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SUMMARY

The main focus of my PhD thesis is on calculations of QCD threshold resummation for various pro-
cesses. The infrared cancellation between virtual and real emission diagrams in higher orders leaves
behind logarithmic contributions. These “threshold logarithms” become large when the available phase
space for real gluon emission shrinks. In this case, they have to be taken into account to all orders
which yields a much better behaved perturbative expansion. This procedure is known as threshold
resummation. We investigated resummation effects beyond the next-to-leading logarithmic (NLL) or-
der for di-hadron production in hadronic collisions H1H2 → h1h2X at high invariant mass of the
produced pair. This may only be achieved by taking into account the non-trivial color structure of
the underlying partonic hard-scattering cross sections. We determined explicitly the relevant hard and
soft matrices in color space. We found significant improvements at next-to-next-to-leading logarithmic
(NNLL) accuracy compared to previous phenomenological results for both fixed-target and collider
regimes. In particular, the scale dependence of the resummed cross section is greatly reduced.

In related work, we also considered single-inclusive hadron production in hadronic collisions H1H2 →
hX. We have derived all necessary ingredients for the extension of the resummation framework toward
NNLL. Our theoretical results allow future phenomenological studies along these lines.

Furthermore, we derived approximate next-to-next-to-leading order (NNLO) results for single-inclusive
jet production H1H2 → jetX based on threshold resummation. Starting at NLL accuracy, we included
for the first time the three leading classes of logarithmic terms. In addition, we took into account
the dependence of the cross section on the jet parameter R and our results are adapted to the full
kinematics in jet transverse momentum pT and rapidity η. There is a great phenomenological inter-
est in single-inclusive jet production. On the one hand, fits of parton distribution functions (PDFs)
rely on jet data constraining in particular the gluon PDF at large x. On the other hand, large pT
jets are an important observable for the search of new physics at the LHC. A recent full NNLO cal-
culation in the all-gluon channel allowed us to assess the region, where our approximation is valid.
Having extended di-hadron production beyond NLL accuracy, we also applied the same techniques to
single-inclusive jet production. We found good agreement in the central region with η . 2, where



our NNLO-NNLL results match with the full calculation to better than 10%. With the lessons learnt
at NNLO, we were able to deduce approximate N3LO results which are again a significant contribution.

Recently, data sets with unprecedented precision were published for semi-inclusive deep-inelastic scat-
tering (SIDIS) `N → `hX and semi-inclusive annihilation (SIA) e+e− → hX. This motivated us to
study the effects of threshold resummation on hadron multiplicities for these two color-singlet processes.
A solid theoretical understanding of higher order effects is crucial for the extraction of fragmentation
functions in a global analysis. Indeed, we found modest but significant enhancements.

Part of my work so far was in the field of spin physics in which the main goal is to disentangle the
various contributions to the nucleon spin. For example, we extended our work on resummation for pro-
cesses with identified hadrons in the final state to double spin asymmetries for inclusive deep-inelastic
scattering (DIS) and SIDIS. In general, we found rather small enhancements for the asymmetries in
comparison to the hadron multiplicities in the unpolarized case. Nevertheless, higher order effects
derived from resummation are not negligible and will be particularly relevant for experiments at JLab
where polarized valence PDFs ∆u/u, ∆d/d will be probed at very large x.

Another phenomenologically relevant effect on top of the standard NLO framework for (unpolarized)
DIS and SIA are hadron mass corrections. Relying on a relatively recent approach of target mass
corrections (TMC) for DIS developed within collinear factorization, we proposed a way of consistently
combining TMC with threshold resummation. For DIS, both effects are most relevant for the extraction
of PDFs at large x and we found a non-trivial interplay between resummation and TMC. In addition,
we extended this framework to SIA, where it turns out that the two effects are essentially independent.

The production of W bosons in hadronic collisions plays an important role at past and present-day
collider experiments. We calculated analytically at NLO in QCD the cross section for the single-
inclusive process pp→ `±X, where the produced charged lepton has a large transverse momentum pT
and results from the decay of a W boson. In addition, we considered the related processes with an
intermediate Z, γ and γZ interference. The transverse momentum distribution of the decay lepton
has been measured at the Tevatron and the LHC. By analyzing the region of the “Jacobian peak”,
the W boson mass is determined to a very high precision. Around the Jacobian peak QCD (and
electroweak) corrections are particularly relevant. Our analytical results shed light on the general role
and size of higher-orders. We found different large logarithmic enhancements that affect the shape of
the lepton’s pT spectrum. We found a double peak structure around the Jacobian peak which may re-
sult in an instability of the NLO calculation which is generally overlooked in Monte-Carlo based results.

Due to the parity violating vertex structure of the W boson, a non-zero longitudinal single spin asym-
metry may be obtained which is presently measured at RHIC. TheW program at RHIC offers a unique
possibility to obtain new constraints on polarized PDFs in a different kinematical region than the usual
(SI)DIS measurements. Already first results indicate surprising insights into the size of the polarized
sea quark distributions ∆ū and ∆d̄. We extended our calculation for W boson production to the
polarized case ~pp → `X. In order to incorporate the results from RHIC in a global analysis of polar-
ized PDFs, fast numerical codes are needed which are now available with our analytical results at hand.



ZUSAMMENFASSUNG

Der Schwerpunkt meiner Doktorarbeit liegt auf QCD threshold resummation Rechnungen für ver-
schiedene Prozesse. Aufgrund des gegenseitigen Aufhebens infraroter Divergenzen zwischen virtuellen
und reellen Diagrammen treten in der QCD Störungsentwicklung logarithmische Terme auf. Diese
“threshold” Logarithmen werden groß, wenn der verfügbare Phasenraum für reelle Gluon Abstrahlung
abnimmt. In diesem Fall müssen die Logarithmen in allen Ordnungen der störungstheoretischen En-
twicklung aufsummiert werden. Diese Technik ist bekannt als “threshold resummation”. Wir haben
die Effekte der “resummation” analysiert jenseits der nächst-führenden logarithmischen (NLL) Ord-
nung für die Produktion von Hadron Paaren in hadronischen Kollisionen H1H2 → h1h2X bei einer
großen invarianten Masse des produzierten Paares. Dies kann nur erreicht werden, indem man die
nicht-triviale Farbstruktur des zugrundeliegenden harten partonischen Streuprozesses in Betracht zieht.
Wir haben explizit die relevanten “hard” und “soft” Matrizen bestimmt. Wir fanden eine wesentliche
Verbesserung bei nächst-zu-nächst-zu führender logarithmischer (NNLL) Ordnung im Vergleich zu
früheren phänomenologischen Ergebnissen für die kinematischen Regionen bei “fixed target” Experi-
menten als auch für Hadronen collider. Insbesondere reduziert sich die Skalenabhängigkeit des resum-
mierten Wirkungsquerschnitts deutlich.

In einer damit verbundenen Arbeit haben wir single-inclusive Hadron Produktion in hadronischen Kol-
lisionen H1H2 → hX betrachtet. Wir haben alle relevanten Beiträge berechnet für die Erweiterung
der Resummation in Richtung NNLL. Dies ermöglicht es in Zukunft detaillierte numerische Studien
dafür durchzuführen.

Darüberhinaus haben wir näherungsweise Ergebnisse für “single-inclusive” Jet Produktion H1H2 →
jetX in nächst-zu-nächst-zu führender Ordnung berechnet basierend auf “threshold resummation”.
Beginnend mit NLL haben wir erstmals die drei wichtigsten Klassen logarithmischer Terme mit ein-
bezogen. Zusätzlich haben wir die Abhängigkeit des Wirkungsquerschnitts von dem Jet Parameter
R berücksichtigt und unsere Ergebnisse sind an die volle Kinematik des Jets angepasst, d.h. doppelt
differenziell in Rapidität η und Transversalimpuls pT . Es gibt ein großes phänomenologisches Interesse
an “single-inclusive” Jet Produktion. Einerseits werden Parton Verteilungsfunktionen (PDFs) under



anderem anhand von Jet Daten bestimmt. Dies ist besonders relevant für die Gluon PDF bei großen x.
Andererseits sind hohe pT Jets eine wichtige Observable für die Suche nach neuer Physik am LHC. Eine
neue volle NNLO Rechnung im “all-gluon” Kanal erlaubt es uns die Region zu bestimmen, wo unsere
Näherung gültig ist. Nachdem wir Di-Hadron Produktion auf jenseits der nächst-führenden logarith-
mischen Ordnung erweitert hatten, haben wir dieselben Techniken für Jet Produktion angewendet.
Wir fanden eine gute Übereinstimmung in der zentralen Region mit η . 2, wo unsere NNLO-NNLL
Ergebnisse mit der vollen Rechnung besser als 10% übereinstimmen. Mit den gelernten Lektionen auf
dem Level von NNLO waren wir in der Lage näherungsweise N3LO Korrekturen zu berechnen welche
wieder ein wichtiger Beitrag darstellen.

In letzter Zeit wurden Daten veröffentlicht mit noch nie da gewesener Präzision für semi-inklusive
tief-inelastische Streuung (SIDIS) `N → `hX und semi-inklusive Annihilation (SIA) e+e− → hX.
Dies hat uns motiviert für diese beiden Prozesse die Effekte von “threshold resummation” für Hadron
Multiplizitäten zu analysieren. Ein verlässliches theoretisches Verständnis von Korrekturen höherer
Ordnung ist äußerst wichtig für die Bestimmung von Fragmentations Funktionen in einer globalen
Analyse. Tatsächlich fanden wir moderate aber signifikante Erhöhungen der Wirkungsquerschnitte.

Ein Teil meiner Doktorarbeit war auf dem Gebiet der Spin Physik. Das Hauptziel ist es dabei die ver-
schiedenen Beiträge zum Spin des Nukleons zu entschlüsseln. Zum Beispiel haben wir unsere Arbeiten
zu “resummation” für Prozesse mit identifizierten Hadronen im Endzustand ausgedehnt auf doppelte
Spin Asymmetrien in der inklusiven tief-inelastischen Streuung (DIS) und SIDIS. Im Allgemeinen fan-
den wir relativ geringe änderungen der Asymmetrien im Vergleich zu den Hadron Multiplizitäten im
unpolarisierten Fall. Dennoch sind Effekte von höheren Ordnungen entsprechend der “resummation”
nicht vernachlässigbar und werden besonders relevant sein für Experimente am JLab, wo polarisierte
Valenz-PDFs ∆u/u, ∆d/d bei sehr großen x getestet werden.

Ein weiterer phänomenologisch relevanter Effekt zusätzlich zum dem üblichen NLO Rahmen für (un-
polarisierte) DIS und SIA sind Korrekturen, welche durch die Massen der beobachteten Hadronen
auftreten (HMCs). Mit einem relativ neuen Zugang zu HMCs für DIS, der innerhalb der kollinearen
Faktorisierung entwickelt wurde, haben wir eine Möglichkeit ausgearbeitet um HMCs und “threshold
resummation” zu kombinieren. Für DIS sind beide Effekte besonders relevant für die Bestimmung von
PDFs bei großen x und wir haben eine nicht triviale Wechselwirkung der beiden Effekte gefunden.
Darüberhinaus haben wir analoge Betrachtungen für SIA gemacht, wo es sich herausstellt, dass die
beiden Effekte im Wesentlichen unabhängig sind.

Die Produktion von W Bosonen in hadronischen Kollisionen spielt heutzutage eine wichtige Rolle bei
Teilchenbeschleunigern. Wir haben analytisch bis NLO in QCD den Wirkungsquerschnitt berechnet
für pp → `±X, wobei das produzierte geladene Lepton einen großen Transversalimpuls hat und von
dem Zerfall eines W Bosons stammt. Darüberhinaus haben wir ähnlichen Prozesse betrachtet mit
einem Z oder γ als auch die γZ Interferenz. Die pT Verteilung des durch den W Zerfall entstehenden
Leptons wurde am Tevatron und beim LHC gemessen. Durch die Analyse der Region des “Jacobian
Peaks” ist es möglich die Masse des W Bosons mit sehr hoher Genauigkeit zu bestimmen. Um den
“Jacobian peak” herum sind QCD (und elektroschwache) Korrekturen besonders wichtig. Unsere an-
alytischen Ergebnisse ermöglichen es ein besseres Verständnis von der Rolle und der Größe höherer



Ordnungen zu bekommen. Wir fanden verschiedene Arten von logarithmischen Erhöhungen, welche
die Form des pT Spektrums stark beeinflussen. Wir haben eine Struktur mir zwei Spitzen entdeckt,
die sogar zu einer Instabilität der gesamten NLO Rechnung werden kann. Dies wird im Allgemeinen
übersehen bei Monte-Carlo gestützten Ergebnissen.

Aufgrund der paritätsverletzenden Vertex Struktur desW Bosons, erhält man eine nicht verschwindende
longitudinale “single-spin” Asymmetrie, die zur Zeit bei RHIC gemessen wird. Das W Programm von
RHIC erlaubt eine einzigartige Möglichkeit neue Datensätze für die Bestimmung von polarisierte PDFs
zu erhalten, die in einer ganz anderen kinematischen Region liegen, als die üblichen Daten von (SI)DIS.
Bereits erste Messungen deuten auf überraschende Einsichten hin bezüglich der Größe der polarisierten
See Quark Verteilungen ∆ū and ∆d̄. Wir haben unsere Rechnung für W Boson Produktion auf den
polarisierten Fall erweitert ~pp → `X. Um die Ergebnisse von RHIC in einer globalen NLO Analyse
für polarisierte PDFs implementieren zu können braucht man schnelle numerische Verfahren, die jetzt
verfügbar sind dank unseren analytischen Rechnungen.
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INTRODUCTION

Quantum chromodynamics (QCD) is a quantum field theory describing the strong interaction between
quarks and gluons which are the building blocks of hadrons. Being developed in the 1970s, it is nowa-
days one of the most established theories in physics. Alongside electro-magnetic and weak forces,
QCD is one of the cornerstones of the standard model of particle physics which aims at describing all
fundamental forces in nature except gravitation. QCD offers an enormously rich phenomenology even
though it is based on a rather simple Lagrangian as a starting point.

The experimental tool of choice are several types of collider experiments. At high energies, the inner
structure of hadrons can be probed. in 1968, pointlike partons, which turned out to be the quarks
and gluons of QCD, were observed for the first time in Deep-Inelastic Scattering (DIS) experiments
carried out at SLAC [1]. Since then, there have been many dedicated experiments such as the Teva-
tron at Fermilab, HERA at DESY or LEP at CERN. Nowadays, there are experiments like RHIC at
BNL, BELLE at KEK, COMPASS at CERN and the most prominent one, which is the LHC at CERN.

Besides the experimental progress in the last decades, there has been an ever growing need for QCD
calculations with a very high precision in order to confront theory with data. The most precise
predictions from QCD are obtained in the framework of perturbative QCD (pQCD). This approach
relies on a key feature of QCD which is asymptotic freedom. At high energies (or short distances) quarks
and gluons interact weakly with each other, which was found by Wilczek, Gross [2] and Politzer [3]
in 1973. Besides asymptotic freedom, another key concept is factorization [4, 5] which allows QCD
predictions derived from perturbation theory. As an example, we illustrate factorization for hadronic
scattering in Fig. 1. We are considering proton-proton collisions and in the final state one might observe
for example pions, photons or jets. In the middle of Fig. 1, the partonic hard scattering process is
shown, where the two incoming partons a, b interact and some final state configuration is produced.
When writing down such a cross section within pQCD we have to include parton distribution functions
(PDFs) fa/p for the incoming protons and fragmentation functions (FFs) Dh/c in case that we are
considering identified particles in the final state. Other than that we consider an inclusive cross section
in the sense that we are summing over any additional hadronic final state X. Using factorization, one
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Figure 1: Factorization for hadronic scattering.

can write down such a cross section schematically as

dσ = fa/p ⊗ fb/p ⊗Dh/c ⊗ dσ̂ , (0.1)

where ⊗ denotes a convolution product which will be defined below. Factorization theorems state
that this structure of the cross section holds up to power suppressed corrections. The PDFs and FFs
are non-perturbative but universal objects which may be determined from a global analysis of various
reference processes. The hard-scattering cross section dσ̂ is process dependent but it may be calculated
perturbatively as a power series in the strong coupling constant

dσ̂ = ωLO +
αs
π
ωNLO +

(αs
π

)2
ωNNLO + . . . (0.2)

The current state of the art are fixed order calculations at next-to-leading order (NLO), next-to-next-
to-leading oder (NNLO) and sometimes even partial N3LO depending on the complexity of the process
under consideration. Potentially large logarithmic corrections appear in the coefficient functions ωNkLO

at every order in perturbation theory. In case that they are dominant, a reliable prediction from pQCD
may only be obtained if these logarithms are taken into account to all orders. An important type of
logarithmic corrections are threshold corrections. For a given fixed order k of the partonic cross section
dσ̂, they appear as

αks

(
lnn(1− x)

1− x

)

+

, with n < 2k − 1 . (0.3)

Here x is a process dependent kinematic variable and x→ 1 is called the partonic threshold. The plus
distribution will be defined below. Threshold logarithms become large when the phase space for real
gluon radiation shrinks. The technique to take these corrections into account to all orders in αs is
called “threshold resummation” [6–8], which is the main topic of this thesis.

The first run at the LHC in 2010, at a center of mass (c.m.s.) energy of
√
s = 7 TeV, kicked off a new
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Figure 2: Single-inclusive jet production at the LHC, Figure taken from [9].

era of high energy precision phenomenology in particle physics. Besides the prominent discovery of a
scalar boson that is very likely to be the expected Higgs particle, it was found that the vast majority
of the observed collisions are extremely well described within the framework of perturbative QCD. As
an example, in Fig. 2 the success of pQCD is illustrated. We show the measured cross section of single-
inclusive jet production at the LHC for several different rapidity intervals along with the corresponding
predictions from pQCD at NLO. The theoretical calculations fit very well with the experimental data
spanning over more than twelve orders of magnitude. Another example of experiments which recently
reported on data sets with very high precision are BELLE [10] and BaBar [11]. Their new measure-
ments of single-inclusive pion and kaon production in e+e− annihilation at a c.m.s energy of

√
s ≈ 10

GeV allow QCD studies in unprecedented detail.

Besides various experiments and theoretical efforts that are made in order to learn more about the
strong interaction itself, pQCD also plays a role of fundamental importance in the search for physics
beyond the standard model especially in the era of the LHC. For example, the discovery of the Higgs
particle and the identification of its properties relies heavily on our understanding of QCD. The same
argument holds for the search of supersymmetry, extra dimensions etc. As it is illustrated in Fig. 3,
most of the collisions at the LHC can be described using only the standard model or QCD in particular.
In order to single out the very few events that might be a signal for new physics, the huge background
from QCD interactions has to be subtracted. Therefore, a sophisticated quantitative understanding of
QCD is necessary. In particular, knowledge about higher order corrections in perturbation theory and
the non-perturbative PDFs is required.

The structure of this thesis is as follows. In the first Chapter we introduce the theoretical concepts
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Figure 3: Comparison of cross sections for standard model processes and beyond at a luminosity of
L = 1033cm−1s−1. Figure adapted from [12].

of perturbative QCD. We choose to give a general overview as the subsequent Chapters cover rather
separate topics within perturbative QCD. We discuss the running of the strong coupling constant αs,
infrared safe observables, factorization and evolution. Along the way, we introduce some of the most
important processes

• e+e− Annihilation,

• Deep-inelastic scattering,

• Hadron-hadron collisions.

Finally, we introduce the concept of threshold resummation which plays an important role in this thesis.

The subsequent Chapters are structured according to the papers listed above on page IX. In general,
this thesis can be categorized in three main parts.

Resummation and Hadron Mass Corrections for Color Singlet Processes: In Chapter 2, we
present resummation calculations for hadron-multiplicities in lepton-hadron processes. This Chapter
is based on publications [i] and [x]. Based on publication [ii], we extend this framework to double
longitudinal spin asymmetries in Chapter 3. We investigate the interplay of threshold resummation
and hadron mass corrections for deep inelastic processes in Chapter 4 which is based on publication [iii].

Hadronic QCD Hard Scattering: In Chapter 5, we present threshold resummation studies be-
yond next-to-leading logarithmic (NLL) accuracy for di-hadron production in hadron-hadron collisions
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based on publication [iv]. In Chapter 6, we derive all necessary ingredients for the extension of re-
summation toward next-to-next-to-leading logarithmic (NNLL) accuracy for single-inclusive hadron
production based on publication [v]. Following similar steps in Chapter 7, we present approximate
next-to-next-to(-next-to) leading order results for hadronic jet production. This Chapter is based on
publications [vi] and [vii].

Heavy Gauge Boson Production: In the Chapter 8, we present an analytical next-to-leading order
calculation for single-spin asymmetries in W boson production in hadronic collisions. Our calculation
will be used for the analysis of experiments presently carried out at the BNL RHIC. This Chapter is
based on publication [viii]. In the subsequent Chapter 9, we continue to analyze our results for the
unpolarized case. A solid theoretical understanding is crucial for the extraction of the W boson mass
MW from collider data. This Chapter is based on publication [ix].
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CHAPTER 1

PERTURBATIVE QCD

In this Chapter, we introduce the main theoretical concepts of perturbative quantum chromodynamics.
Starting from the basic Lagrangian density, we are going to outline the key steps necessary to write
down an expression for a measurable cross section obtained in the framework of perturbative QCD. We
focus on the basic concepts such as infrared safety, factorization, evolution and we give an introduction
to threshold resummation.

1.1 Quantum Chromodynamics

Early theoretical work was carried out by Yang and Mills [13] in 1954 who wrote down a Lagrangian
density invariant under local SU(Nc) gauge transformations, with Nc = 3 in the case of QCD. After
the concept of colored particles was introduced in hadron spectroscopy, this idea was extended to a
gauge theory by Fritzsch, Gell-Mann and Leutwyler [14] in 1973. Finally, Gross, Wilczek and Politzer
found that quarks and gluons interact weakly at high energies, as mentioned above. For this discovery,
they were awarded the Nobel Prize in 2004.

1.1.1 QCD Lagrangian

We start with the classical Lagrangian density invariant under the local color gauge group SU(Nc)
describing the interaction of quarks ψf and gluons Aaµ

Lcl =
∑

f

ψ̄f (i /D −mf )ψf −
1

4
F aµνF

µν
a . (1.1)

where we sum over Nf quark flavors. Dµ is the covariant derivative given by

Dµ = ∂µ − igsAaµT a . (1.2)

7
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The factor gs is the coupling strength in QCD and the T a are the N2
c − 1 hermitian and traceless

generators of SU(Nc). The field strength tensor F aµν in Eq. (1.1) is defined as

F aµν = ∂µA
a
ν − ∂νAaµ + gsf

abcAbµA
c
ν . (1.3)

The third term here is due to the fact, that QCD is a non-abelian gauge theory leading to self-
interaction terms for the gluon fields. This marks the crucial peculiarity of QCD in comparison to
quantum electrodynamics (QED). The antisymmetric structure constants fabc are defined via the
relation

[T a, T b] = ifabcT c ⇔ ifabc = 2 tr([T a, T b]T c) . (1.4)

When quantizing QCD using the path integral formalism [15], we have to fix the gauge. For covariant
gauges, this is done by implementing the condition ∂µAaµ = 0. This is achieved by adding the following
term to the Lagrangian

Lgf = − 1

2λ
(∂µAaµ)2 . (1.5)

Where λ denotes an arbitrary gauge parameter which has to drop out at the end when a physical
observable is calculated. However, due to this extra term, we are able to write down a propagator for
the gluon field. Feynman gauge corresponds to λ = 1 whereas Landau gauge is obtained by setting
λ → 0. With this type of gauge fixing term, we also have to add a term to our Lagrangian density
involving anti-commuting complex scalar fields ηa also known as Faddeev-Popov ghost fields [16]. The
extra term is given by

Lgh = ∂µη̄
aDµ

abη
b , (1.6)

where now the covariant derivative Dµ
ab has to be taken in the adjoint representation. The additional

ghost fields cancel unphysical degrees of freedom which otherwise would be present in the polarization
sum for gluons, see [17].

Summing up everything, we end up with the final QCD Lagrangian density

L = Lcl + Lgf + Lgh
= ψ̄(i/∂ −m)ψ − 1

4
(∂µA

a
ν − ∂νAaµ)2 − η̄�η − ξ

2
(∂µA

µ
a)2

−gs ψ̄T a /Aaψ +
gs
2

(∂µA
a
ν − ∂νAaµ)fabcAµbA

ν
c

−1

4
g2
sf

abcfadeAµbA
ν
cA

d
µA

e
ν − gsfabcη̄a∂µ(Acµη

b) (1.7)

where the sum over Nf quark flavors is implicit. From the Lagrangian density, we can directly see the
difference between QCD and QED, which is given by terms that lead to the existence of 3 and 4-gluon
vertices. This can be traced back to the non-abelian nature of its gauge group, as mentioned above.
The QCD Feynman rules can be derived from Eq. (1.7). They are summarized for covariant gauges in
the Appendix A.

Alternatively to covariant gauges, we may also choose non-covariant ones such as Coulomb gauge or
axial gauges. In the context of parton distribution functions and resummation axial gauges are of

8
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special interest. Choosing a fixed gauge vector nµ, we implement the condition nµAaµ = 0 by adding
the following gauge fixing term to the QCD Lagrangian

Lgf = − 1

2λ

(
nµAaµ

)2 (1.8)

instead of the one given in Eq. (1.5). Choosing the square of nµ positive, i.e. n2 > 0, is called a
temporal gauge, whereas the condition n2 = 0 is called light-cone gauge and n2 < 0 is called pure axial
gauge. It turns out that no ghost fields are required for an axial gauge. However, in return we obtain
a more complicated gluon propagator Dab

µν(k) which takes the form

Dab
µν(k) =

−iδab
k2 + iε

Nµν(k) , Nµν(k) = gµν −
nµkν + nνkµ

n · k +
(n2 + λk2)kµkν

(n · k)2
. (1.9)

Special care has to be taken when loop integrations are performed in axial gauges [18].

1.1.2 Asymptotic Freedom

As mentioned already, the crucial difference between the non-abelian gauge theory QCD and the abelian
QED are the self-interaction terms for gluons in the Lagrangian which is in contrast to photons in QED.
As a result, quarks and gluons interact weakly at high energies or small distance scales. This is a crucial
requirement for the applicability of perturbative calculations in QCD. In analogy to the fine structure
constant in QED, we define

αs =
g2
s

4π
. (1.10)

The renormalization of divergences introduces an arbitrary mass scale µR in the calculations. However,
physical observables should not depend on whatever choice we make for µR. Hence, we can derive a
differential equation that describes the dependence of αs on µR which is called the renormalization
group equation

µ2
R

dαs
dµ2

R

= β(αs) = −α2
s

(
b0 + b1 αs + b2 α

2
s + . . .

)
. (1.11)

Here β(αs) is the QCD beta function where the coefficients bi are calculable in perturbation theory.
The first few coefficients in the MS scheme are given by [19, 20]

b0 =
1

12π
(11CA − 2Nf ) , b1 =

1

24π2

(
17C2

A − 5CANf − 3CFNf

)
,

b2 =
1

64π3

(
2857

54
C3
A −

1415

54
C2
ANf −

205

18
CACFNf +

78

54
CAN

2
f +

11

9
CFN

2
f

)
. (1.12)

Note that the more commonly used coefficients βi for the QCD beta function are related to the bi
used here by βi = bi(4π)i+1. Asymptotic freedom or, in other words, a negative QCD beta function in
Eq. (1.11), follows from the fact that b0 is positive for Nf ≤ 16 quark flavors. A negative beta function
implies that the coupling strength decreases for higher energies. At leading order (LO), we can solve

9
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Figure 1.1: Scale dependence of the strong coupling constant αs(Q2). Figure taken from [21].

Eq. (1.11) exactly

αs(µ
2
R) =

αs(µ
2
0)

1 + b0 αs(µ2
0) log(µ2/µ2

0)
. (1.13)

For example at NNLO, including the coefficients b1, b2, we can derive an implicit equation for αs which
can be solved approximately, see [22] for example. One finds

αs(µ
2
R) =

αs(µ
2
0)

X

[
1− b1

b0
αs(µ

2
0)

logX

X
+ α2

s(µ
2
0)

(
b2
b0

1−X
X2

+
b21
b20

log2X − logX +X − 1

X2

)]
, (1.14)

with
X = 1 + b0 αs(µ

2
0) log(µ2

R/µ
2
0) . (1.15)

With these relations at hand, we can compute the strong coupling constant αs at scale µR in case
that it is known at some reference scale µ0. Hence, from perturbative QCD we may compute the
scale variation of αs but the “non-perturbative” input has to be determined from experiment. Fig. 1.1
illustrates the running of αs obtained from QCD with a starting value for αs at the Z mass which is
consistent with data from several experiments. On the right side of Fig. 1.1, we see that αs becomes
small which implies that a perturbative methods are a valid approach. However, at low energies we
find that αs increases which implies that quarks and gluons start to interact strongly with each other.
This is the region where confinement sets in which means that the partons are bound into colorless
hadrons.

As a side remark, we would like to point out that solving the renormalization group equations sums
up logarithms to all orders in perturbation theory. This can be seen most easily by considering the LO
solution for αs given in Eq. (1.13). Writing it as a series in powers of the strong coupling constant, we

10
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Figure 1.2: e+e− Annihilation to hadrons, summing over everything in the final state X.

obtain

αs(µ
2
R) =

αs(µ
2
0)

1 + b0 αs(µ2
0) log(µ2

R/µ
2
0)

= αs(µ
2
0)− b0 log(µ2

R/µ
2
0)α2

s(µ
2
0) + (b0 log(µ2

R/µ
2
0))2 α3

s(µ
2
0) + . . . (1.16)

This is the first example of an all order “resummation” that we come across. It is so called because we
first perform an expansion in αs and afterwards, we sum up to all orders a certain type of terms, here
logarithms of the ratio of two different scales.

QCD Renormalization Scale Uncertainties

The arbitrary scale parameter µ introduces an uncertainty into any prediction obtained from pQCD.
As an example, we consider the fully inclusive cross section e+e− → X which we are going to discuss
further in the next Sections. The Feynman diagram is shown in Fig. 1.2, where we sum over everything
in the final state X. The grey circle represents any kind of hard interaction that has to be computed
to a given order in perturbation theory. Leaping ahead, we can write down the cross section in the
following form

σ = σ0 (1 + ∆QCD) , (1.17)

where σ0 is the leading-order cross section which will be discussed below, cf. Eq. (1.22). The quantity
∆QCD denotes contributions from higher order QCD corrections. In principle, ∆QCD is of the form

∆QCD =

∞∑

n=1

cn(µ2
R)

(
αs(µ

2
R)

π

)n
. (1.18)

Using the MS-scheme, the result up to third order in αs is given by [17, 23]

∆QCD =
αs(µ

2
R)

π
+
[
1.4092 + 1.9167 log

(
µ2
R/s

)](αs(µ2
R)

π

)2

+
[
−12.805 + 7.8186 log

(
µ2
R/s

)
+ 3.674 log2

(
µ2
R/s

)](αs(µ2
R)

π

)3

+ . . . (1.19)
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Figure 1.3: Renormalization scale dependence of ∆QCD(µR) for the first three QCD corrections to
inclusive e+e− → X. Here, we have µ = µR. Figure taken from [17].

The requirement that the physical cross section has to be independent of µR can be formulated as

d

d logµ2
R

∆QCD = 0 . (1.20)

This equation would hold exactly if we have a prediction for ∆QCD from the full theory, i.e. including
all higher order corrections. However, in practice we always have a finite order approximation which
means that we can only compute the first few coefficients cn(µ2

R) in Eq. (1.18). Assuming that we can
compute N terms in the perturbative series, one finds that the obtained cross section exhibits a scale
uncertainty of the order of αN+1

s

d

d logµ2
R

N∑

n=1

cn(µ2
R)

(
αs(µ

2
R)

π

)n
= − d

d logµ2
R

∞∑

n=N+1

cn(µ2
R)

(
αs(µ

2
R)

π

)n
∼ O(αs(µ

2
R)N+1) . (1.21)

Therefore, the scale uncertainty is reduced when higher order corrections are computed. This behavior
is illustrated in Fig. 1.3, where the scale dependence is shown when various higher order corrections
for ∆QCD are included. In that sense, the scale uncertainty can be viewed as a way of quantifying
uncertainties introduced in the calculation by the lack of knowledge about higher order terms starting
at αN+1

s . The question that remains is how to choose the scale. The only requirement is that the
terms involving a log(µ2

R/s) in Eq. (1.19) should not be too big. Otherwise, we have to worry about
the convergence of the perturbative series. Therefore, we may choose µ2

R = s for example.

Given the fact that αs becomes small at high energies and since for example the energy of the LHC is in
the TeV range, perturbative methods should work perfectly fine. However, in the view of confinement,
there is still some way to go in order to apply perturbative methods in QCD. Even though, we can
compute the interactions of quarks and gluons at short distances there is still a problem since the
protons colliding at the LHC have a rich inner structure. In addition, detectors are placed at “long
distance scales” compared to the hard interaction point in the sense that they observe hadrons instead
of free quarks and gluons. In order to overcome these issues, i.e. making perturbation theory in QCD
a valid approach, we have to consider observables which are either
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k1

k2

k3q

Figure 1.4: Real gluon emission diagrams at NLO.

• insensitive to long-distance physics or

• observables for which we can systematically separate long-distance and short-distance phenom-
ena.

This observation leads to two key concepts of perturbative QCD which are infrared safety (IR safety)
and factorization. We introduce them in the next two Sections along with several applications to QCD
phenomenology.

1.2 Infrared Safety

In this Section we introduce the fundamental concept called infrared safety. In order to obtain sensible
answers from QCD for a given observable, this observable has to be independent of long-distance or
low energy physics, i.e. it has to be infrared safe. We choose to start with e+e− annihilation because
it is a clean process in the sense that we do not need to worry about hadrons in the initial state.
Lepton-hadron and hadron-hadron processes will be discussed in Sections 1.3 and 1.4. However, the
conclusions we can draw here are of general nature. We start by considering the totally inclusive rate
of e+e− → X annihilation to hadrons, where we sum over everything in the final state. Afterwards,
we also extend our analysis to event shapes and jets.

1.2.1 Totally Inclusive Annihilation e+e− → hadrons

In this Section, we are going to follow roughly the steps outlined in [17, 24, 25]. Starting at leading
order, we only have to consider the production of a qq̄ pair resulting in the following expression for the
LO cross section

σ0 =
4πα2

3s
Nc

∑

q=u,d,s,...

e2
q . (1.22)

Here, α = e2/4π denotes the electromagnetic fine structure constant, s = qµqµ is total energy in the
c.m.s. and we sum over all active quark flavors.

Next-to-Leading Order

At next-to-leading order, we have to consider the process, where there is one additionally radiated
gluon in the final state e+e− → qq̄g. The relevant Feynman diagrams are displayed in Fig. 1.4. Here
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qµ is the momentum of the virtual photon with s = q2 and the kµi are the momenta i = 1, 2, 3 of the
outgoing partons q, q̄, g respectively. It is convenient to define the corresponding energy fractions xi as

xi =
2Ei√

2
=

2ki · q
s

. (1.23)

These are bounded by 0 ≤ xi ≤ 1 and they satisfy x1 + x2 + x3 = 2 due to momentum conservation
q = k1 + k2 + k3 which implies that there are only two independent xi. Calculating the cross section
at NLO according to Fig. 1.4, we find the following result

σ(e+e− → qq̄g) = σ0
αs
2π
CF

∫ 1

0
dx1

∫ 1

1−x1

dx2
x2

1 + x2
2

(1− x1)(1− x2)
(1.24)

where σ0 is given in Eq. (1.22). The lower boundary of the integration region for x2 is directly obtained
from momentum conservation and the requirement x3 ≤ 1. We find that the cross section diverges as
x1 → 1 and/ or x2 → 1. In order to pin down the origin of these divergences, we need to examine
the structure of the NLO result. We can relate the energy fractions xi to the angles θij between the
respective partons i and j via

2k1 · k2 = (k1 + k2)2 = (q − k3)2 = s− 2q · k3

2E1E2(1− cos θ12) = s(1− x3) . (1.25)

This result generalizes to
xixj(1− cos θij) = 2(1− xk) , (1.26)

for i, j, k = 1, 2, 3 as well as cyclic permutations. Hence, the divergences in Eq. (1.24) correspond to
kinematic situations where the emitted gluon becomes parallel to the antiquark or quark (“collinear
divergence”)

x1 → 1 ⇔ θ23 → 0 ,

x2 → 1 ⇔ θ13 → 0 . (1.27)

In addition, we obtain a singularity, when the emitted gluon becomes soft x3 → 0 (“soft” or “infrared
divergence”). Written in terms of the integration variables x1,2, this situation corresponds to both
(1− x1)→ 0 and (1− x2)→ 0 which directly follows from Eq. (1.26).

Before continuing the discussion of the origin of the singularities, we present the final result at NLO.
After including virtual corrections as well, all singularities cancel and we obtain a finite result for the
totally inclusive cross section

σ(e+e− → X) =
4πα2

3s
Nc

∑

q=u,d,s,...

e2
q

(
1 +

αs
π

)
. (1.28)

Here, we evaluate the strong coupling constant as αs(s) which is due to higher order corrections, cf.
Eq (1.19). Therefore, we end up with a moderate correction which is typically of the order of ten
percent at NLO. The process e+e− → X is the first and most simple example of an infrared safe quan-
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k1 + k3

k1

k3

1
(k1 + k3)2

= 1
2E1E3 (1−cos θ13)

⇒

Figure 1.5: Collinear, soft gluon radiation.

tity. In fact, the Kinoshita-Lee-Nauenberg theorem [26, 27] guarantees the cancellation of infrared
singularities to all orders in perturbation theory. A detailed calculation of both the real and virtual
corrections at NLO can be found in [24].

The occurrence of these types of divergences is a general feature of perturbative methods in field
theories. They indicate sensitivity to long-distance physics which, however, should be avoided since
perturbation theory is out of control in this case, as discussed in Section 1.1.2. Going back to the
process e+e− → qq̄g, we find that the singularities at the phase space boundaries are due to internal
propagators that go on-shell, as shown in Fig. 1.5. We find the following double logarithmic structure
for the total cross section

σ ∼
∫
dE3

E3

dθ13

sin θ13
dφ . (1.29)

We obtain a divergence for E3 → 0 and θ13 → 0, π. Note that the factor 1/E1 in the propagator given
in Fig. 1.5 does not produce a similar divergence because it will be cancelled by an appropriate factor
in the numerator. It was found in [28, 29] that this generalizes also to more complicated diagrams in
pQCD.

Definition of Infrared Safe Observables

Having identified the origin of collinear and soft divergences, there still remains the question of how
to generally get rid of them in order to be left with a sensible answer from perturbation theory. In
pQCD, we can only compute observables that are independent of long-distance physics.

We start with the formal definition of an infrared safe quantity following the notation of [30]. Let us
consider an inclusive observable I in e+e− annihilation. The symmetric “measurement functions” Sn
specify how the observable I is constructed

I =
1

2!

∫
dΩ2

dσ[2]

dΩ2
S2(pµ1 , p

µ
2 )

+
1

3!

∫
dΩ2dE3dΩ3

dσ[3]

dΩ2dE3dΩ3
S3(pµ1 , p

µ
2 , p

µ
2 )

+ . . . , (1.30)

where the
dσ[n]

dΩ2dE3dΩ3 · · · dEndΩn
(1.31)
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Figure 1.6: Infrared safety illustrated for a three jet event. Figure adapted from [17].

denote cross sections with n hadrons in the final state. For the observable to be infrared safe, the
functions Sn have to satisfy

Sn+1(pµ1 , . . . , (1− λ)pµn, λp
µ
n) = Sn(pµ1 , . . . , p

µ
n) (1.32)

for 0 ≤ λ ≤ 0. This means that an infrared safe observable is insensitive to whether we have n + 1
or n contributing particles in the final state in the case that the n + 1 particles have n-particle kine-
matics [30]. The physical meaning is that the observable is insensitive to soft (λ = 0) and collinear
(0 < λ ≤ 1) splittings which is equivalent to the statement that the observable has to be insensitive to
long-distance physics.

This requirement can be interpreted in the way that experiments are not able to resolve collinear and
soft partons. Hence, we have to require the approximate equivalence of the two situations displayed in
Fig. 1.6 where a three jet event is shown as an example. Removing soft partons and combining collinear
ones does not affect an infrared safe observable. From the mathematical point of view, infrared safety
manifests itself in the way that IR singularities which appear at intermediate steps of the calculation
drop out at the end, as we have seen it already for the process e+e− → X in Eq. (1.28). This brings
us to the question of how the measurement functions look like for a given observable. The simplest
example is the just mentioned process of inclusive e+e− → X annihilation. The measurement functions
are given by

Sn(pµ1 , . . . , p
µ
n) = 1 , (1.33)

which trivially fulfill the requirements in Eq. (1.32). For the totally inclusive cross section we sum over
everything in the final state X and all produced partons hadronize with unit probability. A formal
argument can be made using unitarity, cf. [17].

Other examples for infrared safe observables are event shapes. The thrust distribution dσ/dT is one
of the most prominent ones [31]. The measurement functions are given by

S(pµ1 , . . . , p
µ
n) = δ(T − Tn(pµ1 , . . . , p

µ
n)) ,

Tn(pµ1 , . . . , p
µ
n) = max

n

∑n
i=1 |pi · n|∑n
i=1 |pi|

, (1.34)

where the maximum is taken over the unit vector n. Varying between 1 and 1/2, the thrust gives a
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Figure 1.7: Illustration of IR safety requirements for jet definitions, see text. Figure taken from [25].

measure of how back-to-back or pencil-like an event is. We find

|(1− λ)pi · n|+ |λpi · n| = |pi · n| , (1.35)

which confirms its infrared safety according to Eq. (1.32). Nowadays, one of the most important
examples of infrared safe observables are jet cross sections which we are going to discuss in the next
Section.

1.2.2 Jets

Generally speaking, jets are bunches of collimated particles seen in the detectors. Observables involv-
ing jets are an invaluable tool in present day collider experiments where they are used as high precision
probes of QCD and for the search of BSM physics. There is no unique way to define a jet. In general,
the jet definitions given here apply to both e+e− and proton-proton (pp) collisions. In Chapter 7, we
consider single-inclusive jet production in pp collisions. The first NLO IR safe jet definition was given
by Sterman and Weinberg [32]. Nowadays [33], most of the existing jet algorithms can be grouped
into cone algorithms on the one hand [34] and successive recombination algorithms (“kt algorithms”)
on the other hand [35–38]. In addition to the jet definition, one also needs to specify a recombination
scheme which specifies how the momentum of the jet is obtained from the momenta of the particles
that make up the jet.

The requirements for any jet definition are illustrated in Fig. 1.7. Firstly, adding a soft parton should
not change the number of jets found by the algorithms (upper row in Fig. 1.7). Secondly, replacing one
parton by a pair of collinear partons should also not alter the number of jets (lower row in Fig.1.7).
Those two requirements basically reflect the concept of IR safety discussed above. Finally, the jet
definition needs to be resilient to detector effects. Cone type jet algorithms cluster particles according
to their distance in the rapidity and the azimuthal angle plane. Particles are clustered in cones along
the dominant directions of momentum. This is done such that the direction of the sum of the momenta
points into the center of the cone. However, in general, there are potential problems with IR safety for
this type of jet algorithms.

17



CHAPTER 1. PERTURBATIVE QCD

Nowadays, the standard choice for jet cross sections are kt-type algorithms. For each pair of objects
in the final state j, k, one defines a distance djk as

djk ≡ min(k2p
Tj , k

2p
Tk)

R2
jk

R
, (1.36)

where kTj denotes the transverse momentum of the object j and the exponent p defines the specific
algorithm under consideration. For the kt algorithm [35, 36] one has p = 1, for the Cambridge/ Aachen
algorithm [37] one has p = 0 and for the most commonly used anti-kt algorithm [38], one has p = −1.
Furthermore, in Eq. (1.36) one defines

Rjk ≡ (ηj − ηk)2 + (φj − φk)2 . (1.37)

Here ηj and φj are the pseudo-rapidity and the azimuthal angle of objekt j. Finally, the parameter
R in Eq. (1.36) is some fixed value which is called the jet parameter or jet radius. In addition, an
object-beam distance is defined as

djB ≡ k2p
Tj . (1.38)

The algorithm combines successively objects by identifying the smallest of the distances djk and djB.
When two objects are merged the sum of both four momenta is assigned to the new object following
the most commonly used recombination scheme, see [34] for example. In case that a djB is the smallest
distance, the object j is called a jet and removed from the list.

Often jet cross sections are calculated using Monte-Carlo integrators. However, an analytical form of
the partonic hard-scattering cross section may be achieved within the “Narrow Jet Approximation”
(NJA) developed in [39–42]. Assuming that the jet is a rather narrow object, one may expand the
partonic cross section around R = 0 as

A logR+ B +O(R2) . (1.39)

The functions A and B are perturbatively calculable and we neglect terms of the order O(R2) and
beyond. The NJA approximation was found to work very well for all kinematical regions at present-
day collider experiments [40, 43]. Indeed, this statement holds true even for very large values of
R ∼ O(1). In Chapter 7, we apply this technique to single-inclusive jet production in hadronic
collisions pp→ jetX.

1.3 Factorization and Evolution

Different to the observables discussed so far, another class of cross sections involve identified hadrons in
the final state. For example, e+e− → hX requires the use of “fragmentation functions” (FFs) describing
the non-perturbative effects of a parton fragmenting into an observed hadron h. Such processes will be
discussed further in subsequent Chapters. Instead, here we choose to present the necessary concepts
of factorization and evolution using DIS `N → `′X as an example as it is one of the most prominent
processes. It was this process, where pointlike partons were discovered for the first time. Within
pQCD, we need parton distribution functions (PDFs) describing the distribution of quarks and gluons
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X

P

p

k

q, µ

Figure 1.8: Diagrammatric expression for the DIS amplitude at LO.

in a nucleon N . To some extent PDFs may be viewed as the initial state analogue of FFs.

1.3.1 Deep Inelastic Scattering at LO

We consider the process where a lepton is scattering inelastically off a nucleon target `N → `′X. For
simplicity, we assume for now that the interaction with the nucleon (momentum P ) is mediated only
via the exchange of a virtual photon with momentum q. We may separate the DIS cross section into
a leptonic part and a hadronic one, i.e. dσ ∼ LµνW

µν . In general, we may write the hadronic tensor
Wµν as [44, 45]

Wµν =
1

8π

∫
d4z eiq·z

∑

X

〈P |jµ(z)|X〉 〈X|jν(0)|P 〉

=

(
−gµν +

qµqν

q2

)
F1(x,Q2) +

1

P · q

(
Pµ − qµP · q

q2

)(
P ν − qν P · q

q2

)
F2(x,Q2) ,

(1.40)

where jµ(x) is the electromagnetic current and Q2 = −qµqµ. In the second line we introduced the
structure functions F1,2(x,Q2).

The scattering amplitude of the virtual photon with the nucleon at LO is shown in Fig. 1.8, where
all the relevant momenta are shown. The struck quark has momentum p. For the corresponding
mathematical expression, we obtain

Mµ
0 = ūi(k) (ie γµij)

∫
d4p

(2π)4

(∫
d4z 〈X|ψj(z)|P 〉 eip·x

)

= ūi(k) (ie γµij)

∫
d4p

(2π)4

∫
d4z 〈X|ψj(0)|P 〉 ei(p−P+PX)·z

= ūi(k) (ie γµij) 〈X|ψj(0)|P 〉 . (1.41)

The indices i, j are in Dirac space, whereas color and flavor indices are left implicit. The grey circle
in Fig. 1.8 is expressed by the Fourier transform of a hadronic matrix element where a quark of flavor
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p

Figure 1.9: Leading order cut diagram for DIS, where the sum is taken over all states/ lines crossing the
final state cut.

f and momentum p is created. This is achieved by acting with the operator ψj(z) on the initial state
proton with momentum P , see also Appendix B. In the final state we have labeled any additional
hadronic state by X with momentum PX . In addition, we integrate over all possible momenta p as
it is an internal momentum variable. In the first step, we made use the translation relation that is
generally satisfied by field operators

O(z) = eiP·z O(0) e−iP·z , (1.42)

where Pµ is the momentum operator. for the complex conjugate amplitudeM∗µ0 , we obtain

M∗µ0 = 〈P |ψ̄i(0)|X〉 (−ieγµij)uj(k) . (1.43)

We can now write down the hadronic tensor which corresponds to the cut diagram shown in Fig. 1.9
as

Wµν =
1

8π

∫∑

X

∫
d3k

2Ek(2π)3
ūi(k) (ieγµij) 〈X|ψj(0)|P 〉 〈P |ψ̄k(0)|X〉 (−ieγνkl)ul(k)

(2π)4 δ(4)(P + q − k − PX) , (1.44)

where the factor 1/8π is due to normalization and the delta function ensures momentum conservation.
We integrate over the phase space of the outgoing partons that cross the final state cut. This includes
both the parton with momentum k and any additional final state X. The summation over X and the
integration over its phase space is given by

∫∑

X

=
n∑

i=0

i∏

j=0

∫
d3pj

2Ej(2π)3
. (1.45)
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We rewrite Eq. (1.44) as

Wµν =
e2

4

∫
d4k

(2π)4
δ(k2) ūi(k) γµij

∫∑

X

〈P |ψ̄k(0)|X〉 〈X|ψj(0)|P 〉 γνkl ul(k)

(2π)4δ(4)(P + q − k − PX) ·
∫

d4p

(2π)4

∫
d4z e−i(p+PX−P )·z , (1.46)

where we introduced a factor of unity in the second line. We now define the so-called quark correlator
as the Fourier transform of an hadronic matrix element

Φij(p) =

∫
d4z

(2π)4
〈P |ψ̄j(z)ψi(0)|P 〉 e−ip·z . (1.47)

Hence, making again use of (1.42), we obtain for the hadronic tensor

Wµν =
e2

4

∫
d4p d4k δ(k2) δ(4)(p+ q − k) tr[/kγµΦ(p)γν ] , (1.48)

where we used ∫∑

X

|X〉 〈X| = 1 . (1.49)

We may expand the correlator Φ(p)ij in terms of Dirac matrices and determine its components which
is known as Fierz rearrangement

Φ(p) = φ1(p) 1 + φ2(p)/p+ φ3(p)γ5 + φ4(p)/pγ5 . (1.50)

The first term is a mass term which we neglect for now. However, in Chapter 4 when we are considering
hadron mass corrections, we will include a non-zero mass for the nucleon target in DIS as well as for
the observed final-state hadron in semi-inclusive annihilation (SIA) e+e− → hX. The third and forth
terms vanish when we compute an unpolarized cross section. Therefore, we are only left with the
second term φ2(p)/p. Acting on both sides of Eq. (1.50) with tr[. . . /n], where n is defined such that in
general n · a = a+, we obtain

φ2(p) =
1

4p+
tr[/nφ(p)]

=
1

4p+

∫
d4z

(2π)4
〈P |ψ̄(z)γ+ψ(0)|P 〉 eip·z . (1.51)

Using the delta function in (1.48) to perform the d4k integration, we can now write the hadronic tensor
as

Wµν =
e2

4

∫
dp+dp−d2pT δ((p+ q)2) tr[(/p+ /q)γ

µ
/pγ

ν ]φ2(p) . (1.52)

Using light-cone coordinates, we can write the momentum of the incoming proton as P = (P+, 0,0T ).
Within the framework of collinear factorization, we write the momentum of the struck quark only as
p+ = xP+. Hence, in the trace term of Eq. (1.48), we only keep the contribution with /p = p+γ−. In
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addition, only the plus component of p is kept when writing the remaining delta function as

δ((p+ q)2) = δ(q2 + 2p · q) =
xB
Q2

δ(x− xB) , (1.53)

where the Bjorken scaling variable is given by xB = Q2/2P · q. Therefore, we are only left with
p+ components for the integral and the dp−d2pT act directly on the quark correlator which then
is denoted as the integrated correlator without any dependence on the transverse momentum of the
quarks inside the proton. Keeping the dependence on the transverse momentum component, we would
obtain transverse momentum dependent PDFs. As discussed above, we only keep the φ2(p) component
for the unpolarized cross section without mass corrections. In order to be consistent with the rest of
this thesis, we denote the unpolarized quark PDF from now on with f(x) instead of φ2(p), where f
denotes a parton of flavor f = q, q̄, g. Two delta functions δ(z+)δ2(zT ) are obtained after carrying out
the dp−d2pT integrals which yields the final result for the quark PDF in a hadron with momentum
P [46]

q(x) =
1

4

∫
dz−

2π
e−ixP

+z− 〈P |ψ̄(z−)γ+ψ(0)|P 〉 . (1.54)

Note that this is only valid in axial gauge n · A = 0 gauge. PDFs are non-perturbative but universal
ingredients and may be extracted from experiment. In general, we need to introduce a Wilson line
between the two quark fields, which is given by the following ordered exponential

P exp

(
−ig

∫ z−

0
dη n ·A(ηn)

)
. (1.55)

For completeness, we also give here the operator definition for corresponding gluon PDF g(x) in n·A = 0
gauge

g(x) =
1

2xP+

∫
dz−

2π
e−ixP

+z− 〈P |F+
µ (z−)Fµ+(0)|P 〉 , (1.56)

where Fµν is the gluon field strength tensor. Finally, we note that for helicity PDFs ∆f(x), as dis-
cussed further in Chapters 3 and 9, we need to make the replacement γ+ → γ+γ5 in (1.54).

Returning to the calculation of the hadronic tensor for DIS in (1.52), we may now use the following
two operators to project onto the structure functions F1,2(x,Q2)

P 1
µν =

1

2

[
−gµν +

Q2

(P · q)2
PµPν

]
,

P 2
µν =

Q2

2P · q

[
−gµν + 3

Q2

(P · q)2
PµPν

]
. (1.57)
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Figure 1.10: Collinear factorization for the hadronic tensor in DIS. Figure taken from [47].

We end up with the LO result

F2(xB) =
∑

f

e2
f

4

∫
dx

x

xB
Q2

δ(x− xB) 4Q2x f(x)

=
∑

f

e2
f xB f(xB)

= 2xB F1(xB) , (1.58)

where now we introduced an explicit sum over the different quark flavors f = q, q̄. The relation between
the two structure functions is known as Callan-Gross relation. The Q2 independence of the structure
functions at LO is referred to as Bjorken-xB scaling.

1.3.2 Deep Inelastic Scattering at NLO

Factorization theorems developed in [5] state how to extend the leading-order result for DIS to higher
orders. The leading-order diagram in Fig. 1.9 is extended as shown on the left hand side of Fig. 1.10.
The upper grey ellipse corresponds to any higher order correction with real and virtual corrections.
According to factorization theorems, we may separate short-distance from long-distance physics. This
is illustrated on the right hand side of Fig. 1.10, where we have the product, or the convolution, of the
hard-scattering part and the PDF which now both depend on the factorization scale µF , see discussion
below. Both of which need to be calculated to a given order in perturbation theory. Collinear initial
state singularities are absorbed into the bare parton distribution functions. Note that this is only valid
up to corrections that are suppressed by 1/Q2. Mathematically, this statement manifests itself in the
following structure of the corresponding structure functions at NLO

2F1(x,Q2) =
∑

f

∫ 1

x

dx̂

x̂
f
(x
x̂
, µ2

F

)
C1
f

(
x̂,
Q2

µ2
R

,
Q2

µ2
F

, αs(µ
2
R)

)
, (1.59)

and similarly for F2(x,Q2) for f = q, q̄, g. Here, C1
f is the coefficient function which at LO, according to

the last Section, is simply given by C1
f = e2

f δ(1− x̂) for f = q, q̄. Note that beyond LO, the PDFs also
depend on the factorization scale µ and we need to include a gluon contribution. In this Section, we
show explicitly how the factorization and the cancellation of collinear singularities is achieved at NLO
using the operator definition of the PDF in Eq. (1.54). The hard-scattering part does not depend on
the choice of the hadron but only on parton type f . Therefore, we may calculate C1 with the simplest
choice, where the “external hadron” is actually a parton [5]. We now apply the factorization formula
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Figure 1.11: NLO real- and virtual corrections for the DIS LO process γ∗q → q.

to incoming partons instead of hadrons. We denote the corresponding structure function as G1 and
we find

2G1,b(x,Q
2) =

∑

a

∫ 1

x

dx̂

x̂
φa/b

(x
x̂
, µ2

F

)
C1
a

(
x̂,
Q2

µ2
R

,
Q2

µ2
F

, αs(µ
2
R)

)
, (1.60)

where we label the corresponding PDF for finding parton a in parton b with φa/b(x). The important
difference to the version in (1.59) is the fact, that the φa/b(x) are calculable perturbatively up to a given
order in αs, whereas the f(x) are non-perturbative. Both G1,a and C1

a allow a perturbative expansion
in αs

G1,a = G
(0)
1,a +

αs
π
G

(1)
1,a +O(α2

s) ,

C1
a = C1,(0)

a +
αs
π
C1,(1)
a +O(α2

s) . (1.61)

What we want to calculate here is the coefficient function C1
a up to first order in αs which is the same

function in Eqs. (1.59) and (1.60).

