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Executive Summary

The present dissertation enhances the research in computer science, especially state of the art
Machine Learning (ML), in the field of process development in Semiconductor Manufacturing
(SM) by the invention of a new Feature Selection (FS) algorithm to discover the most important
equipment and context parameters for highest performance of predicting process results in a
newly developed advanced Virtual Metrology (VM) system.
In complex high-mixture-low-volume SM, chips or rather silicon wafers for numerous products

and technologies are manufactured on the same equipment. Process stability and control are key
factors for the production of highest quality semiconductors. Advanced Process Control (APC)
monitors manufacturing equipment and intervenes in the equipment control if critical states
occur. Besides Run-To-Run (R2R) control and Fault Detection and Classification (FDC) new
process control development activities focus on VM which predicts metrology results based on
productive equipment and context data. More precisely, physical equipment parameters com-
bined with logistical information about the manufactured product are used to predict the process
result. The compulsory need for a reliable and most accurate VM system arises to imperatively
reduce time and cost expensive physical metrology as well as to increase yield and stability of the
manufacturing processes while concurrently minimizing economic expenditures and associated
data flow. The four challenges of (1) efficiency of development and deployment of a corporate-
wide VM system, (2) scalability of enterprise data storage, data traffic and computational effort,
(3) knowledge discovery out of available data for future enhancements and process developments
as well as (4) highest accuracy including reliability and reproducibility of the prediction results
are so far not successfully mastered at the same time by any other approach.
Many ML techniques have already been investigated to build prediction models based on

historical data. The outcomes are only partially satisfying in order to achieve the ambitious
objectives in terms of highest accuracy resulting in tight control limits which tolerate almost no
deviation from the intended process result. For optimization of prediction performance state of
the art process engineering requirements lead to three criteria for assessment of the ML algorithm
for the VM: outlier detection, model robustness with respect to equipment degradation over time
and ever-changing manufacturing processes adapted for further development of products and
technologies and finally highest prediction accuracy. It has been shown that simple regression
methods fail in terms of prediction accuracy, outlier detection and model robustness while higher-
sophisticated regression methods are almost able to constantly achieve these goals. Due to
quite similar but still not optimal prediction performance as well as limited computational
feasibility in case of numerous input parameters, the choice of superior ML regression methods
does not ultimately resolve the problem. Considering the entire cycle of Knowledge Discovery
in Databases including Data Mining (DM) another task appears to be crucial: FS. An optimal
selection of the decisive parameters and hence reduction of the input space dimension boosts
the model performance by omitting redundant as well as spurious information. Various FS
algorithms exist to deal with correlated and noisy features, but each of its own is not capable to
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ensure that the ambitious targets for VM can be achieved in prevalent high-mixture-low-volume
SM.
The objective of the present doctoral thesis is the development of a smart FS algorithm to

enable a by this advanced and also newly developed VM system to comply with all imperative
requirements for improved process stability and control. At first, a new Evolutionary Repetitive
Backward Elimination (ERBE) FS algorithm is implemented combining the advantages of a
Genetic Algorithm (GA) with Leave-One-Out (LOO) Backward Elimination as wrapper for
Support Vector Regression (SVR). At second, a new high performance VM system is realized in
the productive environment of High Density Plasma (HDP) Chemical Vapor Deposition (CVD)
at the Infineon frontend manufacturing site Regensburg. The advanced VM system performs
predictions based on three state of the art ML methods (i. e. Neural Network (NN), Decision
Tree M5’ (M5’) & SVR) and can be deployed on many other process areas due to its generic
approach and the adaptive design of the ERBE FS algorithm.
The developed ERBE algorithm for smart FS enhances the new advanced VM system by

revealing evidentially the crucial features for multivariate nonlinear regression. Enabling most
capable VM turns statistical sampling metrology with typically 10% coverage of process results
into a 100% metrological process monitoring and control. Hence, misprocessed wafers can be
detected instantly. Subsequent rework or earliest scrap of those wafers result in significantly
increased stability of subsequent process steps and thus higher yield. An additional remarkable
benefit is the reduction of production cycle time due to the possible saving of time consuming
physical metrology resulting in an increase of production volume output up to 10% in case of
fab-wide implementation of the new VM system.
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Zusammenfassung

Die vorliegende Dissertation erweitert die aktuelle Forschungsarbeit im Bereich der Informatik,
im Besonderen den neuesten Stand der Technik hinsichtlich Maschinellem Lernen (d.h. ML)
im Bereich der Prozessentwicklung in der Halbleiterindustrie, durch die Erfindung eines neuen
Feature Selection (d. h. FS) Algorithmus zur Identifizierung der ausschlaggebenden Anlagen-
und Kontextparameter für höchste Vorhersageleistungen der Prozessergebnisse in einem neu
entwickelten fortschrittlichen System der Virtuellen Messtechnik (d. h. VM).
In der komplexen high-mixture-low-volume (Logik) Halbleiterindustrie werden Chips, bezieh-

ungsweise auf Silizium basierende Wafer, für zahlreiche Produkte und Technologien in der gle-
ichen Anlage bearbeitet. Dabei sind Prozesskontrolle und Prozessstabilität Schlüsselfaktoren,
um Halbleiter höchster Qualität zu produzieren. Fortgeschrittene Prozesskontrolle (d. h. APC)
überwacht produktive Anlagen und greift im Falle kritischer Zustände in deren Steuerung ein.
Neben den etablierten Systemen Run-To-Run-Control und Fault Detection and Classification
fokussieren sich neue Entwicklungen der Prozesskontrolle auf VM, die die gemessenen Ergeb-
nisse nach einem Prozessschritt an einer Anlage basierend auf den produktiven und kontextuellen
Daten vorhersagt. Genauer gesagt werden physikalische Anlagenparameter mit logistischen In-
formationen über das gefertigte Produkt kombiniert und für die Vorhersage verwendet. Der
zwingend erforderliche Bedarf für ein verlässliches und genauestes VM System entsteht, um
sowohl zeitlich und finanziell sehr aufwendige physikalische Messungen zu reduzieren als auch
die Ausbeute und Stabilität der Fertigungsprozesse zu erhöhen, während gleichzeitig betrieb-
swirtschaftliche Aufwände und damit verbundene Datenflüsse minimiert werden. Bis zum heuti-
gen Tage konnten jedoch die vier Herausforderungen (1) einer effizienten Entwicklung und Um-
setzung eines unternehmensweiten VM Systems, (2) einer unternehmensweiten Skalierbarkeit
der Datenspeicherung, des Datenflusses und des Rechenaufwandes, (3) einer Gewinnung von
neuem Wissen aus den vorliegenden Daten für zukünftige Verbesserungen und Prozessentwick-
lungen sowie (4) höchster Genauigkeit einschließlich Verlässlichkeit und Reproduzierbarkeit der
Vorhersageergebnisse von keinem anderen Ansatz gleichzeitig erfolgreich bewältigt werden.
Viele ML Techniken wurden bereits hinsichtlich der Eignung für die Erstellung von auf his-

torischen Daten basierenden Vorhersagemodellen untersucht. Die Resultate sind jedoch nur
teilweise befriedigend um die ehrgeizigen Ziele hinsichtlich höchster Genauigkeit zu erzielen, die
in engen Kontrollgrenzen resultieren, welche so gut wie keine Abweichung vom beabsichtigten
Prozessergebnis erlauben. Die Optimierung der Vorhersageleistung unter Berücksichtigung der
Anforderungen modernster Prozesstechnik führt zu drei Bewertungskriterien eines ML Algo-
rithmus für VM: Erkennung von Ausreißern, Robustheit des Modells in Bezug auf stetige De-
gradierung einzelner Anlagenteile mit sich ständig verändernden Fertigungsprozessen, jeweils
angepasst an die Entwicklung zukünftiger Produkte und Technologien, und schließlich höch-
ster Vorhersagegenauigkeit. Während einfache Regressionsmethoden hinsichtlich Vorhersagege-
nauigkeit, Ausreißererkennung und Modellrobustheit nachweislich scheitern, sind ausgeklügeltere
Regressionsalgorithmen in der Lage diese Ziele großenteils zu erreichen. Aufgrund ähnlicher, je-
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doch immer noch nicht optimaler Vorhersageleistung sowie begrenzter Berechenbarkeit im Falle
zahlreicher Eingangsvariablen löst auch die Auswahl einer dieser fortgeschrittenen ML Algorith-
men letztlich nicht das Problem. Bei Betrachtung des gesamten Zyklus der Wissensgewinnung
aus Datenbanken inklusive Data-Mining erscheint eine andere Aufgabenstellung entscheidend:
FS. Eine optimale Auswahl der ausschlaggebenden Parameter und die damit einhergehende
Reduktion der Dimensionen der Gesamtmenge der Eingangsvariablen verbessert die Vorher-
sageleistung der Modelle durch den Ausschluss redundanter und störender Informationen. Zur
Beherrschung von korrelierten und verrauschten Charakteristika existieren verschiedenste FS
Algorithmen, wovon jeder Einzelne an sich im vorherrschenden Bereich der Halbleiterfertigung
von Logikbauteilen jedoch nicht dazu geeignet ist die ambitionierten Zielsetzungen von VM zu
erreichen und sicherzustellen.
Ziel und Gegenstand der vorliegenden Dissertation ist die Entwicklung eines ausgefeilten FS

Algorithmus, der die Implementierung eines ebenfalls neu entwickelten fortschrittlichen VM Sys-
tems ermöglicht, das die unabdingbaren Anforderungen hinsichtlich größtmöglicher Prozesskon-
trolle und Prozessstabilität erfüllt. Einerseits wurde der neue ERBE FS Algorithmus implemen-
tiert, der als Wrapper für Support Vector Regression die Vorteile eines Genetischen Algorithmus
(d. h. GA) mit denen der LOO Backward Elimination verbindet. Zusätzlich wurde ein hoch per-
formantes VM System in produktiver Fertigungsumgebung im Bereich HDP CVD am Infineon
Frontendstandort Regensburg realisiert. Dieses hochentwickelte VM System macht Vorhersagen
basierend auf drei dem aktuellen Stand der Wissenschaft entsprechenden ML Methoden (d.h.
Neuronales Netzwerk NN, Entscheidungsbaum M5’ und SVR) und kann aufgrund seines gener-
ischen Ansatzes und dem adaptiven Design des ERBE FS Algorithmus in allen Prozessbereichen
zur Anwendung gebracht werden.
Der neue entwickelte ERBE Algorithmus für ausgefeilte FS erweitert das neue fortschrittliche

VM System erwiesenermaßen durch Identifizierung der ausschlaggebenden Charakteristika für
multivariate nichtlineare Regression. Die Ermöglichung einer höchst leistungsfähigen VM er-
laubt den Übergang von einer auf physikalischen Messungen basierenden statistischen Über-
prüfung per Stichproben mit typischerweise 10% Abdeckung der Prozessergebnisse zu einer
100% Überwachung aller Prozesse. Dadurch können fehlprozessierte Wafer unmittelbar erkannt
werden. Darauffolgende Nacharbeit oder der frühest mögliche Verwurf dieser Wafer führt zu
deutlich erhöhter Stabilität der nachfolgenden Prozessschritte und damit zu einer höheren Aus-
beute. Ein weiterer beachtlicher Nutzen ergibt sich aus der Reduktion der Durchlaufzeit der
Fertigung durch die Ersparnis zeitaufwendiger physikalischer Messungen, die bei fabrikweiter
Umsetzung des neuen VM Systems eine Erhöhung des Produktionsvolumens um bis zu 10%
ermöglicht.
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1 Introduction

A brief motivation is given to demonstrate the demand of smart Feature Selection for advanced
Virtual Metrology, followed by a brief introduction of Infineon and concluded by the structuring
of the present doctoral thesis.

1.1 Motivation

The innovative and capital intensive semiconductor manufacturing industry constantly strives to
develop leading edge technologies and thereby to improve the complex high-end manufacturing
processes every day. In order to steadily optimize the non-value-adding but indispensable physi-
cal metrology process of all intermediate products (so-called wafers) in terms of highest required
accuracy for these highly complex manufacturing processes, VM actually evolved to an impor-
tant research area and an expected standard operation in future. Based on historical data of
logistical and process parameters, statistical models are trained to immediately predict physical
metrology outcomes using actual wafer data online. Compared to significantly delayed physical
measurements, on the one hand a reduction of physical metrology can be performed but on the
other hand even more important is the improved quality by possible reactions and corrective
actions after the process right away. Hence, the deployment for corporate-wide implementation
of VM is focused. Nevertheless, the development of a corporate-wide VM implementation is
nowadays still infeasible without FS. The newly developed smart FS algorithm ERBE tackles
this problem in the present dissertation and provides a solution for the following challenges
to enable corporate-wide and thus advanced VM. A more detailed description is provided in
section 4.1.

1. Efficiency: The semiconductor manufacturing industry struggles to efficiently implement
VM corporate-wide due to the lack of a generic VM approach for all equipment and
processes which is essential for an economic return on invest. The focus on training
prediction models incorporating only the crucial features obtained by smart FS enables a
generic VM approach with high accuracy for each process.

2. Scalability: The volume and related costs to implement and deploy VM without reduction
of available process parameters (i. e. 50 up to more than 10000) are corporate-wide neither
scalable nor affordable in terms of data storage, data traffic, computational effort and
maintainability.

3. Knowledge Discovery: Most often the pure application of various ML techniques hardly
generates much information about the investigated process whereas smart FS reveals the
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really crucial features yielding highest achievable accuracy which can be incorporated for
further process development and enhancement in future.

4. Accuracy: High product quality requires well-controlled manufacturing which in fact can
only be achieved by very accurate physical measurements and thus by comparable VM
predictions often tolerating no more than 1% deviation of the real physical metrology.
The highest accuracy can be obtained by only including the most important features
containing valuable information to train a statistical model whereas noisy, redundant and
distracting features should be discarded. Hence, FS is required to automatically reveal the
most important features and thus achieve highest possible accuracy with VM.

1.2 Infineon

Infineon Technologies is a leading Semiconductor Manufacturer in Europe headquartered in
Munich, Germany. The public company was established in April 1999 as the semiconductor
operations spin-off from Siemens and has a global workforce of about 30.000 employees.
"Infineon focuses on the three central challenges facing modern society: Energy Efficiency,

Mobility and Security and offers semiconductors and system solutions for automotive and in-
dustrial electronics and chip card and security applications. Infineon’s products stand out for
their reliability, their quality excellence and their innovative and leading-edge technology in ana-
log and mixed signal, radio frequency and power as well as embedded control. With a global
presence, Infineon operates through its subsidiaries in the USA from Milpitas, California, in
the Asia-Pacific region from Singapore, and in Japan from Tokyo. In the 2014 fiscal year, the
company reported sales of ~ 4 billion Euro." [64], [65]
Within the technology sector of Infineon frontend operations new production processes are

developed which are required for the manufacturing of new products designed by the different
business units. The department Unit Process Development 6, responsible for APC development,
supplies methods and software systems to improve monitoring and control of the manufacturing
processes in order to ensure highest stability and production yield by minimizing deviations
during each single process step. During the last years VM evolved as new area in APC with
enormous research and development ongoing in SM. The ambitious goal to enable a capable and
efficient corporate-wide advanced VM system starting with an implementation in the productive
environment of HDP CVD at the Infineon frontend site Regensburg is based on the motivation
outlined above.

1.3 Structure

The present dissertation is organized into ten chapters. At first (cf. chapter 1), an introduction
is given with a brief motivation for the demand of VM and a short overview of the collaboration
with Infineon Technologies. In chapter 2 all necessary SM and process principles are highlighted
followed by fundamentals of DM, ML, FS and evaluation criteria in chapter 3. In chapter 4, the
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actual state of the art according to VM, SVR, Recursive Feature Elimination (RFE), GA and
FS is emphasized together with a detailed description about the actual problems and challenges
to implement advanced VM corporate-wide in the SM industry and the derived need for smart
FS. The various requirements including the implementation for this advanced VM are outlined
successively in chapter 5. Chapter 6 comprehensively describes the newly invented smart FS
algorithm ERBE as the core of the present thesis. Experimental setup (cf. chapter 7) for the
implementation and the ERBE algorithm follows including a comparison to other applied state-
of-the-art techniques, before results (cf. chapter 8) and discussions (cf. chapter 9) are outlined.
Finally, a conclusion is drawn and an outlook in chapter 10 completes the thesis.
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Semiconductor Manufacturing is a volatile and capital intensive industry. Production of com-
plex nanoscale devices in hundreds of process steps requiring numerous different and expensive
equipment is an enormous challenge. Highest precision, maximum yield and zero-defect quality
are the major business demands to ensure efficient and profitable manufacturing of most reliable
chips. High effort in research and development, innovative solutions and continuous improve-
ment of product design and manufacturing are the main enablers in this industry for achieving
the ambitious goals day by day.
Electronic circuits as composition of interconnected diodes, transistors and capacitors are

designed to switch impressed current or impressed voltage in order to build up logical units for
an integrated circuit. The integrated circuit itself combines an enormous network of electronic
circuits based on semiconducting material (mostly silicon) and is commonly referred as a "chip".
Nowadays, a tremendous range of applications exists for integrated circuits present in almost
every field of today’s modern society. As starting point of the value-added chain and key enabler
for many products, SM is a highly technological, innovative as well as cost-driven industry and
can be divided into frontend and backend production. Basically, the manufacturing of many
chips on initially uniformly doped bare silicon discs, i. e. wafers, takes place in the frontend
production whereas separation, bonding and packaging of these chips are performed within the
backend production [174], [112], [66].
In SM frontend production, lots containing 25 identical wafers are processed in a Fabrication

Plant (fab) in several main process areas: implantation, etching, deposition, diffusion, lithogra-
phy, planarization and oxidation [55]. A lot is processed in each of these areas multiple times to
build up a layered structure based on dielectric semiconductive and conductive films which are
appropriately electrically connected. At the end, many identical chips consisting of a complex
logic of electronic circuits are produced on every wafer and tested at the final wafer test for
essential electrical specifications and defined functionalities [79]. After separation (sawing) the
chips are electrically bonded and packaged in the SM backend for the various purposes of ap-
plication. During hundreds of successive process steps the production equipment has to process
the lots with highest precision. Almost no deviation can be tolerated during the production of
micro- and nanoscale structures on a wafer. Therefore, process control is a key element in SM
industry to ensure process stability which is crucial for product quality. During the last decades
the process capability of the equipment evolved and systematically increased the opportunity
to measure more and more physical process parameters (e. g. temperature, current, voltage,
etc.) for all process steps. This online measurement offers a wide range of new opportunities
to control every single process step. In addition to continuous equipment improvement the ex-
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Figure 2.1: SM frontend process areas to build up a layered structure onto the wafer. Main
process flow indicated by red arrows, possible intermediate process flows by blue
arrows.

tended possibilities for online acquisition of high-volume process and equipment data enabled
the development and implementation of APC to further improve the process capability [66],
[112], [118].

Each lot is processed in all frontend process areas multiple times to build up a layered struc-
ture onto the wafers. In general, SM frontend process areas can be organized into six process
sequences for altering the physical structure of a wafer. Additionally, two process sequences (i. e.
Clean & Metrology) either prepare wafers for the next sequence or control the result of the last
sequence. Figure 2.1 outlines the non-modifying process sequences metrology and clean (center)
and the altering process sequences layer composition, planarization, structuring, layer removal,
layer transformation and resist strip [174], [66]. The red and blue arrows indicate the main and
intermediate process flows, respectively.

A comprehensible introduction and necessary background knowledge regarding APC and VM
is outlined in the following together with a detailed description of the investigated HDP CVD
and PECVD processes. More detailed information regarding the general frontend production of
SM is provided in appendix A.1.
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2.1 Advanced Process Control

APC evolved to a key area in semiconductor industry to monitor and to control almost all of the
complex manufacturing processes. Hence, it became evident that APC is an important enabler
for continuous improvement of process stability [119]. As outlined in the following, the main
development areas of APC have been FDC and R2R control up to now. Recently, VM and
Predictive Maintenance emerged as new promising application areas within APC.
FDC collects online data from production and metrology equipment delivered by its built-in

sensors as well as by additionally integrated commercial or even self-developed sensors, yielding
extended fragmentation and variety of data. Based on this collection of data, important param-
eters are identified and explored in order to detect any equipment or process deviation. From
these parameters significant key numbers (e. g. average of O2 pressure, standard deviation of
Radio Frequency (RF) source-power) are calculated and further aggregated to obtain more con-
densed information. Afterwards, equipment and process specific limits are then defined to allow
detection as well as classification of any undesired process and equipment failure. If a critical
deviation occurs, the automated FDC system generates an appropriate online reaction which
might even stop the affected production equipment. Here, the difference to standard statistical
process control needs to be highlighted. The latter collects data for statistical analysis whereas
APC FDC interacts with the equipment to eventually intervene the actual running process [62],
[118], [120].
The second major area of APC is R2R control. Here, an adapted control algorithm is used

to reduce process variability and thus to increase process capability by means of computing and
applying target control settings for the specific process on the dedicated production equipment
based on previously collected data. Historical data comprise parameters indicating physically
measured properties of the processed wafers (e. g. thickness of a deposited dielectric layer or
depth of a trench etched into the wafer surface) as well as, similar to FDC data, all related context
information (e. g. equipment, process chamber, production operation, manufactured technology,
product) and physical process parameters. The diversity of the context parameters further
increases the fragmentation and variety of data. Many R2R controllers use an exponentially
weighted moving average filter applied to input data for adjustment of the target control settings.
Regular control measurements of sampled production wafers are optionally used as an additional
input to R2R controllers operated in closed loop feedback mode for recalibration of the model
parameters. Both, feed forward control and feed backward control are R2R methodologies to
improve process performance [112], [118].

2.2 Virtual Metrology

An optimal and complete monitoring of production quality which means 100% metrology of ev-
ery single wafer after every process step is from an economic point of view by far too expensive
and too time consuming making exhaustive physical metrology infeasible. Sophisticated sam-
pling strategies to test selected wafers after specific process steps are state of the art. But for
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critical processes almost every wafer has to be measured to ensure the quality standards whereat
the real metrology operation usually takes place with some hours delay. Thus the demand for
fast and cost efficient metrology realizable by VM becomes obvious [22]. Implementation of a
capable VM system enables comprehensive metrology as well as partial substitution of physical
measurements by computed predictions [25], [130]. Thus, significant reduction of real metrology
operations can be achieved which leads to reduced costs and product cycle time. Additionally,
the production quality will be improved by instant outlier detection in case of misprocessed and
defective wafers.
In case of misprocessing of a wafer at any equipment, the impact on the final product can

either be detected with some hours delay, if the wafer is directly measured after the process, or
not until electrical measurement in the final wafer test [90]. In the first scenario an equipment
state drift between measured wafers can yield defective wafers before the next measurement.
As the second scenario is more likely for typical wafer sampling rates, unnecessary waste of
resources (e. g. materials and employees working time) is unavoidable. A VM system which fills
the lack of physical measurement by prediction [21] [25] enables the measurement of every wafer
for every process step on all capable equipment available in the fab, thus allowing significant
improvement of process control as well as reduction of operational cost. Moreover, wafer-fine
metrology is a requirement for real-time quality monitoring and Wafer-to-Wafer process con-
trol which is already in scope of future developments [57]. Wafer-to-Wafer process control is
performed for every individual wafer in contrast to actually lot-based adjustments. Even more
VM enables further analysis of wafers and of the prediction model for processes in the past. In
order to implement VM, ML algorithms are trained on available historical data (i. e. process &
context parameters and physical metrology results) and then applied to input data from current
production to predict the associated metrology outcome [74]. In contrast to physical metrology,
VM provides thereby a calculated result which is, due to the deterministic nature of the used
software algorithm, highly reproducible and repeatable at any time.
The impact of VM is expected to significantly improve the effectiveness of APC in SM. So,

VM was chosen by the International SEMATECH Manufacturing Initiative for the International
Technology Roadmap for Semiconductors as a major research area for next generation smart
factories [67]. Recent investigations estimate high benefits since corporate-wide VM implemen-
tation is expected to improve cycle time and to increase the production volume output by nearly
10% [22]. These benefits raise the attention for VM and justify an appropriate research effort.
One use case for Knowledge Discovery and DM to improve VM is the prediction of the inter-

metal dielectric layer thickness in the process area of deposition. Particularly, the HDP CVD
process appears to be promising for investigation of the benefits of VM (cf. subsection 5.1.1).

2.3 High Density Plasma Chemical Vapor Deposition

In HDP CVD, the reaction of a low pressure gas mixture is activated by an electrical field at low
frequency (i. e. <10 MHz) inductively coupled into the process chamber by a top and a side RF
coil generator for homogeneity reasons. In this RF field, gas molecules are dissociated, radicalized
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and energetically excited as well as positively charged by impact ionization through accelerated
free electrons initially generated by collisions of the gas molecules and also by extraction from the
cathode for adequate high field intensity. In the thus created localized plasma, the accelerated
heavy gas ions are not fast enough to reach the cathode before the turn-over of the RF field,
but enhance the activation or rather ionization of the reaction gas through collisions with other
gas molecules. For a certain mixture of process gases, the impact ionization rate in the reaction
gas depends on the injected RF source-power and the total gas pressure [128].

For a given RF source-power coupled into the plasma, a longer mean free path λ of the
electrons at lower gas pressure facilitates the electron impact ionization and thus increases the
density of charged particles in the plasma. The mean free path λ defines the distance traveled by
an electron between collisions with gas molecules. In order to generate sufficient energy to ionize
a gas molecule at the next impact, the mean free path has to be long enough. λ is inversely
proportional to the gas pressure as a function of the density of the ionized gas molecules n and
σ as the cross sectional area of these molecules (cf. equation (2.1)) [100].

λ = 1
nσ

(2.1)

The localized plasma is a quasi-neutral particle system, since it contains nearly the same
number of positive and negative charges. However, the negatively charged low-mass electrons,
accelerated to a much higher velocity compared to the positively charged high-mass gas ions,
can leave the plasma and reach the electrodes i. e. the surrounding surfaces within the process
chamber, causing the build-up of a negative potential in the surface layer around the plasma.
For the resulting magnitude of this so called Direct Current (DC) sheath potential, the number
of positive gas ions, accelerated out of the plasma towards the process chamber dome and wafer
surface (cf. subsection 2.3.1), equals in average to the number of electrons, reflected back into the
plasma. This effect stabilizes the quasi-stationary and quasi-neutral state of the plasma within
the process chamber [100]. A second RF coil generator induces low voltage at the wafer surface
by a capacitively coupled electrical field causing a potential difference between the bulk of the
plasma and the electrode, the so called DC-bias. For a given distance between the electrode
and a certain reaction gas mixture and frequency of the electrical field, the DC-bias voltage
UB is a function of the process chamber pressure p and the injected DC-bias source-power W .
According to [45] the DC-bias voltage is given as:

UB ∝
√
W

p
. (2.2)

The DC-bias causes an acceleration of prior dissociated and/or ionized particles from the
plasma towards the wafer surface. The energy of the positive charged gas ions before the impact
on the surface can be empirically described as in [45]:
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Eimp ∝
UB√
p
∝
√
W

p
. (2.3)

The chemical reaction resulting in the deposition of a solid film onto a wafer, situated on the
electrode within the process chamber, is primarily subsisted by the radicals as well as positive gas
ions generated in the plasma and made available on the wafer surface at a certain temperature.
Therefore, the efficiency of the HDP CVD process, i. e. the deposition rate, increases with
increasing DC-bias voltage (cf. equation (2.2)) and thus with increasing DC-bias source-power
for a certain total pressure of the reaction gases in the process chamber. However, the impact
energy of the positive gas ions hitting the wafer surface also increases according to (cf. equation
(2.3)) with increasing DC-bias source-power. In order to avoid undesired excessive damage of
the wafer surface due to the ion bombardment, the maximum DC-bias source-power injected
into the process chamber needs to be limited.
Oxygen O2 and silane SiH4 as reaction gases build up a dielectric SiO2 layer according to

the reaction equation:

SiH4 + 2O2 → SiO2 + 2H2O (2.4)

The additionally injected partly ionized noble gas argon Ar is not comprised in the chemical
reaction for the film formation but also accelerated towards the wafer surface by the DC-bias
potential. The powerful impact of these positively charged Ar ions causes sputtering of the top
layer of the wafer surface which is the actually growing SiO2 film. Hence, a small fraction of
the just chemically bonded SiO2 molecules are removed again from the surface structure by the
introduced energy of the Ar impact [54]. While only a small fraction of the injected argon gas
is ionized and thus available for sputtering, the Deposition-Sputter ratio, especially beneficial
for void-free deposition at comparable low temperatures in case of high aspect ratios for deep
trench structures on the wafer surface, is the crucial setpoint to be adjusted in the HDP CVD
process. The SiO2 film deposition rate and the film removal rate due to Ar sputtering can be
individually controlled according to the dependency of SiO2 deposition on the ion/radical fluxes
controlled by both the SiH4 flow and the RF source-power and the dependency of Ar sputtering
on the total ion bombardment energy (cf. equation (2.3)) controlled by the Ar flow and the
DC-bias as well as RF source-power.
Furthermore, the Ar ions are responsible for the violet color of the burning plasma inside

the process chamber which can be observed through a small porthole. During the ionization
process in the electrical field, electrons in the atomic orbital of argon are excited to a higher
state through the impact of accelerated particles. To regain a lower energetic state, the excited
electrons fall back thereby emitting a photon of a characteristic energy finally causing the violet
color of the HDP [100].
As a consequence of the activation of the reaction gas mixture by means of a RF fied, the re-
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sulting or rather required HDP CVD process temperature i. e. wafer temperature (for additional
thermal activation of the chemical reaction) is comparably low, also allowing for processing of
temperature sensitive substrates like wafers with highly doped or aluminum metalized structures.
While the wafer is heated up during the HDP CVD process mainly due to the ion bombardment
from the plasma induced by the DC-bias, the process relevant temperature of the wafer surface
is limited by helium He gas backside cooling to an adequate value of ~ 400 ◦C (~ 75 ◦C at the
backside of the wafer).
Table 2.1 illustrates typical values of the introduced HDP CVD process parameters.

Parameter Name Unit Value

Pressure mTorr <50
Ionization Rate relative 1%
Temperature ◦C 300–450
RF source MHz <10
RF DC-bias MHz 13.56

Top/Side RF power W ~1000/3000
DC-bias RF power W ~3000–3600

Table 2.1: Introduced HDP CVD Process Parameters [13].

The main characteristics of HDP CVD, relevant for the manufacturing process, are:

1. Void-free film deposition with high aspect ratios at comparably low temperatures of
~ 400 ◦C

2. Reasonable effort to ensure high purity and good quality of deposited films

3. Well defined and reproducible film composition and thickness by control of significant
process parameters

2.3.1 Production Equipment

The HDP CVD production equipment dedicated to the investigation regarding the prediction
of silicon dioxide layer thickness is an Applied Materials (AMAT) Centura HDP CVD main-
frame platform with three out of four possible Ultima HDP CVD process chambers installed to
maintain better accessibility of the central wafer handler robot chamber as shown in figure 2.2
[13]. An opened Ultima HDP CVD process chamber is outlined in more detail in figure 2.3. The
multi-zone tunable inductive coupled plasma sources with the previously described top and side
RF source-power coil generators are located behind the ceramic temperature controlled dome
in the cover plate. The temperature of the ceramic temperature controlled dome is measured
by a calibrated double thermo couple sensor. In a closed production chamber, the side RF
source-power coil generator surrounds the top of the wafer surface outside of the ceramic dome
and the top RF source-power coil generator stays above the initiated plasma centered above
the wafer surface also outside of the ceramic dome. The multi-zone tunable gas injection is
located at the center of the dome and directly below the dome as circularly arranged nozzles.
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The simple symmetrically pumped chamber body contains an Ultima clean gas port to stream
in the mixture of process gases whereas during a cleaning step after the productive process the
clean gas (e. g. nitrogen trifluoride NF3) is passed in via a top nozzle inlet. The cleaning process
prevents excessive coating of the chamber wall due to remaining process residuals. An isolated
ceramic process kit is attached to the chamber body holding the BLUETM electrostatic chuck
on which the wafer is processed at the chamber body center straight below the gas injection
nozzles if the chamber dome is closed. The capacitively coupled DC-bias RF coil generator is
connected directly to the electrostatic chuck which incorporates the He backside cooling [4].

Figure 2.2: AMAT Centura HDP CVD mainframe with Ultima HDP CVD chambers [13].

2.3.2 Process Sequence

For running the HDP CVD process on productive wafers, which are stored as a lot in carriers
within a wafer box for transportation in the cleanroom of the manufacturing line, the wafer
carrier is taken out of the box and put into the loadlock of the AMAT Centura production
equipment. After the pump down of the loadlock, the robot handler transfers the individual
wafer out of the carrier through a slit valve onto jutting lift pins inside of a production ready
process chamber. As soon as the robot handler is moved out of the chamber and the slit valve
is closed, the lift pins retract and the wafer is laid down onto the chuck.
Subsequently the reaction process gases are supplied via calibrated mass flow controllers into

the process chamber through the gas injection centered at the top and the circularly arranged
nozzles at side of the wafer. The gas pressure in the process chamber, measured by a calibrated
Baratron pressure gauge, is minimized and the throttle valve connected to a vacuum pump
below the electrostatic chuck is fully opened. Additionally, the distance between the wafer on
the chuck and the gas injection is fixed where the BLUETM electrostatic chuck achieves an
adjustment accuracy of 25µm.
The chemical vapor deposition usually starts with a short deposition step as preparation

prior to the main deposition step to protect sensitive metal structures on the wafer surface
from degradation by sputtering due to the intensive ion bombardment in the main-deposition
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Figure 2.3: An opened AMAT Ultima HDP CVD chamber [13].

step. Hence, a so called SiO2 liner sub-layer is deposited without application of the DC-bias
source-power [13].

Before the subsequent main deposition step of the silicon dioxide layer can be started, the
plasma strike has to be performed at a lower chamber pressure of ~ 30 mTorr in the absence of
silane and oxygen to start heating the wafer to process temperature. Thus, only Ar gas is present
and the preset top RF source-power is switched on to initiate the ionization avalanche and thus
to strike the plasma between the gas injection and the surface of the wafer. Additionally, the
first process gas O2 is injected into the chamber and adjusted. Now, the He gas is streamed
into the vacuity between wafer and electrostatic chuck while a He flow check is performed to
ensure a reliable He backside cooling of the wafer necessary for a controlled heat up to the
desired process temperature. In the next step SiH4 gas is injected into the process chamber
and all process gas flows (i. e. Ar, O2 & SiH4) are adjusted and stabilized at the process recipe
setpoints together with the wafer temperature via the He cooling. Afterwards, the DC-bias RF
source-power is switched on and ramped up yielding the required DC-bias voltage which controls
the deposition rate of the SiO2 layer formation on the wafer surface. As soon as the duration
of the main deposition step has reached the process recipe setpoint for achieving the required
SiO2 layer thickness, the silane flow is stopped and the DC-bias source-power is ramped down.
Finally, all remaining process gases (i. e. O2 & Ar) as well as the He cooling are switched off
and the process chamber is pumped down via the fully opened throttle valve. Subsequently, the

12



2.3 High Density Plasma Chemical Vapor Deposition

wafer is transferred by the robot handler into the cool down chamber and the process chamber
is ready for the cleaning step.
After cooling down close to ambient temperature, the robot handler finally transfers the

processed wafer back into the carrier within the loadlock. In the meantime, the cleaning step
(using a highly reactive gas NF3) is running to remove process residues from the chamber walls
to avoid excessive buildup.
All equipment are regularly subject to major maintenance activities typically occurring within

an annual or semi-annual time period. During this maintenance the equipment is set offline and
all production chambers are opened, partially disassembled and thoroughly cleaned as well as
controlled or repaired if required. Following the reinstallation and startup of the equipment
various tests are performed on non-productive wafers to readjust the most important equipment
settings including some process parameters (i. e. features) and finally resume manufacturing
of the high product mix within the very small defined process windows including tight control
limits in SM. No preferable or overall optimal specific value exists for these adjusted process
parameters resulting in a natural variation of these process parameters due to that fact that for
economic reasons not all but only broken or heavily degraded spare parts are necessarily changed
during the maintenance resulting in different states of degradation of various other spare parts
of the equipment yielding different value settings of process parameters for these spare parts
depending on their status. Hence, these few adjusted process parameters (even neglecting the
way bigger part of all other just measured but highly interrelated process parameters) show a
high variety of value ranges and distributions but still yielding a target outcome within the same
defined process windows. Even on top of this complexity ever changing recipes including their
individual settings for high mixture SM exacerbate any intended derivation and understanding
of principles of cause and effect of changed process parameters and resulted target variation
for all highly complex SM processes (i. e. especially the superpositioned HDP CVD process).
Whereas for highly complex physical processes it is even for very educated and experienced
process experts only feasible to concurrently adjust some few parameters at the same time and
with it implicating the effects on the final target, a nonlinear multivariate FS method can handle
and analyze a substantial quantity of interrelated input features.

2.3.3 Physical Metrology: Optical Layer Thickness Measurement

As a very essential process, physical metrology of the obtained process results (e. g. thickness of
deposited layers) is performed after each process area to detect irregularities and failures as early
as possible within the process chain. These measurements prevent unnecessary degradation of
production equipment, waste of valuable materials and labor time as well as increase product
quality but at the expense of product cycle time. Due to the sake of an enormous amount of
processed wafers, comprehensive physical metrology (cf. section 2.2) and thus complete pro-
duction monitoring is simply infeasible [90]. Therefore, measurements are only operated for
statistically sampled wafers depending on rules based on the associated logistical specification
of the corresponding lot. In order to ensure highest possible production quality by means of
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statistical process control, the measurement results are continuously monitored by an appro-
priate software tool including statistically calculated control limits and process and/or product
dependent specification limits. Control limit violations trigger remeasurement of the affected
wafers or even the whole lot as well as inspection of the production equipment as appropriate.
In case of confirmed specification limit violations, the faulty wafers are scrapped immediately
and thus excluded from any further processing [66].
The metrological verification of the HDP CVD process result, in terms of deposition of the

silicon dioxide film with a thickness within the allowed tolerance limits close to the target value
of the specific inter-metal dielectric process, is done by an optical film thickness measurement for
each sampled wafer on an Opti-Probe metrology equipment. After each HDP CVD process, there
are several wafers measured for every production lot of the considered product technology type,
at least one wafer for each of the three process chambers of the dedicated production equipment.
The SiO2 layer thickness is measured for each sampled wafer at nine measurement points evenly
distributed over the wafer to avoid local dominations whereupon the mean value calculated from
these measurements result in the average layer thickness of the silicon dioxide layer deposited
onto the wafer. The metrology via optical layer thickness measurement performed by the Opti-
Probe 3290 is very accurate and precise with only minor variations (0.4% accuracy, 0.05%
precision & 0.01% reliability – cf. subsection 5.2.3) [161].
Due to the deposition of silicon dioxide for building up both the underlying pre-deposition

liner and the main-deposition layer resulting in a very homogeneous interface between the two
layers, the optical measurement can only deliver the total thickness of the two-layer stack. For
individual process control the liner thickness is regularly measured after deposition onto a specific
test wafer according to the pre-deposition step of the associated productive recipe.

2.4 Plasma Enhanced Chemical Vapor Deposition

In Plasma Enhanced Chemical Vapor Deposition (PECVD), the reaction gas mixture is acti-
vated by an electrical field at RF of 13.56 MHz capacitively coupled into the process chamber.
Similar to the HDP CVD process, in the RF-field gas molecules are dissociated, radicalized
and energetically excited as well as positively charged by impact ionization through accelerated
free electrons initially generated by collisions of the gas molecules and for sufficiently high field
intensity additionally by extraction from the cathode. The accelerated heavy gas ions are not
fast enough to reach the cathode before the turn-over of the RF field, but enhance the ionization
of the reaction gas through collisions with other gas molecules. For a certain mixture of process
gases, the impact ionization rate in the reaction gas depends on the injected RF-power and the
total gas pressure [45]. As a consequence of the activation of the reaction gas mixture by means
of a RF-plasma, the required process temperature (i. e. wafer temperature) is comparably low in
a range of typically 200 ◦C to 500 ◦C. An important aspect of this technique is the well-defined
and reproducible composition and thickness of the deposited film achievable with reasonable ef-
fort by control of the significant process parameters [55]. The PECVD metal passivation process
comprises the primary deposition of a Silicon Oxide SiO2 base layer onto a metal layer stack
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and the subsequent deposition of a Silicon Nitride Si3N4 cap layer as shown in figure 2.4:

Figure 2.4: Metal Passivation Layer Structure: Silicon Nitride cap layer and Silicon Oxide base
layer deposited in a PECVD process sequence for passivation of the underlying metal
layer stack.

Starting the PECVD process, two wafers are transferred into each of the three twin-chambers
of the production equipment AMAT Producer which is able to concurrently process two wafers
within a single process chamber situated twin-chamber next to each other on identical electrically
heated ceramic chucks. The temperature of both wafers as well as the flow of the process gases
are adjusted to the required recipe set points whereat the latter are supplied by a showerhead
above the wafers. The pressure in the process chamber is controlled by a throttle valve connected
to a vacuum pump. The deposition step of the first PECVD process for depositing the Silicon
Oxide base layer is started by injecting the RF-power into the twin-chamber generating the
required plasma between the showerhead and the surface of the wafer. As soon as the required
process time of this deposition step elapsed, RF-power and all process gases are switched off.
Subsequently, the process chamber is purged and the second PECVD process is started. After
the deposition of the Silicon Nitride cap layer, the process chamber is pumped down again and
both wafers are transferred to a cool down chamber from where they are finally moved back to
the carrier in the loadlock of the equipment.
After the PECVD metal passivation process sequence, several wafers are selected and mea-

sured for every production lot depending on the individual product technology type, at least one
wafer for each of the three process chambers. For each sampled wafer, the thickness of both the
silicon nitride and the silicon oxide layer in the dual-layer metal passivation stack is individually
measured specifically for each basic design type at several measurement points evenly distributed
over the wafer. As an indicator for the quality of each measurement result the goodness of fit is
used. The mean values calculated from these individual measurements are the average thickness
of the Silicon Oxide base and the Silicon Nitride cap layer deposited onto the wafer. Based on
this measured layer thickness, the deposition time for the next lot of wafers of the same design
type is calculated by a R2R controller running for each process chamber in closed loop mode on
the PECVD production equipment.
Compared to the previously described HDP CVD process both deposition processes signifi-

cantly differ in regard to the following aspects:

1. Chambers: All chambers installed on the AMAT Centura process only a single wafer at a
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time compared to the twin-chambers of the AMAT Producer where possible interactions or
even exchange of material between both concurrently processed wafers cannot be excluded.

2. Deposition Sequence: At first, the SiO2 base layer is deposited onto a metal layer stack
followed by the Si3N4 cap layer during the PECVD process on AMAT Producer compared
to the deposition of a single Silicon Oxide layer onto a thin SiO2 liner during the HDP
CVD process on AMAT Centura.

3. Deposited Materials: SiO2 and Si3N4 are successively deposited in the PECVD process
on AMAT Producer compared to pure SiO2 in the HDP CVD process on AMAT Centura.

4. Superposition of deposition and sputtering: The PECVD process on the AMAT Producer
is a conventional deposition process of SiO2 and subsequently Si3N4. In contrast, the HDP
CVD process consists of the superposition of the deposition of SiO2 and the concurrent
sputtering of the deposited SiO2 by Ar at the wafer surface.

Summary: The present chapter introduces the area of VM and accurately describes the ma-
nufacturing processes HDP CVD and PECVD as demonstrative use cases for FS and VM in
SM. This process knowledge is necessary to gain insight into the complexity of the environ-
ment of VM in SM determining the conducted experiments and the achieved results as well
as to understand the significance of the newly invented smart FS algorithm and the developed
advanced VM system based on this new FS method. The following chapter provides essential
fundamentals for these new approaches.
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Principles of Data Mining, Machine Learning, Feature Selection, Support Vector Regression
and Genetic Algorithm will be reviewed together with applicable evaluation criteria for Virtual
Metrology.

3.1 Data Mining and Knowledge Discovery

The common approach of Knowledge Discovery in Databases was adapted and enhanced with
differently defined phases and tasks for industrial application as the CRoss Industrial Standard
Process for Data Mining (CRISP-DM) [20], [28]. The fundamental CRISP-DM phases are
outlined in the following and the VM specific adaption at Infineon is given in subsection 4.2.2.
At first, business understanding is conducted. Afterwards, the iterative core phase is car-

ried out. The core encompasses the three phases data understanding, Data Preparation (DP)
and Modeling. The modeling phase substitutes the DM step of the Knowledge Discovery in
Databases approach. If a suitable model is found, it will be tested and evaluated. Now, a termi-
nal deployment phase is aimed for but in case of unsatisfactory results either the core phase is
conducted again or in the worst case the business understanding phase needs to be reconsidered
[20]. Figure 3.1 illustrates the CRISP-DM model.

Business Understanding

The initial phase of business understanding sharpens the comprehension of the final goal to be
achieved. It is an important step, because the awareness of the exact definition and specification
of the aimed goals will speed up the entire process by focusing on the important actions all the
time. Sometimes CRISP-DM already ends here if the possibilities of Knowledge Discovery do
not meet the expectations of the stakeholders. Negligence of business understanding can lead
to conflicts between stakeholders and Data Miners at the end of the process. Precise monetary
goals expected by the stakeholders are often hard to estimate in advance of the overall process
of Knowledge Discovery and therefore point out the importance of business understanding.

Data Understanding

Data understanding as second phase is the first iterative core phase. Usually the core phases
are executed several times according to Knowledge Discovery in Databases due to new avail-
able knowledge arising from other phases. Here, a detailed overview of available data and the
corresponding characteristics is created. Before selecting any modeling algorithm, data shall be
analyzed unprejudiced. Particular tasks are:
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Data
Understanding

Data
Preparation

Data Mining

DM Core Process

Business
Understanding

Evaluation

Deployment

Figure 3.1: The CRISP-DM model [20]. The wide green arrows emphasize the general DM
sequence while the thin purple arrows indicate necessary checks within the evaluation
phase. Inside the DM core process the red arrows show the cycle of the iterative DM
phases.

• Data availability explores all possible data sources in terms of any valuable information.

• Data quality examines the available data for further usage (e. g. missing data, wrong data).

• Correlation analysis inspects the correlation between any attributes/features for important
characteristics (e. g. mean, variance).

• Cluster analysis studies available data regarding any present clusters to create feature or
instance subsets.

• Exploration verifies or rejects any initially stated hypotheses or expectations.

Data Preparation

The third phase as second part of the core procedure investigates the possibilities to make data
accessible for future modeling. Every algorithm can only produce accurate, robust and reliable
models and predictions if the basis of data, on which it is trained, is of high quality. Noisy data,
missing values and mixed subsets can degrade the accuracy, precision, specificity and sensitivity
of every modeling technique to a level at which it is not acceptable anymore. Therefore, the
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subsequent tasks are essential aspects according to Knowledge Discovery in Databases which
are often underestimated:

• Data Formatting can convert data between logical (binary), nominal (categorical), ordinal
(ranked), interval (numerically ranked) and ratio (numerically ranked on defined scale)
data.

• Data Set Compilation specifies whether a training dataset is recorded from a fixed dataset,
from a dynamic dataset (e. g. increasing by appending new instances) or an adaptive
dataset for a fixed time range (Moving Window (MW)).

• Feature Translation can build up new features by combining or converting existing features.
Also, normalization and standardization are common actions. Moreover, conversion to
different scales, convolution of various features and aggregation of features to new ones
are further actions which can produce improved results.

• Feature Transformation aims to diminish the number of variables by dimensionality re-
duction methods transforming data into other representations to simplify processing or
calculation.

• Instance Selection defines the basic inclusion or exclusion of available data instances. In
addition, missing values can be excluded or replaced (e. g. by means), outliers can also be
included or excluded and the global dataset can be reduced or weighted according to these
considerations.

• Feature Selection separates features containing valuable information from those contribut-
ing mainly noise or no information (e. g. static features). The feature set can be reduced
by expert advice or dedicated algorithms. In the scope of the present thesis a new FS al-
gorithm (cf. section 6.5) is developed to reduce the initial amount of features to overcome
the stated challenges and problems (cf. section 1.1, section 4.1).

