
Schematics of Graphs and
Hypergraphs

Dissertation

der Mathematisch- und Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Dipl.-Inform. Till Martin Bruckdorfer

aus Leer/Ostfriesland

Tübingen

2015

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 17.12.2015

Dekan: Prof. Dr. Wolfgang Rosenstiel

1. Berichterstatter: Prof. Dr. Michael Kaufmann

2. Berichterstatter: Prof. Dr. Alexander Wolff

ii

Acknowledgements

The first person I want to thank is Prof. Dr. Kaufmann for his support. He
introduced me to graph drawing, gave me the opportunity to join his working
group and to attend several workshops and conferences. He was available for all
questions and discussions and gave me inspiration for my research. I also thank
Prof. Dr. Alexander Wolff for being co-reviewer and his invitation to two great,
helpful and inspiring PhD-workshops in Würzburg. For financial support my
gratitude goes to the EuroGIGA project GraDR 10-EuroGIGA-OP-003.

I would also like to thank all my co-authors, i.e., Patrizio Angelini, Michael A.
Bekos, Sabine Cornelsen, Stefan Felsner, Carsten Gutwenger, Michael Kauf-
mann, Stephen G. Kobourov, Tamara Mchedlidze, Fabrizio Montecchiani, Mar-
tin Nöllenburg, Sergey Pupyrev, Chrysanthi N. Raftopoulou and Alexander
Wolff. I thank Christian Zielke for providing a small editor tool based on
yED [193] that supports PEDs, Ferran Hurtado and Yoshio Okamoto for in-
valuable pointers to results in discrete geometry, Emilio Di Giacomo, Antonios
Symvonis, Henk Meijer, Ulrik Brandes, and Gašper Fijavž for helpful hints
and intense discussions, Jarek Byrka for the link between ink maximization
and MIS, and Thomas van Dijk for figures and implementations. I also thank
my bachelor students Andreas Lauer and Simon Leibssle for their contribution
due to their bachelor theses.

For enjoyable coffee breaks and helpful discussions I thank my colleagues and
visitors Patrizio Angelini, Michael A. Bekos, Philip Effinger, Andreas Gerasch,
Niklas Heinsohn, Stephen G. Kobourov, Stephan Kottler, Robert Krug, Tamara
Mchedlidze, Fabrizio Montecchiani, Sergey Pupyrev, Vincenzo Roselli, and
Christian Zielke. Thanks also for joining the running activities and establishing
the “Italian dinner” tradition in Tübingen. I also thank all proof-readers of
this thesis.

I particularly thank Dunja for all her support, as well as my parents.

iii

iv

Zusammenfassung

Visualisierung von Informationen ist unerlässlich, wenn die zugrunde liegenden
Daten komplex sind und das menschliche Gehirn trotzdem den Überblick behal-
ten will. Daher gibt es viele Techniken der Visualisierung um wichtige Informa-
tionen der Daten in den Vordergrund zu stellen. In dieser Arbeit beschäftigen
wir uns mit Visualisierungen, wenn der Datensatz der Informationen in Form
eines Graphen gegeben ist, d.h. Objekte repräsentiert mit bilateralen Beziehun-
gen. Dabei ignorieren wir kontext-spezifische Informationen und konzentrieren
uns ausschließlich auf die strukturelle Visualisierung, also das Zeichnen von
Graphen oder deren Verallgemeinerung: Hypergraphen.

Im Bereich des Graphenzeichnens ist das Ziel die Erstellung von ästhetischen
Zeichnungen des Graphen. Man befasst sich mit der automatischen Erstel-
lung von Zeichnungen ausgehend von einem Graphen als Eingabe für einen
Algorithmus. Wir sind stets daran interessiert, welche Graphen als Eingabe er-
laubt sind (Charakterisierung) und wie groß der Zeitaufwand des Testens eines
Graphen bzw. des Erstellens einer Zeichnung ist (Komplexitätsklasse). Die
durch Charakterisierung entstehenden Restriktionen an Graphen ergeben sich
meist aus geometrischen Einschränkungen, die auf die Struktur der Graphen
übertragen werden.

Wir untersuchen zwei Zeichenmodelle und bestimmen Graphenklassen, welche
Zeichnungen in diesen Modellen erlauben. Dabei gehen wir auch auf Varianten
ein, wo Knotenpositionen bereits festgelegt sind.

Im bekanntesten Modell, der traditionellen geradlinigen Zeichnung, werden wir
Punkte vorab definieren, den Punkten Knoten zuweisen und trotz der Ein-
schränkung auf eine kleine Menge von Punkten eine Zeichnung ohne Kan-
tenkreuzungen erhalten.

In dieser Dissertation werden zwei unterschiedliche Zeichenmodelle zur Visu-
alisierung von Graphen vorgestellt, sogenannte PED-Zeichnungen und Bus-
Zeichnungen, die beide auch mit festen Knotenpositionen betrachtet werden,
sowie ein Einbettungsproblem als Brücke zu beiden Modellen, welches sich
damit befasst, ob sich Graphen auf einer vordefinierten Punktemenge zeich-
nen lassen. Beide Zeichenmodelle existierten bereits im Vorfeld dieser Arbeit,
allerdings war kein formales Konzept bekannt, so wie eine Charakterisierung der
Graphklasse, die solche Zeichnungen erlaubt, sowie Komplexitätsergebnisse für
Test- und Konstruktionsalgorithmen. Wir extrahieren Eigenschaften für beide
Zeichenmodelle, die eine aesthetische Zeichnung erlauben.

Für PED-Zeichnungen fokussieren wir uns auf 1/4-SHPEDs, also zugrunde
liegende geradlinige Zeichnungen, in welchen bei jeder Kante nur ein viertel
zu Beginn und ein viertel des Endes der Kante gezeichnet wird und die übrig
gebliebenen Stummel kreuzungsfrei bleiben. Auch 1-bend SHOPEDs werden

v

untersucht, welche das Pandent von 1/4-SHPEDs bezüglich der orthogonalen
Zeichenkonvention mit einem Knick pro Kante ist. Wir untersuchen ferner die
Existenz und Konstruktion von PED-Zeichnungen basierend auf gradlinigen
Zeichnungen bei denen Knotenpositionen festgelegt sind. Als ncPED werden
PED-Zeichnungen auf Basis von geradlinigen Zeichnungen bezeichnet, wenn
alle Kanten fast vollständig gezeichnet werden können, und maxSPED ist eine
PED-Zeichnung auf Basis einer gradlinigen Zeichnung, wenn ein signifikanter
Teil nicht gezeichnet werden konnte, aber die Länge aller Stummel maximal
ist, bei gleicher Länge der beiden Stummel pro Kante.

Bei Bus-Zeichnungen konzentrieren wir uns ebenfalls auf planare (kreuzungs-
freie) Zeichungen, allerdings für Hypergraphen, d.h. eine Verallgemeinerung
von Graphen, bei der Hyperkanten Mengen entsprechen. Bus-Zeichnungen
werden dadurch charakterisiert, dass Hyperkanten als fette Strecken gezeichnet
werden und deren Elemente als orthogonal mit ihr verbundene Punkte. Wir
bezeichnen Bus-Zeichnungen mit horizontalen Strecken als 1-dimensional und
Bus-Zeichnungen mit horizontalen und vertikalen Strecken als 2-dimensional.
Letztere charakterisieren wir für den planaren Fall und untersuchen die Kom-
plexität der Konstruktion einer 2-dimensionalen planaren Bus-Zeichnung. Un-
tersucht wird auch die Existenz und Konstruktion von 1-dimensionalen Bus-
Zeichnungen, bei denen Hyperknotenpositionen festgelegt sind.

Insgesamt untersuchen wir drei verschiedene Fragestellungen für (1) das PED-
Modell, zwei verschiedene Fragestellungen für (2) das BUS-Modell und eine
Fragestellung zum (3) Einbettungsproblem.

(1.1) Wir bestimmen Graphenklassen, die ein 1/4-SHPED besitzen, beweisen,
dass es Graphen gibt, die kein 1/4-SHPED besitzen, präsentieren einen
kräftebasierten Algorithmus, der solche Zeichnungen so gut wie möglich
erstellt und evaluieren dieses Konzept.

(1.2) Wir charakterisieren Graphen bezüglich der Existenz von PED-Varianten
und bestimmen die Komplexität für Konstruktion innerhalb solcher Vari-
anten bei festgelegten Knotenpositionen: ncPED existiert für alle 2-
planaren Graphen und kann für alle Graphen effizient konstruiert werden,
sofern sie der Charakterisierung entsprechen. Auch effizient konstruier-
bar ist maxSPED für 2-planare Graphen, allerdings ist maxSPED im
Allgemeinen NP-hart.

(1.3) Wir führen 1-bend SHOPEDs ein und präsentieren einen konstruktiven
Algorithmus für 1-bend SHOPEDs für Graphen mit Maximalgrad 3,
sowie ein Beispiel, welches kein 1-bend SHOPEDs besitzt.

(2.1) Wir charakterisieren Hypergraphen, die eine kreuzungsfreie 2-dimensionale
Bus-Zeichnung besitzen und stellen einen effizienten konstruktiven Algo-
rithmus bereit.

vi

(2.2) Wir diskutieren Existenz und Konstruktion von 1-dimensionalen Bus-
Zeichnungen. Wenn Hyperknotenpositionen festgelegt sind, zeigen wir
für kreuzungsfreie Zeichnungen, dass nur sehr eingeschränkte Varianten
eine polynomielle Komplexität haben, dass allgemeine Problem allerdings
sehr schnell schwierig wird.

(3.1) Wir beweisen die Existenz einer subquadratischen universellen Punkt-
menge für das Einbettungsproblem von 2-außenplanaren Graphen.

vii

viii

Contents

1 Introduction 1

2 Basics of Graph Drawing 11

2.1 Graphs, Drawings and Embeddings 11

2.2 Aesthetic Criterias and Drawing Conventions 15

2.3 Hypergraphs . 18

2.4 Force-Directed Algorithms . 20

2.5 Orthogonal Drawings . 24

I Partial Edge Drawings (PEDs) 27

3 Introduction 29

3.1 History of PED . 30

4 PEDs for Graphs 33

4.1 Formal Concept . 33

4.2 Graphs Admitting 1/4-SHPEDs 34

4.2.1 Complete Graphs . 35

4.2.2 A Sufficient Condition 37

4.2.3 Powers of Triangular Grids 38

4.2.4 Complete Bipartite Graphs 40

4.2.5 Graphs of Bounded Bandwidth 43

4.3 Graphs Not Admitting 1/4-SHPEDs 44

4.3.1 The Main Argument . 44

4.3.2 The Middle Strip . 47

4.3.3 The Middle Part of the Bottom Strip 48

4.3.4 The Left and the Right Part of the Upper Strip 50

4.3.5 The (1/4× 1/4)-Squares Cl, Cr, and Ct 56

4.4 1/4-SHPED Spring Embedder 58

4.4.1 Introduction . 58

ix

x Contents

4.4.2 Preliminaries . 60

4.4.3 The Algorithm . 62

4.4.4 Experimental Evaluation 65

4.5 1/4-SHPED User Study . 69

4.5.1 Introduction . 69

4.5.2 Design . 70

4.5.3 Results . 74

4.5.4 Discussion . 80

4.6 Summary and Future Work . 81

5 PEDs for Graphs with Fixed Vertex Positions 83

5.1 Definitions and Basic Results 84

5.2 Nearly Complete PEDs . 85

5.3 Maximal SPEDs . 87

5.3.1 NP-hardness . 91

5.3.2 Erasing Ink in Arbitrary Graph Drawings 93

5.3.3 maxPEDs . 94

5.4 Summary and Future Work . 95

6 PEDs for Orthogonal 1-bend Drawings 97

6.1 Definitions . 99

6.2 1-bend OPEDs and 1-bend HOPEDs 101

6.3 1-bend SHOPEDs for Graphs of Maximum Degree 3 102

6.4 1-bend SHOPEDs for Graphs of Maximum Degree 4 109

6.5 Summary and Future Work . 115

7 Short Conclusion on PEDs 117

II Bus Realizations 119

8 Introduction 121

8.1 Related Work . 123

9 Bus Graphs in Two Dimensions 127

9.1 Necessary Properties . 128

9.2 Maximal Plane Bus Graphs . 129

9.3 Planar Realizations . 133

9.4 Non-Maximal Plane Bus Graphs 136

9.5 Embedding Missing – SPQR-Trees 138

9.6 The Algorithm . 140

9.6.1 Connector Vertices as Poles 143

9.6.2 Simply Connected Inputs 148

9.7 Non-Planar Bus Graphs . 149

Contents xi

9.8 Summary and Future Work . 151

10 Bus Graphs in One Dimension 153

10.1 Definitions and Basic Results 154

10.2 An ILP . 156

10.3 Efficiently Solvable Variants . 158

10.3.1 u-BEP . 158

10.3.2 (Γ, L)-BEP . 160

10.3.3 Diagonal BEP . 162

10.4 NP-Completeness . 165

10.5 Summary and Future Work . 170

11 Short Conclusion on Bus Realizations 171

III Universal Point Set (UPS) 173

12 Introduction 175

12.1 Related Work . 176

13 UPS for 2-Outerplanar Graphs 179

13.1 Preliminaries and Definitions 179

13.2 Inner-Triangulated 2-Outerplanar Graphs with Forest 180

13.2.1 Construction of the Universal Point Set 181

13.2.2 Labeling the Graph . 182

13.2.3 Embedding on the Point Set 185

13.3 2-Outerplanar Graphs with Forest 189

13.3.1 Extending the Universal Point Set 189

13.3.2 Modifying and Labeling the Graph 190

13.3.3 Transformation of the Embedding 198

13.4 General 2-Outerplanar Graphs 200

14 Short Conclusion on UPS 209

IV Conclusions 211

15 Main Results 213

16 Future Work 217

Bibliography 219

Publications of the Author 233

Chapter 1
Introduction

Information visualization is the field of visualizing representations of data in
order to support human perception. The focus is on development and empirical
analysis of methods for presenting abstract information in a visual form aiming
at amplifying cognition [136]. Its indispensability is emphasized through ap-
plications in many areas like scientific research, digital libraries, financial data
analysis, system engineering, information engineering, software engineering,
specification and verification of software, workflow, manufacturing production
control, public safety through crime or fraud detection [8, 59, 118, 167, 173] to
name only a few. For instance, Matt Biddulph, a software designer, extracted
Wikipedia pages of people illustrating related persons by colors [20], see Fig-
ure 1.1. Such visualizations of social relations are helpful for finding topics of
interest or for a company’s customer marketing research [181]. In many ap-
plication scenarios we use information visualization for representing relational
data in the form of graphs, that is, an abstract data structure representing
objects, called vertices and binary relations between objects, called edges. Vi-
sualizing data in the form of graphs is the content of graph drawing, which is
the central topic of this thesis.

We will focus only on the structure of graphs with the intent to visualize graphs
with aesthetically pleasing drawings [49]. In general, good drawings of a graph
depend on their application but also on the structure of the graph itself. For
example, when searching for a shortest path between two cities, then the usage
of a map that visualizes all possible roads is a natural choice for this kind
of search. Not convenient in this case is a drawing of a graph with edges
representing roads, where edges are routed with arcs for the sake of aesthetics,
instead of representing the real distances [159]. In contrast, the question which
city is central can probably be better answered by studying an aesthetic drawing
of the graph rather than a map, since this information is hidden in the structure
of the graph.

1

2 1 Introduction

Figure 1.1: Visualization of Wikipedia pages of people colored with respect
to social relations, taken from [20].

Apart from graphs we also consider data as a collection of sets, which can
be seen as a hypergraph. Hypergraphs are abstractions of graphs, where ob-
jects, called hypervertices, arbitrarily connect many objects through a relation,
called hyperedge. Classical examples of hypergraphs are color tables, where
hyperedges represent colors and hypervertices are regions, which are influenced
by the colors that overlap the region. Figure 1.2(a), for instance, illustrates
a color table for visualization of the Young–Helmholtz theory of trichromatic
color vision [192], which is a drawing of a hypergraph with three hyperedges
and seven hypervertices, each representing a region. Other examples of hy-
pergraphs are circuits, where hyperedges may represent connections between a
power source and several resistances as in Figure 1.2(b).

Research in graph drawing recommends automatic graph drawing described by
algorithms, first mentioned by Donald E. Knuth [121]. One possible reason
for automatic generation of drawings is Figure 1.1, which won’t be efficient
when trying to draw this graph by hand. Additionally when the graph changes
slightly, a hand-drawn graph cannot be changed easily, whereas running an
algorithm with the modified graph is an easy and time-saving step. On the
other hand algorithms may reject certain graphs as input. Let’s assume for

3

(r,0,0) (r,g,0) (0,g,0)

(r,g,b)

(r,0,b) (0,g,b)

(0,0,b)

(a)

R1 R2 R3 R4 R5

I1 I2 I3 I4 I5

U

(b)

Figure 1.2: (a) Visualization of a color table according to the Young-
Helmholtz-Theory, where triple (r,g,b) represents colors (red,green,blue) and
0 if no color of this type is used. (b) Visualization of a parallel circuit, where

black points represent hyperedges connecting three wires from objects.

example a graph represents cities with train tracks connecting these cities. An
algorithm drawing this graph should for example ensure that train tracks do
not cross [138, 191]. Therefore it might be reasonable to first test the graph
to determine whether its structure admits a crossing-free drawing, because
otherwise the assumption was wrong. Thus for the algorithm that constructs
a drawing, we are mainly interested in characterizing the graphs permitted
as input, the complexity for testing if a graph is permitted as input, and the
complexity of the construction.

Algorithms that produce drawings follow different rules for optimizing aes-
thetics in the drawing. There are algorithms producing drawings for metro
maps [108], where edges mainly follow horizontal and vertical directions1, which
are used for so-called orthogonal drawings. There are also algorithms produc-
ing drawings for Unified Modeling Language diagrams, a modeling standard
for specification, construction and documentation of software-parts [1], where
edges are sequences of straight-line segments, so-called poly-lines. These rules
for algorithms help to describe the algorithm and the ability to compare the
drawings. Such a rule is called drawing convention and must be fulfilled when
drawing a graph. According to [49], common conventions are planar (crossing-
free) drawings, poly-line drawings, straight-line drawings, orthogonal drawings
and recently invented Lombardi drawings [38, 64, 69, 133], latter respectively
looking like pictures of the artist Mark Lombardi [171]. Drawing conventions
optimize the aesthetics in drawings.

1Additionally to horizontal and vertical directions these algorithms for drawing metro
maps produce diagonal directions as well.

4 1 Introduction

(a)

Tübingen
Tübingen

(b)

Figure 1.3: (a) IBM uses gestalt principle in their logo [113]. The idea of
(b) is taken from [164] and [97].

Algorithms follow drawing conventions in a specific drawing model, which is the
geometric style according to which the drawing convention is performed. For
instance, when drawing a graph using the straight-line convention, the tradi-
tional model is applied when vertices are drawn as discs with positive radius and
edges are drawn entirely and thin, i.e., with positive width. This is the natural
and intuitive way to draw straight-line edges. Other models for straight-line
drawings aim at thickening of edges, called bold graph drawings [146, 185] or fat
edge drawings [63]. Considering these models is useful for applications, when
zooming into a drawing of a graph such that edges grow in length and width.
Drawing models also exist for the orthogonal drawing convention, where the
focus might be on modifying the vertices. If a vertex is drawn as a small disc,
horizontal edge segments can only enter a vertex to the east or the west, and
vertical edge segments can only enter a vertex from the north and the south.
Thus only four edges can enter the vertex. In order to allow more than four
edges, the shape of the vertex will be changed to a rectangle with appropri-
ate side lengths, enabling many edges to enter the vertex on the same side in
parallel. This model is called the Kandinsky model [67, 86]. Conclusively, the
drawing model combines graph theory [24, 102] with geometry [155], which is
known as a branch of the mathematical science dealing with sizes, shapes and
positions of drawn objects. Our key goal is to identify structural constraints
on graphs implied by the geometry of the drawing models.

This thesis contains three main parts. We introduce two new drawing models,
the “PED” model for simple graphs in the first part and the “BUS” model for
hypergraphs in the second part, while we deal with the traditional straight-
line model in the third part. Both new models are defined later and aim for
clarity by avoiding unnecessary information. This reduces potential confusion.
Furthermore they achieve clarity by only drawing necessary parts, which avoids
ambiguity [14, 158]. Schematics are visualizations following this concept. The
PED model and BUS model support schematics that follow a common central
idea:

“what is drawn is as much as necessary and as little as possible.”

5

(a) (b)

Figure 1.4: (a) A traditional straight-line drawing of a graph G with 20 ver-
tices and 80 edges. (b) A drawing of G with partially drawn edges, where the
middle halves of the edges have been removed (1/4-SHPED). The drawings

are generated with tools based on [87, 193].

For the PED model, the central idea is to use Gestalt theory [125]; see the
first part of this thesis. One of the key ideas of this psychological theory is to
exploit the mind, which tends to close holes in pictures. This aspect of Gestalt
theory is the “principle of closure” [189]. Once the mind has captured the
underlying rule according to which a picture is built, the brain automatically
completes the picture, called “amodal completion” [48]. This Gestalt principle
is used in many applications [35, 140, 189]. Even famous companies use the
principle of closure within their logo [113], see Figure 1.3(a). The same idea is
used when some unnecessary characters in words are missing or when they are
not displayed completely [97, 164], see Figure 1.3(b).

We will continue the application of Gestalt theory on a graph drawing similar
to [164], where the authors introduced gaps in edges. Since the authors provide
no formal model or concept, we develop and introduce it by extracting aesthetic
properties and presenting many results for several directions of application. In
a high-level description, we define a partial edge drawing (or PED, for short)
with respect to a straight-line drawing or orthogonal drawing as a drawing,
where we remove a specific part of each edge in such a way that two crossing-
free parts, called stubs, incident to the vertices remain [200, 201, 204, 207].

In the PED model we take advantage of Gestalt theory for edges in such a way
that interrupted straight lines are completed by the mind in a natural way, i.e.,
without the change of direction during completing the interrupted straight-
line. Using the straight-line drawing convention, the reader will reach the end
vertex of the edge at some point. In this model we will introduce properties
that support approximation of the end of the edge in the reader’s mind, which
are symmetry and homogeneity. Together the two properties imply that stub
sizes are a specific fraction of the total edge length, referred to stub-edge-ratio.
Our main focus is the stub-edge-ratio 1/4 as illustrated in Figure 1.4. Given

6 1 Introduction

CPU Memory I/O

System bus

Control bus

Address bus

Data bus

Figure 1.5: Buses are used in computer architecture to visualize the system
bus component.

the length and the direction of a stub, this model helps to infer the position of
the opposite stub. We refer to drawings in this model as 1/4-SHPEDs, where
the letters S and H in this abbreviation emphasize the two properties.

In the BUS model, discussed in depth during the second part of this thesis,
we follow the central idea by using buses. A BUS may be considered as back-
ronym for Binary Unit System [84] and appears everywhere, for example as
Universal Serial Bus stick, the USB-stick for short. A bus in computer archi-
tecture is a shared communication link for transferring data between several
components by using one set of wires [149]. Buses visualize data transfer on
common routes between input/output components, memory and Central Pro-
cessing Unit (CPU) [161], as illustrated in Figure 1.5. Here buses may appear
in different roles, i.e., as a “data bus” carrying the information, as an “ad-
dress bus” carrying the information where to send data, or as a “control bus”
carrying the information which operation to apply to the data, respectively,
according to the “von Neumann architecture” [165, 187]. These three buses
represent the “system bus”. The advantage of buses is versatility and low cost,
but in terms of data transfer they create a bottleneck [10]. This disadvantage,
however, is irrelevant when buses are not specifically related to wires. In a more
abstract setting, a bus is a visualization of a set containing several components.
Transferring the situation to an underlying data structure, components are rep-
resented as hypervertices, the common route of components is represented as
a hyperedge, and a bus is a drawing of this hyperedge from our point of view.
Using buses is one possible approach to visualize hypergraphs.

Buses are also common in Very Large Scale Integration (VLSI) design [132, 183],
which aims for the integration of millions of transistors on a single small chip. In
order to compact the chip by rearranging components, it is helpful to consider

7

Figure 1.6: Three cliques represented in bus-style layout (taken from [193]).

a schematic drawing of the arrangement, represented by a hypergraph. In
VLSI design, buses are used for bundling wire-routes that are used by several
components or for visualization of components that are connected with many
other components.

The bus-style layout can also be used for graphs, for instance, when represent-
ing cliques2 in a compact and comprehensive way [56, 94]. Figure 1.6 illustrates
the compactness, clearness and convenience of three cliques offered by the de-
veloper’s guide3 for the yFiles library [193].

In our BUS model we will draw buses representing the hyperedges of a hy-
pergraph. In order to apply methods from graph drawing, we transform the
hypergraph into a graph such that a hypervertex v becomes a vertex, a hy-
peredge e becomes also a vertex and the edges represent incidences, i.e., v is
connected with e, if the hyperedge e contains the hypervertex v. The result-
ing graph is called bus graph in order to emphasize the objective to represent
hyperedges by buses. For an example, see Figure 1.7(a).

Ada et al. [3] introduced bus graphs in a very restricted way. In contrast, we
define an abstract bus graph and investigate whether bus graphs as represen-
tatives of hypergraphs admit a drawing with buses. In a high-level-description
we define bus realizations for hypergraphs in such a way that every hypervertex
is drawn as a point and every hyperedge is drawn as bold segment (called bus)
orthogonally connected to its hypervertices by a thin segment (called connec-
tion). For an example, see in Figure 1.7(b). Bus realizations may be specified
by the number of slopes that appear for buses, referred to as dimension. If
the dimension is one, by convention, we only use horizontal buses, while if the
dimension is two we conventionally use horizontal and vertical buses. Higher
dimensions are not considered in this thesis.

Bus realizations up to the second dimension resemble drawings in the orthog-
onal drawing convention since buses and their connections together use only

2A clique is a subgraph where every pair of vertices is adjacent.
3This diagram was created with the yFiles Java diagramming library, a product of yWorks

GmbH, Tübingen (http://www.yworks.com).

8 1 Introduction

(a) (b)

Figure 1.7: An example of a bus graph (a) with a realization (b).

horizontal and vertical segments. A difference is that not all vertices of the
bus graph are drawn as points. All edges of the bus graph are drawn without
any bend. Nevertheless, we will introduce basics of orthogonal drawings to be
familiar with bus realizations and their related concepts.

Apart from the two new drawing models, we investigate, in the third part of this
thesis, another topic of graph drawing in the traditional straight-line drawing
model. This topic arises when we consider the space where we want to draw
graphs. The graphs in the previous models were always drawn planar in the
infinite Euclidean plane or on an infinite grid to support the orthogonal drawing
convention. But what if we only permit a bounded region of the Euclidean
plane for planar straight-line drawings, respectively just a finite grid? Another
interesting question is, what if only some points of the Euclidean plane are
permitted to place vertices, and how many points do we need? This is the key
question for the third part of this thesis. This part builds a bridge to both the
PED and the BUS model since in all parts we consider problem settings with
point sets of predefined positions for points as input, on which vertices will be
mapped. In contrast to the PED and BUS settings, the mapping of vertices to
points is not part of the input for UPS.

It is well-known that any planar graph can be drawn straight-line and without
crossings in the plane, as well as on an integer grid [45]. These authors bound
the number of grid points asymptotically by 2n2 for a planar graph with n
vertices, which was later improved to (8/9)n2 [27]. On the other hand, outer-
planar graphs, which are planar graphs admitting a planar drawing in which
all vertices are on the outer boundary, can be drawn on any point set4 of size
n [25]. Therefore the question arises whether any planar graph can be drawn
straight-line and planar on a point set of size n, which was negated by Chrobak
and Karloff [39] and by Kurowski [128]. While n points are not always enough,
it still makes sense to ask whether a point set of asymptotically linear size,
or at least subquadratic size, exists that support straight-line planar drawings
of every planar graph. This question, or more precisely the question on the

4These points must satisfy the assumption that no three points lie on the same line.

9

smallest asymptotic size of a point set with this property, is known as the uni-
versal point set problem (or UPS, for short) since the point set must be feasible
for all planar graphs. As one step towards a full answer of UPS we give a
positive answer for a class of graphs between planar graphs and outerplanar
graphs, so called 2-outerplanar graphs. These graphs are a natural extension
of outerplanar graphs in such a way that they admit a drawing in which we
may remove all vertices from the outer boundary and an outerplanar graph
remains. Using this incremental construction for k-outerplanar graphs we can
say that any planar graph is k-outerplanar for some k, which is the reason why
we consider the case k = 2. For the class of 1-outerplanar graphs we provide a
universal point set of size O(n log n).

The main contribution of this thesis is the first formal concept for two new
drawing models, the PED model and the BUS model (Ada et al. [3] introduce
a very restricted version that is just two dimensional) including existential
proofs, disproofs, and complexity calculations, respectively, as well as a big
step towards a full answer of UPS. All results are new and provide a broad
base for research in the direction of PED and BUS and UPS. The thesis is
organized as follows:

In Chapter 2 we introduce basic definitions of graph drawing. This includes
some important techniques for drawing graphs as well as necessary definitions
for the remainder of this work.

Part I covers the PED layout model and starts with an introduction based
on history and related work. This part has three main chapters. In the first
main chapter, we investigate PEDs on the base of straight-line drawings. We
demonstrate many classes of graphs admitting 1/4-SHPEDs and show that
there exists an infinite class of graphs not admitting 1/4-SHPEDs. Furthermore
we provide a force-directed algorithm for computing 1/4-SHPEDs if possible,
or otherwise minimize the crossings on stubs. We empirically evaluate this 1/4-
SHPED concept and intensively discuss the results. In the second main chapter,
we adopt PED based on straight-line drawings on graphs with fixed vertex
positions. We call PEDs with nearly completely drawn edges ncPED, and PEDs
where all stubs have maximal length while fulfilling the requirement that both
stubs of every edge have the same size, i.e., are symmetric, are called maxSPED.
We prove the existence of ncPEDs for 1-planar, respectively 2-planar graphs,
i.e., for graphs admitting a drawing with at most one, respectively two crossings
per edge, and provide an efficient algorithm for constructing ncPEDs for these
graphs. Furthermore, we prove NP-hardness for maxSPEDs of general graphs
and present an efficient algorithm for 1-planar and 2-planar graphs. In the
third main chapter, we investigate PED based on orthogonal drawings with
one bend per edge. In this model for orthogonal drawings, symmetry and
homogeneity are defined differently to the straight-line drawing in order to
avoid ambiguity. We refer to drawings in this model as 1-bend SHOPEDs.
We provide an algorithm producing a 1-bend SHOPED for all graphs with
maximum degree three, while we prove that there is a graph with maximum

10 1 Introduction

degree four that admits no 1-bend SHOPED. The results of this part have been
published [200, 201, 204, 206, 207].

Part II covers the BUS model and also starts with an introduction based on
history and related work. This part has two main chapters. In the first main
chapter, we consider 2-dimensional bus realizations. We present a polynomial
time algorithm that tests whether a planar bipartite graph representing a hy-
pergraph admits a 2-dimensional planar bus realization and produces such a
realization as byproduct in the affirmative case. Earlier it was just known
that in general 2-dimensional bus realizations are NP-complete to test. In
the second main chapter, we consider 1-dimensional bus realizations. First we
consider the general setting and investigate connections to already well-known
results. We consider bus graphs with fixed vertex positions and ask for a 1-
dimensional planar bus realization. We provide relations to other NP-complete
problems and present results via integer linear programming, which seem to
confirm our impression that the problem is NP-complete. In one setting, where
buses are strictly above or strictly below all their hypervertices, we prove NP-
completeness for computing a 1-dimensional planar bus realization for a bus
graph consisting of just a matching5, but we additionally provide polynomial
time algorithms for very restricted cases, e.g., when buses are only above all
their hypervertices. All in all, this chapter provides a broad discussion on the
limits for polynomial time solvable settings. Some results of this part have been
published [202], some are under submission [203, 205].

Part III covers the UPS problem and also starts with an introduction based on
history and related work. This part has only one main chapter and provides a
solution for UPS with respect to 2-outerplanar graphs, which was an unsolved
problem for many years [26]. We split the problem appropriately and refer for
calculations on the size of the point set to a result of Bannister et al. [11]. The
results of this part are under submission [198].

Finally we conclude with Part IV, summarizing the main results and pointing
out further directions for research.

5A matching of a graph is a set of edges in which every vertex is incident to at most one
matching edge.

Chapter 2
Basics of Graph Drawing

Graph drawing is a theory combining Computer Science with mathematics by
using methods from information visualization, graph theory, topology, algebra
and of course, geometry. The main objective is to find aesthetic drawings for
graphs. In Section 2.1 we introduce the mathematical concept of a drawing in
order to catch the geometric aspect of graph drawing. In Section 2.2 we then
have a look at criteria, that judge the quality of a drawing with respect to its
aesthetic. This section shows how to convert aesthetical aspects into criterias,
which can be measured when drawing graphs according to certain drawing
conventions. In Section 2.3 we have a short look at hypergraphs and show how
drawing conventions and aesthetic criteria can be adopted there. After that we
look at two standard techniques for getting drawings according to some specific
criteria. One of them will be the force-directed technique in Section 2.4, while
the other one will be the orthogonal graph drawing technique in Section 2.5.

2.1 Graphs, Drawings and Embeddings

We start this section with basic definitions of graph theory. For more details
we refer the reader to the books of Di Battista et al. [49] or Diestel [60].

Graph: A graph G = (V,E) is a pair of sets, where one set V , called vertex set,
is the base set, and the other set E, called edge set, is a subset of the Cartesian
product of the base set with itself, i.e., E ⊆ V × V . This definition implies
an order for the two elements of each edge, thus we call the graph directed
and denote an edge by (v, w) ∈ E for two vertices v, w ∈ V . We mostly
deal with undirected graphs, that is, where the order of v, w is irrelevant,
but we use the same notation for the edges, i.e., for an undirected graph, we
have (v, w) = (w, v). Whenever we consider directed edges, we will explicitly
mention this.

11

12 2 Basics of Graph Drawing

An edge is called multiedge if it occurs more than once and (v, w) ∈ E is
called loop if v = w. We call a graph G simple if G has no multiedges and
no loops. In general we only look at simple graphs. For an edge e = (v, w)
we call the vertices v, w incident to e and conversely for a vertex v we call
any edge e = (v, w) incident to v. For every edge (v, w) ∈ E we call the
two vertices v, w adjacent to each other. Directed graphs may have at most
|V |2 edges, directed simple graphs may have at most |V |(|V | − 1) edges, while
undirected simple graphs have at most |V |(|V | − 1)/2 edges. For a vertex
v ∈ V we define the degree deg(v) of v as |{e ∈ E | v ∈ e}|. Thus the equality∑

v∈V deg(v) = 2|E| holds for any graph. Whenever we talk about a graph
G = (V,E), we immediately associate the numbers n with |V | and m with |E|.

We call a graph G′ = (V ′, E′) subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E.
The induced subgraph G′ of G is then the subgraph such that E′ = E∩(V ′×V ′).
Furthermore a graph G = (V,E) is called bipartite if we can partition its
vertices into two disjoint sets V1 and V2 such that V = V1 ∪ V2, V1 ∩ V2 = ∅
and E ⊆ V1 × V2. Similarly we call a graph G = (V,E) tripartite if we can
partition its vertices into three disjoint sets V1, V2 and V3 such that V = V1 ∪
V2 ∪ V3, V1 ∩ V2 = V2 ∩ V3 = V1 ∩ V3 = ∅ and E ⊆ V1 × V2 × V3.

Connectivity: Simple graphs may be categorized with respect to their con-
nectivity, which is useful to partition graph algorithms into smaller well un-
derstandable parts. Let G = (V,E) be a graph. A path between v and w of
length k + 1 is a sequence of distinct vertices v, u1, . . . , uk, w, k ≥ 0 such that
(v, u1), (u1, u2), . . . , (uk, w) ∈ E. We call a pair v, w of vertices connected if
there is a path between v and w. A simple undirected graph G = (V,E) is
called connected if every pair of vertices v, w is connected. We call a simple
undirected graph biconnected if after removing any vertex (with its incident
edges) G stays connected. Similarly we call a simple undirected graph G tri-
connected if after removing any vertex (with its incident edges) G stays bicon-
nected. Every simple graph G can be decomposed into components according
to the connectivity. A connected component is a maximal connected subgraph,
a biconnected component is a maximal biconnected subgraph and a triconnected
component is a maximal triconnected subgraph. The vertices separating a con-
nected component are called cut vertices, while the pair of vertices separating
a biconnected component is called split pair. These definitions are needed to
introduce later two data structures called block trees, which are trees represent-
ing the biconnected components and SPQR trees, which are trees representing
the triconnected components. In Section 9 we have a more detailed look how
these data structures are built and how they are used.

In a graph G we call a path between v and w cycle if v = w. Notice that
in non-simple graphs cycles may appear as self-loops or as multiple edges. In
simple graphs a cycle contains at least three vertices. A graph that contains no
cycles is called forest or acyclic. A forest that is connected is called tree. Thus
trees are the smallest connected graphs in terms of the amount of edges. A tree
G = (V,E) can appear rooted, i.e., there is a designated vertex r ∈ V which is

2.1 Graphs, Drawings and Embeddings 13

called root. The depth of a vertex v is the length of the path between v and r.
Trees build an important sparse class of graphs. Another important dense class
of graphs are the complete graphs which have edges between any pair of vertices,
denoted by Kn, n = |V |. Similarly we denote by Kn1,n2 the complete bipartite
graphs and by Kn1,n2,n3 the complete tripartite graphs, where ni = |Vi| for
i = 1, 2, 3.

Drawing: Next we give the concept of a drawing of a graph. We consider
drawings only in 2 dimensions, i.e., we restrict the definitions to the Euclidean
plane R2, together with the distance metric d : R2 → R2, (p, q) 7→ d(p, q) for
all points p, q ∈ R2. In R2 an open Jordan curve is the image of an injective
continuous map ϕ : [0, 1]→ R2. Open Jordan curves ϕ connect two points p, q
by a continuous curve, i.e., ϕ is a parametrization with ϕ(0) = p, ϕ(1) = q. An
open Jordan curve is called simple if it is non-self intersecting. A drawing of a
simple undirected graph G = (V,E) is a map Γ : (V,E)→ R2 such that every
vertex v is mapped to a distinct point Γ(v) and every edge (v, w) is mapped
to a simple open Jordan curve ϕ with ϕ(0) = Γ(v) and ϕ(1) = Γ(w). We will
often use drawings of graphs to illustrate algorithms and properties of graphs.
Drawings and graphs are different objects, although we often use the terms
“edge” and “vertex” to refer to “the image of the edge” and “the image of the
vertex”.

Graphs can be categorized based on the drawings they admit. A drawing Γ is
called planar if no two edges in Γ cross. We call a graph G planar if it admits a
planar drawing. In this thesis planarity is of particular interest because planar
graphs have some nice properties:

• Planar graphs admit better readable drawings (e.g., see [156, 158]).

• Planar graphs are well studied and have a long history (e.g., see [144]).

• Planar graphs are sparse (by Euler’s formula [24], see below).

Note that planar graphs may also be drawn non-planar. Examples of planar
drawings are given in Figure 2.1. Planarity of a graph can be decided inde-
pendently of the drawings which the graph admits. A subdivision of graph
G = (V,E) is a graph G′ = (V ′, E′) obtained from G by subsequently replacing
edges (v, w) ∈ E by a vertex u with incident edges (u, v), (u,w).

Theorem 2.1 (Kuratowski’s Theorem [24]). A graph G is planar if and only
if G does not contain a subdivision of K5 or K3,3.

Planar drawings partition the plane into topologically connected regions, which
we call faces. In a planar drawing there is one unbounded face, called outer
face. The following theorem establishes a connection between the number of
vertices, edges and faces of a planar graph.

14 2 Basics of Graph Drawing

v v v v

Figure 2.1: Four different planar drawings of a graph G. The left three
of the drawings of G have the same planar embedding, while the rightmost
drawing has a different planar embedding, which can be observed identifying
the adjacent vertices of v along the circular arc. This figure is inspired by a

graph from [49].

Theorem 2.2 (Euler’s formula [24]). Any planar graph G = (V,E) with f
faces satisfies |V |+ f = 2 + |E|.

Corollary 2.3. Any planar graph G = (V,E) has at most |E| ≤ 3|V |−6 edges.

A special subclass of planar graphs is the class of outerplanar graphs, which
are graphs admitting an outerplanar drawing, i.e., a planar drawing in which
all vertices are incident to the unbounded face. The class of k-outerplanar
graphs generalize the class of outerplanar graphs as follows. A k-outerplanar
graph, with k ≥ 2, is a graph admitting a k-outerplanar drawing, i.e., a planar
drawing such that if removing the vertices of the outer face produces a (k− 1)-
outerplanar drawing, where 1-outerplanar stands for outerplanar.

Embedding: Sometimes it is not necessary to speak about planar drawings,
but only about the topological structure of a drawing. A planar drawing Γ
of a graph G determines a clockwise ordering of the edges incident to each
vertex v of G, that we call rotation at v, denoted by φv ∈ V k, k = deg(v),
regarding the adjacent vertices of v. The rotation scheme of G in Γ is the set
of the rotations Φ = (φv1 , . . . , φvn) at all the vertices vi ∈ V of G determined
by Γ. An embedding of graph G is a rotation scheme Φ, together with the
specification of the outer face.

We say a planar drawing ΓG of graph G = (V,E) is equivalent to a planar
drawing Γ′G of the same graph if they have the same embedding. In such a
way an embedding of a graph G is an equivalence class of planar drawings
with respect to the rotation scheme and the choice of the outer face. We call
a graph embedded if its rotation scheme and the outer face are specified. A
planar graph may have many embeddings, while a triconnected planar graph
has only a single embedding up to the choice of the outer face. Examples of
embeddings are given in Figure 2.1.

2.2 Aesthetic Criterias and Drawing Conventions 15

2.2 Aesthetic Criterias and Drawing Conventions

Drawings of graphs may look very different. Usually we describe a drawing by
points and curves, which are the images of vertices and edges. The drawing
conventions try to unify the drawings in terms of their geometric representation.
The conventions are rules that must be satisfied in a drawing if the respective
convention is chosen.

Conventions: Here we present a list of important drawing conventions, which
is not complete, but sufficient to know as a base for this work taken from [49].

1. In a planar drawing the edges do not cross.

2. In a straight-line drawing every edge is drawn as a straight-line segment
between its two incident vertices.

3. In a orthogonal drawing every edge is drawn as a chain of subsequent al-
ternating horizontal and vertical straight-line segments. The attachment
of two consecutive segments is called bend.

4. In a visibility drawing every vertex is drawn as a horizontal segment
and every edge (v, w) is drawn as vertical segment with its endpoints at
the segments representing v and w without crossing any other horizontal
segment. The edges represent “lines of sight”[50, 53].

Graphs that admit visibility drawings1 are called visibility graphs [53, 73, 179,
190]. The literature precisely distinguish between weak visibility drawings,
where edges may be drawn if a line of sight between two horizontal segments is
present, and strong visibility drawings, where edges must be drawn if a line of
sight between two horizontal segments is present. Unless otherwise specified we
refer to weak visibility drawings, whenever we talk about visibility drawings.
Also we insist on crossing free visibility drawings, although there is already
research on non-planar variants [46, 80].

The whole work deals with the planarity convention (1). Examples of planar
drawings according to the above conventions are given in Figure 2.2. In Part I
we first focus on a variant of straight-line drawings (2) and second on orthogonal
drawings (3) with one bend per edge, both combined with the planar drawing
convention (1). In Part II we combine a variant of orthogonal drawings (3)
with a variant of visibility drawings (4) together with planarity (1). Finally
in Chapter 12 we consider again straight-line drawings (2) together with the
planar drawing convention (1).

1Some authors don’t list visibility drawings as drawing convention, but as drawing “ap-
proach”. For consistency we adopt visibility drawings to drawing conventions as [42].

16 2 Basics of Graph Drawing

Figure 2.2: Four different drawings of a planar graph G. A planar drawing
of G that is not a straight-line drawing, a planar straight-line drawing of G,
a visibility drawing of G and an orthogonal drawing of G. This figure is

inspired by a graph from [49].

The drawing conventions build a set of rules in order to fulfill aesthetic criteria,
which are a set of properties that seem to support readability and interpretabil-
ity of drawings.

Aesthetics: Drawings of a graph may look arbitrary complex. One of the main
goal in the area of graph drawing is to draw the graphs as “nice” as possible.
Unfortunately “nice” is subjective and depends also on the information, what
we want to read from the graph. So researchers collected a list of criteria which
improve the readability of graphs according to user studies, cf. [156]. These
criteria have the advantage that they can be measured given a drawing of a
graph. Some of the criteria are listed below, taken from [49] based on [14, 158,
174].

1. Minimization of the total number of crossings.

2. Minimization of the area of a drawing (the area is calculated as the area
of the smallest enclosing rectangle, when the minimum edge length is
one).

3. Minimization of the maximum number of bends per edge.

4. Minimization of the total number of bends.

5. Maximization of the angular resolution (which is the smallest angle be-
tween two incident edges of the same vertex).

6. Minimization of the total number of slopes of the edges.

7. Maximization of the symmetry.

Typically each drawing convention optimizes some aesthetic criteria. But some
of the criteria may contradict each other. For example planar graphs can be
drawn fulfilling the first criteria, while the resulting drawing is not always area
minimal, see Figure 2.3. Thus we usually pick only one or a few of them and
try to optimize them for a drawing.

2.2 Aesthetic Criterias and Drawing Conventions 17

(a) (b) (c) (d) (e)

Figure 2.3: Five different drawings of the K4. The visibility drawing (e)
uses different “lines of sight” compared to Figure 2.2, which is permitted to

avoid ambiguity of edges.

Figure 2.3 illustrates five drawings of the complete graph K4. For these draw-
ings the following conventions are chosen:

(1): (b), (c) and (e) obey the planar drawing convention.

(2): (a), (b) and (e) obey the straight-line drawing convention.

(3): (c), (d) and (e) obey the orthogonal drawing convention.

(4): only (e) obeys the visibility drawing convention.

We check now the aesthetic criteria that are fulfilled in the drawings of Fig-
ure 2.3:

(1): The drawings (b), (c) and (e) have no crossings.

(2): The drawing (a) is area minimal.

(3): The drawings (a), (b) and (e) have 0 bends, (c) has 2 bends and (d) has
1 bend as maximum number of bends per edge.

(4): The drawings (a), (b) and (e) have 0 bends in total, (c) and (d) have 4
bends in total.

(5): The drawing (a) has angular resolution 45 degree, (b) has 30 degree, (c)
and (d) both have 90 degree, and (e) has even 180 degree.

(6): The drawing (a) has 4 slopes, (b) has 6 slopes, (c) and (d) have 2 slopes,
(e) has 1 slope.

(7): The most symmetric drawing is (a) out of all drawings.

The aesthetic criteria build a set of properties that are aimed to be fulfilled
by choosing an appropriate drawing convention. In the whole work we aim
at satisfying the aesthetic criteria (1) together with (4). Using the orthogonal
drawing convention we automatically optimized the aesthetic criteria (5) and
(6). We also try to optimize (3) and (2). In the straight-line drawing conven-
tion, we mainly try to satisfy the aesthetic criteria (7), while (5) and (6) as
well as (2) and (3) seem to contradict the symmetry in some cases.

18 2 Basics of Graph Drawing

2.3 Hypergraphs

r00 rg0 0g0

00b

r0b

rgb

0gb

(a) (b)

r00

rg0

r0b

rgb

0g0

00b

0gb

(c)

Figure 2.4: An Euler diagram (a), support (b) and incidence graph (c) of
the hypergraph from Figure 1.2(a).

In this section we introduce in a generalization of graphs.

A hypergraph H = (V,E) is a pair of sets, where one of the sets V , called
hypervertices, is the base set, and the other set E ⊆ P(V)\∅, called hyperedges,
is a subset of the power set of V . The power set P(V) contains all possible
subsets of V . A hypergraph can be seen as set system in a natural way.

There are several drawing conventions for hypergraphs, but we mention only a
few of them in the following.

Euler diagram: In an Euler diagram the hypervertices V are drawn as points
in the plane and the hyperedges E are simple closed Jordan curves, which en-
close all points representing the hypervertices, which are contained in the hy-
peredge. This is a visualization of the hypergraph as set system. Figure 2.4(a)
shows an example of an Euler diagram. Euler diagrams don’t cover all possible
subsets of the hypervertices in general in contrast to Venn diagrams [168]. The
advantage of those diagrams is that for few hypervertices the diagrams look nice
and readable and support understanding of logical formulas for instance. On
the other hand they are not practical for many hypervertices, since the contours
of hyperedges quickly become complicated [141]. In particular in case of Venn
diagrams the contours of all hyperedges for n hypervertices partition the plane
into 2n regions although not all of them are really needed. Notice also that
there are hypergraphs that cannot be visualized by Euler diagrams, or have
no unique drawing [186]. Therefore several attempts to unify and structure
Euler diagrams were investigated [81, 82, 162], as well as aesthetically pleasing
Euler diagrams [83]. An Euler diagram is also a subdivision drawing [114, 117],
whose dual graph is considered as “support”.

Support: A support G = (VG, EG) of a hypergraph H = (VH , EH) is a
graph on the same vertex set (VG = VH), where the induced subgraph Ge =
(e, EG ∩ e × e) is connected for every e ∈ EH . By drawing a support of a

2.3 Hypergraphs 19

hypergraph according to graph drawing conventions, we obtain a drawing of
the hypergraph, see Figure 2.4(b). The advantage of supports is the usability
of familiar graph drawing techniques. Also the hypergraph becomes clearer,
since some information is omitted. On the other hand this omitted informa-
tion leads to ambiguous drawings, i.e., from a support we may not necessarily
distinguish hypergraphs. Also a support of a hypergraph is not unique. Often
the visualization of support is underlined with a weak gray drawing of the re-
spective hypergraph. The current research about supports of hypergraphs is
restricted to planarity of the supports. In general the decision whether a hy-
pergraph admits a planar support is NP-complete [114]. Even testing whether
a hypergraph admits a 2-outerplanar support is NP-hard [32]. On the positive
side the decision whether a hypergraph admits a path, cycle, tree or cactus2

support is in P [29, 32, 120]. It remains open whether a hypergraph admits
an outerplanar support. With some restrictions on the hypergraph H, that is
if H is closed under intersection and difference, then the decision whether H
admits an outerplanar support or planar support is in P [28].

We will tackle the problem to find an orthogonal-like support for hypergraphs
by considering the incidence graph of a hypergraph in Part II.

Incidence graph: The incidence graph I = (VH ∪ EH , E) of a hypergraph
H = (VH , EH) is a bipartite graph with a vertex for every hypervertex and
every hyperedge and edges between every hypervertex v ∈ VH and hyperedge
e ∈ EH , if v ∈ e. By drawing the incidence graph of a hypergraph according
to graph drawing conventions, we obtain a drawing of the hypergraph, see Fig-
ure 2.4(c). In contrast to supports, the incidence graph is unique. In contrast
to Euler diagrams, the incidence graph looks more familiar (since people are
more familiar with graphs) and does not look as complicated as Euler diagrams
when considering many hypervertices and many hyperedges. Incidence graphs
may be drawn adopting any drawing convention and thus aesthetics of graph
drawings may be transferred to aesthetics of hypergraph drawings.

Some research tackles the problem to visualize non-planar graphs, e.g., inci-
dence graphs, in a planar way using techniques from confluent drawings [56,
70, 110], which provide very aesthetically pleasing drawings due to smooth
bends in edges, in particular for complete and complete bipartite graphs [105].
Another similar approach is edge bundling [194], which provides pleasing vi-
sualizations connecting hierarchical entities [93, 106]. This technique can be
combined with force-directed algorithms [107] improving aesthetics even more
due to additional symmetry. Both techniques lead to high-quality drawings for
many non-planar graphs and inspired us for the drawings in Part II.

When we talk about hypergraphs we focus mainly on the incidence graph in
Part II. In such drawings it remains to visualize the difference of vertices repre-
senting hypervertices and vertices representing hyperedges. This can be done
using colors or different shapes.

2A cactus is a specific outerplanar graph that is a tree consisting of edges and cycles.

20 2 Basics of Graph Drawing

Figure 2.5: A randomly created drawing of a graph with 20 vertices and
40 edges (left) and the same graph drawn by the force-directed algorithm

implemented in [193].

2.4 Force-Directed Algorithms

It may often happen that a graph as mathematical structure is given with-
out any initial drawing. In this section we present a technique that produces
drawings in the straight-line drawing convention, which are nice in terms of
the aesthetic criterion “symmetry”, see an example in Figure 2.5. The con-
cept of force-directed algorithms is explained by physical analogies. For a more
comprehensive survey we refer to [49, 123, 124].

The rough idea of force-directed algorithms is to treat the vertices as physical
particles that are connected by a spring representing an edge. The springs
attract the physical particles and try to minimize the forces acting on the
particles using Hooke’s law. If a configuration is found, where the particles
are in an equilibrium state, i.e., the forces on every vertex sum up to zero or
close to zero, then this configuration is taken to draw the graph with vertices
at the positions defined by the positions of particles in the equilibrium state.
Similarly to springs we can treat vertices as electrons that attract or repulse
depending on whether there is an edge connecting them or not.

We will give a short overview of four important, but different methods for
force-directed algorithms.

1963: Tutte [184] introduced a force-directed algorithm that used the barycen-
tric method for computing forces. This algorithm guarantees a crossing free
straight-line drawing with convex faces for every triconnected planar input
graph. The algorithm fixes three vertices that form a convex face and places
the remaining vertices by solving a linear equation system. The algorithm is
summarized in Algorithm 1 according to [49].

2.4 Force-Directed Algorithms 21

Algorithm 1: Tutte’s algorithm

Input : G = (V,E) with partition V = V0 ∪ V1, where V0 is the set of fixed
vertices and V1 is the set of free vertices, |V0| ≥ 3, a strictly convex
polygon P whose vertex set is in 1-to-1 correspondence to V0.

Output: a position pv for each v ∈ V such that the fixed vertices form P .
Place each u ∈ V0 at a corner of P , and each v ∈ V1 at the origin;
repeat

foreach free vertex v do
xv = 1

deg(v)

∑
(u,v)∈E xv;

yv = 1
deg(v)

∑
(u,v)∈E yv;

end

until xv and yv converge for all free vertices v;

1984: Eades [65] introduced a force-directed algorithm that used springs for
computing forces. This algorithm models the spring mechanism, i.e., vertices
are represented by steel rings and edges by springs connecting the rings. When
at least three rings are fixed in some position, then the spring forces move the
remaining vertices to a minimum energy state, the equilibrium. There are only
two practical aspects to adjust this system: (1) the strength of the springs is
logarithmic, i.e., c1 log(d/c2), where d is the length of the spring, and c1, c2

form constants that can be adjusted according to experiments, (2) nonadjacent
vertices repel each other by an inverse square root force c3/

√
d, where c3 is

a constant again adjusted by experiments. Finally the algorithm uses two
more constants c4 and M , whose values were evaluated by experiments. The
algorithm is summarized in Algorithm 2 according to [123], see Figure 2.6 for
illustration.

Algorithm 2: Eades’s algorithm

Input : Graph G
Output: Straight-line drawing of G
Initialize Positions: place vertices of G in random locations;
for i = 0 to M do

calculate the force acting on each vertex;
move the vertex c4·(force on vertex);

end
draw a filled circle for each vertex;
draw a straight-line segment for each edge;

1989: Kamada and Kawai [115] introduced a force-directed algorithm using
graph theoretic distance for computing forces, which is a completely differ-
ent approach compared to the previous ones. They computed attractive and
repulsing forces by the relation how far (in terms of Euclidean distance) are
the vertices away from their graph theoretic distance (the length of a shortest
path). This gives automatically attracting and repulsing forces.

22 2 Basics of Graph Drawing

Figure 2.6: Illustration of a spring embedder, where edges are illustrated
with springs aiming for a stable configuration taken from [123] based on [91].

Algorithm 3: Kamada–Kawai’s algorithm

Input : Graph G = (V,E)
Output: Straight-line drawing of G
compute pairwise distances dij , 1 ≤ i 6= j ≤ n;
compute pairwise ideal lengths lij , 1 ≤ i 6= j ≤ n;
compute pairwise spring lengths kij , 1 ≤ i 6= j ≤ n;
initialize particle positions p1, . . . , pn;
while maxi ∆i > ε do

let pm be the particle satisfying ∆m = maxi ∆i;
while ∆m > ε do

solve ∂∂E(δx, δy)
T (xm, ym) = −(∂xE, ∂yE)T (xm, ym);

(xm, ym) = (xm, ym) + (δx, δy);

end

end

For the length dij of a shortest path between vertex vi and vj , the ideal Eu-
clidean distance is set to lij = L · dij , where L is the desired length of a
single edge. The respective spring strength is then kij = K/d2

ij for a con-
stant K. The energy with which the vertices are moved is described by E =∑n−1

i=1

∑n
j=i+1 0.5kij(|pi − pj | − lij)2. At each local minimum pm, the partial

derivatives ∆m =

√(
∂E
∂xm

)2
+
(
∂E
∂ym

)2
are zero. So we choose in each step the

point pm with maximum ∆m. By ∂∂E we denote the Hesse matrix and by ∂E
we denote the gradient of E. The algorithm is summarized in Algorithm 3,
following the presentation by Kobourov [123].

1991: Fruchterman and Reingold [87] introduced a force-directed algorithm
that uses electrons for modeling forces. Based on the idea of Eades, they
refined the forces such that they became more correlated to electrical forces.
They adopted also the idea of attractive and repulsive forces, but treated them
completely independent from the graph theoretic approach of Kamada and
Kawai.

2.4 Force-Directed Algorithms 23

Algorithm 4: Fruchterman-Reingold’s algorithm

Input : Graph G = (V,E), area = W · L, max. # I of iterations.
Output: Straight-line drawing of G
Place vertices at random into a rectangle of size W × L;

k :=
√
area/|V |;

function fr(x) = k2/x;
for i = 0 to I do

for v ∈ V do
v.disp := 0;
for u ∈ V do

if u 6= v then
∆ = v.pos− u.pos;
v.disp = v.disp+ sign(∆) · fr(|∆|);

end

end

end
function fa(x) = x2/k;
for e ∈ E do

∆ = e.v.pos− e.u.pos;
e.v.disp = e.v.disp− sign(∆) · fa(|∆|);
e.u.disp = e.u.disp+ sign(∆) · fa(|∆|);

end
for v ∈ V do

v.pos = v.pos+ sign(v.disp) ·min(v.disp, t);
v.pos.x = min(W/2,max(−W/2, v.pos.x));
v.pos.y = min(L/2,max(−L/2, v.pos.y));

end
t = cool(t);

end

Here the attractive force fa(d) and repulsive force fr(d) are defined using a
value k = C

√
area/|V | for a constant C to stay within the area, i.e.,

fa(d) = d2/k and fr(d) = −k2/d.

Additionally they introduced a variable simulating cooling down “temperature”
for the effect that adjustments of vertices are greater in the beginning of the
algorithm compared to the end of the algorithm. The algorithm is summarized
in Algorithm 4, following the presentation by Kobourov [123].

Summarizing, we recalled four force-directed algorithms for producing an aes-
thetic and pleasing drawing of a graph. All algorithms together provide the
main ideas when graphs are considered in a physical model. In Section 4.4 we
will use the ideas of force-directed algorithms presented here, in particular of
Algorithm 4, in order to adopt them partially for our drawing techniques.

