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0. Zusammenfassung

Zusammenfassung

Die vorliegende Dissertationsschrift bündelt Arbeiten zu zwei fundamentalen Theorien, welche
die theoretische Physik bisher vergeblich zu vereinen sucht. Zum einen betrachten wir das
Phänomen der Supraleitung auf dem Gebiet der ganz kleinen Teilchen, in grundlegendster
Weise beschrieben durch die Theorie der Quantenmechanik. Zum anderen befassen wir
uns mit Gravitationswellen, genauer gesagt mit diese erzeugenden Binärsystemen schwerer
Himmelskörper. Die physikalische Beschreibung dieser Vorgänge basiert auf der Allgemeinen
Relativitätstheorie der ganz großen Objekte. Aus unserer numerischen Perspektive sind die
Probleme jedoch durchaus vereinbar, denn unser Ziel ist es jeweils, numerische Werkzeuge zu
entwickeln, um fundamentale physikalische Vorgänge zu simulieren.

In Bezug auf die Binärsysteme schwerer Himmelskörper betrachten wir zwei verschiedene
Bewegungsgleichungen zur Beschreibung der Evolution der Konstituenten. Zunächst wenden
wir uns den Gleichungen von Mathisson–Papapetrou zu. Hierbei stehen wir vor der Heraus-
forderung, dass die Bewegungsgleichungen zum Teil implizit sind. Nichtsdestotrotz ist es
uns gelungen, basierend auf den sogenannten Gauß-Runge–Kutta-Verfahren einen äußerst
effizienten und zudem genauen Integrator zu entwickeln, welcher insbesondere die Konstanten
der Bewegung erhält. Anschließend möchten wir die Simulationsresultate der Mathisson–
Papapetrou-Gleichungen mit einer Hamilton’schen Näherung vergleichen. Hierzu stellen wir,
wieder auf Basis der Gauß-Runge–Kutta-Verfahren, einen Algorithmus zur Zeitintegration
der Hamilton’schen Gleichungen vor. Auch dieser bleibt selbst für lange Integrationszeiten
sehr nahe bei der exakten Lösung und schafft es, die Energie während der Simulation nahezu
konstant zu halten. In einem nächsten Schritt untersuchen wir, inwieweit die Hamilton’sche
Näherung physikalisch sinnvolle Ergebnisse produzieren kann. Mit Blick auf relevante Er-
haltungsgrößen stellen wir fest, dass der Hamilton’schen Näherung in ihrer ursprünglich
veröffentlichten Form physikalisch falsche Annahmen zugrunde liegen. Dies lieferte unseren
Kooperationspartnern von Seiten der Theoretischen Physik den Anlass, nach einer verbesserten
Näherung in Hamilton-Form zu forschen. Die dabei hervorgebrachten Verbesserungen un-
tersuchen und verifizieren wir mit unseren numerischen Algorithmen. Die Hamilton’sche
Struktur dieser physikalisch richtigen Näherungen eignet sich besonders zur Untersuchung
der physikalischen Systeme mittels sogenannter Surface-Sections. Deshalb nutzen wir die Kol-
lokationseigenschaft der Gauß-Runge–Kutta-Integratoren aus, um ein effizientes und genaues
Rechenverfahrens zur Berechnung dieser Sections zu implementieren.

Im zweiten Teil der Arbeit befassen wir uns mit den zeitabhängigen BCS-Gleichungen. Dies
sind gekoppelte partielle Differentialgleichungen zur mikroskopischen Beschreibung der Cooper-
paardichte in einem supraleitenden Material. Ein in der Theoretischen Physik viel diskutierter
Punkt ist die Frage, ob sich nahe der kritischen Temperatur nicht eine einfachere Gleichung
zur Approximation der relevanten supraleitenden Vorgänge auf makroskopischer Skala finden
ließe. Um dieser Frage nachzugehen, untersuchen wir in einer numerischen Studie das Ver-
halten der zeitabhängingen BCS-Gleichungen und einer linearen Approximation für Systeme
mit Kontakt-Wechselwirkung. Hierbei betrachten wir den Sonderfall eines translationsinvari-
anten Systems. Wir entwickeln zwei numerische Lösungsverfahren basierend auf sogenannten
Splitting-Methoden, d.h. wir unterteilen die Differentialgleichungen geschickt in mehrere
Teilprobleme, welche sich jeweils bequem lösen lassen. Die Teillösungen kombinieren wir
dann geeignet zu akkuraten Integrationsverfahren, deren Rechenaufwand lediglich linear mit
der Anzahl der zur Raumdiskretisierung verwendeten Basisfunktionen ansteigt. Mithilfe der
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Schnellen Fourier Transformation (FFT) können wir unsere Verfahren in natürlicher Weise
auf Systeme mit allgemeinen Potentialen erweitern. Auch hier steigt der Rechenaufwand nur
langsam mit der Anzahl der Basisfunktionen an.

Für den physikalisch wichtigen Fall von Systemen mit Kontakt-Wechselwirkung führen wir
mit unseren entwickelten Werkzeugen umfangreiche Simulationen für verschiedene Werte
der Temperatur nahe der kritischen Temperatur durch. Wir beobachten einen expentiellen
Abfall der Cooperpaardichte für die lineare Näherung, aber kontinuierliche Oszillationen der
Cooperpaardichte um einen endlichen Wert im Falle der ursprünglichen Gleichung. Hieraus
können wir schließen, dass die in bisherigen makroskopischen Theorien angenommene Diffusion
des supraleitenden Parameters lediglich ein Artefakt einer ungerechtfertigten Linearisierung
ist. Damit können wir nicht nur neue numerische Verfahren für wesentliche physikalische
Bewegungsgleichungen präsentieren, sondern zudem noch einen wichtigen Beitrag zur noch
immer angehenden Diskussion in der Physik leisten.

Um unsere Arbeit kurz zusammenzufassen: Es ist uns gelungen, auf zwei wichtigen Gebieten der
Physik effiziente Werkzeuge zur Simulierung grundlegender Vorgänge zu entwickeln. Hiermit
konnten wir unseren Kooperationspartnern wichtige Einblicke in die Eigenheiten der relevanten
Bewegungsgleichungen ermöglichen und neue theoretische Betrachtungen anstoßen.
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0. Abstract

Abstract

In this thesis, we report on our work in two very fundamental fields of physics which still have
not been merged in a satisfactory way by a combining physical theory. One area is the field of
very small particles, most accurately described by quantum mechanics. Here, we are interested
in the phenomenon of superconductivity. The other area is that of the very heavy objects of
our universe. Their most fundamental description is based on the theory of general relativity.
Our particular interest lies in binary systems of compact objects rotating around each other,
constantly radiating gravitational waves in the process. Although quantum mechanics and
general relativity are worlds apart from a physical point of view, they inhibit some analogies
when seen from our numerical perspective. For our aim is the same in both fields: We want to
provide numerical tools for the simulations of interesting physical processes.

Regarding binary systems we want to compare two descriptions of their motion in space. The
first is given by the Mathisson–Papapetrou equations. In order to study the evolution as given
by these equations, we develop an efficient integration scheme based on Gauss Runge–Kutta
methods. An intriguing challenge is given by the fact that part of the equations of motion have
only be given implicitly. All obstacles notwithstanding, we present an efficient integrator which
preserves the constants of motion even over long times. The second description of a binary’s
motion is given by a Hamiltonian approximation of the Mathisson–Papapetrou equations. We
want to study whether this prescription yields physically valid results. To this aim, we first
come up with an efficient numerical evolution scheme, again recurring to Gauss Runge-Kutta
integrators. Our scheme conserves the Hamiltonian structure, thus yielding reliable results for
long time spans. Then, we test the Hamiltonian approach in different aspects. When studying
the behavior of important constants of motion, we have found out that the Hamiltonian in
its originally published form must be based on unphysical assumptions. This triggered new
theoretical studies by our collaborators from physics with the aim of finding better suited
alternatives. Their new results and suggestions are tested with the help of our algorithms. The
–now physically reasonable– Hamiltonian descriptions are well-suited to investigate the binary
systems for chaos with the help of surface sections. Hence, we take use of the collocation
property of the Gauss Runge–Kutta schemes to present an accurate and convenient algorithm
for the calculation of such sections.

In the realm of superconductivity, we consider the time-dependent BCS equations. These are
quite involved partial differential equations describing the evolution of the Cooper pair density
within a superconducting material or a superfluid. A very hot topic in the theoretical physics
community concerns the question as to whether there exists, close to the critical temperature,
a more convenient equation for a reliable approximation on a macroscopic scale. We take on
this question from a numerical point of view. For this, we compare the evolution of a system
with contact interaction given by the BCS equations to the one obtained via a linearized
approximation by means of a thorough numerical study. We concentrate on a translation
invariant system and develop two new numerical solvers based on so-called splitting methods.
Splitting the coupled equations into more convenient subproblems and aptly combining the
partial results, we come up with efficient and accurate schemes whose CPU times depend only
linearly on the number of basis functions of the space discretization. With the help of the Fast
Fourier Transform (FFT) algorithm, we can even extend our integrators to general potentials
in a very natural way. In this case, too, the CPU effort grows only mildly as a function of the
number of basis functions.
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In the physically relevant case of a fermionic system interacting via a contact interaction,
we employ our newly developed schemes to conduct numerous simulations for temperatures
closer and closer to the critical one. From these simulations, we conclude that the linearization
deviates far from the original equations. More precisely, the linear approximation leads to
an exponential decay of the Cooper pair density whereas the full equations yield oscillations
about a finite value. Consequently, the diffusion which is inherent to all hitherto existing
macroscopic theories can only be an unphysical artifact. With this, we add an important fact
to the still ongoing discussion in the physics community.

In short, we successfully developed convenient tools for the simulation of important physical
phenomena in two fundamental fields of physics. This allowed our collaborators to gain
valuable insights into the behavior of their equations of interest, thus contributing to the
advance of fundamental science.
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1. Introduction

1. Introduction
General relativity and quantum mechanics are possibly two of the most amazing things
humankind has ever invented and surely two of the most important descriptions of physical
processes in their respective areas of validity. No wonder, then, that one of the most exciting
challenges for theoretical physics is to combine these two fundamental models. Unfortunately,
such a combination has turned out to be out of reach until today. Yet, although defying every
effort so far to being put on common ground, the two theories share quite some properties.

For example both of their fundamental equations, i.e., the Einstein field equations in the general
relativistic case and the Schrödinger equation in the realm of quantum mechanics, are much
too complex for calculations in systems which comprise many constituents. As a consequence,
the respective communities have tried to and succeeded in finding less cumbersome equations
which are well-suited for the description of specific physical phenomena. From a physical point
of view, this thesis is concerned with two particularly fascinating processes –one in each of
the broad areas mentioned above. Regarding these processes, the physics community wants
to know how far their approximations derive from the real truth1. From a numerical point
of view, this thesis is about helping the physicists finding out. For this, we have to come up
with highly accurate integration schemes and implement simulations for all the equations in
play. The result of our endeavor are four papers and further ongoing projects in two areas of
physics which we want to present in this script.

In the first part, we turn our attention towards binary systems consisting of one comparably
light star and another much heavier one such as a black hole or a neutron star. The most
popular equations of motion for this setting will be presented in the next Section 1.1. In
Chapter 2 we explain what special numerical interest we had in these equations. Our results
in this area and their impact are discussed in Chapter 3 whereas Chapters A and B contain
the corresponding original publications.

The second part of this thesis is concerned with superconductivity. This is the ability of
certain materials, when cooled beneath a characteristic threshold temperature, to let electrons
move unhindered by any resistance, thus rendering obsolete the well-known relation between
voltage, resistance and current from school. We give an introduction to this phenomenon and
the relevant equations in the next but one next Section 1.2. Again, the numerical tasks in this
area are outlined in Chapter 2 and our new contributions to science gathered in Chapter 3.
The papers produced in the course of this undertaking can be found in Chapters C and D.

1.1. Introduction to relativistic binary systems

When the renowned German newspaper Die Zeit composed a list of the twenty most fascinating
projects in the history of science, it rightly included2 the search for gravitational waves. These
wavelike ripples and distortions of spacetime where first predicted by Einstein (1916) as possible
solutions to his famous field equations, first presented in (Einstein, 1915), which are, until the
present day, the most accurate theory for the distribution of matter in the universe.

1‘The real truth‘ meaning the most accurate but still computationally feasible description of the given
phenomenon available.

2Alongside more well-known topics such as the Large Hadron Collider at CERN, The Human Genome Project,
etc., see http://www.zeit.de/online/2008/02/bg-weltraetsel.
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At first, these waves had not been payed much attention to. This changed when Hulse and
Taylor (1975) achieved an indirect proof of the existence of gravitational waves as a by-product
of their investigation of pulsar stars3. This triggered a rush to finally measure gravitational
waves directly. As a consequence, a lot of scientific resources and taxpayers’ money4 has been
poured into the construction of land-based detectors, such as VIRGO in France and Italy
(Giazotto, 1992), GEO 600 in Germany and the UK (Lück et al., 1997), KAGRA in Japan
(Kuroda et al., 2010), and LIGO in the USA (Abramovici et al., 1992). Physically speaking,
these antennae are huge interferometers with arms that are some kilometers long5. Presumably
in two decades from now, even a space-based telescope, consisting of an array of satellites, will
be launched by the European space agency ESA under the name eLISA. However, despite all
this effort the gravitational waves have stayed hidden up to this day6. In order to increase
the chances of an eventual detection, astronomers need accurate templates of signals from
the most promising sources. These have been singled out to be binary systems consisting of
inspiraling compact objects, see, e.g. (Blanchet, 2002), such as neutron stars or black holes.
In this thesis, we are interested in binaries where one of the two stellar bodies is much heavier
than the other. They are called Extreme mass ratio inspirals (EMRIs).

1.1.1. Mathisson–Papapetrou equations

The most profound model of the universe was introduced by Einstein (1915). He showed that
the distribution of mass is nothing else than curvature of spacetime7, which is encoded in a
metric gµν . Mathematically speaking, the metric is a tensor-valued function of the spacetime
variables. It is subject to the field equations

Rµν −
1

2
gµνR = Tµν , (1.1)

where Rµν is the Ricci tensor which is the trace of the Riemann curvature tensor,

Rµν = Rλµλν = ∂λΓλµν − ∂νΓλµλ + ΓλµνΓαλα − ΓλµαΓανλ, (1.2)

with the Christoffel-symbols

Γαβγ =
1

2
gαδ

(
∂gγδ
∂xβ

+
∂gβδ
∂xγ

−
∂gβγ
∂xδ

)
. (1.3)

R is the Gauss curvature given by the contraction of the Ricci tensor,

R = Rµµ. (1.4)

The stress-energy tensor Tµν , in turn, is a source term including, for example, energy and
matter. The field equations (1.1) are very complex to handle computationally. Fortunately, for

3For this, they were awarded the Nobel Prize in Physics in 1993.
4Such as the DFG grant SFB transregio 7 our group has proudly been part of.
5As gravitational waves are assumed to have a very long wavelength, an antenna for their interception has to
be very large as well.

6Update to submitted version of this thesis: On February 11th, 2016, Abbott et al. (2016) announced the first
direct measurement of gravitational waves by the LIGO interferometer. The waves were emitted during the
merger of a binary of two black holes, which were long been supposed to be promising candidates (cf. the
explanations above).

7Spacetime is the four-dimensional ensemble of time and space.
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1.1. Introduction to relativistic binary systems

special systems such as the EMRIs introduced above, much less intractable descriptions have
been found over the years. For EMRIs, one assumes the much heavier body to be stationary
and unperturbed by the much lighter one orbiting it8. The heavy body is represented by a
solution to the free field equation, which means the partial differential Eq. (1.1) with Tµν = 0.
Normally, one chooses one of the two analytic solutions found so far, namely the metric of
Schwarzschild (1916)9 or the one of Kerr and Schild (1963). The central object fixed, one can
turn towards the lighter body.

In the most basic approach, this lighter body is characterized as a point particle with position
xµ and momentum pµ moving in the space which is curved according to the metric gµν 10. In
most applications, one also wants to take into account the rotation of the lighter body around
its own axis –commonly denoted as that body’s spin. This spin is encoded in an antisymmetric
tensor Sµν . The equations for a spinning test body were first introduced by Mathisson (1937)
and Papapetrou (1951). They consider the lighter body to be a small perturbation of the
central massive object which is singular at the position of the test body. They then introduce
multipole moments to describe this perturbation. The quadrupole and higher moments are of
the order of O(S2), with

S2 =
1

2
SµνSµν . (1.5)

As, in physically valid situations, the spin has to be small, Mathisson (1937) and Papapetrou
(1951) neglect quadrupoles and higher moments. The resulting pole-dipole approximation for
the equations of motion of the spinning particle are the Mathisson–Papapetrou (MP) equations,
named after the just-mentioned theoretical physicists11. In the commonly used reformulation
of Dixon (1970), the equations of motion are

Dpµ

dτ
= −1

2
Rµνκλv

νSκλ, (1.6)

DSµν

dτ
= pµ vν − vµ pν . (1.7)

Here, τ denotes the proper time, vµ = dx/dτ the tangent vector to the world line of the test
particle, and Daµ/dτ denotes the covariant derivative of some given vector aµ in direction of vµ,
defined as

Daµ

dτ
:=

daµ

dτ
+ Γµαβv

αaβ. (1.8)

8Just as one can, to good accuracy, describe the two-particle system sun–earth by a fixed sun and the earth
orbiting it.

9Schwarzschild wrote a letter to Einstein from a trench at the west front of World War I, happily introducing
to him the first solution to the newly introduced field equations. Shortly afterwards he died of his injuries...,
see, e.g. http://en.wikipedia.org/wiki/Karl_Schwarzschild.

10A numerical integration scheme tailored to the motion of such a particle –called geodesic motion– was
developed in the author’s diploma thesis (Seyrich, 2012).

11A nice introduction to the MP equations and their derivation is given by Dixon (1964).
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Everything put together, we get the following system of ordinary differential equations (ODEs):

dxµ

dτ
= vµ, (1.9)

Dpµ

dτ
= −1

2
Rµνκλv

νSκλ, (1.10)

DSµν

dτ
= pµ vν − vµ pν . (1.11)

1.1.2. Spin supplementary conditions

As it is antisymmetric, the spin tensor Sµν contains 6 independent data. Adding the positions
and the momenta, the test particle is described by 14 variables. If we take into account the
four-velocity conservation12

vµv
µ = −c2, (1.12)

the number of degrees of freedom is reduced to 13. But, as the set (1.9)-(1.11) consists of
only 10 relevant equations13, we need some additional information to close the system. The
physical explanation is that general relativity does not fix a reference system, i.e., we have to
prescribe an observer. This is done with the help of a so-called spin supplementary condition
(SSC) –supplementary constraints on the system representing physical features14. Depending
on which SSC is chosen, a different reference frame is given. Physically speaking, this ‘freedom
of choice‘ is caused by the fact that the lighter body must have a finite extension as it would
rotate with velocities larger than the speed of light otherwise. Each SSC fixes another center
of mass for the extended test particle and the MP equations describe the evolution from the
perspective of an observer for whom the center of mass is the one given by the SSC. Two
interesting SSCs on which we focus in this thesis are the Tulczyjew SSC

Sµνpν
!

= 0 (1.13)

and the more general Newton–Wigner SSC

Sµνων
!

= 0, (1.14)

where ων is a timelike four-vector whose form is specified in Chapters A and B as well as in
the next Subsection.

When multiplying the SSC (1.13) with pµ from the left, we see that the originally 4 equations
are linearly dependent. Similarly, we can multiply the SSC (1.14) with ωµ. Thus, the SSCs
provide us with 3 more independent equations with the help of which we can close the
system (1.9)-(1.11). More specifically, based on the relations (1.13) and (1.12) one can derive
the expression

vµ = N

(
pµ

µ
+

2SµνuλRνλρσS
ρσ

4µ2 +RαβγδSαβSγδ

)
, (1.15)

12In the units we used in our works, we have c = 1. Accordingly, the four-velocity conservation is given by
vµv

µ = −1 in what follows.
13Eqs. (1.9) are just a definition.
14A nice overview of the different SSCs and their physical interpretation can be found in (Semerák, 1999) and

(Kyrian and Semerák, 2007).
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1.1. Introduction to relativistic binary systems

where N is a normalization constant defined by Eq. (1.12). When employing the Newton–
Wigner SSC instead, one can start with the covariant derivative of (1.14) to arrive at

vµ =
1

ωνpν

(
(ωνv

ν)pµ + Sµν
Dων
dτ

)
. (1.16)

For a more thorough discussion, we refer the interested reader to Subsection A.2. and rather
stress that, as a pole-dipole approximation, the MP equations supplemented by a physical
SSC are considered valid up to first order in the lighter body’s spin.

The Tulczyjew SSC has already been used in various EMRI simulations, see, e.g. (Hartl,
2003a,b; Suzuki and Maeda, 1997; Verhaaren and Hirschmann, 2010), as it yields a convenient,
explicit expression for the calculation of the tangential velocity vµ. Presumably due to the
not-so-convenient expression it yields for vµ, the Newton–Wigner SSC has not been used in
practical simulations so far. However, for certain choices of the timelike vector ων , it has some
nice analytical implications as we want to explain now.

1.1.3. Hamiltonian approximation

The Mathisson–Papapetrou equations are much easier to handle than the partial differential
field equations (1.1). But, although they can be obtained via a total variation of a suitable
Lagrangian15, there is no straightforward Hamiltonian formulation for them. This motivated
Barausse et al. (2009) to look into the matter. Here, we give a short summary of their
important work. A more detailed introduction to the topic can be found in Section A.3.

Barausse et al. (2009) consider the Newton–Wigner SSC with

wν = pν − µẽTµ , (1.17)

where µ is the mass of the test particle and ẽTµ is the timelike future oriented component of a
tetrad to be specified, i.e., a vierbein with respect to which they measure the particle’s spin.
They introduce a three-dimensional spin vector SI , I = 1, 2, 3, via

SI =
1

2
εIJKS

JK , (1.18)

where SJK are the spacelike components of the projection of Sµν onto the tetrad16. They
further define a three-dimensional canonical momentum vector Pi, i = 1, 2, 3, as the partial
derivative of the MP equations’ Lagrangian with respect to vi. They use coordinate time
t = x0 as the relevant parameter and introduce a Hamiltonian H as a function of xi, Pi and
SI

17 for which they state the following

Theorem 1.1. The Dirac brackets18 with regard to the Hamiltonian H of the introduced phase

15Cf. (Barausse et al., 2009) and references therein or Theorem 3.1 in Subsection 3.1.3 below.
16εIJK denotes the Levi–Civita tensor.
17The Hamiltonian, which consists of many terms, is presented in detail in Section A.3 from our publication of

Chapter A.
18The Dirac brackets are the analog of the Poisson brackets from classical mechanics, see, e.g. (Yang and

Hirschfelder, 1980) for an introduction.
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space variables xi, Pi and SI satisfy

{xi, xj}DB = O(S2), (1.19)

{xi, Pj}DB = δij +O(S2), (1.20)

{Pi, Pj}DB = O(S2), (1.21)

{xi, SJ}DB = O(S2), (1.22)

{Pi, SJ}DB = O(S2), (1.23)

{SI , SJ}DB = εIJKS
K +O(S2), (1.24)

(1.25)

where S2 is the Euclidean norm of SI .

in other words, up to erros of O(S2), the evolution of the test particle is governed by the
Hamiltonian equations

dxi

dt
=
∂H

∂Pi
, (1.26)

dPi
dt

= −∂H
∂xi

, (1.27)

dSI
dt

= εIJC
∂H

∂SJ
SC . (1.28)

This immediately raises the question of how far the solutions to the Hamiltonian equa-
tions (1.26)-(1.28) deviate from those of the MP equations. Since an approximate Hamiltonian
structure can only be derived for MP equations supplemented by the Newton–Wigner SSC
(Barausse et al., 2009), and since the MP equations with this SSC have never been looked
at in simulations, the subsequent question is how far the results of the MP equations with
Newton–Wigner SSC differ from those of the MP equations supplemented by the Tulczyjew
SSC.

We further detail our interest in the topic in the first part of Chapter 2. Let us leave the very
massive objects behind for the moment and turn towards an intriguing phenomenon on much
smaller scales.

1.2. Introduction to superconductivity

When Onnes (1911) worked on the resistance of ultra cold mercury over a century ago, not only
did he discover a hitherto unknown phenomenon19, but also did he give rise to a completely
new field of physics: When he measured the resistance R of the alloy against the temperature
T , he found out that at first the resistance declined alongside the temperature –just as everyone
would expect from his or her experience in school. However, at a temperature of roughly 4.1K,
the resistance broke down completely, thus allowing the electrons to flow freely through the
conductor. The qualitative behavior of R(T ) can be seen in Fig. 1.1.

19Wherefore he received the Nobel Prize in Physics in 1913.
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1.2. Introduction to superconductivity

R
(T

)

T

Figure 1.1: Sketch of the resistance R as a function of the temperature T for superconducting
materials.

Soon, other materials, too, were found to show perfect conductivity when reaching a specific
temperature Tc. Not much later, people realized that the alloys in question exhibited further
characteristic behaviors. More specifically, Meissner and Ochsenfeld (1933) observed that
magnetic fields were expelled from superconductors. This so-called Meissner effect was
first described by London and London (1935) who showed that the magnetic field decays
exponentially as a function of the penetration depth x into the material. In detail, the
magnitude of the magnetic field B at depth x within the conductor is given by

B(x) = B0 exp

(
− x

λL

)
, (1.29)

where λL is a characteristic length.

1.2.1. Ginzburg-Landau equation

Intriguingly, the magnetic field is expelled and decays following the same law no matter whether
it already has been around before the material is cooled down or whether it is switched on after
the temperature has shrunk below the critical temperature. This means that superconductivity
is in fact a thermodynamic state which is independent of the process through which the system
got there. Further physical experiments showed that, at Tc, the system undergoes a so-called
second order transition from a disordered into an ordered phase20. Such phase transitions had
already been looked at by Landau (1937)21. They are commonly described by a parameter
which is zero in the normal state and positive in the ordered one. Building on this, Landau
and Ginzburg (1950) introduced a parameter ψ(x), the squared magnitude of which they
interpreted as the density of superconducting particles in the material. Assuming that ψ was
small for systems close to the critical temperature, they derived a phenomenological expression
of the free energy density EGL as an expansion in |ψ(x)|2 and |∇ψ|2. They got

EGL(ψ) = c1 |(−i∇ + 2A(x))ψ(x)|2 + c2W (x)|ψ(x)|2 + c3(1− |ψ(x)|2)2, (1.30)

20An illustrative example of a second order phase transition is given by the spontaneous magnetization of a
ferromagnet when the external magnetic field exceeds a certain threshold.

21For his related work on liquid helium, Landau received the Nobel Prize in Physics in 1962.
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whereW (x) is the electric potential, A(x) is the magnetic potential for which B(x) = ∇×A(x),
and ci, i = 1, 2, 3, are some constants. We recall that a stationary physical system always
arranges in such a way that it minimizes the describing energy. A minimizer of an energy
functional satisfies the corresponding Euler–Lagrange equations which in the present case are
obtained by minimizing EGL with respect to ψ. This yields the well-known Ginzburg–Landau
equations

c1 (−i∇ + 2A(x))2 ψ(x) + (c2W (x)− 2c3)ψ(x) + 2c3|ψ(x)|2ψ(x) = 0. (1.31)

If this equation has a nontrivial solution, then the system is in a superconducting state with
the density of superconducting particles at a given point x inside the conductor given by
|ψ(x)|2. With Ginzburg and Landau’s theory this space dependence could be calculated for
the first time. Furthermore, theirs was the first theory able to describe type-II superconductors
in which magnetic flux penetrates the conductor in a regular hexagonal structure22. But, all
its practical relevance notwithstanding, it is only a macroscopic theory.

1.2.2. Stationary BCS theory

The first and still most widely used microscopic theory for superconductivity was published
by Bardeen et al. (1957), commonly known as BCS, in 195723. In this work, the algebraic
structure of the second quantization and unitary transformations introduced by Bogoliubov
(1947) are used to derive a Hamiltonian of pairs of electrons with opposed spin, the famous
Cooper pairs. From a physical point of view, the system is in a superconducting state whenever
it is energetically advantageous for two electrons of opposed spin to form an entangled pair.
The higher the share of paired electrons, the more superconducting the system will be. Here,
we concentrate on the mathematical framework as it was that very formulation we have worked
with for our research24.

Just as the statistical physical description, the mathematical formulation of BCS theory for
a system of fermions is based on operators acting on the Hilbert space. In our case the
relevant operators are the density operator γ : L2(R3) 7→ L2(R3) and the (cooper) pair density
operator α : L2(R3) 7→ L2(R3). These operators are represented by their respective kernels
γ(x, y) ∈ L2(R3×R3) and α(x, y) ∈ L2(R3×R3). Later on, we will especially be interested in
α(x, y) which is interpreted physically as the probability of finding one half of a Cooper pair
at position x and the other at position y. In order to streamline notation, the convention is to
combine the two density operators in the 2× 2 matrix

Γ =

(
γ α
α 1− γ

)
, (1.32)

with the bar denoting complex conjugation. For a given chemical potential µ 25, a fermionic
system on a domain D ⊂ R3 at temperature T in a given state Γ is described by the energy
22A nice overview of the various phenomena connected with superconductivity and of Ginzburg–Landau theory

in particular can be found in (Cyrot, 1973).
23The relevance of this work can best be seen by noting that, according to Google Scholar, it is has been cited

more than 10000 times. Very rightly, thus, the authors were rewarded with a Nobel Prize in Physics in
1972.

24A detailed presentation of the mathematical framework for BCS theory can be found in (Bach et al., 1994).
25From a mathematical point of view, the chemical potential is nothing other than a Lagrange multiplier which

comes into play due to the conservation of the number of particles.
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1.2. Introduction to superconductivity

functional

FT (Γ) = Tr
([

(−i∇+A(x))2 − µ+W (x)
]
γ
)
− TS(Γ)

+

∫
D

V (x− y)|α(x, y)|2dxdy, (1.33)

where V is the interaction between the particles and where S is the entropy defined as

S(Γ) = −Tr [TrC2(Γ ln Γ)] . (1.34)

In some works, an exchange term
∫
D V (x − y)|γ(x, y)|2dxdy and a direct term

∫
D V (x −

y)γ(x, x)γ(y, y)dxdy are added to the functional, see, e.g., (Hainzl et al., 2010). Following the
original work of Bardeen et al. (1957), we omit these contributions in what follows. For later
use, we mention that for temperatures above Tc the minimizer of FT is given by the normal
state

ΓN =

(
γN 0
0 1− γN

)
, (1.35)

γN =
1

1 + exp ((−i∇+2A(x))2−µ+W (x)/T)
. (1.36)

This means the system is not superconducting and the electrons are distributed according to
the Fermi–Dirac statistics for fermions.

1.2.3. Superconductivity in BCS theory

According to the theory of BCS, a system is said to be superconducting whenever the Cooper
pair density α takes a finite value. Consequently, the critical temperature Tc for the onset
of superconductivity is defined as that very temperature T below which the minimizer of
the free energy functional (1.33) is minimized by states Γ with nonvanishing α. In this case,
there exists an energy gap between the superconducting state and a non-superconducting
state. This gap is conventionally denoted by ∆(p). The larger the gap, the more energetically
advantageous it is for the system to form Cooper pairs which flow freely through the material
under consideration. The energy gap ∆ satisfies the implicit equation

∆(p) = −
(
V̂ ∗ ∆

K∆
T

)
(p), (1.37)

with

K∆
T (p) =

√
(p2 − µ)2 + |∆(p)|2

tanh

√
(p2−µ)2+|∆(p)|2

2T

. (1.38)

Considering K∆
T as a multiplication operator in momentum space, one can also define the

critical temperature as that value Tc ≥ 0, for which

inf spec
(
K0
T + V

)
< 0, if T < Tc, (1.39)

K0
T + V ≥ 0, if T ≥ Tc. (1.40)
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Similarly, one can define the energy gap for a given temperature T as that ∆, for which

K∆
T + V (1.41)

has 0 as an isolated eigenvalue. It was shown by Hainzl et al. (2008) that these definitions are
analogous to the more physical ones above.

1.2.4. From microscopic to macroscopic scale

As opposed to Ginzburg–Landau theory, the microscopic formalism of BCS is considered valid
for all temperatures. Still, bearing in mind the satisfying results obtained via Ginzburg–Landau
close to the critical temperature, the question arises as to whether the latter is indeed an
approximation of the former. A positive answer to this questions for systems in a domain with
an extension of O(1/h) at temperature T = (1− h2)Tc, with h being a small parameter, was
given by Gorkov (1959). A rigorous analysis of the matter was carried out by Frank et al.
(2012). They obtained the following

Theorem 1.2. Let α0(x, y) be a minimizer of the translation invariant energy functional,
i.e., FT with vanishing W and A. Let Γ be a minimizer of FT and ψ be a minimizer of
FGL =

∫
D E

GLdx.

Then, one has

FT (Γ)−FT (Γ0) = h3(FGL(ψ)− c3) +O(h3+1/3), (1.42)

α(x, y) =
1

h2
ψ̃

(
x+ y

2

)
α0

(
x− y
h

)
+ ξ(x, y), (1.43)

with

‖ξ(x, y)‖L2 = O(h3+ 1
3 ), (1.44)

FGL(ψ̃) = FGL(ψ) +O(h
1
3 ). (1.45)

In a few words, this means that close to the critical temperature the centers of mass of the
Cooper pairs are distributed, up to a very small error, as given by an almost minimizer
of the Ginzburg–Landau functional. Hence, Ginzburg–Landau yields a physically correct
macroscopic picture26. This told, in the stationary case everything seems fine. But what about
time-dependent processes?

1.2.5. Time-dependence

Resorting to the transformations of Bogoliubov (1947), De Gennes (1966) derived the time-
dependent equations corresponding to the BCS energy functional27,28. In the mathematical
26The attentive reader may have noticed that, as opposed to the BCS functional, the magnetic potential

enters the Ginzburg–Landau functional with a factor of 2. If we took account of the physical constants, it
would be 2e instead of e (e being the charge of an electron). This is further ‘proof‘ of the fact that the
Ginzburg–Landau equation describes the center of motion of two particles.

27Therefore, the time-dependent BCS equations are often referred to as Bogoliubov–de-Gennes equations in
the literature.

28De Gennes received the Nobel Prize in Physics in 1991, although not for his work on superconductivity, but
for his work on polymers and crystals.
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setting of this work, the evolution equations of the –now time-dependent– 2 × 2 operator
valued Γt can formally be written quite compactly as

iΓ̇t = [HΓt ,Γt] , (1.46)

where the dot indicates differentiation with respect to time and HΓt is the self-consistent
Hamiltonian

HΓt =

(
−∆ +W V αt
V αt ∆−W

)
. (1.47)

With regard to the individual constituents of Γt, this translates into

iγ̇t = [−∆ +W,γt] + iGαt , (1.48)

with the operator Gαt defined via its integral kernel

Gαt(x, y) = i

∫
D

(αt(x, z)αt(y, z) [V (y − z)− V (x− z)]) dz, (1.49)

and

iα̇t(x, y) = (−∆x +W (x)−∆y +W (y) + V (x− y))αt(x, y)

−
∫
D

(γt(x, z)V (z − y)αt(z, y)) dz −
∫
D

(γt(y, z)V (z − x)αt(x, z)) dz. (1.50)

Although we will see below that these equations simplify for some special cases, they are very
complex to handle in general. Therefore, it would be nice to have a good approximation at
least on the macroscopic scale, i.e., a description of the important phenomena by a macroscopic
phase parameter subject to a time-dependent analog of the Ginzburg-Landau Eq. (1.31). Thus,
the search for a nonlinear, diffusive time-dependent partial differential equation started.

1.2.6. The argument over a time-dependent Ginzburg–Landau equation

After first attempts by Stephen and Suhl (1964); Schmid (1966); Abrahams and Tsuneto
(1966) among others, Gorkov and Eliashberg (1968) pointed out that, if anything, a nonlinear
equation could only by valid in the special case of so-called gapless superconductors. Ever
since, a lot of discussion has been going on in the theoretical superconductivity community
about whether or not a time-dependent Ginzburg–Landau-type equation does indeed exist,
see, e.g., (Cyrot, 1973; De Melo et al., 1993; Randeria, 1995). If so, It would be related to a
linearization of the equation of motion (1.50) for α which is obtained by replacing γt in the
coupling term by the corresponding initial particle density γ0. This linearization yields the
following equation of motion for the Cooper pair density:

iα̇t(x, y) = (−∆x +W (x)−∆y +W (y) + V (x− y))αt(x, y)

−
∫
D

(γ0(x, z)V (z − y)αt(z, y)) dz −
∫
D

(γ0(y, z)V (z − x)αt(x, z)) dz. (1.51)
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Advocates of the existence of a time-dependent Ginzburg–Landau equation reason that, when
expressing γt as

γt = γ0 + ηt, (1.52)

‖ηt‖/‖γt‖ = O(h) holds for T near the critical temperature. Thus, all relevant information of
the Cooper pair density can already be deduced from the linear Eq. (1.51). On the contrary, a
second camp among theoretical physicists says, ‖ηt‖ cannot be guaranteed to be small at all.
Consequently, they say, the linearization of the equations can lead to nonphysical artifacts
and the dissipative character of a time-dependent Ginzburg–Landau is just a such.

Right here, we enter the game as we will point out in the second part of the next Section.
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2. Objectives of this work

2. Objectives of this work
As told above, from a physical point of view this work is concerned with two very different
areas. Seen from a numerical point of view, they are not so different at all. Plainly speaking,
this thesis is about developing efficient and accurate integration tools for evolution equations
describing important physical processes and implementing and running smooth simulations29,
thus helping the physics community gathering precious insights into the nature of the equations
of interest. Let us detail the specific numerical problems and their physical background.

