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Zusammenfassung

Im Rahmen dieser Dissertation werden wir uns mit Schrédinger-Operato-
ren von der Gestalt

H® = =A% +V® + eHY

auf einem hermiteschen Vektorbiindel (mit Totalraum) £ iiber einer &-
diinnen Basismannigfaltigkeit M beschéftigen. Hierbei wird die kinetische
Energie durch den Zusammenhangs-Laplace-Operator —A; beziiglich ei-
nes metrischen Zusammenhangs V¢ auf £ mit Dirichlet-Randbedingungen
beschrieben. Dariiber hinaus représentiert V¢ ein End(&)-wertiges Poten-
tial und der Differentialoperator eH ‘f eine kleine Storung. Die Eigenschaft
von M e-diinn zu sein bedeutet intuitiv, dass die Gréenordnung einiger
(vertikaler) Richtungen mit einem kleinen Faktor ¢ « 1 gegeniiber den
iibrigen (horizontalen) Richtungen skaliert. Wir hingegen werden den
gleichwertigen Standpunkt einnehmen, dass wir die vertikale Langenska-
la festhalten und die horizontalen Richtungen mit dem Faktor £ ~! grof
skalieren.

I — ool
>8 1t kleine Richtungen, O(1)
-_—

groe Richtungen, O(¢ )

Wir werden dies mittels einer riemannschen Metrik g = g, + g, auf M
und einer geeigneten Reskalierung

€

g =¢e%gu+gv=¢"(gn+%8y)



umsetzen, was schlieBlich zu einer Aufspaltung
£ 20E £
—AL = —e’Af - Af ¢h)

des zugehorigen Laplace-Operators fithrt. Die Untersuchung solcher ska-
lierten Metriken wird hiufig als der adiabatische Limes bezeichnet. Wir
werden eine Komplexititsreduktion des Operators H durchfiihren, indem
wir ausnutzen, dass der Einfluss der vergleichsweise kleinen vertikalen
Richtungen immer weiter vernachlassigt werden kann. Genauer gesagt
werden wir es uns zum Ziel setzen, einen effektiven Operator Hgf abzu-
leiten, welcher lediglich auf einem Vektorbiindel P {iber den horizontalen
Richtungen wirkt und wesentliche Eigenschaften von H® wie die erzeugte
Dynamik oder das Spektrum approximiert.

Als Hauptanwendung fiir diese Fragestellung dient uns die geometrische
Situation, bei welcher M von einer Familie von ¢-d{innen Tubenumge-
bungen 7° um eine Untermannigfaltigkeit eines héherdimensionalen
euklidischen Raums herriihrt. Die Untersuchung des Laplace-Beltrami-
Operators (d.h. des Zusammenhangs-Laplace-Operators auf dem trivia-
len Linienbiindel 7° x C beziiglich des flachen Zusammenhangs d) mit
Dirichlet-Randbedingungen entspricht der quantenmechanischen Bewe-
gung von ungeladenen, spinlosen Teilchen, welche innerhalb der Tube 7°
lokalisiert sind. Aus diesem Grund nennt man solche Tuben in der Literatur
auch Quantenwellenleiter. Die Erweiterung auf Zusammenhénge von der
Form d + iA4 erlaubt es uns geladene Quantenteilchen zu betrachten, die
an ein externes magnetisches Potential .A koppeln. Zusétzlich ermdglicht
unser geometrischer Rahmen eine Verallgemeinerung zu Spin behafte-
ten, geladenen Teilchen, welche an ein méglicherweise nicht-abelsches
Eichfeld koppeln.

Die Betrachtung einer diinnen Mannigfaltigkeit mit wohl separierten
Langenskalen (grol3e horizontale Richtungen und kleine vertikale Rich-
tungen) kann tatséchlich als ein adiabatisches Problem aufgefasst werden.
Diese Skalentrennung bedeutet, dass sich zu den vertikalen Richtungen
gehorende Eigenschaften sehr langsam entlang der horizontalen Richtun-
gen verdandern und somit in einer festen Konfiguration verharren. In der
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Tat erinnert die Struktur (1) des Laplace-Operators stark an das bekann-
teste Beispiel des zuvor genannten Prinzips: Bei der Born-Oppenheimer-
Naherung in der Molekiildynamik wird die Annahme ausgenutzt, dass die
leichten (schnellen, ,vertikalen®) Elektronen ihren schweren (langsamen,
,horizontalen“) Kernen adiabatisch folgen, d.h. dass sich der Eigenzustand
der Elektronen augenblicklich der momentanen Position der Kerne anpasst.
Daraus folgt, dass die Dynamik der Kerne durch eine effektive Gleichung
auf ihrem eigenen Konfigurationsraum von niedrigerer Dimension geregelt
wird, wobei der Einfluss der Elektronen durch ein effektives elektronisches
Potential zum Ausdruck kommt. Dieser Reduktionsprozess (das , Einfrieren
der elektronischen Freiheitsgrade“) nennt man adiabatisches Entkoppeln.

Aufbau der Arbeit und Ubersicht der Ergebnisse

In Kapitel 2 werden wir ausfiihrlich die Geometrie eines hermiteschen
Vektorbiindels & =% M iiber einer ¢-diinnen Mannigfaltigkeit (M, g°)
beleuchten. Dabei werden wir M selbst durch ein Faserbiindel M ™ B
mit kompakten Fasern M, = ;' (x), x € B, modellieren. Es wird sich
herausstellen, dass die Verkniipfung der beteiligten Biindel als ein Faser-
biindel £ {iber B mit Projektion Il = 7, o mo betrachtet werden kann,
wobei die Fasern &, = Hgl (x) hermitesche Vektorbiindel iiber M, fiir alle
x € B sind (siehe Proposition 2.1). Die Aufspaltung (1) legt es nahe, den
Schrédinger-Operator HE geméiR

H® = —e?Af, + eH! + H”
auf H = L*(€) aufzuteilen, wobei H” den e-unabhéngigen, I1.-faserwei-
sen, selbstadjungierten Operator
F(y) — _AEx €
H7 (x) = —Ap +V i,

mit Dirichlet-Randbedingungen bezeichnet. Da die Fasern M, kompakt
sind, besteht das Spektrum von H” (x) lediglich aus Eigenwerten mit end-
licher Vielfachheit. Deshalb werden wir uns mit Eigenbandern A : B — R



befassen, fiir die A(x) € o (H” (x)) und die zugehérige faserweise spektra-
le Projektion Py(x) der Gleichung H” (x)Py(x) = A(x)P,y(x) fiir alle x € B
geniigen. Das Bild von Py (x) beinhaltet gerade die A(x)-Eigenschnitte und
spannt einen faserweisen, endlich dimensionalen Unterraum von L?(&,.)
auf. Diese Unterrdume kénnen zu einem Vektorbiindel P ~%> B von end-
lichem Rang zusammengefiigt werden, sofern das zugrunde liegende
Eigenband A vom Rest des Spektrums durch eine gleichmélige Liicke
getrennt ist.

Ein natiirlicher Kandidat zur Approximation von H ist der adiabati-
sche Operator H”” = PyH® P, auf L*(P). Mit der Ma3gabe, dass [H®, P,] =
[—e2Af + eHS, Py] = O(¢) in einem geeigneten Sinne gilt, ist der adiaba-
tische Operator e-nahe am anfianglichen Operator auf dem adiabatischen
Unterraum PyH, d.h.

(H® —HP)P, = (—e*AL + eHY) Py — Py (—€*AL + €HY) P,
= [—e®Af + eHE, Py | P,

~0)
=0(¢).

Dies lasst sich auf eine ndherungsweise Invarianz des Unterraums PyH
unter der Wirkung von e 7"t fiir endliche Zeiten t = O(1) tibertragen.
Sobald man jedoch eine Invarianz fiir grol3ere Zeiten beweisen will, muss
man die spektrale Projektion P, durch eine superadiabatische Projektion
P, = Py + O(¢) ersetzen. Deren Konstruktion wird in Kapitel 3 durchge-
fithrt. Wir werden dabei in Proposition 3.17 zeigen, dass fiir alle n € N eine
orthogonale Projektion P, existiert, sodass [H®,P,] = O(e"*1) in £(H)
fiir beschrankte Energien gilt.

In Kapitel 4 werden wir uns der Aufstellung der (abstrakten) Haupter-
gebnisse dieser Arbeit widmen. Hierbei werden wir stets

(i) angemessene Beschranktheitseigenschaften fiir die Geometrie der
beteiligten Biindel £ =5 M und M =% B (siehe Bedingung 2.2),

(ii) angemessene Beschréanktheitseigenschaften fiir die Stérung 8Hf
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und das Potential V¢ (siehe Bedingung 2.16)

(iii) und eine gleichmifige spektrale Liicke fiir das Eigenband A (siehe
Bedingung 2.26)

annehmen. Die superadiabatische Projektion P, dient als Ausgangspunkt
fiir den letztendlichen effektiven Operator. Man erhilt ihn, indem man H¢
zundchst auf den superadiabatischen Unterraum P,# einschrénkt und
dann mittels eines unitdren Operators U,, welcher P, und P, miteinander
verflechtet (siehe Lemma 4.2), zuriick auf L?(P) abbildet:

Theorem 1 (Theorem 4.3) Es gelten die drei oben genannten Bedingun-
gen. Dann existieren fiir alle n € N und A > 0 ein effektiver Operator

HZ. = UIP,H®P,U, auf L?(P) sowie Konstanten C > 0 und &, > 0, sodass

H (e7iH"t — U,e Mt UT) P10 (H'S)Hw{) < Ce"M |t

fiir alle 0 < € < g erfiillt ist.

Es sei darauf hingewiesen, dass der urspriingliche Operator H® auf L2-
Schnitten von £ (einem Vektorbiindel {iber M von endlichem Rang) wirkt,
wéahrend Hgf auf L2-Schnitten von P (einem Vektorbiindel iiber B von
endlichem Rang) operiert. Die Approximation der von H? erzeugten Dyna-
mik durch die von HZ;f generierte Dynamik markiert somit einen Prozess
der Dimensionsreduktion. Neben den jeweiligen Dynamiken besteht auch

ein gewisser Zusammenhang zwischen den Spektren:

Theorem 2 (Theorem 4.4) Sei 6 > 0 beliebig und es gelten die Vorausset-
zungen von Theorem 1. Dann gibt es Konstanten C > 0 und ¢, > 0, sodass
peo(HE) mitu<A—6

dist(u, o (H?)) < Ce™'!

fiir alle 0 < ¢ < g, impligiert.

ix



Offensichtlich ist die umgekehrte Richtung — d.h. die Approximation
von o(HZ,) durch o(H®) - genau dann moglich, wenn lediglich das
Grundzustandsband Aq(x) = min(o(H” (x))) den signifikanten Beitrag
zum Erwartungswert von H¢ liefert. Mit anderen Worten: Die einzige
Moglichkeit, um eine gegenseitige Ndherung der beiden betreffenden
Operatoren zu erreichen, ist die Einschridnkung von o (H?) auf den zu A,
gehorenden spektralen Unterraum. Dies kann dadurch erzielt werden,
dass man Energien oberhalb von A; = inf,c5(0(H” (x))\A¢(x)) mittels
einer geeigneten Abschneidefunktion y € C;°((—o0, A;)) unterdriickt:

Theorem 3 (Theorem 4.5) Es gelten die Voraussetzungen von Theorem 1
fiir das Grundzustandsband. Sei dariiber hinaus —e*Af, + ¢HS nach unten
beschrinkt durch —Ce1ly, fiir eine Konstante C > 0. Dann ist HY.y (HY,)
unitdr dquivalent zu H y (H®) bis auf Fehler der Ordnung "' in £(H)
fiir € > 0 klein genug.

Hierauthin werden wir die Diskussion {iber den effektiven Operator mit
einer genaueren Inspizierung seiner semiklassischen Entwicklung beenden.
Hierbei werden wir die konkreten Entwicklungen U, = 1,, + O(¢) und
P, = Py + O(¢e) verwenden und im Wesentlichen

HL =HP + M” + O(€%)

mit dem O(&?)-term M7 als erste superadiabatische Korrektur erhalten
(vergleiche Proposition 4.10). Im letzten Abschnitt dieses Kapitels werden
wir uns mit der Untersuchung von niedrigen Energien der Ordnung &%,
a € (0,2], iiber dem unteren Rand von o (H®) befassen. In diesem Fall
werden wir sehen, dass der (bedeutend simplere) adiabatische Operator
eine genauere Naherung liefert, als man von H”, = H” + O(&?) zunachst
erwartet hitte. Genauer gesagt werden wir in Proposition 4.14 zeigen, dass
sich die unteren Teile von o (H*) und o (H!") gegenseitig bis auf Fehler
der Ordnung ¢2+*/2 approximieren. Besteht der untere Teil von o' (H”) -
beziehungsweise der untere Teil vom Spektrum des positiven Operators
HP — Aol 12(py fir Ag = inf,c5(Ag(x)) — lediglich aus Eigenwerten, so
erhélt man eine noch bessere Ndherung:



Theorem 4 (Theorem 4.15) Es gelten die Voraussetzungen von Theorem 1
fiir das Grundzustandsband und die Stérung H 15 erfiille zusdtzlich Bedin-
gung 4.11. Falls nun fiir ein a € (0, 2] positive Konstanten C, & und & exis-
tieren, sodass o (H — Ag1yz(py) N (=0, (C + &)&®) aus K + 1 Eigenwerten
vy < -+ < Vg unter seinem wesentlichen Spektrum fiir alle 0 < € < g,
besteht, so gilt:

(i) Hf hat K + 1 Eigenwerte v, < --- < Vg unter seinem wesentlichen
Spektrum und |v; — v;| = O(&***) fiir alle j €0,...,K.

(ii) Falls zusdtzlich ein v € {v,,..., v} einfach ist und vom Rest von
O'(HZ) — Aoly2(py) mindestens durch C,e® fiir ein C, > 0 getrennt
ist, so ist der zugehorige Eigenwert v von HE ebenfalls einfach und es
gibt eine Konstante C,, > 0, sodass dist(v, o (H*\{v})) = C,&“ gilt.

Wir werden diese Resultate in Kapitel 5 auf den geometrischen Rahmen
von verallgemeinerten Quantenwellenleiter anwenden. Letztere werden
durch eine Familie von e-diinnen Tubenumgebungen 7° um eine glatt
eingebettete, b-dimensionale Untermannigfaltigkeit B < (R**/,§2+f)

modelliert. Die Untersuchung des Dirichlet-Laplace-Operators —azAg;‘j ;4

auf 7¢ x CV beziiglich eines Zusammenhangs vePA o diey +ie P A
entspricht einer Eichtheorie, bei welcher geladene, nichtrelativistische
Quantenteilchen (charakterisiert durch eine lokalisierte Wellenfunktion
Y 1 R — L%(T* x CN), welche die zugehérige Schrédinger-Gleichung
16st) an ein moglicherweise nicht-abelsches, (Cﬁexnlz -wertiges Eichfeld A
der Stirke e #, B € {0, 1}, koppeln. Wir werden zunichst einen Diffeo-
morphismus konstruieren, um die &-diinnen Tuben (7°¢,5%+/) isometrisch
auf eine g-unabhéngige Mannigfaltigkeit (M, G°) abzubilden, welche die
zusitzliche Struktur eines Faserbiindels M > B mit einer gestorten rie-
mannschen Metrik G°* = g° + O(¢) aufweist. Ferner ist das induzierte
Eichfeld A, = A, + O(e) ebenfalls eine zulédssige Stérung. Wir werden

. —p e
somit folgern, dass —ezAgb HA unitdr dquivalent zum Operator

—B
£ e PA
H == AGS ¢

Xi



ist.

Schwache Eichfelder (3 = 0, VA = dlcv +iA)

Wir werden die Ergebnisse zu den niedrigen Energien fiir verallgemei-
nerte Wellenleiter in der Anwesenheit von schwachen CV*N-wertigen
Eichfeldern aufgreifen:

Theorem 5 (Theorem 5.12) Es erzeuge HY, = —&”Af, . + V die Dy-
namik eines nichtrelativistischen Quantenteilchens mit Spin N, welches
in einem Quantenwellenleiter lokalisiert ist und an ein schwaches CN*N-
wertiges Eichfeld A koppelt sowie unter dem Einfluss eines CN *N-wertigen
Potentials V steht. Sind dann die Voraussetzungen von Theorem 4 fiir das
Grundzustandsband fiir ein a € (0, 2] erfiillt und ist v* < C&®* ein Eigenwert
von H(ngwc = Hf — Aol (p), SO existiert ein Eigenwert v von Hy,  unter
seinem wesentlichen Spektrum mit der asymptotischen Entwicklung

v = Ay + v +O(21%).

AnschlieBend werden wir die auftretenden Operatoren H(‘S’WG fiir ein spin-

loses Teilchen in Quantenrohren um eine unendlich ausgedehnte Kurve
¢ : R — R fiir folgende zwei geometrische Konfigurationen exemplarisch
ausrechnen:

o die Rohrenquerschnitte sind zentrierte, sich um die Kurve drehende
Ellipsen mit variierenden Halbachsen (Beispiel fiir einen massiven
Wellenleiter), siehe Korollar 5.15,

e die Rohrenquerschnitte sind zentrierte Kreise mit variierendem Ra-
dius entlang der Kurve (Beispiel fiir einen hohlen Wellenleiter),
siehe Korollar 5.18.

Diese Rechnungen konnen einfach auf andere geometrische Situationen
iibertragen werden und stellen daher eine groRe Verallgemeinerung der
vorhandenen Ergebnisse bereit. Insbesondere kénnen die Resultate fiir
massive, sich drehende Rohren im R® mit festem Querschnitt direkt re-
produziert werden.
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Starke Eichfelder ( =1, V¢ 'A = dlcy + ie~1.A4)

Wir werden schlief3lich noch den Fall von starken abelschen Eichfeldern
der Form & ! Al fiir verallgemeinerte Quantenwellenleiter untersuchen,
wobei A wieder einem reellwertigen magnetischen Potential entspricht:

Theorem 6 (Theorem 5.21) Es erzeuge HS, = —ezAg;;“ICN +V die
Dynamik eines nichtrelativistischen Quantenteilchens mit Spin N, welches
in einem Quantenwellenleiter lokalisiert ist und an ein starkes magnetisches
Potential £ ' A koppelt sowie unter dem Einfluss eines CN*N-wertigen Po-
tentials V steht. Sind dann die Voraussetzungen von Theorem 3 fiir das
Grundzustandsband erfiillt und ist y € C.°((—o0,A,)) eine geeignete Ab-
schneidefunktion, so ist y (Hly) Hyywe ¥ (HL) fiir Hyye = HY + M7 unitdr
dquivalent zu y (H:, VHS, x (HS ) bis auf Fehler der Ordnung &* in L(H)
fiir € > 0 klein genug.

Wir werden auch hier die reduzierten Hamilton-Operatoren H, BWG fiir die

beiden beispielhaften Geometrien eines massiven Wellenleiters (vergleiche
Korollar 5.23) und eines hohlen Wellenleiters (vergleiche Korollar 5.18) be-
stimmen. Wahrend die Resultate fiir den massiven Fall wiederum mit den
bereits bekannten Ergebnissen in Verbindung gebracht werden konnen,
werden wir fiir H (SQWG im hohlen Fall einen vollstdndig neuen Ausdruck
erhalten.
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Chapter 1

Introduction

In this thesis, we will analyse Schrodinger-type operators of the form
H® = A% +V® + eH (1.1)

on a Hermitian vector bundle (with total space) £ over an e-thin base
manifold M, where the kinetic energy operator —A¥¢, is the connection
Laplacian associated with some metric connection V¢ on £ with Dirichlet
boundary conditions, V¢ stands for an End(&)-valued potential, and the
differential operator aHf denotes a small perturbation. The aforemen-
tioned e-thinness of M intuitively means that the magnitude of some
compact (vertical) directions scales by a small factor ¢ « 1 compared
to the remaining (horizontal) directions. We will adopt the equivalent
approach of keeping a fixed vertical length scale and scaling the horizontal
directions by a factor ¢! instead.

E\ /
(M, g°) } small directions, 0(1)

—_—
large directions, O(¢ )

This can be implemented by introducing a Riemannian metric g = g, + gy
on M and an appropriate rescaling

€

g = 3728H +8v = giz(gH + Ezgv)’



1 Introduction

which consequently leads to an adapted splitting
£ 27E £
—AL = —€"AL - Ay (1.2)

of the associated Laplacian. The examination of such rescaled metrics is
often referred to as the adiabatic limit. We will reduce the complexity of
the operator HY, taking advantage of the increasingly negligible influence
of the small vertical directions. More precisely, we will derive effective
operators Hgf, acting on a vector bundle P over the large horizontal
directions alone, which approximate essential features of H¢ such as the
generated dynamics or the spectrum.

Our main application, and therefore motivation, is the geometric frame-
work where M arises from a family of e-thin tubular neighbourhoods 7°
around a submanifold of some higher dimensional ambient Euclidean
space. Physically speaking, the study of the Laplace-Beltrami operator
(which is the connection Laplacian on the trivial line bundle 7° x C asso-
ciated with the flat connection d) with Dirichlet boundary conditions in
such tubes corresponds to the quantum mechanical motion of uncharged,
spinless particles that are localised within the tube 7°. That is why these
tubes are often referred to as quantum waveguides in the literature. Such
waveguides have been studied for more than twenty-five years, ranging
from strips around infinite curves in R? [ES89] to so-called generalised
quantum waveguides [HLT15], where R? is replaced by R®*f for b, f € N
and the role of the curve is taken by an embedded, complete submanifold
of dimension b and codimension f. For example, the latter submanifold
could represent a vibrational equilibrium configuration of nuclei which
form a molecule, whereas the surrounding tubular neighbourhood mod-
els the region in which the nuclei carry out their small vibrations. The
extension to metric connections of the form d + i.4 enables us to consider
charged quantum particles coupled to some external magnetic poten-
tial A. Moreover, our geometric framework allows for the generalisation
to charged particles that carry a spin and couple to a possibly non-Abelian
gauge field.

There is a vast amount of literature dealing with the spectral analysis



of the Laplacian in quantum waveguides. The two main problems that
are considered are:

(i) What are natural conditions on the geometry of the tube 7¢=! (in
particular on that of the submanifold) which yield the existence of
eigenvalues below the essential spectrum (“bound states”)?

(i) Assume that there are eigenvalues below the essential spectrum.
What is the asymptotic expansion of these eigenvalues in the shrink-
ing tube 7°%? Can they be approximated by means of a limiting
operator?

We will give an overview of the extensive literature addressing these ques-
tions and discuss the related results in Section 1.2 after the establishment
of the necessary geometric and analytic language. Let us finally mention
some of the related problems that will not be examined any further in this
thesis:

e Apart from quantum mechanical dynamics governed by the Schro-
dinger equation, the Dirichlet Laplacian is also the generator of the
heat semi-group describing the conduction of heat in such thin tubes
with fixed temperature on the outside. Some of the relevant results
(effective equations, decay rate of the solutions) can be found in
[Wit07, KZ10, GKP14, KK14].

e Other interesting questions arising from the Laplacian in thin tubes
concern the consideration of Neumann boundary conditions, the
location of nodal domains of the eigenfunctions, and the analysis
of thin neighbourhoods of embedded graphs. A nice survey of the
corresponding questions and methods is given by Grieser [Gri08].

e Another conceivable application for this framework is the vector
bundle £ = AKM of alternating k-Forms over (M, g¢). Weitzen-
béck’s formula implies that the Hodge Laplacian A?: ige on k-forms

differs from the connection Laplacian, whose associated connec-

tion is induced by the Levi-Civita connection V¢, merely by an



1 Introduction

End(AKM)-valued potential [BGV92]. If M is a compact manifold,
de Rham’s theorem [BGV92, Theorem 3.54] then states that the
kernel of A?f’ ige is isomorphic to the k-th de Rham cohomology
group, providing insights into the differential topological structure
of M. Consequently, it should be possible to associate ker(A?Z ige)
with the (less complicated) kernel of an effective operator and link
this to already existing results concerning the adiabatic limit of the

Hodge Laplacian [MM90, For95, LK0O, Lot02].

The treatment of a thin manifold, where the length scales of large hor-
izontal directions and small vertical directions are well separated, can
actually be considered as an adiabatic problem. This separation means
that properties related to the vertical directions vary slowly along the hor-
izontal directions and thus remain in a fixed configuration. The structure
of (1.2) is in fact evocative of the most famous example of the aforemen-
tioned principle: The Born-Oppenheimer approximation within molecular
dynamics exploits the assumption that the light (fast, “vertical”) electrons
follow their heavy (slow, “horizontal”) nuclei adiabatically, i.e., the eigen-
state of the electrons instantaneously adjusts to the momentary position of
the nuclei [BO27]. It follows that the dynamics of the nuclei are governed
by an effective equation on their own lower dimensional configuration
space, whereas the effects of the electrons are expressed by an effective
electronic potential. This reduction procedure (“freezing of the electronic
degrees of freedom”) is called adiabatic decoupling.

For this reason we use the techniques of higher order space-adiabatic per-
turbation theory which were developed in the context of Born-Oppenhei-
mer approximation [MS02, Sor03, Teu03, NS04, PST07, MS09] for flat
geometries. These ideas have been extended to constrained quantum
systems for a great variety of geometries, where the localisation proce-
dure was implemented through either a strongly confining potential for
non-compact vertical directions [WT14] or Dirichlet boundary conditions
for the compact case [Lam14]. In this thesis, we will adopt the geomet-
ric framework introduced in the last-mentioned work and broaden the
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viewpoint from operators acting on complex-valued functions on M to
operators acting on sections of a CN-vector bundle £ over M that can
locally be represented by CY-valued functions (N € N).

1.1 Derivation of Effective Operators

We will explore the geometry of a Hermitian vector bundle £ =5 M over
an e-thin manifold (M, g°) in great detail throughout Chapter 2. The latter
manifold itself will be modelled by a fibre bundle M = B with compact
fibres M, = ;' (x), x € B. It will turn out that the composition of the
involved bundles can be viewed as a fibre bundle £ over B with projection
Iz = myome, where the fibres £, = 1'[;1 (x) are Hermitian vector bundles
over M, for all x € B (see Proposition 2.1). The decomposition (1.2)
suggests to split

H® = —*Af, + eHS + HT

on # = L%(&), where H” is the e-independent, I1.-fibrewise, self-adjoint
operator

H” (x) = —Agx@ + V[,
with Dirichlet boundary conditions. The compactness of the fibres M,
implies that the spectrum of H” (x) consists solely of eigenvalues of finite
multiplicity. We will therefore deal with eigenbands A : B — R such that
A(x) € o(H” (x)) and its associated fibrewise spectral projection Py(x)
satisfy H (x)Py(x) = A(x)Py(x) for all x € B. The image of Py(x) exactly
contains the A(x)-eigensections and spans a fibrewise finite-dimensional
subspace of L?(&, ). These subspaces may be merged into a finite-rank
eigenspace bundle P =5 B if the primary eigenband is separated from
the rest of the spectrum by a uniform gap.

A natural candidate for the approximation of H® is given by the adia-
batic operator H” = PyH® P, acting on L*(P). Provided that [H®,P,] =
[—e2Af +eHE, Py] is of order ¢ in a suitable sense, the adiabatic operator
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is e-close to the initial operator on the adiabatic subspace PyH by virtue
of the fact that

(H® —HP)Py = (—*AL + eHY) Py — Py (—€* AL + €HY) P,
= [—e®Af + eHE, Py | P,

=0(¢)
=0(e¢).

This translates into an approximate invariance of the subspace Py un-
der e H°* for finite times t = O(1). If one wants to prove invariance for
larger time scales, one has to replace the spectral projection P, by a super-
adiabatic projection P, = Py + O(¢). Its construction will be carried out
in Chapter 3. We will demonstrate in Proposition 3.17 that for alln e N
there exists an orthogonal projection P, such that [H®,P,] = O(e"™?)
holds in £(#) for bounded energies.

Chapter 4 will be dedicated to stating the main (abstract) results of this
thesis. Here, we will always assume

(i) suitable boundedness properties for the geometry of the involved
bundles € =5 M and M =% B (cf. Condition 2.2),

(ii) suitable boundedness properties for the perturbation eH f and the
potential V¢ (cf. Condition 2.16),

(iii) and a uniform spectral gap of the eigenband A (cf. Condition 2.26).

The super-adiabatic projection P, serves as the starting point for the
ultimate effective operator. This operator is obtained by first restricting H®
to the super-adiabatic subspace P,H and then mapping it back to L*(P)
via a unitary operator U, which intertwines P, and P,. We will prove in
Theorem 4.3 that the effective operator HZ;f = UETPEH €p.U, is self-adjoint
on L?(P) and satisfies

(e Ue U], = O(en ]



1.1 Derivation of Effective Operators

in £(#) for bounded energies. We remark that while the initial operator
acts on L2-sections of £ (which is a finite rank vector bundle over M),
the effective operator acts on L2-sections of P (which is a finite rank
vector bundle over the lower dimensional manifold B). Hence the ap-
proximation of H® by Hgf represents a dimensional reduction procedure.
Apart from the dynamics, there also exists a certain relationship between
the respective spectra. More precisely, we will show in Theorem 4.4 that
dist(u, o (H®)) = O(e"*1) for any u € o (H;,). Itis clear that the converse
direction — namely the approximation of o (H”,) by o (H?) - is possible if
and only if the ground state band A,(x) = min(c(H” (x))) contributes
significantly to the expectation value of HY. Put differently, the only
possible way to obtain a mutual approximation of the two operators in
question is the restriction of o (H?) to the spectral subspace which is
associated with A,. This can be implemented by the suppression of en-
ergies above A; = inf,.z (o (H” (x))\A¢(x)) via some appropriate cut-off
function y € C;°((—,A,)). Theorem 4.5 will then yield that H® y (H?)
is unitarily equivalent to H .y (HX,) up to errors of order "' in £L(H).
We will then end the discussion of the effective operator by taking a closer
look at its semi-classical expansion. To do so, we will use the concrete
expansions U, = 15, + O(¢) and P, = P, + O(¢) and essentially obtain

HE =H" + M” + 0(¢?)

in Proposition 4.10, including the O(&2)-term M7 as first super-adiabatic
correction. Section 4.4 will deal with the examination of low energies,
which are of order %, a € (0,2], above the bottom of o(H?). In this
case we will see that the (much simpler) adiabatic operator provides a
more accurate approximation for such energies than one would expect
from Hzf = Hf + O(&?). More precisely, we will prove that the low-
lying parts of o(H?) and o (H!") approximate each other up to errors
of order £2¥%/?2 (see Proposition 4.14). Moreover, if the low-lying part
of O'(Hf) solely consists of eigenvalues, Theorem 4.15 will give that the
mutual approximation of the eigenvalues is valid even up to errors of
order 277,
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1.2 Application to Quantum Waveguides

We will apply the aforementioned results to the geometric framework of
generalised quantum waveguides [HLT15]. These are a family of e-thin
tubular neighbourhoods 7° around a smoothly embedded, b-dimensional
submanifold B < (R"*/,5°*/). The analysis of the Dirichlet Lapla-
cian —e2AZ}, . on 7° x CN associated with a connection V4 = d1cy +iA
corresponds to a gauge theory where charged, non-relativistic quantum
particles (described by a localised wave function v : R — L?(7¢ x CV)
that solves the corresponding Schrédinger equation) couple to a possibly
non-Abelian, C}y <" -valued gauge field .A. In Section 5.1, we will specify
a diffeomorphism in order to map the e-thin tubes (7¢,5°%/) isomet-
rically to an e-independent Riemannian manifold (M, G®) that has the
additional structure of a fibre bundle M =% B with a Riemannian metric
G*® = g° + O(¢) that is perturbed in an admissible manner. Moreover, the
induced gauge field likewise has the structure of an admissible perturba-
tion A, = A, + O(¢). Thus, we will conclude that —szAé‘}] .; is unitarily
equivalent to the Born-Oppenheimer-like Laplacian

HE = —A% = —AL + O(e) = —€2A1° — AL + O(e).

In the course of this section, we will try to cover at least a small part of
the vast amount of literature concerning quantum waveguides (with and
without gauge field). Moreover, we will relate the results for A # 0 to
those obtained in Section 5.2 and Section 5.3.

1.2.1 Absence of Gauge Fields

Let us first survey the existing literature for the case of a vanishing gauge
field A (or equivalently of uncharged quantum particles). The components
of the wave function v then decouple (the Laplacian AZT? = ALP: 1ew is
obviously diagonal with respect to the spin degrees of freedom) and each
component may be treated separately. We thus restrict ourselves to the
case N = 1 of spinless particles without loss of generality. The object of
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interest is the Laplace-Beltrami operator Aléﬁ' ; in such waveguides with

Dirichlet boundary conditions. Most of the relevant literature deals with
quantum strips (b = 1 and f = 1), quantum tubes (b =1 and f > 2),
and quantum layers (b > 2 and f = 1). We refer to Figure 5.1 for an
illustration of their lower dimensional realisations.

Existence of Bound States

Quantum strips were initially considered as planar tubular neighbourhoods
around bent curves with respective cross-sections being an interval of
constant length. This corresponds to a fibre bundle M = R x [—1, 1] with
isometric fibres in our picture. In this context, the authors of [ES89, GJ92]
proved the existence of bound states for asymptotically flat strips, while
Duclos and Exner obtained the same result for more general non-straight
strips [DE95]. Their results imply that the bending of the curve always
has an attractive character. Later the range of geometry was broadened to
varying strips. From our viewpoint this is implemented by an x-dependent
function h > 0 within the unscaled metric

=dx ®dx +h(x)dy ®dy.
g x®dx +h(x) dy ®dy

=8&H =gy

For instance the authors of [BGRB97, FS08b] analysed straight strips with
a local bump and with periodic cross-sections, respectively.

The existence of curvature-induced bound states for quantum tubes
with f = 2 was first proved by Goldstone and Jaffe as well as by Duclos
and Exner for disc-shaped cross-sections [GJ92, DE95]. Beyond that, the
addition of a further codimension significantly enriches the geometric
variety of the waveguide: Another interesting effect besides the attractive
bending arises if one considers quantum tubes 7¢~! where the cross-
sections are all isomorphic to a fixed, not rotationally invariant domain
F c R/ and are allowed to twist around the curve with respect to a
“reference framing” induced by some x-dependent SO(f )-transformation
for the transversal directions. The existence of bound states for bent (but
asymptotically straight) and twisted tubes was proven for example in
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[CDFDO5]. It is shown that twisting has a repulsive character [EKKOS,
Kre08] for f = 2. Particularly, twisting can destroy bound states if the
curve is only mildly bent.

In the case of quantum layers, which are built over complete, oriented
and non-compact! hypersurfaces with a constant interval as cross-section
at each point, the effect of bending is not necessarily attractive. It was
pointed out in [Haa12] that bending is attractive for b = 1, non-repulsive
for b = 2 and indefinite for b > 3, irrespective of the codimension f.
Hence, further conditions have to be imposed on the hypersurface in order
to guarantee the existence of bound states. This was done for instance in
[DEKO1, CEK04, LR12] for asymptotically flat hypersurfaces in the case
b = 2. Lin and Lu eventually introduced the notion of asymptotically flat,
parabolic hypersurfaces and showed the existence of eigenvalues below
the essential spectrum for arbitrary b > 2 [LLO6b].

Let us also mention some of the less studied geometric generalisations.
Krejcitik considered strips which are embedded into an asymptotically
flat Riemannian manifold [Kre03]. In this situation the effects of bending
consists of both a purely attractive part induced by the extrinsic curvature
of the curve and an indefinite part induced by the intrinsic curvature of
the ambient surface. Lin and Lu studied the existence of discrete spectrum
for tubular neighbourhoods of fixed radius around complete, oriented and
non-compact submanifolds with arbitrary dimensions b, f > 1 [LLO6a].
Wittich investigated tubular neighbourhoods of closed submanifolds of am-
bient Riemannian manifolds in the context of the heat equation [Wit07].
Finally, the authors of [HLT15] generalised the framework of [LL06a] to
allow for varying cross-sections. Moreover, they introduced an entirely
new class of conceivable geometries: In contrast to the previous (“mas-
sive”) waveguides, whose cross-sections are given by the closure of an
open and bounded domain, “hollow” waveguides are modelled on the
basis of the latter by restricting to their boundary in each cross-section.

1We can obviously exclude the compact case since then the associated Laplacian always
admits a purely discrete spectrum [Dav95, Theorem 6.2.3].

10
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Asymptotic Expansion of the Eigenvalues

Once the existence of eigenvalues of the Dirichlet Laplacian —¢*A% . on
T*¢ x C is assumed, one might ask for their asymptotic expansion as ¢
tends to zero. Most of the existing literature deals with the low-lying
eigenvalues that are associated with the non-degenerate, positive ground
state ¢, of the vertical operator —AI\;'B' with associated eigenband A,.
The general strategy is to specify an ¢-independent limiting operator H,,

on the lower dimensional submanifold B and to show

—ALE - 81, S5 Ho®1, Hpi=—AbB 4y (1.3)
on the subspace L?(B, gz) ® span(¢,) = H, where A = inf, .5 Ao(x) de-
notes the bottom of the vertical mode and V is some appropriate potential
on B.

The majority of the literature is restricted to a constant ground state
band A, = A,. This is for example satisfied for twisted waveguides with
isometric cross-sections F. The convergence in (1.3) has to be under-
stood in the sense of resolvents [BMT07, Gru09, K$12] or in the sense
of quadratic forms [deO11], which only implies strong resolvent conver-
gence. The potential V = Vj.pq + Viwise in the limiting operator H, encodes
the effects of bending and twisting. Particularly for the case (b, f) = (1,2)
of a bent and twisted tube around a smoothly embedded curve ¢ : R — R3,
where the twisting with respect to the “reference framing” can be charac-
terised by means of a smooth angle function 4 : R — R, the two respective
potentials are given by

2
llc” llgs

4

2
Voend = » Vi = ()2 f Iy < V)03 dy,

where ¢, is the x-independent ground state of the Dirichlet Laplacian on
F c R?. These expressions were derived in [BMTO07] for a finite curve
and by the authors of [Gru09, deO11, K$12] for unbounded curves. It
was ultimately shown in [HLT15] that the corresponding potentials for

11
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generalised (massive) quantum waveguides read in our notation
s a2 HM 2
Vbend = hm £ Vpg , thist = ||P gradg ¢0 ” VOlgV
e—0 M, g

with geometric potential V,, (2.18) depending on the embedding of the
curve. The convergence of resolvents in norm yields an expansion

vi=Ag+ e, +o(e?), i€l (1.4

for the eigenvalues of —e*AL ., where {v;};c; are the eigenvalues of H,,
if they exist. The limiting operator Hy ® 1 coincides with the leading
order of the rescaled adiabatic operator 8_2(Hf — Ao1y) that is related
to the ground state band. If one takes into account the entire £-dependent
adiabatic operator with eigenvalues {v; },c7, [HLT15, Theorem 3.3] states
that the low-lying eigenvalues of —g? A]é'bBJ; ; have the even more accurate
expansion

vi=Ag+ &2V +0(e%), i€l

While the level spacing of the low-lying eigenvalues {v? };.7 is of or-
der £2 for a constant ground state band, the situation changes if one looks
at a varying ground state band x — A,(x). In this situation one expects a
spacing of order £* for a € (0, 2), which is in particular the case if A, has
a unique minimum. Let us consider for example a one-dimensional base
(b = 1) and A4(x) = Ag + cx® + O(x?+1) for some ¢ > 0 and k € N.
Then the first eigenvalues of —e>AL?; . asymptotically behave as

e 2k 2k .
v =Ny + Ry +o(sk+1), 1€,

where {v,};c7 are the eigenvalues of the limiting operator H, with poten-
tial V(x) = cx?*. Friedlander and Solomyak considered a similar situation
for straight strips [FS08a], while de Oliveira and Verri investigated the
case k = 1 (a = 1) for bent and twisted tubes in R® [deOV11]. They
found that the effects of bending and twisting are no longer apparent on
this energy scale. Given that the level spacing of

(—SZAZEB' + (Ao(x) — AO)) ®1

12
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is of order ¢%, the low-lying eigenvalues of —e?A%>; . may be expanded
as [HLT15, Theorem 3.3]

Vi = Ao+ €% +0(e*?), €T,

where {v},.; are the e-dependent eigenvalues of ¢ ~*(H? — Ay1y).

1.2.2 Presence of Gauge Fields

The behaviour of the discrete spectrum associated with the Dirichlet
Laplacian

—e2A8, 1 = (ed1ow +ie P A) (ed1gn +iet P A)

in tubular neighbourhoods with a gauge field A € C°(T*7*¢ x C N ) has
been far less explored. The parameter § € {0, 1} in the Laplacian reflects
the strength of the coupling of the gauge field. We will refer to 3 = 0 as

weak gauge fields and to § = 1 as strong gauge fields.

Weak Gauge Fields (f = 0, VA = dlcy +iA)

Most of the literature deals with the case of a real-valued gauge field A
and charged spinless particles. This corresponds to the line bundle 7° x C,
where A represents an ordinary Abelian magnetic potential. Therefore,
we will always assume N = 1, unless otherwise indicated.

The authors of [EJKO1, EKO5, BEKO5] considered quantum strips 7°=!
and showed that the magnetic effects have a repulsive nature. Exner et al.
confined the motion of a quantum particle to a straight line by means
of a strong harmonic oscillator potential in a homogeneous magnetic
field, and allowed a periodic perturbation in the longitudinal direction.
They proved that the spectrum of the magnetic Laplacian is absolutely
continuous at the bottom. Ekholm and Kovatik examined a straight strip
with either a L* - or Aharonov-Bohm field and proved that the discrete
spectrum for both a local bump and a mildly curved strip is empty, although
both configurations induce bound states in the absence of the magnetic
field [DE95, BGRB97]. Borisov et al. demonstrated that eigenvalues

13
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below the essential spectrum in a straight strip in the presence of a Cg-
magnetic potential can be produced by the inclusion of a sufficiently
large Neumann window on the boundary. By gauging away the vertical
component of the magnetic potential, however, the authors of [KR14]
showed that the magnetic effects are not apparent to leading order for
shrinking strips 7¢°. More precisely, they proved a convergence result

AL -2, S H @1
on L?(R,dx ® dx) ® span(¢,) in the norm resolvent sense for curved
equidistant strips with limiting operator H, = —Aﬁf@ dx T Vbenda- Here,
Ao stands for the (once again constant) ground state band of —A\L/'B'.
Moreover, they approximated the eigenvalues below the essential spectrum
according to (1.4).

Shrinking quantum tubes with magnetic potentials in R® were inves-
tigated in [Gru08, BdeOV13] for B = S! and in [KR14] for B = R. In
both cases, the leading order of the vertical magnetic potential can be
gauged away completely, which results in |A] — Ao| = O(&*) for the dif-
ference of the ground state bands with and without magnetic potential.
Consequently, they obtained

0

—A§‘3 _ Z‘_ng E;)H(()'AB)®1

in the norm resolvent sense for a twisting but fixed, simply connected
cross-section. Since it also possible to simultaneously gauge away the
leading order of the horizontal component for an unbounded curve B = R,
Krejtifik and Raymond obtained Hy = —AyP: 1 + Voend + Vowist fOr the
limiting operator, which again gives an approximation of the eigenval-
ues (1.4) [KR14]. In contrast to this, the horizontal contribution of A
cannot be gauged away in general for a closed curve B = S!, and Bedoya
et al. thus derived the limiting operator

A A A .
H0 B = _Ad)f®dx + Vbend + VtWiSt’ V B = d + IAB

with magnetic potential Ay = c*A (i.e., Ag(dy)l, = Acx)(c'(x)) for
all x € SY), where ¢ : S! — R? is the embedding of the closed curve

14
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[BdeOV13]. Grushin considered more general Schrédinger operators with
an additional potential of the form V (x,y!,y?) = V;(x) + e 2V, (¥, ¥?).
Then A, = A, is the ground state of the vertical operator —AU* + V,
and V; is simply added to the limiting operator H,.

As far as quantum layers are concerned, it is always possible to gauge
away the single vertical component of the magnetic potential (just as
is done for quantum strips). Ferrari and Cuoghi, as well as de Oliveira,
considered the quantum mechanical motion of a particle that is confined
to the vicinity of a hypersurface in R® by a large constraining potential
that does not change its shape along the surface [FC08, deO14]. In the
limit where the strength of that potential tends to infinity, the dynamics
converge to a product of dynamics on the surface generated by a limiting
operator H64 5= —Agﬁ + Weng and highly oscillating dynamics for the
transversal mode. Here, Ay denotes the restriction of the horizontal mag-
netic potential to the surface. Krejcitik et al. proved the norm resolvent
convergence result

A e—0 ;1A
—AY - 21, S5 HPR1

for equidistant layers with Dirichlet boundary conditions [KRT15]. More-
over, they determined the corresponding magnetic field By = *d.Az on B
to be the component B+ of the initial magnetic field perpendicular to the
surface.

We will apply the results of the low energy asymptotics to generalised
quantum waveguides in the presence of Cﬁexrfz -valued gauge fields in
Section 5.2. More precisely, we will show in Theorem 5.12 that the
low-lying eigenvalues of —82Ag}9 +s can be approximated by those of the
appropriate adiabatic operator linked to the ground state band of the
vertical operator up to errors of order £27*. We will calculate the operators
for quantum tubes around an infinite curve c : R — R> with two geometric
configurations:

e the cross-sections are centred ellipses with varying semi-axes twist-
ing around the curve (massive waveguide),

15
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o the cross-sections are centred circles with varying radius along the
curve (hollow waveguide).

These calculations can be easily transferred to other geometric realisations
and therefore provide a great generalisation of the existing results. In
particular, the results for massive twisted tubes in R® with fixed cross-
section [BdeOV13, KR14] can be recovered immediately.

Strong Gauge Fields (f = 1, V¢ 'A = d1cy 4 ie1A)

Briining et al. examined a charged spin-1/2-particle (N = 2) which is
constrained around a surface B < R using a steep constraining poten-
tial V¢ [BDNT08, BDNO9]. The latter is modelled on B’s normal bundle
by means of the scaling behaviour V?(v) = V.(¢ ' v) (see also [WT14]).
Moreover, the particle is influenced by an external electric potential ¢ and
a magnetic potential A which induces a homogeneous magnetic field 5.
In the “thin layer limit” of very strong confinement ¢ — 0, they derived,
under appropriate conditions, an effective scalar Schrodinger equation

ie g (t) = (—€2A8 4 £ A+ g + £2Vpeng) P (£) (1.5)

on the submanifold B with restricted electric potential ¢ and magnetic
potential Az, bending potential Vi.,q as before and eigenband A of the

vertical C2*2-valued operator

B B'-iB?
H” = (-Ay® + V) 1 : .
EA VIt (g
operator
without spin coupling of the spin
with magnetic field

Here, the time t is measured in macroscopic units (whereas the longi-
tudinal scale of the layer is of order one). Hence, solutions of (1.5)
are expected to have non-trivial effects, i.e., to propagate macroscopic
distances in finite times t = O(1).

Krejcitik and Raymond examined the effects of a strong external mag-
netic field for the geometric framework of shrinking quantum tubes in R3
[KR14] which twist around infinite curves with fixed, simply connected

16
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cross-section F — R2. They again derived a limiting operator H, in the
norm resolvent sense, given by

Hy = <¢o, —AﬁL Xy('<¢’o)> + Voend + Vet (B)> Po)

L2(Fdy)

Here, Bj(x) € R and B, (x) € R* denote the components of the magnetic
field parallel and perpendicular to the curve, respectively, and ¢, is the
ground state of the vertical Laplacian —Aﬁf@ dy with Dirichlet boundary
conditions on L%(F,dy).

We will consider the initial operator —szAg;f‘ 1ev +Von 7¢ x CN for
generalised quantum waveguides with an Abelian magnetic potential A
and CN¥*N_valued potential V in Section 5.3. To do so, we will approx-
imate parts of the initial spectrum by those of an appropriate effective
operator Hgf =HP + M” + O(&®) associated with the ground state band
up to errors of order &3 (see Theorem 5.21). We will again examine the
two geometric configurations of infinite massive and hollow quantum
tubes in R3. While the results for the massive case may be related to those
of [KR14], we will obtain a completely new expression for the effective
operator in the hollow case.

17
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Chapter 2

The Framework

This chapter gives a detailed presentation of the framework within which
we will develop the general super-adiabatic perturbation theory. We
will begin with an explanation of the double bundle structure that was
mentioned in the introduction. Hereupon, we will turn to the connection
Laplacian and thoroughly examine its decomposition into a horizontal
and vertical differential operator. We will then introduce the conditions
on the ultimate Schrodinger operator (1.1) and discuss two possible
situations leading to an admissible perturbation. Finally, we will explain
the fundamentals of adiabatic perturbation theory.

2.1 Geometric Setting

An adequate decomposition of M into horizontal and vertical directions is
naturally obtained by the imposition that M has the additional structure
of a fibre bundle with compact fibres. More precisely, we assume that
there exist

e a smooth, connected manifold M with or without boundary (total
space),

e a smooth, connected manifold B without boundary (base manifold),

e a smooth, compact manifold F with or without boundary (typical
fibre),
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¢ and a smooth surjective map m,; : M — B,

such that for all x € B there exists an open neighbourhood U < B of x
together with a diffeomorphism @ : 7;,'(U) — U x F for which the
diagram

-1 o
7,y (U) UxF
T% ,Kﬁ
U
commutes.

X B

Figure 2.1: Illustration of a manifold M that has the additional structure
of a fibre bundle M ™ B with base manifold B = R and typical fibre
F =B%(0) = R*.

