooooooooooooooooon

PA2n`1`2,n`2

“ PK0 rH
E , PnsP0` PK0 rH

F ´λ1H, εn`1PK0 Pn`1P0
looooooomooooooon

“´PK0 RF pλqrHE ,PnsP0

sP0

`A2n`1`2,n`2

“ PK0 rH
E , PnsP0´ PK0 pH

F ´λ1HqR
Fpλq

loooooooooomoooooooooon

“PK0

rHE , PnsP0

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

“0

` PK0 RFpλqrHE , PnsP0 pHF ´λ1HqP0
looooooomooooooon

“0

`A2n`1`2,n`2,

so finally





PK0 rH
E , Pn`1sP0







2n`1`2 “Opεn`2q

and in the same manner for the P0-PK0 -block.

This completes the proof. l

This “almost-projection” Pn “
řn

k“0 ε
k Pk leads to the ultimate super-

adiabatic projection Pε having the same asymptotic expansion in ε. The
construction basically relies on the methods of [Sor03, Theorem 2.1] and
is adapted to the situation at hand in [Lam14, Proposition 2.13]: Since Pk

includes differential operators of order 2k for k ě 1, Pn generally does
not define an element of LpHq. Therefore, Pε is extracted from Pn by a
cut-off procedure.
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Proposition 3.17 For all n P N and Λ ą 0 there exists an orthogonal
projection Pε P LpHqXLpdompHEqq, satisfying Pε ´ P0 “Opεq in LpHq as
well as in LpdompHEqq, such that




rHE , Pεs%pH
Eq






LpHq “Opεn`1q

for every Borel function % : RÑ r0,1s with support in p´8,Λs.

We will need the notion of regular cut-off functions for the proof of this
proposition. These are functions f : RÑ r0, 1s such that f s P C80 pRq for
all s ą 0, i.e., f does not possess any zero of finite order.

Lemma 3.18 Let A be a self-adjoint operator on some Hilbert space H with
domain dompAq. Moreover, let T P LpHq X LpdompAqq be a self-adjoint
operator on H.

(i) If χ is a regular cut-off function and both conditions




rT, As






LpdompAq,Hq “Opεq,




rT, Asχ spAq






LpHq “Opεkq for some k P N0 and all s ą 0

are satisfied, then







“

T,χpAq
‰






LpH,dompAqq “Opεkq.

(ii) If in addition T is a projection, one has





χpTATqT ´ TχpAqT






LpH,dompAqq “Opεkq.

PROOF. See [Lam14, Lemma C.2]. The proof shows that one actually has
to add a further projection T to χpTATq, which can be placed either to
the left or to the right due to the fact that

rT, TAT s “ 0 ñ
“

T,χpTATqs “ 0,

in order to obtain the correct second statement. l
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We are now in a position to prove the above proposition:

PROOF (of Proposition 3.17). Let n P N as well as Λ ą 0 be arbitrary
but fixed. Take Pn from Lemma 3.16 and a regular cut-off function χ
which is equal to one on rinfσpHEq ´ 1,Λ` 1s and equal to zero outside
pinfσpHEq ´ 2,Λ` 2q. Set

P̃ :“ Pn´ P0 “

n
ÿ

k“1

εk Pk PA
2n,1
H ĂA2n,1 Remark

Ă
3.6(i)

L
`

W 2n

ε pEq,H
˘

and define

Pχ :“ P0` P̃χpHEq `χpHEqP̃
`

1H´χpH
Eq
˘

“ P0`Opεq.

This means that we exclude the diagonal χK-χK-block from P̃, i.e., the
diagonal block with “energies” larger than Λ` 2. We now treat Pχ acting
on H and dompHEq separately:

• We have χpHEq P LpH, domppHEqkqq for every k P N0 with norm




χpHEq






2
LpH,domppHEqkqq

ď
`

supt

�

�χptq
�

�

˘2

looooooomooooooon

“1

`
`

supt

�

�tkχptq
�

�

˘2

loooooooomoooooooon

ă8

.

Thanks to the regularity result domppHE
ε q

kq Ă W 2k
ε pEq of Corol-

lary 2.17, P̃χpHEq defines a bounded operator on H. Therefore, its
adjoint operator is also bounded and one infers

χpHEqP̃ “
`

P̃χpHEq
˘:

on W 2k

ε pEq
dense
Ă H due to the construction of Pk for k ě 1 (cf. the

inductive step within the proof of Lemma 3.16). Hence, its extension
is also bounded in LpHq with norm




χpHEqP̃






LpHq “










`

P̃χpHEq
˘:









LpHq
“




P̃χpHEq






LpHq

“Opεq

since P̃ P A2n,1
H Ă A2n,1. Finally, Pχ P LpHq is self-adjoint on H by

the very construction and Pχ ´ P0 “Opεq holds in LpHq.
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• By virtue of the fact that rHE ,χpHEqs “ 0, we obtain for all k P N
and arbitrary ψ P dompHEq:




χpHEqψ






2
domppHEqkq

“




χpHEqψ






2
H`




pHEqkχpHEqψ






2
H

“




χpHEqψ






2
H`




pHEqk´1χpHEqHEψ






2
H

ď




χpHEq






2
LpHq ‖ψ‖

2
H`




pHEqk´1χpHEq






2
LpHq





HEψ






2
H

ďmax
 

1, supt

�

�tk´1χptq
�

�

(

loooooooooooooomoooooooooooooon

ă8

´

‖ψ‖2
H`




HEψ






2
H

¯

looooooooooomooooooooooon

“‖ψ‖2
dompHE q

.

This together with

P̃ PA2n,1
H

Remark
Ă

3.6(iii)
L
`

W 2n`2
ε pEq, dompHEq

˘

yields P̃χpHEq P LpdompHEqq. Consequently, it remains to show
that χpHEqP̃ P LpdompHEqq. In view of




χpHEqP̃ψ






2
dompHEq

“




χpHEqP̃ψ






2
H`




HEχpHEqP̃ψ






2
H

“




χpHEqP̃ψ






2
H`




χpHEqHE P̃ψ






2
H

ď




χpHEqP̃ψ






2
H`




χpHEqP̃HEψ






2
H`




χpHEq
“

HE , P̃
‰

ψ






2
H

ď




χpHEqP̃






2
LpHq

´

‖ψ‖2
H`




HEψ






2
H

¯

looooooooooomooooooooooon

“‖ψ‖2
dompHE q

`




χpHEq
“

HE , P̃
‰






2
LpdompHEq,Hq ‖ψ‖

2
dompHEq

“

ˆ





χpHEqP̃






2
LpHq

looooooomooooooon

“Opε2q

`




χpHEq
“

HE , P̃
‰






2
LpdompHEq,Hq

˙

ˆ ‖ψ‖2
dompHEq
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for arbitraryψ P dompHEq, it remains to prove that χpHEqrHE , P̃s is
an element of LpdompHEq,Hq. But actually by the same argument
as above,

χpHEq
“

HE , P̃
‰

“
`

´rHE , P̃
‰

χpHEq
˘:

on W 2n`2
ε pEqXdompHEq

dense
Ă H, and its extension is again bounded

in LpHq and one has




χpHEq
“

HE , P̃
‰






LpdompHEq,Hq ď




rHE , P̃
‰

χpHEq






LpHq “Opεq

by means of P̃ P A2n,1
H . We thus conclude Pχ P LpdompHEqq with

‖Pχ ´ P0‖LpdompHEqq “Opεq.

We finally connect the intermediate results of the previous two bullet
points and obtain the estimate




rHE , Pχ s






LpdompHEq,Hq

“




rHE , P0s






LpdompHEq,Hq`Opεq

“




r´ε2∆E
H, P0s






LpdompHEq,Hq
looooooooooooooomooooooooooooooon

“Opεq by (3.5)

`ε




rHE
1 , P0s






LpdompHEq,Hq
looooooooooooomooooooooooooon

“Op1q, cf. proof of Lemma 3.16

`Opεq

“Opεq. (3.9)

Now let χ̄ be another regular cut-off function, which is equal to one
on rinfσpHEq,Λs and equal to zero where χ ı 1. This implies χχ̄ “ χ̄
as well as p1´ χqχ̄ “ 0 and consequently Pχ χ̄pHEq “ Pnχ̄pHEq by the
functional calculus. Thus, we obtain the estimate




rHE , Pχ sχ̄pHEq






LpHq “




rHE , Pnsχ̄pHEq






LpHq

ď




rHE , Pns






2n`2
looooooomooooooon

“Opεn`1q by
Lemma 3.16(ii)





χ̄pHEq






LpH,W 2n`2
ε pEqq

loooooooooooomoooooooooooon

ă8

“Opεn`1q. (3.10)
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Since Pχ is ε-close to the projection P0, it holds that




pPχq2´ Pχ






LpHq “Opεq ,




pPχq2´ Pχ






LpdompHEqq
“Opεq.

The spectral mapping theorem then implies the existence of a constant
C ą 0 for which

σpPχq Ă r´Cε, Cεs Y r1´ Cε, 1` Cεs

as an operator both in LpHq and in LpdompHEqq. This suggests that we
now define the super-adiabatic projection Pε for ε ă 1

4C by means of the
integral

Pε :“
i

2π

ż

|z´1|“1{2
pPχ ´ z1Hq

´1 dz.

Then distpσpPχq, zq ě 1
4 for all tz P C such that |z´ 1| “ 1

2u, and Pε is
well-defined and bounded by two in both LpHq and LpdompHEqq. More-
over, it is an orthogonal projection by the functional calculus and the
second resolvent identity yields

Pε ´ P0 “
i

2π

ż

|z´1|“1{2
pPχ ´ z1Hq

´1´ pP0´ z1Hq
´1 dz

“
i

2π

ż

|z´1|“1{2
pPχ ´ z1Hq

´1
looooooomooooooon

‖...‖ď4

pP0´ Pχq
loooomoooon

“Opεq

pP0´ z1Hq
´1

loooooomoooooon

‖...‖ď4

dz

“Opεq

in LpHq and LpdompHEqq.
Now that we have constructed the projection Pε, it remains to prove

the estimate in the proposition. Therefore, we first note that χχ̄ s “ χ̄ s

and p1 ´ χqχ̄ s “ 0 for all s ą 0, and so (3.10) stays valid for any
positive power of χ̄pHEq. This together with (3.9) allows us to apply
Lemma 3.18(i) in order to get






“

Pχ , χ̄pHEq
‰






LpH,dompHEqq
“Opεn`1q,
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and we ultimately arrive at






“

Rχpzq, χ̄pHEq
‰






LpH,dompHEqq

“




Rχpzq
“

Pχ , χ̄pHEq
‰

Rχpzq






LpH,dompHEqq
“Opεn`1q, (3.11)

where Rχpzq :“ pPχ ´ z1Hq
´1. Note that the operator in (3.11) makes

sense since Rχpzq is an element both of LpHq and of LpdompHEqq due to
the open mapping theorem.

Finally, if we take into account that χ̄pHEq%pHEq “ %pHEq, we can
estimate




rHE , Pεs%pH
Eq






LpHq

“
1

2π













ż

γ

“

HE , Rχpzq
‰

%pHEq dz













LpHq

“
1

2π













ż

γ

RχpzqrHE , Pχ sRχpzqχ̄pHEq%pHEq dz













LpHq

“
1

2π













ż

γ

RχpzqrHE , Pχ s

ˆ

´

χ̄pHEqRχpzq `
“

Rχpzq, χ̄pHEq
‰

¯

%pHEq dz













LpHq

ď
1

2π













ż

γ

Rχpzq rHE , Pχ sχ̄pHEq
looooooomooooooon

“Opεn`1q by (3.10)

Rχpzq%pHEq dz













LpHq

`
1

2π













ż

γ

Rχpzq rHE , Pχ s
looomooon

“Opεq
by (3.9)

“

Rχpzq, χ̄pHEq
‰

looooooomooooooon

“Opεn`1q by (3.11)

%pHEq dz













LpHq

“Opεn`1q,

and the proof is completed. l

We end this section with the comment that an analogous argumentation
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gives

rHE , Pεs “
i

2π

ż

γ

“

HE , Rχpzq
‰

dz

“´
i

2π

ż

γ

Rχpzq rHE , Pχ
‰

looomooon

“Opεq by (3.9)

Rχpzq dz

“Opεq (3.12)

in LpdompHEq,Hq.
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4
Chapter 4

Main Results

We are now in a position to harvest the fruits of what has been sown in the
course of the previous chapters. Therefore, we will assume throughout
this chapter that Condition 2.2 on the geometry, Condition 2.16 on the
Schrödinger operator HE and Condition 2.26 on the eigenband λ are
satisfied. Then Proposition 3.17 is applicable, i.e., we fix n P N as well
as Λą 0 and construct the associated family of orthogonal projections Pε
for 0ă ε ă ε0. We will exploit the specific properties of Pε and define a
self-adjoint operator HP

eff on L2pPq that approximates essential features of
the full operator HE . The proofs basically rely on the standard methods
which are used in the context of perturbation theory (cf. for example the
detailed exposition in [Teu03]).

4.1 Dynamical Properties

We first show that the image of Pε is almost invariant under the unitary
group e´iHE t generated by HE in the following sense:

Lemma 4.1 There exists a constant C ą 0 such that









“

e´iHE t , Pε
‰

1p´8,ΛspH
Eq










LpHq
ď Cεn`1 |t|

for every 0ă ε ă ε0.
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PROOF. This is an immediate consequence of Duhamel’s principle. More
precisely, we calculate

“

e´iHE t , Pε
‰

1p´8,ΛspH
Eq

“ e´iHE t
`

Pε ´ eiHE t Pεe
´iHE t

˘

1p´8,ΛspH
Eq

“ e´iHE t
ż t

0

d
ds

`

´e´iHE s Pεe
´iHE s

˘

ds 1p´8,ΛspH
Eq

“ ´ie´iHE t
ż t

0
eiHE srHE , Pεs1p´8,ΛspH

Eqe´iHE s ds

on dompHEq, where we used re´iHE s,1p´8,ΛspH
Eqs “ 0 for all s P r0, ts,

which follows from the spectral theorem. The LpHq-norm of the latter
equality then yields









“

e´iHE t , Pε
‰

1p´8,ΛspH
Eq










LpHq

ď




´ie´iHE t






LpHq
loooooooomoooooooon

“1

ˆ

ż t

0





eiHE s






LpHq
looooomooooon

“1





rHE , Pεs1p´8,ΛspH
Eq






LpHq
loooooooooooooooomoooooooooooooooon

“Opεn`1q by Proposition 3.17





e´iHE s






LpHq
loooooomoooooon

“1

ds

ď Cεn`1 |t|

for some constant C ą 0. l

This suggests that e´iHE t may be well approximated on the image of Pε
by the unitary group e´iPεH

E Pε . Therefore, let us first look at the diagonal
block HE,D “ PεH

E Pε ` PKε HE PKε . The difference

HE,D´HE “´pPεH
E PKε ` PKε HE Pεq

“ ´PεH
E ` PεH

E Pε ´HE Pε ` PεH
E Pε

“´p1H´ 2PεqrH
E , Pεs
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is symmetric and of order ε in LpdompHEq,Hq by means of (3.12), i.e., it
is HE -bounded with relative bound smaller than one for ε small enough
(which causes a possible reduction of ε0). Consequently, the Katō-Rellich
theorem yields that HE,D is self-adjoint on H with domain

dompHE,Dq “ dompHEq

“
`

Pε dompHEq ‘ PKε dompHEq
˘

X
`

PεH‘ PKε H
˘

“
`

Pε dompHEq ‘ PKε H
˘

loooooooooooomoooooooooooon

“dompPεHE Pεq

X
`

PKε dompHEq ‘ PεH
˘

loooooooooooomoooooooooooon

“dompPKε HE PKε q

.

Although the so-called super-adiabatic subspace PεH may be rather com-
plicated to characterise, it is still ε-close to HP :“ P0H “ L2pPq, so we
therefore aim to consider a unitarily equivalent, effective operator

HP
eff :“ U:ε PεH

E PεUε (4.1)

with domain Deff
P :“ U:ε Pε dompHEq Ă HP , where Uε “ 1H `Opεq is a

unitary operator from P0H to PεH constructed as follows:

Lemma 4.2 For all sufficiently small ε ą 0 there exists a unitary map
Uε P LpHq XLpdompHEqq that intertwines Pε and P0, i.e., UεP0 “ PεUε.

PROOF. We follow the exposition of [Kat80, Section I – § 4.6]. The opera-
tor

Ũε :“ PεP0` PKε PK0

clearly maps P0H to PεH and its adjoint Ũ:ε “ P0Pε ` PK0 PKε does the
reverse. The operator

S :“ Ũε Ũ
:
ε “ Ũ:ε Ũε “ 1H´ pPε ´ P0q

2

is positive and invertible for ε ą 0 small enough due to the fact that
Pε ´ P0 “ Opεq both in LpHq and in LpdompHEqq, which was obtained
within the proof of Proposition 3.17. Thus, the desired unitary map is
defined by the Sz.-Nagy formula

Uε :“
`

PεP0` PKε PK0
˘

S´1{2 “ S´1{2
`

PεP0` PKε PK0
˘

,
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where we took advantage of the fact that S commutes with both Pε and P0.
We conclude that Uε actually defines a unitary mapping from PεH to P0H
and that

UεP0 “ S´1{2PεP0 “ PεP0S´1{2 “ PεUε

holds true. l

We proceed with the first main theorem:

Theorem 4.3 There exists ε0 ą 0 such that the effective operator pHP
eff,D

eff
P q

defined by (4.1) and Lemma 4.2 is self-adjoint on HP and there exists a
constant C ą 0 with









`

e´iHE t ´ Uεe
´iHP

eff t U:ε
˘

Pε1p´8,ΛspH
Eq










LpHq
ď Cεn`1 |t|

for all 0ă ε ă ε0.

This theorem states that – after excluding energies larger than Λ – if we
initially start in the super-adiabatic subspace PεH Ă H, the dynamics
of HE (i.e., the evolution under the unitary group e´iHE t) may be ap-
proximated by those of HP

eff up to errors of order εN`1 |t|. Put differently,
the approximation of e´iHE t by e´iHP

eff t is accurate for very long times of
order ε´n. Moreover, PKε UεP0 “ PKε PεUε “ 0 implies that







PKε e´iHE t Pε1p´8,ΛspH
Eq










LpHq

“








PKε
`

e´iHE t ´ Uεe
´iHP

eff t U:ε
˘

Pε1p´8,ΛspH
Eq










LpHq

ď










`

e´iHE t ´ Uεe
´iHP

eff t U:ε
˘

Pε1p´8,ΛspH
Eq










LpHq
,

and hence the subspace PεH is invariant under the dynamics of HE for
energies below Λ up to the same error.

PROOF (of Theorem 4.3). We already know that pHP
eff,D

eff
P q is unitarily

equivalent to the self-adjoint operator pPεH
E Pε, Pε dompHEqq on PεH, so
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it only remains to check the estimate. We therefore again use Duhamel’s
principle and obtain

e´iHE t ´ Uεe
´iHP

eff t U:ε

“

ż t

0

d
ds

`

Uεe
´iHP

effpt´sqU:ε e´iHE s
˘

ds

“´i
ż t

0
Uε p´HP

effqe
´iHP

effpt´sq
looooooooomooooooooon

“´e´iHP
effpt´sqU:ε UεH

P
eff

U:ε e´iHE s

` Uεe
´iHP

effpt´sqU:εHEe´iHE s ds

“´i
ż t

0
Uεe

´iHP
effpt´sqU:ε

`

HE ´ UεH
P
effU

:
ε

looomooon

“PεHE Pε

˘

e´iHE s ds (4.2)

on dompHEq. Thanks to the fact that
“

UεH
P
effU

:
ε , Pε

‰

“ rPεH
E Pε, Pεs “ 0,

we finally infer

`

e´iHE t ´ Uεe
´iHP

eff t U:ε
˘

Pε1p´8,ΛspH
Eq

“ Pε
`

e´iHE t ´ Uεe
´iHP

eff t U:ε
˘

1p´8,ΛspH
Eq

`
“

e´iHE t , Pε
‰

1p´8,ΛspH
Eq

loooooooooooooomoooooooooooooon

“Opεn`1 |t|q in LpHq
by Lemma 4.1

(4.2)
“ ´iPε

ż t

0
Uεe

´iHP
effpt´sqU:ε

`

HE ´ PεH
E Pε

˘

e´iHE s1p´8,ΛspH
Eq ds

`O
`

εn`1 |t|
˘

“ ´i
ż t

0
Uεe

´iHP
effpt´sqU:ε

`

PεH
E ´ PεH

E Pε
˘

looooooooomooooooooon

“´PεrHE ,Pεs

1p´8,ΛspH
Eqe´iHE s ds

`O
`

εn`1 |t|
˘
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“ i
ż t

0
Uεe

´iHP
effpt´sqU:ε Pε

looooooooomooooooooon

‖...‖LpHqď1

rHE , Pεs1p´8,ΛspH
Eq

looooooooooomooooooooooon

“Opεn`1q in LpHq
by Proposition 3.17

e´iHE s
loomoon

‖...‖LpHqď1

ds

`O
`

εn`1 |t|
˘

ď Cεn`1 |t|

in LpHq for some constant C ą 0. l

4.2 Spectral Properties

Now that we know that the full dynamics e´iHE t are well approximated
by the effective dynamics e´iHP

eff t , we can pass to their respective spectra
and ask for their mutual approximation:

Theorem 4.4 Let HP
eff be the effective operator from Theorem 4.3. Then

for every δ ą 0 there exist constants ε0 ą 0 and C ą 0 such that for
all µ P σpHP

effq with µď Λ´δ one has

dist
`

µ,σpHEq
˘

ď Cεn`1

for all 0ă ε ă ε0.

PROOF. Let tψkukPN be a Weyl sequence in HP for µ, i.e., ‖ψk‖HP
“ 1

for all k P N and

lim
kÑ8







`

HP
eff´µ

˘

ψk







HP
“ 0.

The requirement µď Λ´δ enables us to choose this sequence to be in
the image of 1p´8,Λ´δ{2spH

P
effq.

It seems natural to consider the normalised sequence tϕk :“ UεψkukPN
in PεH and to examine the behaviour of pHE ´µ

˘

ϕk. Therefore,




pHE ´µqUεψk







H

“




pPε ` PKε q
loooomoooon

“1H

pHE ´µqPεUεψk







H
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ď




Uε U:ε PεpH
E ´µqPεUε

loooooooooomoooooooooon

“P0pH
P
eff´µqP0

ψk







H

`




PKε pH
E ´µqPεUε 1p´8,Λ´δ{2spH

P
effqP0ψk

looooooooooooomooooooooooooon

“ψk







H

“




UεpH
P
eff´µqψk







H
loooooooooomoooooooooon

“‖pHP
eff´µqψk‖HP

`




PKε HE PεUε1p´8,Λ´δ{2spH
P
effqP0ψk







H.

(4.3)

We now show that the second term merely contributes an Opεn`1q-error.
To do so, let % be a regular cut-off function with support in p´8,Λs such
that % restricted to p´8,Λ´ δ

2 s XσpH
P
effq equals one. Then

%pHP
effqP0 “ %

`

U:ε pPεH
E PεqUε

˘

P0

“ U:ε%
`

PεH
E Pε

˘

UεP0 “ U:ε%
`

PεH
E Pε

˘

PεUε
“ U:ε

`

Pε%pH
EqPε `Opεn`1q

˘

Uε

with errors in LpH, dompHEqq by Lemma 3.18(ii) for T “ Pε. This gives
(with rP0, HP

effs “ 0)

1p´8,Λ´δ{2spH
P
effqP0

“ %pHP
effqP01p´8,Λ´δ{2spH

P
effq

“ U:ε Pε%pH
EqPεUε1p´8,Λ´δ{2spH

P
effq `Opεn`1q

with errors in LpHP ,Deff
P q. Consequently, we may rewrite the second term

of (4.3) as

PKε HE PεUε1p´8,Λ´δ{2spH
P
effqP0

“ PKε HE Pε
looomooon

“PKε rH
E ,Pεs

%pHEqPεUε1p´8,Λ´δ{2spH
P
effq `Opεn`1q

“Opεn`1q
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in LpHP ,Hq, because




rHE , Pεs%pH
εq






LpHq “ Opεn`1q with the aid of
Proposition 3.17.

Finally, we choose K P N large enough so that the first term of (4.3) falls
below the value of the second. This shows the existence of a constant C ą 0
such that




pHE ´µqϕ






H ď Cεn`1 for ϕ “ UεψK . Now either it holds

that pHE´µqϕ “ 0 and µ is an eigenvalue of HE , or the vector pHE´µqϕ

‖pHE´µqϕ‖H
is normalised and

1
distpµ, pσpHEqqq

“




pHE ´µq´1






LpHq

ě








pHE ´µq´1 pHE´µqϕ

‖pHE´µqϕ‖H










H

“
1




pHE ´µqϕ






H
loooooooomoooooooon

ě1{pCεn`1q





pHE ´µq´1pHE ´µqϕ






H
loooooooooooooooomoooooooooooooooon

“‖ϕ‖H“1

ě
1

Cεn`1
. l

We can adapt the proof to the other direction in the following way: Choose
υ P σpHEq with associated normalised Weyl sequence tϕkukPN in the
image of 1p´8,Λ´δ{2spH

Eq. Then looking at the sequence of quasi-modes
tψk “ U:ε PεϕkukPN, we get




pHP
eff´υqU

:
ε Pεϕk







HP

“




U:ε PεpH
E ´υqPεϕk







HP

ď




U:ε Pε






LpH,HPq
loooooooomoooooooon

ď2

ˆ

´





pHE ´υqϕk







H
loooooooomoooooooon

Ñ 0 as kÑ8

`




rHE , Pεs1p´8,Λ´δ{2spH
Eq






LpHq
looooooooooooooooooomooooooooooooooooooon

“Opεn`1q by Proposition 3.17

¯

,

and so again




pHP
eff´υqψK







HP
ď Cεn`1 for K P N large enough. If the

sequence tψkukPN is bounded from below, then either υ is an eigenvalue
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of HP
eff or distpυ,σpHP

effqq ď Cεn`1 ‖ψK‖
´1
HP

. The sequence tPεϕkukPN,
however, is not bounded from below ifυ is associated with an eigenbandλ1

of HF other than the one used for the construction of Pε.
Suppose for a moment that the spectrum of HF consists solely of sepa-

rated bands tλ ju jPN0
with according spectral projections P j

0 , which yields

the orthogonal decomposition 1H “‘ jPN0
P j

0 . If ψ P dompHEq has energy
@

ψ, HEψ
D

H ď Λ for some Λ P R, then only finitely many spectral projec-

tions P j
0 , namely those associated with eigenbands with infxPB λ jpxq ă Λ,

contribute significantly to ψ because

Λě
@

ψ, HEψ
D

H “
ÿ

jPN

@

ψ, p´ε2∆E
H ` εH

E
1

looooooomooooooon

Á´Cε

`λ jqP
j

0ψ
D

H

under the condition that ´ε2∆E
H ` εH

E
1 ě ´Cε1H (note that the level

spacing of the eigenbands λ j is of order one). A successive lowering of the
threshold Λ reduces the number of substantially participating eigenbands
to the point where only the ground state band

λ0pxq :“minσ
`

HFpxq
˘

(4.4)

is involved. In this case, i.e., for energies below Λ1 :“ infxPBpσpH
Fqzλ0q,

we indeed expect a mutual approximation of σpHEq and σpHP
effq.

Theorem 4.5 Let ´ε2∆E
H ` εH

E
1 be bounded from below by ´Cε1H for

some constant C ą 0 and HP
eff be the effective operator from Theorem 4.3

associated with the ground state band λ0 (4.4). Moreover, let χ be a regular
cut-off function with support in p´8,Λ1q. Then HP

effχpH
P
effq is unitarily

equivalent to HEχpHEq up to errors of order εn`1 in LpHq for ε ą 0 small
enough.

If we use Weyl sequences as in Theorem 4.4 and the discussion afterwards,
the latter statement implies that for every δ ą 0 both

sup
υPσpHEq,
υďΛ1´δ

inf
µPσpHP

effq,
µďΛ1´δ

|υ´µ|“ sup
υPσpHEq,
υďΛ1´δ

dist
`

υ,σpHP
effq X p´8,Λ1´δs

˘

looooooooooooooooooomooooooooooooooooooon

ďC1εn`1
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and

sup
µPσpHP

effq,
µďΛ1´δ

inf
υPσpHEq,
υďΛ1´δ

|µ´υ|“ sup
µPσpHP

effq,
µďΛ1´δ

dist
`

µ,σpHEq X p´8,Λ1´δs
˘

looooooooooooooooooomooooooooooooooooooon

ďC2εn`1

are of order εn`1 for ε ą 0 small enough. Thus, one has

distH

`

σpHEq X p´8,Λ1´δs,σpH
P
effq X p´8,Λ1´δs

˘

“Opεn`1q

for all δ ą 0, where

distHpA, Bq :“max

"

sup
aPA

inf
bPB
|a´ b| , sup

bPB
inf
aPA
|b´ a|

*

(4.5)

denotes the Hausdorff distance between compact sets A, B Ă R, if one
chooses ε “ εpδq ą 0 sufficiently small.

The following two lemmas give the key consequences of the condition
on the operator ´ε2∆E

H` εH
E
1 that it be bounded from below by ´Cε1H:

Lemma 4.6 Under the conditions of Theorem 4.5, it holds that

χpPKε HE PKε qP
K
ε “ 0.

PROOF. The operator PKε HE PKε is self-adjoint on the Hilbert space H
with domain PεH ‘ PKε dompHEq. We will show that σpPKε HE PKε q “
t0uY rΛ1,8q. Using the fact that supppχq X rΛ1,8q “H, we then get

χpPKε HE PKε q “ χpP
K
ε HE PKε qPε `χpP

K
ε HE PKε qP

K
ε “ χp0qPε ` 0PKε

by the spectral theorem, and thus χpPKε HE PKε qP
K
ε “ 0.

We first note that PKε HE PKε
ˇ

ˇ

PεH
“ 0 implies σp PKε HE PKε

ˇ

ˇ

PεH
q “ t0u.

As far as the contribution of PKε dompHEq is concerned, we start by in-
troducing a regular cut-off function %1 P C8b pR, r0,1sq, equal to one on
rinfσpHEq´1,Λ1`1s and equal to zero outside of pinfσpHEq´2,Λ1`2q,
and set

%2 : t ÞÑ

#

0, t ă Λ1` 1

1´%1ptq, t ě Λ1` 1
.
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Then by construction

p%1`%2q|σpHEq ” 1 ñ %1pH
Eq

loomoon

“:p%1

`%2pH
Eq

loomoon

“:p%2

“ 1H,

and we get for any ψ P PKε dompHEq:
@

ψ, PKε HE PKε ψ
D

H

“
@

ψ, PKε HEpp%1` p%2qP
K
ε ψ

D

H

“
@

ψ, PKε p%
1{2
1 HE

p%
1{2
1 PKε ψ

D

H`
@

p%
1{2
2 PKε ψ, HE

p%
1{2
2 PKε ψ

D

H
loooooooooooooooomoooooooooooooooon

ěΛ1‖p%
1{2
2 PKε ψ‖

2
H“Λ1‖p%

1{2
2 ψ‖2

H,
since supppp%2q Ă rΛ1` 1,8q

(i)
ě

@

ψ, PK0 p%
1{2
1 HE

p%
1{2
1 PK0 ψ

D

H`Λ1







p%
1{2
2 ψ






2
H`O

`

ε ‖ψ‖2
H

˘

(ii)
ě

@

p%
1{2
1 ψ, PK0 HE PK0 p%

1{2
1 ψ

D

H`Λ1







p%
1{2
2 ψ






2
H`O

`

ε ‖ψ‖2
H

˘

“
@

PK0 p%
1{2
1 ψ, PK0

`

´ε2∆E
H ` εH

E
1

˘

PK0 p%
1{2
1 ψ

D

H
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

ě´Cε‖PK0 p%
1{2
1 ψ‖2

Hě´Cε‖ψ‖2
H“Opε‖ψ‖2

Hq

`
@

PK0 p%
1{2
1 ψ, PK0 HF PK0 p%

1{2
1 ψ

D

H
loooooooooooooooooomoooooooooooooooooon

ě Λ1‖PK0 p%
1{2
1 ψ‖2

H, since PK0 projects
onto states with energy σpHF qzλě Λ1

`Λ1







p%
1{2
2 ψ






2
H`O

`

ε ‖ψ‖2
H

˘

ě Λ1

´





PK0 p%
1{2
1 ψ






2
H`






p%
1{2
2 ψ






2
H

¯

`O
`

ε ‖ψ‖2
H

˘

(iii)
ě Λ1

´







p%
1{2
1 ψ






2
H`






p%
1{2
2 ψ






2
H

¯

looooooooooooooomooooooooooooooon

“xψ,pp%1`p%2qψyH“‖ψ‖
2
H

`O
`

ε ‖ψ‖2
H

˘

.

Thus, we can find for all c ą 0 a constant ε0 ą 0 small enough such that
@

ψ, PKε HE PKε ψ
D

H ě
`

Λ1´ C̃ε
˘

‖ψ‖2
H ě pΛ1´ cq‖ψ‖2

H

holds true for all 0 ă ε ă ε0. This shows that σp PKε HE PKε
ˇ

ˇ

PKε dompHEq
q is

contained in rΛ1,8q and we only need to justify the estimates (i), (ii)
and (iii):
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(i) The absolute value of

@

ψ, PKε p%
1{2
1 HE

p%
1{2
1 PKε ψ

D

H´
@

ψ, PK0 p%
1{2
1 HE

p%
1{2
1 PK0 ψ

D

H

can be estimated from above by

2




PKε ´ PK0






LpHq
loooooooomoooooooon

“Opεq by Prop. 3.17







p%
1{2
1 HE

p%
1{2
1







LpHq
loooooooooomoooooooooon

ă8

‖ψ‖2
H “O

`

ε ‖ψ‖2
H

˘

.

(ii) A short calculation shows that
�

�

�

@

ψ, PK0 p%
1{2
1 HE

p%
1{2
1 PK0 ψ

D

H´
@

ψ, p%1{2
1 PK0 HE PK0 p%

1{2
1 ψ

D

H

�

�

�

ď 2









“

P0, p%1{2
1

‰










LpH,dompHEqq
loooooooooooooomoooooooooooooon

“Opεq by Lemma 4.6(i)
with the aid of (3.9)







p%
1{2
1







LpH,dompHEqq
loooooooooomoooooooooon

ă8 (cf. the proof
of Proposition 3.17)

‖ψ‖2
H

“O
`

ε ‖ψ‖2
H

˘

.

(iii) Observe that

@

PK0 p%
1{2
1 ψ, PK0 p%

1{2
1 ψ

D

H

“
@

p%
1{2
1 ψ, PK0 p%

1{2
1 ψ

D

H

“
@

p%
1{2
1 ψ, p%1{2

1 ψ
D

H´
@

p%
1{2
1 ψ, P0 p%

1{2
1 ψ

D

H

“
@

p%
1{2
1 ψ, p%1{2

1 ψ
D

H´
@

p%
1{2
1 ψ, P0 p%

1{2
1 PKε ψ

D

H

for all ψ P PKε dompHEq, and hence
�

�

�





PK0 p%
1{2
1 ψ






2
H´






p%
1{2
1 ψ






2
H

�

�

�

ď






p%
1{2
1







LpHq
looooomooooon

ď1





P0 p%
1{2
1 PKε






LpHq
loooooooomoooooooon

“Opεq

‖ψ‖2
H ,
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because

P0 p%
1{2
1 PKε “ p%

1{2
1 PεP

K
ε

loomoon

“0

`p%
1{2
1 pP0´ PεqP

K
ε `

“

P0, p%1{2
1

‰

PKε

finally gives





P0 p%
1{2
1 PKε






LpHq ď ‖Pε ´ P0‖LpHq
looooooomooooooon

“Opεq by Prop. 3.17

`










“

P0, p%1{2
1

‰










LpH,dompHEqq
loooooooooooooomoooooooooooooon

“Opεq similarly as for (ii)

“Opεq.

This completes the proof. l

Lemma 4.7 Under the conditions of Theorem 4.5, it holds that

PKε χpH
Eq “Opεn`1q , χpHEqPKε “Opεn`1q

in LpH, dompHEqq.

PROOF. We already know that






“

PKε , HE‰






LpdompHEq,Hq “




rPε, HE s






LpdompHEq,Hq
(3.12)
“ Opεq

and






“

PKε , HE‰χ spHEq






LpHq “




rPε, HE sχ spHEq






LpHq “Opεn`1q

for all s ą 0 by Proposition 3.17. Thus Lemma 3.18(ii) with T “ PKε
together with the previous lemma implies




PKε χpH
EqPKε






LpH,dompHEqq

“




PKε χpH
EqPKε ´χpP

K
ε HE PKε qP

K
ε

loooooooomoooooooon

“0







LpH,dompHEqq

“Opεn`1q. (4.6)
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Next we apply Lemma 3.18(i) with T “ Pε in order to deduce




PKε χpH
EqPε






LpH,dompHEqq
“






“

χpHEq, Pε
‰

Pε






LpH,dompHEqq

ď






“

χpHEq, Pε
‰






LpH,dompHEqq
looooooooooooooomooooooooooooooon

“Opεn`1q

‖Pε‖LpHq
looomooon

ď2

“Opεn`1q. (4.7)

Consequently, we arrive at the first estimate




PKε χpH
Eq






LpH,dompHEqq

ď




PKε χpH
EqPKε






LpH,dompHEqq
loooooooooooooooomoooooooooooooooon

“Opεn`1q by (4.6)

`




PKε χpH
EqPε






LpH,dompHEqq
looooooooooooooomooooooooooooooon

“Opεn`1q by (4.7)

“Opεn`1q

of the statement. The second one is obtained from the latter by another
application of Lemma 3.18(i) with T “ PKε . l

We finally turn to the proof of the theorem:

PROOF (of Theorem 4.5). Let us first observe that




PεχpH
Eq ´ PεUεχpH

P
effqU

:
ε







LpH,dompHEqq

ď




PεχpH
EqPε ´ PεχpPεH

E Pεq






LpH,dompHEqq
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

“Opεn`1q by Lemma 3.18(ii) for T “ Pε

` ‖Pε‖LpdompHEqq
looooooomooooooon

ď2





χpHEq ´χpHEqPε






LpH,dompHEqq
loooooooooooooooooooomoooooooooooooooooooon

“




χpHEqPKε




“Opεn`1q by Lemma 4.7

` ‖Pε‖LpdompHEqq
looooooomooooooon

ď2





UεχpH
P
effqU

:
ε

loooooomoooooon

“χpUεH
P
effU

:
ε q

´χpPεH
E Pεq






LpH,dompHEqq

looooooooooooooooooooooooomooooooooooooooooooooooooon

“0

“Opεn`1q. (4.8)

118



4.3 The Effective Operator

Then an easy calculation shows

HEχpHEq

“
`

HE,D` p1H´ 2PεqrH
E , Pεs

˘

χpHEq

“ UεH
P
effU

:
ε PεχpH

Eq ` PKε HE PKε χpH
Eq

loooomoooon

“Opεn`1q in
LpHq by

Lemma 4.7

` p1H´ 2Pεq rH
E , PεsχpH

Eq
looooooomooooooon

“Opεn`1q in LpHq
by Proposition 3.17

(4.8)
“ UεH

P
effU

:
ε PεUε
loomoon

“Uε
on P0H

χpHP
effqU

:
ε `Opεn`1q

“ UεH
P
effχpH

P
effqU

:
ε `Opεn`1q

with errors in LpHq, where we used the fact that

PεH
E Pε “ UεU

:
ε PεH

EUεU
:
ε Pε “ UεH

P
effU

:
ε Pε

in the second equality. l

4.3 The Effective Operator

We will follow the exposition of [Lam14, Subsection 2.2.1] in order to
gain a better understanding of the leading-order terms that arise from the
asymptotic expansion of the effective operator

HP
eff “ U:ε PεH

E PεUε.