2.1. Mathisson–Papapetrou equations and Hamiltonian
approximation

Up to now, when astrophysicists wanted to find templates of signals of gravitational waves
coming from an EMRI, they have run simulations of the MP equations (1.9)-(1.11) supple-
mented by the Tulczyjew SSC (1.13), see, e.g. (Suzuki and Maeda, 1997; Hartl, 2003a). A
useful template for the detectors consists of a characteristic frequency pattern. In order to
obtain a such, numerical simulations have to run over long times to gather enough sampling
points for the necessary Fourier transform from the time domain into the frequency domain.
So far, simulations have always been run with standard explicit integration schemes from
Flannery et al. (1992) which are not suited for long-term integrations, c.f. (Hairer et al., 2006).

This makes it interesting in its own right to search for a more effective integration scheme
for the portrayed setting. However, in the course of this thesis, this has only been part of an
even more extensive undertaking. That is to say, physicists would really like to work with the
convenient Hamiltonian approximation of Barausse et al. (2009), if only they knew whether it
was trustworthy. This is not guaranteed by theorem 1.1 above because, firstly, the Hamiltonian
structure depends on using the Newton–Wigner SSC, which has to the best of the author’s and
his co-workers’ knowledge never been used in simulations so far, and, secondly, the tetrad the
authors introduced for their definition appears more or less out of the blue. Consequently, as
the SSC (1.14) depends on the tetrad, the MP solutions could be unphysical in the first place.

In this work, we want to clarify the two points. For this, we first have to compare the MP
solutions for the SSC (1.13) to those obtained via the Newton–Wigner SSC with wν = pν−µẽµT .
More precisely, we have to look at the respective solutions to the initial value problem

d xµ

dτ = vµ,
d pµ

dτ = −1
2 R

µ
νκλv

νSκλ − Γµνκvνpκ,
d Sµν

dτ = pµ vν − vµ pν + ΓµκλS
νκvλ − ΓνκλS

µκvλ,

xµ(τ = 0) = xµ0 ,

pµ(τ = 0) = pµ0 ,

Sµν(τ = 0) = Sµν0 ,

(2.1)

where the tangential velocity vµ has to be calculated with the help of Eq. (1.15) in case of
the Tulczyjew SSC or via Eq. (1.16) when employing the Newton–Wigner SSC instead. This
already poses some very intriguing problems. To start with, we have to find similar initial
29An explanation of the difficulties of the ‘running and implementing‘ part is given in Section 3.3.
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data for both simulations30. Then, we have to find an efficient and still accurate integration
scheme for the MP equations which is reliable for simulations over long times. In the case of
the Newton–Wigner SSC, the implicitness of Eq. (1.14) poses a very interesting additional
challenge.

As a second step, we have to compare the solutions of the system (1.9)-(1.11) plus (1.14) to
the solutions of the Hamiltonian approach. In order to do so, we have to find and implement
a suitable long-time integrator for the Hamiltonian system of Barausse et al. (2009). A further
challenge is given by the fact that the MP equations are parametrized by the proper time,
whereas the Hamiltonian approach rests on a parametrization by the coordinate time. So we
have to find a way to compare the respective solutions at the same times.

Anticipating the next Section, we have found that the tetrad of Barausse et al. (2009) gives
unphysical results in a certain limit. This was the starting point for the theoretical physics
community to look for better tetrads. Anticipating the next Section once again, we could show
that the Hamiltonians based on the new tetrads yield good results. Moreover, we investigate
the integrability of the corresponding systems. As the symplectic structure is a necessary
condition for a trustworthy investigation of EMRIs for chaos via surface of sections, this work
is also concerned with the implementation of an efficient algorithm for the calculation of these
sections.

2.2. Time-dependent BCS equations and possible
approximations

After convergence of the stationary minimizer of the BCS functional towards the solution
of Ginzburg–Landau was proven in the sense of theorem 1.2 by Frank et al. (2012), the
authors turned their attention towards the time-dependent case with the aim of applying
their analytical tools which they had honed further in convergence proofs for other physical
settings, see, e.g. (Hainzl and Seiringer, 2012; Hainzl and Schlein, 2013). But, in the case of
time-dependent BCS around the critical temperature, the situation was quite muddled even
from a physical point of view as we outlined in Subsection 1.2.6. Thus, in order to get an
understanding of the situation, the mathematical physics community was in need of some
simulations of the systems of interest. Delivering them was, in a few words, our numerical
task.

More specifically, in this work we consider the time-dependent BCS equations (1.48),(1.50)
for systems at temperatures T = (1 + h2)Tc, with h being a small parameter, for initial data
close to the minimizer of the BCS energy functional31. This immediately leads to the first
task, which is to find a way to obtain physically valid initial conditions.

Then, we have to evolve the system as governed by the equations of motion and track, in
particular, the behavior of the macroscopic quantity ψt defined as the projection of the Cooper
pair density αt onto the translation invariant minimizer α0, i.e., the time-dependent analog
of ψ of theorem 1.2. As the existence of a time-dependent Ginzburg–Landau equation first
and foremost depends on the validity of the linear approximation (1.51) of the Cooper pair
30Specifying physically valid initial values for general relativistic systems is no easy task and an area of research

on its own, see, e.g. (Walther et al., 2009) and references therein.
31Starting with a minimizer would not yield any interesting results because the system would simply remain in

the minimizing state, of course.
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2.3. List of the objectives

density’s equation of motion, we evolve both the full and the linearized equations. Regarding
the particle interaction V , we concentrate on contact interactions V (x) = −aδ(x) with positive
interaction constant a. These are the most popular interactions in particle physics. From a
numerical point of view, we then want to extend our tools to general potentials.

As the system (1.48),(1.50) would be very complex to solve in the most general form, we focus
on systems without external potentials, i.e., we set W (x) = 0 and A(x) = 0 and consider
translation invariant systems. This means that for the kernels of the operators γ and α we
have

γ(x, y) = γ(x− y), (2.2)

α(x, y) = α(x− y). (2.3)

Even in this situation, the resulting equations of motion represent an interesting problem
to work on from a numerical point of view. An additional difficulty lies in the fact that
the macroscopic quantify ψt varies on scales of the order O (1/h) in units of the microscopic
variables of BCS system. This implies that we have to work on different scales simultaneously.

2.3. List of the objectives

For the reader to have a compact overview, we sum up the tasks of the thesis in a list as
follows:

• Find and implement an efficient and accurate integration scheme for the Mathisson–
Papapetrou (MP) equations (1.9)-(1.11) supplemented by the spin supplementary condi-
tion (SSC) (1.13).

• Find and implement an efficient and accurate integration scheme for the Mathisson–
Papapetrou (MP) equations (1.9)-(1.11) supplemented by the SSC (1.14). In particular,
find a suitable way to cope with the nonlinearity of the ODE’s right hand side due to
Eq. (1.14).

• Find and implement an efficient and accurate integration scheme for the Hamiltonian
system (1.26)-(1.28).

• Implement efficient and accurate schemes for the respective Hamiltonian equations of
motion based on the various tetrads introduced in Chapter B, including an efficient and
reliable algorithm for the calculation of surfaces of sections.

• Find and implement reliable algorithms to find physically realistic initial values for the
equations of motion listed above.

• Find and implement an efficient and accurate solution scheme for the time-dependent
partial differential BCS equations (1.48),(1.50) for a translation invariant system with
contact interactions and vanishing external potentials.

• Find and implement reliable algorithms to find physically realistic initial values for the
BCS equations.

• Simulate the time-dependent BCS equations and its linear approximation (1.51) for
different sets of data and compare the resulting evolutions.

• Extend the numerical integration tools to general potentials.
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The results of our works on these tasks are summarized in the next Chapter. The detailed
results are given in Chapters A, B, C and D.
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3. Summary of the results

3. Summary of the results

The codes for the simulations of the Mathisson-Papapetrou equations, cf. Chapter A, have
been written in FORTRAN. All the other codes have been written in c++.

In this Chapter, we want to summarize what these codes were about and what was achieved
in the course of this thesis. This summary is meant to be self-contained so that the reader can
get an understanding of the publications corresponding to this thesis without having to go
through them. However, it is not meant to repeat the details published in our papers. On
the other hand, there are aspects which could only be mentioned briefly in the publications.
As they have been important nevertheless, we use the opportunity to be more specific about
them in this summary. We start with literally the heavier part.

3.1. On the Mathisson–Papapetrou equations and their
Hamiltonian approximations

As mentioned in the introduction, simulating an EMRI first of all requires a model for the
much heavier central body, i.e., a background metric gµν . For all projects in the course of
this thesis, we worked with the Kerr metric as it is this the most astrophysically relevant
solution to the Einstein field equations (1.1). It represents an interesting class of stationary,
axisymmetric black holes with massM rotating around their own axis with angular momentum
a. Conventionally, a is denoted as the spin of the black hole. The most common description
of a Kerr black hole uses the so-called Boyer-Lindquist coordinates. These are generalized
spherical coordinates r, θ, φ which are related to the Cartesian coordinates x, y, z via the
transformation

x =
√
r2 + a2 sin(θ) cos(φ), (3.1)

y =
√
r2 + a2 sin(θ) sin(φ), (3.2)

z = r cos(θ). (3.3)

From this relation, we see that the Boyer-Lindquist coordinates simplify to the usual spherical
coordinates in the case of a nonspinning black hole. Using these coordinates, the Kerr spacetime
metric is given by

gtt = −1 +
2Mr

Σ
, (3.4)

gtφ = −2aMr sin2 θ

Σ
, (3.5)

gφφ =
Λ sin2 θ

Σ
, (3.6)

grr =
Σ

∆
, (3.7)

gθθ = Σ, (3.8)
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with

Σ = r2 + a2 cos2 θ, (3.9)

∆ = $2 − 2Mr, (3.10)

$2 = r2 + a2, (3.11)

Λ = $4 − a2∆ sin2 θ. (3.12)

All non-specified components of the metric vanish identically. We easily see that the metric
does neither depend on the time t nor on the azimuthal angle φ. Thus, by a generalization of
Noether’s theorem32 to general relativity, the energy,

E = −pt +
1

2
gtµ,νS

µν , (3.13)

and the z-component of the total angular momentum,

Jz = pφ −
1

2
gφµ,νS

µν , (3.14)

are constants of motion of the Mathisson-Papapetrou equations33. These preserved quantities
came in handy for our first problem to solve.

3.1.1. Initial values for the Mathisson–Papapetrou equations

When we want to compare the different evolutions of the initial value problem (2.1) obtained
with the respective prescriptions (1.15) and (1.16) for the calculation of the tangential velocity,
we first have to make sure that both systems start very close to each other. This is no
trivial task because we cannot simply stipulate the values of xµ0 , p

µ
0 and Sµν0 . If so, we

would, firstly, risk to get unphysical values for physically important quantities such as the
above-introduced energy (3.13) and, secondly, we would miss another conceptual point: As
the different SSCs (1.13) and (1.14) prescribe two different reference frames, the phase space
points (xµ0 , p

µ
0 , S

µν
0 ) are not the same in both cases. Hence, even if we gave them the same

numerical value at the start of our simulations, one of the respective systems of constraints
would not be satisfied.

A way out is to resort to constraints and physically relevant scalar quantities. Each fixed value
of such a scalar and each fixed constraint eliminates one variable among xµ0 , p

µ
0 and Sµν0 . In

our work on the different SSCs for the MP equations, cf. Chapter A, we could take use of the
energy (3.13), the angular momentum (3.14), the mass of the test particle,

µ2 = −pµpµ, (3.15)

the spin length,

S2 =
1

2
SµνSµν , (3.16)

32 The theorem states that every symmetry of a system leads to a corresponding conserved quantity.
33gκµ,ν denotes the derivative with respect to xν of the metric component gκµ.

32



3.1. On the Mathisson–Papapetrou equations and their Hamiltonian approximations

as well as of the three constraints of the respective SSC in order to reduce the number of
variables from 14 to seven. Thanks to the metric’s axisymmetry and its independence of
coordinate time, we could further set t0 = φ0 = 0 without any loss of generality. This means
that we had to stipulate values for the four physical quantities E, Jz, µ2 and S2 as well as for
five phase space variables34. The remaining quantities can then be calculated with the help of
the seven relations at hand. In our paper, cf. Subsection A.4.1, we further reduced the number
of equations with the help of the following relations: For the SSCs one can introduce a spin
four-vector via

Sµ = −1

2
ηµνρσu

νSρσ, (3.17)

where uν = pν/µ, in case of the Tulczyjew SSC, and via

Sµ = − 1

2µ
ηµνρσω

νSρσ (3.18)

for the Newton–Wigner SSC. The Levi–Civita density tensor ηµνρσ is introduced in (A.16)
below. With the help of the SSCs, one can also infer the inverse relations

Sρσ = −ηρσγδSγuδ (3.19)

and

Sρσ = ηρσγδSγ
µωδ
ωνων

, (3.20)

respectively. In terms of the spin four-vectors, the SSCs take the form

Sµp
µ !

= 0 (3.21)

and

Sµω
µ !

= 0. (3.22)

For a more thorough discussion on these relations, we refer the interested reader to Subsec-
tion A.2.1.

We can ‘spent‘ two of the three SSC constraints to go from the spin tensor with six independent
data to the four-vector. Furthermore, setting t0 = φ0 = 0, we can reduce the number of free
phase space variables from 14 to ten. Fixing the energy E, the total angular momentum Jz, the
spin length S2 and the mass µ2 and adding the remaining SSC constraint (3.21) or (3.22), one
remains with five phase space variables to stipulate. In the work of Chapter A, we implemented
a scheme which takes initial values for r, θ, pr, Sr and Sθ as well as values for E, Jz, µ2 and
S2 and then calculates the remaining quantities pt, pθ, pφ, St and Sφ with a Newton–Raphson

34Here, we do neither count t0 nor φ0.
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root finder applied to the nonlinear system35

0 = E + pt +
1

2µ
gtµ,νη

µνγδSγpδ, (3.23)

0 = Jz − pφ −
1

2µ
gφµ,νη

µνγδSγpδ, (3.24)

0 = µ2 + gµνpµpν , (3.25)

0 = S2 − gµνSµSν , (3.26)

0 = gµνSµpν , (3.27)

see Subsection A.4.1 for more details36. Physical experience has it that the terms gtµ,νηµνγδSγpδ
and gφµ,νηµνγδSγpδ are small compared to pt and pφ. Taking this into account, we got very
good initial guesses for the iteration by setting pt = E, pφ = Jz, and calculating the initial
guess for pθ via Eq. (3.25). As for the spins, we chose St = Sθ and determined the initial
guess for Sφ by relation (3.26). With this, we solved the nonlinear equations up to rounding
errors within three or four iterations in all our tests.

This told, we could deliver reasonable data with the same physical properties for both settings
to start the simulations of the MP equations with. The next step was to provide the appropriate
tools to run them. These tools, as all the integration schemes for the evolution of binary
systems in this work, rely on Gauss Runge–Kutta methods. Therefore we next give a short
summary of their important properties.

3.1.2. Gauss Runge–Kutta methods

An s-stage Gauss Runge–Kutta method is an implicit Runge–Kutta scheme

yn+1 = yn + h

s∑
i=1

bif(Yi), (3.28)

Yi = yn + h

s∑
j=1

aijf(Yj), i = 1, ..., s, (3.29)

which belongs to the subclass of the so-called collocation methods.

Given an interval [τn, τn+1 = τn +h], stages 0 ≤ c1 < ... < cs ≤ 1, and an initial value problem{
y(τn) = y0,
dy
dτ = f(τ,y),

(3.30)

the polynomial u(τ) of degree s, satisfying{
u(τn) = y0,

u̇(τn + cih) = f(τn + cih, u(τn + cih)), i = 1, ..., s,
(3.31)

35In the case of the Newton–Wigner SSC, Eq. (3.26) is replaced by Eq. (A.23) and Eq. (3.27) is substituted by
0 = gµνSµων .

36We chose r, θ, pr, Sr and Sθ as the free parameters for our initial value finder as these are the quantities
which have already been used in (Hartl, 2003a).
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3.1. On the Mathisson–Papapetrou equations and their Hamiltonian approximations

is called a collocation polynomial.

In order to solve an initial value problem (3.30) by collocation, one has to find the polynomial
u(τ) which satisfies the collocation conditions (3.31). This gives an approximate solution of
the initial value problem after a time step h by setting

y(τn+1)col := u(τn+1). (3.32)

It can now readily be shown, see, e.g., (Hairer et al., 1993), that a collocation method is
equivalent to an implicit s-stage Runge-Kutta scheme (3.28),(3.29) with coefficients

aij =

ci∫
0

lj(τ)dτ, (3.33)

bj =

1∫
0

li(τ)dτ. (3.34)

Here, li(τ) denote the Lagrange-polynomials of degree s,

li(τ) =
∏
i 6=j

τ − cj
ci − cj

. (3.35)

Depending on which set of stages 0 ≤ c1 < ... < cs ≤ 1 is chosen, different collocation methods
can be constructed37. By setting

ci =
1

2
(1 + c̃i), (3.36)

with c̃i being the roots of the Legendre-polynomial of degree s, one obtains a Gauss collocation
method or Gauss Runge–Kutta method as they are referred to throughout most of our works.
Very importantly, they have the following properties38:

(i) The schemes have a convergence order 2s, i.e., one has

y(τn)− yn = O
(
h2s
)
, (3.37)

which is the highest possible order among all Runge–Kutta schemes, see, e.g., Hairer
et al. (1993).

(ii) The collocation polynomial u(τ) satisfying the collocation conditions (3.31) is given by
the interpolation polynomial through the points (τn,yn), (τn+ c1h,Y1),...,(τn+ csh,Ys).
It further satisfies

y(τ)− u(τ) = O(hs) (3.38)

for all τ ∈ [τn, τn+1].

37A detailed introduction to collocation methods can be found in (Hairer et al., 1993).
38An extensive analysis of the listed properties can be found in the monograph (Hairer et al., 2006).
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(iii) The schemes are symplectic, i.e., with Φh denoting their numerical flow which maps the
solution yn at one step to the one at the next step via

yn+1 = Φh(yn), (3.39)

one has(
∂Φh(y)

∂y

)T
J

(
∂Φh(y)

∂y

)
= J, (3.40)

J =

(
0 Id
− Id 0

)
.

Therefore, Gauss Runge–Kutta methods preserve the structure of symplectic systems.
These are systems described by autonomous initial value problems (3.30) whose right
hand side is given by

f(y) = J−1∇H(y), (3.41)

with a differentiable real valued function H which is most commonly denoted as the
Hamiltonian.

(iv) The schemes are variational integrators, i.e., for physical systems described by an action

S =

τn+1∫
τn

L(y(τ), ẏ(τ))dτ (3.42)

one can show, cf. Marsden and West (2001), that

yn+1 = u(τn+1), (3.43)

where u(t) is a minimizer of the discretized action

S̃ =

s∑
i=1

L(u(τn + cih), u̇(τn + cih)). (3.44)

(v) The schemes, when applied to systems they share some structure with, preserve the
constants of motion up to arbitrarily small errors over extremely long time scales.
Furthermore, the overall numerical error growths only linearly in time which is much
slower than for explicit standard integration schemes.

When executing a step with a Gauss Runge–Kutta scheme, one first has to solve the system of
implicit equations (3.29) via a fixed-point iteration

Yk+1
i = yn + h

s∑
j=1

aijf(Yk
j ). (3.45)

This, of course, requires more calculations per time step than an explicit scheme with the same
number of stages. But, this extra effort is more than offset by the high accuracy of Gauss
Runge–Kutta methods which allows to apply them with a much larger step size. Detailed
information on their efficient implementation is given in Seyrich (2013, Section 7) and Hairer
et al. (2006, Chapters VIII.5 and VIII.6).

Let us now turn towards the evolution of the MP equations.
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3.1. On the Mathisson–Papapetrou equations and their Hamiltonian approximations

3.1.3. Integrating the Mathisson–Papapetrou equations

From a numerical point of view, we had to solve an initial value problem{
dy
dτ = f(y),

y(τ = 0) = y0,
(3.46)

with y = (t, r, ..., Sθφ, Sθθ)T ∈ R24 and f : R24 → R24 specified by the first three lines of the
system (2.1) together with the respective SSC we were considering. As of the vector of initial
values y0 ∈ R24, it can be obtained by our method introduced in Section 3.1.1 above.

As a first step, we noticed that due to the antisymmetry of the tensor Sµν , the axisymmetry
and the stationarity of the Kerr metric, it is sufficient to just evolve

ỹ =
(
r, θ, pt, pr, pθ, pφ, Str, Stθ, Stφ, Srθ, Srφ, Sθφ

)T
∈ R12 (3.47)

without any loss of information. For the sake of readability, we will skip the tilde in the
following.

For the next step, we took use of the following

Theorem 3.1. There exists some Lagrangian function such that the Mathisson–Papapetrou
equations of motion can be obtained by minimizing the corresponding action.

This fact was shown by Porto (2006) based on previous works by Westpfahl (1969) and Bailey
and Israel (1975) and says that the Mathisson–Papapetrou equations can be considered as
the Euler–Lagrange equations of a suitable Lagrangian39. Consequently, they approximately
share a common structure with Gauss Runge–Kutta schemes which are in fact variational
integrators as we have just explained in the last Subsection 3.1.2. Bearing in mind property (v)
mentioned in that Subsection, we thus employed Gauss Runge–Kutta schemes to the initial
value problem (3.46) –or rather its 12-dimensional subproblem. In the case of the MP equations
supplemented by the Tulczyjew SSC, this yielded an integrator which preserves the constants
of motion over very long times as can be seen in Fig. A.9. Additionally, it is much faster than
standard explicit schemes as it can be employed with much larger step sizes, cf. Section A.7
from our corresponding publication of Chapter A.

With regard to the Newton–Wigner SSC, we still had to find a way to cope with the implicit
specification of the tangential velocity (1.16). Calculating the covariant derivative of wν , this
equation takes the form

vµ =
1

ωνpν

(
(ωνv

ν)pµ + Sµν
[

dων
dτ
− Γκνµv

µ

])
, (3.48)

i.e., vµ also appears in the second part of the right hand side. From a mathematical point of
view, Eq. (3.48) takes the form

~v = A(xµ, pµ, Sµν)~v, (3.49)

with A ∈ R4×4 and

~v :=
(
vt, vr, vθ, vφ

)T
∈ R4. (3.50)

39 See also (Barausse et al., 2009, Sec. III.A) for a detailed discussion of the topic.
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For every inner-stage value Yi, i = 1, ..., s, f(Yi) has to be calculated for use in the Runge–
Kutta implicit system (3.29). Each of this calculations requires the solution of

~vi = A(Yx
i ,Y

p
i ,Y

S
i )~vi, (3.51)

where Yx
i denote the components of Yi associated with the position variables and where Yp

i ,
YS
i are defined accordingly.

The first idea we introduced was to augment the implicit system (3.29) that has to be solved
anyway by adding Eq. (3.51), thus obtaining

~vi
Yx
i

Yp
i

YS
i

 =


A(Yx

i ,Y
p
i ,Y

S
i )~vi

yxn + h
∑s

j=1 aij~vi
ypn + h

∑s
j=1 aijf

p(Yx
i ,Y

p
i ,Y

S
i , ~vi)

ySn + h
∑s

j=1 aijf
S(Yx

i ,Y
p
i ,Y

S
i , ~vi)

 ,

i = 1, ..., s. (3.52)

But, when implementing this idea, we encountered problems with the convergence regardless
of the iteration we applied to the system, cf. Section A.7. As a consequence, the mathematical
beauty of the idea notwithstanding, we had to discard it and to search for another solution.
For this, we used the following result from linear algebra:

Theorem 3.2. For every matrix A ∈ Rn×n, there exist orthogonal matrices U ∈ Rn×n and
V ∈ Rn×n and so-called singular values σ1, ..., σn, such that the singular value decomposition

A = UΣV T (3.53)

holds with Σ = diag(σ1, ..., σn).

Furthermore, the number of finite valued σi is equal to the rank of A and the nullspace ker(A)
of A is given by

ker(A) = span (vj |σj = 0) , (3.54)

i.e., it is spanned by the columns of V corresponding to vanishing singular values.

A very stable iterative method for the calculation of the singular value decomposition (3.53)
based on QR-decompositions was developed by Golub and Kahan (1965).

From the fact that Eq. (3.51) can, of course, be written in the form

0 =
(
I −A(Yx

i ,Y
p
i ,Y

S
i )
)
~vi =: B(Yx

i ,Y
p
i ,Y

S
i )~vi, (3.55)

we see that ~vi is an element of the nullspace of the just-defined matrix B. Taking into account
the physical constraint (1.12), we can further specify ~vi to be that very element of ker(B), for
which vµvµ = −1 holds40. Consequently, we could introduce a scheme which takes use of the
singular value decomposition algorithm of Golub and Kahan (1965) as follows:

• Calculate

B(Y x
i , Y

p
i , Y

S
i ) = I −A(Y x

i , Y
p
i , Y

S
i ). (3.56)

40From physical considerations, cf. Subsection A.2.2, we know that dim ker(B) = 1.
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3.1. On the Mathisson–Papapetrou equations and their Hamiltonian approximations

• Calculate the singular value decomposition of B and therewith the column of the
orthogonal matrix V.,i corresponding to the only singular value σi which is equal to 0.

• Obtain the tangential velocity by renormalizing V.,i in order to have vµvµ = −1.

In numerical tests it turned out that the computation of the matrix B and its singular value
decomposition was much faster than the other computations in the calculation of the equation
of motion’s right hand side41, cf. Section A.7.

With the help of our algorithms, the long-time behavior of the Mathisson–Papapetrou equations
with the two different SSCs (1.13) and (1.14) could be compared in a thorough numerical
study, see Section A.4. The result, in a few words, was that the there is a discrepancy between
the two prescriptions which is negligible for small spins S of the test particle but grows linearly
as a function of this spin. Namely, the relative error in the mass of the test particle µ2, which
is a constant of motion for the MP equations supplemented by the Tulczyjew SSC, has been
shown by our numerical investigation to scale with S2 in the case of the Newton–Wigner SSC.
Furthermore, the length of the spin itself is not preserved either. In the range of physically
relevant spins, however, the two approximations are in good agreement. This implies that
the Hamiltonian approach of Barausse et al. (2009) is based on sound foundations, i.e., on a
reasonable SSC. In order to check whether the approach itself is justified, we had to develop a
long time integration scheme for the arising Hamiltonian equations (1.26)-(1.28).

The according scheme, as well as all our further works on binary systems, relied on a coordinate
transformation of the Hamiltonian system which we present next.

3.1.4. Symplectic structure of the Hamiltonian approximation

Mathematically speaking, the Hamiltonian equations considered in the course of this thesis
possess a so-called Poisson structure, i.e., with

y = (P1, P2, P3, x
1, x2, x3, S1, S2, S3)T ∈ R9, (3.57)

they can be written as

ẏ = B(y)∇H(y), (3.58)

where B : R9 → R9×9 is a skew-symmetric matrix-valued function given by

B(y) =

 0 −I3×3 0
I3×3 0 0

0 0 B1(y)

 , (3.59)

with

I3×3 =

1 0 0
0 1 0
0 0 1

 , (3.60)

B1(y) =

 0 −S3 S2

S3 0 −S1

−S2 S1 0

 . (3.61)

41 This is although the calculation of the singular value decomposition requires quite some iterations. But, still,
this effort is negligible in comparison with the calculation of all the tensors appearing in the MP equations.
This shows once more how time-consuming simulations in general relativity are (see also Section 3.3).
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This structure allows us to adapt to our setting a previous result of the author in the realm of
post-Newtonian equations, see (Seyrich, 2013). Namely, for the system (3.58) the Euclidean
norm S of the spin vector

S =

S1

S2

S3

 (3.62)

is preserved due to

dS2

dt
= 2 S · dS

dt
= 2 S · (∇SH × S) = 2 ∇SH · (S× S) = 0. (3.63)

Hence, the three dimensional spin (3.62) can be written as a function of two variables α ∈ [0, 2π)
and ξ ∈ [0, S] as

S =


√
S2 − ξ2 cos(α)√
S2 − ξ2 sin(α)

ξ

 . (3.64)

Regarding the evolution of the two new variables, we could show the following

Theorem 3.3. The time evolution of the variables α and ξ, introduced in relation (3.64), is
governed by

dξ

dt
= −∂H

∂α
, (3.65)

dα

dt
=
∂H

∂ξ
. (3.66)

The proof is similar to the one for the post-Newtonian equations in (Seyrich, 2013). We first
notice that by definition of α and ξ, we have

∂H

∂α
=
∂H

∂S1

∂S1

∂α
+
∂H

∂S2

∂S2

∂α
, (3.67)

∂H

∂ξ
=
∂H

∂S1

∂S1

∂ξ
+
∂H

∂S2

∂S2

∂ξ
+
∂H

∂S3

∂S3

∂ξ
, (3.68)

∂S1

∂α
= −

√
S2 − ξ2 sin(α) = −S2, (3.69)

∂S2

∂α
=
√
S2 − ξ2 cos(α) = S1, (3.70)

S3 = ξ. (3.71)

Deriving relation (3.71) with respect to t yields

dξ

dt
=

dS3

dt
=
∂H

∂S1
S2 −

∂H

∂S2
S1. (3.72)

Replacing S1 and S2 with the help of relations (3.69) and (3.70), respectively, and then
applying Eq. (3.67), we arrive at

dξ

dt
= − ∂H

∂S1

∂S1

∂α
− ∂H

∂S2

∂S2

∂α
= −∂H

∂α
, (3.73)
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3.1. On the Mathisson–Papapetrou equations and their Hamiltonian approximations

which proves the equality (3.65).

Concerning the second statement of the theorem, we equate the time derivatives of S1 and S2

given by the equation of motion (3.58) to the ones obtained with the chain rule applied to
definition (3.64). This yields

∂H

∂S2
S3 −

∂H

∂S3
S2 =

dS1

dt
=
∂S1

∂ξ

dξ

dt
+
∂S1

∂α

dα

dt
, (3.74)

∂H

∂S3
S1 −

∂H

∂S1
S3 =

dS2

dt
=
∂S2

∂ξ

dξ

dt
+
∂S2

∂α

dα

dt
. (3.75)

Subtracting the second equation multiplied by ∂S1
∂ξ from the first equation multiplied by ∂S2

∂ξ
leads to(

∂S1

∂α

∂S2

∂ξ
− ∂S2

∂α

∂S1

∂ξ

)
dα

dt
=
∂H

∂S2

∂S2

∂ξ
S3 −

∂H

∂S3

∂S2

∂ξ
S2

− ∂H

∂S3

∂S1

∂ξ
S1 +

∂H

∂S1

∂S1

∂ξ
S3. (3.76)

This equation, in turn, can be transformed to

S3
dα

dt
= S3

(
∂H

∂S1

∂S1

∂ξ
+
∂H

∂S2

∂S2

∂ξ
+
∂H

∂S3

∂S3

∂ξ

)
. (3.77)

The term in brackets can be replaced with the help of relation (3.68) whereafter a division by
S3 yields the second equality of the above theorem.

Crucially, theorem 3.3 states that the Hamiltonian approximation to the Mathisson–Papapetrou
equations, when expressed in new variables

z := (P1, P2, P3, ξ, x
1, x2, x3, α) ∈ R8, (3.78)

is of symplectic form, i.e., the equations of motion are given by

dz

dt
= J−1∇H(z). (3.79)

Let us now explain how we used this fact for the numerical treatment of the equations.

3.1.5. Integrating the Hamiltonian equations

Having shown that the Hamiltonian equations of Barausse et al. (2009) possess a symplectic
structure, we applied the Gauss Runge–Kutta schemes introduced in Subsection 3.1.242. Doing
so, we could provide an accurate and efficient scheme which easily outperforms its explicit
rivals as is illustrated in Fig. A.10 of our corresponding paper, cf. Chapter A. With the help
of our scheme, the Hamiltonian formalism of Barausse et al. (2009) could be compared to the
evolution governed by the Mathisson–Papapetrou equations supplemented by the Newton–
Wigner SSC in numerical long time studies, cf. Section A.5. But, before being able to compare
the respective results, one further obstacle had to be removed:
42With the results of the last Subsection in mind, this now seems to be a trivial exercise. However, implementing

an integrator for the general relativistic kind of Hamiltonian equations is no easy task, c.f. Section 3.3.
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The evolution of the Mathisson–Papapetrou equations were calculated with respect to proper
time τ . The Hamiltonian approximation, in turn, relies on a parametrization by coordinate
time t. As we did not want to reformulate the MP equations and implement and run them
again43, we instead pursued the following idea: Having the time-component of the velocity, vt,
at hand, we could calculate the coordinate time tMP corresponding to the proper time of each
output we had from the MP evolutions. These times were fed as input to the Hamiltonian
simulations. Then, if in the simulation of the Hamiltonian system one of these times was crossed
between two time steps ti and ti+1, we used the collocation property of the Gauss schemes,
cf. property (ii) in Subsection 3.1.2. More precisely, we calculated, at negligible computational
costs, the values of the collocation polynomial u at time tMP. Owing to the approximation
property (3.38) of u(t), we thus obtained the results of the Hamiltonian equations of motion
up to O(hs). These results could than be compared to the projection onto the Hamiltonian
subspace of the MP phase space variables at tMP.

The numerical studies showed clear discrepancies between the respective evolutions for large
spins. Similarly to the differences between the particular SSCs, these discrepancies declined
with the spin magnitude. Hence, for physically reasonable spins of 10−6 ≤ S ≤ 10−4, the
Hamiltonian approximation was in good agreement with the MP equations. This proved
that the Hamiltonian approach does indeed yield a good approximation to the Mathisson–
Papapetrou equations with NW SSC.

But as mentioned above, the Hamiltonian in (Barausse et al., 2009) is based on a reference
system fixed by a not-well-motivated choice of tetrad44. Not surprisingly, we wanted to check
the viability of this tetrad. Let us talk about the according endeavor in the following.

3.1.6. Triggering the search for physical tetrads

One of the most reliable ways of investigating the viability of physical assumptions is to check
whether scalar physical quantities, which are known to be constants of motion, are preserved
under the assumptions in consideration. In Kerr spacetime both the energy (3.13) and the
z-component of the total angular momentum (3.14) are constants of the MP equations, no
matter which SSC is used, i.e., regardless of whether or not some tetrad field appears in the
SSC. Therefore, we looked at the physically interesting limit of a Schwarzschild spacetime.
This historically first and easier analytic solution to Einstein’s field equations (1.1) represents
the nonrotating limit a → 0 of the Kerr spacetime. It is well-known, see, e.g., (Suzuki and
Maeda, 1997), that in a Schwarzschild the total angular momentum is preserved. This gave
us two more criteria to check the tetrad field with. For this, we set a = 0 and repeated our
Hamiltonian simulations, measuring Jx and Jy in the process. It turned out, cf. Fig B.1 in
Section B.3, that neither of the additional constants of motion was preserved. With this, we
showed that the Hamiltonian approach in its original form in (Barausse et al., 2009) leads to
artifacts when physically important quantities are looked at.

This was the starting point of the search for a better suited tetrad field, i.e., a more physical
observer frame, to build a Hamiltonian upon. In the wake of this enterprise, our collaborators
from the theoretical physics community came up with various new tetrads based on a refined
formalism of Barausse and Buonanno (2010). These new tetrads are introduced and analyzed

43Cf. Section 3.3.
44The exact form of this tetrad can be found in Eqs. (A.51).
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3.1. On the Mathisson–Papapetrou equations and their Hamiltonian approximations

in the paper corresponding to Chapter B together with an improved tetrad of Barausse and
Buonanno (2010). The numerical investigation of their behavior required integration tools
for some more Hamiltonian equations of motion. As, from a numerical point of view, all
the Hamiltonians obtained with the respective tetrads have the same structure (3.58) as
the original one, we could again take use of their symplectic structure and employ Gauss
Runge–Kutta methods in order to obtain efficient integrators. Theoretically, this sounds nice.
However, each new tetrad gives rise to a completely different Hamiltonian, which then has to
be derived with respect to xi, Pi and SI . This yields a totally new set of equations of motion
to be implemented.

What is more, the new Hamiltonians are based on different coordinates. The tetrads introduced
in Section B.4 from our publication of Chapter B use the so-called Kerr–Schild coordinates. By
doing so, one disadvantage of the Boyer-Lindquist coordinates could be circumvented. To be
more precise, the Kerr metric in Boyer-Lindquist coordinates (3.4)-(3.8) has two singularities.
One is given by Σ = 0, the other by ∆ = 0. It turns out that the singularity ∆ = 0 is a
coordinate singularity45. As a consequence, numerical simulations, when approaching this
singularity, risk to break down although the test particle is still somewhat away from the
central anomaly. The metric in Kerr–Schild coordinates (B.49) does not have this singularity46,
thus allowing numerical simulations to go closer to the central black hole. This convenient
property of the Kerr–Schild coordinates is illustrated in Fig. B.6 from our publication of
Chapter B. On the other hand, the Hamiltonian equations in these coordinates, although
sharing the same Poisson structure, consist of even more terms than the Hamiltonian equations
in Boyer-Lindquist coordinates.

From a physical point of view, the newly suggested tetrad fields behave much better than the
original one as is detailed in Subsections B.4.1 and B.4.2 of our corresponding publication.
Combining these findings with the results above, it has thus been shown that a Hamiltonian
approximation to the MP equations based on a sensible tetrad field yields reliable results.
As a consequence, other convenient properties of a Hamiltonian formalism can be used to
further analyze the behavior of extreme mass ratio binary systems. One important aspect is
the investigation of a system for chaos with the help of surface sections which was done for
the first time in our publication of Chapter B. As the concerning procedure was only outlined
very concisely in the publication, we explain it now.