Modeling

In the last core phase, different modeling techniques are investigated in terms of applicability. A
huge and steadily growing variety of algorithms is available accompanied by frequent improve-
ments. These algorithms can be classified regarding various characteristics (e. g. heuristic vs.
deterministic). Important tasks are:

• Evaluation of DM algorithms summarizes the requirements (e. g. nominal input data),
compares the advantages and drawbacks and highlights accuracy, robustness and precision.

• Modeling of the selected DM algorithms explores specific boundary conditions and opti-
mizes individual model parameters to avoid overfitting while assuring precise predictions.
DM algorithms can detect and recognize characteristics, structures and patterns included
in available data which are hidden for human recognition and overlaid by physical or
statistical noise.
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• Combination of the selected DM algorithms supplies eventually additional benefit by ex-
ploitation of the individual advantages.

Evaluation

In the fifth phase, the core process and the initially sharpened Business Understanding are
evaluated. It differs from the testing of specific DM algorithms as it is not restricted to certain
goals (e. g. accuracy) but evaluates the applicability of the complete system. Sometimes, goals
defined in the first phase or the DM process need to be adjusted or the entire approach can turn
out to be infeasible for the intended goals. Important tasks of this phase are:

• Final tests of the elaborated DM system are performed with so far unused representative
datasets. Depending on the DM technique different test methods are appropriate (e. g.
ROCcurves, Recall-Precision, numeric measurements (cf. section 3.6)).

• The initially stated goals are checked and the DM core process is reviewed and executed
again in case of expected improvements/enhancements.

• Definition of next steps to deploy the extracted knowledge.

Deployment

The last phase focuses on the deployment of the developed CRISP-DM system either as software
integrated into another system or as stand-alone application for future use. The following tasks
are essential:

• Creation of a deployment plan.

• Compilation of a final report and accomplishment of a project review.

3.2 Machine Learning

ML needs to deal with data changing over a period of time while still preserving prediction
performance. Hence, incrementally growing datasets and/or MW datasets can be used for
model training. Another well-known challenge for ML is the overfitting-avoidance bias and bias-
variance trade-off between overfitting (i. e. the target function perfectly fits to the characteristics
in the training dataset) and generalization (i. e. deviations of the target function are tolerated to
ensure prediction with sufficient accuracy also for unknown but similar future instances). Also,
the demand for computational efficient algorithms has to be addressed in the field of ML [175],
[52].
On the one hand, ML techniques can be categorized into Supervised, Semi-Supervised and

Unsupervised Learning. On the other hand, ML methods are often classified as Cluster Analysis,
Classification and Regression algorithms. The latter is used here and detailed in the following.
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3.2.1 Methodology

Supervised Learning defines the ML task to find a useful function or pattern in labeled data.
Hence, the ML method can be trained due to a rewarding of the method whether the label was
predicted correctly or not. On the other hand, unsupervised learning attempts to find a not
obvious function or pattern in unlabeled data whereas the solution cannot be evaluated due to
the lack of labels [52].

Cluster Analysis

Cluster Analysis is an unsupervised learning approach to group objects/instances into subsets or
clusters. Similar objects shall be more closely related to each other. Instances are characterized
by its variables/features or relation to others. Furthermore, clusters can be ranked hierarchically.
The choice of distance or dissimilarity measure is an important and essential task during cluster
analysis. Analogies are present to the definition of a loss function for prediction in supervised
learning [52].

Classification

Classification is a learning approach to predict whether the actual instance belongs to one of two
or more classes based on characteristics of all features. The prediction result can be manifold
in case of multi-class prediction and the evaluation of the result is binary and either true if the
predicted class was correct or false if it was incorrect. The success rate of a technique can be
evaluated in various ways (e. g. confusion matrix). Input data depends on the algorithm but can
be of any format (logical, nominal, ordinal, interval, ratio) or transformed into an appropriate
format. Some methods extend the classification to a regression approach by discretizing the
target classes into an almost continuous multi target range [175].

Regression

Regression is also a supervised learning approach whereas the outcome is a numeric value rather
than a category. Just as classification the prediction is based on characteristics of all features.
Similarly, input data depend on the algorithm and can be of any format or being transformed as
for classification. The predicted target can be multidimensional [175] and the outcome usually
defines a continuous range of values. For instance, the prediction target of the present thesis
(the deposited Layer Thickness) takes such continuous as well as positive values.

3.2.2 Regression Techniques

A brief overview of several ML regression techniques is provided below. M5’ decision trees and
Back Propagation Neural Networks (BPNN) are investigated in terms of applicability for VM
and used at Infineon for comparison of the prediction accuracy of SVR [87] which is described
in more detail in section 3.4.
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Decision Tree

The decision tree learning technique can be used for classification and regression. Initially a tree
is grown where at each node from the root to the leaves a decision or split is made. At each node
all remaining data are divided into two or more sub-partitions according to the most significant
differentiator of any feature. In general, the feature stays in the global feature set and also
several splits could be performed with respect to the same feature until a leaf is reached. The
growing of the tree stops if any defined stop criterion is met (e.g. sufficient prediction accuracy
by remaining instances in a leaf or minimal number of remaining instances (data) in a leaf).
As second major part the built tree is pruned and optimized according to defined criteria to
minimize the final decision tree. CART, ID3 and C4.5 are popular examples. M5’ is another
CART-based model tree. The basic approach is to minimize the standard deviation at each
split. In each leaf a linear regression is performed to obtain a smooth regression [171].

Neural Network

Artificial Neural Networks (i. e. NNs) are composed of an interconnected net of nodes (artificial
neurons) inspired by biological NN. Basically, a layer of input neurons represent the input
variables and a layer of output neurons represent the target variables. In between hidden layers
can be established. Each node (neuron) of a hidden or output layer can use an arbitrary
amount of input variables from the previous layer (input or hidden layer). The global function
approximated by the NN is a composition of other functions inside the neurons of the hidden
layers. Usually, neurons of the hidden layer consist of an activation function and a transfer
function. The former decides if the neuron is active (used) and its result is used for further
computation. The latter computes the output of the neuron. Feed forward NN describes the
approach to prohibit feedback to neurons of the same or previous layer. A BPNN is trained by
starting at the target proceeding layer by layer backwards to the first hidden layer. Many NN
are based on the Levenberg-Marquardt algorithm [11], [52].

Support Vector Regression

SVR evolved as an extension of Support Vector Machine (SVM). SVM is an instance-based
ML method. It aims to find a small number of so-called support vectors which are important
boundary instances in the dataset. The approximated discriminant function aims to separate
the support vectors and to maximize the margin in between [175]. A detailed description of
SVR is given in section 3.4.

3.3 Feature Selection

FS is a crucial step in DP within the DM core process. Elimination of noisy data and redundant
or irrelevant features (i. e. variables) yields several important advantages:

1. Improvement of prediction performance and accuracy [48], [81].
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2. Speed-up and cost efficiency of a prediction system due to less computational overhead
[48], [150], [72].

3. Fundamental knowledge discovery if only features remain that contain the essential infor-
mation about the current application [48], [72].

4. Facilitates or enables data visualization since hundreds to thousands and even more fea-
tures are not manageable. Nevertheless, conclusions have to be drawn carefully since
missing features might lead to wrong inference.

The process of FS is often described as heuristic state space search where each state is modeled
by a feature subset [83]. The entire state space is huge and the problem to find the best state
is combinatorial an intractable, NP-hard problem which also applies to the problem of finding
the feature subset that generates the best result with highest prediction accuracy for a specified
induction technique [150], [115], [49]. Furthermore, according to Occam’s razor, a smaller feature
subset is favored in a future VM prediction system to achieve simplicity as well as scalability
and minimize necessary data traffic, database storage and computational effort.
The challenge of feature selection comprises one of the two goals which are usually not coin-

cident and compete with each other as direct objective optimization [48], [43]:

1. Find a feature subset that minimizes the prediction error.

2. Minimize the number of features for a tolerated prediction error.

Basically, the overall process of FS starts with the generation of a feature subset. In terms
of Stepwise Selection (SS) or backward elimination a single feature is added to an empty pool
or removed from the entire feature pool, respectively. Otherwise, an initial feature subset is
generated by a defined event. Subsequently, the performance of the feature subset for a chosen
ML technique is evaluated by a defined evaluation method. If one or several stopping criteria are
met the feature subset will be fixed for subsequent training and prediction. A final validation
of the result concludes the approach [150].
FS methods can be divided into three classes:

1. Filters: The process of FS is performed at first and independent of the succeeding ML
method. As a preprocessing step, features are selected by a defined scoring function which
is usually independent of the performance measurement of the later learning algorithm.

2. Wrappers: A wrapper approach incorporates the ML method into the DM process. The
learning algorithm is trained on various feature subsets. The optimization and FS is
assessed with the final evaluation criteria.

3. Embedded Methods: In contrast to wrappers an embedded method involves the FS in
the training process [48].
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3.3.1 Filters

A filter approach ranks features by a scoring function according to general characteristics prior
to any prediction. It is independent from the subsequent prediction technique [150]. Filters work
well for individual and independent variables. Thus, considering independence or orthogonality
assumptions, a filter may be an optimal choice. Advantages of filters are simplicity, scalability to
very high dimensional datasets and good empirical success [139]. Fairly simple scoring functions
are computational efficient and independent of the prediction algorithm (i. e. classification or
regression). Filters are quite robust against overfitting due to their statistical and non-learning
nature with less introduced bias [52], [48]. A mayor disadvantage is the complete disjunction of
the filter from the performance of the following prediction algorithm [177]. The selected feature
subset is not linked to the prediction technique which can indeed learn underlying character-
istics in addition to independent statistical analysis [81]. Another drawback is the linear filter
approach in case of a nonlinear environment. Also, most filters are univariate resulting in worse
performance compared to other FS techniques if feature dependencies are present in the dataset
[139]. A common approach is to apply a filter prior to a wrapper to overcome complexity and
reduce the initial feature set for the wrapper [48]. According to [48] examples of filter approaches
are:

• Fisher’s Linear Discriminant Analysis (LDA)

• The Pearson Correlation Coefficient

• The RELIEF Algorithm (cf. section 4.3)

• Individual Feature Scoring

• Mutual Information between each feature and the target

3.3.2 Wrappers

A wrapper approach comprises the ML method as black box and ’wraps’ the deterministic or
randomized search method around the prediction algorithm. The prediction performance of the
learning machine is assessed for various feature subsets as input. Hence, it searches for the best
suited feature subset for this specific ML method. It is not necessarily the overall best feature
subset and other learning techniques might be optimal for other subsets [48], [81], [115]. Incor-
poration of the ML method as black box makes wrappers more universal in their application.
Their advantages are first of all the interaction between the prediction algorithm and the search
for the best feature subset and as second the incorporation of hidden interdependencies between
various features [139], [177] and as third the often superior prediction performance [72]. As pos-
sible drawbacks to consider, wrappers sometimes tend to be computational expensive because
they need to retrain the model for each feature subset and they have a higher susceptibility to
overfit the model to the training dataset [48], [72], [81], [115], [139]. In general and according to
[139], several search strategies exist:
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1. Greedy Search Strategies

a) Forward/Stepwise Selection: Features are added stepwise or in a bunch to the
initially empty feature subset.

b) Backward Elimination: Features are removed stepwise or in a bunch from the
initially complete feature set.

c) Hill-Climbing: A combination of forward selection and backward elimination to
find an optimum.

2. Advanced Search Strategies

a) Best First: The most promising feature (e. g. as result from a filter/feature ranking
approach) is added to the final feature subset. Until a defined threshold is met more
promising features are added. The final feature subset is evaluated and inherited if
it yields a better prediction performance as the initial feature subset [81].

b) Branch-and-Bound: Like a tree, the search space is explored in the direction of
all features with stepwise increasing the number of features (branch). If the explored
branch does not meet a certain threshold after some branches are made, the failing
branch is cut off and will not be considered anymore (bound) [121].

c) Simulated Annealing: Inspired from material science, the method optimizes the
feature subset by slowly decreasing (cooling) the probability to accept other solu-
tions which degrade the prediction performance [35]. This and the following three
techniques are metaheuristic algorithms not guaranteeing the optimal solution but
providing a universal search with few or no assumptions.

d) Genetic Algorithm: The features are decoded as binary vector. Applying muta-
tion and crossover operations to the actual binary feature representation generates
different feature subsets. Starting with an initial population, the technique aims to
optimize the binary represented feature subset in each generation by inheriting the
fittest features for populating the next generation by the stated operations [117], [144]
(cf. section 3.5 & section 6.4). Compared to simulated annealing GAs evaluate more
than one candidate in each generation and are stated to perform equal or slightly bet-
ter if more time is available (slow starter) and slightly inferior vice versa (simulated
annealing as quick starter) [109].

e) Particle Swarm Optimization: Inspired by flock of birds, the method optimizes
a moving population of candidate solutions (i. e. feature subsets) around the search
space along position and velocity vectors. The candidates do not compete as in GA
but cooperate to find the best solution. Each contributing candidate is constantly
influenced by its individual and the global swarm best position and speed. Similar to
simulated annealing the method initially focuses on exploration for the area around
the best solution and later exploitation and optimization of this solution [17], [7],
[73].

25



3 Fundamentals

f) Ant Colony Optimization: Inspired by ant colonies, the technique randomly op-
timizes the path through a graph reinforcing already successfully traveled trails. Be-
cause the candidates (i. e. ants) are influencing each other but are also eliminated
after each iteration, this methods incorporates characteristics of both GA and particle
swarm optimization [17], [32].

3.3.3 Embedded Methods

Embedded methods are hybrid models which incorporate FS into the training while still using the
ML method to evaluate the prediction performance. They are more efficient as the computational
effort is reduced if FS is included in the training due to smaller feature subsets. In addition to
the model evaluation, a large number of features is penalized und thus faster excluded [48]. The
advantage of embedded methods is reduced computational costs compared to wrapper methods
[139] with SVR RFE as an example [108].

3.3.4 Peculiarities of Feature Selection

Various characteristics of FS are affected in the context of the present thesis and subsequently
considered in more detail.

Introducing Artificial Features

Motivated from the previous section about relevance of features and instances, a further eval-
uation criterion for ML techniques is added which determines the quality of features and the
value-add of these for the entire prediction. Adding enough irrelevant und artificial features
differently distributed, any subset or only a feature for eventually just some instances will lead
to a hypothesis with high predictive accuracy for at least a fraction of the validation set. Hence,
any statistical induction method can explain anything if just enough irrelevant and differently
distributed features are available in the Dataset (DS) producing many different feature subsets
whereof all of these subsets or single features are used to learn a specific characteristic of the
prediction target [83] also known as "If enough data is collected, anything may be proven by
statistical methods" [41]. Using a no-information DS with only random variables, it is shown
that already 100 artificially introduced features are enough to improve the accuracy significantly
[83]. Also, the problem of overfitting is closely connected to features containing no information
and is discussed in detail in the next section.
Hence, artificial features are created and added to the given DS and serve as comparison

for irrelevant features to exclude the latter from the feature subset. Various approaches were
investigated with Gaussian distributed [10] and risk assessed [153] artificial features as well as
non-parametric variants [165]. A combination of the FOCUS filter technique and ID3 was shown
to outperform the FRINGE and basic ID3 algorithms when artificial features were added for
performance comparison [1]. Based on statistical analysis, the RELIEF algorithm was shown to
be able to deal with noise and interactions between features [78].
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Bias-Variance-Tradeoff, Overfitting & Underfitting

In ML a central aspect is the assessment of an induction technique by its results and the further
development of the learning method depending on the outcome of the prediction. ROCcurves
or confusion matrices are popular criteria to evaluate classification methods, whereas the pre-
diction error as MAE, RMSE (cf. section 3.6) or sum of squared error are common measures to
investigate a trained model for regression [11], [175].

In order to ensure a generalized model for future predictions the problem of overfitting/
underfitting and the bias-variance-tradeoff need to be considered. Overfitting describes the
effect of an induction technique to construct a function which does not learn the real, underlying
pattern in the training DS. Instead, specific values in the training DS are extremely weighted
or even memorized by the algorithm resulting in a falsified statistical model with excellent
prediction accuracy on training data and poor prediction performance on validation or test
data. Hence, a small training error due to an overfitted model and a high validation error
are observable and occur in combination with small bias and high variance typical for flexible
models which can be fitted very well to the given DS. A reduction of features, more instances
within the training DS and increasing the regularization parameter are options to deal with
this phenomenon. The induction algorithm might also almost be unable to infer the basic
characteristics of the provided input and therefore it builds a generalized model which is too
independent from the input DS (i. e. underfitting). Thus, low variance and high bias lead to
similar predictions for all instances whereas a small difference exists between error on the training
set and on the validation set because both are considerably high. Accordingly to overfitting,
solutions to encounter high bias can be to include more features, to add polynomial features or to
decrease the regularization parameter [52], [166]. Experimental results indicate that overfitting
mainly occurs if the amount of available training instances is small. In addition to a validation
set, a separate test set is holdout of the entire optimization process to estimate the real prediction
performance of the final model. Although the validation set is used to validate the model during
the learning process the algorithm might tend to fit the model to the validation set. Therefore
a final test set with unseen data in the entire process is necessary to get a fair approximation of
the prediction performance [83].

In a learning curve the total error can be drawn against the model complexity which is
often coherent with a high number of features as shown in figure 3.2. During the optimization
process to find the optimum model complexity and to avoid overfitting and underfitting, the
total error has to be minimized to an optimum as indicated by the dashed line. The empirical
risk decreases with increasing model complexity and a higher number of data available similar to
the red line displaying the bias. Analogous to the total error the regularized risk increases again
with increasing model complexity. Finally, the variance also increases with model complexity
shown in blue.
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Figure 3.2: Bias-Variance-Tradeoff. Error is plotted against model complexity with an optimum
in the center where the error is minimized and underfitting and overfitting are avoided
[166].

Historical Feature Selection

An overview of FS methods is given in [145] with a chronological literature review and definition
of the two basic approaches of forward selection and backward elimination. The first introduction
of a wrapper algorithm combined with the claim to incorporate the induction algorithm into the
process of FS was developed together with first definitions of relevance of features in 1994 [68].
The previously described problem of relevance of features and instances was initially discussed in
detail in 1997 [12]. FS techniques are shown to improve the prediction performance in a variety of
situations far beyond the aspect of presence of irrelevant features [12]. Comprehensive work was
done to describe the FS wrapper approach for feature subset selection [81]. An early overview
of FS algorithms as book [103] and the use of GA as search method in FS [177] were published
in 1998. A correlation-based FS for ML was developed in a PhD thesis in 1999 [50]. In 2001
another book outlined approaches for FS [33]. Improvements by FS with SVM compared to other
methods were shown in 2001 [173]. One year later, a book on subset selection in regression was
written [115]. In 2003, a comprehensive summary and description of various features selection
methods was composed with highest impact in the research of FS [48]. Subsequently, many
enhancements were achieved in specific fields of research of FS with those related to GA and
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SVM further highlighted in section 4.3.

3.4 Support Vector Regression

The classification with SVM as a supervised ML method can be extended to a linearized regres-
sion method for function estimation, i. e. SVR [151]. Applying a kernel function enables SVR to
deal with nonlinear input data. SVR is based on Structural Risk Minimization [168] and finds
a trade-off between model complexity and fitting the algorithm to provided data. The general
idea is to search in the input dimensions for the most important vectors which best define a
hyperplane between classes to be distinguished, the support vectors. A soft margin introduces
a concept to deal with outliers. Using the Lagrangian, the saddle point yields the solution for
optimization of the minimizing and maximizing dual problem [151].

3.4.1 Primal Optimization

In supervised learning theory we are given pairs of instances (xi, yi, i ∈ N) from an input space
x ∈ X (e. g. X = Rd) and an output space y ∈ Y . For ε-SVR (i. e. epsilon-insensitive-SVR) the
aim is to estimate a function f(x) with at most ε deviation from the target yi for any input xi
[167].
Starting with the linear function for a separating hyperplane as given in equation (3.1),

f(x) = 〈w, x〉+ b with w ∈ X, b ∈ R (3.1)

the dot product between the weight matrix w and input data x as normal vectors is computed
and added to the offset b based on a linear equation. To receive a flat function the margin 1

‖w‖
around the hyperplane has to be maximized. So, the initial convex optimization problem is
written as follows in equation (3.2) [151].

Minimize 1
2 ‖w‖

2

subject to
{
yi − 〈w, xi〉 − b ≤ ε
〈w, xi〉+ b− yi ≤ ε

(3.2)

To prevent overfitting, the ε-insensitive loss function defines an ε-tube (cf. figure 3.3-a) around
the plane where all support vectors are considered to be equal [151]. The introduction of slack
variables ξi, ξ∗i as a soft margin concept (cf. figure 3.3-b) provides the opportunity to overcome
the problem of otherwise infeasible constraints such as dealing with outliers. This is applied to
SVM [9], [27] and is formulated in equation (3.3) [151].

Minimize 1
2 ‖w‖

2 + C
l∑

i=1
(ξi + ξ∗i )

subject to


yi − 〈w, xi〉 − b ≤ ε+ ξi

〈w, xi〉+ b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

(3.3)
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The cost factor C in equation (3.3) penalizes outliers for all l instances in N by setting
the trade-off between tolerated deviations larger than ε (overfitting) and flatness of function f
(generalization). Various types of loss functions exist. The used ε-insensitive loss function |ξ|ε
is defined in equation (3.4) [52].

|ξ|ε :=
{

0 if |ξ| ≤ ε
|ξ| − ε otherwise

(3.4)

Figure 3.3: SVR Soft Margin: (a) ε-insensitive loss function [151], (b) Margin of ε-tube, support
vectors and outliers [2].

3.4.2 Dual Optimization

The primal function f can be extended to a dual function by introducing the Lagrangian for
the constraints. Thus, the saddle point gives the solution for optimization of the problem. The
Lagrangian Multipliers ηi, η∗i , αi, α∗i are maximized while the primal function with respect to the
weight w is minimized. The Lagrangian function L results as in equation (3.5) [151].

L :=1
2 ‖w‖

2 + C
l∑

i=1
(ξi + ξ∗i )−

l∑
i=1

(ηiξi + η∗i ξ
∗
i )

−
l∑

i=1
αi(ε+ ξi − yi + 〈w, xi〉+ b)

−
l∑

i=1
α∗i (ε+ ξ∗i + yi − 〈w, xi〉 − b)

(3.5)

The Lagrangian Multipliers need to satisfy the positivity constraint in equation (3.6).

η
(∗)
i , α

(∗)
i ≥ 0 (3.6)

30



3.4 Support Vector Regression

The saddle point condition ensures the optimality and the partial derivatives of the Lagrangian
function L with respect to the primal variables (w, b, ξi, ξ∗i ) equals to zero as given in equations
(3.7)–(3.9) [151].

δbL =
l∑

i=1
(α∗i − αi) = 0 (3.7)

δwL = w −
l∑

i=1
(αi − α∗i )xi = 0 (3.8)

δ
ξ

(∗)
i

L = C − α(∗)
i − η

(∗)
i = 0 (3.9)

Now the equations (3.7)–(3.9) can be substituted into equation (3.5) to obtain the dual opti-
mization problem in equation (3.10) [151].

Maximize

{
−1

2
l∑

i,j=1
(αi − α∗i )(αj − α∗j ) 〈xi, xj〉 − ε

l∑
i=1

(αi + α∗i ) +
l∑

i=1
yi(αi − α∗i )

subject to

 (i)
l∑

i=1
(αi − α∗i ) = 0

(ii) αi, α
∗
i ∈ [0, C]

(3.10)
Substitution of w according to equation (3.8) into function (3.1) for a separating hyperplane

yields the so-called support vector expansion (3.11) because w can be converted into a linear
combination of xi [151].

w =
l∑

i=1
(αi − α∗i )xi

f(x) =
l∑

i=1
(αi − α∗i ) 〈xi, x〉+ b

(3.11)

Hence, it is important to note that the complexity of a function represented by its support
vectors does not depend on the input dimension X but only on the number of support vectors.
Even in case of evaluating f , it is not necessary to calculate w directly. The entire algorithm
can be computed as dot products between data motivating the usage of kernel functions to
encounter nonlinear input data. The offset b of the hyperplane to the origin can be computed
using the Karush-Kuhn-Tucker conditions. From these conditions it can be derived that for all
input variables inside the ε-tube the Lagrange Multipliers αi, α∗i are zero and all vectors for
which the coefficients (αi, α∗i ) do not vanish are support vectors [151].
The hyperparameter C of the SVR model sets the boundary for all possible αi, α∗i , and thus

defines how strong vectors outside the ε-tube are penalized.

3.4.3 Kernel Function

In order to allow SVR to deal with nonlinear input kernels are applied as a commonly used
concept for mapping the input space X into a feature space F . Various kernel functions Φ :
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X → F exist [167]. The kernel function k is only computed between the input data x as given
in equation (3.12) [52].

〈xi, xj〉 → 〈k(xi), k(xj)〉 = k(xi, xj) (3.12)

Thus, an important advantage of SVR is a nonlinear extension via kernels which does not
influence the computing performance [151].

3.5 Genetic Algorithm

GAs, as introduced in subsection 3.3.2 as possible wrapper approach for FS, are evolutionary
algorithms which derive their behavior from natural (biological) evolution. The search and op-
timization heuristic optimizes the solution using operations known from evolving population
genetics. In general, an iterative GA creates a huge population of individual candidate solutions
for many generations of the evolution to find the best individual which, in the present investiga-
tion, yields the best feature subset. Individuals are all spawned single possible solutions of the
entire population whereas in contrast candidates are created within a generation as the possible
parents for the next generation. Nevertheless, the terms individuals and candidates are often
used interchangeably. For each generation, the best candidates from the previous generation
are inherited to form an elite available for further evolution. From these elite candidates of the
previous generation, new individuals are created in the current generation by the GA operations
Mutation and Crossover thus reproducing these natural processes. Finally, these candidates are
evaluated by a fitness function to find an optimum of the heuristic search and the best candi-
dates are then inherited for the next generation again. The evolution of the GA starts with a
chosen number of generations and the initial population of individuals can either be selected
randomly or be seeded if a solution is expected in a specific range. As historically the genome
of each individual is encoded as bit string with enabled or disabled genes and is altered and
evaluated by the GA operations, nowadays the concept of a GA is mapped to a wide variety of
optimization problems [117], [144].
Before listing an overall GA (cf. algorithm 1), the GA operations can be summarized as

follows:

1. Mutation: Randomly flip bits on the encoding bit string representing the specific com-
bination of characteristics of any individual (e. g. DNA).

2. Crossover: Flip all remaining bits to one end from a random location on the bit string.

3. Selection: Evaluate the initially defined fitness function for each candidate and select the
best individuals.

4. Inheritance: Set the best individuals as parents for the next generation and inherit them
to the next generation.
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Algorithm 1: General sequence of a Genetic Algorithm
Data: Data for the problem to be optimized

1 Define Fitness function;
2 Create Chromosome as bit string from characteristics of population;
3 Create First generation from initial population;
4 while number of generations or threshold of fitness function is not reached do
5 Crossover: Flip all genes to one end from a random location on the chromosome;
6 Mutation: Flip random genes on the chromosome;
7 Selection: Calculate the fitness function for each candidate and select the best

individuals;
8 Inheritance: Inherit from the best individuals as parents to the next generation;
9 end
Result: Best individual with regard to the fitness function

3.6 Evaluation Criteria

Many techniques exist to evaluate the outcome of ML algorithms whereas Recall-Precision,
confusion matrix and ROCcurves are typical for classification and Mean Absolute Error (MAE),
Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) are basic evaluation criteria
for regression. For comparison reasons in terms of scale-independency the Coefficient of Variation
of the RMSE (CV(RMSE)) is used in the present thesis. In addition to measure metrics like the
precision, accuracy, specificity and sensitivity, it is expedient to estimate the goodness of fit or
rather the explanatory power of the built model for which the Coefficient of Determination (R2)
is an appropriate measure.

3.6.1 Accuracy

The prediction performance in terms of accuracy is assessed by the following error measurements.

Mean Absolute Error

A basic error measurement is defined by the MAE where the absolute residuals |ε| as difference
between predicted target values ŷ and real target values y (i. e. ε := ŷ− y) are summarized and
scaled to n:

MAE = 1
n

n∑
i=1
|ε| (3.13)

Root Mean Squared Error

The performance of the used algorithms is evaluated by the RMSE. An advantage of RMSE as it
implies a stronger focus on major deviations from the target compared to the MAE. Especially
the ability of VM to detect crucial outliers should be increased to avoid further processing of
affected (scrap) wafers. All residuals ε are at first squared, then summarized and divided by the
total number of instances n. Finally, the RMSE is calculated as square root from the MSE:
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RMSE =

√√√√√ n∑
i=1

ε2

n
(3.14)

Coefficient of Variation

The CV(RMSE) is introduced to provide a scale-independent value to enable overall compara-
bility. The RMSE is normalized to the mean of all target values ȳ:

CV (RMSE) = RMSE

ȳ
(3.15)

3.6.2 Model Fit

The Coefficient of Determination (R2) indicates how well the prediction model fits to observed
data [16], [114]. It is a goodness of fit based on the empiric quadratic coefficient of correlation.
Thus, R2 is most general defined as:

R2 ≡ 1−

n∑
i=1

(ŷi − yi)2

n∑
i=1

(yi − ȳ)2
(3.16)

Under certain conditions the empiric variance of the observed values equals the empiric sum
of the predicted values and the residuals:

n∑
i=1

(yi − ȳ)2 =
n∑
i=1

(ŷi − ȳ)2 +
n∑
i=1

(ŷi − yi)2 (3.17)

Holding these conditions lead to 0 ≤ R2 ≤ 1 in equation (3.18).

R2 =

n∑
i=1

(ŷi − ȳ)2

n∑
i=1

(yi − ȳ)2
(3.18)

The higher the value of R2 the higher the adaption of the trained model to the provided
training dataset. For a value of 1 the model explains all the variance represented by data
whereas a value of 0 means a prediction of the mean independent of any variable [37].
Some basic assumptions need to be considered in terms of applicability restrictions of R2:

1. The coefficient of determination represents the goodness of a linear model fitted to data.

2. One the one hand a huge number of any available regressor, even without additional
information, may cause a higher score of the R2 whereas on the other hand a reduction
of noisy and distracting regressors may also improve the result. Hence, to use R2 as a
meaningful evaluation criterion it should be aimed to significantly reduce the features to
a minimal subset.
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3. Finally, the target value is required to be the same for all compared models which indeed
applies in the current approach [37].

High prediction accuracy in the process area of CVD was achieved by nonlinear ML methods
(e. g. SVR with kernels) outperforming linear regression methods [128]. By fitting nonlinear
functions to data also negative values for R2 can be obtained [14] in contrast to equations (3.17)
& (3.18).

3.6.3 Reliability

Sensitivity and specificity are common evaluation criteria to assess correct predictions for a
binary test usually performed in classification. The sensitivity or so-called recall/true-positive-
rate is defined in equation (3.19) as ratio of all correct predictions of positive test outcomes out
of all positive test outcomes. In the scope of the present thesis and for regressions of continuous
values, the sensitivity yields the rate of the correctly predicted outliers out of all outliers. In
case of no available outliers, no value was assigned. Accordingly the specificity or so-called
true-negative-rate is defined in equation (3.20) as ratio of all correct predictions of negative test
outcomes out of all negative test outcomes referred as ’Non-Outliers’.

Sensitivity =
∑
Cor. Pred.Outliers∑

All Outliers
= TruePos. (TP )
TruePos. (TP ) + FalseNeg. (FN) (3.19)

Specificity =
∑
Cor. Pred.Non-Outliers∑

All Non-Outliers = TrueNeg. (TN)
False Pos. (FP ) + TrueNeg. (TN) (3.20)

Summary: Following the required knowledge about SM and the complex HDP CVD process
itself, the inevitable fundamentals of DM, ML, FS, SVR, GA and relevant evaluation criteria are
embraced. The next chapter further specifies the introduced problems and presents a detailed
review of the current state of the art emphasizing the enormous challenge to develop VM.
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After introducing a detailed overview of Semiconductor Manufacturing processes and theoretical
fundamentals essential for the development of smart Feature Selection to enable advanced Virtual
Metrology, this chapter describes the state of the art of Feature Selection for Virtual Metrology,
Virtual Metrology and Feature Selection themselves as well as prerequisites to enable advanced
Virtual Metrology and smart Feature Selection.

4.1 Feature Selection for Virtual Metrology

The briefly stated challenges and problems (cf. section 1.1) for corporate-wide and advanced
VM are derived from state of the art publications (cf. subsection 4.1.2) as well as previously
performed work. These publications focusing on FS for VM are highlighted and discussed in
order to emphasize the need for smart FS for advanced VM.

4.1.1 Challenges and Problems

The CRISP-DM approach (cf. section 3.1) is adapted to overcome the actual difficulties to
consider and investigate only specific ML prediction methods and no further DP still yielding
limited success. Since VM evolved as a major research area in SM during the last decade
major effort is made to evaluate, enhance, adapt and optimize plenty of learning and regression
techniques to finally achieve highly accurate predictions and to detect as many outliers as possible
(cf. section 4.2). Nevertheless and in spite of partially quite successful implementations including
reasonable schemes to deploy VM fab-wide, an advanced VM system solving all of the persistent
problems could not be developed so far. As the challenges are mainly accepted by physicists,
mathematicians and engineers with limited knowledge or experience in the area of DM and ML,
so far no solution is found considering all the tasks and the full potential of DM and knowledge
discovery. Thus, CRISP-DM is adapted to tap the full potential and to identify the remaining
true challenges to implement corporate-wide VM.

Challenge 1: Business Understanding & Efficiency

The highly demanding competition in the SM industry requires to use the developed VM ap-
plication in all suitable process areas and for the entire equipment variety as soon as possible
in order to mandatorily maximize the return on invest (cf. appendix A.2). During CRISP-DM
business understanding the entanglement of economic realization (cf. subsection 5.1.1) and
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technical challenges is elaborated. Regular iterative meetings including stakeholders and pro-
cess experts are necessary to harmonize investment expectations, technical feasibilities and DM
possibilities. This economical and technical challenge requires a generic VM approach which can
be transferred and deployed without major additional effort. Hence, to achieve highest accuracy
and reliability the approach of equipment specific FS and model optimization is required to run
fully automated. While the adaption of statistical regression models (including model parameter
optimization) is already available (cf. section 4.2), no FS techniques to corporate-wide auto-
matically reveal only the crucial process parameters and to neglect noisy information has been
presented so far (cf. subsection 4.1.2). Thus, the SM industry is still struggling to efficiently
develop and implement automated fab-wide VM.

Challenge 2: Data Understanding & Scalability

In the area of logic circuit SM a variety of technologies, thousands of different basic types and
numerous products are defined by the specific combination of available processes and the result-
ing multifaceted layer structure on the wafer. All these products are manufactured with many
different operations and recipes which can be further subdivided into more specific logistical
granularities. Finally, every wafer can be processed on a wide variety of manufacturing equip-
ment and tools with some additional customized add-ons from various equipment manufacturers.
In the context of data understanding as first iterative CRISP-DM core process, several topics
related to data availability have to be considered. The huge manufacturing complexity empha-
sizes the enormous challenge to be able to handle data traffic, data storage and computational
effort for many thousands of ML models for these logistical granularities all over the fab. In
order to supervise, further enhance and develop VM, an obsolete prediction model still has to
be kept and stored for several months up to some years since degradation of prediction perfor-
mance and model behavior are mandatory to track. In case of deviating prediction performance
in terms of accuracy or reliability, all actual models as well as predecessors need to be available
for exhaustive inspection and drill down to find the root cause. All models have to be stored for
deeper analysis as well as to reproduce any occurring error to fix possible bugs. Furthermore,
the maintainability of a VM system of this scope with exhaustive usage of hundreds to thou-
sands of equipment variables is infeasible since these equipment parameters can be constantly
changed, recalculated, removed or new ones may be added by the process engineers. Thus, for
the implementation and deployment of corporate-wide VM it is inevitable to reduce the amount
of data storage, the accompanying massive data transaction, the immense computational work
as well as the enormous maintenance effort. Hence, the development of a smart FS algorithm
minimizing the number of input variables and concurrently maximizing the prediction perfor-
mance in terms of accuracy and reliability appears to be imperatively necessary to overcome
these obstacles and enabling the implementation of advanced VM.
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Challenge 3: Data Preparation & Knowledge Discovery

The pure application and adaption of various ML techniques in fact can yield satisfactory re-
sults to detect outliers and to predict the real metrology with sufficient accuracy whereas time-
consuming VM development and adaption processes are necessary including involvement of
highly educated and expensive process experts from different manufacturing areas. Up to now,
physical understanding is inevitable to select relevant input features for VM (cf. subsection 4.1.2,
section 4.2). A manifold variation of truly illuminating and crucial, irrelevant and noisy as well
as highly correlated input variables arises from underpinning data. Any selection of important
features from these huge amount of possible input parameters by human expertise is usually
done in a conservative way i.e. in case of doubt too much than too little features are extracted
for subsequent VM modelling/application. VM developers, typically mathematicians or com-
puter science experts dealing with statistical learning can either directly use these preselected
features as input for adequate ML algorithms or prior to that may apply other dimensionality
reduction techniques (e. g. Partial Least Squares (PLS)). After the time-consuming VM model-
ing process (not in a structured CRISP-DM manner but still including iterative feedback loops
with process engineers), the prediction method of choice is applied to generate a VM model
yielding the required prediction performance. Depending on the ML technique a trained VM
model achieving good predictions is hardly or not at all interpretable by process experts (e. g.
NN and SVR). Thus, on the one hand a process engineer needs to select input features to be
incorporated into VM modeling whereas on the other hand the resulting decision which selected
input feature subset is finally used is often not comprehensible to them because the trained
VM models are based on complicated compositions and weightings calculated by the statistical
algorithms (cf. subsection 4.1.2, section 4.2). Hence, a conclusion regarding the really crucial
features out of the conservatively selected parameters can hardly be drawn and little additional
knowledge is discovered to be used as basis for future process developments and improvements.
A smart FS algorithm can provide an insight into the most important features really determin-
ing the complex physical process and thereby enable future process enhancements allowing the
development of new products in logic device SM.

Challenge 4: Data Preparation & Accuracy

High product quality requires well-controlled manufacturing processes which in fact can only be
achieved by very accurate physical measurements and thus by comparable VM predictions often
tolerating not more than 1% deviation of the real physical metrology as well as reliable outlier
detection. Even though the application and adaption of ML methods already yield mostly satis-
factory results, the prediction performance in terms of accuracy can be improved by FS during
the task of DP in CRISP-DM to obtain remarkable results constantly less than 1% deviation.
In recently published work (cf. subsection 4.1.2) the potential of FS is recognized to reveal
only crucial features containing valuable information and to discard noisy and redundant ones.
According to the Bias-Variance-Tradeoff (cf. section 3.3.4), an optimization of model complex-
ity is also investigated yielding the best trained model to be found at the minimum between
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underfitting and overfitting (cf. figure 3.2). Nevertheless, Principle Component Analysis (PCA),
PLS and correlation-based reduction approaches are state of the art to achieve dimensionality
reduction or rough FS (cf. section 4.3) in addition to expert selected feature subsets. As no
high-sophisticated FS is invented up to now considering not only expert selected but all avail-
able features, the demand for corporate-wide universally applicable smart FS yielding highest
possible accuracy increases.

4.1.2 Current Research

A Reliance Index (RI) between zero and one (0 ≤ RI ≤ 1) is introduced in [24] to assess the
reliability of a VM system. In more detail, the RI is calculated as the intersection between
the statistical distribution of the applied prediction performed by a NN model and a reference
Multiple Linear Regression (MLR) model. Furthermore, a similarity index is established to
compare the actual instance for predicting the metrology outcome with instances from the
historical training DS. If significant similarities occur a similar prediction is expected as well
because the similar instance is included within the model training. Otherwise this specific
prediction is handled more carefully [24].

NN for CVD: A VM scheme according to [102] for predicting CVD thickness in SM compares
Radial Basis Function (RBF) NN and BPNN implementations for a single hidden layer and
an adjustable number of neurons. The RI explained above is used to trigger real physical
measurements if deterioration of the VM performance is indicated. Additionally, a module is
integrated to automatically tune NN model parameters (e. g. number of neurons). Prior to
any DP, an expert selection of 28 sensor variables is chosen for five important process steps
resulting in 140 input features. The DP is broken down into five actions: 1) Missing values are
populated with historical data, 2) latest data are used if the recorded time step exceeded five
seconds, 3) mean and standard deviation is calculated for each variable, 4) data are normalized
and 5) SS is performed to "pick comparatively important variables" [102]. Prior to step 5 and
in order to achieve high processing efficiency, PCA is adopted to transfer input features into
independent variables as required for RBF NNs. As it is common practice, data are split into
training, validation and test DS. The relative MAE is chosen as evaluation criterion. The first
drawn conclusion highlights the importance of DP whereas the second conclusion illustrates
the superior performance of RBF NN compared to BPNN with high accuracy of ~ 0.4% [102].
In spite of the high prediction accuracy combined with an elaborated VM scheme, the major
challenge of an automated and generic FS approach applicable to other process areas with high
efficiency could not be resolved. In order to achieve a more generic approach the fussiness of
this scheme could be reduced by smart FS. Further interesting investigations according to [101]
are conducted to perform FS by SS to predict an etch process in SM. Features are selected
by a wrapper approach using SS with MLR and NN as learning algorithms as well as expert
selected FS for comparison. Once more for the final prediction, BPNN is applied and superior
performance is achieved by NN-based SS. The selection of 10 features out of 66 expert preselected
features achieved a relative MAE of 0.89% and a maximum error of 1.7% [101]. Nevertheless,
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due to preselected expert selected features neither algorithmic automatic FS nor corporate-wide
efficient deployment is investigated.

NIPALS for CVD: Owing to the fact that methods like PCA, PLS and Nonlinear Iterative
PArtial Least Squares (NIPALS) show limited prediction accuracy and ability to suppress noise
components, an Iterative Backward Elimination IBE-PLS modeling technique is examined in
[169]. The accuracy to predict the CVD film thickness measured by the RMSE and the ability
to reduce noisy variables are compared to the NIPALS technique. The statistical models using
initially 56 available features are trained and tested on 42 and 7 instances, respectively. The new
approach of IBE-PLS demonstrated a considerable FS with 8 remaining features and improved
the prediction accuracy to 0.75% compared to 1% deviation achieved by NIPALS [169]. This
promising approach in fact demonstrated the potential of a good FS technique to enable the en-
gineer to focus on the manageable remaining key variables. While the prediction accuracy yields
superior results compared to PLS, the second challenge in terms of prediction performance to
reliably detect outliers is not investigated. Also, the composition of a very small and specialized
DS including only 42 training and 7 test instances with 56 features indicates quite restrictive
preselection of features and instances and definitely illustrates the lack to tackle the problem of
efficiency to develop and deploy a corporate-wide FS approach (cf. section 4.1.1).

Tree Ensemble for Etch: The application of ensembles of stochastic gradient tree boosting
models to predict two levels of depth of a dry etch process in SM for different equipment
chambers and different products is comprehensively investigated in [135], [136]. The embedded
technique for FS is enhanced by a weighting of the categories of the predictor variables (logis-
tical & equipment adjusted features vs. sensor features, mean & standard deviation values vs.
compositions of several individual values). A so-called advanced method eliminating features
showing more than 90% correlation reduced the initial feature set from 120 to 80 features. The
model is trained on a two months DS and constantly updated during the validation on remain-
ing four months data. The mean and standard deviation of the residuals are used to examine
the VM prediction quality. For the experiment the number of trained trees is set to 500 for
a single gradient tree boosting model and the performance of ensembles of 20 and 65 models
are evaluated in addition to mean & standard deviation in terms of calculated RMSE. Both
ensemble collections achieved a prediction performance of 0.2% and 0.8% for mean and stan-
dard deviation of residuals, respectively. Also the Bias-Variance-Tradeoff is discussed within the
scope of this work [135], [136]. The described VM approach applies a generic ML algorithm and
introduces a FS technique which reduces the original feature set by 33% by pure elimination of
correlated features. Nevertheless, in terms of scalability for fab-wide VM deployment in other
process areas with potentially up to thousands of features a reduction of roughly 33% still too
many features and even the permanent usage of 80 variables for the dry etch process generates
high data traffic and substantial computational time for updating the model with every new
available instance. The stunning prediction accuracy is neither comparable to other state of
the art research evaluation approaches nor preferable since outlier detection is crucial and a
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basic requirement. The summation of signed instead of absolute residuals and a temporarily
negative mean of residuals compared to the learning rate prevent a comparable assessment of
prediction accuracy. Finally, the well-established approach of correlation-based reduction meth-
ods like filter approaches (cf. subsection 3.3.1) clearly demonstrates its limits to select only the
most important features and to significantly reduce noisy variables. In the context of knowledge
discovery and in contrast to smart FS tiny valuable information can be gained to enable process
engineers to improve future developments.

PLS for PECVD: In preparation as input for future HDP CVD and Chemical-Mechanical-
Polishing processes, a Plasma-Enhanced-CVD process for different layers, various products and
two chucks within a single chamber is analyzed according to [40] as VM use case. The four
main challenges accuracy, speed, throughput and flexibility considered in the publication cor-
roborate the previously outlined challenges and problems (cf. subsection 4.1.1). 24 preselected
FDC variables and 3 logistical parameters (i. e. chuck, layer, product) are incorporated to com-
pare PLS consisting of four principle components with a tree ensemble method consisting of
a combination of bagging from regression trees and random splits as main ensemble method.
For 306 training and 168 test instances both ML techniques achieved a prediction accuracy of
~ 0.6% RMSE and a coefficient of determination (i. e. R2) of ~ 0.85 (cf. subsection 3.6.2). Out
of the in total 27 features the tree ensemble approach selected five features whereof three are
also included within the five most important features used by PLS. As conclusion, the PLS
method performed slightly better and the introduction of a quality index to assess accuracy and
reliability is motivated [40]. In spite of noticeable reduction of the feature set by ~ 80%, a pres-
elected initial feature set including only 24 process variables is investigated. Hence, this expert
selected feature set already incorporates substantial expert knowledge and lacks the approval of
being capable to significantly reduce bigger feature sets containing lots of redundant, noisy and
correlated information. Apart from good accuracy, an assessment of reliable outlier detection is
not conducted yet.

Canonical Analysis for PVD: In [147] a VM approach addresses the prediction of the resistance
of glass substrates at 9 different locations in a Physical-Vapor-Deposition sputter process. On
the one hand high dimensionality and collinearity in process variables are handled by dynamic
canonical correlation analysis and canonical variate analysis whereas on the other hand expensive
computational effort is encountered by VM model retraining after every new instance only if
indicated by the RI thus optimizing frequent model updating (i. e. a MW approach). 20 variables
are calculated from six sensor input parameters for 110 training instances covering four months
productive data. The prediction performance yields an average of the relative MAE of 2.56%
[147]. The good accuracy demonstrates the need to consider the reduction of correlated features
even though no sophisticated FS is performed to tackle the problems in terms of efficiency,
scalability and knowledge discovery. However, the investigation of a RI as quality index as well
as a MW approach to improve prediction performance is motivated. Finally, no outlier detection
also crucial for corporate-wide implementation is considered so far.
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SVR for Yield: A comprehensive and versatile inspection of SVR, PLS and rule ensemble as
regression techniques and the two latter also as FS methods is conducted in [146]. A model is
built based on 150 training instances and the MAE as percentage of the mean is calculated for
50 test instances. No real data are considered but the yield as prediction target is generated by
two (linear & nonlinear) functions of all input variables which are generated by mathematical
models. For the input variables, at first 10 key variables (i. e. mean of step 1 & step 2) are
calculated out of 5 original FDC values, secondly in order to simulate correlated data each 20
linear and nonlinear variables as functions (i. e. linear, exponential & polynomial) of the key
variables are created and at last 20 additional variables are generated as random noise using
normal and uniform distributions. Both, the variable importance pareto as FS assessment and
the prediction performance in terms of accuracy are evaluated within two major experiments
containing various formats:

1. The first experiment investigates the target yield as linear combination based on the 10
calculated key variables with random Gaussian noise added. All methods achieved a
comparable accuracy of 3% to 4.5% MAE with no major frontrunner. Rule ensemble
performed superior compared to PLS in terms of selecting the most important features
because it really revealed the most significant feature while PLS could not achieve a strong
differentiation between this feature and another linearly generated one. However, both
methods captured the actual top three contributing features. Subsequently, key variable
drifts and shifts are introduced resulting in a degradation of the prediction performance
from 4.4% to 5.9% and 4.7% to 6.1%, respectively, whereas rule ensemble only achieved
an inferior MAE of 10% for key variable shifts. Hence, in the linear setup PLS and SVR
performed best with respect to prediction accuracy with a slight advantage for PLS due to
the easier model interpretability. In contrast, rule ensemble outperformed PLS to reveal
the most significant feature.

