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Chapter 1 Introduction

Several brain areas are capable of reorganization after injury though the extent and

limits of reorganization differ from area to area. Studying the visual system has several

advantages: 1) its precise topography increases the sensitivity and specificity of

reorganization measurements, 2) the background information that exists about the

connectivity pattern and function of visual areas permits the formulation of precise

hypotheses about the mechanism of recovery. Understanding the potential for plasticity

inherent in different processing levels of the adult visual has potential implications for

the rehabilitation of visual system disorders.

The aim of this dissertation is to study whether and how much the visual cortex changes

following injury at different levels of the visual system. Damage at any level of the visual

system induces changes in anatomy, connectivity and function throughout the rest of

the system. Using fMRI we have the advantage of observing changes over the entire

brain that enables comparisons of how different areas reorganize following lesions.

Chapter 2 provides a brief overview of our work, which is described in detail in the

original papers and manuscripts contained in the second part of this thesis.

Chapter 3 focuses on plasticity after damage of the first relay of the visual system, the

retina. First a major cause of blindness in human, macular degeneration is introduced,

followed by our study on a rhesus macaque with naturally occurring bilateral macular

dystrophy. Then results are presented mapping visual cortical organization under two

conditions: 1) naturally occurring chronic macular degeneration and 2) laser induced

retinal lesions (data from the literature) [1]. Chapter 4 concentrates on studying visual

cortical organization after damage of the major entry point of cortical visual processing,

the primary visual cortex (V1). Despite the importance of V1 as a relay of information to

extrastriate cortex, visual performance does not always degrade completely following

V1 damage. This intriguing phenomenon, called “blindsight,” is described here. Later in

this chapter, studies of visual cortex organization following V1 lesions are critically
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reviewed. In Chapter 5, I discuss select studies of plasticity after extrastriate cortex

injury, as well as plasticity that occurs with training in subjects with healthy visual

system. At the end, I summarize our findings and put them in context in the literature.
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Chapter 2 Brief overview of papers

2.1 Detailed functional and structural characterization of a macular

lesion in a rhesus macaque

In this study we present detailed structural and functional findings of a rhesus macaque

suffering from a naturally occurring bilateral macular dystrophy, partial optic atrophy and

corresponding reduction of central V1 signals in visual fMRI experiments [2]. Detailed

structural and functional examinations in the affected animal and a healthy macaque of

similar age were performed. Structural assessment showed a symmetric macular

dystrophy combined with reduced vascularization and partial optic nerve atrophy in the

otherwise healthy animal. Functional deficits reflected the loss of central retinal function.

Altered macular morphology corresponded to a preferential reduction of central signals

in the multifocal electroretinography and to a specific attenuation of cone-derived

responses in the Ganzfeld electroretinography, while rod function remained normal.

In conclusion, we provided detailed characterization of a primate macular disorder. This

study served to stimulate awareness and further investigation in primates with naturally

occurring macular disorders. Identifying a primate animal model of juvenile macular

degeneration would be useful in facilitating the preclinical development of therapeutic

strategies.

2.2 Visual Cortex Organization in a Macaque Monkey with Macular

Degeneration

The visual field is retinotopically represented in early visual areas. It has been

suggested that when adult primary visual cortex (V1) is deprived of normal retinal input,

it is capable of large-scale reorganization, with neurons inside the lesion projection zone
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(LPZ) being visually driven by inputs from intact retinal regions. Early functional

magnetic resonance imaging (fMRI) studies in humans with macular degeneration (MD)

report more than 1cm spread of activity inside the LPZ border, whereas recent results

report no shift of the LPZ border [1]. Here, we used fMRI population receptive field

measurements to study, for the first time, the visual cortex organization of one macaque

monkey with MD and to compare it with normal controls [3]. Our results showed that the

border of the V1 LPZ remained stable suggesting that the deafferented area V1 zone of

the MD animal has limited capacity for reorganization. Interestingly we found that V5/MT

has a higher potential for reorganization after macular degeneration than earlier visual

cortex.

2.3 Macaque area V2/V3 organization following homonymous retinal

lesions

A major problem in neuroscience is to understand the capacity of the adult visual

system for plasticity. In particular, plasticity of the primary visual cortex (V1) after retinal

lesions has been extensively investigated by numerous studies. In contrast,

reorganization of extrastriate areas following retinal lesions is less well studied. Here,

we used fMRI to study reorganization of visual areas V2/V3 following permanent

binocular retinal lesions in 4 adult macaque monkeys [4]. Our results indicate that V2/V3

of adult macaque monkeys has a marked capacity for reorganization following retinal

lesions.

2.4 Population receptive field analysis of the primary visual cortex

complements perimetry in patients with homonymous visual field

defects
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Injury to the primary visual cortex (V1) typically leads to loss of conscious vision in the

corresponding, homonymous region of the contralateral visual hemi-field (scotoma).

Several studies suggest that V1 is highly plastic after injury to the visual pathways,

whereas others have called this conclusion into question. We used functional magnetic

resonance imaging (fMRI) to measure area V1 population receptive field (pRF)

properties in five patients with partial or complete quadrantic visual field loss as a result

of partial V1 or optic radiation lesions [5]. Comparisons were made with healthy controls

deprived of visual stimulation in one quadrant “artificial scotoma”. We observed no

large-scale changes in spared V1 topography. However limited reorganization was

manifested in some patients by a small shift in the pRF centers toward the border of the

scotoma, and a slight increase in V1 pRF sizes near the border of the scotoma as well

as in the V1 of the contralesional hemisphere.



12

Chapter 3 Plasticity after retinal damage

3.1 Macular degeneration

Macular degeneration is a major cause of blindness and has enormous socioeconomic

impact [6]. It is a medical condition that usually affects older adults (age-related macular

degeneration, or AMD) and results in a loss of vision in the center of visual field

because of damage to the retina. Apart from AMD, there are several macular

dystrophies that can manifest earlier in life, i.e. the juvenile forms of macular

degeneration (JMD) [3]. In subjects with bilateral macular degeneration, the foveal

confluence and adjacent cortex is typically deprived of its normal input as a result of

damage to the central retina. In humans, any form of macular degeneration results in

significant morbidity for the patient, particularly since there are limited therapeutic

options available. These macular dystrophies often result in profound visual disability as

the central visual input is crucial for reading, face recognition and other key tasks of

everyday life[6]. Patients who suffer from macular damage typically spontaneously

develop one or more alternative retinal locus that lies in the intact peripheral part of the

retina for fixation, called preferred retinal locus (PRL) [7]. Human subjects suffering from

macular degeneration exhibit perceptual filling-in of their blind visual field as well as an

associated distortion of the visual space [8,9,10,11].

Non-human primates, like the rhesus macaque, proved over the years to be ideal

models for studying the pathophysiological processes of aging and retinal disease.

Prominent examples are the studies on MD. Common features of MD such as altered

pigment distribution, window defects due to retinal pigment epithelial atrophy, soft

drusen and changes of Bruch’s membrane structure can all be found reliably in elderly

monkeys (Macaca mulatta) where progression, ultrastructure and functional losses are

comparable to those found in humans [12,13].
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We studied a rhesus macaque (Macaca mulatta) suffering from a chronic MD condition

approximating human juvenile macular degeneration (JMD) [2], which is thought to have

more capacity of plasticity than the case of AMD [14,15,16,17]. Before studying visual

cortical plasticity on this monkey, and in order to clarify the underlying pathophysiology,

we carried out a detailed in vivo characterization of the structural and functional aspects

of this condition using state of the art clinical diagnostic protocols including OCT

imaging, fluorescence and indocyanine green angiography and multifocal ERG [2].

Structural assessment showed a symmetric macular dystrophy combined with reduced

vascularization and partial optic nerve atrophy in the otherwise healthy animal.

Functional deficits reflect the loss of central retinal function.

3.2 Visual cortex (re)-organization after macular degeneration

Early visual areas have a topographically precise, retinotopic, representation of the

visual field [18,19,20,21,22]. These maps remain stable over time in healthy adults but

are thought to be plastic following injury of the visual pathways

[14,15,16,17,23,24,25,26,27,28,29]. Understanding the capacity of the visual system for

reorganization following injury is an important step in the long-term effort to design

treatments aimed at enhancing the ability of the visual system to recover after injury.

Several groups have used fMRI to study visual cortex reorganization in a human

patients suffered from macular degeneration. The first fMRI study was from a 60 year

old female subject with age-related macular degeneration. They found a large

unresponsive zone in the V1 lesion project zone (LPZ) and large-scale reorganization in

V1 to be absent [30]. Several subsequent fMRI case studies on subjects with binocular

macular lesions suggested that human primary visual cortex deprived of its normal

retinal input by MD undergoes large-scale reorganization spanning centimeters of

cortical space [14,15,16,17]. The largest human fMRI study surveying MD patients to

date [31], however, recently reported the lack of large-scale reorganization in V1 [1]. To
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understand the difference between the results, Masuda et al. used a passive viewing

condition and a stimulus-related judgment task. They found that V1 responses into the

LPZ happened only under the stimulus related judgment task condition, suggesting that

it may be mediated by cortical feedback. They proposed that the reported

reorganization is caused by cortical signals initiated by the task demands, and not by

reorganization of the feed-forward pathways carrying the retinal stimulation [32].

In [3] we used fMRI population receptive field measurements [33] to study cortical

reorganization in a macaque monkey suffering from a chronic MD condition

approximating human juvenile macular degeneration (JMD) [2]. We compared our

results with both the human fMRI and the macaque fMRI & electrophysiology literature.

In this macaque subject with juvenile macular degeneration we found that area area V1

showed at best limited reorganization, in agreement with what [31] found in human MD.

Area V2 also showed limited reorganization. In contrast, extrastriate area V5/MT

showed considerably more capacity for reorganization: visually modulated MT voxles

with ectopic pRFs cover a much larger cortical area than expected in the MD animal

compared to “artificial scotoma” controls (by occluding the central part of the visual field).

Area V5/MT could therefore potentially serve as the source of relatively strong feedback

inside the area V1 lesion projection zone. There was also a suggestions that area V3

could be upregulated in the MD animal, but we did not have enough data to make a

definitive statement.

3.3 Extrastriate cortex (re)-organization following induced retinal

lesions

Human studies of cortical plasticity following retinal lesions have some disadvantages.

For example, because retinal histology cannot be obtained in living subjects, we cannot

exclude the possibility that retinal pathology is incomplete or patchy, or that the retinal

lesion borders may not be abrupt but tapering. Laser induced retinal lesions in animals

can be better standardized. Moreover, by inducing the lesion in adulthood we can
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bypass the developmental period of plasticity, which cannot be done for juvenile

macular degeneration.

Several groups have studied the capacity of the visual cortex for reorganization

following induced retinal lesions in adult animals. The majority of electrophysiology

studies after homonymous retinal lesions in adult cats and macaques reported that area

V1 exhibits a considerable degree of plasticity into adulthood [23,24,25,28,34]. However,

recent studies using cytochrome oxidase [35], electrophysiology [36] and fMRI [1] have

put this result to question, and suggest that post lesion responses inside the V1 lesion

projection zone (LPZ) are weak or absent. In a recent review, Wandell and Smirnakis

[37] suggested that electrophysiological recording selection bias explains the disparity

of the results.

Less is known about the capacity of extrastriate cortex to reorganize following retinal

lesions. Reports from the literature of filling-in suggest that under the right conditions

visual responsiveness in higher areas can be seen in cortical locations that are far away

from the visual stimulus. De Weerd et. al. showed that the responses of extrastriate

V2/V3 neurons whose receptive fields are contained inside an area devoid of

stimulation (artificial scotoma) increase within seconds to reach a level comparable to

that elicited by direct stimulation [38]. Enhancements of these pathways provide a

possible substrate that might be able to support reorganization.

Here, we extend these results by using fMRI to study the extent to which areas V2/V3

reorganize following permanent bilateral and homonymous retinal lesions induced by

photocoagulation in adult macaques [4]. We found that a few hours after the lesion,

about half of the area V2/V3 lesion projection zone (LPZ) could already be modulated

by visual stimuli. Furthermore, the voxels that did not show visual modulation on the day

of the lesion could be visually modulated 2 weeks later, and the mean modulation

strength remained approximately stable thereafter for the duration of our observations

(4-5 months). The distribution of eccentricities of visually modulated voxels inside the

V2/V3 LPZ spanned a wider range than expected post-lesion, suggesting that neurons
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inside the LPZ reorganize by receiving input either from the foveal or the peripheral

border of the LPZ, depending on proximity. Overall, area V2/V3 of adult rhesus

macaques displays a significant capacity for reorganization following retinal lesions that

exceeds the capacity of area V1 for reorganization, as well as the range of filling-in

exhibited in V2/V3 by the presentation of transient stimuli.
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Chapter 4 Plasticity after V1 injury

4.1 Blindsight: residual vision after V1 damage

Blindsight is defined as residual visual capacity following lesions to V1 [39,40]. Despite

area V1 being the chief relay of visual input to all exstrastiate visual areas, a series of

studies performed over the last 25 years has provided strong evidence that subjects still

possess considerable residual visual capacity, including residual visual motion, form

and wavelength sensitivity, in the blind part of their visual field following dense area V1

lesions [40,41,42,43,44,45,46,47,48]. These findings have also been replicated in

monkeys with V1 injury [49,50]. This phenomenon has been termed “blindsight” to

reflect the fact that the residual visual perceptual capacity remaining following V1

lesions is often associated with the absence of visual awareness.

“Blindsight” is generally assumed to be mediated by extra-geniculo-striate retinofugal

pathways and modulated by feedback from higher areas [49,51,52,53,54,55], but the

precise mechanism has not been deciphered. Therefore it is important to identify

candidate areas that might be involved in the residual vision observed in the

phenomenon of ‘‘blindsight’’.

4.2 Spared V1 (re)-organization after partial V1 lesions

Visual responsiveness of higher cortical visual areas is dependent on V1 input, and it

has been shown that transient inactivation of area V1 eliminates more than 95% of

visually driven activity seen in retinotopically corresponding locations of extrastriate

areas [56,57,58].
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However, several extrastriate visual cortices have shown activity with the absence of V1.

MT neurons, following the lesion of V1, were found to maintain active, both in monkeys

and humans [51,59]. In area V2 and V3, visually driven activity were reported to persists

in a patient suffering from hemianopia [60], and macaques with chronic V1 lesion [61].

A more debated issue is whether the adult V1 is able to reorganize adjacent to regions

of V1 injury or following lesions of the optic radiation. Enlarged receptive fields have

been found in areas surrounding chronic V1 lesions in cats [62,63,64], and visual point

spread functions were seen to enlarge over time in the areas surrounding focal V1

lesions in kittens [65]. Smaller, short term changes (2 d after the lesion) have been

reported as well [66]. As expected, reorganization is more extensive in young animals

[65,67] compared with adults [68].

A recent study in an adult human subject suggested that large-scale reorganization

occurs in area V1 after partial de-afferentiation by an optic radiation lesion [69].

However, the cortical measures of reorganization used were not quantitative, and the

study lacked the important control of comparison with normal subjects subjected to

transient visual deprivation. We measured how spared V1 cortex covers the visual field

in five human subjects with chronic V1 injury [5]. We derived detailed retinotopic maps

and visual field coverage maps for the spared V1 area of each patient. Comparisons

were made with healthy controls deprived of visual stimulation in one quadrant. We

observed no large-scale changes in spared-V1 topography as the V1/V2 border

remained stable, and pRF eccentricity versus cortical-distance plots were similar to

those of controls. However, the distribution of pRF centers in spared-V1 was shifted

slightly toward the scotoma border in 2 of 5 patients compared with AS controls; pRF

size in spared-V1 was slightly increased in patients near the scotoma border; and pRF

size in the contra-lesional hemisphere was slightly increased compared with AS controls.

These observations suggest the existence of limited reorganization.
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Chapter 5 Summary

5.1 Plasticity after extrastriate cortex damage

Damage to higher-level, extrastriate visual cortex causes more subtle, area-specific

abnormalities of visual perception without frank blindness. In humans, temporal cortex

lesions predominantly cause abnormalities of face perception (prosopagnosia) and

perception of complex objects and shapes [70,71]. Color vision abnormalities usually

result from damage to the fusiform and lingual gyri [72,73,74]. Damage to human V5 or

the MT + complex, causes deficits of motion perception, often termed motion blindness

[75,76,77]. Improvement has been reported following lesions of area V4 [78,79] and

area MT/MST in primates [80,81,82,83,84]. In most of the studies involving V4 or MT

lesions, improvements were specific to the class of visual stimuli or retinotopic locations

trained.

5.2 Plasticity in healthy visual system

Healthy visual systems typically remain plastic in response to changes in environmental

inputs throughout the lifespan. A large number of studies showed changes for

fundamental stimulus features such as orientation [85,86,87], spatial frequency [86],

direction of motion [88], etc can occur with perceptual training. This notion is supported

by electrophysiological recordings in monkeys [89,90] as well as fMRI [91,92] and EEG

[93] studies in humans. In primate area V4, electrophysiological recordings

demonstrated significant changes in both neuronal responsiveness and orientation

tuning with perceptual learning [94]. Neurons in area V5/MT change direction selectivity

by visual motion discrimination training [95]. In primate inferotemporal (IT) cortex,

training with particular stimulus categories alters the neuronal representation of

diagnostic features for the trained categories [96].
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5.3 Comparison of visual plasticity

Damage at different levels of the visual system can induce anatomical and functional

changes throughout the rest of the system.

In area V1 of monkeys with induced or naturally occurring retinal injury [1,3], we found

limited reorganization. The border of the V1 LPZ remained stable in both studies. In the

case of the fMRI study in human subjects with area V1 lesions, we found that the

topography of spared regions of area V1 as well as the V1/V2 border remained stable,

suggesting that spared area V1 exhibits at best limited reorganization [5].

In contrast, in both monkey fMRI studies of ours [3,4] we found considerable

reorganization in extrastriate areas following acute retinal injury or macular

degeneration. However, there are also differences between these two studies: V2/V3

areas seemed to be filled in after acute retinal lesions; yet in the macular degeneration

case area V2 showed limited reorganization, area V3 had the tendency to be

upregulated, but we cannot make a definitive statement. The size of the lesion may be

the difference between the two cases. The lesion in the MD case is larger, especially

the fovea is damaged. Perhaps this makes earlier visual areas like V2 more difficult to

reorganize. Conversely area V5/MT appears to reorganize after retinal lesions in the

MD case. But we have not looked in other cases. It may be that reorganization is

amplified if there are more than one processing steps between the area of the lesion

and the area where reorganization is measured.

Prior studies in humans and monkeys with V1 lesions also suggest that visually driven

BOLD responses persist inside the lesion projection zone in extrastriate areas of V2/V3

and V5/MT [51,59,60,61].
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Taken together, these studies show the same trend, which is that extrastriate areas

have more capacity for plasticity than V1. In general, the higher one area is in the visual

hierarchy, the more sources of input it has. One possible explanation is that when one

source of input is eliminated, the others may compensate. It is also possible however

that the intrinsic capacity of extrastriate areas for local reorganization is greater.

It is interesting to notice the differences between the plasticity seen in area V2/V3

following a retinal lesion [4] versus following an area V1 lesion [61]. In the case of a

retinal lesion of limited extent [4], activity inside V2/V3 LPZ returns to nearly normal

levels. By contrast after similar size V1 lesions, V2/V3 activity only returns to ~20-30%

of prior activity [61]. This may appear to be counterintuitive, as the retinal lesion cuts off

all access to the visual input that corresponds to the lesioned area, whereas V1 lesions

leave potential bypassing pathways through LGN, the superior colliculus and the

pulvinar intact. This suggests that the existence of intact area V1 and its upstream

connections are important for the reorganization of areas V2, V3.

More importantly, the mechanisms likely underlying these two types of plasticities are

fundamentally different. In the case of retinal lesions, as information is lost from its

origin, we propose the signal arises from surrounding regions [3,4]. Whereas in V1

lesions, it seems that the signal could also arise from subcortical areas such as LGN

[50]. Therefore, perhaps one type of plasticity is more akin to “filling-in” in subjects

suffering from macular degeneration, the other to “blindsight” in patients with V1

damage.
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Abbreviations

fMRI functional magnetic resonance imaging

BOLD blood oxygen level dependent

pRF population receptive field

V1 primary visual cortex

V2/V3 secondary, third visual cortex

V5/MT middle temporal, visual area implicated in the processing of motion

AS artificial scotoma

LPZ lesion projection zone

AMD/JMD age related, juvenile macular degeneration

PRL preferred retinal locus

OCT optical coherence tomography

ERG electroretinography
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Abstract
Purpose Animal models are powerful tools to
broaden our understanding of disease mechanisms

and to develop future treatment strategies. Here we

present detailed structural and functional findings of a
rhesus macaque suffering from a naturally occurring

bilateral macular dystrophy (BMD), partial optic

atrophy and corresponding reduction of central V1

signals in visual fMRI experiments when compared to
data in a healthy macaque (CTRL) of similar age.

Methods Retinal imaging included infrared and auto-

fluorescence recordings, fluorescein and indocyanine
green angiography and spectral domain optical coher-

ence tomography (OCT) on the Spectralis HRA ? OCT
platform. Electroretinography included multifocal and

Ganzfeld-ERG recordings. Animals were killed and

eyes analyzed by immunohistochemistry.
Results Angiography showed reduced macular vascu-

larization with significantly larger foveal avascular zones

(FAZ) in the affected animal (FAZBMD = 8.85 mm2 vs.
FAZCTRL = 0.32 mm2). OCT showed bilateral thinning
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of the macula within the FAZ (total retinal thickness,

TRTBMD = 174 ± 9 lm)and partialopticnerveatrophy

when compared to control (TRTCTRL = 303 ± 45 lm).
Segmentation analysis revealed that inner retinal layers

were primarily affected (inner retinal thickness,

IRTBMD = 33 ± 9 lm vs. IRTCTRL = 143 ± 45 lm),
while the outer retina essentially maintained its

thickness (ORTBMD = 141 ± 7 lm vs. ORTCTRL =

160 ± 11 lm). Altered macular morphology corre-
sponded to a preferential reduction of central signals in

the multifocal electroretinography and to a specific

attenuation of cone-derived responses in the Ganzfeld
electroretinography, while rod function remained normal.

Conclusion We provided detailed characterization

of a primate macular disorder. This study aims to
stimulate awareness and further investigation in

primates with macular disorders eventually leading

to the identification of a primate animal model and
facilitating the preclinical development of therapeutic

strategies.

Keywords Macular disorder ! Neurodegeneration !
Functional MRI ! Optical coherence tomography !
Electroretinography

Introduction

Nonhuman primates, like the rhesus macaque, proved

over the years to be ideal models for studying the

pathophysiological processes of aging and retinal
disease. Prominent examples are the studies on age-

related macular degeneration (AMD), a blinding

disorder with large socioeconomic impact. Common
features of AMD such as altered pigment distribution,

window defects due to retinal pigment epithelial

atrophy, soft drusen and changes of Bruch‘s mem-
brane structure can all be found reliably in elderly

monkeys (Macaca mulatta) where progression, ultra-

structure and functional losses are comparable to those
found in humans [1, 2].

In humans, any form of macular degeneration

results in significant morbidity for the patient, partic-
ularly since there are still no therapeutic options

available—with the exception of anti-VEGF treatment

in exudative (wet) AMD. Apart from AMD, there is a
group of inherited retinal degenerations that are

frequently seen in human patients. Various forms of

macular dystrophy with different inheritance patterns,

clinical phenotype and rate of progression can
manifest already early in life [3]. These macular

dystrophies often result in profound visual disability

as the central visual input is crucial for reading,
face recognition and other key tasks of everyday

life [4].

Unfortunately, progress in studying the pathogen-
esis, and consequently the development of treatment

options in inherited degenerations has been hampered

by the lack of appropriate animal models. While a
large number of genetically modified rodent and

lapine animal models exist for the study of the visual

system, their applicability is questionable since these
animals do not have a significant central retinal region

comparable to the human and/or primate macula [5].

