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Abstract

The Human Immunodeficiency Virus 1 (HIV-1) is a rapidly evolving human
retrovirus. HIV-1 nucleic acid sequences have been sampled from many pa-
tients, with mostly one sequence per patient, to characterize HIV-1 genetics
and epidemiology. Ultimately, however, HIV-1 replicates and evolves during
single infections that last for several years. In my doctorate I performed
whole-genome longitudinal deep sequencing on several HIV-1 patients and
developed experimental, theoretical, and computational methods to (i) char-
acterize HIV-1 evolution within single infections, (ii) organise and share the
collected genomic data with the research community, and (iii) simulate evo-
lution of rapidly adapting organisms like HIV-1 in silico. First, I quantified a
number of central properties of intrapatient HIV-1 evolution such as genetic
diversity, evolutionary rate, linkage disequilibrium, mutation rate, strength
and prevalence of positive and purifying selection, and influence of RNA sec-
ondary structures. Second, exploiting modern web technologies, I realized a
web application that gives other researchers the chance to perform specific
analyses on the same data set. Third, I coded a computer package, FFPop-
Sim, to simulate the evolution of populations under selection; via a novel
algorithm and a cross-language design, it has proven an ideal tool to bridge
theoretical predictions and experimental results.
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Zusammensfassung

Das Humane Immundefizienz-Virus 1 (HIV-1) ist ein schnell evolvierendes
menschliches Retrovirus. HIV-1 Nukleinsäuresequenzen wurden von vielen
Patienten – normalerweise eine Sequenz pro Patienten – analysiert, um die
Genetik und Epidemiologie von HIV-1 zu charakterisieren. Jedoch repro-
duziert sich und evolviert HIV-1 innerhalb jeder einzelnen, jahrelang an-
dauernden Infektion. Während meiner Promotion führte ich genomweites,
longitudinales deep sequencing von mehreren durch HIV-1 infizierten Patien-
ten durch. Ich entwickelte experimentelle, theoretische und bioinformatische
Methoden, um (i) die Evolution von HIV-1 während der einzelnen Infektio-
nen zu charakterisieren, (ii) die gesammelten genetischen Daten zu organ-
isieren und mit der Forschungsgemeinschaft zu teilen und (iii) die Evolution
von schnell adaptierenden Organismen wie HIV-1 in silico zu simulieren.
Ich quantifizierte zentrale Eigenschaften der HIV-1 Evolution innerhalb der
Patienten, unter Anderem genetische Diversität, Evolutionsrate, linkage dis-
equilibrium, Mutationsrate, Stärke und Häufigkeit positiver und reinigender
Selektion und der Einfluss sekundärer RNS-Strukturen. Außerdem habe ich
anhand moderner Webtechnologien eine Webanwendung entwickelt, die es
anderen Forschern ermöglicht, spezifische Analysen auf demselben Datensatz
durchzuführen. Darüber hinaus programmierte ich ein Computerpaket, FF-
PopSim, um die Evolution von Populationen unter Selektion zu simulieren;
dank eines neuen Algorithmus und eines mehrsprachigen Designs hat es sich
als ideales Mittel erwiesen, um theoretische Vorhersagen und experimentelle
Ergebnisse zu vereinen.
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Abstract

Il Virus dell’Immunodeficienza Acquisita 1 (HIV-1) è un retrovirus umano
che evolve rapidamente. Sequence di acidi nucleici di HIV-1 sono state rac-
colte da molti pazienti, solitamente una sequenza per paziente, per carat-
terizzare la genetica e l’epidemiologia dell’HIV-1. Ciononostante, l’HIV-1 si
replica ed evolve durante singole infezioni che durano molti anni. Nel mio
dottorato, ho effettuato deep sequencing longitudinale e sul genoma completo
su alcuni pazienti di HIV-1 ed ho sviluppato metodi sperimentali, teorici, e
computazionali per (i) caratterizzare l’evoluzione dell’HIV-1 durante singole
infezioni, (ii) organizzare e condividere i dati genomici raccolti con la co-
munità scientifica e (iii) simulare l’evoluzione di organismi che si adattano
rapidamente, come l’HIV-1, in silico. Innanzitutto, ho quantificato molte
proprietà centrali dell’evoluzione intrapaziente dell’HIV-1, come la diversità
genetica, il rate di evoluzione, il linkage disequilibrium, il rate di mutazione,
l’ampiezza e frequenza della selezione positiva e purificante e l’influenza delle
strutture secondarie dell’RNA. Inoltre, utilizzando moderne tecnologie web,
ho realizzato una applicazione web che fornisce ad altri ricercatori la possi-
bilità di condurre specifiche analisi sullo stesso set di dati. Infine, ho pro-
grammato un pacchetto al computer, FFPopSim, per simulare l’evoluzione
di popolazioni sotto l’effetto della selezione; grazie ad un nuovo algoritmo e
un design multilingue, si è rivelato come uno strumento ideale per connettere
le predizioni teoriche con i risultati sperimentali.
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pazienza, e abilità come insegnanti, senza le quali i miei campioni non avreb-
bero mai raggiunto l’archivio delle sequenze. Il mio corelatore Daniel Huson,
i membri del mio TAC, i membri del mio gruppo di ricerca, i miei colleghi
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Chapter 1

Introduction

This chapter contains the motivation for the study, a brief introduction to
HIV and to the basic population genetical concepts underlying the thesis’
results. It also presents a summary of previous studies on intrapatient HIV
evolution.

1.1 Motivation

A Human Immunodeficiency Virus (HIV) infection is an interesting research
topic in evolution for two reasons. First, HIV is remarkably good at thriv-
ing via mutation, recombination and selection in the face of a sophisticated
enemy, the human adaptive immune system. The characterization of intrapa-
tient HIV evolution described in this thesis represents a step forward towards
a better understanding of the coevolutionary dynamics between pathogen and
immune system.

Second, HIV can be taken as a model organism to study the evolu-
tion of rapidly adapting populations. Short generation time, high mutation
rate, short genome, complex natural (immune system) and artificial selection
(drugs): all these features make HIV an ideal organism to test theoretical
models of population genetics against. In particular, the large sequencing
data set collected for this thesis is a unique resource for the evolutionary
theory community by virtue of its longitudinal nature and sequencing depth.

1.2 HIV

The Human Immunodeficiency Virus (HIV) is a lentivirus related to the
family of Simian Immunodeficiency Viruses (SIVs) that infect several species
of monkeys. Fig. 1.1, which shows a phylogenetic tree of HIV and SIVs,

15



16 CHAPTER 1. INTRODUCTION

Fig. 1.1: Phylogenetic tree of HIV and SIV [1]. HIV-1 group M, in the top-left
corner, is the focus of this thesis.

gives an impression of the range of genetic diversity spanned by this viral
family [1]. Within the HIV-1 group M – the clade I focused on during my
doctorate – any two genomes differ on average by around 10%.

HIV is the causative agent of the acquired immune deficiency syndrome
(AIDS). It has been intensely studied since its discovery in the early 1980s
[2,3], when it spread across the globe into a pandemic that still kills around
2 million people every year according to the WHO [4]. Most infections are
caused by HIV-1 group M viruses, with subtype B being prevalent in western
countries [5]. An excellent account of the history of HIV has been recently
published by Pepin [6].

In a susceptible host, HIV-1 establishes a systemic infection that cannot
be cleared by the immune system. In untreated patients – the focus group
of this thesis –, HIV-1 infection causes extensive immune dysregulation that
after 5-10 years results in deep immunosuppression (AIDS) and eventually
death. The reasons for failed clearance by the immune system are complex,
but one key aspect of the problem is the ability of HIV-1 to rapidly diversify
within the host into a genetically diverse population that includes escape mu-
tants. These mutants are characterized by weaker affinities towards immune
surveillance agents – antibodies or cytotoxic T-cells (CTLs) – and allow HIV-
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Fig. 1.2: Genome map of the HIV-1 reference strain HXB2. From [8].

Fig. 1.3: Schematic illustration of an HIV virion showing the location of the
genome and viral proteins. (Source: public domain.)

1 to persist despite the hostile host environment. The process of genetic
change that characterizes an HIV-1 infection is called intrapatient
evolution and is the main topic of this thesis.

The HIV-1 genome, represented in Fig. 1.2, is a single, positive-stranded
RNA chain. It is 10kb long and codes for nine genes. The polyproteins
gag, pol and env perform the basic functions – structural, enzymatic, and
membrane respectively (see Fig. 1.3 for an illustration). The other six genes
have accessory functions that suppress the host immune system and optimize
gene expression [7].

A central feature of the HIV-1 genome is its functional density. Virtually
the whole genome is occupied by exons, long terminal repeats (LTRs), or
essential RNA structures, with frequent overlaps between them. As a conse-
quence, the same genomic stretch may well serve different functions at the
RNA, DNA, and protein level. How HIV-1 is able to accumulate mutations
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to escape immune recognition despite such a compact genome is one central
question of this thesis. The immune surveillance processes driving intrapa-
tient HIV-1 evolution, i.e. T-cell epitope and antibody binding, only affect
viral proteins and have no direct interaction with viral RNA/DNA.

1.3 Population genetics of rapid adaptation

Population genetics studies the changes of allele frequency in a reproducing
population under the effect of mutation, recombination, and selection. (Al-
though more or different evolutionary forces may be relevant in general, the
three listed above are the central ones as far as HIV-1 evolution is concerned.)

From a population genetics perspective, HIV-1 is an example of a rapidly
adapting population. Adaptation in this context means: during an infec-
tion, the viral population survives by deploying escape mutants with better
phenotype against the immune system (lower binding of antibodies or CTLs).