2. The second experiment examines the target yield as nonlinear function with input vari-
able correlations and random Gaussian noise. The initial evaluation of nonlinear simulated
features yielded a strongly degraded prediction performance of 11% to 17% with rule en-
semble performing slightly better with 11% to 14% deviation from the target. Introducing
key variable drifts and shifts results for PLS and SVR in almost unchanged prediction per-
formance between 14% and 19% whereas for the rule ensemble technique the performance
drastically dropped to 28% and 23% for included drifts and shifts, respectively. Finally,
also the assessment of the actual variable contribution demonstrated a more differentiated
variable importance pareto for rule ensemble compared to PLS. Both methods captured
several top contributing features but due to the poor prediction performance of rule en-
semble in the nonlinear setup its FS outcome can be assumed to be inferior.

Nevertheless, the conclusion points out that the usage of rule ensemble is not recommended
in the linear case due to an inferior prediction accuracy and comparable FS performance. SVR
slightly outperforms PLS in terms of prediction accuracy and both also outperform rule ensemble
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with remarkable differentiation whereas the latter is stated to provide significantly better variable
contribution results than PLS. While apparently no technique provides reasonable prediction
accuracy with nonlinear yield models more analysis and improvement is demanded [146]. It is
hard to compare the results of the three techniques since every time different test sets are used
for evaluation. In spite of the concluded comparable FS performance in the linear case a clearly
visible difference in revealing the most important feature comes out. Even though SVR and PLS
are stated to be comparable in the nonlinear case SVR is suggested for further investigations
since its full potential is unlikely to be exploited. Regarding the lack of direct FS ability of SVR,
a FS SVR wrapper approach could serve well to tackle the problem of accuracy within FS due
to the fact that the prediction performance turned out to be deficient in this investigation with
at best 3%. The extent to comply with the challenges of knowledge discovery and scalability
can only be assessed with limited precision since only a few of the real variables are listed in the
variable importance pareto and the yield prediction lacks in accuracy. Regarding the challenge to
master the demand of efficiency and corporate-wide VM deployment, the capability to achieve a
prediction performance of < 1% for both the linear and nonlinear case appears to be mandatory.
In conclusion, potential and need of smart FS generically enabling advanced VM prediction is
again corroborated by the results of this investigation.

Recursive Coefficient Centering for Critical Dimension: In a memory fab in the area of
plasma etch the selection of important plasma sensors variables is analyzed to enable robust VM
covering shifts across preventive maintenance cycles through a cost-effective recursive coefficient
centering technique (i. e. data normalization) [6]. The FS technique describes an integration
of squared sensor variables ranking to perform an interaction analysis which basically equals
a time-integrated variance calculation method. MLR and PLS are used as linear regression
methods to predict the critical dimension (i. e. another prediction target related to the common
etch depth). 7 expert selected FDC variables (e. g. pressure, bias power, gas flow) are combined
as input feature set in a 18 x 7 matrix with 18 sensor variables which are also selected by process
experts from optical emission spectroscopy. For 25 training and 45 test instances an adaptive
VM model is examined and updated in coincidence with a performed wet clean maintenance after
the 10th test instance which is referred to as "when VM lifetime ends" [6]. Achieving a relative
MAE of 3% and higher than 7% after the periodical maintenance, the conclusion in [6] is drawn
that linear regression methods are useful for the VM approach even though outlier detection is
excluded due to the average evaluation result of 5% accuracy. With respect to efficiency and
scalability no assessment can be obtained due to the fact that the investigation was specific for a
single use case and the feature set is statistically calculated from a 18 x 7 matrix. The restriction
to exclusive expert selection of the input variables precludes a FS process to discover further
knowledge. In general the approach examines a new statistical convolution methodology for
an aggregated prediction target whereof the accuracy assessed by the relative MAE can hardly
be compared to current research using direct prediction targets like etch depth or deposition
thickness.
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GA FS Wrapper for Etch: An application of FS for VM is conducted according to [179] in
2008 for the plasma etching process and focuses on DP in terms of data integrity and quality to
obtain a robust prediction model. Outliers are removed by PCA and 3 types of FS techniques
are compared for PLS, Stepwise and BPNN as VM models: i) Random modeling, ii) GA search
as FS wrapper and iii) SS & clustering. Based on 500 training and 270 validation instances
and with an initial feature set of 149 variables, the best algorithm (i. e. BPNN with SS &
Clustering) yields 37 features and R2 of 0.74 as "fairly good prediction results" in [179]. This
work is extended in [178] with suggestions of various possible techniques whereas data separation
based on PCA and mean replacement for missing data is chosen. Outlier detection is performed
by investigating Hotelling T 2 (cf. [172]), by PCA on input covariance data in order to compute
the distance and by statistical distance plots derived from PCA. Updating actual training
instances as MW approach are selected by PCA based on similarity factors and clustering. As
last preprocessing method, FS is again conducted by regression coefficients, a GA search with
PLS and SS. Finally, three regression methods (i. e. BPNN, PLS & stepwise regression) are used
to predict the target of the etch process with again "fairly good prediction results" (i. e. RMSE
of ~0.5%) [178]. In this research, a preceding clustering technique using logistical parameters
is examined in difference to individual categorization or model configuration. The opportunity
to dynamically configure many dedicated and specific VM models in order to create a generic
VM system to achieve high efficiency for corporate-wide deployment is not addressed so far.
Noticeable is the dimensionality reduction of roughly 75% of all initial features and the very
accurate prediction performance. The applied outlier exclusion by PCA points out the missing
focus on outlier detection which is crucial to detect scrap wafers and thus to achieve the required
highest level of product quality in SM.

Clustering for Etch: According to [126] in the SM area of plasma etch, the development of
robust, reliable and interpretable VM models is a big challenge due to the highly correlated in-
put space of available data. Maximal separation clustering as an unsupervised correlation-based
clustering algorithm is applied as preprocessing step to identify input variables for the four FS
techniques forward selection regression, forward selection ridge regression, ridge regression and
LASSO (Least Absolute Shrinkage and Selection Operator). For 2000 instances the normalized
MSE is calculated to evaluate the best input features made up from four statistical moments
(i. e. mean, variance, skewness & kurtosis) of the amplitude of the time series for each of 2000
wavelengths recorded by optical emission spectroscopy. Training, validation and test sets are
split into 50%, 25% and 25% of the available DS, respectively. The achieved improvement
of the prediction accuracy by the maximal separation clustering method of 13% for forward
selection ridge regression and 8.5% for forward selection regression are contrary to the stated
degradation for ridge regression and LASSO. A maximum increased prediction accuracy from
3.74% down to 3.2% is obtained [126]. The given publication deals with the challenge to re-
duce a massive amount of interrelated input parameters using a correlation-based unsupervised
clustering method. In spite of little absolute improvements of the prediction accuracy, no signif-
icant optimization can be achieved using the unsupervised approach as preprocessing step thus
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still not achieving highest required accuracy of less than 1% deviation from the target. Similar
to a preceding statistical filter technique the massive amount of input features (i. e. 8000) is
significantly reduced to 131, 270, 979 or 4888 features left with respect to the FS technique.
Nevertheless, in order to attain scalability the number of features is still too high and also the
goal of knowledge discovery can hardly be achieved for this amount of features to be analyzed.

SVM for Outlier Detection: Other VM ML-based research according to [76] focuses on novelty
detection to reveal faulty wafers. This approach is motivated by the lack of unique characteristics
of outliers within an imbalanced DS. Similar to the previous methods, Stepwise Linear Regres-
sion, PCA and SVM are applied as FS techniques where 150 features are present as real FDC
data. Seven different novelty detection methods are tested. Not the final reduction of the initial
feature set but sensitivity and specificity are the targets to be evaluated differentiating between
two experimental settings: Cross-Validation and MW. In spite of an overall good True-Positive-
Rate (i. e. sensitivity/outlier detection) of ~ 78% is achieved, the poor False-Positive-Rate (i. e.
specificity/"normal wafer classification within limits" [76]) of ~ 40% motivates for future research
to control the True-Positive-Rate vs. False-Positive-Rate trade-off by determining misclassifi-
cation costs. It is outlined that cross-validation outperforms the MW approach which might
be caused by a too small training set for MW and thus is also part of future work [76]. No
concrete evaluation of the FS methods in order to reveal only the most important features and
their impact on VM was performed. Thus, the challenges outlined in subsection 4.1.1 are not
considered and cannot be assessed in more detail.

Aggregative Linear Regression for Etch: Another VM application in the area of plasma etch
compares Forward Stepwise Regression, DTrees and correlation techniques for dimensionality
reduction and also investigates a systematic approach to evaluate confidence intervals generated
by Aggregative Linear Regression, MLR and Gaussian Process Regression [125]. 1894 instances
are used for training and 300 to test the obtained ML model. A huge number of 12288 input
variables is made up by 2048 wavelengths from an optical emission spectroscope and 6 statistical
moments (mean, variance, skewness, kurtosis, max, min). Forward Stepwise Regression as best
method outperformed DTrees and correlation techniques in terms of accuracy (i. e. normal-
ized MSE 2.2%) and dimensionality reduction (i. e. 346 features left). The smallest and best
confidence interval could be achieved by Aggregative Linear Regression compared to Gaussian
Process Regression and MLR [125]. The accuracy is in general not unconditionally sufficient for
highest requirements for VM in SM while the drastically reduced feature set (9700 eliminated
variables) is impressive but also expectable for an input of more than 10.000 features. However,
300 input features are still far too much and thus the problems of efficiency, scalability and
knowledge discovery cannot be tackled successfully.

FS and Projection for Etch: Considerable research in the field of FS and VM is initially
performed in 2009 [70] investigating two subsequent etch processes (P1 & P2) over a time period
of three month. Two objectives are defined: assessment of the prediction specificity (TN/(TN+
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FP )) (cf. equation (3.20)) which is the model accuracy in terms of correctly classified wafers
within the control limits and the sensitivity (TP/(TP + FN)) (cf. equation (3.19)) which is
the ratio of outliers detected by the VM system compared to undetected outliers. As it is good
practice, all data are normalized to [0,1]. The total number of 1546/1793 input features of
process P1 & P2 is composed of four key numbers (i. e. min, max, mean & stdev), each for eight
process steps with each step containing 48 features (i. e. equipment sensor variables) for P1

and 56 for P2. These 1536/1792 predictor variables are completed by 10/1 metrology variables
resulting in 1546/1793 input features. Here, 118 and 241 instances are available for P1 & P2,
respectively. Three targets T1 – T3 are defined for P1 and a fourth target T4 for P2 resulting
in four tables. Finally, the DSs of each target Ti are subdivided into: 1) an overall DS with all
selected equipment sensor variables and all metrology input features and 2) a second selected DS
also containing all equipment sensor variables but only one additional metrology input feature.
Thus, four tables for all targets T4 are generated with each an overall and selected DS. Two FS
methods and two feature projection methods (cf. section 4.3) are tested for each target Ti: FS as
Stepwise Linear Regression as well as GA-based FS with SVR as induction technique and PCA
and kernel PCA as projection algorithms. These four FS/projection methods are each tested for
the overall and selected DS resulting in eight rows within each of the four tables of target Ti. As
columns, five regression methods are subsequently used for final prediction: Linear Regression,
k-Nearest Neighbor, NN, Regression Trees and SVR. Finally, four FS/projection techniques and
five prediction methods are compared each on two DS (i. e. overall & selected) for four targets
T1 – T4 (i. e. 4 * 5 * 2=40 entries in 4 tables). In general over all DSs, the Stepwise Linear
Regression FS algorithm performs best in terms of accuracy with Linear Regression, NN and
SVR as prediction methods. A remarkable reduction of 84% (i. e. 1307 eliminated features) up
to 99% (i. e. 1538 eliminated features) of all initial features is achieved yielding a prediction
performance in the range of 0.53% up to 2.54% with the best result of 0.53% accuracy by
elimination of 99% of all features. In the end, all wafers within the control limits are correctly
classified (specificity = 100%) and the majority of the present outliers is detected (sensitivity
= 65%) [70]. The result of 100% specificity is less insightful since the very broad control limits
cover a range of 0.97 up to 1.06. However, the obtained and quite good sensitivity of 65%
corroborates the possibly mastery of the challenge to detect most outliers. A first limitation
stated in the publication covers the missing investigation of process drifts due to the small
number of 118 and 241 instances for P1 and P2, respectively. Secondly, the problem of fab-
wide VM implementation to enable efficient deployment (cf. section 4.1.1) is not tackled so far.
The noticeable feature reduction of up to 99% demonstrates possibly achievable scalability and
knowledge discovery. Finally, the accuracy in terms of MSE from 0.53% up to 2.54% is partially
remarkable but again in general not unconditionally sufficient for highest requirements for VM
in SM.

Summary FS for VM: In general, many quite simple but also very sophisticated FS approaches
for VM have been developed. This section provides a comprehensive literature survey regarding
FS for VM and highlights the increasing demand to find a solution to tackle all problems stated
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in subsection 4.1.1. Various FS methods are investigated for several process areas but the
challenges of concurrent efficiency, scalability, knowledge discovery and accuracy could not be
mastered so far.

4.2 Virtual Metrology

Following FS and projection for etch, further work [69] in the process area of lithography suggests
to enhance the previous concept by improved performance of a subsequent but simulated R2R
controller which also manages to better deal with outliers. If no process drift is observable a
longer VM training period is preferred for better prediction accuracy whereas in case of steady
process drift a MW approach is motivated [69]. The evaluation of the significance of VM input
for R2R control emphasizes once more the requirement for an advanced VM system to improve
process control in SM.
For successful application of VM reliable and accurate historical data are crucial to train any

ML model [58]. The quality of available data varies significantly between different process areas
and work centers according to data collection within different systems, different production and
metrology equipment as well as interfaces used for data acquisition, conversion and preprocess-
ing. In most cases, missing data, outliers or fragmented data appears to be inevitable. So, in
terms of Knowledge Discovery and DM, DP has become most essential to obtain a purified data
set for successful DM [103], [129]. DP comprises several tasks (e. g. outlier removal, missing data
deletion/conversion, etc.). In order to obtain accurate, reliable and reproducible VM results,
comparable high effort has to be effected for DP. As the trained VM model needs to deliver
reliable prediction of the metrology outcomes, the used ML algorithm has to be robust towards
any shifts and drifts of the input parameters whether they are related to preventive mainte-
nance actions (e. g. process chamber wet cleans) or intrinsic changes of process conditions (e. g.
due to process chamber deterioration or contamination). Also important for the success of the
implementation of VM is the iterative involvement of process experts for a priori data analysis
as well as selection of relevant parameters in addition to the application of FS algorithms in
order to keep the computational effort within feasible limits. Regarding the appropriate choice
of prediction algorithms, it already becomes obvious that Simple Linear Regression and MLR
are not unconditionally suitable for VM in SM due to their lack of robustness and accuracy
[128], [155]. Further research in this area focuses on robust and high-sophisticated statistical
models (e. g. Classification and Regression Trees [40], Neural Networks [155]). Recently, SVR
evolved as a new promising state of the art regression method feasible for accurate and reliable
VM modeling.

VM at TSMC: An early VM system was implemented at TSMC foundry in 2005 for shal-
low trench isolation deposition and plasma etch [21]. In order to keep pace with Moore’s law,
shrinking device dimensions are necessary and with it Wafer-to-Wafer control evolves as critical
requirement. While it is economically infeasible to realize 100% physical metrology for every
wafer, novel methodologies, in particular VM, are inevitable to assure process control and qual-
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ity for each wafer. VM enhances APC by improving the so-called centered process capability
index [62]. The deployed VM implementation at TSMC achieved a coefficient of determination
(cf. subsection 3.6.2) of at least 0.97 for the shallow trench isolation CVD process and higher
than 0.98 for the associated etch process [21]. Thus a significant improvement of the centered
process capability index was achieved by deployment of the VM system. Nevertheless, due to
no performed FS neither efficiency nor scalability (cf. subsection 4.1.1) are considered and so
corporate-wide deployment is not recommended if in future high performance of VM systems is
required.

Cheng et al.: In further work, a conjecture NN model predicts the target process outcome
and a second prediction model using weighted moving averages incorporates the obtained real
metrology as well as the quality and the predicted accuracy of the first model for self-adjustment
[154]. Considerable improvement to the previous conjecture NN model and noticeable impact
is caused by the contribution of [25] to develop a Dual-Phase VM scheme. The first phase
focuses on a fast VM prediction by a NN algorithm for a CVD process in a semiconductor TFT-
LCD monitor fab including the computation of RI and a similarity index (cf. subsection 4.1.2).
The second phase collects the metrology of sampled wafers and correlates it with the stored
prediction. In case of major deviation the VM models (i. e. NN) including the RI and similarity
index values are retrained and subsequently updated. Finally, the VM prediction is recomputed
for the entire lot. Again, the relative MAE is evaluated as threshold for possible retraining.
A relative MAE of 0.6% to maximum 1.2% confirm the correct approach to encounter the
problems in VM [25]. According to [25] the prediction accuracy of the developed VM scheme
ranging from 0.6% to maximum 1.2% relative MAE is achieved without focusing on outliers
whereas especially these outliers are most interesting since they indicate a process failure and
possible product breakdown. Thus, using RMSE as evaluation criterion as well as including
the occurred outliers into the tested DS will provide a more meaningful result with also little
degradation of prediction performance in terms of accuracy. The same subject of missing but
essential outlier focusing appears in the publication of [101] which already addresses the objective
to FS for VM. Even though after expert selection SS was examined demonstrating a prediction
performance of 0.89% up to 1.7% relative MAE but again without considering outliers within
any tested data. Various other extensions of the activities of Cheng at al. are published with
focus on NN algorithms and application for CVD processes for TFT-LCD manufacturing. In
this context a generic VM framework with application drivers and interfaces is designed and
induction methods (i. e. NN) as well as a RI and a similarity index are implemented [57]. A
strategy to perform fab-wide VM deployment distributed on various VM systems is proposed by
this research group in 2008. A central model-creation server generates and fans out the induction
models to the distributed automated VM servers. The proposed strategy is verified including
an automatic model retraining approach. A feasible and affordable deployment is achieved by
reduction of fab-wide manual model creation [59]. VM prediction with ML methods (i. e. NN
and MLR) are tested to meet real-time requirements and provide acceptable accuracy showing
similar results as in [128] where MLR failed in terms of accurate predictions. BPNN with two
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hidden layers is too time consuming due to the chosen setup with an exponential influence of
each hidden layer and thus this approach is regarding the computational time effort inferior in
productive application compared to single layer BPNN [155]. Recently, the widely common SM
execution system is extended by this automated VM system according to [23] where a model
creation server generates and fans out new VM models. So, Database (DB) and VM client-server
solutions are coupled with R2R control. The projected goals of cycle time and cost reduction
of a modern SM fab are accomplished [23], [60]. In order to integrate VM into the entire SM
fab environment a solution is presented in [71] to assign a weighted factor depending on the RI
to the VM prediction as enhanced input to the R2R feed backward loop. Here, the originally
calculated R2R coefficient which is based on real metrology is multiplied with the RI which
itself is rescaled between 0 and 1. Adding the RI improves the centered process capability
index compared to integrated VM without RI [71]. In [176] a dynamic MW scheme deals with
the challenge of keeping the training DS in productive environment up-to-date to ensure high
prediction accuracy for recently built VM models. Using ML similarity clustering the training
instances are categorized. A limited cluster size and the ’First-In-First-Out’ principle ensure
the dynamic MW DS to stay up-to-date [176]. An automated VM system with model-creation
server and connection to R2R control as given in [23] serves as an example for the indispensable
requirement of an integrated VM system in order to efficiently assess the feasibility and prediction
performance.

NN for Chemical Mechanical Planarization: For VM in SM also a combination of piecewise
linear NN and fuzzy NN is investigated where these algorithms are applied to predict the target
including prediction of process drifts by the former and the influence of process recipes (i. e.
process shifts) by the latter. The VM approach is applied for a chemical mechanical planarization
process using MSE to measure a prediction performance of ~ 0.75%. Hence, sufficiently high
accuracy and generalization ability even regarding recipe adjustments are proven [19]. As the
good results are achieved for the provided use case without any FS performed no progress is
made in order to develop an efficient and scalable VM system including the ability of knowledge
discovery.

Wafer-fine R2R Control: Comprehensive work with significant impact was published in 2008
in [75] describing a strategy to connect VM and R2R control to implement a fab-wide Wafer-
to-Wafer control system. Both, feed forward and feed backward control are outlined. A feed
forward approach is realized by providing the VM prediction as a further source of information in
addition to the real metrology for the R2R controller of the subsequent process to enable wafer-
fine R2R control. A feed backward approach is designed by returning the VM prediction to the
R2R controller which just calculated the adjustments of the current process. Hence, a retuning
of this R2R controller can be done immediately. FDC and metrology data serve as basic data
source. PLS Regression is applied as linear multivariate method for prediction and simultaneous
FS of the given multiple-in-multiple-out process. Input variables preselected by experts and the
initially from design of experiment obtained regression model are periodically updated by a
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recursive MW approach which noticeable improved the prediction performance compared to
a fixed design of experiment based model. The MSE and the prediction output variance as
ratio are used to monitor the R2R controller. An improvement of wafer quality compared
to Lot-to-Lot control is observed. Furthermore, the effect of delay of physical metrology on
R2R control is eliminated by the wafer-to-wafer control system. Finally, without concrete and
quantifiable results the investigated feed backward control including VM achieved satisfactory
performance [75]. A similar approach focusing on two consecutive processes (i. e. lithography,
plasma etch) is published by the same authors half a year earlier also using PLS as regression
technique illustrating that a feature preselection by process experts does not solve the problems of
efficiency, scalability or knowledge discovery [74]. Unfortunately, missing quantified assessment
of the result hinders the comparison of the introduced recursive PLS approach to other work.
Nevertheless, in the outlook of the paper more research to find a fab-wide control strategy to
implement VM is demanded.

4.2.1 Virtual Metrology in IMPROVE

The 2009 - 2012 performed European research project "Implementing Manufacturing science
solutions to increase equiPment pROductiVity and fab pErformance (IMPROVE)" [63] was
initiated by ENIAC (European Nanoelectronitcs Initiative Advisory Council) to improve the
state of the art research and development in European SM with focus on APC. Within the
project, various clusters of semiconductor manufacturers, research institutes, universities and
solution providers were formed to focus on the three most important future APC areas including
VM as one of them. Lots of research and productive implementation is conducted yielding about
100 internationally acknowledged publications whereof the following are dedicated to research
and application in the area of VM.

DTree for CVD: Initial investigations to predict the CVD layer thickness based on FDC data
are focusing on two variations of MLR and three variations of NN which perform superior in
terms of prediction accuracy measured by the MAE [39]. Further work in collaboration with Aus-
triaMicroSystems addresses the challenge to simultaneously meet accuracy, speed, throughput
and flexibility requirements in VM development. The PLS method achieves better prediction
performance in terms of RMSE than the compared DTree [40]. While no FS is investigated
the assessment still indicates the effort to optimize prediction performance only by varying ML
techniques.

Forward Selection Component Analysis for Etch: FS (i .e. Forward Selection Component
Analysis & Forward Selection Regression) and feature projection methods (i. e. PLS & Princi-
ple Component Regression) are assessed with highly correlated data for a plasma etch process
yielding superior prediction performance for the FS technique compared to projection methods
in terms of a smaller error (normalized MSE) due to real feature reduction in contrast to fea-
ture weighting done by the projection technique [131]. Afterwards for the same setup, PCA
is compared to SS with either MLR or NN as regression algorithm and RMSE as evaluation
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criterion. Also, a disaggregation method is introduced which splits the DSs into three parts
still chronologically ordered and related to the maintenance cycle. On the full DS PCA with
NN produced the best result (i. e. 0.99% RMSE) whereas on the disaggregated DS the combi-
nation of SS and NN performed best (i. e. 1.18% RMSE) [107]. Additional work is performed
on disaggregation where a chronologically ordered and interleaved global DS and a separated,
clustered and windowed local DS are assessed with PLS, NN and Gaussian Process algorithms.
Finally, it is shown that a local MW DS with Gaussian Process regression yields the highest
accuracy with relative MAE = 1.14% [106]. Further investigations on Gaussian Processes re-
veal an accurate prediction which is rather insensitive to the used covariance function. Due to
the fact that the prediction is obtained as distribution, engineers can quickly create confidence
intervals to estimate the possible degree of variation for each predicted value [105]. The com-
parison between FS and projection methods corroborates the preferable approach to tackle the
problem of high dimensionality by FS because efficient knowledge discovery for further process
development is hardly possible by feature projection methods. However, even with an accuracy
~1% the challenges of efficiency and scalability are not investigated.

L1-penalized ML for CVD: At Micron Technology SM fab, a hierarchical framework based
on a L1-penalized ML technique is developed for a CVD process. Particularly, the LASSO
(Least Absolute Shrinkage and Selection Operator) method is successfully extended to a more
generic multi-level LASSO algorithm enabling VM predictions on nested levels of variability
[122]. Even though the hierarchical framework is designed to encounter the problem of efficient
corporate-wide VM deployment, no concrete results regarding any of the four stated challenges
are presented for a more detailed comparison.

Software Framework: In order to encapsulate the development of smart ML prediction tech-
niques as well as to enable plug & play integration, a generic SM fab framework is developed
within the scope of the IMPROVE project [142], [134]. VM and Predictive Maintenance are
both applications relying on historical productive data and aim to predict either the metrology
outcome or the time when the next maintenance needs to be scheduled. Within complex SM, a
wide range of IT systems is available for specialized applications including commercial as well as
in-house developed APC software systems with many individual DBs and interfaces. Thus , an
appropriate state of the art solution for efficient fab integration is designed, implemented and
deployed for pilot testing in the course of the project. The framework services are implemented
as Enterprise Java Beans deployed in a JBoss Application Server environment with CORBA
procedures enabling a company specific development of VM algorithms either in MATLAB or R
programming language as well as a high level of genericity and a remarkable good performance
[142], [134].

4.2.2 Virtual Metrology at Infineon

Three Infineon frontend manufacturing sites (i. e. Regensburg, Villach, Dresden) were involved in
the IMPROVE project. Various approaches have been tested during VM development resulting
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in the VM system described in chapter 5.
In [156] popular PLS and BPNN techniques are also investigated at Infineon Austria with

frontend manufacturing site in Villach for a CVD process based on FDC data. Data clustering
is identified to be critical in high-mixture SM environments if insufficient data are available to
represent the logistical variation (e. g. various operations, technologies, products, recipes). In
case of constant manufacturing conditions and low variation the more accurate BPNN method
is recommended whereas PLS should be considered otherwise [156]. On the one hand the stated
"satisfactory" [156] prediction performance of 0.45% MSE for BPNN and 0.92% MSE for PLS
might be improved and on the other hand no real progress regarding to the four key challenges
(cf. subsection 4.1.1) is advanced made as FS is not in scope of the investigation.
The already discussed multilevel LASSO algorithm [122] is developed in collaboration with

Infineon Austria and successfully deployed and tested within productive SM fab environment
but without comparable evaluation metrics [143]. Statistical inference is not yet present within
VM but first ideas have been implemented and tested as multistep VM approach for SM pro-
cesses. For CVD, thermal oxidation, coating and lithography as four subsequent manufacturing
processes, three prediction scenarios are compared including more or less information in terms
of sensor data and logistical information. The most complete scenario considering process data
of CVD and lithography as well as logistical information of all four process steps shows superior
prediction performance. Sample size and relevance are identified to be important and the mul-
tistep VM approach in fact reduces the calculated RMSE vs. single step VM but again without
comparable evaluation metrics [123]. Furthermore, an interesting simulation on integration of
VM into R2R control is assessed based on information theory. The Kullback-Leibler divergence
is applied to evaluate the prediction quality and the Shannon entropy is used to reduce the risk
of drifting VM predictions vs. real metrology sampling. Tests compared to the RI approach
show superior performance. This aspect is closely connected to the MW approach to find the
best historical DS on which an actual VM model is trained. Finally, the investigated methodol-
ogy is concluded to outperform actual R2R control with correlation-based noise evaluation and
poor VM prediction [158].
In terms of a review of regression methods for prediction of deposited layer thickness for a

CVD process, an early Infineon publication [128] is already referred to in previous sections.
First considerations on DM and ML techniques are published in 2011 according to [92] with
focus on SVR. A PECVD process is chosen and a first assessment is performed to identify
which prediction target yields the most accurate prediction in dependence of various logistical
granularity. As a result, the prediction of the deposition rate achieves better performance com-
pared to the prediction of the deposited layer thickness itself [92]. The IMPROVE framework,
as briefly described above, is also tested at Infineon during the project [91]. A comprehensive
review of the following regression methods is conducted for VM in the CVD process area: Simple
Linear Regression, MLR, Ridge Linear Regression, PLS Regression and SVR. The infeasibility
of Simple Linear Regression and MLR are proven. PLS and Ridge Linear Regression clearly
outperform MLR but due to the linearity assumptions, these methods are outperformed by SVR
which shows the best generalization on test data [127]. Further research on SVR-based ML to
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enable highly accurate and reliable VM at Infineon is corroborated by remarkable results. A
CV(RMSE) smaller than 1% and the equivalent CV(MSE) equal to 0.7% approves high pre-
dictive power of SVR as well as the robustness of the model which is also indicated by a R2

of 0.64% [90]. Focused on ML research, various successfully implemented high-sophisticated
induction techniques (i. e. DTrees, NNs & SVR) based on different statistical and mathematical
theories including different assumptions and boundary conditions are compared. The results
demonstrate the robust and highly accurate prediction performance to enable reliable VM being
able to detect outliers in the target values and thus misprocessed wafers. Even on small sized
DSs common in low-volume-high-mixture SM production the investigated algorithms perform
superior to others [127] with an overall relative deviation smaller than 0.5% on independent,
unseen test data which appears to be close to the achievable minimum with regard to the typical
accuracy of physical metrology. Comparable accuracy of these methods enables the usage of the
quantified similarity of the prediction results as new index to measure the reliability of a VM
prediction. In case of major deviation between DTrees, NNs and SVR, the VM outcome should
be treated with special caution and real metrology sampling appears to be recommended [93].

Summary VM: Only few VM schemes demonstrate the opportunity to develop generic VM
systems appropriate for corporate-wide deployment and economically efficient implementation
of VM in SM. Several publications consider the possible enormous amount of up to more
than 10.000 input features and provide solutions to encounter the so far not clearly formulated
challenge of scalability required for corporate-wide VM deployment. Some research has been
performed regarding FS for VM to reveal the most important and absolutely crucial features
to discover knowledge and gain valuable information about hidden process characteristics and
by this to foster future process and product developments in SM. Most effort is spent to con-
stantly improve the prediction performance and optimize the ML models in terms of robustness,
reliability of outlier detection and accuracy yielding results which meet highest demands with a
relative deviation from the target between 0.5% and 1%. Even though many developments in
VM achieved remarkable results, up to now no complete FS approach enabled the incorporation
of all aspects and hence to solve all challenges and problems related to advanced VM in SM.

4.3 Feature Selection

After the fundamentals of FS as well as the challenges and the state of current research regard-
ing FS application for VM are given in section 3.3 and section 4.1, respectively, the result of
comprehensive research based on a literature survey is outlined in detail in this section focusing
on most relevant FS with SVR, RFE and GA.

Feature Selection, Projection and Compression

At first, FS itself needs to be clarified and distinguished from other related but different dimen-
sionality reduction techniques dealing with projection or compression. Projection approaches
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transform the variable input space into a feature space and introduce a ranking of the trans-
formed features by their impact regarding predefined functions or rules. So-called PCA is de-
signed to preserve intrinsic information while reducing present redundancy due to correlation of
data [139], [149]. A major drawback is the preservation of all features in the projection which
does not improve the computational performance [49]. Compression approaches reduces the
variable input space by encoding information to achieve either lossy or lossless data compression
using information theory [139], [140]. FS approaches are dedicated to select a feature subset of
the entire variable input space not altering these features during the process of selection thus
preserving the original structure and semantics of these features [81], [145]. Apparently, by
maintaining the original features in the selected feature subset including their relationship to
each other with hidden and unknown interrelations, domain experts are enabled and encouraged
to interpret and discuss the outcomes (i. e. the selected features) regarding the reason why these
features and their interrelations are selected to gain valuable knowledge about the investigated
domain [139]. Hence, projection and compression methods are not suitable since almost no
valuable process knowledge is revealed.

Heuristic Search for NP-hard Problems

As for many optimization problems and already stated in section 3.3, FS mostly belongs to
the group of NP-hard problems as state space search to find optimal feature subsets inevitably
resulting in a heuristic search [81], [12]. Regarding the decision how to start the heuristic
search, forward selection with no initial features, backward elimination with all features and
a randomly or seeded feature subset selection are possible options. Moreover, the decision of
how to search in the search space needs to be specified by many available strategies whereof the
most popular ones are already highlighted in section 3.3. A further decision is required on how
to evaluate the feature subsets where predominant criteria are based on information theory or
direct measurement of accuracy. At last, the stopping criterion for the search has to be defined
commonly as a specified threshold for the resulting accuracy, a defined number of features left
in the subset or simply a sufficient number of computed iteration steps [12].

Dimensions of Features and Instances

On the one hand, FS is often facing the problem of large variable input dimensions while on the
other hand small sample sizes exacerbate the challenge to find the feature subset minimizing
either the prediction error or the number of features (cf. section 3.3) [139]. Nevertheless, during
the last decade the application of FS techniques and the investigation of the available variables
changed from an optional preprocessing step to a real requirement prior to develop sophisticated
DM or ML models [139].

Relevance of Features and Instances

Many irrelevant features and samples are present in most data and two challenges related to
feature relevance arise as to determine which features to use and how to combine those features.
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The amount of required instances for training combined with the number of features present
in the DS to achieve a desired level of accuracy is described as the sample complexity [12]. In
general, feature relevance is defined as a different outcome of the prediction if only the values of
one feature differ and the remaining values of all other features are kept constant in at least two
instances [12]. A drawback of this definition is the lack to recognize if a feature is truly relevant
in case of too little instances are available for approval or rejection of the hypothesis. Strong
and weak relevance of features are further defined and serve mainly for theoretical analyses of
learning algorithms [12]. The presence of many irrelevant features combined with interactions
among those features is shown to cause severe degradation of prediction performance (e. g.
accuracy) for many FS algorithms (e. g. DTrees, Naive-Bayes classifiers) which are discriminating
among classes independently of the amount of available instances in the DS [12], [78], [83]. In
fact, Naive Bayes classifiers are more robust against irrelevant features but they are prone to
correlated features due to their monotonic nature [81]. While most current ML approaches
assume monotonicity of prediction performance, many real world scenarios do not satisfy these
monotonicity assumptions due to the presence of irrelevant features resulting in poor prediction
performance of for example DTrees [177].
Results of FS approaches are intended to be analyzed and used by domain experts as well as

to be used for further data processing or modeling and differ from goals of feature weighting
methods which are commonly performance driven and tend to be easier to implement. In feature
weighting internal feature weights are optimized according to a specified function with least-mean
squares and NNs as popular examples [11], [12] and extension for instance-based learning (e. g.
nearest-neighbor) [163], information-theoretic metrics [30] and extensions to wrapper techniques
to search through the weight space [82].
Similar to features, the relevance of each instance can be assessed by computationally intensive

induction techniques learning faster with fewer instances, due to expensive instances labeling
(e. g. expert analysis for every label) and improvement of the learning rate and the prediction
performance by focusing on instances with a high level of information [12].

Feature Selection Methodology

Various conclusions in terms of finding the best feature subset are drawn in literature as refer-
enced in the subsections above. Feature aggregation and construction prior to any FS is stated
to possibly improve prediction performance in some domains. Nevertheless, the challenge which
features to combine is similar to find an optimal feature subset. Two ways to tackle the problem
of FS are suggested in [48]. On the one hand, investigation of a filter approach based on corre-
lation coefficient or mutual information. On the other hand, a wrapper method with forward,
backward or multiple feature selection should be considered to find optimal feature subsets [48].

Filter Methods

As an established and approved filter method, the RELIEF algorithm performs statistical anal-
ysis in linear time with the number of features and instances. Even though, no prior expert
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knowledge is required and no assumptions for the distribution of irrelevant feature values are
required, the technique is stated to be unaffected by feature interactions and furthermore "fairly"
noise-tolerant which comes in handy since feature relevance of the RELIEF technique is cor-
roborated by theoretical analysis. In terms of feature reduction the RELIEF method does not
necessarily find the smallest feature subset but noticeably shrinks the feature space where the
final optimal feature subset can be obtained by exhaustive search conducted on the outcome of
RELIEF. Another alternative to exhaustive search is the most common and subsequent appli-
cation of induction learning methods with DTrees as popular example. Interval estimation can
be used to discover the required threshold to discard irrelevant features statistically [12], [78].
Technically RELIEF finds the nearest hit and nearest miss close to each instance with com-
monly Euclidian distance as measurement for this nearest-neighbor approach and subsequently
optimizes the feature weight vector. Generally, it can be stated that positive entries indicate
more relevant features whereas features with negative weight vectors can be omitted [48], [78].

The FOCUS algorithm developed in [1] also minimizes combinations of features to optimize
the discrimination among the classes. From initially isolated features, the filter technique starts
to combine these features into pairs, triples and so forth until pure partitions are found for
which no instances have different classes and then finally passing these feature subsets to a
DTree as prediction method. The accuracy of the DTree degrades significantly by introduction
of irrelevant features even though the FOCUS algorithm is not affected [12]. The FOCUS
and RELIEF FS methods are also used with nearest-neighbor retrieval [15] and naive Bayesian
classifiers [85] as induction methods. Similar variations of these methods are listed in [12].

Wrapper Methods

Noticeably, the application of SVM and SVR as pure wrapper learning methods for FS be-
came very popular within recent years [148]. DTrees like ID3, C4.5 and CART are FS wrapper
techniques with high risk to fail to exclude irrelevant features which would improve prediction
performance whereas these FS wrapper methods yield computationally more efficient ML mod-
els compared to preprocessing FS filter methods [68], [81]. Other greedy backward elimination
wrapper approaches are implemented with nearest-neighbor induction algorithms resulting in
good classification performance while containing irrelevant features and fewer instances [12].
More research and application are performed on classification than numeric prediction i. e. re-
gression (e. g. [164] with a k-Nearest Neighbor algorithm) [12]. Furthermore, naive Bayesian
classifiers as approaches sensitive to redundant features and vulnerable to correlated features
are shown to improve prediction performance when used in FS wrapper methods [86], [81]. An-
other investigation identified the equivalence of FS techniques regarding subsequently adding or
removing features to or from the feature subset [132]. Also, an example is presented where a
filter approach failed to achieve a correct prediction whereas a wrapper is able to deal with the
dataset [81].
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4.3.1 Feature Selection with SVM and SVR

Within the last two decades, SVM and SVR are investigated to optimize feature sets in the
context of FS wrapper techniques partially with a kernel function to overcome the restriction
to linearity. Dimensionality reduction of input space improves the prediction performance and
speeds up SVMs inducing various research in this field with the state of the art approaches given
below [173], [8].
As a first major contribution to FS with explicit SVM, the objective function as expectation

EP of the error probability E of the ratio between all training data belonging to the squared set
of size R and the corresponding squared margins M is minimized for the present optimization
problem W by gradient descent [173]:

EPerr ≤
1
l
E

{
R2

M2

}
= 1
l
E
{
R2W 2(a0)

}
(4.1)

where α denotes the l Lagrangian multipliers. For large feature sets very small values of EP
can be set to zero at once thus eliminating multiple features which can be repeated several
times to speed up the process of otherwise greedy backward elimination. Superior performance
compared to filter methods is shown in experiments with real-life data and toy data. This FS
wrapper method with SVM as induction algorithm overcomes identified difficulties of SVM in
high dimensional spaces with many irrelevant features [43], [173].
A second penalty-based method for FS linked to SVM is introduced with the focus on forcing

a large number of weights to zero. A linear optimization is implemented and applied but
unfortunately no concrete results are provided [49].
In comparison with filter methods, feature weights learned from an induction algorithm and

feature ranking coefficients describe both the value of a feature and can be used to some degree
interchangeably. Nevertheless, as a discriminant function using mutual information between fea-
tures and based only on support vectors, SVMs provide a better feature ranking than correlation
coefficients which favors SVR as technique to investigate regarding the present challenge [49],
[81]. Also computational advantages of SVMs compared to other competitive learning methods
are presented [29].
According to [108], embedded FS with SVR based on Kernel Penalization (i. e. KP-SVR)

shows superior performance compared to other wrapper or filter based SVR due to better ad-
justment to data by optimization of the kernel function and simultaneous feature subset selection
for regression. An equivalent computational effort compared to SVR-RFE is obtained and at
least the same computing time as for backward elimination is required. A gradient descent
approach is used to penalize features by finding the best suitable RBF-type kernel function
within each dimension by combination of FS, generalization and goodness of fit. In addition
to SVR-RFE, a search for the least relevant feature and a stopping criterion are implemented
[108].
Inductive and transductive SVMs are designed and together with SVM trees, they are com-

pared to each other on small, medium and large DSs where transductive SVMs perform at least
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as well as inductive SVMs on small and medium sized DS. SVM trees outperform the others on
large DSs [138].
In bioinformatics SVR is combined with FS for multivariate calibration to identify amino

acids (Phenylalanine/Phe, Tyrosine/Tyr & Tryptophan/Try) in their mixtures by fluorescence
spectroscopy. According to [96], SVR achieves a better prediction performance in regression
than NN and PLS for results of the LOO method. In addition to the assessed prediction
performance in terms of accuracy (i. e. RMSE & MAE), FS for SVR is investigated by the
filter method based on Mutual Information FS (MIFS) and the newly introduced embedded
method Prediction RIsk based FEature selection for support Vector Regression (PRIFER). The
fluorescence light intensities of 23 instances for 13 selected wave lengths as features are measured
aiming to optimize the necessary features along with the accuracy for the three amino acids. The
embedded FS technique PRIFER outperforms the filter technique MIFS by selecting only 9/4/9
features compared to 13/7/13 features for Tyr., Try. and Phe., respectively. The corresponding
RMSE/MAE yields 0.17/0.11 for PRIFER and 0.19/0.13 for MIFS [96]. Even though the FS
methods with SVR are conducted in bioinformatics with a different scope regarding the amount
of considered instances and features, they motivate the investigation of SVR compared to NN
and PLS. Neither any evaluation of outlier detection nor solutions for efficient and scalable
deployment of this method are given in [96]. The 13 preselected features provide only little
insight how well knowledge discovery can be accomplished. In the end, the improved prediction
performance of a technique incorporating the prediction algorithm vs. a prior applied filter
approach corroborates the significance of further research on wrappers and embedded methods
to achieve highest prediction accuracy.

Summary SVM & SVR: Since due to differing experiments the results of the outlined publi-
cations for FS with SVM and SVR are individually hard to compare, a general assessment is
provided. FS by means of SVM and SVR demonstrates superior performance for feature ranking
compared to filter methods. Furthermore, first promising results are achieved for application to
regression problems even though only little research is conducted so far using SVR. In general,
the investigated techniques are due to their deterministic nature more prone to find local optima
than heuristic ML methods based on the empirical risk minimization principle including random
walk and are not focusing on outlier detection as well as efficient and scalable deployment in
a productive environment. Also, the method is unable to deal with multiple selection criteria
(e. g. concurrent optimization of the number of input features and prediction accuracy). Finally,
no FS for subset optimization is considered but some approaches are motivated to reduce the
feature space faster and more efficiently.

4.3.2 Recursive Feature Elimination

"A good feature ranking criterion is not necessarily a good feature subset ranking criterion."
[49]. With this quote a first approach for SVM-RFE is introduced in 2002 as enhancement
of backward elimination. The different challenges of finding adequate feature ranking criteria
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and feature subset ranking criteria is highlighted and an iterative procedure is given as solution
formulated as RFE [49].
The strictly recursive and thus greedy approach is often not feasible due to an enormous

computational effort which requires to turn the feature ranking into feature subset ranking by
removing chunks of features at once. Interesting and important to emphasize is the fact that
the top ranked features within a feature ranking are not necessarily the ones that are most
important [49] which is also shown in later experiments in section 8.2. Hence, only the subset
of the correctly selected top ranked features can yield an optimal feature subset.
The SVM-RFE algorithm reduces the number of initial features until the feature list is empty.

For each passed step within the loop, the SVM classifier is trained and all αi are calculated.
Subsequently, for each feature within the high dimensional space the weight vector of the SVM
is computed for all instances as sum over the products of the target value yi and αi ·xi according
to the support vector expansion in equation (3.11).

w =
∑
i

αiyixi (4.2)

To square the computed weights is one way to obtain a feature ranking criterion which indi-
cates the worst feature to delete from the feature list and to add to a ranked feature list. Hence,
the computational effort increases linearly with the number of features. Superior performance
of recurring RFE compared to one-time calculated FS ranking methods is also shown [49].
SVM-RFE is also compared with two other multivariate linear discriminant functions. At

first, the Fisher linear discriminant function which is also called Linear Discriminant Analysis
is based on orthogonality assumptions and solves a generalized eigenvalue problem. As second,
the MSE linear discriminant function is computed by Pseudo-inverse. It is shown that SVM
performs best or equal with already a small number of features [49]. Recent research on RFE
confirms the superiority of RFE over zero norm FS or mutual information FS [47].
As fastest method following correlation techniques the computed weights w of SVM can be

used as feature ranking criterion. For linear SVM-RFE, the coefficients αi are optimized only
once. To compute the weight vector β the support vector expansion is calculated as given in
(3.11). Thus, for various feature subsets xi only the sum of the product of xi and (αi−α∗i ) needs
to be computed yielding the computational advantage. For the nonlinear case using a kernel,
only the kernel matrix H has to be recomputed for retraining whereat the quadratic time can
be halved by copying the calculated values along the diagonal. Additional accelerations can be
achieved by subtracting the partial scalar products of the eliminated features of matrix H and
caching the already computed dot products. The complexity of SVM increases linearly with the
number of features as seen above and quadratic with the number of available instances as the H
matrix is of quadratic nature. For RFE equally useful and correlated features are not removed
from the feature subset preventing loss of information and degradation of prediction performance.
Although these features may not be ranked uniquely, one of these features is ranked higher
and the other still remains in the feature subset whereas a naive ranking may produce equally
important features which are then lower weighted themselves. It is already pointed out that RFE
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is more robust to overfitting (cf. section 3.3.4) than combinatorial search and other methods.
In the end, the final number of selected features is not dictated by feature ranking methods [49].
SVM-RFE based on the approach presented in [49] is applied for diagnostic classification of
mammograms where the FS algorithm is enhanced to a maximum margin minimum redundancy
concept and compared to similar techniques in various ways taking into account redundancy and
relevance. The induction method performs superior to the compared FS methods [77]. Higher
prediction performance of SVM-RFE FS vs. correlation and information based FS approaches
is also shown in [99]. In order to assess the stability of a feature subset in terms of the same
selected features in several runs, SVM-RFE and Random Forest Variable Importance Measures
provide different behavior. While the latter aggregates stable subsets, it includes not only
the most important features whereas SVM-RFE finds the most important features and smaller
feature subsets but suffers from a possible impact of the described imbalance rate (i. e. class
samples versus intrusion samples). Improved understanding of process knowledge is achieved
and stability of not changing feature subsets is identified to be an aspect to consider [95].
The crucial importance of DP for DM and Knowledge Discovery is corroborated in the case

of SVMs where FS with SVMs critically depends on high quality data due to a strong influence
of outliers [49].
RFE improves FS compared to other classifiers with best results by reducing chunks of features

at once which loses impact for very high dimensionality vs. one feature at a time. Hence, without
trading in accuracy for speed it is reasonable to eliminate chunks of features at the beginning
of the FS process and refine to feature-wise reduction later on. As it is shown in experiments
on the colon cancer DS SVM-RFE performs superior to SVM (cf. subsection 4.3.1) [49].
Finally, to optimize performance for FS a cutting plane algorithm is introduced with a layer

to generate groups of features and then a second layer to select a group of these features with
comparable performance for SVM-RFE [110].