The retinal structure in rhesus macaques on the other
hand corresponds well to human retinal architecture,

making them an ideal candidate for studying retinal

disorders and for testing the development of new
therapeutic strategies [6].

Here we study in detail the case of a naturally

occurring bilateral macular dystrophy (BMD) in a
rhesus macaque (Macaca mulatta). The visual field

loss in this animal was first detected during functional

magnetic resonance (fMRI) experiments designed to
map its visual cortex. Results from these experiments

demonstrated a central loss of visually driven area V1

activity, which corresponded in extent to the expected
retinotopic projection of the retinal lesion. In order to

explain the lack of foveal responses and to clarify the

underlying pathophysiology, we carried out a detailed
in vivo characterization of the structural and func-

tional aspects of this condition using state-of-the-art

clinical diagnostic protocols including fMRI, Spec-
tralis" HRA ? OCT imaging, fluorescence and indo-

cyanine green angiography and Ganzfeld and

multifocal ERG. To the best of our knowledge, this
is the first presentation of such an unusual macular

lesion and its extensive in vivo characterization in a

primate.

Methods

Ethics statement

Animals were treated in accordance with the recom-

mendations of the Weatherall report (http://www.mrc.
ac.uk/Utilities/Documentrecord/index.htm?d=MRC0
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03440), and all experiments were conducted with
great care to ensure the well-being of the animals.

Specifically, group housing was maintained to

increase quality of life by social interaction and
stimulation for play. Animals were kept in large cages

that allow swinging and jumping, and equipment or

toys were changed frequently. To ameliorate suffer-
ing, high-quality anesthesia procedures were used

during experimentation (described in detail below).

All procedures involving animals were performed
with the approval of the Regierungspraesidium

Tuebingen (Trial No. KY 2/06) and in full compliance

with the guidelines of the local authorities and the
European Community (EUVD 86/609/EEC) for the

care and use of laboratory animals.

Animals

A detailed ophthalmological examination of a rhesus
macaque (Macaca mulatta, male, aged 6 years) with

bilateral macular dystrophy (BMD) was performed,

including a 1-year follow-up. At baseline, three
healthy macaques (two males, aged 9 years; and a

female, aged 6 years) served as control (CTRL).

FMRI experiments were performed on one male, one
female and the BML animal, and retinal imaging

(OCT) and electrophysiological recordings were per-

formed on one male and the BML animal. All animals
were treated in accordance with the recommendations

of the Weatherall report.

Preparation

First, blood samples were taken from both animals
for toxicological and genetic analysis. Then, exper-

iments were performed under general anesthesia

described in detail elsewhere [7]. Briefly, the animals
were premedicated with glycopyrolate (0.01 mg/kg,

intramuscular) and ketamine (15 mg/kg, intramuscu-

lar), and then deep anesthesia was induced by
fentanyl (3 lg/kg), thiopental (5 mg/kg) and succinyl

chloride (3 mg/kg). Anesthesia was maintained with
remifentanil (0.5–2 lg/kg/min) and mivacurium chlo-

ride (3–6 mg/kg/h) to ensure the suppression of eye

movements. Heart rate and blood oxygen saturation
were monitored continuously with a pulse-oxymeter.

Prone position was maintained, and the head was

fixed via stereotax. Wire specula were used for lid
retraction. Pupillary mydriasis was produced by

tropicamide eye drops (Mydriaticum Stulln!, Pharma
Stulln, Germany). During examinations the cornea

was kept well hydrated to provide clear optical media.

Intraocular pressure (IOP) was measured four times
on each eye using a Tono-Pen (Tono-Pen" XL

Applanation Tonometer, Reichert Technologies,

Depew, NY, USA) and averaged.

Functional MRI

FMRI experiments were performed on a 4.7T vertical

scanner (Bruker Biospec, Bruker Biospin GmbH,

Ettlingen, Germany) equipped with 48 mT/m gradi-
ents. Typically, 17 axial slices were acquired with an

eight-segment gradient-echo EPI with field of view

(FOV) 128 9 128 mm2, matrix 128 9 128, slice
thickness 2 mm, flip angle (FA) 40#, echo time (TE)

20 ms and repetition time (TR) 750 ms. For anatom-

ical measurements we used FLASH with the same
FOV 128 9 128 mm2, matrix 256 9 256, slice thick-

ness 2 mm, FA 70# and TE 10 ms. A high-resolution

3D-MDEFT anatomical image with an isotropic
resolution of 0.5 mm was acquired during a separate

session and was used for co-registration with the

FLASH and EPI images. For more details on the fMRI
methods see [7, 8]. Visual stimulation was delivered

monocularly to the left eye by using a custom in-

house–made system that projected the images to MRI-
compatible goggles through a fiberoptic guide with

resolution 640 9 480 pixels. The horizontal field of

view was 30# and the vertical 23. The stimuli consisted
of bar apertures (2# thickness) moving by 1# per

volume acquisition (6 s) over a flickering polar

checkerboard in four different directions (down, right,
up and left). Each fMRI scan included 2 repetitions of

the stimuli, and we acquired 5–7 scans for each

session. Data were analyzed by using the voxel-based
population receptive field (pRF) analysis method

described by Dumoulin et al. [9]. The activity of each

voxel was fit by using a two-dimensional Gaussian
function with three parameters (the visual field spatial

coordinates x, y reflecting the center of the pRF and a
standard deviation reflecting the pRF size). The gray–

white matter boundary was segmented using the high-

resolution 3D-MDEFT anatomical images, and 3D
cortical surface and flat mesh models were created

[10]. Functional activation maps of the explained

variance were thresholded at 0.15 and were overlaid
on the 3D and flat meshes. Activation maps were also
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calculated using other threshold values (not shown)
without significant changes to the map and the border

of the lesion projection zone (LPZ), demonstrating

that activity is changing sharply across the border. The
expected cortical representation of the retinal lesion

was calculated from Tootell et al.’s [11] retinotopic

organization maps of V1 obtained via the 14c-2-deoxy-
D-glucose staining technique, and from electrophysi-

ological cortical magnification measurements M1

(r) = 13r-1.22 [12], or M2 (r) = 15.7 (r ? 1.62)-1

[13], where r is the eccentricity from the center of the

visual field, and M is the magnification factor in

millimeter per degree. Then, the radius D from the
fovea of the representation of the central part of the

visual field in area V1 from eccentricity 1# to

eccentricity E can be calculated by integrating the
magnification factor equation. Cortical distance from

0# to 1# eccentricity was estimated using Df (r) =

7 ln(r ? 0.33) [14].

Retinal imaging

High-resolution spectral domain OCT (SD-OCT) imag-

ing was done in the same session as ERG recordings as

previously described [15–17] using the commercially
available Spectralis" HRA ? OCT device from Hei-

delberg Engineering. For acquisition of scans, a mean of

16 images was calculated with automated alignment of
iterative recordings using the Automated Real Time

mode, thereby increasing the signal-to-noise ratio by a

factor of four [18]. For quantification of retinal dimen-
sions, we used the proprietary software package version

3.1 from Heidelberg Engineering according to the

instructions by the manufacturer. Briefly, the ‘‘measure
distance tool’’ was used to quantify the horizontal extent

of the lesion between the foveola and the ‘‘hard border’’

(i.e., where the retinal thickness stopped to be minimal)
as well as the ‘‘soft border’’ (i.e., where the retinal

thickness reaches normal thickness). For quantification

of retinal thickness, we used the automatic layer
segmentation of the software that identifies the inner-

and outermost border of the retina (inner limiting
membrane to retinal pigment epithelium) and analyzed

the retinal thickness in horizontal cross sections centered

on the foveola at 16 equidistant loci (every 500 lm)
along the length of the scan. Because the built-in

software from Heidelberg Engineering did not reliably

detect the boundaries of the retinal segments, the manual
override function was used to manually correct the layer

segmentation algorithm on every single B-Scan. For en
face retinal imaging and angiography, we used the

Argon laser in the short wavelength range (488 nm with

500 nm barrier filter) for fundus autofluorescence (FAF)
imaging and fluorescein angiography (FA) and the

longer wavelength diode laser at 785 nm (barrier filter at

800 nm) for indocyanine green angiography (ICGA).
Resulting data were exported as 8 bit color bitmap files

and processed in Adobe Photoshop CS3 (Adobe

Systems, San Jose, CA).

Electroretinography (ERG)

After anesthesia was induced and stable eye position

was achieved, Ganzfeld-ERGs were recorded with a

Mini-Ganzfeld-system (Roland Consult GmbH, Bran-
denburg, Germany). The dark-adapted (30-min adap-

tation) ERG protocol consisted of a stimulus intensity

series (seven intensities ranging from 0.0095 to
9.5 cd * s/m2 in 0.5 log unit steps) including the rod

(0.01 cd * s/m2), standard flash (3 cd * s/m2) used

also for evaluation of the oscillatory potentials and a
high-intensity flash (10 cd * s/m2). After 10 min of

light adaptation (background light, 30 cd/m2), phot-

opic single flash and 30-Hz flicker responses were
recorded with a stimulation intensity of 3 cd * s/m2.

All responses were amplified and band-pass filtered

between 0.2 and 300 Hz. Oscillatory potentials were
extracted by band-pass filtering the scotopic responses

to a 3 cd * s/m2 flash between 100 and 300 Hz. All

responses were analyzed by means of a- and b-wave
amplitude and implicit time. Since a set of normal

values was not available, we calculated a BMD/CTRL

ratio for response amplitudes at each step for further
investigation of the proportional changes.

Multifocal ERGs were recorded under photopic

conditions using a modified device of a HRA2 infrared
fundus camera (Heidelberg Engineering, Germany) in

combination with a Roland Consult multifocal ERG-

system. This system allows visualization of the fundus
while simultaneously stimulating the central 30#
retinal area. Since the animals were anesthetized and
artifacts (eye movements and blinking) could be

avoided, a direct fundus-controlled recording and

precise stimulus positioning was possible throughout
the whole measurement. Furthermore, the HRA2

device also provides a correction of spherical refrac-

tive errors from -12 to ?30 diopters without change
of magnification. Although cylindrical refractive
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errors were not ascertained, a sharp image of the retina
could be achieved. The stimulus, presented with a

built-in small black and white CRT monitor, consisted

of 61 hexagonal scaled segments centered in the fovea
and extending over the optic disk. Scaled stimulus

pattern was chosen on the basis of high similarities of

the retinal architecture to human and correct position-
ing of the stimulus pattern during recordings. The

eccentricity of the concentric rings from the center was

estimated on the basis of the 30# retinal image and
stimulus pattern (i.e., from the fovea to the middle of a

representative hexagon in each ring): 2#, 5#, 10# and

15# for rings 2–5, respectively. For test–retest reli-
ability, multifocal ERGs were recorded three times on

each eye, every run consisted of 8 cycles. Responses to

flash stimuli were amplified and band-pass filtered
between 5 and 100 Hz and recorded. An average of the

responses was calculated and analyzed according to

N1-P1 amplitudes and P1 implicit times of ring
averages of the waveforms. Ganzfeld and multifocal

ERGs were recorded using ERG-Jet contact lens

electrodes (Roland Consult GmbH, Brandenburg,
Germany) which were applied to the cornea with

2 % Methocel (hydroxypropyl methylcellulose,

OmniVision GmbH, Germany). Despite the contact
lens electrodes, a sharp image of the retina could be

achieved. Both eyes were tested separately, and the

ERG-Jet electrode of the contralateral (covered) eye
was used as reference. Ground needle electrodes were

placed under the skin of the glabella. Ganzfeld and

multifocal ERG protocols were based on the ISCEV
Standards [19] and were completed before fundus

photography and angiography.

Histology

The animals were tranquilized with ketamine and
killed with an overdose of pentobarbital (60–80 mg/kg

i.v.). They were immediately perfused transcardially

with 0.9 % saline, and the eyes were quickly removed
prior to the perfusion with fixative. The eyes were cut

open and immersion-fixed in 4 % paraformaldehyde
in 0.1 M phosphate buffer (PB, pH 7.4) for 20 min at

room temperature. All procedures were approved by

the local animal care committee and were in accor-
dance with the law for animal experiments issued by

the German government (Tierschutzgesetz).

Following fixation, eyecups were stored in PB with
0.02 % sodium azide. A retinal piece of 3 9 3 mm

from the optic nerve head to the fovea was dissected
from the affected eyecup and from a control eyecup,

cryoprotected in graded sucrose solutions (10, 20 and

30 % in PB) and sectioned vertically (12–18 lm) with
a cryostat. Immunocytochemical labeling was per-

formed using the indirect fluorescence method. Sec-

tions were incubated overnight with primary
antibodies in 3 % normal donkey serum (NDS), 1 %

bovine serum albumin (BSA) and 0.5 % Triton X-100.

After washing in PB, secondary antibodies were
applied for 1 h. These were conjugated to either Cy3

(Dianova) or Alexa TM 488 (Invitrogen).

A rabbit polyclonal antibody against the C-terminal
binding protein 2 (CtBP2, 1:5,000; Synaptic Systems,

Göttingen, Germany) was used to label synaptic

ribbons within the outer and inner plexiform layer,
and to label photoreceptor nuclei in outer nuclear

layer. ON bipolar cells were labeled with a polyclonal

antibody directed against Gc13 that was raised in
rabbit (1:1,000; kind gift from Dr. R. F. Margolskee,

Mount Sinai School of Medicine, New York). Gly-

cinergic amacrine cells were labeled with a polyclonal
antibody directed against the glycine transporter 1,

raised in goat (1:500; Chemicon, Temecula, CA).

Horizontal cells were labeled with a monoclonal
mouse antibody against parvalbumin (1:10,000;

Swant, Bellinzona, Switzerland).

Results

Blood chemical analysis (including blood cell count,

liver, kidney, pancreas function and basic metabolic

panel) of the affected animal revealed no pathological
changes, a standard neurological assessment was within

normal limits except for the central scotoma, and no

abnormalities were noted on a high-resolution anatom-
ical MRI study. There was no evidence for toxic effects

in the animal’s history. IOP measurements were carried

out in both animals, showing IOP levels around the lower
limit of normal values (IOPBMD = 8.5 ± 1 mmHg,

IOPCTRL = 12.5 ± 1.9 mmHg).

Functional MRI

FMRI visual activation maps were measured under

photopic conditions using the pRF method [9] in the

left eye of the BMD animal and two controls. A
comparison between the BMD animal and one of the
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controls is presented in Fig. 1a–d. The second control

showed very similar results as the first one (not
shown). The cortical surface representing the central

portion of the visual field was devoid of significant

visual modulation in the BMD animal. In contrast, the
control animals demonstrated robust activation within

the corresponding V1 area. The distance from the
cortical representation of the fovea to the border where

visually driven activity was first visible in area V1 was

33 mm in the BMD animal. For the control animals,
the cortical distances in V1 from fovea to the

approximate extent of the retinal scotoma of the

BMD animal—10# of eccentricity—were measured as
33 and 32 mm. This agrees well with the estimated

cortical distance that would subtend 0–10# of

eccentricity in area V1 of macaque monkeys, as

determined using cortical magnification measure-
ments from the electrophysiology literature (see

‘‘Methods’’).

Angiography

Prior to fluorescence angiography, we recorded fundus

autofluorescence (FAF) in the control and BMD

animal (supplemental Figure 1). While FAF signal
in the control animal was slightly stronger, there was

no distinct pattern such as a bull’s-eye formation or

any form of hyperfluorescence in the BMD animal.
Fluorescence angiography (Fig. 2a) in the control

animal displayed a regular foveal avascular zone

Fig. 1 Blood-oxygen-level dependence (BOLD) responses of
the BMD and the control (CTRL) monkey. a Reconstructed
surface representing the border of the gray and white matter of
the right hemisphere of the BMD monkey with the fraction of
the explained variance map overlaid thresholded at 0.15 (see
‘‘Methods’’). The map was measured using a moving bar
stimulus presented to the left eye of the BMD animal. The right
eye was closed. b Unfolded flat map of the early visual cortex
displayed in A (see ‘‘Methods’’). The operculum of the monkey
is outlined by the calcarine, the lunate and the inferior occipital
sulcus. The two insets are the BOLD responses of two voxels

selected in the nondeafferented V1 and deafferented V1 of
BMD, respectively. The cortical distance between fovea (yellow
star) and lesion projection zone border in V1 is 33 mm for BMD,
which agrees well with the estimated cortical distances (33 mm
[11], 33.2 mm [12, 14] and 33.1 mm [13, 14]) from fovea to 10#
eccentricity (the approximate radius of retinal involvement in
the BMD subject). c, d Maps corresponding to a, b, respectively,
derived from a control monkey are displayed here for
comparison. The same methods, including explained variance
threshold, were used. BMD bilateral macular dystrophy
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(FAZ) of 0.62 mm diameter and area of 0.32 mm2

[20]. Likewise, systemic perfusion parameters (arm-

retina time, ARTCTRL = 12.4 s) and retinal blood
flow (arteriovenous passage time, AVPCTRL = 2.3 s)

in the control animal were compared well to those

in healthy human subjects [21]. While perfusion
characteristics were similar in the affected animal

(ARTBMD = 11.9 s, AVPBMD = 2.3 s), the diameter

of the FAZ was dramatically increased to 3.73 mm
diameter (8.85 mm2 area) at baseline without signs of

progression at the 1-year follow-up. Background

fluorescence stemming from the choriocapillary net-
work showed an equal distribution over the posterior

pole in the control animal, while displaying a highly

irregular pattern in the early phase and a central

hypofluorescent area at later stages of perfusion in the

affected animal. This was even more pronounced in
the indocyanine green angiography (Fig. 2b), where

late-phase recordings showed a concentric pattern of

hyper- and hypofluorescent rings also found in some
forms of macular dystrophies in humans [22].

Spectral domain optical coherence tomography

Interpolated retinal thickness profiles calculated from

volume scans with 97 B-Scans at 30-lm intervals
(Fig. 3) centered on the fovea revealed a total retinal

thickness TRTCTRL = 303 ± 45 lm in the healthy

Fig. 2 Retinal angiography of CTRL and BMD monkey.
Sequential recordings during fluorescein (a) and indocyanine
green (b) angiography demonstrate regular timing and distribu-
tion in the CTRL animal (left panels), while the BMD animal

(right panels) shows a spotty filling pattern in the early phases
(top), an enlarged foveal avascular zone (FAZ) at the posterior
pole (middle) and a distinct pattern of hypo- and hyperfluores-
cence in the central retinal region at later stages (bottom)
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control animal and TRTBMD = 174 ± 9 lm in the

affected rhesus macaque (normal value mean =
304 lm (range 282–326 lm) as reported by Anger

et al. [23]). Three-dimensional reconstruction of the

retinal scans showed a near perfect rotational

symmetry of the dramatic loss of central retinal tissue

in BMD and the associated temporal optic atrophy
(Figs. 3, 4). Horizontal radius of the atrophic area with

minimal retinal thickness (center to ‘‘hard border’’)

was 2.47 mm/2.47 mm for the right eye (baseline/

Fig. 3 Optical coherence tomography of the macular region in
the CTRL and BMD monkeys. Interpolated retinal thickness
profile maps centered on the fovea demonstrate the severe
macular dystrophy in the BMD (b) compared to the CTRL
(a) animal. Total retinal thickness is markedly reduced in BMD,
with the inner retinal layers much more affected than outer
retinal layers with little change at follow-up (c). The foveal
region (d) in the CTRL animal (left side) shows the normal slope
from the foveal rim toward the foveal pit. In contrast, retinal
nerve fiber, ganglion cell, inner plexiform and inner nuclear

layers are essentially missing in the BMD animal (right side),
and consequently, there is no foveal rim formation. Moreover,
the outer retinal signal composition features a disorganization of
the inner/outer segment border (I/OS) signal in the cone-only
fovea. Interestingly, while more temporal aspects of the
posterior pole e show a second highly reflective band that is
thought to correspond to the cone outer segment tips (COST,
arrowheads) in the CTRL monkey (left side), the same signal
only starts to appear in the BMD animal toward the periphery
beyond the dystrophic center (bottom right, arrowheads)

186 Doc Ophthalmol (2012) 125:179–194

123



follow-up) and 2.21 mm/2.25 mm for the left eye. The
retinal lesion therefore is predicted to result in a

scotoma with 10.65#/10.63# (baseline/follow-up)

eccentricity for the right eye and 9.53#/9.67# for the
left eye. These data correspond very well with our

fMRI data on the dimensions of the recorded cortical

scotoma (10#) in the left eye of the BMD animal (see
above and Fig. 1).

Segmentation analysis of retinal B-scans at either the

foveal center (Fig. 3d) or the temporal aspect of the
posterior pole (Fig. 3e) revealed severe atrophy of inner

retinal layers (inner retinal thickness, IRTCTRL = 143

± 45 lm vs. IRTBMD = 33 ± 9 lm, Fig. 3c; normal
value mean = 159 lm (range 99–209 lm) as reported

by Anger et al. [23]). While the retinal nerve fiber,

ganglion cell, inner plexiform and inner nuclear layers
were essentially missing in the atrophic area of BMD,

the dimensions of outer retina layers were surprisingly

well preserved. However, detailed analysis demonstrated
a disorganization of the inner/outer segment border

(I/OS) signal in the cone-only fovea (Fig. 3d),

a structural aspect known to reflect photoreceptor
dysfunction [24], and increased reflectivity in the

otherwise hyporeflective outer segment layer. Interest-

ingly, at the transition zone from BMD to more temporal
aspects of the posterior pole, a second highly reflective

band starts to emerge that is thought to arise from the

cone outer segment tips (COST) (Fig. 3e). This suggests
structural disintegration at the photoreceptor level in the

central macula with gross inner retinal atrophy,

while normal layering of the inner and outer retina can
be observed peripheral of the transition zone. Con-

versely, the I/OS signal was equally strong throughout

the posterior pole of the control animal with evidence
of elongated outer segments in the central foveal region

and easily detectable COST signal in the extrafoveal

regions.
Horizontal B-scans through the optic nerve head

(Fig. 4d) clearly showed the differences between

temporal and nasal retinal morphology that under-
scored the site-specific pathology in BMD. Peripap-

illary ring scans centered on the optic nerve head

Fig. 4 The retinal thickness profile map of the right eye (a) and
a three-dimensional reconstruction (b) of the retinal scans show
a near perfect rotational symmetry of the dramatic loss of central
retinal tissue in BMD. The horizontal cross section d through the
optic nerve head demonstrates the dystrophic macular area with
corresponding temporal optic atrophy (asterisk). The peripap-
illary ring scan e centered on the optic nerve head (r = 3.4 mm)

demonstrates relatively abrupt thinning of inner retinal layers
central of the vascular arcades (ca. 0–45# and 315–360#),
indicating a loss primarily of the papillomacular bundle (e). The
full and empty arrow heads point to the superior and inferior
retinal veins correspondingly, for orientation. Grid in a indicates
circular areas of 0.8, 2.4 and 4.8 mm diameter. Dotted lines in
a and b indicate 4.8 mm eccentricity
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(Fig. 4e) also demonstrated relatively abrupt thinning
of inner retinal layers central of the vascular arcades

(ca. 0–45# and 315–360#), indicating a loss primarily

of the papillomacular bundle.

