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Abbreviations 

30A  name of a polar test point arrangement within 30° of eccentricity 

84NO  name of a polar test point arrangement within 84° of eccentricity 

AIDS  acquired immune deficiency syndrome 

AION  anterior ischemic optic neuropathy 

cLoA  corrected limits of agreement 

CMOS complementary metal oxide silicon 

CRP  C-reactive protein 

dB  decibel 

dBs  standardized decibel scale 

DLS  differential luminance sensitivity 

dpt  dioptre 

ESR  erythrocyte sedimentation rate 

EyeSuite EyeSuite Perimetry, a perimetry software offered by the Haag- 

  Streit company, Köniz, Switzerland 

FT  full threshold 

GATE  German adaptive thresholding estimation 

GATEe commercially available GATE strategy as integrated in EyeSuite  

  Perimetry 

GATEe1075 examination on serial device 1075, max. stimulus ≈ 3183 cd/m²  

  (10,000 asb), using GATEe 

GATEe894 examination on serial device 894, max. stimulus ≈ 1273 cd/m²    

  (4000 asb), using GATEe 

GATE-i German adaptive thresholding estimation – initial examination 

GATEp the prototype version of the GATE strategy as developed in   

  Tuebingen 

HIV  human immunodeficiency virus 

ICC  intraclass correlation coefficient  

IOP  intraocular pressure 

LOA  limits of agreement 

MD  mean defect 
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MS  mean sensitivity 

NAION non-arteritic anterior ischemic optic neuropathy 

NQA   number of questions asked 

RAPD  relative afferent pupil defect  

RNFL  retinal nerve fibre layer 

RP   retinitis pigmentosa 

SITA  Swedish interactive thresholding algorithm 

TL  test location 

VF  visual field 
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1. Introduction 

1.1 Preliminary remarks on perimetry 

1.1.1 The visual field 

The monocular visual field refers to the sum total of visual perception for an eye 

fixed on a stationary object of regard with the head and body held fixed in 

position. [1] 

Under photopic conditions, the site with the highest concentration of cones 

within the retina is called the fovea. This is the site with the highest sensitivity of 

the visual field. The peripheral visual field extends to approximately 100° on the 

temporal side, to approximately 70° on the inferior side and to approximately 

50° on the superior and the nasal side. [1] Sensitivity decreases with the 

declining concentration of cones towards the periphery. Thus, in a 3-

dimensional illustration a visual field can be depicted as an “island of vision” 

with a central peak - the fovea - that is sinking with locally varying steepness 

towards the periphery into the “sea of blindness”. [2] 

 

Areas of lower sensitivity than expected – i.e. visual field defects - are called 

scotomas. These defects are referred to as relative or absolute scotomas 

depending on how profound the visual loss is. If there is no more perception, 

even if the stimulus is presented with maximum luminance or if the local 

differential luminance sensitivity (DLS) level is reduced by more than 20 dB 

compared to the age-related normal DLS level, this defect is called an absolute 

scotoma; like for example the blind spot. In case of a relative scotoma there can 

still be perception, but the stimulus has to be presented with a higher luminance 

level than the local age-adjusted normal value. 

 

Visual fields are always dependent on a functioning of all elements of the visual 

pathway, starting even with the refractive media, followed by the retinal 

photoreceptors and ending with the neuronal elements of the visual cortex. By 

this, they are representing the afferent functions of the visual system. It is 
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therefore possible to draw conclusions from special patterns of visual field 

defects in order to predict where the topographic location of the damage to the 

visual pathway is supposed to be. In addition, the assessment of local DLS 

values allows for analysis of change (deterioration or improvement over time). 

 

The current gold standard for the assessment of overall visual function in 

clinical practice and in research environment is visual acuity testing and 

perimetry.  

1.1.2 Perimetry 

Perimetry is the psychophysical examination and measurement of visual 

function at defined topographic locations of the visual field. It is a non-invasive 

examination providing topo-diagnostic and etiological pathogenic information 

about the visual field of the examined subject. Stimuli are presented in a dome-

shaped projection area and have to be recognized and confirmed by the 

proband. Test points may vary in size, luminance and location, but the 

background luminance is kept constant throughout the examination in order to 

provide a constant state of adaption 

 

Perimetry measures differential luminance sensitivities. The logarithmic 

measurement unit is decibel (dB). The DLS is defined as the threshold of 

perception of a test point in relation to the background luminance of the 

perimeter. This indicates a quantification of the contrast perception capability. A 

threshold is given if the probability of perception is 50% at a given location of 

the visual field according to the psychometric function. 

 

The psychometric function – also known as the probability-of-seeing-curve -

describes the probability of response (in %) dependent on the level of stimulus 

attenuation (in dB). The steeper the curve at the point of change from 

unequivocal perception to no perception, the smaller is the statistical variance 

for repeated measurements. This has immediate implications for test-retest 
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variability. In other cases the curve shows a shallower course with greater 

statistical variance representing greater test-retest variability in these places. 

 

This explains one of the major disadvantages of perimetry: its often high test-

retest variability.  In addition, low reproducibility results in a reduced sensitivity 

for changes over time. [3] Furthermore, as in any psychophysical test 

procedure, perimetry bears the risk of fatigue effect; also a learning effect may 

be observed. [4]  

 

In spite of this, perimetry has a great impact on the evaluation of special eye 

diseases and their treatment, especially in glaucoma diagnostics and 

surveillance.  

 

Further indications for a perimetric examination are an impaired vision of 

unknown origin, a relative afferent pupil defect (RAPD), clarification and 

surveillance of suspected visual pathway lesions and the need of an expert 

opinion and formal certification of seeing capability. The main purpose of 

perimetry, however, is the detection and surveillance of scotomas. [5] 

 

There are two basic principles of perimetry: kinetic and static perimetry.  

1.1.2.1 Kinetic isopter perimetry 

In kinetic perimetry test points that are constant in size and intensity are 

introduced by movement. By this, the borders between fields of normal vision 

and scotomas are examined. Since it is a very interactive method, results are 

highly dependent on the examiner, but offer a high efficiency and flexibility.  

In order to achieve reproducible results, it is helpful to follow some rules for all 

examinations: Movement should be introduced from the non-seeing into the 

seeing part of the visual field with a constant angular velocity (approximately 2-

5°/s). Three to four passes, each with different stimulus brightness and/or 

stimulus size should be executed. [6] By that, the examination delivers lines 

displaying the same DLS, the so-called isopters, which are similar to contour 
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lines of topographic maps. Manual or semi-automated examinations may be 

executed. The latter offers a higher degree of independency from the examiner 

at the cost of reduced flexibility. 

Kinetic perimetry is a good tool for the characterization of advanced visual field 

loss and is of high relevance for the evaluation of limitations of vision in patients’ 

everyday life and for expert opinion. [5] 

1.1.2.2 Static automated grid perimetry (used in this study)  

In static automated grid perimetry stationary stimuli are presented in random 

order at varying intensity levels at different test locations that are arranged in a 

defined grid pattern. The depth of a defect can be evaluated by comparing the 

achieved DLS to the age-corrected normative values of the hill of vision. 

 

Automated static visual field examinations have some major advantages 

compared to manual or semi-automated static perimetry. The most obvious 

advantage is the automated process of stimulus presentation allowing for 

randomization and increasing the reproducibility of examination. Different grids 

and strategies may be applied depending on the patient’s ocular pathology and 

capability to perform the perimetric examination. In more recent perimeters 

infrared cameras allow the supervision of fixation, position and even vigilance of 

the test subject throughout the whole examination. In spite of all these great 

advantages, perimetry has stayed a long and tiring task with excessive 

demands of the patient making it a rather unpopular examination for patients 

[7]. Results are highly dependent on vigilance, cooperation, motivation and 

understanding of the patient and even though the examination itself is 

automated, technician experience still has a significant influence on the mean 

defect (MD). [8–10] With shorter test durations the strain of performing 

perimetry should be eased with helpful effects on fatigue, vigilance, cooperation 

and motivation. Static automated grid perimetry is a very important tool for 

glaucoma diagnostics and trend surveillance. [11]  
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1.1.2.3 Test point arrangements (grids) 

By using automatic perimeters with a mirror-projection system for stimulus 

projection, almost every location of the visual field can potentially be tested 

technically. But since it is not possible to test every perceptive point of the retina 

for practical reasons, test points and their arrangement have to be chosen 

wisely depending on the goal of the perimetric examination. Rectangular grids 

with an equidistant test point arrangement offer the advantage to detect defects 

within mathematically well-defined Cartesian coordinates. [11] These grids are 

easy to manage and used widely. However, they do not realistically represent 

the arrangement of photoreceptors, which are arranged in a circular order 

around the center and increase in density towards the foveola.  

In this study a concentric test point arrangement that respects the horizontal 

and vertical meridian was applied. By that, the actual arrangement of cones in 

the retina is represented more adequately. This is especially important, because 

conventional perimetry examines under photopic conditions (10 cd/m²), thereby 

exclusively addressing the cone system. Two different concentric grids were 

used in this study, one restricted to the central 30° (grid 30A) and one covering 

the whole almost 90° of the visual field (grid 84NO). Concentric grids often 

implement an increase of stimulus density towards the visual field center. [5]  

1.1.2.4 Strategies for automated static perimetry 

Suprathreshold tests 

Suprathreshold tests offer an efficient and easy-to-perform evaluation of visual 

field status. They are based on the principle that the initial stimulus intensities 

are set a little above the expected threshold level. Test points are classified into 

three defect levels: normal, absolute and relative defect. However, the local 

DLS values are not assessed quantitatively. Therefore, suprathreshold tests are 

a good tool for screening examinations, for comparatively high spatial resolution 

and are useful especially for subjects that are inexperienced or incapable of 

performing other perimetric strategies. However, due to the lack of quantitative 
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local DLS values they are of minor importance for perimetric follow-up of 

chronic diseases (e.g. glaucoma). 

Threshold tests 

Threshold tests estimate the sensitivity at each test location. For good 

interpretability they need an adequate spatial resolution of the test point 

arrangements. Threshold tests allow follow-up testing to detect change in an 

early stage. So, they are the preferred strategy for surveillance of chronic eye 

diseases affecting the visual field. [9,12] The local DLS values are usually 

estimated on the basis of a staircase algorithm.  

Full threshold (FT) 

The gold standard of threshold testing is the Full Threshold strategy with a 4-2-

1-dB staircase algorithm which needs three reversals of responses to terminate 

the examination at a given location.[13] Threshold tests have longer 

examination durations than screening tests, but they offer quantitative 

information. [14] 

 

In order to shorten the examination duration of threshold testing several 

algorithms have been developed: 

FASTPAC 

This strategy saves about 40% of test time by accepting less accurate 

estimates of threshold. It uses 3-dB steps instead of 4-2-dB steps and stops 

testing already after one single response-reversal. This leads to higher short-

term fluctuation, which makes it less accurate and reliable in surveillance and 

following of defects. [15,16] 

TOP (Tendency-oriented Perimetry) 

TOP is an ultra-short automated perimetry test, which only tests each stimulus 

once at each test location and calculates the threshold estimate by taking into 

account information from adjacent points. By this, it is up to four times faster 
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than a standard thresholding technique while producing similar results with a 

good diagnostic ability. TOP, however, tends to soften edges of sharp scotoma 

and makes them seem shallower and smaller. This may lead to an 

underestimation of visual field loss. [17–19] 

SITA (Swedish Interactive Threshold Algorithm) 

When introduced in 1998, [20] this method was extraordinary, because it was 

able to approximately halve test time by several different ways: Staircase 

starting values are calculated by visual field modeling, Bayesian posterior 

probability functions and frequency-of-seeing-curves taking into account 

surrounding test locations. The 4-2-dB staircase procedure is interrupted at a 

predetermined level of uncertainty. Furthermore, test pacing allowing adaptation 

of stimulus presentation time to the patient’s reaction time and a method of 

calculating catch trials instead of testing them [21] lead to further test time 

reduction. Like for FT, test times increase with growing visual field defects. [22] 

There are two types of SITA: SITA Standard uses double crossing of threshold 

with a 4-2-dB-staircase, analogous to the Full Threshold method. SITA Fast, 

however, uses a 3-dB-staircase with single crossing like FASTPAC. When SITA 

was validated for normal and glaucomatous eyes [20,23], sensitivities were 

observed  that were 1-2 dB higher than for conventional testing. [23,24]  

Disadvantages of SITA are the restriction to rectangular grids within 30° 

eccentricity and its deficient consideration of previous examinations. 

Furthermore, it has been released for manifest glaucomatous visual field defect 

only and not all details of the post-processing algorithm have been published. 

The dynamic strategy by Weber 

This strategy uses step sizes varying between 2 and 10 dB depending on the 

sensitivity according to physiological data. It showed to be more efficient than a 

strategy with fixed step sizes. [25] It is not as fast as TOP [26] and has shown a 

higher short-term fluctuation than the standard Octopus program [27]. 
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CLIP (Continuous light increment perimetry) 

By using a modified ramp stimulus with continuously increasing intensity this 

strategy enhances patient compliance (also in children [28]). The stimulus 

presentation starts with a subthreshold intensity and stops when recognized by 

the proband. CLIP saves approximately 38% of test time compared to FT. [29] 

However, local adaptation varies due to differing presentation durations for each 

test location. 