3.1.7. Calculating surfaces of sections

For a symplectic system with two degrees of freedom, one of the most reliable tools to check
the system for chaos with are so-called Poincaré sections47. Summarizing their nature in a few
words, each time the variable describing one of the two degrees of freedom takes a fixed value,
i.e., passes a fixed section, the variable and the corresponding canonically conjugate variable
of the other degree of freedom are plotted against each other. Doing so for many sections
yields characteristic patterns which look similar to the example in the left panel of Fig. 3.1 for
nonchaotic orbits and resemble the example in the right panel of Fig. 3.1 for chaotic systems.

For symplectic systems with more degrees of freedom the calculation of Poincaré sections is

45Its physical meaning is that of the black hole’s horizon.
46Due to this fact, the Kerr–Schild coordinates are said to be ‘horizon penetrating‘.
47An introduction to Poincaré sections can be found in (Seyrich, 2012, Chapter 2.1).
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Figure 3.1: Illustration of a Poincaré section for an integrable orbit (left panel) and a chaotic
orbit (right panel). Courtesy of Seyrich (2012).

more involved48. However, one can still get a first impression of the dynamical behavior with
the help of two-dimensional surfaces of section. Here, one again fixes a certain surface and
plots two variables at these sections against each other. In our publication of Chapter B,
we calculated such sections for the improved Hamiltonian of Barausse and Buonanno (2010).
For this, we considered the θ = π/2-plane and tracked the values at this plane of r and Pr.
The resulting plots, cf. Fig. B.3, indicate chaotic motion for spinning particles in a Kerr
background. This is an interesting physical finding because the hitherto assumption has
been that linear-in-spin approximations of spinning test particles cannot yield chaotic motion,
c.f. (Hinderer et al., 2013).49

The calculation of these sections is also interesting from the numerical point of view, as one
cannot expect the simulation to reach the θ = π/2-plane exactly at the discrete times of the
numerical integration. For the implementation of a reliable and convenient algorithm, we could
take use of the Gauss Runge-Kutta schemes’ collocation property, i.e. property (ii) introduced
in Subsection 3.1.2.

In detail, let us suppose we have crossed the plane in the step from tn → tn+1, i.e., cos(θn) ·
cos(θn+1) < 0. We can then use the collocation property to calculate the θ-component of
the collocation polynomial u(t) and calculate its root tsection by means of a fast bisection
method50. With this method, the root is located up to an error of O(hs). We can then
calculate all the other required phase space variables by evaluating u(t) at time tsection. Thanks
to property (3.38), this yields an approximation to the correct phase space values at the section
up to O(hs). In order to illustrate the accuracy of our proposed approach, we plot the relative
error of the Hamiltonian at the sections of Fig. B.3, defined as

∆Hsection =

∣∣∣∣H(y(tsection))−H(y(0))

H(y(0))

∣∣∣∣ , (3.80)

48 A study of test particles in a Kerr background which aims to combine constants of motion and an approach
for three degrees of freedom of Katsanikas and Patsis (2011) in order to calculate meaningful Poincaré
sections is currently in the making.

49In the publication of Chapter B, we used a further surface of section, c.f. Fig. B.2, as another proof of the
unphysical behavior of the original tetrad of Barausse et al. (2009).

50Or rather the root of uθ(t)− π/2, to be more precise.
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in Fig. 3.2.
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Figure 3.2: The relative error of the Hamiltonian, ∆Hsection, calculated for the phase space
points of the sections of Fig. B.3.

With this result, we end the summary of our results and contributions concerning the very
massive objects. Now, we want to lose some weight and consider the comparably much smaller
Cooper electrons. As outlined in the Introduction, their motion in a superconducting material
is governed by the time-dependent BCS equations which were the topic of the second part of
this thesis.

3.2. On the integration of the time-dependent BCS equations

For a given temperature T , the one-dimensional translation invariant systems of superconduct-
ing particles we considered in this thesis are described by the free energy functional

FT (Γ) =

∫
R

(p2 − µ)γ̂(p)dp+

∫
R

|α(x)|2V (x)dx− TS(Γ), (3.81)

where the entropy is now given by

S(Γ) = −
∫
R

TrC2 (Γ(p) log Γ(p)) dp. (3.82)

For such systems with a contact interaction, the critical temperature is implicitly given by

2π

a
=

∫
R

tanh
(
p2−µ
2Tc

)
p2 − µ

dp, (3.83)

and the implicit equation for the energy gap at temperatures T < Tc takes the form

2π

a
=

∫
R

1

K∆
T

dp, (3.84)

with K∆
T as defined in Eq. (1.38), see, e.g. (Frank et al., 2013).
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In this setting, the corresponding time-dependent BCS equations are conventionally written in
terms of the Fourier transforms, i.e., the momentum space representations

γ̂t(p) =
1

2π

∫
R

γt(x)eipxdx, (3.85)

α̂t(p) =
1

2π

∫
R

αt(x)eipxdx. (3.86)

In this basis, the self-consistent equations take the form

iΓ̇t(p) =
[
HΓt(p),Γt(p)

]
, p ∈ R, (3.87)

where the Hamiltonian is given by

HΓt(p) =

(
p2 − µ 2[V̂ ∗ α̂t](p)

2[V̂ ∗ α̂t](p) µ− p2

)
, (3.88)

with ∗ denoting the convolution of V̂ with α̂t.

As explained in Section 2.2, we were interested in systems at temperatures T = Tc(1 + h2)
with extensions of O(1/h) which is the scale on which physical effects are expected to occur51,
see e.g. (Frank et al., 2012). In order to render the system computationally feasible, one has to
restrict it to a domain D = [0, L2π], N 3 L > 1/h, and to assume periodic boundary conditions.
On the finite domain D, the momenta consist of the discrete set k ∈ 1/LZ. The momentum
space representations of α and γ are given by

γ̂t(k) =
1

L2π

L2π∫
0

γt(x)eikxdx, (3.89)

α̂t(k) =
1

L2π

L2π∫
0

αt(x)eikxdx. (3.90)

In terms of these representations, the BCS equations read

iΓ̇t(k) =
[
HΓt(k),Γt(k)

]
, k ∈ 1

L
Z, (3.91)

where the convolution appearing in the Hamiltonian is now to be understood as(
V̂ ∗ α̂t

)
(k) =

∑
j∈Z

V̂k−jα̂t(j). (3.92)

The first step we had to make was to discretize the equations of motion (3.91) in space in
order to obtain a system of ordinary differential equations (ODEs).

51The microscopic scale is O(1) for the units we have chosen.
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3.2.1. Space discretization

As the BCS equations are given in their momentum space representation anyway, the standard
way for a space discretization is by means of the so-called Fourier collocation. This means that
for a fixed number K ∈ N, a L2π-periodic function f(x) =

∑
j∈Z f̂(j)eik/Lx is approximated by

fK(x) =

K
2
−1∑

k=−K
2

f̂K(k)ei k
L
x, (3.93)

where the coefficients f̂K(k) are obtained by the discrete Fourier transform of the values fj =
f (L2π/K · j), j = −K/2, ...,K/2− 1. From numerical analysis, cf. (Lubich, 2008, Chapter III.1),
we cite the following well-known

Theorem 3.4. Let f be periodic and s times continuously differentiable. Let fK be the
corresponding collocation polynomial (3.93). Then,

‖f(x)− fK(x)‖ ≤ CK−sLs‖dsf

dxs
‖ (3.94)

holds for some constant C independent of the number of basis functions K.

In order to obtain an ODE system, we inserted the ansatz

γKt (x) =

K
2
−1∑

k=−K
2

γ̂Kt (k)ei k
L
x, (3.95)

αKt (x) =

K
2
−1∑

k=−K
2

α̂Kt (k)ei k
L
x, (3.96)

into the infinite dimensional system (3.91) and used that the contact interactions V (x) = −aδ(x)
we were interested in are given in momentum the subspace by

V̂ (k) = − a

2Lπ
, −K

2
≤ k ≤ K

2
− 1. (3.97)

After some manipulations, c.f. Subsection D.3, this yielded the system

γ̇Kt (k) =
2a

Lπ

qt(k)

K/2−1∑
j=−K/2

pt(j)− pt(k)

K/2−1∑
j=−K/2

qt(j)

 , (3.98)

iα̇Kt (k) = 2

(
k2

L2
− µ

)
αKt (k) +

a

Lπ

K/2−1∑
j=−K/2

αKt (j)
(
2γKt (k)− 1

)
, (3.99)

− K

2
≤ k ≤ K

2
− 1,

where we have defined

pt(k) := ReαKt (k), (3.100)

qt(k) := ImαKt (k). (3.101)
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It can readily be seen from Eq. (3.98) that γKt (k) is a real quantity whenever γK0 (k) is so. As
γK represents the physical particle density which is real by definition, we can safely assume
γKt (k) to be real in the following.

Concerning the number of basis functions K, we had to make sure that it was large enough
for the resolution of small scales. Resolving small scales in quantum mechanics means taking
into account large momenta. This can also be seen from theorem 3.4 and the fact that events
on small scales are described by highly oscillating functions f . In our studies of Chapter C,
K = 256 · L turned out to yield satisfactory results, c.f. Subsection C.7.7.

From a formal mathematical point of view, the system (3.98),(3.99), when supplemented by
some initial data, represents an initial value problem{

dy(t)
dt = f(y(t)),

y(0) = y0,
(3.102)

for

y(t) =

(
~γ(t)
~α(t)

)
∈ C2K , (3.103)

~γ(t) =
(
γKt (−K/2) . . . γKt (K/2− 1)

)T ∈ RK , (3.104)

~α(t) =
(
αKt (−K/2) . . . αKt (K/2− 1)

)T ∈ CK . (3.105)

3.2.2. Linear BCS equations

In order to obtain the linear approximation to the BCS equations which is the first step
towards a possible Ginzburg–Landau formalism, we replaced γKt (k) in the equation of motion
for αKt (k) with γK0 (k). This yielded the linear system of equations

iα̇Kt (k) = 2

(
k2

L2
− µ

)
αKt (k) +

a

Lπ

K/2−1∑
j=−K/2

αKt (j)
(
2γK0 (k)− 1

)
, (3.106)

− K

2
≤ k ≤ K

2
− 1.

Seen through our numerical prism, we were given an initial value problem{
d~α(t)

dt = f̃(~α(t)),

~α(0) = ~α0,
(3.107)

In order to compare its evolutions to those of the full equations, we took the same initial
values for both cases and ran simulations over long enough time spans for interesting physical
phenomena to occur.

But before we could think about algorithms to run simulations, we first had to find physically
reasonable initial values y0 to start these simulations with.
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3.2. On the integration of the time-dependent BCS equations

3.2.3. Initial values for the BCS simulations

Suitable initial data for our simulations had be such that they fell into the range of validity of
a possible Ginzburg–Landau description. For the stationary case it was shown by Frank et al.
(2012) that the Ginzburg–Landau approximation can only hold if the density matrix Γ of the
system is such that

FT (Γ)−FT (ΓN) ≤ O(h4) (3.108)

holds for T = Tc(1 + h2), with h ∈ R small. This means that the system must be close to
the minimizer of the free energy functional, which for temperatures above the critical one
is given by the normal state (1.35). As we wanted to find out whether a time-dependent
Ginzburg–Landau equation existed, we had to start with initial data Γ0 that fulfilled the
constraint (3.108). In order to obtain such data, we used that for temperatures slightly beneath
Tc, i.e., T = Tc(1− h2), the minimizer of the free energy functional (1.33) is given by

Γmin =
1

1 + eH∆/T
, (3.109)

with

H∆ =

(
p2 − µ −∆

−∆ µ− p2

)
, (3.110)

where ∆ is the energy gap defined in (1.37) which for the present setting is implicitly given
by (3.84).

Taken this into account, our idea was to proceed as follows:

• For a given h, determine Tc with the help of relation (3.83) and set T = Tc(1− h2).

• For this T , determine the corresponding energy gap ∆ via Eq. (3.84).

• Set T = Tc(1 +h2) and insert this, together with the just-determined ∆, into Γmin which
then, of course, is not a minimizer of the free energy functional anymore, but nearby.

• Choose the initial condition Γ0 = Γmin.

Calculating the right-hand side of the matrix Eq. (3.109) gives

Γ0 =

(
γ̂0 α̂0

α̂0 1− γ̂0

)
=

1
2 −

p2−µ
2K∆

T (p)

∆(p)

2K∆
T (p)

∆(p)

2K∆
T (p)

1
2 + p2−µ

2K∆
T (p)

 . (3.111)

As ∆ is of the order of the small parameter h, c.f. (Frank et al., 2013), the constraint (3.108)
can be shown to hold.

However, when calculating Tc and ∆ via the implicit equations (3.83) and (3.84), respectively,
we would have determined these values for the continuous system. But, as outlined above,
we work with a discrete system. So we had to make sure that the critical temperature we
worked with was the critical temperature with respect to our system. Otherwise, it could have
happened that we were not close enough to Tc of the system and, hence, the results of our
simulations would only be numerical artifacts.

This said, we resorted to the critical temperature’s equivalent definition (1.39) where we
restrict V and KT to the subspace spanned by the K first eigenfunctions of the Laplacian.
Similarly, we use Eq. (1.37) for the calculation of ∆. As we outlined the procedure only shortly
in our corresponding publication of Section C, we now explain the calculation in detail here.
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3.2.4. Numerical calculation of Tc and ∆

For the following derivation, we use the Dirac bra–ket notation for states on our approximation
space. In this notation, the L2 inner product of two functions fK and gK on our subspace is
given by 〈f | g〉, i.e.,

〈f | g〉 :=

K
2
−1∑

k=−K
2

f̂(k)gk. (3.112)

The delta potential V (x) = −aδ(x) restricted to our subspace can be written as

V = − a

L2π
|φ〉 〈φ| , (3.113)

where |φ〉 is the state

φ(k) = 1, −K
2
≤ k ≤ K

2
− 1. (3.114)

Inserting this expression into the implicit Eq. (1.37) for ∆ and setting ψ(p) = ∆(p)/K∆
T (p), we

have

∆(p) = −c |φ〉 〈φ| ψ〉 =: ∆0 |φ〉 . (3.115)

Hence, ∆ is just a multiple of the state |φ〉. In order to determine ∆0, we start with the second
definition of ∆, i.e.,(

K∆0φ
T + V

)
|v〉 = 0, (3.116)

where |v〉 is the eigenfunction corresponding to the zero eigenvalue. Subtracting V |v〉 and
dividing by K∆0φ

T , we get

|v〉 = − 1

K∆0φ
T

V |v〉 , (3.117)

or, if we insert expression (3.113),

|v〉 =
a

L2π

1

K∆0φ
T

|φ〉 〈φ| v〉 . (3.118)

By multiplying from the left with 〈φ| and dividing by 〈φ| v〉, we arrive at

L2π

a
= 〈φ| 1

K∆0φ
T

|φ〉 . (3.119)

Starting with the definition(
K0
Tc + V

)
|v〉 = 0, (3.120)

and repeating the outlined procedure, we get

L2π

a
= 〈φ| 1

K0
Tc

|φ〉 . (3.121)
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3.2. On the integration of the time-dependent BCS equations

In order to obtain Tc with the help of this equation, we used a bisection method on the interval
[0, 10] 52 to search for the root of

f(Tc) =

K/2−1∑
k=−K/2

tanh

(
k2

L2−µ
2Tc

)
k2

L2 − µ
− L2π

a
. (3.122)

When plotting Tc as a number of the basis functions K for fixed h and L, c.f. Fig. C.9 from
our publication of Chapter C, we found out that Tc can indeed deviate significantly from the
solution of the continuous Eq. (3.83). On the other hand, when choosing a large enough basis
K = 256 · L, no numerical artifacts had to be feared.

We then used a second bisection to find the corresponding ∆ as the root of

f(∆) =

K/2−1∑
k=−K/2

tanh

√(
k2

L2−µ
)2

+∆2

2Tc


√(

k2

L2 − µ
)2

+ ∆2

− L2π

a
. (3.123)

The thus obtained ∆ depended linearly on h, as can be seen from Fig. C.1 from our work of
Chapter C. This is in agreement with the behavior for continuous systems, vide supra.

With Tc and ∆ at hand, we could insert them into the discrete analog of Eq. (C.12) and
obtained

γ̂K0 (k) =
1

2
−

k2

L2 − µ
2

tanh

(√
( k

2

L2−µ)2+|∆|2

2T

)
√

( k
2

L2 − µ)2 + |∆|2
(3.124)

α̂K0 (k) =
∆

2

tanh

(√
( k

2

L2−µ)2+|∆|2

2T

)
√

( k
2

L2 − µ)2 + |∆|2
. (3.125)

As we did not want to run bisection algorithms at the beginning of every simulation, we
calculated Tc and ∆ for various h once, and then gave them as input.

Having shown how initial data for the initial value problem (3.102) can be obtained, we
now turn towards its time integration. In numerical terms, we want to find a numerical
approximation to the exact flow of such an initial value problem. For this, we denote a time
step by τ and the flow over such a time, i.e., the smooth map between y(t) and y(t+ τ), by
Φτ,f (y(t)). Its numerical approximation will be denoted by Φnum

τ,f . While looking for a suitable
Φnum
τ,f , we had to keep in mind the following points.

3.2.5. Properties of the discrete BCS equations

When integrating the discrete BCS equations (3.98),(3.99), some properties had to be taken
into account. Firstly, we were confronted with a high-dimensional problem as the number of
52The upper bound 10 of the interval was chosen very large so that we were sure not to look for Tc on the

wrong interval.
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basis functions of the space discretization had to be large. This made it particularly urgent
to find an integration scheme whose CPU effort increased not too fast as a function of the
dimension K. Secondly, looking at the equation of motion (3.99) for α̂K , one can notice that
it resembles the linear Schrödinger equation supplemented by a coupling term. In particular,
it has the same kinetic part, i.e., the same multiplication operator k2/L2 − µ. In combination
with the first point, this means that the right hand side has a very large Lipschitz constant.
Therefore, standard explicit integration tools, such as those of Flannery et al. (1992), are
of as little help as for the Schrödinger equation. An illustration of this fact can be found
in Fig. D.11 from the publication of Chapter D. With regard to this plot, the need for the
construction of more suitable integration schemes is obvious. For the construction and testing
of such schemes, we could rely on some constants of motion, which we gather in the following

Theorem 3.5. Along solutions of the discrete BCS equations (3.98),(3.99), the eigenvalues
of the density matrix ΓKt (k), given by

λ1,2(k) =
1

2
±

√(
γ̂t(k)− 1

2

)2

+ |α̂t(k)|2, (3.126)

and the discretization of the free energy FT (Γ), given by

FK(γ̂Kt , α̂
K
t ) =

K/2−1∑
k=−K/2

(
k2

L2
− µ

)
γ̂t(k)− 1

L2π

L2π∫
0

∣∣αKt (x)
∣∣2 V (x)dx

+ T

K/2−1∑
k=−K/2

[λ1(k) log(λ1(k)) + λ2(k) log(λ2(k))], (3.127)

are preserved.

The conservation of the eigenvalues of ΓK can easily be seen from the fact that its time
evolution, as prescribed by its equation of motion (3.87), is unitary. Concerning FK , we first
notice that the entropy term

T

K/2−1∑
k=−K/2

[λ1(k) log(λ1(k)) + λ2(k) log(λ2(k))] (3.128)

only depends on the constant eigenvalues and, hence, is preserved, too. In order to show the
conservation of the remaining part, we first calculate

1

L2π

L2π∫
0

∣∣αKt (x)
∣∣2 V (x)dx =

∑
j,k,l

α̂Kt (k)α̂Kt (j)V̂ (l)
1

L2π

L2π∫
0

eix(−k+j+l)dx

=
∑
j,k

α̂Kt (k)α̂Kt (j)V̂ (k − j)

=
∑
k

α̂Kt (k)
(
α̂Kt ∗ V̂

)
(k). (3.129)
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3.2. On the integration of the time-dependent BCS equations

For real potentials satisfying V (x) = V (−x), we can similarly deduce

1

L2π

L2π∫
0

∣∣αKt (x)
∣∣2 V (x)dx =

∑
k

α̂Kt (k)
(
α̂Kt ∗ V̂

)
(k). (3.130)

With this, we have

dFK

dt
=

K/2−1∑
k=−K/2

[(
k2

L2
− µ

)
dγ̂t(k)

dt
+

dα̂Kt (k)

dt

(
α̂Kt ∗ V̂

)
(k) +

dα̂Kt (k)

dt

(
α̂Kt ∗ V̂

)
(k)

]
.

(3.131)

Regarding the term with the time derivative of γ, we can write(
k2

L2
− µ

)
dγ̂t(k)

dt
=

1

2
Tr

((
k2

L2 − µ 0

0 µ− k2

L2

)
Γ̇Kt (k)

)
. (3.132)

The other terms can be rewritten as

dα̂Kt (k)

dt

(
α̂Kt ∗ V̂

)
(k) +

dα̂Kt (k)

dt

(
α̂Kt ∗ V̂

)
(k)

=
1

2
Tr

 0 2
(
α̂Kt ∗ V̂

)
(k)

2
(
α̂Kt ∗ V̂

)
(k) 0

 Γ̇Kt (k)

 .

(3.133)

Inserting the last two reformulations into Eq. (3.131) yields

dFK

dt
=

1

2

K/2−1∑
k=−K/2

Tr
(
HΓKt (k)Γ̇

K
t (k)

)
. (3.134)

We can now replace Γ̇K with its equation of motion (3.87) and use the cyclicity of the trace to
obtain

dFK

dt
=

1

2

K/2−1∑
k=−K/2

Tr
(
−iHΓKt (k)

[
HΓKt (k),Γ

K
t (k)

])

=
−i

2

K/2−1∑
k=−K/2

Tr
(
HΓKt (k)HΓKt (k)Γ

K
t (k)

)
− Tr

(
HΓKt (k)HΓKt (k)Γ

K
t (k)

)
= 0. (3.135)

Thus, the discrete energy FK is preserved.

Both integration algorithms we developed for this thesis are based on a splitting approach.
Therefore, we next give a short introduction to this idea.
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3.2.6. Splitting methods

Splitting methods were first employed for advection equations by Strang (1968) and Marchuk
(1968). For quantum dynamical problems, they were applied for the first time by Feit et al.
(1982) who split the linear Hamiltonian into a kinetic and a potential part. The respective
solutions were then concatenated in a suitable way in order to obtain a reliable integration
method.

In more detail, let us assume that the right hand side of an initial value problem (3.102) can
be written as the sum of two parts

f(y) = f1(y) + f2(y), (3.136)

such that the exact flows Φt,f1 of the problem{
dy(t)

dt = f1(y(t)),

y(0) = y0,
(3.137)

and Φt,f2 of the problem{
dy(t)

dt = f2(y(t)),

y(0) = y0,
(3.138)

can be obtained more easily than the one of the whole system. Then, a suitable way to obtain
a numerical approximation ynum

1 to the exact solution after a time step τ , is to set

ynum
1 = Φnum

τ,f (y0) =
(
Φτ/2,f2

◦ Φτ,f1 ◦ Φτ/2,f2

)
(y0) (3.139)

or

ynum
1 = Φ̃num

τ,f (y0) =
(
Φτ/2,f1

◦ Φτ,f2 ◦ Φτ/2,f1

)
(y0). (3.140)

This is the so-called Strang splitting. Successively applying the approximated flow Φnum
τ,f yields

an approximation to the exact solution at times t = nτ , n = 1, 2, ... . With regard to its
approximation error, as long as Φt,f2 and Φt,f1 are of second-or-higher order, we have the
following

Theorem 3.6. The difference, at time t = nτ , between the exact solution y(nτ) to the initial
value problem (3.102) and its numerical approximation by the Strang splitting ynum

n satisfies

‖y(nτ)− ynum
n ‖ ≤ C(t)τ2,

where C(t) is independent of the time discretization parameter τ .

We are now in the position to introduce the integration methods we developed for the discrete
BCS equations. As both methods have been presented in much detail in the publications of
Chapters C and D, we only summarize the main points. Let us start with our first idea.
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3.2. On the integration of the time-dependent BCS equations

3.2.7. Nonlinear BCS integrator

As the eigenvalues of the density matrix ΓK are preserved along evolutions of the discrete
BCS equations, we have the possibility to express γ̂Kt (k) in terms of α̂Kt (k) and the initial
data. After some transformations, c.f. Section D.5, we obtained

γ̂Kt (k) =
1

2
±
√
h(k)− |α̂Kt (k)|2, (3.141)

with the auxiliary function

h(k) :=

(
γ̂K0 (k)− 1

2

)2

+ |α̂K0 (k)|2. (3.142)

The signs in Eq. (3.141) could be inferred from the initial values of for simulations. As can be
seen from Eqs. (3.124),(3.125), they were such that γ̂K0 (k) was greater than 1/2 for µ > k2/L2

and less than or equal to 1/2 for µ ≤ k2/L2.

With this, we eliminated γ̂Kt (k) in the equation of motion (3.99) for α̂Kt (k). This resulted in
the system

i ˙̂αKt (k) = 2

(
k2

L2
− µ

)
α̂Kt (k)± a

Lπ

〈
φ
∣∣ αK〉√h(k)− |α̂Kt (k)|2, (3.143)

− K

2
≤ k ≤ K

2
− 1,

where we have expressed the contact interaction via the bra–ket notation (3.113). The equation
of motion (3.143) is exactly of the form (3.136), with

f2(~α) = A~α = diag

(
2

((
−K

2

)2
L2

− µ

)
, ..., 2

((
K
2 − 1

)2
L2

− µ

))
~α. (3.144)

The flow of the corresponding subproblem (3.138) can be calculated exactly as

Φτ,A(~α) = diag

(
e
−i2

(
(−K)2

4L2 −µ
)
τ
, ..., e

−i2

(
(K−2)2

4L2 −µ
)
τ
)
~α. (3.145)

Regarding f1, it has a much smaller Lipschitz constant than the complete right hand side f ,
wherefore Φτ,f1 can be approximated by some standard integration scheme. We than followed
the idea of the last Subsection and set

Φnum
τ,f (~α(0)) =

(
Φτ/2,A ◦ Φnum

τ,f1
◦ Φτ/2,A

)
(~α(0)). (3.146)

Very importantly, the calculation of the individual sub-flows only requires O(K) operations
per step, c.f. Tab. D.1. As Φτ,A satisfies the group property

Φt,A ◦ Φs,A = Φt+s,A, (3.147)

we could further save CPU costs by combining the last sub-step of the previous step with the
first sub-step of the next step. A detailed presentation of the integrator, which we have given
the name BCSInt, can be found in Subsection D.5.

The integrator turned out to be very accurate, as can be seen in Fig. C.8 from the publication
of Chapter C. However, after we had finished the simulations with the nonlinear BCS equations
and had already turned towards the integration of its linear approximation (3.106), we realized
that there was an even more efficient and accurate way to integrate the discrete BCS equations
with a contact interaction. We also introduce the main ideas behind this scheme.
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3.2.8. Triple splitting integrator

The main idea behind our other algorithm, called SplitBCS, is to split the right hand side of
the full system (3.98),(3.99) into the three parts

f (~γ(t), ~α(t)) = Ãy(t) + g(~α(t)) + h(~γ(t), ~α(t)), (3.148)

Ã

(
~γ(t)
~α(t)

)
=

(
~γ(t)
A~α(t)

)
, (3.149)

g(~α(t)) =
2a

Lπ

qt(k)

K/2−1∑
j=−K/2

pt(j)− pt(k)

K/2−1∑
j=−K/2

qt(j)

 , (3.150)

h(~γ(t), ~α(t)) =
a

Lπ

K/2−1∑
j=−K/2

αKt (j)
(
2γKt (k)− 1

)
. (3.151)

Split in this particular way, the flows of all three subproblems can be calculated exactly in O(K)
operations. This is shown in detail in the Subsections D.6.1 and D.6.2 of our corresponding
publication. The three exact sub-flows are then combined via the composition

Φnum
τ,f = Φτ,AghgA := Φτ/2,A ◦ Φτ/2,g ◦ Φτ,h ◦ Φτ/2,g ◦ Φτ/2,A. (3.152)

Leaving out the sub-steps Φτ/2,g, we also had a convenient integrator for the linear BCS
equations. A very detailed description of the algorithm is given in Subsection D.6. In that
Subsection, we also analyze the complexity of the respective sub-algorithms which calculate
the exact flows of the subproblems. The results of this undertaking are listed in Tab. D.2. It is
apparent that SplitBCS requires much less operations than BCSInt for the physically relevant
simulation with a delta potential. When testing the accuracy with the method we will outline
next, SplitBCS was again ahead of BCSInt.

3.2.9. Measuring the integrators’ accuracy

A very reliable tool for the investigation of an integrator’s reliability is to consider a first
integral of the equations of motion under consideration. In our case, we can use the discrete
free energy (3.127), or, to be more precise, its relative error along a numerical trajectory
defined as

∆FK(t) =

∣∣∣∣FK(~γ(t), ~α(t))− FK(~γ(0), ~α(0))

FK(~γ(0), ~α(0))

∣∣∣∣ . (3.153)

Tracking ∆FK(t) during our simulations, we could make sure that they were very accurate.
With the help of this tool, we could also demonstrate that SplitBCS shows even smaller
integration errors than BCSInt. More detail on this can be found in Section D.7 of Chapter D.
There, we also show that SplitBCS almost preserves the eigenvalues (3.126) of ΓK , exactly
preserved by construction for BCSInt. As a next step, we extended the integration schemes to
systems with general potentials as we outline now.
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3.2. On the integration of the time-dependent BCS equations

3.2.10. Splitting integrators for general potentials

For general potentials V , the space discretized BCS equations read

iγ̇k(t) = 2

[
αk(t)

(
V̂ ∗ α

)
k
− αk(t)

(
V̂ ∗ α

)
k

]
, (3.154)

iα̇k(t) = 2

(
k2

L2
− µ

)
αk(t)− 2 (2γk(t)− 1)

(
V̂ ∗ α

)
k
, (3.155)

− K

2
≤ k ≤ K

2
− 1,

where the convolution of two K-periodic vectors a and b is given by

(a ∗ b)k =

K/2−1∑
j=K/2

ak−jbj . (3.156)

These convolutions require some extra effort. Fortunately, the terms comprising those convolu-
tions are still well-behaved in the sense that they have a small Lipschitz constant. Furthermore,
it is well-known from numerical analysis that the convolution of two K dimensional vectors
can be calculated efficiently with the help of the Fast Fourier Transform (FFT) algorithm as
outlined in Section D.4 of our concerning publication53.

Thanks to these favorable properties, one can use the same splittings as for the delta case.
The flows for the subproblems involving the convolutions can be calculated conveniently
with explicit standard integration schemes such as the explicit midpoint rule or the classical
Runge–Kutta method. We observed that the numerical errors in the calculation of these
subflows were vanishingly small compared to the already small error caused by the splitting of
the original problem. As a consequence, we had found accurate integration schemes, whose
CPU times per time step are O(log(K) ·K). When comparing the efforts of both schemes,
c.f. Subsections D.5.3 and D.6.4, we see that in the general case BCSInt is a bit faster as
it requires one convolution less per time step. On the other hand, SplitBCS is even more
accurate, c.f. Section D.7.

Additionally, the subproblem

i
dαk(t)

dt
= h(~γ(0), ~α(t))k = (2γk(0)− 1)

(
V̂ ∗ α

)
k

(3.157)

is linear in ~α. Therefore, its flow Φτ,h can be approximated up to exponentially small errors
with the Lanczos method introduced, for example, in (Lubich, 2008, Chapter III.2.2) with only
some additional cost as compared to an integration using the classical Runge–Kutta method.
This is useful in applications where the norm of ~α is of particular interest since the Lanczos
method is norm-preserving by construction.

Having generalized our integrators, we can finally summarize the interesting physical results
of our simulations.

53The English version of wikipedia contains a very nice presentation of the FFT algorithm.
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3.2.11. Physical results

We considered the physically important case of systems with a contact interaction. For
various values of the small parameter h, we generated physically interesting initial data
via the procedure outlined in Subsection 3.2.4 above. We then simulated the motion as
governed by the full BCS equations (3.98),(3.99) and the evolution prescribed by the linear
approximation (3.106). In both cases we integrated the system until a final time tend = O(1/h2),
as this is the time the system needs to show physically relevant effects, see, e.g. (Hainzl and
Schlein, 2013). During both simulations, we tracked the behavior of the discretized L2 norm
of the Cooper pair density α, given by

1

h2
‖αt‖22 =

1

h2

K/2−1∑
k=−K/2

|αKt (k)|2, (3.158)

and the macroscopic Ginzburg–Landau like parameter

ψt :=
1

h
〈α∗| αt〉 . (3.159)

The results are presented in Section C.4 of Chapter C.

To summarize them in a few words: For all values of h, the linear approximation could not live
up to its name. Whereas both |ψt| and ‖αt‖22 decreased exponentially for the evolution of the
linear equation, they oscillated around a finite value in the simulations of the full equations.
Hence, the diffusion, which would be inherent to any Ginzburg–Landau type equation of
motion on the macroscopic scale, can only be an artifact due to an unjustified linearization of
the BCS equations. With these results, we could shed light on another important question in
physics, this time in the realm of condensed matter physics.

Summarizing the summary, we can say that we achieved all the goals we had set ourselves in
Chapter 2. However, the summary would not be complete without an illustration of the most
arduous part of the thesis –the implementation of all the simulations we have conducted in
the course of it.

3.3. On the particular hardships of implementation and
simulation

As compared to publications in other fields, physical papers which report on the results of
numerical studies tend to be concise. They focus on the results –mostly illustrative plots– and
only state shortly on which physical setting the study in question is based. In order to get a
feeling for the implementational effort behind a usual computational physics paper, consider
our first work on spinning test particles, cf. Chapter A.

In the Mathisson-Papapetrou part, the relevant equations of motion (A.55) are given in their
most compact form with the additional information that a Kerr background is used. But,
already the single Riemann tensor Rµνκλ on its own in fact contains 4× 4 entries, each of which
is a complicated function of the given Kerr metric g and its derivatives which, in turn, are
functions of the positions xµ. The Christoffel symbols Γµκλ, too, are multivalued functions of
the positions. As a consequence, the detailed expressions on the right side of the equations of
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motion require pages and pages of analytical calculations. Even when painstakingly simplifying
and merging as many terms as possible, the resulting subroutine of our FORTRAN code
which, given some phase space variables xµ, pµ and Sµν , calculates the right hand side of the
equations of motion (A.55), ran up to more than thousand lines of code. The implementation
of the right side of the formally very nice Hamiltonian equations of motion (A.45)-(A.47) for
the compactly represented Hamiltonian (A.35) also requires hundreds of lines of codes. This is
not surprising taking into account that, in order to arrive at the equations of motion, all the
functions showing up in the Hamiltonian terms (A.53) have to be derived with regard to xi,
Pi and SI first. So it is easily understandable that, conventionally, the reader is spared the
pain of reading through all this calculations. Furthermore, bearing this complexity in mind, it
is not hard to see why progress in computational physics is perhaps somewhat slow compared
to other fields. But how can one make sure that, at the end of the day, one has a reliable
bug-free code calculating the correct quantities?

The first step of writing a simulation is, of course, the analytical calculation of the quantities
appearing in the equations of motion’s ride hand side. In order to exclude implementation
errors, i.e., in order to make sure that the code is actually calculating what the analytical
formulas are saying, one can make use of a symbolical calculation tool such as Mathematica in
our case. These programs take the equations in their compact form and, once all the quantities
the compact formulations rely on are specified and a set of parameters is given, calculate the
corresponding result. This result can than be compared with the numbers obtained via the
implemented code. This requires a lot of patience but is by far the safest way of bug-finding.

Next, one hast to make sure that the analytical calculations are correct in the first place. Here,
it is of great help to have some quantities at hand which are known to be preserved under the
exact evolution of the equations of motion. These are, for example, the energy (A.3) in case of
the Mathisson–Papapetrou equations with a Kerr background metric or the Hamiltonian (A.35)
in the work of Chapter A. For the schemes we have developed and implemented during this
thesis, the constants of motion should almost be preserved, cf. Subsection 3.1.2. More precisely,
their relative errors such as (A.83) are expected to be and stay small for not-too-large time
steps and have to decrease in line with the step size. Hence, if the relative errors are large
and do not decline for decreasing time steps, the evolution equations and the ‘constants of
motion‘ do not belong to each other. As implementation errors have been excluded before, the
underlying calculations cannot be correct.

All told, we had to do a lot of cumbersome bug-finding but can now be very sure that the
simulations which will be presented in detail in the following Chapters are based on correct
calculations and bug-free implementations.
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formalism

A. Investigating spinning test particles:
spin supplementary conditions and the
Hamiltonian formalism

The content of this Section was published as [G. Lukes-Gerakopoulos, J. Seyrich, and D. Kunst,
Phys. Rev. D 90, 104019 (2014)] under lead-authorship of Georgios Lukes-Gerakopoulos.
The physical studies, during which the plots in Figs A.1,A.2,A.3,A.4,A.5,A.6,A.7,A.8 were
generated, were carried out by Georgios Lukes-Gerakopoulos with the codes of of J. S. . The
studies are based on theoretical input by Daniela Kunst.

Abstract

In this paper we report the results of a thorough numerical study of the motion of spinning
particles in Kerr spacetime with different prescriptions. We first evaluate the Mathisson-
Papapetrou equations with two different spin supplementary conditions, namely, the Tulczyjew
and the Newton-Wigner, and make a comparison of these two cases. We then use the
Hamiltonian formalism given by Barausse et al. (2009) to evolve the orbits and compare them
with the corresponding orbits provided by the Mathisson-Papapetrou equations. We include a
full description of how to treat the issues arising in the numerical implementation.

A.1. Introduction

Since we expect that the centers of galaxies are occupied by super-massive black holes,
relativistic binary systems with extreme mass ratios are of great interest. A first approximation
to an extreme mass ratio inspiral (EMRI) is the geodesic motion where the spin of the smaller
particle is ignored. More relevant models have to incorporate the spin. This, however, appears
not to be so simple.