Population genetics of rapidly adapting populations has been attracting
much interest especially since high-throughput sequencing allows experimen-
tal validation of theoretical models, filling the gap between mathematical
theory and biological realizations of evolution. The same basic mathematical
framework is applied to a variety of organisms, including but not restricted
to pathogens (from HIV-1 to influenza, Hepatitis C, pathogenic bacteria)
and model organisms for genetics (S. cerevisiae, E. coli) [9,10]. Applications
within the HIV-1 field include better understanding of virus-host dynamics
and rational design of vaccines [11,12].

1.3.1 Types of mutations and their selective effects

The key feature of rapidly adapting populations is the presence of genetic loci
under positive selection. This means that a mutation at that locus increases
fitness of the individual – such a mutation is termed beneficial. In HIV-1,
escape mutations are generally considered to be beneficial.

Once it has appeared, the dynamics of a beneficial mutation has two
phases. Let s be the selection coefficient (benefit) of the mutation. Early,
the mutation is present in one or very few viruses and can be lost by stochastic
effects, i.e. variation in offspring number due to noisy environmental factors.
Later, if the mutant allele reaches around 1/s individuals (establishment time
t0), stochastic effects become negligibly small and the mutation frequency ν
in the population starts to grow logistically:
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Fig. 1.4: Trajectories of mutant alleles with different fitness effects. Blue line:
allele frequency trajectory for a typical beneficial mutation with selection
coefficient of 1%. Red line: average trajectory for deleterious mutations
with a cost of 1% and a mutation rate of 0.001.

ν̇ = s ν [1− ν] ⇒ ν(t) =
1

1 + e−(t−t0)
[
ν−10 − 1

] , (1.1)

where ν0 := 1/sN is the establishment frequency in a population with N
individuals [13]. From this moment, the rise of the mutant allele cannot be
stopped and the mutation will reach fixation. See Fig. 1.4 for an illustration.

Although models with only beneficial mutations are interesting mathe-
matically, most mutations in an actual HIV-1 population are not beneficial,
because antibodies and CTLs target only few of the 10k possible genomic
sites. Most mutations are unrelated to immune escape and come with a fit-
ness cost instead, because they impair, to different degrees, correct biological
functions such as enzymatic activity, folding, or biomolecular interactions.
Such a deleterious mutation with a fitness cost s is mostly found at low fre-
quencies. Because noise in offspring number is large at low frequencies, it is
not possible to predict the dynamics of a single allele; the average frequency
ν over many deleterious alleles, however, follows a simple mutation/selection
balance:

ν̇ = µ− s ν ⇒ ν(t) =
µ

s

[
1− e−st

]
, (1.2)

where µ is the mutation rate, i.e. the rate of production of the mutant
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allele from the wildtype population, and time is calculated from a monomor-
phic population [13] – in HIV-1, start of the infection [14]. See Fig. 1.4 for
an illustration.

Some mutations have little effect on fitness in either way and are termed
neutral. They play an important role in phylogenetics because neutrality is
a common assumption of coalescent models underlying tree reconstruction
algorithms. Mathematically, neutral mutations follow a similar dynamics as
slightly deleterious ones insofar as stochastic noise is the driving force of
allele frequency changes. No deterministic approximation can be made for
neutral mutations, but the long-term fate of the mutant allele is fixation or
loss according to the following remark:

R 1. The fixation probability of a neutral allele at frequency ν is ν.

The reason is simple: in the distant future, only one of the currently
extant lineages will survive. The probability that our neutral allele is present
in that lineage is ν, and the presence of the mutation does not affect the choice
of which lineage is actually surviving.

Beneficial mutations become fixed more frequently than neutral ones,
deleterious mutations more rarely [13].

1.3.2 Recombination

HIV-1 is a facultatively recombining organism [15]. Recombination plays
an important role for rapidly adapting populations, because it allows alleles
under positive selection to increase in frequency more freely than in asex-
ual populations. If the immune system deploys two antibodies at once, for
instance, HIV-1 needs a double escape mutant to survive. Without having
to wait for both mutations to happen on the same lineage, recombination
opens up a new way to get a double mutant, thereby increasing the speed of
adaptation [16].

A phenomenon that occurs in the presence of positive selection and low
recombination is hitchhiking. This term indicates the rapid raise in frequency
of neutral or slightly deleterious alleles in physical proximity of a beneficial
mutation at the time of a selective sweep. Hitchhiking happens whenever
these quasi-neutral alleles are already present in a lineage that acquires the
beneficial mutation; because recombination is low, the frequencies of the
beneficial allele and of the hitchhikers remain correlated over long times.

Pervasive hitchhiking, also called genetic draft [17,18], produces stochas-
tic noise on quasi-neutral allele frequencies which is different from the usual
genetic drift, i.e. short-tailed offspring number variation. Nonetheless, both
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the average dynamics of deleterious alleles (eq. 1.2) and the fixation proba-
bility of neutral alleles (R1) are unaffected.

1.4 State of the field

1.4.1 Studies on intrapatient HIV-1 evolution

In order to study HIV-1 evolution during an infection, one needs two main
ingredients. First, it is most convenient to work on longitudinal data, i.e.
sequence information from samples taken at different times. (It is possible
to use static snapshots as well, with more modest results.) Second, a reliable
sequencing technology is required. Between the discovery of HIV-1 in 1983
and the first high-throughput sequencing machine in 2005, research in this
field was limited to few sampling times per patient and few or even one HIV-1
sequence per time point. In a remarkable article from 1999, Shankarappa et
al. followed 9-11 patients over several years of infection and clarified several
basic aspects of intrapatient HIV-1 evolution [19]. They found that genetic
divergence from the founder strain increases steadily whereas genetic diver-
sity saturates after a few years. In the C2-V5 region of env they focused
on, the average divergence rate was measured as 1% per year. The au-
thors also used time-colored phylogenetic trees of intrapatient sequences to
visualize evolutionary changes, and searched for correlations between genetic
observables and clinical ones, such as CD4+ cell counts. The Shankarappa
study has been a key data source for intrapatient HIV-1 evolution ever since,
its main limitations being few sequences per sample and that only a small
fraction of the HIV-1 genome was sequenced. Similar studies have been pub-
lished along the same lines using low-throughput sequencing technology and
suffered from similar limitations [20].

After the invention of high-throughput sequencing [21], several other stud-
ies using the new technology were published [22–24]. Despite great sequenc-
ing depth, however, they were limited in other respects: either short followup
time, or very few patients. Researchers often focused on specific aspects of
HIV-1 infection, such as tropism switch [23]; although interesting by them-
selves, those data can hardly be analyzed a posteriori as an unbiased sample
of HIV-1 infections. The most complete study was performed by Henn et al.
in 2012, with several time points and genomewide coverage; only one patient
was followed though, and sampling was mostly restricted to the first year of
infection [24].
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1.4.2 Data sources

The Los Alamos National Laboratories HIV Database (LANL-HIV) is the
de facto standard resource in the field [1]. Other public databases such as
the Stanford HIV Database [25] and private collections from pharmaceutical
companies [26] are mainly targeted at drug resistance testing; they only
contain small parts of the HIV-1 genome (the enzymes) and have almost no
longitudinal information. LANL-HIV aims mainly at cross-sectional data, i.e.
at collecting sequences from many patients across the world. Although it does
give access to the few published longitudinal data sets (e.g. the Shankarappa
et al. data [19]), it provides little infrastructure for browsing the data along
the time axis: one has to download the sequences first and then code some
specific analysis and visualization software.

1.4.3 Software for rapidly adaptating populations

Computer simulation of population genetical evolution is a useful tool to
link theory on abstract population with experiments on biological organ-
isms. Especially under the assumption of rapid adaptation, many mathe-
matical models are hard to solve analytically, so in silico exploration of the
relevant parameter space is widely used either as a preliminary exploration
tool or for validation. If experimental sequence data on rapidly adapting
populations are available, which is rare, computer simulations can be used to
distinguish generic evolutionary properties that can be captured by models
from secundary biological specificities of the organism at hand.

Several simulation packages have been developed, with different goals in
mind. Because positive selection strongly affects the shape of phylogenetic
trees, coalescent approaches under neutral assumption are not appropriate
(e.g. MS [27]).

Forward simulations are better suited for simulating HIV-1 evolution,
at the price of increased computational cost. Valuable extant software that
performs this task includes simuPop [28] and Nemo [29]. Both packages focus
on diploid organisms and feature-completeness rather than speed. This is
an issue for HIV-1 evolution because of two costly requirements, viz. large
population sizes (N & 105) and intermediate recombination that cannot be
approximated by either asexual reproduction nor free recombination.

1.5 Motivation

My doctoral work has been directed at collecting data, developing tools,
and analyzing sequences to improve our understanding of intrapatient HIV-1
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evolution beyond the state of research outlined above.
First, I developed a new simulation software, FFPopSim, that can ad-

dress the recombination problem with a much faster algorithm based on Fast
Fourier transforms [30]. FFPopSim’s approach is also insensitive to popula-
tion size.

Second, I collected a new longitudinal sequence data set from 11 untreated
HIV-1 infected patients that is by far the most complete data source on
intrapatient evolution [31]. I analyzed these data and previously published
ones to characterize various aspects of intrapatient HIV-1 evolution, including
an in-depth analysis on fitness costs of synonymous mutations [32].

Third, I created a web application that exposes the new data set to the
public using many different visualizations and data compilations, to allow
efficient online browsing of the data features without need to download them
[31].

Fourth, I developed support software tools to complement the above work
and contributed to standard, open-source packages for bioinformatical data
analysis, including matplotlib [33], pandas [34], and Biopython [35].
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Chapter 2

Materials and methods

In my doctorate I have combined several approaches:

1. molecular biology experiments to collect sequencing data

2. computer analysis of HIV-1 sequences

3. computer simulation of rapidly adapting populations

4. web programming for HIV-1 longitudinal deep sequencing data

These methods are outlined in the following sections. For details about a
specific published work, the reader is referred to my publications [30–32].