 

In 2009 another new fast-thresholding algorithm was launched based on a 

modified 4-2-dB staircase strategy for automated static perimetry: GATE. This 

method does not only incorporate population information, but also benefits by 

including information from previous tests. [30] 

1.2 GATE (German Adaptive Thresholding Estimation) strategy 

For a faster completion of threshold-estimating static visual field examinations a 

new fast-thresholding algorithm was developed by U. Schiefer and J. Paetzold, 

university eye clinic Tuebingen, and called “German Adaptive Thresholding 

Estimation (GATE)”. When compared to the full threshold strategy (FT) and 

SITA Standard in a multicentre study it achieved comparable results. Accuracy 

and test-retest reliability have shown to be similar to both other strategies, but 

GATE showed a much shorter test duration than FT. [13] GATE is able to 

determine accurate thresholds over the entire sensitivity range and is applicable 

to all kinds of ophthalmologic pathologies and any test point arrangement. 

 

The algorithm consists of “GATE-i” which is used for the initial examination of a 

patient and “GATE” which is used for all subsequent examinations. GATE-i 

begins with the testing of 5 predefined seed points. The achieved DLS values 

are then compared to the age-corrected normal hill of vision. If necessary, 

deviations of the seed locations from the normative values are taken to adapt 

the other starting stimulus intensities.  

A modified 4-2-dB staircase strategy follows the testing of the seed points. Two 

reversals are needed in order to terminate the examination of a test point. A 
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local threshold is defined as the value between the brightest stimulus not seen 

and the dimmest stimulus seen. Precocious termination is possible in areas of 

deep or absolute defect: If the initial stimulus, that is slightly higher than the 

suspected DLS, is not answered within a given time window, a stimulus of 

maximum brightness is presented. If this stimulus is also not answered, the 

testing at that location is terminated. 

The GATE algorithm differs only by the fact that the starting values are not 

based on adjusted age-related normative values, but on previously accessed 

local thresholds of precedent examinations. By that, GATE needs even shorter 

examination times than GATE-i.  

Thus, GATE is an algorithm that examines visual fields in an adaptive method 

(adaption of initial stimulus intensities to the age-corrected normative values for 

GATE-i and adaption of initial stimulus intensities to precedent examinations for 

GATE) in order to perform threshold estimating perimetry.  

1.3 Purpose of this study 

Until now GATE has only been available in a prototype version for laboratory 

use (GATEp). In order to be able to introduce this fast-thresholding algorithm 

into clinical practice, the license rights have been sold to Haag-Streit AG, Köniz, 

Switzerland, that integrated the algorithm into their commercially available 

EyeSuite Perimetry software (GATEe). 

 

The primary objective of this study was to assess the agreement between this 

incorporated (GATEe) and the original version (GATEp) of the algorithm 

regarding local differential luminance sensitivity (DLS). The results were to be 

related to and evaluated by the also assessed repeatability of GATEp. 

Furthermore, the examinations were also performed by a perimeter of the 

newest generation (serial device 1075) with LED background illumination and a 

higher maximum stimulus luminance using the GATEe algorithm. Possible 

effects of the different illumination on the measurement results were assessed. 

GATEe was therefore performed on two different perimeters: serial device 104 

with a maximum stimulus luminance of 1273 cd/m² (4000 asb), i.e. GATEe104, 
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and serial device 1075 with a maximum stimulus luminance of 3183 cd/m² 

(10,000 asb), i.e. GATEe1075. 

Secondary objectives were the comparison of examination durations and mean 

sensitivity (MS). 

2. Subjects and methods 

2.1 Subjects 

Since examinations of the visual field are notably relevant for particular eye 

diseases concerning prognosis, therapy and monitoring of the disease, four 

groups of patients representing four different diseases affecting the visual field 

have been examined. These groups were as follows:  

1) 15 patients suffering from manifest glaucoma  

2) 3 patients with NAION (Non-Arteritic Anterior Ischemic Optic Neuropathy)  

3) 6 patients with chiasmal or postchiasmal lesions of the visual pathway 

resulting in a homonymous hemianopia or quadrantanopia  

4) 6 patients suffering from tapeto-retinal degeneration (Retinitis 

pigmentosa (RP)) 

 

In total, 30 patients were examined, 17 men and 13 women between 22 and 78 

years of age (mean: 58.7 years). All patients underwent eight perimetric 

examinations. Therefore, 240 examinations were completed altogether.  

13 right eyes and 17 left eyes were chosen as study eyes according to the 

inclusion criteria of the different groups of diseases that will be explained in the 

following. 

See Table 1 for an overview of all recruited test subjects. 
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Table 1: Recruited test subjects 

((post-) chiasmal = (post-) chiasmal pathway lesions) 

RP = Retinitis pigmentosa, OS = left eye, OD = right eye) 

Patient ID Gender Age [years] Disease Eye 

2201 Male 73 NAION OD 

2202 Female 53 Glaucoma OD 

2203 Female 76 Glaucoma OS 

2204 Female 61 Glaucoma OS 

2205 Female 66 Glaucoma OS 

2206 Female 71 Glaucoma OS 

2207 Male 62 Glaucoma OS 

2208 Male 65 Glaucoma OS 

2209 Male 65 Glaucoma OD 

2210 Female 78 NAION OS 

2211 Male 53 Glaucoma OS 

2212 Female 75 Glaucoma OS 

2213 Male 41 (post-) chiasmal OD 

2214 Male 76 NAION OS 

2215 Male 66 Glaucoma OD 

2216 Male 72 (post-) chiasmal OD 

2217 Male 56 Glaucoma OD 

2218 Female 64 (post-) chiasmal OS 

2219 Male 22 RP OS 

2220 Male 55 (post-) chiasmal OD 

2221 Female 38 (post-) chiasmal OS 

2222 Male 65 RP OD 

2223 Male 59 Glaucoma OD 

2224 Female 62 Glaucoma OS 

2225 Male 61 RP OS 

2226 Male 44 RP OS 

2227 Female 67 RP OD 

2228 Female 29 RP OD 

2229 Male 60 Glaucoma OD 

2230 Female 27 (post-) chiasmal OS 
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2.1.1 Groups of subjects 

2.1.1.1 Glaucoma 

Glaucoma is the umbrella term for a number of different ophthalmologic 

diseases of different aetiology resulting in an optic neuropathy with 

characteristic morphological changes of the optic disc and typical visual field 

defect patterns, often accompanied by a high intraocular pressure (IOP). There 

is no healing therapy for glaucoma, but if left untreated, it may result in 

blindness of the eye. [31] Diagnostic criteria include: structural damage of the 

optic nerve head resulting in increasing excavation (which may be detected by 

measuring the vertical disc-cup-ratio) and/or focal notching with accompanying 

local atrophy and functional damage, i.e. visual field defects resulting in 

characteristic nerve fibre bundle defects. [32] 

Most of the perimetric examinations in outpatient care are applied to glaucoma 

patients. Besides other examinations like ophthalmoscopy, morphometry (e.g. 

optical coherence tomography = OCT) of the retina and tonometry, perimetry is 

important for glaucoma patients in order to diagnose the disease and for follow-

up purposes. Perimetry can help to differentiate, if the patient suffers from a 

slowly progressive functional loss or a more aggressive form of the disease, 

which would have an impact on the aggressiveness of treatment. [33] In 

glaucoma patients threshold estimating static perimetry of the 30° central visual 

field is recommended. [34] The most important treatments of glaucoma are 

medical and surgical methods to reduce the IOP depending on the aetiology in 

order to prevent progression of visual field defects. 

Patients were included into the study, if the optic nerve head and/or retinal 

nerve fibre layer (RNFL) and visual field were abnormal, according to the 

classification stages I-III (AULHORN classification [35]). The affected eye was 

chosen as study eye. If both eyes were affected, the worse eye was chosen. 

2.1.1.2 AION 

The anterior ischemic optic neuropathy (AION) is an acute ischemia of the 

papilla because of vessel transformation of either inflammatory (arteritic AION) 
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or arteriosclerotic reasons or because of a hypotonic situation (non-arteritic 

AION). Patients complain of sudden vision impairment or even blindness in one 

eye. Altitudinal visual field defects, especially of the lower half, are typical. The 

extent of the defects depends on the degree of destruction of the papilla and the 

optic nerve. Typical signs in ophthalmoscopy are optic disc oedema and 

segmentally blurred disc margin, sometimes combined with hyperaemia and 

disc haemorrhages followed by segmental atrophy of the optic nerve head. [31] 

Improvement or further deterioration of visual field and visual acuity may mostly 

be observed up to 6 months after the ischemic event. Thereafter further 

significant change is very rare. [36] If the reason for the AION is inflammatory 

(giant cell arteritis), it is of utmost importance to treat with high-dose steroids as 

soon as possible in order to protect the fellow eye and prevent occlusion of 

brain vessels. Important diagnostic signs for giant-cell arteritis are a high 

erythrocyte sedimentation rate (ESR) and elevated C-reactive protein (CRP). 

Also, the patients often suffer from pathognomonic jaw claudication. [31] 

Follow-up of the visual field defects (under therapy) is the main purpose of 

perimetric examinations of AION patients. When performing static perimetry 

threshold-estimating strategies are useful, because of their ability to detect and 

quantify both local defects and diffuse reduction of sensitivity. [34] 

For this group the affected eye was chosen as the study eye. 

2.1.1.3 Chiasmal or postchiasmal lesions of the visual pathway 

Chiasmal lesions of the visual pathway normally result in heteronymous 

bitemporal visual field defects with a great variability depending on the aetiology 

and location of the lesion. In many cases the underlying pathology is a pituitary 

tumour or craniopharyngioma. Further reasons are other tumours, aneurysms 

or inflammatory processes. Neurosurgical and medical therapies are applied. 

Postchiasmal lesions are due to numerous neurologic diseases like tumours, 

vascular insults, basal meningitis, trauma, abscesses or aneurysms. They all 

result in contralesional homonymous visual field defects. The most important 

diagnostic tool in this case regarding topographic information is perimetry, since 

typical visual field defects occur depending on the location of damage along the 



22 

 

visual pathway (optic tract, lateral geniculate nucleus, optic radiation, visual 

cortex). Therapy and prognosis depend on the location and aetiology of the 

damage. Neurosurgery or neurologic treatments are possible, but regression of 

postchiasmal damage in visual field defects is rare. [31] 

Inclusion criteria for this group were homonymous or heteronymous hemianopia 

or quadrantanopia regardless of origin. Stroke was no exclusion criteria in this 

group. The study eye was chosen by randomization. 

2.1.1.4 Tapeto-retinal degeneration: Retinitis pigmentosa 

A heterogeneous group of retinal pathologies leading to nyctalopia and 

progressive loss of visual acuity and constriction of the visual field is called 

retinitis pigmentosa. In its classical form a concretion of retinal pigments is a 

typical symptom. This concretion proceeds from the mid-periphery towards the 

fovea. So, in the course of the disease the visual field narrows step by step. It 

usually starts with the destruction of the rods and later also the cones, which 

first leads to a disorder of colour and contrast vision and later even to optic 

atrophy. Since there is no curative or prophylactic therapy the disease is of a 

chronic progressive character and may lead to blindness. 

For retinal diseases perimetry is a tool which helps to discern differential 

diagnoses and helps in trend surveillance. There are often small remaining 

islands of vision in the periphery apart from the typical small concentric visual 

field, even though the disease is already quite advanced. This is why grid 84NO 

has been applied for retinitis pigmentosa patients in this study. Patients were 

included, if suffering from retinitis pigmentosa of the classical form in different 

stages of the disease. The study eye was chosen by randomization. 

2.1.2 Inclusion criteria 

 Physical, intellectual and linguistic abilities in order to understand the test 

requirements 

 Willingness to comply with the protocol of the 2 visits 

 18 years old, informed consent 
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For the study eye: 

 Spherical ametropia max. ± 8 dpt, cylindrical ametropia max. ± 3 dpt 

 Distant visual acuity better than 10/20 

 Isocoria 

 Pupil diameter > 3mm 

2.1.3 Exclusion criteria 

 Pregnancy, nursing 

 Diabetic retinopathy 

 Asthma 

 HIV positive or AIDS 

 History of epilepsy or significant psychiatric disease (e.g. dementia) 

 History of stroke (except for patients in the group of visual pathway lesions) 

 Medications known to affect the visual field sensitivity 

 Acute ocular infections (e.g. keratitis, conjunctivitis, uveitis) 

 Severely dry eyes 

 Miotic drugs 

 Amblyopia 

 Squint 

 Nystagmus 

 Albinism 

 Any ocular pathology in either eye that may interfere with the ability to obtain 

visual fields, disc imaging or accurate IOP readings 

 Keratoconus 

 Intraocular surgery (except for uncomplicated cataract or glaucoma surgery 

performed >3 months prior to screening) 

 History or presence of macular disease and/or macular oedema 

 Relevant opacities of central refractive media (cornea, lens, vitreous body) 

 Ocular trauma 

 Suspected lack of compliance 
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In this study, patients with false-negative or false-positive rates exceeding 30% 

were not excluded from the analysis, because of the assumption, that false-

negative answers are often increased in patients with severe visual field loss 

and in order to draw conclusions from a very realistic sample of visual field 

examinations as would be normal for everyday ophthalmologic practice. 