We set b := dim(B), f := dim(F), and consequently b + f = dim(M), for
the respective dimensions of the involved manifolds. Moreover, we denote
by M, := 711\711 (x) the fibres of M, all being diffeomorphic to the typical
fibre F. It follows that 0M = | J,.5 M,, and thus M has a boundary if
and only if F does. Here, one should always keep in mind the concrete
example of a “massive tube” as depicted in Figure 2.1, where the base B
is given by the real line and the typical fibre F by a two-dimensional disc.

We also introduce a C¥-vector bundle over M for some N € N (see
Definition A.1), i.e., there additionally exist
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2.1 Geometric Setting

e a smooth manifold &,
e and a smooth surjective map nz : &€ — M,
such that for all pe M

(i) there exists an open neighbourhood W < M of p together with a
diffeomorphism A : ;' (W) — W x CV for which the diagram

. (W) W xcN
7& ~ Py
w
commutes,

(i) and the fibre &, := rrgl (p) is a complex N-dimensional vector space
and A\gp : &, — {p} x C" is a vector space isomorphism.

2.1.1 Double Fibre Bundle

The composition of the involved fibre bundles allows us to view & as
the total space of a fibre bundle over B (see Figure 2.2). The following
proposition makes this precise:

Proposition 2.1 Let 1, : M — B be a smooth fibre bundle with compact
typical fibre F and mg : £ — M be a smooth CN-vector bundle. Then
[l : £ — B is a smooth fibre bundle with projection Ilg := ) o g,
where its typical fibre F carries a unique (up to isomorphism) structure of a
CN-vector bundle mt  : F — F.

PROOF. Let x, € B be arbitrary and U < B be an open, contractible,
x,-centred neighbourhood! that comes along with a local trivialisation

IWe will introduce a Riemannian metric gz on B in Subsection 2.1.3 such that we can
choose U to be for example a geodesic ball B,.(x,) with radius r < riy;(B, gp)-
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& : m,,'(U) — U x F. Instead of considering I1;' (U) = S|n71(u), we
M

rather restrict our attention to the associated pullback bundle
&= (‘I)_l)* g‘ﬂtl\;l(U)
= {((x,y),l,b) € (U x F) x €| -1y such that Y € 84,_1(,@)}

over U x F, whose fibre over (x,y) coincides with {(x,y)} x Eg-1(x,y),
and define 75 : F — F to be the CN-vector bundle (“the model”) with
total space

F = {(y,l/)) € F x € such that v € £, ) = {(x0,¥)} x 54,71(,(0’”}

and projection 7 := pry : (¥,4) — y. The contractibility of U now
induces a diffeotopy h : (U x F) x [0,1] — U x F between 1y, = h(-,1)
and {x,} x 1z = h(-,0), and [Hat09, Theorem 1.6], which is also valid in

the smooth case, states that 13 & = & and

({0} x 12)*€ = { ((,3),9) € (U x F) x € such that 4 € &, |
=Ux {(y,¢) € F x & such thaty € &, )}

=F

are diffeomorphic vector bundles over U. In summary, we constructed a
local trivialisation W : HEI(U ) — U x F, for which the diagram

v
' (U) UxF
1& » PI1
U
commutes.

We finally cover B with a set {U,},c7 of such contractible neighbour-
hoods, apply the described construction of the corresponding (model)
bundles for each U, and observe that, due to the fact that B is a connected
manifold, these models are pairwise isomorphic. 0
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2.1 Geometric Setting

Given a local trivialisation @ : 71,'(U) — U x F of M ™ B and a point
Xo € U, the above proof shows that the model F is isomorphic to the
pullback bundle (<I>|]\7[1 )EE.

xo

HSZT[MOTES

B-.. “ee B...
X X

Figure 2.2: Due to the double bundle structure £ 26 M and M ™ B,
we may consider £ as the total space of a fibre bundle over the base
B, where the typical fibre itself is a CN-vector bundle over M’s typical
fibre F.

2.1.2 Metrics and Connections

We now introduce Riemannian metrics g on M and gz on B, which turn 7,
into a Riemannian submersion [ONe66]. This means that the differential
Ty : TM — TB induces an isometry TM /ker(Tn,,) — TB, which yields
an orthogonal decomposition of M’s tangent bundle into a horizontal and
vertical subbundle with respect to g:

™ = ker(TTcM)l @ker(Trmy, ) =: HM @ VM. 2.1
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Note that the vectors in the kernel of Tm,, are tangent to the fibres,
i.e., VeM =T M, for all £ € M,. Consequently, g may be written as

g ="y83+ 8

where g, € C*(Z2VM) is the restriction of g to the vertical subbundle,
i.e., gy(h,-) for all h € HM. We finally note that the horizontal subbun-
dle HM is isomorphic to 7y, TB for any metric g. Given a smooth vector
field X € C*(TB), there exists a unique horizontal vector field on M that
is 7y -related to X. This vector field is referred to as the horizontal lift
X" e C*(HM) and therefore satisfies

g(X",v)=0forall VeC®(VM) -~ X" is horizontal,
and

TnyoX"=Xom, wo XM s a lift.

P
(B, 85)

Figure 2.3: The differential Trr), induces the decomposition (2.1): While
the integral curves of horizontal vector fields (red) are lifts of integral
curves in B, the integral curves of vertical vector fields (green) are
tangent to the fibres in M.

We introduce the integrability tensor Qy € C* (A*2HM®VM) of the horizon-
tal distribution and the second fundamental form II, € C*(%2VM @ HM )
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2.1 Geometric Setting

of the fibres to be

QuXH Y =P™M (X", YH]) = (X" YH] - X, Y)"
and

1L, (v, W) = P (Vi W),

respectively. The g, -trace of the latter is the horizontal mean curvature
vector

ny = try (Iy(+,-)). (2.2)

Note that 7| u, coincides with the mean curvature of the submanifold
M, — M (see Definition A.11(iii)) for all x € B.

As far as the vector bundle £ is concerned, we introduce a Hermitian
bundle metric h € C*(£*®2) and a metric connection V¢ : C*(€) —
CP(T*M ®E).

The fibres &, = Hgl (x) of the composed bundle £ 2%, B coincide with
the pullback bundles ¢*€ for all x € B, where M, <% M is the embedding
of the fibre M, into M. In this context, we equip each of these bundles &,
with the pullback bundle metric h, = 1*h € C*(£*®?) and the pullback
connection V& = 1¥V® : C*(£,) - C*(T*M, ®&,), as well as each
of the related base manifolds M, with the pullback Riemannian metric
gu, =tigyeC® (22TM,), and obtain fibrewise Hermitian vector bundles
Mg, (Ex Py, VSX) - (M, gMX)'

2.1.3 Boundedness Properties

In order to study global properties of differential operators on a vector
bundle over a non-compact base, we need to specify additional uniformity
conditions on the geometric objects.

We first require suitable boundedness properties for the Riemannian
manifold (M, g) with an additional fibre bundle structure. Therefore, we
transfer the notion of a vector bundle of bounded geometry to a fibre
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bundle with compact fibres, in that we require the existence of a suitable
set of local trivialisations with uniform bounds. This concept of so-called
uniformly locally trivial fibre bundles was introduced in [Lam14, Section
A.1]. In particular, Lampart proved that

e (M, g) is a 0-manifold of bounded geometry in the sense of Defini-
tion A.15 if OF # &,

e and (M, g) is manifold of bounded geometry in the sense of Defini-
tion A.14 if OF = (.

Thus, we can finally impose uniform boundedness properties for the
CN-vector bundle over M. Let us state the precise requirements on the
underlying geometry that will be used throughout this thesis:

Condition 2.2 With the notation previously introduced in this section,
we require that

(i) my : (M,g) — (B, gg) be a uniformly locally trivial fibre bundle
(see [Lam14, Definition A.3]) with compact typical fibre F, i.e.,
e (B, gg) is a manifold of bounded geometry,

o and there exists a Riemannian metric g on F such that for all
r <Ti(B, gp) and x € B there is a local trivialisation

®: (”1_\/11([])’3) — (U x F,gp x gr)
on the geodesic ball U = B,(x) for which T® and ®* are
bounded tensors together with all their covariant derivatives
uniformly in r and x,

(i) and mg : £ — M together with the set of local synchronous trivi-
alisations (see Definition A.18) be a CN-vector bundle of bounded

geometry. ¢

Remark 2.3 The bounded geometry of the manifold (B, gg) implies the
existence of an atlas {(U,,x,)},ey, of geodesic balls U, = B,(x,) with
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2.1 Geometric Setting

centres x, and fixed radius r < ri;(B, gg), see Lemma A.16. In this
context, we introduce v-dependent models F, as Hermitian CN-vector
bundles (F,h,,V,) - (F, g), each of them endowed with bundle metric
h, = <\Pv|gxlv)*hxv and metric connection V, = (\I/V\gxlv)*vgw for local
trivialisations ®,, : n;,,l(Uv) — U,xFand ¥, : HEI(U,,) — U, x F.
Note that Remark A.13 yields WX(F,) = W*(F,,) for all k, », v € N, as
topological vector spaces. ¢

One might now ask for the boundedness properties of the composed
fibre bundle £ 5 B. If one could show that F as a Riemannian manifold
endowed with the (most natural) Sasaki metric g, see Definition A.9,
is a manifold of bounded geometry, one could adapt the definition of a
uniformly locally trivial fibre bundle by replacing the compact manifold
with a manifold of bounded geometry and obtain local trivialisations that
are bounded with all their derivatives. (F, g»), however, is not a manifold
of bounded geometry since the associated curvature R8* aty € 7, y € F,
grows with the length |||| of the vector v (see [Blal0, Section 9.1]).
Nevertheless, we will show in the remainder of this subsection that the
local trivialisations of F — F constructed in Proposition 2.1 are in fact
uniformly bounded. To start with, let & : 7;,' (U) — U x F be the local
trivialisation of M that is provided for an geodesic ball U — B. Then for any
x,x" € Uandy,y’ €F thereis alength-minimising curve y : [0,1] — U xF
with end points (x,y) and (x’,y’). The Riemannian distance between
the points ®~*(x,y) and ®~!(x’, y’) may thus be estimated from above
by the length of the curve !0y : [0,1] — 7, (U), i.e.,

dist, (@72 (x, ), 81 (x, "))
1
0
1

< j C(®)(g5 x &) (7,7) dt
0

< C(®)(disty, (x,x’) +disty, (v, y")). (2.3)
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Note that C can be chosen independently of U (i.e., independently of &)
due to the uniform local triviality of (M, g) = (B, g3)-

Lemma 2.4 There exist g < 1y, (B, g5) and a covering of (F, gg) by normal
charts {(Vy, @)} aez such that each set &' (U x V) is contained in a normal
chart of (M, g) for all geodesic balls U = B,(x) < B with radius r < g,
where & : nﬂ}l(U) — U x F is the local trivialisation associated with U.

PROOF (OM = (). We choose ry < riy(B, g5) as well as rp < riy;(F, gf)

Tinj (M., &)
C

small enough such that rg+r; < with constant C > 0 asin (2.1.3).

This gives

diStg (<I>_1(X, y): é_l(x/’ y/)) < rinj(M’ g)

for all x’ € B,,(x), ' € B,,(¥) and (x,y) € B x F, and it follows that
& !(B,,(x) x B, (y)) is entirely contained in an (M, g)-geodesic ball
around &~ (x, y) with radius ri,;(M, g). We conclude by choosing points
{¥2}2en, in F such that

U BrF y)L

AGNO
O

PROOF (OM # ). We have data {r¢ y, 7inj(OM, glop ), Tim} for (M, g),
rin(B, &s) for (B, gz) and {rcr, 1inj(OF, &rop), 11,5} for (F,gr). We want
to construct an atlas of (F, gz) as in Lemma A.16. Therefore, we reduce
the collar width of F in such a way that rop < rCTM with C > 0 derived
in (2.1.3). This implies

(b_l (Br(x) X NCF(T‘C’F)) c NCM(T‘C’M) (2.4)

forall 0 < r < ry,;(B, gg) and x € B. We treat the cases of boundary collar
charts {(Vy,@3)}1<0 and interior charts {(V;, @)} ey, Separately:
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Boundary Collar Charts:
Let y € OF be arbitrary. Choose 1y < 71yi(B, gg) and 75 p < I'y;(OF, gr|op)

Tinj (OM, g 50
c

small enough such that 5 + 155 < ), which means

e (BFB (x) x Bros (J’)) < Briy(oM, glow) (¢71(X’ _)’))

for all (x,y) € B x OF. Moreover, we apply (2.4) to further scale down ry
and r, r so that

o1 (BrB (x) x Kr (B, (¥) x [0, rC,F)))
< Ky (Brinj(r?M,glaM) (q)il(x’y)) x [0’ rC’M))

(cf. Definition A.15 for the precise meaning of the collar maps K and y;).

T'cr
U x OF
(x,¥)
U x Kg(...) )

Note that this downsizing can always be carried out uniformly in x € B
and y € OF, which can be seen as follows: By the triangle inequal-
ity, the set B, (x) x K (B,,,(y) x [0,r¢r)) is completely contained in
a (gp x gp)-metric ball around (x, y) with radius rz + r5p + rc p for all
(x,y) € B x OF. The image of the latter ball under ! is in turn con-
tained in a g-metric ball B around &' (x, y) with radius C(rg+rsp+rcp)-
We then scale down rg, 5 and ¢ (if necessary) until the former ra-
dius goes below some x-independent constant r = r (¢ y, 'inj(OM, g|a31)
and [Sch96, Lemma 3.19] is applicable, asserting that B is contained in
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ICM(Brinj(ﬁM,g\aM)((I)_l(x’y)) % [0,7¢r)). We then choose points {y;}, o
in OF such that the set {B,. (y4)}1<o is covering of JOF, i.e.,

Tor

U K (Bra,F (y2) x [0,7¢r)) = NCg(rep).
A<0

=:V,

Interior Charts:

For any point y € F\NC F(zr%), we consider geodesic balls B, (y) withra-
dius iy < i small enough such that B, , (y)n F\NCF(rCT‘F) = (. Then
B, (x) x B, .(y) is contained in a (g x gy)-metric ball around (x, y)
with radius rp + ry, ¢ for all x € B. Consequently, the image of the ball
under &~ is contained in a g-metric ball B around ®~*(x, y) with radius
C(rg + rypp). By scaling down rp and ry, p appropriately, we can make
this radius smaller than some constant r = r(r¢ u, I'inj(OM, glay)> T11)
and [Sch96, Lemma 3.19] yields again an (M, g)-normal coordinate
chart (W, 7) — either a boundary collar chart (red) or an interior chart
(green) — such that B W.

2rCJF
> 2L

-—

55.37) i B

\ UxB, (¥)

U x OF

Finally, we again choose points {Y; },cy, in F such that

U B, (72) = FANC, (255).

AeN,

=:V) O
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Due to the compactness of F, the covering provided by the previous
lemma always admits (after a possible renaming of the indices) a finite
subcovering {(V;,@;)}5_, with normal coordinates.

We may now link the boundedness properties of the two involved

bundles in the following sense:

Lemma 2.5 Let r < ri,i(B, gg) and {(V;,@,)}5_, be the quantities of
Lemma 2.4. Cover (B, gg) with any set of geodesic balls {U,, = B,(x,)},ex,
with radius r < ry and obtain local trivialisations ®,*(U,) — U, x F. Then
there exist local trivialisations

Aypt Elamt oy = &, (U, x V) x CV, (1,A) eNg x {1,...,K}

of mg : &€ — M which are bounded with all their derivatives uniformly in v
and A.

PROOF. Lemma 2.4 states that every set &, (U, x V;) is completely con-
tained in an (M, g)-normal chart (W, 1), for which the bounded geometry
of & Z5 M provides a local synchronous trivialisation A : ngl(W) —
W x CN. Therefore, the restrictions

Ay = A‘m‘l(vava)

have all the desired boundedness properties uniformly in v and A. O

We are now in a position to give a result for the boundedness properties
of the fibre bundle & £ B. We will therefore revise the construction of
the local trivialisations {¥, : ' (U,) — U x F} ven, Obtained in Proposi-
tion 2.1 by thoroughly following the steps in the proof of [Hat09, Theorem
1.6] and specifying all involved objects explicitly.

Proposition 2.6 Let 7, : (M, g) — (B, gg) be a uniformly locally trivial fi-
bre bundle with compact typical fibre (F, gz ) and 7tz : £ — M be a CN-vector
bundle of bounded geometry. Cover (B, gg) with geodesic balls {U,} ey,
with radius r < rg and obtain local trivialisations ®,'(U,) — U, x F.
Then the corresponding local trivialisations ¥, : Hgl(U,,) — U, x F, of
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Proposition 2.1 are bounded with all their derivatives uniformly in v in the
following sense: For all synchronous trivialisations A¢ : ngl(W) —WxCN
and Az : n;l(V) — V x CN of £ and F, (cf Remark 2.3), respectively, the
mappings

(1y,,A%,) 0¥, 0A; o (@)1, 1cn) (2.5)

and their inverses are homomorphisms on CN, bounded with all their deriva-
tives on (W) n (U, x F) uniformly in v.

PROOF. The first ingredient is the diffeotopy
h,:(U,xF)x[0,1] > U, xF,
(x,y,t)— (K;l (tKv(x)),y) =:(tx,y),

which describes the shrinking of the geodesic ball U, with constant speed
to the point x,, = K;1(0) using the normal chart x, : U, — IBf(O). Hence,
it holds that

{(tx,y) such that (x,y) e U, xF} cU, x F
for all t € [0,1] and
h(i]‘) = 1UV><F 5 h(’ O) = {xv} X ]'F

This induces pullback bundles according to the following diagram (with
the shortcut &, := I1; ' (U,)):

gv - ({);1)*5v - h*(q);l)*gv
' (U,) ~—=— U, x F <=— (U, x F) x [0,1]
v v

The utilised covering {(V;,@,)}5_, of the fibre (F, gr) comes along with

a smooth partition of unity {x,}5_,, which also induces a partition of
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unity of U, x F via x,,(x,y) := x,(y). Then the family {{,,(x,-)}%_,
defined by the relations

o

(=1, Cwlxy): Z)mxy Z ) for o > 1

is monotonically increasing and approaches the constant function ¢, = 1
pointwise. Two neighbouring mappings ¢,,, and ¢, ,_; obviously differ
only on the set U, x V. Then for all o € {0,...,K} we set

=,o = graph(¢,,) < (U, x F) x[0,1], oc€{0,...,K}
and consider the respective restriction

A

£0:=¢,

o~ () v) ez <&,

such thaty € (fv) (00 (x,3)x y)}

as a vector bundle over U, x F, whose fibre at (x, y) is given by that of £
at® (¢, (x,y)x,y) < ;' (U,). Consequently, we get (see the proof of
Proposition 2.1)

E=2¢

v

=h(-,1)*¢, =€,

VI(UyxF)x{1}

and
58 = E’V|(U,,><F)><{O} = h(’o)*gv =U, xF

at the endpoints o = K and o = 0, respectively.

1 vK
2|
e
/ Syo—1 \
0 ~u - : (':y)EUvXF
U, xV,
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We note that these bundles come along with local trivialisations

/"\0 .(cfa

A Ty

— (U, x V) x CN,

((0.2:€00 (6, )),%) = (x, 7, Pt Ay ()

forall A € {1,...,K}, where {A,;}X_, are the local trivialisations of &,
constructed in Lemma 2.5.

(2.6)

ég =U,xF
It remains to specify the diffeomorphism 7T, : £, — U, x F, whose con-
struction is actually carried out in the proof of [Hat09, Theorem 1.6].
To do so, we first need to lift each projection pr,,, : E,, — &, ,_; to an
isomorphism PR, : éf}’ — EAg_l. Therefore, we note that {,, = ¢, ;4
on U, x CV, implies

50 .To s |
gv - gv

U, xCV, U, xCV,"*

Moreover, on U, x V, we identify vectors of (ég)(-,éw(-)) with those of
(é g_l)(i,cm_l(_)) by means of the local trivialisations (2.6). This eventually
leads to

PR,, 1= {153’ ; o Elusen, o {1,...,K}
vo c T Ao—1\— A A yeees .
(AZ|U ) OAC;\(V on 53|vavo>

Due to the fact that y, = 0 on CV,, the transition function (/A\‘v"gl)_l OA?/-\O‘
is the identity over all (x, y) € U, x CV,, in particular near U,, x 0V, so
there is no discontinuity there. The desired diffeomorphism is finally

obtained by the finite composition

Y, =PR, 0---0PR,¢.

34



2.1 Geometric Setting

Now take trivialisations A¢ and Az, as in the statement and let Ag be
the induced local trivialisation of £, over &, (W ). Suppose without loss of
generality that ® ,(W) n (U, x F) # & (otherwise the statement would be
trivial) and take any point (x, y) of this intersection. Denote the elements
of the set

{Ae{1,...,K} such that y € V} }

by 6; < --- < 0;. Then there is an open neighbourhood of (x y) over
which we have T, = PR, o---oPR,g . Using the fact that A% v, A?f‘ 91

forallse{1,...,L} (with 90 = 0), we consequently find that (2 5) turns
into

—1 N N —1 ~ A —
((IU‘,’A}") (A3|9 ) ) © (Aiiel © (A?ﬁez) ) oo (AiTeL OAgl)
near (x,y).

e As far as the last term is concerned, it follows that (since 2,5 =1

near (x,y)) €% = &K = £ near (x,y), and hence A TG oA’
essentially a transition function between synchronous trivialisations

of &,.

e FEach intermediate term

A% o (A% VT, se{l,...,L—1}

1/‘95 V|65+1

is a transition function of the bundle éfs over U, x (Vo n Vg, ),
smooth and its bounds depend on those of {A,;}¥_ ., {x,}X_,

and k.

e We note that AO — although it is the restriction of the local triviali-
sation (®,, ICN) o Ave to {x,} x Vy, —does not give an synchronous
trivialisation of F, since it is associated with normal coordinates
on (M, g) which do in general not restrict to normal coordinates
on (M,, gy, ), for example if M, < M is not totally geodesic. At
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the expense of introducing further transition functions on £ and F,,
however, we may assume that both (&, 1cv) 0 A, and (1y,A %))
stem from parallel transport along normal coordinates that are
centred around the same point (x,,¥). Then the transition func-
tion (1y,,Ax,) 0 (/A\?)‘el)_1 is obtained by parallel transport along
a closed curve in U, x Vy , starting/ending at (x,,y) and passing
through (x,, ¥), and therefore given by the holonomy of (&, ')*V*¢.
In view of [GS13, Lemma 5.13], this can be bounded in terms of the
bounds on &, and R by writing it as the solution of a differential
equation.

Uv X V91

{xv} X Vel

CnYoll  2,(pus),

O30 S
¥
(15, A7)
(xw .Y) AAAAAAAAAAAAAAAAAA (x,y).

Since all bounds are independent of (x, y) and uniform in v, the statement
is proven. 0

Due to the compactness of F, another choice of bundle metric and metric
connection on F still gives bounded trivialisations. These bounds, however,
may then depend on x, which occurs for example if one scales the bundle
metric h,, with an x-dependent factor.
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We close this subsection by collecting the characteristics which reflect
the uniform boundedness of the underlying geometry:

Definition 2.7 We establish the following properties associated with the
bundles g : £ - M and 7y, : M — B:

e Since (B, gz) is a manifold of bounded geometry without boundary,
it comes along with an atlas il := {(U,, )} ,en, of geodesic balls
U, = B,(x,) with centres x, and uniform radius r < ry < riy;(B, gg),
and a subordinate partition of unity {y,},ey, with finite multiplic-
ity Ny, as in Lemma A.16.

e We equip each ball U, with a gz-orthonormal frame {X i”}f’zl of
TB\Uv =TU,, obtained by parallel transport along radial geodesics
starting at x, with respect to the Levi-Civita connection V45, These
form a set of smooth sections, uniformly bounded in i and v because
of the bounded geometry.

e The uniformly locally trivial fibre bundle 7, : M — B provides
local trivialisations &, : (1, (U,),g) — (U, x F, g5 x gr) for v € Ny,
bounded uniformly in v with all their derivatives.

e Proposition 2.1 states that each local trivialization ¢, induces a
local trivialisation ¥, : Hgl(Uv) — U, x F, of Il : £ — B. These
trivialisations are bounded uniformly in v with all their derivatives
due to Proposition 2.6. O

Note that {y := x, 0 7y} ,ey, is @ smooth partition of unity of M that
is subordinate to the covering {}," (Uy)} yen, and is bounded with all its
derivatives.

2.1.4 The Adiabatic Limit

Our aim now is to consider a family of rescaled Riemannian submersion
metrics

€

g =¢e nigs+gy (2.7)
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on M, which blows up the volume of the base B (the volume of the
horizontal directions in M). This is also referred to as the adiabatic limit
and was introduced by Witten to investigate the limit of the n-invariant of
the Dirac operator [Wit85]. We remark that the horizontal distribution HM
was fixed for g°=! and hence remains e-independent.

Definition 2.8 Let {X;}_, and {V]}f=1 be local orthonormal frames of
the Euclidean vector bundles (TB, gz) and (VM, g ), respectively. We call
the local orthonormal frame ({eX"}?_, {V]}f:l) of (TM, g°) adapted to

the decomposition (2.1). O

Let us consider the £ ~2g5-geodesic ball around any x € B with radius
r < rin(B,gp) = €rin(B,e2gp) < rip(B,e7%gp), 0<e<1.

This geodesic ball Bﬁ_ng (x) = B2 (x) is contained in the ball B (x) for
all 0 < & < 1. Thus, we may cover (B,e 2gy) with a possibly greater
number of balls {U; = Bffng (x5)}ren,» all of them being contained in
balls B## (x;) which depend on ¢ only via their centres. We can hence use
the same (suitably restricted) local trivialisations of (M, g) =% (B, g5)
for all 0 < & < 1 and conclude that m,, : (M,g¢) — (B,e 2gg) is a
uniformly locally trivial fibre bundle with e-independent bounds on the
trivialisations. Moreover, (M, g°) is a (0-)manifold of bounded geometry
and the constants and bounds appearing in Definition A.15 can be chosen
to be those of (M, g) [Lam14, Proposition A.9].

Remark 2.9 Lemma A.16 allows us to equip (M, g°) with a countable
atlas {(W: , TZ)} uez, consisting of geodesic cylinders (u < 0) and geodesic
balls (u € Ny) with radius r < %min{rmj(&M, 2lam)> 71} and centres Py
and a subordinate partition of unity {y},cz-

(i) In view of [Sch96, Theorem A.1], the bounds on the metric coeffi-
cients (g;),p and their inverse (gZ)"ﬁ in these normal coordinates
can be chosen independently of €.
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2.1 Geometric Setting

(ii) As can be seen in the construction in [Sch96, Lemma 3.22], both
the bounds on {D"(7}, ) € Cboo(]Rb”f)}“EZ forall ae NSH and
the multiplicity N), can be chosen independently of ¢. ¢

Passing over to the vector bundle 7, : (£,h,V¢) — (M, g%), one can
similarly show that the bounds on the e-dependent curvature R® of V¢
improve with decreasing parameter €. More precisely, if X,Y € C°(TB)
are of gz-length one, the related horizontal lifts eX", eY" e C.°(HM) are
of g®-length one and we obtain for any V,W € C,°(VM) and v € C;°(£):

|RE (exM,e¥")y ||, = &2 ||RE (X", Y") 4|
R (ex™, V)|, = [|R* (X", V)|
IR (v, W], = (IR (v, W)ep -

As far as the local synchronous trivialisations (see Definition A.18) asso-
ciated with the normal coordinates introduced in Remark 2.9 are con-
cerned, we can argue as before to see le c W:=1 forall0 < ¢ < 1.
Hence, we may again use the same (suitably restricted) trivialisations as
for (£,h,V¢) 25 (M, g).

h?

h°

Remark 2.10 Let (FE)QB forae{l,...,b+f}andA,Be{1,...,N} bethe
Christoffel symbols of V¢ with respect to the synchronous trivialisations
that arise from the atlas {(W;, 7},)},cz introduced in Remark 2.9. Then
[Eic91, Theorem B], which can be extended to the case of 0-base manifolds
of bounded geometry by means of Definition A.18 (in the spirit of [Sch96,
Theorem A.1]), asserts that all derivatives of the Christoffel symbols can
be bounded uniformly in u € Z, i.e., for all k € N, there is a constant
C(k) > 0 such that

‘ D* (r;*(rj)gB)

for all u € Z and all multi-indices a € N8+f with |a| < k. Moreover, these
bounds C (k) depend only on those of R®, and in particular, can be chosen
to be those for € = 1. O

<C(k)

39



2 The Framework

2.2 The Laplacian

Denote by H := L%(& ,vol, ) the e-independent Hilbert space of square-
integrable sections of the vector bundle 7, : (£,h, V¢) — (M, g), which
is endowed with the scalar product

<¢> ¢>’H = JMh(%b, ¢) VOlg .

We will deal with Schrodinger operators on H whose kinetic part is es-
sentially the (negative of the) connection Laplacian —Aés with Dirichlet
boundary conditions. As is mentioned in Section A.3, the latter is initially
defined as a differential operator on C;°(£°) by the relation

—ALY = —tr ((VE)*)
and extends to a positive self-adjoint operator on H with domain
dom(—AZ,) = W2(&,voly: ) N Wy (€, voly:).

If we take an adapted local orthonormal frame of (TM, g°) as in Defi-
nition 2.8, we observe, using Einstein’s sum convention in the case of
repeated indices (which will always be employed throughout the thesis),
that this Laplacian resembles the kinetic energy operator of the molecular
Born-Oppenheimer Hamiltonian [PST07]:

g, 2 (V5 V5 V@s;gxy) (w595 - Ve, )

vV
ex! Vit

_ 2 (vE e €
= —(Hr T Viopy)

E & & &
(Vv - Vv~ Vi)

2( & & £ £ £ ot £
(Vi *Vw;z;xi)“) OERICATE va,.v)
2AE £
= —2Af - AL, (2.8)
where we abbreviated

VYW = PM 8w A pM gy
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2.2 The Laplacian

for vertical vector fields V, W € C*(VM). The horizontal Laplacian

Aﬁ = trnﬁglg ((VS)Z) - vfﬂn@ = trn;’;gg ((VE)Z) - vf)v
incorporates all derivatives in the horizontal directions including the mean
curvature vector 1), of the fibres in (M, g°), which equals &* times the
respective vector 1), of the fibres in (M, g) [Lam14, Lemma 1.6]. The
remainder Ai incorporates only vertical derivatives and is therefore called
the vertical Laplace operator. The latter will be the starting point for the
analysis of fibrewise acting operators of the following subsection.

2.2.1 Function Space Bundles

We begin with the observation that the vertical Laplacian is compatible
with the embedding M, <% M of the fibres for all x € B in the sense that

F(aly) = Ag;x Vi, e CP(Ey)

holds for ¢ € C*(&). Put differently, the vertical Laplace operator A (x)
at x € B coincides with the connection Laplacian

E _— T*M, QE, &y . &m, — ¥V
A =t (V V), VI = ¥V

on the vector bundle (&,,h,, V) HEN (M,, gy, ). This can easily be
seen as the covariant derivative V\‘f 4 along the vertical vector fields
Ve {V],V\‘ng} at £ € M, merely depends on the values of v along a
curve in M, that is tangent to V(§) € T:M,, and thus

(Vi) =V G

It follows that the vertical Laplacian operates for each x € B on the
fibrewise Hilbert space

L2(&,) = {mappings ¢ M, — &, with ¢ (&) € (£,)¢ such

that (19112, “27 ,, 19 (DI, . voly, (&) <o},
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We saw at the end of Subsection 2.1.2 that these spaces L2(&, ) are all
isomorphic to the topological vector space L?(F). Hence, we may think
of these as the fibres of an infinite-dimensional vector bundle over B
with typical fibre L?(F). More generally, we aim to construct vector
bundles over B with various function spaces X (F) as typical fibre, for
instance certain Sobolev spaces and therefore the completions of C;°(F)
and C;°(F°). A detailed exposition of the construction of continuous
vector bundles ny : X(F;Ilg) — B with typical fibre X (F) is given in
[Lam14, Appendix B.1] for the case of a trivial line bundle £ = M x C
over M. But all of the arguments occurring there may be transferred
immediately to our situation, so we will only briefly give the necessary
modifications.

We take initial data from Definition 2.7 and define C*(F;Il,) in terms
of transition functions (using the abbreviation U,,,, := U, " U,,)

tvv/ : va’ X COO(}—) - va’ X COO(}—)’ (X, d)) = (X:gvv’(x>¢)’
where

gvv’(x) : Cm(}—) - Cm(}—)?

-1 -1
P Wl oWyl 0podyly 0B, . (2.9)
-1
\IIV"EX \Ilv|£'x
& F
4) gvv’(x)¢
M F
¢vl|Mx ) ¢V|];1

The completion of C*(F) with respect to the |||y« -norm, which is
independent of the choice of bundle metric and metric connection on F
by Remark A.13, uniquely defines the structure of a continuous vector
bundle 7y, : WK(F;Tl¢) — B with fibres W*(F; Hg)‘x = Wk(&,) if the
transition functions t,,, are continuous mappings from U,,,, X Wk(}' )
to U,,, x WK(F) for all »,v' € N, [Lam14, Lemma B.4]. By the uniform
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2.2 The Laplacian

boundedness principle, this requirement is equivalent to the strong con-
tinuity of g,/ : U,,, — L(WK(F)) for all »,v € N,. For this purpose,
the uniform local triviality of M =% B and Proposition 2.6 yield that the
local trivialisations used for the “transition matrices” (2.9) are bounded
uniformly with all their derivatives and the family (cf. Remark 2.3)

{gw, : Uy, — L(WK(F,)) with v, € Ny such that U,,,, # @}

is actually strongly equicontinuous. Thus, the infinite-dimensional vector
bundles WX(F;II.) are well-defined and their associated local trivialisa-
tions ©, : WK(F; H5)|UV — U, x WK(F,) are given in each fibre by the
homeomorphisms

—1
O, iy : WHE) > WH(F,), ¢— | oo [y

for x e U,,.
\Ilv|8x
X v
o] Y
x -1
¢V|MX

Consequently, the latter are bounded uniformly in the following sense:
For all k € N, there exists a constant C (k) > 0 such that

< c(k) (2.10)

H@v|wk(sx) LWK(E),WK(F,))

for all x e U, and v € N,,.

Remark 2.11 L?(F)-derivatives of the mapping x ~— g, (x)¢ incorpo-
rate vertical derivatives of ¢ € WK(F) due to the chain rule, and so
in general 0,g,, (x) is expected to be continuous only from W*=1(F)
to W*(F) and consequently 0,.9,, (x) ¢ L(WX(F)). Hence, differentia-
bility is too strong a requirement for these infinite-dimensional vector
bundles. ¢
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One can similarly construct spaces of bounded bundle maps between
two vector bundles WX(F;TI;) and W!(F;II;) for k,I € N, [Lam14,
Lemma B.5]. For example, any fibrewise operator T with

T(x) € L(WH(E), W' (EL))

is a section of the bundle L(W*(F;TI;), W!(F; T1;)).
We close the discussion by returning to the initial motivation for this
subsection and therefore introduce the vector bundles

Hy = WO(F;Tlg) = L3(F;TI¢) (2.11a)
and
Dy = W3(F;Ilg) n W, (F;T1g). (2.11b)

The fact that the fibrewise vertical Laplacian —A§ (x) defines a self-adjoint
operator on L?(&,) = Hz|, with Dirichlet domain dom(—Af(x)) =
W2(E,) N W, (E,) = Dxl, for all x € B can be merged into the state-
ment —AS € L% (L(Dx, Hx)).

2.2.2 Elliptic Regularity

The structure of the composed fibre bundle & I, B suggests that we
introduce adapted Sobolev spaces on £ which take into account the &-
dependent scaling of the horizontal and vertical directions of M via the
rescaled submersion metric g° (2.7), which causes the different scaling
of horizontal and vertical derivatives in —Agg = —e2AfL - AS.

Definition 2.12 With the notation of Definition 2.7, we denote by W (&)
the completion of C;°(£) with respect to the norm

Wl = 3 X |

veNp [al<k ¥ Us

2

vol, (x).
wi-lal(g,)

b
n (vféin") ufxyw
i=1

includes |a| 0-horizontal and
k — |a| vertical derivatives
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2.2 The Laplacian

Moreover, the spaces W, (€) stand for the completion of C;°(£°) with
respect to the same norm. o

We will give a more detailed discussion of the so-called ¢-horizontal vector
fields X e C.°(TM ‘nl\;l (u,)) at the beginning of Section 3.1 and content
ourselves at this point with the intuition that these vector fields are tangent
to the boundary 0M and are obtained by slightly tilting the respective
horizontal lifts (X)" € C°( HM| -1 (y))-

Remark 2.13 Let ¢ € C;°(£) be arbitrary. We then obtain on the one
hand

W= 3 [ 22wl vole, ()

veN,

= 2 [ (], I, v, @) vo 0

veNy

=3 [ A @ vl

vEN,

<D JMxi”(p)xiV/’(p) ||¢(p>||ip vol, (p)

v eN, veNy

-3 | e el v o)

veN,

=1l

while on the other hand it holds that

Iz = Y foi”xﬁf 112 vol,

veN, v eN,

2 2
< X[ H () i voly

v, €N,

U,y #&

2 2
< S| (2 ) 1 vol,

vEN,
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N [ e vl

veN,y
= Ny ”1/)”5\/80(5) .

The second inequality is valid because there are at most Ny partition
functions y < 1with U,,, # ¢ for all v € N, and similarly for the second
term. Thus, W2 (€) = H as topological vector spaces with ¢-independent,
equivalent norms

1/2
1 llwoce) < Il < Ny ploe) - (2.12)
¢
We now show that the two norms ||-||ng(5) and “'“Wk(g’volg&.) are equiva-

lent. The required constants are e-independent up to a global factor £°,
which comes from the fact that we used vol,, for the volume measure in
Definition 2.12 instead of vol,—,_ .
Proposition 2.14 For every k € Ny there are constants 0 < c(k) < C(k)
such that

c(k) [l llweey < e’ 1w (e vol,e) < CU) 1l ey
for all o € WK(€).
PROOF. We choose

e a covering {(US,k%)},ey, Of (B,£7%gp) with local trivialisations
®,: 1, (US) > U x F of M ™ B,

e a covering {(Vy, @)} ez of (F, gp) with synchronous trivialisations

Af” : m71(V;) — Vi x CV of the typical bundle F, 2% F (see

Remark 2.3) for all ve N,

e acovering {(W: , T;) }uez of (M, g°) with synchronous trivialisations
1 T
A5 g (W) — Wi x CV of € =5 M,

e and local trivialisations ¥, : I1; ' (U¢) — U® x F of £ I, .
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2.2 The Laplacian

We saw in Subsection 2.1.4 that all constants and curvature bounds, that
belong to (M, g°), can be chosen independently of €. In particular, there
is a partition of unity { xﬁ} uez Subordinate to the cover introduced above
with derivatives and multiplicity N,, uniformly bounded in & (cf. Re-
mark 2.9(ii)).

The coordinate changes t,,,, in virtue of the diagram

AZ oW o (1y,A77)7!

cV A cV
¢’I I t)w,u,¢
ROHS RO+
(K%, @) 0@, 0(75) ]

are continuous maps from W*(R2*f,CV) to Wk(RP+f,CN) with bounds
uniform in A, u and v due to Proposition 2.6, [Lam14, Proposition A.9]
and the fact that both & =5 M and F =% F are vector bundles of bounded
geometry (having the base manifolds (M, g¢) and (F, gz) of bounded
geometry). Moreover, the latter bounds are independent of ¢ because
{e®*X”}>_ extends to a g*-orthonormal basis at p, € m,, (U,). Hence,
the coordinate changes are orthogonal maps to first order while the higher
derivatives are bounded by the very construction of the coordinates. Con-
sequently, if we expand both norms in their local expressions and rescale
the volume measure properly, they are related by globally bounded maps.
These expressions can be patched together using Lemma A.16. 0O

We are finally able to formulate an elliptic regularity statement for the
connection Laplacian Agg with Dirichlet boundary conditions:

Proposition 2.15 Let 1 € W2(€) n W, (€) and k € Ny such that A4 €
WX (E). Then ¢ € W2(€) and there is a constant C(k) > 0 such that

122 gy < ) (A5 ey + IREIE,) -

Due to the fact that the coefficients of the Laplacian are smooth, this
proposition implies in particular that solutions of the Dirichlet boundary
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value problem

~ASp =, Ploy =0 (2.13)

have infinite (classical) derivatives if ¢ € W*(£). Moreover, an iterated
application of this proposition and appropriate interpolation inequalities
for Sobolev spaces [GT98, Theorem 7.28] provide the estimate

- 2
1 < C(K) <|| (as) |+ ||¢||i> (2.14)

for all k € N,.

OUTLINE OF PROOF (of Proposition 2.15). Since Proposition A.20 shows
that Sobolev norms are first calculated locally on subsets of RP+f x ¢V
and then patched together accordingly, the proof consists of consider-
ing local boundary value problems that are induced by normal coordi-
nates and synchronous trivialisations associated with the vector bun-
dle (£,h,V¢) 5 (M, g°) of bounded geometry. More precisely, let
{(W;,7;)} ez be a cover of M by normal coordinates (with respective
centres pli) and Ai : n'gl (W:) — W; x CN the corresponding synchronous
trivialisations. For the sake of clarity, we use q¢ = ’T.'Z(p) to distinguish be-
tween points p € W;f c M and coordinates q € TZ(W;) c RP*f (in
particular, we have ’T.'Z(p;) = 0 for all u € Z). We then denote by
q— Y(Qq) = (Y(q),...,4¥N(q)) a section of the trivial vector bundle
T8 (We) x CV < R** x CV in these coordinates. Consequently, the
boundary value problem (2.13) is transferred to a countable system of
local boundary value problems

(L) =¢*  in@:=BY7(0) x [0,r¢ )
YA=0 on 0NP°

on boundary collar charts (u < 0) and

(L)t =¢* inQ":=B(0)

rin,M
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on interior charts (u € Ny) for allAe {1,...,N}. Note that these subsets
Qbein = RP*S are the same for all u € Z and all 0 < ¢ < 1, while the
coefficients of the differential operator

‘Cu,s = _(gz)aﬂ (q)ICN aq’laqﬁ + Q[Z’g (q)aq“ + %u,e (q)

depend on the metric coefficients (gZ)"‘ﬁ, the Christoffel symbols (FE YA
of V¢ and their respective derivatives up to second order. Remark 2.9 and
Remark 2.10 reveal that le)s and %, , can be bounded uniformly in u € Z
and 0 < ¢ < 1.

Following the exposition of [Sch96, Chapter 4], we need (2.13) to be a
uniformly elliptic boundary value problem, i.e., we have to check that

(i) the local boundary value problems are elliptic in the classical sense
(cf. [H6r76, Definition 10.6.2]),

(i) L, is a uniformly elliptic differential operator with ellipticity con-
stants that are uniform in uy (and &),

(iii) and the local problems admit (after a possible contraction of Qbe
and ™) local fundamental solutions

R, L2(Q,CY) @ w32 (o0™,cV) - w2(Q™,CY), u<0
and

RILA(QM,CY) > WAQR,CY), peN,
that are bounded uniformly in u (and ¢).

Sufficient conditions for a boundary value problem to be uniformly elliptic
are derived in [Sch96, Proposition 5.13]. In particular, this criterion
merely depends on the principal parts

£Z,s(qr C) = _g;(g, C)‘qICN7 {:E T:; (TZ(W;» = RbJrf
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of the involved differential operators and their respective derivatives.
These requirements are verified in [ Sch96, Proposition 5.14] for the Hodge
Laplacian with Dirichlet boundary conditions, which clearly transfers to
our case. Moreover, this procedure explicitly preserves the e-uniformity
(cf. Remark 2.9(i)). Finally, [Sch96, Theorem 4.15] immediately implies
the desired inequality for the ||-||y( £,vol,)-0rm, which is equivalent to
the |||l e)-norm up to a global factor e® due to Proposition 2.14.

2.3 The Schroédinger Operator

We will consider specific “perturbations” of the connection Laplacian intro-
duced in the previous section. More precisely, we will analyse Schrodinger
operators satisfying the following prerequisites:

Condition 2.16 Let
H®:= —Af, +eHj +V* (2.15)
be the densely defined operator with Dirichlet boundary conditions, where

(i) the perturbation HY

e is symmetric on dom(—A;) < H and bounded independently
of ¢ as a map from W}2(&) to WX(€) for all k € Ny,
e and carries additional 0-horizontal smoothness, i.e., ng T e

AP+24 for every T Aﬁ;q (see Definition 3.5),

(i) and the e-independent potential V¢ is an element of C° (Herm(¢)),
where Herm(£) < End(€) denotes the subbundle of self-adjoint
(Hermitian) vector bundle endomorphisms of £. ¢

Under these conditions, H is self-adjoint on H with domain

dom(H®) = dom(—A%,) (A19 WZ(E) N W, (€)
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2.3 The Schrédinger Operator

and bounded from below by the Kato-Rellich theorem [RS75, Theo-
rem X.12]. From now on H¢ always denotes this self-adjoint operator,
while expressions like the Laplacian Aig orH f may also stand for a differ-
ential operator without reference to a specific domain. The smoothness
conditions on the perturbation H 15 and the potential V¢ allow us to ex-
tend the elliptic estimates for the Laplacian —A?E to the Schrodinger
operator H®:

Corollary 2.17 Let ) € dom(H?) and k € N be such that (HE)*+ € H
for HE satisfying Condition 2.16. Then v € Wfk (&) and there are constants
go(k), C(k) > 0 such that

1y ) < S0 (|G 5, + 12

for 0 < & < gy(k), and in particular dom((H®)*) = W2*(€) for & > 0 small
enough.

PROOF. Condition 2.16 yields that the operator HY defines a bounded
map from W2*2(£) to W2 (€) for all | € N, with bounds independent
of €. The aspired estimate then follows using iterated elliptic regularity
of the Laplacian (see Proposition 2.15):

2
1% e e
(2.149) 2
< C(k) (H (—H® + eHE + VS)WHH + ||¢||i>
—_———

=A%,
n+m=k
< C(k)<23k_1 Z Cnm|£H8)k_(n+m)(€H‘f)n(Vg)m UJHz

n,m=0
this ordering is symbolical as the mixed
terms are clearly not in this order!

H

+ I|¢|Ii>
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< (2@l + (127 v ) i)
n+m=k—1 9
+ C(k) 23k71 Z Com H (Hé‘)kf(n+m) (ngg)n(VS)m wHH .

n=1,m=0

this ordering is symbolical as the mixed
terms are clearly not in this order!

<cume? %, 2k-m) o)

The remaining sum in the last line is of order ¢. Thus, it can be moved
to the left hand side and be absorbed into Hlp”iv;k(s) for ¢ = e(k) small
enough. 0

We will now discuss two types of perturbations which occur in the
context of generalised quantum waveguides. As will become clear from
Section 5.1, such a waveguide is modelled by a family of e-thin tubular
neighbourhoods around a smoothly embedded submanifold B < R?*/f
and may be mapped diffeomorphically to the total space M of an appro-
priate fibre bundle M T, B. The initial tube operator (without potential)
will turn out to be unitarily equivalent to the Dirichlet Laplacian —A’é’f
associated with some Riemannian metric G° = g+ O(¢e) on M and metric
connection V&4 = V€ + O(¢) on a vector bundle £ ~5 M in a suitable
sense. We will analyse the effects due to these perturbations separately.

2.3.1 Perturbation of the Riemannian Submersion

Let us consider the connection Laplacian
£ €12
—AL, = —trg ((V9)*)

with Dirichlet boundary conditions on L2(&,volg. ) associated with some
perturbed Riemannian metric

G* =g° +0O(e) (2.16)
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2.3 The Schrédinger Operator

on M. We will see that —A‘éi is unitarily equivalent to an operator of the
form (2.15). More precisely, let

be the Radon-Nikodym density of the two volume measures. In view of the
fact that vol,. = ¢ =" vol,, this induces a unitary map U,,, := (¢~°p,)"/?1,
from L*(&,vols:) to L?(€,vol,) = H. Equation (2.16) suggests that the
unitarily transformed operator

H =0, (-4G.)0;,

equals —Agg to leading order, whereas the subsequent orders encode the
difference between the two metrics. Therefore, we first observe that

divg. (K) volg. = Ly volg. = Ly (p, VOlge)
= dp,(K)volg. +p Ly vol,e
= (dInp,(K) + div,. (K)) vols

holds true for arbitrary K € C*(TM), and hence
divg. = div,. +dInp,. (2.17a)

We now need to express the f-isomorphism in terms of both metrics. In
this context, we introduce the tensor s¢ := G® — g¢ € C*(X?T*M) and get

ERCT — 2" 1 55(5, ) (2.17b)
forall Ze C*(T*M).
Lemma 2.18 It holds that

U

L, (—AL) ﬁge =A% + VO oS 1Y, 1,

dense

on C(£°) "C H. Here, S € Diff) (£, T*M Q £) is given by

5% (0,87 ® 1e) o (e 1) (* @ V)
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and the geometric potential by

2
Ge?

V,, = 3ALP(Inp,) — } ||grads (Inp,)

where Ag?' = divg. o grad. is the Laplace-Beltrami operator on functions
introduced in Example A.24.

An alternative expression for the geometric potential is given by

Vv

- (2.18)

: . 2
(2.172) 3 div,. ograde. (Inp,) + 3 ||gradg. (Inp, )., -

In order to avoid ambiguity when dealing with the adjoints (x and )
or the musical isomorphisms (f and b), we indicate the underlying Rie-
mannian metric in the notation for these operations.