At follow-up after 1 year, the dimensions of the
atrophic area remained essentially identical regarding

the inner retinal thickness (IRTbaseline = 33 ± 9 lm

vs. IRTfollow-up = 36 ± 9 lm), while the outer retinal

Fig. 5 Gross anatomy a demonstrates the atrophic aspect of the
macula. Note the modest amount of yellow pigment appearing as
macula lutea in the fovea. Note also the temporal atrophy of the
optic nerve head. The red bar at the nasal-inferior border of the
dystrophic area indicates the location from which the histological
sections were taken. Labeling with CtBP2 (ribbon synapses and
somata) demonstrates relatively well-preserved outer nuclear
layer in the retinal region affected by MD (b) versus in the outer
(unaffected) retina (c, CTRL). Staining with Gc13 (ON bipolar
cells) and GlyT1 (glycinergic amacrine cells) in the BMD

d shows dramatic loss of inner nuclear layer neurons compared to
CTRL retina (e) in the central atrophic areas (asterisks). This is
also evident from parvalbumin (horizontal cell) and CtBP2
(ribbon synapses and somata) labeling in BMD (f–g) versus
CTRL (h) sections. In the OPL of the CTRL retina, CtBP2-
labeled ribbons appear as clusters of bands (arrows) in cone
pedicles and as horseshoe-shaped structures (arrowheads) in rod
terminals (h). The missing bands in the BMD OPL (g) indicate
that cone synapses are more strongly affected than rod synapses in
the BMD animal. Scale bars are 25 lm (b–f) and 10 lm (g–h)

188 Doc Ophthalmol (2012) 125:179–194

123



thickness showed some degree of further reduction
(ORTbaseline = 141 ± 7 lm vs. ORTfollow-up = 125

± 8 lm), possibly indicating a degree of continuous

neurodegeneration within the original region of mac-
ular involvement.

Histology

Histologic data highlight the dramatic loss of inner retinal

components such as bipolar, amacrine and horizontal
cells within the affected region in the BMD animal

compared to CTRL (Fig. 5) and thereby support findings

in vivo. Besides structural loss of inner retinal neurons,
immunohistochemical labeling shows significant loss of

cone ribbon synapses within the affected area.

Electrophysiology

Dark-adapted (scotopic) Ganzfeld-ERGs revealed
similar response amplitudes to brief, low-intensity

flashes for the BMD and the control animals (for the

0.01 cd * s/m2 flash 189 and 205 lV, respectively;
BMD/CTRL ratio 0.92). With increasing flash inten-

sities, the response amplitude in BMD increased less

than in the control so that at the highest stimulus
intensity the amplitude was significantly smaller in the

BMD animal than in the control (237 and 343 lV for

the 10 cd * s/m2 stimulus, respectively; BMD/CTRL
ratio 0.69). These proportional changes of response

amplitudes indicated a reduced cone system contribu-

tion, since cones are known to contribute significantly
to the response waveforms of bright flashes under

scotopic conditions. Response implicit times of the a-

and b-wave were similar in the BMD and the control
animal for all flash intensities, suggesting that the

surviving photoreceptors provide physiologic or near

physiologic signal processing (Fig. 6).
The b/a-wave amplitude ratios of the standard flash

responses were calculated to reveal differences in the

contribution of the inner retina to the response
waveforms, since a selective reduction in the b-wave

amplitude would suggest a dysfunction of transmission

Fig. 6 Ganzfeld-ERG responses according to the ISCEV
Standards in the CTRL (gray curves) and the BMD animals at
baseline (blue and red lines represent the right (OD) and left eye
(OS) of the BMD animal, respectively). a, panels 1–4 Scotopic
recordings show a well-preserved rod photoreceptor response in
the BMD retinae (panel 1, rod response). The reduction in
a-wave and b-wave amplitudes at brighter stimuli (panels 2 and
4, mixed rod-cone and high-intensity responses, respectively)
under scotopic conditions suggests a reduction in the total
number of functioning cone photoreceptors and bipolar cells in
the BMD versus the CTRL retinas, while normal implicit times

suggest unchanged signal transduction characteristics for the
remaining cone photoreceptors and proximal neurons (b). This
pattern becomes even more evident in photopic conditions (a,
panels 5–6, cone single flash and 30-Hz flicker responses,
respectively) where responses of the cone photoreceptor system
and its downstream signaling pathway are clearly reduced in
BMD compared to CTRL (c). At 1-year follow-up (broken blue
and red lines and triangles), Ganzfeld-ERG results remain
essentially unchanged. ERG electrophysiology, ISCEV interna-
tional society for clinical electrophysiology of vision
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in the inner retina, either in the photoreceptor synapses
or in the postreceptoral pathway. The constellation,

where the b/a ratio is equal to or smaller than 1, is

termed a negative ERG. However, both the BMD
and control animal results showed similar response

amplitudes and waveforms as well as b/a ratios greater

unity (b/a ratioBMD = 2.0, b/a ratioCTRL = 2.2) on
the baseline and follow-up measurements as well

(b/a ratioBMD = 1.9 at follow-up).

The photopic responses obtained after light adapta-
tion showed even more reduced amplitudes in BMD

compared to the control (45 and 147 lV for the

3 cd * s/m2 photopic flash, respectively; BMD/CTRL
ratio, 0.3). Implicit times again were similar for both;

30-Hz flicker responses revealed a lower magnitude,

but similar phase. Even though the retinal area contrib-
uting to the photopic waveforms was obviously reduced

in the BMD animal, the timing of the responses was

essentially normal, suggesting again that the remaining
cone system’s physiological function was intact.

At follow-up after 1 year, the Ganzfeld-ERG

responses obtained under scotopic and photopic adap-
tation were similar in amplitude, implicit time and b/a

ratios, again consistent with a disease restricted to the

macular area.
The multifocal ERG demonstrated reduced ampli-

tudes at all eccentricities (ring 1–5), more pronounced in

the central segment and the two adjacent rings (rings
1–3) covering a field of ca. 20# in diameter (Fig. 7). This

area covered almost exactly the atrophic and largely

avascular area observed in angiography and OCT
imaging (Figs. 2, 3, 4). At 1-year follow-up, a similar

reduction in response amplitude in the central hexagon

was noticed. Implicit times at follow-up showed a
prolongation, notably in rings 2–4. While small changes

in amplitude may be within normal repeat variability

and central variability may be attributed to worse signal-
to-noise ratio, the combination with elongated implicit

times could explain the slight progression (i.e., limited

further reduction in the outer retinal thickness seen in the
cross-sectional imaging in Fig. 3c) of the affected

macular area. However, these changes in implicit time
may also be within normal limits.

Discussion

Many commonly used animal models such as mice
and rats lack a central retinal region with higher

optical resolution due to the increased cone photore-
ceptor, bipolar and ganglion cell density and rarefica-

tion of retinal vasculature to further reduce optical

aberration. In contrast, rhesus macaque retinal archi-
tecture shows excellent correspondence to human

retinal structure, and therefore, the macaque model

would be ideal for studying inherited macular degen-
eration [20]. Unfortunately, there is only little infor-

mation in the literature regarding naturally occurring

macular degeneration in nonhuman primates.
When one particular animal from our colony of

rhesus macaque monkeys showed no central visual

modulation in fMRI experiments (Fig. 1) combined
with altered bilateral macular reflexes at the posterior

pole on direct ophthalmoscopy, it underwent a thor-

ough ophthalmologic evaluation to potentially iden-
tify an primate model of macular degeneration.

Imaging data suggested normal perfusion in the

periphery regarding both retinal (FA) and choroidal
(ICGA) vasculature (Fig. 2). In contrast, the macula

showed a drastically enlarged FAZ covering a circular

area of approximately 10# in radius centered at the
posterior retinal pole. Within this well-circumscribed

area, the retina appeared notably thinner in compar-

ison with the control animal. Furthermore, SD-OCT
images demonstrated a disorganization of the inner/

outer segment border (I/OS) signal and a severe

atrophy of inner retinal layers, indicating structural
changes at the level of photoreceptors and loss of more

proximal neurons. This observation was supported by

immunohistochemical data in retinal sections from
BMD vs. CTRL animals (Fig. 5). These demonstrated

a dramatic loss of bipolar, amacrine and horizontal

cells in the inner nuclear layer, while the outer nuclear
layer seemed relatively intact. Interestingly, cone

ribbon synapses in the outer plexiform layer were

much more strongly affected than rod ribbon synapses,
which is in line with the reduced responses seen under

photopic conditions.

SD-OCT cross sections at the edge of the dystro-
phic macula showed increasing signal strength in a

highly reflective band thought to indicate the cone
photoreceptor outer segment tips (COST), suggesting

that cone density returns gradually to normal outside

the affected region (Fig. 3d), where the electrophys-
iological responses in mfERG analysis also begin to

approach control levels (Fig. 7).

The retina of a healthy macaque contains an
average of 3 million cones and 61 million rods, and
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their density peaks as well as their distribution pattern

correspond well with human retinal architecture [6].
Rod density is particularly high in a 15# annulus

around the fovea beginning 2–3 mm from the rod-free

foveola and extending to 6–8 mm toward the periph-
ery. Cone density, on the other hand, is highest in the

foveola and first decreases exponentially in the first
2 mm eccentricity followed by an almost linear

peripheral decline.

Based on these anatomical properties, the observed
macular disease with a dystrophic area of ca. 6 mm

diameter is predicted to cause a notable reduction in

cone function. This is in line with our fMRI data of the

left eye in the BMD animal, confirming a central

scotoma with retinotopic representation in V1 reflect-
ing the central ca. 10# (Fig. 1). Likewise, our Ganz-

feld-ERG recordings show that the cone photoreceptor

system and its downstream signaling pathway are
clearly affected (Fig. 6). More specifically, the reduc-

tion in a-wave and b-wave amplitudes at brighter
stimuli under scotopic conditions, and the even more

decreased cone responses under photopic conditions

suggest the reduction in the total number of functional
cone photoreceptors and bipolar cells, respectively,

while the normal implicit time suggests unchanged

signal transduction characteristics for the remaining

Fig. 7 MfERG response arrays of the CTRL and the BMD
retinae overlaid on retinal thickness maps reveal the correlation
between functional and morphological changes in the BMD
animal (a). Ring analysis of the mfERGs b shows the amplitudes
(left side) and implicit times (right side) for each ring in BMD
and CTRL (gray dots show CTRL results, and blue and red dots

and triangles represent BMD responses at baseline and at
follow-up, respectively). The analysis clearly shows a reduction
in amplitudes, more pronounced in the central rings. While
implicit times were similar at baseline, a delay is found for ring
2–4 at 1-year follow-up. MfERG multifocal electroretinography
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cone photoreceptors and proximal neurons in the more
peripheral regions. Furthermore, multifocal ERG

demonstrated reduced amplitudes more pronounced

in the central three rings proving a good structure–
function correlation as the bilateral macular dystrophy

was limited to a central area of ca. 3 mm radius

(Fig. 7). On a structural level, it is surprising to see the
inner retinal layers being so selectively affected.

However, while outer retinal thickness did not differ to

the same amount between the affected and control
animals, qualitative changes could be observed on

close examination (Fig. 3). There is a clear distur-

bance of the highly reflective layer at the border
between the inner and outer segment of photoreceptors

in the outer retinal signal composition, which has been

linked to photoreceptor dysfunction [24]. Extrafoveal
OCT sections also showed specific attenuation of the

COST signal in the dystrophic area with gradual

recovery at the transitional zone, indicating structural
changes at the level of the photoreceptor outer

segments, where photons induce the phototransduc-

tion cascade ultimately leading to light perception.
Fortune and co-workers reported a disease pheno-

type in a number of rhesus macaques featuring

idiopathic bilateral temporal optic atrophy (IBOA),
affecting the papillomacular bundle with histologic

evidence of axonal loss and gliosis limited to the

temporal optic nerve. Functionally, the RNFL (retinal
nerve fiber layer) loss correlated with substantial

reduction in mfERG high-frequency components,

while mfERG low-frequency components and all
Ganzfeld-ERG amplitudes (a-wave, b-wave, oscilla-

tory potentials or PhNR) were normal or even slightly

increased [25]. The highly symmetric loss of retinal
nerve fiber layer (RNFL) tissue in the papillomacular

bundle of the BMD animal with its corresponding

temporal atrophy of the optic nerve head compares
well to this phenotype (Fig. 4). However, there are a

number of striking differences to the pathology

reported by Fortune. In contrast to IBOA, where the
retinal nerve fiber layer/ganglion cell layer is selec-

tively affected, in our case the inner nuclear layer is
also grossly reduced in the area of atrophy, which is

reflected functionally by the reduced b-wave ampli-

tudes in the Ganzfeld-ERG (Fig. 6). Similarly, recent
publications on tobacco-alcohol-induced toxic optic

neuropathy in human also showed symmetric temporal

optic disk pallor and RNFL loss in the papillomacular
bundle, but no significant macular alterations distal of

the RNFL [26]. As secondary temporal optic atrophy
is a known feature in retinal dystrophies that primarily

affect the macular region [27, 28], it seems feasible

that the morphological changes at the temporal optic
nerve head reflect a consequence of the macular

dystrophy along with its increased FAZ and rarified

choroidal vasculature. However, as the pathology was
already evident at the first time point of investigation,

we cannot be absolutely certain about a temporal

and/or causal relation.
Considering the drastic changes during develop-

ment of the fovea, developmental abnormalities can

be considered as potential etiologic factor for the
present phenotype. All adult primate foveae possess a

central avascular region known as FAZ, which is a

critical requirement for foveal pit formation. Several
studies indicate that the absence of FAZ (where

vessels overgrow the foveal area) results in a missing

foveal pit and reduced visual acuity [29]. In some
cases, this foveal hypoplasia was shown to be

associated with PAX6 missense mutations, a gene

well known to be involved in the morphogenesis of the
eye [30]. Interestingly, our case shows rather opposite

changes to foveal hypoplasia, that is, a marked

enlargement of the FAZ and associated atrophic
appearance of the whole macular region and sequenc-

ing of the PAX6 gene showed no pathogenic mutation.

If the size of the FAZ determines the geometry of the
foveal indentation, the observed macular malforma-

tion might be secondary to an abnormally expanded

FAZ. However, it is currently unclear which factors
would be involved at what stage of such a develop-

mental abnormality, since such macular changes have

not yet been observed.
On the other hand, secondary enlargement of FAZ

is a frequent finding in patients with ischemic retinal

diseases such as diabetic or hypertensive retinopathy.
Likewise, enlarged FAZ was also reported in patients

with retinal vein occlusion or sickle cell retinopathy

[31]. However, in these conditions further ischemic
symptoms, like microaneurysms, bleeding, cotton-

wool spots and neovascularization, are frequently
seen. Such changes were not detected in our case, and

the highly symmetrical macular morphology also

argues against acquired diseases.
At 1-year follow-up, Ganzfeld-ERG results remained

essentially unchanged, while multifocal ERGs sug-

gested a slight progression of the disease in the central
area, which corresponded with the noted changes of
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outer retinal atrophy. However, otherwise there was no
evidence for disease progression. Considering all

observations, the pathology seen in this animal can be

best described as bilateral macular dystrophy (BMD)
with atrophy of the temporal optic disk. BMD targets the

cone-rich macula, thereby reducing the total number of

functional cone photoreceptors. The remaining cones
function well (normal implicit time) with a feature that

characterizes maculopathies and distinguishes them

from cone dystrophies. The first ever fluorescein
angiography in such a case of maculopathy in a primate

revealed an enlarged FAZ, and indocyanine green

angiography additionally demonstrated widespread
atrophy of choriocapillary networks underneath the

dystrophic macula.

The fMRI data corroborate the link between
structure and function by demonstrating a corre-

sponding central scotoma of ca. 10# eccentricity in

the primary visual cortex of the affected animal [32].
This is the first extensive structural and functional

characterization of a primate with profound macular

degeneration exploring its potential as animal model.
While the etiology of BMD in this animal has

remained elusive, the advances in the field of genetic

sequencing promise cost-effective whole-exome
sequencing in the near future. Publication of our

findings is intended to spur awareness for detecting

additional potential cases of primate BMD or related
macular dystrophies in other laboratories eventually

leading to the identification of Macaque models of

this disease. Also, the fact that such a dramatic
retinal pathology can lead to an inconspicuous

behavioral pattern points toward the need for diag-

nostic screening before including nonhuman prima-
tes in preclinical studies, where visual function is

critical for outcome measures.

Acknowledgments We would like to thank Susanne Kohl and
Nicole Weisschuh for sequencing the PAX6 gene and Matthias
Munk and Henry Evrardj for perfusing the BMD animal. This
study was supported by the Deutsche Forschungsgesellschaft
(NKL), National Eye Institute (NEI) R01 grant EY019272 (SS)
and National Institute of Neurological Disorders and Stroke
(NINDS) R21NS059607 (SS).

Conflict of Interest The study sponsors had no role in study
design; in the collection, analysis and interpretation of data; in
the writing of the report; and in the decision to submit the paper
for publication. Furthermore, the authors state that they have full
control of all primary data and that they agree to allow interested
parties to review their data if requested.

References

1. El-Mofty A, Gouras P, Eisner G, Balazs EA (1978) Macular
degeneration in rhesus monkey (Macaca mulatta). Exp Eye
Res 27(4):499–502

2. Dawson WW, Dawson JC, Lake KP, Gonzalez-Martinez J
(2008) Maculas, monkeys, models, AMD and aging. Vision
Res 48(3):360–365

3. Saperstein DA (1995) Advances in macular dystrophies. Int
Ophthalmol Clin 35(4):19–35

4. Williams RA, Brody BL, Thomas RG, Kaplan RM, Brown
SI (1998) The psychosocial impact of macular degenera-
tion. Arch Ophthalmol 116(4):514–520

5. Fletcher EL, Jobling AI, Vessey KA, Luu C, Guymer RH,
Baird PN (2011) Animal models of retinal disease. Prog
Mol Biol Transl Sci 100:211–286

6. Wikler KC, Williams RW, Rakic P (1990) Photoreceptor
mosaic: number and distribution of rods and cones in the
rhesus monkey retina. J Comp Neurol 297(4):499–508

7. Logothetis NK, Guggenberger H, Peled S, Pauls J (1999)
Functional imaging of the monkey brain. Nat Neurosci
2(6):555–562

8. Keliris GA, Shmuel A, Ku SP, Pfeuffer J, Oeltermann A,
Steudel T, Logothetis NK (2007) Robust controlled func-
tional MRI in alert monkeys at high magnetic field: effects
of jaw and body movements. Neuroimage 36(3):550–570

9. Dumoulin SO, Wandell BA (2008) Population receptive
field estimates in human visual cortex. Neuroimage 39(2):
647–660

10. Wandell BA, Chial S, Backus BT (2000) Visualization and
measurement of the cortical surface. J Cogn Neurosci 12(5):
739–752

11. Tootell RB, Switkes E, Silverman MS, Hamilton SL (1988)
Functional anatomy of macaque striate cortex. II. Retino-
topic organization. J Neurosci 8(5):1531–1568

12. Van Essen DC, Newsome WT, Maunsell JH (1984) The
visual field representation in striate cortex of the macaque
monkey: asymmetries, anisotropies, and individual vari-
ability. Vision Res 24(5):429–448

13. LeVay S, Connolly M, Houde J, Van Essen DC (1985) The
complete pattern of ocular dominance stripes in the striate
cortex and visual field of the macaque monkey. J Neurosci
5(2):486–501

14. Dow BM, Vautin RG, Bauer R (1985) The mapping of
visual space onto foveal striate cortex in the macaque
monkey. J Neurosci 5(4):890–902

15. Fischer MD, Huber G, Beck SC, Tanimoto N, Muehlfriedel
R, Fahl E, Grimm C, Wenzel A, Reme CE, van de Pavert
SA, Wijnholds J, Pacal M, Bremner R, Seeliger MW (2009)
Noninvasive, in vivo assessment of mouse retinal structure
using optical coherence tomography. PLoS One 4(10):
e7507

16. Huber G, Beck SC, Grimm C, Sahaboglu-Tekgoz A, Pa-
quet-Durand F, Wenzel A, Humphries P, Redmond TM,
Seeliger MW, Fischer MD (2009) Spectral domain optical
coherence tomography in mouse models of retinal degen-
eration. Invest Ophthalmol Vis Sci 50(12):5888–5895

17. Huber G, Heynen S, Imsand C, vom Hagen F, Muehlfriedel
R, Tanimoto N, Feng Y, Hammes HP, Grimm C, Peichl L,

Doc Ophthalmol (2012) 125:179–194 193

123



Seeliger MW, Beck SC (2010) Novel rodent models for
macular research. PLoS One 5(10):e13403

18. Helb HM, Charbel Issa P, Fleckenstein M, Schmitz-Valc-
kenberg S, Scholl HP, Meyer CH, Eter N, Holz FG (2010)
Clinical evaluation of simultaneous confocal scanning laser
ophthalmoscopy imaging combined with high-resolution,
spectral-domain optical coherence tomography. Acta Oph-
thalmol 88(8):842–849

19. Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M,
Bach M (2009) ISCEV Standard for full-field clinical
electroretinography (2008 update). Doc Ophthalmol 118(1):
69–77

20. Kong X, Wang K, Sun X, Witt RE (2010) Comparative
study of the retinal vessel anatomy of rhesus monkeys and
humans. Clin Exp Ophthalmol 38(6):629–634

21. Bertram B, Wolf S, Fiehofer S, Schulte K, Arend O, Reim M
(1991) Retinal circulation times in diabetes mellitus type 1.
Br J Ophthalmol 75(8):462–465

22. Walter P, Mazinani B (2010) Macular dystrophies–heredi-
tary macular degenerations. Klin Monatsbl Augenh 227(1):
R1–R14

23. Anger EM, Unterhuber A, Hermann B, Sattmann H, Schu-
bert C, Morgan JE, Cowey A, Ahnelt PK, Drexler W (2004)
Ultrahigh resolution optical coherence tomography of the
monkey fovea. Identification of retinal sublayers by corre-
lation with semithin histology sections. Exp Eye Res 78(6):
1117–1125

24. Fischer MD, Fleischhauer JC, Gillies MC, Sutter FK, Helbig
H, Barthelmes D (2008) A new method to monitor visual

field defects caused by photoreceptor degeneration by
quantitative optical coherence tomography. Invest Oph-
thalmol Vis Sci 49(8):3617–3621

25. Fortune B, Wang L, Bui BV, Burgoyne CF, Cioffi GA
(2005) Idiopathic bilateral optic atrophy in the rhesus
macaque. Invest Ophthalmol Vis Sci 46(11):3943–3956

26. Moura FC, Monteiro ML (2010) Evaluation of retinal nerve
fiber layer thickness measurements using optical coherence
tomography in patients with tobacco-alcohol-induced toxic
optic neuropathy. Indian J Ophthalmol 58(2):143–146

27. Newman NM, Stevens RA, Heckenlively JR (1987) Nerve
fibre layer loss in diseases of the outer retinal layer. Brit J
Ophthalmol 71(1):21–26

28. Newman NJ (1993) Optic disc pallor: a false localizing sign.
Surv Ophthalmol 37(4):273–282

29. Provis JM, Hendrickson AE (2008) The foveal avascular
region of developing human retina. Arch Ophthalmol
126(4):507–511

30. Azuma N, Nishina S, Yanagisawa H, Okuyama T, Yamada
M (1996) PAX6 missense mutation in isolated foveal
hypoplasia. Nat Genet 13(2):141–142

31. Parodi MB, Visintin F, Della Rupe P, Ravalico G (1995)
Foveal avascular zone in macular branch retinal vein
occlusion. Int Ophthalmol 19(1):25–28

32. Drasdo N, Fowler CW (1974) Non-linear projection of the
retinal image in a wide-angle schematic eye. Brit J Oph-
thalmol 58(8):709–714

194 Doc Ophthalmol (2012) 125:179–194

123



NEUROSYSTEMS

Visual cortex organisation in a macaque monkey with
macular degeneration

Yibin Shao,1* Georgios A. Keliris,1,2* Amalia Papanikolaou,1 M. Dominik Fischer,3,4 Ditta Zobor,3 Herbert J€agle,5

Nikos K. Logothetis1,6 and Stelios M. Smirnakis7
1Max-Planck Institute for Biological Cybernetics, 72076 T€ubingen, Germany
2Bernstein Center for Computational Neuroscience, T€ubingen, Germany
3Institute for Ophthalmic Research, Centre for Ophthalmology, T€ubingen, Germany
4Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
5University Eye Clinic, University of Regensburg, Regensburg, Germany
6Division of Imaging Science and Biomedical Engineering, University of Manchester, Manchester, UK
7Department of Neuroscience and Neurology, Baylor College of Medicine, Houston, TX, USA

Keywords: fMRI, MT, plasticity, reorganisation, V1

Abstract

The visual field is retinotopically represented in early visual areas. It has been suggested that when adult primary visual cortex
(V1) is deprived of normal retinal input it is capable of large-scale reorganisation, with neurons inside the lesion projection zone
(LPZ) being visually driven by inputs from intact retinal regions. Early functional magnetic resonance imaging (fMRI) studies in
humans with macular degeneration (MD) report > 1 cm spread of activity inside the LPZ border, whereas recent results report no
shift of the LPZ border. Here, we used fMRI population receptive field measurements to study, for the first time, the visual cortex
organisation of one macaque monkey with MD and to compare it with normal controls. Our results showed that the border of the
V1 LPZ remained stable, suggesting that the deafferented area V1 zone of the MD animal has limited capacity for reorganisation.
Interestingly, the pRF size of non-deafferented V1 voxels increased slightly (~20% on average), although this effect appears
weaker than that in previous single-unit recording reports. Area V2 also showed limited reorganisation. Remarkably, area V5/MT
of the MD animal showed extensive activation compared to controls stimulated over the part of the visual field that was spared in
the MD animal. Furthermore, population receptive field size distributions differed markedly in area V5/MT of the MD animal.
Taken together, these results suggest that V5/MT has a higher potential for reorganisation after MD than earlier visual cortex.