These patients all suffered from severe visual field loss, either because of 

advanced glaucomatous loss (patient IDs 2205, 2211, 2212, 2217, 2223) or 

from homonymous hemianopia (patient ID 2216).  

See Table 16: Elevated catch trial rates (Appendix) 

2.1.4 Recruiting of subjects 

Recruiting of participants for the study was accomplished via two different ways: 

Firstly, patients from the outpatient clinics of the university eye hospital in 

Tuebingen, e.g. the outpatient glaucoma service, were screened individually by 

the investigator. Secondly, patients meeting all inclusion criteria were contacted 

via telephone call and asked to participate in the study. Inclusion and exclusion 

criteria were checked by the information given in the AIS (information system for 

doctors of the university eye hospital Tuebingen) and by the patients’ history.  

2.2 Study design 

Two visits within 14 days have been scheduled for each of the chosen 30 test 

subjects. At their first visit the patients received all relevant information about 

the purpose and the exact procedure of the tests. They all signed an informed 

consent. Afterwards, four examinations using the GATE-i strategy were 

performed. In glaucoma patients the IOP was measured with a non-contact 

tonometer. The first visit took approximately 1.5 hours. At the second visit four 

examinations were performed using the GATE-strategy, which took 

approximately one hour. 

The four static visual field examinations at each visit were performed with three 

different Octopus 900 devices:  

GATEp1 prototype GATE software, serial device 104, first examination 

GATEp2 prototype GATE software, serial device 104, second examination 
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GATEe894 EyeSuite GATE software, serial device 894 

GATEe1075 EyeSuite GATE software, serial device 1075, a perimeter of the  

  newest generation with LED background illumination and higher  

  maximum stimulus luminance (3183 cd/m² = 10,000 asb) 

 

The order of the four examinations was randomized in advance for each test 

subject and each visit. The patients were free to choose their breaks individually 

between the examinations, but at least one break had to be taken. All 

examinations were monitored continuously by the investigator. 

 

Prior to the recruitment of participants and the first examination, the study had 

been reviewed by the independent Ethics Committee of the faculty of medicine, 

Tuebingen University, and was approved to comply with the tenets of the 

Declaration of Helsinki. It was also registered at ClinicalTrials.gov. The clinical 

trial number was NCT01265628. 

This was a non-invasive study, no medication was tested and there was no 

known additional risk due to the diagnostic equipment. The devices were 

commonly used in diagnostic procedures. Regular safety tests were done by 

"Medizintechnisches Servicezentrum des Universitätsklinikums Tuebingen". 

The participants received 32 € expense allowance per visit and were granted an 

accident en route insurance. They were free to stop participation in the tests at 

any time without any consequences. This validation study with 30 participants 

was commissioned by the Haag-Streit AG, Köniz, Switzerland. 

2.2.1 Perimetric examination procedure 

After the calibration of the perimeter the adequate software settings were 

chosen. A correction of spherical and cylindrical refraction was obtained, if 

necessary, by thin-rimmed glasses put into a movable holder before the start of 

the examination for examinations inside the central 30°. Adequate near 

correction was achieved by an age-dependent near addition in accordance with 

the following table (table 2) and subsequent fine tuning, so that the patient could 

see the fixation target in focus. 
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Table 2: Age-dependent spherical near addition for Octopus 900 

Age [years ] Near correction [dpt] 

40-44 + 1.0  

45-59 + 1.5  

50-54 + 2.0  

55-60 + 2.5  

>60 + 3.0  

 

Cylindrical correction was applied if cylindrical ametropia was greater or equal 

to 1 dpt. For examinations beyond the central 30° of the visual field (as it is for 

the peripheral part of the grid 84-NO) no correction lenses were applied. A white 

half-transparent eye patch was used to cover the not-examined eye. The 

patients’ position was maintained with the face resting on the chin and forehead 

rest. 

 

Adequate instructions to the test subject are mandatory in order to achieve 

reliable and reproducible results [8,10]. The examiner explained the course and 

purpose of the examination and how to use the patient-response button. A 

rather conservative policy of only pushing the button, if sure to have seen a 

point, has been chosen for this study. The same investigator explained and 

conducted all examinations of all patients with standardized instructions in order 

to maintain identical conditions for each examination [10,11]. Furthermore, 

fixation control and supervision of vigilance and reliability during the 

examination were crucial tasks of the examiner. If, for example, spontaneous 

waves of contraction and dilation of pupil size were observed which indicate 

increasing sleepiness of the patient [37], the investigator was responsible to 

alert the patient. Throughout the examination the position and the vigilance of 

the patient was monitored via infrared camera. Adjustment of the chin rest and 

glass holder was done throughout the whole examination in order to ensure an 

optimal positioning of the patient at any time. 

 

Since poor fixation may lead to underestimation of depth and extent of visual 

field defects, fixation was controlled by the investigator via an infrared camera.  
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Poor fixation was addressed by the investigator’s verbal feedback to the patient 

and by correction of the chin rest. Stable fixation was also supported by prior 

instructions: Patients were told that they will not see half of the stimuli due to the 

examination strategy, so that they should not give up on fixation if there was no 

perception of stimulus for several seconds. Stimulus presentation was repeated 

automatically, if the eye was found to be closed during initial presentation. 

 

After the examination all results were saved as *.txt-files (GATEp) or *.pid-files 

(EyeSuite Perimetry) on the computers at the laboratory of the eye clinic 

Tuebingen and were also printed.  

2.3 Technical data 

2.3.1 Hardware (examination devices) 

All examinations were executed using perimeters of the Octopus 900 series.  

The three perimeters differed mainly with respect to the maximum stimulus 

luminance, which was 318 cd/m² (1000 asb) for serial device 104 (GATEp), 

1273 cd/m² (4000 asb) for serial device 894 (GATEe894) and 3183 cd/m² 

(10,000 asb) for serial device 1075 (GATEe1075), respectively. 

 

The perimeters were connected via an Ethernet link to a computer or laptop that 

controlled the perimeters via the perimetry software and stored the obtained 

data.  

 

The Octopus 900 perimeter is an automatic projection perimeter with a 

spherical, Goldmann type cupola design which allows testing of the entire visual 

field including the periphery (temporally). Kinetic as well as static or flicker 

perimetry may be accomplished both in the 30° and 90° range. The cupola has 

a radius of 300 mm (by this being in accordance with the Goldmann bowl). Test 

zones can be measured up to the following levels of eccentricity: nasal 60°, 

temporal 89°, superior 60° and inferior 70°. The outer dimensions of the 
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perimeter are:  648 mm (width) x 519 mm (length) x 796 mm (height). It weighs 

25 kg. 

 

Background luminance is based on two light sources of several LEDs and 

controlled by a separate light sensor. DLS up to 47 dB may be measured with a 

measurement accuracy of 0.5 dB. Various stimulus sizes (Goldmann I-V) can 

be presented within pre-specified stimulus intervals (adaptive – 4 sec) and for 

various stimulus durations (100ms, 200ms, 500ms) at different background 

luminance levels (1.27 cd/m² or 10 cd/m²). In this study, the background 

luminance was 10 cd/m2 for all instruments. Green-lighted markers (diamond) 

were chosen as fixation targets, because they allow testing of the foveal 

differential luminance threshold. 

 

The most recent generation of Octopus perimeters (serial device 1075) uses 

LEDs which slightly change the spectrum of background illumination and allow 

for higher maximum stimulus luminance levels, while the older Octopus 

perimeters (serial devices 104 and 894) use bulbs.  

 

A permanent infrared videopupillography based fixation control is possible, 

because the examined eye is illuminated with infrared LEDs throughout the 

examination and recorded by a CMOS ("Complementary Metal Oxide Silicon") 

camera. The image of the eye is shown on the LCD (liquid crystal display) 

display. The investigator is able to monitor the vigilance of the patient and 

assure a precise positioning of the eye by a motorized fine-adjustment of the 

chin rest at any time throughout the examination. 

 

Stimuli are projected onto the inner cupola surface via a mirror projection 

system. The stimulus intensity is controlled by a light sensor that is also a 

reference point for the system of coordinates for test locations. [38] 
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2.3.2 Software 

Two different software versions of the GATE algorithm were applied: 

1) The original prototype GATE software (GATEp) developed by U. Schiefer 

and J. Paetzold, university eye clinic Tuebingen, a fast-thresholding 

estimation software based on a 4-2-dB staircase principle.  

2) The commercially available EyeSuite© Perimetry software with the 

incorporated GATE software (GATEe), Haag-Streit AG, Köniz, 

Switzerland. 

 

The basic settings for the examinations were set as identical as possible for 

both software versions. 

2.3.2.1 Settings that were the same for GATEp and GATEe 

Kind of examination:  Static  

Stimulus method:   Standard  

Stimulus/background:  W/W (white on white) 

Stimulus size:   Goldmann III 

Presentation duration:  200 ms 

Background luminance:  10cd/m² (31.4 asb) 

Examination program:  30A, 84NO  

Fixation control:   Off  

Fixation target:   Cross markers (diamond) 

Eye:     OD (right eye) – OS (left eye) 

2.3.2.2 Settings that were different for GATEp and GATEe 

Due to methodological reasons some settings were not identical for the two 

software versions (see table 3).  

For GATEe the first examination with the chosen strategy “GATE” automatically 

applies the GATE-i algorithm and the subsequent examinations automatically 

use the GATE algorithm when selecting the button “same examination as last 

time”. For the first examination with GATEp, GATE-i and five anchor points 
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have to be chosen manually. For the second examination GATE is the chosen 

examination strategy automatically. 

Due to a misleadingly labelled scale of the EyeSuite software two different 

interstimulus intervals were chosen inadvertently: GATEp: 1200ms, GATEe: 

1500ms. 

Also, the percentage of catch trials was different GATEp: 2%, GATEe: 10%.  

Furthermore, only with the GATEp version five test locations were tested twice 

for evaluating the short-term-fluctuation.  

 

Table 3: Differing settings for GATEp and GATEe 

 GATEp GATEe 

GATE-i initial points  5  4 (automatic) 

Response interval 1200 ms 1500 ms 

Catch trials 2%  10%  

 

2.3.3 Test grids 

Two different concentric test point arrangements were used for the 

examinations. The stimuli were arranged according to a polar coordinate 

system straddling the vertical and horizontal median, in order to facilitate 

detection of visual field defects respecting the nasal step or the vertical midline. 

[5,39] 
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Figure 1: grid 30A 

 

Figure 2: grid 84NO 

 

Test grid 30A (see figure 2) covering the central 30° of the visual field by 

examining 83 test points was applied for glaucoma patients, AION patients and 

patients with chiasmal or postchiasmal visual pathway lesions, altogether 24 

subjects. Test grid 84NO (see figure 3) examines 109 test points covering 

almost 90° of the visual field. When applying this grid, the central 30° of the 

visual field were tested first. Refraction correction glasses had to be removed 

before continuing with the examination of the peripheral parts of the visual field 

beyond 30° eccentricity. Grid 84NO was used for patients with retinitis 

pigmentosa, altogether 6 patients.  

 

When comparing the test point arrangements of GATEp and GATEe several 

test points were identified that had to be excluded from the analysis for different 

reasons: 

For grid 30A eleven test points were excluded (see figure 3): The DLS results of 

five test locations (location IDs: 1, 26, 28, 30, 32) had to be excluded because 

they were tested twice by GATEp for the assessment of short-term-fluctuation. 

Their “twin” location IDs (0, 25, 27, 29, 31) were included and analysed. Two 

points (location IDs: 36 and 52, examining the blind spot) had to be excluded 

because they were not tested by GATEe at all and four points (location IDs: 80, 

81, 86, 87, temporal rim points) had to be excluded because the coordinates of 
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these location IDs were not identical for the respective test grid versions of the 

two software versions. The remaining 77 points were analysed. 

 

Figure 3: excluded test locations of grid 30A 
IDs 1, 26, 28, 30, 32 apply to the second testing of these locations. The results of the first 
testing have been included into the analysis (ID 0, 25, 27, 19, 31). IDs 36, 52 were not tested by 
GATEe, IDs 80, 81, 86, 87 had different coordinates for GATEe 

 

For grid 84NO fourteen test points were excluded from the analysis (see figure 

4): Three test points (location IDs: 21, 23, 24, examining the blind spot) were 

not tested by GATEe and eleven test points (location IDs: 41, 42, 43, 46, 47, 50, 

51, 54, 55, located on the 30° rim, and location IDs 107, 108, examining the 

most peripheral temporal locations) had differing coordinates for the location 

IDs of GATEp and GATEe. Altogether, 95 points could be included.  