Summary SVM-RFE: Various research with respect to SVM-RFE is conducted and clearly
related to each other with predominant contribution according to [49]. Superior prediction
performance is achieved by the recurring RFE approach and its additional elimination of chunks
of features compared to one-time feature ranking techniques whereas still no real feature subset
selection is performed. Neither application of RFE to regression problems nor focusing on outlier
detection or efficient and scalable deployment in a productive environment are considered so far.
As for FS with SVM & SVR no heuristic concept based on the empirical risk minimization
principle is incorporated to explore feature space search via random walk and so prevent local
optima. Also, the method is unable to deal with multiple selection criteria (e. g. concurrent
optimization of number of input features and prediction accuracy).

4.3.3 Feature Selection with Genetic Algorithms

In order to overcome degraded prediction performance by violation of the monotonicity assump-
tions by inherent irrelevant features in case of DTree classifiers, GAs are introduced. In contrast
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to most proposed FS techniques, GAs are able to deal with multiple selection criteria as pre-
diction accuracy, minimization of the empirical risk by avoiding local minima and the number
of selected features in the feature subset. GAs are optimization methods and very effective
FS wrapper algorithms in high-dimensional search spaces [177]. According to section 3.5 each
individual in the population of every generation serves as a candidate for the feature subset of
this generation and if inherited to the end for the final feature subset. Each feature is encoded
as a single bit on the chromosome which represents a bit string of length equal to the number
of features with an active feature indicated by a 1. Given m features a total amount of 2m

feature subsets exists and thus for a high number of features (i. e.m»30) exhaustive search is
infeasible. The fitness function is encoded by the induction technique in the wrapper approach.
Remarkable is the combination of several evaluation criteria in the fitness function namely the
prediction accuracy and the computational cost [177].
A combination of evolutionary algorithms and SVMs is applied to optimize the number of

features, the training error and the SVM model parameters. For the latter, the norm of the slack
variables and the radius-margin quotient are tuned as dual objective which results in comparable
models as using single-objective criteria [159]. A similar approach is already investigated two
years earlier in the work of [148] with focus on optimization of classification accuracy and
cardinality of the feature subset.
For using GAs as FS method to reduce the feature subset, it is shown that FS does not

depend on the selected kernel function [160]. Further research with GAs and SVMs for time
series classification is performed to underline no improvement of prediction performance but the
achievement of the same prediction performance with a reduced feature set [34]. A comparison
between FS by GA and SS is conducted in the area of computer aided diagnosis for computer
tomographic colonography with SVM as induction method showing superior performance of GAs
over SS [116]. The relative importance of each feature is assessed by using different runs of a GA
technique [139]. Also, a combination of correlation-based FS with GAs is investigated. Initially,
highly correlated features are grouped but subsequently only features with small correlation
coefficients are used within the GA search to optimize the feature subset. It is concluded that
this approach performs equally or better than various SS methods and some filter based methods
[150].
GA as FS wrapper search algorithms is also used with SVM as induction method to predict

clinical phenotypes based on genome-wide Single-Nucleotide Polymorphism profiles of sib pairs.
790 instances for 117 features are tested whereat the size of the feature set is halved in each
generation until the classification accuracy improvement falls below a threshold of 0.001 and 18
features are left. The prediction performance of using GA FS with SVM as ’hybrid’ is superior
to a compared k-Nearest Neighbor ’hybrid’ approach [44].
Substantial work considering several interesting aspects of related FS for SVMs and GAs is

published 2003 [43]. At first, the generalization error is assessed by theoretical bounds instead of
frequently used cross-validation decreasing the computational effort and improving the robust-
ness against overfitting. The number of features and the SVM penalty parameter C are both
encoded in the chromosome for concurrent optimization. Once more, FS for SVM is confirmed
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to significantly improve the prediction performance. It is distinguished between binary GA en-
coding where the number of features is known beforehand and decimal encoding with a varying
number of features possible for the feature subset. As another result, the generalization perfor-
mance of RFE and GAs using the R2W 2 (cf. equation (4.1)) boundary implies an opportunity
to save time if the number of features is known beforehand [43].
A similar GA approach for regression is chosen to optimize all considered SVR model pa-

rameters (i. e. C, ε, γ, λ) where a mixture of a polynomial kernel and a RBF kernel with model
parameters λ and γ, respectively, is applied and again concurrently the number of features are
optimized. Thus, the chromosome bit string is encoded by the four SVR model parameters
and all features. In the end, an improvement of the prediction performance can be shown [97].
Another work motivates the application of GAs instead of grid search to find the best features as
well as the kernel parameter of a RBF kernel for SVMs. A ROC (Receiver Operating Character-
istic) curve of sensitivity and 1− specificity displays the benefit of a GA-based approach with
fewer features [56]. Linking the GA search for features with model parameters achieves superior
classification accuracy compared to single GA applications to either find the best feature subset
or to only optimize the hyper parameters [170]. Furthermore, a weighted SVM is presented with
GA-based parameter selection and improved accuracy [137]. Remarkable results for three exten-
sions of GA-SVM, SVM-RFE and Recursive-SVM are observed in [98] for four DSs containing
only few instances and features (both «100). On the one hand, Recursive-SVM and SVM-RFE
are comparable in prediction performance (i. e. 0.017<MSE<0.186) whereas GA-SVM per-
forms noticeably better (i. e. 0.008<MSE<0.022). On the other hand, the computation time
of the GA-SVM technique considerably increases compared to Recursive-SVM. The conclusion
states the fact that Recursive-SVM performs superior for classification but GA-SVM performs
superior for regression [98].

Summary FS with GA-RFE: While the two previous methodologies are based on the principle
of structural risk minimization of SVM, GA FS is based on the principle of empirical risk mini-
mization thus encountering the challenge of overcoming local optima. FS by GAs demonstrates
efficient wrapper algorithms in high dimensional search spaces and is independent of the kernel
function of SVM. The application of GAs to regression problems is again not in focus of current
research. The advantages of GA FS to perform feature subset selection comes along with the
drawback of the lack of an individual features assessment which is highly desirable for smaller
feature subsets obtained after significant reduction in the end of the process of FS. Finally, a
high computational effort is required to optimize large feature sets by GA FS.

Summary: The advantages and requirements of space dimensionality reduction techniques to
optimize the prediction performance and to minimize the feature set are clearly pointed out in
state of the art literature. Superior feature ranking by SVMs is reported compared to correlation-
coefficient-based methods or discriminant functions using mutual information theory. However,
the highest scored features of a feature ranking approach does not necessarily yield the best
feature subset and can omit complementary important but lower ranked features. Moreover,
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correlated but also useful features are often removed in correlation-based methods (e. g. filters).
Improvements in terms of prediction performance compared to other FS techniques are shown by
SVM-RFE with additional robustness against overfitting. Application of GAs improves determi-
nation of ML model parameters as well as feature subsets for SVM. Even though GAs can access
multiple selection criteria (i. e. accuracy, number of features, minimization of empirical risk) no
specific kernel selection is required. Thus, so far no suitable FS method is presented to unify the
benefits of computational efficient feature ranking techniques for fast feature elimination and
heuristic feature subset optimization constantly incorporating crucial interdependencies.
A highly interdisciplinary challenge is given to investigate and enable FS for regression in

VM in the extremely specialized and complex SM industry. Within industrial manufacturing
environment no dedicated experiments can be conducted and thus no assumed hypotheses can
explicitly be proved or disproved. Generic VM is demanded for efficient and scalable corporate-
wide VM implementation to encounter physically interrelated processes with hundreds up to
more than 10.000 features with thousands down to less than 100 instances for a huge variety of
logistical characteristics (e. g. recipes, operations, technologies, products, basic types, process
groups). In conclusion, most research in FS deals with classification problems and so far less
research is performed to investigate the challenge of regression for the apparently wide numerical
range of features and instances to deal with regarding a corporate-wide implementation of VM.
Finally, no approach reveals unexpected crucial features in terms of contribution to knowledge
discovery in the area of VM in SM.
Before the newly invented smart FS algorithm to meet the outlined challenges and to solve

the stated problems for advanced VM is described in detail in chapter 6, the requirements for
an efficient and scalable implementation as well as the newly developed advanced VM system
at Infineon itself are subsequently specified in chapter 5, hence, both together comprehensively
explaining the scientific novelty of the present thesis which is finally capable to enable efficient,
scalable, revealing and accurate VM in SM as outlined in the ensuing chapters.
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The first part of this chapter considers relevant tasks to enable smart Feature Selection for an
advanced Virtual Metrology system. Subsequently, the implementation of the newly developed
advanced Virtual Metrology system in the productive environment of High Density Plasma
Chemical Vapor Deposition at the Infineon frontend manufacturing site Regensburg is described
in detail.

5.1 Enabling smart Feature Selection for advanced Virtual Metrology

In order to enable smart FS and by this an advanced VM system, a productive VM application
including connections to all other related systems has to be implemented within an industrial
environment to approve of entire concept regarding the challenges stated in subsection 4.1.1.
Furthermore, the VM related systems R2R and FDC as well as the necessary data flow are
outlined for better understanding of the productive advanced VM system.

5.1.1 Motivation and industrial Requirement for advanced VM

The immense competition within SM industry enforces economic efficiency (cf. challenge 1
in subsection 4.1.1) and targeted development of VM as APC application inevitably including
conduction of a Cost-Benefit Analysis (CBA) as well as calculation of the expected return on
invest. Challenges and problems dealing with the economic efficiency of corporate-wide VM
deployment have been considered in various SM fabs and for several process areas. A state
of the art literature review regarding economic benefits further motivating VM is provided in
appendix A.2. The economic efficiency of VM implementation in the sense of maximizing the
return on invest is corroborated by the result of a detailed CBA for the present use case in HDP
CVD given in appendix A.3. The required framework to deploy the newly developed advanced
VM system corporate-wide including the new smart FS algorithm is already available for R2R
solutions. So, only the costs for human resources to develop VM have to be accounted. For
the use case of HDP CVD four benefits are summing up to finally yield the total benefit of VM
implementation taking into consideration 1) the reduced required metrology with 2) the derived
improved cycle time, 3) less possible scrap production of a subsequent planarization process and
4) the higher production output due to improved utilization of the already installed metrology
tools avoiding operational bottleneck scenarios.
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5.1.2 Virtual Metrology related Systems and Data Flow

Various established systems and applications are related to VM and necessary prerequisites
for its implementation at Infineon. The FDC and R2R control systems as well as an Infineon
internal framework to develop and deploy MATLAB-based applications in combination with SM
fab interfaces and an enterprise DB are highlighted in the following.

Fault Detection and Classification System

A FDC system is designed to access and monitor equipment parameters stored in an online
database system during production to detect and classify out-of-control equipment states re-
sponsible for possible misprocessing of wafers and thus avoidable scrap. Various online reactions
such as notification to process engineers or instant tool stop can be triggered to ensure high-
est possible control. In detail, tool-integrated as well as additional sensors provide time series
data for hundreds of physical process parameters like the already mentioned process chamber
pressure, applied radio frequency power or induced voltage. In order to reduce the stored data
volume and thus, also enabling historical long-term analysis of process conditions, the time series
data are aggregated by calculation of relevant values (e. g. mean, standard deviation) for the
individual process steps. Furthermore, higher aggregation is performed by algebraic combina-
tion of the aggregated process parameters to additionally generate significant process relevant
parameters for FDC application. Based on these process parameters, limits for various combi-
nations of logistical information (e. g. product, recipe) can be set and the type of reaction in
case of process parameters exceeding these limits can be defined. Upper Control Limit (UCL)
and Lower Control Limit (LCL) are sufficient in the scope of this work and define a control
range for the individual process parameters to ensure stable process conditions. Finally, these
aggregated process parameters serve as input variables, so-called features, for the ML algorithm
to predict the process outcome as output of the VM system.

Run-to-Run Control System

A R2R control system is established to enable direct process control by adjustment of relevant
recipe setpoints on the individual production equipment resulting in appropriate adaption of
essential process parameter settings to ensure the desired process outcome. Prior the processing
of productive wafers, the specific recipe setpoints actually valid for the logistical characteristics
of the associated lot (e.g. product, basic type) are downloaded from the R2R controller to
the production tool. After the lot is processed with these predetermined parameter settings
and proceeded to the subsequent metrology operation, the physical measurement result for the
sampled wafers is uploaded to the R2R controller and compared to the internally calculated
target value from which the initial lot-specific recipe setpoints were derived. Depending on
the resulting deviation between the calculated and thus expected process outcome and the
real measured, the internal regression model parameters of the R2R controller are updated
accordingly. Typically, Exponentially Weighted Moving Average based models are used for R2R
control. As a result, process drifts or offsets caused by adjustments of preceding processes,
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degradation of the production equipment or relevant maintenance interventions (e. g. process
chamber wet cleans) can be compensated by deploying such closed-loop R2R control. As a
consequence, the process parameters adjusted by the R2R controller need to be considered
accordingly for VM modeling in order to cope with related parameter drifts and offsets which
does not affect the process outcome.

Infineon Framework to deploy Virtual Metrology

Many commonly used SM fab IT systems including their interfaces are exemplarily outlined in
[18]. In order to enable fast and agile development and implementation of VM with respect to
selected use cases, an Infineon internal framework is used allowing ’plug and play’ of any type
of MATLAB-based algorithms. This framework, which is also dedicated to integrate the R2R
control system into the Infineon fab environment, is connected to various other IT systems and
also provides interfaces to necessary enterprise DB. All connections and the data transfer can
be performed by specific method calls.

Data Flow

Nowadays high-end SM requires enormous data processing for each equipment to set recipe
setpoints and their equipment-wise individual adjustments with the challenge of older tools
containing older microprocessors resulting in lower bit rates available for data transmission. Due
to the fact that crucial instructions are executed with highest priority, a lack of additional read-
out data (e. g. for analysis or development as in the present case) during online manufacturing
is possible and can complicate VM development. Received process data are further preprocessed
and together with logistical/context data stored into the R2R- and FDC DB. Even more data
are obtained by other data sources and also stored to various DBs or data warehouses. Many
departments (e. g. industrial engineering, product technology development & chip design) are
focusing on different tasks using all available data sources. Thus, the complexity of the entire
data flow with all interfaces, DBs and enterprise servers cannot be covered in detail within the
present thesis.

However, all data expected to contain useful information for VM are collected from a central
data warehouse, an engineering DB and the R2R- and FDC DB. Process data measured by
integrated equipment sensors are queried and received from the tool as continuous data stream.
The extensive time series raw data stream is stored into fragmented files on a file server which
are then further processed. Finally, any predefined and calculated key numbers (e. g. mean,
variance, functions of other key numbers) are stored within an enterprise DB. The challenge to
handle the resulting data fragmentation combined with missing data underlines the complexity
of implementing a VM system.
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5.2 Advanced Virtual Metrology System at Infineon

Starting from scratch at the beginning of this work in February 2011, an advanced VM system has
been initially investigated subsequently developed, implemented and finally tested and evaluated
online within the previously described Infineon internal framework. Initial activities focused on
the investigation of applying a wide range of ML regression techniques to accurately and reliably
predict the process outcome for several use cases for different processes (cf. subsection 4.2.2).
As a promising use case with significant economic benefit (cf. subsection 5.1.1), the HDP CVD
inter-metal dielectric process (cf. section 2.2) was finally chosen to develop and implement an
advanced VM system. Compared to state of the art VM systems, the newly invented VM system
is advanced by smart FS to automatically reveal crucial features and by this to achieve the high
aims of enabling and optimizing efficiency, scalability, knowledge discovery and accuracy as the
essential demands made on a corporate-wide VM system.
Figure 5.1 visualizes VM as an enhancement of physical metrology. Some of the production

wafers processed on the manufacturing equipment are sampled for physical metrology and the
measurement results are monitored via statistical process control with statistically calculated
upper and lower control limits (UCL, LCL) as displayed in the upper part. As not all productive
wafers are inspected, possible misprocessing of unmeasured wafers remains undetected and a
breakdown of the finally manufactured devices reducing overall yield implying less efficiency
and thus higher manufacturing costs per device. The lower part shows the integration of VM
into SM where process sensor data and metrology data serve as input for supervised learning
DM models (e. g. NN, M5’, SVR). As sensor data are available for all processed wafers, the
process target can be predicted for every wafer and monitored in the same statistical process
control chart. Several advantages as less real metrology, savings of materials, production time
and equipment degradation as well as increase of product quality are well-known (cf. section 2.2,
appendix A.2). An ancillary but important effect is the availability of the VM prediction as input
for the R2R controller enabling Wafer-to-Wafer instead of Lot-to-Lot control as it is realized
nowadays.

5.2.1 Knowledge Discovery and Data Mining

State of the art research in the field of VM mainly focused on evaluation and tuning of regression
and induction algorithms as well as basic FS methodologies (cf. section 4.2). In order to explore
and unleash the full potential of structured Knowledge Discovery in Databases and DM (cf.
section 3.1), the entire CRISP-DM approach has been investigated, adapted and enhanced for
VM at Infineon.

Business Understanding

The economical motivation to implement a VM system is already highlighted in detail above
(cf. subsection 5.1.1 & appendix A.2). Nevertheless, the effect of Knowledge Discovery in
Databases to improve the knowledge about highly complex processes and thus to serve as key
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Figure 5.1: Overview of Virtual Metrology as enhancement of physical metrology (cf. [70]).

enabler for future unit process developments, supporting future technologies and products is
not comprehensibly considered so far. Hence, process experts of the Unit Process Development
CVD team were involved as stakeholders. The substantial challenge of enhancing their profound
knowledge about the HDP CVD process by means of Knowledge Discovery in Databases is
encountered by smart FS. So, the process of business understanding identified the challenges of
economic efficiency, scalability and accuracy as basic requirements and knowledge discovery as
ambitious goal to achieve by advanced VM.

Data Understanding

Within a productive manufacturing environment lots of data are collected in different DBs for
various applications. First data collection was concentrated on data stored within the FDC DB
(cf. section 5.1.2). In addition, a data warehouse was inspected to get further useful information
which was successfully achieved by obtaining an additional parameter for approval of logistical
information on wafer identification. This parameter was merged to the FDC and R2R data.
Furthermore, another engineering DB was queried to obtain more logistical parameters enabling
more specific tests due to an increased granularity of available data.
Critical tasks of the processing procedures are prioritized by the control software of the pro-

duction equipment compared to services for data acquisition via the tool interfaces resulting in
possible data gaps during data collection due to the limited processor speed of the equipment
internal control module. Such data gaps within the time series data collection can yield missing
values if a FDC process parameter cannot be calculated. Thus, dealing with missing data is
inevitable even though the mentioned parameter from the data warehouse was useful to improve
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the data quality.
Correlation analysis was conducted to recognize characteristical interdependencies between

process parameters but no data were removed to keep all possible information for later FS.
Correlated features could also be modeled by cluster analysis and instances with well-known

characteristics (e. g. after maintenance action) could be illustrated, but no further effort was
spent on the tasks due to the present supervised learning approach for VM versus unsupervised
learning clustering techniques.
All variables of any DS were explored and inspected carefully but no initial hypothesis to

verify or reject was put forward.

Data Preparation

• Data Formatting: Each logistical parameter which can be considered to be important to
add valuable information is converted from character, string or date into natural numbers
because numeric input is required for SVR.

• Data Set Compilation: All DSs are compiled using two years productive HDP CVD
SM fab data.

• Feature Translation: The investigation over the past years consistently confirmed that
the prediction performance is improved by using the Deposition Rate (DR) instead of
the Layer Thickness (LT) as prediction target. The calculation of the DR as well as
normalization of all data are the conducted tasks in feature translation.

A R2R controller running on the respective production equipment calculates the Deposition
Time (DT) based on an Exponentially Weighted Moving Average filter approach from the
estimated DR and adjusts the DT recipe setting for each lot. Thus, the DT has to be
excluded from the input parameters to avoid indirect modeling of the computed function
of the R2R controller instead of approximating a function which precisely models the HDP
CVD process. In order to exclude the DT from the input without any loss of information,
the LT is divided by the DT. The obtained DR given in equation (5.1) serves as prediction
target for the VM system but it excludes the DT as a major source of information for
the prediction of the LT. Various ancillary experiments have proven a perfect correlation
between DT and LT allowing to set this boundary condition for the present thesis. Further
investigations regarding this issue are already discussed in [92]. The initial target Y (i. e.
the deposited LT in nanometer [nm]) is measured at nine different sites on the wafer surface
whereupon the mean is calculated to receive a robust target value Y independent of the
uniformity of the deposited layer (cf. subsection 2.3.3). To test the precision of SVR, the
DR was predicted and then translated into the LT by multiplying with the associated DT.
Hence, for the finally conducted assessment of the resulting RMSE the LT is used.

DR
[nm

s

]
:= LT [nm]

DT [s] (5.1)
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As second part of feature translation, an effective technique to avoid domination of large
scaled input values over small ones is to normalize all variables to a specific range which
is set to [0,1].

• Instance Selection: In order to ensure highest accuracy for VM, restrictive instance
selection is chosen during the development where for any missing value (i. e. NaN) the
entire instance is removed from the DS. No replacement by other calculated values (e. g.
mean) is performed. All obvious outliers of any feature or target value turned out to
significantly degrade the prediction performance of SVR [26]. Thus for the evaluation of
the developed new ERBE FS algorithm (cf. section 6.5) all instances showing significant
outliers exceeding the 3σ standard deviation range are removed.

• Feature Selection: In the scope of the present thesis, only features from the productive
deposition step are considered. Features from the same process but not this specific de-
position step (e. g. previously performed cleans, heating process steps) are not considered
whereupon these additional features can contain valuable information for further inference
[123]. All features containing only NaN values or only a single value are immediately
removed whereas missing values are replaced by the mean of this feature vector.

Modeling

Within the last decade SVR as a powerful and promising induction method has evolved with
the advantages of high accuracy and strong predictive power combined with good generalization
ability. The multivariate regression technique was enabled by means of kernel extensions to
deal with nonlinear data without computational drawbacks. If model robustness can be handled
by smart data preparation and skilled model parameter adjustments SVR can also serve as
reliable prediction method. Based on the principle of structural risk minimization and only
linear increase of complexity with the number of features with further optimization potential of
multiple feature-independent kernel extensions and adaption of Sequential Minimal Optimization
(cf. [124]), SVR appears to be a promising method for highly accurate and reliable VM.
Various regression algorithms (e. g. PLS regression, CART, NN regression) were evaluated for

VM with generally strong prediction performance whereas other techniques (e. g. MLR, Simple
Linear Regression) showed limited or inferior performance (cf. section 4.2). A combination of
the former methods (i. e. M5’, NN) is evaluated and implemented in [87] and is used within the
developed VM system introduced in the following subsection 5.2.2.

Evaluation

The importance to achieve highest required accuracy and to detect critical outliers yields the
decision to choose the RMSE as main evaluation criteria due to the fact that higher deviations
from the real metrology have higher impact to the final error. The common MAE is provided for
reference. For both the coefficient of variation (i. e. CV(RMSE)) is calculated to obtain scale-
independent results and comparability with referenced state of the art VM (cf. chapter 4). In
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addition to the single value error measurement, the quantitative assessment of revealed outliers
is conducted by the sensitivity giving the ratio of detected outliers out of all outliers. The
coefficient of determination R2 as third complemental testing method defines how well the
prediction model fits to observed data. All experiments are carried out to test the designed VM
system and the newly implemented ERBE algorithm which reveals the most important process
parameters.

Deployment

Within the scope of the present thesis, the developed VM system including the following new
ERBE FS algorithm (cf. section 6.5) is implemented as online application and tested on real-
world productive process data to corroborate the concept of the provided VM system enhanced
by the good performance of the ERBE algorithm. Future deployment is planned but related
activities are out of scope of this work.

5.2.2 Advanced Virtual Metrology System Implementation

An advanced VM system was developed and implemented within the productive SM environ-
ment at Infineon which is associated with the benefit of ensured availability of sufficient real
production data but also with the challenge to collect experimental data necessarily without
any disturbance of the running manufacturing. Compared to a pure academic approach, a com-
prehensive amount of enlightening experimental data (e. g. outliers for specific settings) could
hardly be incorporated into the investigation due to the missing opportunity to design experi-
ments for specific targets to investigate because the entire manufacturing must not be affected
or changed at any time. In addition to the advantages of real industrial data collection and
disadvantages of a lack of comprehensive experimental data, other productive systems are influ-
encing and altering the research and development activities (cf. subsection 5.2.1 and equation
(5.1)). The implementation of the advanced VM system was accelerated by the concurrent Infi-
neon internal development of a new agile master framework based on modular design principles
to allowing rapid deployment of applications implemented in MATLAB. Interfaces to other fab
systems (e. g. Manufacturing Execution System) and various DBs were provided together with
load balancing and many other framework functionalities. Hence, efficient development and
implementation of the present advanced VM system as an internal subsystem was substantially
supported by the master framework. The VM system comprises independently running VM
modules performing the prediction and training of implemented ML algorithms as well as the
configuration in terms of logistical granularities (e. g. equipment, technology, product, recipe,
operation) and available VM models.

Prediction and Training Module

The in the scope of this work developed Prediction and Training Module (PTM) module located
as application within the previously mentioned internally and concurrently developed framework
(cf. section 5.1.2) specifies an independently running instance of the VM implementation which
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Figure 5.2: Advanced VM System Prediction and Training Module: The scenario of a completed
process with a final prediction is displayed at the top whereas a completed metrol-
ogy with eventual new training of VM models in case of inaccurate predictions is
illustrated at the bottom.

can adopt different states depending on the provided input and the previously computed VM
predictions. Figure 5.2 illustrates the PTM workflow diagram with five possible states (lime),
the VM library containing SVR, NN and M5’ as ML methods (burnt orange) and the aggregation
of various corporate DBs (purple) including the relevant transitions and interactions (dark blue
arrows). Two VM scenarios are processed to either calculate a new prediction or to train the
VM models. For clarity the paths to return to the idle state after storing a prediction or the
VM models are not indicated.

Prior to an activation of the VM system, the corporate DB has to be initialized with a basic
dataset containing physical process, logistical and metrology data for a wide range of logistical
granularities (i. e. various equipment, products, recipes, technologies). Already computed pre-
dictions are not mandatory to be included during initialization but predictions for the loaded
instances performed by already trained VM models accelerate the processing performance of
the VM system during the first weeks of operation due to a decreased effort necessary to train
capable VM models if no predictions are available for already existing instances.

For both scenarios the VM module registers itself as listener in the framework to get notifica-
tions from the fab system. Thus, the VM implementation is encapsulated and other different fab
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interfaces are connected only to the framework which provides MATLAB methods to be called
directly inside the VM source code. For the application in the productive environment, many
independent instances of the VM implementation can be populated and configured in parallel to
listen and to serve different processes and equipment, all accessing the same provided interfaces,
DBs and libraries. The high potential of this new generic advanced VM system is unveiled by the
fact that future activities can focus on extensions and enhancements of the advanced VM system
and the adjustments of individual VM implementations while using the present implementation
as a template. Future VM is enabled to run independently from human interactions by finding
the most important features through application of the ERBE FS algorithm to achieve highly
accurate and reliable predictions and by automatically triggering necessary VM model updates
online during production.
In the following, the PTM workflow for productive application is described in detail.

Prediction: After completion of a production process for HDP CVD a notification is sent to
the fab system. The PTM which is registered to listen to the associated process equipment will
be triggered and basic process details in terms of specific logistical parameters for the processed
lot or rather wafer (e. g. lot/wafer ID) are provided. These logistical parameters are kept and
the state of the VM module changes to ’VM Prepare’. Depending on the revealed features as
outcome of the FS, only the selected process features and the absolutely necessary fraction of
all available logistical data to individually describe the present process are queried from the
various DB sources to ensure most efficient VM processing. Subsequently, data are merged
as well as preprocessed (cf. section 2.1, subsection 5.2.1) and the purified wafer instance is
stored into a dedicated DB as well as passed to the ’VM Prediction’ state. The appropriate
trained VM models (i. e. SVR, NN & M5’) are loaded from the configuration DB according to
the specific logistical information as used before to query FDC data. Afterwards, the process
result is calculated by the VM models which can be performed instantly for a single wafer
instance. Finally, the predicted VM target is stored to the already present, purified dataset and
the PTM returns to the ’VM Idle’ state. Now, the predicted VM result is also sent to other
systems for further analysis and statistical process control. The upcoming paragraph describes
the estimation of the prediction reliability together with possible reactions.
A RI is suggested based on comparison of predictions performed by MLR and other learning

algorithms with NN as popular example [24], [71]. Due to the fact that the inferior performance
and reliability of MLR is already shown [127], a different approach is developed to access the
reliability of a VM prediction in the scope of the present dissertation. Various high-sophisticated
ML techniques (i. e. SVR, NN, M5’ (cf. subsection 3.2.2)) based on different statistical funda-
mentals have been tested for accuracy and reliability with comparable prediction performance
(cf. [93]). Hence, a traffic light logic is derived where at first the prediction is expected to be
acceptable (green) if all methods compute a similar prediction, secondly the prediction should
be treated with care (yellow) if the variance of the three predictions exceeds a defined range and
thirdly the prediction has to be rejected (red) in case of deviating predictions above a certain
limit of at least one method. Different prediction outcomes and behavior from these methods
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may result from their individual mathematical characteristics for underlying data (e g. distribu-
tions, shifts, drifts, kernels). For the red light case, a notification is sent to the process experts
and a physical metrology is triggered as well as an inspection of the VM models in terms of
recent prediction accuracy. Repeated deviating predictions cause a retraining of the VM models.
The applicability of the suggested traffic light logic RI approach was corroborated by results
achieved on productive data with all three methods (SVR, NN & M5’) as illustrated in figure 5.3
from presented publications [87], [93]. In order to perform an in-depth assessment of the traffic
light logic RI an evaluation over a longer time period is necessary and thus content of future
work.
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Figure 5.3: ML algorithm comparison for a VM Reliance Index: "Prediction by ML techniques:
M5’ (blue), NN (green) and SVR (red). The prediction performance is remarkable
achieving a CV(RMSE)<0.5% and R2 >70%. The deposited layer thickness as
prediction target was measured outside the control limit for two wafers whereupon
all algorithms recognized these wafers as outliers. Also, all other observed values
close to UCL and LCL are fitted perfectly" [87], [93].

Training: After a wafer is measured, the listening VM module is triggered and required logisti-
cal parameters are passed to the ’VM Check Train Model’ state. Subsequently, the corresponding
measurement data and the already available purified dataset including the calculated prediction
are loaded from the DB and merged. The VM prediction is compared to the real metrology
result and according to a predefined logic, a decision is made to retrain the VM models or just
store the dataset in the DB and return to the ’VM Idle’ state. The predefined logic for a con-
figured logistical granularity can be manifold and, for instance, may depend on the frequency of
the used VM models whose reliability is to be accessed according to the prediction performance
in the past. The challenge in low-volume-high-mixture SM is to find rules which imply enough
generalization not to retrain the VM models to often which would cause instabilities or even
oscillating predictions in case of short MW DSs as well as computational overload. But at the
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same time the rules need to be specific enough to ensure high accuracy by adequate frequency
of the model training. A simple rule during evaluation of the implementation enforces a new
training if a predefined limit for the deviation of the prediction from the target is exceeded by
more than 20% of the last (e. g. 10) predictions. An investigation of various scenarios as best
time point to trigger a new training to achieve best accuracy and reliability is content of actual
research (cf. section 10.2).
If a new training is necessary, only some information containing the logistical granularity

need to be passed to the next state ’VM Train’ because the metrology result for this instance
is already stored in the DB. As first action in this state, the entire dataset for this logistical
granularity is queried from the DB. After the purified DS for the training (e. g. MW approach)
has been loaded, the available implementations of the ML techniques are loaded from the ’VM
Library’. Finally, all three VM models for SVR, NN and M5’ are retrained to ensure comparable
predictions based on the same training DSs for different logistical sub-granularities which is
described in further detail in the next paragraph below. The VM models for the individual
logistical granularity yielding the most accurate result are selected as productive VM models for
further productive predictions and stored into the DB before the PTM returns to the ’VM Idle’
state.

Configuration Module

In low-volume-high-mixture SM a huge variety of products based on a lot of different technolo-
gies is manufactured on an individual production equipment. Thus, for just one specific process
(e. g. HDP CVD) many different products and technologies including various operations and
recipe settings are processed on each equipment during daily production. Even a more detailed
categorization of this logistical granularity (e. g. basic type) is considered for VM (cf. [128])
but for simplicity reasons, to facilitate system efficiency by minimization of configuration and
maintenance effort as well as for consecutive developments a solution minimizing the logistical
granularity is highly desirable. Highly accurate and reliable predictions combined with compu-
tational efficiency can be achieved by individual adaption and optimization of the VM model
according to the required logistical granularity. For more frequent manufactured products VM
models can be tuned for a higher logistical granularity where data is separated by more logisti-
cal parameters since still enough data are available to reveal crucial characteristics whereas low
volume products need VM models tuned for a lower logistical granularity to enable meaningful
statistical investigations based on a sufficient amount of data. Accordingly, a Configuration
Module (CM) has been developed for the advanced VM system to cope with this demand and to
allow optimization of the prediction performance and reliability as it is required for a productive
VM system.
VM models for a specific logistical granularity are trained on all partitions which can be

created for the respective logistical parameters. Thus, the total number of partitions is given
by the Bell number Bn where n describes the number of elements in the partition which are the
different logistical parameters in the subsequent example. In order to prevent multiplication of
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trained VM models for lower logistical granularities, two tables are designed to efficiently assign
the logistical granularities to the VM models.

AssignID

Logistic VM Model
Granularity

ID

A1-B1-C1-D1 A1-C1 ID 1234

A1-B1-C1-D2 B1-C1-D2 ID 5620

A1-B1-C1-D3 B1-C1 ID 3129

… …

A1-B2-C1-D3 A1-C1

A1-B2-C1-D3

ID 1234
ID 7896

… …

A1-B3-C1-D2 A1-B3-C1-D2 ID 5834

A1-B4-C1-D3 A1-C1 ID 1234

… …

A2-B1-C1-D2 B1-C1-D2 ID 5620

... …

A3-B1-C1-D1 B1-C1 ID 3129

MapID

ID VM Model

ID 1234 SVR, NN, M5‘

ID 5620 SVR, NN, M5‘

ID 3129 SVR, NN, M5‘

ID 5834 SVR, NN, M5‘

ID 7896 SVR, NN, M5‘

… …

Figure 5.4: Advanced Virtual Metrology System Configuration Module: All possible logistical
combinations are assigned to an ID (table AssignID) and mapped to the correspond-
ing VM model (table MapID). In table AssignID, several different logistical combina-
tions (1st col.) can apply to the same VM model granularity (2nd col) and uniquely
assigned to a generated ID (3rd col.). In table MapID these IDs are mapped to the
trained VM models which are stored in the DB and thus not multiplied for several
logistical combinations. In red, an example for a required retrained VM model is
highlighted with changed entries.

Figure 5.4 visualizes a possible configuration of the VM system without the claim of being ex-
haustive. Four different logistical parameters (e. g. equipment, product, technology, operation)
are represented by Ai −Di. The index i indicates the different possible values of the logistical
parameters (e. g. A1 could represent product 1). The left table AssignID assigns the complete
set of permutations for all logistics (1st column) with corresponding VM model granularity (2nd

column) to a randomly generated ID (3rd column). These IDs are then mapped in the right
table MapID to the actually trained VM models (i. e. SVR, NN, M5’) which are stored in the
DB. The VM model granularity is defined as the combination of the logistical parameters (i. e.
Ai − Di) to achieve highest accuracy with the training DS. So, more generalized VM models
can be built on a combination of fewer logistical granularities (e. g. only B1 & C1 – ID 3129)
including all data of not specified logistics (i. e. A∗ & D∗) due to the fact that for lots with
rarely manufactured combinations of logistical granularities (e.g. rare operation, technologies,
products) not enough training and validation data are available if higher granularities are spec-
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ified. The assignment of logistics to IDs in table AssignID evolves empirical over time and with
necessary retraining of a new VM model a different granularity may be assigned for the new
VM model to guarantee highest possible accuracy and reliability.
The VM models of the first example with identifier ID 1234 are only trained on data of the

logistical granularities A1 and C1 whereupon the logistical granularities B1 and D1 are not
considered (i. e. B∗ & D∗). Hence, the same VM models are used for the logistical granularities
A1-B1-C1-D1, A1-B2-C1-D3 and A1-B4-C1-D3. Analogously, more generalized VM models are
trained for ID 5620 and ID 3129. An example for a highly specified trained VM model is provided
with logistical granularity A1-B3-C1-D2 and ID 5834.
In case of degraded prediction performance for VM model of logistical granularity A1-B2-C1-

D3 with ID 1234 (illustrated in red), new VM models are trained for several possible logistical
granularities (e. g. A1-B2-C1-D3, A∗-B2-C1-D∗, A1-B∗-C∗-D∗, etc.). Nowadays due to an in-
creased demand of products and the resulting adaption in manufacturing more data are available
for the specific combination of logistical granularity A1-B2-C1-D3. Thus, a more specific VM
model can be built for exactly this granularity combination and yields the best prediction per-
formance. A new ID (7896) is generated and assigned in the table AssignID. Subsequently the
new ID 7896 and the trained VM model are added to the table MapID and stored into the DB
and the old link will be deleted (not visible in figure 5.4).
The reduction of DB storage for different logistical granularity becomes obvious due to the fact

that multiplication of the same VM models used for different logistical granularities is avoided
(e. g. ID 1234). The size of the mapping tables is negligible compared to otherwise multiply
stored VM models.
For productive online processing the CM is queried by the ’VM Prediction’ state of the PTM

to provide the dedicated VM models for the given logistical granularity. The CM is located
within the corporate DB and therefore not specifically indicated in figure 5.2. An incoming
request is routed via both CM tables and the trained VM models are returned to the PTM state
to calculate the VM outcome.

5.2.3 Boundary Conditions

The accuracy of the layer thickness measurement by the metrology equipment as described in
subsection 2.3.3 can be estimated according to the specification sheet [161] of the metrology
equipment manufacturer Therma Wave to be 0.4% RMSE deviation of the deposited layer
thickness while precision and repeatability are stated as 0.05% and 0.1%, respectively. Hence,
a VM prediction accuracy of smaller than 0.4% cannot be achieved or evaluated since the
prediction cannot outperform the metrology equipment on which underlying training data the
VM model is built.
In addition, the target value for the liner sub-layer deposition (cf. subsection 2.3.3) is sub-

tracted from the total metrology result in productive mode because the liner sub-layer deposition
is a well-controlled, reliable and accurate process. Thus, the impact of the limited accuracy of
the metrology tool on the final VM prediction is extended by a tiny variation and uncertainty
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introduced by the liner sub-layer thickness.

Summary: Following the state of the art of the previous chapter the new VM system is de-
scribed in detail. The CBA as requirement to approve economic efficiency and VM related
systems and data flow complete the comprehension for the introduced VM system. Initially, the
important incorporation of the CRISP-DM process for knowledge discovery and DM is high-
lighted. Subsequently, the essential implementation of the advanced VM system is precisely
outlined with PTM and CM as core pieces. Finally, the boundary conditions round off this
chapter. The newly invented smart FS of the next chapter enables the implemented VM system
to incorporate only the most important features and thus to significantly enhance efficiency,
scalability, process knowledge and prediction performance. The VM system is improved to an
advanced VM system as first totally generic and efficient VM approach and as first core piece
of the present thesis.
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Following the description of the VM system the advancement by smart FS is subsequently
outlined in detail. The approach of the present thesis to optimize the feature subset is based on
and corroborated by upcoming experimental results demonstrating the benefit of ERBE for VM
in SM. As it is shown in [49], the selection of the most important features has a significantly
higher impact on the prediction performance than the choice of comparable learning algorithms
which is affecting the result only marginally. Furthermore, FS was recognized as a mandatory
approach to achieve good results in case of high input dimensions versus small sample sizes (cf.
section 4.3). Due to the fact that generally unknown and hidden interrelations between features
exist, a backward selection approach in combination with heuristic genetic optimization is chosen
to reveal the most important features for VM and also to evaluate all intrinsic information thus
avoiding the disadvantage of forward selection in terms of possibly missing individual features
with interrelations to other features not yet included in the subset [48], [115].
In addition to the improvement of accuracy and robustness of the prediction models, a major

impulse to perform FS is the enormous reduction of data necessary for the processing of VM.
Around 20 up to more than 10.000 possibly recorded features in combination with extensive
logistical information from different data sources for a single process highlight the demand for
smart FS to enable fab-wide VM. Reduction of input data by quality issues during data acquisi-
tion and multiplication of input data by consideration of statistical metrics (e. g. mean, median,
kurtosis, skewness) or aggregation of features are common examples leading to a wide range of
possible feature set sizes. Depending on the consideration of necessary logistical granularities
(cf. section 5.2.2), many VM models need to be trained for a single process to achieve highly
accurate and reliable predictions. Regarding the conception of a corporate-wide VM system
incorporating hundreds of different processes, typical for modern SM, data traffic and storage
have to be minimized to avoid inefficient and computational infeasible VM. Expensive data
storage in highly available DBs clearly demonstrates the requirement for FS. Also the training
of VM models with hundreds or even thousands of instances together with a similar high number
of features turns out to fail in MATLAB implementations without special MATLAB intrinsic
enhancements due to out of memory errors even for enlarged random access memory of virtual
enterprise servers. A linear increase of computation time with the number of features and a
quadratic increase with the number of instances can be estimated (cf. section 4.3). Hence,
while currently no method is available to encounter all the problems and challenges stated in
subsection 4.1.1, the new ERBE algorithm yields the solution.
At first, an assessment of other FS methods (cf. section 3.3) is conducted in order to afterwards

compare the performance of some of these FS approaches with the newly invented FS technique.
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Thereafter, the SVR kernel is introduced to encounter the challenge of high nonlinearity in
data from the simultaneously running physically superpositioned processes (i. e. deposition &
sputtering) within the HDP CVD process (cf. section 2.3). At third and fourth the developed
FS techniques based on LOO and GA are explained in detail whereas these techniques together
build the two elements of the ERBE algorithm. Section 6.5 initially outlines the reasons and
advantages of a smart FS algorithm linked up by LOO FS and GA FS followed by the detailed
description of the algorithm itself and further complementing considerations.

6.1 Assessment of Feature Selection Methods

Following the actual research in section 4.3, an assessment of appropriate FS methods is per-
formed to find a promising FS technique to ultimately overcome the obstacles of present state
of the art and master the challenges described in subsection 4.1.1. In spite of the advantages
of computational complexity of embedded methods over wrappers, they are not assessed due
to the fact that the interpretability of their FS results is hardly possible for anyone who is not
familiar with the intrinsic mathematics of considerable ML methods. The not clearly separable
but continuous range of weight vectors (e. g. of SVMs, NN or naive Bayes) rarely differentiate
the investigated features or feature subsets. Input variables and especially feature subsets in-
cluding their interrelations are also hard to interpret in decision trees since splits along the same
features are possible in various levels of the tree and feature subsets possibly clustered in the
tree are blurred.
Table 6.1 provides important advantages and drawbacks for deterministic and greedy search

strategies (e. g. SS), advanced search strategies including filter approaches (e. g. Best First)
and metaheuristic search strategies (e. g. Ant Colony Optimization). More detailed character-
istics and assumptions as well as descriptions of the advantages and drawbacks of the outlined
algorithms are available in the referenced literature (SS: [139]; Backward Elimination: [139];
Hill-Climbing: [139]; Best First: [81], [139]; Branch-and-Bound: [121]; Simulated Annealing:
[35], [109], [139]; GA: [117], [144], [139], also cf. subsection 4.3.3; Particle Swarm Optimization:
[17], [7], [73]; Ant Colony Optimization: [17], [32]).
Particularly with regard to the stated challenges the favored FS method is required to yield

the most important feature to achieve highest accuracy and reliability. SS, Backward Elimi-
nation and Hill-Climbing are prone to local optima and by their stepwise methodology do not
assess interrelated features or entire feature subsets which is crucial for superpositioned physical
processes with strong interaction as in the present use case. The advantage of the Best First
search to incorporate efficient filter methods for faster computation at the same time may turn
out to be the lack since it may degrade the prediction performance and reliability subsequently
assessed by the investigation and comparison of the RELIEF algorithm. The Branch-and-Bound
search assesses neither interrelated features nor feature subsets. Characteristics like simple, de-
terministic and compared to metaheuristics faster computation as common main advantage of
the search techniques do not outbalance the existing drawbacks. Simulated Annealing as first
metaheuristic search is more robust to local optima but evaluates only a single candidate each
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FS Method Advantages Drawbacks

Stepwise Selection simple, deterministic, compu-
tational faster than heuristic
models

prone to local optima, no assess-
ment of interrelated features, no as-
sessment of feature subsets, risk of
overfitting

Backward Elimina-
tion

simple, deterministic, compu-
tational faster than heuristic
models

prone to local optima, no assess-
ment of interrelated features, no as-
sessment of feature subsets, risk of
overfitting

Hill-Climbing simple, deterministic, compu-
tational faster than heuristic
models

prone to local optima, no assess-
ment of interrelated features, no as-
sessment of feature subsets, risk of
overfitting

Best First simple, deterministic, compu-
tational faster than heuristic
models, incorporation of effi-
cient filter method

depends on filter method, no assess-
ment of interrelated features, no as-
sessment of feature subsets, risk of
overfitting

Branch-and-Bound simple, deterministic, initial
consideration of all feature
trees

limited assessment of interrelated
features, limited assessment of fea-
ture subsets, risk of overfitting,
computational intensive with high
dimensionality

Simulated Annealing universal search, global and
subspace search, heuristic, ro-
bust to local optima

sensitive to algorithm parameters,
large set of evaluations, higher risk
of overfitting, evaluation of a single
candidate each generation, slow fi-
nal optimization due to random im-
provements

Genetic Algorithm universal search, global and
subspace search, heuristic, ro-
bust to local optima, no influ-
ence between candidates

sensitive to algorithm parameters,
large set of evaluations, higher risk
of overfitting, slow final optimiza-
tion due to random improvements

Particle Swarm Op-
timization

universal search, global and
subspace search, heuristic, ro-
bust to local optima, constant
influence between candidates

sensitive to algorithm parameters,
large set of evaluations, no solution
for non-coordinate systems, higher
risk of overfitting, slow final opti-
mization due to random improve-
ments

Ant Colony Opti-
mization

universal search, global and
subspace search, heuristic, ro-
bust to local optima, constant
influence between candidates

sensitive to algorithm parameters,
large set of evaluations, problem de-
scription to graph matching, higher
risk of overfitting, slow final opti-
mization due to random improve-
ments

Table 6.1: Assessment of advantages and drawbacks of FS wrapper techniques.
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generation thus gives away the opportunity for a more versatile search at once. GAs like all
metaheuristics faces the problems of higher risk to overfitting and sensitivity to dedicated model
settings (i. e. adjustments of hyper parameters). In contrast to Particle Swarm and Ant Colony
Optimization no influence of candidates within each generation exists for GAs. Particle Swarm
Optimization misses a solution for non-coordinate systems and is similar to the deterministic
approaches more prone to local optima. At last, Ant Colony Optimization incorporates a con-
stant influence between candidates in each generation but needs to tackle the problem to match
the problem description to a graphical representation.
After careful comparison and evaluation of advantages and drawbacks of all FS methods,

GA is chosen as one element of the subsequently new FS method ERBE. Robustness to avoid
local optima, no influence between candidates in each generation to explore the search space
independently and with a wide unbiased variety as well as assessment of interrelated features
and feature subsets are the important reasons for this choice.
Many feature projection (e. g. PCA) and dimensionality reduction approaches (e. g. Back-

ward Elimination) have been investigated with partially noticeable success. Nevertheless, no
considerable solution for all problems and especially for the difficult and ambitious challenge of
knowledge discovery is presented with any of these techniques so far. In addition to many differ-
ent FS approaches already investigated in chapter 4, a Best First search is conducted including
the approved RELIEF algorithm as filter method (cf. section 4.3) with SVR as regression tech-
nique. A direct comparison with the new ERBE algorithm is provided in chapters 8 and 9.
Thus, the new ERBE algorithm is not only compared to the current state of the art but also to
another established technique (i. e. RELIEF & SVR as Best First search) in the area of FS.