Starting with the first order correction for G1, we need to compute the real- and virtual corrections
diagrams for the process γ∗q → q shown in Fig. 1.11. In addition, we also need to consider gluon
initiated processes which are not shown here. The explicit calculation may be found in [45]. Working
in dimensional regularization with d = 4 − 2ε dimensions, G(1)

1 has ultraviolet (UV) poles 1/ε due
to the virtual corrections. They are removed following the standard MS scheme. Soft poles cancel
between real- and virtual corrections and we are left with collinear 1/ε poles, cf. Section 1.2.1. In
order to obtain the finite result for C1

a from G1, we also need to know the functions φa/b(x) up to
O(αs). Using their definition given in Eq. (1.54), with the corresponding hadron replaced by a parton,
we may evaluate it as described in the Appendix B. After removing UV poles again in the MS scheme,
one finds the following result [5, 46]

φa/b(x) = δab δ(1− x)− 1

2ε

αs
π
P

(0)
a/b(x) +O(α2

s) , (1.62)

where P (0)
a/b(x) is the LO Altarelli-Parisi splitting function [48–50], see below in Eq. (1.72) and in the

Appendix B. Inserting this result together with the first order expansions for G1 and C1
a in Eq. (1.61)
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in the factorized formula in Eq.(1.60), we obtain

2G
(0)
1,b +

αs
π

2G
(1)
1,b = C

1,(0)
b +

αs
π
C

1,(1)
b − 1

2ε

αs
π

∑

a

∫ 1

x

dx̂

x̂
P

(0)
a/b

(x
x̂

)
C1,(0)
a (x̂) +O(α2

s) , (1.63)

where, for ease of notation, we omitted various variables that the individual functions depend on. At
LO, the correspondence is trivial 2G

(0)
1,b = C

1,(0)
b . At O(αs), we obtain

C
1,(1)
b = 2G

(1)
1,b +

1

2ε

αs
π

∑

a

∫ 1

x

dx̂

x̂
P

(0)
a/b

(x
x̂

)
C1,(0)
a (x̂) , (1.64)

which yields a finite expression for C1,(1)
b . In summary, up to NLO, we find the following result for the

DIS coefficient function [45, 51]

C1
q (x) = e2

qδ(1− x) + e2
q

αs
2π
CF

[
(1 + x2)

(
ln(1− x)

1− x

)

+

− 3

2

1

(1− x)+

− 1 + x2

1− x lnx+ 3

−
(
−9

2
+
π2

3

)
δ(1− x̂) +

(
1 + x2

1− x

)

+

ln

(
Q2

µ2
F

)]
, (1.65)

where now we explicitly denoted the factorization scale by µF . The results for all DIS coefficient
functions at NLO can be found in the Appendix C. Here the so-called “plus distributions” are defined
as ∫ 1

0
dx f(x)[g(x)]+ ≡

∫ 1

0
dx [f(x)− f(1)]g(x) . (1.66)

1.3.3 Evolution Equations

From Eqs. (1.59) and (1.65), we already see that due to the factorization procedure, both the PDF and
the coefficient function dependent on an arbitrary scale µF . However, the measured physical quantity
2F1(xB, Q

2) can not depend on this scale, i.e.

µ2
F

d

dµ2
F

2F1(xB, Q
2) = 0 . (1.67)

In the case that we would have a full prediction from QCD to all orders, the dependence on µF
cancels out between the PDF and the coefficient function. For a finite order calculation O(αks), the
dependence on µF is of order O(αk+1

s ). This is similar to the dependence on the renormalization scale
µR in Section 1.1.2. By imposing the condition in Eq. (1.67), we find that the DGLAP (Dokshitzer,
Gribov, Lipatov, Altarelli, Parisi) evolution equations for the PDFs take the following form [48–50]:

µ2
F

d

dµ2
F

fi(x, µ
2
F ) =

[
Pij ⊗ fj(µ2

F )
]

(x) , (1.68)

where the so-called splitting functions Pij(x) can be calculated perturbatively and ⊗ denotes an ap-
propriate convolution integral. The splitting functions represent the probability that a parton j splits
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into a parton i carrying a momentum fraction x. For any cross section within perturbative QCD, we
need to calculate both the coefficient function and the splitting function for the evolution equations to
a given order in the strong coupling constant αs. With these two ingredients at hand, we obtain the
following accuracy for fixed order calculations NkLO

Pij =
αs
2π
P

(0)
ij +

(αs
2π

)2
P

(1)
ij +

(αs
2π

)3
P

(2)
ij + . . .

Ci =
( αs
π

)n0
(
C

(0)
i +

αs
π
C

(1)
i +

(αs
π

)2
C

(2)
i + . . .

)

LO NLO NNLO (1.69)

where the exponent n0 depends on the LO of the process under consideration. For example, for DIS, we
have n0 = 0. The factor of 1/2 for the P (i)

ij is the usual convention. Nowadays, the splitting functions

are known up to three loops P (2)
ij [52–54]. We write the full DGLAP equations at LO in terms of the

gluon PDF (g), a non-singlet (qNS) and a singlet (qS) quark combination

qNS = q − q̄ , qS =
∑

q

(q + q̄) . (1.70)

One has [55]

∂qNS

∂ lnµ2
=

αs(µ
2)

2π
P (0)
qq ⊗ qNS

∂

∂ lnµ2

(
qS

g

)
=

αs(µ
2)

2π

(
P

(0)
qq 2NfP

(0)
qg

P
(0)
gq P

(0)
gg

)
⊗
(
qS

g

)
, (1.71)

where the Altarelli-Parisi splitting functions in the MS scheme at LO [45, 56] are given by

P (0)
qq = CF

(
1 + x2

1− x

)

+

= CF

(
(1 + x2)

1

(1− x)+
+

3

2
δ(1− x)

)

P (0)
qg =

1

2

(
x2 + (1− x)2

)

P (0)
gq = CF

(
1 + (1− x)2

x

)

P (0)
gg = 2CA

(
1− x
x

+ x(1− x) +
x

(1− x)+

)
+

(
11

6
CA −

1

3
Nf

)
δ(1− x) . (1.72)

At LO the evolution equations may be directly solved in Mellin space, where the convolution structure
turns into ordinary products. Choosing µF = µR = µ, we can schematically write the PDF in Mellin
space qN at some scale µ in terms of the PDF at scale µ0 via [57]

qN (µ2) =

(
αs(µ

2)

αs(µ2
0)

)−2P (0),N/β0

qN (µ2
0) . (1.73)
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Here, P (0),N denotes the appropriate LO splitting function in Mellin space. Hence, solving the evolution
equations resums single logarithms of the form αks lnk(µ2

F /µ
2
0) as can be seen directly by expanding

the exponential in (1.73) in powers of αs. Note that solving the evolution equations at NLO resums
terms of the form αks lnk−1(µ2

F /µ
2
0). See for example [57] of how the evolution equations can be solved

at higher orders using Mellin space techniques.

1.4 Threshold Resummation

In this Section, we start by introducing the generic structure for threshold resummation using DIS as
an example. In the following parts we go further into the details of how resummation can be derived
also in the case that four colored partons are taking part in the scattering process at LO. Here, the
underlying color structure of the partonic scattering needs to be taken into account.

1.4.1 Resummation for DIS

In the expression for the DIS coefficient function at NLO in Eq. (1.65), we find several distributions
singular at threshold x→ 1. Only the singular part at NLO is given by

C
1,(1)
q,th (x) = CF

[
(1 + x2)

(
ln(1− x)

1− x

)

+

− 3

2

1

(1− x)+

−
(

9

2
+
π2

3

)
δ(1− x)

]
, (1.74)

where we chose µF = Q for simplicity. The appearance of these large corrections may spoil the
perturbative convergence of the power series in αs for x → 1 even if we are well in the perturbative
regime where αs � 1. These so-called threshold distributions become large near the exclusive phase
space boundary, where any higher order gluon radiation from the Born process γ∗q → q becomes soft.
The logarithms become large as real gluon emission is suppressed and virtual corrections remain. The
potentially large logarithms originate from the cancellation of soft singularities between virtual and
real corrections and, hence, are directly related to the IR structure of QCD. It can be shown that these
logarithmic enhancements do appear at all orders in perturbation theory. For a given order k, we have

αks

(
lnn(1− x)

1− x

)

+

, with n ≤ 2k − 1 . (1.75)

Therefore, in order to obtain a reliable result from perturbation theory, the threshold logarithms need
to be taken into account to all orders in the strong coupling constant αs. This is achieved by a
technique called “threshold resummation” [6–8]. We note that in general, the whole cross section may
be dominated by the threshold terms, as the region of the partonic threshold is enhanced due to the
steeply falling PDFs for large parton momentum fractions. This is a general result and can be seen
directly from the convolution structure of the hadronic cross section

dσ ∼
∫ 1

τ

dx

x
L
(τ
x

)
dσ̂(x) . (1.76)

Here L is the “the parton luminosity” which involves the PDFs and τ is a hadronic variable which,
for example, is given by xB for DIS or τ = Q2/S for the Drell-Yan process. Given the fact that
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Figure 1.12: Illustration for the accuracy of threshold resummation.

the PDFs are becoming extremely small toward large τ/x, the coefficient function evaluated around
x = 1 is dominant. This becomes even more relevant as the hadronic threshold is approached for τ → 1.

Threshold resummation may be derived in Mellin transform space. Taking moments in the scaling
variable xB of the structure function 2F1, we find

∫ 1

0
dxB x

N−1
B 2F1(xB, Q

2) =

(∫ 1

0
dxxN−1 C1

f

(
x,
Q2

µ2
R

,
Q2

µ2
F

, αs(µ
2
R)

))(∫ 1

0
dy yN−1f(y, µ2

F )

)
,

(1.77)
where the convolution structure in has been turned into a product of the moments of the PDF and
moments of the coefficient function. The threshold logarithms appearing in the coefficient function
turn into large logarithms of the Mellin variable N :

αks

(
ln2k−1(1− x)

1− x

)

+

→ αks ln2k N̄ , (1.78)

where N̄ = eγEN . One finds a Sudakov double logarithmic structure, i.e. there two powers of ln N̄ for
one power of αs. The generic all order structure of threshold logarithms in Mellin space is illustrated
in Fig. 1.12. Threshold resummation takes into account whole classes or towers of logarithms. For
a leading logarithmic (LL) approximation, only the most dominant logarithm is taken into account
for every given fixed order. This corresponds to the first column in Fig. 1.12. At the level of next-to
leading logarithmic (NLL) accuracy two more subleading towers are taken into account and five towers
at next-to-next-to-leading logarithmic (NNLL) accuracy.

Resummation generally relies on two basic concepts. Firstly the QCD matrix elements for n-gluon
emissions factorizes into a product of n times the single gluon emission in the soft limit. Secondly, we
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need the phase space to factorize, which may only be achieved in Mellin transform space. With these
two ingredients at hand, the exponentiation of eikonal diagrams can be achieved. In the following
Sections, we will get back to how this result can be derived. For now, we simply state the resummed
coefficient function for DIS

C1,N
q,res

(
αs(µ

2),
µ2
R

Q2
,
µ2
F

Q2

)
= e2

qHq

(
αs(µ

2),
µ2
R

Q2
,
µ2
F

Q2

)
∆N
q

(
αs(µ

2),
µ2
R

Q2
,
µ2
F

Q2

)
JNq

(
αs(µ

2),
µ2
R

Q2

)
,(1.79)

where the two exponentials ∆N
q and JNq in the MS scheme are given by

ln ∆N
q

(
αs(µ

2
R),

µ2
R

Q2
,
µ2
F

Q2

)
≡

∫ 1

0
dξ
ξN−1 − 1

1− ξ

∫ (1−ξ)2Q2

µ2
F

dk2
⊥

k2
⊥
Aq(αs(k

2
⊥)),

ln JNq

(
αs(µ

2
R),

µ2
R

Q2

)
≡

∫ 1

0
dξ
ξN−1 − 1

1− ξ

[∫ (1−ξ)Q2

(1−ξ)2Q2

dk2
⊥

k2
⊥
Aq(αs(k

2
⊥)) +

1

2
Bq(αs((1− ξ)Q2))

]
.

(1.80)

The radiative factor ∆N
q takes into account soft and collinear gluon emissions associated with the

incoming parton. The exponential JNq is due to collinear (soft and hard) emissions from the unobserved
parton in the final state. The functions Aq and Bq allow a perturbative expansion in αs:

Aq(αs) =
αs
π
A(1)
q +

(αs
π

)2
A(2)
q + . . . ,

Bq(αs) =
αs
π
B(1)
q +

(αs
π

)2
B(2)
q + . . . . (1.81)

The relevant coefficients for resummation at NLL accuracy are given by

A(1)
q = CF , A(2)

q =
1

2
CF

[
CA

(
67

18
− π2

6

)
− 5

9
Nf

]
,

B(1)
q = −3

2
CF , (1.82)

where CF = 4/3, CA = 3 and Nf is the number of active flavors. Finally, the coefficient Hq in
Eq. (4.30) reads

Hq

(
Q2

µ2
R

,
Q2

µ2
F

, αs(µ
2
R)

)
= 1 +

αs
2π
CF

(
−9

2
− π2

6
+

3

2
ln
Q2

µ2
F

)
+O(α2

s) , (1.83)

taking into account contributions from hard-virtual contributions. Let us consider the exponential ∆N
q

as an example. We still need to evaluate the integrals in (1.80) which are given by integrations over the
strong coupling constant αs. We substitute the solution for αs with a required accuracy, cf. Eqs. (1.14)
and (1.16). For the expansion of the exponent up to a given NkLL (with k = 0, 1, 2 . . .) accuracy, we
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introduce the new expansion parameter λ = αs(µ
2
R)b0 ln N̄ . Up to N3LL, we can write the result as

ln ∆N
q

(
αs(µ

2
R),

µ2
R

Q2
,
µ2
F

Q2

)
= h(1)

q (λ) ln N̄ + h(2)
q

(
λ,
µ2
R

Q2
,
µ2
F

Q2

)
+ αs h

(3)
q

(
λ,
µ2
R

Q2
,
µ2
F

Q2

)

+α2
s h

(4)
q

(
λ,
µ2
R

Q2
,
µ2
F

Q2

)
. (1.84)

This is achieved by fixing λ after the integrations are performed and by expanding the result as a series
in αs. See Chapter 6 for a more detailed derivation up to NNLL. The explicit form of the functions
h

(i)
q will be given below up to NLL and up NNLL in later Chapters when necessary. The classification

of the terms into NkLL depends on the prefactors of the functions h(i) in (1.84). The LL term has a
prefactor of ln N̄ , the NLL has none and the following terms are multiplied by increasing powers of αs.
Note here we count the logarithms in the exponent which fixes the classification of towers in Fig. 1.12.
For example, the NNLL function h(3)

q starts to contribute in the fourth tower but not in the third tower.

Note that for a fixed order expansion as shown in Fig. 1.12, we have double logarithms, i.e. two powers
of logarithms per αs: (αs ln2 N̄)k. However, in the exponent we have a single logarithmic structure, i.e.
one logarithm per αs which can be directly seen from λ ∼ αs ln N̄ . In principle, each of the functions
h

(i)
q can be written as a power series in λ. Counting each h(i) as λk and including the prefactors, we

find the following classification

αks lnk+1 N̄ , αks lnk N̄ , αks lnk−1 N̄ , αks lnk−2 N̄ , (1.85)

where each term corresponds to the respective term in the sum found for the exponent in Eq. (1.84).

In this Section, we consider DIS up to NLL accuracy. Expanding both exponents in Eq. (1.80), we
find [58–63]

ln ∆N
q = ln N̄h(1)

q (λ) + h(2)
q

(
λ,
Q2

µ2
R

,
Q2

µ2
F

)
,

ln JNq = ln N̄f (1)
q (λ) + f (2)

q

(
λ,
Q2

µ2
R

)
. (1.86)

The two functions h(1)
q , f

(1)
q (h(2)

q , f
(2)
q ) collect all leading logarithmic (next-to-leading logarithmic)

contributions in the exponent of the type αks lnn N̄ with n = k+ 1 (n = k+ 2). The functions h(1) and
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h(2) for ∆N
q are given by

h(1)
q (λ) =

A
(1)
q

2πb0λ
[2λ+ (1− 2λ) ln(1− 2λ)] ,

h(2)
q

(
λ,
Q2

µ2
R

,
Q2

µ2
F

)
= − A

(2)
q

2π2b20
[2λ+ ln(1− 2λ)] +

A
(1)
q b1

2πb30

[
2λ+ ln(1− 2λ) +

1

2
ln2(1− 2λ)

]

+
A

(1)
q

2πb0
[2λ+ ln(1− 2λ)] ln

Q2

µ2
R

− A
(1)
q

πb0
λ ln

Q2

µ2
F

. (1.87)

Here, the b0, b1 are the coefficients of the QCD beta function cf. (1.12). The functions f (1) and f (2)

for JNq are given by

f (1)
q (λ) = h(1)

q

(
λ

2

)
− h(1)

q (λ),

f (2)
q

(
λ,
Q2

µ2
R

)
= 2h(2)

q

(
λ

2
,
Q2

µ2
R

, 1

)
− h(2)

q

(
λ,
Q2

µ2
R

, 1

)
+
B

(1)
q

2πb0
ln(1− λ). (1.88)

In the end, we go back to x-space by numerically performing the Mellin inverse, which is given by

2F res
1 (xB, Q

2) =

∫

CN

dN

2πi
x−NB × C1,N

q,res

(
Q2

µ2
R

,
Q2

µ2
F

, αs(µ
2
R)

)
fN (µ2) . (1.89)

The contour CN in the complex N plane is taken to run between the rightmost pole of the moments of
the PDFs and the Landau pole NL following the minimal prescription of [64], see Fig. 1.13. In addition,
we choose a tilted contour for better numerical convergence. Note that for more involved processes such
as single-inclusive deep-inelastic scattering or di-hadron production discussed in subsequent Chapters,
we take double Mellin or combined Mellin and Fourier moments respectively. This will make it more
difficult to parametrize the appropriate contour in the complex plane. However, the general idea for
the inverse transformation using the Minimal Prescription remains the same.

Finally, we match the resummed result to a full fixed order calculation which is still a good approx-
imation further away from threshold. Hence, the most accurate prediction form QCD is obtained
by adding both the resummed NkLL result and, in case it is available, the corresponding full NkLO
result. In order to avoid double counting of threshold logarithms up to order k, we subtract the O(αks)
expansion of the resummed result:

dσmatch =

(
dσres,NkLL − dσres,NkLL

∣∣∣
O(αks )

)
+ dσfull,NkLO . (1.90)

Numerical results for DIS and other processes will be presented in subsequent Chapters. In the re-
maining part of this Chapter, we focus on how the all order threshold resummation may be derived.
Due to its complexity, we only focus on giving a rather rough outline of the basic concepts and we
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Figure 1.13: Integration contour following the Minimal Prescription of [64]. The red crosses denote poles
in the complex N plane.

refer to the literature for further details.

1.4.2 IR structure of QCD

This Section and the following one will only give a brief overview of the basic concepts of resummation.
The approach for threshold resummation developed in [7] relies on additional factorization properties of
the partonic cross section near threshold. Solving corresponding renormalization group equations leads
to the exponentiation of threshold logarithms. As already mentioned, these logarithmic enhancements
are directly linked to the IR structure of QCD. Therefore, we first analyze the structure of soft and
collinear singularities of scattering amplitudes or Green’s functions which will bring us to the Landau
equations, power counting techniques and finally will allow us to identify regions of dominant mo-
mentum which are directly linked to the additional factorization properties near threshold mentioned
above. We roughly follow the discussions outlined in [7, 22, 65–67].

Landau Equations

We consider the complex function G for a Feynman diagram with L loops and I internal lines. The
line momenta are labelled by ki which are functions of the external momenta ps and the loop momenta
li

G =
L∏

i=1

∫
ddli N(k, ps)

I∏

j=1

1

k2
j −m2

j + iε
(1.91)
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where N(k, ps) is some numerator factor containing all relevant prefactors. Introducing I Feynman
parameters, we may rewrite G as

G = (I − 1)!
I∏

j=1

∫ 1

0
dαj δ(1− α1 − . . .− αI)

L∏

i=1

ddli N(k, ps) D
−I , (1.92)

where the denominator D is given by

D =
I∑

j=1

αj
(
k2
j (li, ps)−m2

j

)
+ iε . (1.93)

A singularity occurs when the internal lines go on-shell, i.e. for D = 0. Note that D is quadratic in
momenta and linear in Feynman parameters. Due to the “iε”, no lµi contour will go exactly through
such a pole. Due to Cauchy’s theorem, the contour may be deformed and moved away from the pole.
This is the case, unless two poles coalesce and the contour is trapped and cannot be moved around
the poles anymore. This situation, where G may develop a singularity, is called a “pinch”. Hence, the
necessary conditions for a pinch are

D = 0 ,
∂D

∂lµi
= 0 ∀ i, µ , (1.94)

where the second condition reflects the fact that two poles need to coalesce. In analogy to that, one
can find conditions for the αj . Given the fact that D is linear in αi, the contour cannot be trapped.
However, at the endpoint αj = 0, the contour cannot be moved away. Alternatively, we may have
k2
j −m2

j = 0 such that D is independent of αj . All these conditions are summarized by the Landau
equations

k2
j = m2

j or αj = 0
∑

j∈loop s

αjkjεjs = 0 , (1.95)

where εjs = ±1 depending on whether line momentum kj is flowing in or opposite to the direction of
the loop momentum ls. The standard example is the 1-loop correction to the quark electromagnetic
vertex in QCD as shown in Fig. 1.14 a). In this case, we can write the denominator D as

D = α1l
2 + α2(p1 + l)2 + α3(p2 − l)2 + iε . (1.96)

The corresponding (four) Landau equations are given by

α1l
µ + α2(p1 + l)µ − α3(p2 − l)µ = 0 . (1.97)
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Figure 1.14: a) Electromagnetic vertex at 1-loop order. b) Reduced diagram according to the second line
in Eq. (1.98).

In the massless case p2
1 = p2

2 = 0, there are three solutions

lµ = 0, α2 = α3 = 0 ;

lµ = −zpµ1 , α3 = 0, α1z = α2(1− z) ;

lµ = z′pµ2 , α2 = 0, α1z
′ = α3(1− z′) , (1.98)

where the first one corresponds to a soft singularity, whereas the second and third are collinear config-
urations. Note that the double soft and collinear situation is obtained for z → 0 or z′ → 0.

Coleman and Norton Picture

Pinch surfaces for higher orders in QCD can be obtained by using the graphical interpretation of
the Landau equations by Coleman and Norton [68] which greatly simplifies the analysis. One defines
space-time vectors for the terms in the Landau equations ∆xµj = αjk

µ
j . Interpreting the Feynman

parameter αj as the Lorentz invariant ratio αj = ∆x0
j/k

0
j , we obtain

∆xµj = ∆x0
jv
µ
j , where vµj =

(
1,

kj
k0
j

)
. (1.99)

Hence, ∆xµj may be viewed as a four-vector which describes the free propagation of an on-shell classical
particle with momentum kµj . In other words, a direct consequence of the Landau equations is that
every singularity is associated with a classical picture of propagation.

Let us see how this works for the simple 1-loop example discussed above. Considering the collinear
pinch in the second line of Eq. (1.98), we find

∆xµl = ∆xµp1+l , ∆xµp2−l = 0 . (1.100)

Writing each vertex of the original diagram in Fig. 1.14 a) as a spacetime point separated by the
distance ∆xµj , we obtain the “reduced” diagram for this collinear pinch. The corresponding diagram
is shown in Fig. 1.14 b), where the off-shell line corresponding to ∆xµp2−l = 0 has been contracted to

34



1.4. THRESHOLD RESUMMATION

a point. Note that we suppressed the particle type in the reduced diagram in Fig. 1.14 b), which is
the standard convention snce only topological features matter here. Note that what we found here for
the 1-loop electromagnetic vertex is completely general. Any IR singularity is described by physical
processes of freely moving particles.

IR Power Counting

The Coleman and Norton picture will be an excellent tool to understand the IR structure to all orders.
However, it is only a necessary condition for soft and collinear divergencies at a pinch surface. The
singularity might still be cancelled by corresponding factors in the numerator. This is where IR power
counting comes into play [5, 65]. For each pinch surface in loop momentum space, we will be able to
determine the degree of divergence which is in fact very similar to UV power counting. For a given
pinch surface, we may separate its coordinates into intrinsic and normal variables. The particular
choice of the normal variables depends on the type of pinch. The intrinsic ones only parametrize
the surface, whereas the normal variables contain the information about the singularity. In general,
it turns out to be convenient to introduce a scaling variable λ according to κj = λajκ′j , where the
surface is approached for λ→ 0. In general, the denominators in Eq. (1.91), which correspond to the
propagators of the line momenta, are a polynomial in λ, where we only keep the lowest power Aj in λ
times some function f(κ′j ,mj), i.e.

1

k2
j (κj , λ)−m2

j

→ 1

λAjf(κ′j ,mj)
. (1.101)

The overall degree of divergence for a given pinch surface is obtained by analyzing the corresponding
“homogenous integral”. It is obtained by introducing normal and intrinsic variables for the volume ele-
ment and the integrand. The volume element contributes powers Bj in λ and the numerator additional
C factors of λ. In summary, we obtain for the homogenous integral [65, 67]


∏

j

∫
dκ′j

N(κ′j , ps)

D(κ′j ,mj)


λ

∑
j Bj−

∑
j Aj+C , (1.102)

where the degree of divergence is given by ns =
∑

j Bj −
∑

j Aj + C. For ns = 0 a logarithmic diver-
gence is obtained, whereas for ns > 0 the result is finite and for ns < 0 a power divergence is obtained.

As an example, we analyze the degree of divergence for the collinear pinch surface shown in Fig. 1.14
b) which corresponds to the second line in Eq. (1.98). We choose the frame qµ = (Q,~0), where
(p1 + p2)2 = 2p1 · p2 = Q2 and we write p1,2 as

pµ1 = δµ+ Q√
2
, pµ2 = δµ−

Q√
2
. (1.103)
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Figure 1.15: Cut diagram illustration of the dominant momentum regions or pinch surfaces for a generic
n jet final state originating from the decay of a virtual photon γ∗. Figure taken from [67].

Using light cone coordinates, we may then write the three denominators, cf. Fig. 1.14 a), as

l2 = 2l+l− − l2T ,

(p1 + l)2 = 2p+
1 l
− + 2l+l− − l2T ,

(p2 − l)2 = −2p−2 l
+ + 2l+l− − l2T . (1.104)

Following the solution in line two of Eq. (1.98), we choose l−, l2T as normal coordinates and l+, φ as
intrinsic coordinates, where φ is the azimuthal angle in the transverse plane. Hence, using l− = λl′−

and l2T = λl′2T , we find the following scaling behaviour

l2 ∼ λ , (p1 + l)2 ∼ λ , (p1 − l)2 ∼ λ0 . (1.105)

In addition, we obtain ddl = dl+dl−d|lT ||lT |d−3dΩ ∼ λd/2. In summary, a logarithmic divergence is
obtained as expected with G ∼ λd/2−2 or equivalently ns = 0. For the soft pinch surface, cf. the first
line in Eq. (1.98), one may directly choose the components of the soft momentum lµ = λl′µ as normal
coordinates. Again, a logarithmic divergence is obtained.

Identification of Dominant Momentum Regions

As an example, we consider the decay of a virtual photon γ∗ (Q2 > 0) into n jets. For two final
state jets this would correspond to the crossed version of the electromagnetic vertex discussed above.
According to the picture by Coleman and Norton, we may directly write down the all order structure.
All pinch surfaces or reduced diagrams look like the diagram shown in Fig. 1.15. This is called the
picture of leading regions or dominant regions of momentum. Here we choose the cut diagram no-
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p p

H H

k k

Figure 1.16: Decoupling a single longitudinal collinear gluon from the hard-scattering part using non-
abelian Ward identities. Figure adapted from [67].

tation. In principle, it can be obtained by looking for the physical picture. At least, there have to
be two jets since Q2 > 0 and m2

jet = 0. However, in principle there can be n jets J1...n originating
from the hard-scattering. The jets represent sets of particles traveling in the same direction. The hard
scattering part is shown as H and H∗ on the two sides of the final state cut. The Jets fly apart freely at
the speed of light thinking in the classical picture of propagation. Therefore, they can never rejoin at
a later point. However, the jets can interact with each other by exchanging zero-momentum particles
which is generally allowed by the Landau equations. In fact, this can already be seen in from first line
of Eq. (1.98) which corresponds to the soft pinch surface at the 1-loop order. The interaction via soft
particles is illustrated in Fig. 1.15 by the soft ellipse S in the middle and its attachments to the jets
which can be realized in all possible ways. These lines have momenta that vanish at the pinch surface
in all four components. A priori, the jets can have multiple attachments to the hard-scattering part
which for better readability is only shown for the jets J1,n.

There are many lessons to be learnt from IR power counting here. In principle, it works exactly along
the lines discussed above. However, the extension to higher orders involves a lot of bookkeeping [65, 67].
Therefore, we only summarize its main results here. One finds only logarithmic divergences which cor-
responds to ns ≥ 0 in Eq. (1.102). The regions of jets and the soft function are only connected by
soft gluons but not by soft fermions. There is no direct line connecting the hard-scattering function
with the soft function. And as already found within the Coleman and Norton picture, all jets must
originate directly from the hard-scattering vertex.

Thus, we were able to deduce the generic structure for the pinch surfaces to all orders. In the following,
we briefly discuss the basic concepts of how to decouple J from H and J from S. It will be possible
to obtain a factorized form with only scalar functions with one function for each of the pinch surfaces
in Fig. 1.15. Afterwards, we move on to discuss a more complicated process which is single-inclusive
hadron production in hadronic collisions.

Decoupling J from H

In axial gauge the Jets Ji and the hard-scattering function H are only connected by a single line.
However, in Feynman gauge one needs to consider multiple attachments by longitudinal collinear
gluons. The situation of a single additional gluon which is attached to H is shown on the left hand side
of Fig. 1.16. Making use of non-abelian QCD Ward identities, we can relate it to the diagram shown
on the right hand side of Fig. 1.16. Following [65, 69], the sum over all attachments has to vanish.
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Therefore, the two diagrams shown in Fig. 1.16 are the same up to a minus sign. We choose the quark
to be moving in the “+” direction. Using Feynman rules and omitting color factors, we obtain the
following expression

gsH
/p+ /k

(p+ k)2
γα u(p) εβ(k) gαβ , (1.106)

where the polarization vector of the longitudinal gluon is given by εβ = (ε+, 0−,0T ). We define a vector
pointing into the opposite direction of the quark momentum vα = (0+, 1−,0T ). We can rewrite (1.106)
as

gsH
/p+ /k

(p+ k)2
γ− u(p) ε+k

+

k+
= gsH

/p+ /k

(p+ k)2
/k u(p)

ε · v
k · v

= gsH u(p)
ε · v
k · v , (1.107)

where in the last equality, we wrote /k = /p + /k − /p and we made use of the massless Dirac equation
/pu(p) = 0.

Hence, we found a decoupling of J and H at the level of a single gluon. Applying Ward identities at
higher orders leads to an increasing level of complexity. However, the same techniques are applicable
and eventually one obtains a Wilson line taking into account multiple longitudinal and collinear gluons.

Decoupling J from S

So far, the jets and the soft function still couple to each other with a non trivial Lorentz index structure

Jµ1...µk
1 Jν1...νl

2 . . . Jρ1...ρm
n Sµ1...µkν1...νl ... ρ1...ρm . (1.108)

A factorization in terms of scalar functions is obtained in the following way, where again we choose to
present only the basic concepts. In addition, one finds that only one momentum component and one
polarization state are relevant. In Fig. 1.17, a fast moving particle with momentum p = (p+, 0−,0T )
is shown which is part of a jet. Note that in Fig. 1.17 we are omitted the particle type for the solid
lines. After splitting into two particles, the two particles have again a large + momentum component.
For the lower particle we have l+ = xp+. The soft gluon with momentum kµ is coupling to the jet.
Firstly, we note that only the k− component matters for the propagator of the jet line after the gluon
is attached

1

(l + k)2
≈ 1

2xp+k− + l2
. (1.109)

Secondly, we note that the coupling of the soft gluon to the jet may be expressed as Nµν/(k
2 + iε)

(Nµν is given in Eq. (1.9)), multiplied with the jet for which we write Jµ(p) here. For the jet only the
large “+” component of pµ matters because all momenta of the particles inside the jet are basically
collinear to p+. We define the two vectors uµ = (1+, 0−,0T ) and vµ = (0+, 1−,0T ) that point in
opposite directions. One finds for the coupling of the soft gluon to the jet

Jµ(p)Nµν(k) = (J(p) · v) (uµNµν(k)) . (1.110)
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p − l

l
l + k

kµ

Figure 1.17: Coupling of a soft gluon to a particle inside the jet.

This leads directly to the factorization into separate scalar functions. We leave out the details of how
this can be extended to higher orders.

To summarize this Section, we note that in the end, we obtain a factorization into scalar functions: a
soft function, the hard function and n jet functions. Most of these concepts were originally developed
for the proof of QCD factorization theorems [4, 5, 70]. This would bring us back to the concept of IR
safe observables as discussed above. See for example [66, 67] for an introduction. However, here we
are interested in the resummation of threshold logarithms which to some extent comes as a by product
after a factorized form is obtained following the concept of leading regions or pinch surfaces.

1.4.3 Resummation for Single-Inclusive Hadron Production

We consider the single-inclusive process H1H2 → hX at large transverse momentum of the final state
observed hadron. This process will be discussed further in Chapter 6. It is one example, where at
LO we have four colored partons taking part in the scattering. Other examples of resummation for
QCD hard scattering are di-hadron production and single-inclusive jet production in hadronic collisions
which will be discussed in Chapters 5 and 7 respectively. Before we continue to investigate threshold
resummation, we briefly introduce the concept of hadronic scattering in pQCD and fragmentation
functions.

Hadronic Scattering and Fragmentation Functions

Proton-proton collisions with one identified hadron in the final state are described in pQCD in the fol-
lowing way. For the two incoming protons, we need to include two PDFs. The final state hadronization
(parton-to-hadron) is also non-perturbative and it is described by a fragmentation function Dh

c (zc, µ
2
F ).

The fragmentation function depends on the fraction of the parton’s momentum transferred to the
hadron and the (final state) factorization scale µF . Analogously to the discussion for PDFs in Sec-
tion 1.3.2, FFs absorb final state collinear singularities obtained in perturbative calculations. Similar
to the PDFs, fragmentation functions have to be obtained from data [71–76]. For example, the DSS
global NLO analysis of FFs in [72] involves data for single-inclusive hadron production in SIA, SIDIS
and pp collisions. Analogously to the DGLAP evolution equations discussed in Section 1.3.3, pQCD
predicts the scale evolution of FFs allowing predictions within pQCD once the FFs are determined. In
summary, the cross section for the single-inclusive production of hadrons in hadronic collisions can be
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Figure 1.18: Refactorized cross section near threshold for single-inclusive hadron production. Figure taken
from [22, 77].

written as

E d3σH1H2→hX

d3Pc
=
∑

abcd

∫
dxa dxb dzc f

H1
a (xa, µ

2
F ) fH2

b (xb, µ
2
F )Dh1

c (zc, µ
2
F )
E d3σ̂ab→cd

d3Pc
, (1.111)

where the dσ̂ab→cd denote the partonic cross sections that can be calculated perturbatively in QCD.

Refactorization near Threshold

We consider the process H1(Pa)H2(Pb)→ h1(Pc)X. We define the usual Mandelstam variables

S = (Pa + Pb)
2 , T = (Pa − Pc)2 , U = (Pb − Pc)2 . (1.112)

In addition, we define the invariant mass squared of the system recoiling against the observed hadron
S4 = S + T + U . Analogously, we define the momenta at the parton level a(pa)b(pb)→ c(pc)X which
are related to the hadronic ones via pa,b = xa,bPa,b and pc = Pc/zc and we have s4 = s + t + u. The
partonic threshold, where all the available energy is used to produced the observed final state parton, is
set by s4 = 0. In the perturbative expansion of the partonic cross sections dσ̂ab→cd, we obtain threshold
logarithms of the form αks(ln

n(z)/z) with n ≤ 2k−1 and z = s4/s, see also Sections 6 and 7. Following
the discussion in the previous Section 1.4.2, we may directly obtain a refactorized version of the cross
section near threshold. Following the method of identifying dominant momentum regions, we obtain
the structure shown in Fig. 1.18. The plane in the middle symbolizes the final state cut separating the
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amplitude and its complex conjugate. The function Hab→cd is given by the hard-scattering amplitude
hI and its complex conjugate h∗J which contains momentum configurations that are far off shell. The
indices I, J refer to a certain color basis. Collinear and soft dynamics of gluon emissions associated
with the incoming partons a, b and the outgoing observed parton c are summarized in the jet functions
ψa/a, ψb/b and ψ

f
c/c respectively. The jet function JR for the unobserved final state parton is associated

with collinear gluon emissions in the direction of the recoiling jet. Finally, the soft function Sab→cd
takes into account the emission of soft gluons. We denote the total momentum of soft gluons by kS .
As can be seen from Fig. 1.18, the soft function can be separated completely from the rest. Both the
hard-scattering function Hab→cd and the soft function Sab→cd are matrices in color space [78–83] which
is a characteristic feature of processes where four colored partons are taking part in the LO scattering
process. The structure of the refactorized cross section here is a direct consequence of the concepts
discussed in the previous Section 1.4.2.

We continue by analyzing the kinematics of the underlying parton level process in order to find a
decomposition that matches the refactorized cross section discussed above. We introduce the vector p̂R
which denotes the momentum of the recoiling jet at threshold. In the c.m.s, we define the dimensionless
vector ζµ as p̂µR = (pc,−pc) ≡

√
Sζµ which will be used for the kinematical analysis in Eq. (1.113)

below. Momentum conservation implies xapa + xbpb = pc/zc + pR + kS , where pR is the momentum
recoiling against the observed parton and kS denotes any soft radiation. By squaring this relation and
omitting corrections of the order S2

4 , we obtain the following relations near threshold [84]

S4 = (1− xa)2pa · p̂R + (1− xb)2pb · p̂R + 2kS · p̂R + p2
R + p2

cz
2
c

=

[
(1− xa)

(
u

t+ u

)
+ (1− xb)

(
t

t+ u

)
+
s4

S

]
S

≡
[
wa

(
u

t+ u

)
+ wb

(
t

t+ u

)
+ wS + wR + wc

]
S , (1.113)

where each term in the first line may be identified with one of the functions shown in Fig. 1.18. In
the third line, we define dimensionless weights wi measuring the contribution of the various functions
shown in Fig. 1.18 [85]. The weights are additive and vanish at threshold. The refactorized cross
section may be written as [84, 85]

Ep dσab→cX
d3p

= Tr

{
Hab→cd(t, u)

∫
dwadwbdwSdwRdwc

× δ

(
S4

S
− wa

(
u

t+ u

)
− wb

(
t

t+ u

)
− wS − wR − wc

)

× ψa/a(wa, pa, ζ, n)ψb/b(wb, pb, ζ, n)ψfc/c(wc, pc, ζ, n)

× J (d)(wR, pR, ζ, n)Sab→cd

(
SwS
µ2

, βi, ζ, n

)}
, (1.114)

where the kinematical constraint in Eq. (1.113) was taken into account by the delta function. The
various functions are evaluated in axial n · A = 0, see the discussion in Section 1.4.2. The soft func-
tion also depends on the four-velocities βµi of the partons which are defined by pµi = βµi

√
s/2. Note
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that the functions ψa/a also have an operator definition similar to the one for the light cone parton-
in-parton distribution functions φa/a in Eq. (B.1), see [7, 22, 46, 84]. Also the soft function has an
operator definition which is discussed further in the Appendix D in the context of di-hadron production.

We modify the cross section in Eq. (1.111) in the following way. Similarly to the discussion in Sec-
tion 1.3.2, we replace the initial and final state hadrons with partons and calculate the partonic cross
section in IR-regulated perturbation theory. We denote the corresponding diagonal parton-in-parton
PDFs (and FFs) by φa/a, φb/b and φfc/c. As usual, we derive the all order resummation of threshold
logarithms in Mellin moment space where the convolution structure in Eq. (1.114) gets transformed
into simple products and the threshold logarithms are then given by αks lnn N̄ with n ≤ 2k. Comparing
the cross section written with external partons and the refactorized cross section in Eq. (1.114), we
find [84]

Ω̃abcd

(
N,

t

µ2
,
u

µ2
, αs(µ

2)

)
=

ψ̃a/a(N
u
t+u , pa · ζ)

φ̃a/a(N
u
t+u , µ

2)

ψ̃b/b(N
t

t+u , pb · ζ)

φ̃b/b(N
t

t+u , µ
2)

ψ̃fc/c(N, pc · ζ)

φ̃fc/c(N,µ
2)

J (d)(N, pR · n)

× T̃r

{
H(t, u) S̃

(
S

Nµ2
, βi, ζ, n

)}

ab→cd
, (1.115)

with scale µ and where the tildes indicate that we are considering moment space functions here and
Ω̃abcd is the perturbative hard-scattering part in Mellin space. This form holds up to corrections of the
order O(1/N). Note the kinematical factors u/(t+ u) and t/(t+ u) which are a characteristic feature
of the single-inclusive kinematics and reflect the kinematical constraint found in Eq. (1.113).

Exponentiation

In the next step, we have to solve evolution equations for each of the functions that appear in Eq. (1.115)
which eventually leads to the resummation of threshold logarithms [7, 66]. Each of the ratios ψ̃/φ̃ leads
to factor of ∆N which is the same exponential as in Section 1.4.1 where it was found for the observed
initial state parton in DIS. Here, the ∆N for the two initial state partons have to be evaluated for
Na = N(−u/s) and Nb = N(−t/s). Similarly, the function J̃ (d) leads to the same exponential in the
resummed formula which we also found for the unobserved final state parton in DIS. As an example, we
discuss the evolution equations for the soft function before we present the final resummed result. We
write the soft function as S(f)

LI and hard function as H(f)
IL where we write the color indices IL explicitly

and the superscript refers to a parton of flavor f . The soft function is defined such that collinear
divergences are absent, cf. the definition of the soft function given in the Appendix D. However, UV
divergences due to virtual corrections still need renormalization. Both the hard function and the soft
function are renormalized multiplicatively, where we need to take into account that they are matrices
in color space [78, 80, 81, 86]

H
(f)
IL

(B)
=

∏

i=a,b,c,d

Z−1
i

(
Z

(f)
S

−1
)

IC

H
(f)
CD

[(
Z

(f)
S

†
)−1

]

DL

,

S
(f)
LI

(B)
=

(
Z

(f)
S

†
)

LB

S
(f)
BA

(
Z

(f)
S

)
AI

. (1.116)
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The Zi are the renormalization constants of the parton’s wave functions and (Z
(f)
S )IC is a matrix of

renormalization constants associated with the soft function. The superscript B on the left side of
Eq. (1.116) denotes the bare, i.e. unrenormalized functions. From here the renormalization group
equation for the soft function may be derived [80, 81]

µ2
R

d

dµ2
R

S
(f)
LI =

(
µ2
R

∂

∂µ2
R

+ β(αs)
∂

∂αs

)
S

(f)
LI = −

(
Γ

(f)
S

)†
LB

S
(f)
BI − S

(f)
LA

(
Γ

(f)
S

)
AI

. (1.117)

The matrices (Γ
(f)
S )LB are the so-called soft anomalous dimension matrices which have to be calculated

for every partonic process separately. They are obtained from the matrix of renormalization constants
of the soft function (Z

(f)
S )IC . Working in dimensional regularization in the MS scheme, one obtains UV

poles in the matrix (Z
(f)
S )IC . Hence, the soft anomalous dimension matrices are obtained by taking

the residue (
Γ

(f)
S

)
LI

(gs) = −gs
2

∂

∂gs
Resε→0

(
Z

(f)
S

)
LI

(gs, ε) . (1.118)

A detailed calculation of the one loop soft anomalous dimension matrices can be found in [22]. Finally,
we may solve Eq. (1.117) and we end up with the final result for the resummed cross section [77–
82, 84, 87]

Ω̃res
abcd

(
v,N, αs(µ

2
R),

µ2
R

s
,
µ2
F

s

)
= ξR

(
αs(µ

2
R),

µ2
R

s

)
ξabcF

(
αs(µ

2
R),

µ2
R

s
,
µ2
F

s

)

× ∆Na
a

(
αs(µ

2
R),

µ2
R

s
,
µ2
F

s

)
∆Nb
b

(
αs(µ

2
R),

µ2
F

s
,
µ2
R

s

)
∆N
c

(
αs(µ

2
R),

µ2
R

s
,
µ2
F

s

)
JNd

(
αs(µ

2
R),

µ2
R

s

)

× Tr

{
H
(
v, αs(µ

2
R)
)
S†N
(
v, αs(µ

2
R),

µ2
R

s

)
S
(
αs(s/N̄

2), v
)
SN
(
v, αs(µ

2
R),

µ2
R

s

)}

ab→cd
,

(1.119)

where we now use the variable v defined as t = −s(1 − v) , u = −sv and we explicitly distinguish
between factorization and renormalization scales µF and µR respectively. The additional matrices SN
and S†N inside the trace in color space are obtained when solving the renormalization group equation
for the soft function in Eq. (1.117). They are given by

SN
(
v, αs(µ

2
R),

µ2
R

s

)
= P exp

[
1

2

∫ s/N̄2

s

dµ2

µ2
Γab→cd(v, αs(µ

2))

]
, (1.120)

where the soft anomalous dimension matrices appear in the exponent and P denotes path ordering.
Note that the second line in (1.119) directly corresponds to the first line in Eq. (1.115). See Chapter 6
for an explicit evaluation of the hard-scattering function H and the soft function S up to NLO. In
addition, we will expand the exponentials ∆N , JN and the additional functions ξR,F explicitly up to
NNLL accuracy.
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CHAPTER 2

QCD RESUMMATION FOR
SEMI-INCLUSIVE HADRON
PRODUCTION PROCESSES

We investigate the resummation of large logarithmic perturbative corrections to hadron production
in electron-positron annihilation and semi-inclusive deep-inelastic scattering. We find modest, but
significant, enhancements of hadron multiplicities in the kinematic regimes accessible in present high-
precision experiments. Our results are therefore relevant for the determination of hadron fragmentation
functions from data for these processes. This Chapter is based on publications [i] and [x].

2.1 Introduction

Processes with identified final-state hadrons play important roles in QCD. Foremost, they provide
crucial information on fragmentation functions and hence, ultimately, the hadronization mechanism.
Modern analyses [71, 73–75, 88] of fragmentation functions variously use data for single-inclusive an-
nihilation e+e− → hX, semi-inclusive deep-inelastic scattering, `p → `hX, and pp → hX, where h
denotes a final-state hadron. Hadron production observables also serve as powerful probes of nucleon
or nuclear structure. In particular, SIDIS measurements with polarized beams and/or targets have
by now become indispensable tools for investigations of the spin structure of the nucleon in terms of
helicity parton distribution functions and transverse-momentum dependent distributions [89]. Finally,
hadron production data also test some of our key concepts in the theoretical analysis of QCD at high
energies, among them factorization, universality, and perturbative calculations.

In the present chapter, we address higher-order perturbative corrections to two of the key hadron pro-
duction processes, SIA e+e− → hX and SIDIS `p → `hX. Our study is very much motivated by the
recent advent of data for these reactions with unprecedented high precision. The BELLE collaboration
at KEK has presented preliminary data [90] for pion and kaon multiplicities in SIA that extend over
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a wide range in values of the fragmentation variable xE = 2Eh/
√
s, where Eh is the energy of the

produced hadron in the e+e− center-of-mass system, and
√
s = 10.52 GeV the collision energy. The

BELLE data cover the region 0.2 ≤ xE ≤ 0.97, with a very fine binning and extremely high precision
partly at the sub-1% level. New preliminary high-statistics SIDIS data have been shown by the HER-
MES [91] and COMPASS [92] collaborations over the past year or so.

In the kinematic regimes accessed by these experiments, perturbative-QCD corrections are expected
to be fairly significant. In case of e+e− → hX at BELLE, as xE increases toward unity, the phase
space for real-gluon radiation is very restricted, since most of the initial leptonic energy is used to
produce the observed hadron and a recoiling unobserved final state. When this happens, the infrared
cancellations between virtual and real-emission diagrams leave behind large logarithmic higher-order
corrections to the basic e+e− → qq̄ cross section. These logarithms are very similar in nature to the
“threshold logarithms” encountered in hadronic scattering processes when the energy of initial partons
is just large enough to produce a given final state. Near xE = 1, it then becomes necessary to take
the large corrections into account to all orders in the strong coupling, a technique known as threshold
resummation. The SIDIS measurements, on the other hand, are characterized by two scaling variables,
Bjorken-x and a variable z given by the energy of the produced hadron over the energy of the virtual
photon in the target rest frame. The cross section is typically defined to be differential in both. Large
logarithmic corrections to the SIDIS cross section arise when either one of the corresponding partonic
variables becomes large. The most important effects arise when both are large, which is typically the
case for the presently relevant fixed-target kinematics. As we shall discuss, in this case the logarith-
mic terms can be simultaneously resummed to all orders within the threshold resummation framework.

Previous work [93] has established a close correspondence between threshold resummation for the
Drell-Yan process, double-inclusive annihilation e+e− → h1h2X, and a variant of SIDIS for which one
considers the cross section differential in the product xz of the two scaling variables mentioned above,
rather than in each of them separately. For this set of observables, the structure of the threshold
logarithms turns out to be identical, up to trivial differences in the hard scattering functions that mul-
tiply the logarithms. One therefore can derive the resummation for each of the processes in the same
manner, using exponentiation of eikonal diagrams in color-singlet processes [6, 94–98]. This approach
was termed crossed threshold resummation in [93] and will be the framework for our present analysis
of SIDIS.

Resummation for e+e− → hX was addressed in detail in Refs. [99–102]. In [99] the next-to-leading
logarithm (NLL) expressions were presented, while extensions to next-to-next-to-leading logarithm and
even next-to-next-to-next-to-leading logarithm were provided in Refs. [100] and [101], respectively. The
global analysis of fragmentation functions of Ref. [73] in fact includes NLL threshold resummation ef-
fects for e+e− → hX for the lower-energy data. They are found to improve the theoretical description
and the quality of the fit to the data. Given the very high precision of the new BELLE data, a new
phenomenological analysis of resummation effects is now timely and will be presented in this work.
For now, we will restrict ourselves to resummation at NLL, which captures the main effects. As for
SIDIS, an expression for the NLL resummed cross section was stated in [99], which turns out to be
analogous to the related expressions for the rapidity-differential Drell-Yan cross section in terms of
double-Mellin moments (see also [8, 103]). Phenomenological studies of resummation effects in SIDIS
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have never really been presented in the literature, except briefly in [104]. In the present chapter, we
derive the NLL resummed expression for SIDIS, making use of the techniques of [93]. We also present
numerical results as relevant for comparisons to the recent SIDIS data.

Sections 2.2 and 2.3 collect our technical derivations. Since the resummation for SIDIS is the main new
result, we mostly focus on this process and only briefly review the well-known results for e+e− → hX
and inclusive deep-inelastic scattering (DIS). Section 2.4 presents our phenomenological results.

2.2 Resummation for SIDIS multiplicities

We consider semi-inclusive deep-inelastic scattering, `(k)p(P )→ `(k′)h(Ph)X, where we have indicated
the momenta of the involved particles. The momentum q of the highly virtual photon exchanged
between the incoming electron and proton is given by q = k − k′. We define the usual variables

Q2 ≡ −q2 = −(k − k′)2, x ≡ Q2

2P · q ,

y ≡ P · q
P · k , z ≡ P · Ph

P · q . (2.1)

We have Q2 = xys, with
√
s the `p center-of-mass energy. In the current fragmentation region that

we will consider here, the SIDIS cross section may be written as [51, 51, 105–109]:

d3σh

dxdydz
=

4πα2

Q2

[
1 + (1− y)2

2y
FhT (x, z,Q2) +

1− y
y
FhL(x, z,Q2)

]
, (2.2)

where α is the fine structure constant. FhT and FhL are the transverse and the longitudinal structure
functions; they are related to the more customary structure functions F h1 and F hL by FhT ≡ 2F h1 and
FhL ≡ F hL/x.

SIDIS hadron multiplicities are defined by

RhSIDIS ≡
d3σh/dxdydz

d2σ/dxdy
, (2.3)

where d2σ/dxdy is the cross section for inclusive DIS, `p→ `X, given by

d2σ

dxdy
=

4πα2

Q2

[
1 + (1− y)2

2y
FT (x,Q2) +

1− y
y
FL(x,Q2)

]
. (2.4)

Here FT ≡ 2F1 and FL ≡ FL/x, with the standard inclusive structure functions F1, FL. Usually, the
numerator and denominator of (2.3) are averaged over suitable bins in x and y. In order to investigate
higher-order effects on SIDIS multiplicities, we have to consider QCD corrections to both the SIDIS
and the inclusive DIS cross section. Since the latter has been treated very extensively in the literature,
we will focus here on d3σh/dxdydz and only briefly summarize some of the known results for d2σ/dxdy.
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2.2.1 SIDIS cross section at next-to-leading order, and Mellin moments

Using factorization, the transverse and longitudinal structure functions FhT ≡ 2F h1 and FhL ≡ F hL/x in
(2.2) are given by (i = T, L)

Fhi (x, z,Q2) =
∑

f,f ′

∫ 1

x

dx̂

x̂

∫ 1

z

dẑ

ẑ
f
(x
x̂
, µ2
)
Dh
f ′

(z
ẑ
, µ2
)
× Cif ′f

(
x̂, ẑ,

Q2

µ2
, αs(µ

2)

)
, (2.5)

where f(ξ, µ2) denotes the distribution of parton f = q, q̄, g in the nucleon at momentum fraction ξ
and scale µ, while Dh

f ′
(
ζ, µ2

)
is the corresponding fragmentation function for parton f ′ going to the

observed hadron h. For simplicity, we have set all factorization and renormalization scales equal and
collectively denoted them by µ. The hard-scattering coefficient functions Cif ′f can be computed in
perturbation theory:

Cif ′f = C
i,(0)
f ′f +

αs(µ
2)

2π
C
i,(1)
f ′f +O(α2

s), (2.6)

where, again, i = T, L. To lowest order (LO), only the process γ∗q → q contributes, and we have

CT,(0)
qq (x̂, ẑ) = e2

q δ(1− x̂)δ(1− ẑ),

CL,(0)
qq (x̂, ẑ) = 0, (2.7)

with the quark’s fractional charge eq. Beyond LO, also gluons in the initial or final state contribute.
The full set of the first-order coefficient functions [51, 105–109] Ci,(1)

f ′f are collected in Appendix C.

Since threshold resummation can be derived in Mellin-moment space, it is useful to take Mellin moments
of the structure functions FhT and FhL. Since x and z are independent variables, we take moments
separately in both [105, 110]. We define

F̃hi (N,M,Q2) ≡
∫ 1

0
dxxN−1

∫ 1

0
dz zM−1Fhi (x, z,Q2). (2.8)

We then readily find from (2.5)

F̃hi (N,M,Q2) =
∑

f,f ′

f̃N (µ2)D̃h,M
f ′ (µ2)× C̃if ′f

(
N,M,

Q2

µ2
, αs(µ

2)

)
, (2.9)

where

f̃N (µ2) ≡
∫ 1

0
dxxN−1f(x, µ2),

D̃h,M
f ′ (µ2) ≡

∫ 1

0
dz zM−1Dh

f ′(z, µ
2),

C̃if ′f
(
N,M,

Q2

µ2
, αs(µ

2)

)
≡
∫ 1

0
dx̂ x̂N−1

∫ 1

0
dẑ ẑM−1 Cif ′f

(
x̂, ẑ,

Q2

µ2
, αs(µ

2)

)
(2.10)
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Thus, the Mellin moments of the structure functions are obtained from ordinary products of the
moments of the parton distribution functions and fragmentation functions, and double-Mellin moments
of the partonic hard-scattering functions. For the perturbative expansion given in (3.5), we have for
the latter in lowest oder according to (2.7):

C̃T,(0)
qq (N,M) = e2

q ,

C̃L,(0)
qq (N,M) = 0. (2.11)

The corresponding moments of the next-to-leading order (NLO) terms Ci,(1)
f ′f [110] are also provided in

Appendix C.