See Appendix for tables of location IDs. 
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Figure 4: excluded test locations of grid 84NO  
IDs 21, 23, 24 were not tested by GATEe, IDs 41, 42, 43, 46, 47, 50, 51, 54, 55, 107, 108 had 
different coordinates for GATEe 

 

After the examinations and before analysis, all results gained for left eyes were 

mirrored with respect to the vertical meridian in order to conform to the location 

IDs of the right eye grids. 

2.4 (Statistical) Analysis 

The data entry, statistical calculations and design of tables and figures were 

performed using the statistical software JMP 9.0.0.  

All 30 participants concluded both visits. Unfortunately, the EyeSuite Perimetry 

data could not be saved for two patients (patient IDs 2203 and 2204, both 
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glaucoma patients) because of problems with the driving laptop. The GATEe 

results could therefore not be included into the analysis for these two patients. 

 

The statistical analysis was primarily heading for the following variables:  local 

DLS values, test duration, MS values. 

2.4.1 Analysis of DLS differences 

DLS values were exported from GATEp and GATEe. When the location IDs 

were checked for conformance, eleven location IDs had to be excluded from 

analysis for grid 30A and fourteen for grid 84NO (see 2.3.3 Test grids).  

The exported DLS values could not be compared immediately for two reasons: 

First, they had different units of measurement. DLS values were measured in 

[dBs] by GATEp and in [dB*10] by GATEe. This is why all GATEe results had to 

be divided by 10 first. 

Second, their reference scales were different. For GATEp the reference value 

was the background luminance of 10 cd/m² (31.4 asb) with the measurement 

unit dBs (standardized dB scale). For GATEe, however, the scales were 

referenced to the maximum stimulus luminance, which was 1273 cd/m² (4000 

asb) for serial device 894 and 3183 cd/m² (10,000 asb) for serial device 1075, 

respectively. This correlates with an offset of 4 dB between the two perimeters.  

Because of the logarithmic scale, a translation from one scale to the other is 

performed by subtraction or addition of a given value. [1] 

Therefore, the DLS values measured by serial device 1075 were subtracted by 

4 and the DLS values measured by GATEp were added to 22, in order to 

achieve comparable dB-scales. 

For serial device 1075 all negative results were set to 0 dB, in order to factor out 

small differences in places of almost absolute defect. 

 

When deciding whether a new method may be used instead of an already 

established method, there are two essential aspects: First, the amount of 

agreement between the two methods and second, the clinical evaluation of the 

differences. 
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2.4.1.1 Statistical agreement 

For the assessment of the statistical agreement of the different examinations 

the approach by Bland and Altman [40] was applied. 

 

In order to estimate the repeatability of static visual field examinations with the 

GATE software, replicate examinations were performed with GATEp. [41] The 

statistical agreement between GATEp1 and GATEp2 represents the retest-

reliability of GATE. Secondly we assessed the agreement between GATEp1 

and GATEe894 and between GATEp1and GATEe1075. 

 

Bland-Altman plots were modified and drawn for the different comparisons as 

follows (separately for the different grids): Average DLS values of each test 

location of the examinations of all included patients were plotted against their 

differences. The bias was defined as the median difference (instead of the 

mean) of the DLS values of these examinations and was depicted by a 

horizontal line. Furthermore, the 2.5 and the 97.5 percentile of the DLS 

differences (instead of ± 1.96 standard deviation) were established in order to 

specify the so-called limits of agreement (LOA) and also depicted by horizontal 

lines. 95% of the differences between the measurements were therefore 

assumed to lie within these limits. 

Like this, the statistical agreement between the methods was specified by the 

bias that represents a possible systematic error and the limits of agreement that 

represent the spread of differences between the measurements. [42] 

2.4.1.2 Clinical evaluation criteria and literature criteria 

This statistical agreement was categorised by clinical evaluation criteria (see 

table 4). Taking into account the final step size of 2 dB for the GATE algorithm 

[13,43], the measurement accuracy of 0.5 dB of the Octopus 900 perimeters 

and an assumed short term fluctuation of 1.5 dB (normative value for Octopus 

101) [44], the following criteria have been defined in advance: 

Very good agreement was stated for LOA ≤ 3 dB and a bias ≤ 0.5 dB, good 

agreement for LOA ≤ 4 dB and a bias ≤ 1 dB, acceptable agreement for LOA  
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≤ 5 dB and a bias ≤ 2 dB, respectively. LOA > 5 dB and a bias > 3 dB would 

indicate insufficient agreement and were rated as not acceptable. 

Table 4: clinical evaluation criteria 

Clinical evaluation LOA Bias 

Very good agreement ≤ 3 dB ≤ 0.5 dB 

Good agreement ≤ 4 dB ≤ 1 dB 

Acceptable agreement ≤ 5 dB ≤ 2 dB 

Not acceptable > 5 dB > 3 dB 

 

Before the evaluation of the data the LOA were corrected by subtraction of the 

bias (cLOA, corrected limits of agreement), because the criteria mentioned 

above are based on the assumption of a bias of 0 dB. 

 

Furthermore, since variance of measurements should not imitate or conceal a 

real progression of visual field defect, criteria were retrieved from recent 

literature that would indicate worsening or new detection of visual field defects. 

Differences exceeding these limits would be rated as not acceptable.  

According to the recent literature [33,45–48] the aberration between GATEp 

and GATEe should not exceed ± 5 dB in more than two test locations of the 

examined part of the visual field. There should not be more than two adjoining 

test points with an aberration greater than 5 dB. Edge points may be ignored.  

 

2.4.2 Analysis of examination duration 

Examination durations of GATE-i and GATE were assessed and compared for 

GATEp and GATEe. Since the median is more robust concerning outlier values 

than the mean, we took the median to describe the duration of examination. The 

statistical spread was specified by the 2.5 and the 97.5 percentile. 

 

Unfortunately, some settings were different for the two versions of the software 

(see also 2.3.2.2): The stimulus interval for GATEe was 1500ms, whereas it 

was only 1200ms for GATEp. In GATEp approximately 4% of all questions were 

catch trials plus fixation controls, whereas GATEe catch trials made up 10% of 
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all presentations. Furthermore, GATEp had a higher number of questions due to 

a double testing of 5 test points in order to calculate short-term fluctuation for 

grid 30A. This is why an additional re-analysis of test times was done assuming 

the same stimulus interval setting for both software versions and excluding 

catch trials and stimuli that were presented in order to estimate short-term-

fluctuation. 

First, catch trial (positive, negative) and fixation control questions were 

eliminated from the number of questions asked (NQA). Second, for grid 30A 

and GATEp the mean number of questions needed to re-estimate the 5 points 

for the calculation of short-term-fluctuation were subtracted. Third, the 

difference between the stimulus interval of GATEp (1200ms) and GATEe 

(1500ms) of 300ms was subtracted of the test times per question. Afterwards 

the adjusted test times per question were multiplied with the adjusted numbers 

of questions asked and the resulting test times were compared. All this was 

done in order to assess hypothetical test times for both software versions with 

as consistent preconditions as possible. 

2.4.3 Analysis of MS values 

An important index of visual field evaluation is the mean defect (MD), which 

indicates the mean deviation of the individual hill of vision from the age-adjusted 

normative hill of vision. The MD is the mean of all defect values of a visual field. 

Defect values are calculated by subtracting the actually estimated DLS from the 

normative age-correlated sensitivity values. Since different normative values 

were underlain for the calculation of defect values in the different software 

versions (GATEp: normative values for presentation duration of 200ms, GATEe: 

normative values for presentation duration of 100ms), the MD values were not 

comparable. This is why, even though MD is the more relevant value to be 

analysed in perimetry studies, mean sensitivity (MS) values have been 

compared instead. MS is defined as the mean of all sensitivity values (DLS) of a 

visual field. Like MD it is a sensitive index of diffuse visual field loss, but can 

also be influenced by focal defects of sufficient depth or extent. [44] 
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Median MS values were assessed for the different serial devices and their 

range was specified by the 2.5 and the 97.5 percentile. 

3. Results 

3.1 Differential Luminance Sensitivity 

3.1.1 GATEp1 vs. GATEp2 (Test-Retest-Reliability)  

The comparison of GATEp1 vs. GATEp2 was done in order to specify the 

statistical agreement of GATEp. See figure 5 for results of grid 30A and figure 6 

for results of grid 84NO. The modified Bland-Altman plots do not show trends, 

the differences do not tend to get larger with increasing average. Also, the 

variability of differences stays consistent across the graph. The results show 

very good agreement according to the clinical evaluation criteria. 

 

For a summary of the maximum, minimum and median differences and the LOA 

of the examinations performed with GATEp as taken from the Bland-Altman 

plots see table 5. Table 6 shows the results separately for GATE-i and GATE.  
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Figure 5: GATEp1 vs.GATEp2, grid 30A 
Modified Bland Altman-plot of the examinations performed with GATEp1 and GATEp2 applying 
grid 30A. The Limits of agreement are depicted by the 97.5- and the 2.5-percentile. The bias is 
depicted by the median of differences between GATEp1 and GATEp2. For the sake of a faster 
valuation of the graph, a bias of 0 dB has also been depicted by a narrow line. 
The x-axis shows the average DLS values per test location for the two examinations. The y-axis 
shows the difference of the achieved DLS values per test location of the examination with 
GATEp1 subtracted by GATEp2. All values are in dB 
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Figure 6: GATEp1 vs. GATEp2, grid 84NO 
Modified Bland Altman-plot of the examinations performed with GATEp1 and GATEp2 applying 
grid 84NO. For explanation of abbreviations see figure 5 
 

 

Table 5: Overview of bias and LOA and clinical evaluation criteria for GATEp1-
GATEp2 

Overview of bias and LOA for GATEp1 vs. GATEp2 
Clinical evaluation 

criteria 

Grid 
Min. 
[dB] 

Max. 
[dB] Bias [dB] 

LOA (2.5%-
97.5%) [dB] 

cLOA 
[dB] Bias  cLOA  

30A -2.5 2.8 0.4 -1.9 to 2.2 -2.3 to 1.8 Very good Very good 

84NO -2.5 3.3 0.0 -1.7 to 2.1 -1.7 to 2.1 Very good Very good 

Min. = minimum difference of DLS values between the two examinations 
Max. = maximum difference of DLS values between the two examinations 
Bias = median difference of DLS values between the two examinations 
LOA = limits of agreement, i.e. 2.5- and 97.5-percentile 
cLOA = corrected limits of agreement: LOA subtracted by the bias 
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Table 6: Overview of bias and LOA and clinical evaluation criteria for GATEp1-
GATEp2 regarding GATE-i and GATE separately  

Overview of bias and LOA for GATEp1 vs. GATEp2 
Clinical evaluation 

criteria 

 
Grid 30A 

Strategy 
Min. 
[dB] 

Max. 
[dB] Bias [dB] 

LOA (2.5%-
97.5%) [dB] 

cLOA 
[dB] Bias  cLOA  

GATE-i -3.5 3.1 0.4 -2.5 to 2.6 -2.9 to 2.2 Very good Very good 

GATE -1.8 4.2 0.4 -1.6 to 3.1 -2.0 to 2.7 Very good Very good 

 
Grid 84NO 

Strategy 
Min. 
[dB] 

Max. 
[dB] Bias [dB] 

LOA (2.5%-
97.5%) [dB] 

cLOA 
[dB] Bias  cLOA  

GATE-i -3.5 5.2 0.0 -2.9 to 3.9 -2.9 to 3.9 Very good Very good 

GATE -2.5 3.0 0.1 -1.9 to 2.5 -2.0 to 2.4 Very good Very good 

For explanation of abbreviations see table 5 

 

When evaluating the DLS results that were taken from the modified Bland-

Altman plots comparing GATEp1 versus GATEp2 the cLOA values and biases 

show very good agreement for both grids. For grid 30A the median values of the 

differences indicate a small bias (0.4 dB), whereas no bias is found for grid 

84NO. 

The comparison of the LOA between GATE-i and GATE (as shown in table 6) 

shows larger LOA for GATE-i. This represents a greater variability for the initial 

examinations. 