The equations of motion of a spinning particle were given by Mathisson (1937) and Papapetrou
(1951) several decades ago. The Mathisson-Papapetrou (MP) equations are not a closed set
of first order ordinary differential equations, i.e., there are less equations than necessary in
order to evolve the system. To close the set, an extra spin supplementary condition (SSC) is
required. Over the years, various such SSCs have been proposed (see, e.g., (Semerák, 1999;
Kyrian and Semerák, 2007) for a review).

As a SSC fixes a center of reference, e.g., the center of the mass, and different SSCs define
different centers, for each SSC we have a different world line (see, e.g., (Kyrian and Semerák,
2007)), and, hence, each SSC prescribes a different evolution of the MP equations. But,
although this ambiguity appears to be a major issue in the modeling of an EMRI binary
system, the difference in the evolution caused by different SSCs has not received the adequate
attention. Our work aims at quantifying those evolution differences in a Kerr spacetime
background.

The first part of the study addresses the above issue by examining how “similar” initial
conditions diverge when they are evolved by using different SSCs. We focus on two SSCs,
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namely the Tulczyjew (T) SSC (Tulczyjew, 1959) and the Newton-Wigner(NW) SSC (Newton
and Wigner, 1949), as introduced by Barausse et al. (2009). T SSC is a standard SSC that has
been used in several works concerned with different topics, see, e.g., (Semerák, 1999; Kyrian
and Semerák, 2007; Dixon, 1970; Mino et al., 1996; Hartl, 2003a; Steinhoff and Puetzfeld,
2012). On the other hand, NW SSC has been successfully implemented in the framework of the
Post-Newtonian approximation (Steinhoff et al., 2008; Steinhoff, 2011), and it is the only SSC
allowing for a canonical Hamiltonian formalism, albeit only up to linear order in the spin of
the particle in curved spacetimes. This Hamiltonian formalism has been derived in (Barausse
et al., 2009). As it has many practical advantages to have a Hamiltonian formulation of a
given problem at hand, for example because it is part of the effective one body formulation
(Barausse et al., 2009; Barausse and Buonanno, 2010), it would be nice to see if orbits obtained
via the Hamiltonian formalism of Barausse et al. (2009) stay close to those obtained with the
help of the full MP equations in the case of NW SSC (a discussion on the topic can be found
in Sec. IV of (Hinderer et al., 2013)). Therefore, in the second part of our work, we compare
both approaches numerically.

A numerical investigation of the equations considered in this work entails a bunch of interesting
numerical challenges. To start with, a useful study of the divergence of different orbits should
straddle a reasonably long time interval. The efficient integration of equations of motion over
a long time interval requires structure preserving algorithms (see, e.g., (Hairer et al., 2006)
for an elaborate overview) such as symplectic schemes, which have been successfully applied
for simulations in various fields of general relativity, e.g., (Seyrich and Lukes-Gerakopoulos,
2012; Seyrich, 2013; Zhong et al., 2010; Mei et al., 2013). Moreover, the MP equations have
no Hamiltonian structure, wherefore one would expect usual symplectic integration schemes
to lose their theoretical advantage over ordinary, not so efficient ones. What is more, in the
NW SSC case part of the equations of motion will turn out to be known only implicitly. In this
work we will explain how, notwithstanding the just mentioned obstacles, the MP equations
can be evolved accurately in an efficient way for both SSCs. When comparing orbits calculated
via the MP equations with those obtained by the Hamiltonian equations of (Barausse et al.,
2009), one is faced with the problem of different evolution parameters. We thus come up with
a comfortable way of guaranteeing output at consistent times.

The paper is organized as follows. In Sec. A.2 we introduce the MP equations and give a brief
discussion on the SSCs. Then, we turn to the Hamiltonian formalism in Sec. A.3, where the
basic elements concerning the Hamiltonian function, which describes the motion of a spinning
particle in curved spacetime, are summarized. In Sec. A.4 we explain how the simulations with
the MP equations are done, and a comparison between the T and the NW SSC is provided,
whilst Sec. A.5 quantifies the difference in the evolution of orbits between the MP equations and
their Hamiltonian approximation. Finally, we discuss our main results in Sec. A.6. A detailed
discussion of the numerical implementation is provided in the Appendix (Secs. A.7 and A.8).

The units we use are geometric (G = c = 1), and the signature of the metric is (-,+,+,+).
Greek letters denote the indices corresponding to spacetime (running from 0 to 3), while Latin
ones denote indices corresponding only to space (running from 1 to 3). We use capital letters
for the indices when referring to a flat spacetime. In general, we try to follow the notation of
Barausse et al. (2009) whenever this is possible.
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A.2. Mathisson-Papapetrou equations

A.2. Mathisson-Papapetrou equations

The Mathisson-Papapetrou equations describe the motion of a particle with mass µ and spin
Sµν (pole-dipole approximation) in a given background gµν . Their formulation in (Dixon,
1970) reads

D pµ

dτ
= −1

2
Rµνκλv

νSκλ , (A.1)

D Sµν

dτ
= pµ vν − vµ pν , (A.2)

where pµ is the four-momentum, vµ = dxµ/dτ is the tangent vector to the world line along
which the particle moves, τ is the proper time along this world line, and Rµνκλ is the Riemann
tensor. In the case of a stationary and axisymmetric spacetime, the energy

E = −pt +
1

2
gtµ,νS

µν , (A.3)

and the z angular momentum

Jz = pφ −
1

2
gφµ,νS

µν , (A.4)

are preserved along the solutions of the MP equations.

Since we selected τ to be the proper time, it holds that vν vν = −1. By multiplying Eq. (A.2)
with vν we get

pµ = m vµ − vν
D Sµν

dτ
, (A.5)

where m = −pν vν is the rest mass of the particle with respect to vν , while the measure of the
four-momentum pν pν = −µ2 provides the rest mass µ with respect to pµ. m = µ holds only
if the tangent vector vν coincides with the four-velocity uν = pν/µ.

It is useful to stress that neither of the masses have to be a constant of motion. Namely, for
m we get

dm

dτ
=
D m

dτ
= −D vν

dτ
pν ,

since from Eq. (A.1) we see that
D pν

dτ
vν = 0, and by using Eq. (A.5) for replacing pν , we

arrive at
dm

dτ
=
D vν
dτ

vµ
D Sνµ

dτ
. (A.6)

For µ we have

dµ

dτ
=
D µ

dτ
= −pν

µ

D pν

dτ
,

and again by using Eq. (A.5) for replacing pν , we get

dµ

dτ
=
D pν
dτ

pµ
µ m

D Sνµ

dτ
. (A.7)
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The same holds for the spin measure

S2 =
1

2
Sµν S

µν . (A.8)

Here, we have

d S2

dτ
=
D S2

dτ
= Sµν

D Sµν

dτ
, (A.9)

and by Eq. (A.2) we get

d S2

dτ
= Sµν (pµ vν − vµ pν)

= 2Sµν p
µ vν , (A.10)

which becomes zero if

Sµν p
µ = 0 , (A.11)

or

Sµν v
µ = 0 . (A.12)

Eq. (A.11) is the Tulczyjew SSC, while Eq. (A.12) is the Pirani SSC (Pirani, 1956). From
Eq. (A.7) we see that dµ/dτ = 0 for T SSC, while for Pirani SSC dm/dτ = 0. The MP
equations with Pirani SSC exhibit a “strange” helical motion (see, e.g., (Kyrian and Semerák,
2007)), which has been considered as unphysical. However, recently, Costa et al. (2012) argued
that the helical motion can be interpreted by the concept of a hidden electromagnetic-like
momentum. We will not discuss Pirani SSC further. Instead, we are going to focus on the
Newton-Wigner SSC, which reads

Sµν ωµ = 0 , (A.13)

where ωµ is a time-like vector, or a sum of time-like vectors, e.g., of pµ and ϕµ, i.e.,

ωµ = pµ + µ ϕµ . (A.14)

In general, for NW SSC, neither the masses, Eqs. (A.6), (A.7), nor the spin, Eq. (A.8), are
preserved. Thus, from this point of view it is a strange selection of a SSC. However, we should
keep in mind that our framework is a pole-dipole approximation. Therefore it is somehow
adequate for the just mentioned quantities to be conserved only up to linear order in the
spin. For the spin, this can be seen from Eq. (A.9) but for the mass µ the proof is quite more
complicated and was provided by Barausse et al. (2009).

A.2.1. Spin four-vector

Instead of the spin tensor Sµν , a spin four-vector Sµ is used sometimes, since Sµ is often
considered more physically intuitive and more convenient than Sµν , see, e.g., (Suzuki and
Maeda, 1997).
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For the T SSC the four-vector is defined by

Sµ = −1

2
ηµνρσu

νSρσ , (A.15)

where ηµνρσ is the Levi-Civita density tensor

ηµνρσ =
√
−g εµνρσ , (A.16)

and εµνρσ is the Levi-Civita symbol with ε0123 = −1. The inverse relation of Eq. (A.15)
between the two spin forms is

Sρσ = −ηρσγδSγuδ . (A.17)

By replacing the last equation in Eq. (A.8), we get

S2 = Sµ S
µ . (A.18)

From Eq. (A.15) we see that

Sµp
µ = 0 , (A.19)

so the spin four vector is perpendicular to the momentum.

For the NW SSC we define the four-vector as

Sµ = − 1

2 µ
ηµνρσω

νSρσ . (A.20)

By this definition we fix that

Sµω
µ = 0 . (A.21)

Thus, the spin four vector is perpendicular to the time-like vector ωµ. In the NW case the
inverse relation of Eq. (A.20) between the two spin forms is

Sρσ = ηρσγδ Sγ
µ ωδ
ωνων

. (A.22)

Now, the spin measure (A.8) reads

S2 = − µ2

ωνων
Sσ S

σ . (A.23)

The measure of the spin divided by the rest mass, i.e., S/µ defines the minimal radius of a
volume which a spinning body has to have in order not to rotate with superluminal speed. The
same radius defines the upper bound of the separation between worldlines defined by various
SSCs, i.e., a disc of centers of mass inside of which the worldlines have to lie. This radius was
introduced by Møller (1949) and, therefore, is often referred to as the Möller radius.

In the next step, we explain how to calculate the tangent vector vµ.
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A.2.2. Calculating the tangent vector

The MP equations do not explicitly state how we can evaluate the tangent vector vµ throughout
the evolution. To find vµ we use the SSCs.

In the case of T SSC, vµ is found via the relation

vµ = N(uµ + wµ) , (A.24)

where

wµ =
2 Sµν uλRνλρσ S

ρσ

4 µ2 +Rαβγδ Sαβ Sγδ
, (A.25)

and, because vµvµ = −1, we get

N =
1√

1− wµ wµ
. (A.26)

For more details on how to derive the above expression see, e.g., Semerák (1999).

In the case of NW SSC, according to our knowledge, there is no explicit expression which gives
vµ as a function of pµ and Sµν . However, by taking the covariant derivative of Eq. (A.13), we
obtain

vµ =
1

ωνpν

(
(ωνv

ν)pµ + Sµν
D ων
dτ

)
. (A.27)

A detailed discussion on how we solve the initial value problem numerically is provided in
Appendix A.7.

A.3. The Hamiltonian formalism for the spinning particle

The MP equations (A.1), (A.2) can be derived by means of Lagrangian mechanics, see,
e.g., (Westpfahl, 1969; Bailey and Israel, 1975; Porto, 2006). If we want to apply a Legendre
transformation in order to get a Hamiltonian canonical formulation54 for a spinning particle
moving in a curved spacetime, then the canonical structure holds only at linear order of the
particle’s spin (Barausse et al., 2009).

The spin in the Hamiltonian formalism proposed by Barausse et al. (2009) comes from the
projection of the spin tensor Sµν onto the spacelike part of a tetrad field ẽµ∆. This tetrad
consists of a timelike future oriented vector ẽµT (throughout the article we shall use T instead
of 0) and three spacelike vectors ẽµI . For the tetrad it holds that

ẽµΓẽ
ν
∆ gµν = ηΓ∆ , (A.28)

where ηΓ∆ is the metric of the flat spacetime, and

ẽµ∆ẽ
∆
ν = δµν , (A.29)

54There is also another Hamiltonian formulation for the spinning particle by Ramírez et al. (2014) who use a
noncommutative position coordinate instead of the canonical one.
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where δµν is the Kronecker delta. The capital indices are raised or lowered by the flat metric.
When a tensor is denoted with capital indices, then the tensor has been projected onto this
tetrad ẽµ∆. In the case of the spin tensor Sµν , the projection reads

SIJ = Sµν ẽ I
µ ẽ J

ν . (A.30)

The remaining components of this projection come from splitting the NW SSC (A.13) appro-
priately, and projecting the split on the tetrad, i.e.,

STI = SIJ
ωJ
ωT

, (A.31)

where ω∆ = ẽν∆ων is the projection of the time-like vector (A.14) of the NW SSC (A.13) as
chosen in (Barausse et al., 2009)

ων = pν − µ ẽ T
ν (A.32)

on the tetrad field, i.e.,

ωT = pν ẽ
ν
T − µ ,

ωJ = pν ẽ
ν
J . (A.33)

However, the Hamiltonian function of the spinning particle given by Barausse et al. (2009)
does not use exactly the above described spin projection, instead the spin three vector is
employed, i.e.,

SI =
1

2
εIJL S

JL (A.34)

(the inversion of Eq. (A.34) gives SJL = −εJLISI).

The Hamiltonian function H itself

H = HNS +HC SC , (A.35)

splits in two parts. The first

HNS = βiPi + α
√
µ2 + γijPiPj (A.36)

is the Hamiltonian for a non-spinning particle, and the second HC SC

HC = −

(
βiFCi + FC0 +

α γijPi F
C
j√

µ2 + γijPiPj

)
(A.37)

includes the elements describing the spin, where

α =
1√
−g00

, (A.38)

βi =
g0i

g00
, (A.39)

γij = gij − g0ig0j

g00
. (A.40)
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The canonical momenta Pi conjugate to xi of the Hamiltonian (A.35) can be calculated from
the momenta pi of the MP formulation by using the relation

Pi = pi + EiΓ∆S
Γ∆ = pi +

(
2EiTJ

ωC
ωT

+ EiJC

)
εJCL SL , (A.41)

where

EνΓ∆ = −1

2

(
gκλ ẽ

κ
Γ

∂ẽλ∆
∂xν

+ ẽκΓ Γκνλ ẽ
λ
∆

)
(A.42)

is a tensor which is antisymmetric in the last two indices, i.e., EνΓ∆ = −Eν∆Γ. Γκνλ, in turn,
are the Christoffel symbols. This choice of momenta leads to a set of phase space variables
that are canonical at linear order in the particle’s spin.

Finally, the FCµ tensor in Eq. (A.37) reads

FCµ =

(
2EµTI

ω̄J
ω̄T

+ EµIJ

)
εIJC , (A.43)

where

ω̄∆ = ω̄ν ẽ
ν
∆ ,

ω̄ν = P̄ν − µ ẽ T
ν ,

P̄i = Pi ,

P̄0 = −βi Pi − α
√
µ2 + γijPiPj ,

ω̄T = P̄ν ẽ
ν
T − µ ,

ω̄J = P̄ν ẽ
ν
J . (A.44)

The equations of motion for the canonical variables as a function of coordinate time t, as
derived in (Barausse et al., 2009), read

dxi

dt
=
∂H

∂Pi
, (A.45)

dPi
dt

= −∂H
∂xi

, (A.46)

dSI
dt

= εIJC
∂H

∂SJ
SC . (A.47)

The formulation provided up to this point is general, namely it does not depend on the
coordinate or on the tetrad field choice. In the next section we specify the setup we use in the
numerical sections of our work.

A.3.1. The Hamiltonian for the Kerr spacetime

The line element of the Kerr spacetime in Boyer-Lindquist coordinates is

ds2 = gtt dt
2 + 2 gtφ dt dφ+ gφφ dφ

2 + grr dr
2 + gθθ dθ

2 , (A.48)
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where

gtt = −1 +
2Mr

Σ
,

gtφ = −2aMr sin2 θ

Σ
,

gφφ =
Λ sin2 θ

Σ
, (A.49)

grr =
Σ

∆
,

gθθ = Σ ,

and

Σ = r2 + a2 cos2 θ ,

∆ = $2 − 2Mr ,

$2 = r2 + a2 ,

Λ = $4 − a2∆ sin2 θ . (A.50)

In this section we reproduce the quantities already presented in (Barausse et al., 2009). In the
case of the small indices, we replace the numbers with the coordinates, i.e., t, r, θ, φ stand
for 0, 1, 2, 3, respectively. The capital indices, meanwhile, are left unaltered. M denotes the
mass and a the spin parameter of the central Kerr black hole.

The tetrad we use has been provided in (Barausse et al., 2009) and reads

ẽTµ = δtµ

√
∆Σ

Λ
,

ẽ1
µ = δrµ

√
Σ

∆
,

ẽ2
µ = δθµ

√
Σ ,

ẽ3
µ = −δtµ

2aMr sin θ√
ΛΣ

+ δφµ sin θ

√
Λ

Σ
, (A.51)

while the inverse one reads

ẽµT = δµt

√
Λ

∆Σ
+ δµφ

2aMr√
∆ΛΣ

,

ẽµ1 = δµr

√
∆

Σ
,

ẽµ2 = δµθ
1√
Σ

,

ẽµ3 = δµφ
1

sin θ

√
Σ

Λ
. (A.52)
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By calculating all the quantities mentioned in Sec. A.3, we finally obtain the coefficients HC

(Eq. (A.37)) as

H1 = −
√

∆ cos θ
√
Q(1 +

√
Q)Λ2

√
Σ sin2 θ

[(1 +
√
Q)(∆Σ2 + 2 M r$4) +

√
Q2a2Mr$2 sin2 θ]

Pφ
µ

+
aM(2r2Σ +$2ρ2) sin θ ∆√

Q(1 +
√
Q)Λ3/2Σ2

PrPθ
µ2

+
2a3Mr cos θ sin2 θ ∆√
Q(1 +

√
Q)Λ3/2Σ

(
1 +

√
Q+

2Σ

Λ sin2 θ

P 2
φ

µ2
+

∆

Σ

P 2
r

µ2

)
,

H2 =
∆(1 +

√
Q)(rΣ2 − a2Mρ2 sin2 θ)−M

√
Q(ρ2$4 − 4a2Mr3 sin2 θ)

√
Q(1 +

√
Q)Λ2

√
Σ sin θ

Pφ
µ

+
2a3Mr cos θ sin2 θ ∆3/2

√
Q(1 +

√
Q)Λ3/2Σ2

PrPθ
µ2

+
aM(2r2Σ +$2ρ2) sin θ

√
∆√

Q(1 +
√
Q)Λ3/2Σ

(
1 +

√
Q+

2Σ

Λ sin2 θ

P 2
φ

µ2
+

1

Σ

P 2
θ

µ2

)
,

H3 = − a2∆ cos θ sin θ√
Q(1 +

√
Q)(ΛΣ)3/2

(Λ +
√
Q∆Σ)

Pr
µ
− rΛ∆ +$2Σ

√
Q(r∆−M(r2 − a2))√

Q(1 +
√
Q)(ΛΣ)3/2

Pθ
µ

− aM
√

∆

µ2
√
Q(1 +

√
Q)Λ2Σ

[2a2r∆ sin θ cos θ Pr + (2r2Σ +$2ρ2)Pθ]Pφ , (A.53)

where

Q = 1 +
γij

µ2
PiPj = 1 + µ−2

(
∆

Σ
P 2
r +

1

Σ
P 2
θ +

Σ

Λ sin2 θ
P 2
φ

)
,

and

ρ2 = r2 − a2 cos2 θ . (A.54)

For a full and detailed presentation of the derivation of HC , we refer the reader to (Barausse
et al., 2009).

It is worth mentioning here that, contrary to the T SSC, the NW SSC (Eq. (A.32)) does not
uniquely define the reference worldline. As already noted in the introduction the choice of the
center of mass, i.e., the reference worldline, is observer dependent. When T SSC is applied the
zero 3-momentum observer is chosen. However, when the NW SSC is used there is no unique
choice because the observer and therewith the reference worldline depends on the tetrad. We
have fixed our tetrad in Eqs. (A.51), (A.52). In the following we only consider the evolution of
the orbit corresponding to this observer so that we do not have to worry about transforming
the dynamical properties of the system to another reference frame.
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A.4. Comparison of Tulczyjew and Newton-Wigner SSC

A.4.1. Preliminaries

When simulating the MP equations we in fact have to solve the initial value problem

d xµ

dτ = vµ ,
d pµ

dτ = −1
2 R

µ
νκλv

νSκλ − Γµνκvνpκ ,
d Sµν

dτ = pµ vν − vµ pν + ΓµκλS
νκvλ − ΓνκλS

µκvλ ,

xµ(τ = 0) = xµ0 ,

pµ(τ = 0) = pµ0 ,

Sµν(τ = 0) = Sµν0 .

(A.55)

As a first step, we have to provide initial conditions which comply with the constraints
mentioned earlier (Sec. A.2).

In order to find these appropriate initial conditions, we follow the approach of Hartl (2003a),
which implies that instead of the spin tensor Sµν we use the vector Sµ for the initial setup.
Without loss of generality, we set t = φ = 0 and provide initial values for r, θ, pr as well as
for the two spin components Sr and Sθ. The other initial conditions, namely pt, pθ, pφ, St,
and Sφ, are then fixed by the constraints. In the case of the T SSC, those constraints are

E = −pt −
1

2µ
gtµ,νη

µνγδSγpδ , (A.56)

Jz = pφ +
1

2µ
gφµ,νη

µνγδSγpδ , (A.57)

µ2 = −gµνpµpν , (A.58)

S2 = gµνSµSν , (A.59)

0 = gµνSµpν , (A.60)

where we have substituted Eq. (A.17) into the constants of motion (A.3), (A.4), and lowered
the indices wherever needed. Thus, we specify an orbit by providing values for E, Jz, S2, and
µ2. We then solve the system (A.56)-(A.60) for pt, pθ, pφ, St, and Sφ with the help of the
Newton-Raphson method.

For comparing the effect of different SSCs in the evolution of MP, we need to find initial
conditions for the NW SSC which are similar to the T SSC case. Hence, we parametrize the
orbits by providing the same initial set of values for r, θ, pr, Sr, Sθ, E, Jz, S2 and µ2. The
set of constraints for the NW SSC is similar to the one for the T SSC (Eqs. (A.56)-(A.60)).
The constraints (A.56)-(A.57) remain unaltered. We use Eq. (A.58), and Eq. (A.23) instead
of Eq. (A.59) for the initial setup, even though, in the case of the NW SCC, neither the spin
S2 nor the rest mass µ is preserved anymore. Finally, we replace constraint (A.60) by

gµνSµων = 0 .

When solving the resulting system for pt, pθ, pφ, St, and Sφ for the same provided r, θ, pr, Sr,
Sθ, E, Jz, S2 and µ2 as in the T case, we get what we referred to as similar initial conditions
above. At last, by raising indices of the momenta and going from spin vectors to tensors with
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the help of the transformations (A.17) and (A.22), respectively, we get suitable data to start
the computation with. The orbits are evolved through the Eqs. (A.1), (A.2). A more detailed
discussion about the techniques we have applied to evolve the MP equations is provided in
Appendix A.7.

The timelike vector ων in the NW SSC (A.13) is given by Eq. (A.32), where the ẽTν is the
top equation from the set (A.51). By adapting the convention that times and lengths are
measured in terms of M , we set M = 1 throughout the paper.

Before we proceed with the numerical results, we want to discuss the initial setup for our
evaluations in this section. We have chosen the orbits to start from the same point in the
configuration space, i.e., both worldlines at τ = 0 lie at the same spacetime point. This means
that both of the different corresponding observers see the center of the mass lying at the same
place, even if the SSCs are different. This is not the usual way this subject is treated. In
(Kyrian and Semerák, 2007), for example, the discussion about the transition between two
different SSCs is based on the center of the mass worldline displacement. The latter approach
would not be appropriate for our treatment, because apart from the shift in the value of the
spin tensor, the initial point in the configuration space should be shifted as well (Kyrian and
Semerák, 2007). In our treatment we want to change the order of magnitude of the spin while
keeping the initial conditions as similar as possible during the scaling, in order to observe how
the two different SSCs converge as the geodesic limit is approached. In other words we do not
attempt to have initial conditions which would obey the transition between different SSCs for
one particle, but rather conditions which represent similar orbits for two different SSCs.

A.4.2. Comparison for large spin
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Figure A.1: The left panel shows a MP orbit with T SSC (black dots) and a MP orbit with
NW SSC (gray dots) in the configuration space x, y, z (Cartesian coordinates).
The common parameters for these orbits are a = 0.5, r = 11.7, θ = π/2, pr = 0.1,
S = 1, Sr = 0.1 S, Sθ = 0.01 S, E = 0.97, Jz = 3, and µ = 1. The central
panel shows the logarithm of the Euclidean distance in the configuration space
between these two orbits as a function of the proper time. The right panel shows
the logarithm of the difference ∆S4x4 between the spin tensors of these two orbits
as a function of the proper time.

In our first example, the parameters read a = 0.5, r = 11.7, θ = π/2, pr = 0.1, S = 1,
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Sr = 0.1 S, Sθ = 0.01 S, E = 0.97, Jz = 3, and µ = 1. The left panel of Fig. A.1 shows how
the two MP orbits with T SSC (black) and NW SSC (gray) evolve in the configuration space
where the Cartesian coordinates

x = r cosφ sin θ ,

y = r sinφ sin θ ,

z = r cos θ , (A.61)

are employed.

The divergence between the two orbits is barely visible in the left panel, but if we take the
Euclidean norm

∆xyz =
√

(xT − xNW )2 + (yT − yNW )2 + (zT − zNW )2 , (A.62)

we see that at the end of our run, the separation between the two orbits is of the order one
(central panel of Fig. A.1), while the radial distance from the central black hole is of the order
ten (left panel of Fig. A.1). Even if the Möller radius is not an appropriate tool for our setup
(see the discussion at the last paragraph of Sec. A.4.1), it is worthy to note that the two orbits
lie inside a Möller radius (S/µ = 1) for τ = 103, even if their distance will grow out of this
radius later on. This divergence in the orbit evolution follows the discrepancy in the spin
space. To illustrate this, the norm of the difference between the spin tensor SµνT of the T SSC
and the spin tensor SµνT of the NW SSC,

∆S4x4 =

√∣∣∣gµνgκλ(SνκT − SνκNW )(SµλT − S
µλ
NW )

∣∣∣ , (A.63)

is displayed in the right panel of Fig. A.1. ∆S4x4 is one tenth of the spin measure right from
the beginning, and stays at this level during the evolution. Thus, from an orbital dynamic
point of view when the spin of the test particle is of order S = 1, the choice of different SSCs
leads to orbital evolutions which diverge significantly with time.

One thing that has to be discussed before we proceed is the meaning of a ’common’ proper
time, when two orbits with different SSCs are compared. Each SSC defines its own center
of reference, which implies that with each SSC the proper time that is measured along the
above orbits is different, even if the orbits start with similar initial conditions. Another issue
that arises here is how we can measure the distance between two ‘nearby’ orbits in a curved
spacetime. Above, we use the Euclidean norm, however the spacetime is not Euclidean. The
same issues arise when geodesic chaos is studied in curved spacetimes, see, e.g., (Wu et al., 2006;
Lukes-Gerakopoulos, 2014). One of the suggestions in the aforementioned field is to use the two
nearby orbits technique, i.e., to evolve two orbits with similar initial conditions and measure
their distance when they reach the same proper time. This is, in few words, the approach we
adapt in our study for the time issue. For the issue of the distance in the configuration space
between the two orbits, we have chosen to employ the Euclidean metric. We could employ the
local gµν metric as well, even if the orbits depart from each other significantly (middle panel of
Fig. A.5). However, for the evolution times τ = 103 the results coming from both approaches
are almost identical, and therefore we went for the the simplest metric, which is the Euclidean.
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Figure A.2: The left panel shows the logarithm of the Euclidean distance in the configuration
space between a MP orbit with T SSC and a MP orbit with NW SSC as a function
of the proper time. The common parameters for these orbits read a = 0.5, r = 11.7,
θ = π/2, pr = 0.1, S = 10−8, Sr = 0.1 S, Sθ = 0.01 S, E = 0.97, Jz = 3, and
µ = 1. The right panel shows the logarithm of the difference ∆S4x4 between the
spin tensors of these two orbits as a function of the proper time.

A.4.3. Comparison for very small spin

Since we mentioned the geodesic orbits, we approach this limit by setting the measure of
the spin in our initial conditions to S = 10−8. All the other parameters are the same as
in Fig. A.1. For this geodesic-like setup the orbits in the configuration space resemble the
orbits shown in the left panel of Fig. A.1. However, the left panel of Fig. A.2 shows that the
distance between the two orbits has dropped significantly, about 8 orders of magnitude. This
drop is anticipated since we tend to the geodesic limit and the spin contribution is expected
to be smaller. However, the level of the divergence in the configuration space (left panel
of Fig. A.2) is again defined by the magnitude of the spin difference ∆S4x4 (right panel of
Fig. A.2). Namely, even though the initial conditions in the configuration space are identical,
i.e., ∆xyz = 0, those of the spin components are not, i.e., ∆S4x4 ≈ 10−9, and this initial
divergence in the spin space is passed on to the configuration space.

A.4.4. Constants of motion

We now turn our attention to the conservation of the four-momentum (rest mass µ) and of
the spin S. In order to check whether these quantities are preserved, we use the relative error
of the four-momentum

∆µ2 =

∣∣∣∣1− µ2(τ)

µ2(0)

∣∣∣∣ , (A.64)

and the relative error of the spin S2

∆S2 =

∣∣∣∣1− S2(τ)

S2(0)

∣∣∣∣ , (A.65)

where µ2(τ), and S2(τ) are calculated at time τ .

We see from Fig. A.3 that both the rest mass µ2 and the spin are conserved for the T SSC
(black lines) as was expected (see Sec. A.2). On the other hand, in the case of the NW SSC
(gray lines) the four-momentum scales with the magnitude of the spin S, while the square of
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Figure A.3: The top row of panels corresponds to the orbits of Fig. A.1, while the bottom
row of panels corresponds to the orbits of Fig. A.2. The black lines represent the
evolution of the MP equations with T SSC, while the gray lines represent the
NW SSC. The left column of panels shows the relative error in the preservation of
the four-momentum, while the right depicts the preservation of the spin.

the spin itself stays at the same level indifferently from the spin’s magnitude. This scaling
in the conservation of the mass is anticipated because, as S → 0, the evolution of the MP
equations approaches that of the geodesic motion.
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Figure A.4: The relative error of the four-momentum ∆µ2 as a function of the spin measure S
for the NW SSC. The black dots correspond to the maximum values of ∆µ2 during
the evolution for each S. The dashed line is a linear fit of the form log10 ∆µ2 =
a log10 S+ b for data with S > 10−6, where a = 1.995±0.004, b = −4.136±0.013.

In order to better illustrate the above mentioned scaling, we run several simulations with initial
setups similar to the one of Fig. A.1 where we only change the measure of the spin, S. For
every simulation, we plot the maximum value of ∆µ2 along the trajectory against the initial
spin measure (Fig. A.4). The resulting plot shows that, as we decrease S, the four-momentum
for the NW SSC tends to be conserved up to the computational accuracy. There are two

77



effects that shape this figure. One is the theoretical scaling of ∆µ2 as a function of S and the
other is the finite computational accuracy. From a linear fit of our data we get for S > 10−6

(dashed line in Fig. A.4) ∆ µ2 ∝ S2. For smaller spins a plateau appears because we reach
the computational accuracy (in our runs we use double precision).

Since for T SSC the four-momentum is conserved and for the NW SSC the
√

∆ µ2 scales
linearly with the spin, this scaling can be interpreted as the rate by which the two different
SSCs converge to each other. Changing the value of the spin a of the central black hole does
not alter qualitatively the results of our numerical comparison.

A.5. Numerical comparison of the MP equations with the
corresponding Hamiltonian equations

A.5.1. Preliminaries
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Figure A.5: The left panel shows how the orbit evolves through the MP equations (gray dots)
and through the Hamilton’s equations (black dots) in the configuration space
x, y, z, when we use the initial conditions given in Fig. A.1. The central panel
shows the logarithm of the Euclidean distance in the configuration space between
these two orbits as a function of the coordinate time. The right panel shows the
logarithm of the Euclidean norm of the difference between the spin vectors of
these two orbits as a function of the coordinate time.

Since the MP equations are a pole-dipole approximation, multipoles of higher order than the
spin dipole are already neglected. However, we can simplify the problem further by assuming
that the physically relevant values for the particle spin are small and the terms quadratic in
the spin correspond to the quadrupole contribution. Thus, a Hamiltonian which is accurate up
to linear order of the spin should yield satisfactory results. This is the main idea on which the
construction of such a Hamiltonian formalism for NW SSC in (Barausse et al., 2009) is based.

According to this formalism (see the brief description in Sec. A.3), the evolution parameter is
not the proper time like in the case of Sec. A.4, but the coordinate time. In order to perform
a comparison between the MP equations and the corresponding Hamiltonian (Sec. A.3.1)
equations, we could rewrite our MP code with respect to the coordinate time. However,
the coordinate times, at which our quantities were calculated in the MP simulations, were
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equations

given as output anyway. With them at hand, there is an easier way out. One can evolve the
Hamilton’s equations of motion using constant steps in the coordinate time, and interpolate
the solution around the required times of output. A more detailed discussion on this topic
and the numerical methods we have used is given in Appendix A.8.

Moreover, in order to make the two formalisms comparable, we used the equations given
in Sec. A.3 to go from the set of variables {xµ, pµ, Sµν} of the MP equations to the set of
variables {xi, P i, SI} in the Hamiltonian formalism. Note that this holds also for the initial
conditions, thus both the MP equations and the corresponding Hamilton’s equations start
with exactly the same initial setup.

Before showing the results of comparisons between the two approaches, we want to point out
that all simulations using the Hamiltonian equations were much faster than their equivalents
based on the MP equations with NW SSC. More detailed information on this can be found in
the Appendix Sections.

A.5.2. Comparison for large spin

Using the initial conditions for the NW SSC given in Fig. A.1, we have evolved the orbit by
using Hamilton’s equations. The motion of the corresponding orbit in the configuration space
is shown in the left panel of Fig. A.5 (black dots) together with the orbit evolved through the
MP equations (gray dots). Even if the two orbits start with the same initial conditions they
depart from each other quite quickly. This is seen more clearly in the central panel of Fig. A.5,
where the Euclidean distance between the two orbits

∆xyz =
√

(xH − xMP )2 + (yH − yMP )2 + (zH − zMP )2 , (A.66)

is displayed as a function of the coordinate time. Near the end of the calculation, the distance
∆xyz is almost as large as the radial distance of the particle from the central black hole. From
the appearance of the left panel of Fig. A.5 one might wonder whether the divergence between
the orbits is a “synchronization” issue. However, since both schemes use the same SSC, i.e.,
the NW SSC, and since the initial conditions for both schemes are exactly the same, i.e., the
orbits correspond to the same particle, the proper time for both orbits has to tick at the
same rate. Thus, it is reasonable to claim that this divergence results from the fact that the
Hamiltonian is valid up to the linear order in the particle spin, and since the spin here is
large, i.e., S = 1, such divergence should be expected. Nevertheless, it is impressive that orbits
corresponding to the same particle evaluated with different schemes, i.e., the MP equations
and the corresponding Hamiltonian, give a divergence that is of one order of magnitude larger
than the divergence of the MP equations with different SSCs (left panel of Fig. A.1). If we
took the Möller radius as a criterion, for example, then, since the distance between the two
orbits exceeds the diameter of the disc of centers of mass, according to this criterion, the
orbits could not correspond to the same particle. Therefore, we can say that the Hamiltonian
formalism is not valid for large spin values, just as expected.

The spin in the Hamiltonian formalism is given by the projection vector (Eq. (A.34)). The
Euclidean norm of the difference between the spin vector SIH calculated by Hamilton’s equations
and the SIMP calculated by the MP equations

∆Sv =

√√√√ 3∑
I=1

(SIH − SIMP )2 , (A.67)
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is plotted as a function of the coordinate time in the right panel of Fig. A.5. This plot shows
that the difference is quite high, even if the spin values are identical at first.

A.5.3. Comparison for very small spin

0.5 1.0 1.5 2.0 2.5 3.0

-14

-13

-12

-11

log10 t

lo
g
1
0
D

x
y
z

0.5 1. 1.5 2. 2.5 3.

-16

-15

log10 t
lo
g
1
0
D
S
V

Figure A.6: The left panel shows the logarithm of the Euclidean distance in the configuration
space between an orbit calculated with the MP equations and an orbit calculated
with the Hamilton equations as a function of the coordinate time. For the orbits
we have used the initial conditions given in Fig. A.2. The right panel shows the
logarithm of the Euclidean norm of the difference between the spin vectors of
these two orbits as a function of the coordinate time.

By decreasing the measure of the particle’s spin to the level of S = 10−8, we get the initial
setup given in Fig. A.2. The Euclidean distance between the evolutions of the MP equations
and the Hamilton equations (left panel of Fig. A.6) drops to a level which is near the precision
of our simulations. Therefore, practically, the two orbits should not discern. This seems to
be the picture we get from the Euclidean norm of the difference between the spin vectors as
well (right panel of Fig. A.6). Moreover, it is also evident that the distance between the two
orbits does not exceed the diameter of the disc of centers of mass defined by the Möller radius
for the coordinate time we have computed. Therefore, it is reasonable to say that the two
orbits obtained by two different formalisms do correspond to the same particle and thus infer
that the Hamiltonian is indeed valid for small spin values. However, this picture might be a
little bit illusive. The order of the spin is S = 10−8, and, thus, what we see in fact is that
the relative difference, i.e., ∆Sv/S ≈ 10−8 is of the order of the spins’ magnitude. In other
words, in the spin space the evolution of the two orbits does not agree completely. The reason
that in the configuration space the orbits appear to be identical, while in the spin space the
agreement is not at the same level, is that we are in the geodesic limit, and the evolution of
the orbits is almost independent from the spins.