2.2.2 Resummation of the SIDIS coefficient function

As one can see from Eq. (C.1), the NLO coefficient function CT,(1)
qq (x̂, ẑ) receives large corrections near

x̂, ẑ → 1. Choosing for simplicity µF = Q, we have

CT,(1)
qq (x̂, ẑ) ∼ e2

qCF

[
− 8δ(1− x̂)δ(1− ẑ) + 2δ(1− x̂)

(
ln(1− ẑ)

1− ẑ

)

+

+ 2δ(1− ẑ)
(

ln(1− x̂)

1− x̂

)

+

+
2

(1− x̂)+(1− ẑ)+

]
, (2.12)

corresponding in moment space to

C̃T,(1)
qq (N,M) ∼ e2

qCF

[
− 8 +

π2

3
+
(
ln N̄ + ln M̄

)2
]
, (2.13)

where N̄ ≡ NeγE , M̄ ≡ MeγE , with γE the Euler constant. Here we have only kept contributions
that are neither suppressed as 1/N , nor as 1/M in moment space. The terms given in (3.10) therefore
always contain two distributions, one in x̂ and one in ẑ.
Threshold resummation addresses the logarithms in N̄ and M̄ to all orders in the strong coupling
constant αs. More precisely, it captures terms of the form αks lnnN lnmM , with n + m ≤ 2k. We
now discuss the derivation of the resummed expression for the SIDIS coefficient function C̃T,(1)

qq (N,M).
Since the leading-order process is γ∗q → q scattering, and since both the incoming and the outgoing
quark are “observed”, the treatment has much in common with that for the total Drell-Yan cross
section, or for its “crossed” versions considered in Ref. [93]. A significant difference is, however, that in
the present case two independent Mellin moments, N and M , have to be considered. At large N and
M , or equivalently x̂ and ẑ, all gluon radiation from the basic process γ∗q → q becomes soft, since we
have the relation [93]

(1− x̂) + (1− ẑ) ≈ 2k0

Q
, (2.14)

where k0 is the total energy of gluon radiation. The coefficient function may then be evaluated in the
eikonal approximation for the quarks and/or antiquarks involved in the hard scattering. In moment
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space, the eikonal hard scattering functions exponentiate, leading to [6, 93–98]

C̃T,res
qq

(
N,M,αs(µ

2),
Q2

µ2

)
∝ exp

[∫ Q2

0

dk2
⊥

k2
⊥
Aq
(
αs(k

2
⊥)
)
{∫ 1

k2
⊥
Q2

dξ

ξ

[
e
−Nξ−M k2

⊥
ξQ2 − 1

]
+ ln N̄ + ln M̄

}]
,

(2.15)

which is valid to next-to-leading logarithmic (NLL) accuracy. Here, Aq(αs) is a perturbative function:

Aq(αs) =
αs
π
A(1)
q +

(αs
π

)2
A(2)
q + . . . , (2.16)

with

A(1)
q = CF , A(2)

q =
1

2
CF

[
CA

(
67

18
− π2

6

)
− 5

9
Nf

]
, (2.17)

where CF = 4/3, CA = 3 and Nf is the number of active flavors.

Up to corrections that are exponentially suppressed at large N,M , the integral over ξ in (2.15) can be
carried out analytically, and one finds

∫ 1

k2
⊥
Q2

dξ

ξ

[
e
−Nξ−M k2

⊥
ξQ2 − 1

]
+ ln N̄ + ln M̄ ≈ 2

[
K0

(√
NM

2k⊥
Q

)
+ ln

(
k⊥
Q

√
N̄M̄

)]
, (2.18)

where K0 is a Bessel function. It arises when we extend the ξ integral to 0 < ξ <∞. It is instructive to
confront this with the analogous expression for the Mellin-N moments of the partonic total Drell-Yan
cross section, which reads [93, 97, 98]:

∫ 1

k2
⊥
Q2

dξ

ξ

[
e
−N

(
ξ− k2

⊥
ξQ2

)
− 1

]
+ 2 ln N̄ ≈ 2

[
K0

(
N

2k⊥
Q

)
+ ln

(
k⊥
Q
N̄

)]
. (2.19)

From this comparison one can immediately see that the result for the resummed SIDIS cross section
can be obtained from the one for the total Drell-Yan cross section by simply setting N̄ →

√
N̄M̄ . In

the case of SIDIS, the moments N and M independently fix the light-cone plus component ξ and the
minus component ζ = k2

⊥/(ξQ
2) of the soft gluon momentum, resulting in the slightly more elaborate

form of the exponent in (2.18). Likewise, the MS-subtraction of collinear divergencies in the initial
and the final state in SIDIS yields the terms ln N̄ and ln M̄ , respectively, whereas in Drell-Yan one has
the contribution 2 ln N̄ from the two initial partons.

With (2.18), the final resummed coefficient function becomes in the MS scheme:

C̃T,res
qq

(
N,M,αs(µ

2),
Q2

µ2

)
= e2

qHqq

(
αs(µ

2),
Q2

µ2

)
exp

[
2

∫ Q2

0

dk2
⊥

k2
⊥
Aq
(
αs(k

2
⊥)
){

K0

(√
NM

2k⊥
Q

)

+ ln

(
k⊥
Q

√
N̄M̄

)}]
. (2.20)

Here we have included a perturbative function Hqq that collects the hard virtual corrections to γ∗q → q
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scattering. For resummation at NLL, one needs to know Hqq to first order in the strong coupling, which
may be derived by expanding (2.20) to O(αs) (keeping only logarithmic terms in the exponent) and
comparing to the explicit NLO expression (2.13) for large N,M . One finds:

Hqq

(
αs(µ

2),
Q2

µ2

)
= 1 +

αs
2π
CF

(
−8 +

π2

3
+ 3 ln

Q2

µ2

)
+O(α2

s) . (2.21)

We note that an alternative, but equivalent, form of the resummed result is [8, 99]

C̃T,res
qq

(
N,M,αs(µ

2),
Q2

µ2

)
= e2

qHqq

(
αs(µ

2),
Q2

µ2

)
× exp

[∫ 1

0
dx
ξN − 1

1− ξ

∫ (1−ξ)Q2

Q2

dk2
⊥

k2
⊥
Aq(αs(k

2
⊥))

+

∫ 1

0
dζ
ζM − 1

1− ζ

∫ (1−ζ)Q2

Q2

dk2
⊥

k2
⊥
Aq(αs(k

2
⊥)) +

∫ 1

0
dx
ξN − 1

1− ξ

∫ 1

0
dζ
ζM − 1

1− ζ Aq
(
αs(Q

2(1− ξ)(1− ζ))
)]
.

(2.22)

This expression can be obtained from (2.15) by first writing the integrand as

e
−Nξ−M k2

⊥
ξQ2 − 1 =

(
e−Nξ − 1

)(
e
−M k2

⊥
ξQ2 − 1

)
+ e−Nξ − 1 + e

−M k2
⊥

ξQ2 − 1. (2.23)

Including the integrals over ξ and k⊥ and substituting k2
⊥ = ζξQ2, the first term on the right-hand-side

of (2.23) yields ∫ 1

0

dξ

ξ

(
e−Nξ − 1

)∫ 1

0

dζ

ζ

(
e−Mζ − 1

)
Aq
(
αs(ζξQ

2)
)
. (2.24)

Next, we deal with the term containing
(
e−Nξ − 1

)
in (2.23). Combining with the logarithm ln N̄

in (2.15) we find, up to corrections suppressed as 1/N :

∫ Q2

0

dk2
⊥

k2
⊥
Aq
(
αs(k

2
⊥)
)
{∫ 1

k2
⊥
Q2

dξ

ξ

(
e−Nξ − 1

)
+ ln N̄

}
≈
∫ 1

0

dξ

ξ

(
e−Nξ − 1

)∫ ξQ2

Q2

dk2
⊥

k2
⊥
Aq
(
αs(k

2
⊥)
)
.

(2.25)

Likewise,

∫ Q2

0

dk2
⊥

k2
⊥
Aq
(
αs(k

2
⊥)
)
{∫ 1

k2
⊥
Q2

dξ

ξ

(
e
−Mk2

⊥
ξQ2 − 1

)
+ ln M̄

}
≈
∫ 1

0

dζ

ζ

(
e−Mζ − 1

)∫ ζQ2

Q2

dk2
⊥

k2
⊥
Aq
(
αs(k

2
⊥)
)
.

(2.26)

Adding the expressions in Eqs. (2.24),(2.25),(2.26), and changing ξ → 1−ξ, ζ → 1−ζ, we recover (2.22).
Our expression (2.20) is however simpler and makes the close connection to the resummed expression
for the total Drell-Yan cross section more transparent.
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2.2.3 Expansion to NLL

At small argument, the Bessel function K0 behaves as

K0(x) = − ln (xeγE/2) +O(x2 lnx) .

Therefore, logarithmic behavior of the integral in (2.20) in N and M occurs only when k⊥ is bounded
from below, and the K0 function effectively acts as step function. To NLL, one finds the condition
k⊥ ≥ Q/

√
N̄M̄ [97, 98]:

C̃T,res
qq

(
N,M,αs(µ

2),
Q2

µ2

)
= e2

qHqq

(
αs(µ

2),
Q2

µ2

)
× exp

[
2

∫ Q2

Q2

N̄M̄

dk2
⊥

k2
⊥
Aq
(
αs(k

2
⊥)
)

ln

(
k⊥
Q

√
N̄M̄

)]
.

(2.27)

The explicit NLL expansion of the right-hand side is straightforward after inserting the standard
expression for the running strong coupling and, anyway, the result can be directly obtained from the
well-known one [64] for Drell-Yan, setting N̄ →

√
N̄M̄ there. In the exponent in (3.15) we obtain

∫ Q2

Q2

N̄M̄

dk2
⊥

k2
⊥
Aq
(
αs(k

2
⊥)
)

ln

(
k⊥
Q

√
N̄M̄

)
≈ h(1)

q

(
λNM

2

)
λNM

2b0αs(µ2)
+ h(2)

q

(
λNM

2
,
Q2

µ2
,
Q2

µ2
F

)
,

(2.28)

where

λNM ≡ b0αs(µ
2)
(
log N̄ + log M̄

)
,

h(1)
q (λ) =

A
(1)
q

2πb0λ
[2λ+ (1− 2λ) ln(1− 2λ)] ,

h(2)
q

(
λ,
Q2

µ2
,
Q2

µ2
F

)
= − A

(2)
q

2π2b20
[2λ+ ln(1− 2λ)] +

A
(1)
q b1

2πb30

[
2λ+ ln(1− 2λ) +

1

2
ln2(1− 2λ)

]

+
A

(1)
q

2πb0
[2λ+ ln(1− 2λ)] ln

Q2

µ2
− A

(1)
q

πb0
λ ln

Q2

µ2
F

,

(2.29)

where the bi are defined in Eq. (1.12). The functions h(1)
q , h(2)

q collect all leading-logarithmic and NLL
terms in the exponent, which are of the form αks lnn N̄ lnm M̄ with n + m = k + 1 and n + m = k,
respectively. Note that we have kept the factorization and renormalization scales arbitrary in the
above expressions. The standard Drell-Yan result is recovered by setting λNM/2 → λDY, where
λDY = b0αs(µ

2) log N̄ .
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Figure 2.1: Contours for the inverse Mellin transforms, (a) for CN , (b) for CM . We have defined
N0 = L0/cM , with L0 given in (2.31). In (b), the solid line depicts the location of the Landau pole as N
moves along a part of its contour (see text).

2.2.4 Inverse Mellin transforms

As the exponentiation of soft-gluon corrections is achieved in Mellin moment space, the hadronic
structure function is obtained by taking the inverse Mellin transforms of Eq. (2.8):

Fhi (x, z,Q2) =

∫

CN

dN

2πi
x−N

∫

CM

dM

2πi
z−M F̃hi (N,M,Q2), (2.30)

where CN and CM denote integration contours in the complex plane, one for each Mellin inverse. When
performing an inverse Mellin transform, the contour usually has to be chosen in such a way that
all singularities of the integrand lie to its left. However, as can be seen from Eq. (2.28),(2.29), the
resummed cross section has a Landau singularity at λNM = 1 or

N M = e1/(αsb0)−2γE ≡ L0, (2.31)

as a result of the divergence of the running coupling αs in Eq. (2.20) for k⊥ → ΛQCD. For the Mellin
inversions, we adopt the minimal prescription developed in Ref. [64] to deal with the Landau pole.
For this prescription the contours are chosen to lie to the left of the Landau singularity. In order to
achieve this, we first choose the contour for the N -integration in the upper complex half plane in the
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standard way (see Fig. 2.1(a)) as
N = cN + zN eiφN , (2.32)

where cN is a postive real constant, φN ∼ 3π/4 and zN ∈ [0,∞]. For the lower branch of the contour,
one simply uses the complex conjugate of N . The contour for the M -integration is parameterized in a
similar fashion, with a constant cM , an integration parameter zM and an angle φM that we will address
shortly. The fact that both contours are tilted into the half-plane with negative real part improves the
numerical convergence of the integration, since contributions with negative real part are exponentially
suppressed by the factors x−N , z−M in Eq. (2.30).

In accordance with the minimal prescription [64], the parameter cN is chosen to be smaller than
N0 ≡ L0/cM . As N moves along its contour from a point with large negative imaginary part to a point
with large positive one, the Landau pole given by Eq. (2.31) describes a trajectory shown by the solid
line in Fig. 2.1(b). The angle φM is now chosen in such a way that the M -integration contour (shown
by the dashed line) avoids this trajectory. The larger the imaginary part of N , the larger the angle φM
needs to become. Of course, ultimately as =(N) → ±∞, the Landau pole moves to the origin in the
M -plane, and the contour falls onto the real M -axis. However, as described above, the contributions
from such large values of N are extremely suppressed. We note that a similar approach to the choice of
contours was discussed in Ref. [111], where combined inverse Mellin and Fourier transforms were con-
sidered. An alternative approach is to expand the resummed formula to high perturbative orders. At
each finite order, the Landau pole is not present and, therefore, standard Mellin contours can be chosen.

We match the resummed cross section to the NLO one by subtracting the O(αs) expansion of the
resummed expression and adding the full NLO cross section. This “matched” cross section consequently
not only resums the large threshold logarithms to all orders, but also contains the full NLO results for
the q → q, q → g and g → q channels. We will occasionally also consider a resummed cross section
that has not been matched to the NLO one. We will refer to such a cross section as “unmatched”.

2.2.5 Resummation for inclusive DIS

In order to obtain resummed predictions for the SIDIS hadron multiplicities defined in (2.3), we also
need the resummation for the inclusive cross section. In this case, there is only one variable x, and
standard Mellin-moment resummation techniques [58–62, 112, 113] may be applied. The inclusive
structure functions FT and FL introduced in Eq. (2.4) can be written as

Fi(x,Q2) =
∑

f

∫ 1

x

dx̂

x̂
f
(x
x̂
, µ2
)
Cif
(
x̂,
Q2

µ2
, αs(µ

2)

)
. (2.33)

The expressions for the NLO coefficient functions Cif may also be found in Appendix C. Alternatively,
see [51] for example. Resummation may be performed by again introducing Mellin moments in x. The
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resummed DIS coefficient function for the structure function FT reads to NLL in moment space:

C̃T,res
q

(
N,αs(µ

2),
Q2

µ2

)
= e2

qHq

(
αs(µ

2),
Q2

µ2

)
exp

[∫ 1

0
dξ
ξN − 1

1− ξ

×
{∫ (1−ξ)Q2

Q2

dk2
⊥

k2
⊥
Aq(αs(k

2
⊥)) +

1

2
Bq
(
αs((1− ξ)Q2)

)
}]

,

(2.34)

where the function Aq(αs) is as in (3.16). The perturbative function Bq(αs) is given by

Bq(αs) =
αs
π
B(1)
q +O(α2

s), (2.35)

with
B(1)
q = −3

2
CF . (2.36)

Finally, the hard-scattering coefficient reads

Hq

(
αs(µ

2),
Q2

µ2

)
= 1 +

αs
2π
CF

(
−9

2
− π2

6
+

3

2
ln
Q2

µ2

)
+O(α2

s). (2.37)

The exponential in (4.30) can evidently be written as ∆N
q × JNq , see Eq. (1.80) in Chapter 1, where

also their evaluation up to NLL accuracy is given.

2.3 Resummation for e+e− → hX

Hadron multiplicities in e+e− → hX are defined by

Rhe+e− ≡
1

σtot

d2σh

dxEd cos θ
, (2.38)

where d2σh/dxEd cos θ is the differential cross section for the production of the hadron h at angle θ
relative to the initial positron. Furthermore,

xE ≡
2Ph · q
Q2

, (2.39)

where Ph and q are the momenta of the produced hadron and the intermediate virtual photon re-
spectively and Q2 = q2. σtot is the total cross section for e+e− → hadrons. To first order in αs it
reads:

σtot =
4πα2

3Q2
Nc

∑

q

e2
q

(
1 +

αs
π

)
, (2.40)

where Nc = 3 is the number of colors.
As in the case of SIDIS, one can write the cross section d2σh/dxEd cos θ in terms of structure func-
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tions [51, 106]:

d2σh

dxEd cos θ
=

πα2

Q2
Nc

[
1 + cos2 θ

2
F̂hT (xE , Q

2) + sin2 θ F̂hL(xE , Q
2)

]
, (2.41)

where

F̂hi (xE , Q
2) =

∑

f

∫ 1

xE

dẑ

ẑ
Dh
f

(xE
ẑ
, µ2
)
Ĉif
(
ẑ,
Q2

µ2
, αs(µ

2)

)
, (2.42)

with the fragmentation functions Dh
f introduced in subsection 2.2.1. To lowest order, only the partonic

channel e+e− → qX contributes, for which

ĈT,(0)
q (ẑ) = e2

q δ(1− ẑ),

ĈL,(0)
q (ẑ) = 0. (2.43)

Again, the NLO expressions may be found in Appendix C. Alternatively, we refer the reader to the
previous literature [51, 105, 114]. After taking Mellin moments in xE , the resummed result for the
corresponding hard-scattering function turns out to be identical to that in (4.30) [99–101], except for
a change −π2/6→ 5π2/6 in the coefficient Hq in (2.37).

2.4 Phenomenological Results

We now investigate the numerical size of the threshold resummation effects for the two semi-inclusive
hadron production processes discussed above, SIDIS and e+e− → hX. We focus entirely on pion
production in this work, for which the theory is expected to be under best control. We also consider
a proton target throughout this work. For the parton distribution functions we use the NLO “Martin–
Stirling–Thorne–Watt” (MSTW 2008) set of [115], whereas we choose the NLO “de Florian–Sassot–
Stratmann” (DSS) [71, 74] pion fragmentation functions. In this set, fragmentation functions for
charged pions π± are separately available. We note that the parton distributions and fragmentation
functions are provided in x (or z) space, whereas according to Eq. (2.9) we need their Mellin moments.
To obtain the latter, we first fit suitable functions of the form Axα(1− x)β times a polynomial in x to
the distributions. It is then straightforward to take Mellin moments of the fitted functions analytically
and use them in the numerical code. We have checked that the accuracy of the fit is overall very good.

2.4.1 Results for SIDIS

We start by examining the overall effects of threshold resummation for SIDIS, using the kinematics
relevant for the COMPASS SIDIS measurements [92] as an example. COMPASS uses a muon beam
of energy 160 GeV incident on a proton fixed target. The resulting center-of-mass energy is

√
s ≈17.4

GeV. The kinematic cuts employed by COMPASS are 0.041 < x < 0.7, 0.1 < y < 0.9, Q2 > 1 GeV2

and W 2 = Q2(1−x)/x+m2
p > 49 GeV2, where mp is the proton mass. We choose the renormalization

and factorization scales as Q and consider the SIDIS multiplicity for neutral pions π0 as a function of
z, but integrating numerator and denominator of Eq. (2.3) over x and y. We observe that the range
of x probed by the full COMPASS data sample extends down to fairly low values, where one could
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Figure 2.2: SIDIS multiplicity for π0. Kinematics are as for the COMPASS measurements [92] (see text)
with, however, an additional cut x > 0.4 to enhance the contribution from the threshold regime. The
lower two lines which are almost indistinguishable show the NLO result and the first-order expansion of the
resummed result (without matching). The top line shows the full NLL resummed result; the lines in between
display various fixed-order expansions of the latter.

be quite far from the threshold regime. We therefore first consider a lower cut of x > 0.4. Figure 2.2
shows our results for the NLO and the resummed multiplicities, along with those for expansions of the
resummed cross section to various finite orders in αs. In each case, the denominator of the multiplicity,
the inclusive-DIS cross section, has been treated in the same fashion as the SIDIS one in the numer-
ator. With the exception of the first-order expansion, all beyond-NLO results have been matched to
the NLO one (separately in the numerator and the denominator) as described at the end of Sec.2.2.4.
We first of all note that the first-order expansion of the resummed cross section agrees very well with
the full NLO one, which demonstrates that for the chosen kinematics the threshold regime strongly
dominates the NLO cross section. The full resummed result shows a marked increase over the NLO
one, in particular at high z, and the higher-order expansions converge nicely to the resummed result.
Clearly, the α2

s and α3
s contributions generated by resummation are still significant.

The results can also be studied as ratios (Th′ −NLO)/NLO, where Th′ denotes any of the higher-
order SIDIS multiplicities generated by resummation. Figure 2.3 shows these ratios for the unmatched
first-order expansion, the matched higher-order expansions and the full resummed result. The good
agreement of NLO and the first-order expansion is evident, as are the large resummation effects at
high z.

We now extend the x-range to the full region 0.041 < x < 0.7 covered by COMPASS. The Figures
in 2.4 show the corresponding results, where all lines directly correspond to the ones shown in Figs. 2.2
and 2.3 for the case x > 0.4. One can see that the resummation effects are generally smaller now,
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Figure 2.3: Ratios (Th′ −NLO)/NLO, where Th′ corresponds to the SIDIS multiplicity at higher orders
as generated by resummation. The first-order expansion of the resummed cross section has not been matched
since it would otherwise be identical to NLO.

even though they remain significant at high z. As expected, the agreement between NLO and the
first-order expansion of the resummed cross section is worse now, but it typically remains at the 10%
level or better. The second-order expansion captures most of the full resummation effects; the yet
higher orders converge somewhat more slowly now to the resummed result. The Figure on the right
side of 2.4 shows the corresponding ratios (Th′ −NLO)/NLO, where again Th′ denotes any of the
SIDIS multiplicities computed at higher orders.

Preliminary precise data from COMPASS for charged-pion and kaon multiplicities are available for a
wide range of kinematics [92]. The full data set, which evidently has the best statistics, covers the
range used above for Figs. 2.4. The Figures in 2.5 show comparisons of our NLO and NLL resummed
calculations for charged pions to the COMPASS data. As one can see, resummation leads to a moderate,
but significant, enhancement of the multiplicities. It is interesting to note that such an enhancement is
in fact preferred by the π− data. However, we do not assign much importance to this observation. The
fragmentation functions are presently still not very well determined and a different set (or a new fit)
might well describe the data also at NLO. Our main point is that inclusion of resummation effects in
an analysis of fragmentation functions could make a significant difference for the extracted functions.

The Figure in 2.6 shows similar comparisons to the HERMES preliminary data [91]. For this data set,
the center-of-mass energy is

√
s ≈17.4 GeV. The kinematic cuts employed by HERMES are 0.023 <

x < 0.6, 0.1 < y < 0.85, Q2 > 1 GeV2 and W 2 = 10 GeV2. The results are qualitatively similar to
those shown for COMPASS kinematics.
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Figure 2.4: Analogously to Figs. 2.2 and 2.3, but for x > 0.041.

2.4.2 Results for single-inclusive e+e− annihilation

Figure 2.7 (on the left side) presents our results for the π− multiplicity in e+e− annihilation at√
s = 10.52 GeV and for −1 < cos θ < 1, as appropriate for comparison to the forthcoming BELLE

data [90]. The π+ multiplicity is identical thanks to charge conjugation symmetry. We have chosen
the factorization and renormalization scales as

√
s. As for SIDIS, we show NLO and NLL resummed

results, along with various fixed-order expansions of the resummed multiplicity. One first of all ob-
serves the excellent agreement between the NLO result and the first-order expansion of the resummed
one. This clearly demonstrates that the threshold regime strongly dominates for the BELLE kine-
matics. We can therefore be confident that also the resummed result reliably captures the important
higher-order terms. Resummation leads to a significant enhancement of the π− multiplicity. This en-
hancement becomes particularly strong at high xE , but is present also at moderate values. Figure 2.7
(on the right side) shows the corresponding ratios (Th′ −NLO)/NLO, where Th′ denotes any of the
higher-order multiplicities generated by resummation and shown on the left side of Fig. 2.7. Since the
precision of the preliminary BELLE data is typically much better than 10%, it will be important to
include the enhancements we find in future global analyses of fragmentation functions, similar to what
has been done in the past in Ref. [73]. In Fig. 2.8, we compare our results to the recent data sets from
BELLE [10] and BaBar [11]. We are going to revisit this comparison in more detail in Chapter 4.

2.5 Conclusions

We have derived threshold-resummed expressions for the coefficient functions for single-inclusive hadron
production in semi-inclusive lepton scattering and e+e− annihilation. We have presented phenomeno-
logical results for pion multiplicities for these processes in the kinematic regimes presently accessed
by the COMPASS, HERMES, BELLE and BaBar experiments. We have found that resummation
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Figure 2.5: NLO and NLL resummed SIDIS multiplicities for π+ (left) and π− (right). The results are
compared to the preliminary COMPASS data [92]. The uncertainties of the data are smaller than the symbol
size used in the plot.

leads to modest but significant enhancements of the multiplicities. The recent preliminary SIDIS data
turn out to be overall better described when resummation effects are included in the calculation, at
least for the DSS set of fragmentation functions that we have used. However, we do not ascribe much
significance to this point as the fragmentation functions are still rather poorly constrained so that a
new NLO fit to the new data would likely also work well [88]. Our main point is that, given the good
accuracy of the new preliminary SIDIS and BELLE data, it will be crucial to include resummation
effects for both processes in the next generation of analyses of fragmentation functions. In fact, be-
cause of the enhancements from threshold resummation, the extracted fragmentation functions would
be expected to be softer or smaller at high z than functions extracted purely on the basis of an NLO
framework. This may well have important ramifications for the QCD predictions obtained for other
processes sensitive to fragmentation functions. For instance, it has recently been observed [88, 116] that
the ALICE data [117] for neutral-pion production at 7 TeV are well below the theoretical NLO expec-
tations. One may speculate if this is due in part to fragmentation functions that are too large at high z.

We note that at very high z or xE , besides the logarithmic perturbative corrections also nonpertur-
bative power corrections will ultimately become relevant and will need to be analyzed theoretically.
Resummation offers ways to address these contributions (see, for example [93, 118], and references
therein). Based on the ideas presented there, we do not think that power corrections play an over-
whelming role in the presently accessible kinematic regime in SIDIS. As we saw in Eq. (3.15), the
logarithmic contributions to SIDIS come from the region k⊥ & Q/

√
N̄M̄ . In x-z-space this scale

roughly corresponds to Q
√

(1− z)(1− x). We have checked that for COMPASS kinematics even at
z = 0.9 the average value of this scale is significantly larger than 1 GeV, implying that perturbation
theory should still provide a reliable answer here. This issue obviously deserves a more detailed inves-
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Figure 2.6: Same as Fig. 2.5, but for HERMES kinematics. The preliminary data are from [91]. The
uncertainties of the data are smaller than the symbol size used in the plot.

tigation in the future, in particular also for the case of e+e− annihilation.

We stress that our study may be extended in several ways. First, as mentioned in the Introduction,
resummation for e+e− → hX could be carried out at next-to-next-to-leading logarithm and even
beyond, thanks to [100, 101]. The high precision of the BELLE data may well warrant a future study
along these lines. Resummation for SIDIS could probably also be extended to next-to-next-to-leading
logarithmic accuracy with some moderate further developments. This may become a very worthwhile
task in the future when high-precision SIDIS data will become available from measurements at the
Jefferson Laboratory after the CEBAF upgrade to 12 GeV beam energy [119]. Finally, one may readily
adapt the resummation framework to the case of polarized SIDIS, which serves as an important probe
of the spin structure of the nucleon. Present polarized-SIDIS measurements have the same kinematics
as those considered in this chapter.
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Figure 2.7: On the left: π− multiplicity in electron-positron annihilation at
√
s = 10.52 GeV. The two

lowest lines show the NLO result and the (unmatched) first-order expansion of the resummed one, which are
practically indistinguishable. The other lines show matched higher-order expansions of the resummed multi-
plicity, and the resummed result itself (solid line). On the right: Ratios (Th′ −NLO)/NLO corresponding
to the various curves shown on the right.
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Figure 2.8: (π+ + π−)/2 multiplicity in e+e− annihilation computed at
√
s = 10.52 GeV. The data are

from Belle [10] and BaBar [11] (“conventional” data set, z ≥ 0.2,
√
s = 10.54 GeV).
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CHAPTER 3

THRESHOLD RESUMMATION FOR
POLARIZED (SEMI-)INCLUSIVE DEEP

INELASTIC SCATTERING

We explore the effects of the resummation of large logarithmic perturbative corrections to double-
longitudinal spin asymmetries for inclusive and semi-inclusive deep inelastic scattering in fixed-target
experiments. We find that the asymmetries are overall rather robust with respect to the inclusion of
the resummed higher-order terms. Significant effects are observed at fairly high values of x, where
resummation tends to decrease the spin asymmetries. This effect turns out to be more pronounced for
semi-inclusive scattering. We also investigate the potential impact of resummation on the extraction
of polarized valence quark distributions in dedicated high-x experiments. This Chapter is based on
publication [ii].

3.1 Introduction

Longitudinal double-spin asymmetries in inclusive and semi-inclusive deep inelastic scattering have
been prime sources of information on the nucleon’s spin structure for several decades. They may be
used to extract the helicity parton distributions of the nucleon,

∆f(x,Q2) ≡ f+(x,Q2)− f−(x,Q2) , (3.1)

where f+ and f− are the distributions of parton f = q, q̄, g with positive and negative helicity, re-
spectively, when the parent nucleon has positive helicity. x denotes the momentum fraction of the
parton and Q the hard scale at which the distribution is probed. Inclusive polarized DIS, ~̀~p → `X,
offers access to the combined quark and antiquark distributions for a given flavor, ∆q + ∆q̄, whereas
in SIDIS, ~̀~p→ `hX, one exploits the fact that a produced hadron h (like a π+) may for instance have
a quark of a certain flavor as a valence quark, but not the corresponding antiquark [120]. In this way,
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it becomes possible to separate quark and antiquark distributions in the nucleon from one another,
as well as to better determine the distributions for the various flavors. HERMES [121] and recent
COMPASS [122] measurements have marked significant progress concerning the accuracy and kine-
matic coverage of polarized SIDIS measurements. The inclusive measurements have improved vastly as
well [89, 123–127]. Some modern analyses of spin-dependent parton distributions include both inclusive
and semi-inclusive data [128–131]. In addition, high-precision data for polarized SIDIS will become
available from experiments to be carried out at the Jefferson Lab after the CEBAF upgrade to a 12
GeV beam [119]. Here the focus will be on the large-x regime.

A good understanding of the theoretical framework for the description of spin asymmetries in lepton
scattering is vital for a reliable extraction of polarized parton distributions. In Chapter 2, we have
investigated the effects of QCD threshold resummation on hadron multiplicities in SIDIS in the HER-
MES and COMPASS kinematic regimes. SIDIS is characterized by two scaling variables, Bjorken-x
and a variable z given by the energy of the produced hadron over the energy of the virtual photon in
the target rest frame. Large logarithmic corrections to the SIDIS cross section arise when the corre-
sponding partonic variables become large, corresponding to scattering near a phase space boundary,
where real-gluon emission is suppressed. This is typically the case for the presently relevant fixed-target
kinematics. Threshold resummation addresses these logarithms to all orders in the strong coupling.
In [63] we found fairly significant resummation effects on the spin-averaged multiplicities. Since the
spin-dependent cross section is subject to similar logarithmic corrections as the unpolarized one, it
is worthwhile to explore the effects of resummation on the spin asymmetries. This is the goal of the
present Chapter. Our calculations will be carried out both for inclusive DIS and for SIDIS. We note
that previous work [112, 132] has addressed the large-x resummation for the inclusive spin-dependent
structure function g1, with a focus on the moments of g1 and their Q2-dependence. In this Chapter,
we are primarily concerned with spin asymmetries and with semi-inclusive scattering.

Our work will use the framework developed in [63]. In Section 3.2, we briefly review the basic terms
and definitions relevant for longitudinal spin asymmetries, and we describe the extension of threshold
resummation to the polarized case. In Section 3.3 our phenomenological results are presented. We
compare our resummed inclusive and semi-inclusive spin asymmetries with available HERMES, COM-
PASS and Jefferson Lab data. We also discuss the relevance of resummation for the extraction of ∆u/u
and ∆d/d at large values of x.

3.2 Resummation for Longitudinal Spin Asymmetries in DIS and
SIDIS

3.2.1 Leading and next-to-leading order expressions

We first consider the polarized SIDIS process ~̀(k)~p(P ) → `(k′)h(Ph)X with longitudinally polarized
beam and target and with an unpolarized hadron in the final state. The corresponding double-spin
asymmetry is given by a ratio of structure functions [121]:

Ah1(x, z,Q2) ≈ gh1 (x, z,Q2)

F h1 (x, z,Q2)
, (3.2)
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where Q2 = −q2 with q the momentum of the virtual photon, x = Q2/(2P ·q) is the usual Bjorken vari-
able, and z ≡ P ·Ph/P ·q the corresponding hadronic scaling variable associated with the fragmentation
process.

Using factorization, the polarized structure function gh1 , which appears in the numerator of Eq. (3.2),
can be written as

2gh1 (x, z,Q2) =
∑

f,f ′=q,q̄,g

∫ 1

x

dx̂

x̂

∫ 1

z

dẑ

ẑ
∆f

(x
x̂
, µ2
)
×Dh

f ′

(z
ẑ
, µ2
)

∆Cf ′f
(
x̂, ẑ,

Q2

µ2
, αs(µ

2)

)
,

(3.3)

where ∆f(ξ, µ2) denotes the polarized distribution function for parton f of Eq. (3.1), whereasDh
f ′
(
ζ, µ2

)

is the corresponding fragmentation function for parton f ′ going to the observed hadron h. The ∆Cf ′f
are spin-dependent coefficient functions. We have set all factorization and renormalization scales equal
and collectively denoted them by µ. In (3.3) x̂ and ẑ are the partonic counterparts of the hadronic
variables x and z. Setting for simplicity µ = Q, we use the short-hand-notation

2gh1 (x, z,Q2) ≡
∑

f,f ′=q,q̄,g

[
∆f ⊗∆Cf ′f ⊗Dh

f ′

]
(x, z,Q2) (3.4)

for the convolutions in (3.3). A corresponding expression for the “transverse” unpolarized structure
function 2F h1 can be written by replacing the polarized parton distributions with the unpolarized ones,
and using unpolarized coefficient functions which we denote here by Cf ′f .

The spin-dependent hard-scattering coefficient functions ∆Cf ′f in (3.3) can be computed in perturba-
tion theory:

∆Cf ′f = ∆C
(0)
f ′f +

αs(µ
2)

2π
∆C

(1)
f ′f +O(α2

s) . (3.5)

At leading order, we have

∆Cqq(x̂, ẑ) = ∆Cq̄q̄(x̂, ẑ) = e2
q δ(1− x̂)δ(1− ẑ) , (3.6)

with the quark’s fractional charge eq. All other coefficient functions vanish. The same result holds
for the LO coefficient function for the spin-averaged structure function 2F h1 . Hence the asymmetry in
Eq. (3.2) reduces to

Ah1 =

∑
q
e2
q

[
∆q(x,Q2)Dh

q (z,Q2) + ∆q̄(x,Q2)Dh
q̄ (z,Q2)

]

∑
q
e2
q

[
q(x,Q2)Dh

q (z,Q2) + q̄(x,Q2)Dh
q̄ (z,Q2)

] . (3.7)
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At next-to-leading order, Eq. (3.3) becomes

2gh1 (x, z,Q2) =
∑

q

e2
q

{
∆q(x,Q2)Dh

q (z,Q2) + q̄(x,Q2)Dh
q̄ (z,Q2)

+
αs(Q

2)

2π

[(
∆q ⊗Dh

q + ∆q̄ ⊗Dh
q̄

)
⊗∆C(1)

qq + (∆q + ∆q̄)⊗∆C(1)
gq ⊗Dh

g

+∆g ⊗∆C(1)
qg ⊗ (Dh

q +Dh
q̄ )
]

(x, z,Q2)

}
, (3.8)

where the symbol ⊗ denotes the convolution defined in Eqs. (3.3),(3.4). The explicit expressions
for the spin-dependent NLO coefficients ∆C

(1)
f ′f have been derived in [108, 109]. Graudenz:1994dq

The corresponding spin-averaged NLO coefficient functions C(1)
f ′f may be found in the Appendix C or

in [51, 63, 105–109].

In the case of inclusive polarized DIS, the longitudinal spin asymmetry A1 is given in analogy with (3.2)
by

A1(x,Q2) ≈ g1(x,Q2)

F1(x,Q2)
. (3.9)

The inclusive structure functions g1 and F1 have expressions analogous to their SIDIS counterparts,
except for the fact that they do not contain any fragmentation functions, of course. The unpolarized
and polarized NLO coefficient functions for inclusive DIS may be found at many places; see, for
example [51, 133].

3.2.2 Threshold resummation

As was discussed in [63], the higher-order terms in the spin-averaged SIDIS coefficient function Cqq
introduce large terms near the “partonic threshold” x̂ → 1, ẑ → 1. The same is true for the spin-
dependent ∆Cqq. At NLO, choosing again for simplicity the scale µ = Q, one has

∆C(1)
qq (x̂, ẑ) ∼ e2

qCF

[
2δ(1− x̂)

(
ln(1− ẑ)

1− ẑ

)

+

+ 2δ(1− ẑ)
(

ln(1− x̂)

1− x̂

)

+

+
2

(1− x̂)+(1− ẑ)+
− 8δ(1− x̂)δ(1− ẑ)

]
, (3.10)

where the “+”-distribution is defined as usual. The expression on the right-hand side is in fact iden-
tical to the one for the unpolarized coefficient function near threshold [63]. At the kth order of
perturbation theory, the coefficient function contains terms of the form αksδ(1 − x̂)

(
ln2k−1(1−ẑ)

1−ẑ

)
+
,

αksδ(1− ẑ)
(

ln2k−1(1−x̂)
1−x̂

)
+
, or “mixed” distributions αks

(
lnm(1−x̂)

1−x̂

)
+

(
lnn(1−ẑ)

1−ẑ

)
+
with m+ n = 2k − 2,

plus terms less singular by one or more logarithms. Again, each of these terms will appear equally
in the unpolarized and in the polarized coefficient function. The reason for this is that the terms are
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associated with emission of soft gluons [63], which does not care about spin. Threshold resummation
addresses the large logarithmic terms to all orders in the strong coupling. The resummation for the
case of SIDIS was carried out in [63]. Given these results and the equality of the spin-averaged and
spin-dependent coefficient functions near threshold, it is relatively straightforward to perform the re-
summation for the polarized case. Having the resummation for both gh1 and F h1 , we obtain resummed
predictions for the experimentally relevant spin asymmetry Ah1 .

In [63, 93, 99] threshold resummation for SIDIS was derived using an eikonal approach, for which
exponentiation of the threshold logarithms is achieved in Mellin space. One takes Mellin moments of
gh1 separately in the two independent variables x and z [105, 110]:

g̃h1 (N,M,Q2) ≡
∫ 1

0
dxxN−1

∫ 1

0
dz zM−1 gh1 (x, z,Q2). (3.11)

With this definition, Eq. (3.4) takes the form (again at scale µ = Q)

2g̃h1 (N,M,Q2) =
∑

f,f ′=q,q̄,g

∆f̃N (Q2)×∆C̃f ′f (N,M,αs(Q
2))D̃h,M

f ′ (Q2) , (3.12)

where the moments of the polarized parton distributions and the fragmentation functions are defined
as

∆f̃N (Q2) ≡
∫ 1

0
dxxN−1∆f(x,Q2),

D̃h,M
f ′ (Q2) ≡

∫ 1

0
dz zM−1Dh

f ′(z,Q
2), (3.13)

and the double Mellin moments of the polarized coefficient functions are

∆C̃f ′f
(
N,M,αs(Q

2)
)
≡

∫ 1

0
dx̂ x̂N−1

∫ 1

0
dẑ ẑM−1 ×∆Cf ′f

(
x̂, ẑ, 1, αs(Q

2)
)
. (3.14)

Large x̂ and ẑ in ∆Cf ′f correspond to large N and M in ∆C̃f ′f , respectively.

The resummed spin-dependent coefficient function is identical to the spin-averaged one of [63] and
reads to next-to-leading logarithmic accuracy in the MS-scheme:

∆C̃res
qq (N,M,αs(Q

2)) = e2
qHqq

(
αs(Q

2)
)
× exp

[
2

∫ Q2

Q2

N̄M̄

dk2
⊥

k2
⊥
Aq
(
αs(k

2
⊥)
)

ln

(
k⊥
Q

√
N̄M̄

)]
, (3.15)

where N̄ ≡ NeγE , M̄ ≡MeγE , with γE the Euler constant, and

Aq(αs) =
αs
π
A(1)
q +

(αs
π

)2
A(2)
q + . . . (3.16)
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is a perturbative function. The coefficients required to NLL read

A(1)
q = CF , A(2)

q =
1

2
CF

[
CA

(
67

18
− π2

6

)
− 5

9
Nf

]
, (3.17)

where CF = 4/3, CA = 3 and Nf is the number of active flavors. Furthermore,

Hqq (αs) = 1 +
αs
2π
CF

(
−8 +

π2

3

)
+O(α2

s) . (3.18)

The explicit NLL expansion of the exponent in (3.15) can be found in Chapter 2.

The polarized moment-space structure function g̃h,res
1 resummed to NLL is obtained by inserting the

resummed coefficient function into in Eq. (3.12). To get the physical hadronic structure function
gh,res

1 one needs to take the Mellin inverse of the moment-space expression. As in [63], we choose the
required integration contours in complex N,M -space according to the minimal prescription of [64], in
order to properly deal with the singularities arising from the Landau pole due to the divergence of the
perturbative running strong coupling constant αs at scale ΛQCD. Moreover, we match the resummed
gh,res

1 to its NLO value, i.e. we subtract the O(αs) expansion from the resummed expression and add
the full NLO result:

gh,match
1 ≡ gh,res

1 − gh,res
1

∣∣∣
O(αs)

+ gh,NLO
1 . (3.19)

The final resummed and matched expression for the spin asymmetry Ah1 is then given by

Ah,res
1 (x, z,Q2) ≡ gh,match

1 (x, z,Q2)

F h,match
1 (x, z,Q2)

. (3.20)

Similar considerations can be made for inclusive DIS, where again the resummation for g1 proceeds
identically to that of F1 in moment space. Only single Mellin moments of the structure function have
to be taken:

g̃1(N,Q2) ≡
∫ 1

0
dxxN−1 g1(x,Q2). (3.21)

The threshold resummed coefficient function is the same as in the spin-averaged case and is discussed
for example in [63]. We note that the outgoing quark in the process γ∗q → q remains “unobserved”
in inclusive DIS. At higher orders this is known to generate Sudakov suppression effects [134] that
counteract the Sudakov enhancement associated with soft-gluon radiation from the initial quark. This
is in contrast to SIDIS, where the outgoing quark fragments and hence is “observed”, so that both the
initial and the final quark contribute to Sudakov enhancement. As a result, resummation effects are
generally larger in SIDIS than in DIS, for given kinematics.
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Figure 3.1: On the left side: Spin asymmetry for semi-inclusive π+ production off a proton target.
The data points are from [121] and show statistical errors only. The 〈x〉 and 〈Q2〉 values were taken
accordingly to the HERMES measurements. On the right side: Same but comparing to the COMPASS
measurements [122].

3.3 Phenomenological results

We now analyze numerically the impact of threshold resummation on the semi-inclusive and inclusive
DIS asymmetries Ah1 and A1. Given that the resummed exponents are identical for the spin-averaged
and spin-dependent structure functions, we expect the resummation effects to be generally very modest.
On the other hand, it is also clear that the effects will not cancel identically in the spin asymmetries:
Even though the resummed exponents for g1 and F1 are identical in Mellin-moment space, they are
convoluted with different parton distributions and hence no longer give identical results after Mellin
inversion. Moreover, the matching procedure also introduces differences since the NLO coefficient
functions are somewhat different for g1 and F1. It is therefore still relevant to investigate the impact of
resummation on the spin asymmetries. We will compare our results to data sets from HERMES [121]
and COMPASS [122, 124]. In addition, we present some results relevant for measurements at the
Jefferson Laboratory [125–127], in particular those to be carried out in the near future after the
CEBAF upgrade to 12 GeV [119].

For our calculations we use the NLO polarized parton distribution functions of [128, 129] and the
unpolarized ones of [135]. Our choice of the latter is motivated by the fact that this set was also
adopted as the baseline unpolarized set in [128, 129], so that the two sets are consistent in the sense
that the same strong coupling constant is used. Additionally, in the case of SIDIS we choose the “de
Florian-Sassot-Stratmann” [71] NLO set of fragmentation functions. In this work, we choose to focus
only on pions in the final state. Resummation effects for other hadrons will be very similar. The
factorization and renormalization scales are set to Q.
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Figure 3.2: On the left side: Spin asymmetry for inclusive polarized DIS off a proton target. The data
points are from [123] and show statistical errors only. The 〈x〉 and 〈Q2〉 values were taken accordingly to
the HERMES measurements. On the right side: but comparing to the COMPASS measurements [124].

On the left sides of Figures 3.1 and 3.2, we present comparisons of our resummed calculations with
HERMES data [121] for semi-inclusive (π+) and inclusive DIS, respectively, both off a proton target at√
s ≈ 7.25 GeV. The error bars show the statistical uncertainties only. For the SIDIS asymmetry, we

integrate the numerator and the denominator of Eq. (3.2) separately over a region of 0.2 < z < 0.8. We
plot the theoretical results at the average values of x and Q2 of each data point and connect the points
by a line. The figures show the NLO (dashed lines) and the resummed-matched (solid lines) results.
As one can see, the higher-order effects generated by resummation are indeed fairly small, although
not negligible. They are overall more significant for SIDIS, which is expected due to the additional
threshold logarithms in SIDIS (see discussion at the end of Sec. 3.2.2). We expect the resummed results
to be most reliable at rather high values of x & 0.2 or so [63]. In this regime, there is a clear pattern
that resummation tends to decrease the spin asymmetries compared to NLO, more pronounced so
for SIDIS. In other words, higher-order corrections enhance the spin-averaged cross section somewhat
more strongly than the polarized one.

On the right sides of Figures 3.1 and 3.2, we show similar comparisons to the SIDIS and DIS asymme-
tries measured by COMPASS [122, 124] with a polarized muon beam at

√
s ≈17.4 GeV. For COMPASS

kinematics Alekseev:2010hcthe effects of threshold resummation are overall somewhat smaller due to
the fact that one is further away from partonic threshold because of the higher center-of-mass energy.
However, the results remain qualitatively similar to what we observed for HERMES kinematics.

The inclusive neutron spin asymmetry is particularly interesting from the point of view of resummation,
since it is known [125, 126] to exhibit a sign change at fairly large values of x. Near a zero of the
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Figure 3.3: Spin asymmetry for inclusive polarized DIS off a neutron target. The data points are from [125,
126] and show statistical errors only. The Q2 values in the theoretical calculation were chosen as Q2 =
x× 8 GeV2.

polarized cross section resummation effects are expected to be particularly relevant. Figure 3.3 shows
the asymmetry at NLO and for the NLL resummed case. For illustration, we show the presently most
precise data available, which are from the Hall-A Collaboration [125, 126] at the Jefferson Laboratory.
In order to mimic the correlation of x and Q2 for the present Jefferson Lab kinematics, we choose
Q2 = x× 8 GeV2 in the theoretical calculation. As one can see, the effects of resummation are indeed
more pronounced than for the inclusive proton structure functions considered in Fig. 3.2. Evidently
the zero of the asymmetry shifts slightly due to resummation. On the other hand, the asymmetry is
overall still quite stable with respect to the resummed higher order corrections. The latter observation
is quite relevant for the extraction of polarized large-x parton distributions from data for proton and
neutron spin asymmetries in lepton scattering. For instance, to good approximation [125, 126] one
may use the inclusive structure functions to directly determine the combinations (∆u + ∆ū)/(u + ū)
and (∆d + ∆d̄)/(d + d̄). At lowest order, and neglecting the contributions from strange and heavier
quarks and antiquarks, one has

Ru ≡ ∆u+ ∆ū

u+ ū
(x,Q2) =

4g1,p − g1,n

4F1,p − F1,n
(x,Q2) ,

Rd ≡
∆d+ ∆d̄

d+ d̄
(x,Q2) =

4g1,n − g1,p

4F1,n − F1,p
(x,Q2) , (3.22)

where the subscripts p,n denote a proton or neutron target, respectively. One may therefore determine
(∆u+∆ū)/(u+ ū) and (∆d+∆d̄)/(d+ d̄) directly from experiment by using measured structure func-
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Figure 3.4: High-x up and down polarizations (∆u + ∆ū)/(u + ū) and (∆d + ∆d̄)/(d + d̄). The solid
lines show the ratios of structure functions on the right-hand sides of Eq. (3.22), while the dashed lines show
the actual parton distribution ratios as represented by the NLO sets of [128, 129] and [135]. The dotted
lines show the expected shift of the distributions when resummation effects are included in their extraction,
using Eq. (3.23). The Q2 values in the theoretical calculation were chosen as Q2 = x × 8 GeV2. We also
show the present Hall-A [125, 126] and CLAS [127] data obtained from inclusive DIS measurements. Their
error bars are statistical only.
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tions g1,p, g1,n, F1,p, F1,n in (3.22). Up to certain refinements required by the fact that measurements of
the ratios g1,p/F1,p and g1,n/F1,n are more readily available than those of the individual structure func-
tions, this is essentially the approach used by the Hall-A Collaboration (alternatively, one may also use
the corresponding spin asymmetry for the deuteron instead of the neutron one [127]). In the following
we explore the typical size of the corrections to the ratios due to higher orders. Figure 3.4 shows first
of all the structure function ratios on the right-hand side of (3.22), computed at NLO using as before
the polarized and unpolarized parton distribution functions of [128, 129] and [135], respectively (solid
lines). We have again chosen Q2 = x × 8 GeV2. Using (3.22), these ratios would correspond to the
“direct experimental determinations” of Ru and Rd. The dashed lines in the figure show the actual
ratios (∆u+ ∆ū)/(u+ ū) and (∆d+ ∆d̄)/(d+ d̄) as given by the sets of parton distribution functions
that we use. Any difference between the solid and dashed lines is, therefore, a measure of the signif-
icance of effects related to strange quarks and antiquarks, and to NLO corrections. As one can see,
these have relatively modest size. Finally, we estimate the potential effect of resummation on Ru, Rd:
Following [60, 136], we define ‘resummed’ quark (and antiquark) distributions by demanding that their
contributions to the structure functions g1, F1 match those of the corresponding NLO distributions,
which is ensured by setting

q̃N,res(Q2) ≡
C̃NLO
q (N,αs(Q

2))

C̃res
q (N,αs(Q2))

q̃N,NLO(Q2) (3.23)

in Mellin-moment space. Here, C̃NLO
q and C̃res

q are the NLO and resummed quark coefficient functions
for the inclusive structure function F1, respectively. We match the resummed coefficient function to the
NLO one by subtracting out its NLO contribution and adding the full NLO one, in analogy with (3.19).
Equation (3.23) can be straightforwardly extended to the spin-dependent case. The ratios Ru, Rd for
these ‘resummed’ parton distributions are shown by the dotted lines in Fig. 3.4. As one can see, they
are quite close to the other results, indicating that resummation is not likely to induce very large
changes in the parton polarizations extracted from future high-precision data. For illustration, we also
show the Hall-A [125, 126] and CLAS [127] data in the figure, which have been obtained using parton-
model relations for the inclusive structure functions, similar to (3.22). One can see that the error bars
of the data are presently still larger than the differences between our various theoretical results. This
situation is expected to be improved with the advent of the Jefferson Lab 12-GeV upgrade [119] or an
Electron Ion Collider [137]. As is well-known, SIDIS measurements provide additional information on
Ru, Rd, albeit so far primarily at lower x [121].

3.4 Conclusions

We have investigated the size of threshold resummation effects on double-longitudinal spin asymme-
tries for inclusive and semi-inclusive deep inelastic scattering in fixed-target experiments. Overall,
the asymmetries are rather stable with respect to resummation, in particular for the inclusive case.
Towards large values of x, resummation tends to cause a decrease of the spin asymmetries, which is
more pronounced in the semi-inclusive case and for asymmetries measured off neutron targets.

The relative robustness of the spin asymmetries bodes well for the extraction of high-x parton po-
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larizations (∆u + ∆ū)/(u + ū) and (∆d + ∆d̄)/(d + d̄), which are consequently also rather robust.
Nevertheless, knowledge of the predicted higher-order corrections should be quite relevant when future
high-statistics large-x data become available. On the theoretical side, it will be interesting to study
the interplay of our perturbative corrections with power corrections that are ultimately also expected
to become important at high-x [112, 132, 138–142], although it appears likely that present data are in
a window where the perturbative corrections clearly dominate. Finally, we note that related large-x
logarithmic effects have also been investigated for the nucleon’s light cone wave function [143], where
they turn out to enhance components of the wave function with non-zero orbital angular momentum,
impacting the large-x behavior of parton distributions. It will be very worthwhile to explore the pos-
sible connections between the logarithmic corrections discussed here and in [143].

76



CHAPTER 4

INTERPLAY OF THRESHOLD
RESUMMATION AND HADRON MASS
CORRECTIONS IN DEEP INELASTIC

PROCESSES

We discuss hadron mass corrections and threshold resummation for deep-inelastic scattering `N → `′X
and semi-inclusive annihilation e+e− → hX processes, and provide a prescription how to consistently
combine these two corrections respecting all kinematic thresholds. We find an interesting interplay
between threshold resummation and target mass corrections for deep-inelastic scattering at large val-
ues of Bjorken xB. In semi-inclusive annihilation, on the contrary, the two considered corrections are
relevant in different kinematic regions and do not affect each other. A detailed analysis is nonetheless
of interest in the light of recent high precision data from BaBar and BELLE on pion and kaon produc-
tion, with which we compare our calculations. For both deep inelastic scattering and single inclusive
annihilation, the size of the combined corrections compared to the precision of world data is shown
to be large. Therefore, we conclude that these theoretical corrections are relevant for global QCD fits
in order to extract precise parton distributions at large Bjorken xB, and fragmentation functions over
the whole kinematic range. This Chapter is based on publication [iii].

4.1 Introduction

Predictions from QCD rely on perturbative calculations of parton-level hard scattering processes as
well as on non-perturbative input in the form of parton distribution functions and fragmentation func-
tions. On the one hand, PDFs contain information about the distributions of quarks and gluons in
hadrons, which is relevant for processes with initial-state hadrons. On the other hand, FFs describe
the fragmentation of an outgoing parton into the observed hadron and, to some extent, may be viewed
as the final-state analogue of PDFs. The applicability of this framework within perturbative QCD
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was established in factorization theorems [5] allowing one to absorb long-distance dynamics into these
two universal non-perturbative objects. Therefore, the predictive power of QCD relies crucially on the
precise knowledge of PDFs and FFs, that are nowadays extracted from a global analysis of a wide set
of experimental data, see Refs. [144–146] for recent reviews.

Modern PDF fits [115, 147–149] are available within a next-to-leading order framework and most of
them also at (partial) next-to-next-to-leading order. Key data sets for the extraction of PDFs are
provided by measurements of inclusive deep-inelastic scattering `N → `′X, which is one of the two
processes that we are considering in this work. Despite a lot of progress in the past years, large uncer-
tainties are still present for large values of the parton momentum fraction x [150]. As it turns out, it is
precisely this region that is particularly relevant at the LHC, when trying to find signals of new physics
in, for example, (di-)jet measurements [151, 152]. Furthermore, the large-x region is also interesting
as it can provide a window into the non-perturbative dynamics of the color confinement mechanism
holding quarks and gluons inside hadrons [153, 154].

On the experimental side, improvements for the gluon PDF at large-x can be obtained from jet data
taken at the Tevatron and the LHC, direct photon production in fixed target experiments, and from
longitudinal DIS structure functions. Concerning quark PDFs, the present focus is mostly on low-
energy experiments carried out for example at JLab [155], with important information coming from
directly reconstructed W charge asymmetries at the Tevatron [150]. On the theoretical side a number
of corrections to the pQCD calculations of these events are needed in order to harvest fully the avail-
able and upcoming experimental data, and extract precise large-x quark and gluon PDFs from global
QCD fits. These corrections include, in particular, resummation of threshold logarithms, Target Mass
Corrections (TMCs), higher-twist diagrams, and nuclear corrections when nuclear targets are consid-
ered. The last three have been included consistently, for example, in the CTEQ-JLab collaboration
PDF fits [147] and the fits by Alekhin and collaborators [156], allowing one to substantially extend
the range in x of the fitted DIS data (see also [157] for the interplay of TMC, higher-twists and higher
order perturbative corrections). Threshold resummation, however, has been considered so far only to
estimate the theoretical errors of PDFs or used in fits of only a subset of the data [136, 158–160], but
has not yet been fully included for all relevant data sets in a global QCD fit.