24 2 Basics of Graph Drawing

2.5 Orthogonal Drawings

In this section we concentrate on orthogonal drawings of graphs. From the
drawing conventions we know already that in orthogonal drawings the vertices
are drawn as points and the edges are drawn as chains of subsequent alternating
horizontal and vertical straight-line segments. This restricts algorithms that
produce an orthogonal drawing also to a class of graphs in a natural way,
namely all vertices must have a degree 4 at most.

We can easily imagine that any graph of maximum degree ∆ = 4 admits an
orthogonal drawing, but these drawings don’t necessarily look nice due to the
number of bends (and crossings). While the aesthetic criteria (6) minimization
of number of slopes and (5) maximization of angular resolution are naturally
optimized in orthogonal drawings, we consider for these drawings also other
aesthetic criteria in order to fulfill them. Some aesthetic criteria such as (2)
minimizing the area or (4) minimizing the total number of bends drastically
restrict the class of graphs admitting an orthogonal drawing with optimal aes-
thetic. In [148] the authors investigate the question how to optimize the area
allowing a constant number of bends. Optimizing only the area [85, 127] or
only the number of bends [172] is NP-hard. Aiming for aesthetic criterion (3),
that is, minimization of the maximum number of bends, Felsner et al. [79] char-
acterized the class of graphs admitting an orthogonal drawing with one bend
per edge. In Chapter 6 we will use this characterization of non-planar graphs
admitting an orthogonal drawing with one bend per edge.

Next we have a short look at planar orthogonal drawings with few bends [177].
This introduction to orthogonal drawings is based on visibility graphs. These
graphs are closely related to the graphs that we consider in Part II. One of the
main results for planar graphs is given by Tamassia and Tollis [178].

Theorem 2.4 (Tamassia and Tollis [178]). Let G = (V,E) be a planar graph
with ∆ = 4. There is an orthogonal drawing of G on a grid with at most
2.4|V |+ 2 bends, which can be computed in O(|V |) time.

In particular, the construction of Tamassia and Tollis ensures at most 2|V |+ 4
bends if G is biconnected. The construction follows from a given visibility rep-
resentation of the graph. The attachments of edge-segments to vertex-segments
must be resolved by placing a point as vertex on the vertex-segment and trans-
lating vertex-segments to edge-segments, which imply bends. The position of
the vertex is chosen such that the number of bends is controlled and some
drawing invariants are maintained, see Figure 2.7. A final post-processing step
for “relaxing” the faces leads to the above result. For details, see [118]. The
needed visibility representation yields the following result by Rosenstiehl and
Tarjan [163], and Tamassia and Tollis [178].

Theorem 2.5 (Rosenstiehl and Tarjan [163], Tamassia and Tollis [178]). Let
G = (V,E) be a planar graph with ∆ = 4. There is a visibility representation
Γ for G, which can be computed in O(|V |) time.

2.5 Orthogonal Drawings 25

Figure 2.7: The above configurations in visibility representations are trans-
formed to the orthogonal counterpart from below. Symmetric cases are omit-

ted. The figure is taken from [118].

Furthermore this result implies some more properties on the representation
Γ: If G is biconnected, then Γ can be constructed such that for any two ver-
tices s, t incident to the same face, the two vertex segments Γ(s),Γ(t) are the
bottommost, the top most, respectively, and all remaining vertex segments
Γ(v), v 6= s, t have at least one incident edge segment from below and at least
one incident edge segment from above. If G is connected, then Γ can be con-
structed such that a vertex segment Γ(s) is bottommost, and all remaining
vertex segments Γ(v), v 6= s, t have at least one incident edge segment from
below and at least one incident edge segment from above.

In a visibility representation Γ, the bottommost vertex segment Γ(s) is called
source and the topmost vertex segment Γ(t) is called sink, if it exists. Note
that in Part II the drawings we will consider are closely related to visibility
graphs, which will become immediately clear in the respective section. Unfor-
tunately we cannot use these techniques there, but this short introduction in
visibility graphs aims to give some properties. It remains to find a visibility rep-
resentation for a biconnected planar graph G, which can be directly obtained
from an st-order, which is a ordering of the vertices v1, . . . , vn of a biconnected
graph G = (V,E), |V | = n such that every vertex vj , j 6= 1, n is adjacent to
at least one vi, i < j and at least one vk, k > j. The st-order determines the
y-coordinate of the vertex-segments and the x-coordinates follow from a left
to right pass over a planar embedding Γ of G. A visibility representation for
a planar graph can be finally obtained by finding an st-order for each of its
biconnected components and gluing them together. Details on computation of
a st-order can be found in [74] by Even and Tarjan.

Theorem 2.6 (Even and Tarjan [74]). Let G = (V,E), |V | = n be a biconnected
graph and let s, t ∈ V . There is an st-order with v1 = s, vn = t, which can be
computed in O(|E|) time.

The procedure described above is illustrated in Figure 2.8. We will use an
st-order also for orthogonal drawings in Chapter 6 in order to label the vertices

26 2 Basics of Graph Drawing

s = v1

v2 v3

v4

v5
v6

v7

t = v8 t = v8

v7

v6
v5

v4

v3

v2

s = v1

t = v8

v7

v6

v5

v4

v3

v2

s = v1

=⇒
Thm. 2.6

=⇒
Thm. 2.5

=⇒
Thm. 2.4

Figure 2.8: The graph from Figure 2.2 for which an st-order is computed by
Theorem 2.6, a visibility representation by Theorem 2.5 and an orthogonal
drawing by Theorem 2.4 before relaxing the faces. The orthogonal drawing

after the relaxation is illustrated in Figure 2.2 [49].

with numbers according to their subscript, referred to as st-numbering. When-
ever there is a non-biconnected graph, then biconnected components may be
treated separately as we do in the respective section.

Part I

Partial Edge Drawings
(PEDs)

27

Chapter 3
Introduction

One of the main principles for the effective visualization of graphs is the avoid-
ance of edge crossings. Relating to this problem, very active research has been
performed with works ranging from combinatorics, to algorithmics, visualiza-
tion effects, to psychological user studies. Recently, the pragmatic approach
has been proposed to avoid crossings by only drawing the edges partially. Un-
fortunately, no formal model and efficient algorithms have been formulated to
this end.

The idea of partial edge drawings (PED) is to drop the middle part of the
edges and rely on the remaining edge parts, called stubs. In Section 3.1 we
point out related work that is part of the history of PED. Chapter 4 covers
PEDs based on straight-line drawings, where we focus on some aesthetics (sym-
metry and homogeneity) within this model (1/4-SHPEDs). Using this model
we show that some nontrivial graph classes admit 1/4-SHPED, while there are
infinitely many graphs not admitting 1/4-SHPED. We present a force-directed
layout algorithm that aims at producing a 1/4-SHPED for a given graph. We
also evaluate this concept in the end of Chapter 4. In Chapter 5 we modify
the concept to be applicable for graphs with fixed vertex positions, so-called
geometrically embedded graphs. For those graphs our goal is to maximize the
length of the stubs, therefore we partially disregard the symmetry and ig-
nore the homogeneity completely, while insisting on non-crossing stubs. In
Chapter 6 we adopt the PED model for orthogonal drawings. By doing so we
restrict ourselves on orthogonal drawings where every edge has precisely one
bend. We close this part with an overall conclusion about the PED model in
Chapter 7. This part builds a comprehensive survey of PED based on published
work [200, 201, 204, 206, 207].

29

30 3 Introduction

3.1 History of PED

In the layout of graphs, diagrams, or maps, one of the central problems is
to avoid the interference of elements such as crossing edges in graph draw-
ings or overlapping labels on maps. This is a form of visual clutter. Avoiding
visual clutter is one of the main objectives in cartography, information visu-
alization, and graph drawing, which seriously affect the comprehensibility of
a visualization [157, 188]. In graph drawing, a powerful method to achieve
this is the avoidance and removal of edge crossings. Therefore the minimiza-
tion of edge crossings became one of the most important research lines in the
field [31, 49, 118]. Theoretical concepts such as planarity and crossing number
form a sound mathematical basis.

Other papers study which non-planar graphs can be drawn such that the com-
plexity of the edge crossings in the drawing is controlled. In the case of k-planar
drawings, each edge is crossed at most k times (see, e.g., [55, 57, 109, 147]),
while in k-quasi planar drawings, no k pairwise crossing edges exist (see, e.g., [2,
54, 175]), and finally in large angle crossing drawings, any two crossing edges
form a large angle (refer to [58]).

In the last few years, more pragmatic approaches have been proposed for re-
moving edge clutter when visualizing dense graphs. These approaches mostly
stem from the field of information visualization. Edge bundling [43, 106, 107]
(see [194] for a survey), confluent drawings [56, 110] and last, but not least
partial edge drawings should be mentioned here. We will focus on completely
removing edge crossings of non-planar graphs. Clearly, this is not possible in
any of the traditional graph drawing styles that insist on connecting the geo-
metric representations of two adjacent vertices (e.g., small disks) by a closed
Jordan curve (e.g., segments of straight lines). In such drawings of non-planar
graphs, some pairs of edge representations must cross (or overlap). This is a
serious problem when displaying dense graphs.

All of the approaches above follow the same basic principle, but fail to provide
a unified formal model as well as efficient algorithms to explore the power of
this idea. As can be seen in Figure 3.1, the partially drawn edges improve the
readability of drawings compared to completely drawn edges. In order to keep
our drawing model as simple as possible, we do not allow any edge crossings
at all and focus on optimizing the length of partially drawn edges. Our key
questions are which graphs can be drawn with a prescribed length of partially
drawn edges and which graphs cannot be drawn.

The beginning of PED

Becker et al. [15] have taken a rather radical approach to escape from this
dilemma. They wanted to visualize network overload between the 110 switches
of the AT&T long distance telephone network in the U.S. on October 17, 1989,

3.1 History of PED 31

Figure 3.1: A randomly generated graph G with 20 vertices and 100 edges
laid-out with a spring embedder [87, 193]. The drawing of G with partially
drawn edges, where the middle halves of the edges have been removed (later
called SHPED with stub-edge-ratio 1/4). Here the length of the stubs is
proportional to the distance between corresponding vertices. The number of

crossings shrinks from 413 to 23.

when the San Francisco Bay area was hit by an earthquake. They used straight-
line segments to connect pairs of switches struck by overload; the width of the
segments indicated the severeness of the overload. Due to the sheer number
of edges of a certain width, the underlying map of the U.S. was barely visible.
They solved this problem by drawing only a certain fraction (roughly 10%) of
each edge; the part(s) incident to the switch(es) experiencing the overload. We
call these parts the stubs of the edges. The resulting picture is much clearer;
it shows a distinct east–west trend among the edges with overload.

Peng et al. [150] used splines to bundle edges, e.g., in the dense graph of
all U.S. airline connections. In order to reduce clutter, they increased the
transparency of edges towards the middle. They compared their method to
other edge bundling techniques [93, 107], concluding that their method, by
emphasizing the stubs, is better in revealing directional trends.

Burch et al. [33] recently investigated the usefulness of partial edge drawings
of directed graphs. They used a single stub at the source vertex of each edge.
They did a user study (with 42 subjects) which showed that, for one of the
three tasks they investigated (identifying the vertex with highest out-degree),
shorter stubs resulted in shorter completion times and lower error rates. For the
two other tasks (deciding whether a highlighted pair of vertices is connected by
a path of length one/two) the error rate went up with decreasing stub length;
there was just a small dip in the completion time for a stub–edge length ratio
of 75%.

A similar but less radical approach is the use of edge casing. Eppstein et al. [71]
investigated how to optimize several criteria that encode the above–below be-
havior of edges in given graph drawings. They introduced three models (i.e.,

32 3 Introduction

legal above–below patterns) and several objective functions such as minimizing
the total number of above–below switches or the maximum number of switches
per edge. For some combinations of models and objectives, they give efficient
algorithms, for one they show NP-hardness; others are still open. Edge casings
were re-invented by Rusu et al. [164] with reference to Gestalt principles.

Dickerson et al. [56] proposed confluent drawings to avoid edge crossings. In
their approach, edges are drawn as locally monotone curves; edges may overlap
but not cross.

Chapter 4
PEDs for Graphs

In this section we introduce the PED model for straight-line drawings of graphs
without fixed vertex positions. In Section 4.1 we define the PED model for-
mally for drawings of graphs without given embedding and characterize PEDs
with concepts like symmetry and homogeneity (1/4-SHPED). In Section 4.2 we
identify nontrivial graph classes which admit a 1/4-SHPED and formulate a
sufficient condition to guarantee a 1/4-SHPED. Most of the calculations can be
generalized. In Section 4.3 we show that not all graphs admit a 1/4-SHPED.
Specifically, we show that the complete graph K165 does not admit a 1/4-
SHPED. In Section 4.4 we present a layout algorithm that aims at producing
1/4-SHPEDs for all graphs using a force-directed method. In Section 4.5 we
evaluate this model and in Section 4.6 we summarize the results about graphs
in the PED model for straight-line drawings without fixed vertex positions.
Most of the results are published in [200, 201, 204, 206].

4.1 Formal Concept

In this section we formally define the model of PED for straight-line drawings.
Let G = (V,E) be an arbitrary undirected graph and let ΓG = (Γ(V),Γ(E))
be a straight-line embedding of G, which maps the vertices to points in the
Euclidean plane and the edges to segments connecting corresponding points.
We will always identify the vertices of the given graph with the points in the
plane to which we map the vertices. Note that we deal with undirected graphs
in general. The directed version of edges is being considered when seen from
a specific start/end vertex. Let γ : [0, 1] × E −→ Γ(E) be a function with
γ([0, 1], e) = Γ(e), continuous in the first parameter, describing points on an
edge e. For e = (v, w) we define γ({0}, e) := Γ(v) and γ({1}, e) := Γ(w). The
formal definition of a PEDΓG is a drawing so that for every edge e ∈ E there
exists Ae ⊆ [0, 1] with [0, 1] \ Ae closed and connected and so that PEDΓG =

33

34 4 PEDs for Graphs

(a) SHPED (b) SPED (c) HPED (d) PED

Figure 4.1: Drawings of K6 in different types of PEDs.

(Γ(V),
⋃
e∈E γ(Ae, e)) has no crossings of the drawn parts of an edge. So Ae

describes the parts of the edge e that are actually drawn, consisting of two half-
open intervals. For each e ∈ E the length of Γ(e) is denoted by the Euclidean
distance d(e) = d(v, w). We say γ(Ae, e) is a partial edge and its length is
denoted by d(γ(Ae, e)). There is one first segment ef of γ(Ae, e) incident to
γ({0}, e) and one last segment el incident to γ({1}, e). Segments ef and el
are the stubs and can be assigned to an edge, which contains the stub, or
to a vertex, which is incident to the stub. Its length is denoted by d(ef) or
d(el), respectively. Note, in every PED the set [0, 1] \ Ae is connected. If
d(ef) = d(el), the drawing is a symmetric PED (SPED). If Ae = Ae′ for all
e 6= e′ with e, e′ ∈ E, the PED is called homogeneous (HPED). That means
the percentage of the drawn edge is equal for all edges. These PED-types are
shown in Figure 4.1. Every SHPED has a stub-edge-ratio δ = d(ef)/d(e), for
d(ef) = d(γ(Ae, e))/2 and an arbitrary edge e ∈ E.

It is easy to see that every planar graph G has a PEDΓG for an embedding Γ.
For the following sections we assume G to be non-planar. We find the model
for SHPEDs most appealing, when the stub-edge-ratio δ is being prescribed,
denoted by δ-SHEPD. When considering an edge, the user can guess from the
direction and the length of one of its stubs, where the other end of the edge is
being placed. Therefore, we will mainly concentrate on δ-SHPEDs.

We introduced a formal model in a strict topological approach. In the next
sections we consider the stubs not as images of parametrizations, but simply
as set of points. Therefore we refer to stubs by an easier notation: in order to
emphasize which of the two stubs of an edge e = (v, w) is regarded, we denote
the stub incident to v by sev and the stub incident to w by sew. We may even
disregard the edge e in the notation, if the respective edge is unique from the
context.

4.2 Graphs Admitting 1/4-SHPEDs

In this section we investigate graphs admitting 1/4-SHPEDs. Nevertheless
we keep the stub-edge ratio δ as general as possible. We give bounds on the

4.2 Graphs Admitting 1/4-SHPEDs 35

number of vertices for specific graph classes, depending on δ. We start with
complete graphs in Section 4.2.1 and continue with a sufficient condition that
ensures 1/4-SHPEDs in Section 4.2.2. This condition provides a feeling for
geometric behaviour and is further used in Section 4.2.3 to prove the existence
of 1/4-SHEPDs for the class of powers of finite subgraphs of triangular tilings.
Finally we prove the existence of 1/4-SHPEDs for complete bipartite graphs
in Section 4.2.4 and for graphs of bounded bandwidth in Section 4.2.5. For
all these classes the number of vertices of the graphs depends on the given
stub-edge-ratio δ, but this bounds hold also for subgraphs of the mentioned
graphs.

4.2.1 Complete Graphs

It is obvious that the complete graph Kn has a PED of any specific type, which
can be constructed in a very simple way by drawing stubs sufficiently small.
Thus a proof can be left out. As a next step, we consider the question, which
complete graphs admit an SHPED when the stub-edge-ratio δ is given and
compute a sufficient stub-edge-ratio for a given complete graph.

Lemma 4.1. The graph Kn has an SHPED.

Lemma 4.2. For δ ∈ [0, 0.5], every subgraph G of Kn has an SHPED with stub-
edge-ratio δ, with n ≤ n(δ) =

∑m
i=1 ni and m = b 1

2δ c, ni = bπ/ arcsin(δ
1+δ−2δi)c.

Proof. First, we show that n1 = bπ/ arcsin(δ
1−δ)c points can be placed on the

circumference of a disk ĉ, so that Kn1 has an SHPED. Second we decompose
ĉ into layers and each layer contains ni = bπ/ arcsin(δ

1+δ−2δi)c points, so that
circles cv, cw for stubs do not intersect for each two vertices v, w in layer i.

Let δ ∈ [0, 0.5] be the stub-edge-ratio for an SHPED of Kn(δ). Let ĉ(o, r̂) be the
main disk, centered in the origin o with radius r̂. The number n of uniformly
distributed vertices on the circumference of ĉ is maximal, if their distances is
as follows, see Figure 4.2. The angle between each two neighbored vertices is
α = 2π/n. For each vertex v ∈ V we find a small circle cv touching v inside
ĉ, which contains the stubs of v. The longest stub in every small circle has
length 2r = 2r̂δ, which is the diameter. We get a legal PED, if no two small
circles intersect. So if two small circles cv, cw of v, w touch, the distance of the
center points c1 and c2 is l = 2r̂(1 − δ) sin(α/2) and l = 2r and thus we have
δ

1−δ = sin(π/n)⇒ n(δ) := n = bπ/ arcsin(δ
1−δ)c.

Now we decompose ĉ into layers depending on δ, see Figure 4.2. Let ĉ(o, r̂)−
c(o, r̂− 2r̂δ) be the first layer of the drawing and iteratively let c(o, r̂− 2r̂δ(i−
1)) − c(o, r̂ − 2r̂δi) be the i-th layer for i = 1, ..., b 1

2δ c =: m. So each layer is
a disk of width 2r̂δ and if r̂ is not a multiple of 2r̂δ, a small disk c(o, r′) with
r′ < 2r̂δ remains, which will not count as layer.

36 4 PEDs for Graphs

O

R

α

O

r l

v1

v2

v3

v4

v5

v6

v7

v8

v

w

c1

c2

kv

kw

layer 1

layer 2

Figure 4.2: Computing the number of vertices for δ = 1/4

A small circle cv is described by δ and the position of v. We observe, that
the radius rv of the small circle cv is the same for all v ∈ V , because our
drawing is symmetric. So in general we have rv = δr̂ for all v ∈ V and
l = 2r̂δ is the minimum distance of two neighbored vertices of the same layer.
The center of each small circle of layer i is on the circumference of c(o, r̂ −
(δr̂ + 2δr̂(i − 1))), which is inside layer i. Thus we guarantee, that all small
circles of layer i are completely inside layer i. We can compute the number
ni of vertices in layer i, with property 0.5l

r̂−(δr̂+2δr̂(i−1)) = sin(π/ni). This yields

ni = bπ/ arcsin(δ
1+δ−2δi)c.

If for example δ = 1/4, then every subgraph of K11 has an SHPED with stub-
edge-ratio δ, see Figure 4.3(a). If r̂ is not multiple of 2r̂δ, then a small circle c
of radius r, which is not a layer, remains. If r̂ < r < 2r̂δ, then we can improve
n by placing one more small circle inside c. There are two further ways to
improve the result, namely to pack the small circles in a better way or to move
the small circles such that they may intersect, but no stubs intersect. These
improvements save a lot of space for more vertices, but it is more difficult to
compute. By trial and error, we found a way to draw K16 for δ = 1/4 in an
SHPED, see Figure 4.3(b).

Lemma 4.3. Let G be a subgraph of a complete graph Kn with n vertices.
Then G has an SHPED with stub-edge-ratio δ ≤ 1√

4n/π
.

Proof. We use the formula from Lemma 4.2. Assume δ = 1/x is the stub-
edge-ratio of an SHPED of G for x ∈ N. We distinguish between the odd
and the even case of 1/δ first and take the minimum of both values for δ’s
upper bound depending on n. With δ = 1/x, we have m = bx/2c and the
argument a of arcsin in the formula is a = δ

1+δ−2δi = 1
x+1−2i . If x is even,

we have a1 = 1
1 , a2 = 1

3 , ..., am = 1
x−1 as arguments. Otherwise, we have

a1 = 1
2 , a2 = 1

4 , ..., am = 1
x−1 as arguments. So n(δ) =

∑bx/2c
i=1 b π

arcsin(ai)
c ≤

4.2 Graphs Admitting 1/4-SHPEDs 37

(a) (b)

Figure 4.3: (a) SHPED of K11 with stub-edge-ratio δ = 1/4 by construc-
tion. (b) SHPED of K16 with stub-edge-ratio δ = 1/4 by trial and error.

∑x/2
i=1 π/ai. If x is even, then n(δ) ≤ ∑x/2

i=1 π(2i − 1) = πx2/4. Otherwise, we

have n(δ) ≤∑x/2
i=1 π2i = πx+ πx2/2. Thus we can compute δe(n) ≤ 1√

4n/π
, if

x is even and δo(n) ≤ 1

−1+
√

1+2n/π
, if x is odd. The minimum min{δe, δo} = δe

defines a legal upper bound.

4.2.2 A Sufficient Condition

Let G = (V,E) be a graph, let N(v) be the set of neighbors of v ∈ V , and let
δ ∈ [0, 0.5] be the stub-edge-ratio of G’s SHPED. For a vertex v, we choose
an arbitrary radius r̂v and set rv := δr̂v. The following condition is shown
in Figure 4.4, where the left drawing fulfills the condition and the right one
does not. Note that this condition does not hold for the construction of Kn as
above, because the vertices of Kn are not in the center of the small circles.

Condition 4.4. There exists an embedding, such that for all vertices v all
stubs of v are inside a small circle c(v, rv), all adjacent vertices of v are within
a bigger circle c(v, r̂v) and small circles c(v, rv), c(w, rw) do not intersect for
each v, w.

Lemma 4.5. If G satisfies Condition 4.4, then there exists an SPED. If ad-
ditionally for all v ∈ V and a constant δ ∈ [0, 0.5], the stubs of v have length
rv = δr̂v, then there exists an HPED.

Proof. It is clear, that all stubs do not intersect, if the small circles do not
intersect. For an SPED we draw the stubs with length min{rv, rw} for e =
(v, w). For an HPED we immediately have δ as stub-edge-ratio.

38 4 PEDs for Graphs

v w

u

c(u, ru)

c(v, rv) c(w, rw)

c(u,Ru) c(v,Rv)

c(w,Rw)

v w

u c(u, ru)

c(v, rv) c(w, rw)

c(u,Ru)

c(v,Rv)c(w,Rw)

Figure 4.4: The embedding of K3 to the left satisfies Condition 4.4, while
the other one does not, although there are no “real” edge crossings.

4.2.3 Powers of Triangular Grids

We can identify an important graph class for which we can guarantee an SHPED
by satisfying Condition 4.4. Let T = (VT , ET) be a triangular tiling of the
Euclidean plane with canonical embedding, see Figure 4.5. The dual T ′ of T
is the so-called hexagonal tiling of the plane whose vertices lie in the centers
of the bounded faces of T . For a connected graph G ⊂ T with n vertices
and j ∈ {1, . . . , n − 1}, we call Gj the j-th power of G if, for any path of
length at most j from v to w in G, there is an edge (v, w) in Gj . Note that
G = G1 ≤ G2 ≤ · · · ≤ Gn−1 = Kn.

Theorem 4.6. Let T be a triangular tiling and G ⊂ T a connected subgraph
with n vertices. For every j ≥ 1 and any δ < 1

2j , Gj admits a δ-SHPED.

Proof. Let T be a triangular tiling, let G = (V,E) be a connected subgraph
of T with n vertices, and let j ≥ 1. Let T ′ be the dual of T as described.
Every vertex v ∈ V is inside a face f(v) of T ′, called comb. More precisely v is
the center of the hexagonal comb f(v) in the embedding of T ′, see Figure 4.5.
Choose δ < 1

2j and call ζ := 1
2j−δ the slack for extensions of stubs in each comb.

If ζ > 0.25, then choose ζ < 0.25 independent from j and δ. For movements of
points we choose ε := ζ/j as one unit of distance. For each v ∈ V let r = d(e)jδ
be the radius of a circle c(v, r) containing all its stubs. Each comb f(v) contains
c(v, r) completely and the distance of v to the boundary of f(v), is at most
half of the distance from v to a neighbor in G. Since δ is the percentage of
the length between stubs and its edges, the maximum distance of v’s neighbors
in Gj is d(e)

2δ and thus all stubs in Gj can be drawn with j = 1
2δ . To avoid

overlapping stubs, we move some of the vertices by multiples of ε.

Consider T as a grid with columns 1, . . . , x̂ from left to right and rows 1, . . . , ŷ
from bottom left to the top right. Now we move the vertices of every i-th
column downwards (column-direction) by ε(i mod j) as well as all vertices of
every i-th row downwards and rightwards along the row (row-direction) by ε(i
mod j) and get G′j , which is shown in Figure 4.5. Now parallel edges in Gj

do not overlap in G′j . Next we prove that all stubs are inside their comb. Let
v, w ∈ V be two arbitrary vertices neighbored in Gj .

4.2 Graphs Admitting 1/4-SHPEDs 39

r

v

k(v, r)
f(v)

ε ε

ε

ε
v

T T’

w

Figure 4.5: Triangular tiling T with its dual T ′ and a subgraph G of T and
movement of vertices for δ < 0.25 in G2 (solid and dashed edges).

Case 1: Assume v, w are centers of combs in the same column of T . Then
the positions of v, w have just a difference of at most j′ε in row-direction,
j′ ≤ j. W.l.o.g. we can assume v is fixed and w is moved by j′ε to w′, we just
consider the differences of movements. By triangle inequality we can compute
the distance d(v, w′) ≤ d(v, w)+jε. Thus with slack ζ = jε ≥ j′ε in each comb,
there is no stub crossing its comb boundary, hence crossing no stubs.

Case 2: Assume v, w are centers of combs in the same row. Then we have just
a movement in column-direction and we apply the same argument as in case 1.

Case 3: Assume v, w are centers of combs in different rows and columns of
T . W.l.o.g. w is fixed and v is moved by jrε in row-direction (0 ≤ jr ≤ j)
and by jcε in column-direction (0 ≤ jc ≤ j), which is v′. In G′j we have the
distance d(v′, w) ≤ d(v, w) + jrε + jcε by triangle inequality. The distance
d(v, w) can be computed in G. Let w, p1, .., pl, v be a shortest path from w to
v in G. So d(v, w) < 2r(l + 1), if we do not follow the path. Since v and w
are not in the same row and column, there are 3 vertices pi−1, pi, pi+1 on the
path such that pi−1 and pi+1 are not in the same row and column, 1 < i < l.
Then d(pi−1, pi+1) = 2

√
3r and thus d(v, w) ≤ 2r(l − 1) + 2

√
3r. In the end

we have d(v′, w) ≤ 2r((l − 1) +
√

3) + 2jε and since ζ = jε < 0.25, we have
d(v′, w) ≤ 2r((l−1)+

√
3)+0.5 < 2r(l+1) in Gj . Now Gj satisfies Condition 4.4

(apply Lemma 4.5) except of the separately considered vertices, but their stubs
are inside their comb, as seen in the three cases.

Corollary 4.7. For j = 1, we have a planar graph G = G1 and the movement
of vertices is not necessary, while for j = 2, we have G2 as the square of a
triangular tiling with SHPED of stub-edge-ratio δ < 1/4.

40 4 PEDs for Graphs

(a) 1/4-SHPED of K8,8 (b) 1/4-SHPED of K8,9

Figure 4.6: Two methods for drawing complete bipartite graphs as SH-
PEDs.

4.2.4 Complete Bipartite Graphs

Our first construction is especially suitable if both sides of the bipartition have
about the same size. The drawing is illustrated in Figure 4.6(a). Note that the
figure scales x-axis and y-axis differently. In the following two results, there are
fractions where both numerator and denominator are logarithmic expressions;
therefore, we do not need to specify their bases.

Theorem 4.8. The complete bipartite graph Kn,n has a δ-SHPED if

n ≤
⌊

1

δ

⌋
·
⌊⌊

log 1/2

log(1− δ)

⌋⌋
,

where bbrcc denotes the largest integer that is strictly less than r.

Proof. Let k =
⌊

1
δ

⌋
and ` =

⌊⌊
log 1/2

log(1−δ)

⌋⌋
. The latter implies that (1− δ)` > 1

2 .

Divide the plane at the vertical line x = 1/2 into two half planes, one for each
side of the bipartition, to which we will refer as the right-hand side and the
left-hand side. In each half plane draw the n vertices on a (perturbed) k × `
grid. More precisely, for a horizontal line, let ε ≥ 0 such that (1− δ)` > 1

2 + ε.
Draw the vertices with x-coordinates

(1− δ)i − ε and 1− (1− δ)i + ε, i = 0, . . . , `− 1.

Draw the vertices on the left-hand side with y-coordinates 0, . . . , k − 1 and
the vertices on the right-hand side with y-coordinates 0 + σ, . . . , k − 1 + σ
where 0 < σ < 1 is chosen such that no two vertices on the right-hand side
are collinear with a vertex on the left-hand side and vice versa. All edges are
between a vertex on the left-hand side and a vertex on the right-hand side.

4.2 Graphs Admitting 1/4-SHPEDs 41

Then for any two vertices the bounding boxes of their incident stubs are disjoint
up to their boundaries. Intersections of the stubs on the boundaries can be
avoided by a suitable choice of ε.

1. If v is a vertex on the right-hand side with x-coordinate (1− δ)i− ε, then
the projection to the x-axis of the longest edge incident to v has length
(1−δ)i−ε. Hence all stubs incident to v are in the vertical strip bounded
by x = (1−δ)i−ε and x = (1−δ)i−ε−δ((1−δ)i−ε) ≥ (1−δ)i+1−ε > 1/2.
The latter inequation follows since i+ 1 ≤ `.

2. Let vi be a vertex with y-coordinate σ + i, i = 0, . . . , k − 1. Then the
projection to the y-axis of the longest edge incident to vi and above v
has length k − 1− i− σ while the projection to the y-axis of the longest
edge incident to vi and below v has length i + σ. Hence the projection
to the y-axis of the stubs incident to vi and vi+1 do not intersect if
δ(k− 1− i− σ) + δ(i+ 1 + σ) < 1 which is fulfilled if k < 1/δ. If k = 1/δ
then draw the vertices on the horizontal lines y = i and y = i+σ for even
i with ε = 0 and the vertices on the other horizontal lines with a slightly
positive ε such that the end points of the stubs do not intersect.

A symmetric argument holds for the vertices on the left-hand side.

Granacher [97] improved Theorem 4.8 by reducing the gaps between vertices
and stubs in a more careful way.

Theorem 4.9 ([97]). The complete bipartite graph K2n,2n has a δ-SHPED if

n ≤
⌊⌊

log(1−δ
δ)

log(1−δ−δ2
(1−δ)2)

+ 1

⌋⌋
.

Our second construction is especially suitable if one side of the bipartition is
much larger than the other. The drawing is illustrated in Figure 4.6(b).

Theorem 4.10. For any integers n > 0 and k < log δ/log(1− δ), the complete
bipartite graph K2k,n has a δ-SHPED.

Proof. Draw the n vertices on the x-axis with x-coordinate xi = 1/(1−δ)i−1, i =
1, . . . , n and the 2k vertices on the y-axis with y-coordinate yi = 1/(1−δ)i−1, i =
1, . . . , k and−yi, i = 1, . . . , k. All edges are between a vertex on the y-axis and a
vertex on the x-axis. To show that no stubs intersect, we establish the following
two properties on the regions that contain the stubs.

1. The stubs incident to (0,±yi), i = 2, . . . , k are in the horizontal strip
bounded by y = ±yi and y = ±yi−1:

The projection to the y-axis of any stub incident to (0, yi) has length δ ·yi,
hence it stops at y = (1− δ) ·

(
1

1−δ

)i−1
=
(

1
1−δ

)i−2
= yi−1.

42 4 PEDs for Graphs

Figure 4.7: 1/4-SHPED of K4,4,7 (left) and K6,6,6 (right) with α = 2π/3
from [97].

2. The stubs incident to (0, xi), i = 2, . . . , n are in the rectangle bounded by
y = ±(1− δ), x = xi−1, and x = xi (where x0 = 1− δ):
As above, the projection of any stub incident to (0, xi) stops at x = xi−1.
The absolute value of the projection to the y-axis is bounded by δ · yk =

δ ·
(

1
1−δ

)k−1
which is less than 1− δ if k < log δ/log(1− δ).

Since the stubs incident to (0,±y1) lie in the horizontal strip bounded by y =
±1 and y = ±(1− δ), it follows that any two stubs do not cross.

Using a construction on only two axes (referred to as rays) Granacher [97]
proved also results for tripartite graphs in a similar way. The results are sum-
marized in the following two theorems. Again, bbrcc denotes the largest integer
that is strictly less than r. Figure 4.7 illustrates the construction according to
both theorems.

Theorem 4.11 ([97]). For any integers n > 0 the complete tripartite graph
Kk,k,n has a δ-SHPED if

k ≤ bblog δ/log(1− δ)cc ,

and the angle α between every pair of rays fulfills 0 < α < π.

Theorem 4.12 ([97]). For any integers n > 0 the complete tripartite graph
Kn,n,n has a δ-SHPED if

n ≤
⌊⌊

log(1−δ
δ)

log(1−δ−δ2
(1−δ)2)

+ 1

⌋⌋
,

and the angle α between every pair of rays fulfills 0 < α < π.

4.2 Graphs Admitting 1/4-SHPEDs 43

√
k
−

1

n/
√
k − 1

v1 vk+1

v
k−
√
k+1

(a) path case

R

v1

vk

v
k−
√
k+1 vk+1

(b) circle case

Figure 4.8: SHPEDs for bandwidth-k and k-circulant graphs.

4.2.5 Graphs of Bounded Bandwidth

Tha k-circulant graph Ckn with n vertices and 0 ≤ k < n is the undirected sim-
ple graph whose vertex set is {v0, . . . , vn−1} and whose edge set is {(vi, vj) : |j−
i| ≤ k}. When we specify the index of a vertex, we implicitly assume compu-

tation modulo n. Note that C1
n = Cn and C

n/2
n = Kn.

Granacher [97] showed how to use the Gosper curve to construct a 1
4.7
√
k
-

SHPED for a bandwidth-k graph, i.e., the vertices ofG can be ordered v1, . . . , vn
and for each edge (vi, vj) it holds that |j − i| ≤ k, even if k is not known.

For the case that k is known, we give drawings with a better constant. We
provide δ-SHPED constructions for k-circulant and bandwidth-k graphs where
δ = Θ

(
1/
√
k
)
, especially δ ≥ 1

2.83
√
k

for bandwidth-k graphs. For ease of

presentation, we assume that
√
k and n

/√
k are integers.

First, let G be a graph of bandwidth-k. We draw G as a δ-SHPED as follows.
We map the vertices of G to the vertices of an integer grid of

(
n
/√

k ×
√
k
)

points such that the sequence of vertices v1, . . . , vn traverses the grid column
by column in a snake-like fashion, see Figure 4.8(a).

The distance from any vertex to its k-th successor is at most
√(√

k − 1
)2

+ k <√
2k, see the two dashed line segments in Figure 4.8(a). Setting δ = 1/

(
2
√

2k
)

ensures that each stub is contained in the radius-1/2 disks centered at the
vertex to which it is incident. Since the disks are pairwise disjoint, the stubs
are disjoint.

For the k-circulant graph Ckn, we modify this approach such that the start
and the end of the snake coincide. In other words, we deform our rectangular
section of the integer grid into an annulus; see Figure 4.8(b). We additionally
assume that n/

√
k is even.

The inner circle circumscribes a regular
(
n/
√
k
)
-gon Π of edge length 1.

We place the vertices of Ckn on rays that go from the center of the annulus
through the vertices of Π. On each ray, we place

√
k vertices at distance 1 from

44 4 PEDs for Graphs

one another, starting from the inner circle and ending at the outer circle. The
sequence again traverses the stacks of vertices in a snake-like fashion.

A vertex v can be reached from its j-th (j < k) successor s, by traversing at
most 3

√
k − 2 segments of length 1: at most

√
k − 1 segments from s to the

inner circle, at most
√
k segments on the inner circle, and at most

√
k − 1

segments from the inner circle to v. Hence, the maximum distance of two
adjacent vertices is less than 3

√
k, and we can choose δ = 1/(6

√
k). The

results presented above are summarized in the following theorem.

Theorem 4.13. Let 2 ≤ k ≤ n and assume that
√
k and n

/√
k are integers.

Then any graph of bandwidth k has a 1
/(

2
√

2k
)
-SHPED. If additionally n

/√
k

is even, the k-circulant graph Ckn has a 1
/(

6
√
k
)
-SHPED.

4.3 Graphs Not Admitting 1/4-SHPEDs

In this section, we show that not any graph can be drawn as a 1/4-SHPED.
Note that 1/4 is an interesting value since it balances the drawn and the erased
parts of each edge. Yet, our proof techniques generalize to δ-SHPEDs for
arbitrary but fixed 0 < δ < 1/2. We start with a simple proof for the scenario
where we insist that vertices are mapped to specific point sets, namely point
sets in convex or one-sided convex position. We say that a convex point set is
one-sided if its convex hull contains an edge of a rectangle enclosing the point
set.

Since we discuss about edges and stubs in this section extensively, we reduce
notational complexity by the following notational conventions. We use uv as
shorthand for the edge connecting u and v. If we refer to the stub uv then we
mean the piece of the edge uv incident to u; the stub vu is incident to v.

The remainder of this section is structured accordingly for the decomposition
of the proof into the subproblems, where we consider parts of the point set for
a closer look.

4.3.1 The Main Argument

Theorem 4.14. There is no set of 17 points in one-sided convex position on
which the graph K17 can be embedded as 1/4-SHPED.

Proof. We assume, to the contrary of the above statement, that there is a set P
of 17 points in one-sided convex position that admits an embedding of K17 as a
1/4-SHPED. Consider the edge e = uv that witnesses the one-sidedness of P .
We can choose our coordinate system such that u = (0, 0), v = (1, 0) and all

4.3 Graphs Not Admitting 1/4-SHPEDs 45

u v

a
b

w

e

1/12
|uw|
4

3|uw|
16

|uw|/8

Figure 4.9: Sketch of the argument why no 17 points in one-sided convex
position can be used to embed K17 as a 1/4-SHPED.

other points lie above e. We split the area above e into twelve interior-disjoint
vertical strips of equal width, see Figure 4.9.

We first show that the union of the six innermost strips contains at most six
points of P . Otherwise there would be a strip S that contains two points a
and b of P . Let a be the one closer to u. Since S is one of the six innermost
strips, the stub av intersects the right boundary of S (below the stub bv), and
the stub bu intersects the left boundary of S (below the stub au). Point a lies
above stub bu and point b lies above stub av. Hence, stubs av and bu intersect.

So at least eleven points of P must lie in the union of the three leftmost and
the three rightmost strips. We may assume that the union Sleft of the three
leftmost strips contains at least six points. Let w be the rightmost point in
P ∩ Sleft. We subdivide the edge uw into five pieces whose lengths are 1/4,
3/16, 1/8, 3/16, and 1/4 of the length of uw. Each piece contains its endpoint
that is closer to one of the endpoints of uw. The innermost piece contains both
of its endpoints. Now consider the cones with apex v spanned by the five pieces
of uw. We claim that no cone contains more than one point.

Our main tool is the following. Let t be a point in (P ∩ Sleft) \ {u,w}. Then
the stub tv intersects the right boundary of Sleft and, hence, also the edge uw
that separates P ∩ Sleft from P \ Sleft. It remains to note that in each cone,
any point has a stub to u or w (whichever is further away from the cone) that
intersects the boundary of the cone.

Theorem 4.14 can be used to derive a first upper bound on general point sets
as follows.

Corollary 4.15. For any n >
(

30
15

)
, the graph Kn does not admit a 1/4-

SHPED.

Proof. By a result of Erdős and Szekeres [72], any set of more than
(

2k−4
k−2

)

points in general position contains a subset of k points that form a one-sided
convex set. Combining this with Theorem 4.14 and plugging in k = 17 yields
the claimed bound.

46 4 PEDs for Graphs

Cr: 8Cl: 8

Ct: 8

r = (1, 0)

t = (t, 1)

(0, 0) = l

S1: 5

S2: 5

B1: 2 B2: 2 B3: 2 B4: 2 B5: 2

S3: 5

S4: 5

S5: 5

(0, 1)

L3L4L5 L2 L1 R3R2R1 R4 R5







S: 30

︸ ︷︷ ︸
B: 10

0.75

0.67

0.56

0.45

0.37

0.25

1/4 1/3 3/7 4/7 2/3 3/4

3t+1
4

2t+1
3

5t+4
9

11t+16
27

17t+64
81

0.30S6: 5

3t
4 (1, 1)

}
L+R:19

Figure 4.10: Partition of the enclosing rectangle At into cells. We have
labeled each cell or group of cells with the maximum number of points that

it can contain.

We now vastly improve upon the bound of Corollary 4.15. Let P be the point
set in the plane, and let l and r be the two points on the convex hull that define
the diameter of P , which is the largest distance between any two points. We
rotate P such that the line lr is horizontal and l is on the left-hand side. Now
let A be the smallest enclosing axis-aligned rectangle that contains P , and let t
and b be the top- and bottommost points in A, respectively. Accordingly, let At
be the part of A above (and including) lr and let Ab = A \ At. We consider
the two rectangles separately and assume that the interior of At is not empty.
(In our proof we argue, for any interior point, using only its stubs towards the
three boundary points l, r, and t.)

We subdivide At into 26 cells such that for each point in a cell the three
stubs to l, r, and t intersect the boundary of that cell; see Figure 4.10. For
each cell, we prove, in the remainder of this section, an upper bound on the
maximum number of points it can contain. Summing up these numbers (see
again Figure 4.10), we get a bound of 83 points in total. Since we may have a
symmetric subproblem below lr, we double this number, subtract 2 because of
double-counting l and r, and finally get the following theorem.

Theorem 4.16. For any n > 164, the graph Kn does not admit a 1/4-SHPED.

We now prove Theorem 4.16 by upperbounding, for each cell in Figure 4.10,
the number of points it contains.

For ease of presentation, we stretch At in y-direction to make it a square.
Clearly, this operation does not change the crossing properties. We assume
that the side length of At is 1. We further assume that the coordinates of l,
r, and t, are (0, 0), (0, 1), and (t, 1), respectively. Note that, by the choice
of r and l, there are no other points on the left and right boundary of At
(otherwise lr would not be the diameter of P). By symmetry, we may further

4.3 Graphs Not Admitting 1/4-SHPEDs 47

assume that 0 < t ≤ 1/2. For a point p, we call stub pt the upper stub of p, pr
its right stub, pl its left stub, and both pr and pl its lower stubs.

For p ∈ {l, r, t}, let Cp ⊂ At be the axis-parallel rectangle spanned by p and the
endpoints of the two stubs that go from p to the two other boundary points.
Note that Cl, Cr, and Ct (all shaded in Figure 4.10) are squares of size 1/4×1/4.

The squares Cl, Cr, and Ct subdivide the whole square into several parts, which
will be considered in the next sections.

4.3.2 The Middle Strip

We first consider the middle strip S = [0, 1] × [1/4, 3/4]. Here, we follow an
improvement of Granacher [97]. In order to upperbound the number of points
that S contains, we subdivide S into six horizontal strips, S1, . . . , S6, from top
to bottom. For i = 1, . . . , 6, let ai and bi be (the y-coordinates of) the lower
and upper boundaries of Si. We will fix ai and bi such that, for any point p
in Si, each of pl, pr, and pt intersects either ai or bi.

Observe that, for any point in Si, it holds that its lower stubs intersect ai if

3/4 · bi ≤ ai, (4.1)

whereas its upper stubs intersect bi if ai + (1− ai)/4 = (3ai + 1)/4 ≥ bi., i.e., if

ai ≥
4bi − 1

3
. (4.2)

In addition to the conditions in Equation 4.1 and 4.2, we want to determine
the width bi − ai in such a way that strip Si contains at most 5 points. Let

ci =
3

4
· bi

be the y-coordinate where the lower stubs of points on bi end. We identify ci
with the line y = ci. For any point p in Si, let Ip be the part of ci delimited
by the lower stubs of p. Observe that, for p, q ∈ Si with q 6= p, it holds that Ip
and Iq are disjoint. This is due to the fact that the upper stubs of p and q both
intersect bi.

Let δp be the length of Ip. We say that p consumes δp. By the intercept
theorem, we obtain that δp/1 ≥ (ai− ci)/ai (which is what a point on ai would
consume).

Assume now that there were six points q1, . . . , q6 in Si from left to right. We
may assume that there are at least three j ∈ {1, . . . , 5} such that qj has a lower
or equal y-coordinate than qj+1 (otherwise consider the points from right to
left).

48 4 PEDs for Graphs

Consider now such a j. Consider also the parallel g of the right stub of qj+1

through the end point of the left stub of qj+1. Since the right stub of qj+1 is
steeper than the right stub of qj , it follows that g intersects ci to the right of
Iqj . Hence, we may assume that qj+1 consumes even the segment on ci between
the intersection point of g and ci and the intersection point of the right stub
with ci. This segment has the same length as the distance between the end
points of the two lower stubs of qj+1, i.e., 1/4. Hence, the six points together
consume at least

3 · 1

4
+ 3 · ai − ci

ai
=

3

4
+ 3 · ai − 3/4 · bi

ai

which has to be lower than one. Hence, if we choose ai such that

3

4
+ 3 · ai − 3/4 · bi

ai
≥ 1

then there cannot be 6 points in Si. Resolving this equation, we obtain

ai ≥
9

11
· bi (4.3)

Note that Equation 4.3 automatically implies Equation 4.1. Combining Equa-
tion 4.2 with Equation 4.3 yields the following values:

3/4 = b1,
a1 = 2/3 = b2,
a2 = 5/9 = b3,
a3 = 5/11 = b4,
a4 = 45/121 = b5,
a5 = 405/1331 = b6, and
a6 = 1/4.

Hence, the middle part consists of 6 strips each with at most 5 points. Sum-
marizing, we obtain the following lemma.

Lemma 4.17. The middle strip S contains at most 30 points.

4.3.3 The Middle Part of the Bottom Strip

We consider the rectangle B = [1/4, 3/4]× [0, 1/4] of length 1/2 and height 1/4
between the cells Cl and Cr. Similarly as for the middle strip, we construct
five cells B1 to B5 such that all stubs to the extreme points r, l and t cross the
cell boundaries. We denote the left and right boundaries of cell Bi by ai and bi
and set a1 = 1/4, b1 = a2 = 1/3, b2 = a3 = 4/9, b3 = a4 = 5/9, b4 = a5 = 2/3,
b5 = 3/4. Clearly, for every point p in any cell Bi, it holds that the stubs pl
and pr intersect the left and right boundaries ai and bi, respectively. For the
upper stub pt, we only know that it crosses the horizontal line y = 1/4, but

4.3 Graphs Not Admitting 1/4-SHPEDs 49

l r
ai bi

s0 s1

ai − t

Bi

t

z

q′

p

q

W

Figure 4.11: A cell Bi with a medial point q′ and a lateral point p whose
stubs do not intersect. The two lateral points p and q cannot both exist since
the stubs pt and ql must intersect. (The vertical axis in this figure is scaled

by 2/3.)

not necessarily the upper boundary of Bi. We say that a point p is a medial
point in cell Bi if its stub pt does intersect the upper boundary of Bi. We
observe that no two medial points can lie in the same cell Bi without causing
stub intersections. Thus, for another point q in Bi, the stub qt must intersect
either ai or bi. We call such a point a lateral point.

In the following, we show that there can be at most one lateral point in any
cell Bi. Without loss of generality, we can assume that t < ai. We consider the
two rays s0 and s1 from t through the two corners (ai, 0) and (ai, 1/4) of Bi,
see Figure 4.11. These two rays define a wedge W . Let p and q be two lateral
points in Bi; then p and q must lie in Bi ∩W . Let p be the point whose ray
from t is left of the ray from t through q. Then the two line segments ql and
pt must intersect in a point z (otherwise the stubs pr and qt would necessarily
cross). Let δq = |qz|/|zl|. To avoid a crossing between the stubs pt and ql, we
need that |qz| ≥ 1/4(|qz|+ |zl|), or equivalently, that δq ≥ 1/3.

Using the intercept theorem, we observe that δq is maximized if p lies on s0,
q lies on s1, and they both lie on the x-axis. We apply the intercept theorem
once more for the line x = ai and the line supported by s1 to show that in this
case |qz| = (ai − t)/3. Using |zl| = ai, we get δq = 1/3 · (1− t/ai) < 1/3. This
contradicts δq ≥ 1/3. Thus, each cell Bi contains at most one lateral and at
most one medial point.

Summarizing, we obtain the following lemma.

Lemma 4.18. The lower rectangle B contains at most 10 points.

50 4 PEDs for Graphs

4.3.4 The Left and the Right Part of the Upper Strip

In the following, we consider the rectangles L = [0, 3t/4] × [3/4, 1] and R =
[(3t + 1)/4, 1] × [3/4, 1], separated by the upper central square Ct, which has
size 1/4× 1/4, is adjacent to t, and is defined by the stubs tl and tr.

We subdivide R into five height-1/4 rectangles R1, . . . , R5, from left to right,
and analyze how many points each rectangle can contain at most. The analysis
for L is symmetric.

Note that the two lower stubs of any point in R intersects the horizontal line
y = 3/4. To make sure that the upper stub of any point in cell Ri intersects
the left boundary with x-coordinate ai of Ri, the x-coordinate bi of the right
boundary of Ri has to fulfill (bi − t)/4 ≥ bi − ai and, hence, bi ≤ (4ai − t)/3.
(Note that we assume that the right boundary of Ri is not part of Ri.) This
yields the following boundaries.

3/4 · t+ 1/4 = a1,
b1 = 2/3 · t+ 1/3 = a2,
b2 = 5/9 · t+ 4/9 = a3,
b3 = 11/27 · t+ 16/27 = a4,
b4 = 17/81 · t+ 64/81 = a5, and
b5 = 1.

Claim 4.19. The lower stubs of two points in the same cell are nested.

Proof. Let p be a point in a cell Ri and consider the line s through l and p.
Assume there is a point q above p such that the lower stubs of p and q are not
nested. Then q has to be to the right of s. However, by the way the width of
Ri is constructed, the left stub of q intersects the vertical line ai. So, the left
stub of q intersects the right stub of p.

Now we analyze how many points can be stacked on top of each other in each
subrectangle, depending on its width, its distance to t, and the l-shadow of the
stub tr, i.e., the set of all points p such that the stubs tr and pl intersect. We
first consider R1.

Claim 4.20. R1 contains at most one point.

Proof. Observe that the left stub of any point p in R1 must leave R1 through
its bottom edge, see Figure 4.12. Otherwise p would lie in the l-shadow of tr.
Hence, there are no two points with nested lower stubs in R1. Otherwise the
left stub of the upper point would intersect the upper stub of the lower point.
There are also no two points side by side in R1, because otherwise the right
bottom stub of the left point crosses the left bottom stub of the right point.

4.3 Graphs Not Admitting 1/4-SHPEDs 51

R3

t

Ct

l

R2

R1

R5

p

r

R4

Figure 4.12: The lines from point l to the endpoints of the stubs tr and pt
give rise to (gray) l-shadows where no point can be placed.

rpj `σt `sj

pj+1

s

sj

t

σt pj

R1 R2 R4 R5

Figure 4.13: The shaded polygon indicates the possible area for pj+1.

We now consider R2, . . . , R5, see Figure 4.13 for an illustration. Let

σt = t+ (r − t)/4 =
1

4
(3t+ 1, 3)

be the endpoint of the stub tr. We use the following two observations to bound
the number of vertices in Ri.

(O1) No vertex of Ri is above the line `σt, since otherwise its left stub would
intersect the stub tr.

(O2) The y-coordinate of any vertex in Ri is between 3/4 and 1.

Depending on t, these two observations yield upper bounds on the number
of vertices in R2, . . . , R5 and, symmetrically, in L2, . . . , L5. In summary, we
obtain the following.

Lemma 4.21. Together, L and R contain at most 19 vertices.

52 4 PEDs for Graphs

Proof. Let i ∈ {2, 3, 4} and let pj = (xj , yj), j = 1, . . . ,m be the vertices in Ri
with ascending y-coordinates. For j = 1, . . . ,m− 1, let

sj = pj + (t− pj)/4

be the endpoint of the top stub pjt. To make sure that the left stub of pj+1

and the upper stub of pj do not intersect, pj+1 has to be above the line lsj .
For large t, we exploit observation (O1); for small t, we exploit (O2). Putting
things together, we will obtain, for each region Ri, upper bounds on the number
of points that Ri can contain, for any t ∈ [0, 1].

Case I: t is large.

The condition that no vertex of Ri is above the line `σt means that

slope(`σt) ≥ slope(`pj) for j = 1, . . . ,m. (4.4)

Further, we know that

slope(`pj) < slope(`sj) ≤ slope(`pj+1) for j = 1, . . . ,m− 1. (4.5)

Observe that the slope of `sj increases with the slope of `pj . Now we claim the
following.

Claim 4.22. If the slope of `pj is fixed, then the slope of `sj increases when
the distance of pj from ` decreases.

Proof. We first show this claim. Let q1 and q2 be two points in R that are
co-linear with ` = (0, 0). Then, there is a 0 < c < 1/t (actually, we even have
c < 3/(3t+ 1)) such that qi = (xi, cxi), i = 1, 2. Let the endpoint of stub qit be

si := qi + (t− qi)/4 = (3xi + t, 3cxi + 1)/4.

So the slope of lsi is (3cxi + 1)/(3xi + t). Hence, the slope of ls1 exceeds the
slope of ls2 if and only if

3cx1 + 1

3x1 + t
>

3cx2 + 1

3x2 + t
⇔ 3x2 + 3cx1t > 3x1 + 3cx2t

⇔ ct(x1 − x2) > (x1 − x2)

⇔ x1 < x2

The last equivalence holds since ct < 1 for any t. This finishes the proof of our
claim.

Now we continue the proof of Lemma 4.21. By Claim 4.22, the number of
vertices p1, . . . , pm in Ri with the properties in Equations 4.4 and 4.5 is max-
imized if p1 = (bi, 3/4) and pj+1 is the intersection point of the line `sj with
the vertical line at x = bi; see Figure 4.14. Then, the x-coordinate of sj is

4.3 Graphs Not Admitting 1/4-SHPEDs 53

s2

σt

s1

b3

p1
a3

R1 R2

t `s2 `σt `s1

R4 R5

R3

p2z

Figure 4.14: What is the smallest j for which the slope of `sj exceeds that
of `σt?

a′i := bi− (bi− t)/4 = (3bi + t)/4. For i = 1, . . . , 4, we have a′i = ai. We obtain
the following y-coordinates:

y(sj) = yj + (1− yj)/4 = (3yj + 1)/4

y(pj+1) =
yj + (1− yj)/4

a′i
· bi =

bi(3yj + 1)

3bi + t

y(s1) = 3/4 +
1− 3/4

4
=

13

16

The slope of the line `σt is less than the slope of the line `pj+1 if the intersection
point

z =

(
a′i,

3

3t+ 1
a′i

)

of the line `σt with the vertical line at x = a′i is below sj . This means that, if z
is below sj , pj+1 cannot lie in Ri (due to Observation (O1)). Hence, depending
on t, we obtain the following upper bounds on the number of points in Ri.

For i = 2, we plug in b2 = (5t+4)/9 and a′2 = a2 = (2t+1)/3 into the equation
above and obtain the following y-coordinates:

y(pj+1) =
1/9(5t+ 4)(3yj + 1)

1/3(5t+ 4) + t
=

(5t+ 4)(3yj + 1)

24t+ 12

y(z) =
2t+ 1

3t+ 1

y(p2) =
5t+ 4

24t+ 12
· 13/4

y(s2) =
1

4

(
5t+ 4

24t+ 12
· 39

4
+ 1

)
=

1

4
· 97t+ 68

32t+ 16

Hence, R2 contains at most one vertex if 13/16 = y(s1) > y(z) = 2t+1
3t+1 , that

is, if t > 3/7, which holds if t ≥ 0.43. There are at most two vertices in R2 if
y(s2) > y(z), that is, if

1

4
· 97t+ 68

32t+ 16
>

2t+ 1

3t+ 1
,

54 4 PEDs for Graphs

which turns out to be true for any t > 0.

For i = 3, we get the following y-coordinates:

y(pj+1) =
1/27(11t+ 16)(3yj + 1)

1/9(11t+ 16) + t
=

(11t+ 16)(3yj + 1)

60t+ 48

y(z) =
5t+ 4

9t+ 3

y(p2) =
11t+ 16

60t+ 48
· 13/4

y(s2) =
1

4

(
11t+ 16

60t+ 48
· 39/4 + 1

)
=

1

4
· 223t+ 272

80t+ 64

Hence, there is at most one vertex in R3 if 13/16 = y(s1) > y(z) = (5t +
4)/(9t + 3), that is, if t > 25/37, which holds if t ≥ 0.68. There are at most
two vertices in R2 if

1

4
· 223t+ 272

80t+ 64
>

5t+ 4

9t+ 3
, that is, if t > − 557

2 · 407
+

√(
557

2 · 407

)2

+
208

407
,

which holds if t ≥ 0.31.

For i = 4, we analogously obtain that R4 contains at most one vertex if

13

16
>

11t+ 16

27t+ 9
, that is, if t > 139/175,

which holds, for example, if t ≥ 0.8. The cell R4 contains at most two vertices
if t ≥ 0.55.

For i = 5, we have that R5 contains at most one vertex if 13/16 > (3t +
9)/(12t+ 4), that is, if t > 23/27, which holds, for example, if t ≥ 0.86. There
are at most two vertices in R5 if t ≥ 0.68.

We summarize our upper bounds in the following table.

t ≥ 0 t ≥ 0.31 t ≥ 0.43 t ≥ 0.55 t ≥ 0.68 t ≥ 0.8 t ≥ 0.86

R2 2 2 1 1 1 1 1
R3 2 2 2 1 1 1
R4 2 2 1 1
R5 2 2 1

Case II: t is small.