Therefore, we use the concrete expression of Uε from Lemma 4.2, i.e., we
expand

`

1H´ pPε ´ P0q
˘´1{2

“ 1H`

8
ÿ

k“1

p2k´ 1q!

22k´1k!pk´ 1q!
pPε ´ P0q

2k,
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and obtain

PεUε “ PεP0

`

1H´ pPε ´ P0q
˘´1{2

“ P0` PK0 pPε ´ P0qP0´
1
2 P0pPε ´ P0q

2P0`Opε3q

“: P0` εU1` ε
2U2`Opε3q (4.9)

with errors in LpHq and U1, U2 P LpHqXLpdompHEqq since Pε´P0 “Opεq
in both LpHq and LpdompHEqq as shown in the proof of Proposition 3.17.
This leads to the decomposition of

HP
eff “ P0HE P0`HP

sa

into an adiabatic operator HP
a :“ P0HE P0 and a remainder HP

sa that incor-
porates the super-adiabatic corrections.

4.3.1 The Adiabatic Operator

The starting point of this subsection is the following lemma which provides
an additional smoothness property for the eigenspace bundle P πP

ÝÑ B that
is associated with some eigenband λ : B Ñ R and spectral projection P0:

Proposition 4.8 The eigenspace bundle πP : P Ñ B associated with an
eigenband λ with a spectral gap has a differential structure such that
C8pPq Ă C8pEq.

The intuition underlying this statement is that one may choose λ-eigen-
sections of HF locally over some U Ă B which are smooth sections
of E |π´1

M pUq at the same time. While the smoothness in the vertical

directions results from the elliptic regularity of HF , i.e., any such λ-
eigensection φ satisfies φpxq P C8pExq for all x P U , the horizontal
differentiability is established by the B-horizontal smoothness of P0 PA

0,0
H

(see Lemma 3.13).

OUTLINE OF PROOF (of Proposition 4.8). Let x0 P B be arbitrary but fixed.
Then the proof of Proposition 3.14 reveals that any vector φ x0 P Px0

in-
duces a mapping ψx0 P C8pUx0

, L2pFqq with geodesic ball Ux0
“ Brx0

px0q
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4.3 The Effective Operator

for rx0
ă rinjpB, gBq small enough, such that ψx0pxq P impPFpxq

0 q Ă L2pFq
is a λ-eigensection of HFpxq

for all x P Ux0
. Next we choose normal coordi-

nates around any px , yq P Ux0
ˆ F with synchronous trivialisation of F in

order to map ψx0 diffeomorphically to some function ψpx ,yq : Rb` f Ñ CN

after a possible extension past the boundary (if y lies in a boundary
collar chart) and a regularisation outside of Bb

r{2p0q ˆ B
f
r{2p0q (see the

proof of [Lam14, Lemma B.8] for the details, with obvious modifications
for N ě 2). Then one uses Wachsmuth’s lemma [Lam14, Lemma B.8] to
inductively show ψpx ,yq P C8pRb` f ,CN q, which implies the smoothness
of ψx0 at px , yq and consequently ψx0 P C8pUx0

ˆ F,Fq. The pullback
of ψx0 to E |π´1

M pUx0
q

via the local trivialisations Φx0
: π´1

M pUx0
q Ñ Ux0

ˆ F

and Ψx0
: Π´1

E pUx0
q Ñ Ux0

ˆF finally preserves the smoothness, i.e., it
holds that

Ψ´1
x0
˝ψx0 ˝Φx0

P C8
`

E |π´1
M pUx0

q

˘

and
`

Ψ´1
x0
˝ψx0

˘

px , ¨q P Px

for all x P Ux0
. In the end, we apply this procedure to an entire basis

tφ
x0
1 , . . . ,φ x0

q u of Px0
, q “ rankpP0q, and obtain mappings ψx0

1 , . . . ,ψx0
q P

C8pUx0
ˆ F,Fq such that

span
´

`

Ψ´1
x0
˝ψ

x0
1

˘

px , ¨q, . . . ,
`

Ψ´1
x0
˝ψx0

q

˘

px , ¨q
¯

“ Px

for all x P Ux0
. l

We endow P with the bundle metric

x¨, ¨yP P C8pP˚bP˚q, xφ,ψyPx
:“

ż

Mx

hxpP0φ, P0ψq volgMx

and the so-called Berry connection

∇B : C8pPq Ñ C8pT˚BbPq, ∇P
X φ :“ P0∇E

XH P0φ. (4.10)
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As a matter of fact, the previous proposition ensures that an application
of the horizontal derivative ∇E

XH on P0φ0 P C8pPq Ă C8pEq is well-
defined. Since the sections of P vanish on BMx for all x P B, it holds for
arbitrary X P C8pTBq and φ,ψ P C8pPq that

X ¨ xφ,ψyPx

“ LX

ż

Mx

hxpP0φ, P0ψq volgMx

“

ż

Mx

LXH

´

hxpP0φ, P0ψq volgMx

¯

“

ż

Mx

hx

`

P0∇B
Xφ, P0ψ

˘

` hx

`

P0φ, P0∇B
Xψ

˘

volgMx

`

ż

Mx

hxpP0φ, P0ψq LXH volgMx

“
@

∇B
Xφ,ψ

D

Px
`
@

φ,∇B
Xψ

D

Px
´xφ,ηVpX qψyPx

. (4.11)

Here, the variation of area formula [Lan99, Theorem XV.6.6(a)]

LXH volgMx

ˇ

ˇ

ˇ

ξ
“´gξ

`

XH,ηV
˘

volgMx
, ξ P Mx

induces the tensor ηV P C8pT˚Bb EndpPqq given by

ηVpX q :“ P0 g
`

XH,ηV
˘

P0 “ P0 gB

`

X ,TπM pηVq
˘

P0,

which is basically the mean curvature of the fibres Mx ãÑ M averaged
over the λpxq-eigensections. Moreover, the latter calculation shows in
particular that the connection

∇P : C8pPq Ñ C8pT˚BbPq, ∇P :“∇B´
1
2ηV

is metric with respect to the bundle metric x¨, ¨yP . In summary, we will
treat pP, x¨, ¨yP ,∇Pq

πP
ÝÑ pB, gBq as a Hermitian vector bundle of finite

rank q “ rankpP0q. In addition, a straightforward calculation gives the
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4.3 The Effective Operator

formula

RPpX , Y q “ P0

´

REpXH, Y Hq ´∇E
ΩHpXH,Y Hq

¯

P0

` P0

”

“

P0,∇E
XH

‰

,
“

P0,∇E
Y H

‰

ı

P0

´
1
2

`

∇T˚BbEndpPq
X ηV

˘

pY q ` 1
2

`

∇T˚BbEndpPq
Y ηV

˘

pX q

´
1
4

“

ηVpX q,ηVpY q
‰

for the curvature of ∇P , where

`

∇T˚BbEndpPq
X ηV

˘

pY qφ :“∇P
X

`

ηVpY qφ
˘

´ηV
`

∇gB
X Y

˘

φ´ηVpY q∇
P
X φ

denotes the tensor product connection on T˚Bb EndpPq. In view of the
C8-boundedness of the horizontal lift, ΩH and ηV (see [Lam14, Corol-
lary A.6]), the B-horizontal smoothness of P0 PA

0,0
H by Lemma 3.13 and

the bounded geometry of E πE
ÝÑ M , we deduce RP P C8b pΛ

2TBb EndpPqq
and the eigenspace bundle P turns out to be a vector bundle of bounded
geometry by Definition A.19.

Let φ P C80 pPq and X , Y P C8pTBq be arbitrary. Then Stokes’ theorem
yields

0 “

ż

B
LX

`@

φ,∇B
Yφ

D

P volgB

˘

“

ż

B

`

LX

@

φ,∇B
Yφ

D

P

˘

volgB
`

ż

B

@

φ,∇B
Yφ

D

P LX volgB
looomooon

“divgB pXqvolgB

(4.11)
“

ż

B

@

∇B
Xφ,∇B

Yφ
D

P volgB
´

ż

B

@

φ,ηVpX q∇
B
Yφ

D

P volgB

`

ż

B

A

φ,
`

∇B
X∇

B
Y ` divgB

pX q∇B
Y

loooooooooooomoooooooooooon

“ p∇Bq2pX , Y q, cf. Lemma A.22

˘

φ
E

P
volgB

,

which suggests that we define the negative of the so-called Berry Lapla-
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cian ´∆B by means of the quadratic form

@

φ,´∆Bφ
D

HP
:“

ż

B

@

∇Bφ,∇Bφ
D

T˚BbP volgB

“

ż

B

@

φ,´ trgB

`

p∇Bq2´ηVp¨q∇
B
¨

˘

φ
D

P volgB
.

It differs from the negative of the connection Laplacian

´∆P
gB
“´ trgB

`

p∇Pq2¨
˘

merely by the potential

VP
ηV

:“∆P
gB
´∆B “ trgB

´

´
1
2

`

∇T˚BbEndpPq
¨

ηV
˘

p¨q `
1
4ηVp¨qηVp¨q

¯

.

On the other hand, the difference between the Berry Laplacian and the
projected horizontal Laplacian is the generalisation of the so-called Born-
Huang potential VP

BH, which is well-known from the Born-Oppenheimer
approximation [PST07]. It may be computed easily with the aid of a
gB-orthonormal frame tX iu

b
i“1 of TU with U P U (cf. Definition 2.7):

VP
BH :“∆B´ P0∆

E
horP0

“

´

∇B
X i
∇B

X i
´∇B

∇gB
Xi

X i
´ηVpX iq∇B

X i

¯

“´

´

P0∇E
XH

i
PK0 ∇

E
XH

i
P0´ gpXH

i ,ηVqP
K
0 ∇

E
XH

i
P0

¯

“ trgB

ˆ

P0

“

∇E
p¨qH

, P0

‰“

∇E
p¨qH

, P0

‰

P0

´ P0

”

gB

`

¨,TπM pηVq
˘

1H, P0

ı

“

∇E
p¨qH

, P0

‰

P0

˙

.

To sum up, the calculations show that

´P0∆
E
HP0 “´∆

B` VP
BH “´∆

P
gB
` VP

BH` VP
ηV

and the adiabatic operator takes the form

HP
a “´ε

2∆B`λ1HP
` εP0HE

1 P0` ε
2VBH. (4.12)
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We finally note that the bounded geometry of the eigenspace bundle
allows for elliptic regularity estimates for the Berry Laplacian and the
adiabatic operator in the spirit of Proposition 2.15 and Corollary 2.17:

Proposition 4.9 Denote by W k
ε pPq the rescaled Sobolev norms (A.12) as-

sociated with the Cq-vector bundle πP : pP, x¨, ¨yP ,∇Pq Ñ pB,ε´2 gBq.

(i) Let φ P W 2
ε pPq and k P N0 be such that ε2∆Bφ P W k

ε pPq. Then
φ PW k`2

ε pPq and there is a constant Cpkq ą 0 such that

‖φ‖2
W k`2
ε pPq

ď Cpkq
´





ε2∆Bφ






2
W k
ε pPq

` ‖φ‖2
HP

¯

.

(ii) Let φ P dompHP
a q and k P N such that pHP

a q
kφ PHP . Then there are

constants ε0pkq, Cpkq ą 0 such that

‖φ‖2
W 2k
ε pPq

ď Cpkq
´





pHP
a q

kφ






2
HP
` ‖φ‖2

HP

¯

for 0ă ε ă ε0pkq.

This implies in particular that

dompHP
a q “W 2

ε pPq “ P0 dompHEq,

where the second equality is valid because of Proposition 4.8. Moreover,
Proposition 4.9(ii) basically relies on the fact that VP

BH P C8b pEndpPqq,
which follows from the facts that P0 P A0,0

H , ηV P C8b pT
˚B b EndpPqq

and λ P C8b pBq.

4.3.2 Super-Adiabatic Corrections

The super-adiabatic corrections are the difference between the effective
operator and adiabatic operator:

HP
sa “ HP

eff´HP
a

(4.9)
“ ε

`

U:1 HE P0` P0HEU1

˘

` ε2
`

U:1 HEU1` P0HEU2` U2HE P0

˘

`Opε3q
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“ P0

´

pPε ´ P0qrH
E , P0s ` rP0, HE spPε ´ P0q

¯

loooooooooooooooooooooooomoooooooooooooooooooooooon

“Opε2q in LpdompHEq,Hq

P0

` ε2
`

U:1 HEU1` P0HEU2` U2HE P0

˘

(4.13)

`Opε3q

with errors in LpDeff
P ,HPq. This implies ‖HP

sa‖LpDeff
P ,HPq

“ Opε2q and
hence dompHP

effq “ dompHP
a q by the Katō-Rellich theorem. The first

super-adiabatic correction to HP
a (i.e., the Opε2q-contribution within HP

sa)
turns out to be [PST07]

MP :“ P0rH
E , P0sR

FpλqrHE , P0sP0. (4.14)

However, this is a fourth-order differential operator if HE
1 is of second

order, and therefore does not define a bounded operator from Deff
P to HP .

This inadequacy is circumvented by the addition of energy cut-offs χpHP
effq

– just as we did in the construction of Pε – in the formal expansion

HP
eff “ HP

a `MP `Opε3q. (4.15)

The precise statement is the following:

Proposition 4.10 Let HP
eff be the effective operator of Theorem 4.3 and χ

be a regular cut-off function with supppχq Ă p´8,Λs. Then




HP
effχ

2pHP
effq ´χpH

P
effq

`

HP
a `MP˘χpHP

effq






LpHPq
“Opε3q.

PROOF. The statement is proven in [Lam14, Proposition 2.23], but we
mention the most important arguments for the sake of transparency.

First observe that

HP
effχ

2pHP
effq ´χpH

P
effqH

P
a χpH

P
effq “ χpH

P
effqHP

saχpH
P
effq

loooomoooon

“Opε2q

“ χpHEqHP
saχpH

Eq `Opε3q
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with errors in LpHPq. Here, we utilised that the interchange of χpHP
effq

and χpHEq on P yields error terms only of order ε in LpH, dompHEqq for
the last step because

HP
eff “ U:ε PεH

E PεUε
(4.9)
“ P0HE P0`Opεq

in LpdompHEq,Hq and




χpP0HE P0qP0´ P0χpH
EqP0







LpH,dompHEqq
“Opεq

by Lemma 3.18(ii). Thus, it remains to show




χpHEq
`

HP
sa ´MP˘χpHEq







LpHq “Opε3q.

In order to verify that the first super-adiabatic correction (4.13) – once
sandwiched with cut-offs χpHEq – is given by the expression (4.14) plus
higher orders, we start by noting that

pPε ´ P0qχpH
Eq “ εP1χpH

Eq `Opε2q

in LpH, dompHEqq, as shown in [Lam14, Lemma 2.25], where

P1 “´PK0 RFpλqrHE , P0sP0` P0rH
E , P0sR

FpλqPK0

is given by the explicit construction of Lemma 3.16. This immediately
gives

εU1χpH
Eq “ PK0 pεP1qχpH

Eq `Opε2q

“ ´PK0 RFpλqrHE , P0sP0χpH
Eq `Opε2q

and

ε2U2χpH
Eq “ ´ 1

2 P0pεP1qpεP1qP0χpH
Eq `Opε3q

“
1
2 P0rH

E , P0sR
FpλqPK0 RFpzqrHE , P0sP0χpH

Eq `Opε3q

with errors in LpH, dompHEqq. Consequently, the leading order (4.13) of
the super-adiabatic correction may be expressed in terms of reduced resol-
vents RFpλq as well as commutators rHE , P0s up to higher order errors and
the calculations of [Lam14, Lemma 2.26] ultimately show that the leading
part of χpHEqHP

saχpH
Eq in LpHq coincides with χpHEqMPχpHEq. l

127



4 Main Results

4.4 Low Energy Asymptotics

In this section, we will analyse the low-lying part of the spectrum for
Schrödinger operators of the form

´∆E
gε ` εH

E
1 ` V E “´ε2∆E

H ` εH
E
1 `∆

E
V ` V E

with C8-bounded, HermpEq-valued potential V E and a second-order hor-
izontal differential operator εHE

1 as a small perturbation. More precisely,
we are interested in the study of small energies with a distance of order εα,
with parameter 0ă αď 2, above the bottom

Λ0 :“ inf
xPB

minσ
´

´∆Ex ` V E
ˇ

ˇ

Mx

¯

of the vertical operator. In order to relate the low-lying part of the spectrum
of the (shifted) operator

HE :“´ε2∆E
H ` εH

E
1 `∆

E
V ` V E ´Λ0

looooooomooooooon

“:HF

(4.16)

with that of some effective operator, the only eigenband in question is the
ground state band λ0 (4.4). Hence, we fix Pε and Uε constructed for λ0

with n ě 3 and any Λ ą 0 provided by Theorem 4.3. Finally, the study
of the low energy asymptotics corresponds to the consideration of HE on
the image of %αpH

Eq :“ 1p´8,εαΛspH
Eq for α P p0,2s.

Under the assumptions that ´ε2∆H ` εH
E
1 is bounded from below

by ´Cε1H for some constant C ą 0 and that εαΛ ă Λ1, we saw in
Theorem 4.5 that HP

eff is unitarily equivalent to HE in this low energy
regime up to errors of order ε4 in LpHq. In the further course of this
section, we will show that the (much simpler) adiabatic operator HP

a
yields an even better approximation for HE than one would expect from
the fact that

HP
eff

(4.13)
“ HP

a `Opε2q (4.17)
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in LpDeff
P ,HPq. Put differently, the mere existence of Pε and Uε provides an

improvement of the adiabatic approximation, even though HP
a “ P0HE P0

does not involve any super-adiabatic corrections.
The choice of α represents the typical energy scale for the eigenvalues

of the adiabatic operator below its essential spectrum. The parameter
range α P p0,2s incorporates the two most relevant scales:

• α“ 1:
If x ÞÑ λ0pxq has a unique non-degenerate minimum on B, the
results obtained in [Sim83] suggest that the leading part of the
adiabatic operator behaves like a b-dimensional harmonic oscillator
HP

a “´ε
2∆B`λ0pxq with eigenvalue spacing of order ε.

• α“ 2:
If λ0 ” 0, which for example occurs in the case of unitarily equiva-
lent operators pHFpxq,DFpxqq for all x P B, the adiabatic operator
is given by HP

a “ ε
2p´∆B`Opεqq and its eigenvalues, if they exist,

scale as ε2. We will see that the latter approximate those of HE up
to errors of order ε4.

We now state the precise requirements for the perturbation HE
1 which

strengthen the prerequisites of Theorem 4.5:

Condition 4.11 The perturbation within the Schrödinger operator (4.16)
is symmetric on W 2

ε pEq XW 1
0,εpEq and may locally be expanded as

HE
1

ˇ

ˇ

π
´1
M pUνq

“

b
ÿ

i, j“1

∇E
εpX νi q

H Ai j
ν ∇

E
εpX νj q

H `

b
ÿ

i“1

Bi
ν∇

E
εpX νi q

H ` εCν

for any Uν P U of Definition 2.7, where we require that

(i) the according coefficients Ai j
ν , Bi

ν, Cν P C8b pEndpEq|π´1
M pUνq

q have
bounds uniform in i, j P t1, . . . , bu as well as ν P N0, and indepen-
dent of ε,

(ii) and ´ε2∆E
H ` εH

E
1 is bounded from below by ´Cε21H for an ε-

independent constant C ą 0. ◊
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This condition implies that the entire operator HE is bounded from below
by ´Cε21H, so in particular ‖HE%αpH

Eq‖LpHq “Opεαq.
We will show that the low-lying part of σpHEq is adequately reflected by

that of the adiabatic operator HP
a up to errors Opε2`α{2q, i.e., the adiabatic

approximation is more accurate by at least a factor εα{2 than (4.17) for
the general case. The reason for this improvement can be seen by the
following heuristic argument: The super-adiabatic corrections (with main
contribution Pε ´ P0 « εP1) essentially consist of horizontal differential
operators. But such derivatives∇E

εXH for X P C8b pTBq are of order εα{2 and
are therefore small on this ε-dependent energy scale, since ε2∆E

H “Opεαq
on the image of %αpH

Eq.
To be more specific, note that small energies of order εα of HE corre-

spond to bounded energies of the rescaled operator ε´αHE . In this con-
text, we denote by dom2

αpTq, T P tHE , HP
a , HP

effu, the domain of pε´αTq2

with its graph-norm. The desired control of horizontal derivatives in this
low energy regime, i.e., on the image of %αpTq P LpH, dom2

αpTqq, is then
essentially established by the estimate




P0∇E
εXH







Lpdom2
αpTq,dompHEqq

“Opεα{2q

for arbitrary X P C8b pTBq whose proof is given in Lemma B.1. A first
consequence of this is the estimate (with ‖P0‖LpdompHEqq ď 2)




∇B
εX







Lpdom2
αpTq,dompHEqq

ď




P0∇E
εXH







Lpdom2
αpTq,dompHEqq

` 2ε






“

∇E
XH , P0

‰






LpdompTq,dompHEqq
loooooooooooooooomoooooooooooooooon

“Op1q due to P0 PA0,0
H

αď2
“ Opεα{2q (4.18)

for X P C8b pTBq. From this we deduce the following assertion:

Lemma 4.12 Let α P p0,2s and Condition 4.11 be satisfied. Then one has






“

´ε2∆E
H, P0

‰

P0%αpTq






LpHq “Opε1`α{2q

for T P tHE , HP
a , HP

effu.
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PROOF. We adjust the proof of [Lam14, Lemma 3.9] appropriately: Using
local calculations on π´1

M pUq for U P U (see Definition 2.7), one can show
that

“

´ε2∆E
H, P0

‰

P0

ˇ

ˇ

π
´1
M pUq “´ trgB

`

εT1b∇B
ε¨` ε

2T2

˘

,

where the mappings

T1 : X ÞÑ
“

´2∇E
XH ` gpηV, XHq, P0

‰

,

T2 : pX , Y q ÞÑ PK0

ˆ

´

”

∇E
XH ,

“

∇E
Y H , P0

‰

ı

`

”

∇E
p∇X Y qH , P0

ı

` gpηV, X q
“

∇Y H , P0

‰

˙

P0

define sections of T˚BbLpHFq and T˚Bb2bLpHFq, respectively. Conse-
quently as a result of Remark 3.6 and (4.18), the above expression is of
order ε1`α{2 on the image of dom2

αpTq and finally%αpTq P LpH, dom2
αpTqq

with ε-independent bound yields the statement. l

By means of this lemma, we can specify our qualitative discussion from
before and derive refined estimates for the operator Pε ´ P0 on the image
of %αpTq for T P tHE , HP

a , HP
effu:

Lemma 4.13 Let α P p0, 2s and Condition 4.11 be satisfied. Then it holds
that




PK0 pPε ´ P0qP0%αpTq






LpH,dompHEqq
“Opε1`α{2q

for T P tHE , HP
a , HP

effu.

PROOF. Let χ be a regular cut-off function with support in p´8,Λs such
that χ “ 1 on suppp%αq, which means %αpTq “ χpTq%αpTq by the func-
tional calculus. We first show




PK0 pPε ´ P0q%αpTq






LpH,dompHEqq
ď




PK0 εP1P0%αpTq






LpH,dompHEqq

`Opε2q
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for T P tHE , HP
a , HP

effu with the aid of the estimate




pPε ´ P0qχpH
Eq ´ εP1χpH

Eq






LpH,dompHEqq
“Opε2q (4.19)

proven in [Lam14, Lemma 2.25]:

• T “ HE :
A short calculation shows




PK0 pPε ´ P0q%αpH
Eq






LpH,dompHEqq

“




PK0 pPε ´ P0qχpH
Eq%αpH

Eq






LpH,dompHEqq

(4.19)
ď




PK0 εP1P0χpH
Eq%αpH

Eq






LpH,dompHEqq
`Opε2q

“




PK0 εP1P0%αpH
Eq






LpH,dompHEqq
`Opε2q.

Here, we used that P1 is off-diagonal (i.e., PK0 P1 “ PK0 P1P0) in the
third line.

• T “ HP
a :

We take advantage of the two facts






“

P0,χpHEq
‰






LpH,dompHEqq
“Opεq, (4.20a)





P0χpH
EqP0´ P0χpH

P
a q






LpH,dompHEqq
“Opεq, (4.20b)

which follow from Lemma 3.18. In analogy to [Lam14, Equa-
tion (2.19)], we then get

PK0 pPε ´ P0q “ PK0 pPε ´ P0qP0` PK0 pPε ´ P0qP
K
0

“ PK0 pPε ´ P0qP0` PK0 pPε ´ P0q
2

loooomoooon

“Opε2q

“ PK0 pPε ´ P0qP0`Opε2q (4.21)
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in LpdompHEqq. Thus,




PK0 pPε ´ P0q%αpH
P
a q






LpH,dompHEqq

(4.21)
ď




PK0 pPε ´ P0qP0χpH
P
a q%αpH

P
a q






LpH,dompHEqq
`Opε2q

(4.20b)
ď




PK0 pPε ´ P0qP0χpH
Eq

looooooooomooooooooon

“ εP1 P0χpH
Eq`Opε2q

by (4.19) and (4.20a)

P0%αpH
P
a q






LpH,dompHEqq
`Opε2q

(4.20b)
ď




PK0 εP1P0χpH
P
a q%αpH

P
a q






LpH,dompHEqq
`Opε2q

“




PK0 εP1P0%αpH
P
a q






LpH,dompHEqq
`Opε2q.

• T “ HP
eff:

This immediately follows from the latter case, using





χpHP
effq ´χpH

P
a q






LpHP ,Deff
P q
ď C




HP
eff´HP

a







LpDeff
P ,HPq

loooooooooooomoooooooooooon

“Opε2q

by the Helffer-Sjöstrand formula.

In view of the fact that %αpTq P LpH, dom2
αpTqq, it remains to estimate

PK0 εP1P0 “´RFpλ0qr´ε
2∆E

H ` εH
E
1 , P0sP0

in Lpdom2
αpTq, dompHEqq, which results from the explicit form of PO

1 con-
structed in Lemma 3.16. To do so, we first observe that the claim for
the Lpdom2

αpTq,Hq-norm is implied by Lemma 4.12 and the fact that
‖εHE

1 P0‖Lpdom2
αpTq,Hq

“Opε1`α{2q due to Lemma B.1. In order to extend
this to a claim with respect to the desired norm, we note that the image
of P1 P A2,0

H satisfies Dirichlet boundary conditions, and hence Proposi-
tion 2.15 is applicable for any PK0 εP1P0%αpTqψ with normalised ψ PH,
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which leads to




PK0 εP1P0%αpTqψ






2
W 2
ε pEq

ď C
´







∆E
gε P

K
0 εP1P0%αpTqψ










2

H
`




PK0 εP1P0%αpTqψ






2
H

loooooooooooomoooooooooooon

“Opε2p1`α{2q‖ψ‖2
Hq

¯

ď C
ˆ








∆E
gεR

Fpλ0q
“

´ε2∆E
H, P0

‰

P0%αpTqψ









2

H

`








∆E
gεR

Fpλ0q
“

εHE
1 , P0

‰

P0%αpTqψ









2

H

˙

`O
`

ε2`α ‖ψ‖2
H

˘

.

As far as the ´ε2∆E
H-term is concerned, the fact that RFpλ0q P A

0,0
H due

to Corollary 3.15 shows that all vertical derivatives of ∆E
gε give bounded

operators, whereas all B-horizontal derivatives may be commuted to the
right, and thus

ε2∆E
HRFpλ0q

“

´ε2∆E
H, P0

‰

P0

“ ε2
“

ε∆E
H, RFpλ0q

‰“

´ε∆E
H, P0

‰

P0
looooooooooooooooomooooooooooooooooon

PLpdom2
αpTq,Hq, cf. Lemma 3.7(i)

`RFpλ0qε
2∆E

H

“

´ε2∆E
H, P0

‰

P0

on the image of %αpTq P LpH, dom2
αpTqq. One is then faced with similar

calculations as in the proof of Lemma 4.12 for the second term, so formally

RFpλ0qε
2∆E

H

“

´ε2∆E
H, P0

‰

P0

ˇ

ˇ

π
´1
M pUq “ trgB

`

ε T̃1b∇B
ε¨` ε

2 T̃2

˘

with coefficients SpX q, TpX , Y q P LpdompHEq,Hq
ˇ

ˇ

π
´1
M pUq bounded inde-

pendently of ε for X , Y P C8b pTUq with U P U (see Definition 2.7).
Then (4.18) results in







∆E
gεR

Fpλ0q
“

´ε2∆E
H, P0

‰

P0%αpTqψ









H
“O

`

ε1`α{2 ‖ψ‖dom2
αpTq

˘

.
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We complete the proof by using the estimate







∆E
gεR

Fpλ0q
“

εHE
1 , P0

‰

P0










Lpdom2
αpTq,Hq

ď ε







∆E
gεR

Fpλ0q










LpdompHEq,Hq
looooooooooooooomooooooooooooooon

ă8 due to RF pλ0q PA0,0
H







“

HE
1 , P0

‰

P0







Lpdom2
αpTq,dompHEqq

loooooooooooooooooomoooooooooooooooooon

“Opεα{2q by Lemma B.1

“Opε1`α{2q

for the remaining HE
1 -term. l

We are now in a position to state a refined comparison result for the
respective low-lying parts of σpHEq and σpHP

a q:

Proposition 4.14 Let α P p0, 2s and Condition 4.11 be satisfied. Then for
all C ą 0 it holds that

distH

`

σpHEq X p´8, Cεαs,σpHP
a q X p´8, Cεαs

˘

“Opε2`α{2q,

where distH is the Hausdorff distance (4.5) between compact subsets of R.

PROOF. It suffices to show the mutual ε2`α{2-closeness between the sets
σpHP

effq X p´8, Cεαs and σpHP
a q X p´8, Cεαs by means of the unitary

equivalence of HE and HP
eff up to errors of order ε4 in this low energy

regime. In view of Theorem 4.4 and the discussion right after Theorem 4.5,
we prove the statement using a Weyl sequence argument. Therefore, first
let µ be an element of σpHP

effq with normalised Weyl sequence tψkukPN
in the image of %αpH

P
effq. Then we easily calculate





pHP
a ´µqψk







HP

ď




pHP
a ´HP

effqψk







HP
`




pHP
eff´µqψk







HP
loooooooooomoooooooooon

arbitrarily small

“




pHP
a ´HP

effq%αpH
P
effqψk







HP
`Opε2`α{2q
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for k P N large enough. The concrete form (4.13) of HP
a ´HP

eff then shows




pHP
a ´HP

effq%αpH
P
effq






LpHPq
“Opε2`α{2q

due to Proposition 3.17, the previous two lemmas and Lemma B.1, just
as in the proof of [Lam14, Proposition 3.11]. Hence, tψkukPN is an
approximate Weyl sequence for µ, i.e.,





pHP
a ´µqψk







HP
“ Opε2`α{2q

if k P N is chosen sufficiently large, which immediately implies the fact
that distpµ,σpHP

a qq “Opε2`α{2q.
In order to verify distpν,σpHP

effqq “ Opε2`αq for ν P σpHP
a q, one ends

up proving a similar estimate




pHP
eff´HP

a q%αpH
P
a q






LpHPq
“Opε2`α{2q,

once again using Lemma 4.12, Lemma 4.13 and Lemma B.1. l

The following theorem gives an even better approximation for the case of
low-lying eigenvalues.

Theorem 4.15 Let α P p0,2s and Condition 4.11 be satisfied. Moreover,
assume that there exist constants C ,δ,ε0 ą 0 such thatσpHP

a qXp´8, Cεαq
consists of K ` 1 eigenvalues ν0 ď ¨ ¨ ¨ ď νK (repeated according to their
multiplicity) and rankp1p´8,pC`δqεαqpH

P
a qq is finite for all 0ă ε ă ε0. Then

the following hold:

(i) HE has K ` 1 eigenvalues υ0 ď ¨ ¨ ¨ ď υK below its essential spectrum
and |υ j ´ ν j | “Opε2`αq for all j “ 0, . . . , K.

(ii) If additionally any ν P tν0, . . . ,νKu is a simple eigenvalue separated
from the rest of σpHP

a q by at least Cνε
α for some constant Cν ą 0,

the corresponding eigenvalue υ of HE is also simple and there exists a
constant Cυ ą 0 such that distpυ,σpHEqztυuq ě Cυε

α.

PROOF. We again utilise the approximate unitary equivalence of Theo-
rem 4.5 for small energies of order εα, and hence the claims may be
reduced to those between the eigenvalues of HP

a and HP
eff.
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(i) First note that
�

�

�

@

ψ, pHP
a ´HP

effqψ
D

HP

�

�

�ď




%αpTqpH
P
a ´HP

effq%αpTq






LpHPq

“Opε2`αq (4.22)

for all normalised ψ P %αpTqHP with T P tHP
a , HP

effu. Here, the
additional factor εα{2 compared to





pHP
a ´HP

effq%αpTq






LpHP
effq
“

Opε2`α{2q comes from the second cut-off %αpTq acting on the left.
For example, we obtain for the first term in the expansion (4.13):




%αpTqP0pPε ´ P0qP
K
0 rH

E , P0sP0%αpTq






LpHPq

“










`

PK0 pPε ´ P0qP0%αpTq
˘:`

rHE , P0sP0%αpTq
˘










LpHPq

ď




PK0 pPε ´ P0qP0%αpTq






LpHPq
looooooooooooooooomooooooooooooooooon

“Opε1`α{2q by Lemma 4.13





rHE , P0sP0%αpTq






LpHPq
loooooooooooooomoooooooooooooon

“Opε1`α{2q by Lemma B.1
and Lemma 4.12

“Opε2`αq.

Now suppose for a moment that rankp1p´8,pC`δ{2qεαqpH
P
effqq was

infinite. But then (4.22) implies that the dimension of
!

ψ P dompHP
a q such that

@

ψ, HP
a ψ

D

HP
ď pC `δqεα ‖ψ‖2

HP

)

would also be infinite, which clearly contradicts the assumption of
the theorem. Hence, the space

!

ψ P dompHP
effq s.t.

@

ψ, HP
effψ

D

HP
ď
`

C ` δ
2

˘

εα ‖ψ‖2
HP

)

is finite-dimensional and σpHP
effq X p´8, pC ` δ

2 qε
αq consists solely

of finitely many degenerate eigenvalues µ0 ď µ1 ď . . . .

The eigenvalues of HP
a (and in the same way those of HP

eff) are
characterised by the max-min principle

ν j “min
Wj

max
!

@

ψ, HP
a ψ

D

HP
s.t. ψ PWj and ‖ψ‖HP

“ 1
)

,
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where Wj runs over all p j` 1q-dimensional subspaces of dompHP
a q.

In particular for the special choice rWj “‘
j
k“0 kerpHP

a ´ νkq, which
is clearly the minimising subspace for ν j , it follows that (using the
fact that dompHP

a q “ dompHP
effq)

µ j ď max
!

@

ψ, HP
effψ

D

HP
such that ψ P rWj and ‖ψ‖HP

“ 1
)

(4.22)
ď max

!

@

ψ, HP
a ψ

D

HP
such that ψ P rWj and ‖ψ‖HP

“ 1
)

`Opε2`αq

“ ν j `Opε2`αq.

The latter shows that HP
eff has K ` 1 eigenvalues µ0 ď ¨ ¨ ¨ ď µK

below pC ` δ
2 qε

α. Reversing the roles of HP
a and HP

eff analogously
shows ν j ď µ j `Opε2`αq and the statement is proven.

(ii) Denote by Pν the projection onto kerpHP
a ´ νq and by µ the corre-

sponding eigenvalue of HP
eff. Suppose that there were another eigen-

value µ1 ‰ µ of HP
eff for which |ν´µ1| “ Opε2`α{4q. Let tψkukPN

and tψ1kukPN be normalised Weyl sequences of µ and µ1 such that
@

ψk,ψ1l
D

HP
“ 0 for all k, l P N (this can be achieved by choosing

the respective sequences in the image of the spectral projections
on disjoint intervals around µ and µ’). Moreover, set ψ “ ψkpεq

and ψ1 “ψ1kpεq so that




pHP
a ´ νqψ

p1q






HP
ď




pHP
a ´µ

p1qqψp1q






HP
loooooooooooomoooooooooooon

“Opε2`α{2q by Prop. 4.14

`
�

�ν´µp1q
�

�

loooomoooon

“Opε2`α{4q

“Opε2`α{4q,

and consequently




p1HP
´ Pνqψ

p1q






HP

ď




pHP
a ´ νq

´1p1HP
´ Pνq






LpHPq
looooooooooooooooooomooooooooooooooooooon

ď1{pCνεαq





pHP
a ´ νqψ

p1q






HP
loooooooooomoooooooooon

“Opε2`α{4q
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is of order ε2´3α{4. But then
�

�xPνψ, Pνψ
1yHP

�

�

ď

�

�

�
xψ,ψ1yHP
loooomoooon

“0

�

�

�`

�

�

�

@

p1HP
´ Pνqψ, p1HP

´ Pνqψ
1
D

HP

�

�

�

ď




p1HP
´ Pνqψ






HP





p1HP
´ Pνqψ

1






HP

“Opε4´3α{2q

and
�

�

�1´




Pνψ
p1q






HP

�

�

�ď




p1HP
´ Pνqψ

p1q






HP
“Opε2´3α{4q

imply that Pνψ and Pνψ
1 are two almost orthonormal vectors in

PνHP , which contradicts the simplicity of ν. Therefore, µ is an
isolated eigenvalue of HP

eff.

The eigenvalue must also be simple: If there were two orthogonal
eigensections ψ1 and ψ2 of µ, the above argumentation with the
choice ψ“ψ1 and ψ1 “ψ2 would again contradict the simplicity
of ν.

ν µ µ1σpHP
a ztνuq

σpHP
effztµuq

Opε2`3α{4q

Opε2`αq cε2`α{2

Cνε
α

Finally, µ is separated from the rest ofσpHP
effq by at least the quantity

Cνε
α´ cε2`α{2 “ pCν´ cε2´α{2q

looooooomooooooon

“:Cµ

εα,

where the constant c ą 0 stems from Proposition 4.14. l
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5
Chapter 5

Quantum Waveguides

with Gauge Fields

There has been a considerable progress within mesoscopic physics through-
out the last decades. In particular, the usage of semiconductors composed
of aluminium, gallium and arsenic nowadays allows for an enormous vari-
ety of shapes in the fabrication of microscopic structures, which confine an
electron gas into quasi two-dimensional “films” or quasi one-dimensional
“channels” (see [LCM99, Hun00] and references therein for a more de-
tailed physical background). The characteristic properties of such devices
are itemised as follows [DE95]:

(i) small size with typical length scale of 10nm to 100nm,

(ii) high purity: the electron mean free path can be a few µm or even
larger,

(iii) crystallic structure,

(iv) the wave function representing the particles inside the structure are
usually suppressed at the boundaries between different semicon-
ductor materials.