The bottom row of Fig. A.7 supports the claim that when S = 10−8, we are at the geodesic
limit, and the evolution does not depend on the spins. In the left panel of the bottom row in
Fig. A.7, the relative errors of the Hamiltonian function,

∆H =

∣∣∣∣1− H(t)

H(0)

∣∣∣∣ , (A.68)

lie at the computation precision level for both the MP orbit (gray line) and the Hamiltonian
orbit (black line), while the level of the relative error (A.65) in the measure of the spin vectors,

S2 = SIS
I , (A.69)
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Figure A.7: The top row of panels corresponds to the orbits of Fig. A.5, while the bottom
row of panels corresponds to the orbits of Fig. A.6. The middle row of panels
corresponds to initial conditions similar to Fig. A.1 only instead of spin measure
S = 1 we set S = 10−4. The gray lines represent the evolution of the MP equations,
while the black lines represent the evolution of the Hamilton equations. The left
column of panels shows the relative error in the preservation of the Hamiltonian
function, while the right shows the preservation of the spin.
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is not as well preserved for the MP case (gray line) as for the Hamiltonian case (black line in
the right panel of the bottom row in Fig. A.7). Notice that, as stated above, in the case of the
MP equation, we can get the value of the Hamiltonian function H and of the square of the
spin measure S2 by transforming the set of variables {xµ, pµ, Sµν} into the set {xi, P i, SI}
and substituting the transformed set into Eq. (A.35) and Eq. (A.69) respectively.

A.5.4. Behavior of the constants of motion and scaling with the spin

When we raise the measure of the particle spin to S = 10−4, then the relative error of the
MP spin (Eq. (A.69)) remains practically at the same level (gray line in the right panel of
the middle row in Fig. A.7) as in the S = 10−8 case. This does not hold for the relative error
of the Hamiltonian function (gray line in the left panel of the middle row in Fig. A.7) which
is not at the computation precision level anymore. This shows that the motion is no longer
in the geodesic limit. However, both ∆S2 and ∆H for the MP orbit lie at acceptable levels,
which shows that for this magnitude of the particle spin, the MP equations and the Hamilton
equations seem to be in agreement.

This agreement breaks when S = 1. The top row of Fig. A.7 shows that when S = 1, the
relative errors, ∆H and ∆S2 are at the same quite high level for the MP orbit. These
relatively large values confirm the departure between the MP equations and the corresponding
Hamiltonian that we see in Fig. A.5.

The black lines for all panels of Fig. A.7 are at the highest accuracy the computation accuracy
allows, which means that apart from round-off error, the Gauss scheme we applied integrates
accurately the system of the Hamilton equations, but also that the interpolation scheme we
applied to match the coordinate times works quite well.
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Figure A.8: The left panel shows the relative error of the Hamiltonian ∆H of orbits evolved
through the MP equations for different spin measures S of the particle, while the
right panel shows the corresponding preservations of the measure of the 3-vector
∆S2. The black dots correspond to the maximum values of ∆H, ∆S2, respectively,
for each S. The dashed lines are linear fits of the form log10 ∆H = a log10 S + b,
and
log10 ∆S2 = c log10 S + d, respectively, for data with S > 10−6, where a =
1.9968± 0.0015, b = −2.644± 0.004, and
c = 1.031± 0.015, d = −2.46± 0.06.

As at the end of the previous Section, we can investigate the scaling of the constants of motion
with the spin in more detail by taking the maxima of their relative errors the MP equations,
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for different values of the measure of the particle’s spin. The result is shown in Fig. A.8. Again,
as in Fig. A.4, the precision of our computations and the scaling due to the spin measure shape
the figure. We see a plateau at the left panel of Fig. A.8 for ∆H due to the computational
precision, while in the right panel of Fig. A.8 we see that ∆S2 increases, which is due to to
the smallness of the spin components. Even if we had applied a special integration scheme
respecting these small quantities, this scheme could not follow below a threshold either. This
threshold is in our case S = 10−6. When the scaling with the spin dominates (S > 10−6), the
linear fits show that ∆H ∝ S2, while ∆S2 ∝ S. These proportionalities are expected as we
explain next.

By construction the Hamiltonian function H of a spinning particle is accurate up to linear order
of the particle spin. Hence, when compared with the value of the Hamiltonian function yielded
from the evolution of the MP equations HMP (t), the difference between the two Hamiltonian
function values should differ by terms of the order O(S2), i.e.,

HMP (t) ≈ H(t) +O(S2) . (A.70)

However, since we have chosen the same initial conditions for both evolution schemes, it holds
that HMP (0) = H(0). Thus, the relative error (A.68) for the MP equations reads

∆H =

∣∣∣∣HMP (t)−HMP (0)

HMP (0)

∣∣∣∣ ≈ ∣∣∣∣H(t)−H(0)

H(0)
+
O(S2)

H(0)

∣∣∣∣ . (A.71)

Since we do not expect the relative error H(t)−H(0)
H(0) to depend on the value of the particle’s

spin, and this expectation is confirmed by the numerical findings (black lines in the left column
of Fig. A.7), we get the scaling ∆H ∝ S2 of Fig. A.8.

In order to explain the scaling of the relative error ∆S2, we use a similar way of reasoning.
The preservation of the spin for the Hamiltonian formalism (A.69) is S2, thus a reasonable
expectation is that for the MP case we should get values S2

MP (t) from Eq. (A.69) which differ
from the Hamiltonian case at order O(S3), i.e.,

S2
MP (t) ≈ S2(t) +O(S3) . (A.72)

Furthermore, we have S2
MP (0) = S2(0). Thus, the relative error (A.65) for the MP equations

reads

∆S2 =

∣∣∣∣S2
MP (t)− S2

MP (0)

S2
MP (0)

∣∣∣∣ ≈ ∣∣∣∣S2(t)− S2(0)

S2(0)
+
O(S3)

S2(0)

∣∣∣∣ , (A.73)

which explains why we see that ∆S2 ∝ S in the right panel of Fig. A.8.

If we take as a criterion the convergence of the constants of motion shown in Fig. A.8, and
consent that a relative error of the level of 10−6 is adequate to state that the different formalisms
have converged, then from our comparison the Hamiltonian formalism is in agreement with
the MP equations for the NW SSC when the measure of the particle’s spin is S < 10−4. When
we reach S ≈ 10−6, the effect of the spin appears not to be important anymore, and the orbit
evolves like a geodesic, i.e., it does not depend on the spin.

A.6. Conclusions

We have compared the evolutions of a spinning test particle in Kerr spacetime governed by
different equations of motion. We first evolved the orbits prescribed by the MP equations, once
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supplemented by the Tulczyjew SSC and once by the Newton-Wigner SSC. Our simulations
indicate a linear in the spin scaling of the difference between the respective orbits. We also found
that, in the case of the NW SSC, the four-momentum is conserved up to linear order in the
square of the test particle’s spin, i.e ∆µ2 ∝ S2. In a second series of experiments we compared
orbits given by the MP equations plus NW SSC with orbits obtained via the Hamiltonian
formalism of Barausse et al. (2009). Here, too, the difference between the respective orbits,
which is quite significant for large spins of the order of one, decreases linearly as a function of
the square of the test particle’s spin, i.e. ∆H ∝ S2, which agrees with the analysis given in
(Barausse et al., 2009). According to our analysis, the Hamiltonian formalism of the spinning
particle appears to be relevant in the range 10−6 < S < 10−4. For values of the spin smaller
than 10−6 we can ignore the part of the Hamiltonian describing the spin evolution and keep
the non-spinning part, and for spin values greater than 10−4, our numerical results show
that the Hamiltonian formalism is not in good agreement with the MP equations. Anyhow,
the aforementioned range, where the Hamiltonian formalism is relevant, is appropriate for
astrophysical binary systems of extreme mass ratio. Moreover, as our simulations showed that
the CPU effort for the Hamilton equations of motion is far smaller than the computational
cost for the MP equations, we find appropriate the use of these equations for simulations of
test particles with small spins. When, in addition, favorable numerical methods, such as the
one presented in this work, are applied, reliable results can be obtained within a short period
of time.
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A.7. Numerical integration of the MP equations

Seen from a numerical point of view, the initial value problem (A.55) reads

dy

dτ
= f(y) , (A.74)

y(τ = 0) = y0 . (A.75)

with y = (t, r, ..., Sθφ, Sθθ)T ∈ R24 and f : R24 → R24. If this system was of Hamiltonian
canonical form, symplectic integration schemes would be the most natural choice for their
numerical solution. They almost exactly preserve a differential equation’s constants of motion
and, unless for standard integration schemes, their overall numerical error grows only slowly
as a function of the total integration time even for larger step sizes. Therefore, simulations
over long time spans can be carried out efficiently. Unfortunately, the MP equations are not of
Hamiltonian canonical form. But, they can be interpreted as the Euler-Lagrange equations
of a suitable Lagrangian action, see, e.g., (Westpfahl, 1969; Bailey and Israel, 1975; Porto,
2006). What then saves the day is that the flow of symplectic integration schemes can be
interpreted as the solution of the Euler-Lagrange equations of a discretization of the Lagrangian
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A.7. Numerical integration of the MP equations

action. Schemes with this property are called variational integrators and they only rely on the
existence of a Lagrangian structure for their favorable behavior. For example they are known to
exactly preserve an equation of motion’s first integrals which are quadratic in the phase space
variables. This implies that a variational integration scheme applied to the MP equations with
T SSC will conserve the four-momentum µ2 and the spin length S2 up to numerical round-off
errors. An extensive discussion of this topic can be found in the monograph of Hairer et al.
(2006), chapter VI.6. One prominent example of variational integrators are Gauss Runge-Kutta
methods which have been shown to be the most efficient and accurate integrators in many
general relativistic applications, see, e.g., (Seyrich and Lukes-Gerakopoulos, 2012; Seyrich,
2013). Motivated by these results, we choose this kind of variational integrator for the solution
of the MP equations. Here we briefly summarize some of their properties.

An s-stage Gauss Runge-Kutta scheme is a collocation method, i.e., an implicit Runge-Kutta
scheme

yn+1 = yn + h

s∑
i=1

bif(Yi) , (A.76)

Yi = yn + h

s∑
j=1

aijf(Yj), i = 1, ..., s , (A.77)

with coefficients

aij =

ci∫
0

lj(t)dt , (A.78)

bj =

1∫
0

li(t)dt , (A.79)

where the stages c1, ..., cs are chosen as

ci =
1

2
(1 + c̃i) , (A.80)

with c̃i being the roots of the Legendre-polynomial of degree s. Here, h denotes the time
step size, Yi, i = 1, ..., s, are the so-called inner stage values and yn denotes the numerical
approximation to the solution y at time τ = nh. The functions li(t) are the Lagrange-
polynomials of degree s,

li(t) =
∏
i 6=j

t− cj
ci − cj

. (A.81)

Gauss Runge-Kutta methods have a convergence order O(h2s) which is the highest possible
order among collocation schemes, e.g., (Hairer et al., 1993). When integrating a time step
with a Gauss Runge-Kutta scheme, one first solves the system of implicit equations (A.77) via
a fixed-point iteration

Yk+1
i = yn + h

s∑
j=1

aijf(Yk
j ) . (A.82)
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This, of course, requires more calculations per time step than an explicit scheme with the same
number of stages. But, this extra effort is more than offset by the high accuracy of Gauss
collocation methods which allows us to apply them with a much larger step size. Detailed
information on their implementation is given in (Seyrich, 2013, Sec. 7), and (Hairer et al.,
1993, Chapters VIII.5 and VIII.6).

To illustrate the favorable behavior of Gauss collocation methods, we compare the performance
of a 4-stage scheme with step size h = 1 and a standard 5-th order explicit Cash-Karp scheme
as proposed by Flannery et al. (1992) with a step size h = 0.1, when applied to the MP
equations with T SSC and initial data given by E = 0.95, Jz = 3.0, S = 1, M = 1 µ = 1,
a = 0.9, r = 6.7, θ = π

2 + 0.1, pr = 0.1, Sr = 0.1, Sθ = 0.01. In Fig. A.9, we plot for both
integrators the relative error in the energy,

∆E(τ) =
|E(τ)− E(0)|
|E(0)|

, (A.83)

and the corresponding relative error in the z angular momentum as a function of integration
time τ . We observe that the Gauss Runge-Kutta method, which is also faster, gives much
more precise results.
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Figure A.9: The relative error of the z angular momentum, ∆Jz, (top panel) and the relative
error of the energy, ∆E, (bottom panel) against integration time τ for the 4-stage
Gauss scheme with step size h = 1 and the 5-th order Cash-Karp scheme with
step size h = 0.1 applied to the initial value problem (A.55) with initial data as
stated in the text. CPU-time was 214.1s for the Gauss Runge-Kutta scheme and
422.7s for the Cash-Karp scheme.

An additional obstacle for simulations in the NW SSC case is that the tangential velocity vµ is
only given implicitly by Eq. (A.27). (N.b.: Apart from the apparent vν in the first term on the
right hand side, the covariant derivative of ων implies a linear dependence on vν in the second

term on the rhs as well, i.e.,
D ων
dτ

= ω̇ν − Γκνµωκv
µ.) Setting ~v := (vt, vr, vφ, vθ)T ∈ R4, the

implicit equation for vµ is qualitatively given by

~v = A(xµ, pµ, Sµν)~v (A.84)

for a certain matrix A ∈ R4×4. Theoretically there are two possibilities to cope with the
implicitness in the velocities which we will describe now.
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• Denoting the first four components of Yi and f(Yi) by Y x
i and fx(Yi), and the other

components by Y p
i , Y

S
i , fp(Yi), and fS(Yi) we can augment the system of implicit

equations (A.77) by adding the implicitly given quantity ~vi which denotes the tangential
velocity vµ at the inner stage Yi. This yields the system

~vi
Yx
i

Yp
i

YS
i

 =


A(Y x

i , Y
p
i , Y

S
i )~vi

yxn + h
∑s

j=1 aij~vi
ypn + h

∑s
j=1 aijf

p(Y x
i , Y

p
i , Y

S
i , ~vi)

ySn + h
∑s

j=1 aijf
S(Y x

i , Y
p
i , Y

S
i , ~vi)

 ,

i = 1, ..., s , (A.85)

to which, again, a fixed-point iteration can be applied. However, for this iteration to
converge, it needs to satisfy

||
(
~vk+2
i

Y k+2
i

)
−
(
~vk+1
i

Y k+1
i

)
|| ≤ ||

(
~vk+1
i

Y k+1
i

)
−
(
~vki
Y k
i

)
|| , (A.86)

which cannot be guaranteed when A(Y x
i , Y

p
i , Y

S
i ) is of large norm. Numerical tests have

shown that there are indeed problems with the convergence. Hence, for all its conceptual
beauty, the approach of an augmented implicit system is of no practical use.

• With I denoting the 4× 4 identity matrix, we can rewrite the implicit equation for the
velocities (A.84) as

0 = (I −A)~v =: B~v . (A.87)

Thus, from an algebraical point of view, the vector consisting of the components of
the 4-velocity is an element of the nullspace Ker(B) of the matrix B which here is a
one-dimensional subspace. Consequently, we can determine the tangential velocity at an
internal stage by the following procedure

1. Calculate

B(Y x
i , Y

p
i , Y

S
i ) = I −A(Y x

i , Y
p
i , Y

S
i ). (A.88)

2. Calculate the singular-value-decomposition of B, i.e.,

B = UΣV T , (A.89)

with Σ = diag(σ1, σ2, σ3, σ4) and UTU = V TV = δij , i, j = 1, ...4. For more
information on the singular value decomposition, see, e.g., (Flannery et al., 1992,
Chapter 2.6). The nullspace of B is then spanned by the column of the orthonormal
matrix V.,i that corresponds to the only singular value σi which is equal to 0.

3. The tangential velocity is now obtained by renormalizing V.,i in order to have
vµvµ = −1.

This procedure is very robust and the computational cost for the calculation of the
matrix B and the singular value decomposition is far less than the computational cost for
the calculation of the other quantities which are needed anyway. This could be confirmed
experimentally when comparing CPU times for simulations with T SSC and NW SSC
for similar initial values. For all the simulations done in the preparation for this work,
the CPU times in the NW SSC case were only slightly higher than those for the T SSC
case where the velocities could be determined explicitly via Eq. (A.24).
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Last, we turn to the numerical integration of the Hamiltonian formalism in the next section.

A.8. Numerical integration of the Hamiltonian equations

The Hamiltonian equations considered in this study have a so-called Poisson structure, that is,
with y = (Pr, Pθ, Pφ, r, θ, φ, S1, S2, S3)T ∈ R9, they can be written as

ẏ = B(y)∇H(y) , (A.90)

where B : R9 → R9×9 is a skew-symmetric matrix-valued function. In our case, this function
B(y) is given by

B(y) =

 0 −I3×3 0
I3×3 0 0

0 0 B1(y)

 , (A.91)

with

I3×3 =

1 0 0
0 1 0
0 0 1

 , (A.92)

B1(y) =

 0 −S3 S2

S3 0 −S1

−S2 S1 0

 . (A.93)

For such B(y), there exists a smooth transformation to new coordinates z, for which the
equations of motion are of symplectic form

ż = J−1∇H(z) , (A.94)

J =

(
0 I4×4

−I4×4 0

)
, (A.95)

see (Wu and Xie, 2010; Seyrich, 2013). The idea how to find this transformation is based on
the conservation of the spin length S =

√
S2

1 + S2
2 + S2

3 by the eqs. (A.90). Thus, the three
dimensional spin S = (S1, S2, S3)T can be given as a function of two variables α and ξ via

S = S


√

1− ξ2 cos(α)√
1− ξ2 sin(α)

ξ

 . (A.96)

One can then show that

ξ̇ = −∂H
∂α

, (A.97)

α̇ =
∂H

∂ξ
(A.98)

hold, see, e.g., (Seyrich, 2013). Hence, for the variables z = (Pr, Pθ, Pφ, ξ, r, θ, φ, α), the
equations of motion indeed take the form (A.94). Whenever a system can be smoothly
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transformed to symplectic form, it can be evolved by symplectic integration schemes. Therefore,
for our studies of the Hamiltonian formalism of Barausse et al. (2009), we follow Seyrich (2013)
and use Gauss Runge-Kutta schemes which have already been presented in the last section55.
In order to show their favorable behavior, we evolve the Hamiltonian system for initial data
M = 1, m = 1, a = 1

10 , r = 15, θ = π
2 , φ = 0, Pr = 0, Pθ = 3.69336, Pφ = Jz = 3.8, S1 = 1√

2
,

S2 = 1√
3
, S3 = 1√

6
and plot, in Fig. A.10, the relative error of the Hamiltonian (A.68) once for

the Gauss Runge-Kutta method with s = 4 inner stages and once for the 5th order explicit
Cash-Karp scheme. For the explicit method we observe a linear growth in the error while there
is no significant error during the whole simulation for the Gauss scheme. This is in spite of
the latter’s much smaller CPU time. With regard to the computational effort, we also notice
that it is much smaller than in the case of the full MP equations, although both cases were
tested on the same machine. This gives another practical reason to consider the Hamiltonian
approximation.
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Figure A.10: The relative error of the Hamiltonian, ∆H against integration time t for the
4-stage Gauss scheme with step size h = 2 and the 5-th order Cash-Karp scheme
with step size h = 0.2 applied to the initial value problem (A.90) with initial data
as stated in the text. CPU-time was 7.83s for the Gauss Runge-Kutta scheme
and 24, 7s for the Cash-Karp scheme.

In our comparison of the orbits given by the MP equations with those of the Hamiltonian
formalism, the concerning simulations have to produce output for the same coordinate times. To
avoid having to reformulate the MP equations for the coordinate time as evolution parameter,
we proceed as follows. In the simulation of the MP equations, output is produced at uniform
distances in the evolution parameter proper time. The output also comprises the corresponding
coordinate times. These are then fed as input to the Hamiltonian simulations -for example
under the name toutput required. Now, if in the simulation with uniform steps in the evolution
parameter coordinate time t, between times ti and ti+1 say, one passes one of the prescribed
times for which output is required, toutput required, one can take use of the interpolation property
of the collocation schemes to comfortably obtain output at no computational extra cost. It
is well known that the interpolation polynomial u(t) through the points (0,yn), (ci,Yi),
55As opposed to the approach in (Seyrich, 2013) we did not bother to rewrite the system in the variables z,

because in the present case the additional cost of the one extra variable is negligible in comparison to the
other computational effort.
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i = 1, ..., s, stays O(hs) close to the exact solution of the equation of motion, and, hence, also
to the numerical calculated trajectory, see, e.g., (Hairer et al., 1993). We thus only have to
evaluate u(t) at time toutput required − ti which yields an approximation of the solution at time
toutput required which is exact up to an error of O(hs). The interpolation polynomial itself can
be calculated very quickly with the so-called Horner scheme

u(t) = yi

+ (t− 0)
(
δ1[0, hc1] + (t− hc1)

(
δ2[0, hc1, hc2] +(t− hc2) (...(t− hcs−1)δs[0, hc1, ..., hcs]) ...)) ,

δ1[0, hc1] =
Y1 − yi
hc1 − 0

,

δk[0, hc1, ..., hck] =
δk−1[hc1, ..., hck]− δk−1[0, hc1, ..., hck−1]

hck − 0
. (A.99)
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Figure A.11: The relative difference, ∆r, between the radial distance calculated with the
interpolation method and the radial distance calculated via the cumbersome
method with extra integration steps plotted against output time t.

The more intricate way of producing output at the desired times would be the following:

• When having passed an output time toutput required between ti and ti+1, go back to ti.

• Change h→ hnew = toutput required − ti.

• Evolve the system until t = toutput required with step size hnew and produce output.

• Go back to ti and go on integrating with step size h. (Note that this is necessary as the
scheme would lose its symplectic structure when applied with different step sizes, see,
e.g. (Hairer et al., 2006), chapter VIII.)

In order to illustrate that this cumbersome procedure is not worth the additional effort, we
again consider the data which yielded Fig. A.5 and, for every coordinate time t, for which
∆xyz was plotted in the central panel of that figure, we plot the relative difference in the radial
distance at those times between the interpolation method and the cumbersome method,

∆r(t) =
|rinterpolation(t)− rcumbersome(t)|

r
. (A.100)
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In Fig. A.11, we can observe that the difference is negligible.
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B. Comparing Hamiltonians of a spinning
test particle for different tetrad fields

The content of this Section was published as [D. Kunst, T. Ledvinka, G. Lukes-Gerakopoulos,
and J. Seyrich Phys. Rev. D 93, 044004 (2016)] under lead-authorship of Daniela Kunst. The
theoretical work was done by Daniela Kunst and Tomáš Ledvinka. The simulations, which
triggered the theoretical considerations and which corroborated the theoretical results, as
well as the studies for integrability, were carried out by Georgios Lukes-Gerakopoulos and
J. S. . The plots shown in the publication, c.f. Figs. B.1,B.2,B.3,B.4,B.5,B.6, were produced
by Daniela Kunst and Georgios Lukes-Gerakopoulos.

Abstract

This work is concerned with suitable choices of tetrad fields and coordinate systems for
the Hamiltonian formalism of a spinning particle derived in Barausse et al. (2009). After
demonstrating that with the originally proposed tetrad field the components of the total
angular momentum are not preserved in the Schwarzschild limit, we analyze other hitherto
proposed tetrad choices. Then, we introduce and thoroughly test two new tetrad fields in the
horizon penetrating Kerr–Schild coordinates. Moreover, we show that for the Schwarzschild
spacetime background the linearized in spin Hamiltonian corresponds to an integrable system,
while for the Kerr spacetime we find chaos which suggests a nonintegrable system.

B.1. Introduction

The motion of a spinning particle in the spacetime background of a black hole, particularly
the Kerr spacetime, is of great astrophysical interest. Namely, it approximates the motion of
a stellar compact object (e.g., a black hole) around a supermassive black hole. Such binary
systems are expected to lie at the center of galaxies, see, e.g., (Amaro-Seoane et al., 2015)
and references therein, and to be good candidates for sources of gravitational radiation (Riles,
2013).

Even though the equations describing the motion of a spinning particle in a curved spacetime
have been provided several decades ago by Mathisson (1937) and Papapetrou (1951), many
issues of this motion are still open. The problem lies in the fact that the Mathisson-Papapetrou
(MP) equations are not a closed system of first order differential equations. Hence, a spin
supplementary condition (SSC) is needed in order to close them. Several such SSCs have been
proposed, see, e.g., (Semerák, 1999; Kyrian and Semerák, 2007) for a review, each of which
introduces a different reference frame. Physically, the ambiguity in the choice of a SSC is
related to the fact that a spinning body cannot be treated as a point particle but must have a
finite size in order to be prevented from rotating at superluminal speed (Møller, 1949). In
particular, each SSC corresponds to an observer who sees the reference worldline fixed by the
SSC as the center of mass of the extended body. Previous studies have shown that the choice
of the SSC depends on the question one wants to investigate (Corinaldesi and Papapetrou,
1951; Costa et al., 2012; Semerák, 1999; Kyrian and Semerák, 2007; Lukes-Gerakopoulos et al.,
2014; Møller, 1949; Pirani, 1956; Semerák and Šrámek, 2015).
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Within the MP equations the motion of spinning test particles in the Schwarzschild or Kerr
spacetime has been investigated by Hackmann et al. (2014); Plyatsko and Fenyk (2012, 2013),
and several papers have been devoted to the investigation of the appearing chaotic motion
(Hartl, 2003a,b; Suzuki and Maeda, 1997; Verhaaren and Hirschmann, 2010). Beyond the
pole-dipole approximation, the quadrupole moment of the test particle has already been taken
into account in (Steinhoff and Puetzfeld, 2012; Bini and Geralico, 2014).

The dynamics of spinning test particles has not only been worked out in Lagrangian formalisms
(MP equations) (Bailey and Israel, 1975), but in Hamiltonian formalisms as well (Steinhoff
et al., 2008; Steinhoff, 2011; Barausse et al., 2009; Tauber, 1988). Hamiltonian dynamics has a
long tradition in astronomy and a large number of problems there (e.g. perturbative problems
or chaotic motion) are typically studied from a Hamiltonian perspective (Contopoulos, 2002).
In general relativity, the Hamiltonian formalisms have been applied, for example, in the
framework of the canonical Arnowitt–Deser–Misner (ADM) formalism of Arnowitt et al. (1962)
and in the effective one body approach (EOB) of Buonanno and Damour (1999), Damour
et al. (2000) and Damour (2008), which studies the dynamics of spinning bodies of comparable
masses using the Hamiltonian description of a one body problem (Blanchet, 2006).

Due to the significance of a Hamiltonian approach the Hamiltonian description of spinning
particles is important despite the fact that it mostly neglects terms quadratic in spin.

In our previous work (Lukes-Gerakopoulos et al., 2014), we have compared the Tulczyjew
(T) SSC (Tulczyjew, 1959) with the Newton-Wigner (NW) SSC (Newton and Wigner, 1949)
as supplements to the MP equations. In a second step, we compared the MP equations
supplemented by the NW SSC to the corresponding Hamilton equations derived by Barausse
et al. (2009) based on the same NW SSC. In this work we focus on the latter, i.e., on a
canonical Hamiltonian formalism which should be equivalent to the MP equations up to the
linear order of the test particle spin.

In contrast to the T SSC, the NW SSC, which is used within the framework of the Hamiltonian
formalism, does not provide a unique choice of reference frame. It rather defines an entire class
of observers, each characterized by a different tetrad field. Thus, the Hamiltonian formalism
proposed in (Barausse et al., 2009) depends on the choice of a reference basis given by such a
tetrad field. Each choice of a tetrad field basically determines the form and the properties of
the resulting Hamiltonian function. The fact that tetrads providing certain frames of reference
are involved in a definition of the spin variable can also be seen as a consequence of the fact
that in the Hamiltonian description the spin is a vector with prescribed canonical relations
to coordinates and momenta. Still, one might conclude that the tetrad dependence of the
Hamiltonian description of the spinning particle is against covariance principles of general
relativity. Yet, when we numerically solve equations of motion we have to use some coordinates
anyway. The involvement of tetrads simply means we use different coordinates for external
and inner degrees of freedom of the spinning particle. As, e.g., Boyer-Lindquist coordinates
are comfortable for solving equations of motion in Kerr geometry, there may well be some
other tetrad fields more suitable for the definition of the Hamiltonian spin.

We discuss the advantages and the drawbacks of Hamiltonian functions arising from tetrad
fields already proposed in (Barausse et al., 2009; Barausse and Buonanno, 2010). Then, we
introduce two new tetrad fields in Kerr–Schild coordinates which yield Hamiltonian functions
with desirable properties using both analytical and numerical analysis. Namely in order to have
a good choice of a tetrad field, the corresponding Hamiltonian should reflect the symmetries
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of the background spacetime, i.e., preserve the integrals of motion, and avoid any coordinate
effects evoked by coordinate dependent tetrad basis vectors.

For the above discussion, we focus on the Schwarzschild limit and show that the well behaving
Hamiltonian functions based on our tetrads have as many integrals of motion as degrees
of freedom. Thus, it is shown that in the Schwarzschild limit these Hamiltonians describe
an integrable system. We view this as an important test, as in general, for different tetrad
fields the description of Barausse et al. (2009) provides Hamiltonians non-equivalent beyond
the given approximation. In any Hamiltonian system, the integrals of motion play a crucial
role when the integrability issue is studied. If we have several possible descriptions of the
same system in the given approximation, those respecting all background symmetries are
the obvious choice. We use the case of spinning particle in Schwarzschild spacetime as such
an exact problem with many integrals of motion to demonstrate shortcomings of certain
coordinate-tetrad choices. Even though the considered approximations assume small spins, to
clearly demonstrate (non-)integrability we also use large spin values in numerical tests.

As for the Kerr spacetime, it was shown by Rüdiger (1981) that if the MP equations sup-
plemented by the T SSC are linearized in the spin, an integral of motion associated with a
Killing-Yano tensor appears. This led to the impression that, up to linear order in the spin,
the motion of a spinning particle is integrable in general (Hinderer et al., 2013). However,
according to our numerical calculations, this seems not to be the case for the Hamiltonian
function depending on the tetrad field choice introduced in (Barausse and Buonanno, 2010).

This paper is organized as follows. In Sec. B.2 we give a short overview of the Hamiltonian
formalism introduced in (Barausse et al., 2009). After that, In Sec. B.3 , we present two
different choices of coordinate systems, Boyer-Lindquist and cartesian isotropic coordinates, for
a tetrad corresponding to a ZAMO observer which is already given in (Barausse et al., 2009;
Barausse and Buonanno, 2010). We analyze the properties of both with the help of analytical
calculations and numerical integrations. Then, we present our new tetrads in Kerr-Schild
coordinates in Sec. B.4. Finally, in Sec. B.5, we summarize our results. We add a description
of our numerical tools in Sec. B.6.

We use geometric units, i.e., (G = c = 1), and the signature of the metric is (-,+,+,+). Greek
letters denote the indices corresponding to spacetime (running from 0 to 3), while Latin letters
denote indices corresponding only to space (running from 1 to 3).

B.2. The Hamiltonian formalism

The Hamiltonian formalism in (Barausse et al., 2009) has been achieved by linearizing the MP
equations of motion for the NW SSC. The MP equations describe the motion of a particle
with mass m2 = −pµpµ, satisfying the mass shell constraint, and spin Sµν in a given spacetime
background gµν . Their reformulation in (Dixon, 1970) reads

D pµ

dσ
= −1

2
Rµνκλv

νSκλ , (B.1)

D Sµν

dσ
= pµ vν − vµ pν , (B.2)
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where pµ is the four-momentum, vµ = dxµ/dσ is the tangent vector to the worldline along
which the particle moves, σ is an evolution parameter along this worldline, and Rµνκλ is the
Riemann tensor. The NW SSC reads

Sµν ωµ = 0 , (B.3)

where ωµ is a sum of timelike vectors. This sum in (Barausse et al., 2009) has the form

ων = pν −m ẽν
T , (B.4)

where ẽν T is a timelike future oriented vector (throughout the article we use T instead of 0),
which together with three spacelike vectors ẽµ I , denoted by capital latin indices, is part of a
tetrad field ẽµ ∆.

This tetrad field has to satisfy two conditions: the first condition ensures the orthonormality
of the tetrad given by

ẽµ Γẽ
ν

∆ gµν = ηΓ∆ , (B.5)

where ηΓ∆ is the metric of the flat spacetime and gµν its analogon for the curved spacetime
background. The capital indices are raised and lowered by the flat metric ηΓ∆, the small ones
by gµν . The second condition is implied by (B.5) and reads

ẽµ ∆ẽν
∆ = δµν , (B.6)

where δµν is the Kronecker delta.

When a tensor is projected on the tetrad field, then it is denoted with capital indices. For
example, ω∆ = ẽν ∆ων is the projection of the time-like vector (B.4) on the tetrad field, i.e.,

ωT = pν ẽ
ν
T −m ,

ωJ = pν ẽ
ν
J . (B.7)

Then, the spin tensor Sµν projection reads

SIJ = Sµν ẽµ
I ẽν

J . (B.8)

In (Barausse et al., 2009), the authors do not work with this tensor but rather employ the
spin three vector

SI =
1

2
εIJL S

JL , (B.9)

where εIJL is the Levi-Civita symbol.

Now, the Hamiltonian function H for a spinning particle

H = HNS +HS , (B.10)

splits in two parts. The first,

HNS = βiPi + α
√
m2 + γijPiPj , (B.11)
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is the Hamiltonian for a nonspinning particle, where

α =
1√
−g00

, (B.12)

βi =
g0i

g00
, (B.13)

γij = gij − g0ig0j

g00
, (B.14)

and Pi are the canonical momenta conjugate to xi of the Hamiltonian (B.10). They can be
calculated from the momenta pi with the help of the relation

Pi = pi + EiΓ∆S
Γ∆ ,

= pi +

(
2EiTJ

ωC
ωT

+ EiJC

)
εJCL SL , (B.15)

where the spin connection

EνΓ∆ = −1

2

(
gκλ ẽ

κ
Γ
∂ẽλ ∆

∂xν
+ ẽκ Γ Γκνλ ẽ

λ
∆

)
, (B.16)

is a tensor which is antisymmetric in the last two indices, i.e., EνΓ∆ = −Eν∆Γ, and Γκνλ are
the Christoffel symbols. The second part of the Hamiltonian,

HS = −

(
βiFCi + FC0 +

α γijPi F
C
j√

m2 + γijPiPj

)
SC , (B.17)

provides the contribution of the particle’s spin to the motion, with

FCµ =

(
2EµTI

ω̄J
ω̄T

+ EµIJ

)
εIJC , (B.18)

and

ω̄∆ = ω̄ν ẽ
ν

∆ ,

ω̄ν = P̄ν −m ẽν
T ,

P̄i = Pi ,

P̄0 = −βi Pi − α
√
m2 + γijPiPj ,

ω̄T = P̄ν ẽ
ν
T −m ,

ω̄J = P̄ν ẽ
ν
J . (B.19)

The equations of motion for the canonical variables as a function of coordinate time t read

dxi

dt
=
∂H

∂Pi
, (B.20)

dPi
dt

= −∂H
∂xi

, (B.21)

dSI
dt

= εIJC
∂H

∂SJ
SC . (B.22)
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The phase space of a canonical Hamiltonian system is equipped with a binary operation, i.e.,
the Poisson bracket. If the dynamical system is subject to (secondary) constraints ξi, the
Poisson bracket has to be replaced by the Dirac bracket (Barausse et al., 2009; Dirac, 1951)

{Q,R}DB := {Q,R} − {Q, ξi}
[
C−1

]
ij
{ξj , R} , (B.23)

where Q and R are functions on phase space and C−1 is the inverse of the matrix consisting
of the Poisson brackets of the set of constraints C = {ξi, ξj}. In the case of a spinning particle
the constraints are given by the supplementary condition, here the NW SSC (B.3), and, in
order to retain the symplectic structure, by the choice of the timelike body-fixed tetrad vector
to be aligned with the four momentum

χµ := eµT −
pµ
m

= 0 ,

where eµ A is related to the local frame ẽµ A by a Lorentz transformation (for more details see
(Barausse et al., 2009)). In order to derive the canonical structure of the phase space variables,
the new defined momenta Pµ in eq. (B.15) are treated as functions of the kinematical momenta
pµ, the position, and of the spin which result in the following bracket relations{

xi, Pj
}
DB

= δij +O
(
S2
)
,{

SI , SJ
}
DB

= εIJKSK +O
(
S2
)
. (B.24)

All the other bracket relations between the variables vanish at linear order in spin (Barausse
et al., 2009). At this approximation, even if the mass m2 = −pνpν is not a constant of motion
for the exact MP equations with NW SSC, it scales quadratically in the particle’s spin, see,
e.g., (Lukes-Gerakopoulos et al., 2014), so that the mass is preserved at first order in the spin
and treated as a constant in the linearized Hamiltonian formalism (Barausse et al., 2009).

When we restrict the scheme to the linearized Hamiltonian formalism, and consider the Pi
no longer as functions but as independent phase space variables, then the terms of O

(
S2
)

are dropped in all the above Dirac brackets, i.e., in (B.24) and all the other bracket relations
between the variables {xi, Pi, SI}. Profoundly, in the linearized Hamiltonian formalism a
quantity I is a constant of motion, if it holds for its Dirac bracket with the Hamiltonian
function H

{I,H}DB = 0 . (B.25)

This means if the system is evolved by the eqs. (B.20)-(B.22), then the quantity I is preserved
during the evolution.