It remains to compute upper bounds on the number of points in R3, R4, and R5

for small values of t. For this, we use (O2) as mentioned earlier. To bound the
y-coordinates of the vertices in Ri, observe that since the lower stubs of any

4.3 Graphs Not Admitting 1/4-SHPEDs 55

vertices in Ri have to be nested, pj+1 has to lie above the line rpj . Hence, pj+1

has to be above the intersection point s of rpj and lsj ; see Figure 4.13.

Recall that a line through two points (X1, Y1) and (X2, Y2) can be expressed
by

y =
Y1 − Y2

X1 −X2
· x+

Y2X1 − Y1X2

X1 −X2

So, we obtain the following equations for the lines rpj and lsj :

rpj : y = − yj
1− xj

x+
yj

1− xj
lsj : y =

3yj + 1

3xj + t
x

Intersecting these two lines yields the intersection point

s =

(
(3xj + t)yj

yj(t+ 3) + 1− xj
,

(3yj + 1)yj
yj(t+ 3) + 1− xj

)
.

Given that pj+1 lies above s and given that xj ≥ ai, we obtain the recursion

yj+1 >
(3yj + 1)yj

yj(t+ 3) + 1− ai
. (4.6)

Recall now that ai = λit+ 1−λi with λi = 1− 4i−2/3i−1 < 3/4 for i = 2, . . . , 5
also depends on t. Hence, the lower bound

(3yj + 1)yj
yj(t+ 3) + 1− ai

=
3yj + 1

t+ 3 + (1− t)λi/yj
=

3yj + 1

t(1− λi/yj) + 3 + λi/yj

for yj+1 decreases with increasing t and decreasing yj . This means that the
number of points that fit into Ri such that Equation 4.6 is still fulfilled becomes
larger if we choose the y-coordinates of the points as small as possible.

Hence, starting with y1 = 3/4, we get lower bounds for y2, . . . , ym by assuming
equation in (4.6). The largest i with yi ≤ 1 is an upper bound for the number
of vertices in Ri.

Depending on t, observation (O2), that is, yj ≤ 1 for j = 1, . . . ,m, yields the
following upper bounds on the number of vertices in Ri.

t ≤ 0.31 t ≤ 0.54 t ≤ 0.55 t ≤ 0.68

R3 3
R4 2 3 3
R5 2 2 3 3

This finishes the analysis of case II.

Now we can put things together. The resulting upper bounds for the regions
of R and, symmetrically, for L are summarized in Table 4.1. Adding up the

56 4 PEDs for Graphs

t ≥ 0.00 0.14 0.20 0.31 0.32 0.43 0.45 0.46 0.54 0.55 0.57 0.68 0.69 0.80 0.86

R1 1

L1 1

R2 2 1

L2 1 2

R3 3 2 1

L3 1 2 3

R4 2 3 2 1

L4 1 2 3 2

R5 2 3 2 1

L5 1 2 3 2

total 15 16 17 17 19 18 19 18 19 18 19 17 17 16 15

Table 4.1: Upper bounds for the number of vertices in the cells of L and
R; L ∪R contains at most 19 vertices.

bounds for each resulting t-subinterval of [0, 1] yields that L ∪ R contains at
most 19 points, namely if 0.32 < t < 0.43, 0.45 < t < 0.46, 0.54 < t < 0.55, or
0.57 < t < 0.68.

4.3.5 The (1/4× 1/4)-Squares Cl, Cr, and Ct

Our approach for this part follows a suggestion of Gašper Fijavž. We consider
the square Cl; for the two other squares Cr and Ct, we can argue analogously
and get the same bound. Let l, p1, . . . , pk be the set of points contained in Cl.

First, we observe that the stubs from p1, . . . , pk to t and r intersect the upper
and right boundary of Cl. Hence, the points p1, . . . , pk together with their stubs
to r and t form a nested structure. This means that we can order the points
such that, for i = 2, . . . , k, the point pi lies between the stubs of pi−1, the point
pk being innermost. Now we define α1, α2, . . . , αk to be the angles at point r
formed by the lines rl and rpi. Analogously, we have angles β1, . . . , βk at point
t. We consider only the angles of type αi. Analogous observations hold for the
angles of type βi, and the resulting bounds are the same.

From the nesting, we see that the sequence αi, i = 1, . . . , k is monotonously
increasing. Even stronger, we have the following claim.

Claim 4.23. For 1 < i ≤ k it holds that αi ≥ 1.3 · αi−1.

Proof. Consider the segment from point l to pi. We subdivide it into four
segments of equal length; see Figure 4.15(a). This defines the four angles
γ1, . . . , γ4 by the connecting lines from point r. We have αi = γ1 + · · ·+γ4 and
αi−1 ≤ γ1 + γ2 + γ3 =: γ. It remains to prove that αi ≥ 1.3γ.

4.3 Graphs Not Admitting 1/4-SHPEDs 57

γ1

γ2

γ3

γ4

pi

l

slt

αi

extreme
position
for pi

(a)

pk

l r

p1

αk
ᾱ

slt

hk

hs

s

ls lk

(b)

Figure 4.15: (a) Angles increase by a factor ≥ 1.3. (b) Ratio between the
smallest and the largest angle.

The ratio of γ4 to γ and, hence, the ratio of αi to γ is smallest if the angle
formed by r, pi, l is minimized, i.e., if pi lies in the upper left corner of Cl.
Hence, αi/γ ≥ arctan(1/4)/ arctan(3/16) > 1.3. Note that in general pi must
be to the right of stub lt, so the ratio is even slightly better.

Next, we restrict the range of the smallest and largest angle. Then we can
easily compute the number k of points.

Let s be the endpoint of the stub lpk. Consider the two lines ts and rs. The
point p1, which defines the angle α1 and β1 respectively, has to lie either above
rs or to the right of ts or both. We assume, without loss of generality, the first
case, so the angle formed by l, r, s := ᾱ ≤ α1. We set the length of the base
line, which is the distance between l and r, to be d = 1.

We compute tan(ᾱ) = hs/d− ls = (hk/4)/d− ls and tan(αk) = hk/(d− 4ls) =
hk/(d − 4ls); see Figure 4.15(b), where hk and hs are the minimum distances
of pk and s, respectively, to the base line lr. This yields the ratio

tan ᾱ

tanαk
=

hk
4(d− ls)

d− 4ls
hk

= 1− 3d

4(d− ls)
= 1− 3

4(1− ls/d)
.

Using ls ≤ (1/4)2, this yields tan ᾱ/ tanαk ≥ 1/5. From the Taylor series
expansion of the tangent function we know that tanα > α, for all 0 < α < π/2,
in particular tanα = cαα with cα > 1 monotonically increasing with α.

Hence, we conclude that

α1

αk
=
cαk tanα1

cα1 tanαk
>

tan ᾱ

tanαk
≥ 1/5.

This yields αk ≥ (1.3)k−1 · α1 > (1.3)k−1 · 1/5 · αk, which in turn implies
k < log 5/ log 1.3 + 1 ≤ 6.2.

58 4 PEDs for Graphs

If p1 lies to the right of ts, we analogously obtain

β1

βk
> 1− 3

4(1− ls/d)

where d > 1 is the distance of l and t and ls ≤ 1/4 ·
√

2/4 is the length of the
projection of the segment ls to the line lt, hence β1 > 1/6 · βk.

Arguing along the lines of the first case, we get βk > (1.3)k−1 · 1/6 · βk, and
derive k < 7.9.

Lemma 4.24. The squares Cl, Ct, and Cr contain at most eight points each.

This finishes the proof of Theorem 4.16.

Granacher [97] showed that for n > 96 the complete bipartite graph Kn,n has
no axis-symmetric 1/4-SHPED drawing such that all edges cross the axis of
symmetry. Also Granacher generalized our proof leading to a large expression
EXP (δ) depending on the stub-edge-ratio δ, that is too lengthy to be noted
here explicitly.

Theorem 4.25 ([97]). For any n > EXP (δ) the graph Kn does not admit a
δ-SHPED.

4.4 1/4-SHPED Spring Embedder

In this section we combine 1/4-SHPED with the pring embedder idea, see
Figure 4.16. We start with an introduction in Section 4.4.1 motivating our
approach. Because our model slightly differs from literature, we continue with
necessary definitions in Section 4.4.2 and sketch computation of 1/4-SHPEDs
with constraints similar to linear programming. The main algorithm is pre-
sented in Section 4.4.3 and is finally extensively evaluated in Section 4.4.4.

4.4.1 Introduction

Motivated by the fact that several classes of graphs admit a 1/4-SHPED (see
Section 4.2) and the complete graphs Kn, n > 164 do not admit a 1/4-SHPED
(see Section 4.3), we hope that our algorithm supports the search for a 1/4-
SHPED of K17 if it exists.

Apart from theoretical results we want an algorithm for practical applications.
The algorithm should produce a 1/4-SHPED for all graphs admitting a 1/4-
SHPED in theory, but also for many other (randomly created) graphs if it exist.
We expect from the algorithm ideas for further classes of graphs admitting a
1/4-SHPED. Therefore our first attempt was a computation similar to linear

4.4 1/4-SHPED Spring Embedder 59

(a) Traditional straight-line drawing (b) 1/4-SHPED

Figure 4.16: (a) A randomly created graph G with 20 vertices and 60 edges
has 383 crossings in the traditional straight-line model. (b) layout of G after
application of our 1/4-SHPED spring embedder within 2 iterations and with

a spring embedder [193] as preprocessing step.

programming, which failed in practical applications. So spring embedder [87]
seem to be a useful concept, since they tend to produce symmetric drawings
with few crossings. We develop our algorithm following the Fruchterman algo-
rithm as long as possible. In the sequel of this paper we always use the yFiles
Organic layouter [193] whenever we apply a spring embedder for the traditional
model.

A force-directed drawing algorithm can be used to visualize any non-planar
graph, in particular if no structural information is given in advance. Notice
that even some spring embedder for the traditional straight-line model do not
produce planar drawings for planar graphs. Since some graphs do not admit a
1/4-SHPED (see Section 4.3), we allow crossings while minimizing their amount
and insist just on the stub-edge-ratio of 1/4. In order to be consistent with
the definitions we call a 1/4-SHPED containing crossings a 1/4-nSHPED (n for
nearly). In such a way we can directly turn any drawing into a 1/4-nSHPED.
We describe a spring embedder algorithm that aims at producing a 1/4-SHPED
by resolving crossing in the 1/4-nSHPED. By abuse of notation we call our
algorithm a 1/4-SHPED spring embedder.

Spring embedder in general have a different goal compared to our goals. They
aim for symmetry by spreading vertices uniformly for a drawing. When turning
such a drawing into a 1/4-nSHPED, some crossings in the traditional model
were good (those which disappear when an edge part is removed) and some
crossings in the traditional model were bad (those which stay visible when an
edge part is removed). Figure 4.17 shows that a spring embedder does not

60 4 PEDs for Graphs

(a) (b) (c)

Figure 4.17: (a) 1/4-nSHPED of Figure 4.16(a) having 71 crossings. (b)
Traditional straight-line drawing of Figure 4.16(a) laid-out with spring em-
bedder [193] having 116 crossings. (c) 1/4-nSHPED of (b) having 4 crossings.

resolve all crossings when turning a traditional straight-line drawing directly
into a 1/4-nSHPED. Thus general spring embedder essentially do not support
1/4-SHPEDs. Our 1/4-SHPED spring embedder instead uses forces that push
vertices away from stubs so that all crossings are possibly resolved. We re-
define the forces and evaluate the algorithm finally. For optimal results the
1/4-SHPED spring embedder is applied after one application of spring embed-
der [193] as preprocessing step. Our embedder is based on a first implemented
prototype [129].

4.4.2 Preliminaries

In this section we introduce and recall some necessary definitions, in particular
the definitions needed to distinguish between drawings with or without cross-
ings. Let G=(V,E) be a graph and let ΓG a straight-line drawing of G. A
nearly partial edge drawing nPED is a drawing of G with respect to ΓG that
consists of only

⋃
e=(v,w)∈E(sev ∪ sew), where sev is the stub of e incident to v.

A PED is an nPED without crossed stubs. Our focus is on 1/4-SHPEDs and
1/4-nSHPED.

As an intermediate result we provide a quadratically constrained quadratic
program (QCQP) that produces a 1/4-SHPED if it exists1. In particular, it
returns the positions of the vertices inside a square of size L × L for a given
positive integer L. Our hope for this QCQP is that either we can prove or
disprove the existence of a 1/4-SHPED for the complete graph with 17 vertices,
or that we get at least ideas for geometric constraints and properties of 1/4-
SHPEDs.

1The complexity of solving a QCQP is NP-hard.

4.4 1/4-SHPED Spring Embedder 61

Let G=(V,E) be an arbitrary graph and let L > 0 be an integer arbitrarily
chosen, but fixed. We denote with xi (respectively yi) the x-coordinate (re-
spectively y-coordinate) of the vertex vi ∈ V={v1, . . . , vn} and introduce the
constraints 0 ≤ xi ≤ L and 0 ≤ yi ≤ L for all vi ∈ V . For simplicity we
assume that any two vertices share neither a common x-coordinate xi 6= xj nor
a common y-coordinate yi 6= yj for all 1 ≤ i 6= j ≤ n. For every pair of edges
(vi, vj), (vk, vl) we want the intersection point of the segments s1 = vivj and
s2 = vkvl representing the edges to be either in the second or third quarter of
s1 or in the second or third quarter of s2. Therefore we solve for every pair of
edges (vi, vj), (vk, vl) the equation system vi+ tijkl(vj−vi) = vk+sijkl(vl−vk),
which describes the intersection of segments s1 and s2:

tijkl =
(xk − xi)(yl − yk) + (xl − xk)(yi − yk)
(xl − xk)(yi − yj) + (xj − xi)(yl − yk)

∈ [0, 1]

sijkl =
(xi − xk)(yj − yi) + (xj − xi)(yk − yi)
(xj − xi)(yk − yl) + (xl − xk)(yj − yi)

∈ [0, 1]

Notice that tklij = sijkl and tijkl = tjikl − 1 = sklji − 1 = slkji = tjilk (since
vjvi = vj+tjikl(vi−vj) = vi−(vi−vj)+tjikl(vi−vj) = vi+(−1+ttjikl)(vi−vj)).
We introduce the constraint 1/4 ≤ tijkl ≤ 3/4 or 1/4 ≤ tklij ≤ 3/4, expressing
the “or” with a binary variable, see [4]. Notice that, although tijkl, tklij are
fractions, in the last inequalities the fraction can be eliminated by multiplying
with the denominator, while the quadratic terms still remain in the inequalities,
see the reformulation for 1/4 ≤ tijkl ≤ 3/4:

(xl − xk)(yi − yj) + (xj − xi)(yl − yk)
≤ 4((xk − xi)(yl − yk) + (xl − xk)(yi − yk)) and

4((xk − xi)(yl − yk) + (xl − xk)(yi − yk))
≤ 3((xl − xk)(yi − yj) + (xj − xi)(yl − yk))

Finally the objective function is not important anymore, since any feasible
solution fits into the square of size L × L, because of the invariance of 1/4-
SHPEDs under scaling.

We implemented this QCQP in Java and used the Gurobi solver [100] to solve
the above problem. The Gurobi solver is not only applicable for LPs and ILPs,
but also for QCQPs if the matrix of the problem is positive semidefinite in
order to use the polynomial time interior point method. Unfortunately the
Gurobi solver returned that the matrix of our problem is indeed not positive
semidefinite. Thus this QCQP does not answer the question from the motiva-
tion part, whether the complete graph with 17 vertices admits a 1/4-SHPED.
So we turn to 1/4-SHPED spring embedder aiming for finding further classes
of graphs admitting a 1/4-SHPED, explained in the following.

62 4 PEDs for Graphs

The input of our algorithm is a graph G, which immediately is turned to a
1/4-nSHPED with respect to a straight-line drawing ΓG produced with the
spring embedder [193] as preprocessing step. The objective is now to mini-
mize the number of crossings of the 1/4-nSHPED by obtaining an appropriate
distribution of vertices. We will discuss later when a 1/4-nSHPED becomes a
1/4-SHPED. Figures 4.17(a) and 4.17(c) illustrate 1/4-nSHPEDs, while Fig-
ure 4.16(b) illustrates a 1/4-SHPED.

4.4.3 The Algorithm

A spring embedder places vertices adequately distributed in general, but there is
still space for improvement, see Figure 4.17(c) in comparison to Figure 4.16(b).

A spring embedder iterates several times and in each iteration every vertex
is considered once. When a vertex is considered, the algorithm computes the
forces on this vertex and moves the vertex at its calculated place. We adopt
this base of the spring embedder algorithm and focus now on how to build the
forces that push or pull vertices according to the 1/4-SHPED model.

Let v be a vertex at point p and let w be adjacent to v at point q. The edge
(v, w) consists of two stubs sv, sw in the 1/4-SHPED model, where p ∈ sv
and q ∈ sw. Suppose that sv is crossed by an edge e at point c. Locally
this crossing can be resolved by moving either p away from e or moving q
closer to e. In our concept we just consider the first variant, i.e., we move p
away from e and call it to repair v. The crossing c is not resolved as long as
|sv| ≥ d(p, q)/4, where d(p, q) denotes the distance from p to q. At the moment
when sv just touches e, the equation |sv| = 1

4d(p, q) holds. Let p′ denote the
new position of v. Then we want to know the distance d′vw to move v from p to
p′ (refer to Figure 4.18) such that the crossing becomes a touching point, i.e.,
d′vw + d(p, c) = 1

4(d′vw + d(p, q)) ⇔ d′vw = 1
3(d(p, q) − 4d(p, c)). The direction

d′′vw to move v is clearly d′′vw = −→qp/d(p, q), which will be weighted with the
distance d′vw to obtain the force fvw = d′′vwd

′
vw of edge (v, w). We compute the

force fv =
∑

(v,w)∈E fvw on vertex v by summing up the forces over all incident
edges and repair v with force fv. We summarize the algorithm in pseudo-code
with a constant I = 200 of iterations.

This naive algorithm contains some problems to be resolved. We address these
problems step by step next.

εvw vw vw

d(p, q)

c

d′vw

Figure 4.18: Shift of v with d′vw to the right, first without ε, second with ε.

4.4 1/4-SHPED Spring Embedder 63

Algorithm 5: 1/4-SHPED spring embedder

Data: graph G = (V,E), max. # I of iterations
Result: 1/4-nSHPED with few crossings
produce drawing ΓG with spring embedder;
convert ΓG into 1/4-nSHPED;
for i = 1 to I do

forall the v ∈ V do
compute force fv on v;
move v from p to p′ = p+ fv;

end

end

Shifts: Assume that the movement has converted a crossing point to a touching
point by shifting a vertex. In theory the crossing is resolved, since stubs are
half-open sets. In practice instead the drawing may still look non-planar. To
make the drawing looking planar, it suffices to shift the vertex slightly to resolve
the crossing also optically. Therefore we introduce an ε > 0 to shift the vertex.
Precisely we modify the weight of the force to d′vw = 1

3(d(p, q) − 4d(p, c)) + ε,
see Figure 4.18. In practice it turns out that ε = 0.4 is an appropriate value.

Small Movements: Sometimes one stub incident to vertex v participates in
more than one crossing. In this case all crossings induce a force on v, all of
them pointing in the same direction and all of them with possibly a huge value,
while it suffices to just resolve the closest crossing. All other crossings farther
away are then implicitly resolved. This is done as follows.

Let c1, . . . , ct be the crossings on a stub incident to v such that d(v, ci)<d(v, ci+1)
for i = 1, . . . , t − 1. We ignore c2, . . . , ct and compute the weight of the force
d′vw = 1

3(d(p, q)− 4d(p, c1)) + ε just with respect to c1, see Figure 4.19.

Shrinks: It may happen that the sum of forces reaches a huge value and the
direction of movement causes a vertex to be moved very far away. In practice
it turns out that the drawing stretches a lot and the resolution is not good
enough to display the drawing properly anymore. To avoid this, the drawing
is shrunk to its original size after every iteration.

vw

c3, c2, c1

vw

c3, c2, c1

Figure 4.19: A shift by only one force defined by c1 to the right, while
ignoring the forces defined by c2 and c3, which would result in a position for

v marked with the square.

64 4 PEDs for Graphs

Figure 4.20: Illustration of the development of the number of crossings for
a complete graph with 14 vertices in circular layout as input. The number
of crossings decreases non-monotonically with the number of iterations until

the algorithm finishes after 188 iterations without preprocessing.

Let Di be the drawing after iteration i and let d(v, w) be the Euclidean distance
between vertex v and w. The diameter d(D) of a drawing D is defined as
max{d(v, w) | v, w ∈ D}. We aim to shrink the drawing Di+1 to the diameter
of Di, i.e., we simply multiply the coordinates of all points with the shrinking-
factor k = d(Di)/d(Di+1).

Simply zooming the drawing had bad resolution effects. In practice some re-
solved crossing became crossing again due to rounding.

Iterations: The number of iterations I is set to 200, which seems to be an
appropriate value. If the algorithm produces a drawing Di with cr(Di) = 0
in one of the iterations 1 ≤ i ≤ I, then the algorithm stops and returns Di

as the final 1/4-SHPED. Otherwise the algorithm returns Di with cr(Di) =
min1≤j≤I cr(Dj) as final 1/4-nSHPED. The reason that the output is not DI

is explained next.

Non-monotonicity: A movement may increase the number of crossings, but
this move might be helpful to decrease this number drastically in a later step.
Thus we focus not on decreasing the number of crossings, but on placing the
vertices appropriately. Figure 4.20 illustrates that the number of crossings does
not decrease monotonically with respect to the number of iterations.

We choose as the final result not the drawing DI after I iterations, but the one
with the smallest number of crossings.

Blockings: It may happen that fv ≈ 0 for a vertex v whose incident stubs
have no crossings (then fv = 0), or whose incident stubs have crossings such

4.4 1/4-SHPED Spring Embedder 65

Figure 4.21: The vertex marked by a cross can neither be moved to the
left, nor to the right. Moving first outer vertices resolves this deadlock for

the cross.

that opposite stubs cancel the force. In the latter case a vertex is blocked by
surrounding stubs and a movement of v yields no profit or is even impossible,
see Figure 4.21 for illustration.

The strategy to tackle this problem is to first focus on the outer vertices. More
precisely, we first repair the vertices of the convex hull C1 of the input drawing
D0 and receive Di1 . Second we repair the vertices of the convex hull C2 of
Di1−C1 and receive Di2 . Iteratively we repair in round j the convex hull Cj of
Dij−1 − Cj−1 and receive Dij until Dij is empty (j ≤ m). We call C1, . . . , Cm
the levels of the graph. In such a way we repair the drawing in a spiral way
such that the vertices of level j build a frame in which vertices of level j + 1
can be moved. In such a way one iteration consist of m rounds.

This procedure has the advantage that vertices may move from level j to level
j − 1 if level j − 1 provides some space. In the next iteration they will be
considered earlier. We experimented with several orders of the vertices, but
this approach was the most reasonable choice.

To conclude, Algorithm 5 produces a 1/4-nSHPED with drastically reduced
number of crossings. Very often it produces even a 1/4-SHPED. We refer to
Algorithm 5 as our 1/4-SHPED spring embedder.

4.4.4 Experimental Evaluation

First we consider the theoretical complexity of this 1/4-SHPED spring embed-
der. Afterwards we analyze the real running time and the quality of produced
drawings. The final 1/4-SHPED spring embedder is tested using several classes
of graphs. Here we present the evaluation with complete graphs Kn, squares of
triangular grids T 2 (theoretically analyzed in Section 4.2) and randomly cre-
ated graphs Rd (respectively Rs) with high (respectively low) number of edges.

66 4 PEDs for Graphs

(a) (b)

Figure 4.22: (a) The complete graph with 14 vertices in circular layout with
126 crossings and (b) the same graph after 188 iterations of our 1/4-SHPED

spring embedder without preprocessing with 0 crossings.

All classes were tested on a four-core i5-4750 processor with 8GB RAM. Finally
we tested all 11,534 graphs from the Rome graphs and all 1,277 graphs of the
North graphs [98] and classified the results into 1/4-SHPED and 1/4-nSHPED.

Complexity: Since the iterations I are bounded by a constant, we focus on a
single iteration. In every iteration we consider n vertices for which we compute
the force. After moving a vertex by its calculated force, the whole drawing
changes. Thus forces cannot be calculated simultaneously and must be re-
calculated after every movement. For every vertex v, we consider its incident
edges and search for crossings with the remaining edges in O(m logm) time with
a sweep-line algorithm2. With the knowledge of the crossings we may compute
d′′vw directly in constant time as well as d′vw through the closest crossing. In total
the algorithm runs in O(nm logm) time. Note that at iteration i the algorithm
shrinks the drawing Di in O(n) time and computes cr(Di) in O(m logm) time.
Both complexities are covered by O(nm logm) time.

Quality of Results: For complete graphs Kn with n ≤ 14 the algorithm
produced a 1/4-SHPED within a few seconds. Even after 1,000 iterations com-
plete graphs with 15 ≤ n ≤ 18 vertices could not be converted to a 1/4-SHPED
without crossings. This took up to one minute, but the number of crossings has
been dramatically reduced compared to the initial state. The following table
shows the result (i#cr = initial number of crossings, f#cr = final number of
crossings) computed from an initial circular layout of the complete graph with

2Since our instances had few vertices, we dind’t implement a sweep-line algorithm but a
naive O(m2) time approach.

4.4 1/4-SHPED Spring Embedder 67

n vertices. We stopped the algorithm after 1,000 iterations. Figure 4.22 illus-
trates the complete graph with 14 vertices before and after the 1/4-SHPED
spring embedder without preprocessing.

n i#cr f#cr n i#cr f#cr n i#cr f#cr

10 10 0 13 56 0 16 256 41
11 22 0 14 126 0 17 422 128
12 24 0 15 180 13 18 648 134

Table 4.2: The 1/4-SHPED spring embedder (without preprocessing step)
decreased the number i#cr of crossings in the initial circular layout of the
complete graph with n vertices to the number f#cr of crossings in the final

drawing.

For squares of triangular grids T 2 with |T | = n ∈ {9, 16, 25, 36} the algorithm
produced a 1/4-SHPED within a few seconds. Squares of triangular grids T 2

with |T | = n ∈ {49, 64} were still converted to a 1/4-SHPED, but the algorithm
needed up to half a minute. We were not able to test larger problem sizes.

The running time of the algorithm for randomly created graphs Rd, Rs was
up to 100 seconds (until 1,000 iterations were accomplished). The graphs had
15 to 30 vertices and 30 to 100 edges. The algorithm reduced the amount of
crossings on average from about 100 to 20.

Rome Library: Our 1/4-SHPED spring embedder produced (after 200 iter-
ations) a 1/4-SHPED for 11,507 of the 11,534 graphs of the Rome graphs, the
remaining drawings were just 1/4-nSHPED. We started the algorithm with ap-
plying a spring embedder algorithm [193] on the graph to obtain a first initial
drawing. In the initial drawing we had just 1,110 drawings without crossings,
but from all drawings transformed into 1/4-nSHPED without any further mod-
ification, we had 9,009 drawings without any crossing. After this preprocessing
step we applied the 1/4-SHPED spring embedder with at most 200 iterations
for every graph. The average time the algorithm needed (including the prepro-
cessing step) was 0.5 seconds. The average number of crossings in the initial
drawings was 26.1 in the traditional straight-line model, and the average num-
ber of crossings decreased from 0.4 to ≈ 0 in the 1/4-nSHPED model due to
the 1/4-SHPED spring embedder.

From the 2,525 input 1/4-nSHPEDs for the 1/4-SHPED spring embedder, we
obtained for 2,498 graphs a 1/4-SHPED, while only for 27, we still had some
crossings. See Figure 4.23 for illustration. The average time needed to process
these graphs (including the initial preprocessing step) was 2.1 seconds. Here
we decreased the average number of crossings from 2.0 to ≈ 0.

Summarizing, we point out that our 1/4-SHPED spring embedder converted
99% of the initial 1/4-nSHPED of the Rome graphs into 1/4-SHPED. On aver-
age, we decreased the number of crossings to <1% of the initial 1/4-nSHPED.

68 4 PEDs for Graphs

Figure 4.23: The number of crossings averaged over all graphs of the Rome
graphs with n vertices. The blue line refers to the traditional model after the
spring embedder preprocessing step, the red line refers to the 1/4-nSHPED
model before application of the 1/4-SHPED spring embedder, and the yellow
line refers to the result after application of our 1/4-SHPED spring embedder.

North Graphs: Our 1/4-SHPED spring embedder produced (after 200 iter-
ations) a 1/4-SHPED for 1,239 of the 1,277 graphs of the North graphs, the
remaining drawings were just 1/4-nSHPED. Again we started the algorithm
with applying a spring embedder algorithm [193] on the graph to obtain a first
initial drawing. In the initial drawing we had just 432 drawings without cross-
ings, but from all drawings transformed into 1/4-nSHPED without any further
modification we had 1,092 drawings without any crossing. After this prepro-
cessing step we applied the 1/4-SHPED spring embedder with at most 200
iterations for every graph. The average time the algorithm needed (including
the preprocessing step) was 10.5 seconds. The average number of crossings in
the initial drawings was 33.3 in the traditional straight-line model, and the av-
erage number of crossings decreased from 2.9 to 1.6 in the 1/4-nSHPED model
due to the 1/4-SHPED spring embedder.

From the 185 input 1/4-nSHPED for the 1/4-SHPED spring embedder, we
obtained for 147 graphs a 1/4-SHPED, while only for 38, we still had some
crossings. See Figure 4.24 for illustration. The average time needed to process
these graphs (including the initial preprocessing step) was 72.5 seconds. Here
we decreased the average number of crossings from 20.0 to 11.0.

Summarizing, our 1/4-SHPED spring embedder converted 79% of the initial
1/4-nSHPED of the North graphs into 1/4-SHPED. In average we decreased
the number of crossings to 55% of the initial 1/4-nSHPED. Even for the North
graphs, that are denser and thus have many more crossings, our embedder
improved the drawings significantly.

4.5 1/4-SHPED User Study 69

Figure 4.24: The number of crossings averaged over all of the North graphs
with n vertices. The blue line refers to the traditional model after the spring
embedder preprocessing step, the red line refers to the 1/4-nSHPED model
before application of the 1/4-SHPED spring embedder, and the yellow line

refers to the result after application of our 1/4-SHPED spring embedder.

4.5 1/4-SHPED User Study

In this section we will evaluate the partial edge drawing model. We will aim
for objective judgement by measuring the error rate and task completion time
for several tasks. The study will follow the cross-over design as a kind of
longitudinal survey, i.e., participants receive a sequence of treatments. We also
control the study, since every task for a configuration is also given in the base
setting, which we use for comparison.

We want to evaluate 1/4-SHPEDs in terms of usability and readability. We
will start with an introduction in Section 4.5.1 motivating the design and the
setting of the study. We then present the whole design in Section 4.5.2 and
present results, evaluation, and their interpretation in Section 4.5.3. After
that, we discuss in Section 4.5.4 again the design of the study, in terms of
which settings may have distorbed the results. We conclude with pointing out
directions for future work.

4.5.1 Introduction

In 2011 Burch et al. [33] investigated the usefulness of partially drawn links for
directed graphs. Their study confirms the impression that partially drawn links
lead to shorter task completion times. Their main result is that optimal link
length is either around 75% or 12.5% dependent on the task. However there
was one task where the error rate significantly improved. Since his results were
strongly depending on the fact that edges were directed, theory on partial edge
drawings for undirected graphs focused on 25% link length. The reason was
that given 25% of an edge the estimated distance of the adjacent vertex, which
is four times the link length, was more accurate in some examples than choosing

70 4 PEDs for Graphs

12.5%, leading to eight times the link length. Clearly the link length must be
smaller than 50% for undirected graphs.

We develop a user study that aims at a direct comparison of partial edge draw-
ings with the traditional straight-lines in particular for undirected graphs. To
do so we take straight-line drawings in a layout that is appropriate to sup-
ports the beauty of straight-line drawings according to relevant graph drawing
aesthetic criteria, i.e., layouts produced by a force-directed method [87]. This
method displays symmetries and aims for a well-distribution of the vertices.
When adopting the 1/4-SHPED drawing model to these drawings, the result-
ing drawing is not a 1/4-SHPED in general, since not all crossings on stubs may
disappear. Thus we produce only 1/4-nSHPEDs, as introduced in Section 4.4.2,
which is a 1/4-SHPED disregarding the crossings of stubs, but insisting on the
stub-edge-ratio of 1/4. Although the drawings are 1/4-nSHPEDs we refer to
them as 1/4-SHPEDs by abuse of notation.

The use of our 1/4-SHPED spring embedder for laying out graphs as 1/4-
SHPEDs may distort the study, since when choosing for any layout the best
distribution of vertices makes the drawings incomparable. The base of the
study is the layout that supports not the drawing we claim to be the best
according to our hypothesis:

The 1/4-SHPED model is more readable, understandable and
interpretable than the traditional straight-line model.

In our user study we want to evaluate whether partial edge drawings signifi-
cantly support readability in contrast to the traditional straight-line drawing
approach. We will measure this by analyzing the error rate and the task com-
pletion time for every participant in each trial. The results will be taken to
analyze differences in accuracy and completion time with respect to study vari-
ables. The user study is based on the bachelor’s thesis of Leibßle [131].

4.5.2 Design

In this section we present and defend our choices for the design so that we min-
imize the parameters that affect a decision in a particular direction. Clearly we
want to have a neutral setting and if not avoidable, then the advantage should
be at the traditional straight-line model, so that criticism in advantageous set-
ting for PED can be excluded.

The Graph: We have chosen a graph according to the Barabási Albert graph
model [13]. This graph model statistically ensures a specific vertex connectivity
in large networks that is following a scale-free power-law distribution. This
graph model seems to be appropriate when generating graphs with similar
statistical properties.

4.5 1/4-SHPED User Study 71

The Model: We will produce drawings in the traditional straight-line drawing
model, referred to as TRA, and in the 1/4-SHPED model, referred to as PED.
For both drawing models we picked randomly a graph from the pool of graphs
with similar statistical properties. Since our user study will not take much
time (up to 10 minutes), there is no time to make the participants forgetting
previously seen drawings. Thus we avoid using the same graph in different
models.

The Layout: Graphs with equal statistical properties were taken and laid out
by an implementation of the force-directed layout algorithm of Fruchterman
and Reingold [87]. We produced drawings according to the layouts with a Java
based tool supported by the yFiles library [193]. In order to avoid advanta-
geous layouts for PED, we took as base a layout that supports the traditional
straight-line layout. We also avoided using the same graph in different lay-
outs (independently of the model) since we suspected that participants may
remember or recognize the graph, when seen them before.

Turning the 1/4-nSHPEDs into 1/4-SHPEDs may affect the aesthetic proper-
ties of the PED drawing positive as well as a possibly negative influence on the
traditional straight-line drawing. Since we cannot control the grade of aesthetic
with respect to crossings, we fix the vertex positions given by the force-directed
algorithm.

The Tools: For creating the graph and its layout we used yEd, a yFiles-
based tool [193], together with a separate yFiles-based tool for just shortening
the edges appropriately, i.e., for turning a straight-line drawing into a 1/4-
nSHPED. The evaluation was then created on the base of these drawings using
Qualtrics, a commercial research software as online platform [36, 170]. The
commercial part of this software basically concerns a full evaluation of the
data. Thus we received just the raw data in tables and evaluated the data
according to our standards, which is covered by the next section.

The Graph Size: For both models we have chosen graphs of two different
sizes, i.e., small graphs with n = 18 and large graphs with n = 25 vertices.
We have chosen the number of vertices of both, small and large graphs, such
that tasks become not trivial and graphs can be drawn within a specific frame
even for small screen resolution. The number of edges was then determined
by the expected value of the power-law distribution [13] through the density
m/n ∈ [1.6, 1.9]. We randomly chose one value for the small graphs, which was
1.66 and led to m = 30 edges, and one value for the large graphs, which was
1.88 and led to m = 47 edges. In such a way we avoided to distinguish between
dense and sparse graphs.

The Tasks: A difficult decision was to chose adequate tasks. Lee et al. [130]
suggested a list of relevant tasks for experimental results. We picked two of
them of different types for our study. We asked the following two questions:

1. Which adjacent node has the longest Euclidean distance to node v?

72 4 PEDs for Graphs

(a) A screenshot of task 1. (b) A screenshot of task 2.

Figure 4.25: Screenshots of different tasks with highlighted vertices.

2. Is there a path of length 2 from node v to node w?

According to Lee et al. [130] Task 1 is a representative question for evaluating
the “adjacency” of a node, while Task 2 is a representative question for evalu-
ating the “accessibility” of a node. Each question formed a block to reduce the
cognitive load. The first question had to be answered by choosing the correct
node from a drop-down menu, while the second question had to be answered
by pressing a “yes” or “no” button. Figure 4.25 shows screenshots for both
tasks.

The Tasks Generation: For each of the two questions we have chosen a node
v randomly out of a pool of candidates satisfying three properties:

• v is not in the convex hull of the set of vertices.

• v has no two neighbors with the same longest Euclidean distance.

• the probability of choosing v increases with the degree of v

We have collected the candidates for every layout and randomly picked one
vertex as v and one vertex as w, in case of the second block. Thus all picked
vertices were “inside” the drawing. They had an average degree of 4.85.

With the three properties we wanted to avoid trivial answers because of bound-
ary cases and ambiguity in the second block. Choosing vertices from the in-
terior provides a comparable statistical difficulty for answering the questions.
Another aspect we wanted to avoid is to spend time on searching for the respec-
tive vertex, which is given in the question. We supported finding the vertex
quickly by marking the vertex fat.

4.5 1/4-SHPED User Study 73

level description # participants

1 No experience at all - 1
This is the first time I ever heard of graphs.

2 I’ve heard of the concept of graphs before 3
but have never really seen much of them.

3 I have seen a few graphs before 4
and know what they look like.

4 I am sometimes confronted with graphs 16
due to my field of study.

5 I have seen many graphs before 15
and would consider myself well-informed.

6 I deal with graphs almost daily 46
(due to my job and/or hobby).

Table 4.3: The participants were chategorized into levels due to the de-
scription they assigned. The final amount of participant per level is listed in

the last column.

The Participants: In total we had 85 participants. We started our controlled
user experiment with some introductory questions in order to categorize the
participants. First we wanted to know their knowledge about graphs, which
separated the participants into experts and non-experts. We intended this
split by inviting members of the graph drawing community via mailing list and
students of computer science from the second year of studying to the survey.

The participants were classified into groups according to their knowledge about
graphs. Table 4.3 shows which categories we offered (levels 1–6) with descrip-
tion and how many participants were classified to the respective category.

We also asked for their age, in particular to possibly classify the experts once
more with respect to their experiences in terms of age.

The Information to the Participants: Every participant was introduced in
the partial edge drawing model by the definition, the intuition behind and an
example. The example showed a graph in the traditional straight-line model
and the same graph laid out in the 1/4-SHPED model. The users had to
confirm they understand the model.

Also the whole study was split into two blocks. Each block was about the same
question in order to reduce cognitive load from task switching. The two blocks
were clearly separated such that the users could adjust themselves on the next
question. This followed the continue-on-demand study design.

Each block was introduced with an example consisting of the question of this
block and a layout of a graph in the traditional straight-line drawing model.
By confirming the correctness of the answer of the question of this particular
layout we assumed familiarity with the question for the whole block. This

74 4 PEDs for Graphs

also prevented the user to focus on reading the question since it didn’t change
during the block.

The Variables: Our study variables were (1) the model (two options), (2)
the graph size (two options) and (3) the tasks (two options). Thus in total we
had (2 tasks) × (2 models) × (2 graph sizes) = 8 configurations. In order to
get significant results according to the repeated-measures design, we asked two
times for each of the configurations resulting in 16 trials per participant. Within
each block of a question we randomly permuted the eight trials, consisting of
(2 models) × (2 graph sizes) × (2 repeats). With 85 participants we had in
total 1,360 trials to evaluate.

In total our evaluation design provides four parameters, three of them stem
from variables of the design:

• level of experience ∈ {1, . . . , 6}

• model of drawing ∈ {PED,TRA}

• size of graphs ∈ {18, 25}

• task of block ∈ {1, 2}

The Study Procedure: For each trial from the design we stored the start-
time, the first-click-time, the last-click-time and the given answer. The first-
click-time indicates the moment when the participant found her answer, i.e.,
the participant started to select the answer in the first block, while in the
second block the first-click-time is already the confirmation of her answer. The
last-click-time indicates when the participant was ready to leave the page of
this trial, i.e., we can check here the difference between the first-click-time and
the last-click-time to see if the participant was maybe undecided or needed
time for selecting his answer.

4.5.3 Results

In this section we will present the results in different formats. We will first
present a total overview of the result and after that we focus on interesting
parts to be broken down in more details. Along the way, we will interpret
reasons for the results.

In order to evaluate the results with a meaningful amount of participants, we
have chosen only levels 4 to 6 of the participants for the following evaluation.
The reason is that we define meaningful by at least 50% of “possible partic-
ipants” in a level. For 85 participants we expect 14.16 possible participants
in each level, such that 50% of them gives the threshold of 7.08 participants,
which is fulfilled only for levels 4 to 6.

4.5 1/4-SHPED User Study 75

Figure 4.26: A scatterplot of error rates vs. task completion time of the
averaged results. Triangles represent PED, squares represent TRA, horizon-
tal alignment represents task 1, vertical alignment represents task 2, size of
shapes represent size of graphs and colors red, blue, and green, respectively,

represent level 4, 5, and 6, respectively.

We first averaged the error rates and the task completion times over the two
repeats and the number of participant in each level to get an overview. The
scatter plot in Figure 4.26 illustrates the results of the study with respect to
the parameters (model, task, size, level) in different attributes of graphical
visualization (shape, orientation, size, color). The scatter plot shows clusters
with respect to some parameters.

Results of Task 1 are mainly above the 30% error rate (significant exception is
PED for small graphs), while results of Task 2 are mainly below the 10% error
rate. Also most of the answers concerning Task 1 are located with more than
10 seconds task completion time, while most of the answers concerning Task 2
are located below 10 seconds for task completion time (significant esception is
PED for large graphs). These results confirm our impression that Task 1 was
more difficult to read from the graphs in general.

Results for TRA are located mostly to the left of the corresponding results for
PED. So answers for the traditional model seem to be given faster compared
to results for the PED model.

When considering only Task 1 and fixing the error rate, then for large graphs
the answers for TRA were given faster compared to PED. When considering
only Task 1 and fixing the task completion time, then for small graphs the

76 4 PEDs for Graphs

Figure 4.27: The left graphics illustrate error rate, the right graphics the
task completion time. The top row represents task 1, while the bottom row
represents task 2. The results are separated through model, graph size and

level.

answers for PED were more accurate compared to TRA. It seems that for the
“adjacency check” that large graphs should be drawn in the traditional model,
mostly because of familiarity with this model, while small graphs should be
drawn in the PED model. This result surprised us since we thought that PED
supports Task 1 in general, because of simply comparing the rays of a star.

When considering only Task 2 and fixing the error rate, then answers for TRA
were given faster compared to PED, even in half the time of PED for large
graphs. On the base of the same error rate TRA seems to be more familiar
for “accessibility checks”, in particular for following paths. When considering
only Task 2 and fixing the task completion time, then for TRA the answers for
small graphs were given more accurate compared to large graphs. This sounds
very natural for us, since the general assumption is that large graphs require a
longer and more intensive perception.

Results for sizes of graphs are difficult to generalize. Also results distinguish-
ing between the levels are not obvious in this scatter plot. For almost every
configuration there was no significant difference between the levels. Thus in
the next graphics we place the three levels as block close together.

4.5 1/4-SHPED User Study 77

We turn to bar charts separated by task, illustrating the error rates and task
completion time separately, see Figure 4.27. We will compare both the error
rate and the task completion time, with respect to level of knowledge, graph
size and model of the drawing. We observe that differences between levels are
mostly not significant, which means the knowledge and expertise on graphs is
not crucial.

For PEDs the error rate is very low in general, except for large graphs in Task 1.
On the other hand for TRA the error rate is not very low in general, except
of small graphs in Task 2. For PED the task completion time is comparable
with TRA, except of the large graphs in Task 2. Thus from the bar charts we
extract the following two interpretations.

• PED supports small graphs for searching the farthest neighbor.

• PED does not support large graphs for checking paths of length two.

In Task 1 the task completion time seems to be in a reasonable fluctuation
for PED as well as for TRA. We interprete the difference of task completion
times for large graphs between TRA and PED with approximately 5 seconds
as not highly significant. A significant difference in task completion time can
be observed for Task 2. Large graphs in PED required much more time. But in
general, the error rate for PED is very low or in worst case similar to the error
rate for TRA in the same configuration. At this point we have the impression
that in general PED leads to lower error rate. On the other hand this might
be a consequence of spending more time on the PED model, at least in Task 2
results of the large graphs provide evidence of this reason.

Some results differ significantly in terms of task completion time. The reason
might also be located in the design or in the fact that it was an online evaluation.
When participant do the evaluation we can not exclude disturbing factors from
environment. Also we had no control of the screen resolution, e.g., leading to
scrolling, or other handling problems. Thus the task completion time of the
participants may differ from person to person even in the same configuration.

The next step of deeper evaluation is to consider discrete task completion times,
see Figure 4.28. This graphic confirms the interpretations from the previous
results in general. There is one additional interesting aspect to be pointed out.
In Task 2 the level–4 candidates were more accurate with PED for large graphs
compared to TRA for large graphs. This indicates that experts are used to the
traditional model, while non-experts may prefer the PED model. Regarding
this aspect further studies must follow with non-experts in order to reduce
prejudice.

Another aspect we ignored is the age of participants. In Figure 4.28 we see
no significant difference between different levels in Task 1, which we claim is

78 4 PEDs for Graphs

Figure 4.28: This graphic shows the absolute number of responses. The
left column represents Task 1, the right column represents Task 2. The first,
second, third row, respectively result illustrate participants with experience
levels 4,5,6, respectively. In each graphic part we see the number of correct
results, as well as the total number of results acummulated up to every time

stamp and for every configuration regarding size and model.

also true for the age. Indeed Figure 4.29 confirms this claim. The age is well
distributed and no accumulation point can be identified.

We next combine results of participants with comparable task completion time
in order to extract more information about error rate. Due to the observation
that differences between levels are not significant, we combine the results from
different levels within the same settings.

Figure 4.30 shows the relative time, which participants needed for a configura-
tion in PED compared to TRA. This graphic was expected to show us whether
there are significant differences among reaction times of participants. However

4.5 1/4-SHPED User Study 79

Figure 4.29: The age of participants separated due to level of knowledge.

Figure 4.30: Illustration of relative task completion time of PED compared
to TRA (100%). The left column represents Task 1, the right column rep-
resents Task 2. The first row represents large graphs, while the second row

small graphs.

we still can only see that TRA is better for large graphs in general, while PED
seems to be better for small graphs - at least for Task 1.

Summarizing we can say that Task 2 (accessibility check), for which we assumed
to support the traditional straight-line model, was answered in the PED model
more accurately, but not significantly faster. Task 1 (adjacency check), for
which we assumed the PED model to be superior, was answered more accurate

80 4 PEDs for Graphs

only for small graphs in PED model and only slightly faster in the traditional
model. Thus PED seem to support questions of accessibility (if there is a
path connecting them) in general and distance comparisons for small graphs.
For large graphs in terms of distance comparisons, we cannot recommend a
preferable model. Since for some configurations PED required higher task
completion time, there is no significant result that supports PED undisputedly.
The same holds for the traditional model since we picked a layout advantageous
for the traditional model. At least a general tendency to PED can be identified.

4.5.4 Discussion

In the design of this evaluation we tried to minimize the influences on the
participants. However this was not always possible in a study of this small
size. We list here several aspects that may have influenced results due to the
design. We also give some hints for settings of further evaluations in future
work.

• Due to the small study size we could not make the participants forget
previously seen graphs. Thus we took graphs with comparable statistical
properties; we could not avoid accidentally picking more difficult graphs.

• For the same reason we draw graphs as 1/4-nSHPED laid out with a
traditional force-directed algorithm for straight-lines, not with a 1/4-
SHPED supporting force-directed algorithm.

• We couldn’t control participants with respect to distractions in the envi-
ronment.

• We mainly asked for participant with some experience on graphs, which
means that many of them were possibly used to the traditional straight-
line model and thus possibly prejudiced.

• Due to screen resolution we could not control, whether the participants
had to scroll or search for buttons. Nevertheless we picked a small reso-
lution to minimize the probability of scrolling.

• We were not totally convinced whether participants understood the model.
A longer study would offer the opportunity to check the participants more
accurately for their understanding of the model.

• Some participants seem to have used browsers that prevented submitting
time-stamps. Due to this fact we had to sort out some results.

• We did not implement a deeper check whether the experience of the
participant really correspond to the level they checked. So participants
could have over- or underestimated their experience.

4.6 Summary and Future Work 81

In the beginning we motivated why we used a traditional spring embedder for
the layout of graphs. For future work we may turn the page and produce
drawings with our 1/4-SHPED spring embedder plus creating drawings in the
traditional straight-line layout directly from the 1/4-SHPED spring embedder
layout. Another approach is to use the 1/4-SHPED spring embedder for PED
layout and a spring embedder for the traditional straight-line layout by using
the same graph in both layouts. This may require a relabeling of the graph or
a short “break” between serving the same graph. We also like to investigate in
a longer study what happens to the results of Task 1 vs. Task 2 if we use the
same configurations in terms of model and size for both tasks.

In future work we like to evaluate another stub-edge ratio. Also the graph sizes
were chosen arbitrarily. Thus other graph sizes should be evaluated as well.
We selected a specific density for graphs. Since 1/4-SHPEDs support highly
connected graphs, like the graphs from Section 4.2, we would like to evaluate
also denser graphs.

Unfortunately the average of task completion times differed a lot between all
participants. In order to control this fact better, another study should provide
every figure just for a fixed number of seconds, e.g., 15 seconds for a configu-
ration in Task 1 and 10 seconds for a configuration in Task 2.

4.6 Summary and Future Work

Avoiding edge crossings by breaking edges of drawing only the stubs incident to
corresponding vertices is a pragmatic approach which seems to make not much
sense on the first sight. After some work on it, we found the topic appealing
from the intellectual and fun point of view but also from the practical side.
Restricted versions of the approach might be very valid and effective for some
applications.

We provide the first formal step for a more structural way of research on PED
topics. We found several classes of graphs admitting 1/4-SHPED and proved
also that some graphs do not admit a 1/4-SHPED. For general graphs we
provided a force-directed embedder and evaluated the new drawing model by
a user study.

It would be especially great to find further classes of graphs admitting a δ-
SHPED. Here the Condition 4.4 might be of some help. Candidates are l-
planar graphs among others. We would like to further reduce the bound on n
for which the complete graph Kn admits no 1/4-SHPED. Finally it would be
nice to improve the 1/4-SHPED spring embedder to be applicable for larger
graphs and to evaluate practical aspects of 1/4-SHPEDs more extensively.

Chapter 5
PEDs for Graphs with Fixed Vertex
Positions

In this chapter we focus on the key question, which is the optimal length of
the partially drawn edges, provided that the geometric embedding is given.
Geometric embedding means, that the position of the vertices is fixed and the
edges are drawn as straight lines [30, 68]. Since our focus is on straight-line
drawings, embeddings will always mean geometric embeddings in this chapter.
A graph together with a geometric embedding is called geometric graph. In this
chapter we will discuss geometric graphs according to the type of PED they
admit.

It will turn out that considering only SHPEDs is not very interesting, so we
focus more on non-homogeneous and non-symmetric drawings and optimize
the length of the stubs. PEDs where for every edge the sum of both stubs is
approximately the same as the edge length are called ncPEDs. In drawings not
admitting a ncPED we aim at maximizing the sum of the stub lengths and call
those drawings maxPED, respectively maxSPED if symmetry is preserved. We
will consider maxSPEDs for the sake of finding techniques to tackle maxPEDs.

Figure 5.1(b) depicts a maxSPED of the straight-line drawing in Figure 5.1(a).
We have slightly shrunken the stubs in the maxSPED so that they do not
touch. For comparison, Figure 5.1(c) depicts a SHPED with maximum ratio δ.

We start with an introduction including the definition of ncPED, maxSPED
and maxPED, respectively, in Section 5.1. Here we also provide some basic
results, which are mentioned just for completeness but involve no complex
calculations. In Section 5.2 we continue with ncPEDs and provide a sufficient
and necessary condition for geometric graphs admitting ncPEDs. We continue
with maxSPEDs in Section 5.3, where we show how to compute maxSPEDs
efficiently for some specific geometric graphs, while we show NP-hardness in

83

84 5 PEDs for Graphs with Fixed Vertex Positions

(a) with crossings (b) as a maxSPED (c) as a maxSHPED

Figure 5.1: Various drawings of a 13-vertex graph.

general and provide a 2-approximation for minSPEDs, the dual of maxSPEDs.
Finally we provide an ILP for maxPED and point out differences between
maxSPEDs and maxPEDs geometrically, which are the reason that maxPED
is much more difficult to access for us. In Section 5.4 we summarize the main
results on PEDs for geometric graphs. Most of the results of this chapter are
published in [200, 201, 204].

5.1 Definitions and Basic Results

Let G = (V,E) be an arbitrary graph with fixed embedding Γ, which in par-
ticular means that the vertex positions are fixed, say by a preprocessing layout
step, where in a traditional straight-line representation some of the edges in-
tersect each other. Instead of considering the graph G, we always consider the
geometric embedding Γ, or embedding for short. In particular we focus on the
geometric embedding, whenever a geometric graph is given. For an embed-
ding Γ, we introduce three types of PEDs. Let w : E −→ R be a mapping,
which sums up the length of edges, so w(E) =

∑
e∈E d(e). For a given graph

G = (V,E) with embedding Γ, the weight w(Γ) is defined by w(E). We denote
by sev, s

e
w the stub of the edge e = (v, w) ∈ E incident to v, respectively inci-

dent to w, as well as their length. Weight w(PEDΓ) =
∑

e=(v,w)∈E(sev + sew) is
computed for a PEDΓ. We say a PEDΓ is a nearly complete PED (ncPED), if
for every ε > 0 : w(Γ)−w(PEDΓ) < ε. Additionally we demand on ncPEDs to
have precisely as many gaps as intersection points in the underlying traditional
straight-line embedding. A (S)PEDΓ is maximal denoted by max(S)PED, if
there is no other (S)PED′Γ with w((S)PED′Γ) > w((S)PEDΓ). We will again
identify vertices with points and edges with segments.

At this point we recall that stubs are considered as half-open sets. Otherwise
the corresponding terms are not well-defined. An ncPED requires just at most
one cut for every edge e of the underlying embedding. So edge e = (v, w) is
split into two stubs sev, s

e
w and the equality sev + sew = d(e) holds, if there is just

the intersection point missing. For illustrations the gap is drawn significantly

5.2 Nearly Complete PEDs 85

larger than in theory. This is emphasized by defining an ncPED through an
infinitesimal ε. Notice here that for length of edges we use the distance function
d, while for the length of stubs we omit this function.

We may classify the embeddings in the traditional straight-line model by the
maximal number of crossings on each edge. We call a geometric embedding k-
planar, if every edge is crossed at most k times [147]. A geometric graph is called
k-planar, if id admits a k-planar geometric embedding. Whenever we refer
to a k-planar geometric graph, we implicitly assume that the corresponding
embedding is k-planar as well. In the following we first state some trivial
results to get an impression of the PED variants.

Lemma 5.1. Every embedding of a given graph can be modified to an SHPED.

Proof. We easily erase all intersection points and all segments cut off by this
operation. By shorten the remaining edges sufficiently, we get an SHPED.

We give an efficient algorithm to test whether a given graph G with embed-
ding Γ and a prescribed stub-edge-ratio δ has an SHPED. Let P be the set
of intersection points of Γ and each q ∈ P separates its incident edges e1

q , e
2
q

into e11
q , e

12
q , e

21
q , e

22
q . For stub-edge-ratio δ ∈ [0, 0.5], the algorithm is simply as

follows:

For each intersection point q ∈ P do

If
e11q
e12q

/∈
(

1

(1
δ)−1

,
(

1
δ

)
− 1

)
and

e21q
e22q

/∈
(

1

(1
δ)−1

,
(

1
δ

)
− 1

)
,

then return ’no SHPED with stub-edge-ratio δ’.

This algorithm tests whether an intersection point q is located on a broken part
of the edges. Since |P | = O(n2), the algorithm requires O(n2) time.

5.2 Nearly Complete PEDs

In this section we are interested in whether k-planar geometric graphs admit
an ncPED. Recall, we focus on the k-planar geometric embedding, whenever
a geometric k-planar graph is given. Our objective is to modify drawings at
crossings aiming for ncPEDs. Whenever we remove one ε-part before and one
ε-part after the crossing, then this removal counts as one gap for this particular
edge.

Lemma 5.2. Every 1-planar geometric graph admits an ncPED.

86 5 PEDs for Graphs with Fixed Vertex Positions

Proof. Let ε > 0. In every 1-planar embedding Γ every edge has at most
one intersection point. So we can avoid an intersection point p in a PED,
by removing 2ε-parts on one of the two edges - one before p and one after p.
Proceeding this for every intersection point we obtain a PED Γ′. Its weight is
w(Γ′) =

∑
e∈E d(e)− 2ε|P |, where P is the set of intersection points in Γ. The

difference between w(Γ) =
∑

e∈E d(e) and w(Γ′) can be made arbitrarily small
by selecting a small ε. In particular, there are precisely |P | gaps in Γ′.

Lemma 5.3. Every 2-planar geometric graph admits an ncPED.

Proof. Let Γ be a 2-planar embedding. To guarantee an ncPED, every edge is
cut at one intersection point at most, which we call responsibility of an edge
e for an intersection point q. In this case a length-2ε piece of e is removed
– one before q and one after q. To find right responsibility for edges, we
compute a bipartite intersection graph S = (P ∪ E,E′), where P is the set
of intersection points in Γ and (q, e) ∈ E′, if and only if q is incident to e.
Each intersection point has exactly one responsible edge, which is indicated
by a maximal matching in S. In Γ each intersection point comes from exactly
two edges and each edge has at most two intersection points. We prove by
contradiction using Halls’s Marriage Theorem that a maximal matching exists
and covers P .

Assume for contradiction that in the bipartite intersection graph S = (P ∪
E,E′) there is a subset P ′ ⊆ P with |N(P ′)| < |P ′|, where N(P ′) denotes the
neighbors of P ′. Since for every crossing exactly two edges are involved, we have
exactly 2|P ′| outgoing edges for P ′. Thus N(T) has at least 2|P ′| > 2|N(P ′)|
outgoing edges and by the pigeonhole principle there is an edge e ∈ N(P ′)
which is involved in at least three crossings, contradicting the 2-planarity of
Γ.

For graphs with 3-planar embedding it is not possible to compute an ncPED
in general, see Figure 5.2. If we consider the bipartite intersection graph of G,
there are two intersection points p9, p6, which are not covered by the matching
and thus have no responsible edge. Given the responsibilities, we can draw
ncPEDs as in Lemma 5.3.

Lemma 5.4. Let G = (V,E) be an undirected graph with embedding Γ and
intersection points P and S = (E ∪ P,E′) its bipartite intersection graph. G
has an ncPED concerning Γ, if and only if S has a maximal matching covering
P .

Proof. The proof of this lemma follows directly from the assignment of crossings
to edges.

Notice, according to the definition of ncPED, i.e., that in every ncPED the
crossings are resolved by one local broken and one local entirely drawn edge,

5.3 Maximal SPEDs 87

e1

e2

e3 e4

e5

e6

e7e8

p1 p2

p3 p4

p6 p9

p10

p7 p8

p5

e1

e2

e3 e4

e5

e6

e7e8

p1 p2

p3 p4

p6 p9

p10

p7 p8

p5

e1

e3

e2

e4

e5

e7

e6

e8

e1

e3

e2

e4

e5

e7

e6

e8

p10

p3

p1

p2

p4

p9

p6

p5

p8

p7

p10

p3

p1

p2

p4

p9

p6

p5

p8

p7

Figure 5.2: Example of embedded graph G with no ncPED, because any
matching in its intersection graph does not cover P .