6.2 Support Vector Regression Kernel to deal with Nonlinearity

Due to already approved and well-established functionality and good results obtained so far a
Gaussian RBF kernel [151] is used for SVR in the present investigation:

k(xi, xj) := exp(−γ ‖xi − xj‖2) (6.1)

The hyper parameter γ within the kernel defines the width of the Gaussian distribution of the
RBF. Using the Gaussian RBF kernel for substitution in equation (3.10), the dual optimization
problem with nonlinear kernel can be formulated as following:

maximize
{
−1

2
l∑

i,j=1
(αi − α∗i )(αj − α∗j )k(xi, xj)− ε

l∑
i=1

(αi + α∗i ) +
l∑

i=1
yi(αi − α∗i )

subject to

 (i)
∗∑
i=1

(αi − α∗i ) = 0

(ii) αi, α
∗
i ∈ [0, C]

(6.2)

Finally, SVR estimates the best fitting function depending on the three hyper parameters
ε, C, γ, which can be optimized by applying a grid search to the SVR ML algorithm whereas the
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grid search performs a multidimensional optimization for a given range for a specified number
of variables. Independency of GA FS of the selected kernel function [160] enables the choice of
the well-approved RBF kernel for all parts of the entire new ERBE algorithm (cf. section 6.5).

6.3 Leave-One-Out Support Vector Regression for Feature Selection

In the scope of this thesis no research on mutual information FS was performed due to the
superior approach of RFE which was corroborated by recent results [47]. The approach of
SVM-RFE performed comparable with an investigated two-layer cutting plane algorithm [110]
demonstrating boundaries of SVM-RFE. However, as first novel concept in the present thesis this
RFE approach is modified by substituting feature evaluation with introduced LOO assessment
of each feature for feature evaluation with intrinsic SVR weights. Upper bounds on the LOO
error have been shown and corroborate the investigation of LOO SVR [173].

Algorithm 2: Leave-One-Out Support Vector Regression for Feature Selection
Data: Input X, Target Y

1 Initialize:
2 Perform grid search to optimize C & γ;
3 forall the features fi i ∈ {1, . . . , Number of features} do
4 Exclude fi from X;
5 Train SVR model on X \ {fi};
6 Evaluate SVR model by calculating RMSE on independent validation dataset;
7 Add RMSE for specific fi to feature ranking list;
8 end
9 Rank by ascending order;
Result: Ranked features by individual impact

In terms of computational advantages of SVM-RFE (cf. subsection 4.3.2) only the kernel
matrix H has to be recomputed if the weight coefficients α stay constant [49]. However, this
assumption cannot be made for highly complex processes as HDP CVD in SM since features
present in feature subsets are known to affect each other. The interrelations among the pro-
cess parameters (i. e. features) are investigated by process experts and important features are
controlled but still due to the immense complexity of manufacturing processes not all possible
influences are predictable. Thus, as it is not known beforehand whether the impact of each
feature stays constant or changes in presence or absence of other features, a new SVR training
needs to be performed to evaluate the new feature subset and to recompute α. Therefore and
in contrast to SVM-RFE where the weight vectors are computed for each feature individually
before a ranking criterion was assessed, this new LOO approach has been developed where
the weight coefficients αi (i ∈ {1, . . . , Number of Instances}) are computed for all remaining
features of the feature subset thus including all available information.
One core element of the new ERBE method is the enhancement of SVR RFE with LOO FS

which is introduced in algorithm 2. At first, a quadratic grid search is performed to optimize the
SVR hyper parameters C and γ around 1 and the inverse of the number of features, respectively,
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(2). ε is kept constant in scope of the present thesis since it is directly linked to the tolerated
deviation of the prediction target and set to a reasonable small error which is not relevant since
it is in the range of the possible accuracy of the metrology equipment resulting a final RMSE of
~ 0.4% (cf. subsection 2.3.3). In LOO one feature is excluded from the feature set (4) and the
SVR learning algorithm is trained on the remaining feature subset (5). Afterwards, the impact
of this feature is evaluated by the calculated RMSE (6) and added to the feature ranking list
(7). Steps (4) to (7) are conducted for all features fi (i ∈ {1, . . . , Number of Features}) so that
each feature was excluded once. Subsequently, all features are ranked in ascending order (9) as
the lack of the single independent most important features degrades the prediction performance
the most and by thus yields the highest RMSE and is located at the end of the list. In case
of features are only meaningful as combination with others the effect may decrease which is
also expected for complex physical processes. Excluded single independent dispensable features
indicate a SVR model improvement and a reduction of the RMSE due to less disturbance by
introduced noise. These features yield a lower RMSE and are located at the beginning of the
list. But this effect may also be softened by feature combinations. However, in order to prevent
exhaustive search the feature ranking by individual impact yields a smart tradeoff to distinguish
dispensable and crucial features as the output.
Now, a single feature or an entire feature subset can be removed from the initial feature set.

As investigated and stated earlier without trading accuracy for speed it is reasonable to eliminate
chunks of features at the beginning of the FS process and refine to feature-wise reduction later
on (cf. subsection 4.3.2, [49], [115]).

6.4 Genetic Algorithm for Feature Selection

The basic GA algorithm introduced in section 3.5 has been modified for the new concept of
smart FS to efficiently consider and extract unknown interrelated features as feature subsets
from the entire feature set. Various GA implementations to find essential features by FS are
outlined in subsection 4.3.3. According to the emphasized benefits of GAs, the incorporation
of GAs empowers FS to assess two important evaluation criteria at the same time namely the
prediction performance as accuracy and reliability as well as the optimization of feature subsets.
Since the previously introduced LOO FS concept defines a good feature ranking criterion which
is not necessarily a good feature subset ranking criterion [49], the by GA enabled optimization
for feature subsets is of special importance.
In general, the GA approach aims to optimize an independent and as wide as possible ex-

ploration of the feature search space to detect the global optimum or the best local optima
which is especially intended in SM to achieve highest possible accuracy while at the same time
revealing crucial and maybe unexpected features or feature subsets. Due to the fact that within
a chamber all physical process parameters (e. g. temperature, pressure, voltage) have a more
or less measurable influences on any other feature (cf. section 2.3), single local optima peaks
caused by only one crucial feature subset independent from all other features are extremely
implausible. Thus, highly interrelated physical process parameters are expected to be grouped
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into subsets and various subsets could form bigger feature subset clusters. Therefore, where
these subset clusters growing from a wide plateau of many interacting features are expected
to form the global optimum or few local optima, continuous improvements in optimizing these
few local feature subset clusters are desirable and focused. So, the crossover operation has been
skipped in this new FS concept because inversion of a substantial part of the interrelated feature
set is not intended in each new generation. Hence, for a sufficient high number of generations
with independently (as characteristic of GAs) mutated individuals (i. e. feature sets), the risk
to obtain desultory feature subset compositions significantly decreases.

Algorithm 3: Genetic Algorithm with Support Vector Regression for Feature Selection
Data: Input X, Target Y

1 Initialize:
2 Perform grid search to optimize C & γ;
3 Set nG := Number of generations to evaluate during GA cycle;
4 Set nI := Number of individuals to populate each generation;
5 Set mR := Mutation rate as percentage of total number of features to flip in each GA cycle;
6 Define RMSE as fitness function for SVR;
7 Encode feature set as chromosome;
8 Populate 1st generation from initial chromosome;
9 forall the Generations Gk, k ∈ {1, . . . , nG} do

10 forall the Individuals Il ∈ Gk, l ∈ {1, . . . , nI} do
11 Inherit: best individual from parent generation;
12 Mutate mR of all genes;
13 Correct if too few/many genes were mutated;
14 Evaluate fitness function of actual individual;
15 Select best individual if the fitness function was improved;
16 end
17 end

Result: Ranked features by contribution to feature set impact

Algorithm 3 visualizes the sequence of the modified GA for FS which can be adopted for
the final ERBE algorithm described in the subsequent section. As for LOO FS, prior any GA
computations a quadratic grid search is executed to optimize C and γ (2). A first initialization
defines the number of generations (3) together with the number of individuals (4) for population
of each generation whereupon the product of both provides the total number of performed SVR
trainings and predictions and thus ultimately determining the total computational effort to
be spent during the actual GA cycle. Also the mutation rate (5) is set as percentage of the
total number of features to be flipped in each GA cycle. Subsequently, the RMSE calculated
from real target and prediction is defined as fitness function (6) and the current feature set
is encoded as the chromosome (i. e. bit string), (7). The first generation is populated from
the initial chromosome at the beginning (8). For all generations (9), the actual individuals of
a population (10) are inherited from the best individual of the parent generation (11). Each
individual is then independently mutated according to the mutation rate (12) and thus a defined
number of genes is activated or deactivated. For the common case that not enough or too much
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genes are activated/deactivated to meet the defined number of features to be eliminated within
each GA cycle, a correction step randomly reactivates/deactivates some genes to achieve the
desired number of active genes to evaluate (13) before the fitness function is calculated (14). If
individuals of the actual generation achieve a better score with regard to the fitness function
than the parent individual they were inherited from, they are selected as candidates for the
next generation whereat the best candidate is chosen as parent for the next generation (15).
Otherwise, the parents stay for the next generation and the individuals of the actual generation
are discarded. At the end of the entire algorithm, one ideal individual evolved with regard
to the fitness function whereas the possibly evolving superior feature subsets of all optimized
individuals are also of high interest.
The adaptation of a GA for FS enables the concurrent optimization of interrelated features

most meaningful only in feature subsets and the elimination of least important features. In addi-
tion to the individual feature ranking and optimization of LOO FS, FS by GA complements the
new concept of ERBE to find an optimal selection of features by consideration and incorporation
of feature subsets. Finally, the entire feature space is reduced by eliminating adjustable chunks
of features without forfeiting accuracy for increasing speed as investigated in earlier work [49].

6.5 Evolutionary Repetitive Backward Elimination

6.5.1 Linking Evolutionary GA with LOO Feature Selection

State of the art research is currently not able to apply feature ranking, sequential FS or feature
subset selection to achieve efficiency, scalability, knowledge discovery and highest accuracy as
essential requirements in SM (cf. subsection 4.1.1). As it is already emphasized and cited earlier,
neither pure individual feature ranking or selection nor isolated feature subset selection is suitable
to fulfill these ambitious goals in SM. The new ERBE FS algorithm (cf. algorithm 4) primarily
published in [94] is developed to leverage the full potential and benefits of both approaches
to reveal only the really crucial features (i. e. relevant process parameters) to achieve highest
prediction performance in an interdisciplinary and complex environment with superpositioned
physical processes in SM. A smart composition of LOO FS and GA FS combines the merits
of individual FS and feature subset optimization to finally meet the ambitious objectives in
SM. Even more, the new smart ERBE FS concept is very flexible and allows an arbitrary
configuration of LOO FS and GA FS depending on the presented use case with underlying
complexity.
The new ERBE algorithm (see algorithm 4 below) is organized into three parts I-III to im-

plement the highlighted advantages of:

1. Part I Fast initial reduction of noisy information from the feature space by LOO FS

2. Part II Feature subset optimization while further reducing the feature space by GA FS

3. Part III Fine tuning feature optimization and extraction of crucial features by LOO FS
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In order to consider the varying amount of features ranging from 50 to possibly 10.000, each
part is subdivided into an adjustable amount of independently executed stages defined by the
reduction rate rR which describes the percentage of features to be eliminated in the current stage
from the entire or remaining feature set. The introduction of an adjustable reduction rate enables
the possibility for advanced control of the computational effort and the entire process of FS by
the new ERBE FS algorithm. More stages during any part enable more detailed optimization
whereas fewer stages provide the chance to quickly eliminate bigger chunks of features. The
stages can be adjusted in a linear manner thus reducing the same percentage of features each
stage or in a weighted or any other manner to tune the FS at any time (e. g. more stages at the
end for ’high-end’ optimization). Artificial features introduced below (cf. subsection 3.3.4) are
added to the original feature set for comparison to measure the level of noisy features contained in
the feature set. With ongoing feature reduction these artificial features are clearly separated from
the crucial features containing most information to achieve high prediction performance with
VM. In fact, adding artificial features also adds some variation to the otherwise deterministic
LOO FS algorithm. Therefore, 10 optimization cycles are executed within each stage of LOO
FS to generate more confidence which features are to be deleted from the feature set while the
GA FS is conducted 25 times for more statistical confidence due to its heuristic nature.
Part I focuses on efficient execution of the entire FS and optimization to minimize the necessary

computational effort. Especially for larger feature sets with thousands of features fast elimination
of chunks of features at the beginning is inevitable since the computational effort of the time
determining SVR step is growing linearly with the total amount of features. Thus, if so many
features are considered and partially populated (e. g. by statistical moments) part I of the ERBE
algorithm maximizes the computational performance by minimizing the computed SVR steps
with the new LOO FS concept still incorporating feature dependencies. Artificial features (see
below) are added to the original feature set to recognize when a transition from fast initial
reduction of noisy information from the original feature space via LOO FS to feature subset
optimization via GA FS is required. Where several scenarios are possible to switch over to part
II (e. g. after deleting a defined percentage of features) the actual implementation moves on if
these artificial features are clearly separated from the remaining real features.
In part II, the incorporation of GA FS is inevitable to optimize entire feature subsets of highly

interrelated features with the burden of higher computational effort since many GA generations
have to be populated to leverage the advantage of random mutation as statistical heuristic
optimization. Thus, the efficiency of the entire ERBE FS process would significantly decrease
if the optimization of feature subsets via GA FS would be conducted from the beginning. So,
the previously outlined LOO FS is computed initially to quickly reduce the original feature
set. While LOO FS is a deterministic approach not capable to perform a global and multisided
subspace search, the GA FS enables this functionality by its heuristic nature and possible random
walk. Even more, GA FS ensures a high robustness to inferior local optima especially if the
elitism of the individuals as feature subsets is reared in several consecutive ERBE stages.
Part III is designed to finally optimize the remaining features containing condensed and op-

timized feature subsets of interrelated features obtained from the previous GA FS concept as
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well as individually and independently contributing features. Nevertheless, on the one hand the
advantage of GAs heuristic optimization to consider important feature subsets may turn over to
more imprecise and rough FS in the end if the mutation rate is not decreased. On the other hand
a relative (e. g. percental) decreasing mutation rate might be too small to evaluate all features
equally within a preferably small number of generations. Thus, the more fine tuning of feature
subsets is conducted by GA FS for final optimization the less efficient the feature space search
is performed. The possible case of still existing mainly single irrelevant features after part II
would lead to an unnecessary huge amount of randomly populated individuals until this feature
is deactivated often enough to achieve sufficient statistical significance if it is evaluated and ex-
cluded by itself at all. Therefore, features not only but especially with negligible individual and
independent contribution can be differentiated and eliminated faster from the remaining feature
subset by conducting the already introduced new LOO FS technique which perfectly solves this
problem since it evaluates all features while incorporating feature dependencies. Hence, final
feature elimination by LOO FS efficiently further optimizes the already quite good feature subset
by quickly reaching a global or local optimum.
For comparison with noisy variables comprising few or no information the artificial features

are introduced to distinguish between the three ERBE parts and thus reveal the transition
from fast initial reduction via LOO FS to feature subset optimization via GA FS and finally to
fine tuning feature optimization again via LOO FS. Since the feature subset and with it the
prediction performance constantly improves up to the optimum of the model complexity the
conditions for transition to the next ERBE stage are also adjusted. The following list outlines
the transition criteria from part I to part II and finally to part III:

1. Part I: LOO FS → Part II: GA FS

1.1. The first differentiation to real features is achieved if the ratio of the sum of the counts
of the selected artificial variables within the 10% least important features compared
to the sum of the counts of the selected real features within the 10% least important
features is ≥ 0.8.

1.2. The second differentiation to real features is achieved if at least all but one artificial
features are within the 15% of the least important features to prevent very few
but highly frequently selected artificial features to cause the transition to an earlier
computational intensive feature subset optimization performed by GA FS.

2. Part II: GA FS → Part III: LOO FS

2.1. The ratio as described in criterion 1.1 is required to be ≥ 1 to achieve an even higher
differentiation to real features.

2.2. In extension to criterion 1.2, the artificial features have to be grouped together with-
out gap as the least important features if at the beginning of part II these features
are already grouped as least important ones.

Figure 6.1 visualizes the flowchart of the entire ERBE algorithm with part I designed for fast
noise reduction (burnt orange), part II enabling feature subset optimization (lemon yellow) and
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Figure 6.1: Flowchart of the ERBE algorithm indicating part I - III including the transition
criteria w. r. t. the least important features (i. e. LIF) to move on between these
parts. Input data X, Y and generated artificial features A are provided with the
initial ERBE settings to compute the optimized feature subset F as final output.

part III fine tuning the remaining feature subset (avocado green). All instances with features
X and target values Y as well as the initially generated artificial values A are input data for
the ERBE algorithm. The artificial features are newly generated in each cycle in every stage
of all three parts as represented by a grey box at the lower right side of each part. Prior to
the execution the various ERBE algorithm parameters need to be set. These settings include
definitions to adjust GA- and SVR-calculations (e. g. GA number of generations & SVR loss
function), to introduce artificial features (e. g. Poisson-Distributed - i. e. similar to real features)
and to reduce the feature set. The latter named feature reduction rate defines the amount of
features to be deleted during each stage in each part illustrated by the red box at the lower left
side of each part. For example a feature reduction rate of 10% would force the algorithm to
terminate after 9 stages with 10% of all initial features remaining in the final subset. Hence,
different weights or functions can be used to adjust the feature reduction rate (e. g. higher initial
reduction accelerating the algorithm for huge feature sets and smaller reduction emphasizing
feature subset fine tuning in the end). The previously outlined transition criteria are listed to
demonstrate the threshold for the transition from part I to part II and further to part III. If no
more features can be deleted with respect to the initiated feature reduction rate the optimized
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feature subset F is identified as output.
In the sum, for the given reasons and characteristics the combination of LOO FS and GA FS to

form the new smart ERBE FS technique to enable efficient and corporate-wide VM with highest
prediction performance adds far more value than the pure concatenation and application of the
two approaches themselves. The innovation of a dynamic FS algorithm fuses various advantages
of FS and ML to exploit the synergy of LOO FS and GA FS approaches with crafty incorporation
of artificial features into the transition criteria.
The ERBE algorithm is designed to always be executed until no more features are left to be

further removed even though degradation of prediction performance becomes apparent. In fact,
according to the bias-variance tradeoff (cf. section 3.3.4) it is expected to reveal the optimum
between model complexity (i. e. size of feature subset) and prediction error. While efficiency is a
key factor and highlighted several times five important and independent aspects are distinguished
in terms of efficiency:

1. Fast Feature Selection: At first, the new ERBE method maximizes the efficiency of the
computational effort to conduct FS.

2. Accuracy: At second, smart FS ensures highest accuracy and reliability as required for
efficient VM (cf. Accuracy).

3. Scalabillity: At third, the efficiency of the entire enterprise system is optimized since
less required features to run VM scale down continuous productive computational effort
of VM, necessary data traffic and expensive DB storage (cf. Scalability).

4. Efficiency: At fourth, smart FS as first fully automated FS technique enables the SM
industry to efficiently develop and implement fab-wide but still equipment specific VM
rollout for all suitable process areas within the entire company (cf. Efficiency).

5. Knowledge Discovery: At fifth very important aspect, less expensive experiments are
required for research and development (e. g. at the department of unit process devel-
opment) which can be improved and partially performed more efficiently since process
optimization is achieved via knowledge discovery by smart FS (cf. Knowledge Discovery).

6.5.2 The ERBE Algorithm

In more detail describing the new ERBE algorithm (cf. algorithm 4), parts I-III are linked and
executed with a variable number of stages in each part depending on the transition criteria. As
mentioned above, in order to generate more statistical confidence due to included variations by
artificially populated features, for each stage 10 cycles are conducted to evaluate the optimized
feature subset of the current stage and to discard the predefined amount of the worst features
over all cycles. Thus, for each stage the ERBE algorithm finally yields a series of calculated
RMSE values whereof a model complexity curve is created to assess and visualize the complexity
of the entire system including the revelation of the most important features (cf. section 4.3,
section 8.2).
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First of all, all input data as possible matrix containing physical equipment parameters (e. g.
pressure, current, gas flow) and logistical information (e. g. basic type, recipe, product) as well
as the prediction target as vector are given by X and Y , respectively. During initialization a
reduction rate rR (e. g. 10%) is defined (2) meaning that in each stage chunks of features of
10% of all initial features are removed. Thus, after all 9 stages 90% of all original features
are eliminated and the expected best 10% features are left. Basically, rR can be initialized and
refined differently for each equipment and process area according to the specific use case with its
specific conditions. Furthermore, in order to enable a meaningful evolution of generations in part
II, a sufficient number of generations has to be populated to allow the evolution of individuals
even after some generations without significant improvement. Thus, the number of generations
nG was set to 25 (3) for each stage with the number of individuals nI in each generation set to
5 (4). As next initialization step the mutation rate mR is set to 10 as percentage of the total
number of features which are flipped of the current feature subset within each GA FS stage (5).
So, 10% of the remaining features are randomly inverted in each stage of part II. At last, several
artificial features based on various distributions (e. g. Gaussian) are defined and created (6) for
comparison with the real features to estimate the transition from part I to part II.

Algorithm 4: Evolutionary Repetitive Backward Elimination Feature Selection
Data: Input X, Target Y

1 Initialize:
2 Set rR := Reduction rate as percentage of features to reduce during each stage;
3 Set nG := Number of generations to evaluate during GA cycle;
4 Set nI := Number of individuals to populate each generation;
5 Set mR := Mutation rate as percentage of total number of features to flip;
6 Create artificial features for comparison with real ones;
7 Part I: Fast elimination of features contributing mainly noise compared to artificial ones
8 repeat
9 Perform LOO FS;

10 until switch to feature subset optimization is observable by artificial feature comparison;
11 Part II: Feature subset optimization incorporating crucial interdependencies
12 repeat
13 Perform GA FS;
14 until switch to fine tuning feature optimization is visible by artificial feature differentiation;
15 Part III: Fine tuning feature optimization up to most important rR% of features
16 repeat
17 Perform LOO FS;
18 until remaining reduction to final rR is achieved;

Result: Optimized feature subset for highest prediction accuracy and reliability

After initialization of the required ERBE algorithm hyper parameters, part I (7–10) is executed
to quickly perform an initial reduction of noisy features ensuring an efficient execution of the
ERBE algorithm until a transition from fast initial reduction via repetitive LOO FS (9) to feature
subset optimization via repetitive GA FS is achieved by comparison with artificial features (10).
In each of the repetitive stages of part I, the LOO FS (cf. algorithm 2) result is compared to
the introduced artificial features. If these artificial features are separated from the residuary
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features with regard to the transition criteria the new ERBE method moves on and part II (11–
14) is conducted subsequently. Here, in each of the repetitive stages GA FS (cf. algorithm 3)
is performed (13) to emphasize feature subset optimization while incorporating crucial feature
interdependencies based on physical interrelations. The artificial features are kept in the DS to
constantly obtain an assessment of the optimized feature subsets compared to noisy and artificial
information where clear differentiation between artificial and real features causes the move to
part III (15–18) again with regard to the transition criteria. Following, part III performs a fine
tuning feature optimization in repetitive LOO FS stages again (17) and is linked to part II to
obtain an improved differentiation of moderate to most important features. Due to the fact that
LOO FS is computational more efficient than GA FS (cf. subsection 6.5.3) and crucial feature
interdependencies are already considerably incorporated, faster feature optimization up to the
most important rR% (e. g. 10%) (18) of features is achieved in part III still including artificial
features for comparison. Finally, the optimized feature subset for highest prediction accuracy
and reliability is obtained as result. In a generic approach and independent of any equipment
or process areas, the result of the new ERBE FS yields the finally optimized feature subset for
highest prediction accuracy and reliability in VM.

6.5.3 ERBE Considerations

In order to demonstrate the generic approach of smart FS, two different process equipment (i. e.
AMAT Centura & AMAT Producer, cf. section 7.3) are investigated in the present work still
containing 80 & 198 features after rigorous DP. An approach with less strict DP filling up
features containing NaN values (e. g. with the mean of the available values), more activated
sensors and more considered statistical moments (e. g. kurtosis, skewness) for the available
features will easily produce bigger datasets up to several thousands of features. However, the
computational effort to run ERBE FS can easily be approximated due to linear increase feature-
wise compared to quadratic increase instance-wise while the reduction ability can be assured
due to the detectable strong correlation of several statistical moments of populated features as
in earlier observed investigations (cf. chapter 4).
A significant number of features not containing useful information can be deleted quite early

during execution of the algorithm. Due to the fact that the total number of computational
intensive SVR evaluation steps for each FS stage is smaller for LOO FS compared to GA FS,
the former is predestinated for part I to rapidly reduce the entire feature space. The total number
of SVR evaluation steps to be conducted by GA FS and LOO FS is calculated in equation 6.3,
respectively. The example is provided for the total number of 80 features (i. e. already including
the five artificial ones) for ERBE FS on the DS of AMAT Centura.

#SV R–EvalGA = nG ∗ nI = 25 ∗ 5 = 125
#SV R–EvalLOO = #features = 80

(6.3)

In order to achieve a statistical significant assessment of the heuristic GA FS technique, the
total number of evaluations as product of the number of generations and individuals naturally
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needs to be linked and adjusted with the total number of features. Thus, for feature sets with
more than thousand features a meaningful total number of GA FS evaluations could easily exceed
2000 with 20 individuals in 100 generations compared to constantly 1000 LOO FS evaluations.
Trivially, in a heuristic approach the total number of evaluations clearly needs to exceed the
total number of features.
The repetitive design of the ERBE method to delete chunks of features at the beginning

is corroborated by the fact that there exist only significant differences for medium to smaller
feature subsets whereas in early optimization phases the removal of chunks is not affecting the
prediction accuracy [49], [115]. A more detailed investigation of a feature-wise reduction at the
end of a FS approach is also motivated in the work of [49] approving the new LOO FS concept
for higher feature tuning after GA FS again.
In order to avoid model optimization on a specific time period in the available DS for the

ERBE algorithm, to include rare adjustments of equipment settings in later instances and to
increase the prediction accuracy of SVR by incorporating more characteristics over a longer time
period (e. g. drifts), the chronological order is randomized by shuffling of the instances of the
entire DS. The investigation of smart FS does not simulate the productive VM environment
where the test DS is chronologically separated to assume future data (cf. section 7.2). The new
ERBE algorithm intends to reveal the most important features so it is reasonable to include
and shuffle data of the entire time period. For each cycle of all ERBE stages as well as for
the evaluation of the finally investigated feature subsets data are shuffled independently. Thus,
many SVR models are optimized in various ERBE stages on always newly mixed DSs.
Furthermore, a quadratic grid search is implemented to optimize the SVR regularization

parameters: cost factor C and kernel distribution width γ. Initially and before each stage,
C and γ are optimized for the remaining feature subset and then adopted for all evaluations
within this stage where it is reasonably assumed that C and γ serve well for each specific feature
subset per stage. An optimization of the SVR regularization parameters on a global feature
set does not necessarily guarantee optimal SVR parameters for all possible feature subsets [31],
[139]. The MATLAB source implementation of SVR is enhanced by only computing half of
the internal H matrix containing the kernel results since H can be mirrored at the diagonal.
Also a MATLAB internal quadratic programming is used to solve the interior-point convex
optimization algorithm.
According to the relevance of features and instances (cf. section 4.3) and in comparison to

real features as already mentioned above, five artificially generated features are introduced into
the dataset. These artificial features are created to simulate some variations which are present
in available data incorporating various distributions (i. e. Gaussian & Uniform) and correlation.
Two features based on a normal distribution ranging from 0 and 1 and one feature based on
an uniform distribution also normalized from 0 to 1 are added. In addition, one feature of
both distributions was duplicated and doubled to serve for the assessment of highly correlated
features without adding any information.
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Summary: Following elaborated state of the art in chapter 4 and the description of the required
VM system in chapter 5, the present chapter initially conducts an assessment of existing FS
methods emphasizing advantages and drawbacks.
A kernel extension of SVR enables the new FS concept to overcome frequent monotonicity

assumptions and therefore to deal with nonlinearity as it is available in highly complex superpo-
sitioned physical processes common in SM. Corporate-wide deployment of VM and most efficient
implementation of VM in SM requires an universal FS approach applicable for all equipment and
process areas regardless of linear or nonlinear relationships within data. Hence, the investigated
kernel extension completes this generic approach of smart FS.
The new LOO FS and GA FS techniques are investigated as well as developed and im-

plemented for the specific demands of VM for the challenging environment in SM industry.
Even more, these sophisticated methods are linked together to ultimately build the efficient but
still very adjustable and adaptable smart ERBE FS algorithm to reveal only crucial features
absolutely necessary to achieve highest prediction performance and reliability. Part I-III are
optimized on each other to leverage the full potential of the advantages of LOO FS and GA
FS even though the execution of these parts is very flexible. Thus, these parts and with it
the concepts of LOO FS and GA FS can be dynamically linked and multiplied in any order to
form an evolutionary and highly dynamic approach consistently incorporating benefits of both
techniques. Finally, a flexible amount of features from 20 up to more than 10.000 can be reduced
and optimized whereas the introduced stages enable a customization of the method to focus on
constant feature reduction, successively refined feature optimization or any other setup.
The extension of the new ERBE FS approach for concurrent introduction of artificial features

to emphasize the differentiation of less important features adds one more adjuvant functionality
(i. e. especially at the beginning while in the end it is clearly visible that artificial features are
constantly performing worse than more important ones).
Chapter 4 extensively outlines the current state of the art of VM and FS to improve VM but

still the stated problems and challenges could not be tackled by any investigated FS approach
so far. While never before any other concept or algorithm completely met these ambitious
objectives in VM, the newly invented ERBE FS algorithm introduced in this dissertation entirely
achieves this final goal to ultimately reveal the best feature subset yielding highest prediction
performance and reliability. Hence, the ERBE FS algorithm enables a concept for smart FS to
improve current VM to become advanced VM by smart FS.
The next chapters specify the conducted experiments and present the achieved results of the

new ERBE FS algorithm itself as well as a comparison with the established but so far not
evaluated RELIEF filter method and the pure application of the previously highlighted LOO
FS approach without subsequent feature subset optimization by additional GA FS.
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With respect to the two key aspects of the present thesis (i. e. the advanced Virtual Metrology
system and smart Feature Selection) comprehensive experiments are conducted to assess the
attainment of the projected goals essential for the implementation of the developed advanced
Virtual Metrology system at Infineon. Initially overall Data Preparation is outlined.

7.1 Overall Data Preparation and Modeling

In the following, the overall applicable DP steps data formatting, dataset compilation, feature
translation and feature selection are described. Extensions of dataset compilation and FS as
well as instance selection are performed specific for the evaluation of the advanced VM system
and the new ERBE FS algorithm and therefore further outlined in the next section.

Data Formatting: For the development of the advanced VM system the logistical parameter
– Logistic_1 – is converted from character to numeric format (i. e. ∈ N) and thus provided as
input for later SVR induction learning. All other features are available as floating point numbers
and no further formatting was required.

Dataset Compilation: All available data from different sources (cf. section 5.2) are merged
to obtain a coherent DS. In terms of supervised learning, all instances without metrology data
and necessary logistical information had to be removed from the DS resulting in an enormous
reduction of data due to the applied sampling rate containing a comparable small amount of
metrology data and partially missing logistical parameters required for bijective data assignment.
On the one hand, a sampling rate of 10% – 15% measured wafers for a HDP CVD process is
quite common in SM whereas on the other hand from those remaining measured wafers some
more are removed due to the stated missing logistical parameters finally yielding a reduction of
the original data by 91%.

Feature Selection: During the task of DS compilation all features from metrology and process
data containing only NaN values are immediately removed. Missing values within a single
feature are replaced by the mean of this feature vector. In the special and rare case of only one
remaining value within a single feature thus generating a constant feature vector the feature is
marked as redundant and also removed from the feature set. According to figure 7.1, overall
FS is performed again after merging metrology and process data to delete instances without
measurements.
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Figure 7.1: Data Preparation Sequence for overall FS.

Feature Translation: In order to avoid domination of features with large unit scales over smaller
scaled features, normalization according to equation 7.1 is performed for all features individually
to map all values to the interval [0,1] where the borders represent the smallest and highest value
in the entire feature vector, respectively.

xnorm = x−Min(x)
Max(x)−Min(x) (7.1)

7.2 Advanced Virtual Metrology System

The advanced Virtual Metrology system implementation has been outlined in subsection 5.2.2
whereas the experimental setup to validate the new system is given below. After outlining the
specific DP for this challenge, the performed VM prediction on new data as a comparison of
the SVR models trained and optimized on a complete dataset versus a MW dataset approach
is decribed.

7.2.1 Data Preparation

The DP tasks data formatting and feature translation are already described above and only the
additional DP task instance selection together with the extension of dataset compilation and
feature selection specific for the advanced VM system are highlighted below.

Instance Selection: All instances associated with obvious outliers (e. g. exceeding the 3σ stan-
dard deviation range) exclusive in either any feature or the target are removed from the training
and test DSs due to the sensitivity of the SVR performance to inherent outliers. Nevertheless,
the total amount of deleted instances (i. e. ≤ 16) is negligible compared to the total amount of
instances (≥ 2087).
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Dataset Compilation: In addition to the DS covering two years of production initially used for
the investigation of the ERBE FS algorithm, various similar expanded DSs of other equipment
of the same type within the HDP CVD work center (i. e. AMAT Centura, cf. subsection 2.3.1)
are acquired and compiled to be used for SVR model training and validation. Additionally, a
disjunct DS for a subsequent half-year time period of production is acquired for each equipment
and compiled to be exclusively used for testing of the trained and validated VM model based on
the most important features as result revealed by the ERBE algorithm. The logistical granularity
is only defined by the equipment, a randomly chosen process chamber of each equipment and
the considered process recipe.
In terms of the size of the final training DS, a complete DS containing all instances is compiled

as well as a MW DS containing only a fourth of instances defined as the most recent 25% of
the DS. Without performing cross-validation 80% of the shuffled training data in both DSs
are used to train the final SVR model and the remaining 20% served as validation data. The
chronological order of data within the training and validation DS is not required for prediction
by SVR whereat the chronological order within the independent test DS is kept to realistically
simulate the application of the VM models to accrued future process data.

Feature Selection: The optimized feature subset selected by the newly developed ERBE
method (cf. section 6.5 and table 8.7) is used for productive online prediction of the HDP
CVD LT.

7.2.2 Virtual Metrology Prediction

For both, the complete and the MW DS, a linear grid search was performed to optimize the SVR
model parameters C and γ (cf. section 3.4). As illustrated in equation 7.2 and based on common
practice as a rule of thumb, the cost factor C and the width of the Gaussian distribution γ were
optimized around 1 and the inverse of the sum of the incorporated features (cf. subsection 8.2.1
– e. g. 0.1), respectively. The steps of the grid search were chosen linearly around C and γ.

C ∈ {10, 7.5, 5, 2.5; 1; 0.75; 0.5; 0.25; 0.1}
γ ∈ {1; 0.75; 0.5; 0.25; 0.1; 0.075; 0.05; 0.025; 0.01}

(7.2)

Virtual Metrology Model Training on complete and MW Dataset: Five equipment are in-
vestigated exemplarily for one out of three randomly chosen process chamber and for a single
process recipe over a two and a half-year time period lasting from 05/01/2011 to 10/31/2013 in
order to assess accuracy and reliability of the predictions delivered by the advanced VM system.
Table 7.1 specifies for each equipment EQ1−5 the process chamber CH1−3, the number of initial
and remaining instances within the DS, the number of removed outliers as well as the number
of instances assigned to the complete training, MW training and test DS.

Virtual Metrology Model Training on updated MW Dataset: Due to most recent major
adjustments of equipment and/or recipe settings for two of the investigated equipment (EQ1
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Equipment Chamber # Instances #Outliers #Remaining #Train #Train #TestInstances Complete MW

EQ1 CH1 3427 10 3417 2734 685 683
EQ2 CH2 2087 10 2077 1662 417 415
EQ3 CH2 2350 8 2342 1874 470 468
EQ4 CH3 3741 16 3725 2980 746 745
EQ5 CH1 2425 8 2417 1934 485 483

Table 7.1: MW (i. e. 25% of recent data) and complete DS for VM.

& EQ2) on the verge of the half-year time period reserved for testing and the resulting poor
prediction performance (cf. section 8.1), an updated MWDS is used in addition to the previously
described DSs to perform a more elaborated analysis. In this sense, the original test DS of the
half-year time period is halved whereas the first half is used as new training DS and the second
half is reserved as new test DS. For EQ2, the first 19 instances of the new training DS include
data prior to the major equipment adjustments. Thus, these instances are excluded from the
training DS and the first 19 instances of the new test DS are used instead explaining the difference
of 209 + 187 = 396 instances to originally 415 instances. The number of original test instances
and the sum of training and test instances can differ due to the automatically applied rounding
of the indices. Table 7.2 extends the previous table in terms of the updated MW DS.

Equipment #Test original #Train updated #Test updated

EQ1 683 342 342
EQ2 415 209 187

Table 7.2: Updated MW DS for VM.

7.3 Smart Feature Selection

The ERBE algorithm is highlighted in detail in section 6.5 whereas the experimental setup to
approve its usability for VM in productive SM is outlined in the following. Again, well adapted
DP for the ERBE testing are provided first. Furthermore, additional experiments are performed
for different production equipment to verify the generic approach of the FS technique with the
investigated induction method and its applicability in other process areas (cf. subsection 7.3.2).
The SVR model parameter ε is set to allow ~ 0.2% deviation from the predicted target to prevent
overfitting which is also reasonable regarding the accuracy of ~ 0.4% for the physical metrology
measurement (cf. subsection 5.2.3). Finally, a comparison of the new ERBE FS, the established
RELIEF FS filter and the LOO FS wrapper algorithm is conducted (cf. subsection 7.3.3).

7.3.1 Data Preparation for Feature Selection

Overall applicable data preparation for the assessment of ERBE FS is already outlined in sec-
tion 7.1 including the comprehensive tasks of data formatting, dataset compilation, feature
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translation and FS. Thus, only the FS specific DP step of instance selection as well as the
extension of dataset compilation and FS are summarized below.

Dataset Compilation for the ERBE, RELIEF and single LOO FS Algorithms

ERBE FS for AMAT Centura: A complete DS covering two years of productive data from
process chamber CH1 of equipment EQ4 (i. e. 05/01/2011–04/30/2013) is investigated for the
development of the ERBE algorithm. Due to the fact that all information shall be included for
knowledge discovery, data of the entire DS are shuffled before any separation of DSs is performed.
Subsequently, 80% of all data are used for training (i. e. 60%) and validation (i. e. 20%) and
the remaining 20% of all data are separated to compile an independent and unseen test DS. The
initially available features of the AMAT Centura production equipment for ERBE FS are listed
(cf. appendix A.4.1) including category, unit and a short description according to section 2.3.

ERBE FS for AMAT Producer: In order to demonstrate the generic approach of the new
ERBE FS algorithm it is also run and tested for a different manufacturing process (PECVD) on
a different production equipment (AMAT Producer) in a different work center (cf. differences
of HDP CVD and PECVD in section 2.4) [4], [5], [127], [128]. On this equipment, each of
the three installed process twin-chambers contain two identical chucks to process two wafers
within the twin-chamber at the same time. Thus, six wafers could be handled concurrently. For
the investigation a single process for the deposition of a silicon oxide base layer onto a metal
layer stack is selected. Data for a time period of 18 months (i. e. 05/01/2012–10/31/2013) are
prepared and purified according to the DP steps described in subsection 7.2.1. From initial 1389
instances for 198 features 826 instances are remaining which in contrast to the FS on the AMAT
Centura clearly falls below a general rule of thumb of at least ten instances per feature [51].
For the sake of completeness the features for the AMAT Producer are listed in the appendix on
page xxiii.

RELIEF: Due to the fact that RELIEF is a correlation-based filter FS technique, no model is
trained during FS and thus no separated DSs for training and validation are needed. Since the
ERBE FS and the LOO FS techniques randomly use 80% of all data for training (60%) and
validation (20%) and 20% for final testing, the DS to evaluate the RELIEF algorithm for data
of the HDP CVD process manufactured in the equipment AMAT Centura also contains 80% of
all data and 20% are separated as test DS.

Single LOO FS: Single LOO FS essentially performs only the first stage of the ERBE FS
algorithm without further repetitive LOO FS or GA FS improvements. Therefore, the same
DS as for ERBE FS for AMAT Centura described above is used for evaluation of LOO FS (i. e.
60% for training, 20% for validation & 20% for testing).
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Instance Selection for the ERBE, RELIEF and single LOO FS Algorithms

The total amount of deleted instances due to obvious outliers (i. e. exceeding the 3σ standard
deviation range) exclusive in either any feature or the target degrading the prediction perfor-
mance of SVR is negligible (i. e. 2 out of 2701 instances) finally yielding 2699 instances for the
HDP CVD process manufactured on the equipment AMAT Centura.

Feature Selection for the ERBE, RELIEF and single LOO FS Algorithms

Despite the outlined DP, no previous algorithmic FS is previously executed to remain all original
features within the entire feature set. Instead, according to section 6.5, five artificial features
are added to improve the capability of monitoring the effectiveness in terms of the revelation
and elimination of redundant and noisy features.

7.3.2 ERBE Feature Selection

The ERBE FS algorithm has been developed and initially investigated for data of the manufac-
turing equipment AMAT Centura. In order to confirm the genericity of the ERBE FS approach,
the new algorithm is also applied to data of the AMAT Producer production equipment. The
experimental setup for both investigations is detailed in the following.

ERBE Feature Selection for AMAT Centura: Eight out of 80 initial features (including the
5 artificial ones) are eliminated during each stage of the ERBE FS algorithm according to
the defined reduction rate rR of 10%. The reduction rate of 10% is chosen because for a
comparably small original feature set with 80 features the transition where artificial features are
clearly separable from real features is expected to appear quite early. In contrast, for scenarios
with thousands of features an initial rR in decreasing manner (e. g. from 30% down to 5%)
could be defined to reduce the bigger and by this computational more expensive feature set
more quickly hence performing the feature search more efficient. For a better comparison of
ERBE FS between AMAT Centura and AMAT Producer the reduction rate is kept constant.
As a benefit of the new ERBE FS technique, rR can be flexibly adjusted depending on the size
of the original feature set allowing possible filling instead of elimination of sparsely populated
features. In order to assess redundant and less relevant features as well as to push the feature
subset selection, the artificial features are not removed from the feature subset even in case of
performing worst. Thus, the point of differentiating noisy features from important ones shall
be clearly revealed and after this point the artificial features yield constantly worse results than
features containing crucial information. Around 20% of the least important features are listed
for each stage including a counter of how often a feature is ranked among this portion of least
important features during the ten cycles per stage. At the end of each stage, the 10% features
with the highest counts are removed from the feature subset whereas in case of equal counts
the features are selected randomly for elimination. The GA FS within ERBE FS optimizes
the feature subsets with focus on rearing elitism thus only including the best features of the
finally best individual. Hence, the features selected the fewest out of the best individuals of 25
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generations (i. e. the individuals yielding an improvement in prediction performance) with five
individuals in each generation are removed in all 25 cycles. After all ERBE stages have been
conducted, ten SVR models are trained on the remaining feature subset and the accuracy is
averaged. A complete list of all ERBE FS parameters and settings is provided in the appendix
on page xxvi.
The potential for further optimization of the ERBE algorithm is assessed by manually in-

vestigating the final features to find a possibly global optimal feature subset. The ERBE FS
result (i. e. final feature subset) is initially compared to an independent Expert Selection (ES) of
two process experts of all available features and subsequently manually changed by adding and
removing features which were left after the 7th ERBE stage or from the physical background
knowledge of the process experts expected to contain important information. Finally, a feature
subset is selected as input to assess the VM system and assumed as global optimum which yields
very accurate predictions on the one hand and simultaneously reduces the feature size to only a
small fraction of the original feature size on the other hand.

ERBE Feature Selection for AMAT Producer: From 203 initial features including the five
artificial ones, a reduction rate of 10% is set and 20–21 features are eliminated during each
stage. Again the artificial features are kept in the feature subsets and the procedure of FS is
carried out just as for the AMAT Centura.

7.3.3 Comparison of ERBE, RELIEF and single LOO Feature Selection

The RELIEF technique generates a correlation-based feature ranking where all features are
included and sorted in descent order starting with the most important feature. In order to
achieve a comparable evaluation similar to the ERBE FS technique, ten runs are conducted
and the average of all results is considered. Finally, the features most often ranked as most
important features are selected and SVR models are trained for feature subsets composed of
these selected top 3, 5, 8, 10, 12 & 15 features to predict the target on the independent test DS.
Furthermore, the ERBE FS technique is compared to the LOO FS wrapper approach to

also assess the pure improvements achieved by the incorporation of SVR in contrast to the
correlation-based RELIEF filter method. The investigation is performed if the pure application
of the developed LOO FS is already sufficient to obtain an optimal feature subset and thus
allowing to possibly omit further optimization by GA FS. Stage one of the ERBE FS technique
performs LOO FS as wrapper method with significantly less computational effort compared to
the entire execution of ERBE FS and by means of the again best 3, 5, 8, 10, 12 & 15 ranked
features SVR models are trained and tested on the independent test DS.

Summary: After detailed description of the newly invented ERBE FS algorithm in chapter 6
and the by this advanced VM system outlined in chapter 5, specific experiments are designed to
obtain comprehensive results of their performance. The new ERBE FS technique is tested for
two different processes (HDP CVD & PECVD) manufactured by different equipment (AMAT
Centura & AMAT Producer) to evaluate the capability to reveal the most important features
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7 Experiments

thereby optimizing the prediction performance. Furthermore, a clear distinction is drawn be-
tween the ERBE FS method and an established filter and wrapper approach (RELIEF FS and
LOO FS, respectively). The new advanced VM system is deployed on DSs of five different
equipment (AMAT Centura) to assess the challenges and problems of subsection 4.1.1. The
upcoming chapters present results and discussions and are also organized in two parts for VM
and FS.
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8 Results

The results of the experiments described in the previous chapter are presented below to firstly
evaluate the implemented advanced Virtual Metrology system for the highly complex High
Density Plasma Chemical Vapor Deposition process on various production equipment of the same
type and secondly to analyze the new Evolutionary Repetitive Backward Elimination Feature
Selection algorithm for production equipment of different types and for different manufacturing
processes as well as in comparison with the RELIEF filter and the Leave-One-Out wrapper
algorithm. The prediction performance in terms of accuracy is measured by CV(RMSE) (cf.
section 3.6.1) and analogous CV(MAE) as percentage of deviation from the target. Reliability
is assessed via the R2 and the number of correctly predicted outliers outside Upper Control
Limit and Lower Control Limit for the observed target values in relation to the total number
of outliers which is measured by the sensitivity (cf. subsection 3.6.3). The specificity is not
considered in the scope of this thesis because highest specificity (≥ 98%) is constantly achieved
[87] and expected by process engineers since a Virtual Metrology system fails to work efficiently
if too many false alarms are raised.

8.1 Advanced Virtual Metrology System

Independent and unseen data of a half-year time period of all five AMAT Centura production
equipment are used for real-time tests while the VM models are trained on historical data
covering a time period of two years for the complete DS or a couple of months for the MW
approach. All VM models are built on the feature subset selected by the ERBE FS algorithm
and are further optimized as outlined in subsection 8.2.1.
Tables 8.1 – 8.5 list the measured metrics for all VM models trained on the DSs of all inves-

tigated AMAT Centura production equipment EQ1 – EQ5. Furthermore, charts of observed
target values (green) and VM predictions (red) based on the complete and MW DSs (and if
necessary also the updated MW DSs for EQ1 and EQ2) are presented. Due to the fact that
a productive online environment is simulated, the relative layer thickness as target is plotted
against the wafer count only for test data on these charts. UCL and LCL for the measured
target are illustrated as horizontal blue lines to highlight the very narrow process specification
required for nanoscale designed high-tech products fabricated in SM. For EQ1 and EQ2 rele-
vant features are illustrated for enhanced assessment of an updated MW approach where the
normalized feature value is plotted against the total number of evaluated instances (i. e. the
wafer count) within the combined training and test DS.
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8 Results

8.1.1 Equipment 1

Training DS CV(RMSE) CV(MAE) R2 Sen. # Outliers # Test # Train

Complete 3.85 3.65 -107.69 0 4 683 2734
MW 4.54 4.32 -149.72 0 4 683 685
updated MW 1.02 0.82 -5.79 0.5 2 342 342

Table 8.1: Results for EQ1 for complete, MW and updated MW DS: Evaluation of accuracy
by CV(RMSE), CV(MAE) and R2 as well as reliability by sensitivity including the
number of outliers and instances within test and training DS.
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Figure 8.1: For EQ1 the prediction (red) of the relative layer thickness for all wafers of the
independent test DS for the VM model trained on the complete DS based on two-
years time period shows significant degradation from ~ wafer 50. The measured
target (green) is provided with UCL and LCL (blue).