2.1 Molecular biology experiments

The experimental part of my doctorate was aimed at collecting longitudinal,
deep sequencing data on intrapatient HIV-1 evolution. The protocol consists
of several steps, the most relevant of which are illustrated in Fig. 2.1:

1. choice of appropriate patients

2. choice of primers for cDNA synthesis and amplification

3. collection of frozen plasma samples from blood banks

4. extraction of total RNA from patient plasma

5. one-step cDNA synthesis and PCR amplification of HIV-1 RNA

6. preparation of sequencing libraries

7. sequencing

Each of the steps will be briefly explained in the following sections.
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Fig. 2.1: Main steps of the sample preparation protocol for longitudinal HIV-1
high-throughput sequencing to study intrapatient evolution.

Choice of patients: Nowadays (2015), most HIV-1 positive individuals
are subject to antiviral treatment early on, as it has been suggested that this
preserves their immune system to some extent [36]. Patients under successful
treatment, however, have extremely low viral titers in the blood, making
treated patients a poor choice to study evolution [37]. However, historical
samples are available; we identified patients with

• a long followup period without treatment;

• a relatively well defined time of infection;

• no special circumstances such as superinfection;

• successful therapy at the end of the study.

The list of patients is shown in the Resuts chapter, Table 3.1.

Primer design: As amplification of blood-borne HIV-1 RNA is required
for sequencing, suitable primers had to be designed. Because the HIV-1
sample sequence is not known ahead of time, however, partially degenerate
primers targeting conserved genomic regions at regular intervals must be
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carefully selected. This task is complicated by the sheer genetic diversity of
HIV-1; good candidates are chosen among gene overlaps across the genome
(e.g. gag/pol) and conserved RNA structures (e.g. RRE ) [38]. The initial
choice of primers was done by J. Brodin and J. Albert, collaborators at the
Karolinska Institute. Upon poor performance in the RT-PCR, I redesigned
a few of the primers. The complete list of primers is available upon request.

Collection of frozen plasma samples from blood banks: This part
of the protocol was performed by J. Albert at the Karolinska Institute and
involves careful choice of time points to sequence and empirical evaluation of
the sample tubes to ensure bona fide good preservation of the genetic mate-
rial. The time between two consecutive samples was typically 6-12 months,
and patient follow-up was 5-8 years since infection. Ethical approval for the
usage of patient samples was obtained and is available upon request.

Extraction of total RNA from patient plasma: For each sample, 400
µl of plasma (if available) was divided into two 200 µl aliquots. Total RNA
was extracted using RNeasy Lipid Tissue Mini Kit (Qiagen Cat. No. 74804).
Each aliquot was eluted twice with 50 µl RNase free water to maximize HIV
RNA recovery. The four eluates were pooled giving a total volume of 200 µl
of RNA per sample.

cDNA synthesis and PCR: The RNA was divided into twelve 14 µl
aliquots for duplicate one-step RT-PCR with the outer primers for frag-
ments 1 to 6 and Superscript III One-Step RT-PCR with Platinum Taq High
Fidelity Enzyme Mix (Invitrogen, Carlsbad, California, US). The one-step
RT-PCR was started with cDNA synthesis at 50◦C for 30 min and denatu-
ration step at 94◦C for 2 min followed by 30 PCR cycles of denaturation at
94◦C for 15 sec, annealing at 50◦C for 30 sec and extension at 68◦C for 90 sec
and a final extension step at 68◦C for 5 min. The amplification protocol is
a compromise between high fidelity and high processivity. On the one hand,
early misincorporations during RT-PCR represent an important source of er-
rors; on the other, HIV-1 RNA contains RNA secondary structures that are
hard to copy for slow, very high-fidelity polymerases [39]. Two reactions are
run in parallel to reduce bias and the products mixed for downstream analy-
sis. Aliquots from all PCR reactions are run on a gel for a qualitative check
on PCR efficiency (presence of the expected band) and specificity (absence
of additional bands).
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Library preparation: A protocol based on the Tn5 retrotransposase –
using Illumina’s Nextera XT kit [40] – is chosen because it accepts tiny
amounts of input DNA (100 pg to 1 ng). After attachment of the sequencing
primers, however, the DNA is size selected for inserts between 400 and 700
bp via SageScience’s BluePippin instrument. This allows for larger inserts
than standard Nextera XT, improving the homogeneity and quality of the
library and providing more linkage information.

Sequencing: Sequencing is performed on Illumina’s MiSeq instrument,
which yields relatively long reads (250 to 300 bp). Using the “paired end”
option, each insert is sequenced from both ends, so that reads come in over-
lapping pairs of length 400 to 600 bp. PacBio’s RS II instrument was tested
but required more input DNA and had a much lower throughput.

2.2 Computer analysis of HIV-1 sequences

During my doctorate, I have analyzed both population (shallow) and deep
sequencing data, with different pipelines. I have also extensively analyzed
cross-sectional data sets. Most of the analyses are coded in Python 2.7.
Speed-critical parts are coded in C/C++. I made extensive use, both at the
Python and C level, of standard packages including the following:

• numpy/scipy [41]

• matplotlib [33]

• biopython [35]

• pandas [34]

• pysam/samtools [42]

The number of lines of code for the results of this thesis is about 105. The code
is available on request but not simply public, because it contains personal
data related to the patients.

2.2.1 Population sequencing

I analyzed previously published population sequencing data for one of my
publications [32]. This kind of data is relatively straightforward to analyze,
because one obtains only a few sequences per time point. I typically made
use of the following kinds of data structures:
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1. consensus sequences

2. allele frequency trajectories

3. multiple sequence alignments

4. correlation matrix trajectories

Consensus sequences: For every sample, a consensus sequence was cal-
culated, to be used as a reference to count mutations from. The consensus
of the earliest sample in each patient plays a special role, because it is the
closest observed sequence to the HIV-1 founder strain in that patient.

Allele frequency trajectories: For every nucleotide plus gaps, for every
time point, and for every genomic site of interest, the frequency of that
nucleotide is stored. The data shape is a three dimensional array. Linkage
information between sites is largely lost, but the data can be efficiently sliced
by position, providing speed and statistical power to the analyses (as far as
positions can be considered independent of each other).

Multiple sequence alignments: This data structure is used mainly to
represent the evolution of entire genomic stretches of length between 10 and
10k bases (whole-genome). It keeps the whole linkage information, but it is
prone to errors: every sequencing error generates in principle a new sequence
(haplotype).

Correlation matrix trajectories: Similar to the allele frequency trajec-
tory cube, but for pair of alleles. This structure keeps some linkage informa-
tion but is not very sensitive to errors.

2.2.2 Deep sequencing

Data structures

The basic data structure for my high-throughput sequencing data is the read
pair. The sequencing library protocol includes a fragmentation step (the Tn5
transposase activity) that is unspecific in terms of genomic position. After
sequencing, I obtained (in total) around 108 read pairs that start at random
positions in the HIV-1 genome. Between the two reads within pairs there is
variable coverage, between 200 bp overlap to 200 bp gap, corresponding to
an insert size distribution from 350 bp to 700 bp. The amount of overlap
depends on the random cutting of the transposase as well as on the quality
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scores of the read ends. Because I call minor alleles as rare as 0.2%, phred
quality scores above 30 are accepted and the read ends often need trimming,
reducing the overlap. The broad overlap distribution also forbids a simple
merge of the reads in the pair.

Because of the sheer amount of reads, the analysis must be performed
efficiently. Most software tools for next-generation sequencing analysis are
designed under the basic assumption that the genome is much longer than the
average coverage, and that mutations are rare. The samtools pipeline [42],
for instance, includes commands to query reads that are partially overlapping
with a genomic region. A key command in long-genome SNP analyses (e.g.
human), it is virtually useless for HIV-1, because the genome is only 10 kb
long and at every single position many mutations are observed. By the same
token the VCF format is not well suited for deep sequencing analyses such
as the subject of this thesis.

For the reasons above, I performed the data analysis using the following
basic data structures (i) lists of read pairs; (ii) the matrix-based formats also
used for the population sequencing analyses. The latter were precomputed
from the read pairs and saved to disk.

Data preparation

A characteristic of high-throughput data is that a small fraction of outlier
sequences, either contaminants or otherwise error-rich, is always present in
the raw data. Such problems were especially hard to solve in my doctorate
work because HIV-1 has a high genetic diversity by itself, and this diversity
is strongly dependent on the genomic region of interest.

I have therefore developed a data cleaning pipeline that ensures high-
fidelity of the read pairs. The basic steps of the pipeline are the following:

1. preliminary rough mapping to a reference HIV-1 sequence, HXB2;

2. quality trimming and assignment of each read pair to its PCR of origin;

3. consensus building within each PCR amplicon;

4. remapping of all assigned reads against their consensi;

5. semi-automatic filtering by distance from the consensus;

6. remapping against the patient’s initial consensus (founder strain);

7. thorough cross-contamination filtering.
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This pipeline identified many sources of foreign reads that would have inval-
idated our scientific conclusions, for instance:

• cross-contamination during cDNA synthesis, PCR, or library prep;

• illegitimate recombination between the overlapping PCR amplicons;

• artifacts of the sequencing platform.

The mapping was performed using the published software Stampy [43],
which is a probabilistic mapper that works well with highly variable organ-
isms such as HIV-1. Although not the fastest mapper available, it does not
require strict thresholds in terms of maximal number of mismatches. Other
mappers such as BWA [44] were tested and yielded similar results, but it was
hard to decide on the mismatch thresholds as the level of genetic diversity
was unknown; it was actually one of the research questions addressed by my
study.