Lemma 5.4 provides a sufficient and necessary condition on the existence of
ncPEDs. We can not ensure ncPEDs for embeddings of graphs with edges that
are crossed more than twice. Therefore we turn to PEDs of maximal weight in
the next section.

5.3 Maximal SPEDs

The geometric graphs can be partitioned into those admitting an ncPED and
the remaining graphs, which admit (at least one) maxPED. Clearly there is
no graph admitting no maxPED, since an ncPED is in particular a maxPED
and from all finitely many PED candidates, that have cuts only at intersection
points, there will be some of maximum weight. So we are interested in inves-
tigating maxPEDs for the sake of characterizing all geometric graphs, whether
they admit a ncPED or just a maxPED.

We start all considerations on maxSPEDs instead of maxPEDs to get a feeling
for the complexity of this problem. The symmetry makes the problem easier
accessible for us. Our hope is to extend techniques applicable for maxSPED
also to be applicable for maxPED with slight modifications. We finish this
section with a short discussion on maxPED.

In the following we provide an ILP for computing maxSPEDs in general and
a dynamic program to efficiently compute a maxSPED for the special case of
geometric graphs that admit 2-planar embeddings. Then we prove the NP-
hardness for computing a maxSPED in general. Finally we turn to the dual
problem minSPED of minimizing the ink that has to be erased in order to turn
a given embedding into a SPED and provide a 2-approximation. We conclude
with an ILP formulation for maxPED.

Lemma 5.5. A maxSPED can be computed by an ILP for every geometric
graph.

Proof. Let e ∈ E be an edge and se be the length of one single stub of e.
We maximize the total length of the stubs while avoiding crossings in PED.

88 5 PEDs for Graphs with Fixed Vertex Positions

Let P be the set of real crossing points, which exclude the vertices, and let
M = maxe∈E d(e) be a constant. We may compute in advance for every in-
tersection point p ∈ P the length of the smallest segment for both of the
involved edges e = (v, w) and e′ = (a, b), i.e., lep = min{d(v, p), d(w, p)} and

le
′
p = min{d(a, p), d(b, p)}. We use again a binary variable xee′ to express an

“or” [4]. So, the ILP is as follows.

max
∑

e∈E
se

s.t. 0 < se ≤ lep + xee′M

0 < se
′ ≤ le′p + (1− xee′)M

xee′ ∈ {0, 1} ∀ p ∈ P

Note that for a 1-planar geometric graph maxSPEDs can be obtained greedily,
since its intersection graph consist of components of size two. Moreover we
have O(n) intersection points.

Theorem 5.6. Let G be a 1-planar geometric graph with n vertices and with
1-planar embedding Γ. A maxSPED of Γ can be computed in O(n) time.

For a 2-planar geometric graph the components of the intersection graph con-
sists of paths and cycles. For that case dynamic programming for maxSPED
can be applied successfully, as we will see next.

Let G be a 2-planar geometric graph and let Γ be the corresponding 2-planar
embedding. Given G and Γ, we define a simple undirected graph C as follows.
C has a vertex ve for each edge e of G. Two vertices ve and ve′ of C are
connected by an edge if and only if e and e′ form a crossing in Γ. Such a graph
is in general non-connected. Furthermore, since the maximum degree of C is
2, a connected component of C is either a path (possibly formed by only one
edge) or a cycle.

Let Ci be a connected component of C. We define a total ordering of the
vertices of Ci. Namely, if Ci is a path such an ordering is directly defined by
the order of its vertices along the path (rooted at an arbitrary end vertex). If
Ci is a cycle, we simply delete an arbitrary edge of the cycle, obtaining again
a path and the related order. That means, if we consider the subdrawing Γi
of Γ induced by the vertices of Ci (edges of Gi), such a drawing is formed by
an ordered sequence of edges (according to the ordering of the vertices of Ci),
e1, . . . , eni , such that ej crosses e(j+1) mod ni for j = 1, . . . , ni − 1 in case of a
path, and j = 1, . . . , ni in case of a cycle.

5.3 Maximal SPEDs 89

ej
ej+1

ej−1

x′j x′′jlj

Figure 5.3: Notation used in the DP.

We will use the following notation: lj is the total length of the edge ej ; x
′
j is the

length of the shortest stub of ej defined by the crossing between ej−1 and ej ,
called the backward stub; x′′j is the length of the shortest stub of ej defined by
the crossing between ej and ej+1, called the forward stub. See also Figure 5.3.

Consider now the subdrawing Γi, and assume that e1, . . . , eni form a path in Ci.
If ni = 2, the maximum total length of the stubs is kopt = max{l1 + 2x′2, l2 +
2x′′1}.

In the general case, we can process the path edge by edge, having at most
three choices for each edge: (i) we can draw it entirely, (ii) we can draw only
its backward stubs, or (iii) we can draw only its forward stubs. The number of
choices we have at any step is influenced only by the previous step, while the
best choice is determined only by the rest of the path. Following this approach,
let γi be a maxSPED for Γi and consider the choice done for the first edge e1

of the path.

The total length of the stubs in γi, minus the length of the stubs assigned to
e1, represents an optimal solution for Γi \e1, under the initial condition defined
by the first step, otherwise, γi could be improved, a contradiction. In other
words, the optimality principle holds for our problem. Thus, we can exploit
the following dynamic programming (DP) formulation, where Oin(ej) describes
the maximum total length of the stubs of ej , . . . , eni under the choice (i) for
ej , O

′
out(ej) describes the choice (ii) and O′′out(ej) describes the choice (iii).

Oin(ej) =

{
lj + max{O′out(ej+1), O′′out(ej+1)} if x′j+1 ≥ x′′j+1,

lj +O′out(ej+1) if x′j+1 < x′′j+1.
(5.1a)

O′out(ej) =





2x′j + max{O′out(ej+1), O′′out(ej+1)} if x′j > x′′j and x′j+1 ≥ x′′j+1,

2x′j +O′out(ej+1) if x′j > x′′j and x′j+1 < x′′j+1,

2x′j + max{Oin(ej+1), O′out(ej+1), O′′out(ej+1)} if x′j ≤ x′′j .
(5.1b)

O′′out(ej) = 2x′′j + max{Oin(ej+1), O′out(ej+1), O′′out(ej+1)} (5.1c)

In case of a path, we store in a table the values of Oin(ej), O
′
out(ej) and O′′out(ej),

for j = 1, . . . , ni, through a bottom-up traversal of the path (from eni to e1).
Since e1 and eni do not cross, we have x′1 = l1/2 and x′′ni = lni/2. Then, the

90 5 PEDs for Graphs with Fixed Vertex Positions

e1

e2

e3
e4

l x′ x′′

e1 7 3.5 2
e2 7 1 2
e3 5 1 1
e4 4 1 2

(a) with crossings

e1

e2

e3
e4

Oin O′
out O′′

out

e4 4 2 4
e3 7 6 6
e2 13 9 11
e1 16 16 17

(b) as a maxSPED

Figure 5.4: (a) A 2-planar drawing Γ and (b) a maxSPED of Γ computed
by the DP algorithm.

maximal value of ink is given by kopt = max{Oin(e1), O′out(e1), O′′out(e1)}. See
Figure 5.4 for an example.

In case of a cycle, we have that e1 and eni cross each other, thus, in order
to compute the table of values we must assume an initial condition for eni .
Namely, we perform the bottom-up visit from eni to e1 three times. The first
time we consider as initial condition that eni is entirely drawn (choice Oin(eni)),
the second time we consider only the backward stubs drawn (choice O′out(eni)),
and the third time we consider only the forward stubs drawn (choice O′′out(eni)).
Every initial condition will lead to a table where, in general, we do not have
all the three possible choices for e1 (i.e., some choices are forbidden due to the
initial condition). Performing the algorithm for every possible initial condition
and choosing the best value yields the optimal solution kopt.

The algorithm described above leads to the following result.

Theorem 5.7. Let G be a 2-planar geometric graph with n vertices and with
2-planar embedding Γ. A maxSPED of Γ can be computed in O(n log n) time.

Proof. Consider the algorithm described above, based on the DP formulation
defined by the set of equations (5.1). We already showed how this algorithm
computes a maxSPED of Γ. The construction of the graph C requires time
O(m logm) with a standard sweep-line algorithm for computing the O(m) line-
segment intersections [17]. Once C has been constructed, ordering its vertices
requires O(nC) time, where nC ∈ O(m) is the number of vertices of C. Per-
forming a bottom-up visit and up to three top-down visits of every path or
cycle takes O(m) time. Thus, the overall time complexity is O(n log n), since
for 2-planar graphs m ∈ O(n) [147].

We finally observe that the restricted 0/1-maxSPED problem for 2-planar draw-
ings, where each edge is either drawn or erased completely, may be solved
through a different approach. Indeed, we can exploit a maximum-weight SAT
formulation in the CNF+(≤2) model, where each variable can appear at most
twice and only with positive values [154]. Roughly speaking, we map each
edge to a variable, with the weight of the variable equal to the length of its
edge, and define a clause for each crossing. Applying an algorithm of Porschen

5.3 Maximal SPEDs 91

and Speckenmeyer [154] for CNF+(≤2) solves 0/1-maxSPED in O(n3) time.
However, our algorithm solves a more general problem in less time.

5.3.1 NP-hardness

Next we consider the complexity of computing maxSPED in general. We will
give a reduction from the NP-hard positive planar 1-in-3SAT [143] to maxSPED
according to [119]:

Let ϕ be a boolean formula in 3-CNF. In the positive planar 1-in-3SAT there is
a graph G(ϕ) associated with ϕ in such a way that there is a variable vertex vx
for every variable x and a clause vertex vc for every clause c and edges between
vx and vc, if and only if x or x appears in c. The formula ϕ is called planar, if
G(ϕ) is planar. Positive planar 1-in-3SAT is the problem of deciding whether
a planar ϕ is satisfiable so that in each clause is precisely one variable satisfied
and all variables appear not negated.

An instance of positive planar 1-in-3SAT consists of a formula ϕ and a planar
embedding Γ of G(ϕ). Let c be a clause in ϕ and let x be a variable in c. We
will associate with x a segment sx, which will be entirely drawn, if x is false,
and it is partially drawn, if x is true. For the variables x1, . . . , xn of ϕ we draw
the segments sx1 , . . . , sxn replacing the variable vertices vx1 , . . . , vxn in Γ. For
every clause vertex vc in Γ we draw three segments s′x, s

′
y, s
′
z intersecting in vc,

if x, y, z appear in c. For every edge (vc, vx) we draw a sequence of segments,
referred to chain of segments in the following. The segment s′i, i ∈ {x, y, z}
is connected with si by a chain of segments si = s1

i , . . . , s
k
i = s′i, where k

is an even integer. More precisely every segment sji , 1 ≤ j ≤ k has length

4 and consists of four subsegments sj,1i , sj,2i , sj,3i , sj,4i , each of length 1. Every

crossing on segment sji , 1 ≤ j ≤ k lies between sj,1i and sj,2i , or between sj,3i
and sj,4i . So in a chain of segments, segment sj−1

i crosses sji between sj,1i and

sj,2i for 1 < j ≤ k, while segment sj+1
i crosses sji between sj,3i and sj,4i for

1 ≤ j < k. Thus the length of the entirely drawn sji is 4, while the length

of the partially drawn sji is 2, when sj,2i and sj,3i are removed. In every chain
from a segment of a variable vertex to a segment of a clause vertex s1

i , . . . , s
k
i ,

the segments alternate between entirely drawn and partially drawn. The total
length of s1

i , . . . , s
k
i is k/2 ∗ 2 + k/2 ∗ 4 = 3k. Figure 5.5 shows an example of

this transformation. For this reduction k is chosen so that there are sufficiently
enough segments to connect three segments of variable vertices in the clause
vertex by intersection. All chains must have the same even length k so that the
existence of a maxSPED is independent from the value of maxSPED computed
by the length of chains. The above construction can be done in O(m) time.

Theorem 5.8. Computing a maxSPED is NP-hard.

92 5 PEDs for Graphs with Fixed Vertex Positions

x y z
x

y z

c
c

Figure 5.5: A clause c on the left with positive variables x, y, z and valid
truth assignment with blue =̂ false and red =̂ true. The transformed clause
contains 3 chains of segments, where red edges are partially drawn, while the

blue edges are entirely drawn.

Proof. Let ϕ,Γ be a Boolean formula with a planar embedding of an instance
of positive planar 1-in-3SAT and let Γ′ be the drawing constructed from Γ as
above.

We will show that there is a valid truth assignment for ϕ, if and only if Γ′

admits a maxSPED with (1) chains of segments alternating between entirely
drawn and partially drawn, and where (2) every clause vertex is incident to
exactly one entirely drawn segment in Γ′.

“⇒”: Let x be a variable, c be a clause containing x and e = (vx, vc) be an edge
connecting the vertex representing x with the vertex representing c. We draw
segment sx entirely, if the value of x is false, otherwise we draw sx partially. We
alternate between partially drawn segments and entirely drawn segments for the
chain of segments representing e. Since chains have even length and precisely
one variable in c was true, there is only one segment at vc entirely drawn, while
the two others are partially drawn. Due to the alternation the value of the
PED is maximal and the PED is symmetric by construction. Thus a valid
truth assignment for the variables of ϕ creates a valid maxSPED satisfying (1)
and (2).

“⇐”: Consider a maxSPED of Γ′. Suppose ϕ has no valid truth assignment,
then there exists a clause c containing variables x, y and z, respectively, such
that the value of x, y and z is false, respectively. Thus the segment sv rep-
resenting the variable v ∈ {x, y, z} is drawn entirely for all v = x, y, z. Since
chains of segments have even length and together with (1), we conclude that
the segments s′v are entirely drawn, when they meet in vc at the end of chains
of segments for all v = x, y, z, contradiction to the validity of the maxSPED of
Γ′. Assume (2) is satisfied in the maxSPED of Γ′, that is, there are precisely
two segments s′v, s

′
w that are partially drawn for v, w ∈ {x, y, z}. Since chains

of segments have even length and since segments sv, sw are also partially drawn
due to the invalid truth assignment, we conclude that either (1) is not satisfied
or the maxSPED was not valid. Summarizing in every maxSPED not both (1)
and (2) can be fulfilled if ϕ has no valid truth assignment.

5.3 Maximal SPEDs 93

e0 e1
e2 e3

f2 f3 f1

e2 e1 e0

Figure 5.6: Edge e is split into four pairs of edge segments; pairs are labeled
equally.

5.3.2 Erasing Ink in Arbitrary Graph Drawings

In this section, we consider the problem minSPED, which is dual to maxSPED.
In minSPED, we are given a geometric graph and the task is to erase as little
of the edges as possible in order to make the embedding a SPED.

We will exploit a connection between the NP-hard minimum-weight 2-SAT
problem (MinW2Sat) and minSPED. Recall that the MinW2Sat problem,
given a 2-SAT formula, asks for a satisfying variable assignment that minimizes
the total weight of the true variables. There is a 2-approximation algorithm for
MinW2Sat that runs in O(vc) time and uses O(c) space, where v is the number
of variables and c is the number of clauses of the given 2-SAT formula [12].

Theorem 5.9. MinSPED can be 2-approximated in time quadratic in the num-
ber of crossings of the given geometric graph.

Proof. Let G be an instance of minSPED. We construct an instance ϕ of the
MinW2Sat problem as follows. Let e be an edge of G with k crossings. Then e
is split into k+1 pairs of edge segments e0, . . . , ek as shown in Figure 5.6. If we
order the edges that cross e in increasing order of the distance of their crossing
point to the closer endpoint of e, we can assign each segment pair ei for i ≥ 1
to the ith edge f i crossing e, in this order. We also say that edge f i induces
segment pair ei. Any valid maximal (non-extensible) partial edge drawing of e
is the union

⋃j
i=0 ei of all pairs of edge segments up to some index j ≤ k.

We model all pairs of (induced) edge segments as truth variables ê1, . . . , êk
with the interpretation that the pair ei is not drawn if êi = true. The pair e0

is always drawn. For i = 1, . . . , k, we introduce the clause (¬êi+1 ⇒ ¬êi) ≡
(êi+1∨¬êi). This models that ei+1 can only be drawn if ei is drawn. Moreover,
for every crossing between two edges e and f , we introduce the clause (ei∨ fj),
where ei is the segment pair of e induced by f and fj is the segment pair of f
induced by e. This simply means that at least one of the two induced segment
pairs is not drawn and thus the crossing is avoided.

Now we assign a weight we,i to each variable êi, which is either the absolute
length |ei| of ei if we are interested in ink, or the relative length |ei|/(2|e|)
if we are interested in relative stub lengths (δ). Then minimizing the value∑

êi∈Var(ϕ)we,iêi over all valid variable assignments minimizes the weight of
the erased parts of the edges in the given geometric graph.

94 5 PEDs for Graphs with Fixed Vertex Positions

The 2-approximation algorithm for MinW2Sat yields a 2-approximation for
the problem to erase the minimum ink from the given straight-line drawing
of G. It runs in O(vc) = O(I2) ⊆ O(m4) time since our 2-SAT formula has
O(I) ⊆ O(m2) variables and clauses, where m is the number of edges of G
and I is the number of intersections in the drawing of G.

If we encode the primal problem (maximize ink) using 2SAT, we cannot hope
for a similar positive result. The reason is that the tool that we would need,
namely an algorithm for the problem MaxW2Sat dual to MinW2Sat would
also solve maximum independent set (MIS). For MIS, however, no (n1−ε)-
approximation exists unless NP = ZPP [103].

To see that MaxW2Sat can be used to encode MIS, use a variable v̂ for
each vertex v of the given (graph) instance G of MIS and, for each edge (u, v)
of G, the clause (û ∨ v̂). Let ϕ be the conjunction of all such clauses. Then
finding a satisfying truth assignment for ϕ that maximizes the number of false
variables (i.e., all variable weights are 1) is equivalent to finding a maximum
independent set in G. Note that this does not mean that maximizing ink is as
hard to approximate as MIS.

5.3.3 maxPEDs

Next we give some remarks on maxPEDs. Clearly 1-planar and 2-planar ge-
ometric graphs even admit an ncPED, thus it suffices to consider k-planar
geometric graphs with k > 2.

Since maxSPED is NP-hard, we have the impression that also maxPED is NP-
hard. Unfortunately we didn’t find a proof for this claim. Also we couldn’t
adopt the proof for maxSPED, since in the non-symmetric case a stub at one
end of the edge is completely independent from the corresponding other stub.
To achieve a polynomial-time algorithm for the construction of maxPEDs, we
tried to generalize the concept of a matching based on the intersection graph.
Unfortunately we were not able to prove optimality for an efficient algorithm
in general. At least we can formulate the problem of computing a maxPED for
a general geometric graph G as ILP.

We introduce 2m variables sev, s
e
w, e = (v, w) ∈ E, which will be the length of

the stubs. Also we have at most m2 binary variables xee′ for every pair of edges
e, e′ ∈ E that cross each other [4]. The crossing induced by edge e = (v, w)
with edge e′ = (a, b) is denoted by p. The set of crossing points is referred to
P . Furthermore we use a big constant M = maxe∈E d(e), where d(e) denotes
the length of edge e. The exact formulation follows.

5.4 Summary and Future Work 95

max
∑

e=(v,w)∈E
(sev + sew)

s.t. 0 < se
′
a ≤ d(a, p) + xee′M

0 < se
′
b ≤ d(b, p) + xee′M

0 < sev ≤ d(v, p) + (1− xee′)M
0 < sew ≤ d(w, p) + (1− xee′)M
xee′ ∈ {0, 1} ∀ p ∈ P

5.4 Summary and Future Work

We have proved for 1- and 2-planar geometric graphs the existence of ncPEDs.
For k-planar geometric graphs we provided a necessary and sufficient condi-
tion whether they admit an ncPED. A maxSPED for 1-planar and 2-planar
geometric graphs can be computed efficiently. On the other hand we proved
NP-hardness for computing a maxSPED in general and presented an approx-
imation algorithm for the dual of maxSPED. We finally conjecture that the
problem of computing maxPEDs for geometric graphs is NP-hard. It would be
interesting to have at least a good approximation algorithm for maxPED.

Chapter 6
PEDs for Orthogonal 1-bend
Drawings

In this chapter we extend PEDs to orthogonal drawings in two dimensions with
exactly one bend per edge, called 1-bend drawings. Indeed, orthogonal drawing
is a central concept in graph drawing (see [49, 118] as a reference), and we find it
natural to ask how the techniques and results for PEDs carry over to orthogonal
drawings. Also, restricting to 1-bend drawings is the first step before extending
the model to orthogonal drawings with more than one bend per edge. In a 1-
bend drawing, vertices are represented as points with integer coordinates and
edges as chains of two orthogonal (axis-aligned) segments. Hence, each vertex
can have degree at most 4, (∆G ≤ 4). A characterization of the graphs that can
be drawn orthogonally with one bend per edge has been recently presented by
Felsner et al. [79], where they adopted the general position model, i.e., no two
points can share a coordinate. Indeed, these drawings are also bend minimal,
since each edge is represented exactly by one segment parallel to each coordinate
axis. In this chapter we also adopt the general position model.

Observe that we cannot directly extend the SHPED model from straight-line
drawings to 1-bend drawings, since bent edges might lead to ambiguous inter-
pretations. In particular, it would be unclear how long one should follow a
vertical stub or a horizontal stub to reach the bend, see Figure 6.1. Therefore,
we introduce the new model 1-bend Orthogonal Partial Edge Drawing, or sim-
ply 1-bend OPED, where for every edge in a 1-bend drawing we erase the longer
segment (we actually draw it as a thin dotted segment). Figure 6.2(a) illus-
trates a 1-bend drawing of the 4-dimensional hypercube, while Figure 6.2(b)
illustrates a 1-bend OPED of the same graph. Similarly as for straight-line
PEDs, we define two further properties, homogeneity and symmetry. Formal
definitions for 1-bend homogeneous orthogonal PEDs (1-bend HOPED) and for
1-bend symmetric and homogeneous orthogonal PEDs (1-bend SHOPED) are
given in Section 6.1.

97

98 6 PEDs for Orthogonal 1-bend Drawings

(a) (b) (c)

(d) (e) (f)

Figure 6.1: (a) A 1-bend drawing of a graph with four edges when applying
the SHPED model of straight-line drawings, i.e., half of the edge is removed in
such a way that a quarter of the edge remains incident to an end-vertex and a
quarter to the other end-vertex. It is ambiguous which vertices are connected,
since (b), (c) and (d) are different graphs that can be extracted from (a)
according to the SHPED model of straight-line drawings. Such an ambiguity
can be resolved by using the new definitions for 1-bend SHOPEDs introduced
in Section 6.1. Indeed, (d), (e) and (f) are unique 1-bend SHOPEDs of the

graphs (d), (b) and (c), resp.

The remainder of this section is organized as follows. Similarly to the straight-
line case, we study those graphs that admit 1-bend OPEDs when homogeneity
and symmetry are required, where these two properties are defined so to sup-
port readability and avoid ambiguities, see Section 6.1. In order to understand
the more careful treatment of PED in the orthogonal case as in the straight-
line case, we will explore the guidance to PEDs for orthogonal drawings and
the involved ambiguity in this part. According to this new model, we show
in Section 6.2 that every graph that admits a 1-bend drawing also admits a
1-bend OPED as well as a 1-bend homogeneous orthogonal PED, i.e., a 1-bend
HOPED. Furthermore, we prove in Section 6.3 that all graphs with maximum
degree 3 admit a 1-bend symmetric and homogeneous orthogonal PED, i.e.,
a 1-bend SHOPED. Concerning graphs with maximum degree 4, we prove in
Section 6.4 that the 2-circulant graphs that admit 1-bend drawings also admit
1-bend SHOPEDs, while there is a graph with maximum degree 4 that does not
admit such a representation. We finish with a conclusion on 1-bend OPEDs in

6.1 Definitions 99

(a) (b)

Figure 6.2: (a) A 1-bend drawing of the 4-dimensional cube where one
vertex has been removed, taken from [79]. (b) A 1-bend OPED drawing of

the same graph. Omitted segments are drawn by thin dotted lines.

Section 6.5. These results were published in [207].

6.1 Definitions

Felsner et al. [79] showed that any graph G = (V,E) with ∆G ≤ 4 has a 1-
bend drawing if and only if |E(S)| ≤ 2|S| − 2 for all S ⊂ V . The necessity
of this density condition for each induced subgraph of G comes from the clear
observation that in any 1-bend drawing there must be a topmost vertex without
any vertex towards the top, a bottommost vertex without any vertex towards
the bottom, and similarly for the left and right directions. Notice that, 4-
regular graphs cannot guarantee such a condition. Hence, Felsner et al. [79]
placed one vertex at a point at∞. Since we consider only the Euclidean plane,
we will remove this vertex from the graph.

Let Γ be a 1-bend drawing of a graph G. The bounding box R of Γ is the
smallest axis-aligned rectangle containing the drawing. Let v be a vertex of G.
We denote the four possible anchor points for an edge incident to v by north,
south, west and east ports of v. Also, we denote the x- and y-coordinates of
v in Γ by x(v) and y(v), respectively. Let e be an edge of G, the segments
parallel to the x-axis and to the y-axis in the chain of segments representing e
in Γ are called horizontal and vertical segments, respectively, and denoted by
eh and ev, respectively. The length of a segment s is denoted by |s|.

Let sve ⊆ ev, respectively she ⊆ eh be subsegments (the stubs of e), so that
(ev∪eh)−(sve∪she) is connected. In what follows, we introduce three variations of
our model for orthogonal partial edge drawings. Each variation is defined as an
orthogonal 1-bend drawing (short: 1-bend drawing) in general position, where
for every edge e, the two segments ev and eh are replaced by their stubs sve and
she (defined above) and no two stubs cross. Furthermore, instead of completely

100 6 PEDs for Orthogonal 1-bend Drawings

eh

ev

(a)

sve = ∅
she = eh

(b)

she sve

(c)

sve

she

(d)

Figure 6.3: (a) K4 has no planar 1-bend drawing, (b) but admits a 1-bend
OPED, (c) a 1-bend HOPED and also (d) a 1-bend SHOPED. Observe that

in (b) and (c) the bend point is part of the stubs, while in (d) it is not.

erasing the non-drawn parts, we draw them by thin dotted segments, which
help the user to follow the edge correctly. This is just a visualization tool
to support the reader, since the graph extracted from the drawing is already
unique.

We define a 1-bend Orthogonal Partial Edge Drawing, or simply 1-bend OPED,
as a 1-bend drawing in general position where for every edge e, we remove the
longer segment and the remaining (shorter) segments do not cross. That is, if
|eh| > |ev|, then we have she = ∅ and sve = ev, and otherwise in case of |eh| ≤ |ev|,
we have she = eh and sve = ∅. Since we adopt the general position model, each
vertical (horizontal) stub uniquely determines a horizontal (vertical) line on
which we can find its end-vertex. An illustration of a 1-bend OPED is given
in Figure 6.3(b).

A 1-bend HOPED is a 1-bend drawing in general position where half of each
edge is dropped, while the shorter segment is always entirely drawn. More
precisely |sve | + |she | = (|ev| + |eh|)/2 is true for every edge e of G and, in
addition, we always draw the shorter segment of an edge completely (as in the
1-bend OPED) and draw on the remaining segment (starting from the bend
point or from the end-vertex arbitrarily) as long as we need to reach half of
the total edge length (see Figure 6.3(c)). Therefore, the two stubs may be
continuous, forming a unique bent stub.

A 1-bend SHOPED is a 1-bend drawing in general position where we symmet-
rically remove half of the horizontal segment and half of the vertical segment
for each edge, i.e., 2|sve | = |ev| and 2|she | = |eh| for every edge e of G. The
dropped parts of ev and eh are connected by definition, i.e., they meet at the
bend point and the stubs sve and she are incident to the end vertices of e. An
illustration of the 1-bend SHOPED is given in Figure 6.3(d).

6.2 1-bend OPEDs and 1-bend HOPEDs 101

6.2 1-bend OPEDs and 1-bend HOPEDs

First we consider 1-bend OPEDs and begin with a simple observation. Every
graph that admits a 1-bend drawing also admits a 1-bend OPED: it is suffi-
cient to drop all the horizontal (vertical) segments of a 1-bend drawing after
stretching the drawing horizontally (vertically) by a factor equal to the length
of the longest vertical (horizontal) segment. If homogeneity is required, the
technique we use is slightly more difficult and it is presented in the following.

In the remainder of this section we consider 1-bend HOPEDs. We prove that ev-
ery graph that admits a 1-bend drawing also admits a 1-bend HOPED. Namely,
let G be a graph and let Γ be a 1-bend drawing of G produced by the algorithm
of Felsner et al. [79]. We modify the x-coordinates of the vertices of Γ so that
for each edge e of G, ev is always shorter than eh, and therefore sve = ev. Then,
we draw she always from right to left, as much as we need to reach half of the
edge length. Observe that sve and she might be continuous, forming a unique
bent stub. If necessary, we further modify the x-coordinates of the vertices of
Γ so that each crossing involving she is repaired.

Theorem 6.1. Every n-vertex graph G with ∆G ≤ 4 that admits a 1-bend
drawing also admits a 1-bend HOPED.

Proof. We start by constructing a 1-bend drawing Γ of G = (V,E) by using
the technique of Felsner et al. [79]. Recall that we adopt the general position
model and consider the total ordering of the (to the right oriented) edges of G
defined as follows: e = (u, v) ≺ e′ = (w, z) if and only if max{x(u), x(v)} <
max{x(w), x(z)} and v 6= z. The only incomparable edges are those with
common rightmost end-vertex. Then we break the ties as follows. Let e = (u, v)
and e′ = (w, v) be two edges with common rightmost end-vertex. Then e ≺ e′

if and only if y(u) < y(w). We scan the edges following the order ≺ described
above. Namely, let e = (u, v) ∈ E and assume that v is the end-vertex of e
placed at the point with largest x-coordinate. Consider the point pv (if any)
defined by the crossing involving eh with largest x-coordinate, denoted as xpv .
Then, we shift v and all the vertices to the right of v in the following way. For
all w ∈ V with x(w) ≥ x(v):

x(w) = x(w) + max{δ, δ′}, (iff max{δ, δ′} > 0) , where

δ = x(u)− x(v) + |ev|+ 1,

δ′ = 2xpv − x(u)− x(v)− |ev|+ 1, (δ′ = 0, if pv not exists).

Clearly δ > 0 if the vertical segment is at least as long as the horizontal
segment of an edge. Thus, the shift operation ensures that the vertical segment
is always shorter than the horizontal one (i.e., the vertical segment will be

102 6 PEDs for Orthogonal 1-bend Drawings

drawn entirely). Similarly δ′ > 0 if the horizontal distance between u and
pv is at least as large as the horizontal distance between pv and v plus the
length of the vertical segment. In this case, drawing the vertical stub entirely
and the horizontal stub from right to left as much as necessary to reach half
of the total edge length would cross pv. Hence, the shift operation ensures
that all the crossings involving eh lie on its non-drawn part. It is easy to see
that each crossing has been considered exactly once (due to the total order
of the edges) and it has been repaired, i.e., it lies on the non-drawn part of
the involved horizontal segment. Also, each shift operation does not affect
previously repaired crossings.

Conversely, in Section 6.4 we show that, if symmetry is also required, con-
structing a 1-bend SHOPED is not always possible.

6.3 1-bend SHOPEDs for Graphs of Maximum De-
gree 3

We prove that all graphs with maximum degree 3 admit 1-bend SHOPEDs.
Namely, we first present an efficient technique to construct 1-bend drawings for
biconnected graphs with maximum degree 3, which is of independent interest
since it is easy to implement and it has a better time complexity compared to
the technique in [79]. Then we show how to turn a 1-bend drawing constructed
by this technique into a 1-bend SHOPED. In the end, we extend our results to
connected graphs with maximum degree 3.

Lemma 6.2. Let G be a biconnected n-vertex graph with ∆G ≤ 3. We can
construct a 1-bend drawing Γ of G in O(n) time.

Proof. Given two vertices of G, s and t connected by an edge in G, an st-
numbering of G is a bijective function, V → {1, . . . , n}, such that s receives
number 1 (i.e., s = v1), t receives number n (i.e., t = vn) and every other
vertex, except for s and t, is adjacent to at least one lower-numbered and at
least one higher-numbered vertex [74]. Let {v1, . . . , vn} be an st-numbering of
G (with s = v1 and t = vn).

We first construct a 1-bend drawing Γ′ of the subgraph G′ = (V ′ = V \
{s, t}, E(V ′)) and then add s and t in a proper way.

Construction 1.

We assign to vertex vi the coordinates x(vi) = i and y(vi) = i, i = 2, . . . , n− 1.
We orient the edges e = (vi, vj) so that e goes from vi to vj , when 2 ≤ i <
j ≤ n − 1. Notice that there are only two possible shapes for the edges in Γ′.
Namely, let e = (vi, vj), 2 ≤ i < j ≤ n − 1, be a directed edge. It can either

6.3 1-bend SHOPEDs for Graphs of Maximum Degree 3 103

s

t

v2

v13

(a)

v2

v13

− +

−

−
−

−
−

−
−

−
−

−
−

+

+

+

+

+

+

+

+

+

+

+

(b)

Figure 6.4: (a) A 1-bend drawing of a 14-vertex biconnected cubic graph G
described in Construction 1 and 2. (b) The graph G∗ taken from (a) already
colored as described in Construction 1 (red edges are represented by dashed

segments, while blue edges by dashed-dotted segments).

leave the east port of vi and enter the south port of vj or leave the north port of
vi and enter the west port of vj . In the first case we call e a blue edge, while in
the second case we say that e is a red edge. We denote by EB (respectively ER)
the set of blue (respectively red) edges. Due to the st-numbering, each vertex
has at most two incoming edges and at most two outgoing edges. Furthermore,
v2 has only one incoming edge from s and vn−1 has only one outgoing edge to
t. We want to find a 2-coloring of the edges E(V ′) = ER ∪ EB such that the
following two properties hold:

1. ∀v ∈ V ′, the (at most) two incoming edges receive different colors.

2. ∀v ∈ V ′, the (at most) two outgoing edges receive different colors.

To this aim, we construct the following undirected graph G∗ from G′. For
each vertex v in G′ there will be two vertices v− and v+ in G∗. For each edge
e = (w, z) in G′ (oriented from w to z) there will be an edge e∗ = (w+, z−) in
G∗. See Figure 6.4(b) for an illustration. Thus, G∗ is a (possibly not connected)
bipartite graph (clearly there are no cycles with odd length) with maximum
degree 2. Thus, each connected component is either a path or a cycle. It
follows that the edges of G∗ can be colored with two colors in a straightforward
way. Namely, let C be a component of G∗ with mC edges, we define a total
ordering of the edges of C, i.e., e1 ≺ e2 ≺ · · · ≺ emC . If C is a path such an
ordering is directly defined by the order of its edges along the path (rooted at
an arbitrary end-vertex). If C is a cycle, we simply choose an arbitrary edge
to be the first one (e1) and remove it from C, the rest of the order is defined

104 6 PEDs for Orthogonal 1-bend Drawings

by the remaining path. Finally, we color the edges as follows, ei receives color
cei = i mod 2, i = 1, . . . ,mC . Since there is a clear one-to-one correspondence
between edges in G′ and edges in G∗, we can directly color the edges of G′ with
the colors assigned in G∗. Let e′ be an edge of G′ and let e∗ be the respective
edge in G∗, we assign to e′ the red color if ce∗ = 0 and the blue color if ce∗ = 1.

We prove now that such a coloring of the edges of G′ respects the properties
1 and 2 defined above. Let e′ and e′′ be two incoming (outgoing) edges with
respect to the same vertex v. By construction they will belong to the same
component C ofG∗. If C is a path, then e′ and e′′ will always appear consecutive
in any possible order of the edges of C, thus, they will be assigned different
colors. If C is a cycle, they may not be consecutive only in such an order where
e′ is the first (last) one and e′′ is the last (first) one. In this case, since mC is
even, they will again receive two different colors.

Γ′ is now defined and we only need to place s and t to construct Γ.

Construction 2. (adding s and t)

We recall that s and t are connected by an edge, v2 has coordinates (2, 2) and
just one incoming edge from s, as well as vn−1 has coordinates (n − 1, n − 1)
and just one outgoing edge to t. Hence, they can be easily connected to s and
t, respectively, without causing crossings. Let vi, 2 < i < n, be a possible third
vertex connected to s and let vj , 1 < j < n − 1, be a possible third vertex
connected to t. We can skip the following consideration for vi (respectively
vj), if s (respectively t) has degree 2. We consider the two free ports of vi and
we can assume that they are two consecutive ports. If not, we can just toggle
the color of one of the two edges incident to vi to match this situation (the
colors of the edges in the same component of this edge in G∗ must be toggled
accordingly). Thus, either the north or the south port of vi is free, as well as
either the west or the east port of vi is free. We choose which port of vi to use
after considering the free ports of vj . Consider the two free ports of vj . Either
one between the east or the west port is free or, if both are occupied, then both
the north and the south port will be free. In total we have 4 possible cases.

1. If the east port of vj is free, then we set x(t) = x(vj) + 0.5 and y(t) = n.
While if the west port of vj is free, x(t) = x(vj)− 0.5 and y(t) = n. Also,
we can always assign to s the x-coordinate x(s) = 1.

1.1 If the north port of vi is free, then we set y(s)=y(vi) + 0.5, see
Figure 6.5(a).

1.2 If the south port of vi is free, then we set y(s) = y(vi)− 0.5.

2. If the north port of vj is free, then we set x(t) = n and y(t) = y(vj)+0.5.
While if the south port of vj is free, x(t) = n and y(t) = y(vj) − 0.5.
Also, we can always assign to s the y-coordinate y(s) = 1.

6.3 1-bend SHOPEDs for Graphs of Maximum Degree 3 105

vi

vj

v2

vn−1
t

s

G′

(a)

vi

vj

v2

vn−1

s

G′ t

(b)

Figure 6.5: (a) A 1-bend drawing according to the case 1a of the proof of
Lemma 6.2. (b) A 1-bend drawing according to the case 2a of the proof of

Lemma 6.2.

2.1 If the east port of vi is free, then we set x(s)=x(vi) + 0.5, see Fig-
ure 6.5(b).

2.2 If the west port of vi is free, then we set x(s) = x(vi)− 0.5.

Notice that, before adding s and t, the vertices were placed in general position,
thus there could not be overlaps among edges and vertices. After adding s and
t, this property is still maintained due to the introduced fractional coordinates
(the grid unit must be halved to get integer coordinates). An example of a
1-bend drawing constructed with this technique is presented in Figure 6.4(a).

Finally, we observe that constructing an st-numbering of G takes O(n + m)
time [74], as well as placing vertices (including s and t), constructing G∗ and
coloring its edges. Thus, since m ≤ 1.5n, the algorithm runs in O(n) time.

Theorem 6.3. Every biconnected n-vertex graph G with ∆G ≤ 3 admits a 1-
bend SHOPED. Furthermore, such a drawing can be constructed in O(n) time.

Proof. Let Γ be a 1-bend drawing of G constructed by Construction 1 and Con-
struction 2. We adopt the notation used in the proof of Lemma 6.2. Consider
again the subgraph G′ = (V ′ = V \ {s, t}, E(V ′)) and the induced subdrawing
Γ′. In Γ′ a red edge can be crossed only by red edges, as well as a blue edge
can be crossed only by blue edges. Indeed, red edges are all above the diagonal
formed by the vertices, while blue edges are all below this diagonal. If a crossing
is caused by two red edges, it can be repaired by shifting the rightmost end-
point of the horizontal segment involved in the crossing, so that such a crossing
will lie (in a SHOPED) on the non-drawn part of this horizontal segment. In
a similar way, if the crossing is caused by two blue edges, it can be repaired by
shifting the topmost endpoint of the vertical segment involved in the crossing,
so that such a crossing will lie (in a SHOPED) on the non-drawn part of this
vertical segment. We will repair the crossings by assigning the vertices new
coordinates.

106 6 PEDs for Orthogonal 1-bend Drawings

v4

v8

(a)

vj
vi = s

Γ

ΓCi

(b)

vj

vi = s

Γ

ΓCi

(c)

Figure 6.6: (a) A 1-bend SHOPED constructed from the drawing in Fig-
ure 6.4(a) (for the sake of readability only part of the drawing is shown).
(b)-(c) Illustration of the technique described in the proof of Lemma 6.4 to
attach the drawing ΓCi to Γ when the east port (b) or the north port (c) of

vj is free.

Repair 3.

We assign new coordinates to the vertices v2 to vn−1 in the following way. Let
(x(vi), y(vi)) = (2i, 2i) be the new coordinates of vi, 2 ≤ i ≤ n− 1. After that
s, t are again placed according to Construction 2. To prove that all crossings
are repaired by the assignment of the new coordinates, we consider the vertical
segment of the edge between vi and vj , j < i. The length of the stub on this
segment is

y(vi)− y(vj)

2
≤ y(vi)− y(v2)

2
= y(vi−1)− 2 = y(vi)− y(vi−1)− 2.

Thus the horizontal segments incident to the vertices vj , j ≤ i − 1 are never
crossed by a vertical stub. To prove that vertical segments are never crossed
by horizontal stubs we use the same argument for the x-coordinates.

Finally, we need to repair the crossings caused by the outgoing edges of s and
by the incoming edges of t. We observe that edges (s, t), (s, v2),(vn−1, t) are
not crossed due to the placement of s, t, v2, vn−1 on the bounding box of the
drawing, see also Figure 6.5(a) and Figure 6.5(b). Thus, only the crossings
affecting (s, vi), 2 < i < n, and (vj , t), 1 < j < n− 1, must be repaired.

Repair 4.

In case 1 of Construction 2, s is always placed 0.5 grid units above or below
vi, thus the vertical segment of the edge (s, vi) cannot be crossed. In order
to fix the crossings on the horizontal segment of (s, vi) it is enough to shift
s to the left, i.e., x(s) = x(s) − (x(vi) − x(v2)) − 1. Similarly in case 2 of
Construction 2, s is always placed 0.5 grid units to the left or to the right of

6.3 1-bend SHOPEDs for Graphs of Maximum Degree 3 107

vi, thus the horizontal segment of the edge (s, vi) cannot be crossed. In order
to fix the crossings on the vertical segment of (s, vi) it is enough to shift s to
the bottom, i.e., y(s) = y(s)− (y(vi)− y(v2))− 1. A symmetric argument can
be applied to fix the crossings on the edge (vj , t).

A 1-bend SHOPED constructed from the 1-bend drawing in Figure 6.4(a) is
shown in Figure 6.6(a).

Next we explain how to extend the previous result to any connected graph G
with ∆G ≤ 3. Recall that a cut vertex is a vertex whose removal disconnects
G, while a bridge is an edge whose removal disconnects G. We observe for a
graph G with ∆G ≤ 3 that cut vertices are absent in G, if and only if bridges
are absent in G. Indeed using the fact that the graphs have maximum degree
at most 3, any bridge is incident to at least one cut vertex (and vice versa),
justifying the observation.

Lemma 6.4. Let G be a connected n-vertex graph with ∆G ≤ 3. We can
construct a 1-bend drawing Γ of G in O(n2) time.

Proof. We start by removing all the bridges of G, obtaining a set of k bicon-
nected components C = {C1, . . . , Ck}, where each component Ci ∈ C, 1 ≤ i ≤ k,
is either a single vertex or a graph such that ∆Ci ≤ 3. Next, we define a graph
T having one vertex ni for each component Ci of G and an edge (ni, nj), iff
Ci and Cj are connected by a bridge in G. Clearly T is a tree, since a cycle
in T would imply a biconnected component comprised by the cycle, inferring
a contradiction to the decomposition. Also there is at least one vertex nr in T
that represents a component Cr, which is either a single vertex or a biconnected
graph having two adjacent vertices not incident to any bridge. We choose nr to
be the root of T . In the following we describe an algorithm that takes as input
a graph G with tree T and computes a 1-bend drawing Γ of G. We assume
that a 1-bend drawing ΓCi of a component Ci ∈ C, 1 ≤ i ≤ k, is constructed as
follows:

(a) If Ci is a biconnected graph with ∆Ci ≤ 3, then ΓCi is always constructed
by Construction 1 and 2, where the two poles of the st-numbering will
be defined by this construction.

(b) If Ci is composed by a single vertex v, then ΓCi is defined by placing v
in the origin and the definition of the two poles can be ignored.

We visit T from the root nr following a Breadth First Search (BFS) order as
follows.

108 6 PEDs for Orthogonal 1-bend Drawings

Construction 5.

Root nr: Consider Cr, we construct a drawing ΓCr of Cr, where in case (a)
(i.e., Cr is a biconnected graph with ∆Cr ≤ 3) the st-numbering is defined so
that s and t are two adjacent vertices in Cr that are not incident to any bridge.
Then we set Γ = ΓCr .

Node ni, i 6= r: Assume ni is the next vertex of T according to the bfs order.
Let Γ be the drawing constructed so far. We first compute a 1-bend drawing
ΓCi of Ci, where s = vi and t is an adjacent vertex of s if Ci is a biconnected
graph with ∆Cr ≤ 3 (case (a)). If Ci is composed by a single vertex v, then
v = vi (case (b)). Drawing ΓCi is now attached to drawing Γ as follows.

Attachment: Let nj be the parent of ni in T and let (vj , vi) be the bridge in
G that corresponds to the edge (nj , ni) in T . Consider the vertex vj of Cj . If
Cj is a biconnected graph with ∆Cj ≤ 3, then vj cannot be the s pole in ΓCj .
Furthermore, in this case, since the degree of vj is 2 in Cj , vj has either the
east port or the north port free in Γ. If Cj consists of a single vertex v = vj ,
then again vj has either the east port or the north port free in Γ. We use
this free port of vj to place the bridge e = (vj , vi) and connect ΓCi to Γ. In
the first case we rotate ΓCi such that vi is the southernmost vertex and it can
be connected by its south port, see Figure 6.6(b), while in the second case we
rotate ΓCi such that vi is the westernmost vertex and it can be connected by
its west port, see Figure 6.6(c).

Before attaching the drawing ΓCi , we modify the current drawing Γ in the
following way. We assign new x-coordinates to all vertices v with x(v) > x(vj)
by setting x(v) = x(v)+ |Ci|+1, and we assign new y-coordinates to all vertices
v with y(v) > y(vj) by setting y(v) = y(v) + |Ci| + 1. Now we place ΓCi in
this free area, i.e., for each vertex vCi ∈ Ci, x(vCi) = x(vj) + xΓCi

(vCi), and
y(vCi) = y(vj) + yΓCi

(vCi), where xΓCi
(vCi) and yΓCi

(vCi) are the x- and y-
coordinates of vCi in ΓCi , respectively. Then we connect vj with vi. Notice
that, by placing ΓCi in this free area, no edges of Γ\ΓCi can cross edges of ΓCi .

Finally, we observe that finding the bridges ofG can be done in linear time [180].
Furthermore, constructing a 1-bend drawing ΓCi for each component Ci ∈ C
takes O(|Ci|) time, thus, constructing Γ takes

∑k
i=1O(|Ci|) = O(n) time. How-

ever, the time complexity of the technique is dominated by the shift operation
required to add the drawing of each component to the current drawing, which
takes O(n2).

By iteratively applying Repair 3 and 4 to drawings constructed by Construc-
tion 5 we can prove the next theorem.

Theorem 6.5. Every n-vertex graph G with ∆G ≤ 3 admits a 1-bend SHOPED.
Furthermore, such a drawing can be constructed in O(n2) time.

6.4 1-bend SHOPEDs for Graphs of Maximum Degree 4 109

Proof. Let Γ be a 1-bend drawing of G constructed by Construction 5. We
adopt the notation used in the proof of Lemma 6.4 and we traverse T in the
reversed bfs order defined in that proof. Also, we assume that a 1-bend drawing
ΓCi of a component Ci ∈ C, 1 ≤ i ≤ k, can be transformed into a 1-bend
SHOPED as follows. If Ci is a biconnected graph with ∆Ci ≤ 3, then ΓCi is
repaired by Repair 3 and 4. If Ci is composed by a single vertex v, then ΓCi
does not need to be transformed into a 1-bend SHOPED.

Let ΓCi be the 1-bend drawing of Ci and let ΓCj be the 1-bend drawing of
Cj , where nj is the parent of ni in T . Recall that no edges of Cj can cross
edges of Ci in Γ. First, we transform ΓCi into a 1-bend SHOPED. Then, let
si = max{width(ΓCi), height(ΓCi)}, we assign new x-coordinates to all vertices
v of ΓCj with x(v) > x(vj) by setting x(v) = x(v)+si+1, and new y-coordinates
to all vertices v with y(v) ≥ y(vj) by setting y(v) = y(v) + si + 1.

The time complexity is dominated by the construction of Γ, which takes O(n2)
time, while repairing the components takes

∑k
i=1O(|Ci|) = O(n) time.

6.4 1-bend SHOPEDs for Graphs of Maximum De-
gree 4

We first present a class of graphs with maximum degree 4, the 2-circulant
graphs, that admit a 1-bend SHOPED, and show afterwards that there is a
graph that does not admit a 1-bend SHOPED.

Recall that the k-circulant graph Ckn with n > 2k vertices is the simple graph
whose vertex set is V = {v0, . . . , vn−1} and whose edge set is E = {(vi, vj) :
|j − i| ≤ k}. The specified index of a vertex is calculated modulo n. Notice
that, ∆Ckn

= 4 implies k = 2, hence, each vertex has exactly two neighbors
with smaller indices and two neighbors with larger indices. Greater values of k
are not realizable when ∆(Ckn) = 4. Extending the techniques in Section 6.3,
we can prove the next theorem.

Theorem 6.6. Every 2-circulant n-vertex graph that admits a 1-bend drawing
also admits a 1-bend SHOPED. Furthermore, such a drawing can be constructed
in O(n) time.

Proof. We start by observing that one vertex of a 2-circulant n-vertex graph,
vt ∈ V (0 ≤ t ≤ n − 1) has to be removed in order to match the necessary
density condition for 1-bend drawings, i.e., |E(S)| ≤ 2|S| − 2 for all S ⊂ V .
W.l.o.g., let t = 0, otherwise the vertices of C2

n can be easily renumbered so to
match this condition.

We first construct a 1-bend drawing Γ′ of G′ = (V ′ = V \ {vt=v0,v1, vn−1},
E(V ′)) adopting a similar strategy as in Construction 1. Namely, we assign to

110 6 PEDs for Orthogonal 1-bend Drawings

vertex vi ∈ V ′ coordinates x(vi) = i and y(vi) = i, 2 ≤ i ≤ n− 2. Again, there
can be only two possible shapes of edges in Γ′ according to such a placement
of the vertices. Indeed, let e = (vi, vj), so that j = i + 1, i = 2, . . . , n − 3,
we call e a red edge, e ∈ ER ⊂ E(V ′), and we draw it so that it leaves the
north port of vi and enters the west port of vj . While, if e = (vi, vj), so that
j = i+ 2, i = 2, . . . , n− 4, we call e a blue edge, e ∈ EB ⊂ E(V ′), and we draw
it so that it leaves the east port of vi and enters the south port of vj . Thus,
red edges are never crossed, while each blue edge receives at most two crossings
(one involving the vertical segment and one involving the horizontal segment).

To construct a 1-bend drawing Γ of G, the addition of v1 and vn−1 to Γ′ can be
managed by adopting the same strategy used to add s and t in Construction 2
Finally, we can apply Repair 3 and 4 (restricted to blue edges) to turn Γ into
a 1-bend SHOPED.

Now, we show that there exists a graph with maximum degree 4 that admits a
1-bend drawing but not a 1-bend SHOPED. To this end, we need to introduce
some additional notation. Consider a 1-bend SHOPED Γ. We say that two
horizontal (vertical) stubs she , she′ (sve , s

v
e′) overlap, if there exists a vertical

(horizontal) line l such that she ∩ l 6= ∅ and she′ ∩ l 6= ∅ (sve ∩ l 6= ∅ and sve′ ∩ l 6= ∅).
Two horizontal (vertical) stubs overlap by u units if there are two vertical
(horizontal) lines l,l′ with the above property and such that their horizontal
(vertical) distance is u. Also, we call ≺x and ≺y the total vertex orderings
induced by the projection of the x- and y-coordinates of the vertices in Γ,
respectively (we remark that we adopt the general position model).

Recall from [79] (see also Section 6.1) that any graph G = (V,E) with ∆G ≤ 4
has a 1-bend drawing if and only if |E(S)| ≤ 2|S| − 2 for all S ⊂ V . This
necessary and sufficient condition is satisfied by any of the following three
cases: (i) there are four vertices of degree at most three; (ii) there are two
vertices of degree at most two; (iii) there are one vertex of degree at most
two and two vertices of degree at most three. Since a 4-regular graph cannot
guarantee such a condition, one vertex must be removed. Furthermore, if we
are in case (i) each side of the bounding box of any possible 1-bend drawing
contains one of the four vertices of degree three. In case (ii) the two vertices
of degree two must be placed at the opposite corners of the bounding box.
While in case (iii) the degree two vertex must be placed at one corner of the
bounding box and the other two vertices of degree three must be placed on the
two opposite sides. We call these vertices lying on the sides of the bounding
box by external vertices. All the other vertices must lie in the interior of the
bounding box and we refer to them as internal vertices.

Consider a graph G′ = (V ′, E′) so that V ′={v1, . . . , v6} and E′={(v1, v2),
(v2, v3), (v4, v5), (v5, v6)}, see Figure 6.7(a). We prove that there exist two
total vertex orderings ≺x,≺y such that in every 1-bend drawing of G′ at least
two stubs cross each other. Recall that ≺x and ≺y are orders, where the x-
and y-order of the vertices coincide with these two orderings.

6.4 1-bend SHOPEDs for Graphs of Maximum Degree 4 111

v1

v2

v3

v4

v5

v6

(a)

vi

vj

K∗
ij

a

b

c

d

(b)

v1 v2

v3

v4

v5

v6

K∗
13

K∗
46 G∗

(c)

v1 v2

v3

v4

v5

v6

v7

v8

G

K∗
13

K∗
46

(d)

Figure 6.7: (a) A drawing Γ′ of G′ that cannot be redrawn as a 1-
bend SHOPED if the vertical and horizontal order of the vertices cannot
be changed. The relative order of each pair of vertices in G′ can be con-
strained by the gadget in (b). (c) An illustration of the graph G∗ as defined
in the proof of Theorem 6.8. (d) A graph G that admits no 1-bend SHOPED.

Lemma 6.7. Graph G′ does not admit a 1-bend SHOPED so that v1 ≺x v3 ≺x
v4 ≺x v6 ≺x v5 ≺x v2 and v5 ≺y v2 ≺y v1 ≺y v3 ≺y v4 ≺y v6.

Proof. Let Γ′ be a 1-bend drawing of G′ respecting the properties defined in
the statement of this lemma (see Figure 6.7(a)), and consider the stubs (in the
1-bend SHOPED model) of the segments representing the edges of G′ in Γ′.
First, we observe that the two horizontal stubs shv1v2 and shv2v3 overlap, because
of v1 ≺x v3 ≺x v2, that is:

|shv1v2 |+ |shv2v3 | = |shv2v3 |+ |shv2v3 |+
1

2
[x(v3)− x(v1)]

By definition x(v2)− x(v3) = 2|shv2v3 |, which implies:

|shv1v2 |+ |shv2v3 | = x(v2)− x(v3) +
1

2
[x(v3)− x(v1)]

Since x(v3) − x(v1) ≥ 1, the two stubs must overlap by at least half of a grid
unit. In a similar way, the two vertical stubs svv4v5 , s

v
v5v6 overlap, because of

v5 ≺y v4 ≺y v6. Assume the stub svv5v6 does not cross the stub shv1v2 . Due to
the overlap between svv5v6 and svv4v5 , and since v3 ≺x v4 ≺x v5, it follows that
svv4v5 will cross either shv1v2 or shv2v3 , or svv5v6 will cross shv2v3 .

In order to remove the assumption that the x-order and the y-order of the
vertices cannot be changed, we augment G′ adding new edges and vertices
obtaining a new graph G, such that in every 1-bend drawing of G the x-order
and the y-order of the vertices in V ′ is the same up to rotation. Let K4 be the
complete graph with 4 vertices. Let K ′4 be a copy of K4 and let a, b, c, d (in
clockwise order traversing the bounding box) be its 4 vertices. We connect v1

to a and b and v3 to c and d. See also Figure 6.7(b). In a similar way we add one
more copy of K4 between v4 and v6. We call the subgraph induced by the pair
v1, v3 and its copy of K4 as K∗13, analogously we call K∗46 the subgraph induced

112 6 PEDs for Orthogonal 1-bend Drawings

by the pair v4, v6 and its copy of K4. Furthermore, we add the edge (v3, v4) and
(v2, v5). Finally, we add the vertices v7 and v8 and the edges (v1, v7), (v5, v7)
and (v2, v8), (v6, v8). The final graph G is shown in Figure 6.7(d), it clearly
admits a 1-bend drawing.

K∗
13

v1

v3

v2

v5

v4

v6 K∗
46

(a)

K∗
13

v1

v3

v2

v5

v4

v6

K∗
46

(b)

Figure 6.8: An illustration of the case 1 (a) and 2 (b) in the proof of
Theorem 6.8. The red dash dotted edge indicates an edge, which cannot be

drawn with 1 bend.

Theorem 6.8. There exists a graph that does not admit a 1-bend SHOPED.

Proof. Consider the graph G shown in Figure 6.7(d). We will evaluate all the
possible configurations in terms of x-order and y-order for the vertices of G.
For every feasible configuration we will then apply Lemma 6.7 to prove that
there is no 1-bend SHOPED.

Let Γ be a 1-bend SHOPED of G. Consider the vertices v7 and v8, they must
be the external vertices of Γ and they must be placed at the corners of one of
the two diagonals of the bounding box R of Γ. Consider the bounding-box R∗

of the subdrawing Γ∗ induced by the graph G∗ = (V ∗ = V \ {v7, v8}, E(V ∗))
(see Figure 6.7(c)). Vertices v1, v2, v5, v6 must be the external vertices of Γ∗

and they must lie one on each side of R∗. For the same reason, vertices v3, v4

are internal vertices (as well as all the vertices in the two copies of K4) of Γ∗.
Also, consider the bounding-box R13 of the subdrawing Γ13 induced by the
graph K∗13. Vertices v1 and v3 must be the external vertices of Γ13 and must be
placed at the corners of one of the two diagonals of R13. W.l.o.g., let v7 be at
the top-left corner of R. Hence, either v1 is the westernmost vertex and v5 is
the northernmost vertex in Γ∗ or vice versa. Assume to be in the former case,
since the latter case can be proved with symmetric arguments. It follows that
v2 is either the southernmost or the easternmost vertex, while v6 is either the
easternmost or the southernmost vertex in Γ∗.

We start the analysis looking at the vertex v1. We already know that v1 ≺x v3

and consider two possible cases for the relative y-order of these two vertices.

6.4 1-bend SHOPEDs for Graphs of Maximum Degree 4 113

1. Assume v3 ≺y v1. In this case, since the only free port of v1 is the north
one, we have v1 ≺y v2. This implies that v2 cannot be the southernmost
vertex, but it must be the easternmost vertex and v6 the southernmost
instead. Hence, the edge (v2, v3) must leave the south port of v2 and enter
the east port of v3. It follows that the only free port of v3 is the south
one, and, due to the edge (v3, v4), v4 ≺y v3. Now consider two further
subcases, either v4 ≺x v3 or v3 ≺x v4. We prove by contradiction that
v3 ≺x v4.