Introduction

Early visual areas have a topographically precise, retinotopic, repre-
sentation of the visual field (Van Essen & Maunsell, 1983; Tootell
et al., 1988; Brewer et al., 2002; Gattass et al., 2005; Wandell
et al., 2007). These maps remain stable over time in healthy adults
but are thought to be plastic following injury of the visual pathways
(Kaas et al., 1990; Heinen & Skavenski, 1991; Gilbert & Wiesel,
1992; Chino et al., 1995; Morland et al., 2001; Baker, 2005;
Giannikopoulos, 2006; Baker et al., 2008; Schumacher et al., 2008;
Dilks et al., 2009; Levin et al., 2010). Understanding the capacity
of the visual system for reorganisation following injury is an impor-
tant step in the long-term effort to design treatments aimed at
enhancing the ability of the visual system to recover after injury.
The term ‘reorganisation’ is difficult to define precisely and has

sometimes been used loosely in the literature. To avoid confusion

here, we adopt similar conventions as Wandell & Smirnakis (2009)
and use the term reorganisation to refer to changes that occur over a
long period of time and generally require the generation of new ana-
tomical connections or, at least, a permanent change of strength in
existing connections. This is in contrast to adaptive processes, which
typically operate over a shorter time scale, tracking changes in input
statistics. We note that the time scales over which reorganisation vs.
adaptive processes operate overlap, and it is often difficult from
functional magnetic resonance imaging (fMRI) to draw a sharp dis-
tinction between the two.
Several groups have studied the capacity of the visual cortex for

reorganisation following retinal lesions, producing controversial
results. The majority of electrophysiology studies after homonymous
retinal lesions in adult cats and macaques reported that area V1
exhibits a considerable degree of plasticity into adulthood (Kaas
et al., 1990; Heinen & Skavenski, 1991; Gilbert & Wiesel, 1992;
Giannikopoulos, 2006; Gilbert & Li, 2012). However, other studies
using cytochrome oxidase (Horton & Hocking, 1998), electrophysi-
ology (Murakami et al., 1997) and fMRI (Smirnakis et al., 2005)
have suggested that post-lesion responses inside the V1 lesion pro-
jection zone (LPZ) are weak or absent.
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Several groups have moved beyond experimentally induced reti-
nal lesions to study visual cortex reorganisation in a human retinal
disease state called macular degeneration (MD). MD is a common
cause of human visual impairment, and typically damages the cen-
tral retina, gradually eliminating the normal retinal input to a large,
central, region of the visual cortex. Several fMRI studies have sug-
gested that human primary visual cortex, deprived of its normal reti-
nal input by MD, undergoes large-scale reorganisation spanning
centimetres of cortical space (Baker, 2005; Baker et al., 2008;
Schumacher et al., 2008; Dilks et al., 2009). In contrast, the initial
report (Sunness et al., 2004) found large-scale reorganisation in V1
to be absent. The largest human fMRI study surveying MD patients
to date (Baseler et al., 2011) has also reported a lack of large-scale
reorganisation in V1. Wandell & Smirnakis (2009) recently
reviewed some of these results in human and animal literature,
pointing out that there are numerous inconsistencies still waiting to
be resolved.
One difficulty is comparing results from the animal literature,

which study cortical reorganisation following experimentally
induced retinal lesions, with results from the human literature study-
ing subjects with MD. Acute retinal lesions are not necessarily
equivalent to lesions induced by a chronic process such as MD. A
study of visual cortex reorganisation in animals suffering from MD
can help bridge this gap. Here we use fMRI population receptive
field measurements (Dumoulin & Wandell, 2008) to study cortical
reorganisation in a macaque monkey suffering from a chronic MD
condition approximating human juvenile MD. We compare our
results with both the human fMRI and the macaque fMRI and elec-
trophysiology literature.

Materials and methods

Subjects

A male monkey with a binocular central retinal lesion of ~10°(left
eye) and ~11° (right eye) radius due to juvenile MD, weighing 9 kg
(Dominik Fischer et al., 2012), and two healthy adult monkeys (C1
and C2), one male and one female, weighing 9 and 6 kg respec-
tively, were used for these experiments. All sessions were performed
with great care to ensure the well-being of the animals, were
approved by the local authorities (Regierungspraesidium) and were
in full compliance with the guidelines of the European Community
(EUVD 86/609/EEC) for the care and use of laboratory animals.
The monkeys were anesthetised during the fMRI experiments.

Details of the anesthesia protocol have been given previously (Logo-
thetis et al., 1999). Briefly, the animals were premedicated with gly-
copyrolate [0.01 mg/kg, intramuscular (IM)] and ketamine (15 mg/kg,
IM), and then deep anesthesia was induced with fentanyl (3 lg/kg),
thiopental (5 mg/kg) and succinyl chloride (3 mg/kg). Anesthesia
was maintained with remifentanyl (0.5–2 lg/kg/min) under paralysis
with mivacurium chloride (3–6 mg/kg/h) to ensure the suppression
of eye movements. Heart rate and blood oxygen saturation were
monitored continuously with a pulse-oxymeter. Body temperature
was kept constant at 37–38° Celsius.

Stimuli

Visual stimuli were displayed at a resolution of 800 9 600 pixels
with a 60-Hz frame rate, using a custom-made fibre-optic projection
system with mean luminance of ~100 cd/m2. Stimuli were centred
on the approximate location of the fovea (centre of the lesion) by
using a modified fundus camera (Zeiss RC250). Animal eyes were

fitted with appropriate contact lenses to ensure the stimulus
remained in focus. Monocular stimuli were presented in the left eye
for the MD animal and the controls. The field of view was 30° hori-
zontal 9 23° vertical visual angle. The stimulus consisted of a bar
aperture with a width of 2° and a length equal to the field of view
moving by 1° per volume acquisition (6 s) passing over a rotating
polar checkerboard sequentially in four different directions (top-to-
bottom, left-to-right, bottom-to-top and right-to-left). The bars were
presented continuously with no gap. The same moving bar stimuli
were presented to the MD monkey and to the healthy controls. Out-
side the bar aperture an isoluminant gray background was presented.
One important control condition involved presenting the same mov-
ing bar stimuli to healthy animals while occluding the central part
of the visual field with a black [RGB color index = (0 0 0)] disk of
10° radius. We refer to this as the ‘artificial scotoma’ (AS) condition
and it was designed a priori (before the fMRI experiments) to match
the size of the lesion in the left eye of the MD animal, which was
used for fMRI imaging. This control allowed us to probe whether
changes observed in the fMRI signal pattern in area V1 could poten-
tially represent a short-term effect induced because of the absence of
central visual stimulation, as opposed to long-term cortical reorgani-
sation. As we reported earlier (Dominik Fischer et al., 2012), the
radius of MD lesion inside which the inner nuclear layer thickness
is destroyed is 9.6° (2.23 mm). The size of the artificial scotoma
was taken to extend 0.4° further, corresponding to the point at the
MD lesion border where > 75% of the thickness of the inner retina
has been destroyed. Note that inner nuclear layer thickness returns
to normal at 11.2°, so the full extent of the ‘soft’ border, i.e. the
region of the border where the lesion is incomplete and may there-
fore transmit some information to the cortex, ranged from 9.6 to
11.2° (i.e. size of the lesion border is 1.6°).

Data acquisition

FMRI experiments were performed on a 4.7-T vertical scanner (Bru-
ker Biospec, Bruker Biospin GmbH, Ettlingen, Germany). Multislice
fMRI was performed by the use of eight segmented gradient-recalled
echo-planar imaging (EPI). Volumes of 17 slices of 1 9 1 9 2 mm3

were collected, each with a field of view (FOV) of 128 9 128 mm on
a 128 9 128 matrix and 2-mm slice thickness, flip angle (FA) 40°,
echo time (TE) 20 ms and a repetition time (TR) of 750 ms per seg-
ment resulting in a volume acquisition time of 6 s. For anatomical
measurements we used a FLASH sequence with the same FOV
128 9 128 mm2, matrix 256 9 256, slice thickness 2 mm, FA 70°,
TE 10 ms and TR 2000 ms. A high-resolution 3-D-MDEFT anatomi-
cal scan with an isotropic resolution of 0.5 mm was acquired for
co-registration with the FLASH and EPI images. For more details on
the fMRI methods see Logothetis et al. (1999); Keliris et al. (2007).
Each fMRI scan included two repetitions of the stimuli (204 volumes
per scan) and we acquired 5–7 scans per session.

Data analysis

The expected V1 LPZ of the retinal lesion was calculated from the
14c-2-deoxy-d-glucose staining retinotopic organisation maps (Too-
tell et al., 1988), and from electrophysiological cortical magnifica-
tion measurements [M1(r) = 13r!1.22; Van Essen et al., 1984; or
M2(r) = 15.7(r + 1.62)!1; LeVay et al., 1985;], where r is the
eccentricity from the centre of the visual field, and M is the magnifi-
cation factor in mm/°). By integrating the magnification factor equa-
tion, the radius D from eccentricity 1 to eccentricity E can be
calculated. Cortical distance in the fovea (from 0 to 1° eccentricity)
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was estimated using a different equation, more accurate for the cen-
tral visual field: Df (r) = 7In(r + 0.33) (Dow et al., 1985).
FMRI data were reconstructed and imported into a MATLAB-

based toolbox (mrVista; http://white.stanford.edu/software/) (Amano
et al., 2009; Levin et al., 2010). The gray–white matter boundary
was manually segmented using itkGray from the high-resolution 3-
D-MDEFT anatomical images, and 3-D cortical surface and flat
mesh models were created and realigned with the functional data by
using mrMesh/mrVista (Wandell et al., 2000). Data were analysed
by using the voxel-based population receptive field (pRF) analysis
method described by Dumoulin & Wandell (2008). We note that the
pRF represents the sum response of a large population of neurons
within a voxel and it is dependent on the size and the position scat-
ter of the individual receptive fields (see also Haak et al., 2012).
Briefly, the activity of each voxel was fitted to a two-dimensional
Gaussian function with three parameters (the visual field spatial
coordinates x, y reflecting the centre of the pRF and the SD reflect-
ing the pRF size). Explained variance (EV) maps (the fraction of
the time series that can be explained by the model) were drawn in
order to estimate the noise level and set the threshold. We set the
threshold of the EV fraction to be 0.15 for the MD and first control
monkey as in previous studies (Levin et al., 2010; Baseler et al.,
2011). The noise level of the second control monkey was found to
be slightly higher (Fig. 3) and we chose the threshold to be 0.2
(2 SD above the mean of the EV level of a selected non-visually
responsive region of interest). After the pRF model fitting, for each
voxel above the threshold we got the estimated position of the cen-
tre and the size of the pRF. Three types of retinotopic maps were
then plotted: the eccentricity map, the polar angle map and the pRF
size map. Visual areas were defined by horizontal and vertical
meridians of the angle maps and were found to respect anatomical
boundaries.

Results

Characterisation of the retinal lesion

The MD monkey was identified in the colony of the Max Planck
Institute for Biological Cybernetics, Tuebingen, Germany, after an
fMRI experiment that showed absence of activation in the occipital
gyrus. The animal was subsequently examined ophthalmologically
and diagnosed to have a chronic MD condition that approximates
human juvenile MD (Dominik Fischer et al., 2012). Optical coher-
ence tomography (OCT) and multifocal electroretinogram (ERG)
were used to characterise the retinal lesion of the MD monkey
(Fig. 1). Figure 1a shows the retinal thickness map calculated from
the OCT of the MD and one control monkey; ERG results are
superimposed. The total retinal thickness is markedly reduced in the
MD monkey compared with the control. The retina of the left eye
of the MD animal is greatly thinned in a central region of 2.23 mm
radius, representing a large central visual field scotoma with a soft
border, where the inner retina is between completely destroyed and
normal (see figs 3 and 5d in Dominik Fischer et al., 2012). We
measured that this yields a near-symmetric visual field loss of 9.6°
radius on average with a soft border of 1.6° (Dominik Fischer et al.,
2012; see also Drasdo & Fowler, 1974). Furthermore, multifocal
ERG responses were markedly reduced within the scotoma of the
MD animal in contrast to the control. Figure 1b shows the optical
coherence tomography of the layers of the foveal retina of the MD
and the control monkey. The photoreceptor layer of the retina of the
MD animal is relatively preserved while the retinal nerve fibre, gan-
glion cell layer, inner plexiform and inner nuclear layers are

destroyed. This was confirmed by retinal histology post-mortem. A
detailed account of the retinal pathology of this animal is described
elsewhere (Dominik Fischer et al., 2012). Behavioural data from the
MD animal confirmed the existence of the central scotoma, but
unfortunately the animal had to be killed for health reasons unre-
lated to this experiment before the entire scotoma border could be
mapped in detail behaviourally. We stress that this does not affect
our analysis here, as the anatomical borders of the retinal lesion and
how they correspond to the visual field have been measured pre-
cisely by ophtalmoscopy and confirmed by histology (Dominik
Fischer et al., 2012). Specifically, no spared islands were found
inside the area of the retinal lesion, and the extent of the lesion
border was confirmed histologically.

Visual modulation: extent of the retinal lesion projection zone

Visual cortical responses were measured during anesthetised fMRI
for both the MD and two control animals (see Materials and meth-
ods). Note that the normal central (~10° radius) retinal input is
eliminated in the MD animal.
Statistical parametric maps (SPMs) of visual cortical activity were

estimated from the blood oxygenation level dependent (BOLD)
responses and were overlaid on the reconstructed gray–white matter
surface meshes of each animal. Figure 2a and b presents two snap-
shots of such SPMs overlaid onto the right hemisphere of the MD
animal. As shown in Fig. 2b the operculum of the MD animal is
devoid of any statistically significant activation, in contrast to the
control animal (Fig. 2c). We used the isotropic pRF model to esti-
mate the centre and size of the receptive field voxel by voxel by fit-
ting the model to the responses elicited at each voxel from the
moving bar stimulus (Fig. 2a). Figure 2a illustrates the optimal pRF
of a voxel in peripheral V1, outside the LPZ, showing that the cor-
responding, predicted, BOLD time series (blue line) matches very
well with the measured averaged BOLD time series (black line). As
demonstrated by the small subpanels over the time-course in
Fig. 2a, whenever the stimulus passed over the estimated receptive
field location (small top panels, Fig. 2a) a peak response appeared
in the time series. On the other hand, the BOLD time series of
voxels lying within the LPZ were not modulated by the stimulus at
any location, remaining at baseline levels (Fig. 2b). For such voxels,
the pRF model does not explain a significant proportion of the
BOLD time series variance, indicating that the voxel does not get
significantly modulated by the stimulus.
In an attempt to gain further insight about the extent of the retinal

lesion projection zone in the visual cortex of the MD animal, we
compared the EV SPMs of the MD and two control animals with a
10° radius AS (C1AS and C2AS) on the unfolded cortical surfaces
(see Materials and methods). It is important to note that for this
comparison to be fair we selected monkeys whose brain size was
similar to the MD animal. Specifically, for the first control the aver-
age distance from fovea to the calcarine fissure was the same as in
the MD animal, and for the second control 1 mm larger. Maps of
the MD and control animals are shown in Fig. 3.
Given that the shape of the retinal scotoma is approximately sym-

metric, the extent of the LPZ can be quantified by measuring the
average distance from foveal V1 to the border of the LPZ, and then
comparing this with the distance estimated from systematic electro-
physiological experiments on the same species. We estimated the
cortical distances from fovea to 10° eccentricity in macaque using
previous reports to range from 33 mm (Tootell et al., 1988) to
33.2 mm (Van Essen et al., 1984; Dow et al., 1985) and 33.1 mm
(Dow et al., 1985; LeVay et al., 1985). The cortical distances
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between the fovea and the border of the V1 LPZ for the MD mon-
key and the border of the artificial scotoma projection zone (ASPZ)
for the two control monkeys were measured at various polar angles,
and found to be within the range 32–34 mm (samples along the hor-

izontal meridians are shown in Fig. 3); this is also consistent with
the distances estimated from the literature. Importantly, across the
border of the LPZ (or the ASPZ) the fraction of EV rises sharply
(Fig. 3a, c and e). The result is that the LPZ or ASPZ border does
not shift much due to the choice of threshold, and the size of the
LPZ and ASPZ does not change much as a result of a reasonable
threshold choice. To investigate this further we plotted how the frac-
tion of EV in area V1 changes as a function of eccentricity. For
both the MD and the control animals with AS, EV changes rapidly,
as shown by the steep slopes of the curves (Fig. 3b, d and f). The
boundaries of the LPZ and ASPZ borders are illustrated by the
dashed and dotted lines for the MD monkey and two control mon-
keys with AS, respectively. Compared with the control monkeys,
the V1 LPZ border of the MD monkey spreads ~ 0.5° further
towards the scotoma (8.5–9° eccentricity, corresponding to ~0.5 mm
on the cortical surface). This difference could be explained by tak-
ing into account that the extent of the absolute retinal lesion (inner
nuclear layer thickness ~0) was 9.6° vs. the 10° AS, and suggests

a

b

c

Fig. 2. Comparing BOLD responses from the MD animal and one control
monkey. (a) PRF size map obtained with the bar stimuli overlaid on the
inflated gray–white matter surface of the posterior right hemisphere of the
MD macaque. The estimated pRF and time series for one selected voxel in
the non-deafferented V1 are illustrated. The predicted time series shown in
blue matches very well with the actual average BOLD time series in black.
Insets on top show the position of the bars that generated the BOLD signal
peaks shown below. (b) Average BOLD time series of a voxel inside the
deafferented part of the MD monkey V1. Note that there is no significant
modulation by the visual stimulus at this position. This results in a large area
devoid of visually driven activity in central V1 of the MD monkey that cor-
responds to the lesion projection zone of the retinal lesion (see Fig. 3). This
can be contrasted with (c) the PRF size map on the operculum of a control
monkey.

a b

c d

e f

Fig. 3. Fraction of EV in the visual cortex of the MD monkey vs. two con-
trols under the AS condition. (a) Unfolded flat map of the early visual cortex
of the right hemisphere of the MD animal. The operculum of the monkey is
outlined by the calcarine sulcus (CS), the lunate sulcus (LuS) and the inferior
occipital sulcus (IoS). The cortical distance between fovea (yellow star) and
the LPZ border in V1 is ~33 mm for both the MD monkey and for the con-
trol monkeys with a 10° radius AS (c and e), which agrees well with the reti-
notopically projected cortical distance derived from the extent of the retinal
lesion (see text). (b) Percentage EV as a function of eccentricity in V1 (red
lines) and V2 (green lines) for the MD monkey and (d and f) control mon-
keys under the AS condition. The boundaries of the LPZ border (MD mon-
key) are illustrated by the dashed lines and of the ASPZ border (control
monkey under the AS condition) by the dotted lines.

a

b

Fig. 1. The pathophysiology of the retinal lesion of the MD monkey. (a)
Interpolated OCT retinal thickness maps of MD and one control monkey.
The multifocal ERG results are superimposed on the retinal thickness maps.
The retina of the MD animal is greatly thinned in a central region of 2.2 mm
radius and yields a visual field loss of 9.6° radius. (b) OCT of the MD
(right) and the control monkey retina (left) from the foveal rim towards the
foveal pit (indicated by the white arrows in a). GCL, ganglion cell layer;
INL, inner nuclear layer; ONL, outer nuclear layer; RPE, retinal pigment epi-
thelium. Panels a and b were reproduced with kind permission from Springer
Science+Business Media B.V. from parts of figs 3 and 7 in Dominik Fischer
et al., 2012.
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that even the part of the soft lesion border with 75% inner nuclear
layer damage can activate area V1. Alternatively, this could
represent a minimal change of the V1 LPZ border by ~0.5 mm.
Overall, our results suggest that the V1 LPZ border does not shift
appreciably on the order of 1 mm. Voxel histograms of the fraction
of EV were similar inside the V1 LPZ and the ASPZ, were com-
mensurate with histograms obtained from non-visually responsive
regions, and were well separated from histograms obtained outside
the LPZ (ASPZ). Area V2 showed similar trends as V1 (Fig. 3b
and d), suggesting that the border of the LPZ in area V2 also did
not shift appreciably in this situation.

Retinotopic representation

Although our results argue against a shift of the V1 LPZ border, the
size and retinotopic location of the pRFs in the non-deafferented
peripheral areas could still change as a result of chronic loss of
input. We first compared the locations of the pRFs by plotting the
retinotopic angle and eccentricity maps on the visual cortex.
Figure 4 shows the thresholded maps of the MD animal and two
controls with and without AS and projected on the unfolded and
flattened white–grey matter surface. The eccentricity map of the MD
monkey showed a similar concentric structure in early visual areas
as the maps of the controls. In addition, the positions of the horizon-
tal and vertical meridian which can be seen in the angular maps
matched the known anatomical boundaries between areas. Further-
more, there was no obvious distortion in the angular maps of the
MD monkey outside the region of the LPZ and the retinotopic struc-
ture of non-deafferented early visual cortex remained unchanged.

In contrast to early visual areas V1 (N = 1584, 1499, 1395 signif-
icantly activated voxels, counted on anatomical scans, for MD,
C1AS and C2AS respectively) and V2 (N = 1417, 1324, 1268), area
V5/MT of the MD monkey showed more extensive activation than
the control monkeys with AS (N = 561, 152, 162). The area of V5/
MT that was activated in the MD monkey was similar to the extent
of V5/MT activity seen in the control monkeys under full visual
field stimulation (N = 612, 722). These suggest that marked reorga-
nisation occurred in area V5/MT of the MD monkey. Nonspecific
changes in signal-to-noise ratios (SNR), defined here as the mean
intensity of the voxel divided by the SD over time, cannot explain
these observations because the SNRs among the scans for the MD
and control monkeys were similar in area V1 (1.9, 1.9, 1.9; median
logarithm of SNRs for MD, C1 and C2 respectively), V2 (1.9, 2.0,
1.8) and V5/MT (1.9, 1.9, 1.8). Other extrastriate areas (e.g. area
V3/V3A) also appear to be upregulated in the MD animal (see
Figs 3 and 4), but more data would be needed to make a definite
statement here.

pRF size analysis

An important piece of information provided by the pRF method is
the pRF size. The pRF size map for the MD and control monkeys
are presented in Fig. 4 bottom panels overlaid on the flattened corti-
cal mesh. pRF sizes in area V5/MT were smaller for the MD animal
than the controls with a 10° AS. The change in pRF size together
with the expansion of the activated area in V5/MT of the MD mon-
key provide converging evidence for substantial reorganisation in
this area.