The consensus building algorithm was not trivial because our data com-
bined several peculiarities:

• large genetic variation, including short indels;

• no full coverage by a single read pair;

• extreme coverage fluctuations

In particular, coverage could typically oscillate, along the genome, from 0 to
105 and back several times within the same sample, based on cDNA accidents,
PCR efficiency, retrotransposase preference, and sequencing quality. The
final algorithm makes use of the rough mapping information to extract small
subsample of reads (around 30) fully covering a genomic sliding window of
around 150 bp in size; these reads are trimmed and multiple sequence aligned;
a consensus within each window is obtained; a new window is set 50 bp
downstream; subsequent overlapping windows are pair aligned and a final
consensus is produced.

The code for the data cleaning pipeline amounts to 50k lines of mainly
Python 2 and is available upon request.

2.3 Web programming

I created a web application providing access to results, informative plots, and
data of my deep sequencing study on intrapatient HIV-1 evolution. The data
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Fig. 2.2: Schematic block view of the web application. The black blocks describe
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arrows indicate the code flow as the user requests a resource.
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is stratified in several ways, notably by patient, by sample, by PCR ampli-
con. For this reason, I needed to create dynamic web pages that generated
the content based on what part of the data set is being looked at, and an
interactive frontend that enables intuitive browsing across the strata.

I designed the web application using a layered approach centered around
the model-view-controller pattern. The layer stack is shown in a schematic
view in Fig. 2.2. The application backend framework is Flask [45], a stan-
dard lightweight web framework for Python developers. In order to insulate
different parts of the application for faster development, I defined a number
of blueprints, i.e. plugins for the application that live in small containers (in
terms of both files and namespaces). This choice made the collaboration
with a master student in the lab, Bianca Regenbogen, much easier to set up.

One of the main strengths of the application are the interactive plots
of various observables, such as viral load, allele frequency trajectories, and
phylogenetic trees. They are created via a convenient JavaScript plotting
library, D3 [46]. Although quite low-level, D3 is very flexible and provides
support data structures and functions for both tabular and tree-like plot
data. Technically, the charting routines are implemented as closure objects.
Attributes of such an object include the chart size, color scheme, and plot
representation (e.g. radial or horizontal for trees). The use of closure objects
makes it easier to recycle charts for different web pages as compared to simple
charting functions [47].

Another central node in the web application is the REST API, which
implements a standard interface between the client and the actual data. The
API is used internally within the HTML templates via AJAX calls, but is
also publicly documented and open for the user to retrieve data directly, in
JSON format.

As far as data manipulation and serving itself is concerned, the web appli-
cation was designed for few users at a time, so there was no need for parallel-
efficient solutions, such as a fully asyncronous framework (e.g. nodejs [48]
or go [49]) or a queueing system for the data-intensive routines (e.g. Rab-
bitMQ [50]). Such backend solutions could be swapped in the future, if
necessary, without much affecting the frontend architecture. For the time
being, the web server is being used as a data server.
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2.4 Simulation of recombining, rapidly adapt-

ing populations

There are two basic ways of simulating evolution forward in time. Either all
extant individuals are tracked one by one (individual-based simulations) or
the whole distribution of possible genotypes is tracked together with the num-
ber of individuals for each genotype (distribution-based simulations). In FF-
PopSim, the software I developed for simulating HIV-1 populations, I made
use of both approaches [30]. The program is designed in an object-oriented
fashion and contains two main classes to represent an evolving population,
one for individual-based (haploid highd) and one for distribution-based sim-
ulations (haploid lowd).

2.4.1 Individual-based simulations

The individual-based class represent a very fast simulation software for HIV-
1 like populations when many genetic loci have to be simulated. The runtime
complexity scales roughly like O(N L) per generation, where N is the pop-
ulation size and L the genome length. Thanks to its efficient dual-language
design (C++/Python), FFPopSim can simulate realistic HIV-1 populations
with L = 104 and N = 106 while keeping simple at the user end.

In order to optimize the usage of memory resources, two strategies are
applied:

1. individuals are grouped in monomorphic clones, and a new clone is only
made when a new mutant or recombinant lineage is started;

2. because the survival chances of a new clone are small (genetic drift),
the pointer for a clone that goes extinct is recycled for a new mu-
tant/recombinant.

2.4.2 Distribution-based simulations

Distribution-based simulations are better suited for large populations in
which only a few genetic loci need to be followed. Given a biallelic genome,
the population is represented by a distribution of abundances on the binary
hypercube. This is illustrated, together with the operations of mutation and
recombination, in Fig. 2.3.

To simulate evolution, occupation of each of the 2L possible genotypes
is recorded in time. The main challenge in simulating recombining, rapidly
adapting populations is the runtime efficiency of the routine computing the
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(cube). Each vertex is a biallelic genotype, and the balls indicate differ-
ent number of individuals with different genotypes. Top panel: examples
of mutation and recombination on the cube. Bottom panel: part of the
Fourier transformation, condensing the right side of the cube into a single
coefficient.
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new recombinants at every generation. The runtime complexity of the naive
algorithm for a biallelic genome of length L is O(8L):

• 2L possible fathers

• 2L possible mothers

• given a pair of parents, there are 2L possible inheritance patterns (each
locus may come from either parent)

As explained in the paper, the distribution R(g) of recombinant gametes
would naively be computed as follows [30]:

R(g) =
∑
ξ

∑
g′

C(ξ)P (gm)P (gp), (2.1)

where g is the recombinant genotype (binary vector), ξ specifies the particular
way the parental genomes are combined: ξi = 0 (resp. 1) if locus i is derived
from the mother (resp. father). The genotype g′ is summed over; it represents
the part of the maternal (gm) and paternal (gp) genotypes that is not passed
on to the offspring.

FFPopSim adopts an approach based on Fast Fourier transforms that re-
duces this complexity to O(3L). An illustration of the Fourier transformation
on the binary hypercube is shown in Fig. 2.3. The basic insight comes from
the observation that, at every recombination event, any parent allele that is
not picked by the offspring need not be calculated. For instance, given an
inheritance pattern in which only the first locus is inherited from the mother
(the other L−1 come from the father), we need not iterate over the distribu-
tion of all 2L possible mothers, but only over the marginal at the first locus,
i.e. over 2 mother-marginals, saving 2L − 2 computations – for L = 15 loci,
a save of 32766 out of 32768 computations.

Summary of the Fast Fourier algorithm

The key change is to swap the order of the sums over inheritance patterns
with the sums over parent genotypes. We can decompose each parent into
successful loci that made it into the offspring and wasted loci, as follows:
gp = ξ ∧ g + ξ ∧ g′ and gm = ξ ∧ g + ξ ∧ g′, where ∧ and a bar over a
variable indicate respectively the elementwise AND and NOT operators (i.e.,
ξi := 1−ξi). The function C assigns a probability to each inheritance pattern.
Depending on whether the entire population undergoes sexual reproduction
or only a fraction r of it, the entire population or a fraction r is replaced
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with R(g). The central ingredient for the efficient computation of R(g) is
the Fourier decomposition of genotypes:

P (g) = f (0) +
∑
i

tif
(1)
i +

∑
i<j

titjf
(2)
ij + · · · (2.2)

where ti = 1 if g is mutated at site i or ti = −1 if g has the wildtype allele.
There are

(
L
k

)
coefficients f

(k)
i1...ik

for every subset of k loci out of L loci, so in

total 2L coefficients [51] . A coefficient f
(k)
i1...ik

is uniquely specified by

f
(k)
i1...ik

= 2−L
∑
g

ti1 . . . tikP (g). (2.3)

Note that the Fourier transform of any function in this space can be achieved
in L 2L computations via the Fast Fourier algorithm and is not entering the
final runtime complexity of the recombination algorithm.

The generic Fourier coefficient of R(g) is given by

r
(k)
i1...ik

= 2−L
∑
g

ti1 . . . tik

(∑
ξ

∑
g′

C(ξ)P (gm)P (gp)

)
(2.4)

Just as gp and gm can be expressed as a combination of g and g′, we can
invert the relation and express the generic ti as a function of gp and gm, as
follows: ti = ξit

m
i + ξi t

p
i . Using this new basis and exchanging the order of

summations, we obtain

r
(k)
i1...ik

= 2−L
∑
ξ

C(ξ)
∑
gm,gp

(ξi1t
m
i1 + ξi1 t

p
i1

) . . . (ξikt
m
ik

+ ξik t
p
ik

)P (gm)P (gp). (2.5)

Notice that C(ξ) can be pulled out of the two inner sums, because the odds
of inheriting a certain locus by the mother/father is independent of what
their genetic makeup looks like. Next we expand the product and introduce
new labels for compactness,

r
(k)
i1...ik

= 2−L
∑
ξ

C(ξ)
∑
gm,gp

P (gm)P (gp)

k∑
l=0

∑
{ji},{hi}

ξj1 . . . ξjlξh1 . . . ξhk−l
tmj1 . . . t

m
jl
tph1 . . . t

p
hk−l

, (2.6)

where l is the number of loci inherited from the mother among the k in
(i1, . . . , ik). l runs from 0 (everything happens to be contributed by the
father) to k (everything from the mother). {ji} and {hi} are all (unordered)
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partitions of i into sets of size l and k− l, respectively. Now we can group all
ξi in the inner sum with C(ξ), all tmi with P (gm), and all tpi with P (gp). The
three sums (over ξ, gm, and gp) are now completely decoupled. Moreover, the
two sums over the parental genotypes happen to be the Fourier decomposition
of P (g). Hence, we have

r
(k)
i1...ik

=
k∑
l=0

∑
{ji},{hi}

C
(k)
j1...jl,h1...hk−l

p
(k)
j1...jl

p
(k−l)
h1...hk−l

. (2.7)

The quantity

C
(k)
j1...jl,h1...hk−l

=
∑
ξ

C(ξ)ξj1 . . . ξjlξh1 . . . ξhk−l
(2.8)

can be calculated efficiently, for each pair of partitions ({ji}, {hi}), by real-
izing that (a) for k = L, there is exactly one term in the sum on the right
that is non-zero and (b) all lower-order terms can be calculated by succes-
sive marginalizations over unobserved loci. For instance, let us assume that
k = L− 1 and that the only missing locus is the m-th one. We can compute

C
(L−1)
j1...jl,h1...hL−1−l

= C
(L)
j1...jlm,h1...hL−1−l

+ C
(L)
j1...jl,h1...hL−1−lm

. (2.9)

There are
(
L
k

)
ways of choosing k loci out of L, which can be inherited in

2k different ways (the partitions in j and h in Eq. (2.8)) such that the total
number of coefficients is 3L. Note that these coefficients are only calculated
when the recombination rates change. Furthermore, this can be done for
completely arbitrary recombination patterns, not necessarily only those with
independent recombination events at different loci [30].