1.1 Let v4 ≺x v3 (see Figure 6.8(a)), this implies that v6 ≺x v4. Consider
the edge (v5, v6). It must leave the west port of v6 and enter the
south port of v5. Also, consider the edge (v4, v5), it must leave the
north port of v4 and enter the east port of v5. Finally, consider
the edge (v2, v5), again it must leave the north port of v2 and enter
the west port of v5, thus, it must be bent at least three times, a
contradiction.

1.2 Let v3 ≺x v4, thus v4 ≺x v6. Consider the edge (v5, v6), it must leave
the east port of v6 and enter the south port of v5, thus v6 ≺x v5.
Also, consider the edge (v4, v5), it must leave the north port of v4

and enter the west port of v5. Finally, consider the edge (v2, v5),
it can be placed so that it leaves the east port of v5 and enters the
north port of v2. Notice that, v6 ≺y v4 ≺y v3 ≺y v1 ≺y v2 ≺y v5,
as well as v1 ≺x v3 ≺x v4 ≺x v6 ≺x v5 ≺x v2. Thus, by Lemma 6.7,
there is no 1-bend SHOPED for the subdrawing Γ′ induced by the
subgraph G′.

2. Assume v1 ≺y v3, as depicted in Figure 6.8(b). In this case, since the
only free port of v1 is the south one, we have v2 ≺y v1. Now consider the
edge (v2, v3), it must leave the north port of v2 and enter the east port
of v3. Also, consider the edge (v2, v5), it must leave the east port of v2

and enter the south port of v5. This implies that v2 is the southernmost
vertex and v6 is the easternmost vertex. Thus, consider the edge (v5, v6),
it must leave the east port of v5 and enter and north port of v6. Now,
since v4 must lie on the opposite extreme of the diagonal of R46 with
respect to v6, we have that v4 ≺y v6. Thus, since the edge (v4, v5) must
use the west port of v5 and the west or south port of v4, it must have at
least two bends, which implies that this configuration is not feasible and
that v3 ≺y v1.

A natural question which is still open, regards the complexity of deciding
whether a graph with maximum degree 4 admits a 1-bend SHOPED. In what
follows, we give an ILP formulation for a very related problem. Given a graph
G such that ∆G = 4, a 1-bend drawing Γ of G, and a parameter L, we ask
whether it is possible to transform Γ into a 1-bend SHOPED without modify-
ing the x- and y-order of its vertices such that the 1-bend SHOPED fits into

114 6 PEDs for Orthogonal 1-bend Drawings

u

z

w

v

(a)

u

z

w

v

(b)

u

z

w

v

(c)

u

z

w

v

(d)

Figure 6.9: (a) An illustration of the case bxi = 1 and byi = 1. (b) An
illustration of the case bxi = 1 and byi = 0. (c) An illustration of the case

bxi = 0 and byi = 1. (d) An illustration of the case bxi = 0 and byi = 0.

a square of size L2. We call this problem the FixedSizeFixedOrderSHOPED
problem.

Theorem 6.9. The FixedSizeFixedOrderSHOPED problem can be formulated
as an ILP.

Proof. Let G = (V,E) be an n-vertex graph, such that ∆G = 4, and let Γ be
a 1-bend drawing of G (in the general position model). Also, let N ∈ O(n2)
be the number of edge crossings in Γ. We construct an ILP formulation with
2n integer variables, i.e., the x- and y-coordinates of each vertex, and 2N + 4n
constraints.

We encode each crossing ci, i = 1, . . . , N , as {(u, v), (w, z), bxi , b
y
i }, where (u, v)

and (w, z) are the two edges causing the crossing. Without loss of generality,
we assume that x(u) < x(v) and y(w) < y(z) in Γ, and that the crossing lies
on the horizontal segment of (u, v) and on the vertical segment of (w, z). Also,
bxi is a constant equal to 1 if the bend of (u, v) has coordinates (x(u), y(v)) or
it is equal to 0 if such a bend has coordinates (x(v), y(u)). Similarly, byi is a
constant equal to 1 if the bend of (w, z) has coordinates (x(z), y(w)) or it is
equal to 0 if such a bend has coordinates (x(w), y(z)). See Figure 6.9 for an
illustration of the above notation.

In order to repair the crossing ci, one of the following two inequalities must be
satisfied. Let δx(u,v) = x(v)− x(u) and δy(u,v) = y(v)− y(u):

bxi {byi δx(z,v) + (1− byi)δx(w,v)}+ (1− bxi){byi δx(u,z) + (1− byi)δx(u,w)}
> bxi {byi δx(u,z) + (1− byi)δx(u,w)}+ (1− bxi){byi δx(z,v) + (1− byi)δx(w,v)}

or

bxi {byi δ
y
(v,z) + (1− byi)δ

y
(w,v)}+ (1− bxi){byi δ

y
(u,z) + (1− byi)δ

y
(w,u)}

> bxi {byi δ
y
(w,v) + (1− byi)δ

y
(v,z)}+ (1− bxi){byi δ

y
(w,u) + (1− byi)δ

y
(u,z)}

Hence, for each crossing we have the following two constraints.

6.5 Summary and Future Work 115

bxi {byi δx(z,v) + (1− byi)δx(w,v)}+ (1− bxi){byi δx(u,z) + (1− byi)δx(u,w)}
− bxi {byi δx(u,z) + (1− byi)δx(u,w)}+ (1− bxi){byi δx(z,v) + (1− byi)δx(w,v)} > eiM

and

bxi {byi δ
y
(v,z) + (1− byi)δ

y
(w,v)}+ (1− bxi){byi δ

y
(u,z) + (1− byi)δ

y
(w,u)}

− bxi {byi δ
y
(w,v) + (1− byi)δ

y
(v,z)}+ (1− bxi){byi δ

y
(w,u) + (1− byi)δ

y
(u,z)} > (1− ei)M

Where ei ∈ {0, 1} is a binary variable [4] that is ei = 0, if the vertical part of the
crossing segments can be drawn arbitrarily long and just the horizontal stub has
a restricted length, while for ei = 1 the horizontal part of the crossing segments
can be drawn arbitrarily long and just the vertical stub has restricted length.
The transformation from “or“ to “and“ uses also a big constant M = 4L that
can not be reached by summing up four stubs.

Also, let Πx and Πy be the functions defining the x- and y-order of the vertices
in Γ, respectively. We add the following 2n constraints, which ensure the
preservation of the x- and y-orders of the vertices.

x(u) = 1, u ∈ V : Πx(u) = 1; x(u) < x(v),∀u, v ∈ V : Πx(v) = Πx(u) + 1

y(u) = 1, u ∈ V : Πy(u) = 1; y(u) < y(v),∀u, v ∈ V : Πy(v) = Πy(u) + 1

Finally we add the following 2n constraints that force the x- and y-coordinates
into a square of size L2.

0 < x(v) ≤ L and 0 < y(v) ≤ L ∀ v ∈ V

The cost function is irrelevant and thus can be set to a constant, e.g., min 1.
Notice that this ILP cannot test the overall existence of a 1-bend SHOPED,
but we can test the existence of a 1-bend SHOPED of a certain size.

6.5 Summary and Future Work

We defined a new drawing model for orthogonal drawings with one bend per
edge, called 1-bend Orthogonal Partial Edge Drawing, extending the already
existent PED model for straight-line drawings. We studied those graphs that
admit such a representation when homogeneity or both symmetry and homo-
geneity are required. In the former case, we proved that every graph that
admits a 1-bend drawing also admits a 1-bend HOPED. In the latter case,
we proved that all graphs with maximum degree 3 and the 2-circulant graphs
that admit a 1-bend drawing, also admit a 1-bend SHOPED. Furthermore we

116 6 PEDs for Orthogonal 1-bend Drawings

proved that there is a graph with maximum degree 4 that does not admit a
1-bend SHOPED.

The complexity of the decision problem is still open, i.e., deciding whether a
graph with maximum degree 4 admits a 1-bend SHOPED. We formalized a
related question as an integer linear program (ILP), i.e., a test of a 1-bend
drawing, whether it admits a 1-bend SHOPED inside a square of given size
without changing the relative horizontal and vertical order of the vertices, but
the complexity of this question is also still open. Also, it would be of interest
to study 1-bend SHOPEDs where a few crossings among stubs are allowed, so
to enlarge the family of graphs that admit these representations. To extend
our model, one may consider graphs with degree greater than 4, by following
similar approaches as in [86] for representing vertices, or orthogonal drawings
with more than one bend per edge.

Chapter 7
Short Conclusion on PEDs

Partial edge drawing is a new drawing model and may appear in different
settings. The most common and intuitive one is the 1/4-SHPED, which is
applicable for many classes of graphs. We have also seen that not every graph
admits a 1/4-SHPED. This drawing model is also appropriate to combine with
other drawing conventions apart from the straight-line drawing convention, i.e.,
orthogonal variants were considered. Another way of extension is to apply this
drawing model on Lombardi drawings [38, 64, 69, 133], which uses circular
arcs instead of straight-lines. We also present a 1/4-SHPED spring embedder
which is applicable for many graphs. In a user study we found out that partial
edge drawings are not worse than the traditional straight-line drawing style. In
contrast some tasks were completed faster and more accurately using partial
edge drawings. In the geometric embedding setting, many questions on PEDs
are difficult. This is especially true for k-planar drawings, where k > 2.

117

Part II

Bus Realizations

119

Chapter 8
Introduction

A bus realization of a hypergraph is a drawing with hypervertices as points and
hyperedges as bold segments such that a point is orthogonally connected to a
segment if and only if the respective hypervertex is incident to the respective hy-
peredge. We define the dimension as the number of slopes for the segments in a
bus realization. One-dimensional bus realizations use only horizontal segments,
while two-dimensional bus realizations use horizontal and vertical segments. In
both dimensions the realizations resemble orthogonal drawings since the slopes
of the segments and the edges together are horizontal and vertical. Extensions
with more than two dimensions are mentioned as open problems. In a bus
realization the bold segments are called buses or bus segments, the points are
called connectors and the thin segments connecting a bus with a connector
are called connections. A planar realization is a realization without crossings.
We will mainly focus on planar realizations. To distinguish between buses and
connections in a bus realization, the bus segments are drawn with bold lines.
Figure 8.1(a) shows a 1-dimensional planar bus realization, and Figure 8.1(b)
shows a 2-dimensional planar bus realization.

Instead of considering a hypergraph H = (V,B), we may consider its incidence
graph G = (V ∪ B,E) as defined in Section 2.3. This graph contains a vertex
for every hypervertex v and every hyperedge b and an edge (v, b), if v ∈ b. In
the remainder we will call this incidence graph bus graph in order to emphasize
our objective, which is producing a bus realization from the incidence graph.
For a bus graph G = (V ∪ B,E) we will refer to vertices in B as bus vertices
and vertices in V as connector vertices. A planar bus graph is a bus graph
that admits a drawing without crossings, which is not necessarily a planar bus
realization. We will focus our attention on planar bus graphs, since planar real-
izations imply planarity for the bus graph. To distinguish between a connector
vertex v and a bus vertex b of a bus graph we illustrate v as point and b as
circle, see Figure 8.2(b). Figure 8.2(a) shows the bus graph of Figure 8.1(a),
while Figure 8.2(b) shows the bus graph of Figure 8.1(b).

121

122 8 Introduction

(a) (b)

Figure 8.1: (a) A 1-dimensional planar bus realization, where points and
buses are colored. (b) A 2-dimensional planar bus realization. In both real-
izations the buses are bold segments, connectors are points, and connections

are orthogonally thin connected from buses to connectors.

(a) (b)

Figure 8.2: (a) The bus graph of Figure 8.1(a) with fixed vertex positions,
where for convenience bus vertices are left out. Instead, the points represent-
ing connectors incident to the same bus vertex are colored the same. (b) The
bus graph of Figure 8.1(b) with circles representing bus vertices and points

representing connector vertices.

The structure of this part is as follows. We will point out related work in Sec-
tion 8.1. Deciding whether a bus graph admits a 2-dimensional bus realization
is NP-complete [3]. In Chapter 9 we show that on the other hand the ques-
tion whether a planar bus graph admits a planar 2-dimensional bus realization
can be answered in polynomial time. We will also remark differences to non-
planar 2-dimensional bus realizations at the end of this section. In Chapter 10
we consider planar 1-dimensional bus realizations. There we provide a short
argument that this problem can be easily transformed into finding a visibil-
ity drawing using Section 2.5. Therefore we restrict our research on planar
bus graphs with fixed vertex positions and investigate whether they admit a
planar 1-dimensional bus realization. We discuss restricted versions in partic-
ular to uncover the limits of efficient computability. We conclude this part in

8.1 Related Work 123

Chapter 11.

8.1 Related Work

A classical topic in the area of graph visualization is orthogonal graph draw-
ing, which is covered in many books on graph drawing [49, 118, 145], or sur-
veys [195]. In this drawing model each edge consists of a series of alternating
horizontal or vertical line segments. Applications can be found in, e.g., VLSI
design [132, 183]. In this application it may also be necessary to use hyper-
graphs as models. For example, power buses on VLSI chips are often modeled
as hyperedges, as well as Local Area Networks in computer network visual-
ization. Bus graphs are a possible approach to modeling hyperedges since
bus realizations can provide a good visualization of hypergraphs. A bus-style
representation can also be used when facing the visualization of highly inter-
connected parts of a given graph, see Figure 1.6. In this way, cliques can be
represented in a compact and comprehensive way using a bus-style model as
an alternative model to edge bundling and confluent drawings [56, 94].

Visualization of hypergraphs is an important topic in the areaa of graph draw-
ing and information visualization. The traditional approach relies on represent-
ing overlapping sets via Venn diagrams and Euler diagrams [168, 169]. When
more than a handful sets are present, however, such diagrams become difficult
to interpret and alternative approaches, such as compact rectangular Euler
diagrams are needed [160].

Rather than subset-based approaches [19, 117] or incidence graphs, researchers
have recently focused on planar support [32], path-based support [29] or tree-
support of hypergraphs [120]. Here the approaches are to connect the hyperver-
tices by a graph, called support, so that a single hyperedge induces a connected
subgraph.

Ada et al. [3] used horizontal and vertical buses in a bus realization, implying
to be 2-dimensional, and thus restricted bus graphs to be the incidence graphs
of hypergraphs with hypervertex degree at most four. They considered the
problem to decide whether a bus graph has a 2-dimensional bus realization and
showed NP-completeness. In Chapter 9 we consider the problem of deciding
whether a planar bus graph has a planar 2-dimensional bus realization. We
show that a planar 2-dimensional bus realization can be constructed on aO(n)×
O(n) grid in O(n5/2) time if it exists. This bus graph approach is related to
rectangular drawings, rectangular duals, and visibility graphs since edges in
bus graphs enforce visibility constraints in realizations, see [104, 145, 163, 179]
for key concepts.

When visualizing a hypergraph, considered as visualization of set membership,
then often the geometric position of the elements of the sets are prescribed
as points in the plane. The task is to emphasize the sets where the elements

124 8 Introduction

(a) (b) (c) (d)

Figure 8.3: (a) Fixed positions of points, where points with the same color
belong to the same set. (b) A planar 1-dimensional bus realization for this
setting, while (c) is a non-planar 1-dimensional bus realization. (d) A point

set without any planar 1-dimensional bus realization.

belong to. In visualization approaches for set memberships of items on maps,
this is done by connecting points from the same set by corresponding lines
(LineSets [5]), tree structures (KelpFusion [137]), and enclosing polygons (Bub-
bleSet [41] or MapSets [66]).

In 1-dimensional bus realizations we consider a unified version of the tree-
structure approach using the bus model known from VLSI design. Our goal in
Chapter 10 is a membership visualization of points in sets by a tree-structure
that consists of a single horizontal bus to which all the points from the same set
are connected by vertical segments; see Figure 8.3 for planar and non-planar
versions. We assume the sets to be given by single-colored points such that, in
the final bus realization, all points of the same color are connected to exactly
one bus associated with this color. The objective is to find a position for each
bus such that crossings of buses with connections are avoided. We call this the
bus embeddability problem (BEP). Such a simple visualization scheme makes it
very easy to recognize the sets and label them, by placing a label inside each
bus (if the bus is drawn thick enough), or directly above/next to the bus.

A solution to the BEP problem can be viewed as planar tree support for hyper-
graphs, and this problem is related to Steiner trees [112], where the goal is to
connect a set of points in the plane while minimizing the sum of edge lengths
in the resulting tree; this is a classic NP-complete problem [95, 126].

Hurtado et al. [111] considered planar supports for hypergraphs with two hy-
peredges such that the induced subgraph for every hyperedge as well as for
their intersection is a Steiner tree. Their objective was to minimize the sum of
edge lengths, while allowing degree one or two for the hypervertices.

BEP is even more closely related to rectilinear Steiner trees [92], where the
Euclidean distance is replaced by the rectilinear distance; constructing recti-
linear Steiner trees is also NP-complete [96]. A single-trunk Steiner tree [37] is
a path that contains all vertices of degree greater than one. This is a variant
that is solvable in linear time. BEP for a single set is the single trunk rectilin-
ear Steiner tree problem, where we ignore the minimization of the sum of the

8.1 Related Work 125

edge lengths. Thus BEP can be seen as a simultaneous single-trunk rectilinear
Steiner tree problem. The fact that a bus placement influences the placement
of other buses makes the problem hard.

Consider the input to BEP along with a box that encloses all the points. If in
BEP the buses extend to the right boundary of this box, or both to the left
and right boundary of this box, then this problem corresponds to backbone
boundary labeling [16] and can be solved efficiently. In backbone boundary
labeling, the problem is to orthogonally connect points by a horizontal back-
bone segment leading to a label placed at the boundary. In this setting it is
always possible to split the problem into two independent subproblems, which
is impossible in our case.

BEP is also related to the classical point set embeddability problem, where we
are given a set of points along with a planar graph, and need to determine
whether there exists a mapping of vertices to points such that the resulting
straight-line drawing is planar. The general decision problem is NP-hard [34].
Several variants of this problem already exist such as what is the smallest size
of a point set where any planar graph can be embedded, but only results for
smaller graph classes are known, like outerplanar graphs [25], simply-nested
graphs [7], and planar three-trees [88]. In Part III we add 2-outerplanar graphs
to this list. In the variant of orthogeodesic point set embedding, Katz et al.
proved that deciding whether a planar graph can be embedded using only
orthogonal edge routing is NP-hard [116] on the grid – even for matchings.

In BEP the bus graph represents a hypergraph with hypervertex degree one
and disjoint hyperedges. Thus we consider the problem from the point of view
that every point has a color and every bus connects all points of the same
color. The answer of BEP builds the base for extensions of this problem such
as considering higher degree of hypervertices and therefore more directions of
buses.

The 2-dimensional bus realization considered as the single trunk rectilinear
Steiner tree implies a horizontal or vertical slope for the single trunk. When
asking for bus graphs admitting a bus realization of dimension d, we can di-
rectly ignore all bus graphs that have connector vertices with a degree of more
than 2d. In our abstract definition of bus graph, the degree restriction on the
hypervertices is directly implied by the dimension of the bus realization. Since
the testing of a bus graph for maximum degree can be done efficiently, we
will adopt the degree restriction on the connector vertices for the bus graph
in the respective section. Thus in Chapter 9, when considering horizontal and
vertical segments, the bus graph is the one defined by Ada et al. [3], while in
Chapter 10, when considering only horizontal segments, the bus graph is de-
fined by hypergraphs, where hypervertices are part of at most two hyperedges,
respectively exactly one hyperedge.

Chapter 9
Bus Graphs in Two Dimensions

In this chapter we consider planar bus realizations, where the bus segments
will be drawn either vertically or horizontally. Thus we are considering the
bus graph model introduced by Ada et al. [3], summarized as follows: A bus
graph is a bipartite graph G = (V ∪ B,E), where E ⊆ V × B and deg(v) ≤ 4
for all v ∈ V . They considered the problem of deciding whether a bus graph
has a realization and showed NP-completeness. In this chapter we consider the
problem of deciding whether a planar bus graph has a planar realization. We
show that this question, in contrast to the previous result, can be decided in
polynomial time.

Recall that a planar bus graph is a bus graph that admits a drawing with-
out crossings, while a plane bus graph is a planar bus graph together with a
planar embedding. We will first focus on plane bus graphs and then extend
the results to planar bus graphs. We always assume to have a connected bus
graph, since components can be considered separately. We will assign labels
to the bus vertices that determine whether they are to be realized vertically or
horizontally and study properties that have to be obeyed by this labeling so
that it corresponds to a planar realization. In Section 9.1 we identify necessary
conditions for the labeling – if they are satisfied, we speak of a good partition.
In Section 9.2, we present an algorithm to test whether a maximal plane graph
admits a good partition. Subsequently, in Section 9.3, we give a linear-time
algorithm that produces a planar realization on a grid of size O(n)×O(n) from
a maximal plane bus graph together with a good partition. The approach is
based on techniques from [44] and [78]. In the next section, Section 9.4, we
extend the test for a good partition to non-maximal plane bus graphs. For an
extension to (not-embedded) planar bus graphs, we first recall main definitions
for SPQR-trees in Section 9.5 and extend the results from Section 9.4 to bi-
connected planar bus graphs in an easy form (Section 9.6) then to biconnected
planar graphs without simplifications (Section 9.6.1) and finally to general pla-
nar bus graphs in Section 9.6.2. We also consider in Section 9.7 some non-planar

127

128 9 Bus Graphs in Two Dimensions

cases of realizations. We summarize this chapter in Section 9.8. The results
are based on [202] and [203].

9.1 Necessary Properties

Clearly non-planar bus graphs cannot be drawn in a planar way. So we focus
on finding planar structures in a planar bus graph. First we assume the bus
graph G = (V ∪ B,E) to be plane, i.e., a planar bus graphs together with a
fixed planar embedding. Later we concentrate on planar bus graphs without
any given embedding. We assume any bus graph to be simple, i.e., there are
no multiple edges (multiple edges would necessarily be on top of each other).

A planar realization of a plane bus graph G = (V ∪B,E), induces labels H or V
for the bus vertices where H indicates that a bus is represented by a horizontal
segment in the realization, while V indicates that the bus is represented by a
vertical segment. Let Π = (BV, BH) denote the partition of B according to
the labels of the bus vertices. We observe two natural properties of a partition
Π = (BV, BH) corresponding to a planar realization:

(P1) Every connector vertex of degree at least 3 has neighbors in both classes.

(P2) A connector vertex of degree 4 has cyclically alternating neighbors in
both classes.

Properties (P1) and (P2) for a partition of the bus vertices are not sufficient
to ensure a planar representation. Also a third property for what we call
‘diamonds’ must be true. A diamond in a plane bus graph is a cycle z =
(b, v, b′, v′) of length four with bus vertices b, b′ and connector vertices v, v′

such that both v, v′ have a third bus neighbor in the bounded region defined
by z. Note that the outer cycle of G may be a diamond.

Lemma 9.1. Let G be a plane bus graph that has a realization inducing the
partition (BV, BH) of the set of buses B. Then, for any diamond z = (b, v, b′, v′)
the two bus vertices b and b′ belong to the same class (BV or BH).

Proof. Suppose for contradiction that b ∈ BH and b′ ∈ BV. The interior of z in
the planar bus realization is a polygon with six corners. Four of the corners are
at contacts of connector edges and buses and two corners are at the connector
vertices. We account for four corners of size π/2 each, where the edges meet
the buses. The other two corners are at v and v′. Since b is horizontal and b′

vertical, the angles at v and v′ have to be either π/2 or 3π/2. Because v and
v′ have an additional bus neighbor in the interior, the angle at each of v and
v′ is at least π. Hence, both these angles are of size 3π/2. Therefore, the sum
of interior angles is at least 4 · π/2 + 2 · 3π/2 = 5π. A six-gon, however, has a

9.2 Maximal Plane Bus Graphs 129

sum of angles of 4π. The contradiction shows that b and b′ belong to the same
class of the partition (BV, BH).

An oversaturated diamond of G is a diamond z = (b, v, b′, v′) with the property
that one of the connector vertices has degree four and all its neighbors lie in
the closed bounded region defined by z. From the lemma we see that a plane
bus graph with an oversaturated diamond cannot admit a planar bus represen-
tation. Since our algorithm will identify all diamonds, it can reject instances
that contain oversaturated diamonds right away. Therefore we will henceforth
assume that the plane bus graph that we consider contains no oversaturated
diamond.

As a consequence of the lemma we state a third property to ensure a planar
realization.

(P3) A diamond has both bus vertices in the same class.

Definition 9.2. A partition Π = ((BV, BH)) of the buses of a plane bus graph
G is called a good partition if it obeys properties (P1), (P2), and (P3).

In the next section we consider maximal plane bus graphs and test efficiently
whether they admit a good partition. The test is constructive, i.e., if the answer
is yes, then a good partition is constructed.

9.2 Maximal Plane Bus Graphs

A maximal plane bus graph G is a plane bipartite bus graph that is a quadran-
gulation, i.e., all faces have cardinality 4. Let G = (V ∪ B,E) be a maximal
plane bus graph. We assume that G has no connector vertices of degree 1
or 2, since they have no influence on the existence of a good partition. Let
∆ = ∆(G) denote the degree of a plane bus graph G which is defined as the
maximum degree among the connector vertices of G.

In this section we first assume that G has ∆ = 3 and give an algorithm to test
if G admits a good partition and if so the algorithm returns a good partition.
After that we allow ∆ = 4 and reduce this case with a simple modification to
the case ∆ = 3.

Let G = (V ∪B,E) be a plane maximal bus graph with ∆ = 3. The connector
graph CG = (VC , EC) of G consists of all the connector vertices VC = V
and edges (v, v′) ∈ EC , if v and v′ are both incident to the same face of the
plane embedding of G. The connector graph is helpful because it allows the
translation of the problem of finding a good partition for G to the problem of

130 9 Bus Graphs in Two Dimensions

H

H

H

H

V

V

VV

G CG

Figure 9.1: A maximal plane bus graph, the connector graph with a match-
ing (fat black edges) and its good partition, and a corresponding bus repre-

sentation.

finding an appropriate perfect matching in CG, summarized in Proposition 9.3
and Proposition 9.4 and illustrated in Figure 9.1.

The first property (P1) of a good partition Π of G requires that every connector
vertex v has two adjacent bus vertices in one partition class and one in the other.
If b and b′ are neighbors of v in G with the same label, then there is a connector
vertex v′ sharing a face with v, b, and b′, since every face has cardinality 4.
When looking at v′ the two neighbors b and b′ are again the two in a common
partition class. Hence, property (P1) of a good partition of G induces a perfect
matching on CG.

Conversely a perfect matching M of CG induces a labeling of the bus vertices.
Removing the matching edges from CG leaves a 2-regular graph, i.e., a disjoint
collection of cycles. The regions defined by this collection of cycles can be
2-colored with colors V and H such that each cycle has regions of different
colors on its sides. Let BV be the set of bus vertices in faces colored with V,
and let BH be the set of bus vertices in faces colored with H. This yields a
partition satisfying (P1) because every connector vertex is on a cycle and has
a bus neighbor in each of the two faces bounded by the cycle. Since ∆ = 3, the
second property (P2) is void.

Consider a diamond z = (b, v, b′, v′) in G. Each of v, v′, has exactly one edge
e, e′ in CG that corresponds to a face of the outside of z. Since (P3) forces
equal labels for b, b′, the faces represented by e, e′ have equally labeled incident
bus vertices (b, b′) and thus e, e′ must be in a matching of CG. We define the
set Ed of edges forced by diamonds as the set of edges consisting of the two
outside edges e, e′ in CG for each diamond z of G. We have thus shown that a
perfect matching M induced by a good partition contains Ed.

Conversely, if Ed is contained in a perfect matching M of CG, then the bus
vertices b, b′ of each diamond are in the same partition class and thus G has

9.2 Maximal Plane Bus Graphs 131

a partition that satisfies property (P3). The findings are summarized in the
following proposition.

Proposition 9.3. Let G be a maximal plane bus graph with ∆ = 3, let CG be
its connector graph, and let Ed be the set of edges of CG forced by diamonds.
Then G admits a good partition iff CG has a perfect matching M , with Ed ⊆M .

Now we allow ∆ = 4 for a maximal plane bus graph G. To transform G into
a plane bus graph G′ with ∆ = 3, we split every connector vertex v of degree
4 into two connector vertices v′, v′′, both of degree 3 in the following way: let
b1, b2, b3, b4 be the adjacent bus vertices of v in consecutive cyclic order around
v. Remove v and its incident edges and introduce new vertices v′, v′′ with edges
(b1, v

′), (b2, v
′), (b3, v

′), (b3, v
′′), (b4, v

′′), (b1, v
′′). The connector graph CG is

obtained from CG′ by contracting the edges (v′, v′′) corresponding to the pairs
v′, v′′ that have been obtained by splitting a vertex of degree 4. Define the set
Es of edges forced by splits of CG′ as the set of these edges (v′, v′′).

If G has a partition satisfying property (P2), then we have to ensure alternating
labels for the neighbors of v in G. This forces (v′, v′′) ∈ Es to be a matching
edge in CG′ . Conversely if (v′, v′′) ∈ Es is a matching edge, then the common
neighbors b1, b3 have the same label. Since v′, v′′ have both degree 3 and two
of their neighbors have equal label, the third neighbor (for each of v′, v′′) has
a different label, i.e. b2 and b4 have both different label compared to the
label of b1, b3, hence, v obeys property (P2). So in total a partition Π of
G satisfies property (P2), iff the edges Es are contained in a matching of CG′ .
For notational simplicity we denote the connector graph CG′ of the transformed
graph G′ by CG. An example for a maximal plane bus graph with its connector
graph showing the edges of Ed ∪ Es is shown in Figure 9.2.

Proposition 9.4. Let G be a maximal plane bus graph with ∆ = 4 and CG
its connector graph and let Ed, Es be the sets of edges of CG that are forced by
diamonds and splits, respectively. The graph G admits a good partition iff CG
has a perfect matching M , with (Ed ∪ Es) ⊆M .

Proof. The proof almost follows from Proposition 9.3 and the above consid-
erations. Splitting connector vertices of degree 4, however, may separate dia-
monds. We claim that this is no problem. Let v be split into v′, v′′ as above.
Any diamond containing v has a cycle z with bus vertices b1 and b3. Condition
(P3) for this diamond requires that b1 and b3 belong to the same class of a good
partition. This requirement, however, is already implied by condition (P2) for
the original connector vertex v. That is, separated diamonds do not impose
additional conditions on the matching.

Theorem 9.5. Let G be a maximal plane bus graph. A good partition for G
can be computed in O(n3/2) time if it exists.

132 9 Bus Graphs in Two Dimensions

Es

Ed

Figure 9.2: A maximal plane bus graph and its connector graph with the
modifications, where the dotted edges are forced and the fat edges complete

the perfect matching.

Proof. By Proposition 9.4 it suffices to test the connector graph CG for a perfect
matching M that contains (Ed∪Es). The extraction of the connector graph CG
from G requires linear time. The set Es can be computed while constructing
CG. To identify diamonds we consider the dual DG of the connector graph
CG. The vertices of DG are the bus vertices of G and edges correspond to
faces of G′. Diamonds of G′ correspond to double edges of DG. The only
exception is the diamond bounding the outer face. Double edges of DG can
be found and sorted so that the set Ed can be constructed in O(n polylog(n))
time. To force Ed ∪ Es, we simply delete all vertices incident to these edges
from the graph. If a vertex is incident to two edges from the set, then there
is no matching. For constructing a perfect matching in the remaining graph,
there exist several O(

√
nm)-time algorithms. For planar graphs this yields the

claimed time complexity1 of O(n3/2).

Given the perfect matching, the corresponding good partition can again be
computed in linear time.

Note that in general a perfect matching in a bridgeless planar 3-regular graph
exists by Peterson’s theorem [151] and can be computed in linear time [21]. Un-
fortunately this efficient algorithm doesn’t support the requirement that edges
of Es, Ed have to participate in the matching. This is because the algorithm
from [21] splits the graphs into two bridgeless biconnected components by a
“suitable reduction” and iterates on these components. This “suitable reduc-
tion” stands for the choice of an edge to be in the matching, respectively to be
not in the matching, so that the resulting components have those properties.
In our case we don’t have the freedom of this choice in general because of the
enforced matching edges.

1In [142] a slightly faster randomized algorithm for planar graphs has been proposed.

9.3 Planar Realizations 133

9.3 Planar Realizations

In this section we show how to construct a planar realization from a maximal
plane bus graph G with a good partition. Our main result, which we are going
to prove in the remainder of this section, is as follows.

Theorem 9.6. Let G be a maximal plane bus graph admitting a good partition.
Then G has a planar realization on a grid of size O(n) × O(n). If the good
partition is given, the realization can be computed in O(n) time.

Let G be a maximal plane bus graph admitting a good partition. We start
with some simplifications. First we recursively remove all connector and bus
vertices of degree 1 and all connector vertices of degree 2. Second we split all
connector vertices of degree 4 into two connector vertices of degree 3. After
these two modifications the new graph G′ is still a quadrangulation.

The reduced bus graph R′ = (B′, ER) of G′ is the graph on the bus vertices of
G′ with edges (b, b′), iff b, b′ are incident to a common face and have different
labels. Diamonds with different labeled bus vertices are the only substructure
that would create double edges in R′ but diamonds have identically labeled bus
vertices in a good partition. Hence, there are no double edges in R′. From the
three faces incident to a connector vertex exactly two contribute an edge to R′.
It follows that R′ is a quadrangulation. Another approach to derive this is by
observing that the edges of the matching M of Proposition 9.4 are in bijection
with the faces of R′.

Let Q be a quadrangulation, which is a bipartite graph since all faces have
cardinality 4. We call the color classes of the bipartition white and black
and name the two black vertices on the outer face s and t. A separating
decomposition of Q is an orientation and coloring of the edges of Q with colors
red and blue such that:

• All edges incident to s are ingoing red and all edges incident to t are ingoing
blue.

• Every vertex v 6= s, t is incident to a non-empty interval of red edges and
a non-empty interval of blue edges. If v is white, then, in clockwise order,
the first edge in the interval of a color is outgoing and all the other edges
of the interval are incoming. If v is black, the outgoing edge is the last one
in its color in clockwise order (see Figure 9.3).

Separating decompositions have been studied in [44], [78] and [77]. In par-
ticular it is known that every plane quadrangulation admits a separating de-
composition. To us separating decompositions are of interest because of their
connection with segment contact representations of the underlying quadrangu-
lation. The following lemma has been shown by Felsner in [76]; an illustration
of the lemma is given in Figure 9.4.

134 9 Bus Graphs in Two Dimensions

Figure 9.3: Edge orientations and colors at white and black vertices.

Lemma 9.7 (Felsner [76]). A separation decomposition of Q can be used to
construct a segment contact representation of Q with vertical and horizontal
segments such that an edge v → w of the separating decomposition corresponds
to a contact of the segments Sv and Sw where an endpoint of Sv is in the
interior of Sw.

s s

t t

Figure 9.4: A quadrangulation Q, a separating decomposition of Q and a
corresponding segment contact representation of Q.

The construction of a planar realization is as follows. First we identify the
two classes V and H of the bipartition of the reduced bus graph R′ with black
and white. Next we construct a separating decomposition of R′ and a corre-
sponding segment contact representation. Later the following observation will
be important:

(?) The rectangles in the segment contact representation correspond bijectively
to the faces of R′. Moreover, vertex b is incident to face f in R′ if and only
if segment Sb contributes a side of the rectangle Rf corresponding to f .

From the segment contact representation of R′ we obtain a representation of
the bus graph G′ in two steps. First we clip the endpoints of all segments
of the representation so that a disjoint collection of segments remains. These
segments serve as the bus segments for the representation of the bus graph G′.
It remains to insert the connector vertices and the edges of G′ into the picture.
To this end recall that each connector vertex belongs to a unique face of R′

and each face of R′ contains exactly two connector vertices. The two connector
vertices contained in a face f can easily be accommodated in the rectangle Rf ,
because of (?). Figure 9.5 shows the picture.

9.3 Planar Realizations 135

Figure 9.5: A face f of R′ with its two connector vertices and the placement
of the two vertices in Rf .

At this point we have a representation of the slightly modified maximal plane
bus graph G′. It remains to transform the planar representation of G′ into a
planar representation of the original input graph G. These are the steps that
have to be done:

• Merge pairs of connector vertices that have been created by splitting a
connector vertex of degree 4.

• Insert all connector and bus vertices of degree 1 and all connector vertices
of degree 2 that had been deleted in the reverse order of the deletion.

This yields a representation of the input graph G.

To complete the proof of Theorem 9.6 it remains to argue about the complexity.
Let G = (V ∪B,E) be the maximal plane input bus graph with n = |V |+ |B|.
The slightly modified bus graph G′ is obtained by removing or splitting some
vertices, which can be done in linear time. The reduced bus graph R′ can be
computed from the plane G′ in O(n) time. A separating decomposition of R′

can also be computed in linear time, details can be found in the PhD thesis of
É. Fusy [90]. The segment contact representation of R′ associated with the sep-
aration decomposition is computable in linear time with standard techniques,
c.f. [49] or [76]. The number of grid lines needed for the representation of R′ is
bounded by the number of vertices n′ of R′, i.e., the size of the grid is at most
n′ × n′. The compression of grid lines that don’t contain any connector vertex
or endpoint of a bus segment, as well as the reinsertion of connector vertices
and bus vertices and the merging of vertices that were created by splitting a
connector vertex of degree 4, leads to an O(n) × O(n) grid. Finally each grid
line is occupied by either a connector vertex or a bus segment along the grid
line or the start point, respectively the end point, of a bus segment, i.e., the
total number of occupied grid lines is 3|B| + 2|V |. This is true, even if we
extend the graph at the beginning to match maximality (see the next section)
and remove the inserted vertices at the end.

Now we finished the construction from a given maximal plane bus graph to
a planar realization through the computation of a good partition for the bus
vertices. In the next sections we generalize the result from Section 9.2, i.e., as
input graph we permit non-maximal plane bus graphs (Section 9.4), then we
permit biconnected non-embedded planar bus graphs (Sections 9.5, 9.6, 9.6.1)

136 9 Bus Graphs in Two Dimensions

b1

b2

b3

b4

b5
c1

c2c3

c4

c5

b∗f

Figure 9.6: New vertices and edges added to quadrangulate a face f of
cardinality 10.

and finally we permit general non-embedded planar connected bus graphs (Sec-
tion 9.6.2). All extensions offer as a final result a maximal plane bus graphs
together with a good partition, if it exists, for which Theorem 9.6 from this
section can be applied as a black box.

9.4 Non-Maximal Plane Bus Graphs

In this section we consider a plane bus graph G that is not necessarily maximal.
In a first preprocessing step we remove all connector vertices of degree 1 as well
as their incident edge. These objects can easily be integrated in a realization
of the remaining graph.

In the following we describe how to extend G to a maximal plane bus graph G+

containing G as induced subgraph such that G+ has a good partition iff G has a
good partition (Lemma 9.8). The graph G+ will be called the quadrangulation
of G.

Let f be a face with cardinality 2k in G and let b1, . . . , bk be the bus vertices of
f in clockwise order. To quadrangulate f we first place a new bus vertex b∗f in
the inside. The bus vertex b∗f is then connected to the boundary of f by adding
a triangular structure for every consecutive pair bi, bi+1 of bus vertices including
the pair bk, b1. The triangular structure for bi, bi+1 consists of another new bus
vertex ci and three connector vertices v1

i , v
2
i , v

3
i such that N(v1

i) = {bi, ci, bi+1},
N(v2

i) = {bi+1, ci, b
∗
f}, and N(v1

i) = {b∗f , ci, bi}. Figure 9.6 shows an example.

The graph G+ is obtained from G by quadrangulating away every face f with
cardinality > 4 including, if necessary, the outer face. The following properties
of the quadrangulation G+ of G are obvious:

• G+ is planar and has O(n) vertices.

• All diamonds of G+ are diamonds of G.

9.4 Non-Maximal Plane Bus Graphs 137

Note that the outer face of G+ has cardinality 4. If the outer face of G has
cardinality > 4 this is an additional diamond of G+. We ignore this diamond
and the condition imposed by it on good partitions of G+.

In addition we have the following important lemma:

Lemma 9.8. Let G be a plane bus graph, and let G+ be its quadrangulation.
Then G has a good partition iff G+ has a good partition.

Proof. The three defining properties (P1), (P2), and (P3) are stable under
taking induced subgraphs. Hence, a good partition of G+ immediately yields
a good partition of G.

Now assume that G has a good partition. We aim for a partition of the bus
vertices of G+ that extends the given partition of the bus vertices of G. Since
all bus vertices of degree 4 and all diamonds of G+ already belong to G we do
not have to care of (P2) and (P3). The following rules define the labels for the
new bus vertices

• Label all central bus vertices b∗f with V.

• If bi and bi+1 are both labeled H, then the label of ci is defined to be V.
Otherwise the label of ci is H.

It is straightforward to check that (P1) is fulfilled for all new connector vertices,
i.e., the construction yields a good partition of G+.

If vertices have been added to the outer face f∗ in the quadrangulation process,
then we can choose the outer face of G+ such that it contains b∗f∗ and both bus
vertices of the (new) outer face are labeled V. This change in the outer face
does not affect the plane embedding of G. These considerations imply that
when looking for a good partition of G+ we do not fail because of the condition
implied by the diamond defined by the outer face of G+ if this was not already
a diamond of G.

Theorem 9.9. Let G be a plane bus graph. A good partition for G can be
computed in O(n3/2) time if it exists.

Proof. By Lemma 9.8 it suffices to test if the quadrangulation G+ of G =
(V ∪ B,E) has a good partition. Hence we first compute G+ in linear time.
Simple estimates on the basis of Euler’s formula show that, in going from G to
G+, at most O(|B|) new vertices have been introduced. Our analysis led to a
constant ≤ 13. Hence, G+ has n+ ∈ O(n) vertices and since G+ is a maximal
plane bus graph we can use the O(n3/2) time algorithm from Theorem 9.5 to
check whether G+ has a good partition. The algorithm returns a good partition
if it exists. Notice that, we have to remove all connector vertices of degree 2
from G+ to match the requirement of Section 9.2.

138 9 Bus Graphs in Two Dimensions

9.5 Embedding Missing – SPQR-Trees

A planar bus graph can have many planar embeddings. Some of them may allow
a planar realization of this bus graph and some may not. From Theorem 9.6
we know that a plane embedding has a planar realization if and only if the
plane embedding admits a good partition. Therefore, we now face the problem
of deciding whether a planar bus graph has a planar embedding that admits a
good partition.

If the input graph has cut vertices, we look at the blocks separately. In Sec-
tion 9.6.2 we give the details on how to merge solutions for the blocks. The
main problem is the problem for the blocks:

Problem 1. Given a planar biconnected bus graph, find a planar embedding
that admits a good partition if such an embedding exists.

To tackle this problem, we use SPQR-trees, a tool developed by Di Battista and
Tamassia [51, 52] to describe all combinatorially different planar embeddings
of a biconnected graph in one structure. Another important reference about
SPQR-trees is [101]. As sources about SPQR-trees we also used the Wikipedia
article and a brief description of Eppstein [69].

An SPQR-tree for a graph G is a tree T in which each node n ∈ T represents a
graph Gn. The vertex set of Gn is a subset of the vertices of G. Some edges of
Gn are labeled as virtual the others are real. Removing the virtual edges from
Gn yields a subgraph of G and each edge of G appears as a real edge in exactly
one of the graphs Gn. If (n, n′) is an edge of the SPQR-tree, then Gn and Gn′

share exactly one edge which is virtual in both, this virtual edge is associated
with the tree edge. Each virtual edge of Gn is associated with exactly one tree
edge. The given graph G can, hence, be reconstructed by repeatedly taking
the union of graphs Gn and Gn′ belonging to adjacent tree-nodes and deleting
the virtual edge associated with the tree-edge (n, n′).

The nodes of an SPQR-tree have three types2:

[S] If n is a S-node, then Gn is a cycle of length at least three (the S represents
“series”).

[P] If n is a P-node, then Gn is a multigraph with two vertices and three or
more edges (the P represents “parallel”).

[R] If n is a R-node, then Gn is a 3-connected graph with more than three
vertices (the R represents “rigid”).

If we require that no two S-nodes and no two P-nodes are adjacent in T , then
the SPQR-tree of G is unique. Moreover the size of T is linear in the size of G.
Algorithmically the SPQR-tree of a graph can be constructed in linear time.

2Some descriptions also use type Q nodes, so that SPQR represents the types.

9.5 Embedding Missing – SPQR-Trees 139

S

P

S R

RR

P SS

S

r

n

Gn

Figure 9.7: A plane bus graph G with a rooted SPQR-tree T and the
associated graphs for each node. In T one node r is designated to be the
root. The associated graph Gn of each node n 6= r is drawn with one of its

feasible embeddings, while the virtual up-edge of n is the dotted edge.

We continue with some definitions for rooted SPQR-trees. A rooted SPQR-tree
is an SPQR-tree with a designated root node r. We denote such a tree by Tr.
Since every node n 6= r has a unique parent n+ with respect to the root r, there
is also a special virtual edge in Gn. This is the virtual edge associated with
(n, n+). In the sequel we will refer to this virtual edge as the virtual up-edge
of Gn. The two vertices of the virtual up-edge are the poles of Gn. An example
of a rooted SPQR-tree for a planar bus graph is shown in Figure 9.7.

For n 6= r we orient the virtual up-edge of Gn arbitrarily and consider the set
G1
n, . . . , G

k
n of all embeddings of Gn that have the outer face to the left of the

oriented virtual up-edge. This set will be called the set of feasible embeddings.
For S-nodes we have k = 1, for R-nodes k = 2, and for a P-node with l + 1
parallel edges we have k = l!.

Lemma 9.10. Let G be a biconnected plane graph with SPQR-tree T . Consider
the induced plane embeddings of the graphs Gn represented by the nodes of T .
All but at most one of these plane graphs Gn have a virtual edge on the outer
face.

Proof. Each of the plane graphsGn has an outer face. There is at most one node
r such that the outer face of Gr contains no vertex from the set V (G) \V (Gr).
Now let n be a node with n 6= r and consider a vertex vr in the outer face. In G
there are two disjoint paths from vr to Gn. These paths can be traced through
T where they both reach n across the same tree edge (n′, n). The virtual edge
associated with (n′, n) is on the outer face of Gn.

A planar graph G may have exponentially many embeddings. Lemma 9.10
will be useful to bound the set of embeddings that have to be explored by the
algorithm. Indeed, if we correctly guess the root, then we can restrict attention
to the set of feasible embeddings of each Gn.

In the next section we make some simplifying assumptions and describe the
key ideas for the algorithm in the simplified setting.

140 9 Bus Graphs in Two Dimensions

9.6 The Algorithm

In the first part of this section we describe the basic algorithm for solving
Problem 1 with a simplifying assumptions about the input graph G and its
SPQR-tree T .

• At every node n of T all virtual edges of Gn are only incident to bus vertices.

In Section 9.6.1 we add the details for dealing with virtual edges incident to
connector vertices. Finally, in Section 9.6.2 we remove the assumption the
input graph is biconnected.

We are going to work with rooted SPQR-trees but since we don’t know which
root is a good one we initialize the set R∗ of potential roots with the set of all
nodes of T . Then we guess a root by picking arbitrarily an r ∈ R∗.

The tree Tr will be traversed bottom up. In the traversal each node has to be
processed. However, n can only be processed if all its child nodes have been
processed before. To control this condition we use the notion of eligibility. At
the very beginning all leave nodes of Tr are eligible. During execution of the
algorithm a node n of Tr becomes eligible as soon as all its children have been
processed.

When a node n is being processed we want to decide whether the bus graph
G∗n represented by the subtree Tr(n) of Tr rooted at n admits a good partition.
In the affirmative case we have to decide in addition whether there is a good
partition with the two poles in the same class and whether there is a good
partition with the two poles in different classes. The information is then passed
on from n to the father node n+ as a letter σn from the set {s, d, w} where the
meaning is s =same, d =different, and w =whatever.

To decide whether a good partition for G∗n exists we replace each of the virtual
edges of a feasible embedding (the definition was given before Lemma 9.10) of
Gn by one of the gadgets3 shown in Figure 9.8. The gadget for the case s
is a simple diamond and forces the two golden bus vertices to belong to the
same class (Lemma 9.1). The gadget for the case d also contains a diamond
but in addition a connector vertex of degree 3 that forces the two golden bus
vertices to belong to different classes (property (P1)). The gadget for case w
allows any assignment to the classes. For the replacement of a virtual edge by
gadget d we have orientation options that lead to different graphs, respectively
to different embeddings. The next lemma shows that the choices don’t matter.

Lemma 9.11. Let G+
n be obtained from Gn by replacing virtual edges by gadgets

of the three types shown in Figure 9.8. Either the cycle bounding the outer face

3Note that some of the gadgets are multisubgraphs, i.e., there are two connector vertices
with the same adjacency. This, however, can easily be resolved.

9.6 The Algorithm 141

s d w

Figure 9.8: The gadget replacing the virtual edges of Gn. The yellow bus
vertices are the vertices of the virtual edge.

of Gn is a diamond or every diamond of G+
n is the diamond of a gadget of type

s or d. In particular the existence of a good partition for G+
n is independent of

the orientation of d gadgets.

Proof. Suppose the cycle bounding the outer face of Gn is a diamond, as shown
in Figure 9.7, then the existence of a good partition for G+

n follows directly by
Theorem 9.9. Suppose now Gn is diamond free. A diamond with one bus vertex
a white vertex of a gadget and the other outside of the gadget is impossible.
Hence all diamonds ofG+

n are diamond of s gadgets or d gadgets. The statement
about the existence of a good partition follows directly from properties (P1),
(P2), and (P3), i.e., from the definition.

Processing an eligible node n:

(1) Choose a feasible embedding of Gn.

(2) Replace the virtual edges that connect to the children of n by the gadgets
corresponding to their letter.

(3) Run the algorithm to compute a good partition twice: first with the virtual
up-edge of Gn, i.e, the virtual edge connecting to the father, replaced by
the s gadget and secondly replaced by the d gadget.

(4) If successful, pass σn to the father, otherwise call for a new root.

We now come to a more detailed look at the parts of this algorithm. Depending
on the type of the node n in the SPQR-tree the number of feasible embeddings
of Gn varies.

In the case of an S node there is no choice. Actually the letter that has to be
passed to the father of an S node n can be computed directly from the letters
obtained from the children. If one of the children submitted a w, then σn = w.
Otherwise it depends on the parity of the number of children that submitted a
d. If this number is even, then σn = s, otherwise σn = d.

In the case of an R node we have two feasible embeddings G1
n and G2

n. Fig-
ure 9.9 indicates how the two feasible embeddings are related. With respect

142 9 Bus Graphs in Two Dimensions

reflection

G1
n

G2
n

flip

flip

Figure 9.9: Four possible embeddings for Gn when n is an R node. The two
left embeddings G1

n, G2
n have the unbounded face to the left of the directed

virtual edge, i.e., they are the feasible embeddings.

to properties (P1) and (P2) instances G1
n and G2

n are equivalent. Since we
know from Lemma 9.11 that either G1

n and G2
n both have an identical global

diamond, or all the diamonds of G1
n and G2

n are local to the gadgets, they are
also equivalent with respect to (P3). In other words G1

n and G2
n admit the same

good partitions.

In the case of a P node we may have many feasible embeddings. The answer
to the question whether there is a good partition, however, is the same for all
of them. It only depends on the set of letters passed from the children. Let
Σn = {σn′ : n′ child of n}. If {s, d} ⊆ Σn, then there is no good partition. If
Σn ⊆ {s, w}, then the graph G∗n′ of each child n′ has a good partition where
the poles are labeled the same, these partitions yield a good partition for G∗n
where the poles are labeled the same. If Σn ⊆ {d,w}, each child has a good
partition where the poles are labeled differently, these partitions yield a good
partition for G∗n where the poles are labeled differently. Hence, for P nodes we
can skip the run of the procedure with gadgets replacing the virtual edges and
directly compute σn in the case where {s, d} 6⊆ Σn:

σn =





s, s ∈ Σn

d, d ∈ Σn

w, Σn = {w}

It remains to deal with the “otherwise” in step 4 of the procedure, i.e., with
the case where the computation shows that there is no good partition for G∗n
with the chosen feasible embedding. From the discussion above it follows that
in this situation there is no good partition for G∗n with a feasible embedding,
i.e., with an embedding that has the virtual up-edge of Gn on the outer face.
If there is an embedding of G that admits a good partition, then either n is the
root or by Lemma 9.10 the virtual up-edge of node n has to be a different one.
This implies that the root node for such an embedding belongs to the subtree
Tr(n) of Tr rooted at n. Therefore, R∗ is redefined to be R∗ ∩ V (Tr(n)) and a
new root r from the new set R∗ is chosen.

If R∗ becomes empty, then there is no good partition. Otherwise the root r of
the tree becomes eligible. Processing the root node is similar to processing any
other node. The difference is in the choice of the embedding. In the case of

9.6 The Algorithm 143

an S node there is only one embedding. In the case of a P node we can argue
as before that the embedding doesn’t matter. The interesting case is when the
root is an R node. An R node is a 3-connected component and by Whitney’s
theorem specifying the outer face determines the embedding. Therefore, we
can afford to check independently for each embedding.

We have completed the description of the algorithm. We now come to the
discussion of the running time.

Due to the change of root a node n may have to be processed several times.

Lemma 9.12. The number of calls to the procedure that processes the nodes is
≤ 2|V (T)|.

Proof. Consider a tree edge (n1, n2). If the root is on the side of n2 after
processing n1, the information σn1 is passed to n2. If the root is on the side
of n1 after processing n2, the information σn2 is passed to n1. This is all the
exchange along this edge. Since each processing of a node is followed by passing
information over a tree edge the number of calls to the procedure that processes
the nodes is bounded by twice the number of edges of T .

If the input graph has n vertices, then in linear time we get an SPQR-tree T
whose size is linear in n. Processing a node can be done in O(n3/2) (Theo-
rem 9.9). The root has at most 2n faces, hence processing the root be done in
O(n5/2). Actually we may have to test more that one root but if f1, f2, . . . , fk
are the numbers of faces of k roots that are checked, then still

∑
fi ∈ O(n).

Proposition 9.13. If a given planar biconnected bus graph G has the property
that all the poles in the SPQR-tree are bus vertices, then we can solve Problem 1,
i.e., decide whether G admits a good partition in O(n5/2) time.

9.6.1 Connector Vertices as Poles

We now come to the details for dealing with virtual edges incident to connector
vertices, i.e., with situations where the poles of a tree node n are connector
vertices. The neighbors of such a connector vertex v in G are called v-exposed,
note that exposed vertices are bus vertices.

Let (n, n′) be an edge in the SPQR-tree T and let (v, w) be the corresponding
virtual edge. We assume that v is a connector vertex and if w is also a connector
vertex then deg(w) ≤ deg(v).

There are several cases that are treated differently. First we consider connector
poles of degree three.

The degree of v is 3. There are several subcases.

144 9 Bus Graphs in Two Dimensions

b

R

S

n

n′

(n, n′)

b
v

w
v

w

b

b
v

w
v

w(n, n′) (n, n′)

Figure 9.10: The movement of the virtual edge when n is an R-node and
n′ an S-node.

Neither n nor n′ is a P-node. The types of one of n and n′ has to be R.
Assuming that n is of type R we know that Gn contains two v-exposed bus
vertices. Let b be the exposed neighbor of v in Gn′ . Since {b, w} is a separating
set of size two we can conclude that n′ is a node of type S and (v, b) is one of
the edges of the cycle Gn′ .

We deal with this case by moving the edge (v, b) from Gn′ to Gn so that the
new virtual edge corresponding to the tree edge (n, n′) is (b, w), cf. Figure 9.10.
After that movement we treat n, n′ as R-, S-node in the base algorithm, re-
spectively, since their new poles with respect to (n, n′) are only bus vertices.

Node n is a P-node. In Gn′ there is only one v-exposed vertex. If there were
two, then the third exposed neighbor b and the separator {b, w} would reveal
that n is of type S. Hence, n has three tree neighbors n1, n2, and n3. Let bi be
the neighbor of v in ni. Since {bi, w} is separating each ni is of type S.

Let b′i be the bus vertex closest to w on Gni , i.e, either b′i = w or it is the
unique w-exposed neighbor (recall deg(w) ≤ deg(v)). The relevant information
needed from Gni is the classifying letter from {s, d, w} for the pair bi, b

′
i. This

is obtained by running the procedure for eligible nodes.

When n becomes eligible and n is the root, then we can use one of the standard
gadgets from Figure 9.8 for each child together with v and w to check the
existence of a good partition (this can even be decided just on the basis of the
three letters).

When n becomes eligible and n is not the root. Then we skip n, however,
when it comes to processing the parent n1 (a node of type S) we use two of the
standard gadgets, one for each of n2 and n3 together with v and w. Figure 9.11
indicates how this is done.

The degree of v is 4. The critical issue in this case is that we have to care of
property (P2) of a good partition, i.e., the cyclic alternation of labels around
v.

In the basic case and in the case where connector vertices of degree 3 are
poles the existence of a good partition for some embedding of G∗n could be
checked by replacing virtual edges of Gn with some system of simple gadgets

9.6 The Algorithm 145

v

w

v

w

Figure 9.11: Replacing the virtual edge in Gn1 by two gadgets, two cases.
The red edge is the virtual up-edge of n1.

that represent conditions enforced by the descendant nodes and then check for
a good partition of the thus constructed graph G+

n .

The increase of complexity in the present case can be seen by observing that
now we may have to be cautious about the embedding. Here is an example
illustrating this: Let w be a bus node, let b1, b2, b3 and b4 be v-exposed, and
assume that each {bi, w} is separating. The graph Gni has two bus vertices as
poles, hence, there is a letter σi = σni encoding conditions on good embeddings.
Now suppose that (σ1, σ2, σ3, σ4) = (s, s, d, d), then there is a good partition if
and only if the Gni are arranged in the embedding so that the letters alternate
between s and d.

We now go through several subcases depending on the number of v-exposed
vertices in Gn. Notice that v (if n is not root) is incident to precisely one
virtual edge in Gn, since when considering node n all children must have been
processed before.

Node n contains 3 v-exposed vertices. Consider the fourth v-exposed
vertex b together with w to conclude that n′ is a node of type S and (v, b) is
one of the edges of the cycle Gn′ . We deal with this case by moving the edge
(v, b) from Gn′ to Gn so that the new virtual edge corresponding to the tree
edge (n, n′) is (b, w), cf Figure 9.10.

Node n contains 1 v-exposed vertex. Let b be this v-exposed vertex
together with w to conclude that n is a node of type S and (v, b) is one of the
edges of the cycle Gn. We deal with this case by moving the edge (v, b) from
Gn to Gn′ so that the new virtual edge corresponding to the tree edge (n, n′)
is (b, w), cf Figure 9.10 with interchanged roles of n and n′.

Node n contains 2 v-exposed vertices. We consider two subssubcases
depending on whether w is a bus vertex or not.

Node n contains the bus vertex w. Suppose that Gn contains two v-
exposed vertices b1, b2. In this case it is necessary that there is a good par-
tition of G∗n where b1 and b2 have different labels. This can be checked when

146 9 Bus Graphs in Two Dimensions

d

w

v w

b2

b1

dv

b2

b1

d

b′2

b′1

w

σn

Figure 9.12: Replacement for a node n with 2 v-exposed vertices and 2
w-exposed vertices.

processing node n by inserting a d gadget between b1 and b2. If such a test
fails, then we have to try with a new root from the subtree rooted at n.