The motion of particles in such thin devices is quantised in the transversal
directions and the corresponding transverse energy levels form a set
of discrete values. This motivates referring to these microstructures as
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5 Quantum Waveguides with Gauge Fields

quantum waveguides. They are modelled mathematically by a family of
ε-thin tubes T ε around a smoothly embedded curve in R2 or around a
smoothly embedded curve/hypersurface in R3.

OpεqT ε Ă R2

(a) quantum strips

Opεq

T ε Ă R3

(b) conventional quantum tubes

Opεq

T ε Ă R3

(c) conventional quantum layers

Figure 5.1: The most prominent and most investigated examples are (see
for example [DE95, DEK01]) tubular neighbourhoods around (a) an
embedded curve inR2 with possibly varying ε-intervals as cross-sections,
(b) an embedded curve in R3 with possibly varying ε-discs as cross-
sections and (c) an embedded hypersurface in R3 with possibly varying
ε-intervals as cross-sections.

Although the behaviour of an electron is governed by a non-relativistic
many-body Schrödinger equation with a Hamiltonian modelling the in-
teraction with the lattice atoms and impurities, the properties (i) – (iii)
allow us to neglect all scattering effects (“ballistic regime”) and to ap-
proximate the motion of the electron by a free one-particle equation
with some effective mass meff (e.g., meff “ 0.067me for GaAs [Vre68]).
There is a sizeable amount of literature that implements property (iv)
by means of a steep confining potential in the transversal directions (see
for instance [JK71, daC82, Tol88, Mar95, FH01, Mit01, WT14]). We, in
contrast, impose Dirichlet boundary conditions on BT ε in order to lo-
calise the quantum particle to the interior of the tube. Thus, a reasonable
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model for an electronic motion inside the device T ε Ă R2,3 are solutions
ψ : RÑ L2pT ε,Cq of the free Schrödinger equation

iħh d
dtψptq “ ´

ħh2

2meff
∆L.B.
δ2,3ψptq, ψp0q|BT ε “ 0

with the Dirichlet Laplace-Beltrami operator ´∆L.B.
δ2,3 “ d˚d.

The described geometric framework can be extended to so-called gener-
alised quantum waveguides, i.e., to a family of ε-thin tubes T ε Ă Rb` f

around a smoothly embedded, complete, b-dimensional submanifold
B ãÑ Rb` f [HLT15]. In this context, we initially think of pRb` f ,δb` f q

as the “laboratory”, where external forces like electromagnetic fields de-
scribed by Maxwell’s classical electrodynamics or gravitational effects
described by Einstein’s general relativity are well-understood, and restrict
the configuration space of multiple quantum particles to the tube T ε.
This situation typically arises in molecular physics, where a formation
of chemically bonded atoms vibrates slightly around their equilibrium
configuration B. These deviations are quantised and the resulting exper-
imentally observable spectrum corresponds to the study of eigenvalues
of some appropriate Schrödinger operator on T ε below the essential
spectrum.

If we switch on an external electromagnetic field (in terms of an electric
potential ϕ P C8b pR

b` f q and a magnetic potential A P C8b pT
˚Rb` f q), the

Hamiltonian has to be modified according to the principle of minimal
coupling [Gre01, Section 9.1], i.e., by the addition of the potential qeffϕ

and the replacement of d by dA :“ d` iqeff
ħh A, where qeff P R denotes the

effective charge of the quantum particles. Moreover, the particles may
possess a total intrinsic angular momentum (spin) expressed by a spin
quantum number N´1

2 (N P N) and are therefore characterised by a CN -
valued wave function. In this context, we will refer to particles with spin
quantum number 0 (N “ 1) as spinless particles which are represented
by a scalar wave function. The possible interaction of the spin with
the magnetic forces (and, of course, the interaction with the remaining
forces) is modelled by an additional potential V P C8pRb` f ,CNˆN

Herm qwhich
takes its values in the Hermitian N ˆ N -matrices and therefore mixes
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the components of ψ. Eliminating the physical dimensions by setting
ħh “ 1 “ qeff as well as meff “ 1{2, we obtain the non-relativistic, time-
dependent Schrödinger equation

i d
dtψptq “ HEMψptq, ψp0q|BT ε “ 0 (5.1)

with Hamiltonian

HEM “∇A,˚∇A 1CN ` V, ∇A “ pd` iAq1CN (5.2)

in the presence of external electromagnetic fields, where we absorbed the
electric potential ϕ1CN into V .

Example 5.1 Let us consider a non-relativistic spin-1{2-particle (for ex-
ample an electron) in three-dimensional Euclidean space with coordi-
nates pz1, z2, z3q in the presence of electromagnetic fields A P C8b pT

˚R3q

and ϕ P C8b pR
3q. Then the possible states ψ“ pψÒ,ψÓq

t of such a parti-
cle, whereψÒ (“spin-up”) andψÓ (“spin-down”) represent the eigenstates
of the spin along the z3-axis, are the solutions of the famous Pauli equation
[Gre01, Section 12.5]

i d
dtψptq “ HEM

Pauliψptq

with Hamiltonian

HEM
Pauli “

`

´∆A
δ3 `ϕ

˘

looooomooooon

Hamiltonian
without spin

1C2 `

ˆ

B3 B1´ iB2

B1` iB2 ´B3

˙

looooooooooooomooooooooooooon

coupling of spinor components

.

While the first diagonal term describes the usual kinetic and potential
energy of the particle due to the minimal coupling, the second term models
the interaction of the particle’s spin with the components

Bl “

3
ÿ

măn

εlmn dApBzm ,Bznq for l P t1, 2,3u
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of the magnetic field B “ p‹dAq7 P C8b pTR
3q. Consequently, the latter

operator coincides with HEM (5.2) for the connection ∇A “ pd` iAq1C2

and the C2ˆ2
Herm-valued potential

V “
ˆ

ϕ`B3 B1´ iB2

B1` iB2 ϕ´B3

˙

.
◊

A solution of the related time-dependent Schrödinger equation (5.1) is a
priori a mapping ψ : RÑ L2pRb` f ,CN q, i.e., ψptq can be identified with
an L2-section of the trivial vector bundle Rb` f ˆCN for all t P R. From
this geometric point of view,∇A takes the role of a metric connection with
respect to the Hermitian bundle metric x¨, ¨yCN and ∇A,˚∇A “´∆A

δb` f is
the associated connection Laplacian. From now on we will consider the
more general class of metric connections

∇A :“ d1CN ` iA

on Rb` f ˆCN with connection one-form A P C8b pT
˚Rb` f q bCNˆN

Herm .

Remark 5.2 A common aspect seen in applications is the transformation
behaviour of physical quantities under smooth mappings g : Rb` f Ñ G for
some Lie group G Ă GLpN ,Cq, which describes fibrewise transformations
ψ ÞÑ gψ of wave functions ψ : Rb` f Ñ CN (sections of Rb` f ˆCN ). The
connection ∇A transforms as

g∇A g´1 “ d1CN ` i
`

gAg´1´ igdg´1
˘

looooooooooomooooooooooon

“:Ag

“∇Ag .

Consequently, if ψptq is a solution of the time-dependent Schrödinger
equation

i d
dtψptq “ ´∆

A
δb` fψptq,

it follows that ψgptq :“ gψptq is a solution of the transformed equation

i d
dtψgptq “ ´∆

Ag

δb` fψgptq
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5 Quantum Waveguides with Gauge Fields

and the examination of the two systems pψ,Aq and pgψ,Agq is equivalent,
as they describe the same (G-)gauge theory. This additional degree of
freedom in terms of g is often referred to as gauge invariance and A is
the corresponding non-Abelian gauge field. ◊

The localisation of the particles within the ε-thin tube T ε Ă Rb` f results
in solutions of the Schrödinger equation with oscillations of order ε´1

in the transversal (vertical) directions. Thus, the associated transversal
kinetic energy is expected to be proportional to ε´2 and the limit ε ! 1
seems to be rather ill-defined. This is why we multiply the Laplacian
in (5.2) with a factor ε2, so that both the kinetic energy ´ε2∆A

δb` f and
the potential energy V are of order one. We observe, however, that this
additional factor ε2 leads to a rescaling of the gauge field by a factor ε,

´ε2∆A
δb` f “ pεd1CN ` iεAq˚pεd1CN ` iεAq,

In this context, we refer to this scaling as the coupling to weak gauge
fields εA. Finally, this leads to the study of the operator

Hw
tube :“´ε2∆A

δb` f ` V “´∆A
ε´2δb` f ` V (5.3)

on L2pT ε ˆCN , volδb` f q “ L2p pRb` f ˆCN q
ˇ

ˇ

T ε q with Dirichlet boundary
conditions, where we used the same symbols A and V for the respective
restrictions from Rb` f to T ε. Physically speaking, Hw

tube implements the
dynamics of particles with total spin number N´1

2 , which are coupled to a
weak gauge field εA and are localised in the tube T ε.

We will begin the next section with the construction of a diffeomorphism
Ψε : M Ñ T ε in order to identify the family tT εu0ăεď1 (the “tube”) with
an ε-independent manifold M (the “waveguide”) that has the additional
structure of a fibre bundle over B and whose typical fibre F is given by a
compact subset of R f . This diffeomorphism then lifts to a unitary operator

pΨε : L2pT ε ˆCN , volδb` f q Ñ L2pM ˆCN , volGε q,

ψ ÞÑ pΨεψ“ ε
b` f

2 ψ ˝Ψε
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and, by means of the relations

pΨε

´

d
`

pΨ:εψ
˘

pZq
¯

“ dψ
`

TΨ´1
ε Z

˘

, pΨεApZqpΨ:ε “
`

Ψ˚ε A
˘`

TΨ´1
ε Z

˘

for any ψ P C8pM ˆCN q and vector field Z on T ε, one concludes that
the Schrödinger operator (5.3) is unitarily equivalent to

pΨε Hw
tube

pΨ:ε “´∆
Aε

Gε ` Vε

on L2pE , volGε q with CN -vector bundle E “ MˆCN , where we introduced

• the induced Riemannian metric

Gε :“ Ψ˚ε pε
´2δb` f q “ gε `Opεq,

which is an admissible perturbation of a rescaled submersion met-
ric (2.7) in the sense of Definition 2.21,

• the induced gauge field

Aε :“ Ψ˚ε A“A0` εAε1 P C8b pT
˚Mq bCNˆN

Herm ,

so that the connection ∇Aε “ d1CN ` iAε is an admissible perturba-
tion of ∇A0 “ d1CN ` iA0 (see Definition 2.24),

• and the induced potential

Vε :“ V ˝Ψε P C8b
`

M ,CNˆN
Herm

˘

.

Hence, this fits in the framework discussed in Section 2.3, provided that
the tube T ε satisfies adequate boundedness properties (see Definition 5.3
below).
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5 Quantum Waveguides with Gauge Fields

5.1 Embedded Tubular Neighbourhoods

Let c : B Ñ Rb` f be a smooth embedding of a complete, b-dimensional
manifold B into Rb` f . This induces an orthogonal decomposition

c˚TRb` f “ TB‘NB, (5.4)

and there is a one-to-one correspondence

τ` ν P Tx B‘Nx B ô τ` ν P TcpxqRb` f – Rb` f

such that τ is tangent to cpBq and ν is normal to cpBq, cf. Subsection A.1.3.

cpxq

cpBq Ă R3

TcpTx Bq – R

x

ν

ν

TcpxqR3 – R3

pTcpTx BqqK,δ3
– R2

Nx B – R2

c

BTx B – R

Tx B‘Nx B – R3

Figure 5.2: Illustration of the identification (5.4) for the case of an em-
bedded curve in three-dimensional Euclidean space (b “ 1 and f “ 2).

In view of Definition A.10, we equip TB‘NB with

• a bundle metric δTB‘NB that splits into a Riemannian metric gB on B
and a bundle metric δNB on NB,

• and a pullback connection ∇TB‘NB that splits into the Levi-Civita
connection∇gB on TB and the metric normal connection∇NB on NB.
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5.1 Embedded Tubular Neighbourhoods

Suppose that there exists a tubular neighbourhood T r Ă Rb` f of cpBq
with globally fixed radius, i.e., there is r ą 0 such that normals to cpBq of
length r do not intersect. This is equivalent to the requirement that the
map

Φ : NB Ñ Rb` f , Nx B Q ν ÞÑ cpxq ` ν

restricted to

NBr :“
 

ν P NB such that ‖ν‖δNB ă r
(

be a diffeomorphism onto T r and it follows that the entire analysis can
be carried out on (a subset of) the normal bundle.

cpBq

M

B

T ε

T r Ă Rb` f

$pMq

NBr Ă NB

B

Ψε

Φε
$

x

x

cpxq

Figure 5.3: The two embeddings c : B Ñ Rb` f and$ : M Ñ NBr Ă NB
allow for the identification of the fixed waveguide M

πM
ÝÑ B with the

family of ε-thin tubes T ε Ă Rb` f .

This suggests that we view the initial tube as an ε-independent, fibrewise
subset M Ă NBr , which is then mapped back into Rb` f by means of a
rescaled diffeomorphism

Φε : ν ÞÑ cpxq ` εν, 0ă ε ď 1.
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5 Quantum Waveguides with Gauge Fields

More precisely, we think of M as a smooth fibre bundle πM : M Ñ B with
compact typical fibre F with (possibly empty) smooth boundary that is
embedded into NBr via some smooth mapping $ : M Ñ NBr such that
the diagram

M
$- NBr

B

πM
?

1B

- B

πNB
?

commutes, or equivalently that$pMxq Ă Nx Br :“ Nx BXNBr for all x P B.
The composition

Ψε :“ Φε ˝$, 0ă ε ď 1 (5.5)

finally yields the desired change of perspective from the family of ε-thin
tubes tT εu0ăεď1 to the ε-independent waveguide M .

In order to apply the results of Chapter 4, we need to ensure that
Condition 2.2 on the geometry is satisfied. Therefore, we require the
following uniformity properties for the family of ε-thin embedded tubes
T ε Ă Rb` f (cf. [HLT15, Definition 3.1]):

Definition 5.3 We call M a quantum waveguide of bounded geometry if the
associated family of diffeomorphisms tΨε : M Ñ T εu0ăεď1 (5.5) satisfies
the following:

(i) tubular neighbourhood:

• pB, gBq is a manifold of bounded geometry,

• c : pB, gBq Ñ pRb` f ,δb` f q is smooth and bounded with all its
derivatives,

• and there exists r ą 0 such that Φ : NBr Ñ T r is a diffeomor-
phism,
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5.1 Embedded Tubular Neighbourhoods

(ii) modelling of the quantum waveguide:

• πM : pM , Gq Ñ pB, gBq is a uniformly locally trivial fibre bun-
dle,

• and $ : pM , Gq Ñ pNBr ,Gq is smooth and bounded with all
its derivatives,

where G :“ Φ˚δb` f and G :“ pΨε“1q
˚δb` f stand for the ε-inde-

pendent Riemannian metrics on NBr and M , respectively. ◊

Condition (i) is fulfilled if B is a uniformly embedded submanifold [Eld13,
Definition 2.21], i.e., the embedding c : B Ñ Rb` f is smooth and bounded
with all its derivatives, and there exists d ą 0 such that for all x P B
the set Bb` f

d pcpxqq X cpBq Ă Rb` f is given by the graph of a function
hx P C8b pR

b,R f qwith bounds uniform in x . It follows that a uniformly em-
bedded submanifold pB, gBq is of bounded geometry [Eld13, Lemma 2.27]
and admits a tubular radius r ą 0 [Eld13, Theorem 2.33]. One concludes
that both the Weingarten map W and the second fundamental form II
are C8-bounded tensors, and hence the curvature of ∇NB (A.10) satisfies
RNB P C8b pΛ

2TB b EndpNBqq and pNB,δNB,∇NBq
πNB
ÝÑ pB, gBq is a vector

bundle of bounded geometry by Definition A.19.
The pullback of T εˆCN via the map Ψε gives a family Ψ˚ε pT

εˆCN q of
vector bundles over M , all of which are isomorphic to the same trivial vec-
tor bundle E “ MˆCN pr1

ÝÑ M . Moreover, pM , Gq is a manifold of bounded
geometry [Lam14, Proposition A.4] and thus pE , x¨, ¨yCN ,∇A0q

πE
ÝÑ pM , Gq

is a vector bundle of bounded geometry [Sch96, Example 3.13] with
C8-bounded curvature RA0 “ dA0 ` rA0p¨q,A0p¨qs. We finally mention
that Ψε is smooth and bounded with all its derivatives independently of ε,
because its constituents$ and c are as well, which immediately carries
over to the induced potential Vε “ V ˝Ψε.

5.1.1 The Induced Riemannian Metric

We first turn Ψε : pM , Gεq Ñ pT ε,ε´2δb` f q into an isometry by means of
the rescaled pullback metric Gε :“ Ψ˚ε pε

´2δb` f q. We will see that the re-
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5 Quantum Waveguides with Gauge Fields

sulting metric Gε “ gε`Opεq is an admissible perturbation of the rescaled
Riemannian submersion metric (2.7) in the sense of Definition 2.21.

We start with the examination of the intermediate pullback metric
Gε :“ Φ˚ε pε

´2δb` f q on NBr . Therefore, we first recall the considerations
of Subsection A.1.2, which show that the tangent bundle of NB may be
decomposed as

TpNBq “ HpNBq ‘ VpNBq “ kerpKNBq ‘ kerpTπNBq, (5.6)

where KNB : TpNBq Ñ NB stands for the connection map induced by ∇NB.
Moreover, the restricted maps

TπNB|HνNB : HνNB Ñ Tx B , KNB|VνNB : VνNB Ñ Nx B

are vector space isomorphisms for all ν P Nx B and x P B.
Let tx iub

i“1 denote local coordinates on some U Ă B and te ju
f
j“1 be a

local orthonormal frame that trivialises NB|U . This yields bundle coordi-
nates

qi :“ πNB ˝ x i , i “ 1, . . . , b

n j , j “ 1, . . . , f

on NBr |U in such a way that every ν“ n je jpxq P Nx Br corresponds to a
point px , nq P U ˆB f

r p0q. Moreover, Remark A.8 states that the associated
coordinate vector fields on NBr |U induce horizontal and vertical lifts

pBHx i “ Bqi ´ n j δNB
`

ωNBpBx i qe j , e j1
˘

Bn j1 , (5.7)

eVj “ Bn j ,

where ωNB P C8b p pT
˚Bb EndpNBqq|Uq represents the connection one-

form of ∇NB over U with respect to the local frame te ju
f
j“1. Since we will

later have to deal with two different horizontal lifts (one with respect to
NBr Ă NB

πNB
ÝÑ B and the other with respect to M

πM
ÝÑ B), we indicate the

former with an additional hat for the sake of a clarity.
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5.1 Embedded Tubular Neighbourhoods

Lemma 5.4 The decomposition (5.6) is orthogonal with respect to Gε for
all 0ă ε ď 1.

PROOF. Since VpNB|Uq “ kerpTπNB|Uq is spanned by tBn ju
f
j“1 (indepen-

dently of Gε), it remains to check that the horizontal lift (5.7) is Gε-
orthonormal to Bn j for all 0ă ε ď 1. Therefore, we start by evaluating the
differential TΦε on tangent vectors w P TνpNBr |Uq for ν“ n je jpxq P Nx Br .
To do so, let I Ă R be a neighbourhood of zero, b : I Ñ U be a smooth
curve with bp0q “ x and

γ : I Ñ NBr |U , s ÞÑ n jpsqe j

`

bpsq
˘

be a smooth curve with initial data n jp0q “ n j and 9γp0q “ w. We then
obtain

TΦεpwq “ pΦεν
 d

ds

ˇ

ˇ

s“0Φε
`

γpsq
˘(

“ pΦεν

!

d
ds

ˇ

ˇ

s“0c
`

bpsq
˘

` ε d
ds

ˇ

ˇ

s“0n
jpsqe j

`

bpsq
˘

)

“ pΦεν

!

9bp0q ` ε 9n jp0qe jpxq ` εn j∇TB‘NB
9bp0q

e jpxq
)

,

where pΦεν : TcpxqRb` f Ñ TΦεpνqR
b` f denotes the parallel transport of

any tangent vector w P Rb` f from cpxq to Φεpνq. Let us consider the
computations for curves associated to Bqi and Bn j separately:

• Let γ : I Ñ NBr |U be the curve

γ : s ÞÑ n je j

`

bpsq
˘

, 9bp0q “ Bx i .

Then 9γp0q “ Bqi and

TΦεpBqi q “ pΦεν

!

Bx i ` εn j∇TB‘NB
Bx i

eαpxq
)

(A.9)
“ pΦεν

"

Bx i ` εn j
´

´W
`

eαpxq
˘

Bx i `∇NB
Bx i

eαpxq
¯

*

.
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5 Quantum Waveguides with Gauge Fields

• Denote by γ : I Ñ NBr |U the curve

γ : s ÞÑ
`

n j1 ` sδ j1

j

˘

e j1pxq.

Thus, 9γp0q “ Bn j and

TΦεpBn j q “ pΦεν

!

εe jpxq
)

.

Now note that the parallel transport pΦεν trivially preserves both lengths
and angles (the mapping pΦεν obviously coincides with the identity 1Rb` f

as an endomorphism of Rb` f and the metric δb` f is the the same on each
fibre of TRb` f ). So we may simplify

δ
b` f
Φεpνq

`

pΦεν tw1u,p
Φε
ν tw2u

˘

“ δ
b` f
cpxq

`

w1, w2

˘

“ δTB‘NB
x pw1, w2q

for all w1, w2 P Tx B‘Nx B and ν P Nx Br . This implies

Gε
`

Bqi ,Bn j

˘

“ ε´2δTB‘NB
`

Bx i ´ εWpνqBx i ,ε∇NB
Bx i
ν,εe j

˘

“ δNB
`

∇NB
Bx i
ν, e j

˘

and

Gε
`

Bn j1 ,Bn j

˘

“ ε´2δTB‘NBpεe j1 ,εe jq “ δ
NBpe j1 , e jq “ δ j1 j .

Thus in view of (5.7):

Gε
`

pBHx i ,Bn j

˘

“ δNB
`

∇NB
Bx i
ν, e j

˘

´

f
ÿ

j1“1

δNB
`

ωNBpBx i qν, e j1
˘

δ j1 j

“
`

ωNBpBx i qν, e j

˘

´
`

ωNBpBx i qν, e j

˘

“ 0. l

This directly leads to an explicit expression for the metric Gε:

Lemma 5.5 The intermediate pullback metric Gε on NBr is given by

Gε “ ε´2 gB

´

`

1TB ´ εW
˘

TπNB¨,
`

1TB ´ εW
˘

TπNB¨

¯

˝πNB ` δ
VpNBq

with vertical bundle metric δVpNBq :“ δNBpKNB¨,KNB¨q.
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5.1 Embedded Tubular Neighbourhoods

PROOF. It suffices to evaluate Gε merely for the horizontal and vertical
diagonal blocks due to the previous lemma. The computations there imply

TΦε
`

pBHx i

˘

“ pΦεν

!

`

1TB ´ εWpνq
˘

Bx i

)

,

which shows that the horizontal part of Gε is given by

Gε
`

pXH, pY H
˘

“ ε´2 gB

`

p1TB ´ εW
˘

X ,
`

1TB ´ εWqY
˘

for all X , Y P C8pTBq. As far as the vertical part is concerned, we simply
have GεpV, W q “ δNBpKNBV,KNBW q for arbitrary V, W P C8pVpNBrqq. l

We observe that the leading term of Gε equals the rescaled Sasaki metric
(cf. Definition A.9)

gεNB “ ε
´2 gB

`

TπNB¨,TπNB¨
˘

˝πNB ` δ
NB
`

KNB¨,KNB¨q

“ ε´2π˚NB gB ` δ
VpNBq,

which turns pNB, gεNBq
πNB
ÝÑ pB,ε´2 gBq into a Riemannian submersion with

totally geodesic fibres.

Example 5.6 Let us elaborate on the situation for conventional quan-
tum tubes as depicted in Figure 5.2: Let pB, gBq “ pR, dx b dxq and
c : RÑ R3 be a smoothly embedded curve in pR3,δ3q that is bounded
with all its derivatives and parametrised by arc length. We pick an or-
thonormal basis tτ0, e1,0, e2,0u of Tcp0qR3 – R3 such that τ0 “ c1p0q is
tangent and te1,0, e2,0u are normal to the curve at cp0q. We then obtain
the so-called relatively parallel adapted frame tτ, e1, e2u as the solution
of the coupled system of differential equations

d
dx

¨

˚

˝

τpxq
e1pxq
e2pxq

˛

‹

‚
“

¨

˝

0 κ1pxq κ2pxq
´κ1pxq 0 0
´κ2pxq 0 0

˛

‚

¨

˚

˝

τpxq
e1pxq
e2pxq

˛

‹

‚

with initial data tτp0q, e1p0q, e2p0qu “ tτ0, e1,0, e2,0u, where

κ j : RÑ R, x ÞÑ κ jpxq :“ δ3
`

c2pxq, e jpxq
˘

for j P t1,2u
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are the mean curvatures of the curve [Bis75]. This is an orthonormal frame
of pTR3

ˇ

ˇ

cpRq,δ
3q with τpxq “ c1pxq for all x P R and corresponds via (5.4)

to an orthonormal frame tτ, e1, e2u of pTR ‘ NR,δTR‘NRq obtained by
the parallel transport of the orthonormal basis tτ0, e1,0, e2,0u of T0R‘
N0R along R with respect to the induced connection c˚∇δ

3
“ ∇TR‘NR.

Consequently, τpxq “ Bx for all x P R trivialises R’s tangent bundle,
whereas e1, e2 : RÑ R2 form an orthonormal frame of NR– RˆR2, so
that

NRr “

!

n1e1pxq ` n2e2pxq
loooooooooomoooooooooon

“νPNxR

P NR such that
b

pn1q2` pn2q2
loooooooomoooooooon

“‖ν‖δNR

ă r
)

– RˆB2
r p0q

yields bundle coordinates px , n1, n2q. We then identify Tpx ,nqRr “ Tpx ,nqR
with NR– R3 by means of (A.7):

Bq

ˇ

ˇ

px ,nq “ p1, 0,0qt , Bn1 |px ,nq “ p0, 1,0qt , Bn2 |px ,nq “ p0, 0,1qt.

Here, we associated x P R with qpxq “ px , 0, 0q P NR. The normal
connection ∇NR is flat due to the fact that dimpRq “ 1 (ωNR “ 0), and
hence the horizontal lift pBHx |px ,nq of TxR Q Bx |x “ 1 P R coincides with
Bq

ˇ

ˇ

px ,nq and we obtain the vector space isomorphisms

TπNR|Hpx ,nqNR : p1, 0,0qt ÞÑ 1,

KNR|Vpx ,nqNR : p0, 1,0qt ÞÑ p1, 0qt and p0,0, 1qt ÞÑ p0, 1qt.

Apart from that, the action of the rescaled diffeomorphism Φε and the
Weingarten map W on ν“ n je jpxq P Nx Br are given by

Φε : ν ÞÑ cpxq ` ε
´

n1e1pxq ` n2e2pxq
¯

and

W : ν ÞÑ ´xn,κpxqyR2 dx bBx ,
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5.1 Embedded Tubular Neighbourhoods

where κpxq “ κ jpxqe jpxq P NxR is the mean curvature vector. Finally, the
induced metric according to Lemma 5.5 is given by

Gε|px ,nq “ ε
´2
`

1´ ε xn,κpxqyR2

˘2
dpxHb dpxH

` dn1b dn1` dn2b dn2
looooooooooooomooooooooooooon

“:δVpNRq

,

where we used the notation dpxH :“ π˚NBdx “ dq.

x x `δx
δx

δl
ν

εν

δx

cpxq

κpxq

cpx `δxq

p1´ ε xn,κpxqyR2qδl

Φε

NRr

R
cpRq

R3

Figure 5.4: The images of horizontal, equally long curves in NRr under Φε
yield variably long curves in R3.

The additional factor 1´ ε xn,κyR2 in the horizontal block of Gε reflects
the fact that the tube in R3 is either stretched or compressed due to the
curvature of the curve c (see Figure 5.4). ◊

Now that we have gained a better understanding of the intermedi-
ate Riemannian metric Gε on NBr , we may incorporate the embedding
$ : M Ñ NBr and determine the ultimate metric Gε “ $˚Gε. There-
fore, we distinguish between two different situations depending on the
codimension codimp$q of the submanifold $pMq in NBr :

Vanishing Codimension

If the codimension of the initial ε-tubes T ε in Rb` f is zero, the typical
fibre F of M is given by the closure of an open, bounded and connected
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subset of B f
r p0q Ă R

f with smooth boundary and the waveguide M is
called massive [HLT15, Definition 2.2(1)]). In this case, the restriction
Gε “$˚Gε is straightforward and its leading term

gε “ ε´2π˚M gB `$
˚δVpNBq

turns out to be a rescaled Riemannian submersion with totally geodesic
fibres.

Example 5.7 We apply the preliminary work of Example 5.6 to a special
class of massive conventional quantum tubes. More precisely, we consider
a family of tubes tT εu0ăεď1 around an embedded curve c P C8b pR,R3q

parametrised by arc length, where the respective cross-sections at cpxq
are given by elliptical discs with semi-major axis εapxq and semi-minor
axis εbpxq that twist relatively to the normal frame te1, e2u by an an-
gle ϑpxq. Here, we assume that a,b : RÑ rr´, r`s with 0ă r´ ă r` ă r
and ϑ : RÑ r0,2πq are smooth and bounded with all their derivatives.
Then the associated waveguide M “ RˆB2

1p0q
pr1
ÝÑ R is of bounded ge-

ometry (see Definition 5.3) and smoothly embedded into NRr via the
fibrewise mapping

$ : M Ñ NRr , px , y1, y2q ÞÑ
`

rpxqy
˘1

e1pxq`
`

rpxqy
˘2

e2pxq,

where we introduced the rotation-dilation matrix r : RÑ R2ˆ2 given by

x ÞÑ
ˆ

r11pxq r12pxq
r21pxq r22pxq

˙

:“

ˆ

apxq cos
`

ϑpxq
˘

´bpxq sin
`

ϑpxq
˘

apxq sin
`

ϑpxq
˘

bpxq cos
`

ϑpxq
˘

˙

.

We start with the vertical part gV “ $
˚δVpNRq of the metric. A small

calculation shows

T$pBy1q “
d
ds

ˇ

ˇ

s“0$px , y1` s, y2q “ r11pxq Bn1 ` r21pxq Bn2 ,

T$pBy2q “
d
ds

ˇ

ˇ

s“0$px , y1, y2` sq “ r12pxq Bn1 ` r22pxq Bn2

for the respective vectors at $px , yq P NRr . Hence, we get

Gε
`

By1 ,By1

˘

“ Gε
`

T$pBy1q,T$pBy1q
˘

“ r2
11` r2

21 “ a2
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using GεpBn j ,Bn j1 q “ δ j j1 and similarly

Gε
`

By2 ,By2

˘

“ b2 , Gε
`

By1 ,By2

˘

“ 0“ Gε
`

By2 ,By1

˘

.

As far as the horizontal part is concerned, we first apply the differential T$
on the product lift Bpr

x

ˇ

ˇ

px ,yq “ p1,0qt P Tpx ,yqM of Bx |x “ 1 P TxR:

T$pBpr
x q “

d
ds

ˇ

ˇ

s“0$px ` s, y1, y2q

“ pBHx `
`

r1pxqy
˘1
Bn1 `

`

r1pxqy
˘2
Bn2 ,

where the prime denotes differentiation with respect to x . This in fact
shows that Bpr

x does not coincide with the horizontal lift pBHx of Bx .

y1

y2

x

M

$pMq Ă NRr

n1

n2

x

$

Figure 5.5: Relation between horizontal curves in NRr and M . The curves
in the fixed waveguide M are twisted clockwise because one considers
the straight lines in NRr from the perspective of the anti-clockwise
twisted set $pMq.

Yet we can construct the ε-independent horizontal lift BHx from Bpr
x by

subtracting the G-vertical component:

BHx “ B
pr
x ´ G j j1 G

`

Bpr
x ,By j

˘

By j1

“ Bpr
x ´ a´2 G

`

T$pBpr
x q,T$pBy1q

˘

By1

´ b´2 G
`

T$pBpr
x q,T$pBy2q

˘

By2
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“ Bpr
x ´

1
a

´

pr1 yq1 cosϑ` pr1 yq2 sinϑ
¯

By1

´
1
b

´

´pr1 yq1 sinϑ` pr1 yq2 cosϑ
¯

By2

“ Bpr
x ´

ˆ

pln aq1 y1

pln bq1 y2

˙

¨∇y
looooooooomooooooooon

variation of the
cross-section

´ϑ1
ˆ a

b y1

b
a y2

˙

ˆ∇y
loooooooomoooooooon

variation of the
twisting angle

, (5.8)

where we introduced the notations for the inner product
ˆ

v1

v2

˙

¨

ˆ

w1

w2

˙

“ v1w1` v2w2

and the cross product
ˆ

v1

v2

˙

ˆ

ˆ

w1

w2

˙

“ v1w2´ v2w1 (5.9)

for vectors v, w P R2. Equation (5.8) yields a separation of the effects
induced by the variation of the ellipses (in terms of a1 and b1) and of
the twist (in terms of ϑ1) along the curve. Finally, it follows from the
construction that GεpBHx ,Bn j q “ 0 for j P t1,2u, and also

Gε
`

BHx ,BHx
˘
ˇ

ˇ

px ,yq “ Gε
`

pBHx ,pBHx
˘

ˇ

ˇ

ˇ

px ,n“rpxqyq

“ ε´2
´

1´ ε
@

rpxqy,κpxq
D

R2

¯2
,

and the rescaled pullback metric reads

Gε|px ,yq “ ε
´2
´

1´ ε
@

rpxqy,κpxq
D

R2

¯2
dxHb dxH

` a2pxqdy1b dy1` b2pxqdy2b dy2
loooooooooooooooooooooomoooooooooooooooooooooon

“:gMx

(5.10)

for px , yq P RˆB2
1p0q, where dxH :“ pr˚1 dx . We observe that the fibres

Mx “ B2
1p0q are x-dependent in terms of the respective Riemannian

metrics gMx
“ gV|Mx

. ◊
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Codimension greater than or equal to one

If the codimension of$pMq in NBr does not vanish, we have to introduce
further decompositions apart from (5.4):

• We denote by

TpNBrq|$pMq “ T$pTMq ‘N
`

$pMq
˘

(5.11)

the orthogonal decomposition of the tangent bundle of NBr re-
stricted to $pMq with respect to G :“ Gε“1.

• We decompose the tangent bundle of M orthogonally into

TM “ HM ‘ VM

with respect to Gε. This decomposition (more precisely, the hori-
zontal subbundle HM) does not depend on ε [Lam14, Lemma 3.3].

• Note that T$pVMq Ă VpNBrq|$pMq sinceπM “ πNB˝$ (i.e., it holds
that $pMxq Ă Nx Br for all x P B). This suggests the introduction
of the corresponding orthogonal complement with respect to the
bundle metric δVpNBq, so that

VpNBrq|$pMq “ T$pVMq ‘
`

T$pVMq
˘K,δVpNBq

looooooooomooooooooon

“:VMK

. (5.12)

By virtue of the fact that

TπNB

´

T$pXHq ´ pXH
ˇ

ˇ

$pMq

¯

“ TπM pX
Hq ´ TπNB

`

pXH
˘

“ X ´ X “ 0

for all X P C8pTBq, the difference T$pXHq ´ pXH
ˇ

ˇ

$pMq between the hori-
zontal lifts is an element of the kernel of TπNB and hence a vertical field:

T$pXHq “ pXH
ˇ

ˇ

$pMq` pXג q, pXג q P C8
`

VpNBrq|$pMq

˘

. (5.13)
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Moreover,

0“ GεpXH, V q “ Gε
`

T$pXHq,T$pV q
˘

“ Gε
´

pXH
ˇ

ˇ

$pMq` pXג q,T$pV q
¯

“ δVpNBq
`

pXג q,T$pV q
˘

for all V P C8pVMq, which shows that pXג q is already a smooth section
of VMK.

$pξq

Q

x T$pTξMq

N$pξq$pMq

$pMq Ă NBr

$pMq

B – 0NB

pT$pξqNBr ,Gq

Nx Br

V$pξqM
K

(a) Decomposition (5.11)

V$pξqM
K

x

$pξq

$pMxq Ă Nx Br

pV$pξqNBr ,δVpNBqq

T$pVξMq

(b) Decomposition (5.12)

Figure 5.6: Sketch of the aforementioned orthogonal decompositions
at the point $pξq P $pMxq Ă Nx Br . The isomorphism (A.7) allows
for the identifications (a) of NBr with its tangent space T$pξqNBr and
(b) of Nx Br with its tangent space T$pξqNx Br “ V$pξqNBr .

Next we use [Lam14, Lemma 3.2], which asserts that the fibrewise projec-
tion Q : TpNBrq|$pMqÑ Np$pMqq restricted to VMK is a bundle isomor-
phism, in order to obtain a formula for ג P C8pT˚Bq b C8pVMKq. We
first note that T$pXHq P C8pT$pTMqq implies

0 (5.11)
“ Q

`

T$pXHq
˘ (5.13)
“ Q

´

pXH
ˇ

ˇ

$pMq

¯

`Q
`

pXג q
˘
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and thus

pXג q “ ´Q´1Q
´

pXH
ˇ

ˇ

$pMq

¯

. (5.14)

Finally, the uniform local triviality of M implies that pXג q P C8b pVMKq

if X is a C8-bounded vector field on B.
Now that we have thoroughly examined the relation between the re-

spective horizontal lifts XH and pXH, we may sum up our new insights as
follows:

Proposition 5.8 The ultimate pullback metric Gε on M is given by

Gε “ ε´2
”

gB

´

`

1TB ´ ε$
˚W

˘

TπM ¨,
`

1TB ´ ε$
˚W

˘

TπM ¨

¯

˝πM

` ε2δVpNBq
`

ג ˝ TπM ג,¨ ˝ TπM ¨
˘

ı

`$˚δVpNBq,

where ג is defined by expression (5.14).