3.1.2 GATEp1 vs. GATEe894 (Comparison with Eyesuite, serial device 894) 

For the assessment of the statistical agreement between GATEp and GATEe 

the results of the examination with GATEp1 (first examination with GATEp) and 

GATEe894 (examination with GATEe on serial device 894, maximum stimulus 

luminance of 1273 cd/m² [4000 asb]) were compared. The Bland-Altman plots 

for the comparison of GATEp1vs. GATEe894 are shown in figures 7 and 8 for 

the two different grids. The information that can be drawn from these plots is 

summarised in table 7. 
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Figure 7: GATEp1 vs. GATEe894, grid 30A 
Modified Bland Altman-plot of the examinations performed with GATEp1 and GATEe894 
applying grid 30A. For explanation of abbreviations see figure 5 
 

For grid 30A a bias of 1.5 dB is observed. This indicates systematically higher 

threshold values for GATEp1 compared to GATEe894. The same is observed – 

but only to a small extent (0.5 dB) - for grid 84NO. The differences between 

GATEp and GATEe, i.e. the range of the LOA, are greater than those between 

GATEp1 and GATEp2. 
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Figure 8: GATEp1 vs. GATEe894, grid 84NO 
Modified Bland Altman-plot of the examinations performed with GATEp1 and GATE894 
applying grid 84NO. For explanation of abbreviations see figure 5 
 

Table 7: Overview of bias and LOA and clinical evaluation criteria for GATEp1 
vs. GATEe894 

Overview of bias and LOA for GATEp1 vs. GATEe894 
Clinical evaluation 

criteria 

Grid 
Min. 
[dB] 

Max. 
[dB] Bias [dB] 

LOA (2.5%-
97.5%) [dB] 

cLOA 
[dB] Bias cLOA 

30A -2.2 4.6 1.5 -1.3 to 3.9 -2.8 to 2.4 Acceptable Very good 

84NO -1.3 4.2 0.5 -0.6 to 3.0 -1.1 to 2.5 Very good Very good 

For explanation of abbreviations see table 5 

 

When applying the clinical evaluation criteria, GATEp1 and GATEe894 show 

acceptable to very good agreement for grid 30A and very good agreement for 

grid 84NO. 
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Table 8: Overview of bias and LOA and clinical evaluation criteria for GATEp1 
vs. GATEe894 regarding GATE-i and GATE separately  

Overview of bias and LOA for GATEp1 vs. GATEe894 
Clinical evaluation 

criteria 

 
Grid 30A 

Strategy 
Min. 
[dB] 

Max. 
[dB] Bias [dB] 

LOA (2.5%-
97.5%) [dB] 

cLOA 
[dB] Bias cLOA 

GATE-i -3.1 4.6 1.5 -2.2 to 4.5 -3.7 to 3.0 Acceptable Good 

GATE -1.8 5.1 1.6 -1.4 to 4.7 -3.0 to 3.1 Acceptable Good 

 
Grid 84NO 

Strategy 
Min. 
[dB] 

Max. 
[dB] Bias [dB] 

LOA (2.5%-
97.5%) [dB] 

cLOA 
[dB] Bias cLOA 

GATE-i -2.4 6.7 0.4 -2.1 to 5.3 -2.5 to 4.9 Very good Acceptable 

GATE -1 4.3 0.7 -0.8 to 3.8 -1.5 to 3.1 Very good Good 

For explanation of abbreviations see table 5 
 

The range of LOA is again greater for GATE-i than for GATE (see table 8). The 

clinical evaluation criteria also show acceptable to very good agreement 

between GATEp and GATEe. 

3.1.3 GATEp1 vs. GATEe1075 (Comparison with Eyesuite, serial device 

1075) 

The results of the examinations with GATEp1 (first examination with GATEp) 

and GATEe1075 (examination with GATEe on serial device 1075, maximum 

stimulus intensity of 3183 cd/m² (10,000asb)) were also compared.  

Table 9: Overview of bias and LOA and clinical evaluation criteria for GATEp1 
vs. GATEe1075 regarding GATE-i and GATE separately  

Overview of bias and LOA for GATEp1 vs. GATEe1075 
Clinical evaluation 

criteria 

 
Grid 30A 

Strategy 
Min. 
[dB] 

Max. 
[dB] Bias [dB] 

LOA (2.5%-
97.5%) [dB] 

cLOA 
[dB] Bias cLOA 

GATE-i -2.4 4.6 1.0 -1.5 to 4.4 -2.5 to 3.4 Good  Good  

GATE -2.9 4.1 1.2 -2.5 to 3.7 -3.7 to 2.5 Acceptable  Good  

 
Grid 84NO 

Strategy 
Min. 
[dB] 

Max. 
[dB] Bias [dB] 

LOA (2.5%-
97.5%) [dB] 

cLOA 
[dB] Bias cLOA 

GATE-i -2.2 6.4 0.5 -1.8 to 5.1 -2.3 to 4.6 Very good Acceptable 

GATE -0.9 3.9 0.8 -0.4 to 3.3 -1.2 to 2.5 Good Very good 

For explanation of abbreviations see table 5 

 



45 

 

Table 9 shows the biases and LOA of the comparison of GATEp1 and 

GATEe1075. Again, the clinical evaluation criteria state acceptable to very good 

agreement of the examinations. For grid 84NO the biases are comparable to 

those of the comparison with GATEe894. For grid 30A they are a little smaller. 

3.1.5 Results regarding the literature criteria 

Five test locations showed deviations between the examinations exceeding 5 

dB. See table 10 for an overview of these locations.  

They all show greater sensitivities for GATEp1 than for GATEe. There were no 

adjoining or paracentral test locations exceeding the 5 dB limits.   

 

The grid 30A exception only exceeded the 5 dB by 0.1 dB. Its location ID 39 

belongs to a midperipheral point in the superior temporal quadrant (see figure 

9). Except for this one, all other test points exceeding the 5 dB deviation limits 

occurred with RP patients (grid 84NO) performing GATE-i. See figure 10. 

Location ID 44 and location ID 53 are locations at the border of the central 30° 

visual field potentially interfering with the rim of the near correction glasses. As 

stated above, border points may therefore be ignored.  

Location ID 27 is a midperipheral point in the lower nasal quadrant, not 

adjoining the other location IDs. This test location is either part of or directly 

adjacent to a scotoma in the visual fields of all patients examined with this grid. 

It is the only point, where the 5 dB limit is exceeded twice (for the comparison of 

GATEp1 with both GATEe894 and GATEe1075).  

Location ID 10 is a rather central, but not paracentral point of the superior nasal 

quadrant. It was perceived by only half of the patients. 

 

The following figures show the location of these test points within the grids. 
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Figure 9: Test location exceeding the 5 
dB deviation limit, grid 30A 

 
 
 

Figure 10: Test locations exceeding the 
5 dB deviation limit, grid 84 NO 

Table 10: Overview of the test points exceeding the 5 dB deviation limit 

Grid Examination Location ID 

Eccentricity/angle 

[°/°] 

Difference 

[dB] 

84NO GATEp1 vs. GATEp2 GATE-i 44 (30.0/86.2) 5.2 

 GATEp1 vs. GATEe894 GATE-i 53 (30.0/-86.2) 5.6 

  27 (17.5/-135.0) 6.7 

 GATEp1 vs. GATEe1075 GATE-i 27 (17.5/-135.0) 6.4 

  10 (9.9/78.3) 5.5 

30A GATEp1 vs. GATEe894 GATE 39 (15.0/74.9) 5.1 

 

3.2 Examination duration 

Table 11 shows all test durations. GATE-i (i.e. the initial session) took 1.5 min 

(median value) longer than GATE (i.e. the subsequent session) for all 

perimeters as had been expected.  

Overall median test duration (including both grids and examinations) of GATEp 

was 8.6 min (2.5, 97.5 interval:  5.5 min, 11.6 min), for GATEe 9.3 min (2.5, 

97.5 interval: 6.3 min, 12.4 min).  
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Table 11: Overview of examination durations [min] 

 

GATE-i GATE 

Median 
2.5-

percentile 
97.5-

percentile 
Median 

2.5-
percentile 

97.5-
percentile 

30A  

GATEp1 9.2 7.8 11.6 7.7 6.0 9.6 

GATEp2 9.3 7.4 11.1 7.9 6.0 8.7 

GATEe894 9.9 7.8 11.2 8.8 7.1 10.7 

GATEe1075 9.4 8.1 10.9 8.7 6.3 12.2 

       

84NO  

GATEp1 9.9 9.2 12.5 6.4 5.3 8.4 

GATEp2 9.6 9.0 12.9 7.0 5.2 8.3 

GATEe894 10.8 7.2 12.4 7.6 6.3 9.1 

GATEe1075 10.5 8.6 13.3 7.1 6.2 9.1 

 

3.2.1 Simulation of test times assuming identical settings. 

Table 12: Examination duration per question for the four perimeters 

Serial device 

GATE-i GATE 

Test time 
[min] NQA 

Time / 
question [s] 

Test time 
[min] NQA 

Time / 
question [s] 

GATEp1 9.4 326 1.74 7.5 283 1.60 

GATEp2 9.5 338.5 1.69 7.7 280 1.65 

GATEe894 10.1 290 2.09 8.6 250.5 2.06 

GATEe1075 9.7 298.5 1.94 8.6 266 1.94 

NQA = number of questions asked 

 

When dividing the test time by the number of questions asked (NQA) - see table 

12, it becomes clear that the test time per question was shorter for GATEp than 

for GATEe by approximately 300 ms for GATE-i and 375 ms for GATE. This 

was probably due to the different settings for the interstimulus interval. 

However, the test time per question was 120 ms - 150 ms longer for GATEe894 

compared to GATEe1075, even though the settings for those examinations 

were exactly the same. Reasons for that should probably be sought in special 

characteristics of serial device 894 that used to pause shortly during some 

examinations without apparent reason, maybe because of problems with the 

driving laptop. 

 

By subtracting the number of catch trials and the number of questions asked for 

the estimation of short-term-fluctuation from the overall number of questions 
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asked, we assessed the number of questions that were just and only asked in 

order to determine the DLS. Short term fluctuation was only assessed for grid 

30A on serial device 104. Table 13 shows the results. All values in this table are 

median values. 

Table 13: Calculation of adjusted number of questions 

Serial device 

GATE-i GATE 

grid - catch trials -SF grid 
 
- catch trials -SF 

1104 30A 310 292.4 30A 275 259.4 

84NO 292.5  84NO 200.5  

2104 30A 322 303.7 30A 285.5 269.6 

84NO 285  84NO 214  

894 30A 260.5   30A 228.5   

84NO 273.5  84NO 193.5  

1075 30A 259   30A 240.5   

84NO 288.5  84NO 194  

SF = number of questions asked for the assessment of short term fluctuation  

 

After that the test times per questions of GATEe were adjusted by subtracting 

300 ms, which is the difference between the stimulus intervals of GATEp and 

GATEe. Afterwards the adjusted test times per question were multiplied with the 

adjusted numbers of questions. See table 14 for the resulting adjusted test 

times. All values are median values. 

 

Table 14: Adjusted test times  

Serial device 

GATE-i GATE 

Adjusted 
test time 
[min] 

Adjusted 
NQA  

Adjusted 
time / 
question [s] 

Adjusted 
test time 
[min] 

Adjusted  
NQA 

Adjusted 
time / 
question [s] 

30A 

1104 8.5 292.4 1.74 6.9 259.4 1.60 

2104 8.6 303.7 1.69 7.4 269.6 1.65 

894 7.8 260.5 1.79 6.7 228.5 1.76 

1075 7.1 259 1.64 6.6 240.5 1.64 

84NO 

1104 8.5 292.5 1.74 5.3 200.5 1.60 

2104 8.0 285 1.69 5.8 214 1.65 

894 8.2 273.5 1.79 5.7 193.5 1.76 

1075 7.9 288.5 1.64 5.3 194 1.64 

NQA = number of questions asked 

 

After these transformations for enhancing comparability table 14 now shows 

similar test times for GATEp and GATEe. 
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3.3 Mean sensitivity (MS) 

When looking at the MS values of the different groups of patients, AION and 

glaucoma patients, who suffer from similar visual field defects,  show similar MS 

values (about 17.7dB). The MS of patients with (post-) chiasmal lesions is 

higher than for the other patients (about 20.0 dB). RP patients who suffer from 

an essential constriction of the visual field achieve the lowest MS values of 

approximately 5.2 dB in median.  

 

When analysing the median MS values for the different perimeters, serial 

devices 104 and 894 show comparable median MS values with only slightly 

higher results for 894. The median MS value of serial device 1075 

(GATEe1075, higher maximum stimulus intensity) is about 5 dB higher (median 

value) than that of the perimeters with lower maximum stimulus intensity. This 

effect can still be observed, even if median MS values are calculated for the 

different visits (GATE and GATE-i) and for the different diseases (see table 15).  

The greatest differences between serial devices 1075 and 104 (GATEp) were 

found for AION and glaucoma patients (approximately 6 dB), who are mainly 

suffering from relative scotomas. For hemianopia patients the difference is 

approximately 4.5 dB and for RP patients only 2.5 dB (see also Table 15). 

Median MS values are smaller for GATE compared to GATE-i by approximately 

1 dB, except for serial device 1075. 