Otherwise note that G∗n can be reflected, therefore the alternation condition
(P2) for v can be satisfied as soon as the remaining two v-exposed vertices are
labeled differently. In the parent node of n it is then enough to replace the
virtual edge (v, w) with the gadget shown in the left part of Figure 9.12. The
w gadget encodes the fact that we can use reflections.

Node n contains 2 w-exposed vertices. Let b1, b2 be the v-exposed vertices
and b′1, b′2 be the w-exposed vertices of Gn. Insert d gadgets between the pairs
b1, b2 and b′1, b′2. Then check the existence of a good partition twice, first with
b1, b′1 connected by an s gadget and then by a d gadget. If both fail we have to
try with a new root, otherwise let σn ∈ {s, d, w} be the outcome of the tests.

In the parent node of n it is then enough to replace the virtual edge (v, w) with
the gadget shown in the right part of Figure 9.12. Since the degree of v and w
remains unaffected the alternation condition (P2) is taken care of.

When n becomes eligible and n is the root, then we can use one of the standard
gadgets from Figure 9.8 for each child together with v and w to check the
existence of a good partition.

In the above cases for n with 3 v-exposed vertices and with 1 v-exposed vertex,
the insertion of gadgets was not necessary, while in the case of 2 v-exposed
vertices, it was necessary. Nevertheless all cases disregard the type of n. If n
is of type S or R, we treat n as in the base algorithm, while if n is of type P ,
we have to take care of (P2). Therefore we consider this as last case.

Node n is a P-node. Consider the vertex v of degree four, which was a pole
before moving the virtual edge.

Suppose first that n is the root. Then there are up to four components providing
information that can be captured by one of the gadgets from Figure 9.8 or 9.12
and thus up to six possible orders of these components cyclically arranged
around v in Gn. It is an easy combinatorial sorting problem to find a good
partition if it exists.

9.6 The Algorithm 147

If n is an inner node then there are up to three children providing information
that can be captured by appropriate gadgets. Again the provided information
from the children can be captured by one of the gadgets from Figure 9.8 or 9.12.
We skip considering n and move the gadgets to the parent n′ of n, where we
have again up to six possible orders of these components cyclically arranged
around v. In Gn′ it is the same combinatorial sorting problem (as if n were
root) to find a good partition if it exists.

All in all we have to check a constant number of sortings, i.e., different embed-
dings, and the result can be encoded by a gadget in the parent node.

Lemma 9.14. Let G∗n be the bus graph represented by Tr(n) computed according
to the above cases. If G admits a plane embedding with good partition, then G∗n
has a good partition.

Proof. We consider a connector vertex v and distinguish the cases whether v
is a pole or not. In the latter case v is a vertex of Gn for a unique node n in
T with no incident virtual edge. Thus properties (P1), (P2), (P3) are satisfied
by Theorem 9.9 as black-box. Consider the pole vertex v of degree 3. After
the movement of the virtual edge v becomes a vertex in a unique Gn without
incident virtual edges and thus again Theorem 9.9 ensures properties (P1),
(P3), while (P2) is irrelevant for v. Consider the pole vertex v of degree 4. We
aim at ensuring property (P2), since (P1) is irrelevant and (P3) is implicitly
ensured, as soon as (P2) is ensured and the graph contains no oversaturated
diamonds. Since v is a pole it is in at least two components.

Suppose v is in precisely two components of vertices n′, n in T . Then n′, n are
adjacent and of type S,R or R,S or R,R. The first case is covered by “n has 3
v-exposed vertices” (and n′ has 1 v-exposed vertex), the second case is covered
by “n has 1 v-exposed vertex” (and n′ has 3 v-exposed vertices), and the last
case is covered by “n has 2 v-exposed vertices” (the 2 v-exposed vertices in n′

are fixed due to the embedding and (P2) is ensured due to the black-box after
inserting a gadget for the 2 v-exposed vertices of n).

Suppose v is in more than two components of vertices in T . Then there is
precisely one P-node n with pole v. The adjacent nodes n1, . . . , nk are of type
S or R. We will distinguish whether k = 4 or k = 3 (notice that k ≥ 3 because
of the definition of P-node and k ≤ 4 because of the degree of v).

If k = 4, then n1, . . . , n4 all have the same type S. This case is covered, when
3 of the nodes were processed and n becomes eligible, i.e., then n contains 3
v-exposed vertices and the fourth v-exposed vertex is moved to n during the
movement of the virtual edge. Still n is a P-node and (P2) is ensured after
finding a feasible combinatorial sorting of n1, . . . , n4 in the case “Node n is a
P-node”.

If k = 3, then w.l.o.g. n1 is an R-node and n2, n3 are S-nodes.

148 9 Bus Graphs in Two Dimensions

Assume n has no parent, i.e., n is the root, then the d gadget transfered from n1

together with the remaining 2 v-exposed vertices from n2, n3 transfered when
moving the virtual edge, are arranged in “Node n is a P-node” when solving the
combinatorial problem for the feasible sorting of the v-exposed vertices around
v.

Assume n has a parent ni; we consider the case i = 1 and i 6= 1. If i = 1, i.e.,
n1 is the parent of n, then n2, n3 were processed and n becomes eligible with 2
v-exposed vertices transfered when moving the virtual edge. These 2 v-exposed
vertices are linked by a d gadget from Figure 9.12 which is directly moved to
n1. In n1 (P2) is ensured by the black-box.

Otherwise if i 6= 1, then n1 and one of n2, n3 were processed and n becomes
eligible with 3 v-exposed vertices, while two of them (those from n1) are linked
by a d gadget from Figure 9.12. Since the parent ni is an S-node, its v-
exposed vertex is moved to n due to the movement of the virtual edge. It is
again just a combinatorial problem to find a feasible sorting of the v-exposed
vertices ensuring (P2), which is covered in “Node n is a P-node”. In the end
we considered all possible cases for a connector vertex pole.

Proposition 9.15. Problem 1 can be solved in O(n5/2) time, i.e., a good par-
tition for a planar biconnected bus graph can be computed efficiently if it exists.

9.6.2 Simply Connected Inputs

Now suppose that the input graph G fails to be biconnected.

Let G1 and G2 be biconnected bus graphs possibly with connector vertices of
degree one. For vertices a1 and a2 of the respective graphs of the same type
let G1 ⊕a1 a2 G2 denote the graph obtained by gluing G1 and G2 together by
identifying a1 and a2.

Lemma 9.16. If G1 and G2 both have a good partition and if a1, a2 are bus
vertices or a1, a2 are connector vertices with degG1

(a1) + degG2
(a2) ≤ 3, then

the graph G1 ⊕a1 a2 G2 also has a good partition.

Proof. Compute good partitions of G1 and G2. Either they combine to a good
partition of G1 ⊕a1 a2 G2 or exchanging all labels in G2 yields a labeling that
can be combined with the labeling of G1.

The remaining case where G = G1 ⊕a1 a2 G2 is a bus graph is when a1, a2 are
connector vertices with degG1

(a1) + degG2
(a2) = 4.

If degG1
(a1) = 2 = degG2

(a2), then a good partition of G exists if and only if
the neighbors of a1 in G1 and the neighbors of a2 in G2 are labeled differently.
This can be checked by inserting d-gadgets before computing good partitions.

9.7 Non-Planar Bus Graphs 149

If degG1
(a1) = 3 and degG2

(a2) = 1, then it is again sufficient to have good
partitions for G1 and G2. Condition (P1) at a1 requires that both labels appear
in the neighborhood of a1. Embedding G2 in the face with the two identical
labels allows to satisfy (P2) in the full graph G.

These considerations can be used on the block-tree B of G, i.e., on the tree that
represents the maximal biconnected components of G.

The results are summarized in the following theorem; a planar embedding will
be produced as a byproduct of a good partition if it exists.

Theorem 9.17. A good partition for a planar bus graph can be computed in
O(n5/2) time if it exists.

9.7 Non-Planar Bus Graphs

In the previous sections we proved that recognition of planar realizations can
be done in polynomial time. We say such a bus graph is in class C0, which
are bus graphs admitting a planar realization. The corresponding realization
is referred to as C0 realization. Now we have characterized the whole C0 class,
which are precisely the planar bus graphs with good partition. A good partition
of a planar bus graph forms a sufficient condition for the construction of a C0

realization due to Theorem 9.17. The necessity of this condition follows by
extracting the properties of a good partition and the planarity for the bus
graph from a given C0 realization.

In contrast to the result for C0 realizations, Ada et al.[3] proved that the
decision whether a bus graph admits a non-planar realization is NP-complete.
They used non-planarity only in terms of connections. This class of bus graphs
admitting a realization where only connections are allowed to cross is referred
to as C1. The corresponding realization is referred to as C1 realization. Ada
et al. didn’t characterize this class of bus graphs, but proved the complexity
for the decision problem.

Theorem 9.18 ([3]). The decision whether a bus graph is in C1 is NP-complete.

The are two more non-planarity types we are interested in: a bus graph is in
class C2 if it admits a realization where connections may cross each other or
connections may cross bus segments (referred to as C2 realization), while a bus
graph is in class C3 if it admits a realization where any crossing is allowed
(referred to as C3 realization). In order to characterize the bus graphs in C3,
we combine property (P1) and (P2) of a good partition as follows:

(P1’) Every connector vertex of degree ≥ 3 has at most 2 neighbors in the
same partition class.

150 9 Bus Graphs in Two Dimensions

The bus graphs in C3 are characterized by all bus graphs admitting a partition
satisfying property (P1’) (short (P1’)-partition). The necessity of this condition
follows directly by the property of orthogonal drawings, where at most two
vertical segments and at most two horizontal segments can enter a vertex.
This condition is also sufficient to construct a C3 realization from a bus graph
G by the following argument. Assume G admits a (P1’)-partition. Place all
k V-labeled buses and all l H-labeled buses on a l × k grid. Each vertical
(horizontal) bus crosses every horizontal (vertical) bus. The connector vertices
can be placed inside the region bounded by the buses representing its neighbors.

The decision whether a bus graph is in C3 is NP-complete4 since the question
whether a bus graph admits a (P1’)-partition is equivalent to the question
whether a 3-uniform hypergraph has a 2-coloring [61, 135]. Consider a bus
graph G = (B ∪ V,E) representing the hypergraph H = (V,B). We can
skip the connector vertices of degree ≤ 2 since they have no influence on a
(P1’)-partition. Also we substitute every connector vertex v of degree 4 with
neighbors N(v) by four connector vertices of degree 3, each of them connected
to one of the four triple of N(v). Now the modified bus graph G′ = (B∪V ′, E′)
is 3-regular in V ′ and the dual H ′∗ = (B, V ′) of the represented hypergraph
H ′ = (V ′, B) is 3-uniform5. A coloring of a hypergraph is a coloring of the
hypervertices such that no hyperedge is monochromatic. A 2-coloring of H ′∗ is
a coloring of B with V and H such that no hyperedge in V ′ is monochromatic.
This is precisely a (P1’)-partition for G′ and, hence, also for G.

Theorem 9.19. The decision whether a bus graph is in C3 is NP-complete.

For some bus graphs in C2 we know an efficient way to produce a C2 realization.
We consider the concept of the reduced bus graph R = (B,ER) of G = (V ∪
B,E), where (b, b′) ∈ ER ⊆ B × B if and only if there is a v ∈ V and edges
(b, v), (b′, v) ∈ E. Assume that the reduced bus graph R has a 3-coloring
(B1, B2, B3). It implies that G has ∆ = 3. It also implies that G admits a (P1’)-
partition (B1 ∪ B2, B3). From this partition we construct a C2 realization as
follows. We place three blocks on top of each other: the B1-buses are horizontal
in the topmost block, B3-buses are vertical in the middle block and B2-buses
are horizontal in the bottommost block. Connector vertices can be placed in
the region bounded by the buses representing its neighbors.

Nevertheless we neither characterized the bus graph in class C2, nor we know
the complexity of the decision problem. To close the discussion about realiz-
ability of bus graph we conjecture the following.

Conjecture 9.20. The decision whether a bus graph is in C2 is NP-complete.

4Ada et al. [3] called this problem “Partition-by-Orientation” and gave a proof using
gadgets from the C1 case. We present a simpler argument.

5For more details on uniform and regular hypergraphs we refer to [18].

9.8 Summary and Future Work 151

9.8 Summary and Future Work

We have considered the class of planar bus graphs that admit a planar 2-
dimensional bus realization and have characterized this class by the existence
of a good partition of bus vertices. To test for the existence of a good partition,
we have given an O(n5/2)-time algorithm based on planar matching and SPQR-
trees. Given a good partition, the representation can be computed in linear
time.

It is still open to characterize the class of graphs that admit realizations, where
connections are allowed to cross (C1-realizations) apart from the knowledge,
that the decision is NP-complete. The decision problem and the character-
ization of the class of graphs admitting a realization, where connections are
allowed to cross as well as connections with buses (C2-realization), remains as
open problem. On the positive side we characterized the class of C3-realizations
and uncovered the complexity of its decision problem. Table 9.1 summarizes
the results for the realization types with respect to the decision problem and
the characterization problem.

C0 C1 C2 C3

decision P NP ? NP

characterization yes∗ ? ? yes∗∗

Table 9.1: This table summarizes for which realization type the deci-
sion problem and characterization problem is known. NP is short for “NP-
complete” and P is short for “polynomial time solvable”. yes∗ is a placeholder
for Definition 9.2 for a good partition, while yes∗∗ replaces Property (P1’).

Apart from the question if the decision is NP-complete, we could ask here for
a given Cj-representation, if there exists a Ci-representation for i < j.

Furthermore it is interesting to consider the realizability question in d > 2 di-
mensions. Here we may consider bus graphs, where the connector vertices have
degree at most six, respectively eight, regarding a 3-dimensional, respectively
4-dimensional bus realization with vertical and two types of diagonal segments,
respectively vertical, horizontal and diagonal segments.

The other direction, i.e., bipartite graphs, where the connector vertices have
degree at most two, is considered next.

Chapter 10
Bus Graphs in One Dimension

In this chapter we consider planar bus realizations, where the bus segments
will be drawn only horizontally. Thus we are considering the bus graph model
as follows: A bus graph is a bipartite graph G = (V ∪B,E), where E ⊆ V ×B
and deg(v) ≤ 2 for all v ∈ V . In this section the key question in this model is,
whether a planar bus graph admits a planar bus realization.

In order to produce a planar bus realization with only horizontal segments,
we may ignore connector vertices of degree one and replace every connector
vertex of degree two by an edge connecting its adjacent vertices resulting in
a graph G that consists of only bus vertices. If G is planar, then a visibility
representation exists by Theorem 2.5, which is precisely a planar bus realization
with only horizontal segments. If G is non-planar, then drawing the buses on
top of each other leads to a non-planar bus realization. Here an interesting
objective might be to reduce the number of crossings or minimizing the sum of
edge length for the buses and connections. We will leave this for future work.

Instead we change the setting of our key question to one in which connector
vertices are already placed in the plane. Thus finding a feasible placement for
the bus segments is the main problem in this section, assuming the existence
of a planar bus realization.

Due to the difficulty of this problem we will restrict the bus graph once more
by the degree of connector vertices. The bus graph we are considering in the
remainder of this section is a bipartite graph G = (V ∪B,E), where E ⊆ V ×B
and deg(v) = 1 for all v ∈ V . The degree restriction on the connector vertices
allows the reformulation of our problem as follows. Assume every bus vertex
has a color and the connector vertices are colored according to the adjacent
bus vertex. Suppose the connector vertices are given as set of colored points in
general position1, namely that no two points have the same x- or y-coordinate.

1This is not the standard general position assumption, but the same as in Section 6.

153

154 10 Bus Graphs in One Dimension

Using this point of view we study whether there is a planar 1-dimensional bus
realization such that all points of the same color are orthogonally connected to
its bus, called the bus embeddability problem (BEP). This changes the point of
view from visualizing a hypergraph with fixed vertex positions to visualization
of set membership of colored points in the plane. In the sequel of this chapter
we assume a bus realization always to be 1-dimensional without mention it
explicitly.

In Section 10.1 we formalize the problem by introducing related terminology
and basic results on BEP. We solve BEP when the relative order of the buses
is prescribed; we also show that BEP is fixed-parameter tractable with respect
to the number of colors. In Section 10.2 we formulate an ILP that solves BEP
and show some experimental results. In Section 10.3 we restrict BEP (when
a bus must be above all its points, or a bus must be either at its topmost or
bottommost point) and describe efficient algorithms for these settings. Another
restricted version of the problem can be solved using 2-stack pushall sorting.
Finally in Section 10.4 we prove that BEP is NP-complete, even for just two
points per color, if points may not lie on buses. We summarize the results in
Section 10.5 and point out directions for future work. The results are based
on [205].

10.1 Definitions and Basic Results

We begin with some definitions. Supose we are given a set of points P =
{p1, . . . , pn} and colors C = {c1, . . . , ck} together with a function f : P →
C, f(p) = c. For simplicity, we assume that no two points share a coordinate
in the input pointset, although in some illustrations the input points might
violate this assumption. The bus embeddability problem (BEP) asks whether
there is a planar bus realization with one horizontal bus per color. BEP is a
decision problem, but in our descriptions whenever the answer is affirmative
we also compute a drawing. We refer to such a drawing as a solution of BEP.
In the negative case we say that BEP has no solution.

A point p has x-coordinate x(p) and a y-coordinate y(p), as well as a color f(p).
In a bus realization we have connections only between a point p and a bus c of
the same color, that is, c = f(p). We denote by f−1(c) the set of points with
color c. Bus c naturally extends from the x-coordinate xl(c) = min{x(p)|p ∈
f−1(c)} of the leftmost point to the x-coordinate xr(c) = max{x(p)|p ∈ f−1(c)}
of the rightmost point of f−1(c). We call [xl(c), xr(c)] the span of c, which is
predefined by the input points. The y-coordinate of a bus c is denoted by y(c),
which is the only parameter to be determined for a solution for BEP.

Note that BEP is trivial when there are at most two colors: it is always possible
to place one bus at the top and the other (if it exists) at the bottom of the
drawing. Thus in the following we assume k > 2. For more than two colors, the

10.1 Definitions and Basic Results 155

relative order of the buses is important; see Figure 8.3. Suppose the y-order of
the buses is prescribed. The next lemma shows that one can check an existence
of a solution for BEP respecting the order.

Lemma 10.1. There is a O(n log n)-time algorithm that, given an order of
buses, tests whether there exists a solution for BEP respecting the order.

Proof. Suppose we are given an order c1 < · · · < ck of the buses from bottom
to top. We use discrete values for the y-coordinates increasing from bottom to
top, where a unit is 1/n of the y-distance of two consecutive points. We first
present a simpler O(n2)-time algorithm, and then describe how to speed it up.

Recall that the span of every bus is defined by an input point set; hence, we
only show how to choose y-coordinates of the buses. The first bus, c1, is placed
at y-coordinate y(c1) = 0, and all the points of color c1 are connected to the
bus. Assume that bus ci−1 is placed at y-coordinate y(ci−1) and is connected
to all its points. We place ci at y(ci) = y(ci−1) + 1 unit and check if the bus
crosses a previously drawn (vertical) segment. If it does cross a segment, then
we shift ci one unit upwards by increasing y(ci) and repeat the procedure. Once
the bus is placed without crossings, we connect it to the corresponding points.
Consider the vertical segment of a point p of color ci. It is easy to see that if
y(p) ≥ y(ci), then the segment cannot cross a previously placed bus cj for j < i.
If y(p) < y(ci) and the vertical segment crosses a bus, then such a crossing is
unavoidable in any solution respecting the given order. Hence, we may stop
the algorithm reporting that no solution exists. Otherwise, we proceed with
the next color.

The above algorithm can easily be implemented in quadratic time. However,
we can do better using the following observation: Every bus is placed at its
bottommost “valid” y-coordinate, that is, the one that does not produce cross-
ings with previously placed buses. To find such a y-coordinate efficiently for
each color, we store all points of the already processed colors in a data struc-
ture D that supports range operations such as “extracting minimum/maximum
on a given range”. For every color ci, we extract a point with the maximum
y-coordinate in the range corresponding to the span of ci. The bus of ci is
placed at the maximum of the extracted y-coordinate and the y-coordinate of
bus y(ci−1). Then all the points of color ci are added to D. A balanced tree
(e.g., a segment tree) providing logarithmic complexity for insert and extract
operations is sufficient for our needs.

In general the correct order of the buses for a planar bus realization is not
known. One can apply Lemma 10.1 for each of the k! possible bus orders,
which yields an Õ(k!)-time2 algorithm for BEP. In the following algorithm, we
improve the running time.

2Õ hides polynomial factors.

156 10 Bus Graphs in One Dimension

Lemma 10.2. There is a Õ(2k)-time algorithm for BEP.

Proof. We solve a given instance of BEP using dynamic programming. Let us
call a state a pair (h,B), where 0 ≤ h ≤ n+ 1 is an integer and B is a subset
of C = {c1, . . . , ck}. By a solution for a state (h,B) we mean a (planar) bus
realization consisting of buses for every color c ∈ B such that the topmost bus
has y-coordinate h. If such a solution exists, we write F (h,B) = true, and
otherwise F (h,B) = false. It is easy to see that a solution for the original BEP
problem exists if and only if F (h, C) = true for some 0 ≤ h ≤ n+ 1.

We reduce the problem to solving it for “smaller” states, that is, the states with
fewer elements in B. As a base case, we set F (h,B) = true for all 0 ≤ h ≤ n+1
and |B| = 1. To compute a value for a state F (h,B) with |B| > 1, we consider a
color c∗ ∈ B. Let h∗ = max{y(p)|f(p) ∈ B \ {c∗} and xl(c

∗) ≤ x(p) ≤ xr(c∗)},
that is, the largest (topmost) y-coordinate of a point of color B \ {c∗} laying
in the span of c∗. It follows from the proof of Lemma 10.1 that the bus for c∗

should be placed at y-coordinate h∗. Thus, F (h,B) is set to true if (a) h ≥ h∗
and (b) there exists a solution for a state (h′, B \ {c∗}) for some h′ < h. We
stress here that in order to compute F (h,B), one needs to consider every color
of B as a potential c∗.

There are n2k different states, and a computation for a single state clearly takes
a polynomial number of steps.

The above result shows that the BEP problem is fixed-parameter tractable
with respect to k, that is, it can be efficiently solved for a small number of
buses. Note that in Section 10.4 we prove that BEP is NP-complete; hence, it
is unlikely that a polynomial-time (in terms of k) algorithm exists.

10.2 An ILP

In this section we present an integer linear programming (ILP) formulation for
BEP that produces a planar bus realization if one exists. Here we also minimize
the amount of ink, which is the sum of all segment lengths.

Lemma 10.3. A solution for BEP can be computed by an ILP.

Proof. In a preprocessing step we compute the span of every bus c ∈ C. It
remains to compute an y-coordinate variable y(c) for every bus c. To this end,
we introduce a planarity constraint for every point p ∈ P within the span of bus
c having a different color. These pairs (p, c) with c 6= f(p) and with x(p) in the
span of c are called conflicting. Conflicting pairs (p, c) are stored in a matrix J
and induce the constraint (y(p) < y(c) and y(f(p)) < y(c)) or (y(p) > y(c) and
y(f(p)) > y(c)). The matrix J can be computed in O(kn) time, where n = |P|

10.2 An ILP 157

Figure 10.1: The percentage of solutions for BEP for a random point set
of size kn with n = 2, 3, 4 points per color out of k = 3, . . . , 20 colors.

and k = |C|. In order to minimize the amount of ink, we sum up the lengths of
all connections and ignore the lengths of the buses, as those are determined by
the input. Since an absolute value requires one more variable and 3 constraints
for every point, and since the “or” also requires an additional variable and 3
constraints for every conflicting pair, the final ILP has n + k + 2|J | variables
and 3n+ k + 6|J | constraints.

min
∑

c∈C

∑

f(p)=c

|y(c)− y(p)|

s.t. (y(p) < y(c) or y(f(p)) > y(c)) for each (p, c) ∈ J
(y(p) > y(c) or y(f(p)) < y(c)) for each (p, c) ∈ J
0 ≤ y(c) ≤ max

p∈P
{y(p)}+ 1

In order to get a feeling about the probability that a point set admits a solution
of BEP, we ran a small experiment with the ILP, implemented with the Gurobi
solver [100]. We considered point sets with k = 3, . . . , 20 colors and with
n = 2, 3, 4 points per color. We randomly placed the points on a 1024 × 768
area. For each pair (n, k) we counted the number of BEP solutions out of 100
instances; see Figure 10.1.

For a fixed number of points n, the number of solutions for BEP decreases
with increasing number of colors k. It decreases faster the larger n is. On the
other hand, for a fixed number of colors k, the number of solutions for BEP
also decreases with increasing number of points n. Thus, even studying two
points per color promises to be sufficiently interesting. Thus, as base case for
further analysis, we initially consider two points per color, before dealing with
the general case.

158 10 Bus Graphs in One Dimension

(a) (b) (c) (d)

Figure 10.2: Illustration of (a) u-bus, (b) t-bus, (c) Γ-bus, and (d) L-bus.

10.3 Efficiently Solvable Variants

In this section we consider three variants of BEP that can be solved in poly-
nomial time. A bus c is called top (resp., bottom) if all of its points are below
(resp., above) the bus, that is, y(c) ≥ y(p) (resp., y(c) ≤ y(p)) for all p ∈ f−1(c).
We distinguish between buses that are above (below) of their points and buses
that pass through one of their points. A top bus is a u-bus if y(c) > y(p) for
all p ∈ f−1(c) (Figure 10.2(a)), while it is a Γ-bus if y(c) = y(p) for a point
p with y(p) = max{y(q)|q ∈ f−1(c)} (Figure 10.2(c)). Similarly we define a
t-bus and a L-bus; see Figs. 10.2(b) and 10.2(d). A bus, whose type is none
of the four types from above, is called a center bus.

In Section 10.3.1 we study u-buses and provide an algorithm for a variant of
BEP, called u-BEP, which is restricted to the buses of the type. The same
algorithm obviously solves the t-BEP variant. Next, in Section 10.3.2, we
consider Γ-buses and L-buses. Note that Γ-BEP and L-BEP are trivial since
every Γ-bus (resp., L-bus) is uniquely defined by its span and the topmost
(bottommost) point. Hence, we investigate and design an efficient algorithm
for the (Γ, L)-BEP variant. Finally in Section 10.3.3, we examine the general
BEP for a specific point set where all points lie on a diagonal. We show that this
variant of the problem is equivalent to a longstanding open problem (resolved
very recently) of sorting a permutation with a series of two stacks.

10.3.1 u-BEP

We present an algorithm that decides in polynomial time whether a drawing
with u-buses exists for a given input, and constructs such a drawing if one
exists.

Theorem 10.4. There exists an O(n log n)-time algorithm for u-BEP.

Proof. For ease of presentation, we first assume that the input consists of two
points per color, that is, k = n/2, and provide a simple quadratic-time imple-
mentation. Later we generalize the algorithm and improve the running time.
Intuitively, the algorithm sweeps a line from bottom to top and processes the
points in increasing order of y-coordinates. At every step, we keep all the ver-
tical segments of the “active” colors (the ones without a bus) in the correct

10.3 Efficiently Solvable Variants 159

Steps:

1
2
3
4
5
6

R
RG
RGR
RBGR
RBGGR
RBWR

RBR

RBBWR RWR
RWRW

7
8

Array:

Figure 10.3: Running the algorithm from Lemma 10.4 on a given point set
with red (R), green (G), blue (B), and white (W) pairs of points. Since the
resulting array is not empty, there is no solution for the instance. Notice that

removing any of the colors yields an instance with a solution.

left-to-right order. If two vertical segments of the same color are adjacent in
the order, then we can draw the corresponding bus and remove the color and
its vertical segments. Otherwise, all the active vertical segments have to be
“grown” until we reach the next point. It is easy to see that a solution exists
if and only if the set of active colors is empty after processing all the points.

More formally, the points are processed one-by-one in increasing order of their
y-coordinates. The points are stored in an array sorted by x-coordinate, that is,
we have (p1, . . . , pn) with x(p1) < · · · < x(pn). At each iteration, a new point is
inserted into the array in the position determined by its x-coordinate. Then the
array is modified (or simplified) so that the pairs of points of the same color that
are adjacent in the array are removed. That is, if f(pi) = f(pi+1) for some 1 ≤
i < n, then we get a new array (p1, . . . , pi−1, pi+2, . . . , pn). The simplification is
performed as long as the array contains monochromatic adjacent points. After
this step the algorithm proceeds with the next point. For every color c, we
keep the value y∗(c), which is equal to the y-coordinate y(p), p ∈ f−1(c′) of the
point of color c′, whose insertion into the array induced the removal of points
f−1(c) from the array. If the algorithm ends up with a non-empty array, then
we report that no solution exists. Otherwise, the y-coordinate of the resulting
bus of color c is y∗(c) + ε, where ε > 0 is sufficiently small to avoid overlaps
between the buses. An example of the algorithm is illustrated in Figure 10.3.

Correctness. The correctness follows from the observation that the algorithm
chooses the lowest “available” y-coordinate for every bus, that is, the one that
does not induce a crossing between the bus and vertical segments of other colors.
Indeed, if at any step of the algorithm we get a color pattern R, . . . , B, . . . , R
in the array formed by red (R) and blue (B) points and the second blue points
p has not been processed yet, then clearly in any solution the red vertical
segments reach y-coordinate of p. Hence, it is safe to “grow” the segments.
On the other hand, if processed points form a color pattern RR (that is, two
consecutive points of the same color), then there is a solution connecting the
corresponding vertical segments at the current y-coordinate. The two points
can be removed from consideration, as they cannot create crossings with the
subsequent buses. It is also easy to see that the algorithm minimizes ink of the
resulting drawing.

160 10 Bus Graphs in One Dimension

Running time. At every iteration of the algorithm, we need to insert a new
point into the sorted array and then run the simplification procedure. Point
insertion takes O(n) time and the removal of a pair of points from the array
can also be done in O(n) time. Since every pair is removed only once, the total
running time is O(n2).

To get down to O(n log n) time, we use a balanced binary tree instead of an
array to store the points. The tree is sorted by the x-coordinates of the points;
hence, insertion/removal of a point takes O(log n) time. Note that after insert-
ing/removing a point, the only potential candidate pairs for simplification are
the point’s neighbors that can be found in O(log n) time. Again, every point
is inserted/removed only once; thus, the total running time is O(n log n).

Finally, we observe that the algorithm can be generalized to handle multiple
points per color. To this end, we change the simplification step so that the
points are removed only if they form a contiguous subsequence in the array
(tree), containing all points of this color. Hence we need to know the number
of points for each color, which can be done with a linear-time scan of the input.
It is easy to see that the proof of correctness can be appropriately modified
and the running time remains the same.

10.3.2 (Γ, L)-BEP

We present an algorithm that decides in polynomial time whether a drawing
with Γ-buses or L-buses exists for a given input, and constructs such a drawing
if one exists.

Theorem 10.5. There exists an O(n2)-time algorithm for (Γ, L)-BEP.

Proof. The span of every bus is predefined by the input, while for the y-
coordinate there are precisely two options. We show that (Γ, L)-BEP can be
modeled by 2-SAT, and thus is efficiently solvable. For ease of presentation, we
assume that the input consists of two points per color and describe a simple
quadratic-time algorithm.

The algorithm creates a variable xc for every color c ∈ C. The value of xc
is true if c is a Γ-bus, and it is false if c is a L-bus. After that for every
pair of colors c, c′, the algorithm creates a clause for the 2-SAT instance when
the corresponding buses induce a crossing. Building the clauses with respect
to the relative position of points is a straight-forward procedure, where three
examples are illustrated in Figure 10.4.

Specifically we create clauses according to the following case analysis. Let R(c)
be the smallest enclosing rectangle of the points pc, qc of color c. W.l.o.g. we
may assume that pc appears in the left bottom corner, while qc appears in the
right top corner of R(c).

10.3 Efficiently Solvable Variants 161

xc = true xc∨̇xc xc ⇒ xc

Figure 10.4: Three examples for creating clauses for two colors black and
white.

We distinguish the cases when

(1) points pc′ , qc′ are in the top left, bottom right corner of R(c′) or whether

(2) points pc′ , qc′ are in the bottom left, top right corner of R(c′).

In each of the two cases we consider the 8 subcases, which are

(a) R(c′) intersects only the top boundary of R(c),

(b) R(c′) intersects only the bottom boundary of R(c),

(c) R(c′) intersects only the right boundary of R(c),

(d) R(c′) intersects only the left boundary of R(c),

(e) R(c′) contains the top right corner of R(c),

(f) R(c′) contains the bottom right corner of R(c),

(g) R(c′) contains the top left corner of R(c),

(h) R(c′) contains the bottom left corner of R(c).

cases a b c d e f g h

1 xc = f xc = t xc = t xc = f xc′ = t xc = t xc = f xc′ = f

2 xc = f xc = t xc = t xc = f xc∨̇xc′ xc′ ⇒ xc xc′ ⇒ xc xc∨̇xc′

Table 10.1: For each of the cases (a)-(h) from above we build a clause
depending on the configuration (1)-(2) from above, where t stands for true

and f for false.

Correctness. The correctness follows from the complete case analysis by the
rules of Table 10.1.

Running time. We remark that for the n2/4 pairs of colors, we create O(n2)
clauses, each clause in constant time by a case analysis. This results in a 2-SAT
instance with k variables xc, c ∈ C and O(n2) clauses. We solve this instance in
linear time [9] and the solution determines the drawing: c is drawn as a Γ-bus,
if the value of xc is true, otherwise c is drawn as a L-bus.

We can generalize this idea in a straight-forward manner to the case of more
points per color.

162 10 Bus Graphs in One Dimension

σ

id

3

2

1

4

1

2

3

4

α3

α2

α1

α4

γ1

γ2
β3
γ3

γ4

β1

β2

β4

3

2

1

4

1

2

3

4

Figure 10.5: A diagonal point set with a solution for BEP and the corre-
sponding sorting sequence.

10.3.3 Diagonal BEP

Here we consider a diagonal point set in which all points lie on a single diag-
onal line and there are two points per color. We assume that the point set is
separable, that is, there is a straight line separating every pair of points having
the same color; see Figure 10.5. This specific arrangement can be naturally
described in terms of permutations. Assuming that the colors are numbered
from 1 to k in the order along the diagonal from bottom to top, the input is
described by a permutation π = [π(1), . . . , π(k)] on {1, . . . , k}. We call such an
instance of BEP by diagonal π-BEP.

It turns out that this variant of BEP is closely related to the well-studied topic
of sorting a permutation with stacks introduced by Knuth in the 1960’s [122].
We next show that diagonal π-BEP has a solution if and only if π can be
sorted with 2 stacks in series. The problem of deciding whether a permutation
is sortable with 2 stacks in series is a longstanding open problem and it has
been conjectured to be NP-complete several times [23]. Only very recently a
polynomial-time algorithm has been developed [152, 153]. It is an indication
that even our restricted variant of BEP is highly non-trivial. For more details
on stack sorting we refer to [62].

Theorem 10.6. Diagonal π-BEP has a solution if and only if π is 2-stack
pushall sortable. This can be checked in O(n2) time.

Proof. First observe that for a diagonal point set with two points per color, a
top-bus (bottom-bus) can be transformed to a center-bus. For every color c,
there are no points of different color within the span of c above the topmost
point of c. Hence, we may only consider center buses in the variant of BEP.

For the 2-stack sorting problem, we are given a permutation π and want to
sort the numbers to the identity permutation [1, . . . , k] with two stacks SI , SII
using the following operations:

• αi : read the next element i from input π and push it on the first stack
SI ;

10.3 Efficiently Solvable Variants 163

i

i

α(i)

β(i) γ(i)

read input

SI SII

outputα(i) β(i) γ(i)

Figure 10.6: A correspondence between 2-stack sorting and a planar bus
realization.

• βi : pop the topmost element i from SI and push it on SII ;

• γi : pop the topmost element i from SII and print it to the output.

To sketch the proof of the equivalence between 2-stack sorting and bus embed-
dability, we note that the first operation, αi, corresponds to the left vertical
segment of color i, the second one, βi, is the bus of i, while γi corresponds
to the right vertical segment of the color; see Figure 10.5 and Figure 10.6. A
crossing in the drawing correspond to an “invalid” sorting operation in which
either a non-topmost element is moved from SI to SII (a crossing to the “left”
of the diagonal), or a non-topmost element is moved from SII to the output
(a crossing to the “right” of the diagonal). Hence, sorting sequences of the
operations for π are in one-to-one correspondence with planar bus realization
for the point set. Since the point set is separable, all the elements of π will be
pushed to SI before any of the elements is popped to the output. This is called
2-stack pushall sorting and is considered next in more detail.

A sequence of operations can be described by a word w ∈ {α, β, γ}3n, where
every operation appears n times.

For example w = α3α2α1α4β4β1γ1β2γ2β3γ3γ4 is a sorting word for π1 = 3214
to π2 = 1234 with two stacks, see Table 10.2.

A word w also encodes the input and output of a sequence by subscripts, when
disregarding the subscripts of the β-operation. For example s(w) = 32141234
is the sequence of subscripts for w.

We may restrict this sequence of operations to only α- and γ-operations, de-
noted by w|{α, γ}. We say w is a pushall word, if s(w|{α, γ}) = π1π2. The
word w′ = α3α2α1β1γ1α4β4β2γ2β3γ3γ4 also sorts π1 to π2 with two stacks, but
w′ is not a pushall word, since s(w′) = 32114234 6= π1π2.

Now we assume we are given 2n points on a diagonal respecting the orders
π1, π2. We denote by π1(π2) the order of the first (second) appearance of
the elements. Every output word w of the 2-stack-pushall-sorting algorithm
describes the sorting from π1 to π2.

164 10 Bus Graphs in One Dimension

operation input SI SII output

3214

α3 214 3

α2 14 23

α1 4 123

α4 4123

β4 123 4

β1 23 14

γ1 23 4 1

β2 3 24 1

γ2 3 4 12

β3 34 12

γ3 4 123

γ4 1234

Table 10.2: Permutation [3, 2, 1, 4] is sortable with two stacks.

The 2-stack-sorting algorithm takes as input π1 and π2 and returns in O(n2)
time one sorting word of E = {w : w sorts π1 to π2}. If such a word w exists,
then we can construct a planar bus realization with center buses of the em-
bedded points π1π2 according to w as follows. We apply one of the following
three rules to the letters of w. We process w letter by letter and read along 3n
imaginary slots on the diagonal.

αi the next slot of the diagonal is point i with a connection going up.

βi the next slot of the diagonal is taken by the horizontal segment from the
end of the connection of point i, then crossing the diagonal.

γi the next slot of the diagonal is point i with a connection down to its hori-
zontal segment, extended such that this connection meets perpendicular.

This drawing is planar:

• any crossing of two edges incident to i, j to the left of the diagonal comes
from the sequence . . . , α(i), . . . , α(j), . . . , β(i), . . . , which means push i
on SI , then push j on SI and then pop i from SI , which is impossible
since i is not the topmost element of SI .

• any crossing of two edges incident to i, j to the right of the diagonal
comes from the sequence . . . , β(i), . . . , β(j), . . . , γ(i), . . . , which means
push i on SII , then push j on SII and then pop i from SII (and print i
to the output), which is impossible since i is not the topmost element of
SII .

10.4 NP-Completeness 165

The construction from a planar bus realization with center buses of a diagonal
point π1π2 set to a sorting word w for π1π2 is just traversing the diagonal from
bottom to top and simultaneously building incrementally the sorting word w.
We start with w = λ, where λ is the empty word. If the next item on the
diagonal is the first appearance of a letter i, we set w = w ◦ αi, where ◦ is the
concatenation of two words. If the next item on the diagonal is a crossing of
the edge connecting the two points of i, we set w = w ◦ βi. If the next item
on the diagonal is the second appearance of a letter i, we set w = w ◦ γi. It is
easy to see that this word w sorts π1 to π2.

10.4 NP-Completeness

In this section we prove that BEPε for two points per color is NP-complete,
where BEPε is BEP with the additional input ε, which is the minimum distance
of points to their bus. We show first that (u,t)-BEPε for 2 points per color
is NP-complete. To prove the hardness of (u,t)-BEPε we show a reduction
from planar 3-SAT [134] and give a clause gadget, variable gadget and a chain-
gadget, cf. Figure 10.7. We use only u-buses and t-buses with distance at least
ε to all their points. We use the parameter ε to build the gadgets. Also we first
drop the “no points share a coordinate” restriction. In the end we transform
the construction back into the “no points share a coordinate” setting and allow
also center buses.

A variable gadget consists of two points a1, a2 of the same color on the same
y-coordinate. The value of the variable is true if the two points are connected
with a u-bus and the value of the variable is false if the two points are connected
with a t-bus. We use a variable gadget, referred to as a chain link, also as
elements of chain gadgets.

A chain gadget propagates the value of a chain link, which is actually a
variable gadget, to another chain link. Let a1, a2 (respectively b1, b2) be the
two points of the chain link at the beginning (respectively end) of the chain.
A chain gadget consists of k chain links.

In a horizontal chain gadget we place the points on a single horizontal line in
the order a1, b1, a2, b2 (respectively b1, a1, b2, a2) for propagating to the right
(respectively to the left). If a1, a2 are connected with a u-bus, then b1, b2 must
be connected with a t-bus and the other way round. This construction can
be repeated until the chain consists of k chain links. The sign of a horizontal
chain is defined by (−1)(1+k). Clearly if the sign is positive, then the first bus
and the last bus are of the same type. If the sign is negative, then the first bus
and the last bus are different.

In a vertical chain gadget we place b1 below (respectively above) a1 and b2
below (respectively above) a2 on the same x-coordinate with a distance of 2ε
for propagating to the top (respectively to the bottom). It is easy to check that

166 10 Bus Graphs in One Dimension

f

t

chain

clause

true false variable

. . .

ε

+ −f

ε

ε

+ −pl pr

sbl sbr

stl str

s1l

s4l

s1r

s4r

Q

Figure 10.7: A clause, variable and chain gadget for reduction from planar
3-SAT. Vertical propagation of true and false are unique, but u-buses are
just uniquely propagated in the top direction and t-buses are just uniquely

propagated in the bottom direction.

in such a way we can only uniquely propagate a u-bus to the top and a t-bus
to the bottom. It may happen that the type of buses change during a vertical
propagation. The sign of a vertical chain is defined as +1.

The sign of two chains, which are connected, will be multiplied. If a literal in
a clause appears positive, then the corresponding chain has sign −1, otherwise
+1.

A clause gadget consists of two main points pl, pr, four horizontal bounding
segments stl, str, sbl, sbr, eight vertical bounding segments s1l, s1r, . . . , s4l, s4r,
and 18 chain links, see a schematic illustration in Figure 10.7. We aim at
satisfying the clause if and only if a bus connecting the main points can be
drawn.

Within a bounding square Q we place horizontal bounding segment stl (str)
in the top left (right) corner, and horizontal bounding segment sbl (sbr) in the
bottom left (right) corner. Above sbl (sbr) we place main point pl (pr) such
that there is a normal to sbl (sbr) through pl (pr) that is also crossing stl (str).
This construction prevents the bus connecting the main points to be in the
exterior of Q.

In Q there are two vertical lines l and r that both separate pl from pr. We
place the vertical bounding segments s1x, s2x, s3x, s4x, x ∈ {l, r} in this order
from bottom to top on line x with ε distance between every pair of consecutive
segments. The resulting horizontal space between segment six and s(i+1)x is
called i-th gap, i = 1, 2, 3. The gaps represent the literals in the clause. This
construction restricts the choices for the bus connecting the main points to be
precisely three.

10.4 NP-Completeness 167

Finally we place 9 chain links below the first gap, 6 chain links between the first
and second gap and 3 chain links between the second and the third gap. More
specifically let v1, . . . , v6 be 6 vertical lines between l and r in this order from
left to right. We place 3 chain links on lines v1, v2 such that the first chain link
has its points on the boundary of Q, the last chain link has its points on the
bottom boundary of the first gap and the distance between every pair of chain
link points is at most 2ε. Similarly we place 6 chain links on lines v3, v4 such
that the first chain link has its points on the boundary of Q, the 4th chain link
has its points on the top boundary of the first gap, the last chain link has its
points on the bottom boundary of the second gap, and the distance between
every pair of chain link points is at most 2ε. In the same way we place 9 chain
links on lines v5, v6 such that the first chain link has its points on the boundary
of Q, the 4th (7th) chain link has its points on the top boundary of the first
(second) gap, the last chain link has its points on the bottom boundary of the
third gap, and the distance between every pair of chain link points is at most
2ε. We refer to the last chain link of lines v1, v2 (respectively lines v3, v4 and
v5, v6) as the chain link of the first gap (respectively second and third gap).
This construction allows to block or open gaps from the bottom of Q.

Notice that it is easy to simulate vertical or horizontal segments with points as
demonstrated in Figure 10.8.

The construction of an instance of (u,t)-BEPε from an instance I of planar
3-SAT is done according to a planar drawing of the graph GI . We may assume
that all variable vertices of GI are on a single horizontal line. We use this
line and place the variable gadgets according to this order. The clause vertices
above the variable vertices (top clauses) are replaced by clause gadgets and
the clause vertices below the variable vertices (bottom clauses) are replaced by
horizontally mirrored clause gadgets. Finally we replace the edges of GI with
chain gadgets.

The number of points needed to construct an instance of (u,t)-BEPε is poly-
nomial in n and m. Given a planar 3-SAT instance with n variables and m
clauses, the corresponding (u,t)-BEPε instance has at most O(nm) points.
For a clause gadget we need precisely 118 points, for a variable gadget we need
2 points and for chain gadgets we need 10 points plus the points needed to
surround other clause gadgets. If an edge from a clause to variables vertically
passes k other clauses, then we need 18k points for this construction. Since we
have O(n+m) edges and m clauses, we might need O(nm+m2) points for the
edges.

Figure 10.8 shows how to use a variable several times: we stretch one chain
link for horizontal propagation and add a vertical chain gadget for vertical
propagation.

Theorem 10.7. (u,t)-BEPε for 2 points per color is NP-complete.

168 10 Bus Graphs in One Dimension

1. clause

x1

x2

x3

2. clause

x3

x2

x4

x1 = t x2 = t x3 = f x4 = f

1. clause

2. clause

x1 x2 x3 x4

Figure 10.8: Point set instance constructed via gadgets for I = (x1 ∨ x2 ∨
x3) ∧ (x2 ∨ x3 ∨ x4). The red buses indicate the truth assignment x3 = x4 =
f, x1 = x2 = t (t stands for true and f stands for false). Clause gadgets are
enclosed by a green rectangle. The thin green circles indicate that distances
are less than 2ε, while the thick green circle indicates a change of bus types
during a not-unique vertical propagation of top buses to the bottom, that is,

x3 is meaningless for the second clause.

Proof. To show the membership of (u,t)-BEPε in the class NP we observe
that we have n points and between every pair of consecutive points we have a
gap. In every gap there can be possibly n buses, that is, we have (n−1)n slots,
where to place buses. So every slot represents a possibility to place a bus. We
can guess a drawing by choosing an order of the buses: all the drawings where
buses move within their gap are equivalent. To check if the order leads to a
feasible solution of (u,t)-BEPε, we apply the algorithm of Lemma 10.1.

We prove the hardness of (u,t)-BEPε by a reduction from planar 3-SAT [134].
Let I be an instance of the planar 3-SAT problem and let PI be the point set
constructed from the gadgets, that is, we replace in the planar graph represent-
ing I every clause vertex by a clause gadget, every variable vertex by a variable
gadget and every edge by a chain gadget. We prove next that PI admits a
solution of (u,t)-BEPε if and only if I has a satisfying truth assignment.

10.4 NP-Completeness 169

“⇒:” If PI admits a solution, then in particular every pair of main points is
connected. Consider w.l.o.g. a top clause c with literal y corresponding to the
gap through which the main points are connected. We associate with y the
gap of c. If the chain link of y is a t-bus, then this bus is uniquely propagated
to the bottom and does not change its type. If y is a positive variable x, then
by construction the chain has sign −1 and the chain ends in a u-bus at the
variable gadget, corresponding to x being true. If y is a negated variable x,
then by construction the chain has sign +1 and the chain ends in a t-bus at
the variable gadget, corresponding to x being false. For bottom clauses the
same argument holds horizontally mirrored.

“⇐:” Assume we have a satisfying truth assignment for I. We explain how
to construct a solution for (u,t)-BEPε. First for every variable being true we
draw a u-bus, while for every variable being false we draw a t-bus. We prop-
agate u-buses with u-buses to the top and to the bottom, while we propagate
t-buses with t-buses to the top and to the bottom. A u-bus (t-bus) ends in
a u-bus (t-bus) if the variable in the top clause is negated (positive) or the
variable in the bottom clause is positive (negated).

We keep the type of buses in a vertical propagation as long as possible, which
can only be interrupted by a main bus. Then we change the type of buses and
the gap becomes blocked, although the variable is true and appears positive,
or the variable is false and appears negative in the clause. Additionally this
interrupting main bus indicates that this clause is already satisfied and thus
the variable of the interrupted chain is irrelevant for the satisfiability of this
particular clause.

By construction we get a feasible (planar) solution for the buses in PI .

Finally we translate the construction into the assumption “no two points share
a coordinate”. We may assume an underlying grid with grid unit ε/2 in the
plane R2 so that all points have integer coordinates. Let p1, . . . , pn be the
points ordered first by x-coordinate, then by y-coordinate. We modify the x-
coordinates by a shift x(l) = x(l) + 1 for all l ≥ j, if x(pi) = x(pj), as long
as two points share the same x-coordinate. We apply the same modification
in y-direction with respect to the same order of points p1, . . . , pn. Finally all
points satisfy our assumption.

The properties of depending colors stay the same since the topological operation
is just a stretch. Clearly chain links are dependent before the stretch if and
only if they are dependent after the stretch.

We consider as an example the instance I = (x1∨x2∨x3)∧(x2∨x3∨x4) of planar
3-SAT. Clearly the clause-variable graph is planar. Figure 10.8 illustrates the
point set created from the instance I.

We can adopt the same construction when additionally using center buses. Now
some vertical segments can be modeled by using just two points. In a clause

170 10 Bus Graphs in One Dimension

gadget, we move one of the main points from bottom to top such that the bus
connecting the main points is necessarily a center bus. The remaining parts are
the same. Also for center buses we need ε as input for the minimum distance
of buses to their points. Notice that a bus c and a point p of different color
c 6= c(p) may be closer than ε, as well as two buses c, c′ may be closer than ε.

Theorem 10.8. BEPε for 2 points per color is NP-complete.

10.5 Summary and Future Work

We studied bus embeddability, where a set of colored points is covered by a
set of horizontal buses, one per color and without crossings. We described
an ILP and an FPT-algorithm for the general problem and presented efficient
algorithms for several restricted versions. The general problem is shown to be
NP-complete even for two points per color when points may not lie on buses.

It is still open to determine the complexity of the problem for the following
cases:

• BEP using only center buses;

• (u,t)-BEP, that is, BEP without center buses;

• general diagonal BEP, with more than two points per color;

• general BEP (since we used an extra ε as parameter).

A natural generalization would be to allow both horizontal and vertical buses,
as in Chapter 9. Another variant might be to consider multi-colored points,
where a point has to be connected either to all the buses of its corresponding
colors, or to at least one of them. For point sets that have no solution for
BEP with only one bus per color, we may allow more than one bus. Possible
objectives in this scenario are

• to minimize the total number of buses over all colors,

• to minimize the total number of buses, and

• to minimize the total number of buses if each tree can connect at most l
unicolored points.

Chapter 11
Short Conclusion on Bus Realizations

Bus realizations are one aesthetically pleasing way to visualize hypergraphs.
We proved that it can be tested efficiently whether planar bus graphs admit a
planar 2-dimensional bus realization. The non-planar bus graphs seem to admit
no efficient test for admitting a 2-dimensional bus realization. Bus graphs with
fixed vertex positions are related to many other problems such as Steiner trees,
planar supports of hypergraphs, and boundary labeling. They also provide
aesthetically pleasing visualizations. There are efficient tests for the existence
for some very restricted versions, but most of the questions seem to be NP-hard.

171

Part III

Universal Point Set (UPS)

173

Chapter 12
Introduction

In the previous sections we have seen many problems that where solved with
placing vertices on points of the Euclidean plane, or where vertices were already
placed on fixed points of the Euclidean plane. The Euclidean plane is one
possible space, where graphs can be drawn. Other spaces like the 3-dimensional
Euclidean space or the 2-dimensional integer-grid provide also possible spaces
for drawing graphs.

A fascinating problem in graph drawing is, which graphs admit a planar straight-
line drawing, when the space is predefined. Clearly this is not challenging for
the 3-dimensional Euclidean space [118] or the well-known 2-dimensional space,
where we don’t need to distinguish between straight-lines and curves by the
Jordan-Schönflies-Theorem [182]. This result is used for the famous Fáry’s
Theorem [75] that any planar graph admits a planar straight-line drawing in
the Euclidean plane. This theorem still holds, when restricting the plane to a
2-dimensional integer grid [45] of quadratic size.

The problem, which graphs admit a planar straight-line drawing on a given
point set, becomes challenging, when considering point sets of subquadratic
size. Let S be a set of m points on the plane. A planar straight-line embedding
of an n-vertex planar graph G, with n ≤ m, on point set S is a mapping of each
vertex of G to a distinct point of S and of each edge of G to the straight-line
segment between its corresponding end-points so that no two edges cross. Let
G be a class of n-vertex planar graphs. Point set S is universal for G if for
every graph G ∈ G, G has a planar straight-line embedding on S. The problem
of finding a universal point set of small size for the class of planar graphs is
denoted by UPS. We will discuss previous work on UPS in Section 12.1. After
that we consider the class of 2-outerplanar graphs and provide a point set of size
O(n log n). To do so we split the problem in appropriate parts in Chapter 13.
We conclude this part by giving final remarks and open problems in Chapter 14.

175

176 12 Introduction

12.1 Related Work

We start with introducing in the universal point set problem with related work.

Asymptotically, the smallest universal point set for general planar graphs is
known to have size at least 1.235n [39, 128], while the upper bound is still
O(n2) [11, 40, 45, 166]. All the upper bounds are based on drawing the graphs
on an integer grid, except for the one by Bannister et al. [11], who use super-
patterns to obtain a universal point set of size n2/4−Θ(n), which is currently
the best result for planar graphs. Characterizing the asymptotic size of the
smallest universal point set, closing the gap between the lower and the upper
bound, is a challenging open problems in graph drawing [34, 47, 139].

Angelini et al. [6] have provided a universal point subset of size
√
n, namely a

point set S of size
√
n such that every n-vertex planar graph admits a planar

straight-line embedding in which
√
n of its vertices are placed on the points of

S.

A subclass of planar graphs for which the “smallest possible” universal point
set is known is the class of outerplanar graphs, that is, the graphs that admit a
straight-line planar drawing in which all vertices are incident to the outer face.
Namely, Gritzmann et al. [99] and Bose [25] proved that any point set of size n
in general position is universal for n-vertex outerplanar graphs. Gritzmann et
al [99] also noted that outerplanar graphs are the largest class of graphs with
this property.

Motivated by this result, we consider the class of k-outerplanar graphs, with
k ≥ 2, that is a generalization of outerplanar graphs. A planar drawing of a
graph is k-outerplanar if removing the vertices of the outer face, called k-th
level, produces a (k − 1)-outerplanar drawing, where 1-outerplanar stands for
outerplanar. A graph is k-outerplanar if it admits a k-outerplanar drawing.

Note that every planar graph is a k-outerplanar graph, for some value of k ∈
O(n). Hence, in order to tackle a meaningful subproblem of the general one, it
makes sense to study the existence of subquadratic universal point sets when
the value of k is bounded by a constant or by a o(n) function. However, while
the case k = 1 is trivially solved by selecting any n points in the plane, as
observed above [25, 99], the case k = 2 already eluded several attempts of
solution and resulted far from being trivial. In the next chapter, we finally
solve the case k = 2 by providing a universal point set for 2-outerplanar graphs
of size O(n log n).

A different subclass of k-outerplanar graphs has also been recently considered,
namely the simply nested graphs, that are k-outerplanar graphs in which the
value of k is unbounded but every level is restricted to be a chordless simple
cycle. For this class of graphs, a universal point set of size O(n(logn

log logn)2)
has been proved by Angelini et al. [7], subsequently improved to O(n log n) by

12.1 Related Work 177

Bannister et al. [11], again using super-patterns. For our calculations on the
size of the universal point set we adopt a strategy that is analogous to the one
of Bannister et al. [11].

Another very relevant subclass of planar graphs, not defined in terms of k-
outerplanarity, for which a subquadratic universal point set is known is the
class of planar 3-trees. A planar 3-tree is an incrementally constructed maximal
planar graph that is obtained by starting with a triangle and by successively
placing a new vertex inside one of its triangular faces connected to the three
vertices incident to such face. For this class, Fulek et al. [89] recently described
a universal point set of size O(n5/3).

In order to construct our point set for 2-outerplanar graphs we first consider
a specific subclass, called cycle-tree graphs, and then prove that the general
case can be reduced to this case. A cycle-tree graph is a 2-outerplanar graph
where the inner level is a tree and the outer level is a chordless simple cycle.
Note that, cycle-tree graphs are a generalization (minimal superclass) of Halin
graphs [176], as vertices of the outer level are not restricted to have degree
3 and leaves of the inner tree are not necessarily connected to vertices of the
outer cycle.

Chapter 13
UPS for 2-Outerplanar Graphs

In this chapter we prove the existence of a universal point set of size O(n log n)
for the class of 2-outerplanar graphs. This chapter is structured as follows.
After some preliminaries and definitions in Section 13.1, we consider in Sec-
tion 13.2 2-outerplanar graphs where the inner level is a forest and all the
internal faces are triangulated. We prove that this class of graphs admits a
universal point set of size O(n3/2) by considering each of the faces of the outer
level together with the tree lying inside it, which determine a cycle-tree graph.
We then extend the result in Section 13.3 to 2-outerplanar graphs in which the
inner level is still a forest but the faces are allowed to have larger size. Finally,
we present in Section 13.4 the main result of this chapter, that is obtained by
transforming any 2-outerplanar graph into one whose inner level is a forest,
apply the algorithm described in Section 13.3, and revert the transformation
while maintaining planarity. Also, we show in this section how to apply the
calculations in [11] to reduce the size of the point set to O(n log n). The results
are based on [198].

13.1 Preliminaries and Definitions

In this section we introduce and recall some necessary basic terminology used
in the whole chapter. In the sequel we will require the graph to be undirected,
simple and connected.

For construction of a universal point set, we need the following geometric no-
tation. A straight-line segment with endpoints p and q is denoted by s(pq). A
circular arc with endpoints p and q (clockwise) is denoted by a(pq).

A straight-line planar drawing of a graph G is obtained by placing each vertex
u of G on a distinct point in the plane and representing each edge (u, v) of G

179

180 13 UPS for 2-Outerplanar Graphs

as the straight-line segment between the points where u and v are placed. A
planar straight-line embedding of G on a point set S is a straight-line planar
drawing of G in which the vertices are restricted to be placed only on the
points of S. Recall from Section 2.1 that a straight-line planar drawing Γ of
G determines a clockwise ordering of the edges incident to each vertex u of
G, that we call rotation at u. The rotation scheme of G in Γ is the set of
the rotations at all the vertices of G determined by Γ. Observe that, if G is
connected, in all the straight-line planar drawings of G determining the same
rotation scheme, the faces of the drawing are delimited by the same edges.