PROOF. While the horizontal block of Gε is seen to be

Gε
`

XH, Y H
˘

“ Gε
`

T$pXHq,T$pY Hq
˘

(5.13)
“ Gε

´

pXH
ˇ

ˇ

$pMq` pXג q, pY
H
ˇ

ˇ

$pMq` pYג q
¯

“ ε´2 gB

`

p1TB ´ ε$
˚W

˘

X ,
`

1TB ´ ε$
˚WqY

˘

` δVpNBq
`

pXג q,גpY q
˘

for all X , Y P C8pTBq, the vertical metric is simply obtained by the fibre-
wise restriction of δVpNBq to T$pVMq Ă VpNBrq|$pMq. l

This proposition shows that leading term of Gε is given by the rescaled
Riemannian submersion metric (2.7) with gV :“ $˚δVpNBq as vertical
bundle metric. The remainder is non-zero on the HM -HM -block alone,
where it is formally given by

`

p1bˆb ´ εWq2` ε2גגt
˘

´ 1bˆb “ ε
`

´2W ` εW2` εגגt
˘

(5.15)
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with respect to an adapted local orthonormal frame (cf. Definition 2.8).
Here, W P Rbˆb and ג P Rbˆcodimp$q denote the respective matrix repre-
sentations (with respect to an gB-orthonormal frame) with smooth and
uniformly bounded coefficients. Thus, Gε “ gε `Opεq is an admissible
perturbation of gε in the sense of Definition 2.21 and the Radon-Nikodym
density ρε “ volGε {volgε formally reads

ρε “

c

det
´

1bˆb ` ε
`

´2W ` εW2` εגגt
˘

¯

“

b

1` ε tr
`

´2W ` εW2` εגגt
˘

`Opε2q

“ 1`Opεq (5.16)

with errors in C8b pMq.
Relation (5.14) can be made concrete in the case where the codimension

of$pMq in NBr equals to one. This situation occurs for example if one
considers hollow quantum waveguides [HLT15, Definition 2.2(2)], where
rankpNBq ě 2 and the bundle M

πM
ÝÑ B is given by the fibrewise boundary

of a massive waveguide. In this case, Np$pMqq is a line bundle and
trivialised by a unit (outer-pointing) vector field N normal to $pMq. A
decomposition N “ NH`NV into a horizontal field NH P C8pHpNBrq|$pMqq

and a vertical field NV P C8pVpNBrq|$pMqq then gives

δVpNBq
`

T$pW q, NV

˘

“ G
`

T$pW q, NV

˘ (5.12)
“ G

`

T$pW q, N
˘ (5.11)
“ 0

for all W P C8pVMq. Hence, NV “Q´1N P C8pVMKq is a non-vanishing
vector field by [Lam14, Lemma 3.2] and

pXג q “
G
`

pXג q, NV

˘

GpNV, NVq
NV

(5.13)
“ ´

G
`

pXH
ˇ

ˇ

$pMq, NH

˘

GpNV, NVq
NV (5.17)

for all X P C8pTBq.

Example 5.9 Let us return to the setting of Example 5.6 and consider the
trivial bundle M “ RˆS1 pr1

ÝÑ R over B “ Rwith circle S1 as (typical) fibre.
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We then introduce polar coordinates px ,ρ,ϕq P Rˆ p0, rq ˆ p0,2πq for
NRr “ RˆB2

r p0q. This choice yields coordinate vector fields tBq,Bρ,Bϕu
on NRr , where we again set qpxq “ px , 0, 0q for x P R. The identifica-
tion (A.7) of Tpx ,ρ,ϕqNR with NR– R3 for each px ,ρ,ϕq P NRr provides
an orthogonal basis

Bq

ˇ

ˇ

px ,ρ,ϕq “ p1,0, 0qt,

Bρ

ˇ

ˇ

px ,ρ,ϕq “ p0, cosϕ, sinϕqt,

Bϕ

ˇ

ˇ

px ,ρ,ϕq “ p0,´ρ sinϕ,ρ cosϕqt

such that HpNRrq “ spanpBqq and VpNRrq “ spanpBρ,ρ´1Bϕq. Conse-
quently, the unscaled intermediate metric G on NRr reads

G|px ,ρ,ϕq “
`

1´ρκρpx ,ϕq
˘2

dpxHb dpxH` dρb dρ`ρ2 dϕb dϕ
looooooooooooomooooooooooooon

“δVpNRq

,

where

κρ “
@

κ, eρ
D

R2 “

Bˆ

κ1

κ2

˙

,

ˆ

cosϕ
sinϕ

˙F

R2

“ κ1 cosϕ`κ2 sinϕ

is the radial component of the mean curvature vector. Next we embed M
into NRr according to

$ : Rˆ S1 Ñ NRr , px , yq ÞÑ `px , yq
`

cos ye1pxq ` sin ye2pxq
˘

,

where ` : Rˆ S1 Ñ rl´, l`s with 0ă l´ ă l` ă r is smooth and bounded
with all its derivatives. This represents the boundary of a (generally
untwisted) massive waveguide whose typical fibre is D2 Ă R2. It is easy
to verify that

T$
`

Tpx ,yqM
˘

“ span
´

pBHx `
B`
Bx Bρ

ˇ

ˇ

ϕ“y
loooooooomoooooooon

“T$pB
pr
x q

, B`
B y Bρ

ˇ

ˇ

ϕ“y ` Bϕ

ˇ

ˇ

pρ,ϕq“p`,yq
looooooooooooooomooooooooooooooon

“T$pByq

¯

and a small calculation shows that its G-orthogonal complement in the
tangent space Tpx ,ρ“`px ,yq,ϕ“yqNRr is spanned by the vector

´
`

p1´`cq2
B`
Bx

pBHx ` `Bρ ´
B ln`
B y Bϕ

ˇ

ˇ

ˇ

pρ,ϕq“p`px ,yq,yq
.
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Here, we introduced

cpx , yq :“ κρpx ,ϕ “ yq “ κ1pxq cos y `κ2pxq sin y.

After an adequate normalisation, we obtain a unit normal field

N “
´

`
p1´`cq2

B`
Bx

pBHx

`

c

´

B`
Bx

¯2
`

´

B ln`
B y

¯2
` 1

loooooooooooooomoooooooooooooon

“NH

`
`Bρ ´

B ln`
B y Bϕ

`

c

´

B`
Bx

¯2
`

´

B ln`
B y

¯2
` 1

loooooooooooooomoooooooooooooon

“NV

,

which consequently gives

pBxqג
(5.17)
“

B`
Bx

c

´

B`
Bx

¯2
`

´

B ln`
B y

¯2
` 1

1`
´

B ln`
B y

¯2 NV

“

B`
Bx

1`
´

B ln`
B y

¯2

´

Bρ ´
1
`
B ln`
B y Bϕ

¯

,

again evaluated at the point pρ,ϕq “ p`px , yq, yq. As far as the vertical
part of the metric is concerned, we easily calculate

`

$˚pdϕb dϕ`ρ2 dρb dρq
˘

pBy ,Byq

“
`

dρb dρ`ρ2 dϕb dϕ
˘`

T$pByq,T$pByq
˘
ˇ

ˇ

pρ,ϕq“p`px ,yq,yq

“

´

B`
B y

¯2
` `2.

Finally, we insert these results into the expression from Proposition 5.8
and get

Gε “ ε´2

»

—

–

`

1´ ε`c
˘2
` ε2

`

B`
Bx

˘2

1`
´

B ln`
B y

¯2

fi

ffi

fl
dxHb dxH

`

„

1`
´

B ln`
B y

¯2


`2 dy b dy.

(5.18)
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We continue with the explicit computation of the horizontal lift of Bx :

BHx “ B
pr
x ´ G y y G

`

Bpr
x ,By

˘

By

“ Bpr
x ´

1
„

1`
´

B ln`
B y

¯2


`2

G
`

T$pBpr
x q,T$pByq

˘

By

“ Bpr
x ´

1
„

1`
´

B ln`
B y

¯2


`2

G
´

pBHx `
B`
Bx Bρ, B`

B y Bρ `Bϕ

¯

By

“ Bpr
x ´

B ln`
Bx

B ln`
B y

1`
´

B ln`
B y

¯2 By . (5.19)

Here, we encounter a similar phenomenon as in Example 5.7: Reducing
the complexity of the set M “ Rˆ S1 is accompanied by a more com-
plicated horizontal lift BHx . In contrast to the aforementioned example,
the deviation from BHx to Bpr

x does not include any twisting effects, but
reflects only the variation of the waveguide (in terms of B`

Bx and B`
B y ). We

close with the remark that the rescaled pullback metric Gε is ε-close to
the rescaled Riemannian submersion

gε|px ,yq “ ε
´2 dxHb dxH`

„

1`
´

B ln`px ,yq
B y

¯2


`2px , yqdy b dy
loooooooooooooooooooooomoooooooooooooooooooooon

“:gMx

in the sense of Definition 2.21: If we use the adapted local orthonormal
frame

εBHx ,

„

1`
´

B ln`
B y

¯2
´1{2

`´1By

of pTM , gεq, one has the matrix representation

Gε ´ gε “
ˆ

εhε 0
0 0

˙

,
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where

hε “´2`c` ε

»

—

–
p`cq2`

`

B`
Bx

˘2

1`
´

B ln`
B y

¯2

fi

ffi

fl

is of order one in C8b pMq. ◊

5.1.2 The Induced Connection

Once again we first consider an intermediate quantity, to be specific the
gauge field Aε :“ Φ˚εA P C8b pT

˚pNBrqqbCNˆN
Herm . It is determined by means

of

TΦε
`

pXH
˘

“
`

1TB ´ εWp¨q
˘

X , TΦεpV q “ εKNBV

for X P C8pTBq and V P C8pVpNBrqq as was shown in Lemma 5.4 and
Lemma 5.5. Here, we omitted the parallel transport map pΨε

¨
“ 1Rb` f from

TΨ0p¨q
Rb` f “ Tcp¨qRb` f to TΨεp¨qR

b` f , i.e., it suffices to evaluate the vec-
tors in the image of TΦε merely on the submanifold cpBq Ă pRb` f ,δb` f q.
We then get

Aε “ A0
H` ε

`

A
1,ε
H `AεV

˘

, (5.20)

where

A0
H

`

pXH
˘

“AΨ0p¨q

`

X
˘

“Acp¨q

`

X
˘

“
`

π˚NBAB

˘`

pXH
˘

,

A
1,ε
H

`

pXH
˘

“ ε´1
´

AΨεp¨q
`

X
˘

´AΨ0p¨q

`

X
˘

¯

´AΨεp¨q
`

Wp¨qX
˘

,

AεVpV q “AΨεp¨q
`

KNBV
˘

“Acp¨q

`

KNBV
˘

`Opεq.

The gauge field AB :“ c˚A P C8b pT
˚BqbCNˆN

Herm stands for the pullback of
the original gauge field A to the submanifold B.

The pullback ofAε to M via the mapping$ ultimately yields the induced
gauge field Aε :“$˚A P C8b pT

˚Mq bCNˆN
Herm . Therefore, we note that

T$pXHq “ pXH
ˇ

ˇ

$pMq` pXג q, pXג q P C8b
`

VpNBrq|$pMq

˘
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and T$pV q P C8pVpNBrq|$pMqq for X P C8pTBq and V P C8pVMq. Thus,
we obtain from (5.20) the following expression:

Aε “ π˚MAB ` εAεH` εA
ε
V,

where AεH P C8b pH
˚MqbCNˆN

Herm and AεV P C8b pV
˚MqbCNˆN

Herm are given by

AεHpX
Hq “ AεH

`

pXH
˘

` εAεV
`

pXג q
˘

, AεVpV q “ AεV
`

T$pV q
˘

. (5.21)

We conclude that

∇Aε “∇A0 ` iεAε1, Aε1 :“AεH`AεV P C8b pT
˚Mq bCNˆN

Herm

is an admissible perturbation of

∇A0 “ d1CN ` iA0, A0 :“ π˚MAB P C8b pH
˚Mq bCNˆN

Herm

in the sense of Definition 2.24.
As far as the vertical contribution of the corresponding connection

Laplacian ´∆Aε

gε is concerned, a short calculation shows

´∆
Aε

V “ pd1CN ` iAεq˚,gVpd1CN ` iAεq

“ pd1CN ` iεAεVq
˚,gVpd1CN ` iεAεVq

“ ´∆
εAε

V

V “´∆L.B.
V 1CN `Opεq

with errors in L8pLpDF ,HFqq. Thus, the vertical part of the gauge field
transforms into a weak perturbation of order ε, although we initially
started with the connection ∇A “ d1CN ` iA on T ε ˆ CN . Physically
speaking, this effect occurs because the shrinking of the initial tube T ε

in the transversal directions leaves the magnitude of the gauge field un-
changed, while the influence of the vertical differential operator increases.

The Case of a Trivial Line Bundle (N “ 1)

The main example for an Abelian gauge theory are spinless quantum
particles that are coupled to a classical electromagnetic field, in which
case, A P C8b pT

˚Rb` f
ˇ

ˇ

T ε q represents the magnetic potential. This cor-
responds to a Up1q-gauge theory, where the system pψ,Aq is invariant
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under transformations of the form g“ eiΩ for some real-valued function
Ω P C8b pR

b` f
ˇ

ˇ

T ε q. This induces the transformation behaviour

ψ ÞÑ gψ“ eiΩφ , A ÞÑAg “A´ dΩ

for the wave function ψ and the magnetic potential A (see Remark 5.2).
Moreover, we note that the curvature RA “ dA is gauge invariant, i.e.,

RAg “ dpA´ dΩq “ dA´ dpdΩq
loomoon

“0

“ RA .

This two-form is referred to as the magnetic field B “ dA, which is in
fact the experimentally observable (and therefore relevant) quantity. Put
differently, the magnetic field is invariant under gauge transformations
and the respective connection Laplacians ∆A and ∆A´dΩ are unitarily
equivalent. This additional degree of freedom (in terms of Ω) may be
used to simplify the calculations. In this context, it is always possible to
gauge away the leading order of the intermediate vertical gauge field AεV
using

Ωε : NBr Ñ R, Nx Br Q ν ÞÑAcpxq

`

εν
˘

.

As a matter of fact, if we take a smooth curve γ : I Ñ Nx Br with γp0q “ ν
and 9γp0q “ w P TνpNx Brq “ VνNBr , we easily calculate

dΩεpwq|v “
d
dt

ˇ

ˇ

t“0 pΩε ˝ γqptq “
d
dt

ˇ

ˇ

t“0 Acpxq

´

εγptq
¯

“Acpxq

´

εKNB 9γp0q
¯

“ Aε“0
V pwq

ˇ

ˇ

v ,

where we used the connection map KNB to identify VνNBr with Nx Br

for ν P Nx Br . This in turn means that the induced magnetic potential
on M may be assumed a priori to be of the form

Aε “ π˚MAB ` εAεH` ε
2AεV.
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Example 5.10 Let us consider the intermediate magnetic potential Aε
for the geometric framework of conventional quantum tubes introduced
in Example 5.6, i.e., tubular neighbourhoods around smoothly embedded
curves c : RÑ R3. It is shown in [KR14, Section 4.1] that this situation
admits an extremely convenient gauge on NRr “ RˆB2

r p0q: The magnetic
potential A restricted to the curve cpRq can be gauged away completely in
both the horizontal and vertical directions. This implies that Aε vanishes
identically when evaluated on the zero section of NR, which implies
the vanishing of both AB and Aε“0

V . The subsequent order in the Taylor
expansion of Aε around zero (incorporating derivatives of A) can be
expressed in terms of the physically relevant magnetic field

B “ dA P C8b
`

Λ2TR3
ˇ

ˇ

T ε

˘

evaluated on the curve, which consists of one parallel component

B‖pxq “ Bcpxq

´

e1pxq, e2pxq
¯

and two perpendicular components

B1
K
pxq “ Bcpxq

´

e2pxq, c1pxq
¯

, B2
K
pxq “ Bcpxq

´

c1pxq, e1pxq
¯

with respect to the curve cpRq Ă R3. More precisely, it can be deduced
from [KR14, Equation (4.2)] that the intermediate magnetic potential has
the expansion

Aε|px ,nq “ ε
`

BKpxq ˆ n`Opεq
˘

dpxH` ε2
´

1
2B‖pxqn`Opεq

¯

ˆ dn

in the notation of (5.9). This allows for the examination of the induced
magnetic potential Aε for the massive waveguide of Example 5.7 and the
hollow waveguide of Example 5.9:

(i) The massiveness of the waveguide yields “ג 0. Hence, the horizon-
tal part of Aε reduces to

AεHpB
H
x q “ BKˆ pryq `Opεq, (5.22)
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whereas its vertical contribution is given by

AεVpBy1q “ Aεpr11 Bn1 ` r21 Bn2q `Opεq

“
1
2B‖

`

´r11pryq2` r21pryq2
˘

`Opεq

“ ´
1
2B‖aby2`Opεq,

AεVpBy2q “ ¨ ¨ ¨ “
1
2B‖aby1`Opεq.

Consequently, the magnetic potential of this massive quantum wave-
guide reads

Aε “ ε
`

BKˆ pryq `Opεq
˘

dxH` ε2
´

1
2abB‖ y `Opεq

¯

ˆ dy.

(ii) Although pBxqג does not vanish in the hollow case, it is of lower
order in the horizontal part AεH within (5.21) and may thus be
neglected, i.e.,

AεHpB
H
x q “ BKˆ

´

` cos y
` sin y

¯

`Opεq. (5.23)

As far as the vertical contribution is concerned, we use

T$pByq “
B`
B y Bρ

ˇ

ˇ

ϕ“y ` Bϕ

ˇ

ˇ

pρ,ϕq“p`,yq

“
B`
B y pcos y Bn1 ` sin y Bn2q ` `p´ sin y Bn1 ` cos y Bn2q

in order to obtain

AεVpByq “
1
2B‖

´

` cos y
` sin y

¯

ˆ

´

pBy`q cos y´` sin y
pBy`q sin y`` cos y

¯

`Opεq

“
1
2B‖`

2`Opεq.

Finally, we see that

Aε “ ε
´

BKˆ
´

` cos y
` sin y

¯

`Opεq
¯

dxH` ε2
´

1
2`

2B‖`Opεq
¯

dy

for the magnetic potential. ◊
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5.1.3 The Induced Operator

The previous subsections showed that the initial tube operator Hw
tube (5.3)

is unitarily equivalent to

´∆
Aε

Gε ` Vε (5.24)

on L2pE , volGε q with E “ M ˆ CN , i.e., we treat a Riemannian metric
Gε “ gε ` Opεq and a metric connection ∇Aε “ ∇A0 ` Opεq, both of
which are perturbed in an admissible manner. Therefore, we have to
combine the results of Subsection 2.3.1 and Subsection 2.3.2 for the
connection Laplacian ´∆Aε

Gε . We will see that Hw
tube is unitarily equivalent

to an operator of the form

HE,w “´ε2∆
A0
H ` εHE,w

1 `HF ,ε,w

on H“ L2pE , volgq that is suitable for the low energy analysis developed
in Section 4.4. Put differently, we will conclude that the perturbation HE,w

1
satisfies Condition 4.11 and that the vertical operator HF ,ε,w is a pertur-
bation of some suitable operator HF ,ε“0,w in the sense of Remark 2.27.

To start with, let pUρε “ pε
´bρεq

1{21CN for ρε “ volGε {volgε be the
unitary operator from L2pE , volGε q to H“ L2pE , volgq. Then Lemma 2.18
asserts

pUρε
`

´∆
Aε

Gε
˘

pU:ρε “´∆
Aε

gε `∇
Aε ,˚,gε ˝ SAε ` Vρε1CN ,

where the perturbed Laplacian ´∆Aε

gε is expanded with the aid of Proposi-
tion 2.25 as

´∆
Aε

gε “´ε
2∆

A0
H ´∆

ε2Aε
V

V

´ iε3 trπ˚M gB

`

2AεHb∇
A0 `∇T˚MbEndpEqAεH

˘

` iε3AεHpηVq ` ε
4 trπ˚M gB

`

AεHbAεH
˘

.

The SAε -term within the transformed Laplacian is evaluated by means of
a local frame tvαu

m
α“1 of TM and its dual frame tωαum

α“1 as well as (A.16)
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5 Quantum Waveguides with Gauge Fields

and Lemma A.21 to be:

∇Aε ,˚,gε ˝ SAε

“´∇Aε
vβ

`

sεpωα,ωβq∇Aε
vα
¨
˘

´ sε
`

ωα, divgε pvβqω
β

loooooomoooooon

“´r∇gε
vβ
ωβ

˘

∇Aε
vα

“´∇A0
vβ

`

sεpωα,ωβq∇A0
vα
¨
˘

`

´

´2iε sεpωα,ωβqAε1pvβq ` sε
`

ωα, r∇gε
vβ
ωβ

˘

¯

∇A0
vα

´ iε
´

`

∇TMb2

vβ
sε
˘

pωα,ωβq ` sε
`

r∇gε
vβ
ωα,ωβ

˘

¯

Aε1pvαq

´ iε sεpωα,ωβq
´

`

∇T˚MbEndpEq
vβ

Aε1
˘

pvαq `Aε1
`

∇gε
vβ

vα
˘

¯

` ε2 sεpωα,ωβqAε1pvβqA
ε
1pvαq.

Next we introduce the tensor

σε :“ ε´3sε P C8b pΣ
2H˚Mq

so as to illustrate (and compare) the different orders of ε properly. Actually
the bounds of σε can be chosen to be of order one independently of ε,
since

• Lemma 2.22 implies the existence of a constant c ą 0 such that

ε3
�

�σεpω,ωq
�

�“
�

�sεpω,ωq
�

�ď cεrgεpω,ωq

for all ω P T˚M ,

• and Proposition 5.8 implies that pGε ´ gεqpv, ¨q “ 0 for all v P VM ,
and hence sε is a section ofΣ2H˚M and the latter equation simplifies
to

�

�σεpπ˚Mζ,π˚Mζq
�

�ď cε´2
rgpπ˚Mζ,π˚Mζq “ crgBpζ,ζq

for all ζ P T˚B.
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In summary, the operator (5.24) and therefore the initial Schrödinger
operator Hw

tube is unitarily equivalent to

HE,w “´ε2∆
A0
H ´∆

εAε
V

V ` Vε ` Vρε1CN ` εH̃E,w
1 ,

where the deviation H̃E,w
1 from the horizontal part of ´∆Aε

Gε to ´ε2∆
A0
H

equals

trHM ,p12q,p34q

´

∇A0
ε¨

`

´σεp¨, ¨q∇A0
ε¨ ¨

˘

¯

´2iε trπ˚M gB

`

AεHb∇
A0
ε¨

˘

`ε trHM

ˆ

trHM ,p23q

´

σε
`

¨, r∇gε
¨
¨
˘

´ 2iεσε bAεH
¯

∇A0
ε¨ ¨

˙

`ε

«

´iε trπ˚M gB

`

∇T˚MbEndpEqAεH
˘

` iεAεHpηVq ` ε
2 trπ˚M gB

`

AεHbAεH
˘

´ iε2 trHM ,p13q,p24q

ˆ

´

∇HMb2
σε `σε

`

r∇gε
¨
¨, ¨
˘

¯

bAεH

˙

´ iε2 trHM ,p13q,p24q

ˆ

σε b
´

∇T˚MbEndpEqAεH`AεH
`

∇gε
¨
¨
˘

¯

˙

` ε4 trHM ,p13q,p24q

`

σε bAεHbAεH
˘

ff

.

Remark 5.11 (i) The tensor product connections ∇T˚MbEndpEq and
∇HMb2

depend implicitly on ε via the Levi-Civita connection ∇gε

involved in their respective definitions. It turns out, however, that
we only need their ε-independent components (Christoffel symbols):

• Koszul’s formula (A.3) yields

∇gε
XHY H “

`

∇gB
X Y

˘H
`ΩHpX

H, Y Hq “∇g
XHY H (5.25)

for X , Y P C8pTBq. Hence,
`

∇T˚MbEndpEq
XH AεH

˘

pY Hq “ XH ¨AεHpY
Hq ´AεH

`

∇gε

XHY H
˘

“ XH ¨AεHpY
Hq ´AεH

`

∇g
XHY H

˘
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is the same as for the unscaled Levi-Civita connection ∇gε“1
.

• Let tvαu
m
α“1 be a local frame of TM and tωαum

α“1 its dual frame
such that tviu

b
i“1 and tωiub

i“1 are local frames of HM and H˚M ,
respectively. Then

PH˚M
`

r∇gε
vi
ω j

˘

“
`

rΓ gε
˘ j

iαω
α

(A.4)
“ ´

`

Γ gε
˘ j

iαω
α

(5.25)
“ ´

`

Γ g
˘ j

iαω
α

“ PH˚M
`

r∇g
vi
ω j

˘

does not depend on ε, and likewise for

`

∇HMb2

XH σε
˘

pΞ,Υ q

“ XH ¨σεpΞ,Υ q ´σε
`

r∇gε

XHΞ,Υ
˘

´σε
`

Ξ, r∇gε

XHΥ
˘

“ XH ¨σεpΞ,Υ q ´σε
`

r∇g
XHΞ,Υ

˘

´σε
`

Ξ, r∇g
XHΥ

˘

for X P C8pTBq and Ξ,Υ P C8pH˚Mq.

(ii) Due to the fact that lnρε “Opεq as shown in the proof of Proposi-
tion 2.23, the geometric potential (2.18) equals

Vρε “ V V
ρε
`

1
2ε

2∆L.B.
H lnρε

loooooomoooooon

“Opε3q

`Opε4q (5.26)

with leading order

V V
ρε
“

1
2∆

L.B.
V lnρε

looooomooooon

“Opεq

`
1
4 rgVpd lnρε, d lnρεq
looooooooooomooooooooooon

“Opε2q

.

Let us examine this potential in the two most relevant situations:
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5.2 Application to Weak Magnetic Fields

• If M is a massive quantum waveguide (codimp$q “ 0), the
leading order of

lnρε
(2.19)
“

(5.15)

1
2 trTB

´

´2ε$˚W

` ε2
`

$˚W ˝$˚W ` δVpNBq
`

p¨qג,p¨qג
˘

¯

“ ´ε trTBp$
˚Wq `Opε2q.

is linear with respect to the fibre coordinate ξ P Mx . Con-
sequently, ∆L.B.

V vanishes on the leading term of lnρε and
V V
ρε
“Opε2q.

• If BM “H, the induced Weingarten map $˚W is generally
not linear with respect to y and thus ∆L.B.

V is not zero when
applied to the leading order $˚W. As a consequence, one
expects an Opεq-contribution within V V

ρε
. ◊

Depending on the particular geometric situation at hand, we can take
advantage of the freedom to distribute the potential Vρε “ V p1qρε ` V p2qρε to
the vertical operator and the perturbation so that

HF ,ε,w “´∆
εAε

V

V ` Vε ` V p1qρε
1CN , εHE,w

1 “ εH̃E,w
1 ` V p2qρε

1CN .

In virtue of Remark 2.20, the operator ´ε2∆
A0
H ` εH̃E,w

1 is the horizontal
part of the Laplacian ´∆Aε

Gε and hence defines a positive operator. It then

follows that´ε2∆
A0
H `εH

E,w
1 is bounded from below by´





V p2qρε







L8pMq1H.
Thus, the perturbation satisfies all the requirements of Condition 4.11 if
we split the geometric potential in such a way that V p2qρε is of order ε2.

5.2 Application to Weak Magnetic Fields

The considerations of the previous section showed that the initial tube
operator Hw

tube (5.3) is unitarily equivalent to an operator of the form

HE,w “´ε2∆
A0
H `HF ,ε,w` εHE,w

1
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5 Quantum Waveguides with Gauge Fields

with a perturbation HE,w
1 satisfying Condition 4.11. Hence, we may apply

Theorem 4.15 and obtain the following approximation result for the low-
lying eigenvalues of HE,w (and consequently for those of Hw

tube):

Theorem 5.12 Let Hw
tube be the Hamiltonian generating the dynamics of

non-interacting, non-relativistic quantum particles with total spin quantum
number N, which are localised within a quantum waveguide of bounded
geometry and are coupled to a weak external CNˆN

Herm -valued, C8-bounded
gauge field A. Assume that

(i) the ground state band λm
0 of HF ,ε,w (with associated eigenspace bun-

dle Pm) has a spectral gap, cf. Condition 2.26, for ε ą 0 small enough,

(ii) and there is a constant C ą 0 such that Cεα is strictly below the
essential spectrum of HPm

a ´Λ01HPm in the sense of Theorem 4.15 for
some α P p0, 2s, where HPm

a is the adiabatic operator and Λ0 denotes
the bottom of HF ,ε,w’s spectrum (see (5.32) below).

Then if νε ă Cεα is an eigenvalue of HPm

a ´Λ01HPm , there exists an eigen-
value υε of Hw

tube below its essential spectrum with the asymptotic expansion

υε “ Λ0` ν
ε `Opε2`αq.

We will apply this theorem to quantum waveguides arising from conven-
tional quantum tubes for a non-relativistic, charged, spinless quantum
particle in the presence of a weak external magnetic field (described
by means of some magnetic potential A P C8b pT

˚R3
ˇ

ˇ

T ε q) but without
any other forces (V “ 0). Such a particle is characterised by a solution
ψ : RÑ L2pT ε ˆCq of the time-dependent Schrödinger equation

i d
dtψptq “ Hw

tubeψptq, ψptq|BT ε “ 0

for some tube T ε Ă R3 around a smoothly embedded curve c : RÑ R3.
Recalling the specific gauge for Aε of Example 5.10 (which implied
both AB “ 0 and Aε“0

V “ 0), we conclude that the associated tube opera-
tor Hw

tube is unitarily equivalent to

HE,w “´ε2∆L.B.
H ´∆

ε2Aε
V

V ` εH̃E,w
1 ` Vρε (5.27)
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on H “ L2pE , volgq with trivial line bundle E “ M ˆ C over the wave-
guide M . In view of Remark 5.11(ii) and the subsequent discussion, we
set

HF ,ε,w :“´∆
ε2Aε

V

V (5.28a)

for codimp$q “ 0 and

HF ,ε,w :“´∆
ε2Aε

V

V ` V V
ρε

(5.28b)

“ pUρε

´

´ trgV

`

p∇ε
2Aε

Vq2
˘

´∇ε
2Aε

V

gradgV lnρε

¯

loooooooooooooooooooomoooooooooooooooooooon

“´r∆
ε2AεV
V by (A.20)

pU:ρε

for codimp$q ě 1 on HF |x :“ L2pMx , volgMx
q with appropriate Dirichlet

domains. Here, the latter transformation via the fibrewise unitary map
pUρε pxq : L2pMx ,ρε volgMx

q Ñ HF |x is obtained by calculations analo-
gous to those in Subsection 2.3.1. It then immediately follows that the
perturbation

εHE,w
1 “

#

εH̃E,w
1 ` Vρε , codimp$q “ 0

εH̃E,w
1 `

1
2ε

2∆L.B.
H lnρε, codimp$q ě 1

satisfies Condition 4.11 as desired.
Let us analyse the asymptotic expansion of the magnetic ground state

band λm
0 pxq :“minσpHF ,ε,wpxqq. To do this, we start with the examina-

tion of the ε-independent ground state

λ0pxq :“minσ
´

HF ,ε,w
Aε

V“0pxq
¯

“

#

minσ
`

´∆L.B.
V pxq

˘

, codimp$q “ 0

minσ
`

´r∆L.B.
V pxq

˘

, codimp$q ě 1

of the unperturbed vertical operator (in the absence of any magnetic
potential) for the two most relevant geometric configurations:
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• Massive quantum waveguides (codimp$q “ 0):
Denote by φ0pxq the fibrewise, uniquely defined, positive ground
state with corresponding eigenband λ0pxq ą 0. We will assume that
x ÞÑ λ0pxq has a unique non-degenerate minimum on R. Moreover,
a natural condition on φ0 is the requirement that its barycentre lie
on the curve:

@

φ0, y1φ0

D

HF
“ 0“

@

φ0, y2φ0

D

HF
. (5.29)

This corresponds to the “correct” parametrisation of the waveguide,
i.e., to the proper positioning of cpRq within the tube T ε Ă R3.

• Hollow quantum waveguides (codimp$q “ 1):
In view of the discussion right at the end of Section A.3, the Lapla-
cian ´r∆L.B.

V is symmetric with quadratic form

@

ψ,´r∆L.B.
V ψ

D

L2pMx ,ρε volgMx
q
“

ż

Mx

rgMx

`

dψ, dψ
˘

ρε volgMx

and hence defines a positive operator. Its ground state is a fibrewise
constant function, say some φ̃pxq˝πM , with eigenband λ0 ” 0. The
corresponding normalised ground state of HF ,ε,wpxq

ˇ

ˇ

Aε
V“0 is then

φ0pxq “
pUρε

`

φ̃0pxq ˝πM

˘






pUρε

`

φ̃0pxq ˝πM

˘






HF |x

“
ρ

1{2
ε

ş

Mx
ρε volgMx

“ VolgMx
pMxq

´1{2 ˝πM `Opεq,

where we took advantage of the fact that ρε “ 1`Opεq in C8b pMq
due to (5.16).

As far as the corrections to λ0 within λm
0 are concerned, we use the

methods of finite-dimensional perturbation theory developed in [Kat80,
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Section II – § 2]). The entire vertical operator has the expansion

HF ,ε,w “ HF ,ε,w
Aε

V“0` ε
2
´

d˚
`

iAε“0
V

˘

`
`

iAε“0
V

˘˚
d
¯

looooooooooooooomooooooooooooooon

“:HF ,w
2

` ε3
´

d˚
`

iA1,ε“0
V

˘

`
`

iA1,ε“0
V

˘˚
d
¯

looooooooooooooooomooooooooooooooooon

“:HF ,w
3

`Opε4q

with errors in L8pLpDF ,HFqq, where AεV “Aε“0
V `εA1,ε“0

V `Opε2q. But
then

ż

Mx

φ0

`

d˚piAVq ` piAVq
˚d

˘

φ0 volgMx

“ 2 Re

ˆ

i
ż

Mx

rgMx
pdφ0,AVφ0q volgMx

loooooooooooooooomoooooooooooooooon

real-valued

˙

“ 0 (5.30)

for any AV P C8pV˚Mq, which gives
@

φ0, HF ,w
2 φ0

D

HF |x
“ 0“

@

φ0, HF ,w
3 φ0

D

HF |x

for all x P R. This, together with the fact that the Opεq-correction to
the unperturbed ground state φ0 vanishes, shows that the first non-zero
correction to λ0 is actually of order ε4. The diamagnetic inequality [FH10,
Section 2.1] finally asserts that the infimum of σpHF ,ε,wq increases when
a magnetic field is switched on. Thus, the ground state band λm

0 of the
entire magnetic vertical operator is always pointwise greater than or equal
to λ0 and we end up with the asymptotic expansion

λm
0 pxq “

#

λ0pxq ` ε
4λ0,4pxq `Opε5q, codimp$q “ 0

0` ε4λ0,4pxq `Opε5q, codimp$q “ 1

with λ0,4 ě 0 and errors in C8b pRq.
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Lemma 5.13 Let the typical fibre F Ă R2 of M “ RˆF be connected. Then
there exists ε0 ą 0 such that λm

0 satisfies Condition 2.26 for all 0ă ε ă ε0.

PROOF. We first note that the ground state band λ0 of the unperturbed op-
erator ´∆L.B.

V satisfies Condition 2.26 by [Lam14, Lemma 3.7], i.e., there
is a constant d ą 0 such that

dist
´

λ0pxq,σ
`

´∆L.B.
V pxq

˘

z
 

λ0pxq
(

¯

ě d

for all x P R. Moreover, λ̄0 :“ ‖λ0‖L8pRq ă8 by Proposition 3.14. As far
as the perturbation

Tε “´2iAεV
`

divgV ¨
˘

` i
`

d˚AεV
˘

` ε2 trgV

`

AεVbAεVq

in HF ,ε,w “ HF ,ε,w
Aε

V“0` ε
2Tε is concerned, we obtain the estimate





ε2Tεψ






L2pMx q

ď 2ε2




AεV






L8pT˚Mq








gradgMx
ψ









L2pMx q

`

´

ε2




d˚AεV






L8pMq` ε
4




AεV






2
L8pT˚Mq

loooooooomoooooooon

ďε2‖Aε
V‖L8pT˚Mq

for ε small enough

¯

‖ψ‖L2pMx q

ď 2ε2




AεV






L8pT˚Mq

´





HF ,ε,w
Aε

V“0pxqψ






L2pMx q
`

1
2 ‖ψ‖L2pMx q

¯

`

´

ε2




d˚AεV






L8pMq` ε
2




AεV






L8pT˚Mq

¯

‖ψ‖L2pMx q

“ aε ‖ψ‖L2pMx q
` bε




HF ,ε,w
Aε

V“0pxqψ






L2pMx q

for all ψ P DF |x with x-uniform bounds

aε “ 2ε2




AεV






L8pT˚Mq` ε
2




d˚AεV






L8pMq,

bε “ 2ε2




AεV






L8pT˚Mq.

We infer from the C8-boundedness of AεV that the quantity

ε0 :“

d

d{2




AεV




` 2




d˚AεV




`




AεV






`

λ̄0` d
˘ ą 0
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is well-defined and one easily verifies the inequality

aε ` bε
`

λ0pxq ` d
˘

ă
d
2

for all x P R and all 0ă ε ă ε0. Consequently, [Kat80, Theorem IV – 3.18]
yields

σ
`

HF ,ε,wpxq
˘

X

´

λ0pxq ´
d
2 ,λ0pxq `

d
2

¯

“
 

λm
0 pxq

(

for all x P R and all 0 ă ε ă ε0. Thus, Condition 2.26 is satisfied with
spectral gap δ “ d{4 and separation functions f˘pxq :“ λ0pxq ˘δ. l

This lemma allows for the definition of the spectral projection

Pm
0 pxq “

i
2π

ż

|z´λ0pxq|“δ

`

HF ,ε,wpxq ´ z1HF

˘´1
dz

associated with the magnetic ground state band λm
0 , which gives rise to

the corresponding smooth normalised ground state

φm
0 pxq “

Pm
0 pxqφ0pxq




Pm
0 φ0







HF |x

ù Pm
0 “

@

φm
0 , ¨

D

HF
φm

0 .

The bounded geometry of the waveguide M (cf. Definition 5.3) and the
C8-boundedness of the vertical magnetic potential imply that

Bk
x

´

HF ,ε,wpxq ´HF ,ε,w
Aε

V“0pxq
¯

ď Cpkqε2

in the norm-resolvent sense for all x P R and k P N0. Consequently in
view of

Pm
0 ´ P0 “

1
2πi

ż

|z´λ0|“δ
RF ,ε,wpzq

´

HF ,ε,w´HF ,ε,w
Aε

V“0

¯

RF ,ε,w
Aε

V“0pzq dz,

the magnetic ground state φm
0 is very close to the unperturbed state φ0,

i.e., it holds for all k P N0 that

sup
xPR










`

BHx

˘k
pφm

0 ´φ0q










HF |x

“Opε2q. (5.31)
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5 Quantum Waveguides with Gauge Fields

Theorem 5.12 states that the low-lying eigenvalues of the initial tube
operator Hw

tube may be approximated by those of the adiabatic operator

HPm

a “ Pm
0 HE,wPm

0

(4.12)
“ ´ε2∆B` ε2VPm

BH
loooooooomoooooooon

Berry terms

`λm
0 1HPm ` εPm

0 HE,w
1 Pm

0
looooomooooon

perturbation

acting on HPm “ L2pPmq, i.e., on the L2-sections of the eigenspace bun-
dle Pm “ Pm

0 HF . To be more precise, with “low-lying” we mean those
eigenvalues of HPm

a with a distance of order εα to the bottom

Λ0 :“ min
0ďεď1

inf
xPR
λm

0 pxq “ inf
xPR
λ0pxq (5.32)

of σpHF ,ε,wq. The correct scaling εα of the eigenvalues can be read off
the renormalised leading term of the adiabatic operator, which is given by

´ε2∆B`
`

λm
0 ´Λ0

˘

1HPm “´ε
2∆B` pλ0´Λ0q1HPm `Opε4q.

We observe that this is essentially determined by the behaviour x ÞÑ λ0pxq
of the ground state band associated with the unperturbed vertical operator.
Consequently, we retrieve α“ 1 for massive waveguides (with λ0 having
a unique non-degenerate minimum) and α“ 2 for hollow waveguides.