Example 2.19 Let us examine the special case of a trivial line bundle
& = M x C equipped with the flat connection V¥ *€ = d. We then obtain
for the action of SM*€ on any ¢ € C;°(M\0M x C) = C*(M\dM, C):

SM*Cofy = ((b, g)® 1<c) © (trTM,(IB) (5€ ®d¢))
- ((s€®d1,b)(w°‘,-,va))b’gg - (f(&,-)@dzp(va))b’g

= s (w0t @d(vy), ),
—dy

£

and so
A8 (SM*Cap) = d™¢ (s° (dep, )*¢") P27 —div,. (s°(dyp, ).

Consequently, the Laplace-Beltrami operator —A]&'?' is unitarily equivalent
to an operator whose action on smooth functions 1y vanishing on 0M
reads

AL — divge (s°(dy,-)) + Voerh,

in accordance with [Lam14, Equation (1.7)]. ¢
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2.3 The Schrédinger Operator

PROOF (of Lemma 2.18). We use Lemma A.22 and calculate for arbitrary
(S Cgo(é‘o):
~ ~ G o
Up, (—AG) U} ¢ = plPvo* 9V (p 712y
p;/zvs,*,es (p8—1/2v5¢ i dpg_l/z ® w)
— p2VERE p 712 (VEY — JdInp, @)

Denote by {va}z and {wa}b+f local dual frames of TM and T*M, respec-

tively. In virtue of (A.16) and Lemma A.21, the first term then evaluates
as

p;/2vg,*,G€p;1/2vg1’b
_ pl/ZvS,*,Ge (wa ®P;1/2Vi¢)
= PV~ e VAVE Y divg (0% ) p AV )
Ve Vi Y+ ddInp, (@) VE
— divg: ((0*)*) VS 3

GV VE e VEP + 3dInp, (%)) VE 4
_ (dngs ((0) ) ’ ) +d1npe((wa)ﬁ,cf>)Vf¢
e ( v(gwa)uge —div,. ((wa)u,gf)vfa) Y- vgradgr (1np) ¥

= —Agg, cf. the proof of Lemma A.22

( VE o) divgg(sf(w“,‘)))vfamp,

=(%)

where we used the expansion gradg. (Inp,) = dInp, ((w*)*%")v,. As far
as the second term is concerned, we proceed similarly and obtain

pg/ZvS ,%,G° _1/2dlnp£ ®,¢]

= =3PV g, et — dive (07 2dInp, 2 )
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= £V g et + 0% ((dInp )" )y
Ep:ﬂG ( gradg. (o, 10) ’«anﬁmm)w
%/_/

1 _
=—3p: " gradge (Inp,)

N vé2
- ngradag (lnpg)w

+ (% divg. (gradg. (Inp,)) — ngadG; (Inp,)

v

The addition of both terms finally yields the statement, since

:VPS

X £ 16 e b, 3
(*) (vi e, ))Tg Vfall) (A:1 )vs,*,g ((Ss(wa’ )) g ®v5a¢>’
=SE
again due to Lemma A.21. 0O

b+f

Remark 2.20 Again let {va}b+f be a local frame of TM and {w®}, ] its

local dual frame. Then note that

| (@) — &) )n(v5, 6,95 ) vol,

=sf(w®,wh)

= th(Vfa(ﬁ,sg(w“,wﬁ)Vfﬁi/z) vol,.
_ e\he® e a , B £
= JMh(qb, (Vva) 5 (%, w )vvﬁw) vol .

_ E,%,8° b,g°¢ e(,a . fB £
_th(¢>,v & ()" ®s° (0% w )Vvﬁ)d)) vol .
=5&4

for all ¢,vy € C;°(£°). Multiplication of the latter equality by a con-
stant factor £” (which corresponds to replacing the volume measure vol,.
by vol, = el vol,.) shows that the operator

—AL 4+ VERE o05E
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2.3 The Schrédinger Operator

is given by the quadratic form

<¢, (—A; L vERE o S£)¢>H = f trge (h (VEy, V?m/))) vol,
M
and thus defines a positive operator. ¢

The following definition gives precise meaning to the vague nota-
tion (2.16) of G* being e-close to g°:

Definition 2.21 We call G° an admissible perturbation of g¢, denoted by
G® = g° + O(¢), if the matrix representing the difference G° — g° with
respect to any adapted local orthonormal frame (cf. Definition 2.8) is
bounded and of order ¢ with all its derivatives, i.e., for all a € NS” there
exists an e-independent constant C(|a|) > 0 such that

HDG(GS - 1m><m)Hoc’Mat < C(|a|)8,

independently of the chosen local frames of TB and VM. ¢

If we apply the musical isomorphism (b, g°) : TM — T*M to some adapted
local orthonormal frame, we obtain a local orthonormal frame of T*M,
which we will also call adapted since it still respects the orthogonal de-
composition T*M = H*M @ V*M with respect to g°.

Lemma 2.22 Let G® be an admissible perturbation of g°. Then for all
ae Ng+f there exists a constant c(|a|) such that the matrix representation
of s with respect to any adapted local orthonormal frame of (T*M, g°)
satisfies

D% op mar < (lal)e
for all 0 < ¢ < 1, independently of the chosen frame.

PROOF. The matrix representation G* with respect to an adapted local or-
thonormal frame of (T*M, g°) can be expressed by a convergent Neumann
series

[e¢]
GS = (lmxm - (lmxm - GE))_I = Z (1m><m - Gg)k:
D k=0
=G¢
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where G° is the matrix representation with respect to the dual adapted
local orthonormal frame of (TM, g°). Thus, the matrix norm of

o0
s =G° — 1rn><m = Z(lmxm - Gs)k
k=1
can be estimated as
1
51l oo mar < -1
1= (1 = G|

N
<c(lol)e
= O(e).

Any derivative
D% =D%(G® — 14m) =D°G%, la|>1

is a polynomial of degree |a|, where the monomials are given by the
composition of at least one matrix of the form D®G*® for 1 < |b| < |a| with
norm
b b b
DG e < 10" Lol e + P (G = Lonscm) g i
=0

=¢eC(|b])

and the matrix G* with norm of order one. Consequently, the norms
D5 mar = O(€) depend only on |a]. O

Proposition 2.23 Let G° be an admissible perturbation of g°. Then the
Dirichlet Laplacian —A£, is unitarily equivalent to an operator which satis-
fies Condition 2.16.

PROOF. We already know that
U

o, (-0G) U}, = —0g +eHy
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2.3 The Schrédinger Operator

holds for the perturbation
HY = e 1 (VE*E 058 1V, 1;)
in virtue of Lemma 2.18. As far as the volume density p, is concerned, one
obtains with the aid of an adapted local orthonormal frame of (TM, g°):
det(GS)

ln(det( - mxm)—klmxm))
(G~ L) + Lnson) )

(
tr(\ L) +O (16"~ 8" ) )- (2.19)

Il---lIvtat,00 <C(0)&
= 0O(e)

Inp,=In

NI=

—

T

N|—=

NI=

Thus, the geometric potential (2.18) is of order ¢ in C;°(M). If we finally
express HY over nfwl(U) with U € 4 from Definition 2.7 and use an
adapted local orthonormal frame, we arrive at a second-order differential
operator whose coefficients are given in terms of the matrix entries of £ ~1s®
(smooth and bounded with all their derivatives), and are of order one by
Lemma 2.22. This implies that H{ is a continuous map from Wsk“(é' )
to ng(é‘ ) for all k € N, with e-independent bounds and HS T € AP24 for
all T € AP? (see Definition 3.5). The proof is completed by the remark that
the resulting operator is clearly bounded from below, since it is unitarily
equivalent to the positive operator —Agf. 0

2.3.2 Perturbation of the Connection

Since two connections on £ always differ by an End(€)-valued one-form,
we may obtain a new connection by an appropriate extension of the initial
(“reference”) connection V¢:

Ve =VE +w, weC®(T*M ®End(E)).
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Provided that the reference connection V¢ is metric with respect to a
given bundle metric h, we want the extended connection V& to be
metric (with respect to the same bundle metric) as well. One can easily
verify that V& is metric if and only if w is anti-self-adjoint everywhere,
ie.,

h(h, w(K)p) = —h(w(K)p, )

holds for all K € C*(TM) and v, ¢ € C*(€). Thus, we restrict to connec-
tions of the form V¢ +iA with A e C*(T*M ® Herm(£)):

Definition 2.24 Let 7ty : (£,h, V) — (M, g) be a CN-vector bundle. We
call the family

VEA =V Ligd®, 0<e<],

an admissible perturbation of V¢, denoted by V&4 = V€ + O(¢), if
A® e C°(T*M ® Herm(&)) has bounds independent of &. O

The smallness of the difference between the involved connections implies
that the respective Laplacians are also e-close to each other, i.e.,
£,A° £
—AyT = AL +0(e)

with errors in £(dom(H?),H). More specifically, it will turn out to be
beneficial for the applications to expand only the horizontal deviation of
these operators and to keep the unaffected vertical operator

£,A°
—Ay =—A5 +0(e)
with errors in £L(Dxz, Hz).
Proposition 2.25 Let V" be an admissible perturbation of V. Then
EA° 2AE E,A° 4
NS = A5 - AEN 4 eHE,

where the perturbation H 15 satisfies Condition 2.16.
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2.3 The Schrédinger Operator

PROOF. We take an adapted local orthonormal frame of (TM, g°) from
Definition 2.8 and perform similar calculations as for (2.8). In this context,
the entire horizontal Laplacian

—e2AEA = —82|:<V§H + ieAS(XiH)) <V§_H + ieA*’(XiH))

_ (vf . —|—isA5((V§in)H))

(VX))
E .
—(ve,+ 18A8(nv))]

splits into the sum of the unperturbed horizontal Laplacian —EZA‘:’; and
the symmetric perturbation
E _ . 3 H £
Hy = —ie A*(X] )vgxg*

7i€vfxﬁ ('AE (XIH)) +ig%A° ((v;:(?Xi)H + TIV)

R
= [7isAE (XIH)V‘:XH] with Lemma A.21
+ A (X AT (X))
: € &
= —2ietr s, (A°®VE)
+ig? (Ae (ny) — trﬂ:;‘;gg (VT*M®End(5)Ae>)

+ 83 trﬂ;x;gB (AE ®AE),

where VEM() := [V¥, ] is the connection on End(€) = £* ® € associated
with the reference connection V¢ and V™ M®End(€) stands for the induced
tensor product connection (A.5). The C*-boundedness of A° implies
that Hf defines a first-order horizontal differential operator, which is
a bounded map from W**!(&) to WX(€) with e-independent constants
for all k € N,,. In particular, it has the desired properties discussed in

Remark 3.8. 0
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2.4 Adiabatic Perturbation Theory

We split the Schrodinger operator (2.15) according to

H® = —e?Af + eHS + H”
with fibrewise acting vertical operator H”

Fiy) — _AE El A& £

H” (x) 1= —Ay(x) + V&, = —Ag +V |,
The latter defines a self-adjoint operator on L*(€,) = H |, (2.11a) with
Dirichlet domain W?2(&,) n W (£,) = Dgl, (2.11b) due to the Kato-
Rellich theorem. Hence we treat it as an essentially bounded section

of L(Dx,Hy). The compactness of the fibres (M,, gy, ) yields that the
spectrum of the elliptic operator H” (x) is the discrete set of eigenvalues

—[lve

L (End(&,)) < )'O(x) < kl(x> < A'Z(X) S

of finite multiplicity accumulating at infinity [Nic96, Theorem 10.4.19].
In this context, an eigenband is a function A : B — R with the property
A(x) € o(H” (x)) for all x € B. Throughout this thesis, we will exclusively

be interested in eigenbands with the following specific property:
o(HT(x))

MX

x€B

Figure 2.4: The eigenband A : B — R satisfies the subsequent gap con-
dition and is separated from the rest of H”’s spectrum by at least 25,
i.e., it holds that inf .5 dist(A, o (H”)\A) = 26.
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2.4 Adiabatic Perturbation Theory

Condition 2.26 We say that an eigenband A : B — R has a spectral gap,
if there exist 5§ > 0 and f € C,(B) with dist(f, (x), o (H” (x))) > & such
that

[f- (), f4 ()] n o (HF (x)) = A(x)
for all x € B. O

Given any eigenband A, we can assign a fibrewise spectral projection P,
that satisfies H” P, = AP,. One clearly has the estimates

1Poll crpy. <1 5 MPoll ooy, < AG)| +1

forall x € B, and so P, is an essentially bounded section of both £(# ) and
L(Dy) provided that the eigenband A is a bounded function. The finite
multiplicity of the eigenvalues of H” (x) immediately implies the finite
rank of the projection P,(x) for all x € B. If the eigenband A is additionally
separated from the rest of o(H”) by a spectral gap, then P, as a section
of L(H ) is continuous (see Proposition 3.14), and q = rank(P,) = tr(P,)
must be constant and the eigenspace bundle P := PyH » is a well-defined
subbundle of H - of finite rank q. Via the identification # =~ L?(Hr)
(cf. [Lam14, Corollary B.6]), the operator P, defines a bounded operator
on H, whose image P, is isomorphic to L?(P), the L?-sections of the
Cf-vector bundle 75 : P — B.

Remark 2.27 The considerations of Subsection 2.3.2 show that an ad-
missible perturbation V&4 = V¢ 4 ig A® of the connection leads to an
additional perturbation

HY = V5% o (147) + (14°)* + g(iA°)* o (A7)
_ trgv (—Zi.AE ®v£ _ vT*M@End(é‘)As + e Af ®As)
within the (by now e-dependent) vertical operator
HP* = —Af + eH] + V7,

where the potential Vf is allowed to depend on ¢ as well. As long as
Condition 2.16 and Condition 2.26 are still fulfilled, i.e.,

63
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e the perturbation H{ € L®(L(Dz,Hy)) is symmetric on D and
carries additional ¢-horizontal smoothness (which will be stated
more precisely in the discussion directly after Lemma 3.12) with
bounds that are independent of &,

e the bounds of the potential V¥ € C”(Herm(€)) can be chosen
independently of ¢,

e and the spectral gap condition is maintained uniformly in ¢,

the methods presented in the following chapter are also applicable. All
objects derived from H”¢ (like eigensections, eigenbands A* with associ-
ated spectral projections P; and eigenspace bundles P¢), however, then
depend on ¢, making the notation somewhat laborious. Therefore, we
will drop the superscript ¢ and will not treat such e-dependences explicitly,
but bear in mind that the uniformity conditions on the perturbation H f ,
the potential Vf and the spectral gap 6 are sufficient in order to obtain
the main results. O

The adiabatic approximation consists of comparing certain features
of H® with those of the much simpler adiabatic operator

H? := PyH*Py = Py(—€*Af + eHY ) Py + AP,.

Due to the fact that H” (1,, — Py) = 0, a mutual approximation of H*
and Hf is possible only on the adiabatic subspace PyH. If one initially
starts on the image of P,, Duhamel’s principle allows for the comparison
of the respective generated dynamics

(e—iHEt _ e—iH;’t)PO — _e it Jt %(eiHsSe_ins)Po ds
0

t
- —ie_ngtJ s (HE —Hf)POe_iHZDSPO ds
0

t
- —ie_ngtJ engs[Hg,PO]POe_inspO ds
0
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2.4 Adiabatic Perturbation Theory

by means of a commutator estimate
[HE,Py]Py = [—€*A8 + eHE , Py [Py = O(¢)

in a suitable sense. Therefore, one has approximate invariance of the
subspace PyH under e~ “t only for finite times t of order one. The growth
of the basis (B,s ?gg) by a factor £ !, however, yields that non-trivial
dynamical effects do not occur until times t = O(e~!). This deficiency is
the actual motivation for the considerations of the following chapter: For
all n € N we will construct a super-adiabatic projection P, = Py + O(¢)
that satisfies [H®, P,] = O(¢"™!) in a suitable sense.
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Chapter 3

Super-Adiabatic
Perturbation Theory

In this chapter, we will introduce the tools required to derive effective
operators which give an accurate approximation of Schrodinger oper-
ators (2.15) in the adiabatic limit ¢ « 1. Therefore, we will use the
techniques of super-adiabatic perturbation theory and extend the ideas
developed by Lampart in [Lam14], where he considered operators acting
on complex-valued functions on an &-thin fibre bundle M ™ B with
compact typical fibre F (sections of the trivial line bundle M x C LNy Y ).
More precisely, we will investigate operators that act on sections of a
Hermitian, possibly non-trivial CN-vector bundle £ =5 M.

The rigorous assumptions on the underlying geometry are listed in
Condition 2.2. We saw in Section 2.1 that these bundles give rise to a
double fibre bundle structure, i.e., we may treat Iz : £ — B as a fibre
bundle, where the typical fibre is itself a CN-vector bundle 7 =% F.
The boundedness properties of the individual bundles allow for local
trivialisations of the composed fibre bundle that are bounded in a suitable
manner (see Proposition 2.6).

Let H be the e-independent Hilbert space of square-integrable sections
of (£,h,V¢) =5 (M, g) associated with the unscaled Riemannian submer-
sion metric g. We will consider Schrédinger operators

H® = =A% +eH{ +V® = —¢®A] + eH{ + H”
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3 Super-Adiabatic Perturbation Theory

with Dirichlet boundary conditions, which mark suitable extensions of the
connection Laplacian —Agg in the sense of Condition 2.16. We mentioned
in Section 2.3 that H? is self-adjoint on # with domain dom(H¢) =
W2(€) n Wol’g(é’ ) and satisfies reasonable elliptic regularity estimates (see
Corollary 2.17). The vertical operator

H? = —AL +V*

acts fibrewise with respect to the fibres of £ s, B. It defines an operator
on the Hilbert space H , which is a vector bundle over the base man-
ifold B with infinite-dimensional typical fibre L?(F). Moreover, it was
shown in Section 2.4 that H” is a self-adjoint operator with Dirichlet
domain D < H and possesses a spectrum consisting only of eigenbands
of finite multiplicity. In fact, we will deal with eigenbands that obey a
spectral gap condition (see Condition 2.26). This allows us to associate
a spectral projection P, with A (such that H" P, = AP,) and to construct
the eigenspace bundle P = PyH », which is a finite-rank vector bundle
over B.

3.1 Introduction of Suitable Algebras

We will see that the construction of the super-adiabatic projection P, =
P, + O(¢) relies heavily on the fact that the commutator [H®, P,] is small
in a suitable sense. Inasmuch as P, commutes with H” and the perturba-
tion eH 15 itself is small, this reduces to locally proving

[—e2A8, Py = O(e). (3.1

If A is separated from the rest of o(H”) by a gap &, P, is defined locally
by Riesz’s formula in terms of a contour integral of the resolvent of H” so
that

Py(x) = 1(3(0)—5.200)+5) (HT (x)).
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3.1 Introduction of Suitable Algebras

Thus, it seems natural to first consider the commutator [—&>A%, H ],
which basically means we need to calculate commutators of the form
[eV4.,H”] for X € C*(TB), and then to use the functional calculus to
analyse (3.1). However, the latter commutator is delicate in the presence
of a boundary 0M: Since X" is generally not tangent to the boundary
(cf. Figure 2.3), the derivative V%,,¢ (for ¢ € C*(€) with ¢, = 0)
need not vanish on M in general. Consequently, the object [V)S(H,H 7] has
no sensible meaning on D . In contrast, one would ultimately calculate
derivatives of —Af + V¥ on C*(€) rather than on C;°(£°).

In order to circumvent these difficulties, we want to work with vector
fields on M that are adapted to the boundary. These are naturally given in
terms of local trivialisations & : n]\_/ll(U ) — U x F of M because they come
along with trivialisations of the boundary 77:;/[1 (U)n oM = U x JF. More
precisely, for any X € C*(TU), whose product lift onto U x F is tangent
to U x OF, the vector field $*X € COO(TM|HA;1(U)) is tangent to M. We will
refer to such fields as 0-horizontal vector fields. Note that Ty, 0($*X) = X,
so ®*X is a lift of X and we may locally decompose X" = ®*X +V, where V
is a smooth section of ker(Tx,,;) = VM. Consequently, we obtain

Ve = 6VE +6VE, = To(eVE,)  + T (eVisy)

and so we consider VfXH locally as a polynomial of degree one in evi* ¥

with fibrewise (vertical) operators as coefficients T, and T; which carry
an additional 0-horizontal smoothness. This section will deal with making
this idea more precise.

We recall that Definition 2.7 yields gz-orthonormal, uniformly C*-
bounded frames {X le of TU, for all v € Ny and that each of the respec-
tive horizontal lifts has the decomposition

H
X" =@EX) + V" (3.2)
with V" € C* (VM1 ).

Lemma 3.1 The vector fields V,” defined by (3.2) are C*-bounded uni-
formlyinie{1,...,b} and v € N,.
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3 Super-Adiabatic Perturbation Theory

PROOF. The horizontal lifts (X)" are uniformly bounded by [Lam14,
Corollary A.6 (5)] due to X € C;°(TU,). The uniform local triviality
of M ™ B further implies ®¥X e CO(TM |ﬂ;[1 (v,)) in @ uniform manner.
Thus, the difference V,” = (X N X itself is uniformly bounded with

1
all its derivatives. 0

Note that the g®-length of V" is of order ¢ compared to that of (X)".
Hence, the choice of ¢-horizontal vector fields corresponds to locally
assigning e-tilted horizontal directions and is suitable for dealing with
operators on £
. . . . g _ g
e which are locally given by polynomials in vs<1>:“x; = 8v<1>3‘x;’

e and whose coefficients are L*-sections of £(H ) (i.e., the fibrewise
acting operators in £(H)) or L(H,D#) and carry an additional
0-horizontal smoothness.

This is stated precisely within the next two definitions:

Definition 3.2 Let {X"}’_, be the g-orthonormal, C*-bounded frame
of TU, for all v € N, provided by Definition 2.7.

(i) We denote by C* = L”(L(Hz)l, ) the space of those linear opera-
tors T for which

[viz*‘x,;’ [ [vi;"xi;’T]"']] eL?(LHA)y,)

holds for all k e Ny and iy, ...,i € {1,...,b}.

(i) We similarly define C;; = L*(L(Hz,Dr)|y ) to be the space of
those linear operators T for which

[Vi*xw - [Vi*xy,T]...]] e L”(L(HrDF)ly,)

holds for all k € Ny and iy,...,i € {1,...,b}. ¢
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3.1 Introduction of Suitable Algebras

Equivalently, the subspace C;; consists of those linear operators T € C”
that additionally fulfil H” T € C”.

Definition 3.3 Let {X} _, be the gz-orthonormal, C*-bounded frame
of TU, for all ve N, prov1ded by Definition 2.7.

(i) Denote by A < L(W®(E),H) the set of those operators T that
satisfy

o ) (supp TY) < 7y (suppy) for all yp € W (E),
e and T is locally given by the polynomial

T‘nﬁ;l Z T, ( €V§*Xy ) (Evi*xy)ab
aer
= D TrE(VE, )M (V) (3.3)
arxy) o (Vg .
aENb

with Tu” € C” such that

& &
H [vwm, [ [vwx_,, LT ] H
i fk LHF)y,

holds for all v € N and there exists [ € N, such that T = 0 for
la] > L.

C(a, k)

(i) Ay is defined similarly, with the modifications that T € C;; and
that the commutators are bounded in L(Hz, D)l - O

We will write C; if any statement holds for C” as well as for C;;, and
introduce A, analogously. Moreover, we will frequently use the self-
explanatory notations

b b
& & ui _ ol & a;
eV *xv | | evq)*xy =€ | |(V<I>’y"Xf) .
i=1 i=1

Lemma 3.4 Each of the two spaces A and Ay, equipped with the composi-
tion, forms an algebra.
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PROOF. Take two elements S, T € A,. One clearly has 7, (suppSTy) <
Ty (supp TY) < my (suppy) by definition. In order to see that ST is
locally of the form (3.3) over some U € i (see Definition 2.7), one has to
commute all 0-horizontal derivatives Vg* X, of S to the right appropriately.
Hence, one gets commutators of the form

[Vg*X > ] eC,
and

(Vs

£
P*X; ’v

d*X,

1=v;

a0 TR (27X, @%X;) for j > 1.

The latter curvature term restricted to M, defines a C*-bounded section
of End(&,) for all x € U by Definition A.19. Thus, iterated commutators

[vg*x [ Vo, ,Rf(é*xj,cb*xl)]...]] (3.4)

are bounded both in £(H )|, as well as in £(Dy)|, (more precisely, the
latter are elements of L™ (W*(F;Il¢)|,)) and preserve the regularity.
Consequently, if one commutes all terms (3.4) to the left, one has

ST|n71 ZS Ty (eVisy) u+b + lower order polynomials,

where the lower order polynomials are of degree at most |a| + |b] — 1 and
the coefficients

Sa[...,[...,Tb]...][...,[...,R5(<I>*Xj,<1>*Xl)]...]
are bounded in L£(H )|, and L(HF,Dx)|y- O

We now grade these algebras by the degree of the polynomials (3.3) and
the g-order of the coefficients T

Definition 3.5 We introduce the filtrations

AP = {T € A, such that (la| >p = T =0) for all ve NO}
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and

AP ;= {T € AP such that the constants C(a, k)

introduced in Definition 3.3 are of order 8‘1}

for p,q € Nj. ¢

A p-th-order differential operator is also one of order p + 1, which gives
AP < AP*L Furthermore, if the above constants C(a, k) are of order 77,
they clearly also are of order 4, hence AP4T! < AP,

We end this section with some comments on the algebras A, and their
relationship to the W’ (£)-spaces.

Remark 3.6 (i) The condition ) (supp Tv) < 7, (suppy) for any
T € AP implies

2
1Tl

(2.12) 5
< NU ||T¢”W€0(g)

Ny 5 bl =Nu 3

v EN, €Ny

2

2 D TN ) )

veNy

support in
' (Uy)
2

2 2, 20 T (eVes,) (')
H

veNy |a|<p

:NUZ

veNy

_YP pk
Nipp = 25 b" terms

2
T (Ve ) )|

A

NNpr‘

v, |a|

NNy 3 [ I,

v,V |a|

N

x| (eVgay,) " (x )|*, ol (x)

12(&,)

<l e,
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(i)

(iii)
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2 M 2
S NiNpp E (Nﬂ Sup max“xv, Ty LOO([l(H_;_—)UV>

veN, veN, lal<p

><ZJ‘U

lal<p

< N&Nb,p (Sup maX“T:”if’C(E(H}'”UV)

veN, lal<p

<22,

VeNp |al<p

<mfj‘xluwsp||T§||§co( )y,

() )

wr—lal(g,) VOIgB (X)

v

2

(evifxv)a(x¥¢)| vol, (x)

wo-lal(s,)

= Hll)llilp(g), see Definition 2.12
&

for all ¢ € WP (). Thus, AP = L(WF(E), ) with the norm

3/2 \ 172
NTH, = NT N owe ), <Nu/ Nb,; sup max

veN, lal<p ||T:||L°O(£(Hf)\u,, ’

In particular, we may calculate these norms locally with respect to
the covering {71:&1 (Uy)} yen, of M.

dense

Let p; > p,. Then [[y|ly» &) = ||1/J||W2PZ(£) for allp e W\ (E) <
WP2(&) implies

1Tl _ Tl
Ty Tl o)

for all T € APz < APr. Moreover, the inequality still holds after
passing to the supremum over all 1) € W1 (&) on the left hand side
and over all ) € WP2(€) on the right hand side. We thus have
ITll,, < |ITll,, if py = pp. In addition, T € AP? yields ||T||, =
O(e9).

Now let T € AY. Then

HPT = —e?ALT +eH; T +H'T
| —
eAP+2
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holds true and —e?Af T} ) for U € 4 from Definition 2.7 consists

of p + 2 ¢-horizontal derlvatlves of the form V¢ a#x- 1f we commute
all of these derivatives to the right (similar calculations will be
carried out in Lemma 3.7), we finally observe that —e2AET € AP*2,
Thus, sections in the image of T satisfy Dirichlet boundary conditions
and H°T € AP*2 < L(WP*2(E),H). This already implies that T,
and therefore A, is contained in £(WP*2(£),dom(H?)). O

3.2 Classification of the Constituents

Now that we have introduced the algebras 4, with their respective fil-
trations, we want to classify accordingly the essential building blocks
that are needed for the construction of the super-adiabatic projection P,.
These building blocks will turn out to be the connection Laplacian (more
precisely the commutator of A,. with elements of .Ay,), the resolvent of
the vertical operator H” and the spectral projection P, associated with
an eigenband A with spectral gap.

3.2.1 The Connection Laplacian

Let us start with the connection Laplacian and its horizontal contribution.
The following lemma states that the commutation with those operators
raises the order of the resulting ¢-horizontal differential operator by one,
while the commutator with £A¢, additionally gives a “free” e:

Lemma 3.7 Let S, T € Ay with ST € Ay, It then holds that
() [e2AE,S]T € APTHATL,

(ii) [Af,,S]T € APF14

g¢?

PROOF. In view of Remark 3.6(i), the spaces AP together with their
norms ||-||, are characterised by means of local quantities induced by

75



3 Super-Adiabatic Perturbation Theory

the cover 4 of B introduced in Definition 2.7. Thus, it suffices to show the
claims for one (and thus all) U € 4.

76

(i) We write

b
ezAmml(U) = Z (svg*xi) <€V§*Xl) +£2D,
im1

where D contains first-order differential operators and second-order
parts with at least one vertical derivative. Let us first consider the
commutator
£ £ £\
[VCD*Xi’S]‘ = 2 el ([VMX,,SG] (Vasx)
—_—

—1
' (U) :
aENg Cyy

+ 80| Pour,s (Vo))

for arbitrary i € {1,...,b}. Here, the second commutator may
be evaluated as a finite linear combination of monomials of the
form (Vi* X)b with |b| = |a|] and lower order polynomials, which in-
volve iterated commutators (3.4) that are — in combination with S, —
bounded in £(H, D). The commutator [Vi*XE,S] over 1,,' (U)
then is of the same order in Ay as S (and analogously for T) and it
locally holds with Einstein’s sum convention that

[ (eV50x) (eV5sy, ). 8| T

= (V5 ) [T ST+ [V S| [Ty T]

eAb! eAl! )

eAlta eAlI Al

£ £

+e [VQ*Xif S|T (EVQ*Xi))
—_—
eAl!
-~
e AP

1,q+1
GAI}:I+ q+ CAP+1’q+1.



3.2 Classification of the Constituents

As far as the remaining commutator with D is concerned, observe
that all vertical covariant derivatives contained in D are along C*-
bounded vertical vector fields, since V; = X' — ®*X; is bounded by
Lemma 3.1 and

ny = g(Xi', ny)X;
= g5 (X5, Ty () @*X; + g5 (X;, Ty (0y)) Vi
is bounded by [Lam14, Corollary A.6 (4)]. Hence, one locally has
e?D = eD;(eVguy ) + €Dy,
where D; € L(L(W!(F;11g),H5)|,) is a first-order vertical dif-
ferential operator and D, € L*(L(Dz,Hz)|,) is a second-order

vertical differential operator. Thus, we may evaluate the commuta-
tor [¢2D, S] over n;,' (U) as:

[¢°D,S] =€ D;S, [evi*x L (6Vi4y) ]

eC
+eD; [vé*X »S ](Evi*x)u
—_—
eCy
—_—
ec

=(%)
+[D;, 8] (6Vauy) (6 Vany.)
eC
+ €25, [D0: (gvd)*X) ]+ [DO’S ](8vg*x)a‘
- 2 S~
—%) ecC

It suffices to treat the terms (), since the other four terms are clearly
elements of AP*1F1if S € APY. To do so, if one commutates all
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3 Super-Adiabatic Perturbation Theory

the derivatives V¢, . to the right, one ends up calculating iterated

X,
commutators of the form

(V5 eVux | = ,s(vf

[V,o*X;] +R (V’ CI>*XJ))’

where V € C}?O(VM|nA;1(U)) and [#*X;,Y] is again a C*-bounded
vertical field because [XJH, V] is vertical [Lam14, Lemma 1.4 (4)].
Consequently, both S, [D;, (¢®*X)"] and S,[Dy, (¢®*X)%] gain a
“free” ¢ and hence are elements of AP~1LI+1 c APHLAHLjf g e APA,

(ii) This claim immediately follows from (i) due to the fact that

[AS,T]S= AST S—T ALS e AP,
~—— ~——
€A €A

ie.,

(A%, S]T = [2A5,S]T + [Af,S]T e APTH,
S N————
EAPHLAFIC APFLE € APAC APH1A O
In view of Remark 3.6(ii), the calculations of the previous lemma show
in particular that (if we again commute all ¢-horizontal derivatives to the
right)

|[—e*Ag, T] <|[-e2as, T O(e7) (3.5)

||p+1+l Hp+1

forall l e Ny if T € ADY.

Remark 3.8 The requirement that ng T € AP*24 for every T € A% in
the perturbation within Condition 2.16 is fulfilled if H 15 takes the local
form
£ £ u
Hy| o = D A (eVE) + Y By(eVEsy)' +C,
la|=2 |b]=1

where the coefficients satisfy A, € C, B, € L(L(W(F;11;), H)|,) and
C e L*(L(Dy,Hs)|y) as well as commutator conditions analogous to
those of Definition 3.2. O
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3.2 Classification of the Constituents

3.2.2 The Vertical Resolvent

We now want to classify the resolvent of the vertical operator in view of
Definition 3.5:

Lemma 3.9 Let z € C°(B,C) with dist(z(x), o (H (x))) = C > 0. Then
R7(z):= (H” —le)_l e A,

The main part of the proof consists of showing the boundedness of the

commutator [V%X,Rf(z)] in L(Hz,Dx)ly, for X € C°(TU,) for some

(and thus all) v € N,. In order to make sense of this expression (H”
has an x-dependent domain!), it is more convenient to consider the
corresponding operators on the local product U, x F rather than on
5‘75;1(%) = II;'(U,). Therefore, as we saw in Subsection 2.2.1, the
completion of C*(F) with respect to ||-||;2(#) yields a vector bundle
isomorphism (cf. Remark 2.3)

©,: Hzly — U, x L*(F,), (3.6)
2(8)3 ¢ ((0,)(x) € I2(F,) 1y = ¥,0 6 08,1 (x,))

by means of the local trivialisations ¢, : rr;,,l(Uv) — U, xFof M ™ B
and ¥, : Hgl(Uv) —U,x F,of € 5, B. This induces a (weak) covariant
derivative
e,
vy L*(U,,WH(F,)) nWH(U,,L*(F,)) — L*(U,,L*(F,))
along X € C*(TU,) given by the extension of

C*(U,,C*(F))2¢ — Vy'¢p = (0,0V5, 00,7)¢.

This mapping in fact satisfies
Vi =fYge . V(Fe)=df(X)+fVye
forall ¢ € C*(U,,C*(F)), X € C*(TU,) and f € C*(U,). In order to

not overburden the notation, we will drop the index ¥ for the rest of this
subsection.
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3 Super-Adiabatic Perturbation Theory

Lemma 3.10 There exists a “connection one-form” A® such that for all
X € C°(TU) the mapping A°(X) : U — L(W*(F)) is smooth and bounded
with all its derivatives for all k € N, and satisfies

VR$ =X ¢ +A°(X)¢
forall ¢ € L>(U,W'(F))nW(U,L*(F)). Here, X -¢ denotes the pointwise
Lz(]-')—limit

(X @) (x):= dt‘t od)( >)
for the mtegral curve y¥ 1 (=6,8) — U of X through yX(0) = x with
6 = 6(x) > 0 small enough.
PROOF. Let us calculate the covariant derivative Vg along X € C°(TU)
at any x € U: The corresponding integral curve yf induces a ¢-horizontal
curve o 1 (=6,8) — Ty (U), t — & 1 (yX(t),y) for all y € F, which
coincides with the integral curve of ®*X through a} (0) = ®7!(x, ).
Moreover, we denote by pf’y(t) : 5a§§{y(o) = Eax (1) the parallel transport
along a* , with respect to the connection Ve, ie., p¥ y(t) satisfies the
differential equation (A.2)

Vix (t)(px (¢ )W) =0

for all w € £4-1(x) and t € (—6,6). This finally yields the smooth
mapping t;  : (—8,8) — Aut(F,) defined by

-1 .
tf,y(t) = Wy opf’y(t) oW, X= rE(8).

Thus, we may think of V}(? in terms of the induced parallel transport £ in
view of [KN63, Section I11.1], i.e.,

(V96)(x) = &, (€.(6) "o g 0y (0)
- (%\tzofﬁ,«o)‘lqs(rz(o»
—

=¢(x)
+(£.(0) 7 &, o8 (X(1)
—_— ——
=15 =(X-¢)(x)
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3.2 Classification of the Constituents

forall ¢ € C*(U,C*(F)) demsee L*(U,WY(F))nWY(U,L?(F)), and iden-
tify (A®(X))(x) € C°(End(F)) as the mapping

-1
v (B, 0) = &, (—0) e End(F)

v, Uy
‘7:}’ ‘Fy
& (t)

7y (t)

if X € C(TU).

'™
[ 13

U

The boundedness of A® (X) is clearly implied by the uniform boundedness
properties of the local trivialisations ® (uniform local triviality of M —* B)
and ¥ (see Proposition 2.6) as well as the C*-boundedness of the parallel
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3 Super-Adiabatic Perturbation Theory

transport map p* which stems from the bounded geometry of the vector

bundle (£,h,V¢) 25 (M, g). In particular, A% (X) defines a smooth and
uniformly bounded mapping from U to £L(W*(F)) for all k € N,,. O

The vector bundle isomorphism (3.6) induces a bounded map
W:L*(Hgly) — L2(U,L*(F)), ¢ —©¢

between Hilbert spaces. This allows us to transfer various operators to
the local product with identical fibres:

Definition 3.11 Let D(F) := W2(F) n W, (F) < L*(F) be the x-inde-
pendent Dirichlet domain of the Laplacian.

(i) The operator

H}_(.) :=WoH” oW !: U—>£(D(.7:),L2(]:)),

(x) (x)
x> —AT" 4 vF

is fibrewise self-adjoint with L%(F)-domain dom(H” ") = D(F)
for all x € U. Here,

©) . . . .
e A7 stands for the connection Laplacian associated with the
connection

v = (W] ) VS P (F) - CP (T F R F)
on F and the Riemannian metric
gﬁx) = (<I>|1\2)*gMX e C*(X*TF)
onkF,
e and V7" iU — CZ (End(F)) is the potential given by
VI = (W) VE| = g ovEo ).

(i) The associated resolvent

R¥"(2) ;= WoR% () oW : U — L(L(F),D(F))
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3.2 Classification of the Constituents

is the mapping

X — (H}-(X) —Z(X)le(].-))_l

= (—AFM +vFY —z(x)le(f))_l.
(iii) Let A:B — R be an eigenband of H 7. We let
PF = WoPyoW U — L(LX(F)) n L(D(F))
denote the spectral projection of H” “ related to Aly- ¢

Note that o (H” (x)) coincides with o (H” ) and one has the equivalence

H7Py=APy, < H”ZPF" =a(x)P7" forall x e U.

Furthermore, Condition 2.26 on the spectral gap immediately carries over
with the same parameter 6. It is important to assure that the x-dependence
of the operators introduced in the previous definition is appropriate:

Lemma 3.12 Let U € 4l be a geodesic ball in B from Definition 2.7. More-
over, let A : U — R be an eigenband of H” “ with a spectral gap and
z€ C.°(U,C) with z(x) € C\{O‘(H}—(X) )} for all x € U. Then the mappings

(i) H" : U — £(D(F), LA(F)),
i) R7(z): U — L(L*(F),D(F)),
(i) PY" U — L(L*(F),D(F)) < L(L*(F))
are smooth and bounded with all their derivatives.

PROOF. (i) The Laplacian A” “is a second-order vertical differential
operator whose coefficients are smooth mappings from U to End(F)
with uniform bounds due to the bounded geometry of the involved
bundles £ Z5 M and M ™% B (see again Proposition 2.6). To make
the latter precise, note that we need to check differentiability only
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3 Super-Adiabatic Perturbation Theory

(i)

84

locally thanks to the compactness of F. Therefore, we take any
normal coordinate chart V c F and a C*-bounded gp-orthonormal
frame {Vj}fz1 of TF|,. Then

AT = ' (x)V Vi + b (x) V) +c(x),

where @/ : U — C*(V) and b/,c : U — End(F|,) depend on
the coefficients of gl(,') (and its inverse), the Christoffel symbols
of the associated Levi-Civita connection Vgé') and the Christoffel
symbols of V7 . But these functions are bounded uniformly with
all their derivatives, since they arise from the respective coefficients
associated with g, and V¢ (transported back via the smooth and
bounded maps & and ¥). Moreover, V7" = WoV€ oW1 s clearly
bounded with all its derivatives.

We first show that R : U — £(L*(F),D(F)) is differentiable
with bounded derivatives. Therefore, again let y% : (=5,5) — U
be the integral curve of X € C°(TU) through y%(0) = x. Writing

R(t,2(t)) := R7 (z(yX(t))) and H(t) := H*""", we obtain
for the difference quotient with the aid of the resolvent identities:

(x -R"7(2)) (x)

= lim
t—0 t

-ty (KD RO | RO() R0
t—0 t t
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where we used part (i) of the lemma, z € C;°(U, C) and the conti-
nuity of the mapping x — R” @ (z(x)) (which can easily be checked
by a similar calculation) in order to take the limit. Consequently,

X R (2)
= —R7" (=) (X - H7" — dz(X) 12 ) R (2)

defines a bounded map from U to £(D(F), L*(F)). Iteration of the
argument proves the statement.

(iii) Let x, € U be arbitrary and y be the circle of radius 6 around A(x;)
in C. The rest of the spectrum o (H” (x,))\{A(x,)} is entirely con-
tained outside of the circle around A(x,) of radius 26 due to the
spectral gap condition (cf. Figure 2.4). Hence, there is a neigh-
bourhood U < U of x, such that U(HF(X))\{A(X)} < C(B3s/2(x0))
and thus dist(y, O'(H]:(X) )) > &/2 for all x € U. The spectral projec-
tion P(f “ on U is finally given by Riesz’s projection formula [Kat80,
Theorem III-6.17]

. 1 .
Pof() = ﬁLRF()(z) dz.

Now (ii) and the compactness of the contour y allow us to prove

the claim by using the dominated convergence theorem applied to

the Bochner integral. For instance, one has

. i .
x-pr" = Z—JX-RF()(Z) dz.
T y O

As pointed out in Remark 2.27, one often treats perturbed vertical
operators of the form

) _
H ' =Wo (AL +eH] + VE) oW ™!

. FO) FO FO)
= A7 v o1 +VFY.
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The Kato-Rellich theorem ensures that this is a smooth and bounded
mapping from U to £(D(F), L*(F)) if the potential Vf(') :U — L(L?(F))
and the perturbation Hf(') : U — L(D(F),L*(F)) are also smooth and
bounded. This is satisfied if the initial perturbation H{ € L*(L(Dx, Hx))
carries additional ¢0-horizontal smoothness in the sense of Definition 3.3:
Take C*-bounded orthonormal frames {X}"_, of (TU,, gz) for all v€ N,
according to Definition 2.7 and require that

[vi;"xfl’ [ o [vi;"xyk’ Hlf}n,gl(uv)] ]]

for all k e Ny and {i,...,it} €{1,...,b}.
We now have all the necessary tools at hand in order to prove the
property claimed for the vertical resolvent.

< C(k)
L(DrHF)ly,

PROOF (of Lemma 3.9). The operator R” (z) acts fibrewise with norms
2 1
[R7(2) [ 2,0, < 2o
2 2
2 |z(x)| 1 1+2|z(x)|
”(R'F(Z))(X)HL(,H}_,D}_)‘X < (1+ C ) +F <2+ Cc2

for all x € B, and hence R” (z) € L*(L(H£)) n L®(L(Hx,Dx)). There-
fore, it remains to check the commutator condition

|[T50, [ [Fen 70

for some U € 4 from Definition 2.7.
Let us first consider a single commutator [V5,, ,R”(z)]. By virtue
of (2.10), the boundedness of this commutator in £L(Hr,D5)| y (uniformly

in x € U) amounts to proving uniform boundedness of

< C(k) 3.7

LHFDx)ly

[V2,R"(2)] =Wo Vi R (2)] oW
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dense

in £(L?(F), D(F)). To do so, we compute for any ¢ € C*(U,C*(F)) <
L*(U,L*(F)):

(VSR (2)]¢ = VS (R (2)$) - Rf”<>v§?i¢

(2)¢
=x'- (R7" (2)¢) +A°(x) (R7 (2)9)
~R7(3) (X; - ¢) ~R" (2)A°(x))9
- ((Xi-Rf“(z)) + [A®(x;),R"” z)])qs
Thus, the fibrewise operator

[Ve.R7 (@)] =X - R7 (=) + [4° (%), R7 (3)]

is an element of £(L?(F),D(F)) with bounds uniform in x € U and
ie{1,...,b} because both the resolvent R (z) : U — £(L2(F), D(F))
and the “connection one-form” A°(X) : U — L(L*(F)) n L(D(F)) are
smooth and bounded with all their derivatives by virtue of Lemma 3.12(ii)
and Lemma 3.10.

The same arguments apply to iterated commutators (3.7) and the com-
mutator condition follows. 0O

3.2.3 The Spectral Projection

We continue with the classification of the spectral projection P, associated
with an eigenband A : B — R that has a spectral gap:

Lemma 3.13 Let A : B — R be an eigenband of H” with a spectral gap,
i.e., A satisfies Condition 2.26. Then the associated spectral projection
satisfies Py € A%O

PROOF. The spectral gap condition yields that each x, € B possesses
an open neighbourhood U = B such that dist(y,o(H" ")) > &/2 for
all x € U, where v is the circle of radius & around A(x,) just as in the
proof of Lemma 3.12(iii). Thus,

Py= —

R7(z)d
om ), (2) dz
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for all x e U and P, € A%O follows from Lemma 3.9. O

Next we show that the corresponding eigenspace bundle P = PyH » is
a well-defined subbundle of # > and that the associated eigenband is a
smooth function that is bounded together with all its derivatives.

Proposition 3.14 Let A : B — R be an eigenband of H” with a spectral gap.
Then the corresponding eigenspace bundle P < H r is a smooth, finite-rank
subbundle and A € C;°(B).

PROOF. We first note that the smoothness of the projections

F F
Py U, — L((L*(F,)), x—P;
for all v € Ny (cf. Remark 2.3), which was shown in Lemma 3.12(iii),
implies that g(x) := rank(Py(x)) < oo is continuous and therefore con-
stant. Moreover, for every x, € B we may show the existence of an open
neighbourhood U, < B around x, and an associated, smooth local trivial-
isation A, : 717_,1(Ux0) — U, x C? as follows: Choose v € Ny with x, € U,
and let P, = im(Py(x,)) be spanned by the vectors ¢7°, ..., ¢,°, which
induce vectors
X
qj;xo L WV‘LZ(SXO)d)jO
i x
H W*’|L2(8x0)¢jo HLZ(]-'V)

Again due to Lemma 3.12(iii), there exists a constant r, < ri;(B, gp)
such that

(x) (x0)
A

eLl*(F,), je{l,...,q}.

<
L3 (Fy)

1
2

forallj=1,...,gand x € Br., (xo) =: Uy,. Then the mappings

)
X =0 (x) 1= Py Y, je{l....q)
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are smooth, form a fibrewise basis of (W,P)|, < L*(U,,,L*(F,)) and
xo
provide a smooth local trivialisation

R
Ay, imp (U

Xo

b(x) = w\;j( jzlcf¢;0(x)) e (x, (e, ).

) — U, xCI,

Let us now turn to the boundedness of the eigenband A. Its restriction
to U, for some v € N, satisfies the formula

() )
Ay, = %tr(HFV P )

The directional derivative of A|; along some X € C;°(TU,) then reads

X, 2]
s )
tr(va Py xRy |+ E [ p R
+ [X,Hfﬂg')]P{S'))
by means of the projection property P{ » o Pof Y Pof 5'). Each of those

three resulting terms is trace class, since each has finite rank of at most g,
and defines a continuous and bounded mapping from U, to £(L?(F,))) be-
cause of Lemma 3.12(i),(iii). Thus, (X - A) |Uv is continuous and bounded
for all X € C°(TU,) and v € Ny, which proves A € C}(B). Iterated appli-
cation of these arguments yields iterated commutators, which are again
bounded and continuous for the same reasons. 0O

We end this subsection with the classification of the reduced resolvent
R7(A):= (Hy — Aly) (14 — Py)

related to an eigenband A:
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Corollary 3.15 Let A : B — R be an eigenband of H” with a spectral
gap and P, its associated spectral projection. Then the reduced resolvent
satisfies R () € A°.

PROOF. This immediately follows from the formula

R(2) = (=20 (52 | 577 8 ) (1=

together with Lemma 3.9 (R” (z) € A%O), Lemma 3.13 (P, € A?I’O) and
Proposition 3.14 (A € C°(B)). O

3.3 Construction of Super-Adiabatic
Projections

We start this section with the construction of an “almost-projection” P"
for n € Ny, which will be the basis for the super-adiabatic projection P*:

Lemma 3.16 For every n € N, there exist P, € Aﬁ;’o for ke {0,1,...,n},
such that

n
P = Z ekp,
k=0
satisfies
: 2 2 n41
(i) (P")*—Ple Ay ,

i) ||[H®,P"] = O(e"™!) on dom(H?).