The formulation provided up to this point is general, namely it does not depend on the specific
coordinate system or on the specific tetrad field. These two factors, however, are essential
for the Hamiltonian function (B.10). In particular, the nonspinning part of the Hamiltonian
function (B.11) depends on the coordinate system which the metric is written in, while the
spinning part (B.17) depends on the tetrad we choose. In Sec. B.3 and Sec. B.4, we present
three different combinations tetrad ↔ coordinates for the Kerr spacetime background and
discuss the advantages and shortcomings of the respective setups.
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B.3. The Hamiltonian Function in Boyer-Lindquist coordinates
compared with Cartesian Isotropic coordinates

B.3.1. A tetrad in Boyer-Lindquist coordinates

A Hamiltonian function for the Kerr spacetime background in Boyer-Lindquist (BL) has been
provided in (Barausse et al., 2009). The line element of the Kerr spacetime in BL coordinates
reads

ds2 = gtt dt
2 + 2 gtφ dt dφ+ gφφ dφ

2

+ grr dr
2 + gθθ dθ

2 , (B.26)

with

gtt = −1 +
2Mr

Σ
,

gtφ = −2aMr sin2 θ

Σ
,

gφφ =
Λ sin2 θ

Σ
, (B.27)

grr =
Σ

∆
,

gθθ = Σ ,

and

Σ = r2 + a2 cos2 θ ,

∆ = $2 − 2Mr ,

$2 = r2 + a2 ,

Λ = $4 − a2∆ sin2 θ . (B.28)

M denotes the mass and a the spin parameter of the central Kerr black hole.

The tetrad field given in (Barausse et al., 2009) reads

ẽµ
T = δtµ

√
∆Σ

Λ
,

ẽµ
1 = δrµ

√
Σ

∆
,

ẽµ
2 = δθµ

√
Σ ,

ẽµ
3 = −δtµ

2aMr sin θ√
ΛΣ

+ δφµ sin θ

√
Λ

Σ
, (B.29)

where for the small indices the numbers have been replaced with the corresponding coordinates,
i.e., t, r, θ, φ stand for 0, 1, 2, 3, respectively. The proposed tetrad corresponds to an
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observer in the zero angular momentum frame (ZAMO) which intuitively yields a reasonable
choice. Moreover, the coordinate system is based on the spherical coordinates in flat spacetime
which respects the symmetries of the spacetime. In the Schwarzschild limit the above tetrad
field reduces to (a→ 0)

ẽµ
T = δtµ

√
f(r) ,

ẽµ
1 = δrµ

√
f(r)−1 ,

ẽµ
2 = r δθµ ,

ẽµ
3 = r sin θ δφµ , (B.30)

where f(r) = 1− 2M
r . In the flat spacetime limit (M → 0, a→ 0) we get

ẽµ
T = δtµ ,

ẽµ
1 = δrµ ,

ẽµ
2 = r δθµ ,

ẽµ
3 = r sin θ δφµ . (B.31)

This yields the flat spacetime in spherical coordinates.

Let’s have a closer look at the dynamics in Schwarzschild spacetime. The corresponding metric
in Schwarzschild spacetime results in

ds2 = −f (r) dt2 + f (r)−1 dr2 + r2
(
dθ2 + sin2 (θ) dφ2

)
,

with f (r) = 1− 2M/r and the corresponding tetrad field is (B.30). The Hamiltonian

H = HNS +HS ,

is expressed in terms of the new phase space variables
(
r, θ, φ, Pr, Pθ, Pφ, S

BL
I

)
where SBLI

stands for the spin projected onto the spatial background tetrad in spherical coordinates
(reduced from the Boyer-Lindquist coordinates). All told, we have

H =
1√
f (r)

√
Q+

M

r3
(
1 +
√
Q
) (PθSBL3 −

Pφ
sin (θ)

SBL2

)
− f (r)

r2
√
Q

(
cos (θ)

sin2 θ
√
f (r)

PφS
BL
1 −

Pφ
sin (θ)

SBL2

+ PθS
BL
3

)
, (B.32)

where Q = m2 + f (r)P 2
r + 1

r2P
2
θ + 1

r2 sin2(θ)
P 2
φ .

In (Barausse et al., 2009), a criterion for the behavior of the Hamiltonian in the flat spacetime
limit was introduced in order to check whether the choice of coordinates is a “good” one.
Ideally, the contributions from the spin to the Hamiltonian HS vanish, since we no longer have
curvature which the spin could couple to and the trajectory of the spinning particle should
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simply be the one of a straight line. Thus, the motion of the particle should be completely
independent of the spin. However, in the case of spherical coordinates the Hamiltonian is
given by (B.32) and the contribution from the spin part HS does not vanish representing an
evolution of the spin in the absence of spin-orbit coupling, as was noted in (Barausse et al.,
2009), which might imply a coordinate effect for this choice of tetrad. Following the latter
line of thought, we might say that the basis vectors are coordinate dependent, since they are
oriented along the direction of the coordinate basis vectors in spherical coordinates. Therefore,
they introduce an additional evolution to the dynamical system which affects the equations of
motion for the spinning particle, i.e., the equations of motion do not only contain the physical
dynamics of the spinning object, but also the coordinate dynamics. On the other hand, the
coordinate effect might not be the only interpretation, for instance for a long time the helical
motion of a spinning particle with Pirani SSC in the flat spacetime was considered unnatural,
until it was explained in terms of a hidden momentum by Costa et al. (2012). Anyhow, such
effects make it harder to gain insights into the physical behavior of the particle’s motion, since
it is not so easy to distinguish between coordinate effects and physical effects in the results.
Therefore, we prefer to focus on a more solid criterion for the Hamiltonian to check whether
the choice of coordinates is a “good” one, and this criterion comes from the symmetries of the
system.

Figure B.1: The left panel shows the relative error of ∆Jx, and the right of ∆Jy as a function
of time in logarithmic scale for the Schwarzschild background. The gray lines
show the relative error of these quantities when the system is evolved using the
Hamiltonian function corresponding to the tetrad (B.30), while the black lines show
the relative error of these quantities when the system is evolved using the respective
MP equations. Both evolutions share the same initial conditions conditions, where
a = 0, M = m = 1, and S = 1.

Generally, according to Noether’s theorem each spacetime symmetry is related to a conserved
quantity. In the case of spinning particles moving in a particular spacetime geometry equipped
with a symmetry described by a Killing vector ξµ, the associated quantity conserved by MP
equations reads

C = pµξµ −
1

2
Sµνξµ;ν . (B.33)

In Schwarzschild spacetime we have three spatial Killing vectors yielding the three components
of the total angular momentum (Suzuki and Maeda, 1997)

Jx =− pθ sin (φ)− pφ cot (θ) cos (φ)

+ r2Sθφ sin (θ)2 cos (φ) + rSφr sin (θ) cos (θ) cos (φ)
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− rSrθ sin (φ) ,

Jy =pθ cos (φ)− pφ cot (θ) sin (φ) + r2Sθφ sin (θ)2 sin (φ)

+ rSφr sin (θ) cos (θ) sin (φ) + rSrθ cos (φ) ,

Jz =pφ − r sin (θ)2
(
Sφr − rSθφ cot (θ)

)
,

where pi are the kinematical momenta and Sij the spin components written in coordinate basis.
In order to check whether the components of the total angular momentum are constants of
motion within the Hamiltonian formulation we have to transform the expression to canonical
variables Pi and SBLI with the relations given in (B.8) and (B.15). Therewith we obtain

Jx = cos(φ)(SBL1 csc(θ)− Pφ cot(θ))− Pθ sin(φ) ,

Jy = Pθ cos(φ) + sin(φ)(SBL1 csc(θ)− Pφ cot(θ)) ,

Jz = Pφ ,

for the components of the total angular momentum, with which we may now compute the
evolution equations for Ji via the Dirac brackets with the Hamiltonian. Indeed, they result in

{Jx, H}DB = O
(
S2
)
,

{Jy, H}DB = O
(
S2
)
,

{Jz, H}DB = 0 ,

and {
J2
x + J2

y + J2
z , H

}
DB

= O
(
S2
)
.

Although we consistently keep the linearization in the Hamiltonian and the corresponding
bracket structure, we find that the Dirac brackets for Jx, Jy and Jz contain contributions from
higher orders in the particle’s spin. Indeed, Jx and Jy start oscillating when the Hamiltonian
system corresponding to the tetrad field (B.30) is numerically evolved through the the equations
of motion (B.20)-(B.22). It is visible from the relative error

∆Ji = |1− Ji(t)

Ji(0)
| i = x, y , (B.34)

at time t of the Jx and Jy (gray line) in Fig. B.1, that the Hamiltonian function resulting
from the tetrad (B.30) apparently violates the symmetry properties of the Schwarzschild
spacetime. Consequently, the total angular momentum J2 is not preserved, because the x
and y components of the total angular momentum exhibit inappropriate behavior. On the
other hand, the respective evolution using the MP equation supplemented with NW SSC,
instead, shows the expected preservation of the angular momentum components (black curves
in Fig. B.1). This shows that even in the above linear in spin Hamiltonian approximation a
quantity is a constant of motion only when its Dirac brackets with the Hamiltonian are exactly
zero, while when the brackets have contributions from the higher in spin orders, the quantities
show no constancy. The violation of the expected symmetries results in a system that exhibits
chaotic motion (scattered dots in the left panel of Fig. B.2), which contradicts with the
integrability of the Hamiltonian for the spinning particle on the Schwarzschild background we
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prove in section B.3.2. It is true, however, that the relative error of the Jx, Jy components,
and therefore of J2 scale with S (right panel of Fig. B.2). However, this should be anticipated
since as S → 0 the system basically ignores the spin contribution and tends to reproduce
geodesic trajectories.

Figure B.2: In the left panel is a detail from the surface of section θ = π/2, Pθ > 0. The
parameters of the orbits are H = 0.95, Jz = Pφ = 3, S = M = m = 1, a = 0, the
common initial conditions are φ = 0, Pr = 0, S1 = S2 = 0, S = S3 = 10−2, while
the initial Pθ is defined numerically by the Hamiltonian function H. The right
panel shows how the maximal value of the relativity error ∆J2 = |1−J2(t)/J2(0)|
for evolution intervals t = 103 scales with the spin measure S.

In this work we focus on the properties of the equations of motion, and not so much on the
astrophysical implication of these equations. The spin of the particle makes the trajectories to
deviate from their geodesic paths. Thus, we can interpret the spin as a perturbation parameter
of the system. A constant of motion cannot depend on the magnitude of the spin, even if the
given value might be astrophysically irrelevant. This independence from the spin magnitude
holds also for the integrability of a spinning particle Hamiltonian (excluding of course the
case when S = 0). In our numerical calculations we measure the spin in units of m M , i.e.
σ = S/(m M), and set both masses to 1, thus the spin parameter σ = S is dimensionless.
Large values of the dimensionless spin, like S = 1, might be astrophysically questionable, but
do not have implications on the dynamics, see, e.g., Suzuki and Maeda (1997); Hartl (2003a)
for relevant discussions. In our paper large values of the spin serve mainly as a tool to amplify
the effects we want to point out, since these effects become less prominent when S � 1.

Moreover, we find that{
L2
x + L2

y + L2
z, H

}
DB

= O
(
S2
)
,

with

Lx = −pθ sin(φ)− pφ cot(θ) cos(φ) ,

Ly = pθ cos(φ)− pφ cot(θ) sin(φ) ,

Lz = pφ ,

which also have to be rewritten in terms of the canonical momenta Pi. The conservation of the
measure of the orbital momentum L2 of the linearized in spin MP equation in the case of the
Schwarzschild spacetime background has been thoroughly discussed in Apostolatos (1996) for
the Pirani SSC (Pirani, 1956). When the measure of the spin S2 = SIS

I and the total angular
momentum J2 are preserved, the integral of motion L2 is equivalent to the conservation of
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~L · ~S. However, as we have already seen for the total angular momentum, we recover the
same numerical problems for the measure of the orbital angular momentum. These two kinds
of oscillations can be traced back to the coordinate dependence of the basis vectors in the
spherical coordinate system, as we will see in the next subsection.

So far, these coordinate effects have been investigated in Schwarzschild spacetime. Since the
Schwarzschild spacetime is the nonrotating limit of the Kerr spacetime we would like to ensure
that such coordinate effects can be eliminated in the nonrotating limit, i.e., the coordinate
effects should vanish for nonrotating or slowly rotating black holes. Thus, we were wondering
whether there are more suitable choices of a coordinate system and of a tetrad for rotating
black holes which do not show any unphysical coordinate effects in the Schwarzschild limit.
Hence, the question arises as to which coordinates are best used?

Therefore, in the rest of Sec. B.3 we study the Hamiltonian formulation in an isotropic
coordinate systems for the same kind of observer (ZAMO), introduced by Barausse and
Buonanno (2010).

B.3.2. The Hamiltonian function in isotropic cartesian coordinates

A revised Hamiltonian function for the Kerr spacetime background in BL has been provided by
Barausse and Buonanno (2010). The formulation starts in cartesian quasi-isotropic coordinates.
The line element in these coordinates for an axisymmetric stationary metric is

ds2 = gtt dt
2

+ 2 gtXdX dt+ 2 gtY dY dt+ 2 gXY dX dY

+ gXX dX2 + gY Y dY 2 + gZZ dZ2 , (B.35)

with

gtt = e−2ν
[
B2ω2(X2 + Y 2)− e4v

]
,

gtX = e−2νωB2Y ,

gtY = −e−2νωB2X ,

gXY = −(e−2νB2 − e2µ)XY

X2 + Y 2
,

gXX =
e2µX2 + e−2νB2 Y 2

X2 + Y 2
,

gY Y =
e2µY 2 + e−2νB2 X2

X2 + Y 2
,

gZZ = e2µ (B.36)

where ω, eµ, eν , B are functions of X, Y, Z.
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For this coordinate system the authors propose the tetrad field

ẽβ
T = eνδtβ ,

ẽβ
1 =

B ω Y

eν
δtβ +

eµX2 + e−νB Y 2

X2 + Y 2
δXβ

+
(eµ − e−νB)XY

X2 + Y 2
δYβ ,

ẽβ
2 = −B ω X

eν
δtβ +

(eµ − e−νB)XY

X2 + Y 2
δXβ

+
eµY 2 + e−νB X2

X2 + Y 2
δYβ ,

ẽβ
3 = eµδZβ , (B.37)

corresponding to an infalling observer with zero 3-momentum. This tetrad becomes cartesian,
i.e., ẽβ T = 1, ẽβ I = δIβ , in the flat spacetime limit.

The cartesian quasi-isotropic coordinates relate with the BL coordinate system through the
transformation

X = R (r) sin θ cosφ ,

Y = R (r) sin θ sinφ ,

Z = R (r) cos θ ,

R (r) =
1

2
(r −M +

√
∆) . (B.38)

The above relation between r and R holds outside the black hole’s horizon 56.

When we go back to the Schwarzschild spacetime where a→ 0,

ds2 = −f(R)dt2 + h(R)(dX2 + dY 2 + dZ2) , (B.39)

the tetrad (B.37) reduces to the isotropic tetrad given in (Barausse et al., 2009):

ẽβ
T =

√
1− 2M

r
δtβ =

√
f (R)δtβ ,

ẽβ
1 =

r

R
δXβ =

(
1 +

M

2R

)2

δXβ ,

ẽβ
2 =

r

R
δYβ =

(
1 +

M

2R

)2

δYβ ,

ẽβ
3 =

r

R
δZβ =

(
1 +

M

2R

)2

δZβ , (B.40)

56The general relation between r and R is

r = R+M +
M2 − a2

4 R
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where

r = R

(
1 +

M

2R

)2

,

f(R) =
(2R− 1)2

(2R+ 1)2 ,

h (R) =

(
1 +

M

2R

)4

.

In order to check the behavior of these so called isotropic cartesian coordinates (X,Y, Z) we
analyze the conservation of the constants of motion given by the symmetries of the system.
The spherical symmetry of the spacetime can be described in Cartesian-like coordinates xµ by
the three Killing vectors

ξµK = εKLMxLδµM . (B.41)

Using (B.33) we thus get the three conserved components of the total angular momentum as a
combination of kinematical momentum pµ and components of spin tensor Sµν . On the other
hand, in the canonical description, the conservation of the total angular momentum

JK = εKLMxLPM + SK , (B.42)

is demonstrated by vanishing Dirac brackets

{JK , H}DB = 0 . (B.43)

Contrary to the previous case the canonical momenta PM and tetrad components of the spin
appear in this formula. The relations between the two sets of quantities, the kinematical and
the canonical, are given by (B.15) and (B.8). By computing the difference of projection of
(B.33) and (B.42) it can be shown, that if the Lie derivatives of the three spatial tetrad vectors
obey the Cartesian-like rule

(£ξK ẽ
µ
L) ẽµM = −εKLM ∧ ξ0

K ≡ 0 , (B.44)

the two conserved quantities, one in kinematical variables and the other in canonical ones,
are identical. Indeed, this formula holds in flat Minkowski spacetime for Cartesian tetrad
ẽµ

A = δAµ , which naturally leads to the intuition, that a tetrad, that reduces to a cartesian
one in flat spacetime, is a good tetrad choice. (In (B.44) the fact that the time component of
the Killing vectors is required to vanish is explicitly stated, since it is written as a covariant,
coordinate independent formula, but it was derived using this coordinate assumption.)

The general condition (B.44) can now be applied to the particular case of the Schwarzschild
limit (B.39). As Lie derivatives can be written using partial rather than covariant derivatives,
one can easily check, that the tetrad field (B.40) satisfies (B.44).

Yet, as an example, that the equivalence between total angular momentum expressed in
kinematical and canonical variables is not so obvious, let us consider a symmetry of the
Schwarzschild spacetime w.r.t. rotation along the z-axis

ξµz = [0,−Y,X, 0] . (B.45)
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B.3. The Hamiltonian Function in Boyer-Lindquist coordinates compared with Cartesian
Isotropic coordinates

It yields the related component of the total angular momentum

Jz =Xpy − Y px + Sxy
(
h (R) +

(h (R))′

2R

(
X2 + Y 2

))
− (h (R))′

2R
Z (XSyz + Y Szx) .

Here, pi represents the kinematical MP momenta and Sij the coordinate spin components,
the prime denotes a derivative with respect to R. In the Hamiltonian approach we use the
canonical momenta Pi and the projected spin components SI , so it is necessary to perform
a transformation from

(
pi, S

ij
)
to
(
PI , S

I
)
using the relations given in (B.15) and (B.8).

With these, terms proportional to h′(R) get absorbed into Px and Py and the corresponding
component of the total angular momentum can be written as

Jz = XPy − Y Px + S3 . (B.46)

The corresponding Hamiltonian in these coordinates, cf. (Barausse et al., 2009) reads

H = HNS +HS ,

with

HNS =
1√
f (R)

√
Q , (B.47)

HS =
1− M

2R + 2
(
1− M

4R

)√
Q(

1 + M
2R

)6
R3
√
Q
(
1 +
√
Q
)M
m

(
~L · ~S

)
, (B.48)

and Q = m2 + 1
h(R)

~P 2. Notice, that setting M → 0, i.e., no gravitational field, we indeed
obtain that the spin part of the Hamiltonian HS becomes zero, as it should in Minkowskian
spacetime.

Next, we can easily compute the evolution equations for the Jx, Jy and Jz as

{Jx, H}DB = 0 ,

{Jy, H}DB = 0 ,

{Jz, H}DB = 0 ,

which is thus also true for the measure of the total angular momentum J2. Moreover, it
holds that

{
L2, H

}
= 0 where L2 = L2

x + L2
y + L2

z is the measure of the orbital angular
momentum. Its respective components are defined as Li = εijkq

jP k, with qi = (X,Y, Z) and
P i = (Px, Py, Pz).

In fact, since the Hamiltonian system of a spinning particle linearized in spin given by (B.47),
(B.48) has five degrees of freedom, the five independent and in involution constants of motion
(Jz, J

2, L2, S2, H) of the Schwarzschild limit make the system integrable. The integrability
for the Schwarzschild background seems to result from the linearized in spin Hamiltonian
approximation, because in Suzuki and Maeda (1997) it has been shown that for the full MP
equations with T SSC chaos appears for a spinning particle in the Schwarzschild background.
However, the integrability seems to vanish in the Hamiltonian approximation once we turn on
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the spin of the central body. Namely, in the case of a Kerr spacetime background chaos appears
again (scattered dots in Fig. B.3), which suggests the nonintegrability of the corresponding
Hamiltonian system. The appearance of chaos in the Kerr background case for the Hamiltonian
approximation is not just a confirmation of previous studies concerning the full MP equations
with T SSC, see, e.g., (Hartl, 2003a,b). It shows that the linearized in spin Hamiltonian
function given in (Barausse and Buonanno, 2010) is non-integrable. This result contradicts
with statements in the literature saying that up to the linear order in spin, the motion of a
spinning particle corresponds to an integrable system, see, e.g., (Hinderer et al., 2013). A
thorough investigation of chaos in the Kerr spacetime for the linearized in spin Hamiltonian
function will be provided in a further work.

Figure B.3: A detail from the surface of section θ = π/2, Pθ > 0. The parameters of the orbits
are H = 0.9449111825230683, Jz = 3.5, S = M = m = 1, a = 0.1, the common
initial conditions are φ = 0, Pr = 0, S1 = 0, while by solving numerically the
system Pθ = −S2, Jz = Pφ + S3, and S =

√
S2

2 + S2
3 we define the rest.

The above results match exactly the expectations we had from the symmetries.

We have investigated the properties of a ZAMO tetrad in spherical and cartesian coordinates
in Schwarzschild spacetime. Taking the conservation of the constants of motion for numerical
calculations as an important criterion to be satisfied, promising indicators for a “good” tetrad
choice are the reduction to Cartesian tetrad in flat spacetime as well as the vanishing of
the spin dependent Hamiltonian. Two questions arise with this statement: First, are there
other coordinates we may choose providing us with “good” tetrads, and second, since we were
focusing on a ZAMO tetrad, we ask whether a non-ZAMO tetrad yields the same properties if
the coordinate basis is not changed. We expect the properties of the tetrad to depend on the
choice of the coordinates, so that in the following we take Kerr-Schild coordinates and analyze
two tetrads, one ZAMO and one non-ZAMO tetrad.

B.4. The Hamiltonian function in Kerr-Schild coordinates

The Kerr-Schild coordinates have the great advantage that they are horizon penetrating so that
they are well behaved in the vicinity of the horizon, which simplifies numerical calculations in
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B.4. The Hamiltonian function in Kerr-Schild coordinates

this domain, probably improving the numerical treatment compared to isotropic coordinates for
events in the strong field. Here we shall introduce a Hamiltonian function using the Kerr-Schild
(KS) coordinates. The line element in KS coordinates reads (Gualtierie and Ferrari, 2011)

ds2 = gµνdx̄
µdx̄ν , (B.49)

gµν = ηµν + f lµ lν , (B.50)

where (0, 1, 2, 3) correspond to (t̄, x̄, ȳ, z̄),

lt̄ = −1 ,

lx̄ = − r̄ x̄+ a ȳ

r̄2 + a2
,

lȳ = − r̄ ȳ − a x̄
r̄2 + a2

,

lz̄ = − z̄
r̄
, (B.51)

(B.52)

and

f =
2 M r̄3

r̄4 + a2 z̄2
, (B.53)

r̄ =

√
ρ̄2 +

√
ρ̄4 + 4a2 z2

2
,

ρ̄2 = x̄2 + ȳ2 + z̄2 − a2 . (B.54)

For simplicity in the rest of the section we drop the bar notation over the KS coordinates.

Independently on the tetrad field the choice of coordinates implies the non-spinning part of
the Hamiltonian

HNS = α2f liPi + α
√
m2 + PiPi − fα2(liPi)2 , (B.55)

where liPi = δijliPj and

α =
1√

1 + f
. (B.56)

In the following we present two tetrad choices corresponding to different types of observers.

B.4.1. ZAMO Tetrad

In the previous section, we focused on a tetrad field associated to the observers with vanishing
momenta Pi = 0, i.e., zero angular momentum observers (ZAMO), in two different coordinate
systems, isotropic cartesian and Boyer-Lindquist coordinates. Therefore, it is reasonable to first
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consider such an observer in KS coordinates as well. Here, we choose a tetrad corresponding
to an observer infalling with the radial velocity U r = −αf :

ẽβ
T = α δ0

t ,

ẽβ
I = δIβ +

(
α−1− 1− αf

)
lI δ

0
β +

(
α−1− 1

)
lI lβ .

Again, this tetrad becomes cartesian, i.e., ẽβ T = δTβ , ẽβ
I = δIβ, in the flat spacetime limit,

which is a first indicator for being a good tetrad choice. The next step is to analyze the
behavior in the Schwarzschild limit a → 0. Then, following the procedure introduced in
(Barausse et al., 2009), we obtain the Hamiltonian H̄Schw = H̄Schw

NS + H̄Schw
S with

H̄Schw
NS = α

(
m− 2Mα

r2
~r· ~P

)
, (B.57)

H̄Schw
S =

M

m

[
2α2

α+ 1
− α5 + 3α3

r

~r· ~P
ωT
− α4 m

ωT

]
~L · ~S
r3

, (B.58)

where

m =

√
m2 + ~P 2 − fα2

r2

(
~r· ~P

)2
,

ωT = −m−m . (B.59)

Since the total Hamiltonian is merely a function of certain scalar combinations of
(
~r, ~P , ~S

)
(where ~r = (x, y, z)), namely H̄ = H̄

(
|~r|2, |~P |2, ~r · ~P , ~L · ~S

)
with Li = εijkr

jP k , we can
deduce that{

~L+ ~S,H
}
DB

= 0 , (B.60)

by using the canonical structure of the variables. Moreover, we would like to stress here again,
that the conservation of L2 in Schwarzschild spacetime is equivalent to the conservation of
~L · ~S so that it suffices to express the Hamiltonian in terms of ~L · ~S in order to show (B.60).
In fact, it reflects the integrability of the system at linear order in spin.

However, we cannot simply infer that ~J = ~L + ~S is valid in the new canonical coordinates.
The conserved total angular momentum is already given by (B.33) and by the Killing vectors
(B.41) of the Schwarzschild spacetime we get

Ji = L̃i + Si , (B.61)

where the tilde denotes the quantities to be written in terms of the kinematical momenta pi(
Li = εijkr

jpk
)
and the index i in Si refers to the coordinate basis. This relation is valid in

KS coordinates, independent of the tetrad choice.

In order to relate the conserved quantities to the canonical momenta Pi and the tetrad
components of the spin SI , we have to perform a transformation from (pi, Si) to (Pi, SI) using
the relations given in (B.15) and (B.8). Therewith, we indeed find the components Ji to be
given by (B.46), which yields vanishing Dirac brackets for each component of the total angular
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B.4. The Hamiltonian function in Kerr-Schild coordinates
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Figure B.4: The left panel shows the relative error of Jx, and the right of Jy as a function of
time in logarithmic scale for the ZAMO tetrad in KS coordinates as evolved by
the Hamiltonian with a = 0, M = m = 1, and S = 1.

momentum according to the argument mentioned in Section B.3.2. In order to support this
statement we performed a numerical check shown in Fig. B.4.

It is immediately obvious that the conservation of these components is ensured up to numerical
errors which do not accumulate over the integration time but stay at the same level. These
results are similar to the ones obtained in isotropic Cartesian coordinates, so that the quality
of the outputs is comparable. Therefore, if one can choose between KS and isotropic Cartesian
coordinates, there is no preferred choice between those two in Schwarzschild spacetime.
However, if the dynamics of plunging orbits is considered in a Kerr spacetime background,
it may be more sensible to change to KS coordinates since they are horizon penetrating and
avoid numerical divergence close to the horizon (see Appendix B.7).

Secondly, we consider the contribution from the spin part of the Hamiltonian in flat spacetime.
From (B.58) we see that for M → 0 the contributions from HS vanish as it should. Hence,
also additional coordinate effects which arise in spherical coordinates are avoided, further
supporting such a choice of tetrad and coordinates.

B.4.2. Non-ZAMO tetrad

To simplify the Hamiltonian in Kerr-Schild coordinates we change to another tetrad field,
which is not required to be a ZAMO observer. In particular, we take advantage of the fact
that for certain observers no square roots appear due to normalization of the tetrad vectors

ẽµ
T =

[
1− f

2
,
f

2
lx,

f

2
ly,

f

2
lz

]
, (B.62)

ẽµ
X =

[
−f

2
lx, 1 +

f

2
lxlx,

f

2
lxly,

f

2
lxlz

]
, (B.63)

ẽµ
Y =

[
−f

2
ly,

f

2
lylx, 1 +

f

2
lyly,

f

2
lylz

]
, (B.64)

ẽµ
Z =

[
−f

2
lz,

f

2
lzlx,

f

2
lzly, 1 +

f

2
lzlz

]
, (B.65)
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where we use the definitions from above, cf. Eqs. (B.51)-(B.53). This is the tetrad of an
infalling ‘non-ZAMO’ observer, as the observer’s specific angular momentum

ẽφT =

(
∂

∂φ

)µ
ẽµT = −1

2

fa

r

x2 + y2

r2 + a2
6= 0 , (B.66)

and the observer’s radial coordinate velocity

ẽr T =

(
∂r

∂xµ

)
ẽµ T = −f

2
< 0 .

Thus, we again compute the Hamiltonian in canonical coordinates up to linear order in spin
given by Barausse et al. (2009)

H = HNS +HSO +HSS , (B.67)

where HNS is given by (B.55),

HSO = αf
Mm− 2m̃(M − fr)

2M m ωT

r εijK lipjS
K

r2 + a2l2z
, (B.68)

and

HSS = − af

4ωT Mm (a2l2z + r2)
×

{
(B.69)

[
4 flz m̃ ((m− αfm̃)r + αm̃M)− 2M lz

(
mm+ αm2

)
+ 2α [(M + 2 r)mflz + (3M − 2fr)Pz] m̃

]
Sili

+ 2α (m+ m̃)
[
Mlz S

iPi − m̃ (2 fr − 3M)S3
]

− 2
alz m̃

r2

(
3Mr − a2flz

2 − 3 fr2
) [
α(S1Py − S2Px)

− (αm+m− αfm̃) (S1ly − S2lx)
]}

.

Here, instead of (B.59), we used

m =
√
m2 + PiPi − fα2(liPi)2 ,

m̃ = αm− α2Pil
i ,

ωT = −m− m

α
+
f

2
m̃ , (B.70)

which together with the usage of components of lµ instead of coordinates significantly shortened
expressions for HSO and HSS . All vector components are grouped in such a way that the
relation {Lz + Sz, H}DB = 0 is obvious.

Again, the complete angular momentum conservation is restored in the Schwarzschild limit.
Since H̄NS only depends on the chosen coordinate basis, it is still given by (B.57). The
spinning part

H̄S =

[
α
M

m

(
1− M + 2r

r (r + 2M)

~r· ~P
ωT

)
−M
ωT

1− M
r

1 + 2M
r

]
~L · ~S
r3

, (B.71)
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B.5. Conclusions

where m̄ and ωT are given by (B.70), can again be written as a function H̄ = H̄
(
|~r|2, |~P |2, ~r · ~P , ~L · ~S

)
so that we can follow the reasoning of the preceding subsection to obtain vanishing Dirac
brackets (B.60). Therefore, we only have to check the equations for the components of the
total angular momentum Ji in canonical coordinates (Pi, SI). Using the expressions for the
total angular momentum with respect to the coordinate basis (B.61), we again perform a
transformation to the tetrad basis and the canonical momenta and recover relation (B.46).
Thus, in the Schwarzschild limit, the non-ZAMO tetrad in KS coordinates has the same
numerical properties as the ZAMO tetrad, as expected, which is also visible in Fig. B.5.
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Figure B.5: The left panel shows the relative error of Jx, and the right of Jy as a function of
time in logarithmic scale for the non-ZAMO tetrad in KS coordinates as evolved
by the Hamiltonian with a = 0, M = m = 1, and S = 1.

Consequently, it seems to be a good choice of coordinate system for numerical investigations.

It is of course also possible to rewrite the coefficients of the tetrad basis vectors in terms of
any coordinate system without changing the general properties of the Hamiltonian system
as long as the tetrad basis vectors remain oriented along the isotropic coordinate (cartesian
like) basis vectors. In (Barausse et al., 2009), it was already mentioned that the coordinate
effects can be avoided by choosing the directions of the tetrad basis vectors along a cartesian
coordinate system. However, if the tetrad corresponds to a cartesian frame, the spin variables
remain cartesian whereas the position and momentum variables are spherical ones. This
approach is used in effective-one-body theory or post-Newtonian methods in order to compare
the dynamical contributions from different orders in spin, see e.g., (Porto, 2006; Barausse
et al., 2009), and may in fact also be used for the computation of the equations of motion from
the Hamiltonian. Nevertheless, in that case it is more sensible to be consistent in the choice of
coordinates and spin variables so that the Dirac brackets can be used for the calculation of the
equations of motion. This coordinate system does not necessarily adapt to the symmetries of
the spacetime as we have seen. Generally, it is very useful to choose a coordinate system and
corresponding basis vectors that do not imply coordinate effects if one aims at the analysis of
the equations of motion.

B.5. Conclusions

In this work we have studied the Hamiltonian formalism of a spinning particle provided by
Barausse et al. (2009) with regard to numerical investigations of the equations of motion. It
was already discussed in (Barausse et al., 2009) that this Hamiltonian formalism does not only
depend on the tetrad field one uses, but also on the coordinate system one chooses in order to
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express the tetrad field or the Hamiltonian function. Using the Dirac brackets to check the
integrals of motion, we have shown that an unfortunate choice of the coordinate system can
lead to a nonpreservation of quantities in numerical integration which should, according to the
symmetries of the system and the linearized MP equations, be conserved. However, we find
that the type of the tetrads, i.e., whether the observer is ZAMO or follows some other worldline
which does not correspond to a ZAMO does not affect the general dynamical properties of the
constants of motion. In fact, we have examined both kinds of tetrads and found no difference
in their ability to be numerically applied, i.e., they possess the same properties with respect
to numerical computations. However, the formulae for the spinning part of the Hamiltonian
can be simplified and compactified, which we think is worth to be mentioned.

In order to obtain Hamiltonian systems without coordinate effects smearing the actual physical
behavior in numerical solutions and still reliable in the vicinity of the central object’s horizon,
two new horizon penetrating Hamiltonian functions were introduced. Both of them were
constructed on tetrad fields which were expressed in Kerr-Schild coordinates. In particular,
the non-ZAMO tetrad allows us to express the Hamiltonian both in Schwarzschild and Kerr
spacetime in a simple and compact form. Future (numerical) work may profit from this explicit
Hamiltonian.

While studying the Dirac brackets in the Schwarzschild limit, we have shown that in this limit
the Hamiltonian functions with acceptable properties are integrable. In particular, we have
shown that the system’s five degrees of freedom admit five independent and in involution
integrals of motion. On the other hand, we have shown by a numerical example that chaos
appears when we go to the Kerr background in the case of the Hamiltonian function proposed
in (Barausse and Buonanno, 2010). This suggests that this linearized Hamiltonian function
corresponds to a nonintegrable system in the case of the Kerr background. Indeed, the
Hamiltonian formulation offers a wide range of applications in the context of chaos and
perturbation theory, such as Poincaré sections or recurrence plots. In order to answer the
question for chaos thoroughly, a detailed analysis of the motion of spinning particles in the
Kerr spacetime described by the linearized in spin Hamiltonian approximation is in progress.
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B.6. Numerical integration of the Hamiltonian equations

Our numerical integrators rely on the considerations of our previous work, cf. (Lukes-
Gerakopoulos et al., 2014, Secs. A and B), which can be extended to all Hamiltonians
in this work. Let us briefly summarize the main points.

All Hamiltonian equations of this work possess a so-called Poisson structure, i.e., for y =
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B.6. Numerical integration of the Hamiltonian equations

(P1, P2, P3, x
1, x2, x3, S1, S2, S3)T ∈ R9, they can be written as

ẏ = B(y)∇H(y) , (B.72)

where B : R9 → R9×9 is the skew-symmetric matrix-valued function

B(y) =

 0 −I3×3 0
I3×3 0 0

0 0 B1(y)

 , (B.73)

with

I3×3 =

1 0 0
0 1 0
0 0 1

 , (B.74)

B1(y) =

 0 −S3 S2

S3 0 −S1

−S2 S1 0

 . (B.75)

Due to this special structure, the spin length S =
√
S2

1 + S2
2 + S2

3 is conserved along solutions
of the equations of motion (B.72). Thus, the three dimensional spin S = (S1, S2, S3)T can be
represented by two variables α and ξ via

S = S


√

1− ξ2 cos(α)√
1− ξ2 sin(α)

ξ

 , (B.76)

see, e.g., (Wu and Xie, 2010; Seyrich, 2013). One can then show, cf. (Seyrich, 2013), that

ξ̇ = −∂H
∂α

, (B.77)

α̇ =
∂H

∂ξ
, (B.78)

holds. Hence, in the transformed variables z = (P1, P2, P3, ξ, x
1, x2, x3, α), the equations of

motion take the the symplectic form

ż = J−1∇H(z) , (B.79)

J =

(
0 I4×4

−I4×4 0

)
. (B.80)

As a nice consequence, we can evolve the system with Gauss Runge–Kutta schemes which
have already been shown to yield very good results for little computational costs in previous
studies, see, e.g., (Seyrich, 2013; Seyrich and Lukes-Gerakopoulos, 2012).