The primary training of the VM prediction model for EQ1 obviously failed for both used
DSs (i. e. complete & MW) identified by all evaluation measures (i. e. RMSE, MAE, R2 &
sensitivity) and impressively visible in the figures 8.1 and 8.2.
Even though the obtained RMSE of 3.85%–4.54% is comparable to some results of various

publications stated in section 4.2, it is not considerable for implementation of VM since control
limits of process specifications for nanoscale designed high-tech products in SM constantly shrink.
Feasibility and applicability of VM depends on predictions with an accuracy of < 1%. Right at
the transition from the training to the test DS the equipment was subject to a major maintenance
activity described in subsection 2.3.2. The required readjustment of several process parameters
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Figure 8.2: For EQ1 the prediction (red) of the relative layer thickness for all wafers of the
independent test DS for the VM model trained on the MW DS based on 6 months
time period shows significant degradation from ~ wafer 50. The measured target
(green) is provided with UCL and LCL (blue).

can be observed in two of the eight most important features selected by the ERBE FS algorithm
(cf. table 8.7) as displayed in figures 8.3 and 8.4 for the last ~ 650 instances.
Figure 8.3 illustrates the normalized temperature of the input feature Temperature_Dome_3

for the combined training and test DS. Clearly visible is the offset in the feature values just
before and after the periodical maintenance at about wafer number 2800. Similarly, figure 8.4
displays the shift of Voltage_Chuck_1 to an so far unknown range of feature values 0.65 to
0.8. For comparison figure 8.5 shows Power_TS_1 as one of the crucial features with typical
variation within the DS not affected by maintenance activity. The significant change of two of
the most important input features causes the VM model to perceptibly degrade and to fail to
accurately and reliably predict the relative layer thickness.
The prediction conducted for the updated MW DS (cf. subsection 7.2.2) yields improved

results illustrated in figure 8.6 especially for the first third of wafers in the test DS. Nevertheless,
regarding the significant improvement of all evaluation measures for the MW DS (cf. table 8.1),
the result for EQ1 indicates a possible solution for achieving acceptable prediction performance
after maintenance intervention even though further investigations are necessary to develop a
more effective MW approach.
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Figure 8.3: Due to readjustment of several process parameters for EQ1 related to a periodical
maintenance, Temperature_Dome_3 as one of the crucial input features selected by
ERBE FS shows a significant shift to a so far unknown range of values yielding a
noticeable degradation of the prediction performance of the VM model based on the
complete and MW DS.
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Figure 8.4: Due to readjustment of several process parameters for EQ1 related to a periodi-
cal maintenance, Voltage_Chuck_1 as one of the crucial input features selected by
ERBE FS shows a significant shift to a so far unknown range of values yielding a
noticeable degradation of the prediction performance of the VM model based on the
complete and MW DS.
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Figure 8.5: For comparison, Power_TS_1 of EQ1 shows the typical variation as one of the
crucial input features selected by ERBE FS for the two-and-a-half years DS not
perceptibly affected by the maintenance intervention.
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Figure 8.6: For EQ1 the prediction (red) of the relative layer thickness for all wafers of the sec-
ond half of the independent test DS for the VM model trained on the updated MW
DS based on three months time period (i. e. first half of test DS) shows significant
improvement compared to prediction in figures 8.1 and 8.2. However, minor degra-
dation from ~ wafer 120 can be observed and is future subject to enhance the MW
approach. The measured target (green) is provided with UCL and LCL (blue).
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8.1.2 Equipment 2

Training DS CV(RMSE) CV(MAE) R2 Sen. # Outliers # Test # Train

Complete 1.95 1.83 -18.32 0.17 6 415 1662
MW 3.90 3.84 -76.31 0 6 415 417
updated MW 0.57 0.47 -1.24 0.25 4 187 209

Table 8.2: Results for EQ2 for complete, MW and updated MW DS: Evaluation of accuracy
by CV(RMSE), CV(MAE) and R2 as well as reliability by sensitivity including the
number of outliers and instances within test and training DS.

0 50 100 150 200 250 300 350 400
0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

Wafer Count

R
el

at
iv

e 
La

ye
r 

T
hi

ck
ne

ss

Figure 8.7: For EQ2 the prediction (red) of the relative layer thickness for all wafers of the
independent test DS for the VM model trained on the complete DS based on two-
years time period shows significant degradation from ~ wafer 10. The measured
target (green) is provided with UCL and LCL (blue).

Similar to EQ1, the primary training of the VM prediction model for EQ2 obviously failed for
both used DSs (i. e. complete & MW) identified by all evaluation measures (i. e. RMSE, MAE,
R2 & sensitivity) and clearly visible in the figures 8.7 and 8.8.
Again, even though the obtained RMSE of 1.9% and 3.9% is smaller than for EQ1 with

superior results for the complete DS and comparable to some results of various publications
stated in section 4.2, it is also not considerable for implementation of VM since control limits
of process specifications for nanoscale designed high-tech products in SM constantly shrink.
Feasibility and applicability of VM also depends on predictions with an accuracy of < 1%.
Right at the transition from the training to the test DS the equipment was as EQ1 subject to a
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Figure 8.8: For EQ2 the prediction (red) of the relative layer thickness for all wafers of the
independent test DS for the VM model trained on the MW DS based on 6 months
time period shows significant degradation. The measured target (green) is provided
with UCL and LCL (blue).

major maintenance intervention as described in subsection 2.3.2. The required readjustment of
the process parameter Voltage_Chuck_1 as one of the eight most important features selected
by the ERBE algorithm (cf. table 8.7) can be observed for the last ~ 400 instances as displayed
in figure 8.9 which illustrates the normalized voltage of the input feature Voltage_Chuck_1
for the combined training and test DS. Clearly visible is the change at wafer number ~ 1600
where the values are adjusted to almost normalized 0 after the periodical maintenance. The
significant change of only one of the most important input features causes the VM model to
perceptibly degrade and to fail to accurately and reliably predict the relative layer thickness.
The adjustment of process parameters can impressively differ from one equipment to another
(compare Voltage_Chuck_1 for EQ1 & EQ2).
The prediction conducted for the updated MW DS (cf. subsection 7.2.2) yields improved

results illustrated in figure 8.10. As for EQ1 a significant improvement with regard to all
evaluation measures is achieved and corroborates the effectiveness of the MW approach after a
periodical maintenance also motivating investigations regarding its further enhancement. Even
though some outliers are not detected and some false outliers are predicted the very small RMSE
of 0.57% is a remarkable result for the prediction based on the updated MW DS.
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Figure 8.9: Due to readjustment of several process parameters for EQ2 related to a periodi-
cal maintenance, Voltage_Chuck_1 as one of the crucial input features selected by
ERBE FS shows a significant shift to a so far unknown range of values yielding a
noticeable degradation of the prediction performance of the VM model based on the
complete and MW DS.
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Figure 8.10: For EQ2 the prediction (red) of the relative layer thickness for all wafers of the
second half of the independent test DS for the VM model trained on the updated
MW DS based on three months time period (i. e. first half of test DS) shows
significant improvement compared to prediction illustrated in figures 8.7 and 8.8.
In contrast to the previous updated MW evaluation (cf. figure 8.6) good prediction
performance (i. e. RMSE = 0.57%) is achieved for the all data approving the
effectiveness of updated MW approach. The measured target (green) is provided
with UCL and LCL (blue).
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8.1 Advanced Virtual Metrology System

8.1.3 Equipment 3

Training DS CV(RMSE) CV(MAE) R2 Sen. # Outliers # Test # Train

Complete 0.93 0.68 -5.35 0 4 468 1874
MW 0.83 0.66 -4.08 0.50 4 468 470

Table 8.3: Results for EQ3 for complete and MW DS: Evaluation of accuracy by CV(RMSE),
CV(MAE) and R2 as well as reliability by sensitivity including the number of outliers
and instances within test and training DS.
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Figure 8.11: For EQ3 the prediction (red) of the relative layer thickness for all wafers of the
independent test DS for the VM model trained on the complete DS based on two-
years time period shows mainly acceptable results but including too many predicted
outliers. The measured target (green) is provided with UCL and LCL (blue).

EQ3 shows no offset in any of the relevant features related to a periodical maintenance inter-
vention close to the transition from the training to the test within the two-and-a-half years for
the VM prediction model trained on the complete and MW DS. The results for the evaluation
measures R2, MAE and RMSE in table 8.3 are very promising but come along with the drawback
of poor sensitivity visible in the figures 8.11 and 8.12. None of the four outliers are detected by
the VM model for the complete DS but two (50% sensitivity) are detected by the VM model
based on the MW DS giving another hint to further focus on the MW approach. In addition,
the prediction for the smaller MW DS yields slightly superior results in terms of RMSE. Despite
these good results, both VM models need to be used carefully due to the significantly increased
variance of the prediction compared to the observed target. The SVR-based VM model could
further be investigated for suffering from possible overfitting since the predictions tend to strike
above UCL or below LCL (blue). Nevertheless, falsely predicted outliers would lead only in
combination with similar predictions from other VM models (e. g. NN, M5’ – cf. section 5.2.2)
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Figure 8.12: For EQ3 the prediction (red) of the relative layer thickness for all wafers of the inde-
pendent test DS for the VM model trained on the MW DS based on 6 months time
period shows mainly acceptable results but including too many predicted outliers.
The measured target (green) is provided with UCL and LCL (blue).

to repeated physical metrology and are still within a range of < 3% of the relative layer thick-
ness. A slight expansion of UCL and LCL might be tolerable if the centered process capability
index is not significantly decreased (cf. subsection 9.1.1).
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8.1.4 Equipment 4

Training DS CV(RMSE) CV(MAE) R2 Sen. # Outliers # Test # Train

Complete 0.67 0.53 -2.33 0.75 4 745 2980
MW 0.59 0.46 -1.59 0.75 4 745 746

Table 8.4: Results for EQ4 for complete and MW DS: Evaluation of accuracy by CV(RMSE),
CV(MAE) and R2 as well as reliability by sensitivity including the number of outliers
and instances within test and training DS.
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Figure 8.13: For EQ4 the prediction (red) of the relative layer thickness for all wafers of the
independent test DS for the VM model trained on the complete DS based on two-
years time period shows good results with few significant deviations. The measured
target (green) is provided with UCL and LCL (blue).

Similar to EQ3, EQ4 shows no offset in any of the relevant features related to a periodical
maintenance intervention close to the transition from the training to the test within the two-and-
a-half years for the VM prediction model trained on the complete and MW DS. The very good
results for the evaluation measures R2, MAE and RMSE < 0.7% as well as for reliability by
means of sensitivity of detected outliers in table 8.4 are illustrated in the figures 8.13 and 8.14.
Three out of four outliers (75% sensitivity) are detected in the independent test DS by both VM
models corroborating a demonstrative use case of VM in SM with the largest investigated DS
including 3725 instances (i. e. wafers). Regarding R2, MAE and RMSE, the prediction for the
smaller MW DS yields slightly superior results whereat in addition the VM model trained on the
complete DS produces some more small outliers (i. e. < 2% relative layer thickness) below the
LCL (blue). Out of more than 700 tested instances the few falsely predicted outliers especially

113



8 Results

0 100 200 300 400 500 600 700
0.96

0.97

0.98

0.99

1

1.01

1.02

Wafer Count

R
el

at
iv

e 
La

ye
r 

T
hi

ck
ne

ss

Figure 8.14: For EQ4 the prediction (red) of the relative layer thickness for all wafers of the
independent test DS for the VM model trained on the MW DS based on 6 months
time period shows good results with few significant deviations. The measured target
(green) is provided with UCL and LCL (blue).

in the approach based on the MW DS are overall acceptable since an almost optimal solution
can be expected due to the fact that in statistical tests always a tradeoff between type one (false
positive) and type two (false negative) errors needs to be found (cf. subsection 3.6.3). Hence,
the constantly quite remarkable prediction performance for EQ4 in figure 8.13 and especially in
figure 8.14 demonstrates an applicable, targeted and desirable scenario for VM in high-mixture-
low-volume SM.
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8.1.5 Equipment 5

Training DS CV(RMSE) CV(MAE) R2 Sen. # Outliers # Test # Train

Complete 0.58 0.46 -2.82 1 3 483 1934
MW 0.52 0.41 -2.11 0.67 3 483 485

Table 8.5: Results for EQ5 for complete and MW DS: Evaluation of accuracy by CV(RMSE),
CV(MAE) and R2 as well as reliability by sensitivity including the number of outliers
and instances within test and training DS.
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Figure 8.15: For EQ5 the prediction (red) of the relative layer thickness for all wafers of the
independent test DS for the VM model trained on the complete DS based on two-
years time period shows good results with few deviations. The measured target
(green) is provided with UCL and LCL (blue).

Also EQ5 was not subject to a periodically maintenance intervention close to the transition
from the training to the test within the two-and-a-half years time period for the VM prediction
model trained on the complete and MW DS. The quite excellent results for the identified
evaluation measures R2, MAE and RMSE < 0.6% as well as for reliability by means of sensitivity
of detected outliers in table 8.5 are visualized in the figures 8.15 and 8.16. At least two out of
three outliers (67% sensitivity) are detected in the independent test DS by both VM models
again as for EQ4 corroborating a demonstrative use case of VM in SM. With regard to R2,
MAE and RMSE, the prediction for the smaller MW DS yields slightly superior results whereat
in addition the VM model trained on the complete DS produces some more small outliers (i. e.
< 2% relative layer thickness) above the UCL (blue). Again, out of more than 450 tested
instances the few falsely predicted outliers especially in the approach based on the MW DS are
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Figure 8.16: For EQ5 the prediction (red) of the relative layer thickness for all wafers of the
independent test DS for the VM model trained on the MW DS based on 6 months
time period shows good results with few significant deviations. The measured target
(green) is provided with UCL and LCL (blue).

totally acceptable and a solution close to the optimum can be expected. The investigation of
VM for SM yields the overall best results for EQ5 according to both, accuracy and reliability
measured by RMSE of 0.6% and sensitivity of 1, respectively. Once again, the constantly
quite remarkable prediction performance for EQ5 in figure 8.15 and especially in figure 8.16
demonstrates an applicable and desirable scenario as targeted for VM in high-mixture-low-
volume SM.

8.2 Smart Feature Selection

Following the results for the experimental evaluation of the advanced VM system as first essential
part of the present thesis, the newly developed ERBE FS algorithm is investigated as outlined
in section 7.3. At first, the generic approach of ERBE FS is approved for different production
equipment (i. e. AMAT Centura & AMAT Producer) running different manufacturing processes
(i. e. HDP CVD & PECVD) which are detailed in section 2.4. These results demonstrate the
potential of the generic ERBE FS for VM to tackle the essential problems of corporate-wide
efficient deployment of VM in SM, scalability, knowledge discovery and highest possible accuracy
stated in subsection 4.1.1. Subsequently, the ERBE FS technique is compared to the RELIEF
filter and LOO wrapper FS methods (cf. section 4.3 & section 6.3).
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8.2.1 ERBE Feature Selection

For the evaluation of the FS processing and the further investigation in terms of the remaining
optimization potential, the ERBE FS algorithm (cf. section 6.5) is initially executed on available
data of the AMAT Centura production equipment. Subsequently, the ERBE FS is also performed
on productive data of the AMAT Producer equipment to confirm the generic approach of the
developed algorithm.

ERBE Feature Selection for AMAT Centura

The following charts 8.17 – 8.25 illustrate the pareto of the approximately least important 20%
of features for each feature subset selected in the individual ERBE stages. The y-axis indicates
how often a feature is selected whereas along the x-axis the corresponding feature names are
listed (cf. appendix A.4). The least important 10% features (red) are removed after each ERBE
stage which are for the LOO stages (1–3 and 7–9) the ones selected the most as less significant
features as average over ten cycles per stage and for the GA stages (4–6) the features most often
omitted from the gene of the final best individual of as average over 25 cycles per stage to achieve
more differentiation (cf. section 6.5). In case of several features left with the same amount of
least important features, randomly some are removed (red) and others left in the feature subset
(yellow). Artificial features (burnt orange) are not removed (cf. section 7.3.2) even in case
of performing worse than other features. Features in blue belong to the least important 20%
but not the least important 10% (except of artificial features) and are thus kept in the feature
subset. For reference, in order to access the level of differentiation between the least important
features the average and the one sigma intervals are provided as well.

ERBE Stage 1: The results in terms of the least important features for the first ERBE stage
are displayed in figure 8.17. Already three out of the five artificial features are selected frequently
as less significant whereat in fact it is interesting to recognize that their correlated complements
(i. e. Artificial_2_ran for Artificial_4_cor & Artificial_5_cor for Artificial_3_ran) are not
selected within the least important 20% features. Thus, an original feature set containing many
inferring features is most likely where even after executing LOO FS still many noisy variables are
included. Features of various categories are revealed as dispensable while the range how often
features are selected is widely spread from nine down to one. Furthermore, the high standard
deviation of three around the average of four approves the good distinction within least important
features. Finally, Temperature_Dome_5 is clearly recognized as most unimportant real feature.

ERBE Stage 2: In figure 8.18, the features for the second ERBE stage are less but still signif-
icantly spread as indicated by the standard deviation of two whereof two features selected two
times are chosen randomly for elimination. Again, the same three artificial features are present
as in the first ERBE stage and process parameter Flow_Oxygen_2 is obviously unimportant.
Two remaining artificial features are not within the 15% of the least important features and
thus due to transition criterion 1.2 preventing few very frequently selected artificial features (cf.
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subsection 6.5.1) the next ERBE stage is still executed with LOO FS.
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Figure 8.17: ERBE stage 1 indicating features selected within approximate least important 20%
and yielding a CV(RMSE) of 0.5919 is designed for fast elimination of features
contributing mainly noise like artificial features (burnt orange) by LOO FS. Least
important and removed real features (red) are distinguished very well from others
randomly surviving features (yellow) or more important ones (blue).
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Figure 8.18: ERBE stage 2 indicating features selected within approximate least important 20%
and yielding a CV(RMSE) of 0.5836 is designed for fast elimination of features
contributing mainly noise like artificial features (burnt orange) by LOO FS. Least
important and removed real features (red) are distinguished quite well from others
randomly surviving features (yellow).
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Figure 8.19: ERBE stage 3 indicating features selected within approximate least important 20%
and yielding a CV(RMSE) of 0.5789 is designed for fast elimination of features
contributing mainly noise like artificial features (burnt orange) by LOO FS. Least
important and removed real features (red) are distinguished mainly very well from
others randomly surviving features (yellow).

ERBE Stage 3: The outcome of the third ERBE stage in figure 8.19 demonstrates for the first
time the precise distinction by the algorithm between artificial features (i. e. Artificial_2_*–
Artificial_5_*’) and real features even though Artificial_1_ran is still not within 20% of the
least important features. The highly correlated artificial features pairs (i. e. Artificial_2_ran
& Artificial_4_cor and Artificial_5_cor & Artificial_3_ran) are all selected exactly 9 times
as least significant variable indicating a good result of LOO FS. Thus, the transition from
ERBE part I performing fast feature elimination by LOO FS to ERBE part II optimizing the
feature subsets by GA FS is observed after this stage (cf. subsection 6.5.2 algorithm 4). The
number of least important real features quickly descends from 7 and half of the 8 eliminated
features are selected only once and chosen again randomly for elimination. Many of the features
which are selected only once belong to the category counter indicating the possible equivalent
contribution of these features. As only the artificial features are selected very often and the
remaining features rather rare, the average observed in the third ERBE stage dropped to 3
and the standard deviation increased again to 3. The worst feature (Counter_3) is one of the
supervisory process parameters (e. g. counting processed wafers) to estimate the degradation of
equipment hardware and the remaining time until the next maintenance intervention is needed.
Transition criteria 1.1 (1.9 = 4 artificial features each 9 times selected / 5 real features 7, 5, 4, 2
and 1 time selected) and 1.2 (4 out of 5 features) of the ERBE algorithm (cf. subsection 6.5.2)
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are both met and thus ERBE part II with GA FS is subsequently executed.
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Figure 8.20: ERBE stage 4 indicating features selected within approximate least important 20%
and yielding a CV(RMSE) of 0.5452 is designed for feature subset optimization in-
corporating crucial interdependencies by GA FS. Least important and removed real
features (red) are distinguished from others randomly surviving features (yellow)
and at the first time all artificial features (burnt orange) are detected as unimpor-
tant.

ERBE Stage 4: In the first of the subsequent three ERBE GA stages of part II, all artificial
features are present for the first time within the approximately least important 20% features
as indicated in figure 8.20, however Artificial_3_ran is still ranked below 6 real features. The
average increased to 18 while the standard deviation decreased to one indicating a very small
differentiation between the least important features. The fact of a small distinction between
dispensable features is corroborated by quite frequent (i. e. 17 or more times out of 25 conducted
cycles) exclusion of all least important features in the fourth ERBE stage from the final best
individual optimized by GA FS. As before, features of various categories have been discovered
as unimportant. Finally, transition criterion 2.2 (cf. subsection 6.5.1) is not met and therefore
the next ERBE stage is executed again by GA FS.

ERBE Stage 5: Following the previous observation of overall frequently neglected features,
figure 8.21 for ERBE stage 5 shows a y-axis range from 18 down to 5 where the most features are
selected 5 to 8 times. The artificial features are clearly detected as useless input but again with
interesting differentiation between only duplicated and thus perfectly correlated artificial features
i. e. Artificial_2_ran vs. Artificial_4_cor and Artificial_3_ran vs. Artificial_5_cor yielding
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Figure 8.21: ERBE stage 5 indicating features selected within approximate least important 20%
and yielding a CV(RMSE) of 0.5716 is designed for feature subset optimization in-
corporating crucial interdependencies by GA FS. Least important and removed real
features (red) are partially quite well distinguished from others randomly surviv-
ing features (yellow) whereas again all artificial features (burnt orange) are clearly
detected as unimportant.

values of 17 vs. 8 and 13 vs. 18, respectively. The majority of the revealed least important
features decreased the average from 18 down to 8 with an increased standard deviation of four
due to the rarely chosen artificial features Artificial_2_ran and Artificial_5_cor. As before,
features of every category are present with primarily eliminated features of the counter category
and Flow_Oxygen_1 as noticeably least important feature. Finally, transition criterion 2.2 (cf.
subsection 6.5.1) is not met and therefore the next ERBE stage is executed again by GA FS.

ERBE Stage 6: For the first time as figure 8.22 illustrates, all artificial features are clearly
distinguished from the real features however again without matching the duplicated features
Artificial_2_ran & Artificial_4_cor and Artificial_3_ran & Artificial_5_cor. An almost con-
stant gradient and thus a linear line could be fitted quite well to describe the descending curve
of counted least important features (especially the real ones) of the best individuals of the 25
cycles. Including artificial features, a slightly larger average (9) and smaller standard deviation
(3) as in the previous ERBE stage emerged, but this metrics turns out to be very small (i. e. 8
& 1, respectively) if only the real features are considered. At last and similar to ERBE stage 3,
counter process parameters (i. e. Counter_8 and Counter_16) are detected as very least impor-
tant real features. Since both transition criteria (i. e. 2.1 & 2.2 - cf. subsection 6.5.1) are met the
ERBE algorithm moves on to fine tuning feature optimization in part III. As the combination of
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Figure 8.22: ERBE stage 6 indicating features selected within approximate least important 20%
and yielding a CV(RMSE) of 0.5841 is designed for feature subset optimization in-
corporating crucial interdependencies by GA FS. Least important and removed real
features (red) are distinguished from others randomly surviving features (yellow)
whereas again all artificial features (burnt orange) are clearly detected as unimpor-
tant.

clearly distinguished artificial features and similarly often selected real features is the first time
noticeably observed for GA FS, the sixth ERBE stage indicates the transition at which feature
subset optimization and global subspace search via heuristic GA FS moves to fine tuning feature
optimization in part III (cf. subsection 6.5.2). In order to further improve the remaining fea-
ture subset while still ensuring high prediction performance, LOO FS is subsequently conducted
again (cf. section 6.5).

ERBE Stage 7: With ERBE stage 7, part III of the ERBE algorithm starts to fine-tune and
optimize the remaining feature subset via LOO FS with intended and initially achieved stronger
feature differentiation as well as less computational effort for 10 LOO FS cycles compared to 25
GA FS cycles. The least important features with three or more counts are selected in addition
to the five artificial features which again achieved the highest counts in the range of eight to nine
counts. Feature Power_Bias_5 is eight times selected to be most dispensable while five out of
the eight removed real features are selected three times explaining a comparably high standard
deviation of three around an average of six. Thus, the targeted stronger feature distinction by
LOO FS in figure 8.23 is corroborated by a considerable difference between irrelevant and less
irrelevant features whereas no feature category is predominantly affected by elimination.
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Figure 8.23: ERBE stage 7 indicating features selected within approximate least important 20%
and yielding a CV(RMSE) of 0.5649 is designed for fine tuning feature optimization
incorporating crucial interdependencies by LOO FS. Least important and removed
real features (red) are distinguished quite well whereas again all artificial features
(burnt orange) are clearly detected as most unimportant.

ERBE Stage 8: According to figure 8.24 the eighth ERBE stage yields the same average and
standard deviation (rounded) as the former stage whereas the range of the number of least
important features increased as well as again the differentiation between real features which is
explicitly intended in part III. It is also observable that the number of obtained least important
features of duplicated artificial features Artificial_3_ran and Artificial_5_cor perfectly match
in contrast to Artificial_2_ran and Artificial_4_cor. Interestingly, the artificial features are
not grouped together as worst features anymore which might be due to overvaluing of Artifi-
cial_2_ran. This observation will be subject to further investigation since only 24 variables
(including artificial ones) are present in the feature subset and a perfect correlation exists be-
tween these artificial features. Moreover, mostly (i. e. 5 out of 8) features of the category counter
with Counter_9 as worst feature are eliminated compared to the previous stage where the cate-
gories are evenly distributed. Once more, a quite constant decrease of the amount of features in
the descending curve is visible. The first time a small degradation yields a prediction accuracy
above 0.6% indicating loss of information and a tradeoff between model complexity and error
(cf. section 3.3.4).

ERBE Stage 9: Figure 8.25 illustrates the ninth and last ERBE stage where only eleven real
features are left as input and eight out of them are finally eliminated from the feature subset
thus pushing the new ERBE FS with rR = 10% to the limit. Hence, the remaining three real
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Figure 8.24: ERBE stage 8 indicating features selected within approximate least important 20%
and yielding a CV(RMSE) of 0.611 is designed for fine tuning feature optimization
incorporating crucial interdependencies by LOO FS. Least important and removed
real features (red) are distinguished very well from others randomly surviving fea-
tures (yellow) whereas again the artificial features (burnt orange) are detected as
unimportant.
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Figure 8.25: ERBE stage 9 indicating features selected within approximate least important 20%
and yielding a CV(RMSE) of 0.6234 is designed for fine tuning feature optimization
incorporating crucial interdependencies by LOO FS. Least important and removed
real features (red) are distinguished very well even though again not all artificial
features (burnt orange) are clearly detected as most unimportant.
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features not listed as least important ones are most important to achieve highest prediction
performance. The artificial features are again not grouped together but the two artificial feature
groups Artificial_3_ran & Artificial_5_cor and Artificial_2_ran & Artificial_4_cor perfectly
match with nine and ten counts in each group. Counter_11 clearly turned out as dispensable
feature with also ten counts. Again, the descending curve appears to be very straight keeping the
average and standard deviation constant at the same values 6 and 3, respectively, as in the two
previous stages. Thus, the intended and very well demonstrated differentiation of fine tuning
feature optimization of part III (cf. algorithm 4) is corroborated once more while the steady
small degradation again yields a prediction accuracy above 0.6% indicating loss of information
and a tradeoff between model complexity and error (cf. section 3.3.4).
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Figure 8.26: ERBE FS for AMAT Centura: Prediction performance for all ERBE stages and the
final evaluation in terms of accuracy measured by the CV(RMSE) plotted against
the number of features representing the challenge of scalability by means of the
model complexity affecting data storage, data traffic and computational effort of
the VM implementation.

In figure 8.26 the results of all ERBE stages for the AMAT Centura equipment (EQ4, CH1)
are plotted against the number of labeled features representing the challenge of scalability (cf.
subsection 4.1.1) by means of the model complexity (cf. Bias-Variance-Tradeoff section 3.3.4).
In order to obtain a meaningful result after conducting the new ERBE FS algorithm the final
feature subset consisting of the five artificial features and Pressure_Helium_2, Power_TS_1
as well as Flow_Silane_1 is also evaluated ten times with grid search optimization and yields
a prediction performance of 0.9273%. The significantly degraded prediction performance of
> 0.3% compared to the other ERBE stages with CV(RMSE) between 0.5452 up to 0.6234
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impressively demonstrates the final loss of crucial information to accurately predict the target
with only three real features left. Hence, the transition from very good to noticeably worse
prediction accuracy is expected after the ninth (i. e. last) ERBE stage. The prediction accuracy
as relative deviation from the target (i. e. LT) is measured by the CV(RMSE) to emphasize
the desired recognition of outliers. Over all ERBE stages, an average accuracy of 0.5839% is
achieved with a maximum of 0.6234% at stage nine and a minimum of 0.5452% at stage four.
The difference between these stages of only 0.0782% indicates statistical variation related to
different compositions of the training and validation DS due to shuffling of the instances as well
as ever changing randomly created artificial features.

Investigation of Optimization Potential

The accuracy for all ERBE stages may improve if the artificial features are removed and only
meaningful real features are included in the final feature subset. Hence, before the results of the
new ERBE FS algorithm are compared to the RELIEF filter and LOO FS wrapper methods (cf.
subsection 8.2.2), a manual feature subset optimization is performed around the turning point
with 3 - 11 features left (i. e. 16− 5 = 11 excluding the artificial ones) at which the prediction
performance significantly degrades to investigate the maximum possible accuracy for smallest
feature subset.
At first, two HDP CVD process experts are interviewed and asked to provide a feature subset

(i. e. Expert Selection – ES) only including all the features with expected high relevance and
thus crucial for implementation of a VM system. These subsets containing 20 and 22 features are
illustrated in figure 8.27 in addition to the ERBE FS curve as labeled purple triangles yielding a
degraded prediction performance. Before any attempt is made to manually optimize the feature
subsets selected by the ERBE FS algorithm, the resulting feature subset of the eighth ERBE
stage is applied omitting the artificial features (i. e. only including the 11 real features) to train
VM models again for the average of ten cycles also performing grid search. These results are
displayed by a burnt orange diamond connected and belonging to the blue diamond for ERBE
FS stage 8. The description in the legend ERBE_FS_S8_11 of figure 8.27 indicates ERBE
stage eight by S8 and the number of 11 input features.
Features obtained either from ES according to appropriate recommendations of the process

experts or from the last 30% (i. e. resulting from ERBE stage 7) are manually combined into fea-
ture subsets in order to investigate the improvement potential of the final feature subset selected
by the ERBE FS algorithm. These manually optimized feature subsets are named FS_OPT_∗
where the asterisk is substituted by two numbers, the first one defining the number of features
within the feature subset and the second one the index if different feature combinations with
the same number of features within a subset are used. All different feature subset combinations
are displayed as green dots in figure 8.27 (not labelled individually for the sake of clarity) and
the composition of these feature subsets is provided in table 8.6 (cf. appendix A.4.1 for the full
feature list).
Few features are adjusted at the equipment and as far as possible kept constant with the
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Temperature_Chamber_1 5 1 1
Temperature_Chamber_2 6 1 1
Flow_Helium_1 7 1 1 1 1 1 1 1 1 1
Flow_Helium_2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Pressure_Helium_1 9 1 1
Pressure_Helium_2 10 1 1
Pressure_Chamber_1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Temperature_Dome_1 13 1 1 1 1
Temperature_Dome_2 14 1 1
Temperature_Dome_3 15 1 1 1 1 1
Temperature_Dome_4 16 1 1 1
Temperature_Dome_5 17 1
Current_Chuck_1 18 1
Power_Chuck_1 21 1
Voltage_Chuck_1 22 1 1 1 1 1 1 1 1 1 1 1 1 1
Flow_Helium_3 24 1 1 1 1 1 1 1 1 1
Flow_Helium_5 30 1 1 1 1 1 1 1 1 1 1
Flow_Helium_6 31 1
Flow_Helium_7 32 1 1
Counter_11 44 1
Power_Bias_1 55 1 1 1 1 1 1 1 1
Power_Bias_3 57 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Power_Bias_4 58 1
Power_Bias_5 59 1 1
Power_TS_1 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Power_TS_3 62 1 1 1 1 1 1 1 1 1
Power_TS_4 63 1
Power_TS_5 64 1
Power_TS_6 65 1 1 1 1 1 1 1 1 1
Power_Bias_6 67 1
Flow_Silane_1 68 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Flow_Silane_3 70 1
Logistic_1 73 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Tune_1 74 1
Tune_2 75 1

Sum of features 22 20 3 3 3 5 7 8 8 11 12 12 13 14 14 14 16 11

Table 8.6: Feature subset composition to investigate the optimization potential of ERBE FS.
Columns 1 & 2 state the features with their numbers (cf. full feature list in appendix
A.4.1) and columns 3 & 4 (ES_22 & ES_20) present the features included by process
experts in the performed ES. All columns beginning with ’FS_OPT_’ (i. e. 5 to 19)
provide the manually optimized feature subsets. The last column provide the feature
subset composition after stage 8 of the ERBE FS algorithm without artificial features
resulting in 11 input variables. The total sum of features per subset is added at the
bottom.
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Figure 8.27: Investigation of Optimization Potential: The feature subset from ERBE stage eight
(ERBE_FS_S8_11) is evaluated and manually modified based on process expert
recommendation (green & red dots) to obtain an optimized result in terms of ac-
curacy and model complexity. For comparison, the result for the expert selected
feature subsets is given (ES_20 & ES_22).

dome temperature as one representative. Although, a constant feature is neglected by any
FS algorithm the strong recommendations of process experts to include the dome temperature
(especially Temperature_Dome_3) into the investigation of the ERBE FS optimization potential
is accepted since future changes of this feature may provide further valuable information.

The further recommendation of experienced process experts to substitute the two features
Pressure_Helium_1 and Pressure_Helium_2 by Flow_Helium_2 and to incorporate the feature
Temperature_Dome_3 are changes made to obtain FS_OPT_8_2 (highlighted as red dot in
figure 8.27) from ERBE_FS_S8_11 (burnt orange) whereas feature subset FS_OPT_7 as
green dot located left to FS_OPT_8_2 only lacks the dome temperature compared to the latter
feature subset. Since the accuracy of the three feature subsets is almost the same and the model
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Index Feature Category Unit Description

8 Flow_Helium_2 Gas flow sccm Helium gas flow into process chamber
11 Pressure_Chamber_1 Pressure mTorr Pressure within process chamber
15 Temperature_Dome_3 Temperature ◦C Temperature at ceramic dome
22 Voltage_Chuck_1 Voltage V Voltage applied to electrostatic chuck
57 Power_Bias_3 Power W DC-bias power applied by RF coil generator
60 Power_TS_1 Power W Top/Side power applied by RF coil generator
68 Flow_Silane_1 Gas flow sccm Silane gas flow into process chamber
73 Logistic_1 Logistics - Logistical Parameter

Table 8.7: Optimized ERBE FS feature subset to evaluate the VM system.

complexity defined by the feature subset size of quite the same order, it strongly corroborates the
hypothesis of an almost optimal result revealed by the ERBE FS algorithm in terms of maximal
accuracy for a minimal number of features. In order to consider the expert recommendations,
FS_OPT_8_2 is finally chosen as input feature subset to validate the advanced VM system
(cf. chapter 5 and results in section 8.1) with its feature composition listed in table 8.7. The
dimensionality reduction of more than 85% of the input feature set containing initially 75
features (omitting the artificial ones) to finally 11 features in the ERBE_FS_S8_11 feature
subset also approves the remarkable performance of the ERBE FS algorithm.

ERBE Feature Selection for AMAT Producer

Regarding ERBE FS for the PECVD process on AMAT Producer (cf. section 2.4), only the
curve to assess accuracy versus model complexity is illustrated below. The results of each ERBE
stage are individually outlined and discussed (cf. appendix A.6).
Figure 8.28 plots the prediction performance in terms of relative deviation from the targeted

layer thickness measured by CV(RMSE) against the number of features representing the model
complexity and thus addressing the challenge of scalability (cf. section 4.1.1). In contrast to
FS for the HDP CVD process on AMAT Centura a much higher number of features (i. e. 203
features including the five artificial ones) is initially available also determining with the reduction
rate rR of 10% an increase to 20/21 deleted features in each ERBE stage. ERBE part I performs
LOO FS until a distinction between artificial and real features is achieved and the transition
criteria (cf. subsection 6.5.1) are met which happened when 142 features are left after the
third ERBE stage (cf. figure A.3). These first three steps clearly show a significant higher
gradient and faster improvement of CV(RMSE) than the other ERBE stages of almost 0.5%
from ~ 1.8% down to ~ 1.3%. ERBE part II conducting feature subset optimization via GA FS
still constantly improves the accuracy but in sum only by ~ 0.05% until only 80 features are left
when the transition point to switch to feature fine tuning again via LOO FS in ERBE part III
is reached after three more steps (cf. figure A.6) similar to ERBE FS for the HDP CVD process
on AMAT Centura. Only the last of the three ERBE stages in part III achieved a noticeable
improvement of the accuracy (i. e. ~ 0.2%) resulting in a final deviation of the targeted layer
thickness of ~ 1.1% with 20 features left in the final feature subset. Compared to ERBE FS for
the HDP CVD process on AMAT Centura in figure 8.26 a significant and constant improvement
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Figure 8.28: ERBE FS for AMAT Producer: Prediction performance for the initial feature set
and all nine ERBE stages in terms of accuracy measured by the RMSE plotted
against the number of features i. e. the model complexity affecting scalability by
means of data storage, data traffic and computational effort of the VM implemen-
tation.

and strong monotone increasing prediction performance is observed whereat no degradation
is visible at the end. Thus, noisy and redundant information is at first quickly and ongoing
constantly removed from the feature set and it is reasonable to expect that further fine tuning
of the final feature subset will on the one hand further increase the prediction performance and
on the other hand will also end up with increasing loss of important information and therefore
a reduction of accuracy again.
Hence, the optimum for the model complexity as described in section 3.3.4 and displayed in

figure 3.2 is also located in a range of less than 15 features due to the fact that the final feature
subset of 20 features still includes the 5 artificial ones. At last, the final feature subset comprising
the 15 most important features is given in table 8.8 demonstrating a versatile mixture of features
from all categories.

8.2.2 Comparison of ERBE, RELIEF and single LOO Feature Selection

A comparison of the ERBE FS algorithm with the well-established RELIEF FS filter and the
LOO FS wrapper method is drawn where feature subsets comprising 3, 5, 8, 10, 12 and 15
features are investigated for the same DS as used for the evaluation of the ERBE FS. RELIEF
(cf. section 4.3) as well as LOO FS (cf. section 6.3) are both feature ranking methods providing
a feature list in decreasing order with the most important feature at the top. As outlined

130



8.2 Smart Feature Selection

Index Feature Category

4 Flow_Argon_4 Gas flow
11 Pressure_Chamber_4 Pressure
23 Power_Bias_2 Power
30 Logistic_1 Logistics
36 Power_Heater_5 Power
40 Power_Heater_9 Power
55 Temperature_Heater_15 Temperature
56 Temperature_Heater_16 Temperature
59 Temperature_Heater_19 Temperature
66 Flow_Helium_6 Gas flow
180 Pressure_Throttle_6 Gas flow
183 Time_2 Time
185 Time_4 Time
194 Time_13 Time
195 Time_14 Time

Table 8.8: Composition of final ERBE FS feature subset for PECVD on AMAT Producer.

in subsection 7.3.3, ten SVR models are trained for all three compared methods to relativize
variation of randomly created artificial features and the final feature ranking is based on the
average feature importance of these ten runs. Table 8.9 lists the first 15 ordered features for all
three techniques together with the achieved CV(RMSE) for each feature subset with respect to
their size in bold font.

No. RELIEF LOO FS ERBE FS
Feature CV(RMSE) Feature CV(RMSE) Feature CV(RMSE)

1 Power_TS_3 Power_TS_1 Pressure_Helium_2
2 Power_TS_1 Pressure_Helium_2 Flow_Silane_1
3 Power_Bias_3 1.0788 Logistic_1 1.5124 Power_TS_1 0.9317
4 Temperature_Dome_4 Pressure_Helium_1 Pressure_Chamber_1
5 Pressure_Chamber_1 0.7696 Power_TS_3 0.7915 Logistic_1 0.7403
6 Temperature_Dome_1 Pressure_Chamber_1 Voltage_Chuck_1
7 Power_Bias_1 Voltage_Chuck_1 Pressure_Helium_1
8 Flow_Helium_3 0.7208 Flow_Argon_3 0.7290 Power_Bias_3 0.6445
9 Logistic_1 Power_Bias_3 Power_TS_6
10 Temperature_Dome_5 0.6553 Temperature_Dome_4 0.7080 Power_Bias_1 0.6330
11 Power_Bias_6 Power_TS_6 Counter_11
12 Temperature_Dome_2 0.7226 Flow_Silane_1 0.6396 Counter_1 0.6287
13 Flow_Helium_4 Power_Bias_1 Temperature_Dome_1
14 Flow_Helium_1 Flow_Helium_5 Counter_10
15 Flow_Helium_8 0.7637 Power_Chuck_1 0.6366 Power_TS_3 0.6277

Table 8.9: The first 15 ranked features of the RELIEF, LOO and ERBE FS techniques are listed
together with the achieved CV(RMSE) for each corresponding evaluation of feature
subsets comprising 3, 5, 8, 10, 12, and 15 features. The first column specifies the
number of variables in each feature subset. The tested feature subsets indicated by
their size are successively highlighted in bold font.

The results of the new ERBE FS algorithm (labeled in bold font by feature subset size) con-
stantly outperform the strong monotone improving LOO FS wrapper and the RELIEF filter
approach degrading for feature subset 12 and 15. Figure 8.29 clearly illustrates the superior
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Figure 8.29: Comparison of RELIEF (red), LOO (orange) and ERBE FS (green) techniques
by means of prediction accuracy as relative deviation form target layer thickness
(RMSE in %) for feature subsets sizes 3, 5, 8, 10, 12 and 15. The results for the
new ERBE FS algorithm (labeled by feature subset size) constantly outperform the
strong monotone improving LOO FS wrapper and the RELIEF filter degrading for
feature subset 12 and 15. The poor results for the feature subsets with three input
variables for RELIEF FS (i. e. CV(RMSE) = 1.079) and LOO FS (i. e. CV(RMSE)
= 1.5124) are not displayed to maintain a meaningful figure by appropriate scaling.

prediction performance for ERBE FS which already achieves with three input variables a pre-
diction accuracy in terms of deviation from the target layer thickness < 1%. The poor results
for the feature subsets with three input features for RELIEF FS (i. e. CV(RMSE) = 1.079)
and LOO FS (i. e. CV(RMSE) = 1.5124) are not displayed to maintain a meaningful figure
by appropriate scaling. It is depicted very well that around the number of eight input features
the curve of ERBE FS flattens and the prediction performance in terms of accuracy only im-
proves marginally. While the RELIEF filter yields good results up to the input of ten features
it significantly degrades for more features thus losing reliability due to the fact that the other
methods still improve the prediction performance. The LOO FS wrapper constantly decreases
the CV(RMSE) and finally achieves results close to the ones of ERBE FS for 12 and 15 input
features. Nevertheless, a noticeable gap exists between both curves with the ERBE FS achieving
superior results until these feature subset sizes are reached. As it is revealed from the investiga-
tion of optimization potential in the previous section 8.2.1, an optimal feature subset minimizing
the number of input features while simultaneously maximizing the prediction performance in
terms of accuracy is located at about 7 - 12 input features. Especially in this range, the new
ERBE FS algorithm incorporating with LOO FS and GA FS the corresponding feature rank-
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ing and feature subset optimization principles clearly outperforms the other filter and wrapper
methods RELIEF and LOO FS. Even more, the ERBE FS technique already reached an opti-
mum in terms of the required number of input features and prediction accuracy at around eight
input features.

Feature No. RELIEF LOO ERBE

Flow_Argon_3 3 1 1 1 1
Flow_Helium_1 7 1
Pressure_Helium_1 9 1 1 1 1 1 1 1 1 1
Pressure_Helium_2 10 1 1 1 1 1 1 1 1 1 1 1 1
Pressure_Chamber_1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Temperature_Dome_1 13 1 1 1 1 1
Temperature_Dome_2 14 1 1
Temperature_Dome_4 16 1 1 1 1 1 1 1 1
Temperature_Dome_5 17 1 1 1
Power_Chuck_1 21 1
Voltage_Chuck_1 22 1 1 1 1 1 1 1 1
Flow_Helium_3 24 1 1 1 1
Flow_Helium_4 25 1
Flow_Helium_5 30 1
Flow_Helium_8 33 1
Counter_1 34 1 1
Counter_10 43 1
Counter_11 44 1 1
Power_Bias_1 55 1 1 1 1 1 1 1 1
Power_Bias_3 57 1 1 1 1 1 1 1 1 1 1 1 1 1
Power_TS_1 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Power_TS_3 62 1 1 1 1 1 1 1 1 1 1 1 1
Power_TS_6 65 1 1 1 1 1
Power_Bias_6 67 1 1
Flow_Silane_1 68 1 1 1 1 1 1 1 1
Logistic_1 73 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Sum of features 3 5 8 10 12 15 3 5 8 10 12 15 3 5 8 10 12 15

Table 8.10: Feature composition of investigated RELIEF filter, LOO wrapper and ERBE FS
algorithms for feature subset size 3, 5, 8, 10, 12 and 15. Every column of RELIEF,
LOO and ERBE presents a feature subset where the sum of included features is
stated at the bottom. Power_TS_1 is the only feature included within all feature
subsets.

At last, table 8.10 lists the composition of the investigated feature subsets for RELIEF, LOO
and ERBE FS. Only the eight features selected by the ERBE FS algorithm (cf. table 8.7)
yielding the almost optimal prediction performance as illustrated in figure 8.29 are considered
to be important since more features barely add significant information thereby improving the
accuracy. The feature Power_TS_1 is the only one included in all feature subsets in the top
three features and thus clearly identified by all approaches as indispensable input. The features
Pressure_Helium_1 and Pressure_Helium_2 frequently selected only by LOO and ERBE FS
are substituted by Flow_Helium_2 on recommendation of process experts (cf. section 8.2.1).
Pressure_Chamber_1, Power_Bias_3 and Logistic_1 are recognized by all techniques as crucial
whereas Voltage_Chuck_1 is again only considered by LOO and ERBE FS. Flow_Silane_1 is
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again only by ERBE FS revealed to be crucial and at least ranked at number 12 by LOO FS.