Chapter 3

Results and discussion

The results of my work as a PhD candidate have been or are being published
on peer-reviewed scientific journals, in the following articles, of which I am
first and main author (sorted by publication date):

• FFPopSim: An efficient forward simulation package for the evolution
of large populations, Bioinformatics (2012) [30];

• Quantifying Selection against Synonymous Mutations in HIV-1 env
Evolution, Journal of Virology (2013) [32];

• Longitudinal whole-genome deep sequencing of HIV-1 reveals muta-
tional and selective processes during infection, submitted (2015) [31].

The last project includes the web application for presenting the deep
sequencing data. The results of my doctorate are presented in the following
sections, divided by topic.

3.1 Intrapatient HIV-1 evolution

3.1.1 Deep sequencing data set

During my doctorate, I collected whole-genome deep sequencing data from
longitudinal serum samples from 11 untreated patients. See the Methods
chapter for details on the data collection and sequencing protocol, reads
mapping, and filtering. The only similar previously published data, by Henn
et al., is limited to one patient and focuses on acute infection [24].

These data allowed me to reach the conclusions about the evolution and
biology of HIV-1 outlined below. Beyond these, however, the sequencing
data stands as a result by itself. It appears likely that other researchers will

39
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Patient Gender Transmission Subtype Age* Fiebig BED*
route [years] stage* [ODn]

p1 F HET 01 AE 37 IV 0.41
p2 M MSM B 32 V 0.17
p3 M MSM B 52 VI 0.89
p4 M MSM B 29 V 0.17
p5 M MSM B 38 III-IV n.a.
p6 M HET C 31 IV 0.29
p7 M MSM B 25 V-VI 0.95
p8 M MSM B 35 V 0.15
p9 M MSM B 32 VI 0.27
p10 M MSM B 34 II 0.10
p11 M MSM B 53 VI 1.22

Patient No. of First sample Last sample HLA type
samples [days] [years] A B C

p1 12 49 8.0 02/02 08/15 03/06
p2 6 74 5.5 01/24 08/39 07/12
p3 10 104 8.3 02/11 15/44 03/16
p4 8 78 8.3 02/24 27/40 01/03
p5 7 132 5.9 03/33 14/58 03/08
p6 7 46 7.0 02/02 44/51 05/16
p7 10 2248 15.9 02/02 15/27 01/03
p8 7 64 6.0 03/32 07/40 02/07
p9 8 106 8.1 25/32 07/44 04/07
p10 9 18 6.1 32/32 44/50 06/16
p11 7 167 5.5 02/32 39/44 05/12

Table 3.1: Summary of patient characteristics. Sample times from estimated date
of infection. ∗, at time of first sample; MSM, men who have sex with
men; HET, heterosexual.
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Fig. 3.1: Allele frequency trajectories for patient p11. Each line indicates a mu-
tant nucleotide at a single site in the HIV-1 genome, with colors going
through a rainbow spectrum from blue to red according to the position of
the site in the HIV-1 genome. Note the logit vertical scale that expands
the dynamic range in the neighborhood of 0 and 1. Polymorphisms are
widespread all across the HIV-1 genome during the whole infection.

use the data to study specific aspects of HIV-1 evolution that are beyond
the scope of my thesis, for instance evolution of RNA structure and immune
epitopes. To foster research in this direction, I created the web application
presented below.

3.1.2 Allele frequency trajectories and phylogenetic trees

A basic intuition on the evolutionary processes at work during an HIV-1
infection can be gained by considering a simple representation of the se-
quencing data: allele frequency trajectories. An illustration for patient
p11 is shown in Fig. 3.1. For each position in the HIV-1 genome, any of the
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p17 RT

IN V3

Fig. 3.2: Phylogenetic trees from patient p3 and different genomic regions: p17
(top left), reverse transcriptase (first 350 bp, top right), integrase (po-
sition: 351 to 700 bp, bottom left), V3 loop in env (bottom right).
Clearly, different regions evolve according to different evolutionary pro-
cesses. The trees are computed with FastTree [52].

four nucleotides (alleles) can in principle be found as time passes. The ma-
jority nucleotide at the first time point is called ancestral allele, any other
one derived allele. At any time, an allele can be found in a certain fraction
of the viral population, i.e. of the sequencing reads, between 0 and 100%:
this fraction is called allele frequency and often indicated with the greek
letter ν. The longitudinal collection of frequencies for a single allele is called
allele frequency trajectory. The figure shows one line (allele frequency
trajectory) for each derived allele that reaches a frequency of 10% at least
once during the infection – alleles that are rarer than that are not shown for
clarity.

A complementary representation of the genetic diversity of HIV-1 is given



3.1. INTRAPATIENT HIV-1 EVOLUTION 43

by phylogenetic trees. Whereas allele frequency trajectories focus on single
nucleotides, a tree aims at establishing a global mathematical description of
the evolution extended stretches of the HIV-1 genome. The key advantage is
that linkage information is preserved. The insert sizes of our sequences are
only 500-600 bp, so I could not reconstruct a whole-genome phylogenetic tree.
This should not be considered a drawback, because HIV-1 recombines with
a rate around 10−5 per base per day [53,54], so that linkage is preserved only
over ∼ 100 bp over a time scale of years (see also LD plot below). Having
genome-wide data is nonetheless key because it enables comparisons between
genomic regions. In Fig. 3.2, I show several trees reconstructed from different
genomic regions in patient p3, built with FastTree [52].

Each unique sequence in such regions, of length around 350 to 400 bp,
is termed haplotype, and its frequency in the viral population, i.e. in the
reads, at any time point is called haplotype frequency. The timeline
of haplotype frequencies is called, in parallele to single nucleotide alleles,
haplotype frequency trajectory, and an illustration for a few genomic
regions in patient p3 is shown in Fig. 3.3.

From the allele frequency trajectories plot, it appears obvious that the
whole HIV-1 genome is undergoing many changes during the infection. There
is great variability between these trajectories, which is suggestive of the dif-
ferent biological and evolutionary processes underpinning them. As shown
by the different shapes of phylogenetic trees and the haplotype frequency tra-
jectories, the type and density of genetic changes differ at different genomic
regions. As shown in Fig. 3.3, for instance, the RRE is a genomic region that
hosts few changes across the infection. The most parsimonious explanation of
such high longitudinal conservation is to assume that most mutations within
the RRE have deleterious fitness effects; this explanation fits well with the
high degree of cross-sectional conservation and with the known fact that the
RRE has not one, but two biological functions, i.e. (i) rev binding partner
as RNA and (ii) part of the gp41 protein as amino acids. Other genomic
regions such as the variable loop V3 or p17 in gag are changing much more
rapidly (see Fig. 3.3), an indication that a higher number of mutations are
tolerated.

The different shape of the trees from different genomic regions also indi-
cates that HIV-1 evolution is strongly influenced by recombination, such that
HIV-1 adaptation can proceed at many genomic loci in parallel – I will come
back to this point in the section on positive selection and immune escape
below.
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Fig. 3.3: Haplotype frequency trajectories for the V3 loop (top), the capsid protein
p17 (middle), and the conserved RNA structure RRE (bottom) from
patient p3. Each color (chosen randomly) indicates the frequency of a
certain unique sequence over time.
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3.1.3 Substitution/divergence rates and diversity

Considering the heterogeneity shown by different genomic regions in terms
of phylogenies and allele/haplotype frequency trajectories, a basic question
about HIV-1 evolution is: how fast is HIV-1 evolving at different genomic
loci?

The answer to this question is shown in Fig. 3.4 (top panel). First,
genetic divergence measures, for a single time point, how often one finds
any derived allele, averaged over a certain genomic region:

divergence(t) :=

〈
α not ancestral∑
α∈{A,C,G,T}

να(t)

〉
genomic region

, (3.1)

where angular brackets indicate averaging. Divergence increases in time as
the viral population starts to mutate away from the founder virus, and the
rate of increase of divergence is the operational definition of evolutionary
rate in use throughout this thesis. (Note that more coarse-grained definitions
are sometimes used in the literature, especially from a macroevolutionary
perspective in which minor alleles in a population are not observed but a
great number of related species is sampled.)

Evolutionary rates change by more than one order of magnitude across
the genome (computed as a sliding window of 300 bp). For comparison, the
average fold change between patients is only by 0.6±0.2 in logs of 2 (exclud-
ing patient p9, in which evolution seems to be slower for unclear reasons).
This suggests that, in general, a certain genomic locus of HIV-1 experiences
similar evolutionary processes during any two completely independent infec-
tions.