Fig. 4. Retinotopic maps derived via population receptive field analysis. Angular, eccentricity and pRF size maps of the MD monkey and two control monkeys
with and without AS. The positions of several visual areas and major gyri and sulci are labeled: occipital gyrus (OG), lunate sulcus (LuS), superior temporal
sulcus (STS), calcarine (CS), inferior occipital sulcus (IOS) and angular gyrus (AnG). There is no obvious distortion in the retinotopic maps of the MD monkey
in the non-deafferentted regions of the early visual areas. Note, however, that the situation is different for area V5/MT. (i) The spatial extent of visually driven
activation of the V5/MT complex in the MD animal (left column) is much larger than that observed in the control with the AS (middle column) and approxi-
mates the extent of V5/MT activation seen in the control animal under full field stimulation (right column). (ii) V5/MT activity in the MD animal arises from
voxels whose pRF centres have phase values that correspond to the region of the intact retina (blue/cyan color, left column eccentricity map). Most of these
pRFs appear to be ectopic, as they correspond to regions of area V5/MT that would ordinarily be activated by pRFs centred at different eccentricities (compare
with eccentricity map, right column).
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Importantly, the pRF features of controls stimulated under the AS
condition remained unchanged compared with normal (no artificial
scotoma) visual stimulation conditions outside the ASPZ in areas
V1, V2 and V5/MT (Fig. 5), in agreement with previous reports
(Baseler et al., 2011; Haak et al., 2012).
In order to quantitatively measure the changes that occur in the

receptive field maps between the MD and control monkeys with
AS, we measured pRF centre and size distributions in different
visual areas (Figs 6a and 7a). As the shape of the retinal lesion of
the MD monkey was nearly circular, the borders of the LPZ in
visual cortical areas were nearly isoeccentric, and the pRF centre
distributions could be characterised by plotting the histogram of
voxels within different eccentricity bins.
Assuming reorganisation happens, one would expect that neurons

close to the border of the LPZ should respond to input from the
intact retina located adjacent to the lesion. In this case, the number
of voxels with receptive fields at eccentricities near and a little
beyond the eccentricity of the LPZ border would increase. This was
not what we found in area V1; instead, the distribution of the voxels
as a function of eccentricity followed a similar pattern for both the
MD and the control monkeys with AS (Fig. 6a, left panel). Looking
at Fig 6a one might think it possible that there is a slight difference
in the histogram profiles around eccentricities 10–12°, but this could
be accounted for by the tapered nature of the MD lesion border
(~1.6°) and cannot be regarded as definite.
In contrast, the pRF size distribution in area V1 of the MD mon-

key was clearly shifted towards larger pRF sizes (Fig. 6a, right
panel). We plotted the pRF size as a function of eccentricity in V1
of the MD and control monkeys with AS. Our results illustrate that
pRF size in area V1 of the MD animal increased linearly with
eccentricity as in the controls, and that the pRF sizes in the MD ani-
mal were larger than the controls with AS for all eccentricities
(Fig. 6b). This result cannot be explained by ‘ectopic’ voxels

located inside the LPZ but suggests a rather systematic expansion in
pRF sizes close to but outside the LPZ border. Although there is a
trend for the effect to be smaller at higher eccentricities (Fig. 6b)
this nevertheless suggests that pRF expansion extends to voxels
which are considerably distant (~3–5mm) from the LPZ border,
towards normal non-deafferented cortex.
PRF sizes in area V2 remained similar in the MD animal and in

the controls with the AS (Fig. 6c), and the LPZ border was not
found to be shifted (Fig. 3b, d and f), suggesting limited reorganisa-
tion in area V2 similarly to V1.
Remarkably, the number of visually modulated voxels in area V5/

MT of the MD monkey was similar with that of the control animal
under full-field stimulation but much higher than the control with an
AS (Fig. 7a, see also Fig. 4). This suggests that visually driven
activity occurs in most voxels of area V5/MT in the MD animal,
but only in a fraction of the area V5/MT voxels in the controls with
an AS. Specifically, there were more voxels activated as well as a
larger fraction of voxels with small pRF sizes in the MD animal.
The number of voxels activated in V5/MT of the two control ani-
mals under the AS condition was very small and therefore a direct
comparison with the MD was very noisy. Alternatively, we plotted
the pRF size as a function of eccentricity in area V5/MT of the MD
and compared it with the control monkeys with full-field stimulation
(note that as we show in Fig. 5 there was no significant difference
between the pRF sizes in controls and controls with AS). Our results
illustrate that the pRF sizes in area V5/MT of the MD animal
increased linearly with eccentricity as in the controls (Fig. 7b).
Importantly, the pRF sizes in the MD animal were smaller than the
controls for all eccentricities.

Discussion

Several studies have reported substantial reorganisation in the pri-
mary visual cortex of cat and monkey following retinal lesions
(Kaas et al., 1990; Heinen & Skavenski, 1991; Gilbert & Wiesel,
1992; Giannikopoulos, 2006) while others have reported minimal, if
any, changes (Murakami et al., 1997; Horton & Hocking, 1998;
Smirnakis et al., 2005). Similarly, several human fMRI studies in
MD patients have suggested that human primary visual cortex
undergoes large-scale reorganisation (Baker, 2005; Baker et al.,
2008; Schumacher et al., 2008; Dilks et al., 2009), but others claim
the reverse (Sunness et al., 2004; Baseler et al., 2011) or qualify
the reported reorganisation as being dependent on top-down feed-
back (Masuda et al., 2008). Recently, Wandell & Smirnakis (2009)
reviewed the capacity of the primary visual cortex for reorganisation
following retinal lesions, underscoring the existence of multiple
points of controversy.
One reason for some of the differences noted in the literature may

be that human studies involve subjects with MD while animal stud-
ies involve induced retinal lesions. Here we were given the opportu-
nity to study a macaque with MD that was identified in the colony
of the Max Planck Institute for Biological Cybernetics. We used
fMRI to measure population receptive field characteristics in the
monkey suffering from MD and made direct comparisons with
results obtained from healthy macaques with similar area V1 size,
which were presented with partially occluded central visual field
stimuli that simulated the MD visual field deficit (this is referred to
as the AS stimulation condition).
We found no significant shift of the LPZ border, suggesting no

large-scale remapping occurs in area V1 of the MD animal. This is in
contrast to previous reports (Kaas et al., 1990; Heinen & Skavenski,
1991; Gilbert & Wiesel, 1992; Chino et al., 1995; Giannikopoulos,

a

b

c

Fig. 5. Scatter plots of pRF size vs. eccentricity in voxels of control mon-
keys with and without artificial scotoma. (a) Area V1, (b) area V2 and (c)
area V5/MT. pRF size estimates outside the ASPZ for the AS condition are
similar to the controls under full-field stimulation.
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2006) which reported the existence of ectopic receptive fields inside
the LPZ and over a large range of distances up to 5 mm. The position
of the LPZ border in the MD animal was within ~0.5 mm of the posi-
tion of the 10° AS projection zone border obtained from control ani-
mals (Fig. 3). Even the observed ~0.5 mm shift can be explained
without having to resort to cortical reorganisation: As the ‘hard’ bor-
der of the MD lesion was 9.6°, the difference between LPZ and
ASPZ borders can be fully explained if the tapering part of the retinal
lesion border is capable of transmitting functional information to area
V1. These results are in agreement with a previous study in macaque
monkeys following retinal lesions induced by laser photocoagulation
(Smirnakis et al., 2005) and with recent fMRI results in human MD
patients (Baseler et al., 2011). In contrast to Baseler et al. (2011;
note the differences in preparation and species), we found that there

were very few voxels with significant visual modulation inside the
V1 LPZ of the MD monkey or inside the ASPZ of the control mon-
keys (Fig. 3). The sampling rates in V1 LPZ were 0.7%, 1.2% and
1.8% for the MD, C1AS and C2AS respectively. Visual inspection of
the pRFs inside the LPZ/ASPZ that had the highest EV revealed that
they were noisy and not representative. This difference might reflect
the differences in the AS mask luminance. In our experiments, the
AS mask luminance was set to black [RGB = (0 0 0)], in comparison
with some previous studies using grey background luminance (Baseler
et al., 2011; Haak et al., 2012). Other factors (such as anesthesia)
might also play a role.
A possible explanation for the differences between studies report-

ing large-scale reorganisation (Baker, 2005; Baker et al., 2008;
Schumacher et al., 2008) and other studies including ours (Sunness
et al., 2004; Baseler et al., 2011) that do not, might be the employ-
ment of a behavioural task; subjects in studies reporting large-scale
reorganisation typically performed a one-back memory task (Baker,
2005). A recent report demonstrated visual responsiveness inside the
V1 LPZ of MD patients only when the subject performed a stimu-
lus-related judgment as opposed to passive viewing (Masuda et al.,
2008). They proposed that responses inside the LPZ are driven by
feedback from extrastriate visual cortex elicited by the demands of
the stimulus-related judgment task (Masuda et al., 2008). Feedback
signals from extrastriate cortex (e.g. V5/MT) can influence V1 (Zeki
& Shipp, 1988; Angelucci et al., 2002; Harrison et al., 2007). It
would have been desirable to measure the cortical response and pRF
features while the MD monkey performed a stimulus-related judg-
ment task, compared to the experiments under anesthesia. Unfortu-
nately, this turned out to be impossible because the animal had to
be killed for reasons unrelated to these experiments.

a

b

Fig. 7. pRF analysis in area V5/MT. (a) Distribution of the pRF centres as
a function of eccentricity (left panel) and size (right panel) in the MD mon-
key and in control monkeys with AS. Note that the number of visually mod-
ulated voxels in area V5/MT of the MD monkey is much higher than in the
AS control (see also Fig. 4). There is also a larger fraction of voxels with
small pRF sizes in the MD animal. (b) pRF size in area V1 as a function of
eccentricity for the MD animal and two control monkeys. Note that as the
number of voxels activated in V5/MT under the AS condition in the two
control animals was very small we have used the controls under full-field
stimulation for the comparison.

a

b

c

Fig. 6. Population receptive field analysis in area V1. (a) Distribution of the
pRF centres as a function of eccentricity (left panel) and size (right panel) in
the MD monkey and in control monkeys with AS. The distribution of pRF
centres as a function of eccentricity away from the area V1 LPZ border are
similar between the MD animal and the AS control, though a slight (1–2°)
shift towards slightly higher eccentricities cannot be excluded for pRFs lying
right outside the LPZ border (see also Discussion). A more pronounced
change is seen when examining pRF sizes. The distribution of pRF sizes is
clearly shifted towards larger values in the MD animal (right panels). (b)
pRF size in area V1 as a function of eccentricity for the MD animal and two
control monkeys under the AS condition. The slopes (S) of the functions are
labelled. PRF size in area V1 of the MD animal increased linearly with
eccentricity as in the AS controls, but remained larger than the controls for
all eccentricities examined (~9–14°). The slope of the curves is different so
that the size difference gap decreases with increasing eccentricity, i.e. as one
moves away from the border of the LPZ. (c) pRF size in area V2 as a func-
tion of eccentricity for the MD animal and two control monkeys under the
AS condition.
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The distribution of pRF centres as a function of eccentricity out-
side the LPZ (ASPZ) was roughly similar between the MD animal
and controls with the AS (Fig. 6a, left panel). However, we found
that pRF sizes in the non-deafferented V1 region, i.e. outside the
LPZ border, were on average ~20% larger in the MD monkey. PRF
size measurements reflect both the receptive field size of individual
units inside a voxel and their scatter. The neuronal receptive field
and scatter have been reported to co-vary (Hubel & Wiesel, 1974).
A recent study by Haak et al. (2012) investigated how the pRFs
change under AS conditions presented to human subjects and found
that pRFs near the border of the AS tend to increase in size (see
also Wandell & Smirnakis, 2009). They speculate that the removal
of input for voxels inside and near the border of the AS is likely to
preferably affect the neurons with small RFs while neurons with lar-
ger RFs can still be stimulated by locations outside the AS biasing
thus the pRF measurements to larger values. The 20% increase in
pRF size we measured is likely to reflect at least partially a similar
mechanism. Alternatively, single-neuron RFs could indeed become
larger but this effect is potentially overestimated in the pRF mea-
surements. Although the enlargement of pRFs qualitatively agrees
with prior electrophysiology studies reporting single- and multi-unit
receptive field increases near the border of the lesion projection zone
(Gilbert & Wiesel, 1992), it is quantitatively very different: Gilbert
& Wiesel (1992) reported a several-fold receptive field size increase
over a period of 2 months, whereas the increase we saw is much
less pronounced. The ~20% increase in pRF size we report here is
more in agreement with other reports (Chino et al., 1995), and could
potentially be explained by changes in the balance between excita-
tion and inhibition (Hubel & Wiesel, 1959; Cavanaugh, 2002)
induced by deafferentiation. For example, inhibitory inputs arising
inside the LPZ may be weakened by deafferentiation (Hendry &
Jones, 1986; Rosier et al., 1995; Arckens et al., 1998; Wade &
Rowland, 2010), releasing from inhibition units lying outside the
LPZ border. PRFs corresponding to voxels lying outside the LPZ
would then increase in size. This hypothesis is supported by the
observation that the increase in pRF size was greater close to the
LPZ border than at higher eccentricities (Fig. 6b). PRF size might
also change as a result of altered top-down feedback to area V1
from higher areas. This explanation is less likely, however, as our
experiments were performed under anesthesia.
Area V2 also showed limited reorganisation indicated by the stable

V2 LPZ border (Fig. 3), and similar pRF sizes outside the V2 LPZ
in the MD animal and in controls with the AS (Fig. 6c).
The more striking finding in our study was the large extent of

activation seen in area V5/MT of the MD monkey in comparison
with control monkeys stimulated with the AS. Earlier reports sug-
gested that functional responses and inter-hemispheric connectivity
of human area MT appeared to be relatively unaffected by long peri-
ods of deprivation of structured visual input (Fine et al., 2003;
Levin et al., 2010). To the best of our knowledge, V5/MT upregula-
tion in subjects with MD has not been reported before, though it is
suggested by figures presented in several studies (Baker, 2005;
Baker et al., 2008; see fig. 3 in these references). Analysis of the
distribution of pRF centre locations in area V5/MT of the MD vs.
the control animals revealed that many more voxels in area V5/MT
of the MD animal respond to inputs from intact, peripheral retina.
Some of these voxels are probably from inside the LPZ given that
the size of V5/MT activated in the MD animal (both in number of
voxels and anatomically) was similar to the extent of V5/MT activ-
ity seen in the control animals under full visual field stimulation and
much larger than the activity in controls with AS. Neurons in area
V5/MT normally have large, overlapping receptive fields receiving

inputs from multiple units with smaller receptive fields in area V1
(Hubel & Wiesel, 1974; Albright & Desimone, 1987). Following
central V1 deafferentiation many V5/MT cells lose only part of their
input, preserving the connections that lie outside the area V1 LPZ.
These connections are likely to be weak initially, explaining why
areas V5/MT of control monkeys are poorly activated under the AS
condition (Fig. 4). Over time, however, the surviving connections
apparently get strengthened and become capable of driving the sig-
nificant, though ectopic, extent of visual modulation we observed in
area V5/MT of the MD animal (Fig. 7a). This hypothesis is consis-
tent with the fact that area V5/MT pRF sizes in the MD monkey are
on average smaller than in controls under the AS condition. One
way this may come about is if, over time, deafferented regions of
area V5/MT become capable of being visually modulated by stimuli
presented outside the retinal lesion but these reorganised, ectopic,
pRFs never return to their original size. The relatively slow, chronic
progression of MD probably contributes to the large-scale reorgani-
sation that is observed.
In summary, our results in this macaque subject with MD suggest that

area V1 shows at best limited reorganisation: (i) the LPZ border did not
shift, and (ii) only a modest, 20% on average, pRF size change was
observed outside the LPZ border. Area V2 also shows limited reorgani-
sation. In contrast, extrastriate area V5/MT shows considerably more
capacity for reorganisation: visually modulated ectopic pRFs in the MD
animal cover a cortical area much larger than expected from AS con-
trols. Area V5/MT could therefore potentially serve as the source of rela-
tively strong feedback inside the area V1 LPZ.
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Abstract 

In the adult visual system, topographic reorganization of the primary visual cortex (V1) 

after retinal lesions has been extensively investigated. In contrast, the plasticity of 

higher-order/extrastriate areas following retinal lesions is less well studied. Here, we 

used fMRI to study reorganization of visual areas V2/V3 following the induction of 

permanent, binocular, homonymous retinal lesions in 4 adult macaque monkeys. We 

found that a few hours after the lesion, ~50% of the area V2/V3 lesion projection zone 

(LPZ) could already be modulated by visual stimuli. Furthermore, ~70% of the voxels 

that did not show visual modulation on the day of the lesion could be visually modulated 

2 weeks later, and the mean modulation strength remained approximately stable 

thereafter for the duration of our observations (4-5 months). The distribution of 

eccentricities of visually modulated voxels inside the V2/V3 LPZ spanned a wider range 

post-lesion than pre-lesion, suggesting that neurons inside the LPZ reorganize by 

receiving input either from the foveal or the peripheral border of the LPZ, depending on 

proximity. Overall, we conclude that area V2/V3 of adult rhesus macaques displays a 

significant capacity for topographic reorganization following retinal lesions markedly 

exceeding the corresponding capacity of area V1. 

Keywords: extrastriate cortex, fMRI, monkey, plasticity, visual cortex 



Introduction 

Understanding the detailed capacity of the adult visual system for plasticity is important 

as it may inform the design of rehabilitative treatments aiming to enhance visual 

recovery after injury.  

Complete homonymous retinal injury eliminates the sensory input to retinotopically 

corresponding regions of visual cortex.  Since the 1990s several studies have focused 

on the reorganization of the primary visual cortex (V1) after homonymous retinal 

lesions, producing in part conflicting results. Several studies reported substantial 

reorganization in the primary visual cortex of cats and monkeys following retinal lesions 

(Calford and others 2000; Giannikopoulos 2006; Gilbert and Li 2012; Gilbert and Wiesel 

1992; Heinen and Skavenski 1991; Kaas and others 1990). Other reports however 

found minimal, if any, topographic changes (Horton and Hocking 1998; Murakami and 

others 1997; Smirnakis and others 2005). In a recent review, Wandell and Smirnakis 

(Wandell and Smirnakis 2009) suggested that electrophysiological recording selection 

bias influences receptive field assessment, largely explaining the disparity of the results.  

Similarly, several human fMRI case reports of patients with macular degeneration, 

suggest that human primary visual cortex undergoes large-scale reorganization (Baker 

2005; Baker and others 2008; Dilks and others 2009; Schumacher and others 2008). 

Other studies however (Baseler and others 2011; Sunness and others 2004), including 

a recent comprehensive report on 16 patients (Baseler and others 2011), find no 

significant reorganization, or qualify the reported reorganization as being the result of 

task-dependent extra-retinal top-down feedback (Masuda and others 2008). For a 



comprehensive review on the capacity of V1 for reorganization following retinal lesions 

see (Wandell and Smirnakis 2009). Overall, the weight of recent evidence (but see 

(Gilbert and Li 2012) for a dissenting view) suggests that minimal, if any, feed-forward 

reorganization occurs in the primary visual cortex of cats or primates following retinal 

lesions. However, much less is known about the capacity of extrastriate cortex for 

reorganization following retinal lesions, and this is the question we tackle in this work. 

Visual responsiveness of areas V2/V3 is often thought to depend entirely on V1 input. 

This is largely based on the finding that transient inactivation of area V1 by cooling 

immediately eliminates more than 95% of visually driven activity seen in retinotopically 

corresponding locations of areas V2/V3 (Girard and Bullier 1989; Girard and others 

1991; Schiller and Malpeli 1977). However, there is evidence that extrastriate cortex has 

the capacity to reorganize over longer time scales (weeks-months) following permanent 

area V1 aspiration lesions: a recent macaque study suggested that in the case of 

chronic V1 lesions visually driven BOLD responses can be elicited inside the lesion 

projection zone of areas V2 and V3 (Schmid and others 2009). Furthermore, it was 

recently shown that this persistent activity as well as the monkeys’ residual visually 

based detection performance (“blindsight”), are mediated by inputs from the lateral 

geniculate nucleus (Schmid and others 2010). An fMRI study in a human subject with 

hemianopia following area V1 injury also reports that visually driven activity persists in 

areas V2, V3 and V3A, arguing that this is likely the result of cortical reorganization 

(Baseler and others 1999).  

Although literature suggests that extrastriate cortex has the capacity for reorganization 

after V1 lesions, the question of what happens after retinal lesions remains open. It is 



possible that extrastriate cortex has different capacity for reorganization depending on 

the mechanism of de-afferentiation (retina vs V1). For one, subcortical pathways are 

thought to mediate the activity of areas V2 and V3 in the absence of V1 input (Schmid 

and others 2010; Schmid and others 2009), but input to these pathways is silenced in 

the case of retinal lesions. Reports from the literature of “filling-in” studies suggest that 

in higher areas, under the right conditions, visual responses can be seen in cortical 

locations that are far away from the visual stimulus. For example, De Weerd et. al. 

showed that the responses of extrastriate V2/V3 neurons whose receptive fields are 

contained inside an area devoid of visual stimulation (artificial scotoma) increase within 

seconds to reach a level comparable to that elicited by direct visual stimulation (De 

Weerd and others 1995). Activation and perhaps enhancement of these pathways may 

be able to support reorganization.  

In a recent case study on a juvenile macaque monkey with congenital dense bilateral 

macular degeneration (Shao and others 2013), we reported that extensive 

reorganization was seen in area V5/MT. Here, we extend these results by using fMRI to 

study whether areas V2/V3 reorganize following bilateral homonymous retinal lesions 

induced by photocoagulation in adult macaques. The substantial topographic 

reorganization of V2/V3 demonstrated here is markedly different from previous findings 

in V1 of the same animals, which showed minimal, if any, reorganization following 

retinal lesions (Smirnakis and others 2005). We argue that, in contrast to area V1, 

significant reorganization occurs in area V2/V3 under these conditions. 

  

Materials and Methods 



Subjects 

Four healthy adult Macaca mulatta (M1, M2, M3 and M4) were used for these 

experiments. The experimental and surgical procedures were performed with care, in 

full compliance with the German Law for the Protection of Animals, the European 

Community guidelines for the care and use of laboratory animals (EUVS 86/609/EEC), 

and the recommendations of the Weatherall report for the use of non-human primates in 

research. The regional authorities (Regierungspräsidium Tübingen) approved our 

experimental protocol and the institutional representatives for animal protection 

supervised all procedures. 

The monkeys were anesthetized during the fMRI experiments. Details on the 

anesthesia protocol have been given previously (Logothetis and others 1999). Briefly, 

the animals were intubated after induction with fentanyl (31 µg/kg), thiopental (5 mg/kg) 

and succinylcholine chloride (3mg/kg); anesthesia was maintained with isoflurane (M2 

and M4) or remifentanyl (0.5-2 µg/kg/min, M1 and M3). Mivacurium chloride (5–7mg/kg/

h) was used after induction to ensure the suppression of eye movements. Heart rate 

and blood oxygen saturation were monitored continuously with a pulse-oxymeter. Body 

temperature was kept at 38-39°. 

Homonymous retinal lesions were induced by using a photocoagulation laser 

(NIDEKGYC-2000; 532nm) under general anesthesia (Fig. 1A) as described in 

Smirnakis et al., 2005 (Smirnakis and others 2005). Histological results confirmed that 

the photoreceptor and bipolar cell layers as well as most of the ganglion cell layer of the 

extrafoveal retina were destroyed (Fig. 1B). Histological confirmation was obtained in 

two of the four animals. Animal fundi were photographed in each experimental session, 



and we confirmed that all lesions remained stable throughout the course of the 

experiments (see Smirnakis et al., 2005 for the details). 