We saw above that the switching on of the magnetic field in general
leads to an Opε4q-increase of the ground state band (λ0 Ñ λm

0 ) and
consequently to an increase of the same order for the eigenvalues of the
adiabatic operator HPm

a (cf. Figure 5.7). In both cases the shift of the
ground state due to the magnetic field is much smaller than the level
spacing of the low-lying eigenvalues of HPm

a (three orders in ε for the
massive waveguide and two orders in ε for the hollow waveguide). Hence,
these eigenvalues stay εα-close to Λ0 and the constants C1 and C2 can
be chosen independently of the vertical magnetic potential AεV for ε ą 0
small enough.
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λ0pxq

λm
0 pxq

Opε4q

x P R

σpHPm

a q

Opεq

Λ0

Λ0` C1ε

(a) massive quantum waveguides (α“ 1)

λ0pxq
λm

0 pxq

Opε4q

x P R

σpHPm

a q

Opε2q

C2ε
2

Λ0 “ 0
(b) hollow quantum waveguides (α“ 2)

Figure 5.7: The low-lying eigenvalues of the adiabatic operator HPm

a as-
sociated with the ground state band below Λ0` Cαε

α (a) for massive
quantum waveguides, where λ0 has a unique and non-degenerate min-
imum, and (b) for hollow quantum waveguides are depicted on the
vertical axis in the absence (red, AεV “ 0) and presence (green, AεV ‰ 0)
of the magnetic potential.
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5 Quantum Waveguides with Gauge Fields

The global trivialisation of the eigenspace bundle Pm via the ground
state φm

0 yields an identification of HPm Ă L2pMq with L2pRq b pφm
0 q

and the associated adiabatic operator may be treated as an operator Ha

acting on L2pRq. In the next two subsections, we will calculate the adi-
abatic operators for the waveguides introduced in Example 5.7 and Ex-
ample 5.9 up to errors of order ε2`α in Lpdompε´αHa,0q, L2pRqq, where
Ha,0 “´ε

2∆L.B.
dxbdx ` pλ0´Λ0q, which is the exact accuracy provided by

Theorem 5.12.

5.2.1 Example for Massive Quantum Waveguides

We consider a single non-relativistic, spinless, charged quantum parti-
cle, which is localised within a family of massive tubes tT ε Ă R3u0ăεď1

around a smoothly embedded curve c : RÑ R3 with twisted elliptical
discs as respective cross-sections (see Example 5.7 for the details), in
the presence of an external magnetic field represented by some poten-
tial A P C8b pT

˚R3
ˇ

ˇ

T ε q. The quantum waveguide turns out to be the

trivial fibre bundle M “ RˆB1p0q
pr1
ÝÑ R with coordinates px , y1, y2q and

rescaled pullback metric (5.10)

Gε “ ε´2
`

1´ ε xry,κyR2

˘2
dxHb dxH` gV,

where the vertical contribution reads

gV|Mx
“ gMx

“ a2pxqdy1b dy1` b2pxqdy2b dy2.

The corresponding Schrödinger operator (5.27) on L2pM , volgq incor-
porates the vertical operator HF ,ε,w (5.28a) and the perturbation given
by εHE,w

1 “ εH̃E,w
1 ` Vρε .

Vertical Operator

We briefly discuss the ground state associated with the unperturbed op-
erator HF ,ε,w

Aε
V“0 “ ´∆L.B.

V . The fibrewise unitary map pV pxq from HF |x

to L2pE2
apxq,bpxq, dnq, given by

φ ÞÑ
`

pV pxqφ
˘

py1, y2q :“ φ
´

y1

apxq ,
y2

bpxq

¯

,
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5.2 Application to Weak Magnetic Fields

induces a unitarily equivalent operator ´∆L.B.
δ2 with Dirichlet boundary

conditions on the x-dependent elliptical domain

E2
apxq,bpxq :“

"

py1, y2q P R2 :
´

y1

apxq

¯2
`

´

y2

bpxq

¯2
ď 1

*

.

Introducing elliptical coordinates

Epxq :
“

0,ξ0pxq
‰

ˆ r0,2πq Ñ E2
apxq,bpxq,

pξ,ηq ÞÑ
`

fpxq coshξ cosη, fpxq sinhξ, sinη
˘

for all x P R with focal length function f“
?
a2´ b2 and elliptical bound-

ary ξ0 “ artanh
`

b
a

˘

, we see that the non-degenerate, positive and nor-
malised ground state of ´∆L.B.

δ2 is given by [GRM03]:

Φ0pxq “
1?
Cpxq

ϕ0pxq ˝Epxq
´1,

with
`

ϕ0pxq
˘

pξ,ηq :“ Je0

`

ξ; q01pxq
˘

ce0

`

η; q01pxq
˘

and smooth normalisation function

Cpxq “
ż ξ0pxq

0

ż 2π

0

´

`

ϕ0pxq
˘

pξ,ηq
¯2
`

coshp2ξq ´ cosp2ηq
˘

dηdξ.

Here, Je0 denotes the zeroth radial Mathieu function and ce0 the zeroth
angular Mathieu function. By reason of the Dirichlet boundary conditions,
both functions depend implicitly on the x-dependent first zero q01pxq of
the radial function Je0 (which takes the role of the radial Bessel function in
the case of disc-shaped domains) at the elliptical boundary ξ0pxq, i.e., it is
the solution of Je0pξ0pxq; qq “ 0. The ground state associated with´∆L.B.

V

finally reads

`

φ0pxq
˘

py1, y2q :“
`

pV :pxqΦ0pxq
˘

py1, y2q

“
`

Φ0pxq
˘`

apxqy1,bpxqy2
˘

.
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5 Quantum Waveguides with Gauge Fields

The boundedness of the semi-axes with all their derivatives directly carries
over to the ground state φ0 P C8b pMq. In the end, we remark that the
elliptical cross-section is positioned symmetrically with respect to the
curve cpRq, and thus φ0 is centred and satisfies (5.29).

The corresponding ground state band is given byλ0pxq “
4q01pxq
fpxq . Hence,

the requirement that λ0pxq have a unique non-degenerate minimum is
an implicit condition on the semi-axis functions apxq and bpxq. Moreover,
the ground state band is separated from the rest of the spectrum by a gap

4
fpxq pq11pxq ´ q01pxqq, where q11pxq is first zero of the first (even) radial
Mathieu function. The uniformity properties of the semi-axis functions
r´ ď bpxq ă apxq ď r` imply the uniformity of the spectral gap, i.e., there
is an x-independent constant d ą 0 such that

inf
xPR

dist
´

λ0pxq,σ
`

´∆L.B.
gMx

˘

ztλ0pxq
(

¯

ě d.

Moreover, it is shown in [Mak59] that ‖λ0‖L8pRq ď
?

3 L
A with perime-

ter L ď 4r` and area Aě πr2
´

of the respective elliptical domains.

Berry Terms

The Berry connection (4.10) is given by ∇B
Bx
“ Pm

0 B
H
x Pm

0 for Bx P C8pTRq.
The massiveness of the waveguide yields ηV “ 0, and hence this defines
a metric connection (i.e., ∇B coincides with ∇Pm

, see Subsection 4.3.1).
Thus, it holds that

0“ Bx ¨
@

φm
0 ,φm

0

D

Pm “
@

∇B
Bx
φm

0 ,φm
0

D

Pm `
@

φm
0 ,∇B

Bx
φm

0

D

Pm

“ 2Re
´

@

φm
0 ,∇B

Bx
φm

0

D

Pm

¯

“ 2Re
´

@

φm
0 ,BHxφ

m
0

D

HF

¯

and
@

φm
0 ,BHxφ

m
0

D

HF
is purely imaginary. The application of ∇B to ψφm

0
for ψ P C8pRq is then calculated to be

∇B
Bx
pψφm

0 q “ dψpBxqφ
m
0 `ψPm

0 ∇
B
Bx
φm

0 “

´

`

d` iAB
˘

loooomoooon

“:∇AB

pBxqψ
¯

φm
0 ,
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5.2 Application to Weak Magnetic Fields

where the “effective magnetic potential” reads

ABpBxq “ Im
´

@

φm
0 ,BHxφ

m
0

D

HF

¯

(5.33)

(5.31)
“ Im

´

@

φ0,BHxφ0

D

HF

¯

looooooooooomooooooooooon

“ 0 since φ0 is real-valued

`Opε2q.

Finally, the Berry Laplacian applied on ψφm
0 equals

∆Bpψφm
0 q “

`

∆AB

dxbdxψ
˘

φm
0 “

´

`

∆L.B.
dxbdx `Opε3{2q

˘

ψ
¯

φm
0 .

The difference between the Berry Laplacian and the projected horizontal
Laplace operator equals the Born-Huang potential

VPm

BH φ
m
0 “ Pm

0

`

BHx Pm
0 B

H
x ´∆

L.B.
H

˘

φm
0

“

A

φm
0 ,BHx

´

@

φm
0 ,BHxφ

m
0

D

HF
φm

0

¯E

HF

φm
0

´
@

φm
0 ,∆L.B.

H φm
0

D

HF
φm

0

“

´





BHxφ
m
0







2
HF
´
�

�

@

φm
0 ,BHxφ

m
0

D

HF

�

�

2

loooooooooomoooooooooon

“Opε4q

¯

φm
0

(5.31)
“

´





BHxφ0







2
HF
`Opε2q

¯

φm
0 . (5.34)

Its leading term is non-negative and has been mainly studied in the context
of “twisted quantum waveguides” with isometric cross-sections, see for
example [CB96, EKK08].

Example 5.14 Let us consider the special case of a fixed elliptical domain
with constant semi-axes a and b. This implies that

• the horizontal lift (5.8) simplifies to

BHx “ B
pr
x ´ ϑ

1
´

a
b y1 By2 ´

b
a y2 By1

¯

“: Bpr
x ´ iϑ1La,b

y , (5.35)

• and the leading order φ0 of the vertical ground state becomes (up
to the x-dependent twist) independent of the base coordinate x .
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5 Quantum Waveguides with Gauge Fields

Consequently, the main contribution of the Born-Huang potential is rather
simple, to be specific, one has

VPm

BH pxq “
`

ϑ1pxq
˘2


La,b

y φ0







2
HF |x

`Opε2q.

This expression is in agreement with the result in [KŠ12], i.e., VPm

BH co-
incides with the well-known twisting potential plus some very small ε-
corrections due to the presence of the magnetic field. ◊

Perturbation

In order to calculate εPm
0 HE,w

1 Pm
0 up to errors of order ε3 with respect to

the norm Lpdompε´1Ha,0q, L2pRqq, first note that any ψ P dompε´1Ha,0q

of order one oscillates on a length scale of order ε´1{2, i.e.,




dψpεBxq






L2pRq “Opε1{2q ô




εBHx pψφ
m
0 q






HPm
“Opε1{2q.

Moreover, the potential term appearing in H̃E,w
1 is already of order ε3 and

may a priori be neglected in the following considerations.
We need an explicit formula for the tensor σε which encodes the differ-

ence between the rescaled pullback metric Gε and the rescaled submersion
metric gε due to the extrinsic curvature of the curve. A small calculation
shows

σεpdxH, dxHq “ ε´3
´

rGεpdxH, dxHq ´ rgεpdxH, dxHq

¯

“ ε´1

ˆ

1
p1´ ε xry,κyR2q2

´ 1

˙

“

8
ÿ

l“0

εlpl ` 2q xry,κyl`1
R2

“ 2 xry,κyR2 ` 3ε xry,κy2R2 `Opε2q (5.36)

with errors in C8b pMq. As far as the geometric potential Vρε (5.26) is
concerned, we first determine the associated Radon-Nikodym density to
be

ρε “

d

detpGεq
detpgεq

“

d

ε´2p1´ ε xry,κyR2q2a2b2

ε´2a2b2
“ 1´ ε xry,κyR2 ,
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5.2 Application to Weak Magnetic Fields

which gives

lnρε “´ε xry,κyR2 ´
1
2ε

2 xry,κy2R2 ´
1
3ε

3 xry,κy3R2 `Opε4q. (5.37)

We may now treat the three terms appearing in Vρε separately:

• Using the facts that

d lnρε “´ε
´

`

BHx ¨ xry,κyR2

˘

dxH`xrtκ, dyyR2

¯

`Opε2q

and rgV “ a´2 By1 bBy1 ` b´2 By2 bBy2 , it immediately follows that

1
4 rgVpd lnρε, d lnρεq “

1
4ε

2
”

` 1
a pr

tκq1
˘2
`
` 1
b pr

tκq2
˘2
ı

`Opε3q

“
1
4ε

2 ‖κ‖2
R2 `Opε3q

• A similar computation shows

1
2∆

L.B.
V lnρε “´

1
2ε

2
`

a´2 B2
y1 ` b´2 B2

y2

˘ xry,κy2
R2

2 `Opε3q

“ ´
1
2ε

2
´

1
a2 pr

tκq1prtκq1` 1
b2 pr

tκq2prtκq2
¯

`Opε3q

“ ´
1
2ε

2 ‖κ‖2
R2 `Opε3q.

• The contribution of ε2∆L.B.
H lnρε is of order ε3 and hence negligible

for the regime α“ 1.

Thus, the leading-order contribution of the geometric potential Vρε de-
pends only on the base coordinate x and is given by

Vρε px , yq “ ´ 1
4ε

2




κpxq






2
R2 `Opε3q. (5.38)

This attractive leading-order contribution has been widely discussed in the
literature in the context of “bent quantum waveguides”, see for instance
[DE95, EKK08]. Its effect due to the extrinsic curvature has been known
in fact for a long time [Tol88]. In particular, the sign of this potential is
indefinite if one considers higher dimensional base manifolds [Haa12].
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We are left with the calculation of the differential operators within H̃E
1 .

Many terms vanish by virtue of the facts that ∇g
BHx
BHx “ 0 “ r∇g

BHx
dxH

and ηV “ 0, which results in
`

∇HMb2

BHx
σε

˘

pdxH, dxHq “ BHx ¨σ
εpdxH, dxHq.

Recalling that εBHx “Opε1{2q on dompε´1Ha,0q b spanpφm
0 q, we get

εH̃E,w
1 “ ´ε2BHx

`

σεpdxH, dxHqεBHx ¨
˘

´ 2iε2AεHpB
H
x qεB

H
x `Opε3q

(5.22)
“

(5.36)
´2ε2BHx

`

xry,κyR2 εBHx ¨
˘

looooooooooooomooooooooooooon

“Opε2q

´2iε2
`

BKˆ pryq
˘

εBHx
loooooooooooomoooooooooooon

“Opε5{2q

`Opε3q.

We then apply Pm
0 “

@

φm
0 , ¨

D

HF
φm

0 on both sides and evaluate for any
function ψ P C8pRq:

εPm
0 H̃E,w

1 Pm
0 pψφ

m
0 q

(5.31)
“ ε

@

φ0, H̃E
1 pψφ0q

D

HF
φm

0 `Opε3q

“ ´2ε
@

φ0,εBHx
`

xry,κyR2 εBHx pψφ0q
˘D

HF
φm

0 (5.39a)

´ 2iε2
@

φ0,
`

BKˆ pryq
˘

εBHx pψφ0q
D

HF
φm

0 (5.39b)

`Opε3q.

Because of the fact that φ0pxq is real-valued and vanishes on BB2
1p0q for

all x P R, we can rewrite (5.39a) as

´2ε
@

φ0,
`

εBHx xry,κyR2

˘

φ0` 2 xry,κyR2 εBHxφ0

D

HF
dψpεBxqφ

m
0

´2ε xφ0, xry,κyR2 φ0yHF

`

ε2∆L.B.
dxbdxψ

˘

φm
0

`Opε3q

“

´

εBx

´

´2ε xφ0, xry,κyR2 φ0yHF
dψpεBxq

¯¯

φm
0 `Opε3q.

But this terms vanishes since xrpxqy,κyR2 is linear in the fibre coordinate y
and the barycentre of the unperturbed ground state φ0 lies on the curve

192



5.2 Application to Weak Magnetic Fields

(see (5.29)). One likewise concludes that the second term (5.39b)

´2iε2
@

φ0,
`

BKˆ pryq
˘

φ0

D

HF
loooooooooooooomoooooooooooooon

“ 0 since φ0 is centred (5.29)

dψpεBxqφ
m
0 `Opε3q

is of lower order.

Conclusion

We are now in a position to gather all the relevant terms in the adiabatic
operator up to errors of order ε3 in Lpdompε´1Ha,0q, L2pRqq. We then use
the low-lying eigenvalues of the resulting operator to approximate those
of the initial tube operator by means of Theorem 5.12:

Corollary 5.15 Let Hw,mas
tube be the Hamiltonian generating the dynamics

of a non-relativistic, charged, spinless quantum particle, which is localised
within the massive quantum waveguide introduced in Example 5.7, in the
presence of a weak, C8-bounded external magnetic potential A. Assume
that

(i) the associated unperturbed ground state band λ0 admits a unique
non-degenerate minimum,

(ii) and there is a constant C ą 0 such that Cε is strictly below the essential
spectrum of

Hw,mas
QWG :“´ε2∆L.B.

dxbdx ` pλ0´Λ0q

` ε2
´





dφ0pB
H
x q






2
HF
´

1
4 ‖κ‖

2
R2

¯

in the sense of Theorem 4.15.

Then if νε ă Cε is an eigenvalue of Hw,mas
QWG , there exists an eigenvalue υε of

Hw,mas
tube below its essential spectrum with the asymptotic expansion

υε “ Λ0` ν
ε `Opε3q.

We observe that the magnetic effects are not apparent up to this accuracy.
We close this subsection with a discussion of the situation for a constant

ground state band λ0. This can be attained by
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(i) smoothly varying the semi-axes apxq,bpxq in such a way that the
ratio of q01pxq and fpxq remains constant,

(ii) or fixing the elliptical cross-section which is allowed to twist around
the curve.

We consequently obtain the regime α “ 2 with eigenvalues of order ε2

above the minimum Λ0 “ λ0. In this case, the related eigenfunctions
are of order one with respect to the graph-norm of ε´2Ha,0 “´∆

L.B.
dxbdx

(i.e., with respect to the W 2pRq-norm) and oscillate on a length scale of
order one:




dψpBxq






L2pRq “Op1q ô




BHx pψφ
m
0 q






HPm
“Op1q.

Since Theorem 4.15 now gives access to an accuracy of order ε4 for the
approximation of the eigenvalues, we briefly itemize the modified and
additional terms:

• The Berry one-form AB (5.33) of the Berry connection∇B “ d` iAB

is of order ε2, and hence

´ε2∆AB

dxbdx “´ε
2∆L.B.

dxbdx `Opε4q.

• The geometric potential Vρε is determined up to order ε3 by means
of the expansion (5.37). The subsequent order of both ∆L.B.

V lnρε
and rgVpd lnρε, d lnρεq may be calculated analogously. As far as the
remaining term ε2∆L.B.

H lnρε is concerned, we note the intermediate
result BHx ¨ xry,κyR2 “ xry,κ1yR2 , which follows from a straightfor-
ward calculation. In summary, the geometric potential Vρε px , yq
equals

´
1
4ε

2




κpxq






2
R2 ´

1
2ε

3
´





κpxq






2
R2 xry,κyR2 `xry,κ2yR2

¯

plus errors of order ε4. The Opε3q-term, however, is linear in y and
vanishes when it is integrated against the centred ground state φ0.
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• The only additional term arising from the perturbation εH̃E,w
1 is the

leading term ´iε3εBHx pBK ˆ pryqq of the potential. But this term
clearly vanishes because φ0 is centred. Consequently, we repeat the
same calculations as for (5.39) without dropping the Opε3q-terms
and get

εPm
0 H̃E,w

1 Pm
0 pψφ

m
0 q

“ ´2ε3

ˆ

Bx

´

xφ0, xry,κyR2 φ0yHF
looooooooooomooooooooooon

“0

dψpBxq

¯

˙

φm
0

´ 2ε3
@

φ0,BHx
`

xry,κyR2 B
H
xφ0

˘D

HF
ψφm

0

´ 2iε3

ˆ

Bx

´

@

φ0,
`

BKˆ pryq
˘

φ0

D

HF
loooooooooooooomoooooooooooooon

“0

ψ
¯

˙

φm
0

´ 2iε3
@

φ0,
`

BKˆ pryq
˘

φ0

D

HF
loooooooooooooomoooooooooooooon

“0

dψpBxqφ
m
0

`Opε4q,

once again because φ0 is centred (5.29).

We already know that all terms contained in the adiabatic operator are
of order ε2 in LpW 2pRq, L2pRqq in the regime α“ 2. Therefore, we may
divide the latter operator by ε2 and define

Hw,mas
QWG,α“2 :“ ε´2Pm

0

`

HE,w´Λ01H
˘

Pm
0

“´∆L.B.
dxbdx ´

1
4 ‖κ‖

2
R2 `




BHxφ0







2
HF

´ 2ε
@

φ0,BHx
`

xry,κyR2 B
H
xφ0

˘D

HF

`Opε2q.

It then follows that if νε is an eigenvalue of Hw,mas
QWG,α“2 below its essential

spectrum in the sense of Theorem 4.15, there exists an eigenvalue υε

of Hw,mas
tube below its essential spectrum with the asymptotic expansion

υε “ Λ0` ε
2νε `Opε4q.
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We conclude that the low-lying eigenvalues of Hw
tube are again entirely

independent of the magnetic potential up to this order.

Remark 5.16 The leading part of Hw,mas
QWG,α“2 was already derived in [KR14,

Definition 2.5 (δ “ 0 in their notation)] for an arbitrary but constant, pos-
sibly twisting, simply connected cross-section F Ă B2

r p0q. This corresponds
to the embedding

$ : Rˆ F Ñ NRr ,

px , y1, y2q ÞÑ

´

cos
`

ϑpxq
˘

y1´ sin
`

ϑpxq
˘

y2
¯

e1pxq

`

´

sin
`

ϑpxq
˘

y1` cos
`

ϑpxq
˘

y2
¯

e2pxq

of the waveguide into the fibrewise subset NRr of the normal bundle in
our notation, where ϑ P C8b pRq is the twisting angle. It is then an easy
calculation to see BHx “ B

pr
x ´ ϑ

1py ˆ∇yq and finally to obtain

Hw,mas
QWG,α“2 “´∆

L.B.
dxbdx ´

1
4 ‖κ‖

2
R2 ` pϑ

1q2




py ˆ∇yqφ0







2

L2pF,dyq

`Opεq

in this case. ◊

5.2.2 Example for Hollow Quantum Waveguides

Let us consider a single, non-relativistic, spinless, charged quantum parti-
cle in the presence of an external magnetic field in the geometric situation
of hollow quantum waveguides M “ Rˆ S1 pr1

ÝÑ R as introduced in Exam-
ple 5.9, where additionally the radius function ` is assumed to depend on
the base coordinate x alone (and not also on the fibre coordinate y). In
view of (5.18), the resulting rescaled pullback metric on M is then given
by

Gε “ ε´2
”

p1´ ε`cq2` ε2
`

B`
Bx

˘2
ı

loooooooooooooomoooooooooooooon

“ρ2
ε

dxHb dxH` gV

196



5.2 Application to Weak Magnetic Fields

with vertical bundle metric gV|Mx
“ gMx

“ `2pxqdy b dy. This hollow
waveguide corresponds to the boundary of the massive quantum wave-
guide of the former subsection with ϑpxq “ 0 and apxq “ bpxq “ `pxq
for all x P R. The Schrödinger operator (5.27) for this setting incorpo-
rates the perturbation εHE,w

1 “ εH̃E,w
1 `

1
2ε

2∆L.B.
H lnρε and the vertical

operator HF ,ε,w (5.28b).

Vertical Operator

We already know that the ground state of the vertical operator HF ,ε,w is
given by φm

0 “ φ0`Opε2q, where

φ0pxq “ VolgMx
pS1q´1{2 ˝πM `Opεq “ 1?

2π`pxq
˝πM `Opεq

is the ground state of

HF ,ε,w
Aε

V“0 “´∆
L.B.
V `

1
2∆

L.B.
V lnρε `

1
4 rgVpd lnρε, d lnρεq

loooooooooooooooooooooomoooooooooooooooooooooon

“V V
ρε

with constant eigenband λ0pxq “ 0. Let us explicitly calculate the Opεq-
contribution of φm

0 using finite-dimensional perturbation theory. To do
this, we expand HF ,ε,w

Aε
V“0 up to an accuracy of order ε. Using

ρε “

b

p1´ ε`cq2` ε2
`

B`
Bx

˘2
,

we compute

lnρε “
1
2 ln

`

p1´ ε`cq2` ε2p`1q2
˘

“´ε`c´ 1
2ε

2
`

p`cq2´ p`1q2
˘

`Opε3q (5.40)

and thus

V V
ρε
“

1
2ε
c
` `Opε2q ñ HF ,ε,w

Aε
V“0 “´∆

L.B.
V `

1
2ε
c
` `Opε2q.

A set of orthonormal eigenfunctions of ´∆L.B.
V “´`´2 B2

y with Dirichlet
boundary conditions on HF “ L2pS1,`dyq is given by

!

φe
0,
 

φe
k,φo

kuką0

)

(5.41)
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with eigenvalues λ∆k “ k2{`2. The ground state (k “ 0) is the fibrewise
constant function φe

0 “
1

?
2π`
˝πM . The excited states (k ą 0) are doubly

degenerate with eigenfunctions

φe
k “

1
?
π`

cospk yq , φo
k “

1
?
π`

sinpk yq.

Consequently, the first-order correction to the unperturbed ground stateφ0

is given by (with c“ κ1 cos y `κ2 sin y)

φ0,1 “´
ÿ

ką0

ÿ

‚Pte,ou

1
λ∆k ´λ

∆
0

@

φ‚k , 1
2
c
`φ

e
0

D

HF
φ‚k

“´
ÿ

ką0

ÿ

‚Pte,ou

1
k2{`2

A

φ‚k , 1
2

1
?

2

´

κ1

` φ
e
1 `

κ2

` φ
o
1

¯E

HF

φ‚k

“´
1
?

8
`
`

κ1φe
1 `κ

2φo
1

˘

.

and the asymptotic expansion of the entire magnetic ground state reads

φm
0 “

1
?

2π`
´

1
?

8
ε`
`

κ1φe
1 `κ

2φo
1

˘

`Opε2q, (5.42)

where we dropped the composition with πM in the leading term of φm
0 for

the sake of clarity. Once again, the magnetic effects do not appear until
the subsequent order proportional to ε2.

Berry Terms

In view of Subsection 4.3.1, we start with the calculation of the mean
curvature vector ηV of Mx ãÑ pM , gq. Equation (5.19) shows that the
horizontal lift BHx reduces to the product lift Bpr

x in this case, and hence we
obtain

ηV
(2.2)
“ g y y g

`

∇g
By
By ,BHx

˘

BHx

(A.3)
“ g y y

`

´
1
2B

pr
x ¨ gpBy ,Byq

˘

BHx

“ ´pln`q1 BHx .

198



5.2 Application to Weak Magnetic Fields

Moreover, it holds that

0“ Bx ¨
@

φm
0 ,φm

0

D

HF
loooooomoooooon

“1

“ 2 Re
´

@

φm
0 ,BHxφ

m
0

D

HF

¯

´
@

φm
0 , g

`

BHx ,ηV
˘

loooomoooon

“´pln`q1

φm
0

D

HF

looooooooooooomooooooooooooon

“ηVpBx q

,

or equivalently

Re
´

@

φm
0 ,BHxφ

m
0

D

HF

¯

“
1
2ηVpBxq “ ´

1
2 pln`q

1.

It follows that the metric connection ∇Pm
:“ ∇B ´

1
2ηV coincides with

∇AB
“ d` iAB with Berry one-form AB “Opε2q as in (5.33). The Berry

terms are summarised as

´ε2∆AB

dxbdx ` ε
2
`

VPm

BH ` VPm

ηV

˘

“´ε2∆L.B.
dxbdx ` ε

2
`

VPm

BH ` VPm

ηV

˘

`Opε4q

with potential

VPm

BH ` VPm

ηV
“




BHxφ
m
0







2
HF
´

�

�

�

@

φm
0 ,BHxφ

m
0

D

HF

�

�

�

2

´
1
2Bx ¨ηVpBxq `

1
4

�

�ηVpBxq
�

�

2

(5.42)
“








B
H
x

1
?

2π`










2

HF

´

�

�

�

�

A

1
?

2π`
,BHx

1
?

2π`

E

HF

�

�

�

�

2

looooooooooooooooooooooomooooooooooooooooooooooon

“0

`Opε2q

`
1
2 pln`q

2`
1
4

�

�pln`q1
�

�

2

“
1
2
`2

` ´
1
4

´

`1

`

¯2
`Opε2q. (5.43)
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Remark 5.17 This potential was already derived in [HLT15] for arbitrary
hollow quantum waveguides. More precisely, it generally holds that

ηVpX q “ 2Re
´

@

φm
0 , dφm

0 pX
Hq
D

HF

¯

“ 2
A

VolgMx
pMxq

´1{2, XH ¨ VolgMx
pMxq

´1
E

HF

`Opεq

“ ´X ¨ ln
`

VolgMx
pMxq

˘

`Opεq

for any X P C8pTBq and the sum VPm

BH ` VPm

ηV
equals

1
2∆

L.B.
gB

ln
`

VolgMx
pMxq

˘

`
1
4








gradgB
ln
`

VolgMx
pMxq

˘










2

gB

`Opεq.

The higher precision of (5.43) stems from the fact that the mean curvature
vector ηV “ p´pln`q

1 Bxq
H is a horizontal lift and hence does not carry

any y-dependency, i.e., ηVpBxq “ ´pln`q
1 holds exactly without any ε-

corrections. ◊

Perturbation

The relevant geometric quantities arising from the deviation Gε ´ gε are

σεpdxH, dxHq “ ε´1

ˆ

1
p1´ ε`cq2` ε2p`1q2

´ 1

˙

“ 2`c` ε
`

3p`cq2´ p`1q2
˘

`Opε3q

and lnρε (5.40). The latter gives rise to the remainder of the original
geometric potential (5.26):

1
2ε

2∆L.B.
H lnρε “

1
2ε

2
`

BHx B
H
x ` pln`q

1BHx
looomooon

“´ηV

˘

lnρε

“´
1
2ε

3
`

p`cq2` pln`q1p`cq1
˘

`Opε4q.

The function cpx , ¨q, and hence the leading term of ∆L.B.
H lnρεpx , ¨q, is a

linear combination of cos y and sin y for all x P R, which means

Pm
0

1
2ε

2∆L.B.
H lnρεP

m
0 “´

1
2ε

3
A

1
?

2π`
,
`

p`cq2` pln`q1p`cq1
˘ 1
?

2π`

E

HF
loooooooooooooooooooooooomoooooooooooooooooooooooon

“0
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plus errors of order ε4. The remainder εH̃E,w
1 of the perturbation can

be handled as in the massive case of the previous subsection (plus the
leading-order contribution of the potential):

εH̃E,w
1

(5.23)
“ ´2ε3BHx

`

`cBHx ¨
˘

´ 2iε3
´

BKˆ
´

` cos y
` sin y

¯¯

BHx

` iε3
”

´BHx

´

BKˆ
´

` cos y
` sin y

¯¯

´ pln`q1
´

BKˆ
´

` cos y
` sin y

¯¯ı

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

“ f1pxq cos y` f2pxq sin y for smooth functions f1,2 to leading order

`Opε4q.

Consequently, we get (keeping in mind the mean curvature term (4.11))

εPm
0 H̃E,w

1 Pm
0 pψφ

m
0 q

“ ´2ε3
A

1
?

2π`
,BHx

´

`cBHx
`

ψ 1
?

2π`

˘

¯E

HF

φm
0

´ 2iε3
A

1
?

2π`
,
´

BKˆ
´

` cos y
` sin y

¯¯

BHx

`

ψ 1
?

2π`

˘

E

HF

φm
0

`Opε4q

“ ´2ε3

ˆ

Bx

´A

1
?

2π`
,`c 1

?
2π`

E

HF
looooooooooomooooooooooon

“0

dψpBxq

¯

`ηVpBxq

A

1
?

2π`
,`c 1

?
2π`

E

HF
looooooooooomooooooooooon

“0

dψpBxq

`

A

1
?

2π`
, BHx

´

`cBHx
1

?
2π`

¯

loooooooomoooooooon

“g1pxq cos y`g2pxq sin y
for smooth functions g1,2

E

HF

loooooooooooooooooomoooooooooooooooooon

“0

ψ

˙

φm
0

´ 2iε3
A

1
?

2π`
,
´

BKˆ
´

` cos y
` sin y

¯¯

1
?

2π`

E

HF
looooooooooooooooooooomooooooooooooooooooooon

“0

dψpBxqφ
m
0
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´ 2iε3
A

1
?

2π`
,
´

BKˆ
´

` cos y
` sin y

¯¯

BHx
1

?
2π`

loooooooooooooomoooooooooooooon

“h1pxq cos y`h2pxq sin y
for smooth functions h1,2

E

HF

loooooooooooooooooooooomoooooooooooooooooooooon

“ 0

ψφm
0

`Opε4q

“Opε4q.

To sum up, the very specific form of the leading order φ0 of the ground
state φm

0 causes the disappearance of the Opε3q-contribution within the
perturbation.

Conclusion

We finally collect all the relevant terms of the adiabatic operator up to
errors of order ε4 in LpW 2pRq, L2pRqq and apply Theorem 5.12 for the
mutual approximation of the low-lying eigenvalues:

Corollary 5.18 Let Hw,hol
tube be the Hamiltonian generating the dynamics of

a non-relativistic, charged, spinless quantum particle, which is localised
within the hollow quantum waveguide introduced in Example 5.9 with
`px , yq “ `pxq, in the presence of a weak, C8-bounded external magnetic
potential A. Assume that there is a constant C ą 0 strictly below the essential
spectrum of

Hw,hol
QWG :“´∆L.B.

dxbdx `
1
2
`2

` ´
1
4

´

`1

`

¯2

in the sense of Theorem 4.15. Then if ν ă C is an eigenvalue of Hw,hol
QWG ,

there exists an eigenvalue υε of Hw,hol
tube below its essential spectrum with the

asymptotic expansion

υε “ ε2ν`Opε4q.

We immediately see that the potential terms in Hw,hol
QWG do not depend on the

extrinsic curvature induced by the embedding of the curve c : RÑ R3 (in
terms κ), but merely on the deformation of the waveguide along the curve
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(in terms of `). This was already stressed in [HLT15]. In this context, a
radius function with a constricting profile (e.g., `pxq “ 2´ 1

1`x2 ) can lead
to a potential with wells and can thus support the formation of bound
states.

5.3 Application to Strong Magnetic Fields

The discussion at the beginning of this chapter showed that an initial
gauge field A of order one in the “macroscopic” laboratory pRb` f ,δb` f q

leads to a “miscroscopic” Schrödinger operator (5.3)

Hw
tube “ pεd1CN ` iεAq˚pεd1CN ` iεAq ` V

on T εˆCN , where the gauge field is weakly coupled by means of the addi-
tional ε in front of A. In contrast to this, this section will deal with so-called
strong Abelian gauge fields, i.e., we initially start with the field ε´1A1CN

related to some magnetic potential A P C8b pT
˚Rb` f

ˇ

ˇ

T ε q and end up with
the operator

Hs
tube :“ pεd` iAq˚pεd` iAq1CN ` V, V P C8b

`

Rb` f
ˇ

ˇ

T ε ,CNˆN
Herm

˘

on T ε ˆCN with Dirichlet boundary conditions. We again assume the
family of ε-thin tubes T ε (or likewise the associated waveguide M) to be
of bounded geometry in the sense of Definition 5.3. The diffeomorphism
Ψε : M Ñ T ε (5.5) again induces a unitarily equivalent operator

pΨε Hs
tube

pΨ:ε “´∆
ε´1Aε

Gε 1CN ` Vε (5.44)

on L2pE , volGε q with trivial vector bundle E “ M ˆCN . Here, the induced
magnetic potential reads

ε´1Aε “ ε´1π˚MAB ` Aε,

where Aε “ A0` εA
ε
1 is defined by

A0 “Aε“0
H , Aε1 “ ε

´1
`

AεH´Aε“0
H q `AεV “: AεH` AεV.
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This suggests that we consider Aε as our “new” weak magnetic potential
and ∇Aε “ ∇A0 ` εAε1 as a suitable perturbation of ∇A0 “ d` iA0 in the
sense of Definition 2.24 plus a “strong part” iε´1π˚MAB.

In view of the unitary map pUρε “ pε
´bρεq

1{21CN , the operator (5.44)
is unitarily equivalent to (see Lemma 2.18)

HE,s :“ pUρε
pΨε Hs

tube
pΨ:ε

pU:ρε

“
`

´∆
ε´1Aε

gε `∇ε
´1Aε ,˚,gε ˝ Sε

´1Aε ` Vρε
˘

1CN ` Vε

on H“ L2pE , volgq. Similar calculations as for Proposition 2.25 show that
the involved Laplacian splits as

´∆
ε´1Aε

gε

“´ε2∆
A0
H ´∆

εAεV
V `DB

` ε2

„

´2i trπ˚M gB

`

AεHb∇
A0
ε¨

˘

` trπ˚M gB

`

π˚MAB b AεH` AεHbπ
˚
MAB

˘

` iε
´

AεHpηVq ´ trπ˚M gB

`

r∇gεAεH
˘

¯

` ε2 trπ˚M gB

`

AεHb AεH
˘



with first-order horizontal differential operator

DB :“´2i trπ˚M gB

`

π˚MAB b∇A0
ε¨

˘

` iεAB

`

TπM pηVq
˘

`

„

trgB

´

AB bAB ´ iε
`

r∇gBAB

˘

¯



looooooooooooooooooomooooooooooooooooooon

PC8b pBq

˝πM ,

incorporating the main contribution of the strong part AB. Moreover, an
adaptation of the calculations in Subsection 5.1.3 yields that the second
term ∇ε

´1Aε ,˚,gε ˝ Sε
´1Aε may be rewritten as ε times the expression

´∇A0
εv j

`

σεpωi ,ω jq∇A0
εvi
¨
˘

´

´

2iσεpωi ,ω jq
`

π˚MAB ` ε
2AεH

˘

pv jq ´ εσ
ε
`

ωi , r∇gε
v j
ω j

˘

¯

∇A0
εvi
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`σεpωi ,ω jqπ˚MABpviqπ
˚
MABpv jq

´iε
´

`

∇HMb2

v j
σε

˘

pωi ,ω jq `σε
`

r∇gε
v j
ωi ,ω j

˘

¯

`

π˚MAB ` ε
2AεH

˘

pviq

´iεσεpωi ,ω jq

„

´

r∇gε
v j

`

π˚MAB ` ε
2AεH

˘

¯

pviq

`
`

π˚MAB ` ε
2AεH

˘`

∇gε
v j

vi

˘



`ε2σεpωi ,ω jq
`

π˚MABpviqA
ε
Hpv jq ` AεHpviqπ

˚
MABpv jq

˘

`ε4σεpωi ,ω jqAεHpviqA
ε
Hpv jq,

where tviu
b
i“1 and tωiub

i“1 are local frames of HM and H˚M , respectively.
In view of Remark 5.11(i), we may again drop the ε within ∇gε and r∇gε

and consider ∇HMb2
to be ε-independent (since we only differentiate

along horizontal directions). We finally obtain

HE,s “
`

´ε2∆
A0
H `DB

˘

1CN `HF ,ε,s` εH̃E,s
1 1CN `Vε

looooooomooooooon

“:εHE,s
1

.

with vertical operator

HF ,ε,s “´∆
εAεV
V 1CN ` Vc , Vc :“ c˚V P C8b pB,CNˆN

Herm q.