In the middle panel of Fig. 3.4, I plot all sites at which a derived allele
has fixed during infection, for the same patients. Many of these sites mark
selective sweeps, possibly related to immune escape. Whereas some regions
such as V3 harbour substitutions in virtually all patients, larger variation
is found in more conserved regions such as integrase (IN). I will discuss
substitutions and selective sweeps more in depth below, in the section on
positive selection and immune escape.

I also quantified divergence and diversity, i.e. the average distance be-
tween any two sequences, for synonymous and nonsynonymous mutations
and different classes of genomic regions (see Fig. 3.5). For better data cover-
age, diversity is actually defined in this context assuming independent sites,
i.e. by:

diversity(t) :=

〈 ∑
α∈{A,C,G,T}

να(t) (1− να(t))

〉
genomic region

, (3.2)
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Fig. 3.4: Top: evolutionary rate of HIV-1 during infection in several patients, in a
sliding window of 300 bp along the genome. Variation of the evolutionary
rate across the genome is large, often larger than between patients at
the same genomic location. Middle: Map of substitutions and predicted
CTL epitopes. Substitutions within epitopes are indicated by circles,
outside any epitope by crosses. Epitopes are predicted using the MHCi
web service (see main text). Bottom: genomic features of HIV-1, for
reference.
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Fig. 3.5: Divergence and diversity for nonsynonymous (left panel) and synony-
mous (right panel) mutations in different classes of genomic regions (en-
zymes, structural proteins, accessory genes, and envelope).

where the angular brackets indicate averaging.

Nonsynonymous diversity increases more slowly than divergence and sat-
urates earlier. This result is consistent with previous reports [19]. There are
also differences along the genome: nonsynonymous divergence and diversity
are especially low in regions of higher cross-sectional conservation such as
the enzymes. The large number of nonsynonymous changes in envelope is
connected to the stronger selective pressure caused by antibody targeting,
and to fewer evolutionary constraints.

Synonymous divergence is similar for all regions, and synonymous diver-
sity increases more steadily than nonsynonymous diversity. In particular,
synonymous diversity is lowest in envelope and the accessory genes. This
might be the effect of a higher density of selective sweeps in those genomic
regions, tilting the selection/recombination balance driving HIV-1 evolution:
while positive selection reduces diversity around every sweep (and there are
many, as shown in Fig. 3.4), recombination maintains diversity by spreading
the beneficial allele onto many genetic backgrounds. Overall, HIV-1 keeps a
high level of diversity throughout the infection, despite the many substitutions
all across the genome.
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Fig. 3.6: Mutation rate matrix estimated from the in vivo longitudinal genetic
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published in vitro study [55] is 89% on a log scale (94% on a linear
scale). Error bars are standard deviations on 100 patient bootstraps,
±0.0 means the error is less than 0.05.
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3.1.4 Mutation

The high genetic diversity that characterizes HIV-1 and allows it to escape
immune surveillance is generated by mutation during several steps of the vi-
ral life cycle, in particular reverse transcription by the HIV-1 RT and forward
transcription by the host cell RNA polymerase. In my doctorate, I chacter-
ized this process by analyzing the longitudinal genetic data I collected.

There are two approaches to measure the mutation rate of HIV-1. The
first is to perform single-replication in vitro experiments and directly count
the number of genetic changes of each kind (e.g. A→ G). This strategy has
been applied and provides useful estimates, the average rate being around
1.5 ·10−5 changes per generation per base [55,56]. The main drawback of this
method is that the experiments were performed in an artificial cell culture
environment and on non-native nucleic acid substrates (LacZ operons).

As an orthogonal approach, I took HIV-1 sequences from the longitu-
dinal data set and counted the number of times each mutation from the
viral founder is observed, for each kind. Because of recurrent mutation, the
frequency of mutated alleles increases steadily in time according to the mu-
tation rate. By simply fitting a linear increase in average frequency across
the infection, I could estimate the mutation rates themselves. This basic idea
works well, and the data are collected in vivo, which is an advantage over
cell-culture systems.

In addition to recurrent mutation, however, another process influences
the frequency of derived alleles when observed across long periods of time:
selection. In order to unmask the underlying mutational process from the
influence of selection, I developed two separate models. First, I restricted
the observed alleles to synonymous mutations at nonconserved genetic sites,
outside of known regions under purifying selection such as RNA secondary
structures (RRE, psi element). The resulting matrix is shown in Fig. 3.6.

Second, I made a composite model that accounts for purifying selection
instead of trying to avoid it. This model will be explained in the next section.

In both cases, the resulting matrix of mutation rates agrees quite well
with previous experimental studies, with Pearson correlation coefficients of
80 to 90%. In other words, the mutation rate matrix in vivo is close to
published in vitro estimates.

3.1.5 Fitness landscape

Once new alleles are generated by mutation, the driving force for their fre-
quency in a population is selection. Alleles under positive selection increase
the fitness of the virus and tend to increase rapidly in the population; alleles
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Fig. 3.7: Illustration of an additive fitness landscape on a biallelic genetic model.
Each bar indicates the cost (red) or benefit (blue) of a mutation at
that site. Beneficial/deleterious ratio and absolute amplitudes are ap-
proximately realistic for HIV-1, measured in 1/days or 1/generations
(generation time for HIV-1 is around 2 days [57]).

under negative or purifying selection cause a fitness cost and are suppressed.

In principle, the fitness effect of a certain mutation depends not only on
the location and kind of mutation itself (say A → C at site 90 in the pro-
tease), but also on the genetic background on which it happens. In practice,
however, it is very hard to obtain much information about this kind of com-
plex fitness dependence, or epistasis, from experimental data. For the sake
of predictability, I adopted a simpler model that basically ignores genetic in-
teractions and assigns to each mutation a certain fitness effect: the additive
fitness landscape (see Fig. 3.7 for an illustration).

Given this key simplification, I estimated the effects of both purifying and
positive selection acting on the HIV-1 genome by analysing the longitudinal
data set.

Purifying selection

Most mutations in the HIV-1 genome are under purifying selection, that
is they have a fitness cost. This is not surprising: introducing random
mutations in a very compact genome will most likely result in a slowly or
non-replicating virus.

The difficult question is how costly different mutations are. In order to
address this question, I considered, like for the mutation rate estimate, the
increase in frequency of mutated alleles during the infection. Whereas that
analysis was restricted to bona fide neutral mutations, however, in this case
I divided the genetic sites along the HIV-1 in seven categories, based on
cross-sectional conservation in subtype B, and analyzed the allele frequency
dynamics of each category to assign a fitness cost to it.
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Fig. 3.8: Estimate of fitness costs for the seven-categories coarse-grained model of
HIV-1. The left panel shows the data points for the substitution G→ A,
with increasing subtype variability color coded in a rainbow from blue
to red; the right panel indicates the fit result for the cost itself, as a
function of site variability. Error bars are standard deviations over 100
patient bootstraps.
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Ideally, one would like to be more specific than this and assign a fit-
ness cost to every single position in the genome, as shown in Fig. 3.7 and
as exemplified, using cross-sectional data, by Ferguson et al. [11]. This is a
daunting task as it requires, for each genomic site, a large sample of allele
frequency trajectories to obtain enough statistics to make a reliable estimate,
and 11 patients are not enough for this level of detail. The coarse-grained
model I developed, grouping all mutations at sites with similar cross-sectional
conservation, greatly improves the statistics of the fit, providing a basic un-
derstanding of purifying selection in HIV-1 evolution.

The categories are established by calculating the Shannon entropy of each
base of the HIV-1 genome in a subtype B alignment, and dividing them in
seven equally populated quantiles. For each category, purifying selection
suppresses mutated alleles to a different degree. The frequency trajectory of
the average over all alleles follows the mutation/selection balance equation
(1.2):

ν(t) =
µ

s

[
1− e−st

]
, (3.3)

where µ is the mutation rate, s the fitness cost, and t the time since the
beginning of the infection, in viral generations. Because mutation rates are
very different (e.g. transitions much higher than transversions), each kind of
mutation within a conservation class follows a curve with different µ but the
same s. Once the µ rates are known, this equation can be fitted to the average
of the allele frequency trajectories directly – with a single fit parameter, s.

In my case, because the data allowed an internal estimate of µ, I applied
this basic idea in two variations. First, I took the mutation rates from the
most recent publication by Abram et al. [55] and estimated fitness costs
directly. Second, I made a model that jointly estimates both the mutation
rate matrix and the fitness costs. Both versions yielded similar results: the
result of the latter method is shown in Fig. 3.8.

The basic finding of this model is a quantitative assessment of fitness cost
from strong ones, i.e. 0.01 or larger, to the very slight ones, of 10−4 or less.
Whereas the former mutations impair viral replication enough to render the
site almost fully conserved throughout the subtype, the latter costs are so
small that their effect is basically invisible during the 10 years of the typical
infection. Nonetheless, very small fitness costs remain relevant for long-term
evolution, as they affect phylogenetic reconstructions on cross-sectional data
that span decades of epidemics. One example of such tiny but relevant fitness
costs is described in the next section [32].
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Fig. 3.9: Schematic illustration of fixation probability. A neutral allele that is
found in half the current sequences will fix in half the cases in the future
(if the surviving lineage carried the allele).

Purifying selection on synonymous mutations and RNA structure

Because the HIV genome is very compact, most sites are expected to be
subject to some kind of natural selection, either to warrant biological function
or to escape immune pressure. Of all mutations, synonymous ones are a
priori candidates for neutral evolution, because they (i) are independent of
the HIV-immune system interaction (as peptide CTL epitopes and antibody
binding of surface proteins), and (ii) do not affect protein function – be it
enzymatic or structural.