2042

The proof is based on [Teu03, Lemma 3.8]. In contrast to using the
methods of pseudo-differential calculus, we instead explicitly construct
the expansion in terms of commutators. This is possible since we consider
(isolated) eigenbands and not more complicated subsets of o (H”).
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Let us first introduce the notation POL := 1,, — P,. The decomposi-

tion H = PyH&® POLH allows for the splitting of an operator

<POTP0 P, TP; )
= L 1 1
P} TP, P;TP;

into a diagonal block

P,TPy 0O
D._ 0 0 _ L L
T ( 0 POLTPOL>POTPO+PO TP,

and an off-diagonal block

0  P,TPf
7O .= (piTPO 00 0 ) =P,TP; + P, TP,.
0

Moreover, we remark that
[T,Py] = [T, PZ] = Po[T, Py] + [T, PPy,

and so
Py[T, Py]Py = PZ[T,Py]Py + Po[T, Py P2 = 2P, [T, Py | P,
< Py [T, PO]PO =0,

i.e., any commutator with P, is always off-diagonal.

PROOF (of Lemma 3.16). We prove the statement by induction.

Base Case (n = 0):
0
PO := P, is an element of Ag’o c AIZ_I 0 by Lemma 3.13.

(i) It holds that PO2 —P,=0¢ .AIZ;H’OH since P, is a spectral projection.

(i) Using the fact that [H”, Py] = 0, we get

IEE Pol L, < [[[—€A5 Po] [y +e | [Ha Po][ | = O(e**)

= O(e) by (3.5) =0(1)

since both H,P, and P H; are elements of A%>° — A>° due to the

fact that P, € A;°.
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3 Super-Adiabatic Perturbation Theory

Inductive Step (n —» n + 1):
Let P" =} _, be given We will frequently use the fact that

P =Py + A (3.8)
We then define the additional term within P"*! = P" + ¢"*'P,_; by

e"P, 1 1= —Py((P")? — P")Py + Py ((P")* — P") Py

— 1pD
—gn+ Pn+1

—P5-(RT(M)[H®,P"])Py + Py ([HE, PMRT (1)) Py

—gn+1pO
=gn Pn+1

Tln41

. . 211 . 211+l’0
This is an element of A7, (i.e., P41 €Ay ) because

e Py,Pf e A%O and (P")2—P"e AIZJH’"H by the inductive hypothesis
for the diagonal term,

o and P, Pt € A%°, R7 () € A% as well as [HE,P"| e A2 T2

n+1 . . > :
AIZ—I "1 by the inductive hypothesis, since 2"*1 > 2" + 2 forn > 1,

for the off-diagonal term.

We will verify the two properties by separately examining the diagonal
and off-diagonal blocks.

(i) For the Py-Py-block we get:

PO((PTH-I)Z _ Pn+1)PO
= Py((P")*—P")P,
+&" Py (P Py + Py 1 P — Pryr) P
+e2"*2pP2 | P,
N

n41 4 on+1
EA}Z{ +2n+1 o042
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3.3 Construction of Super-Adiabatic Projections

(P — PPy
—_—

=—e"t1PPY | Py

+ " Py (PyPyyq + Puy1Po — Poya) Py

=PyP,4+1Py=P,P> Py

22 n42
+ A,

211+2’n+2
e Ay .

The considerations for the POL-POL -block are essentially the same.

As far as the POL-PO-block is concerned, we first observe that
POJ_ ((Pn+1)2 o Pn+1)PO
equals

Py ((P™)? — P")Py + €™ 1Py (P11 P" — Poy1) Py
+e" 1P PP, Py + 2" 2P P2 | P, .
EAIZ,H+1+ZH+1’2"+Z

. . 2n+1 on 2 2n+2 2
The second and the third term are in A7 tant2 o Ay e,

e P (P P" —Pyyq) Py
(3.8) 2n 1
L) gn+1pl (Pn+1 (Py+ AZ1) — PHH)PO

1 1L L 2n+1+2n, +2
= " (P Pyy1Py — Py -Poy1Py) +AL "

=0
2n 14 on nyo
e Ay
and
3.8 n
e ppp, 1Py ) e Ipl (P + AL )Py P
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3 Super-Adiabatic Perturbation Theory

_ n+1 pl 2n 420+ nyo
= € P0 Py P, 1Py + AH
~—

=0
2" 42" nyo
e Ay .

Hence, Py ((P"*1)? — P"™1)P, simplifies to

POL((Pn)Z _ Pn) (Pn +P0 _ PH)PO +Ai;+2,n+2
| ——
=P,
= P ((P")*>—P")P"P,

+ P ((P™)2 = P7) (P — PM) Py +.A%" 142
—_—

n+1 2n1
eAy ot Ay

€A2n+1+2":“+2CA12:+2’"+2
Py-P"((P™)* — P")Py + Py [(P")* — Py, P, | Py
| S

=0

22 n42
+ A,

@D pL(py + AX1) (PM)? = P,) Py + AL 2
[\ —

GAIZ_I"+1’H+1
n+2
= PLpy (P")2—P,)Py+ A7 TP
—
=0

2"+2 n4o
e A; .

The computations for the PO-POL-block are similar.

(ii) Once again we begin with the diagonal block. Therefore, we first
consider

PO [HS’ €n+1PO

© 1Py = €™ Py (HE Py PO, | — PO, | Py -H®)P,.

n+1 n+1-0
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3.3 Construction of Super-Adiabatic Projections

Adding

0=¢""p, S—[Hf,Po] +HEPy— PH®) PP\ Py

=0
+ " PP | Pt (—[H®, Py] + H® Py — P,HE) P,
=0
= —&""(P[H®, Py]P2, | Py + PoP2, | Py [H®, P Py)
— e"" (PoHE PP, Py — PoP2, Py HEPy)

to the equality, a rearrangement of the terms yields that
Po[H®,"*1P? 1P,
is equal to

En+1 (_PO [HE, Po]po

. 1Po — PoPy 1Py [HE, Py]Py)

+1 & (pl 0

+8n (P()H (PO 717{)Pn+1po

N ————r
=—p,
- —
=0
0 plyy€ O ply¢
—PyP? Py H Py + PPy PoH Pg)
=0
+1 € 0 L[HE

=" (_Po [H ’Po]Pn+1P0 —PoPria By \[H ’PO]POJ)

~———
1,1
e A2t 421 by €A~ by
Lemma 3.7(i) Lemma 3.70)
e AT I+11c g2 421
eAz'”f%tz,rHrZ‘
This implies
E n+1p0 = n+2
”PO[H € Pn+1]P0 2n+1+2_0(8 )
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3 Super-Adiabatic Perturbation Theory

96

by Remark 3.6(ii). It remains to prove a similar estimate for the
term P"*! —g"*1p0 = p" 4 " TIpP
Py[H®,P" +e"*'PP 1P,
= Po[H®,P" + e""'PyPY Py P,
—_——
=—Po((P")>=P")Pq

= Py[H®,P"|P,

— (POHSPQ((P”)Z — P,)Py— Py ((P™)* — P")POHEPO)

=PoH® ((P")*—P")P, =Py ((P")*—P™")H Py
+Po[HE,Py]((P™)>*—P™)P, +Py((P")*—P")[Py,H® |P,

= Po[H®, P"|Py — Py [H®, (P")* — P"|P,
— Py [HE,Po] (P")? = P") Py
(N ——

on+1 1
eAZ Tt

e A2 412 by Lemma 3.7(i)
+ Py ((P™)* — P") [Py, HE]P,
—_——

e A2V n+1 € AV by
Lemma 3.7(i)

= 2P0[H£’PH]P0 _ PO[HS’ (Pn>2]p0 + A2n+l+2’”+2
= P() (PO - Pn) [HE,PH] PQ -+ PO [Hg’Pn] (PO _Pn) PQ
—— e N— (SR SN
€ _Aglyl by (3.8) =0(entl) =0(ent1) ¢ Aglyl by (3.8)
4+ A2 242

and thus

||Po[HE, P + "1 PP, 1P, =0(e"?)

2n+142

using Remark 3.6(ii), which is what we wished to prove. The
remaining P&--POl -block is again similar.

Dealing with the off-diagonal block, we already know that

[—€2AE + A1y + eHE, P, 1 |Py e AF T +21



3.3 Construction of Super-Adiabatic Projections

by Lemma 3.7(i), Proposition 3.14 and the fact that [H{,P, ;] €
A2 20 1t then follows that

POJ_[H‘E’PnJrl]PO
= Py[H®,P"|Py + e"'P;-[H” — A1, P,.41]P,
+ " Py [—e2 AL + A1y, + eHY P, 1 ]Py

eA2"t+2,n+2
= Py"[H®,P"|Py + Py [H” —A1,, €""'P;-P, 1P, |P,
—_
=—Pg"R7 (A)[HE ,Pn]P,
+ A2"+1+2,n+2
= Py[H®,P"|P, — P;- (H” — A1,))R7 (A)[H?, P"]P,

—_pl
7P0

=0
+ PARZ (M) [HE, PPy (Hyp — Aly)Py + A% #2142
—_—

=0
so finally

”POL[H‘S,PTH_I]PO O(Sn+2)

2n+142 =
and in the same manner for the PO-POl -block.
This completes the proof. O

This “almost-projection” P" = ZZ:O kP, leads to the ultimate super-
adiabatic projection P, having the same asymptotic expansion in €. The
construction basically relies on the methods of [Sor03, Theorem 2.1] and
is adapted to the situation at hand in [Lam14, Proposition 2.13]: Since Py
includes differential operators of order 2 for k > 1, P" generally does
not define an element of £(H). Therefore, P, is extracted from P" by a
cut-off procedure.
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3 Super-Adiabatic Perturbation Theory

Proposition 3.17 For all n € N and A > O there exists an orthogonal
projection P, € L(H) n L(dom(H?)), satisfying P, — Py = O(¢g) in L(H) as
well as in £(dom(H€)), such that

|| [Hg’ Plo (Hg) ”L(H) = O(anrl)
for every Borel function p : R — [0, 1] with support in (—o0, A].
We will need the notion of regular cut-off functions for the proof of this

proposition. These are functions f : R — [0, 1] such that f* € C;°(R) for
alls > 0, i.e., f does not possess any zero of finite order.

Lemma 3.18 Let A be a self-adjoint operator on some Hilbert space H with
domain dom(A). Moreover, let T € L(H) n £(dom(A)) be a self-adjoint
operator on H.

(D If y is a regular cut-off function and both conditions
i7.4] O(e),

H[T,A])(S(A)”E(H) = O(&X) for some k e Ny and all s > 0

Hﬁ(dom(A),H) =

are satisfied, then

k
|| [T’ X(A)] ||£(H,d0m(A)) = (’)(8 )
(ii) If in addition T is a projection, one has

||x (TAT)T — Ty O(eh).

(A)T”L(H,dom(A)) =

PROOF. See [Lam14, Lemma C.2]. The proof shows that one actually has
to add a further projection T to y (TAT), which can be placed either to
the left or to the right due to the fact that

[T,TAT] =0 = [T,x(TAT)] =0,

in order to obtain the correct second statement. 0
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3.3 Construction of Super-Adiabatic Projections

We are now in a position to prove the above proposition:

PROOF (of Proposition 3.17). Let n € N as well as A > 0 be arbitrary
but fixed. Take P" from Lemma 3.16 and a regular cut-off function y
which is equal to one on [info (H®) — 1, A + 1] and equal to zero outside
(info (H®) — 2, A + 2). Set

p.—pr— kp e A% < AT BN £(w? (), 1
kZ:lg 3.6(i) ( € ( ) )

and define
P¥ := Py + Py (H®) + y(H)P (1, — x(H?)) = Py + O(e).

This means that we exclude the diagonal y -y *-block from P, i.e., the
diagonal block with “energies” larger than A + 2. We now treat P* acting
on H and dom(H?) separately:

e We have y (H®) € £L(#H,dom((H®)X)) for every k € N, with norm

”X(Hg)Hi(H,dom((Hf)k)) < (sup, {X(t)})z + (sup, |tkl(t)|)2-

=1 <00

Thanks to the regularity result dom((H?)*) = W2*(€) of Corol-
lary 2.17, Py (H?) defines a bounded operator on #. Therefore, its
adjoint operator is also bounded and one infers

2(HE)P = (Py(H®))'

dense

on Wgzk (£) C H due to the construction of Py for k > 1 (cf. the
inductive step within the proof of Lemma 3.16). Hence, its extension
is also bounded in £(#) with norm

||X(Hg)13“£(?-t) = ||(13X(H£))TH

- O(e)

o ||ﬁX(H£)||L(’H)

since P e A%"! ¢ A?"1. Finally, P* € £(H) is self-adjoint on H by
the very construction and P¥ — P, = O(¢) holds in £(H).
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e By virtue of the fact that [H®, y (H®)]
and arbitrary 1) € dom(H®):

HX(HE)wnjom((HE)k)

= |l @5, + || EE 2 (EHE [,

= [l @yl + )y ) E |,

< (12 E) [ 1, + [ EO 2 (HO|[ o) [,

< max{1,sup, [ x(0)]} (I, + ||wa||H) :

= 0, we obtain for all ke N

<0

S
This together with
1 Remark onyo <
be L(W £),d H
A 3. 6(111) ( € ( ) Om( ))

yields Py (H®) € £(dom(H?)). Consequently, it remains to show
that y (H®)P e £(dom(H?)). In view of

HX(Hg)ﬁ)w”jom(Hg)

HE) By |[5, + [|HE 2 (HE )Py [,

HOPY|, + 2 OBy,

HEB|[5, + || HOPH ||}, + || () [HE, By 5,
HOB| ) (0012, + [

Iy, ()

1o B HE B[ gomarey ) 1 Womire

= (P B I g

——

=0(e2)

=||x
=%
<l
<|lx

o~ o~ o~ =~

o LT -
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3.3 Construction of Super-Adiabatic Projections

for arbitrary 1) € dom(H¢), it remains to prove that y (HY)[H?, P] is
an element of £(dom(H?),H). But actually by the same argument
as above,

2 (H®)[HE,B] = (~[H®, B (H®))'

n dense . . . .
on W**2(&) ndom(H®) " H, and its extension is again bounded

in £(#) and one has
2 EETEE P[] om0y < IS P (HE)]| 5 = Oe)

by means of P € Af;’l. We thus conclude P* € £(dom(H?)) with
IP* — Poll £ (dommeyy = O(€)-

We finally connect the intermediate results of the previous two bullet
points and obtain the estimate

I P2 om0

- H[HS,P0 +O(¢)

]”z:(dom(HS),H)
= H[7£2Ai’P0]”£(dom(H5),H)+£ “[ng’PO]”ll(dom(Hg),H) +0(e)

= O(e) by (3.5) = O(1), cf. proof of Lemma 3.16
— 0e). (3.9)

Now let 7 be another regular cut-off function, which is equal to one
on [info (H?),A] and equal to zero where y # 1. This implies y j = 7
as well as (1 — y)7 = 0 and consequently P* j (HY) = P"j (H¢) by the
functional calculus. Thus, we obtain the estimate

IFE, P17 ) gy = 15 P2 )

£ pn 7 (HE
< [ P |2 e
= O(e"1) by =
Lemma 3.16(ii)
_ 0@, (3.10)
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Since P* is e-close to the projection Py, it holds that

|(P#)? *Px“z:(ﬂ) =0(e) , [@*)? *qug(dom(m)) = O(e).

The spectral mapping theorem then implies the existence of a constant
C > 0 for which

o(P*)c[-Ce,Ce]u[l—Ce,1+Ce]

as an operator both in £(#) and in £(dom(H¢)). This suggests that we
now define the super-adiabatic projection P, for ¢ < 4% by means of the
integral

i
p :=—f PY —21,)7 ! dz.
€ o \z—1|:1/2< H)

Then dist(o(P?¥),z) > % for all {z € C such that |z — 1| = 3}, and P, is
well-defined and bounded by two in both £(#) and £(dom(H¢)). More-
over, it is an orthogonal projection by the functional calculus and the
second resolvent identity yields

p i

. — Py (P¥ —21;) 7" — (Py —21y) " dz

s 2m Jpom1pe
i
=— (P¥ —215,)7' (Py — P¥) (Py —21;,) ! dz
2m z—1|=1/2 YV~ —— ———
Il.ll<4 =0(e) I.ll<4

= 0(¢)

in £(#) and £(dom(H?)).

Now that we have constructed the projection P,, it remains to prove
the estimate in the proposition. Therefore, we first note that y ° = 7°
and (1 — y)%® = 0 for all s > 0, and so (3.10) stays valid for any
positive power of 7 (H¢). This together with (3.9) allows us to apply
Lemma 3.18(i) in order to get

”[PZ’)Z(HE)]Hﬁ(H,dom(HS)) = 0(e"),
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3.3 Construction of Super-Adiabatic Projections

and we ultimately arrive at

||[RX( )’Z ||£(7-l dom(HE))
£ _ +1
H (2)[P*, 7 (H®)]R* ||L(H,dom(H5)) =0(e"), (3.11)
where R (z) := (P* —z1,,) . Note that the operator in (3.11) makes
sense since R¥ (z) is an element both of £(#) and of £(dom(H?)) due to
the open mapping theorem.

Finally, if we take into account that y (H®)o(H®) = o(H?), we can
estimate

[, P (HO)| £ 30,

=— J[HS,RZ(Z)]Q(HE) dz
Y

L(H)

- o | [ R PR )2 (1) (%) s
Y L(H)

- L f R (2)[HE, P7]

x (7(HO)RA(2) + [R*(2), 7 (H)] ) o (HF) dz

L(H)

R¥(z) [H®, P* 7 (H") R (z)o(H®) dz
! = O(e”l?)/;y (3.10)

T on

L(H)

R*(z)[H®,P*] [R*(z), ¥ (H®)| o (H®) dz
y —— —. —_—
=0(e) =0O(e"t) by (3.11)
by (3.9)

L(H)

_ (’)( 8"+1),
and the proof is completed. 0O

We end this section with the comment that an analogous argumentation
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gives
=—— J R*(z) [H®,P*] R*(z)dz
—
= O(¢e) by (3.9)

in £(dom(H?), H).
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Chapter 4

Main Results

We are now in a position to harvest the fruits of what has been sown in the
course of the previous chapters. Therefore, we will assume throughout
this chapter that Condition 2.2 on the geometry, Condition 2.16 on the
Schrédinger operator H® and Condition 2.26 on the eigenband A are
satisfied. Then Proposition 3.17 is applicable, i.e., we fix n € N as well
as A > 0 and construct the associated family of orthogonal projections P,
for 0 < ¢ < g,. We will exploit the specific properties of P, and define a
self-adjoint operator Hgf on L?(P) that approximates essential features of
the full operator H®. The proofs basically rely on the standard methods
which are used in the context of perturbation theory (cf. for example the
detailed exposition in [Teu03]).

4.1 Dynamical Properties

We first show that the image of P, is almost invariant under the unitary
group e iHt generated by H¢ in the following sense:

Lemma 4.1 There exists a constant C > 0 such that

_igE £ +1
H[e1 LP 1o n(H )”E(H)gc:e" [t]

forevery 0 < € < g.
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PrOOF. This is an immediate consequence of Duhamel’s principle. More
precisely, we calculate

g€
[e H tﬂpe]l(—fc,A](Hg)
g€ € g€
—e iH t(Pg_elH tPSe iH t)l(fm,A](Hg)
e t € rE
=e i tL %(—eﬂH spe il 5) ds 1(,OO,A](H5)
. —iH®t ‘ iHEsrrE E\—iHEs
= —ie e *[H%, P ]1(_ ) (H" e ds
0

on dom(H¢), where we used [e H°s, 1(_oon)(HE)] = 0 for all s € [0, t],
which follows from the spectral theorem. The £(#)-norm of the latter
equality then yields

[ AN

S H*ieimgt”ﬁ(m
v

L(H)

=1
t
x L ||e1H£sHL(H) ”[Hg’Pe]l(—w,A] (Hg)”c(n) He_ngsHL(H) ds
=1 = O(&"*1) by Proposition 3.17 =1

<Ce" e

for some constant C > 0. 0O

This suggests that e 7H ot may be well approximated on the image of P,

by the unitary group e P#°PTherefore, let us first look at the diagonal
block H*P = P,H*P, + P"-H*P:-. The difference

H®P —Hf = —(P,H®P} + P}HP,)
= —P,H® + P,HP, — H®P, + P,H®P,
= 7(17-[ - 2P€)[H5’PE]
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is symmetric and of order ¢ in £(dom(H¢), ) by means of (3.12), i.e., it
is H® -bounded with relative bound smaller than one for ¢ small enough
(which causes a possible reduction of ¢;). Consequently, the Kato-Rellich
theorem yields that HP is self-adjoint on H with domain
dom(H®P) = dom(H?)
= (P, dom(H?) ® P;> dom(H®)) n (P,H ® P H)
= (P, dom(H®) ® PH) n (P dom(H®) ® P, H) .

=dom(P,HEP,) =dom(PHEPL)

Although the so-called super-adiabatic subspace P,H may be rather com-
plicated to characterise, it is still e-close to Hp := PyH = L*(P), so we
therefore aim to consider a unitarily equivalent, effective operator

HY.:=U/P,H®P,U, 4.1)

with domain DS’ := UTP, dom(H®) < Hp, where U, = 1;, + O(¢) is a
unitary operator from PyH to P, constructed as follows:

Lemma 4.2 For all sufficiently small € > O there exists a unitary map
U, € L(H) n L(dom(H?)) that intertwines P, and Py, i.e., U.P, = P,U.,.

PrROOF. We follow the exposition of [Kat80, Section I-§4.6]. The opera-
tor

U, := P,Py + PPy
clearly maps Py to P, and its adjoint Uj = PP, + POLPEL does the
reverse. The operator

S:=0,01 =010, =1, — (P, — Py)*
is positive and invertible for ¢ > 0 small enough due to the fact that
P, — Py = O(¢) both in £(#) and in £(dom(H?)), which was obtained

within the proof of Proposition 3.17. Thus, the desired unitary map is
defined by the Sz.-Nagy formula

Ue:= (PP + P, Py )S™Y2 = STV2(P,Po + PPy,
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where we took advantage of the fact that S commutes with both P, and P,,.
We conclude that U, actually defines a unitary mapping from P, to PyH
and that

U,P,=S"'2p,p,=P,P,S™ "> =P,U,
holds true.
We proceed with the first main theorem:

Theorem 4.3 There exists £, > 0 such that the effective operator (H', D;ff )

defined by (4.1) and Lemma 4.2 is self-adjoint on Hp and there exists a
constant C > 0 with

(€ v U A (1) < €

forall 0 < e < g

This theorem states that — after excluding energies larger than A — if we

initially start in the super-adiabatic subspace P,# < H, the dynamics

of H® (i.e., the evolution under the unitary group e~iH ) may be ap-

proximated by those of H gf up to errors of order eV 1 |t|. Put differently,
; ; —iH®¢ —iHP¢t ;

the approximation of e by e™"er' is accurate for very long times of

order ¢ ". Moreover, P."U,P, = P}-P,U, = 0 implies that

g€
ple ¥ tP51<7oo,A](H£)||L(H)

e _igP
e v mea e,

<[t v ) Pt g (1)

cn)’

and hence the subspace P, is invariant under the dynamics of H® for
energies below A up to the same error.

PROOF (of Theorem 4.3). We already know that (Hgf, D?Pff) is unitarily
equivalent to the self-adjoint operator (P,H®P,, P, dom(H?)) on P,H, so
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it only remains to check the estimate. We therefore again use Duhamel’s
principle and obtain

—ig¢ _igP
e iH [_Uge lHeff[UeT

t
:J %(Uge—iH:;f(f—S)Ug‘e—ngs) ds
0

t
—_—

— e W yty g
eff

+U —iHE(t— s)UTHE —iHEs ds

t
- —ij Ue =)yt (HE — U HEUT)e 1% ds (4.2)
0 ——
=P.HEP,

on dom(H¢). Thanks to the fact that
[U.HLU!,P,| = [P.H®P,,P,] =0,
we finally infer
—iH®t —U —iH;Pfft UT P 1 Hg
(e € g) € (—oo,A]( )
= P, (7"t — U MAUT) 1, 0 (H)
_ig€
+ [e iH t’PE]l(—OC,A] (Hg)

= O(e"t|t]) in £(H)
by Lemma 4.1

t
@2 —iPSL U,e Ma(=9UT (HE — P,HEP,)e M1 5 (HE) ds
+0(e" 1 t])

t
= —i L U,e W)Ut (P,HE — P,HEP,) 1(_ py(HE)e ™ ds
_——
=7P2[H8!Pe]
+0(e" )
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t
=i fo U,e M=) Utp, [HE, P]1 o, 0 (HE) e ds

lell 2y <1 —oE)incm) Ileeost
by Proposition 3.17
+0(e" ! t])
< Ce™t
in £(H) for some constant C > 0. 0

4.2 Spectral Properties

Now that we know that the full dynamics e ¥ “t are well approximated
by the effective dynamics e lHefff we can pass to their respective spectra

and ask for their mutual approximation:

Theorem 4.4 Let Hgf be the effective operator from Theorem 4.3. Then
for every 6 > O there exist constants €, > 0 and C > 0 such that for
all we o(HL) with u < A — & one has

dist(u, o (H?)) < Ce™'!
forall 0 < e < g.

PROOF. Let {4} }rey be @ Weyl sequence in Hp, for u, ie., [[Ylly, =1
for all k € N and

. P

ILm “ (HZ: — “)‘/Jk”q.lp =0
The requirement u < A — 6 enables us to choose this sequence to be in
the image of 1(_ . z_5/2) (HE).

It seems natural to consider the normalised sequence {¢; := U,y }ken
in P,H and to examine the behaviour of (H® — u) - Therefore,

IGE® = vl

= H P, + P1)(H® — w)P.Uy |,

1%
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4.2 Spectral Properties

<|

Us Ujpe(Hg 71“’)P8U€ wkHH

:PO(HZD“_”)PO
+ ”PSL(H'S —WPU, 1(_ o n—5/2] (Hgf)Po“\/JEHH
=Yy

= U (HE = mvi |,
Nz -will,,, 4.3)
+ ”Pnggpa Uel(—oo,n—5/2] (Hgf)Powk”H-

We now show that the second term merely contributes an O(¢"!)-error.
To do so, let p be a regular cut-off function with support in (—o0, A] such

that p restricted to (—0, A — 2] n o(H) equals one. Then

Q(Hgf)PO =e (UJ(Pngpe)Us)PO
=Ulp(P.H®P,)U,P, = Ul o (P.H*P,)P,U,
E n+1
= U/ (P.o(H®)P, + O(e"™))U,

with errors in E(’H,dom(Hg)) by Lemma 3.18(ii) for T = P,. This gives

(with [Py, HT,] = 0)

(oo n—5/2) (HL) P
= Q(Hgf)Pol(foo,Afﬁ/Z] (HZ})
= UJP&:Q(Hg)Pe Uel(foo,Afﬁ/Z] (Hgf) + O(£n+l)

with errors in £(#p, D). Consequently, we may rewrite the second term
of (4.3) as

PnggPsUsl(—oc,A—é/Z] (HZ) Py

= PgJ_HgPe Q(Hg)PsUel(foo,Afé/Z] (Hgf) + O(8n+1)
—_——
=PL[H®,P]

_ O(gn-t-l)
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4 Main Results

in £(Hp,H), because ||[H®,P,]o(H?)
Proposition 3.17.

Finally, we choose K € N large enough so that the first term of (4.3) falls
below the value of the second. This shows the existence of a constant C > 0
such that ||(H5 — u)cpHH < Ce"t! for p = U,g. Now either it holds

c) = O(&"*1) with the aid of

that (H® —u)¢ = 0 and w is an eigenvalue of H®, or the vector H(I(fli;ﬂ!;ﬁh
is normalised and
_ -1
e 6
” —1 _(H—we H
lEE=mell,,
g—||( —w) M HE = we|,,
e —we]y, ’
—_— =llplly=1
>1/(Cent)
- 1
= Cen+1’ O

We can adapt the proof to the other direction in the following way: Choose
v € o(H®) with associated normalised Weyl sequence {p; }xey in the
image of 1(_, _5/2)(H €). Then looking at the sequence of quasi-modes

{1 = UIP, ¢y }en, We get

(G — v)Ul P,
= |vip.(H® - U)ngpk”%

<[[UlPel| i,y
—_—

x (”(HS - U)‘PkHH +”[HE:P5]1(700,A75/2] (HS)HL(Hz)ﬁ

—0ask — o0

= O(&"*+1) by Proposition 3.17

and so again ||(H§f - 'u)tpK”H < Ce"'! for K € N large enough. If the
P
sequence {1 }xen is bounded from below, then either v is an eigenvalue

112



4.2 Spectral Properties

of HE, or dist(v,0(HL,)) < Ce™*! ”QI’K”;L' The sequence {P, ¢ }kens
however, is not bounded from below if v is associated with an eigenband A/
of H” other than the one used for the construction of P,.

Suppose for a moment that the spectrum of H” consists solely of sepa-
rated bands {4} ;cy, with according spectral projections P/, which yields
the orthogonal decomposition 1,, = ®jEN0Pé' If ¢ € dom(H¢) has energy
<1,ZJ,H € 1,D>H < A for some A € R, then only finitely many spectral projec-
tions Pé, namely those associated with eigenbands with inf,c5 A;(x) < A,
contribute significantly to v because

A=, HEY ), = >, (—e2Af + eHE +4))P)),,

jeN %'—’2768
under the condition that —e?Af + ¢HY > —Ce1,, (note that the level
spacing of the eigenbands A; is of order one). A successive lowering of the
threshold A reduces the number of substantially participating eigenbands
to the point where only the ground state band

Ao(x) :=mino (H (x)) (4.4)

is involved. In this case, i.e., for energies below A; := inf, .5 (o (H")\Ao),
we indeed expect a mutual approximation of o' (H®) and o (H ).

Theorem 4.5 Let —e*Af + ¢HY be bounded from below by —Ce1l,, for
some constant C > 0 and Hg?f be the effective operator from Theorem 4.3
associated with the ground state band A, (4.4). Moreover; let y be a regular
cut-off function with support in (—oo,A;). Then HZ .y (HT.) is unitarily
equivalent to H® y (H®) up to errors of order "' in L(H) for € > 0 small
enough.

If we use Weyl sequences as in Theorem 4.4 and the discussion afterwards,
the latter statement implies that for every 6 > 0 both

sup  inf |v—pl= sup dist(v,o(H) N (—0,A —5))
veo (HE), heo (HR), veo (HE),
VKA =6 USA =6 V<A —6 <Cpentl
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and
sup inf |u—v|l= sup dist(u,o(H®) N (—0,A; —5])
peo(HE), veo (HF), peo (HR),
U< —5 VSA—6 u<A,—6 <Cyentl

are of order £"*! for £ > 0 small enough. Thus, one has
disty (0 (H®) N (—o0,A, — 6],0(H) N (—o0,A; — §]) = O(e"*?)
for all 6 > 0, where

disty (A, B) := max {sup inf |a — b|,supinf|b — al} (4.5)
B B a€A

aeA be be

denotes the Hausdorff distance between compact sets A,B — R, if one
chooses ¢ = ¢(5) > 0 sufficiently small.

The following two lemmas give the key consequences of the condition
on the operator —¢*Af + ¢H?{ that it be bounded from below by —Ce1,;:

Lemma 4.6 Under the conditions of Theorem 4.5, it holds that
x(PFHEPH)P =0.

PROOF. The operator PELHEPSL is self-adjoint on the Hilbert space H
with domain P,# @ P;-dom(H®). We will show that o(P;"H®P}) =
{0} U [A4, 0). Using the fact that supp(y) n [A;,0) = &J, we then get
x(PFH®P}) = x(PFHEP)P, + y (P, -H®P)P = x(0)P, + OP*

by the spectral theorem, and thus y (P;"H*P)P = 0.

We first note that PngPﬂPgH = 0 implies G(PSLH‘SPﬂPEH) = {0}.
As far as the contribution of Pgl dom(H¥?) is concerned, we start by in-
troducing a regular cut-off function p; € C;°(R, [0, 1]), equal to one on

[info (H®)—1,A; +1] and equal to zero outside of (info (H®)—2,A; +2),
and set

e t<Ap+1
02 1_Ql<t)’ t>A1+1
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4.2 Spectral Properties

Then by construction

(e1+e2)lomey =1 = 01(H®) + 02(H®) = 14,
— Y~

9
and we get for any ¢ € P> dom(H?):
Lyepl
<1/)’P£ H Pe ¢>H
= <1/J Png(é\l +02) PL¢>H
_ <¢ A1/2 A1/2PL¢>H+<QI/2PL¢ H5A1/2PL¢>%

=M 118Y P12, = 1183 112,
since supp(g,) < [Aq + 1,00)
® A1/2

> (o, P8y P HE 8, PPy, + Ai|8y P w |, + O e I3,
(i) <A1/2¢ PJ_Hg A1/2¢>H+A1HA1/2¢”1+0(€”¢”%)

= (P01, Py (e eHE) R 01 ),

>—CellPi 81 12, = —Cellpl2, =0 (elpl,)

+ (B8, P HT RS0y, a3 "I, + O (IR

= APy Al/zl,bH since P;- projects
onto states with energy o (H" )\A = A,

> Ay ([Iptey il + 1185 ¢ll,) + oelpl,)
Ay (e wll, + e *wla,) +o(elpIz,).

=0, (@1+22) =I5,

(111)

Thus, we can find for all ¢ > 0 a constant ¢, > 0 small enough such that
(W, PFHEP ), = (A = Ce) I, = (A — ) 1115,

holds true for all 0 < € < g;,. This shows that O.<P8LH8P£J_|PL dom(Hg)) is

contained in [A;,c0) and we only need to justify the estimates (D, (i)
and (iii):
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(i) The absolute value of

<¢ PJ_ A1/2 £A1/2PJ_¢> <¢ A1/2Hs Al/ZPLw>
H H

can be estimated from above by

212 = Pyl 183 °H 01|y W15, = O (e 1013)-

= O(¢) by Prop. 3.17 <o

(ii) A short calculation shows that

‘<¢ A1/2 A1/2pL¢> <¢ Al/ZPLH5PLA1/2¢> ‘
5 H H

<2|l7a)”) e

L(H,dom(H®))

2
HL(H,dom(H“:)) ”wH’H

< o0 (cf. the proof

= O(#) by Lemma 4.6(7) of Proposition 3.17)

with the aid of (3.9)

=O(ellpll3,)-
(iii) Observe that
(P oy, P 2y,
_ <A1/2¢ A1/2¢>
H
<,\1/2¢ A1/2¢>H <,\1/2¢ P0A1/2¢>H
<,\1/2¢ A1/2¢>H <Ql/2¢ POAI/ZPL¢>H

for all y € P dom(H?), and hence

P23, ~ ey,

o ) il P

<1 =0(e)

~1/2
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because
~1/2 A1/2 A1/2 A~1/2
Ql/PsJ_*Q/ Pé‘PgJ_ +91/( Pe)Pj—+[P0’Ql/] P;
——
-0
finally gives
~1/2 1 A~1/2
12681 P ey < 1P = Polleiy + P01 e
D N i
= O(e) by Prop. 3.17 = O(¢) similarly as for (ii)
=0O(e).
This completes the proof. 0

Lemma 4.7 Under the conditions of Theorem 4.5, it holds that
Py(H®)=0(") , x(H®)PH =0(")
in £L(H,dom(H?)).

PROOF. We already know that

1P B omrre) 20y = NP HE| om0 = OC6)

and

H pJ_ HS PS,HS X :O(8n+1)

H)| g0 = I HO)| o

for all s > 0 by Proposition 3.17. Thus Lemma 3.18(ii) with T = P}
together with the previous lemma implies
1 Eypl
||P£ X(H )PE ||[,(7-L,dom(H5))
= ”Pgl%(H‘g)PfL _X(PELHSPEL)PEL||£(7-l,dom(H5))
=0

= O(e"). (4.6)
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Next we apply Lemma 3.18(i) with T = P, in order to deduce

”ij<H£)P6”£(H,dom(H£)) = ”[X(HE)’P€]P5||E(H,d0m(H5))
< ”[X(Hg)’PS]HL(H,dom(HS)) 1Pl 22
—_——

=0O(gn+1) <2

=0(e"). 4.7)

Consequently, we arrive at the first estimate

1 £
P x(H )”L(H,dom(Hs))
1 Evpl 1 €
< HPE x (H®)P; ||£(H,dom(H5))+||P8 x(H )P€||£(H,dom(H5))
= O("+1) by (4.6) = O(gn+T) by (4.7)
_ O(8n+l)

of the statement. The second one is obtained from the latter by another
application of Lemma 3.18(i) with T = P\ 0

We finally turn to the proof of the theorem:

PROOF (of Theorem 4.5). Let us first observe that

PSX(Hg) - PSUEX(HZ;f)UJ

L(H,dom(HE))

< ||Pex (HE)P. = Peyt (PeHEPY)| £ 3 domire )

= O("*1) by Lemma 3.18(ii) for T = P,
+ ||Ps||L(dom(H5)) ”X(Hg) - X(Hg)Pe
N

<2

L(H,dom(H€))

=||x(HE)PL|| = O(¢"+?) by Lemma 4.7
+ 1Pl 2 gdomre || Ue x (HE) UL _X(PSHEPE)”E(H,dom(HE))

<2 =y (U.HRU])

eff 7€
.

=0(e"). (4.8)
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Then an easy calculation shows

H®y(H®)
= (0 (= 20) [ )2 0)
GBI (1) 4 PAH Py (1)
NG
=0O(e"t1) in

L(H) by
Lemma 4.7

+ (]-H - 2P€) [Hg’Ps]X(Hg)

=0(e"t1) in L(H)
by Proposition 3.17

P P +1
UHRU! PU, y(HE)UT +0O(emt?)

=U,
on PyH

= U.HJx(H eff)UTJ'_O( )

48

with errors in £(H), where we used the fact that
P,H®P, = U,U/P.H*U,UIP, = U, HLUIP,

in the second equality. 0O

4.3 The Effective Operator

We will follow the exposition of [Lam14, Subsection 2.2.1] in order to
gain a better understanding of the leading-order terms that arise from the
asymptotic expansion of the effective operator

£
H' = U!P.H®P,U,.

Therefore, we use the concrete expression of U, from Lemma 4.2, i.e., we
expand

o0
—1/2 B (Zk - 1)' 2k
(]'H_(PE_PO)) _1H+];122k71k|(k_1)|(P8_P0) H]
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and obtain

~1/2
PEUE = Pepo(lH_(Pe_pO))

= Po“'PoL(Ps—Po)Po—%Po(Ps—P0)2P0+O(€3)
=: Py + eU; + £2U, + O(&?) (4.9)

with errorsin £(#) and Uy, U, € L(H) N L(dom(H?)) since P,—P, = O(¢)
in both £(#) and £(dom(H¢)) as shown in the proof of Proposition 3.17.
This leads to the decomposition of

P £ P
Heff = PyH" P, + HSa

into an adiabatic operator Hf := P,H®P, and a remainder HZZ that incor-
porates the super-adiabatic corrections.

4.3.1 The Adiabatic Operator

The starting point of this subsection is the following lemma which provides
an additional smoothness property for the eigenspace bundle P ~%> B that
is associated with some eigenband A : B — R and spectral projection P,:

Proposition 4.8 The eigenspace bundle 7, : P — B associated with an
eigenband A with a spectral gap has a differential structure such that
C®(P)c C*®(€&).

The intuition underlying this statement is that one may choose A-eigen-
sections of H” locally over some U — B which are smooth sections
of & i) at the same time. While the smoothness in the vertical
directions results from the elliptic regularity of H”, i.e., any such A-
eigensection ¢ satisfies ¢ (x) € C*(&,) for all x € U, the horizontal
differentiability is established by the ¢-horizontal smoothness of P, € AZ’O
(see Lemma 3.13).

OUTLINE OF PROOF (of Proposition 4.8). Let x, € B be arbitrary but fixed.
Then the proof of Proposition 3.14 reveals that any vector ¢* € P, in-
duces a mapping ™ € C* (U, , L*(F)) with geodesic ball U, = B\, (xg)
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4.3 The Effective Operator

for ry, < rini(B, g3) small enough, such that ¢* (x) € im(Py (X)) c L*(F)
is a A-eigensection of H” “ forall x Uy,- Next we choose normal coordi-
nates around any (x, y) € U,, x F with synchronous trivialisation of F in
order to map 1 diffeomorphically to some function 1Y) : Rb+f — cN
after a possible extension past the boundary (if y lies in a boundary
collar chart) and a regularisation outside of Bf /2(0) X ]B’: /2(0) (see the
proof of [Lam14, Lemma B.8] for the details, with obvious modifications
for N > 2). Then one uses Wachsmuth’s lemma [Lam14, Lemma B.8] to
inductively show 1Y) € C*(R?*f,CV), which implies the smoothness
of ™ at (x,y) and consequently y*> € C*(U,, x F,F). The pullback
of Y to & |m}1(Uxo) via the local trivialisations @, : 7T1\_/11(Ux0) — Uy, xF
and ¥, : Hfl(UxO) — U,, x F finally preserves the smoothness, i.e., it

£
holds that

oloyp™od, €CP(E].y

XO)

)

and
(Pt op™)(x, ) € Py

for all x € U, . In the end, we apply this procedure to an entire basis
{$1°--, 0} of Py, q = rank(P,), and obtain mappings 1,°,..., 9 €
C* (U, x F,F) such that

span((\l/x_o1 0P°) (X, ),y (T 0h0) (x, )) =P
for all x € U, . 0

We endow P with the bundle metric
(P ECHPROPY), (Datp, = | hulPog o) voly,
and the so-called Berry connection

VB C*®(P) > CP(T*BRP), VI :=PViuPyd. (4.10)
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As a matter of fact, the previous proposition ensures that an application
of the horizontal derivative V¥, on Py¢, € C*(P) < C*(€) is well-
defined. Since the sections of P vanish on 0M, for all x € B, it holds for
arbitrary X € C*(TB) and ¢, € C*(P) that

X - <¢J¢>'PX

= ﬁxf h.(Pod,Poy) VOlng

x

_ jMX L (e (P, Po) vol,, )

= JM hy (PoV3 ¢, Poy) + hy (Pogp, PoVgap) volg, -

X

+ f hy (Po, Potp) Lynvol,,

= <V§¢), 1/)>7)X + <¢)’ v§¢>73x - <¢’5V(X)1/)>’PX . (411)
Here, the variation of area formula [Lan99, Theorem XV.6.6(a) ]

Lxn volng L =—g (XH,T)v) volng, EeM,
induces the tensor 71, € C*(T*B ® End(P)) given by

nv(X) = Pog(XH’nv)Po =Py gp (X,TﬁM(")v))Po:

which is basically the mean curvature of the fibres M, — M averaged
over the A(x)-eigensections. Moreover, the latter calculation shows in
particular that the connection

VP C®(P) —» CP(T*B®P), V' :=V"-1i7,

is metric with respect to the bundle metric (-, ). In summary, we will
treat (P, (-, >p, V") 2% (B, gz) as a Hermitian vector bundle of finite
rank ¢ = rank(P,). In addition, a straightforward calculation gives the
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formula
= Py (RE(XH, VM) = 5, ) Po
+P, [[PO, vy ],[PO,V‘;H]]PO
( T*B®End7’ V)(Y)+%(v;*B(@End(P)ﬁv)(X)

— 5[, 7 (Y)]

for the curvature of V7, where

(VY EORPIT ) () = VP (7 (V) )
— Ty (VEY) 6 — 7y (V)VE

denotes the tensor product connection on T*B ® End(P). In view of the
C*-boundedness of the horizontal lift, Q, and 71, (see [Lam14, Corol-
lary A.6]), the 0-horizontal smoothness of P, € A%O by Lemma 3.13 and
the bounded geometry of £ “5 M, we deduce R” € C**(A2TB ® End(P))
and the eigenspace bundle P turns out to be a vector bundle of bounded
geometry by Definition A.19.

Let ¢ € C;°(P) and X,Y € C*(TB) be arbitrary. Then Stokes’ theorem
yields

0

L Ly ((6,954),, vol,,)
| (. 9200,) voly, + | (9.9%0),  Lovol,

=divg, (X) voly,

A0 | (9, Thp) v, - | (0700T54), vol,
+L<¢, ViV +divg, (X)V5 ) ¢> vol,,

= (VB)2(X,Y), cf. Lemma A.22

which suggests that we define the negative of the so-called Berry Lapla-
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cian —AP by means of the quadratic form

(6.-8%0),,, 5= | (P°6.9%0)ree vol,

- [ @t (77 =), v,
It differs from the negative of the connection Laplacian
2

—AZ:B = —tr,, ((VF)*)

merely by the potential
% — — —
VP = AP = AP =t (—1(VTEREREIR) () 4 17, (7))

On the other hand, the difference between the Berry Laplacian and the
projected horizontal Laplacian is the generalisation of the so-called Born-
Huang potential VB%, which is well-known from the Born-Oppenheimer
approximation [PSTO7]. It may be computed easily with the aid of a
gg-orthonormal frame {X;}"_, of TU with U € 4l (cf. Definition 2.7):

P ._ AB &
VE = AP — PyAL, Py
S A oy, (X, V2 )

=— (Povgrp(#v;lﬂpo —g(x1, nV)P(fv;iHPO)
=tr,, (po [V Pol [V Pol Py
— P [gB (- Tw(nv)) 12 Po] [V(g.)m Po]Po> .
To sum up, the calculations show that
£ B P P P P
—PoALPy = —AP + Vi = —AT + VR + VD
and the adiabatic operator takes the form

HP = —e?AP + A1y, + ePgHS Py + 6%V (4.12)
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We finally note that the bounded geometry of the eigenspace bundle
allows for elliptic regularity estimates for the Berry Laplacian and the
adiabatic operator in the spirit of Proposition 2.15 and Corollary 2.17:

Proposition 4.9 Denote by WJ‘(P) the rescaled Sobolev norms (A.12) as-
sociated with the C%-vector bundle 7tp : (P,{-,)p,V") — (B,e %gp).

() Let ¢ € W2(P) and k € N, be such that e*AB¢ € W¥(P). Then
¢ € Wr2(P) and there is a constant C(k) > 0 such that

1B 2y < CK) ([[£28%9 [ oy + 118, ) -

(i) Let ¢ € dom(H”) and k € N such that (H” )*¢ € H . Then there are
constants gq(k), C(k) > 0 such that

161y < CO) ([|HDY 0[5, + 11, )
for 0 < e < gy(k).

This implies in particular that

dom(H?) = W2(P) = Pydom(H?),
where the second equality is valid because of Proposition 4.8. Moreover,
Proposition 4.9(ii) basically relies on the fact that V;; € C°(End(P)),

which follows from the facts that Py € AY’, 7, € CX(T*B ® End(P))
and A € C°(B).

4.3.2 Super-Adiabatic Corrections

The super-adiabatic corrections are the difference between the effective
operator and adiabatic operator:

P _ P _ P
Hsa - Heff Ha

“D ¢ (UTHE P, + PHEU,)

+&(UIH®U, + PyHE U, + U,HE Py)
+0(&?)
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= Py (P = Po)[HE, Po] + [P0, HE] (P, — ;) ) Py

= O(?) in £(dom(HE), H) (4.13)
+&2(UTHEU, + PyHE U, + U,HE Py)
+0(&%)
with errors in £(DZ,%4). This implies ”Hsa”L(Deff ) = O(¢?) and
hence dom(HJ;) = dom(H”) by the Kato-Rellich theorem. The first

super-adiabatic correction to Hf (i.e., the O(e ) contribution within HZZ)
turns out to be [PST07]

M7 := Py[HE, Py ]R” (1)[HE, Py P,. (4.14)

However, this is a fourth-order differential operator if H.‘f is of second
order, and therefore does not define a bounded operator from D;’,ff to Hp.

. . . . .. 7)
This inadequacy is circumvented by the addition of energy cut-offs y (H )
— just as we did in the construction of P, — in the formal expansion

Hig = HY + M” +0(e?). (4.15)
The precise statement is the following:

Proposition 4.10 Let H ; be the effective operator of Theorem 4.3 and y
be a regular cut-off functlon with supp(y) < (—oo, A]. Then

|Hex (HE) — 2 (HE) (HT + MP) 3 (H O(e%).

gf)”E(Hp) =

PROOF. The statement is proven in [Lam14, Proposition 2.23], but we
mention the most important arguments for the sake of transparency.
First observe that

effX ?(H, eff) 4 (Hgf)HPX (Hgf) 4 (Hgf)Hsax (H eff)
N
=0(e2)
= (H*)HL x (H®) + O(&?)
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with errors in £(Hp). Here, we utilised that the interchange of y (HZ,)
and y (H?) on P yields error terms only of order € in £(H,dom(H¢)) for
the last step because

H? = U'P,HEP,U, 2 PH® Py + O(¢)

in £(dom(H?),#) and ||  (PoH® Py)P, — POX(HE)PO”ﬁ(H,dom(Hf)) =0(e)
by Lemma 3.18(ii). Thus, it remains to show

|| (HE) (HS - MP)X(H8)||L(H) = 0(e°).