In the first part of this work, we consider the interplay between two major corrections to the standard
NLO formalism for DIS both of which have their greatest impact at large-x, namely TMCs and higher
order contributions derived from threshold resummation. Here we choose the collinear factorization
TMC framework of Accardi and Qiu [47], that contrary to most other approaches [161, 162] respects
the kinematic xB ≤ 1 bound on the Bjorken variable. Threshold resummation for QCD processes
was derived in [6, 8, 94, 95] and recently revisited in [63, 163, 164]. Large logarithms that need to
be resummed to all orders arise near the phase space boundary where gluon radiation is limited. We
perform the resummation at the level of next-to-leading logarithmic accuracy. In particular, we derive
a resummation procedure that also respects the Bjorken xB bound when a non-zero target mass is
considered, and can therefore be consistently combined with the TMC calculation. We discuss the
interplay of both kinds of corrections, and assess their relevance for PDF global fits by comparing
them to a selection of world data on DIS scattering.
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Unlike for PDFs, global fits of FFs [71–76] are less constrained by presently existing data sets. One
of the main sources of constraints on FFs is semi-inclusive annihilation (SIA) e+e− → hX which we
are going to consider in this work. Recently, very precise data sets from BELLE [10] and BaBar [11]
became available, where the statistical accuracy is partially in the sub one percent level. In addition, a
very fine binning was applied over a wide range of the fragmentation variable xE = 2Eh/

√
s reaching

up to ≈ 0.95. Here, Eh is the energy of the observed hadron in the center-of-mass system (c.m.s.)
and

√
s = 10.5 GeV is the energy for collisions at both experiments. This offers a new possibility

for studying effects that go beyond the standard NLO framework and for learning more about QCD
dynamics in fragmentation processes. On the theory side, the present day state of the art is NLO in
QCD. Several additional effects, including small-x resummation, threshold resummation and hadron
mass effects have been studied in [73, 165].

In the second part of this Chapter we revisit calculations of hadron mass corrections (HMCs) and
threshold resummation in analogy to our DIS analysis. We present for the first time (to our knowl-
edge) a resummed calculation for kaon SIA events, and compare our kaon and pion production cross
section to the recent BELLE and BaBar data. In contrast to the Operator Product Expansion based
formalism for mass corrections, the approach in [47] may be generalized to other processes, such
as semi-inclusive deep-inelastic scattering [141]. Here we extend this framework to SIA in electron-
positron scattering, we perform a detailed analysis of the effects of the produced hadron mass on the
parton-level kinematics, and evaluate their numerical consequences. We note that previous studies of
HMCs were carried out in [73, 165], showing in particular that inclusion of these HMCs in global FF
fits results in better χ2 values. We then consider the combination with threshold resummation [99] in
the framework of the so-called “crossed resummation” [93], that exploits similarities between various
color-singlet QCD processes such as DIS, SIA, Drell-Yan, and semi-inclusive deep-inelastic scattering.
We will again also build upon the recent threshold resummation studies in [63, 163, 164]. Contrary
to DIS, we find that HMCs are dominant at low xE , whereas threshold resummation is again most
relevant for large xE . We analyze the crosstalk of these effects and evaluate their relevance to global
FF fits by comparing these to the new data sets from BELLE and BaBar.

This Chapter is organized as follows. In Sec. 4.2, we discuss TMCs and threshold resummation in
DIS before we derive our prescription to combine both. In order for this Chapter to be self-contained,
we briefly review the TMC derivation of [47], and provide some basic formulas concerning threshold
resummation in order to establish our notation. Then, we analyze the numerical relevance of the
corrections, and compare these to a selection of world DIS data. In Sec. 4.3, we discuss SIA following
the same steps as for the DIS case before, and compare our numerical results to the recent BELLE
and BaBar data on pion and kaon production. Finally, we draw our conclusions in Sec. 9.5.

4.2 Target Mass Corrections and Resummation for DIS

4.2.1 Target Mass Corrections

In DIS, a parton of momentum k belonging to a nucleon of momentum p is struck by a virtual photon
of momentum q. This generates in the final state a target jet with momentum pY and a current jet
with momentum pj , see Fig. 4.3. We work in a “collinear” frame where the spacial components of p and
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q are parallel and directed along the longitudinal axis, and we parametrize the involved the momenta
p, q, k following [47]:

pµ = p+n̄µ +
m2
N

2p+
nµ ,

qµ = −ξp+n̄µ +
Q2

2ξp+
nµ ,

kµ = xp+n̄µ +
k2 + k2

T

2xp+
nµ + kµT , (4.1)

In this expression p+ can be regarded as a parameter for boosts along the longitudinal axis. The
light-cone vectors nµ and n̄µ satisfy

n2 = n̄2 = 0 n · n̄ = 1 , (4.2)

and the plus- and minus- components of a general 4-vector a are given by

a+ = a · n a− = a · n̄. (4.3)

The momenta are parametrized in terms of the external (i.e., experimentally measurable) variables

xB =
−q2

2p · q , Q2 = −q2, p2 = m2
N , (4.4)

wheremN is the target mass and Q2 the photon virtuality. The parton fractional light-cone momentum
with respect to the nucleon is a kinematic internal (i.e., non measurable) variable and is defined by

x =
k+

p+
. (4.5)

In an analogous way we can define the virtual boson fractional momentum as

ξ = −q
+

p+
=

2xB

1 +
√

1 + 4x2
Bm

2
N/Q

2
, (4.6)

which is an external kinematic variable and coincides with the Nachtmann variable [166]. The target’s
mass can be neglected in the Bjorken limit Q2 � m2

N at fixed xB, and in many analysis is omitted
from the outset. (This is fine for unpolarized scattering but poses problems for the definition of the
nucleon’s spin in the case of polarized scattering.) In this Chapter we explicitly work at finite Q2 and
verify that our result correctly reproduces the “massless target” formulas in the Bjorken limit, where
ξ → xB.

In order to perform collinear factorization of the DIS structure functions, one expands the momentum
k of the struck parton around its positive light-cone component xp+n̄µ, and neglects in the kine-
matics the transverse components, as well as (for light quarks) the negative light-cone component.
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Figure 4.1: k2 − x plot for DIS based on Eqs. (4.8) and (4.12). The allowed values for k2 are shown in
light blue.

This is equivalent to kinematically treating the parton as massless and collinear to the parent nucleon
from the very beginning, and setting k2 = 0 and kT

µ = 0 in Eq. (4.1) from the beginning. However,
for now we choose to leave k2 6= 0 in order to better contrast the situation for DIS to SIA in Section 4.3.

The parton’s momentum fraction x then appears as an integration variable in the structure functions,
that are given by a convolution integral of perturbatively calculable coefficient functions and non-
perturbative PDFs [5, 167]. Following [47], we may derive limits on the dx integration by examining
both the external and internal kinematics of the diagram shown in Fig. 4.3, and apply four momentum
and net baryon number conservation. This latter, in particular requires that at least one baryon of
mass larger than mN be present in the final state. This can appear in either the target jet (lower right
part in Fig. 4.3) or the current jet (upper right part in Fig. 4.3). Unless the rapidity difference between
the current jet and the target jet is too small [168, 169], the baryon mass appears in the latter [47], so
that p2

Y ≥ m2
N and p2

j ≥ 0. Next, considering four-momentum conservation the hard-scattering vertex
we find

0 ≤ p2
j = (q + k)2 =

(
1− ξ

x

)(
k2 +

Q2x

ξ

)
, (4.7)

where we used the momenta defined in Eq. (4.1). Hence, we find the inequalities for x and k2

x ≥ ξ

k2 ≥ −Q
2x

ξ
. (4.8)

In order to obtain another constraint on the dx integration, it is not sufficient to analyze the other
vertex. Instead, we have to consider the invariant momentum squared of the whole process:

(q + p)2 = (pj + pY )2 ≥ (q + k)2 +m2
N . (4.9)
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Figure 4.2: Allowed range for x and k2 in DIS. The situation for xB → 1 (left), xB → 0 (middle) and
Q2 →∞ (right) is shown.

where we used p2
Y ≥ mN , as previously discussed, as well as 2pj · pY ≥ 0 since both final state jets

consist of on-shell particles. Evaluating (q + k)2 as before in Eq. (4.7) we finally obtain

1− 1

xB
≤
(

1− x

ξ

)(
1 +

ξ

x

k2

Q2

)
. (4.10)

As a cross-check, we immediately find the result from [47] by setting k2 = 0. The parton’s fractional
momentum x is kinematically bound by

ξ ≤ x ≤ ξ/xB . (4.11)

Now, leaving the virtuality k2 6= 0, we may deduce the allowed range for k2 and x as follows. We
choose to plot k2 as a function of x by solving the inequality in Eq. (4.10) for k2 as a function of x.
We end up with

k2 ≤ −Q2x

ξ

(
x− ξ/xB
x− ξ

)
, (4.12)

which has a pole for x = ξ corresponding to the lower limit on x. In addition, we find k2 ≤ 0
for x = ξ/xB. The corresponding k2 − x plot is shown in Fig. 4.1. We choose the values m2

N =
1 GeV2, Q2 = 10 GeV2, xB = 0.8 in order to illustrate the most characteristic features. Additionally,
we are obviously required to choose x < 1. Let us consider the limits of large and small xB, i.e.
xB → 1, 0. For large xB, we find an upper k2

+ and lower k2
− limit for k2 which is

k2
+ = k2

− = −Q
2x

ξth
. (4.13)

In other words, we find that the upper limit k2
+ converges against the lower limit k2

−. For small xB,
we find

k2
+ = −Q

2x

xB
,

k2
− = −Q

2

xB
(x− 1) . (4.14)

Hence, they only differ by a shift in x → x − 1. These two situations are illustrated in Fig. 4.2. In
general, we find that the choice of the parton’s virtuality k2 = 0 is always allowed. However, there
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net baryon number

p2j ≥ 0

p2Y ≥ m2
N

pj

pY

k

p

q

Figure 4.3: Diagram for DIS specifying all momenta. The net baryon number is shown to flow into the
target jet. Figure taken from [47].

is no particular choice for k2 that appears as the “natural” choice. This situation is very different to
what we will find for SIA in Section 4.3.

The structure functions including the finite target mass kinematics we have discussed can be written
in collinear factorization at leading twist as [47, 142]

FTMC
1 (xB, Q

2) ≡ 2FTMC
1 (xB, Q

2) = F1(ξ,Q2) ,

FTMC
2 (xB, Q

2) ≡ 1

xB
FTMC

2 (xB, Q
2) =

1

ρ2
F2(ξ,Q2) ,

FTMC
L (xB, Q

2) ≡ 1

xB
FTMC
L (xB, Q

2) = FL(ξ,Q2) , (4.15)

where for convenience we defined

ρ2 = 1 +
4x2

Bm
2
N

Q2
. (4.16)

Note that we adopted the convention of Ref. [63, 109] for the FTMC
i structure functions in terms

of the customary ones appearing in the Lorentz decomposition of the hadronic tensor satisfying
FTMC
L (xB, Q

2) = ρ2FTMC
2 (xB, Q

2) − FTMC
1 (xB, Q

2). On the right hand side of Eq. (4.15), convo-
lution integrals appear

Fi(ξ,Q2) =
∑

f

∫ ξ/xB

ξ

dx

x
f(x, µ2) Cif

(
ξ

x
,
Q2

µ2
, αs(µ

2)

)
, (4.17)

where the integration over dx ranges only over the region allowed by the limits in Eq. (4.11). The
notation we use implies that whenever the lower limit exceeds the upper limit the integral is zero,
so that the structure functions are indeed zero in the kinematically forbidden region xB > 1. The
functions f(x, µ2) denote the distribution of a parton of flavor f in the target nucleon and the sum
runs over f = q, q̄, g, with q a shorthand for all active quark flavors. We choose µR = µF = µ. The
hard-scattering coefficient functions Cif encode the short-distance hard scattering of the virtual photons
with partons from the nucleon target, and are independent of the mass of the latter. They can be
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calculated in perturbative QCD order-by-order in powers of the strong coupling constant,

Cif = C
i,(0)
f +

αs(µ
2)

2π
C
i,(1)
f +O(α2

s) , (4.18)

which are related by CLf = C2
f − C1

f for massless partons. For example, at leading-order (LO) we have

C
2,(0)
q,q̄ (x̂) = e2

qδ(1− x̂), C2,(0)
g (x̂) = 0 ,

C
L,(0)
q,q̄,g (x̂) = 0 , (4.19)

with x̂ = ξ/x. FTMC
2 reduces to the target mass corrected version of the parton model [170, 171]

except for a step function imposing the proper kinematic bounds:

FTMC
2 (xB, Q

2) =
xB
ρ2

∑

f=q,q̄

e2
ff(ξ,Q2)θ(1− xB) . (4.20)

For completeness, we list all the relevant coefficient functions Cif up to NLO in Appendix C.

Note that in the large Q2 limit (in which M2/Q2 → 0), as well as in the small Bjorken-x limit xB → 0,
the Nachtmann variable ξ → xB and ρ→ 1, so that

FTMC
i (xB, Q

2)→ Fi(xB, Q2) (4.21)

and the usual massless target formulas are recovered. Conversely, in the xB → 1 limit, the Nachtmann
variable ξ → ξth, where

ξth =
2

1 +
√

1 + 4m2
N/Q

2
, (4.22)

and ξ differs maximally from xB (see Fig. 4.4). Therefore, in this limit, TMC effects are the largest.
Since the integral over dx is limited to the region defined by the kinematic bounds in Eq. (4.11), the
structure functions FTMC

i have support only over the physical region at xB ≤ 1. This is the defining
characteristics of the treatment of TMCs proposed in Ref. [47] and sets this apart from most other
TMC prescriptions, that in fact violate that bound and allow for non-zero structure functions also at
xB > 1. When combining TMCs with threshold resummation in Section 4.2.3, we will pay special
attention to preserve this feature of our TMC treatment and not introduce a spurious violation of the
Bjorken-x bound.

4.2.2 Threshold Resummation for DIS

The DIS coefficient functions Cif contain singular distributions. Near threshold they can get large and
weaken or even violate the convergence of the perturbative expansion in the strong coupling constant.
Therefore, they have to be taken into account to all orders via threshold resummation. At NLO,
singular distributions only appear in the structure function F1 (or equivalently F2) but not in FL. In
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Figure 4.4: The Nachtmann variable ξ as a function of xB with mN = 0 GeV (solid blue line) and
mN = 0.938 GeV (dash-dotted red line) at Q2 = 2 GeV2.

the MS scheme, they read

C
1,(1)
q,th (x) = CF

[
(1 + x2)

(
ln(1− x)

1− x

)

+

− 3

2

1

(1− x)+

−
(

9

2
+
π2

3

)
δ(1− x)

]
, (4.23)

where the plus-distribution is defined as
∫ 1

0
dx f(x)[g(x)]+ ≡

∫ 1

0
dx (f(x)− f(1)) g(x) (4.24)

In general, at a given order k in the perturbative expansion, the coefficient function contains logarithms
of the form

αks

(
lnn(1− x)

1− x

)

+

, with n ≤ 2k − 1 . (4.25)

Performing the resummation at NLL, we fully take into account contributions down to n = 2k − 3 at
all orders. In other words, resummation at NLL accuracy sums up correctly the three most dominant
towers of threshold logarithms. Results at next-to-next-to leading logarithmic accuracy were derived
in [100, 101], where the next two subleading towers of threshold logarithms are also correctly taken
into account. However, the main phenomenological effects are already captured at the level of NLL.
In addition, the proposed prescription for combining TMC and resummation, as discussed in the next
subsection, is independent of the accuracy of resummation that we are considering.

In the massless limit, m2
N/Q

2 → 0, resummation may be performed by introducing Mellin moments
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in xB of the massless structure functions:

FN1 (Q2) =

∫
dxB x

N−1
B F1(xB, Q

2)

= C1,N
f

(
Q2/µ2, αs(µ

2)
)
· fN (µ2) , (4.26)

where

C1,N
f =

(∫ 1

0
dxxN−1C1

f

(
x,Q2/µ2, αs(µ

2)
))

(4.27)

fN =

(∫ 1

0
dy yN−1f(y, µ2)

)
(4.28)

and the superscript N denotes the dependence on the complex Mellin variable N . The Mellin space
expression of the NLO coefficient function up to terms that are suppressed as O(1/N) and choosing
µ2 = Q2 is given by

C1,(1),N
q = CF

[
ln2 N̄ +

3

2
ln N̄ − 9

2
− π2

6

]
, (4.29)

where large logarithms in N̄ = NeγE correspond to large logarithms in 1 − x in Eq. (4.23). The
resummed DIS coefficient function for the structure function F1 reads to NLL [8, 63, 93, 99]:

C1,N
q,res(Q

2/µ2, αs(µ
2)) = e2

qHq

(
Q2/µ2, αs(µ

2)
)
×∆N

q (Q2/µ2, αs(µ
2)) JNq (Q2/µ2, αs(µ

2)) . (4.30)

The radiative factor ∆N
q describes gluon radiation from the initial quark that is both soft and collinear.

The function JNq takes into account collinear (i.e. soft and hard) emissions from the unobserved parton
in the final state. See Chapter 2 for further details concerning the functions ∆N

q , JNq and Hq.

In the end, we go back to x-space by numerically performing the Mellin inverse, which is given by

F1,res(xB, Q
2) =

∫

CN

dN

2πi
x−NB × C1,N

q,res(Q
2/µ2, αs(µ

2)) fN (µ2) . (4.31)

The contour CN is taken to run between the rightmost pole of the moments of the PDFs and the
Landau pole following the minimal prescription of [64]. After the Mellin inverse is taken, we match to
the full NLO which is still a good approximation away from threshold. We avoid double counting of
threshold distributions at NLO by considering the matched combination

Fmatch = Fres − Fres|O(αs)
+ FNLO . (4.32)

4.2.3 Combining TMC and Threshold Resummation

After target mass corrections, the integration over the parton’s momentum fraction in the collinear
factorization formula (4.17) ranges from ξ to ξ/xB. As a consequence, the Mellin moments of the
structure function are no longer the product of the moments of the coefficient function C1 and the
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Figure 4.5: On the left (right) hand side the integration regions for Q2 = 2 GeV2 (Q2 = 25 GeV2)
concerning Eq. (4.34) are shown. The blue dots denote the boundary where the threshold singularities arise
and the arrows indicate the direction of integration.

parton distribution f . One therefore may be tempted to express the structure function (4.17) as

FTMC
1 =

∫ 1

ξ

dx

x
C1
f

(
ξ

x

)
f(x)−

∫ 1

ξ/xB

dx

x
C1
f

(
ξ

x

)
f(x) , (4.33)

where for ease of notation we omitted any dependence of the coefficient functions and the PDFs on
the scale Q2/µ2 and on αs(µ2). The advantage of this reformulation is that the first term is integrated
up to 1 (and differs from the Bjorken limit approximation only by a xB → ξ replacement), so that
its Mellin transform would indeed be given by the product of moments of the coefficient and parton
distribution functions. However, written in this way, FTMC

1 acquires support also in the unphysical
region xB > 1, where it actually becomes negative after crossing 0 at xB = 1.

A better way to manipulate the structure function convolution in Eq. (4.17) in order to obtain a
product of moments after performing its Mellin transformation, is to write

FTMC
1 =

∫ ξth

ξ

dx

x
C1
f

(
ξ

x

)
f(x) +

∫ ξ/xB

ξth

dx

x
C1
f

(
ξ

x

)
f(x) . (4.34)

In the small xB limit only the first term on the right hand side survives, and the massless limit is
recovered, as it should be. In the xB → 1 limit, each term separately tends to zero and remain zero
for larger values of xB. Therefore, the structure function as well remains zero in the unphysical region
xB > 1, as it happens with the original Eq. (4.17). This is then a good starting point for performing
the resummation of threshold distributions in a way that respects the partonic and hadronic kinematics
discussed in Section 4.2.1.

In order to get a deeper insight into the effects of TMCs on resummation, we can more closely analyze
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Figure 4.6: We show the effects of TMC (dashed blue), threshold resummation (dotted magenta) and
the combination of both (solid black) normalized to NLO for the DIS structure function F2 for different
values of Q2 = 2, 25, 100 GeV2. The PDF set of [115] is used.

the integration region, that we depict in Fig. 4.5 for a small and a large value of Q2. The partonic
threshold for resummation is set by x = ξ, as indicated by the blue dots. Hence, we may view the effect
of TMCs as cutting out the singularities lying at x > ξth. As Q2 increases, the amount of excluded
singularities decreases, as can be seen from the diagram on the right. In the Bjorken limit (Q2 →∞),
ξth tends to 1, the integration region spans the whole triangle, and no singularity is excluded. Since
the threshold for gluon radiation is set for x → ξ the threshold singularities appear only at the lower
integration boundary of the first term, which is therefore the only one where large logarithms appear
and need resummation. This can then be achieved without introducing a non-zero result for the
resummed structure function in the unphysical region of xB > 1 because the first term in Eq. (4.34)
is zero at xB ≥ 1. In the second term, that also tends to zero as xB → 1, the threshold limit is not
reached so that there is no need to regularize any of the terms in the coefficient function and we can
treat this as part of the matching procedure to the full NLO calculation, see Eq. (4.32).

As in the massless target approximation, we derive threshold resummation in Mellin space but taking
special care of the fact that at finite Q2 the first term in Eq. (4.34) does not have the standard
convolution structure as for the massless approximation of the structure functions. Taking Mellin
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moments with respect to ξ of the first term in Eq. (4.34) only, we obtain

FTMC,N
1 =

∫ 1

0
dξ ξN−1

∫ ξth

ξ

dx

x
C1
f

(
ξ

x

)
f(x)

=

∫ 1

0
dξ ξN−1

∫ 1

0
dy

∫ ξth

0
dx C1

f (y) f(x) δ(xy − ξ)

=

(∫ 1

0
dy yN−1C1

f (y)

)(∫ ξth

0
dxxN−1f(x)

)

= C1,N
f fNξth , (4.35)

where we denoted by fNX =
∫ X

0 dxxN−1f(x) the N -th truncated moment of a function f . Hence, In
Mellin space, the TMC corrected structure function FTMC

1 factorizes into a product of the moments of
the coefficient function C1,N

f , exactly as in the massless approximation, and of the truncated moments
of parton distributions. The appearance of the latter reflects the reduced support for integration over
x in Eq. (4.17) (as illustrated in Fig. 4.5). The truncation of the PDF moments increases in magnitude
with the increase of xB and the decrease of Q2.

Using the resummed coefficient function C1,N
q,res in Eq. (4.30), we may perform the inverse transformation,

FTMC
1,res (xB, Q

2) =

∫

CN

dN

2πi
ξ−N C1,N

q,res f
N
ξth
, (4.36)

using the same contour as in the massless target case, see e.g. [63]. Note that this corresponds only to
resummation of the first term in Eq. (4.34). We always have to calculate the second term separately
and add it to the resummed result. Other than that, the matching procedure required to include the
full NLO calculation is the same as that without TMCs, see Eq. (4.32).

4.2.4 Phenomenological Results

We now investigate the numerical effects of TMC and threshold resummation as well as their com-
bination. Throughout this work we only consider a proton target. We make use of both the NLO
“Martin–Stirling–Thorne–Watt” (MSTW 2008) set of parton distribution functions [115] as well as the
NLO CJ12 PDF set of [147] . As shown in Eq. (4.35), in order to perform numerical calculations for
threshold resummation, we have to compute Mellin moments of the PDFs. Since these are provided in
x space, we first fit suitable functions to the PDFs using the following parametrization

a0 x
a1 (1− x)a2




n∑

j=3

ajx
bj


 , (4.37)

where ai are free parameters and bj are some chosen fixed values in the range of 0 to 3. We take into
account the Q2 evolution of the PDFs by allowing a Q2 dependence in the parameters ai of the form

ai = ai1 + ai2 log(log(Q2/Q2
0)) . (4.38)
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Figure 4.7: The effect of TMC is shown for the structure function F2 on top of a NLO and a resummed
calculation. We show TMC normalized to NLO (dashed blue) as well as TMC and resummation combined
normalized to the resummed result (solid red). Again, we choose three representative values of Q2 =
2, 25, 100 GeV2. The PDF set of [115] is used.

The parameters ai1,i2 are free parameters to be fitted for each different PDF and Q2
0 is a chosen fixed

scale. The truncated Mellin moments of the fitted PDFs are then taken analytically. With TMCs, we
obtain a sum of incomplete Beta functions of the type

Bξth(N + a1 + bj , a2 + 1). (4.39)

The index ξth corresponds to the upper integration limit in the definition of the incomplete Beta
function. (Without TMCs, or rather in the large Q2 limit, where ξth = 1, we obtain a sum regular
Beta functions, B1.)
In our code, we implement the incomplete Beta functions by making use of the identity

Bξth(N + a1 + bj , a2 + 1) =
ξ
N+a1+bj
th

N + a1 + bj
2F1(N + a1 + bj ,−a2, 1 +N + a1 + bj , ξth) , (4.40)

and for the complex hypergeometric function 2F1 we use the routine provided in [172]. In order to rule
out uncertainties introduced in our calculation when using the fitted functions for the Mellin inversion,
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Figure 4.8: We plot ratios of data/theory for DIS structure function F2 at several Q2. Here “theory”
denotes the NLO results with TMC and higher twist contributions based on the CJ PDF set of [147]. The
data is taken from [173–177]. Due to our choice of a linear scale for the horizontal axis, the HERA data
appears clustered at the vertical axis, i.e. at very small xB. In addition, using the same normalization,
we plot the theoretical prediction when resummation is included as well. The dotted line corresponds to
W 2 = 3.25 GeV2.

we checked the accuracy of the fits by comparing results at NLO obtained from the convolution code
in x-space and the Mellin inverse. Indeed, we find very good agreement even for very large values of
xB.
The reason behind the numerical stability of our result is the following. When performing the Mellin
inverse, we obtain an exponential suppression for large negative real values of N due to the factor ξ−N

in Eq. (4.36). When TMCs are included, this suppression is softened by the factor ξNth in Eq. (4.40).
These two exponential factors originate from two different parts of the calculation: the first comes
from the definition of the inverse Mellin transform, whereas the second is due to the incomplete beta
function. We need to combine the two factors into one single exponential, exp[−N ln(ξ/ξth)], where
the cancellations between the two is made explicit and makes the numerical integration over dN well-
behaved even for very large values of xB.
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In Fig. 4.6, we present our numerical results for the DIS structure function F2 using the PDF set
of [115]. All results are normalized to the massless NLO calculation. We choose to plot our results
only up to xB = 0.95 as non-perturbative effects are expected to set in for too large values of xB,
which is beyond the scope of this work. The two effects under consideration are shown separately in
dashed blue (TMCs) and in dotted magenta (threshold resummation) for three representative values
of Q2 = 2, 25, 100 GeV2. Both TMC and resummation effects become increasingly large as xB tends
to 1, as it is clear from the kinematic analysis presented in Sec. 4.2. Both vanish at small xB, the
former because the Nachtmann variable ξ and the kinematic factor ρ tend to their massless value of
xB and 1, respectively, and the latter because the integrals are evaluated more and more far from the
resummation threshold. Concerning the Q2 dependence of the two corrections under discussion, both
effects taken separately are large at small values of squared momentum transfer, and decrease with
increasing Q2. However, TMCs exhibit a power law suppression in Q2, while resummation corrections
decrease much less rapidly and become dominant, and non-negligible, at Q2 & 25 GeV. The results we
find for TMCs are in agreement with numerical results in previous work such as [142] and [47] up to
some prefactor conventions. Concerning the validity of our results on DIS threshold resummation one
may compare to Ref. [63, 136].

We can now turn to the combination of TMC and threshold resummation, shown by the solid black
line in Fig. 4.6. We notice that the strength of the two effects does not add in a simple way. In order
to understand the interplay of TMCs and threshold resummation, we analyze the plots in Fig. 4.7.
Again, we use the PDF set of [115]. There, we compare the ratio of the target mass corrected F2

structure function to the massless calculation without resummation (Dashed blue line), and the ratio
of the structure function with both TMC and resummation, but normalized to the resummed result
(solid red line). This way, we can see how the TMC contribution acts on top of a purely NLO calcu-
lation compared to being added to a resummed calculation. Firstly, we note that the effects remain
decoupled for small values of xB, where both ratios lie exactly on top of each other. This decoupled
region extends to larger values of xB as Q2 increases. However, at large enough values of xB the two
functions deviate and TMC acts differently for NLO than for the resummed result.

As discussed in [150, 178], such a variation in the calculation of the F2 structure function can lead to
considerable difference in the value of the d-quark parton distribution extracted in a global fit. The
theoretical description of the data crucially depends on whether resummation is included or not. In
order to gauge the relevance of TMCs and resummation for the extraction of PDFs, but leaving a
detailed QCD fit for future work, we present in Fig. 4.8 a comparison of our calculations to a vari-
ety of electron-proton scattering data from JLab (E94-110) [173], JLab (E00-116) [174], HERA [175],
SLAC [176], and EMC [177]. Here we use the CJ12 PDF set of [147]. The data was bin-centered
in Q2 for the analysis of Nachtmann moments of the DIS longitudinal structure function in [179]
allowing a direct comparison of different experimental results [180]. The data was normalized to a
calculation including TMCs only; but in order to do so we also need to add the “residual” power
corrections in 1/Q2 not taken care of by target mass corrections. These were included in the CJ12
QCD fit [147] via a multiplicative factor 1 + C(xB)/Q2, with C a parametrized function of Bjorken
xB with parameters fitted to a variety of DIS data. We include the same multiplicative factor in our
NLO calculation, and use the parameters obtained in the CJ12 fit. The vertical dotted line in Fig. 4.8
corresponds to a value of W 2 = (Ph + q)2 = m2

N + Q2(1 − xB)/xB = 3.25 GeV2, which is generally
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regarded as the end of the DIS regime and the beginning of the resonance region where fluctuations
of the data around the DIS calculation are generally understood in terms of quark-hadron duality [181].

Finally, in order to gauge the relevance of resummation corrections to a global fit of parton distribu-
tions, we also plot in Fig. 4.8 the structure function F2 with resummation, TMCs and higher twist
contributions, normalized by the pure NLO calculation including TMCs and higher twists which was
also used to normalize the data. Comparing the obtained deviation of this curve from one with the
experimental uncertainties, we find a very significant effect which is getting larger for increasing Q2,
while at low Q2, TMCs already capture the main effects. In fact, threshold resummation also decreases
with increasing Q2, as can be seen from both Figs. 4.6 and 4.7 above. However, as already remarked,
TMCs die off rather quickly, whereas resummation remains clearly non-negligible in both the DIS and
the resonance regions. Hence, resummation is likely to affect the extraction of large-x partons (quarks
directly, and gluons indirectly through QCD evolution in DIS) in global PDF fits. In this respect, it
is important to remark that the non power law dependence of the resummation corrections cannot
be effectively included in a phenomenological higher-twist term, and needs to be instead explicitly
calculated in order to obtain the correct behavior of the quark PDFs at large values of the parton
momentum fraction x. In particular it would be interesting to see how the effect is on the u− and
d-quark PDFs, and how much the extrapolation of the d/u quark ratio to x→ 1 obtained in Ref. [147]
would be affected.
Finally, see also the work of [182, 183] concerning TMC effects for (polarized) structure functions.

4.3 Hadron Mass Corrections and Resummation for SIA

4.3.1 Hadron Mass Corrections

Hadron level and parton level kinematics

We study the kinematics for Single Inclusive electron-positron Annihilation hadron in the γ−h frame,
where both the photon γ and the observed hadron h have no transverse momentum component. We
start by parametrizing the momenta of the virtual photon q, the observed hadron in the final state Ph
and the momentum of the fragmenting parton k. All momenta are also shown in Fig. 4.9. We find,

qµ = q+n̄µ +
Q2

2q+
nµ ,

Pµh = ξEq
+n̄µ +

m2
h

2ξEq+
nµ ,

kµ =
ξE
z
q+n̄µ +

(k2 + k2
T )z

2ξEq+
nµ + kT , (4.41)

where Q2 = qµqµ denotes the virtuality of the photon, mh is the mass of the observed hadron h, and
ξE = P+

h /q
+ its light cone momentum fraction; analogously, z = P+

h /k
+ is the light-cone fractional

momentum of the hadron relative to the parton that it is fragmenting from. The external Lorenz
invariants are

Q2 = q2 = s, xE =
2q · Ph
q2

, P 2
h = m2

h , (4.42)
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pYk
q

pj

Ph

PX

Figure 4.9: Diagram for SIA e+e− → hX where all momenta are specified.

where s is the center of mass energy of the process. Solving for the virtual boson fractional momentum,
we obtain

ξE =
P+
h

q+
=

1

2
xE

(
1 +

√
1− 4

x2
E

m2
h

Q2

)
, (4.43)

which is a “Nachtmann-type” fragmentation variable, cf. Eq. (4.6). Note that the radicand is always
positive due to energy conservation at the hadron level, as we derive below. Inverting Eq. (4.43) we
obtain

xE = ξE

(
1 +

m2
h

ξ2
EQ

2

)
. (4.44)

Concerning the unobserved parton’s (internal) kinematics, we work in collinear factorization but refrain
from fixing the value of the parton virtuality k2 until we analyze the effects of non-zero hadron masses
on the partonic kinematic bounds. Therefore, for the time being, we only set

kT = 0 . (4.45)

Finally, we define the partonic fragmentation invariant x̂E by

x̂E =
2k · q
q2

=
ξE
z

+
zk2

ξEQ2
, (4.46)

where the parton virtuality k2 appears explicitly for the time being.

Four momentum conservation and kinematic bounds

We consider now the kinematics at the hadron level, and derive the kinematic limits for xE and ξE
due to four momentum conservation. Firstly, we find a lower bound for xE which ensures that ξE in
Eq. (4.43) is well defined. Calculating in the e+e− c.m. frame with q+ = q− = Q/

√
2, we find

xE =
2Ph · q
Q

=

√
2

Q
(P+

h + P−h ) =
2Eh
Q

≥ 2mh

Q
≡ xmin

E . (4.47)
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Figure 4.10: The fragmentation “Nachtmann-type” fragmentation variable ξE as a function of xE at fixed
Q = 5 GeV. For illustration purposes, we choose a fictional mass of mh = 1 GeV (dash-dotted red) and
compare it with a massless hadron, mh = 0 GeV (solid blue line).

As a next step, we may derive an upper bound by considering the overall momentum conservation at
the hadron level, q = Ph + PX . We find

0 ≤ P 2
X = (Ph − q)2 = m2

h − xEQ2 +Q2 . (4.48)

Hence,

xE ≤ 1 +m2
h/Q

2 ≡ xmax
E , (4.49)

which implies that xE can become slightly larger than one. This is due to the neglect of hadron mass
effects in the unobserved hadron jet shown at the bottom of Fig. 4.9, and is analogous to the neglect
of pion production in the target jet in deriving the DIS kinematics. Relaxing these assumptions goes
beyond the scope of this Chapter, which deals with the interplay of TMCs and threshold resummation,
and is left for future work. Using these two relations, we may determine the minimal and maximal
values for ξE , which are

ξmin
E =

xmin
E

2
=
mh

Q

ξmax
E = 1 . (4.50)

With these limits at hand, we may plot ξE as a function of xE , see Fig. 4.10. Here, the effects of hadron
mass corrections are large when the invariant xE is small, contrary to the case of DIS, where target
mass corrections are most relevant at large values of xB. This can be understood as a consequence of
crossing symmetry on the kinematics of the process, where now the virtual photon is time-like.
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In a second step, again analogously to the procedure for DIS, we analyze the kinematics at the parton
level. Firstly, we consider the hard-scattering vertex which corresponds to the lower grey circle in
Fig. 4.9. Using momentum conservation at the vertex q = k + pj and neglecting any non-zero lower
bound for the mass of the recoiling jet, we obtain the following constraint

0 ≤ p2
j = (q − k)2 = Q2

(
1− z

ξE

k2

Q2

)
z − ξE
z

. (4.51)

Secondly, we consider the hadronization vertex which corresponds to the upper right grey circle in
Fig. 4.9, and we apply again four-momentum conservation. We obtain

0 ≤ p2
Y = (k − Ph)2 =

(
zk2 −m2

h

) 1− z
z

. (4.52)

It is important to notice that while the parton virtuality k2 in the first of these inequalities is para-
metrically suppressed at large Q2, no hard scale suppresses this nor the hadron mass mh in the second
inequality. Therefore, it is not possible to define a “massless hadron limit” as was done for the DIS case,
where the nucleon mass, mN , always appears divided by Q. The physical solutions of Eqs. (4.51)-(4.52)
are:

ξE ≤ z ≤ 1 (4.53)

m2
h ≤ zk2 ≤ ξEQ2 . (4.54)

In particular, the quark virtuality must always be larger than m2
h because this value corresponds

to the minimum invariant mass of the parton fragmentation products when a hadron of flavor h is
detected. Following our philosophy, we should then perform the collinear expansion around an on-shell
massive quark rather than around k2 = 0. However, dealing with the subtleties involved in proving the
factorization theorem at NLO for this case goes beyond the scope of this Chapter and is left for future
work [184]. From the next (Sub-) Section on, we only use the well known collinear factorization theorem
for massless, k2 = 0, fragmenting partons as in [73, 165] and we continue to explore the interplay of
hadron mass corrections and threshold resummation. However, for completeness, we briefly comment
here on the situation with k2 6= 0. Solving this system of inequalities in Eqs. (4.53)-(4.54), we will
plot the allowed solutions for k2 as a function of z. First of all, we find the minimally and maximally
allowed values for z and k2 which are given by

ξE ≤ z ≤ 1

m2
h ≤ k2 ≤ Q2 . (4.55)

In addition, from the Eqs. (4.51)-(4.52), we find the constraint

z ≤ Q2ξE
k2

⇔ k2 ≤ Q2ξE
z

, (4.56)

and similarly
m2
h

k2
≤ z ⇔ k2 ≥ m2

h

z
. (4.57)
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Figure 4.11: a) k2−z Plot solving the inequalities in Eqs. Eqs. (4.51)-(4.52), where the inner area displays
the allowed range for k2 and z. b) Situation for ξE = ξmin

E where in addition, the value for k2 = mhQ is
plotted.

All these results are summarized and plotted on the left hand side of Fig. 4.11 which is showing the
allowed range for z and k2. For illustration purposes, we chose the values Q2 = 10 GeV2, m2

h =
1.5 GeV2, ξE = 0.7 for the plot. The four corners/ intersections of this figure are obtained as

z = ξE ⇒ k2 ≤ Q2, k ≥ m2
h

ξE

z = 1 ⇒ k2 ≤ Q2ξE , k ≥ m2
h . (4.58)

Firstly, we note that choosing k2 = 0 is apparently not allowed by the kinematics as long as m2
h 6= 0

which is in clear contrast to DIS in Section 4.2. Secondly, one might be tempted to choose the mini-
mally required virtuality for the fragmenting parton which is given by k2 = m2

h/z. However, we would
run into various problems with that choice. It is important to choose a value for k2 that is independent
of z and ξ, otherwise the convolution structure of the cross section is lost. See for example, Eq. (4.46)
where x̂E is always written as a function of the combination ξE/z. A much more natural choice is
obtained by considering the kinematical limits of xE or equivalently ξE which leads to a z and ξE
independent choice for k2.

From Eqs. (4.56) and (4.57), we find that for this kinematical limit ξE = ξmin
E , there is only one z and

ξE independent value for the parton’s virtuality which is given by

k2 = mhQ . (4.59)

For the minimal value of ξE , the lower left and the upper right corners of the diagram in Fig. 4.11 are
on the same height, which is given by k2 = mhQ. Moving away from this limit, we find that there
is always a wider range allowed. This situation is illustrated on the right side of Fig. 4.11, where in
addition, we plotted the line k2 = mhQ. Hence, this choice for the virtuality of the fragmenting parton
is the only possibility of choosing a value that is independent of z and ξE and which always allowed in
the sense that it is independent of the kinematical situation.
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Figure 4.12: a) k2 − z Plot showing the allowed range for k2 and z, see text. We also show the old
boundaries for P 2

X ≥ 0. b) Stepwise relaxation of the requirement P 2
X ≥ m2

h until the old one P 2
X ≥ 0 is

recovered.

In principle, one should also introduce a mass for the recoiling jet, i.e. P 2
X ≥ m2

h. This additional
requirement is necessary in order to cure the “threshold problem” in Eq. (4.49), where xE can get
slightly larger than one. Without going into further detail, we only sketch the situation for the allowed
values for k2 and z in Fig. 4.12 (on the left side). The upper and left boundaries now merge into one as
it is shown by the new additional line in comparison to Fig. 4.11. On the right hand side of Fig. 4.12,
we show how this constraint P 2

X ≥ m2
h is released until the old one one P 2

X ≥ 0 is recovered. All these
issues and their numerical impact will be addressed in more detail in future work [184].

Cross section at NLO

Introducing k2 = 0 for now, we may start writing down a cross section with HMCs. In order to
compare our results to the SIA measurements from BELLE and BaBar, we need to compute hadron
multiplicities in e+e− → hX which are defined as

Rhe+e− ≡
1

σtot

d2σh

dxEd cos θ
. (4.60)

Here the hadron h is produced at an angle θ relative to the initial positron. σtot denotes the totally
inclusive cross section for e+e− → X. At NLO, this is given by

σtot =
4πα2

3Q2
Nc

∑

q

e2
q

(
1 +

αs
π

)
, (4.61)

whereNc = 3 is the number of colors and α is the electromagnetic fine structure constant. As mentioned
before, we may write the differential cross section d2σh/dxEd cos θ in terms of two structure functions
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which we denote as F̂hi (i=1,L), cf. [51, 106, 164]. Including HMC, we find

d2σh

dxEd cos θ
=

πα2

Q2
Nc

1

1− m2
h

ξ2
EQ

2

[
1 + cos2 θ

2
F̂h1 (xE , Q

2) + sin2 θ F̂hL(xE , Q
2)

]

=
1

1− m2
h

ξ2
EQ

2

d2σh

dξEd cos θ

∣∣∣∣∣∣
xE=ξE

, (4.62)

where the Jacobian factor of 1/(1−m2
h/ξ

2
EQ

2) is included in order to obtain a cross section differential
in xE instead of ξE [73, 165]. The structure functions F̂hi with HMCs take into account the kinematic
bounds on z from Eq. (4.53) and read

F̂hi (xE , Q
2) =

∑

f

∫ 1

ξE

dz

z
Dh
f

(
z, µ2

)
Ĉif
(
ξE
z
,
Q2

µ2
, αs(µ

2)

)
, (4.63)

whereDh
f (z, µ2) denotes the fragmentation function for an observed hadron h in the final state resulting

from a parent parton f . The Ĉif are the corresponding coefficient functions which we list in Appendix C
for completeness up to NLO. The cross section without HMCs is obtained by replacing ξE with xE in
Eq. (4.63) and by setting mh = 0 in Eq. (4.62). Having chosen to factorize the cross section around a
parton virtuality k2 = 0 this massless hadron limit can also be achieved in the Q2 →∞ limit.

4.3.2 Combining HMC and Threshold Resummation

In the spirit of “crossed resummation” [93], we note that the only difference concerning the resummation
in SIA in comparison to DIS is that we have to adjust one term in the matching coefficient Hq in
Eq. (2.37) −π2/6 → 5π2/6, see also Capter 2 and [63, 99]. This similarity may be understood in
the sense that both processes have one “observed” and one “unobserved” parton. Hence, the threshold
resummed expression may again be written as a product of the formH ′q ∆N

q J
N
q . HMC and resummation

are combined by simply replacing xE → ξE in the resummed formula. There are no issues with ξth as
it was the case for DIS, since the upper integration limit for z in Eqs. (4.53), (4.63) is left unchanged
compared to the massless hadron calculation. Since resummation effects increase with xE and HMC
effects become large at small values of xE , we do not expect a significant interplay of the two, contrary
to the DIS case in which both effects increase at large xB. We can numerically assess the interplay
of HMC and threshold resummation similarly to what we did for DIS. In Fig. 4.13, we plot the cross
section including the effect of HMCs on top of an NLO (dashed-dotted blue line) and a resummed
(solid red line) calculation. These are normalized to the corresponding massless hadron calculation
to highlight HMC effects. We find that both ratios match completely. Hence, there is no crosstalk
between the two effects.

4.3.3 Phenomenological Results

Given the actuality of the recent BELLE [10] and BaBar [11] results, we choose to present our numerical
results for HMC and threshold resummation directly in comparison to data. The BELLE experiment
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Figure 4.13: Comparison of the effect of HMC on top of NLO (dashed blue) and the resummed result
(solid red) for Q =

√
s = 10.5 GeV and the kaon mass mK0 = 497.6 MeV.

is operating at a c.m.s. energy of
√
s = 10.52 GeV and similarly BaBar at

√
s = 10.54 GeV, just

below the lower end of the energy range of experiments typically included in FF fits, see for example
Refs. [71, 73]. This way, we maximize the effect of HMC and resummation of threshold logarithms and
we may directly evaluate the significance of the two corrections compared to statistical and systematic
uncertainties of the data.

For the plots we discuss in this section, as well as for that in Fig. 4.13, we used the “de Florian-Sassot-
Stratmann” [71] set of fragmentation functions at NLO, where the new data from BELLE and BaBar
is not yet included. The goal is to show the phenomenological importance of threshold resummation
and HMCs, and to qualitatively assess their relevance in global FF fits, rather than obtain a perfect
description of the data. Comparing the size of HMC and threshold resummation to statistical and
systematical errors, we will conclude that a fit including the two effects may yield rather different
results for the extracted FFs. Whether indeed a better χ2 can be obtained given all the other data
sets used in a global fit, as the study presented in [73] indicates, will be left for future work.

Both BELLE and BaBar have an angular coverage of −1 < cos θ < 1. Hence, we integrate over the full
range of cos θ and obtain a cross section differential only in xE . An important difference between the
two data sets is that BELLE data is presented as a function of the Lorentz invariant energy fraction
xE , whereas BaBar is using the momentum fraction variable

xp =
2|ph|√
s
. (4.64)

Only for massless calculations are these equivalent, however, and in particular for kaons at present
energies the difference between xE and xp is quite significant. When comparing our results to data, we
multiply the BaBar data set by J = dxp/dxE to obtain a cross section differential in xE and compare
this to measurements at BELLE.
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Figure 4.14: Both theory and data 1/σtot dσ/dxE are normalized to NLO for charge integrated pions
at
√
s = 10.5 GeV. The dashed blue lines shows the HMC corrected multiplicities, magenta dotted the

resummed calculation and solid black the combination of both. BELLE data (red) and BaBar data (blue)
is shown along with statistical (left) and systematical uncertainties (right). The FFs of [71] are used.
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Figure 4.15: Same as Fig. 4.14 but for observed kaons.

We start by analyzing our calculations for (charge integrated) pion production, plotted in Fig. 4.14. All
multiplicities 1/σtot dσ/dxE presented here are normalized to the calculation at NLO without hadron
mass corrections. Our results for HMC (dashed blue line), threshold resummation (dotted magenta
line) and the combination of both (solid black line) is shown. On the left (right) panels of Fig. 4.14,
we show BELLE and BaBar data with statistical (systematic) uncertainties. As expected, the effects
of threshold resummation are quite significant and most relevant at large xE , whereas HMCs affect
the calculation at small xE , and in the measured range are not large, due to the smallness of the pion
mass, mπ0 = 135 MeV. Nonetheless, given the statistical precision of this data, it seems important to
account for HMCs in a global fit. Much of discrepancy between NLO calculations and pion data can
be resolved by including the new data in a global FF fit, as it was very recently shown in Ref. [72].
Finally, we note that below xE = 0.1, small-x logarithms start to become relevant and would also need
to be resummed [165], which however is beyond the scope of this work.
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For kaons, with mass mK0 = 497.6 MeV, HMCs are much larger than for pions, as shown in Fig. 4.15.
The combination of HMC and resummation leads to a significant increase of the cross section compared
to a massless hadron NLO calculation for all values of xE , and their inclusion in global FF fits is even
more important than in the pion case. The steep rise of the HMC corrected result over the NLO
calculation at small xE is mostly due to the kinematic limit xE > 2mK0/Q ≈ 0.1 derived in Eq. (4.47),
and in its vicinity the validity of our treatment of HMCs may come into question. This is also the
region where resummation of small-x logarithms becomes important, and a proper treatment of these is
likely to require a careful consideration of the interplay with HMCs. It would then be very interesting
to explore the similarities and differences of this with the interplay of threshold logarithms and target
mass corrections in large-xB DIS events we have discussed in Section 4.2, but we defer this analysis to
a future effort.

4.4 Conclusions

We have investigated two phenomenologically important effects for the analysis of data in inclusive
DIS and single-inclusive electron-positron annihilation, namely the corrections to NLO calculations
due to a non-zero mass of the nucleon target in DIS, and of the detected hadron in SIA, as well as
the resummation of threshold logarithms arising in the perturbative expansion of the hard scattering
coefficients. In both cases, these lead to a non-negligible enhancement in the calculated observable
compared to the precision of the currently available experimental data. Therefore, both effects are
significant for precise QCD fits of PDFs as well as FFs.

In DIS, target mass corrections and threshold resummation are both most relevant at large values of
xB. In particular, we have derived a way to perform resummation respecting the parton level kinematic
constraints arising from consideration of the non-zero target mass. The resulting structure functions
can then be consistently combined with TMC calculations such that they remain zero in the unphysical
region xB ≥ 1. We find that two effects are coupled especially for small values of Q2. At large xB,
the size of the combined TMC and resummation corrections is considerably larger than the accuracy
of the existing DIS data over an extended Q2 range. Therefore, it should be taken into account for a
precise extraction of large-x PDFs in global fits.

In SIA processes, hadron mass corrections are relevant at small xE while threshold resummation is
important at large xE , and we find no interplay of the two effects. We have included both in our
calculations of cross sections for pion and kaon production, and compared these to recent data from
the BELLE and BaBar collaborations. The effects are again large, and non-negligible for the extraction
of FFs, given the precision of the new data sets. This is particularly true for kaons due to their bigger
mass compared to observed pions. Given this large effect for kaon SIA, it becomes a topic of practical
as well as theoretical interest to determine what the interplay is between the finite mass kinematics
and the resummation of small-x logarithms. We leave this for future efforts.

Finally, we remark that we have performed calculations in collinear factorization around massless,
on-shell partons. For SIA, we have found that this choice, however commonly made, actually violates
parton-level four momentum conservation. A detailed analysis of collinear factorization with non-zero
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virtuality partons is in preparation.

In the future, it would be very interesting to look at power corrections derived from resummation for
e+e− annihilation and DIS, cf. [185]. In addition, an NNLO fit for e+e− alone would be important.
Both topics will be addressed in the future.
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CHAPTER 5

TOWARD NNLL THRESHOLD
RESUMMATION FOR HADRON PAIR

PRODUCTION IN HADRONIC
COLLISIONS

We investigate QCD threshold resummation effects beyond the next-to-leading logarithmic order for
the process H1H2 → h1h2X at high invariant mass of the produced hadron pair. We take into account
the color structure of the underlying partonic hard-scattering cross sections and determine the relevant
hard and soft matrices in color space that contribute to the resummed cross section at next-to-next-
to-leading logarithmic accuracy. We present numerical results for fixed-target and collider regimes.
We find a significant improvement compared to previous results at NLL accuracy. In particular, the
scale dependence of the resummed cross section is greatly reduced. Use of the most recent set of
fragmentation functions also helps in improving the comparison with the experimental data. Our
calculation provides a step towards a systematic NNLL extension of threshold resummation also for
other hadronic processes, in particular for jet production. This Chapter is based on publication [iv].

5.1 Introduction

The resummation of threshold logarithms in partonic hard-scattering cross sections contributing to
hadronic scattering has received an ever-growing attention in recent years. On the one hand, re-
summation is phenomenologically relevant in many kinematical situations, ranging from fixed-target
energies all the way to the LHC. At the same time, it offers insights into the structure of perturbative
corrections at higher orders, which among other things may provide benchmarks for explicit full fixed-
order calculations in QCD.
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Threshold logarithms typically arise when the initial partons have just enough energy to produce the
observed final state. In this case, the phase space available for gluon bremsstrahlung vanishes, resulting
in large logarithmic corrections. Taking the hadron-pair production cross section to be discussed in this
Chapter as an example, the partonic threshold is reached when ŝ = m̂2, that is, τ̂ ≡ m̂2/ŝ = 1, where√
ŝ is the partonic center-of-mass system (c.m.s.) energy and m̂ the pair mass of two outgoing produced

partons that eventually fragment into the observed hadron pair. The leading large contributions near
threshold arise as αks

[
ln2k−1(1− τ̂)/(1− τ̂)

]
+

at the kth order in perturbation theory, where αs is
the strong coupling and the “plus” distribution will be defined below. There is a double-logarithmic
structure, with two powers of the logarithm arising for every new order in the coupling. Subleading
terms have fewer logarithms, so that the threshold logarithms in the perturbative series take the general
form

∞∑

k=0

2k∑

`=1

αks Ak,`
(

ln2k−`(1− τ̂)

1− τ̂

)

+

, (5.1)

with perturbative coefficients Ak,`. One often refers to the all-order set of logarithms with a fixed ` as
the `th tower of logarithms. As has been established in the literature [7, 8, 78, 79], threshold logarithms
exponentiate after taking an integral transform conjugate to the relevant kinematical variable (τ̂ in
the above example). Under this transform the threshold logarithms translate into logarithms of the
transform variable N . The exponent may itself be written as a perturbative series and is only single-
logarithmic in the transform variable. Ignoring for the moment the color structure of the underlying
partonic cross section, the structure of the resummed cross section becomes in transform space

(
1 + αsC

(1) + α2
sC

(2) + . . .
)

exp

[ ∞∑

k=1

k+1∑

`=1

Bk,`αks ln`(N)

]
, (5.2)

again with coefficients Bk,` and with “matching coefficients” C(k) that ensure that at every fixed or-
der the resummed cross section agrees with the exact fixed-order one, up to corrections suppressed
at threshold. They contain the full virtual corrections at order αks , corresponding to contributions
∝ δ(1 − τ̂) in the partonic cross section, and may be compared by comparison to a full fixed-order
calculation performed near threshold. Thanks to the exponentiated single-logarithmic structure of the
exponent, knowledge of the two leading towers αks lnk+1(N) and αks lnk(N), along with the coefficient
C(1), is sufficient to predict the three leading towers in the perturbative series (5.1) for the cross section
in τ̂ -space. This is termed “next-to-leading logarithmic” resummation. At full next-to-next-to-leading
logarithmic accuracy, one needs three towers in the exponent and the two-loop coefficient C(2), pro-
viding control of already five towers in the partonic cross section.

While NLL resummation was the state of the art for many years, much progress has been made re-
cently on extending the framework to NNLL accuracy, or even beyond. The most advanced results have
been obtained for color-singlet processes such as Higgs production, where NNLL [186, 187] and, most
recently, even studies up to the N3LL level [188, 189] have been obtained, in which seven towers of loga-
rithms are fully taken into account to all orders. This became possible when all threshold distributions
at three-loop order were computed [190]. For processes that are not characterized by a color-singlet
lowest-order hard scattering reaction, progress beyond NLL has also been made. For such processes,
the resummation framework becomes more complex because the interference between soft emissions
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by the various external partons in the hard scattering process becomes sensitive to the color structure
of the hard scattering itself. This requires a color basis for the partonic scattering process which, as
will be reviewed below, leads to a matrix structure of the soft emission [78–82]. This ultimately turns
the exponential in (5.2) into a sum of exponentials, each with its own set of matching coefficients
C(k). An extensive list of color-non-singlet reactions of this type along with corresponding references
to NLL studies may be found in [87]. Resummation studies beyond NLL have been presented in the
context of top quark pair production [191, 192], for single-inclusive hadron production [87], and for
squark and gluino production [193]. At present, full NNLL resummation in the sense described above
is not yet possible for most processes, since the required two-loop matching coefficients are usually not
yet available (see, however, the recent calculation [194] for massless scattering). Nonetheless, already
with knowledge of the one-loop matching coefficients an improvement of the resummation framework
becomes possible, providing control of four (instead of five at full NNLL) towers in the partonic cross
sections. A prerequisite for this is that the appropriate color structure be taken into account for all
ingredients in the resummed expression.

In the present Chapter, we will develop such a partial NNLL resummation for the process of di-hadron
production in hadronic collisions, collecting all necessary ingredients. Previously, Ref. [83] presented
a NLL study for this process which forms the basis for this Chapter. Kinematically, hadron pair pro-
duction shares many features with the much simpler color-singlet Drell-Yan process, if one confronts
the produced partonic pair mass m̂ with the invariant mass of the lepton pair. The interesting aspect
of di-hadron production is that it possesses all the color complexity of the underlying 2 → 2 QCD
hard scattering. As such, the process becomes an ideal test for the study of QCD resummation beyond
NLL and can serve as a template for reactions of more significant phenomenological interest, especially
single or two-jet production in hadronic collisions. That said, di-hadron production is phenomenologi-
cally relevant in its own right as experimental data as a function of the pair’s mass are available from
various fixed-target experiments [195–198], as well as from the ISR [199]. In addition, di-hadron cross
sections are also accessible at the Relativistic Heavy Ion Collider.

This Chapter is structured as follows. In Sec. 5.2 we recall the basic formulas for the di-hadron cross
section as a function of pair mass at fixed order in perturbation theory, and display the role of the
threshold region. In order for this Chapter to be self-contained, we recall a number of results from [83].
Section 5.3 presents details of the NNLL threshold resummation for the cross section. In particular,
we derive the various hard and soft matrices in color space that are needed for the analysis. Here, we
make use of one-loop results available in the literature [200–202] and compare to related work [203].
In Sec. 5.4 we give phenomenological results, comparing the threshold resummed calculations at NLL
and NNLL to some of the available experimental data. Finally, we summarize our results in Sec. 5.5.