An s-stage Gauss Runge-Kutta scheme is a collocation method, i.e., an implicit Runge-Kutta
scheme

yn+1 = yn + h

s∑
i=1

bif(Yi) , (B.81)

Yi = yn + h

s∑
j=1

aijf(Yj) , i = 1, ..., s , (B.82)
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with coefficients

aij =

ci∫
0

lj(t)dt , (B.83)

bj =

1∫
0

li(t)dt , (B.84)

where the stages c1, ..., cs are chosen as

ci =
1

2
(1 + c̃i) , (B.85)

with c̃i being the roots of the Legendre-polynomial of degree s. Here, h denotes the time
step size, Yi, i = 1, ..., s, are the so-called inner stage values and yn denotes the numerical
approximation to the solution y at time τ = nh. The functions li(t) are the Lagrange-
polynomials of degree s,

li(t) =
∏
i 6=j

t− cj
ci − cj

. (B.86)

Gauss Runge-Kutta methods have a convergence order O(h2s) which is the highest possi-
ble order among collocation schemes, e.g., (Hairer et al., 1993). Detailed information on
their implementation is given in (Seyrich, 2013, Sec. 7), and (Hairer et al., 2006, Chap-
ters VIII.5 and VIII.6).

Very importantly, Gauss Runge–Kutta schemes almost exactly preserve the Hamiltonian
throughout the numerical evolution, cf. (Lukes-Gerakopoulos et al., 2014, Fig. 10). Furthermore,
it is known from numerical analysis that the solution yn+1 coincides with the value at t = h
of the interpolation polynomial U(t) through the points (0,yn) and (c1,Y1)...(cs,Ys). This
interpolation polynomial can be shown to stay O(hs) close to the exact solution of the equations
of motion, see, e.g., (Hairer et al., 2006, Chapter II.1). Therefore, we can conveniently calculate
O(hs) approximations to surface sections, such as the one presented in Fig. B.3 above (for the
procedure details see, e.g., (Seyrich, 2013)).

B.7. Plunging orbits

The analytical properties of equations of motion have also impact on the behavior of their
numerical solution. In Fig. B.6 we plot the relative error of the Hamiltonian ∆H = |1 −
H(t)/H(0)| for plunging orbits using the Gauss Runge-Kutta method (Appendix B.6) with
fixed time-step for equations of motion given by the Hamiltonian function discussed in Sec. B.3.2
(BL) (top plot) and the one discussed in section B.4.2 (KS) (bottom plot) as functions of the
BL radius. The figure clearly shows that KS case covers smoothly the horizon of the Kerr
black hole (vertical dashed gray line), while the BL fails to do so by definition.

The mass parameters are M = m = 1 and the Kerr parameter is a = 0.9. As initial conditions
for the BL orbit we use r = 25, θ = π/2, φ = 0, and dr

dt = dφ
dt = dθ

dt = 0. The first two conditions
for the velocities determine the initial values of S3, and Pr. The remaining initial conditions
are Pφ = Sx = Sy = Pθ = 0. The timestep is ∆tBL = 0.1. The initial conditions for the KS
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B.7. Plunging orbits

Figure B.6: The relative error of the Hamiltonian ∆H as function of the BL radius r for two
plunging orbits. The top plot shows the ∆H of a plunging orbit evolved by the
Hamiltonian function discussed in section B.3.2 (BL), while the bottom plot shows
the ∆H of a plunging orbit evolved by the Hamiltonian function discussed in
section B.4.2 (KS). In both cases we used masses M = m = 1 and Kerr parameter
a = 0.9. For more about the initial conditions refer to the text. The horizon is
depicted in both plots by a vertical dashed gray line.

orbit are x = 25, y = z = 0, and Px = Py = Pz = 0 with spin Sx = Sz = 0, Sz = 0.9. The
timestep is ∆tKS = 0.1.

In fact, to test how much the pole-dipole approximation of rotating body fails near the horizon
has to be investigated by other studies. But, one can assume that not having equations of
motion singular at the horizon helps to obtain the right numerical results within the range of
spins allowed by the linear-in-spin approximation.
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C. Comparing the full time-dependent Bogoliubov–de-Gennes equations to their linear
approximation: A numerical investigation

C. Comparing the full time-dependent
Bogoliubov–de-Gennes equations to
their linear approximation: A numerical
investigation

The content of this Section was published as [C. Hainzl, and J. Seyrich Eur. Phys. J. B 89
(5), 1-10 (2016)]. under lead-authorship of J. S. . The work is based on theoretical input by
Christian Hainzl.

Abstract

In this paper we report on the results of a numerical study of the nonlinear time-dependent
Bardeen–Cooper–Schrieffer (BCS) equations, often also denoted as Bogoliubov–de–Gennes
(BdG) equations, for a one-dimensional system of fermions with contact interaction. We show
that, even above the critical temperature, the full equations and their linear approximation
give rise to completely different evolutions. In contrast to its linearization, the full nonlinear
equation does not show any diffusive behavior in the order parameter. This means that the
order parameter does not follow a Ginzburg–Landau-type of equation, in accordance with a
recent theoretical result in Frank et al. (2015). We include a full description on the numerical
implementation of the partial differential BCS/BdG equations.

C.1. Introduction

When Bardeen et al. (1957), shortly BCS, published one of the most famous papers in physics
in 1957, giving the first microscopic explanation for superconductivity, a phenomenological
theory for the phenomenon had already been around. Systems close to the critical temperature
were described with the help of a macroscopic phase-transition parameter introduced by
Landau and Ginzburg (1950). Their theory was the first one to allow for the description of
the spatial dependence of the superconductivity inside superconducting alloys and the first
with which to explain type-II superconductors and the hexogonally shaped penetrations by
magnetic flux.

As the Ginzburg–Landau theory yields reliable results on the large scale, soon the question
arose as to whether this model can be understood as a macroscopic limit of BCS theory for
systems close to the critical temperature. Gorkov (1959) gave a positive answer to this question
for the stationary case shortly after the publication of BCS. A rigorous mathematical proof of
the convergence was achieved some years ago by Frank et al. (2012).

But what remains unclear and controversial up to this day, in particular in terms of a rigorous
derivation, is the question whether the time evolution of superconducting systems close to the
critical temperature are governed by a Ginzburg–Landau type of equation. After first attempts
for a derivation of the macroscopic limit had been presented by Stephen and Suhl (1964);
Schmid (1966); Abrahams and Tsuneto (1966), Gorkov and Eliashberg (1968) pointed out that
a nonlinear equation could only be valid in a gapless regime. Still, in (Cyrot, 1973; De Melo
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et al., 1993; Randeria, 1995) the authors made a case for a time-dependent Ginzburg–Landau
equation for superfluid gases at temperatures slightly above the critical one. The argument is
based on the assumption that the nonlinear terms in the BCS/BdG equations only lead to small
perturbations but do not quantitatively change the system’s behavior. In more detail, this
would mean that the projection of the Cooper pair density onto the center of mass direction is
governed by a nonlinear dispersive equation. However, it has been argued recently in (Frank
et al., 2015) that for a translation invariant homogeneous system close to equilibrium, the full
BCS/BdG equations and their linearization do not yield the same behavior at temperatures
close to the critical one. In particular, dissipative behavior can only be expected for the linear
approximation of the BCS equations but not for the full equations.

With our work, we demonstrate this result by means of a thorough numerical study of the
long-term evolution of the BCS equations and their linearization for spatially homogeneous
systems close to equilibrium at temperatures slightly above the critical one. For decreasing
values of the parameter h, defined via T = (1 + h2)Tc, we evolve the full and the linear
system over a long time span and track the behavior of the Cooper pair density and the order
parameter. For each values of the small parameter h, we find clear differences between the full
equation and its linearization. Additionally, we see that the full BCS /BdG equations yield
oscillations in the order parameter about a constant value. Such a behavior has long been
predicted for and already been observed in out-of-equilibrium systems, see, e.g., (Volkov and
Kogan, 1974; Barankov et al., 2004; Yuzbashyan et al., 2006). Although the focus of our study
is not on oscillations in particular but rather on the long-term behavior of the equations in
general, it is interesting that we can replicate such oscillations for systems close to equilibrium.

In the realm of numerical analysis, the treatment of quantum dynamical systems has been of
huge interest for many decades see (Lubich, 2008) for an extensive overview. Various evolution
schemes for the linear Schrödinger equation in varying settings have been proposed, see,
e.g., (Feit et al., 1982; Gray and Manolopoulos, 1996; Blanes et al., 2006; Tal-Ezer and Kosloff,
1984; Park and Light, 1986). Nonlinear Schrödinger equations such as the Gross–Pitaevskii
equation and equations arising from the Hartree and Hartree–Fock approximation of the
quantum state have also been devoted attention to, see, e.g., (Bao et al., 2003; Caliari et al.,
2009; Tang et al., 1996; Gauckler and Lubich, 2010) and (Lubich, 2004, 2005). Regarding
the BCS regime, the stationary equations have been treated numerically by Lewin and Paul
(2014) and the time-dependent BCS/BdG equations have been considered from an analytical
perspective by Hainzl et al. (2010). But, the above-mentioned studies of the out-of-equilibrium
dynamics of the BCS equations (Volkov and Kogan, 1974; Barankov et al., 2004; Yuzbashyan
et al., 2006) notwithstanding, to the best of our knowledge the coupled nonlinear time-dependent
BCS equations have not been paid much attention to from a numerical point of view. Therefore,
we come up with a reliable integration algorithm for the evolution of the system.

The paper is organized as follows: First, we introduce the system we are considering and the
physical background in Section C.2. This is followed by a brief summary of the theoretical
results of Frank et al. (2015) in Section C.3. Then, we present our numerical results for
the linear and the full equation in Section C.4. Finally, we summarize our main results
in Section C.5. A detailed discussion of the initial setup of the system and the numerical
implementation is provided in the Appendix Sections C.6 and C.7, respectively.
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C.2. Physical and mathematical background

C.2. Physical and mathematical background

C.2.1. Energy functional and BCS equations

In mathematical terms, BCS theory is a special case of a generalized Hartree–Fock variational
principle, itself described by Bogoliubov-theory, for the density operators γ : H 7→ H and
α : H 7→ H acting on the considered Hilbert space H. Those matrices are put together to form
the two-by-two operator-valued matrix

Γ :=

(
γ α
α 1− γ

)
, (C.1)

see, e.g., (Bach et al., 1994) for an introduction. The entries of the matrix can be represented
by means of their momentum distribution γ̂(k) = 〈a†kak〉 and the pair density α̂(k) =
〈aka−k〉, determining the Cooper pair wave-function via Fourier transform as α(x − y) =
(2π)−3/2

∫
α̂(k)eik·(x−y)d3k. We suppress spin in our notation; the pair density α̂ is assumed,

for simplicity, to be a spin singlet. For a one-dimensional translation invariant system of
fermions at temperature T interacting via a potential V , the BCS pressure functional per unit
volume is given by

FT (Γ) =

∫
R

(p2 − µ)γ̂(p)dp+

∫
R

|α(x)|2V (x)dx− TS(Γ), (C.2)

where the entropy S is defined as

S(Γ) := −
∫
R

TrC2 (Γ(p) log Γ(p)) dp. (C.3)

The evolutions of α and γ are given by the time-dependent BCS equations which are also
known as Bogoliubov–de–Gennes equations (De Gennes, 1966). In momentum space they can
be written conveniently in the self-consistent form

iΓ̇t(p) = [HΓt(p),Γt(p)]. (C.4)

Here, the subscript t indicates the time-dependence and the Hamiltonian HΓt(p) is defined as

HΓt(p) =

(
p2 − µ 2[V̂ ∗ α̂t](p)

2[V̂ ∗ α̂t](p) µ− p2

)
, (C.5)

with ∗ denoting the convolution. Calculating the upper-left and upper-right entries of the
matrix-valued equation (C.4), we arrive at the system of coupled nonlinear equations

i ˙̂γt(p) = 2
[
(V̂ ∗ α̂t)(p)α̂t(p)− (V̂ ∗ α̂t)(p)α̂t(p)

]
, (C.6)

i ˙̂αt(p) = 2(p2 − µ)α̂t(p) + 2(V̂ ∗ α̂t)(p)− 4(V̂ ∗ α̂t)(p)γ̂t(p). (C.7)

C.2.2. Contact interactions

In this paper we concentrate on attractive contact interactions, i.e., potentials of the form

V (x) = −aδ(x), a > 0, (C.8)
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which lead to exactly solvable systems in the stationary case. Not only is such a potential
the most interesting one from a physical model point-of-view but also does it allow us to
implement the terms including a convolution in the equations of motion conveniently as we
will illustrate in the numerics Section C.7.

C.2.3. Initial values

In this work we consider initial data which, in the stationary case, could be described by the
Ginzburg-Landau energy functional for temperatures T close to the critical temperature Tc,
i.e., T = Tc + h2 for a small parameter h ∈ R. For temperatures above Tc, the free energy
is minimized by the so-called normal state ΓN for which αN = 0, γN = 1/1+exp((p2−µ)/T). For
initial data Γ0 to be within the range of Ginzburg–Landau, they have to satisfy

FT (Γ0)−FT (ΓN) ≤ O(h4). (C.9)

This condition can be complied with by choosing

Γ0 =
1

1 + eH∆0/T
(C.10)

with

H∆0 =

(
p2 − µ −∆0

−∆0 µ− p2

)
, (C.11)

where ∆0 is a small parameter of the order of h, see, e.g., (Frank et al., 2012). Calculating the
right-hand side of the matrix equation (C.10) gives

Γ0 =

(
γ̂0 α̂0

α̂0 1− γ̂0

)
(C.12)

where γ̂0 and α̂0 take the special form

γ̂0 =
1

2
− p2 − µ

2

tanh

(√
(p2−µ)2+|∆|2

2T

)
√

(p2 − µ)2 + |∆|2
(C.13)

α̂0 =
∆0

2

tanh

(√
(p2−µ)2+|∆|2

2T

)
√

(p2 − µ)2 + |∆|2
. (C.14)

In our simulations we choose a temperature which is slightly above the critical temperature
for the setting under consideration and set the initial value for the gap parameter ∆0 to a
non-vanishing value. We explain how to obtain the critical temperature for our setting and
how to find physically reasonable initial values for ∆ in the Appendix Section C.6.

C.2.4. Ginzburg–Landau and macroscopic parameter

For the stationary case it is well known that the Ginzburg–Landau theory emerges as the
macroscopic limit of the BCS theory. To be more specific, define |α∗〉 as the translation
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invariant minimizer of the BCS functional which, in case of the contact interaction (C.8), can
be calculated via

α̂∗(p) =
∆

2

tanh

(√
(p2−µ)2+|∆|2

2T

)
√

(p2 − µ)2 + |∆|2
. (C.15)

Then, for the Cooper pair density |α〉 corresponding to the non-translation invariant minimizer
of FT , the quantity

ψ :=
1

h
〈α∗| α〉 (C.16)

is an approximate solution of the stationary Ginzburg–Landau equation, see, e.g., Frank et al.
(2013). This told, if there were an analogous relation between the time-dependent BCS and
the GL equations, the order parameter

ψt :=
1

h
〈α∗| αt〉 (C.17)

should, close to Tc, approximately satisfy a conventional time-dependent Ginzburg–Landau
(TDGL) equation. In the spatially homogeneous case we are studying in this work, the
conventional TDGL equation takes the form

ψ̇t = −cGL,1ψt − cGL,2|ψt|2ψt, (C.18)

with some appropriate parameters cGL,1 and cGL,2, see, e.g., (Cyrot, 1973) and (Randeria, 1995,
Eq. (18)). The parameter cGL,1 depends on (T−Tc)/(h2Tc). Crucially, cGL,1 has the same sign
as (T − Tc). Thus, the TDGL equation is dissipative for temperatures above Tc by definition.
This implies that if ψt could be described by the TDGL for small h it should decay over time.
However, we will demonstrate in Section C.4 that this is not the case, at least for the full
non-linear equation. The same conclusion has been reached by an analytical investigation
recently as we will outline in Section C.3.

C.2.5. The linear approximation

Let us decompose the particle density as

γt = γ0 + ηt. (C.19)

For states satisfying (C.9) ηt appears to depend quadratically on α̂t, see, e.g., (Frank et al.,
2015, Eq. 11), and it seems legitimate to approximate the full equation by its linearization

i ˙̂αt(p) = 2(p2 − µ)α̂t(p) + 2(V̂ ∗ α̂t)(p)(1− 2γ̂0(p)). (C.20)

However, close to the Fermi-surface the quantity ηt is not small but the dominant part in the non-
linear evolution. Consequently, the full BCS equations (C.6)-(C.7) and the linearization (C.20)
give rise to very different evolutions. Namely, Eq. (C.20) yields a dissipative behavior in ψt
whereas the full equations do not as is shown formally in Frank et al. (2015) and as we confirm
by our numerical experiments below. Let us briefly summarize the results of Frank et al. (2015)
in the next Section.
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C.3. Recent mathematical results

The BCS time-evolution (C.4) is studied analytically in Frank et al. (2015). Based on the
work of Frank et al. (2012) the authors prove in (Frank et al., 2015, Theorem 1) that |ψt|
does not vanish for any times. More precisely, it is shown in a very general setting that, if
the initial state Γ0 is close to the energy of the normal state, i.e., FT (Γ0)−FT (ΓN ) ≤ O(h4),
then the corresponding ψt satisfies

||ψt| − |ψ0|| ≤ Ch1/2, (C.21)

for an appropriate constant C independent of h.

On the other hand, it is shown in Frank et al. (2015) that the solution of the linearized
equation (C.20) tends to 0 exponentially fast compared to the system’s time scale of 1/h2. In
detail, using strategies from perturbation theory, it can be derived that

|ψt| ≈ |ψ0|et Imλ (C.22)

holds, where λ is a resonance of order 1/h2 which emerges from the zero-eigenvalue at T = Tc

of the linear operator O =
(
k2 − µ

)
tanh−1

(
k2−µ

2T

)
+ V .

The combination of the bounds (C.21) and (C.22) shows clearly that the non-dissipative
behavior of ψt is a purely non-linear effect which takes place solely in a tiny neighborhood of
the Fermi surface.

Furthermore, using the methods of Frank et al. (2015), it is straightforward to derive the
following bound on the derivative

|ψ̇t| = O (1/h) . (C.23)

In other words, although the solution |ψt| tends to the constant |ψ0| in the limit h→ 0, its
derivate might well oscillate more and more –in line with according predictions for systems
which are suddenly perturbed out of equilibrium (Volkov and Kogan, 1974). These findings
are well reproduced in our numerical experiments as we show now.

C.4. Simulations

In this work we are interested in a qualitative study of the differences between the full BCS/
BdG equations and their linearization. Thus, without loss of generality, we can work in
dimensionless units and set the constant a of the contact interaction and the chemical potential
µ to a = 1 and µ = 1, respectively. The initial data for the simulations are obtained as outlined
in the Appendix Section C.6. For this, we approximate the integrals in Eqs. (C.25) and (C.26)
by the sum over the discrete momenta we take into account. For the sake of reproducibility we
add the thus-obtained values for Tc and ∆0 to the results of our simulations. For more details
on the discretization of the equations under consideration we refer the interested reader to the
Appendix Section C.7.

C.4.1. Gap as a function of h

In order not to have to calculate the initial value of the gap parameter which depends on the
crucial parameter h at the start of each evoluation again, we calculate ∆0 with the procedure
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Figure C.1: The gap ∆0 as a function of the semiclassical parameter h in semilogarithmic
scale.

outlined in the Appendix Section C.6 for various h once. The interesting result is illustrated
in Fig. C.1 where we can see that ∆0 depends more or less linearly on the crucial parameter.

Finally, with both Tc and ∆0 at hand, we are able to present the results of the simulations.
Doing so, we take into account that at temperatures T = Tc + h2, physically interesting
dynamics are expected to occur on a time-scale of O(1/h2). Therefore, we always set tend = 1/h2

or tend = 2/h2 in the following.

C.4.2. Results for h = 1/4

We plot the scaled L2-norm of α, which in the discrete setting is given by the sum over the K
discrete momenta as

1

h2
‖αt‖22 =

1

h2

K/2−1∑
k=−K/2

|αKt (k)|2, (C.24)

as well as the modulus of the interesting macroscopic parameter ψt introduced in Eq. (C.17).
We plot the results for both the BCS equation (C.7) and its linear approximation (C.20), see
Fig. C.2 and Fig. C.3. For both quantities, the linear equation leads to exponential decay.
The full equation, in contrast, coincides with the linear approximation only for a short period
after which both ‖αt‖ and |ψt| grow again.

C.4.3. Results for h = 1/8

Here, too, we consider the scaled norm of the Cooper pair density and the modulus of the
parameter ψt. The results are shown in Fig C.4 and Fig. C.5. Again, the linear evolution
equation is clearly diffusive while the full equation yields a similar behavior only for very
small times. After a short decline in the beginning of the simulation, ‖αt‖ and |ψt| seem to
oscillate. Similar oscillations have been predicted by Volkov and Kogan (1974) and observed
for suddenly perturbed non-equilibrium systems in Yuzbashyan et al. (2006). Although, as
compared to these studies, we work on systems close to equilibrium and slightly above the
critical temperature, it is interesting to see that our long-term evolutions show oscilllations
which resemble the ones predicted for the out-of-equilibrium case.
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Figure C.2: 1/h2‖αt‖22 as a function of integration time t for h = 1/4. The physical parameters
are Tc = 0.19 and ∆0 = 0.29.
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Figure C.3: ψt as a function of integration time t for h = 1/4. The physical parameters are
Tc = 0.19 and ∆0 = 0.29.
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Figure C.4: 1/h2‖αt‖22 as a function of integration time t for h = 1/8. The physical parameters
are Tc = 0.19 and ∆0 = 0.16.
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Figure C.5: ψt as a function of integration time t for h = 1/8. The physical parameters are
Tc = 0.19 and ∆0 = 0.16.
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Figure C.6: 1/h2‖αt‖22 as a function of integration time t for h = 1/16. The physical parameters
are Tc = 0.19 and ∆0 = 0.083.

C.4.4. Results for h = 1/16

Once more, we depict the time evolution of ‖αt‖ and |ψt|, cf. Figs. C.6 and C.7. The
conclusions we can draw from these two plots are the same as for h = 1/8, the only difference
being the faster oscilllations in line with the bound (C.23). Most importantly, even for this
small value of h, we only observe diffusion for the linear approximation which, belying its
name, does not approximate the BCS equation for reasonably long time intervals. Let us
summarize our results in the concluding Section.

C.5. Summary

We have introduced a reliable integration scheme for the time-dependent BCS equation
and its linear approximation in spatially homogeneous settings. With the help of these
algorithms, we could perform numerical long-term studies for systems close to equilibrium in
order to investigate the time-evolution of the order parameter at the limit close to the critical
temperature. The study shows very clearly that, opposed to the linear case, the full BCS
equation does not yield any decay over time in the order parameter ψt. Since the conventional
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Figure C.7: ψt as a function of integration time t for h = 1/16. The physical parameters are
Tc = 0.19 and ∆0 = 0.083.

time dependent Ginzburg–Landau equation is dissipative above the critical temperature by
definition, it cannot give a valid macroscopic limit of the full time-dependent BCS/BdG
equations. It can only be seen as the limit of the linearization of the full equations but the
effects of this linearization could clearly be shown not to be negligible in the considered regime.
We thus confirm the analysis provided in Frank et al. (2015).

In addition, when evolving the system as described by the non-linear BCS/BdG equations,
we observed oscillations in the Cooper pair density and in the order parameter about a finite
value which are similar to oscillations which have been observed for out-of-equilibrium systems
in various works.
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C.6. Criticial temperature and initial energy gap

For translation invariant systems with contact interaction, the cricital temperature Tc is
well-known to be given implicitly by

2π

a
=

∫
R

tanh
(
p2−µ
2Tc

)
p2 − µ

dp, (C.25)

see, e.g. (Leggett, 1980; Nozieres and Schmitt-Rink, 1985; Randeria, 1995). The energy gap ∆
between the superconducting state and the normal state at temperatures beneath the cricital
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C.7. Numerical treatment of the equations

temperature, in turn, can be obtained from the relation

2π

a
=

∫
R

tanh

(√
(p2−µ)2+|∆|2

2T

)
√

(p2 − µ)2 + |∆|2
dp. (C.26)

In order to calculate the critical temperature and a realistic initial value for the gap parameter
we thus proceed as follows: For a given value of the small crucial parameter h, we first
determine the critical temperature Tc and set T = Tc − h2. For this temperature we then
search the corresponding gap ∆ following the above definition (C.26) and set ∆0 = ∆ as
its initial state. Finally, as we are interested in simulations for temperatures slightly above
the critical temperature, we put T = Tc + h2 and insert this into Eq. (C.12) together with
the just-determined ∆0. This yields physically realistic conditions which satisfy the energy
constraint (C.9).

C.7. Numerical treatment of the equations

We want to model a system of infinite spacial extension, which, of course, is not possible to
achieve on a machine. Therefore, we pretend our system to be periodic in space but with a
large enough period.

C.7.1. Finite extension and discrete system

In the Ginzburg-Landau regime, one often takes into account external potentials that vary on
a scale of O(1/h) and, consequently, lead to variations of the system which occur over intervals
of that very scale. Thus, a valid model system should have an extension no smaller than those
physical variations. But, in order to avoid artificial effects due to the periodicity, it is necessary
to enlarge this extensions by some multiples of 1/h. For convenience we furthermore include a
factor of 2π, wherefore we consider systems with period 2πN/h, 1 < N ∈ N. The kernels of the
density operators are now functions on L2([0, 2πN/h] 7→ R). In order to simplify the notation,
we introduce macroscopic variables via xmac := h/Nx. We end up in a 2π-periodic setting for
which the inner product of two functions f and g is just

〈f | g〉 =
∑
k∈Z

f̂ ĝ. (C.27)

The self-consistent BCS equations are now given by

iΓ̇t(k) = [HΓt(K),Γt(k)], k ∈ Z, (C.28)

with the Hamiltonian

HΓt =

( h2

N2k
2 − µ

)
2[V̂Nh ∗ α̂t]k

2[V̂Nh ∗ α̂t]k
(
µ− h2

N2k
2
) (C.29)

and the Fourier transform V̂Nh of VNh(·) := V (N/h·). Please note that in the present discrete
case the convolution of two summable series ak and bk has to be understood as

(a ∗ b)k =
∑
j∈Z

ak−jbj . (C.30)
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C.7.2. The equations for a delta potential

For systems on a large torus with a contact interaction (C.8), we can easily see that

V̂Nh ∗ α̂t = −a 〈φ| α〉 , (C.31)

where φ is the state given by φ(k) = 1 for all integers k. With this, the equations of motion
take the convenient form

i ˙̂γt(k) = 2a
[
〈φ| α〉α̂t(k)− 〈φ| α〉 α̂t(k)

]
, (C.32)

i ˙̂αt(k) = 2

(
h2

N2
k2 − µ

)
α̂t(k) + 2a 〈φ| α〉 (2γ̂t(k)− 1) (C.33)

for the nonlinear case and

i ˙̂αt(k) = 2

(
h2

N2
k2 − µ

)
α̂t(k) + 2a 〈φ| α〉 (2γ̂0(k)− 1) (C.34)

for the linear case.

Up to now we are still left with an infinite-dimensional system of equations. In order to solve
these numerically, we have to introduce a suitable finite-dimensional subspace.

C.7.3. Space discretization

As the BCS equations are given in their momentum space representation, it is most convenient
to use the so-called Fourier collocation. This means that a 2π-periodic function f(x) =∑

j∈Z f̂(j)eikx is approximated by

fK(x) =

K
2
−1∑

j=−K
2

f̂K(j)eikx, (C.35)

where the coefficients f̂K(j) are obtained by the discrete Fourier transform of the values
fj = f (2π/Kj), j = −K/2, ...,K/2 − 1. Mathematically speaking we work on the subspace
spanned by the first K eigenfunctions of the Laplacian on [0, 2π]. As a consequence, the
evolution of the system is given by the K-dimensional system of ordinary differential equations
(ODE)

i ˙̂γKt (k) = 2a
[〈
φK
∣∣ αK〉α̂Kt (k)−

〈
φK
∣∣ αK〉 α̂Kt (k)

]
, (C.36)

− K

2
≤ k ≤ K

2
− 1,

i ˙̂αKt (k) = 2

(
h2

N2
k2 − µ

)
α̂Kt (k)

+ 2a
〈
φK
∣∣ αK〉 (2γ̂Kt (k)− 1

)
, (C.37)

− K

2
≤ k ≤ K

2
− 1,
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C.7. Numerical treatment of the equations

and accordingly for the linear case. From numerical analysis it is well known that (C.35) yields
a very good approximation to 2π-periodic functions with the discretization error decreasing
rapidly as a function of K, see, e.g. (Lubich, 2008), Chapter III.1.3.

For practical reasons we set K to be an integer power of 2 so that for a given α̂Kt (j),
j = −K/2, ...,K/2 − 1, the corresponding distribution αKt (x) at the discrete points xj = 2π

K j
can be computed efficiently with the well-known fast Fourier transform (FFT). As we want to
resolve phenomena happening on the microscopic scale O(h/N), we choose

K = M
N

h
(C.38)

for a large enough integer M . Let us now explain how we solve the system of ODE (C.36)–
(C.37).

C.7.4. Solving the system of ordinary differential equations

We first notice that the Hamiltonian HΓt is self-adjoint. Thus, the time-evolution of Γt is a uni-
tary transformation and, hence, its eigenvalues are preserved. With regard to definition (C.1),
the eigenvalues can be readily computed as

λ1,2(p) =
1

2
±

√(
γ̂t(p)−

1

2

)2

+ |α̂t(p)|2, (C.39)

and we see that the equality(
γ̂t(p)−

1

2

)2

+ |α̂t(p)|2 =

(
γ̂0(p)− 1

2

)2

+ |α̂0(p)|2 (C.40)

holds. Solving this for γ̂t, we get

γ̂t(p) =

{
1
2 +

√
h(p)− |α̂t(p)|2 for p2 < µ,

1
2 −

√
h(p)− |α̂t(p)|2 for p2 ≥ µ,

(C.41)

where we have defined the auxiliary function

h(p) :=

(
γ̂0(p)− 1

2

)2

+ |α̂0(p)|2. (C.42)

The signs in Eq. (C.41) can be inferred from the initial values we use in this work, cf. (C.12).
They are such that γ̂0(p) is greater than 1/2 for µ > p2 and less than or equal to 1/2 for µ ≤ p2.

Inserting the discrete analogon of Eq. (C.41) into the relevant equation of motion (C.37), we
get the nonlinear coupled system of equations

i ˙̂αKt (k) = 2

(
h2

N2
k2 − µ

)
α̂Kt (k)

± 4a
〈
φK
∣∣ αK〉√h(k)− |α̂Kt (k)|2,−K

2
≤ k ≤ K

2
− 1. (C.43)

This said, we now present our time integration algorithm.
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C.7.5. Time discretization

Putting it in a formal way, the system we have to integrate is given by{
dy(t)

dt = f(y(t)),

y(0) = y0,
(C.44)

with

y =
(
α̂K (−K/2) . . . α̂K (K/2− 1)

)T ∈ RK . (C.45)

The right hand side of our initial problem can be written as the sum of two terms,

f(y) = f1(y) + f2(y), (C.46)

where f1 represents the linear part which resembles the kinetic part in the Schrödinger-equation
and f2 is the nonlinear part. Let τ denote a time step and Φτ,f the smooth map between y(0)
and y(τ). Given the special form (C.46) of the differential equation, one can approximate Φτ,f

numerically by

Φnum
τ,f (y0) =

(
Φτ/2,f1

◦ Φτ,f2 ◦ Φτ/2,f1

)
(y0). (C.47)

This is the well-known Strang splitting. Applying it successively yields an approximation to
the exact solution at times t = nτ , n = 1, 2, ..., the error of which decreases quadratically as a
function of the step size τ , see, e.g. (Hairer et al., 2006), Chapter II.5.

The advantage of the Strang splitting is that Φτ,h can be calculated exactly as

Φτ,f1(·) = e
−i2

(
h2

N2 k
2−µ

)
τ · . (C.48)

As for Φτ,f2 , it has to be approximated due to the nonlinearity. For this, we choose a simple
Runge-Kutta scheme as proposed by Flannery et al. (1992) whose numerical error is small
compared to the error expacted from the splitting57. Before starting the simulations, we still
need to fix the mentioned discretization parameters τ and K. In our case, K itself depends
on three parameters, cf. Eq. (C.38). As h is the semiclassical parameter we want to vary
throughout the study, we have to choose reasonable values for the remaining quantities M , N
and τ . We first consider τ .

C.7.6. Fixing the time discretization parameter

The step size has to be chosen small enough for both the numerical approximation of Φτ,f2 and
the Strang splitting to give accurate results. For our simulations it turned out that reliable
results can only be expacted for a step size inversely proportional to K. Playing safe we
include a small factor and set τ = 0.1/K. As a measure for the time integrator’s accuracy, we
consider the discrete analogon of the free energy introduced in Eq. (C.2) above, which is given

57Note that in the linear case Φτ,f2 can also be calculated exactly, cf. Chapter D
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Figure C.8: Relative error ∆FT of the discretized free energy against integration time t in
semilogarithmic scale for h = 1/8. The physical parameters are Tc = 0.19 and
∆0 = 0.16.

by

FKT (ΓK) =

K/2−1∑
k=−K/2

(
h2

N2
k2 − µ

)
γ̂K(k)

+
1

2π

2π∫
0

V (xmac)|αK(xmac)|2dxmac − TS(ΓK). (C.49)

A short calculation yields that this quantity is conserved under the exact flow of the corre-
sponding initial value problem. Therefore, the reliability of a numerical integration scheme
can be checked by tracking the relative error ∆FT , defined by

∆FT (t) =

∣∣∣∣FT (ΓKt )− FT (ΓK0 )

FT (ΓK0 )

∣∣∣∣ , (C.50)

along the numerical evolution. Recurring to a constant of motion as a criterion of accurateness
is a much applied procedure in various computational fields, see, e.g. (Seyrich, 2013; Lukes-
Gerakopoulos, 2014). Following this line of reasoning, we have verified the accuracy of our
time integrator for every simulation presented below. As an example, we show the plot of
∆FT corresponding to the simulations of Subsection C.4.3 in Fig. C.8.

C.7.7. Fixing the space discretization parameters

We have seen in the previous Subsection that the time step has to be inversely proportional
to the dimension of the subspace we are approximating our system on. Furthermore, every
time step requires a computational effort which grows linearly with K. Consequently, the
complete CPU time for a simulation over a given time interval [0, tend] is quadratic in K. So
the dimension of the subspace and, thus, the related N and M should be the smallest possible.
In order to check how small a M we can choose without any significant loss of accuracy, we
fix N = 8 and h = 1/4 and calculate the cricital temperature via the discretized version of
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Figure C.9: Critical temperature Tc as a function of the number of momenta per unit volume
M for N = 8 and h = 1/4.
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Figure C.10: ψt as a function of integration time t for N = 4 and h = 1/8. The physical
parameters are Tc = 0.19 and ∆0 = 0.16.

Eq. (C.25),

2π

a
=

K/2−1∑
k=−K/2

tanh

(
h2

N2 k
2−µ

2Tc

)
h2

N2k2 − µ
, (C.51)

for different values of M . The result can be seen in Fig. C.9. For different values of N and h
we get the same plot. We see that for M = 256 the critical temperature is still slightly too
small. However, when comparing the evolutions obtained with M = 256 to the according ones
for M = 512, the relevant figures are indistinguighable from each another. For the sake of
efficiency, we thus fix M = 256 for the rest of this work.

As for the extension of our interval, N , we have to choose it large enough so that the solution
cannot reach the boundaries during the simulation. As, by construction, we work with a
periodic setting, a solution reaching one end of the interval would enter again at the other end,
thus leading to unphysical interference. As an example of this numerical artifact, we consider
the case h = 1/8, N = 4 and plot the modulus of ψt in Fig. C.10. We observe oscillations for
larger t which should not show up in reality, cf. Subsection C.4.3. Whenever we encountered
such an artifact, we successively increased N by factors of 2 until the artifact vanished.
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D. Splitting integrators for the BCS equations of superconductivity

D. Splitting integrators for the BCS
equations of superconductivity

The content of this Section will be submitted as a single-author paper by J. S. . The
corresponding preprint can be found at arXiv:1505.03417.

Abstract

The BCS equations are the centerpiece of the microscopic description of superconductivity.
Their space discretization yields a system of coupled ordinary differential equations. In this
work, we come up with fast time evolution schemes based on a splitting approach. One of
the schemes only requires basic operations. For the physically important case of the BCS
equations for a contact interaction potential, the computational cost of the schemes grows only
linearly with the dimension of the space discretization. The schemes’ accuracy is demonstrated
in extensive numerical experiments. These experiments also show that the physical energy of
the system is preserved up to very small errors.

D.1. Introduction

In this work, we consider the time-dependent BCS equations, often also referred to as
Bogoliubov–de-Gennes (BdG) equations for the particle density and the Cooper pair density in
superconductors. These equations, named after Bardeen, Cooper and Schrieffer, the pioneers
of the microscopic description of superconductivity in metals, see (Bardeen et al., 1957),
were first introduced for the single-particle wave functions u and v of fermionic systems by
De Gennes (1966) based on the transformations of Bogoliubov (1947). Being a fundamental
part of condensed matter physics, the time-dependent BCS/BdG equations have been paid
a lot of attention from different perspectives, see, e.g., (Volkov and Kogan, 1974; Barankov
et al., 2004; Yuzbashyan et al., 2006). Most studies are based on the evolution equations of the
single-particle wave functions u and v. But often, especially in works concerning macroscopic
limits, it is more convenient to work with the equations for the particle density γ and the
Cooper pair density α directly, see, e.g., (Frank et al., 2012; Hainzl and Seiringer, 2012; Hainzl
and Schlein, 2013; Hainzl et al., 2010). A detailed introduction to the corresponding formalism
is given by Bach et al. (1994). A numerical scheme for the minimization of a stationary
problem in this formalism has been presented in (Lewin and Paul, 2014). The present work is
motivated by studies on the macroscopic limit of the time-dependent BCS/BdG equations
close to the critical temperature (Frank et al., 2015; Hainzl and Seyrich, 2016). In order
to study the behavior of the time-evolutions of the particle density and the pair density in
the considered limit, the coupled partial differential equations for γ and α had to be solved
numerically. Thus, two reliable and efficient integration algorithms for these equations based
on a splitting approach have been developed and will be presented in this work.