In order to verify that the first super-adiabatic correction (4.13) — once
sandwiched with cut-offs y (H®) — is given by the expression (4.14) plus
higher orders, we start by noting that

(P. = Po)x (H®) = ePyy (H®) + O(¢?)
in £(H,dom(H?)), as shown in [Lam14, Lemma 2.25], where
Py = —P-R7(A)[H®, Py]Py + Po[H®, Py]R” (A)P;-

is given by the explicit construction of Lemma 3.16. This immediately
gives

U,y (H®) = Py (ePy) x (HY) + O(&?)
= —PyR7(A)[H®, Py]Poy (H®) + O(¢%)

and

€Uy (HE) = —3Py(ePy)(ePy)Poy (H®) + O(®)
= 3Po[H®, P|R” (2)Py R” (2)[H®, Py|Poy (H®) + O(&?)

with errors in £(#,dom(H®)). Consequently, the leading order (4.13) of
the super-adiabatic correction may be expressed in terms of reduced resol-
vents R” (1) as well as commutators [H®, P,] up to higher order errors and
the calculations of [Lam14, Lemma 2.26] ultimately show that the leading
part of y (H*)H” y (H®) in L(#) coincides with y (HE )M x (H?).
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4.4 Low Energy Asymptotics

In this section, we will analyse the low-lying part of the spectrum for
Schrodinger operators of the form

£ £ £ 27E £ £ £
—Agg+sH1+V =—¢“A +eH] + A +V

with C*-bounded, Herm(&)-valued potential V¢ and a second-order hor-
izontal differential operator eH 15 as a small perturbation. More precisely,
we are interested in the study of small energies with a distance of order £,
with parameter 0 < a < 2, above the bottom

e i : & £
Ay .—;Ielgmma(—A +V }Mx)

of the vertical operator. In order to relate the low-lying part of the spectrum
of the (shifted) operator

HE 1= —e?Af, + eHS + A5 +VE — A (4.16)
=:HF
with that of some effective operator, the only eigenband in question is the
ground state band A, (4.4). Hence, we fix P, and U, constructed for A,
with n > 3 and any A > 0 provided by Theorem 4.3. Finally, the study
of the low energy asymptotics corresponds to the consideration of HY on
the image of 0, (H) := 1(_y; capj (H) for a € (0,2].

Under the assumptions that —&2A, + eng is bounded from below
by —Cel, for some constant C > 0 and that ¢*A < A;, we saw in
Theorem 4.5 that Hgf is unitarily equivalent to H® in this low energy
regime up to errors of order ¢* in £(#). In the further course of this
section, we will show that the (much simpler) adiabatic operator H”
yields an even better approximation for H® than one would expect from
the fact that

HP YL HP L 0(?) 4.17)
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4.4 Low Energy Asymptotics

in [I(D;ff, Hp). Put differently, the mere existence of P, and U, provides an
improvement of the adiabatic approximation, even though Hf = P,H®P,
does not involve any super-adiabatic corrections.

The choice of a represents the typical energy scale for the eigenvalues
of the adiabatic operator below its essential spectrum. The parameter
range a € (0, 2] incorporates the two most relevant scales:

e a=1:
If x — A(x) has a unique non-degenerate minimum on B, the
results obtained in [Sim83] suggest that the leading part of the
adiabatic operator behaves like a b-dimensional harmonic oscillator
Hf = —£2AB + A, (x) with eigenvalue spacing of order .

e a=2:
If Ao = 0, which for example occurs in the case of unitarily equiva-
lent operators (H” (x), Dx(x)) for all x € B, the adiabatic operator
is given by H” = ¢*(—AP + O(¢)) and its eigenvalues, if they exist,
scale as £2. We will see that the latter approximate those of H® up
to errors of order &*.

We now state the precise requirements for the perturbation H 1'5 which
strengthen the prerequisites of Theorem 4.5:

Condition 4.11 The perturbation within the Schrédinger operator (4.16)
is symmetric on W2(€) n Wy (€) and may locally be expanded as

H| ) = Z Ve oAl vf(XV)HjLZBl Vo +€C,
i,j=1

for any U, € il of Definition 2.7, where we require that

(D) the according coefficients AJ,B!,C, € C(End(£)| ;wy)) have
bounds uniform in i,j € {1,..., b} as well as v € N, and indepen-
dent of ¢,

(i) and —&*Af + ¢H? is bounded from below by —Ce®1,, for an -
independent constant C > 0. O
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This condition implies that the entire operator H® is bounded from below
by —Ce?1,, so in particular [|[H® 0, (H®)|| () = O(e%).

We will show that the low-lying part of o (H?) is adequately reflected by
that of the adiabatic operator Hf up to errors O(e2+%/2) i.e., the adiabatic
approximation is more accurate by at least a factor €%/ than (4.17) for
the general case. The reason for this improvement can be seen by the
following heuristic argument: The super-adiabatic corrections (with main
contribution P, — P, ~ ¢P;) essentially consist of horizontal differential
operators. But such derivatives V<, for X € C°(TB) are of order ¢*/? and
are therefore small on this e-dependent energy scale, since e?A% = O(&%)
on the image of o, (H®).

To be more specific, note that small energies of order £* of H® corre-
spond to bounded energies of the rescaled operator ¢ *H¢. In this con-
text, we denote by dom?(T), T € {H®,H? ,H’}.}, the domain of (¢~*T)?
with its graph-norm. The desired control of horizontal derivatives in this
low energy regime, i.e., on the image of p,(T) € £L(H,dom?(T)), is then
essentially established by the estimate

||P0 8XH||£(dom2(T)dom(H£)) O<8a/2)

for arbitrary X € C,°(TB) whose proof is given in Lemma B.1. A first
consequence of this is the estimate (with [|Pol| 2 (gom(re)) < 2)

V2

5(T).dom(HE))

+28|| VXH,

HPO exH

£(dom?(T),dom(H€)) ]”[l(dom(T),dom(HE))

=0O(1) dueto Py € A%O
=2 0(e%/2) (4.18)
for X € C;°(TB). From this we deduce the following assertion:
Lemma 4.12 Let a € (0,2] and Condition 4.11 be satisfied. Then one has
_ O(£1+a/2)

” 25, Po[Pog( )”E(H)

& gP yP
for T € {H®,H ,H}.
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4.4 Low Energy Asymptotics

PROOF. We adjust the proof of [Lam14, Lemma 3.9] appropriately: Using
local calculations on 7'::1_\/[1 (U) for U € §1 (see Definition 2.7), one can show
that

[—&®AL, P[Pyl try, (eT, ® V2 + €°Ty),

()

where the mappings
T, : X — [—Zv}ng 4 g(ﬂv,XH),PO],
1 00) 2 (<[ )
+ [V?VXY)H’PO] + g(’l’]v,X)[VYH,PO]>PO

define sections of T*B® L(H ) and T*B®? ® L(H ), respectively. Conse-
quently as a result of Remark 3.6 and (4.18), the above expression is of
order £1+%/2 on the image of dom? (T) and finally o, (T) € £(#H,dom?(T))
with eg-independent bound yields the statement. 0

By means of this lemma, we can specify our qualitative discussion from
before and derive refined estimates for the operator P, — P, on the image
of 04(T) for T € {H®,H ,H}:

Lemma 4.13 Let a € (0,2] and Condition 4.11 be satisfied. Then it holds
that

||P0L (Pg - PO)POQ&(T)Hﬁ(H,dom(HS)) — O(El+a/2)

& P P
for T € {H*,H, ,H.}.

PROOF. Let y be a regular cut-off function with support in (—oo, A] such
that y = 1 on supp(p, ), which means g,(T) = x(T)p,(T) by the func-
tional calculus. We first show

HP&'(P‘? 7P0)QG(T)H£(’H,d0m(H5)) S ”P()Lgplpoga('r)||£(H,dom(H5))
+ 0(£?)
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for T € {H®,H? ,H".} with the aid of the estimate

||(p£ _PO)X(H ) _8PIX ||£(Hdom(H5)) 0(82) (4.19)
proven in [Lam14, Lemma 2.25]:
o T =HE¢:
A short calculation shows
L £
Hpo (P. — Po)eq(H )||£(H,dom(H5))
HPL P, — Po)x (H®) @l Hg)”ll(?-t,dom(Hg))
HP eP1Poy (H®)Qu(H") ||£ (#.dom(HE)) T O(e?)
1
Hpo eP Py, (H ||L(7-t,dom(H5)) +0(e?).

Here, we used that P, is off-diagonal (i.e., POLPl = POLPIPO) in the

third line.
o T = Hf:
We take advantage of the two facts
& —
[1[Po. 2 () Hz (domire) = O€), (4.202)
1Pox (HE)Po = Pox (HD) | £ (30 domazeyy = () (4.20D)

which follow from Lemma 3.18. In analogy to [Laml4, Equa-
tion (2.19)], we then get

Py (P, = Py) = Py (P, — Po)Py + Py (P, — Py)Py-
—P(f'(Pe_Po)Po‘Fpé'(Pe_Po)z
——
=0(s2)
= P (P, — Py)Py + O(£?) (4.21)
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in £(dom(H?)). Thus,

||PL P _PO)Qa(H;P)“E(H,dom(HE))

(4 21)
”Pl PO)POX( )Qa HP HL (H,dom(HE)) + 0(62)
(420b)
”Pl PO)POX( )POQa ||£ (H,dom(HE)) ""0(82)
75P1P0;((H5)+(’)( 2)
by (4.19) and (4.20a)

(420b)
”PlgPlPOX(HP)Qa HY Hc (#,dom(He)) T O(e?)

||Ps" Py Poga (HY H[,(H,dom(Hf)) +0(e?).

o T = Hgf

This immediately follows from the latter case, using

”X eft) X(Hf)”uﬂp,veﬁ C”Heff Hf“a(pgﬁ‘,ﬂp)

—0(e?)
by the Helffer-Sjostrand formula.
In view of the fact that p,(T) € £(#,dom>(T)), it remains to estimate
Pi-eP Py = —R" (Ao)[—€2AL + eHE, Py|P,

in £(dom?(T),dom(H?)), which results from the explicit form of P° con-
structed in Lemma 3.16. To do so, we first observe that the claim for
the £(dom?(T), H)-norm is implied by Lemma 4.12 and the fact that
lleH Poll £ (dom (1), 70) = O('*%?2) due to Lemma B.1. In order to extend
this to a claim with respect to the desired norm, we note that the image
of P, € A}z{,o satisfies Dirichlet boundary conditions, and hence Proposi-
tion 2.15 is applicable for any P;-eP; Py, (T )y with normalised 1 € #,
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which leads to
|P-ePrPoa (Tl e

2 2
< C(”AEEPOL??PlPoQa(T)wHH + ||P0leP1POQa(T)¢||H)

=0(2(+a/D|y|I3))

<cC (HA%RF(%)[ezAi,Po]Poga(T)w i

y

As far as the —e2A-term is concerned, the fact that R” (1,) € A" due
to Corollary 3.15 shows that all vertical derivatives of Age give bounded
operators, whereas all 0-horizontal derivatives may be commuted to the
right, and thus

n ”Ain(Ao)[st,Po]PoQa(TW)

+O(2|1plI3,).-

e*ALRT (Ag)[—€*A%, Py Py
=& [eAS,RT (Ag)|[—€Af, Po|Po +R7 (Ag) 2 AL [—e2 AL, Py | Py

€ £(dom?(T), ), cf. Lemma 3.7()

on the image of p,(T) € £L(H,dom?(T)). One is then faced with similar
calculations as in the proof of Lemma 4.12 for the second term, so formally

R7(Ag)e2Af [—szAﬁ,PO]PO|nA;1(U) =tr,, (eT, ®VE +&°Ty)

with coefficients S(X), T(X,Y) € E(dorn(Hg),H)|n71(U) bounded inde-
M

pendently of ¢ for X,Y € C.°(TU) with U € 4 (see Definition 2.7).

Then (4.18) results in

2577 (o) [—e2a5, Pl Poea(T) | = O™ 2 14 o r))-
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We complete the proof by using the estimate

AL,RT (A0)[eHS , Py P, H
H R7(Xo)[eHY, Po|Po £(dom?(T),H)

<e|ALRT (M)

N

£(dom(HE),H) | [ng; Po]pO”L(domfl(T),dom(HE)z

< o0 due to RF (29) € A% = O(e*?) by Lemma B.1

_ O(€1+a/2)
for the remaining H 15 -term. 0

We are now in a position to state a refined comparison result for the
respective low-lying parts of o (H®) and o (H”):

Proposition 4.14 Let a € (0, 2] and Condition 4.11 be satisfied. Then for
all C > 0 it holds that

distyy (0 (H®) 0 (—00,Ce%), 0 (H]) N (—o0,Ce%]) = O(e+/?),
where disty is the Hausdorff distance (4.5) between compact subsets of R.

PROOF. It suffices to show the mutual £2**2-closeness between the sets
o(HY) n (—o0,Ce*] and o (H!) n (—o0, Ce*] by means of the unitary
equivalence of H® and HZ; up to errors of order ¢* in this low energy
regime. In view of Theorem 4.4 and the discussion right after Theorem 4.5,
we prove the statement using a Weyl sequence argument. Therefore, first
let y be an element of o (HZ;) with normalised Weyl sequence {4 }ren
in the image of g, (H”;). Then we easily calculate

1 = e,
<||#7 = Ha el + |G~ bl
arbitrarily small

= |(H] — ) ea HE) Vi, + O ?)
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for k € N large enough. The concrete form (4.13) of Hf —Hgf then shows
”(HP Hgf)Qa eff H£ = 0(824-0:/2)

due to Proposition 3.17, the previous two lemmas and Lemma B.1, just
as in the proof of [Lam14, Proposition 3.11]. Hence, {1\ }ien iS an
approximate Weyl sequence for y, i.e., ||(H — u)lpkHHP = O(g¥+%/?)
if k € N is chosen sufficiently large, which immediately implies the fact
that dist(u, o (H?)) = O(e2+%/?).

In order to verify dist(v, o (H,)) = O(¢**%) for ve o(H!), one ends
up proving a similar estimate

|G =D eaH) | 1) = O™,
once again using Lemma 4.12, Lemma 4.13 and Lemma B.1. 0

The following theorem gives an even better approximation for the case of
low-lying eigenvalues.

Theorem 4.15 Let a € (0,2] and Condition 4.11 be satisfied. Moreover,
assume that there exist constants C, 5, &y > 0 such that o (H?) n (—0, Ce®)
consists of K + 1 eigenvalues vy < --- < vg (repeated according to their
multiplicity) and rank(1_o, (¢ 5)ea) (HY ) is finite for all 0 < & < ;. Then
the following hold:

(i) HE has K + 1 eigenvalues v, < - - - < vy below its essential spectrum

and |v; — v;| = O(e***) for all j =0, ...,K.

(i) If additionally any v € {vy, ..., V¢ } is a simple eigenvalue separated
from the rest of O'(Hf) by at least C,e* for some constant C,, > 0,

the corresponding eigenvalue v of H¢ is also simple and there exists a
constant C,, > 0 such that dist(v, o (H)\{v}) = C,&*

PROOF. We again utilise the approximate unitary equivalence of Theo-
rem 4.5 for small energies of order €%, and hence the claims may be
reduced to those between the eigenvalues of H? and H..
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(i) First note that

[ (7~ 20| < lleal DT~ HEu( )],
_ o(e2te) (4.22)

for all normalised 1) € o,(T)Hp with T € {H,HZ.}. Here, the

additional factor £*/? compared to H (HF —HZ)p,(T H cwny =

O(e2t%?) comes from the second cut-off o, (T) acting on the left.
For example, we obtain for the first term in the expansion (4.13):

|| @a(T)Po(P. — Po)Py- [Hg:Po]POQa(T)”L(HP)

(P (P, = Po)Poga (1) (IHE, PolPoga (1)) |
(Hp)
”pl — Po)Poga(T ||£(7-L )” [H®, Po]Pogal )”5(7-17,)
= O(¢'+%2) by Lemma 4.13 = O(g'*+%/2) by Lemma B.1
and Lemma 4.12
= 0(e*t%).

Now suppose for a moment that rank(1_., ¢ 5/2)e0) (HL;)) Was
infinite. But then (4.22) implies that the dimension of

{1p € dom(H") such that (1, HP¢>H (C+06)e” ||¢||H }

would also be infinite, which clearly contradicts the assumption of
the theorem. Hence, the space

{4 dom(HE) st (9, Hh,, < (€ + 3)e bl |

is finite-dimensional and o (H) n (—o0, (C + %)5“) consists solely
of finitely many degenerate eigenvalues py < yg <.

The eigenvalues of HP (and in the same way those of H ) are
characterised by the max-min principle

v nl}vnmax{@/) HP1/)>H s.t. Y € Wj and [[¢lly,, = }
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(i)

138

where W; runs over all (j + 1)-dimensional subspaces of dom(H”).
In particular for the special choice VT/J = @;;:o ker(H” — ), which
is clearly the minimising subspace for v;, it follows that (using the
fact that dom(H.") = dom(HZ,))

pj < maX{<1/),H§f1/)>HP such that ¢ € W; and [[v)|l;,,, = 1}
(4.22) » ~

< max{<1/),Ha ¢>H7> such that ¢ € W; and [|[¢ll,, = 1}
+O(e21%)

= v +0(e*9).

The latter shows that Hgf has K + 1 eigenvalues yy < -+ < pg
below (C + g)sa. Reversing the roles of Hf and Hgf analogously
shows v; < p; + O(¢*7) and the statement is proven.

Denote by P, the projection onto ker(H” — v) and by u the corre-
sponding eigenvalue of Hgf. Suppose that there were another eigen-
value u’ # p of HY for which [v — /| = O(e*7%/*). Let {4 hren
and {1} }xcy be normalised Weyl sequences of u and u’ such that
<11J oY) >7-l7> = 0 for all k,l € N (this can be achieved by choosing
the respective sequences in the image of the spectral projections
on disjoint intervals around u and ). Moreover, set Y = Yy,
and ¢’ = w;((e) so that

\|(H] - VN,(/)”HP <P - “m)w(,)”% +w
= O(€2+a/2) by Prop. 4.14 =0 (g2+2/4)
= (9(82+a/4),

and consequently

|2, =P,
<6 =97 W =P o | =90,

<1/(Cye0) —0(e2+art)
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is of order £273%/4, But then

|<Pv w:Pv ¢/>HP|

< <¢> ¢/>7{,, ) + |<(1H79 - Pv)w’ (IHP - Pv)¢I>HP
=0

<[, =P, 12, =PIV,

— O(e43%/2)

and
1= 1P, | < (L, =P, = O(e254)

imply that P,,4p and P, v’ are two almost orthonormal vectors in
P, Hp, which contradicts the simplicity of v. Therefore, u is an
isolated eigenvalue of Hgf.

The eigenvalue must also be simple: If there were two orthogonal
eigensections ; and v, of u, the above argumentation with the
choice ¢ = v; and vy’ = 1, would again contradict the simplicity
of v.

C,e*

O(€2+a) c€2+a/2

o (HP\{v}) v O3 W

Finally, u is separated from the rest of o (H”,) by at least the quantity

C,e% —ce?t%2 — (C, — ce?4/?) ¢,
—

=:Cy

where the constant ¢ > 0 stems from Proposition 4.14. 0O
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Chapter 5

Quantum Waveguides
with Gauge Fields

There has been a considerable progress within mesoscopic physics through-
out the last decades. In particular, the usage of semiconductors composed
of aluminium, gallium and arsenic nowadays allows for an enormous vari-
ety of shapes in the fabrication of microscopic structures, which confine an
electron gas into quasi two-dimensional “films” or quasi one-dimensional
“channels” (see [LCM99, Hun00] and references therein for a more de-
tailed physical background). The characteristic properties of such devices
are itemised as follows [DE95]:

(i) small size with typical length scale of 10nm to 100 nm,

(i) high purity: the electron mean free path can be a few pm or even
larger,

(iii) crystallic structure,

(iv) the wave function representing the particles inside the structure are
usually suppressed at the boundaries between different semicon-
ductor materials.

The motion of particles in such thin devices is quantised in the transversal
directions and the corresponding transverse energy levels form a set
of discrete values. This motivates referring to these microstructures as
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5 Quantum Waveguides with Gauge Fields

quantum waveguides. They are modelled mathematically by a family of
e-thin tubes 7¢ around a smoothly embedded curve in R? or around a
smoothly embedded curve/hypersurface in R3.

FerR 0O T EE
(9(5)¢

(a) quantum strips (b) conventional quantum tubes

fole)

7—5 CR?’

(c) conventional quantum layers

Figure 5.1: The most prominent and most investigated examples are (see
for example [DE95, DEKO1]) tubular neighbourhoods around (a) an
embedded curve in R? with possibly varying e-intervals as cross-sections,
(b) an embedded curve in R® with possibly varying e-discs as cross-
sections and (c) an embedded hypersurface in R® with possibly varying
e-intervals as cross-sections.

Although the behaviour of an electron is governed by a non-relativistic
many-body Schrédinger equation with a Hamiltonian modelling the in-
teraction with the lattice atoms and impurities, the properties (i) — (iii)
allow us to neglect all scattering effects (“ballistic regime”) and to ap-
proximate the motion of the electron by a free one-particle equation
with some effective mass my (e.g., meys = 0.067m, for GaAs [Vre68]).
There is a sizeable amount of literature that implements property (iv)
by means of a steep confining potential in the transversal directions (see
for instance [JK71, daC82, Tol88, Mar95, FHO1, Mit01, WT14]). We, in
contrast, impose Dirichlet boundary conditions on ¢7°¢ in order to lo-
calise the quantum particle to the interior of the tube. Thus, a reasonable
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model for an electronic motion inside the device 7¢ — R>® are solutions
Y : R — L?(T*,C) of the free Schrédinger equation

i (t) = — - AEEY(6),  P(0)|s7 =0

with the Dirichlet Laplace-Beltrami operator —Agfg = d*d.

The described geometric framework can be extended to so-called gener-
alised quantum waveguides, i.e., to a family of e-thin tubes 7¢ c R**/
around a smoothly embedded, complete, b-dimensional submanifold
B < R®*f [HLT15]. In this context, we initially think of (R®*f,§%*/)
as the “laboratory”, where external forces like electromagnetic fields de-
scribed by Maxwell’s classical electrodynamics or gravitational effects
described by Einstein’s general relativity are well-understood, and restrict
the configuration space of multiple quantum particles to the tube 7°.
This situation typically arises in molecular physics, where a formation
of chemically bonded atoms vibrates slightly around their equilibrium
configuration B. These deviations are quantised and the resulting exper-
imentally observable spectrum corresponds to the study of eigenvalues
of some appropriate Schrodinger operator on 7°¢ below the essential
spectrum.

If we switch on an external electromagnetic field (in terms of an electric
potential ¢ € C°(R"™/) and a magnetic potential A € C(T*R?*/)), the
Hamiltonian has to be modified according to the principle of minimal
coupling [Gre01, Section 9.1], i.e., by the addition of the potential g.¢¢
and the replacement of d by d* :=d + %A, where g.¢ € R denotes the
effective charge of the quantum particles. Moreover, the particles may
possess a total intrinsic angular momentum (spin) expressed by a spin
quantum number 1% (N € N) and are therefore characterised by a CN-
valued wave function. In this context, we will refer to particles with spin
quantum number 0 (N = 1) as spinless particles which are represented
by a scalar wave function. The possible interaction of the spin with
the magnetic forces (and, of course, the interaction with the remaining
forces) is modelled by an additional potential V € C*°(R?*f, CN *N) which

Herm
takes its values in the Hermitian N x N-matrices and therefore mixes
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the components of v. Eliminating the physical dimensions by setting
i =1 = q. as well as m¢ = 1/2, we obtain the non-relativistic, time-
dependent Schrodinger equation

i (t) = H™My(t), (0)|,7- =0 (5.1)
with Hamiltonian
H™M = vA*v 4100 +V, VA= (d+id)1w (5.2)

in the presence of external electromagnetic fields, where we absorbed the
electric potential ¢ 1cy into V.

Example 5.1 Let us consider a non-relativistic spin-1/2-particle (for ex-
ample an electron) in three-dimensional Euclidean space with coordi-
nates (z',2z%,2°) in the presence of electromagnetic fields A € C°(T*R?)
and ¢ € C°(R?). Then the possible states ¢ = (14,%)" of such a parti-
cle, where v, (“spin-up”) and v | (“spin-down”) represent the eigenstates
of the spin along the z3-axis, are the solutions of the famous Pauli equation
[Gre01, Section 12.5]

isep(t) = HEp(t)

with Hamiltonian

B3 B! —iB?
EM A
Hoi = (85 1 ¢) Lo (81 +ig?  —B )
Hamiltonian -

without spin coupling of spinor components

N

While the first diagonal term describes the usual kinetic and potential
energy of the particle due to the minimal coupling, the second term models
the interaction of the particle’s spin with the components

3
B'= ) ™ dA(Om,0,0) forle{1,2,3}

m<n
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of the magnetic field B = (xdA)* € C°(TR®). Consequently, the latter
operator coincides with H™ (5.2) for the connection VA = (d +iA)1c.

and the C2*? -valued potential

v (¢+63 B! —132)
S \B'+iB* -8B )" 0
A solution of the related time-dependent Schrodinger equation (5.1) is a

priori a mapping v : R — L2(RP*f,CN), i.e., v(t) can be identified with

an L2-section of the trivial vector bundle R®*f x CV for all t € R. From
this geometric point of view, V+ takes the role of a metric connection with

respect to the Hermitian bundle metric (-, -)ox and VA*VA = —AZ s

the associated connection Laplacian. From now on we will consider the

more general class of metric connections

VA= dle +iA

on R"*/ x CV with connection one-form A e C*(T*R*™) @ CRXY.

Remark 5.2 A common aspect seen in applications is the transformation
behaviour of physical quantities under smooth mappings g : R**f — G for
some Lie group G — GL(N, C), which describes fibrewise transformations
1) — g1p of wave functions ¢ : RP*/ — CV (sections of R®*f x CN). The
connection VA transforms as

gVAgl=dlen +i(gAgTt —igdg™!) = V.

=:Aq

Consequently, if 1(t) is a solution of the time-dependent Schrodinger
equation

igy(6) = —Ag.p(b),

it follows that 1) (t) := gy (t) is a solution of the transformed equation

iy (t) = A y(t)
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5 Quantum Waveguides with Gauge Fields

and the examination of the two systems (1), A) and (g, A,) is equivalent,
as they describe the same (G-)gauge theory. This additional degree of
freedom in terms of g is often referred to as gauge invariance and A is
the corresponding non-Abelian gauge field. ¢

The localisation of the particles within the e-thin tube 7¢ ¢ R**f results
in solutions of the Schrédinger equation with oscillations of order !
in the transversal (vertical) directions. Thus, the associated transversal
kinetic energy is expected to be proportional to £ 2 and the limit £ « 1
seems to be rather ill-defined. This is why we multiply the Laplacian
in (5.2) with a factor €2, so that both the kinetic energy —EzAg‘}, ., and
the potential energy V are of order one. We observe, however, that this
additional factor 2 leads to a rescaling of the gauge field by a factor &,

—e?Ag,, = (edley +ieA)*(edloy +icA),

In this context, we refer to this scaling as the coupling to weak gauge
fields €.A. Finally, this leads to the study of the operator

HY = —Ag  +V=—A%,  +V (5.3)
on L*(T¢ x CY,volgs+) = L*((RP™/ x CV)|.,) with Dirichlet boundary
conditions, where we used the same symbols .4 and V for the respective
restrictions from R?*f to 7. Physically speaking, Hy, . implements the
dynamics of particles with total spin number %, which are coupled to a
weak gauge field €A and are localised in the tube 7°.

We will begin the next section with the construction of a diffeomorphism
W, : M — T° in order to identify the family {7°},_.<; (the “tube”) with
an e-independent manifold M (the “waveguide”) that has the additional
structure of a fibre bundle over B and whose typical fibre F is given by a
compact subset of Rf . This diffeomorphism then lifts to a unitary operator

B, : L2(T° x CV,volgsis) — L2(M x C,volg.),

P> Upah — e 7 ap o,
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and, by means of the relations
¥, (d(89)(2)) = dy(T9712) , BAZ)I] = (24) (TY,2)

for any v € C*(M x CV) and vector field Z on 7¢, one concludes that
the Schrodinger operator (5.3) is unitarily equivalent to

~ ~ A,

U, HY = —AZ 1V,

on L?(&,volg. ) with CN -vector bundle £ = M x CV, where we introduced

e the induced Riemannian metric
. —2sb+fy _
G = 0¥ (e 28" ) =g + O(e),

which is an admissible perturbation of a rescaled submersion met-
ric (2.7) in the sense of Definition 2.21,

e the induced gauge field
Ag i=TF A=Ay + e AS € CP(T*M) @ CRosy,

so that the connection V4 = d1cv + iA, is an admissible perturba-
tion of V4 = d1cw + 1A, (see Definition 2.24),

¢ and the induced potential

V,:=VoW,eCP(M,ChxN).

Herm

Hence, this fits in the framework discussed in Section 2.3, provided that
the tube T°¢ satisfies adequate boundedness properties (see Definition 5.3
below).
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5 Quantum Waveguides with Gauge Fields

5.1 Embedded Tubular Neighbourhoods

Let ¢ : B— RP*f be a smooth embedding of a complete, b-dimensional
manifold B into R®*f. This induces an orthogonal decomposition

c*TRP*/ = TB@NB, (5.4)
and there is a one-to-one correspondence
T+veETBONB < T+ veT R =R/

such that 7 is tangent to ¢(B) and ¥ is normal to ¢(B), cf. Subsection A.1.3.

T,B®N,B =R? T.(oR* =R

Figure 5.2: Illustration of the identification (5.4) for the case of an em-
bedded curve in three-dimensional Euclidean space (b =1 and f = 2).

In view of Definition A.10, we equip TB @ NB with

e abundle metric §"®®NB that splits into a Riemannian metric g5 on B
and a bundle metric 8“2 on NB,

e and a pullback connection VN that splits into the Levi-Civita
connection V& on TB and the metric normal connection VN? on NB.
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5.1 Embedded Tubular Neighbourhoods

Suppose that there exists a tubular neighbourhood 7" = R**/ of ¢(B)
with globally fixed radius, i.e., there is r > 0 such that normals to c¢(B) of
length r do not intersect. This is equivalent to the requirement that the
map

®:NB—R™, NB3v—c(x)+7
restricted to
NB” := {v e NB such that ||V||sw <}

be a diffeomorphism onto 7" and it follows that the entire analysis can
be carried out on (a subset of) the normal bundle.

i T
q)é‘
< /\/\
X B
@ (M)

Figure 5.3: The two embeddings ¢ : B — R**f and @ : M — NB" — NB
allow for the identification of the fixed waveguide M % B with the
family of e-thin tubes 7¢ c Rb*f.

This suggests that we view the initial tube as an e-independent, fibrewise
subset M — NB", which is then mapped back into R®*f by means of a
rescaled diffeomorphism

d,:v—oc(x)+ev, O0<e<l.
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5 Quantum Waveguides with Gauge Fields

More precisely, we think of M as a smooth fibre bundle ), : M — B with
compact typical fibre F with (possibly empty) smooth boundary that is
embedded into NB” via some smooth mapping @ : M — NB" such that
the diagram

(o)
M — NB’

|

B—B
1
commutes, or equivalently that @ (M, ) € N, B" := N, BNNB" for all x € B.
The composition

b, :=¢, 0w, 0<ex<l (5.5)

finally yields the desired change of perspective from the family of e-thin
tubes {7°}o..<1 to the e-independent waveguide M.

In order to apply the results of Chapter 4, we need to ensure that
Condition 2.2 on the geometry is satisfied. Therefore, we require the
following uniformity properties for the family of e-thin embedded tubes
T¢ < RP*f (cf. [HLT15, Definition 3.1]):

Definition 5.3 We call M a quantum waveguide of bounded geometry if the
associated family of diffeomorphisms {¥, : M — T®}¢_.<; (5.5) satisfies
the following:
(i) tubular neighbourhood:
e (B, gg) is a manifold of bounded geometry,

e c:(B,gz) — (RP*f,8%+/) is smooth and bounded with all its
derivatives,

e and there exists r > 0 such that ® : NB" — 7" is a diffeomor-
phism,
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5.1 Embedded Tubular Neighbourhoods

(i) modelling of the quantum waveguide:

e 7y : (M,G)— (B, gg) is a uniformly locally trivial fibre bun-
dle,

e and @ : (M,G) — (NB',G) is smooth and bounded with all
its derivatives,

where G := *5**f and G := (¥,_;)*8"*/ stand for the e-inde-
pendent Riemannian metrics on NB" and M, respectively. ¢

Condition (i) is fulfilled if B is a uniformly embedded submanifold [Eld13,
Definition 2.21], i.e., the embedding ¢ : B — R”*/ is smooth and bounded
with all its derivatives, and there exists d > 0 such that for all x € B
the set IB%Z+f (c(x)) nc(B) © R*f is given by the graph of a function
h, € C°(R®, R/) with bounds uniform in x. It follows that a uniformly em-
bedded submanifold (B, gg) is of bounded geometry [Eld13, Lemma 2.27]
and admits a tubular radius r > 0 [Eld13, Theorem 2.33]. One concludes
that both the Weingarten map W and the second fundamental form II
are C®-bounded tensors, and hence the curvature of VN2 (A.10) satisfies
R € C*(A*TB ® End(NB)) and (NB,&NE, VNB) ™% (B, ;) is a vector
bundle of bounded geometry by Definition A.19.

The pullback of 7¢ x CN via the map ¥, gives a family U*(7° x CV) of
vector bundles over M, all of which are isomorphic to the same trivial vec-
tor bundle £ = M x CN 2 M. Moreover, (M, G) is a manifold of bounded
geometry [Lam14, Proposition A.4] and thus (&,{:, )en , V) Ze, (M,G)
is a vector bundle of bounded geometry [Sch96, Example 3.13] with
C®-bounded curvature R4 = d. Ay + [Ay(+), Ay(-)]. We finally mention
that W, is smooth and bounded with all its derivatives independently of ¢,
because its constituents @ and c are as well, which immediately carries
over to the induced potential V, = V o ¥,.

5.1.1 The Induced Riemannian Metric

We first turn W, : (M, G¢) — (7¢,e728°*/) into an isometry by means of
the rescaled pullback metric G* := W*(¢725°*/). We will see that the re-
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5 Quantum Waveguides with Gauge Fields

sulting metric G° = g°+O(¢) is an admissible perturbation of the rescaled
Riemannian submersion metric (2.7) in the sense of Definition 2.21.

We start with the examination of the intermediate pullback metric
[ @j(e‘26b+f ) on NB". Therefore, we first recall the considerations
of Subsection A.1.2, which show that the tangent bundle of NB may be
decomposed as

T(NB) = H(NB) ®V(NB) = ker(Kyz) @ ker(Tmyg), (5.6)

where Ky : T(NB) — NB stands for the connection map induced by V"8,
Moreover, the restricted maps

TTCNB‘H‘,NB ‘H,NB—>T,B ’CNB|VVNB :V,NB — N,B

are vector space isomorphisms for all ve N, B and x € B.
Let {x'}}_, denote local coordinates on some U < B and {e; }§=1 be a
local orthonormal frame that trivialises NB|;. This yields bundle coordi-

nates

on NB'|; in such a way that every v = njej (x) € N,B" corresponds to a
point (x,n) € U x B/ (0). Moreover, Remark A.8 states that the associated
coordinate vector fields on NB'|;; induce horizontal and vertical lifts
a;‘i = aqi —n’ BNB (O)NB(axi)ej,ej/> anj’, (57)
\

ej =8n,-,

where 0" € C°((T*B®End(NB))|,) represents the connection one-
form of V"? over U with respect to the local frame {e; }5:1. Since we will
later have to deal with two different horizontal lifts (one with respect to
NB" < NB ™% B and the other with respect to M 2, B), we indicate the
former with an additional hat for the sake of a clarity.
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5.1 Embedded Tubular Neighbourhoods

Lemma 5.4 The decomposition (5.6) is orthogonal with respect to G for
al0<e <1

PROOF. Since V(NB|;) = ker(Tmyg|y) is spanned by {0, };c:l (indepen-
dently of G°), it remains to check that the horizontal lift (5.7) is G°-
orthonormal to d,; for all 0 < & < 1. Therefore, we start by evaluating the
differential T®, on tangent vectors w € T,(NB"|;) for v = n’e;(x) € N, B'.
To do so, let I = R be a neighbourhood of zero, b : I — U be a smooth
curve with b(0) = x and

y:I— NB'[y, s—n/(s)e;(b(s))

be a smooth curve with initial data n/(0) = n/ and y(0) = w. We then
obtain

{&
{ & imoc66) +e £V G)e,(06))}

—p* {b(o) + & (0)e;(x) + gnfvangBej(x)},

where p® : T, R**/ — T, (,,R"™/ denotes the parallel transport of
any tangent vector w € R®*/ from c(x) to ®,(v). Let us consider the
computations for curves associated to d; and J,; separately:

e Lety:I — NB'|, be the curve
yis—nlei(b(s)) b(0) = 0.

Then y(0) = d; and

v

T8,(0y) = p% {0 +en VM, (x)}

@9 Py {axi +en (7W(ea(x))axi + V5 e“(x)) } ’
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5 Quantum Waveguides with Gauge Fields

e Denote by y : I — NB'|; the curve
yis— (0 +56§/)ej/(x).

Thus, y(0) = d,; and
T®,(0,) = p¥ {eej(x)}.

Now note that the parallel transport p‘ff trivially preserves both lengths
and angles (the mapping p‘zf obviously coincides with the identity 1gs+s
as an endomorphism of R®*/ and the metric §°*/ is the the same on each
fibre of TR?*/). So we may simplify

B (o) (P (L1 0 (W2) = 80 (W, W) = 81PN (w, w)
for all wi,w, e T,B@®N, B and v € N, B". This implies
G (Ogis Oi) = 287N (0,0 — eW(9) 01, V0 v, £¢)
— B (VY )
and
G (anj/ s 0,1]-) = g 25TEONB (ee

Thus in view of (5.7):

j/,Eej) = SNB(ej/,ej) = 8]']

f
Go (M, 0y) =8B (V¥ w,e;) — > " (WP (0,) 7€) 55

=1
= (" (0p)v,e;) — (WP (0xi) v, €;)
=0.

This directly leads to an explicit expression for the metric G°:

Lemma 5.5 The intermediate pullback metric G° on NB' is given by
G =¢2gp ((ITB — W) Tryg, (1rp — SW)TTENB') o myg + 8P

with vertical bundle metric 5Y(NB) := 8B (Kyy-, Kng-).
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5.1 Embedded Tubular Neighbourhoods

PrROOF. It suffices to evaluate G° merely for the horizontal and vertical
diagonal blocks due to the previous lemma. The computations there imply

T, (M) = p2 {(ITB —eW(v)) axi}’

which shows that the horizontal part of G° is given by

Ge (XM, 7") = e 2g5 (115 — W)X, (115 — eW)Y)

for all X,Y € C*(TB). As far as the vertical part is concerned, we simply
have G¢(V,W) = 8" (KypV, Kyg W) for arbitrary V, W € C*(V(NB")).

We observe that the leading term of G° equals the rescaled Sasaki metric
(cf. Definition A.9)

8p = e%gp (T”NB’,TTCNB') o myg + 8" (’CNB’,’CNB')
= e 2nk gp + 5N,

TINB

which turns (NB, gf ;) =% (B, e ?g;) into a Riemannian submersion with
totally geodesic fibres.

Example 5.6 Let us elaborate on the situation for conventional quan-
tum tubes as depicted in Figure 5.2: Let (B,gz) = (R,dx ® dx) and
¢ : R — R3 be a smoothly embedded curve in (R3,53) that is bounded
with all its derivatives and parametrised by arc length. We pick an or-
thonormal basis {Ty, 19,850} Of T.(q)R® = R? such that T; = ¢’(0) is
tangent and {e7 4, e, } are normal to the curve at c(0). We then obtain
the so-called relatively parallel adapted frame {7, €7, e,} as the solution
of the coupled system of differential equations

6] 0 K(x) K(x)\ (7(x)
dx er(x) | = | =<l (x) 0 0 e;(x)
ey (x) —x2(x) 0 0 ey(x)

with initial data {7(0), e;(0),e,(0)} = {7, 10,20}, Where

KRR, x>/ (x):=58%(c"(x),e(x)) for je{1,2}
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5 Quantum Waveguides with Gauge Fields

are the mean curvatures of the curve [Bis75]. This is an orthonormal frame
of (TR3 ]C(R), §3) with 7 (x) = ¢/(x) for all x € R and corresponds via (5.4)
to an orthonormal frame {7,e;,e,} of (TR @ NR, 5™®NF) obtained by
the parallel transport of the orthonormal basis {7, e;,e50} of To)R ®
NoR along R with respect to the induced connection c*V?' = VTRONE
Consequently, 7(x) = J, for all x € R trivialises R’s tangent bundle,
whereas e, e, : R — R? form an orthonormal frame of NR =~ R x R?, so
that

NR" = {nlel(x) + n?e,(x) € NR such that 4/(n!)2 + (n2)? < r}
[

=veN, R
x = 7llsnr
~ 2
=R x B;(0)
yields bundle coordinates (x,n',n?). We then identify TR =T R

with NR = R® by means of (A.7):

(1,0,0) , 4l (0,1,0) ,  Olen = (0,0,1)".

x,n) =

0 ’(xn)

Here, we associated x € R with g(x) = (x,0,0) € NR. The normal
connection VM® is flat due to the fact that dim(R) = 1 (o™* = 0), and
hence the horizontal lift ¢ H| (x,n) Of TeR 3 0, |, = 1 € R coincides with
6q| (o) and we obtain the vector space isomorphisms

TTEN]R|H(X1H)N]R :(1,0,0) 1,

ICN]R\V(“)NR :(0,1,0)"+— (1,0)" and (0,0,1)" — (0,1)".

Apart from that, the action of the rescaled diffeomorphism ¢, and the
Weingarten map W on v = n’e;(x) € N, B are given by

@, : v cx) + e(nlm + nzm)
and

W v —(n,K(x))ge dX ® 0y,
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5.1 Embedded Tubular Neighbourhoods

where «(x) = «/(x)e;(x) € N,R is the mean curvature vector. Finally, the
induced metric according to Lemma 5.5 is given by

g£|(x,n) = 872(1 - 8<n; K(X)>R2)2d5('\H ®d5(‘\H
+dn' @dn' + dn® ® dn?,

—:§V(NR)

where we used the notation dx" := 7 dx = dq.

K (x) ox

Figure 5.4: The images of horizontal, equally long curves in NR" under &,
yield variably long curves in R>.

The additional factor 1 — £{n, k). in the horizontal block of G reflects
the fact that the tube in R? is either stretched or compressed due to the
curvature of the curve c (see Figure 5.4). O

Now that we have gained a better understanding of the intermedi-
ate Riemannian metric G° on NB", we may incorporate the embedding
@ : M — NB" and determine the ultimate metric G° = w*G*. There-
fore, we distinguish between two different situations depending on the
codimension codim (@) of the submanifold (M) in NB":

Vanishing Codimension

If the codimension of the initial e-tubes 7° in RP*f is zero, the typical
fibre F of M is given by the closure of an open, bounded and connected
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5 Quantum Waveguides with Gauge Fields

subset of B/ (0) = R/ with smooth boundary and the waveguide M is
called massive [HLT15, Definition 2.2(1)]). In this case, the restriction
G® = w™*G* is straightforward and its leading term

gs _ 5_27'57\;183 + ’(D'*SV(NB)
turns out to be a rescaled Riemannian submersion with totally geodesic
fibres.

Example 5.7 We apply the preliminary work of Example 5.6 to a special
class of massive conventional quantum tubes. More precisely, we consider
a family of tubes {7°},_.<; around an embedded curve ¢ € C°(R,R?)
parametrised by arc length, where the respective cross-sections at c(x)
are given by elliptical discs with semi-major axis €a(x) and semi-minor
axis eb(x) that twist relatively to the normal frame {e;,e,} by an an-
gle U(x). Here, we assume that a,b: R — [r_,r JwithO<r_<r, <r
and ¥ : R — [0,2m) are smooth and bounded with all their derivatives.
Then the associated waveguide M = R x B2(0) P, R is of bounded ge-
ometry (see Definition 5.3) and smoothly embedded into NR" via the
fibrewise mapping

@M —NR, (6,55 y?) > (v(x)y) e (x)+(v(x)y) e (x),
where we introduced the rotation-dilation matrix ¢ : R — R?*? given by
e (‘CH(X) tlz(x)) .: (a(x)cos(ﬁ(x)) —b(x)sin(ﬂ(x)))

t(x) ty(x)) T \a(x)sin(d(x))  b(x)cos(d(x)) )

*BV(N]R

We start with the vertical part gy = @ ) of the metric. A small

calculation shows

d -
Tw (0y1) = &L:ow(?@yl +5,¥%) = t11(x) O + 121 (%) Oz

d )
T@(dy2) = 0@ (0,31 ¥ +5) = t1a(%) Ot + (%) O
for the respective vectors at @ (x,y) € NR". Hence, we get

G (0,1,0,1) =G (Tw (0)1),Tw(0y1)) =13, + 12, =a®
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5.1 Embedded Tubular Neighbourhoods

using G°(0p, 0y ) = 8 and similarly

G®(0y2,0y2) = 6%, G°(0)1,0,2) =0=G"(0y2,0,1).
As far as the horizontal part is concerned, we first apply the differential T
on the product lift 0§r|(x’y) =(1,0) € T(xyyM of 0,|, =1€T,R:

To (%) = £| _,@(x+s,y"5?)

="+ (t’(x)y)1 O + (t'(x)y)2 On2s

where the prime denotes differentiation with respect to x. This in fact
shows that ¢®" does not coincide with the horizontal lift ¢ of 0.

X

Figure 5.5: Relation between horizontal curves in NR" and M. The curves
in the fixed waveguide M are twisted clockwise because one considers
the straight lines in NR" from the perspective of the anti-clockwise
twisted set @ (M).

Yet we can construct the g-independent horizontal lift 6;' from O by
subtracting the G-vertical component:

oM =0 — G G(,0,;) O,
=P —a? g(Tw(égr),Tw(ayl)) Oy
—b72G(Ta (), Tw(d)2)) 0y
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5 Quantum Waveguides with Gauge Fields

lna) y? dyl
(1 b),yz v, -9 (17,) xv,, (5.8)
(Inb)'y Y
~~ ~
variation of the variation of the
cross-section twisting angle

where we introduced the notations for the inner product

1 1

v w
o) L) = viwt 4 v

v w

and the cross product

1 1
<v2> X <W2> =viw? —v2w! (5.9)
v w

for vectors v,w € R?. Equation (5.8) yields a separation of the effects
induced by the variation of the ellipses (in terms of a’ and b’) and of
the twist (in terms of #') along the curve. Finally, it follows from the
construction that G*(0",d,;) = 0 for j € {1,2}, and also

Gs(aH aH)’( _ gs(aH aH)

x> Ux /) (xy) T x> x

(x,n=t(x)y)
—2 2
=72 (1 ede(0)y k(x))ge )
and the rescaled pullback metric reads

2
G |(xy) = g2 (1 —ex(x)y, K‘(X)>R2) dx" @ dxH
+a(x)dy' @dy" + b%(x) dy> ®@dy? (5.10)

=18My

for (x,y) € R x B2(0), where dx" := pr} dx. We observe that the fibres
M, = B3(0) are x-dependent in terms of the respective Riemannian
metrics gy = &yl - 0
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5.1 Embedded Tubular Neighbourhoods

Codimension greater than or equal to one

If the codimension of @ (M) in NB" does not vanish, we have to introduce
further decompositions apart from (5.4):

e We denote by
T(NB)| oy a1y = T@ (TM) ©N(ww (M) (5.11)

the orthogonal decomposition of the tangent bundle of NB" re-
stricted to @ (M) with respect to G := G¢=1,

e We decompose the tangent bundle of M orthogonally into
TM = HM ©@VM

with respect to G°. This decomposition (more precisely, the hori-
zontal subbundle HM) does not depend on ¢ [Lam14, Lemma 3.3].

e Note that Tw (VM) < V(NBr)|w(M) since 11y, = nygow (i.e., itholds
that @ (M, ) € N,B" for all x € B). This suggests the introduction
of the corresponding orthogonal complement with respect to the
bundle metric §Y(B), so that

1,5V(NB)

V(NB")| () = T@ (VM) @ (Tar (VM) (5.12)

=:vML1
By virtue of the fact that
M)

Ty (Tw(XH) - X" ) =Ty (X") — T (X") =X -X =0

for all X € C*(TB), the difference Tar (X") — X" }w(M) between the hori-

zontal lifts is an element of the kernel of Tz and hence a vertical field:

Ta (X") = X" ) + 1K), I(X) € C*(VINBT) g up))- (5.13)
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Moreover,
0=G'(X"V)=¢*(Ta(x"),Ta(V))
= G*(R¥] ) + 1), T@(V)) =809 (1), Ter (1)

for all V e C*(VM), which shows that 1(X) is already a smooth section
of VM.

(Tm(f) NBr,Q) : (Vw(g)NBr, SV(NB))
Vo(oM*

T oMo @ (M,) C N,B"

(a) Decomposition (5.11) (b) Decomposition (5.12)

Figure 5.6: Sketch of the aforementioned orthogonal decompositions
at the point @ (&) € w(M,) < N,B". The isomorphism (A.7) allows
for the identifications (a) of NB" with its tangent space T ¢)NB" and
(b) of N, B" with its tangent space Tg(z)N,B" = Vg (z)NB".

Next we use [Lam14, Lemma 3.2], which asserts that the fibrewise projec-
tion Q : T(NB’)|w(M) — N(@(M)) restricted to VM~ is a bundle isomor-
phism, in order to obtain a formula for 1€ C*(T*B) ® C*(VM'). We
first note that T (X") € C*(Tw (TM)) implies

0 61D o(Tw(x")) (13 Q(}?H}Q(M)) +0o(1(x))
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and thus
1x) = —Q*lg()?“|w(M)). (5.14)

Finally, the uniform local triviality of M implies that 1(X) € C°(VM 4
if X is a C*-bounded vector field on B.