 

In summary, MS values of 104 and 894 are comparable, but examinations done 

with serial device1075 achieve higher MS values, especially for patients with 

relative scotomas. 
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Table 15: Median MS values overview  

 

 

1104 (GATEp1) 2104 (GATEp2)  

894 

(GATEe894) 1075 (GATEe1075) 
 

Median MS (2,5 percentile, 97.5 percentile) [dB] 

Overall results for the different perimeters 

 

15.6 (0.8, 23.7) 14.7 (0.6, 23.4) 15.9 (2.0, 23.8) 20.2 (2.9, 28.2) 
 

Groups of diseases 
 

AION 
 

16.1 (14.1, 20.0) 15.3 (13.6, 20.8) 15.8 (13.7, 22.8) 22.0 (19.5, 28.2) 
 

Glaucoma  16.9 (5.7, 23.7) 16.4 (5.2, 23.7) 16.8 (7.9, 23.8) 21.9 (9.3, 28.2) 
 

HH 
 

19.5 (13.7, 22.6) 19.4 (14.0, 23.3) 19.9 (15.5, 23.6) 24.0 (17.2, 27.2) 
 

RP 
 

4.1 (0.8, 5.9) 4.3 (0.6, 6.6) 5.2 (1.8, 7.0) 6.7 (2.7, 9.3) 
 

Visit strategy 
 

GATE-i 
 

15.9 (0.8, 23.6) 15.0 (0.7, 23.5) 16.2 (1.8, 23.8) 20.5 (2.7, 28.2) 
 

GATE 
 

14.5 (0.9, 23.7) 14.6 (0.6, 23.3) 15.9 (2.3, 23.8) 19.8 (3.1, 28.2) 
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4. Discussion 

4.1 DLS differences 

4.1.1 Clinical evaluation criteria 

 

At first glance, an aberration of 3 dB seems a rather big difference to be rated 

as very good agreement. However, a short-term fluctuation of 3 dB is supposed 

to be normal or at least inside the 95% reference interval [44]. For glaucoma 

patients (i.e. half of the patients examined in this study) short-term fluctuation is 

usually even greater than for ophthalmologically normal subjects. [49] 

Furthermore, the LOA represent a 95% reference range, which means that 

most differences were smaller than these values. But in order to not obscure 

potential progression of the disease, LOA greater than 5 dB were rated as not 

acceptable. 

Regarding the bias, differences < 0.5 dB are not relevant in clinical practice, 

since the perimeters only assess DLS with a measurement accuracy of 0.5 dB  

[38]. A bias exceeding the supposed normal short-term fluctuation (i.e. > 3 dB) 

was rated as not acceptable. 

4.1.2 Literature criteria 

There are manifold definitions regarding progression of glaucoma in various 

studies. Since in this study only local DLS values were assessed, the search 

was restricted to clinical criteria that referred to DLS. 

Several different glaucoma studies defined a worsening by at least 5-10 dB at 

2-3 adjacent test points outside the central visual field as a progression or a 

new manifestation. [45,46] For example, Anderson and colleagues defined a 

progression of glaucoma, if there was a worsening of ≥ 3 points by ≥ 10 dB in 

an existing defect or if a worsening of ≥ 2 new adjacent points by at least 10 dB 

had taken place. [47] A minimum depression of 9 dB in peripheral test locations 

and a depression of 5 dB in paracentral points are needed to elevate the score 



52 

 

indicating a progression of visual field defects in the AGIS score (Advanced 

Glaucoma Intervention Study). [48] 

This is why all test points exceeding the 5 dB deviation limit were checked for 

adjacency and their location in the visual field. Two of them were negligible 

border points. Two other test points (location ID 27 and10) were either part of or 

adjacent to scotomas for all examined patients (RP). So, due to small 

fluctuations in fixation these test points could be “swallowed up” by the adjacent 

scotomas, which could lead to great fluctuation in the perceived DLS level. 

Maximum differences between the procedures were far below 10 dB. For all test 

conditions, the upper (i.e. 97.5%) LOA values were below 5.3 dB. 

4.1.3 DLS results 

Visual field results represent a large and complex physiologic variability [50–52]. 

This threshold variability has been shown to increase with progressive 

eccentricity [53]. For glaucoma patients inter- and intra-subject variability is 

even larger [49,54] and local increase of variability within and between tests 

may even be the first visual field disturbance detectable [55,56]. Various studies 

showed that test-retest variability of threshold perimetry increases with 

decreasing sensitivity until it declines again near 0 dB (floor effect) [22,57–59]. 

All patients included in this study suffered from moderate to severe visual field 

loss. An acceptable to very good agreement could be stated for all comparisons 

between the examinations, i.e. regarding intra- and inter-subject agreement. So, 

from a clinical point of view, the agreement between GATEp and GATEe is 

sufficient. 

 

The agreement of two methods is limited by the repeatability of these methods. 

Furthermore, since variability increases with decreasing sensitivity of the visual 

field of the patients [59] and the agreement of two different methods is limited to 

their repeatability [40,41] it is not surprising that the repeatability of GATEp itself 

is better than the agreement between GATEp and GATEe. 
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A bias of approximately 1.5 dB was observed for grid 30A indicating a 

systematic tendency of GATEp to assess higher DLS values than GATEe. This 

may be due to the methodological differences between the two procedures [42]. 

For grid 84NO this bias is only approximately 0.5 dB. The comparatively small 

bias is probably the result of a ceiling effect due to the extended visual field 

losses resulting from the advanced disease of the RP patients. When 

comparing SITA algorithms with the FT strategy, biases of approximately 1 dB 

have been found [57,60]. Since perimetric examinations should usually be 

evaluated by follow-up examinations and trend analysis, they should be 

performed with the same software and strategy for each examination. 

Therefore, such systematic errors should not relevantly deform visual field 

results or impact visual field evaluation. 

 

GATE utilizes local thresholds from previous examinations instead of testing 

starting points (like GATE-i). This saving of time is very valuable in a clinical 

setting. Furthermore, the results may be more accurate and repeatable [30]. 

However, the risk to bias the results toward previous findings could increase in 

cases of immediate and pronounced change, like for example inflammation, 

trauma or infarction. Such a case would result in a prolonged threshold 

approach due to the assumption of (in the meantime) invalid previous local 

threshold values. However, the majority of ophthalmological diseases that need 

follow-up shows chronic progression like for example glaucoma, compressive or 

hereditary optic neuropathy or degenerative retinal diseases like age-related 

macular degeneration or tapeto-retinal degeneration. For these patients 

immediate changes are rarely the case. To assume normal conditions in these 

patients and neglect previous findings could result in a considerable 

prolongation of test duration and could therefore provoke fatigue.  
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4.2 Examination duration 

4.2.1 Comparison of GATE-i and GATE 

Longer test durations for GATE-i than for GATE were to be expected, since 

GATE-i examines more test points and refers to age-related standard values 

instead of taking the patients’ last examination as the basis for the starting 

luminance of the test points. 

4.2.2 Comparison of GATEp and GATEe 

The unexpectedly longer examination durations of GATEe of partly up to one 

minute (i.e. approximately 8%) are probably explained by the different settings, 

especially due to the fact that the presentation interval for GATEp was only 

1200 ms compared to 1500 ms for GATEe (300 ms difference, i.e. 25% longer 

intervals). These settings were different, because the stimulus interval could be 

typed in for GATEp, but had to be chosen from a regulator with predetermined 

values for GATEe. The labeling of the regulator led to believe that the same 

stimulus interval had been chosen. The real stimulus interval was not 

accessible before the end of the examinations. Hence, a simulation of test times 

assuming identical settings that indicated similar test times, was performed. 

It has to be mentioned, however, that the calculations only offer an 

approximation of possible examination durations, since a change in stimulus 

interval may possibly have an influence on response behavior. Assuming an 

adequate approximation, the incorporated GATEe strategy offers the same 

advantages as have been shown for GATEp in a prior study regarding test time 

[13]. GATEe is therefore a good alternative to any other fast-thresholding 

estimation strategy. Consistent settings should be realized in future studies in 

order to confirm the simulated results. 

4.2.3 Comparison with SITA Standard 

In several studies with patients suffering from visual field loss average or 

median test times of about 6-8 min were achieved for SITA Standard with a 24-

2 pattern (52 test locations (TL), 0.12-0.15 min/TL, i.e. 7.2-9.0 s/TL). Shorter 
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test times of about 5 min could be achieved for healthy test subjects [13,22,58]. 

The median test times for GATEe in this study with visually impaired test 

subjects were 8.8 min for grid 30A (83 TL, 0.11 min/TL, i.e. 6.6 s/TL) and 7.6 

min for grid 84NO (109 TL, 0.07 min/TL, i.e. 4.2 s/TL) [42]. If comparing the 

needed time per test location, GATEe might even be faster than SITA standard 

if the same patients were tested with the same grid. When compared to the full 

threshold (FT) strategy, GATE showed considerably shorter test times. [13] 

 

For GATE no increase of test time is observed for increasing visual field loss. 

RP patients with extended visual field loss show the shortest examination 

durations of the four groups. This is probably due to the comparatively high 

proportion of test points with absolute scotomas which do not need a time-

consuming thresholding strategy. In contrast, increasing test times for 

increasing visual loss have been shown for SITA [13,22].  

4.2.4 Test times compared to a prior study 

In a prior study of Schiefer et. al. examination durations for a group of 40 

patients with manifest glaucoma, 10 patients with suspected glaucoma and 10 

patients with ocular hypertension were 5.7 min for GATE-i and 4.7 min for 

GATE, while SITA Standard took 5.6 min and FT needed 9.0 min in the first 

study that involved the GATE algorithm [13]. In this study, however, GATE-i 

needed 9.3 min and GATE needed 7.6 min. These longer test times were 

probably due to the use of different test point arrangements. 83 and 109 test 

locations have been tested in this study, whereas pattern 24-2 grid that was 

used in the study of Schiefer et.al. only tested 53 test locations covering the 

central 24° visual field. The longer test times could also be due to the different 

sample of subjects.  

4.2.5 The effect of shorter test times on perimetric performance 

Shorter test times are supposed to reduce fatigue and reliability problems. 

Marra et al. suggested that for test times of 5-8 minutes no major trend of either 

learning or fatigue effect is observed in a single session [4]. All this should lead 
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to a higher reliability of test results due to shorter test times. Furthermore, 

patients are supposed to be more motivated and attentive and less bored by the 

examination and even patients who can only concentrate for a short period of 

time may adequately perform threshold estimating visual fields. Another 

advantage of shorter test times is time saving in clinics and practices, which is 

practical, but also economically important. 

4.3 Mean Sensitivity 

We unfortunately cannot provide the Mean Defect (MD) for the GATEe 

examinations, since the normative data base for MD of EyeSuite is referring to a 

stimulus duration of 100 ms, whereas the stimulus duration was 200 ms in our 

study, which was chosen for comparability reasons with the standard setting 

over decades for all other perimetric examinations in the university eye hospital 

in Tuebingen. This is why we assessed and compared MS values. 

4.3.1 Background luminance 

A background intensity of 10 cd/m² was chosen in this study in order to operate 

under photopic conditions. This is reasonable because for photopic adaption of 

the eye Weber’s law is valid which states that the necessary differential 

luminance (level) for stimuli rises linearly with the background luminance [34]. 

Under photopic conditions exclusively the cone photoreceptor system can be 

tested. It furthermore offers a fast adaptation for patients who have usually been 

exposed to a bright environment beforehand. Also, examination results are less 

depending on pupil size than for non-photopic conditions [61]. 

This is why a background luminance of 10 cd/m² (31.4asb) was recommended 

by the International Perimetric Society in 1978 to be the standard for perimetric 

examinations [62]. 

4.3.2 Maximum stimulus luminance and its influence on MS values 

The three different perimeters offered three different maximum luminance 

levels. This is important, because the maximum luminance is the reference 

value for the logarithmic relation scale which is the measurement unit for DLS 
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values (max. stimulus intensity = 0dB) [11] and this is the reason why the DLS 

results in dB of the different perimeters had to be translated by the above 

mentioned formulas in order to be comparable. 

 

For a comparatively dim background luminance of 1.27 cd/m² (4 asb) stimulus 

intensities higher than 318 cd/m² (1000 asb) may produce disturbing stray light. 

This can lead to an irradiation into scotoma areas and by that falsify sensitivity 

estimates and lead to an underestimation of defect depth and size [63]. This is 

why the maximum level of stimulus luminance is limited in order to prevent stray 

light, which increases with brighter stimuli leading to a replacement of local 

responses by stray-light responses [64]. In this study a remarkable increase of 

MS values was found for the perimeter with a maximum stimulus luminance of 

3183 cd/m² (10,000 asb, serial device 1075) compared to the other perimeters 

with maximum stimulus luminances of 318 cd/m² (1000 asb, serial device 104) 

and 1273 cd/m² (4000 asb, serial device 894), respectively. It is not quite 

obvious, however, if this effect is due to stray light, because in this study for all 

perimeters a background luminance of 10 cd/m² (31.4 asb) instead of 1.27 

cd/m² (4 asb) was used. If the increased MS values were due to stray light and 

not only to the reduction of scotomas, there should rather also be a noticeable 

effect on the size of the blind spot.  

 

The effect of higher MS values for higher maximum stimulus intensities was 

smallest for extended absolute scotomas (RP patients) and most pronounced 

for scotomas with higher portions of relative scotomas (glaucoma patients).  