The evolution equations for the Cooper pair density resembles the linear Schrödinger equation
for quantum dynamical systems. One important aspect of these systems is that, after a space
discretization, the right hand side of the resulting ordinary differential equations has a very
large Lipschitz constant due to the Laplacian in the kinetic part. As a consequence, standard
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explicit integration schemes, such as the ones presented in (Flannery et al., 1992), although very
popular in computational physics, are of no use in quantum mechanical applications. Therefore,
the treatment of such quantum dynamical systems has been of huge interest in the numerical
analysis community for many decades, see, e.g., (Lubich, 2008, Chapter II.1). Various evolution
schemes for the linear Schrödinger equation in varying settings have been proposed over the
years, see, e.g., (Gray and Manolopoulos, 1996; Blanes et al., 2006; Tal-Ezer and Kosloff, 1984;
Park and Light, 1986; Hochbruck and Lubich, 1997, 2003). Nonlinear Schrödinger equations
such as the Gross–Pitaevskii equation and equations arising from the Hartree and Hartree–Fock
approximation of the quantum state have also been devoted attention to, see, e.g., (Tang et al.,
1996; Bao et al., 2003; Gauckler and Lubich, 2010) and (Lubich, 2004, 2005), respectively.

All theses methods have in common that the partial differential equations are first discretized
in space. This means that the system is restricted to a suitable subspace spanned by a finite
number of basis functions. Here, we do this with the help of a Fourier collocation method
which is the straightforward approach for the problem we look at, see, e.g., (Lubich, 2008,
Chapter III.1). This yields a system of coupled ordinary differential equations, on the solution
of which we focus in the present work.

What, in many applications, turned out to be the most promising tool for the solution of
the space discretized system was the splitting of the equations under consideration into some
subproblems, each of which can be solved more easily than the system of equations as a whole.
This idea was first employed for advection equations by Strang (1968) and Marchuk (1968).
In the realm of quantum dynamics, it was applied for the first time by Feit et al. (1982) where
the linear Hamiltonian was split into a kinetic and a potential part. The respective solutions
were then concatenated in a suitable way in order to obtain a reliable integration method.
Here, we use this ansatz to introduce two schemes for the evolution of the space discretized
BCS equations. The coupling terms depend on the convolution of the particle density with the
Cooper pair density. We use the well-known fast Fourier transform (FFT) to swiftly compute
these terms. As a consequence, the CPU effort per time step of our schemes grows only mildly
with the number of basis functions. This is very important since in most physical applications
the BCS system requires a discretization space of very high dimension.

For the first scheme, we exploit that the eigenvalues of the density operator, which are functions
of the particle density and the Cooper pair density, are conserved along exact solutions to the
BCS equations. Hence, we can express the particle density as a function of the Cooper pair
density. We end up with a decoupled nonlinear system for the evolution of the Cooper pair
density α. The thus obtained equations are split into a linear part, which can be solved exactly,
and into a nonlinear part, the flow of which can be approximated by some standard numerical
scheme. In the rest of this work, we will refer to the resulting integrator as BCSInt. It is
very accurate and preserves the physically interesting eigenvalues of the density operator by
construction. The integrator has already been employed in a numerical study of the physical
behavior of the BCS equations in (Hainzl and Seyrich, 2016).

For the second integrator, we do not decouple the system at all. Instead, thanks to the system’s
particular structure, we can aptly split it into three subproblems for which the flows can be
calculated very efficiently. These calculations require only basic operations. Recombining the
thus obtained flows in a suitable way results in a very accurate and efficient scheme which
conserves the system’s constants of motion, such as the energy, up to very small errors. In the
following, we will denote the new scheme by SplitBCS. In the physically important case of
a contact interaction, i.e., when the potential is given by a delta function, the flows of the
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D.2. The BCS Equations

subproblems can all be calculated exactly with an effort linear in the number of basis functions.

We demonstrate our integrators’ favorable behavior with the help of numerical experiments and
numerical comparisons to standard integration schemes. We mention that an error estimate
similar to the one of Gauckler (2011) for splitting schemes applied to the Gross–Pitaevskii
equations is expected to hold for SplitBCS. However, such an analysis is out of the scope of
this work.

Our presentation is organized as follows: We start with a short introduction to the BCS
equations for the particle density and Cooper pair density in Section D.2. Afterwards, we recall
the Fourier collocation for the partial differential equations in Section D.3. After introducing
some notation in Section D.3.4, we first introduce our splitting scheme BCSInt for the decoupled
nonlinear system in Section D.5. Then, we present our fast integration scheme SplitBCS for
the coupled system in Section D.6. This is followed by numerical tests in Section D.7. Finally,
we summarize our results in Section D.8.

D.2. The BCS Equations

A superconducting translation invariant system in one spatial dimension is characterized by the
particle density γ : R×R 7→ R which describes the probability at time t of finding a particle at
position x and the Cooper pair density α : R×R 7→ C which gives the probability at time t of
having a Cooper pair of electrons at distance x. For a given particle interaction V , the evolution
of α and γ is governed by the BCS equations, sometimes also called Bogoliubov–De-Gennes
equations,

iγ̇(t, x) = −2

∫
R

V (y) Im
[
α(t, x− y)α(t, y)

]
dy, (D.1)

iα̇(t, x) = 2

(
− d2

dx2
− µ+ V (x)

)
α(t, x)− 4

∫
R

γ(t, x− y)V (y)α(t, y)dy, (D.2)

with µ denoting the chemical potential of the physical system and ˙ = ∂/∂t. Conventionally,
the BCS equations are given in terms of the Fourier transforms, i.e., the momentum space
representations

γ̂(t, p) =
1

2π

∫
R

γ(t, x)eipxdx, (D.3)

α̂(t, p) =
1

2π

∫
R

α(t, x)eipxdx. (D.4)

Please note that for the momentum distributions, we have γ̂(k) = 〈a†kak〉 and α̂(k) = 〈aka−k〉,
where a†k and ak are the creation and annihilation operators of particles with momentum k. In
the momentum space representation, the equations of motion can be written in the compact,
self-consistent form

iΓ̇(t, p) =
[
HΓ(t,p),Γ(t, p)

]
, p ∈ R, (D.5)
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see, e.g., Frank et al. (2015). Γ(t, p) is the 2× 2-matrix

Γ(t, p) =

(
γ̂(t, p) α̂(t, p)

α̂(t, p) 1− γ̂(t, p)

)
(D.6)

and HΓ(t,p) is the Hamiltonian

HΓ(t,p)(p) =

(
p2 − µ 2[V̂ ∗ α̂](t, p)

2[V̂ ∗ α̂](t, p) µ− p2

)
. (D.7)

Here, ∗ denotes the convolution of V̂ with α̂(t, p).

D.2.1. Superconductivity

It can be shown, see e.g. (Hainzl et al., 2008), that the free energy functional

FT (Γ(t)) =

∫
R

(p2 − µ)γ̂(t, p)dp+

∫
R

|α(t, x)|2V (x)dx+

∫
R

TrC2 (Γ(p) log Γ(p)) dp (D.8)

is conserved along solutions of the evolution equations (D.5) for any given temperature of the
system T . If, for a given temperature T , the minimizer Γ of FT has a non vanishing Cooper
pair density α, then the system is said to be in a superconducting state.

D.2.2. The discrete BCS equations

In order to render the system computationally palpable, one restricts it to a domain D =
[0, L2π], L ∈ N, and assumes periodic boundary conditions. In most applications, L is a large
integer as the extension of the system is considered to be huge compared to the microscopic
scale which here is O(1). On the finite domain D, the momenta consist of the discrete set
k ∈ 1/LZ. The momentum space representations of α and γ are given by

γ̂k(t) =
1

L2π

L2π∫
0

γ(t, x)eikxdx, (D.9)

α̂k(t) =
1

L2π

L2π∫
0

α(t, x)eikxdx. (D.10)

In terms of these representations, the BCS equations read

iΓ̇k(t) =
[
HΓk(t),Γk(t)

]
, k ∈ 1

L
Z, (D.11)

where the convolution appearing in the Hamiltonian is now to be understood as(
V̂ ∗ α̂

)
k

(t) =
∑
j∈Z

V̂k−jα̂j(t). (D.12)

The first step towards a numerical solution is to introduce a finite basis. This process is called
space discretization.
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D.3. Space Discretization

D.3. Space Discretization

As the BCS equations are given in their momentum space representation anyway, it is most
convenient to use the so-called Fourier collocation. This means that for a fixed number K ∈ N,
a L2π-periodic function f(x) =

∑
k∈Z f̂(k)eik/Lx is approximated by

fK(x) =

K
2
−1∑

k=−K
2

f̂Kk e
i k
L
x, (D.13)

where the coefficients f̂Kk are obtained by the discrete Fourier transform of the values fj =
f (L2π/K · j), j = −K/2, ...,K/2− 1. From numerical analysis, cf. (Lubich, 2008, Chapter III.1),
it is known that for an s-times differentiable function f , the bound

‖f(x)− fK(x)‖ ≤ CK−s‖dsf

dxs
‖ (D.14)

holds for some constant C independent of the number of basis functions K.

Mathematically speaking, we work on the subspace spanned by the first K eigenfunctions of
the Laplacian on [0, L2π]. The approximation of the particle density on this subspace is given
by

γK(t, x) =

K
2
−1∑

k=−K
2

γ̂Kk (t)ei k
L
x (D.15)

and the approximation of the Cooper pair density reads

αK(t, x) =

K
2
−1∑

k=−K
2

α̂Kk (t)ei k
L
x. (D.16)

Inserting this approximations into the infinite dimensional BCS equations (D.11) yields a finite
dimensional system of ordinary differential equations (ODEs).

D.3.1. System of ordinary differential equations

The system of ordinary differential equations we end up with after applying the Fourier
collocation is given by

iγ̇k(t) = 2

[
αk(t)

(
V̂ ∗ α

)
k
− αk(t)

(
V̂ ∗ α

)
k

]
, (D.17)

iα̇k(t) = 2

(
k2

L2
− µ

)
αk(t)− 2 (2γk(t)− 1)

(
V̂ ∗ α

)
k
, (D.18)

− K

2
≤ k ≤ K

2
− 1,

where, for the sake of readability, we have replaced γ̂K and α̂K by γ and α, respectively.
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D.3.2. System for a contact interaction

For a contact interaction V (x) = −aδ(x), a > 0, which is the most popular interaction model
in physics, we have

V̂ (k) = − a

2Lπ
, −K

2
≤ k ≤ K

2
− 1. (D.19)

Hence, the convolution term in the self-consistent Hamiltonian on the K dimensional subspace
is given by

(
V̂ ∗ α̂

)
k

(t) = − a

2Lπ

K
2
−1∑

j=−K
2

α̂j(t). (D.20)

With this relation, the equations of motion become

iγ̇k(t) = − a

Lπ

αk(t) K/2−1∑
j=−K/2

αj(t)− αk(t)
K/2−1∑
j=−K/2

αj(t)

 , (D.21)

iα̇k(t) = 2

(
k2

L2
− µ

)
αk(t) +

a

Lπ

K/2−1∑
j=−K/2

αj(t) (2γk(t)− 1) , (D.22)

− K

2
≤ k ≤ K

2
− 1.

With

pk(t) := Reαk(t), (D.23)

qk(t) := Imαk(t), (D.24)

we can rewrite the equation of motion for γk(t) as

γ̇k(t) =
2a

Lπ

qk(t) K/2−1∑
j=−K/2

pj(t)− pk(t)
K/2−1∑
j=−K/2

qj(t)

 . (D.25)

From this expression we can see very easily that γk(t) is a real quantity whenever γt(0) is so.
As γ represents the physical particle density, which is real by definition, we can safely assume
γk(t) to be real in the following.

D.3.3. Constants of motion

For later use we mention that the coupled system (D.17),(D.18) possesses some important
constants of motion:

• It can readily be seen that the matrix HΓ(t) in the BCS equations (D.11) is self-adjoint.
Together with the commutator structure of the equations of motion (D.11), this implies
that the evolution of Γ(t) is unitary. Consequently, its eigenvalues are preserved along
the evolution. A little bit of algebra shows that these eigenvalues are given by

λ±k =
1

2
±

√(
γk(t)−

1

2

)2

+ |αk(t)|2. (D.26)
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D.4. Calculating the Convolution Terms

• The discretized analog of the free energy functional (D.8) in the case of an interaction
potential is given by

FK(γ(t), α(t)) :=

K/2−1∑
k=−K/2

(
k2

L2
− µ

)
γk(t) +

1

L2π

L2π∫
0

V (x) |α(t, x)|2 ,

+ T

K/2−1∑
k=−K/2

[λ+
k log(λ+

k ) + λ−k log(λ−k )], (D.27)

and can be shown to be preserved, too.

D.3.4. Numerical notation

From a numerical point of view, the coupled system (D.17),(D.18), when supplemented by
some initial data, represents an initial value problem{

dy(t)
dt = f(y(t)),

y(0) = y0,
(D.28)

with y ∈ C2K . Formally, the aim of this paper is to find a numerical approximation to the
exact flow of such an initial value problem. For this, we denote a time step by τ and the flow
over such a time, i.e., the smooth map between y(t) and y(t+ τ), by Φτ,f (y(t)). Its numerical
approximation will be denoted by Φnum

τ,f .

Both of the numerical flows we present in this work rely on the fast calculation of the
convolutions appearing on the right hand side of the equations of motion (D.17),(D.18). Let
us turn towards this now.

D.4. Calculating the Convolution Terms

We denote by F the Fourier transform of a vector of length K = 2N , N ∈ N, and by F−1 its
inverse. With the help of the fast Fourier transform (FFT) algorithms, these operations can
be calculated efficiently in O(N ·K) operations, see, e.g., (Flannery et al., 1992, Chapter 12).

Furthermore, the convolution of two K dimensional vectors a and b can be computed by

a ∗ b = F−1 ((Fa) · (Fb)) , (D.29)

with · denoting pointwise multiplication. Taking this into account, we can efficiently calculate
the convolution terms as outlined in Fig. D.1. There, we have defined

Vj := V (L2π/K · j) , j = −K/2, ...,K/2− 1. (D.30)

The algorithm only takes O(N ·K) operations. When considering systems with a contact
interaction, i.e., when integrating the evolution equations (D.25),(D.22), the convolution terms
are just a sum over the entries of the vector α. Hence, the CPU effort in this case is only
O(K).
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Algorithm 1: calc_convolution

conv = FFT(α)
for j = −K/2 to K/2− 1 do

conv(j) = conv(j) · V (j).

conv = invFFT(conv)

Figure D.1: Sketch of the algorithm calc_convolution, which uses the FFT and its inverse to
efficiently calculate the convolution between α̂ and V̂ .

D.5. Nonlinear Splitting Integrator

BCSInt, the integrator we present in this Section, is based on the conservation of the eigenvalues
of Γ(t). These eigenvalues being conserved, the following equality holds(

γk(t)−
1

2

)2

+ |αk(t)|2 =

(
γk(0)− 1

2

)2

+ |αk(0)|2. (D.31)

With the help of this relation, we can eliminate γk(t) in the equations of motion for αk(t) as
we show now.

D.5.1. Decoupled system

Solving Eq. (D.31) for γk yields

γk(t) =
1

2
±
√
h(k)− |αk(t)|2, (D.32)

with the auxiliary function

h(k) :=

(
γk(0)− 1

2

)2

+ |αk(0)|2. (D.33)

The sign in relation (D.32) can usually be inferred from physical information. In our
study (Hainzl and Seyrich, 2016), for example, the initial values had to be such that γk(0) was
greater than 1/2 for µ > k2/L2 and less than or equal to 1/2 for µ ≤ k2/L2.

Inserting the just-derived expression (D.32) for γk(t) into the equations of motion for αk(t),
we get the nonlinear system

iα̇k(t) = 2

(
k2

L2
− µ

)
αk(t)±

a

Lπ

√
h(k)− |αk(t)|2

K/2−1∑
j=−K/2

αt(j), (D.34)

− K

2
≤ k ≤ K

2
− 1.

Having decoupled the system, we can now turn towards its time evolution.
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D.5. Nonlinear Splitting Integrator

D.5.2. BCSInt

The nonlinear system (D.34), together with some suitable initial data, gives an initial value
problem{

id~α(t)
dt = f̃(~α(t)),

~α(0) = ~α0,
(D.35)

for

~α =
(
α−K/2(t) . . . αK/2−1(t)

)T ∈ CK . (D.36)

The right hand side of the differential equation can be written as the sum of two terms,

f̃(~α) = A~α+ f1(~α), (D.37)

where f1 represents the nonlinear term and where A is the matrix

A = diag

(
2

((
−K

2

)2
L2

− µ

)
, ..., 2

((
K
2 − 1

)2
L2

− µ

))
. (D.38)

This linear part resembles the kinetic part of the linear Schrödinger equation. Its flow Φτ,A

can be calculated exactly as

Φτ,A(~α) = diag

(
e
−i2

(
(−K)2

4L2 −µ
)
τ
, ..., e

−i2

(
(K−2)2

4L2 −µ
)
τ
)
~α. (D.39)

With regard to f1, it has a much smaller Lipschitz constant than the complete right hand side
f , wherefore Φτ,f1 can be approximated by some standard integration scheme. We than follow
the idea of Strang (1968) and set

Φnum
τ,f̃

(~α(0)) =
(
Φτ/2,A ◦ Φnum

τ,f1
◦ Φτ/2,A

)
(~α(0)). (D.40)

Applying this operation successively yields an approximation to the exact solution at times
t = nτ , n = 1, 2, ... . Its error decreases quadratically as a function of the step size τ as
long as Φnum

τ,f1
is a second-or-higher order approximation to Φτ,f1 , see, e.g. (Hairer et al., 2006,

Chapter II.5).

Just as every exact flow, Φτ,A satisfies

Φt,A ◦ Φs,A = Φt+s,A. (D.41)

Hence, when applying many time steps of the numerical scheme in a row, one can combine
the last sub-step of the previous step with the first sub-step of the next step, thus saving
computational costs. We illustrate the resulting procedure in Fig. D.2.

Concerning Φnum
τ,f1

, in the study Hainzl and Seyrich (2016) it has been calculated via the fifth
order explicit Cash–Karp Runge–Kutta scheme proposed by Flannery et al. (1992). In the
experiment Section D.7 below, we will also test the second order explicit midpoint rule. In
this case, Φnum

τ,f1
is calculated as outlined in Fig. D.3.
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Algorithm 2: BCSInt

~α = Φτ/2,A(~α0)
for n = 0 to N do

~α = Φnum
τ,f1

(~α).
~α = Φτ,A(~α).

~α = Φ−τ/2,A(~α)

Figure D.2: Sketch of our algorithm BCSInt which for a given initial value ~α0 and a given step
size τ approximates ~α(Nτ) = ΦNτ,f̃ (~α0).

Algorithm 3: calcΦf1

Ẏ =calcf1(~α)
for k = −K/2 to K/2− 1 do

Y (k) = αk(t) + τ/2Ẏ (k)

Ẏ =calcf1(Y)
for k = −K/2 to K/2− 1 do

αk(t) = αk(t) + τ Ẏ (k)

Algorithm 4: calcf1

c = calc_convolution(V, α)
for k = −K/2 to K/2− 1 do

d =
√
h(k)− |αk(t)|2

f1(k) = −ic · d

Figure D.3: The left panel shows the algorithm which for a given value ~α(nτ) and a given
time step τ calculates ~α((n+ 1)τ) = Φnum

τ,f1
(~α(nτ)) with the explicit midpoint rule.

The right panel shows the algorithm which for a given value ~α calculates f1(~α).

D.5.3. Number of operations

In order to analyze BCSInt’s efficiency, we count the number of real operations which are
executed per call of our implementations, which, to the best of our knowledge, have been
implemented in the most efficient way possible. We do not weight the costs of different
operations, i.e., the square root in calcf1, cf. Fig. D.3, also counts as a single operation.
The number of operations as a function of the number of basis functions K for the various
sub-algorithms and BCSInt as a whole are listed in Tab. D.1. We mention that, if we substitute
the fifth order Cash–Karp scheme for the explicit midpoint rule in calcΦf1 , the number of
operations for calcΦf1 will increase slightly to 6× calc_convolution + 38K.

Algorithm #Operations per call
Calculation of Φτ,A 14 ·K + 14

Calcf1 1× calc_convolution + 12 ·K + 20
calcΦf1 2× calcf1 + 8 ·K + 9 = 2× calc_convolution + 32 ·K + 49
BCSInt 2× calc_convolution + 46 ·K + 63

BCSInt for contact interaction 58 ·K + 63

Table D.1: The required number of operations per step as a function of the dimension of the
ODE system (D.34) for the sub-algorithms of BCSInt and for BCSInt itself.
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D.6. Triple Splitting Integrator

Let us now introduce our second integration scheme.

D.6. Triple Splitting Integrator

For our second scheme, we consider the coupled system (D.17),(D.18) as a whole. From a
numerical perspective, we have an initial value problem for

y(t) =

(
~γ(t)
~α(t)

)
∈ C2K , (D.42)

~γ(t) =
(
γ−K/2(t) . . . γK/2−1(t)

)T ∈ RK , (D.43)

~α(t) =
(
α−K/2(t) . . . αK/2−1(t)

)T ∈ CK , (D.44)

(D.45)

whose right hand side f(y) can be split into three parts,

f (~γ, ~α) = Ãy + g(~α) + h(~γ, ~α). (D.46)

Here, Ãy is the first term of the equation of motion (D.18) for α, i.e.,

Ã

(
~γ
~α

)
=

(
~γ
A~α

)
, (D.47)

which means that it represents the same action on α as A in the nonlinear case above. The
function g(~α) represents the right hand side of the evolution equation for γ and h(~γ, ~α) is the
second term of Eq. (D.18).

We will now show that we can efficiently calculate the flows for all three subproblems. The
calculation of Φτ,Ã is nothing other than Φτ,A acting on ~α with ~γ held constant. We thus, in
fact, only have to consider the other two subproblems.

D.6.1. Calculating Φτ,g

For the subsystem{
d~γ(t)

dt = g(~α(t)),

~γ(0) = ~γ0,
(D.48)

the right hand side does not depend on the quantity to be evolved. Therefore, the solution of
the initial value problem (D.48) at time t is trivially given by

~γ(t) = Φt,g(~γ(0)) = ~γ(0) + t · g(~α(0)). (D.49)

Bearing in mind the reformulation (D.25), we calculate a step of Φτ,g with the algorithm
illustrated in Fig. D.4. Please note that in the case V (x) = −aδ(x), the convolution is replaced
by the sum (D.20). Hence, Φτ,g can even be calculated in O(K) operations.
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Algorithm 5: calcΦg

c = calc_convolution(V, ~α)
for k = −K/2 to K/2− 1 do

γk(t) = γk(0) + 2τ · (Im(αk) · Re(c)− Re(αk) · Im(c))

Figure D.4: Sketch of the algorithm which for given values ~γ(0), ~α(0) and a given step size τ
calculates the solution ~γ(τ) = Φτ,g(~γ(0)) to the initial value problem (D.48).

D.6.2. Calculating Φτ,h

We consider the subproblem{
id~α(t)

dt = h(~γ(0), ~α(t)),

~α(0) = ~α0.
(D.50)

The linear right hand side’s Lipschitz constant is small. This gives us two possibilities to swiftly
calculate the flow Φτ,h. The first option is to use the Lanczos method described in (Lubich,
2008, Chapter II.2.2) with some iterations. According to the analysis of Hochbruck and Lubich
(1997), this yields an approximation with vanishingly small error. The more convenient and
still faster option is the use of an explicit standard integration scheme such as the explicit
midpoint rule or the classical Runge–Kutta scheme. Thanks to the favorable properties of the
subproblem, the resulting numerical error is much smaller than the already small splitting
error. In our tests, the schemes with this faster implementation where as accurate as the ones
using the Lanczos method. We outline the algorithm for the example of the explicit midpoint
rule in Fig. D.5.

Algorithm 6: calcΦh

Ẏ =calc_h(~α)
for k = −K/2 to K/2− 1 do

Y (k) = αk(t) + τ/2Ẏ (k)

Ẏ =calc_h(Y)
for k = −K/2 to K/2− 1 do

αk(t) = αk(t) + τ Ẏ (k)

Algorithm 7: calc_h

c = calc_convolution(V, ~α)
for k = −K/2 to K/2− 1 do

d = 2 · γk − 1
h(k) = −ic · d

Figure D.5: The left panel shows the algorithm which for a given value ~α(nτ) and a given
time step τ calculates ~α((n+ 1)τ) = Φnum

τ,h (~α(nτ)) with the explicit midpoint rule.
The right panel shows the algorithm which for a given value ~α calculates h(~γ, ~α).

The most appealing fact about our triple splitting is that in the case of a contact interaction,
the subproblem (D.50) can be solved exactly in O(K) operations as we show now.

Introducing ~b ∈ RK via

bk =
a

Lπ
(2γk(0)− 1) , (D.51)
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D.6. Triple Splitting Integrator

and the K ×K-matrix

B =

 b−K/2 . . . b−K/2
...

. . .
...

bK/2−1 . . . bK/2−1


︸ ︷︷ ︸

K

, (D.52)

we can write

h(~γ(0), ~α(t)) = B~α(t). (D.53)

Hence, the solution to the initial value problem (D.50) is given by

~α(τ) = Φτ,h(~α(0)) = e−iBτ ~α(0) =: eB̃~α(0). (D.54)

We now show that for a given ~α(0), ~α(τ) can be calculated in O(K) operations.

For a given n ∈ N, we have

B̃n =

−ib−K/2τc
n−1 . . . −ib−K/2τc

n−1

...
. . .

...
−ibK/2−1τc

n−1 . . . −ibK/2−1τc
n−1


︸ ︷︷ ︸

K

, (D.55)

with

c = −iτ

K
2
−1∑

j=−K
2

bj . (D.56)

Consequently, with Id denoting the K ×K identity matrix, we have

exp(−iτB) = Id +
∞∑
n=1

1

n!

−ib−K/2τc
n−1 . . . −ib−K/2τc

n−1

...
. . .

...
−ibK/2−1τc

n−1 . . . −ibK/2−1τc
n−1

 (D.57)

= Id +
1

c

−ib−K/2τ(exp(c)− 1) . . . −ib−K/2τ(exp(c)− 1)
...

. . .
...

−ibK/2−1τ(exp(c)− 1) . . . −ibK/2−1τ(exp(c)− 1)

 . (D.58)

With this, the matrix-vector multiplication in Eq. (D.54) yields

exp(−iτB)~α(0) = ~α(0)− iτ

c


b−K/2(exp(c)− 1)

∑K
2
−1

j=−K
2

αj(0)

...

bK/2−1(exp(c)− 1)
∑K

2
−1

j=−K
2

αj(0)

 . (D.59)

Thus, the solution of the initial value problem (D.50) can efficiently be calculated by the
algorithm illustrated in Fig. D.6.

Having found efficient algorithms for all three subproblems we have split the system into, we
can now recompose them.
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Algorithm 8: calcΦh

c = −iτ
∑K

2 −1

k=−K
2

bk

s =
∑K

2 −1

k=−K
2

αk(0)

e = exp(c)− 1
for k = −K/2 to K/2− 1 do

αk(t) = αk(0)− iτ · e · s · bk/c

Figure D.6: Sketch of the algorithm which for given values ~γ(0), ~α(0) and a given step size τ
calculates the solution ~α(τ) = Φτ,h(~α(0)) to the initial value problem (D.50) for
the case of a contact interaction.

D.6.3. SplitBCS

As all the three flows Φτ,A, Φτ,g, and Φτ,h are at least of second order, each symmetric
composition of them gives rise to a second order integration scheme, see, e.g. (Hairer et al.,
2006, Chapter II.5). We propose the composition

Φnum
τ,f = Φτ,AghgA := Φτ/2,A ◦ Φτ/2,g ◦ Φτ,h ◦ Φτ/2,g ◦ Φτ/2,A, (D.60)

as this yields the fastest and most accurate scheme among the possible combinations as we
will see in the next Section. If even more accuracy were required, we could use a suitable
composition of the scheme (D.60); see (Suzuki, 1990; Yoshida, 1990) for more information on
compositions.

In the same way as for the algorithm of Section D.5, the last sub-step of each step can be
combined with the first sub-step of the following step which reduces the CPU effort. Even
more computational costs can be saved by paying heed to the following points.

• From Eq. (D.25) it can be deduced that

d

dt

 K
2
−1∑

j=−K
2

γk(t)

 = 0. (D.61)

Thus, the sum over all γk(t), and, as a consequence, also the quantities c and e appearing
in the calculation of Φτ,h, cf. Fig. D.6, are preserved along evolutions of the equations of
motion. Hence, c and e only need to be calculated once at the start of the simulation
when considering a contact interaction.

• Both Φτ,g and Φτ,h require the computation of the convolution, cf. Figs. D.4 and D.6.
However, Φτ,g does not modify ~α which means that the convolution in the first call of
calc_h is the same as the one already calculated in calcΦg. Hence, by suitably combining
the calculation of

Φτ,ghg := Φτ/2,g ◦ Φτ,h ◦ Φτ/2,g (D.62)

into one algorithm, one can avoid redundancies.
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D.6. Triple Splitting Integrator

• The calculation of Φτ,A can be made more efficient for both BCSInt and SplitBCS when a
fixed step size is used. In this case, during each call of Φτ,A, cos and sin of 2 (k2/L2 − µ) τ ,
k = K/2, ...,K/2− 1, have to be calculated. But, if storage is not a problem, one only has
to calculate the cos and sin once at the beginning of the simulation as the arguments
are the same in each step. This is what we did in our implementations. Accordingly, the
number of operations specified in Tabs. D.1 and D.2 refer to this efficient version. Please
note that this point, together with the first point, means that the time steps for a system
with a contact interaction can be calculated without having to call any mathematical
function but only require basic computational operations.

Putting everything together, we obtain our integrator SplitBCS as outlined in Fig. D.7.

Algorithm 9: SplitBCS

~α = Φτ/2,A(~α(0))
for n = 0 to N do

(~γ, ~α) = Φτ,ghg(~γ, ~α).
~α = Φτ,A(~α).

~α = Φ−τ/2,A(~α)

Figure D.7: Sketch of our algorithm SplitBCS which for given initial values ~γ(0), ~α(0) and a
given step size τ approximates (~γ(Nτ), ~α(Nτ))T = ΦNτ,f (~γ(0), ~α(0)).

D.6.4. Number of operations

In order to compare the efficiency of SplitBCS to the one of BCSInt, we count the number of
operations required for the respective sub-algorithms and for SplitBCS as a whole, too. The
result can be found in Tab. D.2. If the explicit midpoint rule is replaced by the Cash–Karp
scheme, the number of operations in the calculation of Φτ,h will increase just as for BCSInt.
We see that SplitBCS calculates one convolution more than BCSInt. Thus, BCSInt is expected

Algorithm #Operations per call
Calculation of Φτ,A 14 ·K + 14

Calc_h 1× calc_convolution + 7 ·K + 12
calcΦf1 2× calc_h+ 8 ·K + 9 = 2× calc_convolution + 22 ·K + 33
calcΦg 1× calc_convolution + 6 ·K + 12

Calculation of Φτ,ghg for contact interaction 18 ·K + 39
SplitBCS 3× calc_convolution + 34 ·K + 53

SplitBCS for contact interaction 32 ·K + 53

Table D.2: The required number of operations per step as a function of the dimension of the
ODE system (D.17),(D.18) for the sub-algorithms of SplitBCS and for SplitBCS
itself.

to be faster for general settings with a huge number of basis functions. For the important case
of a contact interaction, however, we are able to calculate Φτ,ghg very efficiently. This is why
we choose the composition (D.60) over other possible sequences of the subflows. With this,
SplitBCS is even faster than BCSInt in the physically important setting.
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Let us now subject the schemes to numerical tests.

D.7. Numerical Experiments

All the numerical experiments presented here were run on a Core 2 Duo E6600 machine with
2.4GHz and 4GB RAM. In order to have physically realistic data to start our experiments
with, we chose a system which is slightly superconducting. Such a system can be obtained by
setting

γ̂k(0) =
1

2
−

k2/L2 − µ
2

tanh

(√
(k2/L2−µ)2+h2

2T

)
√

(k2/L2 − µ)2 + h2
(D.63)

α̂k(0) =
h

2

tanh

(√
(k2/L2−µ)2+h2

2T

)
√

(k2/L2 − µ)2 + h2
, (D.64)

where h = 0.1 is a small parameter, see, e.g., (Hainzl and Seyrich, 2016). The critical
temperature T of the system depends on the chemical potential µ and on the interaction
potential V . In the simulations presented here, we considered a system with a contact
interaction V (x) = −aδ(x). In this case, T can be calculated from the implicit formula,
cf. (Hainzl and Seyrich, 2016),

2π

a
=

∫
R

tanh
(
p2−µ

2T

)
p2 − µ

dp. (D.65)

For our simulations, we chose a = µ = 1 which yields T = 0.19.

As a measure of an integrator’s accuracy, we used the discrete energy (D.27) which is conserved
along the exact solution of the ODE system (D.17),(D.18). Thus, the reliability of a numerical
integration scheme can be checked by tracking the relative error ∆FK , defined by

∆FK(t) =

∣∣∣∣FK(~γ(t), ~α(t))− FK(~γ(0), ~α(0))

FK(~γ(0), ~α(0))

∣∣∣∣ , (D.66)

along the numerical evolution.

We first used this tool to compare SplitBCS to BCSInt with Φτ,f1 calculated via the fifth order
Cash–Karp method. For this, we fixed L = 32, K = 256 · L and chose a step size τ = 0.1/K.
We evolved the system until t = O(L) with both integrators and plotted the relative error
in the energy, ∆FK , against integration time t in the left panel of Fig. D.8. We repeated
the procedure for L = 64 and plotted the result in the right panel of Fig. D.8. Although the
error increases slightly at the end of the integration for BCSInt, both schemes seem to be
very accurate. When comparing BCSInt with Φτ,f1 calculated via the fifth-order Cash–Karp
method to BCSInt where Φτ,f1 was calculated with the explicit midpoint rule, we found no
differences in the relative error of the energy. Hence, we recommend the use of the latter
method as it is much faster.

Other physically relavant constants of motion are the eigenvalues λk of the particle density
matrix Γ. BCSInt preserves them by construction. In order to check their behavior when using
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D.7. Numerical Experiments
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Figure D.8: The relative error ∆FK of the free energy as a function of integration time t for
SplitBCS and BCSInt in semilogarithmic scale. The left panel shows the result
for L = 32, the right panel depicts the corresponding result for L = 64.

SplitBCS, we also tracked the eigenvalues together with their corresponding relative error,

∆λk(t) =

∣∣∣∣λk(t)− λk(0)

λk(0)

∣∣∣∣ , (D.67)

along the evolution. We found out that, up to very small rounding errors, all eigenvalues were
preserved for SplitBCS, too. As an illustration, we plot some eigenvalues and the relative error
of λ0 in Fig. D.9.
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Figure D.9: The left panel shows some eigenvalues λk of the density matrix as a function of
integration time t for SplitBCS applied to the system with L = 32. The right panel
shows the corresponding relative error ∆λ0 of the density matrix’ first eigenvalue
in semilogarithmic scale.

With regard to SplitBCS, the question remains as to whether we could have done even better
by choosing another sequence of the sub-flows than composition (D.60). In order to go into
this matter, we also evolved the systems for L = 32 and L = 64 for various other compositions
of the sub-flows Φτ,A, Φτ,g and Φτ,h, and again plotted ∆FK as a function of the integration
time t. The resulting plots are shown in Fig. D.10. We also tested the other possible sequences
which are not shown in the plots. However, we found out that the relative error in the energy
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seems only to depend on the spot of Φτ,A in the composition. This means that Φτ,AhghA is as
accurate as SplitBCS. But we could not find an equally efficient implementation for Φτ,hgh

as the one for Φτ,ghg. This is why we strongly recommend the use of the composition (D.60),
shortly SplitBCS, in simulations of the discrete BCS equations with a contact interaction.

In order to show, as a last point, why standard integration schemes are of no use for the
discrete BCS equations, we apply the popular fifth order Cash–Karp scheme of Flannery et al.
(1992) to the equations with the same L and the same step size as for the splitting methods.
When plotting the resulting ∆FK , cf. Fig D.11, we observe an exponential growth in the error.
This is in accordance with theoretical expectations, see, e.g. (Hairer et al., 1993).
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Figure D.11: The relative error ∆FK of the free energy as a function of integration time t for
the explicit Cash–Karp scheme in semilogarithmic scale. The left panel shows
the result for L = 32, the right panel depicts the corresponding result for L = 64.

Let us now summarize our results.
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D.8. Conclusion

D.8. Conclusion

In this work, we have presented two fast and accurate evolution schemes, BCSInt and SplitBCS,
for the coupled discrete BCS equations which arise from a Fourier space discretization of the
BCS equations for superconducting materials. BCSInt uses the preservation of the density
matrix’ eigenvalues to decouple the system and a subsequent splitting of the decoupled system
into two terms. SplitBCS is based on a splitting of the coupled equations into three subproblems
which for the important case of a contact interaction can all be solved exactly by employing
basic operations only. Crucially, the CPU effort for these exact solutions grows only linearly
in the dimension of the spatial discretization. Further computational costs could be saved by
aptly recombining the flows of the subproblems. In numerical tests, the schemes have been
shown to be very accurate. Additionally, they preserve the discrete analog of the physical
energy and the eigenvalues of the particle density matrix up to very small errors. We have,
thus, come up with very useful tools for simulations in the field of superconductivity.
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