In my PhD, I considered whether selection is acting at synonymous sites
and, if so, how strong it is and what molecular mechanisms might be under-
pinning it [32]. This question is not only relevant in terms of HIV biology per
se, but also for modeling evolution. For instance, any phylogenetic analysis
is based either on neutral models of evolution – this is the typical case – or
on models with known selective pressures.

In order to assess selection on synonymous mutations, I analyzed pub-
lished longitudinal sequence data [19, 20] on HIV-1 env. Because linkage
disequilibrium over up to 100 bp is expected based on previous estimates of
the in vivo recombination rate of HIV-1, I developed an analysis that does
not assume independent genetic sites. The codebase used for the analysis is
available online at:

http://git.tuebingen.mpg.de/synmut.git.

The basic observable is the fixation probability, illustrated schematically
in Fig. 3.9. For each synonymous mutant allele (as opposed to the ancestral

http://git.tuebingen.mpg.de/synmut.git
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Fig. 3.10: Fixation probability (left) and survival time (right) in HIV-1 env in-
dicate weak purifying selection on synonymous mutations in C2-V5.
Left panel: the dashed line indicates the diagonal, i.e. the expectation
from neutral models. Right panel: cumulative distribution of survival
times for synonymous polymorphic alleles in C2-V5 indicate an average
survival of around 500 days.

allele of putative founder viral sequence, i.e. the majority consensus allele
at the first time point), I record its frequency at an early time and then
ask, at a later time, whether it is fixed, extinct, or polymorphic. Few alleles
keep polymorphic for very long times, so they can be ignored for all practical
purposes. Of the two remaining categories, the fraction of fixed alleles is the
fixation probability Pfix.

In a neutral model of evolution, the null model of synonymous mutations,
Pfix of an allele found at frequency ν is equal to ν itself. This prediction is
robust against details of the model, e.g. independent or linked sites, recombi-
nation, magnitude of genetic drift and hitchhiking. Synonymous alleles from
the C2-V5 region of HIV-1, however, show a systematic trend Pfix(ν) < ν,
as shown in the left panel of Fig. 3.10. The other lines indicate synonymous
mutations in the rest of HIV-1 env (other) and nonsynonymous mutations.
Both of them are compatible with a neutral model, but that is a negative
result, as there is a number of factors that attract Pfix towards the diagonal
line even in presence of selection.

The depression in Pfix indicates a fitness cost of those mutations. In order
to quantify this cost, I analyzed the survival time of the mutant synony-
mous alleles that, after becoming polymorphic, eventually disappear again.
The result, shown in the right panel of Fig. 3.10, indicates that those alle-
les keep polymorphic for approximately 500-1000 days before disappearing.
Based on this information, I estimate an average fitness cost of 0.1-0.2% per
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Fig. 3.11: Simulations can reproduce the allele dynamics observed in the HIV-1
samples for some parameter combinations. Left panel: increasing the
fitness cost of synonymous mutations reduces both Pfix and genetic
diversity. Both observables become compatible with the HIV-1 C2-V5
values for costs of the order of 0.2%. Right panel: number of simulations
that are compatible with the data in the parameter space, as filled
contours. The fraction of synonymous changes that are still neutral is
quite small, around 10-20%.

day. In order to test this estimate, I used my own computer package, FF-
PopSim [30], to simulate the evolution of populations with similar properties
to HIV-1, in terms of mutation and recombination rates, population size, fit-
ness landscape of nonsynonymous mutations. I explored a two-dimensional
parameter space:

• the fraction of synonymous changes that are neutral VS deleterious;

• the average effect of deleterious mutations.

I found that only a small region of this space is compatible with the evolution
of HIV-1 in C2-V5, in terms of fixation probability and genetic diversity, as
shown in Fig. 3.11. This not only confirmed a fitness cost around 0.2%, but
also indicated that, of all synonymous mutations in C2-V5, the deleterious
ones must be the vast majority, around 80-90%.

Given that so many synonymous mutations break the null expectation
of neutrality, I proceeded to ask what the biological reason for this observa-
tion might be. I considered two general mechanisms, codon bias and RNA
secondary structures. The former idea elaborates as follows: since HIV-1 is
using the tRNA pool of the host cell to replicate, switching to less common
codons might have a negative impact on replication capacity. Despite pro-
longed effort, I could not find any hint of a significant effect of codon bias
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Fig. 3.12: RNA structure affects fitness in C2-V5. Left panel: fraction of fixed,
lost, and polymorphic synonymous mutant alleles for three SHAPE cat-
egories. Right panel: the conserved regions C2-C4 have a larger depres-
sion in Pfix than the variable loops V3-V5. They also have widespread
pairing propensity, suggesting again a role for RNA structure in the
fitness landscape of HIV-1.

on the evolution of C2-V5 within the time range of an infection. This is
expected a priori because HIV-1 has a very skewed codon bias to start with,
if compared to human cells [58], and this skewedness does not seem to be
decreasing during the last few decades [59].

The second idea, of RNA structures, is based on the realization that HIV-
1, as a compact, single stranded genome, is using RNA secondary structures
for various biological functions [60]. A well-known structure, located in env
downstream of V5, is the Rev Response Element (RRE), a stable 350 bp long
hairpin that is targeted by Rev during nuclear export of specific RNA tran-
scripts [61]. In general, it is hard to infer RNA structures from the sequence
reliably, as predictions tend to contain high false positive rates and are of-
ten missing pseudoknots. To overcome this vagueness, I exploited published
data, collected with the SHAPE assay to chemically probe the propensity
of each nucleotide in the HIV-1 genome to form a pair [60]. This kind of
information is much less noisy than computer predictions, if less complete –
we do not know what pairs form, only what single sites are occupied. No
RNA structure was suggested by the authors of [60] in the C2-V5 region,
but from their results it was not excluded either. In order to probe the data
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for a statistical signal, I divided the SHAPE reactivities in three categories
and queried the fraction of synonymous mutations that are fixed, lost, or
long-term polymorphic for each of them, as shown in Fig. 3.12. I found
that highly reactive sites, i.e. low-pairing-propensity sites, fix significantly
more often than low-reactive ones (KS P-value 0.002). Moreover, the Pfix
of the conserved regions C2-C4, which contain many low-reactive sites, is
much lower than the variable loops V3-V5. Both results indicate that RNA
structures in C2-V5, although not yet identified experimentally, are at least
one source of the fitness costs observed in the longitudinal sequence data.

My results are consistent with another publication that, using totally
different methods, suggests a specific RNA architecture for the C2-V5 region
of the HIV-1 genome, which the authors termed insulating stems [62]. The
concept is the following: (i) HIV-1 needs to provide variable loops to escape
a diverse range of human antibodies; (ii) in order to hedge the high risk of
RNA misfolding connected to large structural variation in the loops, semi-
rigid RNA hairpins are encoded in the C2-4 regions between the loops. Albeit
only a suggestion, such a modular genetic organisation would be plausible in
the highly compact yet evolutionarily flexible genome of HIV-1.

Positive selection

Positive selection is an obvious property of intrapatient HIV-1 evolution.
Even with population sequencing, i.e. only a few sequences per time point,
it appears clear that some mutant alleles increase in frequency and fix rapidly.
In fact, because this increase is often much faster than genetic drift would
ever cause, it must be due to positive selection, a process termed selective
sweep.

There are two subtle points as far as selective sweeps during HIV-1 evolu-
tion are concerned. First, because the recombination rate of HIV-1 is limited
(see below), mutant alleles neighbouring a sweep can spread rapidly as well,
if they lie on the right genetic background – this process is called hitchhik-
ing. It is not possible to distinguish a selected allele from a hitchhiker with
certainty using purely sequence information, although statistical conclusions
can be made, as I explain below.

Second, assuming an allele is actually under positive selection, there are
two sources of positive selection on HIV-1: immune escape and general bio-
logical function.

Immune escape is a common process during HIV-1 evolution. The
adaptive immune system of the host realizes the presence of viral proteins
via either (i) antibody recognition of surface patches or (ii) exhibition of MHC
class I bound viral epitopes by infected cells, which epitopes are subsequently
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recognized by specific CD8+ Cytotoxic T-Cells (CTLs). Of the many viral
genetic variants present at any time, the ones that carry mutations that
inhibit recognition by either mechanism are obviously advantageous and get
positively selected.

Not all selective sweeps, however, are caused by immune escape. Because
each infection starts from one or very few virions [14], and that virus has been
adapting to the immune system of the previous host, it carries a number of
alleles that make it suboptimal in terms of replication capacity [14]. When-
ever any of these mutations reverts to the optimal state, a selective sweep
is observed. This argument hides a negative feedback: (i) because immune
escape exists, it must have happened in the donor host; (ii) the transmitted
virus is likely to sweep-revert (some of) those changes in the recipient host,
because they bring no benefit anymore (different immune system) but most
likely impair replication in some way; (iii) hence not all selective sweeps are
immune escapes.

The locations of substitutions in some of our whole-genome sequenced
patients is shown above in the middle panel of Fig. 3.4. The exact location
of the substitution is not shared across patients.

It is not easy to quantify accurately the fitness advantage of putatively
selected alleles, because our data is sampled only every 6-15 months and the
allele is often observed directly jumping from very low < 10% to very high
> 90% frequency from one sample to the next. A rough estimate by logistic
regression, according to equation (1.1), yields fitness benefits of the order
of 1% per day, in agreement with previous estimates that used independent
data [53,54]. This indicates that sweeping times are of the order of 100 days.

The number of substitutions ranges between 24 and 98 in these subjects,
with a median of 57, with about 10 to-be substitutions rapidly increasing in
frequency at the same time. Although this is a small fraction of all poly-
morphisms, around 1%, it is still a large number considered that a single
virion has to collect all of them onto the same genetic background within the
typical sweeping time, i.e. 100-400 days. At a generation time of 2 days [57],
this means finding a new, correct substitution about every 10 generations.