The greatest differences of MS values between serial devices 1075 and 104 

were shown for AION and glaucoma patients (approximately 6 dB), who quite 

often suffer from relative scotomas. For RP patients, who mostly suffer from 

extended absolute scotomas the MS difference was only approximately 2.5 dB. 

The results therefore support the theory that the influence of high maximum 

stimulus intensities is greater for relative scotomas than for absolute scotomas.  

That means, even if there seemed to be an effect of software on MS values at 

first glance, this effect should rather be attributed to the higher maximum 
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stimulus intensity than to the GATE algorithm itself. This point is supported by 

the fact that MS values of serial device 894 and serial device 104 were 

comparable, but MS values estimated by serial device 1075 were relevantly 

higher.  

 

It seems logical that higher stimulus luminance levels lead to higher global MS 

in patients with areas of deep visual field loss, because stimuli with higher 

luminance levels rather provoke a reaction in these areas than stimuli with lower 

luminance levels.  The importance of the comparison of global MS values 

should therefore be discussed. Other circumstances that could possibly have an 

effect on the MD of standard automated perimetry (and by that also on MS 

values) could be time of day, season, experience of the investigator, the rate of 

false-positive responses [8] and pupil size [65]. 

4.4 Examination parameters  

4.4.1 Stimulus size 

Common standard stimulus sizes have been introduced by Goldmann. Five 

different sizes are defined by Roman numerals I (0.25mm², i.e. 6.5 min of arc) 

to V (64mm², i.e. 104 min of arc), each covering a 4-fold greater area than the 

previous stimulus size. The most commonly used stimulus size in standard 

automated perimetry is the Goldmann size III stimulus (4 mm², i.e. 26 min of 

arc) [6,11]. 

This stimulus size was also chosen in this study, because it is big enough to 

offer a good dynamic range and reduce refraction errors, but at the same time 

small enough to avoid missing detection of small scotomas. Furthermore, this is 

the mandatory stimulus size for examinations regarding expert opinion 

examinations as recommended by the Transport and Traffic Committee of the 

scientific association of ophthalmology in Germany (Deutsche 

Opthalmologische Gesellschaft) for standard automated perimetry [66]. 
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The larger the stimulus, the smaller is the influence of refraction errors and the 

greater is the dynamic range, especially in the peripheral visual field. Taravati et 

al. observed an exponential rise in variability with decreasing sensitivity for 

glaucoma patients, whereas variability stayed almost constant, if a very large 

stimulus was used [67]. Wall et al. also observed a reduction of variability and a 

slightly better repeatability of MD for the use of size V stimuli when testing 

glaucoma patients with normal or moderately damaged visual fields [68,69]. 

 

The Goldmann III stimulus size was found to be more useful for the detection of 

field aberrations in RP patients compared to a bigger stimulus size. If 

progression surveillance in RP patients would have been the aim of the 

examinations, a size V stimulus would have been more useful, however [70]. 

4.4.2 Stimulus presentation duration 

Stimulus presentation duration should not be shorter than 100 ms in order to 

prevent temporal summation (Bloch’s law) [34], but should not be longer than 

200 ms in order to prevent eliciting gaze movements towards the stimulus [1]. 

Both effects would possibly affect the results of field examination. Other studies 

say that there seems to be no relevant effect of longer stimulus presentation on 

fluctuation of perception for stimulus durations between 65 ms and 500 ms [71]. 

However, for this study the stimulus presentation duration of 200ms has been 

chosen in order to compromise the above mentioned possible limitations. 

4.4.3 Acoustic cueing  

The mirror units of perimeters with a mirror-projection system produce ambient 

noise for mechanical reasons that may indirectly announce a following stimulus 

presentation. In addition to that, each stimulus (or false-positive catch trial) was 

presented accompanied by a beep. The projection noise and the beeps are 

both acoustic cues for the patients and may potentially have either stimulated 

“trigger happiness”, annoyance of the patients and disturbance of the patients’ 

concentration or they could possibly have been a help to concentrate on the 
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other hand. Different reactions came from the patients concerning acoustic 

cueing dependent on their subjective sensations. 

For serial device 104 the signal sound beeps were presented at the same time 

as the stimulus presentation, whereas for serial devices 894 and 1075 the 

signal sounds did not coincide with stimulus presentation.  

The effect of the stimulation of trigger happiness by acoustic cueing and by that 

shorter reaction times and higher rates of false-positive responses could not be 

confirmed by Rauscher et. al. for kinetic perimetry [72]. 

Lewald et al. stated that passive auditory stimulation of the blind side may 

improve vision in hemianopia patients probably due to an activation of residual 

visual pathways [73]. However, this should have had little effect on the results of 

this study, because hemianopia patients made up for only 24% of the examined 

subjects and the acoustic cues were always presented in the same way (not 

according to the blind side of each patient). Another study showed an 

improvement of vision in hemianopia patients by improving oculomotor patterns 

after audio-visual stimulation [74]. This may probably rather affect kinetic 

perimetry than static perimetry.  It has been shown, however, that co-occurring 

acoustic stimuli may affect visual sensitivity by influencing the perception of 

visual stimuli [75]. Further studies focussing on the relationship between visual 

and acoustic perception would be very interesting and important. 

 

4.5 Patient-related parameters 

4.5.1 Inclusion and exclusion criteria 

The selection of inclusion and exclusion criteria is always a delicate issue and 

crossroads between the risk of homogeneity and stratification and the wish to 

ensure representativeness and transferability to real-life conditions. In fact, 

pregnancy and breastfeeding, may affect vision and visual field [76]. In order to 

establish stable conditions, especially with regard to test-retest reliability we 

decided to exclude pregnant and lactating women as well as subjects with 

asthma. 
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Diabetic retinopathy is characterized by a variety of potentially confounding 

impacts on ocular, cerebral and other structures, which may critically interfere 

with the intended stratification of the sample. Cerebrovascular accident has not 

been flagged as an exclusion criterion for the fourth group. 

4.5.2 Pupil size 

The pupil is the natural optical aperture of the eye, controlling the amount of 

light that is allowed to enter the eye in order to improve imaging on the retina. 

However, if pupil diameter falls to less than 2.5 mm, the edge of the pupil 

causes light diffraction resulting in an impaired resolution [77]. Webster et al. 

have shown that miosis has a considerable effect on Mean Deviation (MD), but 

does not affect pattern standard deviation, which indicates a uniform reduction 

of sensitivity caused by small pupil size [65]. Pupil size should therefore exceed 

3 mm, in order to prevent influences on the differential luminance sensitivity. 

Pupil dilatation, however, should be avoided, because the collection of 

normative data was done with normal, undilatated eyes and furthermore, 

dilatation results in changes in refraction (e.g. due to spherical aberration), 

which can also influence differential luminance sensitivity [78].  

 

Another interesting issue about pupil size and perimetry is that fatigue wave 

amplitude and miosis are indicators of decreasing vigilance of patients and can 

be documented by infrared pupillography [37,79]. 

4.5.3 Refraction 

Inadequate refractive correction may lead to perimetric outcome errors due to a 

blurred retinal image formation of the stimulus. This effect is more pronounced 

for smaller stimuli and may result in refraction scotomas [11].  

4.5.4 Patient reliability indices 

Patient reliability is an important factor for reproducibility in perimetry, because 

poor reliability may result in under- or over-estimation of differential luminance 

sensitivity.  A patient’s inattention results in false-negative responses, since the 



62 

 

patient does not respond to a supra-threshold stimulus that was previously 

perceived. The rate of false negative answers is increased in case of severe 

visual field loss and leads to an artificial increase in visual field loss [80]. False-

positive catch trials, which are characterized by patients’ responses without 

stimulus presentation, are a good predictor for “trigger happiness” or “guessing” 

of the test subject. Increased false-positive response rates result in an artificially 

reduced visual field loss. If patient reliability is decreasing during examination, 

the patient should be reinstructed [77]. Catch trials, however, offer a surprisingly 

imprecise prediction of real reproducibility of the field status [81].  

4.5.5 Learning effect 

Learning effects in inexperienced subjects performing automated static 

perimetry are common. Studies have shown that this effect is rather small and 

usually limited to the first sessions. Sensitivity may increase with perimetric 

training. These effects could be shown for normal subjects [82,83] and also for 

patients with glaucoma [84]. It is therefore important, to perform more than one 

test in order to create a reliable baseline for perimetric follow-ups.  

All patients in this study had undergone perimetric testing before. Learning 

effects should therefore have been minimized. 

4.5.6 Fatigue effect 

As perimetry is normally a rather long-lasting examination the effect of fatigue 

and decreasing vigilance has been tested before and proved to be existent and 

to influence the results of perimetric examinations. The fatigue effect, i.e. 

decreasing measured DLS values during examination, has been found in 

normal subjects [85], but also in glaucoma patients, where it resulted in the 

increasing of depth and/or size of defects. This effect is usually more 

pronounced with increasing eccentricity [86], mostly within the midperipheral 

field and with increasing age of the test subjects [87]. Shortening of test 

duration may reduce fatigue in perimetry. 

Fatigue effects should not have caused systematic errors in this study, because 

the sequence of the various methods has been randomized.  
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4.6 Statistical analysis 

Bland and Altman state that the correlation coefficient would be no indicator of 

agreement at all and the test of significance would not be relevant when asking 

for agreement [88]. Since perimetry is a technique rather biased by coincidental 

measurement errors (for example because of vigilance problems), analysis of 

regression is not an adequate approach and is also dependent on the range of 

measured values, which is also the case for the determination of the intraclass-

correlation-coefficient [41]. The plotting of average results against the 

differences between the results, however, offers an easy-to-interpret graphical 

method to explore and illustrate statistical relationships, which can also be done 

in a nonparametric approach [40], for example for small samples of data. This 

was another reason for choosing the graphical approach of Bland and Altman 

for the comparatively small sample of 30 test subjects, only allowing descriptive 

statistics.  

4.7 Future trends and perspectives  

Since GATE is not restricted to a special type of ophthalmological disease, it 

can be applied to all kinds of visual pathway lesions – in contrast to the SITA 

strategy. A great advantage of GATE is the possibility to test any (arbitrary) test 

location. This allows for individual adding of test points in regions of interest, 

thereby enhancing spatial resolution in these areas [13]. 

4.8 Conclusion 

This study shows a very good repeatability of the prototype version of the new 

fast thresholding algorithm GATE (German Adaptive Thresholding Estimation) 

with regard to differential luminance sensitivity (DLS) values and a good 

agreement between the prototype version of GATE (GATEp) and the 

commercially available version of GATE incorporated into the EyeSuite software 

package (GATEe). The results suggest that they can be used interchangeably. 

The GATE thresholding algorithm offers short examination durations and is not 

restricted to glaucomatous field loss.   
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5. Summary  

Purpose  

To validate the commercially available “EyeSuite” version of the new fast thresholding 

algorithm GATE (German Adaptive Thresholding Estimation) for automated static 

perimetry. 

Methods  

Thirty patients suffering from visual pathway lesions of various origin (anterior ischemic 

optic neuropathy [n=3], glaucoma [n=15], (post-) chiasmal visual pathway lesion [n=6], 

retinitis pigmentosa (RP) [n=6]) were tested on three Octopus 900 perimeters (Haag-

Streit AG, Köniz, Switzerland) with various maximum stimulus intensities (serial device 

104: 318 cd/m², 894: 1273 cd/m² and 1075: 3183 cd/m²). Grid 84NO (90° eccentricity, 

109 test locations) was applied for patients with RP, grid 30A (30° eccentricity, 83 test 

locations) for all other patients. Repeatability of the prototype version of GATE 

(GATEp) and agreement between GATEp and the commercially available EyeSuite 

version (GATEe) were assessed by comparing local differential luminance sensitivities 

(DLS) and median test durations by means of modified Bland-Altman plots. Mean 

sensitivities [MS] were compared.  

Results  

The comparison of DLS values showed very good repeatability for GATEp (bias <0.5 

dB, limits of agreement [LOA] <3 dB) and a very good to acceptable agreement 

between GATEp and GATEe (bias <2 dB, LOA <5 dB). Median examination durations 

for GATEp and GATEe were 7.8 min and 8.8 min for grid 30A, 6.7 min and 7.8 min for 

grid 84NO. MS values were comparable for both software versions, but higher values 

were assessed by the perimeter with the highest maximum stimulus luminance (serial 

device 1075). 

Conclusion 

The prototype version of GATE (GATEp) shows a very good repeatability. GATEp and 

the software version implemented in the EyeSuite software (GATEe) show good 

agreement regarding local differential luminance sensitivity and examination duration. 

GATEe can therefore be recommended for clinical practice.   
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5.1 Zusammenfassung  

Ziel  

Validierung der kommerziell erhältlichen „EyeSuite“-Version von GATE (German 

Adaptive Thresholding Estimation), eines neuen Algorithmus für schnelle 

Schwellenbestimmung in der automatischen statischen Perimetrie. 