Summary: The results of the conducted experiments (cf. chapter 7) to evaluate the newly
developed advanced VM system (cf. chapter 5) and the invented smart ERBE FS (cf. chapter 6)
are illustrated and analyzed.
At first, prediction accuracy and reliability of the advanced VM system are tested on chrono-

logical ordered, unseen and independent data simulating a productive environment of several
equipment processing a huge variety of products and basic types determined by a high diversity
regarding other logistical parameters (e. g. recipe, operation). Data of two out of five equipment
show major adjustments right at the transition from training to test resulting in unsatisfiable
prediction performance. After retraining of new VM models including adjusted instances good
results are achieved for EQ1 & EQ2 (cf. subsections 8.1.1 & 8.1.2). The predictions for equip-
ment EQ3 – EQ5 (cf. subsections 8.1.3, 8.1.4 & 8.1.5) yield from the beginning good results
even though the number of predictions outlying the control limits is in focus of investigation and
further reduction. In overall, a reliability of mostly higher than 50% of the detected outliers as
well as a prediction accuracy in terms of CV(RMSE) of constantly less than 1% clearly approves
the feasibility and applicability of the investigated advanced VM system.
Secondly, the new ERBE FS algorithm (cf. section 6.5) is executed and the results of the

various ERBE stages are evaluated in subsection 8.2.1. Here, the algorithm is tested to reveal
the most important features for data of the HDP CVD process on equipment AMAT Centura
(cf. section 8.2.1) and the PECVD process on equipment AMAT Producer (cf. section 8.2.1). In
order to assess the optimization potential of the new technique, a manual feature subset optimiza-
tion after execution of ERBE FS is conducted including process expertise and comprehensive
knowledge of experienced process engineers. The results of the ERBE FS algorithm for both
processes as well as the results from the investigated optimization potential clearly demonstrates
the compelling capability of the new ERBE FS algorithm to tackle the problems and challenges
regarding efficiency, scalability, knowledge discovery and accuracy (cf. subsection 4.1.1). Strong
monotone increasing prediction performance in terms of accuracy measured by the outlier sen-
sitive CV(RMSE) up to the optimum of the bias-variance-tradeoff (cf. section 3.3.4) and the
discovery of the crucial feature subset is impressively achieved by the developed ERBE FS
algorithm hence enabling an advanced VM system.
At third, the new ERBE FS technique is compared to the state of the art in terms of FS

methods (cf. subsection 4.1.2) i. e. to the established ML filter technique RELIEF and the
SVR-based wrapper technique LOO FS. The outlined results in subsection 8.2.2 explicitly
corroborates the superior performance of ERBE FS for advanced VM especially in the crucial
range for the size of the optimal feature subset (cf. Figure 8.29).
In the following chapter 9 a concluding discussion of the results for the developed smart FS

algorithm enabling an advanced VM system is conducted considering the scope of the current
state of the art and the related achievements regarding the fab-wide application in leading-edge
SM industry.
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The obtained results of the experiments composed in the previous chapter to investigate the
advanced VM system as well as the new ERBE FS algorithm are subsequently discussed in the
next two sections.
In the first half of the present thesis covering a one and a half years time period the advanced

VM system was projected and only limited resources could be assigned for development and
implementation. The close cooperation with other partners (e. g. Fraunhofer-Gesellschaft) in
the European research project IMPROVE implicates the challenge to work simultaneously on
various other work packages (e. g. Predictive Maintenance) but also provides the opportunity to
gain valuable knowledge in terms of ML algorithm development and inevitable DP for various
environments. To the end of the IMPROVE project two core hypotheses are postulated by the
author of the present thesis:

1. The choice of the ML induction algorithm used for prediction is less important as long as
relevant boundary conditions are satisfied (e. g. good regularization ability).

2. Data preparation is crucial to optimize prediction performance and clearly outperforms
the impact of the choice of the ML learning algorithm.

The firm conviction of the correctness of these hypotheses led to the two major aspects of the
present work mainly investigated, developed, implemented and tested in the course of the second
half of the three years time period at the Infineon frontend manufacturing site Regensburg:

1. Efficient development and implementation of an advanced VM system including the con-
sideration, adjustment and enhancement of a suitable DM concept (CRISP-DM) incorpo-
rating all essential tasks needed for realization of a productive VM application:

1.1. A VM system module (i. e. PTM) is implemented for the two scenarios of prediction
of the defined target and training of the implemented ML algorithms (i. e. SVR, NN
and M5’).

1.2. A VM module for configuration (i. e. CM) is developed to dynamically choose the
best prediction model depending on logistical parameters and available data.

2. Data preparation consists of several tasks with FS as one of the most essential aiming on
the reliable selection of an optimal subset of input variables. In addition to increasing
the prediction performance of an induction technique, further advantages according to
subsection 4.1.1 are realizable by smart FS:
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2.1. A generic FS approach applicable for all suitable manufacturing processes maximizes
efficiency of VM for corporate-wide fast implementation and deployment (cf. Effi-
ciency).

2.2. The reduction of the feature subset not only decreases model complexity but also
reduces corporate data storage, data traffic and computational effort and so improves
scalability of an advanced VM system which can be assessed as a substantial monetary
benefit to significantly strengthen the competitive advantage of Infineon in the SM
industry (cf. Scalability).

2.3. The revelation of the most important process parameters by knowledge discovery
enables further process developments in future which is highly desirable to extend
the potential to gain competitive advantage in SM (cf. Knowledge Discovery).

2.4. Incorporating only the most important process parameters and with it only valuable
and curcial information maximizes reliability and prediction performance by means
of highest accuracy in terms of CV(RMSE) (cf. Accuracy).

9.1 Advanced Virtual Metrology System

A comprehensive assessment of the advanced VM system includes a CBA to estimate the ex-
pected benefit resulting from the productive application to the dedicated HDP CVD process, the
adapted CRISP-DM approach as well as the VM development and implementation at Infineon.
The DM approach can hardly be tested itself and is therefore discussed in terms of mastering
the projected challenge. The deployed advanced VM system is tested on five productive equip-
ment and the obtained results outlined in section 8.1 are assessed in detail together with the
implementation of the Prediction and Training Module as well as the Configuration Module.
Finally, the comparison with current state of the art VM system completes the discussion.

Cost Benefit Analysis: The CBA constituted in subsection 5.1.1 and appendix A.3 is filled
with required economic and productive data in order to calculate costs and benefits related to
the implementation of the advanced VM system and its application to the HDP CVD process.
Costs only arise for deployed human resources to develop and implement the VM system appli-
cation itself. For the calculation of the benefits the affected process areas HDP CVD, chemical
mechanical planarization and metrology are distinguished. The benefits of reduced metrology
and improved cycle time (cf. equations A.3 and A.4, respectively) are calculated for the first
two process areas whereof the latter also profits by a reduction of produced scrap wafers (cf.
equation A.5). The benefits for metrology are an improved utilization (cf. equation A.6) of the
already installed measurement equipment resulting in savings by reduced metrology operations
(cf. equation A.7). The potential and enormous benefit of avoiding new purchase of expensive
metrology equipment can hardly be expressed as a monetary benefit at that time as it mainly
depends on future and actually unknown production ramp-up strategies triggered by the global
market development for SM. As final result of the CBA calculation the full amortization of the
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VM development will take place three years after productive application of VM only for the
HDP CVD process. Deploying the advanced VM system by contemporary rollout of the current
implementation to other processes and process areas (e. g. physical vapor deposition, plasma
etch or chemical mechanical planarization) will substantially accelerate the attainment of the
break-even point as the related costs are significantly reduced compared to the initial develop-
ment at a quite similar level of achievable benefits. After the break-even point the developed
advanced VM system will annually generate substantial benefits and strengthen the competitive
advantage of Infineon in the SM industry.

Knowledge Discovery and Data Mining for Virtual Metrology: For the development and
implementation of the advanced VM system, the CRISP-DM approach is chosen, adapted and
elaborated for all comprised phases. Thereby, a well-structured DM procedure is conducted
within a short period of time of only one and a half year whereas indeed, the first phase (i. e.
Business Understanding) is mainly performed during the first half of the present work within the
European research project IMPROVE. The extensive literature research as well as an insightful
exchange with other researchers in the field of VM led to the previously postulated hypotheses
as ultimate but still in its completeness unsolved challenges (cf. subsection 4.1.1). A high
focus on the iterative CRISP-DM core phases (cf. figure 3.1) paired with a strict concentration
on the essential problems enabled the efficient development of a first VM system. A final
evaluation is performed on a subsequent and thereby independent DS and the results outlined
in section 8.1 clearly demonstrate the applicability of the advanced VM system for efficient fab-
wide deployment whereat even in case of major equipment maintenance activities (cf. EQ1 and
EQ2) a solution is found to achieve good results. In addition to approved efficiency, scalability
by reduction of model complexity affecting data storage, data traffic and computational effort is
accomplished. Knowledge discovery to enhance future process developments is highlighted in the
subsequent assessment and discussion of smart FS. Finally, the optimization of the prediction
performance in terms of accuracy and reliability as mandatory requirement for VM in SM is
also demonstrated by the conducted experiments.
In the end, all relevant phases are successfully executed and the hereinafter discussed results

in addition to recent publications [89], [90] corroborate the approach of adapting CRISP-DM
for VM in SM.

9.1.1 Assessment of Results

General Observations & Accuracy: The result of the primary predictions based on the com-
plete and MW DS for equipment EQ1 and EQ2 are not satisfying and related to the illustrated
manual adjustments of some of the most important process parameters. The secondary pre-
diction for EQ1 and EQ2 on the updated MW DS and all predictions for EQ3 – EQ5 yield a
RMSE ≤ 1% relative deviation of the LT. While the VM models for EQ1 and EQ3 are predes-
tinated subjects of future investigations and improvements, the predictions based on updated
MW data for EQ2 and both complete and MW data for EQ4 & EQ5 are unconditionally accept-
able for productive application. In general, the results achieve the required objective of highest
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prediction performance. The MAE is given as an additional measure for reference, but regarding
the objective to precisely predict outliers the more sensitive RMSE is primarily considered.
In general, the variance of the prediction delivered by the final VM models tend to exceed the

variance of the observed target for all investigated equipment EQ1 – EQ5. This is mainly related
to the chosen reduced logistical granularity in order to build only one generic VM model based
on this logistic but valid for various other logistical granularities which could be designated to
the specific equipment, process chambers and recipes. The alternative to build, evaluate, run
and maintain specific VM models subdivided into much more logistical granularities is generally
not feasible in low-volume-high-mixture SM due to the enormous variety of logistical variation.
An exception could be a dedicated VM model in very specific cases for exceptionally critical
products (e. g. decreased process stability in combination with increased process requirements).
The sensitivity to detect outliers by the VM models despite increased variance yields good

results for accurate predictions (i. e. based on updated MW data for EQ2 and both complete
and MW data for EQ4 & EQ5) discovering most of the outliers for the investigated equipment.
The prediction performance for the MW approach outperforms the VM models trained on the

corresponding complete DS in any case with the exception of the primary predictions for EQ1

and EQ2. In this regard, not the slightly lower prediction error achieved by the MW approach
but the considerably smaller size of the used training DS is remarkable.

Model Fit & Coefficient of Determination: In general the results point out that due to the
negative outcome of R2 no exclusive assessment of the model fit can be achieved by using
R2. The complex HDP CVD process (cf. section 2.3) can obviously neither be assumed to be
explained nor to be fitted by a linear function corroborating the investigation of the applied
RBF kernel (cf. equation (6.1)). Nevertheless, some correlation of R2 with the accuracy of the
model fit is visible as for an increasing coefficient of determination from negative values towards
zero the prediction error perceptibly decreases (cf. evaluation of prediction for EQ1 and EQ2 in
subsections 8.1.1 and 8.1.2, respectively). From the comparison of the results for all equipment,
it can be derived that a R2 > -3 indicates an overall good prediction.

Outliers & Sensitivity: Even though the reliability of the prediction models is estimated quite
well by the calculated sensitivity, shortcomings are observed in case of DSs comprising only very
few outliers due to excellent process control and the missing possibility to generate additional
outliers in a productive environment by dedicated design of experiments. The occurrence of
only few outliers exacerbates the challenge to develop a VM system due to the lack of espe-
cially valuable information within training data. Thus, exhaustive outlier detection by any VM
model cannot be guaranteed whereas the already established process control is still significantly
improved by the established all-over Wafer-to-Wafer control.
The integration of VM into statistical process control and so the inclusion of VM predictions

into the calculation of the UCL and LCL may yield expanded control limits implying a more or
less degraded centered process capability index which assesses the overall process stability. As
long as an increasing variance introduced by the prediction compared to the observed metrology
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(cf. EQ4 & EQ5 in subsections 8.1.5 & 8.1.4) does not significantly broadens these control limits
(e. g. less than 1% as visible for EQ4 & EQ5), no further action is required because highest
accuracy and quality are still ensured due to significantly broader process specification limits.
Well-defined specification limits and insignificantly expanded control limits could come in handy
regarding the effect of previously discussed and currently present small logistical granularity (i. e.
only few considered logistics within the configuration or as input variables). The majority of
falsely predicted outliers (e. g. EQ4) would then be located within the slightly broadened control
limits thus facilitating the application of VM demonstrating a concurrent benefit and solution in
case of smaller logistical granularity. For a significant higher variance or shift of the prediction
mean versus the observed mean (e. g. EQ1 & EQ2) and thus an unacceptably centered process
capability index value, a second enhancement in addition to the MW approach is possible. The
incorporation of further but not much more logistical parameters (e. g. only product) either
for configuration by logistical granularity or as input variables would yield further improvement
in terms of accuracy and precision due to additional information and characteristics inherent
in these logistics even though resulting in increased complexity of the advanced VM system.
Undetected outliers close to or even outside the specification limits can be revealed since the
very sensitive SVR model shows already good sensitivity in terms of outlier detection around
the control limits. Furthermore, the results of EQ1 and EQ2 approve the high prediction
performance of the SVR method itself where significantly degraded accuracy is recognized very
well if major shifts or single noticeable outliers are present in any of the crucial features (cf.
Temperature_Dome_3 and Voltage_Chuck_1 for EQ1 and the latter also for EQ2).
The achieved prediction performance in terms of accuracy and reliability unconditionally

meets the high demands on VM made in SM (cf. Accuracy) and clearly demonstrate the appli-
cability and capability of the advanced VM system.

Training on MW or complete DS: Due to periodical equipment maintenance activities in-
cluding major adjustments of crucial process parameters (e. g. Voltage_Chuck_1) right at the
transition from training to test DSs for EQ1 and EQ2, the initial prediction does not yield
satisfying results for neither the MW nor the complete DS approach. However, these most im-
portant features with values showing a significant offset are valuable and cause the VM model
to predict outliers or an entire offset. If a continuous offset occurs the retraining of the VM
model with mainly most recent instances for the updated MW approach is indicated. With an
increasing number of instances after periodical equipment maintenance the VM model can be
further optimized if required in case of still unsatisfying results caused by too less new instances
within the training DS. The application of the newly introduced RI with traffic light logic (cf.
section 5.2.2) compares the prediction with outcomes of various other ML techniques to exclude
the degradation of a VM model only based on SVR. Furthermore, the similarity index accord-
ing to [25] performs an early warning to not rely on the VM prediction if a significantly offset
is observed in the value of a crucial feature. The updated MW approach successfully demon-
strated the capability and applicability of an advanced VM system to rapidly achieve good
prediction performance within a changing environment indicated by coefficient of determination
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and sensitivity and clearly corroborated by the CV(RMSE) for EQ1 and EQ2 (cf. figure 8.10).
All suitable VM models built on MW DSs for EQ3 – EQ5 achieved lower deviation from the

target (w. r. t. CV(RMSE)), higher model fit approximated by R2 and comparable or higher
number of detected outliers than those trained on the complete DS. Thus, an adequately sized
MW approach appears to be favorable. At last, the influence of the variety of manufactured
products included in a DS over time is reduced in a MW DS due to the fact that the generally
positive effect of an increased amount of training instances comes along with a higher variation
of the feature values and thus a more generalized VM model.

9.1.2 Implementation

The design and implementation of the generic advanced VM system (cf. subsection 5.2.2)
is developed and realized within a time period of two years and tested for applicability for the
complex HDP CVD process considering all related systems and data flows (cf. subsection 5.1.2).
The model training quadratically depends on the number of used instances and linearly on the
number of features which are minimized by smart FS and thus not decisive in a range of less
than ~ 20 input features out of originally far more available variables. The training of new
VM models is performed within several minutes and in parallel to online VM prediction in the
internal framework thereby not delaying the production since the processing of an entire lot takes
place within 0.5 - 2 hours and including some additional minutes for reloading the equipment a
newly trained VM model is available. Once more, the MW DS approach is favorable in terms of
computational time effort as well as required memory size due to smaller DSs needed to train
a new VM model. The entire sequence to compute all VM predictions online for an entire lot
is performed at most in 10 s with an average of ~ 5 s whereat the step which dominates the
execution time is determined by DB I/O processes to load and store data or VM models. The
prediction itself for the entire lot (i. e. for all 25 wafers) takes place within a fraction of a second.
Hence, the performance of new advanced VM system is also corroborated with respect to the

investigated challenges of efficiency and scalability (cf. subsection 4.1.1) and demonstrating the
capability of future application and deployment in other process areas.

Virtual Metrology Prediction and Training Module

As highlighted in section 5.2.2 and illustrated in figure 5.2, the configured PTM trains the re-
quired VM models with regard to the necessary logistical granularity and predicts the metrology
outcome based on provided data. A basic VM approach using only SVR as prediction technique
including crucial DP was already prototyped and described in an earlier publication [90]. Ad-
ditionally, comparable ML methods in terms of prediction accuracy are implemented for the
advanced VM system (cf. figure 5.3) to improve the reliability of the prediction [93]. Thus, the
already stated RI in section 5.2.2 can serve as estimation of the prediction quality and will be
evaluated in future in more detailed studies.
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Virtual Metrology Configuration Module

The CM (cf. section 5.2.2) is developed to efficiently handle various logistical granularities oc-
curring due to the combinations of the enormous amount of all the available logistical parameters
(e. g. product, basic type, process group, operation, recipe, equipment). The implementation
of various ML techniques for VM is investigated in recent research for many different logisti-
cal granularities separating data into more dedicated DSs to achieve highest accuracy required
for VM in SM (cf. section 4.2). Considering the fact that the application of higher granular-
ity implying the inclusion of more logistical parameters into the DS could yield more accurate
predictions due to an incorporation of more specific characteristics within available data, it is re-
markable that the developed VM system achieves high accuracy even for a logistical granularity
configured by the CM based on only three logistical parameters and only a single logistic added
to the input feature set. Maintenance of higher detailed granularity with logistical parameters
comprising a high number of different values (e. g. basic type) turns out to be infeasible due to
the resulting highly fragmented DSs not containing enough data to reasonably train an induction
method. The challenge of high data fragmentation in low-volume-high-mixture SM is accepted
and mastered by incorporating only four logistical parameters for the entire VM system.

9.1.3 Comparison with current State of the Art Virtual Metrology

The fundamental challenges (cf. subsection 4.1.1) to sustainably deploy VM in SM are corporate-
wide efficient applicability and deployment without enormous additional effort for investigation
of each process area (Efficiency), scalable enterprise systems with minimized data storage, data
traffic and computational effort (Scalability), the ability to reveal only the crucial process pa-
rameters containing all essential information (Knowledge Discovery) and high prediction perfor-
mance in terms of accuracy and reliability (Accuracy).
The new advanced VM system introduced in chapter 5 and discussed in detail in the previous

subsections remarkably demonstrates the capability to master all these challenges. Especially the
difficult task of concrete knowledge discovery to enable and enhance future process developments
is achieved by smart FS and extensively highlighted in the next section. The new advanced VM
system is subsequently compared to the actual state of the art research provided in chapter 4
for FS for VM (cf. section 4.1) and VM (cf. section 4.2).

Comparison with FS for VM: As first challenge the efficiency of the new advanced VM system
enabled by smart FS is approved by development and subsequent application of the new ERBE
FS algorithm for the different processes HDP CVD and PECVD performed on the different
production equipment AMAT Centura and AMAT Producer (cf. section 2.4). A lack of efficient
deployment of FS for VM according to section 4.1 is observed in NN for CVD, NIPALS for CVD
which also lacks reliability in contrast to acceptable accuracy, GA FS for Etch with improvable
reliability as well as FS and Projection for Etch which shows only partially acceptable accuracy
as tradeoff for remarkable dimension reduction and scalability.
Scalability as second challenge is achieved by the new ERBE FS algorithm by significant
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dimensionality reduction of 85% of the input feature set from initially 75 features (omitting
the artificial ones) down to 11 features in the final subset. In contrast a lack of scalability is
identified in Tree Ensemble for Etch, Canonical Analysis for PVD with additional potential
for improvement regarding efficiency, Clustering for Etch with also insufficient capability in
terms of knowledge discovery and Aggregative Linear Regression for Etch again not meeting
the requirements of knowledge discovery and efficiency.
A comparison of FS methods for VM and the new ERBE FS algorithm in terms of knowledge

discovery including the revelation of crucial features is highlighted in more detail in subsec-
tion 9.2.3.
The results presented in section 8.1 clearly demonstrate the ability of the new advanced

VM system enabled by smart FS to achieve highest accuracy and reliability as required in SM
industry. In contrast, a lack of accuracy is observed in current research as SVR for Yield
where scalability is also subject to further improvements and Recursive Coefficient Centering
for Critical Dimension which shows insufficient ability to tackle any of the four stated problems.
In terms of mature reliability of outlier detection as well as efficiency, scalability and knowledge
discovery SVM for Outlier Detection yields unsatisfying results regarding FS for VM.

Comparison with VM: In addition to FS for VM, the entire new VM system with the combi-
nation of the PTM and the CM as described in section 5.2.2 and discussed above successfully
demonstrates the ability of a productive VM implementation in the SM industry to master all
the challenges according to subsection 4.1.1 in comparison with various other VM systems.
While a fab-wide equipment monitoring and FDC system (cf. TSMC ) yields a high coefficient

of determination, the problems of efficiency and scalability are not tackled so far. Forward
Selection Component Analysis for Etch achieves only moderate accuracy, neglects the importance
of scalability and also struggles to provide a complete VM system to efficiently transfer and
deploy VM applications to other process areas.
A lack of scalability, efficiency and knowledge discovery is observed for the VM systems

outlined in NN for Chemical Mechanical Planarization and Wafer-fine R2R Control whereas
the a partially missing quantified assessment of the latter hinders an extensive comparison to
other VM approaches.
Since more than a decade the extensive research of Cheng et al. addresses a wide range of

problems with VM in SM but even though noticeable results are presented for this variety of
problems the challenge of knowledge discovery is not considered so far.
Finally, unstated accuracy together with a lack of scalability, knowledge discovery and missing

evaluation of efficiency are drawbacks of L1-penalized ML for CVD.

9.2 Smart Feature Selection

The development of the ERBE FS algorithm is motivated by the goal to combine the merits of
various FS approaches under the condition that highest prediction accuracy as well as precision
and reliability are crucial to deploy VM as generic application in a productive SM environment.
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Subsequently the results of the new ERBE technique (cf. section 6.5) are discussed followed
by its comparison to the established RELIEF filter method (cf. section 4.3) and the LOO FS
wrapper approach (cf. section 6.3), finally complemented by a comparison to the current state
of the art.

9.2.1 ERBE Feature Selection

The evaluation of the developed ERBE FS algorithm is performed on two different production
equipment, AMAT Centura & AMAT Producer, on which different manufacturing processes,
HDP CVD & PECVD respectively, are running. The more detailed investigation of the new
ERBE FS technique on the first type of equipment contains the pure execution of the FS
algorithm as well as a manual optimization to estimate how close the result of the automated
ERBE FS method comes to an optimal solution potentially obtained by further improvement.
The affirmation of ERBE as a generic FS algorithm is effectuated by an automated execution
for a different and independent production equipment and process.

ERBE FS for AMAT Centura

ERBE FS: The execution time of the ERBE FS algorithm strongly depends on the size of the
DS as well as the system on which it is run and the applied algorithm settings (cf. appendix A.5).
The exhaustive FS on a DS containing 2699 instances lasts in total more than one week due
to the quadratic dependence of the computational time on the number of instances. The time-
determining step of SVR training is accelerated by optimizing the calculation of the H matrix
(cf. subsection 6.5.3) but is still time consuming for DSs with more than around 1000 instances.
Adjustments of the ERBE FS parameters (e. g. reduction rate) are also thinkable to accelerate
the processing. Since the execution of the ERBE FS algorithm is performed only once to reveal
the crucial features to improve all future prediction models and can be executed in parallel to
other applications a longer computational time appears to be tolerable (cf. appendix A.5).
The scalability depends on the number of features (i. e. incorporated process parameters) and

thereby the required data storage, data traffic and computational effort necessary to run the
advanced VM system. Although, only 75 features remained after strict DP for the HDP CVD
process the new ERBE FS algorithm achieved a reduction of 85% to 11 features left in the
feature subset after ERBE stage 8. Hence, the remarkable dimensionality reduction enables a
high performance VM system and tackles the problem of scalability.
The ERBE FS curve for all ERBE stages in figure 8.26 plots the prediction accuracy as

relative deviation from the target (i. e. LT) against the number of features including the artificial
ones representing the model complexity and so the scalability of the entire VM system. Minor
improvements and degradations are observable within part I and II (i. e. ERBE stages 1 -
6) which are expected to be caused by statistical variation of the different training/validation
DS compilation related to shuffling of the instances as well as the randomly varying artificial
variables. Part III demonstrates the potential to successfully differentiate features by efficient
LOO FS with less computation effort compared to GA FS.
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An equivalent accuracy compared to the best result of the ERBE FS algorithm obtained
at ERBE stage 3 with 56 input features is achieved for several considerably smaller DSs (cf.
figure 8.27). Thus, the hypothesis of a single feature or feature subset combination causing
this improvement can be rejected. A small degradation of the prediction performance can be
observed for remaining 24 and 16 input features whereas a clear degradation of the accuracy is
visible for only 8 input features (i. e. only 3 real features excluding the 5 artificial ones). The
impressive prediction accuracy by SVR demonstrates highest accuracy with already 75 input
features and the scalability is constantly improved.
At last, the demand for FS for VM in SM is observed since the reduction of feature subsets to

their minimum still achieving highest prediction performance minimizes the risk of degradation
of the VM model influenced by random effects totally incoherent to the physical process itself
(e. g. interferences of magnetic fields with a cable with degraded isolation by other tools causing
the measured maximum value to shoot up). If many dispensable features are included in the
feature subset an extreme outlier in any of these features contributing mainly noise may mislead
the VM model yielding a false prediction since the behavior of this feature was distributed within
an inconspicuous range of values so far. Furthermore, it is observed for equipment 1 and 2 in
subsections 8.1.1 and 8.1.2 that the explicit change (e.g. offset out of the range of training data)
of only one crucial feature can already significantly degrade the prediction performance of a VM
model.

Investigation of Optimization Potential: The resulting feature subset ERBE_FS_S8_11
(represented by a burnt orange diamond in figure 8.27) composed of 11 features of the 8th

ERBE stage (excluding the 5 artificial variables) yields a remarkable low error evaluated by
the RMSE of 0.572%. The hypothesis to achieve highest prediction accuracy by feature subset
ERBE_FS_S8_11 cannot be rejected due to the fact that within the other 15 manually com-
posed feature subsets the best score is achieved for feature subset FS_OPT_14_2 with a rela-
tive deviation from the target LT of 0.537%. The minor improvement of the prediction accuracy
of 0.035% is expected to be caused by statistical variation of the different training/validation
DS compilation. Hence, it is clearly corroborated that the new ERBE FS algorithm developed
in the present thesis found a solution for the required highest prediction accuracy.
The feature subset FS_ERBE_S8_11 automatically computed by the new ERBE FS al-

gorithm achieved the same high prediction accuracy as the manually optimized feature subset
FS_OPT_8_2 which is due to its reduced size used for the evaluation of the advanced VM
system. Table 9.1 lists an extraction of the feature compilation of both subsets for better com-
parison.
As it is already highlighted in section 8.2.1, the two features Pressure_Helium_1 and Pres-

sure_Helium_2 are substituted by Flow_Helium_2 and the feature Temperature_Dome_3
is additionally incorporated into the feature subset FS_OPT_8_2 based on the recommen-
dation of the process experts. Visualized in table 9.1, these differences between the feature
subsets FS_OPT_8_2 and FS_ERBE_S8_11 are four out of in total seven differences.
According to section 2.3, the substitution of the process parameters Pressure_Helium_1 and
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Feature Number FS_OPT_8_2 FS_ERBE_S8_11

Flow_Helium_2 8 1
Pressure_Helium_1 9 1
Pressure_Helium_2 10 1
Pressure_Chamber_1 11 1 1
Temperature_Dome_3 15 1
Voltage_Chuck_1 22 1 1
Counter_11 44 1
Power_Bias_1 55 1
Power_Bias_3 57 1 1
Power_TS_1 60 1 1
Power_TS_6 65 1
Flow_Silane_1 68 1 1
Logistic_1 73 1 1

Sum of features 8 11

Table 9.1: Feature subset comparison of FS_OPT_8_2 and FS_ERBE_S8_11: Columns 1
& 2 state the features with their numbers and column 3 lists the manually optimized
feature subset FS_OPT_8_2. The last column provides the feature subset compo-
sition of stage 8 of the ERBE FS algorithm excluding artificial features resulting in
11 features. The total sum of feature is added at the bottom.

Pressure_Helium_2 by Flow_Helium_2 is reasonable since all three variables are related to
the quantity of helium flowing between the wafer backside and the electrostatic chuck whereat
either the helium pressure within this isolated space or the injected helium volume per time is
measured, respectively. The helium gas is responsible for the adjustment of the wafer tempera-
ture by cooling the backside of the wafer during the HDP CVD process. Thus, the high impact
on the deposition target (i. e. LT) is directly caused by each of these three highly interrelated
features due to the fact that the deposition of SiO2 at the wafer surface strongly depends on the
temperature (cf. section 2.3). For this reason the temperature of the process chamber assessed
at the dome (cf. figure 2.3) by the feature Temperature_Dome_3 was recommended by the
process experts to be included in FS_OPT_8_2 assuming to add by this important informa-
tion to feature subset FS_OPT_7 relevant for the process outcome, but almost identical results
in terms of accuracy for FS_OPT_8_2 and FS_OPT_7 (the latter even slightly better - cf.
figure 8.27) rejected this hypothesis whereas the capability of ERBE FS in terms of knowledge
discovery is further approved.
Due to the fact that the variable Counter_11 is not included neither in any other feature

subset of the expert selection or manual optimization (cf. table 8.6) nor selected by another
FS algorithm (cf. table 8.9) but only in the feature subset FS_ERBE_S8_11 of ERBE stage
8 and not physically interrelated to other process parameters of the HDP CVD process, the
hypothesis of a last remaining insignificant feature might be corroborated.
The last two different features Power_Bias_1 and Power_TS_6 only present in feature subset

FS_ERBE_S8_11 are most probably highly correlated with Power_Bias_3 and Power_TS_1,
respectively, since the two other FS algorithms (i. e. RELIEF filter & LOO wrapper) also selected
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these features as the most important ones as observed in table 8.9.
The common feature subset of FS_OPT_8_2 and FS_ERBE_S8_11 is composed of the

following six features whose description with respect to the HDP CVD process is provided for
further understanding of the importance of these process parameters:

1. Pressure_Chamber_1: Pressure within process chamber

2. Voltage_Chuck_1: Voltage applied to electrostatic chuck

3. Power_Bias_3: DC-bias power applied by RF coil generator

4. Power_TS_1: Top/Side power applied by RF coil generator

5. Flow_Silane_1: Silane gas flow into process chamber

6. Logistic_1: Logistical Parameter

As Counter_11 is suspect to be the only feature within the resulting feature subset not
contributing valuable information it is remarkable that disregarding the variables Counter_11
and the two ulteriorly correlated features Power_Bias_1 and Power_TS_6, the new ERBE FS
algorithm revealed the best and most likely optimal feature subset containing 8 out of the 75
original features with only process parameters absolutely indispensable and required to achieve
highest prediction performance for VM in SM.
Furthermore, the results obtained for the ES feature subsets composed of 20 and 22 variables

(cf. figure 8.27) are clearly inferior compared to the ERBE FS results. The unexpected and
significantly higher error of ~ 0.7% and ~ 0.8% compared to the entire ERBE FS except the last
stage raises the question about the root cause for this significant difference. An investigation of
the feature subsets according to table 8.6 yields the result that a single feature is missing in the
two ES feature subsets which is never eliminated by the ERBE FS algorithm and resulted as one
of the three remaining most important features: Power_TS_1. Hence, in terms of Knowledge
Discovery in Databases an important finding is primarily obtained in the present thesis: The
newly developed ERBE FS algorithm originally published in [94] revealed a feature classified
as irrelevant by experienced process experts to be indispensable and absolutely crucial to be
included into the feature subset of a VM prediction model to achieve highest accuracy for VM
in SM.

ERBE FS for AMAT Producer

In contrast to ERBE FS performed on data of the HDP CVD process on the equipment AMAT
Centura, the present execution is performed within less than two days with 826 instances but
an almost tripled number of features (i. e. 198 vs. 75 input variables) in the DS. The only linear
dependency on the number of input features (in contrast to the quadratic subjection to the
input instances) demonstrates the feasibility and applicability of the ERBE FS approach even
for higher dimensionality of the feature space. Thus, the case of a highly populated input space
with more than 10.000 variables according to [125] is negligible compared to only ~ 100 - 200
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additional instances. Furthermore, an increased reduction rate during part I of the ERBE FS
algorithm can yield an adequate solution for huge input dimensionalities.
Up to now the SM industry is still struggling to efficiently deploy a corporate-wide VM system

also revealing only the crucial process parameters and neglecting noisy information due to the
lack of any generic FS technique (cf. section 4.1.1). The successful application of the new
ERBE FS algorithm to the PECVD process performed on the equipment AMAT Producer (cf.
section 2.4) clearly approves the efficiency of the developed advanced VM system enabled by
smart FS to master the economic challenges in highly competitive SM.
The prediction accuracy vs. model complexity for the PECVD process as illustrated in fig-

ure 8.28 corroborates the capability of ERBE FS to significantly reduce the number of features
while constantly increasing the prediction performance. From originally 198 input process pa-
rameters the ERBE FS algorithm eliminated more than 92% of these variables to yield a remark-
able small feature subset containing only 15 features (excluding the artificial ones). Thus, the
problem of scalability for a corporate-wide VM system with the challenge to efficiently handle
data storage, data traffic and computational effort for all VM prediction models is successfully
tackled and approved.
In contrast to FS for the HDP CVD process no degradation of the prediction accuracy proving

the loss of crucial information for a VM model is observed after the last ERBE stage. A
minimum of the error would indicate an optimum and perfect bias-variance-tradeoff of the
model complexity curve (cf. figure 3.2). The increase of the error for an insufficient number
of incorporated features is not yet observed and thus it cannot be assumed that an optimal
completely purified feature subset is achieved after the last ERBE stage. Therefore, the optimal
number of process parameters is expected to be in a similar range as for the HDP CVD process
around 5 up to the 15 revealed features. A fine tuning feature optimization of the ERBE FS
technique with adjusted parameters (e. g. smaller reduction rate for ERBE part III) appears to
be appropriate for initial DSs with high number of features yielding more detailed knowledge
discovery. Thus, the optimum of the model complexity curve at which the prediction degrades
would finally become visible again if an adjusted setting for the ERBE FS algorithm with
increased focus on fine-tuning optimization is applied.
The initial poor prediction performance with a relative deviation from the target LT of 1.8%

is insufficient in terms of highly accurate and reliable predictions required for VM. However,
the constant improvement of the accuracy down to ~ 1.1% again approves the capability of an
advanced VM system to optimize the prediction performance by smart FS. A further decrease
of the error excluding the five artificial features from the final feature subset can be assumed
as it is observed for the ERBE FS for AMAT Centura whereas an even higher improvement
is most likely for AMAT Producer since the accuracy is not yet obviously minimized as for
AMAT Centura yielding 0.05% improvement. Hence, it can be deduced that the new ERBE FS
algorithm finally enables VM for the PECVD process similar to HDP CVD without the need
of manual optimization to achieve a sufficiently small error and by this approving the entire
concept of generic VM in SM with highest accuracy.
The strong monotonic decrease of the error in figure 8.28 of the different ERBE stages indicates
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a significant performance degradation of an ML induction algorithm in the presence of too many
noisy and interfering features. It is clearly observed that the decrease slows down after ERBE
part I and increases again after ERBE stage 7. Conducting the LOO FS the first significant
reduction of the RMSE in the first three ERBE stages in part I eliminates the extremely noisy
and interfering process parameters. The features removed during the next four ERBE stages do
obviously neither contain relevant information nor disturb the prediction model. Due to the fact
that the first ERBE stage of part III (i. e. ERBE stage 7) also yields only a minor decrease of the
error the hypothesis of only small improvements of the accuracy are caused by GA FS in part II
can be rejected. The approach to provide an initial faster feature reduction by applying LOO FS
compared to an optimization performed by GA FS (cf. equation 6.3) is clearly validated by the
results of the first three ERBE stages. Also a faster fine tuning feature optimization in the last
ERBE part III by LOO FS compared to GA FS is corroborated by the significant improvement
of the prediction performance.
The assessment of the new ERBE FS algorithm for data of the HDP CVD and PECVD

process performed on the equipment AMAT Centura and AMAT Producer, respectively, yields
several insightful aspects. A higher range of the reduced error caused by a significantly larger
initial feature set containing noisy and inferring features and the constant improvement of the
prediction performance are obtained for the PECVD process. High accuracy already from
the beginning as well as the final degradation of the VM model are observed for the HDP
CVD process. A combination of both yields an idealized model complexity curve optimizing
the regularized risk as introduced in the bias-variance-tradeoff (cf. figure 3.2). Hence, the
applicability of the new ERBE FS algorithm is demonstrated for both scenarios of the model
complexity: high bias/low variance and low bias/high variance.
In addition to the present detailed discussion of the execution of the entire ERBE FS algorithm

for the AMAT Producer, the results of the individual ERBE stages are assessed (in the same way
as previously for the AMAT Centura) in the appendix on page xxvii together with an exhaustive
feature list on page xxiii.

9.2.2 Assessment of ERBE, RELIEF and single LOO Feature Selection

A comparison of the ERBE FS algorithm with the well-established RELIEF FS filter and the
LOO FS wrapper method is outlined in subsection 8.2.2 where feature subsets comprising 3, 5,
8, 10, 12 and 15 features are investigated and the top ranked features are listed in table 8.9.
Figure 8.29 corroborates the superior performance of the new ERBE FS algorithm especially in
the crucial range around 7 - 12 features.
Both ERBE FS and LOO FS preserve the process parameters Pressure_Helium_2 (related

to the wafer temperature as discussed before in section 9.2.1) and Power_TS_1 as two of only
three input features for the VM prediction model. The only difference of selecting the feature
Flow_Silane_1 by ERBE FS instead of Logistic_1 by LOO FS yields a remarkable improvement
of the prediction accuracy of ~ 0.6% as the error of 1.51% is reduced to 0.93% for ERBE FS.
Thus, the crucial inherent information of the feature Flow_Silane_1 is directly and as fast as
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possible revealed by the new ERBE FS algorithm and subsequently approved by the significantly
decreased CV(RMSE) achieved by LOO FS for feature subset of size 12 also containing even
this process parameter. The two most important process parameters selected by ERBE FS (i. e.
Pressure_Helium_2 & Flow_Silane_1) are completely neglected by RELIEF FS.
In contrast to these feature subsets of size 3, the RELIEF FS filter technique selected only

Power_TS_1 as common variable and Power_TS_3 and Power_Bias_3 as other input variables
resulting in a quite good relative prediction error CV(RMSE) of only 1.08%. Hence, the inclusion
of these features can partially compensate the missing intrinsic information of Flow_Silane_1
and Pressure_Helium_2. Especially the feature Power_Bias_3 corroborates the fact of more
inherent characteristics since it is also included within the ERBE FS feature subset containing
8 process parameters achieving a noticeable smaller error than the comparable subset of the
LOO FS method with also 8 variables whereat the immediate inclusion of Power_Bias_3 and
Temperature_Dome_4 in the following feature subset of LOO FS composing 10 variables also
yields higher accuracy. Hence, the absolutely indispensable process parameter Power_TS_1
is obviously the most important feature immediately selected by all algorithms.
The logistical parameter Logistic_1 and the process parameter Pressure_Chamber_1 are

subsequently identified as most important by ERBE FS yielding the so far best result of 0.74%
for 5 input features. While the feature Pressure_Chamber_1 is almost concurrently selected
by RELIEF FS it is considered by LOO FS for the first time within the feature subset of size
8. Similarly but with a little higher difference between the FS techniques, Logistic_1 is ranked
by LOO FS already as 3rd and by RELIEF FS as 9th most important feature. Thus, logistical
parameter Logistic_1 and the process parameter Pressure_Chamber_1 clearly contribute
crucial information to enable further improvement of the prediction performance.
While Power_Bias_3 is already stated as one of the additional 3 process parameters for

the next ERBE FS feature subset of size 8, Voltage_Chuck_1 and Pressure_Helium_1 are
also incorporated by ERBE FS as well as selected and ranked by LOO FS (as number 7
and 4, respectively) but neglected by RELIEF FS. Hence, Pressure_Helium_1 and Pres-
sure_Helium_2 are immediately identified as crucial features by ERBE FS and LOO FS
contributing indispensable characteristics to assess the wafer temperature and by this to finally
achieve highest prediction performance. In order to include the same intrinsic information, these
two variables are substituted by Flow_Helium_2 as recommended by the process experts yield-
ing firstly remarkable results as demonstrated for unseen data (cf. section 8.1) and secondly
further reduction of the dimensionality of the feature set. Voltage_Chuck_1 as eighth process
parameters contained in feature subset of size 8 selected by ERBE FS also serves as important
source of information and indicator of potential data shift as corroborated in figure 8.4.
Compared to LOO FS and ERBE FS the fast degradation of the results (cf. figure 8.29)

obtained by the feature subsets ≥ size 10 as well as the significantly differing composition of
top ranked features neglecting crucial process parameters demonstrated the deficiency of the
RELIEF FS filter method despite of its computational advantage to reliably perform dimension-
ality reduction for VM.
The results of LOO FS and ERBE FS in table 8.9 yield a quite similar feature subset com-
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position but noticeably inferior prediction performance of LOO FS as illustrated in figure 8.29.
Hence and according to the principle "A good feature ranking criterion is not necessarily a good
feature subset ranking criterion." [49], the comparison of both FS methods underlines the supe-
rior performance of the new ERBE FS algorithm and thus the importance of the incorporation
of a heuristic feature subset selection technique like the introduced GA FS.
The precisely revealed optimum of absolutely indispensable features to achieve highest pre-

diction accuracy is clearly demonstrated by the new ERBE FS algorithm in figure 8.29 yielding
an almost perfectly minimized relative deviation from the target LT of 0.64% with the feature
subset containing eight features highlighted above and outlined in table 8.9. Even more, the new
ERBE FS algorithm (cf. section 6.5) remarkably approved its specific ability to discover new
process knowledge by immediate detection of Power_TS_1 as most important feature. Hence,
the new ERBE FS algorithm enables an advanced VM system for corporate-wide VM in SM.

9.2.3 Comparison with current State of the Art FS Methods

The challenge of knowledge discovery (cf. section 4.1.1) for VM to reveal crucial logistical
and process parameters as support for process experts for future developments is investigated
and encountered by various research and already approved by the new ERBE FS algorithm (cf.
discovery of feature Power_TS_1 in section 9.2.1). While several state of the art FS methods are
developed for VM in SM (cf. subsection 4.1.2), a lack of knowledge discovery is still observed in
Canonical Analysis for PVD with more potential for improvement of scalability and efficiency for
generic VM deployment, PLS for PECVD, Tree Ensemble for Etch with additional shortcomings
in terms of scalability for a corporate-wide VM system and Clustering for Etch.
The results presented in section 8.2 clearly demonstrate the ability of the new ERBE FS

algorithm to yield highest prediction performance as required in SM industry. In contrast,
insufficient accuracy is achieved by SVR for Yield also struggling to attain scalability as well
as by Recursive Coefficient Centering for Critical Dimension and SVM for Outlier Detection
where the latter two approaches are unable to tackle the problems of scalability and efficiency.
Even though the computational effort for the previously discussed FS methods is not com-

prehensively provided for comparison, the execution time of the new ERBE FS algorithm can
be considered as quite long ranging from a couple of hours to several days depending on the
amount of input features and mainly instances. As an advantage compared to investigated state
of the art FS, the new ERBE FS algorithm focusses on outlier detection by incorporation of the
sensitivity due to the use of the RMSE as intrinsic evaluation criterion to assess the prediction
accuracy. Compared to the most described FS methods for VM (cf. subsection 4.1.2), the new
ERBE FS technique is also able to prevent local optima by inclusion of a heuristic search (i. e.
GA FS) which is independent of the applied kernel function and thus provides a solution for
shortcomings of other FS methods summarized in section 4.3.2. Another advantage is given
by the ability of the new ERBE FS method to deal with multiple selection criteria in terms of
concurrent optimization of the number of input features and prediction accuracy overcoming the
drawbacks recapitulated in section 4.3.1. Furthermore, the effective distinction between noisy
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variables and features containing valuable information is improved by the introduction of arti-
ficial features. The variety of adjustable parameters of the ERBE FS algorithm (e. g. definition
of percentage for each reduction phase, continuous reduction vs. fine tuning in later stages,
SVR model parameters, definition of thresholds for transition between ERBE parts, number
and distribution of artificial features, etc.) also enables a high level of adaption to manifold
processes and use cases beneficial for generic deployment of VM in SM.
The challenge to find a suitable FS method to unify the benefits of computational efficient

feature ranking techniques for fast feature elimination and heuristic feature subset optimization
constantly incorporating crucial interdependencies is successfully mastered by the new ERBE FS
algorithm by combining the merits of LOO FS and GA FS with the principles of structural and
empirical risk minimization. The remarkable results corroborate the capability of the new ERBE
FS technique to overcome the so far unresolved problems of efficiency, scalability, knowledge
discovery and accuracy and thus to enable an advanced VM system in the very demanding and
complex SM industry.

Summary: The results outlined in the previous chapter 8 are discussed in detail to assess the
developed advanced VM system and the new ERBE FS algorithm.
The economic requirement in the highly competitive SM industry for effective development

and efficient deployment of a generic VM system is initially verified by a CBA and subsequently
fulfilled by application of the CRISP-DM approach. The evaluated results of the advanced VM
system (cf. subsection 9.1.1) are approved by a remarkable accuracy achieved to minimize the
deviation from the target, a good model fit to the observed data and the noticeable reliability
to detect outliers. Prediction models are build and approved on the complete and the favored
MW DSs. The reviewed implementation of the two VM modules (cf. subsection 9.1.2) for
prediction and training as well as configuration (i. e. PTM & CM) demonstrates the corporate-
wide applicability of the VM system. A final comparison with the current state of the art in
VM (cf. subsection 9.1.3) corroborates the solution of the so far unresolved problems regarding
efficiency, scalability, knowledge discovery and accuracy by the advanced VM system.
The imperative demand for VM in SM to implement scalable applications in terms of data

storage, data traffic and computational effort by reduction of the high number of possible lo-
gistical and process parameters is obviously recognized but so far not successfully mastered by
suitable FS techniques. The new ERBE FS algorithm overcomes the problems of scalability
and knowledge discovery while guaranteeing highest prediction performance and by this enables
an advanced VM system for efficient deployment in SM. The successful application of the new
ERBE FS technique is approved for different processes (i. e. HDP CVD & PECVD) performed
on different production equipment (i. e. AMAT Centura & AMAT Producer). An investigation
of the optimization potential of the result obtained by the new ERBE FS method corroborates
an excellent selection of an almost perfect feature subset only containing the really crucial fea-
tures to achieve highest prediction accuracy. Here, a by process experts supposed important
process parameter is identified not to improve the prediction performance. Even more, a so far
neglected process parameter is discovered as most important feature contributing valuable infor-
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mation for future process development and enhancement (cf. subsection 9.2.1). The new ERBE
FS algorithm outperforms an established FS filter technique as well as FS wrapper method and
approves the potential to reveal only the crucial features to meet the challenging requirements of
VM (cf. subsection 9.2.2). Again, a final comparison with the current state of the art in FS for
VM (cf. subsection 9.2.3) corroborates the mastery of the so far unresolved problems efficiency,
scalability, knowledge discovery and accuracy by the new ERBE FS algorithm thus providing a
solution for the scientific challenge to enable FS for VM.
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A final conclusion regarding the development and implementation of an advanced Virtual Metrol-
ogy (VM) system enabled by smart Feature Selection (FS) realized with the new Evolutionary
Repetitive Backward Elimination (ERBE) FS algorithm is drawn in the following. The concept
of VM in high-mixture-low-volume Semiconductor Manufacturing (SM) is approved by ensuring
efficiency, scalability, knowledge discovery and accuracy required for corporate-wide productive
application. Finally, an outlook is provided for possible future research and development as well
as further beneficial enhancements of the current application.