Let [G,H] be an arbitrary 2-outerplanar graph, where the outer level is an
outerplanar graph G and the inner level is a set H = {G1, . . . , Gk} of outerpla-
nar graphs. We assume that [G,H] is given together with a rotation scheme,
and the goal is to construct a planar straight-line embedding of [G,H] on a
point set determining this rotation scheme. Since [G,H] can be assumed to be
connected, as otherwise we can add a minimal set of dummy edges to make it
connected, this is equivalent to assuming that a straight-line planar drawing Γ
of [G,H] is given. We finally rename the faces of G as F1, . . . , Fk in such a way
that each graph Gh, which can also be assumed connected, lies inside face Fh.

Note that, for each face Fh of G, the graph [Fh, Gh] is again a 2-outerplanar
graph; however, in contrast to [G,H], its outer level Fh is a simple chordless
cycle and its inner level Gh consists of only one connected component. In the
special case in which Gh is a tree we say that graph [Fh, Gh] is a cycle-tree
graph.

Also, we say that a 2-outerplanar graph is inner-triangulated if all its internal
faces are 3-cycles. Note that, not every 2-outerplanar graph can be augmented
to be inner-triangulated without introducing multiple edges.

13.2 Inner-Triangulated 2-Outerplanar Graphs with
Forest

In this section we prove that there exists a universal point set containing
O(n3/2) points for the class of n-vertex inner-triangulated 2-outerplanar graphs
[G,H] in which the inner level H is a forest. In order to obtain this result, we
show in the following subsections how to:

• construct a universal point set S (Subsection 13.2.1),

• label the vertices of [G,H] (Subsection 13.2.2),

• embed [G,H] on S according to this labeling (Subsection 13.2.3).

13.2 Inner-Triangulated 2-Outerplanar Graphs with Forest 181

pN = pn+√np1
O

pj+1

pj−1
pj

pNj

p+j

p−j pCj
p2j

p1j
xl

Figure 13.1: Illustration of the universal point set S, focused on the point
set Sj of a point pj .

13.2.1 Construction of the Universal Point Set

In the following we describe the structure of the point set S of size O(n3/2)
which will be later on proved to be universal for the class of n-vertex inner-
triangulated 2-outerplanar graphs where the inner level is a forest. Refer to
Figure 13.1 for an illustration of the construction.

Let π be a half circle with center point O and define N := n+
√
n. Uniformly

distribute points SM = {p1, . . . , pN} on π. The points SD = {pi√n+i : 1 ≤ i ≤√
n} are called dense points, while the other points SM \ SD are called sparse

points.

For each j = 2, . . . , N − 1 consider the line segment s(pjO). Place a circle
πj with its center pCj on s(pjO), so that it lies completely inside the trian-
gle 4pj−1, pj , pj+1 and inside the triangle 4p1, pj , pN . Note that the angle
∠pjpCj pN (resp. ∠pjpCj p1) is smaller than 180◦. Let pNj be the intersection

point between s(pjO) and πj that is closer to O. Also, let p1
j (resp. p2

j) be

the intersection point of s(pCj pj+1) (resp. s(pCj pj−1)) with πj . Finally let p3
j

(resp. p4
j) be the intersection point of πj with its diameter that is orthogonal

to s(pjO), such that a(p3
jp

4
j) does not contain pNj .

Now, choose a point p+
j on the arc a(p1

jp
3
j), and a point p−j on the arc a(p4

jp
2
j).

Observe that the angle ∠p−j p
C
j p

+
j containing O is smaller than 180◦. To com-

plete the construction of S, evenly distribute n− 1 points on each of the three
segments sNj := s(pCj p

N
j), s+

j := s(pCj p
+
j), and s−j := s(pCj p

−
j), where n = n if

pj is dense and n =
√
n if it is sparse. We refer to the points on sN , s+, s−,

including the points pNj , p
C
j , p

+
j , p

−
j , as the point set of pj , and we denote it by

Sj . Vertex pCj is the center vertex of Sj .

Note that the above described construction ensures the following properties for
the point set.

182 13 UPS for 2-Outerplanar Graphs

Property 13.1. For each j = 1, . . . , N , the following visibility properties hold:

(A) The straight-line segments connecting point pj to point p−j , to the points

on s−j , to pCj , to the points on s+
j , and to p+

j appear in this clockwise order
around pj.

(B) For all l < j, consider any point xl ∈ {pl}∪Rl (see Figure 13.1); then, the
straight-line segments connecting xl to pNj , to the points on sNj , to pCj , to

the points on s−j , to p−j , and to pj appear in this clockwise order around xl.
Also, consider the line passing through xl and any point in {pj}∪Sj; then,
every point in {pq}∪Sq, with l < q < j, lies in the half-plane delimited by
such line that does not contain the center point of π.

(C) For all l > j, consider any point xl ∈ {pl} ∪ Rl; then, the straight-line
segments connecting xl to pNj , to the points on sNj , to pCj , to the points

on s+
j , to p+

j , and to pj appear in this counterclockwise order around xl.
Also, consider the line passing through xl and any point in {pj}∪Sj; then,
every point in {pq}∪Sq, with j < q < l, lies in the half-plane delimited by
such line that does not contain the center point of π.

Proof. Item (A) follows from the fact that p−j and p+
j lie on different sides of

segment s(pjO). In order to prove item (B), consider the intersection point px
between πj and segment s(pCj xl); then, the first statement of item (B) follows

from the fact that points p−j , px, and pNj appear in this clockwise order along πj .

This is true since, by the construction of S, point px lies between p2
j and pNj , and

point p−j precedes p2
j in this clockwise order. As for the second statement, this

depends on the fact that each point set Sq, with l < q < j, is entirely contained
inside triangle 4pq−1, pq, pq+1. The proof for item (C) is symmetrical to the
one for item (B).

Property 13.2. Point set S has (
√
n−1)(3n+1)+(n−1)(3

√
n+1) = O(n3/2)

points.

13.2.2 Labeling the Graph

Let [G,H] be an inner-triangulated 2-outerplanar graph where G is an outer-
planar graph and H = {T1, . . . , Tk} is a forest such that tree Th lies inside face
Fh of G, for each 1 ≤ h ≤ k.

The idea behind the labeling is the following: in our embedding strategy, G
will be embedded on the outer half-circle π of the point set S, while the tree
Th ∈ H lying inside each face Fh of G will be embedded on the point sets Sj
of some of the points pj on which vertices of Fh are placed. Note that, since
π is a half-circle, the drawing of Fh will always be a convex polygon in which
two vertices have small (acute) internal angles, while all the other vertices have

13.2 Inner-Triangulated 2-Outerplanar Graphs with Forest 183

large (obtuse) internal angles. In particular, the vertices with the small angle
are the first and the last vertices of Fh in the order they appear along the outer
face of Γ. Since, by construction, a point pj of Fh has its point set Sj in the
interior of Fh if and only if it has a large angle, we aim at assigning each vertex
of Th to a vertex of Fh that is neither the first nor the last, and that hence
will have a large angle. We describe this assignment by means of a labeling
` : [G,H] → 1, . . . , |G|; namely, we will assign a distinct label `(v) to each
vertex v ∈ G and then assign to each vertex of Th the same label as one of the
vertices of Fh that is not the first or the last. Then, the number of vertices
that are assigned the same label as a vertex of G will determine whether this
vertex will be placed on a sparse or a dense point. This means that we cannot
know in advance on which exact point a vertex of G will be placed, but we
know whether the point will have a small or a large angle, and this information
is enough to perform the labeling. We formalize this idea in the following.

First, we label the vertices of G. Rename the vertices of G as v1, . . . , v|G| in the
order they appear along the outer face of Γ, and label them such that `(vi) = i
for all i = 1, . . . , |G|. Note that, any placement of vertices v1, . . . , v|G| on the
points of π in the same order as they appear in Γ results in a planar embedding
of G.

Next, we label the vertices of the trees Th ∈ H. Since the faces of G are
independent, that is Th and Th′ are vertex disjoint for h 6= h′, we focus our
description on a single face F = Fh ofG and on the tree T = Th ∈ H lying inside
it. Note that the induced subgraph [F, T] is an inner-triangulated cycle-tree
graph.

Rename the vertices of F as w1, . . . , wm in such a way that for each two vertices
wx = vp and wx+1 = vq, where p, q ∈ {1, . . . , |G|}, it holds p < q. The goal
is to label each vertex of T with the same label `(wx) as a vertex wx with
2 ≤ x ≤ m − 1, since we know that w1 and wm will be the only vertices
with small internal angles in any drawing of G on π. We say that a vertex
of T is a fork vertex if it is adjacent to more than two vertices of F (square
vertices in Figure 13.2(a)), otherwise it is a non-fork vertex (cross vertices in
Figure 13.2(a)). Since [F, T] is inner-triangulated, every vertex of T is adjacent
to at least two vertices of F , and hence non-fork-vertices are adjacent to exactly
two vertices of F .

We will now label the vertices of T starting from the fork-vertices. In order
to do so, we first construct a tree T ′ composed only of the fork-vertices, as
follows. Initialize T ′ = T . Then, as long as there exists a non-fork vertex of
degree 3 (namely, with two neighbors in F and one in T ′), remove it and its
incident edges from T ′. We call foliage-vertices the non-fork-vertices removed
in this step (small crosses in Figure 13.2(a)). Then, all the other non-fork-
vertices have degree 4 (namely 2 in F and 2 in T ′); for each of them, remove
it and its incident edges from T ′ and add an edge between the two vertices of

184 13 UPS for 2-Outerplanar Graphs

w5 = vl

w1 = vf

w4w3

w2

r

(a)

w5 = vlw3w3w2w1 = vf

r

(b)

Figure 13.2: (a) A cycle-tree graph [F, T] with F = {w1, w2, w3, w4, w5},
where `(w2) is blue, `(w3) is green and `(w4) is red. Fork-vertices are squares;
foliage-vertices are small crosses, while branch-vertices are large crosses. Tree
T ′ is composed of the root r (the green square vertex) with two children (the
red and the blue square vertices). Vertices of T got color red, green, blue
according to the labeling algorithm. (b) The placement of vertices in this

drawing will be the same as on the point set.

T ′ that were connected to it before its removal. We call branch-vertices the
non-fork-vertices removed in this step (large crosses in Figure 13.2(a)).

During the labeling, we say that a vertex wx ∈ F is free if there is no vertex of
T ′ with label `(wx). In order to perform the labeling, we traverse T ′ bottom-up
with respect to a root r that is the vertex of T ′ adjacent to both w1 and wm.
Since [F, T] is inner-triangulated this vertex is unique. During the visit of T ′

we maintain the following invariant.

Invariant: The vertices of T ′ are incident to only free vertices of F .

At the first step, the invariant is trivially satisfied, since all the vertices of F
are free. Let a be the fork vertex considered in a step of the traversal of T ′, and
let wa1 , . . . , wak be the vertices of F adjacent to a, with 1 ≤ a1 < · · · < ak ≤ m
and k ≥ 3. By the invariant, all of wa1 , . . . , wak are free. Choose any vertex
wai such that 2 ≤ i ≤ k − 1, and assign `(a) = `(wai). For example, the blue
fork vertex in Figure 13.2(a), that is adjacent to w3, w4, and w5 in F , gets label
`(w4) (see Figure 13.2(b)). Since vertices wa2 , . . . , wak−1

cannot be adjacent to
any vertex of T ′ that is visited after a in the bottom-up traversal, the invariant
is maintained at the end of each step.

Since at the last step of the traversal, when a coincides with the root r of T ′,
we have that wa1 = w1 and wak = wk, and we have the following property.

Property 13.3. Let w1, . . . , wm be the vertices of F with `(w1) < · · · < `(wm).
The labeling of the fork-vertices of T computed according to the traversal of T ′

is such that both w1 and wm remain free.

13.2 Inner-Triangulated 2-Outerplanar Graphs with Forest 185

Now we label the non-fork-vertices of T based on the labeling of T ′. Let b be
a non-fork vertex. If b is a branch vertex, then consider the first fork vertex
a encountered on a path from b to a leaf of T ; set `(b) = `(a). Otherwise, b
is a foliage vertex. In this case, consider the first fork vertex a′ encountered
on a path from b to the root r of T . Also, let v, w ∈ F be the two vertices
of F adjacent to b; assume `(v) < `(w). If `(a′) ≤ `(v), then set `(b) = `(v);
if `(a′) ≥ `(w), then set `(b) = `(w); and if `(v) < `(a′) < `(w), then set
`(b) = `(a′) (note that this latter case only happens when a′ is the root and b
is adjacent to w1 and wm). Figure 13.2(b) describes the labeling of the graph
in Figure 13.2(a). The following property holds.

Property 13.4. Adjacent non-fork-vertices have the same label.

We perform the labeling procedure for every Th ∈ H and obtain a labeling for
[G,H].

For each i = 1, . . . , |G|, we say that the subgraph ofH induced by all the vertices
of H with label i is the restricted subgraph Hi of H for i, see Figure 13.2. We
prove an important lemma concerning restricted subgraphs.

Lemma 13.5. Let Hi be the restricted subgraph of H for some 1 ≤ i ≤ |G|.
Then Hi is a tree whose all the vertices have degree at most 2, except for at
most one that might have degree 3.

Proof. First observe that, due to the procedure used to label the vertices of
T ′, graph Hi contains at most one fork vertex a, which is hence the only one
that might have degree larger than 2. Since, by Property 13.4, adjacent non-
fork-vertices got the same label, Hi is connected and only contains paths of
non-fork-vertices incident to a. We prove that there exist at most three of such
paths. First, Hi contains at most one path of branch-vertices incident to a,
namely the one connecting it to its unique parent in T ′. Further, Hi contains
at most two paths of foliage-vertices incident to a, namely one composed of the
foliage-vertices adjacent to wx and to wx−1, and one composed of the foliage-
vertices adjacent to wx and to wx+1, where wx−1, wx, wx+1 ∈ G and `(wx) = i.
Note that, if a coincides with the root r of T , there might exist three paths
of foliage-vertices incident to a, namely the two that are incident to wx, wx−1,
and wx+1, as before, plus one composed of the foliage-vertices that are incident
to both w1 and wm; however, since r has no parent in T ′, there is no path
of branch-vertices incident to a in this case. This concludes the proof of the
lemma.

13.2.3 Embedding on the Point Set

In this subsection we prove the following lemma.

186 13 UPS for 2-Outerplanar Graphs

Lemma 13.6. Let [G,H] be an n-vertex inner-triangulated 2-outerplanar graph
where H is a forest. Then, [G,H] has a planar embedding on S.

We describe an embedding algorithm consisting of three steps:

a) Assignment of weight to each vertex v of G according to how many ver-
tices have the label `(v).

b) Embedding of G on point set S.

c) Embedding of the trees H = {T1, . . . , Tk} on S.

Step a: This step is straightforward after the labeling of [G,H] described in
Subsection 13.2.2. Namely, let ω : G → N be the weight function such that
ω(vi) = |{v ∈ [G,H]|`(v) = i}| for every vi ∈ G. Note that

∑
vi∈G ω(vi) = n.

We categorize each vertex vi ∈ G as sparse or dense, depending on whether
1 ≤ ω(vi) ≤

√
n or ω(vi) >

√
n. Since

∑
vi∈G ω(vi) = n, there are at most

√
n

dense vertices.

Step b: In this step we draw the vertices v1, . . . , v|G| of G on the N := n+
√
n

points of π in the same order as they appear along the outer face of Γ, in such
a way that dense (sparse, resp.) vertices are placed on dense (sparse, resp.)
points, as follows.

Since vertex v1 is the first vertex in Γ along π, it is the first vertex in every
face of G it is incident to; hence, by Property 13.3, there is no other vertex
with the same label as v1. Therefore, w(v1) = 1 and thus vertex v1 is sparse.
We map v1 to the sparse point p1. During the following procedure, the points
p2, . . . , pN to which no vertex has been mapped yet are called free points. We
next look at every vertex vi, for i = 2, . . . , |G|, assuming that vertex vi−1 was
mapped to a point pj . Then, vertex vi is mapped to the first free sparse (resp.
dense) point after pj , if vi is sparse (resp. dense).

Note that, for each subsequence of points in π composed of
√
n sparse points

plus the dense point following them, either we use all the
√
n sparse points or

we use the dense point (possibly plus some sparse points). In both cases, the
sum of the weights of the vertices that are placed on this sequence of points is
at least

√
n, as sparse vertices have weight at least 1 and dense vertices have

weight at least
√
n. Since π contains

√
n of such subsequences, and since the

total weight of the vertices is n, this procedure places all the vertices of G on
points of π. Also, as observed before, the resulting embedding Γ̃ of G is planar,
since vertices are placed on π in the same order as in the planar drawing Γ.
Finally, we observe that Γ̃ has the following property (see Figure 13.3(a)) which
directly follows from the construction of S:

13.2 Inner-Triangulated 2-Outerplanar Graphs with Forest 187

Property 13.7. Consider a face F of G and let Q be the polygon representing
F in Γ̃. Let pj1 , . . . , pjm, with 1 ≤ j1 < · · · < jm ≤ N be the points of π where
the vertices of F have been placed. Then, Q contains in its interior all the point
sets Sj2 , . . . , Sjm−1.

p1 pN = pn+
√
n

Q

pj5

pj4

pj3

pj2

pj1

Sj2

Sj3

Sj4

(a)

p1 pN = pn+
√
n

pj5

pj4

pj3

pj2

pj1

(b)

Figure 13.3: (a) Polygon Q contains all point sets of points incident to large
angles. (b) An embedding of the graph in Figure 13.2(b) according to Steps

a,b, and c.

Step c: Finally, we consider forest H = {T1, . . . , Tk}. As in the labeling
subsection, we describe the embedding algorithm for a single cycle-tree graph
[F, T], where F = w1, . . . , wm is a face of G and T ∈ H is the tree lying
inside F . In particular, we show how to embed the restricted subgraph Hi,
for each vertex wx of F with label `(wx) = i, on the point set Sj of the point
pj where wx is placed. We remark that the labeling procedure ensures that
|Hi| + 1 = ω(wx) ≤ |Sj |; also, by Property 13.7, point set Sj lies inside the
polygon representing F , except for the two points where vertices w1 and wm
have been placed

By Lemma 13.5, Hi has at most one vertex a of degree 3, while all other
vertices have smaller degree. Recall that, if a exists, then it is a fork vertex.
We place a on the center point pCj of pj , if it exists. The at most three paths of

non-fork-vertices are placed on segments s+
j , s

−
j , s

N
j ; namely, the unique path

of branch-vertices is placed on sNj , while the two paths of foliage-vertices are

placed on s+
j or s−j based on whether the vertex of G different from wx they

are incident to is wx+1 or wx−1, respectively. If a = r, then the path of foliage-
vertices incident to w1 and wm is placed on sNj . The vertices of the paths are

placed on segments s+
j , s

−
j , s

N
j starting from a and using the points from pCj to

p+
j , p

−
j , p

N
j , respectively.

We show that the described placement of the vertices of Hi, for all wx ∈ F ,
results in a planar drawing of T .

First, observe that the ordering of the internal fork-vertices and of the leaves
of T is such that, for every two fork-vertices a ∈ Hp and a′ ∈ Hq, with p < q,
all the leaves of the subtree of T rooted at a have smaller label than all the
leaves of the subtree of T rooted at a′.

188 13 UPS for 2-Outerplanar Graphs

a
a∗

a′

wx pq pj

aa′
a∗

(a)

a
a∗

a′

wx pq pj

a
a′

a∗

(b)

Figure 13.4: (a) Embedding of path P if P contains a fork vertex a′ other
than a. (b) Embedding of path P if P contains no other fork vertex than a.

In this case a′ is a leaf of T .

Then, for each wx ∈ F , with `(wx) = i, consider the fork vertex a ∈ Hi; recall
that a has been placed on pCj . Let P be any path connecting a to a leaf of T
and let a∗ be the neighbor of a in P .

If P contains a fork vertex other than a (Figure 13.4(a)), then let a′ be the fork
vertex in P that is closest to a (possibly a′ = a∗) and let pCq be the point where
a′ has been placed. Assume q < j, the case in which q > j being analogous
(note that, q 6= j, as no two fork-vertices can belong to the same restricted
subgraph). By definition, the non-fork-vertices in the path between a and a′

(if any) are branch-vertices, and hence they have been placed on the points of
sNq . Then, Property 13.1 ensures that the straight-line edge connecting a and
a∗ separates all the point sets Sp with q < p < j from the center of π. Since,
by construction, the vertices that are placed on these point sets Sp are only
connected either to each other or to the vertices on s−j , respectively on s+

q , edge
(a, a∗) is not involved in any crossing.

If P does not contain any fork vertex other than a (Figure 13.4(b)), then all
the vertices of P other than a are foliage-vertices and are placed on a segment
s+
q or s−q , for some q. In particular, if q < j, then they are on s−q ; if q > j,

then they are on s+
q ; while if q = j, then they are either on s+

q or on s−q . In all
the cases, Property 13.1 ensures that the straight-line edge connecting a to a∗

does not cross any edge.

Finally, observe that any path of T containing only non-fork-vertices is placed
on the same segment of the point set (either sNj or s+

j or s−j , for some j), and
hence its edges do not cross. As for the edges connecting vertices in one of
these paths to the two leaves of T they are connected to, note that by item
(A) of Property 13.1 the edges between each of these leaves and these vertices
appear in the rotation at the leaf in the same order as they appear in the path.

Figure 13.3(b) shows a planar embedding of the graph from Figure 13.2(b)
according to steps a,b, and c. All the above discussion leads to the following
result:

Lemma 13.8. There exists a universal point set of size O(n3/2) for the class
of n-vertex inner-triangulated 2-outerplanar graphs [G,H] where H is a forest.

13.3 2-Outerplanar Graphs with Forest 189

p−j p+j

pNj

pCj

pj−1 pj+1

p1j

p3jp4j

p2j
l(pNz) r(pNz)

r(p+z)

l(p+z)r(p−z)

l(p−z)

(a)

pj

pCj

pj+1

pN

s+

r(p+1)r(p+2)

q2q1

p+j

π+
r

p+1 p
+
2

l(p+1) l(p+2)

(b)

Figure 13.5: Construction of petal points for s+. Dark-gray triangles are
used for petal points r(p+

z) while light-gray triangles for l(p+
z).

13.3 2-Outerplanar Graphs with Forest

In this section we consider 2-outerplanar graphs [G,H] whereH is a forest. Con-
trary to the previous section, we do not assume [G,H] to be inner-triangulated.
As observed before, augmenting it to be inner-triangulated might be not pos-
sible without introducing multiple edges.

The main idea to overcome this problem is to first identify the parts of the graph
that do not allow for the required augmentation, remove them, and augment the
resulting graph with dummy edges to inner-triangulated (Section 13.3.2); then,
apply Lemma 13.8 to embed the inner-triangulated graph on the point set S;
and finally remove the dummy edges and embed the parts of the graph that had
been previously removed on the remaining points (Section 13.3.3). However, in
order to ensure that this last step can always be performed without introducing
any crossing, we first need to extend the point set S with some additional points.
We denote the augmented point set by S∗ and we describe it in Section 13.3.1.

13.3.1 Extending the Universal Point Set

Let S be the universal point set constructed in Section 13.2.1. We construct S∗

from S by adding petal points to the point sets Sj , for every j = 2, . . . , N − 1
(see Figure 13.5(a)). For simplicity of notation, we skip the subscript j in the
following description whenever possible.

Let s+, sN , s−, respectively, be the segments of Sj as defined in Section 13.2.1.
We denote by pσz the z-th point on segment sσ, with σ ∈ {+,−, N} and z =
1, . . . , n (where n =

√
n or n = n, depending on whether pj is sparse or dense),

in such a way that pσ1 is the point following pC along sσ and pσn = pσj . For each
point pσz of sσ we add two petal points l(pσz) and r(pσz) to S∗, as follows.

190 13 UPS for 2-Outerplanar Graphs

We first describe the procedure for s+, as illustrated in Figure 13.5(b). For each
z = 1, . . . , n, consider the intersection point qz between segments s(p+

z−1pj+1)
and s(p+

z pN), where p+
z−1 = pCj when z = 1. Note that, by construction, all

triangles 4p+
z−1p

+
z qz have two corners on s+, have the other corner in the same

half-plane delimited by the line through s+, and do not intersect each other
except at common corners. Hence, it is possible to construct a convex arc π+

r

passing through points pCj and p+
n = p+

j , and intersecting the interior of every

such triangle. For each z = 1, . . . , n, we place the petal point r(p+
z) on the arc

of π+
r lying inside triangle 4p+

z−1p
+
z qz. In order to place the other petal points

l(p+
z), for each z = 1, . . . , n, we use the same procedure by considering triangles

4p+
z−1p

+
z pj instead of 4p+

z−1p
+
z qz.

In the symmetric way we construct the petal points for s−, using points pj−1

and p1 to place l(p−z) and point pj to place r(p−z), and for sN , using points pj−1

and p1 to place l(pNz) and points pj+1 and pN to place r(pNz).

Recall that we have N = n+
√
n points pj on the outer half circle π of S, and

N − 2 of them have their point set Sj . For each dense pj we added 6n points
to S∗, while for every sparse pj we added 6

√
n points.

Property 13.9. Point set S∗ has (
√
n−1)(9n+1)+(n−1)(9

√
n+1) = O(n3/2)

points.

13.3.2 Modifying and Labeling the Graph

We now aim at modifying [G,H] to obtain an inner-triangulated graph that
can be embedded on the original point set S (Part A and Part B); we defer
to the following section the description of how to exploit this embedding on S
to obtain an embedding of the original graph [G,H] on the extended point set
S∗ (Part C).

As in Sections 13.2.2 and 13.2.3, we describe the procedure just for a simple
cycle-tree graph [F, T] composed of a face F of G and of the tree T inside it.

We first summarize the operations performed in the different Parts and then
give more details in the following.

1. Part A:

• We delete some edges from [F, T] connecting F with T to identify
“tree components”, resulting in a new graph [F, T ′ = T]; note that
the set of edges connecting T ′ to F might be different from the set
of edges connecting T to F .

• We delete from [F, T ′] the “tree components”, to be defined later,
and obtain a new graph [F, T ′′ ⊆ T ′] which has the property that
it admits an augmentation to inner-triangulated without multiple
edges.

13.3 2-Outerplanar Graphs with Forest 191

• We augment [F, T ′′] to an inner-triangulated graph [F, T∆ = T ′′];
again, instance [F, T∆] might differ from [F, T ′′] only on the set of
edges connecting the two levels.

2. We label [F, T∆] with the algorithm described in Section 13.2.2.

3. Part B:

• We insert vertices in [F, T∆] representing the previously removed
tree components and give suitable labels to these vertices, hence
obtaining a new instance [F, TA ⊇ T∆]. By adding appropriate
edges we keep the instance triangulated.

4. We embed [F, TA] on point set S with the algorithm described in Sec-
tion 13.2.3.

5. Part C:

• We obtain a planar embedding of [F, T] on point set S∗ by removing
all the vertices and edges added during these steps and by suitably
adding back the removed edges and tree components.

Part A: Let [F, T] be a simple cycle-tree graph. We categorize each face f of
[F, T] based on the number of vertices of F and of T that are incident to it.
Note that, since T is a tree, f has at least a vertex of F and a vertex of T
incident to it. Refer to Figure 13.6 for an illustration.

If f contains exactly one vertex of F , then it is a petal face. The reason for
this name is that the “tree components” lying inside petal faces will be placed
on petal points later. If f contains exactly one vertex of T , then it is a small
face. If f is neither a petal nor a small face, then it is a big face. Suppose f
is a big face, and let b1, . . . , bl be the vertices of T in the clockwise order they
appear along the boundary of f . If either b1 or bl, say b1, has more than one
adjacent vertex in F (namely one in f and at least one not in f), then we say
that f is protected by b1. If f is a big face with exactly two vertices incident
to F and is not protected by any vertex, then we say that f is a bad face.

We now prove a lemma that gives sufficient conditions to triangulate G without
introducing multiple edges; we will later use this lemma to identify the “tree
components” of T whose removal allows for a triangulation.

Lemma 13.10. Let [F, T] be a biconnected simple cycle-tree graph, such that
(1) each vertex of F has degree at most four, and (2) there exists no bad face in
[F, T]. It is possible to augment [F, T] to an inner-triangulated simple cycle-tree
graph by only adding dummy edges.

192 13 UPS for 2-Outerplanar Graphs

b1bl

v

. . .

(a)

b1

v1 vl′. . .

(b)

b1bl . . .

v1 vl′. . .

f

v2

(c)

b1bl . . .

v1 vl′. . .

(d)

b1bl . . .

v1 vl′. . .

(e)

Figure 13.6: Insertion of triangulation edges in a (a) petal face, (b) small
face, (c) a non-protected big face, and a big face protected by vertex (d) b1

and (e) bl.

Proof. Let f be any face of [F, T]. We describe how to triangulate f without
creating multiple edges.

Suppose f is a petal face (see Figure 13.6(a)); let v, b1, ..., bl (with l > 2) be the
vertices on its boundary, where v ∈ F and bi ∈ T for 1 ≤ i ≤ l. We triangulate
f by adding an edge (v, bi), for each 2 ≤ i ≤ l − 1. Since [F, T] is biconnected,
there exists no multiple edge inside f . Also, since condition (1) ensures that
v ∈ F has degree at most four, there is no petal face incident to v other than
f , and thus no multiple edge is created outside f .

Suppose f is a small face (see Figure 13.6(b)); let v1, . . . , vl′ , b (with l > 2)
be the vertices on its boundary, where vi ∈ F for 1 ≤ i ≤ l′ and b ∈ T . We
triangulate f by adding an edge (b, vi), for each 2 ≤ i ≤ l′ − 1. Note that,
before introducing these edges, vertices v2, . . . , vl′−1 ∈ F were not connected
to any vertex of T (and in particular to b); thus, no multiple edge is created.

Suppose f is a big face that is not a bad face; let v1, ..., vl′ , b1, ..., bl (with
l, l′ > 1) be the vertices along the boundary of f , where v1, ..., vl′ ∈ F and
b1, ..., bl ∈ T . If f is not protected by any vertex (see Figure 13.6(c)), then l′ ≥
3, as otherwise it would be a bad face. This implies that vertex v2 ∈ F is not
connected to any vertex of T . Hence, it is possible to add edge (bl, v2) without
creating multiple edges. Face f is hence split into a triangular face v1, v2, bl and
a big face that is protected by bl, which we cover in the next case. Otherwise,
f is protected by a vertex. If f is protected by b1 (see Figure 13.6(d)), then we
triangulate f by adding edges (bi, vl′), for 2 ≤ i ≤ l and (bl, vi), for 2 ≤ i ≤ l′−1.
If f is protected by bl (see Figure 13.6(e)), then we triangulate f by adding
edges (bi, v1), for 1 ≤ i ≤ l− 1 and (b1, vi), for 2 ≤ i ≤ l′− 1. Note that, before
introducing these edges, vertices v2, . . . , vl′−1 ∈ F were not connected to any
vertex of T (and in particular to b1 and bl); also, vertices b2, . . . , bl (vertices
b1, . . . , bl−1) were not connected to vl′ (resp. to v1), f was protected by b1
(resp. bl). Thus, no multiple edge is created.

Since by condition (2) there exists no bad face in [F, T], all the possible cases
have been considered; this concludes the proof of the lemma.

13.3 2-Outerplanar Graphs with Forest 193

We now describe a procedure to transform the given cycle-tree graph [F, T]
into another one [F, T ′′] that is biconnected and satisfies the conditions of
Lemma 13.10. We do this in two steps: first, we remove some edges connecting
a vertex of F and a vertex of T in order to transform [F, T] into a cycle-tree
graph [F, T ′ = T] that is not biconnected but that satisfies the two conditions of
the lemma; then, we remove the “tree components” of T ′ that are not connected
to vertices of F in order to obtain a cycle-tree graph [F, T ′′ ⊆ T ′] that is also
biconnected.

In order to satisfy condition (1) of Lemma 13.10, we perform the following
operation. As long as there exist two petal faces in [F, T] sharing an edge
e = (v, b), we remove e from [F, T]. Note that the removal of e merges the two
petal faces into a single petal face, also incident to v. Also, when this operation
cannot be applied any longer, all the vertices of F have degree at most 4. We
refer to the set of edges removed in this step as petal edges, denoted by EP .

In order to satisfy condition (2) of Lemma 13.10, we repeatedly perform the
operation described in the following. As long as there exists a bad face f =
v1, v2, b1, . . . , bl, where v1, v2 ∈ F and b1, . . . , bl ∈ T , let g be the face incident
to v1 that shares edge e = (v1, bl) with f . We remove e, hence merging f and g
into a single face f ′, that we subsequently split again by adding dummy edges,
based on the type of face g, in such a way to ensure that no new bad face is
created, as follows; see Figure 13.7.

First note that, since f is a bad face, it is not protected by bl, and hence g is not
a small face. If g is a petal face, then f ′ is still a big face with two vertices of
F incident to it, namely v1 and v2; see Figure 13.7(a). We add an edge (v1, b1);
this corresponds to splitting f ′ into a petal face v1, b1, . . . , bl and a triangular
face v1, v2, b1. If g is a big face, then f ′ is a big face; see Figure 13.7(b). Let
w1, . . . , wq, c1, . . . , ch be the vertices incident to g, where w1, . . . , wq ∈ F , with
wq = v1, and c1, . . . , ch ∈ T , with c1 = bl. We add two dummy edges (v1, ch)
and (v1, b1). This corresponds to splitting f ′ into a small face w1, . . . , wq, ch, a
petal face v1, b1, . . . , bl = c1, . . . , ch, and a triangular face v1, v2, b1.

We refer to the set of edges removed in this step as big face edges, denoted by
EB, and to the set of dummy edges added in this step as triangulation edges.

Since in both cases the application of this operation reduces the total number
of bad faces by at least one and since the addition of a single dummy edge (of
two dummy edges) incident to v1 is performed only when v1 has degree 3 (resp.,
degree 2), after a linear number of operations we obtain an instance [F, T ′] such
that every vertex of F has degree at most 4 and there exists no bad face. Note
that, each edge that has been removed in the two steps connects a vertex of F
to a vertex of T , and thus T ′ = T .

In order to transform [F, T ′] into a biconnected graph, we note that [F, T ′]
is comprised by a biconnected component which contains F , called block-
component, and a set TB of subtrees of T ′, called tree components, each sharing

194 13 UPS for 2-Outerplanar Graphs

v2v1

f

g e

b1

bl

(a)

. . .

ch

w1 wq=v1 v2

b1

e

fg

c1=bl

(b)

Figure 13.7: Illustration of the two cases for removing bad faces. Face g is
a petal face in (a) and a big face in (b). Dummy edges are dashed, while the

removed edge e is red.

a cut-vertex with the block component. A tree component sharing a cut-vertex
c with the block component is denoted by Tc.

We remove the tree components TB from [F, T ′] and obtain an instance [F, T ′′ ⊆
T ′], that is actually the block component of [F, T ′]. Note that the removal of
TB does not change the degree of the vertices of F and does not create any
bad face. Hence, [F, T ′′] is indeed a biconnected instance that satisfies the two
conditions of Lemma 13.10. Thus, we can augment it to an inner-triangulated
instance [F, T∆], with T∆ = T ′′, without introducing multiple edges. The edges
introduced during the triangulation are also called triangulation edges.

In the following we prove some properties of [F, T∆].

Lemma 13.11. Let e = (b, v) be an edge of EP ∪EB, where b ∈ T and v ∈ F .
Then, either e is a triangulation edge in [F, T∆] or b /∈ T ′′, that is, b belongs
to a tree component Tc of TB sharing a cut-vertex c with the block-component
[F, T ′′]. In the latter case, edge (v, c) is a triangulation edge in [F, T∆].

Proof. Suppose that b ∈ T ′′; we prove that e is a triangulation edge in [F, T∆].

If e ∈ EP , this directly descends from the fact that the algorithm to triangulate
a petal face f described in Lemma 13.10 adds a triangulation edge between
every vertex of T incident to f , including b, and the only vertex of F incident
to f , namely v.

If e ∈ EB, this depends again on the triangulation algorithm of Lemma 13.10
and on the addition of the one or two dummy edges incident to v that is
performed when merging the two faces sharing edge e. In fact, these dummy
edges ensure that there exists a petal face in which v is the only vertex of F ;
then, the same argument as above applies to prove that v is connected to b by
a triangulation edge.

Suppose that b /∈ T ′′ and let Tc be the tree component such that b ∈ Tc; the
fact that there exists a triangulation edge connecting v to c follows from the

13.3 2-Outerplanar Graphs with Forest 195

same arguments as above, since in both cases v is connected by triangulation
edges to all the vertices of T , including c, incident to the same face it is incident
to.

Lemma 13.12. Let Tc ∈ TB be a tree component such that there exists at least
an edge e = (b, v) ∈ EP ∪ EB, with b ∈ Tc and v ∈ F . Then, for each edge in
EP ∪ EB with an endvertex belonging to Tc, the other endvertex is v.

Proof. First suppose that all the edges in EP ∪ EB connecting a vertex of Tc
to a vertex of F , including e, belong to EP . Consider the two edges e1 and
e2 such that e1 and e2 connect v to vertices of T , and all the other edges that
connect v to vertices of T lie between e1 and e2 in the circular order of the
edges around v in [F, T]. Note that, all the edges between e1 and e2 belong to
EP , while e1 and e2 do not, as one of the two faces they are incident to is not a
petal face. Let f be the face both e1 and e2 are incident to after the removal of
all the edges between them. Since all the vertices of Tc are incident to f , and
since v is the only vertex of F incident to f , all the edges of EP connecting a
vertex of Tc to a vertex of F are incident to v.

Suppose now that there exists at least an edge of EB connecting a vertex of Tc
to a vertex of F . Hence, we can assume that e ∈ EB. This implies that e is
incident to a bad face f and a face g that can be either a petal or a big face.

If g is a petal face, then let e′ = (v, b′) be the other edge incident to g and
to v. Since g is a petal face, edge e′ belongs neither to EP nor to EB. Also,
let e′′ = (v, b′′) be the dummy edge incident to v added when removing e (the
dashed edge in Figure 13.7(a)). Since, by construction, e′′ is incident to a small
face, it belongs neither to EP nor to EB, as well. Hence, both e′ and e′′ are
edges of [F, T ′] (and hence of [F, T ′′]) incident to v. This implies that all the
vertices of Tc are incident to the unique face g of [F, T ′] to which e′ and e′′ are
incident. Since v is the only vertex of F incident to this face, all the edges of
EP ∪ EB connecting a vertex of Tc to a vertex of F are incident to v.

If g is a big face, then let e′ = (v, b′) and e′′ = (v, b′′) be the two edges incident
to v added when removing e (the dashed edges in Figure 13.7(b)). Again, e′ and
e′′ belong to neither EP nor EB, since by construction they are both incident
to small faces. The statement follows by the same argument as above.

Performing the above transformation for every cycle-tree graph [F, T] yields an
inner-triangulated 2-outerplanar graph [G,H∆], that is the outcome of Part
A of the algorithm.

Part B: We now extend the labeling of [G,H∆], computed as in Section 13.2.2,
to the vertices of the tree components. Simultaneously, we augment [G,H∆]
by adding dummy vertices and edges in such a way that the augmented graph

196 13 UPS for 2-Outerplanar Graphs

v w

c

(a)

v w

c

(b)

Figure 13.8: Inserting dummy vertices for a tree-component in a triangular
face (c, v, w) with v, w ∈ F and c ∈ T∆. (a) `(c) ≤ `(v) and (b) `(c) ≥ `(w).

is still inner-triangulated (and hence can be embedded according to Theo-
rem 13.8) and that the tree components can be later reinserted by placing
them on the petal points of the points where the dummy vertices have been
placed.

As in previous sections, we describe the procedure for a single face F of [G,H∆];
let [F, T∆] be the corresponding inner-triangulated cycle-tree graph, and let TB
be the set of tree components, where each Tc ∈ TB is rooted at the cut-vertex
c separating it from [F, T∆].

Note that, the face of [F, T ′′] to which a tree component Tc belongs might have
been split into several faces of [F, T∆] by the addition of triangulation edges.
We assign Tc to any of such faces f that is incident to c. Then, we label the
vertices Tc based on the shape of f ; we distinguish two cases.

Suppose f is a triangular face (c, v, w) with v, w ∈ F and c ∈ T∆, refer to
Figure 13.8; assume `(v) < `(w). We create a path Pc containing |Tc| − 1
dummy vertices and append this path at c. Then, we connect every dummy
vertex of Pc with both v and w. If `(c) ≤ `(v), as in Figure 13.8(a), then we
label the vertices of Pc with `(Pc) = `(v). If `(c) ≥ `(w), as in Figure 13.8(b),
then we label them with `(Pc) = `(w). Note that, since (c, v, w) is a triangular
face, v and w are consecutive along F , and hence c cannot have been labeled
in such a way that `(v) < `(c) < `(w). Also note that path Pc augments T∆

without closing any cycle.

Suppose f is a triangular face (a, b, v) with v ∈ F and a, b ∈ T∆, refer to
Figure 13.9; assume `(a) ≤ `(b). Then, either c = a or c = b.

We replace edge (a, b) with a path Pc between a and b with |Tc| − 1 internal
dummy vertices, and connect each of these dummy vertices to v and to w,
where w is the other vertex adjacent to both a and b; note that, w exists since
[F, T∆] is inner-triangulated, and w ∈ F as otherwise there would be a cycle
in T∆.

For each dummy vertex x of Pc, we assign `(x) = `(a) if `(v) ≤ `(a); we assign
`(x) = `(b) if `(v) ≥ `(b); and we assign `(x) = `(v) if `(a) < `(v) < `(b).

13.3 2-Outerplanar Graphs with Forest 197

w

a

b

v

(a)

v

a
b

w

(b)

v

a b

w

(c)

Figure 13.9: Inserting dummy vertices for a tree-component in a triangular
face (a, b, v) with v ∈ F and a, b ∈ T∆, when (a) `(a) = `(b), (b) `(a) 6= `(b)

and `(w) < `(v), and (c) `(a) 6= `(b) and `(w) > `(v).

Note that the existence of edge (a, b) ∈ T∆ implies that either a is the parent
of b in T∆ or vice versa. Suppose the former, the other case being analogous
with a and b switching their role. Then, v and w are the extremal neighbors
of b in F , and thus the label of b is between those of v and w, that is, either
`(v) ≤ `(b) ≤ `(w) or `(w) ≤ `(b) ≤ `(v); if b is a fork vertex, then the
inequalities are strict. Also note that, if `(a) 6= `(b), then the label of a does
not lie strictly between those of v and w. In fact, this can only happen if the
label of b strictly lies between those of v and w, and `(a) = `(b) (which happens
only if a is a non-fork vertex). Since `(a) ≤ `(b), by assumption, this implies
that `(a) ≤ `(v), `(w) (we remark that, when considering the symmetric case
in which b is the parent of a, here we will have `(b) ≥ `(v), `(w)). The two
observations before can be combined to conclude that, if `(a) = `(b), then all the
tree components lying inside faces (a, b, v) and (a, b, w) have the same label as
a and b (Figure 13.9(a)). Otherwise, either the tree components inside (a, b, v)
have label `(b) and those inside (a, b, w) have label `(w) (Figure 13.9(b)), or
the tree components inside (a, b, v) have label `(v) and those inside (a, b, w)
have label `(b) (Figure 13.9(c)).

All the edges added in this step connecting a dummy vertex to v and w are
again called triangulation edges.

We apply the modification of Part B for every cycle-tree graph [F, T∆] of
[G,H∆], hence creating a graph [G,HA] that is still an inner-triangulated 2-
outerplanar graph where HA is a forest.

Since, by construction, all the dummy vertices added in the last step of the
augmentation are connected to exactly two vertices v, w ∈ F∆, all such dummy
vertices are non-fork-vertices.

We also remark that the labeling of the dummy vertices is the same as the one
that the algorithm described in Subsection 13.2.2 would have assigned to them,
except for one single case, namely the one in which the face f containing the
tree component Tc is a triangular face (a, b, v) with v ∈ F and a, b ∈ T∆, and
`(a) < `(v) < `(b). In this case, indeed, the algorithm would have assigned to

198 13 UPS for 2-Outerplanar Graphs

v

a b

w

(a)

w

a

b

v

(b)

Figure 13.10: Moving vertices of tree components to petal points if (a)
`(a) 6= `(b) and if (b) `(a) = `(b).

the dummy vertices the same label as either a or b, depending on whether b
is the parent of a or vice versa. However, the fact that the labels assigned to
a, b, v when applying the algorithm on [F, T∆] are such that `(a) < `(v) < `(b),
and the fact that (a, b, v) is a triangular face of [F, T∆] imply that no vertex of
[F, T∆] different from v has been assigned the same label as v.

The two observations above lead to conclude that the labeling of [G,HA] still
satisfies the main property that allows to construct a planar embedding on the
point set S, which we formalize as follows.

Lemma 13.13. Let HAi be the restricted subgraph of HA for some 1 ≤ i ≤ |G|.
Then HAi is a tree whose all the vertices have degree at most 2, except for at
most one that might have degree 3.

Hence, we can still apply Theorem 13.8 to obtain a planar embedding ΓA of
[G,HA] on point set S. Note that [G,HA] has the same number of vertices as
[G,H].

In the following subsection we describe Part C of our algorithm, namely we
show that ΓA can be transformed into a planar embedding Γ of [G,H] on S∗.

13.3.3 Transformation of the Embedding

The transformation is performed along the following steps.

Removing triangulation edges. First, remove all the triangulation edges
added in the different steps of the augmentation of [G,H]. This results in a
planar embedding of a graph that is composed of a subdivision of the block
component [G,H′′] plus a set of paths, each attached to a vertex of [G,H′′];
such paths, together with the subdivided edges, represent the tree components
in TB.

Recovering the tree components We transform the drawings of such paths
and of the subdivided edges in order to obtain a drawing Γ′ of a graph that

13.3 2-Outerplanar Graphs with Forest 199

is composed of [G,H′] (that is, the original graph [G,H] without the edges in
EP ∪EB) plus some edges of EP ∪EB (namely those connecting vertices of G
to vertices of the tree components in TB), as follows. Refer to Figure 13.10.

Let Tc ∈ TB be a tree component and let Pc be the path representing it (either
a path attached to a vertex c of [G,H′′] or a path induced by some subdivision
vertices of a subdivided edge). As observed above, path Pc consists of only non-
fork-vertices. Also, all the vertices of Pc have the same label i, by construction.
Hence, all of such vertices are placed on the points of a segment s ∈ {s+, sN , s−}
of Sj , where pj is the point vertex vi is placed on.

We remove all the internal edges of Pc and move each vertex x of Pc from the
point p of s it lies on to one of the corresponding petal points, either l(p) or
r(p), as follows. Let v be a vertex of G connected to a vertex of Tc by an edge
in EP ∪ EB, if any; recall that, by Lemma 13.12, all the edges of EP ∪ EB
connecting Tc to G are incident to v. If `(x) > `(v), then move x to l(p); see
the tree component connected to v in Figure 13.10(b). If `(x) < `(v), then
move x to r(p); see the tree components connected to w in Figure 13.10(a) and
(b). Otherwise, `(x) = `(v); we note that in this case s 6= sN , by construction,
and hence we have to distinguish the following two cases: If s = s+, then
move x to l(p) (see the tree components attached to c = b connected to v in
Figure 13.10(a)); while if s = s−, then move x to r(p) (see the tree components
attached to c = a connected to v in Figure 13.10(a)). If no vertex v ∈ G is
connected to Tc, then we move x to r(p) if `(c) < `(x) (see the tree component
attached to c = a in Figure 13.10(a)), and to l(p) otherwise.

We prove that this operation allows for a planar drawing of each edge incident
to a vertex of Tc. As for the internal edges of Tc, this is due to the fact that the
petal points, together with the point on which vertex c has been placed, form a
convex point set; hence, it is possible to construct a planar embedding of Tc on
such points [22]. As for the edges connecting vertices of Tc to v recall that, by
Lemma 13.11, v has visibility to the root c of Tc, since (v, c) is a triangulation
edge; also, by Property 13.1, this visibility from v extends to all the points of
S the vertices of Pc had been placed on; finally, by the construction of S∗, we
have that v has also visibility to all the petal points where the vertices have
been moved. In fact, consider the triangle 4pipi−1qi that was used to place
the petal points, where pi and pi−1 are two consecutive points on the segment
s ∈ {s−, s+, sN} where the dummy vertices are placed, and qi is the intersection
point between segments s(pipN) and s(pi−1pj+1), assuming s = s+, the other
cases being analogous. Since s = s+ implies that v lies on the half-circle π on
between pj+1 and pN , and since v has visibility on both pi and pi−1, as observed
before, it follows that v has visibility to all the points of 4pipi−1qi, and hence
to the petal point inside it.

To conclude the construction of Γ′, we reintroduce all the edges (a, b) such
that there existed a subdivided edge between a and b. We prove that this
does not introduce any crossing. Let v and w be the two vertices of G that

200 13 UPS for 2-Outerplanar Graphs

are connected to both a and b. Recall that all the subdivision vertices of
(a, b) correspond to vertices of tree components belonging to faces (a, b, v) and
(a, b, w). If `(a) = `(b) (see Figure 13.10(b)), then for each tree component
Tc belonging to face either (a, b, v) or (a, b, w), the vertices of Pc lie on the
segment sN corresponding to `(a) = `(b), by construction, since they are non-
fork-vertices on the path between a and b and have label `(a) = `(b). Also, both
a and b lie on sN , possibly at its extremal points. Since, by construction, all
the tree components that are connected to v (to w) through edges of EP ∪EB
are moved to petal points lying inside triangle 4(a, b, v) (triangle 4(a, b, w)),
and since no tree component stays on sN , edge (a, b) does not cross any edge. If
`(a) 6= `(b), the fact that edge (a, b) does not cross any edge again depends on
the labels we assigned to the tree components belonging to faces (a, b, v) and
(a, b, w). Namely, assume that `(a) < `(b) and that a is the parent of b (see
Figure 13.10(a)), the other cases being analogous. As observed above, either
the tree components belonging to (a, b, v) have label `(b) and those belonging
to (a, b, w) have label `(w), or the tree components belonging to (a, b, v) have
label `(v) and those belonging to (a, b, w) have label either `(b). We prove the
claim in the latter case (as in the figure), the other being analogous. Note
that, for each tree component Tc belonging to face (a, b, w), all the vertices of
Pc lie on the segment sN corresponding to `(b), by construction, since they
are non-fork-vertices on the path between a and b and have label `(b). Hence,
Property 13.1 ensures that they lie inside triangle 4(a, b, w), which implies
that the corresponding petal points lie inside 4(a, b, w), as well. The fact that
the tree components Tc lying inside face (a, b, v) are also placed on petal points
lying inside triangle 4(a, b, v) trivially follows from the fact that the vertices
of Pc have label `(v).

Inserting Petal Edges and Big Face Edges To complete the transformation
it remains to insert the edges of EP ∪ EB which were not inserted in the
previous step, namely those connecting a vertex of G to a vertex of the block-
component [G,H′′]. However, since by Lemma 13.11 all of such edges were also
triangulation edges, their insertion does not produce any crossing.

As a result of the above transformations we obtain a planar embedding Γ of
[G,H] on point set S∗.

All the discussion in this section leads to the following result.

Theorem 13.14. There exists a universal point set of size O(n3/2) for the
class of n-vertex 2-outerplanar graphs [G,H] where H is a forest.

13.4 General 2-Outerplanar Graphs

This section is devoted to extend the result presented in Theorem 13.14 to
any arbitrary 2-outerplanar graph [G,H]. The idea is to convert every graph
Gh ∈ H lying in a face Fh of G into a tree Th, where Th and Gh have the same

13.4 General 2-Outerplanar Graphs 201

vertex set; embed the resulting graph on S∗; and finally revert the conversion
from each Th to Gh. Similar to the previous sections, we describe all the steps
for a single subgraph [F = Fh, Gh].

We say that a cut-vertex of Gh is a c-vertex, and that the vertices and the
edges of a block B of Gh are its block vertices, denoted by NB, and its block
edges, denoted by EBL ⊆ NB × NB, respectively. Now we transform graph
[F,Gh] into a cycle-tree graph [F, T] as follows: For each block B of Gh, we
remove all its block edges EBL and insert a b-vertex b representing B; also,
we insert edges (b, b′) for every vertex b′ ∈ NB. In other words, we replace
each block B with a star whose center is a new vertex b and whose leaves are
the vertices in NB. This results in transforming Gh into a tree T obtained
by attaching the stars through the identification of leaves corresponding to c-
vertices. When performing the transformation, we start from the given planar
embedding Γ of [G,H], which naturally induces a planar embedding Γ′ of each
resulting cycle-tree graph [F, T].

We apply the operations described in Part A of Section 13.3.2 (delete petal
and big-face edges, remove tree components, and triangulate) to make [F, T]
inner-triangulated, and then label it as in Section 13.2.2. We then relabel some
of the c-vertices and perform the merging of the tree components in a special
way, slightly different from the one described in Part B, so that the embedding
of the resulting graph will satisfy some additional geometric properties that will
allow us to restore the original blocks of Gh when performing Part C.

Let w1, . . . , wm be the vertices of F in the order defined by the labeling, and let
r be the root of T ; recall that, since the root is a fork vertex, it is independent
of where the tree components, which become non-fork-vertices, are merged.
We give some additional definition. For a b-vertex b we define two particular
vertices, called its opener and the closer, that will play a special role in the
merging of the tree components incident to b. If b 6= r and b is not adjacent
to r, then the opener of b is the c-vertex c that is the parent of b in T . If
b = r (see Figure 13.11(a)), then the opener of b is the c-vertex c adjacent to
b, w1, and wm, such that 3-cycle (c, w1, wm) does not contain in its interior
any c-vertex with the same property as c in Γ′. If b is adjacent to r, then the
opener of b is r; note that, in this way we treat r as a c-vertex even when it is
not a cut-vertex of Gh. For a b-vertex b with opener c, the closer of b is the
first block vertex following (the last preceding) c in the rotation at b in Γ′, if
`(c) < `(b) (if `(c) ≥ `(b)); note that, the closer always exists since b has at
least two neighbors that are not incident to F .

Some blocks of Gh, and the corresponding b-vertices of T , have to be treated
in a special way because of their relationship with the root r of T . Let c be the
opener of a b-vertex b such that NB ∪ {b} contains r, where B is the block of
Gh corresponding to b. We call root-blocks the set of blocks lying in the interior
of 3-cycle (c, w1, wm) in Γ′. If c is a non-fork vertex, the presence of root-blocks
might create problems in the algorithm we are going to describe later; hence,

202 13 UPS for 2-Outerplanar Graphs

wm

w1
c

b
c′

(a)

w

w1 w2
b1 b2

b′c′

c

b

(b)

Figure 13.11: (a) Rerouting edge (wm, b) to eliminate root-blocks when the
opener c of the block containing the root is a non-fork vertex. (b) Illustration

for the rule “choice of Faces”.

in this case, we change the embedding Γ′ slightly (cf. Figure 13.11(a)) by
rerouting edge (wm, b) so that root-blocks do not exist any longer. This change
of embedding consists of swapping edges (b, c) and (wm, b) in the rotation at b.
Note that edge (wm, b) does not belong to [F,Gh], which implies that embedding
Γ has not been changed. In order to maintain planarity, we have to remove
all the edges connecting w1 to root-blocks, as otherwise they would cross edge
(wm, b); however, the fact that (wm, b) does not belong to [F,Gh], together
with a visibility property between w1 and the root-blocks that we will prove in
Lemma 13.16, will make it possible to add the removed edges at the end of the
construction without introducing any crossing.

We now describe the part of the algorithm that differs from the one described
in Section 13.3.

First, we change the labeling of each c-vertex c that is a branch vertex of T .
Namely, consider the two fork-vertices a and d such that the subpath of T
between a and d contains c and does not contain any other fork vertex, with a
being closer to the root than d. Let v and w be the two neighbors of c in F ;
assume `(w) < `(v). Note that, as described in Part B of Section 13.3.2, we
have either `(w) < `(d) < `(v) ≤ `(a) or `(a) ≤ `(w) < `(d) < `(v). In the first
case, we relabel c by setting `(c) = `(v), otherwise we set `(c) = `(w). Observe
that this is analogous to considering c as a tree component and applying for it
the labeling algorithm in Section 13.3.2. This observation allows us to state that
the same arguments as in Lemma 13.13 can be used to prove that the restricted
subgraph Hi of Gh, for each i = 1, . . . , |G|, maintains the same property even
after the relabeling of c.

13.4 General 2-Outerplanar Graphs 203

pjpj

Figure 13.12: Illustration for Property 13.15.

Then, we describe a procedure, that we call Part B’ as it coincides with Part
B of Section 13.3.2, except for the choice of the face where the tree components
are placed and of the edge they are merged to. This choice, that we describe
later, is done in such a way that applying Part C of the embedding algorithm
described in Theorem 13.14 yields an embedding Γ∗ of [F, T] on S∗ that sat-
isfies the following two properties, which will then allow us to redraw all the
blocks of Gh:

• the block vertices of every block form a convex region and

• the clockwise order in which the block vertices of every block appear
along this convex region coincides with the clockwise order in which they
appear along the outer face of the block in the drawing Γ of G.

For ensuring the first item, the following important property derived from Prop-
erty 13.1 is of particular help. Refer to Figure 13.12.

Property 13.15. Let j and j be two integers such that 1 ≤ j < j ≤ N . Then

the points of
⋃
j=j,...,j [s

−
j ∪ {pCj } ∪ s+

j] determine a convex point set. This is

also true if we replace s−j by sNj and s+
j

by sN
j

.

Proof. First observe that the center points pCj of all the point sets between j

and j, that is,
⋃
j=j,...,j{pCj } are in convex position by construction.

Then, for each j = j, . . . , j − 1, segments s+
j and s−j+1 lie below the segment

s(pCj , p
C
j+1), due to the fact that points p+

j and p−j+1 lie below points p1
j on πj

and p2
j+1 on πj+1, respectively; see Figure 13.1. This implies that the internal

angles at p+
j and p−j+1 are smaller than 180◦. As for the internal angle at each

center point pCj , this is still smaller than 180◦ due to the fact that p+
j and p−j

lie above points p3
j and p4

j on πj , respectively, which lie on a diameter of πj .

204 13 UPS for 2-Outerplanar Graphs

The fact that segments either s−j or sNj , and either s+
j

or sN
j

do not destroy the

convexity of the point set again descends from the fact that the internal angles
at pCj and at pC

j
are always smaller than 180◦.

The second item can be mostly ensured by choosing an appropriate face for the
tree components. In fact, as already noted in Section 13.3, the triangulation
step performed after the removal of tree components splits the face where each
tree component used to lie into several faces; while in Section 13.3 the choice
among these faces was arbitrary, in this case we have to make a suitable choice,
which will be based on the opener and the closer of the block the tree component
belongs to.

Rule “choice of Faces”:

Let b be a b-vertex of a block B, and let c and c′ be the opener and the closer of
b, respectively. Also, let b′ be the last counterclockwise neighbor of b different
from c such that b′ ∈ NB and `(b′) = `(b) (possibly, b′ = c′).

Consider any two neighbors b1 and b2 of b such that b1, b2 ∈ NB and there exists
no vertex b3 ∈ NB of b between b1 and b2 in the rotation at b. Since [F, T] is
inner-triangulated, there exists a vertex w ∈ F that is adjacent to both b1 and
b2; also, there exists edge (b, w), which is a triangulation edge. Hence, each
tree component T1,2 that used to lie between b1 and b2 has to be placed either
inside face (b, b1, w) or inside (b, b2, w) in order to maintain the embedding of
the graph before the triangulation. Finally, let w1 and w2 be the two vertices
of F preceding b1 and following b2 in the rotation at b, respectively.