Figure 1 

Stimulus 

Stimuli were presented monocularly, at resolution of 640 × 480 pixels with a 60 Hz 

frame rate using an SVGA fibre-optic system (AVOTEC). Stimuli were centered on the 

fovea by using a modified fundus camera. Animals were fitted appropriate lenses to 

ensure the stimulus remained in focus. Standard expanding ring stimuli (outer radius 

expanded from either 0.3° or 0.9° to 6.9° in steps of 0.6°, i.e. 12 or 11 annuli, frame 

interval, 6sec) and rotating wedge (90° wedges rotated in steps of 30°, i.e. 12 annuli, 

frame interval, 6sec) were presented to the subjects monocularly, always in the same 

eye for each animal. The full retinotopic maps were obtained pre-lesion but after 

lesioning only the eccentricity maps were followed. The first measurement was obtained 

on the day of the lesion. The earliest subsequent measurement was obtained 14 days 

later to comply with the accepted animal protocol. 

One important control condition involved presenting the same expanding ring stimuli to 

the subjects and at the same time occluding a region in the normal half of the visual 

field. This region was designed to mirror the approximate location of the retinal lesion. 

We refer to this as the “artificial scotoma” (AS) condition. For all four subjects, the ASs 

were centered at (3.7°, 0) or (-3.7°, 0), on the opposite side of the scotoma resulting 

from the retinal lesion, and had a diameter of 3.7°.  



FMRI experiments were performed on a 4.7T vertical scanner (Bruker Biospec, Bruker 

Biospin GmbH, Ettlingen, Germany). Multi-slice fMRI was performed by the use of 8 

segmented gradient-recalled echo-planar imaging (EPI). The acquisition parameters 

were TE = 20 ms, TR = 750 or 805 ms, flip angle = 40°. Either 15 or 17 axial slices were 

collected at 1 × 1mm2 in-plane resolution and 2-mm thickness. A full-brain anatomical 

scan was acquired before lesioning at 0.5 × 0.5 × 0.5mm3 resolution for co-registration 

with the EPI images by using an MDEFT sequence (Keliris and others 2007; Logothetis 

and others 1999).  

Data analysis 

FMRI data were reconstructed and imported into a MATLAB based toolbox (mrVista; 

http://white. stanford.edu/software/) (Amano and others 2009; Levin and others 2010). 

The gray-white matter boundary was manually segmented using itkGray from the high 

resolution 3D-MDEFT anatomical images, and 3D cortical surface and flat mesh models 

were created and realigned with the functional data by using mrMesh/mrVista (Wandell 

and others 2000). 

In a typical experiment 5 to 10 repeats of the expanding ring and rotating wedge 

stimulation paradigm were performed and the average BOLD signal time course was 

generated. To obtain the retinotopic maps we have used the travelling wave method 

(Engel and others 1997). The strength of the visual modulation was assessed using the 

measure of coherence, computed with the expanding ring stimuli. Coherence is defined 

as the Fourier amplitude of the BOLD signal at the stimulus presentation frequency (12 

or 11 in our experiments) divided by the square root of the power over a range (12 for 



this analysis) of nearby frequencies (Smirnakis and others 2005). The retinotopic maps 

were then fitted into a template of expected eccentricity and angle maps (atlas fitting) 

(Dougherty and others 2003). During this procedure, the four sides of the visual field 

map, from fovea to periphery and from upper to lower vertical meridian were defined 

manually by simultaneously looking at angle and eccentricity maps, and were found to 

obey expected anatomical landmarks. For example, the dorsal V1/V2 border was 

confirmed to lay ~2mm from the lip of the lunate, the ventral V1/V2 border along the 

inferior occipital sulcus (Brewer and others 2002), and the dorsal V2/V3 boundary at the 

bottom of the lunate sulcus. The calcarine sulcus was at ~6.50 eccentricity as reported 

in (Gattass and others 2005). The fitting algorithm deforms these templates to match 

the eccentricity and angle data, allowing local deformations but no tears or folds in the 

atlas. The atlas with the least error compared with the data was generated, following 

(Dougherty and others 2003). Visual inspection confirmed no major errors. 

Results 

Defining the area V2/V3 lesion projection zone (LPZ) 

Before lesioning the retina, retinotopic maps were measured using standard expanding 

rings and rotating wedge stimuli (see methods).  As shown in Fig.2A,B, all subjects 

showed normal retinotopic organization. The V1/V2 and V2/V3 borders were identified 

by the location of the vertical and horizontal meridians respectively (Fig.2B). The border 

location was confirmed anatomically, as in the macaque visual area boundaries have 

stereotypical anatomical locations (see methods). 



Following a homonymous retinal lesion, parts of the visual cortex become deafferented. 

This results in a series of lesion projection zones (LPZ), one per retinotopic visual area. 

Our goal was to define the LPZ in areas V2/V3 and follow how the strength of its visual 

modulation changed over time. Since the retinal lesions cross the horizontal meridian 

(shared by V2/V3) we expected to find joined LPZs along the V2-V3 border both 

dorsally and ventrally. 

To find the V2/V3 LPZ we performed the following steps: 1) we selected V1 voxels with 

coherence below threshold (we set the threshold to 0.28, which corresponds to noise at 

our settings) on the day of the lesion, and merged them to define the V1 LPZ (Fig.

2C,D). Note that the area V1 LPZ has been shown to remain unchanged over time in 

this data set (Smirnakis and others 2005), 2) we fitted the pre-lesion eccentricity and 

polar angle maps into an atlas (see methods) using the process described in 

(Dougherty and others 2003), and 3) based on the pre-lesion retinotopic atlas-fit, the 

voxels in V2/V3 that corresponded retinotopically to the voxels belonging to the V1 LPZ, 

to within 0.05° of eccentricity and polar angle (on the atlas) were selected. These 

selected voxels were highly clustered and continuous inside the dorsal and ventral V2/

V3. They were then merged to define V2/V3 LPZ (Fig. 2C,D). Once the V2/V3 LPZ was 

identified on the anatomical template, all quantitative analysis was done on the original 

data derived from voxels located inside the anatomical region corresponding to the 

LPZs. For each monkey, we followed the same procedure in order to define the artificial 

scotoma projection zones (ASPZ) in areas V1 and V2/V3 on the non-deafferented 

hemisphere (ipsilateral to the scotoma). Note that the monkeys were always scanned in 

the same position with the help of implanted fMRI-compatible headposts, and that the 



LPZ was defined on the high resolution anatomical scan that serves as a template for 

aligning the functional data. These procedures assured we could follow the activity of 

the same anatomical region over time.  

Figure 2 

Visual modulation inside the V2/V3 LPZ 

The retinal lesion crosses the horizontal meridian and so the V2/V3 LPZ is split into two 

parts, one across the ventral and the other across the dorsal V2/V3 border (Fig.2C). 

From the coherence maps (Fig.2C) it is evident that even on the day of the lesion (D1), 

the V2/V3 LPZs are on average significantly visually modulated. Therefore the V2/V3 

LPZ appears to receive visually modulated input outside the retinotopically 

corresponding V1 LPZ, which shows no significant visual modulation over its entire 

extent (Smirnakis and others 2005). The average fraction of voxels inside the V2/V3 

LPZ that were visually modulated (> 2 standard deviations above noise level) on the day 

of the lesion (D1) was 50.4% ± 12% (standard deviation across subjects). This was 

consistent with observations made in the artificial scotoma (AS) control condition: the 

average fraction of voxels that were visually modulated inside the ASPZ was similar at 

53.5% ±10% (standard deviation, Fig. 3). 

Figure 3 



Importantly, in addition to the voxels that were visually modulated immediately after the 

lesion, a fraction of voxels that were not significantly modulated on the day of the lesion 

(D1) recovered the ability to be visually modulated by day 14 post lesion (D14, Fig. 2D). 

We compared the distribution of coherence values measured across all the LPZ voxels 

pre-lesion (PRE) with the distribution on the day of the lesion (D1) and 14 days post-

lesion (D14) (Fig. 4B). Because the overall level of the BOLD signal can fluctuate on 

different measuring sessions, the coherence of each voxel inside the LPZ was 

expressed as a fraction of the average coherence computed across all voxels within the 

non-deafferented region of V2/V3 in the same hemisphere (normalized coherence). 

Note that the distribution of normalized coherences derived from all voxels inside the 

V2/V3 LPZ (Fig. 4B) shifts initially toward lower coherence values on the day of the 

lesion (D1), but returns close to pre-lesion levels 14 days later (D14). Kruskal-wallis 

tests were performed comparing average normalized coherence over time (PRE, D1 

and D14) across all of the V2v/V3v and V2d/V3d LPZ voxels in all 4 monkeys. There 

were significant differences of coherence over time in both the dorsal and ventral LPZ 

(H=32.54, p<10-7 for V2v/V3v LPZ and H=17.83, p<10-4 for V2d/V3d LPZ). Statistics 

were performed using the functional voxels (a total of 58, 45 voxels for the V2v/V3v and 

V2d/V3d LPZ respectively, across all monkeys). Post-hoc pairwise comparisons showed 

significant differences between the mean level of coherence pre-lesion (PRE) and day 1 

(D1), D1 and day 14 (D14) for both LPZs, as well as the differences between PRE and 

D14 for V2d/V3d LPZ (p<0.05; Fig. 4B). In fact, the number of voxels with low 

coherence inside the V2/V3 LPZ also changes following the lesion. The average fraction 

of voxels inside the V2/V3 LPZ that had low coherence (<2 standard deviations above 



noise level) across subjects was 14.1% ±8% (standard deviation) pre-lesion, increased 

to 49.6% ±12% on D1, and dropped back to 14.8% ±9% on D14, close to pre-lesion 

levels.  

To study how the strength of visual modulation inside the LPZ of area V2/V3 evolves 

over time, we focused on voxels that were in the central area of the LPZs. These voxels 

were selected on the pre-lesion atlas. For the sake of comparison, the coherence of 

each voxel in the LPZ was normalized by the average coherence across voxels of the 

non-deafferented control V2/V3 ROI as described before. As shown in Fig. 4C left two 

panels, the mean coherence of these voxels was high pre-lesion, dropped on the lesion 

day, increased markedly as early as two weeks after the lesion and then remained 

approximately at the same level over time. The same Kruskal-wallis tests were 

performed comparing average normalized coherence of voxels over time across all of 

the central V2v/V3v and V2d/V3d LPZ in all 4 monkeys. There were significant 

differences of coherence over time in both the dorsal and ventral LPZ (H=54.78, p<10-8 

for V2v/V3v LPZ and H=18.64, p<10-5 for V2d/V3d LPZ). As control, ROIs outside but 

close to the LPZs were selected. The coherence of these voxels over time were 

compared. Kruskal-wallis tests showed no significant differences (Fig. 4C right two 

panels). 

Fig. 4D, top row, plots the percent modulation of the BOLD signal as a function of the 

stimulus cycle of voxels taken from the center of monkey M1’s V2v/V3v LPZ. Note how 

the strength of the visual modulation initially drops following the lesion (D1) but then 

recovers over time from day 1 (D1) to day 14 (D14). Fig. 4D, bottom row, shows the 

signal amplitude as a function of temporal frequency for the same voxels.  



This contrasts, with the case of the ASPZ where the coherence was decreased and 

remained stable overtime (Fig. 3), with the areas adjacent to the LPZ where the signal 

remained unchanged (Fig. 4C right two panels),  and also with V1 LPZ where the signal 

dropped to noise levels following the lesion and did not change significantly over time 

(Smirnakis and others 2005).  

Overall, across all four subjects, we found that the strength of the visual modulation 

inside the V2/V3 LPZ increased over time following the lesion, arguing for potential 

reorganization in area V2/V3.  

Figure 4 

Eccentricity map changes in V2/V3 LPZ 

The next step was to look for the source of the input leading to the increase in visual 

modulation inside the V2/V3 LPZ over time. Although part of the sensory input of the 

voxels inside the LPZ has been cut off because of the retinal lesion, neurons inside the 

LPZ may still receive input from visual field locations that are outside the border of the 

scotoma. To test this, we compared the range of eccentricities of the voxels inside the 

V2/V3 LPZ before and 14 days after the lesion. We focused on the voxels whose 

strength of visual modulation recovered as a function of time following the lesion. Such 

voxels were from the center of the V2/V3 LPZ based on pre-lesion retinotopy, and were 

modulated above noise level both before and 14 days following the lesion. For each 

subject, we performed the eccentricity analysis in the dominant (largest) V2/V3 LPZ, 

dorsal or ventral. This is compared to controls (Fig. 5A, top row) from an approximately 



iso-angular non-deafferented area V2 ROI in each subject (see Fig. 2).  Eccentricity 

measurements in control ROIs (Fig. 5A, top row) demonstrate the reliability of this 

analysis. As expected, all control ROIs showed strong correlation between eccentricities 

measured pre-lesion and on day 14, with slopes near one (b=1.54, 0.98, 0.71, 0.94; 

R2=0.91, 0.93, 0.79, 0.86; p<10-7 for M1, M2, M3 and M4 respectively, illustrated in 

dashed lines).  Fig. 5A, bottom row presents the eccentricity scatter plots of voxels 

inside the dominant V2/V3 LPZ before and after the lesion. Voxel eccentricities pre-

lesion were significantly correlated with eccentricities measured on day 14 all 4 

subjects, but slopes were significantly smaller than one (b=0.23, 0.56, 0.3, 0.51; 

R2=0.22, 0.34, 0.28, 0.47; p<0.01 for M1, M2, M3 and M4 respectively; illustrated in 

dashed lines). Overall, the eccentricities inside the LPZ span a wider range following the 

lesion compared to pre-lesion for each subject. Voxels with small eccentricity pre-lesion 

tend to have smaller eccentricity after the lesion, while, voxels with large eccentricity 

pre-lesion tend to have larger eccentricity after the lesion.  

Distribution of eccentricity from voxels in the central V2/V3 LPZ (same voxels as panel 

A, bottom row) across all subjects pre-lesion and post-lesion were plotted in Fig. 5B. 

Because the retinotoppy of each LPZ is different. To align the LPZs, the mean 

eccentricity of the central V2/V3 LPZ pre-lesion was first subtracted for each subject, 

the relative eccentricities were then accumulated together across subjects. The 

distribution pre-lesion is significantly different from post-lesion (p<0.01). There are more 

instances of lower and higher eccentricities in the V2/V3 LPZ post-lesion, but less in the 

middle, compared with pre-lesion data. This agrees with panel A, bottom row, suggests 

that lateral inputs are likely responsible for the activation of the V2/V3 LPZ region. 



Neurons inside the LPZ may regain their activity by receiving input either from the foveal 

or the peripheral border of the LPZ, depending on which one is closer. 

Figure 5 

Discussion 

  

We found that the lesion projection zone (LPZ) in area V2/V3 could be visually 

modulated at the first post-lesion imaging time point, 2-6 hours following retinal 

photocoagulation. Approximately ~50% ± 12% (standard deviation) of the voxels inside 

the V2/3 LPZ were visually modulated 2-6hrs post-lesion, similar to the fraction 

observed inside the V2/V3 projection zone of the artificial scotoma control (ASPZ). In 

contrast, no visually driven activity was seen inside the V1 LPZ of the same animals 

(Smirnakis and others 2005). These observations are consistent with DeWeerd et al. 

(De Weerd and others 1995), who showed that multi-unit activity can be elicited in area 

V2 and V3 but not area V1 locations, if distant surround is visually stimulated. A 

dynamic change in the balance between excitation and inhibition affecting the range 

over which receptive fields receive inputs may be the cause of this relatively rapid 

adaptation (Knierim and van Essen 1992). Given its rapid time course, this 

phenomenon is likely to be mediated by pre-existing wiring, although we cannot exclude 

conclusively the possibility that plasticity mechanisms operating over the course of 

several hours may play a role.  



Our results show that, over longer time periods, V2/V3 has a noticeable capacity for 

reorganization. Overall, ~70% of the V2/V3 LPZ voxels that do not show visual 

modulation on the day of the lesion (D1) can be visually modulated two weeks later. The 

mean coherence of V2/V3 LPZ voxels whose activity drops hours after the lesion (D1) 

increases markedly by two weeks post-lesion and remains approximately at the same 

level thereafter (see Fig. 4C). In marked contrast, visually driven activity does not 

recover inside the area V1 LPZ, whose border remains stable to within 1mm (Smirnakis 

and others 2005). Therefore the increase in the strength of visual modulation inside the 

V2/V3 LPZ is unlikely to be caused by area V1 recovery or even by significant retinal 

surround recovery, which presumably would first leave a signature in area V1.  

Fig. 5A suggests that following the retinal lesion, the eccentricities of visually modulated 

voxels inside the V2/V3 LPZ span a wider range than pre-lesion. The form of the 

eccentricity change suggests that neurons inside the LPZ may reorganize by receiving 

intra-areal input either from the foveal or the peripheral border of the LPZ, depending on 

which one is closer. It is likely that this plastic reorganization is mediated by local 

cortico-cortical connections between the V2/V3 LPZ and its surround. Strengthening of 

projections from the surround of the V1 LPZ to area V2 may also play a role. We believe 

that similar processes likely operate along iso-angular lines. However, since we followed 

reorganization just by using expanding/contracting ring stimuli, we cannot definitively 

prove this. 

Subcortical projections from the surround of the retinal lesion itself are not likely to play 

a major role, as they would first be expected to influence the extent of the V1 LPZ, 

which does not change. Trans-callosal connections between retinotopically 



corresponding locations across hemispheres are also unlikely to play a major role as: 1) 

one would expect the range of eccentricities represented insight the LPZ to 

approximately match the pre-lesion values, which is not the case (Fig. 5), and 2) in 

some of the experiments an artificial scotoma was presented on the side contralateral to 

the actual scotoma, depriving the contralateral cortex from retinotopically corresponding 

visual input. Scenarios involving higher areas and pathways involving feedback are also 

unlikely as the monkeys were under anesthesia during the experiments.  

It is interesting to speculate on the difference between V2/V3 reorganization following a 

retinal lesion versus following an area V1 lesion (Schmid and others 2009). In the retinal 

case, activity inside V2/V3 LPZ returns to nearly normal levels (Fig. 4). By contrast 

Schmid et al. showed that visual modulation strength in area V2/V3 following a V1 

lesion returns to only ~20-30% of prior activity levels (Schmid and others 2009) and 

depends mostly on subcortical projections from the LGN (Schmid and others 2010). 

This difference is surprising in view of the fact that retinotopically corresponding parts of 

area V2/V3 were visually deprived in both cases, and V2/V3 LPZ size was 

commensurate in both studies. This suggests that, the existence of healthy V1 cortex 

and its upstream connections may be important for potentiating part of the 

reorganization seen in extrastriate areas after retinal lesions. Alternatively, the existence 

of functional retinotopically corresponding subcortical inputs, which are preserved in the 

case of the V1 lesion but silenced in the case of the retinal lesion, may limit the ability of 

lateral intra-areal connections to reorganize. 

Human subjects suffering from macular degeneration exhibit perceptual filling-in in their 

blind visual field as well as an associated distortion of visual space (Burke 1999; Gerrits 



and Timmerman 1969; Kapadia and others 1994; Zur and Ullman 2003). It has been 

argued that primary visual cortex is able to reorganize (Calford and others 2003; Darian-

Smith and Gilbert 1994; 1995) and could provide a contribution to this phenomenon 

(Gilbert and Li 2012). However, the degree of V1 reorganization following retinal lesions 

has been questioned (Horton and Hocking 1998; Murakami and others 1997; Smirnakis 

and others 2005; Wandell and Smirnakis 2009), and De Weerd et al.’s filling-in study in 

animals with intact visual system suggests that higher areas may be involved. Our 

results suggest that adult extrastriate cortex exhibits significant capacity for 

reorganization following retinal injury, and may potentially contribute to the phenomenon 

of perceptual “filling-in” in subjects with retinal lesions.   
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Figure Legends 

#  

Fig.1 A. Retinal lesion. The right retinal fundus 1-2 hours following photocoagulation. 

The lesion appears pale white. Note that a corresponding lesion was made on the other 

side of the fovea in the left eye resulting in a homonymous left visual field scotoma (data 

not shown). Visual stimulation was always presented monocularly, on the right eye for 

this monkey, thus avoiding activity changes that may be due to potential eye 

misalignment. B. Haematoxylin-eosin stain of a 15µm thick section through the lesion in 

the right eye, where the visual stimulus was presented. Note the complete destruction of 

the photoreceptor layer, and the near complete destruction of the inner nuclear and 

ganglion cell layers (see Fig. 1 in reference (Smirnakis and others 2005) for a full 

description).  

A B



#  

Fig.2 Pre-lesion retinotopy and LPZ definition. A. Polar angle and B. eccentricity 

functional activation maps obtained pre-lesion and overlaid on the flattened 

representation of early visual cortex in monkeys M1, M2, M3 and M4. C. Normalized 

coherence maps of the hemispheres affected by the retinal lesion, obtained on the day 

of the lesion (D1) and D. at least 14 days post-lesion using the ring stimulus (14 days 



post-lesion for monkeys M1, M3 and M4, 62 days post-lesion for M2). The V1 LPZs 

were selected directly based on the coherence maps (see methods). V2v/V3v and V2d/

V3d LPZs were defined on the atlas fit of the pre-lesion retinotopic maps (Dougherty 

and others 2003), by extracting voxels in areas V2 and V3 with similar eccentricities and 

polar angles as voxels in the V1 LPZ (see methods). The color map of coherence is 

normalized with respect to the average coherence across the voxels of an 

approximately iso-angular non-deafferented area V2 ROI (solid black line segment). The 

V1/V2 and V2/V3 borders and the V1 horizontal meridian are shown as dashed lines. 

Fig.3 Coherence changes inside ASPZ. Mean normalized coherence across all voxels 

(the left two panels) and the center (the right two panels) of the V2v/V3v and V2d/V3d 

LPZ pre-lesion, as well as on day 1 and day 14 following the lesion, plotted across all 

monkeys. Kruskal-wallis tests were performed, no significant differences were found. 



!  

Fig.4 Longitudinal changes in the strength of visual modulation inside the V2/V3 

LPZ. A.  Distribution of normalized coherence values (the coherence of each voxel 

inside the LPZ was expressed as a fraction of the average coherence computed across 

all voxels within the non-deafferented region of V2/V3 in the same hemisphere) of all 

functional voxels inside the V2v/V3v and V2d/V3d LPZs pre-lesion and at D1 and D14 



post-lesioned histogrammed across all monkeys. Note that the number of voxels with 

low coherence inside the V2/V3 LPZ increases on the day of the lesion, then appears to 

substantially recover by day 14. B. Mean normalized coherence across all functional 

voxels inside the V2v/V3v and V2d/V3d LPZ pre-lesion, as well as on day 1 and day 14 

following the lesion, plotted across all monkeys. Kruskal-wallis test shows a significant 

effect for both LPZ’s over time (H=32.54, p<10-7 for V2v/V3v LPZ and H=17.83, p<10-4 

for V2d/V3d LPZ). Post-hoc pairwise comparisons show that the strength of visual 

modulation dropped significantly on Day 1 compared to pre-lesion values, and then rose 

again significantly from Day 1 to D14 post-lesion in both the ventral and the dorsal LPZ.   