10.1 Conclusion

Advanced Virtual Metrology System

The introduced Cost-Benefit Analysis (CBA) enabled the economic assessment of the develop-
ment and implementation of VM within the industrial environment of productive SM at the
Infineon Technologies AG. The planning of future VM enhancements (e. g. similarity index - cf.
subsection 4.1.2) and deployments can be based on the available CBA calculations to estimate
an expected return on invest.
The effective implementation paired with constantly focusing on crucial research activities

to ensure a very tight schedule is assured by the well-structured CRoss Industrial Standard
Process for Data Mining (CRISP-DM) procedure. Similar to professional project management,
firstly specific targets are defined and regularly aligned with the stakeholders, secondly the
iterative execution of the core phases steadily improves the entire VM system while permanently
controlling the progress and thirdly after evaluation and acceptance by the stakeholders the
corporate-wide VM system is finally deployed.
The VM system is successfully evaluated by Root Mean Squared Error (RMSE) for accuracy,

sensitivity for reliability and Coefficient of Determination (R2) for model fit and is proven
to generate good prediction models built on Moving Window (MW) and complete Datasets
(DS). Noticeable reliability to detect outliers, sufficiently good model fit to the observed data
and remarkable accuracy minimizing the deviation from the target are achieved for various
equipment and processes.
The developed Prediction and Training Module (PTM) and Configuration Module (CM)

demonstrate the ability to perform automated predictions and configurations for a productive
and corporate-wide VM system in SM. Only four logistical parameters are sufficient for the High
Density Plasma (HDP) Chemical Vapor Deposition (CVD) and Plasma Enhanced Chemical Va-
por Deposition (PECVD) processes to achieve the projected goals whereas depending on data
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availability and specifically required prediction model accuracy more logistics can be included in
the logistical granularity scenario managed by the generic CM or as additional input feature in
a DS. Different high-sophisticated learning methods (i. e. Neural Network (NN), Decision Tree
M5’ (M5’) and Support Vector Regression (SVR)) are successfully implemented to be executed
in parallel for further improvement of the prediction reliability and to design a new Reliance
Index (RI) comparing the outcome of these Machine Learning (ML) methods [93].
The observed computing performance of some seconds to execute online VM predictions in-

cluding data storage and data traffic corroborates the feasibility of the advanced VM system
enabled by smart FS.
The expectations in terms of VM reducing physical metrology to a feasible minimum for

assuring a self-controlled VM system are met. The results of the prediction performance are not
satisfying if major equipment maintenance is recently performed which in fact is immediately
identified via comparison with physical metrology and the future RI. Thus, the investigated
MW approach based on a smaller and more recent DS yield an approach to tackle the problem
to maintain highest prediction performance.
A final comparison with the current state of the art in VM corroborates the solution of

the so far unresolved problem of simultaneously mastering the challenges efficiency, scalability,
knowledge discovery and accuracy by the advanced VM system.
Finally, the results of similar performing ML algorithms combined with the improvements by

means of smart FS confirm the two stated core hypotheses that not the choice of the induction
algorithm significantly improves the accuracy, but the reduction to a feature subset containing
only the most important features.

Smart Feature Selection

The development of the new ERBE FS algorithm enfolds the incorporation of three different
objectives by consecutive parts. In part I, fast dimensionality reduction initially eliminates noisy
and inferring features by Leave-One-Out (LOO) FS. In part II, feature subsets are optimized
keeping crucial interdependencies and preventing solutions at local optima by Genetic Algorithm
(GA) FS. In part III, feature fine tuning optimization is conducted by LOO FS to reveal only
the most important features composing the final feature subset.
The introduction of artificial features perceptibly supports the discrimination between impor-

tant and dispensable features and serves as an effective threshold used as transition criteria to
move to the next part of the ERBE FS algorithm.
The new ERBE FS technique approved its powerfulness to reduce the initial feature set

by 85% and 92% for different processes (i. e. HDP CVD & PECVD) performed on different
production equipment (i. e. Applied Materials (AMAT) Centura & AMAT Producer) while
yielding a remarkable highest prediction accuracy of 0.57%.
An investigation of the optimization potential of the results obtained by the new ERBE FS

method corroborates the excellent selection of an almost perfect feature subset only containing
the really crucial features to achieve highest prediction accuracy. Hence, the new ERBE FS
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algorithm enables scalability of the advanced VM system for corporate-wide deployment.
The total computational effort of some hours up to some days spent for execution of the new

ERBE FS technique is acceptable for manageable DSs. Compared to the iterative process of
Data Mining (DM) consuming some weeks up to several months the process of FS is performed
only once if a purified DS is available and can also be scheduled in parallel as an independent
task.
The comparison of the new ERBE FS algorithm with the Expert Selection (ES) demonstrates

the potential of knowledge discovery for VM in SM. A feature so far neglected and classified
as redundant by the process experts is discovered to be one of the most important features
contributing valuable information for future process development and enhancement.
Furthermore, established and high-sophisticated FS techniques (i. e. RELIEF filter and SVR-

based LOO wrapper) are compared to and outperformed by the new ERBE FS method approving
its potential to rapidly reveal only the crucial features while meeting the outlined four challenging
requirements of VM.
A final comparison with the current state of the art in FS for VM corroborates the mastering

of the so far unresolved problem regarding simultaneous achievement of the challenges efficiency,
scalability, knowledge discovery and accuracy by the new ERBE FS algorithm thus providing a
versatile solution for the scientific challenge of enabling FS for VM.

Summary: In the end, the imperative demand for VM to efficiently implement scalable appli-
cations in terms of data storage, data traffic and computational effort by reduction of the high
number of possible logistical and process parameters yielding highest prediction performance is
obviously recognized in the research area of VM but so far not adequately satisfied by available
FS methodologies. For the first time, the efficient development and application of a FS technique
successfully meeting all these challenges is proven in the present work for different fabrication
processes performed on different production equipment. The new ERBE FS algorithm masters
the challenges of scalability and knowledge discovery while guaranteeing highest prediction accu-
racy and by this enables an advanced VM system yielding high efficiency by fastest deployment
in SM.

10.2 Outlook

The final objective to approve the concept of smart FS to enable advanced VM at Infineon is
realized in a short period of time. So, several additional challenges and options for extension
and enhancement as well as further investigation emerged in the course of the present thesis.
The following outlook outlines some of the remaining aspects related to possible future work.

Advanced Virtual Metrology System

• The training of ML models on MW and complete DSs yield good but not always perfect
prediction results. The strategy of retraining ML models based on differently sized and dy-
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namic DSs can be optimized especially for the case of prediction performance degradation
due to shifts of input parameters related to major maintenance activities.

• An investigation of various scenarios with different criteria (e. g. applicability of the men-
tioned RI introducing a traffic light logic, statistical significance tests with respect to the
outlier distribution) as best point in time to trigger a new training of the VM predic-
tion model to achieve best accuracy and reliability is already content of actual research
continued at Infineon by the author of the present thesis.

• Up to now the target for the VM prediction to monitor the HDP CVD process is the
thickness of the deposited dielectric layer. Other existing process control parameters (e. g.
the associated refraction index and the bow of the processed wafer resulting in mechanical
stress of the deposited layer) are also monitored by physical metrology and thus could be
subject to future VM application.

Smart Feature Selection

• Regarding the noticeable computational effort of the ERBE FS technique, a future in-
corporation of a correlation analysis between the repetitive ERBE stages appears to be
conceivable to further speed up the feature subset selection.

• Recent research focused on the optimization of the applied kernels with mixed polynomial,
hyperbolic or Radial Basis Function (RBF) kernels. Moreover the usage of different ker-
nels for each feature depending on their characteristics appears to be worthy of further
investigation.

• The most important features are already subject to detailed discussions with process engi-
neers whereas the crucial feature newly revealed by the ERBE FS algorithm needs further
profound investigation involving extensive expertise in the area of unit process develop-
ment at Infineon to fully exploit the potential for future enhancements of the deposition
process and development of new processes based on the gained knowledge.
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A.1 Frontend Process Areas

In today’s SM, circular silicon wafers with highest purity >99.9999% of various sizes with a
typical diameter of 150mm, 200mm or 300mm are used in frontend fabs whereof 200mm sized
wafers are commonly organized in lots containing 25 identical wafers. These lots are processed
in all frontend process areas multiple times to build up a layered structure onto the wafers. In
general, SM frontend process areas can be organized into six process sequences for altering the
physical structure of a wafer. Additionally, two process sequences (i. e. Clean & Metrology)
either prepare wafers for the next one or to control the result of the last one. Figure 2.1 outlines
the non-modifying process sequences metrology and clean (center) and the altering process
sequences layer composition, planarization, structuring, layer removal, layer transformation and
resist strip [174], [66].

The overall process flow is to build up a layer in layer composition, followed by planarization
of the new layer, structuring of the plane layer, removal and/or transformation of the structured
layer and resist strip of the structuring. Between any of these process sequences, the wafers can
be cleaned and required measurements can be performed. The different process areas included
in these process sequences are briefly highlighted below.

Layer Composition

Layer composition can be divided into the two process areas deposition and furnace which can be
further broken down according to the reaction type in terms of chemical or physical deposition
and chemical layer composition or oxidation in furnace processes.
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Deposition

Deposition

Chemical deposition is used in SM industry for the deposition of thin films of
solids onto substrates (i. e. wafers) by chemical reaction of a certain mixture of
process gases within a process chamber. Physical deposition includes evaporation
deposition of various materials as well as sputtering of designated materials to
deposit the sputtered elements.
To initiate the deposition process as well as to increase the deposition rate, the
reaction gases can be activated thermally, electrically (by plasma), chemically
or by photons. The properties of the deposited conductive or dielectric film are
determined by the method of activation, the applied energy, the amount and
chemical properties of the supplied gases, as well as the temperature and the
material properties of the substrate [174].

Oxidation

Furnace

To oxidate an already existing substrate on the wafer surface (e. g. Si to SiO2),
thermal oxidation takes place in an environment of high temperature (≈ 1000◦C)
as dry or wet oxidation using oxygen or water as oxidant, respectively, yielding dif-
ferent layer thicknesses which determine quality and cost of the oxidation process
[42]. Conductive path isolation, masking for diffusion processes and protection
from damage are some of the manifold functions of the various oxide layers [79].
Chemical layer composition in furnace processes differ from those discussed above
in application of higher temperatures enabling additional chemical reactions yield-
ing layers with different properties.

Planarization

Chemical Me-
chanical Pla-
narization

Chemical Mechanical Planarization

In order to obtain a plane wafer surface required for subsequent structuring pro-
cesses, the wafer rotates head-down in the opposite direction to an also rotating
polishing pad together with a slurry in between as polishing agent [42].
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Structuring

Lithography

Lithography

The size and shape of patterns mapped by lithography onto the wafer surface de-
fine the structure of the currently processed layer and mask regions for subsequent
processing. Smaller sizes enable higher densities of electronic circuits integrated
into an IC responsible for the computing capacity or memory size of chips [174].
After coating the wafer surface with a light-sensitive photoresist, the patterns for
conductive paths or contact holes are constituted by the exposure to light emitted
through structured photomasks followed by development of the dried patterns.
For positive photoresists the developed regions on the wafer surface are dissolved,
whereas negative photoresists are handled vice versa [79]. In the end, the wafer is
baked out to solidify the remaining photoresist in order to protect the underlying
structures in subsequent processes [162].

Layer Removal

Etch

Etch

In SM, the intended regions of the masked patterns from previous lithography are
removed from the wafer layer surface by either wet or dry etching holes or trenches
into the material depending on the desired characteristics of these methods [162].
Chemical wet etching is characterized by liquid etching reagents like acid mixtures
or undiluted acids with high purity [66].
Dry etching is divided into chemical etching (plasma etching) on the one hand
where reactive gases (e. g. Cl2) are streamed in the process chamber over the
substrate and react with the material at the surface and physical etching on
the other hand where ion bombardment (cf. section 2.3: sputtering) is used to
excavate material out of the intended substrate [162].

Layer Transformation

Layer transformation is divided into annealing and doping which is further grouped into ion
implantation and diffusion as processes to contaminate the crystalline silicon substrate with
elements containing one valence electron more (e. g. N/P ) or less (e. g. B) than tetravalent
silicon. The former modification enables n-type conductivity where free electrons can transfer the
charge and the latter modifications enables p-type conductivity where the charge is transferred
by a hole in the crystal lattice [36], [79].
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Ion Implanta-
tion

Ion Implantation

Dedicated elements for n-type or p-type conductivity are ionized in the plasma
within the arc chamber of the implanter equipment. The positively charged ions
are accelerated by an electrical field from the ion source through the mass resolving
magnet and apertures selecting the specified ions which are further accelerated
towards to the wafer surface. Due to the more or less amorphous structure of
the substrate related to the impact of the implanted ions, a subsequent annealing
process is necessary [42], [162], [36].

Annealing

Annealing describes the process of electrical activation of implanted elements by
"healing" the atomic structure at high temperatures (≈ 1000◦C) to arrange these
elements at the atomic sites corresponding to the initial crystalline structure of
silicon [36].

Diffusion

An inert carrier gas enriched with the element to be doped into the substrate is
streamed through a quartz tube along the wafer surface at very high temperature.
The concentration gradient causes a uniform diffusion of the dopant into the silicon
crystal [79], [162].

Resist Strip

Resist Strip

Resist Strip

Depending on the processes performed between lithography and resist strip in
terms of the applied temperatures affecting the durability of the remaining pho-
toresist, the techniques for resist strip varies from application of dissolvers over
wet etch processes to plasma ashing [66].

Clean

All of the aforementioned processes might contaminate the wafer surface with remaining chem-
icals or particles. Thus, the wafer needs to be cleaned between the various process steps by
high-purity water, mixtures of chemicals, brushing, compressed inert gas or in ultrasonic baths
[66], [162].

A.2 Benefit and Data Quality

As already outlined (cf. section 2.2), even for only regarding product cycle time reduction an
enormous benefit of up to 10% additional production volume is expected for fab-wide applica-
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tion of VM [22]. To make the right choice in an economic sense in terms of which metrology
method and approach to use, more than basic cost and revenue factors like costs of purchase,
installation and maintenance as well as tool footprint, necessary material and labor should be
considered according to [152]. Primarily, product quality and related revenue associated with
each metrology method are important aspects to be aware of together with the current market
situation and actual quality control policies. In this regard, in-situ metrology as enabled by VM
outperforms inline and offline metrology especially during the phase of new manufacturing pro-
cesses whereas the obtained knowledge gain should be comparable. As final conclusion, during
production ramp-up phases in-situ and inline measurements provide better response times than
offline metrology [152].
Another economic assessment of VM in SM evaluates first potential risks of VM according to

failure causes, modes and effects which could be a decrease of equipment uptime, an increase
of production costs and scrap of productive wafers or lots. As second statement, economic
benefits are distinguished by process equipment types and various potential savings are outlined.
Reduction of out-of-control production as most valuable return on invest dominates savings in
terms of metrology steps, shorter cycle time and higher equipment utilization. At last, the
break-even is calculated for the implementation of VM for a plasma etch tool to be achieved
after six quarters [84].
The aspect of data quality as already mentioned in 2.2 is investigated in more detail in [58]

for VM in SM with CVD as an application. The problem within SM with inappropriateness
and instability of data collection is well known. Poor prediction performance may occur due
to incorrect, asynchronous and fragmented data which raises the attention to spend effort on
data quality to achieve accuracy in addition to precision. Particularly, data reduction, data
normalization, data cleaning and data anomaly detection are in focus of this work with a proven
performance improvement of VM [58].
A major overview and assessment of VM implementation in SM is given in [18] for a 300mm

SM foundry in the CVD process area. Motivated by an expected and significant benefit, the
aim to monitor tool performance and to detect quality of productive wafers in real-time in
important SM areas (e. g. lithography, etch, deposition, planarization) justifies a considerable
effort in research and development. In SM foundries the possible lack of the ability to control
manufactured devices as final product due to unknown target functionality withhold by the
customer further motivates the implementation of VM. At the beginning, a reasonable and in
SM established formula to calculate the profitability of a SM fab is evaluated with focus on
improvements by VM [18]:

Profitability =
∑
i

(
Wi ∗ Ti ∗ Yi
Si ∗ (Pi − Ci)

)
− (MW ∗ F ) (A.1)

with the number of monthly turn ratio:

T = 720hours
tprocess + tmetrology + twait

(A.2)
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W: Number of wafer starts/month
T: Number of monthly turn ratio
Y: fab yield
P: Average selling price/wafer
S: Number of total stages of each product from wafer start to wafer out
C: Manufacturing cost/wafer
MW : Monitoring wafer cost for all tool monitoring processes
F: Tool monitoring frequency/month
i: Product index
tmain: Main processing time/wafer/stage/month
tmetro: Metrology operation time/wafer/stage/month
twait: Wait time in processing/wafer/stage/month

Table A.1: Profitability key factors for SM fab [18]

The individual key factors in equation (A.2) are explained in table A.1. Obviously, a reduction
of tmetrology in the denominator of equation (A.2) directly results in an increased profitability
whereas Y , MW and F (i. e. not MW in this context) are also affected indirectly. For the
present example, the basic assumption is made that the amount of test wafers used for metrol-
ogy measurement equals 15%–30% of the daily production output. In result, a profit of 4 M.
$ is calculated for 30.000 wafer starts per month in the SM foundry. Quite a few requirements
for the implementation of a sustainable VM system are collected which describe the challenging
approach to integrate a VM application into the IT infrastructure of a productive SM fab. Fur-
thermore, the necessary effort for developing a framework to run VM comprising various data
services (e. g. metrology data management, equipment data acquisition, computer integrated
manufacturing, sensor data preprocessing) is underlined. In addition to already discussed ben-
efits like reduction of physical metrology and real time tool control capability in APC, a VM
application according to [18] provides an option to enhance equipment maintenance from reactive
to predictive based on real-time metrology forecast, hence enabling process engineers to trigger
necessary tool maintenance just in time. Also, validation of sensor data from the equipment
which is performed by sensor preprocessing, a dedicated design of experiment and controller
development modules to control the VM model development, can be enriched by VM due to
the fact that even tool sensors does not always reliably provide accurate data for prediction
models. The already emphasized data quality becomes a crucial aspect for VM implementation
because the "Garbage-in Garbage-out" scenario does not only result in incorrect metrology fore-
casts, but also cause productivity and yield loss. Hence, a VM system to validate sensor data is
desirable. As first conclusion pursuant to [18], VM is proven to assure process quality and tool
performance and to improve overall equipment effectiveness while reducing physical metrology
for tool monitoring. As final conclusion and corroboration of the motivation, VM is expected to
evolve to a standard operation and the necessary VM framework design will be a key component
of computer integrated manufacturing [18].
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A.3 Cost-Benefit Analysis

As stated in various references (cf. chapter 4), the implementation of a fab-wide VM system is
expected not only to improve quality but also to yield a significant economic benefit. Hence and
to supplement the VM system at Infineon, the economic benefits of the VM implementation are
assessed in the present work for the use case of HDP CVD at the frontend manufacturing site
in Regensburg.
As a result of the corporation with the Fraunhofer-Gesellschaft within the European research

project IMPROVE involving the already referenced research paper [84] (cf. section A.2), ad-
justments and enhancements of the basic concept for investment assessment were developed.
Future VM rollout activities can be planned and performed based on the subsequently high-
lighted evaluation formalism for CBA to effectively promote VM implementation for use cases
with the highest expected benefit. In the following, the CBA is discussed as far as permitted
with regard to the eligible protection of Infineon’s confidentiality interests.

A.3.1 Costs

Nowadays, a variety of cost elements is related to development projects within industrial economy
(e. g. invest for IT hardware, software and licenses, service, support and internal personnel costs
as well as capital costs). For only the development of the VM system including the ERBE
algorithm, only personnel costs need to be considered in the present thesis. The emerged costs
within the different organizational areas of Infineon were added up to obtain the associated total
employees full time equivalent for the final break-even estimation (cf. chapter 8).

A.3.2 Benefits

The annual benefits are split into three parts which cover the processes affected by the investi-
gated HDP CVD use case for VM implementation.

Benefits for High Density Plasma Chemical Vapor Deposition: Starting with immediate ben-
efits, the total reduction of metrology costs for HDP CVD – RedMetro – was calculated accord-
ing to equation (A.3). Here, the wafer starts per month – WaferStarts, the months – M , the
process steps – Steps, the sampling rate – Sampling, the measured wafers – WafersMeas, the
real metrology reduction factor achieved by VM – RedFac and the metrology cost of ownership
– CoO were multiplied and divided by the wafers measured per carrier – WafersPerCarrier:

RedMetro = WaferStarts ∗M ∗ Steps ∗ Sampling ∗WafersMeas ∗RedFac ∗ CoO
WafersPerCarrier

(A.3)

Furthermore, the cycle time improvement due to less real metrology and thus faster production
flow was estimated and a monetary benefit assigned according to equation (A.4) based on the
following variables: Metrology time – MetroT ime, sampling rate – Sampling, process steps –
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Steps, reduction factor – RedFac, wafer starts per month – WaferStarts, Averaged value of
wafer – WaferV al and interest rate – IntRate:

ImpCycleTime = MetroT ime∗Sampling∗Steps∗RedFac∗WaferStarts∗WaferV al∗IntRate
(A.4)

Benefits for Chemical Mechanical Planarization: The benefit of avoiding scrap wafers in
the subsequent chemical mechanical polishing process due to increased stability of the HDP
CVD process related to the VM implementation was assessed as reduction of scrap – RedScrap
according to equation (A.5). Again, a product of following input variables was calculated:
number of events resulting in scrap wafers – NumEvents, months – M , number of affected
equipment – NumEQ, number of scrap wafers per event – NumScrapWafer, average value of
product wafer – ProdWaferV al, reduction factor – RedFac:

RedScrap = NumEvents∗M∗NumEQ∗NumScrapWafer∗ProdWaferV al∗RedFac (A.5)

Benefits for Metrology: By the reduction of physical measurements due to application of VM
more capacity of the metrology equipment will be available for other measurements. Hence, on
the one hand, this improved utilization enables higher production output if physical metrology
represents a bottleneck operation and on the other hand as a second major advantage it helps to
avoid the purchase of new and usually expensive metrology equipment during a capacity ramp-
up. The first equation (A.6) calculates the improved utilization – ImpUtil from the product of
the total HDP wafers per month – HDPWafers, the rate of the measured HDP wafers within
a lot – RateMeasWafersInLot and the reduction factor – RedFac divided by the total number
of measured wafers per month – MeasWafersPerMonth:

ImpUtil = HDPWafers ∗RateMeasWafersInLot ∗RedFac
MeasWafersPerMonth

(A.6)

The resulting economic benefit in terms of only higher production output results in case of
physical metrology is operated as bottleneck can be derived according to equation (A.7) as
metrology savings – MetroSavings from the fraction of the product of the total number of
measured wafers per month – MeasWafersPerMonth, the months – M , the average cost of a
measurement – AvgMeasCost and the previously calculated improved utilization – ImpUtil as
numerator and the total number of measured wafers per lot MeasWafersPerLot – as denomi-
nator:

MetroSavings = MeasWafersPerMonth ∗M ∗AvgMeasCost ∗ ImpUtil
MeasWafersPerLot

(A.7)

The expected significant benefit of postponing the purchase of new and expensive metrology
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equipment cannot be calculated with sufficient reliability as it mainly depends on future and
actually unknown production ramp-up strategies.

A.4 Feature Overview

A.4.1 AMAT Centura

Index Feature Category Unit Description

1 Flow_Argon_1 Gas flow sccm Argon gas flow into process chamber
2 Flow_Argon_2 Gas flow sccm Argon gas flow into process chamber
3 Flow_Argon_3 Gas flow sccm Argon gas flow into process chamber
4 Flow_Argon_4 Gas flow sccm Argon gas flow into process chamber
5 Temperature_Chamber_1 Temperature ◦C Temperature within process chamber
6 Temperature_Chamber_2 Temperature ◦C Temperature within process chamber
7 Flow_Helium_1 Gas flow sccm Helium gas flow into process chamber
8 Flow_Helium_2 Gas flow sccm Helium gas flow into process chamber
9 Pressure_Helium_1 Pressure mTorr Helium pressure at electrostatic chuck
10 Pressure_Helium_2 Pressure mTorr Helium pressure at electrostatic chuck
11 Pressure_Chamber_1 Pressure mTorr Pressure within process chamber
12 Pressure_Chamber_2 Pressure mTorr Pressure within process chamber
13 Temperature_Dome_1 Temperature ◦C Temperature at ceramic dome
14 Temperature_Dome_2 Temperature ◦C Temperature at ceramic dome
15 Temperature_Dome_3 Temperature ◦C Temperature at ceramic dome
16 Temperature_Dome_4 Temperature ◦C Temperature at ceramic dome
17 Temperature_Dome_5 Temperature ◦C Temperature at ceramic dome
18 Current_Chuck_1 Current mA Current applied to electrostatic chuck
19 Current_Chuck_2 Current mA Current applied to electrostatic chuck
20 Current_Chuck_3 Current mA Current applied to electrostatic chuck
21 Power_Chuck_1 Power W Power applied to electrostatic chuck
22 Voltage_Chuck_1 Voltage V Voltage applied to electrostatic chuck
23 Voltage_Chuck_2 Voltage V Voltage applied to electrostatic chuck
24 Flow_Helium_3 Gas flow sccm Helium gas flow into process chamber
25 Flow_Helium_4 Gas flow sccm Helium gas flow into process chamber
26 Load_1 Loading - Equipment loading check
27 Load_2 Loading - Equipment loading check
28 Flow_Oxygen_1 Gas flow sccm Oxygen gas flow into process chamber
29 Flow_Oxygen_2 Gas flow sccm Oxygen gas flow into process chamber
30 Flow_Helium_5 Gas flow sccm Helium gas flow into process chamber
31 Flow_Helium_6 Gas flow sccm Helium gas flow into process chamber

Feature Overview (1) of available process and logistical parameters for AMAT Centura including
artificial features
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Index Feature Category Unit Description

32 Flow_Helium_7 Gas flow sccm Helium gas flow into process chamber
33 Flow_Helium_8 Gas flow sccm Helium gas flow into process chamber
34 Counter_1 Counter - Counter at equipment tool parts
35 Counter_2 Counter - Counter at equipment tool parts
36 Counter_3 Counter - Counter at equipment tool parts
37 Counter_4 Counter - Counter at equipment tool parts
38 Counter_5 Counter - Counter at equipment tool parts
39 Counter_6 Counter - Counter at equipment tool parts
40 Counter_7 Counter - Counter at equipment tool parts
41 Counter_8 Counter - Counter at equipment tool parts
42 Counter_9 Counter - Counter at equipment tool parts
43 Counter_10 Counter - Counter at equipment tool parts
44 Counter_11 Counter - Counter at equipment tool parts
45 Counter_12 Counter - Counter at equipment tool parts
46 Counter_13 Counter - Counter at equipment tool parts
47 Counter_14 Counter - Counter at equipment tool parts
48 Counter_15 Counter - Counter at equipment tool parts
49 Counter_16 Counter - Counter at equipment tool parts
50 Counter_17 Counter - Counter at equipment tool parts
51 Counter_18 Counter - Counter at equipment tool parts
52 Counter_19 Counter - Counter at equipment tool parts
53 Counter_20 Counter - Counter at equipment tool parts
54 Counter_21 Counter - Counter at equipment tool parts
55 Power_Bias_1 Power W DC-bias power applied by RF coil generator
56 Power_Bias_2 Power W DC-bias power applied by RF coil generator
57 Power_Bias_3 Power W DC-bias power applied by RF coil generator
58 Power_Bias_4 Power W DC-bias power applied by RF coil generator
59 Power_Bias_5 Power W DC-bias power applied by RF coil generator
60 Power_TS_1 Power W Top/Side power applied by RF coil generator
61 Power_TS_2 Power W Top/Side power applied by RF coil generator
62 Power_TS_3 Power W Top/Side power applied by RF coil generator
63 Power_TS_4 Power W Top/Side power applied by RF coil generator
64 Power_TS_5 Power W Top/Side power applied by RF coil generator
65 Power_TS_6 Power W Top/Side power applied by RF coil generator
66 Power_TS_7 Power W Top/Side power applied by RF coil generator
67 Power_Bias_6 Power W DC-bias power applied by RF coil generator
68 Flow_Silane_1 Gas flow sccm Silane gas flow into process chamber
69 Flow_Silane_2 Gas flow sccm Silane gas flow into process chamber
70 Flow_Silane_3 Gas flow sccm Silane gas flow into process chamber
71 Flow_Silane_4 Gas flow sccm Silane gas flow into process chamber
72 Counter_22 Counter - Counter at equipment tool parts
73 Logistic_1 Logistics - Logistical Parameter
74 Tune_1 Tuning - Equipment tuning check
75 Tune_2 Tuning - Equipment tuning check
76 Artificial_1_ran Artificial - Gaussian artificial feature
77 Artificial_2_ran Artificial - Gaussian artificial feature
78 Artificial_3_ran Artificial - Uniform artificial feature
79 Artificial_4_cor Artificial - Gaussian duplicated artificial feature
80 Artificial_5_cor Artificial - Uniform duplicated artificial feature

Feature Overview (2) of available process and logistical parameters for AMAT Centura including
artificial features
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A.4.2 AMAT Producer

Index Feature Category Index Feature Category

1 Flow_Argon_1 Gas flow 44 Temperature_Heater_4 Temperature
2 Flow_Argon_2 Gas flow 45 Temperature_Heater_5 Temperature
3 Flow_Argon_3 Gas flow 46 Temperature_Heater_6 Temperature
4 Flow_Argon_4 Gas flow 47 Temperature_Heater_7 Temperature
5 Flow_Argon_5 Gas flow 48 Temperature_Heater_8 Temperature
6 Flow_Argon_6 Gas flow 49 Temperature_Heater_9 Temperature
7 Flow_Argon_7 Gas flow 50 Temperature_Heater_10 Temperature
8 Pressure_Chamber_1 Pressure 51 Temperature_Heater_11 Temperature
9 Pressure_Chamber_2 Pressure 52 Temperature_Heater_12 Temperature
10 Pressure_Chamber_3 Pressure 53 Temperature_Heater_13 Temperature
11 Pressure_Chamber_4 Pressure 54 Temperature_Heater_14 Temperature
12 Pressure_Chamber_5 Pressure 55 Temperature_Heater_15 Temperature
13 Pressure_Chamber_6 Pressure 56 Temperature_Heater_16 Temperature
14 Pressure_Chamber_7 Pressure 57 Temperature_Heater_17 Temperature
15 Pressure_Chamber_8 Pressure 58 Temperature_Heater_18 Temperature
16 Pressure_Chamber_9 Pressure 59 Temperature_Heater_19 Temperature
17 Pressure_Chamber_10 Pressure 60 Temperature_Heater_20 Temperature
18 Pressure_Chamber_11 Pressure 61 Flow_Helium_1 Gas flow
19 Pressure_Chamber_12 Pressure 62 Flow_Helium_2 Gas flow
20 Pressure_Chamber_13 Pressure 63 Flow_Helium_3 Gas flow
21 Pressure_Chamber_14 Pressure 64 Flow_Helium_4 Gas flow
22 Power_Bias_1 Power 65 Flow_Helium_5 Gas flow
23 Power_Bias_2 Power 66 Flow_Helium_6 Gas flow
24 Power_Bias_3 Power 67 Flow_Helium_7 Gas flow
25 Power_Bias_4 Power 68 Logistic_2 Logistics
26 Power_Bias_5 Power 69 Logistic_3 Logistics
27 Power_Bias_6 Power 70 Flow_Clean_1 Gas flow
28 Power_Bias_7 Power 71 Flow_Clean_2 Gas flow
29 Power_Bias_8 Power 72 Flow_Clean_3 Gas flow
30 Logistic_1 Logistics 73 Flow_Clean_4 Gas flow
31 Counter_1 Counter 74 Flow_Clean_5 Gas flow
32 Power_Heater_1 Power 75 Flow_Clean_6 Gas flow
33 Power_Heater_2 Power 76 Flow_Nitrousoxide_1 Gas flow
34 Power_Heater_3 Power 77 Flow_Nitrousoxide_2 Gas flow
35 Power_Heater_4 Power 78 Flow_Nitrousoxide_3 Gas flow
36 Power_Heater_5 Power 79 Flow_Nitrousoxide_4 Gas flow
37 Power_Heater_6 Power 80 Flow_Nitrousoxide_5 Gas flow
38 Power_Heater_7 Power 81 Flow_Nitrousoxide_6 Gas flow
39 Power_Heater_8 Power 82 Flow_Nitrousoxide_7 Gas flow
40 Power_Heater_9 Power 83 Flow_Nitrousoxide_8 Gas flow
41 Temperature_Heater_1 Temperature 84 Flow_Nitrousoxide_9 Gas flow
42 Temperature_Heater_2 Temperature 85 Flow_Nitrousoxide_10 Gas flow
43 Temperature_Heater_3 Temperature 86 Flow_Nitrousoxide_11 Gas flow

Feature Overview (1) for AMAT Producer
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Index Feature Category Index Feature Category

87 Flow_Nitrousoxide_12 Gas flow 133 Counter_20 Counter
88 Flow_Nitrousoxide_13 Gas flow 134 Counter_21 Counter
89 Flow_Nitrousoxide_14 Gas flow 135 Time_1 Time
90 Flow_Nitrousoxide_15 Gas flow 136 Power_Bias_9 Power
91 Flow_Nitrousoxide_16 Gas flow 137 Power_Bias_10 Power
92 Flow_Nitrousoxide_17 Gas flow 138 Power_Bias_11 Power
93 Flow_Nitride_1 Gas flow 139 Power_Bias_12 Power
94 Flow_Nitride_2 Gas flow 140 Power_Bias_13 Power
95 Flow_Nitride_3 Gas flow 141 Power_Bias_14 Power
96 Flow_Nitride_4 Gas flow 142 Power_Bias_15 Power
97 Flow_Nitride_5 Gas flow 143 Power_Bias_16 Power
98 Flow_Nitride_6 Gas flow 144 Power_Bias_17 Power
99 Flow_Nitride_7 Gas flow 145 Power_Bias_18 Power
100 Flow_Nitride_8 Gas flow 146 Power_Bias_19 Power
101 Flow_Nitride_9 Gas flow 147 Power_Bias_20 Power
102 Flow_Nitride_10 Gas flow 148 Power_Bias_21 Power
103 Flow_Nitrogentriflouride_1 Gas flow 149 Power_Bias_22 Power
104 Flow_Nitrogentriflouride_2 Gas flow 150 Power_Bias_23 Power
105 Flow_Nitrogentriflouride_3 Gas flow 151 Power_Bias_24 Power
106 Flow_Nitrogentriflouride_4 Gas flow 152 Power_Bias_25 Power
107 Flow_Nitrogentriflouride_5 Gas flow 153 Power_Bias_26 Power
108 Flow_Nitrogentriflouride_6 Gas flow 154 Power_Bias_27 Power
109 Flow_Nitrogentriflouride_7 Gas flow 155 Power_Bias_28 Power
110 Flow_Ammonia_1 Gas flow 156 Power_Bias_29 Power
111 Flow_Ammonia_2 Gas flow 157 Power_Bias_30 Power
112 Flow_Ammonia_3 Gas flow 158 Power_Bias_31 Power
113 Flow_Ammonia_4 Gas flow 159 Power_Bias_32 Power
114 Flow_Ammonia_5 Gas flow 160 Power_Bias_33 Power
115 Counter_2 Counter 161 Flow_Silane_1 Gas flow
116 Counter_3 Counter 162 Flow_Silane_2 Gas flow
117 Counter_4 Counter 163 Flow_Silane_3 Gas flow
118 Counter_5 Counter 164 Flow_Silane_4 Gas flow
119 Counter_6 Counter 165 Flow_Silane_5 Gas flow
120 Counter_7 Counter 166 Flow_Silane_6 Gas flow
121 Counter_8 Counter 167 Flow_Silane_7 Gas flow
122 Counter_9 Counter 168 Flow_Silane_8 Gas flow
123 Counter_10 Counter 169 Flow_Silane_9 Gas flow
124 Counter_11 Counter 170 Flow_Silane_10 Gas flow
125 Counter_12 Counter 171 Flow_Silane_11 Gas flow
126 Counter_13 Counter 172 Flow_Silane_12 Gas flow
127 Counter_14 Counter 173 Flow_Silane_13 Gas flow
128 Counter_15 Counter 174 Flow_Silane_14 Gas flow
129 Counter_16 Counter 175 Pressure_Throttle_1 Pressure
130 Counter_17 Counter 176 Pressure_Throttle_2 Pressure
131 Counter_18 Counter 177 Pressure_Throttle_3 Pressure
132 Counter_19 Counter 178 Pressure_Throttle_4 Pressure

Feature Overview (2) for AMAT Producer
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Index Feature Category

179 Pressure_Throttle_5 Pressure
180 Pressure_Throttle_6 Pressure
181 Pressure_Throttle_7 Pressure
182 Pressure_Throttle_8 Pressure
183 Time_2 Time
184 Time_3 Time
185 Time_4 Time
186 Time_5 Time
187 Time_6 Time
188 Time_7 Time
189 Time_8 Time
190 Time_9 Time
191 Time_10 Time
192 Time_11 Time
193 Time_12 Time
194 Time_13 Time
195 Time_14 Time
196 Time_15 Time
197 Time_16 Time
198 Time_17 Time
199 Artificial_1_ran Artificial
200 Artificial_2_ran Artificial
201 Artificial_3_ran Artificial
202 Artificial_4_cor Artificial
203 Artificial_5_cor Artificial

Feature Overview (3) for AMAT Producer
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A.5 ERBE Feature Selection Parameters

Param Category Value Description

nRn Artificial 2 Number of artificial features with normal distribution
nRu Artificial 1 Number of artificial features with uniform distribution
nRc Artificial 2 Number of highly correlated features
splitT r Split ratio 0.8 Ratio of data used for training
splitV al Split ratio 0.2 Ratio of data used for validation
splitTst Split ratio 0 Ratio of data used for testing
ker SVR rbf SVR kernel type
loss SVR eInsen SVR loss function type: ε-insensitive
ε SVR 0.01 SVR epsilon for e-insensitive loss
rmse Evaluation - Root Mean Squared Error (RMSE)
mae Evaluation - Mean Absolute Error (MAE)
r2 Evaluation - Coefficient of Determination (R2)
yMin Normalization - Minimum of target Y
yMax Normalization - Maximum of target Y
n Dataset - Number of instances within dataset
m Dataset - Number of features within dataset
nG GA 25 Number of generations during GA optimization
nI GA 5 Number of populated individuals during ERBE GA
mR GA 0.05 Ratio of original features to be flipped during GA cycle
rR GA 0.1 Ratio of eliminated original features during each GA stage
nAIF GA 80 Number of initial/original features
aF GA - Currently active feature subset

Overview of all parameters used for ERBE Feature Selection

The entire computation of the new ERBE FS algorithm is performed using an Intel i5 2.6
GHz dual core processor with 4 GB memory and a 32-bit Windows 7 Enterprise OS installed.
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Figure A.1: ERBE stage 1 illustrating features selected within approximate least important 10%
and yielding a CV(RMSE) of 1.7577 is designed for fast elimination of features
contributing mainly noise and inferring variables. Least important and removed
real features (red) are selected by LOO FS.

ERBE Stage 1: The results in terms of the least important features for the first ERBE stage
are displayed in figure A.1. None of the five artificial features are selected. Thus, the initial
feature set contains many very noisy and inferring features. Features of various categories are
revealed as dispensable while the range how often features are selected is spread from ten down
to four. Furthermore, the standard deviation of two around the mean of five approves the high
number of dispensable information in the 203 features. Finally, Logistic_2 is clearly recognized
as most unimportant feature.

ERBE Stage 2: The results in terms of the least important features for the second ERBE
stage are displayed in figure A.2. Already 4 out of the 5 artificial features are selected frequently
whereat in fact it is interesting to recognize that the correlated complements Artificial_3_ran
and Artificial_5_cor are selected both 8 times within the least important 10% of the features.
A feature set still containing many noisy features is most likely due to a small standard deviation
of 1 around the mean of 7. Features of various categories are revealed as dispensable while the
range how often features are selected is decreased to 8 down to 5. 3 process parameters (i. e.
Flow_Nitrousoxide_10, Flow_Nitrogentriflouride_5 & Power_Bias_30) are observed as most
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Figure A.2: ERBE stage 2 illustrating features selected within approximate least important 10%
and yielding a CV(RMSE) of 1.5554 is designed for fast elimination of features
contributing mainly noise and inferring variables compared to artificial features
(burnt orange). Least important and removed real features (red) are selected by
LOO FS.

unimportant. Due to transition criterion 1.1 (0.73 = 2 artificial features 8 times selected + 2 x
6 / 3 real features 8 times selected + 2 x 7) no transition to ERBE part II is made.

ERBE Stage 3: The results in terms of the least important features for the third ERBE stage
are displayed in figure A.3. Again, 4 out of the 5 artificial features are selected frequently. A
feature set still containing many noisy features is most likely due to a small standard deviation
of 1 around the mean of 6. Features of various categories are revealed as dispensable while the
range how often features are selected is decreased again to 7 down to 5 indicating even less noise.
5 process parameters (i. e. Pressure_Chamber_3, Pressure_Chamber_6, Power_Heater_8,
Flow_Nitride_2 & Time_8) are observed as most unimportant. Transition criteria 1.1 (0.8 =
3 artificial features 6 times selected + 2 x 5 / 5 real features 7 times selected) and 1.2 (5 out of
5 features) are both met and thus ERBE part II is executed subsequently.

ERBE Stage 4: The results in terms of the least important features for the fourth ERBE
stage are displayed in figure A.4. Only 3 out of the 5 artificial features are selected. Almost all
features are selected 18 times due to a very dense feature distribution yielding a mean of 18 and a
standard deviation of 0. Only two real process parameters Power_Bias_14 and Flow_Silane_13
of different categories are revealed as less informative. Due to the fact that the artificial features
are not grouped together at the beginning of ERBE part II criterion 2.2 is not considered for
the transition to ERBE part III. Transition criterion 2.1 (0.6 = 2 artificial features 19 times
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Figure A.3: ERBE stage 3 illustrating features selected within approximate least important 10%
and yielding a CV(RMSE) of 1.4961 is designed for fast elimination of features
contributing mainly noise and inferring variables compared to artificial features
(burnt orange). Least important and removed real features (red) are selected by
LOO FS.

selected + 1 x 18 / 2 real features 19 times selected + 3 x 18) is not met and thus ERBE part
II is still executed.

ERBE Stage 5: The results in terms of the least important features for the fifth ERBE stage
are displayed in figure A.5. Again, only 3 out of the 5 artificial features are selected. Less obvious
differentiation between most important and noisy process parameters in the feature subset is
most likely with a small standard deviation of 1 around the mean of 18. Features of various
categories are revealed as dispensable while almost all features are selected 18 or 19 times with
one exception of artificial variable 1 selected 21 times. 9 real process parameters of different
categories are revealed as most unimportant. Due to the fact that the artificial features are
not grouped together at the beginning of ERBE part II criterion 2.2 is not considered for the
transition to ERBE part III. Transition criterion 2.1 (0.6 = 1 artificial features 21 times selected
+ 2 x 18 / 5 real features 19 times selected) is not met and thus ERBE part II is still executed.

ERBE Stage 6: The results in terms of the least important features for the sixth ERBE
stage are displayed in figure A.6. Slightly improved differentiation between more important and
noisy process parameters is visible with a small standard deviation of 1 around the mean of
19. Pressure_Chamber_7 as only features is revealed as most unimportant while again most
features are selected 18 or 19 times. Due to the fact that the artificial features are not grouped
together at the beginning of ERBE part II criterion 2.2 is not considered for the transition to

xxix



A Appendix

19 19 19 19

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18

17

18

19

20

Le
as

tI
m

po
rt

an
tF

ea
tu

re
s

Features

Approx. least important 10% of features for 4. ERBE stage
Feature Selection for Virtual Metrology @ PECVD EQ1, CH1

MEAN

Figure A.4: ERBE stage 4 illustrating features selected within approximate least important 10%
and yielding a CV(RMSE) of 1.3507 is designed for feature subset optimization in-
corporating crucial interdependencies by GA FS. Least important and removed real
features (red) are differentiated from others randomly surviving features (yellow)
and artificial variables (burnt orange).
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Figure A.5: ERBE stage 5 illustrating features selected within approximate least important 10%
and yielding a CV(RMSE) of 1.3297 is designed for feature subset optimization in-
corporating crucial interdependencies by GA FS. Least important and removed real
features (red) are differentiated from others randomly surviving features (yellow)
and artificial variables (burnt orange).
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Figure A.6: ERBE stage 6 illustrating features selected within approximate least important 20%
and yielding a CV(RMSE) of 1.3175 is designed for feature subset optimization in-
corporating crucial interdependencies by GA FS. Least important and removed real
features (red) are differentiated from others randomly surviving features (yellow)
and artificial variables (burnt orange).

ERBE part III. Transition criterion 2.1 (1 = 2 artificial features 21 times selected + 2 x 19 + 1
x 18 / 1 real features 21 times selected + 1 x 20 + 3 x 19) is exactly met and thus ERBE part
III is executed subsequently.

ERBE Stage 7: The results in terms of the least important features for the seventh ERBE
stage are displayed in figure A.7. Good differentiation and fine tuning feature optimization
by LOO FS between most important and noisy process parameters in the feature subset is
observed with a small standard deviation of 1 around the mean of 8. Features of various
categories are revealed as dispensable. 5 real process parameters of different categories (i. e.
Power_Bias_5, Flow_Nitrogentriflouride_3, Flow_Nitrogentriflouride_6, Flow_Silane_2 &
Pressure_Throttle_7) are revealed as most unimportant.

ERBE Stage 8: The results in terms of the least important features for the eighth ERBE stage
are displayed in figure A.8. Slight differentiation and fine tuning feature optimization by LOO
FS between most important and noisy process parameters in the feature subset is observed with a
small standard deviation of 1 around the mean of 9. Features of various categories are revealed
as dispensable. 6 real process parameters of different categories (i. e. Flow_Nitrousoxide_1,
Counter_6, Counter_17, Counter_18, Power_Bias_13 & Flow_Silane_12) are revealed as
most unimportant.
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Figure A.7: ERBE stage 7 illustrating features selected within approximate least important 20%
and yielding a CV(RMSE) of 1.31 is designed for fine tuning feature optimization by
LOO FS. Least important and removed real features (red) are differentiated from
others randomly surviving features (yellow) and artificial variables (burnt orange).
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Figure A.8: ERBE stage 8 illustrating features selected within approximate least important 10%
and yielding a CV(RMSE) of 1.3065 is designed for fine tuning feature optimization
by LOO FS. Least important and removed real features (red) are differentiated from
others randomly surviving features (yellow) and artificial variables (burnt orange).
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Figure A.9: ERBE stage 9 illustrating features selected within approximate least important 15%
and yielding a CV(RMSE) of 1.2649 is designed for fine tuning feature optimization
by LOO FS. Least important and removed real features (red) are differentiated from
others randomly surviving features (yellow) and artificial variables (burnt orange).

ERBE Stage 9: The results in terms of the least important features for the ninth ERBE stage
are displayed in figure A.9. Slight differentiation and fine tuning feature optimization by LOO
FS between most important and noisy process parameters in the feature subset is observed
with a small standard deviation of 1 around the mean of 9. Features of various categories are
revealed as dispensable. 11 real process parameters of different categories are revealed as most
unimportant.
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AMAT Applied Materials

APC Advanced Process Control

BPNN Back Propagation Neural Network

CBA Cost-Benefit Analysis

CM Configuration Module

CRISP-DM CRoss Industrial Standard Process for Data Mining

CV(RMSE) Coefficient of Variation of the RMSE

CVD Chemical Vapor Deposition

DB Database

DC Direct Current

DM Data Mining

DP Data Preparation

DR Deposition Rate

DS Dataset

DT Deposition Time

DTree Decision Tree

ERBE Evolutionary Repetitive Backward Elimination

ES Expert Selection

fab Fabrication Plant

FDC Fault Detection and Classification

FS Feature Selection

GA Genetic Algorithm
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HDP High Density Plasma

IMPROVE Implementing Manufacturing science solutions to increase equiPment
pROductiVity and fab pErformance

LCL Lower Control Limit

LOO Leave-One-Out

LT Layer Thickness

M5’ Decision Tree M5’

MAE Mean Absolute Error

ML Machine Learning

MLR Multiple Linear Regression

MSE Mean Squared Error

MW Moving Window

NN Neural Network

PCA Principle Component Analysis

PECVD Plasma Enhanced Chemical Vapor Deposition

PLS Partial Least Squares

PTM Prediction and Training Module

R2 Coefficient of Determination

R2R Run-To-Run

RBF Radial Basis Function

RELIEF FS Algorithm

RF Radio Frequency

RFE Recursive Feature Elimination

RI Reliance Index

RMSE Root Mean Squared Error

SM Semiconductor Manufacturing

SS Stepwise Selection
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SVM Support Vector Machine

SVR Support Vector Regression

UCL Upper Control Limit

VM Virtual Metrology
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