Now that we have thoroughly examined the relation between the re-
spective horizontal lifts X" and X", we may sum up our new insights as
follows:

Proposition 5.8 The ultimate pullback metric G° on M is given by
Gf =g [gB ((ITB —e@*W) Ty, (115 — ew*W)TTcM-) 0Ty
1 g25V(NB) (j oTmy-,Jo TrcM-)]
+ ’ID'*SV(NB),
where 1 is defined by expression (5.14).
PROOF. While the horizontal block of G° is seen to be
G (x",Y") = ¢ (Tox"),To(Y"))
(5.13) = 5
13 e (X“\w(M) +3X), Ty + J(Y))
= E_ZgB ((ITB - Ew*W)X, (l-rg - 8w*W)Y)
+8'0 (3(x), 1(v))

for all X,Y € C*(TB), the vertical metric is simply obtained by the fibre-
wise restriction of 5Y(N?) to Ta (VM) V(NB")| & (a)- O

This proposition shows that leading term of G° is given by the rescaled
Riemannian submersion metric (2.7) with g, := @*8("E) as vertical
bundle metric. The remainder is non-zero on the HM-HM-block alone,
where it is formally given by

((lbxb —eW)* + 8233t) — 1y = 8(—2W +eW? + 8JT) (5.15)
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with respect to an adapted local orthonormal frame (cf. Definition 2.8).
Here, W € R?*? and Je R?*dm(®) denote the respective matrix repre-
sentations (with respect to an gz-orthonormal frame) with smooth and
uniformly bounded coefficients. Thus, G* = g° + O(¢) is an admissible
perturbation of g° in the sense of Definition 2.21 and the Radon-Nikodym
density p, = volg. /vol,. formally reads

0. = \/det(lbxb +e(—2W+enw? + Ejjt))

= \/1 +etr(—2W + eW? + £11t) + O(2)
—1+0(e) (5.16)

with errors in C°(M).

Relation (5.14) can be made concrete in the case where the codimension
of (M) in NB" equals to one. This situation occurs for example if one
considers hollow quantum waveguides [HLT15, Definition 2.2(2)], where
rank(NB) > 2 and the bundle M ™% B is given by the fibrewise boundary
of a massive waveguide. In this case, N(&(M)) is a line bundle and
trivialised by a unit (outer-pointing) vector field N normal to @ (M). A
decomposition N = Ny, +Ny into a horizontal field Ny, € C*(H(NB")| (1))
and a vertical field N, € C*(V(NB")|(,y)) then gives

(5.12) .11)

§VNE) (Tar (W), Ny) = G (T (W), Ny) G(Tw(W),N) 0

for all W € C*(VM). Hence, Ny = Q!N € C* (VM) is a non-vanishing
vector field by [Lam14, Lemma 3.2] and

g(](X),NV) (5.13) _g()?HL,U(M)’NH)

1) = Gy ™ T T NGy

N, (5.17)

for all X € C*(TB).

Example 5.9 Let us return to the setting of Example 5.6 and consider the
trivial bundle M = R xS' 25 R over B = R with circle S as (typical) fibre.
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5.1 Embedded Tubular Neighbourhoods

We then introduce polar coordinates (x, p, ) € R x (0,r) x (0,2m) for
NR™ = R x B2(0). This choice yields coordinate vector fields {d,,0,, 0, }
on NR", where we again set ¢(x) = (x,0,0) for x € R. The identifica-
tion (A.7) of T(, , , )NR with NR = R? for each (x, p, ¢) € NR" provides
an orthogonal basis

6q ‘ (x.p,%)

aﬁ‘(x,p,cp) = (0,cos p,sin )",
O (4 prpy = (0, —psing, pcos p)"

=(1,0,0)5,

such that H(NR") = span(d,) and V(NR") = span(d,,p 'd,). Conse-
quently, the unscaled intermediate metric G on NR" reads
Glixpp) = (1—pKP(x, np))sz?H ®dx" +dp ®dp + p?dp ®dy,
—§VINR)

where

Kl cos
KP = (K, ep ), = <<K2> , (sinz>> =x'cosp + k?singy
RZ

is the radial component of the mean curvature vector. Next we embed M
into NR" according to

@ :RxS'—>NR", (x,y)—£(x,y)(cosye;(x)+sinye,(x)),

where £ : R x S* — [I_, 1, ] with 0 <I_ <[, <r is smooth and bounded
with all its derivatives. This represents the boundary of a (generally
untwisted) massive waveguide whose typical fibre is D? — R2. It is easy
to verify that

o
=y’ 0y a”|w=y + a‘/’|(p,¢)=(‘f,y))

=T (%) =Tw(0d,)

TG (T(yy)M) = span (& + 2 |

and a small calculation shows that its G-orthogonal complement in the
tangent space T, ,—¢(x,y),o—y)NR' is spanned by the vector

(pp)=((x,¥),y)

4 ol AH dln¢
T (a—tx)? ox ax +¢ ap T oy a‘ﬂ
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5 Quantum Waveguides with Gauge Fields

Here, we introduced
x(x,y) :==kP(x,p =y) =«k'(x)cosy + k*(x)siny.

After an adequate normalisation, we obtain a unit normal field

€ OHH dln¢
O = .k S L ke S
N2 2 2 2
o (#) () 1 o) ()
=Ny =Ny

which consequently gives

2 2
el ot dln¢
ox (63{) + ( oy ) +1

J(ax) (5;7)

again evaluated at the point (p, ¢) = (£(x,y),y). As far as the vertical
part of the metric is concerned, we easily calculate

(@*(dp ®@dy + p*dp ®dp))(2y,0y)
= (dp®dp + p*de ®dy) (Tw(d,),Tw (3,)) |(
2
ot
= <W) + Zz.
Finally, we insert these results into the expression from Proposition 5.8
and get

p)=((x,y).y)

(5.18)
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We continue with the explicit computation of the horizontal lift of 0,:

M= — GG (oP,0,) 0

x? y
e G(Tw (@), Te(0,) 0,
[1+ (22t ]zz
oy
- — g (3 + 20,20, +0,) 2,
[1+ (E‘ér;/l) ]gz
2Ing 2Ine
= —= 9. (5.19)

Here, we encounter a similar phenomenon as in Example 5.7: Reducing
the complexity of the set M = R x S! is accompanied by a more com-
plicated horizontal lift ¢"'. In contrast to the aforementioned example,
the deviation from 6)’: to 0% does not include any twisting effects but
reflects only the variation of the waveguide (in terms of SZ and ) We
close with the remark that the rescaled pullback metric G° is &- Close to
the rescaled Riemannian submersion

2
8 lxy) = e 2dx" @dx" +[1+ (al g(y,y)> ]EZ(X,J')dy(X)dJ’

&My

in the sense of Definition 2.21: If we use the adapted local orthonormal
frame

et [1+(W)]_ (10,

of (TM, g°), one has the matrix representation

e e eh, O
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where
(&)
h, = —20x+¢ | (£x)* + o
14 (ame)
9y
is of order one in C;°(M). O

5.1.2 The Induced Connection

Once again we first consider an intermediate quantity, to be specific the
gauge field 2, := &* A € C°(T*(NB"))QCp~. It is determined by means
of

T8, (X") = (115 —eW(-))X , T&, (V) =elysV

for X € C*°(TB) and V € C*(V(NB")) as was shown in Lemma 5.4 and
Lemma 5.5. Here, we omitted the parallel transport map p¥ = 1gs; from
T%(.)Rb*f = TC(.)RI’” to TWE(.)RZ’”, i.e., it suffices to evaluate the vec-
tors in the image of T®, merely on the submanifold c(B) = (R**/,5%*/).
We then get

A=A + e (AL +2A), (5.20)

where

WX") = Ay (X) = Ay (X) = (mipA) (X1),
X)) = (Awg(-)()_o — Ay ()_()> = Ay, (W()X),
A(V) = Ay, () (KnsV) = Ac) (KnpV) + O(e).

The gauge field Ap :=c*Ae C°(T*B) ® CN XN stands for the pullback of

Herm
the original gauge field A to the submanifold B.
The pullback of 2, to M via the mapping @ ultimately yields the induced
gauge field A, := @*Ae C°(T*M) ® CN*N  Therefore, we note that

Herm *

Ta (X") = X" 0 +3X), I(X) € G (VINB) )
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5.1 Embedded Tubular Neighbourhoods

and Tor (V) € C*(V(NB')| ;) for X € C*(TB) and V € C*(VM). Thus,
we obtain from (5.20) the following expression:

A. =y Ag + e Al + €AY,

where Af € CP(H*M) @ Cpxl and A € C° (V¥ M) Q@ClY are given by

Herm Herm

A8 (M) =28 (X)) + o208 (IX)) . AS(V) = (Ta (V). (5.21)
We conclude that

VA = VA g AS, AT = A7 + AL € G (TFM) @ Cygen,
is an admissible perturbation of

VA =dlen +idy, Ag =i Ag € CP(H*M) @Chal

Herm

in the sense of Definition 2.24.
As far as the vertical contribution of the corresponding connection
Laplacian —A?f is concerned, a short calculation shows

_A\J/élg = (dICN + iAe)*,gv(dICN + I-Ae)
= (dl(cN + i&‘A\e/)*’gv(dlCN + IS.A\g/)
— ATV = ZALB 1L 4 O(e)

with errors in L (L(Dx, H r)). Thus, the vertical part of the gauge field
transforms into a weak perturbation of order ¢, although we initially
started with the connection V* = d1cv +iA on 7¢ x CVN. Physically
speaking, this effect occurs because the shrinking of the initial tube 7°
in the transversal directions leaves the magnitude of the gauge field un-
changed, while the influence of the vertical differential operator increases.

The Case of a Trivial Line Bundle (N =1)

The main example for an Abelian gauge theory are spinless quantum
particles that are coupled to a classical electromagnetic field, in which
case, A € C];’O(T*Rb” ) represents the magnetic potential. This cor-
responds to a U(1)-gauge theory, where the system (v, .A) is invariant
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5 Quantum Waveguides with Gauge Fields

under transformations of the form g = e for some real-valued function
Qe Cr( ). This induces the transformation behaviour

Yogp =elP , A Ay=A-dO

for the wave function ¢ and the magnetic potential A (see Remark 5.2).
Moreover, we note that the curvature R* = d.A is gauge invariant, i.e.,
=d(A4—-dQ) =dA—-d(dQ) =

—
=0

This two-form is referred to as the magnetic field B = d.A, which is in
fact the experimentally observable (and therefore relevant) quantity. Put
differently, the magnetic field is invariant under gauge transformations
and the respective connection Laplacians A* and A“~9? are unitarily
equivalent. This additional degree of freedom (in terms of ) may be
used to simplify the calculations. In this context, it is always possible to
gauge away the leading order of the intermediate vertical gauge field 21},
using

Q. :NB" >R, NB" 37— Ay (e).

As a matter of fact, if we take a smooth curve y : I — N, B" with y(0) = »
and y(0) =weT,(N,B") = V,NB", we easily calculate

4, (w), = di| (@070 = Ao (700))
= (SICNBY )
“(w),,

where we used the connection map Kz to identify V,NB" with N,B"
for v € N, B". This in turn means that the induced magnetic potential

on M may be assumed a priori to be of the form

A, = 8 Ag + e AF + £ A5

170



5.1 Embedded Tubular Neighbourhoods

Example 5.10 Let us consider the intermediate magnetic potential 2,
for the geometric framework of conventional quantum tubes introduced
in Example 5.6, i.e., tubular neighbourhoods around smoothly embedded
curves ¢ : R — R3. It is shown in [KR14, Section 4.1] that this situation
admits an extremely convenient gauge on NR" = R x IBSf (0): The magnetic
potential A restricted to the curve ¢(R) can be gauged away completely in
both the horizontal and vertical directions. This implies that 2(, vanishes
identically when evaluated on the zero section of NR, which implies
the vanishing of both .4; and 2[3:0. The subsequent order in the Taylor
expansion of 2, around zero (incorporating derivatives of .4) can be
expressed in terms of the physically relevant magnetic field

B=dAe (AN TR?

")
evaluated on the curve, which consists of one parallel component
Bi(x) = Begwy (e2(3), &2(x)
and two perpendicular components
BL(x) = By (200, (0)) B2 (%) = By (¢/(x), e ()

with respect to the curve c(R) = R®. More precisely, it can be deduced
from [KR14, Equation (4.2)] that the intermediate magnetic potential has
the expansion

el (en) = e(BL(x) xn+0O(e)) dx" + 82(58“(36)71 + (’)(e)) x dn

in the notation of (5.9). This allows for the examination of the induced
magnetic potential .4, for the massive waveguide of Example 5.7 and the
hollow waveguide of Example 5.9:

(i) The massiveness of the waveguide yields 1= 0. Hence, the horizon-
tal part of A, reduces to

A8 (M) =By x (ry) + O(e), (5.22)
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(i)

172

whereas its vertical contribution is given by

Ay (0y1) = A (v11 O + 191 0p2) + O(e)
= 38y (—en1 (vy)? + 21 (2)%) + O(e)
= —3Bjaby* + O(e),

A5(Dy2) = -+ = 3Bjaby’ + O(e).

Consequently, the magnetic potential of this massive quantum wave-
guide reads

A, =¢(By x (ry) +0O(g)) dx" + €2<%abl3”y + (’)(s)) x dy.

Although 1(0,) does not vanish in the hollow case, it is of lower
order in the horizontal part Aj, within (5.21) and may thus be
neglected, i.e.,

A3 =B, x (17) + ). (5.23)

As far as the vertical contribution is concerned, we use

ol
To(0y) = 5 0ol + 0ol

= %(cosy&nl +siny 0p2) +£(—siny d, + cosy 0,p2)

in order to obtain

¢ (0,€)cosy—{siny
'Af/(a}’) = %BH (lz?rfj//) X ((E}if)siny-k(cosy) + 0(8)

= 3B0* + O(e).

Finally, we see that

A, = ,s(z?L x (‘“’”) + O(E)) dx" + 32(§EZBH + 0(5)) dy

£siny

for the magnetic potential. ¢
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5.1.3 The Induced Operator

The previous subsections showed that the initial tube operator Htwube (5.3)
is unitarily equivalent to

AL+ V, (5.24)

on L%(&,volg.) with £ = M x CV, i.e., we treat a Riemannian metric
G® = g° + O(¢) and a metric connection V4 = V4 + O(g), both of
which are perturbed in an admissible manner. Therefore, we have to
combine the results of Subsection 2.3.1 and Subsection 2.3.2 for the

. . A, . . .. .
connection Laplacian —Ap;. We will see that Hy,  is unitarily equivalent
to an operator of the form

A
HOY = —?A}° + eH; " + HP*Y

onH =L3(& ,vol, ) that is suitable for the low energy analysis developed
in Section 4.4. Put differently, we will conclude that the perturbation H f W
satisfies Condition 4.11 and that the vertical operator H”*¢" is a pertur-
bation of some suitable operator H**=%" in the sense of Remark 2.27.
To start with, let ﬁps = (e7p,)?1¢n for p, = volg. /vol,. be the
unitary operator from L?(&,vols.) to H = L*(&,vol,). Then Lemma 2.18
asserts
U

o (AT = A 1 VAR 05A LV 10w,

where the perturbed Laplacian —A?f is expanded with the aid of Proposi-
tion 2.25 as

82.A\E,
\

—iestr (245 @ VAo + YTHMBE(E) 4o
+igs A (ny) + et (A7 ® A).

A 2 A Ao
—AL = —e2A) - A

The S¢-term within the transformed Laplacian is evaluated by means of
alocal frame {v,}"_, of TM and its dual frame {«®}""_, as well as (A.16)
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and Lemma A.21 to be:
V-Ae,*’gs OS‘AE
= fv;‘,‘; (s*(w?, wﬁ)v‘“f: ) = s (w?, div, (vﬁ)wﬁ)v‘j‘:
| —
=V Wb
B
- _v‘go (sg(o)"‘, wﬁ)va;o.)
+ (—2issg(w“, wﬁ)A‘i(Vﬁ) +5°(w?, %‘5[: co/j))V;tO
—ie ((VI;VI@ZSE) (0% wP) +5s° (%ﬁ; w?, wﬂ))Ai (Ve)
—ies (e, f ) ( (VTSRO 45) () + A5 (VEv,))
+e2s% (%, WP ) A (vg) AT (Ve)-
Next we introduce the tensor
o :=¢ %" € C(T*H*M)

so as to illustrate (and compare) the different orders of & properly. Actually
the bounds of o can be chosen to be of order one independently of &,
since

e Lemma 2.22 implies the existence of a constant ¢ > 0 such that
€3|O'€(co, a))| = |5£(w, w)| <ceg(w,w)
forall we T*M,

e and Proposition 5.8 implies that (G* — g®)(v,-) =0 for all v € VM,
and hence s¢ is a section of =2H* M and the latter equation simplifies
to

o (nf ¢, mi )| < ce 28 (8, mi ) = cgs(8,0)

for all { € T*B.
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In summary, the operator (5.24) and therefore the initial Schrédinger

operator HY,  is unitarily equivalent to

HEY = —g2A4 — ATV 4V, 4V, 1oy + eHS,

where the deviation H " from the horizontal part of — A S to — A“:"
equals

Thp,(12),(34) (vf?o (—o°(, ')Vﬁo‘))
—2ietr, Ho (AE ®VA°)

+etryy (trHM’(zg) (05 (-, %?5-) —2iec® ®A§)Vﬁ° . )

+sl etr, (VTMEER(E) A2 ) i AL (1) + €% tr,, w0 (AR ®AL)

—ie? tryy (13),(24) ((vHM® o +0° (V¢ )) ®A€>
—ig2 thyapg,(13),(24) <0_€ ® (VT*M®End(£)AE + A (vg£)>)
+ et trHM,(lg),(24) (O'e ®Ai| ®Aa)1 .

Remark 5.11 (i) The tensor product connections V' M®End(€) gpd
wHM®? depend implicitly on ¢ via the Levi-Civita connection V¢
involved in their respective definitions. It turns out, however, that
we only need their e-independent components (Christoffel symbols):

e Koszul’s formula (A.3) yields
VEYH = (VEY)" 4 0,(xH, YY) = vE, 7" (5.25)
for X,Y € C*(TB). Hence,
(Vi "5 ) (H) = XM AL(Y™) - A (V5 7)
= XM AR (V") — Af (VR YY)
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. . . . . e=1
is the same as for the unscaled Levi-Civita connection V8 .

e Let {v,}_, bealocal frame of TM and {«w®}"_, its dual frame
such that {v;}?_, and {w'}?_, are local frames of HM and H*M,
respectively. Then

%k ~ o€ ; N o€\ J
PM(VE o) = (%) 0"
A4 e\ J
= _(Fg )iawa
(5.25) j
= = (Fg)iawa
P (VE )
does not depend on ¢, and likewise for
®2 -
(Vo) (E,T)
=Xx".0f(E,T
=Xx". 05T

) — 0 (VE.E,T) — 0 (5, V4. T)
) —0f(VE,ET) — 0f (B, VET)
for X e C*(TB) and E,T € C*(H*M).

(ii) Due to the fact that In p, = O(¢) as shown in the proof of Proposi-
tion 2.23, the geometric potential (2.18) equals

Vo, =V + éez_Ah‘B' Inp, +0(¢*) (5.26)
=0(e3)

with leading order

vy =3A % Inp, +§§V(dlnp8,dlnp8).

=0(¢) =0(€2)

Let us examine this potential in the two most relevant situations:
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e If M is a massive quantum waveguide (codim(w) = 0), the
leading order of

+ e (@ Wo oW+ 57 (1(),1()))
= —etr(@*W) + O(&?).

is linear with respect to the fibre coordinate £ € M,. Con-
sequently, A\L/'B‘ vanishes on the leading term of Inp, and
V) =0(e).

e If OM = (¥, the induced Weingarten map w*W is generally
not linear with respect to y and thus Al* is not zero when
applied to the leading order @*W. As a consequence, one
expects an O(¢)-contribution within V;;/g‘ O

Depending on the particular geometric situation at hand, we can take
advantage of the freedom to distribute the potential V,, = Vp(&_l) + VP(EZ) to
the vertical operator and the perturbation so that

HE = A 1V 4 VD1, eHEY = APV 4 V@ 140

In virtue of Remark 2.20, the operator —>A}}° + ¢H:™ is the horizontal
part of the Laplacian —Aé; and hence defines a positive operator. It then

follows that —82A;|4° + st’W is bounded from below by — ”Vp(f) ”pc (M) 1,.

Thus, the perturbation satisfies all the requirements of Condition 4.11 if
we split the geometric potential in such a way that Vp(sz) is of order £2.

5.2 Application to Weak Magnetic Fields

The considerations of the previous section showed that the initial tube
operator H, = (5.3) is unitarily equivalent to an operator of the form

HEY = —g? AL + HPSY 4 eHOY
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with a perturbation H f’w satisfying Condition 4.11. Hence, we may apply
Theorem 4.15 and obtain the following approximation result for the low-
lying eigenvalues of H®" (and consequently for those of Hy):

Theorem 5.12 Let HY,  be the Hamiltonian generating the dynamics of
non-interacting, non-relativistic quantum particles with total spin quantum
number N, which are localised within a quantum waveguide of bounded
geometry and are coupled to a weak external Cﬁexrf;’ -valued, C*-bounded
gauge field A. Assume that

(i) the ground state band Aj' of H F&W (with associated eigenspace bun-
dle P™) has a spectral gap, ¢f Condition 2.26, for € > 0 small enough,

(ii) and there is a constant C > 0 such that Ce® is strictly below the
essential spectrum of Hfm —Ag1y,,, in the sense of Theorem 4.15 for
some a € (0,2], where Hfm is the adiabatic operator and A, denotes
the bottom of H”¢"’s spectrum (see (5.32) below).

Then if v* < Ce* is an eigenvalue of Hfm — Noly,,.,, there exists an eigen-
value v of Hyy, . below its essential spectrum with the asymptotic expansion

vE = Ay + v° + O(e*T%).

We will apply this theorem to quantum waveguides arising from conven-
tional quantum tubes for a non-relativistic, charged, spinless quantum
particle in the presence of a weak external magnetic field (described
by means of some magnetic potential A € C°(T*R? +)) but without
any other forces (V = 0). Such a particle is characterised by a solution
Y : R — L?(T* x C) of the time-dependent Schrédinger equation

. d
ig(t) =Hu p(t), Y(t)sr=0
for some tube 7¢ — R* around a smoothly embedded curve ¢ : R — R3.

Recalling the specific gauge for 2, of Example 5.10 (which implied
both Az = 0 and Qlf/:o = 0), we conclude that the associated tube opera-

tor HY,  is unitarily equivalent to
2 4e o
HEY = —e2ALB — ALY 4 eBOY 1, (5.27)

178



5.2 Application to Weak Magnetic Fields

on H = L*(&,vol,) with trivial line bundle £ = M x C over the wave-
guide M. In view of Remark 5.11(ii) and the subsequent discussion, we
set

2 f€
e~ Ay

F&W o __
H7#W = —A] (5.28a)

for codim(w) = 0 and
HEoW = Ay v (5.28b)

0 2 AN\ 2 2 A8 ~
=0, (~ g, (v 47) — v ) 0L,

~~

~ g2 AE
=&, "V by (A.20)

for codim(@) =1 on Hz|, := LZ(Mx,volgMX) with appropriate Dirichlet
domains. Here, the latter transformation via the fibrewise unitary map
Up, (x) : Lz(Mx,pgvolng) — Hz|, is obtained by calculations analo-
gous to those in Subsection 2.3.1. It then immediately follows that the

perturbation

e eASY + v, codim(@) = 0
eHEw =17 ]
! eAPY + 1e2AlB Inp,,  codim(w) > 1
satisfies Condition 4.11 as desired.
Let us analyse the asymptotic expansion of the magnetic ground state

band A{(x) := mino (H”*"(x)). To do this, we start with the examina-
tion of the e-independent ground state

Ao(x) :=mino (Hi{’:‘g(x))

{mino(—A\L,'B'(x)), codim(w@) = 0
1

mino (—-ALP(x)),  codim(w) =

of the unperturbed vertical operator (in the absence of any magnetic
potential) for the two most relevant geometric configurations:
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e Massive quantum waveguides (codim(w) = 0):
Denote by ¢4(x) the fibrewise, uniquely defined, positive ground
state with corresponding eigenband A4(x) > 0. We will assume that
x — Ay(x) has a unique non-degenerate minimum on R. Moreover,
a natural condition on ¢, is the requirement that its barycentre lie
on the curve:

<¢0> y1¢0>?—£; =0= <¢0: y2¢0>7.[]__ . (529)

This corresponds to the “correct” parametrisation of the waveguide,
i.e., to the proper positioning of c(R) within the tube 7¢ c R>.

e Hollow quantum waveguides (codim(w) = 1):
In view of the discussion right at the end of Section A.3, the Lapla-
cian —AL®- is symmetric with quadratic form

<'lp, —35~B'1/)>L2(ijps VOIEMX) = JM ng (wy d/ll)) pe VOlng

and hence defines a positive operator. Its ground state is a fibrewise
constant function, say some ¢ (x)omt,,, with eigenband A, = 0. The

corresponding normalised ground state of H”*"(x) e —o is then
o=

A~

0, ($o(x) = 7 e
¢ = T~ p€~ — £
o) ||U€(¢O(X)O7TM)”7—LF\X SMXpE VO]gMX
= Vol Mx)_l/ZOﬂ:M—f—O(g),

&M, (

where we took advantage of the fact that p, = 1+ O(e) in C;°(M)
due to (5.16).

As far as the corrections to A, within Aj' are concerned, we use the
methods of finite-dimensional perturbation theory developed in [Kat80,
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5.2 Application to Weak Magnetic Fields

Section II-§ 2]). The entire vertical operator has the expansion

o = B+ 2 (A% (1457°) + (1457) a)

g Faw
H,,

P (d* (1AL70) + (141570 *d)

_.gFw
__H3

+0(e%)

with errors in L (L£(Dx, Hz)), where A5 = AZ=0 + eAy =" + O(g?). But
then

JM b0 (d*(iAv) + (iAv)*d) ®o VOlng

= 2Re <iJM ng (d¢o, Ay o) VOlgMX>

real-valued

=0 (5.30)
for any A, € C*(V*M), which gives

<¢O’H;’W¢O>HF‘X =0= <¢O:H?-,7:’W¢O>7.LF‘X

for all x € R. This, together with the fact that the O(¢)-correction to
the unperturbed ground state ¢ vanishes, shows that the first non-zero
correction to A, is actually of order £*. The diamagnetic inequality [FH10,
Section 2.1] finally asserts that the infimum of o (H”**") increases when
a magnetic field is switched on. Thus, the ground state band A’ of the
entire magnetic vertical operator is always pointwise greater than or equal
to A, and we end up with the asymptotic expansion

AP (x) = Ao(x) +&*254(x) +O(e?),  codim(w) =0
0= 0+&*Qp4(x) +0(e?),  codim(w) =1

with Ay, > 0 and errors in C;°(R).
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5 Quantum Waveguides with Gauge Fields

Lemma 5.13 Let the typical fibre F < R? of M = R x F be connected. Then
there exists £, > 0 such that A satisfies Condition 2.26 for all 0 < & < &,

PROOF. We first note that the ground state band A of the unperturbed op-
erator — A} satisfies Condition 2.26 by [Lam14, Lemma 3.7], i.e., there
is a constant d > 0 such that

dist(ao(x),o(—A‘;’B'(X))\{lo(X)}) >d

for all x € R. Moreover, A, := 20!l () < 0 by Proposition 3.14. As far
as the perturbation

T, = —2iA (divy, ) +i(d*AY) + % try, (A5 ® AF)

. Foe, . . .
in H"W = H’;*" + £2T, is concerned, we obtain the estimate

A5=0
”EzTew 12(M,)
< 282”.,4\8, Lo (T M) ”gradng Y 12(M,)

+ (EZHd*A£|lL”f +84||A€HLOO(T*M)) ”¢”LZ
| —

<e? ”-A\S/HLOO(T*M)
for ¢ small enough

< 22| A5ecrenry (W 2y + 3 1 iz, )

o Ga i R V2 v
= . Il + b [HE 0 o,

for all ¢ € D|, with x-uniform bounds

my T 52”“4\8/

ae = 282”“4€ HLJO(T*M) T 6‘2”d*"4€

b = 2¢2||A¢ |

[P
Lo (T*M)"

We infer from the C**-boundedness of A, that the quantity

\/ d/2 >0
lA] + 2] + A3l (Ao + )
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5.2 Application to Weak Magnetic Fields

is well-defined and one easily verifies the inequality

ae + bs(xo(x) + d) < %
forall x e R and all 0 < € < g,. Consequently, [Kat80, Theorem IV-3.18]
yields

O_(H.F,S,W(x)) A (Ao(x) — %,lo(x) + %) = {)\Bn(x)}

for all x € R and all 0 < ¢ < g,. Thus, Condition 2.26 is satisfied with
spectral gap 6 = d/4 and separation functions f (x) := Ao(x) £ 6. [

This lemma allows for the definition of the spectral projection

i

P™(x =—J HESY(x) —g1,, ) "
P = gm | T )

dz

associated with the magnetic ground state band A}', which gives rise to
the corresponding smooth normalised ground state

PP o(x)
1P ol 1.,

The bounded geometry of the waveguide M (cf. Definition 5.3) and the
C®-boundedness of the vertical magnetic potential imply that

¢g (x) Py = (85 ), 0

k Fe,
Ok (74 () — HZg () < C (k)&
in the norm-resolvent sense for all x € R and k € Ny. Consequently in
view of

1
Py —Py=— R7*V(z (HI’S’W — HY, ;E’W)RF M (2) dz,
0 0 2mi o ag|=5 ( ) Af=0 _AV:()( )

the magnetic ground state ¢’ is very close to the unperturbed state ¢,
i.e., it holds for all k € N that

=0O(?). (5.31)

sup
Hrl

xeR

CINTHETS]
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5 Quantum Waveguides with Gauge Fields

Theorem 5.12 states that the low-lying eigenvalues of the initial tube

operator H!, - may be approximated by those of the adiabatic operator

P myyE,Wpm
HP" = PPHEVP!
(4.12)

2AB 2y, P™ m myprE,Wpm
€ A° +¢ VB}_I/ +Ag 1y + PG H Py
- [
Berry terms perturbation
acting on Hpm = L*(P™), i.e., on the L?-sections of the eigenspace bun-
dle P™ = Pi"H . To be more precise, with “low-lying” we mean those
eigenvalues of Hfm with a distance of order £“ to the bottom
Ao := min_ inf AJ'(x) = inf A4(x 5.32

0 0<e<1xeR 0 ( ) XeR 0( ) ( )
of o(H”*Y). The correct scaling £* of the eigenvalues can be read off
the renormalised leading term of the adiabatic operator, which is given by

—®AP + (AT — o)1y, = —°AP + (A9 — Ag) 14, + O(e*).

We observe that this is essentially determined by the behaviour x — A((x)
of the ground state band associated with the unperturbed vertical operator.
Consequently, we retrieve a = 1 for massive waveguides (with A, having
a unique non-degenerate minimum) and a = 2 for hollow waveguides.

We saw above that the switching on of the magnetic field in general
leads to an O(e“)-increase of the ground state band (4, — )Lg‘) and
consequently to an increase of the same order for the eigenvalues of the
adiabatic operator H;’m (cf. Figure 5.7). In both cases the shift of the
ground state due to the magnetic field is much smaller than the level
spacing of the low-lying eigenvalues of Hfm (three orders in ¢ for the
massive waveguide and two orders in ¢ for the hollow waveguide). Hence,
these eigenvalues stay ¢“-close to A, and the constants C; and C, can
be chosen independently of the vertical magnetic potential A;, for £ > 0
small enough.
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5.2 Application to Weak Magnetic Fields

xeR

AOZO

(b) hollow quantum waveguides (a = 2)

Figure 5.7: The low-lying eigenvalues of the adiabatic operator Hfm as-
sociated with the ground state band below A, + C,&* (a) for massive
quantum waveguides, where A, has a unique and non-degenerate min-
imum, and (b) for hollow quantum waveguides are depicted on the
vertical axis in the absence (red, A}, = 0) and presence (green, A}, # 0)
of the magnetic potential.
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5 Quantum Waveguides with Gauge Fields

The global trivialisation of the eigenspace bundle P™ via the ground
state ¢ yields an identification of Hpn < L*(M) with L*(R) ® (¢g")
and the associated adiabatic operator may be treated as an operator H,
acting on L?(R). In the next two subsections, we will calculate the adi-
abatic operators for the waveguides introduced in Example 5.7 and Ex-
ample 5.9 up to errors of order £*% in £(dom(e~*H, ), L*(R)), where
H,o=—e2ALB-  + (A — Ay), which is the exact accuracy provided by

dx®dx
Theorem 5.12.

5.2.1 Example for Massive Quantum Waveguides

We consider a single non-relativistic, spinless, charged quantum parti-
cle, which is localised within a family of massive tubes {7¢ c R®},_,<;
around a smoothly embedded curve ¢ : R — R® with twisted elliptical
discs as respective cross-sections (see Example 5.7 for the details), in
the presence of an external magnetic field represented by some poten-
tial A € C°(T*R®|,.). The quantum waveguide turns out to be the
trivial fibre bundle M = R x B, (0) 2 R with coordinates (x, y*, y2) and
rescaled pullback metric (5.10)

G*=e*(1—elry, K>Rz)2 dx" ®@dx" + gy,

where the vertical contribution reads
gV|MX =8m, = a?(x)dy' ®@dy! + b*(x)dy* ®dy>.

The corresponding Schrédinger operator (5.27) on L?(M ,volg) incor-
porates the vertical operator H”>*" (5.28a) and the perturbation given
by sH.‘f’W = eI:Ilg’w +V,,.

Vertical Operator
We briefly discuss the ground state associated with the unperturbed op-
erator H;*% = —ALB- The fibrewise unitary map V(x) from Hx|,

A;=0
to L*(E2 ,dn), given by

(x),b(x)
b (V08000 = 6 (255,55,
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5.2 Application to Weak Magnetic Fields

induces a unitarily equivalent operator —A%‘ZB' with Dirichlet boundary
conditions on the x-dependent elliptical domain

2 1,2 2 )2 2 \?
Eo)00) = {(3’ Y7 ER: (W) + (W) < 1}'
Introducing elliptical coordinates
@(X) : [O’ go(x)] X [0:2/”:) - Ei(x),b(x)’
(&m) = (f(x) cosh & cosm, f(x) sinh &, sin7)

for all x € R with focal length function f = /a2 — b2 and elliptical bound-
ary &, = artanh (), we see that the non-degenerate, positive and nor-
malised ground state of —AL is given by [GRMO03]:

@(x) (x)o€(x)7,

_ 1
—/7C(x) Po

with

(‘Po(x))(g,n) i=Jeg (€§(I01(x)) Ceo(ﬂi‘lm(x))

and smooth normalisation function

Eo(x) r2m 2
c) = [ [ ((wo)Em) (cosh(26) —cos(zm) anae.

Here, Je, denotes the zeroth radial Mathieu function and ce, the zeroth
angular Mathieu function. By reason of the Dirichlet boundary conditions,
both functions depend implicitly on the x-dependent first zero qg; (x) of
the radial function Je,, (which takes the role of the radial Bessel function in
the case of disc-shaped domains) at the elliptical boundary &, (x), i.e., itis
the solution of Jey(&,(x);q) = 0. The ground state associated with —Ay®
finally reads

~

(P0(x) (¥ ¥%) = (VI(x)®o(x)) (¥, ¥%)
= (®o(x)) (a(x)y",b(x)y?).
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5 Quantum Waveguides with Gauge Fields

The boundedness of the semi-axes with all their derivatives directly carries
over to the ground state ¢, € C,°(M). In the end, we remark that the
elliptical cross-section is positioned symmetrically with respect to the
curve c(R), and thus ¢, is centred and satisfies (5.29).

The corresponding ground state band is given by Ay(x) = sz‘)(l—x()x). Hence,
the requirement that A, (x) have a unique non-degenerate minimum is
an implicit condition on the semi-axis functions a(x) and b(x). Moreover,
the ground state band is separated from the rest of the spectrum by a gap
f%x)(qu(x) — qo1(x)), where g, (x) is first zero of the first (even) radial
Mathieu function. The uniformity properties of the semi-axis functions
r_ < b(x) <a(x) < r, imply the uniformity of the spectral gap, i.e., there
is an x-independent constant d > 0 such that

igﬂgdist(xo(x),a(—AIngX')\{?\o(X)}) >d.

Moreover, it is shown in [Mak59] that |||l e ) < \/§% with perime-
ter L < 4r_ and area A > nr? of the respective elliptical domains.

Berry Terms

The Berry connection (4.10) is given by Vgx = PR P for 0, € C*(TR).
The massiveness of the waveguide yields 7, = 0, and hence this defines
a metric connection (i.e., V® coincides with V7", see Subsection 4.3.1).
Thus, it holds that

0= 0, - (B5 ) pm = (V5 OO0 + (S0, V5§ )
—2Re ({5, V2 ) ) = 2Re ((og e, )

and <¢(‘)n, o gl>7-tf is purely imaginary. The application of V® to Yoy
for ¢ € C*(R) is then calculated to be

V(W7 = A ()¢5 + YPIVE 7 = ((d+id”) (0w 67,
——
=:vAP
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5.2 Application to Weak Magnetic Fields

where the “effective magnetic potential” reads
A0, = 1m ((BP, 3, ) (5.33)
(5.31)
5.3 Im (<¢0, a;|¢0>7'[}‘) -‘rO(gz).

= 0 since ¢, is real-valued

Finally, the Berry Laplacian applied on vy ¢’ equals

AP () = (Agigac) oF = (A%, + O(2) ) o5

The difference between the Berry Laplacian and the projected horizontal
Laplace operator equals the Born-Huang potential

VETGD = PR(MPRON — ALP) T
(o0 (Conatom, 7)), o
— b5, AL D5 ), T
(2931, - [on. 2205, )5
=0(e%)
52 (g0l +0(62) o o2y

Its leading term is non-negative and has been mainly studied in the context
of “twisted quantum waveguides” with isometric cross-sections, see for
example [CB96, EKKO08].

Example 5.14 Let us consider the special case of a fixed elliptical domain
with constant semi-axes a and b. This implies that

e the horizontal lift (5.8) simplifies to
== (210 — 8yP 0 ) = R —IBLS, (5.35)

e and the leading order ¢ of the vertical ground state becomes (up
to the x-dependent twist) independent of the base coordinate x.
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5 Quantum Waveguides with Gauge Fields

Consequently, the main contribution of the Born-Huang potential is rather
simple, to be specific, one has

Vi () = (8 () [[22° o, +O(?).

This expression is in agreement with the result in [KS$12], i.e., VBZm co-
incides with the well-known twisting potential plus some very small &-
corrections due to the presence of the magnetic field. ¢

Perturbation
In order to calculate sPéan P up to errors of order &2 with respect to
the norm £(dom(¢'H,,), L*(R)), first note that any v € dom(e 'H, )

of order one oscillates on a length scale of order e 12 je.,

(e oy = O [ehgg, = O,

Moreover, the potential term appearing in H 15 " is already of order £* and
may a priori be neglected in the following considerations.

We need an explicit formula for the tensor o which encodes the differ-
ence between the rescaled pullback metric G® and the rescaled submersion
metric g° due to the extrinsic curvature of the curve. A small calculation
shows

of(dx",dx") =73 (ée(dxH,dxH) — §€(dxH,dxH))

- (T Y

sl(l +2)<xy, K>]1R421

18

0
= 2{ty,K)gz + 3e vy, K>]§2 + 0(£?) (5.36)

with errors in C°(M). As far as the geometric potential V,, (5.26) is
concerned, we first determine the associated Radon-Nikodym density to
be

det(G#) \/32(1 — e (ty,K) R )2a2b?

p = =
€ £—2q2p2

=1— -
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5.2 Application to Weak Magnetic Fields

which gives
Inp, = —&(ty,K)g: — 362{vy, K>R2 —2e%(vy, K>R2 +0(e*). (5.37)
We may now treat the three terms appearing in V,, separately:

e Using the facts that
dinp, = —e( (2 (ey, 1)) "+ e, dy e ) +O(?)
and g, = a2 Oy1 ® 0y1 + b2 0y2 ® 0,2, it immediately follows that

1%(dlnp,,dlnp,) = ;& [(%(ttx)l)z + (%(ttK)z)z] +0(&?)

&2 lIkllz. + O(e®)

1
4
1
4

e A similar computation shows
—2 A2 2 ~2 <fy,K>§z 3
e2(a7203, +0720%,) =5 + O(e%)

= 36 (010! + FERPER)?) + O)
26 IIKIIR2+O( %)

AN Inp, = —

e The contribution of e2Al: In p, is of order ¢* and hence negligible
for the regime a = 1.

Thus, the leading-order contribution of the geometric potential V,, de-
pends only on the base coordinate x and is given by

+0(e%). (5.38)

v, (x,y) = — e ||x(x)||2

This attractive leading-order contribution has been widely discussed in the
literature in the context of “bent quantum waveguides”, see for instance
[DE95, EKKO8]. Its effect due to the extrinsic curvature has been known
in fact for a long time [Tol88]. In particular, the sign of this potential is
indefinite if one considers higher dimensional base manifolds [Haal2].
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We are left with the calculation of the differential operators within H f .
Many terms vanish by virtue of the facts that V4,0 = 0 = V&,dx"
and 7, = 0, which results in ’ :

(VI 58) (doc, dxcM) = o - o (doe™, dxcM).

Recalling that e0" = O(¢'/?) on dom(e'H, ;) ® span(¢T), we get

eASY = —g20%(0f(dxM, dxM)ed") — 2ie? A5 (M) ed! + O(%)
(5.22) .
(§:36) _2826,': (<ty, K>]R2 86;‘2 :2182 (BJ_ X (ry))ga; +O(83),
=0(e2) =0(£5/2)

We then apply P;" = <4>(‘)“, ~>Hf ¢, on both sides and evaluate for any
function ¢ € C*(R):

ePTHTY P (™)
20 & (o, 5 (o), b8+ O(e%)
= —2e{¢g, e ((vy, K)g2 €M (3 ¢0))>H}‘ o3 (5.39a)
—2ie* (¢, (BL x (ry))sa§(¢¢o)>HF o (5.39b)
+0(%).

Because of the fact that ¢,(x) is real-valued and vanishes on dB3(0) for
all x € R, we can rewrite (5.39a) as

—26{po, (601 xy, K05a) o + 203, K)ga £ bo ), (20, )b
—2¢e <¢07 <ty’ K>]R2 ¢O>7—[}. (€2A3f®dx¢) ¢81

+0(e%)

= (20, (=26 (o, v, K0 Do), AW (£04)) ) B3 + O(2).

But this terms vanishes since (t(x)y, k). is linear in the fibre coordinate y
and the barycentre of the unperturbed ground state ¢ lies on the curve
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(see (5.29)). One likewise concludes that the second term (5.39b)

_Zigz <¢0: (BL X (ty)>¢0>7{f dw(gax)¢81 + 0(83)

= 0 since ¢, is centred (5.29)

is of lower order.

Conclusion

We are now in a position to gather all the relevant terms in the adiabatic
operator up to errors of order ¢ in £(dom(¢'H, ), L*(R)). We then use
the low-lying eigenvalues of the resulting operator to approximate those
of the initial tube operator by means of Theorem 5.12:

Corollary 5.15 Let H;.-"* be the Hamiltonian generating the dynamics
of a non-relativistic, charged, spinless quantum particle, which is localised
within the massive quantum waveguide introduced in Example 5.7, in the
presence of a weak, C™-bounded external magnetic potential A. Assume
that

() the associated unperturbed ground state band A, admits a unique
non-degenerate minimum,

(ii) and there is a constant C > 0 such that Ce is strictly below the essential
spectrum of

Hwg' 1= =€ Dgiae + (2o — Ao)

+e2(|lago(@)|f5,, — FlIxIZ)
in the sense of Theorem 4.15.

Then if v* < Ce is an eigenvalue of Hye®

QWG
H"* below its essential spectrum with the asymptotic expansion

there exists an eigenvalue v° of

vf = Ay +vF +O(°).

We observe that the magnetic effects are not apparent up to this accuracy.
We close this subsection with a discussion of the situation for a constant
ground state band A,. This can be attained by
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(i) smoothly varying the semi-axes a(x), b(x) in such a way that the
ratio of qy; (x) and f(x) remains constant,

(i) or fixing the elliptical cross-section which is allowed to twist around
the curve.

We consequently obtain the regime a = 2 with eigenvalues of order &2
above the minimum A, = A,. In this case, the related eigenfunctions

; -2 LB.
are of order one with respect to the graph-norm of e “H,, = —A dx®dx
(i.e., with respect to the W?(R)-norm) and oscillate on a length scale of

order one:

[|dv(0,)

pw =001 = |||, = 0.

Since Theorem 4.15 now gives access to an accuracy of order £* for the
approximation of the eigenvalues, we briefly itemize the modified and
additional terms:

e The Berry one-form A3 (5.33) of the Berry connection V& = d +iAB

is of order £2, and hence
2 A\ AP 2 ALB. 4
—€ Adx@dx =€ Adx@dx + O(S )

e The geometric potential V,, is determined up to order €3 by means
of the expansion (5.37). The subsequent order of both A{;‘B' Inp,
and g,(dInp,,dInp,) may be calculated analogously. As far as the
remaining term &2 A];"B' In p, is concerned, we note the intermediate
result 07 - (ty, K)g. = (ty, K’ )., which follows from a straightfor-
ward calculation. In summary, the geometric potential V,, (x,y)
equals

=3 Gl = 57 ([l e + e )

plus errors of order £*. The O(e?®)-term, however, is linear in y and
vanishes when it is integrated against the centred ground state ¢.
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e The only additional term arising from the perturbation eH f W is the
leading term —ie®¢0" (B, x (ry)) of the potential. But this term
clearly vanishes because ¢, is centred. Consequently, we repeat the
same calculations as for (5.39) without dropping the O(&®)-terms
and get

ePPHIYPI (™M)

=—2¢3 <ax (<¢’o, (ty, K)ge ¢’0>HJ3 dw(ax))> b

=0
- 283 <¢0’ 8:: (<ty’ K>R2 6?¢0)>H}_ 1/)¢(I)n
216" (2 (o (B x () 0)u, ) ) 88

=0
= 2ie? (o, (B x (x¥)) b0)y,, AW (0x) b5

=0

+ O(e%),
once again because ¢, is centred (5.29).

We already know that all terms contained in the adiabatic operator are
of order &2 in £L(W?(R), L*(R)) in the regime a = 2. Therefore, we may
divide the latter operator by £2 and define

i e RO — AL,y
=~ Ofs — Il + [ 2oll,
—2e¢ <¢0a 8;' (<U’: K>]R2 8;' ¢0)>H}'
+ 0O(&?).
It then follows that if ¥* is an eigenvalue of HgC*, _, below its essential

spectrum in the sense of Theorem 4.15, there exists an eigenvalue v°®

of H'""* below its essential spectrum with the asymptotic expansion

vf = Ag +29F + O(e?).
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We conclude that the low-lying eigenvalues of H, = are again entirely

independent of the magnetic potential up to this order.

Remark 5.16 The leading part of Hy", _, was already derived in [KR14,
Definition 2.5 (6 = 0 in their notation) ] for an arbitrary but constant, pos-
sibly twisting, simply connected cross-section F < B2(0). This corresponds

to the embedding
@ :RxF—NR',
(x,y%, y?) — (cos (9(x))y* — sin(ﬁ(x))yz)el(x)
+ (sin(fi‘(x))yl + cos (ﬁ(x))yz)ez(x)
of the waveguide into the fibrewise subset NR" of the normal bundle in

our notation, where 9 € C;°(R) is the twisting angle. It is then an easy
calculation to see 07 = P —¥'(y x V) and finally to obtain

: B. 2 2
Hgvizné,;z = _A]&f(adx - zlt ”K”RZ + (ﬁ/)z H(y X vy)¢0||L2(F,dy)

+O(¢)

in this case. O

5.2.2 Example for Hollow Quantum Waveguides

Let us consider a single, non-relativistic, spinless, charged quantum parti-
cle in the presence of an external magnetic field in the geometric situation
of hollow quantum waveguides M = R x S* ™, R as introduced in Exam-
ple 5.9, where additionally the radius function £ is assumed to depend on
the base coordinate x alone (and not also on the fibre coordinate y). In
view of (5.18), the resulting rescaled pullback metric on M is then given

by

G* =¢2 [(1 —elx)? + & (%)2] dx" ®@dx" + gy

~
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with vertical bundle metric gy|y, = gy, = (?(x)dy ®dy. This hollow
waveguide corresponds to the boundary of the massive quantum wave-
guide of the former subsection with #(x) = 0 and a(x) = b(x) = £(x)
for all x € R. The Schrodinger operator (5.27) for this setting incorpo-
rates the perturbation eng W= sﬁf’w + %szA];"B' Inp, and the vertical
operator H”>*¥ (5.28b).

Vertical Operator
We already know that the ground state of the vertical operator H”*" is
given by ¢ = ¢ + O(e?), where

Po(x) = Vol (SH™ Y2 omy +0(e) = Zié(x) oy + O(€)

is the ground state of

Hiéi‘g = —ALB 1 2AM Inp, + 28 (dInp,,dInp,)

—_yv
VPE

with constant eigenband A4(x) = 0. Let us explicitly calculate the O(¢)-
contribution of ¢ using finite-dimensional perturbation theory. To do

. F,e,W 1
this, we expand H 1~ UP to an accuracy of order ¢. Using

pe=A/(1—etn) +e2 (L2,
we compute

Inp, = 31In((1—elx)* + &2(¢')?)