As of what fraction of the substitutions are actual selective sweeps, it is
difficult to test without experiments. It appears that a sizeable fraction of
the substitutions is synonymous (∼ 30%), but those cases also show a slightly
slower increase in frequency compared to nonsynonymous alleles.

By the same token, if one knew all CTL and antibody epitopes across
the whole HIV-1 infection, it would be possible, at least in principle, to
distinguish immune escape from biological optimization for each single mu-
tation. For my PhD study, this information was not nearly available, mainly
because of the cost and effort required at present to characterize immune
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repertoires [63]. However, I did obtain HLA typing of the subjects of the
main whole-genome longitudinal sequencing project. I used the patient HLA
information and the founder viral sequence to collect predicted CTL epi-
topes, using two separate approaches. First, I queried the LANL immunology
database for a list of experimentally verified epitopes (using the ”B list”) [1].
This list is expected to contain few false positives (e.g. peptides that are
listed but not actually exposed on MHC class I complexes), but many false
negatives (peptides that are exposed and binding but not listed because no-
body ever validated them experimentally). As a complementary appoach,
I used an online prediction tool, MHCi [64, 65], to collect an extensive list
of computationally predicted epitopes, ranked by their degree of (predicted)
binding affinity. The full list contains thousands of peptides and fully covers
the HIV-1 genome, but it is obvious that only few of them, most likely the
high-affinity ones, represent actual epitopes. I hence took the top k peptides
for various values of k and tested statistically whether substitutions in HIV-1
are enriched within predicted epitopes. This test was highly significant for
nonsynonymous mutations, for a threshold k ∈∼ (50, 100), and mostly so
for k = 80 (ratio 1.9, P < 10−5). The same test for synonymous muta-
tions yielded no enrichment. I expect this computationally predicted list to
contain both false negatives and false positives, however I deem it a good
starting point for more sophisticated analysis of immune targeting that are
outside the scope of my thesis. The list of epitopes is available together with
the rest of the data set in the publication [31].

The situation for antibody targets is more difficult, as the tertiary struc-
ture of both the antibody and the viral envelope, in addition to post-translational
modifications thereof (e.g. glycosylation, structural rearrangements during
cell entry) are known to be crucial for binding and neutralization [66]. Ex-
isting longitudinal studies on HIV-1-antibody coevolution are few, typically
limited to a single patient, and very labour intensive [67,68]. Development of
higher-throughput pipelines for investigating this aspect of intrapatient HIV-
1 evolution is an open research question that I am planning on answering in
the near future.

3.1.6 Recombination

The different looks of the phylogenetic trees reconstructed from different ge-
nomic regions of HIV-1 (see Fig. 3.2) are a clear indication that recombination
plays an important role in intrapatient HIV-1 evolution. (If evolution pro-
ceeded asexually, all trees would look the same, given enough phylogenetic
signal and not too high a level of recurrent mutation.) Previous estimates of
the recombination rate lie around 10−5 per day per base [53,54]. Considering
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Fig. 3.13: LD in patient HIV-1 samples from each of the six amplicons and a
control sample with two HIV-1 laboratory strains mixed at a 50:50
ratio.

the average time it takes HIV-1 to accumulate genetic diversity, which is of
the order of 1000 days (see Fig. 3.5), one expects linkage disequilibrium (LD)
to extend over:

d ≈ 103days/10−5per day per base = 100bp. (3.4)

I have measured LD in my whole-genome, longitudinal sequencing data
set, see Fig. 3.13. The black line, which refers to a control sample with a 50:50
mix of two distinct HIV-1 strains, underlines that in vitro recombination
was not a problem for this experimental protocol. The patient data shows a
decay of LD over approximately 100 bp, just like expected from the simple
calculation outlined above. The exception to this behaviour is the amplicon
F5, which includes the most rapid substitutions but also the structurally
variable loops. Preliminary analyses indicate that this longer LD is not a
simple artifact, but further investigations are necessary to explore the details
and consequences of this observation.

The main consequence of the relatively short LD, as mentioned above, is
that HIV-1 is able to collect adaptive mutations onto the same genetic back-
ground much faster than if it were replicating asexually. Clonal interference,
a widespread phenomenon in asexual organisms such as bacteria or influenza
virus (within a segment) [69], is likely to play only a minor role in HIV-1
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evolution.

3.2 Web application

The web application developed to share the data and results of my whole-
genome longitudinal HIV-1 sequencing project proved to be a great resource.
I used it for two separate purposes: (i) for exploring the data set from several
different perspectives, whenever more than one plot at a time was required
to develop an intuition on the research question at hand; (ii) for discussing
the results of the study with other scientists without any need for coding.
The latter point was especially remarkable during meetings, seminar talks,
conferences, visits to collaborators, and whenever time was limited and brain-
storming most fruitful.

The web app has four key pages: home, patient, genomic region, and data
download. It is available at the address:

http://hiv.tuebingen.mpg.de.

I will present them shortly in the following sections.

3.2.1 Home

The home page (see Fig. 3.14) contains the basic information needed to
understand the data set: number and types of samples, a brief description
of the patients, links to the more sophisticated parts of the website. It also
features an interactive phylogentic tree of all samples together, to highlight
the breath of the data set and the benefit of responsive web technology.

3.2.2 Patient

The patient page (see Fig. 3.15) includes a number of interactive plots that
allow the user to browse the data set without any coding. Examples thereof
are coverage, single nucleotide variant frequencies, diversity and divergence
along the genome and as a function of time, phylogenetic trees, and the
viral load and CD4+ counts. It was challenging to combine these different,
interactive plots on one page, because JavaScript and HTML provide poor
encapsulation facilities and pollution of the global namespace is the norm
more than the exception, but a combination of descriptive CSS and cautious
DOM manipulation solved most issues rather satisfactorily.

http://hiv.tuebingen.mpg.de
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Fig. 3.14: Home page of the HIV web application. Notice the interactive phylo-
genetic tree on the right.
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Fig. 3.15: Patient page of the HIV web application. An example of the interactive
plots, the coverage plot, is shown here. Clicking on genomic regions of
HIV-1 zooms into them for deeper analysis.
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Fig. 3.16: Genomic region page of the HIV web application. It is useful to compare
patients to each other.
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Fig. 3.17: Data download page of the HIV web application. Notice the haplotype
generation factory in the center right of the screenshot.

3.2.3 Genomic region

The genomic region page (see Fig. 3.16) features plots on a specific genomic
region, e.g. the V3 loop, merging data coming from all patients at once. It
is most useful to assess how much interpatient variation there is in a certain
observable, such as genetic divergence, and to spot outliers.

3.2.4 Data

The data download page (see Fig. 3.17) provides access to all information
(genetic and not) obtained in the study. Coherent, computer-friendly file
formats ensure an expedited downstream analysis, and a REST API infras-
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tructure increases automation. The clean mapped reads are available for the
most technically advanced users, simpler allele frequency matrices are a more
compact data format whenever linkage information is not required. Even
when linkage is required, the web application gives access to alignments of
reads over certain genomic regions as an easier format than mapped reads.
The alignments, which include minor genetic variants, are either precom-
puted or, if the user requires specific genomic windows, can be generated on
the fly by the web server. The latter operation is by far the most computa-
tionally intensive of the whole web application and could be outsourced to
an external queueing system if user load became too high.

3.3 Simulation of populations

FFPopSim is available online at the address:

https://github.com/neherlab/ffpopsim.

The main innovation of the FFPopSim package was a faster recombination

https://github.com/neherlab/ffpopsim
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algorithm that scales like O(3L) instead of the näıve O(8L), where L is the
genome length. That this is indeed the case is shown in the left panel of
Fig. 3.18. The population size has a negligible effect for the few-loci part of
the library, whereas the many-loci class, haploid highd, scales linearly with
population size as expected.

Since its publication, FFPopSim was used in a number of occasions both
for published articles (e.g. [32, 70, 71]) and as an exploratory tool. I main-
tained the package and updated it for modern environments (e.g. SWIG 3.0,
Python 3.4). A number of functions and refinements have been added since,
making it an even better tool for modelling evolution.
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Chapter 4

Concluding remarks

Intrapatient HIV-1 evolution, the subject of this thesis, is an interesting topic
in terms of both biology and evolution. Because of this interdisciplinary na-
ture of the topic, experimental, computational, and mathematical efforts were
necessary for the study. My doctorate work resulted in two main products.

First, I generated a set of tools to study intrapatient HIV-1 that are useful
for the research community beyond my own. These include:

• a computational simulation package, FFPopSim [30]

• protocols for HIV-1 sample preparation from plasma to the sequencing
reads [31]

• a complex data analysis pipeline to filter and organize the reads in a
context of great biological sequence variation [31]

• a whole-genome, longitudinal, deep sequencing data set that can be
analyzed by other researchers [31]

• a web application that exposes the data set in useful ways and sets a
standard for similar efforts in the field [31].

Second, I obtained a number of novel results on the biology and evolution
of HIV-1 itself:

• a quantification of the effects and origins of purifying selection on syn-
onymous mutations [32]

• a whole-genome analysis of patterns of genetic divergence, diversity,
and evolutionary rates [31]

• an in vivo estimate of the mutation rate matrix [31]

69
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• an estimate of fitness costs on sites at different levels of conservation [31]

• an estimate of the abundance and strength of positive selection and
immune escape [31].

The most interesting extension of this work, which I will pursue in the
near future, is the simultaneous characterization of the host adaptive immune
system. The additional knowledge on epitopes and immune response will be
key to unveil the co-evolutionary dynamics that shape the viral infection.
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