5.2 Hadron pair production near partonic threshold

5.2.1 Perturbative cross section

As in [83], we consider the process H1(Pa)+H2(Pb)→ h1(Pc)+h2(Pd)+X at measured pair invariant
mass squared,

M2 ≡ (Pc + Pd)
2 , (5.3)
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Figure 5.1: Diagrammatic illustration of Di-Hadron production in hadronic collisions.

and at c.m.s. rapidities η1, η2 of the two produced hadrons. See Fig. 5.1 for a sketch of the corresponding
diagram.

It is convenient to introduce

∆η =
1

2
(η1 − η2) ,

η̄ =
1

2
(η1 + η2) . (5.4)

For sufficiently large M2, the cross section for the process can be written in the factorized form

M4dσ
H1H2→h1h2X

dM2d∆ηdη̄
=

∑

abcd

∫ 1

0
dxadxbdzcdzd f

H1
a (xa, µ

2
F )fH2

b (xb, µ
2
F ) zcD

h1
c (zc, µ

2
F )zdD

h2
d (zd, µ

2
F )

×ωab→cd
(
τ̂ ,∆η, η̂, αs(µ

2
R),

µ2
R

m̂2
,
µ2
F

m̂2

)
, (5.5)

where η̂ is the average rapidity in the partonic c.m.s., which is related to η̄ by

η̂ = η̄ − 1

2
ln

(
xa
xb

)
. (5.6)

The quantity ∆η is a difference of rapidities and hence boost invariant. The average and relative
rapidities for the hadrons and their parent partons are the same, since all particles are taken to be
massless. The functions fH1,2

a,b in Eq. (5.5) are the parton distribution functions for partons a, b in

hadrons H1,2 and D
h1,2

c,d the fragmentation functions for partons c, d fragmenting into the observed
hadrons h1,2. The distribution functions are evaluated at a factorization scale µF that we choose to
be the same for the initial and the final state. µR denotes the renormalization scale, which may differ
from µF . The partonic momenta are given in terms of the hadronic ones by pa = xaPa, pb = xbPb,
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pc = Pc/zc, pd = Pd/zd. We introduce

S = (Pa + Pb)
2 ,

τ ≡ M2

S
,

ŝ ≡ (xaPa + xbPa)
2 = xaxbS ,

m̂2 ≡
(
Pc
zc

+
Pd
zd

)2

=
M2

zczd
,

τ̂ ≡ m̂2

ŝ
=

M2

xaxbzczdS
=

τ

xaxbzczd
. (5.7)

The ωab→cd in Eq. (5.5) are the hard-scattering functions for the contributing partonic processes ab→
cdX ′, where X ′ denotes some additional unobserved partonic final state. Since the cross section in Eq.
(5.5) has been written in a dimensionless form, the ωab→cd can be chosen to be functions of m̂2/ŝ = τ̂
and the ratios of m̂ to the factorization and renormalization scales, as well as the rapidities and the
strong coupling. They may be computed in QCD perturbation theory, where they are expanded as

ωab→cd =
(αs
π

)2
[
ωLO
ab→cd +

αs
π
ωNLO
ab→cd +

(αs
π

)2
ωNNLO
ab→cd + . . .

]
. (5.8)

Here we have separated the overall power of O(α2
s), which arises because the leading order partonic

hard-scattering processes are the ordinary 2→ 2 QCD scatterings.

5.2.2 Threshold limit

The limit τ̂ → 1 corresponds to the partonic threshold, where the hard-scattering uses all available
energy to produce the pair. This is kinematically similar to the Drell-Yan process, if one thinks of
the hadron pair replaced by a lepton pair. The presence of fragmentation of course complicates the
analysis somewhat, because only a fraction zczd of m̂2 is used for the invariant mass of the observed
hadron pair. As shown in [83], it is useful to introduce the variable

τ ′ ≡ m̂2

S
=

M2

zczdS
, (5.9)

which may be viewed as the “τ -variable” at the level of produced partons when fragmentation has not
yet been taken into account, akin to the variable τ = Q2/S in Drell-Yan.

At LO, one has τ̂ = 1 and also η̂ = 0. One can therefore write the LO term as

ωLO
ab→cd (τ̂ ,∆η, η̂) = δ (1− τ̂) δ (η̂) ω

(0)
ab→cd(∆η) , (5.10)

where ω(0)
ab→cd is a function of ∆η only. According to (5.6), the second delta-function implies that

η̄ = 1
2 ln(xa/xb). At next-to-leading order, or overall O(α3

s), one can have τ̂ 6= 1 and η̂ 6= 0. In general,
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as discussed in [83], near partonic threshold the kinematics becomes “LO like”. One has:

ωab→cd

(
τ̂ ,∆η, η̂, αs(µ

2
R),

µ2
R

m̂2
,
µ2
F

m̂2

)
= δ (η̂) ωsing

ab→cd

(
τ̂ ,∆η, αs(µ

2
R),

µ2
R

m̂2
,
µ2
F

m̂2

)

+ ωreg
ab→cd

(
τ̂ ,∆η, η̂, αs(µ

2
R),

µ2
R

m̂2
,
µ2
F

m̂2

)
, (5.11)

where all singular behavior near threshold is contained in the functions ωsing
ab→cd. Threshold resummation

addresses this singular part to all orders in the strong coupling. All remaining contributions, which are
subleading near threshold, are collected in the “regular” functions ωreg

ab→cd. Specifically, for the NLO
corrections, one finds the following structure:

ωNLO
ab→cd

(
τ̂ ,∆η, η̂,

µ2
R

m̂2
,
µ2
F

m̂2

)
= δ (η̂)

[
ω

(1,0)
ab→cd

(
∆η,

µ2
R

m̂2
,
µ2
F

m̂2

)
δ(1− τ̂)

+ ω
(1,1)
ab→cd

(
∆η,

µ2
F

m̂2

) (
1

1− τ̂

)

+

+ ω
(1,2)
ab→cd(∆η)

(
log(1− τ̂)

1− τ̂

)

+

]

+ωreg,NLO
ab→cd

(
τ̂ ,∆η, η̂,

µ2
R

m̂2
,
µ2
F

m̂2

)
, (5.12)

where the singular part near threshold is represented by the functions ω(1,0)
ab→cd, ω

(1,1)
ab→cd, ω

(1,2)
ab→cd, which

are again functions of only ∆η, up to scale dependence. The “plus”-distributions are defined by
∫ 1

x0

f(x) (g(x))+ dx ≡
∫ 1

x0

(f(x)− f(1)) g(x)dx− f(1)

∫ x0

0
g(x)dx . (5.13)

The functions ω(1,0)
ab→cd, ω

(1,1)
ab→cd, ω

(1,2)
ab→cd were derived in [83] from an explicit NLO calculation near thresh-

old. We will use these results below as a useful check on the resummed formula and on the matching
coefficients.

5.2.3 Mellin and Fourier transforms

In order to prepare the resummation of threshold logarithms, we take integral transforms of the cross
section. Following [83], we first write the hadronic cross section in Eq. (5.5) as

M4dσ
H1H2→h1h2X

dM2d∆ηdη̄
=
∑

cd

∫ 1

0
dzc dzd zcD

h1
c (zc, µ

2
F ) zdD

h2
d (zd, µ

2
F ) ΩH1H2→cd

(
τ ′,∆η, η̄, αs(µ

2
R),

µ2
R

m̂2
,
µ2
F

m̂2

)
,

(5.14)
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where τ ′ = m̂2/S = τ̂xaxb and

ΩH1H2→cd

(
τ ′,∆η, η̄, αs(µ

2
R),

µ2
R

m̂2
,
µ2
F

m̂2

)
≡

∑

ab

∫ 1

0
dxa dxb f

H1
a

(
xa, µ

2
F

)
fH2
b

(
xb, µ

2
F

)

× ωab→cd

(
τ̂ ,∆η, η̂, αs(µ

2
R),

µ2
R

m̂2
,
µ2
F

m̂2

)
. (5.15)

Taking Mellin moments of this function with respect to τ ′ and a Fourier transform in η̄, we obtain
∫ ∞

−∞
dη̄ eiνη̄

∫ 1

0
dτ ′

(
τ ′
)N−1

ΩH1H2→cd

(
τ ′,∆η, η̄, αs(µ

2
R),

µ2
R

m̂2
,
µ2
F

m̂2

)

=
∑

ab

f̃H1
a (N + 1 + iν/2, µ2

F )f̃H2
b (N + 1− iν/2, µ2

F ) ω̃ab→cd

(
N, ν,∆η, αs(µ

2
R),

µ2
R

m̂2
,
µ2
F

m̂2

)
,(5.16)

where f̃Ha (N,µ2
F ) ≡

∫ 1
0 x

N−1fHa (x, µ2
F )dx, and

ω̃ab→cd

(
N, ν,∆η, αs(µ

2
R),

µ2
R

m̂2
,
µ2
F

m̂2

)
≡
∫ ∞

−∞
dη̂ eiνη̂

∫ 1

0
dτ̂ τ̂N−1 ωab→cd

(
τ̂ ,∆η, η̂, αs(µ

2
R),

µ2
R

m̂2
,
µ2
F

m̂2

)
.

(5.17)
Near threshold, keeping only the singular terms in (5.11), the right-hand-side of this reduces to

∫ 1

0
dτ̂ τ̂N−1 ωsing

ab→cd

(
τ̂ ,∆η, αs(µ

2
R),

µ2
R

m̂2
,
µ2
F

m̂2

)
≡ ω̃resum

ab→cd

(
N,∆η, αs(µ

2
R),

µ2
R

m̂2
,
µ2
F

m̂2

)
. (5.18)

We have labeled the new function on the right by the superscript “resum” as it is this quantity that
contains all threshold logarithms and that threshold resummation addresses. As discussed in [83], it
is important here that we consider fixed m̂ and fixed renormalization/factorization scales, which is
achieved by isolating the fragmentation functions as in Eq. (5.14). Note that ω̃resum

ab→cd depends on the
Mellin variable N only. All dependence on the Fourier variable ν resides in the moments of the parton
distribution functions.

5.3 Threshold resummation for hadron-pair production

In this section we present the framework for threshold resummation for di-hadron production at NNLL.
We start by giving the main result and discussing its structure. Subsequently, we will describe the
various new ingredients in more detail.

5.3.1 Resummation formula at next-to-next-to-leading logarithm

For di-hadron production near threshold, all gluon radiation is soft. Since all four external partons in
the hard scattering are “observed” in the sense that they are either incoming or fragmenting partons,
each of them makes the same type of (double-logarithmic) contribution to the resummed cross section
in moment space, given by a “jet” function ∆N

i (i = a, b, c, d) that takes into account soft and collinear
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gluon radiation off an external parton [83, 93, 99]. In addition, large-angle soft emission is sensitive to
the color state of the hard scattering, giving rise to a trace structure in color space [78, 80, 81]. The
resumBonciani:2003ntmed partonic cross section in moment space then takes the following form [78–
83]:

ω̃resum
ab→cd

(
N,∆η, αs(µ

2
R),

µ2
R

m̂2
,
µ2
F

m̂2

)
= ∆N+1

a

(
αs(µ

2
R),

µ2
R

m̂2
,
µ2
F

m̂2

)
∆N+1
b

(
αs(µ

2
R),

µ2
R

m̂2
,
µ2
F

m̂2

)

× ∆N+2
c

(
αs(µ

2
R),

µ2
R

m̂2
,
µ2
F

m̂2

)
∆N+2
d

(
αs(µ

2
R),

µ2
R

m̂2
,
µ2
F

m̂2

)

× Tr

{
H
(
∆η, αs(µ

2
R)
)
S†N
(

∆η, αs(µ
2
R),

µ2
R

m̂2

)

S
(
αs(m̂

2/N̄2),∆η
)
SN
(

∆η, αs(µ
2
R),

µ2
R

m̂2

)}

ab→cd

× ξR

(
αs(µ

2
R),

µ2
R

m̂2

)
ξabcdF

(
αs(µ

2
R),

µ2
F

m̂2

)
. (5.19)

This form is valid to all logarithmic order, up to corrections that are suppressed by powers of 1/N ,
or 1 − τ̂ . The additional functions ξR,F do not contain threshold logarithms but are N -independent.
They serve to improve the dependence of the resummed cross section on the scales µR and µF . We
will now discuss the various functions in Eq. (7.7) and their NNLL expansions.

Jet functions

The radiative functions ∆N
i are familiar from threshold resummation for the Drell-Yan process. They

exponentiate logarithms that arise due to soft-collinear gluon emission by the initial and final-state
partons. In the MS scheme, they are given by [7, 8, 58, 186]

∆N
i

(
αs(µ

2
R),

µ2
R

m̂2
,
µ2
F

m̂2

)
= Ri(αs(µ

2
R)) exp

{∫ 1

0
dz
zN−1 − 1

1− z

×
[∫ (1−z)2m̂2

µ2
F

dµ2

µ2
Ai(αs(µ

2)) +Di(αs((1− z)2m̂2))

]}
. (5.20)

The functions Ai and Di may be calculated perturbatively as series in αs,

Ai(αs) =
αs
π
A

(1)
i +

(αs
π

)2
A

(2)
i +

(αs
π

)3
A

(3)
i +O(α4

s)

Di(αs) =
(αs
π

)2
D

(2)
i +O(α3

s) , (5.21)
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where, up to NNLL, one needs the coefficients [52, 204–209]

A
(1)
i = Ci , A

(2)
i =

1

2
Ci

[
CA

(
67

18
− π2

6

)
− 5

9
Nf

]
,

A
(3)
i =

1

4
Ci

[
C2
A

(
245

24
− 67

9
ζ(2) +

11

6
ζ(3) +

11

5
ζ(2)2

)
+ CFNf

(
−55

24
+ 2ζ(3)

)

+CANf

(
−209

108
+

10

9
ζ(2)− 7

3
ζ(3)

)
− 1

27
N2
f

]
,

D
(2)
i = Ci

[
CA

(
−101

27
+

11

3
ζ(2) +

7

2
ζ(3)

)
+Nf

(
14

27
− 2

3
ζ(2)

)]
, (5.22)

with Nf the number of flavors and

Cq = CF =
N2
c − 1

2Nc
=

4

3
, Cg = CA = Nc = 3 . (5.23)

The Di term in the radiative factor ∆N
i first appears at NNLL accuracy [7, 8, 58, 186]. It takes into

account logarithms that arise from soft gluons that are emitted at large angles. Incoming and outgoing
external lines of a given parton type carry the same Di term, as discussed in the Appendix.

Finally, the coefficient Ri in Eq. (6.7) ensures that our soft functions for this process are defined relative
to that for the Drell-Yan process; again see the Appendix for details. To the order we consider, we
have

Ri(αs) = 1− 3αs
4π

A
(1)
i ζ(2) +O(α2

s) . (5.24)

Evaluating the integrals in Eq. (6.7), one obtains an explicit expression for the NNLL expansion of the
function ∆N

i :

∆N
i

(
αs(µ

2
R),

µ2
R

m̂2
,
µ2
F

m̂2

)
= R̃i(αs(µ

2
R)) exp

{
h

(1)
i (λ) ln N̄ + h

(2)
i

(
λ,
µ2
R

m̂2
,
µ2
F

m̂2

)

+ αs(µ
2
R)h

(3)
i

(
λ,
µ2
R

m̂2
,
µ2
F

m̂2

)}
. (5.25)

Here R̃i is a combination of Ri in Eq. (5.24) and a π2-term arising in the NNLL expansion [186]:

R̃i(αs) = 1 +
αs
4π

A
(1)
i ζ(2) +O(α2

s) . (5.26)

In (5.25) we have furthermore defined λ = b0αs(µ
2
R) ln(NeγE ) with γE the Euler constant. In the
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following we denote NeγE ≡ N̄ . The functions h(1)
i , h

(2)
i , h

(3)
i read

h
(1)
i (λ) =

A
(1)
i

2πb0λ
(2λ+ (1− 2λ) ln(1− 2λ)) , (5.27)

h
(2)
i

(
λ,
µ2
R

m̂2
,
µ2
F

m̂2

)
= − A

(2)
i

2π2b20
[2λ+ ln(1− 2λ)]

+
A

(1)
i b1

2πb30

[
2λ+ ln(1− 2λ) +

1

2
ln2(1− 2λ)

]

− A
(1)
i

2πb0
[2λ+ ln(1− 2λ)] ln

µ2
R

m̂2
+
A

(1)
i

πb0
λ ln

µ2
F

m̂2
, (5.28)

and [58]

h
(3)
i

(
λ,
µ2
R

m̂2
,
µ2
F

m̂2

)
=

2A
(1)
i

π
ζ(2)

λ

1− 2λ
− A

(2)
i b1

2π2b30

1

1− 2λ

[
2λ+ ln(1− 2λ) + 2λ2

]

+
A

(1)
i b21

2πb40(1− 2λ)

[
2λ2 + 2λ ln(1− 2λ) +

1

2
ln2(1− 2λ)

]

+
A

(1)
i b2

2πb30

[
2λ+ ln(1− 2λ) +

2λ2

1− 2λ

]
+
A

(3)
i

π3b20

λ2

1− 2λ

+
A

(2)
i

π2b0
λ ln

µ2
F

m̂2
− A

(1)
i

2π
λ ln2 µ

2
F

m̂2
+
A

(1)
i

π
λ ln

µ2
R

m̂2
ln
µ2
F

m̂2

− 1

1− 2λ

(A(1)
i b1

2πb20
[2λ+ ln(1− 2λ)]− 2A

(2)
i

π2b0
λ2
)

ln
µ2
R

m̂2

+
A

(1)
i

π

λ2

1− 2λ
ln2 µ

2
R

m̂2
− D

(2)
i

2π2b0

λ

1− 2λ
. (5.29)

Here b0, b1, b2 are the first three coefficients of the QCD beta function which are given in Eq. (1.12).

Color trace contribution

Next we discuss the trace Tr{HS†NSSN} in color space in Eq. (7.7). We note that this is the only
contribution to the resummed cross section that depends on the difference of the rapidities ∆η. Each of
the functions Hab→cd, SN,ab→cd, Sab→cd is a matrix in the space of color exchange operators [78, 80, 81].
The Hab→cd are the hard-scattering functions. They are perturbative and have the expansions

Hab→cd (∆η, αs) =
(αs
π

)2 [
H

(0)
ab→cd (∆η) +

αs
π
H

(1)
ab→cd (∆η) +O(α2

s)
]
. (5.30)
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The LO (i.e. O(α2
s)) contributions H

(0)
ab→cd may be found in [78, 80–82]. For resummation beyond NLL

accuracy, one needs all entries of the NLO hard-scattering matrices H(1)
ab→cd. These matrices may be

extracted from a color decomposed one-loop calculation [83, 203]. We will outline the derivation of
the first-order corrections H(1)

ab→cd in Section 5.3.2. We note that they depend in principle also on the
renormalization scale µR, in the form of a term ∝ ln(µ2

R/m̂
2)H

(0)
ab→cd. This dependence, however, has

been absorbed into the contribution involving the function ξR in (7.7); see below.

The Sab→cd are known as soft functions. In general, they depend on the rapidity difference ∆η and on
the strong coupling whose argument is to be set to m̂/N̄ [78, 80, 81, 191]. This dependence on m̂/N̄
and hence on N occurs first at NNLL. The soft functions have the expansion

Sab→cd
(
αs(m̂/N̄),∆η

)
= S

(0)
ab→cd +

αs(m̂
2/N̄2)

π
S

(1)
ab→cd (∆η) +O(α2

s) . (5.31)

Relating the coupling at scale m̂/N̄ to that at scale µR, one can construct the explicit N -dependence
of the soft matrix at NLO. To the accuracy of resummation that we are considering in this work, it is
sufficient to use

αs(m̂
2/N̄2) =

αs(µ
2
R)

1− 2λ
. (5.32)

The LO expressions S(0)
ab→cd, which are independent of ∆η, may also be found in [78, 80–82]. Like the

hard-scattering matrices H(1)
ab→cd, at NNLL accuracy, we need the explicit expressions for the full NLO

soft-matrices S(1)
ab→cd. These may be extracted by performing a color-decomposed calculation of the

2 → 3 contributions to the partonic cross sections in the eikonal approximation, as will be described
in Section 5.3.3.

The resummation of wide-angle soft gluons is contained in Sab→cd. The two exponentials S†N and SN
that enclose the soft function Sab→cd within the trace structure appear when solving the renormalization
group equation for the soft function [78, 80–82]. The exponentials are given in terms of soft anomalous
dimensions Γab→cd:

SN,ab→cd
(

∆η, αs(µ
2
R),

µ2
R

m̂2

)
= P exp

[
1

2

∫ m̂2/N̄2

m̂2

dµ2

µ2
Γab→cd

(
∆η, αs(µ

2)
)
]
, (5.33)

where P denotes path ordering. The soft anomalous dimension matrices start at O(αs),

Γab→cd (αs,∆η) =
αs
π

Γ
(1)
ab→cd (∆η) +

(αs
π

)2
Γ

(2)
ab→cd(∆η) +O(α3

s) . (5.34)

Their first-order terms are presented in [78, 80–82, 210]. We will discuss the Γab→cd matrices in more
detail in Section 5.3.3. For NNLL resummation, we also need to take into account the second-order
contributions Γ

(2)
ab→cd which were derived in [211–214] and are determined by the one-loop terms:

Γ
(2)
ab→cd(∆η) =

K

2
Γ

(1)
ab→cd(∆η) , (5.35)

where K = CA(67/18 − π2/6) − 5Nf/9. We also give here our result for the NNLL expansion of the
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integral in Eq. (5.33):

lnSN,ab→cd
(

∆η, αs(µ
2
R),

µ2
R

m̂2

)
= Γ

(1)
ab→cd (∆η)

[
ln(1− 2λ)

2πb0
+
αs
π

1

2b20π(1− 2λ)

×
(
b1π(2λ+ ln(1− 2λ)) −b0λ

(
K + 2πb0 ln

µ2
R

m̂2

))]
. (5.36)

We note that in our phenomenological applications we follow [83] and perform the exponentiation of
the matrices numerically by iterating the exponential series to an adequately high order.
In order to gauge the roles of the various matrices appearing in the color trace, it is instructive to
analyze the structure of the resummed cross section (7.7) in Mellin space after expansion to NLO:

ω̃resum
ab→cd

(
N,∆η, αs(µ

2
R),

µ2
R

m̂2
,
µ2
F

m̂2

)
=

(
αs(µ

2
R)

π

)2 [
Tr{H(0)S(0)}ab→cd

{
1 + 2b0αs(µR) ln

µ2
R

m̂2

+
αs(µ

2
R)

π

∑

i=a,b,c,d

(
A

(1)
i ln2 N̄ +

1

4
A

(1)
i ζ(2) +

(
A

(1)
i ln N̄ +

1

2
B

(1)
i

)
ln
µ2
F

m̂2

)


+
αs(µ

2
R)

π
Tr
{
−
[
H(0)(Γ(1))†S(0) +H(0)S(0)Γ(1)

]
ln N̄ + H(1)S(0) +H(0)S(1)

}
ab→cd

]
+O(α4

s) .

(5.37)

Here the term ∝ ζ(2) arises from the coefficient R̃i in (5.26). We have anticipated the contributions
by the functions ξR and ξF in (7.7) that will be specified in the next subsection. ξR yields the term
involving the renormalization scale, and ξF contributes the ones ∝ B(1)

i , with

B(1)
q = −3

2
CF , B(1)

g = −2πb0 . (5.38)

The term Tr{H(0)S(0)}ab→cd in (5.37) is proportional to the LO function ω
(0)
ab→cd(∆η) introduced in

Eq. (5.10). In [83] (as in many previous studies of threshold resummation for hadronic hard-scattering),
the combination Tr[H(1)S(0) +H(0)S(1)], which carries no dependence on N , was extracted as a whole
by matching the expression in Eq. (5.37) to the NLO calculation at threshold. Of course, this is not
sufficient for determining the full first-order matrices H(1) and S(1). However, it is a valid approach
at NLL accuracy, where the three most dominant towers of logarithms are taken into account. For a
given fixed-order expansion to O(αks), the following terms are under control:

αks

{
ln2k N̄ , ln2k−1 N̄ , ln2k−2 N̄

}
. (5.39)

It is straightforward to see that the hard and soft matrices will contribute to the third tower of threshold
logarithms always in the combination Tr{H(1)S(0) +H(0)S(1)}ab→cd in the following way:

(αs
π

)k ∑
iA

(1)
i

(k − 1)!
Tr
{
H(1)S(0) +H(0)S(1)

}
ab→cd

ln2k−2 N̄ . (5.40)
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Hence, to NLL, it is sufficient to know the combined expression of H(1) and S(1) instead of having to
compute the full matrices separately. It is then legitimate to that order to approximate the trace term
in the resummed formula by

Tr
{
HS†NSSN

}
ab→cd,NLL

=
(

1 +
αs
π
C

(1),NLL
ab→cd

)
Tr
{
H(0)S†NS(0)SN

}
ab→cd

, (5.41)

where

C
(1),NLL
ab→cd (∆η) ≡

Tr
{
H(1)S(0) +H(0)S(1)

}
ab→cd

Tr
{
H(0)S(0)

}
ab→cd

. (5.42)

This was the approach adopted in [83] and also, for example, in studies on single-inclusive hadron [215]
or jet production [216].

On the other hand, in order to control the fourth tower of logarithms, αks ln2k−3 N̄ , one needs to know
H(1) and S(1) explicitly as they also appear separately in various combinations with the anomalous
dimension matrices. Computation of the full matrices is therefore a necessary ingredient for NNLL
resummation. Clearly, having the matrices at hand, one can compute also the known combination
Tr{H(1)S(0) + H(0)S(1)}ab→cd, which provides an important cross-check on them. We stress further
that, in order to fully take into account also the fifth tower αks ln2k−4 N̄ at NNLL, one would need
to know the full matrices H(2) and S(2) and perform a matching to NNLO. Although H(2) became
available very recently [194], this is beyond the scope of the present work.

We finally note that a new feature which first appears at NNLL is that the hard-scattering matrix H
obtains an imaginary part. This is due to the fact that H is constructed from virtual corrections to
partonic 2 → 2 scattering, which contain logarithms of ratios of space- and timelike invariants. We
write

H = HR + iHI (5.43)

with HR and HI real. It turns out that HR is a symmetric matrix, whereas HI is antisymmetric;
see Section 5.3.2. Hence, the hard-scattering matrix H as a whole is hermitian, as it should be. The
imaginary part HI contributes to the resummed cross section due to the fact that the remaining terms
inside the color trace in the resummed cross section (7.7), M ≡ eΓ†SeΓ, also develop an imaginary
part since the anomalous dimension matrices are complex-valued [78, 80, 81]. M is also hermitian
as the soft matrix S is symmetric, and therefore we may also decompose M = MR + iMI with MR

symmetric and MI antisymmetric. The trace Tr {HM} is then real, as it must be, but both the real
and imaginary parts of H,M contribute:

Tr {HM} = Tr {HRMR} − Tr {HIMI} . (5.44)

Note that the contribution by the imaginary part of H drops out from Tr[H(1)S(0) +H(0)S(1)], so that
it is not present at NLL. Performing an analytical fixed-order expansion of our NNLL resummed result,
we find that the imaginary parts of H and M first start to play a role at N3LO, where they contribute
to the fifth tower, α3

s ln2 N̄ . We note, however, that the imaginary parts of Γab→cd also contribute to
the real part of M , since M = eΓ†SeΓ. It turns out that they already appear in the fourth tower of
logarithms. In this way we see that the imaginary parts of the various contributions are important
ingredients of the NNLL resummed cross section.
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Functions ξR and ξF

The N -independent function ξabcdF in Eq. (7.7) addresses the factorization scale dependence of the cross
section [78, 80–82, 97]:

ln ξabcdF

(
αs(µ

2
R),

µ2
F

m̂2

)
= −1

2

∑

i=a,b,c,d

∫ m̂2

µ2
F

dµ2

µ2

αs(µ
2)

π
B

(1)
i , (5.45)

where we are summing over all four external partons. The coefficients B(1)
i , which have been given

in Eq. (5.38), correspond to the δ-function contributions to the corresponding LO diagonal parton-to-
parton splitting functions and thus depend on whether the considered parton i is a quark or a gluon.
As follows from [217], the function ξabcdF takes into account all N -independent pieces corresponding to
the evolution of parton distributions and fragmentation functions between scales µF and m̂. Again
its first-order contribution would explicitly appear in H(1)

ab→cd, from where it has been absorbed. It is
straightforward to expand (5.45) to the desired NNLL accuracy.
ξR governs the renormalization scale dependence of the resummed cross section. This function was
also introduced in [82]. ξR essentially serves to set the scale in the strong coupling constant in the
overall factor α2

s (see Eq. (5.8)) of the cross section to m̂:

ln ξR

(
αs(µ

2
R),

µ2
R

m̂2

)
= 2

∫ m̂2

µ2
R

dµ2

µ2
β(αs(µ

2)) . (5.46)

Evaluating the integral while keeping only the first two terms in the QCD β-function,

β(αs) ≡
1

αs

dαs
d log(µ2)

= −b0αs − b1α2
s +O(α3

s) , (5.47)

and expanding the result up to second order in αs, we find

ln ξR

(
αs(µ

2
R),

µ2
R

m̂2

)
= 2b0αs ln

µ2
R

m̂2
+ α2

s

(
2b1 ln

µ2
R

m̂2
+ b20 ln2 µ

2
R

m̂2

)
. (5.48)

Here b0, b1 are as given in (1.12). The first term on the right reproduces the explicit µR-dependence
of the first-order hard-scattering function that we have chosen to pull out of H(1)

ab→cd. The additional
terms generated by this expression produce higher-order scale-dependent contributions that will occur
in the perturbative series. When combined with resummation at NNLL level, they necessarily help to
stabilize the cross section with respect to changes in µR, as we shall discuss in more detail now.
Following [218] and suppressing all arguments except for the renormalization scale, we write the per-
turbative expansion of a generic partonic cross section ω as

ω =
∞∑

k=0

αk+2
s (µ2

R)ω(k)(µR) . (5.49)

The LO coefficient ω(0) is independent of µR; all higher-order terms depend on µR through the log-
arithm L ≡ ln(µ2

R/m̂
2). Truncating the series at some fixed k = n, the uncertainty introduced by
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the renormalization scale dependence is of the order of O(αs(µ
2
R)n+3). In the following we consider

as an example the renormalization scale dependence after truncation to next-to-next-to-leading order
(NNLO), which is given by

ω|NNLO = α2
s(µ

2
R)ω(0) + α3

s(µ
2
R)ω(1)(µR) + α4

s(µ
2
R)ω(2)(µR)

= α2
s(µ

2
R)ω(0) + α3

s(µ
2
R)
(
ω′ (1) + 2b0 Lω

(0)
)

+ α4
s(µ

2
R)
(
ω′ (2) + 3b0 Lω

′ (1) + (3b20 L
2 + 2b1 L)ω(0)

)
, (5.50)

where the coefficients ω′ (k) denote the terms in ω(k) that do not carry any dependence on µR. As is
well-known, the µR-dependence of the NNLO cross section is entirely determined by the NLO terms
in the perturbative expansion.

We may now compare the general expression in Eq. (5.50) to an NNLO expansion of the resummed
cross section ω̃resum at either NLL or NNLL. First of all, we find that the NLO scale dependence and the
contribution (3b20 L

2 +2b1 L)ω(0) at NNLO are entirely reproduced by the exponential ξR in Eqs. (5.46)
and (5.48). The interesting term at NNLO is now the term 3b0 Lω

′ (1) in the last line. Out of the five
towers of threshold logarithms that appear at NNLO, the renormalization scale dependence resides only
in the lowest three. Indeed, as can be seen from the explicit NLO expansion given in Eq. (5.37), the
coefficient ω′ (1) contains terms proportional to ln2 N̄ , ln N̄ , 1 which, at NNLO, correspond to the 3rd,
4th and 5th towers. If we now compare to the NNLO expansion of the NLL-resummed cross section, we
find that only the scale dependence of the 3rd tower is correctly reproduced. For the 4th and 5th tower,
that are not fully taken into account at NLL, we find a factor of 2b0 L instead of 3b0 L multiplying the
corresponding part of the coefficient ω′ (1). If instead resummation is performed at NNLL, the scale
dependence in the 4th tower is correctly reproduced as well, whereas in the 5th tower the incorrect
factor 2b0 L remains. (In addition, of course, the scale-independent coefficient ω′ (2) also changes). As
it turns out, going from NLL to NNLL leads to a dramatic reduction of the renormalization scale
uncertainty of the resummed cross section, as will be seen in our numerical studies in Sec. 5.4.

5.3.2 Hard-scattering function

In this Section we present our derivation of the matrices H(1)
ab→cd. We note that these were also

determined in [203]; the results of our independent computation are in agreement with that reference.
As the resulting expressions become rather lengthy in general, we present explicit results only for the
simplest partonic channel, qq′ → qq′. For ease of notation, we will usually drop the ubiquitous subscript
“qq′ → qq′ ” of the matrices. We also refer the reader to Ref. [82], where many details of the relevant
color bases have been collected. In fact, for each partonic channel we adopt the corresponding color
basis from that reference. We note that our choice differs from the one in [203], where an overcomplete
basis was chosen for the gg → gg channel.
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Color basis and lowest-order contribution

We consider the partonic process

q(p1, a)q′(p2, b)→ q(p3, c)q
′(p4, d) , (5.51)

where the pi are the momenta of the incoming and outgoing quarks, and the indices a, b, c, d denote
their color. Given the fact that the leading-order process has only a t-channel contribution, it is
convenient to choose the t-channel octet-singlet color basis which leads to a simple form for the lowest-
order hard-scattering matrix H(0). The contributing color tensors in this basis are given by (1=octet,
2=singlet)

C1 ≡ T gcaT
g
db =

1

2

(
δad δbc −

1

Nc
δac δbd

)
,

C2 ≡ δacδbd , (5.52)

where T g is the generator in the fundamental representation and the indices a, b, c, d will be kept implicit
throughout most of our discussion. The soft and hard functions become matrices in this basis, whose
entries are determined as the coefficients multiplying the respective tensor structures. The elements of
the leading-order contribution to the soft function S(0) in Eq. (5.31) are given by (I, J = 1, 2)

(S(0))JI ≡ Tr[C†JCI ] ≡
Nc∑

a,b,c,d=1

C∗JCI . (5.53)

In our basis one finds

S(0) =

(
N2
c−1
4 0

0 N2
c

)
. (5.54)

We next color-decompose the Born amplitude for the process as

M (0) =
∑

I

h
(0)
I CI . (5.55)

Squaring the amplitude and summing (averaging) over external colors and helicities, we find

1

4N2
c

Nc∑

a,b,c,d=1

|M (0)|2 =
1

4N2
c

Nc∑

a,b,c,d=1

∑

IJ

h
(0)
I h

(0)∗
J C∗JCI =

1

4N2
c

∑

IJ

h
(0)
I h

(0)∗
J S

(0)
JI ≡ Tr[H(0)S(0)] , (5.56)

where
(H(0))IJ ≡

1

4N2
c

h
(0)
I h

(0)∗
J . (5.57)

While the matrix H(0) follows from a simple direct calculation, we extract it from the results of [200],
since we can then follow the same strategy for the one-loop results given there. The color-decomposed
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tree-level four-point helicity amplitudes for qq′ → qq′ are given in [200] as

Aλλ′tree =

(
δad δbc −

1

Nc
δac δbd

)
aλλ

′
4;0

≡ C1 ×
(

2aλλ
′

4;0

)
+ C2 × 0 , (5.58)

where λλ′ denotes the helicity configuration of the initial partons. For a given pair of helicity settings
we have h(0)

I=1 = 2a4;0, h
(0)
I=2 = 0. The squares of the two helicity amplitudes are

|a−−4;0 |2 =
s2

t2
,

|a−+
4;0 |2 =

u2

t2
, (5.59)

with the Mandelstam variables

s = (p1 + p2)2 = m̂2 ,

t = (p1 − p3)2 = −m̂2 e−∆η

e∆η + e−∆η
,

u = (p1 − p4)2 = −m̂2 e∆η

e∆η + e−∆η
. (5.60)

Averaging over external colors and helicities appropriately, following Eq. (5.56), we obtain the lowest-
order hard-scattering matrix as

H(0) =

(
2
N2
c

s2+u2

t2
0

0 0

)
≡
(
h0 0

0 0

)
, (5.61)

in agreement with [82]. As expected, its only entry is in the “octet-octet” corner, thanks to our choice
of color basis.

Hard part at one loop

The hard-scattering matrix Hab→cd is a perturbative function that contains all contributions associated
with momenta of the order of the hard scale m̂. Since in the threshold regime there is no phase space
for hard on-shell radiation, only purely virtual contributions contribute to Hab→cd. Writing the virtual
one-loop amplitude as (again we suppress the indices for the external particles)

M (1),virt =
∑

I

h̃
(1)
I CI , (5.62)
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and considering the interference with the Born amplitude, the elements of the first-order contribution
H

(1)
ab→cd are obtained from the finite part of

(H̃(1))IJ ≡
1

4N2
c

(
h̃

(1)
I h

(0)∗
J + h

(0)
I h̃

(1)∗
J

)
. (5.63)

Most of the one-loop amplitudes that we need are given in [200]. For the gluonic channel gg → gg, we
additionally use the results of [201, 202]. For the process qq′ → qq′, the one-loop four-point helicity
amplitudes are given in [200] as

Aλλ′1loop =

(
δad δbc −

1

Nc
δac δbd

)
aλλ

′
4;1 + δad δbc a

λλ′
4;2

= C1 × 2
(
aλλ

′
4;1 + aλλ

′
4;2

)
+ C2 ×

1

Nc
aλλ

′
4;2 . (5.64)

From this we can determine the h̃(1)
I . Keeping in mind that we have pulled out an overall factor αs/π

in our definition of the hard-scattering matrix H(1), cf. Eq. (5.30), we have h̃(1)
I=1 = 2(aλλ

′
4;1 + aλλ

′
4;2 ) and

h̃
(1)
I=2 = aλλ

′
4;2 /Nc. As shown in [200], the aλλ′4;1 , aλλ

′
4;2 are proportional to the tree-level aλλ′4;0 in (5.58) for

each helicity configuration:

aλλ
′

4;1 = CΓ F
λλ′
4;1 a

λλ′
4;0 ,

aλλ
′

4;2 = CΓ F
λλ′
4;2 a

λλ′
4;0 , (5.65)

where in our normalization

CΓ =
eγEε

4

Γ2(1− ε) Γ(1 + ε)

Γ(1− 2ε)
. (5.66)

Here dimensional regularization with D = 4− 2ε dimensions is used. The F λλ′4;1 , F λλ′4;2 are functions of
the Mandelstam variables. Using the shorthand notation

L(t) = log
−t
s
, L(u) = log

−u
s
, L(s) = −iπ , (5.67)
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we have from [200]:

F−−4;1 = Nc

[
− 2

ε2
− 3

ε
+ 2

L(s)

ε
+ L2(t)− 2

3
L(t) (1 + 3L(s)) +

13

9
+ π2

]
+Nf

[
2

3
L(t)− 10

9

]

− 1

Nc

[
− 2

ε2
− 3

ε
− 2

ε
(L(s)− L(t)− L(u))− 8− L2(t) +

u2 − s2

2s2

(
(L(t)− L(u))2 + π2

)

+ 2L(t)(1 + L(s)− L(u))− 1

s
(uL(t) + tL(u))

]
+ 4πb0 log

(
µ2
R

m̂2

)
,

F−+
4;1 = Nc

[
− 2

ε2
− 3

ε
+ 2

L(s)

ε
+ L2(t)− 2

3
L(t) (1 + 3L(s)) +

13

9
+ π2

]
+Nf

[
2

3
L(t)− 10

9

]

− 1

Nc

[
−2

ε
− 3

ε
− 2

ε
(L(s)− L(t)− L(u))− 8− L2(t) + L(t)(3 + 2L(s)− 2L(u))

]

+

(
Nc +

1

Nc

)[
s2 − u2

2u2
(L2(t)− 2L(s)L(t)) +

t

u
(L(t)− L(s))

]
+ 4πb0 log

(
µ2
R

m̂2

)
,

F−−4;2 = 2CF

[
2

ε
(L(u)− L(s)) +

u2 − s2

2s2

(
L2(t) + L2(u) + π2

)
+
t

s
(L(t)− L(u)) + 2L(s)L(t)

−u
2 + s2

s2
L(t)L(u)

]
,

F−+
4;2 = 2CF

[
2

ε
(L(u)− L(s))− s2 − u2

2u2
L2(t)− t

u
(L(t)− L(s))− 2L(t)L(u) +

s2 + u2

u2
L(t)L(s)

]
.

(5.68)

Note that the loop corrections have imaginary parts arising from the analytic continuation of Mandel-
stam variables into the physical region s > 0; t, u < 0. They appear in the finite part as well as in the
pole contributions.

From this we can construct the matrix H̃(1) defined in Eq. (5.63) as

H̃(1) =
CΓ

4N2
c




16
(
Re
(
F−−4;2 + F−−4;1

)
s2

t2
+Re

(
F−+

4;2 + F−+
4;1

)
u2

t2

)
4
Nc

(
F−−4;2

∗ s2
t2

+ F−+
4;2
∗ u2

t2

)

4
Nc

(
F−−4;2

s2

t2
+ F−+

4;2
u2

t2

)
0


 .

(5.69)
The full expression for this matrix is rather lengthy. It has the following explicit structure:

H̃(1) =
1

2

[(
−4CF

ε2
− 6CF

ε

)
H(0) − L(s)

ε

CF
Nc

(
0 −1

1 0

)
− 2

ε
L(t)

h0

Nc

(
1 0

0 0

)

+
1

ε
L(u)

h0

Nc

(
2(N2

c − 2) CF

CF 0

)
+ 4πb0 log

(
µ2
R

m̂2

)
H(0)

]
+ H(1) , (5.70)

where h0 and H(0) have been given in (5.61). Following [219], we have identified the finite part in the
last line with the first-order correction to the hard-scattering matrix. This finite part is a function of

123



CHAPTER 5. TOWARD NNLL THRESHOLD RESUMMATION FOR HADRON PAIR PRODUCTION IN
HADRONIC COLLISIONS

the Mandelstam variables only. As one can see, the explicit dependence on the renormalization scale
µR has been separated from H(1). It is proportional to H(0) and therefore fully taken into account by
the exponential ξR in Eq. (5.46), as discussed in Sec. 5.3.1.

To present our final results for H(1), we adopt the notation of Ref. [203], where the matrix was derived
in the context of the soft-collinear effective theory. We find full agreement with the result in their
Eq. (39):

(
H(1)

)
11

= Re
{

1

2N2
c

[s2 + u2

t2
(
−4CFL(t)2 + 2X1(s, t, u)L(t) + 2Y

)

+
s2

t2
(CA − 4CF )Z(s, t, u)− u2

t2
(2CA − 4CF )Z(u, t, s)

]}
,

(
H(1)

)
21

=
1

2N2
c

[s2 + u2

t2
X2(s, t, u)L(t)− s2

t2
CF
2CA

Z(s, t, u) +
u2

t2
CF
2CA

Z(u, t, s)
]
,

(
H(1)

)
12

=
(
H(1)

)∗
21
,

(
H(1)

)
22

= 0 , (5.71)

with [203]

X1(s, t, u) = 6CF − 4πb0 + 8CF [L(s)− L(u)]− 2CA[2L(s)− L(t)− L(u)] ,

X2(s, t, u) =
2CF
CA

[L(s)− L(u)] ,

Y = CA

(
10

3
+ π2

)
+ CF

(
π2

3
− 16

)
+

5

3
4πb0 ,

Z(s, t, u) =
t

s

(
t+ 2u

s
[L(u)− L(t)]2 + 2[L(u)− L(t)] + π2 t+ 2u

s

)
. (5.72)

There are several ways of checking the validity of the results. The simplest one is to compute

Tr
[
H̃(1) S(0)

]
, (5.73)

which should reproduce the known one-loop virtual correction to qq′ → qq′ scattering given in [200].
This indeed turns out to be the case. Since S(0) is diagonal in our basis, this provides a check on the
diagonal elements of H(1).

We also note that the pole terms of the NLO virtual amplitudes M (1),virt in (5.62), including their
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imaginary parts, have been predicted in [219, 220] to be given by

h̃
(1)
I |pole

terms
=

1

2

[
−CF

(
2

ε2
+

3

ε

)
1 +

1

ε
Γ

(1)
qq′→qq′

]

IJ

h
(0)
J , (5.74)

where 1 denotes the 2× 2 unit matrix and Γ
(1)
qq′→qq′ is the soft anomalous dimension matrix introduced

in (5.33) which possesses imaginary parts, see also Eq. (5.76) below. We have verified that this correctly
reproduces the pole terms in the h̃(1)

I . In the color generator form, the matrices at the one-loop level
are given by [211–214]

Γ
(1)
ab→cd =

1

2

∑

i∈f

∑

j 6=i
Ti · Tj ln

(
µ2

−sij

)
, (5.75)

with sij = (pi + pj)
2 with all momenta flowing in (or out) of the amplitude and some scale µ2. Hence,

the sij still need to be crossed to the physical Mandelstam variables s, t, u. The Ti are the color
generators for parton i up to a factor of ±1, cf. [211–214]. In order to obtain the matrix structure, we
have to choose a color basis for a given process. Since the color decomposition is almost analogous to
the one presented below in Section 5.3.3 for the matrix S(1), we limit ourselves here to present only
the results. For the qq′ process, choosing the t-channel color octet-singlet basis cf. [82], we obtain

Γ
(1)
qq′→qq′ =

(
1
Nc

(2S − T − U) + 2CFU 2(U − S)

CF
Nc

(U − S) 2CFT

)
, (5.76)

with
S = ln

(−s12

µ2

)
, T = ln

(−s14

µ2

)
, U = ln

(−s13

µ2

)
. (5.77)

Crossing the sij to the physical variables s > 0 and t, u < 0 via [200]

ln

(−sij
µ2

)
→ ln

∣∣∣∣
sij
µ2

∣∣∣∣− iπ θ
(
sij
µ2

)
(5.78)

and choosing the scale µ2 = s, we obtain

S = −iπ, T = ln

(−t
s

)
, U = ln

(−u
s

)
. (5.79)

which matches with the logarithms in Eq. (8.40). As we are particularly interested in the complex part
of the Γ matrices and of H(1), we briefly comment on the relation to the Γ

(1)
ab→cd matrices reported here

and the ones in [82]. We find that the Γ
(1)
ab→cd in [82] are reproduced from our matrix in Eq. (5.76) by

choosing S, T, U as

S = 0, T = ln

(−t
s

)
+ iπ, U = ln

(−u
s

)
+ iπ (5.80)

instead of the choice given in Eq. (5.79) which results in a different imaginary part for Γ
(1)
ab→cd. How-

ever, only the combination eΓ†SeΓ contributes to the resummed cross section. We note that the the
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off-diagonal entries of Γ
(1)
qq′→qq′ are a function of the combination U − S which is independent of the

choice for S, T, U in Eqs. (5.79), (5.80). We find that the difference between the two choices is always
proportional to the unit matrix which commutes and hence drops out in the combination eΓ†SeΓ.
Having checked all processes explicitly, we find that this holds true in general. For example, for the
qq′ process, we find that this difference is given by the iπ · 2CF12×2. In summary, we note that there
is some ambiguity for defining the Γ

(1)
ab→cd matrices which cancels in the physical cross section.

In the way described in this subsection we have determined the one-loop hard-scattering matrix for
each partonic channel contributing to di-hadron production. As one can see in Eqs. (5.70), (5.71), for
qq′ → qq′ the final expression always contains the squares of the tree-level helicity amplitudes a4;0.
This becomes different for partonic channels involving both external quarks and gluons.

5.3.3 Soft function

We now turn to the computation of the first-order correction S(1)
ab→cd to the soft function in Eq. (5.31).

Again we present explicit results only for the qq′ channel, although we have of course considered all
partonic channels. In fact, in the course of the study of qq′ scattering we find a general construction
rule for the soft matrix S(1)

ab→cd that turns out to be applicable to all partonic channels.

Color structure of diagrams in the eikonal approximation

In order to to compute the soft matrix at NLO for qq′ scattering, we need to consider the process
q(p1) + q′(p2)→ q(p3) + q′(p4) + g(k), where g denotes a radiated gluon with soft momentum k. The
diagrams are treated in the eikonal approximation, decomposed according to our color basis. They are
shown in Fig. 5.2. The blobs on either side of the cut denote a Born hard part that can be a color-
octet or a singlet. There are six diagrams labeled “34” or “12” for example, depending on the external
legs between which the additional gluon is exchanged. Eventually, all contributions must be summed.
Using the notation of the previous subsection, each of the diagrams in Fig. 5.2 has the structure

∑

IJ

h
(0)
I h

(0)∗
J (Rij)JI Iij , (5.81)

where ij labels the diagram, Iij is an integral over the eikonal factor corresponding to the diagram that
we will specify below, and the (Rij)JI form a 2 × 2 matrix with entries labeled by JI =octet-octet,
singlet-octet, etc. For example, for the “octet-octet” entry of R34 we have

(R34)J=octet
I=octet

=
∑

a,b,c,d,c′,d′
g,g1,g2

T g2

bd′T
g2

ac′ T
g
d′dT

g
c′c T

g1

db T
g1
ca

=
∑

g,g1,g2

Tr[T g2T gT g1 ] Tr[T g2T gT g1 ]

= −N
2
c − 1

4Nc
= −CF

2
. (5.82)
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Here g corresponds to the color of the gluon exchanged between the external legs, while g1 and g2 are
those for the gluons in the amplitudes on the two sides of the cut. Computing in this way the matrices
Rij for all diagrams, we find:

R12 = R34 =
CF
2

(
−1 Nc

Nc 0

)
,

R13 = R24 =
CF
2

(
−1

2 0

0 2N2
c

)
,

R14 = R23 =
CF
2

(
1
2(N2

c − 2) Nc

Nc 0

)
. (5.83)

For the sum of all diagrams we thus have

∑

ij

Rij Iij =
CF
2

(
1
2(I13 + I24)− I12 − I34 − N2

c−2
2 (I14 + I23) Nc(I12 + I34 − I14 − I23)

Nc(I12 + I34 − I14 − I23) −2N2
c (I13 + I24)

)
.

(5.84)
We note that the eikonal factor for the interference between initial- and final-state emission has an
extra minus sign which we included here.

Integrals Iij

Next, we need to specify and compute the Iij . They are essentially given by eikonal factors integrated
over the gluon phase space. They are normalized relative to the Born cross section. Adopting the
three-particle phase space in d = 4− 2ε dimensions from [83] (see also [191]), one has

Iij = −αs
π

s

4π
eεγE

Γ(1− ε)
Γ(1− 2ε)

∫ 1

0
dτ̂ τ̂−ε(1− τ̂)1−2ε

∫
dΩ

pi · pj
(pi · k)(pj · k)

, (5.85)

where
∫
dΩ =

∫ π

0
dψ sin1−2ε ψ

∫ π

0
dθ sin−2ε θ . (5.86)

For completeness, we also give the explicit expressions for the corresponding three-particle Φ3 and
two-particle Φ2 phase space. From [83], we have the three-particle phase space which is given by

Φ3 =
s

(4π)4Γ(1− 2ε)

(
4π

s

)2ε ∫ 1

0
dτ̂ τ̂−ε(1− τ̂)1−2ε

∫ ∞

0
dρ ρ−ε(1 + ρ)−2+2ε

∫
dΩ , (5.87)

where ρ = t/u = e−∆η. Φ2 that is needed for the normalization in (5.85) and it is given by [45]

Φ2 =
1

8πΓ(1− ε)

(
4π

s

)ε ∫ 1

0
dτ̂ δ(1− τ̂)

∫ ∞

0
dρ ρ−ε(1 + ρ)−2+2ε . (5.88)
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Figure 5.2: Diagrams relevant for the calculation of the NLO soft matrix S(1). The blobs represent a
Born amplitude and the letters are color indices.

We work in the c.m.s. of the incoming partons; ψ and θ are the gluon’s polar and azimuthal angles
relative to the plane defined by the directions of incoming and outgoing hard partons. The relevant
angular integrals are well-known [221]:

∫
dΩ

1

(1− cosψ)j(1− cosψ cosχ− sinψ cos θ sinχ)k

= 2π
Γ(1− 2ε)

Γ(1− ε)2
2−j−k B(1− ε− j, 1− ε− k) 2F1

(
j, k, 1− ε, cos2 χ

2

)
, (5.89)
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with the Hypergeometric function 2F1. Performing the integrations over dΩ, but leaving the integration
over τ̂ (or, equivalently, gluon energy) aside for the moment, we find near threshold

dI12

dτ̂
=
dI34

dτ̂
= −αs

π

[(
1

ε2
− π2

4

)
δ(1− τ̂)− 2

ε

1

(1− τ̂)+
+ 4

(
ln(1− τ̂)

1− τ̂

)

+

]
,

dI13

dτ̂
=
dI24

dτ̂
= −αs

π

[(
1

ε2
− π2

4
− 1

ε
ln

(
− t
s

)
− Li2

(
−u
t

))
δ(1− τ̂)

+2

(
−1

ε
+ ln

(
− t
s

))
1

(1− τ̂)+
+ 4

(
ln(1− τ̂)

1− τ̂

)

+

]
,

dI23

dτ̂
=
dI14

dτ̂
=
dI13

dτ̂

∣∣∣
t↔u

, (5.90)

where Li2 denotes the Dilogarithm function.

Extraction of S(1)

Combining Eqs. (5.84) and (5.90), we obtain

∑

ij

Rij
dIij
dτ̂

= CF
αs
π

[{
δ(1− τ̂)

(
1

2ε2
− π2

8

)
− 1

ε

1

(1− τ̂)+

+ 2

(
ln(1− τ̂)

1− τ̂

)

+

}(
N2
c − 1 0

0 4N2
c

)

+

{
δ(1− τ̂)

1

2ε
− 1

(1− τ̂)+

}(
ln
(
− t
s

)
+ (2−N2

c ) ln
(
−u
s

)
−2Nc ln

(
−u
s

)

−2Nc ln
(
−u
s

)
−4N2

c ln
(
− t
s

)
)

+ δ(1− τ̂)
1

2

(
Li2
(
−u
t

)
+ (2−N2

c ) Li2
(
− t
u

)
−2Nc Li2

(
− t
u

)

−2Nc Li2
(
− t
u

)
−4N2

c Li2
(
−u
t

)
)]

. (5.91)

In the first term we recognize the lowest-order soft matrix of Eq. (5.54). The matrix in the sec-
ond term has a direct relation to the one-loop soft anomalous dimension matrix Γ

(1)
qq′→qq′ introduced

in (5.33), (5.34) and which is given explicitly in Eq. (5.76) for the qq′ → qq′ channel.

One easily checks that the matrix in the second line of (5.91) is given by −[(Γ(1))†S(0) +S(0)Γ(1)]/CF .
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Hence, we have after some reordering of terms:

∑

ij

Rij
dIij
dτ̂

=
αs
π

[
δ(1− τ̂)

{
2CF
ε2

S(0) − 1

2ε

[
(Γ(1))†S(0) + S(0)Γ(1)

]}

− 4CF
ε

1

(1− τ̂)+

S(0) + 8CF

(
ln(1− τ̂)

1− τ̂

)

+

S(0) +
1

(1− τ̂)+

[
(Γ(1))†S(0) + S(0)Γ(1)

]

+
CF
2
δ(1− τ̂)

{(
Li2
(
−u
t

)
+ (2−N2

c ) Li2
(
− t
u

)
−2Nc Li2

(
− t
u

)

−2Nc Li2
(
− t
u

)
−4N2

c Li2
(
−u
t

)
)
− π2S(0)

}]
.

(5.92)

Each of the terms in this equation has a transparent interpretation. The pole terms ∝ δ(1 − τ̂) in
the first line will be canceled by corresponding terms in the virtual correction; see Eq. (5.74). The
single pole term ∝ 1/(1− τ̂)+ will be canceled by collinear factorization in the eikonal approximation,
as described in the Appendix. The next two terms precisely match the threshold logarithms at NLO,
as becomes evident by going to Mellin-moment space and comparing to (5.37). The remaining term
involves the one-loop soft matrix we are interested in. More precisely, since S(1) appears in the Mellin-
space expression for the resummed cross section, and since the moments of (ln(1 − τ̂)/(1 − τ̂))+ are
given by 1

2(ln2 N̄+π2/6) (up to corrections suppressed as 1/N), all terms ∝ π2 match when comparing
to (5.37), and we are just left with

S(1) =
CF
2

(
Li2
(
−u
t

)
+ (2−N2

c ) Li2
(
− t
u

)
−2Nc Li2

(
− t
u

)

−2Nc Li2
(
− t
u

)
−4N2

c Li2
(
−u
t

)
)
. (5.93)

This is our final result for the one-loop soft matrix for this process. A powerful check on the result comes
from comparison with the full cross section at NLO: Inserting our S(1) along with H(1) from Eq. (5.71)
into (5.37), we verify that the resulting expression correctly reproduces all threshold logarithms and
all constant terms in the NLO partonic cross section.