= —elx — 2e*((Lx)* — (')%) + O(&%) (5.40)
and thus
v, = 362 +0(e?) = Hi\;,i‘g = —ALB + 262+ 0(%).
A set of orthonormal eigenfunctions of —AlP = —¢~2 65 with Dirichlet
boundary conditions on H » = L*(S',{dy) is given by
{4)8’{(]513’ ¢'](<)}k>0} (5.41)
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5 Quantum Waveguides with Gauge Fields

with eigenvalues A2 = k®/¢2. The ground state (k = 0) is the fibrewise
constant function qbg = \/z;ﬂ o 1y,. The excited states (k > 0) are doubly
degenerate with eigenfunctions

o

o = \/Lﬂcos(ky) , Pp= ﬁsin(ky).

Consequently, the first-order correction to the unperturbed ground state ¢,,
is given by (with x = k! cosy + x?siny)

bor==2 3 5o (000, 6

k>0 ec{e,0}
= —éoe%o}kz—m<¢;:’%\/%<’%¢f + K72¢f>>HF o
= —J5l (' 95 +x%99).

and the asymptotic expansion of the entire magnetic ground state reads
95 = 73w — 7oL (K05 +1297) + O(e?), (5.42)

where we dropped the composition with ), in the leading term of ¢’ for
the sake of clarity. Once again, the magnetic effects do not appear until
the subsequent order proportional to £.

Berry Terms

In view of Subsection 4.3.1, we start with the calculation of the mean
curvature vector 1y of M, — (M, g). Equation (5.19) shows that the
horizontal lift 0" reduces to the product lift 0" in this case, and hence we
obtain

n (22) g_y_yg(vg ay)a;l)aH
a3) gy ( l&pr (Oy’ay)) a?
= —(In¢)' o".

198



5.2 Application to Weak Magnetic Fields

Moreover, it holds that

0=0, (P75,
=1

=2Re (<¢g‘, a;'¢g‘>,{f) — (o5 g (%, 1) ¢(I)n>7{f’
—_—

=—(In¢)’

:ﬁv(ax)

or equivalently

Re ((8, 0107, ) = $7u(0.) = ~ L(Ine)'.

It follows that the metric connection V*" := V& — %ﬁv coincides with
vA” = d + i4® with Berry one-form AP = O(¢?) as in (5.33). The Berry
terms are summarised as

B

2 A AR 2(yP™ Pm
—¢ Adx®dx te (VBH +an )

2 ALB. 2 (1, P" pm 4
=" Agrpax T € (VBH +V, )+(9(£ )

with potential
m m 2 2
Vi v = otenll, - [<on e, |

— 10, Wy(00) + H (@)
2

2
(5.42) || AH _1 _ 1 H_1 2
- X 2ml ||g <\/2W’ax\/2ﬂf Hr +0O(e)
=0
+1(ne)” + 1oy’
" ’ 2
= 3 -1(E) +oE. (5.43)
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5 Quantum Waveguides with Gauge Fields

Remark 5.17 This potential was already derived in [HLT15] for arbitrary
hollow quantum waveguides. More precisely, it generally holds that

M%) = 2Re (67,490 (X")),, )
= 2{Vol,,, (M,)"V2,X" ol (MX)_1>H +0(e)

= =X -In(Voly, (M,)) + O(e)

for any X € C*(TB) and the sum V,J;;" + anm equals

1 .B. 1
5A]§BB ln(Volng (M) + 3

grad,, In(Vol,, (M,))

2
+ O(¢).
8B

The higher precision of (5.43) stems from the fact that the mean curvature
vector 1y = (—(In€)’ d,)" is a horizontal lift and hence does not carry
any y-dependency, i.e., 1, (d,) = —(Inf)’ holds exactly without any &-
corrections. O

Perturbation
The relevant geometric quantities arising from the deviation G° — g° are

€ H Hy — g1 . -
of(dx",dx") = ¢ <(1—e€x)2+82(£’)2 1>
=20x +(3(¢x)* — (¢')%) + O(¢°)

and Inp, (5.40). The latter gives rise to the remainder of the original
geometric potential (5.26):

3e2AB Inp, = 162(M " + (In0)'d") Inp,
—_—

=—"Nv

= —3&((tx)" + (InL)'(¢x)") + O(eh).

The function x(x,-), and hence the leading term of A*Inp,(x,-), is a
linear combination of cos y and sin y for all x € R, which means

1 .B. 1
PPLet AP Inp, PR = —1e (Ao ((€2)" + (In€) (0x)) 7= o

=0
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5.2 Application to Weak Magnetic Fields

plus errors of order £*. The remainder EHIS " of the perturbation can

be handled as in the massive case of the previous subsection (plus the
leading-order contribution of the potential):

gglg,w (5.23) —2¢%" ((xo?) — 2ie® (BL X (iii’ji)) o

vied [0 (Bx (152)) — ey (B x (47))]

= f1(x)cosy + f,(x)siny for smooth functions f; , to leading order

+0(e%).

Consequently, we get (keeping in mind the mean curvature term (4.11))
ePRHYPI (M)
3/ _1 1
=263 (o, A (ex i ( m)»ﬂf o™
. 1 ¢ 1
—2ie (o (B x () o (¢W)>HF om
+0(e%)

g (ax (ot ), @(00)

=0
P (T e gz ), (@)
=0
(G exig) ), v)9
G\ amt) /o,

=81(x)cosy+gs(x)siny
for smooth functions g 5

)

=0

(g (o (422)) ), 000098

~~
=0
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. 3 1 Lcosy AH_ 1
— 2ie <\/2_Te’ (BL X (lsiny))ox 2ne>HI¢¢E’H

-

=hy(x)cosy—+hy(x)siny
for smooth functions h; ,

+0(e" .
=0(e").

To sum up, the very specific form of the leading order ¢, of the ground
state ¢’ causes the disappearance of the O(&%)-contribution within the
perturbation.

Conclusion

We finally collect all the relevant terms of the adiabatic operator up to
errors of order £* in £L(W?(R), L?>(R)) and apply Theorem 5.12 for the
mutual approximation of the low-lying eigenvalues:

Corollary 5.18 Let H;’fﬁi °! be the Hamiltonian generating the dynamics of
a non-relativistic, charged, spinless quantum particle, which is localised
within the hollow quantum waveguide introduced in Example 5.9 with
£(x,y) = £(x), in the presence of a weak, C*-bounded external magnetic
potential A. Assume that there is a constant C > 0 strictly below the essential
spectrum of

2
whol |, A LB. 1" 1 (e
HQWG T Ac1x®dx 37 4 (Z)

w,hol
QWG?

below its essential spectrum with the

in the sense of Theorem 4.15. Then if v < C is an eigenvalue of H

Hw,hol

. : ¢
there exists an eigenvalue v® of H,; .

asymptotic expansion

vf =g+ O(e").
We immediately see that the potential terms in H, gwh((’}] do not depend on the
extrinsic curvature induced by the embedding of the curve ¢ : R — R® (in
terms k), but merely on the deformation of the waveguide along the curve
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5.3 Application to Strong Magnetic Fields

(in terms of £). This was already stressed in [HLT15]. In this context, a

radius function with a constricting profile (e.g., £(x) =2 — 1+17) can lead
to a potential with wells and can thus support the formation of bound

states.

5.3 Application to Strong Magnetic Fields

The discussion at the beginning of this chapter showed that an initial
gauge field A of order one in the “macroscopic” laboratory (R**/, §2+f)
leads to a “miscroscopic” Schrodinger operator (5.3)

HW

tube

= (edlew +ieA)*(edley +ieA) +V

on 7¢ x CN, where the gauge field is weakly coupled by means of the addi-
tional ¢ in front of A. In contrast to this, this section will deal with so-called
strong Abelian gauge fields, i.e., we initially start with the field e "1 A1cn

related to some magnetic potential A € C.° (T*RO*S ) and end up with
the operator
HSypo o= (ed +1i4)*(ed +id)1en +V, Vel (R, Clxy)

on 7¢ x CN with Dirichlet boundary conditions. We again assume the
family of e-thin tubes 7° (or likewise the associated waveguide M) to be
of bounded geometry in the sense of Definition 5.3. The diffeomorphism
W, : M — T°¢ (5.5) again induces a unitarily equivalent operator

~ ~ —1
UoH, U= AL M0+, (5.44)

tube

on L?(€,volg. ) with trivial vector bundle £ = M x CV. Here, the induced
magnetic potential reads

e A, = nEAg + A,
where A, = A + €Af is defined by

Po=A70 , A= (AL - AT+ A) = AL A
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5 Quantum Waveguides with Gauge Fields

This suggests that we consider A, as our “new” weak magnetic potential
and V* = V" + ¢A{ as a suitable perturbation of V* = d +iA, in the
sense of Definition 2.24 plus a “strong part” ie’lnl’\‘j[AB.
In view of the unitary map U, = (¢ °p,)"/*1¢w, the operator (5.44)
is unitarily equivalent to (see Lemma 2.18)
ES._ 1T W ot 7t
H® = Up, \IJEH:ube\Ilg Ups
_lAe 71A5, g° 71~Ae
= (A VT AEE o5 A LY 1o +V

onH = L?(€,vol,). Similar calculations as for Proposition 2.25 show that
the involved Laplacian splits as

N A
+e° [Zitrn;};g]s (AL @ V) +tros, (mh A @A, + AL ® Ty Ag)
+ie (A‘;(nv) — Mg (%gSA’;)) +e e, (A ®Af_|)]
with first-order horizontal differential operator
Dy 1= —2itr s, (¥ Ap® V)

+iedy (T () + [trgB (A5 ® Ay — e (Ve AB))] oy,

-

G (B)

incorporating the main contribution of the strong part .4z. Moreover, an

adaptation of the calculations in Subsection 5.1.3 yields that the second
-1 £ -1 . . .

term V¢ A=%8 5 5¢ A may be rewritten as ¢ times the expression

—Vi (0°(, )V )

— (Ziog(wi, o) (nf Ag + €2A5) (v)) — 0 (!, V¢ wj)) Al
: :
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+0° (o, wj)n;\"/[AB (vi) ey Ag (v5)
—ie (V% 0%) (o, @) + 0% (VE o, o) ) (], Ag + 2A5) ()
g0 (W, o) [(%gj‘ (kA + £2Af_|)> ()

(A + 62A7) (vgjvi)]
+eof (0, ') (n;\k/IAB(Vi)AE(Vj) + AL (i) T Ap (Vj))
+etof (o', ! )AS (v;) AL (vj),
where {v;}?_, and {w'}_, are local frames of HM and H* M, respectively.
In view of Remark 5.11(i), we may again drop the ¢ within V¢ and V&'

and consider V"M® to be e-independent (since we only differentiate
along horizontal directions). We finally obtain

HE = (—e2A% + D) 1w + HT** + eH 10w + 7, .
|
=:eHE®

with vertical operator

HPo5 = — A1y + V., V, :=c*V e G (B,CNN).

Herm
The perturbation is made up of the differential operator
At
=~y 12,0 (V2 (0° () V2-))
— tryy (trHM,(ZB) (2105 ® (nk Ap + *Af) —eo’ (-, %_g.))vi\Q,)
—2ietr s, (AL® V)

+ Wy, (13),(24) (O'E ® “?\}AB ® TE;:}AB)
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+€ [trﬂ?,igs (m¥ Ag @A + A @i Ag)
—itry,(13),(24) ((VHM@U‘E +o° (%_g.’ )) ® n;‘/I.AB)
— tryp (13),24) (08 ® ((%gnj\}AB) + 1y Ap (vs.)))]
e i(apm) — ry, (90
+ Ty, (13),(24) (05 ® (ﬂ:;‘/[AB AL+ A ® 71:1’\",[/13))]
+e° [trnﬁ o (AL ®A,)
— i Ty (13),(24) <(VHM®20'E +0° (Ve .)) @A‘E)
— ity (1) (24) <08 ® ((%gAg) + A (vs.)))]
+ et truy (1), 20) (0° QAL QA
and the O(¢)-potential

U, =V, 1ov + (V, — V).

In order to apply the results of Section 4.2 to generalised quantum wave-
guides in the presence of strong magnetic fields, we essentially need to
adjust Lemma 3.7 by the addition of Djy to the initial horizontal Laplacian,
i.e., we must show the following:

Lemma 5.19 (Extension of Lemma 3.7) Let S, T € Ay with ST € ALY
It then holds that

[Dg, S|T € APTLATL,

PROOF. It suffices to consider the case N = 1 since all relevant operators
are a multiple of the identity 1-~. The claim is once again a local issue,
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5.3 Application to Strong Magnetic Fields

i.e., we only need to show it over 7t;,' (U) = M for some U € 4 (cf. Def-
inition 2.7). Therefore, we take a gz-orthonormal frame {Xi}ll;l of TU
and take advantage of the fact that V; = X' — ®*X, e C°(VM |ﬁp;1(U)) by
Lemma 3.1 to get:

Dy| n W) = (mEA) (své*x + eVC?) +n¥B+eC,
where A;,Be C°(U) and C € Cboo(rt;,[l(U )) are smooth functions given by
A; 1= =2iA5(X;),
B := Ap(X;)Ap(X;) —ie (%}g(fAB)(Xi)’
C =il (Try (ny)).

If we expand S locally over 7;,' (U) as

| n, (U) T Z Sa 8‘a| @*x)u’

aer
the crucial fact is
[n%A;,S%=0=[n%B,S,] forallaeN{,

because 7 A; and 7ty B are fibrewise constant. Thus, the term [Dg,S|T
over rr;,,l (U) merely consists of these four terms:
Ao

[(n;\k/[Ai) (Evcb*x ), S] r= E(TE;\ZAI‘) [v¢*xi’S]T

eAl!

eAPITIC Ap+ia+

+ 3 S, [n- Al ( qu,*x)“] (eVasr )T

aeN}

Al
=€ Y6/<lal—1Co (EV %) °

e AN Ap+iatl

+1,+1
€ APTHIT
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| (i A) (V7). 8| T = e(miyA) [Vhp,8]T
s

€AP4

eAPq4+1c Ap+1q+1

+e ). S, [n AL (eViy) ] (V)T

aer

A
=€ 6/<lal—1Co (qufikx)"

eAP—La+2c Ap+1q+1

€ APHLa+l

[nfB,S|T =) s° [n;B (eVaiy) ] T
uENg ﬁf_/
=€Zm<\ﬂ|71€n(svg°*x)“

c Agfl,qﬂ c APTLa+1
and
[£C,S]T = €[C,S]T € ALIH!  Ap+Lat!,
This completes the proof. 0

In order to ensure all requirements for the application of Theorem 4.5
are met, we first observe that

(—€*A% +Dp) +eHS*
is the horizontal Laplacian of —AZ:IAE in the sense of Remark 2.20 and

hence defines a positive operator. It then follows that the entire horizon-
tal operator is bounded from below by — ||U. |« cvxv)y = O(€). The

(possibly g-fold degenerate) ground state {¢Og{)}‘}:1 of the unperturbed
vertical operator

H]:,€=0,S _ _AL.B.ICN 4 V

with eigenband A, = AA + AO is composed of the positive ground state ¢,
of the scalar Dirichlet Laplac1an AP with eigenband A¢* and the smooth
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5.3 Application to Strong Magnetic Fields

functions ¢} : B — CV, j € {1,...,q}, such that {¢](x) §_ is an or-
thonormal basis of V,(x)’s eigenspace associated with its lowest eigen-
value )L(‘)/C (x) for all x € B. We will assume that A is separated from the
rest of the spectrum of H”>¢=%% by a uniform gap, i.e., A, satisfies Condi-
tion 2.26. Then a straightforward modification of Lemma 5.13 shows that
the magnetic ground state band AJ'(x) = mino (H”*%(x)) also satisfies
a gap condition and the corresponding spectral projection

i -1

pm dz

, (H}—’g’sleH)

2T Jp—25l=5

is well-defined. In view of [Lam14, Lemma 3.7], the spectral gap condition
on A, is satisfied for V. = 0 and connected typical fibre F of M = B.
Since all corrections to H”*¢=% within the operator

H7%5 = 7208 4 eHT 10w + 62H) *1on + ...

are obviously diagonal with respect to the spin degrees of freedom (recall
that we started with an Abelian gauge field A1), the finite-dimensional
perturbation theory once again gives AJ' = A, + 6210,2 + O(e?) for
the asymptotic expansion of the magnetic ground state band with spin-
independent second-order correction

Aoa(x) = <¢0’H2}-’S¢0>L2(Mx,volgM )

Fos L.B. A\—1pLggF.s
- <¢0;H1 (_Av - Ao) Po Hl ¢0>L2(Mx,volng)'

Here, 150L denotes the projection onto the orthogonal complement of
span(¢,) in L*(M,,vol, ) and the scalar corrections are given by

HY® = d* (1457°) + (1457°) "4,

Hy ® = (A57) " (A570) + d* (14y°7°) + (14°7°) d.

{$o,---P0o)12(m,) = 0 due to (5.30)

Remark 5.20 Let us mention two possible ways to make the expression
for A4 , more concrete:
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(i) Since —AI\;'B' is a compact operator, the Fredholm alternative pro-
vides a unique, fibrewise map 0 : x — 6(x) € ﬁ’d‘Lz(Mx,VOIgM )
such that

2

[ 106N, Vol () <2
and

(~aL™ - 38)6 = BiHT 6,
With this, the second-order correction reads

7, 7,
Ao,z(x) = <¢0’H2 S¢0>L2(Mx,volgMX) o <¢0’H1 59>L2(Mx,volgMX)'
(i) Let {¢y(x)}i=0 be acomplete set of (local) real-valued eigensections

of —ALP(x) = —A]é':;x' on L?(M,,vol,, ) with respective Dirichlet

eigenvalues A (x). Then A ,(x) equals
JM &u, (A0, A7) volg,

2
[, v, (i A500) — B, (A5 0 bio dhg) voly,,
7 — Ao

-

k>0

-0

The switching on of the magnetic field yields an O(&?)-displacement of
the ground state band A’ with respect to A, (and analogously for the rest
of the spectrum). Thus, it holds that

Ay = 11615(0 (Hf’£=°’8(x))\xo(x)) < ig}E(a(Hf’g’s(x)) )\Ag‘(x))
+6

forall 6 > 0 if ¢ = £(8) > 0 is chosen sufficiently small.
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5.3 Application to Strong Magnetic Fields

We formally gather the leading terms (“reduced Hamiltonian”)
. gP" P
Hywe :=H, +M
= —e2AB 4+ A AL + 2Ny + 2V
+ P (Dg + eH* + [HE, PRIRT e (AR [, P] ) PP
+0(&%)

of the effective operator (4.15) and combine Theorem 4.5 and Proposi-
tion 4.10 as follows:

Theorem 5.21 Let H} ,  be the Hamiltonian generating the dynamics of
non-interacting, non-relativistic, charged quantum particles with total spin
quantum number N, which are localised within a quantum waveguide of
bounded geometry, in the presence of a strong, C*-bounded external mag-
netic potential e 1 A and a C*-bounded, Cﬁexrfz -valued external potential V.
Assume that the ground state band Ay of —Ay®1ew + V, has a spectral
gap, cf. Condition 2.26. Moreover, let y be a regular cut-off function with
support in (—o0,A;). Then )((HZ;;)HBWG)((HZ;:) is unitarily equivalent
to x (HS o) H o % (HS ) up to errors of order & for & > 0 small enough,

tube tube
where Hgf is the effective operator (4.1) associated with Agl.

This theorem allows for the approximation of the part of the spectrum
of H; , . thatis “related” to the ground state band A, by that of the reduced
scalar operator H(SQWG up to errors of order 2. The fact that HEWG now

may contain fourth-order differential operators via the M?" -term does
not create new problems because we have to consider HSQWG on the image
of y(H%), i.e,, on W*(P™), rather than on dom(H"") = W2(P™).

As in the previous section, we will examine the structure of HEWG for a
single spinless particle (N = 1) that is localised within the conventional
quantum tubes arising from Example 5.7 (massive waveguide) and Ex-
ample 5.9 (hollow waveguide). The absence of the spin implies that the
external potential V is real-valued and trivially has a single “eigenvalue”

alone. Note that in both geometric settings we may completely gauge
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5 Quantum Waveguides with Gauge Fields

away the strong part 7t} Ap of the magnetic potential (cf. Example 5.10),
and hence the computations simplify tremendously since Dy = 0.

5.3.1 Example for Massive Quantum Waveguides

Let us calculate the operator H(SQWG for a single non-relativistic, spinless,
charged quantum particle which is localised within an infinite tube in R3,
whose cross-sections are given by elliptical discs with varying semi-axes
twisting around a smoothly embedded curve ¢ : R — R3. This setting was
already established in Example 5.7 and elaborated for weak magnetic
potentials in Subsection 5.2.1 (we will no longer assume the existence
of a unique, non-degenerate minimum for A,). Consequently, the strong
magnetic potential for this purpose takes the form (cf. Example 5.10(i))

e 1A, =A, = (BL x (ty)) dx" +¢ (Aﬁ| + (%abBHy + O(s)) X dy).

;__.\,___J

=A
0 =

Since the particle does not carry a spin (N = 1), the ground state of the
unperturbed vertical operator is non-degenerate (¢ = 1) and ¢ é(x) =1 for
all x € R. The fibre Hilbert space then reduces to # x|, = L*(M,,vol, )

and the contribution of the potential V, is just AXC (x) =V.(x) eR. We
remark that the corresponding unperturbed part ¢ of the entire magnetic
ground state ¢’ = ¢y + £0 ¢ is positive and centred, since it has these
properties for the Laplacian —A\L,'B' and V, is fibrewise constant. In the
end, the global trivialisation W™ (P™) =~ W*(R) ® span(¢') induced
by ¢¢' allows us to view Hp,,; as an operator acting on W*(R).

Ground State Band
A short calculation shows that the corrections to the unperturbed vertical
operator H”=%% are given by

a. .l
Fs Y (5.35) b Fs _ 1 2 2
I‘I1 = —IB” (2y2> X Vy = BHL; 5 HZ - _ZabB” ”.y”Rz .
a
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So in view of Remark 5.20(i), the magnetic ground state band becomes
35 =25+ Vet 28] (o 1 (' + (037)) 90~ L5"0)
where 6 is the unique solution of
B. Llra,
(—ALP —21,)6 =P, L;"¢0.

Berry Terms
The Berry connection is given by

VE (por) = (VA1) or, VA =d+ia®
with one-form
AB(0) = (B A ()BT, +Tm (B3, 390, )
= <¢o, (BJ_ X (t}’))¢0>7.¢f
= 0 since ¢, is centred (5.29)

+2¢ [Re (<¢0, (B x (UJ’)>5¢E)H>HF)

+1Im (<¢0’ 5f5¢3n>ﬁf)]'

Thus, the “effective magnetic potential” is actually of order €. The Born-
Huang potential Vg;m may be calculated similarly as in (5.34):

2

e AT R CTRATEON
= (|03, 1A0(@) g1, +21m ((PHog Ao 85y, )
= O(¢) since ¢, is real-valued

2
- ‘<¢0’ a?¢0>yf + i<¢o’Ao(a§)¢o>HF + 0(8)
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2
— ([ ollz, — (b0 b0, |

—_—
=0

1B x @) ol ~[(Bo (B x () by,

= 0 since ¢, is centred (5.29)

2

+0O(e).

If we add up the Berry Laplacian and the Born-Hung potential, the Berry
terms as an operator on W (R) finally read

ol +[|(BL < () o, ) +OE).

2 A AP 2
—& Adx®dx + ¢ (
Perturbation
The differential operator within the perturbation is (with (5.36))

eAS® = —28[8(?;' (Cey, k)2 £0%) + 2ie vy, K)ge Ao(a;')a'&;’]
—3g%(x, y>§{2 e2ALP — 2ie® A5 (o) e
+0(e?)

with errors in £(dom(H**), %) (in which case £"! = O(1)). Consequently,
we obtain for the projected operator (in analogy to the steps carried out
in Subsection 5.2.1 for the weak magnetic fields):

ePgHY PG (Y $5)

_—y [sax (€98 0w 8., b e2,))

linear in y

+e (Im (<¢(I)n,<ty, K)r2 a;'¢gl>7-tf)

2O 0 Ao P) B, )6 |0
—_—

quadratic in y
2
= 36%(85" (0 K 80 ), (6" Adpac ) £0'

quadratic
iny
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—2ie?(pg', AL () b5y, A (e0s)
—
quadratic in y

+0(&3).

The projected potential within the perturbation reads (with (5.38))

Py 0Py (Y ¢q)

(%@2 I + e $g' (grady V, o) 657
[

linear in y

2. o (Hes, V) () 98), )9

quadratic in y

Hr

+0(&%).
Here, the mappings grad, V : R — R? and Hess, V : R — ngﬁ are the
first vertical coefficients of the Taylor expansion of V, — V, around the
curve, i.e.,

(grad, V) (x) = <gradV(c(x)),ej(_x)> ,

(Hessy V)j:, (x)=1 <W, HessV (c(x))m>R3 .

We finally use that the leading part ¢, of ¢7' = ¢ + £5¢y' is real-valued
and centred (5.29), as well as the fact that all derivatives not acting on
yield an additional €, and arrive at the following expression for the entire
projected perturbation as an operator on W (R):

ePMH P = —¢? [3 <¢0,<ry, K)o ¢0>H
-

+4Re ((po, (e, Ko 5¢8ﬂ>7—t;)]€2 aLe
~2¢? [<¢0’ Aizo(@§)¢o>HF
+2{¢o, vy, K)o Ao@?)‘ﬁo%#] i€y
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5 Quantum Waveguides with Gauge Fields

+ g2 [% ||1<||]§{2 + 2Re (<¢0,<gradv V,ty e 6¢(’)n>HF>

<¢O’ <'C_)’, I_IeSSV V(ty)>]R2 ¢0>7~L}-]
+0(e%).

M-Term
We start with [H*, P"] = [—e2Ar, Py]+[eH f *,Py"]. The first term may
be evaluated as
2 A A A A
[—e?A. P3| = [*Vgg;'vsg;vpén]

= eV [V, PP — e[V, PRV

ot oo 1V gon

= —2¢[V2, P ed" + O(e?).

o0
[ —
=:¢B

Using the fact that
eHY® = —2¢ (ty, K)ge e* AP + e (grad, V, vy g, + O(£?) (5.45)
with errors in £(dom(H®*),#), the second term is calculated to be

[eHE®, P = —2¢[(ty, K)o, PP €2 ALE + f[<gradv V, vy ga» Py

_

~
=:eA =:eC

plus errors of order £2. If we insert these expressions into (4.14), the
operator M”" is formally equal to

&Py (A e’ A% +Bed! + c)#fﬁ(xgl) (AezA‘;'-B- +Bed! + c) P
+0(&?).
Let us consider the term

e*PP Ae® AL R7SS(AT) Bed ' P
= e?PyAe® ALPRT¥=0% (1) Bed"Py + O(&?) (5.46)
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5.3 Application to Strong Magnetic Fields

as an example. Again let {¢;(x)};>o be a complete set of real-valued
eigensections of H”*¢=%%(x) with associated eigenvalues A, (x). Straight-
forward computations then yield

B(ypo) = =2 > (b1 Varbo )y, W bic + Ole),

k>0

RZ0(00) (40 = 3553

A i) = 2{Po, (v, K pe ¢k>H}' Yoo+ O(e) (k>0)

a oAV k>0,

for ¢y € W*(R). Furthermore, we notice that we may commute all the
derivatives to the right and act with them on v alone, producing only
higher order errors. This ultimately gives

—4822AA 7 (90 (0 Bin, (Do Vi by, (¢05)

k>0
+0(&%)

as an operator on W (R) for (5.46). It follows that the entire MP" term
formally resembles a fourth-order differential operator

Mm—SZZwZM (e0,)"+O(e )
k>0 0 n=0
with appropriate operators M,(lk) e L(L*(R)).

Remark 5.22 If one again considers low energies, i.e., the action of Hyyyq
on states Y € W*(R) with [led, |l 2y = O(e”) for a > 0, the leading
contribution of M”" is given by

£2 (k)
Z QLA AA M

k>0 ""k
= —82 I;) )LkA AA <grad v, ty>]Rz ¢O>H}-
>
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5 Quantum Waveguides with Gauge Fields

The appearance of grad, V within the super-adiabatic correction is not
very surprising because the corresponding potential term ¢ (grad,, V, ty )g»
in the perturbation (5.45) prevents Hf ** from satisfying Condition 4.11.
Put differently, if grad,, V was zero, H 15 ** would satisfy the requirements
for applying the results for the low energy asymptotics (cf. Section 4.4),
which in particular yield an approximation of the initial operator H®*S
solely in terms of the adiabatic operator without the MP" term. O

Conclusion

Let us finally gather all terms within the reduced Hamiltonian up to errors
of order &* when applied on states ) € W*(R) with lledxll2 ) = O(1).
This allows for an accurate approximation of points in the spectrum of
the initial tube operator by means of Theorem 5.21:

Corollary 5.23 Let H'™ be the Hamiltonian generating the dynamics of
a non-relativistic, charged, spinless quantum particle, which is localised
within the massive quantum waveguide introduced in Example 5.7, in the
presence of a strong, C®-bounded external magnetic potential e ' A and a
C®-bounded external potential V. Then the reduced Hamiltonian reads

s,;mas __ 2 A AP
Hgwe = —€ Agxmax

+e78} (90,1 ((ay)2 + (0y)) o — 136
+ 2o, + 2B x (23)) b3, — Fe* Ikl

(oo,

+Ag+V,

- ae (B 000567, ) |+ 60,
—262[ (o, A b0,
+2 <¢0a ey, Kge Ao(5?)¢o>ﬂf]i€5x
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5.3 Application to Strong Magnetic Fields

82 |:2 Re (<¢0’ <gradv V, ty>R2 5¢6n>7_£}_)

+ (o, (ty,Hess, V(ty) g ¢0>Hf]

-‘FEZZwZM(k 8(3 )
k>0 0 n=0
We close the discussion with a look at the case of low energies, and so
we assume that l@ is constant and that the external potential €2V is very
weak. This implies AT'(x) — A8 = O(&*) with errors uniform in x. If we
subtract k§ from the operator, all remaining potentials are of order £2 and

thus so is the kinetic energy operator —&2A df( de = ZA]‘;J?@ 4 O,
which is due to the fact that Az(d,) = O(¢) for a centred unperturbed

ground state ¢,. Consequently, if we consider Hgyy on states 1) € W*(R)
with [0, 2r) = O(€), we get

Howeamz =&~ (Howe — 49 lix(x))
Aﬁf®dx+vc+||0?¢o||if+ll BL % (7)) 9oy,
+ 87903 ((ay)? + (0y2)) o L0
~ 1wl
+ O(e).

Any v e G(ng,nvega ,) in the spectrum of this operator corresponds to
some point v° in the spectrum of the initial tube operator H;1** with the
asymptotic expansion v = AA +e2v+ O(g%). We can ﬁnally relate this
result to the effective operator derived in [KR14, Definition 2.5 (6 = 1
in their notation)] for their geometric framework, which was sketched
in Remark 5.16. The correction to the unperturbed ground state band is
then given by

1 2
A0,2 = Bﬁ (Z <¢0; ”J’“Rz ¢0>L2(F,dy) - <¢0’L}’9>L2(F,dy))
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5 Quantum Waveguides with Gauge Fields

with vertical angular momentum operator L, := —i(y x V), where 0 is
the unique solution of

L.B. A 1
(~ALE, —25)0 = PiL, ¢

If one drops the property for ¢, to be centred, it is easy to verify on the
basis of the previous calculations that the modified reduced operator takes
the form

s,mas _ _ B, xy .
HQWG,Q:Z - <¢0; A|—| ( ¢0)>L2(F,dy)

+ 82 (1400, 112 $0) 250y — (D0 Ly O)yaiaay )
+0O(e).

1 2
+ Vc 7 ”K”Rz

5.3.2 Example for Hollow Quantum Waveguides

This subsection is dedicated to the computation of the reduced Hamilto-
nian H BWG for a single non-relativistic, spinless, charged quantum particle
localised within hollow quantum waveguides as introduced in Example 5.9,
where one considers the boundary of a cylindrical tube with varying ra-
dius around a smoothly embedded curve ¢ : R — R3. We deduce from
Example 5.10(ii) that the corresponding strong magnetic field is given by

e TA, = A,

- (Bl X (ii?;)y/)) dx" +€<Ai1 + <%€ZB” + O(s)) X dy).

=Ag :Af/

Moreover, the spin degrees of freedom again vanish (i.e., ¢ = 1 with
3(x) =1 for all x € R) and the ground state of the vertical operator

H7 &8 — — Af,AV + V. (we no longer need to insert V;;/ into H”>*%) reads
bo = Mz;ﬁ omy +O(e%) , A =V, + €Az +O(e”).
-
%o
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5.3 Application to Strong Magnetic Fields

We will again drop the composition with ), for the sake of clarity. In the
end, this ground state ¢’ provides a global trivialisation of W (P™) in
terms of W (R) ® span(¢,') and Hyy may be regarded as an operator
acting on W*(R).

Since the kinetic energy — szAﬁ ®dx 15 of the same order as the leading-
order potential V, one a priori expects highly oscillating states ¢ € W*(R)
such that ||ed, || ;2g) = O(1) and one has to calculate a rather high num-
ber of terms in the same manner as in the massive case of the previous
subsection. In order to not overburden this example, we will further-
more assume that the external potential £2V is very weak. This implies
that A7' and all other potentials in H} owg are of order £2. Hence, we will
again retrieve the low energy regime a = 2, where the reduced Hamilto-
nian H(SQWG is considered on states ¢ € W (R) for low-lying eigenvalues
with [|e0, Yl 2 () = O(e).

Ground State Band

In view of Remark 5.20(ii), the two terms contributing to A, , are easily
computed with the aid of the orthonormal eigenfunctions (5.41) of —A{;‘B'.
To be specific, one obtains the expressions

| # GeE100) (3625100) voly, = 25 o bon,
St —
=1
and
=0

D) |$s 2(0,02) (30°Bydo) — = (30°By97) (8,¢0) voly,

k>0 ec{e,0} kz/ez
- X 356 (1€, 05 902, "~ [0y 6. 900, )
>0
= 338 ([0, b0y, I” 165 b0, )
k>0 5 5
=0

221



5 Quantum Waveguides with Gauge Fields

for them. The contribution of £2V, is trivial and we conclude
Am = g2 (vc v %zzsﬁ) +O().

Berry Terms
As in the case of a weak magnetic field (see Subsection 5.2.2), it holds

that
2 AB 2y P &2 AP 2(yP" Pm
—?AP + PV = —e? A ou € (Vi +V )
with Berry connection one-form (the “effective magnetic potential”)
o) = (B0 (@, +1m ((op ot )

_/_1 Lcosy 1
_<\/2'rté’(8L x (Zsiny))vzﬂg H

=0

1 H_1
+1Im ( \/2n€’ax Vang H;)

=0

+0(e?),

Born-Huang potential

~H

Pm_
VBH -

<\/2n ’ X\/Z'rt Hy

Lcosy 1
+ H BJ— x (Zsiny)) il

Hr
+ 0(£?)
¢
”le}(qg) +0(%)
= 30 IBL Il + O(e? )
and 7, -potential

m — — 2 " ’ 2
VE" = =30, @) + 3@ = 35 - (%)
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5.3 Application to Strong Magnetic Fields

Perturbation
The only term of order £2 within eH f ** (for this low energy regime) is the
potential

Y, = V) +0(e)

(5.40) 1 €+4g (2x2—(xl)2)+(’)(€3)

with x* = —«!sin y +x2 cos y. While the term proportional to ¢ is a linear
combination of cos y and sin y and thus vanishes when it is integrated
against the square of the unperturbed, fibrewise constant ground state
\/%, the quadratic term may be rewritten as

162[(x")?*(2cos® y —sin® y) + (x*)*(2sin® y — cos? y)].

If we now bear in mind the fact that
2 1 . 2
<¢o, Cos Y¢0>HF =3 = <¢o: s Y¢0>HF s
we arrive at the compact expression
g, 1.2 2 3
ePyH Py = 5e° Ikll5, + O(€”).
M-Term

In virtue of Remark 5.22, the leading-order contribution of the M”" -term
is essentially determined by the O(¢)-contribution of U, i.e.,

P Z Z M(()k") +0(&%)

kz/z

k>0 ec{e,0}
1 2
- _%82 Ig) k2/£2 oc{e,0} ‘<¢k’ t ¢O>HF) + 0(83)
=3¢’ 2k2/g2 2 <¢k’fe¢> +<¢k’m¢>
+0(&%)

— 122 [(;;Z)z + (;;Z)Z] +0(e?)

= —g&° Ikl + O(%).
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5 Quantum Waveguides with Gauge Fields

This term exactly cancels the remainder of the geometric potential. We
have already observed in the weak case that V,, does not contribute to
the reduced Hamiltonian up to order £2. In this context, one may adopt
two different perspectives concerning the geometric potential:

e One absorbs VV into the vertical operator and shows that the ground
state band remams unchanged. On the one hand, one has to calcu-
late (formally) fewer terms in H”" + M™", but on the other hand
this absorption comes along with a more complicated ground state
(and thus a more complicated spectral projection Pg")

m (5:42) _1
0 2ml

- \/Lgeﬁ(xl cosy +k*siny) + O(e?).

e One incorporates vas into the perturbation. Then the advantages
and disadvantages are reversed: One has to evaluate more terms
in H;’m + MP" (which again leads to cancellations as above). But
on the other hand, the finite-dimensional perturbation theory of
the vertical ground state, which is reflected in P = P, + O(¢?), is
much simpler.

Conclusion

We now collect all relevant terms in the sum of the adiabatic operator and
the M”"-term and approximate some parts of the spectrum associated
with the initial tube operator:

Corollary 5.24 Let H, > h‘)l be the Hamiltonian generating the dynamics of a
non-relativistic, charged, spinless quantum particle, which is localised within
the hollow waveguide introduced in Example 5.9 with £(x,y) = £(x), in the
presence of a strong, C*-bounded external magnetic field e ~* A and very
weak, C®-bounded external potential €2V. Then the reduced Hamiltonian
reads

2
s,hol L.B. 14" 1(¢ 02 (122 2
Howe = —Birgax T Vet 37 — 37 (T) + Z(BH +2(IB|I5.)-
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Appendix A

Analytic Aspects of the
Connection Laplacian

In this appendix, we will collect the most important facts which build the
basis for the analysis of the connection Laplacian in the main part of this
thesis.

A.1 Sobolev Spaces on Vector Bundles

In the first section, we will introduce the geometric and analytic terminol-
ogy that is needed for our purpose. Therefore, we will give a brief overview
of the elementary definitions concerning finite-dimensional vector bundles
and define Sobolev spaces on these bundles.

A vector bundle over a manifold M makes precise the idea of “attaching”
an F-vector space &, (F € {R, C}) at every point p € M in such a way that
these spaces fit together appropriately and form a total space £.

Definition A.1 Let M be a smooth, real manifold with (possibly empty)
boundary dM and £ be a smooth, real/complex manifold. We call the
smooth surjective map 7; : £ — M a smooth FN-vector bundle over M if
forallpe M

(i) there exists an open neighbourhood W < M of p together with a
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A Analytic Aspects of the Connection Laplacian

diffeomorphism A : ;' (W) — W x F¥ for which the diagram

A
s (W) W x FN
Tk ,4
w
commutes,

(ii) and the set Ep = ngl (p) has the structure of an F-vector space and
Al g & —{p} x FN is a vector space isomorphism. ¢

On calls £ the total space, M the base space and &, = ngl(p) the fibres.

We will often write £ =5 M or merely £ for the vector bundle if there is
no danger of confusion. Furthermore, we introduce the abbreviations

50:: €|M\(7M N (}(C;: 8|0M

The simplest example of a vector bundle £ is the case where each fibre &,
is a copy of the same F-vector space, i.e., £ is globally diffeomorphic to the
product manifold M x FV. In this context, one calls pr; : M x FN — M the
trivial FN -vector bundle over M. Moreover, one often refers to F!-vector
bundles as real/complex line bundles.

Let {W,},cr be an open cover of M with an associated set of local
trivialisations {A,, : ngl(WH) — W, x FN} 7. Then condition (ii) of the
previous definition is equivalent to requiring smoothness of the transition
functions

tu 2= N O AT T (W A W) X FY — (W, n W) x FY,
(p’ V) = (X, g,u‘u’ (p)V),

or equivalently to requiring smoothness of the induced transition matrices
Iy : Wy 0 W, — GL(N,F). Conversely, an open cover {W,},.r of M
together with a set of smooth mappings {g,,,, : W,nW, — GL(N,F)},, ez
that satisfy g, = g;,L and the cocycle condition

g,U,/J/ s} g’u/u// = gl"'lJ//
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A.1 Sobolev Spaces on Vector Bundles

for all u, ', u” € Z, uniquely define the structure of an F"-vector bundle
& Z5 M with total space

£:=E/~, E=[JW,xF"
ueL

and projection 7t ¢[(u, p,v)] := p. Here, two points (u, p,v) and (u’, p’,v’)
are said to be equivalent whenever p = p" and v/ = g, (p)v.

Given two vector bundles € =5 M and F —5 M over the same base
manifold M, one may use several vector space operations in order to
construct new vector bundles over M, for example

e direct sums £ @ F with fibres & D Fps

e the bundle of linear maps £(&, F) with fibres L(E,, F,),
— the bundle of endomorphisms End(€) = L(&, £),
— the dual bundle £* = L(€, M x F) with fibres L(E,,F),

e and tensor products £ ® F with fibres & ®F,.

The k-fold application (k € N) of the tensor product yields the bundle £*®k
of k-fold covariant tensors. We will denote by =*& and AK€ its subbundles
(with fibrewise subspaces) of symmetric and alternating k-fold covariant
tensors, respectively.

Definition A.2 Let 7. : £ — M be an FV-vector bundle. A section of £ is
amap v : M — & with the property g 01 = 1y, i.e., Y (p) € &, for all
peM.

(i) C™(&) denotes the space of smooth sections of £.

(ii) C;°(£) = C*(€) stands for the Fréchet space of smooth section of £
which are compactly supported in M. ¢

A (local) frame of € is a set of N (local) sections {11, ...,y 5} of & which
form a basis of £, at each point p € M (wherever they are defined).
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A Analytic Aspects of the Connection Laplacian

A.1l.1 Metrics and Connections

Any F-vector space can be turned into a Euclidean/unitary vector space by
means of an inner product. This idea can be transferred to vector bundles
by the fibrewise assignment of such inner products:

Definition A.3 Let 7. : £ — M be an F" -vector bundle. A bundle met-
ric is a map h € C®(£*®?), such that h, : £, x £, — F defines a Eu-
clidean/Hermitian scalar product for all p € M. We refer to the pair (£, h)
as a Euclidean /Hermitian vector bundle. O

We note that every smooth FV-vector bundle admits a smooth bundle
metric

h,(v,w) = Z Xu(p)<0,10)py ,  forv,weé,,
uez

where {y,},e7 is a smooth partition of unity of M subordinate to the
cover {W,},e7 and ¢, '>IFN,M denotes the bundle metric over W, obtained
by the pullback of the standard scalar product ¢, - )pv in F¥ via the local
trivialisation A,,.

Furthermore, we want to enrich the geometric structure of vector bun-
dles with the notion of connections, which play a crucial role throughout
this thesis.

Definition A.4 Let 7. : £ — M be an F"-vector bundle.

(i) A connection on £ is a map V¢ : C*°(£) — C*(T*M ® &) such that
the Leibniz rule

VE(fp) =df @Y + fVEY

holds for all ¢ € C*(£) and f € C*(M).

(ii) If (&,h) is an Euclidean/Hermitian vector bundle, we call a connec-
tion V¢ on & metric if

d(h(¢,)) = R(VEp,) +h(¢, V1)
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A.1 Sobolev Spaces on Vector Bundles

for all ¢,7 € C*(E). O
The condition that the connection be metric clearly is equivalent to requir-
ing
X -h(¢, ) =h(V5h, ) +h(P,VE,Y) (A1)
for all X € C*(TM). Moreover, the mapping
VE:CP(E) —> CP(E), — VY

is called the covariant derivative along X . A connection allows us to identify
(literally “connect”) nearby fibres & and &y as follows: Lety : [0,1] = M
be a path joining y(0) = p with y(1) = p’. A section v of £ along y (i.e., a
mapping ¢ : [0,1] — & with ¢ (t) € &, for all t € [0,1]) is said to be
parallel with respect to V¢ if

Vio¥(t)=0 forallte[0,1]. (A.2)

This first-order ordinary differential equation with initial data 1 (0) =
v € £, has a unique smooth solution ° : [0, 1] — &, which induces the
isomorphism

py:gp_)gp’: TIJU(O):D'—)pY(U) = wn(l)’
the so-called parallel transport map.

Definition A.5 Let 7. : £ — M be an F" -vector bundle endowed with a
connection V¢. The curvature R € C*(A*TM ® End(€)) of the connec-
tion V¢ is given by

RE(X, Y)Y 1= VR Vi — ViVi — Vi

for X,Y € C*(TM) and ¢ € C*(€). O

The curvature of a connection V¢ can be viewed as a measure of the
lack of commutativity of two covariant derivatives Vf( and Vf, provided
that the vector fields X and Y commute. A connection is called flat if its
associated curvature vanishes identically.
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The Tangent Bundle

The tangent bundle 71, : TM — M of a smooth, m-dimensional mani-
fold is the collection of all tangent vectors (“velocity vectors of curves”,
see y(t) € T, M in (A.2)) in M, ie., the total space TM is the disjoint
union of the tangent spaces {T,M = o (P)}pem- One usually equips
this R™-vector bundle with a bundle metric g € C*(X2TM) and calls the
pair (M, g) a Riemannian manifold (g is said to be a Riemannian met-
ric on M). The fundamental theorem of Riemannian geometry [Lan99,
Theorem VIII.4.1] asserts that the Riemannian metric g uniquely defines
a connection (the so-called Levi-Civita connection) V¢ on TM with the
properties

X-g(v,2)=¢g(Viv,Z2) +g(V,VsZ) , y§Y—v§X=[X,Y]

V¢ is metric with respect to g V4 is torsion-free

forall X,Y,Z € C*(TM). These features allow us to express the action of
the Levi-Civita connection in terms of the metric and Lie brackets:
2g(VeY,Z) =X -g(V,2)+Y -g(Z2,X) - Z - g(X,Y)

(0 x.2) - gz X)) + gk (zv). A

This is often referred to as Koszul’s formula. Apart from that, bearing
in mind that any curve y : [0,1] — M itself induces a section y of TM
along y, we will call such a curve geodesic if y is parallel with respect to
the Levi-Civita connection V5, i.e., if y is the solution of the differential
equation Vg(t)}?(t) =0 forall t € [0,1].

The Riemannian metric g enables us to identify vectors in TM and cov-
ectors in T*M := (TM)* by means of the (musical) bundle isomorphism

b:TM - T*M, T,M3v— V= g (v,°)
with inverse

§:T"M —>TM, T'M3w— w* such that g, (wf,w) = w(w)
forallwe T,M.
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Example A.6 The gradient of a function f € C*(M) is the uniquely de-
fined vector field dual to df:

grad, f := (df)".
This is equivalent to the condition
df (X) = g(grad, f,X)
for all X € C*(TM). o

The musical isomorphism furthermore allows us to endow the cotangent
bundle T*M with

e a symmetric bundle metric § € C*(X*T*M) given by
2(5,7) = g(2%,71%),

e and a metric connection V¢ : C*(T*M) — C*(T*M®?) defined by
the relation
X-5(Y) =g(V§V.E) + Z(v’, V§E)
= (V8E)(Y):=X-E(Y) - E(VEY)
forall X,Y e C*(TM) and E€ C*(T*M).
If {v,}7_, is a local frame of TM with dual local frame {c®}™" , of T*M,

Le., w*(vg) =85 forall a, f € {1,...,m}, the corresponding Christoffel
symbols
T S _T
Vﬁavﬂ = I‘aﬂv,, s Vi wP = nya)”
satisfy the symmetry relation

I"Y _ 71"7’

=Tl (A4)

forall a, B,y € {1,...,m}. Moreover, let (g,5) and (g*) be the matrix
representations of g and g, respectively:

&ap = g(VwVﬁ) > gaﬁ = g(wa’wﬁ)'
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Then one easily verifies
(V) = gapef , (w)F = g%,
and the identity f o b = 1), yields
Wy = w=w((v)")" = w* (g gg,v,)
for all w e TM (wherever the local frame {v,}7_, is defined). This is

equivalent to g“ﬁgﬁy =8% foralla,ye {1,...,m}, and hence (g%) is
the inverse matrix of (g,4).

C*-bounded Sections

Given any F" -vector bundle (£,hv¢) 25 (M, g), we may define the tensor
product connection VT*M®E on the tensor product T*M ® £ by means of
the individual connections V¢ on T*M and V¢ on £ by the relation

VIMOE .~ V8 @1, + lrsy ® VE. (A.5)

We may then repeat this procedure and obtain connections V7*M®'®¢
on T*M® @& forall j e {1,...,k — 1}, k € N. The composition of those
connections finally leads to the smooth k-th-order differential operator

(vs)k — yTRMETIRE L yTRMEE | e (A.6)

Likewise, we can merge the bundle metrics g of T*M and h of £ into a
bundle metric on T*M®* ® € via

(B1® QE®Y),(M® @1 ® D) rxyorge
= g(El’Tl) s g(Ek’Tk)h(wa ¢)

Definition A.7 We call ¢ € C*(€) C*-bounded if for all k € N there is a
constant C(k) > 0 such that

sup (V) 4, (V)Y Drupronge < C(K)

with the convention (-, )14 yeige = h and (V¥)? = 1. We denote the
Fréchet space of C*-bounded sections by C;°(&). 0
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A.1.2 Excursus 1: The Sasaki Metric

We will give a brief explanation for the construction of a Riemannian
metric go € C*®(X2TE) on the total space £ of a Euclidean R"-vector
bundle (€, h, VE) =5 (M, g), following [Sak96, Section I1.4].