The perturbation is made up of the differential operator

H̃E,s
1

“´ trHM ,p12q,p34q

´

∇A0
ε¨

`

σεp¨, ¨q∇A0
ε¨ ¨
˘

¯

´ trHM

ˆ

trHM ,p23q

´

2iσε b
`

π˚MAB ` ε
2AεH

˘

´ εσε
`

¨, r∇g
¨
¨
˘

¯

∇A0
ε¨ ¨

˙

´ 2iε trπ˚M gB

`

AεHb∇
A0
ε¨

˘

` trHM ,p13q,p24q

`

σε bπ˚MAB bπ
˚
MAB

˘
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` ε

„

trπ˚M gB

`

π˚MAB b AεH` AεHbπ
˚
MAB

˘

´ i trHM ,p13q,p24q

ˆ

´

∇HMb2
σε `σε

`

r∇g
¨
¨, ¨
˘

¯

bπ˚MAB

˙

´ i trHM ,p13q,p24q

ˆ

σε b
´

`

r∇gπ˚MAB

˘

`π˚MAB

`

∇g
¨
¨
˘

¯

˙

` ε2

„

i
´

AεHpηVq ´ trπ˚M gB

`

r∇gAεH
˘

¯

` trHM ,p13q,p24q

´

σε b
`

π˚MAB b AεH` AεHbπ
˚
MAB

˘

¯



` ε3

„

trπ˚M gB

`

AεHb AεH
˘

´ i trHM ,p13q,p24q

ˆ

´

∇HMb2
σε `σε

`

r∇g
¨
¨, ¨
˘

¯

b AεH

˙

´ i trHM ,p13q,p24q

ˆ

σε b
´

`

r∇gAεH
˘

` AεH
`

∇g
¨
¨
˘

¯

˙

` ε4 trHM ,p13q,p24q

`

σε b AεHb AεH
˘

and the Opεq-potential

Vε “ Vρε1CN ` pVε ´ Vcq.

In order to apply the results of Section 4.2 to generalised quantum wave-
guides in the presence of strong magnetic fields, we essentially need to
adjust Lemma 3.7 by the addition of DB to the initial horizontal Laplacian,
i.e., we must show the following:

Lemma 5.19 (Extension of Lemma 3.7) Let S, T P AH with ST P Ap,q
H .

It then holds that
“

DB, S
‰

T PAp`1,q`1.

PROOF. It suffices to consider the case N “ 1 since all relevant operators
are a multiple of the identity 1CN . The claim is once again a local issue,
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i.e., we only need to show it over π´1
M pUq Ă M for some U P U (cf. Def-

inition 2.7). Therefore, we take a gB-orthonormal frame tX iu
b
i“1 of TU

and take advantage of the fact that Vi “ XH
i ´Φ

˚X i P C8b pVM |π´1
M pUqq by

Lemma 3.1 to get:

DB|π´1
M pUq “

`

π˚M Ai

˘

´

ε∇A0

Φ˚X i
` ε∇A0

Vi

¯

`π˚M B` εC ,

where Ai , B P C8b pUq and C P C8b pπ
´1
M pUqq are smooth functions given by

Ai :“´2iABpX iq,

B :“ABpX iqABpX iq ´ iε
`

r∇gB
X i
AB

˘

pX iq,

C :“ iAB

`

TπM pηVq
˘

.

If we expand S locally over π´1
M pUq as

S|π´1
M pUq “

ÿ

aPNb
0

Saε
|a|`∇A0

Φ˚X

˘a
,

the crucial fact is

rπ˚M Ai , Sas “ 0“ rπ˚M B, Sas for all a P Nb
0 ,

because π˚M Ai and π˚M B are fibrewise constant. Thus, the term rDB, SsT
over π´1

M pUq merely consists of these four terms:
”

`

π˚M Ai
˘`

ε∇A0

Φ˚X i

˘

, S
ı

T “ ε
`

π˚M Ai

˘ “

∇A0

Φ˚X i
, S
‰

T
looooomooooon

PAp,q
H

loooooooooooomoooooooooooon

PAp,q`1
H ĂAp`1,q`1

`
ÿ

aPNb
0

Sa

”

π˚M Ai ,
`

ε∇A0

Φ˚X

˘a
ı

loooooooooomoooooooooon

“ε
ř

|b|ď|a|´1 Cbpε∇
A0
Φ˚X

qb

`

ε∇A0

Φ˚X i

˘

T

loooooooooooooooooooooooomoooooooooooooooooooooooon

PAp,q`1
H ĂAp`1,q`1

PAp`1,q`1,
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”

`

π˚M Ai
˘`

ε∇A0
Vi

˘

, S
ı

T “ ε
`

π˚M Ai

˘ “

∇A0
Vi

, S
‰

T
loooomoooon

PAp,q
loooooooooomoooooooooon

PAp,q`1ĂAp`1,q`1

` ε
ÿ

aPNb
0

Sa

”

π˚M Ai ,
`

ε∇A0

Φ˚X

˘a
ı

loooooooooomoooooooooon

“ε
ř

|b|ď|a|´1 Cbpε∇
A0
Φ˚X

qb

`

∇A0
Vi

˘

T

loooooooooooooooooooooomoooooooooooooooooooooon

PAp´1,q`2ĂAp`1,q`1

PAp`1,q`1,

“

π˚M B, S
‰

T “
ÿ

aPNb
0

Sa
”

π˚M B,
`

ε∇A0

Φ˚X

˘a
ı

loooooooooomoooooooooon

“ε
ř

|b|ď|a|´1 Cbpε∇
A0
Φ˚X

qb

T

PAp´1,q`1
H ĂAp`1,q`1

and

rεC , SsT “ εrC , SsT PAp,q`1
H ĂAp`1,q`1.

This completes the proof. l

In order to ensure all requirements for the application of Theorem 4.5
are met, we first observe that

`

´ε2∆
A0
H `DB

˘

` εH̃E,s
1

is the horizontal Laplacian of ´∆ε
´1Aε

Gε in the sense of Remark 2.20 and
hence defines a positive operator. It then follows that the entire horizon-
tal operator is bounded from below by ´‖Vε‖L8pM ,CNˆN q “ Opεq. The

(possibly q-fold degenerate) ground state tφ0ζ
j
0u

q
j“1 of the unperturbed

vertical operator

HF ,ε“0,s “´∆L.B.
V 1CN ` Vc

with eigenband λ0 “ λ
∆
0 `λ

Vc
0 is composed of the positive ground state φ0

of the scalar Dirichlet Laplacian´∆L.B.
V with eigenband λ∆0 and the smooth
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functions ζ j
0 : B Ñ CN , j P t1, . . . , qu, such that tζ j

0pxqu
q
j“1 is an or-

thonormal basis of Vcpxq’s eigenspace associated with its lowest eigen-
value λVc

0 pxq for all x P B. We will assume that λ0 is separated from the
rest of the spectrum of HF ,ε“0,s by a uniform gap, i.e., λ0 satisfies Condi-
tion 2.26. Then a straightforward modification of Lemma 5.13 shows that
the magnetic ground state band λm

0 pxq “minσpHF ,ε,spxqq also satisfies
a gap condition and the corresponding spectral projection

Pm
0 “

i
2π

ż

|z´λ0|“δ

`

HF ,ε,s´ z1H
˘´1

dz

is well-defined. In view of [Lam14, Lemma 3.7], the spectral gap condition
on λ0 is satisfied for Vc “ 0 and connected typical fibre F of M

πM
ÝÑ B.

Since all corrections to HF ,ε“0,s within the operator

HF ,ε,s “ HF ,ε“0,s` εHF ,s
1 1CN ` ε2HF ,s

2 1CN ` . . .

are obviously diagonal with respect to the spin degrees of freedom (recall
that we started with an Abelian gauge field A1CN ), the finite-dimensional
perturbation theory once again gives λm

0 “ λ0 ` ε
2λ0,2 ` Opε3q for

the asymptotic expansion of the magnetic ground state band with spin-
independent second-order correction

λ0,2pxq “
@

φ0, HF ,s
2 φ0

D

L2pMx ,volgMx
q

´
@

φ0, HF ,s
1 p´∆L.B.

V ´λ∆0 q
´1 P̃K0 HF ,s

1 φ0

D

L2pMx ,volgMx
q
.

Here, P̃K0 denotes the projection onto the orthogonal complement of
spanpφ0q in L2pMx , volgMx

q and the scalar corrections are given by

HF ,s
1 “ d˚

`

iAε“0
V

˘

`
`

iAε“0
V

˘˚
d,

HF ,s
2 “

`

Aε“0
V

˘˚`Aε“0
V

˘

` d˚
`

iA1,ε“0
V

˘

`
`

iA1,ε“0
V

˘˚
d

looooooooooooooomooooooooooooooon

xφ0, . . .φ0yL2pMx q
“ 0 due to (5.30)

.

Remark 5.20 Let us mention two possible ways to make the expression
for λ0,2 more concrete:
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(i) Since ´∆L.B.
V is a compact operator, the Fredholm alternative pro-

vides a unique, fibrewise map θ : x ÞÑ θpxq P P̃K0 L2pMx , volgMx
q

such that
ż

B





θpxq






2
L2pMx ,volgMx

q
volgB

pxq ă 8

and

`

´∆L.B.
V ´λ∆0

˘

θ “ P̃K0 HF ,s
1 φ0.

With this, the second-order correction reads

λ0,2pxq “
@

φ0, HF ,s
2 φ0

D

L2pMx ,volgMx
q
´
@

φ0, HF ,s
1 θ

D

L2pMx ,volgMx
q
.

(ii) Let tφkpxqukě0 be a complete set of (local) real-valued eigensections
of ´∆L.B.

V pxq “ ´∆L.B.
gMx

on L2pMx , volgMx
q with respective Dirichlet

eigenvalues λ∆k pxq. Then λ0,2pxq equals

ż

Mx

rgMx

`

Aε“0
V φ0,Aε“0

V φ0

˘

volgMx

´
ÿ

ką0

�

�

�

ş

Mx
rgMx
pdφk,Aε“0

V φ0q ´ rgMx
pAε“0

V φk, dφ0q volgMx

�

�

�

2

λk ´λ0
. ◊

The switching on of the magnetic field yields an Opε2q-displacement of
the ground state band λm

0 with respect to λ0 (and analogously for the rest
of the spectrum). Thus, it holds that

Λ1 :“ inf
xPB

´

σ
`

HF ,ε“0,spxq
˘

zλ0pxq
¯

ă inf
xPB

´

σ
`

HF ,ε,spxq
˘

qzλm
0 pxq

¯

`δ

for all δ ą 0 if ε “ εpδq ą 0 is chosen sufficiently small.
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5.3 Application to Strong Magnetic Fields

We formally gather the leading terms (“reduced Hamiltonian”)

Hs
QWG :“ HPm

a `MPm

“´ε2∆B`λ∆0 `λ
Vc
0 ` ε

2λ0,2` ε
2VPm

BH

` Pm
0

´

DB ` εH
E,s
1 `

“

HE,s, Pm
0

‰

RF ,ε,spλm
0 q
“

HE,s, Pm
0

‰

¯

Pm
0

`Opε3q

of the effective operator (4.15) and combine Theorem 4.5 and Proposi-
tion 4.10 as follows:

Theorem 5.21 Let Hs
tube be the Hamiltonian generating the dynamics of

non-interacting, non-relativistic, charged quantum particles with total spin
quantum number N, which are localised within a quantum waveguide of
bounded geometry, in the presence of a strong, C8-bounded external mag-
netic potential ε´1A and a C8-bounded, CNˆN

Herm -valued external potential V .
Assume that the ground state band λ0 of ´∆L.B.

V 1CN ` Vc has a spectral
gap, cf. Condition 2.26. Moreover, let χ be a regular cut-off function with
support in p´8,Λ1q. Then χpHPm

eff qHs
QWGχpH

Pm

eff q is unitarily equivalent
to χpHs

tubeqHs
tubeχpH

s
tubeq up to errors of order ε3 for ε ą 0 small enough,

where HPm

eff is the effective operator (4.1) associated with λm
0 .

This theorem allows for the approximation of the part of the spectrum
of Hs

tube that is “related” to the ground state bandλm
0 , by that of the reduced

scalar operator Hs
QWG up to errors of order ε3. The fact that Hs

QWG now
may contain fourth-order differential operators via the MPm

-term does
not create new problems because we have to consider Hs

QWG on the image
of χpHPm

eff q, i.e., on W8pPmq, rather than on dompHPm

a q “W 2pPmq.
As in the previous section, we will examine the structure of Hs

QWG for a
single spinless particle (N “ 1) that is localised within the conventional
quantum tubes arising from Example 5.7 (massive waveguide) and Ex-
ample 5.9 (hollow waveguide). The absence of the spin implies that the
external potential V is real-valued and trivially has a single “eigenvalue”
alone. Note that in both geometric settings we may completely gauge
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away the strong part π˚MAB of the magnetic potential (cf. Example 5.10),
and hence the computations simplify tremendously since DB “ 0.

5.3.1 Example for Massive Quantum Waveguides

Let us calculate the operator Hs
QWG for a single non-relativistic, spinless,

charged quantum particle which is localised within an infinite tube in R3,
whose cross-sections are given by elliptical discs with varying semi-axes
twisting around a smoothly embedded curve c : RÑ R3. This setting was
already established in Example 5.7 and elaborated for weak magnetic
potentials in Subsection 5.2.1 (we will no longer assume the existence
of a unique, non-degenerate minimum for λ0). Consequently, the strong
magnetic potential for this purpose takes the form (cf. Example 5.10(i))

ε´1Aε “ Aε “
`

BKˆ pryq
˘

dxH
loooooooomoooooooon

“A0

`ε

ˆ

AεH`
´

1
2abB‖ y `Opεq

¯

ˆ dy
loooooooooooooomoooooooooooooon

“AεV

˙

.

Since the particle does not carry a spin (N “ 1), the ground state of the
unperturbed vertical operator is non-degenerate (q “ 1) and ζ1

0pxq “ 1 for
all x P R. The fibre Hilbert space then reduces to HF |x “ L2pMx , volgMx

q

and the contribution of the potential Vc is just λVc
0 pxq “ Vcpxq P R. We

remark that the corresponding unperturbed part φ0 of the entire magnetic
ground state φm

0 “ φ0` εδφ
m
0 is positive and centred, since it has these

properties for the Laplacian ´∆L.B.
V and Vc is fibrewise constant. In the

end, the global trivialisation W8pPmq – W8pRq b spanpφm
0 q induced

by φm
0 allows us to view Hs

QWG as an operator acting on W8pRq.

Ground State Band

A short calculation shows that the corrections to the unperturbed vertical
operator HF ,ε“0,s are given by

HF ,s
1 “´iB‖

ˆ a
b y1

b
a y2

˙

ˆ∇y
(5.35)
“ B‖La,b

y , HF ,s
2 “´

1
4abB

2
‖ ‖y‖2

R2 .
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So in view of Remark 5.20(i), the magnetic ground state band becomes

λm
0 “ λ

∆
0 ` Vc ` ε

2B2
‖

A

φ0, 1
4

`

pay1q2` pby2q2
˘

φ0´ La,b
y θ

E

HF

,

where θ is the unique solution of
`

´∆L.B.
V ´λ0

˘

θ “ PK0 La,b
y φ0.

Berry Terms

The Berry connection is given by

∇B
Bx
pψφm

0 q “
`

∇AB

Bx
ψ
˘

φm
0 , ∇AB

“ d` iAB

with one-form

ABpBxq “
@

φm
0 ,A0pB

H
x qφ

m
0

D

HF
` Im

´

@

φm
0 ,BHxφ

m
0

D

HF

¯

“
@

φ0,
`

BKˆ pryq
˘

φ0

D

HF
loooooooooooooomoooooooooooooon

“ 0 since φ0 is centred (5.29)

` 2ε

„

Re
´

@

φ0,
`

BKˆ pryq
˘

δφm
0

D

HF

¯

` Im
´

@

φ0,BHxδφ
m
0

D

HF

¯



.

Thus, the “effective magnetic potential” is actually of order ε. The Born-
Huang potential VPm

BH may be calculated similarly as in (5.34):

VPm

BH “




∇A0

BHx
φm

0







2
HF
´

�

�

�

@

φm
0 ,∇A0

BHx
φm

0

D

HF

�

�

�

2

“




BHxφ
m
0







2
HF





A0pB
H
x qφ

m
0







2
HF
` 2 Im

´

@

BHxφ
m
0 ,A0pB

H
x qφ

m
0

D

HF

¯

loooooooooooooooomoooooooooooooooon

“Opεq since φ0 is real-valued

´

�

�

�

@

φ0,BHxφ0

D

HF
` i

@

φ0,A0pB
H
x qφ0

D

HF
`Opεq
�

�

�

2
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“




BHxφ0







2
HF
´

�

�

�

@

φ0,BHxφ0

D

HF
looooooomooooooon

“0

�

�

�

2

`






`

BKˆ pryq
˘

φ0







2
HF
´

�

�

�

@

φ0,
`

BKˆ pryq
˘

φ0

D

HF
loooooooooooooomoooooooooooooon

“ 0 since φ0 is centred (5.29)

�

�

�

2

`Opεq.

If we add up the Berry Laplacian and the Born-Hung potential, the Berry
terms as an operator on W8pRq finally read

´ε2∆AB

dxbdx ` ε
2
´





BHxφ0







2
HF
`






`

BKˆ pryq
˘

φ0







2
HF

¯

`Opε3q.

Perturbation

The differential operator within the perturbation is (with (5.36))

εH̃E,s
1 “´2ε

”

εBHx
`

xry,κyR2 εBHx ¨
˘

` 2iε xry,κyR2 A0pB
H
x qεB

H
x

ı

´ 3ε2 xr, yy2R2 ε
2∆L.B.

H ´ 2iε2Aε“0
H pBHx qεB

H
x

`Opε3q

with errors in LpdompHE,sq,Hq (in which case εBHx “Op1q). Consequently,
we obtain for the projected operator (in analogy to the steps carried out
in Subsection 5.2.1 for the weak magnetic fields):

εPm
0 H̃E,s

1 Pm
0 pψφ

m
0 q

“ ´2ε

„

εBx

´

@

φm
0 , xry,κyR2

looomooon

linear in y

φm
0

D

HF
dψpεBxq

¯

` ε

ˆ

Im
´

@

φm
0 , xry,κyR2 B

H
xφ

m
0

D

HF

¯

` 2i
@

φm
0 , xry,κyR2 A0pB

H
x q

loooooooomoooooooon

quadratic in y

φm
0

D

HF

˙

dψpεBxq



φm
0

´ 3ε2
@

φm
0 , xry,κy2R2

looomooon

quadratic
in y

φm
0

D

HF

`

ε2∆L.B.
dxbdxψ

˘

φm
0
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´ 2iε2
@

φm
0 , Aε“0

H pBHx q
looomooon

quadratic in y

φm
0

D

HF
dψpεBxqφ

m
0

`Opε3q.

The projected potential within the perturbation reads (with (5.38))

Pm
0 VεP

m
0 pψφ

m
0 q “

ˆ

´
1
4ε

2 ‖κ‖2
` ε

A

φm
0 , xgradV V, ryyR2

looooooomooooooon

linear in y

φm
0

E

HF

` ε2
A

φm
0 , xry, pHessV V qpryqyR2

loooooooooooomoooooooooooon

quadratic in y

φm
0

E

HF

˙

ψφm
0

`Opε3q.

Here, the mappings gradV V : RÑ R2 and HessV V : RÑ R2ˆ2
Sym are the

first vertical coefficients of the Taylor expansion of Vε ´ Vc around the
curve, i.e.,

pgradV V q jpxq “
A

grad V
`

cpxq
˘

, e jpxq
E

R3
,

pHessV V q j
j1pxq “

1
2

A

e jpxq,Hess V
`

cpxq
˘

e j1pxq
E

R3
.

We finally use that the leading part φ0 of φm
0 “ φ0` εδφ

m
0 is real-valued

and centred (5.29), as well as the fact that all derivatives not acting on ψ
yield an additional ε, and arrive at the following expression for the entire
projected perturbation as an operator on W8pRq:

εPm
0 HE,s

1 Pm
0 “´ε

2

„

3
A

φ0, xry,κy2R2 φ0

E

HF

` 4 Re
´

@

φ0, xry,κyR2 δφm
0

D

HF

¯



ε2∆L.B.
dxbdx

´ 2ε2
”

@

φ0,Aε“0
H pBHx qφ0

D

HF

` 2
@

φ0, xry,κyR2 A0pB
H
x qφ0

D

HF

ı

iεBx
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` ε2

„

´
1
4 ‖κ‖

2
R2 ` 2 Re

´

@

φ0, xgradV V, ryyR2 δφ
m
0

D

HF

¯

@

φ0, xry, HessV V pryqyR2 φ0

D

HF



`Opε3q.

M-Term

We start with rHE,s, Pm
0 s “ r´ε

2∆
A0
H , Pm

0 s`rεH
E,s
1 , Pm

0 s. The first term may
be evaluated as

“

´ε2∆
A0
H , Pm

0

‰

“
“

´∇A0

εBHx
∇A0

εBHx
, Pm

0

‰

“´ε∇A0

εBHx

“

∇A0

BHx
, Pm

0

‰

´ ε
“

∇A0

BHx
, Pm

0

‰

∇A0

εBHx

“´2ε
“

∇A0

BHx
, Pm

0

‰

looooooomooooooon

“:εB

εBHx `Opε2q.

Using the fact that

εHE,s
1 “´2ε xry,κyR2 ε2∆L.B.

H ` ε xgradV V, ryyR2 `Opε2q (5.45)

with errors in LpdompHE,sq,Hq, the second term is calculated to be
“

εHE,s
1 , Pm

0

‰

“´2ε
“

xry,κyR2 , Pm
0

‰

loooooooooomoooooooooon

“:εA

ε2∆L.B.
H ` ε

“

xgradV V, ryyR2 , Pm
0

‰

loooooooooooomoooooooooooon

“:εC

plus errors of order ε2. If we insert these expressions into (4.14), the
operator MPm

is formally equal to

ε2Pm
0

´

Aε2∆L.B.
H ` B εBHx ` C

¯

RF ,ε,spλm
0 q

´

Aε2∆L.B.
H ` B εBHx ` C

¯

Pm
0

`Opε3q.

Let us consider the term

ε2Pm
0 Aε2∆L.B.

H RF ,ε,spλm
0 qB εBHx Pm

0

“ ε2P0 Aε2∆L.B.
H RF ,ε“0,spλ0qB εBHx P0`Opε3q (5.46)
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as an example. Again let tφkpxqukě0 be a complete set of real-valued
eigensections of HF ,ε“0,spxq with associated eigenvalues λkpxq. Straight-
forward computations then yield

Bpψφ0q “ ´2
ÿ

ką0

@

φk,∇A0

BHx
φ0

D

HF
ψφk `Opεq,

RF ,ε“0,spλ0qpψφkq “
1

λ∆k ´λ
∆
0

ψφk (k ą 0),

Apψφkq “ 2 xφ0, xry,κyR2 φkyHF
ψφ0`Opεq (k ą 0)

for ψ PW8pRq. Furthermore, we notice that we may commute all the
derivatives to the right and act with them on ψ alone, producing only
higher order errors. This ultimately gives

´4ε2
ÿ

ką0

1
λ∆k ´λ

∆
0

xφ0, xry,κyR2 φkyHF

@

φk,∇A0

BHx
φ0

D

HF
pεBxq

3

`Opε3q

as an operator on W8pRq for (5.46). It follows that the entire MPm
-term

formally resembles a fourth-order differential operator

MPm
“ ε2

ÿ

ką0

1
λ∆k ´λ

∆
0

4
ÿ

n“0

Mpkq
n pεBxq

n`Opε3q

with appropriate operators Mpkq
n P LpL2pRqq.

Remark 5.22 If one again considers low energies, i.e., the action of Hs
QWG

on states ψ PW8pRq with ‖εBxψ‖L2pRq “ Opεαq for α ą 0, the leading
contribution of MPm

is given by

ε2
ÿ

ką0

1
λ∆k ´λ

∆
0

Mpkq
0

“´ε2
ÿ

ką0

1
λ∆k ´λ

∆
0

�

�

�

@

φk, xgradV V, ryyR2 φ0

D

HF

�

�

�

2
.

217



5 Quantum Waveguides with Gauge Fields

The appearance of gradV V within the super-adiabatic correction is not
very surprising because the corresponding potential term ε xgradV V, ryyR2

in the perturbation (5.45) prevents HE,s
1 from satisfying Condition 4.11.

Put differently, if gradV V was zero, HE,s
1 would satisfy the requirements

for applying the results for the low energy asymptotics (cf. Section 4.4),
which in particular yield an approximation of the initial operator HE,s

solely in terms of the adiabatic operator without the MPm
-term. ◊

Conclusion

Let us finally gather all terms within the reduced Hamiltonian up to errors
of order ε3 when applied on states ψ PW8pRq with ‖εBxψ‖L2pRq “Op1q.
This allows for an accurate approximation of points in the spectrum of
the initial tube operator by means of Theorem 5.21:

Corollary 5.23 Let Hs,mas
tube be the Hamiltonian generating the dynamics of

a non-relativistic, charged, spinless quantum particle, which is localised
within the massive quantum waveguide introduced in Example 5.7, in the
presence of a strong, C8-bounded external magnetic potential ε´1A and a
C8-bounded external potential V . Then the reduced Hamiltonian reads

Hs,mas
QWG “´ε

2∆AB

dxbdx `λ
∆
0 ` Vc

` ε2B2
‖

A

φ0, 1
4

`

pay1q2` pby2q2
˘

φ0´ La,b
y θ

E

HF

` ε2




BHxφ0







2
HF
` ε2






`

BKˆ pryq
˘

φ0







2
HF
´

1
4ε

2 ‖κ‖2
R2

´ ε2

„

3
A

φ0, xry,κy2R2 φ0

E

HF

` 4 Re
´

@

φ0, xry,κyR2 δφm
0

D

HF

¯



ε2∆L.B.
dxbdx

´ 2ε2
”

@

φ0,Aε“0
H pBHx qφ0

D

HF

` 2
@

φ0, xry,κyR2 A0pB
H
x qφ0

D

HF

ı

iεBx
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` ε2

„

2Re
´

@

φ0, xgradV V, ryyR2 δφ
m
0

D

HF

¯

`
@

φ0, xry, HessV V pryqyR2 φ0

D

HF



` ε2
ÿ

ką0

1
λ∆k ´λ

∆
0

4
ÿ

n“0

Mpkq
n pεBxq

n.

We close the discussion with a look at the case of low energies, and so
we assume that λ∆0 is constant and that the external potential ε2V is very
weak. This implies λm

0 pxq ´λ
∆
0 “Opε2q with errors uniform in x . If we

subtract λ∆0 from the operator, all remaining potentials are of order ε2 and
thus so is the kinetic energy operator ´ε2∆

AB

dxbdx “´ε
2∆L.B.

dxbdx `Opε3q,
which is due to the fact that ABpBxq “ Opεq for a centred unperturbed
ground stateφ0. Consequently, if we consider Hs,mas

QWG on statesψ PW8pRq
with ‖εBxψ‖L2pRq “Opεq, we get

Hs,mas
QWG,α“2 :“ ε´2

`

Hs,mas
QWG ´λ

∆
0 1L2pRq

˘

“´∆L.B.
dxbdx ` Vc `




BHxφ0







2
HF
`






`

BKˆ pryq
˘

φ0







2
HF

`B2
‖

A

φ0, 1
4

`

pay1q2` pby2q2
˘

φ0´ La,b
y θ

E

HF

´
1
4 ‖κ‖

2
R2

`Opεq.

Any ν P σpHs,mas
QWG,α“2q in the spectrum of this operator corresponds to

some point υε in the spectrum of the initial tube operator Hs,mas
tube with the

asymptotic expansion υε “ λ∆0 ` ε
2ν`Opε3q. We can finally relate this

result to the effective operator derived in [KR14, Definition 2.5 (δ “ 1
in their notation)] for their geometric framework, which was sketched
in Remark 5.16. The correction to the unperturbed ground state band is
then given by

λ0,2 “ B2
‖

´

1
4

@

φ0,‖y‖2
R2 φ0

D

L2pF,dyq´
@

φ0, L yθ
D

L2pF,dyq

¯
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with vertical angular momentum operator L y :“´ipy ˆ∇yq, where θ is
the unique solution of

p´∆L.B.
dybdy ´λ

∆
0 qθ “ PK0 L yφ0.

If one drops the property for φ0 to be centred, it is easy to verify on the
basis of the previous calculations that the modified reduced operator takes
the form

Hs,mas
QWG,α“2 “

A

φ0,´∆BKˆy
H p¨φ0q

E

L2pF,dyq
` Vc ´

1
4 ‖κ‖

2
R2

`B2
‖

´

1
4

@

φ0,‖y‖2
R2 φ0

D

L2pF,dyq´
@

φ0, L yθ
D

L2pF,dyq

¯

`Opεq.

5.3.2 Example for Hollow Quantum Waveguides

This subsection is dedicated to the computation of the reduced Hamilto-
nian Hs

QWG for a single non-relativistic, spinless, charged quantum particle
localised within hollow quantum waveguides as introduced in Example 5.9,
where one considers the boundary of a cylindrical tube with varying ra-
dius around a smoothly embedded curve c : RÑ R3. We deduce from
Example 5.10(ii) that the corresponding strong magnetic field is given by

ε´1Aε “ Aε

“

´

BKˆ
´

` cos y
` sin y

¯¯

dxH

looooooooooomooooooooooon

“A0

`ε

ˆ

AεH`
´

1
2`

2B‖`Opεq
¯

ˆ dy
loooooooooooomoooooooooooon

“AεV

˙

.

Moreover, the spin degrees of freedom again vanish (i.e., q “ 1 with
ζ1

0pxq “ 1 for all x P R) and the ground state of the vertical operator

HF ,ε,s “´∆
εAεV
V ` Vc (we no longer need to insert V V

ρε
into HF ,ε,s) reads

φm
0 “

1
?

2π`
˝πM

loooomoooon

φ0

`Opε2q , λm
0 “ Vc ` ε

2λ0,2`Opε3q.
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We will again drop the composition with πM for the sake of clarity. In the
end, this ground state φm

0 provides a global trivialisation of W8pPmq in
terms of W8pRq b spanpφm

0 q and Hs
QWG may be regarded as an operator

acting on W8pRq.
Since the kinetic energy ´ε2∆AB

dxbdx is of the same order as the leading-
order potential Vc , one a priori expects highly oscillating statesψ PW8pRq
such that ‖εBxψ‖L2pRq “Op1q and one has to calculate a rather high num-
ber of terms in the same manner as in the massive case of the previous
subsection. In order to not overburden this example, we will further-
more assume that the external potential ε2V is very weak. This implies
that λm

0 and all other potentials in Hs
QWG are of order ε2. Hence, we will

again retrieve the low energy regime α“ 2, where the reduced Hamilto-
nian Hs

QWG is considered on states ψ PW8pRq for low-lying eigenvalues
with ‖εBxψ‖L2pRq “Opεq.

Ground State Band

In view of Remark 5.20(ii), the two terms contributing to λ0,2 are easily
computed with the aid of the orthonormal eigenfunctions (5.41) of´∆L.B.

V .
To be specific, one obtains the expressions

ż

S1

1
`2

` 1
2`

2B‖φ0

˘` 1
2`

2B‖φ0

˘

volgV “
1
4`

2B2
‖ xφ0,φ0yHF
looooomooooon

“1

and

ÿ

ką0

ÿ

‚Pte,ou

�

�

ş

S1
1
`2 pByφ

‚
k q
` 1

2`
2B‖φ0

˘

´
1
`2

` 1
2`

2B‖φ‚k
˘

“0
hkkikkj

pByφ0q volgV

�

�

2

k2{`2

“
ÿ

ką0

1
2
`2

k2 B2
‖

´

�

�

@

Byφ
e
k,φ0

D

HF

�

�

2
´
�

�

@

Byφ
o
k ,φ0

D

HF

�

�

2
¯

“
ÿ

ką0

1
2`

2B2
‖

´

�

�

@

φo
k ,φ0

D

HF
looooomooooon

“0

�

�

2
´
�

�

@

φe
k,φ0

D

HF
looooomooooon

“0

�

�

2
¯

“ 0
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for them. The contribution of ε2Vc is trivial and we conclude

λm
0 “ ε

2
´

Vc `
1
4`

2B2
‖

¯

`Opε3q.

Berry Terms

As in the case of a weak magnetic field (see Subsection 5.2.2), it holds
that

´ε2∆B` ε2VPm

BH “´ε2∆AB

dxbdx ` ε
2
`

VPm

BH ` VPm

ηV

˘

with Berry connection one-form (the “effective magnetic potential”)

ABpBxq “
@

φm
0 ,A0pB

H
x qφ

m
0

D

HF
` Im

´

@

φm
0 ,BHxφ

m
0

D

HF

¯

“

A

1
?

2π`
,
´

BKˆ
´

` cos y
` sin y

¯¯

1
?

2π`

E

HF
loooooooooooooooooooomoooooooooooooooooooon

“0

` Im

ˆ

A

1
?

2π`
,BHx

1
?

2π`

E

HF

˙

looooooooooooooomooooooooooooooon

“0

`Opε2q,

Born-Huang potential

VPm

BH “








B
H
x

1
?

2π`










2

HF

`

�

�

�

�

A

1
?

2π`
,BHx

1
?

2π`

E

HF

�

�

�

�

2

`










´

BKˆ
´

` cos y
` sin y

¯¯

1
?

2π`










2

HF

`Opε2q

“








BKˆ ?̀
2

´

φe
1
φo

1

¯









2

HF

`Opε2q

“
1
2`

2 ‖BK‖
2
R2 `Opε2q

and ηV-potential

VPm

ηV
“´

1
2Bx ¨ηVpBxq `

1
4

�

�ηVpBxq
�

�

2
“

1
2
`2

` ´
1
4

´

`1

`

¯2
.
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Perturbation

The only term of order ε2 within εHE,s
1 (for this low energy regime) is the

potential

Vε “ V V
ρε
`Opε3q

(5.40)
“

1
2ε
c
` `

1
4ε

2
`

2c2´ pcKq2
˘

`Opε3q

with cK “´κ1 sin y`κ2 cos y . While the term proportional to ε is a linear
combination of cos y and sin y and thus vanishes when it is integrated
against the square of the unperturbed, fibrewise constant ground state

1
?

2π`
, the quadratic term may be rewritten as

1
4ε

2
“

pκ1q2p2 cos2 y ´ sin2 yq ` pκ2q2p2 sin2 y ´ cos2 yq
‰

.

If we now bear in mind the fact that
@

φ0, cos2 yφ0

D

HF
“

1
2 “

@

φ0, sin2 yφ0

D

HF
,

we arrive at the compact expression

εPm
0 HE,s

1 Pm
0 “

1
8ε

2 ‖κ‖2
R2 `Opε3q.

M-Term

In virtue of Remark 5.22, the leading-order contribution of the MPm
-term

is essentially determined by the Opεq-contribution of Vε, i.e.,

MPm
“ ε2

ÿ

ką0

1
k2{`2

ÿ

‚Pte,ou

Mpk,‚q
0 `Opε3q

“ ´
1
4ε

2
ÿ

ką0

1
k2{`2

ÿ

‚Pte,ou

�

�

�

@

φ‚k , c`φ0

D

HF

�

�

�

2
`Opε3q

“ ´
1
4ε

2
ÿ

ką0

1
k2{`2

ÿ

‚Pte,ou

�

�

�

�

A

φ‚k , κ1
?

2`
φe

1

E

HF

`

A

φ‚k , κ2
?

2`
φo

1

E

HF

�

�

�

�

2

`Opε3q

“ ´
1
4ε

2`2

„

´

κ1
?

2`

¯2
`

´

κ2
?

2`

¯2


`Opε3q

“ ´
1
8ε

2 ‖κ‖2
R2 `Opε3q.
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5 Quantum Waveguides with Gauge Fields

This term exactly cancels the remainder of the geometric potential. We
have already observed in the weak case that Vρε does not contribute to
the reduced Hamiltonian up to order ε2. In this context, one may adopt
two different perspectives concerning the geometric potential:

• One absorbs V V
ρε

into the vertical operator and shows that the ground
state band remains unchanged. On the one hand, one has to calcu-
late (formally) fewer terms in HPm

a `MPm
, but on the other hand

this absorption comes along with a more complicated ground state
(and thus a more complicated spectral projection Pm

0 )

φm
0

(5.42)
“

1
?

2π`
´

1
?

8
ε`pκ1 cos y `κ2 sin yq `Opε2q.

• One incorporates V V
ρε

into the perturbation. Then the advantages
and disadvantages are reversed: One has to evaluate more terms
in HPm

a `MPm
(which again leads to cancellations as above). But

on the other hand, the finite-dimensional perturbation theory of
the vertical ground state, which is reflected in Pm

0 “ P0`Opε2q, is
much simpler.

Conclusion

We now collect all relevant terms in the sum of the adiabatic operator and
the MPm

-term and approximate some parts of the spectrum associated
with the initial tube operator:

Corollary 5.24 Let Hs,hol
tube be the Hamiltonian generating the dynamics of a

non-relativistic, charged, spinless quantum particle, which is localised within
the hollow waveguide introduced in Example 5.9 with `px , yq “ `pxq, in the
presence of a strong, C8-bounded external magnetic field ε´1A and very
weak, C8-bounded external potential ε2V . Then the reduced Hamiltonian
reads

Hs,hol
QWG “´∆

L.B.
dxbdx ` Vc `

1
2
`2

` ´
1
4

´

`1

`

¯2
`
`2

4

`

B2
‖ ` 2‖BK‖

2
R2

˘

.
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A
Appendix A

Analytic Aspects of the

Connection Laplacian

In this appendix, we will collect the most important facts which build the
basis for the analysis of the connection Laplacian in the main part of this
thesis.

A.1 Sobolev Spaces on Vector Bundles

In the first section, we will introduce the geometric and analytic terminol-
ogy that is needed for our purpose. Therefore, we will give a brief overview
of the elementary definitions concerning finite-dimensional vector bundles
and define Sobolev spaces on these bundles.

A vector bundle over a manifold M makes precise the idea of “attaching”
an F-vector space Ep (F P tR,Cu) at every point p P M in such a way that
these spaces fit together appropriately and form a total space E .

Definition A.1 Let M be a smooth, real manifold with (possibly empty)
boundary BM and E be a smooth, real/complex manifold. We call the
smooth surjective map πE : E Ñ M a smooth FN -vector bundle over M if
for all p P M

(i) there exists an open neighbourhood W Ă M of p together with a
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A Analytic Aspects of the Connection Laplacian

diffeomorphism Λ : π´1
E pW q ÑW ˆ FN for which the diagram

π´1
E pW q

Λ - W ˆ FN

W
pr1�πE

-

commutes,

(ii) and the set Ep :“ π´1
E ppq has the structure of an F-vector space and

Λ|Ep
: Ep Ñ tpuˆ FN is a vector space isomorphism. ◊

On calls E the total space, M the base space and Ep “ π
´1
E ppq the fibres.