Methoden 

30 Patienten mit Sehbahnläsionen unterschiedlicher Ursachen (anteriore ischämische 

Optikusneuropathie [n=3], Glaukom [n=15], (post-) chiasmale Sehbahnläsion [n=6], 

Retinitis pigmentosa (RP) [n=6]) wurden an drei Octopus 900 Perimetern (Haag-Streit 

AG, Köniz, Schweiz) mit verschiedenen maximalen Stimulusleuchtdichten (Seriengerät 

104: 318 cd/m², 894: 1273 cd/m² und 1075: 3183 cd/m²) untersucht. Raster 84NO (90° 

Exzentrizität, 109 Prüfpunkte) wurde für RP-Patienten angewandt, Raster 30A (30° 

Exzentrizität, 83 Prüfpunkte) für alle anderen. Die Reproduzierbarkeit der 

Prototypversion von GATE (GATEp) und die Übereinstimmung zwischen GATEp und 

der käuflich erwerbbaren EyeSuite-Version (GATEe) wurde bestimmt, indem lokale 

Lichtunterschiedlichkeitsempfindlichkeiten (LUE) und die mediane Untersuchungs-

dauer mit Hilfe modifizierter Bland-Altman-Diagramme verglichen wurden. Mean 

Sensitivity-(MS) Werte wurden verglichen.  

Ergebnisse 

Der Vergleich der LUE-Werte zeigte eine sehr gute Reproduzierbarkeit der Messungen 

für GATEp (Bias <0.5 dB, limits of agreement [LOA] <3 dB) und eine sehr gute bis 

akzeptable Übereinstimmung zwischen GATEp und GATEe (Bias <2 dB, LOA <5 dB). 

Die medianen Testzeiten betrugen für GATEp und GATEe 7.8 min und 8.8 min (Raster 

30A), 6.7 min und 7.8 min (Raster 84NO). Die MS-Werte waren für beide 

Softwareversionen vergleichbar, aber höher für das Gerät mit der größten maximalen 

Stimulusleuchtdichte (Seriengerät 1075). 

Fazit  

Die Prototypversion von GATE (GATEp) zeigt eine sehr gute Wiederholbarkeit.  

GATEp und die in EyeSuite implementierte Version, GATEe, zeigen in Bezug auf die 

LUE-Werte und Testzeiten eine gute Übereinstimmung. Daher kann GATEe für die 

klinische Praxis empfohlen werden.  
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10. Appendix 

Table 16: Elevated catch trial rates 

Catch trials Rate Patient ID Group of patients 

False-negative 31% 2205 Glaucoma 

False-negative 40% 2211 Glaucoma 

False-negative 33% 2212 Glaucoma 

False-negative 33% 2212 Glaucoma 

False-negative 36% 2216 (post-) chiasmal pathway lesions 

False-positive 33% 2216 (post-) chiasmal pathway lesions 

False-negative 40% 2217 Glaucoma 

False-negative 33% 2223 Glaucoma 

 

Table 17: Location IDs grid 30A 

Grid 30A 

Location ID X - Coordinate Y - Coordinate Eccentricity [°] Angle [°] 

0 0.0 0.0 0.0 0.0 

1 0.0 0.0 0.0 0.0 

2 1.4 1.4 2.0 45.0 

3 -1.4 1.4 2.0 135.0 

4 -1.4 -1.4 2.0 -135.0 

5 1.4 -1.4 2.0 -45.0 

6 5.8 1.6 6.0 15.4 

7 4.2 4.2 5.9 45.0 

8 -4.2 4.2 5.9 135.0 

9 -4.2 -4.2 5.9 -135.0 

10 4.2 -4.2 5.9 -45.0 

11 5.8 -1.6 6.0 -15.4 

12 2.0 5.8 6.1 71.0 

13 -2.0 5.8 6.1 109.0 

14 -5.8 2.0 6.1 161.0 

15 -5.8 -2.0 6.1 -161.0 

16 -2.0 -5.8 6.1 -109.0 

17 2.0 -5.8 6.1 -71.0 

18 2.0 9.7 9.9 78.3 

19 -2.0 9.7 9.9 101.7 

20 -9.7 2.0 9.9 168.3 

21 -9.7 -2.0 9.9 -168.3 

22 -2.0 -9.7 9.9 -101.7 

23 2.0 -9.7 9.9 -78.3 

24 9.7 2.6 10.0 15.0 

25 7.1 7.1 10.0 45.0 

26 7.1 7.1 10.0 45.0 

27 -7.1 7.1 10.0 135.0 

28 -7.1 7.1 10.0 135.0 

29 -7.1 -7.1 10.0 -135.0 

30 -7.1 -7.1 10.0 -135.0 

31 7.1 -7.1 10.0 -45.0 
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32 7.1 -7.1 10.0 -45.0 

33 9.7 -2.6 10.0 -15.0 

34 -10.8 6.2 12.5 150.1 

35 -10.8 -6.3 12.5 -149.7 

36 1.5 0.0 15.0 0.0 

37 13.0 7.5 15.0 30.0 

38 10.6 10.6 15.0 45.0 

39 3.9 14.5 15.0 74.9 

40 -3.9 14.5 15.0 105.1 

41 -10.6 10.6 15.0 135.0 

42 -10.6 -10.6 15.0 -135.0 

43 -3.9 -14.5 15.0 -105.1 

44 3.9 -14.5 15.0 -74.9 

45 10.6 -10.6 15.0 -45.0 

46 13.0 -7.5 15.0 -30.0 

47 17.4 1.5 17.5 4.9 

48 -15.2 8.7 17.5 150.2 

49 -17.4 2.0 17.5 173.4 

50 -17.4 -2.0 17.5 -173.4 

51 -15.2 -8.8 17.6 -149.9 

52 17.4 -1.5 17.5 -4.9 

53 5.2 19.3 20.0 74.9 

54 -5.2 19.3 20.0 105.1 

55 -5.2 -19.3 20.0 -105.1 

56 5.2 -19.3 20.0 -74.9 

57 19.3 -5.2 20.0 -15.1 

58 19.5 11.2 22.5 29.9 

59 11.3 19.5 22.5 59.9 

60 2.0 22.4 22.5 84.9 

61 -2.0 22.4 22.5 95.1 

62 -11.3 19.5 22.5 120.1 

63 -22.4 2.0 22.5 174.9 

64 -22.4 -2.0 22.5 -174.9 

65 -11.3 -19.5 22.5 -120.1 

66 -2.0 -22.4 22.5 -95.1 

67 2.0 -22.4 22.5 -84.9 

68 11.3 -19.5 22.5 -59.9 

69 19.5 -11.3 22.5 -30.1 

70 24.1 6.5 25.0 15.1 

71 17.7 17.7 25.0 45.0 

72 -17.7 17.7 25.0 135.0 

73 -24.1 6.5 25.0 164.9 

74 -24.1 -6.5 25.0 -164.9 

75 -17.7 -17.7 25.0 -135.0 

76 17.7 -17.7 25.0 -45.0 

77 24.1 -6.5 25.0 -15.1 

78 -23.8 13.7 27.5 150.1 

79 -23.8 -13.8 27.5 -149.9 

80 29.8 2.6 30.0 5.0 

81 25.9 15.0 30.0 30.0 

82 -29.9 2.0 30.0 176.2 
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83 -29.9 -2.0 30.0 -176.2 

84 -2.0 -29.9 30.0 -93.8 

85 2.0 -29.9 30.0 -86.2 

86 25.9 -15.0 30.0 -30.0 

87 29.9 -2.6 30.0 -5.0 

 

Table 18: Location IDs grid 84NO 

Grid 84NO 

Location ID X - Coordinate Y - Coordinate Eccentricity [°] Angle [°] 

0 0.0 0.0 0.0 0.0 

1 1.4 1.4 2.0 45.0 

2 -1.4 1.4 2.0 135.0 

3 -1.4 -1.4 2.0 -135.0 

4 1.4 -1.4 2.0 -45.0 

5 4.2 4.2 5.9 45.0 

6 -4.2 4.2 5.9 135.0 

7 -4.2 -4.2 5.9 -135.0 

8 4.2 -4.2 5.9 -45.0 

9 2.0 9.7 9.9 78.3 

10 -2.0 9.7 9.9 101.7 

11 -9.7 2.0 9.9 168.3 

12 -9.7 -2.0 9.9 -168.3 

13 -2.0 -9.7 9.9 -101.7 

14 2.0 -9.7 9.9 -78.3 

15 9.7 2.6 10.0 15.0 

16 7.1 7.1 10.0 45.0 

17 -7.1 7.1 10.0 135.0 

18 -7.1 -7.1 10.0 -135.0 

19 7.1 -7.1 10.0 -45.0 

20 9.7 -2.6 10.0 -15.0 

21 13.9 -1.2 14.0 -4.9 

22 15.0 0.0 15.0 0.0 

23 14.5 -3.9 15.0 -15.1 

24 15.9 -1.4 16.0 -5.0 

25 12.4 12.4 17.5 45.0 

26 -12.4 12.4 17.5 135.0 

27 -12.4 -12.4 17.5 -135.0 

28 12.4 -12.4 17.5 -45.0 

29 2.0 19.3 19.4 84.1 

30 -2.0 19.3 19.4 95.9 

31 -2.0 -19.3 19.4 -95.9 

32 2.0 -19.3 19.4 -84.1 

33 19.3 5.2 20.0 15.1 

34 -19.3 5.2 20.0 164.9 

35 -19.3 -5.2 20.0 -164.9 

36 19.3 -5.2 20.0 -15.1 

37 17.7 17.7 25.0 45.0 

38 -17.7 17.7 25.0 135.0 

39 -17.7 -17.7 25.0 -135.0 

40 17.7 -17.7 25.0 -45.0 
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41 29.8 2.6 30.0 5.0 

42 25.9   15.0 30.0 30.0 

43 15.0 25.9   30.0 60.0 

44 2.0 29.9 30.0 86.2 

45 -2.0 29.9 30.0 93.8 

46 -15.0 25.9 30.0 120.0 

47 -25.9 15.0 30.0 150.0 

48 -29.9 2.0 30.0 176.2 

49 -29.9 -2.0 30.0 -176.2 

50 -25.9 -15.0 30.0 -150.0 

51 -15.0 -25.9 30.0 -120.0 

52 -2.0 -29.9 30.0 -93.8 

53 2.0 -29.9 30.0 -86.2 

54 15.0 -25.9 30.0 -60.0 

55 25.9 -15.0 30.0 -30.0 

56 29.8 -2.6 30.0 -5.0 

57 -39.8 2.0 39.9 177.1 

58 -39.8 -2.0 39.9 -177.1 

59 39.8 3.5 40.0 5.0 

60 38.6 10.4 40.0 15.1 

61 28.3 28.3 40.0 45.0 

62 10.4 38.6 40.0 74.9 

63 -10.4 38.6 40.0 105.1 

64 -28.3 28.3 40.0 135.0 

65 -38.6 10.4 40.0 164.9 

66 -38.6 -10.4 40.0 -164.9 

67 -28.3 -28.3 40.0 -135.0 

68 -10.4 -38.6 40.0 -105.1 

69 10.4 -38.6 40.0 -74.9 

70 28.3 -28.3 40.0 -45.0 

71 38.6 -10.4 40.0 -15.1 

72 39.8 -3.5 40.0 -5.0 

73 2.0 49.8 49.8 87.7 

74 -2.0 49.8 49.8 92.3 

75 -49.8 2.0 49.8 177.7 

76 -49.8 -2.0 49.8 -177.7 

77 -2.0 -49.8 49.8 -92.3 

78 2.0 -49.8 49.8 -87.7 

79 49.8 4.4 50.0 5.0 

80 43.3 25.0 50.0 30.0 

81 25.0 43.3 50.0 60.0 

82 -25.0 43.3 50.0 120.0 

83 -43.3 25.0 50.0 150.0 

84 -43.3 -25.0 50.0 -150.0 

85 -25.0 -43.3 50.0 -120.0 

86 25.0 -43.3 50.0 -60.0 

87 43.3 -25.0 50.0 -30.0 

88 49.8 -4.4 50.0 -5.0 

89 58.0 15.5 50.0 15.0 

90 42.4 42.4 60.0 45.0 

91 -58.0 15.5 60.0 165.0 
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92 -58.0 -15.5 60,0 -165.0 

93 -15.5 -58.0 60,0 -105.0 

94 15.5 -58.0 60,0 -75.0 

95 42.4 -42.4 60,0 -45.0 

96 58.0 -15.5 60,0 -15.0 

97 -2.0 -64.8 64,8 -91.8 

98 2.0 -64.8 64,8 -88.2 

99 69.7 6.1 70,0 5.0 

100 60.6 35.0 70,0 30.0 

101 35.0 -60.6 70,0 -60.0 

102 60.6 -35.0 70,0 -30.0 

103 69.7 -6.1 70,0 -5.0 

104 77.3 20.7 80,0 15.0 

105 56.6 -56.6 80,0 -45.0 

106 77.3 -20.7 80,0 -15.0 

107 84.0 7.8 84,0 5.0 

108 84.0 -7.8 84,0 -5.0 

 