Due to the fact that each fibre &, = 7z ' (p) of £ is a vector space, it
may be identified with its own tangent space T, &, for v € £, by means of

& > ToE,, W [t (b+ ). (A.7)

Moreover, each tangent space T, &, is an N-dimensional subspace of T,&
and coincides with ker(Tr¢|; ). We will refer to it as the vertical subspace
of T,£ and denote it by V,£. A complementary subspace H,& < T,&
may be assigned with the aid of the connection V¢ as follows: Take a
curve y : [ — M through y(0) = p with y(0) = v for some v € T,M. In
view of (A.2), the initial condition v)(0) = v uniquely defines a parallel
section ° : I — £ along y with respect to V¥. Then v{' := P°(0) e T,E
defines the horizontal lift of v € T,M at v € £,, which is independent of
the specific choice of the curve y. The space

Ho& := {v!' € T,& such that v e T, _, )M}

forms an m-dimensional subspace of T,&, m = dim(M), and is called the
horizontal subspace. This gives a smooth, fibrewise decomposition

16 =T = | JH BV E=HEDVE (A.8)

vel vef

of &’s tangent bundle into a horizontal and vertical subbundle, which
leads to the definition of the connection map K : TE — &£ by the fibrewise
homomorphism

. —1 \Y
Kelr,g : To€ =&, Wit oM

for all v € &, where " is the vertical part of tv according to the decom-
position (A.8).
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Let us summarise the previous considerations of this subsection: An
RN-vector bundle (£, V¢) 25 M admits the splitting

TE =HEDVE =ker(K¢) @ ker(Tmg),
where each of the restricted maps
Trelye tHE = TpM . Kely g: Vo€ =6,

is a vector space isomorphism for all v € £, and p € M. This givesrise to the
introduction of horizontal and vertical lifts associated with X € C*(TM)
and vy € C*(€), respectively, via

XH(0) 1= (Trely,e) " 0X(p) 5 9Y(0):= (Kely,e) o%(p)-

Remark A.8 Let us express these lifts in terms of coordinate vector fields.

Local coordinates {p®}"_, on some subset W — M and a frame {e,})_,

of &l yield bundle coordinates

q*:=mgop* a=1,...,m
VA, A=1,...,N

on &|,, such that the vector v = ve,(p) € &, corresponds to the point

(p,v) € W x RN, Then the respective horizontal and vertical lift of the
associated coordinate vector fields are given by [Bla10, Section 9.3]

H _ A B vV _
apa —6qa—v FaAaVB 5 eA—avA.

Here, the Christoffel symbols of V¢ that are associated with the local
frame {e,}}_, are defined by the relation Vg Lea= I ep. ¢
P

Now that we can split any vector field 2J on £ into
e a horizontal part U" 705 ¢ (TM),

e and a vertical part U" Wl ©(E),
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A.1 Sobolev Spaces on Vector Bundles

the Riemannian metric g on M (i.e., the bundle metric on TM) and the
bundle metric h on £ allow for the construction of a Riemannian metric
on & as follows:

Definition A.9 Let 7. : (£,h, V¢) — (M, g) be an RN -vector bundle. The
Sasaki metric is defined by

ge 1=g(Tne, Trg:) ome + h(Ke', Ke') = mhg + h(Kg+, Kg-). 0

It was initially studied for the tangent bundle £ = TM, where V¢ = V8
is the Levi-Civita connection and the bundle metric h coincides with the
Riemannian metric g [Sas58].

A.1.3 Excursus 2: Submanifolds

We survey the most important geometric objects that are involved in
the treatment of submanifolds. We refer to [Lan99, Section XIV, § 1] for
further details.

Let A be a smooth a-dimensional (ambient) manifold and ¢ : B — A be
a smooth embedding of a b-dimensional submanifold B into A. Since the
differential T : TB — TA is a fibrewise monomorphism from T,B — T, 1A
for all x € B, there exists a bundle monomorphism

:TB —1*TA= {(x,v) € B x TAsuch that v € T,(,,A}
given by i = (71, Tt). In this context, the R*~?-vector bundle
NB := t*TA/im() = coker(T)

over B is called the normal bundle of B in A [Wal04, Definition 5.3].
If A is equipped with a Riemannian metric G, one may identify the
fibres N,.B with the G-orthogonal complement of T¢(T,.B) in T,(4, i.e.,

1,
TyA=Tu(T,B)® (T(T,B)) " = T,BON,B,

and obtain the orthogonal decomposition t*TA = TB @ NB. Hence, ev-
ery vector t + n € T,B@®N,B (t € T,B and n € N,B) corresponds to a
vector t + n € T,(,)A with G(t,7) = O for all x € B.

t(x
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A Analytic Aspects of the Connection Laplacian

Definition A.10 We introduce
(i) a bundle metric G'B®NE on TB ® NB such that
G(t; +ny, 6 +1y) = GO (ty +ny, ty + 1y)
= gg(t1, t2) + G (ny,ny)
holds for t,t, € T,B and n;, n, € N, B with

¢ a Riemannian metric gz = ¢*G on B,

e and a bundle metric GN* = G|z on NB,

(i) and a pullback connection
VTBONB . —  *VC : C*(TBONB) — C* (T*B® (TB@®NB))

which induces

e a connection V'™ := P8 V'BNB on TB coinciding with the
Levi-Civita connection associated with g, i.e., V'® = V¢,

e and a metric connection VNB := PNE vTBONB on NB, the so-
called normal connection. O

We similarly establish operators for the off-diagonal blocks of VTEENE:
Definition A.11 Let 7,0 € C*(TB) and v € C*(NB).
(i) The Weingarten map W € C*(N*B ® End(TB)) is defined by
v W(v)T := — PP VIPONEy,
(ii) The second fundamental form Il € C*(%2TB ® NB) is given by

— PNB VIB®NBO-.

(tr,0)—~1(7,0):

(iii) The mean curvature n € C*(NB) of the submanifold (B, gz) is the
unique normal field

n = trg, (1I(-,")). 0
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A.1 Sobolev Spaces on Vector Bundles

The sign of the Weingarten map is chosen in such a way that
g3 (W(v)’r, O') = G\B (H(T, o), v)

holds true. Apart from that, we may summarise the action of V'2®N8 by
the Gaul? formula

TBONB . _
Vo =Véo +11(7,0)

and the Weingarten equation
VIBONEy — —W(v)7 + V. (A.9)

The latter relation paves the way to explicitly calculating the induced cur-
vature R™ONB — * RC of the pullback connection V™2ONB, Starting with
R™BONB (5, o,) € C*(End(TBONB)) for 0,0, € C*(TB), its application
to another tangent vector field 7 € C*(TB) equals

RTB@NB (O-l, O'Z)T

=R®(01,0,)T —W(I(04,7))o; + W(ll(0q, 7)) 0y

* p®2 % p®2
+ (VIO ) (0g, 1) — (V27 OV D) (0, 0),

whereas its action on some normal field v € C*(NB) is given by

RTB@NB (Ol: 0.2) »

=R"8(0q,0,)v —1I(7, W(v)0o,) + H(W(v)oq,0,)
* I * Il
n (VEZ BQE d(TB)W)(v)O_l _ (v':l BQE d(TB)W)(,V)O_Z.
Here, R% and R™® are the curvatures of V& and V"B, respectively. If
the ambient space (A, G) is flat, both tangent and normal components of

the latter two equations vanish identically and one obtains rather simple
expressions for the curvatures in terms of the extrinsic geometry:

R% (01,0,)T = W(II(0y, 7))y — W(II(04,7)) 0,
R"(0y,0,)v =1I(0y, W(¥)oy) —LI(W(v)oy,0,). (A.10)
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A.1.4 Functional Framework

We will assume that o : (£,h,VE) — (M,g) is a CN-vector bundle
with a metric connection over an m-dimensional Riemannian manifold.
This subsection aims to introduce Sobolev spaces on such vector bundles,
following the exposition of [Nic96, Subsection 10.2.4].

Let vol, := *1 € C*(A*M) be the volume form associated with the
Riemannian metric g. We then set

L£%(E) := {Borel measurable sections ¢ : M — &
such that p — Hl/)(p)”i is Volg-integrable}
P

for all q € [1, co] and identify sections ¢, ¢ thereof whenever they coincide
pointwise vol,-almost everywhere. The resulting quotient space

LI(E) == £9(E)/ ~

together with the norm

(B @7, vol, ()", 1<q <o

(A11)
essswppen [0, . -

I|¢“Lq(5) =

turns out to be a Banach space [Nic96, Proposition 10.2.31]. These consid-
erations may be extended in order to obtain Banach spaces LI(T* M®*®¢)
for g € [1,0] and k € N with the norms

1/q
(S s vol) ™, 1<g <0

”d)”Lq(T*M®k®5) =
esssupy ||V llrx perge » q=®

In order to define Sobolev spaces W4(&) < L9(€) for k € Ny, we first need
to introduce the weak derivative of a locally integrable section v € Llloc(é’ ).

Therefore, we call ¢ € L] (T*M®* @ €) the k-th weak derivative of 1)
(.e., (VE)kp = ¢ weakly) for k € Ny if

J <¢) X>T*M®k®.€ VOlg :J h(lp) (vg)k’*X) VOlg
M M

238



A.1 Sobolev Spaces on Vector Bundles

holds for all y € C(T*M®* ® €). Here, the operator (V¥)** from
CP(T*M®*®E) to C*(€) denotes the adjoint of (V¥)X, cf. (A.15) below.

Definition A.12 Let k € Ny and q € [1, «].
(i) We define the k-th L-Sobolev space W4(£) < LI(€) as the set
wka(g) = {4 € LY(&) such that for all 0 < j < k there exists
¢; € LYT*M® ® €) with (VE)/yp = ¢; weakly}

endowed with the norm

k
b llyesey = 25 1(VE P armorme) - (A.12)
j=0

(ii) The k-th LI-Sobolev space with zero boundary conditions Wok a4 &)
is the subspace

WeI(€) = {4p e WHI(€) such that (VE)4p(p) = 0,
forallpe&Mand0<j<k71}, 0

If one considers the special case of a line bundle £ = R™ x C, which is
equipped with the constant bundle metric h = {-, ). and the flat connec-
tion V®"*C = d, over the Euclidean space (R™, &™) as base manifold, the
Sobolev norms (A.12) read

k N\ 1/2
W lhwean ) = 2 || (Siais D% 12)

j=0

m
, aENy.
La(Rm)

These norms are equivalent to the usual Sobolev norms, and hence
WHk4(R™ x C) coincides as a set with W54 (R™).

Remark A.13 The Sobolev spaces W*4(¢) introduced in Definition A.12
depend on the choice of the bundle metric h, metric connection V¢ and
the Riemannian metric g. A different choice of these quantities can alter
the respective spaces significantly. It turns out, however, that W*4() is
independent of these choices if the base manifold M is compact [Nic96,
Theorem 10.2.36]. 0
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Since we will solely work with the L2-Sobolev spaces, we will drop
the superscript q from now on and simply write W(€) := W*2(£) and
WE(E) = Wé"z(f). Moreover, when there is danger of confusion, we
will sometimes write W* (&, vol, ) in order to emphasise the volume mea-
sure vol, on M which was used in the construction of the Sobolev spaces.

A.2 Bounded Geometry

The utilisation of Sobolev spaces on vector bundles over non-compact
manifolds as introduced in Definition A.12 is a very delicate issue if certain
geometric features are unbounded. As a matter of fact, many classical
results obtained for Sobolev spaces on Euclidean spaces (having “zero ge-
ometry”) do not generally carry over to the setting of vector bundles over
arbitrary Riemannian manifolds. In order to circumvent this inadequacy,
we will restrict ourselves to vector bundles of so-called bounded geometry,
where the relevant geometric quantities satisfy additional uniformity prop-
erties. These bundles are built over base manifolds of bounded geometry,
where the curvature bounds are well-controlled, and are endowed with a
set of uniformly bounded local trivialisations.

A.2.1 Manifolds of Bounded Geometry

The concept of bounded geometry for Riemannian manifolds (M, g) with-
out boundary was introduced by [Shu92, Appendix Al]. In this context,
we first introduce the injectivity radius ryy; : M — [0, 0] defined by

Tinj(p) i= sulg{the exponential map expg[ restricted
r>

toB'(0) c T,M isa diffeomorphism},

where m = dim(M). This basically means that all points p’ € M with
distance dist, (p, p’) < ri,;(p) may be joined with p by a unique geodesic.
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A.2 Bounded Geometry

Definition A.14 A connected Riemannian manifold (M, g) of dimen-

sion m without boundary is a manifold of bounded geometry if the following
hold:

() Injectivity radius:
The injectivity radius ryy; (M, g) = inf,c) rini(p) of M is positive.

(ii) Curvature bounds:
The curvature of V¢ satisfies R¢ € C°(T*M®* @ TM). 0

If the manifold has a boundary M, one has to adapt the former definition
of bounded geometry, since ry,;(p) = 0 for all p € IM. In this case, one
instead needs [SchO1, Definition 2.2]

e bounded geometry of the interior M° = M\JM,

e bounded geometry of the boundary oM,

e and the boundedness of the inclusion 0M — M.
In view of the orthogonal decomposition

TM |,y = TOM ® NOM

with respect to g, the last requirement is implemented by taking into
account the second fundamental form 11, € C*(Z*T0M ® NOM) of the
boundary oM — (M, g).

Definition A.15 A connected Riemannian manifold (M, g) with (possibly
empty) boundary 0M is said to be a d-manifold of bounded geometry if the
following requirements are satisfied:

(i) Normal collar:
Denote by v e C*(NJM) the inward-pointing unit normal field of
the boundary 0M. There exists r; > 0 such that the (collar) map

K:0M x [0,rc) > M, (p,s)— exp,(sv)
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is a diffeomorphism onto its image. Therefore, we denote by

NC(r) := {expp(sv) € M such that (p,s) € oM x [0,7)}
=K (oM x [0,1))

the normal collar of width r < r.

(i) Injectivity radius of the boundary:
The injectivity radius r,,;(0M, g|,y,) of the boundary M is positive.

(iii) Injectivity radius of the interior:
There is r; > 0 such that ry;(p) > ry for all p e M\NC(%).

(iv) Curvature bounds:
The curvature of V¢ and the second fundamental form of the bound-
ary 0M — (M, g) satisfy

RE C° (A*TM ® End(TM))
and
I, € CX(Z°TOM ® NOM),
respectively. ¢

Typical examples for manifolds of bounded geometry are compact Rie-
mannian manifolds and Lie groups with (left-)invariant metrics [Sch96,
Example 3.13].

A 0-manifold of bounded geometry provides a suitable set of coor-
dinates via charts for the boundary collar and for the interior [Sch96,
Definition 3.2], see Figure A.1:

e Boundary collar charts:
Let ry < 11yi(OM, gy ) and choose an orthonormal basis to iden-
tify T,0M with R™! for some p € OM. Then boundary collar
coordinates are defined by

22 BIH(0) x [0,1¢) = M, (u,s) — expl (sv).

oM
exp2M (u)
cRY,
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A.2 Bounded Geometry

o Interior charts:
Let ry; < r; and choose an orthonormal basis to identify T, M
with R™ for some p’ € M\NC(%). Then interior coordinates are
given by
k;n, (B (0) > M, w— expy(w).
—

CcR™

Rm

R

By (0)

B'~1(0) x [0, 1¢)

Figure A.1: Sketch of one boundary collar chart l‘;c (p € M) and one
interior chart 7' (p’ € M\NC(5)).

The coordinates associated with such charts are called normal coordi-
nates. These charts yield a suitable atlas of M and a nice subordinate
partition of unity:

243



A Analytic Aspects of the Connection Laplacian

Lemma A.16 For all 0 < r < %min{rmj(aM, glom)> 11} there exists an
atlas {(W,, T,,)} ez, With either W, = & or

(1) for u < O there is Pu€ OM such that
W, =2 (BI1(0) x [0,7¢)) » Tu=(A) 7y

(i) and for u € N there is p,, € M\NC(Z%) such that

W

o

W, =2, (B"0) , T,= (A;‘L)—l
This covering is uniformly locally finite: There is a number N,; € N such
that for all u € Z the set {u' € Z such that W,, n W,,, # (} has at most Ny,
elements. Moreover, there is a smooth partition of unity {y,},ez of M
subordinate to the covering {W,},ez such that 7, x, < C°(R™) with
bounds uniform in y, i.e., for all k € N, there is a constant C(k) > 0 such
that HDa(Tu*Xu)”oo < C(k) for all u € Z and all multi-indices a € Ny
with |a| < k.

PROOF. See [Sch96, Lemma 3.22]. 0O

A.2.2 Vector Bundles of Bounded Geometry

The basic purpose of vector bundles of bounded geometry is to avoid an
unbounded variation of the respective fibres along the base manifold. This
is encoded in terms of suitable local trivialisations [ Shu92, Appendix Al]:

Definition A.17 Let ©z : £ — M be an FV-vector bundle over an m-
dimensional ¢-manifold M of bounded geometry. We call £ a vector bundle
of bounded geometry if for any pair of normal coordinate charts (W, 7)
and (W',7') of M with W n W' s ¢ there exist local trivialisations
A:n'(W) > W xF¥ and A @ ;' (W) — W’ x Y for which the
associated transition matrix g : W n W’ — GL(N, F) is uniformly bounded,
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i.e., for all k € N, there is a constant C(k) > 0 (independent of 7 and g)
such that

HD“(T*g) Hoo,Mat < C(k)

for all multi-indices a € N™ with |a| < k. ¢

Typical examples for vector bundles of bounded geometry are the trivial
bundle £ = M x FY, the tangent bundle £ = TM and the cotangent
bundle £ = T*M. Moreover, every vector bundle over a compact base
manifold M is a vector bundle of bounded geometry [Sch96, Example
3.13].

The provision of an additional bundle metric h and metric connec-
tion V¢ on & allows for the introduction of a particular set of local trivial-
isations [GS13, Definition 5.2]:

Definition A.18 Let 7tz : (£,h,V¢) — (M, g) be an FV-vector bundle
over an m-dimensional ¢d-manifold M of bounded geometry, where the
latter is equipped with an atlas {W),, )} ,cz of normal coordinate charts
with centres p,, = T;l(O) as in Lemma A.16. Choose an orthonormal
basis {ej})_; of &, for all u € Z and define a local frame {ej (p)})_,
on W, by the parallel transport with respect of vé

e for u < 0 (boundary collar charts) along the curve

—1
T, (tw,0), t<1

) [0,2] > W,, tw—
v 10.2] g T, (uts), t>1

with (u,s) € B"1(0) x [0,r¢),

e and for u € N, (interior charts) along the curve
Y [0,1] =W, t— T‘Il(tw)

with w e BI*(0).
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We then denote by
Ay (W) - W, xFY, & aw=we(p) —~ (p, w,...,w"))
the corresponding synchronous trivialisations. ¢

A coordinate-free definition for vector bundles of bounded geometry with
a metric connection can be established by means of curvature bounds
[Eic07, Section 1.A.1]:

Definition A.19 Let 7. : (£,h,V¥) — (M, g) be an FN-vector bundle
endowed with a metric connection. Then £ is said to be of bounded
geometry if

(i) (M, g) is a 0-manifold of bounded geometry,
(i) and the curvature of V* satisfies R® € C°(A*TM ® End(€)). O

These two concepts for vector bundles of bounded geometry are consistent
with each other. To be precise, [GS13, Theorem 5.4] — with straightfor-
ward modifications for the case of a 0-base manifold - states that a vector
bundle (€, h, VE) 25 (M, g) with a metric connection is of bounded geom-
etry in the sense of Definition A.17 together with synchronous trivialisa-
tions if and only if it is of bounded geometry in the sense of Definition A.19.
In this context, we will always assume that a vector bundle is of bounded
geometry with respect to a set of synchronous trivialisations.

We finally mention that one may relate the global definition of the
Sobolev norms (cf. Definition A.12) to a local definition in terms of syn-
chronous trivialisations:

Proposition A.20 Let (M, g) be a 0-manifold of bounded geometry with
normal charts {(W,, 7,)},ez and subordinate partition of unity {y,} ez
as in Lemma A.16. Moreover, let g : (£,h,V®) — (M,g) be an FN-
vector bundle of bounded geometry over M with synchronous trivialisations

{A, 7z (W,) > W, x FV} ., as in Definition A.18. Then the norm
1/2
2
Il = (Z ||TH* (Ay o (xub)) ||Wk(Tu(Wu)’]FN)> ’
UEZ
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is equivalent to (A.12) and one has the equalities

Wk(5)=c30(5)”'”k , WkE)=cF(ee) . (A.13)

Il

PROOF. See [GS13, Theorem 5.7], which verbatim extends to ¢0-base
manifolds. 0

The spaces (A.13) are well-defined since another choice of normal coordi-
nates satisfying Lemma A.16 and corresponding synchronous trivialisa-
tions yields equivalent norms and, therefore, the same Sobolev spaces as
sets [Sch96, Lemma 3.24]. Moreover, these spaces possess the well-known
properties [ Sch96, Proposition 3.25]

e WK(&) is a Hilbert space for all k € N,

e the embedding W*(¢) < C!(€) is bounded whenever k > 3 +1 for
m = dim(M),

e the embedding W**1(£) — Wk(€) is bounded with dense image
for all k € Ny, and is compact if and only if M is compact,

e any differential operator T € Diff; (€, F) with C*-bounded coeffi-
cients (with respect to adequate synchronous trivialisations) extends
to a bounded map from W**+!(€) to Wk(&) for all k,1 € N,

e and the restriction map (trace operator) res : C*(£) — C*(9€)
extends to a bounded map from W* (&) to W*=1/2(&) for all k € N.

A.3 The Connection Laplacian

The main object of interest throughout this thesis is the (negative of
the) connection Laplacian with Dirichlet boundary conditions. Starting
with a smooth CN-vector bundle (€, V¥) over a smooth, m-dimensional
Riemannian manifold (M, g) with (possibly empty) boundary, it is initially
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defined on C;°(£°) as the second-order differential operator [BGV92,
Definition 2.4]

P> —tr (VIMEETEy) B ((V6)2y).

We want to evaluate this expression by means of local dual frames {v, }7'_;
of TM and {w®}™ | of T*M. Therefore, the composition of V¢ and
VT*M®E (the Hessian) applied to 1 € C°(£°) yields

(vg)z/llj _ VT*M®5 ((,l)ﬁ ®vfﬁ,¢)
—vey

=Vl @V + 0P @VE(VE )
=w'® (%ﬁawﬂ @Vfﬂ'll) + wP ®Vfa (Vfﬁ"(l)))
=w'® (f‘fywy ®pr1,b + wf ®Vfa(Vfﬁ1,b))
— B £ £ (o€
= 0" 00! @ (v, | ¥+ VE (V5 )
- B[ _wE £ (o€
=0'@w’® ( Vo, ¥t Vva(VVﬁllJ)).

We then take the g-trace and arrive at

—trg (V5)) = —g (VE 98y~ VE, ). (A.14)

Now that we have understood the action of the Laplacian as a differential
operator on smooth sections, we want to embed the Dirichlet Laplacian
into an appropriate functional analytic framework, i.e., we introduce some
bundle metric h on £ and view the Laplacian as an operator acting on the
Hilbert space #H := L?(&) with scalar product

GWn= | h@w) vol,.

As outlined in the former section, the use of Sobolev spaces necessitates
the imposition of further boundedness properties on the underlying vector
bundle £ (over a non-compact manifold M). Therefore, we will assume
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Te

that (£,h, V¢) =5 (M, g) is a CN-vector bundle of bounded geometry
(cf. Definition A.17).

The connection V¢ induces an adjoint operator V* from C* (T* M®&)
to C* (&) defined by the relation

JM <Vg¢,x>T*M®g vol, = JM h(p,VE*y) vol, (A.15)

forall ¢ € C;°(£°) and y € C*(T*M ®&). An easy calculation using local
frames proves the formula

vEHERY) = (VE) Y (A.16)

for 2e C*(T*M) and ¢ € C* (&), where the latter differential operator
£

=

JMh(v;qs,qp) vol, =th(¢,(v;)Hp) vol,

for all ¢ € C;°(€°) and ¢ € C*(E).

is the formal adjoint of V¢, i.e.,

Lemma A.21 If V¢ is a metric connection on £ with respect to h, one has
T .
(V3) = —V§ —div,(X)1
for all X € C*(TM), where the divergence div, € C*(T*M) is uniquely
defined by
Ly vol, = div, (X ) vol, .

If we apply this lemma to the trivial line bundle £ = M x C with flat
connection VM*C = d, we obtain
d*(x°) = d*(x* ®1) "2 dl 1 = — d1(X) —div,(X)1
=0
= —div, (X) (A.17)

for all X € C*(TM). The adjoint of d on the trivial line bundle is hence
given by the negative of the divergence.
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PROOF (of Lemma A.21). First of all note that for any f € C;°(M\0M)
we have the equality

0= LM ix(f volg) = fMEX(f vol,)
=J- X-f Volg—&-J f divg(X) vol, .
M M

We then integrate (A.1), which holds true since V¢ is metric, over M and
apply the above observation for f = h(¢,v):

J h(Vig, ) vol,
M
= —J h(¢,Viy) Volg—i—f X -h(¢,4) vol,
M M
- *J h(¢,VEY) Volg—f h($,ap) divy (X) vol,
M M
= J h(¢, (—Vv& - divg(X)lg)llj) volg,
M

which proves the statement. 0

We will need an alternative expression for the divergence applied to
some vector field X € C*(TM). Therefore, let VT*M®k, ke{1,...,m}, be
the tensor product connection

on T*M®k, Then [Lan99, Theorem XV.2.2] yields v7*M®" vol, = 0, and
so we obtain for any local frame {v,}7"_, of TM:

m
0=X- (volg(vl,...,vm)) — Z Volg(vl,...,Vf(va,...,vm)
a=1

m
= (Lxvolg)(Vy,..., V) + Z voly (vi, .., [X,ve] = Vive, .., vi)
a=1
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A.3 The Connection Laplacian

= div, (X)voly (v, ..., Vi Zvol Vi,eee, V ,...,vm),

where we took advantage of the torsion-freeness of the Levi-Civita connec-
tion V¢ for the last transformation. Thus, the latter equation is equivalent
to

div, (X) = gaﬁg(vfaX,vﬁ) = tr, (V&X). (A.18)
Lemma A.22 If V¢ is a metric connection on £ with respect to h, it holds
that

—tr, (V%)) = v&*Vv?®
on C°(£°).

PROOF. This is a straightforward computation once again using dual local

frames {v,}"_, of TM and {«w®}"_, of T*M. More precisely, we obtain
for arbitrary v € C;°(£°) in virtue of Lemma A.21:

vErVEY = VO (0P @V, )
= Vi Ve ¥ —dive ((w )ﬁ)vf P
= Vgﬂav vg 'L/J =+ v—le (gpava)vﬂ/l//'
— g (vfavfﬂzp — va vﬁill)
(A14)
=Y —tr (VE)*y).
Here, we utilised
—div, (gﬁ“va)vﬁ 18y _ tr, (Vg(gﬁ“va))vﬁ
= —g"g(VE (£"%va).va) v
@D
= _g,dL [VK' : g(gﬁava’ v?t) _g(gﬁava’ vg.vh)]vﬁ
—_— ®
=ghag,, =50

=0
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A Analytic Aspects of the Connection Laplacian

= (87" 8(vas VE v2)vp)

=Vi v,
for the next-to-last line. O

This lemma allows us to easily prove the necessary facts so as to extend
the densely defined connection Laplacian to a self-adjoint operator:

Proposition A.23 Let 7, : (£,h,V¢) — (M, g) be a CN-vector bundle
with a metric connection. Then the associated connection Laplacian (A.14)
defines a symmetric and positive operator on C°(E°).

PROOF. The Laplacian is clearly symmetric due to the previous lemma,
since

(—tr, (VE)2), ), = wa&*v%,w) vol,
= fM (V0 VY )rage VOly

:f h(¢, VE*VE) vol,
= (¢, =t ((VE)"¥) ),

for all ¢,v € C;°(£°). Moreover, the corresponding quadratic form is
seen to be

QY] := JM (Véy, V£¢>T*M®5 vol, > 0.

a

Hence, Q is closable and its Friedrichs extension is the quadratic form of
the Dirichlet realisation of the Laplacian which we will denote by —Ag.
This operator is self-adjoint on # with domain

—————(Q[]+I-I2)V?

dom(-A%Y) = Co(€°) =W2(&) n W, (€) (A.19)

by virtue of Proposition A.20.
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A.3 The Connection Laplacian

Example A.24 Let us consider the case where £ = M x C is the complex,
trivial line bundle endowed with the flat connection V**€ = d. We will
refer to the associated connection Laplacian

~ALB =y (@)

as the (negative of the) Laplace Beltrami operator. Its action as a differen-
tial operator on C*(M x C) = C*(M, C) is given by

AL — g (v - (v W) — VE vy )

with respect to a local frame {v,}"" ; of TM. Alternatively, Lemma A.22
together with Example A.6 yield

—ALBy = a*(dyp) = d*((grad, v)") 2" —div, (grad, 1)
for all 1 € C*(M, C), so A = div, ograd, on smooth functions. ¢

We close this subsection with the brief discussion of a modified Lapla-
cian —5; with Dirichlet boundary conditions, given by the quadratic
form

B ey = | 11 (A5, 979)) v,

where G := p™?g, p € C*(M,[C,,C,]) with0 < C; < C, < 0, is a
conformally equivalent Riemannian metric (for which vol; = p vol,). To
do so, we start with 1 € C;°(£°) as well as X,Y € C*(TM) and calculate
similarly as in the proof of Lemma A.21:

0 - LMiX(h(mp,Vf,w) volG)
f X -k, VEW) volg + J h(, VErp) divg (X) volg
M M

%))

| 15 V5) + 1, VEVEY) volg
@170 iy

+ ‘[M h(v, Vi) (divg (X) + dInp (X)) volg,
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or equivalently
th(vgw,vgw) volg = JMh(w, (~VEVE — div, (X)VE)y ) volg

| R =T ) volo.

If we finally take the g-trace of the respective integrands, we may ulti-
mately identify
XE £\2 £
_Ag = _trg((v ) ) - vgradglnp (A.20)

as an operator on L2(&,volg).
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Appendix B

Technical Estimates

The following lemma provides the key ingredients that are needed to prove
the results for the low energy regime discussed in Section 4.4. There, we
consider energies of the order ¢* (0 < a < 2) above the bottom of the
spectrum of the vertical operator H” = —Af + V¢ in

H® = —¢®Af + ¢H} + H.

The perturbation H ‘f is assumed to be a second-order horizontal differ-
ential operator with C*-bounded coefficients. We recall that we intro-

k . _ k . s1s
duced dom_ (T) as the domain of the operator (¢~*T )" equipped with its
graph-norm for k € {1, 2}.

Lemma B.1 Let a € (0,2] and T € {H®,H" ,H].}. If H{ satisfies Condi-
tion 4.11, it holds that

& 2
||P0v£X“ ”L(domi(T),dom(HE)) = O(ga/ )
for all X € C,°(TB) and
£ 2
||Hl PO”C(domi(T),dom(HS)) = O(ga/ )

We will prove this technical lemma in great detail for T = H® and sketch
the necessary adjustments for the remaining cases afterwards.

PROOF (of Lemma B.1, T = H?). The actual proof consists of four steps:
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B Technical Estimates

(i) PyVZ,, from dom?(H?) to H:
We show an even stronger bound, namely we consider the operator VfXH
as a mapping from dom, (H®) to #. To start with, we first observe that

V5t = | 1750t T50w) vl
< || mhgs (XX (TE T VO

< HgB(X,X)HOOJ h(y, —e*Aa) vol,
—_—— M

<00

=(w,—e2af1),,
holds true for 2 € dom(H¢). Then, since
(p, _ngﬁw%{ <{y, _82A§¢>H + <w’HF¢>H
>0
= (¢, (H® —eH{ )Y,
<& [l e B, +e
S

2
<12 e

the first estimate leads to

1980t 1 < € (£ 6 Wum, e + €[ 10, )- 8.1)

We now take a closer look at the term in (B.1) which incorporates the
perturbation. Using the local form of H 15 from Condition 4.11, this term,

[ HE ) | = | HE S 2040, |
< | S, Vo A Vi) |
| e B2t |
+e Kw,Z

may be split into three terms, which we now consider separately:
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e The second-order term may be estimated as

Z <¢9ZVGNOVE(XV)HXVI Al] vg HX

VEN,
= Z<¢ vc‘: v’ HX /Al] vg V'HZ GNX

Mz€& ij €&
< Z <Xv'v Xw)HwA vE(X‘
v eNy
+el ) <¢’X]vvfldivg(( DIMAL vf(x”’ ¢>

€Ny

with the aid of Lemma A.21 for the last step. Considering the first
term, we insert the identity Zv,,eNo x% = 1 appropriately into the
second argument of the scalar product and obtain the upper bound

sup”AleOO Z Z PEAY ng,)HwH ‘xwvfxvl wH
¥, //GN i,j=1
v’v”#@
2
<t 55 (vl

v v"eNy L,j=1
v’v”#@

el

< sup 5 N € (1, ey + € [0 H )]
v,

=:C;
Here, we used the facts that

S veal= | 3 2 h(T5h, Vi) vol,

v ENy v’eNO
—_—————

< 1 pointwise
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B Technical Estimates

<||lgs . X)||,, (. —e2A5y),,  (B.2)

and that the vector fields {X i"/}v,)i are uniformly bounded in order
to establish a similar estimate to (B.1) for the last transformation.
As far as the second term is concerned, we proceed similarly and
bound it from above by

el Y, Z

VeN, j=1

(B.2) .
< ellylly bSUP(”dIVg((Xz)H)A];lHoo va(xvyﬂ/)” >
v,k,l ! H

<cllvllgomre)
< ¢ bcsullg ||divg((XkV)H)Aklem ||¢||§oma(Hg) .
V,K,

-

2 M div, ((x)")AY, Vg(XV/)HI/J

H

—c,
In summary, the second-order term can be bounded by
(C1e® + Co) W30, i) + Ca [C, HEW, |
e The first-order term gives the following contribution:
[ e B V)|
ST R

<N

[ llyo ey by Remark 2.13

1/2

< Il N2 | Y

v eNy

Xv’Bl vg(XV,) ZVGNOXy ¢||
—_——

=1

>

€Ny

1/2
< suplBY] N 1/2||w||ﬂ< xo BV )
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(B.1) 12
= supl[B Ny Il b2 €2
. vk

1/2
X (£ I i)+ £ <0 HE W, )

. 1/2
<6l e T ),

< supl|BY ], (N 5 €)% e Il I, e

=:C3

 (suplBE (N €26 ) [ HE),

1/2

=:(2C4)Y/2
< (C38™% + Cae) I o, ey + 3 | HE W) |-

e The remaining potential term is easily estimated to be
| (4, D, o) | < supICy Il e [ Soere, 220 ]
y T

=:Cs

2
= Cse “UJHdoma(Hs) .
Thus, the addition of these three estimates implies

|, H Y ), | < (Cre® + (Co+ Ca+ Cs)e + Ca&™?) 19 l3m, i1
+ (3 +Ce) [, Hiv),,

>

and consequently
|<w’Hf¢>H| < C‘EG/Z ”w”joma(HS)

for some constant € > 0 if ¢ > 0 is chosen sufficiently small. We finally
insert this into (B.1) and obtain

||V§XH¢”§-£ < C(ea + é€1+a/2) Hlpuioma(Hg) <ce? ||¢”ioma(H5) >

where we used the fact that a < 1 + a/2 for a € (0, 2].
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(i) PoV%,, from dom}(H®) to dom(H®):
We start with the estimate

175 PV by, < [[ Vi
= 0(e*2) by (i)

e (110, w5 v

L(dom, (HE),H) ”ng Hdoma(HS)

for v € dom? (H®) < dom((H?)?). We estimate the first term as
0 o, ey = e [, + [
< e (e H i+ i eH )
<2e*|[Y[l3, 2 2y -
Expanding the second term

[HE, V5] + [HE, Po) Vi = [ A%, Vi + [VE, Vi) + ¢ [HE, VL]

+ [ e A% Po] Vi + [HY, Po| Vi

locally over nfwl (U) for some U € 4l of Definition 2.7, we see, in view of
Remark 3.6(i), that this defines a bounded operator from ng (&) to H with
a bound that can be chosen independently of ¢ due to the fact that P, € .A%O
(see also (3.5)) as well as Condition 4.11. Thus, Corollary 2.17 implies
that

H Hg v [HS,PO]V)S(H)TPHH < 1Y llaom((meye)
g c ||’Lp”dom§(H£) .

In summary, this shows that

”POVX (domZ(HS) dom(H?))
< ||HEPO exH ||L(dorn2(H5) H) + HPO exH ||£(d0m (H?®), HZ
:O(gmi“{sa/zvl}) = O(s‘:/;) by (i)
= 0(e?).
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(i) H®P, from dom} (H?) to H:
We consider the operator H 15 P, again locally over 7'51\711 (U) for some U €
(cf. Definition 2.7) and get, thanks to Condition 4.11, that

c (riioE ) e i €
Hy P0|ﬂ:1;l(U) - (Aﬂvgx;* +B + E[VXJH’AJ[]) VEXiHPO + \gCPO/
‘ - =0(¢)
=:8"with [[S] £ 41 ) 50) = O(1) in £(H)

with the aid of Lemma 3.13. But then the fact that

HvfxiHPO”L(domi(HS),wg(s))

£ £
S € H [VX[.H’ PO] ”L(domi(Hf),WeZ(s)) + ”Povsxi“ £(dom? (HE),W2(£))
<elllVE.Polll 2 (omue ) =0 (1) = O(e%/?) by (i)

due to Py € AS,’O
a2
=% 0(e/?)

immediately implies ||HfP0H£(domi(Hg),H) = 0(e%?).

(iv) HEP, from dom’(H?) to dom(H®):

Let us first analyse the commutator of H with H 15 P,. Expressing this
over 7, (U) for some U e 4l from Definition 2.7, we see that

[H®,HEP,| = HY [H®, Py | +&S' [H®, VS, ] P,

=0) —o(1)
+[-a8, +VE,s] (g [VE.,Po] +P0vfxﬂ)
———— Y '
=0(1) =0(1)
+e[HY, S| VE Py + € [HE,C]
— i —
=0(1) =0(1)

= €Ty + T,P Ve,

for some Ty € L(W(E),H) and T} € L(W2(E), H), using P, € A, due to
Lemma 3.13. While Corollary 2.17 implies that || T;2)||,, can be bounded
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by an e-independent constant times |9 [lgom((m)2) < 1% llgom? 2 (ge), the
second term gives

||T2ipO sXH”ﬁ(dornz(HE)’H)
<CHT21HL 2(8),H) HPO ext || £ (dom? (1€ ), dom(HE)) *
ng = O(&%?) by (ii)

Consequently, this leads to the estimate

” [Hg’HfPO] Hc(domi(Hs),H) = O(ga/z)’

and we proceed similarly as in step (ii), i.e.,

”pr0”L(domi(HS),dom(Hg))

< ||H1‘5P0 ||£(dom(H5),H) “Hg ”L(domi(HS),dom(Hf))

—o(1) )

+ ” [Hg’HfPO] ”L(domi(Hf),H) + ”ngPOHL(domi(Hf),H)

=0(g%/2) = O(£/2) by (i)
= O(s“/z). O

PROOF (of Lemma B.1, T = Hf). The basic idea here is to repeat the four

steps of the case T = H® and thereby to bound the individual terms by HF
instead of H:

(i) PyVZ,, from dom?(HY) to #:
Using dom? (H?) = dom(H?) = P, dom(H?), we arrive at the analogue

of estimate (B.1), i.e.,
CHF,, )

for 4 € dom(H]"). We then similarly bound |4, H{));, | by a constant
times £%/2 ||1/)||(2iom (HP) and obtain the desired estimate.

Vel <c (sa 19 2 s + €
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(ii) Py V%, ,, from dom(HT) to dom(H?):
We consider

HEP,VE, P,
= PyVE, HEPy + [HE, PyVE,. | Py
= V2 H? + PyVE . [HE, PP,

+ [H®, Py VE,uPy + €Po[HE, V44 | Py

eXxH
=V H + V2, [H‘S PO] Py —&Py[VE,, Py |[H®, Py Py
off- d1agona1
w.r.t. Py
_
=0

+ [HE, Py V2, + e [HE, Py][ V5, Po| Po + €Po[HE, V54 | Py
[ s ——
diagonal w.L.t. Py

= V2 H? + ¢[H®, Py V5
+ep (|55, [V Ro] | + [, V5] Py

= O(1) in LW2(E),H)

=0O(1) in L(W2(P),Hp) due to Py € A°

The first term can be estimated using HZ’ = O(&*) as a bounded mapping

2 . :
from dom’ (H?) to dom(H?) as well as the regularity result of Proposi-
tion 4.9(ii):

HV H Hc(domZ(HP)H)

S¢ HVsXHc(wg(p),Hp) ”HfH[l(domi(Hf),dom(Hf))

—0(1) =0(e%)
= 0(e%).
The last-mentioned proposition may also be used to show that the third

term is of order ¢ as a map from domi (HF) to Hp. As far as the second
term is concerned, a local expansion shows that

[H®,Py)VE = [—eAL + HE, Py | VB,
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is a third-order differential operator on P LN (B, e~ 2gp) with coefficients
in £(L?(P),H) that are off-diagonal with respect to P,. Thus, another
application of Proposition 4.9(ii) leads to the fact that

I, Pol V3 ||, < €It laom(cerry2y < € 18 Naons? i)

for an e-independent constant ¢ > 0. To sum up, H® POVfXH is of order %/

as a mapping from dom? (H”) to H.

(iii) HEP, from dom’(HT) to H:
This is shown in exactly the same manner as in the case T = H?, using
dom(H”) < Pydom(H?).

(iv) HZP, from dom’(H]) to dom(H?):

We proceed analogously in order to see that [H S,Hf Py]P, is of order ¢
in L(W(P),H), ie., ||[H®,H{P;]y||,, can be bounded by an -inde-
pendent constant times & |9l qom((s7)2) < € 1V llgom? () With the aid of
Proposition 2.15(ii). 0

PROOF (of Lemma B.1, T = Hgf). This immediately follows from the pre-
vious case and the fact that H”,, = H” + O(e?) in £L(D$', H) due to the
explicit formula (4.13). Put differently, the replacement of the adiabatic
operator by the effective operator in the necessary estimates only yields
higher order errors. 0
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List of Symbols

1 General Notation

Symbol Explanation

c* space of smooth functions/sections

Cy° Fréchet space of smooth functions/sections with compact
support

Cr Fréchet space of C*-bounded functions/sections

L2 Lebesgue space of square-integrable functions/sections

L® Lebesgue space of essentially bounded functions/sections

wk Sobolev space of functions/sections with weak derivatives of
order up to k € Ny in L?

W(;‘ subspace of W for k € N, where in addition all weak deriva-
tives up to order k — 1 vanish on the boundary
. . k

W intersection of all Sobolev spaces {W*},cy,, space of func-
tions/sections with infinitely many weak derivatives

L(U,V) space of continuous linear maps between the vector spaces U
and V

volg volume measure associated with the Riemannian metric G

Ve Levi-Civita connection related to the Riemannian metric G

rinj(N,G)  injectivity radius of a Riemannian manifold (N, G)
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List of Symbols

B, (p)
NC(r)

RV

1%
AG

LOV,W)

End(V)
Herm(V)

L.B.
AG

f*
Tf

Df
Ly

geodesic ball around p € N with radius r, image of the metric
ball B, (0) = T,N under the exponential map

normal collar of width r, image of the cylinder 6N x [0, r)
under the collar map K

curvature of the connection VY

connection Laplacian associated with the connection V" and
the Riemannian metric G

space of continuous bundle homomorphisms between the
vector bundles V and W over the same base manifold

space of vector bundle endomorphisms of the vector bundle V

subbundle of End(V), space of self-adjoint (Hermitian) vector
bundle endomorphisms of the vector bundle V

Laplace-Beltrami operator, connection Laplacian associated
with the flat connection d on the trivial line bundle and the
Riemannian metric G

pullback map related to a smooth mapping f : N; — N,

differential (tangent map) of a smooth map f : N; — N,
mapping from TN; to TN,

derivative (Jacobian matrix) of a smooth map f : R™ — R™

Lie derivative along the vector field Z

2 The Framework

Symbol Explanation Page

(B, gg) complete, connected b-dimensional manifold of 19, 26
bounded geometry without boundary

U atlas of normal coordinate charts (geodesic balls) 37
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List of Symbols

{Xv}veNo

(FagF)

M B

{Xe/[}veNo

HM
VM
XH
o*X

cls M

FIrLF

partition of unity of B which is subordinate to the
cover = {U,},en,

compact, f-dimensional Riemannian manifold
with (possibly empty) boundary

uniformly locally trivial fibre bundle over B with
typical fibre F, M is a ¢d-manifold of bounded
geometry equipped with submersion metric g

respective composition of y, with m,,, parti-
tion of unity of M which is subordinate to the

cover {n,' (U,)}ren,

horizontal subbundle of TM

vertical subbundle of TM

horizontal lift of the vector field X € C*(TB)

0-horizontal vector field associated with some
local trivialisation  : 77:;/[1(U ) — U x F of M and
a vector field X € C*(TU)

integrability tensor of the horizontal subbun-
dle HM

second fundamental form of the fibres in M
mean curvature vector of the fibres in M
rescaled Riemannian submersion metric on M
restriction of g° to the vertical subbundle VM

CN-vector bundle of bounded geometry over M
which is endowed with a Hermitian bundle met-
ric h and a metric connection V¢

the model, CN-vector bundle over F that is iso-
morphic to £, = 8|n71(x) forall x e B
M

37

19, 26

19, 26

37

23
23
24
69

24

24
25
37
24
21, 26

21

267



List of Symbols

Fy

Hermitian vector bundle (F,h,,V,) ~% (F, gz)
that is equipped with v-dependent bundle metric
h, and metric connection V,

Hilbert space of square-integrable sections of the
vector bundle (£,h) =5 (M, g)

weighted Sobolev spaces on the e-dependent vec-
tor bundle (£,h, V¢) =5 (M, g°)

infinite-dimensional, Hermitian vector bundle
over B with typical fibre L*(F)

infinite-dimensional, Hermitian vector bundle
over B with typical fibre D(F) = W?(F) "W, (F)

horizontal part of Ags
vertical part of A%,

self-adjoint operator on #H with Dirichlet do-
main dom(H?)

self-adjoint vertical operator on H » with Dirichlet
domain D »

perturbation within the operator H®

algebra of ¢0-horizontal differential operators on £
with coefficients in L (L(H ))

subalgebra of A, 0-horizontal differential opera-
tors on & with coefficients in L (L(Hz,Dx))

27,31

40

44

44

44

41
41
50, 128

62, 128

50, 129
71

71

3 (Super-)Adiabatic Perturbation Theory

Symbol

Explanation

Page

A
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eigenband of the vertical operator H”

62, 88



List of Symbols

dom”(T)

spectral projection associated with the eigen-
band A

eigenspace bundle associated with A, Hermitian
vector bundle over B of finite rank q = rank(P,)

Hilbert space of square-integrable sections of P
adiabatic operator, self-adjoint operator on Hp
Berry connection on P

Berry Laplacian, second-order differential opera-
tor on P

Born-Huang potential, deviation from the Berry
Laplacian Ay to the projected horizontal Lapla-
cian PyA§P,

potential induced by the mean curvature vec-
tor 7y

super-adiabatic projection associated with the
eigenband A

unitary operator on #H which intertwines P,
and P,

effective operator, self-adjoint operator on Hp
with domain D& = U!P, dom(H?)

P

super-adiabatic corrections, deviation from H

P
to H,
MP -term, first super-adiabatic correction

domain of (¢ *T)* for k € {1,2}, parameter a €
(0,2] and operators T € {Hg,Hf,Hgf}, which is
equipped with the graph-norm

63, 87

63, 120

107
120
121
124

124

124

98

107

107

120

126
130
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4 Quantum Waveguides

Symbol Explanation Page
T® e-thin tubular neighbourhood around a smoothly 150
embedded submanifold (B, g5) < (R**/,§°*/)
v, diffeomorphism from the ¢-independent wave- 150
guide M c NB to the e-thin tube 7¢  R>*/

G* pullback of the Riemannian metric e 28+ to M 158, 163
via ¥,, admissible perturbation of g°

A, pullback of A € C°(T*RP* | ) @ Ci to M 169
via W,, admissible perturbation of 3 Az with
Ag = c*Ae CX(T*B) @ Chol

T, unitary operator from L?(7° x CN,volgs+s) to 146
L?(M x CN,volg.) induced by ¥,

ﬁpg unitary operator from L?(M x CN,vols.) to H = 173
L*(M x CN,vol, ) induced by the Radon-Nikodym
density p, = volg. /vol,.

V. geometric potential induced by p, 54,176

HEW Schroédinger operator that is associated with weak 175, 177
gauge fields

HT oW magnetic vertical operator within H&Y, O(g?)- 179
perturbation of Hi’s:"g

HES Schrodinger operator that is associated with 205
strong gauge fields

H#S magnetic vertical operator within H%S, O(e)- 205
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List of Symbols

magnetic ground state band of the vertical opera- 179, 209

tor H”#" respectively H” ¢, which comes along
with a ground state ¢, a spectral projection Py,
an eigenspace bundle P™, etc.
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