We will often write E πE
ÝÑ M or merely E for the vector bundle if there is

no danger of confusion. Furthermore, we introduce the abbreviations

E˝ :“ E |MzBM , BE :“ E |BM .

The simplest example of a vector bundle E is the case where each fibre Ep

is a copy of the same F-vector space, i.e., E is globally diffeomorphic to the
product manifold MˆFN . In this context, one calls pr1 : MˆFN Ñ M the
trivial FN -vector bundle over M . Moreover, one often refers to F1-vector
bundles as real/complex line bundles.

Let tWµuµPI be an open cover of M with an associated set of local
trivialisations tΛµ : π´1

E pWµq ÑWµˆ FNuµPI . Then condition (ii) of the
previous definition is equivalent to requiring smoothness of the transition
functions

tµµ1 :“ Λµ1 ˝Λ
´1
µ : pWµXWµ1q ˆ FN Ñ pWµXWµ1q ˆ FN ,

pp, vq ÞÑ
`

x ,gµµ1ppqv
˘

,

or equivalently to requiring smoothness of the induced transition matrices
gµµ1 : Wµ XWµ1 Ñ GLpN ,Fq. Conversely, an open cover tWµuµPI of M
together with a set of smooth mappings tgµµ1 : WµXWνÑ GLpN ,Fquµ,µ1PI
that satisfy gµµ1 “ g´1

µ1µ and the cocycle condition

gµµ1 ˝ gµ1µ2 “ gµµ2
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A.1 Sobolev Spaces on Vector Bundles

for all µ,µ1,µ2 P I, uniquely define the structure of an FN -vector bundle
E πE
ÝÑ M with total space

E :“ E{ „, E“
ď

µPI
Wµˆ FN

and projectionπE rpµ, p, vqs :“ p. Here, two points pµ, p, vq and pµ1, p1, v1q
are said to be equivalent whenever p “ p1 and v1 “ gµµ1ppqv.

Given two vector bundles E πE
ÝÑ M and F πF

ÝÑ M over the same base
manifold M , one may use several vector space operations in order to
construct new vector bundles over M , for example

• direct sums E ‘F with fibres Ep ‘Fp,

• the bundle of linear maps LpE ,Fq with fibres LpEp,Fpq,

– the bundle of endomorphisms EndpEq “ LpE ,Eq,

– the dual bundle E˚ “ LpE , M ˆ Fq with fibres LpEp,Fq,

• and tensor products E bF with fibres Ep bFp.

The k-fold application (k P N) of the tensor product yields the bundle E˚bk

of k-fold covariant tensors. We will denote by ΣkE and ΛkE its subbundles
(with fibrewise subspaces) of symmetric and alternating k-fold covariant
tensors, respectively.

Definition A.2 Let πE : E Ñ M be an FN -vector bundle. A section of E is
a map ψ : M Ñ E with the property πE ˝ψ “ 1M , i.e., ψppq P Ep for all
p P M .

(i) C8pEq denotes the space of smooth sections of E .

(ii) C80 pEq Ă C8pEq stands for the Fréchet space of smooth section of E
which are compactly supported in M . ◊

A (local) frame of E is a set of N (local) sections tψ1, . . . ,ψNu of E which
form a basis of Ep at each point p P M (wherever they are defined).
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A.1.1 Metrics and Connections

Any F-vector space can be turned into a Euclidean/unitary vector space by
means of an inner product. This idea can be transferred to vector bundles
by the fibrewise assignment of such inner products:

Definition A.3 Let πE : E Ñ M be an FN -vector bundle. A bundle met-
ric is a map h P C8pE˚b2

q, such that hp : Ep ˆ Ep Ñ F defines a Eu-
clidean/Hermitian scalar product for all p P M . We refer to the pair pE , hq
as a Euclidean/Hermitian vector bundle. ◊

We note that every smooth FN -vector bundle admits a smooth bundle
metric

hppv,wq “
ÿ

µPI
χµppq xv,wyFN ,µ for v,w P Ep,

where tχµuµPI is a smooth partition of unity of M subordinate to the
cover tWµuµPI and x¨, ¨yFN ,µ denotes the bundle metric over Wµ, obtained
by the pullback of the standard scalar product x¨, ¨yFN in FN via the local
trivialisation Λµ.

Furthermore, we want to enrich the geometric structure of vector bun-
dles with the notion of connections, which play a crucial role throughout
this thesis.

Definition A.4 Let πE : E Ñ M be an FN -vector bundle.

(i) A connection on E is a map ∇E : C8pEq Ñ C8pT˚M b Eq such that
the Leibniz rule

∇Ep fψq “ d f bψ` f∇Eψ

holds for all ψ P C8pEq and f P C8pMq.

(ii) If pE , hq is an Euclidean/Hermitian vector bundle, we call a connec-
tion ∇E on E metric if

d
`

hpφ,ψq
˘

“ hp∇Eφ,ψq ` hpφ,∇Eψq
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for all φ,ψ P C8pEq. ◊

The condition that the connection be metric clearly is equivalent to requir-
ing

X ¨ hpφ,ψq “ h
`

∇E
Xφ,ψ

˘

` h
`

φ,∇E
X ,ψ

˘

(A.1)

for all X P C8pTMq. Moreover, the mapping

∇E
X : C8pEq Ñ C8pEq, ψ ÞÑ∇E

Xψ

is called the covariant derivative along X . A connection allows us to identify
(literally “connect”) nearby fibres Ep and Ep1 as follows: Let γ : r0, 1s Ñ M
be a path joining γp0q “ p with γp1q “ p1. A sectionψ of E along γ (i.e., a
mapping ψ : r0,1s Ñ E with ψptq P Eγptq for all t P r0,1s) is said to be
parallel with respect to ∇E if

∇E
9γptqψptq “ 0 for all t P r0, 1s. (A.2)

This first-order ordinary differential equation with initial data ψp0q “
v P Ep has a unique smooth solution ψv : r0,1s Ñ E , which induces the
isomorphism

pγ : Ep Ñ Ep1 , ψvp0q “ v ÞÑ pγpvq :“ψvp1q,

the so-called parallel transport map.

Definition A.5 Let πE : E Ñ M be an FN -vector bundle endowed with a
connection ∇E . The curvature RE P C8pΛ2TM b EndpEqq of the connec-
tion ∇E is given by

REpX , Y qψ :“∇E
X∇

E
Yψ´∇

E
Y∇

E
Xψ´∇

E
rX ,Y sψ

for X , Y P C8pTMq and ψ P C8pEq. ◊

The curvature of a connection ∇E can be viewed as a measure of the
lack of commutativity of two covariant derivatives ∇E

X and ∇E
Y provided

that the vector fields X and Y commute. A connection is called flat if its
associated curvature vanishes identically.
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The Tangent Bundle

The tangent bundle πTM : TM Ñ M of a smooth, m-dimensional mani-
fold is the collection of all tangent vectors (“velocity vectors of curves”,
see 9γptq P TγptqM in (A.2)) in M , i.e., the total space TM is the disjoint
union of the tangent spaces tTp M “ π´1

TM ppqupPM . One usually equips
this Rm-vector bundle with a bundle metric g P C8pΣ2TMq and calls the
pair pM , gq a Riemannian manifold (g is said to be a Riemannian met-
ric on M). The fundamental theorem of Riemannian geometry [Lan99,
Theorem VIII.4.1] asserts that the Riemannian metric g uniquely defines
a connection (the so-called Levi-Civita connection) ∇g on TM with the
properties

X ¨ gpY, Zq “ g
`

∇g
X Y, Z

˘

` g
`

Y,∇g
X Z

˘

looooooooooooooooooooooomooooooooooooooooooooooon

∇g is metric with respect to g

, ∇g
X Y ´∇g

Y X “ rX , Y s
loooooooooooomoooooooooooon

∇g is torsion-free

for all X , Y, Z P C8pTMq. These features allow us to express the action of
the Levi-Civita connection in terms of the metric and Lie brackets:

2g
`

∇g
X Y, Z

˘

“ X ¨ gpY, Zq ` Y ¨ gpZ , X q ´ Z ¨ gpX , Y q

´ g
`

Y, rX , Zs
˘

´ g
`

Z , rY, X s
˘

` g
`

X , rZ , Y s
˘

.
(A.3)

This is often referred to as Koszul’s formula. Apart from that, bearing
in mind that any curve γ : r0,1s Ñ M itself induces a section 9γ of TM
along γ, we will call such a curve geodesic if 9γ is parallel with respect to
the Levi-Civita connection ∇g , i.e., if γ is the solution of the differential
equation ∇g

9γptq
9γptq “ 0 for all t P r0,1s.

The Riemannian metric g enables us to identify vectors in TM and cov-
ectors in T˚M :“ pTMq˚ by means of the (musical) bundle isomorphism

5 : TM Ñ T˚M , Tp M Q v ÞÑ v5 :“ gppv, ¨q

with inverse

7 : T˚M Ñ TM , T˚p M Qω ÞÑω7 such that gppω
7, wq “ωpwq

for all w P Tp M .
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Example A.6 The gradient of a function f P C8pMq is the uniquely de-
fined vector field dual to d f :

gradg f :“ pd f q7.

This is equivalent to the condition

d f pX q “ g
`

gradg f , X
˘

for all X P C8pTMq. ◊

The musical isomorphism furthermore allows us to endow the cotangent
bundle T˚M with

• a symmetric bundle metric rg P C8pΣ2T˚Mq given by

rgpΞ,Υ q :“ gpΞ7,Υ 7q,

• and a metric connection r∇g : C8pT˚Mq Ñ C8pT˚Mb2q defined by
the relation

X ¨ΞpY q “ g
`

∇g
X Y,Ξ7

˘

` rg
`

Y 5, r∇g
XΞ

˘

ô
`

r∇g
XΞ

˘

pY q :“ X ¨ΞpY q ´Ξ
`

∇g
X Y

˘

for all X , Y P C8pTMq and Ξ P C8pT˚Mq.

If tvαu
m
α“1 is a local frame of TM with dual local frame tωαum

α“1 of T˚M ,
i.e., ωαpvβq “ δ

α
β

for all α,β P t1, . . . , mu, the corresponding Christoffel
symbols

∇g
vα

vβ “ Γ
γ

αβ
vγ , r∇g

vα
ωβ “ rΓ βαγω

γ

satisfy the symmetry relation

rΓ
γ

αβ
“´Γ

γ

αβ
(A.4)

for all α,β ,γ P t1, . . . , mu. Moreover, let pgαβq and pgαβq be the matrix
representations of g and rg, respectively:

gαβ :“ gpvα, vβq , gαβ :“ rgpωα,ωβq.
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Then one easily verifies

pvαq
5 “ gαβω

β , pwαq7 “ gαβ vβ

and the identity 7 ˝ 5 “ 1TM yields

wαvα “ w“ wα
`

pvαq
5
˘7
“ wα

`

gαβ gβγvγ
˘

for all w P TM (wherever the local frame tvαu
m
α“1 is defined). This is

equivalent to gαβ gβγ “ δ
α
γ for all α,γ P t1, . . . , mu, and hence pgαβq is

the inverse matrix of pgαβq.

C8-bounded Sections

Given any FN -vector bundle pE , h∇Eq
πE
ÝÑ pM , gq, we may define the tensor

product connection ∇T˚MbE on the tensor product T˚M b E by means of
the individual connections r∇g on T˚M and ∇E on E by the relation

∇T˚MbE :“ r∇g b 1E ` 1T˚M b∇E . (A.5)

We may then repeat this procedure and obtain connections ∇T˚Mb jbE

on T˚Mb j b E for all j P t1, . . . , k´ 1u, k P N. The composition of those
connections finally leads to the smooth k-th-order differential operator

p∇Eqk :“∇T˚Mbk´1bE ˝ ¨ ¨ ¨ ˝∇T˚MbE ˝∇E . (A.6)

Likewise, we can merge the bundle metrics rg of T˚M and h of E into a
bundle metric on T˚Mbk b E via

xpΞ1b ¨ ¨ ¨ bΞk bψq, pΥ1b ¨ ¨ ¨ b Υk bφqyT˚MbkbE

:“ rgpΞ1,Υ1q . . . rgpΞk,Υkqhpψ,φq.

Definition A.7 We call ψ P C8pEq C8-bounded if for all k P N0 there is a
constant Cpkq ą 0 such that

sup
M

@

p∇Eqkψ, p∇Eqkψ
D

T˚MbkbE ď Cpkq

with the convention x¨, ¨yT˚Mb0bE “ h and p∇Eq0 “ 1E . We denote the
Fréchet space of C8-bounded sections by C8b pEq. ◊
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A.1.2 Excursus 1: The Sasaki Metric

We will give a brief explanation for the construction of a Riemannian
metric gE P C8pΣ2TEq on the total space E of a Euclidean Rn-vector
bundle pE , h,∇Eq

πE
ÝÑ pM , gq, following [Sak96, Section II.4].

Due to the fact that each fibre Ep “ π
´1
E ppq of E is a vector space, it

may be identified with its own tangent space TvEp for v P Ep by means of

ιv : Ep Ñ TvEp, w ÞÑ
“

t ÞÑ pv` twq
‰

. (A.7)

Moreover, each tangent space TvEp is an N -dimensional subspace of TvE
and coincides with kerpTπE |TvEq. We will refer to it as the vertical subspace
of TvE and denote it by VvE . A complementary subspace HvE Ă TvE
may be assigned with the aid of the connection ∇E as follows: Take a
curve γ : I Ñ M through γp0q “ p with 9γp0q “ v for some v P Tp M . In
view of (A.2), the initial condition ψp0q “ v uniquely defines a parallel
section ψv : I Ñ E along γ with respect to ∇E . Then vHv :“ 9ψvp0q P TvE
defines the horizontal lift of v P Tp M at v P Ep, which is independent of
the specific choice of the curve γ. The space

HvE :“
 

vHv P TvE such that v P TπEpvq
M
(

forms an m-dimensional subspace of TvE , m“ dimpMq, and is called the
horizontal subspace. This gives a smooth, fibrewise decomposition

TE “
ď

vPE
TvE “

ď

vPE
HvE ‘ VvE “ HE ‘ VE (A.8)

of E ’s tangent bundle into a horizontal and vertical subbundle, which
leads to the definition of the connection map KE : TE Ñ E by the fibrewise
homomorphism

KE |TvE : TvE Ñ Ep, w ÞÑ ι´1
v ˝wV

for all v P Ep, where wV is the vertical part of w according to the decom-
position (A.8).
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Let us summarise the previous considerations of this subsection: An
RN -vector bundle pE ,∇Eq

πE
ÝÑ M admits the splitting

TE “ HE ‘ VE “ kerpKEq ‘ kerpTπEq,

where each of the restricted maps

TπE |HvE : HvE Ñ Tp M , KE |VvE : VvE Ñ Ep

is a vector space isomorphism for all v P Ep and p P M . This gives rise to the
introduction of horizontal and vertical lifts associated with X P C8pTMq
and ψ P C8pEq, respectively, via

XHpvq :“
`

TπE |HvE
˘´1

˝ X ppq , ψVpvq :“
`

KE |VvE
˘´1

˝ψppq.

Remark A.8 Let us express these lifts in terms of coordinate vector fields.
Local coordinates tpαum

α“1 on some subset W Ă M and a frame teAu
N
A“1

of E |W yield bundle coordinates

qα :“ πE ˝ pα, α“ 1, . . . , m

vA, A“ 1, . . . , N

on E |W such that the vector v “ vAeAppq P Ep corresponds to the point
pp, vq P W ˆRN . Then the respective horizontal and vertical lift of the
associated coordinate vector fields are given by [Bla10, Section 9.3]

BHpα “ Bqα ´ vA Γ B
αA BvB , eVA “ BvA.

Here, the Christoffel symbols of ∇E that are associated with the local
frame teAu

N
A“1 are defined by the relation ∇E

Bpα
eA “ Γ

B
αAeB. ◊

Now that we can split any vector field V on E into

• a horizontal part VH TπE
ù C8pTMq,

• and a vertical part VH KE
ù C8pEq,
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the Riemannian metric g on M (i.e., the bundle metric on TM) and the
bundle metric h on E allow for the construction of a Riemannian metric
on E as follows:

Definition A.9 Let πE : pE , h,∇Eq Ñ pM , gq be anRN -vector bundle. The
Sasaki metric is defined by

gE :“ g
`

TπE ¨,TπE ¨
˘

˝πE ` hpKE ¨,KE ¨q “ π
˚
E g ` hpKE ¨,KE ¨q. ◊

It was initially studied for the tangent bundle E “ TM , where ∇E “∇g

is the Levi-Civita connection and the bundle metric h coincides with the
Riemannian metric g [Sas58].

A.1.3 Excursus 2: Submanifolds

We survey the most important geometric objects that are involved in
the treatment of submanifolds. We refer to [Lan99, Section XIV, § 1] for
further details.

Let A be a smooth a-dimensional (ambient) manifold and ι : B Ñ A be
a smooth embedding of a b-dimensional submanifold B into A. Since the
differential Tι : TB Ñ TA is a fibrewise monomorphism from Tx B Ñ TιpxqA
for all x P B, there exists a bundle monomorphism

ῑ : TB Ñ ι˚TA“
 

px , vq P Bˆ TA such that v P TιpxqA
(

given by ῑ “ pπTB,Tιq. In this context, the Ra´b-vector bundle

NB :“ ι˚TA{ impῑq “ cokerpῑq

over B is called the normal bundle of B in A [Wal04, Definition 5.3].
If A is equipped with a Riemannian metric G, one may identify the

fibres Nx B with the G-orthogonal complement of TιpTx Bq in TιpxqA, i.e.,

TιpxqA“ TιpTx Bq ‘
`

TιpTx Bq
˘K,G

– Tx B‘Nx B,

and obtain the orthogonal decomposition ι˚TA “ TB ‘ NB. Hence, ev-
ery vector t ` n P Tx B ‘ Nx B (t P Tx B and n P Nx B) corresponds to a
vector t ` n P TιpxqA with Gpt, nq “ 0 for all x P B.
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Definition A.10 We introduce

(i) a bundle metric GTB‘NB on TBbNB such that

G
`

t1` n1, t2` n2q “ GTB‘NBpt1` n1, t2` n2q

“ gBpt1, t2q ` GNBpn1, n2q

holds for t1, t2 P Tx B and n1, n2 P Nx B with

• a Riemannian metric gB “ ι
˚G on B,

• and a bundle metric GNB “ G|NB on NB,

(ii) and a pullback connection

∇TB‘NB :“ ι˚∇G : C8pTB‘NBq Ñ C8
`

T˚Bb pTB‘NBq
˘

which induces

• a connection ∇TB :“ PTB∇TB‘NB on TB coinciding with the
Levi-Civita connection associated with gB, i.e., ∇TB “∇g ,

• and a metric connection ∇NB :“ PNB∇TB‘NB on NB, the so-
called normal connection. ◊

We similarly establish operators for the off-diagonal blocks of ∇TB‘NB:

Definition A.11 Let τ,σ P C8pTBq and ν P C8pNBq.

(i) The Weingarten map W P C8pN˚Bb EndpTBqq is defined by

ν ÞÑWpνqτ :“´PTB∇TB‘NB
τ ν.

(ii) The second fundamental form II P C8pΣ2TBbNBq is given by

pτ,σq ÞÑ IIpτ,σq :“ PNB∇TB‘NB
τ σ.

(iii) The mean curvature η P C8pNBq of the submanifold pB, gBq is the
unique normal field

η :“ trgB

`

IIp¨, ¨q
˘

. ◊
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The sign of the Weingarten map is chosen in such a way that

gB

`

Wpνqτ,σ
˘

“ GNB
`

IIpτ,σq,ν
˘

holds true. Apart from that, we may summarise the action of ∇TB‘NB by
the Gauß formula

∇TB‘NB
τ σ “∇gB

τ σ` IIpτ,σq

and the Weingarten equation

∇TB‘NB
τ ν“´Wpνqτ`∇NB

τ ν. (A.9)

The latter relation paves the way to explicitly calculating the induced cur-
vature RTB‘NB “ ι˚RG of the pullback connection ∇TB‘NB. Starting with
RTB‘NBpσ1,σ2q P C8pEndpTB‘NBqq for σ1,σ2 P C8pTBq, its application
to another tangent vector field τ P C8pTBq equals

RTB‘NBpσ1,σ2qτ

“ RgB pσ1,σ2qτ´W
`

IIpσ2,τq
˘

σ1`W
`

IIpσ1,τq
˘

σ2

`
`

∇T˚Bb2bNB
τ1

II
˘

pσ2,τq ´
`

∇T˚Bb2bNB
τ2

II
˘

pσ1,τq,

whereas its action on some normal field ν P C8pNBq is given by

RTB‘NBpσ1,σ2qν

“ RNBpσ1,σ2qν´ II
`

τ1,Wpνqσ2

˘

` II
`

Wpνqσ1,σ2

˘

`
`

∇N˚BbEndpTBq
τ2

W
˘

pνqσ1´
`

∇N˚BbEndpTBq
τ1

W
˘

pνqσ2.

Here, RgB and RNB are the curvatures of ∇gB and ∇NB, respectively. If
the ambient space pA, Gq is flat, both tangent and normal components of
the latter two equations vanish identically and one obtains rather simple
expressions for the curvatures in terms of the extrinsic geometry:

RgB pσ1,σ2qτ“W
`

IIpσ2,τq
˘

σ1´W
`

IIpσ1,τq
˘

σ2,

RNBpσ1,σ2qν“ II
`

σ1,Wpνqσ2

˘

´ II
`

Wpνqσ1,σ2

˘

. (A.10)
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A.1.4 Functional Framework

We will assume that πE : pE , h,∇Eq Ñ pM , gq is a CN -vector bundle
with a metric connection over an m-dimensional Riemannian manifold.
This subsection aims to introduce Sobolev spaces on such vector bundles,
following the exposition of [Nic96, Subsection 10.2.4].

Let volg :“ ‹1 P C8pΛk Mq be the volume form associated with the
Riemannian metric g. We then set

LqpEq :“
 

Borel measurable sections ψ : M Ñ E

such that p ÞÑ




ψppq






q
hp

is volg -integrable
(

for all q P r1,8s and identify sectionsφ,ψ thereof whenever they coincide
pointwise volg -almost everywhere. The resulting quotient space

LqpEq :“ LqpEq{ „

together with the norm

‖ψ‖LqpEq :“

$

&

%

´

ş

M





ψppq






q
hp

volgppq
¯1{q

, 1ď q ă8

ess suppPM





ψppq






hp
, q “8

(A.11)

turns out to be a Banach space [Nic96, Proposition 10.2.31]. These consid-
erations may be extended in order to obtain Banach spaces LqpT˚MbkbEq
for q P r1,8s and k P N with the norms

‖ψ‖LqpT˚MbkbEq :“

$

&

%

´

ş

M ‖ψ‖
q
T˚MbkbE volg

¯1{q
, 1ď q ă8

ess supM ‖ψ‖T˚MbkbE , q “8
.

In order to define Sobolev spaces W k,qpEq Ă LqpEq for k P N0, we first need
to introduce the weak derivative of a locally integrable sectionψ P L1

locpEq.
Therefore, we call φ P L1

locpT
˚Mbk b Eq the k-th weak derivative of ψ

(i.e., p∇Eqkψ“ φ weakly) for k P N0 if
ż

M
xφ,χyT˚MbkbE volg “

ż

M
h
`

ψ, p∇Eqk,˚χ
˘

volg
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holds for all χ P C80 pT
˚Mbk b Eq. Here, the operator p∇Eqk,˚ from

C8pT˚Mbkb Eq to C8pEq denotes the adjoint of p∇Eqk, cf. (A.15) below.

Definition A.12 Let k P N0 and q P r1,8s.

(i) We define the k-th Lq-Sobolev space W k,qpEq Ă LqpEq as the set

W k,qpEq “
 

ψ P LqpEq such that for all 0ď j ď k there exists

φ j P LqpT˚Mb j b Eq with p∇Eq jψ“ φ j weakly
(

endowed with the norm

‖ψ‖W k,qpEq :“
k
ÿ

j“0





p∇Eq jψ






LqpT˚Mb jbEq . (A.12)

(ii) The k-th Lq-Sobolev space with zero boundary conditions W k,q
0 pEq

is the subspace

W k,q
0 pEq “

 

ψ PW k,qpEq such that p∇Eq jψppq “ 0p

for all p P BM and 0ď j ď k´ 1
(

. ◊

If one considers the special case of a line bundle E “ Rm ˆC, which is
equipped with the constant bundle metric h“ x¨, ¨yC and the flat connec-
tion ∇R

mˆC “ d, over the Euclidean space pRm,δmq as base manifold, the
Sobolev norms (A.12) read

‖ψ‖W k,qpRmˆCq “

k
ÿ

j“0













´

ř

|a|“ j |Daψ|2
¯1{2












LqpRmq

, a P Nm
0 .

These norms are equivalent to the usual Sobolev norms, and hence
W k,qpRmˆCq coincides as a set with W k,qpRmq.

Remark A.13 The Sobolev spaces W k,qpEq introduced in Definition A.12
depend on the choice of the bundle metric h, metric connection ∇E and
the Riemannian metric g. A different choice of these quantities can alter
the respective spaces significantly. It turns out, however, that W k,qpEq is
independent of these choices if the base manifold M is compact [Nic96,
Theorem 10.2.36]. ◊
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Since we will solely work with the L2-Sobolev spaces, we will drop
the superscript q from now on and simply write W kpEq :“W k,2pEq and
W k

0 pEq :“ W k,2
0 pEq. Moreover, when there is danger of confusion, we

will sometimes write W kpE , volgq in order to emphasise the volume mea-
sure volg on M which was used in the construction of the Sobolev spaces.

A.2 Bounded Geometry

The utilisation of Sobolev spaces on vector bundles over non-compact
manifolds as introduced in Definition A.12 is a very delicate issue if certain
geometric features are unbounded. As a matter of fact, many classical
results obtained for Sobolev spaces on Euclidean spaces (having “zero ge-
ometry”) do not generally carry over to the setting of vector bundles over
arbitrary Riemannian manifolds. In order to circumvent this inadequacy,
we will restrict ourselves to vector bundles of so-called bounded geometry,
where the relevant geometric quantities satisfy additional uniformity prop-
erties. These bundles are built over base manifolds of bounded geometry,
where the curvature bounds are well-controlled, and are endowed with a
set of uniformly bounded local trivialisations.

A.2.1 Manifolds of Bounded Geometry

The concept of bounded geometry for Riemannian manifolds pM , gq with-
out boundary was introduced by [Shu92, Appendix A1]. In this context,
we first introduce the injectivity radius rinj : M Ñ r0,8s defined by

rinjppq :“ sup
rą0

!

the exponential map expM
p restricted

to Bm
r p0q Ă Tp M is a diffeomorphism

)

,

where m “ dimpMq. This basically means that all points p1 P M with
distance distgpp, p1q ă rinjppq may be joined with p by a unique geodesic.
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Definition A.14 A connected Riemannian manifold pM , gq of dimen-
sion m without boundary is a manifold of bounded geometry if the following
hold:

(i) Injectivity radius:
The injectivity radius rinjpM , gq “ infpPM rinjppq of M is positive.

(ii) Curvature bounds:
The curvature of ∇g satisfies Rg P C8b pT

˚Mb3b TMq. ◊

If the manifold has a boundary BM , one has to adapt the former definition
of bounded geometry, since rinjppq “ 0 for all p P BM . In this case, one
instead needs [Sch01, Definition 2.2]

• bounded geometry of the interior M˝ “ MzBM ,

• bounded geometry of the boundary BM ,

• and the boundedness of the inclusion BM ãÑ M .

In view of the orthogonal decomposition

TM |BM – TBM bNBM

with respect to g, the last requirement is implemented by taking into
account the second fundamental form IIg

BM P C8pΣ2TBM bNBMq of the
boundary BM ãÑ pM , gq.

Definition A.15 A connected Riemannian manifold pM , gq with (possibly
empty) boundary BM is said to be a B-manifold of bounded geometry if the
following requirements are satisfied:

(i) Normal collar:
Denote by ν P C8pNBMq the inward-pointing unit normal field of
the boundary BM . There exists rC ą 0 such that the (collar) map

K : BM ˆ r0, rCq Ñ M , pp, sq ÞÑ expppsνq
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is a diffeomorphism onto its image. Therefore, we denote by

NCprq :“
 

expppsνq P M such that pp, sq P BM ˆ r0, rq
(

“ K
`

BM ˆ r0, rq
˘

the normal collar of width r ă rC.

(ii) Injectivity radius of the boundary:
The injectivity radius rinjpBM , g|BM q of the boundary BM is positive.

(iii) Injectivity radius of the interior:
There is rI ą 0 such that rinjppq ě rI for all p P MzNCp rC

3 q.

(iv) Curvature bounds:
The curvature of∇g and the second fundamental form of the bound-
ary BM ãÑ pM , gq satisfy

Rg C8b
`

Λ2TM b EndpTMq
˘

and

IIg
BM P C8b pΣ

2TBM bNBMq,

respectively. ◊

Typical examples for manifolds of bounded geometry are compact Rie-
mannian manifolds and Lie groups with (left-)invariant metrics [Sch96,
Example 3.13].

A B-manifold of bounded geometry provides a suitable set of coor-
dinates via charts for the boundary collar and for the interior [Sch96,
Definition 3.2], see Figure A.1:

• Boundary collar charts:
Let rB ă rinjpBM , g|BM q and choose an orthonormal basis to iden-
tify TpBM with Rm´1 for some p P BM . Then boundary collar
coordinates are defined by

λbc
p : Bm´1

rB
p0q ˆ r0, rCq

looooooooomooooooooon

ĂRm
ě0

Ñ M , pu, sq ÞÑ expM
expBM

p puqpsνq.
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• Interior charts:
Let rin ă rI and choose an orthonormal basis to identify Tp1M
with Rm for some p1 P MzNCp rC

3 q. Then interior coordinates are
given by

λin
p1 : Bm

rin
p0q

loomoon

ĂRm

Ñ M , w ÞÑ expM
p1 pwq.

Rm

R

Rm´1

M

BM

NCprCq

Bm´1
rB

p0q ˆ r0, rCq

Bm
rin
p0q

λbc
p

λin
p1

p1

p
ν

Figure A.1: Sketch of one boundary collar chart λbc
p (p P BM) and one

interior chart λin
p (p1 P MzNCp rC

3 q).

The coordinates associated with such charts are called normal coordi-
nates. These charts yield a suitable atlas of M and a nice subordinate
partition of unity:

243



A Analytic Aspects of the Connection Laplacian

Lemma A.16 For all 0 ă r ă 1
3 mintrinjpBM , g|BM q, rIu there exists an

atlas tpWµ,τµquµPZ with either Wµ “H or

(i) for µă 0 there is pµ P BM such that

Wµ “ λ
bc
pµ

`

Bm´1
r p0q ˆ r0, rCq

˘

, τµ “ pλ
bc
pµ
q´1

ˇ

ˇ

Wµ
,

(ii) and for µ P N0 there is pµ P MzNCp 2rC
3 q such that

Wµ “ λ
in
pµ

`

Bm
r p0q

˘

, τµ “ pλ
in
pµ
q´1

ˇ

ˇ

Wµ
.

This covering is uniformly locally finite: There is a number NM P N such
that for all µ P Z the set tµ1 P Z such that WµXWµ1 ‰Hu has at most NM

elements. Moreover, there is a smooth partition of unity tχµuµPZ of M
subordinate to the covering tWµuµPZ such that τµ˚χµ Ă C8b pR

mq with
bounds uniform in µ, i.e., for all k P N0 there is a constant Cpkq ą 0 such
that




Dapτµ˚χµq






8
ď Cpkq for all µ P Z and all multi-indices a P Nm

0
with |a|ď k.

PROOF. See [Sch96, Lemma 3.22]. l

A.2.2 Vector Bundles of Bounded Geometry

The basic purpose of vector bundles of bounded geometry is to avoid an
unbounded variation of the respective fibres along the base manifold. This
is encoded in terms of suitable local trivialisations [Shu92, Appendix A1]:

Definition A.17 Let πE : E Ñ M be an FN -vector bundle over an m-
dimensional B-manifold M of bounded geometry. We call E a vector bundle
of bounded geometry if for any pair of normal coordinate charts pW,τq
and pW 1,τ1q of M with W X W 1 ‰ H there exist local trivialisations
Λ : π´1

E pW q Ñ W ˆ FN and Λ1 : π´1
E pW

1q Ñ W 1 ˆ FN for which the
associated transition matrix g : WXW 1Ñ GLpN ,Fq is uniformly bounded,
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i.e., for all k P N0 there is a constant Cpkq ą 0 (independent of τ and g)
such that




Dapτ˚gq






8,Mat ď Cpkq

for all multi-indices a P Nm with |a|ď k. ◊

Typical examples for vector bundles of bounded geometry are the trivial
bundle E “ M ˆ FN , the tangent bundle E “ TM and the cotangent
bundle E “ T˚M . Moreover, every vector bundle over a compact base
manifold M is a vector bundle of bounded geometry [Sch96, Example
3.13].

The provision of an additional bundle metric h and metric connec-
tion ∇E on E allows for the introduction of a particular set of local trivial-
isations [GS13, Definition 5.2]:

Definition A.18 Let πE : pE , h,∇Eq Ñ pM , gq be an FN -vector bundle
over an m-dimensional B-manifold M of bounded geometry, where the
latter is equipped with an atlas tWµ,τµquµPZ of normal coordinate charts
with centres pµ “ τ

´1
µ p0q as in Lemma A.16. Choose an orthonormal

basis teµAu
N
A“1 of Epµ for all µ P Z and define a local frame teµAppqu

N
A“1

on Wµ by the parallel transport with respect of ∇E

• for µă 0 (boundary collar charts) along the curve

γpu,sq
µ : r0, 2s ÑWµ, t ÞÑ

#

τ´1
µ ptu, 0q, t ď 1

τ´1
µ pu, tsq, t ą 1

with pu, sq P Bm´1
r p0q ˆ r0, rCq,

• and for µ P N0 (interior charts) along the curve

γw : r0, 1s ÑWµ, t ÞÑ τ´1
µ ptwq

with w P Bm
r p0q.
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We then denote by

Λµ : π´1
E pWµq ÑWµˆ FN , Ep Q w“ wAeµAppq ÞÑ

`

p, pw1, . . . , wN q
˘

the corresponding synchronous trivialisations. ◊

A coordinate-free definition for vector bundles of bounded geometry with
a metric connection can be established by means of curvature bounds
[Eic07, Section 1.A.1]:

Definition A.19 Let πE : pE , h,∇Eq Ñ pM , gq be an FN -vector bundle
endowed with a metric connection. Then E is said to be of bounded
geometry if

(i) pM , gq is a B-manifold of bounded geometry,

(ii) and the curvature of ∇E satisfies RE P C8b pΛ
2TM b EndpEqq. ◊

These two concepts for vector bundles of bounded geometry are consistent
with each other. To be precise, [GS13, Theorem 5.4] – with straightfor-
ward modifications for the case of a B-base manifold – states that a vector
bundle pE , h,∇Eq

πE
ÝÑ pM , gqwith a metric connection is of bounded geom-

etry in the sense of Definition A.17 together with synchronous trivialisa-
tions if and only if it is of bounded geometry in the sense of Definition A.19.
In this context, we will always assume that a vector bundle is of bounded
geometry with respect to a set of synchronous trivialisations.

We finally mention that one may relate the global definition of the
Sobolev norms (cf. Definition A.12) to a local definition in terms of syn-
chronous trivialisations:

Proposition A.20 Let pM , gq be a B-manifold of bounded geometry with
normal charts tpWµ,τµquµPZ and subordinate partition of unity tχµuµPZ
as in Lemma A.16. Moreover, let πE : pE , h,∇Eq Ñ pM , gq be an FN -
vector bundle of bounded geometry over M with synchronous trivialisations
tΛµ : π´1

E pWµq ÑWµˆ FNuµPZ as in Definition A.18. Then the norm

‖ψ‖k :“

˜

ÿ

µPZ





τµ˚
`

Λµ ˝ pχµψq
˘






2

W kpτµpWµq,FN q

¸1{2

,
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is equivalent to (A.12) and one has the equalities

W kpEq “ C80 pEq
‖¨‖k

, W k
0 pEq “ C80 pE˝q

‖¨‖k
. (A.13)

PROOF. See [GS13, Theorem 5.7], which verbatim extends to B-base
manifolds. l

The spaces (A.13) are well-defined since another choice of normal coordi-
nates satisfying Lemma A.16 and corresponding synchronous trivialisa-
tions yields equivalent norms and, therefore, the same Sobolev spaces as
sets [Sch96, Lemma 3.24]. Moreover, these spaces possess the well-known
properties [Sch96, Proposition 3.25]

• W kpEq is a Hilbert space for all k P N0,

• the embedding W kpEq ãÑ C l
bpEq is bounded whenever k ą m

2 ` l for
m“ dimpMq,

• the embedding W k`1pEq ãÑW kpEq is bounded with dense image
for all k P N0, and is compact if and only if M is compact,

• any differential operator T P DifflpE ,Fq with C8-bounded coeffi-
cients (with respect to adequate synchronous trivialisations) extends
to a bounded map from W k`lpEq to W kpEq for all k, l P N0,

• and the restriction map (trace operator) res : C8pEq Ñ C8pBEq
extends to a bounded map from W kpEq to W k´1{2pEq for all k P N.

A.3 The Connection Laplacian

The main object of interest throughout this thesis is the (negative of
the) connection Laplacian with Dirichlet boundary conditions. Starting
with a smooth CN -vector bundle pE ,∇Eq over a smooth, m-dimensional
Riemannian manifold pM , gq with (possibly empty) boundary, it is initially
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defined on C80 pE
˝q as the second-order differential operator [BGV92,

Definition 2.4]

ψ ÞÑ ´ trgp∇T˚MbE∇Eψq
(A.6)
“ ´ trg

`

p∇Eq2ψ
˘

.

We want to evaluate this expression by means of local dual frames tvαu
m
α“1

of TM and tωαum
α“1 of T˚M . Therefore, the composition of ∇E and

∇T˚MbE (the Hessian) applied to ψ P C80 pE
˝q yields

p∇Eq2ψ“∇T˚MbE `ωβ b∇E
vβ
ψ
˘

looooooomooooooon

“∇Eψ

“ r∇gωβ b∇E
vβ
ψ`ωβ b∇Ep∇E

vβ
ψq

“ωαb
`

r∇g
vα
ωβ b∇E

vβ
ψ`ωβ b∇E

vα
p∇E

vβ
ψq

˘

“ωαb
`

rΓ βαγω
γb∇E

vβ
ψ`ωβ b∇E

vα
p∇E

vβ
ψq

˘

“ωαbωβ b
´

∇E
´Γ

γ

αβ
vγ
ψ`∇E

vα
p∇E

vβ
ψq

¯

“ωαbωβ b
´

´∇E
∇g

vα vβ
ψ`∇E

vα
p∇E

vβ
ψq

¯

.