Error bars represent s.e.m. across voxels * p<0.05. C. Mean normalized coherence 

across the voxels in the center (left two panels, these voxels were selected 

independently on the pre-lesion atlas) and outside (right two panels, these voxels were 

adjacent to the LPZ border) of the V2v/V3v or V2d/V3d LPZ is plotted as a function of 

time across all animals. Error bars represent s.e.m. across voxels * p<0.05. Note that 

the mean coherence for the center LPZs drops on the day of the lesion (D1) and then 

increases over time following the lesion. This agrees with panels A,B, which represent 

the aggregate response over the entire LPZ across all animals. D. top row: Percent 

BOLD signal modulation as a function of stimulus cycle from voxels in the center of the 

V2v/V3v LPZ of M1, plotted pre-lesion (PRE) and on days 1 (D1) and 14 (D14) post-

lesion. Bottom row: Average signal amplitude as a function of temporal stimulation 

frequency (12 cycles per scan, indicated by the red color). Note that the strength of the 

visual modulation recovers over time.  



 

Fig.5 Eccentricity profile of V2/V3 LPZ. A. Top row, scatter plots of pre-lesion versus 

post-lesion (day 14) eccentricities of voxels inside a control, non-deafferented, area V2 

ROI (see Fig. 2) near the V2/V3 LPZ border. Note that the eccentricities were mainly 

unchanged pre- and post- lesion (control). Bottom row, similar scatter plots of the voxels 

belonging in the center of the dominant (largest) V2/V3 LPZ of each monkey. Note that 

eccentricities inside the LPZ span a wider range following the lesion, with eccentricities 

that started low tending to become lower and eccentricities that started higher tending to 

become higher. B. Distribution of normalized eccentricity (The mean eccentricity of the 

central V2/V3 LPZ pre-lesion was first subtracted for each subject, the relative 
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eccentricities were then cumulated together across subjects.) from voxels in the central 

V2/V3 LPZ (same voxels as panel A, bottom row) across all subjects pre-lesion and 

post-lesion. Noted that the distribution pre-lesion is significantly different from post-

lesion (p<0.01), there are more instances of lower and higher eccentricities in the LPZ 

post-lesion, but less in the middle. This agrees with panel A, bottom row, suggests that 

lateral inputs are likely responsible for the activation of the V2/V3 LPZ region. 
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Injury to the primary visual cortex (V1) typically leads to loss of
conscious vision in the corresponding, homonymous region of the
contralateral visual hemifield (scotoma). Several studies suggest
that V1 is highly plastic after injury to the visual pathways,
whereas others have called this conclusion into question. We used
functional magnetic resonance imaging (fMRI) to measure area V1
population receptive field (pRF) properties in five patients with
partial or complete quadrantic visual field loss as a result of par-
tial V1+ or optic radiation lesions. Comparisons were made with
healthy controls deprived of visual stimulation in one quadrant
[“artificial scotoma” (AS)]. We observed no large-scale changes in
spared-V1 topography as the V1/V2 border remained stable, and
pRF eccentricity versus cortical-distance plots were similar to those
of controls. Interestingly, three observations suggest limited reor-
ganization: (i) the distribution of pRF centers in spared-V1 was
shifted slightly toward the scotoma border in 2 of 5 patients com-
pared with AS controls; (ii) pRF size in spared-V1 was slightly in-
creased in patients near the scotoma border; and (iii) pRF size in
the contralesional hemisphere was slightly increased compared
with AS controls. Importantly, pRF measurements yield informa-
tion about the functional properties of spared-V1 cortex not pro-
vided by standard perimetry mapping. In three patients, spared-V1
pRF maps overlapped significantly with dense regions of the
perimetric scotoma, suggesting that pRF analysis may help
identify visual field locations amenable to rehabilitation. Con-
versely, in the remaining two patients, spared-V1 pRF maps
failed to cover sighted locations in the perimetric map, indicat-
ing the existence of V1-bypassing pathways able to mediate
useful vision.

cortical blindness | quadrantanopia | plasticity | retinotopy | hemianopia

Cortical damage of the visual pathway often results from
posterior or middle cerebral artery infarcts, hemorrhages,

and other brain injuries. The most common visual cortex lesions
involve the primary visual cortex (V1), the chief relayer of visual
information to higher visual areas. Damage to area V1 or its pri-
mary inputs leads to the loss of conscious vision in the corre-
sponding region of the contralateral visual hemifield, producing
a dense contralateral scotoma that often covers a hemifield
(hemianopia) or a single visual field quadrant (quadrantanopia).
A much-debated issue is whether the adult V1 is able to re-

organize after injury. Reorganization refers to long-term changes
in the neuronal circuit (1) and generally requires the growth of
new anatomic connections or a permanent change in the strength
of existing connections. Several studies report significant remap-
ping in area V1 of patients suffering from macular degeneration
and other retinal lesions (2–12). The extent of this remapping has

recently been called into question, however (1, 13–19). Less is
known about how the visual system remaps to cover the visual
field after injury to area V1 or its input projection from the lateral
geniculate nucleus (LGN). Enlarged receptive fields have been
found in areas surrounding chronic V1 lesions in cats (20–22), and
visual point spread functions were seen to enlarge over time in the
areas surrounding focal V1 lesions in kittens (23). Smaller, short-
term changes (2 d after the lesion) have been reported as well
(24). As expected, reorganization is more extensive in young
animals (23, 25) compared with adults (26). A change in the
balance between excitation and inhibition may underlie this
functional reorganization (27–31).
In humans, V1 injury is typically followed by a brief period

of spontaneous recovery, which rarely lasts beyond 6 mo (32).
Whether this recovery is the result of true visual system plasticity
or is related to the gradual resolution of perilesional edema and
general clinical improvement of the patients is unclear. A recent
study in an adult human subject suggested that large-scale re-
organization occurs in area V1 after partial deafferentiation by
an optic radiation lesion (33); however, quantitative measure-
ments were not performed. To date, there has been no system-
atic study in humans investigating how spared V1 cortex covers
the visual field after chronic V1 injury. The present work is an
effort in this direction.

Significance

Partial damage of the primary visual cortex (V1), or damage to
the white matter inputs to V1 (optic radiation), cause blindness
in specific regions of the visual field. We use functional MRI to
measure responses in individual patients with a localized,
chronic V1 injury that resulted in blindness in a quarter of the
visual field. The fMRI responses of patients and controls are
generally similar, but in some patients differences from controls
can be measured. Importantly, responses in spared early visual
cortex are not always congruent with visual perception. Un-
derstanding how the properties of early visual areas respond to
injury will lead to better strategies for visual rehabilitation.
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We used the population receptive field (pRF) mapping
method (34) to study how spared area V1 covers the visual field
after chronic injury in five adult human subjects suffering from
partial or complete quadrantanopia. Our findings suggest that
there is at best a limited degree of reorganization in the spared
part of area V1 after partial V1 injury. Interestingly, the pattern
of coverage of the visual field measured in spared V1 cortex by
functional magnetic resonance imaging (fMRI) typically does
not match predictions derived from perimetry maps. Identifying
the patterns of mismatch and how they relate to the capacity of
early visual areas to reorganize after injury will eventually allow
the adoption of more rational strategies for visual rehabilitation.

Results
Retinotopic Mapping of Spared Area V1. We studied five patients
with partial V1 or optic radiation lesions resulting in partial or
complete quadrantanopia (Table S1) and examined how the ad-
jacent spared area V1 organization changes after the injury. We
expected that in the absence of significant reorganization, reti-

notopic organization in the spared-V1 cortex would remain un-
changed compared with controls. The patient’s lesions are
described in detail in Fig. 1. In brief, patient P1 had a lesion of
the right inferior calcarine cortex (Fig. 1 A, a), resulting in a su-
perior quadrantanopic defect of the left visual field (Fig. 2 A, b).
Patient P2 had a right superior quadrantanopia (Fig. 2 A, c) after
sustaining a temporal optic radiation infarct of the left hemi-
sphere. Patient P3 had a lesion of the left inferior calcarine
region resulting in a central (<10° radius) right superior quad-
rantanopia (Fig. 2 A, d), which spread slightly into the inferior
right quadrant. Patient P4 had a lesion of the left inferior cal-
carine cortex, resulting in a right superior quadrantanopia (Fig. 2
A, e). Patient P5 had a partial left superior quadrantanopia
extending to the inferior quadrant across the horizontal meridian
(Fig. 2 A, f), resulting from an infarct in the right midposterior
temporoparietal region (Fig. 1 A, e).
We observed two general patterns in the five patients exam-

ined. In patients P1, P2, and P3, spared (i.e., not completely
deafferented) area V1 seems to retain its “coarse” retinotopic
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Fig. 1. Anatomic location of the lesion and retinotopic
mapping. (A) Sagittal (Upper) and axial (Lower) slice
showing each patient’s anatomic lesion (a red arrow
points to the lesion). Patient P1 had a lesion of the
right inferior calcarine cortex involving the part of the
V1 area inferior to the calcarine sulcus and the part of
the extrastriate cortex corresponding to the ventral
visual areas V2 and V3, with the foveal part of the
vertical meridian at the border of ventral V3 and V4
spared. Patient P2 had a temporal optic radiation in-
farct of the left hemisphere located along the terri-
tory of the middle cerebral artery, sparing the gray
matter of area V1 but deafferenting a significant
portion of it by injuring the optic radiation. Patient P3
had a lesion of the left inferior calcarine cortex as
a result of an ischemic event at the left inferior terri-
tory of the posterior cerebral artery, resulting in
a right upper quadrantanopia. This lesion also in-
volves part of the peripheral (>10° radius) area V1
superior to the calcarine, as well as extrastriate cortex
corresponding to ventral visual areas V2, V3, and V4.
Patient P4 had a lesion of the left inferior calcarine
cortex caused by an infarct to the lower bank of the
calcarine fissure. It involves left ventral area V1, left
ventral extrastriate areas V2, V3, and V4, as well as
part of the cortex near the fovea. Patient P5 had an
infarct of the right midposterior temporoparietal
lobes that damaged the temporal optic radiation and
part of the parietal optic radiation. White matter
tracts in the temporal lobe were affected, but deaf-
ferented V1 gray matter remained intact; the area
corresponding to the anatomic lesion does not include
early visual areas. (B and C) Polar angle (B) and ec-
centricity maps (C) overlaid on the flattened occipital
lobe of the lesioned hemisphere for each patient. The
lesioned area is colored black (Fig. S4 and SI Mate-
rials and Methods). (D) As expected, no significant
activity was found inside the area of the lesion, as
shown in the explained variance map. White contour
lines indicate borders between visual areas. The
dashed white line indicates the middle of the cal-
carine sulcus as identified by its anatomic localiza-
tion (i.e., bottom of the calcarine sulcus).
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organization, similar to control subjects. In particular, the pRF
center eccentricity maps (Fig. 1 C, a–c) show that the foveal rep-
resentation was in the occipital pole, as expected, and that
increasingly anterior locations responded to increasingly eccen-
tric stimuli. In addition, the representation of the visual field in
the dorsal spared V1 corresponding to the sighted quadrant
extended from the horizontal meridian to the lower vertical
meridian, as shown on the pRF polar angle maps (Fig. 1 B, a–c),
similar to controls. Surprisingly, in these patients, the polar
angle map shows significant activity in locations ordinarily
corresponding to the inferior part of the calcarine (separated
by the dotted line; Fig. 1 B, a–c), a region normally activated
by stimuli presented in the superior part of the visual field,
where the perimetry shows a dense scotoma (Fig. 2 A, b–d). We
investigated this pattern in more depth, as discussed in the
next section.

Patients P4 and P5 exhibited a different pattern. In these
patients, the extent of the retinotopic topography of area V1 that
was activated was considerably less than would be predicted from
the visual field maps. Specifically, for patient P4, the organiza-
tion of spared area V1 was severely disrupted, and almost the
entire dorsal V1, except for a sliver near the lower vertical me-
ridian, was devoid of activity (Fig. 1 B–D, d). Nevertheless, the
perimetry map of this patient closely conforms to a superior
quadrantanopia, with only a slight extension below the horizontal
meridian. The relatively well-preserved perimetry map of the right
lower visual field quadrant (Fig. 2 A, e) suggests either the pres-
ence of sufficient intact dorsal V1 islands to compensate (even
though they are not visible on the retinotopic map) or the
presence of functional V1-bypassing pathways to higher areas
that may have more complete retinotopic coverage maps (35).
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Fig. 2. Perimetry maps versus visual field coverage
maps of spared area V1. (A) (a) Sketch of the visual
field indicating the location of the artificial scotoma
(shaded gray area). (b–f) Pattern deviation proba-
bility plots of the 10° Humphrey type (10, 2) visual
field test for patients P1, P2, P3, P4, and P5. The small
black dots show the locations in the visual field that
are normal, and the black squares indicate a visual
field defect at a P < 0.5% level according to the
pattern probability plot (meaning that <0.5% of
normal subjects would be expected to have such
a low sensitivity at this visual field location). Pattern
deviation numeric plots for patients P1, P2, P3, and
P4 had a visual sensitivity of <−20 dB, indicating
absolute visual field scotoma (56), at all visual field
locations within the affected quadrants. Black
squares outside the affected quadrants had a visual
sensitivity of <−10 dB (most still <−20 dB) for these
patients. Patient P5 had a visual sensitivity of <−20
dB (absolute scotoma) in all of the black square
locations. (B) Visual field coverage maps of area V1
for a control subject with AS in the upper left quad-
rant and for each patient. The color map indicates
the maximum pRF amplitude at each visual field lo-
cation of all of the pRFs covering that location. The
pRF centers across all voxels within the spared V1 are
plotted with gray dots. In the normalized maps (Left),
values range between 0 and 1, because the fitted
Gaussian model is normalized to 1. In the non-
normalized maps (Right), the maximum pRF ampli-
tude of the nonnormalized Gaussian pRFs is plotted.
The nonnormalized color map is plotted with the
maximum color value taken at the median pRF am-
plitude across all pRFs (SI Materials and Methods) to
maintain sensitivity to relatively low values. The V1
coverage maps of patients P1, P2, and P3 overlap
significantly with locations of the perimetric map
that show an absolute scotoma (black squares with
decibel deviations of <−20 dB). Only a few pRFs
(∼6%) of patient P2’s spared-V1 overlap with loca-
tions of the perimetric map (black squares) that have
a lower decibel deviation, between –10 dB and –20
dB. (C) Eye positions plotted at 60 Hz for each sub-
ject for one entire session (6.4 min). The number of
eye deviations, defined as excursions >1.5° from the
fixation point, is indicated next to the graphs with #.
Patient P3 was scanned without eye-tracking while
performing a task at fixation. All other patients were
able to maintain fixation.
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Similarly, patient’s P5 visual cortex inferior to the calcarine was
severely affected, with no visually driven functional activity present
in the ventral occipital region as a whole (Fig. 1 B–D, e). However,
this subject shows a sparing along the left upper vertical meridian
in the perimetry map (Fig. 2 A, f). Presumably, preserved visual
function in the left upper visual field is mediated by V1-bypassing
pathways, likely involving areas beyond V3 (Discussion), or
perhaps via the contralesional hemisphere (left area V1). We
explore this in more details in the next section.
In summary, we observed two different patterns in the five

patients that we examined. Patients P1, P2, and P3 had visually
driven activity in spared V1 regions that corresponded to dense
locations of their perimetric scotoma. In contrast, patients P5
and P4 had intact perimetric maps in locations corresponding to
area V1 regions, with an absence of visually driven activity. We
analyzed these patterns further using the concept of visual field
coverage maps.

Correspondence Between Visual Field Coverage Maps and Perimetric
Scotomas. To estimate how the visual field is represented in
spared area V1, we superimposed appropriately normalized
pRFs arising from all of the spared V1 voxels to derive visual
field coverage maps (Fig. 2B and SI Materials and Methods). The
visual field coverage maps define the locations within the visual
field that evoke a significant response from voxels within a region
of interest (ROI) in the cortex. Determining the degree to which
visual field coverage maps match perimetric maps, which in-
dicate the patients’ perceptual scotoma, is of interest.
To ensure that the patients’ visual field coverage maps are not

an artifact of poor pRF estimation caused by the presence of the
visual field scotomas, we tested the effect of an “artificial sco-
toma” (AS) on normal subjects. We measured responses in five
control subjects while masking the left superior quadrant of the
visual field, thereby simulating a left upper quadrantanopia. As
expected, the visual field coverage maps of the right V1 hemi-
sphere in AS controls reveal visually driven activity only for
stimuli presented in the left inferior visual field quadrant (Fig. 2
B, a). No activity was observed in the left upper visual field
quadrant in any of the five AS control subjects.
In contrast, the visual field coverage maps of spared V1 in

patients P1, P2, and P3, who had a quadrantic visual field defect
similar to AS controls, contain pRF centers that extend well
beyond the border of the perimetric scotoma into the superior
(anopic) visual field quadrant (Fig. 2 B, b–d). The pRFs, whose
centers fall inside the area of the scotoma, belong to voxels at the
correct anatomic location, inferior to the calcarine, which do not
appear to be grossly ectopic (Fig. 3). Thus, the observed activity
likely reflects islands of V1 that were spared or only partially
damaged. Interestingly visually driven activity in this spared V1
region is not sufficient to guarantee visual awareness, as mea-
sured by standard perimetry.
One possibility is that the blood oxygen level-dependent

(BOLD) signal amplitude is lower at V1 locations covering the
interior of the scotoma and thus cannot mediate visual percep-
tion. However, for patients P1 and P3, the mean amplitude of the
pRF centers that fall inside the perimetric scotoma was similar to
the mean amplitude of pRF centers located outside the scotoma,
as shown in the nonnormalized visual field coverage maps (Fig. 2
B, b and d). In this case, the dense perimetric defect near the hori-
zontal meridian might be explained by injury in downstream
extrastriate areas, such as V2/V3 (36, 37), or the interruption of V1
projections to extrastriate areas. In fact, the lesion of these patients
involves areas V2v and V3v, supporting the first possibility.
On the other hand, for patient P2, who had an optic radiation

lesion, the loss of visual perception cannot be attributed to a lesion
downstream from area V1, because the visual cortex remained
intact. Responses in ventral areas V2 and V3 overlapped with the
area of the scotoma, similar to V1 (Fig. S1A). In this case, the

nonnormalized visual field coverage maps showed a significantly
lower mean amplitude of pRF centers falling inside the scotoma
compared with those in the inferior (sighted) quadrant (Fig. 2 B, c
and Fig. S1A). Thus, it is possible, at least in principle, that this
decreased level of visually driven activity is responsible for the
loss of visual perception as measured by perimetry. Interestingly,
scattered pRF centers with high amplitude remained inside the
scotoma. One possible explanation for this finding is that intact
islands of spared, partial axonal tracts in the optic radiation sur-
vived after the ischemic event and activate corresponding loca-
tions in area V1. Despite being visually driven, however, these
islands were unable to mediate visual perception as measured on
perimetric maps and cannot be detected even with the relatively
sophisticated perimetry mapping methods used here (SI Materials
and Methods).
The mismatch between the visual field coverage map and

perimetric scotoma does not manifest in the same way in every
individual. For example, the visual field coverage of the spared
V1 in patient P4 shows pRF centers within the inferior quadrant,
outside the visual field scotoma (Fig. 2 A and B, e). In patient P5,
a few pRF centers below the horizontal meridian seemed to fall
in areas where the perimetry test showed a dense defect, as in
patients P1, P3, and P2 (Fig. 2 A and B, f). However, the more
striking observation in both these patients is the smaller than
expected (based on the perimetry map) activated area in V1. In
patient P4, the activation pattern seen in area V1 (Fig. 2 B, e)
was patchy and smaller than expected based on the perimetric
map. The visual field coverage map of the right inferior (sighted)
quadrant contained significantly fewer pRF centers compared
with controls, although the corresponding pRFs cover most, but
not all, of the quadrant.
It is possible that pRFs in surviving islands of area V1 enlarged

over time, producing a confluent visual field coverage map that
partially mediated the residual visual function. However, even
taking this into account, the pRF coverage map appeared to miss
portions of the visual field where the perimetric map showed
normal vision. This finding suggests that part of the residual vi-
sual function may be mediated through spared V1-bypassing
pathways. In fact, dorsal areas V2 and V3 showed full coverage
of the lower visual field quadrant, supporting this hypothesis
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Fig. 3. Anatomic localization of area V1 population receptive fields within
the scotoma. (Left) Visual field coverage maps obtained from the region of
spared V1 inferior to the bottom of the calcarine sulcus (anatomic location
of the horizontal meridian) for patients P1 and P2. (Right) Anatomic location
of the bottom of the calcarine sulcus indicated by a dashed line on the polar
angle flat maps. Note that pRFs with centers falling within the scotomatous
area in these patients map to the correct anatomic location, inferior to the
calcarine (black arrow).
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(Fig. S1B). Similarly, the perimetry map of patient P5 showed
a significant area of sparing along the vertical meridian and beyond,
within the left upper visual field quadrant (Fig. 2 A, f). Surprisingly,
there was no contralateral V1 activation corresponding to that
quadrant, despite the fact that a significant portion of the quadrant
was essentially normal on the perimetry map (Fig. 2 A, f). One
possibility is that visual perception near the vertical meridian
might arise from V1-bypassing pathways providing direct input to
extrastriate areas beyond V3 (35), or perhaps from ectopic V1
activation in the contralesional hemisphere.
The differences in visual field coverage maps between patients

and AS controls cannot be explained by eye movements. Subjects
were able to maintain fixation within a 1.5° radius from the
center of fixation as measured with our eye-tracking system (Fig.
2C and SI Materials and Methods), except for very occasional
excursions beyond this range (Fig. 2). The results remained un-
changed after the epochs in which the patients had eye devia-
tions (>1.5°) from the fixation point were removed from the
analysis. Patient P3’s eye movements were not recorded, but he
performed a challenging detection task at fixation, and his per-
formance was always >80% correct. The retinotopic maps of his
healthy hemisphere were well organized, suggesting that he did
not make large, confounding eye movements. In addition, to
ensure intrasubject reproducibility, we repeated the experiment
on another day for patients P2 and P5 and confirmed the find-
ings across days. Patients P1, P3, and P4 could not repeat the
session; however, we analyzed each scan separately before av-
eraging and confirmed the reliability across different scans ob-
tained on the same day.
In summary, our comparison of perimetric maps and pRF

coverage maps of the visual field confirmed the two patterns of
mismatch noted in the previous section. In three of the five
patients, spared area V1 pRF maps overlapped significantly with
the scotoma, suggesting remaining visually responsive islands of
V1 that cannot contribute to visual perception, perhaps because
of damage to downstream areas or damage to the inputs that
they receive from area V1. In the remaining two patients, spared
V1 pRF maps failed to completely cover locations that were
found to have intact thresholds on perimetry. In these patients,
the observed mismatch might indicate the existence of V1-
bypassing pathways able to mediate useful vision. The infor-
mation obtained from pRF analysis complements that obtained

by standard perimetry maps, and can be used to further char-
acterize the underlying etiology of cortical visual field defects.