As it turns out, we can give a very simple rule for obtaining S(1) directly from S(0) and the anomalous
dimension matrix Γ(1). This becomes already evident from comparison of the two matrices in the
second and third lines of (5.91): They have identical structure, except that each logarithm has to be
replaced by a dilogarithm with suitably modified argument,

ln

(
− t
s

)
→ Li2

(
−u
t

)
,

ln
(
−u
s

)
→ Li2

(
− t
u

)
. (5.94)

The deeper reason for this is of course that already in the integrals (5.90) the logarithm and the
dilogarithm always appear in the same ratio in the term ∝ δ(1− τ̂). Since we know how the matrix in
the second line is expressed in terms of S(0) and Γ(1), we also know how to construct S(1): Compute
the combination −1/2

(
(Γ(1))†S(0) + S(0)Γ(1)

)
and substitute each logarithm according to (5.94). As

130



5.4. PHENOMENOLOGICAL RESULTS

the integrals Iij are the same no matter which process we are considering, this simple construction rule
works for all partonic channels. All necessary ingredients, the Γ

(1)
ab→cd and the S(0)

ab→cd, may be found in
the Appendix of Ref. [82]; we therefore do not present the explicit expressions for the resulting S(1)

ab→cd
for all the other channels, which become rather lengthy. It is likely that the simple rule we find is a
special property of the pair mass kinematics we are considering here.

5.3.4 Inverse Mellin and Fourier transforms and matching procedure

In order to produce phenomenological results for the resummed case, we need to perform inverse
Mellin transform and Fourier transforms. The Mellin inverse requires a prescription for dealing with
the singularity in the perturbative strong coupling constant in the NNLL expansions of the resummed
exponents. As in [83] we will use the Minimal Prescription developed in [64], which relies on use of
the NNLL expanded forms given in Sec. 5.3.1 and on choosing a Mellin contour in complex-N space
that lies to the left of the poles at λ = 1/2 and λ = 1 in the Mellin integrand. The function ΩH1H2→cd
in (5.15) is obtained as [83]

Ωresum
H1H2→cd

(
τ ′,∆η, η̄, αs(µ

2
R),

µ2
R

m̂2
,
µ2
F

m̂2

)
=

1

2π

∫ ∞

−∞
dν e−iνη̄

∫ CMP+i∞

CMP−i∞

dN

2πi

(
τ ′
)−N

×
∑

ab

f̃H1
a (N + 1 + iν/2, µ2

F )f̃H2
b (N + 1− iν/2, µ2

F ) ω̃resum
ab→cd

(
N, ν,∆η, αs(µ

2
R),

µ2
R

m̂2
,
µ2
F

m̂2

)
,(5.95)

with a suitable Mellin contour consistent with the minmal prescription. As shown in [83], it is straight-
forward to perform the convolution of the inverted resummed Ωresum

H1H2→cd with the fragmentation func-
tions, as given by (5.14).

As in [83], we match the resummed cross section to the full NLO one, by expanding the resummed
cross section to O(α3

s), subtracting the expanded result from the resummed one, and adding the full
NLO cross section:

dσmatch =

(
dσresum − dσresum

∣∣∣
O(α3

s)

)
+ dσNLO . (5.96)

For the NLO cross section we use the results of [222]. In this way, NLO is taken into account in full,
and the soft-gluon contributions beyond NLO are resummed in the way described above. Of course,
for a full NNLL resummed cross section one would prefer to match to an NNLO calculation, which
however is not available for this observable yet.

5.4 Phenomenological results

We now examine the numerical effects of our approximate NNLL resummation in comparison to the
NLL and NLO results shown in [83]. Since the NNLL effects are generally rather similar for the
experimental situations considered in [83], we show only two representative examples here. We will
also make predictions for the di-hadron cross section at RHIC, where one would expect the effects of
resummation to be smaller.
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Our examples from [83] concern the NA24 [195] and the CCOR [199] pp→ π0π0 scattering experiments.
The fixed-target experiment NA24 recorded data at a beam energy of Ep = 300 GeV, while CCOR
operated at the ISR collider at

√
S = 62.4 GeV. Both experiments employed the cuts ppair

T < 1 GeV,
|Y | < 0.35, and | cos θ∗| < 0.4. Here, ppair

T and Y are the transverse momentum and rapidity of the
pion pair, respectively, which are given in terms of the individual pion transverse momenta pT,i and of
∆η, η̄ in (5.4) by

ppair
T = |pT,1 − pT,2| ,

Y = η̄ − 1

2
ln

(
pT,1 e−∆η + pT,2 e∆η

pT,1 e∆η + pT,2 e−∆η

)
, (5.97)

where LO kinematics have been assumed as appropriate in the threshold regime. Furthermore, cos θ∗

is the cosine of the scattering angle in the partonic c.m.s. and is for LO kinematics given by

cos θ∗ =
1

2

(
pT,1

pT,2 + pT,1 cosh(2∆η)
+

pT,2
pT,1 + pT,2 cosh(2∆η)

)
sinh(2∆η) . (5.98)

For details on the kinematical variables, see [83]. Thanks to our way of organizing the threshold re-
summed cross section, inclusion of cuts on any of these variables is straightforward.

In all our calculations, we use the CTEQ6M5 set of parton distribution functions [223], along with its
associated value of the strong coupling constant. As compared to our results in [83], we update to the
latest “de Florian-Sassot-Stratmann” (DSS) set of fragmentation functions [72]. We note that one might
object that the use of NLO parton distribution functions and fragmentation functions is not completely
justified for obtaining NNLL resummed predictions. However, since anyway fragmentation functions
evolved at NNLO are not available yet, we have decided to stick to NLO functions throughout. As
in [83], we choose the renormalization and factorization scales to be equal, µR = µF ≡ µ, and we give
them the values M and 2M , in order to investigate the scale dependence of the results.

Figure 5.3 shows the comparison to the NA24 [195] data. As known from [83], the full NLO cross sec-
tion and the first-order expansion of the resummed expression, that is, the last two terms in Eq. (5.96),
agree to a remarkable degree. Their difference actually never exceeds 1% for the kinematics relevant for
NA24. We recall these results by the dashed lines and the crosses in the figure. They provide confidence
that the soft-gluon terms constitute the dominant part of the cross section, so that their resummation
is sensible. The dot-dashed lines in the figure present the NLL results, computed by dropping all NNLL
terms and matching to NLO via Eqs. (5.41),(5.42), as in [83]. As found there, resummation leads to
a significant enhancement of the theoretical prediction and provides a much better description of the
NA24 data [195] than for the NLO calculation. Finally, the two solid lines show our NNLL resummed
results. The key observations are that the two NNLL results for scales 2M and M are very close
together and both roughly fall within the “band” spanned by the two NLL results for the two scales.
One also notices that the NNLL curves have a slope somewhat less steep than the NLL ones. Given
the relatively large uncertainties of the data, it is fair to say that the main effects are already taken
into account at NLL. However, the precision of the NNLL calculation, in particular the strong reduc-
tion of the scale dependence, still provides a significant theoretical and phenomenological improvement.
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Figure 5.3: Comparison of NLO (dashed), NLL resummed (dot-dashed) and NNLL resummed (solid)
calculations of the cross section for pp → π0π0X to the NA24 data [195], for two different choices of the
renormalization and factorization scales, µR = µF = M (upper lines) and µR = µF = 2M (lower lines).
The crosses display the NLO O(αs) expansion of the resummed cross section.

In order to assess the improvement in scale dependence in a more detailed way, we show in Fig. 5.4
results for the predicted cross section as a function of µ/M (where again µR = µF ≡ µ), using a fixed
pair invariant mass M = 5.125 GeV, which corresponds to the left-most point in Fig. 5.3. The dot-
dashed line corresponds to the variation of the NLL resummed cross section, where for ξR in Eq. (5.48)
we include only the first term in the exponent, i.e. 2b0αs ln(µ2

R/m̂
2). This is the only term justified

for a cross section resummed to this accuracy. We note that keeping this term in the exponent or
expanding the exponential to first order (as done in [83]) makes only a modest numerical difference.
At NNLL, we include the full exponent ξR in Eq. (5.48), keeping in mind the discussion following
Eq. (5.50). Our result for the scale variation of the NNLL resummed cross section is shown as a solid
line in Fig. 5.4. One observes a very strong improvement when going from NLL to NNLL, with the
NNLL resummed cross section rather flat even out to scales as large as µ = 10M .
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Figure 5.4: Comparison of the scale dependence of the NLL resummed (dot-dashed) and the NNLL
resummed (solid) cross sections for NA24 kinematics. We choose a pion pair invariant mass of M = 5.125
GeV and show the variation of the cross sections as a function of µ/M , where µR = µF = µ.

Figure 5.5 shows the comparison of our results to the CCOR data [199]. The main features of the
results are very similar to those in Fig. 5.3. Again the scale dependence is strongly reduced at NNLL.
As a side remark we note that the new fragmentation functions of [72] also help to achieve a much
better description of the data than we found in our previous study [83].

Finally, we consider di-hadron production in pp collisions at RHIC with a c.m.s. energy of
√
S =

200 GeV. For simplicity, we use the same cuts as for the NA24 experiment. In Fig. 5.6, we show
our results for an invariant mass range of M = 10 − 75 GeV. We find that at this energy the full
NLO (dashed) and the NLO expansion of the resummed result (crosses) do not match quite as well
as observed for fixed target scattering in Fig. 5.3, although the agreement is usually at the 10% level
or better. Threshold resummation again yields a sizable enhancement over NLO, but the effects are
somewhat smaller than in the fixed-target regime, since at RHIC’s higher energy one is typically further
away from threshold. Also here, the NNLL-resummed result is nearly within the NLL scale uncertainty
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Figure 5.5: Same as Fig. 5.3, but for pp-collisions at
√
S = 62.4 GeV. The data are from CCOR [199].

band and shows a reduced scale dependence.

5.5 Conclusions

We have extended the threshold resummation framework for di-hadron production in hadronic col-
lisions, H1H2 → h1h2X, beyond the next-to-leading logarithmic level. To achieve this, we have
determined the first-order corrections to the hard-scattering function H and the soft function S, which
both are matrices in color space. With these, it becomes possible to resum four towers of threshold log-
arithms in the perturbative series. In our numerical studies, we have found that the NNLL resummed
results fall within the scale uncertainty band of the NLL resummed calculation. They also show a
much reduced scale dependence.

There are important further applications of our work. Of particular interest are di-jet, single-inclusive
jet and single-inclusive hadron cross sections, all of which have much phenomenological relevance
at present-day collider experiments. Given the promising results we have obtained for di-hadron
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Figure 5.6: Di-hadron production at RHIC at a center-of-mass energy of
√
S = 200 GeV. The full NLO

result (dashed) is shown in comparison to the NLO expansion of the resummed result (crosses). The solid line
shows the NNLL resummed cross section. As before, we use the scales µR = µF = M and µR = µF = 2M .

production, we may expect that a similar resummation at NNLL for these reactions would also improve
the theoretical QCD prediction.
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CHAPTER 6

TOWARD NNLL THRESHOLD
RESUMMATION FOR SINGLE-INCLUSIVE

HADRON PRODUCTION

We consider the cross section for single-inclusive hadron production in hadronic collisions H1H2 → hX
where the observed final state hadron has a large transverse momentum. We discuss resummation of
threshold logarithms that appear in the partonic cross section. We provide all necessary ingredients for
the extension of threshold resummation beyond next-to-leading logarithmic accuracy. This Chapter is
based on publication [v].

6.1 Introduction

Single-inclusive hadron production in hadronic collisions H1H2 → hX plays an important role in QCD
studies. At large transverse momentum of the observed hadron the cross section may be calculated
within perturbative QCD. Following the factorization theorems developed in [5], the partonic hard
scattering part may be calculated as a power series in the strong coupling constant whereas long-
distance dynamics are captured in PDFs and FFs for initial and final state particles respectively. On
the one hand, this process provides an important test ground for the framework of factorization. On
the other hand, single-inclusive hadron production offers an excellent opportunity to extract infor-
mation on fragmentation functions. Within a global analysis this process is particularly relevant for
constraints on the gluon fragmentation function.

On the experimental side, there are various data sets available nowadays from both fixed target and
collider experiments. It was found in [215, 224, 225] that in particular at fixed target energies the
NLO falls short of the data. This is due to missing higher order corrections. In particular threshold
logarithms turn out to be important which appear at every order in perturbation theory and need to
be resummed to all orders. Threshold resummation for single-inclusive hadron production was devel-
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oped in [84, 87, 215]. In this work we extend the resummation framework toward NNLL following the
techniques developed in Chapter 5. The process that we are considering here is closely related to di-
hadron production and single-inclusive jet production discussed in Chapters 5 and 7 respectively. The
same partonic channels contribute where at LO four colored partons are taking part in the scattering.
Hence, for all three processes the nontrivial underlying color structure needs to be properly taken in
account when the resummation is performed.

In [215], threshold resummation for single-inclusive hadron production was performed at the level of
NLL accuracy for the rapidity integrated cross section. The methods developed in [77] will allow us
to consider a cross section differential in both the transverse momentum pT and the rapidity η of the
observed hadron. We derive all ingredients relevant for the resummation beyond NLL. However, we
leave detailed phenomenological studies for future work. In addition, this framework is also applicable
to spin-dependent observables [226].

We denote the momenta of the involved particles as H1(Pa)H2(Pb) → h(Pc)X, where one hadron is
observed in the final state and we are summing over any additional final state X. We write the partonic
momenta as

pa,b = xa,bPa,b , pc =
Pc
zc
. (6.1)

We introduce the usual kinematical variables for single-inclusive cross sections

V = 1 +
T

S
, W =

−U
S + T

, (6.2)

where S, T, U are the usual Mandelstam variables. Analogous relations hold at the partonic level for
the variables v, w, see also Chapter 9. We can write the double differential cross section involving two
PDFs fH1,2

a,b , a fragmentation function Dh
c and the partonic cross section dσ̂ab→cd as

p2
T d

2σH1H2→hX

dp2
Tdη

=
∑

abcd

∫ 1

1−V+VW
dzc

∫ 1−(1−V )/zc

VW/zc

dv

∫ 1

VW/(vzc)
dw xaf

H1
a (xa, µ

2
F )xbf

H2
b (xb, µ

2
F )

× Dh
c (zc, µ

2
F )

d2σ̂ab→cd

dvdw

(
v, w,

µ2
F

s
,
µ2
R

s
, αs(µ

2
R)

)
, (6.3)

where
xa =

VW

vwzc
, xb =

1− V
(1− v)zc

. (6.4)

The integration limits in Eq. (6.3) follow from xa,b < 1 and from the requirement that for each integral,
the lower limit has to be smaller than the upper one. Threshold distributions that will be addressed
in the next Section to all orders appear in the perturbative expansion of the partonic cross section
dσ̂ab→cd as

αks

(
lnn(1− w)

1− w

)

+

, with n ≤ 2k − 1 , (6.5)

where the partonic threshold is set for w → 1.
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6.2 Resummed Cross Section

Taking moments with Mellin variable N , the resummation of threshold logarithms may be achieved [7,
8, 84], see also Chapter 1 for further details. See [77, 111] for further details concerning resummation
for a double differential cross section. In Mellin space, the threshold logarithms in Eq. (6.5) get
transformed into αks lnn N̄ with n ≤ 2k. The resummed result for single-inclusive hadron production
in Mellin space is given by [77–82, 84, 87]

Ω̃res
abcd

(
v,N, αs(µ

2
R),

µ2
R

s
,
µ2
F

s

)
= ξR

(
αs(µ

2
R),

µ2
R

s

)
ξabcF

(
αs(µ

2
R),

µ2
R

s
,
µ2
F

s

)

× ∆Na
a

(
αs(µ

2
R),

µ2
R

s
,
µ2
F

s

)
∆Nb
b

(
αs(µ

2
R),

µ2
R

s
,
µ2
F

s

)
∆N
c

(
αs(µ

2
R),

µ2
R

s
,
µ2
F

s

)
JNd

(
αs(µ

2
R),

µ2
R

s

)

× Tr

{
H
(
v, αs(µ

2
R)
)
S†N
(
v, αs(µ

2
R),

µ2
R

s

)
S
(
αs(s/N̄

2), v
)
SN
(
v, αs(µ

2
R),

µ2
R

s

)}

ab→cd
(6.6)

with Na = vN and Nb = (1 − v)N . The function SN was defined in Chapter 1 and evaluated up to
NNLL in the context of di-hadron production in Chapter 5. As can be seen this is very similar to
single-inclusive jet production discussed in Chapter 7. The main difference is that, we would have to
replace the radiative factor for the observed parton ∆N

c ↔ J jet
c . In addition, even though they are

closely related, one has to use different expressions for the hard-scattering matrices, the soft matrices
and ξF and we need to include a non-global contribution in the case of jet production.

Jet functions

The radiative factors in the MS scheme are given by [7, 8, 58, 186]

∆Na
i

(
αs(µ

2
R),

µ2
R

s
,
µ2
F

s

)
= Ri(αs(µ

2
R)) exp

{∫ 1

0
dz
zNa−1 − 1

1− z

×
[∫ (1−z)2s

µ2
F

dµ2

µ2
Ai(αs(µ

2)) +Di(αs((1− z)2s))

]}

JNi

(
αs(µ

2
R),

µ2
R

s

)
= Pi(αs(µ

2
R)) exp

{∫ 1

0
dz
zN−1 − 1

1− z

×
[∫ (1−z)s

(1−z)2s

dµ2

µ2
Ai(αs(µ

2)) +
1

2
Bi(αs((1− z)s))

]}
. (6.7)

The coefficients Ri and Pi [227] ensure that the soft function for this process is defined relative to that
for the Drell-Yan process (initial state jet functions) and single-inclusive e+e− → hX (final state jet
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functions). Therefore, we only include a Di term

D
(2)
i = Ci

[
CA

(
−101

27
+

11

3
ζ(2) +

7

2
ζ(3)

)
+Nf

(
14

27
− 2

3
ζ(2)

)]
(6.8)

for two out of the three ∆N in Eq. (6.6) [228].The correct normalization is obtained by using the
coefficients

Ri(αs(µ
2
R)) = 1− αs

2π
A

(1)
i

3

2
ζ(2) +O(α2

s) ,

Pq(αs(µ
2
R)) = 1 +

αs
2π
CF

(
7

2
− 3

2
ζ(2)

)
+O(α2

s) ,

Pg(αs(µ
2
R)) = 1 +

αs
2π

(
CA

(
67

18
− 3

2
ζ(2)

)
− 5

9
Nf

)
+O(α2

s) , (6.9)

see below in Section 6.3. We now present more details about how to calculate the radiative factors ∆N

and JN up to NNLL. Firstly, we consider the function ∆N . The D-term for ∆N may be evaluated in
a straightforward way. Focusing only on the Ai contribution, we obtain

∫ 1

0
dz
zN−1 − 1

1− z

∫ (1−z)2s

µ2
F

dµ2

µ2
Ai(αs(µ

2))

= −Γ̃

(
1− ∂

∂ ln N̄

)∫ 1−1/N̄

0
dz

1

1− z

∫ (1−z)2s

µ2
F

dµ2

µ2
Ai(αs(µ

2)) , (6.10)

where we made use of the relation [186]

zN−1 − 1 = −Γ̃

(
1− ∂

∂ ln N̄

)
Θ(1− z − 1/N̄) +O(1/N̄) , (6.11)

with

Γ̃

(
1− ∂

∂ ln N̄

)
= exp

{ ∞∑

n=2

(−)n
ζ(n)

n

(
− ∂

∂ ln N̄

)n}

= 1 +
ζ(2)

2

(
∂

∂ ln N̄

)2

+ . . . , (6.12)

where in the second line, we expanded the result up to NNLL accuracy. In a second step, we change
the order of the dz and dµ2 integration in Eq. (6.10) and we directly perform the dz integration. We
end up with

−Γ̃

(
1− ∂

∂ ln N̄

)[
1

2

∫ s/N̄2

s

dµ2

µ2
Ai(αs(µ

2)) ln

(
N̄2µ2

s

)
+

∫ s

µ2
F

dµ2

µ2
Ai(αs(µ

2)) ln N̄

]
. (6.13)

The remaining dµ2 integration over powers of the strong coupling constant may then be performed
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with Mathematica for example. Note that the second term in Eq. (6.13) is constructed such that it
vanishes when choosing µ2

F = s. Finally, we note that the operator Γ(1 − ∂/∂ ln N̄) expanded up to
NNLL in Eq. (6.12) yields an additional term proportional ζ(2)/(1− 2λ) in the exponent which does
not vanish for λ→ 0, where λ = αsb0 ln N̄ . Therefore, we rewrite it as

ζ(2)

1− 2λ
= ζ(2)

(
2λ

1− 2λ
+ 1

)
. (6.14)

The first term remains in the exponent, whereas the second term is will be part of the “C-coefficient”
as it does not depend on ln N̄ . Here it will be absorbed in the coefficient Ri → R̃i, see below.

The function JN may be evaluated analogously. The B-term may be integrated directly and for the
A-term, we proceed as follows. We split the dµ2 integration at s and we directly follow the same steps
as described above for the two terms. We obtain the following result

Γ̃

(
1− ∂

∂ ln N̄

)[
1

2

∫ s/N̄2

s

dµ2

µ2
Ai(αs(µ

2)) ln

(
N̄2µ2

s

)
−
∫ s/N̄

s

dµ2

µ2
Ai(αs(µ

2)) ln

(
N̄µ2

s

)]
. (6.15)

In this case, we rewrite the ζ(2) term due to the operator Γ(1− ∂/∂ ln N̄) as

− ζ(2)

2(1− λ)(1− 2λ)
= −ζ(2)

2

(
λ(3− 2λ)

(1− λ)(1− 2λ)
+ 1

)
(6.16)

where again the first term remains in the exponent, whereas the second one will be absorbed in the
following redefinition Pi → P̃i. Note the different overall sign in Eq. (6.16) in comparison to Eq. (6.14).

We now summarize the results for the functions ∆Na and JN expanded up to NNLL accuracy. Firstly,
for ∆Na , we obtain

∆Na
i

(
αs(µ

2
R),

µ2
R

s
,
µ2
F

s

)
= R̃i(αs(µ

2
R)) exp

{
h

(1)
i (λa) ln N̄a

+h
(2)
i

(
λa,

µ2
R

s
,
µ2
F

s

)
+ αs(µ

2
R)h

(3)
i

(
λa,

µ2
R

s
,
µ2
F

s

)}
, (6.17)

where the functions hi can be found in Chapter 5 and everything is straightforwardly evaluated for
N → Na and λ→ λa = λ+αsb0 ln v. Note that this leads to the exponentiation of terms such as ln2 v
which have no dependence on ln N̄ . However, this approach is very similar to terms with γE which are
also naturally kept in the exponent. For the factor R̃i(αs(µ2

R)), we obtain

R̃i(αs(µ
2
R)) = 1 +

αs
π
A

(1)
i

ζ(2)

4
+O(α2

s) . (6.18)

Secondly, we expand JN as

JNi

(
αs(µ

2
R),

µ2
R

s

)
= P̃i(αs(µ

2
R)) exp

{
f

(1)
i (λ) ln N̄ + f

(2)
i

(
λ,
µ2
R

s

)
+ αs(µ

2
R) f

(3)
i

(
λ,
µ2
R

s

)}
.(6.19)
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Written in terms of the results of [227] in Chapter 5, we obtain [228]

f
(1)
i (λ) = h

(1)
i

(
λ

2

)
− h(1)

i (λ) ,

f
(2)
i

(
λ,
µ2
R

s

)
= 2h

(2)
i

(
λ

2
,
µ2
R

s
, 1

)
− h(2)

i

(
λ,
µ2
R

s
, 1

)
+
B

(1)
i

2πb0
ln(1− λ) ,

f
(3)
i

(
λ,
µ2
R

s

)
= 2h

(3)
i

(
λ

2
,
µ2
R

s
, 1

)
− h(3)

i

(
λ,
µ2
R

s
, 1

)
− 3A

(1)
i

2π
ζ(2)

λ

1− λ +
B

(1)
i b1

2πb20

λ+ ln(1− λ)

1− λ

− B
(2)
i

2π2b0

λ

1− λ −
B

(1)
i

2π

λ

1− λ ln

(
µ2
R

s

)
. (6.20)

The factor P̃i(αs(µ2
R)) in Eq. (6.19) is given by

P̃q(αs(µ
2
R)) = 1 +

αs
2π
CF

(
7

2
− 5

2
ζ(2)

)
+O(α2

s) ,

P̃g(αs(µ
2
R)) = 1 +

αs
2π

(
CA

(
67

18
− 5

2
ζ(2)

)
− 5

9
Nf

)
+O(α2

s) , (6.21)

for the unobserved parton being a quark or gluon respectively, see the discussion below in Section 6.3.
The coefficients Bi are given by

B(1)
q = −3

2
CF , B(1)

g = −2b0π

B(2)
q = C2

F

[
− 3

16
+

3

2
ζ(2)− 3ζ(3)

]
+ CFCA

[
−3155

432
+

11

6
ζ(2) + 5ζ(3)

]

+CFNf

[
247

216
− 1

3
ζ(2)

]
,

B(2)
g = C2

A

[
−611

72
+

11

3
ζ(2) + 2ζ(3)

]
+ CANf

[
107

54
− 2

3
ζ(2)

]
+

1

4
CFNf −

5

54
N2
f . (6.22)

The Functions ξR and ξF

ξR is exactly the same as for di-hadron production in Chapter 5. However, ξabcF is different in the sense
that we do not have a contribution for the unobserved parton d. In addition, we expand the parton’s
anomalous dimension up to NLO

γi =
(αs
π

)
γ

(1)
i +

(αs
π

)2
+ γ

(2)
i (6.23)
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with [229]

γ(1)
q =

3

4
CF , γ(1)

g = b0π

γ(2)
q = C2

F

(
3

32
− 3

4
ζ(2) +

3

2
ζ(3)

)
+ CACF

(
17

96
+
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12
ζ(2)− 3

4
ζ(3)

)
+ CFNf

(
− 1

48
− 1

6
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)

γ(2)
g = C2

A

(
2

3
+

3

4
ζ(3)

)
−Nf

(
CF
8

+
CA
6

)
. (6.24)

which also introduces an explicit dependence on the scale µR. We have [78, 80–82, 97]

ln ξabcF

(
αs(µ

2
R),

µ2
R

s
,
µ2
F

s

)
=
∑

i=a,b,c

∫ m̂2

µ2
F

dµ2

µ2

αs(µ
2)

π
γi(αs(µ

2)) , (6.25)

Note that at LO, we have γ(1)
i = −2B

(1)
i . Performing the integration in Eq. (6.25), we obtain

ln ξabcF

(
αs(µ

2
R),

µ2
R

s
,
µ2
F

s

)
=

∑

i=a,b,c

[
−αs
π
γ

(1)
i ln

µ2
F

s

+
(αs
π

)2
(
−γ(2)

i +
b0π

2
γ

(1)
i ln

µ2
F

s
− b0πγ(1)

i ln
µ2
R

s

)
ln
µ2
F

s

]
. (6.26)

6.3 Soft Function

Throughout this Chapter, we work in the ’t Hooft-Veltman scheme (HV scheme) [230]. See [30, 200]
for transition rules to the conventional dimensional regularization scheme (CDR scheme). Firstly, we
consider to the two color singlet processes Drell-Yan and e+e− → hX which we use to normalize
the soft function for single-inclusive hadron production. Secondly, we consider the 2 → 3 processes
q(p1)q′(p2) → q(p3)q′(p4)g(k) and q(p1)q̄(p2) → g(p3)g(p4)g(k). We note that our labeling of the
momenta for the three final state particles is consistent with Chapter 5 but differs from the standard
notation used for single-inclusive kinematics, e.g. [231, 232], where k1,2,3 is used instead. We note that
the hard-scattering matrix H(1) is exactly the same as the one derived in Chapter 5.

6.3.1 Comparison to Drell-Yan and e+e− → hX

In the di-hadron case our strategy was to fix the incoming jets by requiring them to reproduce (eikonal)
Drell-Yan exactly, see Appendix D. This led to the resummed ∆N

i in Eq. (6.7); see also Chapter 5.
After expansion to NLO one has

∆N
i = 1 +

αs
2π
A

(1)
i

[
2 ln2 N̄ +

1

2
ζ(2)

]
. (6.27)

The finite part of the first-order virtual correction for Drell-Yan is known to give rise to the hard
factor [45]

Hqq̄ = 1 +
αs
2π
CF (−8 + 7ζ(2)) , (6.28)
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relative to Born. We have dropped any scale dependence. We then have

∆N
q ∆N

q̄ Hqq̄ = 1 +
αs
2π
CF

(
4 ln2 N̄ − 8 +

4

3
π2

)
. (6.29)

This is exactly the known [45] NLO correction factor near threshold. In other words, the choice (6.7)
makes sure that our “∆N ’s”, along with the hard part, reproduce Drell-Yan without need for any ad-
ditional soft function.

We can now do a similar analysis for the process e+e− → qX in order to fix the final state jet functions
for single-inclusive hadron production. For the observed quark and unobserved anti-quark, we use
the functions ∆N

q and JNq̄ respectively as defined in Eq. (6.7). For consistency, we check that the
prefactors Rq and Pq in (6.9) are chosen correctly such that we can directly reproduce the NLO result
for e+e− → qX near threshold without any additional soft function. To check this, we have to first
order

∆N
q = 1 +

αs
2π
CF

[
2 ln2 N̄ +

1

2
ζ(2)

]
,

JNq̄ = 1 +
αs
2π
CF

[
− ln2 N̄ +

3

2
ln N̄ +

7

2
− 5π2

12

]
. (6.30)

The hard virtual correction is identical to that for Drell-Yan. Combining all factors, we obtain

∆N
q Hqq̄ J

N
q̄ = 1 +

αs
2π
CF

(
ln2 N̄ +

3

2
ln N̄ − 9

2
+

5

6
π2

)
, (6.31)

which is in agreement with [99] for example; see also Chapters 2 and 4.

6.3.2 Eikonal Calculation for qq′ → qq′: Real Emission

Color Structure Rij

In order to compute S(1) for single-inclusive hadron production, we need to consider the diagrams
shown in Fig. 5.2 in Chapter 5. The blue circle on either side of the cut denotes a Born hard part that
can be either a color octet or singlet. Each of the diagrams in Fig. 5.2 has the structure

∑

IL

h
(0)
I h

(0)∗
L (Rij)LI Iij . (6.32)

where ij labels the diagram. The Iij are integrals over the eikonal factor corresponding to the diagram.
(Rij)LI is a matrix in color space with entries LI =octet-octet, singlet-octet, etc. Calculating the
matrices Rij we find the same matrices as in Chapter 5, see Eq. (5.83). Summing over all diagrams
we thus find

∑

ij

Rij Iij =
CF
2

(
1
2(I13 + I24)− I12 − I34 − N2

c−2
2 (I14 + I23) Nc(I12 + I34 − I14 − I23)

Nc(I12 + I34 − I14 − I23) −2N2
c (I13 + I24)

)
. (6.33)
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Here we included a minus sign whenever the eikonal factor is due to an interference between an initial-
and final-state emission. This statement also holds true for the channels qq, qg and gg. Whenever anti-
quarks are taking part in the scattering process, the extra minus signs needs to be adjusted differently,
cf. [212] for example.

Integrals Iij

Now we specify the integrals Iij for single-inclusive hadron production. They are given by eikonal
factors integrated over the gluon phase space. Starting with the the three-particle phase space for
single-inclusive kinematics following [231, 232], we have

Φ3 =
s

(4π)4Γ(1− 2ε)

(
4π

s

)2ε ∫ 1

0
dv v1−2ε(1− v)−ε

∫ 1

0
dw (w(1− w))−ε

∫
dΩ (6.34)

where, using the standard notation for the Mandelstam variables [231, 232], we have

t1 = (p1 − p3)2 = −s(1− v), s23 = (p4 + k)2 = sv(1− w) (6.35)

and ∫
dΩ =

∫ π

0
dθ1

∫ π

0
dθ2 sin1−2ε θ1 sin−2ε θ2 . (6.36)

The relevant angular integrals are given by [221]
∫
dΩ

1

(1− cos θ1)j(1− cos θ1 cosχ− sin θ1 cos θ2 sinχ)k

= 2π
Γ(1− 2ε)

Γ(1− ε)2
2−j−k B(1− ε− j, 1− ε− k) 2F1

(
j, k, 1− ε, cos2 χ

2

)
. (6.37)

In order to obtain the integrals Iij , we need to factorize out the Born cross section. Therefore, we have
to normalize to the leading-order phase space Φ2 which is given by [45]

Φ2 =
1

8πΓ(1− ε)

(
4π

s

)ε ∫ 1

0
dv (v(1− v))−ε

∫ 1

0
dw δ(1− w) (6.38)

Summarizing everything, we end up with the definition of the terms I ′ij

I ′ij = −αs
π

s

4π
eεγE

Γ(1− ε)
Γ(1− 2ε)

∫ 1

0
dw v1−εw−ε(1− w)−ε

∫
dΩ

pi · pj
(pi · k)(pj · k)

. (6.39)

We note that the minus sign is due to the eikonal factors that are being integrated. It turns out that
the structure of the soft matrix will be more clear using the variables (v, z) instead of the standard
ones (v, w). The variable z is defined as z ≡ v(1−w) analogous to the variable used in Chapter 7. This
choice turns out to be more convenient as z is invariant under the crossing p1 ↔ p2 or equivalently
v → 1 − vw and w → (1 − v)/(1 − vw). Instead of Eq. (6.39) we may directly write the integrals I ′ij
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in terms of the variables (v, z) as

Iij = −αs
π

s

4π
eεγE

Γ(1− ε)
Γ(1− 2ε)

∫ 1

0
dz (1− z/v)−εz−ε

∫
dΩ

pi · pj
(pi · k)(pj · k)

. (6.40)

Note, that we may also neglect the factors w−ε in Eq. (6.39) and (1− z/v)−ε in Eq. (6.40) as we are
only interested in the singular distributions at threshold. In this case, the only dependence of Iij on
the variable v is introduced by the eikonal factors integrated over dΩ.

Without carrying out the dz integration, we obtain the following results for the three integrals that do
not involve the radiation of a gluon from the unobserved parton four

dI12

dz
= −αs

π

[(
1

ε2
− ζ(2)

2
+

1

ε
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1
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+
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)

+
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+
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log2
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+
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(
ln(z)
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)

+

]

dI23

dz
=

dI13
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v↔(1−v)

(6.41)

Where the interchange v ↔ (1 − v) corresponds to a t ↔ u crossing. Next, we consider the integrals
Ii4, where i = 1, 2, 3. Integrating the corresponding eikonal factors, we find that all three yield the
same result

dIi4
dz

= −αs
π

[(
1

ε2
+

1

ε
+ 2− 3

2
ζ(2)

)
δ(z)−

(
1

ε
+ 1

)(
1

z

)

+

+

(
ln(z)

z

)

+

]
. (6.42)

For all Iij we have left the dz integral aside for now. The dz integration is trivial in the sense that
all plus-distributions vanish. However, we still need to keep the full result in order to extract the soft
matrix in Mellin moment space, as it is there, where threshold resummation is derived. In addition, it
will turn out to be very useful to analyze the structure of the sum in Eq. (5.2) using the results for Iij
before the integration is performed.

Jet Functions and Extraction of S(1)

According to the definition of the soft function, see Appendix D, we need to normalize by the four jet
functions associated with the four partons taking part in the scattering at LO. We want our incoming
jets to be defined as in Drell-Yan, except for the shifts N → Na = Nv and N → Nb = N(1− v). From
Drell-Yan (or from the di-hadron calculation in Chapter 5) we know that the real-emission part of the
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jet functions is given by

j̃in ≡ 1 +
αs
2π
CF

[
1

ε2
+

2

ε
ln N̄ + 2 ln2 N̄ +

1

2
ζ(2)

]
. (6.43)

We therefore have the incoming jets as

j̃in,a = 1 +
αs
2π
CF

[
1

ε2
+

2

ε
ln N̄a + 2 ln2 N̄a +

1

2
ζ(2)

]
,

j̃in,b = 1 +
αs
2π
CF

[
1

ε2
+

2

ε
ln N̄b + 2 ln2 N̄b +

1

2
ζ(2)

]
. (6.44)

Note that this is consistent with the integral I12 for which we had
∫ 1

0
dz zN−1dI12

dz
= −αs

π

[
1

ε2
+

1

ε
(ln N̄a + ln N̄b) + ln2 N̄a + ln2 N̄b +

3

2
ζ(2)− 1

2
ln2

(
1− v
v

)]
,

(6.45)
the difference only residing in the N -independent pieces. (One needs a factor (−CF ) to get the right
normalization). Now we need to consider the final-state jets. Again, following the di-hadrons, we want
the “observed” (fragmenting) one to be defined as that for an incoming parton. We therefore have for
its real-emission contribution

j̃out,c = 1 +
αs
2π
CF

[
1

ε2
+

2

ε
ln N̄ + 2 ln2 N̄ +

1

2
ζ(2)

]
. (6.46)

The only remaining issue is to find the jet function j̃out,d for the recoil parton. We may construct it
by demanding that the product j̃out,c j̃out,d has to reproduce the integral I34. The latter is given by

∫ 1

0
dz zN−1dI34

dz
= −αs

π

[
1

ε2
+

1

ε
+

(
1

ε
+ 1

)
ln N̄ +

1

2
ln2 N̄ + 2− ζ(2)

]
, (6.47)

(again we need (−CF ) for normalization). From this, and using j̃out,c above, we conclude that

j̃out,d = 1 +
αs
2π
CF

[
1

ε2
+

2

ε
− ln2 N̄ + 2 ln N̄ + 4− 5

2
ζ(2)

]
. (6.48)
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To summarize, we have for the real-emission parts of the jet functions

j̃in,a = 1 +
αs
2π
CF

[
1

ε2
+

2

ε
ln N̄a + 2 ln2 N̄a +

1

2
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2
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]
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1
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+
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1

2
ζ(2)

]
,
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2π
CF

[
1

ε2
+

2

ε
− ln2 N̄ + 2 ln N̄ + 4− 5

2
ζ(2)

]
. (6.49)

Equipped with these, we now go back to the color-decomposed calculation for the real-emission dia-
grams near threshold:

∫ 1

0
dz zN−1

∑

ij

Rij Iij =
αs
π

[
2CF
ε2

S(0) − 1

2ε
[(Γ(1))†S(0) + S(0)Γ(1)] +
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2
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1
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2

{(
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4 log2 (v(1− v)) + 2 log(1− v) log(v) −2Nc log(1− v) log(v)

−2Nc log(1− v) log(v) −N2
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)
+ ζ(2)S(0)

}]
.

(6.50)

Now we divide by the product of the jet functions in (6.49) (There is a LO term S(0) to do this, see
Appendix D). Many terms cancel; the ones that remain are

αs
π

[
−
(

1

2ε
+ ln N̄

)
[(Γ(1))†S(0) + S(0)Γ(1)]

+
CF
2

{(
−N2

c−1
4 log2 (v(1− v)) + 2 log(1− v) log(v) −2Nc log(1− v) log(v)

−2Nc log(1− v) log(v) −N2
c log2 (v(1− v))

)
+ 2 ζ(2)S(0)

}]
.

(6.51)

The term in the second line directly gives S(1).
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Comparison to NLO

With the matrix S(1) at hand from (6.51), along withH(1) from Chapter 5, we are now able to reproduce
NLO including all constant terms. The analytic NLO expressions are available from [42, 233]. We start
from the resummation formula and expand everything to first order. (All formulas below make use of
the choice log(2ν) = 1 for the gauge parameters.) First we need the ∆N and JN cf. Section 6.2 above:

∆N
a = 1 +

αs
2π
CF

[
2 ln2 N̄a +

1

2
ζ(2)

]
,

∆N
b = 1 +

αs
2π
CF

[
2 ln2 N̄b +

1

2
ζ(2)

]
,

∆N
c = 1 +

αs
2π
CF

[
2 ln2 N̄ +

1

2
ζ(2)

]
,

JNd = 1 +
αs
2π
CF

[
− ln2 N̄ +

3

2
ln N̄ +

7

2
− 5

2
ζ(2)

]
, (6.52)

where we have omitted any scale logarithms for now. Furthermore, for the color trace part in the
resummation formula, we have

Tr[HS†SS] = Tr[H(0)S(0)]

{
1 +

αs
π

ln N̄

(
−4CF ln v +

2

CA
(ln v + ln(1− v))

)}

+
αs
π

Tr[H(1)S(0) +H(0)S(1)] . (6.53)

Combining (6.52) and (6.53) and comparing to NLO, we find full agreement.

6.3.3 Eikonal Calculation for qq̄ → gg: Real Emission

Instead of (6.50) we have here

∫ 1

0
dz zN−1

∑

ij

Rij Iij =
αs
π

[
(CF + CA)

ε2
S(0) − 1

2ε
[(Γ(1))†S(0) + S(0)Γ(1)]

+
1
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+

[
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2
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]
S(0) − ln N̄

(
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)
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+

{
ln N̄ +

(
1

ε
+ 2

)}
CA S

(0)

+

[
−CF

2
log2 (v(1− v)) + (2CF − CA) log(1− v) log(v) +

(
3

2
CF − CA

)
ζ(2)

]
S(0)

+ 2CFC
3
A log(1− v) log(v)M ,

(6.54)

where Γ(1) and S(0) are the known matrices for this process (they are 3× 3), see [82] for example, and

M =




1 0 0

0 0 0

0 0 0


 . (6.55)

As before, we now use the jet functions of Eq. (6.49), but with CF → CA for the final state. Divid-
ing (6.54) by the four jet functions, we obtain

αs
π

[
−
(

1

2ε
+ ln N̄

)
[(Γ(1))†S(0) + S(0)Γ(1)]

+

{
−CF

2
log2 (v(1− v)) + (2CF − CA) log(1− v) log(v) + CF ζ(2)

}
S(0)

+ 2CFC
3
A log(1− v) log(v)M

]
, (6.56)

which is to be compared with (6.51). As before, the terms in the last two lines directly give S(1).

To do the comparison with NLO, we use
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2π
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[
2 ln2 N̄a +

1

2
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]
,
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1

2
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]
,
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c = 1 +
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2π
CA

[
2 ln2 N̄ +

1

2
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]
,

JNd = 1 +
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[
−CA ln2 N̄ +

β0

2
ln N̄ + CA

(
67

18
− 5

2
ζ(2)

)
− 5

9
Nf

]
, (6.57)

where
β0 =

11

3
CA −

2

3
Nf . (6.58)
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In addition, we obtain from the color trace part

Tr[HS†SS] = Tr[H(0)S(0)]

+
αs
π

ln N̄
2CF
CA

(
1− v
v

+
v

1− v

)
[log(v(1− v))(1− v2C2

A)− C2
A log(v)(1− 2v)]

+
αs
π

Tr[H(1)S(0) +H(0)S(1)] . (6.59)

Putting everything together and comparing to NLO, we find full agreement. In the Appendix E, we
present the explicit results for the NLO soft matrix for all channels.

6.4 Conclusions

We derived all ingredients for the extension of threshold resummation toward NNLL for single-inclusive
hadron production in hadronic collisions. In comparison to hadron pair production in Chapter 5, we
found several new features. With the help of the methods developed in [77], phenomenological results
will become available in the future for cross sections differential in both transverse momentum and
rapidity of the observed hadron. Given the availability of various data sets, this will be very interesting
for QCD precision phenomenology and for the extraction of fragmentation functions in a global analysis.
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CHAPTER 7

APPROXIMATE NNLO AND N3LO
CORRECTIONS TO HADRONIC JET

PRODUCTION

We determine dominant next-to-next-to-(-next-to)-leading order QCD corrections to single-inclusive
jet production at the LHC and Tevatron, using the established threshold resummation framework. In
contrast to previous literature on this topic, our study incorporates all of the following features: (1)
It properly accounts for the way a jet is defined in experiment and treated in available full next-to-
leading order calculations, (2) It includes the three (four) leading classes of logarithmic terms in the
perturbative expansion, and (3) It is adapted to the full kinematics in jet transverse momentum and
rapidity relevant for experiments. A recent full next-to-next-to-leading order calculation in the purely
gluonic channel allows us to assess the region where our approximate corrections provide an accurate
description. We expect our results to be important on the way to precision jet phenomenology at
the LHC and as benchmark for further full next-to-next-to-leading order calculations. In addition, we
extend our results toward next-to-next-to-leading logarithmic accuracy and we directly perform the
inversion from Mellin transform space. This Chapter is based on publications [vi] and [vii].

7.1 Introduction

The production of high-transverse-momentum hadron jets plays a fundamental role at the LHC [234]
and at Tevatron [235]. Jets are produced very copiously, making them precision probes of the physics
of the Standard Model and beyond. Theoretical calculations whose precision matches that achievable
in experiment are of critical importance. The efforts made in this context have spanned more than
three decades now, culminating so far with the recent calculation of the next-to-next-to-leading order
(NNLO) perturbative corrections to jet production in the “gluon-only” channel [236, 237].

As complete NNLO calculations of jet production are probably still a few years away, it is useful to
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determine approximate NNLO results, at least in certain kinematical regimes. This is possible thanks
to the fact that the perturbative series for the partonic cross sections contains classes of logarithmic
terms that often dominate. Resummation techniques in QCD [80] allow to determine the all-order
structure of these logarithmic terms, and one therefore also obtains the logarithms present at NNLO.
Knowledge of approximate NNLO expressions is very useful, since it potentially offers an avenue toward
more precise phenomenology than available on the basis of the presently known full next-to-leading
order (NLO) corrections. It also serves as benchmark for future full NNLO calculations.

The logarithms just mentioned arise near a threshold from which the production of a jet becomes
possible in a partonic collision. They are hence known as “threshold logarithms”. The threshold is
set by a vanishing invariant mass

√
s4 of the partonic system that recoils against the observed jet.

At the kth order of perturbation theory, one finds threshold corrections to the Born cross section of
the form αks [logm(z)/z]+, with 0 ≤ m ≤ 2k − 1, where z = s4/s with

√
s the center-of-mass energy

of the incoming partons. The systematic resummation of these logarithms to all orders in the strong
coupling αs was derived for the case of jet production in [80], where explicit next-to-leading logarith-
mic (NLL) results were given that in principle allow to resum the three “towers” of logarithms with
m = 2k − 1, 2k − 2, 2k − 3.

An important “subtlety” was pointed out in [80] concerning the threshold logarithms in jet produc-
tion: the structure of the logarithmic corrections depends on whether or not the jet is assumed to
be massless at partonic threshold, even at the leading-logarithmic (LL) level. If the jet is taken to
be massless at threshold, an approach for which we will use the term “scheme (1)” in the following,
leading-logarithmic corrections arise in the resummed perturbative function describing the jet. If, on
the other hand, the jet is permitted to have a non-vanishing invariant mass at threshold (“scheme (2)”),
the leading logarithms cancel, leaving behind a non-leading logarithm whose coefficient depends on jet
“size” parameter R introduced by the jet algorithm. The difference between the two schemes may be
understood from the fact that fewer final states contribute in scheme (1) than in scheme (2) [80].

Approximate NNLO corrections for jet production have been derived in [82, 238, 239], adopting
scheme (1). As one can see in the very recent study [238], the NLO terms predicted for scheme (1) fail
to match a full NLO calculation [240] even in a regime where threshold logs are known to dominate.
This becomes particularly evident from the fact that the threshold terms for scheme (1) do not carry
any dependence on the jet parameter R, whereas the full NLO results do. These features observed
in [238] are in fact not surprising: explicit analytical NLO calculations [40, 43] have shown that jets
produced close to partonic threshold do span a range of jet masses. Indeed, for any jet algorithm the
jet produced in the perturbative calculation can evidently contain two or more partons and hence have
a non-vanishing invariant mass. This is even the case at exact threshold z = 0, when for example only
a single parton recoils against the entire jet. The maximally allowed jet mass at threshold will depend
on the parameter R used in the jet algorithm.

Thus, the assumption of massless jets at threshold that was made in previous studies [82, 238, 239] does
not appear to be appropriate. Instead, the resummation ought to be carried out within scheme (2).
A resummed study in this scheme was in fact performed in [216], where however only the rapidity-
integrated cross section was considered, for which the resummation simplifies considerably. Integration
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over all rapidity is not quite adequate for comparisons with experimental data. In the present paper we
present new predictions for the NNLO threshold terms, using scheme (2) and keeping full dependence on
rapidity in the calculation. We will also go beyond the previous studies [82, 238] by determining all three
most leading logarithmic contributions ∝ (log3(z)/z)+, (log2(z)/z)+, (log(z)/z)+ at NNLO. The last of
these is new; it may be obtained by matching the resummation framework to a full NLO calculation.
For the latter we choose that of [40, 43], which provides analytical results for the partonic cross
sections. The calculation was performed assuming that the produced jet is rather narrow (“narrow-
jet approximation” (NJA)). It has been shown that this approximation is extremely accurate even at
relatively large jet sizes of R & 0.7.

7.2 Theoretical Framework

The factorized cross section for the single-inclusive production of a jet with transverse momentum pT
and pseudorapidity η may be written as

p2
Td

2σ

dp2
Tdη

=
∑

ab

∫ V (1−W )

0
dz

∫ 1− 1−V
1−z

VW
1−z

dv xafa(xa, µ
2
F )xbfb(xb, µ

2
F )
dσ̂ab
dvdz

(v, z, pT , µ
2
R, µ

2
F , R), (7.1)

where V = 1 − xT e−η/2, VW = xT eη/2, with xT = 2pT /
√
S and the hadronic center-of-mass energy√

S. The sum runs over all partonic collisions producing the jet; dσ̂ab denote the corresponding partonic
hard-scattering cross sections and fa, fb the parton distribution functions at momentum fractions
xa = VW/v(1 − z), xb = (1 − V )/(1 − v)(1 − z). The partonic cross sections are computed in
QCD perturbation theory. As indicated, besides depending on pT and the usual renormalization and
factorization scales µR, µF , they are functions of the partonic kinematic variables, which we have chosen
as

v =
u

t+ u
, z =

s4

s
, (7.2)

where s = xaxbS is the partonic center-of-mass energy squared, t = (pa − pJ)2, u = (pb − pJ)2 (with
pa,b and pJ the four-momenta of the initial partons and the jet, respectively), and s4 is the invariant
mass squared of the “unobserved” partonic system recoiling against the jet. We stress that the dσ̂ab
also depend on the algorithm adopted to define the jet, as indicated by the generic jet parameter R in
Eq. (7.1). We always assume the jet to be defined by the anti-kt algorithm [38].

The perturbative series for each of the partonic scattering cross sections may be cast into the form

sdσ̂ab
dvdz

=
(αs
π

)2
[
ω

(0)
ab +

αs
π
ω

(1)
ab +

(αs
π

)2
ω

(2)
ab +O(α3

s)

]
, (7.3)

where αs ≡ αs(µ
2
R) is the strong coupling constant, and where each of the ω(k)

ab is a function of v, z
and, for k > 0, of R and pT /µ (we choose from now on µR = µF ≡ µ). At lowest order we have

ω
(0)
ab (v, z) ≡ ω̃(0)

ab (v)δ(z), (7.4)

since the recoiling system is a single massless parton. Hence z = 0 sets a threshold for the process
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to take place, since the transverse momentum of the observed jet always needs to be balanced. At
higher orders in perturbation theory, the hard scattering functions contain logarithmic distributions
in z, with increasing powers of logarithms as the perturbative order increases. More precisely, one has
near the threshold at z = 0:

αksω
(k)
ab ∼ αks

(
logm(z)

z

)

+

, with 0 ≤ m ≤ 2k − 1. (7.5)

Here
∫ 1

0 dzg(z)[f(z)]+ ≡
∫ 1

0 dz(g(z)−g(0))f(z). As one can see, two additional powers of the logarithm
arise for every order of perturbation theory. Due to the integration against the parton distribution
functions, which are steeply falling functions of momentum fraction, the threshold region z → 0 typi-
cally makes significant contributions to the hadronic cross section. This is particularly the case when
the kinematic boundary of the hadronic reaction is approached, that is, when xT cosh η → 1.

As is well known, the large logarithmic corrections arising in the threshold region are associated with
the emission of soft or collinear gluons. It is therefore possible to systematically determine the structure
of the corrections to all orders and to resum the “towers” of logarithms with m = 2k − 1, 2k − 2, . . ..
This may be used to derive approximate beyond-NLO corrections for hadronic jet production, by
expanding the resummed result appropriately to the desired order [82, 216, 238]. To achieve the
all-order resummation, one considers Mellin moments in (1− z) of the partonic cross section:

Ωab(v,N) ≡
∫ 1

0
dz(1− z)N−1 sdσ̂ab

dvdz
. (7.6)

In moment space, the resummed hard-scattering function Ωres
ab can at large N be written as [80, 87]

Ωres
ab (v,N) =

∑

c,d

∆a(Na) ∆b(Nb) J
(jet)
c (N,R) J

(recoil)
d (N)

× ∆
(int)
ab→cd(N, v) ∆(ng)

c (N), (7.7)

where Na = vN , Nb = (1−v)N and the sum runs over the two final-state partons c, d in an underlying
ab→ cd subprocess. Here it is assumed that parton c produces the jet (in a way that we shall clarify
below), while the recoiling parton d remains unobserved. Each of the terms is also a function of αs(µ2)

and log(µ2/s), which we have not written explicitly. Each of the functions ∆a,∆b, J
(jet)
c , J

(recoil)
d is an

exponential. ∆a,∆b resum threshold logarithms arising from soft/collinear radiation off the incoming
hard partons. Their expressions are very well known and may be found in the form we need them
in, for example, [87]. Likewise, also the expression for gluon radiation off the “unobserved” recoiling
parton d is standard and may be found there. ∆a,∆b and J

(recoil)
d contain all the leading logarithmic

pieces ∝ (log3(z)/z)+, (log2(z)/z)+ in ω(2)
ab .

A crucial point of our study concerns the function J (jet)
c used for the actual jet. As was shown in [80],

this function takes different forms depending on whether one assumes the jet to become itself massless
at threshold or not. These two forms differ even at leading logarithmic level. For scheme (2) introduced
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earlier, we have to next-to-leading logarithmic accuracy [80]:

log J (jet)
c =

∫ s/N̄2

s

dq2

q2
αs
(
q2
)(
−Cc

2π
log

(
p2
TR

2

s

))
, (7.8)

where N̄ ≡ NeγE with the Euler constant γE , and where Cc denotes the color charge of parton c,
Cq = CF for a quark and Cg = CA for a gluon. As expected, J (jet)

c is a function of R in this scheme.

The function ∆
(int)
ab→cd(N, v) is obtained as a trace in color space over hard, soft, and anomalous dimen-

sion matrices [80]. All details have been given in [82] and need not be repeated here. The function
contributes at NLL level and is the only function in the resummed expression that carries explicit
dependence on v.

Finally, ∆
(ng)
c (N) in (7.7) contains the contributions from non-global logarithms. These were shown [241,

242] to arise when an observable is sensitive to radiation in only a part of phase space, as is the case
for a jet defined by some jet “size” parameter R. Their resummation is highly non-trivial. Non-global
logarithms for jet production first enter as a term ∝ [log(z)/z]+ in ω(2)

ab . As discussed in [243], the non-
global terms arise independently from the boundary of each individual (narrow) “observed” jet, when
jets are assumed to be narrow and well separated. The appropriate second-order coefficient for our
case of a single-inclusive jet cross section may therefore be directly obtained from [241–243], adjusting
the argument of the logarithm properly. We note that these considerations– and in fact the general
structure of our resummed cross section– apply to the anti-kt algorithm [243] consistent with our choice
throughout this paper. We finally also mention that the non-global component makes a rather small
contribution (a few per cent) to our numerical NNLO results presented below. All in all, after per-
forming the Mellin-inverse to z-space, the two-loop expansion of the product ∆

(int)
ab→cd(N, v) ∆

(ng)
c (N)

in Eq. (7.7) takes the form

(αs
π

)2
[
ω̃

(0)
ab (v)

(
δ(z) +

1

2

(αs
π

)2
C(ng)
c

(
log(z)

z

)

+

)
+
αs
π

(
Tab→cd(v)δ(z) + G(1)

ab→cd(v)

(
1

z

)

+

)

+
(αs
π

)2
G(2)
ab→cd(v)

(
log(z)

z

)

+

]
, (7.9)

with C(ng)
c = −CACcπ2/3 for the coefficient of the non-global term. The coefficients G(1)

ab→cd(v) are
predicted by the resummation formalism. The coefficients Tab→cd(v) may be derived by comparison to
the explicit NLO results of [43] in the narrow-jet approximation. Along with the known resummation
coefficients, knowledge of the Tab→cd(v) is sufficient for determining G(2)

ab→cd(v) [83, 244]. In this way,
combining with the contributions from ∆a,∆b, J

(jet)
c , J

(recoil)
d , we obtain full control over the terms

∝ (log3(z)/z)+, (log2(z)/z)+, (log(z)/z)+ in ω(2)
ab .