We then take the g-trace and arrive at

´ trg

`

p∇Eq2ψ
˘

“´gαβ
´

∇E
vα
∇E

vβ
ψ´∇E

∇g
vα vβ
ψ
¯

. (A.14)

Now that we have understood the action of the Laplacian as a differential
operator on smooth sections, we want to embed the Dirichlet Laplacian
into an appropriate functional analytic framework, i.e., we introduce some
bundle metric h on E and view the Laplacian as an operator acting on the
Hilbert space H :“ L2pEq with scalar product

xφ,ψyH “
ż

M
hpφ,ψq volg .

As outlined in the former section, the use of Sobolev spaces necessitates
the imposition of further boundedness properties on the underlying vector
bundle E (over a non-compact manifold M). Therefore, we will assume
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that pE , h,∇Eq
πE
ÝÑ pM , gq is a CN -vector bundle of bounded geometry

(cf. Definition A.17).
The connection∇E induces an adjoint operator∇E,˚ from C8pT˚MbEq

to C8pEq defined by the relation
ż

M

@

∇Eφ,χ
D

T˚MbE volg “

ż

M
h
`

φ,∇E,˚χ
˘

volg (A.15)

for all φ P C80 pE
˝q and χ P C8pT˚MbEq. An easy calculation using local

frames proves the formula

∇E,˚pΞbψq “
`

∇E
Ξ7

˘:
ψ (A.16)

for Ξ P C8pT˚Mq and ψ P C8pEq, where the latter differential operator
is the formal adjoint of ∇E

Ξ7
, i.e.,

ż

M
h
`

∇E
Ξ7
φ,ψ

˘

volg “

ż

M
h
´

φ,
`

∇E
Ξ7

˘:
ψ
¯

volg

for all φ P C80 pE
˝q and ψ P C8pEq.

Lemma A.21 If ∇E is a metric connection on E with respect to h, one has
`

∇E
X

˘:
“´∇E

X ´ divgpX q1E

for all X P C8pTMq, where the divergence divg P C8pT˚Mq is uniquely
defined by

LX volg “ divgpX qvolg .

If we apply this lemma to the trivial line bundle E “ M ˆ C with flat
connection ∇MˆC “ d, we obtain

d˚pX 5q “ d˚pX 5b 1q (A.16)
“ d:X 1“´ d1pX q

loomoon

“0

´divgpX q1

“´divgpX q (A.17)

for all X P C8pTMq. The adjoint of d on the trivial line bundle is hence
given by the negative of the divergence.
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PROOF (of Lemma A.21). First of all note that for any f P C80 pMzBMq
we have the equality

0“
ż

BM
iX p f volgq “

ż

M
LX p f volgq

“

ż

M
X ¨ f volg `

ż

M
f divgpX q volg .

We then integrate (A.1), which holds true since ∇E is metric, over M and
apply the above observation for f “ hpφ,ψq:

ż

M
h
`

∇E
Xφ,ψq volg

“´

ż

M
h
`

φ,∇E
Xψq volg `

ż

M
X ¨ hpφ,ψq volg

“´

ż

M
h
`

φ,∇E
Xψq volg ´

ż

M
hpφ,ψqdivgpX q volg

“

ż

M
h
´

φ,
`

´∇E
X ´ divgpX q1E

˘

ψ
¯

volg ,

which proves the statement. l

We will need an alternative expression for the divergence applied to
some vector field X P C8pTMq. Therefore, let ∇T˚Mbk

, k P t1, . . . , mu, be
the tensor product connection

`

∇T˚Mbk

X ω
˘

pY1, . . . , Ykq :“ X ¨
`

ωpY1, . . . , Ykq
˘

´

k
ÿ

j“1

ωpY1, . . . ,∇g
X Yj , . . . , Ykq

on T˚Mbk. Then [Lan99, Theorem XV.2.2] yields ∇T˚Mbm
volg “ 0, and

so we obtain for any local frame tvαu
m
α“1 of TM :

0“ X ¨
`

volgpv1, . . . , vmq
˘

´

m
ÿ

α“1

volgpv1, . . . ,∇g
X vα, . . . , vmq

“ pLX volgqpv1, . . . , vmq `

m
ÿ

α“1

volg

`

v1, . . . , rX , vαs ´∇
g
X vα, . . . , vm

˘
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“ divgpX qvolgpv1, . . . , vmq ´

m
ÿ

α“1

volg

`

v1, . . . ,∇g
vα

X , . . . , vm

˘

,

where we took advantage of the torsion-freeness of the Levi-Civita connec-
tion∇g for the last transformation. Thus, the latter equation is equivalent
to

divgpX q “ gαβ g
`

∇g
vα

X , vβ
˘

“ trg

`

∇g X
˘

. (A.18)

Lemma A.22 If ∇E is a metric connection on E with respect to h, it holds
that

´ trg

`

p∇Eq2¨
˘

“∇E,˚∇E

on C80 pE
˝q.

PROOF. This is a straightforward computation once again using dual local
frames tvαu

m
α“1 of TM and tωαum

α“1 of T˚M . More precisely, we obtain
for arbitrary ψ P C80 pE

˝q in virtue of Lemma A.21:

∇E,˚∇Eψ “ ∇E,˚
`

ωβ b∇vβψ
˘

“ ´∇E
pωβ q7

∇E
vβ
ψ´ divg

`

pωβq7
˘

∇E
vβ
ψ

“ ´∇E
gβαvα
∇E

vβ
ψ`∇E

´divgpgβαvαqvβ
ψ

“ ´gαβ
´

∇E
vα
∇E

vβ
ψ´∇E

∇g
vα vβ
ψ
¯

(A.14)
“ ´ trg

`

p∇Eq2ψ
˘

.

Here, we utilised

´divgpg
βαvαqvβ

(A.18)
“ ´ trg

`

∇gpgβαvαq
˘

vβ
“ ´gκλg

`

∇g
vκ
pgβαvαq, vλ

˘

vβ
(A.1)
“ ´gκλ

“

vκ ¨ gpgβαvα, vλq
loooooomoooooon

“gβα gαλ“δ
β

λ
loooooooomoooooooon

“0

´gpgβαvα,∇g
vκ

vλq
‰

vβ

251



A Analytic Aspects of the Connection Laplacian

“ gκλ
`

gβαgpvα,∇g
vκ

vλqvβ
˘

looooooooooomooooooooooon

“∇g
vκ vλ

for the next-to-last line. l

This lemma allows us to easily prove the necessary facts so as to extend
the densely defined connection Laplacian to a self-adjoint operator:

Proposition A.23 Let πE : pE , h,∇Eq Ñ pM , gq be a CN -vector bundle
with a metric connection. Then the associated connection Laplacian (A.14)
defines a symmetric and positive operator on C80 pE

˝q.

PROOF. The Laplacian is clearly symmetric due to the previous lemma,
since

@

´ trg

`

p∇Eq2φ
˘

,ψ
D

H “

ż

M
hp∇E,˚∇Eφ,ψq volg

“

ż

M

@

∇Eφ,∇Eψ
D

T˚MbE volg

“

ż

M
hpφ,∇E,˚∇Eψq volg

“
@

φ,´ trg

`

p∇Eq2ψ
˘D

H

for all φ,ψ P C80 pE
˝q. Moreover, the corresponding quadratic form is

seen to be

Qrψs :“
ż

M

@

∇Eψ,∇Eψ
D

T˚MbE volg ě 0.
l

Hence, Q is closable and its Friedrichs extension is the quadratic form of
the Dirichlet realisation of the Laplacian which we will denote by ´∆E

g .
This operator is self-adjoint on H with domain

dom
`

´∆E
g

˘

“ C80 pE˝q
pQr¨s`‖¨‖2

Hq
1{2

“W 2pEq XW 1
0 pEq (A.19)

by virtue of Proposition A.20.
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Example A.24 Let us consider the case where E “ M ˆC is the complex,
trivial line bundle endowed with the flat connection ∇MˆC “ d. We will
refer to the associated connection Laplacian

´∆L.B.
g :“´ trgpd

2¨q

as the (negative of the) Laplace Beltrami operator. Its action as a differen-
tial operator on C8pM ˆCq – C8pM ,Cq is given by

´∆L.B.
g ψ“´gαβ

´

vβ ¨ pvα ¨ψq ´∇g
vα

vβ ¨ψ
¯

with respect to a local frame tvαu
m
α“1 of TM . Alternatively, Lemma A.22

together with Example A.6 yield

´∆L.B.
g ψ“ d˚pdψq “ d˚

`

pgradgψq
5
˘ (A.17)
“ ´divg

`

gradgψq

for all ψ P C8pM ,Cq, so ∆L.B.
g “ divg ˝gradg on smooth functions. ◊

We close this subsection with the brief discussion of a modified Lapla-
cian ´r∆E

g with Dirichlet boundary conditions, given by the quadratic
form

@

ψ,´r∆E
gψ

D

L2pE,volGq
:“

ż

M
trg

´

h
`

∇E
¨
ψ,∇E

¨
ψ
˘

¯

volG ,

where G :“ ρm{2 g, ρ P C8b pM , rC1, C2sq with 0 ă C1 ă C2 ă 8, is a
conformally equivalent Riemannian metric (for which volG “ ρ volg). To
do so, we start with ψ P C80 pE

˝q as well as X , Y P C8pTMq and calculate
similarly as in the proof of Lemma A.21:

0 “

ż

BM
iX
´

h
`

ψ,∇E
Yψ

˘

volG
¯

“

ż

M
X ¨ h

`

ψ,∇E
Yψ

˘

volG`
ż

M
h
`

ψ,∇E
Yψ

˘

divGpX q volG

(A.1)
“

(2.17b)

ż

M
h
`

∇E
X ,∇E

Yψ
˘

` h
`

ψ,∇E
X∇

E
Yψq volG

`

ż

M
h
`

ψ,∇E
Yψ

˘`

divgpX q ` d lnρpX q
˘

volG ,
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or equivalently
ż

M
h
`

∇E
Xψ,∇E

Yψq volG “
ż

M
h
´

ψ,
`

´∇E
X∇

E
Y ´ divgpX q∇E

Y

˘

ψ
¯

volG

`

ż

M
h
`

ψ,´∇E
d lnρpXqYψ

˘

volG .

If we finally take the g-trace of the respective integrands, we may ulti-
mately identify

´r∆E
g “´ trg

`

p∇Eq2¨
˘

´∇E
gradg lnρ (A.20)

as an operator on L2pE , volGq.
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B
Appendix B

Technical Estimates

The following lemma provides the key ingredients that are needed to prove
the results for the low energy regime discussed in Section 4.4. There, we
consider energies of the order εα (0 ă α ď 2) above the bottom of the
spectrum of the vertical operator HF “´∆E

V ` V E in

HE “´ε2∆E
H ` εH

E
1 `HF .

The perturbation HE
1 is assumed to be a second-order horizontal differ-

ential operator with C8-bounded coefficients. We recall that we intro-
duced domk

αpTq as the domain of the operator pε´αTqk equipped with its
graph-norm for k P t1, 2u.

Lemma B.1 Let α P p0,2s and T P tHE , HP
a , HP

effu. If HE
1 satisfies Condi-

tion 4.11, it holds that




P0∇E
εXH







Lpdom2
αpTq,dompHEqq

“Opεα{2q

for all X P C8b pTBq and




HE
1 P0







Lpdom2
αpTq,dompHEqq

“Opεα{2q.

We will prove this technical lemma in great detail for T “ HE and sketch
the necessary adjustments for the remaining cases afterwards.

PROOF (of Lemma B.1, T “ HE). The actual proof consists of four steps:
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(i) P0∇E
εXH from dom2

αpH
Eq to H:

We show an even stronger bound, namely we consider the operator ∇E
εXH

as a mapping from domαpH
Eq to H. To start with, we first observe that





∇E
εXHψ






2
H “

ż

M
h
`

∇E
εXHψ,∇E

εXHψ
˘

volg

ď

ż

M
π˚M gBpX

H, XHq
@

∇E
ε¨ψ,∇E

ε¨ψ
D

H˚MbE volg

ď




gBpX , X q






8
loooooomoooooon

ă8

ż

M
h
`

ψ,´ε2∆E
Hψ

˘

volg
looooooooooooomooooooooooooon

“xψ,´ε2∆E
HψyH

holds true for ψ P dompHEq. Then, since
@

ψ,´ε2∆E
Hψ

D

H ď
@

ψ,´ε2∆E
Hψ

D

H`
@

ψ, HFψ
D

H
loooooomoooooon

ě0

“
@

ψ, pHE ´ εHE
1 qψ

D

H

ď εα ‖ψ‖H




ε´αHE






H
looooooooomooooooooon

ď‖ψ‖2
domαpHE q

`ε
�

�

@

ψ, HE
1ψ

D

H

�

� ,

the first estimate leads to




∇E
εXHψ






2
H ď C

´

εα ‖ψ‖2
domαpHEq

` ε
�

�

@

ψ, HE
1ψ

D

H

�

�

¯

. (B.1)

We now take a closer look at the term in (B.1) which incorporates the
perturbation. Using the local form of HE

1 from Condition 4.11, this term,

�

�

@

ψ, HE
1ψ

D

H

�

�“

�

�

�

A

ψ, HE
1

ř

νPN0
χM
ν ψ

E

H

�

�

�

ď

�

�

�

A

ψ,
ř

νPN0
∇E
εpX νi q

H Ai j
ν ∇

E
εpX νj q

Hχ
M
ν ψ

E

H

�

�

�

`

�

�

�

A

ψ,
ř

νPN0
Bi
ν∇

E
εpX νi q

Hχ
M
ν ψ

E

H

�

�

�

` ε
�

�

�

A

ψ,
ř

νPN0
Cνχ

M
ν ψ

E

H

�

�

� ,

may be split into three terms, which we now consider separately:
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• The second-order term may be estimated as
�

�

�

�

�

ÿ

ν1PN0

A

ψ,
ř

νPN0
∇E
εpX νi q

Hχ
M
ν1 Ai j

ν ∇
E
εpX νj q

Hχ
M
ν ψ

E

H

�

�

�

�

�

“

�

�

�

�

�

ÿ

ν1PN0

A

ψ,∇E
εpX ν1i q

H
χM
ν1 Ai j

ν1∇
E
εpX ν1j q

H

ř

νPN0
χM
ν

loooomoooon

“1

ψ
E

H

�

�

�

�

�

ď

�

�

�

�

�

ÿ

ν1PN0

A

χM
ν1∇

E
εpX ν1i q

H
ψ, Ai j

ν1∇
E
εpX ν1j q

H
ψ
E

H

�

�

�

�

�

` ε

�

�

�

�

�

ÿ

ν1PN0

A

ψ,χM
ν1 divg

`

pX ν
1

i q
H
˘

Ai j
ν1∇

E
εpX ν1j q

H
ψ
E

H

�

�

�

�

�

with the aid of Lemma A.21 for the last step. Considering the first
term, we insert the identity

ř

ν2PN0
χM
ν2 “ 1 appropriately into the

second argument of the scalar product and obtain the upper bound

sup
ν,k,l





Akl
ν







8

ÿ

ν1,ν2PN0
Uν1ν2‰H

b
ÿ

i, j“1








χM
ν1∇

E
εpX ν1i q

H
ψ









H








χM
ν2∇

E
εpX ν1j q

H
ψ









H

ď
1
2 sup
ν,k,l





Akl
ν







8

ÿ

ν1,ν2PN0
Uν1ν2‰H

b
ÿ

i, j“1

ˆ








χM
ν1∇

E
εpX ν1i q

H
ψ









2

H

`








χM
ν2∇

E
εpX ν1j q

H
ψ









2

H

˙

ď sup
ν1,k,l





Akl
ν1







8
NU b2 C

loooooooooomoooooooooon

“:C1

´

εα ‖ψ‖2
domαpHEq

` ε
�

�

@

ψ, HE
1ψ

D

H

�

�

¯

.

Here, we used the facts that
ÿ

ν1PN0





χM
ν1∇

E
εXHψ






2
H “

ż

M

ÿ

ν1PN0

χM
ν1

2

looomooon

ď 1 pointwise

h
`

∇E
εXHψ,∇E

εXHψ
˘

volg

257



B Technical Estimates

ď




gBpX , X q






8

@

ψ,´ε2∆E
Hψ

D

H (B.2)

and that the vector fields tX ν
1

i uν1,i are uniformly bounded in order
to establish a similar estimate to (B.1) for the last transformation.
As far as the second term is concerned, we proceed similarly and
bound it from above by

ε ‖ψ‖H
ÿ

ν1PN0

b
ÿ

j“1













χM
ν1 divg

`

pX ν
1

i q
H
˘

Ai j
ν1∇

E
εpX ν1j q

H
ψ













H

(B.2)
ď ε ‖ψ‖H b sup

ν,k,l

ˆ





divg

`

pX νk q
H
˘

Akl
ν







8








∇E
εpX νl q

Hψ









H
loooooomoooooon

ďc‖ψ‖dompHE q

˙

ď ε b c sup
ν,k,l





divg

`

pX νk q
H
˘

Akl
ν







8
looooooooooooooomooooooooooooooon

“:C2

‖ψ‖2
domαpHEq

.

In summary, the second-order term can be bounded by

pC1ε
α` C2εq‖ψ‖

2
domαpHEq

` C1ε
�

�

@

ψ, HE
1ψ

D

H

�

� .

• The first-order term gives the following contribution:
�

�

�

A

ψ,
ř

νPN0
Bi
ν∇

E
εpX νi q

Hχ
M
ν ψ

E

H

�

�

�

ď ‖ψ‖H









ř

νPN0
Bi
ν∇

E
εpX νi q

Hχ
M
ν ψ









H
looooooooooooooomooooooooooooooon

ď N1{2
U ‖. . .‖W0

ε pEq
by Remark 2.13

ď ‖ψ‖H N1{2
U

¨

˚

˝

ÿ

ν1PN0








χν1 B
i
ν1∇

E
εpX ν1i q

H

ř

νPN0
χM
ν

loooomoooon

“1

ψ









H

˛

‹

‚

1{2

ď sup
ν,k





Bk
ν







8
N1{2
U ‖ψ‖H

˜

ÿ

ν1PN0








χν1 B
i
ν1∇

E
εpX ν1i q

H
ψ









H

¸1{2
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(B.1)
ď

(B.2)
sup
ν,k





Bk
ν







8
N1{2
U ‖ψ‖H b1{2 C1{2

ˆ

´

εα ‖ψ‖2
domαpHEq

` ε
�

�

@

ψ, HE
1ψ

D

H

�

�

¯1{2

loooooooooooooooooooooooomoooooooooooooooooooooooon

ďεα{2‖ψ‖domαpHE q`ε
1{2
�

�

�xψ,HE
1 ψyH

�

�

�

1{2

ď sup
ν,k





Bk
ν







8
pNU b Cq1{2

loooooooooooomoooooooooooon

“:C3

εα{2 ‖ψ‖H ‖ψ‖domαpHEq

`

ˆ

sup
ν,k





Bk
ν







8
pNU b Cq1{2

loooooooooooomoooooooooooon

“:p2C4q
1{2

ε1{2 ‖ψ‖H

˙

�

�

@

ψ, HE
1ψ

D

H

�

�

1{2

ď pC3ε
α{2` C4εq‖ψ‖

2
domαpHEq

`
1
2

�

�

@

ψ, HE
1ψ

D

H

�

� .

• The remaining potential term is easily estimated to be

ε
�

�

�

A

ψ,
ř

νPN0
Cνχ

M
ν ψ

E

H

�

�

�ď sup
ν1
‖Cν1‖8

looooomooooon

“:C5

ε ‖ψ‖H









ř

νPN0
χM
ν

loooomoooon

“1

ψ









H

“ C5ε ‖ψ‖
2
domαpHEq

.

Thus, the addition of these three estimates implies
�

�

@

ψ, HE
1ψ

D

H

�

�ď
`

C1ε
α` pC2` C4` C5qε` C3ε

α{2
˘

‖ψ‖2
domαpHEq

`
` 1

2 ` C1ε
˘
�

�

@

ψ, HE
1ψ

D

H

�

� ,

and consequently
�

�

@

ψ, HE
1ψ

D

H

�

�ď C̃εα{2 ‖ψ‖2
domαpHEq

for some constant C̃ ą 0 if ε ą 0 is chosen sufficiently small. We finally
insert this into (B.1) and obtain




∇E
εXHψ






2
H ď C

`

εα` C̃ε1`α{2
˘

‖ψ‖2
domαpHEq

ď cεα ‖ψ‖2
domαpHEq

,

where we used the fact that αď 1`α{2 for α P p0, 2s.
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(ii) P0∇E
εXH from dom2

αpH
Eq to dompHEq:

We start with the estimate




HE P0∇E
εXHψ






H ď




∇E
εXH







LpdomαpHEq,Hq
looooooooooomooooooooooon

“Opεα{2q by (i)





HEψ






domαpHEq

` ε









´

“

HE ,∇E
XH

‰

` rHE , P0s∇E
XH

¯

ψ









H

for ψ P dom2
αpH

Eq Ă domppHEq2q. We estimate the first term as




HEψ






2
domαpHEq

“




ε´αpHEq2ψ






2
H`




HEψ






2
H

ď ε2α
´





pε´αHEq2ψ






2
H` ‖ψ‖H




pε´αHEq2ψ






H

¯

ď 2ε2α ‖ψ‖2
dom2

αpH
Eq

.

Expanding the second term
“

HE ,∇E
XH

‰

` rHE , P0s∇E
XH “

“

´∆E
gε ,∇

E
XH

‰

`
“

V E ,∇E
XH

‰

` ε
“

HE
1 ,∇E

XH

‰

`
“

´ε∆E
H, P0

‰

∇E
εXH `

“

HE
1 , P0

‰

∇E
εXH

locally over π´1
M pUq for some U P U of Definition 2.7, we see, in view of

Remark 3.6(i), that this defines a bounded operator from W 3
ε pEq to H with

a bound that can be chosen independently of ε due to the fact that P0 PA
0,0
H

(see also (3.5)) as well as Condition 4.11. Thus, Corollary 2.17 implies
that









´

“

HE ,∇E
XH

‰

` rHE , P0s∇E
XH

¯

ψ









H
ď c ‖ψ‖domppHEq2q

ď c ‖ψ‖dom2
αpH

Eq .

In summary, this shows that




P0∇E
XH







Lpdom2
αpH

Eq,dompHEqq

ď




HE P0∇E
εXH







Lpdom2
αpH

Eq,Hq
looooooooooooooomooooooooooooooon

“Opεmint3α{2,1uq

`




P0∇E
εXH







Lpdom2
αpH

Eq,Hq
looooooooooooomooooooooooooon

“Opεα{2q by (i)

αď2
“ Opεα{2q.
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(iii) HE
1 P0 from dom2

αpH
Eq to H:

We consider the operator HE
1 P0 again locally over π´1

M pUq for some U P U
(cf. Definition 2.7) and get, thanks to Condition 4.11, that

HE
1 P0

ˇ

ˇ

π
´1
M pUq “

´

Aji∇E
εXH

j
` Bi ` ε

“

∇E
XH

j
, Aji

‰

¯

looooooooooooooooomooooooooooooooooon

“: S i with




S i






LpW1
ε pEq,Hq

“Op1q

∇E
εXH

i
P0` εC P0

loomoon

“Opεq
in LpHq

with the aid of Lemma 3.13. But then the fact that




∇E
εXH

i
P0







Lpdom2
αpH

Eq,W 2
ε pEqq

ď ε






“

∇E
XH

i
, P0

‰






Lpdom2
αpH

Eq,W 2
ε pEqq

loooooooooooooooomoooooooooooooooon

ďc‖r∇E
XHi

,P0s‖LpdompHE qq“Op1q

due to P0 PA0,0
H

`




P0∇E
εXH

i







Lpdom2
αpH

Eq,W 2
ε pEqq

looooooooooooooomooooooooooooooon

“Opεα{2q by (ii)

αď2
“ Opεα{2q

immediately implies




HE
1 P0







Lpdom2
αpH

Eq,Hq “Opεα{2q.

(iv) HE
1 P0 from dom2

αpH
Eq to dompHEq:

Let us first analyse the commutator of HE with HE
1 P0. Expressing this

over π´1
M pUq for some U P U from Definition 2.7, we see that

“

HE , HE
1 P0

‰

“ HE
1

“

HE , P0

‰

looomooon

“Opεq

`εS i
“

HE ,∇E
XH

i

‰

loooomoooon

“Op1q

P0

`
“

´∆E
gε ` V E , S i

‰

loooooooomoooooooon

“Op1q

´

ε
“

∇E
XH

i
, P0

‰

looomooon

“Op1q

`P0∇E
εXH

i

¯

` ε
“

HE
1 , S i

‰

looomooon

“Op1q

∇E
εXH

i
P0` ε rH

E , Cs
loomoon

“Op1q

“ εT1` T i
2P0∇E

εXH
i

for some T1 P LpW 4
ε pEq,Hq and T i

2 P LpW
2
ε pEq,Hq, using P0 PA

0,0
H due to

Lemma 3.13. While Corollary 2.17 implies that ‖T1ψ‖H can be bounded
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by an ε-independent constant times ‖ψ‖domppHEq2q ď ‖ψ‖dom2
αpH

Eq, the
second term gives




T i
2P0∇E

εXH
i







Lpdom2
αpH

Eq,Hq

ď c




T i
2







LpW 2
ε pEq,Hq

looooooomooooooon

ă8





P0∇E
εXH

i







Lpdom2
αpH

Eq,dompHEqq
loooooooooooooooomoooooooooooooooon

“Opεα{2q by (ii)

.

Consequently, this leads to the estimate






“

HE , HE
1 P0

‰






Lpdom2
αpH

Eq,Hq
αď2
“ Opεα{2q,

and we proceed similarly as in step (ii), i.e.,




HE
1 P0







Lpdom2
αpH

Eq,dompHEqq

ď




HE
1 P0







LpdompHEq,Hq
looooooooooomooooooooooon

“Op1q





HE






Lpdom2
αpH

Eq,dompHEqq
loooooooooooooomoooooooooooooon

“Opεαq

`






“

HE , HE
1 P0

‰






Lpdom2
αpH

Eq,Hq
loooooooooooooooomoooooooooooooooon

“Opεα{2q

`




HE
1 P0







Lpdom2
αpH

Eq,Hq
looooooooooomooooooooooon

“Opεα{2q by (iii)

“Opεα{2q. l

PROOF (of Lemma B.1, T “ HP
a ). The basic idea here is to repeat the four

steps of the case T “ HE and thereby to bound the individual terms by HP
a

instead of HE :

(i) P0∇E
εXH from dom2

αpH
P
a q to H:

Using dom2
αpH

P
a q Ă dompHP

a q “ P0 dompHEq, we arrive at the analogue
of estimate (B.1), i.e.,





∇E
εXHψ






2
H ď C

ˆ

εα ‖ψ‖2
domαpHP

a q
` ε
�

�

�

@

ψ, HE
1ψ

D

HP

�

�

�

˙

for ψ P dompHP
a q. We then similarly bound |xψ, HE

1ψyHP
| by a constant

times εα{2 ‖ψ‖2
domαpHP

a q
and obtain the desired estimate.

262



(ii) P0∇E
εXH from dom2

αpH
P
a q to dompHEq:

We consider

HE P0∇E
εXH P0

“ P0∇E
εXHHE P0`

“

HE , P0∇E
εXH

‰

P0

“∇B
εX HP

a ` P0∇E
εXHrHE , P0sP0

` rHE , P0s∇E
εXH P0` εP0

“

HE ,∇E
XH

‰

P0

“∇B
εX HP

a `∇
B
εX rH

E , P0s
lo omoon

off-diagonal
w.r.t. P0

P0

loooooooomoooooooon

“0

´εP0

“

∇E
XH , P0

‰

rHE , P0sP0

` rHE , P0s∇B
εX ` ε rH

E , P0s
“

∇E
XH , P0

‰

looooooooomooooooooon

diagonal w.r.t. P0

P0` εP0

“

HE ,∇E
XH

‰

P0

“∇B
εX HP

a ` εrH
E , P0s∇B

X

` ε P0

´”

rHE , P0s,
“

∇E
XH , P0

‰

ı

`
“

HE ,∇E
XH

‰

¯

loooooooooooooooooooooomoooooooooooooooooooooon

“Op1q in LpW 2
ε pEq,Hq

P0

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

“Op1q in LpW 2
ε pPq,HPq due to P0 PA0,0

H

The first term can be estimated using HP
a “Opεαq as a bounded mapping

from dom2
αpH

P
a q to dompHP

a q as well as the regularity result of Proposi-
tion 4.9(ii):




∇B
εX HP

a







Lpdom2
αpH

P
a q,Hq

ď c




∇B
εX







LpW 2
ε pPq,HPq

loooooooooomoooooooooon

“Op1q





HP
a







Lpdom2
αpH

P
a q,dompHP

a qq
loooooooooooooomoooooooooooooon

“Opεαq

“Opεαq.

The last-mentioned proposition may also be used to show that the third
term is of order ε as a map from dom2

αpH
P
a q to HP . As far as the second

term is concerned, a local expansion shows that

rHE , P0s∇B
X “

“

´ε∆E
H `HE

1 , P0

‰

∇B
εX
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is a third-order differential operator on P πP
ÝÑ pB,ε´2 gBq with coefficients

in LpL2pPq,Hq that are off-diagonal with respect to P0. Thus, another
application of Proposition 4.9(ii) leads to the fact that




rHE , P0s∇B
Xψ






H ď c ‖ψ‖domppHP
a q

2q ď c ‖ψ‖dom2
αpH

P
a q

for an ε-independent constant c ą 0. To sum up, HE P0∇E
εXH is of order εα{2

as a mapping from dom2
αpH

P
a q to H.

(iii) HE
1 P0 from dom2

αpH
P
a q to H:

This is shown in exactly the same manner as in the case T “ HE , using
dompHP

a q Ă P0 dompHEq.

(iv) HE
1 P0 from dom2

αpH
P
a q to dompHEq:

We proceed analogously in order to see that rHE , HE
1 P0sP0 is of order ε

in LpW 4
ε pPq,Hq, i.e.,





rHE , HE
1 P0sψ






H can be bounded by an ε-inde-
pendent constant times ε ‖ψ‖domppHP

a q
2q ď ε ‖ψ‖dom2

αpH
P
a q

with the aid of
Proposition 2.15(ii). l

PROOF (of Lemma B.1, T “ HP
eff). This immediately follows from the pre-

vious case and the fact that HP
eff “ HP

a `Opε2q in LpDeff
P ,HPq due to the

explicit formula (4.13). Put differently, the replacement of the adiabatic
operator by the effective operator in the necessary estimates only yields
higher order errors. l
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List of Symbols

1 General Notation

Symbol Explanation

C8 space of smooth functions/sections

C80 Fréchet space of smooth functions/sections with compact
support

C8b Fréchet space of C8-bounded functions/sections

L2 Lebesgue space of square-integrable functions/sections

L8 Lebesgue space of essentially bounded functions/sections

W k Sobolev space of functions/sections with weak derivatives of
order up to k P N0 in L2

W k
0 subspace of W k for k P N, where in addition all weak deriva-

tives up to order k´ 1 vanish on the boundary

W8 intersection of all Sobolev spaces tW kukPN0
, space of func-

tions/sections with infinitely many weak derivatives

LpU , V q space of continuous linear maps between the vector spaces U
and V

volG volume measure associated with the Riemannian metric G

∇G Levi-Civita connection related to the Riemannian metric G

rinjpN , Gq injectivity radius of a Riemannian manifold pN , Gq
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List of Symbols

Brppq geodesic ball around p P N with radius r, image of the metric
ball Brp0q Ă TpN under the exponential map

NCprq normal collar of width r, image of the cylinder BN ˆ r0, rq
under the collar map K

RV curvature of the connection ∇V

∆V
G connection Laplacian associated with the connection ∇V and

the Riemannian metric G

LpV,Wq space of continuous bundle homomorphisms between the
vector bundles V and W over the same base manifold

EndpVq space of vector bundle endomorphisms of the vector bundle V

HermpVq subbundle of EndpVq, space of self-adjoint (Hermitian) vector
bundle endomorphisms of the vector bundle V

∆L.B.
G Laplace-Beltrami operator, connection Laplacian associated

with the flat connection d on the trivial line bundle and the
Riemannian metric G

f ˚ pullback map related to a smooth mapping f : N1 Ñ N2

T f differential (tangent map) of a smooth map f : N1 Ñ N2,
mapping from TN1 to TN2

D f derivative (Jacobian matrix) of a smooth map f : Rn1 Ñ Rn2

LZ Lie derivative along the vector field Z

2 The Framework

Symbol Explanation Page

pB, gBq complete, connected b-dimensional manifold of
bounded geometry without boundary

19, 26

U atlas of normal coordinate charts (geodesic balls)
for B with finite multiplicity NU

37
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List of Symbols

tχνuνPN0
partition of unity of B which is subordinate to the
cover U“ tUνuνPN0

37

pF, gF q compact, f -dimensional Riemannian manifold
with (possibly empty) boundary

19, 26

M
πM
ÝÑ B uniformly locally trivial fibre bundle over B with

typical fibre F , M is a B-manifold of bounded
geometry equipped with submersion metric g

19, 26

tχM
ν uνPN0

respective composition of χν with πM , parti-
tion of unity of M which is subordinate to the
cover tπ´1

M pUνquνPN0

37

HM horizontal subbundle of TM 23

VM vertical subbundle of TM 23

XH horizontal lift of the vector field X P C8pTBq 24

Φ˚X B-horizontal vector field associated with some
local trivialisation Φ : π´1

M pUq Ñ Uˆ F of M and
a vector field X P C8pTUq

69

ΩH integrability tensor of the horizontal subbun-
dle HM

24

IIV second fundamental form of the fibres in M 24

ηV mean curvature vector of the fibres in M 25

gε rescaled Riemannian submersion metric on M 37

gV restriction of gε to the vertical subbundle VM 24

E πE
ÝÑ M CN -vector bundle of bounded geometry over M

which is endowed with a Hermitian bundle met-
ric h and a metric connection ∇E

21, 26

F πF
ÝÑ F the model, CN -vector bundle over F that is iso-

morphic to Ex “ E |π´1
M pxq for all x P B

21
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List of Symbols

Fν Hermitian vector bundle pF , hν,∇νq
πF
ÝÑ pF, gF q

that is equipped with ν-dependent bundle metric
hν and metric connection ∇ν

27, 31

H Hilbert space of square-integrable sections of the
vector bundle pE , hq

πE
ÝÑ pM , gq

40

W k
ε pEq weighted Sobolev spaces on the ε-dependent vec-

tor bundle pE , h,∇Eq
πE
ÝÑ pM , gεq

44

HF infinite-dimensional, Hermitian vector bundle
over B with typical fibre L2pFq

44

DF infinite-dimensional, Hermitian vector bundle
over B with typical fibre DpFq “W 2pFqXW 1

0 pFq
44

ε2∆E
H horizontal part of ∆E

gε 41

∆E
V vertical part of ∆E

gε 41

HE self-adjoint operator on H with Dirichlet do-
main dompHEq

50, 128

HF self-adjoint vertical operator on HF with Dirichlet
domain DF

62, 128

εHE
1 perturbation within the operator HE 50, 129

A algebra of B-horizontal differential operators on E
with coefficients in L8pLpHFqq

71

AH subalgebra of A, B-horizontal differential opera-
tors on E with coefficients in L8pLpHF ,DFqq

71

3 (Super-)Adiabatic Perturbation Theory

Symbol Explanation Page

λ eigenband of the vertical operator HF 62, 88
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List of Symbols

P0 spectral projection associated with the eigen-
band λ

63, 87

P eigenspace bundle associated with λ, Hermitian
vector bundle over B of finite rank q “ rankpP0q

63, 120

HP Hilbert space of square-integrable sections of P 107

HP
a adiabatic operator, self-adjoint operator on HP 120

∇B Berry connection on P 121

∆B Berry Laplacian, second-order differential opera-
tor on P

124

VP
BH Born-Huang potential, deviation from the Berry

Laplacian ∆B to the projected horizontal Lapla-
cian P0∆

E
HP0

124

VP
ηV

potential induced by the mean curvature vec-
tor ηV

124

Pε super-adiabatic projection associated with the
eigenband λ

98

Uε unitary operator on H which intertwines P0

and Pε

107

HP
eff effective operator, self-adjoint operator on HP

with domain Deff
P “ U:ε Pε dompHEq

107

HP
sa super-adiabatic corrections, deviation from HP

eff
to HP

a

120

MP MP -term, first super-adiabatic correction 126

domk
αpTq domain of pε´αTqk for k P t1, 2u, parameter α P

p0, 2s and operators T P tHE , HP
a , HP

effu, which is
equipped with the graph-norm

130
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List of Symbols

4 Quantum Waveguides

Symbol Explanation Page

T ε ε-thin tubular neighbourhood around a smoothly
embedded submanifold pB, gBq

c
ãÝÑ pRb` f ,δb` f q

150

Ψε diffeomorphism from the ε-independent wave-
guide M Ă NB to the ε-thin tube T ε Ă Rb` f

150

Gε pullback of the Riemannian metric ε´2δb` f to M
via Ψε, admissible perturbation of gε

158, 163

Aε pullback of A P C8b pT
˚Rb` f

ˇ

ˇ

T ε q b CNˆN
Herm to M

via Ψε, admissible perturbation of π˚MAB with
AB “ c˚A P C8b pT

˚Bq bCNˆN
Herm

169

pΨε unitary operator from L2pT ε ˆ CN , volδb` f q to
L2pM ˆCN , volGε q induced by Ψε

146

pUρε unitary operator from L2pM ˆCN , volGε q to H“
L2pMˆCN , volgq induced by the Radon-Nikodym
density ρε “ volGε {volgε

173

Vρε geometric potential induced by ρε 54, 176

HE,w Schrödinger operator that is associated with weak
gauge fields

175, 177

HF ,ε,w magnetic vertical operator within HE,w, Opε2q-
perturbation of HF ,ε,w

Aε“0

179

HE,s Schrödinger operator that is associated with
strong gauge fields

205

HF ,ε,s magnetic vertical operator within HE,s, Opεq-
perturbation of HF ,ε“0,s

205
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List of Symbols

λm
0 magnetic ground state band of the vertical opera-

tor HF ,ε,w respectively HF ,ε,s, which comes along
with a ground state φm

0 , a spectral projection Pm
0 ,

an eigenspace bundle Pm, etc.

179, 209

271



List of Symbols

272



Bibliography

[BdeOV13] R. Bedoya, C. R. de Oliveira and A. A. Verri. Complex Γ -
convergence and magnetic Dirichlet Laplacian in bounded thin
tubes. Journal of Spectral Theory 4 (2013), 621–642.

[BGV92] N. Berline, E. Getzler and M. Vergne. Heat kernels and Dirac
operators. Grundlehren der mathematischen Wissenschaften
298, Springer-Verlag (1992).

[Bis75] R. L. Bishop. There is more than one way to frame a curve. The
American Mathematical Monthly 82 (1975), 246–251.

[Bla10] D. E. Blair. Riemannian geometry of contact and symplectic
manifolds. Progress in Mathematics 203, Birkhäuser-Verlag
(2010).

[BEK05] D. Borisov, T. Ekholm and H. Kovařík. Spectrum of the magnetic
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quantum layers. Communications in Mathematical Physics
223 (2001), 13–28.

[Eic91] J. Eichhorn. The boundedness of connection coefficients and
their derivatives. Mathematische Nachrichten 152 (1991),
145–158.

[Eic07] J. Eichhorn. Global analysis on open manifolds. Nova Science
Publishers, Inc. (2007).
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