If both b1 and b2 are between b′ and c′ in the rotation at b, then place T1,2

inside face (b, b2, w) and merge it to edge (b, b2), that is, subdivide this edge
with |T1,2| dummy edges, each connected to w and to w2; otherwise, place T1,2

inside face (b, b1, w) and merge it to edge (b, b1), connecting the subdivision
edges to w and to w1; see Figure 13.11(b).

Let [F, T ∗] be the cycle-tree graph obtained after all the tree components have
been merged. In the following lemma we prove that [F, T ∗] admits an embed-
ding on S∗ satisfying the required geometric properties.

Lemma 13.16. There exists an embedding Γ∗ of [F, T ∗] on S∗ in which, for
each b-vertex b corresponding to a block B of Gh, the vertices of NB are in
convex position and appear along this convex region in the same clockwise order
as they appear along the outer face of B in the given planar drawing Γ of G.

Proof. First, construct a straight-line planar embedding Γ′′ of [F, T ∗] on S∗ by
applying Theorem 13.14.

We will now consider each block B represented by a b-vertex b in T ∗ and analyze
where the vertices NB are placed in Γ′′ due to Part C of Theorem 13.14 and

13.4 General 2-Outerplanar Graphs 205

c b c′

wp

wq

(a)

c c′

wpwq

(b)

c

c′

c

c′

wpwq

(c)

c
c′

c′

wpwq

(d)

Figure 13.13: Illustration when b is non-fork vertex. The red circle indicates
the block, tiny black vertices are from tree-components, green edges are tree-
edges and the dashed edge is present if c′ is fork vertex, otherwise c′ is non-fork
vertex. The block illustrated in (a) is placed as in (b), if c′ is fork vertex. (c)
illustrates the case `(c) 6= `(c′) when a promotion of c′ is not necessary, while

in (d) a promotion is necessary.

to the rule “choice of faces” described in Part B’, proving that the vertices in
NB either already satisfy the required properties or can do so by performing
some local changes to Γ′′.

The block vertices NB consist of the fork-vertices Nf , of the non-fork-vertices
Ntc obtained by merging tree components, and of the other non-fork-vertices
Nnf , which are also non-fork-vertices of [F, T]. Note that sets Nf , Nnf , and
Ntc are disjoint, if we consider the root of a tree component not in Ntc.

We start with removing b and its incident edges. Note that, in the local changes
we possibly perform, the position of b might be reused by another vertex. As
orientation help we sometimes keep b on its point, in particular in illustrations,
until all its block vertices have been considered.

First suppose that B is a root-block. Recall that the c-vertex c∗ separating the
root-blocks from the block containing the root r is a fork vertex, since in the
case it was a non-fork vertex we rerouted edge (wm, b), hence eliminating the
root-blocks. Thus, all the vertices of the root-blocks have the same label as c∗

and are placed on the sNj segment of the point set Sj where c∗ is placed. Since

each vertex x of B in Ntc is moved to a petal point of sNj by the algorithm
described in Part C, and since the petal points of the same segment are in
convex position, by construction of S∗, the vertices of B satisfy the required
properties.

Assume now that B is not a root-block. We distinguish two cases, based on
whether b is a fork vertex or not. Let c and c′ be the opener and the closer of
b, respectively, and assume `(c) ≥ `(b) (the other case is symmetric). Refer to
Figure 13.13. Let j and k be the indexes such that c is placed on point set Sj
and c′ is placed on point set Sk.

206 13 UPS for 2-Outerplanar Graphs

Suppose b is a non-fork vertex, and let wp, wq (with p < q) be the neighbors
of b in F . Refer to Figure 13.13.

First note that, in this case, c′ is the only vertex of NB \ {c} belonging to
Nf ∪ Nnf , that is, all the vertices in NB different from c and c′ belong to
some tree components. Also, we have `(c) ≥ `(x) ≥ `(c′) for all x ∈ NB. See
Figure 13.13(a).

If c′ ∈ Nf , then c′ is placed on the center point pCk of Sk, as in Figure 13.13(b).
We have that the vertices of NB that have been merged to edge (b, c′) are placed
on the sNk segment of Sk, since the algorithm described in Part C moved the
vertices adjacent to wp inside triangle (c, c′, wp); also, the vertices of NB that
have been merged to edge (b, c) are placed on the s−l segment of a point set
Sl such that k < l ≤ j, since the vertices adjacent to wq were moved inside
triangle (c, c′, wq). Hence, Property 13.15 ensures that the vertices of NB are
in convex position. The fact that they appear in the correct order along this
convex region depends on the fact that the vertices merged to (b, c′), as well as
those merged to (b, c), are consecutive along the boundary of B.

If c′ ∈ Nnf , then c′ is placed on the s−k segment of Sk. If j = k, as in Fig-
ure 13.13(c), then c is either on s−k or on pCk ; in both cases, the vertices in NB

are on the same segment, and the proof that they satisfy the required proper-
ties, after they have been moved to petal points, is the same as for the case of
the root-blocks. If j > k, as in Figure 13.13(d), which can only happen if c is
a fork vertex, then all the points of NB, except for c, lie on s−k , while c lies on
pCj . This implies that the region defined by the points of NB is not convex. We
thus need to perform a local change in the placement of these vertices, that we
call a promotion of c′ at Sk. This operation places c′ on pCk , and places on sNk
the vertices of NB that were merged to (b, c′), and on s+

k the vertices of NB

that were merged to (b, c). Intuitively, this corresponds to “promoting” c′ to
become a fork vertex. Note that, no vertex lies on pCk before the promotion of
c′, since there is no fork vertex between c and c′ in T ∗, and this implies that
no vertex lies on sNk and s+

k , as well. By Property 13.15, the vertices of NB are
now in convex position and in the correct order, as in the case in which c′ is a
fork vertex.

Suppose b is a fork vertex, and let wp, wq (with p < q) be the two extremal
neighbors of b in F . Refer to Figure 13.14.

Let a be the ancestor of b in T such that a is a fork vertex and there exists
no fork vertex in the path of T ∗ between a and b. Note that, a might either
coincide with c or it might be the b-vertex or the opener of an ancestor block
B of B. In any case, vertex a always exists, as the root r is a fork vertex,
except for the case in which b itself is the root. This special case b = r will be
considered at the end of the proof. Also note that a is adjacent to both wp and
wq, and we have `(a) ≥ `(x) ≥ `(c′) for all x ∈ NB.

13.4 General 2-Outerplanar Graphs 207

wp

wq

l = c

wq wp

b

c′

l bb′

wq−1

c′

Figure 13.14: Illustration when c is fork vertex. The red circle indicates the
block, black(blue) vertices on this circle are fork(non-fork)-vertices. Arrows
indicate to which edge tree-components are assigned. The right drawing

simulates the placement on the point set.

We claim that `(c) ≥ `(x) ≥ `(c′) for all x ∈ NB. Namely, if c is a fork vertex,
then c = a and the claim trivially follows; while if c is a non-fork vertex, then
it is a branch vertex (since it has at least a fork vertex descendant, namely b),
and hence it has been relabeled so that `(c) = `(wq).

We then claim that, for each point set Sl with k < l ≤ j, there exists no vertex
of NB lying on segment sNl . Namely, the embedding algorithm places a vertex
z on the sNl segment only if z is a branch vertex of T ; however, this implies
that there exists at least a child block of B attached to z, and hence z is the
opener of this block. Thus, z has been relabeled and does not lie on sNl .

Finally, we consider the placement of c′ and of the tree components merged
to edge (b, c′). If c′ is a fork vertex, then c′ lies on pCk , the vertices of Ntc

adjacent to wp are on sNk , and the other vertices of Ntc are either on s+
k or on

a segment s−k′ , for some k′ > k, by the algorithm described in Part C. If c′ is
a non-fork vertex, then c′ lies on s−k , together with all the vertices of Ntc that
have been merged to (b, c′). We hence perform a promotion of c′ at Sk, moving
c′ to pCk , the vertices of Ntc adjacent to wp to sNk , and the other vertices of
Ntc to s+

k . As in the previous case, there was no vertex of NB placed on pCk
before promoting c′; in this case, however, we have to consider the possibility
that vertex b was placed on pCk . Since b has been removed, pCk is again free,
but a vertex of NB might still lie on s+

k , namely b′. This does not affect the
possibility of performing the promotion of c′, as we have only to ensure that
b′ is moved on s+

k far enough from pCk so that the other vertices of NB that
are moved to that segment can fit. This is always possible since s+

k contains n
points, where either n =

√
n or n = n, and there exist at most n vertices in

total on Sk.

The two claims above, together with the discussion about c′, make it possible
to apply Property 13.15 to prove that the vertices of NB are in convex position.

208 13 UPS for 2-Outerplanar Graphs

In the following we prove that they appear along this convex region in the
correct order. First note that the vertices in Nf ∪Nnf are in the correct order,
by construction. As for the vertices in Ntc, the algorithm in Part C places
each set of vertices belonging to the same tree component Tb between the two
vertices of Nf ∪Nnf incident to the face to which the vertices of Tb have been
assigned by the rule “choice of faces” in Part B’. The only exception concerns
the vertices merged to (b, c′) that are adjacent to wp, as these vertices are on
sNk ; however, this is still consistent with the order in which the vertices of NB

appear along the boundary of B.

This concludes the proof of the lemma.

By Lemma 13.16 the block vertices of every block are in convex position. Since
every convex point of size n set is universal for n-vertex outerplanar graphs [25,
99], we can now insert all block edges EBL in Γ′′ without introducing any
crossing. The resulting drawing is a planar embedding of [F,Gh] on S∗, which
proves the following.

Theorem 13.17. Any 2-outerplanar graph admits a planar straight-line em-
bedding on a point set of size O(n3/2).

Using the technique of Angelini et al. [7] we can reduce the size of S∗ to
O(n(logn

log logn)2), and using the technique of Bannister et al. [11] we can even
reduce it to O(n log n). This is done by considering a larger number of classes
of point sets, not only dense and sparse ones, to fit the restricted subgraphs of
our graph. We formalize the result obtained with the technique of Bannister et
al. [11] in the following theorem, which states the final result of this chapter.

Theorem 13.18. There exists a universal point set of size O(n log n) for the
class of n-vertex 2-outerplanar graphs.

Proof. Bannister et al. [11] proved that there exists a sequence ξ of integers
ξj , with

∑
j=1,...,n ξj = O(n log n), that satisfies the following property. For

each finite sequence α1, . . . , αk of integers such that
∑

i=1,...,k αi = n, there
exists a subsequence β1, . . . , βk of the first k elements of ξ such that, for each
i = 1, . . . , k, we have αi ≤ βi.

Bannister et al. [11] used this sequence to construct a universal point set of
size a O(n log n) for simply-nested graphs [7]. We use the same technique to
construct our universal point set S∗. Namely, for each j = 1, . . . , n, we place ξj
points on each of segments s−j , s+

j , and sNj of Sj , which hence results in a point
set of total size O(n log n). Then, when each vertex vi ∈ G has to be placed
on a point of the outer half-circle π according to its weight ω(vi), we place it
on the first free point pj such that ω(vi) ≤ ξj . Since the sum of the weights
of the vertices of G is equal to n, by the property of the sequence ξ, we have
that all the vertices of G can be placed on S∗. This concludes the proof of the
theorem.

Chapter 14
Short Conclusion on UPS

In this part we proved that there exists a universal point set S∗ of size O(n log n)
for the class of 2-outerplanar graphs. It remains open whether our techniques
can be extended such that S∗ is universal for the class of planar graphs or at
least for 3-outerplanar graphs. We are also interested in the required area of a
universal point set for 2-outerplanar graphs. In particular since a grid of size
O(n2) is universal for the class of planar graphs, we would like to know whether
universal point sets of asymptotically subquadratic size require polynomial or
exponential area.

209

Part IV

Conclusions

211

Chapter 15
Main Results

We have introduced a new drawing model for graphs based on straight-line
drawings and based on orthogonal drawings. We also generalized a drawing
model for hypergraphs. For the new drawing models we investigated their
usability and focused on the characterization of graphs admitting these drawing
models and presented several algorithms for testing and construction. In both
models we considered variants with fixed vertex positions building a bridge to
the point set embeddability problem, which we solved for 2-outerplanar graphs.

We present a detailed list of all results separated by the parts of the thesis.

Avoiding edge crossings is an important topic in graph drawing. In this work
we presented a new approach to avoid edge crossings coming from information
visualization and by using the Gestalt principle, called PED. This drawing
model provides a large body of research for which we introduced some directions
with different settings: we considered

(1) PED for graphs with respect to straight-line drawings and

(2) PED for geometrically embedded graphs, as well as

(3) PED for graphs with respect to orthogonal drawings with one bend per
edge.

The following list summarizes these results.

• We have introduced a formal model for each of the three settings, which
avoids ambiguity and extracts helpful properties for human understand-
ing, i.e., symmetry and homogeneity.

• We have found many graph classes admitting a 1/4-SHPED and proved
for an infinite class of graphs that they do not admit a 1/4-SHPED.

213

214 15 Main Results

• We have provided a force-directed layout algorithm for producing 1/4-
SHPEDs in many cases, applicable for all graphs up to a certain number
of vertices.

• We have investigated the human understanding of 1/4-SHPEDs and found
out that the new model is not worse than the traditional straight-line
drawing model.

• We have shown that geometrically embedded 1- and 2-planar graphs ad-
mit a ncPED and provided a sufficient and necessary condition for k-
planar geometric graphs. We have also showed with an example that a
ncPED does not always exist.

• We have proved the NP-hardness of computing a maxSPED in general,
while for geometrically embedded 1- and 2-planar graphs the computation
can efficiently be done.

• We have shown that any orthogonal 1-bend drawing can be transformed
into a 1-bend OPED or 1-bend HOPED, while for 1-bend SHOPED this
is only true for a maximum degree of 3. We presented a constructive
algorithm for this case and presented an example of maximum degree 4,
not admitting a 1-bend SHOPED.

The second part of this thesis dealt with bus realizations, a new drawing model
for hypergraphs also providing reduction of visual clutter. This is a model
coming from the VLSI design and was investigated in terms of classification
and construction in the following two directions: we have considered

(1) planar 2-dimensional bus realizations for hypergraphs

(2) planar 1-dimensional bus realizations for hypergraphs with fixed hyper-
vertex positions.

The following list summarizes these results.

• We have characterized the class of graphs admitting a planar 2-dimensional
bus realization. The decision and implicit construction can be done effi-
ciently in contrast to the general case. This work points out the threshold
when this problem becomes hard to solve.

• We have further looked at variants of 2-dimensional bus realization, clas-
sified by the type of crossings. Only the extremal class, where all types of
crossings are permitted, could be characterized and their decision prob-
lem is NP-hard.

• For planar 1-dimensional bus realizations we have pointed out the equality
to visibility drawings, whereas the existence of non-planar 1-dimensional
bus realizations is trivial.

215

• We have investigated planar 1-dimensional bus realizations with fixed hy-
pervertex positions and proved NP-completeness even for testing a match-
ing.

• In this setting we have just found a few very restricted variants that can
be decided efficiently. Thereby we have extensively discussed the bounds
of polynomial time limits for the decision problem.

The final part of this thesis is focused on a universal point set of 2-outerplanar
graphs. Our main result is that

• any 2-outerplanar graph admits a planar straight-line embedding on a
point set of size O(n log n).

Chapter 16
Future Work

A lot of open questions evolved during this whole thesis by closing other gaps.
Different unanswered questions arise which invite further investigation of the
topics. A list of the main interesting questions is given next.

• It would be nice to find criteria or a characterization which graphs admit
a 1/4-SHPEDs, i.e., is it possible to see it in the structure of the graph if
it admits a 1/4-SHPED?

• On the positive side we would like to find further classes of graphs ad-
mitting 1/4-SHPEDs.

• On the negative side we would like to reduce the n such that Kn admits
no 1/4-SHPED. In particular we like to see a proof or disproof that K17

does not admit a 1/4-SHPED.

• Is there another infinite class of graphs admitting no 1/4-SHPED?

• We would like to improve the 1/4-SHPED spring embedder to be appli-
cable for more, especially larger graphs.

• We would like to investigate in further questions on 1/4-SHPEDs com-
pared to traditional straight-line drawings in order to find a class of ques-
tions, that point out the advantages of 1/4-SHPED more strongly, as well
as the advantages of the traditional drawing model.

• Another claim that has to be proven or disproved is that computing
maxPED is NP-hard.

• In terms of orthogonal drawings we would like to know, whether the
approach can be extended to k-bend drawings, where k > 1? What
about the ambiguity in this case?

217

218 16 Future Work

• We would like to characterize the orthogonal 1-bend drawings admitting
a 1-bend SHOPED.

• Furthermore we want to extend this concept for orthogonal 1-bend draw-
ings to graphs without any degree restriction using the Kandinsky model.

• Additionally we would like to see a formal concept of SHPED for Lom-
bardi drawings or other drawing conventions.

In the topic of bus graphs we are interested in the following research questions.

• We would like to see a full characterization of bus graphs according to
the realization they admit.

• What is the complexity of the decision, whether a bus graph with Cj-
realization admits a Ci-realization, i < j?

• For the generalized bus graph, i.e., with realizations of buses in more than
two directions, we would like to know if the decision whether they admit
a planar realization lies also in P. Furthermore a characterization of those
graphs would be nice as well as a proof or disproof that the decision in
the general case is NP-complete.

• When considering BEP it would be nice to state results using only center
buses. Additionally the complexity of the general case with more than
two points per color and no global minimum distance is of interest.

• We would like to see extensions in terms of points per color and in terms
of number of buses per color: what are the properties a point set must
fulfill in order to admit a solution for BEP?

• Variants with minimizing the crossings while insisting on one bus per
color are interesting in terms of complexity.

In the final topic of UPS we have three main open problems.

• It remains as open problem whether our techniques can be extended,
such that our universal point set is also universal for the class of 3-planar
graphs or even for all planar graphs.

• In general we are interested whether or whether not there exist a universal
point set of subquadratic size for the class of planar graphs.

• What is the minimum area requirement for a universal point set of the
class of 2-outerplanar graphs? And what is the minimum area require-
ment for a universal point set of the class of planar graphs?

Bibliography

[1] Unified Modelling Language. Website. http://www.uml.org/ (accessed
February 2015).

[2] E. Ackerman and G. Tardos. On the maximum number of edges in quasi-
planar graphs. Journal of Combinatorial Theory, Series A, 114(3):563–
571, 2007.

[3] A. Ada, M. Coggan, P. D. Marco, A. Doyon, L. Flookes, S. Heilala,
E. Kim, J. L. O. Wing, L.-F. Préville-Ratelle, S. Whitesides, and N. Yu.
On bus graph realizability. CCCG, abs/cs/0609127:229–232, 2007.

[4] AIMMS. Aimms modeling guide - integer linear programming tricks,
chapter 7. Website. http://www.aimms.com/ aimms/ download/ manu-
als /aimms3om integerprogrammingtricks.pdf (accessed April 2015).

[5] B. Alper, N. H. Riche, G. Ramos, and M. Czerwinski. Design study
of LineSets, a novel set visualization technique. IEEE Transactions on
Visualization and Computer Graphics, 17(12):2259–2267, 2011.

[6] P. Angelini, C. Binucci, W. Evans, F. Hurtado, G. Liotta, T. Mchedlidze,
H. Meijer, and Y. Okamoto. Universal point subsets for planar graphs.
In Procedings of the 23rd International Symposium on Algorithms and
Computation, volume 7676 of Lecture Notes in Computer Science, pages
423–432, 2012.

[7] P. Angelini, G. Di Battista, M. Kaufmann, T. Mchedlidze, V. Roselli,
and C. Squarcella. Small point sets for simply-nested planar graphs. In
Graph Drawing - 19th International Symposium, volume 7034 of Lecture
Notes in Computer Science, pages 75–85. Springer, 2011.

[8] E. N. Argyriou, A. Symvonis, and V. Vassiliou. A fraud detection visu-
alization system utilizing radial drawings and heat-maps. In Proceedings
of the 5th International Conference on Information Visualization Theory
and Applications, pages 153–160. SciTePress, 2014.

219

220 Bibliography

[9] B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for
testing the truth of certain quantified boolean formulas. Information
Processing Letters, 8(3):121–123, 1979.

[10] J. Backus. Can programming be liberated from the von neumann style?
a functional style and its algebra of programs. Communications on the
ACM, 21(8):613–641, 1978.

[11] M. J. Bannister, Z. Cheng, W. E. Devanny, and D. Eppstein. Superpat-
terns and universal point sets. Journal of Graph Algorithms and Appli-
cations, 18(2):177–209, 2014.

[12] R. Bar-Yehuda and D. Rawitz. Efficient algorithms for integer programs
with two variables per constraint. Algorithmica, 29:595–609, 2001.

[13] A.-L. Barabasi and R. Albert. Emergence of scaling in random networks.
Science, 286(5439):509–512, 1999.

[14] C. Batini, L. Furlani, and E. Nardelli. What is a good diagram? A prag-
matic approach. In Proceedings of the 5th International Conference on
Entity-Relationship Approach, pages 312–319. IEEE Computer Society,
1985.

[15] R. A. Becker, S. G. Eick, and A. R. Wilks. Visualizing network
data. IEEE Transactions on Visualization and Computational Graph-
ics, 1(1):16–28, 1995.

[16] M. A. Bekos, S. Cornelsen, M. Fink, S. Hong, M. Kaufmann,
M. Nöllenburg, I. Rutter, and A. Symvonis. Many-to-one boundary label-
ing with backbones. In Graph Drawing - 21st International Symposium,
pages 244–255. Springer, 2013.

[17] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting
geometric intersections. IEEE Transactions on Computers, 28(9):643–
647, 1979.

[18] C. Berge. Hypergraphs (Combinatorics of Finite Sets), volume 45 of
North-Holland Mathematical Library. North-Holland, 1989.

[19] F. Bertault and P. Eades. Drawing hypergraphs in the subset standard
(short demo paper). In Graph Drawing - 8th International Symposium,
pages 164–169. Springer, 2000.

[20] M. Biddulph. Extracting a social graph from Wikipedia people pages.
Website. http://www.hackdiary.com/2012 (accessed February 2015).

[21] T. C. Biedl, P. Bose, E. D. Demaine, and A. Lubiw. Efficient algorithms
for Petersen’s matching theorem. Journal of Algorithms, 38(1):110–134,
2001.

Bibliography 221

[22] C. Binucci, E. Di Giacomo, W. Didimo, A. Estrella-Balderrama, F. Frati,
S. Kobourov, and G. Liotta. Upward straight-line embeddings of directed
graphs into point sets. Computational Geometry: Theory and Applica-
tions, 43:219–232, 2010.

[23] M. Bóna. A survey of stack-sorting disciplines. Electronic Journal of
Combinatorics, on(2), 2002.

[24] J. A. Bondy. Graph Theory With Applications. Elsevier Science Ltd.,
1976.

[25] P. Bose. On embedding an outer-planar graph in a point set. Computa-
tional Geometry: Theory and Application, 23(3):303–312, 2002.

[26] F. Brandenburg, D. Eppstein, M. T. Goodrich, S. G. Kobourov, G. Li-
otta, and P. Mutzel. Selected open problems in graph drawing. In Graph
Drawing - 11th International Symposium, volume 2912 of Lecture Notes
in Computer Science, pages 515–539. Springer, 2003.

[27] F.-J. Brandenburg. Drawing planar graphs on (8/9)*n2 area. Electronic
Notes in Discrete Mathematics, 31:37–40, 2008.

[28] U. Brandes, S. Cornelsen, B. Pampel, and A. Sallaberry. Blocks of hy-
pergraphs - applied to hypergraphs and outerplanarity. In Combinatorial
Algorithms - 21st International Workshop, pages 201–211. Springer, 2010.

[29] U. Brandes, S. Cornelsen, B. Pampel, and A. Sallaberry. Path-based
supports for hypergraphs. Journal of Discrete Algorithms, 14:248–261,
2012.

[30] U. Brandes, C. Erten, A. Estrella-Balderrama, J. J. Fowler, F. Frati,
M. Geyer, C. Gutwenger, S.-H. Hong, M. Kaufmann, S. G. Kobourov,
G. Liotta, P. Mutzel, and A. Symvonis. Colored simultaneous geometric
embeddings and universal pointsets. Algorithmica, 60(3):569–592, 2011.

[31] C. Buchheim, M. Chimani, C. Gutwenger, M. Jünger, and P. Mutzel.
Handbook of Graph Drawing and Visualization, chapter Crossings and
Planarization. CRC Press, 2013.

[32] K. Buchin, M. J. van Kreveld, H. Meijer, B. Speckmann, and K. Verbeek.
On planar supports for hypergraphs. Journal of Graph Algorithms and
Applications, 15(4):533–549, 2011.

[33] M. Burch, C. Vehlow, N. Konevtsova, and D. Weiskopf. Evaluating par-
tially drawn links for directed graph edges. In Graph Drawing - 19th
International Symposium, volume 7034 of Lecture Notes in Computer
Science, pages 226–237. Springer, 2012.

[34] S. Cabello. Planar embeddability of the vertices of a graph using a fixed
point set is NP-hard. Journal of Graph Algorithms and Applications,
10(2):353–366, 2006.

222 Bibliography

[35] D. Chang, L. Dooley, and J. E. Tuovinen. Gestalt theory in visual screen
design – a new look at an old subject. In WCCE2001 Australian Topics:
Selected Papers from the Seventh World Conference on Computers in
Education, volume 8 of CRPIT, pages 5–12. ACS, 2002.

[36] L. Chapman. Qualtrics taps accel, sequoia for first-
ever vc round, wall street journal. Website, 2012.
http://blogs.wsj.com/venturecapital/2012/05/15/qualtrics-taps-accel-
sequoia-for-first-ever-vc-round/ (accessed March 2015).

[37] H. Chen, C. Qiao, F. Zhou, and C.-K. Cheng. Refined single trunk tree:
A rectilinear Steiner tree generator for interconnect prediction. In Pro-
ceedings of the 2002 International Workshop on System-level Interconnect
Prediction, pages 85–89. ACM, 2002.

[38] R. Chernobelskiy, K. I. Cunningham, M. T. Goodrich, S. G. Kobourov,
and L. Trott. Force-directed lombardi-style graph drawing. In Graph
Drawing - 19th International Symposium, volume 7034 of Lecture Notes
in Computer Science, pages 320–331. Springer, 2011.

[39] M. Chrobak and H. Karloff. A lower bound on the size of universal sets
for planar graphs. SIGACT News, 20, 1989.

[40] M. Chrobak and S. Nakano. Minimum-width grid drawings of plane
graphs. Computational Geometry, 11(1):29 – 54, 1998.

[41] C. Collins, G. Penn, and M. S. T. Carpendale. Bubble Sets: Revealing set
relations with isocontours over existing visualizations. IEEE Transactions
on Visualization and Computer Graphics, 15(6):1009–1016, 2009.

[42] I. F. Cruz and R. Tamassia. Graph drawing tutorial. Web-
site. http://cs.brown.edu/˜rt/papers/gd-tutorial/gd-constraints.pdf (ac-
cessed February 2015).

[43] W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li. Geometry-based edge
clustering for graph visualization. IEEE Transactions on Visualization
and Computer Graphics, 14:1277–1284, 2008.

[44] H. De Fraysseix and P. O. De Mendez. On topological aspects of orien-
tations. Discrete Mathematics, 229(1-3):57–72, 2001.

[45] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph
on a grid. Combinatorica, 10(1):41–51, 1990.

[46] A. M. Dean, W. S. Evans, E. Gethner, J. D. Laison, M. A. Safari, and
W. T. Trotter. Bar k-visibility graphs. Journal of Graph Algorithms and
Applications, 11(1):45–59, 2007.

[47] E. D. Demaine, J. S. B. Mitchell, and J. O’Rourke. The open problems
project. Website, 2012. http://cs.smith.edu/˜orourke/TOPP/ (accessed
February 2015).

Bibliography 223

[48] A. Desolneux, L. Moisan, and J.-M. Morel. From Gestalt Theory to Image
Analysis: A Probabilistic Approach. Springer Publishing Company, 1st
edition, 2007.

[49] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1st edition,
1999.

[50] G. Di Battista and R. Tamassia. Algorithms for plane representations of
acyclic digraphs. Theoretical Computer Science, 61(2–3):175 – 198, 1988.

[51] G. Di Battista and R. Tamassia. Incremental planarity testing. In Foun-
dations of Computer Science, pages 436–441. IEEE, 1989.

[52] G. Di Battista and R. Tamassia. On-line maintenance of triconnected
components with SPQR-trees. Algorithmica, 15(4):302–318, 1996.

[53] G. Di Battista, R. Tamassia, and I. G. Tollis. Constrained visibility
representations of graphs. Information Processing Letters, 41(1):1 – 7,
1992.

[54] E. Di Giacomo, W. Didimo, G. Liotta, and F. Montecchiani. h-quasi
planar drawings of bounded treewidth graphs in linear area. In WG
2012, Lecture Notes in Computer Science, pages 91–102. Springer, 2012.

[55] E. Di Giacomo, W. Didimo, G. Liotta, and F. Montecchiani. Area require-
ment of graph drawings with few crossings per edge. CGTA, 46(8):909–
916, 2013.

[56] M. Dickerson, D. Eppstein, M. T. Goodrich, and J. Y. Meng. Confluent
drawings: Visualizing non-planar diagrams in a planar way. Journal of
Graph Algorithms and Applications, 9(1):31–52, 2005.

[57] W. Didimo. Density of straight-line 1-planar graph drawings. Information
Processing Letters, 113(7):236–240, 2013.

[58] W. Didimo and G. Liotta. Thirty Essays on Geometric Graph Theory,
chapter The crossing angle resolution in Graph Drawing. Springer, 2012.

[59] W. Didimo, G. Liotta, F. Montecchiani, and P. Palladino. An advanced
network visualization system for financial crime detection. In Pacific
Visualization Symposium, pages 203–210. IEEE, 2011.

[60] R. Diestel. Graph theory (Graduate Texts in Mathematics). Springer,
third edition, August 2005.

[61] I. Dinur, O. Regev, and C. Smyth. The hardness of 3-uniform hyper-
graph coloring. In Proceedings of the 35th ACM Symposium on Theory
of Computing, 2003.

224 Bibliography

[62] S. Dulucq and O. Guibert. Stack words, standard tableaux and baxter
permutations. Discrete Mathematics, 157(1–3):91 – 106, 1996.

[63] C. A. Duncan, A. Efrat, S. G. Kobourov, and C. Wenk. Drawing with
fat edges. In Graph Drawing, volume 2265 of Lecture Notes in Computer
Science, pages 162–177. Springer, 2001.

[64] C. A. Duncan, D. Eppstein, M. T. Goodrich, S. G. Kobourov, and
M. Nöllenburg. Lombardi drawings of graphs. Journal of Graph Al-
gorithms and Applications, 16(1):85–108, 2012.

[65] P. Eades. A heuristic for graph drawing. Congressus Numerantium,
42:149–160, 1984.

[66] A. Efrat, Y. Hu, S. G. Kobourov, and S. Pupyrev. MapSets: visualiz-
ing embedded and clustered graphs. In Graph Drawing, pages 452–463.
Springer, 2014.

[67] M. Eiglsperger, C. Gutwenger, M. Kaufmann, J. Kupke, M. Jünger,
S. Leipert, K. Klein, P. Mutzel, and M. Siebenhaller. Automatic layout
of UML class diagrams in orthogonal style. Information Visualization,
3(3):189–208, 2004.

[68] D. Eppstein. Separating thickness from geometric thickness. In Graph
Drawing - 10th International Symposium, volume 2528 of Lecture Notes
in Computer Science, pages 150–161. Springer, 2002.

[69] D. Eppstein. Planar lombardi drawings for subcubic graphs. In Graph
Drawing - 20th International Symposium, volume 7704 of Lecture Notes
in Computer Science, pages 126–137. Springer, 2012.

[70] D. Eppstein, M. T. Goodrich, and J. Y. Meng. Delta-confluent drawings.
In Graph Drawing, volume 3843 of Lecture Notes in Computer Science,
pages 165–176. Springer, 2005.

[71] D. Eppstein, M. van Kreveld, E. Mumford, and B. Speckmann. Edges
and switches, tunnels and bridges. CGTA, 42(8):790–802, 2009.

[72] P. Erdős and G. Szekeres. A combinatorial problem in geometry. Com-
positio Mathematica, 2:463–470, 1935.

[73] T. Eschbach, W. Günther, and B. Becker. Orthogonal hypergraph draw-
ing for improved visibility. Journal of Graph Algorithms and Applications,
10(2):141–157, 2006.

[74] S. Even and R. E. Tarjan. Computing an st-numbering. Theoretical
Computer Science, 2(3):339–344, 1976.

[75] I. Fáry. On straight-line representations of planar graphs. Acta Sci. Math.
Szeged, 11:229–233, 1948.

Bibliography 225

[76] S. Felsner. Rectangle and square representations of planar graphs. In
Thirty Essays in Geometric Graph Theory, volume 29 of Algorithms and
Combinatorics. Springer, 2012.

[77] S. Felsner, É. Fusy, M. Noy, and D. Orden. Bijections for Baxter families
and related objects. Journal of Combinatorial Theory, Series A, 18:993–
1020, 2011.

[78] S. Felsner, C. Huemer, S. Kappes, and D. Orden. Binary labelings for
plane quadrangulations and their relatives. Discrete Mathematics & The-
oretical Computer Science, 12(3):115–138, 2010.

[79] S. Felsner, M. Kaufmann, and P. Valtr. Bend-optimal orthogonal
graph drawing in the general position model. Computational Geometry,
47(3):460–468, 2014.

[80] S. Felsner and M. Massow. Thickness of bar 1-visibility graphs. In Graph
Drawing - 14th International Symposium, volume 4372 of Lecture Notes
in Computer Science, pages 330–342. Springer, 2006.

[81] J. Flower and J. Howse. Generating Euler diagrams. volume 2317 of
Lecture Notes in Computer Science, pages 61–75. Springer, 2002.

[82] J. Flower, J. Howse, and J. Taylor. Nesting in Euler diagrams: syntax,
semantics and construction. Electronic Notes in Theoretical Computer
Science, 72(3):93 – 102, 2003.

[83] J. Flower, P. Rodgers, and P. Mutton. Layout metrics for Euler diagrams.
pages 272–280. IEEE Computer Society, 2003.

[84] FOCUS, Technik-Lexikon. BUS (Binary Unit System). Web-
site. http://www.focus.de/digital/computer/technik-lexikon/bus-binary-
unit-system aid 570553.html (accessed March 2015).

[85] M. Formann and F. Wagner. The VLSI layout in various embedding
models. In Graph-Theoretic Concepts in Computer Science, 16rd Inter-
national Workshop, WG ’90, pages 130–139, 1990.

[86] U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low
bend numbers. In Graph Drawing 1995, volume 1027 of Lecture Notes in
Computer Science, pages 254–266. Springer, 1996.

[87] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-
directed placement. Software: Practice and Experience, 21(11):1129–
1164, 1991.

[88] R. Fulek and C. D. Tóth. Universal point sets for planar three-trees. In
Algorithms and Data Structures - 13th International Symposium, WADS
2013, London, ON, Canada, August 12-14, 2013. Proceedings, pages 341–
352, 2013.

226 Bibliography

[89] R. Fulek and C. D. Tóth. Universal point sets for planar three-trees.
Journal of Discrete Algorithms, 30:101–112, 2015.

[90] E. Fusy. Combinatoire des cartes planaires et applications algorithmiques.
PhD thesis, LIX Ecole Polytechnique, 2007.

[91] P. Gajer and S. Kobourov. Grip: Graph drawing with intelligent place-
ment. Journal of Graph Algorithms and Applications, 6, 2002.

[92] J. L. Ganley. Computing optimal rectilinear Steiner trees: A survey and
experimental evaluation. Discrete Applied Mathematics, 90(1-3):161–171,
1999.

[93] E. R. Gansner, Y. Hu, S. C. North, and C. E. Scheidegger. Multilevel
agglomerative edge bundling for visualizing large graphs. In Proceedings
of the 4th IEEE Pacific Visualization Symposium, pages 187–194, 2011.

[94] E. R. Gansner and Y. Koren. Improved circular layouts. In Graph Draw-
ing, pages 386–398. Springer, 2006.

[95] M. R. Garey, R. L. Graham, and D. S. Johnson. The complexity of
computing Steiner minimal trees. SIAM Journal on Applied Mathematics,
32(4):835–859, 1977.

[96] M. R. Garey and D. S. Johnson. The rectilinear steiner tree problem
is NP-complete. SIAM Journal on Applied Mathematics, 32(4):826–834,
1977.

[97] A. Granacher. Auflösen von Kantenkreuzungen in nicht planaren
Graphen durch partielles Kantenzeichnen. Diploma thesis, University
of Konstanz, 2013.

[98] Graph Drawing. Rome Graph library and North Graph library . Website.
http://www.graphdrawing.org/data/ (accessed January 2015).

[99] P. Gritzmann, J. P. B. Mohar, and R. Pollack. Embedding a planar
triangulation with vertices at specified positions. American Mathematical
Monthly, 98:165–166, 1991.

[100] I. Gurobi Optimization. Gurobi optimizer reference manual. Website.
http://www.gurobi.com (accessed November 2014).

[101] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-
trees. In Graph Drawing 2000, pages 77–90. Springer, 2001.

[102] F. Harary. Graph Theory. Addison-Wesley Series in Mathematics. Addi-
son Wesley, 1969.

[103] J. H̊astad. Clique is hard to approximate within n1−ε. Acta Mathematica,
182:105–142, 1999.

Bibliography 227

[104] X. He. On finding the rectangular duals of planar triangular graphs.
SIAM Journal on Computing, 22:1218–1226, 1993.

[105] M. Hirsch, H. Meijer, and D. Rappaport. Biclique edge cover graphs and
confluent drawings. In Graph Drawing, volume 4372 of Lecture Notes in
Computer Science, pages 405–416. Springer, 2006.

[106] D. Holten. Hierarchical edge bundles: Visualization of adjacency relations
in hierarchical data. IEEE Transaction on Visualization and Computer
Graphics, 12(5):741–748, 2006.

[107] D. Holten and J. J. van Wijk. Force-directed edge bundling for graph
visualization. Computer Graphics Forum, 28(3):983–990, 2009.

[108] S. Hong, D. Merrick, and H. A. D. do Nascimento. The metro map layout
problem. In Graph Drawing - 12th International Symposium, volume 3383
of Lecture Notes in Computer Science, pages 482–491. Springer, 2004.

[109] S.-H. Hong, P. Eades, G. Liotta, and S.-H. Poon. Fáry’s theorem for
1-planar graphs. In Computing and Combinatorics Conference 2012, vol-
ume 7434 of Lecture Notes in Computer Science, pages 335–346. Springer,
2012.

[110] P. Hui, M. Schaefer, and D. S̆tefankovic̆. Train tracks and confluent
drawings. In Graph Drawing, volume 3383 of Lecture Notes in Computer
Science, pages 318–328. Springer, 2004.

[111] F. Hurtado, M. Korman, M. J. van Kreveld, M. Löffler, V. S. Adinolfi,
R. I. Silveira, and B. Speckmann. Colored spanning graphs for set visual-
ization. In Graph Drawing - 21st International Symposium, volume 8242
of Lecture Notes in Computer Science, pages 280–291. Springer, 2013.

[112] F. W. Hwang, D. S. Richards, and P. Winter. The Steiner tree problem.
Annals of Discrete Mathematics, (53), 1992.

[113] IBM Deutschland GmbH. Logo. Website. http://www.ibm.com/de/de
(accessed February 2015).

[114] D. S. Johnson and H. O. Pollak. Hypergraph planarity and the complexity
of drawing Venn diagrams. Journal of Graph Theory, 11(3):309–325,
1987.

[115] T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Information Processing Letters, 31(1):7–15, 1989.

[116] B. Katz, M. Krug, I. Rutter, and A. Wolff. Manhattan-geodesic embed-
ding of planar graphs. In Graph Drawing, 17th International Symposium,
GD 2009, pages 207–218, 2009.

228 Bibliography

[117] M. Kaufmann, M. J. van Kreveld, and B. Speckmann. Subdivision draw-
ings of hypergraphs. In Graph Drawing - 16th International Symposium,
pages 396–407, 2008.

[118] M. Kaufmann and D. Wagner, editors. Drawing Graphs, Methods and
Models, volume 2025 of Lecture Notes in Computer Science. Springer,
2001.

[119] P. Kindermann and J. Spoerhase. Private communication, March 2012.

[120] B. Klemz, T. Mchedlidze, and M. Nöllenburg. Minimum tree supports for
hypergraphs and low-concurrency euler diagrams. In 14th Scandinavian
Symposium and Workshops on Algorithm Theory, pages 265–276, 2014.

[121] D. E. Knuth. Computer-drawn flowcharts. Commununications of the
ACM, 6(9):555–563, 1963.

[122] D. E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.):
Fundamental Algorithms. Addison Wesley Longman Publishing Co., Inc.,
1997.

[123] S. G. Kobourov. Spring embedders and force directed graph drawing
algorithms. CoRR, abs/1201.3011, 2012.

[124] S. G. Kobourov. Handbook of Graph Drawing and Visualization, chapter
Force-Directed Drawing Algorithms. CRC Press, 2013.

[125] K. Koffka. Principles of Gestalt Psychology. International library of
psychology, philosophy and scientific method. Routledge, 1999.

[126] L. T. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner
trees. Acta Informatica, 15:141–145, 1981.

[127] M. R. Kramer and J. van Leeuwen. The complexity of wire–routing and
finding minimum area layouts for arbitrary vlsi circuits. In Advances in
Computing Research, pages 2–129, 1984.

[128] M. Kurowski. A 1.235n lower bound on the number of points needed to
draw all n-vertex planar graphs. Information Processing Letters, 92(2):95
– 98, 2004.

[129] A. Lauer. Kräftebasierter Layoutalgorithmus für Partial Edge Drawings.
Bachelor’s thesis, Universität Tübingen, Mai 2014.

[130] B. Lee, C. Plaisant, C. S. Parr, J.-D. Fekete, and N. Henry. Task taxon-
omy for graph visualization. In Proceedings of the 2006 AVI Workshop
on BEyond Time and Errors: Novel Evaluation Methods for Information
Visualization, BELIV ’06, pages 1–5. ACM, 2006.

[131] S. Leibßle. Evaluation von Partial Edge Drawings. Bachelor’s thesis,
Universität Tübingen, April 2015.

Bibliography 229

[132] T. Lengauer. VLSI Theory. In Handbook of Theoretical Computer Sci-
ence, Volume A: Algorithms and Complexity (A), pages 835–868. 1990.

[133] M. Löffler and M. Nöllenburg. Planar lombardi drawings of outer-
paths. volume 7704 of Lecture Notes in Computer Science, pages 561–562.
Springer, 2012.

[134] D. Lichtenstein. Planar formulae and their uses. SIAM Journal on Com-
puting, 11(2):329–343, 1982.

[135] L. Lovász. Coverings and colorings of hypergraphs. Proceedings of the
4th Southeastern Conference on Combinatorics, Graph Theory and Com-
puting, Utilitas Mathematica, pages 3–12, 1973.

[136] R. Mazza. Introduction to Information Visualization. Springer Publishing
Company, Incorporated, 1st edition, 2009.

[137] W. Meulemans, N. H. Riche, B. Speckmann, B. Alper, and T. Dwyer.
KelpFusion: A hybrid set visualization technique. Visualization and
Computer Graphics, IEEE Transactions on, 19(11):1846–1858, 2013.

[138] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and
the mental map. Journal of Visual Languages and Computing, 6(2):183–
210, 1995.

[139] B. Mohar. Open problem garden. Website. http://garden.irmacs.sfu.ca
(accessed August 2011).

[140] P. Moore and C. Fitz. Using gestalt theory to teach document design
and graphics. Technical Communication Quarterly, 2(4):389–410, 1993.

[141] T. More. On the construction of Venn diagrams. Journal of Symbolic
Logic, 24(4):303–304, 1959.

[142] M. Mucha and P. Sankowski. Maximum matchings in planar graphs via
Gaussian elimination. Algorithmica, 45(1):3–20, 2006.

[143] W. Mulzer and G. Rote. Minimum-weight triangulation is NP-hard. Jour-
nal of the ACM, 55(2), 2008.

[144] T. Nishizeki and N. Chiba. Planar Graphs: Theory and Algorithms,
Annals of Discrete Mathematics. Elsevier Science Publishing Company,
Inc. New York, 1988.

[145] T. Nishizeki and M. S. Rahman. Planar Graph Drawing. World Scientific,
2004.

[146] J. Pach. Every graph admits an unambiguous bold drawing. In Graph
Drawing 2011, volume 7034 of Lecture Notes in Computer Science, pages
332–342. Springer, 2012.

230 Bibliography

[147] J. Pach and G. Tóth. Graphs drawn with few crossings per edge. Com-
binatorica, 17(3):427–439, 1997.

[148] A. Papakostas and I. G. Tollis. A pairing technique for area-efficient
orthogonal drawings. In Graph Drawing 1996, pages 355–370, 1996.

[149] D. A. Patterson and J. L. Hennessy. Computer Organization and Design:
The Hardware/Software Interface. Morgan Kaufmann Publishers Inc.,
3rd edition, 2007.

[150] D. Peng, N. Lu, W. Chen, and Q. Peng. SideKnot: Revealing relation
patterns for graph visualization. In Proceewdings of the 5th IEEE Pacific
Visualization Symposium, pages 65–72, 2012.

[151] J. P. C. Petersen. Die Theorie der regulären Graphen (the theory of
regular graphs). Acta Mathematica, page 15:193–220, 1891.

[152] A. Pierrot and D. Rossin. 2-stack pushall sortable permutations. CoRR,
abs/1303.4376, 2013.

[153] A. Pierrot and D. Rossin. 2-stack sorting is polynomial. In 31st Interna-
tional Symposium on Theoretical Aspects of Computer Science, volume 25
of LIPIcs, pages 614–626. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2014.

[154] S. Porschen and E. Speckenmeyer. Algorithms for variable-weighted 2-
SAT and dual problems. In Proceedings of the 10th International Con-
ference on Theory Application of Satisfiability Testing, volume 4501 of
Lecture Notes in Computer Science, pages 173–186. Springer, 2007.

[155] F. P. Preparata and M. I. Shamos. Computational Geometry: An Intro-
duction. Springer, 1985.

[156] H. C. Purchase. Which aesthetic has the greatest effect on human un-
derstanding? In Graph Drawing - 5th International Symposium, Lecture
Notes in Computer Science, pages 248–261. Springer, 1997.

[157] H. C. Purchase, D. A. Carrington, and J.-A. Allder. Empirical evalua-
tion of aesthetics-based graph layout. Empirical Software Engineering,
7(3):233–255, 2002.

[158] H. C. Purchase, R. F. Cohen, and M. James. Validating graph drawing
aesthetics. In Graph Drawing 1995, Lecture Notes in Computer Science,
pages 435–446. Springer, 1996.

[159] H. C. Purchase, J. Hamer, M. Nöllenburg, and S. G. Kobourov. On the
usability of lombardi graph drawings. In Graph Drawing - 20th Interna-
tional Symposium, volume 7704 of Lecture Notes in Computer Science,
pages 451–462. Springer, 2012.

Bibliography 231

[160] N. H. Riche and T. Dwyer. Untangling Euler diagrams. Visualization
and Computer Graphics, IEEE Transactions on, 16(6):1090–1099, 2010.

[161] H. N. Riley. The von Neumann architecture of computer systems. Web-
site, 1987. https://www.cpp.edu/˜hnriley/www/VonN.html (accessed
March 2015).

[162] P. J. Rodgers, J. Flower, and G. Stapleton. Introducing 3D Venn and
Euler diagrams. In Proceedings of the 3rd International Workshop on
Euler Diagrams, volume 854 of CEUR Workshop Proceedings, pages 92–
106. CEUR-WS.org, 2012.

[163] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipo-
lar orientations of planar graphs. Discrete & Computational Geometry,
1:343–353, 1986.

[164] A. Rusu, A. J. Fabian, R. Jianu, and A. Rusu. Using the gestalt principle
of closure to alleviate the edge crossing problem in graph drawings. 0:488–
493, 2011.

[165] P. Schnabel. Computer-Architektur, Elektronik Kompendium. Web-
site. http://www.elektronik-kompendium.de/sites/com/1309261.htm
(accessed March 2015).

[166] W. Schnyder. Embedding planar graphs on the grid. In Proceedings of
the first annual ACM-SIAM symposium on Discrete algorithms, SODA
’90, pages 138–148, 1990.

[167] B. Shneiderman and B. B. Bederson. The Craft of Information Visual-
ization: Readings and Reflections. Morgan Kaufmann Publishers Inc.,
2003.

[168] P. Simonetto and D. Auber. Visualise undrawable euler diagrams. In IV,
pages 594–599. IEEE Computer Society, 2008.

[169] P. Simonetto, D. Auber, and D. Archambault. Fully automatic visual-
isation of overlapping sets. Computer Graphics Forum, 28(3):967–974,
2009.

[170] S. Smith, R. Smith, and S. Orgill. Qualtrics (private research software
company). Website. http://www.qualtrics.com/ (accessed November
2014).

[171] F. Steinhofer. Der Lombardi Code. Website.
http://daremag.de/2012/06/der-lombardi-code/ (accessed February
2015).

[172] J. A. Storer. On minimal-node-cost planar embeddings. Networks,
14(2):181–212, 1984.

232 Bibliography

[173] K. Sugiyama. Graph drawing and applications for software and knowledge
engineers. Series on software engineering and knowledge engineering.
River Edge, N.J. World Scientific, 2002.

[174] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical system structures. IEEE Transactions on Systems, Man
& Cybernetics, 11(2):109–125, 1981.

[175] A. Suk and B. Walczak. New bounds on the maximum number of edges
in k-quasi-planar graphs. In Graph Drawing, Lecture Notes in Computer
Science, pages 95–106. Springer, 2013.

[176] M. Sys lo and A. Proskurowski. On halin graphs. In Graph Theory, volume
1018 of Lecture Notes in Mathematics, pages 248–256. Springer, 1983.

[177] R. Tamassia. On embedding a graph in the grid with the minimum
number of bends. SIAM Journal on Computing, 16(3):421–444, 1987.

[178] R. Tamassia and I. Tollis. Planar grid embedding in linear time. IEEE
Transactions on Circuits and Systems, 36(9):1230–1234, 1989.

[179] R. Tamassia and I. G. Tollis. A unified approach a visibility representa-
tion of planar graphs. Discrete & Computational Geometry, 1:321–341,
1986.

[180] R. E. Tarjan. A Note on Finding the Bridges of a Graph. Information
Processing Letters, 2(6):160–161, 1974.

[181] C. Taylor. What cleopatra can tell us about social bpm. Website.
http://www.successfulworkplace.org/2012/01/22/what-cleopatra-can-
tell-us-about-social-bpm-bpm-socialbpm-ces (accessed February 2015).

[182] C. Thomassen. The jordan-schönflies theorem and the classification of
surfaces. Am. Math. Monthly, 99(2):116–130, 1992.

[183] C. D. Thompson. A Complexity Theory for VLSI. PhD thesis, Carnegie-
Mellon University, 1980.

[184] W. T. Tutte. How to draw a graph, proceedings of the london mathe-
matical society, 1963.

[185] M. J. van Kreveld. Bold graph drawings. Computational Geometry,
44(9):499–506, 2011.

[186] A. Verroust and M. Viaud. Ensuring the drawability of extended Euler
diagrams for up to 8 sets. In Diagrammatic Representation and Inference
- 3rd International Conference, Diagrams 2004, volume 2980 of Lecture
Notes in Computer Science, pages 128–141. Springer, 2004.

[187] J. von Neumann. The principles of large-scale computing machines. IEEE
Annals of History of Computing, 10(4):243–256, 1988.

Bibliography 233

[188] C. Ware, H. C. Purchase, L. Colpoys, and M. McGill. Cognitive mea-
surements of graph aesthetics. Information Visualization, 1(2):103–110,
2002.

[189] M. Wertheimer. Untersuchungen zur Lehre von der Gestalt. II. Psycho-
logical ResearchVol. 4, No. 1, pages 301–350, 1923.

[190] S. K. Wismath. Characterizing bar line-of-sight graphs. In Proceedings
of the First Annual Symposium on Computational Geometry, SCG ’85,
pages 147–152. ACM, 1985.

[191] A. Wolff. Handbook of Graph Drawing and Visualization, chapter Graph
Drawing and Cartography. CRC Press, 2013.

[192] T. Young. On the Theory of Light and Colours, volume 92 of Bakerian
Lecture. W. Bulmer & Company, 1802.

[193] yWorks GmbH. yFiles graph library. Website. http://www.yworks.com
(accessed February 2015).

[194] H. Zhou, P. Xu, X. Yuan, and H. Qu. Edge bundling in information
visualization. Tsinghua Science and Technology, 18(2):145–156, 2013.

[195] X. Zhou and T. Nishizeki. Algorithm for the cost edge-coloring of trees.
Journal of Combinatorial Optimization, 8(1):97–108, 2004.

Publications of the Author

[196] P. Angelini, T. Bruckdorfer, M. Chiesa, F. Frati, M. Kaufmann, and
C. Squarcella. On the area requirements of Euclidean minimum spanning
trees. In Algorithms and Data Structures - 12th International Symposium,
WADS 2011, volume 6844 of Lecture Notes in Computer Science, pages
25–36. Springer, 2011.

[197] P. Angelini, T. Bruckdorfer, M. Chiesa, F. Frati, M. Kaufmann, and
C. Squarcella. On the area requirements of Euclidean minimum spanning
trees. Computational Geometry, 47(2):200–213, 2014.

[198] P. Angelini, T. Bruckdorfer, M. Kaufmann, and T. Mchedlidze. A uni-
versal point set for 2-outerplanar graphs. In Graph Drawing and Network
Visualization - 23rd International Symposium, pages 409–422, 2015.

[199] M. A. Bekos, T. Bruckdorfer, M. Kaufmann, and C. N. Raftopoulou. 1-
planar graphs have constant book thickness. In 23rd Annual European
Symposium on Algorithms, Lecture Notes in Computer Science. Springer,
to appear 2015.

[200] T. Bruckdorfer, S. Cornelsen, C. Gutwenger, M. Kaufmann, F. Montec-
chiani, M. Nöllenburg, and A. Wolff. Progress on partial edge drawings.
In Graph Drawing 2012, Lecture Notes in Computer Science, pages 67–78,
2012.

[201] T. Bruckdorfer, S. Cornelsen, C. Gutwenger, M. Kaufmann, F. Montec-
chiani, M. Nöllenburg, and A. Wolff. Progress on partial edge drawings.
CoRR, abs/1209.0830, 2012.

[202] T. Bruckdorfer, S. Felsner, and M. Kaufmann. On the characterization
of plane bus graphs. In CIAC 2013, pages 73–84. Springer, 2013.

[203] T. Bruckdorfer, S. Felsner, and M. Kaufmann. Planar bus graphs, sub-
mitted for publication 2015.

[204] T. Bruckdorfer and M. Kaufmann. Mad at edge crossings? Break the
edges! In Proceedings of the 6th International Conference on Fun with

235

236 Bibliography

Algorithms, volume 7288 of Lecture Notes in Computer Science, pages
40–50. Springer, 2012.

[205] T. Bruckdorfer, M. Kaufmann, S. G. Kobourov, and S. Pupyrev. On
embeddability of buses in point sets. In Graph Drawing and Network
Visualization - 23rd International Symposium, pages 395–408, 2015.

[206] T. Bruckdorfer, M. Kaufmann, and A. Lauer. A Practical Approach
for 1/4-SHPEDs. In IISA 2015, The 6th International Conference on
Information, Intelligence, Systems and Applications, 2015.

[207] T. Bruckdorfer, M. Kaufmann, and F. Montecchiani. 1-bend orthogonal
partial edge drawing. Journal of Graph Algorithms and Applications,
18(1):111–131, 2014.

	1 Introduction
	2 Basics of Graph Drawing
	2.1 Graphs, Drawings and Embeddings
	2.2 Aesthetic Criterias and Drawing Conventions
	2.3 Hypergraphs
	2.4 Force-Directed Algorithms
	2.5 Orthogonal Drawings

	I Partial Edge Drawings (PEDs)
	3 Introduction
	3.1 History of PED

	4 PEDs for Graphs
	4.1 Formal Concept
	4.2 Graphs Admitting 1/4-SHPEDs
	4.2.1 Complete Graphs
	4.2.2 A Sufficient Condition
	4.2.3 Powers of Triangular Grids
	4.2.4 Complete Bipartite Graphs
	4.2.5 Graphs of Bounded Bandwidth

	4.3 Graphs Not Admitting 1/4-SHPEDs
	4.3.1 The Main Argument
	4.3.2 The Middle Strip
	4.3.3 The Middle Part of the Bottom Strip
	4.3.4 The Left and the Right Part of the Upper Strip
	4.3.5 The (1/4 1/4)-Squares Cl, Cr, and Ct

	4.4 1/4-SHPED Spring Embedder
	4.4.1 Introduction
	4.4.2 Preliminaries
	4.4.3 The Algorithm
	4.4.4 Experimental Evaluation

	4.5 1/4-SHPED User Study
	4.5.1 Introduction
	4.5.2 Design
	4.5.3 Results
	4.5.4 Discussion

	4.6 Summary and Future Work

	5 PEDs for Graphs with Fixed Vertex Positions
	5.1 Definitions and Basic Results
	5.2 Nearly Complete PEDs
	5.3 Maximal SPEDs
	5.3.1 NP-hardness
	5.3.2 Erasing Ink in Arbitrary Graph Drawings
	5.3.3 maxPEDs

	5.4 Summary and Future Work

	6 PEDs for Orthogonal 1-bend Drawings
	6.1 Definitions
	6.2 1-bend OPEDs and 1-bend HOPEDs
	6.3 1-bend SHOPEDs for Graphs of Maximum Degree 3
	6.4 1-bend SHOPEDs for Graphs of Maximum Degree 4
	6.5 Summary and Future Work

	7 Short Conclusion on PEDs

	II Bus Realizations
	8 Introduction
	8.1 Related Work

	9 Bus Graphs in Two Dimensions
	9.1 Necessary Properties
	9.2 Maximal Plane Bus Graphs
	9.3 Planar Realizations
	9.4 Non-Maximal Plane Bus Graphs
	9.5 Embedding Missing – SPQR-Trees
	9.6 The Algorithm
	9.6.1 Connector Vertices as Poles
	9.6.2 Simply Connected Inputs

	9.7 Non-Planar Bus Graphs
	9.8 Summary and Future Work

	10 Bus Graphs in One Dimension
	10.1 Definitions and Basic Results
	10.2 An ILP
	10.3 Efficiently Solvable Variants
	10.3.1 -BEP
	10.3.2 (, L)-BEP
	10.3.3 Diagonal BEP

	10.4 NP-Completeness
	10.5 Summary and Future Work

	11 Short Conclusion on Bus Realizations

	III Universal Point Set (UPS)
	12 Introduction
	12.1 Related Work

	13 UPS for 2-Outerplanar Graphs
	13.1 Preliminaries and Definitions
	13.2 Inner-Triangulated 2-Outerplanar Graphs with Forest
	13.2.1 Construction of the Universal Point Set
	13.2.2 Labeling the Graph
	13.2.3 Embedding on the Point Set

	13.3 2-Outerplanar Graphs with Forest
	13.3.1 Extending the Universal Point Set
	13.3.2 Modifying and Labeling the Graph
	13.3.3 Transformation of the Embedding

	13.4 General 2-Outerplanar Graphs

	14 Short Conclusion on UPS

	IV Conclusions
	15 Main Results
	16 Future Work
	Bibliography
	Publications of the Author