7.3 Phenomenological Results - 1

Figure 7.1 shows results for the differential single-inclusive jet cross section at the LHC, at lowest order
as well as for the NLO and NNLO threshold terms. Here we use the CTEQ6.6 [245] parton distribution
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Figure 7.1: Differential cross section for jet production in pp-collisions at the LHC at
√
S = 8 TeV, using

the anti-kt algorithm with R = 0.7.

functions and scale µ = pT . The left part of Figure 7.2 displays the corresponding “K-factors”, defined
as ratios of higher-order cross sections over the leading-order one, while the right part of the figure
is for pp̄ collisions at Tevatron at

√
S = 1.96 TeV. Results are presented for various jet parameters

R. The dotted lines show the NLO results of [43] which were obtained in the NJA for the anti-kt
algorithm. We note that these agree with the NLO ones by the “FastJet” code [240] (as shown in [238])
to better than 3%, even at R = 0.7. The dashed lines present the results for the NLO expansion of
the threshold terms. It is evident that the latter provide a very faithful description of the full NLO
results for much of the pT ranges relevant at LHC and Tevatron. This holds true for each value of R,
thanks to the fact that the threshold logarithms carry R-dependence in our approach, in contrast to
that in [82, 238]. Finally, the solid lines display the approximate NNLO results. These show a striking
further increase of the jet cross sections as compared to NLO, particularly so at high pT where the
threshold terms are expected to dominate. There also is an increase toward lower pT ; here, however,
the result shows sensitivity to terms non-leading at threshold.

Given the large size of the NNLO corrections observed in Fig. 7.2, it is of course crucial to verify that
the predicted enhancements are realistic. Fortunately, as mentioned in the Introduction, recently a full
NNLO calculation for jet production in the “gluon-only” channel was presented [236, 237], corresponding
to gg scattering and to setting the number of flavors Nf = 0 in the partonic matrix elements. It is
straightforward to compute our threshold terms in this limit. The comparison is shown in Fig. 7.3.
One can see that the large enhancement at high pT predicted by the NNLO threshold terms is very
nicely consistent with the full result. Judging from the comparison, the NNLO threshold terms become
accurate at about pT = 400 GeV for the chosen rapidity interval. Additional comparisons with the
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Figure 7.2: Left: K-factors for jet production in pp-collisions at the LHC at
√
S = 8 TeV for R =

0.2, 0.4, 0.7, using the anti-kt algorithm. Right: Same for pp̄ collisions at the Tevatron at
√
S = 1.96 TeV.

results of [237] show that this value is representative of rapidity intervals that contain the dominant
region η ≈ 0. Detailed comparisons for non-central rapidity regimes will need to be carried out in the
future. One also finds that at very forward rapidities, η ∼ 4, our results indicate substantial NNLO
K-factors of order 5 or so at pT ∼ 40 GeV. In this regime, the coefficients of the threshold logarithms
become large, due to “small-x” t-channel gluon exchange contributions. It will be important for future
work to address this region in more detail in order to derive reliable predictions for the forward jet cross
section at the LHC. Such contributions may also be responsible in part for the rise of the K-factor
toward lower pT seen in Figs. 7.2 and 7.3. This rise is more pronounced for the NNLO threshold terms,
implying that subleading contributions become relevant here. Whether these are related to subleading
logarithmic terms, or to terms that vanish at partonic threshold z = 0, will need to be studied in more
detail. In order to shed light on terms of the latter type, the dashed line in Fig. 7.3 shows the NNLO
threshold result found when using a different angular variable, v′ ≡ 1 + t/s = z+v(1− z), in Eq. (7.1).
Clearly, v′ = v + O(z). The difference between the two NNLO threshold results indicates a typical
uncertainty of the prediction obtained from threshold resummation. The interplay of exact NNLO
calculations with NNLO terms predicted by the threshold expansion will likely prove to be a useful
tool: on the one hand, the comparison helps to assess the region where reliable predictions of threshold
terms are possible, even beyond NNLO. On the other hand, the threshold terms may constitute a
useful benchmark for new full NNLO calculations.
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Figure 7.3: K-factors for jet production in pp-collisions at the LHC at
√
S = 8 TeV in the “gluon-only”

channel. The anti-kt algorithm with R = 0.7 was used and the NNLO parton distributions of [115]. The
histograms show the results of the recent full NNLO calculation [237] and its NLO counterpart, while the
lines display the NLO and NNLO threshold terms. Note that the scale choice is different for the results
based on threshold resummation (µ = pT ) and the full results (µ = pT,1) as pointed out in [246] and
discussed in detail in [247]. Here pT,1 corresponds to the transverse momentum of the highest pT jet for a
given event. This has a particularly strong impact for the K-factors at low pT at NNLO.

7.4 Mellin Space Inversion

There are several ways to extend the results obtained above. An improvement of our results will be
particularly relevant at low pT and when only forward rapidites are considered. We may categorize
the full set of distributions at NNLO as follows

(
ln3(z)

z

)

+

,

(
ln2(z)

z

)

+

,

(
ln(z)

z

)

+

∣∣∣∣
∣∣∣∣
(

1

z

)

+

, δ(z)

∣∣∣∣
∣∣∣∣h(v, z) . (7.10)

Here h(v, z) denotes all remaining terms that are not singular at threshold. Each of the first five terms
is then multiplied by some specific function g(v). The six contributions listed here are of decreasing
importance, when going to the right side. So far, at NLL, the three most dominant towers of threshold
logarithms are fully taken into account. At NNLO, this corresponds to the first three terms listed
above. However, the NLL resummed expression also predicts correctly many terms that appear in the
subleading towers even though they are not completely under control. At NNLO-NLL, terms of this
type are found in the 4th and 5th tower, which corresponds to the two terms sandwiched between the
“double lines” in Eq. (7.10), i.e. (1/z)+ and δ(z).
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So far, we made the choice of setting all terms to zero that correspond to towers that are not fully
taken into account. In terms of the NNLO set of distributions listed in (7.10), this choice corresponds
to a cut after the first three most dominant terms on the left side. In principle, we note that this is a
perfectly valid approach at NLL. However, one might view this as not being the “most natural” choice.
Instead, one might simply take into account everything that can possibly be derived by resummation
for a given fixed order expansion. We are going to adopt this procedure from now on.

In addition, we can extend the accuracy of threshold resummation beyond NLL. Relying on the results
obtained for di-hadron production in Chapter 5 and single-inclusive hadron production in Chapter 6,
we are able to fully take into account the 4th tower of singular distributions at threshold. At NNLO,
this corresponds to the distribution (1/z)+ in (7.10). We will find that this leads to a very important
numerical stabilization of our approximate NNLO results.

Finally, threshold resummation is derived in Mellin space. When only the distributions in z-space
are extracted from the resummed result, this fact is not correctly taken into account. For the set of
terms shown in (7.10), our previous procedure corresponds to setting h(z) = 0. In principle, h(z) is
subleading at threshold but nevertheless, it turns out to have relevant numerical effects. Therefore, we
extend our calculation also in this sense. We perform a numerical Mellin inversion of the resummed
result expanded up to NNLO. In addition, we are going to present results for N3LO.

Concerning the Mellin inversion, we proceed as follows. We denote the set of terms obtained by
expanding the resummed result in Mellin space by Ω̃(N). At NNLO, we have the following structure

Ω̃(N) = f0,0(v) + αs
(
f1,2(v)L2 + f1,1(v)L+ f1,0(v)

)

+ α2
s

(
f2,4(v)L4 + f2,3(v)L3 + f2,2(v)L2 + f2,1(v)L+ f2,0(v)

)
, (7.11)

where Lj = lnj N̄ . The first index i of the functions fi,j(v) corresponds to the power of αis omitting
an overall factor of α2

s, whereas the second index j denotes the power of the associated logarithm Lj .
Note that this structure directly extends to higher orders as well. The goal is to compute the Mellin
inverse of Ω̃(N) which we denote by Ω(z). It is possible to directly calculate the full set of distributions
in z-space which we denote by ω(z). Note that ω(z) are only the distributions in z-space but not the
full Mellin inversion which we want to achieve in the end. At NNLO, we have the structure

ω(z) = g0,0(v) δ(z) + αs

(
g1,2(v)L′ + g1,1(v)L′

0
+ g1,0(v) δ(z)

)

+ α2
s

(
g2,4(v)L′

3
+ g2,3(v)L′

2
+ g2,2(v)L′ + g2,1(v)L′

0
+ g2,0(v) δ(z)

)
, (7.12)

with some functions gi,j+1(v), where j corresponds to the exponent of the associated logarithm L′j =
(lnj(z)/z)+. Note that for j + 1 = 0, the functions gn,0(v) corresponds to a term involving a δ(z)
instead of a plus distribution. In general, one has fn,2n(v) = gn,2n(v) which implies that the functions
multiplying the most important logarithm are the same for any given fixed order. We may now take
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the exact Mellin moments of ω(z)

ω̃(N) =

∫ 1

0
dz (1− z)N−1 ω(z) . (7.13)

For example, taking the exact moments leads to expressions such as [248]
∫ 1

0
dz (1− z)N−1

(
ln(z)

z

)

+

=
1

2

[
(ψ(N) + γE)2 + ζ(2)− ψ′(N)

]
, (7.14)

which generally involve the digamma function ψ(N) and its derivatives. Finally, we can compute the
Mellin inverse of Ω̃(N) in the following way

Ω(z) = ω(z) +
1

2πi

∫
dN (1− z)−N

(
Ω̃(N)− ω̃(N)

)
. (7.15)

We can directly see that this is the correct method by taking Mellin moments of the whole expression.
In Mellin space, we find that the first and third term cancel out and we are left with Ω̃(N). The Mellin
inverse integral in (7.15) is constructed such that the combination Ω̃(N)− ω̃(N) only has terms of the
order of O(1/N) for which we can directly compute the inverse numerically.

7.5 Phenomenological Results - 2

In Chapter 6, we derive the soft and hard matrices for single-inclusive hadron production. Starting from
there, one may obtain analogous results for single-inclusive jet production by following the techniques
developed in [40, 42, 43]. We present preliminary results for the Tevatron and the LHC. The results
presented here are based on the extension toward NNLL and we implement the Mellin inversion as
discussed in Section 7.4. Now that full NNLO corrections in the all gluon channel with the scale choice
µ = pT are available [247], we may directly compare our new results to the kinematics relevant for the
Tevatron and the LHC. As expected, the choice µ = pT,1 or µ = pT has a significant impact on the
calculated K-factors.

In order to estimate the range of validity of our approximate results based on threshold resummation,
we compare to the full NNLO results in the all-gluon channel presented in [247] where the PDF set
of [249] is used. Firstly, in Fig. 7.4, we consider LHC - ATLAS kinematics at

√
S = 7 TeV in the

central rapidity region of |η| < 0.3 with R = 0.4 which corresponds to measurements reported in [250].
The transverse momentum of the observed jets is in the range of 20−1500 GeV. We consider K-factors
with respect to LO. The NLO threshold expansion (dashed blue) matches very well with the full NLO
in the NJA (solid blue). Surprisingly, this is the case even for very small values of pT which is far away
from the hadronic threshold. In general, we note that the full NLO in the NJA and the Monte-Carlo
based NLO agree to a remarkable degree. One finds that the error introduced by the NJA can be
safely neglected given the accuracy of the threshold approximation. Also at NNLO, the threshold
approximation (dashed red) and the full result (solid red) agree quite well except for the two lowest
bins in pT . In general, the agreement gets worse when very forward rapidity slices are considered with
|η| > 2. However, in the case that we integrate over the central rapidity region, the agreement is still
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Figure 7.4: K-factors for jet production in pp-collisions at the LHC - ATLAS at
√
S = 7 TeV in the

“gluon-only” channel.

very good. The problem at forward rapidities seems to be due to high-energy logarithms of the type
ln(−t/s) with s � |t|. They also need to be taken into account correctly in order to achieve better
approximate results over the full kinematical range.

Secondly, we consider Tevatron - CDF kinematics in Fig. 7.5. We are considering jets in the pT range of
54− 700 GeV with R = 0.7,

√
S = 1.96 TeV in the central rapidity region |η| < 0.1 which corresponds

to measurements reported in [251]. We use the same color coding as above. We find that both NLO
and NNLO agree very well. With the lessons learnt at NNLO, we also calculated approximate N3LO
results (dashed magenta) which are again a sizable contribution. Given the size of the NNLO and
N3LO corrections to hadronic jet production, it seems worthwhile to continue exploring even higher
order corrections in QCD and eventually perform an all order threshold resummation in the future.

7.6 Beyond the Standard Model

In this Section, we follow roughly the steps outlined in [17]. In the Standard Model, quarks can scatter
via gluon exchange as it is shown on the left side of Fig. 7.6. Suppose we have some new physics in
the TeV range. For example, quarks might also scatter via the exchange a new object with a mass M
in the TeV range, as it is shown on the right hand side of Fig. 7.6. Alternatively, quark substructure
could be found in a similar way. We consider the following additional Lagrangian to the SM

∆L =
g̃2

M2
ψ̄γµψ ψ̄γµψ , (7.16)
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Figure 7.5: K-factors for jet production in pp-collisions at the Tevatron - CDF at
√
S = 1.96 TeV in the

“gluon-only” channel.

where g̃ denotes the coupling strength of quarks to the new physics and the factor 1/M2 has to be
included for dimensional reasons such that we end up with dimension 4 for the Lagrangian.

We consider jet production in pp collisions at the LHC (or equivalently pp̄ at the Tevatron). The new
term in the Lagrangian ∆L should lead to a small enhancement of the observed cross section compared
to the prediction of the standard model. Thus, we would expect the following behavior to be observed
in experiment

data− theory

theory
∼ g̃2 E

2
T

M2
. (7.17)

The factors g̃2/M2 follow from the additional term in the Lagrangian, see Eq. (7.16). The factor of E2
T

has to be included because it is the only factor with a mass dimension for this observable rendering the
right hand side dimensionless as it should be given the left hand side. Some of the presently publicly
available data from the LHC is shown in Fig. 7.7 plotted as ratios data/theory. Overall, the agreement
between theory and data is very good. Much of the uncertainty can be traced back to the rather
poorly constrained gluon PDF at large x as well as to missing higher order corrections. However, it is
precisely this region where BSM physics might show up. Therefore, a solid theoretical understanding
of the QCD background is of great importance. See also [252] for example.
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?

Figure 7.6: Gluon exchange (left) and some possible interaction beyond the standard model (right).
Figure adapted from [17].

7.7 Conclusions

We have presented approximate higher order predictions for single-inclusive jet production in hadronic
collisions. Our results are relevant for the extraction of PDFs and the strong coupling constant αs.
For example, the latest PDF fit from the NNPDF collaboration [149] already included these results
in order to determine their NNLO PDF set. In addition, our calculation is a step toward precision
phenomenology for the Tevatron and the LHC and eventually for the search of BSM physics.

In future studies, we are going to investigate the relevance of terms of the type ln N̄/N and how
they can be determined. In principle, they are subleading at threshold but for other processes such
as deep-inelastic scattering [253], they turned out to be very relevant. In addition, following our
numerical studies, high-energy logarithms [254] of the form ln(−t/s), where s � |t|, turn out to be
very relevant. This is in particular the case for low pT and forward rapidities |η| > 2. It would
be important to combine results derived from both threshold and high-energy resummation. Finally,
non-global logarithms have to be taken into account to a higher accuracy and eventually need to be
resummed to all orders. Even when the full NNLO will be available in the future, it can be seen
from our numerical studies that also N3LO and even higher corrections are still sizable and need to
be taken into account for a precise theoretical description. The availability of full NNLO results for
such an involved process as hadronic jet production makes it an ideal test ground to understand the
applicability of approximations for higher order corrections.
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Figure 7.7: Single-inclusive jet production at the LHC plotted as ratios data/theory. Both theoretical and
experimental uncertainties are shown. Figure taken from [255].
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CHAPTER 8

SINGLE-SPIN ASYMMETRIES IN W
PRODUCTION AT NLO

We present an analytic next-to-leading order QCD calculation of the partonic cross sections for single-
inclusive lepton production in hadronic collisions, when the lepton originates from the decay of an
intermediate electroweak boson and is produced at high transverse momentum. In particular, we
consider the case of incoming longitudinally polarized protons for which parity-violating single-spin
asymmetries arise that are exploited in the W boson program at RHIC to constrain the proton’s
helicity parton distributions. Our calculation enables a very fast and efficient numerical computation
of the relevant spin asymmetries at RHIC, which is an important ingredient for the inclusion of RHIC
data in a global analysis of nucleon helicity structure. We confirm the validity of our calculation by
comparing with an existing code that treats the next-to-leading order cross sections entirely numerically
by Monte-Carlo integration techniques. We also provide new comparisons of the present RHIC data
with results for some of the sets of polarized parton distributions available in the literature. This
Chapter is based on publication [viii].

8.1 Introduction

TheW physics program at RHIC [256] is dedicated to providing new insights into the helicity structure
of the proton. It exploits the violation of parity in the weak interactions, which gives rise to single-
longitudinal spin asymmetries in proton-proton collisions. The main focus is on the production of W
bosons, identified by their subsequent decay into a lepton pair. The charged lepton (or antilepton) is ob-
served. From the corresponding cross sections for the various helicity settings (++), (+−), (−+), (−−)
of the two incoming protons one defines the spin asymmetry

AW
±

L ≡ dσ++ + dσ+− − (dσ−+ + dσ−−)

dσ++ + dσ+− + dσ−+ + dσ−−
≡ d∆σ

dσ
. (8.1)
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As one can see, one takes the difference of cross sections for positive and negative helicities of one
proton, while summing over the polarizations of the other. The STAR collaboration at RHIC has
published rather extensive and precise data on AW±L last year [257], and new precise mid-rapidity data
from Phenix are forthcoming [258]. Earlier measurements were reported by both Phenix [259] and
STAR [260]. Data sets with even higher statistics and kinematic coverage are expected in the near
future. Typically, the data are presented at fixed rapidity of the charged lepton, which by convention
is counted as positive in the forward direction of the polarized proton.

It has long been recognized [261, 262] that AW±L offers excellent sensitivity to the individual helicity
parton distributions ∆u, ∆ū, ∆d, ∆d̄ of the nucleon, where

∆f(x,Q2) ≡ f+(x,Q2)− f−(x,Q2) , (8.2)

with f+ (f−) denoting the distribution of parton f with positive (negative) helicity in a parent proton
with positive helicity. The distributions are functions of the longitudinal momentum fraction x of
the parton and of a “resolution” scale Q. Information on ∆u, ∆ū, ∆d, ∆d̄ is also accessible in (semi-
inclusive) deep-inelastic lepton scattering (DIS) [121, 124, 128, 129, 131, 263]. The key advantages ofW
boson production are that (i) it is characterized by momentum scales of the order of theW mass which
are much higher than those presently relevant in DIS and hence deeper in the perturbative domain,
(ii) it does not rely on the knowledge of hadronic fragmentation functions, thanks to its clean leptonic
final state. In any case, information from theW program at RHIC is complementary to that from DIS.

The main concept behind the RHIC measurements can be easily summarized: For W− production,
taking into consideration only the dominant ūd → W− subprocess, the spin-dependent cross section
in the numerator of the asymmetry in Eq. (8.1) is found to be proportional to the combination

∆ū(x1)d(x2)(1− cos θ)2 −∆d(x1)ū(x2)(1 + cos θ)2 , (8.3)

where for simplicity we have not written out the straightforward convolutions over the parton momen-
tum fractions. θ is the polar angle of the negatively charged decay lepton in the partonic center-of-mass
system, with θ > 0 in the forward direction of the polarized parton. In the backward region of the
lepton, one has x2 � x1 and θ � π/2, so that the first term in Eq. (8.3) strongly dominates. Since
the denominator of AL is proportional to ū(x1)d(x2)(1 − cos θ)2 + d(x1)ū(x2)(1 + cos θ)2, the asym-
metry then provides a clean probe of ∆ū(x1)/ū(x1) at medium values of x1. By similar reasoning, in
the forward lepton region the second term in Eq. (8.3) dominates, giving access to −∆d(x1)/d(x1) at
relatively high x1.

For W+ production, within the same approximation, the spin-dependent cross section is proportional
to

∆d̄(x1)u(x2)(1 + cos θ)2 −∆u(x1)d̄(x2)(1− cos θ)2 . (8.4)

Here the distinction of the two contributions by considering backward or forward lepton scattering
angles is less clear-cut than in the case of W− because of the reversal of the factors (1± cos θ)2 relative
to (8.3), which always suppresses the dominant combination of parton distributions. Therefore, both
terms in (8.4) will compete. Nonetheless, the W+ measurements at RHIC are of course of great value
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in the context of a global analysis of the helicity distributions.

Given the importance of AW±L for constraining nucleon helicity structure, there has been a lot of
activity on the calculation of higher-order QCD corrections to the relevant spin-dependent cross sec-
tions. Closed analytic expressions for next-to-leading order (NLO) corrections to polarized W boson
production were derived in Refs. [264, 265], with extensions to all-order resummations in [266, 267].
In these papers, direct observation of the W boson and its kinematics was assumed, which simplifies
the calculation considerably but is not really applicable to the measurements at RHIC. The proper
lepton decay kinematics was taken into account in three further studies [268–270]. The first two of
these include the contributions by intermediate Z bosons and photons as well, which may also give
rise to charged leptons and provide a background to the lepton signal from W boson decay when the
detectors are not hermetic. Reference [268] additionally derives and implements the resummation of
large logarithms in the transverse momentum of the intermediate W boson.

In the calculations [268–270] the NLO corrections were obtained numerically in the context of a Monte-
Carlo integration routine. The resulting computer codes are very flexible in the sense that kinematic
cuts on lepton or recoil jet variables can be easily implemented. Those from Refs. [268] and [269]
are known as RHICBOS and CHE, respectively, and have found wide use in comparisons to RHIC
data. On the other hand, the Monte-Carlo integration based codes are rather demanding in terms
of CPU time. This becomes a significant drawback when one wants to perform a global analysis of
the helicity distributions from the RHIC data [128, 129, 263, 271]. Such an analysis typically requires
many thousands of computations of the spin asymmetry. Clearly, a fast and stable evaluation at NLO
is highly desirable in this context.

In this paper, we derive analytic expressions for the NLO spin-dependent partonic cross sections for
electroweak boson production, including their leptonic decay. More precisely, we consider the cross
sections directly as single-inclusive lepton ones, ~pp→ `±X, where transverse momentum and rapidity
of the charged lepton are observed, precisely as is the case at RHIC. We note that a corresponding
calculation in the unpolarized case has been presented a long time ago [272]. We present a new program
that produces NLO results for the single-spin asymmetries relevant at RHIC and outruns the Monte-
Carlo based codes by about two orders of magnitude in CPU time. We also include the background
reactions involving Z bosons and photons. We expect our program to become a useful tool for global
analyses of RHIC data based on Mellin-moment [110, 128, 129, 263] or neural-network [271] techniques.
We also use our new code to present comparisons of the present RHIC data to NLO predictions for a
variety of sets of helicity parton distributions.

In Sec. 8.2 we discuss the technical details of our NLO calculation. Section 8.3 presents our phe-
nomenological results, where we also perform comparisons with the CHE code of [269]. Finally, we
conclude in Section 8.4.
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8.2 Next-to-Leading Order Calculation

8.2.1 Framework and outline of the NLO calculation

We consider the single-inclusive process ~pp → ` + X, where ` denotes the charged lepton (or antilep-
ton) resulting from production and decay of a W boson. As discussed in the Introduction, charged
leptons can of course also be produced by an intermediate photon or Z boson which, subject to the
experimental selection criteria, gives rise to a background. We hence perform all our calculations also
for γ and Z production and γZ interference. For the sake of simplicity we will, however, present details
of our calculation and explicit results only for the most interesting W boson case, and just highlight a
few features specifically relevant for intermediate γ and Z.

We denote the momenta of the incoming protons and the produced charged lepton by PA, PB, p`, re-
spectively. Using factorization [5], we write the polarized hadronic cross section d∆σ which appears in
the numerator of Eq. (8.1) in terms of convolution integrals of polarized and unpolarized parton dis-
tributions ∆fa(xa, µ

2
F ), fb(xb, µ2

F ) and the perturbative hard-scattering partonic cross sections d∆σ̂ab:

d∆σ =
∑

a,b

∫
dxadxb ∆fa(xa, µ

2
F ) fb(xb, µ

2
F ) d∆σ̂ab(xaPA, xbPB, p`, µ

2
R, µ

2
F ) , (8.5)

where
d∆σ̂ab ≡

1

4

[
dσ̂++ + dσ̂+− − (dσ̂−+ + dσ̂−−)

]
. (8.6)

The superscripts on the right refer to parton helicities, so that the helicities of the second parton b are
summed over, while he helicity difference is taken for parton a. The sum in Eq. (9.1) runs over quarks,
antiquarks and the gluon, and the parton distributions are evaluated at the factorization scale µF . The
partonic cross sections also depend on a renormalization scale µR. The fractions of the parent hadrons’
momenta carried by the scattering partons are denoted by xa and xb. An analogous expression for
the unpolarized cross section dσ appearing in the denominator of Eq. (8.1) is obtained by using only
unpolarized parton distributions and the corresponding unpolarized partonic cross sections, defined by
averaging over the helicities of both incoming partons.

Due to the pure V − A structure of the Wqq̄′ vertex, and because of conservation of quark helicity
at the vertex, the spin-dependent partonic cross section for an incoming polarized quark is just the
negative of the corresponding unpolarized cross section, while for an incoming polarized anti-quark it
is the same as the unpolarized one:

d∆σ̂qb = −dσ̂qb (b = q̄′, g) ,

d∆σ̂q̄b = dσ̂q̄b (b = q′, g) . (8.7)

Note that no such relation occurs for incoming polarized gluons. In case of γ and/or Z exchange,
relations (8.7) do not hold.
We now introduce the variables

S ≡ (PA + PB)2 , T ≡ (PA − p`)2 , U ≡ (PB − p`)2 , (8.8)
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and
V ≡ 1 +

T

S
, W ≡ −U

S + T
. (8.9)

The lepton’s transverse momentum pT and its center-of-mass system rapidity η are related to these
variables by

V = 1− pT√
S

e−η , V W =
pT√
S

eη . (8.10)

We furthermore introduce the partonic variables corresponding to Eqs. (8.8), (8.9):

s ≡ (pa + pb)
2, t ≡ (pa − p`)2, u ≡ (pb − p`)2 ,

v ≡ 1 +
t

s
, w ≡ −u

s+ t
, (8.11)

so that from pa = xaPA, pb = xbPB we have

xa =
VW

vw
, xb =

1− V
1− v . (8.12)

Writing out Eq. (9.1) explicitly to O(αs) in the strong coupling constant, we now obtain

d2∆σ

dpTdη
=

2

pT

∑

a,b

∫ V

VW
dv

∫ 1

VW/v
dw xa∆fa(xa, µ

2
F )xbfb(xb, µ

2
F )

×
[
d∆σ̂

(0)
ab (s, v)

dv
δ(1− w) +

αs(µ
2
R)

2π

d∆σ̂
(1)
ab (s, v, w, µ2

F , µ
2
R)

dvdw

]
, (8.13)

where the d∆σ̂
(0)
ab represent the leading-order (LO) contributions and the d∆σ̂

(1)
ab the NLO ones.

The only LO partonic process is qq̄′ → W → `ν` annihilation, whose Feynman diagram is shown in
Fig. 8.1 a). For the NLO correction we have to include the 2→ 3 real-gluon emission diagrams as well
as the virtual corrections to the Born cross section. In addition, quark-gluon scattering contributes
here as well as a new channel. Some of the relevant NLO Feynman diagrams are shown in Fig. 8.1
(b)-(d).

For our calculations, we work with a general (axial) vector structure for the Wqq̄′-vertex of the form

V µ
q = −i gW

2
√

2
Uqq′ γ

µ (vq − aq γ5) , (8.14)

where Uqq′ is the appropriate CKM matrix element and gW the fundamental weak charge. Likewise,
we use a corresponding expression for the W`ν`-vertex, with vector and axial coefficients v` and a`
(and, of course, with Uqq′ = 1). Using such general vertices will help us to keep better track of the
couplings in the NLO calculation and to obtain an understanding of the underlying structure. Also, it
allows us to extend our calculation to the case of γ or Z boson exchange (for γZ interference one needs
to introduce an even more general vertex structure that allows different couplings in the amplitude and
its complex conjugate). The case of a W boson is recovered by setting vq = aq = 1 and v` = a` = 1.
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As is very well known, various types of singularities appear at intermediate stages of the NLO calcula-
tion. To treat these, we choose dimensional regularization with d = 4−2ε dimensions. This means that
we have to deal with subtleties that occur in Dirac traces involving γ5 or in the presence of the Levi-
Civita tensor εµνρσ when d 6= 4. γ5 appears in the Wqq̄′-vertex (see (9.8)) and also acts as projection
operator onto definite helicity states of incoming quarks or antiquarks. Likewise, the Levi-Civita tensor
projects onto gluon helicity states. We adopt the ’t Hooft, Veltman, Breitenlohner, Maison (HVBM)
scheme of [273, 274], which basically recognizes the four-dimensional nature of γ5 and εµνρσ, separating
the usual four space-time dimensions from the additional d − 4 = −2ε spatial ones. Technically, we
compute Dirac traces using the Tracer package of [275]. We also follow Refs. [276, 277] to use a
symmetrized version of the W -fermion vertex.

Because of the distinction between four- and (d− 4)-dimensional subspaces in the HVBM scheme, the
squared matrix elements for the partonic processes will contain regular d-dimensional scalar products
of the external momenta, but also additionally (d−4)-dimensional ones. The latter have to be properly
taken into account when the phase space integration is performed. As it turns out, for the unpolarized
cross sections all such additional terms are either absent or integrate to zero, i.e. are of O(ε) after phase
space integration. However, in the polarized case, they do contribute, and in fact a finite additional
subtraction is required in the procedure of factorization of collinear singularities in order to maintain
relations such as (8.7) beyond LO. The deeper reason for this is that the γ5 and εµνρσ definitions
of [273, 274], although algebraically consistent, cause violation of helicity conservation at fermion-
boson vertices, which has to be corrected for. Since this is very well established in the literature (see,
for example, Refs. [232, 233, 278]) we shall not go into any further detail here but only mention the
salient features when they become relevant in the course of the calculation.

8.2.2 Born-level cross section

Thanks to (8.7), we can easily develop the calculations of the unpolarized and polarized cross sections in
parallel. Up to the subtleties just mentioned, it is sufficient to present details only for the unpolarized
case. The lowest-order contribution to the cross section comes from the 2 → 2 scattering process
qq̄′ → `ν`. The diagram is shown in Fig. 8.1(a). As before, we use “`” for the observed charged lepton,
regardless of its charge. We shall see below that it is possible to formulate a partonic cross section in
this generic way, despite the fact that the “lepton” can be either a particle or an antiparticle. We also

a) b)

c) d)

Figure 8.1: Feynman diagrams for heavy gauge boson production: a) leading-order, b) NLO virtual
correction, c) NLO real emission, d) NLO qg scattering. Crossed diagrams are not shown.
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always refer to the corresponding neutrino or antineutrino as the “neutrino” and denote it by ν`. Since
it remains unobserved, we integrate over its phase space. This leads to an overall factor δ(1 − w) for
the Born cross section, so that

d2σ̂
(0)
qq̄′

dvdw
=
dσ̂

(0)
qq̄′

dv
δ(1− w) , (8.15)

as we have anticipated in (9.5). Using the general vertex structure given in Eq. (9.8), we find that two
combinations of the couplings appear in the expression for the cross section, which are given by

C1 = (v2
q + a2

q)(a
2
` + v2

` ) + 4 aqa`vqv` ,

C2 = (v2
q + a2

q)(a
2
` + v2

` )− 4 aqa`vqv` . (8.16)

We recall that in case of an exchanged W± boson, we have vq = aq = v` = a` = 1 and hence always
C1 = 8 and C2 = 0. However, it is useful to keep C2 in the calculation as it allows us to easily
switch between W− and W+ production. The reason for this becomes clear when we write down the
unpolarized Born cross section:

dσ̂
(0)
qq̄′

dv
=
|Uqq′ |2s
8πNc

(
GFM

2
W√

2

)2
C1(1− v)2 + C2v

2

(s−M2
W )2 + Γ2

WM
2
W

, (8.17)

where Nc = 3, GF =
√

2g2
W /(8M

2
W ) is the Fermi constant, and MW and ΓW are the W boson mass

and decay width. Let us consider now the partonic channel ud̄ → e+νe. For this indeed Eq. (9.11)
provides the correct cross section when C1 = 8 and C2 = 0. In this way the cross section is pro-
portional to (1 − v)2, as required by the V − A structure of the interaction and angular momentum
conservation. For dū→ e−ν̄e, on the other hand, the cross section has to be proportional to v2, rather
than (1−v)2. This is immediately realized by interchanging C1 and C2 in Eq. (9.11), and subsequently
setting again C1 = 8 and C2 = 0. Equivalently, and even more simply, we can just choose in (9.11)
C1 = 8, C2 = 0 for ud̄→ e+νe and C1 = 0, C2 = 8 for dū→ e−ν̄e to obtain the correct cross sections.
We note that the cross sections for the reactions d̄u→ e+νe and ūd→ e−ν̄e can be obtained by simple
“crossing” t ↔ u, or v ↔ 1 − v. Again this may also be achieved by C1 ↔ C2. All these consider-
ations also hold at NLO, where the cross section still depends only on the two combinations C1 and C2.

The denominator in Eq. (9.11) represents the standard Breit-Wigner form of the propagator. One
often also uses the form (see [279])

1

(s−M2
W )2 + Γ2

W s
2/M2

W

, (8.18)

which may be obtained from the one given in (9.11) by the simple rescalingsM2
W →M2

W /(1+Γ2
W /M

2
W ),

ΓWMW → ΓWMW /(1 + Γ2
W /M

2
W ) and multiplication of the cross section by 1/(1 + Γ2

W /M
2
W ). This

also holds at NLO. The numerical difference between these two forms of the propagator is very small
and negligible for our purposes.
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8.2.3 Real 2→ 3 corrections

At NLO, we first consider the 2 → 3 real-gluon emission process qq̄′ → `(ν`g), where the gluon and
the neutrino remain unobserved. One of the two relevant Feynman diagrams is shown in Fig. 8.1(c).
All external particles can be considered as massless, so that the kinematics and the phase space are
as usual for single-inclusive calculations. The three-particle phase space in 4− 2ε dimensions may be
written as [232, 233]

d2Φ3

dvdw
=

s

(4π)4Γ(1− 2ε)

(
4π

s

)2ε

v1−2ε (1− v)−εw−ε (1− w)−ε

×
∫ π

0
dθ1

∫ π

0
dθ2 sin1−2ε θ1 sin−2ε θ2

1

B(1/2,−ε)

∫ 1

0

dz√
1− z z

−(1+ε) , (8.19)

where v and w have been defined in Eq. (8.11) and where θ1 and θ2 are the polar and azimuthal angles
of the neutrino in the rest frame of the neutrino-gluon pair. The integration variable z is specific
to the treatment of γ5 and εµνρσ in the HVBM scheme. It is given by z ≡ 4k̂2/(s23 sin2 θ1 sin2 θ2),
where s23 = sv(1 − w) and k̂2 is the square of the d − 4-dimensional parts of the neutrino and gluon
momenta, which are the same in the adopted frame. It is thus the only d− 4-dimensional invariant in
the calculation [232, 233]. Note that the z-integral cancels against the Beta function in the last line
of (8.19) for all terms in the squared matrix element that have no dependence on k̂2.

Since the lepton pair is produced via an intermediate W boson, a propagator with the momentum
p` + pν` of the W boson appears in the amplitude for the process. As a result, the squared matrix
element |M|2 contains the overall factor

1

(s12 −M2
W )2 + Γ2

WM
2
W

, (8.20)

with the leptons’ pair mass squared:
s12 ≡ (p` + pν`)

2 . (8.21)

s12 is a function of the angles θ1 and θ2. Since the neutrino is not observed, the propagator will be
subject to integration over the phase space. We write it in the following way:

1

(s12 −M2
W )2 + g2

=
1

2ig

(
1

s12 −M2
W − ig

− 1

s12 −M2
W + ig

)
, (8.22)

where g ≡ ΓWMW . After this partial fractioning, there are only terms in |M|2 with at most one
power of s12 in the denominator, either 1/(s12 −M2

W − ig) or 1/(s12 −M2
W + ig). They are usually

accompanied by other Mandelstam variables that also depend on θ1 and θ2. The ensuing terms may
be readily integrated using the integrals

I(k,n) =

∫ π

0
dθ1

∫ π

0
dθ2 sin1−2ε θ1 sin−2ε θ2

1

(a+ b cos θ1)k(A+B cos θ1 + C sin θ1 cos θ2)n
(8.23)

tabulated in the Appendix of Ref. [280]. The results contain logarithms of various complex arguments
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p

xp

(1 − x)p

p/x
p

1−x
x p

Figure 8.2: Upper row: Representative initial-state collinear contribution for the qq̄′ channel. Lower row:
Factorization of the final-state collinear singularity which is necessary for the process with an intermediate
photon.

which may be combined to produce manifestly real results. This procedure is rather tedious; we have
performed numerous numerical checks to ensure its correctness. For terms with dependence on k̂2 the
z integration in (8.19) is still trivial. The result may then be further integrated using (8.23). The
additional power of sin2 θ1 sin2 θ2 arising from the z-integral can be easily accommodated by shifting
ε→ ε− 1 in (8.23).

After integration over phase space the result for the real-gluon emission contribution contains singu-
larities in 1/ε. These occur whenever we have a term in |M|2 with at least a factor of 1/t3 or 1/u3,
where

t3 = (pq − pg)2, u3 = (pq̄′ − pg)2 . (8.24)

The poles arise when the gluon becomes collinear with the incoming particles, and/or when it becomes
soft. The collinear singularities arise directly in the angular integrations. A soft singularity is equivalent
to the invariant mass squared of the two unobserved particles becoming small, i.e. s23 = sv(1−w)→ 0,
or equivalently w → 1. To make also the soft divergences manifest, we use the standard expansion

(1− w)−1−ε = −1

ε
δ(1− w) +

1

(1− w)+
− ε

(
log(1− w)

1− w

)

+

+O(ε2) , (8.25)

where the “plus” distributions are defined as usual by
∫ 1

0
dw f(w)[g(w)]+ =

∫ 1

0
dw [f(w)− f(1)] g(w) . (8.26)

The final expression contains quadratic (1/ε2) poles as well as single (1/ε) ones. We note that due to
the finite width ΓW of the W boson, final-state singularities never occur.

The NLO contributions associated with qg → `νq′ scattering at NLO (Fig. 8.1(d)) can be integrated
in the same way as described above. They develop only single poles in 1/ε since soft singularities are
absent here.
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8.2.4 Virtual correction and factorization of collinear singularities

At NLO, the interference of the virtual diagrams (see for example Fig. 8.1(b)) with the Born diagram
contributes. As may be inferred from [45, 276], the first-order virtual corrections only modify the
basic qq̄′W vertex by a multiplicative factor of the form 1 + O(αs). Therefore, when computing the
interference with the Born diagram, the result will be twice the Born cross section multiplied by this
factor. In our notation, we have from [45]:

dσ̂
(1),virt
qq̄′

dvdw
= CF

dσ̂
(0),ε
qq̄′

dv
δ(1− w)

(
− 2

ε2
− 3

ε
− 8 + π2

) (
4πµ2

s

)ε
Γ(1 + ε) Γ2(1− ε)

Γ(1− 2ε)
, (8.27)

where CF = 4/3. It is important to take into account here that the Born cross section is to be computed
in 4− 2ε dimensions, where it is given by

dσ̂
(0),ε
qq̄′

dv
=
|Uqq′ |2s
8πNc

(
GFM

2
W√

2

)2(
4π

s

)ε (v(1− v))−ε

Γ(1− ε)
C1(1− v)2 + C2v

2 − C3 ε

(s−M2
W )2 + Γ2M2

W

. (8.28)

Compared to the four-dimensional expression (9.11) a new combination of the vector and axial vertex
factors appears:

C3 = (a` − v`)2(aq − vq)2 . (8.29)

As it turns out, this combination appears also in the real-emission contribution and in the factor-
ization subtraction discussed below, in such a way that the final result for the NLO correction only
contains the combinations C1 and C2 given in (9.10). We furthermore note that the spin-dependent
Born cross section in 4−2ε dimensions with an incoming polarized quark, d∆σ̂

(0),ε
qq̄′ /dv, is the negative

of d∆σ̂
(0),ε
qq̄′ /dv in (8.28), but with C3 = 0. This violation at order O(ε) of the relations in (8.7) and

hence of helicity conservation is typical of intermediate results in the HVBM scheme [232, 233].

Adding the real and virtual contributions, the double poles in ε cancel. We are left with single
poles associated with collinear gluon emission. According to the factorization theorem, these may be
absorbed into the parton distribution functions by a suitable subtraction which we perform in the MS
scheme. This introduces dependence on a factorization scale µF . In the upper row of Fig. 8.2, one of
the two initial-state collinear situations for the 2→ 3 qq̄′ channel is shown. Here, the variable x denotes
the momentum fraction of the incoming quark after radiating a gluon. The required subtraction is of
the form ∼ 1

ε Pqq ⊗ dσ̂
(0),ε
qq̄′ , where Pqq is a LO Altarelli-Parisi splitting function [48] and dσ̂(0),ε

qq̄′ again
the Born cross section for the process qq̄′ → `ν` computed in 4−2ε dimensions. More precisely, in case
of the contribution shown in the upper part of Fig. 8.2, in the unpolarized case, we have to subtract
the term

1

vs

dσ̂
(1),fact
qq̄′

dvdw
=

∫ 1

0
dx

dσ̂
(0),ε
qq̄′ (xs, xt, u, ε)

dv
Hqq(x, µ

2
F ) δ(x(s+ t) + u) , (8.30)
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where the MS scheme is defined by

Hqq(x, µ
2
F ) =

(
−1

ε
+ γE − log 4π

)(
µ2
F

s

)−ε
Pqq(x) , (8.31)

with γE the Euler constant and with

Pqq(x) = CF

[
1 + x2

(1− x)+
+

3

2
δ(1− x)

]
. (8.32)

Standard MS factorization requires the splitting function to be computed in four dimensions. After
the collinear subtractions have been performed, we end up with the final NLO result in the MS scheme.

If the incoming quark is polarized, the subtraction is similar, but with two crucial differences: First,
one needs the spin-dependent Born cross section in 4− 2ε dimensions, given as discussed above by the
negative of the unpolarized one in (8.28) but with C3 = 0. In addition, as discussed in Refs. [232, 233,
278], in order to correct for violation of helicity conservation in the HVBM scheme, one needs to use
the splitting function

∆Pqq(x) = CF

[
1 + x2

(1− x)+
+

3

2
δ(1− x) + 4ε(1− x)

]
(8.33)

in the factorization subtraction. With these differences taken into account, the final spin-dependent
NLO partonic cross sections respect the relations in (8.7), as they should.

As already mentioned, in the case of an exchangedW or Z boson one does not encounter any final-state
singularities. Effectively, the widths of the bosons act as regulators here. On the other hand, for an
intermediate photon – which presents one of the backgrounds – a final-state singularity would occur
if the leptons were massless, when the photon goes on its mass shell. Keeping a finite lepton mass is
well beyond the scope of this work and is also not necessary since the pure-photon contribution is in
any case rather small. Also, because of parity conservation, it is only present in the unpolarized cross
section and not in the single-spin one. The artificial singularity that one encounters in this channel for
massless leptons may be avoided for instance by imposing a cut on the invariant mass of the outgoing
lepton pair [269], or it may be simply subtracted in, say, the MS scheme. Effectively, the latter
approach, which we adopt here, introduces a (QED) photon-to-lepton fragmentation function [281].
The diagrammatic situation for the final-state collinear splitting is shown in the lower row of Fig. 8.2.
The subtraction to be performed is given by

1

sv

dσ̂
(1),photon fact
qq̄′

dvdw
= −

∫ 1

0
dx

dσ̂
(0)
qq̄→γg(s, t/x, u/x, ε)

dv
H`γ(x, µ2

F ) δ

(
s+

t+ u

x

)
, (8.34)

where dσ̂qq̄→γg denotes the Born-level cross section for the process qq̄ → γg in d = 4− 2ε dimensions,
and where

H`γ(x, µ2
F ) =

(
−1

ε
+ γE − ln 4π

)
P`γ(x)

(
s

µ2
F

)ε
, (8.35)
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with P`γ(x) the appropriate γ → ` splitting function. Including the thus defined subtraction renders
the full NLO cross section finite. We stress again that the pure-photon contribution is small, except
at large lepton rapidities. It can in fact be vetoed experimentally because it is characterized by two
charged leptons that almost coalesce. We also note that the γZ interference contribution does not
produce any final-state singularities even for massless leptons.

Finally, for qg scattering, there are no virtual corrections at O(αs). To obtain the finite cross section
for these partonic channels, one therefore only needs the appropriate subtractions for the initial-state
collinear singularities.

8.2.5 Final results

Our final analytical NLO expressions for the processes qq̄′ → `X, qg → `X throughW -boson exchange
are presented in the Appendix F. We briefly summarize a few features of the result for the qq̄′ → `X
channel. First of all, it contains the usual distributions in (1 − w), which dominate the cross section
at w → 1. These multiply the Born cross section:

d2σ̂
(1)
qq̄′

dvdw

w→1≈
dσ̂

(0)
qq̄′

dv
CF

[
8

(
log(1− w)

1− w

)

+

− 4A(v)

(1− w)+
+ B(v)δ(1− w)

]
, (8.36)

where the coefficients A(v), B(v) may be found from Eq. (F.4) in the Appendix F. The terms with
“plus” distributions represent the well-known threshold logarithms for the process that arise when the
incoming partons have just sufficient energy to produce the observed final state, so that any substantial
gluon radiation is kinematically inhibited.

The other terms in the NLO result have a more complicated structure. The integration of terms
containing (8.20) gives rise to three different types of denominators. We write them by introducing
the function

P (z) ≡ zs2

(zs−M2
W )2 + Γ2

WM
2
W

. (8.37)

We then encounter the terms
Pi ≡ P (zi) (i = 1, 2, 3) , (8.38)

where
z1 = 1 , z2 = w , z3 =

1− v
1− vw . (8.39)

Evidently, P1 essentially just corresponds to the propagator in the Born cross section. The other two
propagators are similar and reduce to P1 in the limit w → 1.

In addition to the new propagators arising at NLO, we also find several logarithms of the propagator
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Figure 8.3: LO (dashed) and NLO (solid) cross sections at RHIC (
√
S = 510 GeV) for `+ and `−-

production through W± boson exchange.

terms. The logarithms that occur are

log

(
(ws−M2

W )2 + Γ2
WM

2
W

M4
W + Γ2

WM
2
W

)
,

log

(
( 1−v

1−vws−M2
W )2 + Γ2

WM
2
W

M4
W + Γ2

WM
2
W

)
,

log

(
((1− v + vw)s−M2

W )2 + Γ2
WM

2
W

M4
W + Γ2

WM
2
W

)
. (8.40)

As seen in Eq. (F.1), they are accompanied by inverse tangent functions resulting from the imaginary
parts of the arguments of the logarithms arising in phase space integration. All these terms are
multiplied by simple functions of v and w and by one of the three types of propagators given above.
The result for the channel qg → `X does not contain threshold distributions but does have logarithms
of the type in Eq. (8.40); see the Appendix F for further details.

8.3 Phenomenological Results

We start with the unpolarized cross section for pp scattering at RHIC at
√
S = 510 GeV. Figure 8.3

shows our LO (dashed) and NLO (solid) results for the cross section dσ/dpT for `+ and `− production
through intermediate W bosons. We have integrated over |η| ≤ 1 in the charged lepton’s rapidity.
We have used the NLO parton distributions of [115] and the renormalization and factorization scales
µR = µF = pT . Our adopted values for theW mass and width areMW = 80.398 GeV, ΓW = 2.141 GeV
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Figure 8.4: Comparison of our analytical results with the corresponding ones from CHE [269] for the
polarized cross sections ∆σ for `+ production through W+ decay (left) and through intermediate Z or γ.
We have considered here pp collisions at

√
S = 500 GeV and have integrated over 20 ≤ pT ≤ 60 GeV. As

in [269] the parton distributions have been chosen from Refs. [128, 129, 135].

(later we will also use MZ = 91.187 GeV and ΓZ = 2.49 GeV for the Z boson).

Clearly, the NLO corrections are significant everywhere. They have moderate size below and around
the Jacobian peak at pT ≈MW /2 and become very large well above the peak. A close inspection of the
results in Fig. 8.3 reveals a hint of a “shoulder” in the NLO cross sections just above pT = MW /2. This
shoulder is a true feature of the NLO results. It comes about in two ways: First, the qq̄′ channel itself
has non-trivial structure here. Near pT = MW /2, there is a complicated interplay between positive
contributions by terms with distributions in (1 − w) (“plus distributions” or δ-function) in Eq. (F.4),
and contributions by subleading terms in (1−w), among them the terms involving the functions J and
K, which are negative around pT ∼ MW /2 and become positive just below and above the Jacobian
peak. This means that the qq̄′ channel is sensitive to the exact mix of positive and negative contribu-
tions. Secondly, the qg process makes a negative contribution below and around pT = MW /2 and then
becomes positive. This intricate interplay of the various contributions is also the reason why the height
of the peak is reduced at NLO as compared to LO. We note that for increasing energy

√
S the shoulder

becomes even more pronounced and in fact quickly turns into a double-peaked structure at NLO; see
also [282]. This at first sight surprising feature is a manifestation of the well-established fact [283] that
the region around the Jacobian peak cannot be controlled within a fixed-order calculation. Among
other things, it is sensitive to small transverse momenta qT of the intermediate W boson. There are
large double-logarithmic corrections to the qT -distribution of W bosons at low qT , which need to be
taken into account to all orders if one wants to address this region [284]. Such a resummation is
incorporated in the RHICBOS code [268]. These issues become relevant for precision determinations
of the mass of the W boson from the lepton’s pT spectrum near the Jacobian peak [285]. For RHIC,
they are not really relevant since, if one is interested in determining polarized parton distributions,
there is no need to focus on the region around the Jacobian peak. Rather, it is advisable to integrate
over a sizable range in pT , so that the Jacobian peak region constitutes only a rather small part of
the cross section, and to study the distribution of the charged lepton in rapidity. This is the strategy
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adopted by the RHIC experiments. We will therefore consider only lepton rapidity distributions in the
remainder of this paper. See Chapter 9 for further details.

In order to check the validity of our analytical results and their numerical evaluation, we have per-
formed extensive comparisons to high-statistics runs of the NLO code CHE presented in Ref. [269],
both for the unpolarized and for the polarized case. We have found excellent agreement. A representa-
tive example is given in Fig. 8.4, where we show the spin-dependent cross sections for `+ production at
RHIC, throughW+ boson exchange (left) and for the background channels, Z-boson exchange and γZ
interference (right; the pure-photon channel does not contribute to the spin-dependent cross section).
Both our analytical (solid lines) and the CHE results (histograms) are shown. We have followed [269]
to use the polarized parton distributions of [128, 129] (referred to as DSSV08) and the unpolarized
ones of [135] which were also the baseline set in the DSSV08 global analysis. Furthermore, the figure is
for
√
S = 500 GeV, and the transverse momentum of the observed charged lepton has been integrated

over the range of 20 < pT < 60 GeV. As in [269] we have chosen the renormalization and factorization
scales as µR = µF ≡ µ =

√
p2
T +M2

W /2 and assumed nf = 4 active quark flavors. In Fig. 8.4 the
error bars of the results shown for CHE correspond to numerical integration uncertainties. The un-
certainties in our new numerical calculation are smaller than the widths of the lines. Since our results
are largely analytical whereas the code of [269] is based on a standard Monte-Carlo integration with
numerical cancelation of singularities, our new code produces the results shown in about two orders
of magnitude less time. Of course, Monte-Carlo based codes are more flexible in general, allowing the
implementation of various additional kinematical cuts and observables if necessary.

We now turn to the spin asymmetries AL which are the quantities of primary interest in RHIC’s
W physics program. Figure 8.5 shows our NLO results at

√
S = 510 GeV as functions of η. The

cross sections have been integrated over pT ≥ 30 GeV, as appropriate for comparison to the Phenix
data [258, 259]. We have now used the new set of polarized parton distributions of Ref. [263] (referred
to as DSSV14). This set primarily contains updated information on the nucleon’s spin-dependent gluon
distribution, which is less relevant for weak boson production. However, it is also based on new results
from inclusive and semi-inclusive lepton scattering [124], so that it offers new information on the quark
and antiquark helicity distributions as well. We use the unpolarized parton distributions of [115]. The
solid lines in the figure show our results for charged-lepton production via W decay for the scale choice
µ = MW /2, while the dotted and dot-dashed lines correspond to the choices µ = pT and µ = MW ,
respectively. One can see that the scale dependence of the asymmetries is extremely weak, which is one
of the reasons whyW boson production at RHIC is an excellent and theoretically well-controlled probe
of nucleon spin structure. In Fig. 8.5 we also investigate the impact of the “background” presented by
Z and γ exchange. The dashed lines show the NLO results for the scale µ = MW /2, now including the
Z and photon contributions. As is known from previous studies [268, 269], the background channels
dilute the spin asymmetries somewhat, which is mostly due to the increase of the unpolarized cross
section in the denominator of the asymmetry. We note that the STAR experiment at RHIC is able to
identify and subtract this background, using data as well as Monte-Carlo estimates, so that the data
can be directly compared to calculations based on only intermediate W bosons. For comparisons to
Phenix data, the Z/γ background needs to be included. Figure 8.5 also shows the spin asymmetries
for Z and γ exchange alone, in this case integrated over 25 < pT < 50 GeV corresponding to conditions
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Figure 8.5: Single-spin asymmetries A`
±
L for negatively (left) and positively (right) charged leptons as

functions of rapidity at
√
S = 510 GeV. We have integrated over the range pT ≥ 30 GeV. The solid lines

show the results when the lepton originates exclusively from W bosons, at scale µ = MW /2. The dotted
and dot-dashed lines correspond to the scale choices µ = pT and µ = MW , respectively (note that the lines
for the various scales are almost indistinguishable). For the dashed lines the background from exchanged
Z bosons and photons has been included, using the scale µ = MW /2. Finally, the long-dashed lines show
the spin asymmetries for Z bosons and photons alone, without the W -boson contributions, this time for
25 < pT < 50 GeV. We have used the DSSV14 polarized parton distributions [128, 129] and the unpolarized
ones of [115].

in STAR [257].

Using our new NLO code, we finally compare in Fig. 8.6 the results for various sets of spin-dependent
parton distributions to the published STAR data [257] for AWL taken at

√
S = 510 GeV. The data

have been presented for various η, sampled over the range 25 < pT < 50 GeV of lepton transverse
momenta. In view of the results shown in Fig. 8.5 the scale choice hardly matters; we use µR = µF =
MW /2. The sets of spin-dependent parton distributions we use are from [128, 129, 263] (DSSV08 and
DSSV14), from [271] (NNPDFpol1.1), as well as the “statistical” parton distributions of [286, 287] and
a much earlier set [288] known as the “GRSV valence scenario”. From the figure we draw the following
observations:

• all sets describe the W+ asymmetry data rather well. The main reason for this is that the
spin asymmetry is largely driven by the polarized up quark distribution which is relatively well
constrained by DIS data and hence similar in all sets.

• among the various sets, NNPDFpol1.1 is the only one for which the STAR data were already
included in the analysis, constraining the light sea quark helicity distributions. As a result,
the data are quite well described by the set, especially when one includes the corresponding
uncertainty estimates [271] that we do not show here. Note, however, that information from
semi-inclusive lepton scattering is not included in the NNPDFpol1.1 set.

• at η ≤ 0, the two DSSV sets show W− asymmetries that are below the data. Since the DSSV14

182



8.4. CONCLUSIONS

set contains the latest information available from (semi-inclusive) DIS, this hints at the inter-
esting possibility of a tension between the DIS and RHIC data, the latter favoring a larger ∆ū
distribution (see also the discussion in [271]). It has to be emphasized, however, that we do not
display here any uncertainties for the DSSV set; as shown in [128, 129, 257], the main DSSV08
uncertainty band is such that it just about touches the lower end of the error bars of the data
points. In this sense, it is premature to draw any conclusions regarding such a tension. Clearly,
it will be interesting to follow up on this issue in the context of a new global analysis, especially
when additional experimental information becomes available.

• in the framework of the statistical parton distributions, the helicity distributions are obtained
along with the unpolarized ones and depend on only very few parameters to be determined from
data. As one can see from Fig. 8.6 (and as discussed in [287]), the model describes the RHIC
data quite well.