pRF Center Distributions in Spared Area V1 Show at Best Limited
Reorganization. A general finding in all five patients was that the
retinotopic representation of the spared V1 remained grossly un-
affected (Fig. 1). The borders between visual areas, as marked by
polar angle reversals, were detected at the expected locations. We
measured the cortical distance from the V1 horizontal meridian to
the dorsal V1/V2 border along isoeccenticity contours, and plotted
it as a function of eccentricity. Plots for all patients were within the
range of controls (Fig. 4). Furthermore, the Talairach coordinates
at an eccentricity of 8° along the horizontal meridian of V1 and the
dorsal V1/V2 border were similar to those of controls (Table S2),
and consistent with previous reports (38). In addition, the eccen-
tricity maps exhibited a monotonic progression of phase, as expec-
ted (Fig. 1C). These results reveal that large-scale retinotopic
distortions do not occur; however, the possibility of fine changes in
the retinotopic structure of spared V1 cortex cannot be excluded
and merits quantitative assessment.
To do so, we compared the distributions of pRF center loca-

tions between patients and AS controls. The AS serves as
a baseline to control for pRF changes that may arise from re-
organization versus simple stimulus deprivation. This control
might not always be completely adequate, however, given that
partial deafferentiation of the visual pathways may affect the
pRFs corresponding to visual field locations that do not belong
to the scotoma. Thus, a case-by-case evaluation of whether pRF
differences between patients and AS controls are result of partial
deafferentiation as opposed to remapping or true reorganization
is needed.
pRF center distribution as a function of distance from the scotoma
border. In two of the five patients (P1 and P2), the distribution
of pRF centers as a function of distance from the horizontal
border of the scotoma (elevation) differed significantly from
that of AS controls [two-sample Kolmogorov–Smirnov test;
significance is reported as P = a < b, where b is the value se-
lected to reject the null hypothesis (Materials and Methods); P1:
P= 8:09× 10−63 < 10−27; P2: P= 7:62× 10−42 < 10−27]. Specifically,
pRF centers were seen to cluster near the border of the scotoma,
that is, the horizontal meridian (Fig. 5A). In fact, in these patients,
a number of pRF centers crossed the scotoma border to lie inside
the scotoma (i.e., with elevation > 0°), as seen in the visual field
coverage maps (Fig. 5A, Insets). These pRFs belonged to voxels
that were not anatomically ectopic but mapped roughly at the
correct anatomic location, the lower bank of the calcarine sulcus
(Fig. 3). One may then wonder whether they are the reason that
pRF centers cluster more strongly near the border of the scotoma
in patients compared with AS-controls. However, the distribution
of pRFs of the spared dorsal V1, defined by its anatomic loca-
tion, was also significantly shifted toward the scotoma border,
with voxels clustering near the border (0° elevation) (Fig. 5B; P1:
P= 8:09× 10−38 < 10−26; P2: P= 8:09× 10−38 < 10−26). This finding
suggests that the observed shift in the distribution of pRF centers
likely corresponds to a slight reorganization of the visual field
coverage map in unlesioned portions of area V1 that are located
close to the scotoma border, perhaps because of a change in local
excitation/inhibition balance as a result of the lesion.
This effect was not seen in every patient. The distribution of

pRFs in the dorsal V1 of patient P3 did not show significant
clustering near the border of the scotoma compared with AS
controls (P= 1:4× 10−15 > 10−28) (Fig. 5B). Patients P4 and P5
had fewer voxels with pRFs inside the sighted quadrant com-
pared with AS controls, and P4 also showed a trend toward
clustering of pRF centers at the scotoma border, but this did not
reach significance under our relatively strict comparison criterion
(P4: P= 1:48× 10−04 > 10−07; P5: P= 9:6× 10−04 > 10−11) (Fig.
5A). Regardless, the lesions of patients P4 and P5 extended to
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partially involve dorsal V1 or its inputs (Fig. 1 A, d and e),
making it difficult to determine whether observed changes are
related to true reorganization or to partial deafferentiation.
In summary, these results suggest that in some patients with

partial lesions of area V1 or its inputs (here P1 and P2), the pRF
centers of spared V1 cortex cluster near the border of the sco-
toma. This clustering is seen primarily within 1–2° of the scotoma
border. The magnitude of the shift is small, suggesting a limited
degree of reorganization. One patient (P3) did not exhibit this
effect; however, this patient’s injury occurred only 6 mo before
recruitment, compared with the chronic lesions of the other
patients, and we cannot exclude the possibility that time may affect
the degree of the observed reorganization. In patients P4 and P5,
the observed differences are more likely related to partial deaf-
ferentiation or partial injury of the corresponding voxels.
Population receptive field size. We found a larger mean pRF size in
the spared V1 area in patients compared with AS controls (Fig. 6).
Specifically, the mean pRF size in the spared V1 of patients P1,
P2, P4, and P5 was increased by ∼25% compared with AS con-
trols. A larger increase was seen in patient P3, ∼90% compared
with AS controls. The pRF size distributions of patients P1, P2, and
P3 were significantly shifted toward larger sizes compared with the
AS controls (P= 1:4× 10−76 < 10−63, P= 1:67× 10−78 < 10−70, and
P= 1:13× 10−165 < 10−66, respectively) (Fig. 6A). The same trend
was seen for patients P4 and P5, but it did not reach significance
(P= 7:4× 10−09 > 10−39 and P= 1:19× 10−33 > 10−62) (Fig. 6A). V1
lesions were larger in these patients (Fig. 1 B, d and e), leading to
few visually modulated area V1 voxels and thus more measure-
ment variability. In addition, in these patients, the pRFs were
located at higher eccentricities, where pRF sizes are larger. In
general, the mean pRF size for each patient was greater than the
corresponding mean of the distribution of pRF sizes of the AS
controls (Table S3).
We examined whether the pRF size increase depends on ec-

centricity and distance of the voxel from the scotoma border. To
do so, we divided voxels in the spared V1 of patients and AS
controls into two categories: voxels with pRF centers within 2° of
the horizontal scotoma border and voxels with pRF centers >2°

from this border, and plotted mean pRF size versus eccentricity
(Fig. 6 B and C). We found that for all patients, mean pRF size
was increased for voxels located within 2° of the scotoma border
(Fig. 6B), with increases of ∼40% for patients P2, P4, and P5;
∼75% for patient P1; and ∼120% for patient P3. For patients P1,
P2, P3, and P5, the increase occurred across almost the whole
range of eccentricities, whereas for P4, it was more profound for
large eccentricities (>6°). In contrast, the mean pRF size of
voxels >2° away from the scotoma was more similar in patients
P1, P2, P4, and P5 and AS controls (Fig. 6C). For P3, the mean
pRF size was increased for voxels away from the scotoma as well,
but to a lesser degree (∼40%) compared with voxels near the
scotoma. The larger increase observed in this patient might be
attributed to the relatively recent lesion compared with the other
patients, but we cannot exclude the possibility that small eye
movements might have affected the pRF size, considering that
this patient was not eye-tracked. However, eye movements would
be expected to increase pRF size in higher areas in a comparable
way as in V1 (39). In patient P3, pRF size in areas V2d and V3d
was slightly larger (∼15%) compared with that in AS controls,
but the magnitude of the increase was considerably less than
observed in area V1 and did not occur for all eccentricities (Fig.
S2). Thus, eye movements cannot be the sole explanation for the
pRF size increase observed in area V1 of this patient.
In summary, the pRF size distribution in the spared V1

regions of patients with partial quadrantanopia appeared to shift
toward larger values compared with the AS controls, particularly
near the scotoma border.

Contralesional Hemisphere. Previous reports have suggested that in
some cases, residual vision in the blind hemifield might be me-
diated by visual areas in the intact hemisphere (40–43). It is then
possible that after area V1 injury, reorganization might occur
in the contralateral, healthy hemisphere. Because in primates,
callosal projections are concentrated along the V1/V2 boundary
(44), the vertical meridian is the most natural place in the con-
tralesional hemisphere to look for potential reorganization.
We compared pRF sizes between the dorsal and ventral V1 and
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between the vertical and horizontal V1 meridians of the hemi-
sphere ipsilateral (contralesional) to the visual field scotoma in
patients and in AS controls. Patients P1, P2, P3, and P4 showed
no significant difference in mean pRF size between contrale-
sional dorsal and ventral V1 or between vertical and horizontal
V1 meridians (Fig. S3); however, the pRF size distribution of the
entire contralesional V1 in each patient showed a significant shift
to larger pRF sizes in patients P2, P5, and P3 compared with AS
controls (P= 1:63× 10−64 < 10−62, P= 2:55× 10−167 < 10−70, and
P= 4:93× 10−236 < 10−63 respectively) (Fig. 7A). The increase oc-
curred across all eccentricities in patients P3 and P5 and
mainly for eccentricities >5° in patient P2 (Fig. 7B). Patients
P1 and P4 had a pRF size distribution more similar to that of
AS controls, with differences that did not reach significance
(P1: P= 8:34× 10−34 > 10−64; P4: P= 7:53× 10−18 > 10−55) (Fig.
7A); however, these patients had a larger pRF size for eccen-
tricities >7° compared with AS controls (Fig. 7B).
Only patient P5 had significantly larger pRFs in the ventral

contralesional V1 than in the dorsal contralesional V1, particu-
larly along the upper vertical meridian (Fig. S3). This finding is
intriguing, and it is tempting to associate it with the sparing seen
in the perimetric map of this patient along the left upper vertical
meridian (Fig. 2 A, f). This association is not certain, however,
for several reasons: (i) Although larger, patient P5′s pRFs along
the vertical meridian crossed only modestly (∼1–2°) into the con-
tralateral visual field, and this cannot readily explain the relatively
larger sparing seen on perimetric maps; (ii) the degree of crossover
was commensurate with the size of patient P5′s eye movements
(∼1.3°); and (iii) we cannot completely exclude the possibility that
area V1 of the lesioned hemisphere could be mediating visual
perception in the spared region seen on visual perimetry while
being too weakly visually driven to be evident on the pRF maps.

Discussion
The few published studies of human visual system organization
in the setting of area V1 injury are mainly case reports (33, 45).
Naturally occurring cortical lesions show considerable variability,

making it difficult to draw definite conclusions from isolated case
studies. Dilks et al. (33) studied a subject with left upper quad-
rantanopia after damage to the optic radiation and report sig-
nificant ectopic activity in area V1 at 6 mo after the ictus.
Specifically, activity elicited by stimuli presented in the sighted
left lower visual field quadrant mislocalized to V1 regions ordi-
narily corresponding to the blind left upper quadrant, suggesting
the occurrence of large-scale reorganization. Whether the ec-
topic V1 activity that Dilks et al. reported is the result of re-
organization or simply the result of a different pattern of visual
input between patient and controls is unclear, however. The
authors attempted to control for this by removing stimulation
epochs corresponding to the left upper quadrant from their
analysis in the controls, but this was not necessarily definitive,
because the stimulus was in fact presented there. A more ap-
propriate control would have been to mask the stimulus pre-
sentation space in the controls to simulate a quadrantic scotoma
(AS condition). Given the high intersubject variability, further
studies are needed to characterize how the functional properties
of the visual cortex change in the context of injury.
Here we used quantitative pRF analysis (34, 46–48) to study

the properties of spared V1 cortex in five patients with chronic
postchiasmatic lesions resulting in homonymous visual field
quadrantanopia. We derived detailed retinotopic maps and vi-
sual field coverage maps of spared area V1 for each patient and
made the following observations: (i) The spared V1 region of the
lesioned hemisphere retained its coarse retinotopic organization,
as described previously (35, 45), the V1/V2 border remained
stable, and retinotopic maps showed a monotonic progression of
phase, as expected; and (ii) visual field coverage maps of the
spared V1 area generally did not exactly match the area of the
dense perimetric scotoma (Fig. 2). Two main patterns of mis-
match were identified.

Pattern 1: Visual Field Coverage Maps of Spared-V1 Overlapped
Significantly with the Dense Perimetric Scotoma in Three of the
Five Patients. pRFs activated inside the scotoma were found in
the proper anatomic locations. Thus, in patient P2, whose scotoma
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Fig. 6. pRF size in spared V1 areas. (A) Histograms of the distribution of pRF size from the spared V1 of all patients (gray bars) compared with the mean
distribution of AS controls (orange stairs). The shaded area indicates the SEM across the AS controls. The pRF size distribution of all patients is shifted toward
larger pRF sizes compared with the AS controls. (B) Mean pRF size versus eccentricity for voxels located near the scotoma border (<2°) in patients (black) and AS
controls (orange). The orange error bars indicate the SEM across AS control subjects (n = 5). The gray error bars indicate the SEM across voxels within an
eccentricity bin (bin size, 1°) for each patient. Mean pRF size is larger in patients compared with AS controls across eccentricities. pRFs within the area of the
scotoma of patients P1, P2, and P3 were not included in the plots; however, results remain the same when these voxels are included. (C) Mean pRF size versus
eccentricity for voxels located away from the scotoma border (>2°) in patients (black) and AS controls (orange). Mean pRF size was similar in patients P1, P2, P4,
and P5, and AS controls across eccentricities, with only P1 having a slightly increased pRF size for eccentricities >7°. For P3, the mean pRF size was larger than
that of AS controls for all eccentricities. Eye movements cannot explain the observed differences for patients P1, P2, P4, and P5, given that the distribution of
eye movements was similar in patients and controls (Fig. 2B) and eye movements would have caused an increase in pRF size at low eccentricities irrespective of
distance from the scotoma border. Patient P3 was not eye-tracked, and thus we cannot completely exclude that possibility. However, pRF sizes in areas V2d and
V3d did not increase similarly to those in V1, suggesting that eye movements might not be responsible for the large increase observed in V1 (Fig. S2).
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resulted from optic radiation injury, residual islands of V1 ac-
tivity likely received inputs from axonal tracts that are only
partially affected by the lesion. These tracts were able to elicit
area V1 activity, but were not strong enough to elicit a visual
percept (Fig. 2 B, c). In principle, lack of a percept in the
presence of area V1 activity may occur because retinotopically
corresponding higher pathways or areas are injured, or because
the activity generated in area V1 is too weak or too disorganized
to elicit a percept. Patient P2 had no lesion in higher pathways,
and so the latter mechanism likely dominates. Given that the
pathways from area V1 to higher extrastriate areas were intact
and islands of activity were present in the V1 cortex, it is rea-
sonable to view this patient as a prime candidate for visual re-
habilitation. In theory, the capacity for recovery would be
maximal in the portion of the scotoma that overlaps with the
visual field coverage map of area V1.
The two other patients in this category, P1 and P3, had lesions

that included ventral areas V2/V3, raising the possibility that the
information flow between area V1 and higher extrastriate areas
had been cut off. In that event, knowing the region of overlap
between the visual field coverage map of area V1 and the scotoma
might still be helpful if the projection from spared V1 cortex to
extrastriate areas was not completely cut off. Regardless, the region
of overlap between a visual field coverage map and the corre-
sponding perimetrically determined visual field scotoma identifies
visual field locations that can still generate some level of V1 activity
and thus may have greater potential for visual rehabilitation.
This strongly suggests that pRF mapping (34, 49) should be in-
corporated into the design of future visual rehabilitation studies.

Pattern 2: Visual Field Coverage Maps of Spared-V1 Did Not Cover
Completely the Sighted Quadrant of the Perimetric Map. Two out of
five patients exhibited this pattern of activity. Presumably in this
case, residual visual function is mediated by V1-bypassing pathways
(as supported by the visual field coverage maps of areas V2/V3 in
patient P4; Fig. S1) or perhaps through the contralesional hemi-
sphere. The latter possibility would be supported by a spreading of
the pRF coverage map across the vertical meridian, as occurred to
some degree in patient P5 (Fig. S3), who exhibited an area of
sparing near the vertical meridian in the perimetry map. This oc-
curred to a lesser degree than expected from the area of sparing
seen in the perimetric map, however, and thus this hypothesis
cannot be verified here; more research is needed. Another
possible explanation that we cannot completely exclude here
is that in some cases, fMRI mapping might not be sufficiently

sensitive to detect weak visually induced activity in early visual
areas. This is probably not the complete explanation, however,
for several reasons: (i) We calculated the BOLD signal-to-noise
ratio (SNR) in the areas of interest in all patients and found
them to be within the range obtained in controls with AS; (ii) the
variance explained of voxels corresponding to these visual field
locations is within the range obtained in nonvisually responsive
areas; and (iii) previous studies have shown that BOLD signal
amplitude correlates well with visual stimulus perception (50,
51), and in some cases even subthreshold stimuli elicit significant
modulation in early visual areas (52).

Do (Spared) Area V1 pRFs Change After the Lesions? pRF mea-
surements provide a way to gauge the degree of reorganization
that occurs in early visual areas. The pRF depends on both the
size and the position scatter of individual receptive fields within
a voxel (53). It thus might be affected by partial deafferentiation
of V1 inputs, or may reflect reorganization, that is, sprouting
or strengthening of anatomic connections after V1 injury. In-
complete stimulus presentation itself might alter pRF size mea-
surements and result in apparent remapping even in the absence
of true reorganization (54). For this reason, changes can be
reasonably attributed to cortical reorganization only if they are
significantly different than changes observed in controls under
the AS condition. Thus, we compared pRF center and size dis-
tributions between patients and AS controls.

Does the Position of pRF Centers Reorganize? One important
question is whether the pRFs of spared area V1 in patients
emerge from voxels that are at the correct anatomic locations
versus voxels that are ectopic, suggesting possible reorganization.
We have not found voxels with grossly ectopic V1 pRFs in any
patient. pRFs fall in approximately correct anatomic locations;
that is, pRFs located in the upper visual field belong to voxels
located below the calcarine sulcus and vice versa. Finer changes
in pRF localization do occur, however.
We found that for two of the five patients (P1 and P2), pRF

center elevation (i.e, distance from the scotoma border) dis-
tributions differed significantly from that of the AS controls, with
clustering near the scotoma border (horizontal meridian). More-
over, this occurred even when we restricted the analysis to the
intact part of V1 that corresponds to a normal perimetry (dorsal
V1; Fig. 5B). This suggests that for these patients, some pRF
centers shift their location over short distances to locations near
the scotoma border, supporting the notion of reorganization. A
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Fig. 7. pRF size of the contralesional V1. (A) Histograms of the distribution of pRF sizes from the contralesional V1 of all patients (gray bars) compared with the
mean distributions of AS controls (orange stairs). The shaded area indicates the SEM across AS controls (n = 5). The distributions show a significant shift to larger
pRF sizes for patients P2, P3, and P5. Patients P1 and P4 showed a significant increase in pRF size only for eccentricities >7°. (B) Mean pRF size versus eccentricity
for voxels in the contralesional V1 of patients (black) and AS controls (orange). The orange error bars indicate the SEM across AS control subjects (n = 5). The
gray error bars indicate the SEM across voxels within an eccentricity bin (bin size, 1°) for each patient. For patients P1, P2, and P4, pRF size was larger compared
with that in AS controls for eccentricities >6–7°. For patients P3 and P5, pRF size was increased across all eccentricities. As shown in Fig. 2C, patients P1, P2, P4,
and P5 were able to ensure fixation. The amplitude of the eye movements did not differ between patients and controls (Fig. 2C), and epochs of significant
deviation from fixation were excluded from the analysis; thus, the findings for these patients are unlikely to be attributed to eye movements. Patient P3 was not
eye-tracked, however, and even though he was performing a challenging detection task at fixation, in his case we cannot completely exclude that possibility.
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possible mechanism behind this shift is enhancement of surviving
single-cell pRFs in voxels near the border of the scotoma after
injury, perhaps via a change in the balance of inhibition versus
excitation (27–31). The magnitude of the shift is on average only
1°, consistent with at most a limited degree of reorganization.
In contrast, patients P4 and P5 exhibited patchy activation of

spared V1. The difference in pRF center distributions between
these patients and AS controls may be the result of partial deaf-
ferentiation. The remaining patient, P3, had similar pRF center
location distributions as AS controls. A possible important differ-
ence in this patient is that V1 injury occurred only 6 mo before
recruitment, whereas all other patients had been lesioned for years.
None of the patients who participated in this study, including the
two patients with optic radiation lesions, had ectopic pRF centers
over distances comparable to those suggested by Dilks et al. (33).

Does pRF Size Change in Spared-V1 Cortex? pRF size measurements
in the spared V1 cortex of patients showed pRF size increases of
∼25% for patients P1, P2, P4, and P5 and ∼90% for patient P3
compared with AS controls. The pRF size difference reached
∼40% for patients P2, P4, and P5, ∼75% for patient P1, and
∼120% for patient P3 near (<2°) the scotoma border, whereas it
was correspondingly smaller far (>2°) from the scotoma border
(Fig. 6 B and C). As mentioned earlier, this may stem from
decreased inhibition in the area surrounding the lesion (21), or
perhaps because subcortical inputs from LGN or the pulvinar
may reorganize via sprouting of cortical axons (55) and contrib-
ute to the activation of area V1 areas surrounding the lesion.
pRF size in area V1 of the intact hemisphere also increased in

patients compared with healthy AS controls. The relative mag-
nitude of the increase was ∼20% for patient P2 and ∼90% for
patients P3 and P5. pRFs for patients P1 and P4 increased by
∼30% but only for eccentricities 6–10°. The relative increase in
pRF size seen in the contralesional hemisphere may be attrib-
uted to loss of input from interhemispheric connections (40–42),
although the expectation that these would affect mainly pRFs
along the vertical meridian is not well born out.

Conclusions
Although each patient is unique, several themes emerge from
our study:

1. Area V1 displays at best a limited degree of reorganization in
adult humans with homonymous visual field defects due to
postchiasmatic lesions of the visual pathway.

2. This reorganization is manifested in some patients by a small
shift in the pRF centers toward the border of the scotoma and
in most patients by a slight increase in V1 pRF sizes near the
border of the scotoma, as well as in the V1 of the contrale-
sional hemisphere. Finding ways to further expand pRF size in
these patients may increase coverage of the visual field defect,
inducing recovery.

3. Importantly, pRF measurements in patients with cortical
lesions yield information on the functional properties of spared
visual cortex that complements the information provided by
standard perimetry maps.

4.Weidentified twodifferentpatternsofmismatchbetweenresponses
in early visual areas and visual perception asmeasured by perimetry
mapping, and examined possible underlying mechanisms.

5. Understanding how surviving visual areas process visual infor-
mation post-lesion could potentially help guide visual rehabil-
itation efforts to induce recovery. Future studies of this patient
population incorporating pRF measurements are clearly war-
ranted to improve understanding of visual processing in the
context of injury.

Materials and Methods
Patients. Fouradult patients (age27–64y; two females and twomales)with visual
cortical lesions were recruited at the Center for Ophthalmology of the University
Clinic in Tuebingen. One patient (male, age 33 y) was recruited at the Center for
Advanced MR Imaging at Baylor College of Medicine. Four of the participants
had homonymous visual field defects as a result of ischemic or hemorrhagic
strokeat 7–10 ybefore enrollment in this study, andonepatient had sustained an
ischemic stroke at 0.5 y before recruitment (Table S1). Nine participants (age 26–
65 y; eight males and one female) were recruited as controls. All patients had
normal or corrected-to-normal visual acuity. The experiments were approved by
the Ethical Committee of theMedical Faculty of the University of Tuebingen and
the Institutional Review Board of Baylor College of Medicine.

Scanning. At least two T1-weighted anatomic volumes and a minimum of five
fMRI scans were acquired for each patient and averaged to increase the SNR.

Stimuli. The patients were presented with moving square-checkerboard bars
that traveled sequentially in eight different directions spanning a circular
aperture with a radius of 11.25° around the fixation point. The bar width was
1.875°, and it was moved in a step of half its size (0.9375°) at each image
volume acquisition (repetition time, 2 s). Five control subjects were asked
to participate in a second session, during which an isoluminant mask was
placed in the upper left quadrant of the visual field. The mask covered the
area of the stimulus and created an AS.

Data Analysis. Data analysis was performed in MATLAB using the mrVista
toolbox (http://white.stanford.edu/software/). Reliable pRF measurements
and visual field coverage maps were derived using the direct isotropic
Gaussian pRF method (Fig. S5) (34).

Normalization of pRF Center Voxel Distributions. To test for significant differ-
ences between individual patients and the mean distribution from controls (38),
we normalized the distributions derived from the AS controls separately for each
patient. To do so, we scaled these distributions by the ratio of active spared
voxels in V1 of each patient divided by the number of active voxels in the reti-
notopically corresponding V1 regions of the control subjects during full stimu-
lation (i.e., without AS).

Statistical Analysis. We used a two-sample Kolmogorov–Smirnov test to
compare pRF center locations and size distributions between the patients
and AS controls. The significance level selected to reject the null hypothesis
(same distributions) was estimated by comparing each of the control dis-
tributions with the mean control distribution. The minimum P value of these
comparisons was then used to test for significance differences in the mean
distribution between patients and controls. We report significance as P = a < b,
where b is the value selected to reject the null hypothesis.

Detailed descriptions of themethodology used in this study are provided in
SI Materials and Methods.
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