• the GRSV valence scenario of [288] describes the W− asymmetry data strikingly well. The main
distinctive features for this set are assumptions about the breaking of SU(3) in the relations
between nucleon spin structure and hyperon β-decays, and the ansatz [289]

∆d̄(x,Q2
0)

∆ū(x,Q2
0)

=
∆u(x,Q2

0)

∆d(x,Q2
0)

(8.41)

at a low initial scale Q0. Since ∆u and ∆d are known to have opposite sign, the latter ansatz
forces the ratio ∆d̄/∆ū to be negative. This requirement, along with the condition ∆ū+ ∆d̄ < 0
imposed by the DIS data and the assumptions about SU(3)-breaking, is realized in this model
by a fairly large positive ∆ū distribution and a negative (and even larger in absolute value) ∆d̄
one. Evidently, the STAR data prefer such a sizable positive ∆ū. We note that one of the sets of
Ref. [290] has a similar ∆ū distribution and hence describes the W− asymmetry data similarly
well [269]. It will be interesting to see whether also the large negative ∆d̄ of [288] is realized;
unfortunately, the ∆d̄ contribution to the W+ asymmetry is typically overwhelmed by the ∆u
one. Note that a negative ∆d̄ pulls the W+ asymmetry to more negative values (see (8.4) in
the introduction), which may explain why the GRSV valence scenario shows the most negative
asymmetry of all the sets at η ≤ 0. Needless to say that the GRSV valence scenario has not been
confronted with the latest (semi-inclusive) DIS data.

8.4 Conclusions

We have presented a new analytical NLO calculation of the partonic cross sections for single-inclusive
lepton production at RHIC, when the lepton originates from the decay of an intermediate electroweak
boson, especially a W boson. Our numerical code based on analytical phase space integration is much
faster than existing Monte-Carlo integration based codes. In this way, we hope that our code will be
a valuable tool for future global analyses of the proton’s helicity parton distributions that include the
new high-precision data for AWL asymmetries obtained at RHIC. Our results may also be useful to
obtain insights into the analytical structure of the partonic cross sections, for example in terms of their
threshold logarithms or their behavior in the vicinity of the Jacobian peak.
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Figure 8.6: Comparisons of NLO results for AW
±

L for various sets of helicity parton distributions [128,
129, 263, 271, 286, 288] to the STAR data [257] taken at

√
S = 510 GeV. The cut 25 < pT < 50 GeV has

been applied on the lepton’s transverse momentum. We have chosen the scales µR = µF = MW /2.

We have also presented new comparisons of the latest RHIC data with the NLO predictions for some
of the sets of polarized parton distributions available in the literature. In line with observations in the
earlier literature we have found that the data prefer a rather sizable positive ∆ū helicity distribution
in the proton.
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CHAPTER 9

HIGHER ORDER QCD EFFECTS FOR
HADRONIC W PRODUCTION IN THE
REGION OF THE JACOBIAN PEAK

We consider the single-inclusive processes pp→ `±X and p̄p→ `±X at next-to-leading order in QCD,
where the produced charged lepton has a large transverse momentum and results from the decay of
a W± boson. We continue to analyze the structure of our analytical results presented in Chapter 8.
These results shed light on the general role and size of higher-order corrections, especially near the
Jacobian peak, where they are relevant for precision determinations of the W boson mass. We find
that the next-to-leading order corrections actually produce a double-peak structure in the transverse-
momentum spectrum which is usually not resolved in Monte-Carlo treatments of the cross section.
This Chapter is based on publication [ix].

9.1 Introduction

The production of W bosons in hadronic collisions plays an important role at past and present-day
collider experiments like the Tevatron, RHIC and the LHC, where very high rates of events involving
W bosons can be achieved. For example, in pp collisions at RHIC, 1.3 × 106 W bosons are expected
to be produced for an integrated luminosity of 800 pb−1 and a center-of-mass energy of

√
S = 510

GeV. High precision measurements of the W boson mass MW and width ΓW provide a key test of the
standard model. The dominant production process in pp̄ collisions at

√
S = 1.96 TeV at the Fermilab

Tevatron collider is qq̄′ → W + X, where X denotes additional unobserved final-state particles that
have to be summed over. We consider the channel, where the W boson decays into a charged lepton
and a neutrino W → `ν`, where ` = e, µ.

The invariant mass squared of a W boson cannot be reconstructed directly at hadron colliders because
the longitudinal momentum of the decay neutrino remains undetermined. This situation is in contrast
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to the decay of Z boson, where its mass can be measured directly due to the resonance in the cross
section dσ/dMµ+µ− . The extraction of MW is based on the analysis of Jacobian peaks in transverse
momentum distributions on the lepton-level. Three different cross sections are used, namely dσ/dp`T ,
dσ/dpνT and dσ/dmT . Where p`T (pνT ) denotes the momentum of the observed charged lepton ` (neu-
trino ν`) in the plane transverse to the beam axis. The neutrino pνT distribution is determined by
measuring the missing transverse momentum /ET of an event. The third cross section is differential in
the transverse mass of the lepton pair which is defined by mT ≡ (2p`T p

ν
T − 2~p `T · ~p νT )1/2. However, in

this work we will limit ourselves to the cross section differential in the transverse momentum of the
charged lepton p`T , which is more sensitive to higher order corrections than the cross section differential
in mT [283].

The standard model predicts a relationship between the W boson mass and the Higgs mass MH . In
combination with several other electroweak parameters like the mass of the top quarkmt constraints on
physics beyond the standard model may be obtained. The limiting factor are the uncertainties of the
MW mass. Therefore, it is of great interest for the physics at the LHC to have a solid understanding
of higher order effects of perturbative QCD which determine the shape of the Jacobian peak. So far,
the current world average is MW = 80.385± 0.015 GeV, see [291, 292].

In this Chapter, we present a calculation at NLO in QCD for the pT distribution of the detected lepton
where we perform the phase space integration analytically. It is well known that large logarithmic
contributions appear at higher orders in QCD. Existing purely numerical results at NLO can be found
in [268–270]. In addition, the Monte-Carlo package ResBos of [268, 293] takes into accout large loga-
rithms in the transverse momentum qT of the W boson using the CSS resummation formalism [294].
The leptonic pT spectrum is deduced afterwards by attaching an appropriate decay channel. Having
calculated the leptonic pT cross section analytically at NLO, we can identify various types of loga-
rithms that are especially important in the peak region. For example, we find the expected threshold
logarithms, which become large when the phase space for real-gluon radiation shrinks and all the in-
coming energy is used to produce the observed charged lepton. However, we find several other types
of logarithms as well, which are equally relevant in the peak region. The interplay of all logarithms
determines the characteristic shape of the Jacobian peak at NLO, see also [272].

The calculation presented in this Chapter can also be applied to physics at RHIC, where longitudinal
single spin asymmetries are measured for W boson production in p~p collisions. The asymmetry is
generated by the parity violating vertex structure of the W . Given the the fact that the detectors
are not hermetic, a theoretical calculation of the asymmetries is crucial for the extraction of helicity
dependent parton distribution functions.

Section 9.2, presents our calculation at NLO. In section 9.4, we discuss a possible approach in order to
resum large logarithmic contributions in the pT cross section using the narrow width approximation.
Our phenomenological results are presented in section 9.3.

186



9.2. NEXT-TO-LEADING ORDER CALCULATION

9.2 Next-to-leading order calculation

9.2.1 Basics of the NLO calculation

We consider the single-inclusive process pp → ` + X, where ` denotes the charged lepton (or anti-
lepton) resulting from W decay. Denoting the momenta of the incoming protons and the produced
charged lepton by PA, PB, p`, respectively, we write the hadronic cross section in factorized form:

dσ =
∑

a,b

∫
dxadxb fa(xa, µ

2
F ) fb(xb, µ

2
F ) dσ̂ab(xaPA, xbPB, p`, µ

2
R, µ

2
F ) . (9.1)

The functions f(x, µ2
F ) are the parton distributions for the incoming protons, where x is the parton’s

momentum fraction of the momentum of the parent hadron, and µF the factorization scale. The
partonic hard-scattering cross sections dσ̂ab which also depend on the renormalization scale µR, may
be calculated in perturbation theory as series in the strong coupling constant αs. The leading-order
(LO) partonic process is qq̄′ → W . The corresponding Feynman diagram is shown in Fig. 8.1(a). At
NLO, there are O(αs) corrections to the Born process as well as the additional qg → Wq′ channel.
The relevant diagrams are displayed in Fig. 8.1(b)-(d), where we have omitted crossed diagrams.
We now introduce the variables

S ≡ (PA + PB)2 , T ≡ (PA − p`)2 , U ≡ (PB − p`)2 , (9.2)

and
V ≡ 1 +

T

S
, W ≡ −U

S + T
. (9.3)

The lepton’s transverse momentum pT and rapidity η are related to these variables by

V = 1− pT√
S

e−η , V W =
pT√
S

eη . (9.4)

We may now write the differential hadronic cross section explicitly at NLO as

d2σ

dp2
Tdη

=
1

p2
T

∑

a,b

∫ V

VW
dv

∫ 1

VW/v
dw xafa(xa, µ

2
F )xbfb(xb, µ

2
F )

[
dσ̂

(0)
ab (s, v)

dv
δ(1− w)

+
αs(µ

2
R)

2π

dσ̂
(1)
ab (s, v, w, µ2

F , µ
2
R)

dvdw

]
, (9.5)

where
xa =

VW

vw
, xb =

1− V
1− v , (9.6)

and we have furthermore defined

v ≡ 1 +
t

s
, w ≡ −u

s+ t
,

s ≡ (pa + pb)
2 = xaxbS , t ≡ (pa − p`)2 = xaT , u ≡ (pb − p`)2 = xbU . (9.7)
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We have used pa = xaPA, pb = xbPB for the partonic momenta.

Throughout this Chapter we work with a general (axial) vector structure for the Wqq̄′-vertex of the
form

V µ
q = −i gW

2
√

2
Uqq′ γ

µ (vq − aq γ5) , (9.8)

where Uqq′ is the appropriate CKM matrix element and gW the fundamental weak charge. Likewise,
we use a similar expression for the W`ν`-vertex, with vector and axial coefficients v` and a` (and, of
course, with Uqq′ = 1). Using such general vertices will help us to keep better track of the couplings
in the NLO calculation and to obtain an understanding of the underlying structure.

9.2.2 Born level cross section and the Jacobian peak

The lowest-order contribution to the cross section comes from the 2→ 2 scattering process qq̄′ → `ν`.
The diagram is shown in Fig. 8.1(a). As before, we use “`” for the observed charged lepton, regardless
of its charge. We shall see below that it is possible to formulate a partonic cross section in this generic
way, despite the fact that the “lepton” can be either a particle or an anti-particle. We also always refer
to the corresponding neutrino or anti-neutrino as the “neutrino” and denote it by ν`. Since it remains
unobserved, we integrate over its phase space. This leads to an overall factor δ(1 − w) for the Born
cross section, so that

d2σ̂(0)

dvdw
=
dσ̂(0)

dv
δ(1− w) , (9.9)

as we have anticipated in (9.5). Using the general vertex structure given in Eq. (9.8), we find that two
combinations of the couplings appear in the expression for the cross section, which are given by

C1 = (v2
q + a2

q)(a
2
` + v2

` ) + 4 aqa`vqv` ,

C2 = (v2
q + a2

q)(a
2
` + v2

` )− 4 aqa`vqv` . (9.10)

We recall that in case of an exchanged W± boson, we have vq = aq = v` = a` = 1 and hence always
C1 = 8 and C2 = 0. However, it is useful to keep C2 in the calculation as it allows us to easily switch
between W− and W+ production. The reason for this becomes clear when we write down the Born
cross section:

dσ̂(0)

dv
=
|Uqq′ |2s
8πNc

(
GFM

2
W√

2

)2
C1(1− v)2 + C2v

2

(s−M2
W )2 + Γ2

WM
2
W

, (9.11)

where Nc = 3, GF is the Fermi constant, GF =
√

2g2
W /(8M

2
W ), and MW and ΓW are the W boson

mass and decay width. Let us consider now the partonic channel ud̄→ e+νe. For this indeed Eq. (9.11)
provides the correct cross section when C1 = 8 and C2 = 0. In this way the cross section is proportional
to (1−v)2, as required by the V −A structure of the interaction and angular momentum conservation.
For dū→ e−ν̄e, on the other hand, the cross section has to be proportional to v2, rather than (1− v)2.
This is immediately realized by interchanging C1 and C2 in Eq. (9.11), and subsequently setting again
C1 = 8 and C2 = 0. Equivalently, and even more simply, we can just choose in (9.11) C1 = 8, C2 = 0
for ud̄ → e+νe and C1 = 0, C2 = 8 for dū → e−ν̄e to obtain the correct cross sections. We note that
the cross sections for the reactions d̄u → e+νe and ūd → e−ν̄e can be obtained by simple “crossing”
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Figure 9.1: Comparison of our NLO analytical results (solid lines) with the results of the Monte-Carlo
integration code of [269] (histograms) for `+ production through an intermediate W+ boson at the LHC
(
√
S = 7 TeV). We have integrated over |η| < 2. The upper histogram shows the result for the qq̄′ channel

only, while the lower one shows the full result including the qg contribution. The error bars correspond to
this for the code of [269]; the uncertainties in our new numerical calculation are smaller than the width of
the lines.

t↔ u, or v ↔ 1− v. Again this may also be achieved by C1 ↔ C2. All these considerations also hold
at NLO, where the cross section still depends only on the two combinations C1 and C2.

The NLO cross section in Eq. (9.5) may also be written as

d2σ

dp2
Tdη

=
1

p2
T

∑

a,b

∫ 1

4p2
T /S

dx̂2
T

∫ 1

x̂2
T

dw

4w
√

1− x̂2
T /w

xafa(xa, µ
2
F )xbfb(xb, µ

2
F )

[
dσ̂

(0)
ab

dv
δ(1− w)

+
αs(µ

2
R)

2π

dσ̂
(1)
ab

dvdw

]
, (9.12)

where we have omitted the arguments of the cross section for simplicity, and where we have defined

x̂2
T ≡

4p2
T

s
= 4vw(1− v) . (9.13)

In the form (9.12), the cross section exhibits the well-known Jacobian peak in the transverse-momentum
distribution. In LO, using the factor δ(1− w), we obtain

dσ̂
(0)
qq̄′

dp2
T

∝ 1√
1− 4p2

T
s

s2

(s−M2
W )2 + Γ2

WM
2
W

. (9.14)
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Figure 9.2: LO (dashed) and NLO (solid) cross sections for `+ production through W boson exchange
in pp̄ collisions at

√
S = 1.96 TeV.

Since the width of the W boson is much smaller than its mass, the Breit-Wigner distribution is very
narrowly peaked around s = M2

W . As a result, the square root factor produces an (integrable) diver-
gence at pT =

√
s/2 ≈MW /2. In the limit ΓW → 0 (narrow-width approximation), this singularity is

exactly at pT = MW /2, since in this case we may write

1

(s−M2
W )2 + Γ2

WM
2
W

→ π

ΓWMW
δ(s−M2

W ) . (9.15)

The Jacobian peak would then become directly visible in the lepton’s transverse-momentum spectrum.
For finite ΓW , the convolution with the parton distribution functions smears out the singularity, leaving
behind a finite, but narrow, peak near pT = MW /2 ≈ 40 GeV. This will be shown also in our
phenomenological results below. The exact shape of the Jacobian peak is very sensitive to the width
ΓW as well as to QCD and even electroweak corrections.

9.3 Phenomenological Results

In order to check the validity of our analytical results and their numerical evaluation, we have performed
extensive comparisons to high-statistics runs of the NLO code presented in [269]. We have found
excellent agreement in each case. A representative example is shown in Fig. 9.1, where we show the
comparison for the case of `+ production in pp-collisions at LHC,

√
S = 7 TeV, in the vicinity of the

Jacobian peak. We have used the parton distributions of [115] for both codes, and the renormalization
and factorization scales µR = µF = pT , and we have adopted the values MW = 80.398 GeV, ΓW =
2.141 GeV for theW mass and width. As one can see, the agreement of the two calculations is excellent.
Since our results are largely analytical whereas the code of [269] is based on a standard Monte-Carlo
integration with numerical cancelation of singularities, our new code produces the result shown in
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Figure 9.3: LO (dashed) and NLO (solid) cross sections for `+ production through W boson exchange in
pp collisions at

√
S = 7 TeV. The dotted lines show the NLO for factorization and renormalization scales

pT /2 (lower) and MW (upper).

about two orders of magnitude less time. We will comment below on the features of the cross section
seen in the figure.

We now present a few phenomenological applications of our results for pp scattering the LHC (
√
S =

7 TeV) and pp̄ scattering at the Tevatron (
√
S = 1.96 TeV). We use the NLO MSTW parton distri-

butions from [115]. Again, we choose the renormalization and factorization scales as µR = µF = pT .
Figure 8.3 in Chapter 8 shows our LO (dashed) and NLO (solid) results for the cross section dσ/dpT
for `+ and `− production at RHIC. We have integrated the lepton’s rapidity over |η| ≤ 1. One notices
that the NLO corrections are significant everywhere. The have moderate size below and around the
peak and become very large well above the peak.

In Figs. 9.2 and 9.3 we present our results for `+ production in pp̄ collisions at the Tevatron and in pp
scattering at the LHC. For the LHC, we also show NLO results for renormalization and factorization
scales µR = µF = pT /2 and MW which demonstrate that the scale dependence is very weak (other
scales such as 2pT or

√
p2
T +M2

W /4 give a cross section even closer to the one for our default scale
choice). One notices a striking “double-peak” structure near pT = MW /2, which becomes even more
pronounced as one moves up in energy from Tevatron to the LHC. In fact, a close inspection of the
results for RHIC shown in Fig. 8.3 reveals a hint of a double-peak structure also there. We found
the reason for the double-peak structure to be twofold. First, the qq̄′ channel by itself produces at
least a “shoulder” in addition to the usual peak, as may be seen from the upper curve/histogram in
Fig. 9.1. How this happens is explained by Fig. 9.4: Near pT = MW /2, two types of terms in Eq. (F.4)
contribute significantly. The terms with distributions in w (“plus distributions” or δ-function) make a
sizable positive contribution, whereas the terms involving the functions J and K are large and negative
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Figure 9.4: Full NLO result (solid) at LHC energy for |η| < 1 and its decomposition into qq̄′ (long-dashed)
and qg (dot-dashed) contributions. For the dashed and dotted lines we further break up the qq̄′ piece into
the distributtion terms (which include the LO term) and the remaining ones.

below pT ∼ MW /2 and then change sign and become positive above. The remaining terms are fairly
unimportant. The dashed line in the figure displays the distributional terms (including the LO piece),
while the dotted line represents the other NLO terms on the qq̄′ channel. The two contributions to-
gether give the full qq̄′ result at NLO, which is shown by the long-dashed line. One clearly notices the
strong cancelations that occur. This means that the qq̄′ channel becomes very sensitive to the exact
mix of positive and negative contributions, which changes with energy. Secondly, also the qg process
makes a negative contribution below and around pT = MW /2 and then becomes positive, as also shown
in the figure. It therefore helps to make the double-peak structure more pronounced, again more so
at higher energies where qg scattering becomes more prevalent. The intricate interplay of the various
contributions is also the reason why the height of the peak is much reduced at NLO as compared to LO
(see Fig. 9.3). Figure 9.5 finally shows how the double peak structure at the LHC varies with rapidity.

These features of the cross section occur of course in a region around pT = MW /2 whose width is
set by ΓW ∼ 2.5 GeV. This means that the two peaks are rather close together, which explains why
they are often not resolved in the NLO studies based on completely numerical evaluations of the cross
section (see, however, [282]).

9.4 Discussion and Further Numerical Studies

Given the large size of the corrections in the Jacobian peak region, a NLO calculation cannot be ad-
equate here. Indeed, there has been extensive work on all-order resummations [268, 268] of the cross
section. The NLO result yields the usual distributions that become large in the threshold limit w → 1,
c.f. Eq. (8.36). Usual large-xT threshold resummation, with xT = 2pT /

√
s, would resum logarithms
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Figure 9.5: Same as Fig. 9.3, but for three different ranges in the lepton’s rapidity η. Note that the cross
section for 4 ≤ |η| ≤ 5 has been multiplied by 10 for better visibility.

associated with soft-gluon emission, for w → 1, see [215]. However, we find different kinds of logarithms
as well, see Eq. (8.40), which become large in the region of the Jacobian peak around pT ∼MW /2. The
width ΓW regularizes those logarithms in the sense that they remain finite when the term (xs−M2

W ),
see Eq. (8.40), vanishes, which appears in the arguments of L1,2,3. It is yet unclear how the behavior
around pT ∼MW /2 connects to the usual threshold limit.

A possible approach is the narrow width approximation. Since the width of the W boson is much
smaller than its mass MW � ΓW , the denominators P2 and P3 given in Eq. (8.38), essentially act as
delta functions, setting s → M2

W . For example, in the case of the denominator P2, we can make the
following approximation

1

(ws−M2
W )2 + g2

≈ π

g
δ(ws−M2

W ). (9.16)

With the help of these new delta function, we may perform the w integration in order to end up with
a cross section that is differential in pT only. At the partonic level, we find the following structure

dσ̂

dp̂T
∼ 1√

1− x̂2
T

(
a log2(1− x̂2

T ) + b log(1− x̂2
T ) + . . .

)
(9.17)

with some coefficients a and b and we have x̂T = 2p̂T /MW . The dots in Eq. (9.17) represent additional
subleading terms in the large-x̂T region. In this approximation, we find that all types of logarithmic
contributions to the cross section at NLO are equally important in the peak region around pT ∼MW /2.
However, after summing up all logarithmic terms at NLO, using the narrow width approximation, we
find that the leading logarithms cancel out, i.e. we have a = 0.
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Figure 9.6: Cross sections differential in the lepton’s transverse momentum dσ/dpT for Tevatron kine-
matics. See discussion in the text.

In order to better understand the observed features of the cross section, we performed several nu-
merical studies using different publicly available codes which are CHE [269], RHICBOS [268, 293],
DYNNLO [295, 296] and FEWZ [297, 298]. All codes except our new one presented in this Chapter
are based on a numerical phase space integration. We start by considering the pT lepton spectrum at
LO, NLO and NNLO. In Fig. 9.6, we start with the production of aW+ boson for Tevatron kinematics
and we integrate the rapidity of the lepton over the interval of |η| < 2. Here we use the CTEQ6
PDFs from [223]. The lines show the result from our new code whereas histograms are calculated with
one of the Monte-Carlo integrators listed above. We find that our NLO result (dashed blue) agrees
with the NLO from CHE (solid green) as well as with NLO expansion of RHICBOS in case that the
“Y-term” in included (solid blue). Within the framework of qT resummations, where qT is the trans-
verse momentum of the produced W boson, the “Y-term” is similar to the NLO matching in threshold
resummation taking into account non-singluar terms at a given fixed order. Taking into account only
the qT distributions (solid magenta), we find a significant offset. We would like to stress that RHIC-
BOS is only consistent with the other codes at NLO if we choose the parameter qsepT of the order of
qsepT ≈ 0.2 GeV. Furthermore, we note that an additional cut on theW boson transverse momentum qT
such as qT < 15 GeV for example leads to an overall shift of the lepton’s pT distribution. The overall
shape remains unaltered. The dash-dot histogram in Fig. 9.6 shows the qT resummed calculation. In
comparison to the other results, it does not have a two-peak structure.

In Fig. 9.7, we show similar results for LHC kinematics. The colors for our NLO and the qT resummed
result are the same. However, now we compare our NLO to the one of FEWZ with which we agree
as well. In addition, we plot the NNLO results from FEWZ (solid green) and DYNNLO (solid black).
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Figure 9.7: Similar to Fig. 9.6 but for LHC kinematics.

Despite numerical uncertainties of the NNLO cross section, we can directly see that the two-peak struc-
ture remains also at NNLO even though it appears to be softened to a certain extent. This implies
that going beyond NLO does not directly solve the instability issue, where the cross section can get
even negative for large values of the c.m.s. energy or for small values of the width ΓW . Also for LHC
energies, the qT resummed result from RHICBOS is stable.

As a second step, we consider W+ production cross sections differential in the qT of the produced W+

boson in Fig. 9.8 for Tevatron kinematics. In dash dot red, we show the qT resummed cross section
calculated with RHICBOS. In solid blue, we show the NLO expansion (which in principle is the LO for
this cross section) with the Y-term and in dashed green without it. Again, we choose the parameter
qsepT = 0.2 GeV. As expected the two curves agree very well for low qT and the difference is not very
large even for qT = 15 GeV. In addition, we find a large negative contribution in the smallest qT bin
close to qT = 0 GeV which is due to contributions proportional δ(qT ). However, this bin is not shown
in Fig. 9.8 here. In solid black, we show the full NNLO result from DYNNLO which is closer to the
resummed result than the NLO. In general, also CHE and FEWZ fit very well with the presented
results even though they are not shown here.

Finally, we show the dependence of the pT differential NLO cross section on MW in Fig. 9.9 a). We
plot ratios of dσ(MW ± 20 MeV)/dσ(MW ). In order to measure the MW mass with an accuracy in the
MeV range, the cross section needs to be known with a precision at the percent level. Therefore, we
conclude that a solid understanding of the shape around the Jacobian peak is of great importance, see
also [299] for example. In Fig. 9.9 b), we show the dependence of the NLO cross section on the width
ΓW . We plot both the standard NLO cross section (solid blue) as well as the cross section with the
replacement Γ → ΓW /10 (dashed black). We also devide the cross section by a factor of 10 in order
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Figure 9.8: Cross sections differential in the transverse momentum of the produced W boson dσ/dqT for
Tevatron kinematics. See discussion in the text.

to compensate for the main effects. Note that this corresponds to the narrow width approximation
discussed above. As it can be seen, the cross section becomes negative in the peak region.

9.5 Conclusions

We derived a new analytical result for W boson production in hadron-hadron scattering at NLO.
With the analytical expression at hand, we were able to identify several types of large logarithmic
contributions to the cross section as well as their relevance in the region of the Jacobian peak. A solid
understanding of higher order effects is essential for the extraction of MW at the Tevatron and the
LHC. In the next Chapter, we are going to extend our NLO calculation to the polarized case. This will
be of great use for the extraction of polarized PDFs from single spin asymmetries involving W bosons
at RHIC.
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Figure 9.9: Dependence of the NLO cross section on a) MW and b) ΓW for LHC kinematics.
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QCD FEYNMAN RULES
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APPENDIX A. QCD FEYNMAN RULES

Figure A.1: QCD Feynman rules in covariant gauge with quarks (solid), gluons (curly) and ghosts
(dotted). See for example [300]. Choosing the gauge parameter ξ = 1 (ξ = 0) corresponds to Feynman
(Landau) gauge.
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APPENDIX B

PDF AT LO AND NLO

We give a rather detailed calculation at LO and NLO of the parton distribution function φq/q in
light-cone gauge n2 = 0, see [65] for example. We start from the operator definition, which is

φq/q(x) =
1

4

∑

σ

∫
dz−

2π
e−ixp

+z− 〈q(p, σ)|ψ̄(z−)γ+ψ(0)|q(p, σ)〉 . (B.1)

An analogous calculation for φg/g may be found in [67] for example.

B.1 Leading Order

We can write the quark states in Eq. (B.1) in terms of quark creation and annihilation operators acting
on the vacuum

|q(p, σ)〉 = b(σ)†(p) |0〉 , 〈q(p, σ)| = 〈0| b(σ)(p) . (B.2)

These operators satisfy the following anticommutation relation

{b(r)(p), b(s)†(p′)} = 2Ep δrsδ
(3)(p− p′) (B.3)

and similarly for the corresponding antiquark operators d, d†. With these operators at hand, we are
able to write down the free quark field as

ψ(z) =

2∑

r=1

∫
d3p′

2Ep′

(
b(r)(p′)u(r)(p′) e−ip

′z + d(r)†(p′) v(r)(p′) eip
′z
)
. (B.4)
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p

p′ = p

Figure B.1: Quark-quark PDF at LO

Using Eqs. (B.2), (B.4), we may now rewrite Eq. (B.1) as

φ
(0)
q/q(x) =

1

4

∑

σ,r,s

∫
dz−

2π

∫
d3p′

2Ep′

∫
d3p′′

2Ep′′
ei(p

′+−xp+)z− ū
(s)
i (p′′)γ+

ij u
(r)
j (p′)

×〈0|b(σ)(p) b(s)†(p′′) b(r)(p′) b(σ)†(p)|0〉

=
1

4

∑

σ

∫
dz−

2π
eip

+z−(1−x) u
(σ)
j (p) ū

(σ)
i (p)γ+

ij

=
δ(1− x)

4p+
tr[/pγ

+] = δ(1− x) . (B.5)

where we have kept the Dirac indices i, j explicit. We can associate the Feynman diagram given in
Fig. B.1 with the calculation at LO.

B.2 Next-to-Leading Order

The ψ operators in Eq. (B.1) are Heisenberg operators evolving with the full Hamiltonian. Expanding
to a given fixed order in αs leads to higher order interactions that may be formulated in terms of
corresponding Feynman rules. At NLO, we need to consider real and virtual corrections as shown in
Fig. B.2. For the real part, we need to consider the following expression

φ
(1),r
q/q (x) = −1

4
g2µ2εCF

∫
ddk

(2π)d
1

(2p · k)2
2π δ(k2) δ(k+ − (1− x)p+)

× tr
[
/pγ

µ(/p− /k)γ+(/p− /k)γν
](

gµν −
nµkν + nνkµ

n · k

)
, (B.6)

where we are integrating of over the phase space of the gluon crossing the final state cut with momentum
k. For simplicity, we treat the two terms in the last bracket separately. Denoting the trace structure
by Trµν and working in dimensional regularization d = 4− 2ε, we find for the “Feynman term” ∼ gµν
the result Trµνgµν = −16(1− ε) 8(p · k)k+. Hence, we may write the real correction as

φ
(1),r
q/q (x) =

αs
π
CF

(4πµ2)ε

Γ(1− ε) (1− ε) (1− x)

∫ ∞

0
d|kT | |kT |−1−2ε , (B.7)
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k

p

p′ = p − k

p

p′ = p

Figure B.2: Quark-quark PDF at NLO; real and virtual corrections.

where we used

δ(k2) =
1

2k+
δ

(
k− − k2

T

2k+

)
(B.8)

and ddk = dk+dk−d|kT | |kT |d−3dΩd−3 where
∫
dΩd−3 = 2π1−ε/Γ(1 − ε). The remaining integral over

kT is divergent. It may be split into an UV and an infrared pole
∫ ∞

0
d|kT | |kT |−1−2ε =

π

ε
+

π

(−ε) + . . . (B.9)

The UV divergence is cancelled by an appropriate MS counterterm, whereas the IR pole remains. In
the next step, we need to evaluate the single gauge term in Eq. (B.6). Choosing the principal value
prescription and n = (0, 1,0), we find

− Trµν
(
nµkν + nνkµ

n · k

)
= −32

(p+)2k−

k+
(p+ − k+) . (B.10)

Combining both terms, we obtain the following result

φ
(1),r
q/q (x) =

αs
π
CF

(4πµ2)ε

Γ(1− ε)

(
−1

ε

)(
1 + x2 − ε(1− x)2

1− x

)
, (B.11)

where the last term in brackets is indeed proportional to the splitting function P<q/q(x) in d = 4 − 2ε
dimensions. Here, the superscript < denotes the splitting function without delta function contribution
and dropping all “+” prescriptions, cf. Eq. (1.72). The full one-loop quark-quark splitting function
is obtained after including also the virtual corrections as shown on the right hand side of Fig. B.2.
However, we omit a more detailed calculation for brevity.
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SIDIS, DIS AND SIA COEFFICIENT
FUNCTIONS AT NLO

C.1 SIDIS Coefficient Functions at NLO

In this Appendix we collect the NLO expressions for the spin-averaged partonic SIDIS cross sections. At
NLO, we have to consider the processes γ∗q → qX, γ∗q → gX, and γ∗g → qX. For their contributions
to the structure function FhT we have in the MS scheme [51, 105–109]:

CT,(1)
qq (x̂, ẑ) = e2

qCF

[
− 8δ(1− x̂)δ(1− ẑ) + δ(1− x̂)

[
P̃qq(ẑ) ln

Q2

µ2
F

+ L1(ẑ) + L2(ẑ) + (1− ẑ)
]

+δ(1− ẑ)
[
P̃qq(x̂) ln

Q2

µ2
F

+ L1(x̂)− L2(x̂) + (1− x̂)

]

+
2

(1− x̂)+(1− ẑ)+
− 1 + ẑ

(1− x̂)+
− 1 + x̂

(1− ẑ)+
+ 2(1 + x̂ẑ)

]
, (C.1)

CT,(1)
gq (x̂, ẑ) = e2

qCF

[
P̃gq(ẑ)

(
δ(1− x̂) ln

(
Q2

µ2
F

ẑ(1− ẑ)
)

+
1

(1− x̂)+

)

+ẑδ(1− x̂) + 2(1 + x̂− x̂ẑ)− 1 + x̂

ẑ

]
, (C.2)

CT,(1)
qg (x̂, ẑ) = e2

qTR

[
δ(1− ẑ)

[
P̃qg(x̂) ln

(
Q2

µ2
F

1− x̂
x̂

)
+ 2x̂(1− x̂)

]

+P̃qg(x̂)

{
1

(1− ẑ)+
+

1

ẑ
− 2

}]
, (C.3)
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where eq is the quark’s fractional charge, CF = 4/3, TR = 1/2,

P̃qq(ξ) =
1 + ξ2

(1− ξ)+
+

3

2
δ(1− ξ), P̃gq(ξ) =

1 + (1− ξ)2

ξ
, P̃qg(ξ) = ξ2 + (1− ξ)2,

L1(ξ) = (1 + ξ2)

(
ln(1− ξ)

1− ξ

)

+

, L2(ξ) =
1 + ξ2

1− ξ ln ξ, (C.4)

and the “+” - distributions are defined as follows:
∫ 1

0
dξf(ξ)[g(ξ)]+ ≡

∫ 1

0
dξ (f(ξ)− f(1)) g(ξ),

∫ 1

0
dx̂

∫ 1

0
dẑ

f(x̂, ẑ)

(1− x̂)+(1− ẑ)+
≡
∫ 1

0
dx̂

∫ 1

0
dẑ

f(x̂, ẑ)− f(1, ẑ)− f(x̂, 1) + f(1, 1)

(1− x̂)(1− ẑ) .

(C.5)

Note that we have given expressions in (C.1) for an arbitrary factorization scale µF , keeping however
the scales the same for the initial and the final state. For the longitudinal structure function F hL :

CL,(1)
qq (x̂, ẑ) = 4e2

qCF x̂ẑ,

CL,(1)
gq (x̂, ẑ) = 4e2

qCF x̂(1− ẑ),

CL,(1)
qg (x̂, ẑ) = 8e2

qTRx̂(1− x̂). (C.6)

In Mellin-moment space, the NLO results become [110]

C̃T,(1)
qq (N,M) = e2

qCF

[
− 8− 1

M2
+

2

(M + 1)2
+

1

N2
+

(1 +M +N)2 + 1

M(M + 1)N(N + 1)
+ 3S2(M)− S2(N)

+ [S1(M) + S1(N)]

{
S1(M) + S1(N)− 1

M(M + 1)
− 1

N(N + 1)

}

+

[
1

N(N + 1)
+

3

2
− 2S1(N)

]
ln

(
Q2

µ2
F

)
+

[
1

M(M + 1)
+

3

2
− 2S1(M)

]
ln

(
Q2

µ2
F

)]
,

(C.7)
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C̃T,(1)
gq (N,M) = e2

qCF

[
2− 2M − 9M2 +M3 −M4 +M5

M2(M − 1)2(M + 1)2
+

2M

N(M + 1)(M − 1)

− 2−M +M2

M(M + 1)(M − 1)(N + 1)
− 2 +M +M2

M(M + 1)(M − 1)
[S1(M) + S1(N)]

+
2 +M +M2

M(M + 1)(M − 1)
ln

(
Q2

µ2
F

)]
, (C.8)

C̃T,(1)
qg (N,M) = e2

qTR

[
2 +N +N2

N(N + 1)(N + 2)

(
1

M − 1
− 1

M
− S1(M)− S1(N) + ln

(
Q2

µ2
F

))
+

1

N2

]
,

(C.9)

where

Si(N) ≡
N∑

j=1

1

ji
. (C.10)

Note that at large N we have

S1(N) = ln N̄ +O(1/N), S2(N) =
π2

6
+O(1/N), (C.11)

where N̄ = NeγE . Furthermore, for the longitudinal structure function,

C̃L,(1)
qq (N,M) = e2

qCF
4

(M + 1)(N + 1)
, (C.12)

C̃L,(1)
gq (N,M) = e2

qCF
4

M(M + 1)(N + 1)
, (C.13)

C̃L,(1)
qg (N,M) = e2

qTR
8

M(N + 1)(N + 2)
. (C.14)

Here we have corrected a mistake in C̃L,(1)
qg (N,M) in Ref. [110].
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C.2 DIS Coefficient Functions at NLO

The DIS coefficient functions up to NLO in the MS scheme are given by [51, 109, 133]

C1
q (x̂) = e2

qδ(1− x̂) + e2
q

αs
2π
CF

[
(1 + x̂2)

(
ln(1− x̂)

1− x̂

)

+

− 3

2

1

(1− x̂)+

− 1 + x̂2

1− x̂ ln x̂+ 3

−
(
−9

2
+
π2

3

)
δ(1− x̂)

]

CLq (x̂) = e2
q

αs
2π
CF 2x̂

C1
g (x̂) = e2

q

αs
2π
CF

[ (
x̂2 + (1− x̂)2

)
ln

(
1− x̂
x̂

)
− 1 + 4x̂(1− x̂)

]

CLg (x̂) = e2
q

αs
2π
CF [4x̂(1− x̂)] (C.15)

where j = q, g and x̂ = ξ/x. The definitions of x and ξ are given in Eqs. (4.5) and (4.6). These
coefficients satisfy

C2
j (x̂) = C1

j (x̂) + CLj (x̂) . (C.16)

Concerning Chapter 4, we also would like to point out that these coefficient functions are related to
the coefficient functions hi (i = 1, 2, L) defined in [47] as follows

C1(x̂) = 2h1(x̂) , CL(x̂) = 2hL(x̂) , C2(x̂) =
h2(x̂)

x̂
, (C.17)

so that
hL = −h1 +

h2

x̂
. (C.18)

The structure function FAQ
i (i = 1, 2, L) presented in the same paper are connected to the ones defined

in Eq. (4.15) by the following relations

FAQ
1 (xB, Q

2) =
FTMC

1 (xB, Q
2)

2
= FTMC

1 (xB, Q
2)

FAQ
2 (xB, Q

2) = xBFTMC
2 (xB, Q

2) = FTMC
2 (xB, Q

2)

FAQ
L, (xB, Q

2) =
FTMC
L (xB, Q

2)

2
=
FTMC
L (xB, Q

2)

2xB
(C.19)

so that

FAQ
L =

ρ2

2xB
FAQ

2 − FAQ
1 , (C.20)

where ρ is defined in Eq. (4.16).
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C.3 SIA Coefficient Functions

The coefficient functions up to NLO for SIA in the MS scheme are given by [51, 106, 301, 302]

Ĉ1
q (ẑ) = e2

qδ(1− ẑ) + e2
q

αs
2π
CF

[
(1 + ẑ2)

(
ln(1− ẑ)

1− ẑ

)

+

− 3

2

1

(1− ẑ)+

+ 2
1 + ẑ2

1− ẑ ln ẑ +
3

2
(1− ẑ)

+

(
2

3
π2 − 9

2

)
δ(1− ẑ)

]

ĈLq (ẑ) = e2
q

αs
2π
CF

Ĉ1
g (ẑ) = e2

q

αs
2π
CF 2

[
1 + (1− ẑ)2

ẑ
ln
(
ẑ2(1− ẑ)

)
− 2

(1− ẑ)
ẑ

]

ĈLg (ẑ) =e2
q

αs
2π
CF

[
4

(1− ẑ)
ẑ

]
, (C.21)

where j = q, g and ẑ = ξE/z. The definitions of z and ξE are given in Eqs. (4.45) and (4.43). The
listed coefficient functions are related by

Ĉ2
j (x̂) = Ĉ1

j (x̂) + ĈLj (x̂) . (C.22)
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APPENDIX D

THE NORMALIZATION OF THE SOFT
FUNCTION

The soft matrix SLI in the resumed cross section in moment space, Eq. (7.7), is computed as described
in Ref. [80, 81]. Its all-orders form is most conveniently exhibited in moment space, as the ratio of the
moments of a fully eikonal cross section σ̂ab→cdLI and four factorized jets, two to absorb the factorizing
collinear singularities of the incoming parton lines, and two to absorb the collinear singularities of
outgoing lines:

(
Sab→cd

(
αs(m̂

2/N̄2),∆η
) )

LI
=

σ̂ab→cdLI

(
m̂2

N2µ2
R
,∆η, αs(µ

2
R), ε

)

∏
i=a,b j̃

(i)
in

(
m̂2

N2µ2
R
, αs(µ2

R), ε
)∏

j=c,d j̃
(j)
out

(
m̂2

N2µ2
R
, αs(µ2

R), ε
) .

(D.1)
As described in Refs. [78, 80, 81], these “in" and “out" jets, j̃in and j̃out, respectively are defined to
match the collinear singularities and radiation phase space in the partonic threshold limit.
The explicit calculation of (Sab→cd)LI at one loop as given here is equivalent to the procedure described
in Sec. 5.3.3. The functions on the right of (D.1), as defined in detail below, are normalized and
expanded according to

σ̂ab→cdLI

(
m̂2

N2µ2
R

,∆η, αs(µ
2
R), ε

)
= (S

(0)
ab→cd)LI +

αs(µ
2
R)

π
σ̂
ab→cd (1)
LI + O(αs(µ

2
R)2) ,

j̃
(i)
in

(
m̂2

N2µ2
R

, αs(µ
2
R), ε

)
= 1 +

αs(µ
2
R)

π
j̃

(i,1)
in + O(αs(µ

2
R)2) ,

j̃
(j)
out

(
m̂2

N2µ2
R

, αs(µ
2
R), ε

)
= 1 +

αs(µ
2
R)

π
j̃

(j,1)
out + O(αs(µ

2
R)2) , (D.2)

where S(0) is the tree-level soft matrix, defined as in Eq. (5.53). The first-order expansion of the soft
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matrix is thus,

(
S

(1)
ab→cd

)
LI

= σ̂
ab→cd (1)
LI − (S

(0)
ab→cd)LI


 ∑

i=a,b

j̃
(i,1)
in +

∑

j=c,d

j̃
(j,1)
out


 . (D.3)

At any loop order, the collinear singularities of the eikonal cross section σ̂LI match those of properly-
defined incoming and outgoing jet functions. At one loop, this will result in a finite soft function by
simple cancellation in Eq. (D.3), as seen in Sec. 5.3.3. That is, division by the regularized jet functions
plays the role of the collinear factorization of the soft function. It also provides finite, factorizing
corrections to the soft function, which depend on the definitions of the jets functions. Here we use
jet functions defined directly from the eikonal resummations of Drell-Yan and double inclusive cross
sections [191]. The choices, defined below, match collinear singularities of the eikonal cross section,
and have the advantage of being Lorentz and gauge invariant. They differ from those made in Refs.
[78, 80, 81] by finite terms, but the collinear structure is identical. When restricted to the amplitude
level, this is the same formalism that was implemented in Refs. [211–214, 219].

To make the connection to the calculation of the soft function in this paper explicit, we recall that
eikonal diagrams are generated by path-ordered exponentials with constant velocities β, which we
represent as

Φ
(f)
β (λ2, λ1;x) = P exp

(
−ig

∫ λ2

λ1

dη β·A(f)(ηβ + x)

)
, (D.4)

where superscript f represents the color representation of the parton to which this “Wilson line" corre-
sponds. In terms of these path-ordered exponentials, we define products corresponding to scattering,
pair annihilation and pair creation. For the case of 2 → 2 scattering, the ends of two incoming and
two outgoing Wilson lines are coupled locally by a constant color tensor CI ,

w
(ab→cd)
I (x){j} =

∑

{i}

Φ
(d)
βd

(∞, 0;x)jd,id Φ
(c)
βc

(∞, 0;x)jc,ic

×
(
C(ab→cd)
I

)
idic,ibia

Φ
(a)
βa

(0,−∞;x)ia,jaΦ
(b)
βb

(0,−∞;x)ib,jb . (D.5)

For pair annihilation, two lines in conjugate representations that come from the infinite past are joined
by a color singlet tensor, that is, a simple Kronecker delta,

w
(aā)
0 (x){j} =

∑

{i}

(δ)ia,iā Φ
(ā)
βā

(0,−∞;x)ia,jaΦ
(a)
βa

(0,−∞;x)iā,jā , (D.6)

and similarly for pair creation, using color-conjugate lines that emerge from a point, and extend into
the infinite future,

ŵ
(aā)
0 (x){j} =

∑

{i}

Φ
(ā)
βā

(∞, 0;x)ia,jaΦ
(a)
βa

(∞, 0;x)iā,jā (δ)ia,iā . (D.7)
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In terms of these operators, the eikonal cross section is defined by

σ̂ab→cdLI

(
m̂2

N2µ2
R

,∆η, αs(µ
2
R), ε

)
=

∫ 1

0
dτ τN−1

∫
dy0

2π
eiτm̂y

0

× Tr{j} 〈0| T̄
(
w

(ab→cd)
L

†
(

(y0,~0)
)
{j}

)
T
(
w

(ab→cd)
I (0){j}

)
|0〉

=

∫ 1

0
dτ τN−1

∑

ξ

δ(τm̂− p0
ξ)

× Tr{j} 〈0| T̄
(
w

(aā)
L
† (0){j}

)
|ξ〉 〈ξ|T

(
w

(aā)
I (0){j}

)
|0〉 , (D.8)

where T represents time-ordering, T̄ anti-time ordering, and p0
ξ is the energy of state |ξ〉. The in jet is

defined in terms of its square in moment space as
(
j̃

(a)
in

(
m̂2

N2µ2
R

, αs(µ
2
R), ε

))2

=

∫ 1

0
dτ τN−1

∑

ξ

δ(τm̂− p0
ξ)

× Tr{j} 〈0| T̄
(
w

(aā)
0
† (0){j}

)
|ξ〉 〈ξ|T

(
w

(aā)
0 (0){j}

)
|0〉 .

(D.9)

With this choice,
(
j̃

(a)
in

)2
is exactly the eikonal Drell-Yan cross section. It was computed to two loops in

Ref. [303]. The out jet is defined by the same integrals but with the pair of incoming Wilson lines of the
operator w0(x) replaced by the outgoing pair in ŵ0(x), corresponding to double inclusive annihilation
[93]:

(
j̃

(c)
out

(
m̂2

N2µ2
R

, αs(µ
2
R), ε

))2

=

∫ 1

0
dτ τN−1

∑

ξ

δ(τm̂− p0
ξ)

× Tr{j} 〈0| T̄
(
ŵ

(cc̄)
0
† (0){j}

)
|ξ〉 〈ξ|T

(
ŵ

(cc̄)
0 (0){j}

)
|0〉 .

(D.10)

It is easy to confirm explicitly in Ref. [303] that the calculation of this quantity depends only on the
inner products βa · βā so that the full two-loop calculation and renormalization of this operator is the
same for outgoing as for incoming eikonal jets.

The resummation of logarithms of N in this cross section leads precisely to the functions ln ∆N
i in Eq.

(5.25), which summarize factoring NNLL dependence on the moment variable N , as confirmed recently
in Ref. [304]. We note, however, that in the NNLL exponentiation as implemented into the expression
for the functions ∆N

i in Eq. (6.7), the Drell-Yan soft function is treated as an overall prefactor evaluated
at the hard scale m̂2, rather than at m̂2/N2. Logarithms at NNLL that are associated with this shift
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are already incorporated into the exponent by use of the relation [304]

S(αs(m̂
2/N2)) = S(αs(m̂

2)) exp

[
−1

2

∫ m̂2

m̂2/N2

dµ2

µ2

∂ lnS(αs(µ
2))

∂µ2

]
. (D.11)

To match logarithms associated with these factors consistently we include in our definition of ∆N
i in

Eq. (6.7) an extra factor of 1− (3αs/4π)A
(1)
i ζ(2), to account for our definitions of the in- and out-jet

functions in terms of Drell-Yan and double inclusive cross sections. The combined factors for all four
jet functions match the π2 contribution in (5.92), which in turn arises from the explicit π2 terms in
the integrals dIij/dτ̂ in (5.90).
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APPENDIX E

THE SOFT FUNCTION FOR
SINGLE-INCLUSIVE HADRON

PRODUCTION AT NLO

For all channels, we choose the color basis of [82]. The leading-order matrices S(0) may be found
in [82]. The soft-matrix at NLO for single-inclusive hadron production may be split into a part that
is proportional to the LO soft matrix S(0) and a remainder which turns out to be proportional to the
matrix R12 introduced in (6.32) and (5.83).

For the channels qq′ → qq′ and qq → qq, we obtain the following result

S
(1)
qq′→qq′ = S(1)

qq→qq

= −CF
2

(
[ln(1− v) + ln v]2 − 2 ζ(2)

)
S

(0)
qq′→qq′

+CF ln(1− v) ln v

(
1 −CA
−CA 0

)
(E.1)

see also Eq. (6.51). For the channels qq̄′ → qq̄′, qq̄ → q′q̄′ and qq̄ → qq̄, we find

S
(1)
qq̄′→qq̄′ = S

(1)
qq̄→q′q̄′ = S

(1)
qq̄→qq̄

= −CF
2

(
[ln(1− v) + ln v]2 − 2 ζ(2)

)
S

(0)
qq̄′→qq̄′

+CF ln(1− v) ln v

(
0 CA

CA (C2
A − 2)/2

)
. (E.2)

217



APPENDIX E. THE SOFT FUNCTION FOR SINGLE-INCLUSIVE HADRON PRODUCTION AT NLO

For the channels qg → qg and gq → qg, we find

S(1)
qg→qg = S(1)

gq→qg

=

(
−CF

2
[ln(1− v) + ln v]2 + (CF − CA) ln2(1− v) + CF ζ(2)

)
S(0)
qg→qg

+
CFCA

2
ln(1− v) ln v




0 0 −4CA

0 C2
A − 4 4− C2

A

−4CA 4− C2
A C2

A


 . (E.3)

For the channels gq → gq and qg → gq, we find

S(1)
gq→gq = S(1)

qg→gq

=

(
−CA

2
[ln(1− v) + ln v]2 + (CA − CF ) ln2 v + CA ζ(2)

)
S(0)
gq→gq

+
CFCA

2
ln(1− v) ln v




0 0 −4CA

0 C2
A − 4 4− C2

A

−4CA 4− C2
A C2

A


 . (E.4)

For the channel qq̄ → gg, we find

S
(1)
qq̄→gg = −CF

2

(
[ln(1− v) + ln v]2 − 2 ζ(2)

)
S

(0)
qq̄→gg

+CF ln(1− v) ln v




4CFC
2
A 0 0

0 (2CF − CA)(C2
A − 4) 0

0 0 −CA


 . (E.5)

For the channel gg → qq̄, we find

S
(1)
gg→qq̄ = −CA

2

(
[ln(1− v) + ln v]2 − 2 ζ(2)

)
S

(0)
gg→qq̄

+CFCA ln(1− v) ln v




4C2
A 0 0

0 C2
A − 4 0

0 0 C2
A


 . (E.6)
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For the channel gg → gg, we find

S(1)
gg→gg = −CA

2

(
[ln(1− v) + ln v]2 − 2 ζ(2)

)
S(0)
gg→gg

+3 ln(1− v) ln v




5 0 0 0 0 0 0 0

0 5 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 4 4 8 0

0 0 0 2 4 4 0 6

0 0 0 0 8 0 20 12

0 0 0 0 0 6 12 36




, (E.7)

where we chose CF = 4/3 and CA = 3 in the second line.
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APPENDIX F

EXPLICIT RESULTS FOR HADRONIC W
PRODUCTION AT NLO

In this Appendix, we present some of our explicit NLO results. We first consider the qq̄′ channel
when an intermediateW− boson is produced (for example through dū scattering), for which effectively
C1 = 0, C2 = 8 in (9.10) (see discussion after Eq. (9.11)). We define the functions

K(z) ≡ arctan

(
ΓWMW

zs−M2
W

)
+ πΘ(M2

W − zs) ,

J(z) ≡ log

[
(zs−M2

W )2 + Γ2
WM

2
W

M4
W + Γ2

WM
2
W

]
− 2MW

ΓW
K(z) ,

(F.1)

with the usual (Heaviside) step function. In addition to the values z1 = 1 , z2 = w , z3 = (1−v)/(1−vw)
of Eq. (8.39), we introduce

z0 = 0 , z4 = 1− v + vw , (F.2)

and we set
Ji ≡ J(zi) , Ki ≡ K(zi) . (F.3)
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We then find for production of a W−:

s d2σ̂
(1)
qq̄′

dvdw
=
|Uqq′ |2
πNc

(
GFM

2
W√

2

)2

CF

[
v2P1

[
2(1 + w2)

(
log(1− w)

1− w

)

+

− 2 log(1− vw)
Pqq(w)

CF

+

(
π2 − 8 +

(
3

2
+ 2 log(1− v)

)
log

1− v
v

)
δ(1− w) +

1 + w2

1− w (J0 − J2 − J3 + J4 + κ(K0 −K2 −K3 +K4))

]

− v

2

(
J0 − 2J3 + J4

1− vw − J0 − J4

1− v + vw

)
+ v2

{
P2

[
(1 + w2)

(
log(1− w)

1− w

)

+

− Pqq(w)

CF
log

(
µ2
F

vs

)
+ 1− w

− 1

2

1 + w2

1− w
(
J0 − 2J2 + J4 +

κ

w
(K0 − 2K2 +K4)

)]}
+

v3w2

1− vw

{
v → 1− vw,w → 1− v

1− vw

}]
, (F.4)

with the splitting function Pqq of Eq. (8.32), and with

κ ≡ 2MW (Γ2
W +M2

W )

ΓW s
. (F.5)

Note that despite appearance the expression is perfectly well regularized at w = 1.

By applying crossing one obtains the corresponding cross section for q̄′q →W−g. Crossing is achieved
by changing v → 1− vw, w → (1− v)/(1− vw) and multiplying the result by the Jacobian v/(1− vw).
We do not give the crossed result explicitly here.

Writing the NLO partonic qq̄′ cross section for general C1 and C2 in the form

C1 dσ̂
(1)
1 + C2 dσ̂

(1)
2 , (F.6)

we find that dσ̂(1)
2 = [dσ̂

(1)
1 ]crossed. Since the result for W+ production is obtained in our calculations

by setting C1 = 8, C2 = 0 (see Sec. 9.2.2), we thus have

dσ̂
(1)
qq̄′→W+g

= 8dσ̂
(1)
1 = dσ̂

(1)
q̄q′→W−g ,

dσ̂
(1)
q̄′q→W+g

= 8
[
dσ̂

(1)
1

]
crossed

= dσ̂
(1)
q′q̄→W−g. (F.7)

We remind the reader that the W± cross section for a polarized incoming quark differs just by a sign
from the corresponding unpolarized one (see Eq. (8.7)) while that for an incoming polarized antiquark
involves no sign change. The cross sections for intermediate Z bosons may be constructed from (F.6),
using (F.4) and its crossed variant and inserting the appropriate coupling factors C1 and C2 in each
case.

Secondly, we also present the result for the channel gq̄ → W−q̄′ in the unpolarized and the polarized
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case:

s d2σ̂
(1)
gq̄

dvdw
=

TR|Uqq′ |2
πNc

(
GFM

2
W√

2

)2

v2P2

{
2 (1− w)w − Pqg(w)

×
[
J0 − 2J2 + J4 +

κ

w
(K0 − 2K2 +K4) + 2 log

(
µ2
F

v(1− w)s

)]}
,

s d2∆σ̂
(1)
gq̄

dvdw
= −TR|Uqq′ |

2

πNc

(
GFM

2
W√

2

)2

v2P2

{
2 (1− w)− ∆Pqg(w)

×
[
J0 − 2J2 + J4 +

κ

w
(K0 − 2K2 +K4) + 2 log

(
µ2
F

v(1− w)s

)]}
, (F.8)

where TR = 1/2 and

Pqg(x) =
1

2

(
x2 + (1− x)2

)
,

∆Pqg(x) =
1

2
(2x− 1) . (F.9)

We note that the terms in square brackets have a similar structure as the penultimate one in (F.4).
Finally, for qg →W−q′ we find

s d2σ̂
(1)
qg

dvdw
=

TR|Uqq′ |2
πNc

(
GFM

2
W√

2

)2 [
v

1− vw

{
2M2

W

s
(J0 − 2J3 + J4 + κ̃(K0 − 2K3 +K4))

+ P3 v
2w2

[
2(1− w̃)w̃ − Pqg(w̃)

(
J0 − 2J3 + J4 +

κ

w̃
(K0 − 2K3 +K4) + 2 log

(
µ2
F

v(1− w)s

))]

− (J0 − 2J3 + J4)
1− v − vw + 2v2w − v2w2

1− vw − (1 + vw)(1− 2v + vw)

1− vw

}

+
v

(1− v + vw)2

{
−M

2
W

s
(J0 − J4 + κ̃(K0 −K4))

1− 3v + 2v2 + 4vw − 3v2w + v2w2

1− v + vw

+
1

2
(J0 − J4)(1− v)(1− 2v + 2vw)− v(1− v − 2w + vw)

}]
, (F.10)

where
w̃ ≡ 1− v

1− vw = z3 , (F.11)

and

κ̃ ≡ Γ2
W +M2

W

ΓWMW
. (F.12)
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The corresponding spin-dependent cross section for an incoming polarized quark again just differs by
a sign; see (8.7).
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